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Summary

The goal of this study was to gain a deeper understandingecdeltective sweep models and the
statistical and computational methods that disentandéctee sweeps from neutrality. In the
Introduction of the thesis | review the literature on the mapproaches that have been developed
in the last decade to separate selective sweeps from ndetradgraphic scenarios. Methods on
complete and incomplete selective sweeps are reviewed laasgelective sweeps on structured
populations. Further, | analyze the effects of past denpgcaevents, especially bottlenecks, on
the genealogies of a sample. Finally, | demonstrate thahtféectiveness of separating selective
sweeps from bottlenecks stems from the lack of robust statjsand most importantly from the
similar genealogies that bottlenecks and selective sweysgenerate locally on a recombining
chromosome.

In the first chapter | introduce a method that combines si@disests in a machine learning
framework, in order to disentangle selective sweeps froomtraEdemographic scenarios. The
approach uses support vector machines to learn exampies&otral scenarios and scenarios with
selection. | demonstrate that the novel approach outpeg@reviously published approaches for
a variety of demographic scenarios. The main reason foreh@mnance difference is the usage
of the scenarios with selection, that are not analyzed lssadal statistical methods.

In the second chapter of the thesis | present an applicatitreanethods on detecting a selec-
tive sweep in the African population &f. melanogasterDemographic history and ascertainment
bias schemes have been taken into account. Results piripdim HDAC6 gene as a target of
recent positive selection. This study demonstrates thiablarthreshold approach, which reme-
dies the tendency of some neutrality tests to detect sedestveeps at the edges of the region of
interest.

In the third chapter | present the results of the analysisetéctive sweeps in multi-locus
models. | assume that a phenotypic trait evolves underlgtalgi or directional selection. In
contrast to the classical models of selective sweeps, tbleitesnary trajectory of an allele that
affects the trait might belong to one of the three categoitesther fixes, disappears or remains
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polymorphic. Thereafter, | analyze the properties of caadat trees and neutral polymorphism

patterns that are generated from each of the three categokishow that for the majority of

simulated datasets selection cannot be detected unlessajbetory is either fixed or close to
fixation.




Zusammenfassung

Das Ziel dieser Studie ist ein besseres Verstandnis vdec®es Sweep’ Modellen zu erhalten,
sowie den statistischen und computerbasierten Methodermetsuchen ‘Selective Sweeps’ von
neutraler Evolution abzugrenzen. In der Einleitung gebeeinenUberblick tiber die Literatur
der letzten zehn Jahre die Versuche beschreibt ‘Selectivees’ von neutralen demographis-
chen Szenarien zu unterscheiden. Methoden fur vollgg@ndhd unvollstandige ‘Sweeps’ werden
besprochen, als auch Methoden fiir ‘Sweeps’ in struktigmePopulationen. Ich analysiere die
Effekte von vergangenen demographischen Ereignissdmesonsdere genetischer Flaschenhalse,
auf die Genealogie von Stichproben aus einer Populatiom.zéige auf, dass die Ineffektivitat
in der Unterscheidung von ‘Selective Sweeps’ und Flascilseh auf einen Mangel an robusten
Statistiken zurckzufhren ist, sowie der Tatsache, dassch&nhalse und ‘Selective Sweeps’ lokal
auf einem Chromosom ahnliche Genealogien erzeugen konne

Im ersten Kapitel stelle ich eine neue Methode zur Unterigicimg von ‘Selective Sweeps’ und
neutralen demographischen Szenarien vor, die maschanadimen benutzt um statistische Tests
zu kombinieren. Dieser Ansatz benutzt ‘Support Vector Miaesi um Beispiele von neutralen
Szenarien sowie Szenarien mit Selektion zu erlernen. lapezelass dieser neue Ansatz den
bisher veroffentlichten Methoden unter einer Vielzahindgraphischer Szenarien tUberlegen ist.
Der Hauptgrund fur diesen Leistungsunterschied liegt iebi@uch von Szenarien mit Selektion,
welche in klassischen statistischen Methoden nicht thsrdlatigt wurden.

Das zweite Kapitel beschreibt die Anwendung von Methoden dachweis von ‘Selective
Sweeps’ auf eine Afrikanische Population vbBmosophila melanogasterDie demographische
Vergangenheit der Population und mogliche statistis@re&frungen wurden dabei beriicksichtigt.
Die Ergebnisse deuten darauf hin, dass das I@ZAC6 vor kurzem Ziel von positiver Selektion
war. Diese Studie benutzt eine Herangehensweise mit Vamabtatistischem Schwellenwert,
welche die Tendenz einiger Neutralitatstests umgehe@iele Sweeps’ an den Randern von un-
tersuchten Regionen zu entdecken.

Im dritten Kapitel prasentiere ich die Ergebnisse ausrefmalyse von ‘Selective Sweeps’



XVi Zusammenfassung
unter Multi-Lokusmodellen. Ich nehme hierbei an, dass diandtyp unter dem Einfluss von

stabilisierender oder gerichteter Selektion evolviem. Gegensatz zu klassischen Modellen von
‘Selective Sweeps’, fallt der evolutionare Verlauf erdlels das den Phanotyp beeinflusst in eine
von drei Kategorien: es fixiert, es geht verloren oder ebbfmlymorph. Des Weiteren untersuche
ich die Eigenschaften der Koaleszenzbaume und der nentPadlymorphismen welche unter den
jeweiligen drei Szenarien entstehen. Ich zeige, dassiéiMeghrzahl der simulierten Datensatze
Selektion nicht nachweisbar ist, aul3er das Allel ist fixaeter steht kurz davor.
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General Introduction

Based on nearly complete genome sequences from a varietgarfiems data on naturally occur-
ring genetic variation on the scale from hundreds of lociritre genomes have been collected
in recent years. In parallel, new statistical tests have loeweloped to infer evidence of recent
positive selection from these data and to localize the tawpions of selection in the genome.
These methods have now been successfully appli&tdsophila melanogastehuman, mouse
and a few plant species. In genomic regions of normal recoatioin rates, the targets of positive
selection have been mapped down to the level of individuaége

Searching for strong positive selection in the genomes dif/iduals of a natural population

has been the focus of a multitude of studies over the pastdars W ARR et all gZQQZZS Kim and
STEPHAN _ZQQi);LG.LNJsA_el_aLl 200 );LAKEx_el_aLl _ZQDJl); [ _@1).

The goals of these studies have been (i) to provide evidenoesitive selection, (ii) estimate the
strength of selection, and (iii) localize the targets oksgbn. A long-term goal is that the genes
that experienced recent, strongly positive selectionabealidentified and the associated functions
and phenotypes characterized.

In general, these studies followed a two-tier approachrsdt fevels of DNA polymorphism are
measured for a very large number of loci on a genome-wide sa#hin populations. For humans,
the best-studied species, continuous single nucleotilyenqmophism (SNP) data are also available
along the entire genome, though with some varying densitye goal of this initial step is to
identify loci that display patterns of variability suggesf recent positive selection. Some studies
employed microsatellite markers to measure polymorphisthlaoked for regions of depleted
variability as an indicator of a selective sweep due to geingichhiking in the region (see Box on
page 2). Other studies analyzed SNP by directly sequenaona) fagments of DNA at multiple
loci, which allows for the estimation of properties of theedrequency spectrum (SFS) of SNPs
and linkage disequilibrium (LD). While this approach migigem straight forward, the actual
definition of a candidate locus can be challenging, esggarapopulations that have undergone
demographic perturbations. Most studies up to now have @raglrather simple methods such
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as outlier analysis, in order to select candidate lecy.(lKAUER et all[2003;| QueTTO et all

). Only recently more sophisticated methods have beeelaped for analyzing genome-
wide polymorphism data, including tests based on the backgt SFS 235;‘:) Fst

BEAUMONT and BALDING/ 2 I_O_O_Lll REBLER et al H_O_O:i%) and explicit modeling of the population
hlstory lu and SEPHALI ILO_OAS)

As a second step following the identification of a candidatas, polymorphism patterns of
the surrounding region are obtained by fine-scale sequgncie resulting high-density SNP
data is then used for tests of deviation from neutral expiects [including the standard tests of
HUDSON et all _L9_8_'}’); TAJIMA _L9_8§) anck Ry and M _;O_Oj))]. In addition, however, specific
tests for positive selection in these subgenomic regiocls as theCLR—GOFM&dM
_ZQ_Qi);LEN_iEN_eLaJl _29_05) tests are used; they can also estimate the strengtiesftion and
the approximate location of the beneficial mutation witlie tegion. Below, we describe these
new tests and show that they have been successfully useeifycthe targets of recent, strongly
positive selection. If the rate of local recombination i$ tom low, individual genes or even regions
within a gene can be mapped using this approach.

The hitchhiking effect

When a strongly beneficial mutation occurs and spreads irpalaton, it is inevitable that the
frequency of linked neutral (or weakly selected) variamisréases. In a seminal paperA
NARD SMITH and HAIGH d_’LS_M) described this process, which they termed gendtbhiking.
They show that in very large populations hitchhiking carstically reduce genetic variation near
the site of selection (thus causing a selective sweep).
According to Maynard Smith and Haigh’s deterministic modelrecombining chromosomal re-
gions diversity vanishes at the site of selection immedjatier the fixation of the beneficial allele
and is predicted to increase as a function of the distandectgdlected site (scaled by the selec-
tion coefficient). This result is also roughly correct in fmpopulatlonsL(,IABLAN_el_a.ﬂ 1989;
\STEPHAN et al l|_9_9j!) Further signatures of the hitchhiking effect in@{g shifts in the site fre
guency spectrum of polymorphisms such as an excess of lavhigh-frequency derived allele

LAY and WU 2000), and (ii) distinct patterns of linkage disequilibiu
such as an elevated level of LD in the early phase of the firgirocess of a beneficial mutatipn

| SEPHAN et all ). In a suite of statistical tests, these properties of
the hitchhiking effect have been used to map recent, stygmagitive directional selection along
recombining chromosomes of several species.

1%

S
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Methods for detecting selective sweeps

Subgenomic data

CLRtest: Using predictions of the hitchhiking modEI AYNARD SMITH and HAIGH 11974, see

Box on page Zi, kv and SEPHAEI _;O_OJZ) developed a composite-likelihood ratf@l R) test to
detect local reductions of nucleotide variation along anegining chromosome and to predict
the strength and the location of a selective sweep. Jlhie test compares the probability of the
observed polymorphism data under the standard neutral Imatkethe probability of the data
under a model of selective sweep. Under the standard neatdél the expected number of sites
where the derived variant is in the frequency intefygal- d p| in the population (the SFS) is given

by

%(p)dngdp (1)

(@ MMM)L@L&M _20_Oj)) have shown that immediately after a hitchhiking

event this distribution is transformed approximately to

forO<p<C
forC<p<1-C 2)
forl-C<p<l1

Olo

Pa(p) =

Olo O olo

where the paramet& depends on the strength of selectma- 2Nsand the recombination rate
r between the neutral site and the site where the beneficightionthas occurred (K1 and
STEPHAN |;O_Oi).N is the effective population size asdhe selection coefficient.

The probability of observing a site whekelerived alleles are found in a samplensfequences
is obtained by binomial sampling as

n _
P (o) P P el @
where@(p) = @(p) applies under the standard neutral model @y = @a(p) under the hitch-
hiking model _ZQ_Qi) compare two hypotheses:

* (Hp) The observed allelic class at each position of the subgen@gion under consideration
is derived from a standard neutral model, and

* (Ha) The observed allelic class at each position of the subgen@gion is due to a selective
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sweep that occurred at some positof the fragment and is characterized by the selection

parameten.

The probabilities of the data under these hypotheses atalatdd as the product of the proba-
bilities of all sites of the fragment under consideratiog&tior3) using the densitigs(p) and
@a(p), respectively. The maximum log-likelihood-ratio stéatisic R is then given by

maxP(DatgHa)
P(DatgHo)

NcLr= log ; (4)
where max refers to the maximization®fDatgHa) with respect to the parameteXsanda.

Since the null and alternative hypotheses that are compratbd CLRtest are explicitly mod-
eled, the interpretation of the test results is rather sfmphat means that the expectation of the
SFS is well formulated under both evolutionary scenarios.tl@ other hand, it is important to
realize that the null hypothesis of the test is based on #redard neutral model. That means that
any violation of the assumptions of the null hypothesis mdluence the results and favor the
alternative hypothesikmsm et aIHLO_Oﬁ; THORNTON and ,ENSEMZ_O_O_‘}’). Therefore, the appli-
cation of theCLR test is not appropriate for detecting selective events veesere demographic
events (especially bottlenecks) have occurred in the tdustory of the population.

The effect of bottlenecks on the genealogieBottleneckes may generate similar polymor-
phism patterns as the selective sweeps. Therefore, dmggimg selective events from neutral
demographic events can be challenging. There are two redspothis problem. First, the statis-

tics that are used in population genetics to summarize aléuédset (alignment of sequences from
one or more populations) are not robust to bottlenecks. fdsdeen demonstrated extensively for
summary statistics such as Tajima’s (19890, the number of halplotypes, and other classical
summaries of the data. The lack of robust summary statistasvates researchers to develop a
test that captures some aspects of selective sweeps tlaisaet from the polymorphism patterns
generated by bottlenecks. As we will demonstrate belowersévnodern tests have been devel-
oped that use extensive modeling or modern technigues fiermachine learning field (iK1 and
NIELSEN ;O_O_zh; NELSEN et all2005; AVLIDIS et al‘m LLIN et al |;0L)). Second, to some
extent, there are intrinsic reasons for the resemblancéoftkeneck to a selective sweep. There-
fore, the resemblance does not depend on the way that thamasaimmarized. Apparently, the
second reason implies that any summary statistic or anyvi#gail to separate bottlenecks from
selective sweeps simply because the data appear to be nelgrsi

In order to illustrate this problem we plot coalescent tigesealogies) of a sample of individ-
uals from a selective sweep and from a bottleneck scenagar@l). The coalescerm
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11982; HUDSON [1990) employs a sample of individuals from a population &érall alleles of

a gene to a single ancestral copy, known as the most recemhonrancestor (MRCA). The in-
heritance relations between alleles are represented aseaggeealogy, which can be drawn as a
binary tree for non-recombining loci. The relations betwé® gene copies of the sample affect
the generated polymorphism patterns on a dataset. In Higthre genealogies of a recombining
genomic segment are shown. Due to the presence of reconabimadre than one coalescent trees
are needed to describe the genealogy of the sample. The paper illustrates bottleneck ge-
nealogies, whereas the bottom panel illustrates selentreep genealogies. Apparently, as Figure
[ shows, the bottleneck genealogies can be very similarléctsee sweep genealogies. Conse-
guently, the polymorphism data generated by these coaleees will be similar as well, and
it will be nearly impossible to separate the bottleneckiveel dataset from the selective sweep-
derived dataset.

In the following sections we describe modern approachesnthngle selective sweeps from
bottlenecks.

Distinguishing between selective sweeps and demograpH;ENSEN et all _;O_O;$) showed
that theCLR test is not robust in the cases of structured populationsaamnt bottlenecks. Under
these scenarios, the false positive rate may be as high a¢ Net al |2_O_O;$). They proposed
a goodness-of-fitGOF) test to distinguish between the true positives that cowm fhe rejection
of the standard neutral scenario because of a selectivepssvemt, and the false positives that
come from the rejection of the standard neutral hypothaststd demographic factors.

The GOF test is based on the hypothesis that non-selective evoaryoprocesses influence
the frequency spectrum globallg.¢.the whole region under investigation) and not locally as a
selective sweep does. This assumption is adopted widehouah it is possible that a recent
strong bottleneck combined with recombination may creatallpatterns that resemble those of a
selective sweedL(&LQbJ h&&étﬂj&RNmu_andiN_iEﬂth_Oj)

The GOF approach tests whether the observed data is drawn from etigeleweep model.
Thus, the latter represents the null hypothesis. The atsahypothesis claims that the data is
not drawn from a selective sweep scenario. ThusHgran alternative model is not specified
explicitly, except that it is assumed that the evolutionfarges in action affect the whole region
under investigation. The likelihood of the alternative rabid calculated as

|
PDatdHs) = []P(Y=ylH)

sl

n

Vi1 _ Y
y.)P' (1—pi) (5)
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Bottleneck
genealogies

l il it

Sweep
genealogies

FIGURE 1: Coalescent trees on a recombining genomic regioa bottleneck (upper panel), and
a selective sweep (bottom panel). The genealogies can psiwngitar, and this creates an intrinsic
problem in disentangling selective sweeps from bottleseck
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The composite-maximume-likelihood estimates @fare given by the empirical frequencies

pi = ‘ﬁ( wherey; is the number of sequences that carry the derived alleléeat andl is the length
of the region under study. The proposed goodness-of-fisgtais then formulated

maxP(DatgdHa)

maxP(DatgdHo) ©)

Ncor = log

For the null hypothesiblp, the maximization refers to thé anda parameters. For the alter-
native hypothesisia the maximization is related to the estimateppas mentioned abové\gor
values cannot directly reveal the favorable model evemttijiiively, smallAgor values support
the selective sweep hypothesis. More importantly, it iBalift to predict the effect of various evo-
lutionary forces on the value &gor. This is because the alternative hypothesis lacks theifumct
¢(- ), which is specific to the evolutionary model. Simulationsleina selective sweep scenario
are employed in order to obtain the null distribution of thepr statistic. The parameteds and

o are estimated using tH&L.Rapproach _ZQ_Qi). If the p-value foNgoF is
smaller than a cutoff valug;, thenHg is rejected, otherwise it is accept_ _ﬂ)

suggest a cutoff value of 0.15.

Simulating neutral data under various bottleneck scesallmws for the estimation of the
false positive rate of th&OF approach under various valuesRf We may usd> g5 such that the
false positive rate of th&OF test would be 0.05. Simulations, however, show that botHélse
positive rate (using a certain cutd¥) and the valud> o5 depend on the demographic scenario.
Thus, results obtained using t&OF test should be interpreted carefully, when there is evidenc
that the population has experienced recent demographingelaespecially bottlenecks. It should
be noted that there is not a sindlggs value appropriate for all the demographic changes.

The combinedCLR andGOF tests are used extensively in subgenomic scans for thetidetec
of selective sweeps. Subgenomic datasets are usuallyetdthy re-sequencing short fragments of
DNA segments. Subsequently, a particular ‘interestingiae that shows evidence for a selective
sweep may be selected for fine-scale sequencing and parartikéethe position of the sweep
or the strength of selection are estimated from the data.ddenythe pre-selection of interesting
regions creates an ascertainment scheme that has been tsh@salt in high false positive rates

THORNTON and ,ENSEM_O_O_'}’) Both theCLR and GOF tests are not robust to this combination
of ascertainment and demograph;ud'RNTON and ENS ﬂi _O_O_J() propose to control the false

positive rate by using the null distribution of tie;| r statistic that is both generated from the
correct demographic model and conditional on the asceniim scheme. This strategy can be
applied when the demographic model is known or can be estdfabm the data. The source
codes of theCLR and theGOF tests as well as their documentation are freely availablie®or
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may be requested from Yuseob Kim and Jeffrey Jensen, resggct

Genome-wide data

SweepFinder: The availability of whole-genome or chromosome-wide SNRademainly from

the HapMap ProjecL@lEBNALLQNAL_tLARMAJD_C_QMM |20_Q:13), motivateb_lhEJ._S_EN_e_t_all

(2005) to develop a method for the detection of selectiveepsewhich would allow for an analysis
of genome-wide data. Full genomic scans, however, faceaarellenges. First, the confounding

effects of demography obscure the detection of selectigatevn similar ways as in subgenomic
scans. Second, data usually consists of SNPs that werallinidentified in an ascertainment

process, which may be quite complicated in some cases anderarate biases that should be
taken into account.

The testSweepFindeproposed b} _29_05) is a composite-likelihood ratio test
that is based on the ideas of tB&R approach OIT_KM_a.Dd_SI_ERHAJJ _ZQ_Qi). However, it differs
from the latter one in that the null hypothesis is not derifredn a specific evolutionary model,
but estimated from the empirical background distributiérih@ data. The idea behind the use
of the background distribution is similar to the argumenisspnted irll_ElN_iEN_el_aJl _29_05) for
formulating the alternative hypothesis. That means thaintbn-selective evolutionary processes
that shape SFS affect the whole genome. Additionally, thinatkrelies on the assumption that a
class of neutral DNA exists in the genome.

SweepFindeis also based on the principles of the hitchhiking theorati$, when a beneficial
mutation occurs on a chromosome and goes to fixation, vamiatilinked neutral loci is reduced as
the beneficial mutation spreads through the population.|léctee sweep is modeled by assuming
that each ancestral lineage escapes the sweep with a gdigbpgiwhich is given as a function of

the recombination distance from the selected sitecand. In(2N). Given that some lineages have
escaped the selective sweep by recombination, the methadatas the probability to observe a
mutant allele of frequencB. In order to calculate this quantity, the method estimdtesiumber
of ancestral lineages that carry the neutral mutation #feeend of the selective phase and assumes
that the SFS after the selective sweep is the same as at pfiesat the time of sampling).
Similarly to|KiM_and SEPHAE] _;O_Oi),SweepFindeuses a composite-likelihood ratio ap-
proach to choose between a neutral and a selective modelali@neative hypothesisla states
that a beneficial mutation has occurred at some posXiomhe likelihood ofHa is calculated as
the product of the site probabilitiepy) for all the sites and maximized with regard to the param-
etersX anda. When only polymorphic sites are included in the datasettleéhod is properly
standardized. The null hypothesis is formulated as thegintity to observe the data given the
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empirical frequency spectrum. That means that if the pritibabf a specific allelic class idj,

i=1,...,n—1,inthe case of an unfolded spectrum and the allelic clapssition j is given by
&j, then the likelihood oHg is equal to

|
Lo = [ fe;. )
ik

Obviously,LH, depends only on the empirical frequency spectrum. SimitahSLM_and_S_ERHAJJ
), the composite-likelihood ratio statistic is giv@n

maxP(DatgHa)
P(DatgHo)
The null distribution of the statistiisg is obtained by using the specific demographic scenario
that might have shaped the observed data. Even if the metloldust against several demographic
scenarios that have been investigatemal .LQO;*), our simulations have shown that
this does not hold in general, especially in cases of sevatgecent bottlenecks. Additionally,
it is unknown how the method behaves in cases that SNP datisved from the ascertainment
schemes described ILDHD_RNmu_a.Dd_.EN_S_EJJ _20_0_'}’). Thus, these factors should be included
when the null distribution of the statistitsg is constructed and from this a threshold value is
calculated. The method is robust against multiple testing.

NsF = log

(8)

SweepFindemay also be applied to subgenomic data. In this case, thegrogffers the flex-
ibility to employ a user-specified frequency spectrum iadtef calculating it from the data. This
may be useful when the genomic region under study is not septative of the whole genome.

The source code and the documentatioSweepFindeare available from Rasmus Nielsen’s
webpagenttp://www.binf.ku.dk/ ~rasmus/webpage/sf.html . The program is written in C
and tested successfully on 32-bit and 64-bit machines. ithelations for the calculation of the
threshold ofAsg may also be done on computer clusters.

Joint inference of demography and positive selectionWhile theCLRandGOF approaches
do not use explicit demographic modéﬁmd_w .;O_Oji) describe a statistical method to
detect footprints of selection in chromosome- or genomaevdata (multiple loci), while taking
fluctuations of the population size into accodmw |2_0_0L$). They analyze X chro-
mosomal SNP data from a Zimbabwe and Europ@aysophilapopulation. Initially, they infer
the demographic scenario of the African population (fromdhcestral range). This is character-
ized by a stepwise expansion such that population size elgaingtantaneously some generations
ago. The European population is derived from the Africanybaion thereby undergoing a recent
severe bottleneck. The parameters of this model are estihigt applying maximum-likelihood
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techniques based on the SFS for the African population ampbtht SFS for the European popula-

tion. In the analysis it is assumed that there is no recontibimavithin loci (which are only about
500 bp long in this dataset), but the loci are partially licikke

Performing simulations for the whole X chromosome, and whasg that the SFSs between
the loci are independent given their genealogy, they iatethe parameters of the demographic
scenario by maximum likelihood.

L1 and SEPHAN _ZQ_OAS) avoid the problem of inefficient sampling of gene&edy calcu-
lating the likelihood as a function of the expected branctyths that may produce the observed
pattern

ng—1
Lk = P(SFSGk) = r! P(Zik|E(lik)) 9)

However, this is just an approximation and its accuracy litk$asbe demonstrated.

After estimating the demograprLyJ Bnd SEPHALI _;O_OJS) perform a sliding window analysis
to find genomic regions which are affected by the action @irgjipositive selection. They conduct
a likelihood-ratio test which employs two hypotheses. Tak mypothesis considers that the pop-
ulation has experienced the inferred demographic sceram the alternative one assumes that
the forces that shape the data consist of the inferred deapbgrscenario together with a selective
sweep. In order to overcome the problem of inefficient samgptif genealogies for the loci that
belong to the sliding window, they consider a compact fregyespectrum. In this approach, all
high frequency variants are pooled together and hence tid&uof inconsistent coalescent trees
is diminished 2005).

It is encouraging and promising that methods that incoteod@mographic events explicitly
in the inference of selection are being developed. EvenefGhR-GOF and theSweepFinder
approaches do that only indirectly, demographic modelsbeaimcorporated in the estimation of
the null distributions of the relevant statistics. Simidas have shown that this strategy can control
the false positive raté_(@BNmN_and_.EN_&Eﬂth_Oj}’).

