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Summary 

 

Related RNA polymerases (RNAPs) carry out gene transcription all three 

domains of life. This thesis deals with the structure determination of RNAPs 

and their functional complexes from different species. Protein complexes were 

preserved in their native state in aqueous solution, imaged by cryo-

transmission electron microscopy and structural models were obtained using 

the single particle reconstruction method. New and physiologically relevant 

insights into RNAPs subunit architecture, the general transcription mechanism 

and its regulation were gained. 

The structure of an archaeal RNA polymerase identified similarities to its 

eukaryotic counterpart, RNA polymerase II. The conservation of the overall 

enzyme architecture as well as the close resemblance of structural elements 

and functional surfaces needed for basic transcription mechanisms underlines 

the evolutionary relationship between archaeal and eukaryotic RNAPs.  

The comprehensive study of RNA polymerase III and its regulation by 

Maf1 gave profound insights into the molecular basis of how eukaryotic 

transcription is shutdown under stress conditions to ensure cell survival. Maf1 

binds RNAP III at its clamp domain and rearranges a specific subcomplex 

needed for interaction with the initiation factor Brf1. This specifically impairs 

binding of RNAP III to its promoters and inhibits transcription initiation. 

Furthermore, it was demonstrated that Maf1 binds to RNAP III that is already 

engaged in transcription elongation, thus leaving activity intact but preventing 

re-initiation. Taken altogether, these results converge on the essential 

mechanism of RNAP III-specific transcription repression by Maf1. 
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General Introduction 

 

 

 

 

 

 

 

“Inochi” (“Life”) 

 

(Calligraphy, K. Kuwahara) 
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1 Life and the flow of genetic information 

 

A living organism can be defined in biology as follows (Nealson and 

Conrad, 1999): it has a structure and a unique chemistry associated with that 

structure, it strives to replicate with fidelity, it evolves, it has a metabolism by 

which it consumes energy from its environment, thus creating metabolic 

products and it has a means for escaping these products.  

Replication with fidelity and evolution are parts of a plan implemented in 

an organisms DNA, which is the carrier of genetic information in all known 

living beings on Earth (Berg, 2007). The flow of genetic information from DNA 

via RNA to protein is termed the central dogma of molecular biology (Crick, 

1970), a subdivision of biology concerned with studying the chemistry of life. 

The pathway in this dogma divides up into two main parts: the rewriting of 

genetic information from DNA into RNA, a process called transcription, and 

the subsequent translation of RNA into proteins. Transcription is carried out 

by DNA dependent RNA polymerases. Translation at the ribosome builds a 

protein product that can then be further modified post-translationally to 

become fully functional (Berg, 2007). 

Knowledge of a biological macromolecule!s structure can lead to a 

detailed understanding of its function as it was already demonstrated in the 

early 1950s, when Watson & Crick postulated the DNA double helix structure 

and its implications for the transmission mechanism of genetic information 

(Watson, 1953). DNA is an example for the direct relationship of form and 

function in biological macromolecules: the sequential arrangement of bases 

on a strand of DNA allows to code for genes and regulatory elements and 

thus for storage of genetic information. Furthermore, it is the ability of bases to 

specifically pair that lays the foundations for DNA replication and transcription. 

A double-stranded parental DNA can be divided up into two single DNA 

strands, from which by base pairing it is possible to reconstruct two double-

stranded daughter DNAs carrying the same information as the parental DNA. 

This process of replication allows for transmission of genetic information from 

a cell to its daughter cells and it is carried out by DNA dependent DNA 
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polymerases (Berg, 2007). In a similar fashion it is possible to transcribe a 

region of DNA into a RNA copy. Transcription allows for expression of 

individual genes needed in a certain cellular state or context and is carried out 

by DNA dependent RNA polymerases. 

 

 

2 Transcription by DNA dependent RNA polymerases 

 

Since all organisms are dependent on the usage of genetic information 

stored in their DNA, they all posses RNA polymerases (RNAPs) to transcribe 

genes (Berg, 2007). Bacteria and archaea possess only one type of RNAP 

that transcribe all types of RNA in the cell whereas in eukaryotes, there are at 

least three different nuclear RNAPs (Berg, 2007; Carey, 2009). Eukaryotic 

RNAP I is located in the nucleoli and is specialized in production of precursors 

for 5.8S, 18S and 28S ribosomal RNA (rRNA). RNAP II is located in the 

nucleoplasm and is responsible for transcription of messenger RNA (mRNA) 

from all protein coding genes as well as for production of small nucleolar RNA 

(snoRNA) and small nuclear RNA (snRNA). RNAP III is mainly located in the 

nucleoplasm and specialized in transcription of transfer RNA (tRNA), 5S RNA, 

U6 small nuclear RNA and other small catalytic RNAs (Berg, 2007; Carey, 

2009). Cytoplasmatic localization of RNAP III was only recently discovered 

and linked to RNAP III being involved in immunological responses to 

pathogenic bacterial DNA (Chiu et al., 2009). In plants, two additional RNAP II 

related polymerases have lately been reported (RNAP IV and V) that are 

connected to the RNA interference machinery and generate noncoding RNAs 

responsible for epigenetic regulation (Matzke et al., 2009; Ream et al., 2009). 

All these RNAPs are protein complexes that differ in subunit composition 

(Cramer, 2002). 
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2.1 Subunit composition of RNA polymerases 

 

Table 1: Subunit composition of RNAPs, adapted from (Brueckner, 2008; Cramer et al., 

2008; Kusser et al., 2008) 

 

Almost all RNAPs are multi-subunit protein complexes except for some 

bacteriophage RNAPs like T7 (Sousa et al., 1993; Steitz, 2009) and the 

mitochondrial RNAPs (Gaspari et al., 2004). All three domains of life, 

however, utilize multi-subunit RNAPs for transcribing their genomic DNA 

(Table 1). The bacterial RNAPs comprise four subunits: !, ", "! and # with 

stoichiometry !2""!#, archaeal RNAPs consist of up to 13 subunits (Korkhin 

et al., 2009) while in eukaryotes, RNAPs can have as much as 17 subunits 

(Werner et al., 2009). Interestingly, the archaeal RNAP bears much closer 

resemblance to eukaryotic than to the bacterial RNAP, structurally as well as 

regarding subunit composition, suggesting that it is a more recent evolutionary 

ancestor of the eukaryotic transcription apparatus than the bacterial RNAP 

(Hirata and Murakami, 2009). This phylogenetic relationship is supported by 

RNA 

polymerase 
RNAP I RNAP II RNAP III 

Archaeal 

RNAP 

Bacterial 

RNAP 

A190 Rpb1 C160 A' + A" "' 

A135 Rpb2 C128 B (B' + B") " 

AC40 Rpb3 AC40 D # 

Rpb5 Rpb5 Rpb5 H - 

Rpb6 Rpb6 Rpb6 K $ 

Rpb8 Rpb8 Rpb8 - - 

A12.2 Rpb9 C11 - - 

Rpb10 Rpb10 Rpb10 N - 

AC19 Rpb11 AC19 L # 

Ten-subunit 

core 

Rpb12 Rpb12 Rpb12 P - 

A14 Rpb4 C17 F - Rbp4/7-like 

subcomplex A43 Rbp7 C25 E' - 

A49 (N-ter.) - C37 - - TFIIF-like 

subcomplex A34.5 - C53 - - 

- - C82 - - 

A49 (C-ter.) - C34 - - 
TFIIE-like 

subcomplex 
- - C31 - - 

Number of 

subunits 
14 12 17 11 (12) 5 

Molecular 

weight in kDa 
(species) 

589 
(S.cerevisiae) 

514 
(S.cerevisiae) 

693  
(S.cerevisiae) 

380 
(P.furiosus) 

375 
(T.aquaticus) 
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other studies like comparison of 16S ribosomal RNA of different 

representative species (Woese et al., 1990).  

RNAP II consists of a 10-subunit core enzyme and the peripheral 

heterodimer Rpb4/7. The core enzyme comprises subunits Rpb1, 2, 3, and 

11, which contain regions of sequence and structural similarity to the other 

multisubunit RNAPs (Korkhin et al., 2009; Hirata et., 2008; Kusser et al., 

2008; Vassylyev et al., 2002; Zhang et al., 1999), and subunits Rpb5, 6, 8, 10, 

and 12, which are shared between RNAP I, II and III (Table 1). 

  

 

2.2 Structural information on RNA polymerases 

 

As exemplified above, the understanding of a macromolecules function 

generally benefits tremendously from knowledge about its structure. There is 

a variety of structural information available, ranging from high-resolution X-ray 

crystallographic structures of RNAPs (Cramer, 2002; Hirata and Murakami, 

2009; Vassylyev et al., 2002) single molecule FRET (Chen et al., 2009; Tang 

et al., 2009) and mass spectrometry studies of RNAPs (Chen et al., 2010; 

Lorenzen et al., 2007) to low-resolution cryo-electron microscopic structures 

of eukaryotic RNAPs (Fernandez-Tornero et al., 2007; Kostek et al., 2006; 

Kuhn et al., 2007).  

High-resolution crystal structures have been determined for RNAPs from 

all three domains of life: bacteria (Vassylyev et al., 2002; Zhang et al., 1999), 

archaea (Hirata et al., 2008; Korkhin et al., 2009) and eukaryotes (Cramer et 

al., 2001). These structures showed that all the investigated multi-subunit 

RNAPs share a common core and a highly conserved active center region 

formed by Rbp1 and Rpb2 or their corresponding subunits (Table 1, Figure 1). 

The smaller subunits are arrayed around the periphery of the enzyme, forming 

functional domains (Figure 1).  
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Figure 1: Structural comparison of RNAPs from the three domains of life 

A five subunit bacterial RNAP (T.Aquaticus, Zhang et al., 1999, left column), a 12-subunit 

archaeal RNAP (S.Solfataricus, Hirata et al., 2008, middle column) and a 12-subunit 

eukaryotic RNAP (S.Cerevisiae, Armache et al., 2005, right column) are shown in front view 

(top row), top view (middle row) and in a top view schematic representation of their subunit 

composition and arrangement (bottom row, compare Table 1).  

 

Most structural data have been accumulated for RNAP II and its 

functional complexes. These include structures providing insight into the 

nucleotide addition cycle (Brueckner et al., 2009), how RNAP II deals with 

damages on the DNA template (Brueckner et al., 2007; Damsma et al., 2007; 

Damsma and Cramer, 2009), transcriptional fidelity and pausing (Sydow et 

al., 2009), backtracking of the product RNA (Wang et al., 2009) as well as the 

transcription initiation mechanism (Kostrewa et al., 2009; Liu et al., 2009). It 

was, however, not yet possible to obtain high-resolution structural information 
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for the specialized eukaryotic RNAPs I and III: they have resisted X-ray 

crystallographic studies so far (Cramer et al., 2008). Nonetheless, it was 

possible to obtain atomic models of subcomplexes A14/43 of RNAP I (Geiger 

et al., 2008; Kuhn et al., 2007) and C17/25 of RNAP III (Jasiak et al., 2006), 

subunits that are homologous to the Rpb4/7 subcomplex from RNAP II (Table 

1). Structures of subcomplexes specific to either one of the RNAPs I and III 

were solved only recently (Geiger and Cramer, unpublished; Fribourg, 

unpublished). Furthermore, it has recently been found that subunits specific to 

RNAP I and III are homologous to transcription factors from the RNAP II 

system (Table 1; Carter and Drouin, 2009; Kassavetis et al., 2010; Kuhn et 

al., 2007; Geiger and Cramer, unpublished). Transcription factors (TFs) are 

proteins that regulate RNAP in the various stages of the transcription cycle 

(Berg, 2007).  

 

 

3 Regulation of transcription 

 

Expression of a gene embraces transcription of its DNA sequence into 

RNA, and for most genes, translation of the RNA into a protein product. A 

genome usually contains thousands of genes, many of which are expressed 

almost constantly (Berg, 2007; Carey, 2009). Other genes are merely 

expressed in specific situations or cellular states. These facultative genes 

may encode for proteins being needed under stress conditions or for an 

immune response to an infection. All gene expression, however, is regulated: 

it may for example be necessary to down regulate cell growth when there is 

only little food source available. Yet for facultative genes, tight regulation is 

even more crucial to ensure expression at adequate time points and spatial 

locations, as in the case of an immune response (Berg, 2007). 

Transcription regulation has a profound impact on gene expression, as it 

is one of the first major steps that entails, and may consequently indirectly 

regulate all subsequent steps (Berg, 2007; Carey, 2009). Regulation of 

transcription in prokaryotes it relatively well understood and relies mainly on 
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two principles: the repression of genes that are not needed in the current state 

of the cell as well as the activation of genes by stimulation of RNAP activity 

(Berg, 2007). The most famous example is probably the lac-operon, its 

repression by the lac-repressor and its activation by CAP (Balaeff et al., 2004; 

Bell and Lewis, 2001; Lewis et al., 1996).  

In eukaryotes, regulation of transcription is much more complex (Venters 

and Pugh, 2009). Eukaryotes have their genomic DNA condensed into 

chromatin, such as to be able to store it within the limited space of the cellular 

nucleus. The DNA is wrapped around histones, thus forming nucleosomes, 

which are in turn assembled into higher-order structures with different 

properties, depending on the regulatory context (Carey, 2009). Chromatin also 

maintains genes in an inactive state by restricting access to RNAPs and 

accessory factors. To activate a gene, the chromatin encompassing that gene 

and its regulatory regions must to be unpacked or “remodelled” to permit 

transcription (Berg, 2007; Carey, 2009).  

Assuming that the gene is spatially accessible, RNAP needs to engage in 

transcription, a process that can be divided up into three main stages: 

transcription initiation, elongation and termination (Svejstrup, 2004). Initiation 

terms finding of the right start site (within the promoter region), loading and 

opening of double stranded DNA, synthesis of the first phosphodiester bonds 

between single RNA nucleotides and ultimately escaping the promoter region 

to elongate the nascent RNA chain. Elongation is the stage of processive 

RNA production, a task that is linked to post-transcriptional RNA processing 

(e.g. splicing). Termination finally stops transcription at the correct site and is 

linked to RNA transcript release, allowing RNAP to be released from the 

template and to re-engage in another round of transcription (compare Figure 

2A). All these steps are performed by RNAP in a complex and most dynamic 

interplay with scores of regulatory and catalytic molecules (Hager et al., 2009; 

Venters and Pugh, 2009), a subset of which is referred to as the general 

transcription machinery (GTM). In the RNAP II system, the general 

transcription factors TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH as well as a 

major coactivator termed the Mediator form the GTM (compare Figure 2, 
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Table 2), together with RNAP II itself (Carey, 2009). It is strongly believed that 

all these proteins, together with other coactivators, are needed to properly 

initiate eukaryotic transcription in vivo (Kelleher et al., 1990; Kornberg, 2007; 

Reinberg et al., 1998; Takagi and Kornberg, 2006).  

 

 

 

Figure 2: Transcription initiation and RNAP II PIC architecture 

(A) Pathway of transcription initiation and RNAP II PIC subunit composition (compare Table 

2, adapted from Hahn, 2004) 

(B) Current model of the RNAP II PIC architecture (without Mediator, compare Table 2, 

adapted from Kostrewa et al., 2009)  

 

 

A term that is commonly used in the context of transcription initiation is 

the pre-initiation complex (PIC). The yeast RNAP II PIC will be defined here 

as the assembly of RNAP II together with the GTFs TFIIB, TFIID, TFIIE, TFIIF 

and TFIIH (compare Figure 2, Table 2). A subset of these, namely the 

complex of RNAP II together with TFIIB, TFIIF and the TATA-binding protein 

TBP, which is a part of TFIID (compare Table 2), will be referred to as the 

yeast RNAP II minimal PIC (mPIC) since it is sufficient to initiate transcription 

at artificial promoters in vitro (Moqtaderi et al., 1996; Tyree et al., 1993). 

For the specialized eukaryotic RNAPs I and III, the PIC and mPIC 

definition differs. Recent results suggest, that in case of the RNAPs I and III, 

modified versions of transcription factors from the RNAP II system have been 

permanently incorporated into the enzymes to provide for their higher 

specificity to the target genes of this highly determined machines. Subunits 

A49 and A34.5 of RNAP I and subunits C53 and C37 of RNAP III show 

homology to TFIIF (Geiger and Cramer, unpublished; Kassavetis et al., 2010) 
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while the C-terminus of A49 as well as regions of C34 and C82 structurally 

resemble TFIIE (Geiger and Cramer, unpublished). This incorporation of 

transcription factors during evolution is most certainly a means of 

optimization, or “becoming better” at performing a specific task. 

 

Factor  Nr. of 

subunits 

Function 

TFIIA  2 Stabilizes TBP and TFIID-DNA binding.  

Blocks transcription inhibitors.  

Positive and negative gene regulation. 

TFIIB  1 Binds TBP, Pol II and promoter DNA.  

Helps fix transcription start site. 

TBP 1 Binds TATA element and deforms promoter DNA. 

Platform for assembly of TFIIB, TFIIA and TAFs. 

TFIID 

TAFs 14 Binds INR and DPE promoter elements.  

Target of regulatory factors. 

TFIIF  3 Binds Pol II and is involved in Pol II recruitment to PIC and 

in open complex formation. 

