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Summary

The goal of this study was to gain a deeper understanding of the selective sweep models and the

statistical and computational methods that disentangle selective sweeps from neutrality. In the

Introduction of the thesis I review the literature on the main approaches that have been developed

in the last decade to separate selective sweeps from neutraldemographic scenarios. Methods on

complete and incomplete selective sweeps are reviewed as well as selective sweeps on structured

populations. Further, I analyze the effects of past demographic events, especially bottlenecks, on

the genealogies of a sample. Finally, I demonstrate that theineffectiveness of separating selective

sweeps from bottlenecks stems from the lack of robust statistics, and most importantly from the

similar genealogies that bottlenecks and selective sweepsmay generate locally on a recombining

chromosome.

In the first chapter I introduce a method that combines statistical tests in a machine learning

framework, in order to disentangle selective sweeps from neutral demographic scenarios. The

approach uses support vector machines to learn examples from neutral scenarios and scenarios with

selection. I demonstrate that the novel approach outperforms previously published approaches for

a variety of demographic scenarios. The main reason for the performance difference is the usage

of the scenarios with selection, that are not analyzed by classical statistical methods.

In the second chapter of the thesis I present an application of the methods on detecting a selec-

tive sweep in the African population ofD. melanogaster. Demographic history and ascertainment

bias schemes have been taken into account. Results pinpointto theHDAC6 gene as a target of

recent positive selection. This study demonstrates the variable threshold approach, which reme-

dies the tendency of some neutrality tests to detect selective sweeps at the edges of the region of

interest.

In the third chapter I present the results of the analysis of selective sweeps in multi-locus

models. I assume that a phenotypic trait evolves under stabilizing or directional selection. In

contrast to the classical models of selective sweeps, the evolutionary trajectory of an allele that

affects the trait might belong to one of the three categories: it either fixes, disappears or remains
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polymorphic. Thereafter, I analyze the properties of coalescent trees and neutral polymorphism

patterns that are generated from each of the three categories. I show that for the majority of

simulated datasets selection cannot be detected unless thetrajectory is either fixed or close to

fixation.



Zusammenfassung

Das Ziel dieser Studie ist ein besseres Verständnis von ‘Selective Sweep’ Modellen zu erhalten,

sowie den statistischen und computerbasierten Methoden die versuchen ‘Selective Sweeps’ von

neutraler Evolution abzugrenzen. In der Einleitung gebe ich einenÜberblick über die Literatur

der letzten zehn Jahre die Versuche beschreibt ‘Selective Sweeps’ von neutralen demographis-

chen Szenarien zu unterscheiden. Methoden für vollständige und unvollständige ‘Sweeps’ werden

besprochen, als auch Methoden für ‘Sweeps’ in strukturierten Populationen. Ich analysiere die

Effekte von vergangenen demographischen Ereignissen, insbesondere genetischer Flaschenhälse,

auf die Genealogie von Stichproben aus einer Population. Ich zeige auf, dass die Ineffektivität

in der Unterscheidung von ‘Selective Sweeps’ und Flaschenhälsen auf einen Mangel an robusten

Statistiken zurckzufhren ist, sowie der Tatsache, dass Flaschenhälse und ‘Selective Sweeps’ lokal

auf einem Chromosom ähnliche Genealogien erzeugen können.

Im ersten Kapitel stelle ich eine neue Methode zur Unterscheidung von ‘Selective Sweeps’ und

neutralen demographischen Szenarien vor, die maschinelles Lernen benutzt um statistische Tests

zu kombinieren. Dieser Ansatz benutzt ‘Support Vector Machines’ um Beispiele von neutralen

Szenarien sowie Szenarien mit Selektion zu erlernen. Ich zeige, dass dieser neue Ansatz den

bisher veröffentlichten Methoden unter einer Vielzahl demographischer Szenarien überlegen ist.

Der Hauptgrund für diesen Leistungsunterschied liegt im Gebrauch von Szenarien mit Selektion,

welche in klassischen statistischen Methoden nicht berücksichtigt wurden.

Das zweite Kapitel beschreibt die Anwendung von Methoden zum Nachweis von ‘Selective

Sweeps’ auf eine Afrikanische Population vonDrosophila melanogaster. Die demographische

Vergangenheit der Population und mögliche statistische Verzerrungen wurden dabei berücksichtigt.

Die Ergebnisse deuten darauf hin, dass das GenHDAC6vor kurzem Ziel von positiver Selektion

war. Diese Studie benutzt eine Herangehensweise mit variablem statistischem Schwellenwert,

welche die Tendenz einiger Neutralitätstests umgeht ‘Selective Sweeps’ an den Rändern von un-

tersuchten Regionen zu entdecken.

Im dritten Kapitel präsentiere ich die Ergebnisse aus einer Analyse von ‘Selective Sweeps’
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unter Multi-Lokusmodellen. Ich nehme hierbei an, dass ein Phänotyp unter dem Einfluss von

stabilisierender oder gerichteter Selektion evolviert. Im Gegensatz zu klassischen Modellen von

‘Selective Sweeps’, fällt der evolutionäre Verlauf eines Allels das den Phänotyp beeinflusst in eine

von drei Kategorien: es fixiert, es geht verloren oder es bleibt polymorph. Des Weiteren untersuche

ich die Eigenschaften der Koaleszenzbäume und der neutralen Polymorphismen welche unter den

jeweiligen drei Szenarien entstehen. Ich zeige, dass für die Mehrzahl der simulierten Datensätze

Selektion nicht nachweisbar ist, außer das Allel ist fixiertoder steht kurz davor.
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General Introduction

Based on nearly complete genome sequences from a variety of organisms data on naturally occur-

ring genetic variation on the scale from hundreds of loci to entire genomes have been collected

in recent years. In parallel, new statistical tests have been developed to infer evidence of recent

positive selection from these data and to localize the target regions of selection in the genome.

These methods have now been successfully applied toDrosophila melanogaster, human, mouse

and a few plant species. In genomic regions of normal recombination rates, the targets of positive

selection have been mapped down to the level of individual genes.

Searching for strong positive selection in the genomes of individuals of a natural population

has been the focus of a multitude of studies over the past ten years HARR et al. (2002); KIM and

STEPHAN (2002); GLINKA et al. (2003); AKEY et al. (2004); ORENGO and AGUADÉ (2004).

The goals of these studies have been (i) to provide evidence of positive selection, (ii) estimate the

strength of selection, and (iii) localize the targets of selection. A long-term goal is that the genes

that experienced recent, strongly positive selection could be identified and the associated functions

and phenotypes characterized.

In general, these studies followed a two-tier approach: at first, levels of DNA polymorphism are

measured for a very large number of loci on a genome-wide scale within populations. For humans,

the best-studied species, continuous single nucleotide polymorphism (SNP) data are also available

along the entire genome, though with some varying density. The goal of this initial step is to

identify loci that display patterns of variability suggesting recent positive selection. Some studies

employed microsatellite markers to measure polymorphism and looked for regions of depleted

variability as an indicator of a selective sweep due to genetic hitchhiking in the region (see Box on

page 2). Other studies analyzed SNP by directly sequencing small fragments of DNA at multiple

loci, which allows for the estimation of properties of the site frequency spectrum (SFS) of SNPs

and linkage disequilibrium (LD). While this approach mightseem straight forward, the actual

definition of a candidate locus can be challenging, especially in populations that have undergone

demographic perturbations. Most studies up to now have employed rather simple methods such
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as outlier analysis, in order to select candidate loci (e.g. KAUER et al. 2003; OMETTO et al.

2005). Only recently more sophisticated methods have been developed for analyzing genome-

wide polymorphism data, including tests based on the background SFS (NIELSEN et al.2005),FST

(BEAUMONT and BALDING 2004; RIEBLER et al.2008) and explicit modeling of the population

history (LI and STEPHAN 2006).

As a second step following the identification of a candidate locus, polymorphism patterns of

the surrounding region are obtained by fine-scale sequencing. The resulting high-density SNP

data is then used for tests of deviation from neutral expectations [including the standard tests of

HUDSON et al. (1987); TAJIMA (1989) and FAY and WU (2000)]. In addition, however, specific

tests for positive selection in these subgenomic regions such as theCLR-GOF K IM and STEPHAN

(2002); JENSEN et al. (2005) tests are used; they can also estimate the strength ofselection and

the approximate location of the beneficial mutation within the region. Below, we describe these

new tests and show that they have been successfully used to identify the targets of recent, strongly

positive selection. If the rate of local recombination is not too low, individual genes or even regions

within a gene can be mapped using this approach.

The hitchhiking effect

When a strongly beneficial mutation occurs and spreads in a population, it is inevitable that the
frequency of linked neutral (or weakly selected) variants increases. In a seminal paper, MAY-
NARD SMITH and HAIGH (1974) described this process, which they termed genetic hitchhiking.
They show that in very large populations hitchhiking can drastically reduce genetic variation near
the site of selection (thus causing a selective sweep).
According to Maynard Smith and Haigh’s deterministic model, in recombining chromosomal re-
gions diversity vanishes at the site of selection immediately after the fixation of the beneficial allele
and is predicted to increase as a function of the distance to the selected site (scaled by the selec-
tion coefficient). This result is also roughly correct in finite populations (KAPLAN et al. 1989;
STEPHAN et al.1992). Further signatures of the hitchhiking effect include (i) shifts in the site fre-
quency spectrum of polymorphisms such as an excess of low- and high-frequency derived alleles
(BRAVERMAN et al.1995; FAY and WU 2000), and (ii) distinct patterns of linkage disequilibrium
such as an elevated level of LD in the early phase of the fixation process of a beneficial mutation
(K IM and NIELSEN 2004; STEPHAN et al.2006). In a suite of statistical tests, these properties of
the hitchhiking effect have been used to map recent, strongly positive directional selection along
recombining chromosomes of several species.
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Methods for detecting selective sweeps

Subgenomic data

CLR test: Using predictions of the hitchhiking model (MAYNARD SMITH and HAIGH 1974, see

Box on page 2), KIM and STEPHAN (2002) developed a composite-likelihood ratio (CLR) test to

detect local reductions of nucleotide variation along a recombining chromosome and to predict

the strength and the location of a selective sweep. TheCLR test compares the probability of the

observed polymorphism data under the standard neutral model with the probability of the data

under a model of selective sweep. Under the standard neutralmodel the expected number of sites

where the derived variant is in the frequency interval[p+dp] in the population (the SFS) is given

by

φ0(p)dp=
θ
p

dp (1)

(FU 1995; EWENS 2004). FAY and WU (2000) have shown that immediately after a hitchhiking

event this distribution is transformed approximately to

φA(p) =





θ
p − θ

C for 0< p<C

0 for C< p< 1−C
θ
C for 1−C< p< 1

(2)

where the parameterC depends on the strength of selectionα = 2Nsand the recombination rate

r between the neutral site and the site where the beneficial mutation has occurred (KIM and

STEPHAN 2002).N is the effective population size ands the selection coefficient.

The probability of observing a site wherek derived alleles are found in a sample ofn sequences

is obtained by binomial sampling as

Pn,k =

(
n
k

)
pk(1− p)n−kφ(p)dp, (3)

whereφ(p) = φ0(p) applies under the standard neutral model andφ(p) = φA(p) under the hitch-

hiking model. KIM and STEPHAN (2002) compare two hypotheses:

• (H0) The observed allelic class at each position of the subgenomic region under consideration

is derived from a standard neutral model, and

• (HA) The observed allelic class at each position of the subgenomic region is due to a selective
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sweep that occurred at some positionX of the fragment and is characterized by the selection

parameterα.

The probabilities of the data under these hypotheses are calculated as the product of the proba-

bilities of all sites of the fragment under consideration (Equation 3) using the densitiesφ0(p) and

φA(p), respectively. The maximum log-likelihood-ratio statistic ΛCLR is then given by

ΛCLR= log
maxP(Data|HA)

P(Data|H0)
, (4)

where max refers to the maximization ofP(Data|HA) with respect to the parametersX andα.

Since the null and alternative hypotheses that are comparedin theCLRtest are explicitly mod-

eled, the interpretation of the test results is rather simple. That means that the expectation of the

SFS is well formulated under both evolutionary scenarios. On the other hand, it is important to

realize that the null hypothesis of the test is based on the standard neutral model. That means that

any violation of the assumptions of the null hypothesis may influence the results and favor the

alternative hypothesis (JENSEN et al.2005; THORNTON and JENSEN 2007). Therefore, the appli-

cation of theCLR test is not appropriate for detecting selective events whensevere demographic

events (especially bottlenecks) have occurred in the recent history of the population.

The effect of bottlenecks on the genealogies:Bottleneckes may generate similar polymor-

phism patterns as the selective sweeps. Therefore, disentangling selective events from neutral

demographic events can be challenging. There are two reasons for this problem. First, the statis-

tics that are used in population genetics to summarize a fulldataset (alignment of sequences from

one or more populations) are not robust to bottlenecks. Thishas been demonstrated extensively for

summary statistics such as Tajima’s (1989)D, θW, the number of halplotypes, and other classical

summaries of the data. The lack of robust summary statisticsmotivates researchers to develop a

test that captures some aspects of selective sweeps that areabsent from the polymorphism patterns

generated by bottlenecks. As we will demonstrate below, several modern tests have been devel-

oped that use extensive modeling or modern techniques from the machine learning field (KIM and

NIELSEN 2004; NIELSEN et al. 2005; PAVLIDIS et al. 2010; LIN et al. 2010). Second, to some

extent, there are intrinsic reasons for the resemblance of abottleneck to a selective sweep. There-

fore, the resemblance does not depend on the way that the dataare summarized. Apparently, the

second reason implies that any summary statistic or any testwill fail to separate bottlenecks from

selective sweeps simply because the data appear to be very similar.

In order to illustrate this problem we plot coalescent trees(genealogies) of a sample of individ-

uals from a selective sweep and from a bottleneck scenario (Figure 1). The coalescent (KINGMAN
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1982; HUDSON 1990) employs a sample of individuals from a population to trace all alleles of

a gene to a single ancestral copy, known as the most recent common ancestor (MRCA). The in-

heritance relations between alleles are represented as a gene genealogy, which can be drawn as a

binary tree for non-recombining loci. The relations between the gene copies of the sample affect

the generated polymorphism patterns on a dataset. In Figure1 the genealogies of a recombining

genomic segment are shown. Due to the presence of recombination more than one coalescent trees

are needed to describe the genealogy of the sample. The upperpanel illustrates bottleneck ge-

nealogies, whereas the bottom panel illustrates selectivesweep genealogies. Apparently, as Figure

1 shows, the bottleneck genealogies can be very similar to selective sweep genealogies. Conse-

quently, the polymorphism data generated by these coalescent trees will be similar as well, and

it will be nearly impossible to separate the bottleneck-derived dataset from the selective sweep-

derived dataset.

In the following sections we describe modern approaches to disentangle selective sweeps from

bottlenecks.

Distinguishing between selective sweeps and demography:JENSEN et al. (2005) showed

that theCLR test is not robust in the cases of structured populations or recent bottlenecks. Under

these scenarios, the false positive rate may be as high as 80%(JENSENet al.2005). They proposed

a goodness-of-fit (GOF) test to distinguish between the true positives that come from the rejection

of the standard neutral scenario because of a selective sweep event, and the false positives that

come from the rejection of the standard neutral hypothesis due to demographic factors.

The GOF test is based on the hypothesis that non-selective evolutionary processes influence

the frequency spectrum globally (e.g. the whole region under investigation) and not locally as a

selective sweep does. This assumption is adopted widely, although it is possible that a recent

strong bottleneck combined with recombination may create local patterns that resemble those of a

selective sweep (BARTON 1998; THORNTON and JENSEN 2007).

The GOF approach tests whether the observed data is drawn from a selective sweep model.

Thus, the latter represents the null hypothesis. The alternative hypothesis claims that the data is

not drawn from a selective sweep scenario. Thus, forHA an alternative model is not specified

explicitly, except that it is assumed that the evolutionaryforces in action affect the whole region

under investigation. The likelihood of the alternative model is calculated as

P(Data|HA) =
l

∏
i=1

P(Y = yi |HA)

=
l

∏
i=1

(
n
yi

)
Pyi

i (1− pi)
n−yi (5)
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Bottleneck
genealogies

Sweep
genealogies

FIGURE 1: Coalescent trees on a recombining genomic region for a bottleneck (upper panel), and
a selective sweep (bottom panel). The genealogies can be very similar, and this creates an intrinsic
problem in disentangling selective sweeps from bottlenecks
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The composite-maximum-likelihood estimates ofpi are given by the empirical frequencies

pi =
k
n, whereyi is the number of sequences that carry the derived allele at site i, andl is the length

of the region under study. The proposed goodness-of-fit statistic is then formulated

ΛGOF = log
maxP(Data|HA)

maxP(Data|H0)
(6)

For the null hypothesisH0, the maximization refers to theX andα parameters. For the alter-

native hypothesisHA the maximization is related to the estimates ofpi as mentioned above.ΛGOF

values cannot directly reveal the favorable model even if, intuitively, smallΛGOF values support

the selective sweep hypothesis. More importantly, it is difficult to predict the effect of various evo-

lutionary forces on the value ofΛGOF. This is because the alternative hypothesis lacks the function

φ(·), which is specific to the evolutionary model. Simulations under a selective sweep scenario

are employed in order to obtain the null distribution of theΛGOF statistic. The parametersX and

α are estimated using theCLRapproach of KIM and STEPHAN (2002). If the p-value forΛGOF is

smaller than a cutoff valuePc, thenH0 is rejected, otherwise it is accepted. JENSEN et al. (2005)

suggest a cutoff value of 0.15.

Simulating neutral data under various bottleneck scenarios allows for the estimation of the

false positive rate of theGOF approach under various values ofPc. We may useP0.05 such that the

false positive rate of theGOF test would be 0.05. Simulations, however, show that both thefalse

positive rate (using a certain cutoffPc) and the valueP0.05 depend on the demographic scenario.

Thus, results obtained using theGOF test should be interpreted carefully, when there is evidence

that the population has experienced recent demographic changes, especially bottlenecks. It should

be noted that there is not a singleP0.05 value appropriate for all the demographic changes.

The combinedCLRandGOF tests are used extensively in subgenomic scans for the detection

of selective sweeps. Subgenomic datasets are usually obtained by re-sequencing short fragments of

DNA segments. Subsequently, a particular ‘interesting’ region that shows evidence for a selective

sweep may be selected for fine-scale sequencing and parameters like the position of the sweep

or the strength of selection are estimated from the data. However, the pre-selection of interesting

regions creates an ascertainment scheme that has been shownto result in high false positive rates

(THORNTON and JENSEN 2007). Both theCLRandGOF tests are not robust to this combination

of ascertainment and demography. THORNTON and JENSEN (2007) propose to control the false

positive rate by using the null distribution of theΛCLR statistic that is both generated from the

correct demographic model and conditional on the ascertainment scheme. This strategy can be

applied when the demographic model is known or can be estimated from the data. The source

codes of theCLRand theGOF tests as well as their documentation are freely available online or
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may be requested from Yuseob Kim and Jeffrey Jensen, respectively.

Genome-wide data

SweepFinder: The availability of whole-genome or chromosome-wide SNP data, mainly from

the HapMap Project (INTERNATIONAL HAPMAP CONSORTIUM 2003), motivated NIELSEN et al.

(2005) to develop a method for the detection of selective sweeps, which would allow for an analysis

of genome-wide data. Full genomic scans, however, face several challenges. First, the confounding

effects of demography obscure the detection of selective events in similar ways as in subgenomic

scans. Second, data usually consists of SNPs that were initially identified in an ascertainment

process, which may be quite complicated in some cases and cangenerate biases that should be

taken into account.

The testSweepFinderproposed by NIELSEN et al. (2005) is a composite-likelihood ratio test

that is based on the ideas of theCLRapproach of KIM and STEPHAN (2002). However, it differs

from the latter one in that the null hypothesis is not derivedfrom a specific evolutionary model,

but estimated from the empirical background distribution of the data. The idea behind the use

of the background distribution is similar to the arguments presented in JENSEN et al. (2005) for

formulating the alternative hypothesis. That means that the non-selective evolutionary processes

that shape SFS affect the whole genome. Additionally, the method relies on the assumption that a

class of neutral DNA exists in the genome.

SweepFinderis also based on the principles of the hitchhiking theory. That is, when a beneficial

mutation occurs on a chromosome and goes to fixation, variation at linked neutral loci is reduced as

the beneficial mutation spreads through the population. A selective sweep is modeled by assuming

that each ancestral lineage escapes the sweep with a probability pe, which is given as a function of

the recombination distance from the selected site andα = r
s ln(2N). Given that some lineages have

escaped the selective sweep by recombination, the method calculates the probability to observe a

mutant allele of frequencyB. In order to calculate this quantity, the method estimates the number

of ancestral lineages that carry the neutral mutation afterthe end of the selective phase and assumes

that the SFS after the selective sweep is the same as at present (i.e.at the time of sampling).

Similarly to KIM and STEPHAN (2002),SweepFinderuses a composite-likelihood ratio ap-

proach to choose between a neutral and a selective model. Thealternative hypothesisHA states

that a beneficial mutation has occurred at some positionX. The likelihood ofHA is calculated as

the product of the site probabilities (p∗B) for all the sites and maximized with regard to the param-

etersX andα. When only polymorphic sites are included in the dataset themethod is properly

standardized. The null hypothesis is formulated as the probability to observe the data given the
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empirical frequency spectrum. That means that if the probability of a specific allelic class isfi ,

i = 1, . . . , n−1, in the case of an unfolded spectrum and the allelic class atposition j is given by

ξ j , then the likelihood ofH0 is equal to

LH0 =
l

∏
j=1

fξ j
. (7)

Obviously,LH0 depends only on the empirical frequency spectrum. Similarly to KIM and STEPHAN

(2002), the composite-likelihood ratio statistic is givenby

ΛSF = log
maxP(Data|HA)

P(Data|H0)
, (8)

The null distribution of the statisticΛSF is obtained by using the specific demographic scenario

that might have shaped the observed data. Even if the method is robust against several demographic

scenarios that have been investigated in NIELSEN et al. (2005), our simulations have shown that

this does not hold in general, especially in cases of severe and recent bottlenecks. Additionally,

it is unknown how the method behaves in cases that SNP data is retrieved from the ascertainment

schemes described in THORNTON and JENSEN (2007). Thus, these factors should be included

when the null distribution of the statisticΛSF is constructed and from this a threshold value is

calculated. The method is robust against multiple testing.

SweepFindermay also be applied to subgenomic data. In this case, the program offers the flex-

ibility to employ a user-specified frequency spectrum instead of calculating it from the data. This

may be useful when the genomic region under study is not representative of the whole genome.

The source code and the documentation ofSweepFinderare available from Rasmus Nielsen’s

webpagehttp://www.binf.ku.dk/ ˜ rasmus/webpage/sf.html . The program is written in C

and tested successfully on 32-bit and 64-bit machines. The simulations for the calculation of the

threshold ofΛSF may also be done on computer clusters.

Joint inference of demography and positive selection:While theCLRandGOF approaches

do not use explicit demographic models, LI and STEPHAN (2006) describe a statistical method to

detect footprints of selection in chromosome- or genome-wide data (multiple loci), while taking

fluctuations of the population size into account (LI and STEPHAN 2006). They analyze X chro-

mosomal SNP data from a Zimbabwe and EuropeanDrosophilapopulation. Initially, they infer

the demographic scenario of the African population (from the ancestral range). This is character-

ized by a stepwise expansion such that population size changed instantaneously some generations

ago. The European population is derived from the African population thereby undergoing a recent

severe bottleneck. The parameters of this model are estimated by applying maximum-likelihood

http://www.binf.ku.dk/~rasmus/webpage/sf.html
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techniques based on the SFS for the African population and the joint SFS for the European popula-

tion. In the analysis it is assumed that there is no recombination within loci (which are only about

500 bp long in this dataset), but the loci are partially linked.

Performing simulations for the whole X chromosome, and considering that the SFSs between

the loci are independent given their genealogy, they inferred the parameters of the demographic

scenario by maximum likelihood.

L I and STEPHAN (2006) avoid the problem of inefficient sampling of genealogies by calcu-

lating the likelihood as a function of the expected branch lengths that may produce the observed

pattern

Lk = P(SFS|Gk) =
nk−1

∏
i=1

P(ζik|E(l ik)) (9)

However, this is just an approximation and its accuracy has still to be demonstrated.

After estimating the demography, LI and STEPHAN (2006) perform a sliding window analysis

to find genomic regions which are affected by the action of strong positive selection. They conduct

a likelihood-ratio test which employs two hypotheses. The null hypothesis considers that the pop-

ulation has experienced the inferred demographic scenario, and the alternative one assumes that

the forces that shape the data consist of the inferred demographic scenario together with a selective

sweep. In order to overcome the problem of inefficient sampling of genealogies for the loci that

belong to the sliding window, they consider a compact frequency spectrum. In this approach, all

high frequency variants are pooled together and hence the number of inconsistent coalescent trees

is diminished (LI and STEPHAN 2005).

It is encouraging and promising that methods that incorporate demographic events explicitly

in the inference of selection are being developed. Even if the CLR-GOF and theSweepFinder

approaches do that only indirectly, demographic models canbe incorporated in the estimation of

the null distributions of the relevant statistics. Simulations have shown that this strategy can control

the false positive rate (THORNTON and JENSEN 2007).

