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Zusammenfassung

Diese Dissertation behandelt das Gebiet der nicht-störungstheoretischen Stringtheo-

rie, die allgemein als vielversprechendster Ansatz zu einer konsistenten Beschreibung der

Quantengravitation angesehen wird. Die fünf bekannten zehn-dimensionalen perturba-

tiven Stringtheorien sind durch zahlreiche Dualitäten miteinander verknüpft, sodass

eine zugrundeliegende nicht-perturbative elf-dimensionale Theorie, genannt M-Theorie,

postuliert wird. Über deren fundamentale Objekte ist aufgrund diverser technischer

Schwierigkeiten allerdings nur wenig bekannt.

Zur Typ-IIB-Stringtheorie existiert auch noch ein alternativer nicht-perturbativer

Zugang, die F-Theorie. Diese geometrisiert die SL(2;Z)-Selbstdualität der IIB-Theorie

in Form einer elliptischen Faserung über der Raumzeit. Darüber hinaus sind auch

höherdimensionale Objekte wie etwa 7-Branen als Singularitäten in der geometrischen

Beschreibung enthalten. Dieser formal elegante Ansatz erfordert allerdings einen großen

technischen Aufwand in der Konstruktion akzeptabler Kompaktifizierungsgeometrien,

da sehr viele Aspekte zwangsläufig gleichzeitig behandelt werden müssen. Dafür ist

aber eine im Vergleich zur perturbativen Stringtheorie einfachere Erzeugung essen-

tieller Bausteine für vereinheitlichte Theorien (GUTs) möglich, beispielsweise bestimm-

te Yukawa-Kopplungen oder Spinor-Darstellung. Ziel der Untersuchungen ist es daher

eine vereinheitlichte Theorie innerhalb der F-Theorie zu formulieren, welche gewisse

phänomenologische Grundbedingungen erfüllt.

Im Rahmen dieser Arbeit werden zunächst E3-Bran-Instantonen der Typ-IIB-String-

theorie –– also vier-dimensionale Objekte, die sich ausschließlich um die unsichtbaren

Dimensionen der Raumzeit wickeln –– mit M5-Branen in der F-Theorie in Beziehung

gesetzt. Diese Objekte sind von großer Bedeutung für die Erzeugung benötigter Yukawa-

Kopplungen oder etwa die Stabilisierung diverser freier Parameter einer Theorie. Be-

stimmte Eigenschaften der M5-Branen erlauben es dann eine neue Bedingung zu for-

mulieren, wann E3-Branen zum Superpotential beitragen können.

Im Anschluss zu dieser Analyse werden verschiedene Kompaktifizierungsgeometrien

konstruiert und ihre prinzipielle Tauglichkeit zur Beschreibung grundlegend realistischer

vereinheitlichter Theorien geprüft. Ein entscheidender Punkt ist dabei den Eichfluss

auf den enthaltenen 7-Branen korrekt zu beschreiben. Über die Methode der spek-

tralen Überdeckungen –– die zunächst noch weiterer Verfeinerungen bedarf –– lässt sich
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dadurch dann chirale Materie erzeugen und zugleich die vereinheitlichte Eichgruppe zum

Standardmodell hin reduzieren. Letztlich gelingt es in dieser Arbeit ein konkretes, ver-

einheitlichtes Modell mit der Eichgruppe SU(5) im Rahmen der F-Theorie zu konstru-

ieren, welches eine akzeptable Phänomenologie aufzeigt und zudem die beobachteten

drei chiralen Materie-Generationen reproduziert.



Summary

This dissertation is concerned with the topic of non-perturbative string theory, which

is generally considered to be the most promising approach to a consistent description

of quantum gravity. The five known 10-dimensional perturbative string theories are

all interconnected by numerous dualities, such that an underlying non-perturbative 11-

dimensional theory, called M-theory, is postulated. Due to several technical obstacles,

little is known about the fundamental objects in this theory.

There exists an alternative non-perturbative description to type IIB string theory,

namely F-theory. Here the SL(2;Z) self-duality of IIB theory is geometrized in the

form of an elliptic fibration over the space-time. Moreover, higher-dimensional objects

like 7-branes are included via singularities into the geometric picture. This formally

elegant description, however, requires significant technical effort for the construction

of suitable compactification geometries, as many different aspects necessarily have to

be dealt with at the same time. On the other hand, the generation of essential GUT

building blocks like certain Yukawa couplings or spinor representations is easier com-

pared to perturbative string theory. The goal of this study is therefore to formulate a

unified theory within the framework of F-theory, that satisfies basic phenomenological

constraints.

Within this thesis, at first E3-brane instantons in type IIB string theory–– 4-dimen-

sional objects that are entirely wrapped around the invisible dimensions of space-time––

are matched with M5-branes in F-theory. Such objects are of great importance in the

generation of critical Yukawa couplings or the stabilization of the free parameters of

a theory. Certain properties of M5-branes then allow to derive a new criterion for

E3-branes to contribute to the superpotential.

In the aftermath of this analysis, several compactification geometries are constructed

and checked for basic properties that are relevant for semi-realistic unified model build-

ing. An important aspect is the proper handling of the gauge flux on the 7-branes. Via

the spectral cover description–– which at first requires further refinements–– chiral mat-

ter can be generated and the unified gauge group can be broken to the Standard Model.

Ultimately, in this thesis an explicit unified model based on the gauge group SU(5) is

constructed within the F-theory framework, such that an acceptable phenomenology

and the observed three chiral matter generations are obtained.
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Chapter 1
Stringy Unification of
the Standard Model

and General Relativity

1.1 The Road to Unification

Understanding the laws of nature has relied on the principle of unification from

the earliest time man tried to grasp its mysterious ways and workings. In the

history of modern mathematical science, classical mechanics and Newtonian gravity

unified the seemingly distinct and unrelated motion of objects both in the sky –– the

wandering of the moon and the planets on the firmament –– and down on earth, like

the movement of the (in)famous falling apple. It is for this insight and the precise

mathematical formulation that Sir Isaac Newton’s book Philosophiæ Naturalis Principia

Mathematica, of which the first part of three was published in the year 1687, ranks

among the most influential texts in history. Roughly two centuries later, in 1864,

James Clerk Maxwell’s differential equations of electrodynamics brought together the

prior discoveries of Ørsted (magnetism of electric currents), Ampère (magnetic force

and circuital law), Faraday (induction of electricity) and others. Those two pillars

of classical pre-20th century physics are generally deemed to be the groundbreaking

discoveries in fundamental science. Only the laws of thermodynamics formulated during

the late 19th century–– which however are of statistical and emergent nature–– could be

compared in terms of importance for the future development of physics.

Physics in the 20th century took off with two further instances of unification that led

to an explosive growth in knowledge and understanding: Based on Maxwell’s conjecture

that electromagnetic waves are traveling with the speed of light and the Galilean prin-

ciple of relativity, Einstein formulated the theory of special relativity. It was published

in 1905 along with three other major discoveries during his annus mirabilis. This led

23



24 1. Stringy Unification of the Standard Model and General Relativity

to such fundamental insights like the mass-energy equivalence E = mc2 and eliminated

the concept of absolute space and time. Later he combined this theory with Newto-

nian gravity into the general theory of relativity, whose unified perspective removes the

apparent distinction between the effects of gravity and accelerated reference frames.

It uses the concept of a curved space-time to encapsulate gravity and showed that

movement follows geodesic paths instead of straight lines. The space-time deformation

caused by the sun and the planets allowed to understand the perihelion precession of

Mercury.

Around the same time, right on the verge of the century in 1900, Max Planck suc-

cessfully combined Maxwell’s electrodynamics with the principles of thermodynamics

in order to describe the puzzling black body radiation spectrum by postulating that en-

ergy is emitted in discrete quanta instead of a continuous distribution. This unification

laid the groundwork for quantum mechanics, which was later combined with special

relativity by Dirac and yielded the framework of quantum field theory.

If one carefully traces back all the major and minor unification processes up to the

late mid-20th century, two results remain: the theory of general relativity–– a successful

description of gravity on the large macroscopic scale –– as well as the concept of quan-

tum fields that characterizes the effects of forces at the sub-atomic scale. The Standard

Model of particle physics is formulated in the latter framework and itself originates from

unification processes, bringing together the theory of quantum electrodynamics (QED),

the subsequent Glashow-Salam-Weinberg electroweak theory and quantum chromody-

namics (QCD). General relativity and the Standard Model provide the foundation of

modern theoretical physics.

Naturally, the unification of both theories is expected to be the next logical step

in the progress of physical understanding. A unified theory of quantum gravity and

Standard Model phenomenology is expected to have the potential to answer a number

of substantial questions (like the microscopic details of black hole physics or the origin

and fate of the universe). It also seems necessary to remedy numerous conceptual

inconsistencies contained in both theories and to explain several curious experimental

findings of somewhat younger date.
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1.2 Problems of the Standard Model and General Relativity

1.2.1 Theory versus experiment

On the experimental side the Standard Model of particle physics has been confirmed

countless times. During its development the existence of a third matter generation

was predicted along with the masses of the contained quarks that were indeed found

decades later. So far only the postulated Higgs particle –– which is responsible for the

mass generation within the Standard Model –– has eluded its detection. The Standard

Model makes no predictions for the Higgs mass,I but by LEP experiments it is known

at high confidence level that is has to be heavier than 114.4 GeV [1]. In fact, the

Standard Model could (at least conceptually) remain valid up to the Planck scale if the

Higgs mass is between 115 to 180 GeV. The Tevatron further excluded the mass range

of 158 to 175 GeV, and by indirect means a Higgs mass above 185 GeV seems rather

unlikely. Theoretically the Higgs mass could be as high as 1.4 TeV, beyond that certain

inconsistencies with electroweak symmetry breaking appear. Most indirect theoretical

predictions seem to favor a rather light Higgs of about 120 GeV [2]. Much hope is placed

on the Large Hadron Collider (LHC) experiment, which is currently in the early stages

of data gathering.

The Higgs mass is deeply related to the hierarchy problem of particle physics, which

asks why the weak interaction is about 1032 times stronger than gravity. Within the

Standard Model this can be rephrased to the question why the Higgs mass is so much

lighter than the Planck mass

mPl =

√
~c
G
≈ 1.22 · 1019 GeV

c2
≈ 22µg.

Since any measured mass parameter has to be renormalized in order to remove the

radiative loop corrections of virtual particles, an incredible amount of fine-tuning (about

30 orders of magnitude) is required to reach the experimental bounds. One would clearly

like to have a better understanding of this process.

Another discrepancy appears in the naive computation of the vacuum energy and the

measured value of the cosmological constant –– here the mismatch between theory and

experiment is as high as 120 orders of magnitude. However, as the Standard Model does

not include gravity, this can be interpreted as a strong hint for the missing quantum

effects of gravity in the vacuum energy computation. The lack of understanding of

IIn the context of the MSSM (see section 1.3) the supersymmetric Higgs mass can be predicted

and the lower range has already been excluded. This does not invalidate the MSSM, but a Higgs

mass above 125 GeV would strongly hint at new physics beyond the MSSM.
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the cosmological constant is also seen in the accelerated expansion of the universe.

Not only does it continuously grow, but according to high-precision measurements of

distant supernovae it does so faster and faster. Understanding those effects from the

QFT framework requires to cure an energy scale which is much below the electron mass

without screwing up all the well-established physics of the Standard Model.

Neither non-accelerated nor the accelerated expansion have been understood at a

fundamental level, which together with the observation of galactic rotational curves led

to the postulation of dark matter and energy. Those only gravitationally interacting

and purely hypothetical forms of energy supposedly make up more than 95% of today’s

universe. Clearly, both the Standard Model and the theory of general relativity fail to

explain significant portions of our universe–– both on the microscopic and macroscopic

scale.

On the other hand, one has to keep in mind that gravity is very difficult to test

experimentally on small scales due to its comparative weakness to the other forces. At

the time of writing, the squared-inverse dependence on distances is verified only down

to lengths of about 1 µm.II It therefore cannot be ruled out that the laws of gravity

simply are different on small scales with the corresponding implications for particle

physics. Conversely, general relativity is also only well tested up to the scale of the

solar system. Dark matter and dark energy may also be hints (in disguise) to a different

gravitational law at galactic scales. Deviations from the established gravitational law

that are extremely small and experimentally very hard to identify on our scale may

have drastic effects thousands of light-years away from us. Generalized gravitational

theories like “Modified Newtonian Dynamics” (MOND) [4–6] and “Modified Gravity”

(MOG) [7] have been considered to bring theory and experiment closer together, but

those attempts violate well-established and (apparently) fundamental principles like

Lorentz invariance and energy-momentum conservation.

1.2.2 Conceptual inconsistencies

In addition to the unexplained phenomena, both theories suffer from a number of

unresolved conceptual shortcomings and are known not to be truly fundamental. Most

obviously, they are mutually exclusive–– with the Standard Model not including gravity,

whereas on the other hand Einstein’s theory is not handling the other three forces.

General relativity’s range of validity is reached when a massive object’s size becomes

smaller than its Schwarzschild radius, i.e. when it collapses to a black hole under its

own gravity. Mathematically this is described by a point-like singularity in space-time

IIQuite recently an experiment based on dielectric microspheres has been proposed, which could

improve this value significantly in the near future [3].
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that in the simplest case is usually visualized as an infinite funnel. While a limited

scope is a generic feature to all theories in natural science, the truly problematic aspect

here is that initially well-defined and smooth settings may dynamically propagate into

such a singular situation. The life cycle of a star with a huge mass, which ultimately

evolves into a black hole, is a prime example of this shortcoming. However, in the case

of general relativity the problematic aftermath of the resulting point-like singularity is

hidden inside an event horizon that serves as a communication and observation barrier,

effectively cutting off access to the regions where the theory breaks down. It is therefore

reasonable to assume –– if one would like to avoid drastic topology changes of space

during the progression of time–– that nature obeys a different gravitational law, where

e.g. the central black hole singularity is smeared to a smooth solution by quantum

effects.

Furthermore, as a classical black hole is characterized only by its mass, charge and

angular momentum one might wonder what happens to the information encoded in the

particles falling into it, which due to the event horizon is apparently lost to the exter-

nal observer. While this may be fine in a classical theory, it is a strong contradiction

to quantum mechanics. This issue is closely related to the missing microscopic expla-

nation of the Bekenstein-Hawking black hole entropy formula, which was computed

using approximative methods that are only valid in situations of low curvature at the

event horizon. But this leaves out the important case of microscopic black holes which

may account for a significant amount of the mass and in particular the entropy in the

universe [8].

A kind of validity protection has to be employed in quantum field theory as well,

which already breaks down at the computation of the most basic 1-loop level contribu-

tions for any interacting theory. Here self-interactions between charged matter particles

and the gauge bosons of the sourced field quickly lead to infinite values and make it

necessary to introduce a cutoff at high energy, despite the fact that those contributions

in principle have to be considered in the computation of the amplitudes as well. Be-

sides this so-called regularization procedure more involved renormalization techniques

are available to deal with several other sources of infinities. Even worse, following an

old argument by F. Dyson, the radius of convergence of many perturbation series (in

particular the QED one) is actually zero. All those problems were first observed in quan-

tum electrodynamics–– still one of the best tested and precisely verified descriptions in

physics –– and continue to trouble in the subsequently constructed theories leading to

the Standard Model. Nevertheless, from a conceptual point of view one has to admit

that even the apparently trivial situation of a single electron is not correctly understood

within the theory.
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Aside from the aforementioned problems there is the issue of arbitrariness, much more

prominently found in the Standard Model with its (at least) 19 unrestricted parameters

that have to be tuned from empirical data. Clearly, one would like to understand the

relations between the values of particle masses and interaction strengths from the theory

itself –– unfortunately, this insight is completely lacking at the moment. In fact, there

is not even a guiding principle that singles out the Standard Model Lagrangian or its

gauge group SU(3)C × SU(2)W × U(1)Y in the space of anomaly-free, renormalizable

quantum gauge field theories other than the observation that it remarkably well seems

to reproduce the experimental data and is reasonably simple at the same time. General

relativity on the other hand has at least an elegant geometrical origin arising uniquely

from a very limited number of input postulates posed by Einstein, which is very much

in the spirit of Newton’s theory. It is the only classical theory that captures the effects

of a massless spin-2 particle in four space-time dimensions.

Ignoring the individual problems of either theory, one may nevertheless go on with

the unification process, which results in a fully unified “theory of everything”, meaning

that all four known fundamental interactions are described in a common framework.

Considering that general relativity is a classical theory without any kind of fundamen-

tal discretization, the traditional approach –– which was very fruitful in turning other

established theories into their quantum version–– rewrites the gravitational interaction

into a field theory of its supposed exchange particle, the graviton. But the canonical

attempt to quantize gravity fails dramatically. If one naively tries to introduce a spin-2

particle as the gravitational exchange boson in the established quantum field theory

framework, one ends up with a non-renormalizable theory where every computation of

physically meaningful quantities diverges.

Before one can proceed at all, it is therefore necessary to look closer at the generic

fundamental properties of either theory. There are several conceptual key differences:

Whereas general relativity is a classical theory with strictly deterministic character,

quantum fields are of intrinsically probabilistic nature –– as exhibited by the built-in

uncertainty principle. Furthermore, the background independence underlying general

relativity is incompatible with the framework of quantum field theory, which requires

a fixed stage in order to define the fields. A critical aspect is the fact that gravity

in contrast to the other three forces introduces a natural scale. Via the mass-energy

equivalence gravity couples to all objects while at the same time setting the stage in

which those objects propagate and in which the spreading of information is limited

by the speed of light. The energy scales of the Standard Model are determined by

the masses of the gauge bosons, i.e. the coupling to the Higgs boson, which are not

understood at a more fundamental level.
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Pushing the energy level further and further up, one expects the effects of quantum

gravity at the latest to become important around the Planck scale. Whereas in plain

quantum field theory in principle virtual particles of any mass and momentum have to

be considered, the inclusion of gravity naturally introduces a cutoff at the energy level,

where via the mass-energy equivalence the Schwarzschild radius becomes equal to the

Compton wavelength. At this point the notion of a point particle necessarily collapses

and a classical black hole is obtained. While the microscopic details of this setting are

very speculative, it is clear that from a unified perspective a not too drastic “transition”

instead of two completely different descriptions is to be expected. Ultimately, the

necessary modifications anticipated from a fundamental theory of quantum gravity are

therefore assumed to take care of the rather artificial regularization and renormalization

techniques as well as the point-like black hole singularity.

Taking all this into account it does not really seem too surprising that many at-

tempts of the past century have failed to incorporate both gravity and quantum field

theory. Einstein himself spent the later decades of his life in search for a unified theory.

Both the conceptual foundations of quantum theory and gravity appear to be mutually

incompatible, which strongly suggests a more revolutionary approach to the problem.

1.3 Supersymmetry, Grand Unification and Locality

Following the failed attempt to quantize the graviton field in a consistent manner,

the discovery of supersymmetry and the subsequently developed supergravity approach

again gave reason to hope for a unified theory during the 1970s and 80s. The idea of

supersymmetry arises from adding fermionic (anti-commuting) generators to the sym-

metry algebra, which mathematically corresponds to a Z2-grading of the Poincaré sym-

metry. This allows to bypass the Coleman-Mandula “no-go theorem” [9] which states

that in order to obtain non-trivial scattering amplitudes in any interacting quantum

field theory (under reasonable assumptions) there are no other groups than the product

of the Poincaré group and some internal group. Its supersymmetric generalization is the

Haag- Lopuszański-Sohnius theorem [10], which includes the aforementioned fermionic

symmetry generators.

From the resulting representation theory of the Poincaré supergroup one derives a

near doubling of the particles expected in the spectrum, i.e. every ordinary particle is

supposed to have a supersymmetric partner particle. The theoretical benefit of this

approach is a huge cancellation of the diverging contributions in the loop amplitudes,

which originally seemed to keep the results finite. In the computation of the vacuum

energy the presence of supersymmetry leads to a reduction of 60 orders of magnitude––

which unfortunately is still vastly off the expected value.
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Supergravity is then the quantum field theory of the spin-2 graviton exchange boson

which forms a SUSY multiplet with the spin-3
2

gravitino fermion. Unfortunately, for

the natural case of minimal N=1 supersymmetry in four space-time dimensions, su-

persymmetry only manages to cure the divergences at the lower loop levels–– for higher

loop orders one is still left with the original problem of non-renormalizable divergences.

Some specific maximally supersymmetric (and therefore non-chiral) supergravity the-

ories that have been computed to higher orders still have the potential to be finite at

all orders [11, 12]. Overall, the supergravity approach is nowadays rather considered to

be an effective description of the graviton field at low energies and almost flat space-

time curvature, which is suffering from the same conceptual problems like the Standard

Model.

The concept of supersymmetry on the other hand is still widely used in modern theo-

ries, which makes it necessary to reflect upon its implications. Whereas the theoretical

properties of supersymmetry are strikingly elegant –– it sparked the very fruitful field

of supergeometry in pure mathematics–– one has to realize that up to this date no one

ever observed any direct hints of supersymmetry. Due to the fact that exact supersym-

metry implies the same mass for both supersymmetry partner particles –– which would

have been observed in experiments a long time ago –– it can safely be assumed that

supersymmetry is broken at low energies. This is in stark contrast to other examples

of progress in physics, where one usually tries to find the underlying symmetry for

a seemingly random collection of experimental data. For supersymmetry instead one

proposes a symmetry and at the same time has to explain why it is not observed in

nature. The usual approach to this problem is to use a spontaneous symmetry breaking

like in the Higgs mechanism, where a symmetry is broken below a certain energy scale.

This saves the regulatory properties for the troublesome high energy regime and at

the same time provides an explanation for our non-observation of supersymmetry. The

canonical extension of the Standard Model that includes supersymmetry is called the

Minimal Supersymmetric Standard Model (MSSM). Despite its formally elegant prop-

erties, one has to keep in mind that the MSSM contains much more free parameters as

the Standard Model, such that the problem of arbitrariness is even worse.

Another relevant feature for a so-called “theory of everything” is the concept of grand

unification. In the Standard Model of particle physics each one of the three fundamen-

tal interactions has its own coupling constant that determines the relative strength and

provides a value for the loop expansion. However, the notion of a coupling ‘constant’

is actually a misnomer, since the respective values are varying with the energy scale.

Somewhat surprisingly, all three couplings appear almost to intersect at a very high

energy scale, which suggests that they are actually low-energy artifacts of an underly-
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ing symmetry. If one adds supersymmetry to this thought, one actually finds a perfect

intersection of the running couplings at high energies. The idea of embedding the Stan-

dard Model gauge group SU(3)C × SU(2)W × U(1)Y into a higher dimensional simple

group like SU(5) or SO(10) has therefore become rather important [13, 14]. Again,

one aims to employ a spontaneous symmetry breaking in order to make contact with

the established physics. And again one also has to interject that no experimental data

exists to justify or rule out this particular approach–– it is only an extrapolation of the

running behavior observed and computed at comparatively low energy scales. Further-

more, as the grand unification approach also stays within the established quantum field

framework, it is equally doomed not to solve the really troubling conceptual issues, but

becomes a useful guide in constructing theories supposedly valid at high energies.

Supersymmetry also offers a potential solution for the hierarchy problem, provided

that it exists close to the TeV scale. The radiative quantum corrections to the mass

of the Higgs boson –– which make it extremely large –– tend to cancel out in a super-

symmetric theory, thus keeping a relatively small value. However, as there is also

no understanding of the Higgs mass itself –– the µ-problem –– and no natural breaking

process of the supersymmetry so far below the GUT scale is known, one effectively

replaces the original hierarchy problem by the new problem of (low-energy) supersym-

metry breaking.

Depending on one’s point of view, all the aforementioned ultra-violet infinities arising

in interacting quantum fields can be traced back to the point-like and artificial inter-

action vertices underlying the framework of interacting quantum fields. Ignoring the

quest to include gravity for the moment, a reasonable step is therefore to “smear out”

such interaction points, i.e. to introduce a limited level of non-locality in the theory.

The principle of locality in quantum field theory is required for causality. The proposed

approach also makes it necessary to replace the concept of point particles by some kind

of extended fundamental object. Nevertheless, conceptually this can still be interpreted

as a rather conservative attempt at generalizing the quantum field concept.

Considering that points are of dimension zero, the goal is therefore to find a theory of

extended objects that effectively reproduces the key properties found in the quantum

field approach. However, finding such a consistent quantum theory of extended objects

proves to be extremely difficult and has in fact only succeeded in dimension one ––

yielding a theory of quantized strings.



32 1. Stringy Unification of the Standard Model and General Relativity

1.4 Overview of String Theory

A proper formulation of string theory that takes all of the aforementioned concepts

manifestly into account is still missing. So far there is no background independent

description of string theory available, which was originally invented to describe the

confinement properties associated to the strong nuclear interaction before the asymp-

totic freedom underlying quantum chromodynamics was discovered. Instead of a fully

dynamical string field theory with intrinsic mechanisms to handle a variable number

of fundamental string objects, the current perturbative string theory descriptions rely

on considering fixed string topologies inside a fixed space-time. However, this already

suffices for the computation of e.g. scattering amplitudes with direct analogies to the

QFT framework’s summation over different Feynman diagrams. In the following a brief

and informal overview of string theory is presented, following the standard references

on the subject [15–26].

1.4.1 The bosonic string

The perturbative description of a string is based on a non-linear σ-model for the

embedding of a two-dimensional surface into a higher-dimensional target space-time.

The surface is called the string worldsheet and combines the one-dimensional spatial

extension of the string plus the temporal dimension. It is therefore the canonical gen-

eralization of a point particle’s worldline. On top of this worldsheet surface lives a

conformal field theory (CFT) [27–31]. The conformal symmetry allows for stretching

and deforming of the worldsheet as long as local angles are preserved –– basically, one

ignores all kinds of length information. The only CFTs that have been solved exactly

so far and can be quantized are two-dimensional CFTs, which is the major obstacle

when attempting to generalize to higher-dimensional objects. The string worldsheet

CFT falls precisely into this category of exactly solvable CFTs.

But in general the CFT yields a conformal anomaly from the quantization of the Weyl

rescaling symmetry, which is exactly canceled using a 26-dimensional target space-time

for the embedding of the worldsheet.III Thus, one ends up with the 26-dimensional

bosonic string theory discovered in the late 1960s.

Due to its extended nature a string can have vibrational excitation modes that result

in an infinite tower of particle states, each of which gets more massive the higher the

IIIOne can also consider a non-critical string theory, where the dimension is d 6= 26. As the con-

formal anomaly is proportional to the central charge, the non-zero value can be corrected by

enabling a non-trivial expectation value for the dilaton. However, this generally violates the

Lorentz invariance, which makes non-critical string theory an unsuitable candidate for a theory

of quantum gravity.
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excitation mode is. However, for the typical values of the string length the mass gap

between adjacent modes already is so enormous (determined by 1
`s

= 1√
α′

–– where α′ is

the stringy Regge slope–– and typically assumed to be of the order of the Planck mass)

that only the massless particle spectrum needs to be considered. Nevertheless, certain

corrections from massive states to potentially observable scattering amplitudes can be

obtained under the assumption of a low string scale [32–34].

The original bosonic string theory suffers from a number of shortcomings: As implied

by the name only bosonic states of integer spin are contained in the spectrum, whereas

all known fundamental matter particles are of fermionic nature. Even worse, a destabi-

lizing tachyon state of imaginary mass and energy is found as well, ruling out all hopes

of this being a physically viable theory.

Nevertheless, the perhaps most surprising aspect of string theory is that from the

sole attempt to construct a well-defined quantum theory of one-dimensional extended

objects–– which is highly constrained by consistency requirements of both physical and

mathematical nature–– one apparently gets out gravity at the other end. The fact that

the bosonic string contains a well-defined spin-2 particle state in its massless spectrum

came as a big surprise. It corresponds to the hypothetical graviton interaction boson

that eluded all prior attempts of quantization in the ordinary QFT framework.

1.4.2 The superstring

With the inclusion of supersymmetry the two main problems of the bosonic string

theory can be dealt with. Supersymmetry by definition implies the presence of fermionic

partner states and an appropriate superconformal field theory (SCFT) can be solved

and quantized much like in the non-supersymmetric case, providing a supersymmet-

ric worldvolume theory. The troublesome tachyon state is projected out by the GSO

projection [35, 36] which ultimately turns the σ-model into its supersymmetric version,

yielding target space supersymmetry [37–40]. However, now one has to deal with a su-

perconformal anomaly, which (for the critical theory) cancels only in a 10-dimensional

target space-time.

Following this supersymmetrization procedure, one ultimately arrives at the pertur-

bative 10d N=2 type II superstring theory, which comes in a non-chiral IIA and chiral

IIB variant. If orientation of the string worldsheet is neglected the 10d N=1 type I

superstring can be constructed in the same fashion. The hybrid heterotic string theory

is obtained by combining half of the type II superstring with half of the bosonic string.

Rolling up all of the mismatching 16 dimensions to a higher-dimensional torus provides

the internal gauge group SO(32) or E8×E8, yielding the heterotic SO(32) and E8×E8

theory. In all cases one is left with a theory depending only on a single free parameter:
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the string length `s which is related to α′ and Ts.

1.4.3 D-branes

Whereas a point particle has no intrinsic properties, the one-dimensional string can

be either of open or closed topology. Due to conservation of internal momentum on

the string worldsheet, the endpoints of an open string in type II theory are confined to

the worldvolumes of D-branes, which are named for the Dirichlet boundary condition

of the string.

D-branes are higher-dimensional objects in string theory, which acquire a dynamical

structure due to the open strings ending on them [41]. It should be emphasized that

not the D-brane itself is quantized as a fundamental object but rather the open strings

on top of it. This effectively equips D-branes with a super-Yang-Mills gauge theory

on the worldvolume. By assigning an appropriate background flux to the brane this

gauge group can be broken. As spatially extended objects D-branes can intersect. This

allows open strings to connect the two branes and produce new massless states along

the intersection. Together with an appropriate background flux chiral matter is usually

engineered from intersecting brane models [42, 43].

In the type IIA string theory D-branes have even spatial dimension (D0, D2, D4, D6,

D8), whereas in type IIB one encounters odd spatial dimensions (D1, D3, D5, D7, D9).

The special case of D9-branes effectively allows for freely moving open strings.

1.4.4 Recovering gravity and quantum gauge theory

Closed strings on the other hand are completely unrestricted in their movement

through the space-time. As the massless closed string spectrum contains the afore-

mentioned spin-2 particle state, this sector is usually associated with the gravitational

aspects of string theory. It also houses the dilaton field that dynamically determines

the string coupling gs.

It is certainly surprising that the only two smooth topologies of a one-dimensional

object –– the string –– can be associated to a gauge sector (open strings) and gravity

(closed strings). From this point of view the extended nature of the fundamental object

in string theory serves as the means of bridging the gap between general relativity and

quantum gauge field theory [44, 45].

Hailed as one of the most important breakthroughs of the string framework, the

theory manages via certain wrappings of D-branes to reproduce the Bekenstein-Hawking

entropy formula for extremal black holes [46], which has the minimal mass for a given

charge and angular momentum. Furthermore, with the fuzzball proposal [47, 48] ––

where the entire region inside the black hole’s event horizon is filled by a dense ball of
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interacting strings–– a candidate for a general microscopic quantum description of black

holes exists [49].

However, despite the apparent elegance of this construction, the perturbative nature

of the current formulation does not provide an entirely unified perspective, in partic-

ular on general relativity. The fact that we are considering closed strings moving in

a fixed space-time introduces a conceptual splitting in the treatment of gravity, which

is in contrast to the intrinsically captured back-reaction between energy, matter and

the dynamically curved space-time in general relativity. Likewise, the second impor-

tant property of background independence cannot be manifestly recovered from the

perturbative description.

1.4.5 Dealing with higher-dimensional space-time

There exists an obvious mismatch between the number of four dimensions we experi-

ence in our everyday world (as well as in all experiments conducted at the microscopic

scale so far) and the ten dimensions predicted by perturbative superstring theory. Sev-

eral approaches have been developed in order to deal with this issue [50, 51].

For once, the world that we experience mostly through the interactions described

by gauge theories could be associated to the worldvolume of a D3-brane. As the open

strings –– the building blocks of the gauge sector –– are fixed to this brane, one can-

not detect the higher dimensions of space-time from electromagnetic, weak and strong

interactions. Furthermore, this approach would also provide an explanation for the rel-

ative weakness of gravity measured from our four-dimensional perspective as the closed

strings may propagate away from the brane without any restrictions. Our gravita-

tional law would then be a remnant of a higher-dimensional gravitational effect whose

suppression with distance is much stronger in ten space-time dimensions [52].

The more conservative approach goes back to an early attempt at unifying general

relativity and electromagnetism by considering a five-dimensional space-time and rolling

up the fifth dimension to a compact circle of some finite–– supposedly very tiny–– radius

[53]. As one can in principle generalize this idea in order to get effectively rid of an

arbitrary number of dimensions, the compactification on a six-dimensional torus was

considered much earlier to explain the dimensional mismatch. However, compactifying

some dimensions also implies an inversely size-related discretization of the momentum

in this direction. For extremely small compact dimensions states of higher momentum

are then automatically of much higher energy, such that those higher Kalazu-Klein

modes are usually ignored similarly to the higher vibrational string excitation modes,

i.e. one once again only considers the effective theory (of lower dimension) obtained

from the massless spectrum.
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The shape and structure of the compact dimensions has a direct influence on the

effective theory. In order to recover the Standard Model phenomenology at some point,

one therefore has to find a suitable compactification space. For example, as chiral

theories are only possible for N=1 supersymmetry one needs to compactify on Calabi-

Yau manifolds [54] and use further ingredients like orientifold symmetries as well as

D-branes to obtain 4d N=1 effective theories. In this light the arbitrariness of the

Standard Model and the tuning of its parameters is partially found again in terms of

geometric moduli that describe the internal geometry of a higher-dimensional string

theory.

1.4.6 Dualities and M-theory

The original hope of unveiling a unique theory of gravity and quantum gauge fields

is spoiled due to the existence of five perturbative string theories (type I, type IIA and

IIB, heterotic SO(32) and E8 × E8). However, the subsequent discovery of dualities

between those theories suggests again the existence of a single unique underlying theory,

called M-theory [55].

In 1995 E. Witten observed that the type IIA superstring seems to “grow” an ad-

ditional spatial dimension when going into the non-perturbative strong coupling limit

gs →∞. A corresponding observation can be made from the heterotic E8 ×E8 theory,

where two completely space-time filling “boundary branes” are pulled apart. Suddenly

the one-dimensional string seems to spread out an entire two-dimensional membrane––

the M2-brane. By considering different wrappings of the M2-brane together with the

dualities, all five perturbative string theories can be recovered from M-theory. Further-

more, its effective low-energy theory precisely corresponds to the 11dN=1 supergravity,

which is the unique supergravity theory of maximal dimension and maximal level of

supersymmetry that can be constructed. Many indirect arguments therefore strongly

suggest that M-theory provides a more unified non-perturbative perspective on the

merger of gravity and quantum gauge theory [25, 56–58].

Unfortunately, as M2-branes in M-theory take the place of the fundamental object

of the theory, this takes one back to the still unresolved problem of finding a consistent

quantum theory of extended higher-dimensional objects –– M2-branes are of dimension

three (two spatial plus one temporal dimension). Therefore only indirect descriptions of

M-theory are available which prohibits direct computation of e.g. M2-brane scattering

amplitudes.

Due to the dimensional mismatch between 11d M-theory and the observed 4d world

one has to employ the compactification procedure again. The non-perturbative perspec-

tive offered by M-theory allows to define a potential on the moduli space of compacti-
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fication geometries, which is called the string landscape. Despite the fact that no truly

physically realistic selection mechanism is explicitly known, string theory possesses the

right ingredients to stabilize the moduli and single out the parameters of the theory.

The uniqueness and moduli stabilization possibility inherited by the perturbative string

theory limits of M-theory are the main conceptual advantages over the Standard Model

or more generally the quantum field theory framework.

1.4.7 F-theory

A technically more accessible treatment of non-perturbative aspects originates from

the type IIB superstring. The strong-weak coupling duality that maps gs to its inverse
1
gs

and relates the heterotic SO(32) string to the type I theory is part of a larger self-

duality group of the type IIB superstring. In other words, the IIB theory itself already

contains the means to represent non-perturbative strong coupling situations via its own

perturbative weak coupling description.

C. Vafa first noted that the enhanced self-duality group SL(2;Z) actually corresponds

to the reparametrization group of a two-dimensional torus and came up with the idea

of using the value of the string coupling-related dilaton φ and the D7-brane-sensitive

axion C0 to describe the shape of a torus [59]. This gives rise to an elliptic fibration

over the 10d space-time of type IIB and the theory on top of the 12d elliptically-fibered

total space is called F-theory.

Further study reveals that much more information is actually stored in this fibration,

like for example the location and worldvolume gauge group of non-standard 7-branes

with a non-perturbative origin. For example, one can easily obtain exceptional gauge

group representations from intersecting branes in the F-theory framework, which are

highly relevant for the reproduction of Standard Model phenomenology from GUT the-

ories. In the IIB theory those groups can only be described by considering complicated

networks of (p, q)-strings between (p, q)-branes mapped under the SL(2;Z) self-duality

[60–65]. Ultimately, the geometrization of F-theory elegantly captures 7-branes and

their back-reaction on the ambient geometry in a unified fashion and therefore provides

a more proper description of those objects.

In comparison to M-theory one does not create a new fundamental object in F-

theory (like the M2-brane) but rather uses a clever geometrization of the innate non-

perturbative objects in type IIB theory to provide an alternative non-perturbative per-

spective on superstrings and 7-branes. As it turns out, the non-perturbative regime of

large string coupling gs almost inevitably becomes relevant in generic type IIB settings.
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1.5 Motivation and Outline

At the low energy scale string theory must reproduce the phenomenology described by

the Standard Model. One of the numerous branches of string phenomenology discusses

type IIB model building using the F-theory framework. After the initial wave of interest

in the years following Vafa’s original idea, F-theory widely vanished from the list of

actively pursued topics. Quite recently (in 2008) a series of papers renewed interest in

this framework and introduced the idea of local F-theory GUT model building [66–69].

This was largely motivated by the fact that one can easily realize exceptional gauge

groups to generate certain Yukawa couplings in GUT models that require D3-brane

instanton corrections in the perturbative type IIB theory [70].

In order to analyze the generic properties of this approach a considerable amount of

effort has been spent on local F-theory GUT model building [71–85], where the task of

constructing an appropriate compact elliptically-fibered Calabi-Yau 4-fold is neglected.

But many consistency and stability conditions can only be evaluated in a fully global

model. Sooner or later one is therefore forced to attack the more involved problem of

global F-theory GUT model building [86] to check if the promising local effects can

actually be realized appropriately and within the same model.

Structure of results

This thesis is concerned with several aspects of global F-theory GUT model building

and the correspondence of this non-perturbative framework to perturbative type IIB

superstring setups. A small part deals with the development of an efficient algorithm

utilized in the zero-mode counting of instantons, which is a result of purely mathemat-

ical interest as well.

The following research results are discussed in part III, which are not in chronological

order of their development [87–91]:

� Chapter 4: Before turning to more sophisticated GUT models, the correspon-

dence between E3-brane instantons in type IIB and M5-brane instanton effects

in F-theory is investigated. After matching the zero-mode structures, this al-

lows to study instanton effects in F-theory settings away from the perturbative

Sen limit. A new sufficient criterion to generate a nowhere vanishing, uncharged

superpotential is derived [89].

� Chapter 5: As a first step in the direction of global F-theory GUT building the

uplifting of type IIB orientifold GUT model geometries to the corresponding F-

theory model is considered to get a better understanding of the non-perturbative
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effects on 7-branes and gauge groups [87]. Some of those are usually invisible in

the perturbative IIB theory or are extremely difficult to obtain.

� Chapter 6: Chiral matter requires the presence of non-trivial gauge flux on the

branes, which at the moment can only be described via the spectral cover descrip-

tion borrowed from heterotic theory. Using a split spectral cover construction for

an appropriate tuning of gauge fluxes on the GUT 7-brane, many phenomenolog-

ical conditions can be satisfied in global SU(5) F-theory GUT models [88].

� Chapter 7: Ultimately, based on the geometry obtained from a non-generic

del Pezzo transition of the quartic P4[4], an explicit global F-theory SU(5) GUT

model with three chiral matter generations and semi-realistic GUT phenomenol-

ogy is described [88].

Furthermore, some separate mathematical research results used primarily in chapter 4

are summarized in the appendix part IV:

� Chapter A: Counting zero-modes technically requires computing the dimension

of certain sheaf cohomology groups, which is in general a rather laborious process.

A newly developed algorithm and efficient implementation thereof significantly

simplifies this step for future investigations [90, 91].
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Chapter 2
Orientifold Compactification

of Type II String Theory

In this chapter the first prerequisites needed for the proper definition of the F-theory

framework and the subsequent building of semi-realistic GUT models are introduced.

Beginning with the effective 10-dimensional N = 2 type IIB supergravity theory that

arises from the massless spectrum of the IIB superstring and describes the gravitational

closed string sector, D-branes are added to include the open string sector for gauge

theory. The subsequent compactification to four space-time dimensions on Calabi-

Yau 3-folds has to be enhanced by orientifolding in order to break the effective 4d

supersymmetry down to the chiral N = 1 level of the MSSM. Intersecting D-branes, the

chiral index as well as D-brane instantons and their zero-mode structure are introduced

as well. Briefly mentioned are background fluxes in Calabi-Yau settings. The chapter

closes with a summary of the consistency conditions that are to be imposed on any

stable and viable model. The exposition follows the standard literature [15–26].

2.1 Type II Superstring Theory

2.1.1 Worldsheet action

The perturbative bosonic string theory is described by a non-linear σ-model.I On

a (Riemannian) surface Σ for the string worldsheet several scalars are defined whose

dynamical values provide an embedding of the worldsheet into the target space-time.

IIn general terms, a non-linear σ-model describes a field theory where the fields take values in a

specific target space. This can naturally be interpreted as an embedding of the space (where the

fields are defined) into this target space.
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This worldsheet theory is described by the Nambu-Goto action

SNG = −T
∫

Σ

dσ dτ

√(
Ẋ ·X ′

)2

− Ẋ2X ′2, (2.1)

where X = (X0, . . . , XN) is a vector of all scalar fields Xµ with the partial derivatives

Ẋµ :=
∂Xµ

∂τ
and X ′µ :=

∂Xµ

∂σ
(2.2)

in the two directions on the worldsheet. Classically it is equivalent to the string σ-model

Polyakov action

SP = −T
2

∫
Σ

dσ dτ
√
−hhαβgµν(X)∂αX

µ∂βX
ν for α, β = 1, 2, (2.3)

where h is the auxiliary metric on the string worldsheet Σ. Using an appropriate (local)

change of worldsheet coordinates (τ, σ) → (z, z̄) where z := eτ+iσ, one can effectively

perform a Wick rotation τ → −iτ to obtain an Euclidean signature worldsheet metric

that is positive definite. The Polyakov action can then be written as

SP = −T
∫

Σ

d2z gµν(X)∂Xµ∂̄Xµ. (2.4)

The two-dimensional field theory on the string worldsheet has a conformal symmetry

that exhibits an anomaly upon quantization. In the presence of 26 scalars Xµ the

conformal anomaly precisely cancels, yielding a 26-dimensional space-time for the em-

bedding of the string worldsheet (for bosonic string theory as described by the Polyakov

action).