L1 and SSEPHAN _ZQ_OAS) implemented a software package called Mbiy.//www.zi.
biologie.uni-muenchen.de/ ~lilmosy/  to detect recent selective sweeps and estimate param-
eters in populations of varying size.

Methods for detecting selection based on genetic differeiattion between pop-
ulations

Fst based methods:Bayesian approaches have been shown to be powerful forityuagtdif-
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ferentiation between populatiorhs_A\BalNG and NCHOL5|L9_9;$) and for the estimation of demo-
graphic eventJ_LBALLMD_NJJ ). More recently, Bayesian methods have also beenealjali
whole-genome data (multiple loci) in order to reveal ganeggions that have experienced selec-
tive sweepsl[(BAUMONT and BALDING |2_O_O_zh; REBLER et al,|2_0_0$). These methods combine
information from multiple populations. Thus, they are atbeuse data produced from recent
genotyping €.9. [LNlEBNALLQNALJjAEMAﬂ_QN_S_QRMbQ_O_EIS) and sequencing projectsd.

LINKA et alli2 . Additionally, they can infer both positive and balisg selection. Since
RIEBLER et all 2008) extended the method introduced ABMONT and BALDING _;O_O_Ah) we
discuss here t _ZQ_OAE) approach.

This approach infers selective events usingRgevalue of a population for a given locus in
a hierarchical two-level Bayesian frameworkgt represents the probability that two randomly
chosen alleles from the locus in the same subpopulatioargical because of common ancestry
within the subpopulatior{_(@AALand_lﬂJMA |_’I.9_Z(l)). In a coalescent frameworksT may be
seen as the probability that a coalescent event precedegratiom event (going backwards in
time) (Hudson, 1998). That means tlratr values may be used for inferring balancing or positive
selection since positive selection may increaseRtievalue and balancing selection decreases it.

In the two-level model ohEﬁLEle_aﬂ _20_0_43), the lower level expresses the likelihood
for the allele-frequency counts as a functionFaf using a multinomial Dirichlet model (Bau-
MONT |2_0_O_$; BEAUMONT and BALDING |;0_0_4!l). The higher level describes the logistic regression
of locus-specific, population-specific and locus-by-pagioh-specific effects ofrst. The ad-
vancement of th _ZQ_O_é) approach consists in a reparameterization of thygnai
framework o{ BEAUMONT and BALDING _;0_0_411) and the subsequent use of an auxiliary Bayesian
variable that indicates if a locus is neutral or not.

It should be noted, however, that both II.hEABLMQNLand_BALDLNQJ ZQ_O_All) and the BEBLER

et al. (2008) approaches are based on haplotype statistics sgtoethaplotypesd.g.sequences)

are treated as alleles. As a consequence, the calculatigenetic differentiation based on loses
information when many haplotypes in the sample are uniques fhay be the case when the
sample size is small, the mutation rate high and/or the sexguaf a locus long. The source code, C
executable files and R programs, is available from AndrealBi€andrea.riebler@ifspm.uzh.ch).

Haplotype-based methods:All methods discussed thus far are designed to detect coenple
sweeps within a panmictic population or, in the case of pafh structure, within a subpopu-
lation. To discover incomplete sweeps(sweeps that are ongoing within a subpopulation or
sweeps that are complete within one subpopulation, but tbtregard to the total population),
haplotype-based methods have been developed. These meathalgize the length of haplotypes
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around a given locus of interest, which is thought to be thgetaof selection.

If a selective sweep is ongoing in a subpopulation, the hitchg haplotype is expected to be
rather long (see Box on page 2). This feature of the hitchiileffect has been exploited by S
BETI et al. (2002) who developed the so-called long-range haplotypgi(L A slight modification
of this is the iIHS statisti& (PIGHT et aIHZ_O_OE). A disadvantage of these approaches is that they
lose power when the beneficial allele is close to fixation. Wercome this proble
_20_0_'}’) anch_ﬁB_Ell_el_aJl _29_0_'}’) apply the ideas of the haplotype-based tests notitmbkeglocal)
subpopulation but contrast the haplotype profiles betwabpapulations.

Until now, little is known about the power and robustness aplbtype-based methods. Ad-
ditional research is needed to investigate the false pesitite of these methods under various
demographic scenarios or migration models when more tharsobpopulation is involved.

Methods based on the machine learning paradigm

Given the parameter values of a selective sweep and the paavalues of a bottleneck, disentan-
gling a selective sweep from a bottleneck can be treated amagylrlassification problem, where
a dataset must be assigned to either the neutral class @ seliction class. In the computer sci-
ence and mathematics disciplines theoretical and algoiithdvancements have been developed
the last decades that perform classification of datasetssef&dvancements can be grouped as ma-
chine learning methods, because first they teach compuatensderstand patterns from the data,
and then to use this knowledge in order to classify an unkreammple. However, their application
in population genetics still remains limited. The first eipaiion of the machine learning in pop-
ulation genetics to our knowledge was develope Fa]IS] I m who used a support
vector machine approach to perform the ClaSSIflcahMLE_LS_e_t_all 2010) used as features the
results from th&weepFinde(NIELSEN gta”_0_0;$) th&)—StatIS'[IC|(NM and NELSEI\“_O_O_Ah) and
the distance between the peaks of the statistics. Moremgﬂgn\l et all _M) also developed a
machine learning approach based on the ‘boosting’ alguorithstatistical method that combines
simple classification rules using summary statistics toimepe their joint predictive performance.
Details about the machine learning approach are provid€thapter 1 of the thesis.

Aims of the thesis

This study deals with the detection of selective sweepsturabpopulations. The model organism
is D. melanogasterhowever, the methods developed as a result of this researche adapted to
most of the organisms of relatively large effective popolatsize and outcrossing reproduction.
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The aims of the thesis are: (i) implementation of a methodithable to detect selective sweeps
in natural populations that have experienced past dembgrapanges; (ii) application of the
methods to real data; (iii) extension of selective sweepsuiti-locus models.

This thesis is organized in three chapters. In Chapter 1 lempnt computer simulations of a
single population that has experienced past demograpaimes with or without selection in order
to scrutinize the polymorphism patterns that selection rate in the genome. Two algorithms
have been used. First, tISeveepFindetNiEJ.s_EN_e_t_aJl ) identifies genomic regions where
a selective sweep fits better than a demographic model bas8&% information. Second the
statistic (Kim_and NELSEb”Z_O_O_All) identifies genomic regions using the LD informaticstéad of
the SFS. In Chapter 1 | combine the resultSoefeepFindeand thew-statistic. Since the LD and
the SFS are partially independent, combining3weeepFindewith the w-statistic may be advan-
tageous for disentangling selective sweeps from neutraltheir combination is implemented in
a machine learning framework using support vector macM ). The power of sup-

port vector machines has been demonstrated mainly in nirerpanalysis studiee(qg. FUREY
et aI.), where combinations of gene expression values arktasseparate classes of indi-
viduals €.g.high-risk versus low-risk patients). In Chapter 1 the twasskes are characterized by

the presence or the absence of a selective sweep. For mamgdrhic scenarios, combining the
SweepFindewith the w-statistic outperforms both algorithms when they are &gpseparately.
However, in general, as shown in Chapter 1, the problem ehtiégling demography (especially
bottlenecks) from selection is considerably challengimggause both demographic bottlenecks
and selective sweeps can generate similar SFS and LD pmattern

Real data pose challenges on the application of the metlemdaibe they deviate partially from
the assumptions of the methods. Often, errors in the daiktvns of the model assumptions, and
ascertainment biases must be taken into account. In Chapegoply theSweepFindealgorithm
and theCLRtest on the subgenomic region that includes the ¢¢DAC6 MJM)

An African population oD. melanogasteis examined. HDACG is an unusual histone deacetylase
being localized in the cytoplasm. Recent discoveries hage/s that HDACG is a key regulator of
cytotoxic stress resistance. The first evidence for a se¢esiveep in thedDAC6 region was sup-

ported by a previous genome scEn énd iEPHAbl |2_O_Oj$). L and SEPHAE] 2006) discovered

a 100-kb fragment that overlaps with tREDAC6 region and showed evidence of recent positive

selection in the European population Df melanogaster This prior information generated as-
certainment bias in the analysis underestimating the pegal Performing a joint analysis of the
African and the European populations@f melanogasteremedies the ascertainment bias.

While the first and the second aims of the thesis are basedarassical one-locus two-allele
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model of selective sweeps, the third goal represents tleasixin of selective sweeps to multi-locus
models. Even if the evolution of multi-locus models has bstewlied elsewhera@mx
the study of allelic frequency trajectories is still lindteln Chapter 3 | use computer simulations
in order to obtain the trajectory of an allele that initiai$yin low frequency. Deterministic and
stochastic simulations have been implemented for the dwod two-allele model as well as the
stochastic five-locus two-allele model. In contrast to tlassical one-locus two allele model, the
trajectories may reach polymorphic equilibrige(equilibria where both of the alleles of the focal
locus are maintained in the population). The establishimieapolymorphic equilibrium generates
profoundly different polymorphism patterns than cladsssdective sweeps. Therefore, many of
the selective events that might occur in a multi-locus regimill be unidentified by the neutrality
tests that have been developed for one-locus two-allelestaod
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1.1 Abstract

A major goal of population genomics is to reconstruct thedmsof natural populations and to
infer the neutral and selective scenarios that can exptaptesent-day polymorphism patterns.
However, the separation between neutral and selectivethgpes has proven hard, mainly because
both may predict similar patterns in the genome. The presteidty focuses on the development
of methods that can be used to distinguish neutral from seéebypotheses in equilibrium and
non-equilibrium populations. These methods utilize a coation of statistics based on the site
frequency spectrum (SFS) and linkage disequilibrium (\Dg. investigate the patterns of genetic
variation along recombining chromosomes using a multinfd®mparisons between neutral and
selective hypotheses, such as selection or neutrality uililequm and non-equilibrium popula-
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tions, and recurrent selection models. We perform hypahesting using the classical p-value

approach, but we also introduce methods from the machineifegfield. We demonstrate that the
combination of SFS- and LD-based statistics increasesawepto detect recent positive selection
in populations that have experienced past demographigeisan

1.2 Introduction

Genomes contain information related to the history of ratpopulations. Past neutral and selec-
tive processes may have left footprints in the genome. Rexiances in population genetics aim
to understand the patterns of genetic diversity and ideetrients that have led to genetic adap-
tations. Among them, positive selection has been a focusasfymnecent studies (ARR et al
|2_0_OJ2; Kim and SEPHAI\|2_O_OJZ; QLINKA et §|l|m;LAKEY et Q|HZ_OQ_AHQENGO and AGUADQ
). Their goal is to (i) provide evidence of positive sélan, (i) estimate the strength and the
rate of selection, and (iii) localize the targets of selmtti These objectives form the basis of a
long-term pursuit, which is the understanding of the mdi@chasis of adaptation of populations
in a changing environment.

Positive selection can cause genetic hitchhiking when afi@al mutation spreads in the pop-
ulation kl\/lAYNARD SMITH and HaIGH |L9L41). When a strongly beneficial mutation occurs and
spreads in a population, linked neutral or slightly deietes variants hitchhike with it, and their
frequency increases. According to Maynard Smith and Haigbdel, three patterns are generated
locally around the position of the beneficial mutation. &itise level of variability will be reduced
since standing variation of the population that is not loshke the beneficial allele vanishes, and
tightly linked polymorphisms may fiMBLAN_eI_aJJh.Q_S_d);LS_EBHAN_eI_aﬂM). Second, the
site frequency spectrum (SFS), which describes the frexyuehallelic variants, shifts from its
neutral expectation towards rare and high-frequency ddﬁmriantskwﬂ |L9_9;$;
[EAL&DQMLJEQ_OA)). The third signature describes the emergence offgpatkage disequilibrium
(LD) patterns around the target of positive selection, saglan elevated level of LD in the early
phase of the fixation process of the beneficial mutation aretaydof LD across the selected site
at the end of the selective phaE_eLMSand_NEJ.iEJ:l ; ).

The availability of genome-wide SNP data has made posgiblstanning of genomes and the
identification of loci that may have been targets of receleictiwe events. Several approaches have
been developed within the last years that can detect thecualesignatures of positive selection
KiM and SEPHA 00212; NSEN et all2005] NELSEN et al“200$). While the methods of Ik
and STEPHAN (2002) anc 5) are designed to analyze subgenomic SNP data,

o
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the approach of NELSEN et all _;0_05) can be applied to both subgenomic and whole-genotae da

(reviewed i _ZQ_O_é)). For this reason we concentrate here on the latbeegdure.
This method, calleweepFindercalculates the probabiliti?(x) that a polymorphism of multi-
plicity x is linked to a beneficial mutation using a simple selectiveled@and the SFS prior to the
selective event. Then, for each location in the genome itpaoes a selective with a neutral model
assuming independence between the SNPs, therefore ¢aigutee composite likelihood ratid.
Thus, it identifies regions where the likelihood of the stlecsweep is greater than that of the
neutral model using the maximum valOgax of A.

The w-statistic, developed d)ulﬁd_a.n_d_NEJ._S_Ehl _ZQ_O_AIl), detects specific LD patterns caused
by genetic hitchhiking (described above). In the stud ( ) the maximum
value of thew-statistic was used to identify the targets of selectiveepse Later
_@) studied its performance in separating demogrdpinc selective scenarios. An important
result byliN.&EN_el_aJJ .ZQ_O_ZIJ)) is the demonstration that for demographic parametéevant to
non-equilibrium populations (such as the cosmopolitanupetpons of D. melanogastgrthe w-
statistic can distinguish between neutral and selectieeatos. This paper will further develop
SweepFindeand thew-statistic such that they can eventually be applied to wigeleome SNP
datasets that have been collected from non-equilibriunuladipns. In particular, populations
undergoing population size bottlenecks are of intereshaset size changes may confound the
patterns of selective swee M). For this reason we use the following approach: first,
we theoretically analyze the genealogies of bottleneclagalifations under neutrality and show
to what extent they resemble the genealogies of singlelikeiyg (SHH) events. We also point
out the importance of high-frequency derived variants i ittentification of selective sweeps.
Second, we study the statistical propertiesSefeepFindeand thew-statistic separately and in
combination. As the main result, we demonstrate that thebawemion of these two methods
(that include both SFS and LD information) increases thegudar detecting recent SHH events
in non-equilibrium populations, in particular when madahiearning techniques are employed.
Third we analyze the performance $iveepFindeand thew-statistic in the detection of recurrent
hitchhiking (RHH) events.

1.3 Methods

Modifications of the w-statistic and SweepFinder: The proposed modifications aim at (i) adapt-
ing the w-statistic for the analysis of whole-genome data, and (icreasing the accuracy of
SweepFindeto predict the target of selection. Instead of fixed windovesjable-size windows
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are used in theo-statistic, and in th&weepFinderlgorithm a fraction of monomorphic sites is

incorporated.

The hitchhiking model by (19 th) predicts that an excess of
LD arises after the completion of the selective sweep widaoh of the two regions flanking the

selected site, but does not extend across the two regmwm; McV EAﬂ :
[BEAEEEJ.H&B_EB_e_t_aJHZQ_OAE). This is due to the assumption that any observed palyinsm

around the sweep has been introduced in the populationtheaselective sweep, and entered the
beneficial genetic background through recombination. &independent recombination events
are necessary to explain polymorphisms on both sides ofdleets/e sweep, the LD vanishes
across the site of the beneficial mutation, but not withirheside. This genomic footprint may
be captured using th&-statistic (Kim_and NELSEI}] |;O_O_4!l). Assume a genomic window wigh
segregating sites that is split into a left and right subenegvith | and S— | segregating sites,
respectively. Thaw-statistic (equation_1l1) quantifies to what extent aveldges elevated on
each side of the selective sweep (see the numerator of eguafi) but not across the selected site
(see the denominator of equation]1.1).

((lz) + (%I))_l(zhjeﬂﬁ +Yijerr)
(I(S_|>)_1ZieL7jeRrﬁ

The w-statistic considers the space between the left and rightegions as the center of the
selective sweep. Thus, a genomic region may be scanned aressre reported for each posi-
tion. Then, using simulations, a significance thresholcetednined. The maximum valuayax
predicts the target of recent positive selection. In thginal version of thev-statistic, the borders
of the left and right sub-regions are assumed cons@(&dm IZ_ODJlLMet_&II

). This may be valid for a subgenomic analysis, wherm¢bembination rat@ and muta-
tion rate® do not fluctuate much or a single selective event may havereatu However, in a
whole-genome study these parameters that affect the eftém may vary dramatically. Addi-
tionally, the polymorphism patterns may have been shape@dyrrent selective sweeps. Thus,
the constant-border approach impIementeJ;LtnM_land_NEJ.S_EJJ _29_0_41) may be limited. If the
sub-regions are large, thesax tends to decrease and the signal disappears. On the otleer han
short sub-regions might contain no SNPs andubsatistic cannot be calculated.

W=

. (1.1)

We have implemented a variable-window sioestatistic. The borders of the left and right
sub-regions vary and the configuration that maximiaésreported. This approach overcomes the
afore mentioned problems inherent in the constant-bongleroach OM&M .;O_O_Ah).
Thus, it may be suitable for scanning large genomic regionghole chromosomes characterized
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by variablep or 6 parameters and shaped by recurrent adaptive substitutions

A naive implementation of the-statistic scanning algorithm would re-calculate the L Db
positions as the center of the sweep moves along the chroneosthis is particularly critical for
the variable-window size approach since the number of tations increases. Our implementa-
tion, as illustrated in Appendix, in Tabil, guarantees a single calculation between any two sites
that may participate in the calculation. Thus, it results in an algorithm that is effitievhen
the number of polymorphisms is large. Calculations arequeréd using a matriX (TableSl in
Appendix), which stores the unweightggs @ ) values (not divided by the number of
comparisons) for all possible windows. For a p@ii + 1), Z;j;1 equals the correlation coeffi-
cient between these two positions. This value is then aduled tellsZj; 1, with j <i to form
the Z,s for the region]j,i + 1]. With this method all possible numerators of thestatistic are
formed. When the left and right sub-regions are definedi iy and[k+ 1, j], respectively, then
the denominator is simply a weighted versiorZof — Z; x — Z;1 .-

SweepFindedetects the shift of the SFS as a signature of hitchhikingn@gaphic effects
are incorporated through the neutral SFS, which is eitheviged by the user or calculated from
the data itself. Monomorphic sites are generally excludeohfthe analysii(MeLai”&OQﬁ;
SVETEC et al”;0_0§) since tests that include them may be more sensitivestoaptions regarding
the mutation ratel_LtEJ.iEN_el_aJJhQ_O_ELo). Additionally, for realistic mutation rates, the oy of
the sites remain monomorphic. Thus, by including invarsiets the dataset and the computational
time required for the analysis increase dramatically. Gndtiner hand, the decrease of diversity
represented by the monomorphic sites constitutes a wellvkisignature of the hitchhiking effect.
Omitting them may decrease the power of the teLsJuil(BEN_el_aJ“ZQ_O_%) and lead to inaccurate
predictions about the target of selection. Inaccuracieislgnamerge due to changes in the input
site density when only polymorphic sites are included. V®iporate a fraction of the monomor-
phic sites into the analysis in a way that (i) generates atmiinput site density and (ii) preserves
the signature of low diversity in regions of depleted vaoiat Additionally, since only a small
fraction of monomorphic sites are used, the computatiomed ts only increased slightly. Given
a genomic region witls polymorphic sites we includ8gmonomorphic sites, where€9q < 1.

In the present studyg = 0.1, so that the number of monomorphic are in the same ordereas th
polymorphic sites. We proceed as follows. In the first steer¢ areéS— 1 intervals between th®
polymorphic sites. A monomorphic site is included at a randimcation within the largest interval.

In the second step there &ée- 1 sites andSintervals and the process is repeated. The cutoff value
is defined by treating the neutral simulations in the same Wéth this process the SNP density
differences are reduced and monomorphic sites are embaudegions of depleted variation.
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Quantifying the effects of population bottlenecks on neutal genealogies.The w-statistic
andSweepFindecan scan genomes from natural populations that have expedelemographic

changes and detect targets of selection. We investigatethehthe neutral demographic scenar-
ios inferred by LL an EPHA _;O_Oji) anci HORNTON and ANDOLFATTd _;O_OJS) to describe
the demography of a European populatiorDofmelanogastecan result in patterns along a re-
combining chromosome that resemble selective sweeps.rieydar, we examined which effects
of population bottlenecks are responsible for the polyrhmm patterns that mimic the effects of
selective sweeps. We focused on the properties of genealtigat are generated by those two
demographic models because genealogies reflect demogpolpierties more comprehensively
than summary statistics.

A way to measure the effect of a bottleneck on the genealajiasrecombining genome is
through the ratid = L—: of the total length to the height of the coalescent. Shaat;lgte genealo-
gies have large ratios and rr(@g) = n is obtained for an-furcated star-like tree. On the other
hand, for genealogies with long internal branches the takes small values and m{iﬁ%) =2is
obtained when the genealogy is dominated by two very lorggmatl branches. Using simulations
we first calculate the percentagerefurcated star-like genealogies (with larjevalues) in a re-
gion of 50 kb. Then, for each simulated instance we relatgéreentage of-furcated star-like
genealogies with the resemblance to a selective sweepsas theasured usingweepFinde(see
Theoretical analyses.

The joint effects of population bottlenecks and selectivergeeps on high-frequency derived
alleles: A hallmark of selective sweeps in constant populationseseticess of high-frequency de-
rived variants around the target of positive selection. H-iggquency derived variants consist of
mutations that were present in the population prior thectigkesweep, hitchhike with the benefi-
cial allele and, due to recombination, appear as polymemsi This signature forms the basis of
a multitude of neutrality tests that are based on the E]J_&)JKI_M&LM
|2_0_0JZ; NELSEN et all|;0_0$) and contributes to the precise detection of the tasfystlection.

However, in natural populations positive selection mayuocimultaneously with demographic

changes. Using simulations from the demographic modetsitége inferred b
2006) anci HORNTON and ANDOLFATTd (2006), we examine whether high-frequency derived

alleles occur when demographic changes occur simultahewith positive selection.

Measuring the precision of the inferred selective sweep pd®n: An objective of the
genome-scanning studies is the precise prediction of teetse sweep locations. Usually, ev-
ery position or a subset of them is scored for a given stat{ftr example theo-statistic or the
SweepFinder Thus, peaks and valleys are formed along the genomicmediben, some of the
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peaks may survive a cutoff value delimiting the potentiag¢éds of selection. As illustrated in
FigureSl in Appendix, we determine the distance between a peak dartkdecape of the statistic

and the closest location where a selective sweep has odagitren a user-defined threshold. In
FigureSl, two selective sweeps have occurred recently in the lyistathe population. The posi-
tions of the sweeps are illustrated as vertical green liAgseak is defined as the highest point in
an isolated region by the cutoff value. Thus, five peak®(€) have been formed in the example
of FigureS1. D measures the distance between a peak and the closestveeteatiep location.
Based on this approach we can measure the accuracy of teeediffmethods. Furthermore, we
implemented a simple randomization of the peaks to evathatguality of the predictions. This
is necessary because finite genomic regions are simulatédhearefore the distance between any
location and the target of selection is bounded.

Supervised learning techniqguesWe introduce supervised learning approaches from the field
of machine learning that can be useful for the classificabiom genomic region as either neutral
or selected. In a classification problem, the goal is to sgpahese classes using a function,
which is inferred from the available data. Such a processlied ‘learning from the data’ or
‘supervised’ learning and is related to finding the optimgbdrplane that distinguishes the two
classes. Typically, in a supervised learning problem, datasist of pairs of input and output
objects. Input consists of a vector of multiple entries thatnmarize the data and are called
features. Inputs can be set arbitrarily depending on theifsperoblem. However, the efficiency
of the algorithm increases when they are independent arndreafhe whole information of the
data. Output can be binary, denoting the class that the obgongs to. In supervised learning
the goal is to use the input to predict the value of the outpud, the problem can be formulated
as teaching the computer the combinations of feature-gahag are associated with either of the
classes. In the specific problem we examine here, the outprdded as ‘neutrality/selection’.
Then, using simulations of the neutral demographic modélthe model with selection we train
the algorithm to separate these two classes. As input fomiehine learning approach we use
wwmax ; Avax (from the original algorithms) and combinations@fand A, such as the distance
between the genomic positions@fiax andApmax and the correlation coefficient betweerand
N\. The reasoning for this choice of inputs is as follows. Fifgiax andwyax capture different
aspects of the data\yax Is affected mostly by the SFS, wheraagax is affected by LD. Even
if SFS and LD can be correlate|d_(ﬂz£_a.nd_NEL§_EJJ ), it is expected that this correlation is
lower than using statistics that are based exclusively erStRS or LD. Second previous studies
have shown thaluax andwwuax are relatively robust to demographic changes (but SeeNGO
and AGUADE (2010)). Third, it seems intuitively obvious that the peake) andA profiles should
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point to the same genomic location if a selective sweep hesroed. Thus, using the distance
between the peaks or the correlation of the profiles shouwl@ase the classification performance
of the algorithm. In this study, both the distance betweenpgbaks and the correlation between
the profiles are used.

For each demographic scenario that was simulated in thdy stte used a subset of simulations
for training, and the remaining for testing the performanidee supervised learning approach can
be employed to classify a certain genomic region as eithetraleor selected. However, within a
region the specific target of selection cannot be specifiethéynethod itself. In order to achieve
this, the features of the methad(thew andA profiles) should be inspected. Tables 1 to 4 provide
information about the accuracy of the features under varitmographic scenarios.