L I and STEPHAN (2006) implemented a software package called Mosyhttp://www.zi.

biologie.uni-muenchen.de/ ˜ li/mosy/ to detect recent selective sweeps and estimate param-

eters in populations of varying size.

Methods for detecting selection based on genetic differentiation between pop-

ulations

FST based methods:Bayesian approaches have been shown to be powerful for quantifying dif-

http://www.zi.biologie.uni-muenchen.de/~li/mosy/
http://www.zi.biologie.uni-muenchen.de/~li/mosy/
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ferentiation between populations (BALDING and NICHOLS 1995) and for the estimation of demo-

graphic events (BEAUMONT 2003). More recently, Bayesian methods have also been applied to

whole-genome data (multiple loci) in order to reveal genetic regions that have experienced selec-

tive sweeps (BEAUMONT and BALDING 2004; RIEBLER et al. 2008). These methods combine

information from multiple populations. Thus, they are ableto use data produced from recent

genotyping (e.g. INTERNATIONAL HAPMAP CONSORTIUM 2005) and sequencing projects (e.g.

GLINKA et al. 2003). Additionally, they can infer both positive and balancing selection. Since

RIEBLER et al. (2008) extended the method introduced by BEAUMONT and BALDING (2004) we

discuss here the RIEBLER et al. (2008) approach.

This approach infers selective events using theFST value of a population for a given locus in

a hierarchical two-level Bayesian framework.FST represents the probability that two randomly

chosen alleles from the locus in the same subpopulation are identical because of common ancestry

within the subpopulation (CROW and KIMURA 1970). In a coalescent framework,FST may be

seen as the probability that a coalescent event precedes a migration event (going backwards in

time) (Hudson, 1998). That means thatFST values may be used for inferring balancing or positive

selection since positive selection may increase theFST value and balancing selection decreases it.

In the two-level model of RIEBLER et al. (2008), the lower level expresses the likelihood

for the allele-frequency counts as a function ofFST using a multinomial Dirichlet model (BEAU-

MONT 2003; BEAUMONT and BALDING 2004). The higher level describes the logistic regression

of locus-specific, population-specific and locus-by-population-specific effects onFST. The ad-

vancement of the RIEBLER et al. (2008) approach consists in a reparameterization of the original

framework of BEAUMONT and BALDING (2004) and the subsequent use of an auxiliary Bayesian

variable that indicates if a locus is neutral or not.

It should be noted, however, that both the BEAUMONT and BALDING (2004) and the RIEBLER

et al.(2008) approaches are based on haplotype statistics since distinct haplotypes (e.g.sequences)

are treated as alleles. As a consequence, the calculation ofgenetic differentiation based on loses

information when many haplotypes in the sample are unique. This may be the case when the

sample size is small, the mutation rate high and/or the sequence of a locus long. The source code, C

executable files and R programs, is available from Andrea Riebler (andrea.riebler@ifspm.uzh.ch).

Haplotype-based methods:All methods discussed thus far are designed to detect complete

sweeps within a panmictic population or, in the case of population structure, within a subpopu-

lation. To discover incomplete sweeps (i.e. sweeps that are ongoing within a subpopulation or

sweeps that are complete within one subpopulation, but not with regard to the total population),

haplotype-based methods have been developed. These methods analyze the length of haplotypes
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around a given locus of interest, which is thought to be the target of selection.

If a selective sweep is ongoing in a subpopulation, the hitchhiking haplotype is expected to be

rather long (see Box on page 2). This feature of the hitchhiking effect has been exploited by SA-

BETI et al.(2002) who developed the so-called long-range haplotype (LRH). A slight modification

of this is the iHS statistic (VOIGHT et al. 2006). A disadvantage of these approaches is that they

lose power when the beneficial allele is close to fixation. To overcome this problem, TANG et al.

(2007) and SABETI et al.(2007) apply the ideas of the haplotype-based tests not to a single (local)

subpopulation but contrast the haplotype profiles between subpopulations.

Until now, little is known about the power and robustness of haplotype-based methods. Ad-

ditional research is needed to investigate the false positive rate of these methods under various

demographic scenarios or migration models when more than one subpopulation is involved.

Methods based on the machine learning paradigm

Given the parameter values of a selective sweep and the parameter values of a bottleneck, disentan-

gling a selective sweep from a bottleneck can be treated as a binary classification problem, where

a dataset must be assigned to either the neutral class or to the selection class. In the computer sci-

ence and mathematics disciplines theoretical and algorithmic advancements have been developed

the last decades that perform classification of datasets. These advancements can be grouped as ma-

chine learning methods, because first they teach computers to understand patterns from the data,

and then to use this knowledge in order to classify an unknownsample. However, their application

in population genetics still remains limited. The first application of the machine learning in pop-

ulation genetics to our knowledge was developed by PAVLIDIS et al. (2010), who used a support

vector machine approach to perform the classification. PAVLIDIS et al.(2010) used as features the

results from theSweepFinder(NIELSEN et al.2005), theω-statistic (KIM and NIELSEN 2004), and

the distance between the peaks of the statistics. More recently, L IN et al. (2010) also developed a

machine learning approach based on the ‘boosting’ algorithm, a statistical method that combines

simple classification rules using summary statistics to maximize their joint predictive performance.

Details about the machine learning approach are provided inChapter 1 of the thesis.

Aims of the thesis

This study deals with the detection of selective sweeps in natural populations. The model organism

is D. melanogaster; however, the methods developed as a result of this researchcan be adapted to

most of the organisms of relatively large effective population size and outcrossing reproduction.
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The aims of the thesis are: (i) implementation of a method that is able to detect selective sweeps

in natural populations that have experienced past demographic changes; (ii) application of the

methods to real data; (iii) extension of selective sweeps inmulti-locus models.

This thesis is organized in three chapters. In Chapter 1 I implement computer simulations of a

single population that has experienced past demographic changes with or without selection in order

to scrutinize the polymorphism patterns that selection maygenerate in the genome. Two algorithms

have been used. First, theSweepFinder(NIELSEN et al. 2005) identifies genomic regions where

a selective sweep fits better than a demographic model based on SFS information. Second theω-

statistic (KIM and NIELSEN 2004) identifies genomic regions using the LD information instead of

the SFS. In Chapter 1 I combine the results ofSweepFinderand theω-statistic. Since the LD and

the SFS are partially independent, combining theSweepFinderwith theω-statistic may be advan-

tageous for disentangling selective sweeps from neutrality. Their combination is implemented in

a machine learning framework using support vector machines(VAPNIK 1995). The power of sup-

port vector machines has been demonstrated mainly in microarray analysis studies (e.g. FUREY

et al. 2000), where combinations of gene expression values are used to separate classes of indi-

viduals (e.g.high-risk versus low-risk patients). In Chapter 1 the two classes are characterized by

the presence or the absence of a selective sweep. For many demographic scenarios, combining the

SweepFinderwith the ω-statistic outperforms both algorithms when they are applied separately.

However, in general, as shown in Chapter 1, the problem of disentangling demography (especially

bottlenecks) from selection is considerably challenging,because both demographic bottlenecks

and selective sweeps can generate similar SFS and LD patterns.

Real data pose challenges on the application of the methods because they deviate partially from

the assumptions of the methods. Often, errors in the data, violations of the model assumptions, and

ascertainment biases must be taken into account. In Chapter2 I apply theSweepFinderalgorithm

and theCLR test on the subgenomic region that includes the geneHDAC6 (SVETEC et al.2009).

An African population ofD. melanogasteris examined. HDAC6 is an unusual histone deacetylase

being localized in the cytoplasm. Recent discoveries have shown that HDAC6 is a key regulator of

cytotoxic stress resistance. The first evidence for a selective sweep in theHDAC6region was sup-

ported by a previous genome scan (LI and STEPHAN 2006). LI and STEPHAN (2006) discovered

a 100-kb fragment that overlaps with theHDAC6 region and showed evidence of recent positive

selection in the European population ofD. melanogaster. This prior information generated as-

certainment bias in the analysis underestimating the p-values. Performing a joint analysis of the

African and the European populations ofD. melanogasterremedies the ascertainment bias.

While the first and the second aims of the thesis are based on the classical one-locus two-allele
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model of selective sweeps, the third goal represents the extension of selective sweeps to multi-locus

models. Even if the evolution of multi-locus models has beenstudied elsewhere (B̈URGER 2000),

the study of allelic frequency trajectories is still limited. In Chapter 3 I use computer simulations

in order to obtain the trajectory of an allele that initiallyis in low frequency. Deterministic and

stochastic simulations have been implemented for the two-locus two-allele model as well as the

stochastic five-locus two-allele model. In contrast to the classical one-locus two allele model, the

trajectories may reach polymorphic equilibria (i.e. equilibria where both of the alleles of the focal

locus are maintained in the population). The establishmentof a polymorphic equilibrium generates

profoundly different polymorphism patterns than classical selective sweeps. Therefore, many of

the selective events that might occur in a multi-locus regime will be unidentified by the neutrality

tests that have been developed for one-locus two-allele models.
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1.1 Abstract

A major goal of population genomics is to reconstruct the history of natural populations and to

infer the neutral and selective scenarios that can explain the present-day polymorphism patterns.

However, the separation between neutral and selective hypotheses has proven hard, mainly because

both may predict similar patterns in the genome. The presentstudy focuses on the development

of methods that can be used to distinguish neutral from selective hypotheses in equilibrium and

non-equilibrium populations. These methods utilize a combination of statistics based on the site

frequency spectrum (SFS) and linkage disequilibrium (LD).We investigate the patterns of genetic

variation along recombining chromosomes using a multitudeof comparisons between neutral and

selective hypotheses, such as selection or neutrality in equilibrium and non-equilibrium popula-
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tions, and recurrent selection models. We perform hypothesis testing using the classical p-value

approach, but we also introduce methods from the machine learning field. We demonstrate that the

combination of SFS- and LD-based statistics increases the power to detect recent positive selection

in populations that have experienced past demographic changes.

1.2 Introduction

Genomes contain information related to the history of natural populations. Past neutral and selec-

tive processes may have left footprints in the genome. Recent advances in population genetics aim

to understand the patterns of genetic diversity and identify events that have led to genetic adap-

tations. Among them, positive selection has been a focus of many recent studies (HARR et al.

2002; KIM and STEPHAN 2002; GLINKA et al.2003; AKEY et al.2004; ORENGO and AGUADÉ

2004). Their goal is to (i) provide evidence of positive selection, (ii) estimate the strength and the

rate of selection, and (iii) localize the targets of selection. These objectives form the basis of a

long-term pursuit, which is the understanding of the molecular basis of adaptation of populations

in a changing environment.

Positive selection can cause genetic hitchhiking when a beneficial mutation spreads in the pop-

ulation (MAYNARD SMITH and HAIGH 1974). When a strongly beneficial mutation occurs and

spreads in a population, linked neutral or slightly deleterious variants hitchhike with it, and their

frequency increases. According to Maynard Smith and Haighsmodel, three patterns are generated

locally around the position of the beneficial mutation. First, the level of variability will be reduced

since standing variation of the population that is not linked to the beneficial allele vanishes, and

tightly linked polymorphisms may fix (KAPLAN et al. 1989; STEPHAN et al. 1992). Second, the

site frequency spectrum (SFS), which describes the frequency of allelic variants, shifts from its

neutral expectation towards rare and high-frequency derived variants (BRAVERMAN et al. 1995;

FAY and WU 2000). The third signature describes the emergence of specific linkage disequilibrium

(LD) patterns around the target of positive selection, suchas an elevated level of LD in the early

phase of the fixation process of the beneficial mutation and a decay of LD across the selected site

at the end of the selective phase (KIM and NIELSEN 2004; STEPHAN et al.2006).

The availability of genome-wide SNP data has made possible the scanning of genomes and the

identification of loci that may have been targets of recent selective events. Several approaches have

been developed within the last years that can detect the molecular signatures of positive selection

(K IM and STEPHAN 2002; JENSEN et al.2005; NIELSEN et al.2005). While the methods of KIM

and STEPHAN (2002) and JENSEN et al. (2005) are designed to analyze subgenomic SNP data,
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the approach of NIELSEN et al.(2005) can be applied to both subgenomic and whole-genome data

(reviewed in PAVLIDIS et al. (2008)). For this reason we concentrate here on the latter procedure.

This method, calledSweepFinder, calculates the probabilityP(x) that a polymorphism of multi-

plicity x is linked to a beneficial mutation using a simple selective model and the SFS prior to the

selective event. Then, for each location in the genome it compares a selective with a neutral model

assuming independence between the SNPs, therefore calculating the composite likelihood ratioΛ.

Thus, it identifies regions where the likelihood of the selective sweep is greater than that of the

neutral model using the maximum valueΛMAX of Λ.

Theω-statistic, developed by KIM and NIELSEN (2004), detects specific LD patterns caused

by genetic hitchhiking (described above). In the study by KIM and NIELSEN (2004) the maximum

value of theω-statistic was used to identify the targets of selective sweeps. Later, JENSEN et al.

(2007b) studied its performance in separating demographicfrom selective scenarios. An important

result by JENSEN et al. (2007b) is the demonstration that for demographic parameters relevant to

non-equilibrium populations (such as the cosmopolitan populations ofD. melanogaster) the ω-

statistic can distinguish between neutral and selective scenarios. This paper will further develop

SweepFinderand theω-statistic such that they can eventually be applied to whole-genome SNP

datasets that have been collected from non-equilibrium populations. In particular, populations

undergoing population size bottlenecks are of interest as these size changes may confound the

patterns of selective sweeps (BARTON 1998). For this reason we use the following approach: first,

we theoretically analyze the genealogies of bottlenecked populations under neutrality and show

to what extent they resemble the genealogies of single hitchhiking (SHH) events. We also point

out the importance of high-frequency derived variants in the identification of selective sweeps.

Second, we study the statistical properties ofSweepFinderand theω-statistic separately and in

combination. As the main result, we demonstrate that the combination of these two methods

(that include both SFS and LD information) increases the power for detecting recent SHH events

in non-equilibrium populations, in particular when machine-learning techniques are employed.

Third we analyze the performance ofSweepFinderand theω-statistic in the detection of recurrent

hitchhiking (RHH) events.

1.3 Methods

Modifications of the ω-statistic and SweepFinder: The proposed modifications aim at (i) adapt-

ing the ω-statistic for the analysis of whole-genome data, and (ii) increasing the accuracy of

SweepFinderto predict the target of selection. Instead of fixed windows,variable-size windows
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are used in theω-statistic, and in theSweepFinderalgorithm a fraction of monomorphic sites is

incorporated.

The hitchhiking model by MAYNARD SMITH and HAIGH (1974) predicts that an excess of

LD arises after the completion of the selective sweep withineach of the two regions flanking the

selected site, but does not extend across the two regions (STEPHAN et al. 2006; MCVEAN 2007;

PFAFFELHUBER et al. 2008). This is due to the assumption that any observed polymorphism

around the sweep has been introduced in the population priorthe selective sweep, and entered the

beneficial genetic background through recombination. Since independent recombination events

are necessary to explain polymorphisms on both sides of the selective sweep, the LD vanishes

across the site of the beneficial mutation, but not within each side. This genomic footprint may

be captured using theω-statistic (KIM and NIELSEN 2004). Assume a genomic window withS

segregating sites that is split into a left and right sub-region with l andS− l segregating sites,

respectively. Theω-statistic (equation 1.1) quantifies to what extent averageLD is elevated on

each side of the selective sweep (see the numerator of equation 1.1) but not across the selected site

(see the denominator of equation 1.1).

ω =
(
( l

2

)
+
(S−l

2

)
)−1(∑i, j∈L r2

i j +∑i, j∈Rr2
i j )

(l(S− l))−1∑i∈L, j∈Rr2
i j

. (1.1)

Theω-statistic considers the space between the left and right sub-regions as the center of the

selective sweep. Thus, a genomic region may be scanned and scores are reported for each posi-

tion. Then, using simulations, a significance threshold is determined. The maximum valueωMAX

predicts the target of recent positive selection. In the original version of theω-statistic, the borders

of the left and right sub-regions are assumed constant (KIM and NIELSEN 2004; JENSEN et al.

2007b). This may be valid for a subgenomic analysis, when therecombination rateρ and muta-

tion rateθ do not fluctuate much or a single selective event may have occurred. However, in a

whole-genome study these parameters that affect the extentof LD may vary dramatically. Addi-

tionally, the polymorphism patterns may have been shaped byrecurrent selective sweeps. Thus,

the constant-border approach implemented by KIM and NIELSEN (2004) may be limited. If the

sub-regions are large, thenωMAX tends to decrease and the signal disappears. On the other hand,

short sub-regions might contain no SNPs and theω-statistic cannot be calculated.

We have implemented a variable-window sizeω-statistic. The borders of the left and right

sub-regions vary and the configuration that maximizesω is reported. This approach overcomes the

afore mentioned problems inherent in the constant-border approach of KIM and NIELSEN (2004).

Thus, it may be suitable for scanning large genomic regions or whole chromosomes characterized
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by variableρ or θ parameters and shaped by recurrent adaptive substitutions.

A naive implementation of theω-statistic scanning algorithm would re-calculate the LD ofthe

positions as the center of the sweep moves along the chromosome. This is particularly critical for

the variable-window size approach since the number of calculations increases. Our implementa-

tion, as illustrated in Appendix, in TableS1, guarantees a single calculation between any two sites

that may participate in theω calculation. Thus, it results in an algorithm that is efficient when

the number of polymorphisms is large. Calculations are performed using a matrixZ (TableS1 in

Appendix), which stores the unweightedZnS (KELLY 1997) values (not divided by the number of

comparisons) for all possible windows. For a pair(i, i + 1), Zi,i+1 equals the correlation coeffi-

cient between these two positions. This value is then added to all cellsZ j ,i+1, with j < i to form

the ZnS for the region[ j, i + 1]. With this method all possible numerators of theω-statistic are

formed. When the left and right sub-regions are defined by[i,k] and[k+1, j], respectively, then

the denominator is simply a weighted version ofZi, j −Zi,k−Zk+1, j .

SweepFinderdetects the shift of the SFS as a signature of hitchhiking. Demographic effects

are incorporated through the neutral SFS, which is either provided by the user or calculated from

the data itself. Monomorphic sites are generally excluded from the analysis (NIELSEN et al.2005;

SVETEC et al.2009) since tests that include them may be more sensitive to assumptions regarding

the mutation rate (NIELSEN et al.2005). Additionally, for realistic mutation rates, the majority of

the sites remain monomorphic. Thus, by including invariantsites the dataset and the computational

time required for the analysis increase dramatically. On the other hand, the decrease of diversity

represented by the monomorphic sites constitutes a well-known signature of the hitchhiking effect.

Omitting them may decrease the power of the tests (NIELSEN et al. 2005) and lead to inaccurate

predictions about the target of selection. Inaccuracies mainly emerge due to changes in the input

site density when only polymorphic sites are included. We incorporate a fraction of the monomor-

phic sites into the analysis in a way that (i) generates a uniform input site density and (ii) preserves

the signature of low diversity in regions of depleted variation. Additionally, since only a small

fraction of monomorphic sites are used, the computational time is only increased slightly. Given

a genomic region withS polymorphic sites we includeSqmonomorphic sites, where 0< q < 1.

In the present studyq = 0.1, so that the number of monomorphic are in the same order as the

polymorphic sites. We proceed as follows. In the first step, there areS−1 intervals between theS

polymorphic sites. A monomorphic site is included at a random location within the largest interval.

In the second step there areS+1 sites andSintervals and the process is repeated. The cutoff value

is defined by treating the neutral simulations in the same way. With this process the SNP density

differences are reduced and monomorphic sites are embeddedin regions of depleted variation.
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Quantifying the effects of population bottlenecks on neutral genealogies:The ω-statistic

andSweepFindercan scan genomes from natural populations that have experienced demographic

changes and detect targets of selection. We investigated whether the neutral demographic scenar-

ios inferred by LI and STEPHAN (2006) and THORNTON and ANDOLFATTO (2006) to describe

the demography of a European population ofD. melanogastercan result in patterns along a re-

combining chromosome that resemble selective sweeps. In particular, we examined which effects

of population bottlenecks are responsible for the polymorphism patterns that mimic the effects of

selective sweeps. We focused on the properties of genealogies that are generated by those two

demographic models because genealogies reflect demographic properties more comprehensively

than summary statistics.

A way to measure the effect of a bottleneck on the genealogiesof a recombining genome is

through the ratiof = Ln
Hn

of the total length to the height of the coalescent. Short, star-like genealo-

gies have large ratios and max( Ln
Hn
) = n is obtained for an-furcated star-like tree. On the other

hand, for genealogies with long internal branches the ratiotakes small values and min( Ln
Hn
) = 2 is

obtained when the genealogy is dominated by two very long internal branches. Using simulations

we first calculate the percentage ofn-furcated star-like genealogies (with largef values) in a re-

gion of 50 kb. Then, for each simulated instance we relate thepercentage ofn-furcated star-like

genealogies with the resemblance to a selective sweep as this is measured usingSweepFinder(see

Theoretical analyses).

The joint effects of population bottlenecks and selective sweeps on high-frequency derived

alleles:A hallmark of selective sweeps in constant populations is the excess of high-frequency de-

rived variants around the target of positive selection. High-frequency derived variants consist of

mutations that were present in the population prior the selective sweep, hitchhike with the benefi-

cial allele and, due to recombination, appear as polymorphisms. This signature forms the basis of

a multitude of neutrality tests that are based on the SFS (FAY and WU 2000; KIM and STEPHAN

2002; NIELSEN et al. 2005) and contributes to the precise detection of the targetof selection.

However, in natural populations positive selection may occur simultaneously with demographic

changes. Using simulations from the demographic models that were inferred by LI and STEPHAN

(2006) and THORNTON and ANDOLFATTO (2006), we examine whether high-frequency derived

alleles occur when demographic changes occur simultaneously with positive selection.

Measuring the precision of the inferred selective sweep position: An objective of the

genome-scanning studies is the precise prediction of the selective sweep locations. Usually, ev-

ery position or a subset of them is scored for a given statistic (for example theω-statistic or the

SweepFinder). Thus, peaks and valleys are formed along the genomic region. Then, some of the
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peaks may survive a cutoff value delimiting the potential targets of selection. As illustrated in

FigureS1 in Appendix, we determine the distance between a peak on thelandscape of the statistic

and the closest location where a selective sweep has occurred given a user-defined threshold. In

FigureS1, two selective sweeps have occurred recently in the history of the population. The posi-

tions of the sweeps are illustrated as vertical green lines.A peak is defined as the highest point in

an isolated region by the cutoff value. Thus, five peaks (a to e) have been formed in the example

of FigureS1. D measures the distance between a peak and the closest selective sweep location.

Based on this approach we can measure the accuracy of the different methods. Furthermore, we

implemented a simple randomization of the peaks to evaluatethe quality of the predictions. This

is necessary because finite genomic regions are simulated, and therefore the distance between any

location and the target of selection is bounded.

Supervised learning techniques:We introduce supervised learning approaches from the field

of machine learning that can be useful for the classificationof a genomic region as either neutral

or selected. In a classification problem, the goal is to separate these classes using a function,

which is inferred from the available data. Such a process is called ‘learning from the data’ or

‘supervised’ learning and is related to finding the optimal hyperplane that distinguishes the two

classes. Typically, in a supervised learning problem, dataconsist of pairs of input and output

objects. Input consists of a vector of multiple entries thatsummarize the data and are called

features. Inputs can be set arbitrarily depending on the specific problem. However, the efficiency

of the algorithm increases when they are independent and capture the whole information of the

data. Output can be binary, denoting the class that the object belongs to. In supervised learning

the goal is to use the input to predict the value of the output,and the problem can be formulated

as teaching the computer the combinations of feature-values that are associated with either of the

classes. In the specific problem we examine here, the output is coded as ‘neutrality/selection’.

Then, using simulations of the neutral demographic model and the model with selection we train

the algorithm to separate these two classes. As input for themachine learning approach we use

ωMAX , ΛMAX (from the original algorithms) and combinations ofω andΛ, such as the distance

between the genomic positions ofωMAX andΛMAX and the correlation coefficient betweenω and

Λ. The reasoning for this choice of inputs is as follows. First, ΛMAX andωMAX capture different

aspects of the data.ΛMAX is affected mostly by the SFS, whereasωMAX is affected by LD. Even

if SFS and LD can be correlated (KIM and NIELSEN 2004), it is expected that this correlation is

lower than using statistics that are based exclusively on the SFS or LD. Second previous studies

have shown thatΛMAX andωMAX are relatively robust to demographic changes (but see ORENGO

and AGUADÉ (2010)). Third, it seems intuitively obvious that the peaksof ω andΛ profiles should
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point to the same genomic location if a selective sweep has occurred. Thus, using the distance

between the peaks or the correlation of the profiles should increase the classification performance

of the algorithm. In this study, both the distance between the peaks and the correlation between

the profiles are used.

For each demographic scenario that was simulated in this study, we used a subset of simulations

for training, and the remaining for testing the performance. The supervised learning approach can

be employed to classify a certain genomic region as either neutral or selected. However, within a

region the specific target of selection cannot be specified bythe method itself. In order to achieve

this, the features of the method (i.e. theω andΛ profiles) should be inspected. Tables 1 to 4 provide

information about the accuracy of the features under various demographic scenarios.

Traditionally, when neutrality tests are employed to detect targets of positive selection neutral

simulations are performed and the 5% percentile is used as a threshold. This methodology assumes

that neutrality tests produce significantly larger values in data with selection. This may be the case

when the population size remains constant. However, in non-equilibrium models the values of the

neutrality tests may overlap significantly between neutralmodels and models with selection, and

therefore their performance decreases. Combining different statistics that capture different aspects

of the data may contribute to increasing the classification performance.