Due to the lack of fermions and the presence of a tachyon state in the bosonic string

one opts for a supersymmetric version of the previous approach. The fermionic super-

partners Ψµ = (ψµ, ψ̃µ)T are included in the worldsheet action via

SRNS = −T
∫

Σ

d2z gµν(X)

(
∂Xµ∂̄Xν +

α′

2

(
ψµ∂̄ψν + ψ̃µ∂ψ̃ν

))
, (2.5)

which describes a supersymmetric non-linear σ-model. Here the corresponding super-

conformal anomaly is canceled in the presence of 10 fields and their respective su-

perpartners, i.e. the target space-time has 10 dimensions into which the superstring

worldsheet is embedded by the fields Xµ, µ = 0, . . . , 9. This is usually referred to as

the Ramond-Neveu-Schwarz description of the supersymmetric string theory.
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2.1.2 Mode expansion, quantization and massless closed string spectrum

Strings can be either open or closed, i.e. topologically equivalent to an interval or

a circle. In order to conserve momentum and energy on the open string worldsheet,

appropriate boundary conditions have to be imposed:

von Neumann: ∂σX
r(τ, σ)|σ=0,2π = 0 for r = 0, . . . , p,

Dirichlet: δXs(τ, σ)|σ=0,2π = 0 for s = p+ 1, . . . , 9.
(2.6)

In order to preserve full target-space Poincaré invariance, the choice of von Neumann

boundary conditions for all dimensions (i.e. p = 9) is required. Open strings will be

considered further in section 2.2.

Closed strings, on the other hand, require the periodicity Xµ(τ, σ + 2π) = Xµ(τ, σ).

In terms of the complex coordinates z, z̄ this periodicity is automatically provided due

to eτ+i(σ+2π) = eτ+iσ, which corresponds to mapping the closed string worldsheet “tube”

to an annulus in the complex plane [21]. Together with the equations of motion one

obtains a splitting of the fields

Xµ(z, z̄) = Xµ
L(z) +Xµ

R(z̄),

ψµ(z, z̄) = ψµ(z),

ψ̃µ(z, z̄) = ψ̃µ(z̄),

(2.7)

into independent left- and right-moving (bosonic) as well as chiral and anti-chiral

(fermionic) components, which in turn are of strictly holomorphic or anti-holomorphic

dependency on the (complex) worldsheet coordinates. Furthermore, the periodicity

condition for the fermionic superpartners is only determined up to sign, which leads to

the choice

ψµ(z + 2π) =

+ψµ(z) Ramond (R)

−ψµ(z) Neveu-Schwarz (NS)
(2.8)

of periodicity conditions. The subsequent splitting into left- and right-moving com-

ponents reveals the analogous correspondence to (anti)holomorphicity found for the

bosons in (2.7). Due to the different periodicity sign the fermions of the Ramond sector

and the Neveu-Schwarz sector possess a different mode expansion

Ramond: ψµL(z) =
∑
n∈Z

dµnz
−n− 1

2 , ψ̃µR(z̄) =
∑
n∈Z

d̃µnz̄
−n− 1

2 ,

Neveu-Schwarz: ψµL(z) =
∑
r∈Z+ 1

2

bµr z
−r− 1

2 , ψ̃µR(z̄) =
∑
r∈Z+ 1

2

b̃µr z̄
−r− 1

2 ,
(2.9)
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whereas the Fourier mode expansion of the bosonic fields takes the form

Xµ
L(z) =

xµ0
2
− i

α′

2
pµ0,L ln(z) + i

√
α′

2

∑
06=n∈Z

αµn
n
z−n,

Xµ
R(z̄) =

xµ0
2
− i

α′

2
pµ0,R ln(z̄) + i

√
α′

2

∑
06=n∈Z

α̃µn
n
z̄−n,

(2.10)

where xµ0 and pµ0 are the center position and momentum of the string. In order to turn

the (so far) classical theory into its quantum version, the canonical (anti-)commutation

relations of harmonic oscillators are used:

bosons: [αµm, α
ν
n] = [α̃µm, α̃

ν
n] = mδm+n,0η

µν ,

[xµ0 , p
ν
0] = iηµν ,

Ramond fermions: {dµm, dνn} = {d̃µm, d̃νn} = δm+n,0η
µν ,

Neveu-Schwarz fermions: {bµr , bνs} = {b̃µr , b̃νs} = δr+s,0η
µν .

(2.11)

The quantization of the superstring therefore effectively produces a system of coupled

harmonic oscillators. All states can be constructed by acting with the creation and

annihilation operators on the ground state. In the Ramond-Neveu-Schwarz formalism

this is done in the light-cone gauge, where after an appropriate change of coordinates

the dynamical degrees of freedom correspond to the 8 transverse directions µ = 2, . . . , 9

of the embedded string worldsheet. For both the left- and right-moving components

of the closed string there is a Ramond and Neveu-Schwarz ground state. Whereas the

Neveu-Schwarz sector is tachyonic and therefore unstable, the Ramond sector ground

state |0〉R is degenerate and corresponds to a 16C-component Dirac spinor that cannot

be supersymmetric to the 8R bosonic components Xµ. Both shortcomings are handled

by the GSO projection induced from the G-parity operator [35, 36]

G =

Γ11(−1)FL Ramond (R)

(−1)FL+1 Neveu-Schwarz (NS)
(2.12)

that uses the left-moving fermion excitation number FL. Together with the equations of

motion it truncates the Neveu-Schwarz sector bµ− 1
2

|0〉NS to include only states of positive

G-parity,II effectively discarding the tachyon state, and leaves in the degenerate Ramond

sector the choice of chirality for an 8R-component Majorana-Weyl spinor ground state

|α〉R.

IIOn the Ramond sector the GSO projection implies a choice of chirality due to the operator Γ11,

effectively turning the 16C Dirac spinor into an 8C Weyl spinor. The equation of motion, i.e. the

on-shell condition, then halves the degrees of freedom again and effectively give an 8R Majorana-

Weyl spinor–– a reduction that is only possible in 2 + 8k space-time dimensions for k ∈ N.
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bosons: NS-NS: b̃µ− 1
2

|0〉NS ⊗ bν− 1
2

|0〉NS dilaton φ (1b)

B-field Bµν (28b)

graviton gµν (35b)

R-R: |α〉R ⊗ |α〉R IIA: C1 (8b), C3 (56b)

IIB: C0 (1b), C2 (28b), C4 (35b)

fermions: NS-R: b̃µ− 1
2

|0〉NS ⊗ |α〉R dilatino (8f)

gravitino (56f)

R-NS: |α〉R ⊗ bν− 1
2

|0〉NS dilatino (8f)

gravitino (56f)

Table 2.1.: Massless closed string spectrum of type II superstring theory,

corresponding to a 10d N=2 supergravity multiplet. The IIB 4-form R-R

field C4 is subject to a self-duality condition of its field strength, which

halves the number of the naively expected degrees of freedom for a 4-form

field.

Since the closed type II superstring has a left- and right-moving component for all

fields, altogether four combinations have to be considered: NS-NS, R-NS, NS-R, R-R.

The choice of chirality for both the left- and right-moving Ramond state leads to either

the non-chiral type IIA (different chiralities) or the chiral type IIB (same chiralities)

superstring theory. Ultimately, the massless spectrum obtained in this construction is

given by the states in table 2.1. It can be shown that the resulting states left over

after the GSO projection indeed have a 10d N=2 target space-time supersymmetry, as

suggested by the agreeing number of bosonic and fermionic degrees of freedom.

2.1.3 Effective 10d N=2 Type IIB Supergravity

Due to the huge mass gap between string states of different excitation levels, only the

massless spectrum of table 2.1 is relevant in the effective quantum field theory. This

corresponds to the limit T → ∞ of infinite string tension, where the string length `s

shrinks to zero –– yielding a point particle –– and the mass gap goes to infinity. The

states found in the massless type II spectrum are expected from a supergravity theory,

of which there are precisely two in 10d at N=2 supersymmetry level: the type IIA and

type IIB supergravity. Conversely, the type IIA and IIB superstring theory is usually

interpreted as the ultraviolet (high-energy) completion of the respective supergravities.

One problematic aspect of the type IIB superstring theory is the 4-form R-R field

C4, which is subject to a self-duality of the associated field strength. Unfortunately, no
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effective supergravity formulation is known that manifestly incorporates this condition.

The bosonic part of the type IIB supergravity action (in Einstein frame) [26]

SIIB =
1

2κ2
10

∫
d10x

√
−gR

− 1

4κ2
10

∫ [
|dτ |2

(Im τ)2
+
|G3|2

Im τ
+
|F̃5|2

2
+ C4 ∧H3 ∧ F3

] (2.13)

in the democratic formulation therefore has to be supplied with the self-duality con-

straint F̃5 = ?F̃5. Here |F |2 = F ∧ ?F̄ is used. In the above formulation the following

field redefinitions are used:

complex axion-dilaton: τ := C0 + ie−φ,

NS-NS field strength: H3 := dB2,

R-R field strengths: Fp := dCp−1 for p = 1, 3, 5,

mixed fields: F̃5 := F5 − 1
2
C2 ∧H3 + 1

2
B2 ∧ F3,

G3 := F3 − τH3.

(2.14)

Non-trivial background fluxes will be discussed further in section 2.7.

A central aspect of the type IIB theory is the SL(2;R) symmetry of the (classical)

action, which is reduced to SL(2;Z) in the quantum theory. The transformation takes

the form

axio-dilaton: τ 7→ aτ + b

cτ + d
,

metric: gµν 7→ gµν ,

p-form fields:

(
H3

F3

)
7→
(
d c

b a

)(
H3

F3

)
for

(
a b

c d

)
∈ SL(2;R),

G3 7→
G3

cτ + d
,

F̃5 7→ F̃5,

(2.15)

and provides the basis for the construction of F-theory later on. The non-perturbative

properties essentially originate in this extended strong-weak coupling self-duality, which

is special among all string theories.
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bosons: NS: ψµ− 1
2

|0〉NS gauge vector Aµ (8b)

fermions: R: |α〉R gaugino (8f)

Table 2.2.: Massless open string spectrum of type II superstring theory

with a single D-brane and a single open string, corresponding to a 10d N=1

vector multiplet.

2.2 D-branes and Gauge Theory

Aside from closed strings, one can also consider open strings, which are subject to

the boundary conditions (2.6). The Dirichlet boundary condition requires a vanishing

of the field’s variation at the string endpoints, i.e. the string motion at the endpoints

is restricted to a p-dimensional plane. The number p counts the remaining dimensions

of unrestricted spatial movement –– the non-Dirichlet dimensions –– and the plane of

movement is called a Dirichlet brane or Dp-brane for short.

A D-brane is not a static object in string theory. Instead it receives its dynamics

indirectly from the attached open strings. With respect to the changed boundary

conditions the mode expansions (2.9) and (2.10) and subsequent canonical quantization

procedure (2.11) can be worked out again for an open string starting and ending on

the same brane. This leads to the massless open string spectrum in table 2.2. The

10d N=1 vector multiplet adds a supersymmetric gauge sector to the theory. The

9 − p components of the vector Aµ normal to the D-brane are deformation scalars

and describe fluctuations of the D-brane. The remaining components give rise to an

Abelian U(1) worldvolume gauge theory on the D-brane. Those dynamical properties

and the subsequent coupling to the closed string background fields are described by the

Dirac-Born-Infeld action

SDBI = −µp
∫
W

dp+1ξ e−φ(X)

√
− det

(
gµν(X) +Bµν + 2πα′Fµν(X)

)
, (2.16)

where µp is the Dp-brane tension, ξ are the coordinates on the (p + 1)-dimensional

worldvolume and F is the gauge field strength of the vector field Aµ. Nontrivial gauge

fluxes for F will be considered later in section 2.5.

The presence of a D-brane breaks several symmetries of the bulk closed string vacuum,

e.g. translational invariance. For a stable 1
2
-BPS brane half of the original supersymme-

tries are broken, leaving a 10d N=1 superstring theory. Furthermore, D-branes carry

an R-R charge which due to charge conservation turns D-branes into stable objects [41].

The even/odd difference in the R-R fields between type IIA and IIB theory is therefore
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found in the dimension of the D-branes as well:

IIA theory: D0, D2, D4, D6, D8,

IIB theory: D(-1), D1, D3, D5, D7, D9,
(2.17)

where the D(-1)-branes in type IIB theory–– a single point in space-time–– are a some-

what special case. The coupling to the R-R background fields is described by the

Chern-Simons action

SCS = −µp
∫
W

ch(2πα′F ) ∧

√
Â(RT )

Â(RN)
∧
∑
q

Cq, (2.18)

where Â(RT ) and Â(RN) are the Â-genera of the worldvolume’s tangent and normal

bundle. Note that via the Hodge duality of the associated field strengths one dis-

tinguishes between electric and magnetic couplings to the R-R potentials, which is

incorporated in the formulation above. A potential Cp+1 couples “electrically” to a

Dp-brane with the associated field strength Fp+2 = dCp+1. Magnetic couplings anal-

ogous to classical electrodynamics are introduced by considering the Hodge dual field

strength:

F ′10−p−2 := ?Fp+2 = ?dCp+1. (2.19)

Assuming that this dual field strength F ′10−p−2 also arises from a R-R potential via

F ′10−p−2 = dC10−p−3 if follows for the coupling that a

Dp-brane couples

electrically to Cp+1

magnetically to C7−p.
(2.20)

For p = 3 this gives rise to the aforementioned self-duality constraint ?F̃5 = F̃5 as

electrical and magnetical coupling are identical. This gives the following coupling for

all D-branes:

Type IIA: D0: C1 C7

D2: C3 C5

D4: C5 C3

D6: C7 C1

D8: C9

Type IIB: D(-1): C0 C8

D1: C2 C6

D3: C4 C4 (self-dual)

D5: C6 C2

D7: C8 C0

D9: C10

(2.21)

Stacks of coincident D-branes lead to an enhancement of the worldvolume theory’s

gauge group. The open string that produces the vector multiplet can now have end-

points on different D-branes, leading to an U(n) gauge group for n coincident D-branes.
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Non-coincident parallel D-branes contribute to the massive spectrum –– with the mass

determined by the spatial separation–– and therefore are irrelevant for the massless spec-

trum considered in effective theories. Intuitively the gauge enhancement for stacks of

D-branes can be treated as n parallel mutually approaching D-branes with U(1)n gauge

group that is enhanced to U(n) when the strings stretching between different branes

become massless upon collision. Furthermore, one can also consider non-coincident

intersecting D-branes, which will be discussed in section 2.5.

2.3 Four-dimensional Calabi-Yau Compactification

The type II superstring requires a 10-dimensional target space-time for anomaly can-

cellation. In order to make contact with the apparently flat 4d space-time the usual

approach is to compactify 6 spatial dimensions to small size, which makes them invis-

ible to low-energy physics. In general, with respect to basic symmetries like Poincaré

invariance, the target space-time M10 is in fact fibered over the flat space-time R1,3,

which leads to a warped space-time metric

ds2 = eA(y)gµν dxµ dxν︸ ︷︷ ︸
flat 4d coordinates

+ e−A(y)gmn dym dyn︸ ︷︷ ︸
internal space

. (2.22)

for the most general ansatz. The term A(y), which only depends on the internal space

to preserve homogeneity and isotropy in the flat 4d space-time, can be used to describe

back-reactions of fluxes that are potentially present in the setting. However, for many

types of compactification the warp factor eA(y) is neglected for reasons of simplicity.

The assumption is therefore to consider a product target space-time

M10 = R1,3 ×X , (2.23)

where X is the compact 6d internal space and A(y) = 0. A non-zero warp factor would

also affect the Calabi-Yau condition discussed below.

One of the most restrictive phenomenological requirements is the presence of low-

energy minimal supersymmetry. Since only minimally supersymmetric N=1 theories

allow for chiral matter, the bulk N=2 supersymmetry –– which yields an effective 4d

N=8 theory in the absence of supersymmetry breaking like for T 6-compactifications––

must be partially broken during the compactification. On the other hand any presence of

supersymmetry requires the existence of at least one supersymmetry-generating spinor

in the 10d space-time, which decomposes in the product space-time to the existence of

a parallelIII spinor (i.e. w2(X ) = 0) on the non-trivial compact space. One can show

IIIA parallel spinor is a covariantly constant, nowhere vanishing spinor.
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that for the case of 6 dimensions the internal space therefore has to be a Calabi-Yau

manifold [54]. This requires the following equivalent properties:

� The first integral Chern class of the tangent bundle vanishes, i.e. c1(X ) = 0 ∈
H2(X ;Z).

� The manifold has SU(3)-holonomy.

� The canonical line bundle KX = det(Ω1,0(X )) = Ω3,0(X ) is trivial.

� The manifold admits a nowhere vanishing holomorphic volume form Ω3 ∈ Ω3,0(X ).

Unfortunately, without any further ingredients the Calabi-Yau compactification of the

10d N=2 type II superstring yields a 4d N=2 effective theory. The necessary further

breaking to chiral N=1 supersymmetry level via e.g. D-branes will be discussed in the

next subsection. One can then derive an effective 4d N=1 theory from the Calabi-Yau

compactification [92–94].

Despite the phenomenological “no-go” of pure type II Calabi-Yau settings they serve

as an excellent toy model to study general compactification issues. Due to the assump-

tion of extremely small internal dimensions and the related high momentum / energy

/ mass gap, one is ultimately interested in the massless 4d spectrum. The general

idea is to expand all fields into the (generalized) Fourier modes and discard excited

modes. Due to the product structure of the space-time the wave operators split into a

corresponding 4d wave operator times a 6d Laplacian differential operator:

�10 = �4 + ∆6. (2.24)

The Laplacian ∆6 appears due to the Euclidean signature metric on the internal space.

A 10d field Φ is then expanded into harmonics of the internal space, i.e. one performs

a generalized Fourier expansion where the modes are given as eigenfunctions:

Φ =
∑
k

φk(x)Yk(y) where
∆6Yk(y) = −λkYk(y),

(�4 − λk)φk(x) = 0.
(2.25)

Each φk(x) is then a 4d field with mass
√
λk. The massless 4d modes with �4φk(x) = 0

arise from the modes with λk = 0, such that one needs to count the number of Yk(y)

satisfying ∆6Yk(y) = 0. The number of 4-dimensional massless fields is therefore deter-

mined by the number of harmonic functions supported on the internal compactification

manifold with the corresponding extension to harmonic (p, q)-form fields. Dolbeault’s

generalization of the Hodge theorem provides the isomorphism

Hp,q(X ) := Hp,q

∂̄
(X ) ∼= Hp,q(X ), (2.26)

such that harmonic (p, q)-forms in Hp,q(X ) are counted by the Dolbeault cohomology

groups. The number of massless 4d fields arising from a 10d (p, q)-form field is then



2.3. Four-dimensional Calabi-Yau Compactification 53

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

Hodge

xy h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

←−−−−−→
complex conjugation

 

1

0 0

0 h1,1 0

1 h1,2 h1,2 1

0 h1,1 0

0 0

1︸ ︷︷ ︸
Calabi-Yau 3-fold

Table 2.3.: Hodge diamond of a Calabi-Yau 3-fold.

given by the Hodge numbers hp,q = dimHp,q(X ), which are subject to a number of

symmetries corresponding to isomorphisms of the respective cohomology groups on a

compact n-dimensional Kähler manifold:

� The Hodge ?-operator induces Hp,q(X ) ∼= Hn−p,n−q(X ).

� The complex conjugation induces Hp,q(X ) ∼= Hq,p(X ).

Since cohomology groups are topological invariants, the massless 4d spectrum –– often

called the zero-mode structure–– is entirely determined by the topology of the internal

space.

The set of all Hodge numbers is referred to as the Hodge diamond, which for a 3-

dimensional Calabi-Yau manifold takes a rather restricted form (see table 2.3) that

leaves only 2 independent numbers h1,1 = h2,2 and h1,2 = h2,1, which are related to the

Euler characteristic by

χ(X ) = 2(h1,1 − h1,2). (2.27)

In the four-dimensional spectrum the massless scalars are usually called moduli fields

and are associated to the degrees of freedom in choosing the geometrical structure

(Kähler structure and complex structure) on the internal space. More precisely, after

choosing a Calabi-Yau 3-fold X there are

h1,1 Kähler moduli TA,

h1,2 complex structure moduli Uk,
(2.28)

on the smooth 6-dimensional (real) manifold underlying X . Note that any Calabi-Yau

3-fold is equipped with the following nowhere-vanishing differential forms:

Kähler form: J ∈ Ω1,1(X ),

holomorphic volume form: Ω3 ∈ Ω3,0(X ).
(2.29)
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After an appropriate choice of bases for the (1,1)- and (1,2)-forms as well as their

respective Hodge-duals, one can decompose the fields found in the type IIB string theory

and derive the effective 4d N=2 theory. In addition to the supergravity multiplet and

a double-tensor multiplet, it contains h1,1 hypermultiplets and h1,2 vector multiplets

depending on the topology of the Calabi-Yau 3-fold X .

2.4 Orientifolds

The non-chiral N=2 supersymmetry in Calabi-Yau compactifications has to be bro-

ken at least to N=1 for any attempt of semi-realistic model building, which can be

achieved by adding D-branes. In order to properly satisfy several consistency con-

ditions discussed in section 2.8 this requires orientifold settings [43, 95–97]. For the

process of orientifolding a space-time symmetry is required and combined with an ori-

entation reversal on the string, such that the physical theory lives on the invariant

coset space. Key objects are so-called orientifold planes (O-planes) introduced by this

procedure. O-planes are the fixpoint sets of the orientifold involution. While they have

no dynamical properties like D-branes, they carry charge and tension that is used to

cancel the respective D-brane quantities. The dimensional counting for Op-planes is

analogous to Dp-branes –– the p gives the number of spatial dimensions –– and the 4d

flat space-time is entirely invariant, i.e. p ≥ 3.

More precisely, let X be a compact Calabi-Yau 3-fold and σ : X −→ X be a self-

inverse (i.e. σ2 = id) isometric involution, which induces a Z2-action on the 10d space-

time that acts as the identity on the additional four flat dimensions. For type IIB

orientifolds the induced mapping σ∗ on differential forms leaves the Kähler form J

invariant, but σ2 = id implies the choice of sign in the action on the holomorphic

volume form, i.e.

σ∗J = J, σ∗Ω3 = ±Ω3. (2.30)

The choice of positive sign requires to leave an odd number of complex coordinates (1

or 3) invariant, which leads to O5- and O9-planes of fixpoints. Likewise a negative sign

keeps an even number of coordinates (0 or 2) invariant, yielding O3- and O7-planes.

Furthermore, let ΩP be the worldsheet parity operator that reverses the orientation on

the string worldsheet. Often a sign (−1)FL depending on the fermion number in the

left-moving sector is added. The entire orientifold mapping then takes the form

O =

ΩP(−1)FLσ for σ∗Ω3 = −Ω3 (O3/O7 case)

ΩPσ for σ∗Ω3 = +Ω3 (O5/O9 case).
(2.31)

The fields contained in the type IIB superstring have the signs listed in table 2.4 under
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even fields odd fields

worldsheet parity ΩP: φ, g, C2 C0, B2, C4

fermion number sign (−1)FL : φ, g, B2 C0, C2, C4

Table 2.4.: Signs of the type IIB fields under the orientifold mapping

pieces. Note that for the behavior under the full orientifold mapping

ΩP(−1)FLσ (O3/O7 case) or ΩPσ one also requires the sign under σ, which

depends on the precise form of the space-time involution mapping.

the individual operations. Ultimately, this leads to two different types of type IIB

orientifold compactifications with different O-planes.IV

The σ2 = id property also induces an eigenspace splitting of the Dolbeault cohomol-

ogy groups

Hp,q(X ) = Hp,q
+ (X )⊕Hp,q

− (X ) (2.32)

corresponding to the eigenvalues ±1. Since the induced mapping commutes with the

Hodge ?-operator and –– as a holomorphic mapping –– with the complex conjugation,

the aforementioned symmetries of the Hodge diamond (cf. table 2.3) are also directly

applicable to the σ-even/odd subspaces Hp,q
± (X ). One can apply the splitting to the

1-dimensional spaces of (0,0)-, (3,0)-, (0,3)- and (3,3)-forms on Calabi-Yau manifolds

and check the respective eigenvalues, which gives

O3/O7:

1+

0 0

0 h1,1 0

1− h1,2 h1,2 1−
0 h1,1 0

0 0

1+

, O5/O9:

1+

0 0

0 h1,1 0

1+ h1,2 h1,2 1+

0 h1,1 0

0 0

1+

. (2.33)

Only the states invariant under the orientifold mapping survive the subsequent orien-

tifold projection induced by the mapping O. In order to determine the 4d low-energy

effective theory arising from an orientifold setting the splitting of the Dolbeault co-

homology groups has to be realized by an appropriate choice of the bases of harmonic

forms, which are used in the decomposition of the fields. By discarding the anti-invariant

states the supersymmetry in the effective theory is broken (along with effects related di-

rectly to the D-branes), yielding a 4d N=1 effective supergravity theory. Viewed from

IVSimilar considerations in type IIA orientifolds allows for either O6-planes or O4/O8-planes to be

present in the same setting.
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a different perspective, one basically removes the additional component fields in the

non-orientifolded N=2 theory and obtains chiral N=1 by adding a certain space-time

symmetry.

2.5 Intersecting D-branes, O-planes and Chiral Matter

D-branes in string theory provide the gauge sector due to the states of the mass-

less open string spectrum, where stacks of D-branes give rise to a non-Abelian U(n)

gauge group. As objects inside space-time the D-brane worldvolume is affected by

the orientifold action, which makes it subject to the decomposition into invariant and

anti-invariant parts. Geometrically one has to consider the cases where the D-brane

intersects the O-plane, coincides with the O-plane or is in a non-intersecting invariant

position. Let [Da] ∈ H6−n(X ) be the (Poincaré-dual) cohomology classV of a (stack of)

D(3+n)-brane(s) wrapping Da ⊂ X . Let D′a := ODa be the image under the orientifold

mapping–– called the image brane (stack)–– whose presence is required in order for the

D-brane to be invariant and to survive the orientifold projection. Then there are three

cases to distinguish:

� Da = D′a: Brane and image brane are identical.

� [Da] = [D′a], but Da 6= D′a: Cohomological equivalence of brane and image brane,

i.e. both wrap the same cycles of the internal geometry.

� [Da] 6= [D′a]: Brane and image brane are different and wrap different cycles of the

internal geometry.

Focusing on the case of D7-branes and O7-planes, the first two cases where brane

and image brane are equivalent imply an intersection of the brane with the orientifold

plane. In the third case an intersection with the O7-plane is possible, but not necessary,

e.g. brane and image brane can be in a non-intersecting position parallel to the O7-

plane. Due to the symmetrization performed by the orientifold projection a stack of

D-branes intersecting the O-plane has the reduced gauge group SO(n) ⊂ U(n) or

Sp(n) ⊂ U(n), depending on the details of the intersection and orientifold projection.

Together with the U(n) group for D7-branes not intersecting the O7-plane, orientifold

settings therefore provide the gauge groups

U(n), SO(n), Sp(n). (2.34)

VFor each n-dimensional submanifold D of the internal geometry X the Poincaré-dual cohomology

class [D] = ?ρD ∈ HdimX−n(X ) to the corresponding homology class ρD ∈ Hn(X ) is considered.

Using the representation of cohomology classes via (harmonic) differential forms this convention

allows for direct computation with the symbol [D]. Note that this notation is different from the

mathematical standard, where [D] refers to the homology class ρD instead of the Poincaré-dual.



2.5. Intersecting D-branes, O-planes and Chiral Matter 57

setting multiplicity representation bundle

brane a / brane b: Iab ( a
−1,

b
1) E∗a ⊗ Eb

image brane a′ / brane b: Ia′b ( a
1,

b
1) Ea ⊗ Eb

brane / image brane: 1
2
Ia′a + IaO7

a
2 Λ2Ea

1
2
Ia′a − IaO7

a
2 S2Ea

Table 2.5.: Multiplicities, bundles and representations arising from a D-

brane, image brane and O-plane intersection. The subscripts denote the

respective Abelian U(1) charges.

An important further degree of freedom for D-branes are possible non-trivial gauge

fluxes for the Yang-Mills gauge field strength F that appears both in the DBI action

(2.16) and the CS action (2.18). Those can be mathematically described by stable

holomorphic vector bundles defined over the D-brane worldvolume. The structure group

of the bundle is then embedded into the gauge bundle of the D-brane (stack) and breaks

down the plain gauge group to the commutator of the embedded group. In the following

only Abelian U(1) background fluxes are considered.

For example, take a stack of 5 D-branes with the gauge group U(5). By activat-

ing a U(1) background flux –– a holomorphic line bundle over the worldvolume of the

stack –– that is embedded diagonally as U(1) ⊂ U(5), the gauge group is reduced to

SU(5) × U(1). A second line bundle LY with a specifically chosen embedding matrix

corresponding to the hypercharge generator TY then breaks the SU(5) further down to

(almost) the Standard Model gauge group, i.e.

U(5)
L−→ SU(5)× U(1)

LY−→ SU(3)× SU(2)× U(1)Y × U(1). (2.35)

This basic idea is used later in the breaking of the GUT group and the generation of

chiral matter.

One can also consider intersections of D-branes with other D-branes. For example,

two space-time-filling D7-branes always intersect along a complex 1d curve for dimen-

sional reasons (if they are not coincident). The open strings that stretch between the

two branes become massless along the intersection curve and therefore contribute ad-

ditional representations to the effective spectrum. Due to the presence of orientifold

planes in consistent compactifications involving D-branes, one has to distinguish be-

tween the intersections with the D-branes and the corresponding image D-branes. In

table 2.5 the potential intersections between two stacks of D7-branes Da, Db ⊂ X , the

image brane Da′ ⊂ X as well as an orientifold plane O7 ⊂ X are listed. The central
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quantity that determines the multiplicity of the additional representations is the chiral

indexVI [43, 99]

Iab =
3∑

n=0

(−1)n dim Extn(ι∗La, ι∗Lb)

= −
∫
X

[Da] ∧ [Db] ∧
(
c1(La)− c1(Lb)

)
,

(2.36)

where c1(La), c1(Lb) ∈ H2(X ) are the first Chern classes of the flux line bundles over

the respective D-brane worldvolumes and [Da], [Db] ∈ H2(X ) are the Poincaré-dual

2-forms corresponding to the wrapped 4-cycles Da, Db ⊂ X , for which ι∗ is the push-

forward induced from the inclusion mappings into the space-time. Note that for the

brane/image brane intersections the actual intersection with the O-plane (i.e. Da∩O7 =

D′a ∩ O7) determines the asymmetry in the number of symmetric and anti-symmetric

representations. The corresponding chiral index is computed via

IaO7 =

∫
X

[Da] ∧ [O7] ∧ c1(La). (2.37)

From the intersections of two different D-branes the bi-fundamental representations

( a
−1,

b
1) and ( a

1,
b
1) are obtained, which for the special case of Db being just a single

brane (instead of a stack) provides ( a
−1,1

b) and ( a
1,1

b). The D-brane intersections

therefore provide the building blocks of chiral matter content. Obviously, by (2.36)

non-trivial gauge fluxes are required in order to obtain non-vanishing chiral indices and

therefore chiral matter representations, see table 2.5.

VIThe extension groups Exti(A;B) arise as derived functors in homological algebra and basically

measure the failure of the functor Hom(A, •) to keep an injective resolution

0 −→ B ↪−→ I0 −→ I1 −→ I2 −→ . . . ,

which is a long exact sequence, exact. The groups Exti(A,B) therefore are the cohomology

groups of the sequence

0 −→ Hom(A,B) −→ Hom(A, I0) −→ Hom(A, I1) −→ . . . .

The structure of intersecting D-branes with non-trivial line bundles can be understood in terms of

extension groups [98] and usually one can find isomorphisms relating them to regular cohomology

groups, for example later in chapter 6.
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2.6 D-brane Instantons

2.6.1 General aspects

In a generic setting D-branes are always assumed to fill out the flat 4d space-time

dimensions first, i.e. a Dp-brane wraps a (p − 3)-dimensional internal space. Instead

one can also consider D-branes exclusively wrapping around the internal geometry,

which then appear as a single point in the 4d space-time. Since all internal dimensions

are spatial, i.e. of Euclidean signature, such branes are appropriately called Euclidean

branes or E-branes for short. The dimensional counting is carried over directly from

Dp-brane dimensions (p spatial plus 1 temporal), such that an Ep-brane is actually

of spatial dimension p + 1, i.e. an E3-instanton is a 4R-dimensional complex surface

wrapped around 4-cycles of the internal geometry X . In particular, from the perspective

of the 4d theory the instanton brane is therefore localized at a single point space and

time–– thus the name “instanton”. Such D-brane instantons have become an important

aspect in string model building [100].

The terminus “instanton” refers to the fact that E-branes have a similar effect on the

correlation functions like instantons in quantum field theory [101]. Instantons contribute

a highly suppressed, non-perturbative factor [102]:

instanton contribution: ∝ exp

(
− 1

g2
s

)
, (2.38)

which only becomes truly important when certain non-renormalizability statements

effectively eliminate the perturbative contributions –– effectively turning the instanton

term into the leading order contribution. Those non-perturbative contributions can be

used to adjust hierarchies and generate mass terms as well as certain Yukawa couplings.

In particular, the top quark Yukawa coupling in SU(5) GUT models can –– as a non-

perturbative effect –– only be introduced via E-brane instantons into a perturbative

type II setting [70, 99].VII The discovery how to construct those states from the unified

perspective of F-theory was one of the major arguments for the renewed interest in this

approach to non-perturbative type IIB model building.

VIIIn perturbative D-brane models the gauge group SO(10) arises from intersections of a D-brane

stack with its image brane stack, i.e. along the intersection with the O-plane. The absence

of the top-quark Yukawa coupling, which derives from the 10 · 10 · 5H coupling in the SU(5)

GUT, can therefore roughly be understood as an –– perturbatively impossible –– intersection of

O-planes. The non-perturbative F-theory framework, on the other hand, does not particularly

distinguish O-planes from D-branes, as will be shown in chapter 3. From this point of view it is

not particularly surprising that it is rather unproblematic to obtain such couplings in F-theory.
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Ultimately, one is again interested in the effective 4d theory arising from a setting

involving E-brane instantons. Here four kinds of massless zero-modes are distinguished.

� Universal zero-modes : Those are the zero-modes arising from open strings starting

and ending on the same instanton E-brane, completely analogous to the case of

ordinary space-time filling D-branes. From the perspective of the 4d effective field

theory those zero-modes correspond to Goldstone bosons from the breakdown of

the translational invariance, since the instanton distinguishes a single point in the

4d space-time. The presence of a D-brane also leads to a (partial) breakdown of

supersymmetries, which appear as the Goldstino fermions and are called universal

fermionic zero-modes, see section 2.6.2.

� Deformation zero-modes : They are analogous to the transversal deformations of

an ordinary D-brane and originate in the modes of the open string normal to

the brane worldvolume, see section 2.2. The number of such deformations is

determined by the topology of the cycle in the internal geometry wrapped by the

instanton. For the specific case of an E3-instanton E ⊂ X –– which will be the

most relevant in this work–– there are two relevant topological numbers:

b1 = dimH1(E;O) : number of Wilson-line moduli,

b2 = dimH2(E;O) : number of normal deformations.
(2.39)

If the instanton brane wraps a rigid cycle no deformations are present. Those ad-

ditional zero-modes have to be lifted by fluxes or soaked up to actually contribute

to the superpotential [103–105].

� Charged (matter) zero-modes : Given an additional D-brane wrapping D ⊂ X in

the setting, one can consider the zero-modes arising from the intersection with the

instanton E-brane E ⊂ X , which are also counted by the chiral index IED defined

in (2.36). Those zero-modes are charged under the effective 4d gauge group of

the D-brane stack the instanton is intersecting–– hence the name.

� Multi-instanton zero-modes: Likewise one can consider intersections of several

instanton E-branes, which again leads to massless states originating from open

strings localized along the intersection.

As will be discussed later in chapter 4, the zero-mode structure is not the only possible

source of superpotential contributions, in particular in the context of charged (matter)

zero-modes. For the moment, however, only the zero-mode structure will be considered.
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2.6.2 Fermionic zero-modes

In orientifold settings the E-brane E has to be invariant under the orientifold sym-

metry like an ordinary D-brane, which –– depending on the wrapped cycle relative to

the O-plane –– necessitates the introduction of an image E-brane E ′. The instanton

branes then locally perceive the full N=2 supersymmetry allowed by the Calabi-Yau

manifold which is generated by the supercharges Qα
1 , Q̄

α̇
1 , Q

α
2 , Q̄

α̇
2 . The orientifold pro-

jection only preserves the N=1 subsuperalgebra generated by the supercharges Qα, Q̄α̇.

The orthogonal complement generated by Q′α, Q̄′α̇ is the N=1′ copy which is broken

in the effective 4d theory. Whereas a space-time filling D-brane preserves the N=1

copy of unprimed Qα, Q̄α̇, the localization of the instanton along a 1
2
-BPS cycle in the

internal dimensions–– preserving exactly half of the supersymmetry and leading to four

fermionic Goldstino modes–– instead preserves the off-diagonal combination Q′α, Q̄α̇ of

supercharges. Let θα, θ̄α̇ denote the four Goldstino modes associated to the breaking of

Qα, Q̄α̇ and τα, τ̄ α̇ likewise for the primed Q′α, Q̄′α̇, i.e.

N=2  
N=1 : Qα, Q̄α̇  Goldstinos θα, θ̄α̇,

N
⊕
=1′ : Q′α, Q̄′α̇  Goldstinos τα, τ̄ α̇.

(2.40)

The preservation of the off-diagonal Q′α, Q̄α̇ combination (or equivalently the breaking

of Qα, Q̄′α̇) then yields the four fermionic (Goldstino) zero-modes θα, τ̄ α̇. In order to

potentially contribute to a (chiral) 4d N=1 F-term of the form F (x) θ1θ2 the N=1′

associated fermionic zero-modes τ̄ α̇ have to be effectively removed from the massless

spectrum, which is the main condition for instantons to contribute to the theory.

The easiest way to get rid of the fermionic extra zero-modes τ̄ α̇ is to place the

instanton directly on top of a D-brane, i.e. the D-brane and the E-instanton wrap

the same cycle in the internal geometry. This configuration also allows to recover the

field theoretic ADHM description of gauge instantons [101] for the worldvolume gauge

theory on the D-brane. Further cases are discussed below in section 2.6.3

Likewise, deformation and charged zero-modes only contribute if the fermionic extra

zero-modes are lifted by fluxes or soaked up. For the case of charged fermionic zero-

modes λEa from the intersection of an E-brane with the D-brane stack Da, couplings

of the form λEaiΦaibiλbiE in the interaction part of the effective instanton action “pull

down” the charged matter fields Φ, such that terms of the form

W =
∏
i

Φaibie
−SE (2.41)

appear in the holomorphic superpotential. The total charge of all those matter fields

can be canceled by the total charge

Qa(E) = Na(IEDa − IED′a) (2.42)
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zero-modes statistics number

universal: Xµ bose 1

N=1 SUSY: θα fermi 1

N=1′ SUSY: τ̄α̇ fermi 1

Wilson lines: (w, γα, γ̄α̇) (bose, fermi) H1,0(E)

deformations: (c, χα, χ̄α̇) (bose, fermi) H2,0(E)

Table 2.6.: Zero-modes of an (isolated, non-intersected) U(1)-instanton.

zero-modes statistics number

universal / N=1 SUSY: (Xµ, θα) (bose, fermi) 1

N=1′ SUSY: τ̄α̇ fermi 0

invariant Wilson lines: γα fermi H1,0
+ (E)

anti-invariant Wilson lines: (w, γ̄α̇) (bose, fermi) H1,0
− (E)

invariant deformations: χα fermi H2,0
+ (E)

anti-invariant deformations: (c, χ̄α̇) (bose, fermi) H2,0
− (E)

Table 2.7.: Zero-modes of an (isolated, non-intersected) O(1)-instanton.

of the brane/image brane and instanton/image instanton, i.e. only when the gauge

invariance is guaranteed by the condition∑
i

Qa(Φaibi) = −Qa(E) (2.43)

can a superpotential term of the form (2.41) be generated and contribute to the super-

potential W . In general, the different methods of removing certain fermionic zero-modes

are most important for E-brane instantons.

2.6.3 U(1)-instantons and O(1)-instantons

If the E-brane is not on top of a D-brane, the orientifold action itself can take care

of the extra zero-modes if the instanton is in an invariant position. Let E be the

instanton brane and E ′ the image under the orientifold action. E-branes in the generic

non-invariant position E 6= E ′ are referred to as U(1)-instantons.

For an E-brane in the invariant E = E ′ position on top of the orientifold plane

the symmetrization and anti-symmetrization analogous to ordinary D-branes has to be

distinguished–– however the role of SO(n) and Sp(n) is switched compared to D-branes.
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The number of remaining fermionic universal zero-modes is

Sp(n)-instanton:
n(n− 1)

2
× θα +

n(n+ 1)

2
× τ̄ α̇,

(S)O(n)-instanton:
n(n+ 1)

2
× θα +

n(n− 1)

2
× τ̄ α̇.

(2.44)

The special case of a so-called O(1)-instanton then has precisely the desired θα zero-

modes, but no τ̄ α̇s. Such instantons therefore generically provide the primary contribu-

tions to the superpotential. Both U(1)- and O(1)-instantons will be investigated further

in chapter 4.

2.7 Flux Compactifications

Type IIB superstring theory supports several different background fluxes, i.e. non-

trivial values for the p-form fields G3 and F5 appearing in the effective action (2.13).

Here only the special case of Calabi-Yau compactifications involving fluxes is considered,

which leads to a significant simplification compared to the general case, since the Calabi-

Yau condition requires F5 to vanish due to the absence of supporting 5-cycles, cf. b5 =

h3,2 + h2,3 = 0 in table 2.3.

Given an orientifold setting, the 3-form fields F3 and H3 appearing in the G3-flux

also have to be split into invariant and anti-invariant components in H3
±(X ). For

G3 = G+
3 +G−3 the G3-term proportional to |G3|2 in (2.13) can be rewritten as

− 1

4κ2
10

∫
|G3|2

Im τ
=

1

2κ2
10

∫
X

1

Im τ

(
G+

3 ∧ ?6Ḡ
+
3 −

i

2
G3 ∧ Ḡ3

)
, (2.45)

of which the second term is topological and summarized by µ3Nflux, where µ3 is the D3-

brane tension and Nflux an integer value. This quantity contributes to the C4 potential

tadpoleVIII cancellation condition discussed in section 2.8.1.

For the case of a type IIB orientifold the contribution of the G3-flux to the effective

low-energy 4d supergravity theory is described by the Gukov-Vafa-Witten superpoten-

tial term [107]

O3/O7: W =
1

κ2
10

∫
X
G3 ∧ Ω, O5/O9: W =

1

κ2
10

∫
X
F3 ∧ Ω. (2.46)

Via those superpotential contributions the presence of background fluxes potentially

breaks supersymmetry. Aside from the σ-eigenvalue splitting of G3, one has to study

VIIITadpoles were first considered by Sidney Coleman [106], who also invented the word “tadpole” for

this particular type of Feynman diagram. Rumor has it, that the editor was at first not satisfied,

but he soon changed his mind once Sidney Coleman proposed “spermion” instead.
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the naive (p, q)-form decomposition of a 3-form and check for the absence of F-terms––

chiral terms of the form F θ1θ2 –– in the 4d effective theory. The F-term conditions

arise from the covariant derivatives of the superpotential involving the G3-flux, where

the variations with respect to the Kähler structure, axio-dilaton and complex structure

moduli are considered:

Kähler structure: DTAW =
∂K

∂TA

∫
X
G3 ∧ Ω3 = 0  G0,3

3 = 0,

axio-dilaton: DτW =
1

τ − τ̄

∫
X
Ḡ3 ∧ Ω3 = 0  G3,0

3 = 0,

complex structure: DUkW =

∫
X
G3 ∧ χk = 0  G1,2

3 = 0,

(2.47)

which follows since Ω3 ∈ H3,0(X ) and χk ∈ H2,1(X ). Therefore, 4d N=1 supersymme-

try in fact only allows for a non-trivial G2,1
3 -component of the G3-flux. Only specifically

tuned configurations on Calabi-Yau manifolds therefore allow any flux at all. More

general approaches to flux compactification relax the Calabi-Yau condition and use

generalized complex geometry [108, 109].

