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1 Introduction 

 

1.1 The Hyperpolarization-activated Current Ih 

Ih is a mixed Na+ and K+ cationic current (= I) which is slowly activated by hyperpolarization (= h) and 

facilitated by cyclic nucleotides. This unique current was first discovered in sinoatrial node cells 

(Brown et al. 1977, DiFrancesco 1981) and in neurons (Halliwell and Adams 1982) in the late 1970s 

and early 1980s. Owing to its unusual biophysical properties, Ih was also denoted “funny” (If) (Brown 

et al. 1979) and “queer” (Iq). In the following, only the term Ih will be used.  

 

 

Fig. 1: Pacemaker role of Ih (A) Firing modes of thalamocortical neurons, Ih is indicated as a dashed line. (B) Idealised 

pacemaker potentials in the absence of adrenergic stimulation. DD: diastolic depolarization, time scale is indicated as a 

black bar. Adapted from Biel et al. 2009. 
 

Ih is widely found in the central nervous system and in heart and has been known to play a key role in 

controlling neuronal and cardiac rhythmicity (Fig. 1). Sinoatrial node cells generate a pacemaker 

potential that is characterised by the presence of a progressive diastolic depolarization (DD) (Fig. 1A). 

DD results from a net inward current starting at the end of the repolarization. Ih is a major (but not 

the only) component contributing to the DD. In the central nervous system, Ih exists in a variety of 

neurons which function as pacemaker units. These pacemaker neurons control rhythmic oscillations 

of single neurons and neuronal networks (e.g. in the Thalamus, Fig. 1B) concerning sleep, sensory 

processing and seizures (McCormick and Pape 1990, Luthi and McCormick 1998).  

Besides its pacemaker function, Ih contributes to other basic neuronal processes, including the 

determination of the resting membrane potential (Ludwig et al. 2003, Day et al. 2005, Nolan et al. 
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2007), dendritic integration (Magee 1998, Williams and Stuart 2000) and synaptic transmission 

(Beaumont and Zucker 2000).  

  

1.2 Structure of HCN Channels 

The ion channels passing Ih were first cloned in the late 90ies (Gauss et al. 1998, Ludwig et al. 1998, 

Santoro et al. 1998, Ludwig et al. 1999). Structurally, the four members of the Hyperpolarization-

activated cyclic nucleotide-gated (HCN) channel family (HCN1-4) belong to the superfamily of pore-

loop cation channels (Biel et al. 2009). 

 

 

Fig. 2: Structure of HCN channels. HCN channels consist of four homologous or identical subunits (homo/heteromeric 

structure). Each of the four subunits comprises six transmembrane segments including the voltage sensor (S4) and the pore 

region between S5 and S6. The pore region carries a GYG motif as selectivity filter. N- and C-termini are located 

intracellulary. The C-terminal channel domain contains a cyclic nucleotide-binding domain (CNBD). Adapted from Biel et al. 

2009. 

 

HCN channels can either form homotetramers or heterotetramers of the subunits HCN1-4. Each 

subunit is composed of six α-helical transmembrane segments (S1-6) whereas the N- and C-termini 

are located intracellulary. The S4 segment carries nine arginine or lysine residues regularly spaced at 

every third position and represents the positively charged voltage sensor. The pore is formed by the 
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S6 segment and the loop. This pore forming unit is closely related to the pore of highly selective K+ 

channels (Fig. 2).  

HCN channel subunits contain a GYG sequence which is the hallmark for K+ selectivity. Nevertheless, 

the channels conduct both K+ and Na+ but under physiological conditions it is the Na+ current that is 

most relevant. Currently it is unknown which structural determinant confers to the permeation of 

Na+ in the channel. However, it is tempting to speculate that in the tetrameric HCN channel complex 

the GYG motif is coordinated in a less rigid fashion than in K+ channels, allowing the entrance of 

cations of different size. 

The C-terminus of the HCN channel subunit contains a cyclic nucleotide-binding domain (CNBD) 

which is connected to the S6 segment of the transmembrane core via the C-linker. The CNBD is a 

highly conserved protein domain that can bind the cyclic nucleotides cAMP and cGMP. The recently 

published crystal structure of the mouse HCN2 C-terminal fragment including the C-linker and the 

CNBD provided insights into the cGMP-dependent gating in HCN channels (Zagotta et al. 2003). 

Nevertheless, the conformational changes during the gating process are not fully understood. The 

CNBD comprises an initial α-helix (A-helix), followed by an eight-stranded antiparallel β-roll (β1-β8), a 

short B-helix and a long C-helix. The binding pocket for cyclic nucleotides is formed by a number of 

residues at the interface between the β-roll and the C-helix (Fig. 2). Central role plays the interaction 

between the negatively charged cyclic-phosphate group in cyclic nucleotides and a positively charged 

arginine residue (R591 in the HCN2 subunit) which has been shown to be crucial on both CNG and 

HCN channels (Tibbs et al. 1998). 

 

1.3 Modulation by Cyclic Nucleotides 

Although all four HCN family members share a highly conserved CNBD, the response to cyclic 

nucleotides is quite different.  
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Fig. 3: Activation curve of Ih of HCN2 stable transfected HEK 293 cells in absence (black) or presence (blue) of cyclic 

nucleotides. Cyclic nucleotides shift the activation curve of Ih to more positive potentials. 

 

The activation curves of HCN2 and HCN4 are shifted by about +10 to +25 mV to more positive 

voltages when cyclic nucleotides are added (Fig. 3) and the channel opening is accelerated 

(DiFrancesco and Tortora 1991). In contrast, HCN1 and HCN3 are, if at all, only weakly affected by 

cyclic nucleotides (Santoro et al. 1998, Mistrik et al. 2005, Stieber et al. 2005). While the extent of 

the shift is similar for both, cAMP and cGMP, the affinities are 10 to 100-fold higher for cAMP  

(Ka = 60-500 nM) than for cGMP (Ka = 6 µM) (Ludwig et al. 1998). Several residues in the C-helix 

contribute to the higher selectivity of HCN channels for cAMP than for cGMP (Zhou and Siegelbaum 

2007).  

The channel cannot be opened by cyclic nucleotides alone without additional hyperpolarization. The 

phenomenon that the HCN channel is activated by hyperpolarization and that the voltage-

dependence of activation is speed up by cyclic nucleotides is termed dual gating. The activation of 

HCN channels is thus a combined process which consists of a voltage- and a ligand (cyclic nucleotide) 

component. 

 

1.4 Regulation of HCN Channels  

HCN channels are tightly regulated by interacting proteins as well as by low molecular factors in the 

cytosol and the extracellular space. These molecules control the functional properties of the 

channels in the plasma membrane and influence their targeting to cellular compartments or regulate 

their surface expression. Fig. 4 gives an overview on known interacting proteins and low molecular 

factors that modulate the HCN channels. 
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Fig. 4: Regulation of HCN channels by interacting proteins and low molecular factors. cAMP, Cl
-
, Filamin A, H

+
, KCR1, 

Mint2, MiRP1, PIP2, Src kinase, S-SCAM, Tamalin and Trip8b interact with the HCN channel in distinct regions, here shown 

for one HCN channel subunit. Adapted from Biel et al. 2009. 

 

1.4.1 Modulation by Low Molecular Factors 

 

1.4.1.1 Regulation by PIP2 

In excised patches, heterologously expressed HCN channel currents display a rapid rundown which 

becomes apparent in an about 30-50 mV hyperpolarizing shift of the activation curve. The washout 

of cyclic nucleotides can only partially explain the hyperpolarizing shift. The missing factor for the 

rundown was recently identified as PIP2 (Pian et al. 2006, Zolles et al. 2006). Studies gave strong 

evidence that HCN channels are regulated by phosphatidylinositol 4, 5-bisphosphate (PIP2), like a 

number of other ion channels as well (for review, see Gamper and Shapiro 2007, Suh and Hille 2008). 

In HCN channels, PIP2 acts as an allosteric activator which leads to a positive shift of V0.5 by about 

20 mV to more positive potentials in a cyclic nucleotide independent manner (Pian et al. 2006, Zolles 

et al. 2006). Thus, together with the depolarizing shift of cyclic nucleotides, the influence of PIP2 

enables robust channel activation in the voltage range relevant for the physiological role of HCN 

channels. 

 

1.4.1.2 Regulation by Protons 

HCN channels are regulated by external and internal protons. There is evidence that the V0.5 is a 

function of the proton concentration (Zong et al. 2001). Intracellulary, a histidine residue was 
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identified which controls the pH-dependent change in the V0.5 (Fig. 4). The physiological role of the 

pH modulation of HCN channels may have influence on sleep spindle oscillations or the respiratory 

frequency (Munsch and Pape 1999). 

Extracellular pH changes can also influence the HCN channel activity. A low extracellular pH value 

strongly activates HCN1 and HCN4 channels, respectively in rat taste cells, suggesting that HCN 

channels may function as additional receptors for sour taste (Stevens et al. 2001). The underlying 

mechanism and the relevance of the regulation by external pH are not yet determined. 

 

1.4.1.3 Regulation by Chloride 

Anions do have an influence on channel activity, although HCN channels do not conduct anions. The 

replacement of chloride for bulkier anions like glutamate, acetate, and aspartate decreased the 

amplitude of Ih in rabbit sinoatrial node cells (Frace et al. 1992). A single arginine residue in the pore 

region of HCN2 and HCN4 channels seems to be responsible for the chloride sensitivity. HCN1 and 

HCN3 lack this arginine residue and exhibit the response to chloride (Fig. 4) (Wahl-Schott et al. 2005). 

A reduction of Ih in sinoatrial cells may be involved in the generation of arrhythmias observed in 

hypochloremias. 

 

1.4.2 Regulation by Accessory Proteins  

There is growing evidence that ion channels form macromolecular complexes with membrane 

spanning and cytosolic proteins (Muller et al. 2010). The trafficking and function of many ion 

channels are regulated by subunits that do not contribute to the pore-forming core of the channel. 

 

1.4.2.1 Regulation by MiRP-1 

The HCN1 and HCN2 current amplitude is increased in heterologous expression systems when co-

transfected with MiRP-1 and the current expression is enhanced (Yu et al. 2001, Qu et al. 2004). 

Whereas MiRP-1 can accelerate the HCN1 and HCN2 activation and deactivation kinetics, the 

activation rate of HCN4 channel is slowed down (Decher et al. 2003). MiRP-1 is a member of single 

transmembrane-spanning proteins and serves as an auxiliary subunit of the HERG delayed rectifier K+ 

channels. The C-Terminus of MiRP-1 interacts with the C-terminus of HCN2 and HCN4 (Fig. 4) (Decher 

et al. 2003). However, all data supporting a functional role for MiRP-1 on HCN channels were 

obtained in heterologous expression systems. Therefore, it will be necessary to verify the interaction 

between MiRP-1 and the HCN subunits together with its functional implications in native tissues. 
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1.4.2.2 Regulation by KCR1 

Recently, another transmembrane-associated protein was reported to interact with the HCN2 

channel (Fig. 4). The K+ channel regulator 1 consists of 12 putative transmembrane segments. The 

loss of KCR1 function results in an increase of Ih current density. In the same study it was shown that 

viral overexpression in rat cardiomyocytes also reduced the current density of native Ih and 

suppressed the spontaneous action potential activity of these channels (Michels et al. 2008). 

 

1.4.2.3 Regulation by Scaffold Proteins 

Scaffold proteins like TPR-containing Rab8b interacting protein (Trip8b) (Santoro et al. 2004), 

Tamalin, S-SCAM and Mint2 (Kimura et al. 2004) were reported to affect HCN channel trafficking and, 

thus, Ih current density.  

Trip8b was found in a proteomic approach (Zolles et al. 2009) and is potentially the major 

endogenous auxiliary subunit of HCN channels in the mammalian brain. Nine alternative N-terminal 

splice isoforms of the brain specific Trip8b protein have been identified. When co-expressed with 

HCN1 in HEK 293 cells or hippocampal neurons, these variants differentially up- or downregulated Ih 

(Santoro et al. 2009, Zolles et al. 2009). These effects were mediated by alterations in the HCN 

channel surface expression resulting from a change in HCN subunit trafficking (Santoro et al. 2009, 

Zolles et al. 2009). Regardless of the Trip8b isoform tested, the membrane potential threshold for 

HCN channel activation was shifted to more hyperpolarized potentials (Lewis et al. 2009, Santoro et 

al. 2009). Moreover, Trip8b also altered HCN channel gating by slowing the channel opening and 

accelerating the channel closing (Santoro et al. 2009, Zolles et al. 2009). 

Additionally, the HCN2 channel forms a protein assembly with the neuronal scaffold proteins 

Tamalin, S-SCAM and Mint2 via distinct protein binding domains in the C-terminus. In overexpressed 

systems, the HCN2 surface expression was increased upon co-expression with Mint2 suggesting that 

this protein might be a positive regulator of cell surface expression of HCN channels (Kimura et al. 

2004). 

 

1.4.2.4 Regulation by Filamin A 

On the basis of overexpression systems, Filamin A is suggested to cause a clustering of HCN1 

channels, thereby slowing down the channel activation and deactivation (Gravante et al. 2004). 
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Filamin A is a putative cytoplasmatic scaffold protein and binds to HCN1 via a 22 amino acid region 

downstream the CNBD.  

 

1.4.3 Regulation by Protein Modification 

Posttranslational modification is a common feature of proteins. During this process, the modification 

by phosphorylation is a major mechanism involved in the modulation of ion channel properties and 

function.  

 

1.4.3.1 Regulation by Src Kinase 

Pharmacological blocking experiments showed that Ih is regulated by tyrosine kinases of the Src 

family (Wu and Cohen 1997). This hypothesis was confirmed by yeast two hybrid screens that 

proofed an interaction between Src and the HCN1 channel as well as Src and HCN2 (Santoro et al. 

1997, Zong et al. 2005). The direct binding of Src to HCN2 and HCN4 could be verified in co-

immunoprecipitation experiments in heterologous expression systems and in native tissue (Zong et 

al. 2005, Arinsburg et al. 2006). Yeast two hybrid experiments showed that the SH3 domain of Src 

binds to the C-linker-CNBD domain of HCN2 and phosphorylates the channel at this domain (Zong et 

al. 2005). As a consequence of the phosphorylation, the activation kinetics of the channel is 

accelerated. An inhibition of Src kinases led to a slow-down of the HCN2 current corresponding to an 

increase in the activation time constant. The HCN2 channel is phosphorylated by the Src kinase at a 

tyrosine residue at position 476 in a region which is highly conserved among HCN1-4 subunits. The 

substitution of this amino acid by phenylalanine in either HCN2 or HCN4 led to channel mutants that 

were not longer modulated by the Src kinase. Another tyrosine residue was found recently in HCN4 

channels at position 531 that may be involved in Src mediated channel regulation (Li et al. 2008). The 

additional phosphorylation not only speeds up channel kinetic but also shifted the voltage-

dependence of activation to more positive potentials and led to the increase of the whole cell 

channel conductance (Li et al. 2008). Taken together, the results indicate that the control of the 

phosphorylation status is indeed an important regulatory mechanism to adjust the properties Ih to 

the specific requirements of different cell types of neurons and heart cells. 

  

1.4.3.2 Regulation by p38 Mitogen Activated Protein Kinase (p38 MAPK)  

The p38 MAPK interacts with the HCN1 and HCN2 in CA1 pyramidal neuron dendrites and pyramidal-

like principal neuron somata (Poolos et al. 2006). Pharmacological blockade of p38 MAPK activity 
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significantly downregulated Ih in hippocampal neurons, with a 25 mV hyperpolarizing shift in voltage-

dependent activation. Consequently, the neuronal resting membrane potential was shifted to more 

hyperpolarized potentials and the neuronal input resistance was increased as well as the temporal 

summation. Lately, it was discovered that during epileptogenesis in the pilocarpine model of 

epilepsy, HCN channels underwent a progressive downregulation of their voltage-dependent gating 

and act in concert with the gradual increase in seizure frequency (Jung et al. 2007). This 

downregulation was found to be mediated at least by the persistent alteration of two distinct 

phosphorylation pathways. Firstly, a reduced p38 MAPK activity in hippocampal area CA1 from 

chronically epileptic animals and, secondly, an enhanced activity of the phosphatase calcineurin 

which consequently produces neuronal hyperexcitability (Jung et al. 2010). It remains unclear 

whether p38 MAPK directly phosphorylates the HCN channel. Since the phosphorylation sites on the 

HCN channel were not mapped so far, it is also likely that HCN channel gating is modulated by other 

kinases and phosphatases or via phospholipids pathways. 