TFIIE  2 Binds promoter near transcription start.  

May help open or stabilize the transcription bubble in the 

open complex. 

TFIIH  10 Functions in transcription and DNA repair.  

Kinase and two helicase activities.  

Essential for open complex formation. 

Mediator  24 Binds cooperatively with Pol II.  

Kinase and acetyltransferase activity.  

Stimulates basal and activated transcription. 

Target of regulatory factors. 

 

Table 2: The yeast general transcription factors, adapted from (Hahn, 2004) 

 

Available structural data regarding transcriptional regulation is largely 

limited to the yeast RNAP II system. Several structures of isolated general 

transcription factors (GTFs) or (sub-) complexes of these (including some 

from other systems) were reported (Elmlund et al., 2009; Geiger et al., 1996; 

Jawhari et al., 2006; Juo et al., 2003; Nikolov et al., 1995; Okuda et al., 2000; 

Schultz et al., 2000; Tan et al., 1996; Tsai, 2000). Data from comprehensive 

studies of the PIC architecture encompass X-ray studies of RNAP II-TFIIB 

complexes (Kostrewa et al., 2009; Liu et al., 2009) and site-specific 

biochemical probing (Chen and Hahn, 2003) as well as research concerned 

with the transcription factors TFIIE, TFIIF, TFIIH and TFIIS (Chen et al., 2007; 

Chen et al., 2010; Kim et al., 2007; Kim et al., 2000) and the path of promoter 
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DNA in the PIC (Miller and Hahn, 2006). Combination of these data resulted in 

the current model of the eukaryotic PIC architecture (Figure 2B, Kostrewa et 

al., 2009). TBP and TFIIB bind close the wall domain of RNAP II and position 

DNA on top of the active center cleft. TFIIH binds near the polymerase jaws 

and is required for DNA opening (Kim et al., 2000). TFIIE binds to the clamp 

domain where it may stabilize open complex DNA (Chen et al., 2007; Werner 

and Weinzierl, 2005), while TFIIF binds on the opposite side where it may 

contact downstream and upstream DNA (Chen et al., 2010; Chen et al., 2007; 

Kim et al., 2000).  

It should, however, be kept in mind that the in vivo situation could differ to 

a dramatic extent. Many of the known factors can occur in multiple splice 

variants in the cell (Carey, 2009) increasing the combinatorial intricacy of 

these multi-component complexes even further. It is also not clear if a 

complete PIC assembles at all active promoters: it was recently suggested 

that RNAP and other components assemble stochastically, meaning that 

transcription complex or possibly even RNAP II assembly happens as a 

progressive series of transient subcomplexes that form and disintegrate. 

Increasing evidence suggests that such transcription factor dynamics are 

indeed a physiologically relevant mechanism of regulating transcription 

(Hager et al., 2009). 

 

 

4 Dynamics of transcription 

 

Most, if not all aspects of transcription and its regulation involve dynamic 

events: the basal transcription machinery is dynamically directed to its target 

genes, regulatory factors dynamically activate and repress transcription 

according to the cellular condition and transcription factor interaction with 

RNAP during the transcription cycle is highly dynamic as well (Hager et al., 

2009). These dynamics involve movements that are hard to investigate by X-

ray crystallographic studies since these provide only single snapshots of 

complexes trapped in a crystalline form; how states transition into one another 
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remains unclear for the time being. Combination of a plethora of different X-

ray crystallographic snapshots can provide information about conformational 

dynamics (Brueckner et al., 2009) but crystals must be painstakingly grown 

and large amounts of pure protein are needed.  

Cryo-EM does not per se limit the possibility to investigate complexes 

bearing high intrinsic flexibility: it allows to image single molecules preserved 

in their native state in aqueous solution, which is the basis for subsequent 

image analysis with respect to conformational heterogeneity (Leschziner and 

Nogales, 2007). One approach towards the understanding of transcription 

regulation and dynamics on a molecular level will thus be creating high-

resolution snapshots of (sub-) complexes or just single modules by X-ray 

crystallography and interconnecting these snapshots using cryo-EM of larger 

assemblies, ideally including the study of intrinsic flexibility. This combination 

of miscellaneous complementary principles to form one unified new technique 

is another means of evolving, of “becoming better”. 

 

 

5 Open questions and scope of this work 

 

Transcription is one of the very first steps of gene expression and, in a 

similar fashion, can transcription initiation be viewed as the first step of 

transcription (Berg, 2007). Regulation of an early step has dramatic effects, 

because all subsequent steps can be indirectly co-regulated: e.g. when there 

is no initiation, there is no elongation, no termination and no RNA maturation 

(plus, in the case of mRNA, no translation and hence no functional protein 

product): the gene is not expressed. It is therefore commonly assumed that 

most transcriptional control works through regulating initiation (Juven-Gershon 

et al., 2008) and understanding transcription initiation and its regulation 

should give profound insights into regulation of gene expression in general.  

Since diseases like developmental disorders or certain cancers have 

been found closely linked to misregulated gene expression (D'Alessio et al., 

2009; Ho and Crabtree, 2010; Ransom et al., 2010; Sahar and Sassone-
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Corsi, 2009; Shor et al., 2010), getting to the bottom of these regulation 

processes will help to understand the origins of such diseases and thereby 

improve adequate treatment of patients. 

Prior to this work, only little was known about pre-initiation complex (PIC) 

formation, architecture and regulation. Even when taking into consideration 

the latest insights, the positions of transcription factors other than the sub-

domains of TFIIB observed in the crystal structures remain only vaguely 

defined. TBP for example, is an essential component for initiation at many 

promoters that is highly conserved between archaea and eukaryotes. Its 

position within the mPIC can so far only be modelled by superimposition of 

common parts from two distinct structures: one of a TFIIB-TBP-TATA-element 

ternary complex (Nikolov et al., 1995) and the actual structure of the RNAP II-

TFIIB complex (Kostrewa et al., 2009). Furthermore, there was only very little 

data available for regulation of PIC complex formation and PIC architecture in 

other systems like RNAP I and III or even just about the basic RNAP 

architecture in the archaeal system. 

The scope of this work was therefore to investigate by cryo-electron 

microscopy and single particle analysis, firstly, the core RNAP and mPIC 

architecture in the archaeal system to gain insights about evolutionary 

conservation on a structural level and secondly, the regulation of mPIC 

complex formation and the general mPIC architecture in the yeast RNAP III 

system to draw parallels to the RNAP II and other systems, thus bringing 

forward our understanding of transcription in general. 

 



 

Chapter II 

 

 

 

 

 

 

Cryo-EM structure of an  

archaeal RNA polymerase 

 

 

 

 

 

 

 

 

 

"Marvellous enough that there are life forms withstanding temperatures above 

100°C, but hyperthermophiles which thrive and prosper under these conditions 

seem beyond any comprehension."     

    

     (Prof. Karl Otto Stetter, discoverer of P.fu) 
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1 Introduction and aim of this study 

 

Hyperthermophiles, a group of superheat-loving life forms that include 

many members of the archaeal domain, seem to be our most early ancestors 

(Stetter, 2006). Their traces go back as far as 3.5 x 109 years, to the era of the 

Early Archaean (Schopf and Packer, 1987). Archaea are classified into four 

kingdoms: Euryarchaeota, Crenarchaeota, Nanoarchaeota and Korarchaeota 

(Ouhammouch, 2004). In a phylogenetic tree based on comparison of small 

subunit ribosomal RNA (Woese et al., 1990), it becomes obvious that archaea 

are more closely related to eukaryotes than bacteria are (Stetter, 2006). Many 

archaea are extremophiles, thriving in fierce environments with extreme 

temperature, acidity, salinity or pressure, like the Euryarchaeon Pyrococcus 

furiosus. 

 

 

1.1 Pyrococcus furiosus 

 

The archaeon Pyrococcus furiosus (P.fu) was first discovered in 1986, 

when it could be extracted from geothermally heated marine sediment taken 

by Professor Karl Otto Stetter at the isle of Volcano, Italy (Fiala, 1986). It is 

spherically shaped with a size of about 0.8 to 2.5 µm and exhibits monopolar 

polytrichous flagellation used for locomotion, adherence to surfaces and for 

building cell-cell-connections (Nather et al., 2006). P.fu is strictly anaerobic, 

sulfur-dependent and heterotrophic, and is capable of growing at a pH range 

from 5 to 9 and at temperatures ranging from 70° to 103°C with an optimal 

growth at 100°C (Fiala, 1986). Its doubling time is among the shortest found in 

Archaea ! only 37 min under optimal conditions ! which gave rise to its name 

Pyrococcus furiosus, meaning “rushing fireball”. The genome of P.fu has been 

sequenced and found to be approximately 1.9 Mbp in size containing 2,192 

open reading frames (Poole et al., 2005). These properties put forward P.fu to 

study it on a molecular level. Furthermore, P.fu can serve as a simplified 

model system for eukaryotes: comprehending its basal molecular biology, like 
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the process of transcription, might underline what is most essential in higher 

organisms and provide insights into their evolution (Werner, 2007).  

 

 

1.2 Archaeal transcription 

 

Transcription in archaea is carried out by a basal machinery that bears 

much closer resemblance to the eukaryotic transcription apparatus rather than 

to the prokaryotic one (Langer et al., 1995). Transcription factors TBP and 

TFB are homologous to the core initiation factors of eukaryotic RNAP II and III 

(Thomm, 1996). TBP, TFB and RNAP are necessary and sufficient for open 

complex formation at many archaeal promoters in vitro whereas some 

promoters require TFE, the archaeal homologue of the !-subunit of TFIIE 

(Ouhammouch, 2004). No evidence has been found so far for homologues of 

eukaryotic transcription factors IIA, IIF, IIH or the "-subunit of TFIIE 

(Ouhammouch, 2004) but the fact that several archaeal species possess 

multiple paralogues of TBP and TFB, suggests the possibility of differential 

gene expression through the formation of alternative TBP-TFB-RNAP 

complexes (Baliga et al., 2000). 

Archaeal RNA polymerases contain 10 to 13 subunits, most of which 

show direct homology to a corresponding eukaryotic RNAP II subunit (Hirata 

and Murakami, 2009; Werner, 2007). The RNAP from P.fu is an 11-subunit 

enzyme that displays high sequence identity to the eukaryotic RNAP II and its 

subunit composition is much alike: direct homologs for nearly all eukaryotic 

RNAP II subunits exist, however, A! and A” together form the homolog of 

Rpb1, while homologs for Rpb8 and Rpb9 are missing (Table 3, Goede et al., 

2006). The archaeal RNAP can thus be seen as a simplified version of the 

eukaryotic RNAP (Hirata and Murakami, 2009; Kusser et al., 2008). Another 

substantial advantage of P.fu RNAP is, that all subunits can be expressed 

recombinantly and assembled in vitro to form a catalytically active enzyme 

(Naji et al., 2007). This allows for systematic functional testing of mutant 

variants to a degree, not possible for any eukaryotic RNAP to date. 
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Furthermore, the close resemblance of archaeal and eukaryotic RNA 

polymerases enables transfer of structure-function relationships from one 

system over to the other, to certain extent. This approach has been 

successfully applied in case of the eukaryotic RNAP II-TFIIB complex X-ray 

structure (Kostrewa et al., 2009). 

High-resolution structures of archaeal RNA polymerases have been 

solved from Sulfolobus shibatae (Korkhin et al., 2009) and Sulfolobus 

solfataricus (Hirata et al., 2008). These are similar to the eukaryotic RNAP II 

in overall size and shape but the S.shibatae RNAP contains a 13th subunit, 

absent in the eukaryotic enzyme while the RNAP from S. solfataricus contains 

an additional iron-sulfur cluster (compare Figure 1). However, no high-

resolution structure of a complete P.fu RNAP exists so far, and, at the time 

when the research described in this chapter was initiated, no structural 

information on a complete archaeal RNA polymerase was available 

whatsoever. 

 

 

1.3 Aim of this study 

 

Prior to this work, attempts were being made to obtain the crystal 

structure of P.fu RNAP in its free form and in complex with transcription 

initiation factors and nucleic acids (Patrick Cramer, personal communication). 

Initial crystals could be acquired but were only poorly diffracting and did not 

allow for solving the corresponding structures. Since Cryo-EM single particle 

analysis does not rely on protein crystal formation, the scope of this study 

was, to apply that method for obtaining structural data at lower resolution that 

would reflect the enzyme!s general architecture and would hopefully allow for 

visualization of flexible regions. This information may then assist the 

optimization of constructs for crystallization trials to ultimately obtain structural 

information at atomic resolution. 

 



CHAPTER II: CRYO-EM STRUCTURE OF AN ARCHAEAL RNA POLYMERASE! 18!

!

2 Results and discussion 

 

2.1 Cryo-EM analysis of the Pyrococcus furiosus RNA polymerase 

 

To tackle the archaeal RNAP structure, we established a large-scale 

purification protocol for the endogenous polymerase from Pyrococcus furiosus 

(P.fu) based on a previously published method (Experimental procedures, 

Hethke et al., 1996). The improved protocol enabled purification of five 

milligrams of RNAP from 60 g of P.fu cells. Pure RNAP comprised all subunits 

in an apparently stoichiometric manner (Figure 3A). RNAP preparations were 

monodisperse and catalytically active (data not shown), contained single 

particles according to EM with negative staining, and enabled collection of 

high quality cryo-EM data (Figure 3B). The reconstruction from 22,240 

conformationally uniform particles led to a map at 13 Å resolution (Figure 3). 

 

Polymerase part 
P.fu 

subunit 
MW (kDa) 

Corresponding RNAP II 

subunit 

Sequence 

identity1 (%) 

A! 103.1 Rpb1 N-term. Part 42.2 

A!! 44.4 Rpb1 C-term. Part 37.0 

B 127.0 Rpb2 43.2 

D 29.8 Rpb3 26.8 

H 9.2 Rpb5 40.2 

K 6.2 Rpb6 42.1 

- - Rpb8 - 

- - Rpb9 - 

N 7.8 Rpb10 52.3 

L 11.1 Rpb11 30.5 

Core 

P 5.8 Rpb12 36.7 

E! 21.7 Rpb7 22.2 Subcomplex 

Rpb4/7 F 14.1 Rpb4 5.0 

Total - 380.2 - 38.2 
1Number of amino acid residues in the P.fu RNAP subunit that are identical in the corresponding RNAP II subunit 

divided by the total number of residues in the P.fu RNAP subunit. 

 

Table 3: P.fu RNAP subunits in comparison to RNAP II. 
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The detailed EM map for P.fu RNAP enabled a unique fit of the crystal 

structure of the complete 12-subunit S.cerevisiae RNAP II (Armache et al., 

2005) (Figure 3D). Comparison of the EM map with the RNAP II structure 

confirmed the overall conservation of the enzyme architecture and active 

center, including the polymerase bridge helix, the pore, and the clamp. 

Outside the active center, at least one functional surface is also conserved. 

The dock domain and its surrounding regions are highly similar in P.fu RNAP 

and RNAP II, reflecting a conserved interaction with the initiation factor 

TFB/TFIIB (Bushnell et al., 2004; Chen and Hahn, 2003; Kostrewa et al., 

2009; Liu et al., 2009). No density was present at the locations for the 

RNAP II subunits Rpb8 and Rpb9 (Figures 3D and F), consistent with a lack 

of archaeal homologues for these subunits (Table 3). 

To explain the observed differences between the EM map and the 

RNAP II structure, we constructed a RNAP II-based homology model for P.fu 

RNAP (Figure 4). In the model, the regions of highest sequence conservation 

cluster around the active center cleft. Many peripheral regions are also 

conserved, and only several surface domains are divergent. In particular, the 

archaeal subunit A!, which is homologous to the N-terminal part of the largest 

RNAP II subunit Rpb1, contains a deletion in the clamp head, an extended 

pore domain, and it largely lacks the foot domain (Figures 3F and 4). In 

subunit A!!, which is homologous to the C-terminal part of Rpb1, several loops 

in the jaw domain are shorter, and the C-terminal repeat domain is missing. 

The C-terminus of A! and the N-terminus of A!! form residual structure in the 

region of the Rpb1 foot (Figures 3F and 4). Subunit B contains an eight-

residue insertion in the Rpb2 protrusion domain (Figures 3F and 4). 
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Figure 3: Cryo-EM structure of P.fu RNAP.  

(A) SDS-PAGE analysis of purified endogenous P.fu RNAP. 
(B) Negative stain image of P.fu RNAP particles (top), and cryo-EM micrograph with particles 
indicated by circles (bottom). 
(C) Five representative projection averages (out of a total of 83, top) and corresponding re-
projections (bottom). 
(D) Cryo-EM density of P.fu RNAP (orange) with fitted X-ray structure of S.cerevisiae RNAP II 
(blue ribbon model, Armache et al., 2005). The views are from the front (left) and from the 
side (right, Cramer et al., 2001).  
(E) Fourier shell correlation (FSC) function curve. The resolution is estimated to be around   
13 Å based on the 0.5 FSC cut-off criterion.  
(F) Gallery of regions of the P.fu RNAP structure deviating from yeast RNAP II (compare 
Figure 4). Depicted domains in RNAP II are highlighted using the original RNAP II colour code 
(Armache et al., 2005; Cramer et al., 2001). 
 