Traditionally, when neutrality tests are employed to detaxgets of positive selection neutral
simulations are performed and the 5% percentile is usedrasstiold. This methodology assumes
that neutrality tests produce significantly larger valuredata with selection. This may be the case
when the population size remains constant. However, inggunlibrium models the values of the
neutrality tests may overlap significantly between neutratiels and models with selection, and
therefore their performance decreases. Combining diffestatistics that capture different aspects
of the data may contribute to increasing the classificatenigpmance.

Several methods have been developed for data classificafi@nexample, Bayesian classi-
fiers, rule-based classifieds;nearest-neighbors, and linear discriminant analysisanee of the
approaches that have been applied to supervised learroiteprs |(DJDA et aIHZOOd); HAN and
KAMBER ZMLtASLEﬂ_aﬂ ZQ_Q:{). Here, we demonstrate the use of Support Vector Mashin
(SVMs) with a radial basis kernel, which is the most widesgrkernel. In general, SVM uses a
nonlinear mapping to transform the original training dati® ia higher-dimensional space and to
search for an optimal linear hyperplane in this space. Atgadgantage of the SVMs is that they
are highly accurate and less prone to overfitting;they have desirable generalization properties

_HAM |;0_0ﬂ)).

Implementation and code availability: The C++ source code is available frduip://www.
bio.Imu.de/  ~pavlidis . For thew-statistic, the user is able to choose between constant- or
variable-window size scanning modes. Additionally, besid? various other measurements of
LD, such as ab$f) and abdD.,) (LANGLEY et aIHL9L ), may be used in equation 1. There are
no specific library dependencies and the software can baledion any Linux machine that runs
the g++ compiler. Also, the modified version $fveepFindethat has been used here to analyze
data with monomorphic sites is provided. In this versionltkelihood curve of monomorphic
sites has been modified so that the probability to observereomorphic site is high in the prox-
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imity of the sweep position but becomes negligible as distancreases (the rate of decrease is
larger than in the original version). The original versidnSsveepFinders provided by the web
site of Rasmus Nielsdritp://people.binf.ku.dk/rasmus/webpage/sf.html . Furthermore,
perl scripts that have been used in the analysis are awaifedoin http://www.bio.Imu.de/
~pavlidis  or upon request from the authors.

1.4 Theoretical analyses

The genealogies of bottlenecked populations may resemblbase of SHH in constant-size
populations: Past demographic changes such as bottlenecks may confoeipétterns of a se-
lective swee ). Similarly to a selective sweep, a bottleneck scemagy result in
coalescent trees dominated by either external or intemaaldnes. Short coalescent trees with long
external branches are obtained when, due to a rapid, resehsevere decrease of population size,
the time of the most recent common ancestor of the samplaisifaithin the bottleneck period.
On the other hand, if some of the lineages escape the batkgtien long internal branches will be
created. In recombining genomic regions short and long tneay alternate, creating sweep-like
patterns in the SF@% @).

We illustrate the effect of bottlenecks on genealogiesqisive demographic scenarios that
have been inferred MDQ_&EBHAJJ _ZQ_OAS) an _ZQ_OAS) to de-
scribe the history of the European populatiorDofmelanogasterScaling the time in units ofM
generations (wherH is the present effective population size) hh@d SEPHAbl _;O_Oji) model
describes a 4-epoch scenario. Backward in time, the papnlakperiences a bottleneck from
0.0367 time units until 0.0375 time units. Within this betteck period\N, = 0.002N, whereNy
denotes the effective population size in the bottleneclenTimstantly, the size of the population
size changes t0.3N, and eventually at the time 0.1395 it becoméaNL The bottleneck phase
models the founding of the European population from the stnakepopulation, whereas the tran-
sition from 75N to 1.5N models a (forward-in-time) expansion of the ancestral pedmn. The
demographic scenario inferred b H®RNTON and ANDOLFATT _M) implements a 3-epoch
model. The values of the parameters depend on the %amind here we use the results obtained
Wheng = 10. The present population sikkis estimated to be.2 x 10°, and backward in time
at 0.0042 it contracts t0.029N. Finally, the population reaches instantly the presentieel at
time 0.022.

The demographic model bﬂ land SEPHAIJ _;O_OJS) produces both star-like and long genealo-
gies in the same genomic region of a recombining chromoséiigeie[8). The length of these
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trees is on average shorter than that of the standard néneteal thus reducing variation. The ef-
fect of theJ_'IHQ_BNLQN_and_AND_O_LEAﬁ 2&05) demographic model is similar, however milder.
On average, it creates shorter genealogies and effectigdlyces the nucleotide polymorphism.
However, it does not result in extreme star-like coalestesis as often as t n EPHA
_M) model (Figur€l8). This is because the population di@mges are milder, the bottleneck
period is longer, and starts (backward in time) very regentlthe usual coalescent time scale,
allowing for a series of coalescent events.
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FIGURE 1.1: Histogram of the ratié = = for the following demographic scenarios: A) a single
realization of the bottleneck scenario inferred byand SEPHAN (129_05_5)6). Long coalescent trees
that escape the bottleneck tend to produce small ratia®) ( On the other hand, genealogies that
coalesce within the bottleneck period produce star-ligestbecause of the recent, rapid and severe
contraction of the population. B)a realization of the haidck scenario inferred byHDRNTON

and ANDOLFATTO (2006). In contrast to Land SEPHAN M) coalescent events occur con-
tinuously. C) for the standard neutral model. For|theahd SEPHAN (2006), THORNTON and
ANDOLFATTO (2006) and the neutral scenario, 12 chromosomes of 50 kb lheste simulated.
The recombination rate g = 0.05/bp and the mutation rae= 0.004/bp. The parameter values

for the LL and STEPHAN (2006) and HORNTONand ANDOLFATTA (2006) scenarios are described

in the main text.

Next we used simulations to examine the relationship batwee percentage of star-like ge-
nealogies, the number of segregating sites,/apglx of SweepFinderwhich can be considered a
proxy for the resemblance of polymorphism patterns (baseith® SFS) to a signature of a selec-
tive sweep. A 50-kb genomic region was simulated usir&ﬂHUDSOleO_OJZ) for a sample of 12
chromosomes. The recombination rate 0.05/bp and the mutation rafle= 0.004/bp. The demo-
graphic model describes a recent population bottlenecinfesed b)J_u_and_SI_ERHAJJ _ZQ_OAS)).

As illustrated in Figuré 112, a small number of star-likeesereate a large number of segregating
sites and smal\yax values. Similarly, when a genomic region is dominated bytststar-like
genealogies, the number of segregating sites/ank decrease. Even if this constitutes a poly-
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morphism valley, the pattern does not look like a sweep seafl a lack of the high-frequency
derived variants |20_Qi). On the other hand, the simultaneous presence of
star-like and long genealogies creates sweep-like pattdfor intermediate frequencies of star-
like genealogies)\vax assumes large values. Since neighboring genealogies arelependent,
star-like genealogies form clusters and effectively @ealleys of reduced polymorphism resem-
bling a selective sweep. These results help to interpreesafrour findings below.

Selective sweeps in non-equilibrium populations may restin a loss of high-frequency de-
rived variants and violate the assumptions ofSweepFinder and the w-statistic: We examined
the effects of selective sweeps on polymorphisms, when tleeyr within demographic bottle-
necks. A 50-kb genomic fragment was simulated under théelneitk model inferred by HORN-
TON and ANDOLFATTO _;O_Oji), and a selective sweap- 2500) was assumed to take place within
the bottleneck perio |20_0_'}’). First, we show that the combined action
of selective sweeps and bottlenecks results in SFS thatr difnsiderably from those generated
by selective sweeps in equilibrium populations. Figlrel cofpares the modifications of the av-
erage SFS around the target of selection in a constant-sipegraphic scenario with the model
inferred b)l_'IBQRNmN_and_AND_QLEAﬁ _ZQ_OAS). It is apparent that in equilibrium demographic
models there is a dramatic increase of the class 1’ in the proximity of the selective sweeps
(Figure[1.Ba). Neutrality tests based on the SFS can ddtedntrease of the high-frequency
derived variants and therefore the accurate predictiohefdrget of selection is possible. In non-
equilibrium scenarios, when population contraction anelcdere sweeps co-occur, the- 1’ class
vanishes in a large genomic region around the target oftsmte@igure 1.8b). The joint effect of
selection and population contraction increases the pitilyatf coalescences, resulting in short
genealogies where the most recent common ancestor isdowéten the bottleneck phase. Con-
sequently, the frequency of the- 1’ class vanishes in the present-day sample. Furthermuze, t
part of the genealogy that is older than the selective swetgneck phase is eliminated. There-
fore the vast majority of the present-day polymorphismgatenger than the selective sweep. This
violates the assumptions 8fveepFindeand thew-statistic and may result in imprecise prediction
of the target of selection.

1.5 Statistical performance of the tests in the detection afingle
hitchhiking events

In this section, the discrimination capacity 8iveepFindeand thew-statistic is scrutinized, and
the distance between the predicted and the true targetexdtiei is evaluated for single sweeps
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FIGURE 1.2: The relation between Awax and B) percentage of star-like genealogies, and the
number of segregating sites in the &and SEPHAN (2006) demographic scenario. We have per-
formed neutral simulations for 12 recombining chromosgnassuming a length of 50 kb. The
recombination rat@ = 0.05/bp and the mutation rat&= 0.005/bp. The parameter values for
the demographic model inferred by Bnd SSEPHAN (2006) are described in the main text. The
number of short genealogies in theand SEPHAN (2006) scenario determines both the number
of segregating sites and the sweep-resemblance (measutied BweepFindestatistic). When a
genomic region is dominated by short star-like genealogisa few segregating sites are present.
Even if this constitutes a polymorphism valley, the patt@oes not look like a single sweep be-
cause of a lack of the high-frequency derived variantsa(lind STEPHAN [2002). Similarly, when
the star-like trees are absekiax is small. On the other hand, the simultaneous presenceref sta
like and long genealogies creates sweep-like patterns.i¥biecause star-like trees tend to cluster
together along the recombining chromosome, creatingysaigthin polymorphism islands.
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FIGURE 1.3: A selective sweep causes a spatial modificatioimeoSFS. The mean and the vari-
ance of the frequency are modified when a selective sweepdeasred in the middle of a 50-kb
genomic fragment. The 50-kb region is split in 2-kb non-tsaping windows and in each one
the average meahj [A) and C)] and the variance vé&k] [B) and D)] of the frequencyf; of the
polymorphism classis calculated. In A) the plots refer to a selective event iildgrium popula-
tions (@ = 2500) that has been completed recently, whereas in C) toaequilibrium model of

5) @ = 2500). The solid black lines refer to the singletons,
the dashed black lines to the class ‘11’, and the gray lindbdcaclasses 2 10. The dramatic
change of the high-frequency derived alleles in A) contesuo the precise localization of the
selective event. On the contrary, in C) the high-frequeneyved SNPs are absent even in the
proximity of the selective sweep. This is because the lenfjthe branches of the coalescent tree
that may generate high-frequency derived variants are s@all due to the simultaneous action
of the sweep and the bottleneck. Therefore, the observeanoophisms (mostly singletons) are
younger than the selective event and spread over the whoterge region, obscuring the location
of the selective sweep.
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under the scenarios (i) selection versus neutrality inldgjiiim populationsi(e. standard neutral
populations), (ii) selection in equilibrium populationsrgus neutrality in non-equilibrium popula-
tions (.e. populations that have experienced past demographic chpragel (iii) selection versus
neutrality in non-equilibrium populations. The perforrsans assessed as follows. First, the false
positive (FP) rate of the SVM is estimated. Using this falgsitive rate we compare the true posi-
tive (TP) rates of each test. Thus, all comparisons refdresame false positive rate. Second, for
the evaluation of the distance between the true and preldiatgets we use only simulated results
that survive the threshold defined by the false positive i&teally, for the non-equilibrium models
with selection we implement a simple randomization prot¢essssess the quality of results (see
Methods).

SHH versus neutrality in equilibrium populations: We simulate a single selective sweep
in the middle of a 50-kb genomic region using $svsoftware |(Km and iEPHAbl |2_O_OJZ). The
parameter values have been chosen for their relevanceumhpbpulations oD. melanogaster
Specifically, the parameter= 2Ns wheresis the selection coefficient of the beneficial mutation,
assumes the values 500, 2500, and 5000 that are realisti2. iorelanogaste(BEISSWANGER
and S EPHAN |20_0_é). For all datasets the mutation réte- 0.005/bp, similar to the estimation
of 6 for the European population @. meIanogasteby[LJ_and_S_ERHAJJ _ZM). The scaled
recombination ratg equals 005/bp, so that the rati(g =10 &Mmm
). The standard neutral simulations were performeuagusie same value gf. We used a
sample size of 12 for all simulations.

Each realization of the selective sweep was compared wietbf the standard neutral model
that are obtained usiriyey = 6w = h% BOneu. Oneu denotes th® value used in standard neutral
simulationsfyy is Watterson’s (1975) estimator ®bbtained using the number of segregating sites
S, of the selective sweep realization, dnd= z{‘;ll Il Thus, a selective sweep is compared with the
standard neutral realizations that on average create sexwda number of polymorphic sitdsq
procedureL(MOMet_ﬂﬁo_o_'h]. Alternative approaches to calculate the threshalde
may use the observed number of segregating Si{es to take into account the uncertainty 6n
by considering a prior distribution & In neutral equilibrium populations these approachedtresu
in the same threshold values for the models tested in thily gitigureS2 in Appendix). Here, for
the calculation of thresholds we use th@& approach. Since, the null model is represented by an
equilibrium standard neutral modél,can be estimated using the estimalgr. FigureS2 shows
that the cutoff value of they-statistic decreases &g increases and the opposite tendency is seen
for the SweepFindestatistic.

Consistent with previous StUdié&EMS_EJN_el_a.IJ [ZQ_O_ZEI)) a selective sweep is discriminated
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Table 1.1: Equilibrium neutrality versus selection in didpuium populations

Parameter Performance SF *SF () w SVM

4 — 500 TP (FP =0.03) 0.85 0.97 0.13 0.14 0.9
Median distance in 1728 (5597) 754 (1333) 528 (480) 540 (525) -
bp from target (SD)

4 — 2500 TP (FP=0) 0.97 0.99 0.82 0.85 0.98
Median distance in 5383 (4509) 4582 (3905) 789 (657) 794 (680) -
bp from target (SD)

Using the SVM approach a false positive rate (FP) Is estidhfaievarious parameter values. For
this FP rate, the true positive rates (TP) of the variousraétyt tests are compared. The median
distance and the standard deviation (SD) are also showrnariginal SweepFinderSF*: modified
SweepFinderw: w algorithm with constant-size windowsy*: w algorithm with variable-size
windows.

easily from the standard neutral model. Indeed as illustrat Figurd THWa, theyax andAmax
are distributed to a large extent distinctly even for rgkdii small values oft (e.g.500). Results are
summarized in Table1.1. Next, the distance between thddrget of selection and the predicted
target of selection is estimated (Tablel1.1). Thstatistic is more accurate than tBeveepFinder
and the median distance from the target of selection is ab&ukb. However, the performance
of SweepFindem discriminating the two scenarios is higher. CombinfgeepFindewith the
w-statistic increases the classification performance ¢lalsimn in Tablé 1]1).

SHH in equilibrium populations versus neutrality in non-equilibrium populations: Using
simulations, selective sweeps have been generated asba@elsabove. For realizing past bottle-
neck events we used tile_&nd_&EBHAJJ ( ) demographic history for the European population
of D. melanogaster We follow a similar approach as described in the previoutiae in order
to assess the cutoff value. However, since the null hyp&hesot represented by the standard
neutral modelPy is not an appropriate estimator @f Instead, we use the generalized unbiased
estimatorf = % whereE(Te) is the expected total length of the coalescenhafequences
(Z1vkovic and V\/IEHﬁ|2_O_0;$).E(TC) depends only on the demographic history of the population.

For large values ot (a = 2500) the true positive rate of the statistiogax and Apax is
greater than 70% when the false positive rate is 18% (Talp IFor the same false positive
rate, the true positive rate of the modified versiorbefeepFinders above 90%. However, when
smaller selection coefficients.g.a = 500) define the hitchhiking effect, the selective sweep may
be inseparable from bottleneck scenarios similar to tHatried b)){_l.l_and_&EBtLAJJ 2&10&3), using
the original version oSweepFindeor thew-statistic (TP rates: 10%, Tablé 1.2 and Figure 1.4b).
The modified version dbweepFindehas a larger discrimination performance (true positivefat
40%). The low discrimination performance is indicated bg/tsemblance of genealogies between
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FIGURE 1.4: The joint distributions ofiyax andwwuax in scenarios with and without selection.
In A) we compare the joint distribution dfyax andwuax between a model with selectioo &
500) in a constant population and a standard neutral motiel oVerlap between the distributions
is limited and the scenarios can be discriminated bySiweepFindefy-axis) and to a lesser extent
by thew-statistic (x-axis). In B) we compare a model with selectima= 500) with a neutral model
that has experienced a bottleneck as it has been inferrb_d_bnd.S_EBHAhl dZO_O_$). Neither of
the statistics can discriminate accurately the two scesdsee also Table 1.2). Notice that the
scales of the statistics are different in A) and B).
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bottleneck models and selective sweeps in constant pagnsaisee alsd heoretical analyse$.

The distributions otoyax andAyax are largely overlapping as illustrated in Figlirel1.4b. The
SVM approach performs considerably better than any of this 'one. The true positive rate is
75% when the false positive is 26% (Table]1.2). The main me&sothe superior performance
of the SVM approach is that it uses information about theatlis¢ of the peaks. In the scenarios
with selection the target can be predicted accurately €[2R), therefore the distance between the
peaks is considerably smaller than in the neutral scenarios

Table 1.2: Non-equilibrium neutrality versus selectiorquilibrium populations

Parameter Performance SF *SF () W SVM

4 — 500 TP (FP =0.26) 0.1 0.41 0.04 0.03 0.75
Median distance in 899 (878) 522.982 (824) 423 (428) 603 (513) -
bp from target (SD)

4 — 2500 TP (FP =0.18) 0.73 0.93 0.72 0.74 0.84
Median distance in 3065 (3209) 2074 (3361) 917 (1653) 956 (1629) -
bp from target (SD)

SHH versus neutrality in non-equilibrium populations: In this section we examine the sta-
tistical performance of the neutrality tests to detect@a in a genomic region and assess the
distance between the true and the predicted targets otisele®Ve focus on two bottleneck sce-
narios. The first one describes a deep and short-lastinigbetk (model A), whereas the second
scenario describes a shallow and long-lasting bottlenackiél B). In both cases the severitye(
the product deptk length) is the same< 0.375 in units of N), and the bottleneck begins (back-
ward in time) at 0.01. The present effective population sizassumed 19 and the simulated
region 50 kb. The recombination rgtefor the whole region is set to 500. In the deep bottleneck
scenario, the depth=( pohieren: population Size)eequals 500 and the length 0.00075. In the shallow

ttlenecked population si
bottleneck scenario, the depth equals 20 and the lengt8?501

Neutral simulations have been performed using HudsosHubso |;O_Oi) and simulations
with selection using thenbsalgorithm kTESHIMA and INNAN |;0_0§). The design of simulations
is as follows. In both cases we fix the number of polymorphiess{=50) by employing broad
uniform priors onB and accepting only those instances that result in 50 setynggates. This is
justified by the dependence of thestatistic andSweepFindeon the number of segregating sites
(FiguresS2 andS3 in Appendix) and the large variance on segregating sitgswutral bottleneck
scenarios generate. Furthermore, the rejection procesampees that the total length of the tree,
the posterioP values and the number of segregating sites are coupled.Shari 74" quantiles
of the posterior distribution dd are 32 and 52, respectively, for the deep-bottleneck smeaad
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32 and 48 for the shallow scenario; therefore the rgtie close to 10. In the simulations with

selection, we examine scenarios of selective sweeps aegugcently (between the present and
the bottleneck; sweep in phase 1), within the bottleneclkeémn phase 2), and after the bottleneck
(backward in time; sweep in phase 3). The parameters of tlelmavith selection are described

in Table[1.B and Table_1.4 for the deep and shallow modelpentisely. Similar to the neutral
cases, a broad uniform prior dhhas been used, and we condition on observing 50 segregating
sites. The posterior range 6fdepends on the timing of the selective sweep; thereforeatine

£ is close to 10 when the sweep is either recent or old, but itedses when the selective sweep
occurs within the bottleneck phase.

Table 1.3: Neutrality versus selection in non-equilibripapulations (deep bottlenecks)

Parameter Performance SF *SF w w* SVM
TP (FP=0.51) 0.64 0.66 0.39 0.49 0.71
phase 1  Median distance in 10813 (6768) 10497 (6832) 11986 (6595) 10239 (6186) -
bp from target (SD)
Random target dis- 11053 (6827) 11308 (6803) 11575 (6645) 11944 (6945) -
tance (SD)
TP (FP=0.20) 0.62 0.64 0.36 0.44 0.73
phase 2 Median distance in 9666 (6531) 10828 (6896) 11854 (6500) 10469 (6123) -
bp from target (SD)
Random target dis- 11508 (6885) 11397 (6808) 11877 (6750) 11555 (6804) -
tance (SD)
TP (FP=0.08) 0.72 0.78 0.63 0.12 0.97
phase 2* Median distance in 9512 (6659) 10986 (6977) 10905 (6482) 11328 (6487) -
bp from target (SD)
Random target dis- 12067 (6983) 12265 (6920) 11647 (6950) 13236 (7213) -
tance (SD)
TP (FP =0.56) 0.53 0.55 0.48 0.46 0.63
phase 3 Median distance in 10377 (6831) 10845 (6833) 11342 (6662) 10624 (6541) -
bp from target (SD)
Random target dis- 12202 (6908) 11641 (6860) 12151 (6920) 12220 (6824) -
tance (SD)

A deep bottleneck, named model A, is examined. The rﬁéﬁﬁgé‘iepé’g‘c‘)'gﬂgt‘i;'f;ze: 500 and the
length of the bottleneck is 0.00075. A beneficial mutatioryrappear within each phase of this
3-epoch model (where time is measured backwards in unitBlafeherations): a recent sweep at
time 0.01 (sweep in phase 1), a sweep within the bottlenetknat0.0107 (sweep in phase 2),
and an old sweep at 0.115 (sweep in phase 3). The selectiffiicard is 0.002. Additionally,

in the ‘sweep in phase 2* model we describe a sweep which ¢etegp within the bottleneck
(s=0.8). The true positive rates of the neutrality tests are shioweach sweep model. The other
rows depict the distance between the predicted and truetsaagnd the random expectations for
the distance.
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First, we examined the performance of thestatistic andSweepFindeto detect whether a

genomic region has been shaped by positive selection. Remnd presented in Table 11.3 and
Table[1.4. For all comparisons, we used the false positiesthat is reported by the SVM. Then,
we compare the TP rates between the various tests; the parfice of a test is better when the
TP rate is higher. The combination 8fveepFindeandw-statistic performs better than each test
(SVM column in Tabld_1J3 and Table 1.4). AlsBweepFindeoutperforms thew-statistic. In
model A (deep bottleneck), when the sweep is either recentdyrthe discrimination between
neutral and selective models becomes problematic; whefakbe positive rate is about 50%, the
true positive is as low as 70% and 63%, respectively, for i Spproach. For the separate
tests, the performance is even lower. This result sugdestsdcent or old selection in populations
that have experienced deep bottlenecks cannot be disatiedgrirom neutrality. However, when
selection has occurred within the bottleneck phase, ttse fabsitive rate decreases to 20% and
the true positive rate is 73% for the SVM and about 10% lowettie SweepFindefTable[1.3,
sweep phase 2). Higher discrimination performance is &eldiazhen the sweep completes within
the bottleneck (Table 1.3, sweep phase 2*), but this reguineealistically high values af

In model B (shallow bottleneck), the discrimination perf@nce is slightly better than that of
model A. However, again the most challenging scenarios itieraecent or old sweeps and the
performance increases when the sweep occurs within thiehetk phase (Table 1.4). Finally,
the distances between the true target and the predictest @@rgelection are estimated. For both
models A and B the distance is large and close to random eatpmts (Tablé 114).

