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Summary 

Three multisubunit RNA polymerases (Pol) I, II and III catalyze DNA-dependent RNA 

synthesis in the eukaryotic nucleus. Synthesis of ribosomal RNA (rRNA) by RNA 

polymerase (Pol) I is the first step in ribosome biogenesis and a regulatory switch in 

eukaryotic cell growth. While the structure of Pol II has been studied in detail, structural 

information is still limited for Pol I. 

This thesis describes three new crystal structures for the peripheral Pol I subcomplexes 

A14/43 and A49/34.5. A14/A43 could be crystallized with the use of an iterative procedure of 

predicting flexible regions, experimentally testing and improving these predictions and 

combining deletions of flexible regions in a stepwise manner. This strategy enabled the 

crystallization of two additional domains of A49/34.5 and could be applied to other 

subcomplexes with multiple flexibilities in the future, as required for structure solution of 

large macromolecular assemblies with hybrid methods. The structure of A14/43 allowed us, 

together with a cryo-electron microscopic structure of the complete 14-subunit Pol I and a 

homology model for the core enzyme, to obtain a Pol I hybrid structure. In this model, 

A14/43, the clamp, and the dock domain contribute to a unique surface, interacting with 

promoter-specific initiation factors. 

The Pol I-specific subunits A49 and A34.5 form a heterodimer that stimulates Pol I 

processivity and is related to the Pol II initiation factors TFIIF and TFIIE. The N-terminal 

regions of A49 and A34.5 form a dimerization module with a fold that resembles the TFIIF 

core. The C-terminal region of A49 resembles TFIIE, forming a novel ‘tandem winged helix’ 

domain that binds DNA with a preference for the upstream promoter non-template strand. 

Similar domains are predicted in Pol III-specific subunits. Thus Pol I/III subunits that have no 

counterparts in the Pol II core enzyme are evolutionary related to Pol II initiation factors, and 

may have evolved to mediate to promoter specificity. 

In contrast to Pol II, Pol I has a strong intrinsic 3’-RNA cleavage activity, which 

depends on the C-terminal domain of subunit A12.2 and the A49/34.5 dimerization module 

and, apparently, enables ribosomal RNA proofreading and 3’-end trimming. 
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1 Introduction 

1.1 DNA-dependent RNA polymerases 

Transcription of genetic information from DNA into RNA is performed by specific 

multisubunit enzymes, DNA-dependent RNA polymerases (Pol). While in bacteria and 

archaea all cellular RNA is synthesized by a single RNA polymerase, the eukaryotic genome 

is transcribed by three different Pols, as illustrated in Table 1.  

 
Table 1. RNA polymerase subunits 

Polymerase 
part 

Pol I subunit MW 
(kDa) 

Corresponding 
Pol II subunit 

Corresponding 
Pol III subunit 

Subunit type 

Core A190 186.4 Rpb1 C160 homolog 
 A135 135.7 Rpb2 C128 homolog 
 AC40 37.7 Rpb3 AC40 homolog 
 AC19 16.2 Rpb11 AC19 homolog 
 A12.2 13.7 Rpb9 C11 homolog 
 Rpb5 (ABC27) 25.1 Rpb5 Rpb5 common 
 Rpb6 (ABC23) 17.9 Rpb6 Rpb6 common 
 Rpb8 (ABC14.5) 16.5 Rpb8 Rpb8 common 
 Rpb10 (ABC10β) 8.3 Rpb10 Rpb10 common 
 Rpb12 (ABC10α) 7.7 Rpb12 Rpb12 common 

Subcomplex 
A14/43 

A14 14.6 Rpb4 C17 counterpart 

 A43 36.2 Rpb7 C25 counterpart 
A34.51 26.9 (RAP30)1  C531 Pol I/III specific 

(RAP74)2  C372 Pol I/III specific 
Subcomplex 

A49/34.5 A49 (N-terminal)2 

A49 (C-terminal)3 46.7 (TFIIE-β)3  C343 Pol I/III specific 
- - - (TFIIE-α)4  C824 Pol III specific 
- - - - C31 Pol III specific 

Total 14 subunits 589.6 12 subunits 17 subunits - 
 

1The Pol I subunit A34.5 is homologous to the Pol II initiation factor TFIIF-β (Rap30) and to the Pol III-specific 

subunit C53. For details see chapters III and IV. 

2The N-terminal domain of Pol I subunit A49 is homologous to the Pol II initiation factor TFIIF-α (Rap74) and 

to the Pol III-specific subunit C37. For details see chapters III and IV. 

3The C-terminal domain of Pol I subunit A49 is homologous to the Pol II initiation factor TFIIE-β and to the Pol 

III-specific subunit C34. For details see chapter IV. 

4The Pol III-specific subunit C82 is homologous to the Pol II initiation factor TFIIE-α. For details see chapter 

IV. 
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RNA polymerase III (Pol III) transcribes various non-coding RNA molecules, including 

transfer RNA (tRNA), the 5S ribosomal RNA (rRNA), the splicosomal U6 snRNA, the signal 

recognition particle 7SL RNA and short regulatory RNAs (Paule and White, 2000). RNA 

polymerase II (Pol II) transcribes protein-coding genes (Cramer, 2004), as well as many small 

regulatory RNAs (Dye et al., 2006). RNA polymerase I (Pol I) exclusively synthesizes 

ribosomal RNA (rRNA). In yeast, the rRNA is transcribed as a 35S primary transcript, which 

is modified and processed cotranscriptionally into the 25S, 5.8S and 18S rRNA (Kos and 

Tollervey, 2010), constituting the major building blocks of ribosomes. 

 

1.2 Ribosome biogenesis 

The eukaryotic 80S eukaryotic ribosome is composed of approximately 65% RNA and 35% 

protein with a molecular mass of about 4 MDa. The large 60S ribosomal subunit consists of 

the 25S, 5.8S and 5S rRNA, while the small 40S subunit comprises the 18S rRNA. Besides 

the rRNA, around 80 additional ribosomal proteins are incorporated to complete the 

functional ribosome. Ribosome biogenesis is a very complex process, with several 

intermediate steps in rRNA maturation that involve a large number of trans-acting factors 

(Henras et al., 2008). Since each cell provides around 10 ribosomes for every synthesized 

mRNA (Warner, 1999), ribosome synthesis occupies a substantial fraction of the cellular 

resources. Therefore, Pol I transcription accounts for up to 60% of all nuclear transcription, 

which results in up to 80% of the total RNA in a cell (Warner, 1999). As a consequence, 

rRNA synthesis is a focal point for the regulation of cell metabolism and cell growth 

(Grummt, 2003). Consistent with the effect of tumor suppressors and oncogenes on ribosome 

biogenesis (Fontoura et al., 1997; Moss et al., 2007), Pol I and Pol III influence cancer 

development (White, 2005). 

 

1.3 Structure of the nucleolus and ribosomal DNA loci 

rRNAs are synthesized, processed and assembled into ribosomes within the largest sub-

nuclear compartment, the nucleolus (Fig. 1A), which is formed when rRNA genes are 

transcribed (Nomura, 2001). Initial assembly of ribosomes occur cotranscriptionally, which 

can be visualized in ‘Miller spread’ electron micrographs (Fig. 1B) 
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Figure 1. Structure of the nucleolus and active ribosomal DNA genes 

(A) Electron microscopy of yeast nuclei (Trumtel et al., 2000). Depicted nucleolar elements are a fibrillar centre 

(FC), a granular center (GC) and a dense fibrillar center (DFC). (B) ‘Miller spread’ of a single rDNA repeat in 

yeast. The rDNA (green arrow), the transcribed rRNAs (black arrow) and pre-ribosomes (brown arrow) are 

indicated. Courtesy of Sarah French and Ann Beyer, University of Virginia. 

 

In yeast, the ribosomal genes are organized in a tandem array, which consists of approximatly 

150 identical repeats of the rDNA gene. Besides the rDNA coding regions, each gene contains 

an intergenic spacer (IGS), important for efficient pre-rRNA synthesis, as well as rDNA 

silencing (Moss et al., 2007). The IGS comprises important sequence elements such as the 

rDNA promoter, multiple enhancers, the spacer promoter and several terminator elements 

(Fig. 2A). The rDNA coding region consists of an external transcribed spacer (ETS) and 

internal transcribed spacer (ITS) sequeneces, which are removed during pre-rRNA processing 

(Fig. 2B). It is interesting that neither Pol I nor tandemly arranged rDNA repeats are 

absolutely required for rRNA synthesis. In a yeast strain, which is defective for Pol I 

transcription, rRNA can be synthesized by Pol II from a high-copy plasmid with the 35S 

rDNA under control of the GAL7 promoter (Nogi et al., 1991). 

 

Figure 2. Yeast ribosomal DNA locus 

(A) rRNA coding units are separated by intergenic spacers (IGS), containing terminators (Term), enhancers, 

spacer promoter (SP), proximal terminator (PT), the upstream promoter element (UPE/UE) and the promoter 

core element (CORE/CE), with the ribosomal initiator (rInr). Initiation sites are indicated by arrows or tis (Paule 

and White, 2000). (B) Single rDNA gene (Granneman and Baserga, 2005). External and internal transcribed 

spacers (ETS, ITS), 18S, 5.8S and 25S rRNA coding sequences, and specific cleavage sites are shown. 
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1.4 Ribosomal DNA promoter  

In yeasts and vertebrates, the rDNA promoter consists of 140 to 160 base pairs, located 

mostly upstream of the mapped pre-rRNA initiation site (Fig. 3). The poor conservation of 

various Pol I promoter sequences is consistent with the extreme species specificity of the Pol I 

transcription system, but the general architecture of promoter elements is highly conserved 

from yeast to human. Most rDNA promoters contain two distinct sequence elements, a core 

promoter element (CORE/CE) and an upstream promoter element (UPE/UE). A more detailed 

analysis revealed three distinct domains within the promoter, CE domain 1 (positions -28 to 

+8), UE domain 2 (-70 to -51) and UE domain 3 (-146 to -76) (Choe et al., 1992; Kulkens et 

al., 1991; Musters et al., 1989). 

 

 

Figure 3. RNA polymerse I promoter sequences 

Promoter sequences are shown according to the mapped initiation site (+1). Functional sequence elements are 

labeled in blue and regions shown to interact with the TBPI complex (SL-1/TIF-IB), UBF or with TBP are 

indicated graphically (see below). Species are Homo sapiens (Hs), Mus musculus (Mm), Rattus norvegicus (Rn), 

Xenopus laevis (Xl), Drosophila melanogaster (Dm), Drosophila virilis (Dv), Acanthamoeba castellanii (Ac), 

Thermus thermophilus (Tt), Arabidopsis thaliana (At), Saccharomyces cerevisiae (Sc) and Schizosaccharomyces 

pombe (Sp). Adapted from (Moss et al., 2007). 
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1.5 RNA Polymerase I pre-initiation complex 

Formation of the Pol I pre-initiation complex (PIC) requires the TATA-box-binding protein 

(TBP) and a group of Pol I-specific TBP-associated factors (TAF), to recognize the promoter 

(Table 2). In human and mouse, the PIC includes transcription initiation factor IB 

(TIF-IB/SL1), which consists of TBP and three TAFs, as well as a second non-specific DNA-

binding protein, the upstream binding factor (UBF). In yeast, the PIC requires the core factor 

(CF) and the upstream activating factor (UAF), which could be related to their mammalian 

counterparts TIF-IB and UBF, respectively (Boukhgalter et al., 2002) and bind to the CE and 

UE of the Pol I promoter (Fig. 4). 

 
Table 2. Subunits from yeast CF (corresponding to mammalian TIF-IB/SL1) and UAF (Moss et al., 2007). 

 

After the UAF-UE complex is formed, TBP is either already present or is recruited along with 

the CF (Steffan et al., 1998). The UAF complex is needed for efficient rDNA transcription, 

although low-level specific transcription initiation in vitro does not require the UE of the 

promoter, UAF or TBP (Keener et al., 1998). Initiation in yeast and mammals requires the 

additional Pol I-associated factor Rrn3 (TIF-IA), which is essential for functional recruitment 

of Pol I to the PIC (Keener et al., 1998; Milkereit and Tschochner, 1998). Rrn3 is normally 

found associated with a small fraction of phosphorylated Pol I (Fath et al., 2001) and is 

released after the polymerase initiates transcription (Bier et al., 2004). Rrn3 itself is also 

phosphorylated and its phosphorylation state is regulated by the mTOR kinase nutrient-

sensing pathway and the Jun N-terminal kinase (Mayer et al., 2005). 

 

Yeast Core Factor (CF) (=>) Mammalian TIF-IB (SL1) Yeast upstream activating 
factor (UAF) 

Rrn6 TAFI 110/95 Rrn5 
Rrn7 TAFI 63/68 Rrn9 
Rrn11 TAFI 48 Rrn10 
TBP TBP UAF30 

H3  
H4 
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Figure 4. RNA polymerase I pre-initiation complex  

Assembly of the Pol I pre-initiation complex in yeast. DNA is shown in red and promoter elements in yellow, 

UAF is in green, Pol I and Rrn3 are in blue, TBP in yellow and CF in brown, purple and magenta (Moss, 2004). 

 

1.6 RNA polymerase I-specific subunits 

Pol II utilizes a set of additional initiation factors TFIIA, -B, -D, -E, -F, and -H, which are 

important for PIC formation (Table 3) and are apparently not related to Pol III and Pol I 

transcription factors. All three eukaryotic RNA polymerases consist of a conserved 10-subunit 

core, plus an additional number of peripheral subunits (Table 1). Pol III contains five extra 

subunits, which are organized in two subcomplexes C37/C53 (Landrieux et al., 2006) and 

C82/34/31 (Wang and Roeder, 1997). In Pol I there are four additional subunits, the Pol II-

related A14/43 heterodimer (Meka et al., 2003) and the Pol I-specific subunits A34.5 and 

A49. Subunit A43 forms an essential bridge to the conserved Pol I initiation factor Rrn3 

(Milkereit and Tschochner, 1998; Peyroche et al., 2000), thereby recruiting Pol I to the rDNA 

promoter. A34.5 stabilizes A49 on Pol I and was shown to genetically interact with DNA 

topoisomerase 1 (Gadal et al., 1997). A49 is important for Pol I activity (Huet et al., 1975; 

Liljelund et al., 1992), promoter-dependent transcription (Hanada et al., 1996), as well as for 

recruitment of Pol I and Rrn3 to the rDNA promoter (Beckouet et al., 2008). 

 
Table 3. Pol II initiation factors in yeast (Hahn, 2004). 

Factor Function 
TFIIA Stabilizes TBP and TFIID-DNA binding. Blocks transcription inhibitors. Positive and negative 

gene regulation. 
TFIIB Binds TBP, Pol II, and promoter DNA. Helps to fix transcription start site. 
TFIID/
TBP 

Binds TATA element and deforms promoter DNA. Assembly platform for TFIIB, TFIIA and 
TAFs. 

TFIIE Binds promoter near transcription start. Stabilization of transcription bubble in the Open Complex. 
TFIIF Binds Pol II and is involved in Pol II recruitment to PIC and in Open Complex formation 
TFIIH Functions in transcription and DNA repair. Kinase and two helicase activities. Essential for Open 

Complex formation. Mutations in IIH can cause human disease (e.g. Xeroderma pigmentosum) 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1.7 Structural studies on eukaryotic RNA polymerases  

Most structural advances were achieved with Pol II, namely the crystal structures of the 

10-subunit core enzyme (Cramer et al., 2001), the complete 12-subunit enzyme (Armache et 

al., 2005), the Pol II-TFIIS complex (Kettenberger et al., 2003) and the Pol II-TFIIB initiation 

complex (Kostrewa et al., 2009). Since all three polymerases share a similar core structure 

and active center (Cramer et al., 2008), their basic mechanism of DNA-dependent RNA 

elongation is similar and well understood at a structural level (Brueckner et al., 2009).  

The Pol III architecture was determined by cryo-electron microscopy (EM) (Fernandez-

Tornero et al., 2007) (Vannini and Cramer, unpublished), a homology model for the core 

enzyme was constructed (Jasiak et al., 2006), and the structure of the subcomplex C17/25 was 

solved by X-ray crystallography (Jasiak et al., 2006).  

For Pol I, a three-dimensional surface model and approximate dimensions were first revealed 

by EM analysis of two-dimensional crystals (Schultz et al., 1993). A subsequent cryo-EM 

map at 34 Å resolution visualized a stalk containing the Pol I subcomplex A14/43 and 

densities for the Pol I-specific subunits A49 and A34.5 over the central cleft (Bischler et al., 

2002; Peyroche et al., 2002). Later EM analysis with negative staining at 22 Å confirmed the 

stalk density, but not the location of A49 and A34.5 (De Carlo et al., 2003). 
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2 Scope of this study 

In contrast to the well-studied Pol II system, which includes atomic structures of the complete 

12-subunit enzyme in complex with nucleic acid scaffolds and transcription factors, detailed 

structural information for Pol I is still limited.  

Therefore the overall aim of this work was to obtain crystal structures for all four Pol I-

specific subunits A14, A43, A34.5 and A49 and to complete the structural information with 

biochemical data. Such information would enable us to better understand evolutionary 

differences between the three eukaryotic RNA polymerases.   

A combined approach was pursued, which first included the development of a protein 

engineering strategy to obtain diffracting crystals, suitable for accelerated X-ray structure 

determination, as described in chapter II. This strategy was applied to obtain the atomic 

structure of the A14/43 subcomplex and, together with a Pol I cryo-EM map, to construct a 

hybrid structure for the 12-subunit enzyme. The structural data was combined with 

biochemical analysis of the RNA cleavage activity and processivity of the complete enzyme, 

to obtain a model of the functional architecture of Pol I, as summarized in chapter III. Finally, 

two crystal structures of subunits A49 and A34.5 were solved, completing the structural 

analysis of all peripheral Pol I domains and resulting in a more detailed understanding of 

novel functional properties of the subcomplex, such as DNA binding and a possible role in 

Pol I promoter recognition, as described in chapter IV. 
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1 Introduction 

Structure determination of large multi-component complexes often requires hybrid 

approaches that combine electron microscopy (EM) with X-ray crystallography. Whereas EM 

can establish the structure of the complex at medium resolution, the subunit architecture may 

be resolved by interpreting the EM density using high-resolution structures of subcomplexes 

obtained by X-ray crystallography. However, such subcomplexes often fail to crystallize 

because they contain flexible regions, some of which result from removing the subcomplex 

from the intact native complex. In chapter III, we report the hybrid structure of yeast RNA 

polymerase (Pol) I, a 14-subunit 600 kDa complex. Hybrid analysis of the complex relied on 

the crystal structure of the heterodimeric polymerase subcomplex A14/A43, which contained 

several extended flexible regions. Here, we show how iterative cycles of structure prediction 

and experiments were used to identify and remove flexible protein regions, which led to the 

crystallization of the A14/A43 subcomplex. This approach was additionally employed to 

crystallize two domains of Pol I-specific subcomplex A49/34.5 (chapter IV) and could be 

applied to comparable crystallization challenges in the future. 