 

1.4.3.3 Regulation by Protein Kinase A (PKA) 

The cAMP-dependent protein kinase A (PKA) is the major target for cAMP action in eukaryotic cells. It 

was speculated for a long time that there is a link between HCN channels and their modulation by 

cyclic nucleotides via the PKA. HCN channels contain numerous consensus PKA phosphorylation sites 

and the inhibition of PKA shifted the half-maximal activation voltage to more negative potentials in 

purkinje fibres (Chang et al. 1991) and in cultured rat olfactory receptor neurons (Vargas and Lucero 

2002). In isolated ventricular myocytes, Ih phosphorylation also produces a positive shift in the Ih 

activation curve, but it was not clear whether the conductance was regulated as well (Yu et al. 1995). 

Recently, it was reported that PKA might directly phosphorylate the HCN4 channel at various sites in 

the N- and C-termini (Liao et al. 2010). As a consequence, phosphorylation of the HCN4 channel via 

PKA shifted the voltage-dependence of activation by 6 mV to more positive potentials in sinoatrial 

myocytes as well as in heterologous expression systems. The phosphorylation by PKA is discussed 

controversial. One reason is that direct phosphorylation could not be proofed in mammalian cells or 

native tissue. Moreover, it seems implausible that the PKA is postulated to phosphorylate at least 13 

residues within the HCN4 channel. According to the current state of knowledge, the PKA seems to 

have an influence in Ih. The importance of the PKA-mediated regulation has to be considered critically 

and remains to be determined. 
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1.5 Aim of this Study 

 

HCN channels are key regulators of cellular excitability in the heart and the nervous system. Previous 

work indicated that the activity of HCN channels is tightly regulated by low-molecular cellular factors 

(e.g. protons, Cl-, PIP2) as well as by protein phosphorylation. There is also growing evidence that 

HCN channels do not exist in isolation in the plasma membrane but are rather part of multi-protein 

complex whose composition is cell type-specific and dynamically regulated by the cell.  

In order to achieve a deeper understanding of the cellular role of HCN channels it is crucial to 

determine the individual components of the HCN channel signalling complex. The present study was 

launched to experimentally address this important issue. In a first approach, an unbiased yeast-two 

hybrid screen should be performed with cDNA from mouse brain to identify proteins that interact 

with HCN channels in neurons. A particular focus should be on proteins that interact with the large 

intracellular C-terminus of HCN2, the channel subunit which is the most wide-spread member of the 

HCN channel family. As a first step into functional analysis the identified HCN2 interacting proteins 

should be validated biochemically using GST-pulldown assays, co-immunoprecipitation and 

immunocytochemistry. In the second part of the study the potential regulation of HCN2 by the 

cGMP-dependent protein kinase should be investigated. The rationale behind this approach was the 

idea that cGMP -like cAMP- may regulate channel activity via two different pathways, namely by (1) 

direct interaction with the CNBD and (2) by mediating channel phosphorylation. To examine the 

validity of this hypothesis an array of biochemical and electrophysiological methods should be 

employed. These experiments should be complemented by experiments with tissues from genetic 

mouse models lacking either HCN2 or PKGs.  



MATERIALS AND METHODS 14 

 

2 Materials and Methods 

 

2.1 Chemicals, Solutions and Buffers 

All chemicals used were obtained by Merck, Roth, Sigma-Aldrich and Bio-Rad if not mentioned 

extraordinarily. The quality was “pro analysi” or “for molecular biological use”. For all solutions high 

pure and deionised water was used (high pure water system Easypure UV/UF, Werner GmbH). In 

experiments in which a high purity was required all solutions were autoclaved. 

 

2.2 Plasmids 

Plasmids are circular double-stranded DNA molecules which have their origin in bacteria. They are 

located extrachromosomally and are replicated autonomously. For the molecular use, these plasmids 

are modified in order to amplify DNA or to subsequently express proteins. Essentials of so called 

expression vectors are the origin of replication, a resistance gene encoding for an antibiotic used for 

selection and a multiple cloning site (MCS). In this polylinker, various recognition sites for restriction 

endonucleases are placed allowing cloning of DNA fragments. 

 

pcDNA3 (5.4 kb) and pcDNA3.1 (5.5 kb, Invitrogen) 

Characteristic elements of these eukaryotic expression vectors are a cytomegalovirus-promoter 

(CMV-promoter) which enables a strong and constitutive expression and a resistance gene encoding 

for ampicillin. The difference between the pcDNA3 and the pcDNA3.1 vector is the presence of a 

carboxy-teminal myc-tag in the reading frame of pcDNA3.1 which allows easy detection and 

immunoprecipitation of proteins. In this work, the pcDNA3 and pcDNA3.1 vectors were used for 

heterologous expression of HCN subunits and corresponding interactors in various protein studies. 

 

pCRII-TOPO
®
 (3.9 kb, Invitrogen) 

This vector was used for cloning of PCR products (see chapter 2.4.8). It contains a lacZ promoter 

followed by the MCS and lacZ reporter gene. Thus, insertion of constructs into the MCS disrupts the 

expression of β-galactosidase and can be used for selection of recombinant bacterial clones on X-gal 

containing plates. Additionally, this vector contains a f1 ori and pUC ori for plasmid replication in 

prokaryotes. For selection of recombinant bacteria, kanamycin and ampicillin resistance (AmpR) are 

included in this vector.  
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pIRES-EGFP (5.3 kb, Clonetech) 

This bicistronic vector carries besides a CMV-promoter, a resistance gene for kanamycin and a 

sequence for the internal ribosome entry site (IRES-sequence). Its location between the MCS and a 

coding sequence for the enhanced green fluorescent protein (eGFP) allows simultaneous expression 

of two independent proteins. In patch clamp experiments transfected cells could easily be detected 

by green fluorescence. 

 

pMyr (5.6 kb, Stratagene) 

The pMyr vector is used as a component of the CytoTrap two-hybrid system and express proteins 

fused to a myristylation signal. In this study, the pMyr vector contained the target proteins from the 

brain cDNA-library. Owing to the myristylation signal, proteins expressed from this vector are 

directed to the cytoplasmatic part of the cell membrane. The pMyr vector exhibits various features 

for protein expression in yeast: expression of the myristylated target protein starting with the GAL1 

promoter which is repressed when yeast are grown in the presence of glucose but depressed in the 

presence of galactose. For selection in yeast, a URA3 gene is included which allows growth on uracile 

deficient agar plates. The chloramphenicol-resistance gene conduces to selection in E.coli. 

 

pSOS (11.3 kb, Stratagene) 

The pSOS vector is the second component of the CytoTrap two-hybrid system (Y2H). DNA encoding 

the protein of interest (bait protein) is cloned into the pSos vector MCS, generating a fusion protein 

of hSos and the bait protein. In this Y2H screen, the C-terminus of the HCN2 subunit was cloned in 

pSOS. The ADH1 promoter driving expression of the hSos-bait fusion is constitutively active. A LEU2 

gene allows endogenous leucine production to grow on leucine deficient agar plates. For selection in 

E.coli, an ampicillin-resistance gene is included. 

 

pET41a (6.0 kb, Novagen) 

The pET41a vector was used to fuse a N-terminal schistosomal glutathione-S-transferase tag to the 

protein of interest (GST-tag) which is driven by the T7 lac promoter The protein expression can be 

induced by Isopropyl-β-D-thiogalactopyranosid (IPTG) since it inactivates the lacZ repressor and, 

therefore, induces transcription of the lac operon. A kanamycin resistance gene allows selection. 
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pQE30 (3.5 kb, Quiagen) 

The pQE is an expression vector for E.coli equipped with a phage T5 promoter and a double lac 

operator repression module. Via IPTG, high-level expression of a 6xHis fusion-protein, in this case of 

the C-terminus of HCN2, is induced. For selection in E.coli, an ampicillin-resistance gene is included. 

 

Lentivirus Plasmids 

The original lentivirus plasmids were provided by the lab of Inder Verma (The Salk Institute for 

Biological Studies, Laboratory of Genetics, La Jolla, CA, USA). 

 

 

Fig. 5: Cartoon of the HIV-1 genome (upper panel) and the derived lentiviral vector system of the third generation (lower 

panel). The viral genome was separated into a transfer plasmid (left) and helper plasmids (right). CMV: cytomegalovirus 

promoter. env: gen for coating proteins. gag: gen for specific antigens. LTR: long terminal repeats. nef: accessory gen. pol: 

gen for integrase and reverse transcriptase. rev: regulatory gen. Syn1.1: synapsin1.1 promoter. tat: regulatory gen. vif, vpr, 

vpu: accessory genes. vsv.g: vesicular stomatitis virus g-protein. Lentiviral genome adapted from (Verma and Weitzman 

2005) 

 

In order to produce lentiviral plasmids, the third generation of the HIV-1 derived deliver system was 

used. As a basis of this viral vector system, it is necessary to separate essential viral genes 

responsible for replication and production of infectious particles from genes responsible for the 
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pathogenesis of HIV-1. Hence, the native HIV envelope (env) is the limiting factor for the use of 

lentivirus in biological research and therefore it was replaced by coating proteins of heterologous 

viruses. Commonly, the vesicular stomatitis virus g-protein (VSV.G) is used for pseudotyping (Fig. 5) 

(Verma and Weitzman 2005) which is now located in the helper plasmid pMD.2G. In order to reduce 

the risk of homologous recombination and the resulting production of infectious particles, the HIV 

genes vif, vpr, vpu and nef were removed from the lentiviral genome (Fig. 5) (Delenda 2004). The tat 

trans-gene is also non-essential for the efficient production of lentiviral vectors and was replaced by 

a strong heterologous promoter sequence. An essential part is the rev gene which interacts with the 

rev response element (RRE) and enhances the export of the unspliced, full-length genome transcripts 

of gag-pol mRNA and the genomic RNA of the transfer vector (Fig. 5) (Delenda 2004). In the vector 

system, the rev gene is located on the pRev and the gag-pol on the pMDL, respectively. The latter 

encodes a gag-pol precursor protein which is processed to an integrase, a reverse transcriptase and 

structural proteins essential for the lentivirus particle production. The gene of interest is cloned into 

the transfer vector containing a synapsin specific promoter (Syn1.1) which allows neuron specific 

expression (Fig. 5 lower left panel) (Dittgen et al. 2004).  

 

2.3 Mouse Lines 

In this study, HCN2 and cGKII specific knockout mice were used. The HCN2-deficient mouse line was 

generated by disrupting the HCN2 gene through homologous recombination using a Cre/loxP-based 

strategy (Ludwig et al. 2003). As a consequence, the exons 2 and 3 encoding the transmembrane 

segments 2 to 6 and the pore are deleted. The mating of the HCN2 mouse line was sustained 

heterozygously.  

The same Cre/loxP-based strategy was used for the creation of the cGKII-deficient mouse line (Pfeifer 

et al. 1996). The disrupted exon 2 encoded the first part of the cGMP binding domain. Animals 

derived from this mouse line were mated homozygously. All animals have a mixed background of 

129SvJ and C57-Bl6/N strains, received food (Ssniff; regular feed: R/M-H, breeding feed: M-Z 

Extrudat) and water ad libitum and lived in a light-dark cycle of 12 h. 
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2.4 Working with DNA 

 

2.4.1 Isolation of Genomic DNA for Genotyping 

Young mouse tail tip tissue probes (< 21d) were digested with proteinase K (20 mg/ml, Roche) at 

55°C over night. The next day, the proteinase K was heat inactivated at 95°C for 10 min and the tissue 

lysates were used as template in the genotyping polymerase chain reaction (PCR).  

 

10x proteinase K buffer 

100 mM Tris-HCl, pH 8.0 

200 mM NaCl 

5 mM EDTA 

0.2% SDS 

 

 

2.4.2 Polymerase Chain Reaction 

The method was used for the amplification of genes, correction or deletion of mutations, and 

genotyping. The conditions of each PCR reaction were adjusted to the respective application. Table 1 

shows an overview about the standard PCR conditions of different polymerases. The pipetting 

scheme of the PCR adapted from the manual of the respective manufacturer. 

 

Table 1: Standard PCR conditions for different polymerases. 

Polymerase Taq 

(self made) 

Pfu  

(Stratagene) 

Herculase  

(Stratagene) 

Phusion  

(Finnzymes) 

 

Initial denaturation 95°C 1 min 95°C 1 min 95°C 1 min 98°C 30 s  

Denaturation 95°C 30 s 95°C 45 s 95°C 20 s 98°C 10 s  

Annealing x°C 30 s x°C 45 s x°C 20 s x°C 30 s 35 cycles 

Elongation 72°C 30 s/kb 72°C 60 s/kb 72°C 30 s/kb 72°C 30 s/kb  

Final elongation 72°C 5 min 72°C 5 min 72°C 5 min 72°C 5 min  

Storage 10°C ∞ 10°C ∞ 10°C ∞ 10°C ∞  

 

For genotyping, a multiplex-PCR was used which enables simultaneous amplification of targets of 

interest in one reaction by using more than one pair of primers. The multiplex-PCR was combined 
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with a touchdown PCR which is another modification of conventional PCR that may result in a 

reduction of nonspecific amplification, especially of genomic DNA. It involves the use of an annealing 

temperature that is higher than the target optimum in early PCR cycles. The annealing temperature is 

decreased by 1°C every cycle until a specified or 'touchdown' annealing temperature is reached. The 

touchdown temperature is then used for the remaining number of cycles. This allows for the 

enrichment of the correct product over any non-specific product. 

 

Genotyping HCN2 cGKII  

Initial denaturation 95°C  5 min 94°C 5 min  

Touchdown: 

Denaturation 95°C  30 s 94°C 30 s 

 

Annealing 71°C, dT -1°C 30 s 66°C, dT -1°C 30 s 10 cycles 

Elongation 72°C  30 s 72°C 60 s  

Denaturation 95°C  30 s 94°C 30 s  

Annealing 61°C 30 s 59°C 30 s 25 cycles 

Elongation 72°C  30 s 72°C 60 s  

Final elongation 72°C  5 min 72°C 10 min  

Storage 10°C  ∞ 10°C  ∞  

 

 

2.4.3 Restriction Analysis and Preparation of Samples for Cloning 

All restriction enzymes were acquired from New England BioLabs (NEB) or from Fermentas. 

Restriction analysis conditions were performed following the manufacturer’s instructions.  

For cloning, 3-5 µg of DNA were digested usually at 37°C. After the incubation time, the cut DNA was 

separated electrophoretically and the bands were cut precisely using a scalpel.  

 

2.4.4 Purification of DNA Fragments 

After PCR amplification and restriction digest, the PCR fragments were purified for further 

applications. The purification was performed using the PureLinkTM Quick Gel Extraction Kit 

(Invitrogen) according to manufacturer’s protocol. All solutions needed for this procedure were 

provided with the kit. Briefly, threefold amount of solubilization buffer was added to the excised gel 

slice. The sample was incubated at 55°C until the gel was completely solved and loaded onto a silica 

spin column which was placed into a 2 ml Eppendorf tube. The gel extract was centrifuged 

(13,000 rpm, 1 min) and the flow through was discarded. 700 µl wash buffer was added to the 
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column followed by an additional centrifugation step. After discarding the flow through, the column 

was spun in order to remove all ethanol present. Finally, the DNA was eluted with 30 µl ddH2O or 

elution buffer into a fresh 1.5 ml Eppendorf tube by centrifugation. The successful purification was 

verified by agarose gel electrophoresis. 

  

2.4.5 Dephosphorylation and Ligation  

The dephosphorylation of the vector and subsequent ligation with the insert were performed with 

the Rapid DNA Dephos Ligation Kit from Roche. A dephosphorylation of the vector was accomplished 

if only one restriction endonuclease was used. 1 µg of the purified vector DNA was mixed with 10x 

rAPid alkaline phosphatase buffer and 1 U of rAPid alkaline phosphatase in a total volume of 20 µl. 