2.8 Phenomenological Aspects and Consistency Conditions

There are several generic consistency conditions that any well-defined orbifold com-

pactification setting has to fulfill [43, 110].

2.8.1 Tadpoles

D-branes carry an R-R charge and couple to the R-R background potentials Cq by

means of the Chern-Simons action (2.18). In order to preserve the validity of Gauß’s

law –– which generalizes to Stokes’ theorem for general differential forms –– the total

charge within the compact dimensions has to vanish, much like the electric charge in

electrodynamics on compact spaces. The same conditions can also be derived from

the equations of motion for the R-R potentials Cq and are referred to as “tadpole

cancellation conditions”. Nonzero tadpoles manifest as divergences in the 1-loop open

string (disk) amplitude, which from the perspective of the 4d effective field theory can

be interpreted as quadratic ultraviolet divergences for the corresponding massless field

at 1-loop level, i.e. the cancellation of such divergences is crucial.

Aside from artificially defined anti-D-branes of opposite charge to the normal ones––

which however result in mostly unstable configurations–– the primary source of negative

R-R charge comes from orientifold planes. This underlines the mutual dependency of

D-branes and orientifold settings in order to satisfy the global consistency conditions.
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Note that due to the Chern-Simons action the higher-dimensional objects (Dp-branes

and Op-planes) couple to all Cq fields of lower rank q < p. For the case of type IIB

orientifolds with O3/O7-planes three non-trivial conditions arise:

� C4 potential / D3-brane tadpole condition: Let ND3 and NO3 denote the number

of D3-branes and O3-planes in the setting. An effective gauge bundle Va is defined

on a stack of Na D7-branes wrapping the 4-cycle Da ⊂ X of the internal geometry.

The general condition

ND3 +Nflux −
∑
a

Na

∫
Da

ch2(Va)

=
NO3

4
+
∑
a

Na

24

∫
Da

c2(TDa) +
1

12

∫
O7

c2(TO7)

(2.48)

also involves contributions from fluxes and the 7-brane/plane sector. Here the

term ch2(Va) = 1
2
c1(Va)

2 − c2(Va) ∈ H4(X ;Z) refers to the second level term in

the Chern character of the gauge bundle. TDa and TO7 are the tangent bundles

of the D7-brane and O7-plane worldvolume, respectively.

� C6 potential tadpole condition: The C6 field condition does not involve any D5-

branes, but due to the lower-rank coupling of D7-branes there is the condition∑
a

ch1(Va) ∧Da ∧ ωa = 0, (2.49)

where the ωa ∈ H1,1
− (X ) form a basis. Naturally, if the internal manifold supports

no anti-invariant (1,1)-forms (or respectively 2-cycles) this condition is trivial.

It is often referred to as the D5-brane tadpole condition due to the canonical

coupling to the C6 potential. Even in the absence of D5-branes in a setting, this

condition is quite important for the absence of chiral anomalies [111, 112] that

arise from the couplings to other R-R potentials.

� C8 potential / D7-brane tadpole condition: The condition for the C8 field corre-

sponds precisely to the naively expected charge conservation:∑
a

(
[Da] + [D′a]

)
= 8 · [O7]. (2.50)

This is in fact the condition for the “upstairs” geometry. In the “downstairs”

coset space B = X/σ the brane and image brane are identified, such that the

corresponding “downstairs” tadpole condition reads∑
a

Na[Da] = 4 · [O7]. (2.51)
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Note that an O7-plane has −8 times the R-R charge of an “upstairs” D7-brane.

The cancellation happens at topological level, i.e. the charge within each wrapped

cycle has to cancel individually.

If one neglects to satisfy the tadpole conditions, numerous anomalies appear in the

effective theory, for example the C6 and C8 tadpole cancellation conditions are related

to a cubic non-Abelian anomaly.

2.8.2 Freed-Witten Anomalies

A Dp-brane wrapped around an internal cycle that supports a non-trivial NS-NS

3-form flux H3, i.e. any p ≥ 6, potentially suffers from the Freed-Witten anomaly

[113]. Those are found when the wrapped cycle is not spin –– obstructed by w2(Da) 6=
0 ∈ H2(Da;Z2) –– but instead supports a spinC structure, to which the integral third

Stiefel-Whitney class is the corresponding obstruction. The H3-flux sort of shifts this

condition. Like any other anomaly this has to be canceled for the quantum theory to be

consistent, which in this case requires the H3-flux restricted to the internally wrapped

cycle to be equal to the integral third Stiefel-Whitney class:

H3|Da = W3(Da) ∈ H3(Da;Z). (2.52)

For the case of a Calabi-Yau manifold any 4-cycle is always spinC, such that from

W3(Da) = 0 it follows

H3|Da = 0 (2.53)

for the H3-flux on D7-branes Da ⊂ X in type IIB O3/O7 orientifold settings. This

particular condition can also be interpreted as the Bianci identity for the gauge bundle

on the D-brane.

Furthermore, by the same line of reasoning a D-brane with a non-trivial gauge flux

F wrapping a non-spin cycle Da is also subject to the anomaly. In a situation with an

Abelian gauge flux Fa that is represented by a holomorphic line bundle over Da, the

cancellation is guaranteed if the gauge flux obeys the integrality condition∫
ω

Fa +
1

2

∫
ω

KDa ∈ Z for all 2-cycles ω ∈ H2(Da;Z). (2.54)

This ties the internal gauge flux directly to the obstruction c1(Da) = −ca(KDa) 6≡ 0

mod 2 of the wrapped divisor to be spin. This will be observed at the end of sec-

tion 6.3.1.
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2.8.3 K-theory

There are additional consistency conditions, which arise from the fact that D-brane

wrappings and the associated charges are not entirely classified by the concept of

(co)homology. Instead it has been conjectured that K-theory and twisted K-theory

are in fact the right mathematical tools to describe D-branes and the gauge bundles

they carry [114–116]. The missing special cases are related to the Witten anomaly of

global SU(2)s.

Lacking truly applicable means to work with K-theory directly, one relies on a probe

brane argument, which effectively ensures that the number of 4d chiral fermions in the

fundamental Sp(2N) representation is even, leading to the condition∑
a

NaIa(probe) ∈ 2Z, (2.55)

where Ia(probe) is the chiral index between the (for dimensional reasons always intersect-

ing) probe D7-brane and the D7-brane Da of the considered setting. It has been shown

that those conditions imply the fulfillment of the conjectured K-theory constraints.





Chapter 3
F-theory as a Non-perturbative

Type IIB Framework

F-theory is a description of the strong coupling regime of type IIB superstring

theory. It is based on a geometrization of the (enhanced) IIB strong-weak coupling

self-duality, which is summarized in the beginning of this chapter. An elliptic fibration

is introduced on top of the 10d space-time, where degenerations encode the location and

worldvolume gauge group of non-perturbative 7-branes that for example allow direct

access to exceptional gauge groups. In the IIB string theory those objects can be

recovered by using SL(2;Z)-mapped D7-branes and non-perturbative string networks.

The Sen limit of F-theory is then briefly summarized as the only known method to make

contact with true orientifold settings. This raises the issue of corresponding consistency

conditions on the F-theory side. At the end of the chapter different aspects of the

“pragmatic” local F-theory GUT model building approach like the decoupling principle

and basics of SU(5) GUTs are discussed and the need for a “conceptually sound”

global model is explained. This chapter summarizes several standard introductions on

the subject [85, 117–119].

3.1 Geometrization of Type IIB self-duality

The starting point is a type IIB orientifold setting with O3/O7-planes on a Calabi-

Yau 3-fold X , which was introduced in chapter 2 [43]. A central quantity in F-theory

is the complex axio-dilaton scalar field

τ = C0 + ie−φ, (3.1)

combining the R-R 0-form field C0 and the dilaton scalar φ that corresponds to the

string coupling

gs = eφ =
1

Im τ
. (3.2)

69
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Via birational (Möbius) transformations the SL(2;Z) self-duality acts on τ , where the

naive strong-weak duality S : τ 7→ − 1
τ

corresponds to ( 0
−1

1
0
) ∼ (0

1
−1
0

) ∈ SL(2;Z). The

SL(2;Z) group is also well-known from modular transformations on the torus, i.e. the

value of τ ∈ C can be used to parameterize the geometry and complex structure on a

torus T 2 = C/(ZRe τ+iZ Im τ). Naively, by assigning such a τ -dependent torus to each

point of X one obtains a fibration on top of the 10d space-time. However, this picture

is only sensible in the absence of orientifold planes and D-branes–– phenomenologically

somewhat trivial situations in type IIB theory.

Consider a D7-brane inside the 10d space-time [120]. The 2-dimensional transverse

space can locally be parameterized by a complex coordinate z, such that the D7-brane

is located at z0. From the Laplacian equation ∂z̄τ(z, z̄) = 0 of the axio-dilaton on the

transverse space it follows that τ must be a purely holomorphic function. Using the

modular invariant j-functionI

j(τ) =

(
ϑ8

3(τ) + ϑ8
4(τ) + ϑ8

2(τ)
)3

8η24(τ)
≈ e−2πiτ + 744 + 196884e2πiτ + . . . , (3.3)

that maps the SL(2;Z) fundamental region of τ to the entire complex plane, it can be

shown that close to the location of the D7-brane the axio-dilaton field behaves like

j(τ(z)) ∝ 1

z − z0

 τ(z) ∝ 1

2πi
log(z − z0), (3.4)

which due to the singularity at z0 gives rise to the monodromy τ → τ + 1 in the

field when the brane is encircled [121]. The monodromy originates from the magnetic

coupling of a 7-brane to the C0 potential, cf. (2.21). In strict mathematical terms this

requires the introduction of a branch cut from the logarithm singularity to infinity,

which upon crossing yields the monodromy action. In the same fashion the 2-form

fields are affected by the same SL(2;Z) monodromy:

τ → τ + 1

B2 → B2 (invariant)

C2 → C2 +B2

C4 → C4 (invariant)

corresponding to

(
1 1

0 1

)
∈ SL(2;Z)︸ ︷︷ ︸

monodromy matrix

. (3.5)

In the neighborhood of the D7-brane (3.2) and the approximation (3.4) imply a weak

coupling behavior

gs ∝ −
2π

log(|z − z0|)
z→z0−−−→ 0. (3.6)

IKlein’s j-function incorporates the modular symmetries j(τ + 1) = j(τ) and j(− 1
τ ) = j(τ). It can

be explicitly stated in terms of Jacobi’s ϑ-functions, which are quasi-periodically and related to

elliptic functions. Its usage here is primarily the removal of the SL(2;Z) redundancy of τ .



3.2. Monodromies and (p,q )-strings 71

However, due to the holomorphicity of τ even a small non-zero value in any other region

necessarily implies the existence of a true strong coupling region somewhere else. The

divergence gs of (3.6) for z−z0 → 1 can be treated as an indicator for the back-reaction

of the 7-brane on the geometry that cannot be neglected in a proper treatment of

7-branes.

The singularities in the axio-dilaton naturally give rise to singularities of the asso-

ciated torus fibration over the space-time. It is therefore called an elliptic fibration,

where the fiber is described as a potentially degenerate degree-6 hypersurface in CP2
231.

In strict mathematical terms the geometrization of the axio-dilaton field τ in a type IIB

orientifold setting with D7-branes and O7-planes is therefore given by a CP2
231[6]-bundle

over the orientifold coset “downstairs” geometry X/σ.

3.2 Monodromies and (p,q)-strings

The type IIB self-duality also affects D-branes contained in the setting. If ordinary

D7-branes are identified as (1,0)-branes, more general (p, q) 7-branes are defined as

images under the SL(2;Z) transformation such that(
p

q

)
=

(
p r

q s

)(
1

0

)
for

(
p r

q s

)
∈ SL(2;Z) (3.7)

holds [60–65, 122]. In the same fashion one introduces the notion of (p, q)-strings as

images of the fundamental open (1,0)-string under SL(2;Z), which is p times charged

under the NS-NS B2 potential and q times under the R-R C2-potential [123]. A string

with charges (p, q) can only end on an equally charged (p, q)-brane. It can be understood

as a bound state of p fundamental strings and q D1-branes, which opens up the possi-

bility of forming networks of strings as long as charge conservation at the 3-junctions is

respected –– analogous to Kirchhoff’s junction rule for electrical circuits. The SL(2;Z)

transformation also affects the corresponding monodromy matrix of a 7-braneII via

Mp,q = gp,q

(
1 1

0 1

)
g−1
p,q =

(
1− pq p2

−q2 1 + pq

)
, (3.8)

i.e. it is the matrix adjoint to the original (1,0) D7-brane monodromy matrix (3.5).

Note that in the computation of the total monodromy of several 7-branes the order is

relevant. If a (p, q)-string passes through the branch cut of a 7-brane its charges are

affected by the monodromy. One can then consider complex networks of (p, q)-strings

encircling different 7-branes.

IINote that there are several conventions for the monodromy matrices used throughout the litera-

ture. In particular note Kp,q = M−1p,q .
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7-branes number total monodromy

A 1 MA = (1
0

1
1
)

B 1 MB = ( 2
−1

1
0
)

C 1 MC = ( 0
−1

1
2
)

An n Mn
A = (1

0
n
1
)

AB 2 MAMB = ( 1
−1

1
0
)

A2B 3 M2
AMB = ( 0

−1
1
0
)

A2BA 4 M2
AMBMA = ( 0

−1
1
−1

)

AnBC n+ 2 Mn
AMBMC = (−1

0
−n+4
−1

)

A5BCB 8 M5
AMBMCMB = (−1

1
−1
0

)

A6BCB 9 M6
AMBMCMB = (0

1
−1
0

)

A6BCBA 10 M6
AMBMCMBMA = (0

1
−1
1

)

Table 3.1.: Monodromies arising from combinations of non-perturbative

A, B and C 7-branes.

The usage of (p, q)-strings and 7-branes allows to capture many non-perturbative

aspects of type IIB theory. Let

A := (1, 0), B := (1,−1), C := (1, 1) (3.9)

be a choice of charges for (p, q) 7-branes, whose corresponding monodromy matrices are

MA =

(
1 1

0 1

)
= MD7, MB =

(
2 1

−1 0

)
, MC =

(
0 1

−1 2

)
. (3.10)

Those are the building blocks for stacks of non-perturbative 7-branes, which are de-

scribed by an ordered set of A, B and C branes together with the relevant string

networks before the clashing of the worldvolumes. If the monodromies of two (p, q)

7-branes do not commute the branes are said to be mutually non-local, which implies

that their degrees of freedom are not independent and the brane system is generically

strongly coupled. Unlike for ordinary D7-brane stacks one therefore has to keep all

the information of the individual brane positions and wrappings due to the different

monodromies. Ultimately the massless states originating from such non-perturbative

7-brane stacks and string networks give rise to further gauge groups and representa-

tions. A list of relevant 7-brane stacks and their respective total monodromy is found

in table 3.1.
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A particularly important case is the 7-brane pair BC with the total monodromy

MBMC =

(
−1 4

0 −1

)
. (3.11)

It is canceled by 4 ordinary A-branes (i.e. D7-branes) since M4
AMBMC = −1. This can

be interpreted as the downstairs clashing of 4 D7-branes and an O7-plane, since the

effect of the total monodromy due to M−p,−q = Mp,q implies a flip of orientation on the

(p, q)-string [124–126]. The non-perturbative characteristics therefore allow to “resolve”

the O7-plane from the plain type IIB picture into a bound state of two non-perturbative

(p, q) 7-branes. Note that the choice of charges in (3.9) is not unique –– other pairs of

branes also allow to produce the O7-plane monodromy (3.11). The relationship to

type IIB orientifold settings will be further discussed in section 3.7.

3.3 Elliptic Singularities and 7-branes

Using the quantization of the SL(2;Z) self-duality and the geometrization of the

axio-dilaton field τ in the form of an elliptically-fibered 8dR total space Z, i.e.

E ↪→ Z
↓
B = X/σ,

E = elliptic curve, i.e.

potentially singular T 2 (3.12)

the 7-brane monodromies of table 3.1 can be recovered [127–129]. A generic elliptic

curve can be described as a non-singular projective algebraic curve of genus 1 and in

its most general form is given by the by the equation

y2 + a1xyz + a3yz
3 = x3 + a2x

2z2 + a4xz
4 + a6z

6 (3.13)

for (x, y, z) ∈ CP2
231, which is called the Tate form [130–133]. This describes the most

generic degree-6 hypersurface in P2
231 and due to the projective weights has vanishing

first Chern class, i.e. the elliptic curve is Ricci-flat. Since the characteristic of the

underlying field of complex numbers C is neither 2 or 3, every elliptic curve (3.13) can

in fact be reduced to the simpler Weierstrass form

y2 = x3 + fxz4 + gz6 where


f =

1

48
(24b4 − b2

2),

g =
1

864
(216b6 − 36b4b2 + b3

2),

for


b2 := a2

1 + 4a2,

b4 := a1a3 + 2a4,

b6 := a2
3 + 4a6,

(3.14)
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which is still a P2
231[6] curve. Alternative representations of elliptic curves are the

hypersurfaces P2
112[4] and P2[3], which are more restricted [134].

The extension of elliptic curves to a global elliptic fibration over B is not entirely

straightforward. Following Deligne, every elliptic fibration with a global section can be

represented by a global Weierstrass model–– called an E8-fibration due to the maximal

obtainable singularity type–– which means that f and g in the Weierstrass form (3.14)

are promoted to global sections

f ∈ Γ(K−4
B ) = H0(B;K−4

B ),

g ∈ Γ(K−6
B ) = H0(B;K−6

B ).
(3.15)

The global variants of the P2
112[4] and P2[3] parameterizations –– called E7- and E6-

fibrations, respectively–– are bi-rationally equivalent to the corresponding singularities

in an E8-parametrization. However, for a generic elliptic fibration the Tate form (3.13)

can only be obtained locally since the transformation of f and g to global Tate co-

efficients ai ∈ Γ(K−iB ) may involve branch cuts. Global Tate parameterizations are

therefore a particularly convenient subclass of all elliptic fibrations, as the gauge group

can be directly read off from the vanishing degrees of the Tate coefficients, see ta-

ble 3.6. However, they do not give rise to the most general singularity structure an

elliptic fibration can describe.

An important quantity in the description of elliptic curves is the elliptic discriminant

∆ = 4f 3 + 27g2

= − 1

16

(
−1

4
b2

2(b2b6 − b2
4)− 8b3

4 − 27b2
6 + 9b2b4b6

)
,

(3.16)

whose zeros correspond to degenerations of the elliptic curve in the fiber.III This can

be seen in the explicit description of the j-function

j(τ) =
4(24f)3

∆
(3.17)

with infinities where ∆ vanishes. Following section 3.1 the locations of 7-branes are

therefore given by the discriminant locus

{∆ = 0} ⊂ B = X/σ. (3.18)

Mathematically one can now proceed with the systematic Kodaira classification of all

singularities that can potentially appear in an elliptic fibration, see table 3.2. Note that

IIIThe somewhat unorthodox prefactor − 1
16 in (3.16) has been added for the convenience of the

reader to simplify direct comparison with most of the literature. As one usually considers the

vanishing locus ∆ = 0, the often neglected (or redefined) prefactor has no effect on any results.
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deg(f) deg(g) deg(∆) fiber singularity comp. local geometry monod.

≥ 0 ≥ 0 0 I0 smooth 1 (1
0

0
1
)

0 0 1 I1 dbl. point 1 y2 = x2 + z (1
0

1
1
)

0 0 n In An−1 n y2 = x2 + zn (1
0
n
1
)

≥ 1 1 2 II cusp 1 ( 1
−1

1
0
)

≥ 1 ≥ 2 3 III A1 2 y2 = x2 + z2 ( 0
−1

1
0
)

≥ 2 2 4 IV A2 3 y2 = x2 + z3 ( 0
−1

1
−1

)

2 3 6 I∗0 D4 5 y2 = x2z + z3 (−1
0

0
−1

)

2 ≥ 3
n+ 6 I∗n Dn+4 n+ 5 y2 = x2z + zn+3 (−1

0
−n
−1

)≥ 2 3

≥ 3 4 8 IV∗ E6 7 y2 = x3 + z4 (−1
1
−1
0

)

3 ≥ 5 9 III∗ E7 8 y2 = x3 + xz3 (0
1
−1
0

)

≥ 4 5 10 II∗ E8 9 y2 = x3 + z5 (0
1
−1
1

)

Table 3.2.: The original Kodaira classification of singular fibers in an-

alytic surfaces [135, 136]. The local geometry of the elliptic surface

around such a singularity is modeled in terms of projective coordinates

(x, y, z) ∈ C3. In the last column the elliptic monodromy of the singular

fiber is given in terms of an SL(2,Z)-matrix, cf. table 3.6.

the majority of elliptic monodromies corresponds precisely to the 7-brane monodromies

in table 3.1 and the vanishing degree deg(∆) agrees with the number of (p, q) 7-branes.

For the agreeing cases one can therefore conclude that a certain elliptic degeneration

describes the location of a collapsed (p, q) 7-brane stack of the corresponding total brane

monodromy. This effectively introduces non-perturbative 7-brane stacks with e.g. ex-

ceptional gauge groups at the location of the corresponding type of elliptic degeneration

in the fibration, which cannot be realized from ordinary D7-brane stacks and O-plane

intersections.

It should be noted that the total discriminant of an elliptic fibration generically

factorizes as

∆ = ∆R ·
n∏
a=1

∆δa
a , (3.19)

where δa is the respective vanishing degree. Here ∆δa
a is supposed to vanish over a

smooth divisor Da := {∆a = 0} ⊂ B, such that one obtains according to the Kodaira
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classification in table 3.2 the gauge group Ga over Da. A closer inspection of the

Calabi-Yau condition c1(Z) = 0 for elliptically-fibered 4-folds can be reformulated as

[{∆ = 0}] = [DR] +
n∑
a=1

δa[Da] = 12c1(B) ∈ H2(B;Z), (3.20)

which resembles a 7-brane tadpole condition in the F-theory base. It encodes the

fact that the discriminant is a section of K−12
B , hence the prefactor [136]. Just like

the (non-trivial) type IIB D7-brane tadpole condition (2.51), the discriminant locus is

not unconstrained either–– the structure of the 7-branes in F-theory is just intrinsically

restricted by the Calabi-Yau condition on the 4-fold Z. In order to satisfy this condition

there is usually also a factor ∆R in the discriminant, that generically corresponds to

an I1 type singularity of the fibers over a singular divisor DR := {∆R = 0} ⊂ B. The

simplest example is a totally generic Weierstrass model with no further non-Abelian

gauge enhancements, such that ∆ = ∆R = 4f 3 + 27g2. The divisor DR in this case

becomes singular over the so-called cusp curve

Ccusp := {f = g = 0} ⊂ DR ⊂ B. (3.21)

While this remainder component of the discriminant handles the 7-brane tadpole, it

adds additional 7-branes in a global setting that have to be taken into account.

3.4 F-theory via Dualities

3.4.1 F-theory and M-theory

The entirety of the previously discussed properties and the geometrization of the axio-

dilaton together with the correspondence between 7-branes and elliptic degenerations is

called F-theory–– a name that was coined by Vafa in the original paper from 1996 [59].

To summarize: F-theory is a conjectured auxiliary theory defined on an elliptically-

fibered 12-dimensional space Z that describes strongly coupled type IIB superstring

theory on the fibration base B. The theory provides a unified perspective on several

non-perturbative aspects of type IIB theory. However, the two additional dimensions of

the fibration are not analogous to the 10d space-time base B. Instead they are auxiliary

constructions from the geometrization of the SL(2;Z) self-duality of IIB and the axio-

dilaton τ . There is no directly corresponding low-energy field theory due to the absence

of a 12d supergravity with metric signature (11,1).

Nevertheless, one can find a more precise definition of F-theory when starting from M-

theory [102, 117, 137–139], which is the 11-dimensional theory describing non-perturbative

type IIA string theory. In M-theory all 11 dimensions are equivalent and constitute a
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“real” space-time with a uniquely corresponding 11d N=1 supergravity at low energies.

Via the T-duality between IIA and IIB one comes into contact with F-theory, which

can therefore be defined via a chain of dualities as an M-theory compactification on T 2

in the vanishing fiber size limit vol(T 2)→ 0.

In order to make this correspondence more precise consider the space-time M9 × T 2

with coordinates (~w, x, y), which is given by the metric

ds2
M = ds2

9 +
V

τ2(~w)

(
(dx+ τ1(~w) dy)2 + τ2(~w)2 dy2

)
. (3.22)

The second part of this metric corresponds to the torus T 2 with volume (area) V and

the complex structure modulus τ = τ1 +iτ2 ∈ C. Due to the holomorphic dependency of

τ on the coordinates ~w of M9 this describes a fibration instead of a product, i.e. (3.22)

describes an elliptically-fibered 11d space-time. Due to dimH1(T 2) = 2 there are 2

independent cycles for the torus. Let the α-cycle be in the direction of x and the β-

cycle in the direction of the coordinate y. Upon the reduction along the α-cycle in

the weak coupling limit of M-theory one obtains 10d type IIA string theory, which is

related to the 11d M-theory metric by

ds2
M = L2e

4χ
3 (dx+ C1)2 + e−

2χ
3 ds2

IIA. (3.23)

The coordinate x has periodicity 1 and C1 describes the connection on the S1-bundle

of the α-cycle over the IIA space-time M9 × S1
β. Furthermore, L is a length scale for

the M-theory α-cycle. Comparing with (3.22) allows to express C1, χ and in particular

the type IIA metric

ds2
IIA =

√
V

L
√
τ2

(V τ2 dy2 + ds2
9) (3.24)

in terms of the elliptic fibration volume V and modulus τ . Along the remaining β-cycle

of the original torus fibration one can now perform the T-duality in order to obtain

type IIB string theory. In the Einstein frame the metric then takes the form

dsIIB =

√
V

L

(
L2`4

s

V 2
dy2 + ds2

9

)
(3.25)

and only depends on V , τ2, L and the string scale `s. Now consider the case of a

3d compactification with M9 = R1,2 × B, where B is a compact internal 6dR Kähler

manifold. The holomorphic dependency of the elliptic fibration on M9 keeps the volume

V of the fiber torus constant, such that by taking the scale L =
√
V the type IIB metric

simplifies to

dsIIB = −(dx0)2 + (dx1)2 + (dx2)2 +
`4

s

V
dy2 + ds2

B6
. (3.26)
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1

0 0

0 h1,1 0

0 h1,2 h1,2 0

1 h1,3 h2,2 h1,3 1

0 h1,2 h1,2 0

0 h1,1 0

0 0

1

 
h2,2 = 2(22 + 2h1,1 + 2h1,3 − h1,2)

χ = 6(8 + h1,1 + h1,3 − h1,2)

Table 3.3.: Hodge diamond of a Calabi-Yau 4-fold and non-trivial rela-

tions between the Hodge numbers.

Obviously, the limit V = vol(T 2) → 0 leads to a decompactification of the circular y-

direction of the type IIB space-time.IV This provides the missing 4th flat dimension in a

compactification setting where M9 = R1,2×B, i.e. the IIB space-time in R1,2×B×Rβ =

R1,3 × B in the limit. For a supersymmetric setting the compact space B together

with the elliptic fibration has to be a Calabi-Yau space Z of complex dimension 4,

see (3.12). In order to obtain the typical type IIB setting of 4 flat and 6 compact internal

dimensions, M-theory on the elliptically-fibered space-time R1,2 × Z with vanishing

fiber volume is considered. F-theory is then the theory defined on R1,3 × Z, i.e. the

10d type IIB space-time plus the elliptic fibration –– related via the outlined chain of

dualities.

3.4.2 Elliptic degenerations and M2/M5-brane wrappings

The M-theory picture helps to understand several of the aforementioned non-pertur-

bative aspects of F-theory in terms of M2- and M5-brane wrappings, which are the only

two types of branes found within the strong-coupling completion of type IIA theory,

coupling electrically and magnetically to the M-theory Ĉ3 potential. On the 11d M-

theory space-time R1,2×Z the following cases of brane wrappings can be distinguished

[117]:

� (p, q) 7-branes: When the 1-cycle pα + qβ of the elliptic fiber collapses, a cor-

responding (p, q) 7-brane is located at a codimension-1C subspace in the base.

This degeneration is a (transformation of the) type I singularity in Kodaira’s

classification table 3.2.

IVNote that
`4s
V gives the radius of the compact dimension, i.e. for a decompactification that effectively

turns the S1 into R the radius indeed has to become infinite.
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� M2-branes: A space-time filling M2-brane is mapped to a space-time filling D3-

brane.

� M5-branes (4-cycle wrapping): If a 4-cycle Σ4 ⊂ Z is wrapped in addition to 1+1

flat dimensions of the 11d space-time, the following cases are possible:

– Σ4 completely transversal to fiber: This yields a Kaluza-Klein monopole

along Σ4 and the two flat directions.

– Σ4 wraps the cycle pα + qβ of the elliptic fiber, giving rise to a S1-fibration

over a 3-dimensional subspace Σ3 in the base B of Z. If Σ3 is closed, this

gives a (p, q) 5-brane wrapping the 3-cycle Σ3. When Σ3 has a boundary

on a degeneration locus of the elliptic fibration it maps to a (p, q) 5-brane

ending on a (p, q) 7-brane.

– Σ4 completely wraps the fiber: This gives a D3-brane wrapping a 2-cycle in

the fibration base B and appears as a string from the 4d flat perspective.

� M5-branes (entirely internal): If the M5-brane entirely wraps a 6-cycle Σ6 of the

internal space Z two cases have to be distinguished:

– If only one cycle of the fiber is wrapped or the 6-cycle is entirely transversal

to the fiber, the action becomes non-finite in the vanishing fiber volume limit

that is implied for the duality to F-theory.

– An internal M5-brane that entirely wraps the elliptic fiber is mapped to a

D3-brane instanton. This case will be discussed in chapter 4.

In principle one can understand the additional gauge groups appearing in the Kodaira

classification (cf. table 3.2) in terms of M2-branes wrapping collapsed 2-cycles in the

fibration, whose intersections determine the enhanced gauge group.

3.4.3 Fluxes

Fluxes in F-theory are defined via the M/F-theory duality by fluxes and potentials

of M-theory, which has just the sole Ĉ3 potential such that only a non-trivial 4-form

flux

G4 := dĈ3 (3.27)

on the elliptically-fibered 4-fold Z can be turned on [138, 140, 141]. This requires relax-

ing the geometry structure to a conformal Calabi-Yau type due to the back-reactions.

Analogous to (2.47) one can then derive that in order to preserve supersymmetry

G4,0
4 = G0,4

4 = 0 is required. The G4-flux is also subject to a self-duality condition

G4 = ?ZG4 (3.28)
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on the internal space Z to ensure that there are no flux contributions to the effective

tree-level moduli potential on the flat space-time, which has runway direction towards

large volume of the internal space [117]. On a 4-fold this also implies that G3,1
4 = G1,3

4 =

0 and therefore only leaves the G2,2
4 component of the G4 flux. In fact, on a 4-fold Z

a primitive (2, 2)-form is in particular self-dual, such that the gauge flux actually is

specified by
primitivity: G4 ∧ J = 0,

(2,2)-form: G4 = G2,2
4 ∈ H2,2(Z).

(3.29)

Furthermore, there is a certain integrality condition described in section 3.6. The part

of the G4-flux compatible with 4d Poincaré invariance in the type IIB picture is of the

form

G4 = H3 ∧ L dx+ F3 ∧ L dy. (3.30)

However, this parametrization in terms of the IIB R-R and NS-NS 3-form fluxes H3

and F3 is only a small subset of all valid fluxes as H3, F3 ∈ H3(B;Z) is not directly

related to G4 ∈ H4(Z;Z). Often the number of suitable 4-cycles in Z goes into the

thousands, whereas 3-cycles in the base can be rather rare. Furthermore, in the context

of F-theory compactifications it is still unknown how to describe G4-fluxes properly for

general settings that involve singularities due to non-perturbative, non-Abelian 7-branes

in the total space Z of the fibration.

The fact that type IIB “bulk fluxes” only provide a small fraction of all G4-fluxes is

related to the non-trivial SL(2;Z) monodromy of the H3 and F3-fluxes in the presence

of 7-branes, cf. (2.15) and (3.5). The G4-flux not only encodes background fluxes on Z
but contains brane worldvolume fluxes as well. Locally around a 7-brane, i.e. where at

least one cycle S1 ⊂ T 2 of the elliptic fiber shrinks to zero size and causes a zero in the

elliptic discriminant, the Calabi-Yau 4-fold geometry is similar to a Taub-NUT space.

It supports a harmonic (1, 1)-form ω that peaks over the discriminant locus and allows

to decompose the 3-form potential to

Ĉ3 = A ∧ ω. (3.31)

This A corresponds to the U(1) open string gauge fields on the 7-brane worldvolume.

Similarly, an internal gauge flux F on the 7-brane worldvolume is encoded via

G4 = F ∧ ω. (3.32)

The non-perturbative F-theory framework and the G4 flux from M-theory therefore

provide an unified perspective on all types of fluxes that can be accommodated. Lacking

general methods to construct all G4-fluxes, one has to use the spectral cover approach
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introduced in section 3.5 to describe such fluxes. This is used in the construction of

chiral matter content via intersecting 7-branes in the presence of non-trivial G4-flux

backgrounds following the basic approach of section 2.5.

3.4.4 Other dualities and definitions

Aside from the duality between F-theory and M-theory with vanishing fiber volume,

one can also show a duality to E8 × E8 heterotic string theory –– which is particularly

interesting as heterotic models in the absence of D-branes and open strings only contain

the intrinsically global closed string sector. While this duality will be a guide for certain

constructions in chapter 6, it is less general than the M/F-theory duality described so

far in section 3.4.1. For example, it can be shown that the class of local F-theory GUT

models with U(1)Y-hypercharge flux GUT symmetry breaking–– considered primary in

recent years–– does not have an appropriate heterotic dual.

Ultimately, there are three known dualities–– or definitions, depending on one’s point

of view–– for the particular class of non-perturbative string theory models described by

F-theory [117, 119]:

1. The geometrization of the varying axio-dilaton τ in type IIB models with 7-branes.

2. The limit of M-theory on an elliptically-fibered space with vanishing fiber volume.

3. The duality to heterotic E8 × E8 string theory.

In the following the focus will be almost exclusively on the first and second definition

of (or rather duality to) F-theory, but the spectral cover construction discussed in

section 3.5 requires a basic understanding of the third duality.

3.4.5 F-theory and the heterotic string

The F-theory description via M-theory is a proper description for all models. In

contrast, the heterotic/F-theory duality only applies to a small class of F-theory com-

pactifications, but allows to carry over some useful constructions developed for the

heterotic string.

The duality states that F-theory compactified on an elliptically-fibered K3 surface is

dual to the heterotic string on T 2. The mapping between the two geometrical settings is

called a Fourier-Mukai transform [66, 69, 119, 142–148]. More specifically, in the context

of N=1 supersymmetric compactifications the internal space has to be a K3-fibered

Calabi-Yau Zn+2 on the F-theory side and where each K3 is itself elliptically-fibered

over a P1:

K3 ↪−→ Zn+2 −� Bn
E ↪−→ K3 −� P1.

(3.33)
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The elliptic fibration of the K3 naturally descents to an elliptic fibration of Zn+2

with the base Bn+1. This elliptic base is itself P1-fibered over the K3 base Bn. The

heterotic/F-theory duality therefore asserts the existence of an elliptically-fibered Calabi-

Yau space Yn+1 over the K3 base Bn. This duality is technically established by com-

paring the moduli spaces of both theories. In particular, the volume of the base P1 is

dual to the heterotic string coupling ghet = e2φ. All those fibrations can be summarized

in a diagram

E � p

!!

� _

��

� � // Yn+1

����
K3 �
� //

����

Zn+2
// //

����

Bn

P1 � � // Bn+1

;; ;;

where
Yn+1 heterotic compact. space,

Zn+2 F-theory compact. space,

such that vol(P1)
dual←−−→ ghet,

(3.34)

that shows how the space Yn+1 intertwines the double fibration structures (3.33) from

the F-theory side. Naturally, this particular geometric setting is rather constrained and

not generic to all F-theory models.

For the case of four flat dimensions–– corresponding to n = 1 in the above outline––

one can be more explicit about the involved spaces. The base B2 of an elliptically-

fibered Calabi-Yau 3-fold Y3 on the heterotic side can only be a del Pezzo surface dPn,

a (blowup of a) Hirzebruch surface Fk or the Enriques surface K3/Z2. For the dual F-

theory Calabi-Yau 4-fold Z4 the elliptic base B3 is a P1-fibration over this surface B2. It

can be characterized cohomologically by a line bundle T over B2, i.e. via t := c1(T ). The

base B3 can then be constructed as the total space of the projectivization of the rank-2

vector bundle O⊕T over B2, i.e. B3 = P(O⊕T ) where each fiber is a P(C⊕C) = P1.

In summary, we therefore have the geometric situation

E � o

  

� _

��

� � // Y3

����
K3 �
� //

����

Z4
// //

����

B2 =


dPn
Fk
B(Fk)
K3/Z2

P1 � � // B3 = P(O ⊕ T )

== ==
(3.35)

for compactifications to four dimensions. The construction of F-theory models with

heterotic duals can therefore be restated in terms of constructing vector bundles. Fur-

thermore, the value t can be interpreted as a generalized instanton number related to

6d compactifications.
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3.5 The Spectral Cover Construction

In the absence of space-time singularities the gauge group Ghet of the heterotic string

is either E8×E8 or SO(32). Given a holomorphic vector bundle V with structure group

H on the internal space Y3, the gauge group is broken to the commutator G = H⊥ ⊂
Ghet after embedding H into Ghet. Under the heterotic / F-theory duality one therefore

expects the vector bundle to map to a singular geometry of Z4 and a non-trivial gauge

flux G4. In the context of the duality, Y3 is assumed to be elliptically-fibered over B2.

The underlying idea of the spectral cover construction is to split up the information

contained in the vector bundle V into two structures that can be entirely characterized

by their respective topological data: the spectral surface C(n) and the spectral line

bundle N . In the F-theory dual C(n) then determines the singularity structure of the

base B3 of Z4, whereas N specifies the G4 flux [144, 149].

The construction of the spectral surface discussed here originates from generic prop-

erties of a rank-n vector bundle W with structure group U(n) or SU(n) over an elliptic

curve E. It can be shown that such a vector bundle decomposes into the direct sum of

line bundles

W = L1 ⊕ · · · ⊕ Ln over E. (3.36)

Each Li has to be of zero degree, which implies that there exists a meromorphic section

of each Li that has exactly one zero in the point qi ∈ E and a single pole at the point

p that corresponds to the origin of the elliptic curve. The line bundle is therefore

explicitly given by

Li = OE(qi − p) (3.37)

for a vector bundle W with structure group U(n). For the SU(n) structure group the

additional constraint of a trivial determinant is imposed, i.e.

n⊗
i=1

Li = OE  
n∑
i=1

(qi − p) = 0. (3.38)

The entire vector bundle W over E is therefore determined by the collection of n points

qi on the elliptic curve.

Coming back to the original heterotic setting of a vector bundle V over the elliptically-

fibered 3-fold Y3, one considers the restriction

V |(Y3)b =
n⊕
i=1

O(qi(b)− p) (3.39)

to the elliptic fiber (Y3)b ∼= E over b ∈ B2. This associates a set of n points qi(b) to each

point of the base B2 and therefore uniquely defines an n-sheeted covering C(n) of B2 ––
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the spectral cover surface. Since each qi(b) lies in the fiber over b ∈ B2, the spectral

surface is a hypersurface inside Y3, i.e.

{1, . . . , n} ↪−→ C(n) πn−� B2 such that C(n) ∩ (Y3)b =
n⋃
i=1

qi(b). (3.40)

In order to describe C(n) topologically, let σ be the section of the elliptic fibration of Y3

that embeds the base B2 ⊂ Y3. It has the property

σ · σ = −σc1(B2) ∈ H4(Y3;Z), (3.41)

such that the Poincaré-dual cohomology class of C(n) ⊂ Y3 can be written as

[C(n)] = nσ + π∗η ∈ H2(Y3;Z), (3.42)

where η ∈ H2(B2;Z) is some effective class and π : Y3 −� B2 the elliptic fibration’s

projection mapping. In summary, one has

E � � //

⋃ Y3
π // //

⋃ B2

{1, . . . , n} � � // C(n)

πn

>> >>
(3.43)

i.e. the spectral cover is a discrete sub-fibration of the elliptic fibration of Y3 over B2.

The restriction of the vector bundle V to the elliptic fibers in (3.39) naturally discards

information on the global structure of the bundle. By introducing the spectral cover

line bundle N on C(n) with the property

(π̃n)∗N = V |B2 (3.44)

the missing information can be restored. Here (π̃n)∗ essentially takes the line bundle

fiber of N over each of the n points in (πn)−1(b) in order to reconstructV the rank-n

vector bundle V over b ∈ B2. This reformulation in terms of a line bundle allows to

describe the data by the first Chern class c1(N ) ∈ H2(C(n);Z), which is decomposed as

c1(N ) =
r

2
+ γ where

r = −c1(C(n)) + (πn)∗c1(B2),

γ =
1

n
(πn)∗c1(V ) + γu.

(3.45)

VThe tilde in the mapping (π̃n)∗ highlights that the rank-n vector bundle is decomposed into a

direct sum of n line bundles that are distributed to the n sheets of the spectral cover C(n).
Due to this decomposition (or Whitney-summing for the inverse mapping) the mapping (π̃n)∗ is

therefore not the ordinary push-forward of a line bundle.
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The part γu is chosen such that (πn)∗γu = 0, which yields

γu = λ
(
nσ − (πn)∗η + n(πn)∗c1(B2)

)
∈ H2(C(n);Z) (3.46)

for a number λ ∈ Q, that is chosen appropriately to satisfy the integrality conditions

in the cohomology groups. Ultimately, one obtains

c1(N ) = −σ + n

(
1

2
+ λ

)
σ +

(
1

2
− λ
)

(πn)∗η

+

(
−1

2
+ nλ

)
(πn)∗c1(B2) +

1

n
(πn)∗c1(V )

(3.47)

for the spectral line bundle. Together the spectral cover surface C(n) and the spectral

line bundle N provide the topological description for the vector bundle V over the

elliptically-fibered 3-fold Y3.

Using the spectral cover description of the gauge breaking vector bundle V in the

heterotic string theory, one can explicitly formulate the dual F-theory description. Let

η1, η2 ∈ H2(B2;Z) be the classes of V = V1 ⊕ V2 embedded into E
(1)
8 × E

(2)
8 as defined

in (3.42). The remaining heterotic gauge group G = G1×G2 = H⊥1 ×H⊥2 ⊂ E
(1)
8 ×E

(2)
8

then appears in the P1-fibered base B3 of the F-theory 4-fold Z4. More precisely, the

gauge groups G1 and G2 are respectively localized on the divisors of B3 that correspond

to the north and south pole of the P1 in the fibration.

Following the “projectivization description” of B3 in (3.35), the relationship to the

line bundle T on B2 is given by

η1 = 6c1(B2)− c1(T )

η2 = 6c1(B2) + c1(T )
 c1(T ) =

1

2
(η2 − η1), (3.48)

i.e. the spectral surface C(n) determines the geometry of the base B3 and therefore ––

with the duality-inherited elliptic fibration structure–– the F-theory 4-fold Z4.