The A14/A43 crystal structure, described in chapter III (2.3), revealed an overall similarity to 

its counterparts Rpb4/7 in Pol II, C17/25 in Pol III, and RpoF/E in the archaeal Pol (Hu et al., 

2002; Kuhn et al., 2007; Meka et al., 2003; Peyroche et al., 2002; Sadhale and Woychik, 

1994; Shpakovskii and Shematorova, 1999; Siaut et al., 2003; Todone et al., 2001) (Fig. 5 and 

Table 4). A14 contains the ‘tip-associated domain’, which includes a flexible loop (H1-H2), 

but lacks the C-terminal helicase and RNAse D C-terminal (HRDC) domain present in all 

A14 counterparts, instead having a long flexible C-terminal tail. A43 consists of an N-

terminal ‘tip domain’ and a C-terminal OB domain that is present in all its counterparts. The 

overall structural similarity of A14/A43 with its counterparts is surprising, as there is no 

sequence similarity between A14 and its counterparts and only 8% of the A43 residues are 

identical in Rpb7 (Table 4). Nevertheless, 78% of the Rpb7 residues have the same fold as in 

A43 (Table 4 and chapter III, 2.3). A43 differs from Rpb7 by having flexible N- and C-

terminal tails, an extended loop (C1-C2) within the C-terminal OB domain and a ten-residue 

insertion in the ‘tip loop’ (chapter III, 2.4). Thus, A14/A43 contains at least four very 

extended flexible regions (Fig. 5), which had to be identified and at least partially removed 

for crystallization. 
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Figure 5. Crystal structure of yeast A14/A43 

A43 and A14 are colored blue and red, respectively. Disordered regions and regions which are not present in the 

protein variant are drawn to scale, assuming extended folds, as dashed lines. Adapted from chapter III (Fig. 13). 

 

Here we present our approach to obtain diffraction-quality crystals of the A14/A43 

subcomplex, and an evaluation of this approach in light of the structure that is now available. 

We show how repetitive cycles of predictions and experiments were used to obtain a minimal 

A14/A43 variant that lacks most of the flexible residues and forms well-ordered crystals. The 

described approach is superior to standard sequence analysis and structure prediction. For 

example, there were conflicting predictions for the A14 structure, one suggesting that a 

HRDC domain is present (Meka et al., 2003), and another that it is absent (Peyroche et al., 

2002). Our approach revealed the absence of the HRDC domain, which was key to obtaining 

crystals. The presented strategy may be adapted to comparable crystallogenesis challenges 

that will be faced more frequently in the future. 
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Table 4. Similarity of A14 and A43 to homologous and orthologous polymerase subunits 

Pol I subunit Homologous subunit  Sequence identity1 
(%) 

Conserved fold2 
(%) 

Sequence similarity3 
(%) 

A14 Rpb4 (Pol II) 4.5 25.0  
 C17 (Pol III) 6.6 52.9  
 RpoF (archaeal Pol) 3.7 76.6  
 A14 (C. glabrata) 25.6  31.4 
 A14 (A. gossypii) 36.5  52.6 
 A14 (K. lactis) 42.3  55.5 

A43 Rpb7 (Pol II) 8.0 78.4  
 C25 (Pol III) 8.6 64.2  
 RpoE (archaeal Pol) 6.1 69.5  
 A43 (C. glabrata) 62.9  73.6 
 A43 (A. gossypii) 55.5  69.0 
 A43 (K. lactis) 56.4  69.0 

 

1Number of amino acid residues in A14 or A43 that are identical in the homologous polymerase subunit divided 

by the total number of residues in A14 or A43. For orthologues, the number of amino acid residues in S. 

cerevisiae A14 or A43 that are identical in the orthologous polymerase subunit divided by the total number of 

residues in S. cerevisiae A14 or A43. 

2Number of amino acid residues in the homologous polymerase subunit that have the same fold in the A14/A43 

structure divided by the total number of residues in the homologous polymerase subunit. For A14, the number of 

amino acid residues in the homologous polymerase subunit that have the same fold in the A14 structure divided 

by the number of residues of the tip-associated domain of the homologous polymerase subunit (HRDC domain 

excluded).  

3The number of amino acid residues in S. cerevisiae A14 or A43 that are similar (e.g. hydrophobic, acidic or 

basic) in the orthologous polymerase subunit divided by the total number of residues in S. cerevisiae A14 or 

A43. 
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2 Results and Discussion 

2.1 Prediction of unstructured regions 

Recombinantly expressed full-length A14/A43 (Experimental procedures, 3.2) did not 

crystallize, indicating the presence of unstructured flexible regions within the complex. To aid 

in the design of protein variants that were suitable for crystallization, we used bioinformatics 

tools to predict the structured and unstructured regions in both subunits. Firstly, we predicted 

the secondary-structure elements in both subunit sequences using PredictProtein (Rost et al., 

2004). Secondly, we prepared a sequence alignment with closely related yeast orthologues 

detected by BLAST (Altschul et al., 1997). This alignment was used to judge the reliability of 

the secondary structure predictions, assuming that structured elements must be conserved 

among closely related species. Thirdly, a preliminary alignment of A14 and A43 sequences 

was obtained by matching the predicted secondary structure elements with the precisely 

located secondary structure elements present in the crystal structures of the A14/A43 

counterparts in other RNA polymerases. Since sequence homology was extremely weak 

(A43) or essentially absent (A14), the obtained alignments obviously contained errors, but 

they still allowed an initial prediction of the location of structured and unstructured regions. 

The final alignment of the secondary-structure elements observed in the A14/43 crystal 

structure with predicted secondary-structure elements is shown in Figure 8. The preliminary 

alignment between A43 and its counterparts in the Rpb7 family suggested that A43 contains a 

long flexible C-terminal tail and a disordered internal loop. However, the precise length of the 

tail and the exact position of the loop were unclear owing to a lack of conservation and 

possible misalignment in the C-terminal region. For A14, two generally possible alignments 

were obtained. The first comprised a C-terminal HRDC domain, consistent with one 

published model (Meka et al., 2003), yet not all of the helices required to form this domain 

were predicted. The second model postulated that the HRDC domain was absent and A14 

contained extended flexible regions, consistent with another model (Peyroche et al., 2002).  
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2.2 Identification of unstructured regions in A43 

We tested the predictions of flexible regions in the A14/A43 heterodimer by preparing 

deletion variants of A14 and A43, examining their interaction after coexpression in E. coli, 

and assessing the solubility of the obtained subcomplexes. We first investigated the nature of 

a possible N-terminal tail in A43, since previously published data suggested that 32 N-

terminal residues of A43 can be removed from the protein (Meka et al., 2003). However, our 

variant A14/A43-1, which also lacks 32 N-terminal residues, could only be expressed as a 

substoichiometric complex (Figs. 6A and 7). The A14/A43 structure subsequently showed 

that residues 24-27 of A43 interact with residues 28-30 of A14. Limited proteolysis of full-

length A14/A43 revealed two cleavage sites in the N-terminal region of A43 after residues 16 

and 22 (Fig. 6A). Variants A14/A43-2 and A14/A43-3, containing two different deletions 

before residue 23 at the N-terminus, could be purified as stable stoichiometric subcomplexes 

(Figs. 6A and 7). Thus, the first 22 residues at the N-terminus can be removed without 

affecting the stability of the complex, while residues 23-32 were important for stable binding 

of A14 to A43. Owing to the remaining uncertainties we decided not to remove any residues 

at the N-terminus and instead focused on more extended loops in A43. 

 

 

Figure 6. Schematic representation of yeast A43 and A14 variants  

The full-length proteins A43 (A) and A14 (B) are shown as colored bars (blue and red, respectively). Disordered 

regions that are not present in the crystal structure are depicted as dashed lines. Arrows indicate proteolytic 

cleavage sites. Variants are numbered A43-1 to A43-11 for A43 and A14-1 to A14-14 for A14. All residue 

numbers correspond to residues present in the variant. The minimal A43 and A14 variants used for final 

crystallization are shown at the bottom (variants A43-11 and A14-14). 
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Figure 7. Purification and crystallization of A14/A43 variants 

(A) SDS-PAGE analysis (Coomassie staining) of A14 purification after coexpression of different A43 deletion 

variants A43-x (Fig. 6A). (B) SDS-PAGE analysis (Coomassie staining) of A43-6 purification after 

coexpression of different A14 deletion variants A14-x (Fig. 6B). (C) SDS-PAGE analysis (Coomassie-staining) 

of the A14-14/A43-11 variant. (D) Crystals obtained with the A14-14/A43-11 variant. The protein was 

crystallized using as protein buffer 100 mM NaCl, 20 mM Tris-HCl pH 8.0 and 5 mM DTT. Reservoir solutions: 

small microcrystals, 200 mM NaOAc, 30% (w/v) PEG 4000, 100 mM Tris-HCl pH 8.5 (left panel); intergrown 

crystals, 50 mM potassium phosphate, 20% (w/v) PEG 8000 (second panel from the left); larger crystals, 200 

mM potassium acetate, 20% (w/v) PEG 3350 (third panel from the left); clusters of single crystals, 220 mM 

potassium acetate, 26% (w/v) PEG 3350 (fourth panel from the left); crystal obtained after microseeding, 300 

mM potassium acetate, 20% (w/v) PEG 3350 (right panel). 

 

Limited proteolysis of the A14/A43 subcomplex showed an additional cleavage site within 

the predicted ‘tip loop’ region (Fig. 6A). However, we did not create a deletion variant 

lacking the tip loop because it is involved in a key interaction with the core of Pol I. During 

purification of the A14/A43-1 variant, an additional protein variant was detected by SDS-

PAGE. Edman sequencing revealed a truncated A43 variant starting at residue 81, preceded 

by an additional methionine residue. Analysis of the A43 nucleotide sequence revealed a 
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Shine-Dalgarno-Sequence within the A43 open reading frame. To prevent expression of the 

truncated variant, two silent point mutations (nucleotide changes A228G and G243T) were 

inserted and were retained for all subsequent A14/A43 variants. 

Consistent with the prediction that A43 contains a long flexible C-terminal tail, a 46 amino 

acid C-terminal deletion variant (Peyroche et al., 2002) could be expressed without affecting 

the solubility or stoichiometry of the complex. Screening of variants that were shortened from 

the C-terminus demonstrated that up to 75 residues of A43 could be removed without 

affecting the solubility or stability of the subcomplex (variants A14/A43-4, A14/A43-5 and 

A14/A43-6, Figs. 6A and 7). After the C-terminal tail had been successfully delineated and 

removed, variant A14/A43-6 was subjected to limited proteolysis, to identify the location of 

the major loop. Comparison with Rpb7 revealed approximately 35 additional amino acids that 

were predicted to form a major loop in A43. In order to locate the loop, limited proteolysis 

experiments were performed, which revealed two cleavage sites after residue K206 and F207 

of A43 (Fig. 6A). However, variants A14/A43-7, A14/A43-8 and A14/A43-9, which 

contained different A43 loop deletions including the proteolytic cleavage sites, showed 

strongly impaired solubility (Figs. 6A and 7), indicating that the loop was smaller. Indeed, a 

A43 variant lacking residues 194-209 (variant A14/A43-10) could be expressed as a soluble 

stochiometric heterodimer (Figs. 6A and 7). The loop deletion could be extended to residues 

173-209 (A14/A43-11, Figs. 6A and 7). These results suggested that the loop was located 

between β-strands C1 and C2 within the OB domain (Figs. 5 and 6A), as β-strand C1 was 

predicted to lie between residues 165 and 170, immediately before the loop deletion. 

Combining this loop deletion with the C-terminal truncation resulted in a variant that lacks 

residues 173-209 and 252-326 and was well expressed and soluble (variant A14/A43-11, Figs. 

6A and 7).  

 

2.3 Identification of unstructured regions in A14 

Next we tested experimentally the two models for the A14 structure that differed by the 

presence or absence of a C-terminal HRDC domain. We checked the presence of a HRDC 

domain by coexpressing A43 with A14 variants with various C-terminal deletions and 

assessed the solubility and stoichiometry of the A14/A43 heterodimer. Since in the 

counterpart structures subunit interaction does not rely on the HRDC domain, we expected 

that the HRDC domain could be removed without impairing the solubility of the subcomplex, 

as observed for the C17/25 subcomplex (Jasiak et al., 2006). Multiple C-terminal deletion 
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variants were designed, lacking 71, 66 and 62 residues, respectively (variant A14-1/A43-6, 

A14-2/A43-6 and A14-3/A43-6) (Figs. 6B and 7), consistent with the previously predicted 

HRDC domain (Meka et al., 2003). Purification of the hexahistidine-tagged A43 did not result 

in copurification of the truncated A14 protein, indicating that the deletion variant lacked parts 

of the A43-binding domain. We therefore reduced the length of the A14 C-terminal deletion 

until a minimal stoichiometric A14/A43 subcomplex was obtained (A14-4/A43-6 to A14-

10/A43-6, Figs. 6B and 7). The A14-10/A43-6 complex could be purified at stoichiometric 

levels. This result argued against the presence of a HRDC domain in A14. Instead, the 

insolubility of the shorter A14 variants suggested that these contained an incomplete tip-

associated domain. 

We therefore tested the second model for the A14 structure, which suggested that a predicted 

α-helix between residues 82 and 96 corresponds to helix H2 of the tip-associated domain 

(Peyroche et al., 2002). This model proposed a major loop in A14 between helices H1 and 

H2, ranging approximately from residue 50 to 80. Consistent with this model, coexpression of 

several A14 variants with various loop deletions (variants A14-11/A43-6 to A14-13/A43-6, 

Figs. 6B and 7) led to a minimal A14 variant, which forms a soluble and stochiometric 

complex with the A43 variant (variant A14-14/A43-11, Figs. 6 and 7C).  

 

2.4 Additional changes to obtain diffraction-quality crystals 

By combining a total of four precise deletions, two each in A14 and A43, we obtained a 

minimal A14/A43 variant (A14-14/A43-11, Figs. 6 and 7C). This variant was purified and 

subjected to various crystallization screens, varying protein concentration, protein buffer 

concentration and pH, reducing agents and additives. Although the variant was highly soluble, 

not sensitive to limited proteolysis, and apparently contained stoichiometric amounts of 

subunits, only very small microcrystals and clusters of small crystals were obtained under 

varying conditions and using different crystallization methods (Fig. 7D, left panel). We 

therefore changed the position of the affinity-purification tag from the C-terminus of A43 to 

the N-terminus of A14 and removed it by thrombin cleavage after affinity purification, finally 

leading to the formation of single protein crystals. However, over-nucleation resulted in 

crystals of medium size that were often clustered and intergrown (Fig. 7D, middle three 

panels). Only very few crystals showed diffraction beyond 4 Å resolution. With the use of 

microseeding (Bergfors, 2003), we could reduce nucleation and obtain well shaped, large 

single crystals when using 300 mM potassium acetate and 20% (w/v) PEG 3350 as reservoir 
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solution. These crystals were suitable for data collection to high resolution and enabled 

structure determination (Fig. 7D, right panel). 

 

2.5 Conclusions 

The removal of flexible protein regions has emerged as a general tool to achieve 

crystallization of proteins and their complexes. In the future, the number of crystallization 

projects hampered by multiple protein flexibilities will increase, in particular since there is a 

need to crystallize subcomplexes of larger assemblies that are subjected to hybrid analysis, 

combining EM of the entire assembly with X-ray crystallography of its subcomplexes. 

However, if more than one flexible region needs to be removed from a protein or a protein 

complex, the number of variants that have to be cloned, expressed, purified and subjected to 

crystallization trials becomes very large, as several variants for each deletion must be tested in 

all combinations. If four extended flexible regions exist, as in the example described here, 

only ten variants for each flexible region will lead to a total of 10000 variants with different 

combinations of deletions. In addition, if only one flexible region is not predicted correctly, 

all variants will be insoluble and useless for the identification of a suitable variant. 

Furthermore, high-throughput techniques can be applied to delineate flexible terminal tails, 

but are not suited to finding and removing flexible internal loops, which is often crucial for 

crystallogenesis. 

Here, we present an alternative approach to engineering a protein with multiple extended 

flexible regions such that it will form well-ordered crystals. The novelty of this approach is 

that it successfully integrates structure prediction and structure-guided variant design and that 

it involves cycles of predicting flexible regions and experimental verification or falsification 

of the predictions. In particular, flexible regions are detected stepwise and also combined in a 

stepwise manner, rather than in the parallel, high-throughput approach that is often followed 

in structural proteomics. This stepwise detection and removal of flexible regions dramatically 

reduces the number of variants to be made and tested. The key to success of this procedure is 

to iteratively improve the prediction of unstructured regions and then use the improved 

prediction to design new variants for additional experiments. As more and more protein 

structures become available, the likelihood of finding a structure of a protein that is distantly 

related to the target protein to be crystallized increases. As a consequence, the number of 

crystallization projects that are able to use this approach will increase in the future. 
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Figure 8. Comparison of secondary structure elements observed in the A14/A43 crystal structure with 

predicted secondary structure elements. 

Predicted secondary structure elements (α-helices and β-strands) are shown above the amino acid sequences of 

A43 and A14 as black or grey bars for elements predicted with high (9-5) or low (4-1) reliability index 

(Experimental procedures). Secondary structure elements taken from the crystal structure (chapter III, Figs. 13, 

14 and 15) are shown above the predicted secondary structure elements (bars, α helices; arrows, β strands; lines, 

loops; dashed lines, disordered regions). 
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3 Experimental procedures 

3.1 Bioinformatic analysis 

ClustalW (Chenna et al., 2003) was used to align A14 (GeneID 851734) and A43 (GeneID 

854518) with their counterparts Rpb4, C17, RpoF and Rpb7, C25, RpoE, respectively. 

Alignments were manually edited using SEAVIEW (Galtier et al., 1996). In addition, A14 

(137 residues, molecular weight of 14.6 kDa) and A43 (326 residues, molecular weight 36.2 

kDa) were aligned with related yeast orthologues (Candida glabrata, Candida albicans, 

Yarrowwia lipolica, Debaryomyces hanseii, Ashbya gossypii, Kluyveromyces lactis and 

Pichia stipitis). The secondary structures of A14 and A43 were predicted with PredictProtein 

(Rost et al., 2004). The sequences of A14 and A43 were submitted to the HHpred server 

(Soding et al., 2005) using default settings. 

 

3.2 Cloning, expression, purification and limited proteolysis of protein 

variants 

Cloning of all A14/A43 variants (Fig. 6) was carried out as described in chapter III (3.4), 

except that genes were cloned sequentially into vector pET21b, resulting in a C-terminal 

hexahistidine tag on A43. Additional residues from the polylinker and tag sequence, which 

remain on A43, were AAALEHHHHHH. All A14/A43 variants were expressed 

recombinantly (Maniatis et al., 1982) and purified as described in chapter III (3.4), except for 

the thrombin-cleavage step and some individual changes, as follows. Full-length A14/A43 

and variants A14/A43-1, A14/A43-2, A14/A43-4, A14/A43-5 and A14/A43-6 were purified 

by immobilized metal-affinity chromatography (IMAC) using as buffer 150 mM NaCl, 50 

mM Tris pH 7.5, 5% glycerol, 10 mM β-mercaptoethanol, 1 mM PMSF, 1 mM benzamidine, 

200 µM pepstatin, and 60 µM leupeptin. Full-length A14/A43, A14/A43-2 and A14/A43-6 

were further purified on a Mono Q 10/100 GL anion exchange column (GE Healthcare), using 

as buffer 150 mM NaCl, 50 mM Tris pH 7.5, 5 mM DTT and were subsequently applied onto 

various gel filtration columns (Superose 6 HR 10/300, Superose 12 HR 10/300 and Superdex 

75 FPLC, GE Healthcare). For limited proteolysis (Hubbard, 1998), protein was diluted to a 

concentration of 1 mg/ml. 100 µl protein solution was incubated with 1 µl of chymotrypsin or 

trypsin (1 mg/ml) and incubated for 1 h at 37 °C. 15 µl samples were taken at different time 

points ranging from 1 to 60 min. The reaction was stopped by adding 5 µl of 4x SDS sample 
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buffer (50 mM Tris pH 7.0, 14% 1,4-dithiothreitol, 10% glycerol, 1% β-mercaptoethanol, 

0.1% bromophenol blue, 0.1% sodium lauryl sulfate) and incubated for 5 min at 95 °C. 