 

Among the small archaeal subunits, D and L resemble the RNAP 

counterparts Rpb3 and Rpb11, respectively, except that several surface loops 

are missing, including the zinc loop in Rpb3 (Figure 4). Subunit H lacks the N-

terminal jaw domain present in its eukaryotic counterpart Rpb5 (Figure 3D). 

Subunit K lacks the N-terminal region of the counterpart Rpb6, and the last 

two !-strands in the C-terminal assembly domain of Rpb6 (Figure 3F). 

Consequently, subunit K closely resembles the bacterial RNAP subunit 
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homolog ! (Minakhin et al., 2001). The heterodimeric subcomplex F/E! is 

situated at the expected surface position that is occupied by its counterpart 

Rpb4/7 in RNAP II (Figure 3D). However, EM density is largely lacking for the 

outermost domains of the subcomplex F/E!, the OB and HRDC domains 

(Figure 3D), indicating their mobility. Indeed, the OB domain is the most 

flexible region of RNAP II according to normal mode analysis, and the HRDC 

domain is mobile in RNAP III (Fernandez-Tornero et al., 2007; Jasiak et al., 

2006). 

 

 

 
Figure 4: Conservation of RNAP II regions in P.fu RNAP.  

The domain organization of RNAP subunits is shown as diagrams compared to RNAP II 

(Cramer et al., 2001). An orange bar above the diagrams indicates conserved regions. 

Insertions and deletions exceeding four amino acid residues are depicted. Yeast RNAP II 

subunits Rpb8 and Rpb9 have no homologue in P.fu RNAP (Table 3).  

 

 

2.2 Conclusions 

 

The first structure of an archaeal RNAP identified similarities to the 

related structure of eukaryotic RNAP II, but also revealed unique deviations. 
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The main finding is that the archaeal enzyme can largely be regarded as a 

truncated version of RNAP II. P.fu RNAP mainly lacks parts that are 

peripheral in RNAP II, including two small subunits and several surface 

domains and loops. Finally, our results provide the basis for structural studies 

of archaeal RNAP complexes that should provide significant mechanistic 

insights into eukaryotic transcription as well. 

 

 

3 Outlook 

 

With a good model of the free P.fu RNAP at hand, the next obvious steps 

will be to investigate functional complexes of RNAP and its regulatory factors. 

Again, the rather simplistic archaeal system should be beneficial for the 

reconstitution of active and physiologically relevant complexes and thus for 

obtaining results that provide insights into the basics and the evolution of the 

transcription mechanism (Hirata and Murakami, 2009). A candidate of high 

interest is of course the archaeal minimal pre-initiation complex that has, 

however, already shown to be difficult to tackle (compare Appendix, 

paragraph 1). Additionally, TFE or TFS could be incorporated into the mPIC, 

in the hope that either of them would further stabilize the interaction network 

between the components. Recent insights into eukaryotic PIC architecture 

(Kostrewa et al., 2009; Liu et al., 2009) and into transcription initiation 

dynamics (Patrick Cramer, personal communication) will guide optimization of 

constructs and nucleic acid scaffolds to finally overcome the obvious issue of 

intrinsic flexibility. If the problem remains, mild cross-linking could be tested to 

reduce any putative compositional heterogeneity (Kastner et al., 2008).  

A presumably more stable assembly might be the complex of RNAP with 

NusG, an elongation factor that is exceptional for its unique conservation in all 

three domains of life (Hirtreiter et al., 2010; Zhou et al., 2009). First attempts 

towards solving the architecture of an archaeal RNAP-NusG complex are 

already underway (Patrick Cramer, personal communication). 
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4 Experimental procedures 

 

Purification of P.fu RNA polymerase was initially supervised by Dr. 

Michela Bertero.  

 

 

4.1 Measurement of protein concentration  

 

For the determination of protein concentrations the Bradford protein 

assay was used (Bradford, 1976). Dye reagent was purchased from Biorad 

and the assay was performed according to the manufacturer's instructions. 

For each new batch of dye reagent a calibration curve was generated using 

Bovine serum albumin (Fraktion V, Roth). 

 

 

4.2 Purification of Pyrococcus furiosus RNA polymerase 

 

Pyrococcus furiosus RNA polymerase was purified from its endogenous 

source, resulting in approximately 5 mg of pure protein per purification that 

contained all subunits in an apparently stoichiometric manner. 

 

 

4.2.1 Chemicals and buffers used for purification 

 

100 x protease inhibitor (PI)  

1.42 mg Leupeptin  

6.85 mg Pepstatin A  

850 mg PMSF  

1650 mg benzamidine  

add dry ethanol to 50 ml  

store at –20 °C; add immediately before use 
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Lysis buffer 

50 mM Tris-HCl pH 8.0 

100 mM KCl 

10 mM MgCl2 

20% Glycerol 

10 mM !-mercaptoethanol 

1x PI 

 

Biorex100 buffer 

50 mM Tris-HCl pH 8.0 

100 mM KCl 

2.5 mM MgCl2 

1 mM EDTA 

10% Glycerol 

10 mM !-mercaptoethanol 

1x PI 

 

Biorex1000 buffer 

50 mM Tris-HCl pH 8.0 

1 M KCl 

2.5 mM MgCl2 

1 mM EDTA 

10% Glycerol 

10 mM !-mercaptoethanol 

1x PI 

 

Dialysis buffer 

50 mM Tris-HCl pH 8.0 

100 mM KCl 

2.5 mM MgCl2 

10% Glycerol 

10 mM !-mercaptoethanol 
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Heparin100 buffer 

50 mM Tris-HCl pH 7.5 

100 mM KCl 

2.5 mM MgCl2 

10% Glycerol 

1 mM !-mercaptoethanol 

 

Heparin1000 buffer  

50 mM Tris-HCl pH 7.5 

1 M KCl 

2.5 mM MgCl2 

10% Glycerol 

1 mM !-mercaptoethanol 

 

MonoQ0 buffer 

50 mM Tris-HCl pH 8.0 

100 mM KCl 

2.5 mM MgCl2 

10% Glycerol 

10 mM !-mercaptoethanol 

 

MonoQ1000 buffer 

50 mM Tris-HCl pH 8.0 

1 M KCl 

2.5 mM MgCl2 

10% Glycerol 

10 mM !-mercaptoethanol 
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Sup150 buffer 

10 mM Hepes pH 7.0 

150 mM KCl 

2.5 mM MgCl2 

5mM DTT 

 

 

4.2.2. Purification of endogenous P.fu RNAP 

 

Pyrococcus furiosus cells were obtained frozen (-80 °C) from the 

Archaeenzentrum, University of Regensburg. To thaw the cells, 60g were 

resuspended in 200 ml lysis buffer at 4°C over night, while stirring. To disrupt 

the cells an Emulsiflex (Avestin Emulsiflex C5) was used applying 2 pressure 

cycles at 1000 - 1500 bar. Cell lysates were applied via a sieve to prevent 

clogging of the Emusliflex tubes. To ensure cell lysis, a small aliquot was 

checked by phase-contrast microscopy. The lysate was centrifuged (30 min, 

10,000 rpm, Sorvall SLA-1500) and then ultracentrifuged (1 h 30 min, 40,000 

rpm, Beckman Ti-45), recovering the supernatant after both steps.  

The final supernatant was loaded on a Biorex column (GE Healthcare 

XK50) using a peristaltic pump at 2-3 ml/min. The Biorex column was packed 

with ~400 ml Biorex resin that was previously equilibrated with Biorex100 

buffer. The loaded column was washed with 1000 ml of Biorex100 buffer to 

remove protein that was bound non-specifically. The P.fu RNAP was eluted 

with 1500 ml Biorex1000 buffer at 1 ml/min using a KCl gradient from 0.1 M to 

1 M. P.fu RNAP eluted between 55% and 80% Biorex1000 buffer. The 

fractions were checked by NTCA (non specific transcriptional activity) test. 

The Biorex column was finally washed with of Biorex1000 buffer, then 2M 

KCl, H2O and finally 20 % Ethanol using 1000 ml in each case. When treated 

like this, the resin lasts for 3-4 purifications. 

The fractions containing P.fu RNAP were pooled, dialysed for 4 h against 

2 l Dialysis buffer while stirring, then loaded at 2 ml/min on a Heparin column 

(20 ml HiPrep 16/10 Heparin FF) that was pre-equilibrated with Heparin100 
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buffer. The polymerase was eluted with 200 ml Heparin1000 buffer with a 

gradient from 0.1 M to 1 M KCl. The fractions were checked by NTCA test. 

P.fu RNAP eluted between 17% and 42% Heparin1000 buffer. The Heparin 

column was subsequently washed with 100 ml of pure Heparin1000 buffer. 

The fractions containing P.fu RNAP were centrifuged (30 min, 12,000 

rpm, Sorvall SLA-1500), diluted to a final salt concentration of 150 mM KCl 

and loaded at 1 ml/min onto a MonoQ Column (MonoQ 10/100, GE 

Healthcare) that was previously equilibrated with MonoQ0 buffer, collecting 

the flowthrough. The column was washed with 90% MonoQ1000 buffer 

collecting the wash-flowthrough. The two flowthrough fractions were dialysed 

against 10% MonoQ1000 buffer and loaded to a MonoQ Column (MonoQ 

10/100, GE Healthcare) that was prepared as described above. The column 

was then washed with 20 ml of 20% MonoQ1000 buffer and eluted with a 

gradient from 15% to 40% MonoQ1000 buffer. P.fu RNAP was eluted at 1 

ml/min with MonoQ1000 buffer using a 160 ml gradient from 0.15 M to 1 M 

KCl. P.fu RNAP eluted between 25% and 30% MonoQ1000 buffer. Fractions 

containing P.fu RNAP were pooled and concentrated to a final concentration 

of 1 mg/ml. For long-term storage (2-3 months at -80°C), Glycerol was added 

to a final concentration of 20% and samples were flash frozen in liquid 

nitrogen. 

Approximately 1 mg of P.fu RNAP at a concentration of 1 mg/ml were 

centrifuged for 15 min at 12,000 rpm (Sorvall SLA-1500) and loaded to a 

Superose 6 size exclusion column (GE Healthcare) pre-equilibrated in Sup150 

buffer and eluted at 0.3 ml/min. The fractions containing P.fu RNAP were 

checked by 15% SDS-PAGE for purity and all the bands were double checked 

by mass spectrometry. 

 

 

4.3 Cryo-electron microscopic structure determination 

 

Purified P.fu RNAP was diluted to ~0.1 mg/ml using Sup150 buffer and 

was applied to freshly glow discharged carbon coated holey grids (Quantifoil 
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R3/3 + 2nm Carbon on top). Negative-stain samples were treated with 2% 

uranyl acetate and subsequently dried at RT. Cryo samples were flash-frozen 

in liquid ethane using a semi-automated controlled-environment system 

(Vitrobot, FEI Company) at 4° C, 95% humidity and stored in liquid nitrogen 

until transfer to the microscope. 

Micrographs where recorded on Kodak SO-163 Electron film under low-

dose conditions of ~25 electrons/Å2 on a Tecnai Polara F30 field emission 

gun microscope at 300 kV using a pre-exposure of 100 ms. Negative film 

images were scanned on a Heidelberg drum scanner resulting in a pixel size 

of 1.23 Å on the object scale.  

The contrast transfer function was determined using CTFFIND and 

SPIDER (Frank et al., 1996). Particles were picked semi-automatically with 

SIGNATURE (Chen and Grigorieff, 2007) and verified visually. Data were 

processed using SPIDER. Initially 41,669 particles images from 23 

micrographs were decimated three-fold by pixel binning and aligned to 

reference projections of a version of the complete RNAP II structure (Armache 

et al., 2005) that was modified by deleting the clamp (residues 10-340 of 

subunit Rpb1) and the foot (residues 871-1059 of subunit Rpb1) and that was 

Gaussian filtered to a resolution of 25 Å. During early refinement, density for 

the clamp as well as for a weaker foot reappeared, substantiating the fact that 

the obtained volumes represented experimental data and not a reproduction 

of the reference. Particles were sorted into subsets according to different 

clamp conformations by providing two reference volumes: the reconstruction 

obtained from all particles and a manually created “collapsed-clamp” version 

of the complete RNAP II (Armache et al., 2005; Kuhn et al., 2007). All 

particles were aligned against each one of the references and a cross-

correlation value was calculated for each particle and each corresponding 

reference projection. Particles were assigned to the reference volume bearing 

the higher cross-correlation value. Particle groups were then back-projected 

separately and the resulting reconstructions were used as input references for 

the next round of sorting. This procedure was repeated until the distribution of 

particles converged and resulted in 22,240 particles with an open clamp 
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conformation (class I) and 19,429 particles with other conformations 

(Vassylyev et al., 2002). At this stage the resolution for the class I volume was 

estimated to 16.8 Å based on a cut-off value of 0.5 for the Fourier shell 

correlation. The class I volume was further refined to a resolution of 14.5 Å 

using two-times decimated particle images. The final back-projection was 

performed in real space using the BP RP algorithm of SPIDER and non-

decimated particle images. Using the command TH M in SPIDER, a mask of 

the obtained volume was generated and used for final calculation of the 

resolution estimate of 13 Å. 



 

Chapter III 

 

 

 

 

 

 

 

 

Molecular basis of RNA polymerase III 

transcription repression by Maf1 

 

 

 

 

 

 

 

 

 

 

 

“I believe that we cannot live better than in seeking to become better.” 

 

(Sokrates) 
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1 Introduction 

 

The eukaryotic nuclear genome is transcribed by the multisubunit 

enzymes RNA polymerase (RNAP or Pol) I, II and III, which catalyze DNA-

dependent RNA synthesis. Pol III transcribes genes encoding short, 

untranslated RNAs such as tRNAs, 5S rRNA, the spliceosomal U6 snRNA, 

the signal recognition particle 7SL RNA, and short regulatory RNAs. Pol III 

genes are essential in all cells and involved in fundamental processes such as 

ribosome and protein biogenesis, RNA processing, and protein transport. Pol 

III transcription is tightly co-regulated with Pol I activity, accounting together 

for up to 80% of nuclear gene transcription in growing cells (Grummt, 2003; 

Paule and White, 2000; Willis et al., 2004). 

Pol III, with its 17 subunits and nearly 700 kDa mass, is the most 

complex nuclear RNA polymerase (Schramm and Hernandez, 2002). Five 

subunits, Rpb5, 6, 8, 10, and 12, are common to Pol I, II and III. Subunits 

AC40 and AC19 are common to Pol I and III, and homologous to Pol II 

subunits Rpb3 and Rpb11, respectively. The two largest Pol III subunits C160 

and C128 are homologous to Pol II subunits Rpb1 and Rpb2, respectively, 

and encompass the active center of the enzyme. Subunits C17 and C25 form 

a heterodimeric subcomplex with homology to the Pol II subcomplex Rpb4/7 

(Ferri et al., 2000; Jasiak et al., 2006; Sadhale and Woychik, 1994). Subunit 

C11 shares homology with Pol II subunit Rpb9. The Pol III-specific subunits 

C82, C53, C37, C34 and C31 form two subcomplexes. The C53/37 

subcomplex shows limited homology to the Pol II initiation factor TFIIF and is 

involved in promoter opening, elongation, correct termination and re-initiation 

(Carter and Drouin, 2010; Cramer et al., 2008; Kassavetis et al., 2010; 

Landrieux et al., 2006). The subcomplex C82/34/31 is involved in promoter 

recognition and initiation. C34 interacts with TFIIIB, the initiation factor that 

recruits Pol III to promoters (Thuillier et al., 1995; Wang and Roeder, 1997; 

Werner et al., 1993) and plays a subsequent role in open complex formation 

(Brun et al., 1997). Because of the central role of Pol III transcripts in basal 

cellular processes, the level of Pol III transcription is a critical determinant of 
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cell growth. In yeast, the ability to rapidly shut off synthesis of tRNAs and 

rRNAs during environmental stress conditions ensures cell survival (Warner, 

1999). Stress conditions lead to Pol III repression by Maf1, a phosphoprotein 

that is phylogenetically conserved from yeast to human (Pluta et al., 2001; 

Upadhya et al., 2002). Maf1-dependent Pol III repression occurs during DNA 

damage, oxidative stress, growth to stationary phase, treatment with 

rapamycin and chlorpromazine, and upon blocking the secretory pathway 

(Upadhya et al., 2002; Willis et al., 2004).  

In growing yeast, Maf1 is phosphorylated and localized mainly in the 

cytoplasm. Stress conditions lead to rapid Maf1 dephosphorylation and import 

into the nucleus (Oficjalska-Pham et al., 2006; Roberts et al., 2006). Nuclear 

import of yeast Maf1 is directed by two independent nuclear localization signal 

(NLS) sequences and phosphorylation impairs nuclear import (Lee et al., 

2009; Moir et al., 2006). Once in the nucleus, dephosphorylated Maf1 binds to 

Pol III, blocking its interaction with TFIIIB, thus preventing recruitment of Pol 

III to promoters (Desai et al., 2005; Moir et al., 2006; Roberts et al., 2006). 