Distinguishing RHH from neutrality in equilibrium populat ions: In contrast to single se-
lective sweep (SHH) models, recurrent selected substitsitoccur randomly along a chromo-
some according to a time-homogeneous Poisson processtatvgea generatio

;MEﬂEjnd_S_ERHAJJ ML&EBHAJJ |_’I.9_9_$). Well-known patterns of SHH models are
modified under RHH. As an example, the SFS is skewed towardatigevariants; however, the
excess of high-frequency derived alleles decreaLs;mJ MLM&IH;O_OE) Previously,
JENSENet al _;O_Olll)) have shown that it is difficult to separate RHH moftels neutrality based
on wyax -values or site frequency spectrum statistics. We exploeesame problem with our
new versions of theo-statistic and th&weepFinderlgorithm. Using the software developed by
JENSENet al l _O_Oj;) we simulated 100-kb genomic regions for a given rednof heterozygosity
(WIEHE and SEPHAN |_’L9_9_213) namely-Ed — 0.05,0.25,0.5,0.75 or 0.95. 584 denotes the ratio
of heterozygosity in the RHH model to the heterozygosityhimdabsence of selectlve sweeps. The

selection coefficiers = 0.0001 or 0.01. The null hypothesis is represented by the atdneeutral
model.
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Table 1.4: Neutrality versus selection in non-equilibripaopulations (shallow bottlenecks)

Parameter Performance SF *SF w* SVM
TP (FP=0.27) 0.46 0.49 0.22 0.25 0.5
phase 1 Median distance 10116 (6872) 10691 (7001) 10268 (6658) 10868 (6670) -
(SD)
Random target dis- 11604 (6862) 11452 (6835) 10744 (6895) 11192 (7115) -
tance (SD)
TP (FP=0.22) 0.58 0.56 0.27 0.32 0.6
phase 2 Median distance 10233 (6866) 11059 (6807) 11659 (6721) 11531 (6643) -
(SD)
Random target dis- 11725 (6889) 11375 (6855) 10846 (6829) 11245 (6882) -
tance (SD)
TP (FP=0.35) 0.67 0.74 0.65 0.4 0.67
phase 2* Median distance 9610 (6814) 10148 (6962) 11356 (6683) 10680 (6539) -
(SD)
Random target dis- 11906 (6889) 12102 (6846) 12432 (6894) 11583 (7079) -
tance (SD)
TP (FP =0.25) 0.4 0.38 0.23 0.27 0.46
phase 3 Median distance 10232 (6710) 10447 (6744) 11693 (6965) 10829 (6625) -
(SD)

Random target dis-

tance (SD)

11372 (6906)

11574 (6857)

11666 (6817) 13068 (6914) -

A shallow bottleneck, named model B, is examined. The raffieSentpopulation size _ 5n 444

botttenecked population size”

the length of the bottleneck is 0.01875. A recent sweep a 01 (sweep Iin phase 1), a sweep
within the bottleneck at time 0.0107 (sweep in phase 2), armdaisweep at 0.115 (sweep in phase
3) are described. The selection coefficient in the model egwia phase 2* is (.



35
The null model used for thBweepFindecalculations and represented by the SFS of the pop-

ulation prior to the selective sweep in the SHH cases (n-8&&)ot be described precisely by the
standard neutral model. The population size is assumed torsant. However, since adaptive
mutations occur according to a time-homogeneous Poissmegs it remains obscure what the
‘prior to the sweep’ SFS should be. Here, we follow two apphas. First, we assume that the
n-SFS is derived from the standard neutral model and setbad-SFS is obtained from the ge-
nomic region itself. Clearly, both approaches are appragions. On one hand, using the standard
neutral model we increase the sensitivity of BweepFinder On the other hand, the nucleotide
polymorphism patterns of the genomic region under invasibtg have been shaped by selective
sweeps, so the n-SFS forms a conservative null model witli serssitivity. However, if real data
are consistent with the RHH model, the standard neutral hoaa@ot be supported as a null model
since the whole genome will be affected by recurrent sweeps.

When the n-SFS is derived from the data itself then the poWdreoSweepFinders greater
for small values€.9g.0.0001) than large values.@.0.01) of the selection coefficiest(Figure 4
in Appendix). Even if this appears to be counterintuitives ireasonable because wheis small
the footprints of the selective sweep are local, and a lamyeidn of the genome remains neutral.
On the other hand, for large valuessHImost the entire genomic region may be affected by RHH
contradicting the assumption of tissveepFindetest that only a small fraction of the genome has
been shaped by positive selection (Fig&4e.

Under RHH models selective sweeps occur in different gendmeations during the evolution
of the population following a time-homogeneous Poissommew M).
When subgenomic data are analyzed it is possible that thettaf selection is either inside or
outside of the sequenced genomic region. Furthermores silective events occur with a certain
probability per generatio |_’I.9_9_é), patterns of polymorphism are shaped by
both old and new selective events. However, dhstatistic andSweepFindeare based on the
assumption that a single selective sweep has just been etedpl Thus, it is important to test
whether the algorithms are able to predict the correct jposdf the adaptive events.

Incorporating a fraction of monomorphic sites irBaweepFinderanalysis increases the pre-
cision of the algorithm (Figur&b in Appendix). Similarly, the variable-size sliding windap-
proach appears more accurate than the constant-sizegshitidow method for high cutoff values.
When% = 0.25, SweepFindeand thew-statistic predict that a target of selection is within a 5-
kb distance from a true selective sweep position in about dDféite cases. However, this fraction
becomes smaller for higher values@:fﬂ (FigureSb).
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1.6 Discussion

The demography of natural populations: A major challenge of population genomics studies is to
identify the loci that driven by positive selection contrib to the adaptation of natural populations,
and to localize the beneficial mutation accuratEIMIﬁnd_S_ERHAhl |20_Q212 L&B_Eﬂ_el_aﬂbQ_QElZ
JENSEN et al|_0_0;$ NELSEN et al|_0_0$ MH_O_OLé NELSEN et QH_O_Oé RCKRELL et al
) In order to address these questions, it is importacbnsider the demographic hlstory of
the population, as this neutral non-equilibrium model espnts the nul

THORNTONand ANDOLFATTd |_O_Oﬁs) Since the standard neutral model does not reflect&tedyu
the demography of most natural populations, neutralitisteBould not be performed using the
standard neutral scenario as the null model. In this studyexamined two bottleneck scenarios
that are relevant to the demographic history of the Europegaulation ofD. melanogaste(L |
and SEPHAN ; ﬂ). The properties of the coalescent trees
that underlie these demographic models differ considgralol a recombining genomic region,
the model inferred b| _29_Oj$) produces both star-like short coalescent trees, and
genealogies with long internal branches. Star-like genpas are generated less frequently by
the[THORNTON and ANDOLFATTd _;O_OJS) model (Figurds 8 and 1.2). As a consequence, the null
distributions of the neutrality statistics may differ. ®unferring the demographic history of a
population is a prerequisite for performing genomic scamss€lective sweeps, which has been
shown to be a challenging ta%L(YMLSet_ﬂ |;O_OL$).

Separating single selective sweeps from neutral model$¥hen the value of the selection
intensity a is large, the joint distribution of\ and w overlaps only partially between a model
of selection in an equilibrium population and the bottldnemdel inferred b,Lmd_w
). However, for smaller values afthe two distributions overlap greatly. A useful approach
for classifying an observation as either a neutral or seechodel is by combining thé and
w profiles. Here, we use the distance between the peaks andtetation ofw and/A. These
features can be used in a classifierg(SVM). Training requires that there are known instances
of both neutral and selective models. For simple selectig reeutral models this is currently
possible, using coalescent-based programs. Howeveméins challenging for more complicated
scenarios. Forward simulations provide greater flexibivhen selective events occur in non-
equilibrium populations and they can be used efficientlymithe population size is relatively small
(i.e. on the order of thousands) or diffusion scaling appli |20_0_'}’ GHADEAU-

Hyam et al.i2 I_O—_Oji ).

The rationale for employing combinations &fandw is that under a selective model the two
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statistics assume high values close to the target of setecthis implies that the target of selection

can be localized accurately. Under selection models inlibguim populations this assumption is

met even for smaltr values. ModifyingSweepFindeto include a fraction of non-polymorphic
sites in the analysis increased the accuracy of the algoréhd the performance in separating
neutral scenarios from scenarios with selection. Furtbeggboth versions of the-statistic, the
constant- and the variable-size sliding window approahyary accurate for selection models in
equilibrium populations.

However, in severe non-equilibrium scenarieg(the estimated bottlenecksLoLmLm
LQOJS) an&lmw LQOJS)), when selection and past demographic changes
occur within the same model, the target of selection canagirbdicted, neither bweepFinder
nor by thew-statistic. The accuracy of the target prediction when aciele sweep has occurred
within the bottleneck period is comparable to that of rand®ah experiments. The reason is that
polymorphism valleys and short coalescent trees may exieadlarge genomic regions, and the
often used sweep signature of an excess of high-frequerroyedealleles vanishes. This result
should be taken into account when regions of strong and rgueitive selection are identified
in genome scans. Since natural populations can be desdtybeguilibrium demographic models
only rarely, the true target of selection may be tens of kik#s away from the predicted target.

In the case of a severe bottleneck, such as the model A, recantb (carrying the selected
mutation and the derived neutral allele) are most likelyrfed in the early period of the selective
phase (forward in time), but they will be lost with high prblldy due to drift after the population
size crashes. Therefore, high-frequency derived variawag not be observed. In contrast, the
frequency of rare variants (singletons) will dramaticafigrease. Therefore, based on site fre-
guency spectrum it is possible to discriminate, to somengxtesutral from non-neutral scenarios
(Table[1.3B).

The analysis of the likelihood curves &weepFindeican provide further insights into the
technical reasons that, in the cases of selection in noiHargum populations, make the prediction
of the target of selection challenginfweepFindermplements a model of selective sweep which
assumes that each observed SNP was existing prior to th@ sWweses the compound parameter
y= islog(ZN) (nameda in [NIELSEN et all 2005)) and the positior where the selective event
occurred. (Here denotes the recombination rate per bp). As FigsBgAppendix) illustrates,
low- and high-frequency SNPs affect the likelihood in a &mway by contributing high values
in the proximity of the sweep. Examining how the SFS changes a genomic region under

an equilibrium demographic model with selection and thgRNTON and ANDOLFATTd _;O_OJS)

model with selectiond = 2500), it is apparent that there is a dramatic increase afldss h— 1’
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in the proximity of the selective sweep in the equilibriumaeb(Figure[1.B), but a very slight

change of singletons in the non-equilibrium model. In theidagrium-model case the precise
localization of the sweep is possible, due to the spatidkpag of the rare and high-frequency
derived variants. However, in th_mw _;O_OJS) model with selection this
pattern vanishes, the high-frequency derived variantgpgsar and the singletons spread over the
whole genomic region. Thus, the target of selection cane@&dtimated accurately.

It should be noted, however, that the poor performancevegepFindeand thew-statistic un-
der the non-equilibrium models (bottlenecked populatieite selection) does not imply that the
performance of the tests is poor under any non-equilibrivodeh with selection. These mod-
els represent extreme cases that violate major assumpmifahg algorithms. The slightly im-
proved performance of the machine learning approach is @tieet fact that it uses information
from the sweep scenarios and, furthermore, it combinesnrdtion from both theo-statistic and
SweepFinder

Studying a scenario where a selective event took place ittkebeck period is of great biolog-
ical importance. Often, population bottlenecks are as$ediwith a major migration event. For
example, the bottleneck inferred by And SEPHAL] _LO_OJS) for the European population Df
melanogastedescribes the colonization of Europe from the African atreépopulation. There-
fore, positive selection may have occurred in the new hathitd contributed to the adaptation of
flies to the environmental conditions of Europe. As Tabl&sahd 1.4 show, the performance of
the tests (especially the SVM, and to a lesser extentStheepFinderis high when the sweep
occurs within the bottleneck. This suggests that the agbemtested in this study can be used for
the detection of selective sweeps in populations that hesently migrated to new environments.
Furthermore, Tablds 1.3 ahd1l.4 suggest that the power 6b85&d tests is higher than LD-based
tests.

A difficulty which arises from using simulations with seliect in order to train the algorithms
is that the parameters of the scenarios with selection daawn,i.e. the selection intensity,
the position of the sweep, and the time at which the sweep occurred. In the models tbat w
presented it was assumed that these parameters are knowevétpwhen real data are analyzed
these parameters are generally unknown, and moreover dheneo methods available that can
estimate them in scenarios with past demographic chandness, heuristic approaches have to be
used. First, the positioncan be assumed to be in the center of the fragment. Then, lhdaita
analysis overlapping windows should be used so that thdfrexist windows wherex is located
near their center. The time of the sweep should be reeeftiN). In the classical approach this
parameter is also implicitly specified by assuming that theep has just been complete. Finally,
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the selection intensity can be drawn from a prior unifornirdbsition. In this case the training set

is composed of a mixture of models with various selectioansities.

Recurrent selective sweep analysisRecurrent selective sweeps invalidate the assumption
that a single hitchhiking event has just been completedgtaeament Witlll_ElN_iEN_el_a.IJ ( ),
we find that for greater ratesof selective events per generation the power of the testeases
for a given%. One possible explanation is that for smaNea few strong selective sweeps
have occurred which affect a large portion of the genome &iftl the SFS of large genomic
regions. Thus, the local characteristic of the signatuiges#lective event is lost. Another possible
explanation is that for smallerthe selective events are old on average and the signatueteofise
sweep has faded awa{)ﬂNiEN_e_t_aJJhQ_Oltl)).

The variable-size sliding window approach increases tkaracy of thew-statistic to predict
the target of selection. However, the performance is stihrp In ~20% of the peaks above a
certain threshold found in a scan of a given genomic regioe,réal position of the sweep is
located within a 5-kb distance. The performance of the @ristize sliding window is about half
that of the variable-size approach and comparable to thdoraization experiments. A similar
improvement has been achieved with the modifteeeepFindealgorithm. RHH models imply
that adaptive substitutions occur at a time-homogenedasim uniformly in the history of the
population. This assumption may be violated in domestitatipoulations or in populations that
experienced environmental changes. Thus, an increase pétifiormance of the tests (lower false
positive rate, greater accuracy in target prediction) nesylt when RHH models are incorporated
within the SweepFindeor thew-statistic algorithms.

Recurrent selective sweep parameters such as the cdtadaptive substitutions and the de-
crease of heterozygosity have been estimated recéﬂ_wjﬁllet_d _;O_OLJB) anﬂ&d_m
( ) have estimated that heterozygosity has decreasgehmmic regions of normal recombi-
nation by 50% whereas the estimat(:lz_QMMJ_HEBS_o_N_e_t_al _20_0_'}’) an(JLALD_QLEA]ﬁ _20_0_'}’) is
about 20%i(e. % = 0.8). We examined the performance of 8weepFindeand thew-statistic
for various levels of heterozygosity reducti N';S =0.25, 0.5, 0.75, and 0.95, and selection co-
efficientss = 102 and 104 %Fi%urem . The power osweepFinders greater for the Land

NSEN et al

STEPHAN _) anc 2008) estimations than that lof M PHERSON et all _;0_0_'}’)

and ANDOLFATT _;O_O_J(), given that selection is strorg= 10~2). Fors= 10* the differences

in the performance oSweepFindefor various levels 01’% are small. The reason is that for
s= 10" the diversity is similar for values O{ﬂ% between 0.05 and 0.95. This may be due to
inaccuracies of the RHH theory wheins small or due to the stochastic trajectory of the beneficial
mutation l(ED_QP_a.D_d_GRLEEIlH_%[ZQ_OjL&EN_QERAD_dLD_QEL )-
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FIGURE 1.5: The distributions ofkyax for various levels of the decrease of heterozygosity and
s=10"2. Each distribution is discrete and the size of each bin haa ket to 6. A) Fov‘% =

0.05, 0.5, and 0.95 the cutoff values {®@pe
sensitivities of the test (percentage of true

rcentile) are 5.7, 9.7, and 11.9, respectively, and the
positiveggthe cutoff values are 0.74, 0.48, and 0.07.

The power ofSweepFinders greater for the

Land SEEPHAN (2006) and BNSEN et al, (2008)

estimations than those lof McPHERSONet all (2007) and AIDOLFATTO (2007) because selection

is strong 6= 10"2). B) Whens= 10"* the

amount of diversity is similar fofE# = 0.05, 0.5,

and 0.95. Therefore, the performancesSsfeepFinders relatively independent of thﬁ%.



41

Time of the selective sweepFor SHH models (in demographic equilibrium) we assume that
the selected mutation has reached fixation very recently sefective model that underlies the
SweepFindemlgorithm assumes a recent and strong selective sweep.efoherthe power of
SweepFinders expected to be higher for recently completed hitchhileffgcts. Indeed, simu-
lations have shown that the power decreases exponentitdlythe selective sweep (P. Pavlidis,
unpublished results). It should be mentioned that the deapdgc scenario that follows the selec-
tive sweep i(e. between the time of completion of the selective sweep andirtie of sampling)
affects the performance &weepFinder Simulations have shown that if the completion of a se-
lective sweep is followed by population expansion, the grenfince of the likelihood ratio test
implemented inSweepFinderemains high even after the completion of the selective pwEe
Pavlidis, unpublished results). The rationale behindighithat a population expansion decreases
the coalescent rate; therefore the return to the equilibi®kS is slower and the signature of the
selective sweep is preserved for a longer period. In cantoaSweepFinderwhich is based on
the low- and high-derived variants, thestatistic is more sensitive to the time since the comple-
tion of the selective sweep. Indeed, the LD pattern captbyethe w-statistic, vanishes rapidly
JEN_SEN_el_a.ILZ!_Oltl)). comparable to the fixation rate of the high-frequeterived alleles (Kv

and SrEPHAN; FRZEWORSKHZ_O_Oi; ENSENet alli2007b).

Overlapping selective sweepstn the present study we focused on non-overlapping sekctiv
sweeps. The RHH model we have used describes successiveraogerlapping selective events.
CHEVIN et all _;O_O;JB) have shown that two interfering selective sweeps magify the pattern of
linked neutral variation. A related process, when the targéselection are located closely to each
other in the genome, causes traﬁickibgRBy_a.nd_S_EﬂuAJJ ML&M_&DQ_&EBHAJJ |20_0_213). A
most extreme scenario, which describes the appearancaefitial mutations at the same site, is
described as ‘soft’ swee |20_0_$). Soft sweeps may emerge during the
evolution of organismsg(g.Plasmodium) with high mutation rat ). Conversely,
they may be of limited importance in the evolution@fmelanogasteor H. sapiensfor instance.
The patterns of neutral variation under these selectivessaes are different from those of single
selective events. For example, the skew of Tajinfa'soward negative values vanishes in the
interference scenarios described IN et al _;O_Oj;), and can be even positive between the
selected sites. In general, SFS-based approaches maynkaimeter overlapping selective sweeps
because the frequency of the class of polymorphisms innmgdrate frequency may be quite large.
In such cases, LD-based statistics can be useful becauséitudsuof extended haplotypes may
exist on the left and right sides of the selected redMlZ_O_Oi;l\/m—lﬂet_&ll ;0_Oji;

2007).
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Machine learning approaches in population genetics:Machine learning approaches are

widely used in a variety of applications from image procegdo classification of microarrays.
Here, we are interested in the subfield of machine learniagistrelated to supervised learning or
classification. Typically, in a classification problem arnmag set teaches the algorithm to predict
the class label of an input obje[:t (DA et QIHLO_OL&)J HASTIE et aI”;O_O_i). The goal is to decide be-
tween a selective and a neutral model. However, classifyidgtaset as either neutral or selective
is challenging because the parameters of the neutral aectiselmodels are unknown. Therefore,
parameter estimation is required prior to the classificatlo the cases that an equilibrium model
with selection is employed, the selection intensityan be estimated using thiswsoftware (Km

and SSEPHAN |20_Oj) or theSweepFinderlgorithm (given thap is known). To our knowledge,
currently the only method able to estimatgiven a non-equilibrium (stepwise) model with selec-
tion has been developed b;Lhnd_&EBHAh 2&0&3). On the other hand, several approaches exist
for the estimation of parameters in a neutral demogra hide‘n@!ggggﬂ lZQ_Od) EXCOFFIER

et aI.\;O_O;*; L and SEPHAJ m. ; 255'}). Usually, these approaches require
multiple loci in order to infer the demographic parametdra population. The next step in a clas-
sification problem is feature selection, which aims at usirsgibset of the features available from
the data. Here)\max , Wvax, and their combinations (distance between peaks and ataelof

w andA) have been used. CombiningandA is powerful in comparisons between equilibrium
models with selection and neutral non-equilibrium modeltemwthe selection intensity is small
Table[1.2). Alternatively, various summary statistiasch:asloml .L9_8§)’SD, |FA_Y&M|
.M)’SH or Zns M L9_9_+) can be used. Our choice is based on the factSWwaepFinder
uses SFS information whereas thestatistic is based on LD. The choice of the classificatichte
nique is important and depends on the problem and the natdine data. Here, we demonstrate
an application using the SVM classifier (with the radial led)ynas it is implemented in the ‘e1071
package of the R-project. To our knowledge, there are ndedud separating neutral from se-

lective scenarios that use supervised learning approadhésre work will provide insight into
the feature selection problem and will also evaluate théopmance of the supervised learning
approaches.



Chapter 2

Recent strong positive selection on
Drosophila melanogaster HDACG6, a gene
encoding a stress surveillance factor, as
revealed by population genomic analysis

Nicolas Svetet*, Pavlos Pavlidi§ and Wolfgang Stephdn
T Department of Biology Il, Ludwig-Maximilians-Universitylunich, 82152 Planegg, Germany

Molecular Biology and Evolution 2009, 26:1549-1556

2.1 Abstract

Based on nearly complete genome sequences from a varietgarfisms, data on naturally occur-
ring genetic variation on the scale from hundreds of locirttre genomes have been collected in
recent years. In parallel, new statistical approaches(aa¢heCLR andSweepFindetests) have
been developed to infer evidence of recent positive seleftom these data and to localize the tar-
get of selection. Here we apply these methods to the X chrome®fDrosophila melanogasten

an effort to map genes involved in ecological adaptationngJslight modifications of these tests
that increase their robustness against past demograpdmgjel, we detected evidence that recent
strongly positive selection has been acting on a 2.7-kloregi an ancestral African population.
This region overlaps with the 3’ end 6fDACGE, a gene that encodes a newly characterized stress
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surveillance factor. HDACG is an unusual histone deacsgylzeing localized in the cytoplasm.

Its ubiquitin-binding and tubulin-deacetylase actistguggest that HDACG is very different from
other histone deacetylases. Indeed, recent discovenesshawn that HDACEG is a key regulator
of cytotoxic stress resistance.

2.2 Introduction

Recent advances in population genomics allow us to detetpriats of strong positive selection
in the genome and to identify the targets of selection on ¢h&ef individual genes (reviewed in
[EAXLLLQLS_eLaJHZQ_O_é). Based on nearly complete genome sequences fromegyvatiorganisms
data on naturally occurring DNA sequence variation fromdreds of loci to entire genomes have
been collected in the past 5 years. Most of these studiesotiated orD. mela;@o)jaste(e.g.

GLINKA et aIH;O_O_é; QRENGO and %ﬁm and humans . ; INTER-

NATIONAL HAPMAP CONSORTIUMI2007). In parallel, new statistical tests have been deegelop

to infer evidence of recent positive selection from thesa éguvl and iEPHALl 2 : ENSEN
et aI.|LO_OL$;LN ELSEN et al“;QO;*).

These new tests are based on the hitchhiking mocigl RYNMRD SMITH and HAIGH _19741).

When a beneficial mutation arises in a population and goegdtdn driven by positive selection
(‘selective sweep’), theory predicts the emergence of aiBp@olymorphism pattern: (i) diversity
vanishes around the site of selection, (ii) the site frequeapectrum (SFS) of polymorphisms is
shifted toward low- and high-frequency derived variamwdm;lﬂ&m
M), and (iii) linkage disequilibrium (LD) is elevatedtime early phase of the fixation process

E@;L&Emu_emﬂlzgpb. Importantly, the width of the valley of reduced
variation is mainly determined by the ratio of the rate obmabination around the site of selection
and the strength of selection.

A multitude of studies has used the predictions of the hitah model to detect footprints of
positive selection in the genome of various organismsyegé the strength of selection, and map
the target of selectiori]_é&LLQLS_el_aJ“ZQ_O_é). However, demographic factors such as population
size bottlenecks may stochastically produce patternsaéntide diversity across the genome that
resemble those of selective sweeps. Therefore, a majdenbal of these analyses has been (and
still is) to distinguish the effects of selection from thasfedemography. Recent progress in this
area of research could be made based on the insight that dephygaffects the entire genome
whereas selection acts on individual loci. This improveal ribbustness of the tests for selection

mwmm@mm)
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The candidate regions of selection identified by these,thetgever, were generally very large

(often~ 100 kb) and contained many genes10). This is particularly the case for humaesy

|20_0_'}’). Although some progress has been maderasophila(PoolL et al
|2_0_0L$; JENSEN et QIHZ_O_OLH QRENGO and AGUADE |;O_O_‘}’), a major challenge ahead is to develop
strategies that help to narrow down the target regions etfieh such that it is possible to map the
site of selection to individual genes or gene regions. Thessential for ultimately understanding
adaptation at the functional level.

Here we use selection mapping to identify geneBimmelanogastethat may have been in-
volved in ecological adaptation. We were able to identify &Kkb region as the putative target of
selection that contains the last exonHIDAC6 harboring a ubiquitin-binding domain. HDACSG is
an unusual histone deacetylase with two catalytic domaidsslocalized in the cytoplasm. Its
activities (ubiquitin binding and tubulin deacetylase)knadistinct departure of HDACG6 from the
known action of other HDACs. Recent discoveries have shinahHIDACS is a key regulator of
cytotoxic stress resistance (reviewe(h_[mMHLAS_e_t_alHZQ_O_é). It appears to be both a sensor of
stressful environmental stimuli and an effector, which ra$ and coordinates appropriate cell
responses.

2.3 Materials and Methods

Drosophilalines and DNA sequencingDNA sequence data were collected from 12 highly inbred
lines sampled in Africa (Lake Kariba, Zimbabwe). Furthermy@equence data were obtained from
12 inbred European lines from The Netherlands. Both sangkedescribed in detail in IGNKA

et al. 2&1058). All Drosophilastrains were kept at 28 in glass bottles of 250 ml containing 80 ml
standard cornmeal and yeast medium under a 6-18 dark-lghe with 45% humidity.

DNA primers were designed based on bemelanogastegenome sequence (flybase) and
obtained from Metabion (Martinsried, Germany). Genomic/Aikbm each line was extracted
from pools of 20 females using the Puregene DNA isolation®entra System, Minneapolis).
Short DNA fragments of about 300 to 700bp long were amplifig@dtandard PCR using the Taq
DNA polymerase recombinant kit (Invitrogen, Carlsbad, JSACR products were purified using
the Exosap-It kit (USB, Cleveland) and sequence reactiare wonducted with ABI PRISM Big
Dye Terminator v1.1. Sequence data were then obtained byBaB3730 DNA analyzer (Applied
Biosystems +Hitachi, Foster City, USA).