Several methods have been developed for data classification. For example, Bayesian classi-

fiers, rule-based classifiers,k-nearest-neighbors, and linear discriminant analysis aresome of the

approaches that have been applied to supervised learning problems (DUDA et al. 2000; HAN and

KAMBER 2000; HASTIE et al.2001). Here, we demonstrate the use of Support Vector Machines

(SVMs) with a radial basis kernel, which is the most widespread kernel. In general, SVM uses a

nonlinear mapping to transform the original training data into a higher-dimensional space and to

search for an optimal linear hyperplane in this space. A great advantage of the SVMs is that they

are highly accurate and less prone to overfitting;i.e. they have desirable generalization properties

(HAN and KAMBER 2000).

Implementation and code availability: The C++ source code is available fromhttp://www.

bio.lmu.de/ ˜ pavlidis . For theω-statistic, the user is able to choose between constant- or

variable-window size scanning modes. Additionally, besides r2 various other measurements of

LD, such as abs(D) and abs(Dω) (LANGLEY et al. 1974), may be used in equation 1. There are

no specific library dependencies and the software can be installed on any Linux machine that runs

the g++ compiler. Also, the modified version ofSweepFinderthat has been used here to analyze

data with monomorphic sites is provided. In this version thelikelihood curve of monomorphic

sites has been modified so that the probability to observe a monomorphic site is high in the prox-

http://www.bio.lmu.de/~pavlidis
http://www.bio.lmu.de/~pavlidis
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imity of the sweep position but becomes negligible as distance increases (the rate of decrease is

larger than in the original version). The original version of SweepFinderis provided by the web

site of Rasmus Nielsenhttp://people.binf.ku.dk/rasmus/webpage/sf.html . Furthermore,

perl scripts that have been used in the analysis are available from http://www.bio.lmu.de/

˜ pavlidis or upon request from the authors.

1.4 Theoretical analyses

The genealogies of bottlenecked populations may resemble those of SHH in constant-size

populations: Past demographic changes such as bottlenecks may confound the patterns of a se-

lective sweep (BARTON 1998). Similarly to a selective sweep, a bottleneck scenario may result in

coalescent trees dominated by either external or internal branches. Short coalescent trees with long

external branches are obtained when, due to a rapid, recent,and severe decrease of population size,

the time of the most recent common ancestor of the sample is found within the bottleneck period.

On the other hand, if some of the lineages escape the bottleneck, then long internal branches will be

created. In recombining genomic regions short and long trees may alternate, creating sweep-like

patterns in the SFS (BARTON 1998).

We illustrate the effect of bottlenecks on genealogies using the demographic scenarios that

have been inferred by LI and STEPHAN (2006) and THORNTON and ANDOLFATTO (2006) to de-

scribe the history of the European population ofD. melanogaster. Scaling the time in units of 4N

generations (whereN is the present effective population size) the LI and STEPHAN (2006) model

describes a 4-epoch scenario. Backward in time, the population experiences a bottleneck from

0.0367 time units until 0.0375 time units. Within this bottleneck periodNb = 0.002N, whereNb

denotes the effective population size in the bottleneck. Then, instantly, the size of the population

size changes to 7.5N, and eventually at the time 0.1395 it becomes 1.5N. The bottleneck phase

models the founding of the European population from the ancestral population, whereas the tran-

sition from 7.5N to 1.5N models a (forward-in-time) expansion of the ancestral population. The

demographic scenario inferred by THORNTON and ANDOLFATTO (2006) implements a 3-epoch

model. The values of the parameters depend on the ratioρ
θ and here we use the results obtained

when ρ
θ = 10. The present population sizeN is estimated to be 2.4×106, and backward in time

at 0.0042 it contracts to 0.029N. Finally, the population reaches instantly the present-day level at

time 0.022.

The demographic model of LI and STEPHAN (2006) produces both star-like and long genealo-

gies in the same genomic region of a recombining chromosome (Figure 8). The length of these

http://people.binf.ku.dk/rasmus/webpage/sf.html
http://www.bio.lmu.de/~pavlidis
http://www.bio.lmu.de/~pavlidis


24 Chapter 1
trees is on average shorter than that of the standard neutraltrees, thus reducing variation. The ef-

fect of the THORNTON and ANDOLFATTO (2006) demographic model is similar, however milder.

On average, it creates shorter genealogies and effectivelyreduces the nucleotide polymorphism.

However, it does not result in extreme star-like coalescenttrees as often as the LI and STEPHAN

(2006) model (Figure 8). This is because the population sizechanges are milder, the bottleneck

period is longer, and starts (backward in time) very recently in the usual coalescent time scale,

allowing for a series of coalescent events.
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FIGURE 1.1: Histogram of the ratiof = Ln
Hn

for the following demographic scenarios: A) a single
realization of the bottleneck scenario inferred by LI and STEPHAN (2006). Long coalescent trees
that escape the bottleneck tend to produce small ratios (< 4). On the other hand, genealogies that
coalesce within the bottleneck period produce star-like trees because of the recent, rapid and severe
contraction of the population. B)a realization of the bottleneck scenario inferred by THORNTON

and ANDOLFATTO (2006). In contrast to LI and STEPHAN (2006), coalescent events occur con-
tinuously. C) for the standard neutral model. For the LI and STEPHAN (2006), THORNTON and
ANDOLFATTO (2006) and the neutral scenario, 12 chromosomes of 50 kb havebeen simulated.
The recombination rate isρ = 0.05/bp and the mutation rateθ = 0.004/bp. The parameter values
for the LI and STEPHAN (2006) and THORNTON and ANDOLFATTO (2006) scenarios are described
in the main text.

Next we used simulations to examine the relationship between the percentage of star-like ge-

nealogies, the number of segregating sites, andΛMAX of SweepFinder, which can be considered a

proxy for the resemblance of polymorphism patterns (based on the SFS) to a signature of a selec-

tive sweep. A 50-kb genomic region was simulated usingms(HUDSON 2002) for a sample of 12

chromosomes. The recombination rateρ = 0.05/bp and the mutation rateθ = 0.004/bp. The demo-

graphic model describes a recent population bottleneck (asinferred by LI and STEPHAN (2006)).

As illustrated in Figure 1.2, a small number of star-like trees create a large number of segregating

sites and smallΛMAX values. Similarly, when a genomic region is dominated by short, star-like

genealogies, the number of segregating sites andΛMAX decrease. Even if this constitutes a poly-
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morphism valley, the pattern does not look like a sweep because of a lack of the high-frequency

derived variants (KIM and STEPHAN 2002). On the other hand, the simultaneous presence of

star-like and long genealogies creates sweep-like patterns. For intermediate frequencies of star-

like genealogies,ΛMAX assumes large values. Since neighboring genealogies are not independent,

star-like genealogies form clusters and effectively create valleys of reduced polymorphism resem-

bling a selective sweep. These results help to interpret some of our findings below.

Selective sweeps in non-equilibrium populations may result in a loss of high-frequency de-

rived variants and violate the assumptions ofSweepFinder and the ω-statistic: We examined

the effects of selective sweeps on polymorphisms, when theyoccur within demographic bottle-

necks. A 50-kb genomic fragment was simulated under the bottleneck model inferred by THORN-

TON and ANDOLFATTO (2006), and a selective sweep (α= 2500) was assumed to take place within

the bottleneck period (THORNTON and JENSEN 2007). First, we show that the combined action

of selective sweeps and bottlenecks results in SFS that differ considerably from those generated

by selective sweeps in equilibrium populations. Figure 1.3compares the modifications of the av-

erage SFS around the target of selection in a constant-size demographic scenario with the model

inferred by THORNTON and ANDOLFATTO (2006). It is apparent that in equilibrium demographic

models there is a dramatic increase of the class ‘n−1’ in the proximity of the selective sweeps

(Figure 1.3a). Neutrality tests based on the SFS can detect the increase of the high-frequency

derived variants and therefore the accurate prediction of the target of selection is possible. In non-

equilibrium scenarios, when population contraction and selective sweeps co-occur, the ‘n−1’ class

vanishes in a large genomic region around the target of selection (Figure 1.3b). The joint effect of

selection and population contraction increases the probability of coalescences, resulting in short

genealogies where the most recent common ancestor is located within the bottleneck phase. Con-

sequently, the frequency of the ‘n−1’ class vanishes in the present-day sample. Furthermore, the

part of the genealogy that is older than the selective sweep/bottleneck phase is eliminated. There-

fore the vast majority of the present-day polymorphisms areyounger than the selective sweep. This

violates the assumptions ofSweepFinderand theω-statistic and may result in imprecise prediction

of the target of selection.

1.5 Statistical performance of the tests in the detection ofsingle

hitchhiking events

In this section, the discrimination capacity ofSweepFinderand theω-statistic is scrutinized, and

the distance between the predicted and the true target of selection is evaluated for single sweeps
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FIGURE 1.2: The relation between A)ΛMAX and B) percentage of star-like genealogies, and the
number of segregating sites in the LI and STEPHAN (2006) demographic scenario. We have per-
formed neutral simulations for 12 recombining chromosomes, assuming a length of 50 kb. The
recombination rateρ = 0.05/bp and the mutation rateθ = 0.005/bp. The parameter values for
the demographic model inferred by LI and STEPHAN (2006) are described in the main text. The
number of short genealogies in the LI and STEPHAN (2006) scenario determines both the number
of segregating sites and the sweep-resemblance (measured by theSweepFinderstatistic). When a
genomic region is dominated by short star-like genealogiesonly a few segregating sites are present.
Even if this constitutes a polymorphism valley, the patterndoes not look like a single sweep be-
cause of a lack of the high-frequency derived variants (KIM and STEPHAN 2002). Similarly, when
the star-like trees are absentΛMAX is small. On the other hand, the simultaneous presence of star-
like and long genealogies creates sweep-like patterns. This is because star-like trees tend to cluster
together along the recombining chromosome, creating valleys within polymorphism islands.



27

0 12.5 25 37.5 50

0
0.

2
0.

4
0.

6
0.

8
1

position (kb)

m
ea

n 
fr

eq
ue

nc
y

A

0 12.5 25 37.5 50

0
1

2
3

4

position (kb)

va
ria

nc
e 

of
 fr

eq
ue

nc
y

B

0 12.5 25 37.5 50

0
0.

2
0.

4
0.

6
0.

8
1

position (kb)

m
ea

n 
fr

eq
ue

nc
y

C

0 12.5 25 37.5 50

0
1

2
3

4

position (kb)

va
ria

nc
e 

of
 fr

eq
ue

nc
y

D

FIGURE 1.3: A selective sweep causes a spatial modification of the SFS. The mean and the vari-
ance of the frequency are modified when a selective sweep has occurred in the middle of a 50-kb
genomic fragment. The 50-kb region is split in 2-kb non-overlapping windows and in each one
the average mean(fi) [A) and C)] and the variance var(fi) [B) and D)] of the frequencyfi of the
polymorphism classi is calculated. In A) the plots refer to a selective event in equilibrium popula-
tions (α = 2500) that has been completed recently, whereas in C) to the non-equilibrium model of
THORNTON and ANDOLFATTO (2006) (α = 2500). The solid black lines refer to the singletons,
the dashed black lines to the class ‘11’, and the gray lines tothe classes 2− 10. The dramatic
change of the high-frequency derived alleles in A) contributes to the precise localization of the
selective event. On the contrary, in C) the high-frequency derived SNPs are absent even in the
proximity of the selective sweep. This is because the lengthof the branches of the coalescent tree
that may generate high-frequency derived variants are verysmall due to the simultaneous action
of the sweep and the bottleneck. Therefore, the observed polymorphisms (mostly singletons) are
younger than the selective event and spread over the whole genomic region, obscuring the location
of the selective sweep.
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under the scenarios (i) selection versus neutrality in equilibrium populations (i.e. standard neutral

populations), (ii) selection in equilibrium populations versus neutrality in non-equilibrium popula-

tions (i.e. populations that have experienced past demographic changes), and (iii) selection versus

neutrality in non-equilibrium populations. The performance is assessed as follows. First, the false

positive (FP) rate of the SVM is estimated. Using this false positive rate we compare the true posi-

tive (TP) rates of each test. Thus, all comparisons refer to the same false positive rate. Second, for

the evaluation of the distance between the true and predicted targets we use only simulated results

that survive the threshold defined by the false positive rate. Finally, for the non-equilibrium models

with selection we implement a simple randomization processto assess the quality of results (see

Methods).

SHH versus neutrality in equilibrium populations: We simulate a single selective sweep

in the middle of a 50-kb genomic region using thesswsoftware (KIM and STEPHAN 2002). The

parameter values have been chosen for their relevance to natural populations ofD. melanogaster.

Specifically, the parameterα = 2Ns, wheres is the selection coefficient of the beneficial mutation,

assumes the values 500, 2500, and 5000 that are realistic forD. melanogaster(BEISSWANGER

and STEPHAN 2008). For all datasets the mutation rateθ = 0.005/bp, similar to the estimation

of θ for the European population ofD. melanogasterby LI and STEPHAN (2006). The scaled

recombination rateρ equals 0.05/bp, so that the ratioρθ = 10 (THORNTON and ANDOLFATTO

2006). The standard neutral simulations were performed using the same value ofρ. We used a

sample size of 12 for all simulations.

Each realization of the selective sweep was compared with those of the standard neutral model

that are obtained usingθNEU = θW = Sn
hn

. θNEU. θNEU denotes theθ value used in standard neutral

simulations,θW is Watterson’s (1975) estimator ofθ obtained using the number of segregating sites

Sn of the selective sweep realization, andhn=∑n−1
i=1

1
i . Thus, a selective sweep is compared with the

standard neutral realizations that on average create the observed number of polymorphic sites [Fθ
procedure (RAMOS-ONSINS et al.2007)]. Alternative approaches to calculate the thresholdvalue

may use the observed number of segregating sitesSn or to take into account the uncertainty onθ
by considering a prior distribution ofθ. In neutral equilibrium populations these approaches result

in the same threshold values for the models tested in this study (FigureS2 in Appendix). Here, for

the calculation of thresholds we use theFθ approach. Since, the null model is represented by an

equilibrium standard neutral model,θ can be estimated using the estimatorθW. FigureS2 shows

that the cutoff value of theω-statistic decreases asSn increases and the opposite tendency is seen

for theSweepFinderstatistic.

Consistent with previous studies (JENSEN et al. 2007b) a selective sweep is discriminated
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Table 1.1: Equilibrium neutrality versus selection in equilibrium populations

Parameter Performance SF SF⋆ ω ω⋆ SVM

α = 500
TP (FP = 0.03) 0.85 0.97 0.13 0.14 0.9
Median distance in
bp from target (SD)

1728 (5597) 754 (1333) 528 (480) 540 (525) -

α = 2500
TP (FP = 0) 0.97 0.99 0.82 0.85 0.98
Median distance in
bp from target (SD)

5383 (4509) 4582 (3905) 789 (657) 794 (680) -

Using the SVM approach a false positive rate (FP) is estimated for various parameter values. For
this FP rate, the true positive rates (TP) of the various neutrality tests are compared. The median
distance and the standard deviation (SD) are also shown. SF:originalSweepFinder, SF*: modified
SweepFinder, ω: ω algorithm with constant-size windows,ω⋆: ω algorithm with variable-size
windows.

easily from the standard neutral model. Indeed as illustrated in Figure 1.4a, theωMAX andΛMAX

are distributed to a large extent distinctly even for relatively small values ofα (e.g.500). Results are

summarized in Table 1.1. Next, the distance between the truetarget of selection and the predicted

target of selection is estimated (Table 1.1). Theω-statistic is more accurate than theSweepFinder

and the median distance from the target of selection is about0.5 kb. However, the performance

of SweepFinderin discriminating the two scenarios is higher. CombiningSweepFinderwith the

ω-statistic increases the classification performance (lastcolumn in Table 1.1).

SHH in equilibrium populations versus neutrality in non-equilibrium populations: Using

simulations, selective sweeps have been generated as described above. For realizing past bottle-

neck events we used the LI and STEPHAN (2006) demographic history for the European population

of D. melanogaster. We follow a similar approach as described in the previous section in order

to assess the cutoff value. However, since the null hypothesis is not represented by the standard

neutral model,θW is not an appropriate estimator ofθ. Instead, we use the generalized unbiased

estimator̂θ = 2Sn
E(Tc)

, whereE(Tc) is the expected total length of the coalescent ofn sequences

(ZIVKOVIC and WIEHE 2008).E(Tc) depends only on the demographic history of the population.

For large values ofα (α = 2500) the true positive rate of the statisticsωMAX andΛMAX is

greater than 70% when the false positive rate is 18% (Table 1.2). For the same false positive

rate, the true positive rate of the modified version ofSweepFinderis above 90%. However, when

smaller selection coefficients (e.g.α = 500) define the hitchhiking effect, the selective sweep may

be inseparable from bottleneck scenarios similar to that inferred by LI and STEPHAN (2006), using

the original version ofSweepFinderor theω-statistic (TP rates< 10%, Table 1.2 and Figure 1.4b).

The modified version ofSweepFinderhas a larger discrimination performance (true positive rate∼
40%). The low discrimination performance is indicated by the resemblance of genealogies between
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FIGURE 1.4: The joint distributions ofΛMAX andωMAX in scenarios with and without selection.
In A) we compare the joint distribution ofΛMAX andωMAX between a model with selection (α =
500) in a constant population and a standard neutral model. The overlap between the distributions
is limited and the scenarios can be discriminated by theSweepFinder(y-axis) and to a lesser extent
by theω-statistic (x-axis). In B) we compare a model with selection(α= 500) with a neutral model
that has experienced a bottleneck as it has been inferred by LI and STEPHAN (2006). Neither of
the statistics can discriminate accurately the two scenarios (see also Table 1.2). Notice that the
scales of the statistics are different in A) and B).
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bottleneck models and selective sweeps in constant populations (see alsoTheoretical analyses).

The distributions ofωMAX andΛMAX are largely overlapping as illustrated in Figure 1.4b. The

SVM approach performs considerably better than any of the tests alone. The true positive rate is

75% when the false positive is 26% (Table 1.2). The main reason for the superior performance

of the SVM approach is that it uses information about the distance of the peaks. In the scenarios

with selection the target can be predicted accurately (Table 1.2), therefore the distance between the

peaks is considerably smaller than in the neutral scenarios.

Table 1.2: Non-equilibrium neutrality versus selection inequilibrium populations

Parameter Performance SF SF⋆ ω ω⋆ SVM

α = 500
TP (FP = 0.26) 0.1 0.41 0.04 0.03 0.75
Median distance in
bp from target (SD)

899 (878) 522.982 (824) 423 (428) 603 (513) -

α = 2500
TP (FP = 0.18) 0.73 0.93 0.72 0.74 0.84
Median distance in
bp from target (SD)

3065 (3209) 2074 (3361) 917 (1653) 956 (1629) -

SHH versus neutrality in non-equilibrium populations: In this section we examine the sta-

tistical performance of the neutrality tests to detect selection in a genomic region and assess the

distance between the true and the predicted targets of selection. We focus on two bottleneck sce-

narios. The first one describes a deep and short-lasting bottleneck (model A), whereas the second

scenario describes a shallow and long-lasting bottleneck (model B). In both cases the severity (i.e.

the product depth× length) is the same (= 0.375 in units of 4N), and the bottleneck begins (back-

ward in time) at 0.01. The present effective population sizeis assumed 106, and the simulated

region 50 kb. The recombination rateρ for the whole region is set to 500. In the deep bottleneck

scenario, the depth (= present population size
bottlenecked population size) equals 500 and the length 0.00075. In the shallow

bottleneck scenario, the depth equals 20 and the length 0.01875.

Neutral simulations have been performed using Hudson’sms(HUDSON 2002) and simulations

with selection using thembsalgorithm (TESHIMA and INNAN 2009). The design of simulations

is as follows. In both cases we fix the number of polymorphic sites (=50) by employing broad

uniform priors onθ and accepting only those instances that result in 50 segregating sites. This is

justified by the dependence of theω-statistic andSweepFinderon the number of segregating sites

(FiguresS2 andS3 in Appendix) and the large variance on segregating sites that neutral bottleneck

scenarios generate. Furthermore, the rejection process guarantees that the total length of the tree,

the posteriorθ values and the number of segregating sites are coupled. The 25th and 75th quantiles

of the posterior distribution ofθ are 32 and 52, respectively, for the deep-bottleneck scenario and
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32 and 48 for the shallow scenario; therefore the ratioρ

θ is close to 10. In the simulations with

selection, we examine scenarios of selective sweeps occurring recently (between the present and

the bottleneck; sweep in phase 1), within the bottleneck (sweep in phase 2), and after the bottleneck

(backward in time; sweep in phase 3). The parameters of the models with selection are described

in Table 1.3 and Table 1.4 for the deep and shallow models, respectively. Similar to the neutral

cases, a broad uniform prior onθ has been used, and we condition on observing 50 segregating

sites. The posterior range ofθ depends on the timing of the selective sweep; therefore, theratio
ρ
θ is close to 10 when the sweep is either recent or old, but it decreases when the selective sweep

occurs within the bottleneck phase.

Table 1.3: Neutrality versus selection in non-equilibriumpopulations (deep bottlenecks)

Parameter Performance SF SF⋆ ω ω⋆ SVM

phase 1
TP (FP=0.51) 0.64 0.66 0.39 0.49 0.71
Median distance in
bp from target (SD)

10813 (6768) 10497 (6832) 11986 (6595) 10239 (6186) -

Random target dis-
tance (SD)

11053 (6827) 11308 (6803) 11575 (6645) 11944 (6945) -

phase 2
TP (FP=0.20) 0.62 0.64 0.36 0.44 0.73
Median distance in
bp from target (SD)

9666 (6531) 10828 (6896) 11854 (6500) 10469 (6123) -

Random target dis-
tance (SD)

11508 (6885) 11397 (6808) 11877 (6750) 11555 (6804) -

phase 2*
TP (FP=0.08) 0.72 0.78 0.63 0.12 0.97
Median distance in
bp from target (SD)

9512 (6659) 10986 (6977) 10905 (6482) 11328 (6487) -

Random target dis-
tance (SD)

12067 (6983) 12265 (6920) 11647 (6950) 13236 (7213) -

phase 3
TP (FP = 0.56) 0.53 0.55 0.48 0.46 0.63
Median distance in
bp from target (SD)

10377 (6831) 10845 (6833) 11342 (6662) 10624 (6541) -

Random target dis-
tance (SD)

12202 (6908) 11641 (6860) 12151 (6920) 12220 (6824) -

A deep bottleneck, named model A, is examined. The ratiopresent population size
bottlenecked population size= 500 and the

length of the bottleneck is 0.00075. A beneficial mutation may appear within each phase of this
3-epoch model (where time is measured backwards in units of 4N generations): a recent sweep at
time 0.01 (sweep in phase 1), a sweep within the bottleneck attime 0.0107 (sweep in phase 2),
and an old sweep at 0.115 (sweep in phase 3). The selection coefficient is 0.002. Additionally,
in the ‘sweep in phase 2*’ model we describe a sweep which completes within the bottleneck
(s= 0.8). The true positive rates of the neutrality tests are shownfor each sweep model. The other
rows depict the distance between the predicted and true targets and the random expectations for
the distance.
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First, we examined the performance of theω-statistic andSweepFinderto detect whether a

genomic region has been shaped by positive selection. Results are presented in Table 1.3 and

Table 1.4. For all comparisons, we used the false positive rate that is reported by the SVM. Then,

we compare the TP rates between the various tests; the performance of a test is better when the

TP rate is higher. The combination ofSweepFinderandω-statistic performs better than each test

(SVM column in Table 1.3 and Table 1.4). Also,SweepFinderoutperforms theω-statistic. In

model A (deep bottleneck), when the sweep is either recent orold, the discrimination between

neutral and selective models becomes problematic; when thefalse positive rate is about 50%, the

true positive is as low as 70% and 63%, respectively, for the SVM approach. For the separate

tests, the performance is even lower. This result suggests that recent or old selection in populations

that have experienced deep bottlenecks cannot be discriminated from neutrality. However, when

selection has occurred within the bottleneck phase, the false positive rate decreases to 20% and

the true positive rate is 73% for the SVM and about 10% lower for theSweepFinder(Table 1.3,

sweep phase 2). Higher discrimination performance is achieved when the sweep completes within

the bottleneck (Table 1.3, sweep phase 2*), but this requires unrealistically high values ofs.

In model B (shallow bottleneck), the discrimination performance is slightly better than that of

model A. However, again the most challenging scenarios are either recent or old sweeps and the

performance increases when the sweep occurs within the bottleneck phase (Table 1.4). Finally,

the distances between the true target and the predicted target of selection are estimated. For both

models A and B the distance is large and close to random expectations (Table 1.4).

Distinguishing RHH from neutrality in equilibrium populat ions: In contrast to single se-

lective sweep (SHH) models, recurrent selected substitutions occur randomly along a chromo-

some according to a time-homogeneous Poisson process at a ratev per generation (KAPLAN et al.