Maf1 also inhibits TFIIIB assembly at Pol III promoters by binding Brf1, a 

subunit of TFIIIB that resembles TFIIB in its N-terminal half but also contains 

a Pol III-specific C-terminal domain (Desai et al., 2005). Maf1 leads to 

reduced genome-wide occupancy of Pol III genes by Brf1 and Pol III 

(Oficjalska-Pham et al., 2006; Roberts et al., 2006). Similar results have been 

obtained in human cells, thus establishing Maf1 as a conserved global 

repressor of Pol III transcription (Reina et al., 2006). 

In this study we elucidate the mechanism of Pol III repression by Maf1. 

To date, structural information on Pol III is limited to a cryo-electron 

microscopic (cryo-EM) map that revealed the general location of the two Pol 

III-specific subcomplexes (Fernandez-Tornero et al., 2007), a homology 

model for the 10-subunit core enzyme, and the crystal structure of C25/17 

(Jasiak et al., 2006). Here we report cryo-EM structures of Pol III in its free 

form and in complex with a DNA-RNA scaffold, assign the locations of Pol III 

subunits, present the Maf1 crystal structure, and combine the resulting 

information with a cryo-EM structure of a Pol III-Maf1 complex. Together with 
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functional studies, these results suggest the mechanism of Pol III repression 

by Maf1. 

 

 

2 Results and discussion 

 

2.1 Pol III EM structure reveals C82/34/31 mobility 

 

We established a large-scale purification protocol for tagged Pol III from 

the yeast Saccharomyces cerevisiae (Experimental procedures). Pure Pol III 

samples comprised all 17 subunits, were monodisperse, and appeared 

homogeneous in EM with negative stain (Figure 5B). We collected high-quality 

cryo-EM data after vitrification under native conditions. A reconstruction of Pol 

III from 20,480 single particles led to a map at 21 Å resolution (Figures 5E and 

6A, Experimental procedures). The cryo-EM map showed good agreement 

with the previously published map (Fernandez-Tornero et al., 2007).  

The core Pol III homology model plus the C25/17 crystal structure (Jasiak 

et al., 2006) or the 12-subunit Pol II crystal structure (Armache et al., 2005) 

could both be fitted unambiguously to the map (Figures 5E and 7). After this 

fitting, two extended additional densities remained, one on top of the clamp 

adjacent to C25/17, and one at the lobe near Rpb9 (Figure 5E). Densities at 

the lobe and clamp were attributed to subcomplexes C53/37 and C82/34/31, 

respectively (Fernandez-Tornero et al., 2007). The density at the lobe was 

fitted with a homology model of the C53/37 dimerization module based on the 

crystal structure of the A49/34.5 module in Pol I (Geiger et al., submitted) 

(Figure 8). Adjacent densities protruding towards the C160/C11 jaw and the 

funnel were explained by extensions from the dimerization module. The 

location of C53/37 agrees with the previously reported association of C53/37 

with C11 (Chedin et al., 1998) and with the location of the dimerization domain 

of TFIIF, the distant homologue of C53/37 (Cramer et al., 2008) on the Pol II 

lobe (Chen et al., 2010; Eichner et al., 2010). The additional density at the 
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clamp could only account for a small part of the 138 kDa subcomplex 

C82/34/31, indicating intrinsic flexibility (Figure 5E). 

 

 

 

Figure 5: Cryo-EM reconstruction of Pol III and Pol III-DNA-RNA complexes 

(A) SDS-PAGE gel of purified yeast Pol III. The 17 subunits are indicated. The identity of the 

bands was confirmed by mass spectrometry (not shown). 

(B) EM micrographs of Pol III in negative stain (left) and vitrified ice (right). White circles 

indicate particles in vitrified ice. Scale bars are 10 nm in length. 

(C) Different views of the Pol III reconstruction (first row) with corresponding raw single 

particle images (second row), low-pass filtered single particle images (middle row), class 

averages (forth row) and reference free averages (bottom row). 

(D) DNA-RNA scaffold used in the Pol III-DNA-RNA complex (Brueckner et al., 2007). 

(E) Cryo-EM reconstruction of Pol III (green) and Pol III-DNA-RNA complex (blue). The 10-

subunit Pol III core homology model and the C25/17 crystal structure (Jasiak et al., 2006) 

were fitted to the map and are shown as ribbon models.  
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Figure 6. Single particle analysis of RNA Pol III 

(A) Fourier shell correlation (FSC) function plot. Reported resolution is based on a cut-off 

value of FSC = 0.5 (dashed horizontal line). 

(B) Distribution of particles among 166 different projection groups, sampled over the eularian 

angular space with equal distances. Overrepresented outliers were limited to prevent 

predominant views. 

 

 

 

Figure 7: Fit of Pol III homology model and Pol II crystal structure to the cryo-EM map 

(A) Fit of the 12-subunit Pol III homology model (green ribbon model, Jasiak et al., 2006) to 

the free Pol III EM map (green surface) reveals that the HDRC domain of the C17/25 

subcomplex in solution adopts a conformation different to the one observed in the crystal 

structure. 

(B) Fit of the 12-subunit RNA Pol II crystal structure (yellow ribbon model, Armache et al., 

2005). The Rpb4/7 subunits (paralogues of Pol III subunits C17/25), as observed in the Pol II 

crystal structure, are more consistent with the cryo EM map, suggesting that the HDRC 

domain of C25/17 is indeed mobile.   
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2.2 Nucleic acid binding restricts C82/34/31 mobility 

 

To see how nucleic acid binding influences the Pol III structure, we 

determined the cryo-EM structure of a Pol III complex with a minimal DNA-

RNA scaffold (Figure 5D, Experimental Procedures). This complex mimics an 

active elongation complex (Brueckner et al., 2007). A reconstruction at 19 Å 

resolution was obtained from 11,965 single particles (Figures 5E and 6, 

Experimental Procedures). As expected, the reconstruction revealed density 

for nucleic acids in the cleft, but also a structural ordering of the C82/34/31 

subcomplex, giving rise to an extended density between the top of the clamp, 

the Rpb5 jaw, and C25/17 (Figure 5E), revealing all the mass of the 138 kDa 

subcomplex.  

A long continous density between the clamp and the jaw (Figure 5E) 

could be fitted with the crystal structure of the human C82 homologue 

(Sebastien Fribourg, unpublished data) (Figure 8A). A prominent density 

remained between the clamp and the protrusion, forming a suspension over 

the cleft (Figures 5E, 8A and B). We assigned this density to subunit C34 

since its two lobes fitted the structures of two winged helix (WH) domains in 

the N-terminal region of C34 (PDB codes 2dk5, 2dk8), and since C34 cross-

links to promoter DNA around position -21 (Bartholomew et al., 1993) that is 

nearby in the homologous Pol II closed and open promoter complex models 

(Kostrewa et al., 2009). The remaining globular density near zinc site Zn8 in 

C160 between the clamp and C25/17 (Figure 8) was assigned to C31 since 

this position explains the known interactions with subunits C160, C82, C34, 

and C17 (Chedin et al., 1998; Geiduschek and Kassavetis, 2001; Schramm 

and Hernandez, 2002), the requirement of the zinc site for C82/34/31 binding 

(Werner et al., 1992), and association of C31 with Pol III after dissociation of 

the C82/34 heterodimer (Lorenzen et al., 2007). We note that alternatively one 

C34 domain could be placed into the density assigned to C31 (Figure 9), but 

this assignment could not explain the published biochemical data. Taken 

together, we could assign all Pol III subunits to EM densities in a way that is 

consistent with known interactions.  
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Figure 8: Subunit architecture of Pol III 

(A) Pol III-specific subunits placed into the cryo-EM envelope of the Pol III-DNA-RNA 

complex. A homology model of the C53/37 dimerization domain (green, Geiger and Cramer, 

unpublished), the human C82 homolog crystal structure (cyan, S. Fribourg, unpublished) and 

the two C34 WH domain crystal structures (magenta) are shown as molecular surfaces. The 

10-subunit Pol III core homology model and the C25/17 crystal structure (Jasiak et al., 2006) 

are shown as green ribbon models. 

(B) Close-up view of Pol III-specific subunits fitted in the cryo-EM envelope of the Pol III-DNA-

RNA complex. Terminal extensions of the C53/37 dimerization module are highlighted in red. 

(C) Localization of Pol III-specific subunits on the core homology model and the C25/17 

crystal structure (Jasiak et al., 2006). 

(D) Schematic representation of C82/34/31 subcomplex organization on Pol III. 

(E) Domain organization of Pol III specific subunits. Indicated domains were either revealed 

by homology modelling (C53, C37), X-ray crystallography (C34), or HHPred and secondary 

structure prediction (C82). 
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Figure 9: Location of the C82/34/31 supcomplex 

(A) Subunits C82 (human C62, S. Fribourg, personal communication) and C34 (two N-
terminal winged helix domains) are displayed as cyan and magenta molecular surfaces, 
respectively, and fitted in the Pol III-DNA-RNA cryo-EM map, as described in the text. With 
this fit, C31 (indicated by a yellow dashed line) could be placed in the globular density on top 
of the N-terminal C160 Zn-binding site. 
(B) An alternative model for fitting the C34 winged helix domains (magenta molecular surface 
representation) is presented. As described in the text, this model seems less probable. 
 

 

2.3 Maf1 structure is globular, not modular 

 

To elucidate Pol III repression by Maf1, we determined the Maf1 structure 

by X-ray crystallography. We subjected recombinant S. cerevisiae and human 

Maf1 to limited proteolysis (Experimental procedures). Two flexible regions 

were revealed, a mobile insertion (human residues 50-82, yeast residues 50-

224), and an acidic C-terminal tail (Figure 10). Based on cleavage sites and 

secondary structure predictions we constructed Maf1 variants for 

crystallization trials. Crystals were obtained for a human variant that lacked 

both mobile regions. The structure was solved by bromide phasing and 

refined to a free R-factor of 21.2% at 1.55 Å resolution (Table 4, Experimental 

procedures).  
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Data set  NaBr soak  Native 

Data collection     

Space group  P212121  P212121 

Unit cell axis  
a, b, c (Å) 

 
 

 
48.07,48.34, 80.50 
 

  
48.39, 48.81, 79.32 

 Peak Remote Inflection  

Wavelength (nm) 0.9196 0.9211 0.9200 0.91870 

Resolution (Å) 26.83-1.9 26.83-1.9 26.83-1.9 25.974-1.55 

Rmeas (%) 7.7 (50.7) 6.0 (39.2) 7.0 (51.3) 5.2 (75.7) 
I/!  (I) 22.0 (2.5) 22.7 (3.0) 22.0 (2.4) 22.3 (1.2) 
Completeness (%) 99.0 (99.5) 98.8 (99.4) 98.9 (99.5) 90.4 (87.4) 
Redundancy 3.9 (4.0) 3.8 (3.9) 3.8 (4.0) 3.2 (1.9) 
     

Refinement     

Resolution (Å)    1.55-25.97 

No. reflections    26,137 

Rwork (%)    18.81 

Rfree (%)    21.15 

No. atoms     

      Protein    1313 

      Water    142 

B-factors (Å2)     

      Protein     33.64 

      Water    43.95 

r.m.s.d. from ideal     

      Bond lengths (Å)    0.006 

      Bond angles (°)    0.959 

 
Table 4: Maf1 X-ray diffraction and refinement statistics 

 
 

Maf1 forms a globular structure with a central five-stranded antiparallel "-

sheet that is flanked by a single helix on one side, and by three helices on the 

other (Figure 10B). The Maf1 fold is frequently found in proteins, but not in 

proteins involved in transcription, as revealed by DALI (Holm and Park, 2000; 

Krissinel and Henrick, 2004). The Maf1 structure is apparently conserved 

among eukaryotes, since hydrophobic core residues are conserved from 

yeast to human (Figure 10A). The Maf1 structure shows that the previously 

defined conserved sequence boxes A, B, and C (Desai et al., 2005; Pluta et 

al., 2001; Reina et al., 2006), do not correspond to structural modules or 

defined surface patches (Figure 10C). Thus, previous functional analyses of 

Maf1 deletion constructs, lacking one or more of these boxes, must be re-

evaluated taking into account that the variants may adopt non-native 

structures. 
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Figure 10: Maf1 crystal structure 

(A) Mutiple sequence alignment and structural conservation of Maf1 from Homo sapiens 

(H.s.), Schizosaccharomyces pombe (S.p.) and Saccharomyces cerevisiae (S.c.). Secondary 

structure elements are indicated above the sequence (cylinders for !-helices, arrows for "-

strands). Red elements are included in the structure. Identical and conserved residues are 

highlighted in green and orange, respectively. The mobile region includes proteolytic cleavage 

sites (this work), phosphorylation sites (Dephoure et al., 2008; Lee et al., 2009; Moir et al., 

2006), and the N-terminal NLS (Nt-NLS). The C-terminal NLS (Ct-NLS) is also indicated. 

Regions that are not present in the crystal structure are indicated by dashed lines. The 

crystallized protein was a human Maf1 variant comprising residues 1-35 and 83-205. 

(B) Two views of a ribbon model of the human Maf1 crystal structure. Secondary structure 

elements are labelled according to A. 

(C) Ribbon model of human Maf1 with the conserved A-, B- and C-boxes highlighted in blue, 

purple, and rose, respectively. 

(D) Purification of Pol III-Maf1 complexes. 200 µg of Pol III and a 5-fold molar excess of full-

length yeast Maf1 or the yeast Maf1 variant comprising residues 1-35 and 225-345 (lane 1, 

equivalent to the crystallized human protein) were incubated for 20 min at 20°C, loaded on a 

Superose 6 gel filtration column and analysed on SDS-PAGE gels. Lane 2 shows Pol III, lane 

3 the Pol III complex with the Maf1 variant, and lane 4 shows the Pol III complex with full-

length Maf1. 

(E) Surface conservation of Maf1. Identical and conserved residues are highlighted in green 

and yellow, respectively. Residues labelled in blue were analyzed for a role in Pol III 

interaction (Figure 11). Residues labelled in red, pink, and wheat show severe, mild, or no 

phenotypes, respectively (Dephoure et al., 2008; Moir et al., 2006; Roberts et al., 2006).  

(F) Surface charge distribution of Maf1. Red, blue, and white areas indicate negative, positive, 

and neutral charges, respectively. 
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2.4 Regulated Maf1 localization 

 

The Maf1 crystal structure reveals that the two NLS sequences (yeast 

residues 205-208 and 328-332; Moir et al., 2006) are accessible on the 

domain surface (Figure 10B). The C-terminal NLS (Ct-NLS) is located 

between strands !4 and !5, and the N-terminal NLS (Nt-NLS) is part of the 

directly adjacent mobile region (Figure 10B). The adjacent location suggests 

that phosphorylation of the mobile insertion regulates nuclear localization by 

masking the NLS sequences (Lee et al., 2009; Moir et al., 2006). This 

mechanism is apparently conserved from yeast to human, although the exact 

phosphorylation sites within the mobile insertion differ (Dephoure et al., 2008; 

Lee et al., 2009; Moir et al., 2006; Shor et al., 2010). The Ct-NLS and the 

residues at the mobile insertion form the only positively charged region on 

Maf1 (Figure 10F). Point mutants that led to defects in phosphorylation, 

growth on glycerol at 37°, or Pol III repression (Moir et al., 2006; Roberts et 

al., 2006) (Figure 10E), cluster in this surface region. Consistent with a role of 

this region in phosphorylation-regulated nuclear import, point mutations in this 

region did not abolish Pol III binding (Figure 11). 

 



CHAPTER III: MOLECULAR BASIS OF RNA POLYMERASE III TRANSCRIPTION REPRESSION BY MAF1! 42!

!

 

Figure 11: Maf1 mutational analysis 

(A) Ribbon model of Maf1 structure (residues 1-35;83-205). Investigated residues are shown 

in ball and stick representation. Residues labeled in blue were analyzed by pulldowns in this 

study and had no phenotypic effect. Other residues were described in literature (Roberts et 

al., 2006; Moir et al., 2006): residues depicted in red showed a severe phenotype in vivo while 

the other labeled residues showed mild (pink) or no phenotypic effect (wheat) in vivo.  

(B) Binding properties of point mutants. Described point mutants of S.cerevisiae Maf1 full 

length (Sc Maf1 f.l.) were analyzed in pulldowns for its binding ability to Pol III. Therefore 15 

µg of Pol III were preincubated with 5 molar excess of Maf1 mutants in buffer M and loaded 

on Ni-NTA beads, washed with 30 mM imidazol and eluted with 500mM imidazol in buffer M. 

Gels show partly purified Maf1 mutants used for binding (lanes 1, 4, 7, 10 and 13), negative 

control of unspecific Maf1 binding to the resin (lanes 2, 5, 8, 11 and 14) and the eluted 

fractions, indicating that all point mutants can still bind Pol III (lanes 3, 6, 9, 12 and 15). 
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2.5 Maf1 binds the Pol III clamp and rearranges C82/34/31 

 

To investigate how Maf1 binds yeast Pol III, we prepared full-length yeast 

Maf1 as a recombinant protein and a variant that lacked both mobile regions 

and corresponded to the crystallized human protein. Both variants formed a 

complex with Pol III that could be purified by size-exclusion chromatography 

(Figure 10D, lanes 3 and 4). Maf1 binding was specific, as human Maf1 did 

not bind yeast Pol III (not shown). Thus, the two mobile regions are not 

required for Pol III binding, and the human Maf1 crystal structure is relevant 

for the understanding of the Pol III-Maf1 interaction. We collected cryo-EM 

data of the pure Pol III-Maf1 full-length complex and used 16,974 particles to 

obtain a reconstruction at 18.5 Å resolution (Figures 6 and 12, Experimental 

procedures). The structure revealed a continuous density for C82/34/31, 

similar to the density in the Pol III-DNA-RNA complex (Figure 12C).  