The solution was centrifuged briefly and incubated for 30 min at 37°C. In order to inactivate the rAPid 

alkaline phosphatase, the reaction was heated up to 75°C for 2 min. For ligation, 50 ng of the 

dephosphorylated vector was added to 150 ng of the insert, 5x DNA dilution buffer in a volume of 

10 µl and mixed thoroughly. 10 µl of 2x DNA ligation buffer and 5 U T4 DNA ligase were supplied to 

the ligation reaction and incubated for 30 min at room temperature. 

 

2.4.6 Transformation 

For transformation, the chemically competent E.coli strain XL1 blue (NEB) was used. First, a 100 µl 

aliquot of competent XL1 blue cells were thawed on ice. Then, 10 µl of the ligation reaction or 20 ng 

plasmid DNA for retransformation were added to the cell suspension. After an incubation step on ice 

for 30 min, a heat pulse was performed by incubating the cells for 45 sec at 42°C in a water bath. 

Immediately after this, the cell suspension was replaced on ice for 2 min. A volume of 900 µl 

prewarmed Luria Bertani medium containing glucose (LB (+)) was added to the cells and agitated for 

1 h at 37°C. The cells were pelleted at 3,500 rpm for 5 min at room temperature and resuspended in 

150 µl of LB (+) medium. Finally, the cells were plated on the agar plates containing appropriate 

antibiotics and incubated over night at 37°C.  

  

 

antibiotics 

100 µg/ml ampicillin 

30 µg/ml kanamycin 

30 µg/ml chloramphenicol 
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LB(+) medium  LB(+) Agar 

10 g  peptone  10 g  peptone 

5 g yeast extract  5 g yeast extract 

5 g NaCl  5 g NaCl 

1 g glucose  1 g glucose 

   15 g agar 

    antibiotics 

 adjust pH to 7.2 - 7.5   adjust pH to 7.2 - 7.5 

ad 1 L ddH2O, autoclave  ad 1 L ddH2O, autoclave 

 

 

2.4.7 Inoculation of Bacterial Cells and Isolation of Plasmid DNA (Alkaline Lysis)  

Bacterial clones were picked from the agar plate and transferred to 10 ml polypropylene tubes (VWR) 

containing the LB (+) medium with the appropriate resistance. Then, the suspension was incubated 

over night at 37°C with shaking (225 rpm). On the next day, the cells were spun at 1,000 g for 10 min 

at 4°C and the pellet was solved in 250 µl resuspension buffer. This solution was transferred into 2 ml 

Eppendorf tubes. After adding 250 µl lysis buffer, the cell suspension was inverted several times and 

was allowed to incubate for maximal 5 min at room temperature. Then, 250 µl of the neutralization 

solution was added to the mix, the latter was inverted and incubated 5 min at room temperature. 

The suspension was centrifuged at maximal rpm for 15 min at 4°C or at room temperature and the 

supernatant containing the plasmid DNA was transferred into fresh 1.5 ml Eppendorf tubes. To 

precipitate DNA, 520 µl 100% isopropanol was added to the mix. After vortexing, the mix was spun at 

rpm maximal for 15 min at 4°C. Subsequently, the pellet was washed with 70% ethanol and the 

solution was centrifuged at rpm maximal for 5 min at 4°C. Then, the supernatant was discarded and 

the pellet was dried in a vacuum centrifuge at RT for 5 min. The pellet was suspended in 30 µl of 

ddH2O and 1 µl of this plasmid DNA solution was used for the restriction analysis. If expected results 

were obtained, the corresponding plasmid DNA was send for sequencing without further purification.  

To yield plasmid DNA in larger amounts and in higher purity, PureYieldTM Plasmid Midiprep System 

(Promega) was used. For that purpose, colonies were inoculated in 100 ml LB (+) medium and similar 

procedure as described above was performed following the manufacturer’s instructions.  
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2.4.8 TOPO Cloning 

TOPO cloning (TOPO TA Cloning® Kit Dual Promoter, Invitrogen) represents a rapid and convenient 

cloning method for PCR products. Topoisomerase I from Vaccinia virus attached to the pCRII®-TOPO® 

vector allows for covalent binding of PCR products to this vector. However, this reaction only takes 

place if the respective PCR product possesses a deoxyadenosine (A) on its 3’ end. In contrast to most 

polymerases with proof reading activity (i.e. Pfu-polymerase), conventional Taq polymerase has 

terminal transferase activity and adds a single adenosine to the 3´ ends of the PCR products.  

First, PCR products which were amplified using a polymerase without terminal transferase activity 

were purified by standard procedures as described in chapters 2.4.4 and 2.4.3. Then, 8 µl of the 

purified PCR product was added to 0.5 µl dNTPs (MP biomedicals, 10 mM each), 1 µl Taq buffer (MP 

biomedicals, containing 2.5 mM MgCl2) and 0.5 µl Taq-polymerase (self-made). This reaction was 

incubated for 30 min at 72°C and placed on ice afterwards. The TOPO cloning reaction was 

performed using 4.5 µl of the Taq-polymerase reaction product, 1 µl salt solution and 0.5 µl TOPO 

vector (both provided with the kit). The mix was incubated for 20 min at room temperature and 

subsequently 5 µl were transformed into chemically competent bacterial cells (see 2.4.6).  

 

2.4.9 Introduction of Mutations in DNA Constructs 

In most cases, mutations were introduced by means of site-directed mutagenesis. Site-directed 

mutagenesis PCR was performed using the QuikChange XL Site-Directed Mutagenesis Kit (Stratagene) 

according to manufacturer’s instructions. Another method to introduce mutations is the overlap-PCR 

which needs four primers to introduce mutagenesis. The first pair of primers was used to amplify 

DNA that contains the WT-template together with upstream sequences (overlap) of the mutation to 

be inserted. The second pair of primers confines DNA which contains the mutation site and 

downstream sequence. The two overlapping fragments were mixed, denaturated and annealed to 

generate heteroduplexes which can then be elongated. In a third PCR the heteroduplexes were 

amplified into full-length DNA using primers that bind to the extremes of the initial fragments. Over 

unique restriction sites, a mutated PCR-construct is inserted into the WT-plasmid DNA. 

 

2.4.10 Reverse Transcription (RT) 

Reverse transcription was performed using the ThermoScriptTM RT-PCR System Kit (Invitrogen) 

following the instructions of the manufacturer. During the cDNA synthesis, random hexamers as well 

as oligo (dT) primer were added to the reaction. After the cDNA synthesis, RNA was degraded using 

RNAse H and a PCR was performed. The reverse transcription was used to amplify the interacting 

candidates of HCN2 out of the mouse brain. 
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2.4.11 Cloning of HCN Channels 

Cloning of the mouse HCN2 and human HCN4 subunits was described previously (Ludwig et al. 2003, 

Much et al. 2003, Zong et al. 2005). A complete primer list is provided in the appendix. If not 

specified, all experiments from the electrophysiological and biochemical recordings in chapter 2.8 

were obtained using mHCN2 subunits. The interacting candidates were amplified from brain or heart 

cDNA using RT-PCR, cloned into the pcDNA3.1 and/or pIRES-eGFP vector and sequenced.  

 

2.5 Library Screen 

The Yeast Two Hybrid Screen (CytoTrap XR® Premade Library Kit, Stratagene) was used to identify 

putative interacting candidates of the C-terminus of HCN2 in brain tissue using a mouse cDNA library. 

 

2.5.1 Preparation of Yeast cdc25H Competent Cells 

To prepare fresh yeast competent cells, some ice splinters were scraped off the cdc25H glycerol stock 

with a pipetting tip and were plated on a fresh YPAD agar plate. Yeast cells were allowed to grow at 

room temperature for approx. 4 days (d) or until first visible colonies started to appear. 4-5 of these 

colonies were picked and were transferred in 50 ml YPAD broth. After mixing this solution 

thoroughly, it was transferred to a 250 ml flask and incubated at 25°C with shaking until the optical 

density (OD600) was >1 (this usually took 16-18 h). Then, the yeast solution was diluted in YPAD broth 

to an optical density of 0.2 and was incubated again at 25°C until OD600 was between 0.9-1.1. 75 µl of 

such cell suspension was plated on an YPAD agar plate which was incubated for 4-7 days at 37°C. This 

plate served as a control for spontaneously occurring temperature revertants. If more than 30 

colonies were present, the results obtained from the competent cells are unusable. The cell 

suspension (OD 0.9-1.1) was spun down at 1000 g for 5 min at room temperature and washed with 

sterile water. Then, the pellet was resuspended in 50 ml LiSORB and incubated 30 min at room 

temperature. Meanwhile, 800 µl salmon sperm DNA (10 mg/ml) were boiled in water bath for 

10 min, 200 µl LiSORB were added and the solution was allowed to cool down to room temperature. 

After the 30 min incubation, the yeast cell suspension was spun at 1000 g for 5 min at room 

temperature. The pellet was resuspended in 300 µl LiSORB and 600 µl of the salmon sperm DNA was 

added followed by 5.4 ml PEG/LiOAc and 530 µl DMSO (Sigma). Prior to the transformation the 

solution was thoroughly but gently mixed by pipetting. 
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LiSORB  PEG/LiOAc 

100 mM LiOAc  100 mM LiOAc 

10 mM Tris-HCl (pH 8.0)  10 mM Tris-HCl (pH 8.0) 

1 mM EDTA  1 mM EDTA 

1 M sorbitol  40% (w/v) PEG 3350 

ad 1 L ddH2O, adjust pH to 8.0   adjust pH to 8.0 

 autoclave   sterile filtrate 

 

 

2.5.2 Co-transformation of Competent Cells 

For library screen, two preparations of competent cells were done in parallel resulting in a final 

volume of approx. 14 ml. In a 50 ml Falcon tube (Sarsteadt), 40 µg of the pSOS-C-Terminus of HCN2, 

200 µl of 1.4 M β-mercaptoethanol and 40 µg of pMyr mouse brain cDNA plasmid library were added 

to 10 ml of freshly made yeast competent cells. The solution was mixed by inversion and transferred 

into 20 separate 1.5 ml Eppendorf tubes each containing 500 µl transformation suspension. As a 

negative control, 2 µg of empty pSOS plasmid, 10 µl of a 1.4 M β-mercaptoethanol solution and 2 µg 

of pMyr cDNA plasmid library were added to 500 µl of freshly made yeast competent cells. Both were 

incubated at room temperature for 30 min and mixed occasionally. After the incubation time, the 

mixtures were exposed to a heat shock at 42°C for 20 min and subsequently placed on ice for 3 min. 

The cells were collected by centrifugation at 14,000 rpm for 30 sec at room temperature and the 

pellet was resuspended in 0.5 ml of 1 M sorbitol.  

 

  

YPAD broth  YPAD plates 

10 g yeast extract  10 g yeast extract 

20 g bacto peptone  20 g bacto peptone 

20 g glucose  20 g glucose 

40 mg adenine sulphate  40 mg adenine sulfate 

   20 g bacto agar 

 autoclave   autoclave 



MATERIALS AND METHODS 25 

 

2.5.3 Identification and Verification of Putative Interactors 

Transformated cells were plated on 15 cm SD/glucose (-UL) agar plates using approximately 10 non-

acid washed glass beads per plate. Then, the glass beads were poured off and the plates were 

allowed to incubate at 25°C for 3 days. Hereafter, the transformants were replica plated on 15 cm 

SD/galactose (-UL) agar plates by application of relatively firm pressure. These plates were then 

incubated at 37°C for several days until first colonies were visible. The SD/glucose (-UL) plates were 

incubated at 25°C for estimation of the transformation efficiency. The number of clones appearing 

on the control SD/galactose (-UL) plate incubated at 37°C indicated the temperature sensitive 

revertants. 6-10 days after the transformation, the clones from the SD/galactose (-UL) plates (at 

37°C) were picked and solved in 20 µl sterile ddH2O. To repress the GAL1 promoter-driven expression 

from the pMyr vector, 5 µl of these cells were patched onto a 10 cm SD/glucose (-UL) plate and 

incubated at 25°C for 2-3 days. After the incubation time, from this plate each of the colonies was 

patched onto two fresh SD/glucose (-UL) plate and one SD/galactose (-UL) plate. One SD/glucose  

(-UL) plate was incubated at 25°C, the other SD/glucose (-UL) and the SD/galactose (-UL) plate were 

incubated at 37°C. After 2-3 days, colonies that appeared on the SD/galactose (-UL) plate (at 37°C) 

but not on the SD/glucose (-UL) plate (at 37°C) were considered as putative interactors in this 

primary test. To perform the secondary test, the respective clones from the SD/glucose (-UL) plate 

incubated at 25°C were re-patched and grown on a fresh SD/galactose (-UL) and SD/glucose (-UL) 

plate, respectively. These plates were incubated at 37°C and after 2-3 days were inspected for 

growing colonies. Those colonies growing on the SD/galactose (-UL) plate but not on the SD/glucose 

(-UL) plate were picked and used for the isolation of plasmid DNA. 

 

 

SD/Glucose (-UL) Agar Plates  SD/Galactose (-UL) Agar Plates 

1.7 g yeast nitrogen base w/o aa  1.7 g yeast nitrogen base w/o aa 

5 g ammonium sulphate  5 g ammonium sulfate 

20 g bacto agar  20 g bacto agar 

20 g glucose  20 g galactose 

   10 g raffinose 

ad 900 ml ddH2O  ad 900 ml ddH2O 

 autoclave and cool to 55°C   autoclave and cool to 55°C 

100 ml 10x dropout solution (sterile)  100 ml 10x dropout solution (sterile) 
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10x Dropout Solution (UL)   

300 mg L-isoleucine  500 mg L-phenylalanine 

1500 mg L-valine 2000 mg L-threonine 

200 mg L-adenine hemisulfate salt 500 mg L-tryptophan 

500 mg L-arginine HCl 500 mg L-tyrosine 

200 mg L-histidine HCl monohydrate 1000 mg L-glutamic acid 

500 mg L-lysine HCl 1000 mg L-aspartic acid 

200 mg L-methionine 400 mg L-serine 

 

2.5.4 Isolation of pMyr Plasmid DNA from Interaction Candidates 

In order to figure out the molecular identity of the putative interactors, the corresponding pMyr 

cDNA has to be sequenced. For this purpose, pMyr plasmids were isolated from the respective yeast 

cells by the following protocol: 

First, each of the putative positive colonies from previous step (chapter 2.5.3) was inoculated in a 

separate 50 ml Falcon tubes containing 5 ml of SD/glucose (-UL) medium and was cultured at 25°C 

for 2-3 days or until OD600 was > 1. Then, the cells were spun at 1000 g for 5 min at room 

temperature. All solutions used during the next steps were obtained from the QIAprep Spin Miniprep 

Kit (Qiagen). Now, the pellet was resuspended in 250 µl P1 buffer and transferred into a 1.5 ml 

Eppendorf tube. Next, 250 µl P2 buffer, 250 µl phenol and a small amount of glass beads (∅ 0.5 mm) 

were added to this solution. The latter was mixed thoroughly for two times consecutively for 1 min 

and spun at maximal speed for 10 min at room temperature. The upper aqueous phase was 

transferred into a separate tube and 350 µl of buffer N3 was added. After inverting this solution, it 

was spun again at maximal speed for 10 min at room temperature. Subsequently, the supernatant 

was transferred onto the QIAprep column and centrifuged at room temperature for 1 min at maximal 

speed. To wash the column, 750 µl Buffer PE was added and the samples were spun again at same 

conditions. The flow through was discarded followed by an additional centrifugation of the samples 

to dry the column. Elution of DNA was performed by adding 30 µl EB Buffer to the center of the 

column and allowing the DNA to solve for 5 min at room temperature. Finally, the samples were spun 

in new 1.5 ml Eppendorf tubes at room temperature for 1 min at maximal speed. This DNA was used 

for the transformation in E.coli following a standard transformation protocol (see chapter 2.4.6). 