Sequence editing and alignments were performed with the @&tAsoftware package, includ-
ing Editseq, Segman and Megalign (DNASTAR, Madison, USAjg@ments were performed
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using the ClustalV option of Megalign. However, in casesmabauous alignments, we manually
chose the most parsimonious scenario. Insertion and deletilymorphisms were excluded from

further analysis. Absolute positions of the DNA sequendieviothe Flybase release 5.10.

Mapping strategy: To identify and map the target of selection, we proceededlbsifs. First,
we selected a subgenomic region of about 70 kb on the X chromeghat contained several
ecologically interesting genes, including a gene encodipgtative antifreeze protei€(6227.
This region partially overlaps with the window 47L'LD_HDQ_S_ERHAJJ ( ). Re-sequencing
an additional (limited) number of short fragments of 50@-®&p in the 70-kb subgenomic region,
we found very low levels of variation across most of the ragio the European sample (data

not shown), while the valley of reduced variation in the A#m sample appeared much narrower;
i.e. the situation was similar as in the case of thaeghestandwapl regions|(®oOL et al |;O_O$;
BEISSWANGERet QIHZ_O_OE). To be able to localize the target of selection as pefcas possible,
we therefore decided to follow the same strateqy as inwthpl analysis (EEISSWANGER and
STEPHAN |2_0_033) and concentrated on the African sample (see ‘Staratalyses of a candidate
region of selection’ in the Results section). In a secong,ste narrowed this 70-kb region down
to 22 kb, re-sequenced this segment completely, and appkespecific tests for selective sweeps
to this region (see Results).

Outlier analysis: We used DnaSP 4.50.3 QRAs et aIH;O_O_é) to calculate the basic summary
statisticst, By, Tajima’s D (TAJIMA ), divergence, Fu and LiB (Fu and Li M) and
Fay and Wu'sH EAy_andJAd |20_0d)). Divergence was calculated between the sample frem th
African population oD. melanogasteand the available online release of hesimulansequence
(Flybase consortiuntittp://www.flybase.org ). The ancestral states were defined using either
D. simulansor (when not available) its close relatilze sechellia

We compared the mean value of each summary statistic of thd d@andidate region to its
average value obtained for the whole X chromosdmg&@o et all|;0_0;$). For each summary
statistic, we used the Mann-Whitney test to infer whetherrédgion represents an outlier compared
to the rest of the X chromosome.

Ascertainment bias correction: tlﬁRNMNﬁD.diN.S.EJ:L _ZQ_O_Jf’) describe an approach that

generates a uniform distribution of p-values when some @fgsumptions of the neutrality tests
are violated. They study cases when past demographic ellamésshaped the polymorphism
patterns of a subgenomic region, which is a biased sampledbas a priori information (for

example, from a genome scan). THBAC6 subgenomic region was selected based on the genes
in this region that may contribute to the ecological adaptadf D. melanogaster Even if such
a sampling is not random, it is unclear whether it generatgdés on selective sweep scanning
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and how to sample conditional on this biological informatio

Performing a genome scan analyﬁ&@d_w LQOJS) discovered a 100-kb fragment
that overlaps with theIDAC6region and showed evidence of recent positive selectidmeifcturo-
pean population db. melanogasterAmong the fragmen{s_lLand_S_EBHAJJ _ZQ_OAS) analyzed was
a 560-bp fragment located within th#DAC6 subgenomic region that contained no polymorphic
sites. This information was not considered important far ithitial choice of the 70-kb region.

However, we decided to include it into the analysisagsriori information making this analysis
more conservative. Thus, we simulate a sample of 24 line€(@pean and 12 African ones)
according to the demographic scenario inferrecuam .M). Conditioning on
the existence of a monomorphic 560-bp fragment within theopean sample, we create the null
distribution of the neutrality test statistics used in {hagper.

Composite Likelihood Ratio (CLR) test: The CLRtest kKIM and SEPHAEI |;O_Oi) was used
to infer selection. It computes the composite-likelihoata (AcLr) between a standard neutral
model and a selective sweep model. The null distributiornefdtatistic is derived using the ap-
proach described in the ‘Ascertainment bias correctiodfise (see also Figufe 2.1). This modifi-
cation follows a suggestion bmm_mh .LO_O_JY) who showed that the false positive
rate can be controlled if the correct demographic null maxlesed. For the generation of the sim-
ulated datasets we used the estimated value of the parafipe{r0499) under the demographic
scenario of Figure 211. Furthermore, the B test o{ thia ldnd iEPHAbl _;O_OJZ) method was per-
formed because it is more conservative. TeR test was also used to estimate the target site of
selection. However, its confidence interval could not beweined (in contrast to BSSWANGER
and SEPHAN _;0_0;43)), as population recombination rate was too high tosimulations of the
sweep model in reasonable times.

SweepFinder test: To infer selection, we also used tBaveepFindetest. It takes into account
the SFS of the whole chromosome (background SFS) in ordealtnlate the likelihood of the
neutral model. Non-polymorphic sites were excluded fromadhalysis, aJsMet_ill _;0_0;$)
suggest.SweepFindeuses the same principles as ER test: by comparing two hypotheses,
a model of neutral evolution and a model of a selective swhapjtst completed, it calculates
the maximum likelihood estimates of the position of the bierad allele as well as the strength
of selection. Additionally, it reports the likelihood rati\sg between the null and the alternative
model. Similarly to theCLR test, a null distribution is required to decide about theistiaal
significance of the selective sweep hypothesis. The maiarddyge of th&SweepFinders that a
specific population genetic model is not considered in tHehypothesis, but the SFS is derived
from the whole-chromosomal pattern of variatioe;, from the data itself.
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NA

FIGURE 2.1: The demographic model of the European and Afnpzgpulation oD. melanogaster

as it was inferred by Land SEPHAN (2006) and used in this study. The present European effec-
tive population size is approximateNeg = 10° whereas the African populatiolNf) is 8 times
larger. Backward in time the model can be described by a sédatleneck in the European pop-
ulation that took placeé; = 15460 years ago and lasted fer340 years. During the bottleneck
the effective population size of the European populatios decreased to 2200. Approximately
att, = 15800 years ago the European population merges with theakfipopulation forming the
ancestral populatioNa = Nap). Finally, the ancestral population decreases to a fiftheftresent
day African population a; = 60000 years ago.
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We have extended the original approach for calculating tgeificance threshold for the

SweepFinderAccording t _29_05) the 98" percentile of the statistibse denotes
the threshold value. Our approach, however, splits thenegi interest intdk fragments and for
each one the 109%’ percentile is used as the cut-off value, resulting in a \@eiaegion-specific
threshold. This approach helps to remedy the tendency @weepFindeto produce higheAsg
values at the borders of the region under study (P. P., urghda results). Here we choke- 10.
The demographic model of Figu@lluand SEPHA&] |2_0_0$) with the ascertainment bias de-
scribed in the ‘Ascertainment bias correction’ sectiongsdito create the null distribution of the
test statistics for all performed neutrality tests.

Estimation of the time since fixation of the beneficial allele The time since the fixation of
the beneficial allele was estimated by the methods desdlilli@?iZEWORSKh ) and SATKIN
and HUDSON _19_9_:{). For the Przeworski test, mutation ra#5kx 10~°/bp/gen LLl_and_S_EBHAJJ
) and recombination rate= 4.718x 10~8/bp/gen (@MERON et all ) were used. The
local parameters were estimated from a 925-bp long regicatéa between thé7and 9" exon
of HDACG6 [as exon 8 is very short (88bp), it has presumably no spetfedteon the parameter
estimates, and was thus kept in the analysis]. This regiatagts 10 segregating sites forming 8
haplotypes, and TajimaB = -1.74221. Two positions of the beneficial mutation weréetdsone
in the last exon oHDACG6 and one in the last exon €G9123

We also used the Slatkin-Hudson methmmm |L9_9_i) assuming a star-like
genealogy since the fixation of the beneficial allele. We thalis estimation on the DNA region
between positions 9.865 and 12.443 kb. In this region 19egeging sites were detected and
divergence td. simulands 0.056. To convert the obtained estimates into years, aenasd 10
generations per year for both methods.

2.4 Results

Standard analyses of a candidate region of selection: Tdierre@nalyzed here is about 70 kb
long. Itis located in a highly recombining portion of the Xromosomer( = 4.718 8/bp/gen) and
is relatively gene dense. This region contains 12 genespfivéghich have unknown molecular
functions CG15032 CG9114 CG9123 CG12608 andCG9169. The other genes have been
functionally characterizedyte Topl, dah, HDAC6E, CG6227 acj6, andPpl). In order to perform

a fine-scale analysis of the African sample, we sequencesidfoading (intronic or intergenic)
DNA fragments of 511 bp on average, in addition to the fouzadly sequenced TTO et al

) (Figurd 22). For each of these 19 fragments, basiorary statistics were calculated,
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averaged over the whole candidate region, and then compathd chromosomal average. Only
15 of the 19 fragments could be aligned widhsimulans

The region exhibits a strong reduction in nucleotide polyphaésm. On average the 259 frag-
ments sequenced &Met_iﬂ _;O_O;$) for the African population contained twice as many
segregating sites as the 70-kb candidate regien(i®001). rt and 6y were significantly lower
than the chromosomal average<(p.0001 for both). As can be seen in Figlrel2.2, Becurve
is roughly U shaped (with a minimum between 10 and 15 kb), @ two positions at -10 and
around 40 kb where divergence is very low. In general, diecg is rather high in the region of
reduced variation between positions 0-22 kb(09).
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FIGURE 2.2: Nucleotide diversit§y (solid line) and divergence tD. simulans(dashed line)
across the candidate region for selection. The relativéipos in kb are on the X-axis. Gene
spans (according to Flybase) are at the bottom of the graph.

Furthermore, the region shows deviations from the chromma$@xpectation with regard to
the SFS. Indeed, TajimaB values are more negative than the X chromosome average3-1.1
vs. -0.667), which is highly significant (p = 0.001). Fourgmaents show significantly negative
Tajima’sD values (data not shown). In contrast, Fay and Wstatistic does not depart from the
chromosomal average. This illustrates that the SFS isrigdkitermediate frequency variants and
shows an excess of low frequency SNPs.

The number of haplotypes ranges from 1 to 12 in the candidgiem, but its mean is signif-
icantly lower than the chromosomal average: (2001). Similarly, haplotype diversity is signifi-
cantly lower (p< 0.001). LD as measured by tifgs statistic is relatively constant over the whole
region  0.3) and does not deviate from the chromosomal average.
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The gene€£G9123andCG12608are paralogs. Among the T2xosophilagenomes examined

' ) this duplication is present onlyllh melanogaster
Both copies are highly diverged frob. simulans Investigating the pattern of polymorphism at
both genes, we did not find evidence for extensive gene csioverfor instance, there is only
one SNP shared between both copies (out of 48 SNPs in to&§9123contains many non-
synonymous SNPs in relatively high frequency, most of wipicddduce drastic amino acid changes.
In addition, we observed some deletions in the coding regiae of which causes a frame shift
change. This may suggest tl@&59123s under weak functional constraints or even a pseudogene.

Application of the CLR and SweepFinder tests: In order to perform more advanced neutrality
tests, we defined a region of about 22 kb (corresponding tedfgment between absolute positions
15222319 and 15244496 in Flybase release 5.10, and togusiito 22 kb in Figure 2.2). This
region was then completely sequenced and subjected OLtRandSweepFindetests. TheCLR
test was marginally significant (p = 0.048) when the nullristtion of the statistid\c g was con-
structed from the demographic scenario of the African pafpah inferred bﬂ&d_m
_M) (Figurd 2]1). Figure 2.3A showig | r along the region. The beneficial mutation is esti-
mated to have occurred at position 11.378 kb relative to #ggriming of the 22-kb region, and
o = 2Nsis approximately 13076 (whei is the effective population size asdhe selection coef-
ficient). This value is much higher than most other reportgsheates, which is consistent with the
observed width of the valley of reduced variation and the flaat population recombination rate
4ANr is very high in this part of the genome.

The SweepFindetest was also significant (p = 0.034) for the 22-kb complesglguenced
region. In Figuré 213B we show thesg values along the region. Consistent with the result of the
CLRtest, three positions (11.315, 12.474 and 13.110 kb) shevhitfhest\sg values. The high
value around position 1.0 kb is probably not a target of sEle@s it is not confirmed by Tajima’s
D and theCLRtest.

Age of the selective sweepThe age of the sweep in the 22-kb region was estimated by the
Przeworski and Slatkin-Hudson methods (cf. Material andhdés). We used Przeworski’'s ap-
proach with two positions as input parameter values thaihaee the estimated selected sites:
position 11.787 kb gave a time since fixation of the benef@li@le of 63,334 years (95% C.I.:
23,382-628,432 years), while position 12.787 kb gave 3byEars (95% C.1.: 21,121-577,307
years). Using the Slatkin-Hudson method the age of the swaspestimated as 50,047 years.

These estimates suggest that the sweep occurred beforarbgean lineage split off from the
African one (about 16,000 years ago;dnd iEPHAbl _;O_Oji)). In order to confirm this hypothesis,
we re-sequenced the region between position 8.0 and 15r0Ikblines of a European sample from
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FIGURE 2.3: The likelihood-ratio values calculated by A¢ tbLR and B) theSweepFindetests
for a 22-kb subregion of the 70-kb region (for 1000 bins). liEa@ngle denotes the value of the
test statistics for a selective sweep model for which theebeial mutation occurred at that specific
position. In B) the dashed line depicts the constant thiestalculated according to INLSEN

et al. (2005), whereas the solid line shows the variable thres{selel Materials and Methods).
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FIGURE 2.4: Sliding window analysis of the fully sequenc@dkd region. Tajima’® and Fu and
Li’'s D are represented by solid lines (black triangles) and da#mesi(grey squares), respectively.
Each data point represents the midpoint of a 2000-bp longavirand the step size is 1000 bp. In
order to describe the neutral frequency spectrum we exdltidenon-synonymous sites from this
analysis.
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The Netherlands (Materials and Methods). We found that th®@ean lines were identical with

those of the African sample in a limited segment of approxétya2.7 kb from position 9.8 to
12.5 kb (except for three derived singletons and one doauldthis suggests, in conjunction with
the estimated age of the sweep, that the selected allelegmsdxported to Europe during the
colonization process.

Sliding window analysis: To corroborate our mapping results, we also performed anglid
window analysis on the SFS of the sequenced 22-kb regionui@ig.4). Indeed, significantly
negative Tajima'® and Fu and Li'sD values were found near the estimated targets of selection,
consistent with th€ LRandSweepFinderesults. The analysis revealed a small segment showing
a local reduction of nucleotide diversity and a SFS shiftedard low-frequency variants despite
normal levels of divergence. This region coincided with thé-kb fragment mentioned above.
Four exons lie in this region: the three last exondH@AC6 and a portion of the last exon of
CG9123. The relatively low value of Tajima®around position 19 kb is probably due to purifying
selection (causing the observed low divergence in thedmditunctional domain €€G6227 data
not shown).

In order to identify candidate substitutions under setectwe aligned the 2.7-kb region of
D. melanogasteto that of D. sechellia D. simulans D. erecta andD. yakuba As the 2.7-kb
region centers oRIDACG, we focused our investigations on this gene. HIBACGE introns were
poorly conserved between species but we obtained a goaahadigt of the 3 UTR and of the
three last exons of the gene. In the 3' UTR, we found 6 nudedtubstitutions specific to thz
melanogastelineage. In exon 7, we identified three non-synonymous gubishs specific tdD.
melanogasterAll of them cause non-polar to non-polar amino-acid repiaents. We also found
a deletion of 9 nucleotides that is specifiddomelanogasteat the end of exon 9. This exon also
carries two non-synonymous substitutions. One of themmgée® a drastic amino-acid change: a
valine to glutamic acid substitution. In addition, this stitution is in a region predicted by the
program MyHits fittp://myhits.isb-sib.ch ) to be the ubiquitin-binding site of HDACS.

2.5 Discussion

Evidence for a selective sweep in theIDACG6 region of African D. melanogaster: By com-
pletely re-sequencing a 22-kb region arolidAC6 in a sample of 12 AfricaiD. melanogaster
X chromosomes and applying two likelihood tes®i.R and SweepFinder we found evidence
consistent with the presence of a selective sweep in thisme§urthermore, our mapping showed
that the target of selection is most likely located in a 20/RNA region, centering on the last exon
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of HDACG.

The expected age of the sweep was estimated as 50,000 td6&80s, depending on the
method and input parameter values. This suggests that tbepsaccurred before the European

lineage split off from the African one (which occurred ab@6t000 years ago;

2006). Our age estimates are consistent with the observtiat the sequences of thREDAC6
alleles from our European sample are identical with thathef African haplotype in the swept
region of approximately 2.7 kb (except for some derived fosguency variants). Consistent with
the relatively old age of the selective sweep, we did nottiieany pattern of LD that is charac-

teristic of a sweep (according EQPFFELHUBER et al _0_0:43)) Interestingly, a PAML analysis

) of HDACG6 sequences from five species of themelanogastesubgroup found no

eV|dence of selection (data not shown). This suggests pihiat, to the inferred selective sweep,
HDACG6 has not undergone accelerated evolution in the past fewomifears.

It is clear that the evidence we provided is subjected to sameertainty. First, the results in-
ferred by theCLRandSweepFindetests may depend to some degree on demography. In particular
complex demographies could be a confounding factor (falmmse, population size bottlenecks;
PavLIDIS et al _;O_Oj;)). However, the demographic history of the Africapyplation we inferred
previously is probably relatively simple and may be sumaetiby an expansion modeli(and
STEPHAN |20_0¢|_|:LMEB_e1_al [20_0_'}’). Furthermore, we have improved the origiGaR test by
KiM_and SEPHAEI _;O_Oi) and have now taken demography into account. Fint@ikkyproblem
of demography is alleviated by applyisgveepFindermecause the chromosome-wide background
SFS is used rather than a specific model. Second, a more jeoecarn may be that if selection

is a frequent and major pervasive force our two-step apprizadnferring selection may not work
(HAHN ). Then a joint inference of selective and demographaiarpeters would be a more
appropriate approach. However, we emphasize that we s&argbry strong selection. In such

a case, our method of separating demography from seletierpected to be a reasonable first
approximation. Third, the uncertainty in the estimateshef target site of selection needs to be
mentioned. Unlike BISSWANGERanN EPHA _;O_Oj;), we were not able to obtain confidence
intervals of our estimates, as the rate of recombinatiohatDACG6region is too large. However,

based on the site frequency spectrum we were able to supprocbaclusion that the most likely

target of selection is located in a 2.7-kb region (betwesesitjpms 9.8 and 12.5 kb; see Figlrel2.4).
This result is consistent with the observation that the peam alleles are identical in this region

with the selected African allele. This latter argument, boer, requires that the sweep occurred in
Africa before the African and European lineages split, whicindeed supported by the estimated
lower bound of the age of the sweep»20000 years.
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Can the polymorphism patterns in tH®ACG6 region be explained by selective pressures other
than positive directional selection? It is possible thdeast part of the polymorphism pattern is

associated with the action of purifying selection. TherenfiO-kb region contains several func-
tional elements that give rise to low divergence levels{Féi2.4). In the identified 2.7-kb region
between positions 9.8 and 12.5 kb, however, divergenceesyawere in the range of 5-8% and
thus comparable to the average of the whole 70-kb region8%6 This suggests that purifying
selection is not likely a major cause of the observed patituariation in the 2.7-kb region.

Significance of the selective sweep in relation to the fumctf HDACG: The 2.7-kb region we
mapped by the selection approach overlaps with the lastseoidwo genesiiDAC6andCG9123
The latter is a duplicate 0£G12608 According to the alignment of the 12 fully sequenced
DrosophilaspeciesiDrosophilal2 GENOMES QONSORTIUNl |;O_O_+), this duplication event oc-
curred in theD. melanogastelineage. However, based on the polymorphism pattern meedio
above,CG9123is probably a pseudogene (or on its way to becoming one)hé&urtore CG9123
is located at the boundary of the identified 2.7-kb region.tiiégefore concentrate the following
discussion oiHDACG.

HDACSG is a uniqgue member of the histone deacetylase familigdrang a ubiquitin-binding

site and two catalytic deacetylase domainﬂg‘ﬂEL_el_aJJhQ_Od);LKHQ_QtLB_m_el_alHZQ_Qi . In ad-
dition, its localization in the cytoplasm is very unusual ém histone deacetylam
). It has been shown that its role is not limited to gegelegion. Rather, it is also important
for the general cytotoxic stress response. It is involvethentwo major cellular mechanisms de-
grading misfolded protein aggregates: autophagy and tigiitin-proteasome systemARDEY
et al.2007). HDACG6 detects and mediates the cytotoxic stresonsgpat three different levels.
First, its strong ubiquitin-binding ability coupled wittsiability to move along microtubules allows
HDACSG to transport ubiquitinated protein aggregates, fausring the formation of aggresomes.
Second, HDACSG is able to stimulate autophagy when the utigproteasome system is impaired
(PANDEY et al”Z_O_O_'}’), and finally it mediates the activation of heat shockegins (BOYAULT et all

). More generally, HDACS is believed to be involved ines@al other cell stress response path-
ways such as antiviral responsE@(ﬂLLLI_el_a.IHZQ_OﬂS). InD. melanogasterHDACG6 is mainly
expressed in an insect specific organ: the Malpighian ty TAPALLI etal |;O_O_‘}’). Its tissues
might be exposed to a broad range of cellular stress as iesayut most of the osmoregulation

and the excretion of organic solutes as well as xenobiéulﬂs:m(_and_DAﬂEﬁ M).

To identify possible targets of selection, we aligned HI2AC6 sequence of fiv®rosophila
species. It revealed th&atDACG carries a limited number db. melanogastespecific changes.
But we could neither confirm nor exclude that any of them is sitp@ly selected substitution.
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Indeed, any nucleotide change in the introns or 3' UTR cotfiecaHDACGSs regulation or ex-
pression and any of the non-synonymous changes obsenteeléxons could modify the protein’s
properties. However, in the last exontdDAC6 one non-synonymous substitution may well have
significant functional consequences: a valine-to-glutaauid replacement that occurred in the
D. melanogastelineage and is located in the ubiquitin-binding siteHIDAC6. Could this sub-
stitution affect the ubiquitin-binding affinity of HDAC6 anthus the response of cells to stress?
Ubiquitin-binding assay£ (ByAuLT et aIHZ_O_Ogé) comparing th®. melanogasteandD. simulans
alleles may provide an answer to this question.
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Chapter 3
Selective sweeps in multi-locus models

Unpublished work

3.1 Abstract

We study the trajectories of a new selected mutation thateffa quantitative trait which is deter-
mined by multiple loci. Then, given the trajectory, we azalyhe properties of the coalescent trees
around the new mutation and the neutral polymorphism pettemd compare them with those of
classical selective sweeps and those under neutralityjeclosies are generated with forward-
in-time simulations. Coalescent trees and neutral polpmem patterns have been implemented
conditioning on the trajectory. The fitness function of tteétis Gaussian. The model assumes that
the population size is finite; the recombination rate betwt®e adjacent loci is arbitrary. A ma-
jor objective of the article is to scrutinize the similaegiand differences between the multi-locus
model affecting a quantitative trait and the classical moets selective sweep model, and conse-
guently to study whether the statistical tests that have begeloped to detect one-locus selective
sweeps are useful for the multi-locus scenario. In the chseutii-locus scenarios, the trajecto-
ries of a new mutation, even beneficial, might not reach fxatiThe alleles of the loci compete
against each other and a polymorphic equilibrium may beiodda In general, the trajectories that
reach polymorphic equilibria generate different polyntosm patterns than the trajectories that
result in fixation. If the polymorphic equilibrium point hégen reached recently, then the coa-
lescent trees and the polymorphism patterns resemble #iesoent trees and the polymorphism
patterns of standard neutral model. Consequently, curreatrality tests would not be able to
detect a large proportion of selective events in multi-kmodels. On the other hand, if fixation
is achieved then the polymorphism patterns are similaréathssical one-locus selective sweeps
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and neutrality tests can detect the selective event.

3.2 Introduction

According to the classical one-locus selective sweep MMMMMMMM)

three distinct signatures of selection may emerge aftefixhgon of a beneficial mutation. First,
the level of polymorphism is reduced in the neighborhoodheflieneficial mutation; second, the
site frequency spectrum shifts towards low- and high-fezay derived variants, and third, linkage
disequilibrium is high on each side of the beneficial mutabat low across the selected site. For
ongoing sweeps the main signature consists of extendedti@ppk in high frequency (VGHT

et aI.|20_0j ). In the last decade, a multitude of tests have beenapeathat aim at detecting those

patterns in whole genome scansl n EPHA |20_OJZ Kim_and NELSEbj |;O_O_th NELSEN
et al.|2_0_04$; JENSEN et aIHZ_O_Olla RvLIDIS et alll2010). The next step after detecting genomic

regions that show signatures of selection attempts to ededitie genes that are located in the
region with an (advantageous) phenot)Jp_EE{EQ_el_aJ“ZQQSb).