The gauge flux G4 on the resolved 4-fold Z̃4 is governed by the γu piece defined in

(3.45) and (3.46), i.e. ∫
Z̃4

G4 ∧G4 = −
∫
B2

(πn)∗

(
(γ1)2 + (γ2)2

)
. (3.49)

It should be noted, that the entire discussion here only applies to vector bundles V

with structure group U(n) or SU(n), otherwise certain modifications in the decompo-

sition (3.36) and the form (3.37) are necessary. In section 6.1 the construction will be

generalized to F-theory settings without a heterotic dual.
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3.6 Consistency Conditions

The consistency conditions of F-theory models are comparable to the type IIB condi-

tions in section 2.8. Since several conditions are intrinsically encoded in the geometry

of the elliptically-fibered 4-fold Z –– like a 7-brane tadpole condition one might expect––

far less explicit conditions actually remain [110]:

� D3-brane tadpole condition: The number of D3-branes, the G4-flux and the

elliptically-fibered 4-fold are related by

ND3 +
1

2

∫
Z
G4 ∧G4 =

χ(Z)

24
. (3.50)

As the 4-fold Z becomes singular in the presence of certain non-perturbative 7-

brane stacks and configurations, one has to resolve the space or generalize the

Euler characteristic appropriately.

Supersymmetry requires the 4-fold Z to be of Calabi-Yau type––a condition which in the

presence of fluxes has to be relaxed somewhat. In order to obtain 4d N=1 supersymme-

try and stability in the effective theory, it was already discussed in section 3.4.3 that an

analysis similar to (2.47) shows that upon splitting G4 = G4,0 +G3,1 +G2,2 +G1,3 +G0,4

the following components have to vanish:

G4,0 = G3,1 = G1,3 = G0,4 = 0. (3.51)

The remaining non-vanishing component G2,2 ∈ Ω2,2(Z) has to satisfy the primitivity

condition

G2,2 ∧ J = 0, (3.52)

such that ultimately the allowable G4-fluxes in the context of M/F-theory are

G4 ∈ Ω2,2
primitive(Z), (3.53)

which according to (3.28) have to be self-dual on the internal space. Furthermore, one

has to deal with the quantization of the G4-form flux [117, 141]. A shift leads to the

integrality condition

[G4]− c2(Z)

2
∈ H4(Z;Z). (3.54)

In general, compared to the type II conditions in section 2.8 all those conditions are

rather difficult to evaluate and apply in non-trivial settings, which is mostly due to

technical difficulties in handling the singularities of Z.
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3.7 Weak-coupling Sen Limit

In section 3.1 it was observed that non-trivial F-theory settings involving 7-branes

are intrinsically of strong coupling. On the other hand, the perturbative type IIB origin

of the theory necessarily implies the existence of weakly coupled regions. This raises

the question of how one can see such weakly coupled, perturbative regions in F-theory.

According to (3.2) this means to search for regions where Im τ is rather large and ideally

constant. In this context the idea was first discussed by Sen [124–126, 150, 151]–– hence

the name Sen limit.

A generic setting can be constructed by introducing a parameter ε for rescaling the

Tate coefficients

a3 → εa3

a4 → εa4

a6 → ε2a6

 
f =

1

48
(24εb4 − b2

2),

g =
1

864
(215ε2b6 − 36εb4b2 + b3

2),
(3.55)

such that in the limit ε → 0 the fraction f3

g2 is constant. A slight rescaling of the

coefficient functions brings those terms in a more accessible form:

h := −1
4
b2

η := 1
2
b4

χ := −215
72
b6,

 
f = −3h2 + εη,

g = −2h3 + εhη − ε2 χ

12
.

(3.56)

The leading ε-order of the elliptic discriminant and the j-function take the form

−16∆ ≈ −ε
2

4
b2

2(b2b6 − b2
4) +O(ε2) = −9ε2h2(η2 − hχ),

j(τ) ∝ b4
2

ε2(b2b6 − b2
4)

∝ h4

ε2(η2 − hχ)
.

(3.57)

Via (3.3) it then follows that in the limit ε→ 0 the type IIB coupling constant vanishes

almost everywhere except h = 0:

gs ∝ −
1

log |ε|
ε→0−−→ 0. (3.58)

A detailed analysis of the monodromies shows that in the limit ε→ 0 the discriminant

locus can be identified with an O7-plane and D7-brane located at

O7: h(u) = 0,

D7: η(u)2 = h(u)χ(u),
(3.59)
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where u ∈ B are the coordinates on the base. This brings the Sen limit into direct

contact with a type IIB orientifold setting. Away from the ε → 0 limit the factoriza-

tion of the discriminant and subsequent identification of the perturbative O7-plane and

D7-brane is lost. The non-perturbative effects included via the F-theory description es-

sentially smoothen out the singular BC-type orientifold locus. Note that the particular

form of (3.59) generically can give rise to self-intersecting D7-brane configurations in

global models, which will be explicitly investigated later in section 4.2 [87, 111, 152, 153].

However, it should be emphasized that the limit itself has no direct meaning as all

non-trivial content is eliminated for ε = 0 due to a3 = a4 = a6 = 0, cf. table 3.6. It

rather provides the means to parameterize the corresponding type IIB coupling constant

and use the parameter to go arbitrarily far into the weakly-coupled regime –– the limit

being the no-coupling special case of no direct interest. Having such a weakly coupled

region in the setting allows to compare to the perturbative theory and justifies the

description in terms of a type IIB orientifold setting. In a more general context, having

a Sen limit in an F-theory setting therefore corresponds to the existence of a parameter

that allows for a global tuning of the elliptic fibration –– the complex structure of the

torus–– that smoothly connects the strong coupling and weak coupling region.

3.8 Local vs. Global Model Building

After the initial surge of developments in F-theory following the original paper from

1996 [59], the publication of several papers in 2008 on local F-theory GUT models [66–

69] stirred the interest in this approach anew. This is mostly due to the realization that

the F-theory framework easily accommodates exceptional gauge groups necessary for

GUT model building and the discovery of the decoupling principle. The existence of

exceptional groups in F-theory was already known in the early stages, but technical dif-

ficulties in engineering suitable Calabi-Yau 4-folds prohibited extensive model building

in the late ’90s–– and except for certain special cases still do.

In stringy IIB GUT theories [99] a stack of 7-branes wrapping the internal 4-cycle

SGUT ⊂ B of the base carries the GUT gauge group, e.g. SU(5) or SO(10). Further 7-

branes S,S ′ ⊂ B in the setting necessarily intersect the GUT brane along 1-dimensional

curves SGUT∩S of the internal geometry, where matter states localize–– hence the name

“matter curves”. When multiple 7-branes (or equivalently multiple matter curves) meet

in a point, Yukawa couplings and superpotential contributions arise. Intersection angles,

volumes of the wrapped cycles and topology of the intersection curves all determine

the resulting interaction strengths and other phenomenologically relevant properties.

Generically, however, the numerous back-reactions between the branes and the geometry

easily becomes unmanageable.
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3.8.1 The Decoupling Principle

In order to deal with the back-reactions the natural idea is to focus on a local neigh-

borhood of the GUT brane. Basically, one would like to work just on the effective

8d worldvolume gauge theory of the GUT brane. From this perspective one only sees

the matter curves and triple intersection points, but ignores the global structure of the

branes that gives rise to those curves and points. In the local F-theory GUT model

building approach one completely neglects therefore the tedious task of constructing

suitable elliptically-fibered Calabi-Yau 4-folds and instead engineers intersections with

the GUT-brane only locally in a small neighborhood [67, 68]. This necessarily raises

the question whether the global structure and its gravitational back-reactions can be

neglected at all. The existence of a decoupling limit essentially demands that all gravi-

tational interactions can be made parametrically small–– which has obvious similarities

to the coupling-parametrically Sen limit discussed in section 3.7. This implies to be

able to increase the Planck mass arbitrarily while keeping the gauge theory parameters

finite.

On a technical level the existence of a decoupling limit implies a significant simplifi-

cation due to the geometric dependence of the Planck scale MPl, the GUT coupling α

and the GUT scale MGUT [67, 154]. Via the dimensional reduction of the 10d Einstein-

Hilbert action on R1,3 × B one finds

MPl ∝ vol(B), (3.60)

i.e. the 4d Planck scale depends on size of the inner dimensions. The GUT coupling,

which arises from the reduction of the 8d super-Yang-Mills theory on the GUT-brane

worldvolume, is similarly dependent on the geometrical size of the wrapped GUT-brane

divisor

α ∝ vol(S)−1, (3.61)

and one can determine by dimensional analysis that the GUT scale dependency is

MGUT ∝ vol(S)−
1
4 . (3.62)

Ultimately, the gauge parameters α and MGUT depend on the size of the GUT brane

divisor, whereas the Planck mass is proportional to the total volume of the compact

inner dimensions.

The existence of a decoupling limit therefore requires a geometry, where in the gravi-

tational decoupling limit vol(B)→∞ the GUT-brane divisor volume vol(S) remains at

a fixed finite value. As a mathematical alternative one can also consider the limit where

vol(S)→ 0 while vol(B) remains finite, even if there are subtle differences between those
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CP1 × CP1: 1

0 0

0 2 0

0 0

1

CP2: 1

0 0

0 1 0

0 0

1

dPn: 1

0 0

0 n+ 1 0

0 0

1

Table 3.4.: Hodge diamonds of the del Pezzo surfaces, where the number

of CP2-blowups is n = 1, . . . , 8.

limits. For this reason one usually wraps the GUT 7-brane around a del Pezzo surface

S inside the Kähler 3-fold base B = X/σ of the elliptically-fibered Calabi-Yau 4-fold

Z in typical F-theory GUT models. Such del Pezzo surfaces are CP1 × CP1, CP2 and

blowups of CP2 at n = 1, . . . , 8 distinct points, denoted dPn. The Hodge diamonds in

table 3.4 clearly show that all del Pezzo surfaces have no deformation moduli as b1 = 0,

which makes them rigid with the overall volume being the only parameter.

3.8.2 Local F-theory GUT model building

The typical setting in a local F-theory GUT model involves a GUT 7-brane with

gauge group SU(5) or SO(10), that would supposedly wrap a del Pezzo surface in the

corresponding global model [67, 68]. Following the Georgi-Glashow SU(5) GUT models

[13], the Standard Model gauge group SU(3)C×SU(2)W×U(1)Y is embedded in SU(5)

such that the generator of the Abelian U(1)Y -factor is identified with the generatorVI

Y =

(
−1

6

)
diag(2, 2, 2,−3,−3) (3.63)

of the SU(5)-algebra and the matter content of the N=1 (minimal) supersymmetric

Standard Model (MSSM) is organized in the SU(5)-multiplets listed in table 3.5. The

gauge bosons arise from the decomposition of the adjoint representation

24→ (8,1)0 ⊕ (1,3)0 ⊕ (1,1)0︸ ︷︷ ︸
Standard Model gauge bosons

⊕ (3,2)−5
6
⊕ (3̄,2)5

6︸ ︷︷ ︸
exotic bosons

(3.64)

yielding two exotic representations that have to be taken care of in realistic models. The

SU(5) GUT also suffers from the doublet-triplet splitting problem, which in addition to

the required Higgs representations yields unwanted color triplets in the decomposition

of 5H and 5̄H .

VINote that the factorized prefactor − 1
6 in (3.63) is often omitted in the literature. Between the dif-

ferent embedding matrices only the hypercharge flux of the decomposed representations changes.

The convention chosen here gives the fractional charges usually found in the Standard Model.



3.8. Local vs. Global Model Building 91

10 (3,2)1
6

QL left-handed quark doublet

(3̄,1)−2
3

ūL = (uR)c left-handed up-type anti-quark

(1,1)1 ēL = (eR)c left-handed anti-lepton

5̄m (3,1)1
3

d̄L = (dR)c left-handed down-type anti-quark

(1,2)−1
2

LL left-handed lepton doublet

1 (1,1)0 ν̄L = (νR)c left-handed anti-neutrino

5H (3,1)−1
3

Tu up-type color triplet (GUT remnant)

(1,2)1
2

Hu up-type Higgs doublet

5̄H (3̄,1)1
3

Td down-type color triplet (GUT remnant)

(1,2)−1
2

Hd down-type Higgs doublet

Table 3.5.: Standard Model representations in SU(5) GUTs. A sin-

gle generation of left-handed matter is contained in the 10 ⊕ 5̄m ⊕ 1

representation.

As mentioned earlier, in a local GUT model the matter representations and couplings

originate from (multiple) intersections of the GUT-brane with further 7-branes, leading

to enhancements of the singularity type in the elliptic fibration over the intersection

curve or point. For correspondence with the MSSM states this requires at least the

presence of three matter curves of type 10, 5̄m and 1 as well as a single Higgs curve

of type 5H and 5̄H each. Over triple intersections of matter curves (i.e. quadruple

intersections of 7-branes) the elliptic degeneration gets worse which leads to Yukawa

couplings [66, 67, 72, 77, 155]. For example, over the triple intersection of two 10 matter

curves with the 5H Higgs curve the singularity enhances according to table 3.6 to

exceptional type E6. The decomposition then yields the 10 ·10 ·5H Yukawa coupling––

which is of strictly non-perturbative origin and is generated in perturbative type II

orientifold models by D-brane instantons. One of the major appealing arguments for

the usage of the F-theory framework is the entirely unified and natural origin of this

crucial coupling. In terms of MSSM fields the relevant Yukawa couplings are

10 · 10 · 5H → QL(uR)cHu,

10 · 5̄m · 5̄H → LL(eR)cHd +QL(dR)cHd.
(3.65)

The localization of the up- and down-type Higgs on distinct matter curves helps solving

the doublet-triplet splitting problem in specific models. Further refinements on e.g. in-

teraction strengths can then be tuned directly in the geometry of the intersections and

the matter curves.
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3.8.3 U(1)Y -hypercharge flux GUT group breaking

Any viable GUT model requires the breaking of the unification symmetry at low

energies in order to reproduce the Standard Model gauge group. Three approaches are

known to achieve this breaking in generic string models: Using adjoint Higgs fields or

Higgses in large representations, breaking via Wilson lines and the activation of a non-

trivial Abelian background flux on the GUT 7-brane [69, 156]. As it turns out, only

the last method is actually applicable to F-theory GUT models if one aims to preserve

certain phenomenological aspects–– like solutions for the double-triplet splitting problem

and rapid proton decay–– and to avoid singular branes.

The basic idea of the hypercharge flux GUT breaking is to turn on a non-trivial

U(1)Y -hypercharge flux on SGUT ⊂ B. One specifies a line bundle L on SGUT, which

is embedded via the matrix (3.63) into the GUT group SU(5). A non-zero value of

c1(L) ∈ H2(SGUT) corresponds to a non-trivial background flux. This background flux

on the worldvolume can be encoded into the M/F-theory G4-flux via

G4 ∝ c1(L) ∧ (ωY − ω2) = −c1(L
5
6 ) ∧ ω3 (3.66)

where ωY is a specific 2-form that can be understood as a δ-function localized on

SGUT and ω2 as well as ω3 are non-trivial shifts required to eliminate the unacceptable

exotic gauge bosons found in (3.64). Ultimately, this requires both L
5
6 and L to be

well-defined line bundles over SGUT. A further constraint arises from the Stückelberg

mechanism that could potentially give a mass to the U(1)Y field. Since SGUT ⊂ B
has codimension 1, the vanishing of the hypercharge Stückelberg masses ΠY

M requires

that the Poincaré-dual 2-cycle Ξ := PD(c1(L)) ∈ H2(SGUT) is trivial as a 2-cycle

ι∗Ξ ∈ H2(B) of the base, i.e. Ξ ∈ ker(ι∗) for the embedding ι : SGUT ↪→ B. This yields a

somewhat non-trivial topological condition for the base and the embedded GUT-brane

divisor SGUT.

3.8.4 Global issues

The possibility to work in geometrically simple settings while benefiting from the

strong-coupling properties of F-theory in local GUT models –– like exceptional gauge

symmetries –– led to the successful reproduction of several phenomenological aspects

within this unified perspective. Unfortunately, the key consistency conditions enumer-

ated in section 3.6 can only be evaluated in global settings where the full elliptically-

fibered Calabi-Yau 4-fold is explicitly known. As it turns out, the stepping-up from

local to global F-theory models is highly non-trivial at a technical level and so far has

only been successful at isolated instances. This puts the results of local F-theory models

in the awkward situation of being somewhat speculative, as there may be severe global
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restriction that prohibit the assumed specific configurations of 7-branes, intersections

and fluxes to be realized in truly global models [86, 88, 157–162].

The remainder of this work therefore deals with several aspects of constructing global

F-theory models from known type IIB settings and local F-theory models.
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sing. discr. gauge enhancement coefficient vanishing degrees

type deg(∆) type group a1 a2 a3 a4 a6 f g

I0 0 — 0 0 0 0 0 0 0

I1 1 — 0 0 1 1 1 0 0

I2 2 A1 SU(2) 0 0 1 1 2 0 0

I ns
2k 2k C2k SP (2k) 0 0 k k 2k 0 0

I s
2k 2k A2k−1 SU(2k) 0 1 k k 2k 0 0

I ns
2k+1 2k + 1 [unconv.] 0 0 k + 1 k + 1 2k + 1 0 0

I s
2k+1 2k + 1 A2k SU(2k + 1) 0 1 k k + 1 2k + 1 0 0

II 2 — 1 1 1 1 1 1 1

III 3 A1 SU(2) 1 1 1 1 2 1 1

IV ns 4 [unconv.] 1 1 1 2 2 1 1

IV s 4 A2 SU(3) 1 1 1 2 3 1 1

I∗ ns
0 6 G2 G2 1 1 2 2 3 2 3

I∗ ss
0 6 B3 SO(7) 1 1 2 2 4 2 3

I∗ s
0 6 D4 SO(8) 1 1 2 2 4 2 3

I∗ ns
1 7 B4 SO(9) 1 1 2 3 4 2 3

I∗ s
1 7 D5 SO(10) 1 1 2 3 5 2 3

I∗ ns
2 8 B5 SO(11) 1 1 3 3 5 2 3

I∗ s
2 8 D6 SO(12) 1 1 3 3 5 2 3

I∗ ns
2k−3 2k + 3 B2k SO(4k + 1) 1 1 k k + 1 2k 2 3

I∗ s
2k−3 2k + 3 D2k+1 SO(4k + 2) 1 1 k k + 1 2k + 1 2 3

I∗ ns
2k−2 2k + 4 B2k+1 SO(4k + 3) 1 1 k + 1 k + 1 2k + 1 2 3

I∗ s
2k−2 2k + 4 D2k+2 SO(4k + 4) 1 1 k + 1 k + 1 2k + 1 2 3

IV∗ns 8 F4 F4 1 2 2 3 4 3 4

IV∗ s 8 E6 E6 1 2 2 3 5 3 4

III∗ 9 E7 E7 1 2 3 3 5 3 5

II∗ 10 E8 E8 1 2 3 4 5 3 5

non-min 12 — 1 2 3 4 6 4 6

Table 3.6.: Refined Kodaira classification resulting from Tate’s algorithm.

In order to distinguish the “semi-split” case I∗ ss
2k from the “split” case I∗ s

2k

one has to work out a further factorization condition which is part of the

aforementioned algorithm, see §3.1 of [132].
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Chapter 4
M5-brane F-theory Instantons

and E3-brane Type IIB Instantons

The importance of the non-perturbatively generated Yukawa couplings and other

effects for semi-realistic model building via E-brane instantons in perturbative

string theory [42, 70, 100, 103, 163–168] –– introduced in section 2.6 –– requires a bet-

ter understanding of the underlying structure of instantons. In fact, considering that

the F-theory framework provides a manifestly unified non-perturbative perspective on

type IIB theory, it is highly suggestive to match ordinary Euclidean D3-brane instantons

to their respective counterparts. Those were identified as so-called vertical M5-branes,

i.e. six-dimensional Euclidean surfaces that magnetically couple to the 3-form potential

Ĉ3 and entirely wrap the elliptic fiber [102].

Instead of dealing with M5-brane instantons from first principles, one can compare

the zero-mode structure of F-theory M5-brane instantons to IIB E3-brane instantons in

a basic toy model geometry. F-theory then allows to move away from the weak-coupling

Sen limit to the truly non-perturbative regime, such that one can study for example the

non-perturbative stability of type IIB U(1) vs. O(1) instantons and the lifting of the

troublesome τ̄α̇ zero-modes. In fact, U(1) instantons naturally recombine to the generic

self-invariant O(1) brane arrangement, unless the elliptic fiber does not experience the

O7-plane monodromy.

The non-perturbative perspective obtained from the zero-mode matching also reveals

that on the F-theory side charged (matter) zero-modes pair up if one moves away from

the weak-coupling Sen limit. Most importantly, charged zero-modes on the F-theory

side are not counted by the holomorphic Euler characteristic, as suggested by an old

argument of Witten [102, 169] that in the absence of fluxes χ(M;OM) = 1 is required

for a M5-brane to contribute to the superpotential. His argument was based on counting

the fermionic zero-modes of the Dirac operator on the M5-brane. The precise matching

of the E3-brane and M5-brane Hodge diamonds will be used to find a new criterion to

97
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generate such an uncharged, nowhere vanishing superpotential [89].

4.1 Octic Toy Model Orientifold Geometry

The well-established basics of type II E-brane instantons as well as the zero-mode

structure [100] were already introduced in section 2.6. The Euclidean D3-branes wrap

4-cycles of the “upstairs” Calabi-Yau geometry X , which usually requires the inclusion

of the corresponding mirror E3-branes in order to be invariant under the orientifold

projection. Let E and E ′ be such an E3-brane/image brane pair in X , which is projected

onto E ⊂ B = X/σ in the “downstairs” orientifold geometry. This space also serves

as the base of the F-theory elliptically-fibered Calabi-Yau 4-fold geometry Z, and by

adding the two fiber dimensions over E , one naively obtains the M5-brane M ⊂ Z4.

This generic geometric setting is shown in figure 4.1.

Figure 4.1.: Generic geometric setting of E3-branes E in the “upstairs”

type IIB Calabi-Yau geometry and the corresponding vertical (fiber-

wrapping) M5-branes M in F-theory.

In order to have an explicit geometry, the octic Calabi-Yau 3-fold [111] will be used

for the type IIB “upstairs” geometry. It is given by a degree-8 hypersurface in the

weighted projective space P4
11114 with homogeneous coordinates (x1, . . . , x4, ξ). A suit-

able orientifold involution mapping is the sign flip of the weight-4 coordinate ξ, i.e. the

orientifold data is given by

X := P4
11114[8] and

σ : X −→ X
ξ 7→ −ξ

(4.1)
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vertices of the coords GLSM charges divisor class

polyhedron / fan Q1 Q2

ρ1 = ( 0, 0, 0, 1, 0 ) x 2 0 2σ + 8H

ρ2 = ( 0, 0, 0, 0, 1 ) y 3 0 3σ + 12H

ρ3 = ( 0, 0, 0, −2, −3 ) z 1 −4 σ

ρ4 = (−1, −1, −1, −8, −12 ) u1 0 1 H

ρ5 = ( 1, 0, 0, 0, 0 ) u2 0 1 H

ρ6 = ( 0, 1, 0, 0, 0 ) u3 0 1 H

ρ7 = ( 0, 0, 1, 0, 0 ) u4 0 1 H

conditions: 6 0

intersection form: −64σ4 + 16σ3H − 4σ2H2 + σH3

Stanley-Reisner ideal: 〈xyz, u1u2u3u4〉

Table 4.1.: Toric data for the F-theory uplift 4-fold over P3.

serves as the space involution. Note that this constrains the degree-8 polynomial some-

what in order for the hypersurface to be compatible with the involution, i.e. only even

powers of ξ are allowed. The orientifold fixpoint plane is obviously located along the

divisor

O7 = Dξ := {ξ = 0}, (4.2)

which is cohomologically given by [O7] = 4H ∈ H4(X ;Z), where H is the class of any

other coordinate divisor Dxi . The Stanley-Reisner ideal of the ambient space corre-

sponds to the removal of the origin of C5, i.e.

SR(P4
11114) = 〈x1x2x3x4ξ〉, (4.3)

which specifies the relevant toric data entirely. Using the computational method de-

scribed in appendix A, one can compute the relevant cohomology group dimensions.

The upstairs geometry has h1,1(X ) = 1 Kähler moduli and h1,2(X ) = 149 complex

structure moduli, such that by (2.27)

χ(X ) = 2(h1,1 − h1,2) = −296 (4.4)

is the Euler characteristic. This simple yet sufficiently rich orientifold setting will serve

as the stage for the remainder of this chapter.
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The corresponding “downstairs” geometry B = X/σ is simply given by the projective

space P3, which serves as the base of the F-theory uplift, whose elliptically-fibered

Calabi-Yau 4-fold Z is constructed by adding a P2
231[6]-bundle. The toric data for Z

is summarized in table 4.1, and the simplicity of the chosen toy geometry lies in the

fact that both the “upstairs” geometry X as well as the corresponding F-theory uplift

geometry are described by hypersurfaces (instead of e.g. complete intersections) in a

toric variety. One can then determine the topology of Z, which has non-trivial and

non-zero Hodge numbers

h1,1(Z) = 15564 (Kähler moduli)

h3,1(Z) = 3874 (complex structure moduli)
(4.5)

such that using the relations from table 3.3 the Euler characteristic is χ(Z) = 23328.

4.2 Generic D7-Brane Structure in the Sen Limit

The orientifold plane induces a tadpole of 8[O7] = 32H, which has to be canceled

by adding D7-branes of the same total cohomological charge [43]. In the strict sense

of the Sen limit, generically only a single D7-brane is present in the setting, which ––

rather surprisingly–– is not entirely generic but has a double point intersection with the

O7-plane [111, 121]. This can be seen from the D7-brane equation in (3.59), which for

the case at hand reduces to

O7: h8(x1, . . . , x4, ξ) := ξ2 = 0,

D7: (ηn)2 = h8χ2n−8 = (ηn)2 − ξ2χ2n−8

(4.6)

for n = 16, where the homogeneous degrees in the subscripts of the mappings ηn and

χ2n−8 have been kept free for later reference. Clearly, along the O7-plane locus ξ = 0

the D7-brane (ηn)2 = ξ2χ2n−8 → 0 shows a double point type of singularity, depicted

in figure 4.2.

For the specific choice χ2n−8 = (ψn−4)2 with n ≥ 4 the entire D7-brane equation

factorizes to

(ηn)2 − ξ2χ2n−8 = (ηn + ξψn−4)(ηn − ξψn−4), (4.7)

which describes a brane/image brane pair D7/D7′ intersecting on the O7-plane. This

intersecting brane pair carries a U(1) gauge group, whereas the necessarily self-inter-

secting (generic) single D7-brane of the Sen limit has a trivial SO(1) ∼= {1} gauge group,

see section 2.5. By giving a non-trivial vacuum expectation value to the massless fields

localized on the D7 ∩ D7′ intersection one can initiate a D7-brane recombination that
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gives back the single (generic) brane. However, the D3-brane tadpole condition requires

adding non-trivial line bundles [111]

D7 : L := O
(
n−4

2

)
,

D7′ : L′ := O
(
−n−4

2

)
.

(4.8)

For later reference it is relevant to investigate the moduli spaces of both brane con-

figurations. For the generic SO(1) case the moduli space consists of the number of

deformations that preserve (4.6), i.e.

NSO(1) =

(
n+ 3

3

)
+

(
2n− 8 + 3

3

)
−
(
n− 8 + 3

3

)
− 1

=
4

3
n3 − 8n2 +

59

3
n.

(4.9)

Following the earlier argument, this number is expected to be the same for the U(1)

brane/image brane pair after the brane recombination has been taken into account

[105].

The moduli space for the brane/image brane system has a more involved structure.

The number of transverse deformations is given by

ND7/D7′ =

(
n+ 3

3

)
+

(
n− 1

3

)
− 1

=
n

3
(n2 + 11)− 1.

(4.10)

The brane recombination moduli are localized on the intersection curve C := D7∩D7′.

Due to the orientifold involution, only the invariant (i.e. symmetric) states are relevant––

the anti-symmetric ones are entirely projected out. Mathematically, the orientifold

involution induces a splitting

H i(X ;V ) = H i
+(X ;V )⊕H i

−(X ;V ) (4.11)

of the cohomology, see section A.5 for details. Due to the lifted action of the involution

σ to the bundle, the role of the (mathematically) invariant and anti-invariant subspaces

of H i(X ;V ) may be exchanged. For the case at hand the relevant zero-modes are

counted by the groups H i(C;L2 ⊗K−
1
2

C ). In fact, the symmetric modes are all located

on the part of the intersection curve away from the O7-plane, i.e.

C̃ := C −O7, (4.12)
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which becomes singular in R =
∫
X [D] · [O7] · ([D7] − [O7]) ramification points. Using

the isomorphisms

H i
−(C;L2 ⊗K−

1
2

C ) ∼= H i(C̃/σ; L̃|C̃/σ),

where c1(L̃)|C̃/σ = c1(L⊗K
1
2
D7)|C̃ −

R

2
,

(4.13)

both cohomology group dimensions can be computed to

h0
−(C;L2 ⊗K−

1
2

C ) = n(n− 4)2 + 1,

h1
−(C;L2 ⊗K−

1
2

C ) = 1,
(4.14)

such that the total number of recombination modes is N recomb
D7/D7′ = n(n−4)2 +2. Together

with (4.9) and (4.10) one obtains the relation

NSO(1) = ND7/D7′ +N recomb
D7/D7′ − 1, (4.15)

where the extra −1 stems from the U(1) gauge symmetry D-term condition that

eliminates one modulus. Therefore, despite the somewhat surprising geometrical ar-

rangement of the D7-brane and brane/image brane pair in the Sen limit prototype

parametrization of the octic geometry, the D7-brane moduli counting is fully under-

stood if one takes recombination moduli properly into account.

4.3 Uncharged Zero-Mode Counting

Since 3-branes are unlike 7-branes not directly seen in the F-theory geometry and

not constrained, a generic E3-brane does not have a singular self-intersection like the

D7-branes. One can now distinguish the two cases shown in figure 4.3, i.e. the self-

invariant O(1) instanton and the U(1) instanton E3/E3′ pair that were both introduced

in section 2.6.3.

4.3.1 Self-Invariant O(1) E3-brane instantons

In order to study the uncharged zero-mode structure of O(1) instantons it is useful to

consider an explicit example. Let En ⊂ X be a generic degree-n divisor in the Calabi-

Yau geometry, such that the intersection form reduces to I(En) = 2nH2. Using the

Koszul sequence

0 −→ OX (−n) ↪−→ OX −� OEn −→ 0 (4.16)

introduced in section A.4, one is able to derive the cohomology on En from the coho-

mology of X . This in turn is derived from the (known) cohomology of the weighted
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Figure 4.2.: Generically self-intersec-

ting D7-brane in the Sen limit and fac-

torized D7-brane/image brane pair.

Figure 4.3.: Generic self-invariant

O(1) instanton E3-brane and U(1)

instanton E3/E3′ instanton brane pair.

projective ambient space A := P4
11114 via a second (twisted) Koszul sequence

0 −→ OA(−n− 8) ↪−→ OA(−n) −� OX (−n) −→ 0. (4.17)

Using the computational algorithm described in appendix A.2, one can show that the

only non-trivial contributions to the ambient space cohomology are counted by rational

functions of the form

h4(A;OA(−n)) = #

{
1

x1x2x3x4ξ · Pn−8(x1, . . . , x4, ξ)

}

h4(A;OA(−n− 8)) = #

{
1

x1x2x3x4ξ · Pn(x1, . . . , x4, ξ)

} (4.18)

where Pn denotes a degree-n polynomial in the homogeneous coordinates. The number

pn of such polynomials that respect the weight 4 of ξ is given by

pn :=

bn
4
c∑

k=0

(
n− 4k + 3

3

)
, (4.19)

such that following section A.3 one can derive the cohomology group dimensions

h•(En;OEn) = (1, 0, pn − pn−8 − 1)

=
(

1, 0, n
3
(n2 + 11)− 1

) (4.20)

for the E3-brane divisor. Due to h1(En;OEn) = 0 there are no non-trivial Wilson lines

and the holomorphic Euler characteristic is

χ(En;OEn) =
n

3
(n2 + 11). (4.21)
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As before, it is necessary to split the cohomology group dimensions into the σ-

invariant and σ-anti-invariant part. For the known O7-plane fixpoint set {ξ = 0}
the holomorphic Lefschetz theorem (A.27) can be computed to be

χσ(En;OEn) = −2n2, (4.22)

and using (A.32) one can deduce

h•+(En;OEn) =
(

1, 0, 1
6
(n3 + 11n)− n2 − 1

)
,

h•−(En;OEn) =
(

0, 0, 1
6
(n3 + 11n) + n2 − 1

) (4.23)

for the cohomology of the O(1) instanton. This will later be matched to the cohomology

of the corresponding vertical M5-brane divisor in the F-theory uplift.

4.3.2 Non-Self-Invariant U(1) E3/E3’-brane pair instantons

For the factorized case of a Euclidean 3-brane pair let n = 2m be even for m ≥ 4.

The divisors are specified by the same equation (4.7) like a space-time filling D7-brane

pair –– only that E3-branes are purely wrapping the internal compact dimensions. The

Euclidean 3-branes likewise have to carry different line-bundles in order to have the

same C0 and C4 tadpole contribution as the recombined O(1) instanton previously

discussed:
E3 : Em := {ηm + ξψm−4 = 0} with L = O(−m

2
),

E3′ : E ′m := {ηm − ξψm−4 = 0} with L′ = O(m
2

).
(4.24)

This choice of gauge flux also cancels the Freed-Witten anomaly if m is odd. As before,

one can compute the cohomology

h•±(Em;OEm) =
(

1, 0, 1
3
(m3 + 11m)− 1

)
, (4.25)

which in this case splits symmetrically into σ-invariant and σ-anti-invariant parts. The

extra universal zero-mode h0
−(Em;OEm) = 1 indicates the τ̄α̇ zero-mode of the U(1)

instanton in contrast to the O(1) instanton in (4.23).

One naturally expects additional zero-modes to be localized on the intersection curve

C := E3 ∩ E3′ of the brane pair, where KC = O(2m). The computation of those

recombination zero-modes is analogous to the factorized D7-brane case discussed in

section 4.2, i.e. the relevant cohomology groups are

H i
±(C;L2 ⊗K

1
2
C) ∼= H i

±(C;OC) for i = 0, 1. (4.26)
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zero-modes statistics Type IIB F-theory

universal / N=1 SUSY: (Xµ, θα) (bose, fermi) H0,0
+ (E) H0,0(M)

N=1′ SUSY: τ̄α̇ fermi H0,0
− (E)

H1,0(M)
invariant Wilson lines: γα fermi H1,0

+ (E)

anti-invariant Wilson lines: (w, γ̄α̇) (bose, fermi) H1,0
− (E)

H2,0(M)
invariant deformations: χα fermi H2,0

+ (E)

anti-invariant deformations: (c, χ̄α̇) (bose, fermi) H2,0
− (E) H3,0(M)

Table 4.2.: Type IIB and F-theory zero-modes for an O(1) instanton,

compare to the general instanton zero-mode structure in table 2.7.

Using the algorithm for equivariant line bundle cohomologies described in appendix A.5

one can compute

h•+(C;OC) = (1,m3 + 4m2 + 1),

h•−(C;OC) = (0,m3 − 4m2).
(4.27)

Like for the SO(1) and U(1) D7-brane moduli spaces in section 4.2, one finds an

agreement between the O(1) and U(1) instanton moduli spaces as well. More precisely,

N±(E
O(1)
2m ) = N±(EU(1)

m ) +N∓(C) (4.28)

holds for N± being the sum of the respective cohomology group dimensions
∑

i h
i
± in

(4.23), (4.25) and (4.27). To summarize, both the D7- and E3-brane structure for

(S)O(1) as well as U(1) arrangements is fully understood if recombination moduli are

properly taken into account.

4.3.3 Uplifting to vertical M5-branes

The next step now is to consider the uplift to a vertical M5-brane divisor in the

elliptically-fibered Calabi-Yau 4-fold Z summarized in table 4.1 and compare the zero-

mode counting. Let

π : Z −� B = P3 (4.29)

be the projection mapping of the elliptic fibration. As mentioned earlier, a vertical

M5-brane is entirely wrapping the elliptic fiber, i.e. one actually considers preimages

M = π−1(E) of complex surfaces E ⊂ B. Since the base B = X/σ is the downstairs

geometry of the previously considered type IIB Calabi-Yau X and due to the simplicity
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of both geometries, the correspondence between the M5-brane divisor on the F-theory

side and the E3-brane on the type IIB side is given by

Mn := π−1(En)︸ ︷︷ ︸
M5-brane divisor

⊂ Z where En := En/σ︸ ︷︷ ︸
“downstairs” E3-brane divisor

⊂ B, (4.30)

such that [Mn] = nH ∈ H2(Z;Z) is the M5-brane divisor class. Using the by now

familiar algorithm from appendix A.2, and the Koszul sequence

0 −→ OZ(−nH) ↪−→ OZ −� OMn −→ 0 (4.31)

as well as hi(Z;OZ) = hi,0(Z) = (1, 0, 0, 0, 1) due to the Calabi-Yau property of Z, one

can determine the M5-brane cohomology and the holomorphic Euler characteristic

h•(Mn;OMn) =
(

1, 0,
(
n−1

3

)
,
(
n+3

3

)
− 1
)
,

χ(Mn;OMn) =
3∑
i=0

hi(Mn;OMn) = −2n2.
(4.32)

Note that this χ(Mn;OMn) precisely agrees with the Lefschetz number χσ(En;OEn)

for O(1) instantons from (4.22). A closer inspection actually reveals

h•(Mn;OMn)︸ ︷︷ ︸
M5-brane cohomology

=
(
h0

+, h
0
− + h1

+, h
1
− + h2

+, h
2
−

)
︸ ︷︷ ︸
O(1) instanton E3-brane cohomology

, (4.33)

i.e. the σ-invariant and σ-anti-invariant zero-modes hi±(En;OEn) of the O(1) instan-

ton pairwise combined exactly yield the cohomology of the vertical M5-brane divisor.

Therefore this rather non-trivial agreement of the computations convincingly shows the

(universal) E3/M5-brane instanton zero-mode correspondence listed in table 4.2.

4.3.4 Interpretation and Analysis

In order to understand the arrangement of the E3-brane cohomology groups in the

M5-brane uplift, one has to take the monodromy of the O7-plane into account. As

shown (partially) by the O7-plane monodromy matrix (3.11), the net effect of the O7-

plane here is a sign flip

(α, β) 7→ (−α,−β) (4.34)

in the homology of the elliptic fiber for α, β ∈ H1(T 2;Z). This implies that an (i, 0)-form

of the “upstairs” E3-brane in X must be σ-odd in order to combine with the (1, 0)-form

of the elliptic fiber into an even (i+ 1, 0)-form that survives the orientifolding process.
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The second observation one can take away from table 4.2 is that only universal and

deformation zero-modes contribute to hi,0(M), i.e. the information contained in the

open strings starting and ending on the instanton E3-brane. Matter zero-modes that

arise from the intersection with other 7-branes will be investigated in the next section.

As a third point, one can observe in the discussed toy model that only the O(1)

instanton gets truly uplifted. If the factorized E3/E3′ brane pair setting is uplifted to

the corresponding divisors

(ηm)2 ± h(ψm−4)2 = 0, (4.35)

one finds a singularity at η = ψ = 0. However, even after resolving this singularity one

does not find the additional τ̄α̇ zero-mode identified in (4.25) that should be expected

from a U(1) instanton compared to the O(1) instanton. Apparently, a non-perturbative

effect forces the U(1) brane pair to recombine into the corresponding (generic) O(1)

instanton, which also smooths out the singularity from (4.35).

This raises the question whether F-theory contains any U(1) instantons from type IIB

at all that do not automatically recombine into O(1) instantons. It is necessary for the

E3-brane to wrap a divisor that does not intersect the O7-plane in order to avoid this

recombination––a condition that cannot be satisfied within the simple P3 toy model base

considered here. However, based on a non-standard geometrical phase (i.e. arising as a

flop transition from the standard phase discussed in section 5.3) of the double del Pezzo

transition of the quintic Calabi-Yau 3-fold P4[5] that contains two non-intersecting dP6

divisors, one can indeed construct a U(1) instanton that uplifts accordingly to the

non-perturbative F-theory framework [89]. The two dP6 surfaces are identified by the

orientifold mapping and are projected onto a single dP6 divisor E ⊂ B of the base. Here

on finds that both the fermionic zero-mode θα counted by h0,0
+ (E) = 1 and the τ̄α̇ mode

counted by h0,0
− (E) survive in the F-theory uplift. One concludes therefore that it is

indeed possible to have non-recombining “genuine” U(1) instantons in F-theory, even if

the framework non-perturbatively aims to protect from such settings if allowed by the

geometry. This completes the analysis of the zero-mode structure formed on isolated,

non-intersecting E3-brane instantons.

4.4 Charged Matter Zero-Mode Counting

Intersections between E3-branes with D7-branes add charged (matter) zero-modes to

the instanton properties on the perturbative type IIB side [100]. Those are counted

by hi(C;L⊗K
1
2
C), where C := D7 ∩ E3 is the intersection curve and L a line bundle

encoding internal gauge flux on the D7-brane worldvolume. Naturally, one expects

corresponding structures on the F-theory side, i.e. when the vertical M5-brane intersects
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Figure 4.4.: The base surface E ⊂ B of an vertical M5-brane M =

π−1(E) ⊂ Z intersects two SU(n) degenerations of the fiber, which gives

rise to SU(n) matter zero-modes and Yukawa-type interactions in the triple

intersection point.

the discriminant locus that encodes the location of the 7-branes. The big obstacle here

comes in the form of various singularities: As the elliptic fiber degenerates along the 7-

brane locus, the intersecting M5-brane is effectively wrapping a singular vertical divisor

that has to be treated accordingly. Furthermore, as the generic remainder component

DR of the discriminant (3.19) is often singular, one may encounter both singularities in

the intersection curve as well as the elliptic fibration. It is therefore helpful to treat those

two cases –– the intersection of M with smooth branes Da or the generically singular

DR remainder–– separately.

4.4.1 Matter zero-modes from smooth 7-branes

First consider the intersection with a smooth D7-brane divisor Da ⊂ X in the upstairs

type IIB geometry. As a typical situation take a D7/D7′ brane stack pair and a single

O(1) instanton E. If Da is intersected by another D7-brane stack wrapping Db ⊂ X ,

the corresponding number of zero-modes in the bi-fundamental (na, n̄b) representation

of U(na)× U(nb) is counted by

D7/D7′ intersection: hi(Cab;La ⊗ L∨b ⊗K
1
2
Cab

) for i = 0, 1, (4.36)

where La and Lb are line bundles over Da and Db and Cab := Ca∩Cb is the intersection

curve of both divisors. As mentioned before, given an E3-brane E ⊂ X the charged

matter zero-modes λna are localized on the curve Cae := Da ∩ E and are counted by

D7/E3 intersection: hi(Cae;La ⊗K
1
2
Cea

) for i = 0, 1. (4.37)

Moreover, Yukawa-type interactions of the form Φ(na,n̄b)λn̄aλnb arise from triple inter-

section points Da ∩Db ∩ E.
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vertices of the coords GLSM charges divisor class

polyhedron / fan Q1 Q2 Q3

ν1 = ( 1, 0, 0, 0, 0 ) x 2 0 1 3σ + 12H − S
ν2 = ( 0, 1, 0, 0, 0 ) y 3 0 1 2σ + 8H − S
ν3 = (−2, −3, 0, 0, 0 ) z 1 −4 0 σ

ν4 = (−8, −12, −1, −1, −1 ) u1 0 1 0 H

ν5 = ( 0, 0, 1, 0, 0 ) u2 0 1 0 H

ν6 = ( 0, 0, 0, 1, 0 ) u3 0 1 0 H

ν6 = ( 0, 0, 0, 0, 1 ) u4 0 1 1 H − S
ν7 = ( 1, 1, 0, 0, 1 ) v 0 0 −1 S

conditions: 6 0 2

Stanley-Reisner ideal: 〈xyz, u1u2u3u4, zv, xyu4, u1u2u3v〉

Table 4.3.: Toric data for the resolution of the SU(2)-enhancement sin-

gularity along {u4 = 0} ⊂ B = P3 in table 4.1.

