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1 SUMMARY 
During development, the brain forms out of billions of individual neurons. 

The formation of a functional network is achieved in steps. First, only a 

coarse wiring diagram is set up guided mainly by fixed genetic programs. 

Subsequently, this wiring diagram becomes increasingly refined by 

activity. Even before the onset of sensation the wiring diagram is shaped 

by spontaneous activity, i.e. activity not evoked by sensory input. There is 

increasing evidence that the precision which is to be achieved exceeds 

just cellular resolution. That means it is not only of importance which 

neurons are connected to each other, but also the exact location of the 

connecting synapse matters. Since electrophysiological recordings do not 

provide any information on the subcellular location of synaptic activation, 

today little is known about the spatio-temporal patterns of synaptic 

activation in individual neurons. I set out to monitor spontaneous synaptic 

activity in the dendritic tree of developing hippocampal CA3 pyramidal 

cells with single synapse resolution.  

I combined electrophysiological recordings and calcium imaging to 

visualize synaptic activation of large parts of the dendritic arborization of 

individual neurons. To increase the imaged volume and gather information 

from larger parts of the dendritic tree, I acquired images from three 

consecutive z-planes using a piezo stepper triggered by the frame trigger 

signal given from the CCD camera. The software I wrote during this thesis 

analyzed both, the electrophysiological data and the imaging data, 

completely automatically and aligned the two datasets in time. The 

analysis revealed that about 50% of the local Ca2+-transients report for 

glutamatergic synaptic activity and since these glutamatergic 

Ca2+-transients can be clearly identified they can be exploited to visualize 

synaptic activity. Analysis of the spatio-temporal patterns of synaptic 

activation revealed a local activity pattern: synapses being close to one 

another are more likely to fire simultaneously than synapses further apart 

from each other. This finding is in line with recently found plasticity rules 

showing the existence of mechanisms, which preferentially strengthen 
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neighboring synapses carrying similar activation patterns. Furthermore, it 

shows a subcellular precision of the wiring diagram. This subcellular 

precision has already been proposed by theoretical work since, in 

combination with the existing dendritic nonlinearities, it could enhance the 

computational power of individual neurons and thus the entire brain.  

In summary I developed and described a technique to visualize and map 

the purely glutamatergic synaptic input onto individual neurons with single 

synapse precision. Using this approach, I investigated the spatio-temporal 

activity patterns and described a local activity rule which is, according to 

previous work, an important prerequisite to increase the capacities of 

neurons. The technique developed here may offer the opportunity to 

visualize synaptic activity in various other systems, and thus might be 

useful to investigate spatio-temporal aspects of synaptic activity not only 

during development but also in mature systems. 
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2 INTRODUCTION 
The mammalian brain is an extraordinary organ, able to process received 

information extremely fast on the one hand, but on the other hand also 

capable of storing information over decades. The basic intention of 

neuroscience is to understand the brain and to decipher the complex 

interactions which enable the stability to guarantee functionality 

throughout lifetime but facilitate the plasticity necessary for learning and 

the formation of memories. During development, when the mammalian 

brain forms a network out of billions of individual neurons, it is particularly 

plastic. The function of this network crucially depends on properly 

connecting these individual neurons. The complexity of the network 

requires a variety of mechanisms setting up and tuning the wiring diagram. 

Today we know that the wiring diagram is specified not solely genetically 

but it is adjusted to a large part by activity (Cline, 2003). These activity 

dependent refinements are not only important during the initial 

development of the brain, but they are also the basis for shaping the 

wiring diagram in the adult brain, and thus, the basis for learning and 

memory formation. Despite the importance of activity and its influence on 

shaping the wring diagram, little is known about the activity patterns 

impinging onto individual neurons and their impact on the wiring diagram. 

2.1 Synapses and synapse formation 

Today it is generally accepted, that the brain consists of billions of 

individual cells, the neurons, but this knowledge was gained only relatively 

recently. At the beginning of the last century there was still a discussion 

whether the brain is formed by a “syncitium of continuous cytoplasm”, 

which was called the reticular theory, or whether it is rather made out of 

distinct individual cells. By the end of the 19th century, Cajal who claimed 

to see “dispositions of engagement” was convinced that the cell theory 

was valid. He could convince Sherrington who at the end of the 19th 

century argued that “nerve endings are only in contact with other 

neurons”. For this contact site between neurons Sherrington coined the 
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term Synapse (Cowan and 

Kandel, 2001). Nevertheless, 

final proof for the cell theory 

came only with the development 

of electron microscopy (EM) in 

the 1950th, increasing the 

achievable resolution, thus 

making visualization of synaptic 

membranes possible (Figure 

2-1). The emerging question 

was how information is 

transmitted from one neuron to 

the other at the synapse. Is the 

transmission electrical, like it 

was already known for the spread of information within the neuron, or is it 

rather a chemical transmission?  Experimental findings of Otto Loewi and 

Henry Dale proofed the existence of chemical transmission at peripheral 

synapses (Todman, 2008; Karczmar, 1996), at a structure today known as 

neuromuscular junction (NMJ). Today it is generally known that both ways 

of transmission, chemical as well as electric, occur although the majority 

of synapses in the mammalian brain and all synapses referred to in this 

study are chemical ones (Figure 2-2).  

Synapses are sites at which information is transferred from a presynaptic 

axon terminal of one neuron to the postsynaptic site, in the central 

nervous system (CNS) most commonly at a dendrite, of another neuron. 

This information transfer needs to be fast and reliable, thus synapses are 

highly specialized structures. To understand the development and function 

of the entire nervous system, it is essential to get insight into the principles 

of formation, maturation and function of individual synapses. However, 

since mammalian synapses are diverse, principles valid at one type of 

synapse are not necessarily valid throughout the nervous system. “Typical 

synapses” do not exist.  

Figure 2-1 EM picture of a synapse

Presynaptic densities (black arrow) and ahort strands 
linking synaptic vesicles (white arrow). Scale bar: 
100 nm  (Siksou et al., 2009) 
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One of the best studied synapse is the synaptic structure studied by Otto 

Loewi and Henry Dale, the NMJ, mostly due to its good accessibility and 

its sheer size (Sanes and Lichtman, 2001). However, most synapses in 

the CNS of mammalians are much smaller (Figure 2-2), less easy to 

access, and thus harder to study. Nevertheless, certain common 

characteristics shared by all CNS synapses can be distilled: At synaptic 

sites the pre- and the postsynaptic plasma membranes run strictly parallel 

and build a synaptic cleft (Figure 2-2). This synaptic cleft is not an empty 

space but it contains even denser concentrations of material than ordinary 

Figure 2-2 Comparison of different types of synapses 

A: Chemical synapse in the CNS; B: Electrical synapse; C: NMJ; (Cohen-Cory, 2002) 

D and E: Comparison of the size of a NMJ (D) of an adult mouse and a synapse of a cultured 
hippocampal neuron (E) of the mouse (Sanes and Lichtman, 2001). 
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extracellular space. The presynaptic site contains synaptic vesicles 

(Figure 2-1) and at the pre- and postsynaptic sites, structural 

specializations can be observed (Vaughn, 1989). These are descriptions 

based on the structure of synapses as visualized by EM studies. These 

were the bases for subsequent research investigating synapse function, 

formation and maturation. 

At the NMJ several principles triggering the induction, differentiation and 

maturation of synapses have been discovered and studied in detail. In this 

system,  one molecule, namely z+-agrin, which is released from the nerve 

endings, induces the process of synapse formation and the clustering of 

postsynaptic receptors (Sanes and Lichtman, 2001). Synapses in the 

mammalian CNS are more diverse. Up to now, no protein inducing 

synapse formation in all different types of CNS synapses is discovered. 

Rather, various proteins are shown to induce synapse formation or at least 

play an important role in synapse formation (Scheiffele, 2003). Molecules 

spanning the synaptic cleft and visualized by EM as electron dense 

structures (Figure 2-1) are important players initiating contact- and 

synapse formation (Scheiffele, 2003). These so called synaptic adhesion 

molecules, like integrins (Chavis and Westbrook, 2001), neuroligins and 

neurexins (Scheiffele et al., 2000), cadherins (Togashi et al., 2002) and 

SynCAMs (Biederer et al., 2002) also influence the maturation of 

synapses (Scheiffele, 2003). It has been shown for example that the 

expression of a synaptic adhesion molecule, SynCAM, expressed in non 

neuronal cells is sufficient to induce synapse formation with co-cultured 

hippocampal neurons (Biederer et al., 2002).  

The different trans-synaptic signaling pathways seem to cooperate and 

therefore enable for flexibility but also ensure the robustness needed for 

creating a functional nervous system (Scheiffele, 2003). After contact 

formation, responses in the presynaptic and in the postsynaptic 

compartment differ, as required by the different specializations of those 

two compartments. Eventually, if the pre- and the postsynaptic cell match, 

a synapse is formed, leading to the accumulation of a functioning release 
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machinery and transmitter filled vesicles on the presynaptic side, and 

matching receptors, scaffolding proteins, etc. on the postsynaptic side. In 

that way pre- and postsynaptic specializations form a superstructure 

spanning two cells and link their interiors (Hall and Sanes, 1993), not only 

in NMJs but also in synapses of the CNS. This newly formed synapse is 

then to maturate and compete with other connections to establish itself in 

the network (Goodman and Shatz, 1993; Katz and Shatz, 1996).  

The competition between synaptic connections is most obvious at the 

NMJ. Here it has been shown, that individual muscle fibers, which are 

initially innervated by many axons, lose all but one of their connections 

during development (Figure 2-3). This refinement of the wiring diagram, 

which leads to  a mature system with each muscle fiber being innervated 

by exactly one axon, is shown to be activity dependent (Lichtman and 

Colman, 2000).  

Synapse refinement has been observed by now in most parts of the CNS 

and in many parts it has also been shown that this refinement is activity 

dependent. One of the most famous and popular examples for activity 

dependent refinement may be long term potentiation (LTP) discovered by 

Bliss and Lomo in the hippocampus (Bliss and Lomo, 1973). 

Figure 2-3 Synapse elimination at the NMJ

  (Lichtman and Colman, 2000) 
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2.2 The hippocampus 

The hippocampus, a brain structure common to all mammalians, is located 

in both hemispheres in the medio-temporal lobe next to the fornix and the 

entorhinal cortex. It has a curved shape which according to the anatomist 

Arantius resembles the shape of a sea horse, thus he called this structure 

hippocampus, derived from the Greek word for sea horse (Amaral and 

Lavenex, 2007). The hippocampus was also compared to various other 

structures for example a banana or ram’s horn, inspiring the name for the 

different regions Cornu Ammonis (CA) 1-3. The hippocampus belongs to 

the limbic system and is a part of the archicortex, what is reflected in its 

three layered design. One of those layers is the stratum pyramidale 

containing almost exclusively pyramidal neurons.  

Traditionally the hippocampus was described to be organized in three 

units and information was thought to be passed only from one unit to the 

next. Today it is known that the wiring diagram is more complex and that 

the single regions are highly interconnected (Amaral, 1993). The main flow 

of information goes from the entorhinal cortex to the dentate gyrus via the 

perforant path. From here information is transferred via the mossy fiber 

path to CA3 pyramidal neurons (Figure 2-4).  