Maf1 was assigned to a new density on top of the clamp, with the help of 

calculated difference maps. The Maf1 X-ray structure fitted this density well 

(Figures 12A and C). To provide additional support for the Maf1 location, we 

labelled the C-terminal hexahistidine tags on Maf1 and the Pol III subunit 

C128 with Ni-NTA-Nanogold™ and located the labels by 2D cryo-EM image 

analysis (Experimental procedures). The locations of the labels were 

consistent with Maf1 binding on top of the clamp domain (Figure 12B). This 

location also agreed with published biochemical and genetic interactions of 

Maf1 with the N-terminal region of C160 that forms most of the clamp (Boguta 

et al., 1997; Oficjalska-Pham et al., 2006; Reina et al., 2006) (Figure 12D). 

Further consistent with this location, C160, C82, and C34 are the top 

interacting partners of Maf1 in the yeast interactome (Gavin et al., 2006). 
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Figure 12: Cryo-EM structure of the Pol III-Maf1 complex  

(A) Comparison of cross sections of EM structures of the Pol III-DNA-RNA complex (blue) 

and the Pol III-Maf1 complex (red) reveals an additional density for Maf1. 

(B) Different views of reference projections of the Pol III-Maf1 reconstructions (top row), 

corresponding thresholded Nanogold-labeled Pol III-Maf1 particles used for alignment 

(second row), raw Nanogold-labeled particles (middle row), Nanogold particles with outline of 

Pol III-Maf1 structure and circles indicating the location of the Nanogold labels and the 

expected variability (forth row, compare text), and surface representations of the Pol III-Maf1 

reconstructions with the N-terminus of C128 and the location of Maf1 indicated by white and 

yellow dots, respectively (bottom row). The Nanogold signals are consistent with the location 

of Maf1 shown in A. 

(C) Fit of the Maf1 X-ray structure (red molecular surface) to the Pol III-Maf1 EM map (red 

mesh). The cryo-EM map of the Pol III-DNA-RNA complex is also shown (blue surface) 

(D) Ribbon representation of the Pol III-Maf1 complex. The Pol III homology model is depicted 

in green while the Maf1 X-ray structure is depicted in red. The clamp domain of C160 (res. 1-

245) is highlighted in yellow. The Pol III-Maf1 cryo-EM map is shown as red mesh. 

(E) Maf1 (red ribbon) sterically clashes with C34 (purple) and C82 (cyan) as positioned in the 

Pol III-DNA-RNA complex. 

(F) Comparison of cross sections of EM structures of the Pol III-DNA-RNA complex (blue) and 

the Pol III-Maf1 complex (red) reveals a shift of the density attributed to the C82/34/31 

subcomplex upon Maf1 binding. 

(G) Close-up view of the region over the clamp. Most of the density attributed to the two C34 

WH domains in the Pol III-DNA-RNA complex (blue) is absent in the Pol III-Maf1 complex 

(red). 
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A detailed comparison of the EM structures revealed that the C82/34/31 

density observed in the Pol III-Maf1 complex differed from that in the Pol III-

DNA-RNA complex. In particular, it appears that most of the density assigned 

to the C34 WH domains in the Pol III-DNA-RNA complex is absent in the Pol 

III-Maf1 complex, as an effect of a Maf1-dependent displacement of these 

domains. Probably these domains are shifted and become partially mobile, as 

suggested by the presence of a shifted residual density, attributed to the 

second C34 WH domain (Figure 12F). The densities assigned to C31 and 

C82 undergo a similar change in location towards the Rpb5 jaw domain, 

giving rise to additional density in this region (Figures 12C and F). 

Consistently, Maf1 overlaps with the assigned locations of the C34 second 

WH domain and with C82 and C31 in the Pol III-DNA-RNA complex (Figures 

12C and E). 

 

 

2.6 Maf1 impairs closed promoter complex formation 

 

To analyze how the structural changes induced by Maf1 binding could 

repress Pol III transcription, we constructed a model for the Pol III-Brf1-TBP 

closed promoter complex. Brf1 resembles the Pol II initiation factor TFIIB in its 

N-terminal region, but contains a specific C-terminal extension that binds TBP 

(Figure 13; Khoo et al., 1994). We therefore combined the Pol II-TFIIB-TBP 

closed promoter complex model (Kostrewa et al., 2009) with the structure of 

TBP bound to the Brf1 C-terminal residues 437-507 (Juo et al., 2003). 

Comparison of the resulting Pol III closed promoter complex model with the 

EM densities revealed that C34 was well positioned for interacting with both 

the Brf1 N- and C-terminal regions (Figure 14A), consistent with both regions 

interacting with C34 (Andrau et al., 1999; Brun et al., 1997; Khoo et al., 1994). 

In the Pol III-Maf1 complex, C34 is locked in a different position that is 

apparently incompatible with Brf1 interaction, suggesting that Maf1 impairs 

Pol III recruitment to Brf1-containing promoters (Figures 14A and B). 
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Figure 13. Brf1 domain organization 

 

 

 

 

 

 

 

Figure 14: Mechanism of Pol III transcription repression by Maf1 

(A) Model of Pol III-Brf1-TBP-DNA closed promoter complex. The Pol III core homology 

model and C25/17 crystal structure (Jasiak et al., 2006) are depicted as gray ribbons. The 

C34 WH domains are depicted as magenta surfaces. The Brf1 N-terminal domain (green 

ribbon) and the closed promoter DNA (cyan and blue ribbons) are based on the Pol II-TFIIB-

TBP-DNA closed promoter complex model (Kostrewa et al., 2009). TBP (dark purple) and the 

Brf1 C-terminal domain (orange) are depicted as ribbons and are based on the Brf1-TBP-

DNA crystal structure (Juo et al., 2003). 

(B) Schematic model for Maf1-dependent repression of Pol III-Brf1-TBP-DNA closed promoter 

complex formation, coloured as in A. 
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To test this model for the Maf1 repression mechanism, we investigated by 

size-exclusion chromatography whether the Pol III-Maf1 complex can bind to 

a pre-assembled, transcriptionally functional, Brf1-TBP fusion protein-DNA 

promoter complex (Kassavetis et al., 2005). We used U6 snRNA promoter 

DNA from position -40 to +20 relative to the transcription start site +1. 

Whereas free Pol III formed a stable closed promoter complex (Figure 15E, 

lane 3), the Pol III-Maf1 complex did not bind the Brf1-TBP-DNA complex, 

even when a five-fold molar excess was used (lane 5). When we repeated the 

experiment with a mismatched bubble region at positions –11 to +2 (Figure 

15A), the same result was obtained (Figure 15E, lanes 6 and 7). Further, pre-

assembled Pol III-Brf1-TBP promoter complexes were unable to bind Maf1, 

even when a five-fold molar excess was used (lane 4). These experiments 

indicate that the interaction of Pol III with Maf1 and a Brf1-TBP-DNA complex 

are mutually exclusive, showing that Maf1 impairs formation of a closed 

promoter complex. This is consistent with evidence that Maf1 binds Pol III and 

prevents promoter interaction (Desai et al., 2005; Moir et al., 2006; Roberts et 

al., 2006). 

 

 

2.7 Maf1 does not inhibit Pol III activity 

 

The above model predicts that Maf1 inhibits binding of promoter DNA 

over the active center cleft but not in the cleft. To test this, we compared pure 

Pol III and Pol III-Maf1 complexes in an initiation factor-independent 

transcription assay using a 3!-tailed DNA template and a priming RNA 

dinucleotide (Bardeleben et al., 1994, Experimental procedures) that bind 

directly in the cleft. Consistent with the model, both complexes were equally 

active in RNA synthesis, and an excess of Maf1 or DNA did not change 

activity (Figure 15C). We additionally performed RNA extension assays using 

a minimal DNA-RNA scaffold (Damsma and Cramer, 2009). The presence of 

Maf1 neither prevented scaffold binding nor elongation to the end of the 
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template, and this was independent of the order of factor addition (Figure 

15B). 

 

 

 

Figure 15: Maf1 impairs closed promoter complex formation but not Pol III activity 

(A) Nucleic acid scaffolds. 

(B) RNA extension assay with the minimal DNA-RNA elongation scaffold shown in A. 

(C) Pol III factor-independent transcription assay with the tailed template scaffold shown in A. 

(D) Competition assays show that binding of Maf1 and nucleic acids to Pol III are not mutually 

exclusive. Pol III-Maf1 and Pol III-DNA complexes were incubated as indicated with 5-fold 

molar excesses of DNA or Maf1, respectively, loaded onto a Superose 6 gel-filtration column, 

and the peak fraction was analyzed by silver-staining. Staining of a Pol III-Maf1 complex 

(without DNA) is identical to that in lanes 4, 5 and 6 (data not shown). 

(E) Competition assays reveal that Maf1 impairs binding of Pol III to a Brf1-TBP-DNA 

complex. Pre-assembled Pol III-Brf1-TBP-DNA or Pol III-Maf1 complexes were incubated with 

5-fold molar excesses of competing factor or complex as indicated, loaded onto a gel-filtration 

Superose 6 column (Superose 6 10/300 GL, GE Healthcare), and the resulting peak fraction 

was analyzed by SDS-PAGE. In lanes 3, 4 and 6, the presence of DNA was deduced by the 

high A260/A280 ratio (~1) compared to the A260/280 ratio (~0.6) in lanes 2, 5 and 7. 

 

 

To rule out that nucleic acids displace Maf1 from Pol III or prevent its 

binding, we tested by size-exclusion chromatography whether Pol III is 

capable of binding Maf1 and nucleic acids simultaneously. Pol III-Maf1 

complexes with 3!-tailed template or bubble scaffold could be purified, 

independent of the order of addition (Figure 15D). Thus, Maf1 neither 

prevents nucleic acid binding in the active center cleft nor DNA-dependent 

RNA synthesis. The observation that Pol III can simultaneously bind Maf1 and 
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nucleic acids suggests that the increased Maf1 occupancy at Pol III genes 

under repressive conditions (Geiduschek and Kassavetis, 2006; Oficjalska-

Pham et al., 2006; Roberts et al., 2006) is due to Maf1 binding to Pol III 

elongation complexes. Such Maf1-containing Pol III elongation complexes 

would be unable to re-initiate, explaining the observation that Maf1 represses 

multiple-round but not single-round transcription by Pol III (Cabart et al., 

2008). 

 

 

3 Conclusions and outlook 

 

Our results converge with published data on the mechanism of Pol III-

specific transcription repression by Maf1. Cellular stress leads to 

dephosphorylation of a mobile surface region in Maf1 that unmasks adjacent 

NLS sequences, leading to nuclear import of Maf1. In the nucleus, Maf1 binds 

Pol III at its clamp domain and rearranges the C82/34/31 subcomplex. This 

impairs Pol III binding to a TBP-Brf1-promoter complex and specifically 

abolishes initiation from Pol III promoters, which require Brf1. Maf1 also binds 

Pol III that is engaged in transcription elongation, leaving activity intact, but 

preventing re-initiation. Since Pol III genes are short and elongation is fast, 

this leads to rapid shutdown of all Pol III transcription. 

The obtained insights into how transcription initiation in the Pol III system 

is repressed, together with the background information about the subunit 

arrangement in the free enzyme form a good basis to analyze a minimal Pol 

III PIC using cryo-EM. Recent discoveries about how promoter bubble design 

affects mPIC conformational variability should allow for additional stabilization 

of such complexes (Patrick Cramer, personal communication). Preliminary 

investigations on a Pol III mPIC have already been made (compare Appendix, 

paragraph 2) and can add some experience to the mixture. Again, it will be of 

critical importance to improve the resolution of the reconstructions by 

utilization of better instruments and optimization of conditions during sample 

preparation and data collection (see Appendix, paragraph 3). Dramatic 
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improvements in observed densities upon addition of nucleic acids in the case 

of the Pol III-DNA-RNA complex has demonstrated that a stable and 

conformationally well-defined assembly already bears high potential for a 

meaningful reconstruction. Remaining flexibility is most likely still restricting 

the possibilities to create models of better detail. Therefore, powerful 

classification methods need to be sought. These will rely on an ideal SNR to 

be able to classify single images, hopefully in an unsupervised, thus unbiased 

manner. 

 

 

4 Experimental procedures 

 

Purification of yeast RNA polymerase III and assembly of complexes for 

cryo-EM was done by Dr. Alessandro Vannini. Expression and purification as 

well as proteolytic cleavage, crystallization and structure determination of 

Maf1 was done by Rieke Ringel and partly supervised by Dr. Alessandro 

Vannini. Biochemical assays were conducted by Rieke Ringel and Dr. 

Alessandro Vannini. 

 

 

4.1 Purification of yeast RNA polymerase III 

 

Yeast RNA polymerase (Pol) III was purified from its endogenous source, 

resulting in approximately 1 mg of pure protein per purification. 

 

 

4.1.1 Chemicals and buffers used for Pol III purification 

 

Pol III lysis buffer 

200 mM Tris-HCl pH 8.0 

500 mM (NH4)2SO4 

10 mM MgCl2 
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10% Glycerol 

10 mM !-mercaptoethanol 

1 mM PMSF 

1 mM benzamidine 

200 mM pepstatin 

60 mM leupeptin 

 

Biorex0 buffer 

40 mM Hepes pH 7.8 

5 mM MgCl2 

10% Glycerol 

1 mM EDTA 

10 mM !-mercaptoethanol 

1 mM PMSF 

1 mM benzamidine 

200 mM pepstatin 

60 mM leupeptin 

 

Biorex500 buffer 

40 mM Hepes pH 7.8 

500 mM KCl 

5 mM MgCl2 

10% Glycerol 

5 mM imidazole pH 8.0 

1 mM EDTA 

10 mM !-mercaptoethanol 

1 mM PMSF 

1 mM benzamidine 

200 mM pepstatin 

60 mM leupeptin 
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Ni-NTA-wash-A buffer 

40 mM Hepes pH 7.8 

500 mM KCl 

5 mM MgCl2 

10% Glycerol 

10 mM imidazole pH 8.0 

1 mM EDTA 

10 mM !-mercaptoethanol 

1 mM PMSF 

1 mM benzamidine 

200 mM pepstatin 

60 mM leupeptin 

 

Ni-NTA-wash-B buffer 

40 mM Hepes pH 7.8 

5 mM MgCl2 

250 mM (NH4)2SO4 

10% Glycerol 

10 mM imidazole 

10 mM !-mercaptoethanol 

1 mM PMSF 

1 mM benzamidine 

200 mM pepstatin 

60 mM leupeptin 

 

Ni-NTA-elution buffer 

40 mM Hepes pH 7.8 

5 mM MgCl2 

250 mM (NH4)2SO4 

10% Glycerol 

250 mM imidazole 

10 mM !-mercaptoethanol 
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1 mM PMSF 

1 mM benzamidine 

200 mM pepstatin 

60 mM leupeptin 

 

Pol III Heparin0 buffer 

40 mM Hepes pH 7.8 

5 mM MgCl2 

20% Glycerol 

0.5 mM EDTA 

10 mM !-mercaptoethanol 

1 mM PMSF 

1 mM benzamidine 

200 mM pepstatin 

60 mM leupeptin 

 

Pol III Heparin1000 buffer 

40 mM Hepes pH 7.8 

5 mM MgCl2 

1000 mM (NH4)2SO4 

20% Glycerol 

0.5 mM EDTA 

10 mM !-mercaptoethanol 

1 mM PMSF 

1 mM benzamidine 

200 mM pepstatin 

60 mM leupeptin 
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Pol III MonoQ0 buffer 

40 mM Hepes pH 7.8 

1 mM MgCl2 

10% Glycerol 

5 mM DTT 

 

Pol III MonoQ1000 buffer 

40 mM Hepes pH 7.8 

1 mM MgCl2 

1000 mM (NH4)2SO4 

10% Glycerol 

5 mM DTT 

 

Sup50 buffer 

20 mM Hepes pH 7.8 

50 mM (NH4)2SO4 

0.1 mM MgCl2 

0.01 mM ZnCl2 

5 mM DTT 

 

 

4.1.2 Purification of endogenous yeast Pol III 

 

The Saccharomyces cerevisiae strain NZ16 (Lannutti et al., 1996), carrying 

the gene for an N-terminally His6-FLAG4-RET1-tagged C128 subunit on the 

parent plasmid pYE(CEN3)30 was grown to OD600 = 6-7 at 30°C in YPD 

media in a 200 l fermenter (Infors ABEC). The cells were harvested by 

continuous flow centrifugation (Padberg) and lysed by bead beating in ice-

cooled Pol III lysis buffer. All subsequent steps were performed at 4°C. Glass 

beads were separated by filtration prior to clearing the lysate by centrifugation 