1989; WIEHE and STEPHAN 1993; STEPHAN 1995). Well-known patterns of SHH models are

modified under RHH. As an example, the SFS is skewed toward therare variants; however, the

excess of high-frequency derived alleles decreases (KIM 2006; JENSEN et al. 2008). Previously,

JENSENet al.(2007b) have shown that it is difficult to separate RHH modelsfrom neutrality based

on ωMAX -values or site frequency spectrum statistics. We explore the same problem with our

new versions of theω-statistic and theSweepFinderalgorithm. Using the software developed by

JENSENet al.(2008) we simulated 100-kb genomic regions for a given reduction of heterozygosity

(WIEHE and STEPHAN 1993), namelyHRHH
HNEU

= 0.05,0.25,0.5,0.75 or 0.95.HRHH
HNEU

denotes the ratio

of heterozygosity in the RHH model to the heterozygosity in the absence of selective sweeps. The

selection coefficients= 0.0001 or 0.01. The null hypothesis is represented by the standard neutral

model.
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Table 1.4: Neutrality versus selection in non-equilibriumpopulations (shallow bottlenecks)

Parameter Performance SF SF⋆ ω ω⋆ SVM

phase 1
TP (FP=0.27) 0.46 0.49 0.22 0.25 0.5
Median distance
(SD)

10116 (6872) 10691 (7001) 10268 (6658) 10868 (6670) -

Random target dis-
tance (SD)

11604 (6862) 11452 (6835) 10744 (6895) 11192 (7115) -

phase 2
TP (FP=0.22) 0.58 0.56 0.27 0.32 0.6
Median distance
(SD)

10233 (6866) 11059 (6807) 11659 (6721) 11531 (6643) -

Random target dis-
tance (SD)

11725 (6889) 11375 (6855) 10846 (6829) 11245 (6882) -

phase 2*
TP (FP=0.35) 0.67 0.74 0.65 0.4 0.67
Median distance
(SD)

9610 (6814) 10148 (6962) 11356 (6683) 10680 (6539) -

Random target dis-
tance (SD)

11906 (6889) 12102 (6846) 12432 (6894) 11583 (7079) -

phase 3
TP (FP = 0.25) 0.4 0.38 0.23 0.27 0.46
Median distance
(SD)

10232 (6710) 10447 (6744) 11693 (6965) 10829 (6625) -

Random target dis-
tance (SD)

11372 (6906) 11574 (6857) 11666 (6817) 13068 (6914) -

A shallow bottleneck, named model B, is examined. The ratiopresent population size
bottlenecked population size= 20 and

the length of the bottleneck is 0.01875. A recent sweep at time 0.01 (sweep in phase 1), a sweep
within the bottleneck at time 0.0107 (sweep in phase 2), and an old sweep at 0.115 (sweep in phase
3) are described. The selection coefficient in the model ‘sweep in phase 2*’ is 0.1.
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The null model used for theSweepFindercalculations and represented by the SFS of the pop-

ulation prior to the selective sweep in the SHH cases (n-SFS)cannot be described precisely by the

standard neutral model. The population size is assumed to beconstant. However, since adaptive

mutations occur according to a time-homogeneous Poisson process it remains obscure what the

‘prior to the sweep’ SFS should be. Here, we follow two approaches. First, we assume that the

n-SFS is derived from the standard neutral model and second,the n-SFS is obtained from the ge-

nomic region itself. Clearly, both approaches are approximations. On one hand, using the standard

neutral model we increase the sensitivity of theSweepFinder. On the other hand, the nucleotide

polymorphism patterns of the genomic region under investigation have been shaped by selective

sweeps, so the n-SFS forms a conservative null model with small sensitivity. However, if real data

are consistent with the RHH model, the standard neutral model cannot be supported as a null model

since the whole genome will be affected by recurrent sweeps.

When the n-SFS is derived from the data itself then the power of the SweepFinderis greater

for small values (e.g.0.0001) than large values (e.g.0.01) of the selection coefficients (FigureS4

in Appendix). Even if this appears to be counterintuitive, it is reasonable because whens is small

the footprints of the selective sweep are local, and a large fraction of the genome remains neutral.

On the other hand, for large values ofsalmost the entire genomic region may be affected by RHH

contradicting the assumption of theSweepFindertest that only a small fraction of the genome has

been shaped by positive selection (FigureS4).

Under RHH models selective sweeps occur in different genomic locations during the evolution

of the population following a time-homogeneous Poisson process (WIEHE and STEPHAN 1993).

When subgenomic data are analyzed it is possible that the target of selection is either inside or

outside of the sequenced genomic region. Furthermore, since selective events occur with a certain

probability per generation (WIEHE and STEPHAN 1993), patterns of polymorphism are shaped by

both old and new selective events. However, theω-statistic andSweepFinderare based on the

assumption that a single selective sweep has just been completed. Thus, it is important to test

whether the algorithms are able to predict the correct position of the adaptive events.

Incorporating a fraction of monomorphic sites intoSweepFinderanalysis increases the pre-

cision of the algorithm (FigureS5 in Appendix). Similarly, the variable-size sliding window ap-

proach appears more accurate than the constant-size sliding window method for high cutoff values.

WhenHRHH
HNEU

= 0.25,SweepFinderand theω-statistic predict that a target of selection is within a 5-

kb distance from a true selective sweep position in about 40%of the cases. However, this fraction

becomes smaller for higher values ofHRHH
HNEU

(FigureS5).
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1.6 Discussion

The demography of natural populations:A major challenge of population genomics studies is to

identify the loci that driven by positive selection contribute to the adaptation of natural populations,

and to localize the beneficial mutation accurately (KIM and STEPHAN 2002; SABETI et al.2002;

JENSEN et al. 2005; NIELSEN et al. 2005; AKEY 2009; NIELSEN et al. 2009; PICKRELL et al.

2009). In order to address these questions, it is important to consider the demographic history of

the population, as this neutral non-equilibrium model represents the null (LI and STEPHAN 2006;

THORNTON and ANDOLFATTO 2006). Since the standard neutral model does not reflect accurately

the demography of most natural populations, neutrality tests should not be performed using the

standard neutral scenario as the null model. In this study, we examined two bottleneck scenarios

that are relevant to the demographic history of the Europeanpopulation ofD. melanogaster(L I

and STEPHAN 2006; THORNTON and ANDOLFATTO 2006). The properties of the coalescent trees

that underlie these demographic models differ considerably. In a recombining genomic region,

the model inferred by LI and STEPHAN (2006) produces both star-like short coalescent trees, and

genealogies with long internal branches. Star-like genealogies are generated less frequently by

the THORNTON and ANDOLFATTO (2006) model (Figures 8 and 1.2). As a consequence, the null

distributions of the neutrality statistics may differ. Thus, inferring the demographic history of a

population is a prerequisite for performing genomic scans for selective sweeps, which has been

shown to be a challenging task (MYERS et al.2008).

Separating single selective sweeps from neutral models:When the value of the selection

intensity α is large, the joint distribution ofΛ and ω overlaps only partially between a model

of selection in an equilibrium population and the bottleneck model inferred by LI and STEPHAN

(2006). However, for smaller values ofα the two distributions overlap greatly. A useful approach

for classifying an observation as either a neutral or selective model is by combining theΛ and

ω profiles. Here, we use the distance between the peaks and the correlation ofω andΛ. These

features can be used in a classifier (e.g.SVM). Training requires that there are known instances

of both neutral and selective models. For simple selective and neutral models this is currently

possible, using coalescent-based programs. However, it remains challenging for more complicated

scenarios. Forward simulations provide greater flexibility when selective events occur in non-

equilibrium populations and they can be used efficiently when the population size is relatively small

(i.e. on the order of thousands) or diffusion scaling applies (HOGGART et al. 2007; CHADEAU-

HYAM et al.2008; HERNANDEZ 2008).

The rationale for employing combinations ofΛ andω is that under a selective model the two



37
statistics assume high values close to the target of selection. This implies that the target of selection

can be localized accurately. Under selection models in equilibrium populations this assumption is

met even for smallα values. ModifyingSweepFinderto include a fraction of non-polymorphic

sites in the analysis increased the accuracy of the algorithm and the performance in separating

neutral scenarios from scenarios with selection. Furthermore, both versions of theω-statistic, the

constant- and the variable-size sliding window approach, are very accurate for selection models in

equilibrium populations.

However, in severe non-equilibrium scenarios (e.g.the estimated bottlenecks of LI and STEPHAN

(2006) and THORNTON and ANDOLFATTO (2006)), when selection and past demographic changes

occur within the same model, the target of selection cannot be predicted, neither bySweepFinder

nor by theω-statistic. The accuracy of the target prediction when a selective sweep has occurred

within the bottleneck period is comparable to that of randomized experiments. The reason is that

polymorphism valleys and short coalescent trees may extendover large genomic regions, and the

often used sweep signature of an excess of high-frequency derived alleles vanishes. This result

should be taken into account when regions of strong and recent positive selection are identified

in genome scans. Since natural populations can be describedby equilibrium demographic models

only rarely, the true target of selection may be tens of kilobases away from the predicted target.

In the case of a severe bottleneck, such as the model A, recombinants (carrying the selected

mutation and the derived neutral allele) are most likely formed in the early period of the selective

phase (forward in time), but they will be lost with high probability due to drift after the population

size crashes. Therefore, high-frequency derived variantsmay not be observed. In contrast, the

frequency of rare variants (singletons) will dramaticallyincrease. Therefore, based on site fre-

quency spectrum it is possible to discriminate, to some extent, neutral from non-neutral scenarios

(Table 1.3).

The analysis of the likelihood curves ofSweepFindercan provide further insights into the

technical reasons that, in the cases of selection in non-equilibrium populations, make the prediction

of the target of selection challenging.SweepFinderimplements a model of selective sweep which

assumes that each observed SNP was existing prior to the sweep. It uses the compound parameter

γ = r
slog(2N) (namedα in NIELSEN et al. (2005)) and the positionx where the selective event

occurred. (Herer denotes the recombination rate per bp). As FigureS6 (Appendix) illustrates,

low- and high-frequency SNPs affect the likelihood in a similar way by contributing high values

in the proximity of the sweep. Examining how the SFS changes over a genomic region under

an equilibrium demographic model with selection and the THORNTON and ANDOLFATTO (2006)

model with selection (α = 2500), it is apparent that there is a dramatic increase of theclass ‘n−1’
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in the proximity of the selective sweep in the equilibrium model (Figure 1.3), but a very slight

change of singletons in the non-equilibrium model. In the equilibrium-model case the precise

localization of the sweep is possible, due to the spatial patterns of the rare and high-frequency

derived variants. However, in the THORNTON and ANDOLFATTO (2006) model with selection this

pattern vanishes, the high-frequency derived variants disappear and the singletons spread over the

whole genomic region. Thus, the target of selection cannot be estimated accurately.

It should be noted, however, that the poor performance ofSweepFinderand theω-statistic un-

der the non-equilibrium models (bottlenecked populationswith selection) does not imply that the

performance of the tests is poor under any non-equilibrium model with selection. These mod-

els represent extreme cases that violate major assumptionsof the algorithms. The slightly im-

proved performance of the machine learning approach is due to the fact that it uses information

from the sweep scenarios and, furthermore, it combines information from both theω-statistic and

SweepFinder.

Studying a scenario where a selective event took place in a bottleneck period is of great biolog-

ical importance. Often, population bottlenecks are associated with a major migration event. For

example, the bottleneck inferred by LI and STEPHAN (2006) for the European population ofD.

melanogasterdescribes the colonization of Europe from the African ancestral population. There-

fore, positive selection may have occurred in the new habitat that contributed to the adaptation of

flies to the environmental conditions of Europe. As Tables 1.3 and 1.4 show, the performance of

the tests (especially the SVM, and to a lesser extent, theSweepFinder) is high when the sweep

occurs within the bottleneck. This suggests that the approaches tested in this study can be used for

the detection of selective sweeps in populations that have recently migrated to new environments.

Furthermore, Tables 1.3 and 1.4 suggest that the power of SFS-based tests is higher than LD-based

tests.

A difficulty which arises from using simulations with selection in order to train the algorithms

is that the parameters of the scenarios with selection are unknown, i.e. the selection intensityα,

the position of the sweepx, and the time at which the sweep occurred. In the models that we

presented it was assumed that these parameters are known. However, when real data are analyzed

these parameters are generally unknown, and moreover thereare no methods available that can

estimate them in scenarios with past demographic changes. Thus, heuristic approaches have to be

used. First, the positionx can be assumed to be in the center of the fragment. Then, in real-data

analysis overlapping windows should be used so that there will exist windows wherex is located

near their center. The time of the sweep should be recent (< 0.1N). In the classical approach this

parameter is also implicitly specified by assuming that the sweep has just been complete. Finally,
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the selection intensity can be drawn from a prior uniform distribution. In this case the training set

is composed of a mixture of models with various selection intensities.

Recurrent selective sweep analysis:Recurrent selective sweeps invalidate the assumption

that a single hitchhiking event has just been completed. In agreement with JENSEN et al. (2007b),

we find that for greater ratesv of selective events per generation the power of the tests increases

for a given HRHH
HNEU

. One possible explanation is that for smallerv a few strong selective sweeps

have occurred which affect a large portion of the genome and shift the SFS of large genomic

regions. Thus, the local characteristic of the signature ofa selective event is lost. Another possible

explanation is that for smallerv the selective events are old on average and the signature of selective

sweep has faded away (JENSEN et al.2007b).

The variable-size sliding window approach increases the accuracy of theω-statistic to predict

the target of selection. However, the performance is still poor. In ∼20% of the peaks above a

certain threshold found in a scan of a given genomic region, the real position of the sweep is

located within a 5-kb distance. The performance of the constant-size sliding window is about half

that of the variable-size approach and comparable to the randomization experiments. A similar

improvement has been achieved with the modifiedSweepFinderalgorithm. RHH models imply

that adaptive substitutions occur at a time-homogeneous rate, i.e. uniformly in the history of the

population. This assumption may be violated in domesticated populations or in populations that

experienced environmental changes. Thus, an increase of the performance of the tests (lower false

positive rate, greater accuracy in target prediction) may result when RHH models are incorporated

within theSweepFinderor theω-statistic algorithms.

Recurrent selective sweep parameters such as the ratev of adaptive substitutions and the de-

crease of heterozygosity have been estimated recently. JENSENet al.(2008) and LI and STEPHAN

(2006) have estimated that heterozygosity has decreased ingenomic regions of normal recombi-

nation by 50% whereas the estimate of MACPHERSONet al. (2007) and ANDOLFATTO (2007) is

about 20% (i.e. HRHH
HNEU

= 0.8). We examined the performance of theSweepFinderand theω-statistic

for various levels of heterozygosity reduction,HRHH
HNEU

= 0.25, 0.5, 0.75, and 0.95, and selection co-

efficientss= 10−2 and 10−4 (Figure 1.5). The power ofSweepFinderis greater for the LI and

STEPHAN (2006) and JENSEN et al. (2008) estimations than that of MACPHERSONet al. (2007)

and ANDOLFATTO (2007), given that selection is strong (s= 10−2). Fors= 10−4 the differences

in the performance ofSweepFinderfor various levels ofHRHH
HNEU

are small. The reason is that for

s= 10−4 the diversity is similar for values ofHRHH
HNEU

between 0.05 and 0.95. This may be due to

inaccuracies of the RHH theory whens is small or due to the stochastic trajectory of the beneficial

mutation (COOP and GRIFFITHS 2004; SPENCERand COOP 2004).
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FIGURE 1.5: The distributions ofΛMAX for various levels of the decrease of heterozygosity and
s= 10−2. Each distribution is discrete and the size of each bin has been set to 6. A) ForHRHH

HNEU
=

0.05, 0.5, and 0.95 the cutoff values (95th percentile) are 5.7, 9.7, and 11.9, respectively, and the
sensitivities of the test (percentage of true positives) given the cutoff values are 0.74, 0.48, and 0.07.
The power ofSweepFinderis greater for the LI and STEPHAN (2006) and JENSEN et al. (2008)
estimations than those of MACPHERSONet al.(2007) and ANDOLFATTO (2007) because selection
is strong (s= 10−2). B) Whens= 10−4 the amount of diversity is similar forHRHH

HNEU
= 0.05, 0.5,

and 0.95. Therefore, the performance ofSweepFinderis relatively independent of theHRHH
HNEU

.
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Time of the selective sweep:For SHH models (in demographic equilibrium) we assume that

the selected mutation has reached fixation very recently. The selective model that underlies the

SweepFinderalgorithm assumes a recent and strong selective sweep. Therefore, the power of

SweepFinderis expected to be higher for recently completed hitchhikingeffects. Indeed, simu-

lations have shown that the power decreases exponentially after the selective sweep (P. Pavlidis,

unpublished results). It should be mentioned that the demographic scenario that follows the selec-

tive sweep (i.e. between the time of completion of the selective sweep and thetime of sampling)

affects the performance ofSweepFinder. Simulations have shown that if the completion of a se-

lective sweep is followed by population expansion, the performance of the likelihood ratio test

implemented inSweepFinderremains high even after the completion of the selective sweep (P.

Pavlidis, unpublished results). The rationale behind thisis that a population expansion decreases

the coalescent rate; therefore the return to the equilibrium SFS is slower and the signature of the

selective sweep is preserved for a longer period. In contrast to SweepFinder, which is based on

the low- and high-derived variants, theω-statistic is more sensitive to the time since the comple-

tion of the selective sweep. Indeed, the LD pattern capturedby theω-statistic, vanishes rapidly

(JENSEN et al.2007b), comparable to the fixation rate of the high-frequency derived alleles (KIM

and STEPHAN 2000; PRZEWORSKI 2002; JENSEN et al.2007b).

Overlapping selective sweeps:In the present study we focused on non-overlapping selective

sweeps. The RHH model we have used describes successive and non-overlapping selective events.

CHEVIN et al. (2008) have shown that two interfering selective sweeps maymodify the pattern of

linked neutral variation. A related process, when the targets of selection are located closely to each

other in the genome, causes trafficking (KIRBY and STEPHAN 1996; KIM and STEPHAN 2003). A

most extreme scenario, which describes the appearance of beneficial mutations at the same site, is

described as ‘soft’ sweep (HERMISSONand PENNINGS 2005). Soft sweeps may emerge during the

evolution of organisms (e.g.Plasmodium) with high mutation rates (NAIR et al.2007). Conversely,

they may be of limited importance in the evolution ofD. melanogasteror H. sapiens, for instance.

The patterns of neutral variation under these selective scenarios are different from those of single

selective events. For example, the skew of Tajima’sD toward negative values vanishes in the

interference scenarios described by CHEVIN et al. (2008), and can be even positive between the

selected sites. In general, SFS-based approaches may not work under overlapping selective sweeps

because the frequency of the class of polymorphisms in intermediate frequency may be quite large.

In such cases, LD-based statistics can be useful because a multitude of extended haplotypes may

exist on the left and right sides of the selected region (SABETI et al. 2002; VOIGHT et al. 2006;

TANG et al.2007).
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Machine learning approaches in population genetics:Machine learning approaches are

widely used in a variety of applications from image processing to classification of microarrays.

Here, we are interested in the subfield of machine learning that is related to supervised learning or

classification. Typically, in a classification problem a training set teaches the algorithm to predict

the class label of an input object (DUDA et al.2000; HASTIE et al.2001). The goal is to decide be-

tween a selective and a neutral model. However, classifyinga dataset as either neutral or selective

is challenging because the parameters of the neutral and selective models are unknown. Therefore,

parameter estimation is required prior to the classification. In the cases that an equilibrium model

with selection is employed, the selection intensityα can be estimated using theclswsoftware (KIM

and STEPHAN 2002) or theSweepFinderalgorithm (given thatρ is known). To our knowledge,

currently the only method able to estimateα given a non-equilibrium (stepwise) model with selec-

tion has been developed by LI and STEPHAN (2006). On the other hand, several approaches exist

for the estimation of parameters in a neutral demographic model (NIELSEN 2000; EXCOFFIER

et al.2005; LI and STEPHAN 2006; HEY and NIELSEN 2007). Usually, these approaches require

multiple loci in order to infer the demographic parameters of a population. The next step in a clas-

sification problem is feature selection, which aims at usinga subset of the features available from

the data. Here,ΛMAX , ωMAX , and their combinations (distance between peaks and correlation of

ω andΛ) have been used. Combiningω andΛ is powerful in comparisons between equilibrium

models with selection and neutral non-equilibrium models when the selection intensity is small

(Table 1.2). Alternatively, various summary statistics, such as TAJIMA (1989)’sD, FAY and WU

(2000)’sH or ZnS (KELLY 1997) can be used. Our choice is based on the fact thatSweepFinder

uses SFS information whereas theω-statistic is based on LD. The choice of the classification tech-

nique is important and depends on the problem and the nature of the data. Here, we demonstrate

an application using the SVM classifier (with the radial kernel), as it is implemented in the ‘e1071’

package of the R-project. To our knowledge, there are no studies in separating neutral from se-

lective scenarios that use supervised learning approaches. Future work will provide insight into

the feature selection problem and will also evaluate the performance of the supervised learning

approaches.
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2.1 Abstract

Based on nearly complete genome sequences from a variety of organisms, data on naturally occur-

ring genetic variation on the scale from hundreds of loci to entire genomes have been collected in

recent years. In parallel, new statistical approaches (such as theCLRandSweepFindertests) have

been developed to infer evidence of recent positive selection from these data and to localize the tar-

get of selection. Here we apply these methods to the X chromosome ofDrosophila melanogasterin

an effort to map genes involved in ecological adaptation. Using slight modifications of these tests

that increase their robustness against past demographic changes, we detected evidence that recent

strongly positive selection has been acting on a 2.7-kb region in an ancestral African population.

This region overlaps with the 3’ end ofHDAC6, a gene that encodes a newly characterized stress
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surveillance factor. HDAC6 is an unusual histone deacetylase being localized in the cytoplasm.

Its ubiquitin-binding and tubulin-deacetylase activities suggest that HDAC6 is very different from

other histone deacetylases. Indeed, recent discoveries have shown that HDAC6 is a key regulator

of cytotoxic stress resistance.

2.2 Introduction

Recent advances in population genomics allow us to detect footprints of strong positive selection

in the genome and to identify the targets of selection on the scale of individual genes (reviewed in

PAVLIDIS et al.2008). Based on nearly complete genome sequences from a variety of organisms

data on naturally occurring DNA sequence variation from hundreds of loci to entire genomes have

been collected in the past 5 years. Most of these studies concentrated onD. melanogaster(e.g.

GLINKA et al.2003; ORENGO and AGUADÉ 2004) and humans (e.g. AKEY et al.2004; INTER-

NATIONAL HAPMAP CONSORTIUM 2007). In parallel, new statistical tests have been developed

to infer evidence of recent positive selection from these data (KIM and STEPHAN 2002; JENSEN

et al.2005; NIELSEN et al.2005).

These new tests are based on the hitchhiking model by MAYNARD SMITH and HAIGH (1974).

When a beneficial mutation arises in a population and goes to fixation driven by positive selection

(‘selective sweep’), theory predicts the emergence of a specific polymorphism pattern: (i) diversity

vanishes around the site of selection, (ii) the site frequency spectrum (SFS) of polymorphisms is

shifted toward low- and high-frequency derived variants (BRAVERMAN et al.1995; FAY and WU

2000), and (iii) linkage disequilibrium (LD) is elevated inthe early phase of the fixation process

(K IM and NIELSEN 2004; STEPHAN et al.2006). Importantly, the width of the valley of reduced

variation is mainly determined by the ratio of the rate of recombination around the site of selection

and the strength of selection.

A multitude of studies has used the predictions of the hitchhiking model to detect footprints of

positive selection in the genome of various organisms, estimate the strength of selection, and map

the target of selection (PAVLIDIS et al. 2008). However, demographic factors such as population

size bottlenecks may stochastically produce patterns of nucleotide diversity across the genome that

resemble those of selective sweeps. Therefore, a major challenge of these analyses has been (and

still is) to distinguish the effects of selection from thoseof demography. Recent progress in this

area of research could be made based on the insight that demography affects the entire genome

whereas selection acts on individual loci. This improved the robustness of the tests for selection

(JENSEN et al.2005; NIELSEN et al.2005; THORNTON and JENSEN 2007).
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The candidate regions of selection identified by these tests, however, were generally very large

(often∼ 100 kb) and contained many genes (∼ 10). This is particularly the case for humans (e.g.

WILLIAMSON et al. 2007). Although some progress has been made inDrosophila(POOL et al.

2006; JENSEN et al.2007a; ORENGO and AGUADÉ 2007), a major challenge ahead is to develop

strategies that help to narrow down the target regions of selection such that it is possible to map the

site of selection to individual genes or gene regions. This is essential for ultimately understanding

adaptation at the functional level.

Here we use selection mapping to identify genes inD. melanogasterthat may have been in-

volved in ecological adaptation. We were able to identify a 2.7-kb region as the putative target of

selection that contains the last exon ofHDAC6harboring a ubiquitin-binding domain. HDAC6 is

an unusual histone deacetylase with two catalytic domains and is localized in the cytoplasm. Its

activities (ubiquitin binding and tubulin deacetylase) mark a distinct departure of HDAC6 from the

known action of other HDACs. Recent discoveries have shown that HDAC6 is a key regulator of

cytotoxic stress resistance (reviewed in MATTHIAS et al.2008). It appears to be both a sensor of

stressful environmental stimuli and an effector, which mediates and coordinates appropriate cell

responses.

2.3 Materials and Methods

Drosophila lines and DNA sequencing:DNA sequence data were collected from 12 highly inbred

lines sampled in Africa (Lake Kariba, Zimbabwe). Furthermore, sequence data were obtained from

12 inbred European lines from The Netherlands. Both samplesare described in detail in GLINKA

et al. (2003). All Drosophilastrains were kept at 23◦C in glass bottles of 250 ml containing 80 ml

standard cornmeal and yeast medium under a 6-18 dark-light cycle with 45% humidity.