The CA3 region of adult Wistar rats consist of around 10,000 CA3 

pyramidal cells most of which (approximately 95%) are directly connected 

via the Schaffer collateral path to CA1 pyramidal neurons (Andersen et al., 

1994). Even though most of the CA3 pyramidal neurons make contact to 

CA1 pyramidal neurons, on average every CA3 pyramidal neuron makes 

only a single synapse onto an individual CA1 pyramidal neuron 

(Bolshakov and Siegelbaum, 1995; Stevens and Wang, 1995). 

The hippocampus is a well studied brain structure shown to be involved in 

learning and memory formation but also important in spatial navigation not 

only in rodents but in basically all mammals including human beings 

(Gilbert and Brushfield, 2009; Knierim, 2009; Maguire et al., 2006a; 

Maguire et al., 2006b; Jacobs et al., 1990). Serving such complex tasks it 

shows a high degree of plasticity making it an interesting model system for 
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research in neurobiology. Furthermore, the laminar organization permits to 

prepare transversal slices of the hippocampus which in large parts retain 

their three dimensional structure and wiring diagram. Those slices can 

also be kept alive and active in culture for several weeks (Stoppini et al., 

1991; Gahwiler, 1981). Slice cultures are not only in their structure and the 

expression profiles of proteins comparable to the in vivo situation they also 

resemble the development of the hippocampus in vivo (Gahwiler et al., 

1997). The good accessibility and a relatively easy handling of slice 

cultures compared to in vivo preparations make them an ideal model 

system particularly for optical approaches at high spatial resolution and 

electrophysiological investigations.  

Not surprisingly, many important findings concerning memory formation 

and the accompanying functional and structural changes were first shown 

in hippocampal model systems. The already mentioned LTP which is 

shown to occur not only in vitro but also in vivo (Bliss and Lomo, 1973) is 

just one of them. LTP is a long lasting increase in the efficacy of 

transmission between two neurons following repeated high frequency 

stimulation. It can be seen as a direct cellular correlate of Hebb’s 

postulate, which, published already in 1949, predicts that cells that fire 

together wire together (Hebb, 1949). Functionally, LTP is well described 

and it has been shown that LTP entails also morphological changes, like 

spine growth (Engert and Bonhoeffer, 1999). The cellular mechanisms 

leading to these changes and to spine growth are various, but most forms 

of LTP seem to depend on a rise in the intracellular Ca2+-concentration 

acting as a second messenger either activating or deactivating various 

signal cascades. Nevertheless, also its functional counterpart, long term 

depression (LTD), discovered several years later (Dudek and Bear, 1992) 

as well as various other cellular processes are triggered by changes of the 

intracellular Ca2+-concentration. Often even contrary effects, like LTP and 

LTD, are both triggered somewhat counter-intuitively by an increase in the 

intracellular Ca2+-concentration (Zucker, 1999a; Yang et al., 1999a).  
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2.3 Calcium and Calcium imaging 

Ca2+-ions are known to play a pivotal role in regulating various processes 

not only in neurons but also in many other cell types. As mentioned above, 

calcium signaling regulates often contrary processes. A well known 

example is LTP and LTD, both being induced by a rise in the intracellular 

Ca2+-concentration (Yang et al., 1999b; Zucker, 1999b). An interesting 

question is why calcium signals are of such outstanding importance in 

regulating cellular and neuronal processes. At least in part this is due to 

the large difference in the intracellular and the extracellular 

Figure 2-4 Neuronal organization of a hippocampal slice

Transversal slice of a rodent hippocampus showing the neuronal organization and main 
axonal pathways. CA: Cornu Ammonis. Drawing modified from Ramón y Cajal (Ramón y 
Cajal, 1911) 
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Ca2+-concentration. The internal Ca2+-concentration of hippocampal 

pyramidal neurons is around 100 nM while the extracellular concentration 

is around 2 mM (Nakajima et al., 1993; Maravall et al., 2000a). This 

difference in concentration of several orders of magnitude and the 

resulting steep electrochemical gradient cause a heavy driving force for 

Ca2+-ions. Thus, even short openings of single channels in the plasma 

membrane entail an influx of enough Ca2+-ions to cause a large relative 

change in the local Ca2+-concentration (Denk et al., 1996). Synaptic 

stimulation was estimated to be able to increase the local 

Ca2+-concentration in spines about 100 fold (Yuste et al., 1999) repeated 

stimulation even up to 500 fold (Petrozzino et al., 1995).  

Calcium sensitive enzymes and channels that change their activity upon 

calcium binding sense the spatially and temporally restricted alterations in 

the Ca2+-concentration. Subsequently, they translate those alterations into 

a variety of cellular responses covering many aspects from regulating 

changes in synaptic efficacy (Christie et al., 1996; Harney et al., 2006; 

Letzkus et al., 2006; Yang et al., 1999b) to regulating and guiding 

outgrowth and motility of neuronal protrusions (Konur and Ghosh, 2005; 

Lohmann et al., 2005; Henley and Poo, 2004; Lankford and Letourneau, 

1989; Tang et al., 2003; Gomez et al., 1995) or regulating gene 

transcription (Aizawa et al., 2004; Carrasco et al., 2004; Cohen and 

Greenberg, 2008). Ca2+-transients are often strictly restricted, spatially 

and temporally, by bound calcium buffers hindering diffusion and fast 

acting calcium pumps which transport Ca2+-ions actively against the 

electrochemical gradient out of the cell or into intracellular stores like the 

endoplasmatic reticulum. 

The combination of high relative changes in the intracellular 

Ca2+-concentration and the variety of cellular processes influenced by 

these changes are one reason why calcium imaging became a popular 

tool in research. Another prerequisite was the availability of good dyes 

reliably reporting changes in the Ca2+-concentration under physiological 

conditions. Today a variety of calcium dyes fulfilling this criterion exists, 
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not only synthetic ones but also genetically encoded ones (Stosiek et al., 

2003; Thomas et al., 2000; Hendel et al., 2008a; Hasan et al., 2004; Heim 

and Griesbeck, 2004; Mank et al., 2008).  

Many synthetic calcium dyes are derivatives of fluorescein, which was 

discovered 1871 by Adolf von Bayer. Fluorescein is mainly produced by 

chemical synthesis, but it is also secreted by bacteria like pseudomonas 

aeruginosa (King et al., 1954). Today many derivatives of fluorescein 

exist, which are often especially tailored for the needs of a specific 

application. Biological research, for example, often calls for high 

photostability. One of these photostable derivatives of fluorescein is 

Oregon Green BAPTA 1 (OGB-1), which was used throughout this study 

(Figure 2-5).  

In contrast to synthetic calcium dyes, genetically encoded calcium dyes 

are protein structures. Most commonly, they are composed of a calcium 

Figure 2-5 Chemical structure of fluorescent dyes 

A: Chemical structure of fluorescein (Picture obtained from www.invitrogen.com)  

B: Chemical structure of OGB-1 (Picture obtained from www.invitrogen.com) 

 

A B 
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sensing protein, which changes its conformational state upon calcium 

binding and two differently colored fluorescent proteins. The 

conformational change induced by calcium binding decreases the distance 

between the two fluorescent proteins which in turn influences, i.e. 

increases, the fluorescence resonance energy transfer (FRET) efficacy 

(Figure 2-6).  

The choice of the calcium sensing protein is a crucial factor influencing the 

effectiveness of genetically encoded calcium indicators (Heim and 

Griesbeck, 2004). Genetically encoded calcium dyes are being 

permanently improved and by now a huge variety exists, some of which 

even allow chronic in vivo imaging of calcium dynamics (Mank et al., 

2008).  

However, using a genetically encoded calcium dye requires expression of 

the calcium dye in the imaged tissue. Thus it has to be genetically 

modified, for example by viral transfection (DiCiommo and Bremner, 1998; 

Kuhlman and Huang, 2008; Narayan and Greif, 2004) or by in utero 

electroporation (Holtmaat et al., 2009; Mank et al., 2008). Alternatively 

transgenic animals expressing the dye of choice can be used (Hasan et 

al., 2004; Heim et al., 2007).  

Figure 2-6 FRET – effect 

A: At large distances no FRET occurs. Thus only donor wavelength is emitted 

B: At closer distances energy is transferred from the donor dye (D) to the acceptor dye (A). 
Thus, emission at the wavelength of the donor dye decreases, while emission at the 
wavelength of the acceptor dye increases. (Picture obtained from 
www.leica-microsystems.com) 

A B
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To image calcium dynamics using a synthetic dye, the specimen does not 

need to be genetically modified. Nevertheless, the calcium dye needs to 

be brought into the cell of interest. Also for synthetic calcium dyes various 

loading techniques exist, like single cell electroporation (Lang et al., 2006; 

Nevian and Helmchen, 2007), ballistic techniques using a gene gun 

(Kettunen et al., 2002; Kettunen et al., 2001) or bolus loading (Murayama 

et al., 2007; Kreitzer et al., 2000; Stosiek et al., 2003; Garaschuk et al., 

2006; Oertner, 2002). These techniques can be used to acutely label 

either single neurons or a whole population of neurons with the calcium 

dye. In general the loading techniques for synthetic calcium dyes are 

easier to handle, especially as there is almost no time delay from loading 

the cell with the dye to the beginning of the experiment as there is no need 

to wait for the expression of the dye. Another important advantage of 

synthetic calcium dyes is their fast kinetics and their high signal to noise 

ratio. High affinity synthetic calcium dyes like OGB-1, reliably report single 

action potentials, which is still not possible with genetically encoded 

calcium dyes (Hendel et al., 2008b).  

An important fact to be kept in mind when performing calcium imaging is 

the interference of the calcium dye with the calcium transients measured. 

Since calcium dyes act as calcium buffers, they interfere with the 

spatio-temporal characteristics of the calcium signal (Cornelisse et al., 

2007; Regehr and Tank, 1992). Furthermore, even though the 

fluorescence intensity changes with changing Ca2+-concentration, 

quantitative measurements of calcium dynamics are challenging, 

especially when using non ratiometric dyes (Albantakis and Lohmann, 

2009; Lohr, 2003; Maravall et al., 2000b).  

In neuroscience calcium imaging is mostly used not to study the direct 

effects of calcium signals upon cellular processes, or to measure the 

calcium concentration in cells or small cellular compartments, but rather 

as a reporter for neuronal activity. Ca2+-transients faithfully report not only 

action potential firing but even single excitatory synaptic events lead to a 

well detectable postsynaptic Ca2+-transient (Koester and Sakmann, 1998). 
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Even though voltage sensitive dyes are available, in use and constantly 

improved (Djurisic et al., 2004; Glover et al., 2008; Palmer and Stuart, 

2009; Stuart and Palmer, 2006), in most applications calcium imaging 

techniques are still advantageous due to their high dynamic range and 

signal to noise ratio  (Grewe and Helmchen, 2009; Cossart et al., 2005). 