Samples were analyzed by SDS-PAGE. 

 

3.3 Crystallization and crystal screening 

Initial crystallization experiments of all A14/A43 variants were performed at 20 °C in sitting 

drops using the Hydra II Plus One crystallization robot (Thermo Fisher Scientific). 

Commercially available screening kits were used for initial screens (Qiagen, Jena Bioscience, 

Hampton Research). The A14/A43 variants were concentrated to 10 to 30 mg/ml. Details on 

the crystallization of native and selenomethionine-derivatized A14-14/A43-11 can be found in 

chapter III (3.5). 
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1 Introduction 

Pol I has a molecular weight of 590 kDa and comprises 14 subunits (Russell and Zomerdijk, 

2006) (chapter I, Table 1). Subunits Rpb5, Rpb6, Rpb8, Rpb10, and Rpb12 are identical in all 

three polymerases. The two large Pol I subunits A190 and A135 contain regions homologous 

to the Pol II subunits Rpb1 and Rpb2, respectively. Subunits AC40 and AC19 are identical in 

Pol I and Pol III, and homologous to the Pol II subunits Rpb3 and Rpb11, respectively. 

Subunits A14 and A43 form the heterodimer A14/43 (chapter II), which is distantly related to 

Rpb4/7 in Pol II and C17/25 in Pol III (Hu et al., 2002; Jasiak et al., 2006; Meka et al., 2003; 

Peyroche et al., 2002; Sadhale and Woychik, 1994; Siaut et al., 2003). Subunits A49 and 

A34.5 are Pol I-specific. Subunit A12.2 is homologous to subunit Rpb9 in Pol II and C11 in 

Pol III, but its C-terminal domain is also related to the Pol II transcript cleavage factor TFIIS. 

To date most progress in structural studies of nuclear RNA polymerases has been made for 

Pol II, culminating in the refined atomic structures of the 10-subunit core (Cramer et al., 

2001) and the complete enzyme (Armache et al., 2005). For Pol III, electron microscopy 

(EM) structures (Fernandez-Tornero et al., 2007) (Vannini and Cramer, unpublished), and a 

homology model for the core enzyme and the crystal structure of the C17/25 subcomplex are 

available (Jasiak et al., 2006). For Pol I, the overall shape and dimensions were first revealed 

by EM analysis of two-dimensional crystals (Schultz et al., 1993). Subsequent cryo-EM at 34 

Å resolution visualized a stalk containing A14/43, and densities for A49 and A34.5 over the 

central cleft (Bischler et al., 2002; Peyroche et al., 2002). Later EM analysis with cryo-

negative staining at 22 Å confirmed the stalk, but not the location of A49 and A34.5 (De 

Carlo et al., 2003). 

 

Here we integrate structural biology methods to establish the complete subunit architecture 

and domain organization of Pol I. In addition, we define functional roles for subunits A49, 

A34.5, and A12.2, and report an intrinsic RNA cleavage activity of Pol I. The results uncover 

conserved and specific structural and functional principles in eukaryotic RNA polymerases 

and enable a detailed structure-function analysis of rRNA transcription. 
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2 Results and Discussion 

2.1 Cryo-EM structure of Pol I at 12 Å resolution 

Preparation protocol for the Pol I enzyme was established by Claus Kuhn and Jochen Gerber 

(Experimental procedures, 3.1), (Gerber et al., 2008; Kuhn et al., 2007). Cryo-EM map of Pol 

I was reconstructed by Claus Kuhn and Sonja Baumli (Fig. 9) (Kuhn et al., 2007). 
 

Figure 9. Cryo-EM reconstruction of Pol I 
Views and structural regions are named as in the Pol II structure (Cramer et al., 2001), as in (Kuhn et al., 2007). 

 

2.2 Homology model of the Pol I core 

A Pol I homology model was created by Claus Kuhn (Fig. 10) (Kuhn et al., 2007). 

 

 

Figure 10. Model and EM features of the Pol I core 

(A) Placement of the Pol II 10-subunit core structure (Armache et al., 2005) (grey) into the EM density (blue). 

The foot was deleted, and subunits Rpb5, Rpb8, and Rpb9 are highlighted in magenta, green, and orange, 

respectively. The clamp has been fitted as a separate rigid body. (B) Fit of the common subunits Rpb5 and Rpb8 

to the EM map, and density for the core subunit A12.2 (the Pol II homolog Rpb9 is shown as a ribbon model), as 

in (Kuhn et al., 2007). 
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2.3 Crystal structure of the A14/43 subcomplex 

After assigning EM densities to the Pol I core, a stalk-like density remained at the expected 

location for A14/43 that was much smaller than the structure of Rpb4/7 (Figs. 9, 10 and 11). 

Since the weak sequence similarity between A14/43 and Rpb4/7 or C17/25 did not allow for 

homology modeling, we determined the crystal structure of A14/43 (Experimental procedures 

3.5). Partial proteolysis of a recombinant A14/43 heterodimer and bioinformatics revealed 

four mobile regions in A14/43 that were dispensable for dimerization (Figs. 12 and 15), as 

described in chapter II. An A14/43 variant lacking the mobile regions crystallized and enabled 

structure determination at 3.1 Å resolution (Figs. 13, 16 and Table 5). 

 

 

 
 

 

 

 

 

 

 

Figure 11. EM density of Pol I stalk 

Fit of yeast Rpb4/7 (Armache et al., 2005) to part of the Pol I cryo-EM density, obtained by superposition with 

the tip domain of A43.  

 

 

Figure 12. Preparation of A14/43Δ loop  

SDS-PAGE analysis of purified yeast A14/43Δloop used for crystallization (Experimental procedures). 
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Figure 13. X-ray structure of the A14/43 subcomplex 

Structure of yeast A14/43 (this study) (left) and Rpb4/7 (Armache et al., 2005) (right). A43 and Rpb7 are in blue 

and A14 and Rpb4 are in red, with the HRDC domain in light red. For details see Figures 14 and 15. The view is 

as in Figures 9 and 10.  

 

 

The overall structure of A14/43 resembles its counterparts Rpb4/7 (Armache et al., 2005), 

C17/25 (Jasiak et al., 2006), and the archaeal RpoF/E (Todone et al., 2001), except that A14 

lacks the HRDC domain present in all counterparts (Figs. 13, 14 and 15). The N-terminal tip 

domain of A43 shows RMS deviations in Cα atom positions of 2.2-2.5 Å, whereas the C-

terminal OB domain is more divergent. A14 forms two helices that pack on the A43 tip 

domain (Figs. 13, 14 and 15). 
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Figure 14. Comparison of crystal structures of A14/43 and its counterparts in other RNA polymerases 

Structural comparison of yeast A14/43 (this study, upper left), Rpb4/7 (Armache et al., 2005) (upper right), 

C17/25 (Jasiak et al., 2006) (lower left) and archaeal RpoE/F (Todone et al., 2001) (lower right). A43, Rpb7, 

C25 and RpoE are in blue. A14, Rpb4, C17 and RpoF are in red; the HRDC domains are in light red. Disordered 

regions in the A14/43 structure include the A43 N-terminus (residues M1-H20), the A43 tip loop (residues S96-

T111), the A43 loop C1-C2 (residues V173-F209), the A43 C-terminus (residues S251-D326), the A14 N-

terminus (residues M1-T15), the A14 loop H1-H2 (residues S53-N77) and the A14 C-terminus (residues A102-

E137). 
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Figure 15. Structure-based alignment of A14/43 and its counterparts in other RNA polymerases 

Primary and secondary structure. Structure-based alignments of amino acid sequences of S. cerevisiae A43 (top) 

and A14 (bottom) with their counterparts in Pol II (Rpb7 and Rpb4), Pol III (C25 and C17) and an archaeal RNA 

polymerase (M. Jannaschii RpoE and RpoF). Secondary structure elements are shown above the sequences 

(broad lines, α-helices; arrows, β-strands; lines, loops; dashed lines, disordered regions). Conserved residues are 

highlighted according to decreasing conservation from green, through orange, to yellow. Cleavage sites revealed 

by limited proteolysis are indicated with arrows. The invariant proline residue that is predicted to contribute to 

the A43-Rpb6 interface is indicated with a black square. Residues involved in A43-Rrn3 interaction (Peyroche et 

al., 2000) are indicated with red squares. Residues not present in the crystallized variant are underlined. 
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Figure 16. Electron density for A14/43 

(left) Initial unbiased electron density map calculated from observed amplitudes and phases derived from single 

anomalous diffraction (blue, contoured at 1.0σ). The final model is superimposed. (middle) Anomalous 

difference Fourier map calculated with phases from the final model, revealing the selenium atoms (red, 

contoured at 4.0σ). The backbone of the final model is shown, selenomethionine side chains are depicted. (right) 

Final model with final 2Fo-Fc map superimposed (blue, contoured at 1.0σ). 

 

 

Table 5. A14/43 X-ray diffraction data and refinement statistics 

Crystal A14/43 SeMet 
Data collectiona Refinement 
Space group  P21212 Amino acid residues  702 
Wavelength (Å) 0.97848 RMSD bonds (Å) 0.009 
Unit cell axis (Å) 229.9 63.9 65.4 RMSD angles (°) 1.9 
Resolution (Å) 30-3.1 (3.25-3.1)b Rcryst (%) 25.3 
Completeness (%) 99.6 (99.6) Rfree (%) 28.5 
Unique reflections  33,670 (4,457) 
Redundancy  5.5 (5.4) 
Rsym (%) 7.7 (39.9) 
<I/σI> 16.1 (5.0) 

 

 

aDiffraction data were collected at beamline X06SA at the Swiss Light Source, Villigen, Switzerland. 
bNumbers in parenthesis refer to the highest resolution shell. 
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2.4 Interaction of A14/43 with the Pol I core 

In Pol II, the Rpb4/7 complex interacts with the core enzyme via two loops, the A1-K1 loop, 

which forms a conserved contact of Rpb4/7-like subcomplexes with their cognate core 

enzymes, and the tip loop, which may confer specificity to the interaction in the different 

RNA polymerases (Armache et al., 2005; Jasiak et al., 2006). To dock the A14/43 structure 

into the EM map, we modeled the conserved contact between an invariant proline residue in 

the A1-K1 loop (P51 in A43, Figs. 13 and 19) and the common core subunit Rpb6 (Armache 

et al., 2005; Jasiak et al., 2006). The tip domain and the tip-associated domain of the A14/43 

structure fitted well to the EM map, and the lack of an HRDC domain could in part explain 

the smaller EM density (Fig. 17). However, the peripheral OB domain of A43 was not 

revealed in the EM density (Fig. 17), suggesting a high degree of mobility. Consistently, the 

OB domain shows slightly higher B-factors in the crystal structure although it is involved in 

crystal contacts (Fig. 18), and normal mode analysis of the Pol II crystal structure shows that 

the OB domain is the most flexible region of the enzyme (not shown). The A43 tip loop 

contains a specific ten-residue insertion that may confer specificity to the interaction between 

A14/43 and the Pol I core (Figs. 14 and 15). The A43 tip loop is flexible in the crystal 

structure (Figs. 13, 14 and 15), but is likely folded upon binding to the Pol I core, as observed 

for Pol II (Armache et al., 2005). 

 

 

Figure 17. Fit of the A14/43 structure into the Pol I EM density 
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Figure 18. Distribution of crystallographic B-factors in the A14/43 structure  

The graph shows the distribution of crystallographic B-factors according to the residue number in A43 (A) and 

A14 (B). The three complexes in the asymmetric unit are colored in red (chain A and chain B), blue (chain C and 

chain D) and green (chain E and chain F).  
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2.5 Specific interactions with initiation factors 

Subunit A43 forms an essential bridge to the conserved Pol I initiation factor Rrn3 (Milkereit 

and Tschochner, 1998; Peyroche et al., 2000). Rrn3 was shown by EM to co-localize with 

A43 (Peyroche et al., 2000) and binds other initiation factors to recruit Pol I to the rDNA 

promoter. The A43-Rrn3 interaction is conserved in human (Yuan et al., 2002) and S. pombe 

(Imazawa et al., 2005). In a Pol I variant that is defective for Rrn3 interaction (rpa43-6) 

(Peyroche et al., 2000), two out of three altered A43 residues map near conserved residues on 

the upstream surface of A14/43 (Fig. 19). Thus Rrn3 binds to A14/43 from the upstream side 

(Fig. 9). Additional Pol I-specific surfaces in the vicinity include the extended dock domain 

and the clamp knob, which together with A14/43 create a specific upstream face for Pol I 

initiation complex assembly (Figs. 9 and 10). 

Differential initiation factor interactions and promoter-specificity of the three polymerases 

may generally result from differently structured dock domains, clamps, and Rpb4/7-like 

subcomplexes, which all constitute initiation factor binding sites. Rpb4/7 is required for Pol II 

initiation (Edwards et al., 1991). C17/25 binds to the Pol III initiation factor TFIIIB (Ferri et 

al., 2000), to the subcomplex C82/34/31 that bridges to TFIIIB (Bartholomew et al., 1993; 

Brun et al., 1997; Thuillier et al., 1995), and to the initiation factor TFIIIC (Hsieh et al., 

1999). Since the surfaces, flexibility, and in vivo function of the HRDC domains differ in 

Rpb4/7 and C17/25 (Jasiak et al., 2006), the absence of an HRDC domain in A14/43 is likely 

functionally significant. 

 

Figure 19. Surface representation of the A14/43 subcomplex 

Residues conserved among eight, selected Saccharomycotinae are colored in green, orange, and yellow, 

according to decreasing conservation (compare Figure 15). Residues affected by the A43-6 mutations (Peyroche 

et al., 2000) are in red. 
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2.6 A49 and A34.5 form a TFIIF-like heterodimer near the funnel 

After assigning EM densities to the Pol I core and A14/43, one additional large density 

remained on the enzyme surface that was assigned to the Pol I-specific subunits A49 and 

A34.5 (Fig. 9). To confirm this assignment, subunits A49 and A34.5 were dissociated from 

Pol I with the use of urea (Huet et al., 1975), the resulting 12-subunit variant Pol I ΔA49/34.5 

(Pol IΔ, previously called Pol A* (Huet et al., 1975)) was purified, and its structure was 

solved by cryo-EM at 25 Å resolution (Fig. 20). The Pol IΔ structure was similar to the 

complete Pol I, except that the density assigned to A49 and A34.5 was lacking (Fig. 20B). In 

addition, there was a minor change in the clamp conformation, which however represents an 

average clamp position and is unlikely to result from the absence of A49/34.5. Density 

assigned to A49 and A34.5 is located near the enzyme funnel, the external domain 1, a 

conserved core loop with a Pol I-specific insertion (equals loop α16-β20 of Pol II pore 

domain), and A12.2, which is consistent with loss of A49 when Pol I is purified from A12.2 

deletion strains (Van Mullem et al., 2002). 

 

 
 

Figure 20. Structural features of A49/34.5 

(A) SDS-PAGE of Pol IΔ (right), obtained by urea treatment of the complete Pol I (left). (B) EM structures of 

Pol I ∆ (silver surface) and the complete Pol I (blue). The density assigned to A49/34.5 is highlighted in green, 

as in (Kuhn et al., 2007). 

 

 

- Pol IΔ preparation and structure determination was performed by Claus Kuhn, with the help 

of Marco Gartmann (Kuhn et al., 2007) - 

 



Chapter III: Structure of A14/43 in functional context of RNA polymerase I 
 

44 
 

To investigate the structure and function of A49 and A34.5, we searched for weak homologies 

with HHpred (Soding et al., 2005). Local homologies were detected between A49 and 

RAP74, the large subunit of the Pol II-associated factor TFIIF, and between A34.5 and 

RAP30, the small TFIIF subunit (Fig. 21, Experimental procedures). Consistently, the N-

terminal regions of A49 and A34.5 were predicted to contain β-strands consistent with the 

fold of the RAP74-RAP30 dimerization module (Gaiser et al., 2000), and hydrophobic core 

residues in this fold were predicted to be conserved (Figs. 21 and 22). 

 

 

 

Figure 21. Sequence alignment of A49/34.5 with TFIIF Rap74/30 

Sequence alignments of amino acid sequences of S. cerevisiae A49 (top) and A34.5 (bottom) with their putative 

counterparts in H. sapiens TFIIF (RAP74 and RAP30, respectively). Sequence similarity is only observed in the 

N-terminal part of both proteins (residues 1-166 in RAP74 and residues 1-118 in RAP30). Secondary structure 

elements are shown (bars, α-helices; arrows, β-strands; lines, loops), according to structural information (Gaiser 

et al., 2000). For clarity, the symbols a/b are used in RAP74, α/β in RAP30. For A49 and A34.5, predicted 

secondary structure elements are depicted in dark green (aligned by HHpred), light green (predicted by 

secondary structure propensity) and grey (not predicted to be present). Conserved residues are highlighted 

according to decreasing conservation from green, through orange, to yellow. Residues involved in a conserved 

core interaction are marked with a C below the sequence, while charged residues forming a salt bridge are 

depicted in blue and red, respectively.  
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Figure 22. Structural similarity between A49/34.5 and TFIIF Rap74/30 

Conservation of the TFIIF RAP74/30 dimerization module (Gaiser et al., 2000) in A49/34.5. RAP74 residues 2-

172 and RAP30 residues 2-119 form a triple barrel β-structure, which is likely to be conserved in A49/34.5. (A) 

Secondary structure elements aligned to RAP74/30 are highlighted in dark and light green, respectively. For 

details see Figure 21. (B) Residues involved in conserved hydrophobic core interactions are shown as spheres 

and colored according to their atom types. Residues involved in a putative salt bridge are shown as spheres and 

colored in blue (K22, RAP30) and red (E115, RAP30). 

 

 

Consistent with these predictions, bacterial coexpression of A49 and A34.5 enabled isolation 

of a stoichiometric A49/34.5 heterodimer (Fig. 23A), and alanine point mutations in three 

different conserved hydrophobic residues in the dimerization interface (I12 and Y76 in A49, 

W54 in A34.5) abolished or strongly impaired A49/A34.5 copurification (Fig. 23B). Thus, 

A49 and A34.5 form a stable TFIIF-like heterodimerization module. 

 

 

 

Figure 23. Preparation of A49/34.5 variants 

(A) SDS-PAGE analysis of recombinant A49/34.5 heterodimer (wildtype). (B) A49/34.5 variants, with His6-tag 

on A34.5, A49 Y76A (lane 1), A49 I12A (lane 2) and A34.5 W54A (lane 3). 