DNA primers were designed based on theD. melanogastergenome sequence (flybase) and

obtained from Metabion (Martinsried, Germany). Genomic DNA from each line was extracted

from pools of 20 females using the Puregene DNA isolation kit(Gentra System, Minneapolis).

Short DNA fragments of about 300 to 700bp long were amplified by standard PCR using the Taq

DNA polymerase recombinant kit (Invitrogen, Carlsbad, USA). PCR products were purified using

the Exosap-It kit (USB, Cleveland) and sequence reactions were conducted with ABI PRISM Big

Dye Terminator v1.1. Sequence data were then obtained by an ABI 3730 DNA analyzer (Applied

Biosystems +Hitachi, Foster City, USA).

Sequence editing and alignments were performed with the DNAstar software package, includ-

ing Editseq, Seqman and Megalign (DNASTAR, Madison, USA). Alignments were performed



46 Chapter 2
using the ClustalV option of Megalign. However, in cases of ambiguous alignments, we manually

chose the most parsimonious scenario. Insertion and deletion polymorphisms were excluded from

further analysis. Absolute positions of the DNA sequence follow the Flybase release 5.10.

Mapping strategy: To identify and map the target of selection, we proceeded as follows. First,

we selected a subgenomic region of about 70 kb on the X chromosome that contained several

ecologically interesting genes, including a gene encodinga putative antifreeze protein (CG6227).

This region partially overlaps with the window 47 in LI and STEPHAN (2006). Re-sequencing

an additional (limited) number of short fragments of 500-600 bp in the 70-kb subgenomic region,

we found very low levels of variation across most of the region in the European sample (data

not shown), while the valley of reduced variation in the African sample appeared much narrower;

i.e. the situation was similar as in the case of theroughestandwapl regions (POOL et al. 2006;

BEISSWANGERet al.2006). To be able to localize the target of selection as precisely as possible,

we therefore decided to follow the same strategy as in thewapl analysis (BEISSWANGER and

STEPHAN 2008) and concentrated on the African sample (see ‘Standardanalyses of a candidate

region of selection’ in the Results section). In a second step, we narrowed this 70-kb region down

to 22 kb, re-sequenced this segment completely, and appliedthe specific tests for selective sweeps

to this region (see Results).

Outlier analysis: We used DnaSP 4.50.3 (ROZAS et al.2003) to calculate the basic summary

statisticsπ, θW, Tajima’s D (TAJIMA 1989), divergence, Fu and Li’sD (FU and LI 1993) and

Fay and Wu’sH (FAY and WU 2000). Divergence was calculated between the sample from the

African population ofD. melanogasterand the available online release of theD. simulanssequence

(Flybase consortium;http://www.flybase.org ). The ancestral states were defined using either

D. simulansor (when not available) its close relativeD. sechellia.

We compared the mean value of each summary statistic of the 70-kb candidate region to its

average value obtained for the whole X chromosome (OMETTO et al. 2005). For each summary

statistic, we used the Mann-Whitney test to infer whether the region represents an outlier compared

to the rest of the X chromosome.

Ascertainment bias correction: THORNTON and JENSEN (2007) describe an approach that

generates a uniform distribution of p-values when some of the assumptions of the neutrality tests

are violated. They study cases when past demographic eventshave shaped the polymorphism

patterns of a subgenomic region, which is a biased sample based on a priori information (for

example, from a genome scan). TheHDAC6subgenomic region was selected based on the genes

in this region that may contribute to the ecological adaptation of D. melanogaster. Even if such

a sampling is not random, it is unclear whether it generates any bias on selective sweep scanning

http://www.flybase.org
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and how to sample conditional on this biological information.

Performing a genome scan analysis, LI and STEPHAN (2006) discovered a 100-kb fragment

that overlaps with theHDAC6region and showed evidence of recent positive selection in the Euro-

pean population ofD. melanogaster. Among the fragments LI and STEPHAN (2006) analyzed was

a 560-bp fragment located within theHDAC6 subgenomic region that contained no polymorphic

sites. This information was not considered important for the initial choice of the 70-kb region.

However, we decided to include it into the analysis asa priori information making this analysis

more conservative. Thus, we simulate a sample of 24 lines (12European and 12 African ones)

according to the demographic scenario inferred by LI and STEPHAN (2006). Conditioning on

the existence of a monomorphic 560-bp fragment within the European sample, we create the null

distribution of the neutrality test statistics used in thispaper.

Composite Likelihood Ratio (CLR) test: TheCLR test (KIM and STEPHAN 2002) was used

to infer selection. It computes the composite-likelihood ratio (ΛCLR) between a standard neutral

model and a selective sweep model. The null distribution of the statistic is derived using the ap-

proach described in the ‘Ascertainment bias correction’ section (see also Figure 2.1). This modifi-

cation follows a suggestion of THORNTON and JENSEN (2007) who showed that the false positive

rate can be controlled if the correct demographic null modelis used. For the generation of the sim-

ulated datasets we used the estimated value of the parameterθW (0.0499) under the demographic

scenario of Figure 2.1. Furthermore, the B test of the KIM and STEPHAN (2002) method was per-

formed because it is more conservative. TheCLR test was also used to estimate the target site of

selection. However, its confidence interval could not be determined (in contrast to BEISSWANGER

and STEPHAN (2008)), as population recombination rate was too high to run simulations of the

sweep model in reasonable times.

SweepFinder test: To infer selection, we also used theSweepFindertest. It takes into account

the SFS of the whole chromosome (background SFS) in order to calculate the likelihood of the

neutral model. Non-polymorphic sites were excluded from the analysis, as NIELSEN et al. (2005)

suggest.SweepFinderuses the same principles as theCLR test: by comparing two hypotheses,

a model of neutral evolution and a model of a selective sweep that just completed, it calculates

the maximum likelihood estimates of the position of the beneficial allele as well as the strength

of selection. Additionally, it reports the likelihood ratio ΛSF between the null and the alternative

model. Similarly to theCLR test, a null distribution is required to decide about the statistical

significance of the selective sweep hypothesis. The main advantage of theSweepFinderis that a

specific population genetic model is not considered in the null hypothesis, but the SFS is derived

from the whole-chromosomal pattern of variation;i.e., from the data itself.
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FIGURE 2.1: The demographic model of the European and African population ofD. melanogaster
as it was inferred by LI and STEPHAN (2006) and used in this study. The present European effec-
tive population size is approximatelyNE0 = 106 whereas the African population (NA0) is 8 times
larger. Backward in time the model can be described by a severe bottleneck in the European pop-
ulation that took placet1 = 15460 years ago and lasted for∼ 340 years. During the bottleneck
the effective population size of the European population was decreased to 2200. Approximately
at t2 = 15800 years ago the European population merges with the African population forming the
ancestral population (NA =NA0). Finally, the ancestral population decreases to a fifth of the present
day African population att3 = 60000 years ago.
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We have extended the original approach for calculating the significance threshold for the

SweepFinder. According to NIELSEN et al. (2005) the 95th percentile of the statisticΛSF denotes

the threshold value. Our approach, however, splits the region of interest intok fragments and for

each one the 100− 5
k percentile is used as the cut-off value, resulting in a variable region-specific

threshold. This approach helps to remedy the tendency of theSweepFinderto produce higherΛSF

values at the borders of the region under study (P. P., unpublished results). Here we chosek= 10.

The demographic model of Figure 2.1 (LI and STEPHAN 2006) with the ascertainment bias de-

scribed in the ‘Ascertainment bias correction’ section is used to create the null distribution of the

test statistics for all performed neutrality tests.

Estimation of the time since fixation of the beneficial allele: The time since the fixation of

the beneficial allele was estimated by the methods describedin PRZEWORSKI (2003) and SLATKIN

and HUDSON (1991). For the Przeworski test, mutation rate 1.45×10−9/bp/gen (LI and STEPHAN

2006) and recombination rater = 4.718×10−8/bp/gen (COMERON et al. 1999) were used. The

local parameters were estimated from a 925-bp long region located between the 7th and 9th exon

of HDAC6 [as exon 8 is very short (88bp), it has presumably no special effect on the parameter

estimates, and was thus kept in the analysis]. This region contains 10 segregating sites forming 8

haplotypes, and Tajima’sD = -1.74221. Two positions of the beneficial mutation were tested: one

in the last exon ofHDAC6and one in the last exon ofCG9123.

We also used the Slatkin-Hudson method (SLATKIN and HUDSON 1991) assuming a star-like

genealogy since the fixation of the beneficial allele. We based this estimation on the DNA region

between positions 9.865 and 12.443 kb. In this region 19 segregating sites were detected and

divergence toD. simulansis 0.056. To convert the obtained estimates into years, we assumed 10

generations per year for both methods.

2.4 Results

Standard analyses of a candidate region of selection: The region analyzed here is about 70 kb

long. It is located in a highly recombining portion of the X chromosome (r = 4.718−8/bp/gen) and

is relatively gene dense. This region contains 12 genes, fiveof which have unknown molecular

functions (CG15032, CG9114, CG9123, CG12608, andCG9164). The other genes have been

functionally characterized (gce, Top1, dah, HDAC6, CG6227, acj6, andPp1). In order to perform

a fine-scale analysis of the African sample, we sequenced 15 non-coding (intronic or intergenic)

DNA fragments of 511 bp on average, in addition to the four already sequenced by OMETTO et al.

(2005) (Figure 2.2). For each of these 19 fragments, basic summary statistics were calculated,
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averaged over the whole candidate region, and then comparedto the chromosomal average. Only

15 of the 19 fragments could be aligned withD. simulans.

The region exhibits a strong reduction in nucleotide polymorphism. On average the 259 frag-

ments sequenced by OMETTO et al. (2005) for the African population contained twice as many

segregating sites as the 70-kb candidate region (p< 0.0001). π andθW were significantly lower

than the chromosomal average (p< 0.0001 for both). As can be seen in Figure 2.2, theθW curve

is roughly U shaped (with a minimum between 10 and 15 kb), except for two positions at -10 and

around 40 kb where divergence is very low. In general, divergence is rather high in the region of

reduced variation between positions 0-22 kb (∼ 0.09).

FIGURE 2.2: Nucleotide diversityθW (solid line) and divergence toD. simulans(dashed line)
across the candidate region for selection. The relative positions in kb are on the X-axis. Gene
spans (according to Flybase) are at the bottom of the graph.

Furthermore, the region shows deviations from the chromosomal expectation with regard to

the SFS. Indeed, Tajima’sD values are more negative than the X chromosome average (-1.143

vs. -0.667), which is highly significant (p = 0.001). Four fragments show significantly negative

Tajima’sD values (data not shown). In contrast, Fay and Wu’sH statistic does not depart from the

chromosomal average. This illustrates that the SFS is lacking intermediate frequency variants and

shows an excess of low frequency SNPs.

The number of haplotypes ranges from 1 to 12 in the candidate region, but its mean is signif-

icantly lower than the chromosomal average (p< 0.001). Similarly, haplotype diversity is signifi-

cantly lower (p< 0.001). LD as measured by theZnS statistic is relatively constant over the whole

region (< 0.3) and does not deviate from the chromosomal average.
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The genesCG9123andCG12608are paralogs. Among the 12Drosophilagenomes examined

(Drosophila12 GENOMESCONSORTIUM 2007) this duplication is present only inD. melanogaster.

Both copies are highly diverged fromD. simulans. Investigating the pattern of polymorphism at

both genes, we did not find evidence for extensive gene conversion; for instance, there is only

one SNP shared between both copies (out of 48 SNPs in total).CG9123contains many non-

synonymous SNPs in relatively high frequency, most of whichproduce drastic amino acid changes.

In addition, we observed some deletions in the coding region, one of which causes a frame shift

change. This may suggest thatCG9123is under weak functional constraints or even a pseudogene.

Application of the CLR and SweepFinder tests: In order to perform more advanced neutrality

tests, we defined a region of about 22 kb (corresponding to thesegment between absolute positions

15222319 and 15244496 in Flybase release 5.10, and to positions 0 to 22 kb in Figure 2.2). This

region was then completely sequenced and subjected to theCLRandSweepFindertests. TheCLR

test was marginally significant (p = 0.048) when the null distribution of the statisticΛCLR was con-

structed from the demographic scenario of the African population inferred by LI and STEPHAN

(2006) (Figure 2.1). Figure 2.3A showsΛCLR along the region. The beneficial mutation is esti-

mated to have occurred at position 11.378 kb relative to the beginning of the 22-kb region, and

α = 2Ns is approximately 13076 (whereN is the effective population size ands the selection coef-

ficient). This value is much higher than most other reported estimates, which is consistent with the

observed width of the valley of reduced variation and the fact that population recombination rate

4Nr is very high in this part of the genome.

The SweepFindertest was also significant (p = 0.034) for the 22-kb completelysequenced

region. In Figure 2.3B we show theΛSF values along the region. Consistent with the result of the

CLR test, three positions (11.315, 12.474 and 13.110 kb) show the highestΛSF values. The high

value around position 1.0 kb is probably not a target of selection as it is not confirmed by Tajima’s

D and theCLR test.

Age of the selective sweep:The age of the sweep in the 22-kb region was estimated by the

Przeworski and Slatkin-Hudson methods (cf. Material and Methods). We used Przeworski’s ap-

proach with two positions as input parameter values that arenear the estimated selected sites:

position 11.787 kb gave a time since fixation of the beneficialallele of 63,334 years (95% C.I.:

23,382-628,432 years), while position 12.787 kb gave 56,770 years (95% C.I.: 21,121-577,307

years). Using the Slatkin-Hudson method the age of the sweepwas estimated as 50,047 years.

These estimates suggest that the sweep occurred before the European lineage split off from the

African one (about 16,000 years ago; LI and STEPHAN (2006)). In order to confirm this hypothesis,

we re-sequenced the region between position 8.0 and 15.0 kb in 12 lines of a European sample from
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FIGURE 2.3: The likelihood-ratio values calculated by A) the CLRand B) theSweepFindertests
for a 22-kb subregion of the 70-kb region (for 1000 bins). Each triangle denotes the value of the
test statistics for a selective sweep model for which the beneficial mutation occurred at that specific
position. In B) the dashed line depicts the constant threshold calculated according to NIELSEN

et al. (2005), whereas the solid line shows the variable threshold(see Materials and Methods).
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FIGURE 2.4: Sliding window analysis of the fully sequenced 22-kb region. Tajima’sD and Fu and
Li’s D are represented by solid lines (black triangles) and dashedlines (grey squares), respectively.
Each data point represents the midpoint of a 2000-bp long window and the step size is 1000 bp. In
order to describe the neutral frequency spectrum we excluded the non-synonymous sites from this
analysis.
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The Netherlands (Materials and Methods). We found that the European lines were identical with

those of the African sample in a limited segment of approximately 2.7 kb from position 9.8 to

12.5 kb (except for three derived singletons and one doubleton. This suggests, in conjunction with

the estimated age of the sweep, that the selected allele has been exported to Europe during the

colonization process.

Sliding window analysis: To corroborate our mapping results, we also performed a sliding

window analysis on the SFS of the sequenced 22-kb region (Figure 2.4). Indeed, significantly

negative Tajima’sD and Fu and Li’sD values were found near the estimated targets of selection,

consistent with theCLRandSweepFinderresults. The analysis revealed a small segment showing

a local reduction of nucleotide diversity and a SFS shifted toward low-frequency variants despite

normal levels of divergence. This region coincided with the2.7-kb fragment mentioned above.

Four exons lie in this region: the three last exons ofHDAC6 and a portion of the last exon of

CG9123. The relatively low value of Tajima’sD around position 19 kb is probably due to purifying

selection (causing the observed low divergence in the helicase functional domain ofCG6227; data

not shown).

In order to identify candidate substitutions under selection, we aligned the 2.7-kb region of

D. melanogasterto that ofD. sechellia, D. simulans, D. erecta, andD. yakuba. As the 2.7-kb

region centers onHDAC6, we focused our investigations on this gene. TheHDAC6 introns were

poorly conserved between species but we obtained a good alignment of the 3’ UTR and of the

three last exons of the gene. In the 3’ UTR, we found 6 nucleotide substitutions specific to theD.

melanogasterlineage. In exon 7, we identified three non-synonymous substitutions specific toD.

melanogaster. All of them cause non-polar to non-polar amino-acid replacements. We also found

a deletion of 9 nucleotides that is specific toD. melanogasterat the end of exon 9. This exon also

carries two non-synonymous substitutions. One of them generates a drastic amino-acid change: a

valine to glutamic acid substitution. In addition, this substitution is in a region predicted by the

program MyHits (http://myhits.isb-sib.ch ) to be the ubiquitin-binding site of HDAC6.

2.5 Discussion

Evidence for a selective sweep in theHDAC6 region of African D. melanogaster: By com-

pletely re-sequencing a 22-kb region aroundHDAC6 in a sample of 12 AfricanD. melanogaster

X chromosomes and applying two likelihood tests (CLR andSweepFinder), we found evidence

consistent with the presence of a selective sweep in this region. Furthermore, our mapping showed

that the target of selection is most likely located in a 2.7-kb DNA region, centering on the last exon

http://myhits.isb-sib.ch
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of HDAC6.

The expected age of the sweep was estimated as 50,000 to 63,000 years, depending on the

method and input parameter values. This suggests that the sweep occurred before the European

lineage split off from the African one (which occurred about16,000 years ago; LI and STEPHAN

(2006). Our age estimates are consistent with the observation that the sequences of theHDAC6

alleles from our European sample are identical with that of the African haplotype in the swept

region of approximately 2.7 kb (except for some derived low-frequency variants). Consistent with

the relatively old age of the selective sweep, we did not identify any pattern of LD that is charac-

teristic of a sweep (according to PFAFFELHUBER et al. (2008)). Interestingly, a PAML analysis

(YANG 2007) ofHDAC6 sequences from five species of theD. melanogastersubgroup found no

evidence of selection (data not shown). This suggests that,prior to the inferred selective sweep,

HDAC6has not undergone accelerated evolution in the past few million years.

It is clear that the evidence we provided is subjected to someuncertainty. First, the results in-

ferred by theCLRandSweepFindertests may depend to some degree on demography. In particular,

complex demographies could be a confounding factor (for instance, population size bottlenecks;

PAVLIDIS et al. (2008)). However, the demographic history of the African population we inferred

previously is probably relatively simple and may be summarized by an expansion model (LI and

STEPHAN 2006; HUTTER et al. 2007). Furthermore, we have improved the originalCLR test by

K IM and STEPHAN (2002) and have now taken demography into account. Finally,the problem

of demography is alleviated by applyingSweepFinder, because the chromosome-wide background

SFS is used rather than a specific model. Second, a more general concern may be that if selection

is a frequent and major pervasive force our two-step approach for inferring selection may not work

(HAHN 2008). Then a joint inference of selective and demographic parameters would be a more

appropriate approach. However, we emphasize that we searchfor very strong selection. In such

a case, our method of separating demography from selection is expected to be a reasonable first

approximation. Third, the uncertainty in the estimates of the target site of selection needs to be

mentioned. Unlike BEISSWANGERand STEPHAN (2008), we were not able to obtain confidence

intervals of our estimates, as the rate of recombination in theHDAC6region is too large. However,

based on the site frequency spectrum we were able to support our conclusion that the most likely

target of selection is located in a 2.7-kb region (between positions 9.8 and 12.5 kb; see Figure 2.4).

This result is consistent with the observation that the European alleles are identical in this region

with the selected African allele. This latter argument, however, requires that the sweep occurred in

Africa before the African and European lineages split, which is indeed supported by the estimated

lower bound of the age of the sweep of> 20000 years.
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Can the polymorphism patterns in theHDAC6region be explained by selective pressures other

than positive directional selection? It is possible that atleast part of the polymorphism pattern is

associated with the action of purifying selection. The entire 70-kb region contains several func-

tional elements that give rise to low divergence levels (Figure 2.4). In the identified 2.7-kb region

between positions 9.8 and 12.5 kb, however, divergence is everywhere in the range of 5-8% and

thus comparable to the average of the whole 70-kb region of 6.8%. This suggests that purifying

selection is not likely a major cause of the observed patternof variation in the 2.7-kb region.

Significance of the selective sweep in relation to the function ofHDAC6: The 2.7-kb region we

mapped by the selection approach overlaps with the last exons of two genes,HDAC6andCG9123.

The latter is a duplicate ofCG12608. According to the alignment of the 12 fully sequenced

Drosophilaspecies (Drosophila 12 GENOMES CONSORTIUM 2007), this duplication event oc-

curred in theD. melanogasterlineage. However, based on the polymorphism pattern mentioned

above,CG9123is probably a pseudogene (or on its way to becoming one). Furthermore,CG9123

is located at the boundary of the identified 2.7-kb region. Wetherefore concentrate the following

discussion onHDAC6.

HDAC6 is a unique member of the histone deacetylase family harboring a ubiquitin-binding

site and two catalytic deacetylase domains (VERDEL et al.2000; KHOCHBIN et al.2001). In ad-

dition, its localization in the cytoplasm is very unusual for an histone deacetylase (VERDEL et al.

2000). It has been shown that its role is not limited to gene regulation. Rather, it is also important

for the general cytotoxic stress response. It is involved inthe two major cellular mechanisms de-

grading misfolded protein aggregates: autophagy and the ubiquitin-proteasome system (PANDEY

et al. 2007). HDAC6 detects and mediates the cytotoxic stress response at three different levels.

First, its strong ubiquitin-binding ability coupled with its ability to move along microtubules allows

HDAC6 to transport ubiquitinated protein aggregates, thusfavoring the formation of aggresomes.

Second, HDAC6 is able to stimulate autophagy when the ubiquitin-proteasome system is impaired

(PANDEY et al.2007), and finally it mediates the activation of heat shock proteins (BOYAULT et al.

2006). More generally, HDAC6 is believed to be involved in several other cell stress response path-

ways such as antiviral responses (BOYAULT et al. 2006). InD. melanogaster, HDAC6 is mainly

expressed in an insect specific organ: the Malpighian tubule(CHINTAPALLI et al.2007). Its tissues

might be exposed to a broad range of cellular stress as it carries out most of the osmoregulation

and the excretion of organic solutes as well as xenobiotics (DOW and DAVIES 2006).

To identify possible targets of selection, we aligned theHDAC6 sequence of fiveDrosophila

species. It revealed thatHDAC6 carries a limited number ofD. melanogaster-specific changes.

But we could neither confirm nor exclude that any of them is a positively selected substitution.



57
Indeed, any nucleotide change in the introns or 3’ UTR could affect HDAC6’s regulation or ex-

pression and any of the non-synonymous changes observed in the exons could modify the protein’s

properties. However, in the last exon ofHDAC6one non-synonymous substitution may well have

significant functional consequences: a valine-to-glutamic acid replacement that occurred in the

D. melanogasterlineage and is located in the ubiquitin-binding site ofHDAC6. Could this sub-

stitution affect the ubiquitin-binding affinity of HDAC6 and thus the response of cells to stress?

Ubiquitin-binding assays (BOYAULT et al.2006) comparing theD. melanogasterandD. simulans

alleles may provide an answer to this question.
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Chapter 3

Selective sweeps in multi-locus models

Unpublished work

3.1 Abstract

We study the trajectories of a new selected mutation that affects a quantitative trait which is deter-

mined by multiple loci. Then, given the trajectory, we analyze the properties of the coalescent trees

around the new mutation and the neutral polymorphism patterns, and compare them with those of

classical selective sweeps and those under neutrality. Trajectories are generated with forward-

in-time simulations. Coalescent trees and neutral polymorphism patterns have been implemented

conditioning on the trajectory. The fitness function of the trait is Gaussian. The model assumes that

the population size is finite; the recombination rate between two adjacent loci is arbitrary. A ma-

jor objective of the article is to scrutinize the similarities and differences between the multi-locus

model affecting a quantitative trait and the classical one-locus selective sweep model, and conse-

quently to study whether the statistical tests that have been developed to detect one-locus selective

sweeps are useful for the multi-locus scenario. In the case of multi-locus scenarios, the trajecto-

ries of a new mutation, even beneficial, might not reach fixation. The alleles of the loci compete

against each other and a polymorphic equilibrium may be obtained. In general, the trajectories that

reach polymorphic equilibria generate different polymorphism patterns than the trajectories that

result in fixation. If the polymorphic equilibrium point hasbeen reached recently, then the coa-

lescent trees and the polymorphism patterns resemble the coalescent trees and the polymorphism

patterns of standard neutral model. Consequently, currentneutrality tests would not be able to

detect a large proportion of selective events in multi-locus models. On the other hand, if fixation

is achieved then the polymorphism patterns are similar to the classical one-locus selective sweeps
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and neutrality tests can detect the selective event.

3.2 Introduction

According to the classical one-locus selective sweep theory (MAYNARD SMITH and HAIGH 1974),

three distinct signatures of selection may emerge after thefixation of a beneficial mutation. First,

the level of polymorphism is reduced in the neighborhood of the beneficial mutation; second, the

site frequency spectrum shifts towards low- and high-frequency derived variants, and third, linkage

disequilibrium is high on each side of the beneficial mutation but low across the selected site. For

ongoing sweeps the main signature consists of extended haplotypes in high frequency (VOIGHT

et al.2006). In the last decade, a multitude of tests have been developed that aim at detecting those

patterns in whole genome scans (KIM and STEPHAN 2002; KIM and NIELSEN 2004; NIELSEN

et al. 2005; JENSEN et al. 2007a; PAVLIDIS et al. 2010). The next step after detecting genomic

regions that show signatures of selection attempts to associate the genes that are located in the

region with an (advantageous) phenotype (SVETEC et al.2009).