(60 min, 8000 g, Sorvall SLA-1500). A whole cell extract was obtained after 

centrifugation at 125,000 g for 90 min (Beckman Ti45) by separating the clear 
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upper-middle phase from the turbid lower phase. The supernatant was further 

processed by step-wise ammonium sulfate precipitation. 35% (NH4)2SO4 was 

slowly added to the sample, allowed to stir for 30 min and cleared by 

centrifugation (60 min, 8000 g, Sorvall SLA-1500). The supernatant was 

precipitated by adding 70% (NH4)2SO4 and left stirring over night. The pellet 

was recovered by centrifugation (60 min, 8000 g, Sorvall SLA-1500) and 

resuspended in 3 l of Biorex0 buffer. The sample was applied to a 250 ml 

Biorex resin column (Biorad). Bound proteins were eluted with Biorex500 

buffer. The eluting proteins were loaded onto a 12 ml Ni-NTA Agarose 

(Qiagen) column. Subsequent washing steps were performed with Ni-NTA-

wash-A buffer and Ni-NTA-wash-B buffer. Proteins were eluted with Ni-NTA-

elution buffer and loaded onto a HiTrap Heparin 5 ml column (GE Healthcare) 

and fractionated by applying a salt gradient from 250 mM to 1000 mM 

(NH4)2SO4 with Pol III Heparin0 buffer and Pol III Heparin1000 buffer. The 

pooled Pol III-containing fractions (eluting at 500 mM (NH4)2SO4) were diluted 

5-fold with Pol III Heparin0 buffer, loaded onto a Mono Q anion exchange 

column (Mono Q 10/100 GL, GE Healthcare), and fractionated by applying a 

salt gradient from 50 mM to 1000 mM (NH4)2SO4 with Pol III MonoQ0 buffer 

and Pol III MonoQ1000 buffer. The pooled Pol III-containing fractions (eluting 

at 600 mM (NH4)2SO4) were diluted to reach a final concentration of 50 mM 

(NH4)2SO4 supplemented with a 10-fold molar excess of recombinant full-

length C53/37 heterodimer (preparation will be described elsewhere) and 

incubated for 60 min to overcome the endogenous sub-stoichiometry of this 

subcomplex (Lorenzen et al., 2007). The sample was concentrated to a 

volume of 1 ml using an Amicon Ultra-4 centrifugal filter unit (MWCO 10kDA, 

Millipore) and applied to gel-filtration chromatography on a Superose 6 

column (Superose 6 10/300 GL, GE Healthcare) using Sup50 buffer. Pol III-

containing fractions were pooled, concentrated to 1mg/ml using an Amicon 

Ultra-4 centrifugal filter unit (MWCO 10kDA, Millipore) and flash-frozen in 

liquid N2 upon addition of 10% Glycerol. 
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4.2 Maf1 purification 

 

4.2.1 Chemicals and buffers used for Maf1 purification 

 

Maf1-lysis buffer 

50 mM Hepes pH 7.8 

0.5 M NaCl 

10 mM Imidazole 

5 mM MgCl2 

10 µM EDTA 

10% Glycerol 

10 mM !-mercaptoethanol 

 

Maf1-Ni-NTA-loading buffer 

50 mM Hepes pH 7.8 

0.5 M NaCl 

20 mM Imidazole 

5 mM MgCl2 

10 µM EDTA 

10% Glycerol 

10 mM !-mercaptoethanol 

 

Maf1-Ni-NTA-elution buffer 

50 mM Hepes pH 7.8 

0.5 M NaCl 

300 mM Imidazole 

5 mM MgCl2 

10 µM EDTA 

10% Glycerol 

10 mM !-mercaptoethanol 
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Maf1-MonoQ0 buffer 

50 mM Hepes pH 7.8 

5 mM MgCl2 

100 µM EDTA 

10% Glycerol 

10 mM !-mercaptoethanol 

 

Maf1-MonoQ1000 buffer 

50 mM Hepes pH 7.8 

5 mM MgCl2 

1000 mM NaCl 

100 µM EDTA 

10% Glycerol 

10 mM !-mercaptoethanol 

 

Maf1-Superdex25 buffer 

25 mM Hepes pH 7.0 

25 mM NaCl 

5 mM DTT 

 

Maf1-Superdex40 buffer 

50 mM Hepes 7.8 

40 mM (NH4)2SO4 

100 µM MgCl2 

10 µM ZnCl2 

5 mM DTT 

 

Maf1-Strep-loading buffer 

100 mM TrisHCl 8.0 

150 mM NaCl 

1 mM EDTA 
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Maf1-Strep-elution buffer 

100 mM TrisHCl 8.0 

150 mM NaCl 

1 mM EDTA 

2.5 mM Desthiobiotin 

 

 

4.2.2 Purification of Maf1 

 

DNA encoding S.cerevisiae or human Maf1 was PCR-amplified from 

genomic DNA and cloned into pET-28b vector (Novagen) using the NdeI/NotI 

restriction sites, resulting in a N-terminal hexahistidine tag. E.coli BL21 (DE3) 

RIL cells (Stratagene) were transformed with the plasmid and grown in LB 

medium at 37°C to an OD600 of 0.6. Expression was induced with 0.5 mM 

IPTG for 16 h at 18° C. Cells were lysed by sonification in Maf1-lysis buffer. 

After centrifugation the supernatant was loaded onto a 3 ml Ni-NTA column 

(Qiagen) equilibrated with Maf1-Ni-NTA-loading buffer. The column was 

washed with 20 column volumes (CVs) of Maf1-Ni-NTA-loading buffer and 

eluted with Maf1-Ni-NTA-elution buffer. Proteins were purified by anion 

exchange chromatography (Mono Q, GE healthcare). The column was 

equilibrated with Maf1-MonoQ0 buffer and proteins were eluted with a linear 

gradient of 20 CVs from 10 mM to 1 M NaCl using Maf1-MonoQ0 buffer and 

Maf1-MonoQ1000 buffer. After concentration, the sample was applied to a 

Superdex75 size exclusion column (GE Healthcare) equilibrated with Maf1-

Superdex25 for crystallization experiments or Maf1-Superdex40 for binding 

experiments.  

For purification of Strep-tagged S. cerevisiae Maf1 variants, a streptavidin 

tag was inserted via the 5´primer in the PCR reaction and the DNA was 

cloned into a pET21b vector (Novagen), resulting in a N-terminal streptavidin 

tag. Expression and purification was done as described above, except that a 1 

ml Strep-Tactin Macro Prep (IBA) column was used instead of the Ni-NTA 

column. Avidin was added to a final concentration of 3 nmol per liter E. coli 
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culture to the supernatant and loaded to the Strep-Tactin column equilibrated 

with Maf1-Strep-loading buffer. The column was washed with 10 column 

volumes (CVs) of Maf1-Strep-loading buffer and eluted with Maf1-Strep-

elution buffer. For purification of untagged S.cerevisiae Maf1 variants, DNA 

was cloned into a pET21b vector (Novagen). Expression and purification was 

dome as described above, except that a 40% ammonium sulfate precipitation 

step was used instead of the Ni-NTA column. Maf1 was precipitated by the 

addition of saturated ammonium sulfate solution. 

 

 

4.3 Proteolytic cleavage of Maf1 

 

For trypsin and chymotrypsin treatment of purified protein samples, 100 

!l of purified Maf1 at a concentration of 1 mg/ml were mixed with 1 !g of the 

corresponding protease. The reaction was carried out at 37° C in size-

exclusion buffer supplemented with 1 mM CaCl2. Aliquots of 10 !l were taken 

at 1, 3, 5, 10, 30, and 60 min, and the reaction was stopped by addition of 5 " 

SDS sample buffer and incubation at 95° C for 5 min. Samples were analyzed 

by SDS-PAGE. The N-termini of digestion products were analyzed by Edman 

sequencing.  

 

 

4.4 Maf1 crystal structure determination 

 

For crystallization, pure human Maf1 variant 1-35;83-205 was 

concentrated to 40 mg/ml. Crystals were grown at 20° C in hanging drops 

over a reservoir solution containing 50 mM MES pH 6.0 and 175 mM sodium 

oxalate. Crystals grew after 2 days and to a maximum length of 500 µm. 

Native crystals were transferred into reservoir solution containing 25% 

Glycerol and were flash-cooled in liquid nitrogen. Crystals were soaked for 

0.5-2 minutes in a reservoir solution containing 25% Glycerol and 0.5 M NaBr 

and flash-frozen in liquid nitrogen. Diffraction data were collected at 100 K on 
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a PILATUS 6M detector at the Swiss Light Source (SLS), Villigen, Switzerland 

(Table 4). A native data was collected to a resolution of 1.55 Å. Three-

wavelength anomalous diffraction data were collected from a Bromide-labelled 

crystal to a resolution of 1.9 Å. Diffraction data were processed using 

MOSFLM (Leslie, 1986). Data scaling and merging was done with SCALA 

(Evans, 1993) and data quality was assesed with Phenix.Xtriage (Adams et 

al.). The program Phenix.HySS (Adams et al.) identified six bromide sites that 

were used for phasing with the program SOLVE (Terwilliger and Berendzen, 

1999). Subsequently, density modification was carried out with RESOLVE 

(Terwilliger, 2003). The resulting electron density map was of very high quality 

and was used to build a model in COOT (Emsley and Cowtan, 2004). The 

resulting model was then refined against the native data set with the program 

Phenix.Refine (Adams et al.) to a free R factor of 21% (Table 4). 

 

 

 

4.5 Cryo-EM structure determination 

 

Purified Pol III complexes were diluted to ~0.1 mg/ml using Sup50 buffer 

and applied to glow-discharged pre-coated carbon holey grids (Quantifoil 

R3/3, 2nm carbon on top). Negative-stain samples were treated with 2% 

uranyl acetate and subsequently dried at room temperature. Cryo samples 

were flash-frozen in liquid ethane using a semi-automated controlled-

environment system (Vitrobot, FEI Company) at 4° C, 95% humidity, and 

stored in liquid nitrogen until transfer to the microscope.  

Micrographs were recorded under low dose conditions of ~15 

electrons/Å! on a FEI Tecnai Spirit microscope operating at 120 kV, equipped 

with a LaB6 filament and a Gatan side entry cryo-holder. Images were 

acquired at underfocus values in the range of 1.5-4 µm on a 2k x 2k FEI Eagle 

CCD camera applying a pre-exposure of 100 ms at a magnification of 90.000x 

resulting in a pixel size of 3.31 Å/px on the object scale. All subsequent 
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image-processing operations were carried out using the SPIDER software 

package, if not stated otherwise (Frank et al., 1996). 

Initial particle selection and windowing was performed semi-automatically 

using the boxer program from the EMAN software package (Ludtke et al., 

1999). Reference particles were picked manually on every micrograph to 

avoid discrepancies due to defocus and ice differences and the resulting 

automatically selected particles were verified visually. Windowed particles 

were aligned to 83 projections of the Pol II X-ray structure (1Y1W, gaussian 

low-pass filtered to 35 Å), which was modified by removing the OB and HRDC 

domains from subcomplex Rpb4/7 since they are deemed to conformational 

flexibility. Particle assignment to the reference projections was evenly 

distributed barring only few over-represented outliers that were limited to 

prevent predominant views (Figure 6). Backprojection of the particle images 

using the angles from reference-based alignment resulted in a first 

reconstruction that showed additional densities at the clamp and C25/17 

regions and was then used as a reference for 20 rounds of angular 

refinement. The images were back-projected in real space using the refined 

angles. The resulting reconstruction was Gaussian low-pass filtered to 25 Å 

and used as reference for another round of alignment and refinement as 

described above. This procedure was iterated until no changes in growth of 

additional densities were observed. 

A 21 Å reconstruction of Pol III from a data set of 20,480 particles was 

obtained (Figures 5 and 6). During early stage of the refinement process, 

density for a complete C25/17 complex and other additional densities 

appeared that could be confirmed by an independent 23 Å reconstruction from 

12,174 particles (not shown). Projections of the 20,480 particle Pol III 

reconstruction, as well as their corresponding particle averages, were 

compared to averages resulting from a reference-free 2D alignment method 

using the program refine2d from the EMAN software package (Ludtke et al., 

1999). A good portion of significantly similar averages supported the fact that 

the alignment and refinement procedure based on the Pol II X-ray structure 

was not reference-biased (Figure 5C). A cryo-EM data set of Pol III incubated 



CHAPTER III: MOLECULAR BASIS OF RNA POLYMERASE III TRANSCRIPTION REPRESSION BY MAF1! 62!

!

with a three-fold molar excess of a minimal DNA/RNA scaffold was collected 

and a reconstruction at 19 Å resolution was obtained with 11,965 particles 

(Figures 5E and 6A). Finally, an 18.5 Å reconstruction of a size-exclusion 

purified Pol III-Maf1 complex was obtained from 16,974 particles (Figures 12 

and 6A).  

 

 

4.6 Nanogold™ labelling 

 

Size-exclusion purified Pol III was incubated for 60 min at 4° C in Maf1-

lysis buffer with a 10-fold molar excess of recombinant full-length Maf1. The 

complex was then incubated with a 20-fold molar excess of Ni-NTA-

Nanogold™ (Nanoprobes, INC, www.nanoprobes.com) particles for 30 min. 

The sample was concentrated to 1 ml using an Amicon Ultra-4 centrifugal 

filter unit (MWCO 10kDA, Millipore) and applied to gel-filtration 

chromatography on a Superose 6 column (Superose 6 10/300 GL, GE 

Healthcare) with Sup50 buffer. The Pol III-Maf1 Nanogold™ labelled 

containing fractions were pooled and prepared for cryo-EM as described 

above. Cryo-EM CCD data were collected as described for the free Pol III but 

at an underfocus range of 3-4 µm to obtain high image contrast. A large 

portion of particles showed both His-tags bound with Nanogold™ clusters. 

These were picked from the micrographs and aligned to projections of the Pol 

III-Maf1 reconstruction. The strong signal of the Nanogold™ was dampened 

in the images by manually applying a threshold to the image histograms. The 

in-plane rotation parameters resulting from the alignment were applied to the 

original images and the rotated images were compared to corresponding 2D 

surface views with the location of Maf1 and the N-terminus of C128 indicated 

(Figure 12B). The length of the hexa-histidine tag and the ~0.9 nm linker 

between the gold cluster and the nickel-nitrilotriacetic acid group of the 

Nanogold™ reagent give an expected mean variability of ~2 nm radius that 

was taken into account for interpretation of the Nanogold™ locations on the 

EM images. The gold signal on the N-terminus of C128 displayed more 
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apparent variability, which can be explained by the presence of four additional 

tandem FLAG sequences.  

 

 

4.7 Initiation factor-independent transcription assay 

 

1.5 pmol of Pol III or Pol III-Maf1 complex were incubated for 30 min at 

20º C with 2 pmol (or variable amounts) of a pre-annealed tailed-template 

scaffold (Figure 15) in the presence of 0.5 mM GpG dinucleotide primer. For 

in vitro transcription, complexes were incubated for 30 min at 20º C in the 

presence of 0.3 mM NTPs (ATP, GTP, CTP and [!-32P]-UTP) in 20 µl reaction 

mixtures, containing 40 mM Tris-HCl pH 8.0, 60 mM NaCl, 7 mM MgCl2, 7% 

Glycerol and 5 mM DTT. Reactions were stopped by addition of an equal 

volume of 2! loading buffer (8 M urea, 2! TBE) and incubation for 5 min at 

95° C. The [!-32P]-UTP-labelled RNA products were separated by denaturing 

gel electrophoresis (20 µl of the stopped reaction mixtures, 1 mm 15% 

polyacrylamide gels containing 7 M urea) and visualized with a Typhoon 9400 

phosphoimager (GE Healthcare). 

 

 

4.8 RNA-extension assays  

 

Five pmol of Pol III or Pol III pre-incubated (10 min at 20° C) with a five-

fold molar excess of yeast Maf1 was incubated for 30 min at 20° C with 5 

pmol of a pre-annealed minimal nucleic-acid scaffold (Figure 15). Maf1 was 

added at a five-fold molar excess followed by incubation for 5 min at 20° C. 

For RNA elongation, complexes were incubated for 10 min in the presence of 

1 mM NTPs at 28° C in transcription buffer (60 mM ammonium sulfate, 20 mM 

Hepes at pH 7.6, 8 mM magnesium sulfate, 10 "M zinc chloride, 10% 

Glycerol, and 10 mM DTT). Reactions were stopped by addition of an equal 

volume of 2! loading buffer (8 M urea, 2! TBE) and incubation for 5 min at 

95° C. The FAM-labelled RNA extension products were separated by 
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denaturing gel electrophoresis (0.5 pmol RNA per lane, 0.4 mm 15%–20% 

polyacrylamide gels containing 8 M urea, 50° C), and visualized with a 

Typhoon 9400 phosphoimager (GE Healthcare).  
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Appendix: Unpublished results 

 

Solving the architecture of the RNA polymerase pre-initiation complex 

(PIC) has been tried for over a decade now, but only little steps forward could 

be made so far (Cramer, 2007; Kornberg, 1999; Roeder, 1996). PIC 

complexes are highly transient; naturally, because in their physiological 

context, they represent a short lived intermediate state (Cramer, 2007). A PIC 

complex has a tremendously strong go at its determination: to initiate 

transcription, with RNA polymerase trying to escape the promoter as well as 

its initiation factors and to engage in transcription elongation. In an in vitro 

assembled PIC, when there are no nucleotides present, it is conceivable that 

the complex oscillates between different states, urging to proceed. This 

hypothesis of the oscillating states has only recently been substantiated 

further by single molecule FRET studies of RNAP II mPIC complexes (Patrick 

Cramer, personal communication). When performing structural studies, this 

oscillation introduces additional conformational heterogeneity. However, the 

artificial situation of the complex being trapped in an intermediate state is 

imperative to study the assembly in the first place, to maintain it long enough 

as to carry out experiments. It has proven extremely complicated to find 

conditions that are the right trade-off between stabilizing the complex as much 

as it is needed for studies, while preserving it as natural as possible. It will, in 

all likelihood, be essential to combine available information, to implement all 

the resulting conclusions and to improve existing techniques to ultimately 

unravel the mechanism of transcription initiation and its regulation on a 

molecular level. 