The superior signal to noise ratio of calcium dyes has physical reasons. It 

is known, for example, that the achievable signal to noise ratio is 

increasing with the number of photons emitted. Since calcium dyes are 

distributed throughout the intracellular space, the number of dye 

molecules is much higher compared to voltage sensitive dyes which need 

to be within or at least close to the cell membrane to be able to sense the 

membrane potential. Thus, the achievable number of emitted photons is 

higher leading to a better signal to noise ratio. The different distribution of 

calcium sensitive dyes and voltage sensitive dyes in cell leads also to a 

different distribution in brightness throughout a cell. Voltage sensitive dyes 

stain membranes, thus the main part of the fluorescence is emitted from 

neuronal processes, while, when using calcium sensitive dyes, the main 

part of the fluorescence is emitted by the soma and proximal parts of the 

dendrites. Even if voltage sensitive dyes are a direct way to measure 

changes in the membrane potential and in an optimal case one could 

follow the spread of a single sub threshold synaptic potential from the 

synapse to the soma, for the purpose of visualizing synaptic activation in 

developing neurons, calcium imaging was the more promising approach. 

2.4 Development of specificity 

During the development of the brain a network of billions of individual 

neurons is formed. To enable this network to function, each neuron needs 

to connect to the appropriate partners. While in lower animals like C. 

elegans the connection scheme of the 302 neurons building the nervous 

system is mostly genetically determined  (Seifert et al., 2006), the 

mammalian brain with its billions of neurons requires a combination of 

various mechanisms to set up a functioning network. Furthermore, the 

mammalian brain is not only an integrating system triggering a fixed 
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response behavior upon a given stimulus, but it is able to change and to 

adapt to changing requirements. One of the main challenges for the 

mammalian brain is to balance stability and plasticity to guarantee for 

function throughout lifetime but still allow learning and formation of 

memories. Plasticity is seen as the basis for learning and memory but 

additionally it plays an important role during development. Unlike in many 

lower animals neither the connection schemes nor the numbers of 

neurons are strictly genetically predetermined but rather also strongly 

shaped by activity (Cline, 2003). Nevertheless at least the early 

development of the mammalian brain seems to be predominately 

controlled by complex genetic programs. These programs range from 

guiding migrating cells and specifying different cell types in various areas 

of the brain to directing protrusions to their target region (Goodman and 

Shatz, 1993; Tessier-Lavigne and Goodman, 1996). All of these 

genetically controlled steps throughout development are achieved by 

differential expression and release of molecules triggering different 

responses in different cells. These steps are essential to build up a rough 

network which subsequently is to be shaped and adjusted by complex 

interactions of the genetic prerequisites of cells and their activity patterns 

(Cline, 2001). However, it should not be assumed that there is a strict 

order, like first setting up a rough network by genetic means and 

subsequently tuning and adjusting this network by activity. Rather, it is an 

interplay with different mechanisms mutually influencing each other (Cline, 

2003). The shaping impact of activity enables the network to fine tune and 

adjust to intrinsic properties of given cells and even compensate for 

irregularities which inevitable occur in a system made out of billions of 

single elements. Furthermore, the influence of activity on the wiring 

diagram provides a link allowing the external environment to exert 

influence on the development of the network, thus enabling for learning 

and for the formation of memories. A general rule describing the impact of 

activity on a nervous system was proposed already end of the 19th 

century. By then William James wrote in Principles of Psychology that “if 

processes 1, 2, 3, 4 have once been aroused together or in immediate 
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succession, any subsequent arousal of any one of them (whether from 

without or within) will tend to arouse the others in the original order” 

(James Williams, 1890). About 60 years later Donald Hebb postulated a 

similar idea predicting that if a cell persistently takes part in firing another 

cell, some changes take place increasing the efficacy of the connection 

between those two cells (Hebb, 1949). This idea became one of the most 

studied principles in neuroscience and is by now supported by a large 

number of investigations. Hebb’s law provides a rule explaining how 

activity of a connected pair influences the fate of its interconnections, 

namely correlated activity among neurons strengthens their 

interconnections. Computational models suggest that a map, set up using 

a combination of molecular cues and Hebbian mechanisms can be more 

precise, than one set up with molecular cues alone (Yates et al., 2004). 

2.5 Spontaneous activity 

The activity dependent refinement of the synaptic wiring diagram, 

mentioned above, has been shown to occur in many mammalian systems 

already before the onset of sensation. One of the most prominent 

examples is found in the visual system. Here, the retinal ganglion cells 

projecting to the optic tectum form a topographic map. This so called 

retinotopic map is initially generated by molecular guidance cues, but the 

initial map needs to be refined. This refinement of the retinotopic map has 

been shown to be activity dependent (Chandrasekaran et al., 2005). 

Similarly, the segregation by eye of the thalamic input in cortical layer 4, 

called the ocular dominance columns, is achieved in an activity dependent 

manner (Katz and Shatz, 1996). Nevertheless, somewhat counter-

intuitively a major part of the sharpening of the retinotopic map occurs 

before the circuit becomes light responsive. But: Not being light 

responsive does not mean not being active. It has been shown, that retinal 

ganglion cells are spontaneously active before they become light sensitive 

and this spontaneous activity spreads wave like across the retina such 

that neighboring retinal ganglion cells are synchronously active during a 

short time interval (Meister et al., 1991). That means that a Hebb-like 
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mechanism can refine the initially crude retinotopic maps before the onset 

of sensation.  

Spontaneous synchronized activity does not only occur in the developing 

visual system, rather it is a hallmark of developing networks occurring in a 

wide range of structures and species (Ben Ari, 2001).  

In the hippocampus the spontaneous activity occurring during 

development is best known as giant depolarization potentials (GDPs), but 

it is also known as early network oscillations, or population bursts  (Ben 

Ari, 2001). GDPs occur in many mammalian species not only in vitro but 

also in vivo (Leinekugel et al., 2002; Leinekugel, 2003). GDPs represent 

large network driven depolarizations occurring between P0 and P10. This 

period coincides with a period during development in which gamma-

aminobutyric acid (GABA), an inhibitory neurotransmitter in the mature 

hippocampus, is still having a depolarizing effect (Figure 2-7). It has been 

suggested that the depolarization by GABA plays a central role in the 

generation of GDPs. Similarly to spontaneous activity, the depolarizing 

Figure 2-7 Development of the hippocampal circuit in the rat 

During the time when GABA is depolarizing, the network generates GDPs. Pyramidal neurons start 
to receive glutamatergic input around birth (Ben Ari, 2001). 
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effect of GABA was shown in every species and structure studied 

(Cherubini et al., 1991a; Leinekugel et al., 1999; Cherubini et al., 1991b).  

The depolarizing effect of GABA results from an increased chloride 

concentration in developing neurons due to different expression patterns 

of chloride cotransporter systems compared to the mature system 

(Delpire, 2000; Stein and Nicoll, 2003). The increased chloride 

concentration leads to a depolarization upon opening of chloride channels 

by GABA. When the intracellular chloride concentration is reduced, GABA 

turns inhibitory and the GDPs cease. The function of GDPs seems to be 

similar to the function of retinal waves in the visual system, as there are 

indications that they act as coincident detector signals between pre- and 

postsynaptic activity. This coincidence detection is the result of the 

facilitation of N-methyl-D-aspartic acid (NMDA) receptor activation by the 

depolarizing effect of GABA (Kasyanov et al., 2004). Thus, GDPs seem to 

facilitate a Hebbian mechanism strengthening synapses that connect 

coactive cells. However, so far little is known about how spontaneous 

activity shapes the wiring diagram on a subcellular scale. Does activity 

influence the fate of synapses solely upon the correlation of the connected 

neurons or also on the level of single synapses? Is there a mechanism 

strengthening pairs of synapses being often simultaneously active? And if 

so: Is the location and the relative location of these synapses along the 

dendritic tree crucial for their fate?  

2.6 Dendritic computation 

The vast majority of the input picked up by an individual neuron is 

received by its dendritic tree. Dendritic trees in vertebrates display an 

extraordinary variety of shapes and sizes as shown in Figure 2-8. Most 

models treat neurons as points not considering the shape of the dendritic 

tree nor the subcellular location of synaptic input, even though it is likely 

that both are of particular importance: “Generating and maintaining these 

elaborate structures [the dendrites], which occupy a large proportion of our 

brains, is energetically costly, implying that their presence is worth this 

cost”  (Hausser et al., 2000). 
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In addition, specific neuronal types display a high degree of similarity in 

dendritic structure and function across different species suggesting an 

adaptation of the properties of dendrites to the functional requirements of 

those cells (Hausser et al., 2000). The number of individual synapses 

impinging onto individual neurons varies widely between different cell 

types and can be extremely high. For example a single rodent Purkinje 

cell may receive as many as 150,000 synapses from parallel fibers 

(Linden, 1994). Furthermore, it has been shown that the position of a 

synapse along the dendritic tree influences its impact on the cell. Already 

more than forty years ago scientists realized that electrical signals are 

attenuated along the dendrite (Rall et al., 1967). This attenuation lowers 

the impact of distal synapses compared to synapses located more 

proximal, indicating an interrelation of the morphology of the dendritic tree 

and the integrative properties of the neuron. But, it has also been shown 

that dendrites have active properties (Fujita, 1968; Williams and Stuart, 

2003) being able to mitigate the impact of attenuation on synaptic inputs, 

for example by increasing the synaptic conductance with increasing 

distance from the soma (Stricker et al., 1996; Magee and Cook, 2000).  

Figure 2-8 Dendritic morphologies 

Drawing of different neuronal cell types and their dendritic arborizations; chick cerebellum (Ramón 
y Cajal, 1888) 
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Another feature of dendrites affecting the time course and amplitude of 

synaptic potentials is the presence and distribution of voltage gated ion 

channels. These channels can influence the impact of synaptic currents. 

Depending on their distribution, the morphology of the dendritic arbor and 

the time course and amplitude of synaptic input, they may influence 

synaptic inputs in different areas along the dendritic tree differently 

(Hausser et al., 2000) and they may even lead to the generation of  

dendritic spikes. Thus, the dendritic non-linearities provided by the voltage 

gated ion channels, are not exclusively compensating for the attenuation 

of the electrical signals, but they are capable of boosting the impact of co-

active synapses (Schiller et al., 1997; Golding and Spruston, 1998).  

Furthermore, also inhibition is influencing the conductivity of dendritic 

compartments and by that the spread of backpropagation and 

forward-propagation (Tsubokawa and Ross, 1996; Pare et al., 1998). The 

complex interactions of voltage gated ion channels, excitatory and 

inhibitory synaptic currents and the conductance of the dendritic tree 

Figure 2-9) facilitate even flexibility in the compartmentalization of a cell. 

That means, the compartmentalization depends not only on the 

developmental state of a cell and the distribution of its ion channels, but 

also on its state and on the behavioral state of the surrounding network 

(Hausser et al., 2000). Therefore, the degree of compartmentalization 

varies not only between different neuronal types but, moreover, it can be 

dynamically regulated by the state of the network (Hausser et al., 2000).  

Despite these variations in the dendritic tree of individual neurons and 

despite the influence of the dendritic distance on synaptic currents, most 

models still treat neurons as points and neither the shape of the dendritic 

tree nor the location of individual synapses along the dendritic tree are 

taken into consideration.  
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However, recently the dendritic nonlinearities and their implications gained 

increasing attention, especially as it has been shown that they are able to 

boost the computational power of an individual neuron (Govindarajan et 

al., 2006; Mel and Schiller, 2004). But mere nonlinearities cannot increase 

the computational power of a neuron. Since dendritic spikes are triggered 

by large local depolarizations, they are usually evoked by simultaneous 

activation of many synapses in close proximity. That means, the similarity 

of the activation patterns of neighboring synapses and by that the 

similarity of information transmitted at neighboring synapses, is influencing 

the impact of the synaptic activations. To evoke dendritic spikes 

neighboring synapses need to show similar activation patterns. By now, 

plasticity mechanisms have been discovered favoring potentiation of 

Figure 2-9 Scheme depicting the complex interactions of the integrative properties of 
dendrites 

 (London and Hausser, 2005) 
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coactive synapses in close proximity (Losonczy et al., 2008). Furthermore, 

a protocol that under control conditions fails to induce LTP is sufficient to 

trigger LTP in a spine if the neighboring spine was potentiated shortly 

beforehand (Harvey and Svoboda, 2007).  