On the other hand, a phenotype may be determined by a matitiigenes as well as the en-
vironment. Multi-locus population genetics has been dgwed in the last decades to describe the
evolution of multi-locus systems and phenotypes. Seledtiwces, such as directional, stabilizing,
or disruptive selection modify the genetic constitutiortteé population and drive the population
to either extreme or optimal genotypic values. In this stugtyfocus on stabilizing selection,
i.e. the type of selection toward a phenotypic optimum. Howelierg this optimum might not
coincide with the genotypic value of heterozygotes. Histdly, of special interest is the mainte-
nance of genetic variability under stabilizing selectibacause stabilizing selection is assumed to
control traits in various organisms, for example the colmatdén mice [(M_G_NJEBJ_el_a.I“ZQILb) hu-

man facial featuremBEmljﬂM), plant defense mechanis

), enhancer elementsbimosophila(LuUbwIG et al”;O_Oﬂ)), and vocalization in frogs and toads
_QERHARDII |L9_9_L}1); see alsb IEDLEé LQ_&JS chapter V) for examples and discussion. Further-
more, it has been suggested that this type of selection sihgenetic variatio

|L9_5ﬁ5; HSHEQILQ_SL&)). Studies that underpin this view are based on a larg#auof loci of very
small effect on the trait and they are supported by approkams that are focused on one arbi-
trary locus €.9. [BQ_B_EBLS_QAIIJ.Q_&é) By contrast, many quantitative traits exhibit highdls of
tic variability. This contradiction motivated resdears to study the role of mutatim

197

5 TURELL] |L9_8_4H§°\VR LETS and I—hsnm;@i B'JRGE§|L9_9:$ overdominance (B. -

MER ; 4), migration 2000), frequency-dependent selection through
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intraspecific competition for some resouri:eUtFBsEFiti;O_Oi;l BURGER and QMELFARBI i;o_o_zl),
genotype-environment interactidﬂ_lﬂ.(EEiEIE_a.ndlLRELJ.ﬂ |_’L9_8_43), or pleiotropy and epistasis.
Additionally, a lot of work has been put into exploring thelap of stabilizing selectiomper seto
maintain genetic variability of quantitative traits thaeaontrolled by multiple loci. Theoretical
focus was mainly on two-locus models, but also models of rti@e two loci have been analyzed.
Surprisingly, predictions about genetic variability degerofoundly on the number of loci. The
two-locus model predicts that genetic variability remamshe population due to stabilizing se-
lectionper se On the other hand, in models with more than two loci the vasiunt of genetic
variability diminishes. The reason is that the optimum camdached very closely by various ho-
mozygous genotypeE_(.&Q_EflthQ_Od), chapter VI) when there are more than two loci that cbntr
the trait. For the two-locus model and assuming a symmeiatiaity model €.9. BODMER and
FELSENSTE|N|_’I.9_6_'}’ LISARLJ_N_a.D_d_EEJ.JlMAN |_’L9_ﬂ)) it has been shown that there are nine equilib-
B_LLRQ_EJJ([ZQ_OA)) seven of which can be stable but not simultaneouslgsé& seven equilibria

spllt into four classeé (BRGER and GQMELFARB |L9_9§) they can be either polymorphic for both

loci, one of them, or totally monomorphic. The equilibriuraipts of the two-locus, two-allele
model can be depicted on a tetrahedlLQlAJEIﬁLN_and_EELQMANJ ML&LRQ_EELED_OA) page 23;
see also Figurle 3.1). The vertices correspond to the fixafitme labeled gamete, and frequencies
are measured by the orthogonal distance from the oppositedaoy face. Consequently, if an
equilibrium point is located within the tetrahedron (imtar equilibrium), then it is polymorphic
for both of the loci (and for all four gametes), since thealise from each face is positive. On the
other hand, an equilibrium point on one of the edges or estis monomorphic for at least one
allele. The equilibria points on the vertices are monomiarfidr the alleles in both of the loci; the

equilibria points on the edges maintain two gametes, bytdhe monomorphic for one of the alle-
les. Of special interest in the present study are the equailibat correspond to the fixation of one
of the alleles for at least one locus, namely the equilibnighe edges and vertices. Throughout the
article A denotes thé" locus andAjj the jth allele of theith locus. Figuré_3]1 illustrates a tetra-
hedron with the gametesiAAo1, A11A22, A12A21, and A2A2; on the vertices. An equilibrium
pointK on the edge (AtA22, A11A21) corresponds to i) absence of gametasAdi, and AxA 2o,
and ii) frequencies of gametesuéX\ZL A11A21 equal to the distances KKa and KKb, respectively.
WILLENSDORFER and BIRGE ) fully explore the equilibrium properties of the twazus,
two-allele model of Gaussian selectlon under the assumpfia symmetrlc fitness function with
respect to the double heteroygote. The analysi _ZM) is im-
portant because it provides the existence and stabilitgraifor the equilibrium points of the
model. Let A and A denote the two loci with alleles A, A1> and A1, Aoy, respectively. The
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A11A 21

A11A 22
A12A 21

A12A 22

FIGURE 3.1: The tetrahedron that represents the state $patiee two-locus two-allele model.
Vertices correspond to fixation of the labeled gamete; ar @dgresponds to the absence of the
gametes that are not located on the edge; a face correspotidsdbsence of the gamete on the
opposite vertex, and an internal point corresponds to anpadghic state for all the gametes

fitnesses of the nine possible genotypes are shown in TableThe genotypes AA21/A12A22
and Aq1A25/A12A21 are equivalent. Lexs, X, X3, andxy represent the frequencies of the gametes
A11A21, A11A22, A12A21, and ApAoo, respectively. Furthermor@y, i = 1,2,3,4 is the marginal

fitness of the gametes. Then, a classical re@ﬂ}gARLlN and FELDMAN/|[1970; WILLENSDOR-

FERand B'JRGER@) gives the recursion relations for the frequenciebémext generation as:

Wy =xW—niD, i=1234, (3.1)

wheren; = ng4 =1 andn2 = n3 = —1. D denotes the linkage disequilibrium and is defined as
D = x;%4 — Xx3. The average fitness W = 1 — d(x¢ +x2) — a(x3 + x3) — 2b(x1xz + XoX4) —
2c(x1x3 + Xox4). The system of Equatidn 3.1 cannot be solved explicitly §Rard Burger, pers.
communication). Notice that the model is deterministi,the stochastic effect of genetic drift is
negligible.

WILLENSDORFER and BURGER _EB) parametrize the model so that the effect of gametes
A11A21, A11A22, A12A21, and ApAzg are—yi/2,v1/2, —Y2/2, andy,/2, y1 > Y2 > 0; then, the
optimal phenotype is 0O for the double heterozygote.d; elenote the fitness for thg phenotype,
i.e.a1 = exp(—y1/w?) under the Gaussian selection functiosf. quantifies the strength of selec-
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Table 3.1: (A) Genotypic values and (B) fithesses for the sgmmfitness model

A B
A21A21  A2iA2  AxA A21A21 A21A2 A2A2
AvtA11 | —V1—Y2 Y1 Y1tV A11A11 | 1—d 1—b 1-a
A11A1 —Y2 0 \Z A11App | 1-c 1 1-c
AA1L2 | Y1i—VYe2 Y2 Yi+Y2 ApAp | 1—a 1-b 1-d

tion (s in WILLENSDORFER and B'J'RGE& _;O_O_é)). Furthermore, lai1o = exp(—2y1y2/o?) =
exp(—2y/Inailnay). Then, the terms, b,c,d in Table[31B can be represented as- 1 —
0102/0d12, b=1—01,c=1—03, d=1—0a102012. Thus,o; anday are sufficient to describe
the fitness matrix. In the Results section, we illustraté tha oy, and the recombination rate
determine the equ'librium properties of the model. Expleimulas are given by WLENSDOR-
FER and BURGER (2003) by linearization of Equatidn 3.1 at the equilibriumirngs (Equations
3.1,3.2a,3.2b, 3.8 W @)) Furthermore, we demonstrate that
initial frequencies for the Aand A locus determine to a large extent whether a new mutation in
locus Ay will be fixed. The symmetrical fithess model can be extendeshtilocus two-allele
model. Al-dimension matrix is required to describe the genotypicesland the fithesses of the
genotypes. Then, similarly to the two-locus two-allele mlpodve assume that the optimal geno-
type is thel -tuple heterozygote, the optimum is at 0, and that symnadtgienotypes to thetuple
heterozygote have symmetric genotypic values about theapt. Then, it can be shown that for
each locus the sum of the contributions of the two alleles is 0

Even if the equilibrium properties of multi-locus modelg arot in the focus of the present
study, they are relevant. They show that a selective sweegtiglways achievable when a quan-
titative trait that is controlled by multiple loci is undera@ssian selection. As mentioned above,
theoretical studies have shown that stable polymorphidibgum points are possible when the
trait is controlled by few loci € 4; BURGEEHZ_O_OL&), chapter VI). Therefore, it is possible that a
new mutation even if beneficial initially, will not fix in thegpulation but will remain polymorphic
as long as the optimum remains constant.

To our knowledge, the first effort that bridges quantitatiagt evolution and selective sweeps
was made by GevIN and HOSPITA _;O_Oj;). Their work was based on the seminal paper by
[LAJsLDﬁ 1983). Lande’s model focuses on one locus of major effedhertrait, and treats the
remaining loci of minor effects as genetic background fas tbcus. It is assumed that heritable
background variation is maintained in a constant amountddygenic mutation and recombina-
tion J_Ahuﬁ |l_9_ZELb,|_l_9_8_l3); also, the various loci that affect the trait anénked and there are
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no epistatic interactions. In this model, the joint evadatof the allelic frequencies on the focal

locus and the phenotype is determined by two difference teamsg namelyAq = q(—l—z\’,v%ﬂ_ and
AVES h\?vaavv whereq denotes the frequency of the allele on the focal lo@dslenotes the average

fitness of the populatiorg, the average genetic background value, bfaf the amount of heri-
table genetic variability. Analyzing the system of these wquations, Lande inferred stable and
unstable equilibrium points under various dominance s@&seand fitness functions.HEVIN and
HOSPITAL _ZQ_O_é) used Lande’s model to infer the deterministic ti@jgcof a beneficial mutation
that affects a quantitative trait in the presence of baakgtdamenetic variability. They studied both
directional and stabilizing selection and showed thatifxemeeds longer time in their quantitative
trait setup than in the classical one-locus model when genetic variability in the background is

absent). In contrast {Q_IEALI_N_a.D_d_I:D_S_BIIALI ZQ_OAE) the present simulation-based study assumes

an explicit number of loci that determine the trait as this\wane bJ{ BDMER and FELSENSTEIEL
19_6_'}’)]_ISABJ.LN_and_I:'EJ.J1MANJ 19_Zd))J_B.LB§_E£L 20_0j) chapter VI). Therefore, the assumption of

constant variability in the genetic background is relaxedesthe genetic background is modeled
explicitly.

Of special interest in studies of multi-locus models is thle of linkage disequilibrium and the
strength of selection. Previous work has shown that the rurmibd the stability of the equilibria
depend on the recombination rate between the loci and #egitr of selection. These studies have
been focused on two-locus systems and usually assume glgpgtation size, so that genetic drift
is negligible, and the frequencies of the gametes evolveratistically. In the present study we
analyze both the deterministic and the stochastic evaluifdhe multi-locus model by assuming
a finite constant effective population size.

3.3 Methods

3.3.1 The model

We consider a diploid population of sidg and a quantitative trait under selection. The quantita-
tive trait is controlled by-diallelic loci with no epistatic interactions on the phéyyge. The alleles
for each locus are codominant. The alleles atithéocus are labeled asifAand A,. Allele A
contributeswi; to the trait, and the contribution ofiAequals tow;, for eachi. Without loss of
generality the optimum for the trait is set to 0. The recorabon fraction between allelesand
i+1,isr; <0.5. Attimet = tg, the number of A alleles follows a binomial distribution with pa-
rameterpo(Ai1) andN, and the loci are in linkage equilibriund(= 0). The trait is assumed to be
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under a Gaussian fitness functioe, if the phenotypic value of an individual B, then its fithess

is given byW(P) = exp(—P? /), andw?’ determines how fast the fitness decreases away from the
optimum. Here, the phenotypic vallreis determined explicitly by the genotype. However, it is
straitforward to include environmental noise, assumirad the environmental component is nor-
mally distributed with mean 0 and varianoé (see Implementation). Individuals are considered
to be hermaphroditesge. an individual can represent both a male and a female; matirepndom.

The population evolves forward in time from= to to the present = 0 and generations do
not overlap. For each allelejAan initial frequencypg(Ajj) is assumed, and the mutation rate
is 0 (see Implementation for extensions of the model). Irhegmeration, the life cycle consists
of (i) the zygote phase, (ii) viability selection, where iwviduals are selected as parents for the
next generation according to their fithess value, (iii) rebmation for each of the parents where
gametes are formed, and (iv) random mating to form the zygotéhe next generation. In step
(iv), N matings take place amomygindividuals. Each mating produces one diploid offspring an
each individual can participate in multiple matings as aenwailfemale. In each generation, at the
zygote phase, the frequencies of the alleles of the locug@fast are recorded and the trajectories
are stored. Notice that in this model selection and driftsactultaneously in step (ii), where a
finite number of individuals is chosen as parents in the neregation. Also, random genetic drift
acts in steps (iii) and (iv): from a pair of gametes only ongorabinant is chosen to pass to the
next generation.

The next step proceeds backward in time. Assume a samglendividuals from the present-
day populationt(= 0). Given the trajectory of the A allele from the previous step, we implement
coalescent simulations frotn= 0 to the TMRCA of the neutral genomic region around the locus
A1. The backward in time simulations are based on the strutttwalescent mod :

[ZQ_O_EIJI_EALLNQ_&D_d_I:EBMLS_S_O_Aleld)) That means that the population
is subdivided into two genetic backgrounds: one class eflges is linked to the A allele and the
other is linked to the 4. Given the trajectory of the A and Ay, allele, the genealogical history
of linked neutral regions is considered separately forWeedlasses, while recombination allows
lineages to move between the two classes (as migration alio@ages to move in a structured
population). With the backward process the genealogieseofjenomic region around the locus
A1 are obtained. We assume that the genealogies of the genegmmraround the locusifare
affected only by the locus Aand not by the remaining of loci. This simplification makes th
backward simulations tractable, and allows us to use ddaikimulation softwareg(g. TESHIMA

and INNAN |2_0_0£);, BwvING and HERMISSOEL 291(1)). However, as it is mentioned in following

sections, this is correct only when selection is weak andoaitieinlinked.




66 Chapter 3
3.3.2 Summary statistics of the coalescent and SNP polymdrizms

Next, the genealogies are summarized. Summarizing theafpares facilitates the inspection of
their properties, and more importantly, the comparisonrte-lmcus selective sweeps or to neu-
trality. Four summary statistics have been used. Hirshe height of the coalescent tree which
measures the scaled time from the present to the MRCA of thelea Second.. the total length
of the coalescent is calculated by summing up the lengthd bfanches, and it is described by
scaled time units as well. Third, we developed two summaatyssics,b, andby, which measure
the balance of the coalescent when the root is placed at teafdhe MRCA b, is based on the
length of the subtrees on the right and on the left side of tR&CM; on the other handby uses the
number of nodes on the right and on the left side (Equéatidh 3.2

4n|_nR

4,
b — R, 4

| )

. (3.2)

I andlr denote the total length of the left and right subtree of theQWRrespectively, antl the
total length of the coalescent, andng is the number of nodes on the left and on the right side of
the MRCA, respectively, and is the total number of nodes (excluding the roag, n= 2k — 2,
wherek is the sample sizeb_. andby take values in (0, 1]; when they equal 1 the coalescent
trees are balanced perfectly, whereas smaller values @lespnate imbalance. The summaries of
the genealogies are related to the perturbations of thesoamt due to the action of selection. It
is well known that in the neighborhood of a beneficial mutatidirectional selection reduces the
height and the length of the coalescent, and increaseslaamce.

Furthermore, we used population genetics SNP summargtitatio describe the polymor-
phism patterns in a present-day sample, as we move alongdersce alignment away from the
A1 locus. Thus, we measure the level of polymorphism using threber of polymorphic sites.
Tajima’sD is used to summarize the site frequency spectrum. Additigivee implemented the
Depaulis and Veuille statisticE_MmdM‘ |L9_9:i3), which calculate the number of
haplotypesK) and their divergenceH). Those summary statistics facilitate the comparison be-
tween polymorphism patterns that are created by the madtid model and the one-locus selective
sweep. Similarly to the summaries of the genealogies, taeydescribe perturbations of the poly-
morphism patterns that are created by the action of recéattsm; it is well known that the level
of polymorphism and the number of haplotypes is reducedrardlie target of selection, the site
frequency spectrum is shifted towards low- and high-freqyederived variants which cause neg-
ative values of Tajima’®, and the linkage disequilibrium increases on each sidesobémeficial
mutation [(,KLM_and_&EBHAJJ : ML&ERHAM[ZM)
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3.4 Implementation

Forward simulations have been implemented in a C++ softanaaiable from the addre&sp://
bio.Imu.de/  ~pavlidis . N diploid individuals are implemented. The number of lbechay be
arbitrary. However, largex{ 20) values ol may require extensive computational time. For each
generationN individuals are chosen as fathers, ah@s mothers according to their fithess value.
For each gender this is done by multinomial sampling witrapeetersN and (Fy, F,...,Fn),
whereF; is the fitness of thé" individual normalized by the average fitness of the popoifati
Notice that the same individual is possible to be a motheledather. Then, recombination occurs
for each parent, and a recombinant chromosome is genelateditl pass to the next generation.
Random mating follows, where chromosomes from differemépis merge and form the zygote.
All measurements (frequencies of alleles, average fitre@gssage trait value etc) are calculated in
the zygote step.

The code provides further extensions to the classical twd4-docus models as this was de-
scribed in Introduction. First, it allows for different aptum values for male and female individ-
uals. Second, the optimum for the trait may change after tinftg follows either an exponential
distribution, or it is predefined by the user), to a new vaiuehich is either uniform or predefined
by the user. Additionally, mutations can be assumed to omrwgach locus. The environmental
effect follows the Gaussian distributiow(0, o2), or is absent. The effective population size is
constant, but an extension to changing (stepwise) populatze can be readily implemented.

3.5 Results

3.5.1 Trajectories of new variants

First, we study the two-locus two-allele symmetric mOdelMéfLLENSDORFER and B'JRGE&

_@) and obtain the deterministic trajectory of a varianhe locus A. The goal of this analysis
is to illustrate the role of the parameters of the model orfiaion of the A1 allele. Second, we
introduce random genetic drift by simulating the evolutefra randomly mating population with
effective population siz& = 10000. Then, we relax the assumption of the symmetricalstne
matrix and finally we perform simulations of a five-locus tatbele model in order to get insight
into the role of multiple loci.

Deterministic two-locus two-allele model with symmetricafitness matrix: We implement
the system described in Equation]3.1 and we record the fneguef the A; allele for 10000


http://bio.lmu.de/~pavlidis
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generations. The fitness matrix is symmetric in respectaatuble heterozygous genotype (Table
[3.1). The parameter values are drawn from uniform distigmstwhose boundaries are defined in
Table3.2. Following the analyssLo.fMLEN_&D_o_BEEBa.nd_&LRQ_EEL _20_0_213) the optimum value for
the phenotype is set to 0. This facilitates the illustratbthe results without the loss of generality.
The initial frequencies for the gametegAyj, i, j = 1, 2 are given as the produpg(A1i) po(A2j),
and therefore the initial value @f is O.

Table 3.2: The parameter values that were used for the diiongaof the two-locus two-allele
model

Parameter Value min. Value max.
r 0 0.5
Po(A11) 0 0.2
Po(A21) 0 1
w? 1 10
W11 -2 2
W21 -2 2

r: recombination fractionpg(A11): initial frequency of the allele £, po(A21): initial frequency of the
allele Ap1, w?: strength of selectionyy1: contribution of A1, Wo1: contribution of 4.

Figure[3.2 illustrates a subset of the obtained trajectaiesarious levels of final frequencies.
Notice that only 500 out of 10000 generations are shown lsecthe frequencies remain con-
stant. However, this cannot be generalized; there exjstct@ies which approach the equilibrium
frequency very slowly (not shown).

In Figure[3.2 we can see that, first, fixation ofi/Aallele is possible and this fixation may occur
fast (within 10 generations). These trajectories are aintd the trajectories obtained from the
classical selective sweep theory. Second, there is a sobisajectories that remain polymorphic.
Polymorphism is possible for various levels of equilibrifquencies, depending on the initial
conditions and parameters of the simulations. Furtherjrtbiere is a class of trajectories that
shows non-monotonic behavior. The frequency initiallyreases and then decreases to some
equilibrium value. Figuré€ _312B illustrates two non-monatotrajectories. In the first one, the
frequency approaches the value 0.5 in approximately teargéons, but then the allele disappears
from the population. The second trajectory approachesidixatind eventually it reaches the
equilibrium frequency 0.5.

At the end of 10000 generations a continuum of frequenci¢g, ij is obtained, though with
different probabilities. For example, frequencies in (0.89) are rare (Figufe 3.3). For the param-
eters of Tablé 3]2, the frequencies of the trajectories 41000 generations can be summarized
using the empirical cumulative distribution (Figlirel3.8pparently, the vast majority of the fre-
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FIGURE 3.2: Trajectories obtained under the determintstazlocus two-allele model with sym-
metrical fithess matrix. Only 500 out of 10000 generatiorssdrown. The trajectories have ap-
proached their equilibrium value and the frequencies reroanstant. A) monotonic trajectories,
B) non-monotonic trajectories.

guencies correspond to 0, 0.5, or 1.

In order to identify the factors that determine the fixatibthe A;1 allele, we compare in pairs
different sets of trajectories. For example, comparisotheftrajectories that reach fixation with
the trajectories that remain at frequency 0.5 gives insigbtthe parameter values that affect these
two sets. In the next sections the following two comparisamesmplemented: i) fixed trajectories
(fixation class) versus trajectories that stay at equiliiarfrequency 0.5 (polymorphic class), and
i) fixed trajectories versus trajectories where the alkele disappears from the population (ex-
tinction class). Throughout the text, the fixation classefireed as the set of trajectories whose
equilibrium frequency is in the range (0.999, 1], the eximtclass as the set of trajectories whose
equilibrium frequency is in the range [0, 0.001), and the/parphic class as the set of trajectories
whose equilibrium frequency is in the range (0.499, 0.50d)gss mentioned differently.

Fixation of the A allele corresponds to the equilibrium point at the vertisegA 1 or A11A2,
on the tetrahedron of Figute_3B.ile. the monomorphic equilibria. Additionally, it correspontids
the absence of £#A>1 and Aj2A»», i.e. equilibria at the edges of the tetrahedronILVENSDOR-
FER and BURGER (2003) prove that two conditions are required for the sitytif the monomor-
phic equilibria:r > 1 —ajazexp(v/Inazlnaz), wherea; anda; are defined in the Introduction,
andy; < 2y». Comparison of parameter values that result in fixation efAly allele with the pa-




70 Chapter 3

1.0

0.8
I

04 0.6

Empirical cumulative distribution

0.0 0.2

I I I I I
00 02 04 06 08 10

Frequency after 10000 generations

FIGURE 3.3: Empirical cumulative distribution for the figencies obtained after 10000 simulated
generations. A continuum of frequencies is obtained in][Ofhe vast majority of frequencies for
the A;1 allele are either 0, 0.5, or 1.

rameter values that result in polymorphic equilibrium foe ¥, allele shows that the parameters
cp =r—1+a0zexp(v/Inazlnaz) andc; = 2y, — y1 can separate the trajectories that fix from
those that stay polymorphic. The role@fis illustrated in Figuré 314A. Given a set of simulated
trajectories that are either polymorphic or result in figatof the A1 allele, we plot the values
for the parameter against the class of the trajectory (fisrdcbmparison class 1 means fixation,
and class 0 means polymorphic). Importantly, in this pla@ ftumber of trajectories in class 1
and class 0 is equal. A similar plot is shown in Figlrd 3.4Btfe parametec,, and in Figure
[B.4Cc; is plotted against,. In case that botl; andc; are positive (as required for the stability
of the monomorphic equilibrium), then 98.4% of the trajeigs belong to class 1. The stability
conditions for the edge equilibria are more complica@wmy
However, a simple condition for instability is that the edggiilibria cannot be stable when linkage
is sufficiently tight.