After plasmid isolation from the obtained bacterial colonies, the respective clones were used for a 

final interaction test by co-transforming them with the C-terminus of HCN2 in cdc25H yeast cells 

using a standard transformation protocol. If this interaction test was positive, the respective plasmids 

were sequenced.  
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2.6 Cell Culture 

2.6.1 Cultivation and Transfection of Mammalian Cell Lines 

For most in vitro transfections in this study, HEK293 cells or COS7 (both obtained from DMSZ) were 

used. They were cultivated in DMEM + GlutaMAXTM-I medium (GIBCO, + 1 g/l glucose, - pyruvate + 

10% FBS + 1% penicillin/streptomycin) at 37°C with 10% CO2. COS7 cells were cultivated under same 

conditions in DMEM + GlutaMAXTM-I medium (+ 4.5 g/l glucose, + pyruvate + 10% FBS + 1% 

penicillin/streptomycin). 

Transient transfections of HEK293T cells or COS7 cells were performed using the calcium phosphate 

technique (Graham and van der Eb 1973) or FuGENE® (Roche). For the calcium phosphate based 

transfection 30 µg DNA was mixed with 260 µl 2.5 M CaCl2 in a total volume of 1300 µl ddH2O in a 

15 ml Falcon tube. 2x BBS solution was added drop wise. Then, the mix was incubated for maximal 

5 min at room temperature. This mixture was spirally dropped to the 40-70% confluent cells which 

were incubated at 37°C with 3% CO2 subsequently. 8-16 h after the transfection, the medium was 

replaced and the cells were further incubated at 37°C with 10% CO2 until harvesting.  

Transfection with FuGENE® was performed for subsequent immunocytochemical and 

electrophysiological applications. For 16-well plates 30 ng DNA per well was used, for  

3.5 cm plates 3 µg DNA was used. First, fresh GlutaMAXTM-I medium (without FBS and without 

penicillin/streptomycin) was added to cryotubes followed by the addition of DNA. Thereby, tenfold 

volume of medium related to the total volume on DNA was added (i.e. 1 µl DNA corresponds to 10 µl 

medium). After the 5 min incubation, FuGENE was added directly to the reaction which was mixed 

subsequently by pipetting up and down. In this case, threefold volume of FuGENE in µl was used 

related to the amount of DNA in µg (i.e. 1 µg DNA corresponds to 3 µl FuGENE). This reaction was 

incubated 30 min at room temperature and added directly into the medium of the cells. The 

transfected cells were maintained at 37°C with 10% CO2 until proceeding with the respective 

application.  

 

2xBBS 

10.65 g BES 

16.35 g NaCl 

0.21 g Na2HPO4 · 2H2O 

 adjust pH to 6.95 with NaOH 

ad 1000 ml ddH2O 

 filtrate sterilely 
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2.6.2 Primary Hippocampal Neuron Culture 

Primary neurons were isolated as described previously (Celis 1994, Fath et al. 2009). A priori, glass 

coverslips (Ø 18 mm, Marienfeld GmbH) were put in a porcelain staining rack (Thomas Scientific), 

rinsed with water and left in concentrated nitric acid (65%) over night. The acid was removed by 

extensive washing with easypure water (6 times, 30 min) and the coverslips were sterilized by dry 

heat (230°C, 6 h). Afterwards, the sterile coverslips were distributed in culture dishes (35 mm, 

Greiner Bio-ONE GmbH), covered with 3-4 drops of the poly-L-lysine solution and incubated 

overnight at room temperature. The day after, the poly-L-lysine solution was aspirated and the 

coverslips were washed with sterile water for two times.  

 

Borate buffer  Poly-L-lysine solution 

1.24 g boric acid  50 mg poly-L-lysine 

1.90 g sodium tetraborate    

ad 400 ml ddH2O  ad 50 ml borate buffer 

 

At the day of dissection, Hank's Buffered Salt Solution (HBSS, Gibco) was prewarmed to 37°C. Prior to 

use, trypsin-EDTA (Gibco) was thawed to room temperature. Two culture dishes were filled with 

warm HBSS and disposed under a laminar flow hood. The pregnant BL6N mice on embryonic day 16.5 

(E16.5) were killed and the abdomen was sterilized with an excess of 80% ethanol. With sterile 

forceps, the skin of the abdomen was lifted and with a pair of scissors and a large incision on the 

midline from the pelvis up to the thorax was made. The abdominal wall was again sterilized with 

excess of ethanol and the uterus with the embryos was opened. With large forceps, the uterus 

between two embryos was grasped and the uteral horn was cut from below. The whole uterus was 

transferred to a dish with HBSS. 

In a next step, the embryos were removed from the uterus by cutting the placenta and pulling the 

embryos out. The embryos were decaptitated and the heads were moved to a new HBSS-filled 

culture dish. To isolate the brain, the head was placed erectly in the dish and stabilized with the 

curved forceps just above the nose. With an additional pair of straight forceps the skin was removed 

(both forceps were obtained from Fine Science Tools GmbH, Dumont SS-45 Forceps - Inox Medical 

and Dumont #45 Forceps - Dumoxel, respectively). With one tip of the forceps, the skull was 

punctured along the middle vein and disrupted without damaging the brain. The skull was pulled 

away and the meninges were removed carefully and completely. The hippocampi were removed 

under a stereo-microscope (Stemi 2000, Zeiss). The brain was placed dorsally in the culture dish and 
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stabilized with the straight forceps in the cerebellum. The curved forceps were used to cut away the 

two hemispheres, and the rest of the brain was discarded (Fig. 6A). The hemisphere was laid on the 

lateral side with the internal side facing up. The meninges which can be identified by tiny blood 

vessels had to be removed completely by pulling it gently away. Then, the hippocampus was visible 

immediately being located in the rostral part of the hemisphere and having a banana-like shape 

(Fig. 6B). The inner side was free to access. To isolate the hippocampus, two cuts had to be done, the 

first at the dorsal side towards the hippocampus and the second one at the ventral end of the 

hippocampus. After that, the hippocampus could easily be turned down and could be isolated by 

cutting along the convex outer side. 

 

 

Fig. 6: Dissection of embryonic hippocampus. Adapted to de Hoop, 1994. 

 

All dissected hippocampi were collected in a new culture dish containing warm HBSS, transferred to a 

conical tube and as much HBSS as possible was removed. The trypsin (Gibco) was added and the 

hippocampi were digested for 15 min at 37°C. Subsequently, the trypsin solution was subducted, 

washed for three times in HBSS and dissociated in 1.5 ml HBSS by pipetting up and down with a 

Pasteur pipette. After the solution became cloudy, the Pasteur pipette was changed to a fire polished 

one and the tissue was dissected until all clumps broke. On one poly-L-lysine treated plate, 

approximately 150,000 cells were plated. After settling of 5 min, N-MEM was added to the culture 

dishes. The primary hippocampal neuron culture was maintained at 36.5°C and 5% CO2. 

 

HBSS  Trypsin-EDTA 

500 ml HBSS (Gibco)  100 ml 0.05% Trypsin-EDTA (Gibco) 

5 ml Pen/strep (10,000 U/ml)  1 ml Pen/strep (10,000 U/ml) 

0.7 ml 1 M HEPES-NaOH, pH 7.35  1 ml 1 M HEPES-NaOH, pH 7.35 
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N2 supplement  N-MEM 

5 ml insulin (5 mg/ml)  405 ml Sigma H2O 

5 ml progesterone (20 µM)  50 ml 10x MEM (Gibco) 

5 ml putrescine-dihydrochloride (100 mM)  20 ml 5.5% NaHCO3 

5 ml selenium-dioxide (30 mM)  15 ml 20% D(+)glucose anhydrate 

500 mg apo human transferring  5 ml glutamine (200 mM) 

480 ml N-MEM  5 ml pyruvate (11 mg/ml) 

 filtrate sterilely, aliquot à 50 ml   filtrate sterilely 

 

On day two after plating, the primary neuron culture was transfected with the lentivirus containing 

either cGKII-myc fusion protein or the HCN2 channel. All animal procedures were conducted in 

accordance to the German animal protection laws and the guidelines of the DFG. 

 

2.6.3 Production of Lentiviral Vectors 

The lentivirus particles were prepared by quadruple transfection of HEK293T cells (Tiscornia et al. 

2006). The maintenance of HEK293T cells is described in section 2.6.1. Twelve plates with HEK293T 

cells of 60% confluence were transiently transfected by the calcium phosphate method according to 

the following scheme. 

 

Transfection Mix 

216 µg transfer plasmid 

140 µg pMDL 

61.6 µg pREV 

58.4 µg pMD2.G 

1.4 ml CaCl2 

ad 14 ml ddH2O 

 

The day after transfection, the medium was renewed. The harvest of the lentivirus was performed on 

the two subsequent days. For the first harvest, the virus containing medium was filtered (CA filter, 

45 µm, Sarstedt) to get rid of cell debris. The flow through was centrifuged in an ultra-centrifuge 

(Coulter-Beckmann, SW 28 rotor) for 2 h at 19,400 rpm and 17°C in swing-out buckets. The pellet was 
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solubilised in HBSS and stored over night. For the second harvest, the procedure mentioned above 

was repeated. The HBSS containing virus solutions from the first and second harvest were combined. 

To concentrate the virus, it was again centrifuged in a 20% sucrose solution (Coulter-Beckmann, SW 

55 rotor) for 2 h at 21,000 rpm and 17°C in swing-out buckets. The pellet was resuspended in 100 µl 

HBSS and stored in 5 µl aliquots at -80°C until use. For transduction of primary neurons, the volume 

of medium was halved and the amount of virus was determined empirically. The day after 

transduction, the medium was renewed and adjusted to 3 ml. 

 

2.7 Protein Biochemistry 

 

2.7.1 Isolation and Quantification of Proteins  

Proteins were isolated from cultured mammalian cells by following protocol: 48 h after transfection, 

medium was removed and the cells were harvested in a 1.5 ml Eppendorf tube. Then, the cells were 

collected by centrifugation (4°C, 5 min, 1,000 g). Hereafter, the pellet was resuspended in lysis buffer 

and rotated at 4°C for 30 min. Subsequently, the cells were spun at 4°C for 10 min at maximal rpm 

and the supernatant was transferred into a fresh 1.5 ml Eppendorf tube.  

For protein isolation mouse tissue was suspended in lysis buffer containing the proteinase inhibitor 

cocktail mix (Complete EDTA-free, Roche) and the tissue was disrupted using the Potter S 

homogenizer with 9,000rpm and 10 strokes (B. Braun Biotech International). Then, the suspension 

was centrifuged at 4°C at 13,000 rpm and the supernatant was transferred into a fresh 1.5 ml 

Eppendorf tube. To determine the concentration of isolated proteins, a Bradford assay was 

performed (Bradford 1976). Thereby, 5 µl of the protein solution (5 µl lysis buffer served as blank 

control) was transferred into 1 ml plastic cuvettes followed by an addition of 95 µl 0.15 M NaCl 

solution. Then, 1 ml coomassie blue solution was added and after 2 min the protein concentration 

was measured using the Bradford assay program on the BioPhotometer (Eppendorf). The 

corresponding calibration curve was performed using BSA as protein standard. 

  

1x Lysis Buffer  Coomassie Blue Solution 

10 ml 1M Tris-HCl, pH 7.4  50 mg coomassie brilliant blue G250 

2 ml Triton X-100  25 ml 95% ethanol 

6 ml 5 M NaCl  50 ml 85% phosphoric acid (H3PO4) 

2 ml 100 mM EDTA    

ad 200 ml ddH2O  ad 500 ml ddH2O 
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2.7.2 Western Blot 

Western blot was performed by standard procedures. The protein was transferred to a PVDF 

membrane (Millipore, pore size 0.45 µm), equilibrated with methanol and blocked in 5% milk powder 

for 1 h at room temperature with shaking. Then, the incubation of the membrane with the 

appropriate primary antibody was performed. The optimal incubation time and antibody 

concentration was determined empirically. Hereafter, the membrane was washed three times in 

TBST for 5 min followed by 1-2 h incubation with the secondary antibody at room temperature with 

rotation. Now, the membrane was washed 3-4 times with TBST for 5 min and once in ddH2O. After 

the incubation with the luminol reagent according to manufacturer’s protocol (Millipore or Santa 

Cruz), the membrane was put into a film cassette, exposed to an X-ray film (Fuji) and developed in an 

X-ray film processor (Curix 60, Agfa). The optimal exposure time was determined empirically. 

  

10x TBS  1x TBST 

12.1 g Tris-HCl  100 ml 10x TBS 

80.2 g NaCl  1 ml tween-20 

ad 1 L ddH2O  ad 1 L ddH2O 

    protect from light 

 

 

1x Lysis Buffer  Coomassie Blue Solution 

10 ml 1M Tris-HCl, pH 7.4  50 mg coomassie brilliant blue G250 

2 ml Triton X-100  25 ml 95% ethanol 

6 ml 5 M NaCl  50 ml 85% phosphoric acid (H3PO4) 

2 ml 100 mM EDTA    

ad 200 ml ddH2O  ad 500 ml ddH2O 

 

 

2.7.3 GST Pulldown Assay 

To verify the putative HCN2 interaction found in yeast, GST pulldown assays were performed. For this 

purpose, the HCN2-CT was cloned into the pQE30 vector and the interacting candidates into the 

pET41a vector. 

To express the GST fusion proteins, 5 ng plasmid-DNA was added to BL21 E.coli (Novagen). The mix 

was heat shocked for 30 s at 42°C and incubated on ice for 2 min. The transformed bacteria was 

incubated for 1 h at 37°C, appropriate antibiotics was added (ampicillin: HCN2-CT; kanamycin: 

interacting candidates), and the bacterial solution was grown over night in a volume of 7 ml YT-
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medium. The next morning, 2 ml of the overnight culture was transferred to 300 ml YT-medium and 

incubated with shaking until an OD of 0.6-0.8 was reached. Then, the protein expression was induced 

by the addition of 3 ml 0.1 M Isopropyl-β-D-thiogalactopyranosid (IPTG) stock solution. The bacterial 

suspension was further incubated with shaking for additional 4 h. 

The bacteria were harvested by centrifugation at 5.000 rpm at 4°C for 10 min. The pellet was 

resuspended in 12 ml ST buffer and 120 µl lysozyme in a 50 ml tube and the mix was lysed for 15 min 

on ice. 78 µl dithiothreitol (DTT) stock solution was added and the latter was again incubated on ice 

for 10 min. Cell lysis was performed by addition of 1700 µl N-lauroylsarcosine stock solution, 

subsequent vortexing, and incubation on ice for 30 min. The lysed cells were sonificated with 30% 

power in six 40 s steps interrupted by 10 s pause. The cell debris was removed by centrifugation at 

8500 rpm at 4°C. The supernatant contained the extracted fusion proteins which were aliquoted and 

stored at -80°C. 

The GST pulldown assay was performed with 500 µl HCN2-CT combined with 500 µl GST fusion 

protein of the putative interacting candidate. Glutathione-Sepharose beads (4G, GE healthcare) were 

washed for three times in GST washing buffer to remove the ethanol for preservation. The beads 

were resuspended in an equal volume of ST-buffer and 100 µl of the washed beads were added to 

the combined, purified proteins. The mixture was shaken end-over-end over night at 4°C. To remove 

all non-bound protein, beads were precipitated (2000 rpm, 4°C, 2 min) and the supernatant was 

discarded. The Glutathione sepharose beads were washed for three times with GST washing buffer 

and in the end resuspended in 100 µl ST buffer. A volume of 10 µl was used for a control SDS-PAGE 

gel which was fixed with coomassie staining solution in a microwave until the solution starts to boil. 

After destaining, the IPTG-induced protein bands appeared. For western blot analysis, 50 ml of the 

GST pulldown assay was loaded on a SDS-PAGE gel, transferred to a PVDF membrane and the HCN2-

CT was detected using the α-HCN2 L antibody. 

 

 

YT-medium  ST buffer 

16 g Peptone  50 mM Tris-HCl pH 8.0 

10 g yeast extract  150 mM NaCl 

5 g NaCl    

ad 1000 ml ddH2O  ad 500 ml ddH2O 

 adjust pH to 7.0   adjust pH to 8.0 
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Lysozyme (10 mg/ml)  DTT stock solution (1M) 

10 mg lysozyme  0.77 g dithiothreitol 

ad 1 ml ddH2O  ad 10 ml ST buffer 

 

 

GST washing buffer  N-lauroylsarcosine stock solution (10%) 

20 mM Tris-HCl pH 8.0  2 g N-lauroylsarcosine 

200 mM NaCl    

1 mM EDTA    

0.5% nonidet-40  ad 20 ml ST buffer 

 

 

Coomassie staining solution  Coomassie destaining solution 

1 g coomassie blue R250  10% methanol 

45% methanol  10% acetic acid 100% 

10% acetic acid 100%    

ad 1000 ml ddH2O  ad 1000 ml ddH2O 

 

2.7.4 Co-Immunoprecipitation 

To analyse protein-protein interactions, co-immunoprecipitation experiments using protein G 

dynabeads (Invitrogen) were performed.  