These findings hint towards a subcellular precision of the synaptic wiring 

diagram, which should manifest itself in certain activity patterns and thus 

might be visible by mapping the spontaneous, i.e. not stimulated activity of 

many synapses onto an individual neuron in space and time. To date, 

spontaneous synaptic activity has not been visualized with single synapse 

resolution, thus the spatio-temporal patterns of unstimulated synaptic 

activity remained largely unknown.  
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2.7 Objectives of this study 

Activity dependent remodeling of the synaptic wiring diagram is known to 

be an important principle influencing the development of the brain. Despite 

recent findings demonstrating the importance of the dendritic location on 

the impact of synapses, little is known about the activity patterns of 

individual synapses on a subcellular scale. Since spontaneously occurring 

synaptic activation is a major player in shaping connectivity during 

development, I set out to describe the subcellular activation patterns 

evoked by this spontaneous activity in slice cultures of the developing 

hippocampus. By mapping and describing the spatio-temporal patterns 

evoked by spontaneous activity I addressed the following questions: How 

is the input received by an individual neuron distributed across its dendritic 

arbor? Are there detectable patterns suggesting the existence of plasticity 

rules that guide synapse formation with subcellular specificity?  

The aim of this thesis was to develop a technique to visualize synaptic 

transmission, if possible at single synapse resolution, and to investigate 

the patterns of spontaneous synaptic activity in these individual neurons. 

By combining calcium imaging at a relatively high rate using a cooled 

CCD-camera with electrophysiological recordings, I found a criterion to 

discern synaptic from non-synaptic local Ca2+-transients. Subsequently, I 

focused my attention on the synaptic transients and further investigation of 

these transients revealed, that they can be used to visualize glutamatergic 

synaptic transmission. That enabled me to map the distribution of 

glutamatergic input impinging onto individual pyramidal cells in the 

developing hippocampus and to investigate the spatio-temporal patterns 

of synaptic activation evoked by spontaneous activity.  
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3 MATERIALS AND METHODS 

3.1 Materials 

All the chemicals and media used in this study are listed in the following 

tables. If not stated otherwise chemicals were dissolved either in distilled 

water or dimethyl sufoxide (DMSO). 

3.1.1 Chemicals 

Basal Medium Eagle (BME)  Invitrogen 

Calcium chloride CaCl2 Merck 

D-glucose C6H12O6 Merck 

DMSO  Sigma 

Glutamine C5H10N2O3 Invitrogen 

Hank's buffered salt solution (HBSS)  

 +MgCl2+CaCl2 10x Invitrogen  

 Consisting of: 

mmol 

CaCl2 12.61 

MgCl2 4.93 

MgSO4 4.07 

KCl 53.3 

KH2PO4 4.41 

NaCl 1379.31 

Na2HPO4 x 7 H2O 3.36 

D-glucose 55.56 

 

HEPES  Merck 

Horse serum  Invitrogen 

Kynurenic acid C10H7N1O3 Sigma 

Magnesium-ATP Mg-ATP Sigma 

Magnesiumchloride MgCl2 Merck 

Magnesiumsulfate MgSO4 Sigma 

Monopotassium phosphate KH2PO4 Sigma 
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Oregon-Green-BAPTA I (OGB-1) Molecular Probes 

Potassium chloride KCl Sigma 

Potassium gluconate C6H11KO7 Merck 

Sodium phosphate dibasic Na2HPO4 Sigma 

Sodium chloride NaCl Merck 

Sodium bicarbonate NaHCO3  Merck 

Trolox   Sigma  

3.1.2 Drugs 

D-APV:  competitive NMDA-receptor-antagonist  Biotrend 

concentration: 50 µmol/l 

NBQX: competitive AMPA-receptor-antagonist Biotrend 

concentration: 10 µmol/l  

Picrotoxin: GABAA- receptor-antagonist Sigma 

concentration: 150 µmol/l  

TTX: sodium channel blocker Sigma 

concentration: 0.5 µmol/l  

3.1.3 Media 

Gey's Balanced Salt Solution (GBSS):   

 Consisting of: 

 mmol/l g/l 

CaCl2 x 2 H2O 1.50 0,22 

KCl 4.96 0,37 

KH2PO4 0.22 0,03 

MgCl2 x 6 H2O 1.03 0,21 

MgSO4 x 7 H2O 0.28 0,07 

NaCl 136.89 8,00 

NaHCO3 2.70 0,227

Na2HPO4 0.87 0,12 

D-glucose 5.55 1 
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Preparation medium:   

 Consisting of: 

 mmol/l g/l 

CaCl2 x 2 H2O 1.50 0,22 

KCl 4.96 0,37 

KH2PO4 0.22 0,03 

MgCl2 x 6 H2O 1.03 0,21 

MgSO4 x 7 H2O 0.28 0,07 

NaCl 136.89 8,00 

NaHCO3 2.70 0,227 

Na2HPO4 0.87 0,12 

D-glucose 61.06 11 

Kynurenic acid 1 0.19 

 pH 7.2; sterile filtered 

 
Culture medium:  

50% (v/v) BME, 

25% (v/v) horse serum, 

25% (v/v) HBSS, 

1 mmol/l Glutamine, 

10 g/l  D-glucose, 

sterile filtered 

 
External solution: 

 Consisting of: 

 mmol/l 

CaCl2 3.26 

MgCl2 0.49 

MgSO4 0.41 

KCl 5.33 

KH2PO4 0.44 

NaHCO3 4.2 

NaCl 137.93 

Na2HPO4 x 7 H2O 0.336 
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D-glucose 5.56 

Trolox 0.1 

 

 Made by diluting HBSS 10x to 1x with water and 

additionally adding CaCl2 2 mmol, NaHCO3 

4.17 mmol, Trolox 0.5 M. 

  

  Osmolarity adjusted to 320 mOsm. 

 

Internal solution: 
 Consisting of: 

 mmol/l 

KCl 12 

K-gluconate 130 

HEPES 10 

Mg-ATP 4 

NaCl 8 

 

  pH adjusted to 7.2 using KOH.  

  Osmolarity adjusted to 290 mOsm. 

3.1.4 Equipment 

Amplifier MultiClamp 700B Axon Instruments, 

Foster City, USA 

Digitizer Digidata 1440A  Axon Instruments, 

Foster City, USA 

Controlling software P-CLAMP 10  Axon Instruments, 

Foster City, USA 

Fluorescence unit CoolLED PrecisExcite, Andover, 

UK 

Camera Andor iXon+ Andor Technology, 

Belfast, Northern Ireland 
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Controlling software Andor Solis 4.4 Andor Technology, 

Belfast, Northern Ireland 

Microscope BX51WI Olympus Corporation, 

Tokyo, Japan 

Objective LumPlanFl  

40x/0.8 WI 

Olympus Corporation, 

Tokyo, Japan 

XY-shifting table 380 FM Luigs & Neumann, 

Ratingen, Germany 

Micromanipulators LN-Mini 25 Luigs & Neumann, 

Ratingen, Germany 

Controller unit SM-5 9 Luigs & Neumann, 

Ratingen, Germany 

Temperature 

Control 

Badcontroller V Luigs & Neumann, 

Ratingen, Germany 

Puller Model P-97 Shutter Instrument Co, 

Novato, USA 

Pipettes GB150TF-8P Science Products, 

Hofheim, Germany 

pH-meter PB-11 Sartorius, Göttingen, 

Germany 

Osmometer Osmomat 030 Gonotec, Berlin, 

Germany 

Balance AB 204-S Mettler Toledo, 

Greifensee, Switzerland 

Sonicator Emmi 5 EMAG AG, Mörfelden-

Walldorf, Germany 

Stimulus Isolator A 360 WPI, Sarasota, USA 

Incubator MCO 18 AIC SANYO Electric Co., 
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Ltd., Osaka, Japan 

Tissue chopper Mc ILWAIN, The Mickle Laboratory 

Engineering Co. LTD. 

Gomshall, UK 

Piezo stepper P-721.LLQ Physik Instrumente (PI) 

GmbH & Co. KG, 

Karlsruhe, Germany 

Piezo controller E-625.LR Physik Instrumente (PI) 

GmbH & Co. KG, 

Karlsruhe, Germany 

Recording 

chambers 

Type I Workshop of the Max 

Planck Institute, 

Martinsried, Germany 

Recording 

chambers 

slice mini chamber I Luigs & Neumann, 

Ratingen, Germany 

Membrane Inserts 0.4 µm culture plate 

inserts 

Millipore Corporation, 

Billerica, USA 

 

3.1.5 Programs 

Matlab (R2008a) Version 7.6.0.324 

The Mathworks Inc., USA 

Toolboxes: 

Image Processing 

Signal Processing 

Statistics 

ImageJ ImageJ 1.40g 

National Institute of Health, 

USA 

 

P-clamp 10 Clampex Version 10.2.012 

Multiclamp 700B 

Commander version 
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2.1.0.13 

Molecular Devices 

Andor Solis Andor Technology, Belfast, 

Northern Ireland 

 

Piezo Control PZT Control Release 3.0.6.1  

 

3.2 Methods 

3.2.1 Cultures 

Hippocampal organotypic cultures were prepared from newborn Wistar 

rats (postnatal days (P) 0–2) according to the method of Stoppini et al. 

(1991). The animals were decapitated quickly and brains were placed in 

ice-cold Gey’s balanced salt solution (Life Technologies) under sterile 

conditions. After dissecting the hippocampi (Figure 3-1) transversal slices 

(400 mm) were cut using a tissue chopper (McIlwain), placed again in 

preparation medium and separated. After allowing them to regenerate in 

Figure 3-1 The position of the hippocampus in the rodent brain. 

Once the enitre structure is extracted and sliced, the CA1 and dentate gyrus regions are 
easily recognizable. Typical pyramidal neurons and interneurons are depicted. Drawing 
from: http://www.ecclescorner.org 
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the refrigerator for about half an hour they were placed on membrane 

inserts and incubated with culture medium for 2-4 days. 

3.2.2 Patch Clamp Recordings 

Experiments were performed after 2-4 days of incubation allowing the 

slices to regenerate and to adhere to the membrane. The recording 

chamber was temperature controlled at 35°C and perfused with external 

solution. Pipettes for patch clamp recordings with a resistance of 3-5 MΩ 

were pulled using a P97 micropipette puller. Whole-cell patch-clamp 

recordings from single visually identified CA3-pyramidal neurons were 

made to record synaptic currents. Pipettes were filled with an internal 

solution containing 0.033 mmol OGB-1, a calcium dye, to allow visualizing 

changes in Ca2+-concentration within the cell and the entire dendritic tree. 