In addition toc; andc,, there are other parameters that provide information atheuequilib-
rium state of the trajectory. Initial frequencies of thg Allele close to the boundaries 0 or 1 yield
fixation of the trajectory for the majority of the simulat®rwhereas intermediate initial frequen-
cies lead to polymorphic equilibrium states (Figurd 3.9R)c example~76% of the trajectories
that initiate at frequency: 0.1 for the A1 allele lead to the fixation of the A allele. Since the
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FIGURE 3.4: The role of parametef andc, on determining the class of the trajectory for the
deterministic two-locus two-alleles model. Class 1 meeajs¢tories that result in fixation of/A,
whereas class 2 includes the trajectories that stay polyinmoat frequency 0.5. The color code
is as follows: green denotes class 0, black denote class &.lifénin A) and B) is the lowess
smoother function for the data, and is a proxy for the prdidgluf the class 1, given that its prior
probability is 0.5. For example, in B when is 0.4, the probability of the class 1 approaches 0.8.
A) The role ofc; on predicting the class of the trajectorgsis crucial when the comparison is
between monomorphic and polymorphic equilibria. In B) tbkerof ¢, is illustrated, whereas in
C) ¢ is plotted against,. The dashed lines in C) denote the axes0 andy = 0.

prior probability of each of the two classes is 0.5, the psedbr this event is< 2 x 10716, Let the
initial frequency of the A; allele be close to O for the trajectories that result in foatof allele
A1; (i.e. black points in Figuré 315B). Then, as illustrated in FigB®C, these points are located
at the proximity of the linex =y, i.e. the contributions of the 4 and Ap; alleles to the phenotype
are approximately equal. This means that the likelihoocdheffixation of the trajectory is high
whenw; 1 &~ Wo1, given that the initial frequency of A is low. Assuming that the initial frequency
of A1 is low, then the majority of the genotypes for the lacus will be A»A22, and a smaller
proportion will be A1A2». If the contribution of the A; allele isw,,, then the contribution of
the Ay, allele is—w»y, due to the symmetry of the model. Thus, initially the lAcus brings an
individual —2w»> units away from the optimum. Furthermore, since the infti@juency of the
A11 allele is small, the majority of the genotypes at theldcus will be A2A12, and a smaller pro-
portion will be A11A12. From this initial state, there are two pathways for the pagon to move
towards the optimum. The population will move either tovgatde genotype AA22/A11A22
through the genotype AA22/A12A 22 or towards the genotypeibA»1/A12A21 through the geno-
type A12A21/A12A22. Notice that ifwi; &~ wpj, then the two previous final genotypes are optimal.
Thus, in this case there is a competition between the twonzgth, and consequently between the
A11 allele and the Aq allele. Given that the initial frequency of theg Aallele is small, then fixation
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of the A1 allele occurs when the frequency of theiAs also very small; otherwise theAallele
out-competes the A allele and the final state is the polymorphic equilibriumisTis also shown

in Figure[3.5A. When the initial frequency ofiAis very small (as it is required for a classical
selective sweep), then the probability of a trajectory tieaults in fixation of A; is diminished.
Furthermore, comparing the lowest frequencies for the allele in class 0 and class 1, we ob-
serve that the lowest initial frequency ofAin class 1 is at least one order of magnitude greater
than in the class 0 (6 x 102 versus 11 x 10~°). This means that classical selective sweeps (as
described by MYNARD SMITH and HAIGH _M)) may be rare under the symmetrical fitness
model compared to sweeps from standing genetic variation.

Another way to explain these results is the following. As ti@red above, assuming that the
initial frequency of A1 is low, then the majority of the genotypes for the lacus will be ApoA2».
Also, for the A locus the majority of the genotypes will bg A\ 1. Given that the trajectory will
result in fixation of the A; allele,i.e. that the final state for the Alocus will be A11A11, then
(under the symmetric model) it is required that ~ w1, so that the AjA1; genotype will cancel
out the effect of the ApA22 genotype on the phenotype, and it will bring the individualghe
optimum. If the difference betweem ; andws; is large then the only optimum genotype is the
double heterozygote.e. fixation of the A;; allele is unlikely. When the initial frequency of the
A, allele is close to 1, then the previous argument holds when~ —ws»1 (blue points in Figure
[3.5C).

A B C
- S — - g — NS 6 commmm— S N
5 s § = 5
o ° o ° Qo 4
Lo RO =
T S 1 S £ 1 5
+— +— O ©
5 3 - 5 3 - 5
2 o 2 o < 5
@ o ] ® S ] %
@) o =
g I I ) I g I ) I I I < c|\‘
0.00 0.05 0.10 0.15 0.20 00 02 04 06 08 10 -2 -1 0 1 2
Initial frequency of the A, Initial frequency of the A, Allele A;; contribution

FIGURE 3.5: The role of parametepg(A11) andpo(A21) on determining the class of the trajec-
tory for the comparison of the fixation class versus the palyhic class. The line in A) and B)
represents the lowess smoothing function for the data. As/shn A), for very small values of
po(A11) the probability of obtaining a trajectory from the fixatiolags decreases considerably. In
B) the initial frequency of A, po(A21), sShows a non-monotonic behavior: small and large values
of po(A21) make possible the fixation of the;A In C) we can see how the contributions of the
alleles interact. Whew;1 ~ w»1 then it is possible to obtain trajectories that reach fixatio
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Even though the parametersandc, can separate the trajectories that result in fixation from
those that remain polymorphic, they cannot disentangl¢idmdrom extinction of the A; allele
(Figure[3.6). This is because the obtained equilibria aleeemonomorphic or at the edges.
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FIGURE 3.6: The role of parametey andc, on determining the class of the trajectory when class
1 and class 0 represent fixation and extinction of the #lele, respectively. The color code is as
follows: green denotes class 0, black denote class 1. TaériA) and B) is the locally weighted
scatterplot smoothing (lowess) function for the datag@eLAND| [1979), and is a proxy for the
probability of the class 1, given that its prior probabili$y0.5. A) The role ot; on predicting the
class of the trajectory. In B) the role of is illustrated, whereas in @) is plotted against,. The
dashed lines in C) denote the axes 0 andy = 0. As expected;; andc, cannot separate fixation
from extinction for the A; allele in the case of the symmetrical fithess model.

Figure[3.Y reveals that the initial frequency of thg Allele is important for the equilibrium
state of the trajectory. In particular, it shows that low aigh initial frequencies of A; may lead to
fixation of Aj1, whereas intermediate frequencies result in the extinaifd\11. Notice that in this
comparison, the contributiong 1 andw», are located on the diagonals= y andx = —y for both
of the classes. This is because in equilibrium states thetgees A1A22/A11A2, are optimal for
the case of fixation, and the genotypesA,1/A12A21 for the case of extinction of thejA allele,
i.e.homozygous states for both of the loci. The genotypga®\da/A11A22 and Ai2A21/A12A 22 are
away from the optimum (given that; 1 is not 0) and therefore it is improbable to dominate in the
equilibrium state. Based on the previous arguments we maynas that the double homozygote
dominates in the equilibrium state. Thus, it is requiredorder for the phenotypic value of the
individuals to be near the optimum, that the contributieag andw.» are in the proximity of the
diagonaly = x andy = —x (Figure[3.7B).

Stochastic two-locus two-allele model with symmetrical fitess matrix: In this section we
study the behavior of the stochastic model when the fitnessximsymmetrical. The population
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FIGURE 3.7: The role of parameteps(A11), po(A21) and allele contributionss; andwsy; on
determining the class of the trajectory for the comparismnfixation class versus the extinction
class. The line in A) and B) represents the lowess smoothingtion for the data. As shown
in A), for very small values ofig(A11) the probability of obtaining a trajectory from the fixation
class decreases considerably. In B) the initial frequeiéy-g, po(A21), Shows a non-monotonic
behavior: small and large values p§(A21) make possible the fixation of the;A In C) we can
see how the contributions of the alleles interact. When~ w»; then it is possible to obtain
trajectories that reach fixation, but also trajectoriesneltlee A 1 disappears from the populations.

sizeN = 10000. The simulation parameters are similar to the detestic two-locus two-allele
model with symmetrical fithess matrix. We use the averagguiacy of the last 500 generations,
fs00, to define the equilibrium frequency. This is because thgufeacy of the A; does not remain
constant but fluctuates due to random genetic drift. In 68, we plot the empirical cumulative
distribution of thefsqo. Comparing Figuré 318 with Figufe 3.3 we can see that thegstimm of
trajectories with the equilibrium frequency 0.5 is largedgluced in the stochastic model. This is
expected as a consequence of random genetic drift, whighgdtine frequency of the trajectory
towards its absorbing state.

The trajectories we obtain in the stochastic model are amtd those of the deterministic
model. Figurd 3]9 illustrates trajectories fluctuating atious equilibrium levels. In particular,
Figure[3.9B shows non-monotonic trajectories, where thguency of A; approaches the value
0.5 but eventually it disappears from the population.

In order to determine the importance of various parametelet them against the class
of the trajectory. As previously, three classes of trajeetoare used in two comparison sets: i)
trajectories that result in fixation versus trajectoriest #§tay in a polymorphic equilibrium, and ii)
trajectories that result in fixation versus trajectories tiesult in extinction. The definitions of the
three trajectory classes (fixation, polymorphic, extimgjiare given in the sectiobeterministic
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FIGURE 3.8: The empirical cumulative distribution for thgudibrium frequency of the stochastic
two-locus two-allele model.
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FIGURE 3.9: Examples of trajectories in the stochastic meus two-allele model. 1000 out of
10000 generations are shown. A) Trajectories at varioudiledqum levels. B) Non-monotonic
trajectories that approach the value 0.5 but eventuallyatlete A4 is getting extinct from the
population.
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two-locus two-allele model with symmetrical fitness matrix For the first comparison set, the

relation of six parameters with the class of the trajectsgdapicted in Figurie 3.10. We observe that
the initial frequencypp(A11) of the Aq; allele, the strength of selectian?, and thec; parameter
reveal a linear relationship with the frequency of obtagnantrajectory of class 1. On the other
hand, the initial frequencpo(A21) of the Ap1, and the contribution of the alleles Aand A1 are
non-linear. In particular we observe that large absolukeegfor the contribution of A& and small
absolute values for the contribution of Afavor the fixation of the A allele against a polymorphic
equilibrium state (Figurg_3.10).
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FIGURE 3.10: The relation of six parameters to the class eftthjectory. The line in each
subfigure represents the lowess smoothing function of ttee @3 The initial frequency of the A
allele. B) The initial frequency of the A allele. C) The parametes® which defines the strength
of selection. D) The contribution of the allele, Ato the genotypic value. E) The contribution of
the A1 to the genotypic value. F) The parametgr The red line represents the lowess smoother
function for the data of the plot. Black points represenssla(trajectories that result in the fixation
of A11), whereas green points represent class O (trajectoriesebiat in a polymorphic state for
the Aq1).

Comparing the plots from the stochastic simulations withdbterministic simulations (for the
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symmetric fitness model) reveals that larger values of tharpetery’ (weaker selection) result in

a higher frequency of fixed trajectories. However, the rdéledis more crucial for the stochastic
simulations. For small values of theé (1 < w? < 2) the frequency of the polymorphic trajectories
is ~ 88% in the stochastic set, ard66% in the deterministic set. On the other hand, for large
values of thew? (9 < w? < 10) the frequencies are@% and 38%, respectively. This shows (see
also Figuré 3.T0C) that especially in the stochastic mdaeirequency of polymorphic trajectories
is very low when selection is not strong enough, whereaseard#éterministic model the relation
between thew? and the class of the trajectory (fixed versus polymorphigjosso crucial. The
reason for this result is that in order to preserve the pohaimic state of the trajectory, selection
has to overcome the effects of recombination and randontigehét in the stochastic set, but only
the effect of recombination must be overcome in the detastitrtrajectory. Therefore, selection
needs to be stronger in the stochastic simulations in ocdezsult in a polymorphic equilibrium
state. This is especially true for the polymorphic stateiadothe frequency 0.5 (see Discussion).
Regarding the relation between the contributions of eachiddo the genotypic value, the results
are similar to the deterministic model: the parameter \&faethe trajectories that fix are located
in the proximity of the two diagonals1; = w11 or wi1 = —Wspp depending on the initial frequency
of the allele A1 (see the sectioDeterministic two-locus two-allele model with symmetrich
fitness matrix).

The following results have been obtained for the compartdothe fixation class versus the
extinction class in the stochastic simulation set. Thesrolew? andc; are not critical (Figure
[B.11). This means that small and large values ofaRéave similar effects on the class of the
trajectory. In this comparison both of the sets are assstaith monomorphic (absorbing) states
of the alleles. The strength of selection (at least for tHeegtested here) is not crucial, because
maintaining either of the classes does not require strotegxtsen. The importance of; has
been explained in the secti@eterministic two-locus two-allele model with symmetricafitness
matrix . In brief, c; is not informative for disentangling the monomorphic efpui. Interestingly,
the roles ofw;1 andws1 have been inverted in this comparison. Values close to Ossecated
with class 0 for thewy1 and with class 1 for thevp;, whereas the relation was inverted in the
comparison of the fixation class versus the polymorphicsclas

Deterministic two-locus two-allele model with generalizd fitness matrix: In this section
we relax the assumption of symmetry of the fithess matrix. @drameter space is given in Table
[3.2. Essentially, the difference between this model angynemetrical fitness model is that there
IS no restriction on the relations between the contribiohthe alleles (see Introduction for the
restrictions in the symmetrical fithess model). Thus, alirfalleles A1, A12, A1, and A may
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FIGURE 3.11: The relation of six parameters to the classefridgectory for the comparison of the
fixation class versus the extinction class. The line in eadfigure represents the lowess function
of the data. A) The initial frequency of the;Aallele. B) The initial frequency of the A allele.

C) The parametes¥ which defines the strength of selection. D) The contributibthe allele
A1; to the genotypic value. E) The contribution o$#to the genotypic value. F) The parameter
c1. The red line represents the lowess smoother function ®idtta of the plot. Black points
represent class 1 (trajectories that result in the fixatioA 1), whereas green points represent
class O (trajectories that result in the extinction @f)A
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assume any value in the parameter space [-2, 2].

The shape of the trajectories in this model is similar to §rarsetrical fithess matrix model.
The number of trajectories where the;fallele disappears is similar for both models. However, in
the case of the generalized fithess matrix model, the t@jestthat result in the fixation of the;A
allele occur more often than in the symmetrical fithess moteiks is shown by the comparison of
the empirical distributions for the frequency of the trageies after 10000 generations (Fighrel 3.3
and Figuré_3.72). In the symmetrical fithess model (for theupeeter values studied here)l8%
of the trajectories are fixed, whereas@sPo of the trajectories are fixed in the generalized fitness
model. On the other hand, less trajectories stay at equitibfrequency 0.5 (Figure 3.112). This
could be expected because in the generalized fithess mbdealptible heterozygous genotype is
not associated with the highest fitness.
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FIGURE 3.12: Empirical cumulative distribution of the frezncies of the trajectories after 10000
generations for the deterministic two-locus two-alleled@assuming a generalized fithess matrix.
In contrast to the symmetrical fitness model, whefieb% of the trajectories fix, in the generalized
fithess model 3465% of the trajectories reach fixation. On the other hand,péreentage of
trajectories that stay at equilibrium frequency 0.5 is denal

The role of parameters andc; in disentangling fixation from the polymorphic class is not s
clear as in the symmetrical fithess model. As shown in Figuk&,3ncreasing values fax result
in an increasing probability for the fixation of the allelg;A However, this is not as clear-cut as
in the symmetrical fitness matrix model (Figlirel3.4C and Feg113C). Furthermore, the initial
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frequencies of A; and A1 do not have an impact on the fixation of the trajectory. Theelstw
frequency of the A allele observed is.8 x 10-°, much lower than the minimum frequency of
the A1 allele in the symmetrical fitness modél1 x 10-2). Additionally, the patterns observed in
Figure[3.1BC regarding the contributions of the allelehtopghenotype in the symmetrical fitness
model are not observed in the generalized fitness model. mm&uy, the results indicate that in
the generalized fithess models classical selective sweapsréire variants may occur more often
than in the symmetrical fithess model. However, there ismpk relation between the parameters
that determine the fate of the trajectory. The results andai when comparing the fixation class
versus the extinction class.
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FIGURE 3.13: The roles of parametersandc, in the deterministic two-locus two-allele model
with generalized fitness matrix for the comparison of thetidraclass versus the polymorphic
class. The line in A) and B) is the lowess smoothing functibthe data.c; is informative for the
class of the trajectory (in A). On the other hawrgd,(in B) and the combination; and ¢ (in C)
appear to be less informative.

An informative quantity for disentangling trajectoriesvitmich A1 is getting fixed from those
in which it stays polymorphic or disappears is the mean Waie in the beginning of the evolu-
tionary trajectory. For mean initial trait values closehe bptimum value 0, trajectories result in
either extinction or polymorphic equilibrium for the;Aallele (Figurd_3.14). On the other hand,
when the initial mean trait is far from the optimum, then fixitme A1 allele becomes more prob-
able. When the mean value for the trait under selection isrdan the optimum, then the allele
A11 can be beneficial. On the other hand, when the populatiomeady at the optimum or close
to it, then the A1 allele will not be favored in general.

Stochastic five-locus two-allele model with symmetric fitngs matrix: In this section the
five-locus two-allele models is analyzed. The parametetesgizat we have used is a direct exten-
sion of the two-locus model. Therefore, the contributigp of each A, allele,i=1,...., 5isin
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FIGURE 3.14: The effect of the initial trait value on the fatiethe trajectory. The line represents
the lowess function of the data. When the initial mean traltig is close to the optimum then
the A1 allele fixes less often than when the mean trait value is éanfthe optimum. Results are
similar when the comparison is between fixation versus pohptic trajectories or fixation versus
extinction trajectories.
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[-2, 2] and the contributionvi> of the A allele is equal tawiy, as it is required for the symmet-
rical fithess model. All the remaining parameters are sintdahe two-locus two-allele model.
The empirical cumulative distribution of thigoo is shown in Figureé3.15. In the five-locus model
the proportion of the equilibrium trajectories is reducemnpared to the two-locus model, and
monomorphic states are obtained more frequently than thddaus model.
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FIGURE 3.15: The empirical cumulative distribution of theefilocus two-allele model with sym-
metrical fithess matrix. Compared to the two-locus modelfitre-locus model shows an increased
proportion of monomorphic trajectories.

In contrast to the two-locus two-allele model the pairwisktions between the contributions
of the alleles do not show the patterns that were observedurdé{3.10. This is because more
than two loci determine the phenotype. Therefore, pairng@m®parisons may reveal no infor-
mation about the relations of the contributions that arelireg for the fixation of the A allele
(Figure[3.16). Furthermore, as Figlre 3.16 shows, the &egy of fixed trajectories depends on
the initial frequency of the £ allele. However, the dependency is not so strong as in thddouws
model. The effect ot is similar to the two-locus model. Strong selection is regglin order to
maintain the polymorphic state. Comparing the results fteentwo-locus and five-locus models
we conclude that fixation of the4A allele occurs more frequently in the five-locus model than
in the two-locus model. This is because heterozygote statemaintained efficiently only when
strong selection is applied.
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FIGURE 3.16: The role of various model parameters in deteingithe class of the trajectory for
the comparison of the fixation class versus the polymorghgasc In contrast to the two-locus two-
allele model the initial frequencgo(A11) is not so critical for the class of the trajectory. Tdé

is related linearly to the class of the trajectory, wheréaswy 1 shows a non-monotonic behavior,
similar to the two-locus two-allele model.
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3.5.2 Coalescent simulations conditioning on the trajecty of the A4 allele

In this section we perform coalescent simulations in ordesfitain i) the genealogies and ii) the
neutral polymorphism patterns in the neighborhood of théo&us. The results in this section are
approximate because of two reasons. First, conditionintherfrequency of one allele implies
that the coalescent rates of all the genotypes that carsydtele are equal. However, in the
case of multiple locus models this is not true. For exampile coalescent rates of the Lallele

is different when it is located on the gametegAy1 and Ai1A2» since the dynamics of these
two gametes is different (see Equatlon]3.1). This is alsevehia Figure[3.1l7, where a random
pair of trajectories for the AA21 and A1A22 gametes are drawn for the deterministic two-allele
two-locus model with symmetrical fitness matrix. The growate of these trajectories and their
equilibrium frequencies are different. Therefore, theleseent rate of the A allele is depending
on the gamete that carries it.
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FIGURE 3.17: The growth rates for the #A2; and Ay1A 22 trajectories are different. TheiAA 21
trajectory grows faster than the; #A 2, trajectory. Therefore, the coalescent rate for the allale A
is different when it is located on the gametg;A21 or on ApA2).

The second reason is that both loci And A affect the dynamics of a neutral locus, when
the recombination fraction is smaller than 0.5. Thus, sating) the genealogy of a neutral site
would require tracking the frequencies of all the gamete&ward in time instead of tracking the
frequency of a single allele. Such an analysis is beyonddhés@f the present article. Combining
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the two previous arguments indicates that the results efgction are valid mainly for cases of

weak selection and not too tightly linked loci.

Properties of the coalescentGiven a trajectory, coalescent simulations require to ifp#oe
time that the backward process is considered. For examigk) g trajectory from Figurie 3.9 the
genealogies will be strikingly different if the backwardpess initiates 100 or 5000 generations
after the onset of the A allele. Thus, an arbitrary time point is required, whichresgnts the
beginning of the backward simulation process. Here, we hesesl 100 generations after the
trajectory has reached its equilibrium frequency. Thisetipoint is temporally close to the onset
of the Aq1 allele. Therefore, the signature of the trajectory on thatnad¢ polymorphisms is still
present on the data. Backward simulations have been pextbusing a modified version of the
software mbi(IitLLMA_a.nd_luNAﬂ [ZQ_O_EIJ). Our mbs algorithm implements the infinite site model,
in contrast to the original software, and it calculates amighots statistics related to the coalescent
trees, such as the height, the total length, and the balanttes @oalescent (see also Equation
[3.2). For the coalescent simulations we have used parasmeiated to human data. Assuming
that the mutation ratg = 10~ per nucleotide per yeae(g. [ZHAQ_eI_aJHZQ_Oﬁé) therB = 4ANu=
0.001 per bp per generation. The raptB = 1. The effective population sizZd = 10000 and
remains constant. Simulations are performed for a 0.5-Mibgec segment. The Alocus is
located on the middle of the simulated segment. The sampeisi50. For a given equilibrium
frequency-bin (see below), we have chosen randomly onectaly whose initial frequency is
below 0.001. This is done in order to resemble closely a Be¢éeevent of a new variant. For a
given trajectory, 1000 coalescent simulations are performinally, the summary statistics for
the coalescent trees are computed at the recombinatiokgmiess for each simulation, and the
results are binned. For example, if the positioas= 103989,x, = 103995,x3 = 105000 are
breakpointsi(e. the genealogy may change), and the bin size is set to 100 xihand xo will
be in the same bin (1039), whereas #aewill be in a different bin (1050). The results from the
same bin are averaged over the whole set of simulations. Yé&satdhis process for four sets
of trajectories in which the equilibrium frequency is (i) @) 0.9 to 1, (iii) 0.3 to 0.4, and (iv)
trajectories that show the non-monotonic behavior. Theltepresented here are obtained from
the analysis of the two-locus two-allele stochastic modigh wymmetrical fithess matrix. The
results for the remaining models are similar because thpesbé&the trajectories is similar for
the various equilibrium frequencies (Figlre 3.18). Fojettories that result in fixation (Figure
[B.18A), the signatures of selective sweeps emerge in themity of the locus under selection:
coalescent trees are shorter in length and height, and tsinedusly they are imbalanced in the
proximity of the Ay locus. For trajectories that result in polymorphic equilim the signatures
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are weaker. For example when the equilibrium frequencytiwden 0.9 and 1, the total length of

the coalescent is smaller, and the tree imbalance as meddsutieeby statistic is higher. However,
the height of the coalescent tree is similar to the neutna¢etation (red solid line in Figute 3]18).
Interestingly, the imbalance of the coalescent is highetrigectories in the bin [0.9, 1) than the
trajectories that result in fixation of the Aallele in the proximity of the Alocus. The explanation

is as follows. When fixation of the A allele has occurre@ll genealogical lines coalesce recently
in the proximity of the locus A Thus a short tree is generated which is not imbalanced Becau
no line has escaped the coalescence. Imbalance is gentrdtext from the locus A because
recombination breaks the link between a neutral site anéih®©n the other hand, trajectories in
the bin [0.9, 1) generate imbalanced genealogies very thabe locus A because a large fraction
of the present-day lines carry the allele;Aand coalesce recently in the past), whereas a small
fraction of the present-day lines carry the allelg And coalesce further in the past.

Properties of the polymorphism patterns: We have used classical population genetics sum-
mary statistics to describe the properties of the polymigmhk in the proximity of the A allele.
We use the same simulation sets as in the previous sectionidiAgswindow approach with
window-length 5kb and offset 1kb has been implemented. €hgth of the genomic fragment
and the position of the Alocus are provided in the previous section. The summarisstat are
described in Methods. For each window the mean value of eatimsiry statistic is calculated
over the simulated datasets. Figure 8.19 illustrates thdtee

Tajima’s D is negative over the whole region for frequencie®.9. For fixed trajectories,
Tajima’sD becomes less negative closely to the &or trajectories close to fixation, Tajimd»
obtains its most negative value exactly at the locationefalcus A. Comparing Figure 3.19 with
Figure[3.18 we can associate TajimB'swith the by statistic. The number of polymorphic sites
follows, as expected, the statisticwhich measures the total length of the coalescent. The aumb
of haplotypeK and the haplotypic diversiti{ are also informative about the locug.A

3.6 Discussion

In this study, we explore selective sweeps in multi-locus-tdlele models. Selection applies
to the phenotypic values through a Gaussian fitness funcfidre Gaussian function seems an
ropriate choice for many quantitative trahsyﬁﬁ_Eﬂ |_’L9_8¢ bMLLEN&IlQREEB.&DﬁL&LRQ_EEL

), because it naturally formalizes the concept of amayh value. Furthermore, it is flexible
enough to allow for modeling both stabilizing and directibeelection. Stabilizing selection is
modeled by assuming that the optimal genotypic value istéathetween the extreme genotypic
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FIGURE 3.18: Summary statistics for the coalescent treesfaaction of the distance from the

locus A. The x-axis denotes the distance from thge A'he solid line refers to the equilibrium

frequency 1 (fixation), the dashed line refers to the equilib frequency in [0.9, 1), the dotted line

refers to the frequency [0.3, 0.4) and the red line to negimallations with the same parameter
values. Notice that the results for the non-monotonic ttajges overlap completely with the

neutral curves. In A) the height of the tree is shown. B) shthestotal length of the coalescent,
and C) and D) the balancing statistlgsandby;, respectively.
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parameter values. A) Average number of polymorphic sitesTdima’'sD. C) The number of
haplotypes calculated by the Depaulis and Vel lI(DVK). D) The haplotype diversity measured

by the Depaulis and Veuillel (DVH).
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values that an individual may obtain. Often, in this case dptimal genotype is heterozygous for
one or more loci. A classic example of stabilizing seleci®the human birth weight. Babies of
low weight have impaired thermoregulation and are moreeqitgide to infectious disease, whereas
babies of large body weight are more difficult to deliver.d2tional selection can be modeled by
assuming that the optimum is more extreme than the genotgbies that the individual may
obtain. Therefore, the allele frequencies shift towareésdinection of fixation of the most extreme
genotype favored by selection.