 

6x Lämmli  6x Lämmli + DTT 

7 ml 4x Tris-HCl/SDS pH 6.8  7 ml 4x Tris-HCl/SDS pH 6.8 

3 ml glycerol  3 ml glycerol 

1 g SDS  1 g SDS 

1.2 mg bromphenol blue  1.2 mg bromphenol blue 

   930 mg DTT 

ad 10 ml ddH2O  ad 10 ml ddH2O 

 

First, approx. 5 µg antibody and PBS were added to 30 µl dynabeads up to a final volume of 500 µl. 

This solution was rotated for 30 min at 4°C and, subsequently, the supernatant was removed using a 

magnet to retain the magnetic beads followed by a wash step with 200 µl PBS. Then, 1 mg of the 

protein lysate was added to the beads and the reaction was filled up with PBS to a final volume of 

500 µl. Now, the suspension was rotated for 30 min at 4°C followed by three washing steps with PBS. 
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After the last wash, the suspension was transferred into fresh 1.5 ml Eppendorf tubes and the 

supernatant was removed completely. Beads were resuspended in 6x Lämmli buffer (with or without 

DTT, depending on the application) and incubated at 70°C for 15 min. Finally, the supernatant was 

loaded on a SDS PAGE gel. 

 

2.7.5 GFP-Trap 

The GFP-Trap system (Chromotek) is a tool for the immunoprecipitation of GFP-fusion protein from 

cellular extracts. Thereby, a GFP-fragment is coupled to agarose beads. The GFP-trap beads were 

equilibrated in wash buffer and precipitated by centrifugation at 5,300 rpm for 2 min at 4°C. 1 mg 

protein was added to the beads and the immunoprecipitation was incubated for 2 h with gentle end-

over-end shaking at room temperature. Afterwards, the beads were collected by centrifugation and 

the remaining supernatant was discarded. The pellet was washed two additional times with ice cold 

wash buffer and resuspended in 20 ml PBS. The SDS-PAGE analysis and western blotting was 

determined as described above. 

 

Wash buffer 

10 mM Tris-HCl, pH 7.5 

150 mM NaCl 

0.5 mM EDTA 

 PI freshly added 

 

2.7.6 Kinase Assay 

The procedure of the in vitro kinase assay was described previously (Ammendola et al. 2001). COS-7 

cells were transiently transfected by the calcium phosphate method with HCN2-pcDNA3 and several 

mutants (HCN2-S641A, HCN2-756STOP) in the presence or absence of cGKII-pcDNA3. To obtain cell 

lysates, cells were washed twice with PBS and then harvested in using a cell scraper. After 

centrifugation, cells were suspended in hypoosmotic lysis buffer (10 mM K3PO4, pH 7.4). Complete 

cell destruction was done by three times passing through a 27-gauge syringe needle (Braun) and a 

freeze–thaw cycle. Lysates containing 30 μg of protein were incubated in 50 mM MES pH 6.9, 10 mM 

NaCl, 1 mM MgAc, 0.4 mM EGTA, 0.1% Triton X-100 and 3 µM 8-pCPT-cGMP. The reaction was 

started by adding 0.1 mM [γ-32P]ATP (2,000 cpm/pmol, PerkinElmer). After incubation for 15 s up to 

10 min at 30°C, the reaction was stopped by addition of Lämmli buffer and denaturated at 95°C for 

5 min. Proteins were separated by SDS-PAGE and blotted to PVDF. Incorporated radioactivity was 

visualized by autoradiography and phosphoimage analysis (BASReader 2.9, Raytest). 
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2.7.7 Immunofluorescence 

Immunofluorescence was performed for COS7 cells, primary hippocampal neurons and coronal brain 

slices. For all stainings, the specimen were fixed in 4% paraformaldehyde (PFA) for 5 min, 

permeabilised with Triton-X100 and blocked for 1 h. The incubation with primary antibodies was 

accomplished over night, followed by extensive washing and secondary antibody incubation. For 

brain slices, endogenous peroxidases were inactivated by H2O2 and the secondary antibody signal 

was amplified by tyramide (TSA, Perkin Elmer). For the staining of cells, the secondary antibody was 

incubated at room temperature for 1 h. The cell nuclei were counterstained with Hoechst end the 

specimen was embedded in mounting medium (Beckman Coulter). Table 2 provides information 

about the composition of the individual solutions for the staining of COS7 cells, primary hippocampal 

neurons, and coronal brain slices. All chemicals were diluted in ice cold PBS. 

 

Table 2: Composition of the individual solutions used for immunological staining 

 COS7 cells primary neurons brain slices 

Postfix 4% PFA 4% PFA, 4% sucrose 4% PFA 

Quenching - 50 mM NH4Cl - 

Blocking / 

Permeabilization 

10% chemiblocker (CB) / 

0.3% Tx-100 

2% FBS, 2% BSA,  

0,2% fish gelatine 

10% NGS / 0.3% Tx-100 

1
st

 AB solution 5% CB, 0,2% Tx-100 5% CB 5% NGS, 0,2% Tx-100 

2
nd

 AB solution 2% CB 2% CB 2% NGS 

 

 

2.8 Electrophysiological Recordings 

All experiments obtained from electrophysiological recordings in this study were performed by PD 

Dr. Xiangang Zong as described previously (Biel et al. 1994, Biel et al. 1996, Sautter et al. 1998).  

Currents of heterologous expressed HCN channels were measured at room temperature 2-3 days 

after transfection using the whole cell voltage clamp technique. The extracellular solution was 

composed of (in mM): 110 NaCl, 0.5 MgCl2, 1.8 CaCl2, 5 HEPES, 30 KCl, pH 7.4 adjusted with NaOH. 

The intracellular solution contained (in mM): 130 KCl, 10 NaCl, 0.5 MgCl2, 1 EGTA, 5 HEPES, pH 7.4 

adjusted with KOH. Pipettes were pulled from borosilicate glass capillaries (GC150TF, Harvard 

Apparatus LTD) and had resistances of 2-3 MΩ when filled with the intracellular solution. The cGMP-

dependent protein kinase inhibitor KT5823 was purchased from Cayman chemicals. A 1 mM stock 



MATERIALS AND METHODS 37 

 

solution was prepared in ethyl acetate and was freshly diluted to a final concentration of 1 µM in 

extracellular solution before use.  

 

2.9 Statistics  

Statistical analysis was performed with Origin6.1 (OriginLab) in a one-way ANOVA. Data are 

presented as mean ± S.E.M. (n = number of recorded cells). Values of p < 0.05 were considered 

significant. 
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3 Results 

 

Analogous to other ion channels, HCNs form multimolecular complexes which consist of a central 

pore loop and accessory proteins that control the channel properties. These accessory proteins may 

directly regulate channel activity or influence the targeting properties of HCN channels within a cell. 

The aim of this study is to identify and characterize interacting proteins of HCN channels in neurons. 

 

3.1 Identification of Interacting Candidates with the HCN2 C-terminus via CytoTrap 

 

As a basis, the HCN2 subunit was chosen as the bait protein since it represents the predominant HCN 

channel isoform in the brain. In order to identify new regulatory proteins of the HCN2 channel 

subunit, a CytoTrap (Stratagene) yeast two hybrid screen was performed. The screen was performed 

using an expression cDNA library from the mouse brain (CytoTrap XR Mouse Brain cDNA Library, 

Stratagene).  

Competent cells of the temperature sensitive cdc25H yeast strain were co-transformed with the C-

terminus of the HCN2 channel fused to hSOS and a mouse brain cDNA-library, and were grown at 

room temperature until the first colonies appeared. After replica plating and selective growth at 

37°C, all colonies survived that could rescue their RAS cascade by interaction of the hSos of the bait 

with a protein of the brain library. Every colony was subsequently spotted on three different plates: 

two SD/galactose (-UL) plates and one SD/glucose (-UL) plate. A putative interacting candidate was 

determined as growth on SD/galactose (-UL) plates but not on SD/glucose (-UL) plates at 37°C (Fig. 7, 

left and middle panel). The growth on galactose plates at room temperature served as positive 

control (Fig. 7, right panel). In two independent yeast two hybrid screens, about 400,000 yeast cells 

were screened, 1394 clones were picked and ten putative HCN2-interacting proteins (Hip) could be 

identified (Fig. 7).  
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Fig. 7: Putative HCN-interacting proteins in an Y2H screen. Competent yeast cells were co-transformed with a fusion 

protein consisting of hSOS and the C-terminus of HCN2 and with the mouse brain library. The growth of yeast cells on 

uracile and leucine-deficient galactose agar plates (SD/galactose (-UL)) at 37°C indicated the rescue of the RAS cascade and, 

hence, an existing interaction of the HCN2-CT with one of the proteins represented in the library (left and middle panel). 

SD/glucose (-UL) plates grown at 37°C served as negative control (middle panel), those grown at room temperature served 

as positive control, respectively (right panel).  

  

3.2 Self Induction 

 

To exclude the possibility that the RAS signalling cascade was induced by the putative interacting 

candidate alone, the empty pSOS vector was co-transfected with the isolated pMyr vector encoding 

for the interacting candidate. Self induction was detected if the interacting protein was able to grow 

without a bait on SD/galactose (-UL) but not on SD/glucose (-UL) plates. Thereby, the HCN2-

interacting proteins 1, 2, 4 and 8 showed growth at 37°C on SD/galactose (-UL) plates and no growth 

on SD/glucose (-UL) plates (Fig. 8). The clones which exhibited self induction were disallowed and not 

further characterized. All other interacting candidates were specified in the sequel. 



RESULTS 40 

 

 

Fig. 8: Self induction of putative HCN-interacting proteins. The putative interacting candidates of the HCN2 C-terminus 

were transformed with the empty pSOS vector into competent yeast cells. Self induction was determined as growth on 

SD/galactose (-UL) plates but not on SD/glucose (-UL) plates at 37°C (left panel). All yeast cells were viable as demonstrated 

by the growth on SD/glucose (-UL) plates at room temperature (right panel). 

 

 

3.3 Verification of Interacting Candidates with the HCN2 C-terminus via GST-Pulldown 

 

The interacting candidates were tested in a bacterial overexpression system using a Glutathion S-

transferase (GST) pulldown assay in order to confirm the interaction between the putative 

interactors and the HCN2 C-terminus (HCN2-CT). The HCN-interacting proteins were expressed as 

GST fusion proteins and protein pulldown was performed using GST beads. The IPTG induction was 

examined in a SDS-PAGE gel stained with coomassie blue (Fig. 9, left panel). The same probes were 

blotted and stained with an α-HCN2L antibody.  
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Fig. 9: GST pulldown of HCN-interacting proteins. Proteins were expressed in BL21 E.coli after IPTG induction which was 

examined by coomassie blue staining (left panel). After protein purification, the protein of the HCN2 C-terminus was 

combined with one of the GST-tagged interacting candidates. The GST-tagged proteins were precipitated using Glutathion 

Sepharose beads. The interaction with the HCN2 C-terminus was verified in western blot analysis using an α-HCN2L 

antibody (right panel). 600 µg protein was applied per lane. The HCN-CT and the GST-tagged gene product of the empty 

pET41a vector together with the HCN-CT, respectively served as negative control. 

In the GST pulldown assay, a dominant band at 48 kDa was visible corresponding to the HCN2-CT 

indicating an interaction of the Hips 3, 5, 6, 7 and 9 with the HCN2-CT (Fig. 9, right panel). It is 

noteworthy that the HCN2 C-terminus alone did not bind to the Glutathion beads (Fig. 9, right panel, 

first lane). Additionally, the HCN2-CT did not interact with the GST-tag expressed in the empty 

pET41a vector (Fig. 9, right panel, second lane). These last two experiments served as negative 

controls. 

 

3.4 Verification of Interacting Candidates with the HCN2 via CoIP Experiments 

 

To further confirm the interaction, a mammalian expression system was used. HEK293 cell protein 

lysates expressing myc-tagged HCN-interacting proteins in presence or absence of the HCN2 channel 

were immunoprecipitated with an anti-myc antibody. Subsequent western blot analysis showed a 

specific HCN2 signal at about 100 kDa. The HCN2 band was not present in lysates expressing the 

HCN-interacting protein alone. These results indicate that the full-length HCN channel does also 

interact with the HCN-interacting proteins 3, 5, 6, 7 and 9 in a mammalian expression system.  
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Fig. 10: Interaction between HCN2 and Hip. Co-immunoprecipitation of full length HCN2 and one Hip in HEK293 cells. 

Lysates of HEK293 cells transfected with HCN2 and Hip 3, 5, 6, 7 or 9 or Hip alone were immunoprecipitated (IP) using a myc 

antibody and stained for HCN2. 500 µg protein was applied per lane. IP: immunoprecipitation, IB: immunoblot. 

 

3.5 Immunocytochemistry of the HCN-Interacting Proteins and HCN2 

 

In order to receive a better understanding of the molecular basis behind the interaction of the single 

Hips with the HCN2 subunit, the subcellular localization of the Hips was determined. COS7 cells were 

transfected with the HCN2 channel and one of the interacting proteins using FuGene. Subsequently, 

ICC was performed with cyanine dye-conjugated secondary antibodies which showed expression of 

the HCN-interacting proteins in different subcellular organelles and distinct co-localization (Fig. 11). 

Whereas the interacting protein 9 shows an almost complete co-localization with the HCN2 channel, 

the Hip 3 and Hip 5 are only co-localized to some extent. With respect to their subcellular 

localization, the Hips differ from each other. Hip 6 and Hip 7 show a staining similar of this of scaffold 

proteins (Fig. 11C- E). The Hips 3, 5 and 9 could not be associated to a certain subcellular 

compartment (Fig. 11A, B and F). The HCN-interacting protein 9 seems also feasible to upregulate the 

protein expression of the HCN2 channel (Fig. 11F). To confirm the localization, it is crucial to include 

protein markers specific for distinct organelles within the cell. 
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Fig. 11: Co-localization of HCN-interacting proteins in COS7 cells. (A-F) Co-localization in COS7 cells which were transfected 

with HCN2 and different HIP-myc constructs, respectively. COS7 cells were stained with antibodies against myc (green) and 

HCN2 (red). Pictures are presented as merge. Scale bar corresponds to 10 µm. 

 

Taken together, the CytoTrap Y2H screen generated several promising interacting candidates of the 

HCN2-CT which could influence the HCN channel transport, the protein expression or the functional 

properties of the channel during gating.  
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3.6 The HCN2 Channel Interacts with cGKII via the CNBD 

 

The activation of HCN channels by cyclic nucleotides was described previously (1.3). In this part of the 

study, the role of cGMP-dependent regulation was focused. The cGMP-dependent protein kinase was 

known to be activated by cyclic nucleotides as well. To identify an interaction with HCN channels, the 

HCN2 subunit and the cGKII were co-expressed in HEK293 cells. Upon co-immunoprecipitation (Co-IP) 

with an anti-cGKII antibody, a 100 kDa band corresponding to HCN2 was detected in immunoblots 

(Fig. 12A). To verify a specific interaction of the two proteins Co-IP experiments were performed with 

anti-cGKII antibody in lysates from mouse hypothalamus, a brain region known to express both HCN2 

and cGKII (Ludwig et al. 1998, Werner et al. 2004). Again, a specific HCN2 band was detected 

(Fig. 12B, left lane) confirming an in vivo interaction of HCN2 and cGKII. Importantly, the HCN2 band 

was not present in hypothalamic tissue from HCN2-deficient mice (Fig. 12B, right lane). 