Cells were held at a potential of -55 mV, previously shown to be a typical 

resting membrane potential for developing neurons (Safiulina et al., 2006) 

Recordings were discarded when the series resistance dropped below 25 

MΩ. The recordings started upon a trigger signal given by the camera, 

which also turned on the fluorescent light. The data was sampled at 

10 kHz. The frame trigger signal of the camera was logged as a separate 

trace in the electrophysiological recording. This allowed exact aligning of 

the electrophysiological recordings with the data derived from the calcium 

imaging (see chapter 3.2.7).  

A small subset of experiments was carried out in current clamp to 

measure the releationship between acion potential firing and dendritic 

Ca2+-signalling. 

3.2.3 Stimulation 

For the stimulation experiments a glass pipette filled with external solution 

was brought in proximity (30 - 100 µm) to the dendrite of the patched cell 

guided by the fluorescent image obtained from the single filled neuron. 

Subsequently, stimulation strength was adjusted to reliably evoke synaptic 

currents in the patched and imaged cell. The duration of the stimulus was 

0.5 ms. The trigger signal of the stimulation was recorded as a separate 
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trace in the electrophysiological recording to mark the time point of each 

stimulus onset. 

3.2.4 Imaging 

Patched cells were imaged at the earliest 15 minutes after breaking the 

cell membrane and going to whole cell configuration to allow the calcium 

dye to diffuse evenly throughout the entire cell and into the fine dendritic 

branches. During this time period also the dye that spilled over into the 

extracellular space before a seal was achieved, dissipated and thus the 

background brightness was largely reduced when the recordings started. 

Subsequently images were acquired using a CCD camera mounted on a 

fluorescence microscope. The camera was cooled to -70°C for low noise 

imaging at 30 HZ. A region of interest, sized 250 x 250 pixels, containing 

large dendritic regions but not the soma was chosen and illumination was 

restricted to that region with the help of the aperture iris diaphragm of the 

microscope. The images were recorded with 16 bit depth. To increase the 

signal to noise ratio and to decrease the amount of data images were 4 

binned. Thus, the file size of a single image frame was 125 kbyte. 

Handling the fast accumulating, large amount of data (approximately 3.6 

MB/s) required direct streaming onto two fast hard drives (15000 rpm) 

organized in a RAID 0 array. Organization of the two hard drives in a RAID 

0 array almost doubled the writing capabilities of the system and rendered 

recording times of two minutes and longer possible. 

To acquire consecutive frames at different z-planes, a piezo stepper was 

incorporated between the microscope and the objective. A frame trigger 

signal given by the camera at the beginning of each frame triggered the 

movement of the piezo stepper to the next z-position. Three different 

z-planes separated by 10 µm were recorded, thus a temporal resolution of 

10 Hz per cycle was achieved (see Figure 3-2 for a scheme of the setup). 
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Figure 3-2 Setup for simultaneous electrophysiological recording and Ca2+-imaging  

Trigger signals given by the camera at the onset of the recording triggered the illumination by the 
LED-system and the beginning of the electrophysiological recording.  

Trigger signals given by the camera at the beginning of each frame were recorded to align the 
imaging and the electrophysiological data and additionally they triggered the movement of the piezo 
stepper to the next position. 
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3.2.5 Image analysis 

Changes in the fluorescence of OGB-1 report for changes in the calcium 

concentration. To study local Ca2+-transients – locally restricted rises in 

the intracellular Ca2+-concentration – it was required to detect locally 

restricted changes in the fluorescence.  This analysis was carried out 

automatically by custom made Matlab software. As a first step in the 

analysis process, each set of three images recorded at different z-planes 

was collapsed into one maximum projection image (Figure 3-3). All 

maximum projection images from one recording were collected in one 

stack, thus the 4-D image stack (x-y-z-t-stack) was collapsed into a 3-D 

image stack (xmaxproject-ymaxproject-t-stack) containing all necessary 

information.  

Next, an F0 image was computed. In this F0 image the pixel value at each 

position represented the median of all pixel values over time at exactly this 

position. The F0 image was used to generate a ∆F/F0 stack by subtracting 

Figure 3-3 Fast z-stepping

A: Single z-planes showing differences in focal planes. 

B: Maximum projection of the three z-planes on left side; Note: large parts of 
the dendrite in the field of view are in focus. 
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it from each frame of the stack and dividing the result by F0. This ∆F/F0 

stack visualizes changes in fluorescence. 

3.2.5.1 Dendrite detection 

For various reasons it was required to detect the dendritic regions 

captured in our recordings: Firstly, only changes in brightness occurring 

on the detected dendrites were taken as local Ca2+-transients and 

subsequently analyzed. Secondly, some analysis demanded normalization 

to the overall length of imaged dendrite, for example the frequency of 

transients was to be normalized to the length of dendrite. 

To detect dendrites, the F0 image was tophat filtered using a disk-shaped 

structure to correct for uneven background brightness and illumination. 

The radius of the filter structure, 3 pixel, was chosen to be slightly larger 

than the thickest part of the dendrite. All areas brighter than two times the 

standard deviation and larger than 200 pixels were marked as dendrites 

(Figure 3-4) and subsequently only signals being part of the dendritic area 

were detected (see chapter 3.2.5.2). 

Figure 3-4 Dendrite detection

A: F0 image - determined as median of the image stack.  

B: Detected dendrite after filtering and binarizing the F0-image. 
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3.2.5.2 Detection of local Ca2+-transients 

To detect local Ca2+-transients I applied a correlation filter to the ∆F/F0 

representation using a disk-shaped three dimensional filter kernel with a 

three pixels radius consisting of a series of minus ones, zeros and ones 

(-1, 0 and +1). The resulting stack, representing the derivative stack, 

shows changes in fluorescence across three consecutive frames and was 

used to detect rises in brightness. To exclude rises in brightness of single 

pixels and very small areas from the detection I eroded the derivative 

stack with a disk-shaped structure (radius two pixels). Signals were 

defined as a minimum of 10 connected pixels being part of the previously 

detected dendrite (see chapter 3.2.5.1) showing a rise in fluorescence of 

at least 15% (∆F/F0) sec-1.Figure 3-5 shows a pseudo line scan and the 

local Ca2+-transients detected and measured applying this method. 

3.2.5.3 Measuring signal properties 

To measure the properties of the transients a difference stack was 

computed by subtracting the average image of the three frames preceding 

the signal from the following 30 frames. The center of each signal was 

defined as the position with the largest increase in fluorescence within the 

signal in the difference stack. To measure extension and duration of the 

signals, the maximum rise in brightness was determined in the difference 

stack. Subsequently, the connected area consisting of all pixels brighter 

Figure 3-5 Measuring signal properties

A: Pseudo line scan showing Ca2+-transients. 

B: Binarized line scan demonstrating detected signals and measured 
properties.  
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than 2/3 of this maximum was considered to be part of the signal. Regions 

falling below this threshold and becoming brighter again were removed 

from the signal by erosion followed by dilation. This minimized the chance 

that two subsequent transients were detected as one long lasting one 

caused by single pixel noise.  

3.2.5.4 Spatial alignment of recordings 

Small differences in the field of view occurred even though the whole 

setup was vibration isolated, the slices were weight down with a ring of 

platinum and in most experiments all recordings were done from the same 

place without moving the x-y-table. Therefore, prior to defining the sites, it 

was necessary to align all recordings from a cell to the first recording of 

this cell. The observed movements were restricted to x-y movements 

without any rotations or distortions, thus it was sufficient to shift all stacks 

in x-y-direction to get an optimal overlap of the detected dendrites. This 

was accomplished by collapsing the detected binarized dendrite into a line 

and subsequently shifting this line stepwise ± 40 pixel (32 µm) in x-

direction and y-direction. For each step the overlap with the collapsed line 

of the first recording was calculated. The position showing the maximum 

overlap of the two dendrites was taken as optimal position and for further 

analysis the entire recording was shifted to meet this position. 

3.2.5.5 Defining synaptic and non-synaptic sites 

All calcium transients within a distance of ± 4 µm of a common place along 

the dendrite were defined as belonging to one site. The center of this site 

was computed in an iterative way: the center of the first occurring calcium 

transient was taken and every signal within a distance of ± 4 µm was 

assumed to belong to the same site. In the next round the center of the 

site was defined as the middle of the centers of those calcium transients. 

Due to the change of the center, some Ca2+-transients were newly 

assigned to this site while others were too far from the new center to be 

part of this site. The loop was stopped after twenty iterations and the 

center of the next calcium transient, which was not yet part of any site, 

was taken as first estimation of a new site. 
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The distinction between synaptic and non-synaptic sites was based on the 

fraction of calcium transients which occurred simultaneously with synaptic 

events at a given site. As a first step the probability for any calcium 

transient to be correlated with an electrophysiological event by chance 

was calculated by dividing the number of frames during which at least one 

synaptic current was detected by the total number of frames. 

Subsequently, the percentage of correlated calcium transients at each site 

was computed (Figure 3-6). Sites were assigned to be synaptic if the 

correlation of calcium transients and electrophysiological events exceeded 

the chance level 1.5 times.  

Cells with an electrophysiological activity level exceeding 60% the imaging 

frequency were excluded from the analysis, since this high level of activity 

rendered a distinction between synaptic sites and non-synaptic sites 

based upon the fraction of correlated transients impossible. 

Figure 3-6 Sites of local Ca2+-transients

A: Ca2+-transients (dots) projected onto the dendrite, grouped and dedicated to sites; the color 
of the dots codes for the percentage of correlated Ca2+-transients at each site.  

B: Occurrence of Ca2+-transients (dots) in time (x-axis); vertical lines represent onsets of 
recordings; recording time was two minutes. 
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3.2.5.6 Manual detection of local Ca2+-transients 

For manual analysis of local Ca2+-transients image stacks were imported 

in ImageJ to derive pseudo line scans. Pseudo line scans carry the spatial 

and brightness information of the pixels along the region of interest in the 

y-axis while the information of each point in time is carried on the x-axis 

(Figure 3-5 A). To generate pseudo line scans a region of interest (line) 

was drawn along each dendritic branch and the function “Reslice” plotted 

the pseudo line scan of the region of interest.  

Synaptic positions, as detected by the Matlab program, were marked in 

these pseudo line scans and verified by eye (Figure 3-7). Subsequently, 

signals were detected by eye for each synaptic site separately. Afterwards 

the complete linescans, containing multiple synaptic sites, were 

reinspected to exclude those Ca2+-transients which could not 

unambigously be assigned to a specific synapse This procedure allowed 

analyzing the activation pattern of a given synapse blindly to the activity 

Figure 3-7 Manual detection of local Ca2+-transients

Two synaptic sites (red circles) projected onto the respective dendrite and parts of a pseudo 
line scan of these sites showing local Ca2+-transients. 
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patterns of the neighboring synapses, yet permitted to exclude wrongly 

detected Ca2+-transients. 

3.2.5.7 Measuring distances between synapses 

For calculating the shortest distance between all sites along the dendrite a 

binarized model of the dendrite was created semi-automatically by 

averaging the detected dendrites (see chapter 3.2.5.1) of all recordings 

taken from an individual cell and collapsing those detected dendrites into a 

line. Subsequently, individual pixels were manually added and removed 

respectively to avoid breaks and loops in the dendritic arbor. Next, the 

distance along the dendrite between all neighboring points of interest was 

computed. Points of interest (knots) were branching points, end points or 

sites of interest, like synapses. Finally, a matrix showing the shortest 

distance between all pairs of knots was generated using the Floyd-

Warshall-Algorithm. 