The following paragraphs are meant to document trials and 

accomplishments regarding mPIC architecture and optimization of methods 

during the time of this research. Parts of this Chapter present new results, 

others sum up or confirm what was already known before, as to provide a 

comprehensive overview for any potential reader new to the field of RNA 

polymerase structure determination by cryo-electron microscopy and single 

particle analysis. 



APPENDIX: UNPUBLISHED RESULTS! 66!

!

!

1 Pyrococcus furiosus RNAP minmal pre-initiation complex studies 

 

The P.fu PIC complexes that were studied during this work were minimal 

PICs consisting of P.fu RNAP, TBP, TFB and a short stretch of a promoter 

DNA scaffold containing an artificial bubble and a tailed overhang. Complex 

assembly done by Dr. Michela Bertero and Wenjie Ruan. Cloning, expression 

and purification of recombinant factors TBP and TFB was done by Dr. Michela 

Bertero and Wenjie Ruan and detailed protocols for these steps will be 

described elsewhere. A variant of TFB, the so-called “delta-B-finger” mutant 

was also probed together with a DNA/RNA scaffold (data not shown).  

 

 

1.1 Sample preparation and cryo-EM data collection 

 

A P.fu mPIC was investigated containing RNAP, TBP, TFB and an open 

bubble gdh promoter DNA scaffold with a short 5!-template (T) overhang as 

depicted below (TATA-region underlined).  

 

Open bubble gdh scaffold: 

          AAAAATGTATCGCC 

5' ACCGAAAGCTTTATATAGGCTATTGCCC              AATCACCTAATTTGGAG     3' (NT-DNA) 

3' TGGCTTTCGAAATATATCCGATAACGGG              TTAGTGGATTAAACCTCCCC 5' (T-DNA) 

                               AAAAATGTATCGCC  

 

To assemble the mPIC complex, 2 fold excess of TBP was added to the 

DNA scaffold and mixed at 15°C, then 2 fold excess of TFB was added. After 

incubation at 15°C for 1 hour, purified P.fu RNAP was added such that the 

ratio between RNAP and DNA was 1:2, incubated at 15°C for another 1 hour, 

and then heated to 60°C and incubated for 15 minutes. The assembled mPIC 

complex was purified by size-exclusion chromatography on a Superose6 

column (GE Healthcare) using Sup150 buffer as described in the experimental 

procedures section of Chapter II. The peak fractions showed an A260/A280 

ratio close to 1, a clear indication for binding of nucleic acids (Figure 16). 

Fractions were collected, concentrated to ~1 mg/ml, supplied with 20% 



APPENDIX: UNPUBLISHED RESULTS! 67!

!

!

Glycerol and flash frozen in liquid nitrogen for transfer to the MPI Berlin, 

where data was collected at that time. The samples were sent there in dry ice, 

thawed gently at RT upon arrival, diluted to ~0.1 mg/ml and applied to freshly 

glow discharged carbon coated grids (Quantifoil R3/3 + 2nm Carbon on top). 

After 45 seconds of incubation, excess of buffer was blotted for 10 seconds 

using a semi-automated controlled-environment system (Vitrobot, FEI 

Company) at 4°C, 95% humidity. Samples were then flash-frozen by plunging 

them into liquid ethane and subsequently stored in liquid nitrogen until transfer 

to the microscope. 

 

 
 

Figure 16: Superose6 size-exclusion chromatography profile of P.fu mPIC 

 

 

Data were collected under low dose conditions of ~20 electrons/Å2 at a 

Tecnai Polara F30 field emission gun microscope operating at 300 kV. 

Micrographs were recorded at underfocus values of 1.5-3.5 µm on Kodak SO-

163 Electron film applying a pre-exposure of 100 ms at a magnification of 

67.000x.  
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1.2 Cryo-EM data processing and classification trials 

 

Negative film images were developed and scanned on a Heidelberg drum 

scanner resulting in a pixel size of 1.23 Å/px on the object scale. The contrast 

transfer function was determined using CTFFIND and SPIDER (Frank et al., 

1996). Initially, 125,159 particles images from 56 micrographs were picked 

semi-automatically with SIGNATURE (Chen and Grigorieff, 2007) and verified 

visually. Data were further processed using SPIDER. Windowed particle 

images were decimated three-fold by pixel binning and aligned to the 

reconstruction of the free P.fu RNAP (Chapter II) that was Gaussian low-pass 

filtered to a resolution of 25 Å. After 25 rounds of angular refinement, the 

resolution improved to 19.5 Å (Figure 17).  

 

 
Figure 17: Fourier shell correlation plot for the P.fu mPIC reconstruction 

After 25 round of angular refinement, the resolution was estimated to be around 19.5 Å 
according to the FSC0.5 criterion. 
 
 

Weak additional densities could be observed in the dock domain region of 

RNAP, consistent with the expected binding location of the N-terminal part of 

TFB, and close to the wall domain, again consistent with the expected binding 

location of the C-terminal part of TFB (Figure 18).  
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Figure 18: P.fu mPIC reconstruction  

The model had an estimated resolution of about 19.5 Å (FSC0.5, Figure 17) and is shown in 
front, back and top view. Additional densities are indicated by dashed ellipses. 
 
 

However, the densities were not well defined enough to clearly attribute 

them to domains of TFB. Furthermore, no density for nucleic acids and TBP 

could be observed (Figure 18). The first explanation was, that maybe not all 

particle images represented a fully assembled mPIC, but some represented 

RNAP from which factors had dissociated between thawing the complex and 

sample vitrification. One well-known problem is the charged carbon surface of 

the grid, towards which particles are pressed during blotting, which might 

cause disassembly of transient complexes (Hans Elmlund, personal 

communication). It was consequently tried to classify images using the 

supervised, reference based classification approach based on cross-

correlation values (sorting), as described in the experimental procedures 

section of Chapter II. The refined volume at that stage (Class I) and the 

original reference volume (Class II, free P.fu RNAP, compare Chapter II) were 

provided as references for 25 rounds of sorting that resulted in a rather stable 

separation of the dataset into 72,785 Class I and 52,374 Class II particles. 

However, resolution and additional densities did not improve in the Class I 

volume and upon comparison of the two reconstructions, it became clear that 

the densities of interest seemed to cease (Figure 19). It was concluded that 

the sorting procedure was not able to give a reasonable separation of the 

dataset, in the sense that the two classes represent two distinct conformations 

or complexes of different composition.  
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Figure 19: Two P.fu mPIC reconstructions from a sorting trial of the data set 

The resolution of the two models did not improve upon sorting (data not shown) and 

additional densities of interest weakened for the region where TFB was expected (dashed 

ellipses 4 to 6). Densities for the foot region (dashed ellipses 1 and 2) showed a similar 

behaviour. 

 

 

Furthermore, at some regions it even appeared as the images were 

“overaligned” (spiky densities in the top view of Figure 20), meaning that noise 

dominated the alignment process in these regions (Roland Beckmann, 

personal communication). Looking at the single particle images (Figure 21) it 
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was conceivable that classification on these was too demanding a task 

because of the low signal-to-noise ratio (SNR), even though, at this stage, 

three-fold decimation by pixel binning was applied to the images. The same 

procedure was then tried using only higher contrast particle images with 

defocus values below -3 µm, but again, no successful separation of the 

dataset could be generated. To rule out that there could have been a problem 

with complex assembly in the first place, another dataset was collected from a 

newly prepared sample and date were processed in a similar fashion but 

results were comparable. Another obstacle for classification was the lack of 

information about where to expect conformational variability. For the free 

RNAP it was possible to obtain a rather high-resolution model by sorting of 

the dataset with the use of a priori information from crystallographic studies, 

namely that the clamp domain was expectedly the most mobile element 

(Cramer et al., 2001; Kuhn et al., 2007). Nonetheless, it seemed reasonable 

that, by sufficiently improving the SNR of the single images, it would be 

feasible to improve supervised classification. At that time, research on yeast 

RNAP III had already been initiated, and first results seemed promising. It was 

therefore decided to use the gained experience and put the newly devised 

ideas and approaches to the test with this project (compare Chapter III and 

Appendix, paragraph 2). 

 

 

 

 

 

Figure 20: Overlap representation of the two volumes shown in Figure 19 

Indications for overalignment are visible (spiky densities, dashed ellipses) 
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Figure 21: Single particle images of the P.fu mPIC 
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2 Yeast RNAP III minimal pre-initiation complex studies 

 

The complex that was studied during this work was a minimal PIC 

consisting of S.cerevisiae RNAP III, a Brf-TBP fusion protein (Kassavetis et 

al., 2005) and a short stretch of a promoter DNA scaffold containing an 

artificial bubble. Expression and purification of the Brf-TBP fusion protein as 

well as mPIC assembly was done by Dr. Alessandro Vannini and detailed 

protocols will be described elsewhere. 

 

 

2.1 Sample preparation and cryo-EM data collection 

 

A yeast mPIC was investigated containing RNAP III, a Brf-TBP fusion 

protein (Kassavetis et al., 2005) and an open bubble DNA scaffold (Figure 

15A, bubble scaffold). To assemble the complex, RNAP III was purified until 

after the MonoQ column as described in the experimental procedures section 

in Chapter III and then diluted to ~50 mM (NH4)2SO4 using Sup50 buffer. DNA 

was pre-incubated with a 2 fold excess of Brf-TBP for 5 minutes at 20°C. 

Diluted RNAP III was added such that the ratio of RNAP III to DNA was 1:2 

and incubated for 20 minutes at 20°C. The protein was then concentrated and 

subjected to size-exclusion chromatography on a Superose6 column (GE 

Healthcare) using Sup50 buffer as described in Chapter III. The peak fractions 

showed a reasonable 260/280-absorbance ratio, which supported binding of 

nucleic acids (data not shown). Fractions were collected and the protein 

concentration was measured as described in Chapter II. The sample was then 

diluted to a concentration of ~0.1 mg/ml and applied to freshly glow 

discharged carbon coated grids (Quantifoil R3/3 + 2nm Carbon on top). After 

45 seconds of incubation, excess of buffer was blotted for 10 seconds using a 

semi-automated controlled-environment system (Vitrobot, FEI Company) at 

4°C, 95% humidity. Samples were then flash-frozen by plunging them into 

liquid ethane and subsequently stored in liquid nitrogen until transfer to the 

microscope. 
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Micrographs were recorded under low dose conditions of ~15 

electrons/Å! on a FEI Tecnai Spirit microscope operating at 120 kV, equipped 

with a LaB6 filament and a Gatan side entry cryo-holder. Images were 

acquired at underfocus values in the range of 1.5-7 µm on a 2k x 2k FEI Eagle 

CCD camera applying a pre-exposure of 100 ms at a magnification of 90,000x 

resulting in a pixel size of 3.31 Å/px on the object scale. A wide range of 

underfocus values was chosen to obtain a good portion of the dataset at high 

defocus and maximum image contrast for classification, taking into account 

the rather limited high spatial frequency information of these images.  

 

 

2.2 Cryo-EM data processing and results 

 

Initial particle selection and windowing was performed semi-automatically 

using the boxer program from the EMAN software package (Ludtke et al., 

1999). Reference particles were picked manually on every micrograph to 

avoid discrepancies due to defocus and ice differences and the resulting 

automatically selected particles were verified visually.!All subsequent image-

processing operations were carried out using the SPIDER software package 

(Frank et al., 1996), if not stated otherwise. 9,803 windowed particles were 

aligned to 83 projections of the Pol II X-ray structure (1Y1W, Gaussian low-

pass filtered to 35 Å), which was modified by removing the OB and HRDC 

domains from subcomplex Rpb4/7 since they are deemed to conformational 

flexibility. After 16 rounds of angular refinement, clear additional densities 

appeared at the lobe and funnel as well as the clamp head domain (Figure 22, 

dashed ellipses 1 and 2, respectively), as it could be observed in the free 

RNAP III and the RNAP III-DNA-RNA complex described in Chapter III. 

Moreover, surplus densities became apparent at the dock and the wall 

domain of RNAP III (Figure 22, dashed ellipses 3 and 4), consistent with 

earlier results of P.fu mPIC studies and recent crystallographic results 

(Kostrewa et al., 2009). The resolution of the reconstruction at that stage was 
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determined by the FSC0.5 criterion on the unmasked, unfiltered volumes to be 

around 27.5 Å (Figure 23).  

 

 

!

 
Figure 22: Reconstruction of the RNAP III mPIC at 27.5 Å  
Clear additional densities appeared at the funnel and the clamp domain (dashed ellipses 1 
and 2, respectively) and close to the dock and the wall domain (dashed ellipses 3 and 4). 
 
 
 
 
 

 
 
Figure 23: Fourier shell correlation plot for the RNAP III mPIC reconstruction 
After 16 rounds of angular refinement, the resolution of the unmasked, unfiltered volume was 
estimated to be around 27.5 Å according to the FSC0.5 criterion. 
 
 



APPENDIX: UNPUBLISHED RESULTS! 76!

!

!

It was then tried to take advantage of the presumably better SNR and 

image phases in the lower spatial frequency of the CCD images (compare 

Appendix, paragraph 3) for supervised classification of the single particle 

images by sorting. The cryo-EM reconstruction of the free RNAP III (compare 

Chapter III) was used as second reference for another 20 rounds of angular 

refinement that resulted in two models with apparently different densities at 

the funnel domain (Figure 24, dashed ellipses 1 and 3) and on the clamp 

(Figure 24, dashed ellipses 2 and 4), presumably indicating different 

conformations of C53/37 and C82/34/31, respectively. The additional 

densities in the back of RNAP III did not show significant improvements, 

neither did the resolution of either of the two models (Figure 25). An 

explanation could be that there were too many dimensions of variability as to 

be able to separate them by only two references, one of which was rather 

unrelated to this variability, the other being an average from all conformations 

present in the data set. Henceforth, it was attempted to resolve heterogeneity 

with the use of more sophisticated methods. 
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Figure 24: Two reconstructions of the RNAP III mPIC at ~27.5 Å  
Differences in observed additional densities suggest conformational variability of 

subcomplexes C53/37 (dashed ellipses 1 and 3) and C82/34/31 (dashed ellipses 2 and 4). 

Similar changes are visible for densities in the region where Brf1 is expected (dashed ellipses 

5 to 8). 
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Figure 25: Fourier shell correlation plot for the two RNAP III mPIC reconstructions 
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3 Technical issues addressed during this work 

 

Several technical issues were addressed during this work and this 

paragraph is meant to be a comprehensive protocol and maybe a starting 

point for a reader new to the field of cryo-electron microscopic analysis of 

RNAP complexes. 

 

 

3.1 Electron acceleration voltage and image contrast 

 

In theory, higher electron acceleration voltage and the consequential 

smaller electron wavelength allows for higher resolution imaging of the 

specimen. In practice, especially when dealing with biological specimens, the 

wavelength of the electron is not the limiting factor as it becomes obvious 

when expressing its numeric value in Å: considering them as waves, 120 keV 

electrons have a de Broglie wavelength of approximately 0.033 Å, which is 

two orders of magnitude smaller than what can be resolved from biological 

specimens by a state-of-the-art instrument like the Titan Krios (Frank, 2006). 

Most limiting to resolution on the instrument side are usually specimen or 

sample stage drift, aberrations of the electro-magnetic lenses and sub-optimal 

microscope alignment (Frank, 2006; Reimer and Kolh, 2008; Williams and 

Carter, 2009). There is an important aspect to the choice of acceleration 

voltage when dealing with potentially heterogeneous biological specimens, 

though. The higher the acceleration voltage and the resulting velocity of the 

electrons (considering them as particles in this case), the lower the so-called 

scattering cross-section, which is a measure of the probability of interaction of 

an electron with the specimen (Reimer and Kolh, 2008). “The target gets 

smaller as the bullets get faster”. This means that higher energy electrons 

indeed interact less with the specimen and give rise to lower signal on the 

image while lower energy electrons interact stronger, and give better signal or 

image contrast for that matter, at the possible cost of higher radiation damage 

(Reimer and Kolh, 2008). Figure 26 shows particle images of RNAP III 
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imaged on film at 300 kV while Figure 27 show particle images of RNAP III 

imaged at 200 kV at the same electron dose (the smaller image size in Figure 

26 is due to different boxing parameters, not image decimation factors).  