 

 

Fig. 12: Interaction between HCN2 and cGKII. (A) Co-immunoprecipitation of HCN2 and cGKII in HEK293 cells. Lysates of 

HEK293 cells transfected with HCN2 and cGKII or cGKII alone were immunoprecipitated (IP) using a cGKII antibody and 

stained for HCN2 and cGKII as loading control. 500 µg protein was applied per lane. (B) Protein extracts of hypothalamic 

brain tissue from WT and HCN2-KO mice were immunoprecipitated using a cGKII antibody and analyzed in immunoblots (IB) 

for HCN2. Anti-cGKII served as loading control.  

  

To further narrow down the region of HCN2 that interacts with cGKII, Co-IPs with GFP-tagged cGKII 

and myc-proteins corresponding to the combined C-linker/cyclic-nucleotide binding domain 

(L+CNBD, aa 443-647), the C-linker (L, aa 443-525) or the distal C-terminus of HCN2 channel (dC, aa 

647-863) were performed (Fig. 13A, B). Specific bands were obtained for the combined  

C-linker/CNBD region (Fig. 13B, left lane) while no interaction was found for the C-linker alone 
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(Fig. 13B, middle lane) as well as for the sequence downstream of the cyclic-nucleotide binding 

domain (Fig. 13B, right lane). Together, these findings indicated that the CNBD is required for the 

interaction with cGKII, either alone or in conjunction with the C-linker.  

 

 

Fig. 13: GFP-Trap. (A) Schematic representation of full length HCN2 (862 amino acids) and myc-tagged HCN2-domains used 

for interaction studies. The calculated molecular size of the proteins is indicated. TMR, transmembrane region; CT, 

complete HCN2 C-terminus; L, C-linker; CNBD, cyclic nucleotide-binding domain; dC, distal C-terminus. (B) Lysates of 

HEK293 cells co-expressing cGKII-GFP and myc-tagged portions of the HCN2 C-terminus were bound to GFP-tagged beads. 

Co-immunoprecipitated proteins were detected by immunoblotting with an anti-myc antibody. Anti-cGKII was used as 

loading control. 

 

3.7 HCN2 and cGKII Co-localize in Primary Neurons and the Hypothalamic Region  

 

In order to study the subcellular localization of cGKII and HCN2, primary hippocampal neurons were 

co-transduced with recombinant lentiviral particles expressing the HCN2 and a cGKII-myc fusion 

protein, respectively. Subsequent immunocytochemical staining showed co-localization of the two 

proteins at the plasma membrane (Fig. 14A-C). In the absence of primary antibodies immunostaining 

was not observed, demonstrating the specificity of the antibodies used (Fig. 14D). High levels of cGKII 

mRNA have been reported to exist in the hypothalamic region, especially in the preoptic nucleus 

(Werner et al. 2004). In agreement with this, the cGKII protein was identified in coronal slices of the 

hypothalamic region of wild type mice (Fig. 14E). Stainings performed in consecutive slices of the 

same region demonstrated co-expression of HCN2 (Fig. 14F). The specificity of the antibodies was 

verified using sections of cGKII-deficient (Fig. 14G) and HCN2-deficient (Fig. 14H) mice, respectively.  
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Fig. 14: Co-localization of HCN2 and cGKII in neurons. (A-D) Co-localization in primary neurons. Hippocampal neurons of 

neonatal mice (E16.5) were co-transduced with lentivirus expressing HCN2 and cGKII-myc, respectively. Neurons were 

stained with antibodies against myc (A) and HCN2 (B) Counter staining was performed with Hoechst dye. (C) Merge of (A) 

and (B). (D) Negative control (nc). Merge of staining in the absence of primary antibodies. (E-H) Immunohistochemical 

staining of coronal brain slices of the hypothalamic medial preoptic area. Consecutive slices from wild-type mice were 

stained with anti-cGKII (E) or anti-HCN2 (F). The signal was amplified by Cy3 tyramide. Counter stain was performed with 

Hoechst dye. As negative control, coronal slices of cGKII-KO (G) and HCN2-KO mice (H) were used. Scale bar corresponds to 

100 µm. 
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3.8 HCN2 is Phosphorylated by cGKII at Position S641  

 

Additionally, it was tested whether HCN2 can be phosphorylated by cGKII. In lysates of HEK293 cells 

co-expressing HCN2 and cGKII an 100 kDa phosphorylated protein band corresponding to HCN2 

appeared after the addition of [γ-32P]-ATP. By contrast, in lysates lacking cGKII the 100 kDa HCN2 was 

not observed (Fig. 15A). HCN2 contains three serines that are located within a consensus site  

(K/R-K/R-X-S/T) for phosphorylation by cGKs (S641, S786 and S840; Fig. 16). 

 

 

 

Fig. 15: Phosphorylation of HCN2 by cGKII. (A) In vitro phosphorylation of HCN2 by cGKII. Lysates of COS-7 cells expressing 

HCN2 and cGKII were incubated with [γ-32P]-ATP for the times indicated. After incubation, proteins were separated on SDS 

page and analyzed by autoradiography. The first lane represents a control reaction with a cell lysate lacking cGKII.  

(B) Phosphorylation assay of a HCN2 mutant lacking S786 and S840 (first lane) and the HCN2-S641A mutant. 

 

Serine 641 is located at the distal end of the α-C helix of the CNBD and is present in all four members 

of the HCN channel family. By contrast, the two distal consensus sites (S786 and S840) are not 

conserved throughout the HCN channel family (HCN1 and HCN3 contain no phosphorylation 

consensus sites at positions equivalent to S786 or S840; HCN4 contains only the consensus site at the 

position equivalent to S786). A HCN2 truncation mutant lacking the last two serines (HCN2-756STOP) 

was still efficiently phosphorylated by cGKII (Fig. 15B, left lane). By contrast, a cGKII-dependent 

phosphorylation of HCN2 was not detectable when S641 was mutated to an alanine (S641A).  
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Fig. 16: HCN channel constructs used for phosphorylation studies. The positions of the three putative cGKII 

phosphorylation sites (S641, S786 and S840) are indicated. The calculated molecular mass is given for each construct. 

 

In order to validate these findings, the binding of C-terminal HCN2 constructs to TiO2 beads was 

analyzed (HCN2-CT and HCN2-CT-S641A) (Fig. 17). TiO2 efficiently binds negatively charged peptides 

and hence, can be used to determine alterations of the ratio of (highly charged) phosphorylated 

versus (less charged) non-phosphorylated peptides.  

 

 

Fig. 17: Pulldown of phosphoproteins by TiO2 beads. Lysates of cells expressing HCN2-CT or HCN2-CT-S641A in the 

presence or absence of cGKII, respectively, were incubated with TiO2 beads. Proteins specifically bound to the beads were 

analyzed with an anti-myc antibody. 

 

After precipitation by TiO2 and subsequent western blot analysis with anti-myc antibody, a strong 

50 kDa band was detected in lysates containing myc-tagged HCN2-CT and cGKII (Fig. 17, second lane). 

By contrast, only a weak signal was detected for the S641A mutant (Fig. 17, third lane). Bands of 
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comparable intensity as observed for HCN2-CT-S641A were also obtained in the absences of cGKII 

indicating that they did not reflect cGKII specific phosphorylation (Fig. 17, last two lanes). Rather, the 

HCN2 C-terminus may be subject to background phosphorylation by endogenous kinases and/or may 

be acidic enough in its non-phosphorylated form to bind to some extent to the TiO2 beads. 

 

 

3.9 cGKII Shifts the Half Maximal Activation Voltage of HCN2 to More Negative Values 

 

Next, it was tested whether cGKII affects the properties of HCN2-mediated currents. The presence of 

cGKII had no influence on current densities (current densities at -140 mV: HCN2:  

-155 ± 24.7 pA/pF, n=15; HCN2/cGKII: -170 ± 43.4 pA/pF, n=7) nor did it influence the activation 

kinetics of HCN2-mediated currents (τ at -140 mV: HCN2: 293 ± 15.2 ms, n=15; HCN2/cGKII: 

309 ± 28.6 ms, n=7). 

 

 

Fig. 18: Regulation of voltage-dependence of HCN2 activation by cGKII. (A) Normalized current-voltage (IV) dependence of 

HCN2 activation in the presence and absence of cGKII. The voltage-dependence was determined in the presence of 10 µM 

intracellular cGMP. (B) IV curves of HCN2 in the presence or absence of cGKII at 2 µM intracellular cAMP. (C) IV curves of 

HCN2 compared to the IV curve of an HCN2 mutant with functionally impaired cyclic nucleotide binding domain (HCN2 

-RT>EA) that was co-expressed with cGKII. Currents were measured in the presence of 10 µM cGMP. (D) IV curves 

determined at 10 µM intracellular cGMP from cells co-expressing cGKII and HCN2 or HCN2-S641A.  
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However, cGKII led to an about 4 mV hyperpolarizing shift of the voltage-dependence of activation of 

HCN2 currents (V0.5 values at 10 µM cGMP: HCN2: -95.5 ± 0.49 mV, n=16; HCN2/cGKII:  

-99.3 ± 0.74 mV, n=13) (Fig. 18A). Importantly, the hyperpolarizing shift induced by cGKII was 

specifically seen in the presence of cGMP, while no shift was observed at 2 µM cAMP (Fig. 18B). It is 

well known that the V0.5 value of HCN2 currents is shifted to more positive values by direct 

interaction of cGMP with the CNBD (Wahl-Schott and Biel 2009). At 10 µM cGMP which is in the 

range of the Ka (cGMP) of HCN2 (Ludwig et al. 1998), the voltage shift (ΔV0.5) was about +7.4 mV 

(Fig. 19, first two columns). In agreement with its inhibitory action, cGKII significantly reduced the 

ΔV0.5 to about 3 mV (Fig. 19, third and fourth column; V0.5 values of HCN2/cGKII at 0 µM cGMP:  

-102.0 ± 1.25 mV, n=7 and at 10 µM cGMP: -99.3 ± 0.74 mV, n=13).  

 

 

Fig. 19: Comparison of midpoint potentials (V0.5) of wild type (WT) and HCN2 mutants (HCN2-S641A, HCN2-RT>EA). 

Channels were expressed alone or together with either wild type or catalytically inactive GKII (cGKII-D576A). V0.5 was 

determined from the normalized IV curves in the presence (+) or absence (-) of 10 µM cGMP as indicated. In one set of 

experiments the cGKII was inhibited by the pharmacological blocker KT5823. *** = p < 0.001 

 

Additionally, the question was addressed whether phosphorylation at S641 is required for the 

inhibitory effect of cGKII. In line with this hypothesis, the V0.5 value of HCN2-S641A was significantly 

more positive (-94.6 ± 0.95 mV, n=15) than that of WT HCN2 in the presence of cGKII (Fig. 18C and 

Fig. 19 fourth and fifth column). Similarly, the inactivation of cGKII by introducing a point mutation in 

the catalytic domain (cGKII-D576A (Pfeifer et al. 1999)) or by the specific pharmacological blocker 
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KT5823 abolished the inhibitory cGKII effect on WT HCN2 to a similar extent as the S641A mutation 

(Fig. 19, sixth and seventh column). Finally, it was of great interest whether the inhibitory effect of 

cGKII requires binding of cGMP to the CNBD. To this end, a HCN2 mutant was employed (HCN2 

-RT>EA) that carries two amino acid replacements in the β7 strand of the CNBD (R591E and T592A) 

that are known to abolish cGMP binding (Zhou and Siegelbaum 2007). As expected, in the presence 

of 10 µM cGMP, the V0.5 of the HCN2-RT>EA mutant co-expressed with cGKII was much more 

negative than that of WT HCN2 (Fig. 18D). Importantly, however, introduction of the S641A mutation 

into the HCN2-RT>EA backbone again lead to a positive shift of V0.5 compared to HCN2-RT>EA in the 

presence of cGKII (Fig. 19, last two column; ΔV0.5 = +3.4 mV; HCN2-RT>EA/cGKII: -103.0 ± 0.77 mV, 

n=16; HCN2-S641A-RT>EA/cGKII: -99.6 ± 0.76, n=10). 
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4 Discussion 

 

This study aimed at identifying cellular proteins that regulate HCN channels. Since HCN channels are 

well understood concerning their functional properties, the question was raised how these channels 

are modulated within the cellular network. For this purpose, in the first part an Y2H screen of the 

cDNA library of mouse brain was performed. In this screen, several proteins were identified to bind 

to the HCN2 C-terminus. The interaction could be verified for all putative candidates in GST-pulldown 

assays and in Co-IP experiments in HEK 293 cells and immunocytochemistries, respectively. Future 

experiments will shed light on the functional consequences of these proteins on HCN channels. 

Especially proteins that are not further characterized up to today are of great interest for future 

scientific research. Next steps will include a shRNA-based knock-down approach as well as the 

functional analysis of these proteins in vivo. 

The major focus of this thesis was to study the interaction of HCN2 and cGKII. It is commonly known 

that cGMP shifts the V0.5 of the HCN2 channels to more positive potentials by direct binding to the 

CNBD of the HCN2 C-terminus. However, it was unclear whether cGMP can also influence HCN 

channels via a kinase pathway as it was shown for the PKA in this study. The cGKII could be identified 

to interact with the HCN2 channel in heterologous expression system as well as in native brain tissue 

using Co-IP experiments. Furthermore, it could be demonstrated that the CNBD of HCN2 is required 

for this interaction, either alone or in conjunction with the C-linker. 

The cGKII is a membrane bound kinase that belongs to the superfamily of serine/threonine kinases 

(de Jonge 1981) and has three main domains, an amino terminal (A), a regulatory, and a catalytic (C) 

domain (Fig. 20). The amino terminus of the cGKII has strong influence on the concentration of cGMP 

required for the activation of the enzyme. It is noteworthy to mention that the apparent cGMP 

affinity of HCN2 is about 30 times lower than that reported for cGKII (6 µM vs. 0.2 µM) (Ludwig et al. 

1998, Taylor and Uhler 2000). Thus, at very low cGMP concentrations the inhibitory action of cGMP 

may be dominant while at higher concentrations of cGMP the stimulatory effect may outweight the 

inhibition imposed by the kinase. Moreover, these data indicate that low micromolar concentrations 

of cAMP that activate HCN2 currents by binding to the CNBD do not cross-stimulate cGKII and, thus, 

should not interfere with the cGKII-dependent modulation of HCN2. The regulatory domain consists 

of two cyclic nucleotide-binding sites whereas the catalytic domain contains the MgATP binding 

pocket and the protein substrate interaction site (Fig. 20).  
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Fig. 20: Cartoon of the cGMP-dependent protein kinase II. A cGKII molecule consists of a regulatory and a catalytic domain. 

The cGKII forms homodimers that interact over an N-terminal dimerization domain and has two binding sites for cGMP. In 

the catalytic domain the MgATP binding site and the protein substrate interaction domain are located. The protein is 

myristylated at aa residue G2. Adapted from Francis and Corbin 1999. 

 

The cGKII is distributed in several brain nuclei, the intestinal mucosa, the adrenal cortex and 

chondrocytes (Lohmann et al. 1997, de Vente et al. 2001, Werner et al. 2004). Little is known about 

the substrates of cGKII. Fig. 21 gives an overview of the tissue specific substrates known so far. 

A modulatory action of cGKII on other ion channels was only established for the cystic fibrosis 

transmembrane conductance regulator (CFTR)-Cl- channel and the AMPA receptor subunit GluR1. In 

both cases, cGKII was shown to increase the cell surface expression (Serulle et al. 2007). CFTR was 

also shown to be activated by cGMP/cGKII (French et al. 1995, Golin-Bisello et al. 2005). In this study, 

the co-expression experiments in HEK293 cells and primary hippocampal neurons do not support an 

effect of cGKII on HCN2 trafficking and cell surface expression.  

 

 

Fig. 21: Interactors of the cGKII. The cGKII phosphorylates the CFTR in the intestinal brush border and the GSK3β in 

chondrocytes. Furthermore it interacts with GluR1 and HCN2 in brain and with VASP and NHERF2 in kidney, respectively. 

The cGKII also phosphorylates substrates like StAR and PTPS in other tissues. 
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During bone growth, the cGKII phosphorylates the glycogen synthase kinase 3β (GSK3β) and inhibits 

its activity which consequently promotes hypertrophic differentiation of chondrocytes (Kawasaki et 

al. 2008). Additionally, the cGKII plays an important role in endochondral ossification which could be 

observed in dwarfism in cGKII KO mice (Pfeifer et al. 1996). In the kidney, VASP is phosphorylated by 

cGKII in primary mammalian renal tubule epithelial cells. This phosphorylation leads to the rapid 

retraction of lamellipodia and cell rounding (Lindsay et al. 2007). Recently, it was reported that cGKII 

plays a role in the aldosterone secretion from the adrenal gland (Spiessberger et al. 2009).  