 

 



Chapter III: Structure of A14/43 in functional context of RNA polymerase I 
 

46 
 

Heterodimerization of A49 and A34.5 explains why the two subunits dissociate together from 

Pol I upon urea treatment (Huet et al., 1975), why Pol I purified from a yeast strain lacking 

the gene for A34.5 also lacks A49 (Gadal et al., 1997), and why two distantly related 

mammalian Pol I subunits bind each other (Yamamoto et al., 2004). It is also consistent with 

the observed continuous EM density, which reconciles previous EM data. Initial cryo-EM 

showed two separated densities over the cleft that were assigned to A49 and A34.5 (Bischler 

et al., 2002). EM at higher resolution did not confirm these densities, but revealed a new 

additional density (De Carlo et al., 2003) that was close to the location of A49/34.5 found 

here.  

The location of A49/34.5 at the Pol I funnel deviates from that of TFIIF on Pol II as observed 

by cryo-EM (Chung et al., 2003), but is more consistent with protein-protein cross-linking 

that maps TFIIF to the polymerase lobe and outer surface near Rpb9 (Chen et al., 2007; Chen 

et al., 2010). Discrepancies in the location of A49/34.5 and TFIIF may be explained by 

different locations of a related dimerization module on the two polymerases, or by the 

presence of additional, unrelated domains in both factors. Sequence analysis showed that 

A49/34.5 and TFIIF have a counterpart in Pol III, the C37/53 heterodimer (chapter IV, Fig. 

52), which occupies a similar location on the Pol III surface near the lobe and funnel 

(Fernandez-Tornero et al., 2007). 

 

2.7 A49/A34.5 is a built-in processivity factor 

The apparent homology of the A49/34.5 heterodimer with the N-terminal regions of the two 

large TFIIF subunits suggested that A49/34.5 could stimulate Pol I processivity. This 

prediction is consistent with previous reports that deletion of A49 or A49 and A34.5 reduce 

Pol I activity (Huet et al., 1975; Liljelund et al., 1992), and that A34.5 genetically interacts 

with DNA topoisomerase I (Gadal et al., 1997). We therefore compared the complete Pol I 

with Pol IΔ in an RNA extension assay using a minimal DNA-RNA scaffold (Brueckner et 

al., 2007). The complete Pol I extended the RNA to the end of the template, whereas Pol IΔ 

did not produce the runoff product (Fig. 24A). Addition of recombinant A49/34.5 rescued the 

defect of Pol IΔ and enabled synthesis of the run-off product (Fig. 24A, lane 4).  

We repeated the extension experiments using a complete, complementary transcription bubble 

scaffold (Kireeva et al., 2000). The complete Pol I produced the run-off transcript (+18), 

whereas Pol IΔ did not, but addition of recombinant A49/34.5 heterodimer restored run-off 

formation (Fig. 24B). The defect was not due to differential binding of the polymerase 
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variants to the scaffold, as it was also observed when the elongation complexes were 

covalently coupled to magnetic beads and extensively washed before the reaction (not 

shown). Thus, A49/34.5 is required for normal processivity of Pol I in vitro. 

 

 

Figure 24. A49/34.5 extension assays 

(A) Minimal nucleic-acid scaffold used in RNA extension assays (left). The fluorescent label 

6-carboxyfluoresceine (FAM) on the RNA 5’end is indicated. A49/34.5 stimulates Pol I processivity (right). The 

times molar excess of added factors are indicated above the lanes. For lane 4, Pol IΔ was complemented with a 

5-fold molar excess of recombinant A49/34.5 for 10 min at 20 °C prior to addition of the scaffold. (B) RNA 

extension assay as in A, but with a complete complementary bubble (Kireeva et al., 2000), as in (Kuhn et al., 

2007). 

 

 

To test whether A49/34.5 may stimulate Pol I processivity in vivo, we investigated if the 

growth phenotype of a yeast strain that lacked the gene for A34.5 (ΔA34.5) is affected when 

nucleotide supply was limited due to the presence of 6-azauracil (6AU). 6AU sensitivity is an 

indicator for Pol II-associated elongation factor function in vivo and recently also identified a 

Pol I mutant defective in rRNA elongation (Schneider et al., 2007). Whereas the wildtype and 

ΔA34.5 strains did not show a growth difference on normal media, the ΔA34.5 strain showed 

a mild slow-growth phenotype on 6AU-containing media (Fig. 25). This suggests that 

A49/34.5 is required for normal processivity of RNA synthesis by Pol I also in vivo. 

Stimulation of processivity is probably due to an allosteric effect (chapter IV) and not due to 

an extension from A49/34.5 into the active center (see also Appendix 4), but we cannot 

definitely exclude one possibility with the available structural data. 
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Figure 25. A49/34.5 deletion strains in vivo 
Deletion of the gene for A34.5 leads to a 6-azauracile-sensitive phenotype. From left to right 1:10 dilution series 

are shown. As a control, cells were spread onto SDC plates containing uracil, as in (Kuhn et al., 2007). 

 

- In vitro assays were performed by Claus Kuhn, supplemented by Sebastian Geiger. In vivo 

assays were performed by Claus Kuhn (Kuhn et al., 2007) - 

 

 

2.8 Pol I has intrinsic RNA cleavage activity 

The active site of Pol II exhibits weak 3’-RNA cleavage activity that is stimulated by TFIIS 

(Wind and Reines, 2000). For Pol I, a RNAse H-like nuclease activity was initially described 

(Huet et al., 1976), but was later found to reside in a dissociable factor (Huet et al., 1977; 

Iborra et al., 1979; Labhart, 1997; Tschochner, 1996). To clarify whether Pol I possesses 

intrinsic RNA cleavage activity, we assembled a ‘backtracked’ elongation complex from 

purified Pol I and a DNA-RNA scaffold that contained an RNA 3’-overhang (Fig. 26A, 

Experimental procedures, 3.11). Incubation of the backtracked complex with 8 mM 

magnesium ions led to efficient shortening of the RNA from the 3’-end (Fig. 26B, lanes 1-3). 

In comparison, Pol II was unable to cleave the RNA under these conditions, but addition of 

TFIIS resulted in cleavage (Fig. 26B, lanes 8-11). Thus, Pol I has a strong intrinsic RNA 

cleavage activity.  
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Figure 26. Intrinsic RNA cleavage activity of Pol I 

(A) DNA-RNA hybrid scaffold used in cleavage assays. (B) Comparison of RNA cleavage by Pol I variants with 

Pol II and the Pol II-TFIIS complex. Pol I mainly removed four nucleotides from the RNA, consistent with 

binding of the terminal hybrid base pair to the nucleotide insertion site (+1), extrusion of the RNA 3’ overhang 

into the polymerase pore and cleavage of the phosphodiester bond between nucleotides at positions -1 and +1 

(Fig. 26A). The Pol II-TFIIS complex removed three or four nucleotides, indicating that a mixture of complexes 

was present with the terminal hybrid base pair occupying either position -1 or +1. (C) Processivity of the Pol I 

variant A12.2ΔC (D) pH dependence of Pol I cleavage activity, as in (Kuhn et al., 2007). 

 

The intrinsic cleavage activity likely escaped detection previously since the nucleic acid 

substrates used in published studies did not allow for the formation of a backtracked state, 

from which cleavage occurs. The previously described dissociable factor (Huet et al., 1977; 

Iborra et al., 1979; Labhart, 1997; Tschochner, 1996) may not be required for cleavage per se, 

but may induce backtracking of Pol I, to create a state of the elongation complex that is prone 

to cleavage. 

 
- Cleavage assays, as described in 2.8 and 2.9, were performed by Sebastian Geiger and Claus 

Kuhn, with the help of Stefan Jennebach (Kuhn et al., 2007) -  
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2.9 Pol I cleavage activity requires A12.2 

Additional cleavage assays showed that Pol IΔ cleaved RNA less efficiently than the 

complete Pol I (Fig. 26B, lanes 4-5). Cleavage stimulation by A49/34.5 is consistent with an 

early investigation of an RNase H-like activity in Pol I-containing fractions (Huet et al., 

1976). We also asked whether subunit A12.2 is required for cleavage, since its counterpart 

C11 is essential for cleavage activity of Pol III (Chedin et al., 1998; Whitehall et al., 1994). A 

Pol I variant lacking residues 79–125 of A12.2 (A12.2ΔC, Experimental procedures 3.9) was 

totally inactive in RNA cleavage (Fig. 26B, lanes 6-7), but bound the nucleic-acid scaffold in 

electrophoretic mobility shift assays (not shown) and retained processivity (Fig. 26D). 

Consistent with a function specific for the A12.2 C-terminal domain, a truncation variant 

remains bound to Pol I and does not show a conditional growth defect (Van Mullem et al., 

2002). 

The A12.2 C-terminal domain shows homology to the TFIIS C-terminal domain that inserts 

into the Pol II pore to stimulate RNA cleavage (Kettenberger et al., 2003), but its location in 

Pol I corresponds to that of the Rpb9 C-terminal domain on Pol II (Fig. 10B). Although the 

long linker between the A12.2 N- and C-terminal domains could in principle allow swinging 

of the C-terminal domain into the pore, our results suggest that the effect of A12.2 truncation 

on cleavage is due to an allosteric rearrangement in the Pol I active center. The conserved 

polymerase active site is capable of RNA cleavage in the absence of cleavage stimulatory 

factors, since free Pol II and the bacterial RNA polymerase can cleave RNA under mild 

alkaline conditions (Orlova et al., 1995; Weilbaecher et al., 2003). Consistently, the intrinsic 

cleavage activity of Pol I increased with increasing pH (Fig. 26C). The structural basis of the 

effect of A12.2 truncation on RNA cleavage awaits the crystal structure of Pol I. 

 

2.10 Possible functions of the cleavage activity 

Since A12.2 is required for transcription termination (Prescott et al., 2004), Pol I cleavage 

activity may be involved in a termination-coupled reaction. RNA cleavage could be required 

for rRNA 3’-terminal trimming, a Pol I-associated RNA processing event that intimately 

follows termination and involves cleavage of ten nucleotides from the pre-rRNA 3’ end 

(Kuhn and Grummt, 1989). Consistently, Pol II can form a binary complex with RNA and 

cleave RNA from the 3’ end in the presence of TFIIS (Johnson and Chamberlin, 1994). It is 

very likely that the intrinsic cleavage activity of Pol I also enables rRNA proofreading to 
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increase transcriptional fidelity. Indeed, repetition of our cleavage assay with a scaffold that 

contains only a single mismatch at the RNA 3’end, mimicking the situation after a 

misincorporation event, induced efficient RNA cleavage (not shown). For Pol III, the intrinsic 

cleavage activity was recently shown to enable proofreading in a manner dependent on the 

A12.2 homolog C11 (Alic et al., 2007), which is required for the intrinsic cleavage activity of 

Pol III (Chedin et al., 1998; Landrieux et al., 2006). 

 

2.11 Conclusions 

Here we analyzed the detailed functional architecture of Pol I by a combination of structural 

biology techniques and structure-based functional analysis (Fig. 27). A comparison with the 

Pol II system revealed Pol I-specific features that match the unique nature of rRNA 

transcription. First, the distinct structure of the Pol I upstream face allows for specific 

initiation factor interactions and recruitment of Pol I to the rRNA promoter. Second, the built-

in processivity-stimulatory Pol I-specific subcomplex A49/34.5 can explain the efficient and 

processive nature of rRNA transcription during cell growth. Third, the intrinsic RNA cleavage 

activity apparently enables rRNA 3’-trimming and proofreading, to prevent formation of 

erroneous rRNAs and catalytically deficient ribosomes. Finally, our results unravel structural 

and functional relationships between the three eukaryotic transcription machineries, and form 

the basis for a detailed structure-function analysis of rRNA transcription and processing. 

 

Figure 27. Functional architecture of Pol I 

Hybrid structure and functional architecture of Pol I. The EM envelope is shown as a blue line, the Pol I core 

ribbon model in grey with Rpb9 (A12.2) highlighted in orange, and the A14/43 crystal structure in red/blue. The 

window shows a cut-away view of the active center containing a modeled DNA-RNA hybrid. Red dashes 

indicate the RNA 3’-end extruded into the pore, as in (Kuhn et al., 2007). 
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3 Experimental procedures 

3.1 Pol I preparation 

The S. cerevisiae strain GPY2, carrying a pAS22 plasmid coding for HA- and hexahistidine-

tagged A43 (Fath et al., 2000), was grown in a 200 L fermenter overnight at 30 °C, and cells 

were harvested at an OD600 of 5-6. Cells (30% slurry) were lysed by bead beating in 400 mM 

ammonium sulfate, 60 mM MgCl2, 150 mM HEPES pH 7.8, 30% glycerol, 5 mM DTT, 1 

mM PMSF, 1 mM benzamidine, 200 µM pepstatin, and 60 µM leupeptin. After filtration, the 

lysate was cleared by centrifugation (30 min, 8000 g), and ultracentrifugation (90 min; 30,000 

g). The supernatant was dialyzed overnight at 4 °C against 50 mM potassium acetate (KOAc), 

20 mM HEPES at pH 7.8, 1 mM MgCl2, 10% glycerol, and 10 mM β-mercaptoethanol. After 

centrifugation, (1 h; 18,500 g), the pellet was resuspended in 1.5 M KOAc, 1 mM MgCl2, 

10% glycerol, and 10 mM β-mercaptoethanol and incubated with 8 ml Nickel-NTA agarose 

for 4 h at 4 °C. Bound protein was washed with 5 column volumes of 300 mM KOAc, 1 mM 

MgCl2, 10% glycerol, and 10 mM β-mercaptoethanol and eluted with the same buffer 

containing 100 mM imidazole. Eluted protein was bound to an anion exchange column 

(MonoQ 10/100 GL) and eluted with a gradient from 300 mM to 2 M KOAc. Pol I eluted at 

1100 mM KOAc. Pol I was bound to a cation exchange column (MonoS 5/50 GL), and eluted 

at 490 mM KOAc, using a gradient from 200 mM to 2 M KOAc. Final purification over a 

Superose 6 HR 10/30 size-exclusion column equilibrated with 60 mM ammonium sulfate, 1 

mM MgCl2, 5 mM HEPES at pH 7.8, 10 µM ZnCl2 and 5 mM DTT, resulted in 0.5 mg of 

pure polymerase from 350–400 g of cells. Preparation protocol was established by Claus 

Kuhn and Jochen Gerber, for further details see (Gerber et al., 2008). 

 

3.2 Cryo-EM structure determinations 

Experiments were done by Claus Kuhn, Sonja Baumli and Marco Gartmann (Kuhn et al., 

2007). 

 

3.3 Modeling of the Pol I core 

Experiments were performed by Claus Kuhn (Kuhn et al., 2007). 
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3.4 A14/43 preparation 

The genes for A14 and A43 were cloned sequentially into vector pET28b (Novagen), 

resulting in a thrombin-cleavable N-terminal hexahistidine tag on A14. A ribosomal binding 

site was introduced before A43 to enable bicistronic expression. The deletion construct 

A14Δ53-77Δ113-137/43Δ173-209Δ252-326 (A14/43Δloop)  was generated by PCR overlap extension 

(Higuchi et al., 1988). Only regions that were proteolytically sensitive and/or not predicted to 

form secondary structure elements were deleted (chapter II). A14/43 Δloop was expressed for 

18 h at 18 °C in E. coli BL21 (DE3) RIL cells (Stratagene) in 4 l of LB medium (Maniatis et 

al., 1982). Cells were harvested by centrifugation, resuspended in 100 ml buffer A (100 mM 

NaCl, 20 mM Tris pH 8.0, 10 mM β-mercaptoethanol, 1 mM protease inhibitor mix: 1 mM 

PMSF, 1 mM benzamidine, 200 µM pepstatin, and 60 µM leupeptin), and lysed by sonication. 

After centrifugation, the supernatant was loaded onto a 3 ml Ni-NTA column equilibrated 

with buffer A. After washing, proteins were eluted with buffer A containing 100 mM 

imidazole. Eluted fractions were diluted three-fold with buffer A lacking NaCl, and incubated 

with thrombin (1U protease/1 mg protein) for 16 h at 4° C. A Mono Q 10/10 GL anion 

exchange column was equilibrated with buffer B (100 mM NaCl, 20 mM Tris pH 8.0, 5 mM 

DTT), and proteins were eluted with a linear gradient from 100 mM to 1 M NaCl. A14/43 

eluted at 220 mM NaCl. After concentration, the sample was applied to a Superose 12 HR 

10/300 gel filtration column (GE Healthcare) equilibrated with buffer B. Pooled peak 

fractions were concentrated to 10 mg/ml.  

 

3.5 A14/43 crystal structure determination 

Crystals of A14/43 Δloop were grown at 20 °C in hanging drops, using 22% PEG 3350 and 

240 mM potassium acetate as reservoir solution. Crystals were harvested in reservoir solution, 

cryo-protected by stepwise transfer to reservoir solution containing 7-20% PEG 400, and 

flash-cooled by plunging into liquid nitrogen. Selenomethionine-labeled protein was prepared 

as described (Budisa et al., 1995; Meinhart et al., 2003) and crystallized at 20 °C with the use 

of microseeding and a reservoir solution of 18% PEG 3350 and 350 mM potassium acetate. 

Crystals reached a size of 250 µm x 120 µm x 80 µm and were cryo-preserved as above. A 

SAD experiment was performed at the Swiss Light Source (Table 5). Data were processed 

with XDS (Kabsch, 1993). Programs SHELXD/HKL2MAP (Pape and Schneider, 2004; 

Schneider and Sheldrick, 2002) detected nine selenium sites, which stemmed from three 
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A14/43Δloop complexes in the asymmetric unit. SHARP (La Fortelle and Bricogne, 1997) 

was used for refining heavy-atom positions, SAD phasing, and density modification. The 

model was built with COOT (Emsley and Cowtan, 2004), and refined with CNS (Brunger et 

al., 1998) to a free R-factor of 28.3% (Table 5). Ninety-eight and a half percent of the 

residues fall in allowed and additionally allowed regions of the Ramachandran plot, and no 

residues fall in disallowed regions (Laskowski et al., 1993). 

 

3.6 Preparation of A49/34.5 

The genes for A49 and A34.5 were cloned sequentially into vector pET28b (Novagen), 

introducing a C-terminal hexahistidine tag on A49 and a second ribosomal binding site for 

bicistronic expression. The two subunits were coexpressed for 18 h at 18 °C in E. coli BL21 

(DE3) RIL cells (Stratagene) in 4 l of LB medium. Cells were harvested by centrifugation, 

resuspended in 100 ml buffer C (300 mM NaCl, 50 mM Tris pH 7.5, 10 mM 

β-mercaptoethanol, and 1mM protease inhibitor mix), and lysed by sonication. After 

centrifugation the supernatant was loaded onto a 3 ml Ni-NTA column equilibrated with 

buffer C. The column was washed stepwise with 15 ml of buffer C containing 1 M NaCl and 

15 ml of buffer C containing 30 mM imidazole. The A49/34.5 heterodimer was eluted with 

buffer C containing 100 mM imidazole. Eluted fractions were diluted 3-fold with 50 mM Tris 

pH 7.5 and 10 mM β-mercaptoethanol. A MonoS cation exchange column was equilibrated 

with buffer D (100 mM NaCl, 50 mM Tris pH 7.5, 5 mM DTT), and proteins were eluted 

with a linear gradient of 18 column volumes from 100 mM to 1 M NaCl. A49/34.5 eluted at 

280 mM NaCl. The sample was applied to a Superose 12 HR 10/300 gel filtration column 

(GE Healthcare) equilibrated with buffer D. Pooled peak fractions were concentrated to 10 

mg/ml.  