On the other hand, a phenotype may be determined by a multitude of genes as well as the en-

vironment. Multi-locus population genetics has been developed in the last decades to describe the

evolution of multi-locus systems and phenotypes. Selective forces, such as directional, stabilizing,

or disruptive selection modify the genetic constitution ofthe population and drive the population

to either extreme or optimal genotypic values. In this studywe focus on stabilizing selection,

i.e. the type of selection toward a phenotypic optimum. However,here this optimum might not

coincide with the genotypic value of heterozygotes. Historically, of special interest is the mainte-

nance of genetic variability under stabilizing selection,because stabilizing selection is assumed to

control traits in various organisms, for example the color coat in mice (VIGNIERI et al.2010), hu-

man facial features (PERRETT et al.1994), plant defense mechanisms (MAURICIO and RAUSHER

1997), enhancer elements inDrosophila(LUDWIG et al.2000), and vocalization in frogs and toads

(GERHARDT 1994); see also ENDLER (1986, chapter V) for examples and discussion. Further-

more, it has been suggested that this type of selection exhausts genetic variation (ROBERTSON

1956; FISHER 1930). Studies that underpin this view are based on a large number of loci of very

small effect on the trait and they are supported by approximations that are focused on one arbi-

trary locus (e.g. ROBERTSON 1956). By contrast, many quantitative traits exhibit high levels of

genetic variability. This contradiction motivated researchers to study the role of mutation (LANDE

1975; TURELLI 1984; GAVRILETS and HASTINGS 1994; BÜRGER 1998), overdominance (BUL-

MER 1973; GILLESPIE 1984), migration (TUFTO 2000), frequency-dependent selection through
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intraspecific competition for some resource (BÜRGER 2002; BÜRGER and GIMELFARB 2004),

genotype-environment interaction (GILLESPIE and TURELLI 1989), or pleiotropy and epistasis.

Additionally, a lot of work has been put into exploring the ability of stabilizing selectionper seto

maintain genetic variability of quantitative traits that are controlled by multiple loci. Theoretical

focus was mainly on two-locus models, but also models of morethan two loci have been analyzed.

Surprisingly, predictions about genetic variability depend profoundly on the number of loci. The

two-locus model predicts that genetic variability remainsin the population due to stabilizing se-

lectionper se. On the other hand, in models with more than two loci the vast amount of genetic

variability diminishes. The reason is that the optimum can be reached very closely by various ho-

mozygous genotypes (B̈URGER 2000, chapter VI) when there are more than two loci that control

the trait. For the two-locus model and assuming a symmetric viability model (e.g. BODMER and

FELSENSTEIN1967; KARLIN and FELDMAN 1970), it has been shown that there are nine equilib-

ria (BÜRGER 2000), seven of which can be stable but not simultaneously. Those seven equilibria

split into four classes (B̈URGER and GIMELFARB 1999): they can be either polymorphic for both

loci, one of them, or totally monomorphic. The equilibrium points of the two-locus, two-allele

model can be depicted on a tetrahedron (KARLIN and FELDMAN 1970; BÜRGER 2000, page 23;

see also Figure 3.1). The vertices correspond to the fixationof the labeled gamete, and frequencies

are measured by the orthogonal distance from the opposite boundary face. Consequently, if an

equilibrium point is located within the tetrahedron (internal equilibrium), then it is polymorphic

for both of the loci (and for all four gametes), since the distance from each face is positive. On the

other hand, an equilibrium point on one of the edges or vertices is monomorphic for at least one

allele. The equilibria points on the vertices are monomorphic for the alleles in both of the loci; the

equilibria points on the edges maintain two gametes, but they are monomorphic for one of the alle-

les. Of special interest in the present study are the equilibria that correspond to the fixation of one

of the alleles for at least one locus, namely the equilibria on the edges and vertices. Throughout the

article Ai denotes theith locus andAi j the jth allele of theith locus. Figure 3.1 illustrates a tetra-

hedron with the gametes A11A21, A11A22, A12A21, and A12A22 on the vertices. An equilibrium

pointK on the edge (A11A22, A11A21) corresponds to i) absence of gametes A12A21, and A12A22,

and ii) frequencies of gametes A11A21, A11A21 equal to the distances KKa and KKb, respectively.

WILLENSDORFER and BÜRGER (2003) fully explore the equilibrium properties of the two-locus,

two-allele model of Gaussian selection under the assumption of a symmetric fitness function with

respect to the double heteroygote. The analysis of WILLENSDORFER and BÜRGER (2003) is im-

portant because it provides the existence and stability criteria for the equilibrium points of the

model. Let A1 and A2 denote the two loci with alleles A11, A12 and A21, A22, respectively. The
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FIGURE 3.1: The tetrahedron that represents the state spacefor the two-locus two-allele model.
Vertices correspond to fixation of the labeled gamete; an edge corresponds to the absence of the
gametes that are not located on the edge; a face corresponds to the absence of the gamete on the
opposite vertex, and an internal point corresponds to a polymorphic state for all the gametes

fitnesses of the nine possible genotypes are shown in Table 3.1. The genotypes A11A21/A12A22

and A11A22/A12A21 are equivalent. Letx1, x2, x3, andx4 represent the frequencies of the gametes

A11A21, A11A22, A12A21, and A12A22, respectively. Furthermore,Wi , i = 1,2,3,4 is the marginal

fitness of the gametes. Then, a classical result (e.g. KARLIN and FELDMAN 1970; WILLENSDOR-

FER and BÜRGER 2003) gives the recursion relations for the frequencies in the next generation as:

W̄x′i = xiWi −ηirD, i = 1, 2, 3, 4, (3.1)

whereη1 = η4 = 1 andη2 = η3 = −1. D denotes the linkage disequilibrium and is defined as

D = x1x4 − x2x3. The average fitness is̄W = 1− d(x2
1 + x2

4)− a(x2
2 + x2

3)− 2b(x1x2 + x2x4)−
2c(x1x3+ x2x4). The system of Equation 3.1 cannot be solved explicitly (Reinhard Bürger, pers.

communication). Notice that the model is deterministic,i.e. the stochastic effect of genetic drift is

negligible.

WILLENSDORFER and BÜRGER (2003) parametrize the model so that the effect of gametes

A11A21, A11A22, A12A21, and A12A21 are−γ1/2, γ1/2, −γ2/2, andγ2/2, γ1 ≥ γ2 ≥ 0; then, the

optimal phenotype is 0 for the double heterozygote. Letai denote the fitness for theγ1 phenotype,

i.e. α1 = exp(−γ1/ω2) under the Gaussian selection function.ω2 quantifies the strength of selec-
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Table 3.1: (A) Genotypic values and (B) fitnesses for the symmetric fitness model

A

A21A21 A21A22 A22A22

A11A11 −γ1− γ2 −γ1 −γ1+ γ2

A11A12 −γ2 0 γ2

A12A12 γ1− γ2 γ2 γ1+ γ2

B

A21A21 A21A22 A22A22

A11A11 1−d 1−b 1−a
A11A12 1−c 1 1−c
A12A12 1−a 1−b 1−d

tion (s in WILLENSDORFER and BÜRGER (2003)). Furthermore, letα12 = exp(−2γ1γ2/ω2) =

exp(−2
√

lnα1 lnα2). Then, the termsa,b,c,d in Table 3.1B can be represented asa = 1−
α1α2/α12, b = 1−α1, c = 1−α2, d = 1−α1α2α12. Thus,α1 andα2 are sufficient to describe

the fitness matrix. In the Results section, we illustrate that α1, α2, and the recombination rater

determine the equilibrium properties of the model. Explicit formulas are given by WILLENSDOR-

FER and BÜRGER (2003) by linearization of Equation 3.1 at the equilibrium points (Equations

3.1, 3.2a, 3.2b, 3.8 in WILLENSDORFERand BÜRGER (2003)). Furthermore, we demonstrate that

initial frequencies for the A1 and A2 locus determine to a large extent whether a new mutation in

locus A1 will be fixed. The symmetrical fitness model can be extended toan l -locus two-allele

model. A l -dimension matrix is required to describe the genotypic values and the fitnesses of the

genotypes. Then, similarly to the two-locus two-allele model, we assume that the optimal geno-

type is thel -tuple heterozygote, the optimum is at 0, and that symmetrical genotypes to thel -tuple

heterozygote have symmetric genotypic values about the optimum. Then, it can be shown that for

each locus the sum of the contributions of the two alleles is 0.

Even if the equilibrium properties of multi-locus models are not in the focus of the present

study, they are relevant. They show that a selective sweep isnot always achievable when a quan-

titative trait that is controlled by multiple loci is under Gaussian selection. As mentioned above,

theoretical studies have shown that stable polymorphic equilibrium points are possible when the

trait is controlled by few loci (< 4; BÜRGER 2000, chapter VI). Therefore, it is possible that a

new mutation even if beneficial initially, will not fix in the population but will remain polymorphic

as long as the optimum remains constant.

To our knowledge, the first effort that bridges quantitativetrait evolution and selective sweeps

was made by CHEVIN and HOSPITAL (2008). Their work was based on the seminal paper by

LANDE (1983). Lande’s model focuses on one locus of major effect onthe trait, and treats the

remaining loci of minor effects as genetic background for this locus. It is assumed that heritable

background variation is maintained in a constant amount by polygenic mutation and recombina-

tion (LANDE 1975, 1983); also, the various loci that affect the trait areunlinked and there are
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no epistatic interactions. In this model, the joint evolution of the allelic frequencies on the focal

locus and the phenotype is determined by two difference equations, namely∆q = q(1−q)∂W̄
2W̄∂q and

∆z̄= h2σ2∂W̄
W̄∂z̄ , whereq denotes the frequency of the allele on the focal locus,W̄ denotes the average

fitness of the population, ¯z the average genetic background value, andh2σ2 the amount of heri-

table genetic variability. Analyzing the system of these two equations, Lande inferred stable and

unstable equilibrium points under various dominance schemes and fitness functions. CHEVIN and

HOSPITAL (2008) used Lande’s model to infer the deterministic trajectory of a beneficial mutation

that affects a quantitative trait in the presence of background genetic variability. They studied both

directional and stabilizing selection and showed that fixation needs longer time in their quantitative

trait setup than in the classical one-locus model (i.e. when genetic variability in the background is

absent). In contrast to CHEVIN and HOSPITAL (2008) the present simulation-based study assumes

an explicit number of loci that determine the trait as this was done by BODMER and FELSENSTEIN

(1967), KARLIN and FELDMAN (1970), BÜRGER(2000, chapter VI). Therefore, the assumption of

constant variability in the genetic background is relaxed since the genetic background is modeled

explicitly.

Of special interest in studies of multi-locus models is the role of linkage disequilibrium and the

strength of selection. Previous work has shown that the number and the stability of the equilibria

depend on the recombination rate between the loci and the strength of selection. These studies have

been focused on two-locus systems and usually assume a largepopulation size, so that genetic drift

is negligible, and the frequencies of the gametes evolve deterministically. In the present study we

analyze both the deterministic and the stochastic evolution of the multi-locus model by assuming

a finite constant effective population size.

3.3 Methods

3.3.1 The model

We consider a diploid population of sizeN, and a quantitative trait under selection. The quantita-

tive trait is controlled byl -diallelic loci with no epistatic interactions on the phenotype. The alleles

for each locus are codominant. The alleles at theith locus are labeled as Ai1 and Ai2. Allele Ai1

contributeswi1 to the trait, and the contribution of Ai2 equals towi2 for eachi. Without loss of

generality the optimum for the trait is set to 0. The recombination fraction between allelesi and

i +1, is r i ≤ 0.5. At time t = t0, the number of Ai1 alleles follows a binomial distribution with pa-

rameterp0(A i1) andN, and the loci are in linkage equilibrium (D = 0). The trait is assumed to be
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under a Gaussian fitness function,i.e. if the phenotypic value of an individual isP, then its fitness

is given byW(P) = exp(−P2/ω2), andω2 determines how fast the fitness decreases away from the

optimum. Here, the phenotypic valueP is determined explicitly by the genotype. However, it is

straitforward to include environmental noise, assuming that the environmental component is nor-

mally distributed with mean 0 and varianceσ2
E (see Implementation). Individuals are considered

to be hermaphrodites,i.e.an individual can represent both a male and a female; mating is random.

The population evolves forward in time fromt = t0 to the presentt = 0 and generations do

not overlap. For each allele Ai j an initial frequencyp0(A i j ) is assumed, and the mutation rate

is 0 (see Implementation for extensions of the model). In each generation, the life cycle consists

of (i) the zygote phase, (ii) viability selection, where individuals are selected as parents for the

next generation according to their fitness value, (iii) recombination for each of the parents where

gametes are formed, and (iv) random mating to form the zygotes of the next generation. In step

(iv), N matings take place amongN individuals. Each mating produces one diploid offspring and

each individual can participate in multiple matings as a male or female. In each generation, at the

zygote phase, the frequencies of the alleles of the locus of interest are recorded and the trajectories

are stored. Notice that in this model selection and drift actsimultaneously in step (ii), where a

finite number of individuals is chosen as parents in the next generation. Also, random genetic drift

acts in steps (iii) and (iv): from a pair of gametes only one recombinant is chosen to pass to the

next generation.

The next step proceeds backward in time. Assume a sample ofk individuals from the present-

day population (t = 0). Given the trajectory of the A11 allele from the previous step, we implement

coalescent simulations fromt = 0 to the TMRCA of the neutral genomic region around the locus

A1. The backward in time simulations are based on the structured coalescent model (WAKELEY

2008; TESHIMA and INNAN 2009; EWING and HERMISSON2010). That means that the population

is subdivided into two genetic backgrounds: one class of lineages is linked to the A11 allele and the

other is linked to the A12. Given the trajectory of the A11 and A12 allele, the genealogical history

of linked neutral regions is considered separately for the two classes, while recombination allows

lineages to move between the two classes (as migration allows lineages to move in a structured

population). With the backward process the genealogies of the genomic region around the locus

A1 are obtained. We assume that the genealogies of the genomic region around the locus A1 are

affected only by the locus A1 and not by the remaining of loci. This simplification makes the

backward simulations tractable, and allows us to use available simulation software (e.g. TESHIMA

and INNAN 2009; EWING and HERMISSON 2010). However, as it is mentioned in following

sections, this is correct only when selection is weak and theloci unlinked.
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3.3.2 Summary statistics of the coalescent and SNP polymorphisms

Next, the genealogies are summarized. Summarizing the genealogies facilitates the inspection of

their properties, and more importantly, the comparison to one-locus selective sweeps or to neu-

trality. Four summary statistics have been used. First,h the height of the coalescent tree which

measures the scaled time from the present to the MRCA of the sample. Second,L the total length

of the coalescent is calculated by summing up the lengths of all branches, and it is described by

scaled time units as well. Third, we developed two summary statistics,bL andbN, which measure

the balance of the coalescent when the root is placed at the node of the MRCA.bL is based on the

length of the subtrees on the right and on the left side of the MRCA; on the other hand,bN uses the

number of nodes on the right and on the left side (Equation 3.2).

bL =
4lLlR

l2 , bN =
4nLnR

n2 . (3.2)

lL andlR denote the total length of the left and right subtree of the MRCA, respectively, andl the

total length of the coalescent.nL andnR is the number of nodes on the left and on the right side of

the MRCA, respectively, andn is the total number of nodes (excluding the root),i.e. n= 2k−2,

wherek is the sample size.bL andbN take values in (0, 1]; when they equal 1 the coalescent

trees are balanced perfectly, whereas smaller values denote some imbalance. The summaries of

the genealogies are related to the perturbations of the coalescent due to the action of selection. It

is well known that in the neighborhood of a beneficial mutation, directional selection reduces the

height and the length of the coalescent, and increases its imbalance.

Furthermore, we used population genetics SNP summary statistics to describe the polymor-

phism patterns in a present-day sample, as we move along the sequence alignment away from the

A1 locus. Thus, we measure the level of polymorphism using the number of polymorphic sites.

Tajima’sD is used to summarize the site frequency spectrum. Additionally, we implemented the

Depaulis and Veuille statistics (DEPAULIS and VEUILLE 1998), which calculate the number of

haplotypes (K) and their divergence (H). Those summary statistics facilitate the comparison be-

tween polymorphism patterns that are created by the multi-locus model and the one-locus selective

sweep. Similarly to the summaries of the genealogies, they can describe perturbations of the poly-

morphism patterns that are created by the action of recent selection; it is well known that the level

of polymorphism and the number of haplotypes is reduced around the target of selection, the site

frequency spectrum is shifted towards low- and high-frequency derived variants which cause neg-

ative values of Tajima’sD, and the linkage disequilibrium increases on each side of the beneficial

mutation (KIM and STEPHAN 2002; KIM and NIELSEN 2004; STEPHAN et al.2006).
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3.4 Implementation

Forward simulations have been implemented in a C++ softwareavailable from the addresshttp://

bio.lmu.de/ ˜ pavlidis . N diploid individuals are implemented. The number of locil may be

arbitrary. However, large (> 20) values ofl may require extensive computational time. For each

generation,N individuals are chosen as fathers, andN as mothers according to their fitness value.

For each gender this is done by multinomial sampling with parametersN and (F1, F2, . . . ,FN),

whereFi is the fitness of theith individual normalized by the average fitness of the population.

Notice that the same individual is possible to be a mother anda father. Then, recombination occurs

for each parent, and a recombinant chromosome is generated that will pass to the next generation.

Random mating follows, where chromosomes from different parents merge and form the zygote.

All measurements (frequencies of alleles, average fitness,average trait value etc) are calculated in

the zygote step.

The code provides further extensions to the classical two- and l -locus models as this was de-

scribed in Introduction. First, it allows for different optimum values for male and female individ-

uals. Second, the optimum for the trait may change after timetc (tc follows either an exponential

distribution, or it is predefined by the user), to a new valuevc which is either uniform or predefined

by the user. Additionally, mutations can be assumed to occurfor each locus. The environmental

effect follows the Gaussian distributionN(0, σ2
E), or is absent. The effective population size is

constant, but an extension to changing (stepwise) population size can be readily implemented.

3.5 Results

3.5.1 Trajectories of new variants

First, we study the two-locus two-allele symmetric model ofWILLENSDORFER and BÜRGER

(2003) and obtain the deterministic trajectory of a variantin the locus A1. The goal of this analysis

is to illustrate the role of the parameters of the model on thefixation of the A11 allele. Second, we

introduce random genetic drift by simulating the evolutionof a randomly mating population with

effective population sizeN = 10000. Then, we relax the assumption of the symmetrical fitness

matrix and finally we perform simulations of a five-locus two-allele model in order to get insight

into the role of multiple loci.

Deterministic two-locus two-allele model with symmetrical fitness matrix: We implement

the system described in Equation 3.1 and we record the frequency of the A11 allele for 10000

http://bio.lmu.de/~pavlidis
http://bio.lmu.de/~pavlidis
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generations. The fitness matrix is symmetric in respect to the double heterozygous genotype (Table

3.1). The parameter values are drawn from uniform distributions whose boundaries are defined in

Table 3.2. Following the analysis of WILLENSDORFERand BÜRGER(2003) the optimum value for

the phenotype is set to 0. This facilitates the illustrationof the results without the loss of generality.

The initial frequencies for the gametes A1iA2 j , i, j = 1, 2 are given as the productp0(A1i)p0(A2 j),

and therefore the initial value ofD is 0.

Table 3.2: The parameter values that were used for the simulations of the two-locus two-allele
model

Parameter Value min. Value max.
r 0 0.5

p0(A11) 0 0.2
p0(A21) 0 1

ω2 1 10
w11 -2 2
w21 -2 2

r: recombination fraction,p0(A11): initial frequency of the allele A11, p0(A21): initial frequency of the
allele A21, ω2: strength of selection,w11: contribution of A11, w21: contribution of A21.

Figure 3.2 illustrates a subset of the obtained trajectories at various levels of final frequencies.

Notice that only 500 out of 10000 generations are shown because the frequencies remain con-

stant. However, this cannot be generalized; there exist trajectories which approach the equilibrium

frequency very slowly (not shown).

In Figure 3.2 we can see that, first, fixation of A11 allele is possible and this fixation may occur

fast (within 10 generations). These trajectories are similar to the trajectories obtained from the

classical selective sweep theory. Second, there is a subsetof trajectories that remain polymorphic.

Polymorphism is possible for various levels of equilibriumfrequencies, depending on the initial

conditions and parameters of the simulations. Furthermore, there is a class of trajectories that

shows non-monotonic behavior. The frequency initially increases and then decreases to some

equilibrium value. Figure 3.2B illustrates two non-monotonic trajectories. In the first one, the

frequency approaches the value 0.5 in approximately ten generations, but then the allele disappears

from the population. The second trajectory approaches fixation, and eventually it reaches the

equilibrium frequency 0.5.

At the end of 10000 generations a continuum of frequencies in[0,1] is obtained, though with

different probabilities. For example, frequencies in (0.5, 0.99) are rare (Figure 3.3). For the param-

eters of Table 3.2, the frequencies of the trajectories after 10000 generations can be summarized

using the empirical cumulative distribution (Figure 3.3).Apparently, the vast majority of the fre-
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FIGURE 3.2: Trajectories obtained under the deterministictwo-locus two-allele model with sym-
metrical fitness matrix. Only 500 out of 10000 generations are shown. The trajectories have ap-
proached their equilibrium value and the frequencies remain constant. A) monotonic trajectories,
B) non-monotonic trajectories.

quencies correspond to 0, 0.5, or 1.

In order to identify the factors that determine the fixation of the A11 allele, we compare in pairs

different sets of trajectories. For example, comparison ofthe trajectories that reach fixation with

the trajectories that remain at frequency 0.5 gives insightinto the parameter values that affect these

two sets. In the next sections the following two comparisonsare implemented: i) fixed trajectories

(fixation class) versus trajectories that stay at equilibrium frequency 0.5 (polymorphic class), and

ii) fixed trajectories versus trajectories where the alleleA11 disappears from the population (ex-

tinction class). Throughout the text, the fixation class is defined as the set of trajectories whose

equilibrium frequency is in the range (0.999, 1], the extinction class as the set of trajectories whose

equilibrium frequency is in the range [0, 0.001), and the polymorphic class as the set of trajectories

whose equilibrium frequency is in the range (0.499, 0.501),unless mentioned differently.

Fixation of the A11 allele corresponds to the equilibrium point at the verticesA11A21 or A11A22

on the tetrahedron of Figure 3.1,i.e. the monomorphic equilibria. Additionally, it correspondsto

the absence of A12A21 and A12A22, i.e. equilibria at the edges of the tetrahedron. WILLENSDOR-

FER and BÜRGER (2003) prove that two conditions are required for the stability of the monomor-

phic equilibria:r ≥ 1−α1α2exp(
√

lnα1 lnα2), whereα1 andα2 are defined in the Introduction,

andγ1 ≤ 2γ2. Comparison of parameter values that result in fixation of the A11 allele with the pa-
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FIGURE 3.3: Empirical cumulative distribution for the frequencies obtained after 10000 simulated
generations. A continuum of frequencies is obtained in [0,1]. The vast majority of frequencies for
the A11 allele are either 0, 0.5, or 1.

rameter values that result in polymorphic equilibrium for the A11 allele shows that the parameters

c1 = r −1+α1α2exp(
√

lnα1 lnα2) andc2 = 2γ2− γ1 can separate the trajectories that fix from

those that stay polymorphic. The role ofc1 is illustrated in Figure 3.4A. Given a set of simulated

trajectories that are either polymorphic or result in fixation of the A11 allele, we plot the values

for the parameter against the class of the trajectory (for this comparison class 1 means fixation,

and class 0 means polymorphic). Importantly, in this plot the number of trajectories in class 1

and class 0 is equal. A similar plot is shown in Figure 3.4B forthe parameterc2, and in Figure

3.4Cc1 is plotted againstc2. In case that bothc1 andc2 are positive (as required for the stability

of the monomorphic equilibrium), then 98.4% of the trajectories belong to class 1. The stability

conditions for the edge equilibria are more complicated (WILLENSDORFER and BÜRGER 2003).

However, a simple condition for instability is that the edgeequilibria cannot be stable when linkage

is sufficiently tight.