In the F-theory uplift let Da,Db ⊂ B be the corresponding smooth downstairs di-

visors, where the elliptic fibration degenerates to give the SU(na) and SU(nb) gauge

groups, respectively. The disappearance of the U(1) ⊂ U(na) from the perturbative set-

ting can be understood due to an F-theoretic kind of Stückelberg mechanism that makes

this Abelian factor massive [170]. The matter fields arise from the gauge enhancements

to SU(na + nb) along the intersection curve Cab := Da ∩Db. If the M5-brane instanton

wraps both the fiber and E ⊂ B, one basically encounters the geometric setting depicted

in figure 4.4. The matter zero-modes λna are then localized on the intersection curve

Cae := Da ∩ E ⊂ B of the SU(n) 7-brane divisor Da and the instanton base surface E .

The expectation is now that similar to the earlier finding the number of such zero-modes

is counted by

SU(n) 7-brane/M5 intersection: hi(Cae;K
1
2
Cae) for i = 0, 1, (4.38)

i.e. the upstairs formula (4.37) where La = O. One can indeed show for various examples

that this claim seems to hold and gives the correct number of charged matter zero-modes

for vertical M5-branes intersecting the smooth 7-brane components.

At this point one might be concerned about the counting of uncharged and deforma-

tion zero-modes from section 4.3, as the M5-brane divisor M ⊂ Z clearly is singular

along all intersections Cae with 7-branes. Technically, the quantities hi(M;OM) used
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earlier are therefore ill-defined, despite the fact that the computational algorithm from

appendix A is still applicable. In order to check the validity of those results, one has to

explicitly resolve the non-Abelian singularity in the fiber and compute the holomorphic

cohomology of the smoothened M5-brane divisor. Consider the octic P4
11114[8] geometry

with the P3 downstairs base from section 4.1 again and assume the factorization of the

discriminant to the form

∆ = ∆R ·∆δ=2
u4

Sen−−−→ h2︸︷︷︸
O7

· ((η15)2 − hχ22)︸ ︷︷ ︸
remainder DR

· (u4)2︸ ︷︷ ︸
Du4

, (4.39)

such that over the divisor Du4 = {u4 = 0} ⊂ B = P3 a SU(2) degeneration is localized.

Since the singularity is found both in the fibration and the total space Z itself, the

entire Calabi-Yau 4-fold has to be resolved. Fortunately, for the (rather simple) case of

an SU(2) singularity this can be done using toric methods, such that the resolved 4-fold

Z̃ is specified in table 4.3. However, this space no longer has a Weierstrass fibration,

but the resolved M5-brane divisor M̃n can be identified as

[M̃n] = nH ∈ H2(Z̃;Z). (4.40)

The H i(M̃n;OM̃n
) cohomology groups are now well-defined and one can compute

h•(M̃n;OM̃n
) =

(
1, 0,

(
n−1

3

)
,
(
n+3

3

)
− 1
)

(4.41)

in perfect agreement to the earlier result (4.32) obtained under the assumption of an

entirely smooth elliptic fibration. It therefore appears that an explicit resolution of the

(for matter zero-modes generically) singular M5-brane divisorM to M̃ is not necessary.

4.4.2 Generalized matter zero-mode counting for non-SU(n) branes

Aside from SU(n) gauge groups, the non-perturbative F-theory description allows for

numerous other types of singularities. One is therefore forced to ask what happens if

the instanton M5-brane M intersects a generic smooth 7-brane divisor Da ⊂ B that is

not of SU(n) singularity type. It is helpful to use a setting which is also K3-fibered and

therefore has a heterotic dual. Under the Fourier-Mukai transformation the vertical

M5-brane divisorM⊂ Z is mapped by the duality to a worldsheet instanton wrapping

the curve Σ. The gauge group due to singularities in the elliptic fiber on the F-theory

side can be captured via the spectral cover description introduced in section 3.5 for

the heterotic string. The gauge breaking vector bundle V , whose structure group is

embedded into E8×E8, is encoded in the spectral line bundle N by virtue of (3.44) over

the spectral surface C(n). The left-moving fermionic zero-modes of the aforementioned
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dual worldsheet instanton along Σ are then counted by

hi(Σ;V |Σ ⊗K
1
2
Σ) for i = 0, 1 (4.42)

and transform in the singlet representation of the associated gauge group G. This count-

ing corresponds to the earlier finding (4.38), as one basically considers the intersection

of the M5-brane with the spectral surface C(n) instead of the 7-brane itself.

4.4.3 Matter zero-modes from the singular remainder component

Handling the generically singular remainder component DR of the discriminant lo-

cus is substantially more difficult. Not only does one encounter the usually elliptic

degeneration over a 7-brane, but the divisor DR itself becomes singular [111] –– which

also implies that the corresponding D7-brane in the perturbative “upstairs” type IIB

picture is singular. One has therefore to deal with singularities (and the unavoidable

ambiguities in their removal) on both sides one aims to compare. Here one sees for the

first time a non-perturbative effect at work that effectively removes some of the matter

zero-modes on the F-theory side.

With respect to the octic toy model from section 4.1, the singular D7-brane in the

“upstairs” geometry is given by {η2 = ξ2χ} ⊂ X according to the generic findings of

section 4.2. Let the O(1) E3-brane instanton be described by {QE3 = 0} ⊂ X , such

that the charged matter zero-modes of interest are localized on the intersection curve

C := D7 ∩ E3 = {η2 = ξ2χ} ∩ {QE3 = 0} ⊂ X , (4.43)

which exhibits double point singularities at the points

η = ξ = QE3 = 0. (4.44)

Those singularities can be handled by a (relatively) straightforward blowup that defines

a resolved curve C̃, which makes the computation on the type IIB side reasonably safe.

For a homogeneous polynomial QE3 of degree n, which describes an E3-brane instanton

En ⊂ X as before, one can then determine

h0
+(C̃;K

1
2

C̃
) = N(14 + n

2
)−N(14− n

2
)−N(n

2
− 18)

=

 1
24
n(n2 + 3068) if 0 ≤ n < 36,

4(n2 + 340) if n ≥ 36,

(4.45)
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for the σ-invariant matter zero-modes and likewise for the σ-anti-invariant modes

h0
−(C̃;K

1
2

C̃
) = N(10 + n

2
)−N(10− n

2
)−N(n

2
− 6)

+ N(2 + n
2
)−N(2− n

2
)−N(n

2
− 14)

=



1
12
n(n2 + 956) if 0 ≤ n ≤ 4,

1
16

(n3 + 8n2 + 1212n+ 160) if 4 < n < 12,
1
24
n3 + n2 + 431

6
n+ 20 if 12 ≤ n ≤ 20,

1
48

(n3 + 120n2 + 1724n+ 14688) if 20 < n < 28,

4(n2 + 148) if 28 ≥ n,

(4.46)

where N(n) counts the number of global sections of OB(n), i.e.

N(n) := h0(B;OB(n)) =

(
n+ 3

3

)
θ(n) (4.47)

with θ(n) being the Heaviside function given by θ(x) = 1 for x ≥ 0 and zero otherwise.

The expected total number of matter zero-modes is then

IIB matter zero-modes: h0
+(C̃;K

1
2

C̃
) + h0

−(C̃;K
1
2

C̃
) (4.48)

in correspondence to (4.37) for La = O, as from the open string perspective an E3→ D7

string is mapped to a D7→ E3 string, i.e. both have to be present in order to survive

the orientifold projection.

The computation of the total number can be confirmed by considering the non-generic

U(1) instanton that arises from the factorization of the single invariant D7-brane into

a brane/image brane pair with line bundles L = O(6). Here the D7-brane is smooth

and one can consider the equally smooth intersection curve

Σ := {η + ξψ = 0} ∩ {QE3 = 0} ⊂ X . (4.49)

Indeed the subsequently computed number of matter zero-modes from the U(1) instan-

tons agrees as expected with the previously obtained O(1) computation

h0(Σ;L⊗K
1
2
Σ) + h0(Σ;L∨ ⊗K

1
2
Σ)︸ ︷︷ ︸

brane/image brane

= h0
+(C̃;K

1
2

C̃
) + h0

−(C̃;K
1
2

C̃
)︸ ︷︷ ︸

recombined brane

. (4.50)

This result adds a reasonable level of confidence to the earlier blowup procedure to

desingularize the singular intersection curve C of the D7-brane and the E3-brane.
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Figure 4.5.: The different numbers of matter zero-modes (σ-invariant IIB

/ F-theory / IIB) from (4.54) are plotted depending on the E3-brane divisor

degree n.

On the F-theory side one encounters the generic D7-brane locus DR = {f 3 = g2} ⊂ B.

Given an appropriate “downstairs” base surface E := {QE = 0} ⊂ B of the associated

vertical M5-brane divisor, the generic intersection curve

C := DR ∩ E = {f 3 = g2} ∩ {QE = 0} ⊂ B (4.51)

houses the matter zero-modes. As mentioned in (3.21), the generic smooth Weierstrass

model discriminant locus becomes singular over a cusp curve, such that singularities

appear in

C ∩ Ccusp = {f = g = QE = 0}. (4.52)

Those kind of singularities can be dealt with analogous to the ones on the type IIB

intersection curve C, yielding the smooth blown-up intersection curve C̃. The number

of zero-modes is then

h0(C̃;K
1
2

C̃ ) = N(14 + n
2
)−N(14− n

2
)−N(n

2
− 18)

+ N(6 + n
2
)−N(6− n

2
)−N(n

2
− 10),

(4.53)

which differs from the earlier IIB result in (4.48). However, the first line of (4.53) is

equal to the type IIB result (4.46) for the σ-invariant matter zero-modes. One therefore

finds the relation

h0
+(C̃;K

1
2

C̃
)︸ ︷︷ ︸

IIB orientifold

< h0(C̃;K
1
2

C̃ )︸ ︷︷ ︸
F-theory

< h0
+(C̃;K

1
2

C̃
) + h0

−(C̃;K
1
2

C̃
)︸ ︷︷ ︸

IIB orientifold

(4.54)
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between the zero-modes, which is also plotted in figure 4.5 for higher values n of the

E3-brane divisor En. Under the assumption that the performed blowup treatment of

the cusp curve is the right way to proceed, the results indicate a partial pairing up

(i.e. effective elimination) of some of the matter zero-modes when moving away from

the perturbative type IIB orientifold limit.

Surprisingly, the discrepancy between the σ-invariant matter zero-modes from the

IIB computation to the F-theory value can be expressed by the “matter zero-modes”

on an auxiliary curve CA, which arises from the intersection of a degree-n and degree-16

hypersurface in the base B = P3 of the toy model geometry. One then obtains

h0(C̃;K
1
2

C̃ )︸ ︷︷ ︸
F-theory

= h0
+(C̃;K

1
2

C̃
)︸ ︷︷ ︸

IIB orientifold

+ h0(CA;K
1
2
CA), (4.55)

and the auxiliary curve can be interpreted as the intersection of the vertical M5-brane

divisor M with a component that can be related to the O7-plane in the strict weak-

coupling Sen limit. However, the general underlying structure of this observation re-

mains unclear at this point. Nevertheless, one clearly sees non-perturbative effects in

the counting of matter zero-modes occurring in the intersection with singular (generic)

components of the discriminant locus. This completes the discussion of the charged

matter zero-mode structure with the result that instanton zero-modes from the M5-

brane perspective are not properly recognized by the perturbative type IIB counting.

4.5 Relating M5-brane and E3-brane Hodge Diamonds

After gathering the information on the instanton zero-mode structure in the previous

sections, one can in fact go further and relate the entire Hodge diamond [121] of the

vertical M5-brane divisor M to the E3-brane divisor E for the octic toy model. Con-

sidering the prior computation of hi,0(M) ∼= hi(M;OM), this basically leaves h1,1(M)

and h2,1(M). In fact, using the Euler characteristic

χ(M) = −48n(n+ 20) (4.56)

that is easily computed using the Riemann-Roch-Hirzebruch theorem (A.28), one has

h2,1(M)− h1,1(M) =
n3

6
+ 21n2 +

2891n

6
− 1, (4.57)

such that in fact only one independent Hodge number remains. Using the Lefschetz

theorem, the Euler characteristic and the known values of hi,0(E) ∼= hi(E;OE) one can
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determine the σ-invariant and σ-anti-invariant “center” Hodge numbers

h1,1
+ (E) =

2n3

3
− 2n2 +

7n

3
,

h1,1
− (E) =

2n3

3
+ 2n2 +

103n

3

(4.58)

of the “upstairs” E3-brane divisor E ⊂ X . Together with (4.23) this gives the Euler

characteristic

χ(E) = 2n(n2 + 22). (4.59)

Since all Kähler classes ofM are inherited from σ-invariant Kähler classes of E except

for the elliptic fiber, one obtains

h1,1(M) = h1,1
+ (E) + 1

=
2n3

3
− 2n2 +

7n

3
+ 1,

(4.60)

which using (4.57) also gives the number of non-trivial 3-cycles

h2,1(M) =
5n3

6
+ 19n2 +

2905n

6
. (4.61)

Numerically this completes the computation of the Hodge diamond hp,q(M), but one

actually aims to better understand the number h2,1(M) in terms of the E3-brane Hodge

diamond.

Similar to the observation for the zero-modes –– the outer edge of the Hodge dia-

mond –– the O7-plane monodromy (4.34) acting on the σ-anti-invariant cohomology

groups H0,2
− (E), H1,1

− (E) and H2,0
− (E) likewise gives rise to 3-cycles of the M5-brane,

i.e.

H2,0
− (E)→

H3,0(M)

H2,1(M)

H0,2
− (E)→

H1,2(M)

H0,3(M)

H1,1
− (E)→

H2,1(M)

H1,2(M)
. (4.62)

It is already known from table 4.2 that the “edge Hodge number” h3,0(M) is equal to

h2,0
− (E). But for h2,1(M) one finds in fact

h2,1(M) := h2,1(M)− h1,1
− (E)− h2,0

− (E)

= 16n(n+ 28)
(4.63)
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1

h1,0
+ (E) h0,1

+ (E)

h2,0
+ (E) + h1,0

− (E) h1,1
+ (E) + 1 h0,2

+ (E) + h0,1
− (E)

h2,0
− (E) h2,0

− (E) + h1,1
− (E) + g(C̃)−1

2
h0,2
− (E) + h1,1

− (E) + g(C̃)−1
2

h0,2
− (E)

Table 4.4.: Matching of the M5-brane Hodge diamond to the “upstairs”

E3-brane topology and the resolved matter curve C̃.

extra elements which seem to have an unclear origin. A closer inspection reveals that

those contain topological information of the charged matter zero-modes. More precisely,

the genus g(C̃) of the (resolved) intersection curve C̃ is encoded via

h2,1(M) + h1,2(M) = −1

2
χ(C̃) = g(C̃)− 1. (4.64)

One can confirm this result by analyzing how involution-odd 1-cycles in C̃ give rise to

3-cycles of M, i.e.

h2,1(M) + h1,2(M) = b1
−(C̃) (4.65)

and conclude via the Lefschetz fixpoint theorem that indeed

b1
−(C̃) = −1

2
χ(C̃) = g(C̃)− 1, (4.66)

confirming (4.64). Therefore, one can entirely relate the Hodge diamond of M to the

(σ-split) Hodge diamond of E and the genus of the (resolved) generic D7/E3 intersection

curve C̃, as shown in table 4.4.

In the more generic case of a discriminant locus that splits into several components

and where the fiber degenerates to non-Abelian type –– yielding singularities in the 4-

fold Z –– one has to keep in mind that resolvingM to M̃ as done in section 4.4.1 leaves

hi,0(M̃) = hi,0(M) unchanged, but each blow-up increases the size of the Picard group

and therefore the number of Kähler parameters. For the SU(2) singularity blowup in

table 4.2 one therefore expects h1,1(M̃) = h1,1(M) + 1. This is consistent with the

previously identified relationship to the genera of (resolved) matter curves.
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4.6 Phenomenological Implications

Coming back to the beginning of this chapter, a clear observation that can be drawn

from the previous analysis of the zero-mode structure is that in F-theory one encounters

charged matter zero-modes, which are not counted by the holomorphic Euler charac-

teristic χ(M;OM) of the M5-brane. Nevertheless, those have carefully to be taken

into account for a proper determination to which 4-dimensional effective couplings the

M5-brane instanton can make a contribution. Due to the generic intersection of vertical

M5-branes with 7-brane components of the discriminant locus, only a careful zero-mode

analysis reveals the actual presence of non-perturbative effects –– e.g. Polonyi-type su-

persymmetry breaking or KKLT moduli stabilization [171] due to corrections to the

closed string superpotential. A corresponding study of such properties in F-theory

[172–174] is therefore quite important for model building.

In fact, the full instanton-generated contribution does not only involve the plain

zero-modes, but –– at least for holomorphic N=1 couplings –– the 1-loop determinant

for the fluctuations around the instanton solution. In type IIB this corresponds to

the open string 1-loop amplitudes, i.e. the annulus or Möbius strip worldsheet with

at least one boundary on the instanton E3-brane. For F-theory one expects open

(Euclidean) M2-branes ending on the instanton M5-brane to take this role. Aside from

completing the mathematical matching of the E3-brane to the M5-brane topology, the

computation of the full Hodge diamond in table 4.4 allows to determine the potential

1-loop contributions explicitly.

More precisely, the presence of non-trivial 3-cycles H3(M) in the M5-brane can lead

to cancellations in the 1-loop determinant contributions. In the effective theory of an

M5-brane one finds a sort of chiral 2-form field β2 propagating on the worldvolume,

whose associated field strength T3 is self-dual. As detailed in section 3.4.3, the M5-

brane also couples [169] to the 11d bulk supergravity 3-form Ĉ3 with the field strength

G4. In a consistent setting this forces the G4 flux to satisfy

G4|M = dT3, (4.67)

i.e. cohomologically the restriction of G4 to the M5-brane worldvolume is trivial. The

moduli space of appropriate 3-form fields Ĉ3 restricted to M is topologically a torus

JM := H3(M;R)
/
H3(M;Z) ∼= T b

3(M), (4.68)

called the intermediate Jacobian. Witten showed that the β2 partition function is

described by a section of a holomorphic line bundle L over this moduli space, i.e.

L
π
−� JM  β2 partition function Z(β2) ∈ Γ(L). (4.69)
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This partition function mainly governs the 1-loop contributions and potential cancella-

tions. Being a section of a line bundle over a torus, the partition function will vanish

over a codimension-2R locus of the base JM. Due to (4.68) the presence of 3-cycles

in the M5-brane divisor can therefore lead to cancellations –– which requires a better

geometric understanding of their E3-brane origin.

Using the explicit dictionary between the E3-brane and M5-brane Hodge diamond in

table 4.4, the intermediate Jacobian (4.68) can in fact be rewritten as

JM =
(H2
−(E;R))2 ×H1

−(C̃;R)

(H2
−(E;Z))2 ×H1

−(C̃;Z)
∼= T 2b2−(E)+b1−(C̃), (4.70)

which allows to understand the different contributions from another perspective.

Obviously, H1
−(C̃) is the contribution from matter zero-modes arising from D7/E3

intersections. Due to b1
−(C̃) = g(C̃)− 1 this contribution vanishes if the desingularized

intersection curve C̃ is either a torus (genus 1) or a P1 (genus 0).

The double factor H2
−(E) contains the invariant geometric moduli h0,2

− (E) from the

E3-brane, but also contains the h1,1
− (E) Hodge number that is usually not considered in

the standard instanton zero-mode counting. This number basically counts the number

of NS-NS B2-field moduli, that are allowed due to the presence of the E3-brane. More

precisely, from the M-theory perspective the field B2 arises from a dimensional reduction

of Ĉ3 and it has to be σ-anti-invariant under the orientifold projection, cf. table 2.4. In

orientifold models with b2
−(X ) = 0, which is the case for the octic toy model considered

here, the NS-NS 2-form field therefore gets projected out. However, if an E3-brane

instanton with b2
−(E) > 0 is present, the B2 field can still take configurations that are

cohomologically non-trivial in the E3-brane, but vanish in the bulk Calabi-Yau 3-fold

geometry.

Ultimately, this analysis is of key value in the context of moduli stabilization: in

order to determine whether an N=1 supersymmetric string compactification is non-

perturbatively unstable, one needs to look for instantons which do not contain any

charged matter zero-modes at all. From the (restricted) perspective of the M5-brane

zero-mode structure the existence of such a destabilizing instanton is given provided

that:

� The M5-brane is rigid, i.e. hi,0(M) ∼= hi(M;OM) = 0 for i = 1, 2, 3.

� All intersections of the M5-brane with smooth components Da of the discriminant

locus occur over curves of genus zero–– a P1 –– such that the gauge breaking vector

bundle Va from section 4.4.2 restricts trivially on it.

The second condition has a direct analogue in the heterotic theory, namely that a
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world-sheet instanton on a rational curve Σ can only contribute to the uncharged su-

perpotential, if the vector bundle restricts trivially on it.

The intrinsically non-perturbative M5-brane statements can then be translated back

to the perturbative “upstairs” E3-brane instanton. Note that g(C̃) = 0 also implies the

vanishing of the H1
−(C̃) contribution to the intermediate Jacobian JM in (4.70). The

previous analysis of this space now allows to improve the above zero-mode conditions

by the considerations of the 1-loop contribution. In order for JM to become entirely

trivial –– which also implies a nowhere vanishing partition function of the worldvolume

2-form β2 due to the lower-dimensional vanishing locus—one also needs:

� The E3-brane must not contain any σ-anti-invariant 2-cycles, i.e. b2
−(E) = 0.

This provides a sufficient criterion to have a nowhere vanishing, uncharged superpo-

tential. Ultimately, one learns that E3-brane instantons have in fact more potentially

harmful moduli than meet the eye.





Chapter 5
GUT Model Geometries
in Type IIB and F-theory

The discovery of generating the crucial top-quark Yukawa coupling 10 · 10 · 5H via

D-brane instantons together with the idea of local F-theory GUT model building

stirred a search for GUT models in perturbative type IIB string theory [42, 99]. This

program led to a number of geometries that are compatible with the decoupling principle

and the hypercharge flux GUT symmetry breaking, which implies that the GUT brane

is wrapping del Pezzo surfaces containing 2-cycles with trivial relative homology [67,

69, 175].

Those IIB models use orientifolds with more than one component in the fixpoint

set. The “upstairs” Calabi-Yau geometries are constructed via del Pezzo transitions

of the quintic 3-fold hypersurface P4[5]. For the construction of global F-theory GUT

models it is therefore natural to uplift such orientifold geometries to F-theory–– which

requires to explicitly construct the “downstairs” orientifold quotient base B = X/σ of

the geometries–– and analyze their properties from the non-perturbative perspective this

framework offers. Indeed, a tuning of certain moduli of the uplifted geometry reveals

several useful properties (like exceptional gauge enhancements) in the truly strongly

coupled region that no longer has a direct type IIB orientifold analogue.

Based on those findings one can then obtain an improved geometry directly for F-

theory models without prior consideration of a corresponding type IIB setting. Instead

of the quintic P4[5], the non-Calabi-Yau quartic hypersurface P4[4] –– a Fano 3-fold

[154, 158] and therefore the higher-dimensional counterpart to del Pezzo surfaces –– is

used as the starting point. Via a non-generic del Pezzo transition that blows up an entire

curve instead of an isolated point, the required rigid GUT brane divisor is generated.

The subsequent investigation of the enhancement properties and divisor intersections

shows that this indeed provides a suitable geometry for further phenomenological study.

121
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5.1 Euler Characteristic for Singular O-plane Intersections

In section 3.7 the ε-parametrization of the Tate coefficients revealed that in the

canonical Sen limit the generic D7-brane is of the form η2 = hχ, where h = 0 determines

the location of the O7-plane within the base B = X/σ. For generic η and χ the D7-brane

worldvolume therefore has double point intersections with the O7-plane, as explicitly

seen in section 4.2. A closer analysis shows that on the perturbative IIB side this

particular structure stems from the Dirac quantization condition and is equivalent to

the Whitney umbrella singularity prototype

x2 = zy2 for (x, y, z) ∈ C3. (5.1)

The aftermath of this situation is that any D7-brane intersecting an O7-plane in the

Sen limit necessarily is a self-intersecting, singular space and requires an appropriate

treatment. Whereas the induced D3-brane charge on a smooth O7-plane is given by

χ(O7) =

∫
X

[O7]3 + c2(X )[O7], (5.2)

the Sen limit’s double point intersections of the D7-brane complicate the correct com-

putation. Via computations of the R-R charges on the brane one can argue that

χo(D) =

∫
X

(
[D]3 + c2(X )[D] + 3[D][O7]

(
[O7]− [D]

))
(5.3)

computes the correct Euler characteristic [111, 176] for a D7-brane divisor D ⊂ X . This

newly defined Euler characteristic for D7/O7-intersections can be understood as

χo(D) = χ(Σ)− npp, (5.4)

where Σ is the blown-up non-singular surface corresponding to the D7-brane divisor

D and npp the number of pinch points where the Whitney umbrella of the singularity

pinches off.

This is related to the singularities appearing in the elliptically-fibered Calabi-Yau

4-fold Z along codimension-2 loci of 7-branes with non-Abelian gauge groups. Here

similar techniques have to be applied in order to take care of the singularities –– which

is in general a difficult task due to the numerous types of singularities one potentially

encounters.I Via the F-theory D3-brane tadpole formula (3.50) one can derive the

relation

2χ(Z) = χo(D7) + 4χ(O7) (5.5)

IThis is one of the reasons why the explicit construction of global G4-fluxes in non-trivial settings

remains elusive.
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vertices of the coords GLSM charges divisor class

polyhedron / fan Q1 Q2

ν1 = (−1, −1, −1, −1 ) u1 1 0 H

ν2 = ( 1, 0, 0, 0 ) u2 1 0 H

ν3 = ( 0, 1, 0, 0 ) u3 1 0 H

ν4 = ( 0, 0, 1, 0 ) u4 1 0 H

ν5 = ( 0, 0, 0, 1 ) v 1 1 H +X = H̃

ν6 = ( 0, 0, 0, −1 ) w 0 1 X

conditions: 5 2

intersection form: 2H3 + 3H2X − 3HX2 + 3X3 = 5H̃3 + 3X3

Stanley-Reisner ideal: 〈u1u2u3u4, vw〉

Table 5.1.: Toric data for the single del Pezzo transition of the quintic

Calabi-Yau 3-fold P4[5].

between the F-theory Calabi-Yau 4-fold Z and the corresponding type IIB D7-brane/O7-

plane configuration in the Sen limit. This formula will later be used in reverse as a

non-trivial check on the proposed uplift geometries, which are constructed from known

IIB GUT orientifolds.

5.2 Single del Pezzo Transition of the Quintic

5.2.1 Type IIB orientifold geometry

The starting point [87] is the quintic Calabi-Yau 3-fold hypersurface CP4[5] with the

homogeneous coordinates x1, . . . , x5. When the degree-5 polynomial of the quintic takes

the special form

Q := (x5)2P3(x1, . . . , x4) + x5P4(x1, . . . , x4) + P5(x1, . . . , x4) = 0 (5.6)

the hypersurface becomes singular at the point (0, 0, 0, 0, 1) as dQ vanishes. At this

point a del Pezzo singularity of the form dP6 = P3[3] is generated, which can be blown-

up to finite size. In the toric description of the resulting Calabi-Yau 3-fold this new

dP6-divisorDw = {w = 0} appears like a common blowup, see the toric data in table 5.1.

For the proposed holomorphic involution on this single del Pezzo transition of the

quintic, the sign flip mapping

σ : v 7→ −v (5.7)
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is considered, i.e. in the new degree-(5,2) Calabi-Yau hypersurface constraint only even

powers of the coordinate v are allowed. From the projective equivalences it follows

(u1, . . . , u4, v,−w) ∼ (u1, . . . , u4,−v, w) ∼ (−u1,−u2,−u3,−u4, v, w) (5.8)

and since Dv and Dw are non-intersecting divisors –– according to their product ap-

pearing in the Stanley-Reisner ideal generators –– it follows that the fixpoint set of the

involution is

O7 = Dv ∪Dw (5.9)

without isolated fixpoints. Whereas Dw is the blowup dP6 divisor, the Dv divisor is

smooth, non-rigid and has χ(Dv) = 55.

The splitting of the O7-plane into a rigid dP6 divisor and a non-rigid surface is

therefore asymmetrical and has to be taken into account in the prediction of the Euler

characteristic for the supposed uplift 4-fold Z. The naive expectation of a single D7-

brane wrapping the divisor 8[O7] = 8H + 16X yields

single D7: χ∗(Z) =

(
χo(8Dv) + χo(8Dw)

2
+ 2χ(O7)

)
= 1728, (5.10)

which keeps an Abelian gauge group that should not give rise to any 4-fold singularities

in the subsequent uplifting.

However, since the two components of the O7-plane are not equivalent one has to

cancel the charges separately: As Dw
∼= dP6 is rigid, in order to obtain the topological

charge 8H + 16X it is necessary to consider a single brane wrapping 8[Dv] = 8H + 8X

and a stack of 8 D7-branes wrapping [Dw] = X each. This gives the gauge group SO(8)

and the corresponding prediction for the Euler characteristic is

D7-brane and

SO(8) stack:
χ(Z) =

(
χo(8Dv) + 8 · χo(Dw)

2
+ 2χ(O7)

)
= 1224, (5.11)

which can be treated as the least-enhanced consistent configuration that saturates the

tadpole conditions. Note that this directly implies that the 4-fold Z is expected to be

singular due to the non-Abelian gauge group. Both computed values χ∗(Z) and χ(Z)

are relevant for the corresponding uplift geometry, as will become clearer in section 5.2.3.
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vertices of the coords GLSM charges divisor class type /

polyhedron / fan Q1 Q2 χ(D)

ν1 = (−1, −1, −1, −2 ) u1 1 0 P 18

ν2 = ( 1, 0, 0, 0 ) u2 1 0 P 18

ν3 = ( 0, 1, 0, 0 ) u3 1 0 P 18

ν4 = ( 0, 0, 1, 0 ) u4 1 0 P 18

ν5 = ( 0, 0, 0, 1 ) ṽ 2 1 2P +X = P̃ 55

ν6 = ( 0, 0, 0, −1 ) w̃ 0 1 X 9 (dP6)

conditions: 5 1

intersection form: P 3 + 12X3 + 3P 2X − 6PX2 = 20P̃ 3 + 12X3

Stanley-Reisner ideal: 〈u1u2u3u4, ṽw̃〉

Table 5.2.: Toric data for the downstairs Kähler 3-fold base B = X/σ of

the quintic’s single del Pezzo transition, cf. table 5.1.

5.2.2 Uplift Calabi-Yau 4-fold geometry

The next step is the construction of the corresponding elliptically-fibered Calabi-Yau

4-fold geometry Z. A systematic approach first requires the explicit construction of

the “downstairs” coset geometry B = X/σ, i.e. the base of the 4-fold [87, 111, 152,

153]. Working exclusively on the base, the additional constraints implied by the global

geometry of Z are not present, such that an additional constraint arises. Similar to the

D7-tadpole condition in type IIB string theory, the purely topological condition (3.20)

in the base arises, which is effectively a condition on the 7-brane wrapping.

In order to describe the coset space B of the Calabi-Yau 3-fold X that arises from

the single del Pezzo transition of P4[5] by the orientifold involution σ : v 7→ −v, the

mapping

σ̃ : (u1, . . . , u4, v, w) 7→ (u1, . . . , u4, v
2, w2) (5.12)

is used, which squares the two coordinates corresponding to the two non-intersecting

components of the fixpoint set, i.e. the two O7-planes. If the squares are treated as new

coordinates

ṽ := v2, w̃ := w2, (5.13)

this leads to the base geometry shown in table 5.2. This is no longer a Calabi-Yau

manifold due to c1(B) = P +X but still has the structure of a complex Kähler 3-fold.

In the base geometry the topology of the O7-planes remains unchanged compared to
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vertices of the coords GLSM charges divisor class

polyhedron / fan Q1 Q2 Q3

ν1 = ( 1, 0, 0, 0, 0, 0 ) x 2 0 0 2(σ + P +X)

ν2 = ( 0, 1, 0, 0, 0, 0 ) y 3 0 0 3(σ + P +X)

ν3 = (−2, −3, 0, 0, 0, 0 ) z 1 −1 −1 σ

ν4 = (−2, −3, −1, −1, −1, −2 ) u1 0 1 0 P

ν5 = ( 0, 0, 1, 0, 0, 0 ) u2 0 1 0 P

ν6 = ( 0, 0, 0, 1, 0, 0 ) u3 0 1 0 P

ν7 = ( 0, 0, 0, 0, 1, 0 ) u4 0 1 0 P

ν8 = ( 0, 0, 0, 0, 0, 1 ) ṽ 0 2 1 2P +X

ν9 = (−2, −3, 0, 0, 0, −1 ) w̃ 0 0 1 X

conditions: 6 0 0

0 5 1

intersection form: P 3σ + 3P 2Xσ − 6PX2σ + 12X3σ − 4P 2σ2

+ 3PXσ2 − 6X2σ2 + Pσ3 + 3Xσ3 − 4σ

Stanley-Reisner ideal: 〈xyz, u1u2u3u4, ṽw̃〉

Table 5.3.: Toric data for the elliptically-fibered Calabi-Yau 4-fold Z aris-

ing from the quintic’s single del Pezzo transition, cf. table 5.1.

the upstairs geometry of table 5.1, i.e. one still finds a del Pezzo-6 surface for Dw̃ as

well as the χ = 55 surface Dṽ. The Calabi-Yau 4-fold is then defined by the Weierstrass

model (3.14) over the base, i.e. by adding the projective coordinates (x, y, z) of CP2
231

which are subject to the degree-6 equation

y2 = x3 + xz4f(~u, ṽ, w̃) + z6g(~u, ṽ, w̃) (5.14)

that specifies the elliptic fiber. As mentioned in section 3.3 the base B is embedded

into Z as the divisor Dz of the additional coordinates. The toric data of the total

elliptically-fibered Calabi-Yau 4-fold Z is found in table 5.3. Within this total space

the surface {z = ṽ = 0} again corresponds to the χ = 55 component of the O7-plane

and {z = w̃ = 0} is the dP6 surface.
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5.2.3 Interpretation of the Euler characteristics

The described Calabi-Yau 4-fold is highly singular, which prohibits ad-hoc compu-

tations of geometrical and topological invariants. Considering the discussion regarding

the SO(8) brane stack arrangement to cancel the tadpole, this is to be expected. How-

ever, one can simply ignore the singularity for the moment and derive the total Chern

class c∗(Z) by expanding the formal fractionII of the (also singular) ambient space to-

tal Chern class divided by the hypersurface constraints to compute the naive Euler

characteristic

χ∗(Z) =

∫
Z
e∗(Z) =

∫
Z
c∗4(Z) = 1728, (5.15)

which is in perfect agreement with the naive prediction (5.10) from the type IIB orien-

tifold setting in section 5.2.1. Furthermore, the general relation [110, 128]

χ∗(Z) = 12

∫
B
c1(B)c2(B) + 360

∫
B
c1(B)3 (5.16)

for smooth elliptically-fibered Calabi-Yau 4-folds, i.e. where only I1 degenerations of the

fibration (but not singularities in the total space Z) are present, also yields the same

result, indicating that the “smooth” phase of the uplift geometry holds some merit.

The correct Euler characteristic that takes the non-Abelian singularity into account,

instead is of the general form

χ(Z) = χ∗(Z)− δ, (5.17)

where δ is a correction term that takes care of the singularities in the total space Z and

depends on the discriminant locus. For example, if the fiber degenerates only over a

divisor D of the base with the non-Abelian gauge group G–– producing a codimension-2

singularity in Z –– the corrected Euler characteristic can be described by [86, 177]

χ(Z) = χ∗(Z)− rGcG(cG + 1)

∫
D
c1(D)2, (5.18)

where rG and cG are the rank and dual Coxeter number of the group, respectively.

According to the analysis in section 5.2.1, an SO(8) singularity is located along the

O7-brane divisor Dw̃ of the base geometry in table 5.2, which is of Dynkin type D4 and

has rank rSO(8) = 4 as well as dual Coxeter number cSO(8) = 6, such that it follows∫
Dw̃
c1(Dw̃)2 =

∫
Dw̃
P 2 =

∫
B
P 2X = 3

 χ(Z) = χ∗(Z)− 4 · 6 · (6 + 1) · 3 = 1224.

(5.19)

IIThe asterisk here indicates that those quantities are derived from formal expressions applied to a

singular setting–– which is in general false.
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This is precisely the result anticipated in (5.11) from the different stacking of 7-branes.

In accordance with the structure of the “group-corrected” uplift Euler characteristic

(5.18), this suggests to view the smooth case Euler characteristic χ∗(Z) as a leading

order contribution to the actual Euler characteristic χ(Z) one obtains after a proper

treatment of the brane arrangements and the resulting singularities in the 4-fold’s total

space.

Whereas on the type IIB side the rigidity of the del Pezzo divisor Dw ⊂ X prohibits

the splitting of the branes to dissolve the non-Abelian gauge enhancement, the Calabi-

Yau 4-fold Z on the F-theory side possesses no complex structure deformations to

remove the non-Abelian singularity while preserving the Weierstrass form (5.14) of the

elliptic fibration. This is reflected in the general mapping of IIB D7-brane deformations

to complex structure deformation of the F-theory Calabi-Yau 4-fold. It is on the other

hand indeed striking to see the direct correspondence between the naive brane arrange-

ment derived from the D7-brane tadpole cancellation condition (5.10) and the naive

Euler characteristic of the singular 4-fold as well as the equality of the rigidity-enforced

IIB D7-brane configuration to the corrected computation of χ(Z).

5.2.4 Minimal and maximal gauge groups

After specifying the geometry on the perturbative type IIB side and the subsequent

uplifting to elliptically-fibered Calabi-Yau 4-fold, it remains to analyze which additional

insights one can obtain from the F-theory description [132]. In order to analyze gauge

groups the equivalent Tate description (3.13) of the elliptic fibration is much more

suitable than the Weierstrass model. Note that via

K−nB = O(c1(K−nB )) = O(nc1(K−1
B )) = O(nc1(B)) (5.20)

one can give a rather explicit representation of the coefficient sections an ∈ H0(B;K−nB )

appearing in the Tate parametrization.

As mentioned in section 5.2.2, the base 3-fold B of the single del Pezzo transition has

c1(B) = P +X, such that the coefficients are sections an ∈ H0(B;O(n(P +X))). In ac-

cordance with the divisor classes of the coordinates in table 5.2, the general parametriza-

tion of the coefficients is then of the form

a1 = P(1,0)w̃,

a2 = P(2,1)w̃,

a3 = P(3,1)w̃
2,

a4 = P(4,2)w̃
2,

a6 = P(6,3)w̃
3,

 G2 (5.21)

where P(n,m) is a polynomial with divisor class degree nH+mP . From this one can easily

identify the minimal non-Abelian gauge group of the configuration. Due to the common
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Table 5.4.: Enhancement pattern for an SU(5) (single lines) and SO(10)

(double lines) gauge group based on [132], also see the Tate classification

table 3.6. Note that this does not take any further consistency conditions

into account, e.g. the maximum discriminant vanishing degree.

appearance of w̃ with powers (1, 1, 2, 2, 3), the Tate list (cf. table 3.6) shows that along

Dw̃ one finds at least the non-Abelian gauge group G2. Since the minimal perturbative

type IIB gauge group SO(8) was already identified, the full F-theory–– capturing non-

perturbative effects–– allows for the smaller minimal gauge group G2 ⊂ SO(8).

According to (3.14), (3.56) and (3.59), the O7-plane corresponds to the vanishing

locus {h = 0} = {b2 = (a1)2 + 4a2 = 0}. Both coefficients can be described by

polynomials

a1 = P1(~u)w̃,

a2 = C0ṽw̃ + P2(~u)w̃2,
(5.22)

where Pn(~u) is a degree-n polynomial in u1, u2, u3 and C0 ∈ C a complex structure

modulus. In the uplifting some of the complex structure moduli can be fixed, such that

the O7-plane is located at ṽw̃ = 0, and from the generic O7-plane location (a1)2+4a2 = 0

this implies P2(~u) = −1
4
P1(~u)2 for the used parametrization.
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One can now go on and systematically analyze which gauge groups can be obtained.

The simplest D7-brane configuration to cancel the tadpole places a stack of 8 D7-branes

over each of the divisors Dv and Dw, i.e. a total of 16 D7-branes. This setting differs

from the configuration discussed in section 5.2.1, where the primary goal was to use the

least number of branes in order to reduce singularities from non-Abelian gauge groups.

Due to the two stacks of 8 D7-branes wrapped around Dv and Dw in X , respectively,

the non-Abelian gauge group SO(8)× SO(8) arises in the setting considered here and

the expected Euler characteristic of the singular Calabi-Yau 4-fold is

two SO(8)

stacks:
χ(Z) =

(
8 · χo(Dv) + 8 · χ(Dw)

2
+ 2χ(O7)

)
= 384. (5.23)

Considering the earlier predictions (5.10) and (5.11), one observes the trend that stacks

of D7-branes significantly reduce the (predicted) Euler characteristic of the 4-fold as

more and more complex structure moduli are fixed to describe the necessary degen-

erations in the elliptic fibration. The corresponding Tate coefficients for this brane

configuration areIII

a1 = 0,

a2 = ṽw̃,

a3 = 0,

a4 = C ′0ṽ
2w̃2,

a6 = 0,

 SO(8)× SO(8) (5.24)

in order to reach the required vanishing degrees (1, 1, 2, 2, 4) of SO(8) along Dṽ and

Dw̃, which shows that the simple IIB brane configuration can indeed be uplifted and

realized as an F-theory model with SO(8)× SO(8) gauge group.

Next the maximal possible gauge group, that can be consistently obtained within

the single del Pezzo transition setting of the quintic, is to be determined. As the total

charge 8H + 16X has to be canceled, one can consider the wrapping of a stack of 8

D7-branes around Du1 = H and a stack of 16 D7-branes around Dw = X –– yielding the

maximal number of branes the model can accommodate. In the absence of any gauge

flux the total of those 24 D7-branes give rise to the gauge group Sp(8) × SO(16) and

the prediction for the singular 4-fold is

Sp(8) stack &

SO(16) stack:
χ(Z) =

(
8 · χo(Du1) + 16 · χo(Dw)

2
+ 2χ(O7)

)
= 312. (5.25)

IIIIn order to see this quickly one has to realize that there are no non-trivial entries in the Tate

classification list (table 3.6) that have non-zero values for a2 and a4, i.e. vanishing degree-0 for

both those coefficients. All enhancements are therefore localized on ṽw̃ = 0, i.e. the two O7-plane

components {ṽ = 0} and {w̃ = 0}.
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However, since the divisors Du1 and Dw are intersecting, there exists also non-chiral

matter on the intersection curve. On the F-theory side the Calabi-Yau 4-fold can indeed

be tuned to this gauge group using the Tate coefficients

a1 = P1(~u)w̃,

a2 = ṽw̃ − 1
4
P1(~u)2w̃2,

a3 = 0,

a4 = C ′′0 (u1)4w̃4,

a6 = 0,

 Sp(8)× SO(16) (5.26)

yielding again the non-Abelian gauge group Sp(8) along Du1 and SO(16) on Dw̃. Fur-

ther gauge enhancements –– which however lack a directly corresponding perturbative

description–– are considered in section 5.2.6.