 

3.7 A49/34.5 structure prediction 

The sequences of A49 and A34.5 were submitted to the HHpred server (Soding et al., 2005). 

As the hit with the highest score, HHpred predicted a structural similarity of the A49 N-

terminal residues 52-102 to the N-terminal residues 99-150 of human RAP74 (p value = 

0.0023). For A34.5 the hit with the third highest score was a similarity between the A34.5 

residues 50-65 and residues 15-30 of human RAP30 (p value = 0.0003). Inspection of the 

predicted secondary structure elements in A49 and A34.5 revealed a similar arrangement of 
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strands as in the RAP74/RAP30 dimerization module crystal structure (Gaiser et al., 2000) 

(PDB 1F3U) except that strands β4 and β5 were apparently lacking in A49, and no secondary 

structure corresponding to strands β6 and β7 of RAP30 was predicted in A34.5. The few 

residues conserved between A49 and RAP74 and between A34.5 and RAP30 are generally 

part of the hydrophobic heterodimer interface (Figs. 21 and 22). 

 

3.8 Yeast genetic manipulations and 6-azauracil phenotyping 

Experiments were performed by Claus Kuhn (Kuhn et al., 2007). 

 

3.9 Preparation of Pol I variants 

Pol I ΔA49/34.5 was prepared by dialyzing Pol I-containing fractions after cation-exchange 

chromatography overnight against 2 M urea, 50 mM ammonium sulfate, 1 mM magnesium 

chloride, 20 mM HEPES pH 7.8, 10% glycerol, and 5 mM DTT. A49/34.5 was separated 

from Pol I ΔA49/34.5 by subsequent anion-exchange chromatography, applying a gradient 

from 50 mM to 1 M ammonium sulfate (Mono Q 5/50 GL, GE Healthcare). Pol I ΔA49/34.5 

eluted at 250 mM ammonium sulfate and was further purified by size-exclusion 

chromatography (Superose 6 HR10/300) with buffer E (100 mM ammonium sulfate, 1 mM 

MgCl2, 20 mM HEPES pH 7.8, 5% glycerol, 5 mM DTT). Pooled fractions were concentrated 

to 0.5 mg/ml.  

Pol I variant A12.2 ΔC was purified by Stefan Jennebach and Claus Kuhn (Kuhn et al., 2007). 

 

3.10 RNA extension assays 

Four picomoles of polymerase was incubated for 30 min at 20 °C with 2 pmol of a 

preannealed minimal nucleic-acid scaffold (template DNA: 3’-

GCTCAGCCTGGTCCGCATGTGTCAGTC-5’; nontemplate DNA: 5’-CACACAGTCAG-

3’; RNA: 5’-FAM-UGCAUAAAGACCAGGC-3’). For RNA elongation, complexes were 

incubated in the presence of 1 mM NTPs at 28 °C for 20 min in transcription buffer (60 mM 

ammonium sulfate, 20 mM HEPES pH 7.6, 8 mM magnesium sulfate, 10 mM zinc chloride, 

10% glycerol, and 10 mM DTT). Reactions were stopped by addition of an equal volume 2x 

loading buffer (8 M urea, 2x TBE) and incubation for 5 min at 95 °C. The FAM-labeled RNA 

extension products were separated by denaturing gel electrophoresis (0.5 pmol RNA per lane, 
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0.4 mm 15–20% polyacrylamide gels containing 8M urea, (50 °C) and visualized with a 

Typhoon 9400 phosphoimager (GE Healthcare). For RNA extension assays with a 

complementary bubble (Kireeva et al., 2000), 6 pmol Pol I or Pol I ΔA49/34.5 were incubated 

for 15 min at 20 °C with 3 pmol of a preannealed template DNA-RNA scaffold (template 

DNA: 3’-TGCGCACCACGCTTACTGGTCCGTTCGCCTGTCCTCGACCA-5’; RNA: 

5’-FAM-UGCAUUUCGACCAGGC-3’), followed by incubation with a 5-fold molar excess 

of nontemplate DNA (15 pmol; 5’-TTTTTACGCGTGGTGCGAATGACCAGGCAAG 

CGGACAGGAGCTGGT-3’) for 15 min at 25 °C. Complexes were incubated in the presence 

of 1 mM NTPs at 28 °C for 1 and 5 min in transcription buffer. Reactions were stopped and 

analyzed by gel electrophoresis as above. 

 

3.11 RNA cleavage assays 

Complexes of complete Pol I and polymerase variants were formed in transcription buffer 

with a nucleic acid scaffold that comprised an RNA with a 6-FAM fluorescent label at its 

5’-end and a three-nucleotide non-complementary overhang at its 3’-end (template DNA: 

3’-TTACTGGTCCTTTTTCATGAACTCGA-5’; non-template DNA: 5’-TAAGTACTTG 

AGCT-3’; RNA: 5’-FAM-UGCAUUUCGACCAGGACGU-3’, overhanging nucleotides 

underlined). Samples were incubated in transcription buffer up to 30 min at 28 °C, and 

reaction products were analyzed as above. 

 

3.12 Figure preparation 

Figures were prepared with CHIMERA (Pettersen et al., 2004) and PYMOL (DeLano 

Scientific). 

 

3.13 Accession numbers 

The Pol I EM map was deposited in the European Bioinformatics Institute EM data bank 

under accession code EMD-1435. Coordinates and structure factors of the A14/43 crystal 

structure have been deposited with the protein data bank under accession code 2RF4. 
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1 Introduction 

The structure of Pol II has been studied in detail (Cramer et al., 2008), but structural 

information is still limited for Pol I (chapter III) and Pol III (Fernandez-Tornero et al., 2007; 

Jasiak et al., 2006). All three polymerases contain a 10-subunit catalytic core of shared or 

homologous subunits, and a peripheral heterodimeric subcomplex of conserved structure, 

called A14/43, Rpb4/7, and C17/25 in Pol I, II, and III, respectively (chapter III, 2.3) 

(Armache et al., 2005; Jasiak et al., 2006). In addition to these 12 related subunits, Pol I 

contains the specific subcomplex A49/34.5 (chapter III, 2.6 and 2.7), and Pol III contains the 

specific subcomplexes C37/53 (Kassavetis et al., 2010; Landrieux et al., 2006) and C82/34/31 

(Wang and Roeder, 1997), which contains the stable C82/34 dimer (Lorenzen et al., 2007). 

Since all three polymerases share a similar core structure and active center, their mechanism 

of DNA-dependent RNA elongation is similar and well understood at a structural level 

(Brueckner et al., 2009). In contrast, the structural basis for promoter-specific transcription 

initiation remains unclear. To recognize different promoters, the polymerases use different 

initiation factors. Pol II uses the initiation factors TFIIA, -B, -D, -E, -F, and -H, which are 

apparently not related to Pol I initiation factors (Moss et al., 2007). 

 

Here we show that the Pol I subcomplex A49/34.5 consists of two distinct domains, and 

provide the crystal structures of these domains. We demonstrate that the fold of the combined 

N-terminal dimerization module is similar to that of TFIIF, whereas the A49 C-terminal 

domain contains a novel tWH domain that has a previously unknown DNA-binding activity 

and is predicted in TFIIE. Our results complete the structural information on Pol I subunits, 

demonstrate that Pol I, in contrast to Pol II, contains a DNA-binding surface domain, and 

show how the three RNA polymerases are evolutionarily related. 
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2 Results 

2.1 Pol I subcomplex A49/34.5 forms a heterodimer with two distinct 

domains 

It was previously shown that the Pol I subunits A49 and A34.5 interact and can dissociate 

from Pol I (chapter III, 2.6) (Huet et al., 1976). To investigate whether these two subunits 

form a heterodimer we used native mass spectrometry (Benesch et al., 2007; Heck, 2008). We 

purified the complete Pol I as described (chapter III, 3.1), and obtained a mass of 593 kDa 

(Fig. 28). This agrees well with the theoretical molecular weight of 592 kDa for Pol I and 

indicates that one copy of each Pol I subunit is present, including A49 and A34.5. Pol I 

preparations also gave rise to peaks with masses of 520 and 74 kDa, which correspond to the 

theoretical masses of Pol I lacking the A49/34.5 heterodimer (Pol IΔ, 518 kDa) and the free 

A49/34.5 heterodimer (74 kDa), respectively (Fig. 28A, B).  

 

 

Figure 28. Native mass spectrometry of Pol I. 

(A) Dissociation of the A49/34.5 subcomplex from the complete, 14-subunit Pol I generates the 12-subunit 

complex Pol IΔ. (B) Native mass spectrum of Pol I, electrosprayed from aqueous ammonium acetate (880 mM). 

In the high m/z region two different charge distributions are present, corresponding to Pol I (green triangles), and 

Pol IΔ (brown triangles). The ‘free’ A49/34.5 heterodimer is also detected in the low m/z region (blue circles). 

(C) Pol I stability depends on ionic strength. Two transformed zero-charge mass spectra are shown, recorded at 

880 mM and 160 mM ammonium acetate. (D) A49/34.5 can be associated with Pol IΔ. The lower spectrum was 

recorded with a sample containing Pol I in 880 mM ammonium acetate, whereas the upper spectrum was 

obtained after pre-incubation of the sample with a five-fold molar excess of recombinant A49/34.5.  
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The stability of Pol I was dependent on the ionic strength. At 160 mM ammonium acetate, Pol 

I was largely dissociated into Pol IΔ and A49/34.5, whereas at 880 mM ammonium acetate, 

less dissociation was observed (Fig. 28C). When an excess of recombinant A49/34.5 was 

added, higher relative amounts of complete Pol I were detected (Fig. 28D). These results 

show that Pol I contains a single copy of each of its 14 subunits and that the A49/34.5 

subcomplex forms a stable heterodimer. 

To probe for flexible protein regions and to delineate domains, we subjected recombinant 

A49/34.5 (chapter III, 3.6) to limited proteolysis. The C-terminal tail of A34.5 and the central 

region of A49 were particularly sensitive to proteases (Fig. 29A). Consistent with this finding, 

these regions are predicted to be largely unstructured (Biegert et al., 2006). Based on these 

results we designed minimal variants for subunit co-expression and performed several rounds 

of solubility studies and variant optimization (related to chapter II). This revealed that the 

A49/34.5 heterodimer forms two structured domains connected by a flexible linker. The N-

terminal regions of both subunits constitute a dimerization module, whereas the C-terminal 

region of A49 forms an independently folded domain (Fig. 29A, B). 

 

 

Figure 29. A49/34.5 domain organization. 
(A) Schematic representation of A49 and A34.5. The A49 N-terminal dimerization domain, interdomain linker, 

and C-terminal tandem winged helix (tWH) domain are shown in light blue, cyan, and dark blue, respectively. 

The A34.5 dimerization domain and C-terminal tail are in magenta and black, respectively. Secondary structure 

elements are indicated as bars (α-helices) or arrows (β-strands). Dashed vertical lines delineate A49 tWH 

subdomains WH1 and WH2. Proteolytic cleavage sites are marked with vertical arrows. (B) Preparation of 

recombinant A49/34.5 domains. SDS-PAGE analysis of the dimerization module, A49 linker and A49 tWH 

domain. An asterisk indicates an N-terminal degradation product. 
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2.2 The A49/34.5 dimerization module resembles TFIIF 

We prepared the A49/34.5 dimerization module from various species, and obtained crystals 

for the Candida glabrata variant A491-99/A34.525-143. The structure was determined by single 

wavelength anomalous diffraction at 2.9 Å resolution (Table 6). It revealed three 

interconnected β-barrels (Fig. 30A). A total of 17 interwoven β-strands and three α-helices 

contribute to a conserved hydrophobic core. Consistent with the structure, subunit 

dimerization is impaired by mutation of key core residues (chapter III, Fig. 23) or deletion of 

A49 strands β1, β1’ and β2 (Fig. 31, lane 2). The structure resembles that of the TFIIF 

Rap74/30 dimerization module (Gaiser et al., 2000), with a DALI Z-score of 4.3 (Holm and 

Sander, 1995) and an RMS deviation in 117 Cα atom positions of 2.6 Å. It however lacks 

three elements of the Rap74/30 module, the β4-β5 hairpin, the Rap74 C-terminal helix α1, 

and the Rap30 loop α3-β5 (Figs. 30 and 32).  

 
Figure 30. A49/34.5 resembles a TFIIF-like dimerization module 

(A) Ribbon model of the dimerization module crystal structure, which is part of a hetero-tetramer (Fig. 34). A49 

and A34.5 are depicted in light blue and magenta, respectively. A pseudo 2-fold axis is indicated. Figures were 

prepared with PyMOL (DeLano Scientific). (B) Structure of the TFIIF dimerization module (Gaiser et al., 2000). 

Rap74 and Rap30 are depicted in light blue and magenta, respectively. TFIIF-specific features are indicated. 
 

 

Figure 31. Preparation of A49/34.5 variants 

SDS-PAGE analysis of wildtype A49/34.5 (lane 1), an A49/34.5 variant lacking A49 residues 2-29 (lane 2, 

hexahistidine tag on A34.5) and individually expressed A49 (lane 3, thanks to Yvonne Krauss). 
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Figure 32. Alignment of dimerization module sequences from Pol I, II and III 

Structure-based alignments of sequences of C. glabrata A49 and A34.5 with their counterparts in Pol II (H. 

sapiens Rap74 and Rap30, S. cerevisiae Tfg1 and Tfg2), and in Pol III (S. cerevisiae C37 and C53). Secondary 

structure elements observed in the A49/34.5 and TFIIF crystal structures are shown (bars, α-helices; arrows, β-

strands; lines, loops; dashed lines, disordered regions). For C37 and C53, predicted secondary structure elements 

are in grey. As the hit with the highest score, HHpred (Biegert et al., 2006; Soding et al., 2005) identified 

similarity of the S. cerevisiae C53 C-terminal residues 300-421 to the N-terminal residues 13-118 of human 

Rap30 (p-value = 0.0006). For S. pombe C37 the hit with the highest score was detected between C37 residues 

26-145 and Rap74 residues 10-151 (p-value = 0.0037). The β4-β5 hairpin is apparently lacking in C37. 

Conserved residues are highlighted according to decreasing conservation from green, through orange, to yellow. 

Residues located in the hydrophobic heterodimer interface are generally conserved between A49/34.5, Rap74/30 

and C37/53. Insertions are marked with numbers in the sequence. Mutated residues that abolish proper folding 

(chapter III, Fig. 23) are highlighted in red. Residues not present in the crystallized variant are underlined. 
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Because of a pseudo-twofold axis (Fig. 30A), the A49/34.5 dimerization module may 

alternatively be superimposed with the TFIIF Rap74/30 module such that subunits A49 and 

A34.5 overlay with Rap30 and Rap74, respectively (Fig. 33). 

 

 

 
 

Figure 33. Alternative alignment of dimerization domain sequences from Pol I, II and III.  

Structure-based alignment of amino acid sequences of C. glabrata A34.5 and A49 with their alternative 

counterparts in Pol II (H. sapiens Rap74 and Rap30, S. cerevisiae Tfg1 and Tfg2), and their alternative Pol III 

counterparts S. cerevisiae C37 and C53, respectively. All other labels are as in Figure 32. 

 

 

The similarity of the A49 and A34.5 dimerization domains is consistent with the formation of 

soluble homodimers after their expression in isolation (Fig. 31). Although native A49/34.5 is 

heterodimeric (Fig. 28), tetramers are observed in the crystal lattice (Fig. 34B, C). 

Tetramerization occurs via an unusual exchange of β-strands, is an artifact of the high protein 

concentrations required for crystallization (Fig. 34A), and may explain previous observations 

of TFIIF tetramers (Flores et al., 1990). 
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Figure 34. A49/34.5 tetramer formation.  
(A) Size-exclusion chromatography of the A49/34.5 dimerization module. Absorption at 280 nm and 260 nm is 

shown in blue and red, respectively. Molecular masses were determined by static light scattering. The protein 

was visualized by SDS-PAGE. (B) Ribbon model of the A49/34.5 tetramer, composed of two A49/34.5 

heterodimers. A49 is depicted in light blue and A34.5 in magenta. A pseudo 2-fold symmetry axis is indicated. 

(C) β-strand exchange in the tetramer observed in crystals. View as in B. Secondary structure elements and A49 

residues are indicated. A 2Fo-Fc map is shown as a grey mesh and contoured at 1.0 sigma.  

 
Table 6. Diffraction data and refinement statistics 

A49/34.5 variant Dim. Module  
A491-99/ 34.525-143 

Dim. Module (+linker helix α’)  
A491-119/ 34.525-143 

Data collection 
Space group P21 C2221 
Unit cell axes (Å) 69.3 

113.9 
118.0 

108.9 
221.8 
129.2 

Unit cell β angle (°) 102.9 90 
Wavelength (Å) 0.9792 0.9330 
Resolution range (Å) 50-2.9 (3.0-2.9)2 80-4.0 (4.2-4.0)2  
Unique reflections 88,3251 (8,594)2 13,5723 (1,801)2 

Completeness (%) 97.8 (97.6)2 99.8 (99.5)2 
Redundancy 4.9 (5.1)2 8.0 (10.7)2 
Mosaicity (°) 0.19 0.34 
Rsym (%) 3.7 (65.1)2 20.7 (79.2)2 
I/σ(I) 24.2 (3.3)2 8.9 (3.7)2 
Refinement 
Nonhydrogen atoms 13,794 6,539 
RMSD bonds 0.010 0.010 
RMSD angles 1.28 1.25 
Rcryst (%) 19.4 28.7 
Rfree (%) 24.3 36.1 
Preferred (%)  95.2  83.0 
Allowed (%) 4.3 11.1 
Disallowed (%) 0.5 5.9 

1 Friedel pairs not merged. 2 Values in parentheses are for highest resolution shell. 3 Friedel pairs merged 
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2.3 A49 contains a novel tandem winged helix domain 

The C-terminal domain of S. cerevisiae A49 could also be crystallized (Experimental 

procedures) and its structure was determined by multi-wavelength anomalous diffraction at 

2.0 Å resolution (Table 7). The structure revealed a single domain (Fig. 35A) with a fold that 

is not found in the database (Berman et al., 2000). The core of the domain consists of two 

tightly packed subdomains with a winged helix-turn-helix (winged helix, WH) fold (WH1, 

residues 254-321; WH2, residues 322-403) (Fig. 35A). The WH fold is present in 

transcription factors and nucleic acid-binding proteins (Brennan, 1993; Gajiwala and Burley, 

2000; Kenney, 2002), and consists of three α-helices and three β-strands, in the order 

α1, β1, α2, α3, β2, and β3 (Figs. 29A and 35A). Subdomains WH1 and WH2 additionally 

contain one or two short α-helices, respectively, inserted in the β2-β3 loop (Fig. 35A). In 

WH1, helix α1 is extended and surrounded with four additional N-terminal helices (α1*-α4*, 

Fig. 35A). This N-terminal helical bundle and the β2-β3 insertions are flexible, since they 

have higher B-factors (Fig. 36A), and are partially disordered in an alternative crystal form 

(Fig. 36B and Table 7). The WH subdomains form an interface with conserved hydrophobic 

residues on their α1-helices that pack in an antiparallel fashion (Figs. 35B and 37). Because 

the WH subdomains are packed into a single domain, we refer to this structure as tandem 

winged helix (tWH) domain. 