 

 

Figure 26: RNAP III particles collected at 300 kV 

 

 

 

Figure 27: RNAP III particles collected at 200 kV 

 

 

It is in principle possible to balance out for the loss of electron-specimen 

interaction at higher voltage by using a higher electron dose, thus having 

more electrons that effectively deliver signal to the recorded image, but a 

general conclusion has not yet been reached about what electron dose an 

average biological sample in vitrified ice can take before radiation damage 
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hampers image processing and reconstruction (Hans Elmlund, personal 

communication). It is conventional to be conservative regarding electron dose: 

imaging for single particle 3D reconstruction of biological specimens is usually 

done by exposing for about 1 s under low-dose conditions of 10-30 

electrons/Å2 in an electron energy range of 100-300 keV, respectively (Otto 

Berninghausen, personal communication). It was however suggested that 

vitrified biological samples might be able to take as much as 60 electrons/Å2 

at 300 keV for an exposure time of 1 s (Hans Elmlund, personal 

communication). The majority of data collection during the time of this work 

was done at 120 kV and under low-dose conditions of ~15 electrons/Å2. 

 

 

3.2 CCD vs film data 

 

When determining structures of protein complexes that have not been 

extensively studied already, and for which no or only little a priori information 

about existing conformational states is available, high SNR ratios are a critical 

point. It has been shown that in the lower spatial frequency ranges of ~10-20 

Å, and using oversampling, CCD images can have up to two-fold better 

spectral signal-to-noise ratios and that image phases on CCD in the 20 Å 

range are more reliable (Sander et al., 2005). CCD data has other 

advantages: when collecting data manually, an experienced user can already 

assess the quality of the images taken, by judging ice thickness as well as 

particle distribution and appearance on the images. Also, the period from data 

collection to a first reconstruction is dramatically shortened because time 

consuming tasks like developing and scanning of the micrographs are 

gratuitous. Moreover, image artefacts coming from dust during the scan or 

developer stain are eliminated or at least minimized.  

In conclusion, CCD data can be considered superior when data of new 

specimens is analyzed, where workflows or sample preparation techniques 

need to be optimized or when it comes to rather low-resolution initial structure 

determination of potentially heterogeneous specimens that have to be 
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analyzed with respect to this heterogeneity. If classification is not crucial 

because good models for segregation of the data sets exist already, it is 

advisable to collect film data for obtaining reconstructions in the sub-

nanometer resolution range. 

 

 

3.3 Attempts to resolve heterogeneity 

 

RNAP reconstructions published so far failed to reach a nominal 

resolution better than 11 Å. When almost 100,000 RNAP III particles from a 

high-end microscope collected at 200 kV on film were used and the nominal 

resolution determined by FSC0.5 was stuck at 19 Å, it became evident that 

averaging of images representing an inhomogeneous particle population was 

a major issue. Ribosome reconstructions can reach 5-6 Å if appropriate 

separation of the data set can be applied (Seidelt et al., 2009; Roland 

Beckmann, personal communication). For RNA polymerase, the lack of a 

priori information about conformational dynamics within the enzyme evidently 

limits the possibilities to create good models for supervised classification 

approaches. Therefore, methods for unsupervised classification were tested. 

 

 

3.3.1 Unsupervised classification 

 

For unsupervised classification, a comprehensive software package 

called SIMPLE (paper submitted) was tested. During that period, the package 

was still under development and installation and execution of code was done 

with kind support from Hans and Dominika Elmund. SIMPLE combines an ab 

initio reconstructions technique (Elmlund et al., 2008) and a continuous 

angular space refinement method based on spectrally self-adapting common 

lines (Elmlund and Elmlund, 2009). It was successfully applied to obtain two 

reconstructions of the general transcription factor TFIID at a resolution below 

10 Å (Elmlund et al., 2009). 
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Creation of an ab initio model using the common lines method generally 

needs data with an optimal SNR. Such data is usually obtained from negative 

stain or cryo-negative stain specimens. Since such data was not available at 

the time, and a reasonable first low-resolution model existed (compare 

Chapter III) we decided to use this model as initial reference. 

Initially, 25,242 CTF corrected (Wiener-filtered) particle images from two 

merged data sets of free RNAP III (collected as described in Chapter III) were 

aligned to the 21 Å reconstruction of free RNAP III (Figure 28, compare 

Chapter III). The obtained inplane rotational parameters were applied to the 

particle images, allowing for subsequent principal component analysis and 

hierarchical clustering of the dataset. The resulting averaged particle classes 

(Figure 29) were used as input for a state-assignment algorithm using a point 

normalized cross common line correlation coefficient as distance function and 

simulated annealing as an optimization procedure (Elmlund et al., 2009). 

Euler angles are the determined from the averages by a modified common 

line method.  

 

 
 

Figure 28: RNAP III reference volume (as described in Chapter III) 
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Figure 29: Class averages  

Image classes were obtained after inplane alignment to reference projections of the free 

RNAP III, subsequent principal component analysis and hierarchical clustering of the data set. 

 

 

The combination of these methods resulted in three models (Figure 30) 

apparently displaying different conformations of the stalk, the clamp and the 

lobe domain where the C82/34/31 and the C53/37 subcomplexes are located, 

respectively (compare Chapter III). These models were used for subsequent 

refinement in continuous angular space and resulted in three first 

reconstructions (Figure 31). These models showed some discontinuity as it 

can be seen in the top views of reconstruction 1 and 3 and discontinuities 

aggravated after another round of refinement (Figure 32), suggesting that the 

initial models did not yet represent the complete conformational variability 

present within the data set, or that the prior CTF correction was based on 

incorrect parameters (Hans Elmlund, personal communication).  

 



APPENDIX: UNPUBLISHED RESULTS! 85!

!

!

 

Figure 30: Initial models generated from the class averages shown in Figure 29 

Different stalk, clamp and lobe conformations seem present. 
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Figure 31: Models after first refinement round 

Discontinuities can be observed in the top views of reconstructions 1 and 3. The figure shows 

threshold masked, unfiltered volumes since this is required for the self-adapting common line 

algorithm that is used in this software.  
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Figure 32: Models after second refinement round 

Discontinuities aggravated in all three reconstructions. The figure shows threshold masked, 

unfiltered volumes since this is required for the self-adapting common line algorithm that is 

used in this software.  

 

 

The 120 kV CCD data used in this case made it necessary to 

parameterize the CTF manually, which could well have been a source of error. 

A faulty CTF correction could however be rendered unlikely by the fact that 

similar results were obtained using 200 kV film data. For this data, the CTF 

parameterization was possible in an automated and thus more reliable and 

reproducible fashion. This is partly due to the fact that more high-frequency 

information is present in the corresponding micrographs and the fact that a 

single micrograph covers a larger area, making the results of the sub-area 

sampling procedure used in the CTF parameter determination algorithm more 
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accurate (Frank, 2006). Another general problem could be the determination 

of euler angles by the common line method, which is based on the 

assumption that the images are projections of the same object, only taken 

from different viewing points, or copies of the same object in different 

orientations relative to the single point of view, for that matter. This 

assumption is obviously questionable since we are actually trying to resolve 

heterogeneity in the first place.  

Furthermore, the refinement procedure of the SIMPLE software was still 

under development at that time. Hence it was tried to combine the euler angle 

determination by reference-based alignment with the unsupervised state-

assignment method for determining heterogeneity and the resulting models 

were used as input for the supervised classification technique described in 

Chapter II to form a “hybrid-approach”. 

 

 

3.3.2 A “hybrid approach” 

 

It seems reasonable to use any available a priori information for aiding 

the separation of different conformational states if necessary. Since it is 

known that RNAP III subunits C53/37 are present in the endogenous enzyme 

in a sub-stoichiometric manner (Lorenzen et al., 2007), it was tried to make 

use of that information by directing (supervising) the classification accordingly. 

Initial euler angle assignment to the particle images was performed by 

reference-based alignment as described in Chapter II and III using as a 

reference the model of the free RNAP III at a resolution of 21 Å. Angles were 

refined for 10 rounds and the refined angles were used for state-assignment 

to the images (Elmlund et al., 2009). Backprojection of the segregated particle 

images resulted in three states, two of which were promising to use them as 

starting models for further supervised classification (Figure 33).  
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Figure 33: Initial models after state-assignment, backprojection and manual density 

modification (compare text) 

Residual densities at the funnel region were removed manually (dashed ellipse 1, compare 

text). Densities on top of the clamp (dashed ellipses 2 to 5) suggested conformational 

variability of the C82/34/31 subcomplex as observed before. 

 

 

These two models showed apparent conformational variability in the 

region of the C82/34/31 subcomplex (Figure 33, dashed ellipses 2, 3, 4 and 

5). One of these models showed stronger density in the region of the RNAP 

funnel and lobe, where the C53/37 subcomplex is situated. The model 
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displaying weaker density was modified by manually removing any residual 

density from that region (Figure 33, dashed ellipse 1), assuming that this 

volume represented a subset of particles having only little amount of C53/37 

bound (Lorenzen et al., 2007). The two models were then used as references 

for the whole data set, applying the sorting procedure described in Chapter II. 

The first round of sorting already improved the resolution of the two 

reconstructions as it can be seen in Figure 34 (dashed graph labelled “Round 

10”) compared to the last round of unsorted refinement (graph labelled 

“Round 9”). After 11 rounds of sorting, the resolution did not show significant 

improvements any more (graph labelled “Round 21”).  

The resulting two final models showed more defined conformations of the 

C82/34/31 subcomplex (Figure 35, dashed ellipses 2 and 4) and clear details 

for that region in volume 2. A little stronger density for the C53/37 subcomplex 

could also be observed in volume 2 (dashed ellipse 3). A small additional 

density appeared in volume 1 (dashed ellipses 1 and 5). Most interestingly, a 

density that was previously attributed to the N-terminal WH domain of C34 

(compare Chapter III) seems in a flapped out conformation in volume 2 

(dashed ellipses 6 and 9), such that it would allow for interaction with an 

incoming Brf1-TBP-DNA complex in the back of RNAP III (compare Chapter 

III). Another rather small density protruding out over the cleft in volume 2 

(dashed ellipse 8) from a location close to the clamp coiled-coil (Cramer et al., 

2001) can possibly be assigned to the C-terminal part of C34. It would also 

appear that this region is in a more closed conformation in volume 1 (dashed 

ellipse 7). This could give further clues for interpretation of the function of C34 

in the context of transcription initiation and elongation. 
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Figure 34: Fourier shell correlation plot for two RNAP III mPIC reconstructions 

After the first round of sorting, the resolution improved in the spatial frequency range between 

0.12 and 0.2. Subsequent rounds did not give any significant further improvements. 
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Figure 35: Refined models of RNAP III mPIC after classification 

The final models showed more defined conformations of the C82/34/31 subcomplex (dashed 

ellipses 2 and 4) and clear details for that region in volume 2. A little stronger density for the 

C53/37 subcomplex (dashed ellipse 3) could also be observed in volume 2. A small additional 

density appeared in volume 1 (dashed ellipses 1 and 5). A density that was previously 

attributed to the N-terminal WH domain of C34 seems in a flapped out conformation in volume 

2 (dashed ellipses 6 and 9), such that it would allow for interaction with an incoming Brf1-

TBP-DNA. Another rather small density protruding out over the cleft in volume 2 (dashed 

ellipse 8) can possibly be assigned to the C-terminal part of C34. This region seems in a more 

closed conformation in volume 1 (dashed ellipse 7). 
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4 Conclusions and outlook 

 

The comparison of the two mPIC studies discussed in paragraph 1 and 2 

already point towards the importance of high SNR for reliable classification of 

single particle images. The 300 kV data set of the archaeal mPIC resulted in 

partly “overaligned” volumes with even weaker additional densities in regions 

of interest when trying to classify the images. The 120 kV data set of the 

RNAP III mPIC showed more promising results. Taken together with the 

results of paragraph 3.3.2, the technical advances leading to enhanced image 

contrast seem to pay off. However, unexpectedly weak densities in regions 

where transcription factors are expected point out that there remains room for 

improvement.  

New state-of-the art instruments such as the Titan Krios are already 

being installed. The Titan Krios is developed bottom-up with the application of 

cryo-transmission electron microscopy in mind and will allow imaging of 

biological macromolecules at improved signal-to-noise ratios. This is 

accomplished by permitting a change of acceleration voltage down to 80 kV, 

by the use of constant-current lenses that increase thermal and 

electromagnetic stability, by the utilization of a third condenser lens improving 

beam parallelism, by the so-called “Auto-loader” system allowing for 

contamination-free change of up to 12 samples and by a soon-to-be-fully-

automated data acquisition system that allows faster collection and 

subsequent processing of cryo-EM data. 

That increases the importance of reliable methods on the data processing 

side of things, no doubt, but in the same time opens the door to extensive 

testing of new algorithms for classification on data sets of already established 

and well-known samples. With the improved quality, higher SNR and better 

resolution of the images, ab initio reconstruction and classification could be 

near at hand. New and improved alignment algorithms as well as a powerful 

3D variance technique based on bootstrapping, both implemented in the latest 

version of the software package SPARX (Hohn et al., 2007), are close to be 

ready for first trials. Moreover, as soon as a final release of SIMPLE is 
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available, it will also be tested thoroughly, since high potential is attributed to 

the method of self-adapting common lines and refinement in continuous 

angular space (Elmlund et al., 2009). As soon as methods are assessed and 

optimized, challenging specimens like larger PIC or even Mediator complexes 

are going to be tackled. 
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Final conclusions and outlook 

 

In conclusion, this thesis revealed new aspects of RNAP subunit 

architecture, the general transcription mechanism and its regulation in 

different domains of life. The detailed structure of an archaeal RNA 

polymerase underlined the evolutionary relationship between archaeal and 

eukaryotic RNAPs and was instrumental for initial studies of archaeal minimal 

pre-initiation complexes. The insights into RNA polymerase III and its 

regulation by Maf1 allowed modelling of the essential mechanism of RNAP III-

specific transcription repression and improved our understanding of the RNAP 

III transcription initiation mechanism. The obtained structural models 

represented groundwork for studies of RNAP III minimal pre-initiation 

complexes and aided the interpretation of preliminary results.  

In the future, these results will provide the basis for further structural and 

functional studies of RNA polymerase complexes. An archaeal RNAP-NusG 

complex is already under investigation and in depth studies of archaeal and 

eukaryotic pre-initiation complexes will be pursued. The technical experience 

gained during this thesis will be of great benefit for tackling these most 

challenging tasks. If the problem to resolve conformational and compositional 

heterogeneity can be solved, the consequential revelations might conduct 

optimization of crystallization construct design, eventually leading to 

groundbreaking atomic models, similar to what has been accomplished for 

RNAP II. The insights into subunit and transcription factor interactions from 

the studies on RNP III could be used to devise X-ray crystallographic projects 

concerning a Brf1-TBP complex together with nucleic acids and a region of 

C34 presumably stabilizing the C-terminus of Brf1. Furthermore, the 

presented model of RNAP III transcription initiation repression by Maf1 can 

help to bring reasons for misregulated RNAP III transcription to light, a 

dysfunctionality that has been found related to cancer. 
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Abbreviations 

    

ABC   subunit prefix for RNAP I (A), II (B) and III (C) 

AC   subunit prefix for RNAP I (A) and III (C) 

C   subunit prefix for RNAP III (C) 

CAP   catabolite gene activator protein 

CCD    charge-coupled device 

Cryo-EM  cryo-electron microscopy 

C-terminus  carboxy-terminus 

Ct-NLS  C-terminal NLS  

CTF   contrast transfer function 

CV   column volume 

DNA   deoxyribonucleic acid 

DTT     dithiothreitol 

E.coli    Escherichia coli 

EDTA   ethylene diamine tetraacetic acid  

EM   electron microscopy 

FRET   fluorescence resonance energy transfer 

FSC   Fourier shell correlation 

GTF   general transcription factor 

GTM   general transcription machinery 

Hepes     4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HRDC   helicase and RNAse D C-terminal domain 

H.sapiens   Homo sapiens 

lac   lactose 

LB   lysogeny broth 

MES   2-(N-morpholino)ethanesulfonic acid 

mPIC   minimal pre-initiation complex 

mRNA   messenger RNA 

N-terminus  amino-terminus 

Ni-NTA  Nickel-nitrilotriacetic acid 

NLS   nuclear localization signal  
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NTCA    non specific transcriptional activity 

Nt-NLS  N-terminal NLS  

NTP   nucleotide triphosphate 

PDB   Protein Data Bank 

P.fu   Pyrococcus furiosus 

PI   protease inhibitor 

PIC   pre-initiation complex 

PMSF   phenylmethylsulfonyl fluoride 

Pol   DNA dependent RNA polymerase 

RNA   ribonucleic acid 

RNAP   DNA dependent RNA polymerase 

Rpb   prefix of RNAP II subunits 

rRNA   ribosomal RNA 

RT   room temperature 

S.cerevisiae   Saccharomyces cerevisiae  

SDS-PAGE   sodium dodecylsulfate polyacrylamide gel electrophoresis 

SLS   Swiss Light Source 

SNR   signal-to-noise ratio 

snRNA   small nuclear RNA  

snoRNA   small nucleolar RNA 

S.shibatae  Sulfolobus shibatae  

S.solfataricus Sulfolobus solfataricus 

TBE   Tris/Borate/EDTA 

TBP   TATA-box binding protein 

TF   transcription factor 

Tris    trishydroxymethylaminomethane  

tRNA   transfer RNA 

UTP   uridine triphosphate 

WH    winged helix 

YPD   yeast peptone dextrose 
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