5.2.5 Non-perturbative O7-plane splitting

On the F-theory side the non-perturbative effects influence the O7-plane geometry

as well. Consider again the “maximal branes” setting parameterized in (5.26). In the

Sen rescaling (3.55) of the Tate coefficients one can effectively turn off the non-zero

coefficient a4, such that in direct comparison one finds

Sen limit: ∆Sen = 16(C1)2(u1)8w̃10ṽ2,

full F-theory: ∆F = 16(C1)2(u1)8w̃10
(
ṽ2 − 4C ′′0 (u1)4w̃2

)
,

(5.27)

i.e. the higher correction terms in the full F-theory are responsible for splitting up the

O7-plane component {ṽ = 0} from the perturbative IIB side into two objects:

Sen limit: {ṽ = 0}  full F-theory:
{
ṽ = ±2

√
C ′′0 (u1)4w̃2

}
. (5.28)

This is a first indication for the direct influence of non-perturbative effects on apparently

“innocent” type IIB orientifold models. From the perturbative perspective, O-planes

are always static objects of the geometry, whereas F-theory treats them as dynamical

objects (cf. section 3.2) not much different from regular 7-branes [124–126].

5.2.6 Exceptional gauge groups and absence of SO(10) spinor representations

Besides the classical gauge group Sp(8) and SO(8), it was already observed from

the appearance of the G2 group in section 5.2.4 that also exceptional gauge groups

can arise in the F-theory description. It remains to determine which other exceptional

gauge groups the geometry supports.

By setting C0 = 0 in (5.22) the general parametrization (5.21) of the Tate coefficients
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specializes to

a1 = P(1,0)w̃,

a2 = P(2,0)w̃
2,

a3 = P(3,1)w̃
2,

a4 = P(4,1)w̃
3,

a6 = P(6,1)w̃
5,

 E6 (5.29)

which gives the vanishing degrees (1, 2, 2, 3, 5) for w̃–– yielding an E6 singularity on Dw̃.

Furthermore, whenever the vanishing of P(3,1) increases the vanishing of a3 to at least

degree 3, the singularity is enhanced further to E7 type. And if in addition P(4,1) = 0

increases deg(a4) to at least 3, one finds the E8 singularity. In summary, with respect

to the specialized parametrization (5.29) one finds

E6 : {w̃ = 0},
E7 : {w̃ = P(3,1) = 0},
E8 : {w̃ = P(3,1) = P(4,1) = 0}.

(5.30)

The E7 curve (as the intersection of two generic constraints) gives rise to matter in the

fundamental 27 representation. On the (generically) point-like E8 enhancement one

finds the Yukawa coupling 27 · 27 · 27 and the number of those E8 points is given by

the intersection number∫
B
[Dw̃] · [P(3,1)] · [P(4,1)] =

∫
B
X(3P +X)(4P +X) = 6. (5.31)

One can therefore conclude that the uplift of the P4[5]’s del Pezzo transition indeed

gives rise to exceptional gauge groups when moving away from the original orientifold

setting in the complex structure moduli space.

The generic G2 parametrization (5.21) also allows for an alternative enhancement

to SO(10) instead of E6 by increasing the a4 vanishing degree, i.e. the specialized

parametrization

a1 = P(1,0)w̃,

a2 = P(2,1)w̃,

a3 = P(3,1)w̃
2,

a4 = P(4,1)w̃
3,

a6 = P(6,1)w̃
5,

 SO(10) (5.32)

localizes an SO(10) gauge group on Dw̃. Over the curve {w̃ = P(2,1) = 0} this would be

enhanced to E6, but the geometry does not support any such intersections as the base

intersection form (see table 5.2) has no cross-term involving X(2P + X) = XP̃ . This

can be traced back to the non-intersection of the two O7-plane components.

Ultimately, with the results of section 5.2.6 this allows to conclude that one can

indeed find the exceptional En groups and derived Yukawas, but no interactions between

SO(10) and E6 are possible. One could in principle use U(1) fluxes similar to the GUT
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breaking mechanism described in section 3.8.3 to break E6 down to SO(10), but this

would inevitably also introduce exotic matter states. Nevertheless, the findings show

that even rather simple type IIB geometries gain a lot of additional properties from a

proper non-perturbative treatment in the F-theory framework.

5.3 Double del Pezzo Transition of the Quintic

5.3.1 Type IIB orientifold geometry

The second geometry is defined by a further del Pezzo transition–– yielding two inter-

secting dP7 = P3
1112[4] surfaces–– via restricting the degree-5 hypersurface polynomial of

the quintic to contain only monomials where (x4)k, k ≤ 1 and (x5)m, m ≤ 1. The toric

data of the blowup geometry with divisors of finite size is summarized in table 5.5.

vertices of the coords GLSM charges divisor class

polyhedron / fan Q1 Q2 Q3

ν1 = (−1, −1, −1, −1 ) u1 1 0 0 H

ν2 = ( 1, 0, 0, 0 ) u2 1 0 0 H

ν3 = ( 0, 1, 0, 0 ) u3 1 0 0 H

ν4 = ( 0, 0, 1, 0 ) v1 1 0 1 H + Y

ν5 = ( 0, 0, 0, 1 ) v2 1 1 0 H +X

ν6 = ( 0, 0, 0, −1 ) w1 0 1 0 X

ν7 = ( 0, 0, −1, 0 ) w2 0 0 1 Y

conditions: 5 2 2

intersection form: 2(H2X −HX2 +X2 +H2Y −HY 2 + Y 3)

+HXY −X2Y −XY 2

Stanley-Reisner ideal: 〈u1u2u3, v1w2, v2w1〉

Table 5.5.: Toric data for the double del Pezzo transition of the quintic

Calabi-Yau 3-fold P4[5].

The general Calabi-Yau hypersurface constraint for this geometry can be written as

QX :=
2∑

m=0

2∑
n=0

P5−m−n(~u) · (v1)m(w2)2−m(v2)n(w1)2−n = 0, (5.33)

where Pk(~u) is a degree-k polynomial in u1, u2, u3. Both dP7-divisors Dw1 and Dw2 have
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χ(Dwi) = 10 and intersect over a complex curve

C := Dw1 ∩Dw2
∼= P1 (5.34)

as indicated by χ(C) = −Dw1 ·Dw2 ·(Dw1 +Dw2) = 2. Whereas the single del Pezzo tran-

sition produced an orientifold plane consisting of two components, the second setting

involves the exchange of the dP7 divisors by the orientifold mapping

σ :

{
v1 ↔ v2

w1 ↔ w2.
(5.35)

Using the projective equivalences Q2 and Q3 of the toric space it follows

(~u, v1, v2, w1, w2) ∼
(
~u,
v1

w2

,
v2

w1

, 1, 1

)
σ7→
(
~u,
v2

w1

,
v1

w2

, 1, 1

)
, (5.36)

such that the fixpoint locus is found at v1

w2
= v2

w1
⇐⇒ v1w1 = v2w2 and the O7-plane

is given by

[O7] = [{v1w1 − v2w2 = 0}] = H +X + Y ∈ H2(X ;Z) (5.37)

with χ(O7) = 56. Note that the explicit equation defining the O7-plane in (5.37) is

not the most generic one in the divisor class H + X + Y , since a term P1(~u)w1w2

could be added. The intersection with the Calabi-Yau hypersurface constraint of class

5H + 2X + 2Y reveals two curves embedded inside the geometry:

genus-0 curve P1: X ∩O7 ∩ {wi = 0},
genus-6 curve: X ∩ {vi = 0}.

(5.38)

The P1 curve is the intersection curve C of both dP7 divisors from (5.34).

In this setting the O7-plane only consists of a single component, whose charges are

canceled by a single D7-brane wrapping the divisor 8[O7] = 8(H + X + Y ). The

prediction for the uplift geometry 4-fold is then

single D7: χ∗(Z) =

(
χo(8(H +X + Y ))

2
+ 2χ(H +X + Y )

)
= 1008, (5.39)

which is once again the configuration containing the minimal number of D7-branes that

cancels the tadpole. In contrast to the earlier model considered in section 5.2, this

brane configuration indeed suggests a smooth uplift Weierstrass model.
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5.3.2 Uplift Calabi-Yau 4-fold geometry

vertices of the coords GLSM charges divisor class type /

polyhedron / fan Q1 Q2 χ(D)

ν1 = (−1, −1, −2, −1 ) u1 1 0 P 13

ν2 = ( 1, 0, 0, 0 ) u2 1 0 P 13

ν3 = ( 0, 1, 0, 0 ) u3 1 0 P 13

ν4 = ( 0, 0, 1, 0 ) ṽ 2 1 2P +X = P̃ 46

ν5 = ( 0, 0, 0, 1 ) h̃ 1 1 P +X 24 (K3)

ν6 = ( 0, 0, −1, −1 ) w̃ 0 1 X 10 (dP7)

conditions: 5 2

intersection form: 2P 2X − PX2 −X3

= 37P̃ 3 + 3P̃X − 3P̃X2 + 19X3

Stanley-Reisner ideal: 〈u1u2u3, ṽh̃w̃〉

Table 5.6.: Toric data for the downstairs Kähler 3-fold base B = X/σ of

the quintic’s double del Pezzo transition, cf. table 5.5.

In the uplifting of the described orientifold one proceeds analogous to section 5.2.2.

In this case the orientifold mapping (5.35) exchanges the two dP7 surfaces and is rep-

resented by the projection mapping

σ̃ : (u1, u2, u3, v1, v2, w1, w2) 7→ (u1, u2, u3, ṽ, h̃, w̃),

where


ṽ := v1v2,

h̃ := v1w1 + v2w2,

w̃ := w1w2,

(5.40)

that is 2-to-1 away from the orientifold locus v1w1 = v2w2. In this projection one

coordinate is dropped and the resulting “downstairs” geometry that serves as the base

B of the uplift 4-fold is described by the toric data in table 5.6.

The divisor Dw̃ has χ(Dw̃) = 10 and can be identified as the invariant dP7 surface,

whereas Dh̃ is the divisor of the O7-plane. The full Calabi-Yau 4-fold Z is constructed

in the same fashion as before, i.e. one adds homogeneous coordinates (x, y, z) ∈ P2
231

intertwined appropriately such that the divisor Dz = {z = 0} embeds the base B into

the 4-fold Z. The degree-6 Weierstrass model equation

y2 = x3 + xz4f(~u, ṽ, h̃, w̃) + z6g(~u, ṽ, h̃, w̃), (5.41)
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is imposed and Z is once again described by a complete intersection of two hypersur-

faces. In accordance to the perturbative type IIB prediction (5.39) of section 5.3.1, one

finds that χ∗(Z) = 1008 when computing the naive Euler characteristic by evaluating

the top Chern class of the 4-fold or (ab)using the I1 singularity relation (5.16). Again,

this provides the leading order contribution to the Euler characteristic, that has to be

corrected in the presence of non-Abelian singularities.

5.3.3 Minimal and maximal gauge groups

The analysis of the available gauge groups is analogous to the one carried out in

section 5.2.4, but technically more complicated due to the third coordinate contributing

cohomologically to the divisor class X. In this geometry one finds c1(B) = P +X, such

that an ∈ H0(B;O(n(P + X))). The first two Tate coefficients can now have more

terms
a1 = Chh̃+ P1(~u)w̃,

a2 = C0ṽw̃ + Ch2h̃2 +Q1(~u)h̃w̃ + P2(~u)w̃2
(5.42)

in their most generic form and likewise for a3, a4 and a6. The location of the O7-plane

is given by

b2 = ρ(h̃2 − 4ṽw̃) = 0, (5.43)

where ρ 6= 0 is some non-zero constant. The generic expression b2 = (a1)2 + 4a2 for the

O7-plane term restricts the Tate coefficient a2 of (5.42) to take the form

a2 = −ρṽw̃ +
ρ− Ch2

4
h̃2 − Ch

2
P1(~u)h̃w̃ − 1

4
P1(~u)2w̃2. (5.44)

Due to the single D7-brane that cancels the tadpole in this setting, no singularities

are expected except over the rigid curve P1 from the original intersection of the two

dP7 surfaces in the “upstairs” Calabi-Yau geometry X . The curve C ⊂ X is mapped

to Dw̃ ∩ Dh̃ ∼= P1 and on this locus the combined vanishing of w̃ and h̃ is of degrees

(1, 1, 2, 2, 3)–– yielding a G2 singularity over the genus-0 curve.

In the type IIB orientifold the maximal perturbative gauge group Sp(8) × SU(8) is

obtained from two stacks of 8 D7-branes wrapping Du1 and Dw1 , respectively. One can

show that this configuration can be realized in the uplift 4-fold via the Tate parametriza-

tion

a1 = Chh̃+ P1(~u)w̃,

a2 = −Chṽw̃ −
Ch
2
P1(~u)h̃w̃ − 1

4
P1(~u)2w̃2,

a3 = 0,

a4 = Cd(u1)4w̃4,

a6 = 0,︸ ︷︷ ︸
Sp(8)× SU(8)

(5.45)



5.3. Double del Pezzo Transition of the Quintic 137

which reveals the same kind of non-perturbative O7-plane splitting observed in sec-

tion 5.2.5 for the single del Pezzo transition orientifold.

5.3.4 GUT related representations and Yukawa couplings

It remains to determine the properties of the uplift model away from the orientifold

locus, more specifically the GUT model ingredients one can obtain in this geometry. For

Ch = Ch2 = 0 the group SO(10) with vanishing degrees (1, 1, 2, 3, 5) can be arranged

along the del Pezzo divisor Dw̃. This sets the basic stage for an SO(10) GUT model.

The restriction of the Tate coefficients to the form (5.32)–– which was used to show the

absence of SO(10) spinors in section 5.2.6 –– now reveals an enhancement to E6 along

{w̃ = P(2,1) = 0} since in the exchange geometry the two divisors indeed intersect,

i.e. X(2P + X) = XP̃ restricts to a non-trivial intersection form on the E6-curve

according to table 5.6. Furthermore, a Higgs field in the 10 representation can be

localized along the genus-4 curve {w̃ = P(3,1) = 0}, and a closer inspection reveals 6

mutual intersection points of both curves. In summary, one finds

E6  16 SO(10) spinor {w̃ = P(2,1) = 0},
SO(12)  10H Higgs field {w̃ = P(3,1) = 0},

E7  16 · 16 · 10H Yukawa coupling {w̃ = P(2,1) = P(3,1) = 0}.
(5.46)

The exchange orientifold geometry therefore provides just the right ingredients to build

a basic SO(10) GUT model.

One can also consider an SU(5) GUT in this geometry, which follows from the specific

parametrization

a1 = P(1,1),

a2 = P(2,1)w̃,

a3 = P(3,1)w̃
2,

a4 = P(4,1)w̃
3,

a6 = P(6,1)w̃
5,

 SU(5) (5.47)

of the Tate coefficients. The overall vanishing degree along the divisor Dw̃ is (0, 1, 2, 3, 5)

and provides the SU(5) GUT group. Along the P1 curve where P(1,1) vanishes as

well, the singularity type enhances further to SO(10). This provides matter in the 10

representation from the subsequent decomposition of representations. Further matter

in the 5 representation is obtained from an SU(6) enhancement along the intersection

with

Q(8,3) := P 2
(3,1)P(2,1) − P(4,1)P(3,1)P(1,1) + P(6,1)P

2
(1,1) = 0. (5.48)

This particular polynomial is derived from the leading orders in w̃ of the discriminant,

a procedure that will be shown in detail for the upcoming geometry in section 5.4.

Of particular interest is the triple intersection of Dw̃ with P(1,1) = P(3,1) = 0. Here
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one finds a single point of enhancement to SO(12) that precisely yields the bottom-

quark Yukawa coupling 10 · 5̄ · 5̄H . For the basic SU(5) GUT one therefore obtains the

following enhancements:

SO(10)  10 matter {w̃ = P(1,1) = 0},
SU(6)  5 matter / Higgs field {w̃ = Q(8,3) = 0},
SO(12)  10 · 5̄ · 5̄H Yukawa coupling {w̃ = P(1,1) = Q(8,3) = 0}.

(5.49)

Unfortunately, the triple intersection {w̃ = P(1,1) = P(2,1) = 0} to the group E6 is

non-existent, such that top-quark Yukawas of type 10 ·10 ·5H are not supported in the

F-theory SU(5) model of the double del Pezzo transition of the quintic.

5.4 Non-Generic del Pezzo Transition of the Quartic 3-fold

5.4.1 Fano 3-fold bases and non-generic del Pezzo transitions

The promising success in uplifting the “upstairs” del Pezzo transitions of the quintic

hypersurface P4[5] suggests to follow this approach further. However, a noteworthy

observation of the toric data for the “downstairs” geometries is that the hypersurface

degree of the non-Calabi-Yau spaces is the sum of all coordinate charges minus one

in each GLSM charge vector Qi. This particular structure can be observed for the

hypersurface del Pezzo surfaces

dP6 = P3[3],

dP7 = P3
1112[4],

dP8 = P3
1123[6],

(5.50)

all of which are 2-dimensional Fano surfaces. Mathematically, a Fano variety B is a

non-singular complete variety whose anti-canonical bundle K−1
B is very ample, which

roughly speaking means that B admits an embedding into a projective space CPn. This

is a sufficient criterion for the existence of global elliptic fibrations over B, such that

the total 4-fold Z is non-singular.

Smooth Fano 3-folds therefore provide an important class of suitable bases for F-

theory model building geometries [154, 158, 160], which have been classified by Iskovskih

and Mori-Mukai [178–181]. The simplest candidate in three dimensions that follows the

observed “total coordinate GLSM charge minus one” scheme of the prior examples and

(5.50) is the Fano 3-fold quartic hypersurface P4[4]. Other examples are P4[3] and P4[2].

In order to obtain del Pezzo surfaces for the GUT brane inside this base space, the

del Pezzo transition is used again. One can generate a dP6 singularity in P4[4] by tuning
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vertices of the coords GLSM charges divisor class type /

polyhedron / fan Q1 Q2 χ(D)

ν1 = (−1, −1, −1, −1 ) u1 1 0 P 12

ν2 = ( 1, 0, 0, 0 ) u2 1 0 P 12

ν3 = ( 0, 1, 0, 0 ) u3 1 0 P 12

ν4 = ( 0, 0, 1, 0 ) u4 1 1 P +X = P̃ 24 (K3)

ν5 = ( 0, 0, 0, 1 ) u5 1 1 P +X = P̃ 24 (K3)

ν6 = ( 0, 0, −1, −1 ) w 0 1 X 10 (dP7)

conditions: 4 2

intersection form: 2P 2X − 2X3 = 4P̃ 3 − 2P̃X2 − 2X3

total Chern class: 1 + (P +X) + (6P 2 +X2 + 7PX)

− 18P 2X − 14P 3 − 7PX2 −X3

Stanley-Reisner ideal: 〈u1u2u3, u4u5w〉

Table 5.7.: Toric data for the downstairs Kähler 3-fold base B of the quar-

tic’s non-generic del Pezzo transition along a curve P1.

the degree-4 hypersurface condition to the form

u5F3(u1, . . . , u4) + F4(u1, . . . , u4) = 0, (5.51)

where Fd is a polynomial of degree d in the first four P4 coordinates u1, . . . , u4. Note that

F3(u1, . . . , u4) = 0 precisely describes a dP6 singularity at (0, 0, 0, 0, 1) ∈ P4, cf. (5.50).

The standard toric blowup procedure used in sections 5.2 and 5.3 then adds a further

coordinate w, such that the blowup constraint becomes

u5F3(u1, . . . , u4) + wF4(u1, . . . , u4) = 0. (5.52)

The toric data for this geometry is shown in table 5.1 of the earlier studied single

del Pezzo transition of the quintic–– aside from the intersection form due to the differ-

ent hypersurface constraint degree. Unfortunately, this geometry would therefore also

suffer from the absence of SO(10) enhancement, analogous to the discussion back in

section 5.2.6.

The idea is therefore to consider a non-generic del Pezzo transition. Instead of pro-

ducing an isolated singularity in P4[4], one tunes the coefficients such that an entire

curve P1 parameterized by

(0, 0, 0, u4, u5) ∼ (0, 0, 0, λu4, λu5) for λ ∈ C× (5.53)
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vertices of the coords GLSM charges divisor class

polyhedron / fan Q1 Q2 Q3

ν1 = ( 1, 0, 0, 0, 0, 0 ) x 2 0 0 2(σ + P +X)

ν2 = ( 0, 1, 0, 0, 0, 0 ) y 3 0 0 3(σ + P +X)

ν3 = (−2, −3, 0, 0, 0, 0 ) z 1 −1 −1 σ

ν4 = (−2, −3, −1, −1, −1, −1 ) u1 0 1 0 P

ν5 = ( 0, 0, 1, 0, 0, 0 ) u2 0 1 0 P

ν6 = ( 0, 0, 0, 1, 0, 0 ) u3 0 1 0 P

ν7 = ( 0, 0, 0, 0, 1, 0 ) u4 0 1 1 P +X

ν8 = ( 0, 0, 0, 0, 0, 1 ) u5 0 1 1 P +X

ν9 = (−2, −3, 0, 0, −1, −1 ) w 0 0 1 X

conditions: 6 0 0

0 4 2

Stanley-Reisner ideal: 〈xyz, u1u2u3, u4u5w〉

Table 5.8.: Toric data for the elliptically-fibered Calabi-Yau 4-fold Z aris-

ing from the quartic’s non-generic del Pezzo transition, cf. table 5.7.

becomes singular. The corresponding blowup of this curve generates a dP7 of finite size.

The toric data for this base geometry is found in table 5.7.

Constructing the Calabi-Yau 4-fold Z is then straightforward. By adding three ad-

ditional projective coordinates x, y, z for the elliptic fiber P2
231[6] and modifying the

charges appropriately, one arrives at the toric data in table 5.8. The transversality

condition on the two intersecting hypersurfaces will be explicitly investigated in the

later section 7.1.1. Under the assumption of a smooth Weierstrass model, (5.16) gives

χ∗(Z) = 1728. (5.54)

This value will later be used in chapter 7, when an explicit GUT model [88] is realized.
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5.4.2 Gauge group enhancements and SU(5) GUT ingredients

As before, the del Pezzo divisor Dw = {w = 0} of type dP7 is of primary interest.

Due to c1(B) = P+X the Tate coefficients are again sections an ∈ H0(B;O(n(P+X))),

such that along Dw the generic Tate parametrization can be tuned to locally take the

form

a1 = P(1,1),

a2 = P(2,1)w,

a3 = P(3,1)w
2,

a4 = P(4,1)w
3,

a6 = P(6,1)w
5,

 SU(5) (5.55)

of an SU(5) gauge group with overall vanishing degrees (0, 1, 2, 3, 5), precisely the same

as studied in (5.47). A look at the leading orders in w of the discriminant

∆ = −w5

( order w5︷ ︸︸ ︷
P 4

(1,1)Q(8,3) + w

order w6︷ ︸︸ ︷
P 2

(1,1)

(
8P(2,1)Q(8,3) + P(1,1)R(9,3)

)
− w2

(
16P 2

(3,1)P
2
(2,1) + P(1,1)S

)
︸ ︷︷ ︸

order w7

+O(w3)

) (5.56)

with the abbreviation polynomials

Q(8,3) := P 2
(3,1)P(2,1) − P(4,1)P(3,1)P(1,1) + P(6,1)P

2
(1,1)

R(9,3) := 4P(6,1)P(2,1)P(1,1) − P 3
(3,1) − P 2

(4,1)P(1,1)

(5.57)

shows that the term in the parentheses does not in general factorize further. Generically,

it yields the problematic I1 remainder component DR along its vanishing locus, as

discussed in sections 3.3 and 4.4.3. The divisor class of the entire discriminant vanishing

locus of this setting therefore splits cohomologically as

[{∆ = 0}] = 5[S] + [DR] ∈ H2(B;Z), (5.58)

where S := Dw is the del Pezzo divisor of the SU(5) GUT brane.

As before, one can now systematically analyze the gauge group enhancements and

relevant divisor intersections. Along the intersection of S with P(1,1) = 0 the Tate

coefficient a1 gains a further vanishing order, which leads to an SO(10) enhancement

curve

CSO(10) := S ∩ {P(1,1) = 0}, (5.59)

where matter in the 10 representation can be accommodated. Similarly, along the

intersection of the GUT brane with {Q(8,3) = 0} the discriminant vanishing degree is
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sing. discr. gauge enh. coeff. vanish. deg object

type deg(∆) type group a1 a2 a3 a4 a6 equation

GUT: I s
5 5 A4 SU(5) 0 1 2 3 5 S: w = 0

matter: I s
6 6 A5 SU(6) 0 1 3 3 6 CSU(6): Q(8,3) = 0

I∗ s
1 7 D5 SO(10) 1 1 2 3 5 CSO(10): P(1,1) = 0

Yukawa: I∗ s
2 8 D6 SO(12) 1 1 3 3 5 P(1,1) = P(3,1) = 0

IV∗ s 8 E6 E6 1 2 2 3 5 P(1,1) = P(2,1) = 0

extra: I s
7 7 A6 SU(7) 0 1 3 4 7 Q(8,3) = R(9,3) = 0,

(P(1,1), P(2,1)) 6= (0, 0)

Table 5.9.: Relevant gauge enhancements for SU(5) GUT model building

in the considered geometry derived from P4[4].

raised by one order, such that it follows from the (generic) non-vanishing of P(1,1) that

by the Tate classification only the case of an SU(6) enhancement along the curve

CSU(6) := S ∩ {Q(8,3) = 0} (5.60)

remains. This can localize matter in the 5 of SU(6). However, generically this matter

curve CSU(6) does not factorize, which is phenomenologically undesired in the context of

the doublet-triplet splitting problem, cf. section 3.8.2. At certain points along the 10

curve CSO(10) the singularity type enhances further: At the codimension-3 intersection

with {P(3,1) = 0}, which is contained in CSU(6) as well,

PSO(12) := CSO(10) ∩ {P(3,1) = 0} ⊂ CSO(10) ∩ CSU(6), (5.61)

the singularity enhances to SO(12). The subsequent decomposition then gives rise to

the 10 · 5̄m · 5̄H Yukawa coupling. Likewise, at the intersection

PE6
:= CSO(10) ∩ {P(2,1) = 0} ⊂ CSO(10) ∩ CSU(6) (5.62)

the 10 · 10 · 5H Yukawa coupling is localized at a point of E6 enhancement. Those

two enhancements correspond to a single and double zero of the polynomial Q(8,3) that

defines CSU(6) –– yielding the respective number of 5 and 5̄ representations localized

at PE6 and PSO(12). Furthermore, along the intersection of CSU(6) with {R(9,3) = 0},
where P(1,1) and P(2,1) are not simultaneously vanishing, there are enhancement points

to SU(7) at

PSU(7) := CSU(6) ∩ {R(9,3) = 0 : (P(1,1), P(2,1) 6= (0, 0)} (5.63)
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that realize the coupling 5H · 5̄m · 1. For the convenience of the reader all those en-

hancements are listed in table 5.9.

Note that the intersection numbers for all three codimension-3 enhancements PSO(10),

PE6 and PSU(7) are nonzero, i.e. in contrast to the geometries considered earlier the

geometry arising from P4[4] actually contains all important interactions and represen-

tations. Furthermore, all those promising ingredients follow entirely from 7-brane inter-

sections, i.e. entirely without the help of extra ingredients like the M5-brane instantons

discussed in chapter 4.

5.4.3 The SO(10) matter curve

The distinct improvement of the geometry considered here is the actual presence of

the top-quark Yukawa coupling 10·10·5H arising from PE6 , which is related to the non-

generic del Pezzo transition performed on the quartic P4[4]. One can understand this

from the weak coupling type IIB orientifold picture, where in the “upstairs” geometry

the 10 matter curve arises from the intersection of the SU(5) GUT brane with its mirror

brane. Since this brane is wrapping a del Pezzo surface in the F-theory “downstairs”

base, the “upstairs” geometry therefore has to have two intersecting del Pezzo surfaces––

a highly non-generic situation. Furthermore, due to the rigidness of each del Pezzo

surface both cannot be simultaneously shrunk to a point. This leads to the presence of

a non-generic intersection curve to which both surfaces can be reduced [88, 99].

The presence of a non-generic del Pezzo surface within a “downstairs” F-theory basis

is therefore corresponding to intersecting del Pezzo surfaces in the “upstairs” Calabi-

Yau geometry –– precisely the setting considered here. In particular, this circumvents

a no-go theorem [157] that states the absence of the relevant couplings for generic

del Pezzo SU(5) GUT branes.

Ultimately, the bottom line is that the geometry arising from the non-generic del Pezzo

transition of the quartic P4[4] serves as a good starting point to construct a semi-

realistic global F-theory SU(5) GUT model. All the important matter representations

and couplings have been accounted for in the previous analysis–– even without the help

of M5-brane instantons or other “extraordinary” ingredients. This makes the listed

phenomenological properties in fact rather natural.





Chapter 6
Semi-Realistic Global

F-theory GUT Model Building

Based on the discovery of a promising geometry for SU(5) GUT model building in

F-theory from a non-generic del Pezzo transition of the quartic 3-fold hypersurface

P4[4], further investigation of the phenomenology is in order. The basic requirements

like 5 and 10 matter curves as well as top- and bottom-quark Yukawa couplings ––

realized by suitable intersections between the allowed 7-brane divisors –– have already

been checked. However, it remains to describe an appropriate gauge flux that on the

one hand breaks the GUT group SU(5) to the MSSM group in the effective theory and

on the other hand provides chiral matter.

The key to access worldvolume gauge fluxes is the spectral cover description, which

was introduced via the heterotic/F-theory duality back in section 3.5. Due to the nature

of many interesting GUT geometries, it is at first necessary to generalize this description

to settings that lack a strict heterotic dual. One can then specialize to spectral cover

descriptions in the particular context of F-theory SU(5) GUTs.

This reveals that it is in fact necessary to apply a split spectral cover description

to construct a viable model and establish a number of basic phenomenological require-

ments. More specifically, the split spectral cover will (like the name suggests) “split”

the 5̄m matter and the 5H + 5̄H Higgs states, which are localized on the same curve

CSU(6) of singularity enhancement in the discussed geometry. Ultimately, this separa-

tion allows to avoid the problematic 10 · 5̄m · 5̄m coupling that leads to the proton decay

[182] while still generating the important 10 · 10 · 5H and 10 · 5̄m · 5̄H interactions.

A further obstacle are the exotic gauge bosons (3,2)±5 arising from the breaking of

the SU(5) GUT symmetry, that are being dealt with by a twisting procedure of the

gauge breaking vector bundle. The chapter closes with a ready-to-use formula for the

D3-brane tadpole in the context of the discussed model.

145
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6.1 F-theory Spectral Covers without Heterotic Duals

6.1.1 Generic spectral cover construction

For F-theory models with heterotic duals the spectral cover construction from sec-

tion 3.5 provides an explicit correspondence of the gauge breaking vector bundle V on

the heterotic side to the singular structure of the geometry and G4 flux on the F-theory

side. In such models the 4-fold base B3 is itself P1-fibered over B2, such that one would

aim to naturally identify the SU(5) GUT brane divisor S ⊂ B3 with B2. But for generic

F-theory models the required double fibration structure–– elliptically and K3-fibered at

the same time–– is not given, i.e. no direct heterotic dual exists.

It has been shown that one can recover the major aspects of the spectral cover

construction [144, 149] by locally viewing S as the basis of an asymptotically local

Euclidean (ALE) fibration that captures the singularity structure on S as well [66, 69,

157]. The idea is therefore to extend the original spectral cover construction to F-theory

settings that lack a heterotic dual in order to describe the localized gauge flux on the

SU(5) GUT brane and to produce chiral matter.

The starting point is to construct an auxiliary non-Calabi-Yau 3-fold space W that

takes the place of the heterotic compactification space Y3 in the original description,

see section 3.5. Similar to the explicit description of the 4-fold base B3, this space W
is explicitly given by a projectivization description

W := P(OS ⊕KS)
π
−� S, (6.1)

however, there is no conceptual relation to B3. Note that while in the original construc-

tion the heterotic compactification space Y3 is elliptically fibered over B2, the auxiliary

space W is a P1-fibration over S:

E � o

��

� _

��

� � // Y3 ⊃ C(n)

����
K3 �
� //

����

Z4
// //

����

B2 =


dPn
Fk
B(Fk)
K3/Z2

P1 � � // B3 = P(O ⊕ T )

== ==

︸ ︷︷ ︸
original configuration, cf. section 3.5

E � p

!!

P1 � � // W ⊃ C(5)

����
Z4 ⊃

����

S

ALE �
� // B3

local ALE
fibration

== ==

︸ ︷︷ ︸
configuration without heterotic duals

(6.2)

The embedding of the base is provided by the section σ, satisfying the same relation

σ · σ = −σc1(S) ∈ H4(W ;Z) (6.3)
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as the original σ in (3.41). Since W is not a Calabi-Yau space, its first Chern class

turns out to be

c1(W) = 2σ + 2c1(S). (6.4)

In addition, there is a spectral line bundle N defined over the spectral surface C(n) ⊂
W , which is entirely analogous to the one introduced in the original construction from

section 3.5. As before, its primary property

(π̃n)∗N = V |S (6.5)

describes the gauge breaking vector bundle and thus governs the gauge flux. The

description (3.45) in terms of the first Chern class c1(N ) ∈ H2(C(n);Z) as well as the

explicit form (3.47) remain unchanged here. Essentially, the big difference compared

to the original construction is the usage of the auxiliary space W , which for a strict

heterotic dual is automatically provided by the heterotic compactification space Y3.

One also has to keep in mind that the spectral cover construction here rests upon the

assumption of an ALE fibration, which is in general only locally valid. In contrast, the

original spectral cover approach is a truly global description.

6.1.2 SU(5) specifics

One then chooses homogeneous coordinates (M,N) to parameterize the fiber di-

rections of W , such that the restriction to each P1-fiber Wp
∼= P1 gives the sections

O(1)⊗KS and O(1), respectively. The SU(5) spectral cover surface C(5) associated to

the Tate parametrization (5.55) is described by the hypersurface conditionI

P ′(6,1)M
5 + P ′(4,1)M

3N2 + P ′(3,1)M
2N3 + P ′(2,1)MN4 + P ′(1,1)N

5 = 0, (6.6)

where each primed P ′(m,n) is the restriction of the polynomials P(m,n) to S, i.e.

P ′(m,n) := P(m,n)|S = P(m,n)|{w=0}, (6.7)

which are sections of powers of the anti-canonical bundle K−1
S = K−1

B |S ⊗ N−1
S⊂B by

the adjunction formula. Equation (6.6) can be treated as the projectivization of the

hypersurface condition

P ′(6,1)s
5 + P ′(4,1)s

3 + P ′(3,1)s
2 + P ′(2,1)s+ P ′(1,1) = 0 (6.8)

IOne should keep in mind that the parametrization (5.55) rests on the assumption of c1(B3) =

P + X with respect to the geometry in table 5.7, which fixes the polynomial charges in P(m,n).

Nevertheless, the outlined procedure is easily generalized.
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in the total space of the canonical line bundle KS , where s = 0 embeds the base S
into KS . The spectral surface C(5) ⊂ W defined in (6.6) then has the Poincaré-dual

cohomology class

[C(5)] = 5σ + π∗η ∈ H2(W ;Z) (6.9)

and with obvious similarity to (3.42) one finds

η = 6c1(S) + c1(NS⊂B) ∈ H2(S;Z) (6.10)

for the non-trivial part. The entire construction therefore is virtually identical in terms

of the cohomological description. But one should keep in mind that whereas the original

spectral cover construction is an equivalent global representation, the description here

only applies locally to the GUT brane divisor S.

6.2 Global SU(5) GUT Models with Spectral Cover Fluxes

Equipped with the (local) spectral cover description for general F-theory models

without a strict heterotic dual, one can now continue the analysis of the generic phe-

nomenological properties of the P4[4] model from section 5.4. However, it should be

mentioned right from the start that this section is only an intermediate step, which

requires further significant changes–– a splitting of the entire spectral cover to deal with

5m and 5H separation–– in order to produce a viable global F-theory model.

6.2.1 Matter curves in the spectral cover description

The ALE fibration assumes an underlying E8 structure from the Weierstrass model

used to describe the elliptic fibration of Z4 over the base B3. Since one of the maximal

subgroups of E8 is SU(5)× SU(5), the structure group of the embedded vector bundle

V on the heterotic side is G = SU(5)⊥ ∼= SU(5) and H = SU(5) remains as the

effective unbroken GUT gauge group. The massless matter representations therefore

correspond to the irreducible representations in the decomposition of the E8’s adjoint

representation into G×H = SU(5)× SU(5) representations

248→ (24,1)⊕ (1,24)⊕
[
(10,5)⊕ (5̄,10) + h. c.

]
. (6.11)

The matter curves and intersections on the GUT brane S, that were analyzed in

the previous chapter can be translated to the spectral cover description. With respect

to the local SU(5) parametrization (5.55) and the subsequently identified singularity

enhancements, the 10 representation is localized on the SO(10) curve CSO(10) = {w =

P(1,1) = 0}, cf. table 5.9 in section 5.4.2. By defining

C̃10 := C(5) ∩ σ ⊂ W (6.12)
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as the intersection of the SU(5) spectral surface and the base embedding section, the

matter curve CSO(10) ⊂ S can cohomologically be recovered as the restriction

[CSO(10)] = [C̃10]|σ = (5σ + (π5)∗η)|σ
= η − 5c1(S) ∈ H2(S;Z)

(6.13)

using (6.3). Therefore C̃10 can roughly be understood as a sort of “uplift” of CSO(10) to

the 5-sheeted spectral surface C(5) covering S, where the used naming scheme highlights

the 10 matter representation that is be localized on this curve.II

The corresponding spectral cover description of the 5̄ matter representation is more

complicated [146, 183, 184]. A detailed analysis in heterotic theory shows that one

should regard it as the intersection

CΛ2V ∩ σ, (6.14)

where CΛ2V is a 10-sheeted spectral surface associated to the antisymmetric 10 rep-

resentation of SU(5), which will not be introduced here. Instead, one can define a

branched double cover

C̃5̄ := τC(5) ∩ C(5) − C(5) ∩ σ − C(5) ∩ σt
= C(5) ∩ (τC(5) − στ ),

(6.15)

where τ : N 7→ −N is a Z2-involution on the P1-fibers of W over S, στ := σ + στ is an

abbreviation and σt := 3(σ + π∗c1(S)) a so-called trisection. The class of C̃5 can then

be evaluated as

[C̃5̄] = [C(5)] · [τC(5) − στ ]

=
(

5σ + (π5)∗η
)(
σ + (π5)∗(η − 3c1(S))

)
∈ H4(W ;Z).

(6.16)

This completes the dictionary between the matter curves on S identified in section 5.4.2

and the local spectral cover description introduced here.

One could now go on and identify the intersections between the matter curves in

order to identify the couplings and interactions. Since 5H , 5̄H and 5̄m are all localized

on the same curve, one in particular finds the dangerous 10 · 5̄m · 5̄m coupling. This

problem will be dealt with in the next section via the splitting approach.

IIFor the readers convenience any curves on the spectral surface C(5) will be denoted by tildes,

e.g. C̃10 or C̃5, in contrast to the matter curves CSO(10) ⊂ S of the GUT 7-brane divisor.
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6.2.2 Gauge flux on the SU(5) GUT and matter branes

The spectral cover description allows to handle the gauge flux on S, such that chiral

matter can be generated and the GUT symmetry be broken via an U(1)Y hypercharge

flux, cf. section 3.8.3. Following section 2.5 such an internal flux would be described

by an holomorphic line bundle L on the GUT brane S in the perturbative theory [99],

whereas the appropriate description in F-theory arises from a reduction of the G4 flux

along the singular locus of the GUT 7-brane, cf. section 3.4.3.

Aside from the gauge flux on the GUT brane one also has to take flux along the matter

branes into account, which constitute the (generically) non-factorizing I1 singularity

part of the discriminant (5.56). Here one makes usage of the fact that the spectral

cover description also takes the local neighborhood of the GUT brane S into account,

in particular the intersecting I1 components that give rise to the matter curves and

gauge enhancements.

The local flux along the I1 components is described by a non-vanishing gauge field

strength on S, that is embedded into the complementary group SU(5)⊥ on the GUT

brane. As this reduces SU(5)⊥ further, it leads to the complementary gauge enhance-

ment along the matter curves in the realized gauge group. This flux is described via

the spectral line bundle N defined over the spectral surface C(5), as introduced in sec-

tions 3.5 and 6.1. With respect to the discussed setting here, one has n = 5 for the

SU(5) group and c1(V ) = 0 for the gauge breaking bundle in the bulk, such that the

integrality condition for c1(N ) gives

5(1
2

+ λ) ∈ Z
(1

2
− λ)η + (5λ− 1

2
)c1(S) ∈ H2(S;Z)

for λ ∈ Q (6.17)

using the explicit term (3.47). Together with the spectral surface C(5) this allows to

reconstruct the G4 flux locally.

6.2.3 Chiral matter

Using the spectral cover description of the internal gauge flux on the GUT brane and

(locally) the intersecting matter branes, one can systematically analyze the exact chiral

matter spectrum arising from the geometry of section 5.4. The computation follows the

principal ideas of section 2.5, i.e. by evaluating the chiral matter indices.

The spectrum in the 10 representation of SU(5) arises in the sector of the spectral

cover, where the zero section σ carries the trivial line bundle, denoted Oσ. Let

i : {σ = 0} ∼= S ↪−→W
j : C(5) ↪−→W

(6.18)
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be the embedding mappings of the base S and the spectral surface. The relevant

extension groups are then [77, 157]

Exti(i∗Oσ; j∗N ) ∼= H i−1(C(5) ∩ σ;N ⊗KS |C(5)∩σ)

= H i−1(C̃10;N ⊗KS |C̃10).
(6.19)

Analogous to (2.36) the chiral index of the 10 matter representation can be computed

via the Riemann-Roch-Hirzebruch index theorem (A.28) as

χ10 =
∑
i

(−1)iExti(i∗Oσ; j∗N ) = χ(C̃10;N ⊗KS |C̃10)

=

∫
C̃10

(
c1(N ) + c1(KS) +

1

2
c1(C̃10)

) ∣∣∣∣
C̃10

=

∫
C̃10

(
γ − 1

2
c1(C(5))− 1

2
(π5)∗c1(S) +

1

2
c1(C̃10)

) ∣∣∣∣
C̃10

=

∫
C̃10

γ,

(6.20)

where the cancellation of the three terms in the second-last formula follows from the

adjunction formula for the 10 matter curve C̃10 = C(5)∩σ = σ|C(5) and with the by now

well-known identity σ|σ = σ · σ = −σc1(S) from (6.3). Since γ depends only on the

gauge flux, this reproduces the corresponding relationship in type IIB theory, where in

(2.36) the chiral index likewise only depends on the fluxes. Using (6.13) this can be

further evaluated to

χ10 =

∫
W

[σ] · [C(5)] · [γ] = −λ
∫
S
η · [CSO(10)] = −λ

∫
S
η(η − 5c1(S)). (6.21)

Note that in general there will be non-chiral pairs invisible to this index computation.

However, since negative degree line bundles over smooth curves have no global sections,

all negative contributions vanish. The computed χ10 therefore directly gives the number

of chiral 10 matter representations encountered in the considered geometry.