 

 

Figure 35. A novel tandem winged helix domain structure in A49 

(A) Ribbon diagram of the A49 tWH domain crystal structure. Subdomains WH1 and WH2 are displayed in blue 

and purple, respectively. (B) The WH1-WH2 subdomain interface is formed by conserved residues. 
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Figure 36. A49 tandem winged helix domain contains flexible regions 

(A) Structure of the A49 tWH domain, colored according to B-factors. B-factor distribution is shown in rainbow 

colors ranging from blue (low B-factors) to red (high B-factors). Secondary structure elements with high B-

factors are indicated. (B) Comparison of two related A49 tWH structures. A49 tWH183-403 is colored in blue 

(WH1) and purple (WH2), while A49 tWH155-399 is in grey. WH1 helix α’ is not ordered in the structure of A49 

tWH155-399, and parts of WH2 are shifted. 

 
Table 7. Diffraction data and refinement statistics 

tWH domain A49171-403 A49/34.5 variant 
Peak Inflection Remote 

tWH domain  
A49155-399 

Data collection 
Space group P21 P21 P21 P4 
Unit cell axes (Å)            85.1 

           78.1 
           100.7 

96.7 
96.7 
54.6 

Unit cell β angle (°)            113.4 90 
Wavelength (Å) 0.9790 0.9790 0.9180 0.9790 
Resolution range (Å) 80-2.0 (2.08-2.0)2 50-2.8 (2.9-2.8)2 50-2.5 (2.6-2.5)2 80-2.35 (2.45-2.35)2 
Unique reflections 159,3351 (17,800) 58,7511 (5,918)2 82,8331 (9,221) 2 21,2593 (2,466)2 
Completeness (%) 99.0 (99.8)2 99.2 (99.5)2 99.3 (99.7)2 99.8 (99.8)2 
Redundancy 3.6 (3.8)2 3.8 (3.8)2 3.8 (3.8)2 11.7 (12.5)2 
Mosaicity (°) 0.16 0.17 0.30 0.09 
Rsym (%) 6.6 (60.6)2 8.1 (69.7)2 7.7 (75.7)2 8.0 (59.7)2 
I/σ(I) 16.8 (3.4)2 16.8 (3.4)2 18.3 (3.5)2 27.5 (6.3)2 
Refinement  
Nonhydrogen atoms 9,698 3,587 
RMSD bonds 0.010 0.010 
RMSD angles 1.04 1.08 
Rcryst (%) 18.9 18.8 
Rfree (%) 22.4 22.5 
Preferred (%)  98.5 99.0 
Allowed (%) 1.5 1.0 
Disallowed (%) 0.0 0.0 

1 Friedel pairs not merged. 2 Values in parentheses are for highest resolution shell. 3 Friedel pairs merged.  
4 Ramachandron plot statistics from PROCHECK (Laskowski et al., 1993). 
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Figure 37. Homologous WH domains in Pol I/III subunits and Pol II-associated factors 

Structure-based alignment of amino acid sequences of the S. cerevisiae A49 tWH domain (top) with their 

proposed human Pol II and Pol III counterparts TFIIE-β (PDB 1D8K (Okuda et al., 2004)) and C34 (PDB 2DK8 

and 2DK5), respectively. Related individual WH domains in human TFIIF proteins Rap30 (PDB 1BBY (Groft et 

al., 1998)) and Rap74 (PDB 1I27 (Kamada et al., 2001)) are aligned for both WH1 and WH2 of A49. 

For WH2 of TFIIE-β, predicted secondary structure elements are depicted in grey, when aligned by HHpred 

(p-value < 0.0001) (Soding et al., 2005) and predicted to be present by secondary structure propensity (Biegert et 

al., 2006). Residues predicted in the hydrophobic cores of individual WH domains are highlighted in black. 

Residues in Rap30 (Groft et al., 1998), TFIIE-β (Tanaka et al., 2009) and A49 (this study) that interact with 

dsDNA are in cyan. Additionally mutated A49 residues are in red. For TFIIE-β, mutated residues affecting in 

vitro transcription (Tanaka et al., 2009) are indicated with a ‘T’ below the sequence. For C34, mutated residues 

are colored in dark green when displaying a cryo-sensitive phenotype, or are indicated with numbers for a lethal 

hexa- (1) or double-mutant (2), respectively (Brun et al., 1997). A49 tWH subdomain interface residues are 

indicated with dots (hydrophobic) or triangles (hydrophilic), with matched colors indicating interactions. For 

TFIIE-β and C34, residues predicted to contribute to a putative tWH interface are indicated with grey dots. For 

TFIIE-β, grey triangles indicate two residues that are predicted to form an interface salt bridge. A residue in A49 

and a residue in C34 that deviate in the structures from database entry sequences are marked with an asterisk 

below the protein sequence. All other labels are as in Figure 32. 
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2.4 The tWH domain binds double-stranded DNA with a conserved surface 

The tWH domain contains an extended positively charged surface (Fig. 38A) suggesting it 

binds nucleic acids. We investigated this using an electrophoretic mobility shift assay 

(EMSA, Experimental procedures 4.5). A double-stranded (ds) DNA of random sequence 

caused a shifted band indicating a tWH-dsDNA complex (Fig. 39, lanes 1-2). Similar results 

were obtained with dsDNA corresponding to parts of the Pol I promoter (Fig. 39, lanes 3-4, 9-

10). When duplexes of less than 30 base pairs were used, dsDNA binding was impaired (Fig. 

39, lanes 5-8, 11-14). The dimerization module did not bind DNA (Fig. 41, lane 2), providing 

a negative control. Consistent with these findings, a DNA affinity of A49 was previously 

noticed, but not investigated (Liljelund et al., 1992). These results unravel a DNA-binding 

function of A49/34.5 located in its tWH domain. 

 

 

Figure 38. A49 tWH domain contains a conserved basic surface  

(A) Surface charges. Red and blue color indicates negative and positive charges, respectively, as calculated with 

APBS (Baker et al., 2001). A dashed circle indicates a positively charged conserved region. The top view is as in 

Figure 35A, the bottom view is rotated around a horizontal axis by 90 degrees. (B) Surface conservation. 

Decreasing conservation among seven different Saccharomycotinae species is indicated in green, orange, yellow 

and grey. The views are as in A. 
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Figure 39. A49 tWH domain binds DNA 

EMSA analysis of dsDNA binding. dsDNAs included a 47 base pair (bp) DNA of unrelated sequence (non-

specific) and regions of the Pol I promoter (Choe et al., 1992; Kulkens et al., 1991; Musters et al., 1989) as 

indicated by positions relative to the transcription start site +1. The latter included extended domain 2 of 

upstream promoter element (-70 to -31) and parts of it (-70 to -52, -51 to -31), and the core element domain 1 

(-25 to +8) and parts of it (-18 to +8, -30 to -1). 

 

 

To predict the DNA-binding surface of the tWH domain, we superimposed the WH domain of 

the transcription factor OhrR-DNA complex (Hong et al., 2005) with both A49 WH 

subdomains. Superposition with the A49 WH1 subdomain resulted in a clash between DNA 

and protein, whereas superposition with the WH2 subdomain did not, suggesting that α3, β2 

and β3 of WH2 bind DNA (Fig. 40A). The putative DNA-binding surface is positively 

charged and conserved (Fig. 38). Consistent with these results, multiple point mutations on 

WH1 (Fig.  40B) did not influence DNA binding (Fig. 41, lanes 4-5), whereas mutation of 

WH2 residues K356/S358, K359, R365, or K393 (Fig.  40C) impaired binding (Fig. 41, lanes 

6-7, 9-10). Further consistent with the model, a polyethylene glycol molecule is bound in the 

crystal at the position of the modeled DNA, indicating affinity of this site for nucleic acids 

(Fig. 42). Thus, DNA-binding of the tWH domain requires WH2 residues in α3 and β3, 

consistent with a typical WH-DNA interaction.  
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Figure 40. Two DNA-binding models for the A49 tWH domain 

(A) Alternative superpositions of OhrR-DNA complex structure (PDB 1Z9C (Hong et al., 2005)) onto A49 tWH 

subdomains WH1 (blue) or WH2 (purple). OhrR is depicted in grey and DNA in orange. (B) Modeled 

interaction between A49 WH1 and DNA. Putative DNA-interacting residues in A49 are shown as sticks and 

labeled. (C) Modeled interaction between A49 WH2 and DNA. 
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Figure 41. A49 tWH domain variants do not bind dsDNA 

(A) Subdomain WH2 surface mutations impair dsDNA binding. The interaction of tWH variants with promoter 

dsDNA -25 to +8 (Fig. 39) was analyzed by EMSA. In lane 2, the dimerization module was used as negative 

control. The tWH domain A49183-415 and its variants were used in lane 3 and lanes 4-11, respectively (WH1-

7mut, Q309A/F310A/R312A/S313A/K314A/D315A/R316A; WH1-5mut, S289A/E292A/Q309A/S313A/ 

K314A; point mutant variants as indicated). (B) SDS-PAGE analysis of various purified A49 tWH variants. 

 

 

Figure 42. DNA-binding of the A49 tWH domain 

Modeled interaction between A49 WH2 and dsDNA based on superposition in Figure 40C. Residues important 

for DNA binding are depicted. A polyethylene glycol molecule was observed in a difference electron density 

map (green mesh, contoured at 3.8σ). 
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2.5 The tWH domain binds single-stranded promoter DNA 

To test whether the tWH domain could also bind single-stranded (ss) DNA, we used EMSA 

and 40-nucleotide-long oligonucleotides corresponding to the template or non-template strand 

of the Pol I promoter. Indeed, the tWH domain bound ssDNAs with a sequence preference for 

the non-template promoter strand upstream of the transcription start site +1 (positions -110 to 

-20, Fig. 43A, lanes 1-24). In contrast, the tWH domain did generally not bind ssDNAs with 

sequences of the template strand (Fig. 43B), the promoter core element (positions -25 to +8, 

Fig. 43A, lanes 28-30), or unrelated sequences (Fig. 43A, lanes 31-33). 

 

 

Figure 43. The A49 tWH domain binds single-stranded promoter DNA 

(A, B) EMSA analysis of ssDNA binding. The A49 tWH domain and its variant K393A that is defective in 

dsDNA binding were used. The ssDNA sequences correspond to the template or non-template strand of the Pol I 

promoter as indicated by positions relative to +1. 
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To investigate whether the tWH domain can simultaneously bind ssDNA and dsDNA, we 

labeled ssDNA and dsDNA with a red and green fluorescent dye, respectively. The tWH 

domain bound ssDNA in the presence of bound dsDNA (Fig. 44, lanes 2-4). Since the 

fluorescence intensities of the migrating protein-DNA complexes were similar, a competitive 

DNA binding is not likely. Moreover, a tWH variant defective in dsDNA binding still bound 

ssDNA (Fig. 44, lanes 5-7). However, a tWH variant lacking 12 C-terminal residues did not 

bind DNA at all (Fig. 44, lanes 8-10). Thus the DNA-binding WH2 surface is required for 

dsDNA binding, whereas the basic C-terminal tail is required for both ssDNA and dsDNA 

binding (Fig. 45). These results show that the tWH domain binds ssDNA with a preference 

for the non-template strand in the upstream promoter region and that this activity is not 

mutually exclusive with its dsDNA-binding activity. 

 

Figure 44. The A49 tWH domain binds double- and single-stranded DNA 

Binding of dsDNA and ssDNA is not mutually exclusive. 6-FAM-labeled dsDNA (-25 to +8) and Cy5-labeled 

ssDNA (-70 to -31) were visualized within the same gel at 495 nm (green, left) and 650 nm (red, right), 

respectively. tWH variants included wildtype A49183-415 and its variant K393A which is defective in dsDNA 

binding and its variant A49183-403 that lacks the C-terminal basic tail.  
 
 

 

Figure 45. A49 contains a C-terminal tail  

Sequence alignment of the C-terminal tail from yeast and mammalian A49. Specific conserved basic residues 

and secondary structure elements are indicated. 
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2.6 A49/34.5 domains have distinct functions 

To map protein regions that anchor A49/34.5 to the Pol I core, we tested A49/34.5 variants 

for binding to Pol IΔ. The dimerization module did not bind Pol IΔ, but its extension by the 

A49 linker, or by the A34.5 tail, enabled binding (Fig. 46A, lanes 1-4). The A49 linker is 

proteolytically sensitive (Fig. 29A), and a purified linker variant (Fig. 29B) was unfolded in 

solution (1D-NMR, Fig. 47). A Circular Dichroism (CD) measurement confirmed this result, 

but showed that the linker could adopt a partly α-helical fold, when increasing amounts of 

triflourethanol were added (Fig. 48). Consistent with this result, the linker is predicted to 

contain five helices, two of which were observed in crystals. A part of the N-terminal linker 

helix (residues 100-106) was observed in a poorly diffracting crystal of the extended 

dimerization module variant A491-119/34.525-143 (Fig. 49A and Table 6). The C-terminal linker 

helix (residues 172-181) was observed in the tWH crystal in one molecule in the asymmetric 

unit (Fig. 49B), and in a different position in another crystal form (not shown, Table 7). These 

results show that A49/34.5 is anchored on Pol I with its domain linker, and suggests that the 

A49/34.5 domains maintain some mobility on the Pol I surface. 

 

 

Figure 46. Different A49/34.5 regions stabilize the dimerization module on Pol I 

(A) The A49 linker or the A34.5 C-terminal tail are required to anchor A49/34.5 on Pol I. Wash and elution (elu) 

fractions of pulldown experiments were analyzed by SDS-PAGE. Pol IΔ subunits are indicated in black, A49 

and A34.5 variants are in red. The dimerization module A491-110/34.51-156 did not bind Pol IΔ (lanes 1-2), but 

binding was enabled by its extension with the A49 linker (A491-186/34.525-143, lane 4), or with the A34.5 tail 

(A491-110/34.5, lane 3). Wash samples were TCA-precipitated (lane 1). (B) Pulldown controls for various 

A49/34.5 variants. Degradation products are indicated with an asterix. A491-110/34.51-156 (lanes 1-2), A491-

110/34.5 (lanes 3-4) and C. glabrata A491-186/34.525-143 (lanes 5-6). 
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Figure 47. A49 linker domain is unfolded in solution 

1D-1H-NMR spectrum of A49 linker domain, with chemical shifts of 1H protons indicated in ppm. Aromatic and 

amide protons were only visible between 6.7 and 8.4 ppm, with no observed peak dispersion (down-field 

chemical shift, > 9 ppm).  High-field shifted methyl protons (<1 ppm) were not detected, too. These results show 

that the A49 linker domain is unfolded in solution. Data were collected by Sabine Wenzel (University of 

Bayreuth). 

 

 

Figure 48. A49 linker domain can adopt a α-helical fold 

Circular dichroism (CD) analysis of A49 linker domain. The wavelength (nm) and molar ellipticity (θ) are 

indicated. The A49 linker domain is unfolded in solution (blue curve), but titration with increasing amounts of 

triflouroethanol (TFE) induced a partly α-helical fold (brown, green, purple, and light blue curve, respectively). 

Data were collected by Sabine Wenzel (University of Bayreuth). 
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Figure 49. Structure of the A49 linker domain 

(A) Structural superposition of the extended A49/34.5 dimerization module with the TFIIF Rap74/30 

dimerization module structure (grey). Linker helices α’ (A49) and α1 (Rap74) are in cyan. (B) Observation of 

A49 linker helix α4 in one tWH molecule of the asymmetric unit of the structure in Figure 35. The linker helix is 

in cyan, and neighboring domains in the crystal are in grey. Other colors are as in Figure 29A. The 2Fo-Fc 

electron density map is contoured at 0.8σ (grey mesh). 

 

 

We previously showed that A49/34.5 is required for normal Pol I RNA cleavage activity and 

processivity on synthetic templates (chapter III, 2.7). To map regions required for these 

functions, A49/34.5 variants were added to Pol IΔ and the activities were tested in vitro 

(Experimental procedures). These experiments revealed that normal RNA cleavage requires 

the dimerization module and the A49 linker or the A34.5 tail (Fig. 50). Thus the dimerization 

module mediates full RNA cleavage activity, but this requires anchoring the domain on Pol I. 

Processivity, as measured by the ability of Pol I to synthesize RNA to the end of the DNA 

template, required the tWH domain, including the basic C-terminal tail (Fig. 51). Taken 

together our results reveal the functional architecture of A49/34.5 (Fig. 52) and enabled 

homology modeling for the related mammalian subcomplex Paf53/49. 
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Figure 50. The dimerization module stimulates RNA cleavage if it is anchored to Pol I 

Pol I removes four nucleotides from the RNA (lane 2). This activity depends on A49/34.5, as Pol IΔ is defective 

in cleavage (lane 3). Cleavage can be restored by addition of A49/34.5 (lane 4) or its variants containing the 

dimerization module and either the A49 linker (lane 9) or the A34.5 tail (lane 6).  

 

 

Figure 51. A49 tWH domain is required for Pol I processivity 

Pol I processivity on a minimal DNA-RNA scaffold (chapter III, Fig. 24A) requires the A49 tWH domain. Pol I 

elongates RNA (lane 1) by 12 nucleotides to the run-off product (lane 2) whereas Pol IΔ can not (lane 3). 

Processivity is restored by addition of recombinant A49/34.5 (lanes 4-5) or variants that contain the tWH domain 

(lanes 6, 9 and 11) and depends on the tWH C-terminal basic tail (compare lanes 10-11).  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Figure 52. Evolutionary relationship between Pol I/III-specific subunits and Pol II factors 

On the top, a model of the Pol I subcomplex A49/34.5 based on the new structural information is shown. Colors 

are as follows: A49 dimerization domain, light blue; A34.5 dimerization domain, magenta; A49 linker, cyan; 

A49 WH1, blue; A49 WH2, purple. For functional assignments compare text. The A34.5 C-terminal tail is 

important for nucleolar localization (Ushijima et al., 2008). In the middle, the A49/34.5-related domains in Pol II 

initiation factors are shown. The structure of the TFIIF Rap74/30 dimerization module (Gaiser et al., 2000) and 

the proposed TFIIE-β WH1 subdomain (Okuda et al., 2000) are known. The structure of the proposed TFIIE-β 

WH2 was modeled (Sali et al., 1995) based on the tWH structure. Some of the residues that potentially 

contribute to the tWH subdomain interface (F75, L78, A79, V82, A150, L151, and L155) are indicated with 

spheres. On the bottom, models for A49/34.5-related domains in Pol III-specific subunits are shown. The C37/53 

dimerization module was modeled based on the A49/34.5 dimerization module structure, using a secondary 

structure-based alignment (Fig. 32). Structures for C34 WH1 and WH2 have been determined (2DK8, 2DK5). 

Based on the modeling it is unlikely that the WH1-WH2 interface is stable, and two domains may move with 

respect to each other.  
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3 Discussion 

3.1 Structure and DNA-binding function of Pol I subcomplex A49/34.5 

The main difference between Pol I and Pol II is the presence of the additional subcomplex 

A49/34.5 in Pol I. We show here that A49/34.5 forms a heterodimer that consists of two 

structured domains connected by a flexible linker. The N-terminal regions of both subunits 

form a dimerization module with a TFIIF-like fold, whereas the C-terminal region of A49 

forms a tWH domain with two WH subdomains. The dimerization module mediates normal 

RNA cleavage activity of Pol I, whereas the tWH domain stimulates Pol I processivity and 

binds DNA. The tWH domain binds both ssDNA and dsDNA, and these interactions are 

apparently not mutually exclusive. This observation is consistent with a previously reported 

nonspecific dsDNA binding affinity of Pol I (Bric et al., 2004). The tWH domain binds 

preferentially to the non-template single strand in the upstream promoter region. These results 

suggest that the tWH domain is involved in promoter opening and/or stabilization of the early 

transcription bubble by trapping the non-template DNA strand. The transcription bubble was 

mapped for the protozoan amoebae Acanthamoeba castellani around the transcription start 

site (Kahl et al., 2000), but the location of the initial Pol I transcription bubble in yeast 

remains unknown.  