Previous studiei (KRLIN and FELDMAN 197§b; BobDMER and FELSENSTEIELIL9_6_+) suggest

that multiple equilibrium points exist in two-locus twolee models with a Gaussian fitness func-
tion. Furthermore, conditions are provided for their extiste and stability. However, the trajec-
tories of the alleles towards the equilibrium points have lmeen explored. This study focuses
on the trajectory of an allele, which initially is in low fragncy and at its equilibrium points. In
agreement Wlt'JAALJ.EN_&D_O_REEBADQ_&LBQ_EEL 2&1058) multiple equilibrium points in [0, 1] have
been illustrated in this study depending on the initial ealof the model parameters.

An important result of this study shows that selective sweépat initiate from very low fre-
guency of A1 allele are very rare in the two-locus two-allele model wigimsnetrical fithess ma-
trix. Multiple conditions need to be satisfied in order toiaek fixation. First, the contribution of
one of the alleles in the second locesg.A21) should be approximately equal to the contribution
of the A1 allele. Second, the frequency of thesfallele needs to be very low. In this regime the
population is initially dominated by the 48 and Ay, alleles which drive the population far from
its optimum value (since they have similar contributions tluthe symmetry of the model). Thus,
the A1 competes with the 4 allele; since their contribution is similar their initialeflquencies
may determine the fate of the trajectory of the;Allele. In fact this result suggests that in the
two-allele two-locus model a selective sweep becomes Iplesainen the second locus is nearly
monomorphicj.e. when the model resembles the one-locus two-allele modelceSixation of
A1, becomes more probable as the value of initial frequencyeas®s, a model of sweeps from
standing genetic variation may be more suitable.

Relaxing the assumption for the symmetry of the fitness matre show that the fixation of
the Aq; allele becomes more likely. This is because the optimum tgpecdoes not correspond
necessarily to the heterozygote states. Thus, when thaditmatrix is generalized, the fitness
may be either stabilizing or directional. For example, & ttontributions of the 4, A1z, A21,
and Ay, alleles are -1, 1, 1, 1, and the optimum genotypic value is, @ahén the A; allele is
clearly beneficial: the second locus contributea to the genotypic value, and only thg A1
genotype may bring the population to the optimum by contiitgy—2. Figurd 3.1R shows that in
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the generalized fithess model a larger proportion of trajées result in fixation compared to the

symmetrical fithess model.

Assuming an effective population sidé= 10000 we explore the effects of random genetic
drift. Fluctuation of the frequencies of the trajectorige dmited because the population size
is not too small. However, genetic drift increases the propo of the trajectories that reach
monomorphic states (Figure 8.9). This is expected becagrsetig drift pushes the model towards
its absorbing states. Therefore, selection needs to begsénmoough in order to maintain the poly-
morphic state of the trajectory. This is illustrated clgar Figure[3.10, where the? value is
small for the vast majority of trajectories that are polyptac at equilibrium.

When more than two loci are modeled then the proportion gddtaries that reach fixation in-
creases. This is in agreement with the resul{s_iQIEB_EElt _ZQ_O_d)), who shows that when the trait is
determined by more than four loci then the monomorphic @muim points become more likely.
Intuitively, the proportion of trajectories that reach amomorphic equilibrium state increases be-
cause the optimum may be reached not only by the heterozggotetypes but also by various
combinations of homozygotes. Assume the five-locus moddél syimmetrical fithess matrix, and
further assume that the contributions of thg Alleles are 2, 3, 1, 2, 2. Then, multiple configu-
ration may bring the population to the optimum. For examgbie,hnomozygotes for the genotype

A11A21A32A42A57 is at the optimum. The same is true for theA22A31A41A51. Of course, the
five-locus heterozygote is at the optimum as well. Thus, theutation can reach its optimum
by fixing appropriate combinations of alleles. Additioyafigure[3.16 shows that fixation of the
A11 allele depends on the initial frequency of the;AHowever, this dependency is not as strong
as in the two-locus model. Therefore, fixation of the 11 aellsl possible even for small initial
frequencies as it is required for classical selective sweep

Conditioning on the trajectory of the;Aallele, coalescent simulations have been implemented.

As mentioned previously, this is correct only for weak sttacand when the loci are not linked.
However, a first approximation is useful in order study theegdogy properties and the patterns of
neutral polymorphism around the;Aocus. When the A allele fixes in the population, then the
genealogies around the; Aocus are similar to the classical selective sweep (givanttie initial
frequency of the Aq is small). The coalescent trees are on average imbalanckghamt in the
proximity of the A, as expected in a classical selective sweep model. The ambalbecomes
larger for a certain genomic region as we move away from tlealftocus, and then it reverts
to neutral levels. The length of the region where the sigeatd selection is visible depends on
the recombination fraction. For the set of simulations iis #rticle, the recombination fraction
is small. Thus the genomic regions where the signature et8eh appears is large-(250 kb).
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When the trajectories do not reach fixation, then a part amfdhe signatures of a selective sweep
become invisible, depending on the equilibrium frequenicthe trajectory. For example, when
the equilibrium frequency is between 0.9 and 1, then thehtafthe coalescent tree equals the
neutral expectations, because ancestral allelgs) @xist in the present day sample. For smaller
equilibrium frequenciese(g. 0.3 to 0.4) both the coalescent summaries and the polynsrphi
summaries resemble the neutral expectations.

Depending on the simulation parameters a large numberjettomies is maintained at some
equilibrium value and does not reach fixation. For thosettayies analysis of incomplete sweeps
(VOIGHT et al“&QOL*; TANG et §|”2_0_0_+; SABETI et QIHZ_O_OJZ) may be useful. There is, however, an
essential difference between incomplete sweeps and sweppsti-locus models that were stud-
ied in this article. Incomplete sweeps are on the way to fixathowever the sweeps studied here
remain at equilibrium frequency. Therefore, the signafeselection will be visible only in the
cases that the equilibrium frequency has been achievedthecH the trajectory remained at the

equilibrium level for too long, then the signatures of satatwill fade away due to recombination.

The results indicate that detection of selection from paywhism patterns in multi-locus mod-
els may be hard. When the focal allele;¢f\fixes in the population, then the statistical tools that
are used to detect sweeps in one-locus two-allele modelsmageful €.g.
lZQ_QZlZLNELS_EN_eI_aJllZQ_O_%LMLD_LS_eLalthld)) Also, this is true for trajectories close to fix-
ation. Even if the patterns appear to be different than tie6$i&ed trajectories (Figure 3.19), the
direction of perturbations is similar to the classical spve®dels, and therefore the same statisti-
cal tools may be used. However, for smaller equilibrium Greracies some or all the signatures of
selection studied in this article disappear.

In multi-locus two-allele models a class of trajectoriesttis absent from one-locus two-allele
models comprises of hon-monotonic trajectories. Thegecdt@ies approach fast a certain fre-
guency, but eventually they decline either to extinctiotossome other frequency. The difference
between the maximum frequency and the equilibrium frequemay be quite large. In the simu-
lated datasets, we observed differences even larger thaikOwever, the polymorphism patterns
and the coalescent patterns seem to be very similar to theahexpectations. Thus, those trajec-
tories may be completely invisible using the summary stasistudied in this paper. Summarizing
the results, it may be claimed that the statistical tools llaze been developed to detect selective
sweeps may detect a small proportion of the multi-locuscsiele cases: only those cases that
result in fixed trajectories or equilibrium trajectoriess¢ to fixation. Tools that are used for de-
tecting incomplete sweeps may be useful when the trajebmsyeached its equilibrium frequency
very recently. For trajectories that have reached theillibgum frequency further in the past, we
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expect that recombination will destroy the signatures tdcdm®n. In fact, the results imply that

positive or stabilizing selection may occur in a much higfate than previous studies which an-
alyze selective sweeps repoetd. [LJ_a.nd_S_EBHAJJ |20_0¢). However, the majority of the cases
remains undetectable since both the coalescent treesntemasized here) and the polymorphism
summary statistic do not deviate from neutrality.

To our knowledge the only study of selective sweeps in gtetie traits was done byHEVIN
and HosPITAL (2008).. GHEVIN and I-bSPITAd _;O_Oj;) assume an infinite number of unlinked and
independent loci that control the trait. Moreover they assuhat the variability in the genetic
background remains constant during the trajectory of theaikele, and that the effect of the focal
locus on the trait value is small compared to the effect ofgtieetic background. These assump-
tions enable them to solve the trajectory of a new alleledigally for linear, exponential, and
Gaussian fitness functions. FurthermJlI:eLEQLN_a.nd_I:b_&BIlAJ.l ( ) focus mainly on the tra-
jectories that reach fixation. On the other hand the presénteafocuses on finite locus models.
Considering a finite number of loci makes the model intrdetatathematically. Therefore, com-
puter simulations were employed to study the trajectoryrocdwa allele. The contribution of alleles
may be arbitrary as well as the recombination fraction betwtbe loci. In this article we provide
information about the role of various parameters on theitrabf the trajectories, but also we
study extensively the trajectories that remain polymarpRolymorphic trajectories are possibly
absent irll_QEMIN_a.nd_I:b_&EIIAJ.I _ZQ_OAE) due to the large number of loci that control the trBiite
results O‘Mmm _;O_OLJB) indicate that trajectories of new alleles evolvgltly
slower than classical selective sweeps, and selectivepsndeheir model look slightly older than
the classical one-locus selective sweep. This is true ®nthlti-locus model studied here as well,
however to a less extent (results not shown). The presey stay be considered complementary
to the study ok EGEVIN and I—DSPlTAd _;0_0;43) for finite multi-locus models, providing informatio
about the trajectories of new alleles and the polymorphiattemns generated by selective sweeps
in multi-locus models. This information is essential foe thevelopment of software which will be
able to detect selective sweeps in multi-locus models.




General Discussion

The availability of large scale data for population gerestudies has offered a possibility for
the precise identification of the footprints of hitchhikiegents in the genome. Until now this
kind of analysis has been only performed in a few model sgecldowever, advancing DNA
sequencing technology will allow the generation of popalaigenetic data also in non-model
organisms. The accumulation of such data in a multitude e€igg and populations allows us to
address such questions as (i) are some genes that are mhuoleertain functions more subjected
to adaptive evolution than others? (ii) is positive setattinore frequent in populations that have
to adapt to the new environment? and (iii) what is the ratetatkvadaptive substitutions occur?
Simultaneously, it becomes apparent that statistical austbased on the classical selective sweep
model may be inadequate to capture more complicated sadaentents.

The genes that were identified by selection mapping in ngporaulations oD. melanogaster
mice and plants appear to fall into three functional categorgenes of sensory pathway® (
genes involved in the development of the eye, skin or hagshes determining body size, and
defense/immunity genes. Although the number of genes weteso far is small, the emerging
pattern confirms the working hypothesis that most genegifgihon the basis of selective sweeps
play a role in ecological adaptation. Among these genespmy (encoding polyhomeotic proxi-
mal protein, a part of a universal transcription repressdyd®mb group) does not have a specific
function related to the environment. On the other hand, remarkable that genes involved in
temperature adaptation and energy metabolism have noegatitdentified in flies by the selective
sweep method. For the genes that experienced positiveisel@t human, additional categories
and sub-categories can be defined. For example, the gempesdasg to the selection pressures
during the transition to novel food sources with the advémigpiculture form a new category (in-
cluding LCT). Furthermore, olfactory and pigmentation @gare important sub-categories of the
genes involved in sensory percepti [ZQ_O_'}’). It should be noted, however, that the
identification of a specific gene or function might not alwégspossible. There is accumulating
evidence that selection also affects non-coding portidtiseogenome¢.g.
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BusH and LAHN |;O_O;$). As the biological role of these non-coding regionstil poorly under-
stood, the assessment of the functional consequences it¥@aglection on such loci poses an
additional challenge.

In both flies and humans the signatures of selection are te saent population-specific and
thus suggestive of local adaptati(LmokG—HTet_ill _;O_Ojs) found the strongest signals of selection
in human populations in Africa(Yorube{L_MLiAM§_QN_e1_aJJ _20_0_'}’), however, detected more ev-
idence for sweeps in Chinese and European-American pagusahan in the African-American
population. These contradictory results may be due to ttietfieat the power to detect selective
sweeps is lower in the African-American sample Dnmelanogasterin five of the six cases dis-
cussed above both African and non-African samples werg/aedland in four of them the sweep
originated in Africa. This result is not consistent with tgoothesis that the novel environments
encountered by flies imposed new selective pressures, whtam led to an increased rate of lo-
cal selective sweeps. Whether this result is a consequédrckack of power is unclear at present.
Nonetheless, it is consistent with the analysi|s_Q&hd_S_ERHAJJ 2QOAS) who found no difference
in the rate of adaptive substitution between African andiaan populations in an X chromosome
wide analysis. This issue needs to be revisited as soon asdata are available.

The estimated rates of adaptive substitutions obtaineLdJ_tmﬂ_S_EBHAﬂ _ZQ_OAS) agree sur-
prisingly well with earlier estimates based on DNA sequeatigergence betweel. simulansand
D. yakuba(SmiTH and ErRE-WALKER |;O_OJZ). However, the latter study estimates the rate of
adaptive substitutions over a long time period and alsostakeak selection into account. As L
and SEPHAN 2&10&5) only estimate the rates of relatively young and gireglection events this
might indicate an acceleration of adaptive evolution irergd¢imes.

This study aimed to make a contribution to solving the abmestioned general questions of
molecular evolution. The goals of this study were: (i) impentation of a method that is able to
detect accurately selective sweeps in natural populattaatshave experienced past demographic
changes; (ii) application of the methods to real data; éxdension of selective sweeps in multi-
locus models. To achieve these goals, first, the combinafidwo algorithms, theSweepFinder
and thew-statistic that use SFS and LD information, respectivels applied to disentangle se-
lective sweeps from neutrality. Then, tBeveepFindealgorithm and th€LRtest were applied on
the subgenomic region of African populationdf melanogastethat included theHDACG6 gene.
Finally, we studied selective sweeps in multi-locus modeaisuming a finite number of loci that
control the trait. Regarding the functional characterarabf genes that are involved in adaptive
evolution, Chapter 1 provides a modification of theeepFindealgorithm that is able to detect
the target of selection accurately (median distance fratalget is< 1 kb). Then, coupling the
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selective sweep mapping with gene ontology analysis eaahke functional characterization of

the targets of positive selection. Furthermore, Chaptegskidbes a machine learning approach
which outperforms current methods and is able to detectthetesweeps in non-equilibrium pop-
ulations. These populations have experienced significamiographic changes in the recent past
such as population bottlenecks or founder events. Detgsttective sweeps in such populations
gives insight into the adaptation of populations in new eiuinents. The third question aims at
studying the rate of adaptive substitutions in the genom€&Hhapter 3 | show that if selection op-
erates on multi-locus models then adaptive substitutionsad always occur; the population may
remain polymorphic for one or more loci. Furthermore, threntéadaptive substitution’ obtains a
relative meaning in multi-locus models. A certain subsiiin can be adaptive only in a specific
genetic background, whereas it may be deleterious in o#meetgc backgrounds.

Several approaches and findings that are presented in this #i@w aspects of novelty. To
begin with, machine learning methods are introduced fartfirge in the population genetics field.
The machine learning framework uses information from bbéhrteutral datasets and the datasets
with selection. This increases the power of detecting sgkesweeps and, importantly, reveals
the demographic scenarios when the separation betweettiseland demography is not pos-
sible. Furthermore, we developed modifications of exisalgprithms so that the precision of
the algorithm to detect the location of a beneficial mutatiameases under certain demographic
regimes. Secondly, we used a variable significance thrégbokhe neutrality tests because our
analysis showed that the values of the tests can be biaskd atges of the subgenomic region.
Additionally, we implemented an ascertainment bias coiwaovhen more than one populations
are involved in the initial choice of the subgenomic regi®articularly in Chapter 2, the initial
choice of the subgenomic region was based on a previoussasaliythe European population
of D. meIanogaste(J.J_and_S_EBHAJJ |20_0¢). We introduced a simulation approach that corrects
this kind of ascertainment bias. Finally, we study selecweeps in multi-locus models. We
demonstrated that selective events in multi-locus modelg ramain undetectable using current
approaches. To our knowledge the only study of selectiveepwén quantitative traits was done
byLQtLEALLN_and_I:D_S_BIIAJ.I _ZQ_O_é). However, their approach assumes that the vatiabilithe
genetic background remains constant and that the numbeciahlthe genetic background is in-
finite. In contrast, our study assumes a finite number of leat tontrol the trait. This allows
to relax the assumption b_tliEsLLN_and_I:b_s_BllAJ.l _20_0_43) regarding the variability of the genetic
background. Furthermore, we analyze the coalescent tgemsgbementing two summary statis-
tics which measure the imbalance of genealogies in a gen@gicn. We place emphasis on the
trajectories that reach a polymorphic equilibrium, beeahese trajectories are absent in classical
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selective sweep models. Results show that the detecticelexftave sweeps in multi-locus models

is challenging unless the trajectory of the focal allelegytefixation. In summary, our results

provide information about the trajectories of new alleled the polymorphism patterns generated
by selective sweeps in multi-locus models. This infornmai® essential for the development of
software which will be able to detect selective sweeps intirRlmtus models.

The ability to map target genes of selection is of a greattwadmportance since it may open
up new opportunities for studying adaptation and undedstgnetic diseases and mechanisms
of immunity in humans. However, in order to make progres$@sé directions it is important to
perform functional analysis of the genes under selectioancions of many of the genes identified
by selective sweep mapping are not clear. In most of the caselsave only a vague notion
of which allele was under recent selection and why. Addalstudies, such as QTL analysis,
gene regulatory network and pathway analysis, that wilteethe selection mapping to specific
phenotypes are important research directions for thedutur
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Table S1

#SNP|i—-1 i i+1
i—1 - Ziay Ziaitdina
i - - Ziji1
ir1 | - - .

TABLE S1: The matrix used for the pre-calculation of thestatistic for all possible configurations.
Acell Zj, i < ] represents the sum of all pairwise linkage disequilibritomparisonsr@) for

the sites that belong to the windaiv j]. We have implemented a recursive algorithm in order
to calculate this matrix. In detail, the calculation stértsm the cellZj i, i.e. the cells next

to the main diagonal and proceeds upwards to theZelli 1. ThenZ_1i.1 =271+ Zijit1.
Zijy1= rﬁi+1 andZ_1+1 has been calculated in the previous cycle. Then, using thisixnt

is trivial to calculate the components of thestatistic for any configuration. When the left and
right sub-regions are defined Byk| and [k+ 1, j], respectively, then the numerator is the sum
Zi x+ Zx11,j weighted by the number of calculatioi(g_';l) + ('gk)]—l, whereas the denominator
iSZi j — Zi k — Z+1,j Weighted by{(k—i+1)(j — k)]fl.
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Figure S1

2“ T T T T T T
C
d
15 | 4
a
sl e s2
18 [ | b [ ] .
i
D(s2, a)
5 F . P - 4
H 1 2 1
-20000 a 20000 40000 Gooo00 gooon 180000 120001

FIGURE S1: The distance between a peak of the landscape sfatigtic and the selective sweep
locations. In the history of the population two selectiveesps have occurred recently, at different
time points and different locations on the chromosome. Hbective sweep locations are illus-
trated asslands2(vertical lines). Given a user defined threshold, the laape®f the statistic is
split in two regionsj.e. above and below the threshold. A peak is defined as the maxipoimb

in an isolated (by the threshold) region. Thus, 5 peaks (g ttaee been formed. The distance
D(s2,a) of the ‘a’ peak measures the distance between this peakZmtich is the closest sweep
location from this peak.
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Figure S2
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FIGURE S2: The 9% percentile for A) thew-statistic and BsweepFindebased on th&8 (filled
circles), the=S(open circles) and the6Sprocedures (crosses). Equilibrium neutrality simulagion
have been performed for a 50-kb genomic segment and 12 seepién ~ 3). Recombination
rate is 005/bp. For a given number of segregating sites (x-axis) sirnarlatwere performed by (i)
fixing the number of segregating sit8g(open circles), (ii) usin@neu = 6w = h% (filled circles).

In this case simulations generate on aver§gesegregating sites. (iii) Under tHe8S process
(crosses) we used the safygy = Ow = hin but only the realizations that produc8glsegregating
sites (sedquilibrium selection versus equilibrium neutrality ).
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FIGURE S3: The 9% percentile for A) thewyax and B)Avax based on th& 0 (full circles),
theFSprocedure (open circles) and th@Sapproach (crosses). Bottleneck simulations have been
performed for a 50-kb genomic segment and 12 sequehges3). We have used the demographic
scenario inferred by Land SSEPHAN (2006) that describes the history of the European populatio
of D. melanogasterRecombination rate is.05/bp. For a given number of segregating sites (x-
axis) simulations were performed by (i) fixing the numberegfregating site$, (open circles), (ii)
usingbney =0 = % whereE(T.) is the expected total length of the coalescent séquences
(Z1vkovic and WEHE 2008) (filled circles). In this case simulations generateaverages,
segregating sites. (iii) Under tHe0S process (crosses) we used the sdiney = 6, but only
the realizations that produc& segregating sites (s&juilibrium selection versus equilibrium
neutrality ).
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FIGURE S4: Comparisons between recurrent selective swadgs g HRHH = 0.25 ands =
0.01,0.0001. A) The SFS of the RHH model whenr= 0.0001 is S|m|Iar {0 that of the standard
neutral SFS whereas a large excess of singletons appeanswh@01. B) When the SFS of the
data itself is used in thBweepFindercalculations then the model with= 0.0001 shows higher
values ofAmax . This is because the genomic regions affected by positieetsen are smaller for
smallersvalues and a large fraction of the genome remains still ectdtl by positive selection.
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FIGURE S5: The fraction of predicted targets within 5 kb freine true location of the selec-
tive sweep for a recurrent selective sweep scenario wﬁ% = 0.25 (above A) and B)) and

:E—HL' = 0.50 (below C) and D)). A) and C): Comparison of the precisiorbafeepFindewhen
on'fy polymorphic sites are used (dark bars) and a fractionaiomorphic sites is embedded (light
bars). B) and D): Comparison between the variable-sizengidindow approach and the constant-
size sliding window approach. The precision of the two apphes is similar for low threshold
values (high sensitivity, low specificity). However, foghier cutoff values the variable-size sliding
window method is slightly more precise. Simulations assari®0-kb genomic fragment. Selec-
tive sweeps have occurred uniformly within this region othwi its flanking regions following a
homogeneous Poisson distribution in time. The selecti@ffictent iss = 0.01, 8 = 0.008/bp,
andp = 0.08/bp.
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FIGURE S6: The expected fraction of peaks whose distanee the randomized ‘target of se-
lection’ is smaller than 5 kb. The target randomization wadgrmed A) in the SHH model with
a = 2500,0 = 0.005/bp, andp = 0.05/bp and B) in the RHH model withREH = 0.25 and se-
lection coefficiens= 0.01,8 = 0.008/bp, andp = 0.08/bp. In the SHH model the length of the
simulated region is 50 kb and a selective sweep has occurré imiddle of this region. Then,
this target was distributed uniformly between 0 and 50 kbthenRHH model the length of the
simulated region is 100 kb and selective sweeps have octimsale or outside the region. These
targets of selection are distributed uniformly. The graghasote that even if the target is a random
point on the genomic region some peaks will be in the proximitthe target as they are located
in the same region.
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FIGURE S7: Variable values of recombination rate affecti®®wdyax and B)Apax values. Sim-
ulations have been performed for various levels of recoation rate for a constant-size neutral
population. All remaining parameters are equal among alukitions. For each value & on
the x-axis we have usdtlthat on average generat§ssegregating site®(= hin). The w-statistic

is primarily affected for lower numbers of polymorphic sitevhile the opposite is true for the
SweepFinder The demographic model used in the simulations represhatstandard neutral
model.
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FIGURE S8: The likelihood curves for each polymorphism €ia%) under an equilibrium selec-
tion model p = 0.05/bp,6 = 0.005/bp), and B) under thES(p = 0.08/bp,0 = 0.008/bp) model.
For both scenarios a selective sweep has occurred in théextld 50-kb region and the selection
intensitya = 2500. The x-axis denotes the value of paramgter. log(2N) (log scale) multiplied
by the distancel from the center of the sweep. If we assume a constant recatrater and
selection coefficiens, y represents the distance from the location of the selectineepx. The
likelihood curve for the singletons (class ‘1’) is depictgdthe black solid line, whereas the class
‘11’ (out of 12 sequences) is represented by a black dashed@ray lines illustrate the likelihood
curves for the classes 2-10. For both A) and B) the class ‘d’the class ‘11’ contribute to the
likelihood close to the sweep. Conversely, classes 2-1@ibate at larger distances frora The
major difference between A) and B) is that the singleton gbution is lower in B) than A) at
larger distances. This is because the frequency of singdesogreater in B) than in A).
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