In addition toc1 andc2, there are other parameters that provide information aboutthe equilib-

rium state of the trajectory. Initial frequencies of the A21 allele close to the boundaries 0 or 1 yield

fixation of the trajectory for the majority of the simulations, whereas intermediate initial frequen-

cies lead to polymorphic equilibrium states (Figure 3.5B).For example,∼76% of the trajectories

that initiate at frequency< 0.1 for the A21 allele lead to the fixation of the A11 allele. Since the
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FIGURE 3.4: The role of parameterc1 andc2 on determining the class of the trajectory for the
deterministic two-locus two-alleles model. Class 1 means trajectories that result in fixation of A11,
whereas class 2 includes the trajectories that stay polymorphic at frequency 0.5. The color code
is as follows: green denotes class 0, black denote class 1. The line in A) and B) is the lowess
smoother function for the data, and is a proxy for the probability of the class 1, given that its prior
probability is 0.5. For example, in B whenc2 is 0.4, the probability of the class 1 approaches 0.8.
A) The role ofc1 on predicting the class of the trajectory.c1is crucial when the comparison is
between monomorphic and polymorphic equilibria. In B) the role of c2 is illustrated, whereas in
C) c1 is plotted againstc2. The dashed lines in C) denote the axesx= 0 andy= 0.

prior probability of each of the two classes is 0.5, the p-value for this event is< 2×10−16. Let the

initial frequency of the A21 allele be close to 0 for the trajectories that result in fixation of allele

A11 (i.e. black points in Figure 3.5B). Then, as illustrated in Figure3.5C, these points are located

at the proximity of the linex= y, i.e. the contributions of the A11 and A21 alleles to the phenotype

are approximately equal. This means that the likelihood of the fixation of the trajectory is high

whenw11 ≈ w21, given that the initial frequency of A21 is low. Assuming that the initial frequency

of A21 is low, then the majority of the genotypes for the A2 locus will be A22A22, and a smaller

proportion will be A21A22. If the contribution of the A21 allele isw22, then the contribution of

the A22 allele is−w22, due to the symmetry of the model. Thus, initially the A2 locus brings an

individual−2w22 units away from the optimum. Furthermore, since the initialfrequency of the

A11 allele is small, the majority of the genotypes at the A1 locus will be A12A12, and a smaller pro-

portion will be A11A12. From this initial state, there are two pathways for the population to move

towards the optimum. The population will move either towards the genotype A11A22/A11A22

through the genotype A11A22/A12A22 or towards the genotype A12A21/A12A21 through the geno-

type A12A21/A12A22. Notice that ifw11 ≈ w21, then the two previous final genotypes are optimal.

Thus, in this case there is a competition between the two pathways, and consequently between the

A11 allele and the A21 allele. Given that the initial frequency of the A11 allele is small, then fixation
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of the A11 allele occurs when the frequency of the A21 is also very small; otherwise the A21 allele

out-competes the A11 allele and the final state is the polymorphic equilibrium. This is also shown

in Figure 3.5A. When the initial frequency of A11 is very small (as it is required for a classical

selective sweep), then the probability of a trajectory thatresults in fixation of A11 is diminished.

Furthermore, comparing the lowest frequencies for the A11 allele in class 0 and class 1, we ob-

serve that the lowest initial frequency of A11 in class 1 is at least one order of magnitude greater

than in the class 0 (6.1×10−3 versus 1.1×10−5). This means that classical selective sweeps (as

described by MAYNARD SMITH and HAIGH (1974)) may be rare under the symmetrical fitness

model compared to sweeps from standing genetic variation.

Another way to explain these results is the following. As mentioned above, assuming that the

initial frequency of A21 is low, then the majority of the genotypes for the A2 locus will be A22A22.

Also, for the A1 locus the majority of the genotypes will be A12A12. Given that the trajectory will

result in fixation of the A11 allele, i.e. that the final state for the A1 locus will be A11A11, then

(under the symmetric model) it is required thatw11≈ w21, so that the A11A11 genotype will cancel

out the effect of the A22A22 genotype on the phenotype, and it will bring the individualsto the

optimum. If the difference betweenw11 andw22 is large then the only optimum genotype is the

double heterozygote,i.e. fixation of the A11 allele is unlikely. When the initial frequency of the

A21 allele is close to 1, then the previous argument holds whenw11 ≈−w21 (blue points in Figure

3.5C).
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FIGURE 3.5: The role of parametersp0(A11) andp0(A21) on determining the class of the trajec-
tory for the comparison of the fixation class versus the polymorphic class. The line in A) and B)
represents the lowess smoothing function for the data. As shown in A), for very small values of
p0(A11) the probability of obtaining a trajectory from the fixation class decreases considerably. In
B) the initial frequency of A21, p0(A21), shows a non-monotonic behavior: small and large values
of p0(A21) make possible the fixation of the A11. In C) we can see how the contributions of the
alleles interact. Whenw11 ≈ w21 then it is possible to obtain trajectories that reach fixation.
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Even though the parametersc1 andc2 can separate the trajectories that result in fixation from

those that remain polymorphic, they cannot disentangle fixation from extinction of the A11 allele

(Figure 3.6). This is because the obtained equilibria are either monomorphic or at the edges.
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FIGURE 3.6: The role of parameterc1 andc2 on determining the class of the trajectory when class
1 and class 0 represent fixation and extinction of the A11 allele, respectively. The color code is as
follows: green denotes class 0, black denote class 1. The line in A) and B) is the locally weighted
scatterplot smoothing (lowess) function for the data (CLEVELAND 1979), and is a proxy for the
probability of the class 1, given that its prior probabilityis 0.5. A) The role ofc1 on predicting the
class of the trajectory. In B) the role ofc2 is illustrated, whereas in C)c1 is plotted againstc2. The
dashed lines in C) denote the axesx= 0 andy= 0. As expected,c1 andc2 cannot separate fixation
from extinction for the A11 allele in the case of the symmetrical fitness model.

Figure 3.7 reveals that the initial frequency of the A21 allele is important for the equilibrium

state of the trajectory. In particular, it shows that low andhigh initial frequencies of A21 may lead to

fixation of A11, whereas intermediate frequencies result in the extinction of A11. Notice that in this

comparison, the contributionsw11 andw21 are located on the diagonalsx= y andx=−y for both

of the classes. This is because in equilibrium states the genotypes A11A22/A11A22 are optimal for

the case of fixation, and the genotypes A12A21/A12A21 for the case of extinction of the A11 allele,

i.e.homozygous states for both of the loci. The genotypes A11A21/A11A22 and A12A21/A12A22 are

away from the optimum (given thatw11 is not 0) and therefore it is improbable to dominate in the

equilibrium state. Based on the previous arguments we may assume that the double homozygote

dominates in the equilibrium state. Thus, it is required, inorder for the phenotypic value of the

individuals to be near the optimum, that the contributionsw11 andw22 are in the proximity of the

diagonaly= x andy=−x (Figure 3.7B).

Stochastic two-locus two-allele model with symmetrical fitness matrix: In this section we

study the behavior of the stochastic model when the fitness matrix is symmetrical. The population



74 Chapter 3

0.00 0.05 0.10 0.15 0.20

Initial frequency of the A11

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
la

ss
 o

f t
ra

je
ct

or
y

A

0.0 0.2 0.4 0.6 0.8 1.0

Initial frequency of the A21

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
la

ss
 o

f t
ra

je
ct

or
y

B

−2 −1 0 1 2

Allele A11 contribution

−
2

−
1

0
1

2

A
lle

le
 A

21
 c

on
tr

ib
ut

io
n

C

FIGURE 3.7: The role of parametersp0(A11), p0(A21) and allele contributionsw11 andw21 on
determining the class of the trajectory for the comparison the fixation class versus the extinction
class. The line in A) and B) represents the lowess smoothing function for the data. As shown
in A), for very small values ofp0(A11) the probability of obtaining a trajectory from the fixation
class decreases considerably. In B) the initial frequency of A21, p0(A21), shows a non-monotonic
behavior: small and large values ofp0(A21) make possible the fixation of the A11. In C) we can
see how the contributions of the alleles interact. Whenw11 ≈ w21 then it is possible to obtain
trajectories that reach fixation, but also trajectories where the A11 disappears from the populations.

sizeN = 10000. The simulation parameters are similar to the deterministic two-locus two-allele

model with symmetrical fitness matrix. We use the average frequency of the last 500 generations,

f̂500, to define the equilibrium frequency. This is because the frequency of the A11 does not remain

constant but fluctuates due to random genetic drift. In Figure 3.8, we plot the empirical cumulative

distribution of the f̂500. Comparing Figure 3.8 with Figure 3.3 we can see that the proportion of

trajectories with the equilibrium frequency 0.5 is largelyreduced in the stochastic model. This is

expected as a consequence of random genetic drift, which drives the frequency of the trajectory

towards its absorbing state.

The trajectories we obtain in the stochastic model are similar to those of the deterministic

model. Figure 3.9 illustrates trajectories fluctuating at various equilibrium levels. In particular,

Figure 3.9B shows non-monotonic trajectories, where the frequency of A11 approaches the value

0.5 but eventually it disappears from the population.

In order to determine the importance of various parameters we plot them against the class

of the trajectory. As previously, three classes of trajectories are used in two comparison sets: i)

trajectories that result in fixation versus trajectories that stay in a polymorphic equilibrium, and ii)

trajectories that result in fixation versus trajectories that result in extinction. The definitions of the

three trajectory classes (fixation, polymorphic, extinction) are given in the sectionDeterministic
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FIGURE 3.8: The empirical cumulative distribution for the equilibrium frequency of the stochastic
two-locus two-allele model.
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FIGURE 3.9: Examples of trajectories in the stochastic two-locus two-allele model. 1000 out of
10000 generations are shown. A) Trajectories at various equilibrium levels. B) Non-monotonic
trajectories that approach the value 0.5 but eventually theallele A11 is getting extinct from the
population.
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two-locus two-allele model with symmetrical fitness matrix. For the first comparison set, the

relation of six parameters with the class of the trajectory is depicted in Figure 3.10. We observe that

the initial frequencyp0(A11) of the A11 allele, the strength of selectionω2, and thec1 parameter

reveal a linear relationship with the frequency of obtaining a trajectory of class 1. On the other

hand, the initial frequencyp0(A21) of the A21, and the contribution of the alleles A11 and A21 are

non-linear. In particular we observe that large absolute values for the contribution of A21 and small

absolute values for the contribution of A11 favor the fixation of the A11 allele against a polymorphic

equilibrium state (Figure 3.10).
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FIGURE 3.10: The relation of six parameters to the class of the trajectory. The line in each
subfigure represents the lowess smoothing function of the data. A) The initial frequency of the A11

allele. B) The initial frequency of the A21 allele. C) The parameterω2 which defines the strength
of selection. D) The contribution of the allele A11 to the genotypic value. E) The contribution of
the A21 to the genotypic value. F) The parameterc1. The red line represents the lowess smoother
function for the data of the plot. Black points represent class 1 (trajectories that result in the fixation
of A11), whereas green points represent class 0 (trajectories that result in a polymorphic state for
the A11).

Comparing the plots from the stochastic simulations with the deterministic simulations (for the
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symmetric fitness model) reveals that larger values of the parameterω2 (weaker selection) result in

a higher frequency of fixed trajectories. However, the role of ω2 is more crucial for the stochastic

simulations. For small values of theω2 (1< ω2 < 2) the frequency of the polymorphic trajectories

is ∼ 88% in the stochastic set, and∼ 66% in the deterministic set. On the other hand, for large

values of theω2 (9 < ω2 < 10) the frequencies are 4.6% and 38%, respectively. This shows (see

also Figure 3.10C) that especially in the stochastic model the frequency of polymorphic trajectories

is very low when selection is not strong enough, whereas in the deterministic model the relation

between theω2 and the class of the trajectory (fixed versus polymorphic) isnot so crucial. The

reason for this result is that in order to preserve the polymorphic state of the trajectory, selection

has to overcome the effects of recombination and random genetic drift in the stochastic set, but only

the effect of recombination must be overcome in the deterministic trajectory. Therefore, selection

needs to be stronger in the stochastic simulations in order to result in a polymorphic equilibrium

state. This is especially true for the polymorphic state around the frequency 0.5 (see Discussion).

Regarding the relation between the contributions of each locus to the genotypic value, the results

are similar to the deterministic model: the parameter values for the trajectories that fix are located

in the proximity of the two diagonalsw11= w11 or w11=−w21 depending on the initial frequency

of the allele A21 (see the sectionDeterministic two-locus two-allele model with symmetrical

fitness matrix).

The following results have been obtained for the comparisonof the fixation class versus the

extinction class in the stochastic simulation set. The roles of ω2 andc1 are not critical (Figure

3.11). This means that small and large values of theω2 have similar effects on the class of the

trajectory. In this comparison both of the sets are associated with monomorphic (absorbing) states

of the alleles. The strength of selection (at least for the values tested here) is not crucial, because

maintaining either of the classes does not require strong selection. The importance ofc1 has

been explained in the sectionDeterministic two-locus two-allele model with symmetrical fitness

matrix . In brief,c1 is not informative for disentangling the monomorphic equilibria. Interestingly,

the roles ofw11 andw21 have been inverted in this comparison. Values close to 0 are associated

with class 0 for thew11 and with class 1 for thew21, whereas the relation was inverted in the

comparison of the fixation class versus the polymorphic class.

Deterministic two-locus two-allele model with generalized fitness matrix: In this section

we relax the assumption of symmetry of the fitness matrix. Theparameter space is given in Table

3.2. Essentially, the difference between this model and thesymmetrical fitness model is that there

is no restriction on the relations between the contributions of the alleles (see Introduction for the

restrictions in the symmetrical fitness model). Thus, all four alleles A11, A12, A21, and A22 may
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FIGURE 3.11: The relation of six parameters to the class of the trajectory for the comparison of the
fixation class versus the extinction class. The line in each subfigure represents the lowess function
of the data. A) The initial frequency of the A11 allele. B) The initial frequency of the A21 allele.
C) The parameterω2 which defines the strength of selection. D) The contributionof the allele
A11 to the genotypic value. E) The contribution of A21 to the genotypic value. F) The parameter
c1. The red line represents the lowess smoother function for the data of the plot. Black points
represent class 1 (trajectories that result in the fixation of A11), whereas green points represent
class 0 (trajectories that result in the extinction of A11).
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assume any value in the parameter space [-2, 2].

The shape of the trajectories in this model is similar to the symmetrical fitness matrix model.

The number of trajectories where the A11 allele disappears is similar for both models. However, in

the case of the generalized fitness matrix model, the trajectories that result in the fixation of the A11

allele occur more often than in the symmetrical fitness model. This is shown by the comparison of

the empirical distributions for the frequency of the trajectories after 10000 generations (Figure 3.3

and Figure 3.12). In the symmetrical fitness model (for the parameter values studied here) 4.15%

of the trajectories are fixed, whereas 34.65% of the trajectories are fixed in the generalized fitness

model. On the other hand, less trajectories stay at equilibrium frequency 0.5 (Figure 3.12). This

could be expected because in the generalized fitness model, the double heterozygous genotype is

not associated with the highest fitness.
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FIGURE 3.12: Empirical cumulative distribution of the frequencies of the trajectories after 10000
generations for the deterministic two-locus two-allele model assuming a generalized fitness matrix.
In contrast to the symmetrical fitness model, where 4.15% of the trajectories fix, in the generalized
fitness model 34.65% of the trajectories reach fixation. On the other hand, thepercentage of
trajectories that stay at equilibrium frequency 0.5 is smaller.

The role of parametersc1 andc2 in disentangling fixation from the polymorphic class is not so

clear as in the symmetrical fitness model. As shown in Figure 3.13, increasing values forc1 result

in an increasing probability for the fixation of the allele A11. However, this is not as clear-cut as

in the symmetrical fitness matrix model (Figure 3.4C and Figure 3.13C). Furthermore, the initial
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frequencies of A21 and A11 do not have an impact on the fixation of the trajectory. The lowest

frequency of the A11 allele observed is 4.3×10−5, much lower than the minimum frequency of

the A11 allele in the symmetrical fitness model(6.1×10−3). Additionally, the patterns observed in

Figure 3.13C regarding the contributions of the alleles to the phenotype in the symmetrical fitness

model are not observed in the generalized fitness model. In summary, the results indicate that in

the generalized fitness models classical selective sweeps from rare variants may occur more often

than in the symmetrical fitness model. However, there is no simple relation between the parameters

that determine the fate of the trajectory. The results are similar when comparing the fixation class

versus the extinction class.
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FIGURE 3.13: The roles of parametersc1 andc2 in the deterministic two-locus two-allele model
with generalized fitness matrix for the comparison of the fixation class versus the polymorphic
class. The line in A) and B) is the lowess smoothing function of the data.c1 is informative for the
class of the trajectory (in A). On the other hand,c2 (in B) and the combinationc1 and c2 (in C)
appear to be less informative.

An informative quantity for disentangling trajectories inwhich A11 is getting fixed from those

in which it stays polymorphic or disappears is the mean traitvalue in the beginning of the evolu-

tionary trajectory. For mean initial trait values close to the optimum value 0, trajectories result in

either extinction or polymorphic equilibrium for the A11 allele (Figure 3.14). On the other hand,

when the initial mean trait is far from the optimum, then fixing the A11 allele becomes more prob-

able. When the mean value for the trait under selection is farfrom the optimum, then the allele

A11 can be beneficial. On the other hand, when the population is already at the optimum or close

to it, then the A11 allele will not be favored in general.

Stochastic five-locus two-allele model with symmetric fitness matrix: In this section the

five-locus two-allele models is analyzed. The parameter space that we have used is a direct exten-

sion of the two-locus model. Therefore, the contributionwi1 of each Ai1 allele, i = 1 , ..., 5 is in
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FIGURE 3.14: The effect of the initial trait value on the fateof the trajectory. The line represents
the lowess function of the data. When the initial mean trait value is close to the optimum then
the A11 allele fixes less often than when the mean trait value is far from the optimum. Results are
similar when the comparison is between fixation versus polymorphic trajectories or fixation versus
extinction trajectories.
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[-2, 2] and the contributionwi2 of the Ai2 allele is equal towi1, as it is required for the symmet-

rical fitness model. All the remaining parameters are similar to the two-locus two-allele model.

The empirical cumulative distribution of thêf500 is shown in Figure 3.15. In the five-locus model

the proportion of the equilibrium trajectories is reduced compared to the two-locus model, and

monomorphic states are obtained more frequently than the two-locus model.
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FIGURE 3.15: The empirical cumulative distribution of the five-locus two-allele model with sym-
metrical fitness matrix. Compared to the two-locus model, the five-locus model shows an increased
proportion of monomorphic trajectories.

In contrast to the two-locus two-allele model the pairwise relations between the contributions

of the alleles do not show the patterns that were observed in Figure 3.10. This is because more

than two loci determine the phenotype. Therefore, pairwisecomparisons may reveal no infor-

mation about the relations of the contributions that are required for the fixation of the A11 allele

(Figure 3.16). Furthermore, as Figure 3.16 shows, the frequency of fixed trajectories depends on

the initial frequency of the A11 allele. However, the dependency is not so strong as in the two-locus

model. The effect ofω2 is similar to the two-locus model. Strong selection is required in order to

maintain the polymorphic state. Comparing the results fromthe two-locus and five-locus models

we conclude that fixation of the A11 allele occurs more frequently in the five-locus model than

in the two-locus model. This is because heterozygote statesare maintained efficiently only when

strong selection is applied.
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FIGURE 3.16: The role of various model parameters in determining the class of the trajectory for
the comparison of the fixation class versus the polymorphic class. In contrast to the two-locus two-
allele model the initial frequencyp0(A11) is not so critical for the class of the trajectory. Theω2

is related linearly to the class of the trajectory, whereas thew11 shows a non-monotonic behavior,
similar to the two-locus two-allele model.
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3.5.2 Coalescent simulations conditioning on the trajectory of the A11 allele

In this section we perform coalescent simulations in order to obtain i) the genealogies and ii) the

neutral polymorphism patterns in the neighborhood of the A1 locus. The results in this section are

approximate because of two reasons. First, conditioning onthe frequency of one allele implies

that the coalescent rates of all the genotypes that carry this allele are equal. However, in the

case of multiple locus models this is not true. For example, the coalescent rates of the A11 allele

is different when it is located on the gametes A11A21 and A11A22 since the dynamics of these

two gametes is different (see Equation 3.1). This is also shown in Figure 3.17, where a random

pair of trajectories for the A11A21 and A11A22 gametes are drawn for the deterministic two-allele

two-locus model with symmetrical fitness matrix. The growthrate of these trajectories and their

equilibrium frequencies are different. Therefore, the coalescent rate of the A11 allele is depending

on the gamete that carries it.
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FIGURE 3.17: The growth rates for the A11A21 and A11A22 trajectories are different. The A11A21

trajectory grows faster than the A11A22 trajectory. Therefore, the coalescent rate for the allele A11

is different when it is located on the gamete A11A21 or on A22A22.

The second reason is that both loci A1 and A2 affect the dynamics of a neutral locus, when

the recombination fraction is smaller than 0.5. Thus, simulating the genealogy of a neutral site

would require tracking the frequencies of all the gametes backward in time instead of tracking the

frequency of a single allele. Such an analysis is beyond the goals of the present article. Combining
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the two previous arguments indicates that the results of this section are valid mainly for cases of

weak selection and not too tightly linked loci.

Properties of the coalescent:Given a trajectory, coalescent simulations require to specify the

time that the backward process is considered. For example, given a trajectory from Figure 3.9 the

genealogies will be strikingly different if the backward process initiates 100 or 5000 generations

after the onset of the A11 allele. Thus, an arbitrary time point is required, which represents the

beginning of the backward simulation process. Here, we haveused 100 generations after the

trajectory has reached its equilibrium frequency. This time point is temporally close to the onset

of the A11 allele. Therefore, the signature of the trajectory on the neutral polymorphisms is still

present on the data. Backward simulations have been performed using a modified version of the

software mbs (TESHIMA and INNAN 2009). Our mbs algorithm implements the infinite site model,

in contrast to the original software, and it calculates and outputs statistics related to the coalescent

trees, such as the height, the total length, and the balance of the coalescent (see also Equation

3.2). For the coalescent simulations we have used parameters related to human data. Assuming

that the mutation rateµ= 10−9 per nucleotide per year (e.g. ZHAO et al.2006), thenθ = 4Nµ=

0.001 per bp per generation. The ratioρ/θ = 1. The effective population sizeN = 10000 and

remains constant. Simulations are performed for a 0.5-Mb genomic segment. The A1 locus is

located on the middle of the simulated segment. The sample size is 50. For a given equilibrium

frequency-bin (see below), we have chosen randomly one trajectory whose initial frequency is

below 0.001. This is done in order to resemble closely a selective event of a new variant. For a

given trajectory, 1000 coalescent simulations are performed. Finally, the summary statistics for

the coalescent trees are computed at the recombination breakpoints for each simulation, and the

results are binned. For example, if the positionsx1 = 103989,x2 = 103995,x3 = 105000 are

breakpoints (i.e. the genealogy may change), and the bin size is set to 100, thenx1 andx2 will

be in the same bin (1039), whereas thex3 will be in a different bin (1050). The results from the

same bin are averaged over the whole set of simulations. We repeat this process for four sets

of trajectories in which the equilibrium frequency is (i) 1,(ii) 0.9 to 1, (iii) 0.3 to 0.4, and (iv)

trajectories that show the non-monotonic behavior. The results presented here are obtained from

the analysis of the two-locus two-allele stochastic model with symmetrical fitness matrix. The

results for the remaining models are similar because the shape of the trajectories is similar for

the various equilibrium frequencies (Figure 3.18). For trajectories that result in fixation (Figure

3.18A), the signatures of selective sweeps emerge in the proximity of the locus under selection:

coalescent trees are shorter in length and height, and simultaneously they are imbalanced in the

proximity of the A1 locus. For trajectories that result in polymorphic equilibrium the signatures
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are weaker. For example when the equilibrium frequency is between 0.9 and 1, the total length of

the coalescent is smaller, and the tree imbalance as measured by thebN statistic is higher. However,

the height of the coalescent tree is similar to the neutral expectation (red solid line in Figure 3.18).

Interestingly, the imbalance of the coalescent is higher for trajectories in the bin [0.9, 1) than the

trajectories that result in fixation of the A11 allele in the proximity of the A1 locus. The explanation

is as follows. When fixation of the A11 allele has occurred,all genealogical lines coalesce recently

in the proximity of the locus A1. Thus a short tree is generated which is not imbalanced because

no line has escaped the coalescence. Imbalance is generatedfurther from the locus A1, because

recombination breaks the link between a neutral site and theA1. On the other hand, trajectories in

the bin [0.9, 1) generate imbalanced genealogies very closeto the locus A1 because a large fraction

of the present-day lines carry the allele A11 (and coalesce recently in the past), whereas a small

fraction of the present-day lines carry the allele A21 and coalesce further in the past.

Properties of the polymorphism patterns: We have used classical population genetics sum-

mary statistics to describe the properties of the polymorphisms in the proximity of the A11 allele.

We use the same simulation sets as in the previous section. A sliding-window approach with

window-length 5kb and offset 1kb has been implemented. The length of the genomic fragment

and the position of the A1 locus are provided in the previous section. The summary statistics are

described in Methods. For each window the mean value of each summary statistic is calculated

over the simulated datasets. Figure 3.19 illustrates the results.

Tajima’s D is negative over the whole region for frequencies> 0.9. For fixed trajectories,

Tajima’sD becomes less negative closely to the A1. For trajectories close to fixation, Tajima’sD

obtains its most negative value exactly at the location of the locus A1. Comparing Figure 3.19 with

Figure 3.18 we can associate Tajima’sD with thebN statistic. The number of polymorphic sites

follows, as expected, the statisticL, which measures the total length of the coalescent. The number

of haplotypesK and the haplotypic diversityH are also informative about the locus A1.