3.2.5.8 Correlation between synapses 

As a measure of the correlation between two synapses, the probability for 

one synapse to fire given that the other one fires was computed. 

Specifically, the number of simultaneous activations of both synapses was 

divided by the total number of activations per synapse. Subsequently, the 

average correlation for each pair of synapses was computed (Figure 3-8).  
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3.2.5.9 Analyzing the number of synapses per axon onto a single 

dendrite 

Investigating activation patterns of neighboring synapses, I considered 

whether neighboring synapses can possibly be formed by a single axon. 

Thus, to check if individual axons make multiple synapses onto one and 

the same dendrite, previously published anatomical data obtained in the 

same culture system investigated throughout this study was analyzed 

(Lohmann and Bonhoeffer, 2008). The axons were fluorescently labeled 

via bolus loading with Oregon Green, while dendrites were fluorescently 

labeled by single cell electroporation with OGB-1 and Alexa 594. High 

magnification z-stacks were recorded with a confocal microscope. In these 

stacks, dendrites were displayed in red (Alexa 594), while axons were 

displayed in green (Oregon Green). All sites having an overlap of the two 

colors within a single z-plane, thus sites displaying yellow pixels, were 

referred to as putative synapses. 

Figure 3-8 Inter-synapse correlation 

Scheme depicting calculation of correlation between synaptic pairs: red vertical lines symbolize 
individual activations of each synapse (red circle); the number of co-activations for each 
synaptic pair is counted and divided by the number of single activations of each of the two 
partners seperately.  
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3.2.6 Electrophysiological analysis 

Analysis of the electrophysiological recordings was done in Matlab. Mainly 

custom made programs were used, enabling completely automated 

analysis.  To import electrophysiological traces recorded in P-Clamp 10 

the program import_abf written by John Bender in and for Matlab was 

used. This program is freeware and available at 

http://webscripts.softpedia.com/script/Scientific-Engineering-Ruby.  

3.2.6.1 Elimination of current-fluctuations caused by the piezo 

stepper 

The movement of the piezo stepper caused small waves in the extra 

cellular solution. Depending on the type of the recording chamber used, 

these waves introduced periodic fluctuations in the recorded current. Prior 

to further analysis, these fluctuations needed to be corrected for. Since a 

Fourier-transformation revealed that their frequency components were 

quite similar to the frequency components of synaptic events (data not 

shown), a different approach than frequency filtering was chosen. For 

each recording the fluctuation for a whole cycle of the piezo stepper was 

estimated by averaging the fluctuations per cycle throughout the 

recording. To get the best possible overlay of those fluctuation cycles, the 

single cycles were aligned prior to averaging them by taking the peaks of 

each cycle as landmark. Subsequently, a current trace the same length as 

the raw recording was generated by concatenating repetitions of the 

averaged fluctuation cycle. Finally, this trace was subtracted from the 

recorded current. In the corrected current trace, which was cleared from 

the periodic current fluctuations (Figure 3-9), synaptic events could be 

detected as described in chapter 3.2.6.2. 
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However, these fluctuations occurred solely when using the recording 

chambers produced by the workshop of the MPI-Martinsried. When using 

the temperature controlled slice mini chambers I from Luigs & Neumann 

no periodic current fluctuations were observed, thus no correction was 

needed. 

3.2.6.2 Detecting electrophysiological events 

For the detection of spontaneous electrophysiological events a similar 

procedure as described in chapter 3.2.5.2 was used. Firstly, the data was 

filtered by averaging 50 consecutive data points of the measured current. 

Subsequently, the onsets of the signals were detected in a convolved 

trace of this average filtered current trace (filter kernel: -1, 0, 1). Due to the 

chosen filter kernel this convolved trace reflects the derivative in time of 

the average filtered current trace. The threshold for signal detection was 

depending on the noise level. To estimate the noise level I assumed that 

fluctuations between 0 and 2 pA/ms in the derivative trace (moderate 

Figure 3-9 Removing current fluctuations induced by the fast z-stepping

A: Raw current trace of an electrophysiological recording with fast z-stepping. 

B: Current trace after subtracting the periodic fluctuations induced by the piezo stepper. 
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changes in measured current towards zero) were mainly due to noise in 

the recording. In contrast, synaptic inward currents are represented as 

large, negative values in the derivative trace. The threshold for signal 

detection was set to 3.5 times this noise level. To distinguish between 

single synaptic inputs and bursts of synchronous activity I defined that 

bursts consist of at least four transients within 100 ms.  

3.2.7 Temporal alignment of datasets 

To precisely register the electrophysiological and the optical recordings in 

time I logged the frame trigger signal given by the camera at the beginning 

of every frame as a separate trace in the electrophysiological recording. 

Automated counting of these trigger signals in Matlab allowed to exactly 

determine the beginning of every single frame of the calcium imaging in 

the electrophysiological trace and vice versa. The single trigger events 

were detected by binarizing the trace using an adequate threshold and 

subsequently taking the onset of every frame trigger signal as the 

beginning of each frame (Figure 3-10).  

This method turned out to be easy to handle and more accurate than 

triggering solely the beginning of the recording, as it automatically corrects 

small time shifts occurring when recording large amounts of fast 

accumulating data with two independent computers. Reasons for those 

time-shifts are, for example, small delays caused by computing and saving 

the large amount of data from each imaging stack (1.3 GB per recording).  
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Figure 3-10 Scheme depicting the aligning principle

Every third frame trigger signal is marked in black as it tags the beginning of a new cycle of the piezo stepper. 
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4 RESULTS 
This study focuses on the spatio-temporal patterns of spontaneous 

synaptic activity. As electrophysiological methods alone do not provide 

any information on the sub-cellular location of the recorded synaptic 

activation, I combined electrophysiological recordings with high speed 

calcium imaging to bridge this gap. Combining these two techniques I set 

out to visualize spontaneous synaptic activity in pyramidal neurons of the 

CA3 region in developing hippocampal slice cultures. 

4.1 Electrophysiological recordings 

The electrophysiological recordings showed spontaneously occurring 

synaptic currents, which could be assigned to two distinct groups: single 

current peaks and bursts of synaptic activity. Single current peaks 

represent most likely unitary synaptic events. These unitary synaptic 

events are characterized by clearly detectable individual peaks. In 

contrast, bursts of synaptic activity reflect synchronous synaptic input at 

many synapses at the same time (Leinekugel et al., 1995). They are 

therefore characterized by an accumulation of multiple individual current 

peaks. Single current peaks occurred at a rate of 1.8 ± 0.62 Hz (mean ± 

s.d. per cell) and bursts of activity occurred at a rate of 11.5 ± 10.8 min-1 

(n = 15 cells). 

4.2 Ca2+-transients 

4.2.1 Global Ca2+-transients 

Pyramidal cells of the CA3 region of the developing hippocampus stained 

with a calcium sensitive dye by electroporation show frequent increases in 

fluorescence in the entire dendritic tree (Lang et al., 2006). These global 

Ca2+-transients reflect action potential firing evoked by giant depolarization 

potentials, a well-known phenomenon shaping the developing 

hippocampus (Leinekugel et al., 1998; Leinekugel et al., 1995; Ben Ari, 

2001).  
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A small set of experiments (n = 13) performed in current clamp 

demonstrated that global Ca2+-transients reliably reflected firing of single 

or multiple action potentials (Figure 4-1). When normalizing the amplitude 

of the global Ca2+-transients to the 

average fluorescence increase 

evoked by a single action potential 

(Figure 4-2) it becomes obvious that 

the fluorescence of global 

Ca2+-transients scales with the 

number of action potentials evoking 

these global Ca2+-transients. 

Therefore, global Ca2+-transients can 

be used to estimate the number of 

action potentials a given cell fires. 

Nevertheless, with increasing levels 

of activity the calcium dye will 

increasingly saturate, thus, 

Figure 4-2 Global Ca2+-transients and spike 
rate 

Relative change in fluorescence scales with 
the number of action potentials evoking the 
global Ca2+-transients.  

Figure 4-1 Global Ca2+-transients 

A: Left side shows the dendritic region imaged. Right side: pseudo line scan with global 
Ca2+-transients. The dendritic area of the pseudo line scan is depicted on the left side by the 
arrowheads. 

B: Voltage trace showing single and multiple action potentials. 
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dependent on the activity level of the imaged cell, more elaborate methods 

to deduce the spiking rate from the imaging data might be required (Yaksi 

and Friedrich, 2006). 

However, most experiments throughout this study were performed in 

voltage clamped cells to suppress the initiation of action potential firing 

and the occurrence of global calcium transients. Under current clamp 

conditions many local Ca2+-transients are masked by global calcium 

transients of back propagating action potentials. Thus preventing spiking 

of the imaged cell and thus occurrence of global Ca2+-transients 

unmasked these local Ca2+-transients.  

4.2.2 Local Ca2+-transients and their correlation with 

synaptic currents 

Local Ca2+-transients occurred at a frequency of 68.0 ± 43.8 min-1 mm-1 

dendrite (mean ± s.d.) and approximately 50% of these transients were 

correlated with synaptic currents. To investigate whether these local 

Ca2+-transients were accidentally correlated with synaptic currents, or 

whether more local Ca2+-transients are correlated than one would expect, 

given the activity levels, I plotted a histogram showing the time differences 

between the electrophysiological events and the local Ca2+-transients 

(Figure 4-3; n = 11 cells).  

This plot (Figure 4-3 A) shows a clear peak at zero demonstrating that the 

correlation between Ca2+-transients and electrophysiological events was 

not incidental but systematic. The peak is completely absent in a similar 

histogram which was computed using a reversed time axis of the 

Ca2+-recordings but not of the electrophysiological events. This histogram 

serves as a control (Figure 4-3, panel A inset). 
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Since I was interested in finding out which receptor would possibly be 

responsible for the correlated local Ca2+-transients, I blocked ionotropic 

glutamate receptors using NBQX and APV. This reduced activity in the 

neurons but did not completely abolish it, neither calcium signaling, nor 

synaptic transmission (Figure 4-3, panel B). Nevertheless, the remaining 

Ca2+-transients were not correlated in time with synaptic currents 

anymore. 

4.2.3 Stimulated Ca2+-transients   

In order to corroborate the synaptic origin of the subset of local 

Ca2+-transients, experiments were performed in which current was 

injected close to the imaged region in order to stimulate axons in the 

proximity of the imaged cell (see chapter 3.2.3). The connectivity in the 

hippocampus at this stage of development is rather low (Malinow, 1991; 

Sorra and Harris, 1993; Pavlidis and Madison, 1999) leading to a low rate 

of successful electrical stimulations. The fact that stimulated synapses 

needed to be within the field of view of the camera lowered the success 

rate even more.  

Figure 4-3 Histogram of time differences between local Ca2+-transients and synaptic currents 

A: Histogram of time differences between the onsets of calcium transients and electrophysiological 
events shows a high prevalence of co-occurrence. Inset shows histogram calculated with reversed 
time points of calcium transients as a control; here no peak exists.  