Published results are consistent with a DNA-binding function of the tWH domain that may be 

relevant during transcription initiation and elongation in vivo. In S. cerevisiae, tWH residues 

367-415 are responsible for a cold-sensitive phenotype, whereas A49 residues 1-119 in the 

dimerization domain and A34.5 are entirely dispensable in vivo (Beckouet et al., 2008). A 

yeast strain lacking residues 367-415 of the tWH domain was sensitive to 6-azauracile and 

mycophenolate, showed compromised Pol I processivity, and a reduction of Pol I occupancy 

in the rDNA promoter and transcribed region (Beckouet et al., 2008). Mouse A49 is required 

for promoter-dependent transcription (Hanada et al., 1996). This was confirmed for S. pombe 

A49 and it was additionally shown that the region forming the tWH domain is responsible for 

a cold-sensitive phenotype (Nakagawa et al., 2003). 

 

3.2 Pol I resembles a minimal Pol II-TFIIF-TFIIE complex 

Since TFIIF contains the dimerization module, but not the tWH domain, we searched for a 

tWH domain in another Pol II initiation factor. Two consecutive WH domains were found in 

the TFIIE subunit β (Table 8), one that was structurally resolved (Okuda et al., 2000) and one 
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that could be predicted (Fig. 37) with HHPred (Soding et al., 2005). Modeling the 

arrangement of these two WH domains within a putative tWH structure revealed conserved 

hydrophobic residues in the subdomain interface, and putative conserved salt bridge between 

residues K86 and D147 (Figs. 37 and 52). Consistent with these results, the mutation K86E 

impairs transcription (Tanaka et al., 2009). This suggests that TFIIE-β contains a tWH 

domain and that A49/34.5 combines features of TFIIF and TFIIE, which both contribute to 

Pol II promoter binding. TFIIF binds dsDNA (Groft et al., 1998), prevents non-specific DNA 

binding to Pol II (Killeen and Greenblatt, 1992), and is required for initiation complex 

formation (Tan et al., 1995). TFIIE binds ssDNA (Okamoto et al., 1998) and dsDNA (Okuda 

et al., 2000; Tanaka et al., 2009). The ssDNA-binding activity requires TFIIE-β residues 257-

277 (Okamoto et al., 1998), which correspond to the A49 C-terminal tail that is required for 

ssDNA binding to the A49 tWH domain in vitro (Figs. 43, 44 and 45). 

 
Table 8. A49 tWH homology statistics 

A49 WH1 A49 WH2  
RMSD (Å)1 Fold identity (%)1 RMSD (Å)1 Fold identity (%)1 

C34 WH1 (2DK8)2 2.0 
 

77.6 2.9 
 

59.0 
 

C34 WH2 (2DK5)2 3.3 64.2 2.4 
 

60.2 
 

TFIIE-β  WH1 (1D8K)2 2.2 68.7 3.7 
 

61.5 
 

TFIIE-β  WH2 (modeled)2 3.0 62.4 2.5 
 

65.1 
 

1Deviations in Cα-positions (RMSD) and fold identities were analyzed by superposing the corresponding atomic 

structures with LSQKAB (Kabsch, 1976). 

2 PDB-codes are indicated. For TFIIE-β, the modeled structure (2D1H) was used. The homologous structural 

pairs are highlighted in bold and underlined letters. 

 

3.3 Pol III contains TFIIF- and TFIIE-like regions 

There is also evidence that Pol III subunits resemble parts of TFIIF and TFIIE. The Pol III 

subunit heterodimer C37/53 apparently forms a TFIIF-like dimerization module (chapter III, 

2.6), and could be modeled with the A49/34.5 dimerization module structure (Fig. 52). All β-

strands of a triple-barrel were predicted (Fig. 32) and most hydrophobic core residues were 

conserved (Fig. 32). The related dimerization modules in A49/34.5, TFIIF, and C37/53 bind 

at similar locations on the Rpb2 side of Pol II (chapter III, 2.6)(Chen et al., 2010; Fernandez-

Tornero et al., 2007). Unfortunately we could not investigate this further since the structures 
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presented here could not be placed unambiguously into the previous Pol I electron 

microscopic density (chapter III, Figs. 9 and 10). Subunit C34 contains two consecutive WH 

domains (PDB-codes 2DK8, 2DK5) that could form a tWH domain, although the putative 

interface contains only three hydrophobic residues (V16, I23, L94, Figs. 37 and 52). Subunit 

C82 was also predicted to contain subsequent WH domains, but these include an additional 

N-terminal helix, as in the ‘extended WH domain’ of TFIIE-α (Meinhart et al., 2003). Thus 

the C82/34 heterodimer (Lorenzen et al., 2007) may be distantly related to the TFIIE-α/β 

heterodimer. Consistent with this homologies, C37/53 and C82/34/31 function in transcription 

initiation (Brun et al., 1997; Kassavetis et al., 2010; Landrieux et al., 2006; Wang and Roeder, 

1997). While this work was about to be completed, a bioinformatic analysis also suggested 

some similarities between Pol III subunits and Pol II initiation factors (Carter and Drouin, 

2010). These results indicate that Pol III is also related to a Pol II-TFIIF-TFIIE complex. 

 

3.4 Polymerase evolution and promoter specificity 

Here we provide evidence that Pol I- and Pol III-specific subcomplexes contain domains that 

are structurally related to parts of the Pol II initiation factors TFIIF and TFIIE (Fig. 52). Our 

results and published data indicate that TFIIF- and TFIIE-related subcomplexes are involved 

in promoter binding. These subcomplexes however show substantial differences in their 

domain organization, suggesting that they evolved to allow for gene class-specific promoter 

recognition, and apparently also for additional functions during elongation such as 

processivity. 
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4 Experimental procedures 

4.1 Mass spectrometry 

A49/34.5, Pol I and Pol IΔ were prepared as described in chapter III (3.1, 3.6 and 3.9). For 

native MS the sample buffer was exchanged to a solution containing 160 mM or 880 mM 

ammonium acetate using centrifugal filter units (Millipore) and sample concentration was 

adjusted to 2 µM. MS was carried out on a Q-ToF I instrument (Lorenzen, 2007; van den 

Heuvel et al., 2006). The cone voltage was 150 V and the needle voltage was 1.3 kV. The 

pressure in the source region was 10 mbar. Xenon was used as a collision gas with a pressure 

of 20 µbar (Lorenzen, 2007). Data were analyzed with MassLynx (Waters). 

 

4.2 Recombinant proteins 

The genes for A49 and A34.5 were cloned sequentially into vector pET28b (Merck), resulting 

in a thrombin-cleavable N-terminal hexahistidine tag on A49. For bicistronic expression, a 

second ribosomal binding site was inserted before A34.5. The S. cerevisiae variant A491-

110/34.51-156 was expressed for 18 h at 18 °C in E. coli BL21 (DE3) RIL cells (Agilent). Cells 

were harvested by centrifugation, resuspended in 50 ml buffer A (50 mM MES pH 6.3, 300 

mM NaCl, 10 mM β-mercaptoethanol, 1 mM protease inhibitor mix containing 1 mM PMSF, 

1 mM benzamidine, 200 µM pepstatin, and 60 µM leupeptin) and lysed by sonication. After 

centrifugation, the supernatant was loaded onto a 3 ml Ni-NTA column (Qiagen) equilibrated 

with buffer A. The column was washed stepwise with 25 ml of buffer A containing 1 M NaCl 

and 15 ml of buffer A containing 10 mM imidazole. Protein was eluted with buffer A 

containing 200 mM imidazole. Eluted fractions were diluted three-fold with buffer A lacking 

NaCl and incubated with thrombin (1 U protease/1 mg protein) for 16 h at 4 °C. A MonoQ 

column (GE Healthcare) was equilibrated with buffer B (50 mM MES pH 6.3, 100 mM NaCl, 

5 mM DTT). Protein was obtained in the flow-through, applied to a MonoS column (GE 

Healthcare) equilibrated with buffer B, and eluted with a linear gradient from 100 mM to 1M 

NaCl. The sample was concentrated and applied to a Superose 12 HR column (GE 

Healthcare) equilibrated with 50 mM Tris pH 7.5, 150 mM NaCl, and 5 mM DTT. Pooled 

peak fractions were concentrated to 20 mg/ml. Purification of other dimerization module 

variants was as above except A49/34.51-156, which was purified as described in chapter III 

(3.6).  
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The A49 linker variant A49105-187 was expressed for 4 h at 37 °C in E. coli BL21 (DE3) RIL 

cells and purified as above. Purified linker was concentrated to approximately 10 mg/ml. 

A49 tWH domain variants were cloned, expressed, and purified essentially as above, except 

that the MonoQ step was skipped and gel filtration was carried out in 50 mM Tris pH 7.0, 150 

mM NaCl, and 5 mM DTT. Pooled peak fractions were concentrated to 16 mg/ml. Limited 

proteolysis was performed as described (Geiger et al., 2008; Hubbard, 1998), using trypsin 

and chymotrypsin as proteases. 

  

4.3 Crystal structure determinations 

Crystals for C. glabrata variant A491-99/34.525-143 were grown at 20 °C in hanging drops using 

as reservoir solution 22% PEG 3350 and 250 mM sodium fluoride. Crystals were cryo-

protected by a stepwise transfer to reservoir solution containing 7-20% PEG 400, and flash 

cooled by plunging into liquid nitrogen. Two additional methionines were introduced as non-

disruptive point mutations (A49-V72M, A34.5-L55M). Selenomethionine-labeled variant was 

prepared as described (Budisa et al., 1995; Meinhart et al., 2003) and crystallized at 20 °C 

using as reservoir solution 20% PEG 3350 and 50 mM Tris pH 7.5. Crystals reached a size of 

300 µm x 60 µm x 60 µm, and were cryo-preserved in reservoir solution containing 23% 

glycerol. SAD diffraction data were obtained at the Swiss Light Source and processed with 

XDS (Kabsch, 1993) (Table 6). Programs SHELXD/HKL2MAP (Pape and Schneider, 2004; 

Schneider and Sheldrick, 2002) detected 16 selenium sites, two sites in each of the eight 

heterodimers in the asymmetric unit. SHARP (de La Fortelle and Bricogne, 1997) was used 

for SAD phasing, and SOLOMON (Abrahams and Leslie, 1996) for density modification. 

NCS averaging was performed with DM (Cowtan, 1994). The model was built with COOT 

(Emsley and Cowtan, 2004) and refined with PHENIX (Afonine et al., 2005) and BUSTER 

(Blanc et al., 2004) (Table 6). Crystals for C. glabrata variant A491-119/34.525-143 were grown 

using as reservoir solution 20% PEG 3350 and 50 mM Tris pH 7.0. Diffraction data were 

collected at the European Synchrotron Radiation Facility ESRF (Table 6). The structure was 

solved by molecular replacement with PHASER (McCoy et al., 2005), using the dimerization 

module structure as a search model. A NCS-averaged map was generated with PARROT 

(Cowtan, 2010). The model was manually extended and refined at 4 Å resolution (Table 6).  

Crystals for S. cerevisiae A49171-403 were grown at 4 °C in hanging drops, using as reservoir 

solution 25% PEG 3350 and 100 mM Tris pH 8.5. Crystals reached a size of 400 µm x 80 µm 

x 80 µm, were harvested in reservoir solution containing 10-20% PEG 400 and flash cooled. 
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In addition to present methionine residues (M170, M256, M397), two additional methionines 

were introduced (L178M, L261M) and selenomethionine-labeled protein was prepared as 

above and crystallized at 4 °C using as reservoir solution 24% PEG 3350 and 50 mM Tris pH 

8.0. MAD data were obtained at ESRF, processed as above (Table 7), and the structure was 

determined essentially as above, except that MAD phasing was used. 20 selenium sites were 

detected, four in each of five tWH domains in the asymmetric unit. The model was built 

automatically with ARP/wARP (Langer et al., 2008), manually adjusted, and refined (Table 

7). Crystals for variant A49155-399 were grown at 4 °C in hanging drops, using as reservoir 

solution 100 mM Tris pH 8.5, 26% PEG 4000 and 200 mM lithium sulfate monohydrate, 

reached a size of 80 µm x 30 µm x 30 µm and were cryo-preserved in 20% ethylene glycol. 

The structure was solved by molecular replacement using the A49 tWH structure as a search 

model and was refined (Table 7). 

 

4.4 RNA cleavage and extension assays 

RNA cleavage assays were performed with a nucleic-acid scaffold containing a three-

nucleotide non-complementary overhang at its 3’ end as described in chapter III (3.11), except 

that the reaction buffer contained 20 mM MES pH 6.0. RNA extension assays were 

performed with a pre-annealed minimal nucleic-acid scaffold as described in chapter III 

(3.10). 

 

4.5 Electrophoretic mobility shift assay 

EMSA assays were performed essentially as described (www.labs.fhcrc.org/hahn/Methods) 

except that the buffer was 20 mM Tris pH 8.0, 150 mM NaCl, 1 mM DTT, 40 µg/ml Heparin, 

5 mM MgCl2, 4% glycerol. dsDNA was prepared by annealing equimolar amounts of 

complimentary oligonucleotides (sequences, Table 9). For dual wavelength experiments, 

6-FAM labeled dsDNA and Cy5-labeled ssDNA were used. 1 pmol of DNA were incubated 

with 100 pmol of protein for 15 min at 4 °C. The DNA-protein complexes were resolved by 

gel-electrophoresis (0.2 pmol per lane) in an 8/0.08% acrylamid/bisacrylamid gel (25 mM 

Tris pH 8.2, 19 mM glycine, 2.5% glycerol, 0.5 mM DTT) at 150 Volt for 50 min and 

visualized by a Typhoon 9400 phosphoimager (GE Healthcare).  
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Table 9. Nucleic acid sequences used in EMSA analysis 

Name Promoter 
position1 

Label 
(5’)2 

Nucleotide sequence (5’-3’, non-template strand)  
Reverse complementary sequence (3’-5’, template strand)3 

Non 
sequence
specific 
dsDNA  

 (47nt) 6-FAM 
 
- 

5’-TGAGTAAGCCGTTTTGCAAGGA 
AGTGTGTTTCTTAAGTACTTGAGCT 

5’-AGCTCAAGTACTTAAGAAACA 
CACTTCCTTGCAAAACGGCTTACTCA 

Ex. Upst. 
Dom. 2  

-70 to 
-31 

6-FAM 
- 

5’-TAGTTTGTAATGGGAGGGGGG GTTTAGTCATGGAGTACAA 
5’-TTGTACTCCATGACTAAACCCC CCCTCCCATTACAAACTA 

Core El. 
linker  

-51 to  
-31 

6-FAM 
- 

5’-GGGTTTAGTCATGGAGTACAA-3’ 
5’-TTGTACTCCATGACTAAACCC-3’ 

Upst. 
Dom. 2 

-70 to 
-52 

6-FAM 
- 

5’-TAGTTTGTAATGGGAGGGG-3’ 
5’-CCCCTCCCATTACAAACTA-3’ 

Core El. 
Dom. 1 

-25 to 
+8 

6-FAM 
- 

5’-AGGAAAAGTAGTTGGGAGGTACTTCATGCGAAA-3’ 
5’-TTTCGCATGAAGTACCTCCCAACTACTTTTCCT-3’ 

Tr. Core 
El. a 

-18 to 
+8 

6-FAM 
- 

5’-GTAGTTGGGAGGTACTTCATGCGAAA-3’ 
5’-TTTCGCATGAAGTACCTCCCAACTAC-3’ 

Tr. Core 
El. b 

-30 to 
-1 

6-FAM 
- 

5’-GTGTGAGGAAAAGTAGTTGGGAGGTACTTC-3’ 
5’-GAAGTACCTCCCAACTACTTTTCCTCACAC-3’ 

ss-upst.- 
prom. (a) 

-110 to 
-71 

Cy5 
- 

5’-AGAGCGACAGAGAGGGCAAAAGAAAATAAAAGTAAGATTT 
- 

ss-upst.- 
prom. (b) 

-100 to 
-61 

Cy5 
- 

5’-AGAGGGCAAAAGAAAATAAA AGTAAGATTTTAGTTTGTAA 
- 

ss-upst.- 
prom. (c) 

-90 to 
-51 

Cy5 
- 

5’-AGAAAATAAAAGTAAGATTTTAGTTTGTAATGGGAGGGGG 
- 

ss-upst.- 
prom. (d) 

-80 to 
-40 

Cy5 
- 

5’-AGTAAGATTTTAGTTTGTAATGGGAGGGGGGGTTTAGTCAT 
- 

ss-upst.- 
prom. (e) 

-74 to 
-35 

Cy5 
- 

5’- GATTTTAGTTTGTAATGGGAGG GGGGGTTTAGTCATGGAG 
- 

ss-upst.- 
prom.(f) 

-70 to 
-31 

Cy5 
- 

5’-TAGTTTGTAATGGGAGGGGGGGT TTAGTCATGGAGTACAA 
- 

ss-upst.- 
prom.(g) 

-65 to 
-26 

Cy5 
- 

5’-TGTAATGGGAGGGGGGGTTTAGT CATGGAGTACAAGTGTG 
- 

ss-upst.- 
prom.(h) 

-60 to 
-20 

Cy5 
- 

5-TGGGAGGGGGGGTTTAGTCATGGAGTACAAGTGTGAGGAAA 
- 

ss-upst.- 
prom.(i) 

-49 to 
-10 

Cy5 
- 

5’-GTTTAGTCATGGAGTACAAGTGT GAGGAAAAGTAGTTGGG 
- 

ss-upst.-
pr.-r (a) 

-100 to 
-61 

- 
Cy5 

- 
5’-TTACAAACTAAAATCTTACTTTTATTTTCTTTTGCCCTCT 

ss-upst.- 
pr.-rev(b) 

-90 to 
-50 

- 
Cy5 

- 
5’-CCCCCCTCCCATTACAAACTAAAATCTTACTTTTATTTTCT 

ss-upst.- 
pr.-rev(c) 

-80 to 
-40 

- 
Cy5 

- 
5’-ATGACTAAACCCCCCCTCCCATTACAAACTAAAATCTTACT 

ss-upst.- 
pr.-rev(d) 

-70 to 
-31 

- 
Cy5 

- 
5’-TTGTACTCCATGACTAAACCCCCCCTCCCATTACAAACTA 

ss-upst.- 
pr.-rev(e) 

-60 to 
-20 

- 
Cy5 

- 
5’-TTTCCTCACACTTGTACTCCATGACTAAACCCCCCCTCCCA 

ss-upst.- 
pr.-rev(f) 

-49 to 
-10 

- 
Cy5 

- 
5’-CCCAACTACTTTTCCTCACACTTGTACTCCATGACTAAAC 

 

1 Pol I promoter positions are indicated according to the mapped (+1) initiation site (Moss et al., 2007). 
2 DNA-fragments are labeled at the 5’-end with either 6-FAM and Cy5 for double- or single-stranded DNA. 
3 Nucleotide sequence is shown for non-template strand (5’-3’) and template strand (3’-5’) of the Pol I promoter. 
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4.6 Protein interaction assay 

15 µg of Pol IΔ was incubated with 5 µg of A49/34.5 variant in buffer C (5 mM Hepes pH 

7.8, 60 mM ammoniumsulfate, 1 mM MgCl2, 10 µM ZnCl2, 10 µM β-mercaptoethanol) for 

25 min at 15 °C. 40 µl of Ni-NTA beads (Qiagen) equilibrated with buffer C were added and 

the mixture was incubated for 1 h at 4 °C. Pol I bound to the beads via a hexahistidine tag on 

its A43 subunit. Beads were centrifuged and washed four times with buffer C containing 5 

mM imidazole and 0.2% NP-40. Protein complexes were eluted with buffer C containing 200 

mM imidazole, and were incubated at 95 °C for 5 min in SDS-PAGE loading buffer.  
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Final conclusions and outlook 

During this thesis it was possible to study RNA polymerase I subunits both at a structural and 

functional level. This included comprehensive biochemical investigations and led to three, 

new crystal structures of individual Pol I subunits, which enabled the construction of the 

hybrid structure of the 12-subunit Pol I enzyme.  