 

In this study, the HCN2 channel was identified as an additional substrate of cGKII in the brain. The 

HCN2 channel is phosphorylated at position S641 and this phosphorylation leads to a shift of the V0.5 

to more hyperpolarized potentials. So far, there are four kinases identified to phosphorylate the HCN 

channel and subsequently alter the channel kinetics. Whereas the Src kinase accelerates the HCN2 

and HCN4 channel kinetics (Zong et al. 2005), the block of the p38 MAPK results in an about 25 mV 

hyperpolarizing shift in V0.5 (Poolos et al. 2006). Other protein kinases, including the protein kinase A 

might phosphorylate the HCN4 channel at various residues and shift V0.5 to about 5 mV to more 

positive potentials (Liao et al. 2010) (see Fig. 22). It remains to be determined if other kinases may 

also be able to modulate the function of HCN channels. 

 

 

Fig. 22: Modulation of HCN channel activity by protein kinases. Four distinct proteins kinases are known to regulate the 

HCN channel activity: the c-Src, the p38 MAPK, the PKA and the cGKII. 

 

The PKA was identified to phosphorylate a serine residue inter alia at position 719 (S719) within the 

HCN4 channel. S719 is a highly conserved amino acid and corresponds to the serine residue at 

position 641 in HCN2 channels (see appendix 7.5) (Liao et al. 2010). It is unclear, however, whether 
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S719 is essential for the PKA-mediated effect, because it was shown that at least 13 additional 

residues are phosphorylated by PKA. It is noteworthy that the results regarding PKA-dependent HCN 

phosphorylation were obtained using a coupled GST-pulldown assay and subsequent mass 

spectrometry. Since these experiments were performed in E.coli and the work was performed with C-

terminal fragments instead of the full length constructs (Liao et al. 2010), these results have to be 

interpreted with caution and verified in a suitable system. 

 

Table 3: Overview of substrate specificities of the protein kinases interacting with HCN channels. 

Kinase Substrate specificity  

MAP kinase a XP(ST)XX 

Src kinaseb EEIYGAFE 

D(ED)(EDG)(IVL)Y(GE)E(FI) 

cAMP-dependent protein kinase a RXS 

RRXS 

RXXS 

KRXXS 

cGMP-dependent protein kinase a (KR)X(ST) 

(KR)XX(ST) 

(KR)(KR)X(ST) 

(KR)(KR)XX(ST) 

(ST)X(KR) 
 

a
 Sequence information based on (Pearson and Kemp 1991), 

b
 These sequences were determined by the use of peptide 

libraries (Songyang et al. 1995), and their relevance in vivo remains to be determined. X indicates any amino acid; bold 

characters indicate the site of phosphorylation. 

 

 

If the phosphorylation pattern of the cAMP-dependent protein kinase is compared to the one of 

cGKs, it becomes apparent that substrate specificity is not compelling (Table 3). The PKA requires an 

arginine residue in position two and/or three before the classical phosphorylation site (Tegge et al. 

1995), whereas in HCN channels two lysine residues are located at the predicted position (KKNSI). 

This amino acid sequence represents a classical cGMP phosphorylation site (Table 3). Whether the 

serine residue can be phosphorylated by both, PKA and cGKII remains to be determined. Thus, 

phosphorylation is probably a common cellular mechanism to modulate HCN channel activity. An 

overview of the predicted phosphorylation sites within the HCN channels is shown in the appendix in 

chapter 7.5. Most substrates of cGMP-dependent protein kinases interact via the substrate 

interaction site which shows a 71% identity between the cGKII and the cGKI (see appendix 7.6). 

However, the cGKI was not examined systematically. Owing to the homology of the substrate 

interaction site, it remains to be determined whether cGKI also interacts with the HCN2 channel 

subunit.  
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In this study, for the first time evidence was provided for a bidirectional regulation of the HCN2 

channel gating by cGMP (Fig. 23). It has long been known that cGMP, like cAMP, shifts the voltage-

dependence of HCN channel activation to more positive values and, thereby, acts as a positive 

regulator of channel activity (Wahl-Schott and Biel 2009, DiFrancesco 2010). Mechanistically, this 

regulation is conferred by direct binding of cGMP to the CNBD, which is allosterically coupled to the 

HCN channel activation gate. Our data indicate that cGMP can also act as gating inhibitor via cGKII-

dependent phosphorylation. Here, it was shown that cGKII binds to the C-terminus of HCN2 and 

phosphorylates this channel at S641. Phosphorylation of S641 shifts the midpoint potential of HCN2 

by about 4 mV to more hyperpolarizing values. The effect of cGKII is independent of the capability of 

the CNBD to bind cGMP since it also occurs in a HCN2 mutant with functionally impaired CNBD.  

 

The exact mechanism underlying the cGKII-mediated inhibition of channel gating remains to be 

determined. S641 is localized at the C-terminal end of the αC-helix of the CNBD which has been 

shown to play an important role in HCN channel gating (Zagotta et al. 2003, Xu et al. 2010). One may 

speculate that the presence of the bulky negatively charged phosphate group could well interfere 

with the allosteric movement of the proximal C-terminus of HCN2 during channel gating.  

 

 

Fig. 23: Model of the bidirectional regulation of HCN2 gating by cGMP. cGMP shifts the voltage-dependence of HCN2 

activation to more positive voltage (+ΔV) via direct interaction with the CNBD of HCN2 and induces a hyperpolarizing shift  

(-ΔV) by activating cGKII that is bound to the channel. 
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Additionally, this study provides direct experimental evidence for co-localization of HCN2 and cGKII in 

hypothalamic neurons. Given the widespread distribution of both proteins in brain (Moosmang et al. 

1999, Notomi and Shigemoto 2004, Werner et al. 2004), regulation of HCN2 by cGKII could be 

potentially relevant in many types of neurons. Since S641 is highly conserved within the HCN channel 

family, this kind of regulation may be a commonality of HCN channels. So far, there are only a few 

reports on the regulation of Ih by cGMP. Pape et al. showed that NO/cGMP controls oscillatory 

activity in thalamocortical neurons via direct upregulation of Ih (Pape and Mager 1992) a brain region 

where the cGKII is located as well at least on mRNA levels using in situ hybridizations (El-Husseini et 

al. 1999, Werner et al. 2004). 

 

In conclusion, this study provides evidence that the voltage-dependence of HCN2 activation is 

determined by complex interactions of multiple signaling pathways that control the concentration of 

cGMP and/or cAMP and the activity of cGKII. HCN2 is a key determinant of resting membrane 

potential in neurons and plays a key role in controlling neuronal excitability (Ludwig et al. 2003). 

Thus, a cGKII-mediated phosphorylation and change of the value of half-maximal activation of HCN2 

in neurons would immediately interfere with neuronal activity because it directly affects the 

threshold at which HCN2 can be activated.  

It is tempting to speculate that in addition to the well established up-regulation of Ih by cAMP and/or 

cGMP, neurons that express cGKII are also able to down-regulate Ih via the NO/cGMP system by 

changing the ratio of phosphorylated versus non-phosphorylated HCN2 channels. This “dual 

modulation by cGMP” may have evolved to allow a tighter control of HCN channel activity, and thus, 

a better control of the threshold for activation of neurons.   
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5 Summary 

 

Hyperpolarization-activated cyclic nucleotide-gated channels (HCN) play a crucial role in the 

regulation of cell excitability and are tightly regulated by interacting proteins as well as low molecular 

factors. These molecules control functional properties of the channel or modulate the surface 

expression. In order to find new signaling complexes, an Y2H screen of mouse brain library was 

performed against the HCN2-CT as bait in a first step. Five distinct mouse brain proteins were 

identified to form complexes with the HCN2-CT. These genes were cloned and their interaction was 

verified in GST pulldown assays and co-immunoprecipitations, respectively. Co-localization of the 

HCN2 subunit and the HCN-interacting proteins could be proofed in immunocytochemistry of COS7 

cells. 

The major focus of this thesis was to study the interaction between HCN2 and cGKII. Cyclic GMP was 

shown to facilitate the activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) 

channels by direct binding to a cyclic nucleotide-binding domain (CNBD) in the C-terminus of the 

channel protein. Here, it could be shown for the first time that in the HCN2 channel cGMP can also 

exert an inhibitory effect on gating via cGMP-dependent protein kinase II (cGKII)-mediated 

phosphorylation. Using co-immunoprecipitation and immunohistochemistry this study demonstrates 

that cGKII and HCN2 co-localize and interact with each other upon heterologous expression as well as 

in native brain tissue. The proximal C-terminus of HCN2 was identified as the binding region of cGKII 

and show that cGKII phosphorylates HCN2 at a specific serine residue (S641) that is localized at the C-

terminal end of the CNBD. The cGKII shifts the voltage-dependence of activation to about 4 mV more 

negative voltages and, hence, counteracts the stimulatory effect of cGMP on gating. Replacement of 

S641 by an alanine residue, as well as impairing the catalytic activity of cGKII by pharmacological 

block or by introducing a point mutation into the catalytic domain (D576A) abolishes the inhibitory 

effect on HCN2 gating. By contrast, the inhibitory effect is preserved in a HCN2 mutant carrying a 

CNBD deficient for cGMP binding. These data suggest that bidirectional regulation of HCN2 gating by 

cGMP contributes to cellular fine tuning of HCN channel activity. 
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Zusammenfassung 

HCN Kanäle spielen in der Regulation der Erregbarkeit von Zellen eine entscheidende Rolle und 

werden durch Interaktionsproteinen sowie niedermolekularen Faktoren engmaschig reguliert. Diese 

Moleküle kontrollieren die funktionellen Kanaleigenschaften und regulieren die 

Oberflächenexpression. Um neue Signalkomplexe zu identifizieren, wurde im ersten Teil der Arbeit 

eine Y2H Analyse durchgeführt. Dabei wurde der C-Terminus des HCN2 Kanals mit einer cDNA-

Bibliothek aus dem Mäusehirn abgeglichen. Fünf unterschiedliche Proteine aus dem murinen Gehirn 

konnten identifiziert werden, die mit dem C-Terminus des HCN2 Kanals Komplexe bilden. Diese Gene 

wurden subkloniert und die Interaktion konnte in GST-pulldown Versuchen und Ko-

Immunopräzipitationen bestätigt werden. Ebenso konnte in Studien in COS7 Zellen eine Ko-

Lokalisation der HCN2 Untereinheit mit unterschiedlichen HCN-Interaktionsproteinen nachgewiesen 

werden. 

Der Fokus dieser Dissertation lag auf der Untersuchung der Interaktion vom HCN2 Kanal mit der 

cGKII. Es ist schon lange bekannt, dass zyklische GMP Moleküle die Aktivierung von HCN Kanälen 

beschleunigen, indem sie direkt an eine Bindungsdomäne für zyklische Nukleotide (CNBD) im C-

Terminus des Kanalproteins binden. In diesem Teil der Arbeit konnte zum ersten Mal gezeigt werden, 

dass zyklisches GMP auch einen inhibitorischen Effekt auf das Gating von HCN2 Kanälen ausüben 

kann, indem die cGMP-abhängige Proteinkinase II das Kanalprotein phosphoryliert. Durch Ko-

Immunopräzipitationen und Immunohistochemie konnte gezeigt werden, dass der HCN2 Kanal mit 

der cGKII sowohl in heterologen Expressionssystemen, als auch im nativen Gehirngewebe interagiert 

und ko-lokalisiert. Der proximale C-Terminus konnte als Interaktionsregion mit der cGKII identifiziert 

werden und es konnte gezeigt werden, dass die cGKII den HCN2 Kanal an einem bestimmten 

Serinrest (S641) phosphoryliert wird, der am C-terminalen Ende der CNBD lokalisiert ist. Die cGKII 

verschiebt die spannungsabhängige Aktivierung des HCN2 Kanals um 4 mV zu negativeren Werten 

und wirkt so dem stimulierenden Effekt von cGMP auf das Gating entgegen. Der inhibitorische Effekt 

der cGKII auf das HCN2 Gating konnte sowohl durch den Ersatz des Serinrests durch Alanin an der 

Position 641, als auch durch pharmakologische Blockade der katalytischen Aktivität der cGKII, als 

auch durch Einfügen einer Punktmutation in das aktive Zentrum (D576A) aufgehoben werden. Im 

Gegensatz dazu ist der inhibitorische Effekt in einer CNBD-Mutante aufrecht erhalten, die kein cGMP 

mehr binden kann. Die Daten dieser Arbeit lassen den Schluss zu, dass die zweigleisige Regulation 

des HCN2 Gatings durch cGMP einen Beitrag zur zellulären Feinabstimmung leistet. 
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7 Appendix 

 

7.1 Abbreviations 

 

µg microgram 

µl microliter 

AB antibody 

ADH1 alcohol dehydrogenase-1 

AmpR ampicillin resistence 

BBS boratesaline buffer 

BES N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid, N,N-Bis(2-hydroxyethyl) 

taurine 

BES N-N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid 

Bp base pairs 

BSA bovine serum albumine 

CaCl2 calcium chloride  

cAMP cyclic adenosine monophosphate 

CB chemiblocker 

cDNA complementary DNA 

cGKII cGMP dependent protein kinase II 

cGMP cyclic guanosine monophosphate 

CMV cytomegalovirus 

COS7 cells cells being CV-1 (simian) in Origin and carrying the SV40 genetic material 

Cre type I topoisomerase from P1 bacteriophage 

DD Diastolic depolarization 

ddH2O double deionized water 

DEPC diethyl pyrocarbonate 

DMEM Dulbecco's modified eagle medium 

DMSO dimethylsulfoxide 

DNA deoxyribonucleic acid 

dNTP 2’-desoxynucleoside-5’-triphoshate (dATP, dCTP, dGTP, dUTP or dTTP) 

DTT dithiothreitol 

E. coli Escherichia coli 

EDTA ethylenediaminetetraacetic acid 

EGFP enhanced green fluorescent protein 

env envelope 

FBS fetal bovine serum 

G gram 

GFP green fluorescent protein 

GSK3β glycogen synthase kinase 3β 

GST glutathione-S-transferase 

H hour 

HBSS Hank's Buffered Salt Solution 

HCl hydrochloric acid 

HCN channel hyperpolarization-activated cyclic nucleotide-gated channel 

HEK293 cells human embryonic kidney cells 

HEPES 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid, N-(2-Hydroxyethyl)piperazine-

N′-(2-ethanesulfonic acid) 

HRP horseradish peroxidase 

IgG immunoglobulin G 
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IPTG isopropyl-β-D-thiogalactopyranosid 

IRES internal ribosome entry site 

Kb kilo base pairs 

KCR1 K+ channel regulator 1 

kDa kilo Dalton 

KO knockout 

LB broth Luria-Bertani broth 

LiOAc lithium acetate 

Lox locus of X-ing over 

mA milliampere 

MCS multiple cloning site 

mg milligram 

min minute 

MiRP-1 MinK-related protein 1 

Ml Milliliter 

MOPS 3-[N-Morpholino]propanesulfonic acid 

mRNA messenger RNA 

Na2HPO4 · 

2H2O 

disodium hydrogen phosphate dihydrate 

NaCl sodium chloride 

NaHCO3 sodium bicarbonate 

NaOH sodium hydroxide 

NGS normal goat serum 

NP-40 nonyl phenoxylpolyethoxylethanol 

OD optical density 

Ori origin of replication 

p38 MAPK p38 mitogen activated protein kinase 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PEG polyethylene glycol 

Pen/strep penicillin / streptomycin 

PFA paraformaldehyde 

PI proteinase inhibitor 

PIP2 phosphatidylinositol 4,5-bisphosphate 

PKA proteinkinase A 

PKA cAMP dependent protein kinase 

pmol picomol 

PVP polyvinylpyrrolidone 

RNA ribonucleic acid 

RNase ribonulease 

rpm rotations per minute 

RT reverse transcription 

RT-PCR reverse transcriptase PCR 

S second 

SD synthetic dextrose 

SDS sodium dodecylsulfate 

Syn-1 Synapsin-1 

Taq Thermus aquaticus 

TEMED N,N,N',N'-TetramethyIethylendiamine 

TRIS tris(hydroxymethy1)aminomethane 

UF ultra filtration 

-UL without uracil and leucine 

UV ultra violet 
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V0.5 half maximal activation voltage 