B: The histogram of time differences in the presence of the glutamate receptor antagonists APV and 
NBQX does not show a detectable peak. 
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However, in successful experiments Ca2+-transients which were correlated 

with synaptic currents could be triggered repeatedly at the same site by 

applying current injections (Figure 4-4). Since the depolarization induced 

by the current injection is decreasing with distance from the site of 

stimulation, direct depolarization of the dendrite should be most likely to 

occur close to the stimulation electrode. However, in none of the cells, the 

stimulated site was at the dendrite closest to the stimulation electrode, 

indicating that the observed Ca2+-transients were evoked by presynaptic 

release events rather than by direct depolarization. The duration (1.6 ± 1.0 

s) and extension (17.6 ± 13.8 m) of the stimulated transients were 

indistinguishable from the duration and extension of spontaneously 

occurring correlated Ca2+-transients (duration: 1.3 ± 1.0 s; extension: 20.9  

± 19.8 m). In none of these experiments stimulation triggered local 

Ca2+-transients at more than one site (n = 3 cells). 

Figure 4-4 Spontaneous and stimulated local Ca2+-transients

A: Left side : Local Ca2+-transient superimposed onto its dendritic location. Right side: Spontaneous 
correlated Ca2+-transient shown as pseudo line scan with the corresponding current trace below.  

B: Stimulated Ca2+-transient with the corresponding current trace below; The arrowhead is depicting the 
time point of stimulation 
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4.2.4 Local Ca2+-transients as reporters of glutamatergic 

transmission 

As Ca2+-transients tended to be highly correlated with synaptic currents at 

some places but rather uncorrelated at others, I assigned the observed 

Ca2+-transients to sites, computed the correlation of each site and 

subsequently distinguished between synaptic and non-synaptic sites (see 

chapter 3.2.5.5).  

In presence of NBQX and APV, which block ionotropic glutamate 

receptors, no local Ca2+-transients could be observed at synaptic sites. In 

contrast, non-synaptic sites remained active in the presence of the 

glutamate receptor antagonists. Thus, Ca2+-transients at synaptic sites 

dependent on glutamate transmission while those at non-synaptic sites do 

not (Figure 4-4; n = 11 cells). 

Figure 4-5 Synaptic sites show glutamate receptor activation

Ca2+-transients at non-synaptic sites (left bars) are not blocked by APV and NBQX while at 
synaptic sites (right bars) the frequency of  Ca2+-transients  is strongly reduced in presence 
of APV and NBQX. 



 Results 
 __________________________________________________________  
 

53 
 

In a different set of experiments TTX was used to block voltage gated 

sodium channels and, therefore, exclude effects caused by the reduction 

of activity in the entire slice due to the application of a drug. TTX prevents 

propagation of activity through the network by blocking spread of 

excitation along the axons. Thus, release of transmitter is no longer 

controlled by Ca2+-influx triggered by action potential firing, but it is caused 

solely by spontaneous fusions of single vesicles with the presynaptic 

plasma membrane. Postsynaptically, in the presence of TTX miniature 

synaptic currents reflecting activation of postsynaptic receptors due to 

spontaneous quantal release from vesicles at the presynaptic terminals 

can be observed (Brown et al., 1979). Therefore, transmitter release in 

presence of TTX is not influenced by the activity of the network and 

observed effects of, for example additionally applied drugs, can be 

assumed to be direct effects, which are not brought about by changes in 

the network.  

In the experiments presented here miniature synaptic currents occurred at 

a rate of 1.34 ± 0.42 Hz. Miniature synaptic currents with a minimum size 

of 5 pA were detected; their average amplitude was 25.9 ± 19.3 pA 

(Figure 4-6; n = 26 recordings).  

Figure 4-6 Histogram of the amplitude of miniature EPSCs 
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During treatment with TTX, local Ca2+-transients were observed at 

synaptic as well as at non-synaptic sites. To boost the frequency of 

miniature synaptic events latrotoxin, which increases presynaptic 

transmitter release (Deak et al., 2009) was added to the recording 

solution. After recording miniature synaptic currents and Ca2+-transients in 

the presence of TTX and latrotoxin, NBQX and APV were washed in to 

additionally block ionotropic glutamate receptors. Even though miniature 

synaptic currents and local Ca2+-transients at non-synaptic sites could still 

be observed in the presence of the glutamate receptor antagonists, 

Ca2+-transients at synaptic sites were completely abolished (n = 6 cells). 

4.2.5 Properties of synaptic and non-synaptic Ca2+-

transients 

Comparing the properties of Ca2+-transients at synaptic and non-synaptic 

sites revealed a significant difference in their average duration and 

extension. Specifically, synaptic Ca2+-transients were longer lasting and 

more extended (1.35 ± 0.25 s; 23.4 ± 1.8 µm) than non-synaptic transients 

(0.88 ± 0.12 s; 16.2 ± 1.2 µm) as observed in 11 cells. Also the amplitude 

Figure 4-7 Properties of Ca2+-transients at synaptic and at non-synaptic sites

A: Duration of Ca2+-transients occuring at synaptic and non-synaptic sites. 

B: Extension of Ca2+-transients occuring at synaptic and non-synaptic sites. 

C: Amplitude of Ca2+-transients occuring at synaptic sites and non-synaptic sites. 
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of calcium transients at synaptic sites tended to be higher than the 

amplitude of those occurring at non-synaptic sites, but this difference was 

not significant.  

Nevertheless, due to the relative large standard deviation, the small 

magnitude of the difference in duration and extension did not allow 

classifying sites into synaptic and non-synaptic ones merely on the basis 

of the imaging data. Plotting the properties of the detected Ca2+-transients, 

duration, extension and amplitude in a 3 dimensional graph did not reveal 

any obvious clustering in different groups of Ca2+-transients (not shown).  

4.3 Developmental changes 

It has been shown that glutamatergic synapses in the hippocampus of rats 

are mainly built in the first two weeks after birth (Hsia et al., 1998a). That 

means, during this period of time the amount of glutamatergic 

transmission in the hippocampus is constantly increasing. Furthermore, 

various other properties of neurons change within the first two postnatal 

weeks, for example the intracellular concentration of chloride and by that 

the effect of GABA signaling (chapter 2.5). Thus, I decided to visualize 

synaptic activity in hippocampal slice cultures prepared of older rats (P7-8) 

to investigate if the changing properties of hippocampal neurons influence 

the properties of the local Ca2+-transients.  

In slices prepared from P7-8 rats the frequency of synaptic currents as 

well as the frequency of synaptic local Ca2+-transients was about four fold 

increased (n = 12) compared to slices of rats prepared at P2-3. Plotting 

the properties of the observed local Ca2+-transients revealed, for example, 

that the duration of the Ca2+-transients at synaptic and at non-synaptic 

sites changed during development (Figure 4-8). Specifically, local 

Ca2+-transients at synaptic sites were longer lasting in slices of P 2-3 rats 

than in slices of P7-8 rats. In contrast, local Ca2+-transients at 

non-synaptic sites were shorter lasting in the slices of younger rats (P2-3). 
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4.4 Mapping synaptic inputs in individual neurons 

In order to increase the proportion of dendrites being in the focus plane, 

the imaged volume was increased by recording from three consecutive 

z-planes separated by 10 µm. The information gained from each stack of 

three z-planes was combined in one maximum projection for analysis (see 

chapter 3.2.5). This technique allowed overcoming the restriction to a 

single focal plane, which had at the given setup a depth of approximately 

10 µm. Acquiring images from three different z-planes at a frequency of 30 

Hz resulted in gathering information from a focal volume with a depth of 

about 30 µm at a sampling rate of 10 Hz. Handling the large amount of 

Figure 4-8 Duration of synaptic and non-synaptic transients at different developmental 
stages 

Duration of synaptic versus non-synaptic Ca2+-transients of slices of rats sliced at postnatal day 
2-3 compared to slices prepared at postnatal day 7-8 
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data acquired at high rates demanded a computer capable of streaming 

the imaging data directly onto hard drives (see chapter 4.2.4).  

Imaging for several minutes at three to four different locations was 

sufficient to map the synaptic inputs of the major parts of the dendritic tree 

of individual neurons. Seven CA3 pyramidal cells of seven different slices 

were mapped. Prior further analysis, I compared the fraction of synaptic 

local Ca2+-transients of the total number of local Ca2+-transients close by 

the soma and distally to test, whether classification of synaptic and 

non-synaptic sites was compromised in more distal parts of the dendrites. 

Such an impaired classification could be the result of attenuation and thus 

a less reliable detection of distally evoked synaptic currents. However, the 

fraction of synaptic Ca2+-transients was similar (or even higher) in distal 

dendrites compared to proximal dendrites (proximal: < 200 µm from the 

soma 59 ± 9 %; distal: > 200 µm from the soma 74± 17 %; P = 0.06; not 

significant).  

The obtained topographic maps of synaptic activation clearly show that 

synaptic Ca2+-transients were detected throughout the dendritic arbor, in 

all regions of the basal dendrites as well as from the most proximal parts 

of the apical dendrites to the most distal tips. However, the density of 

synaptic input appeared to be rather high in the basal dendrites close to 

the soma, and in the most proximal parts of the apical dendrites, while 

synaptic activity in the most distal parts of the apical dendrites seemed to 

be low (Figure 4-9).  
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Figure 4-9 Mapping the synaptome 

A-C: Individual mapped CA3 pyramidal cells; in each case the left side shows calcium transients 
(red dots) that coincided with synaptic currents, superimposed on a reconstructed cell; the right 
side shows synaptic sites (red circles) of the same cell. Black parts of the dendrites represent 
imaged areas while grey parts represent areas that were not imaged. For reconstruction of the 
cells a high resolution z-stack was taken at the end of the experiment.  
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Comparing maps of various individual neurons required a new way of 

representing the data gathered from these differently shaped neurons. 

Thus, to summarize the recorded maps of synaptic activation a 

representation inspired by the Sholl diagram (Sholl, 1953) was designed, 

a functional Sholl diagram. In a classical, structural Sholl diagram the 

number of intersections between the dendrite and concentric circles 

around the soma is plotted against the distance from the soma. In contrast 

to the structural Sholl diagram, the functional Sholl diagram shows 

synaptic activity instead of structural complexity as a function of the 

distance from the soma. Here, synaptic activity means either the 

frequency of synaptic activations or the frequency normalized to the length 

of dendrite, i.e. synaptic activations per min and mm. This way of 

representing the data allowed comparing data gathered from many 

individual and thus differently shaped neurons (Figure 4-10; n = 7 cells).  

The structural and the functional Sholl diagrams differ in some aspects. 

For example, structurally the analyzed CA3 pyramidal neurons showed 

only a low amount of branching in apical regions close to the soma, but 

the synaptic input impinging onto this area was rather high. In general the 

synaptic input was highest in the basal dendrite. But, since the basal 

dendrites were also highly branched, the density of input, i.e. the synaptic 

activations per min and mm dendrite, was not higher in the basal dendrites 

than in the most proximal apical dendrites. Also the apical region spanning 

roughly from 100 µm to 170 µm from the soma displayed a density of 

synaptic input comparable to the basal dendrites. Furthermore, the 

functional Sholl diagrams revealed that activity is lower in the most distal 

parts of the apical dendrites, i.e. regions further away from the soma than 

200 µm, than in more proximal parts of the apical dendrites, or in the basal 

dendrites (Figure 4-10). This was not suprising because it could be seen 

in the maps of synaptic activation described above.  
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Figure 4-10 Structural and functional Sholl diagrams

A: Example pyramidal neuron.  