As described in chapter II, a comprehensive protein engineering strategy was developed to 

delineate protein subcomplexes. This approach was applied to predict, locate and remove 

multiple flexible regions in a stepwise manner and was essential to obtain crystals for the Pol 

I subcomplex A14/43. 

In chapter III, the resulting atomic structure was positioned in a cryo-EM map of Pol I, 

obtained by Claus Kuhn and colleagues, leading to a homology model of the Pol I core and a 

hybrid structure of the 12-subunit polymerase. This structural information was complemented 

with functional data, such as the discovery of the intrinsic RNA cleavage activity of Pol I, 

which was dependent on the A12.2 subunit. The Pol I-specific subcomplex A49/34.5 was 

purified and predicted to be homologous to the Pol II initiation factor TFIIF. This finding was 

consistent with in vitro and in vivo experiments by Claus Kuhn, which illustrated that 

A49/34.5 is a built-in Pol I processivity factor. These various structural and functional results 

were combined, culminating in a novel model of the functional architecture of Pol I. 

In chapter IV, the focus was to investigate the peripheral subcomplex A49/34.5 in detail. Two 

new crystal structures of the A49/34.5 dimerization module and the A49 tandem winged helix 

(tWH) domain, homologous to the Pol II initiation factors TFIIF and TFIIE and to the Pol III-

specific subunits C37/C53 and C34, illustrate an evolutionary relationship between the three 

RNA polymerases. Functional investigations revealed that the A49/34.5 dimerization module 

and the A49 tWH were required for full Pol I cleavage activity and processivity, respectively. 

The A49 tWH domain binds dsDNA, which could be modeled on a conserved surface. 

Interestingly, a promoter-specific ssDNA binding affinity of the A49 tWH domain was 

observed, which indicates that the subcomplex may participate in Pol I promoter recognition.  

 

Results presented in this thesis revealed new structural and functional relationships between 

the three eukaryotic polymerases and raised several questions that require further 

investigation. 
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The A14/43 subcomplex structure was fitted in the Pol I stalk, in a very similar position 

compared to the other polymerases. However, A14/43 is the only Rpb4/7-like subcomplex 

discovered so far without a HRDC domain, which is consistent with a higher flexibility of the 

A43 OB domain. A14/43 mutations and additional Pol I-specific surfaces, including the 

extended dock domain and the clamp knob, indicate that Pol I initiation factor Rrn3 binds to 

the polymerase from the upstream side. Pol I is phosphorylated when bound to Rrn3 (Fath et 

al., 2001) and A43 contains phosphorylation sites in disordered regions (Gerber et al., 2008). 

Therefore, we could gain further insights into Pol I recruitment to the promoter, if detailed 

structural information of the A14/43-Rrn3 interaction will be available. 

The catalytic center of all polymerases is capable of RNA cleavage, however there are major 

differences between Pol I, II, and III. Pol II can only cleave RNA at mild alkaline conditions 

or with assistance of the transcript cleavage factor TFIIS. This is different to Pol I and III, 

which both have an intrinsic cleavage activity, dependent on their subunits A12.2 and C11 

(Chedin et al., 1998), respectively. The Pol III subcomplex C37/53 is important for 

termination and reinitiation (Landrieux et al., 2006), similar to the Pol I A49/34.5 

dimerization module, which is important for full cleavage activity of Pol I, indicating a related 

mechanism for Pol I and Pol III. The cryo-EM structure of Pol I suggested that the location of 

A12.2 corresponds to Rpb9 in Pol II (chapter III, Fig. 10), which argues for an allosteric 

reorganization of the Pol I active center and not a direct interaction, as observed in the Pol II-

TFIIS complex (Kettenberger et al., 2003). Therefore, it would be interesting to perform a 

detailed structure-function analysis of the intrinsic RNA cleavage activities of Pol I and III. 

The A49/34.5 subcomplex consists of two separate domains. The A49 tWH domain by itself 

was sufficient for full Pol I processivity. This is in contrast to the A49/34.5 dimerization 

module, which showed a mild repressive effect in RNA extension assays (chapter IV, Fig. 51, 

lane 7). These results indicate that both A49/34.5 domains have contrary roles within the Pol I 

enzyme, either stimulating Pol I transcription or enhancing cleavage and repressing Pol I 

processivity. Since Pol I has a tunable active site, which is capable of both RNA synthesis and 

cleavage, a putative allosteric rearrangement of Pol I by the two A49/34.5 domains is a 

possible explanation for their differing functions. However, a more detailed understanding of 

the intrinsic cleavage mechanism and the stimulation of RNA synthesis will likely require the 

crystal structure of the entire Pol I.  
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The fact that A49 tWH is essential for full Pol I processivity could be related to its ability to 

interact with nucleic acids. A49 tWH binds dsDNA, which was modeled on a highly 

conserved surface. EMSA experiments showed that the dsDNA binding affinity is not 

sequence-specific and that a stable protein-DNA complex required a minimal length of 

approximately 30 base pairs. This indicates that the complete bottom surface of the A49 tWH 

domain may be involved in the protein-DNA interaction interface. A published study showed 

that disruption of the A49 tWH domain leads to an overall reduction of the Pol I occupancy 

on the complete rDNA gene (Beckouet et al., 2008). Therefore, it is possible that the A49 

tWH domain acts as a mobile ‘anchor’, which keeps the Pol I enzyme on track during rRNA 

synthesis. Consistent with this assumption, Pol I could be crosslinked to an extended DNA 

template, indicating a nonspecific DNA interaction (Bric et al., 2004). 

Additionally, A49 binds ssDNA with a sequence preference for the nontemplate strand of the 

upstream region of the PoI promoter. These results indicate that the tWH domain is involved 

in promoter opening and/or stabilizing of the early transcription bubble by trapping the 

nontemplate strand. Since a transcription bubble was mapped around the transcription start 

site, a possible explanation could be that Pol I opens the promoter upstream and then scans for 

the transcription start site downstream, as it is known for Pol II. To combine these findings 

into a comprehensive model, a more detailed analysis of Pol I transcription initiation is 

needed. The functional data has to be complemented with structural information of the Pol I 

initiation complex, to understand the different steps from initial promoter recognition, through 

promoter opening towards open complex formation. 

Another important finding is that factors thought to be Pol I- and Pol III-specific, resemble 

domains, which are present in Pol II transcription factors. It could be that the essential 

functions of TFIIF and TFIIE in the Pol II system are incorporated in the Pol I and the Pol III 

enzymes to obtain both minimal and highly effective RNA polymerases. These enzymes 

would be capable of promoter recognition, initiation complex formation, highly processive 

RNA synthesis and even proofreading, without the additional degree of complexity, which the 

recruitment of multiple transcription factors would implicate. 
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To integrate all data into a comprehensive model, detailed structural information for the 

complete Pol I enzyme is missing. This does not just include the 14-subunit Pol I, but 

additionally Pol I complexes with various nucleic acid scaffolds and/or initiation factors. 

Initial 14-subunit Pol I crystals could be obtained, which enabled the collection of several 4 Å 

diffraction data sets. However due to the lack of initial phase information, the crystal structure 

could not be solved so far (Claus Kuhn, Dissertation 2008). Nevertheless obtaining an atomic 

structure of Pol I is an extremely important goal for the future. Since this effort will be a long-

term project, alternative strategies to obtain structural information need to be explored. Cryo-

electron microscopy enabled the assembly of a 12-subunit hybrid structure of Pol I, but also 

showed the limits of this technique. It did not allow to unambiguously position the two 

domains of the transiently bound and partly flexible A49/34.5 subcomplex in the EM density 

(Appendix 3). An alternative approach could be to perform crosslinking studies, to determine 

interactions between residues in A49/34.5 and the Pol I surface. Moreover, native mass 

spectrometry was shown to be very efficient to study the binding of A49/34.5 to Pol I. A 

recent publication of the Pol II-bound factor TFIIF showed that the combination of 

crosslinking together with mass spectrometry is an extremely powerful tool to study the 

architecture of multi-component complexes (Chen et al., 2010), which could be applied to the 

Pol I system. 

To summarize, the results presented in this thesis pave the way for additional studies, to 

unravel the mechanism of RNA polymerase cleavage and proofreading activity, as well as 

gene-class specific promoter recognition by the different eukaryotic polymerases. 
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Appendix (unpublished results) 

1 Functional analysis of A49 tWH variants 

Since dsDNA-binding was impaired by the mutation of several residues in the A49 tWH 

domain (chapter IV, 2.4), it was interesting to investigate the effect of these mutations on Pol 

I binding and processivity (chapter IV, 2.6).  

Two mutations in subdomain WH2 that impair dsDNA binding of the tWH domain (K393A 

and R365A, chapter IV, Fig. 41A) do not disturb Pol I processivity in this assay (Fig. 53C, 

lanes 7-8). In contrast, multiple point mutations on WH1, which do not affect dsDNA 

(chapter IV, Fig. 41A) and Pol I binding (Fig. 53A, lane 2), displaying a minor effect on Pol I 

processivity, which leads to a reduction of the run-off product (Fig. 53C, lane 6).  

Interestingly, an A49 tWH variant, lacking the C-terminal tail of A49 (chapter IV, Fig. 45), 

which could not stimulate full Pol I processivity (chapter IV, Fig. 51), binds to Pol I in a 

substoichiometric way (Fig. 53A, lane 3). Therefore, the functional defect of this variant, 

could also be related to its impaired stability on the Pol I surface. 

 

 

Figure 53. Functional studies of A49 tWH variants 

(A) Pulldown experiments as described in chapter IV, Figure 46. A49 tWH (lane 1) and A49 WH1-7mut, 

Q309A/F310A/R312A/S313A/K314A/D135A/R316A (lane 2) bind to Pol I. Both proteins migrate close to the 

Rpb5 subunit of Pol I. A49183-403 binds to Pol I in a substoichiometric way (lane 3). (B) Pulldown controls as 

described in chapter IV, Figure 46B. (C) RNA extension assays as described in chapter IV, Figure 51. 

Processivity is restored by addition of A49 tWH (lane 4), A49 WH2 K393A K398A (lane 7) and A49 WH2 

R365A (lane 8). A49 WH1-5mut, S289A/E292A/Q309A/S313A/K314A (lane 5) and A49 WH1-7mut, Q309A/ 

F310A/R312A/S313A/K314A/D135A/R316A (lane 6) display a minor defect in stimulation of Pol I 

processivity. 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2 Interaction studies of A49/34.5 domains 

Recent experiments described a functional connection between A49/34.5 and Pol I 

subcomplex A14/43, as well as Pol I initiation factor Rrn3 (Beckouet et al., 2008). To test for 

a direct interaction, pulldown experiments were performed for both A49 tWH  (Fig. 54A) and 

the A49/34.5 Dimerization module with the A49 linker and the A34.5 C-terminal tail (Fig. 

54B). Hexahistidine-tagged Rrn3 or A14/43 did not interact with the two A49/34.5 domains, 

suggesting the functional dependence may be indirect or that the interaction may be weak and 

could not be detected with this experiment. 

  

 

Figure 54. Pulldown experiments of A49/34.5 domains 

Pulldown experiments for A49/34.5 domains are described in chapter IV, Figure 46. (A) A49 tWH did not bind 

to beads (lanes 1-2, control), His6-tagged Rrn3 (lane 3-4) and His6-tagged A14/43 (lane 5-6). (B) The extended 

A49/34.5 dimerization module (A491-189/34.5), as in A. Rrn3 and A14/43 samples were kindly provided by 

Claudia Blattner. 

 

3 Additional Pol I cryo-EM studies 

Since it was not possible to unambiguously position the two A49/34.5 crystal structures in the 

Pol I electron microscopic density (chapter IV, 3.3), additional cryo-EM data was collected 

and processed by Anselm Kusser and Sebastian Geiger. To increase the likelihood of success, 

two different experimental approaches were pursued. First, a minimal DNA/RNA hybrid 

scaffold (chapter III, Fig. 24A) was assembled with Pol I and Pol IΔ, to stabilize the highly 

flexible A49/34.5 domains on the Pol I surface. Second, the individual A49/34.5 domains 

were assembled separately with Pol IΔ, which results in two different, minimal Pol I 

complexes. Unfortunately, both strategies were not successful. It was not possible to obtain 

Pol I cryo-EM maps, which allowed for a convincing positioning of the A49/34.5 

dimerization module or the A49 tWH domain structure. 
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4 Pol I crosslinking experiments 

Since a major part of the EM density assigned to A49/34.5 was located near the enzyme 

funnel (chapter III, 2.6), flexible regions of A49/34.5 could be theoretically inserted into the 

polymerase pore, in proximity to the Pol I active center. To investigate this further, photo-

crosslinking experiments were performed. Pol I samples were assembled with biotinylated 

and fluorescence labeled DNA/RNA hybrid scaffolds, containing a 4-thio UTP labeled RNA, 

which could be crosslinked to active center residues upon UV exposure (Temiakov et al., 

2000) (Fig. 55A). Polymerase-nucleic acid complexes were assembled, bound to magnetic, 

streptavidin-coated beads (Dengl and Cramer, 2009), extensively washed, and exposed to UV 

irradiation. SDS PAGE analysis of crosslinked Pol I complexes showed that A190 and A135, 

which together comprise the Pol I active center, are fluorescently labeled (Fig. 55B, lane 3), 

but no significant fluorescence signal is detected for A49 or A34.5. This preliminary 

experiment needs further investigation, but indicates that A49/34.5 is not in close proximity to 

the polymerase active center. 

 

Figure 55. Pol I crosslinking experiments 

(A) A biotinylated and 6-FAM labeled DNA/RNA hybrid scaffold, containing a 4-thio-UTP base close to the 

RNA 3’ end. (B) Pol I-nucleic acid complexes were assembled, extensively washed, UV-exposed and analyzed 

by SDS PAGE (lane 3). A crosslinked DNA/RNA scaffold (lane 1) and Pol I (lane 2) are shown as controls. 

DNA/RNA crosslinking adducts are marked with asterisks. To prevent cleavage of the RNA 3’ overhang, 

complexes were assembled in a low-pH transcription buffer (chapter III, 3.10), using sodium acetate pH 5.0. 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5 Crystal structure of ClpP from Staphylococcus aureus 

Methicillin-resistant Staphylococcus aureus has become a major re-emerging worldwide 

pathogen (Kennedy et al., 2008). The caseinolytic protein protease (ClpP) was shown to be 

important for the virulence of S. aureus (Frees et al., 2003). Chemically modified β-lactones 

were found to be potent ClpP inhibitors, reducing its hemolytic and proteolytic activities 

(Bottcher and Sieber, 2008). Thomas Böttcher and Sebastian Geiger developed a new ClpP 

preparation protocol, which lead to diffracting protein crystals. The crystal structure was 

determined by Sebastian Geiger (Fig. 56) and gave new insights how the protease active site 

is composed, enabling a new design of structurally optimized β-lactone inhibitors. The 

chemical synthesis of inhibitors and the analysis of proteolytic and hemolytic activities of 

ClpP were performed by Thomas Böttcher and Evelyn Zeiler. A comprehensive publication 

including crystal structure, inhibitor synthesis and in vitro studies is in preparation. 
 

 

Figure 56. Crystal structure of ClpP from Staphylococcus aureus 

Ribbon model of the 7-mer ClpP ring structure (Top view). 
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Abbreviations 

6AU   6-Azauracil 

bp   base pairs 

Cα   Carbon atom at α-position of the peptide chain 

CD   Circular Dichroism 

CE/CORE  core promoter element 

CF   core factor 

C. glabrata  Candida glabrata 

Cy5   cyanine-5 

Da   Dalton 

DFC   dense fibrillar center 

DNA   deoxyribonucleic acid 

ds   double-stranded 

DTT   dithiothreitol 

E. coli   Escherichia coli 

EM   electron microscopy 

EMSA   electrophoretic mobility shift assay 

ESRF   European Synchrotron Radiation Facility 

ETS   external transcribed spacer 

FAM   6-Carboxyfluorescein 

FC   fibrillar center 

GC   granular center 

h   hour 

Hepes   4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HRDC   helicase and RNAse D C-terminal domain 

H. sapiens  Homo sapiens 

IGS   intergenic spacer 

IMAC   Immobilized metal ion affinity chromatography 

ITS   internal transcribed spacer 

LB   Luria-Bertani media 

MAD   multi-wavelength anomalous diffraction 

MES   2-(N-morpholino)ethanesulfonic acid 

min   minute 
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mRNA   messenger RNA 

mTOR   mammalian Target of Rapamycin 

MW   molecular weight 

NaCl   sodium chloride 

NCS   noncrystallographic symmetry 

Ni-NTA  nickel nitrilotriacetic acid 

NMR   nuclear magnetic resonance  

NP-40   nonyl phenoxylpolyethoxylethanol 40 

NTP   nucleotide triphosphate 

OB   oligosaccharide-binding 

OD   optical density 

PAGE   polyacrylamide gel electrophoresis 

PCR   Polymerase Chain Reaction 

PDB   protein data bank 

PEG   polyethylene glycol (average molecular weight in Da) 

pH   measure of acidity 

PIC   pre-initiation complex 

PMSF   Phenylmethylsulfonylfluorid 

Pol   RNA polymerase 

PT   proximal terminator 

rINR   ribosomal initiator element 

RMSD   root mean square deviation 

rRNA   ribosomal RNA 

RNA   ribonucleic acid 

Rpb   Pol II subunit (RNA polymerase B) 

S   Svedberg (sedimentation coefficient) 

SAD   single-wavelength anomalous diffraction 

S. cerevisiae  Saccharomyces cerevisiae 

SDS   sodium dodecyl sulfate 

SP   spacer promoter 

S. pombe  Schizosaccharomyces pombe 

SL-1   selectivity factor 1 

SLS   Swiss Light source 

ss   single-stranded 
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TAF   TBP-associated factor 

TBP   TATA-box binding protein 

Term   Terminator 

TFE   triflouroethanol 

TFII   Pol II transcription factor  

TIF   transcription initiation factor 

Tris   Trishydroxymethylaminomethan 

tRNA   tRNA 

tWH   tandem winged helix-turn-helix 

UAF   upstream activating factor 

UBF   upstream binding factor 

UE/UPE  upstream promoter element 

WH   winged helix-turn-helix 

w/v   weight per volume
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