3.6 Discussion

In this study, we explore selective sweeps in multi-locus two-allele models. Selection applies

to the phenotypic values through a Gaussian fitness function. The Gaussian function seems an

appropriate choice for many quantitative traits (ENDLER 1986; WILLENSDORFER and BÜRGER

2003), because it naturally formalizes the concept of an optimum value. Furthermore, it is flexible

enough to allow for modeling both stabilizing and directional selection. Stabilizing selection is

modeled by assuming that the optimal genotypic value is located between the extreme genotypic



87

0 50000 150000 250000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Distance

h

A

0 50000 150000 250000

0
1

2
3

4
5

Distance
L

B

0 50000 150000 250000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance

b L

C

0 50000 150000 250000

0.
0

0.
2

0.
4

0.
6

0.
8

Distance

b N

D

FIGURE 3.18: Summary statistics for the coalescent trees asa function of the distance from the
locus A1. The x-axis denotes the distance from the A1. The solid line refers to the equilibrium
frequency 1 (fixation), the dashed line refers to the equilibrium frequency in [0.9, 1), the dotted line
refers to the frequency [0.3, 0.4) and the red line to neutralsimulations with the same parameter
values. Notice that the results for the non-monotonic trajectories overlap completely with the
neutral curves. In A) the height of the tree is shown. B) showsthe total length of the coalescent,
and C) and D) the balancing statisticsbL andbN, respectively.
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values that an individual may obtain. Often, in this case, the optimal genotype is heterozygous for

one or more loci. A classic example of stabilizing selectionis the human birth weight. Babies of

low weight have impaired thermoregulation and are more susceptible to infectious disease, whereas

babies of large body weight are more difficult to deliver. Directional selection can be modeled by

assuming that the optimum is more extreme than the genotypicvalues that the individual may

obtain. Therefore, the allele frequencies shift towards the direction of fixation of the most extreme

genotype favored by selection.

Previous studies (KARLIN and FELDMAN 1970; BODMER and FELSENSTEIN 1967) suggest

that multiple equilibrium points exist in two-locus two-allele models with a Gaussian fitness func-

tion. Furthermore, conditions are provided for their existence and stability. However, the trajec-

tories of the alleles towards the equilibrium points have not been explored. This study focuses

on the trajectory of an allele, which initially is in low frequency and at its equilibrium points. In

agreement with WILLENSDORFERand BÜRGER (2003) multiple equilibrium points in [0, 1] have

been illustrated in this study depending on the initial values of the model parameters.

An important result of this study shows that selective sweeps that initiate from very low fre-

quency of A11 allele are very rare in the two-locus two-allele model with symmetrical fitness ma-

trix. Multiple conditions need to be satisfied in order to achieve fixation. First, the contribution of

one of the alleles in the second locus (e.g.A21) should be approximately equal to the contribution

of the A11 allele. Second, the frequency of the A21 allele needs to be very low. In this regime the

population is initially dominated by the A12 and A22 alleles which drive the population far from

its optimum value (since they have similar contributions due to the symmetry of the model). Thus,

the A11 competes with the A21 allele; since their contribution is similar their initial frequencies

may determine the fate of the trajectory of the A11 allele. In fact this result suggests that in the

two-allele two-locus model a selective sweep becomes possible when the second locus is nearly

monomorphic,i.e. when the model resembles the one-locus two-allele model. Since fixation of

A11 becomes more probable as the value of initial frequency increases, a model of sweeps from

standing genetic variation may be more suitable.

Relaxing the assumption for the symmetry of the fitness matrix, we show that the fixation of

the A11 allele becomes more likely. This is because the optimum genotype does not correspond

necessarily to the heterozygote states. Thus, when the fitness matrix is generalized, the fitness

may be either stabilizing or directional. For example, if the contributions of the A11, A12, A21,

and A22 alleles are -1, 1, 1, 1, and the optimum genotypic value is at 0, then the A11 allele is

clearly beneficial: the second locus contributes+2 to the genotypic value, and only the A11A11

genotype may bring the population to the optimum by contributing −2. Figure 3.12 shows that in
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the generalized fitness model a larger proportion of trajectories result in fixation compared to the

symmetrical fitness model.

Assuming an effective population sizeN = 10000 we explore the effects of random genetic

drift. Fluctuation of the frequencies of the trajectories are limited because the population size

is not too small. However, genetic drift increases the proportion of the trajectories that reach

monomorphic states (Figure 3.9). This is expected because genetic drift pushes the model towards

its absorbing states. Therefore, selection needs to be strong enough in order to maintain the poly-

morphic state of the trajectory. This is illustrated clearly in Figure 3.10, where theω2 value is

small for the vast majority of trajectories that are polymorphic at equilibrium.

When more than two loci are modeled then the proportion of trajectories that reach fixation in-

creases. This is in agreement with the results of BÜRGER (2000), who shows that when the trait is

determined by more than four loci then the monomorphic equilibrium points become more likely.

Intuitively, the proportion of trajectories that reach a monomorphic equilibrium state increases be-

cause the optimum may be reached not only by the heterozygotegenotypes but also by various

combinations of homozygotes. Assume the five-locus model with symmetrical fitness matrix, and

further assume that the contributions of the Ai1 alleles are 2, 3, 1, 2, 2. Then, multiple configu-

ration may bring the population to the optimum. For example,the homozygotes for the genotype

A11A21A32A42A52 is at the optimum. The same is true for the A12A22A31A41A51. Of course, the

five-locus heterozygote is at the optimum as well. Thus, the population can reach its optimum

by fixing appropriate combinations of alleles. Additionally, Figure 3.16 shows that fixation of the

A11 allele depends on the initial frequency of the A11. However, this dependency is not as strong

as in the two-locus model. Therefore, fixation of the 11 allele is possible even for small initial

frequencies as it is required for classical selective sweeps.

Conditioning on the trajectory of the A11 allele, coalescent simulations have been implemented.

As mentioned previously, this is correct only for weak selection and when the loci are not linked.

However, a first approximation is useful in order study the genealogy properties and the patterns of

neutral polymorphism around the A1 locus. When the A11 allele fixes in the population, then the

genealogies around the A1 locus are similar to the classical selective sweep (given that the initial

frequency of the A11 is small). The coalescent trees are on average imbalanced and short in the

proximity of the A1, as expected in a classical selective sweep model. The imbalance becomes

larger for a certain genomic region as we move away from the focal locus, and then it reverts

to neutral levels. The length of the region where the signature of selection is visible depends on

the recombination fraction. For the set of simulations in this article, the recombination fraction

is small. Thus the genomic regions where the signature of selection appears is large (> 250 kb).
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When the trajectories do not reach fixation, then a part or allof the signatures of a selective sweep

become invisible, depending on the equilibrium frequency of the trajectory. For example, when

the equilibrium frequency is between 0.9 and 1, then the height of the coalescent tree equals the

neutral expectations, because ancestral alleles (A12) exist in the present day sample. For smaller

equilibrium frequencies (e.g. 0.3 to 0.4) both the coalescent summaries and the polymorphism

summaries resemble the neutral expectations.

Depending on the simulation parameters a large number of trajectories is maintained at some

equilibrium value and does not reach fixation. For those trajectories analysis of incomplete sweeps

(VOIGHT et al.2006; TANG et al.2007; SABETI et al.2002) may be useful. There is, however, an

essential difference between incomplete sweeps and sweepsin multi-locus models that were stud-

ied in this article. Incomplete sweeps are on the way to fixation, however the sweeps studied here

remain at equilibrium frequency. Therefore, the signatures of selection will be visible only in the

cases that the equilibrium frequency has been achieved recently. If the trajectory remained at the

equilibrium level for too long, then the signatures of selection will fade away due to recombination.

The results indicate that detection of selection from polymorphism patterns in multi-locus mod-

els may be hard. When the focal allele (A11) fixes in the population, then the statistical tools that

are used to detect sweeps in one-locus two-allele models maybe useful (e.g. K IM and STEPHAN

2002; NIELSEN et al. 2005; PAVLIDIS et al. 2010). Also, this is true for trajectories close to fix-

ation. Even if the patterns appear to be different than thoseof fixed trajectories (Figure 3.19), the

direction of perturbations is similar to the classical sweep models, and therefore the same statisti-

cal tools may be used. However, for smaller equilibrium frequencies some or all the signatures of

selection studied in this article disappear.

In multi-locus two-allele models a class of trajectories that is absent from one-locus two-allele

models comprises of non-monotonic trajectories. These trajectories approach fast a certain fre-

quency, but eventually they decline either to extinction orto some other frequency. The difference

between the maximum frequency and the equilibrium frequency may be quite large. In the simu-

lated datasets, we observed differences even larger than 0.5. However, the polymorphism patterns

and the coalescent patterns seem to be very similar to the neutral expectations. Thus, those trajec-

tories may be completely invisible using the summary statistics studied in this paper. Summarizing

the results, it may be claimed that the statistical tools that have been developed to detect selective

sweeps may detect a small proportion of the multi-locus selection cases: only those cases that

result in fixed trajectories or equilibrium trajectories close to fixation. Tools that are used for de-

tecting incomplete sweeps may be useful when the trajectoryhas reached its equilibrium frequency

very recently. For trajectories that have reached their equilibrium frequency further in the past, we
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expect that recombination will destroy the signatures of selection. In fact, the results imply that

positive or stabilizing selection may occur in a much higherrate than previous studies which an-

alyze selective sweeps report (e.g. L I and STEPHAN 2006). However, the majority of the cases

remains undetectable since both the coalescent trees (as summarized here) and the polymorphism

summary statistic do not deviate from neutrality.

To our knowledge the only study of selective sweeps in quantitative traits was done by CHEVIN

and HOSPITAL (2008). CHEVIN and HOSPITAL (2008) assume an infinite number of unlinked and

independent loci that control the trait. Moreover they assume that the variability in the genetic

background remains constant during the trajectory of the new allele, and that the effect of the focal

locus on the trait value is small compared to the effect of thegenetic background. These assump-

tions enable them to solve the trajectory of a new allele analytically for linear, exponential, and

Gaussian fitness functions. Furthermore, CHEVIN and HOSPITAL (2008) focus mainly on the tra-

jectories that reach fixation. On the other hand the present article focuses on finite locus models.

Considering a finite number of loci makes the model intractable mathematically. Therefore, com-

puter simulations were employed to study the trajectory of anew allele. The contribution of alleles

may be arbitrary as well as the recombination fraction between the loci. In this article we provide

information about the role of various parameters on the fixation of the trajectories, but also we

study extensively the trajectories that remain polymorphic. Polymorphic trajectories are possibly

absent in CHEVIN and HOSPITAL (2008) due to the large number of loci that control the trait.The

results of CHEVIN and HOSPITAL (2008) indicate that trajectories of new alleles evolve slightly

slower than classical selective sweeps, and selective sweeps of their model look slightly older than

the classical one-locus selective sweep. This is true for the multi-locus model studied here as well,

however to a less extent (results not shown). The present study may be considered complementary

to the study of CHEVIN and HOSPITAL (2008) for finite multi-locus models, providing information

about the trajectories of new alleles and the polymorphism patterns generated by selective sweeps

in multi-locus models. This information is essential for the development of software which will be

able to detect selective sweeps in multi-locus models.
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The availability of large scale data for population genetics studies has offered a possibility for

the precise identification of the footprints of hitchhikingevents in the genome. Until now this

kind of analysis has been only performed in a few model species. However, advancing DNA

sequencing technology will allow the generation of population genetic data also in non-model

organisms. The accumulation of such data in a multitude of species and populations allows us to

address such questions as (i) are some genes that are involved in certain functions more subjected

to adaptive evolution than others? (ii) is positive selection more frequent in populations that have

to adapt to the new environment? and (iii) what is the rate at which adaptive substitutions occur?

Simultaneously, it becomes apparent that statistical methods based on the classical selective sweep

model may be inadequate to capture more complicated selective events.

The genes that were identified by selection mapping in natural populations ofD. melanogaster,

mice and plants appear to fall into three functional categories: genes of sensory pathways (i.e.

genes involved in the development of the eye, skin or hairs),genes determining body size, and

defense/immunity genes. Although the number of genes detected so far is small, the emerging

pattern confirms the working hypothesis that most genes identified on the basis of selective sweeps

play a role in ecological adaptation. Among these genes onlyph-p(encoding polyhomeotic proxi-

mal protein, a part of a universal transcription repressor Polycomb group) does not have a specific

function related to the environment. On the other hand, it isremarkable that genes involved in

temperature adaptation and energy metabolism have not yet been identified in flies by the selective

sweep method. For the genes that experienced positive selection in human, additional categories

and sub-categories can be defined. For example, the genes responding to the selection pressures

during the transition to novel food sources with the advent of agriculture form a new category (in-

cluding LCT). Furthermore, olfactory and pigmentation genes are important sub-categories of the

genes involved in sensory perception (NIELSEN et al.2007). It should be noted, however, that the

identification of a specific gene or function might not alwaysbe possible. There is accumulating

evidence that selection also affects non-coding portions of the genome (e.g. ANDOLFATTO 2005;
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BUSH and LAHN 2005). As the biological role of these non-coding regions isstill poorly under-

stood, the assessment of the functional consequences of positive selection on such loci poses an

additional challenge.

In both flies and humans the signatures of selection are to some extent population-specific and

thus suggestive of local adaptation. VOIGHT et al. (2006) found the strongest signals of selection

in human populations in Africa(Yoruba). WILLIAMSON et al. (2007), however, detected more ev-

idence for sweeps in Chinese and European-American populations than in the African-American

population. These contradictory results may be due to the fact that the power to detect selective

sweeps is lower in the African-American sample. InD. melanogaster, in five of the six cases dis-

cussed above both African and non-African samples were analyzed and in four of them the sweep

originated in Africa. This result is not consistent with thehypothesis that the novel environments

encountered by flies imposed new selective pressures, whichin turn led to an increased rate of lo-

cal selective sweeps. Whether this result is a consequence of a lack of power is unclear at present.

Nonetheless, it is consistent with the analysis of LI and STEPHAN (2006) who found no difference

in the rate of adaptive substitution between African and European populations in an X chromosome

wide analysis. This issue needs to be revisited as soon as more data are available.

The estimated rates of adaptive substitutions obtained by LI and STEPHAN (2006) agree sur-

prisingly well with earlier estimates based on DNA sequencedivergence betweenD. simulansand

D. yakuba(SMITH and EYRE-WALKER 2002). However, the latter study estimates the rate of

adaptive substitutions over a long time period and also takes weak selection into account. As LI

and STEPHAN (2006) only estimate the rates of relatively young and strong selection events this

might indicate an acceleration of adaptive evolution in recent times.

This study aimed to make a contribution to solving the above-mentioned general questions of

molecular evolution. The goals of this study were: (i) implementation of a method that is able to

detect accurately selective sweeps in natural populationsthat have experienced past demographic

changes; (ii) application of the methods to real data; (iii)extension of selective sweeps in multi-

locus models. To achieve these goals, first, the combinationof two algorithms, theSweepFinder

and theω-statistic that use SFS and LD information, respectively, was applied to disentangle se-

lective sweeps from neutrality. Then, theSweepFinderalgorithm and theCLRtest were applied on

the subgenomic region of African population ofD. melanogasterthat included theHDAC6gene.

Finally, we studied selective sweeps in multi-locus modelsassuming a finite number of loci that

control the trait. Regarding the functional characterization of genes that are involved in adaptive

evolution, Chapter 1 provides a modification of theSweepFinderalgorithm that is able to detect

the target of selection accurately (median distance from the target is< 1 kb). Then, coupling the
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selective sweep mapping with gene ontology analysis enables the functional characterization of

the targets of positive selection. Furthermore, Chapter 1 describes a machine learning approach

which outperforms current methods and is able to detect selective sweeps in non-equilibrium pop-

ulations. These populations have experienced significant demographic changes in the recent past

such as population bottlenecks or founder events. Detecting selective sweeps in such populations

gives insight into the adaptation of populations in new environments. The third question aims at

studying the rate of adaptive substitutions in the genome. In Chapter 3 I show that if selection op-

erates on multi-locus models then adaptive substitutions do not always occur; the population may

remain polymorphic for one or more loci. Furthermore, the term ‘adaptive substitution’ obtains a

relative meaning in multi-locus models. A certain substitution can be adaptive only in a specific

genetic background, whereas it may be deleterious in other genetic backgrounds.

Several approaches and findings that are presented in the thesis show aspects of novelty. To

begin with, machine learning methods are introduced for first time in the population genetics field.

The machine learning framework uses information from both the neutral datasets and the datasets

with selection. This increases the power of detecting selective sweeps and, importantly, reveals

the demographic scenarios when the separation between selection and demography is not pos-

sible. Furthermore, we developed modifications of existingalgorithms so that the precision of

the algorithm to detect the location of a beneficial mutationincreases under certain demographic

regimes. Secondly, we used a variable significance threshold for the neutrality tests because our

analysis showed that the values of the tests can be biased at the edges of the subgenomic region.

Additionally, we implemented an ascertainment bias correction when more than one populations

are involved in the initial choice of the subgenomic region.Particularly in Chapter 2, the initial

choice of the subgenomic region was based on a previous analysis of the European population

of D. melanogaster(L I and STEPHAN 2006). We introduced a simulation approach that corrects

this kind of ascertainment bias. Finally, we study selective sweeps in multi-locus models. We

demonstrated that selective events in multi-locus models may remain undetectable using current

approaches. To our knowledge the only study of selective sweeps in quantitative traits was done

by CHEVIN and HOSPITAL (2008). However, their approach assumes that the variability in the

genetic background remains constant and that the number of loci in the genetic background is in-

finite. In contrast, our study assumes a finite number of loci that control the trait. This allows

to relax the assumption of CHEVIN and HOSPITAL (2008) regarding the variability of the genetic

background. Furthermore, we analyze the coalescent trees by implementing two summary statis-

tics which measure the imbalance of genealogies in a genomicregion. We place emphasis on the

trajectories that reach a polymorphic equilibrium, because these trajectories are absent in classical
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selective sweep models. Results show that the detection of selective sweeps in multi-locus models

is challenging unless the trajectory of the focal allele goes to fixation. In summary, our results

provide information about the trajectories of new alleles and the polymorphism patterns generated

by selective sweeps in multi-locus models. This information is essential for the development of

software which will be able to detect selective sweeps in multi-locus models.

The ability to map target genes of selection is of a great practical importance since it may open

up new opportunities for studying adaptation and understand genetic diseases and mechanisms

of immunity in humans. However, in order to make progress in these directions it is important to

perform functional analysis of the genes under selection. Functions of many of the genes identified

by selective sweep mapping are not clear. In most of the caseswe have only a vague notion

of which allele was under recent selection and why. Additional studies, such as QTL analysis,

gene regulatory network and pathway analysis, that will relate the selection mapping to specific

phenotypes are important research directions for the future.
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Table S1

# SNP i −1 i i +1

...

i −1 - Zi−1,i Zi−1,i +Zi,i+1

i - - Zi,i+1

i +1 - - -

...

TABLE S1: The matrix used for the pre-calculation of theω-statistic for all possible configurations.
A cell Zi, j , i < j represents the sum of all pairwise linkage disequilibrium comparisons (r2) for
the sites that belong to the window[i, j]. We have implemented a recursive algorithm in order
to calculate this matrix. In detail, the calculation startsfrom the cellZi,i+1 i.e. the cells next
to the main diagonal and proceeds upwards to the cellZi−1,i+1. ThenZi−1,i+1 = Zi−1,i +Zi,i+1.
Zi,i+1 = r2

i,i+1 andZi−1,i+1 has been calculated in the previous cycle. Then, using this matrix it
is trivial to calculate the components of theω-statistic for any configuration. When the left and
right sub-regions are defined by[i,k] and [k+ 1, j], respectively, then the numerator is the sum
Zi,k+Zk+1, j weighted by the number of calculations[

(k−i+1
2

)
+
( j−k

2

)
]−1, whereas the denominator

is Zi, j −Zi,k−Zk+1, j weighted by[(k− i +1)( j −k)]−1.
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Figure S1
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FIGURE S1: The distance between a peak of the landscape of thestatistic and the selective sweep
locations. In the history of the population two selective sweeps have occurred recently, at different
time points and different locations on the chromosome. The selective sweep locations are illus-
trated ass1ands2(vertical lines). Given a user defined threshold, the landscape of the statistic is
split in two regions,i.e. above and below the threshold. A peak is defined as the maximumpoint
in an isolated (by the threshold) region. Thus, 5 peaks (a to e) have been formed. The distance
D(s2,a) of the ‘a’ peak measures the distance between this peak ands2which is the closest sweep
location from this peak.
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Figure S2
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FIGURE S2: The 95th percentile for A) theω-statistic and B)SweepFinderbased on theFθ (filled
circles), theFS(open circles) and theFθSprocedures (crosses). Equilibrium neutrality simulations
have been performed for a 50-kb genomic segment and 12 sequences (hn ≈ 3). Recombination
rate is 0.05/bp. For a given number of segregating sites (x-axis) simulations were performed by (i)
fixing the number of segregating sitesSn (open circles), (ii) usingθNEU = θW = Sn

hn
(filled circles).

In this case simulations generate on averageSn segregating sites. (iii) Under theFθS process
(crosses) we used the sameθNEU = θW = Sn

hn
but only the realizations that producedSn segregating

sites (seeEquilibrium selection versus equilibrium neutrality ).
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Figure S3
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FIGURE S3: The 95th percentile for A) theωMAX and B)ΛMAX based on theFθ (full circles),
theFSprocedure (open circles) and theFθSapproach (crosses). Bottleneck simulations have been
performed for a 50-kb genomic segment and 12 sequences (hn≈ 3). We have used the demographic
scenario inferred by LI and STEPHAN (2006) that describes the history of the European population
of D. melanogaster. Recombination rate is 0.05/bp. For a given number of segregating sites (x-
axis) simulations were performed by (i) fixing the number of segregating sitesSn (open circles), (ii)
usingθNEU = θ̂ = 2Sn

E(Tc)
, whereE(Tc) is the expected total length of the coalescent ofn sequences

(ZIVKOVIC and WIEHE 2008) (filled circles). In this case simulations generate onaverageSn

segregating sites. (iii) Under theFθS process (crosses) we used the sameθNEU = θ̂, but only
the realizations that producedSn segregating sites (seeEquilibrium selection versus equilibrium
neutrality ).
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Figure S4
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FIGURE S4: Comparisons between recurrent selective sweepswhen HRHH
HNEU

= 0.25 and s =
0.01,0.0001. A) The SFS of the RHH model whens= 0.0001 is similar to that of the standard
neutral SFS whereas a large excess of singletons appears when s= 0.01. B) When the SFS of the
data itself is used in theSweepFindercalculations then the model withs= 0.0001 shows higher
values ofΛMAX . This is because the genomic regions affected by positive selection are smaller for
smallers values and a large fraction of the genome remains still unaffected by positive selection.
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FIGURE S5: The fraction of predicted targets within 5 kb fromthe true location of the selec-
tive sweep for a recurrent selective sweep scenario whereHRHH

HNEU
= 0.25 (above A) and B)) and

HRHH
HNEU

= 0.50 (below C) and D)). A) and C): Comparison of the precision ofSweepFinderwhen
only polymorphic sites are used (dark bars) and a fraction ofmonomorphic sites is embedded (light
bars). B) and D): Comparison between the variable-size sliding window approach and the constant-
size sliding window approach. The precision of the two approaches is similar for low threshold
values (high sensitivity, low specificity). However, for higher cutoff values the variable-size sliding
window method is slightly more precise. Simulations assumea 100-kb genomic fragment. Selec-
tive sweeps have occurred uniformly within this region or within its flanking regions following a
homogeneous Poisson distribution in time. The selection coefficient iss= 0.01, θ = 0.008/bp,
andρ = 0.08/bp.
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FIGURE S6: The expected fraction of peaks whose distance from the randomized ‘target of se-
lection’ is smaller than 5 kb. The target randomization was performed A) in the SHH model with
α = 2500,θ = 0.005/bp, andρ = 0.05/bp and B) in the RHH model withHRHH

HNEU
= 0.25 and se-

lection coefficients= 0.01, θ = 0.008/bp, andρ = 0.08/bp. In the SHH model the length of the
simulated region is 50 kb and a selective sweep has occurred in the middle of this region. Then,
this target was distributed uniformly between 0 and 50 kb. Inthe RHH model the length of the
simulated region is 100 kb and selective sweeps have occurred inside or outside the region. These
targets of selection are distributed uniformly. The graphsdenote that even if the target is a random
point on the genomic region some peaks will be in the proximity of the target as they are located
in the same region.
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FIGURE S7: Variable values of recombination rate affect A) theωMAX and B)ΛMAX values. Sim-
ulations have been performed for various levels of recombination rate for a constant-size neutral
population. All remaining parameters are equal among all simulations. For each value ofSn on
the x-axis we have usedθ that on average generatesSn segregating sites (θ = Sn

hn
). Theω-statistic

is primarily affected for lower numbers of polymorphic sites, while the opposite is true for the
SweepFinder. The demographic model used in the simulations represents the standard neutral
model.
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FIGURE S8: The likelihood curves for each polymorphism class: A) under an equilibrium selec-
tion model (ρ = 0.05/bp,θ = 0.005/bp), and B) under theTS(ρ = 0.08/bp,θ = 0.008/bp) model.
For both scenarios a selective sweep has occurred in the middle of a 50-kb region and the selection
intensityα = 2500. The x-axis denotes the value of parameterγ = r

s log(2N) (log scale) multiplied
by the distanced from the center of the sweep. If we assume a constant recombination rater and
selection coefficients, γ represents the distance from the location of the selective sweepx. The
likelihood curve for the singletons (class ‘1’) is depictedby the black solid line, whereas the class
‘11’ (out of 12 sequences) is represented by a black dashed line. Gray lines illustrate the likelihood
curves for the classes 2-10. For both A) and B) the class ‘1’ and the class ‘11’ contribute to the
likelihood close to the sweep. Conversely, classes 2-10 contribute at larger distances fromx. The
major difference between A) and B) is that the singleton contribution is lower in B) than A) at
larger distances. This is because the frequency of singletons is greater in B) than in A).
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