The computation for the massless 5̄ representations is similar [77, 184]. The relevant

extension groups here are formally analogous to (6.19)

Exti(i∗Oσ; j∗N Λ2V ) ∼= H i−1(CΛ2V ∩ σ;N Λ2V ⊗KS |CΛ2V ∩σ) (6.22)

for i = 1, 2, where (CΛ2V ,N Λ2V ) refers to the 10-sheeted spectral cover of the antisym-

metric representation mentioned in (6.14). Using the branched double cover curve C̃5
from (6.15), this can be rewritten to

Exti(i∗Oσ; j∗N Λ2V ) ∼= H i−1(C̃5̄/τ ;L⊗K−
1
2

W |C̃5̄/τ ) (6.23)
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where the auxiliary line bundle L is fully specified cohomologically by its first Chern

class

c1(L)|C̃5̄/τ = c1(N ⊗K
1
2
S )
∣∣∣
C̃5̄
− R

2
. (6.24)

Here R refers to the number of ramification points of the double cover C̃5̄ −� C̃5̄/τ ,

which is given explicitly by the intersection number

R =

∫
W

[C(5)] · [C(5) − στ ] · [στ ]. (6.25)

Ultimately, this allows to compute the chiral index of the 5̄ representations to

χ5̄ =

∫
C̃5̄

(
c1(N ) +

1

2
c1(KS) +

1

4
c1(W)

)
+

1

2
c1(C̃5̄/τ)|C̃5̄/τ −

R

2
=

∫
C̃5̄
γ. (6.26)

Like for χ10, the number of chiral 5̄ representations χ5̄ depends only on the flux along

the intersection curve. One can also show [88] that χ10 = χ5̄ as required for a consistent

bundle by anomaly cancellation.

6.2.4 GUT group breaking via hypercharge flux

After computing the number of 10 and 5̄ SU(5) GUT group representations, one has

to consider the breaking of the GUT group in order to obtain (or at least approximate)

the well-established Standard Model matter content. The decomposition of the relevant

GUT representations is listed in section 3.8.2. The attempt here is now to realize this

kind of hypercharge flux GUT symmetry breaking consistently within the spectral cover

description and dealing with two phenomenological obstacles:

� The first one of those problems involves the removal of the exotic gauge bosons

(3,2)5 ⊕ (3,2)−5 appearing in the decomposition of the SU(5) adjoint represen-

tation, cf. (3.64). In a two-step breaking scheme akin to (2.35) like

E8
V−→ SU(5)× SU(5)

LY−→ SU(5)× SU(3)× SU(2)× U(1)Y (6.27)

those states are counted by h•(S;L±5
Y ) according to their respective U(1)Y charge.

However, one can show that the line bundles L over a del Pezzo-n surface S such

that H•(S;L) = 0 are in bijective correspondence to the roots α of En –– which by

definition implies that for linear scalings λα only ±α are in fact roots. Therefore,

if the hypercharge flux line bundle LY is of this type, L±5
Y cannot at the same

time correspond to a root of En as well. The plain two-step breaking is therefore

not suitable to achieve this kind of exotics elimination. Instead a certain twisting

procedure borrowed from heterotic GUT model building [185, 186] is applied, such

that one directly reduces the E8 in a single step.
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More precisely, the idea is to use a twisting line bundle LY –– which is conceptually

to be distinguished from LY –– and add it to a rank-5 spectral cover bundle V with

non-trivial first Chern class c1(V ) 6= 0, which is similar to the gauge breaking

SU(5) vector bundle considered earlier. Then

V ⊕ LY such that c1(V ⊕ LY ) = c1(V ) + c1(LY ) = 0 (6.28)

is embedded as an S[U(5)×U(1)]-bundle into E8, which leads to the breaking of

the gauge group like

E8 −→ SU(5)× SU(3)× SU(2)× U(1)Y . (6.29)

The Cartan generators of the V ⊕ LY bundle structure group are embedded di-

agonally via

T = 15×5 × (−5) = diag(1, 1, 1, 1, 1,−5) (6.30)

into S[U(5)×U(1)] ⊂ SU(6) ⊂ E8, which effectively attributes the U(1)Y charge

+1 to the fundamental representation of V and −5 to LY . The decomposition of

the 248-dimensional adjoint representation of E8 then decomposes under (6.29)

to
248→ (24; 1,1)0 ⊕ (1; 1,1)0 ⊕ (1; 8,1)0 ⊕ (1; 1,3)0

⊕ [(5; 3,2)1 ⊕ (1; 3,2)5 ⊕ h.c.]

⊕ [(10; 3̄,1)2 ⊕ (5; 3̄,1)−4 ⊕ h.c.]

⊕ [(10; 1,2)−3 ⊕ (5; 1,1)6 ⊕ h.c.],

(6.31)

and the relevant representations of the Standard Model are identified in table 6.1.

In particular, note that now the exotic matter representation (3,2)5 is associated

to the bundle L−1
Y , i.e. an admissible power and thus easier to avoid.

� The second problem involves the U(1)Y -hypercharge gauge boson itself, which

can potentially acquire a mass via the Chern-Simons couplings to the closed

string background fields, i.e. the Stückelberg mechanism. Fortunately, within

the F-theory framework this problem can be avoided by only considering internal

Abelian gauge fluxes FY which correspond to the relative cohomology of S ⊂ Z4,

i.e. the Poincaré-dual 2-cycle [FY ] ∈ H2(S;Z) is non-trivial in S but corresponds

to a boundary –– trivial cohomology –– in the ambient 4-fold Z4. This issue was

already mentioned in section 3.8.3 and it can be shown that this topological re-

quirement on S, B3 and Z4 prohibits a double fibration structure as required for

the heterotic/F-theory duality of section 3.5. It also raises certain problems with

the gauge coupling unification that will be discussed later.
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V (3,2)1 QL left-handed quark doublet

L−1
Y (3,2)5 — (exotic matter)

Λ2V (3,1)2 d̄L = (dR)c left-handed down-type anti-quark

V ⊗ LY (3̄,1)−4 ūL = (uR)c left-handed up-type anti-quark

Λ2V ⊗ LY (1,2)−3 LL left-handed lepton doublet

V ⊗ L−1
Y (1,1)6 ēL = (eR)c left-handed anti-lepton

Table 6.1.: Standard model representations in SU(5) GUTs resulting

from the “twisted one-step breaking” of the GUT group. A single gen-

eration of left-handed matter is originally contained in the 10 ⊕ 5̄m ⊕ 1

representation.

One can now go on and evaluate the D3-brane tadpole condition (3.50), which basically

gives the required number of D3-branes that have to be added to the model. But

since further refinements with subsequent changes to this computation are due, this

computation is postponed.

6.3 Split Spectral Cover Refinements

While the SU(5) spectral cover description manages to describe the G4 flux, such

that one can compute phenomenologically relevant quantities like the chiral indices,

and the subsequent twisting to a S[U(5) × U(1)] spectral cover deals with the exotic

GUT gauge bosons, it still remains to separate the conceptually different representation

instances 5̄m and 5H ⊕ 5̄H –– all of which are localized on the same matter curve. This

is particularly unfavored due to the appearance of the dangerous 10 · 5̄m · 5̄m coupling,

which leads to a rapid proton decay [68, 82, 182]. Even a separation of 5̄m and 5H⊕ 5̄H
on distinct matter curves is not entirely sufficient to deal with this aspect.

6.3.1 S[U(4)xU(1)X] split spectral cover construction

It was realized that the entire spectral cover construction has to split into two com-

ponents, which implies the replacement

SU(5)⊥ ∼= SU(5)︸ ︷︷ ︸
original spectral cover

 S[U(4)× U(1)X ]︸ ︷︷ ︸
split spectral cover group

(6.32)

of the spectral cover group. Since S[U(4) × U(1)X ] ⊂ SU(5) is a maximal subgroup,

the entire decomposition is then effectively of the form

E8
V⊕L−−−→ SU(4)× SU(5)× U(1)X , (6.33)
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such that one in principle obtains the SU(5) matter representations but with an addi-

tional massive Abelian U(1)X gauge factor. The Cartan generators of a subsequently

defined rank-(4 + 1) vector bundle are embedded diagonally via the matrix

T := 14×4 × (−4) = diag(1, 1, 1, 1,−4), (6.34)

that assigns the U(1)X charge +1 to the rank-4 sub-bundle and −1 to the line sub-

bundle. The explicit decomposition of the E8’s adjoint representation is then

248→ (15; 1)0

⊕ (1; 1)0 ⊕ (1; 10)−4 ⊕ (1; 1̄0)4 ⊕ (1; 24)0

⊕ (4; 1)5 ⊕ (4; 5̄)−3 ⊕ (4; 10)1

⊕ (4̄; 1)−5 ⊕ (4̄; 5̄)3 ⊕ (4̄; 1̄0)−1

⊕ (6; 5)−2 ⊕ (6; 5̄)2,

(6.35)

and the further breaking of the GUT SU(5) group will be discussed later in section 6.3.4.

Whereas the 101 representation of SU(5)×U(1)X is required for the subsequent GUT

model building, the 10−4 leads to undesired additional states that one needs to remove.

From the geometrical point of view the factorization of the new group SU(4)×U(1)X
implies a corresponding splitting of the spectral surface in a quartic and linear piece

[C(5)] = [C(4)] + [C(1)], where
C(4) π4−� S,

C(1) π1−� S.
(6.36)

This corresponds to a factorization of the divisor, i.e. the original SU(5) spectral cover

surface (6.8) factorizes [159] like

C(4)︷ ︸︸ ︷
(c0s

4 + c1s
3 + c2s

2 + c3s+ c4)

C(1)︷ ︸︸ ︷
(d0s+ d1)

= c0d0s
5 + (c1d0 + c0d1)s4 + (c2d0 + c1d1)s3

+ (c3d0 + c2d1)s2 + (c4d0 + c3d1)s+ c4d1

(6.37)

where ci and di are the coefficient functions of C(4) and C(1), respectively. In order to

avoid the appearance of a second 10 representation curve –– which can be associated

to the aforementioned 10−4 representation under SU(5) × U(1)X –– one sets d1 to a

non-zero constant, i.e. without loss of generality set d1 = 1. Then

c0d0︸︷︷︸
P ′

(6,1)

s5 + (c1d0 + c0)︸ ︷︷ ︸
must vanish

s4 + (c2d0 + c1)︸ ︷︷ ︸
P ′

(4,1)

s3 + (c3d0 + c2)︸ ︷︷ ︸
P ′

(3,1)

s2 + (c4d0 + c3)︸ ︷︷ ︸
P ′

(2,1)

s+ c4︸︷︷︸
P ′(1,1)

(6.38)
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leads to an identification with the coefficients from (6.8). Due to the absence of the s4

power one therefore requires

c1d0 = −c0. (6.39)

The two Poincaré-dual cohomology classes of the individual spectral surface components

are
[C(4)] = 4σ + π∗4 η̃

[C(1)] = σ + π∗1c1(S)
where

η̃ = η − c1(S)

η = 6c1(S)− c1(NS⊂B),
(6.40)

whose sum obviously gives the original results from (6.9) and (6.10).

The spectral cover line bundleN over the spectral surface also has to split accordingly.

Note that the S[U(4)×U(1)X ] gauge group considered here is structurally identical to

the twisted gauge group S[U(5) × U(1)] from section 6.2.4. Whereas the U(1) was

localized on the GUT brane S back there, it has now been attributed its own spectral

cover piece C(1). As before, one considers a split bundle

W = V ⊕ L such that c1(W ) = c1(V ) + c1(L) = 0. (6.41)

Here V is a rank-4 vector bundle and L a line bundle, both of which are defined by the

respective special push-forwards of the spectral cover line bundles, i.e.

(π̃4)∗N (4) = V |S ,
(π̃1)∗N (1) = L|S .

(6.42)

Due to the condition (6.41) on the first Chern class of the total vector bundle W it is

helpful to define

ζ := c1(V ) = −c1(L). (6.43)

As before, the spectral line bundle N (4) is entirely specified by its first Chern class

c1(N (4)) ∈ H2(C(4);Z), which can be explicitly given as

c1(N (4)) =
r(4)

2
+ γ(4)

u +
1

4
(π4)∗ζ

= (1 + 4λ)σ +

(
1

2
− λ
)

(π4)∗η̃

+

(
−1

2
+ 4λ

)
(π4)∗c1(S) +

1

4
(π4)∗ζ.

(6.44)

One might want to compare this to (3.47) for n = 4. The integrality requirement of

this cohomology class then yields the conditions

4λ ∈ Z,
(1

2
− λ)η̃ − 1

2
c1(S) + 1

4
ζ ∈ H2(S;Z).

(6.45)
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Likewise, the first Chern class c1(N (1)) ∈ H2(C(1);Z) of the Abelian U(1)X gauge part

can be evaluated to

c1(N (1)) = (π̃1)∗ζ. (6.46)

An interesting observation at this point can be derived from the second quantization

condition in (6.45): it is impossible to have λ = 0 for an odd value of c1(S), i.e. if the

GUT brane divisor does not support a spin structure. This is directly related to the

Freed-Witten quantization condition [113] discussed in section 2.8.2. On non-spin GUT

7-branes it is therefore impossible to completely turn off the universal gauge flux γ if

one wants to obtain a consistent model.

6.3.2 Factorization of matter curves and intersections

Using the factorization description (6.37) one can now again “uplift” the matter

curves to the spectral cover surface componentsIII analogous to section 6.2.1. The 10

matter curve CSO(10) ⊂ S now corresponds to the locus

Ĉ10 := {c4 = 0} ⊂ W , (6.47)

which is to be compare to (6.12) and has the cohomology class

[Ĉ10]|σ = η − 5c1(S) = η̃ − 4c1(S) ∈ H2(S;Z). (6.48)

The SU(6) enhancement curve CSU(6) ⊂ S, where matter in the 5̄ representation is

localized, now factorizes thanks to the split spectral cover approach to

(c3(c2 + c3d0)− c1c4)︸ ︷︷ ︸
Ĉ5̄H

(c2 + d0(c3 + c4d0))︸ ︷︷ ︸
Ĉ5̄m

= 0, (6.49)

such that the 5H ⊕ 5̄H Higgs representations live on Ĉ5̄H ⊂ W and the 5̄m matter is

accommodated on the curve Ĉ5̄m ⊂ W . With some additional effort the cohomology

classes of those curves can be computed to

[Ĉ5̄H ] = 2σ · π∗(2η̃ − 5c1(S)) + π∗(η̃ − c1(S)) · π∗(η̃ − 2c1(S)),

[Ĉ5̄m ] = σ · π∗(η̃ − 2c1(S)) + π∗c1(S) + π∗(η̃ − 2c1(S)).
(6.50)

A detailed analysis shows that Ĉ5H derives from τC(4) ∩ C(4) and Ĉ5m originates in the

piece τC(1)∩C(4) similarly to (6.15). Furthermore, let Ĉν be the intersection component

of C(4) and C(1) away from S, whose cohomology is given by

[Ĉν ] = 2(σ + π∗c1(S)) · π∗c1(S). (6.51)

IIIIn order to avoid confusion with the previous sections, all representation loci on the split spectral

cover like Ĉ10 are denoted with a hat.
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V 101 (QL, (uR)c, (eR)c)

L 10−4 —

V ⊗ L 5̄−3 ((dR)c, LL)

Λ2V 5̄−2 (Hu, Hd)⊕ (H̄u, H̄d)

V ⊗ L−1 15 (νR)c

Table 6.2.: Representations and bundles from the decomposition (6.35)

in the SU(5)× U(1)X representation.

This object cohomologically appears in the intersection

[τC(1) ∩ C(4)] = [Ĉ5m ] + [Ĉν ] ∈ H4(W ;Z). (6.52)

One can now study the intersections between those curves in order to identify the

gauge enhancements –– a task that was omitted at the end of section 6.2.1. The first

intersection point

P̂SO(12) := {c4 = 0} ∩ {c2 + c3d0 = 0} ⊂ Ĉ5̄H ∩ Ĉ5̄m (6.53)

leads to an SO(12) gauge enhancement, whose adjoint representation’s decomposition

allows to associate it with the 10 · 5̄H · 5̄m Yukawa coupling. A second intersection at

P̂SU(7) := {c1 + c3(d0)2 = 0} ∩ {c2 + c3d0 + c4(d0)2 = 0}
where c4 6= 0 and c2 + c3d0 6= 0

(6.54)

gives the uplift of the SU(7) enhancement identified in (5.63) and is therefore interpreted

as the locus of the 5H ·5̄m·1 coupling. Furthermore, there is the point of E6 enhancement

P̂E6
:= {c4 = 0} ∩ {c3 + c4d0 = 0} (6.55)

that gives the top-quark Yukawa coupling 10 ·10 ·5H . At this point one might want to

reflect upon their respective phenomenological relevance as summarized in section 3.8.2.

6.3.3 Chiral matter

Equipped with an explicit description of the gauge breaking vector bundle W =

V ⊕ L from (6.41) in terms of the split spectral cover description, one can directly

associate the representations of the decomposition (6.35) with specific powers of V and

L, see table 6.2. This is an intermediate identification step of the GUT representations
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analogous to table 6.1. The breaking of the GUT group will be discussed afterwards in

the next subsection.

Like in section 6.2.3, one can now go on and compute the chiral indices. Let again

i : {σ = 0} ↪−→W and
j(4) : C(4) ↪−→W
j(1) : C(1) ↪−→W

(6.56)

be the embedding mappings analogous to (6.18). For the remaining and relevant 101

matter curve Ĉ10 the relevant extension groups can be expressed as

Exti(i∗Oσ; (j(4))∗N (4)) ∼= H i−1(C(4) ∩ σ;N (4) ⊗KS |C(4)∩σ)

∼= H i−1(Ĉ10;N (4) ⊗KS |Ĉ10),
(6.57)

such that the chiral index for the 10 representation via (A.28) is

χ10 =
∑
i

(−1)iExti(i∗Oσ; (j(4))∗N (4)) = χ(Ĉ10;N (4) ⊗KS |Ĉ10)

=

∫
Ĉ10

(
γ(4)
u +

1

4
(π4)∗ζ

)
=

∫
S

(
−λη̃ +

1

4
ζ

)(
η̃ − 4c1(S)

)
,

(6.58)

which is to be compared to (6.20). The computation of the 5̄m and 5̄H chiral indices

is a little bit more involved. Let C(n) and C(m) be two spectral covers and V (n) ⊗ V (m)

be the bundles of an associated bi-fundamental matter representation. This is localized

on the curve

CV (n)⊗V (m) = τC(n) ∩ C(m) − τC(n) ∩ CR︸ ︷︷ ︸
ramification correction

, (6.59)

where CR is introduced in order to account for ramification points. This ramification

correction is necessary if the matter curve is singular over

R =

∫
W

[τC(n)] ·
(

[C(m)]− [CR]
)
· [CR] (6.60)

points, similar to (6.25). It is then proposed that the massless matter states are counted

by the cohomology groups

H i−1(CV (n)⊗V (m) ; N (n) ⊗N (m) ⊗KS ⊗K
− 1

2
W ⊗O(−R

2
)|C

V (n)⊗V (m)
). (6.61)

For the case at hand–– the 5̄m matter curve Ĉ5̄m specified in (6.50)–– this reduces to

Exti(j(1)
∗ (N (1))∨; j(4)

∗ N (4))

= H i−1(Ĉ5m ;N (1) ⊗N (4) ⊗KS ⊗K
− 1

2
W ⊗O(−R

2
)|Ĉ5̄m ).

(6.62)



160 6. Semi-Realistic Global F-theory GUT Model Building

The usage of the dual bundle (N (1))∨ implies a sign flip in the first Chern class, i.e. ζ

is replaced by −ζ. The chiral index then turns out to be

χ5̄m =
∑
i

Exti(j(1)
∗ (N (1))∨; j(4)

∗ N (4)) = χ(Ĉ5m ;N (1) ⊗N (4) ⊗KS |Ĉ5m )

=

∫
Ĉ5m

(
γu +

1

4
(π4)∗ζ − (π1)∗ζ

)
=

∫
S

[
λ
(
−η̃2 + 6η̃c1(S)− 8c1(S)2

)
+

1

4
ζ
(
−3η̃ + 6c1(S)

)]
.

(6.63)

Handling the number of 5̄H ’s requires a similar treatment, but the resulting index is of

a similar structure

χ5̄H =

∫
Ĉ5H

(
γu +

1

4
(π4)∗ζ

)
=

∫
S

[
λ
(
−2η̃c1(S) + 8c1(S)2

)
+

1

4
ζ
(
4η̃ − 10c1(S)

)]
.

(6.64)

As before, a consistent model requires the number of 5̄ and 10 representations to be

equal, and one can show that

χ5̄m + χ5̄H =

∫
S

[
λ
(
−η̃2 + 4η̃c1(S)

)
+

1

4
ζ
(
η̃ − 4c1(S)

)]
=

∫
S

(
−λη̃ +

1

4
ζ

)(
η̃ − 4c1(S)

)
= χ10

(6.65)

indeed agrees. The overall approach of a S[U(4)×U(1)X ] split spectral cover is therefore

suitable for the construction of semi-realistic models.

A final comment related to those computations is in order for the 15 representations

in table 6.2, which arise from the decomposition

SU(5) −→ S[U(4)× U(1)X ]

24→ 150 ⊕ 10 ⊕ 45 ⊕ 4̄−5.
(6.66)

The U(1)X charge allows the associated states to participate in the 5̄m ·5H ·1 coupling

that arises from the SU(7) enhancement point (6.54), which makes them viable can-

didates for right-handed neutrinos (νR)c. The intersection component Ĉν from (6.51)

already highlights that they are localized off the GUT 7-brane S. Using the proposed

counting (6.61) the relevant cohomology groups are

Exti(j(1)
∗ N (1); j(4)

∗ N (4))

∼= H i−1(Ĉν ; (N (1))∨ ⊗N (4) ⊗KS ⊗K
− 1

2
W ⊗O(−R

2
)|Ĉν ),

(6.67)
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and the corresponding chiral index is

χ(νR)c =

∫
Ĉν

(
γ(4) +

1

4
(π4)∗ζ + (π1)∗ζ

)
=

∫
Ĉν

(
−λη̃ +

5

4
ζ + 4λc1(S)

)
2c1(S).

(6.68)

However, considering that the spectral cover approach used here is technically only

valid locally in the vicinity of the GUT 7-brane S, it remains unclear how to properly

interpret those states from a fully global perspective.

6.3.4 GUT group breaking via hypercharge flux

It remains now to break the SU(5) GUT symmetry down to the Standard Model

gauge group SU(3)×SU(2)×U(1)Y . In principle this task is analogous to the breaking

in section 6.2.4, i.e. an additional bundle LY is used as a twist in order to eliminate the

exotic (3,2)5 ⊕ (3,2)−5 states from the spectrum and to break the GUT group. Due

to the split bundle W = V ⊕ L used so far, the twisting of W has to affect V and L

differently. More precisely, one redefines the bundles

V = V ⊗ L−
1
5

Y

L = L ⊗ L
4
5
Y

and LY = L
1
5
Y , (6.69)

which requires that the bundles V , L and LY are well-defined. This introduces a

further Abelian gauge factor–– the U(1)Y hypercharge–– to the gauge group, such that

one actually considers the gauge group

SU(3)× SU(2)× U(1)X × U(1)Y . (6.70)

As the U(1)X symmetry was originally used to single out the phenomenologically de-

sirable SU(5) GUT interactions, it does not prohibit any relevant Standard Model

Yukawas. The relevant Standard Model-like representations are listed in table 6.3 along

with the corresponding bundle choices, which agree with the expected representations

of the Georgi-Glashow SU(5) GUT in table 3.5.

The entire internal gauge flux on the branes is therefore described by the bundles in

(6.69), more precisely:

� The GUT symmetry breaking U(1)Y hypercharge gauge flux on the GUT 7-brane

S is described by the line bundle LY , which is specified by c1(LY ) ∈ H2(S;Z).

� The gauge flux on the intersecting I1-type matter 7-branes is described by an

S[U(4)×U(1)X ]-bundle V ⊕L, which is constrained by the condition on the first

Chern classes c1(V) = −c1(L) ∈ H2(S;Z).
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10 V (3,2)1X ,1Y QL left-handed quark doublet

V ⊗ L−1
Y (3̄,1)1X ,−4Y ūL = (uR)c left-handed up-type anti-quark

V ⊗ LY (1,1)1X ,6Y ēL = (eR)c left-handed anti-lepton

5̄m V ⊗ L ⊗ LY (3̄,1)−3X ,2Y d̄L = (dR)c left-handed down-type anti-quark

V ⊗ L (1,2)−3X ,−3Y LL left-handed lepton doublet

5H Λ2V (3,1)−2X ,−2Y Tu up-type color triplet (GUT r.)

Λ2V ⊗ L−1
Y (1,2)−2X ,3Y Hu up-type Higgs doublet

1 V ⊗ L−1 ⊗ L−1
Y (1,1)5X ,0Y (νR)c right-handed neutrino

Table 6.3.: Representations in SU(3)×SU(2)×U(1)X ×U(1)Y following

the GUT symmetry breaking induced from the bundles of (6.69).

6.3.5 Computing the Euler characteristic and 3-brane tadpole

As before, a central issue here is the computation of the proper Euler characteristic

of the singular Calabi-Yau 4-fold Z. However, one can derive an improved expression

for χ(Z) compared to the formulas presented in section 5.2.3, which was originally

conceived in the context of models with a heterotic dual.

In the heterotic E8 × E8 theory one embeds the structure group of the two vector

bundles V1 and V2 into the respective E8 factor to reduce the gauge group, as discussed

in section 3.5. By identifying 3-branes with M5-branes under the duality, the required

number of M5-branes for anomaly cancellation on the heterotic side can be computed

as

NM5 =

∫
B2

(
c2(Y)− c2(V1)− c2(V2)

)
(6.71)

if the embedding (3.48) is used. The second Chern classes of the vector bundles can be

computed to ∫
B2

c2(V1) =

∫
B2

η1σ −
1

24
χSU(n) −

1

2

∫
B2

(πn)∗(γ
2)∫

B2

c2(V2) =

∫
B2

η2σ −
1

24
χE8

(6.72)

for the expressions χG from table 6.4 where S = B2. For the specific double-fibration

geometry of the heterotic/F-theory duality, one can also compute the second Chern

class of the heterotic compactification 3-fold Y to

c2(Y) = 12σc1(B2) + 11c1(B2)2 + c2(B2). (6.73)
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H = E8/G G χG

E9−n, n ≤ 5 SU(n)
∫
S c1(S)2(n3 − n) + 3nη

(
η − nc1(S)

)
SU(3) E6 72

∫
S

(
η2 − 7ηc1(S) + 13c2

1(S)
)

SU(2) E7 18
∫
S

(
8η2 − 64ηc1(S) + 133c2

1(S)
)

- E8 120
∫
S

(
3η2 − 27ηc1(S) + 62c2

1(S)
)

Table 6.4.: Redefined Euler characteristic for En-type gauge groups. Here

η is given by η = 6c1(S) + c1(NS) and one defines E5 := SO(10) as well as

E4 := SU(5), which follows from a systematical shortening of the Dynkin

diagram. Here G is the embedded structure group and H = E8/G the

remaining gauge group.

Due to the embedding (3.48) the ηiσ terms then cancel in the sum, and after identifying

ND3 = NM5 one finds

ND3 =

∫
B2

(
11c1(B2)2 + c2(B2)

)
(base geometry)

+
1

24

(
χSU(n) + χE8

)
(singularity enhancement)

+
1

2

∫
B2

(πn)∗(γ
2) (flux contribution)

(6.74)

for the number of 3-branes. By (3.49) the third term can be directly identified with the

G4 flux contribution to the tadpole, such that via (3.50) one obtains

χ(Z) = 24

(
ND3 +

1

2

∫
Z
G4 ∧G4

)
= 24

∫
B2

(
11c1(B2)2 + c2(B2)

)
+ χSU(n) + χE8

(6.75)

for situations with a heterotic dual. The claim here is now that this computation

remains valid even for models without a strict heterotic dual, i.e. where a local ALE

fibration over S following section 6.1 is applied instead.

Note that if both E8 factors are entirely broken, no non-Abelian enhancement re-

mains, such that for this case the 4-fold Z is smooth, i.e. the Euler characteristic is

uniquely defined. This allows to identify

χ∗(Z) = 24

∫
B2

(
11c1(B2)2 + c2(B2)

)
+ χE8 + χE8 (6.76)
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as the Euler characteristic of the I1 case. However, for this case there is also the formula

(5.16) in terms of the base B = B3 of the elliptic fibration, i.e.

χ∗(Z) = 12

∫
B
c1(B)c2(B) + 360

∫
B
c1(B)3, (6.77)

which does not make any reference to the ALE fibration of the base space B. One can

now go on and replace one of the entirely broken E8 factors, which leads to

χ(Z) = χ∗(Z) + χSU(n) − χE8 . (6.78)

Using the above formula for χ∗(Z), this allows to determine the Euler characteristic for

the singular case as well.

Initially it was hoped that (6.78) has general validity [88], but several counterexamples

were found [162]. It turns out that there are certain subtleties when using spectral

cover descriptions [182], in particular in the absence of a strict heterotic dual, which

undermine the global validity. In fact, one can use the derived formula in reverse and

check the computation against an explicit resolution of the non-Abelian singularity,

where a match indicates the global validity of the spectral cover construction [119, 170].

After identifying the GUT brane divisor S with the ALE fibration base B2, one can

now continue with the checking of further consistency conditions for the case at hand,

specifically the 3-brane tadpole condition (3.50). Taking the split spectral cover into

account, the number of required D3-branes can be computed to be

ND3 =
χ∗(Z)

24
− 615

2

∫
S
c1(S)2 − 15

∫
S

(
η2 − 9ηc1(S)

)
+

(
1

2
− 2λ2

)∫
S
η̃
(
η̃ − 4c1(S)

)
+

∫
S

(
5

8
ζ2 + c1(LY )2 − ζc1(LY )

)
.

(6.79)

The result has been successfully cross-checked with an entirely different method of

computation [86, 177], which however is technically extremely involved.



Chapter 7
A Global F-theory SU(5) GUT

with Three Chiral Matter Generations

The analysis and phenomenological tuning of the previous chapter paves the way for

the explicit realization of a fully global F-theory SU(5) GUT model with three

chiral matter generations [88]. It is based on the non-generic del Pezzo transition of the

quartic 3-fold P4[4] and the generic topological structure of this geometry.

Since the described elliptically-fibered Calabi-Yau 4-fold arises as a complete inter-

section of two hypersurfaces [187–191], one has to establish the transversality of the

intersection hypersurfaces. One also has to provide a full resolution of the non-Abelian

singularities, more specifically of the SU(5) enhancement over the GUT 7-brane, which

yields codimension-2 singularities in the 4-fold. This can then be used to check the

validity of the spectral cover description over the GUT brane Fortunately, all those

tasks can be carried out entirely within the realm of toric geometry.

One can then determine the necessary fluxes to produce three generations of chiral

matter and realize the GUT breaking. The chapter culminates with a discussion of the

phenomenological properties of the constructed model.

7.1 Construction of the Calabi-Yau 4-fold

7.1.1 Transversality of intersecting hypersurfaces

The geometry considered here is the non-generic del Pezzo transition of the quartic

3-fold hypersurface P4[4] from section 5.4, which was introduced under the objective to

use a Fano 3-fold as the base for F-theory models. The base geometry from table 5.7 can

be successfully equipped with a P2
231[6]-fibration, as has been carried out in table 5.8

by adding three additional coordinates x, y, z and a further hypersurface constraint.

However, it was neglected to check the critical transversality of the intersection. If
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nef vertices of the coords GLSM charges divisor class

part polyhedron / fan Q1 Q2 Q3

∇1

ν1 = ( 1, 0, 0, 0, 0, 0 ) x 2 0 0 2(σ + P +X)

ν2 = ( 0, 1, 0, 0, 0, 0 ) y 3 0 0 3(σ + P +X)

ν3 = (−2, −3, 0, 0, 0, 0 ) z 1 −1 −1 σ

ν4 = (−2, −3, −1, −1, −1, −1 ) u1 0 1 0 P

ν9 = (−2, −3, 0, 0, −1, −1 ) w 0 0 1 X

∇2

ν5 = ( 0, 0, 1, 0, 0, 0 ) u2 0 1 0 P

ν6 = ( 0, 0, 0, 1, 0, 0 ) u3 0 1 0 P

ν7 = ( 0, 0, 0, 0, 1, 0 ) u4 0 1 1 P +X

ν8 = ( 0, 0, 0, 0, 0, 1 ) u5 0 1 1 P +X

conditions: 6 0 0

0 4 2

Stanley-Reisner ideal: 〈xyz, u1u2u3, u4u5w〉

Table 7.1.: Nef-partitioned toric data for the elliptically-fibered Calabi-

Yau 4-fold Z arising from the non-generic del Pezzo transition of P4[4].

two hypersurfaces are not intersecting transversally everywhere, different areas of the

intersection are of different dimension, which introduces singularities of a very bad type

to the space–– in particular, one can no longer speak of an n-dimensional variety.

The transversality of the intersection of two hypersurfaces in a toric setting can be

guaranteed if a nef partition–– “numerically effective” partition–– of the toric data can be

found [187, 190]. It means that the set of lattice vectors νi spanning the toric fan Σ can

be split up into two sets ∇1 and ∇2, such that the Minkowski sum of those sets, which

consists of all possible sums of one element from ∇1 plus one element from ∇2, describes

a reflexive polyhedron. This essentially means that the origin is the only interior lattice

point of the Minkowski sum polyhedron. The well-defined complete intersection for a

nef partition (∇1,∇2) is then given by the intersection of the hypersurfaces arising from

the sum of all divisors in each ∇i, i.e.

partition ∇1 hypersurface︷ ︸︸ ︷( ∑
νi∈∇1

Dxi

)
∩
( ∑
νj∈∇2

Dxj

)
︸ ︷︷ ︸

partition ∇2 hypersurface

. (7.1)
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For the non-generic del Pezzo transition of P4[4] this nef partition is provided by

∇1 := 〈ν1, ν2, ν3, ν4, ν9〉
∇2 := 〈ν5, ν6, ν7, ν8〉

(7.2)

with respect to the vertices from table 5.8, which have been rearranged appropriately

in table 7.1 for the reader’s convenience.

7.1.2 Hypersurface constraints and monomials

Given the toric data in table 7.1, one can in fact explicitly derive the hypersurface

constraints using a dual description [192]. For a nef partition (∇1,∇2) there are dual

Newton polyhedra (∆1,∆2) defined by

〈ν(n)
i , µ

(m)
j 〉 ≥ −δmn for all ν

(n)
i ∈ ∇n, µ

(m)
j ∈ ∆m, (7.3)

which is often denoted shortly as 〈∇n,∆m〉 ≥ −δmn. Whereas the polyhedra of the nef

partition are only consisting of a couple of points, the dual Newton polyhedra contain

more that a thousand lattice point. The primary aspect of this dualization is the fact

that those dual lattice points of the Newton polyhedron can be directly associated

to monomials, whose collection then gives rise to the hypersurface polynomials of the

complete intersection.

If the complete intersection is specified by two hypersurfaces like in the case consid-

ered here, the two hypersurface constraint polynomials are

fm :=
∑

µj∈∆m

c
(m)
j

2∏
n=1

∏
νi∈∇n

(xi)
〈νi,µj〉+δmn !

= 0, (7.4)

where according to table 7.1 the coordinates xi are given by (x, y, z, u1, w) for ∇1

and (u2, u3, u4, u5) for ∇2. The coefficients c
(m)
j correspond to the complex structure

deformations of the described 4-fold Z. If the blowup vertex ν9 is removed, which

implies that one considers an elliptic fibration over the Fano 3-fold P4[4] instead of the

del Pezzo transition thereof, the hypersurface constraint f1 = 0 associated to ∇1 in fact

yields precisely (aside from a few signs) the full Tate parametrization (3.13) in the form

f1 = x3 − y2 + a1xyz + a2x
2z2 + a3yz

3 + a4xz
4 + a6z

6 !
= 0. (7.5)

The Tate coefficients ai can therefore be directly expressed in terms of the toric data.

Note that in this form the coefficient ai appears in the term containing the factor zi,

which will be used to single out the coefficients. First define subsets of the Newton

polyhedron by

Ar := {µj ∈ ∆1 : 〈ν3, µj〉 = r + 1}, (7.6)
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which contains all elements that generate monomials containing the power zr due to

the association of ν3 to the coordinate z, cf. table 7.1. Based on this, one can see that

the Tate coefficients can be expressed as

ar =
∑
µj∈Ar

c
(1)
j

2∏
n=1

∏
νi∈∇n
i>3

(xi)
〈νi,µj〉+δ1n

=
r∑

n=0

wr−n
n∑
a=0

(u4)a(u5)n−af̃
(a,r)
r−n (u1, u2, u3)

(7.7)

for the model considered here, where f̃
(a,r)
r−n are generic polynomials of degree r − n in

the indicated base coordinates. Note that the underlying approach is entirely general

and can be applied to other complete intersection nef partitions as well.

7.1.3 Resolving the SU(5) GUT brane singularity

Singling out the coordinate w in (7.7) was of course in the foresight of dealing with

the SU(5) gauge enhancement localized on the GUT 7-brane del Pezzo divisor S =

Dw = {w = 0}. From the Tate classification it is known that the vanishing degrees

SU(5) : deg(a1, a2, a3, a4, a6) = (0, 1, 2, 3, 5) (7.8)

are indicating the presence of such an SU(5) singularity, which leads to the explicit

parametrization (5.55). Using the monomials that arise from lattice points in the dual

Newton polytope, one can systematically eliminate the points which admit powers

wk with k < (0, 1, 2, 3, 5) for the respective Tate coefficient. This defines new sets

A
SU(5)
r ⊂ Ar and in particular a new Newton polytope

∆
SU(5)
1 :=

⋃
r

ASU(5)
r ⊂ ∆1 (7.9)

that intrinsically encodes the SU(5) enhancement over S. Naturally, this procedure

can also be used to handle the other singularity enhancements from the Tate list in

table 3.6. The toric resolution to those singularities then arises by performing the

dualization (7.3) in reverse, i.e. via

〈∇SU(5)
n ,∆SU(5)

m 〉 ≥ −δmn for ∆
SU(5)
2 := ∆2 (7.10)

one obtains the resolved nef partition (∇SU(5)
1 ,∇SU(5)

2 ) of the resolved geometry. Since

the dual Newton polytope ∆
SU(5)
1 is a subset of ∆1, the normal polyhedron ∇SU(5)

1

instead gains additional vectors ν̃i of the toric resolution.
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nef vertices of the coords GLSM charges

part polyhedron / fan Q1 Q2 Q3

∇SU(5)
1

ν1 = ( 1, 0, 0, 0, 0, 0 ) x 2 0 0

ν2 = ( 0, 1, 0, 0, 0, 0 ) y 3 0 0

ν3 = (−2, −3, 0, 0, 0, 0 ) z 1 −1 −1

ν4 = (−2, −3, −1, −1, −1, −1 ) u1 0 1 0

ν9 = (−2, −3, 0, 0, −1, −1 ) w 0 0 1

ν̃1 = (−1, −2, 0, 0, −1, −1 ) ṽ1 0 0 0

ν̃2 = (−1, −1, 0, 0, −1, −1 ) ṽ2 0 0 0

ν̃3 = ( 0, −1, 0, 0, −1, −1 ) ṽ3 0 0 0

ν̃4 = ( 0, 0, 0, 0, −1, −1 ) ṽ4 0 0 0

∇SU(5)
2

ν5 = ( 0, 0, 1, 0, 0, 0 ) u2 0 1 0

ν6 = ( 0, 0, 0, 1, 0, 0 ) u3 0 1 0

ν7 = ( 0, 0, 0, 0, 1, 0 ) u4 0 1 1

ν8 = ( 0, 0, 0, 0, 0, 1 ) u5 0 1 1

Table 7.2.: Nef-partitioned toric data for the resolved Calabi-Yau 4-fold

Z̃SU(5) based on the singular elliptically-fibered 4-fold in table 7.1. Note

that the four blow-up vertices ν̃1, . . . , ν̃4 of the resolution also introduce

four additional projective relations between the coordinates, which are not

show above. In particular, those relations break apart the elliptic fibration.

For the discussed elliptically-fibered del Pezzo transition of P4[4] the original singular

4-fold described in table 7.1 gains the new vectors ν̃1, . . . , ν̃4 that have been added in

table 7.2. This defines a new complete-intersection Calabi-Yau 4-fold Z̃SU(5), where

the non-Abelian SU(5) singularity is resolved [129]. With all singularities in Z̃SU(5)

removed, the ambiguities in the topological quantities are avoided as well. The Euler

characteristic turns out to be

χ(Z̃SU(5)) = 918. (7.11)

Using the previously computed Euler characteristic χ∗(Z) = 1728 from (5.54), one can

now apply (6.78) for the case of an SU(5) singularity. Using the data in (7.12) one

finds the correction term χSU(5) − χE8 = −810, which gives precisely the above result

(7.11). The spectral cover for S is therefore globally valid, and since the subsequently

used split spectral cover is a factorization thereof, it is equally valid.
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7.2 Gauge fluxes for three chiral matter generations

7.2.1 Realizing the split spectral cover

The generic S[U(4) × U(1)X ] split spectral cover introduced in chapter 6 can now

be made explicit. This implies in particular to show that appropriate sections for the

various coefficients ci and di can indeed be found, such that the non-trivial relationship

(6.39) responsible for the vanishing of the s4 power in (6.39) is satisfied. The topology

and required intersection data of the GUT 7-brane divisor S is given by

total Chern class: c(S) = 1 + P + (6P 2 + 6PX +X2)

normal bundle: c1(NS⊂B) = −X,
intersection form: I(S) = 2P 2 − 2X2,

(7.12)

i.e. one finds c1(S) = P with respect to the divisor basis implied in the geometry in

table 7.2. Thus one has

η = 6c1(S)− c1(NS⊂B) = 6P +X,

η̃ = η − c1(S) = 5P +X.
(7.13)

Coming back to the coefficient functions of the split spectral cover, those are sections

cn ∈ H0(W ;OW(π∗(η − (1 + n)c1(S)))),

d0 ∈ H0(W ; π∗TS)),

d1 ∈ H0(W ;OW),

(7.14)

such that the relevant ones for the condition (6.39) are cohomologically explicitly de-

scribed by
[c0]|σ = η − c1(S) = 5P +X,

[c1]|σ = η − 2c1(S) = 4P +X,

[d0]|σ = c1(S) = P.

(7.15)

Using the monomial description for global sections implied by the algorithm in ap-

pendix A, the most general ansatz for those sections can be formulated as

c0 = wP5(u1, u2, u3) +Q1(u4, u5)R4(u1, u2, u3),

c1 = wP4(u1, u2, u3) + S1(u4, u5)T3(u1, u2, u3),

d0 = P1(u1, u2, u3),

(7.16)

where Pi, Q1, R4, S1 and T3 are independent polynomials of the denoted total power

of the coordinates, cf. the GLSM charges of the coordinates in table 7.2. Finding

polynomials such that the factorization condition is met is therefore indeed possible.
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7.2.2 Tuning of three chiral matter generations

In order to find an appropriate gauge flux for the matter branes, a suitable ansatz

for the spectral line bundle N (4) has to be chosen. Its first Chern class is provided in

(6.44) as well as the integrality conditions (6.45), which immediately yields λ ∈ 1
4
Z.