Vm membrane voltage 

w/o without 

WT wildtype 

x g gravitational force 

Y2H yeast two-hybrid 

 

 

7.2  Primers 

7.2.1 HCN2 Genotyping 

Primer Sequenz (5’-3’) 

HCN2 14F GGTCCCAGGCACTTCCATCCTTT 

HCN2 15bR GGAAAAATGGCTGCTGAGCTGTCTC  

HCN2 16F CAGCTCCCATTTGCCCTTGTGC  

 

7.2.2 cGKII Genotyping 

Primer Sequenz (5’-3’) 

AV3R ATTAAGGGCCAGCTCATTCC 

E2FB-AV GGTGAAGTTTTAGGTGAAACCAAG 

AV9R  CTGCTTAATGACGTAGCTGCC 

 

7.2.3 Sequencing  

Primer Sequenz (5’-3’) 

CMVfor GGATTTCCAAGTCTCCACC 

IRESrev CAGATGAACTTCAGGGTCAGC 

SV40_Rev GTGGTATGGCTGATTATGATCAG 

pcDNA3_For CTCTGGCTAACTAGAGAAC 

pcDNA3_Rev CAAACAACAGATGGCTGGC 

 

7.2.4 Primers for Cloning 

Primer Sequenz (5’-3’) 

HCN2BamHIFor GAGGATCCAAGATTCGTCACGGCGCCAATAC 

HCN2SalIRev AGAGTCGACTCACAAGTTGGAAGAGAGGCGCG 

HCN2SalIRev2 AGAGTCGACTCAAACCTTGTGCAGCAAGATGGAG 

HCN2SalIRev3 AGAGTCGACTCAGAAGTTGGGGTCTGCATTGGC 

HCN2BamHIFor4 GAGGATCCAGGTTCAGCATGATCTCAGCTCAG 

HCN2BamHIFo_pQE AGGATCCGATTCGTCACGGCGCCAATAC 

HCN2EcoRIFor AGAATTCACCGCCATGGATGCGCGCGGGGGCGG 

HCN2XbaRev ATCTAGATCACAGGGACTGGATGAGCGCAGTGGC 

HCN2_PFor TGAGCCGCGCGGCAGCCAGG 

HCN2_OL_Rev TGGTCTTTGTAGTCTCCCAGGGACTGGATGAGCGC 

HCN2_OL_For TCATCCAGTCCCTGGGAGACTACAAAGACCATGAC 

LV-RhodProm_PRev AAGCAGTGGGTTCCCTAGTTAGCC 
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HCN2_OL_YN155_R CGCATCCATTCCTGATCCGATATAGACGTTGTGGCTG 

HCN2_OL_YN155_F GTCTATATCGGATCAGGAATGGATGCGCGCGGGGGC 

HCN2_OL_YC155_Re CGCATCCATTCCTGATCCCTTGTACAGCTCGTCCATG 

HCN2_OL_YC155_Fo CTGTACAAGGGATCAGGAATGGATGCGCGCGGGGGC 

HCN2BamHI_HAFor CGGATCCGCCACCATGTACCCATACGATGTTCCAGATTACGCTATGGAT

GCGCGCGGGGGCG 

HCN2_AgeF CTGCCCGCTGACTTCCGCCAG 

HCN2Term_OL_R TGGTCTTTGTAGTCTCCCAAGTTGGAAGAGAGGCGCG 

HCN2Term_OL_F  CTCTCTTCCAACTTGGGAGACTACAAAGACCATGAC 

HCN2_S641E_For TAGGCAAGAAGAACGAAATCTTGCTGCACAAGG 

HCN2_S641E_Rev TTGTGCAGCAAGATTTCGTTCTTCTTGCCTATGC 

HCN2BamHIFor2 GAGGATCCATGGATTCGTCACGGCGCCAATAC 

HCN2XbaIRev1 ATCTAGACAAGTTGGAAGAGAGGCGCG 

HCN2XbaIRev2 ATCTAGAAACCTTGTGCAGCAAGATGGAG 

HCN2XbaIRev3 ATCTAGAGAAGTTGGGGTCTGCATTGGC 

HCN2BamHIFor3 GAGGATCCATGGTTCAGCATGATCTCAGCTCAG 

mCherry_OL_Rev CGCATCCATTCCATATGATCCCTTGTACAGCTCGTCCAT 

HCN2_OL_For CTGTACAAGGGATCATATGGAATGGATGCGCGCGGGGGC 

HCN2_MluRev TCCATGAGGAAGAAAGTGTCCG 

HCN2_NT_for AGCTCGGATCCACTAGTAACG 

HCN2_NT_XhoI_rev ACTCGAGGCGCGGCTCACC 

 

 

7.3 Primary Antibodies 

antibody  host Company used in dilution  TSA 

HCN2  rb polyclonal alomone IHC 1:300 yes 

 rb polyclonal alomone Western 1:1000  

cGKII  rb polyclonal Prof. Ruth, Tübingen IHC 1:100 yes 

cGKII Mary EL1 rb polyclonal Prof. Hofmann, München Western 1:1000  

Myc ms monoclonal Cell Signalling ICC 1:1000 no 

 ms monoclonal Cell Signalling Western 1:1000  

 

 

7.4 Secondary Antibodies 

antibody  host Company used in dilution  

α-rb HRP donkey Jackson laboratories IHC 1:1000 

α-rb HRP donkey GE healthcare Western 1:1000 

α-ms HRP sheep GE healthcare Western 1:2000 

Cy2αms donkey Jackson laboratories IHC 1:300 

Cy3αrb donkey Jackson laboratories IHC 1:400 

Cy3αrat  Jackson laboratories IHC 1:300 
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7.5 Phosphorylation sites within the C-terminus of HCN channels 

 

mHCN1                                     DSSRRQ YQEKYKQVEQ YMSFHKLPAD  415 
mHCN2                                     DSSRRQ YQEKYKQVEQ YMSFHKLPAD  468 
mHCN3                                     DSSRRQ YQEKYKQVEQ YMSFHKLPAD  378 
hHCN4                                     DSSRRQ YQEKYKQVEQ YMSFHKLPPD  546 
 
 
mHCN1           MRQKIHDYYE HRYQGKIFDE ENILSELNDP LREEIVNFNC RKLVATMPLF  465 
mHCN2           FRQKIHDYYE HRYQGKMFDE DSILGELNGP LREEIVNFNC RKLVASMPLF  518 
mHCN3           TRQRIHEYYE HRYQGKMFDE ESILGELSEP LREEIINFTC RGLVAHMPLF  428 
hHCN4           TRQRIHDYYE HRYQGKMFDE ESILGELSEP LREEIINFNC RKLVASMPLF  596 
 
 
mHCN1           ANADPNFVTA MLSKLRFEVF QPGDYIIREG AVGKKMYFIQ HGVAGVITKS  515 
mHCN2           ANADPNFVTA MLTKLKFEVF QPGDYIIREG TIGKKMYFIQ HGVVSVLTKG  568 
mHCN3           AHADPSFVTA VLTKLRFEVF QPGDLVVREG SVGRKMYFIQ HGLLSVLARG  478 
hHCN4           ANADPNFVTS MLTKLRFEVF QPGDYIIREG TIGKKMYFIQ HGVVSVLTKG  646 
 
 
mHCN1           SKEMKLTDGS YFGEICLLTK GRRTASVRAD TYCRLYSLSV DNFNEVLEEY  565 
mHCN2           NKEMKLSDGS YFGEICLLTR GRRTASVRAD TYCRLYSLSV DNFNEVLEEY  618 
mHCN3           ARDTRLTDGS YFGEICLLTR GRRTASVRAD TYCRLYSLSV DHFNAVLEEF  528 
hHCN4           NKETKLADGS YFGEICLLTR GRRTASVRAD TYCRLYSLSV DNFNEVLEEY  696 
 
 
mHCN1           PMMRRAFETV AIDRLDRIGK KNSILLQKFQ KDLNTGVFNN QENEILKQIV  615 
mHCN2           PMMRRAFETV AIDRLDRIGK KNSILLHKVQ HDLSSGVFNN QENAIIQEIV  668 
mHCN3           PMMRRAFETV AMDRLRRIGK KNSILQRK-R SEPSPGSSGG ---VMEQHLV  574 
hHCN4           PMMRRAFETV ALDRLDRIGK KNSILLHKVQ HDLNSGVFNY QENEIIQQIV  746 
 
 
mHCN1           KHDREMVQAI PPINYPQMTA LNCTSSTTTP TSRMRTQSPP VYTATSLSHS  665 
mHCN2           KYDREMVQ-- ---------- ------QAEL GQRVGLFPPP PPPQVTSAIA  700 
mHCN3           QHDRDMARGV RGL------- --APGTGARL SGKPVLWEPL VHAPLQAAAV  615 
hHCN4           QHDREMAHCA HRV------- --QAAASATP TPTPVIWTPL IQAPLQAAAA  787 
 
 
mHCN1           NLHSPSPSTQ TPQPSAILS- ---------- ---------- ---PCSYTTA  691 
mHCN2           TLQQAVAMSF CPQ------- ---------- ---------- ----------  713 
mHCN3           TSNVAIALTH QRGP------ ---------- ---------- ---------L  630 
hHCN4           TTSVAIALTH HPRLPAAIFR PPPGSGLGNL GAGQTPRHLK RLQSLIPSAL  837 
 
 
mHCN1           VCSPPIQSPL ATRTFHYASP TASQLSLMQQ PQQ--QLPQS QVQQTQ--TQ  737 
mHCN2           -VARPLVGPL ALG------- --SPRLVRRA PPG--PLPPA ASPGPP--AA  749 
mHCN3           PLSPDSPATL LAR------- --SARRSAGS PAS--PLVPV RAGPLL--AR  667 
hHCN4           GSASPASSPS QVDTPSSSSF HIQQLAGFSA PAGLSPLLPS SSSSPPPGAC  887 
 
 
mHCN1           TQQQQQQQQQ QQQQQQQQQQ QQQQQQQQQQ QQQQQQ--QQ PQTPGSSTPK  785 
mHCN2           SPPAAPSSPR ---------- ---------- ---------A PRTSPYGVPG  770 
mHCN3           GPWASTSRLP APPARTL--- ---------- ---------H ASLSRTGRSQ  695 
hHCN4           GSPSAPTPSA GVAATTIAGF GHFHKALGGS LSSSDSPLLT PLQPGARSPQ  937 
 
 
mHCN1           NEVHKSTQAL HNTNLTKEVR PLSASQPS-L PHEVSTLI-- SRPHPTVGES  832 
mHCN2           SPATRVGPAL PARRLSRASR PLSASQPS-L PHGVPAPS-- PAASARPASS  817 
mHCN3           VSLLGPPPGG GARRLGPRGR PLSASQPS-L PQRATGDG-- SPRRKGSGSE  742 
hHCN4           AAQPSPAPPG ARGGLGLPEH FLPPPPSSRS PSSSPGQLGQ PPGELSLGLA  987 
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mHCN1           LASIPQPVAA VHSTGLQ--- AGSR-STVPQ RVTLFRQMSS GAIPPNRGVP  878 
mHCN2           STPRLGPAPT ARTAAPS--- PDRRDSASPG AASGLDPLDS ARSRLSSNL-  863 
mHCN3           RLPPSGLLAK PPGTVQP--- PRSS---VPE PVTPRGPQIS ANM-------  779 
hHCN4           TGPLSTPETP PRQPEPPSLV AGASGGASPV GFTPRGGLSP PGHSPGPPRT  
1037 
 
 
mHCN1           PAPPPPAAVQ RESPSVLNTD PDAEKPRFAS NL-------- ---
------ 910 
mHCN2           ---------- ---------- ---------- ---------- ----------  
mHCN3           ---------- ---------- ---------- ---------- ----------  
hHCN4           FPSAPPRASG SHGSLLLPPA SSPPPPQVPQ RRGTPPLTPG RLTQDLKLIS  
1087 
 
 
mHCN1           ---------- ---------- ---------- ---------- ----------  
mHCN2           ---------- ---------- ---------- ---------- ----------  
mHCN3           ---------- ---------- ---------- ---------- ----------  
hHCN4           ASQPALPQDG AQTLRRASPH SSGESMAAFP LFPRAGGGSG GSGSSGGLGP 1137 
 
 
mHCN1           ---------- ---------- ---------- ---------- ----------  
mHCN2           ---------- ---------- ---------- ---------- ----------  
mHCN3           ---------- ---------- ---------- ---------- ----------  
hHCN4           PGRPYGAIPG QHVTLPRKTS SGSLPPPLSL FGARATSSGG PPLTAGPQRE 1187 
 
 
mHCN1           ---------- ------ 
mHCN2           ---------- ------ 
mHCN3           ---------- ------ 
hHCN4           PGARPEPVRS KLPSNL                                      1203 
 
 
yellow: phosphorylation by p38 MAP kinase 
 
blue:   phosphorylation by src kinase 
 
green:  phosphorylation by protein kinase A 
 
red:    phosphorylation by cGMP dependent protein kinase  
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7.6 Alignment of the protein substrate interaction domains of cGKI and cGKII 

 

Optimal alignment(Myers-Miller) of DNA sequences 
cGKI_protein_substrate_interaction_domain and 
cGKII_protein_substrate_interaction_domain 
 
Gap_Open_Penalty=10.0  Gap_Extend_Penalty=5.0  
 
Upper line: cGKI_protein_substrate_interaction_domain, from 1 to 373 
Lower line: cGKII_protein_substrate_interaction_domain, from 1 to 375 
 
cGKI_protein_substrate_interaction_domain:cGKII_protein_substrate_interacti
on_domain identity= 71.24%(265/372) gap=1.06%(4/376) 
1     CAA..AGGAATCATTTACAGGGACCTCAAGCCGGAGAATCTCATCCTAGATCATCGA.GG 
       | ||   |     |     |     |     |     || |  |  |   |||   |   
1     CGACTAGGCATCATCTACAGAGACCTGAAGCCAGAGAACTTAATTCTGGAT.GCCGATGG 
 
58    CTATGCCAAACTGGTTGACTTTGGCTTTGCAAAGAAAATAGGATTTGGAAAGAAAACATG 
         ||||  ||             |  |  |     |  |  | |    |       |   
60    CTACCTTAAGTTGGTTGACTTTGGATTCGCTAAGAAGATTGGCTCTGGACAGAAAACGTG 
 
118   GACTTTTTGTGGGACTCCAGAATATGTAGCCCCAGAGATCATCCTGAACAAAGGCCATGA 
         |  |              |     |     |   |    |  |        |      
120   GACATTCTGTGGGACTCCAGAGTATGTGGCCCCCGAGGTCATTCTTAACAAAGGACATGA 
 
178   CATTTCAGCTGACTACTGGTCACTAGGAATTCTGATGTATGAGCTTCTGACTGGCAGCCC 
       | |||| ||  | |      |  |  |      | |        |  |  |    |    
180   CTTCAGTGTGGATTTCTGGTCCCTGGGGATTCTGGTCTATGAGCTCCTAACGGGCAACCC 
 
238   ACCTTTCTCAGGCCCAGATCCAATGAAAACCTACAATATCATACTGCGGGGGATTGACAT 
      |  |  |  |  |||   | |     ||         | |  |  |||   |  |  | | 
240   TCCCTTTTCTGGGATAGACCAAATGATGACCTACAATTTGATTCTCAAGGGAATCGAGAA 
 
298   GATAGAATTTCCAAAGAAGATTGCAAAAAATGCTGCTAATTTAATTAAAAAACTATGCAG 
      |  |  |  |  | ||     ||   ||||||   |||    |  |||| ||  |      
300   AATGGATTTCCCCAGAAAGATAACAAGGCGCCCTGAGGATTTGATCCGGAGGCTTTGCAG 
 
358   GGACAACCCATCAGAG 
       | ||     |    | 
360   GCAAGACCCAACAGAA 
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