The most general ansatz is therefore provided by

ζ = aX + bP

λ =
x

4

for a, b, x ∈ Z. (7.17)

Using (7.13), the second part of the integrality condition gives(
1

2
− λ
)
η̃ − 1

2
c1(S) +

1

4
ζ ∈ H2(B;Z)

=

(
2 +

1

4
(b− 5x)

)
P +

1

4
(2− x+ a)X  

{
b− 5x ∈ 4Z
2− x+ a ∈ 4Z

(7.18)

in order to have a well-defined gauge flux. The second phenomenological requirement

is to have three chiral matter generations, which using (6.58) requires

χ10 =

∫
S

(
−λη̃ +

1

4
ζ

)(
η̃ − 4c1(S)

)
=

∫
S

1

4

[
(a− x)PX + (b− 5x)P 2 + (a− x)X2 + (b− 5x)PX

]
=

1

2
(b− a− 4x) = ±3.

(7.19)

On the other hand –– which was one of the main reasons to employ the split spectral

cover approach in the first place –– the number of 5̄H states should vanish, which by

(6.64) means

χ5̄H = −2a+ 5b− x = 0. (7.20)

Following (6.65) this indeed implies χ5̄m = χ10 = ±3, i.e. the presence of three chiral

matter generations while avoiding additional Higgses.

A suitable solution to the two conditions (7.19) and (7.20), that at the same time

fulfills the integrability requirements (7.18), is given by

3 chiral generations

gauge flux solution:


a = 10

b = 4

x = 0

 

{
ζ = 10X + 4P

λ = 0
(7.21)
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For those values the chiral index of the right-handed neutrinos in (6.68) gives

χ(νR)c = 5, (7.22)

suggesting more neutrino generations than matter generations. Overall, this indeed

shows that it is possible to construct a global model supporting three chiral generations

of SU(5) GUT matter.

7.2.3 Tuning of the GUT breaking hypercharge flux

After fixing the gauge flux on the matter branes, one has to consider the GUT group

breaking U(1)Y hypercharge flux. This requires a better understanding of the GUT

7-brane topology. From table 3.4 it is clear that a del Pezzo-7 surface has b2 = 8

non-trivial 2-cycles. However, due to the non-generic nature of the particular dP7 that

is considered in the geometry here, only a sub-lattice corresponding to E6 of H2(S)

contains 2-cycles that are trivial in the cohomology of the base B. This is required

to keep the Stückelberg mechanism for the U(1)Y in check, recall section 3.8.3. The

basis for the cohomology of a dPn is usually chosen to be (`, E1, . . . , En), where ` can

be considered to correspond to the unique original P1 ⊂ P2 divisor class and each

exceptional divisor class Ei arises from a further blowup [99]. The intersection numbers

are then conveniently given by

`2 = 1, EiEj = −δij, `Ei = 0 for all i = 1, . . . , n. (7.23)

By analyzing the highly restricted structure of curves on a del Pezzo surface, one can

identify two curves in terms of the ambient space, i.e.

genus 1: C1 := P |S  3`−
7∑
i=1

Ei = −f

genus 0: C2 := (P +X)|S  `− E7,

(7.24)

which allow a partial identification of the standard dP7 cohomology generators (7.23)

and the inherited cohomology base of the considered geometry. One can express the

split spectral cover “uplift” matter curves (6.48) and (6.50) cohomologically by

[Ĉ10]|σ = [c4]|σ = η − 5c1(S) = P +X,

[Ĉ5̄H ]|σ = [c3(c2 + c3d0)− c1c4]|σ = 2η − 7c1(S) = 5P + 2X,

[Ĉ5̄m ]|σ = [c2 + d0(c3 + c4d0)]|σ = η − 3c1(S) = 3P +X.

(7.25)

In order to gain a better understanding of the matter curves on the GUT 7-brane S, one

could now “restrict” (i.e. pullback via the inclusion mapping) those to the cohomology
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H2(S;Z). The matter curves (7.25) then correspond cohomologically to

[C10] = `− E7

[C5̄H ] = −3f + 2(`− E7)

[C5̄m ] = −2f + (`− E7)

(7.26)

in terms of the standard dP7 divisor base. This terminology and conventions allow for

a convenient comparison to the literature.

The U(1)Y hypercharge gauge flux that breaks the SU(5) GUT symmetry can then

be chosen corresponding to the E6 root, i.e.

c1(LY ) = E1 − E2 ∈ H2(S;Z). (7.27)

Following the earlier remark, this choice guarantees that the described flux indeed leads

to a massless U(1)Y gauge boson upon GUT breaking. Moreover, this restricts trivially

on the matter curves (7.26), such that the previously computed chiral indices do not

change. Ultimately, this allows the GUT group to be broken by the U(1)Y hypercharge

flux, while generating three generations of chiral matter.

7.3 Evaluating the Consistency Conditions

7.3.1 D-term condition

In order to ensure D-flatness for the vector bundle V , the corresponding Fayet-

Iliopoulos D-term has to vanish, which can be easily checked using the Kähler cone

of B. However, since for the choice of divisor class basis (P,X) and (P̃ , X) in table 5.8

neither intersection form is positive definite, one has to define a third base by

K1 := P +X

K2 := P

}
 I(B) = 4(K2)3 + 4K1(K2)2 + 2(K1)2K2. (7.28)

If the Kähler form J ∈ H1,1(B;Z) is then expanded as J = r1K1 + r2K2, all physical

volumes will be positive in the Kähler cone given by ri > 0. The Fayet-Iliopoulos term

for the vector bundle then reads

µ(V) =

∫
S
J ∧ ζ =

∫
S

(
r1(P +X) + r2P

)
(10X + 4P )

=

∫
S

[
(14r1 + 10r2)PX + 10r1X

2 + (4r1 + 4r2)P 2
]

= −12r1 + 8r2.

(7.29)

The vanishing of µ(V) can then obviously be achieved achieved for ri > 0 such that

3r1 = 2r2, i.e. within the Kähler cone.
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7.3.2 3-brane tadpole condition

The last consistency check relevant here is the 3-brane tadpole condition (3.50), that

was already specialized to this setting in section 6.3.5. The “smooth” I1 prediction for

the Euler characteristic of the elliptically-fibered Calabi-Yau 4-fold Z of this model is

χ∗(Z) = 12

∫
B
c1(B)c2(B) + 360

∫
B
c1(B)3

=

∫
B

(
432P 3 + 1236P 2X + 1176PX2 + 372X3

)
= 1728

(7.30)

according to (5.16). Of course, this neglects the SU(5) gauge enhancement along S as

well as the further gauge enhancements along the matter curves and triple intersection

points. The first two lines of (6.79) now essentially compute the Euler characteristic

that takes all enhancements into account, i.e.

χ(Z)

24
=
χ∗(Z)

24
− 615

2

∫
S
c1(S)2 − 15

∫
S

(
η2 − 9ηc1(S)

)
+

(
1

2
− 2λ2

)∫
S

(
η̃2 − 4η̃c1(S)

)
=

1728

24
− 615

2

∫
S
P 2 − 15

∫
S

[
(36P 2 + 12PX +X2)− (54P 2 + 9PX)

]
+

1

2

∫
S

[
(25P 2 + 10PX +X2)− (20P 2 + 4PX)

]
= 72− 615 + 570 + 4 = 31

(7.31)

is the geometry-dependent part of the 3-brane tadpole. It should be noted that χ(Z) =

744 differs from χ(Z̃SU(5)) = 918, where only the SU(5)-brane divisor was taken into

account.

The gauge flux dependent contribution in the third line of (6.79) is given by

−1

2

∫
S
G4 ∧G4 =

1

2

∫
S
(π4)∗(γ

2
(4)) =

∫
S

(
5

8
ζ2 + c1(LY )2 − ζc1(LY )

)
= −105− 2 + 0 = −107

(7.32)

from the choices in (7.21) and (7.27). The required total number of 3-branes to saturate

the tadpole condition is therefore

ND3 =
χ(Z)

24
− 1

2

∫
Z
G4 ∧G4 = 31− 107 = −76, (7.33)

which is–– unfortunately–– negative. The chosen gauge bundle leads to an considerable

overshooting of the tadpole, which means that the model would have to include anti-D3-

branes in order to cancel the tadpole. This is, however, a very undesirable situation and
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considering the overall success of the described approach it stands to reason that this

overshooting can be attributed to the rather simple geometry considered here, which

yields comparably small values for the Euler characteristic.

In fact, using simple extensions of this setup and the base P4[3] instead of P4[4] to start

with, the 3-brane tadpole can indeed be satisfied [119, 161]. This provides sufficient

evidence that the general approach is quite fruitful and at this point only spoiled due to

the choice of an unsuitable geometry. It should also be mentioned that the integrality

of (7.33) and in particular (7.32) provides a further non-trivial consistency check.

7.4 Phenomenological Properties

The described model provides the first example of a global F-theory model that leads

to three generations of chiral Standard Model matter obtained from the breaking of the

SU(5) GUT representation 10⊕ 5̄m. The only drawback is the apparent overshooting

of the flux contribution to the geometry-dependent part of the 3-brane tadpole. While

this is not a dramatic failure, it is certainly undesired. Fortunately, as mentioned, a

slight change in the geometry remedies this issue. It is therefore in order to analyze the

phenomenological properties of the specified model constructed here.

� Proton decay : The model contains the 10 ·10 ·5H and 10 · 5̄m · 5̄H couplings, while

preventing the dimension-4 proton decay operators 10·5̄m ·5̄m and 10·5̄H ·5̄H due

to the extra U(1)X symmetry [159]. However, the “missing partner mechanism”,

that is effectively realized by the U(1)X , does not affect dimension-5 operators,

which ultimately lead to the same problem. A potential way out could be provided

by a further splitting of the Higgs curve.

� Higgs sector : The particular form of the (split) spectral cover is known to produce

some problematic effects in the Higgs sector [159]: Both the Hu and Hd localize

as a vector-like pair on the Higgs curve C5̄H . However, his naturally leads to the

generation of a Higgs mass term µHuHd in the superpotential. Phenomenologi-

cally, the Higgs mass µ is expected to be of the order of the weak scale, but in

the context of GUT theories it can be of much higher value. Keeping the µ-term

small –– generally known as the µ-problem of supersymmetric theories –– requires

therefore a high level of fine-tuning unless other modifications can be applied to

the proposed Higgs curve.

� Right-handed neutrinos : For the three-generation gauge flux solution (7.21) used

in the model, the number of right-handed neutrinos is χ(νR)c = 5. It is known that

in general the usage of a U(1)X “selection symmetry” is in conflict with realistic

neutrino structures [79, 82, 159]. Most importantly, the selection rules prohibit
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Majorana mass terms for the neutrinos, leaving only the Dirac mass termsI derived

from the 5̄m·5H ·1 coupling, which implies different anti-neutrinos. However, using

M5-brane instantons there exists a possibility for generating Majorana masses

based on known type IIB E3-brane mechanisms for right-handed neutrinos. One

could also consider a direct breaking of the U(1)X symmetry.

� Gauge coupling unification: Whereas supersymmetric field theories usually lead

to a perfect gauge coupling unification, the breaking of the GUT symmetry via a

U(1)Y flux only preserves this unification at leading order in α′ from the pertur-

bative type IIB perspective [69]. Due to the Chern-Simons action (2.18) term

µ7

∫
R1,3×S

C0 ∧ tr(F 4) (7.34)

for the GUT 7-brane there are further corrections from the U(1)Y flux to the gauge

coupling unification. However, due to the varying axio-dilaton in F-theory, the

Chern-Simons action is not strictly applicable. In order to continue the discussion,

one therefore replaces the varying gs with the F-theory mass scale

M4
∗ =

1

gs`4
s

, (7.35)

which can be shown to stay constant over the base B. For the discussed model

the U(1)Y flux is encoded in the line bundle LY . The U(1)X flux on the other

hand is encoded in the split spectral cover line bundle and should not contribute

to the GUT brane’s Chern-Simons term. A suitable ansatz for the gauge field

strength is then given by

F :=
8∑

a=1

F a
SU(3)

(
λa
2

0

0 0

)
+

3∑
i=1

F i
SU(2)

(
0 0

0 σi
2

)
+

1

6
FY

(
(−2)3×3 0

0 (3)2×2

)
+

1

5
FY
(

(−2)3×3 0

0 (3)2×2

)
,

(7.36)

IRecall that Majorana particles –– which correspond to a real spinor representation, i.e. they are

conjugation-invariant –– and Dirac particles are essentially distinguished by the question if the

particle is truly different from its associated anti-particle. While the answer is obvious for charged

particles due to the flipped charged sign of anti-particles, it is not clear in the case of neutral

particles. Furthermore, the distinction only becomes apparent if the particles are massive. This

applies in particular to neutrinos, which are usually only observed by indirect means and are not

yet known to have a nonzero mass. From a phenomenological point of view Majorana and Dirac

neutrinos behave differently under the CP transformation and a massive neutrino has both an

electric dipole as well as magnetic moment, that could in principle be experimentally detected.
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where λa are the Gellmann matrices and σi are the Pauli matrices, i.e. the canoni-

cal adjoint representation generators of SU(3) and SU(2). By inserting this ansatz

into the Chern-Simons term (7.34) and extracting the relevant F ∧ F terms, the

MSSM gauge couplings can be determined to be

1

αs

= M4
∗

(
vol(S)− 4

50
`4

s

∫
S
c1(LY )2

)
1

αw

= M4
∗

(
vol(S)− 9

50
`4

s

∫
S
c1(LY )2

)
1

αY
=

5

3
M4
∗

(
vol(S)− 7

50
`4

s

∫
S
c1(LY )2

)
,

(7.37)

where according to the choice (7.27) one has
∫
S c1(LY )2 = −2. While the corrected

gauge couplings do not unify perfectly––as desired––one can at least find a relation

1

αY
=

1

αw

+
2

3

1

αs

(7.38)

between the four-dimensional couplings [74]. This can be roughly be made com-

patible with the running of the gauge couplings, provided that a threshold M33̄ <

MX of the Higgs color triplets (3,1)−2
3
⊕ (3̄,1)2

3
exists.

A very important issue is the explicit determination of the exact matter spectrum,

i.e. including the vector-like states that are not counted by the chiral indices. This

would also help to clarify the situation of the Higgs sector mentioned above.

Overall, one can acknowledge that the construction of this model is a significant step

forward in the construction of semi-realistic grand unified theories within the F-theory

framework. While certain aspects like the overshooting 3-brane tadpole and some of

the aforementioned phenomenological problems are certainly unsatisfactory from the

current point of view, there exist various constructive approaches to remedy those

drawbacks. One the other hand, the successful construction of this model together

with the handling of a non-trivial gauge flux opens the door for further theoretical

study of this manifestly non-perturbative approach to GUT model building in string

theory.





Chapter 8
Summary and Outlook

F-theory as a non-perturbative framework provides a unified perspective on various

aspects of string model building. While the actual theory itself is only indirectly

defined via various dualities discussed in section 3.4, one is nevertheless able to access

all the relevant information for the construction of non-trivial compactifications and to

determine the phenomenological properties of the described setup [71–85]. As it was

shown in section 3.5 and chapters 6 and 7, the spectral cover description provides an

invaluable tool to get a handle on the gauge flux. At the moment it provides the only

feasible access to obtain chiral matter states or to break the GUT symmetry. In the

end, this tool suffices for the purpose considered in this thesis. In the following two

sections the contents and results of part III are summarized and an overview of several

unsolved issues in F-theory model building is given.

8.1 Obtained Results

It was shown in chapter 4 that it is possible to understand non-perturbative E3-brane

instantons from (perturbative) type IIB superstring theory directly within the genuinely

non-perturbative F-theory in terms of vertical M5-branes. In fact, one can explicitly

relate the E3-brane Hodge diamond to the M5-brane Hodge diamond and identify

the precise correspondence between the respective bosonic and fermionic zero-mode

structures. An important point here is the fact, that one does not necessarily require a

fundamental quantization or understanding from first principles on the F-theory side,

in order to arrive at those conclusions. A careful uplifting of the perturbative type IIB

orientifold setup to F-theory in the Sen limit already provides sufficient evidence to

support those findings. Conceptually, one essentially relates the open strings on E3-

branes to open membranes ending on M5-branes.

The first indication of non-perturbative effects on the F-theory side was observed

in the uplifting of a self-invariant O(1) instanton compared to a U(1) instanton E3-

179
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brane/image brane pair. As long as the instanton intersects with the O-plane, an

automatic recombination to the more generic O(1) case is triggered. Only in specifi-

cally chosen geometries one can therefore find true U(1) instantons in F-theory. This

corresponds to an automatic uplifting of the τ̄α̇ zero-mode and geometrically trans-

lates to the statement that the τ̄α̇ zero-modes only survive non-perturbatively if they

correspond to 1-cycles of the M5-brane.

Understanding charged matter zero-modes in F-theory proved to be technically chal-

lenging due to the abundance of singularities appearing both on the IIB and F-theory

side. The particularly troublesome –– yet generic –– case arises from the intersection of

the M5-brane with the generic I1 remainder component DR of the discriminant locus.

The results indicate that a part of the IIB zero-modes is non-perturbatively lifted when

one moves away from the perturbative Sen limit. Moreover, an investigation of the

1-loop determinant contributions of the M5-brane to the superpotential –– along with

a type IIB interpretation –– revealed that an E3-brane instanton contains more poten-

tially harmful moduli than the naive zero-mode structure analysis suggests. Based on

this observation, a refined and sufficient criterion for E3-branes in IIB to generate an

uncharged, nowhere vanishing superpotential was derived.

In the type IIB theory instantons serve a further very important purpose, as they can

be used to generate certain Yukawa couplings required for realistic GUT model building,

specifically the 10·10·5H interaction. The fact that this coupling can only be generated

non-perturbatively in type IIB suggests to investigate the entire problem of GUT model

building from the perspective of the F-theory framework. Here one has direct access to

7-branes with exceptional gauge groups, such that couplings and interactions like the

10 ·10 ·5H are much easier to obtain. Via the U(1)Y hypercharge flux one can break the

GUT symmetry of such models. However, this requires a specific structure of the GUT

7-brane geometry. In order to utilize the elegant decoupling principle that allows to

effectively detach the GUT 7-brane with its intersections from the entire global setting,

a shrinkable rigid divisor is required–– a del Pezzo surface. Moreover, a suitable U(1)Y
gauge flux requires the presence of 2-cycles in the GUT 7-brane, which are trivial in

the ambient base of the F-theory 4-fold.

In chapter 5 several example geometries were constructed that satisfy both require-

ments. But a realistic GUT model naturally requires appropriate matter curves and

interactions, which are realized by singularity enhancements localized on curves and

points of the GUT 7-brane. The construction of those particular geometries was essen-

tially based on an earlier study of suitable GUT geometries from the type IIB perspec-

tive. Therefore, the first considered geometries of chapter 5 were direct F-theory uplifts

of known type IIB setups. However, a subsequent analysis revealed that all those geome-
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tries have profound shortcomings in specific basic requirements, like missing singularity

enhancements or no interaction point intersections.

Ultimately, those intermediate steps led to the construction of a true F-theory ge-

ometry without an explicit underlying type IIB orientifold. As shown in section 5.4, a

non-generic del Pezzo transition of the quartic Fano 3-fold P4[4] provides an F-theory

Kähler 3-fold base with an acceptable enhancement and intersection structure to sup-

port a non-trivial SU(5) GUT model. A key observation is that the existence of a

suitable 10 matter curve requires the presence of a non-generic del Pezzo surface GUT

7-brane, which can only be shrunk to a curve instead of a point. From a perturbative

IIB orientifold perspective this would correspond to two intersecting del Pezzo surfaces,

each of which restricts the other’s ability to fully shrink.

In the next step the spectral cover description–– originally only defined for F-theory

settings with a heterotic dual –– was extended to be applicable to the aforementioned

geometry. The overall discussion in chapter 6 was, however, kept rather general to

allow for easy customization to other settings. This provided the means to describe the

gauge flux on the GUT 7-brane as well as the gauge flux on the intersecting matter

branes –– at least locally –– such that both chiral matter and a U(1)Y hypercharge flux

for the breaking of the GUT group could be obtained. However, a central problem was

the localization of both the 5H and 5m representations on the same curve, which easily

leads to rapid proton decay via the 10 · 5̄m · 5̄m Yukawa coupling.

To avoid this issue, the generic SU(5) spectral cover was replaced by an S[U(4) ×
U(1)X ] split spectral cover, that effectively introduced a further Abelian U(1)X sym-

metry, which is used to distinguish the two conceptually different 5 representations of

SU(5). In this approach the quantization conditions in fact forced to turn on a non-

trivial universal gauge flux. The split spectral cover also allowed to bypass a sort of

no-go theorem for the construction of global F-theory GUT models with three chiral

matter generations [154, 157]. Having a global description of F-theory and the G4 flux

then allowed to check those consistency conditions that are not available from a purely

local perspective, for example the 3-brane tadpole cancellation condition. Furthermore,

a formula for the computation of the (singular) 4-fold’s Euler characteristic was pre-

sented, which can –– in reverse –– also be used to test the global validity of a spectral

cover description in the absence of a strict heterotic dual.

In chapter 7 the rather general constructions from chapter 6 were explicitly realized

for the geometry arising from the non-generic del Pezzo transition of the P4[4] hyper-

surface. The elliptically-fibered Calabi-Yau 4-fold was then explicitly constructed as

a complete intersection of two hypersurfaces in a toric 6-fold ambient space. In fact,

using the dual polytopes of the associated nef partition, the SU(5) enhancement over
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the del Pezzo divisor of the GUT 7-brane–– responsible for codimension-2 singularities

in the 4-fold–– can be entirely resolved.

Following the construction of the geometry, it was shown that one can indeed find

a suitable flux solution to satisfy both the three generation criterion and the U(1)Y
hypercharge breaking of the GUT group that satisfies the required quantization condi-

tion. Furthermore, the intersection structure of the matter curves on the GUT brane

provides gauge enhancements to SU(6), SU(7) and E6, which yield the vital 10 ·10 ·5H
and 10·5̄m ·5̄H Yukawa couplings along with a 5̄m ·5H ·1 coupling that can be associated

to right-handed neutrinos. As mentioned earlier, the usage of the split spectral cover

prohibited the appearance of dangerous dimension-4 proton decay operators.

A further analysis of the phenomenological properties of this model revealed that

indeed most of the basic requirements for semi-realistic GUT models have been met.

The only serious drawback stems from an overshooting of the 3-brane tadpole, i.e. the

flux contribution is significantly larger than the geometry contribution, such that in

principle a negative number of D3-branes would be required to saturate the tadpole.

While this is in principle possible using anti-D3-branes, it presents a rather undesired

situation. Fortunately, subsequent investigations [161] of slightly different geometries

based on P4[3] instead of P4[4] indeed showed that the approach pursued here is pro-

ductive. While there is still a lot of phenomenological fine-tuning left to do, various

known mechanisms are available to deal with those issues at least in principle.

The result of chapter 7 is therefore the construction of the first global F-theory

SU(5) GUT model that also takes gauge flux into account and contains three chiral

matter generations of 10 ⊕ 5̄m as well as providing a U(1)Y hypercharge gauge flux

for GUT symmetry breaking–– accompanied by overall semi-realistic phenomenological

structures.

8.2 Future Outlook and Open Questions

Clearly, despite the aforementioned successes the abundant number of issues through-

out this thesis has shown that a lot of problems remain open or at least require a signif-

icant improvement. In the following, several problems are listed which directly concern

the material within this work.

� Improving the IIB/F-theory uplifting : In chapter 5 several known type IIB ori-

entifold geometries were uplifted to F-theory, a task which already required con-

siderable effort [87, 126, 152, 153]. Considering that those models are of a rather

simple structure, it becomes clear that at the moment there is no such thing as

a true and universally applicable uplifting procedure for general type IIB orien-
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tifolds, in particular if complicated D-brane matter content is present as well.

Considering the results of chapters 4 and 5, one can truly gain from the intrin-

sically non-perturbative perspective that F-theory offers. Usually the problems

stem from the difficulties in constructing a suitable elliptically-fibered Calabi-

Yau 4-fold, which requires quite sophisticated techniques from algebraic and toric

geometry–– even for the rather simple examples that are considered to be “acces-

sible”. It would therefore be quite important to improve the dictionary between

the perturbative type IIB string theory and F-theory.

� Developing a new model building paradigm: Most (perturbative) model builders

are accustomed to a step-by-step approach in handling the various phenomenolog-

ical requirements. Since most properties are geometrically encoded in the elliptic

fibration of the 4-fold, everything related to the geometry and D-brane content

has to be dealt with in a single step in F-theory model building. This is one of the

reasons that so far almost exclusively F-theory settings that are at least remotely

based on perturbative setups have been studied in detail.

� Describing global G4 fluxes: The spectral cover description provides a descrip-

tion of the gauge flux only for settings that have a strict heterotic dual. While

the extensions of chapter 6 are promising, this treatment of gauge fluxes is still

rather cumbersome. Only recently some partial results on the flux quantization

in F-theory have appeared [140, 141, 193]. Ultimately, the problem originates in

the huge number of 4-cycles that a typical elliptically-fibered Calabi-Yau 4-fold

contains. In terms of the base geometry only a small fraction of those can be

easily described, leaving the vast majority untouched. Due to the importance of

gauge fluxes for the generation of chiral matter and several other crucial tasks a

better description is required.

� Instantons in the presence of fluxes : Once the description of global G4 fluxes in

F-theory has been improved, one could revisit the analysis carried out in chapter 4

and study vertical M5-brane instantons in the presence of fluxes [103, 194–198].

Considering the insights of the flux-less case obtained herein, there is a significant

potential for further refinements.

A speculative further project would be a study of the phenomenological structure of the

F-theory part of the string landscape [199–201], once the G4 flux is better understood.

More precisely, an observation that can be derived from chapter 5 is a decrease in the

value of the Euler characteristic χ(Z) of the elliptically-fibered Calabi-Yau 4-fold, when

more complicated gauge enhancements and brane intersections are considered. This is

not really a surprise, as more and more complex structure moduli are fixed in the

process, which are related to the 4-cycles of the geometry–– thus the decreasing χ(Z).
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In the estimation of the number of flux vacua the 4th Betti number b4(Z) takes a

critical role in the determination of the exponent, which leads to such large numbers

like 10500 to 101500 flux vacua, which have appeared in the literature. Provided that the

aforementioned observation holds true for the majority of F-theory compactification

manifolds, one could –– based on phenomenological requirements –– systematically ana-

lyze how the size of the landscape shrinks, as more and more conditions are enforced.

In particular, if for basic assumptions the number of flux vacua falls short of the critical

value 10120 of the (apparent) level of fine-tuning of the cosmological constant Ω, this

would significantly impact the statistical arguments “explaining” the observed value of

Ω, which have gained popularity in recent years [202]. Nevertheless, there are significant

obstacles to be tackled at first before one can turn to such an analysis.
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Appendix A
Toric Geometry and Algorithmic

Cohomology Computations

One major technical obstacle in string model building and many other areas of theo-

retical physics lies in the computation of cohomology groups for certain geometric

ingredients of the theory. The common methods usually try to relate the problem at

hand via a chain of isomorphisms back to known results in order to avoid the cum-

bersome computations of the cohomology groups from the ground up. However, this

makes it difficult to generalize results that were derived for a specific configuration and

rules out automated scans over a wide range of geometries, where each instance would

require an individual treatment.

In this chapter an algorithmic method [90, 91] to compute the dimensions of sheaf

cohomology groups for line bundles over toric varieties is presented. Via the induced

long exact cohomology sequence of the Koszul complex or the monad / extension con-

struction one can derive the cohomology of more complicated bundles over subspaces of

toric varieties, like compact Calabi-Yau hypersurfaces and their divisors. Furthermore,

a brief overview of the basic definitions of toric geometry [203–205] is presented as well

as several tools [206–209] to deal with equivariant cohomologies.

A.1 Toric Varieties and Fans

The framework of toric geometry is directly related to gauged linear σ-models (GLSMs)

in physics [117, 210, 211]. A toric variety X is a generalization of a projective space,

which consists of a set of homogeneous coordinates x1, . . . , xn and R projective equiv-

alence relations

(x1, . . . , xn) ∼ (λQ
(r)
1

r x1, . . . , λ
Q

(r)
n

r xn) for λr ∈ C×. (A.1)
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Here Q
(r)
1 for r = 1, . . . , R are the projective weights that can be treated as the Abelian

U(1) charges in the associated GLSM, where the homogeneous coordinates act as chiral

superfields in a N=(2, 2) supersymmetric gauge theory. The Fayet-Iliopoulos param-

eters ξr of those U(1)s can be interpreted as the Kähler parameters of the geometric

space. A vanishing of the D-terms associated to the GLSM then splits the parameter

space of ~ξ ∈ RR into R-dimensional cones in which the D-flatness conditions can be

solved and which correspond to the geometrical Kähler cones. For each cone–– usually

referred to as a geometric phase–– there are sets of collections of coordinates

Sρ = {xρ1 , xρ2 , . . . , xρ|Sρ|} for ρ = 1, . . . , N (A.2)

that are not allowed to vanish simultaneously. All those sets form the Stanley-Reisner

ideal

SR(X) = 〈S1, . . . ,SN〉. (A.3)

It is Alexander-dual to the irrelevant ideal BΣ, which is often used in the mathematical

literature. The toric variety X of dimension d = n − R for this geometric phase can

then be described as the coset space

X = (Cn − Z)
/

(C×)R. (A.4)

Here Z is the set of removed points given by

Z =
N⋃
ρ=1

{xρ1 = xρ2 = · · · = xρ|Sρ| = 0}, (A.5)

which encodes precisely the information of the Stanley-Reisner ideal SR(X). Basically,

the set Z is the generalization of the removed origin in projective spaces

CPn = (Cn+1 − {0})
/
C×. (A.6)

Another perspective on toric geometry is formulated in terms of toric fans, cones

and triangulations, which allows for a combinatorial treatment of the subject. In this

language a geometric phase corresponds to the choice of a triangulation for a given set

of lattice vectors νi. Those vertices satisfy the R linear relations

n∑
i=1

Q
(r)
i νi = 0 for r = 1, . . . , R. (A.7)

Therefore, associating νi to xi shows that the linear relations (A.7) between the lattice

vectors encode the projective equivalences (A.1) between the homogeneous coordinates.

From this perspective the Stanley-Reisner ideal consists of all square-free monomials

whose coordinates are not contained in any cone of the toric fan ΣX .
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A.2 Dimensions of Sheaf Cohomology Groups
for Line Bundles

Given a toric variety X, the geometric input data of the algorithm [91, 212, 213]

are the GLSM charges of the homogeneous coordinates and the Stanley-Reisner ideal

generators. The algorithm counts the number of monomials where the total GLSM

charge is equal to the divisor class of D, the divisor that specifies the line bundle

OX(D). The form of those monomials is restricted by the Stanley-Reisner ideal SR(X).

Negative integer exponents are only admissible for the coordinates contained in subsets

of the Stanley-Reisner ideal generators. One therefore determines in the first step the

set of square-free monomials Q that arise from unions of the coordinates in any subset

of SR(X) generators, i.e. the set of negative exponents. For each such set of negative

exponents–– or square-free monomials Q–– there is an associated weighting factor hi(Q)

that specifies to which cohomology group’s dimension hi(X;OX(D)) the number of

monomials ND(Q) with GLSM charge D contributes. The total cohomology group

dimension formula is then

dimH i(X;OX(D)) =
∑
Q

multiplicity factor︷ ︸︸ ︷
hi(Q) · ND(Q)︸ ︷︷ ︸

number of monomials

(A.8)

where the sum ranges over all square-free monomials that can be obtained from unions

of Stanley-Reisner ideal generators.

A.2.1 Computation of multiplicity factors

The multiplicity factors are given as the group dimensions of an intermediate relative

homology [90, 212]. As before, let X be a toric variety and let (A.3) be the Stanley-

Reisner ideal that is generated by N square-free monomials. Let [N ] := {1, . . . , N} be

the set of indices for those generators. For each subset

Sρ := {Sρ1 , . . . ,Sρk} ⊂ {S1, . . . ,SN} (A.9)

of generators let Q(Sρ) denote the square-free monomial that arises from the union of

all coordinates in each generator Sρi of the subset. Now construct a relative complex

ΓQ of the full simplex on [N ] by extracting only those subsets ρ ⊂ [N ] with Q(Sρ) = Q,

i.e. all combinations of Stanley-Reisner ideal generators leading to the same square-free

monomialQ. For some fixed cardinality |ρ| = k this defines the set of (k−1)-dimensional

faces Fk−1(Q) of ΓQ, i.e.

Fk(Q) :=

{
ρ ⊂ [N ] :

|ρ| = k + 1

Q(Sρ) = Q

}
. (A.10)
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Let CFk(Q) be the complex vector space with basis vectors eρ corresponding to k-faces

ρ ∈ Fk(Q). The (relative) complex

F•(Q) : 0 −→ FN−1(Q)
φN−1−→ · · · φ1−→ F0(Q)

φ0−→ F−1(Q) −→ 0, (A.11)

where F−1(Q) = {∅} is a face of dimension −1 in this formalism, is then given by the

mappings
φk : Fk(Q) −→ Fk−1(Q)

eρ 7→
∑
s∈ρ

sign(s, ρ) eρ−{s}.
(A.12)

A basis vector eρ−{s} vanishes if ρ with the element s removed is not contained in ΓQ.

Furthermore, sign(s, ρ) := (−1)`−1 when s is the `th element of ρ ⊂ [N ] written in

increasing order. Then define the relabeling

Ci(Q) := F|Q|−i(Q) (A.13)

while leaving the mappings (A.12) untouched. The dimensions hi(Q) := dimH i(C•(Q))

of the relabeled complex then gives the multiplicity factors for the square-free monomial

Q. Note that the hi(Q) only depend on the geometry of the toric variety.

A.2.2 Counting monomials

The second part of the algorithm depends on the GLSM charges of the homogeneous

coordinates and the specific line bundle OX(D). Let I = (i1, . . . , ik, . . . , in) be an index

relabeling such that the product of the first k coordinates Q = xi1 · · · xik is a square-free

monomial. For each Q one counts monomials of the form

RQ(x1, . . . , xn) := (xi1)−1−a(xi2)−1−b · · · (xik)−1−c(xik+1
)d · · · (xin)e

=
T (xik+1

, . . . , xin)

xi1 · · · xik ·W (xi1 , . . . , xik)
,

(A.14)

where T and W are monomials and a, b, c, d, e ∈ N0. Obviously, the coordinates of Q
are found in the denominator whereas their complements are in the numerator. Then

define

ND(Q) := dim{RQ : degGLSM(RQ) = D}, (A.15)

which counts the number of monomials of the specific form (A.14) that have the same

GLSM degree as the divisor that specifies the line bundle OX(D).

After completing the computation of the multiplicities hi(Q) in section A.2.1, the

monomial counting only has to be carried out for those square-free monomials Q where

at least one factor hi(Q) is non-vanishing. All aforementioned steps have been con-

veniently implemented in a high-performance cross-platform package called cohomCalg

[214].
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A.3 Using Exactness for Computations

Computations in algebraic topology can often be conveniently carried out by solely

relying on the exactness of a sequence of mappings

. . . −→ Ai
fi−→ Ai+1

fi+1−→ Ai+2
fi+2−→ . . . , (A.16)

which means that the image of the preceding mapping is equal to the kernel of the next

mapping, i.e.

im fi = ker fi+1. (A.17)

Homology and cohomology are measuring precisely the deviation of a sequence (more

precise: a complex) to be exact. For mappings between vector spaces ker f = 0 charac-

terizes an injective mapping and any map into {0} is necessarily surjective. From the

location of the zeros of an exact sequence one can therefore determine the type of the

mappings:

0 −→ A
f
↪−→ B −→ . . .  f injective

. . . −→ C
g
−� D −→ 0  g surjective

0 −→ E
h−→ F −→ 0  h bijective

(A.18)

This property is particularly useful in the context of induced sequences: Following from

the coefficient theorem, any short exact sequence

0 −→ A ↪−→ B −� C −→ 0 (A.19)

of spaces –– like sheafs, for example –– induces a corresponding long exact sequence of

the associated cohomology groups

0 // H0(X;A) // H0(X;B) // H0(X;C)

// H1(X;A) // H1(X;B) // H1(X;C)

// H2(X;A) // H2(X;B) // H2(X;C) // . . .

(A.20)

Often both the mappings in the coefficient sequence (A.19) and their induced coun-

terparts in (A.20) are difficult to evaluate explicitly. Consider the situation that one

knows the cohomology for two of the three coefficients, e.g. H•(X;A) and H•(X;B)

are given. Then it is a rather simple task –– provided that a sufficient number of zeros

appear in (A.20) –– to work out the remaining third cohomology H•(X;C) from the

aforementioned exactness considerations. In particular, this can be carried out at the

level of just the dimensions instead of the groups.
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A.4 Hypersurfaces and Complete Intersections

In order to obtain compact spaces of special geometry –– like compact Calabi-Yau

manifolds –– it is usually not sufficient to consider just toric varieties. Indeed, many

examples are constructed from hypersurfaces and complete intersections thereof. The

central link between the ambient variety and the hypersurface comes in the form of the

Koszul sequence [215]. Given an effective divisor

D :=
∑
i

aiHi ⊂ X (A.21)

such that all ai > 0, it can be shown that

0 −→ OX(−D) ↪−→ OX −� OD −→ 0 (A.22)

is a short exact sequence. Here OD is the quotient of the sheaf OX of holomorphic

functions on X by all holomorphic functions vanishing at least to order ai along the

irreducible hypersurface Hi ⊂ X. This allows to treat OD as the structure sheaf on the

divisor D, which effectively identifies the sheaf cohomology H i(X;OD) with H i(D;OD).

In addition, not only the plain Koszul sequence (A.22) is exact, but also its twisted

variant

0 −→ OX(T −D) ↪−→ OX(T ) −� OD(T ) −→ 0 (A.23)

that is obtained by tensoring (A.22) with the line bundle OX(T ). The long exact

cohomology sequence

0 // H0(X;OX(T −D)) // H0(X;OX(T )) // H0(D;OD(T ))

// H1(X;OX(T −D)) // H1(X;OX(T )) // H1(D;OD(T ))

// H2(X;OX(T −D)) // H2(X;OX(T )) // H2(D;OD(T )) // . . .

(A.24)

induced from the twisted Koszul sequence (A.23) allows to relate the cohomology of the

toric variety X directly to the cohomology of the hypersurface by using the exactness––

provided that a sufficient number of zeros is present in the ambient space cohomologies.

This method can be applied several times to compute line bundle cohomologies on

complete intersection spaces or divisors inside a hypersurface [90, 187–191]. However,

one is forced to compute a number of intermediate cohomologies from exactness as well.

Furthermore, additional consistency conditions like transversality of the intersecting

hypersurfaces have to be taken into account.
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A.5 Equivariant Cohomology

In orientifold and orbifold settings the internal part of the space-time is usually

specified by a discrete symmetry acting on the “upstairs” geometry. This induces a

corresponding splitting of the cohomology groups as the generating p-cycles can be

either invariant or non-invariant under the symmetry:

H i(X) = H i
inv(X)⊕H i

non-inv(X). (A.25)

Furthermore, if a bundle is defined on the upstairs geometry, one has to specify the

induced action on the bundle. A so-called equivariant structure [90, 216, 217] uplifts

the action on the base geometry to the bundle and preserves the group structure. More

precisely, for a generic group G, each element g ∈ G induces a mapping g : X −→ X

on the base geometry and has a corresponding uplift φg : V −→ V compatible with the

bundle structure, i.e. it makes the diagram

V
φg //

π
����

V

π
����

X
g // X

 g ◦ π = π ◦ φg (A.26)

commutative. This G-structure on V is called an equivariant structure if it preserves the

group structure, i.e. if φg ◦φh = φgh holds such that g 7→ φg is a group homomorphism.

The case of primary interest here concerns line bundles L in orientifold settings, i.e. a

Z2-symmetry acting on the upstairs Calabi-Yau geometry X. In general, it is rather

complicated to determine the invariant and non-invariant p-cycles of a geometry. A

very useful tool is the Lefschetz theorem [89, 90, 217, 218]

χσ(X;L) =

∫
Xσ

chσ(L)
Td(TXσ)

chσ(Λ−1(N̄Xσ))
(A.27)

that depends on the fixpoint set Xσ of the involution σ : X −→ X and generalizes the

Riemann-Roch-Hirzebruch theorem [90, 117, 215]

χ(X;L) =

∫
X

ch(L) Td(TX). (A.28)

Here ch(V ) refers to the Chern character of V , a polynomial expression of the Chern

classes

ch(V ) := dim(V ) + c1(V ) +
1

2

[
c1(V )2 − c2(V )

]
+

1

6

[
c1(V )3 − 3c1(V )c2(V ) + 3c3(V )

]
+ . . . ,

(A.29)



194 A. Toric Geometry and Algorithmic Cohomology Computations

satisfying ch(V ⊕ W ) = ch(V ) + ch(W ) as well as ch(V ⊗ W ) = ch(V ) ch(W ) and

Td(X) := Td(TX) is the Todd class of the base space’s tangent bundle, which can for

a holomorphic vector bundle also be represented by a Chern class polynomial

Td(E) = 1 +
1

2
c1(E) +

1

12

[
c1(E)2 + c2(E)

]
+ . . . . (A.30)

Note that for line bundles the Chern character simplifies to the simple Taylor expansion

ch(L) = ec1(L) =
∑
m

c1(L)m

m!
= 1 + c1(L) +

c1(L)2

2
+ . . . (A.31)

that naturally truncates at the dimension of the base space, leaving only a finite number

of non-zero terms in the sum.

For the special case of the group Z2 (i.e. orientifold symmetries) both index theorems

allow to compute the Euler characteristics of the invariant (“+”) and anti-invariant

(“−”) part of the cohomology:

χ(X/σ;L) = χ+(X;L) =
n∑
i=0

(−1)ihi+(X;L) =
χ(X;L) + χσ(X;L)

2

χ−(X;L) =
n∑
i=0

(−1)ihi−(X;L) =
χ(X;L)− χσ(X;L)

2
.

(A.32)

Since hi+ +hi− = hi has to hold for all i, the vanishing of the upstairs cohomology groups

(i.e. hi = 0 for some i) together with the values of χ+ and χ− often suffices to uniquely

determine all hi+ and hi−. However, evaluating (A.28) and in particular (A.27) for more

involved geometries quickly becomes complicated.

Using the monomial representatives (A.14) of the algorithm presented in section A.2

one can formulate the following proposal [90, 217] for an alternative method of compu-

tation:

Conjecture for Z2-equivariant line bundle sheaf cohomology: Given a toric va-

riety X, an involution mapping σ : X −→ X as well as an equivariant structure

on a line bundle L, the lifted involution mapping φσ can be directly applied to the

monomials counted in the cohomology algorithm. The overall sign that a mono-

mial picks up under the bundle involution determines whether it contributes to

the invariant or anti-invariant cohomology group, and non-trivial multiplicities

apply canonically in this counting.

The simplicity of this method stems from the fact that the involution mapping specified

for the homogeneous coordinates of the toric base space X can be directly applied to
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the monomials representing the sheaf cohomology. This conjecture can be generalized

to allow for more general groups and has been successfully tested on numerous examples

[90].
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[159] J. Marsano, N. Saulina, and S. Schäfer-Nameki, “Monodromies, Fluxes, and Compact

Three-Generation F-theory GUTs,” JHEP 0908 (2009) 046, arXiv:0906.4672

[hep-th].

[160] J. Marsano, N. Saulina, and S. Schäfer-Nameki, “Compact F-theory GUTs with

U(1)PQ,” JHEP 1004 (2010) 095, arXiv:0912.0272 [hep-th].

[161] T. W. Grimm, S. Krause, and T. Weigand, “F-Theory GUT Vacua on Compact

Calabi-Yau Fourfolds,” JHEP 07 (2010) 037, arXiv:0912.3524 [hep-th].

[162] C.-M. Chen, J. Knapp, M. Kreuzer, and C. Mayrhofer, “Global SO(10) F-theory

GUTs,” arXiv:1005.5735 [hep-th].
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