B: Structural Sholl diagram: numbers of intersections between dendrites and imaginary circles at 
increasing distances from the soma. (black lines show average of seven and three pyramidal cells for 
the apical and basal arborizations, respectively; grey areas represent mean ± s.d.).  

C: Functional Sholl diagram derived from the cells in A: synaptic transients per minute at increasing 
distances from the soma.  

D: Density of synaptic inputs: similar to C but normalized to the length of dendrite at each distance. 
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4.5 Activation-patterns during bursts of synaptic 

activation 

In most brain areas, amongst them the hippocampus, spontaneous 

activity, i.e. activity independent of sensory input, plays an important role 

during development (Ben-Ari et al., 1989a; Kasyanov et al., 2004; 

Mohajerani and Cherubini, 2006; Sipila et al., 2006). In the hippocampus 

this spontaneous activity is known as giant depolarization potentials 

(GDPs). GDPs appear in voltage-clamp recordings of a single neuron as 

bursts of synaptic activity (Leinekugel et al., 1995; Ben-Ari et al., 1989b), 

which reflect the simultaneous activation of many synapses within a very 

short time window.  

Figure 4-11 Synaptic activity pattern during successive bursts 

A: The arrowheads depict the endpoints of the dendritic branches labeled as dendrite 1 and 
dendrite 2 represented in B. Red circles mark the positions of the synapses. 

B: Synaptic activity pattern during 53 successive bursts. Dots represent active synaptic sites 
during each burst. Individual bursts are represented on the x-axis. Red arrows mark the positions 
of the synapses shown in A. 
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Investigating the spatio-temporal patterns of synaptic activation, I 

analyzed the glutamatergic synapses contributing to successive bursts. 

On average individual synapses were active during 2.8 ± 1.0 % of the 

bursts. To address whether recurrent patterns of synaptic activations can 

be found, different ways of representing the activity patterns during bursts 

were used. For example, plots were created which show the activity of 

Figure 4-12 Activitation patterns of individual synapses during consecutive bursts 

A: Synaptic sites (left) and calcium activity patterns during three consecutive bursts.  

B: Calcium activity at the six synaptic sites shown in A in  ∆F/F0.  

C: Current trace: time points of bursts are depicted by dotted lines. 
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each synaptic site during successive bursts (Figure 4-11). Subsequently, 

those representations were carefully analyzed by eye to find possible 

patterns of activation.  

However, I did not find any recurrent synaptic activation pattern. Even 

between similar bursts with respect to amplitude and duration the 

contributing set of synapses varied (Figure 4-12). 

4.6 Correlated activation of individual pairs of 

synapses 

It has been suggested that dendrites do not only act as passive structures, 

which receive synaptic inputs and pass the information to the soma, but 

that stretches of dendrites are also able to compute the received synaptic 

input and subsequently transmit modifications of this input (Losonczy and 

Magee, 2006; Nevian et al., 2007; Polsky et al., 2004). For example, 

strong depolarization of dendritic stretches due to simultaneous activation 

of many synapses can trigger dendritic spikes, i.e. large regenerative 

depolarization events initiated in dendrites (Schiller et al., 1997; Golding 

and Spruston, 1998). These dendritic spikes exert a high impact on the 

membrane potential at the soma and the axon hillock and are, therefore, 

more likely to evoke an action potential than normal synaptic currents. The 

generation of a dendritic spike can be seen as a computation performed 

solely by the dendrite. Thus, an individual neuron might comprise of 

several more or less independent computational units. This could increase 

the computational power of a single neuron tremendously (Govindarajan 

et al., 2006; Mel and Schiller, 2004). The mechanisms described so far 

would boost only the output of two or more synchronously active synapses 

at one stretch of dendrite, thus they require a subcellular precision of 

synaptic wiring. The subcellular precision of the wiring diagram should be 

apparent by mapping the patterns evoked by spontaneous activity. To 

address whether correlation between two given synapses is linked to the 

relative location of these synapses, I computed the percentage of 

correlated firing of each pair of synapses. This percentage of correlated 

firing was subsequently set in relation to spatial aspects concerning the 
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relative location of those two synapses, like distance between the 

synapses along the dendrite or difference in vertical distance from the 

soma.  

4.6.1 Correlation vs. vertical distance from the soma 

Most axons cross the dendritic arbor of CA3-pyramidal-cells in an almost 

orthogonal angle (Andersen et al., 2007). Assuming that neighboring 

synapses might carry related information, I Investigated whether two 

synapses at the same vertical distance from the soma might be more 

often simultaneously active than synapses located at different vertical 

locations.  

Since, the cells were imaged in a defined orientation, namely the apical 

dendrite perpendicular to the x-axis, the vertical distance from the soma 

was reflected in the vertical position within the image, i.e. in the 

y-dimension. Hence, to address whether synapses at similar vertical 

position are more likely to be simultaneously active, I plotted the 

correlation of each pair of synapses against their difference in the 

y-dimension. Even though there was a tendency of synapses located at 

the same vertical distance from the soma to fire more often in concert, this 

tendency was not significant (Figure 4-13). 
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Figure 4-13 Correlation of pairs of synapses against their vertical distance 

A: Manual analysis of a single cell.  

B: Automated analysis of 10 cells 
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4.6.2 Correlation vs. inter-synapse-distance 

It has already been shown that simultaneous activation of many synapses 

within a short distance can lead to an amplification of the inputs (Schiller 

et al., 1997; Golding and Spruston, 1998). Thus, neighboring synapses 

having a high probability of being synchronously activated are more likely 

to fire the neuron. Hebb postulated that synapses contributing in firing a 

neuron are likely to be strengthened rather than eliminated (Hebb, 1949). 

If Hebb’s postulate is applicable to the cells investigated here, there 

should be a tendency to strengthen neighboring synapses having a high 

correlation. An increased probability for strengthening neighboring 

synapses if they are simultaneously active would lead to an increased 

probability of neighboring synapses being coactive. To test this 

assumption across the set of synapses of an individual neuron I compared 

the activation patterns of all pairs of synapses and the distance between 

them along the dendrite. However, prior investigating the activation 

patterns of neighboring synapses, it was necessary to ensure that the 

activation patterns of two synapses at close range can reliably be 

assigned to the respective synapses. 

To determine whether the activation patterns of two synapses can be 

clearly visualized and assigned to the respective synapses I analyzed 

activations of synaptic pairs lying close by one another. Figure 4-14 shows 

that it can be clearly distinguished between synchronous activation and 

single activation of either synapse even at synapses with an inter-synaptic 

distance of 8 µm. 
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After verifying that the activity at neighboring sites can clearly be assigned 

to one of the sites I investigated the interrelation of activation patterns and 

distance. Plotting the correlation of all pairs of synapses against their 

distance (Figure 4-15) revealed, that synapses being in close proximity 

are more often activated simultaneously than synapses being farther apart 

from one another. This result was not only seen in a single manually 

analyzed cell in which 14 synapses (91 pairs) were visualized (Figure 4-15 

A), but also in the set of 10 automatically analyzed cells (Figure 4-15 B). 

Specifically, synapses with an inter synapse distance of less than 16 µm 

fired significantly more often in concert than synapses being farther apart 

from each other (Figure 4-15 B). Plotting the distance of all pairs of 

synapses against the likelihood of each pair being activated with 200-300 

ms delay revealed that the observed relationship was restricted to a very 

narrow time window, since there was no interrelation of this delayed-

correlation and distance (Figure 4-15 C). 

  

Figure 4-14 Synaptic activations at two neighboring synapses 

Activation patterns of two synapses within 8 µm. Note: simultaneous and 
individual activation are clearly distinguishable. 
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Figure 4-15 Correlation of pairs of synapses against their distance along the 
dendrite 

A: Manual analysis of a single cell.  

B: Automated analysis of 10 cells. 

C: Automated analysis of 10 cells / time difference 200-300 ms 
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4.6.2.1 Analyzed synapses between stained axons and dendrites 

To test whether the distance dependence of correlation is due to single 

axons making multiple synapses onto a single stretch of dendrite, I 

analyzed the synapses made by individual axons (see chapter 3.2.5.9). In 

seven high magnification z-stacks of hippocampal slices in which axons 

and dendrites were fluorescently labeled, the synapses of more than two 

hundred stained axons were analyzed. The axons formed 43 putative 

synapses with a fluorescently labeled dendrite but not a single axon 

formed more than one synapse onto an individual stretch of dendrite.  
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5 DISCUSSION 

Many brain areas, including the hippocampus, show spontaneously 

occurring synaptic activity during development (Blankenship and Feller, 

2010; Khazipov and Luhmann, 2006; O'Donovan, 1999; Wong, 1999). 

This spontaneous synaptic activity shapes the developing network by 

influencing the fate of newly formed synaptic connections (Hua and Smith, 

2004; Huberman et al., 2008; Katz and Shatz, 1996). But also in the adult 

brain the major part of activity is spontaneous activity  (Thivierge, 2009). 

Recently it has been proposed that the fate of synapses depends not only 

on correlated firing patterns of entire neurons, but also on the 

spatio-temporal patterns of firing of individual dendritic segments 

(Govindarajan et al., 2006; Mehta, 2004; Poirazi and Mel, 2001). 

Nevertheless, so far little is known about the spatial aspects of synaptic 

function on a sub cellular level (Chklovskii et al., 2004), since the 

functional development of synapses has mostly been studied using 

electrophysiological methods. Electrophysiological recordings provide a 

valuable tool to detect synaptic activity at high temporal resolution, but do 

not provide any information on the sub cellular distribution of spontaneous 

synaptic activity. They are therefore on their own not suitable to study 

spatio-temporal patterns of synaptic function. But, to investigate the spatial 

arrangement of activated synapses and specifically a potential 

interdependence of the activity and the development at neighboring 

synapses, it is necessary to map synaptic activity on the dendritic tree of 

developing neurons with single synapse precision.  

The aim of this study was to describe spatio-temporal-patterns of 

spontaneous synaptic activity in developing hippocampal slice cultures. To 

visualize synaptic activity with sufficient temporal and spatial resolution, a 

new approach was chosen. Combining electrophysiological methods with 

calcium imaging at a relative high rate, I was able to show that a subset of 

local Ca2+-transients is a reliable reporter for glutamatergic transmission 

and that these synaptic local Ca2+-transients can be used to visualize 
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synaptic transmission with subcellular precision. The reconstruction of a 

major part of the synaptic input along the dendritic tree of an individual 

hippocampal pyramidal neuron, lead to what, to my knowledge, is the first 

mapping of a neurons “synaptome”. Finally, by correlating spatial and 

temporal aspects of spontaneous synaptic transmission I could show that 

synapses lying close by one another are activated in concert more often 

than synapses being farther apart from each other.  

5.1 A subset of local Ca2+-transients is linked to 

glutamatergic transmission 

After establishing a method to simultaneously perform calcium imaging 

and patch-clamp-recordings and reliably and precisely align the two 

acquired datasets in time (see chapter 0), I showed that a major part of all 

local Ca2+-transients coincided with synaptic currents (see chapter 4.2.2). 

To exclude that this coincidence is accidental, I plotted a histogram of time 

differences (Figure 4-3). The peak at zero in this histogram showed that 

more local Ca2+-transients and synaptic currents are correlated in time 

than one would expect if this correlation was just the by chance 

correlation. One major advantage of such a histogram is that the overall 

activity level affects all time differences equally. Even very high activity 

levels leading to a high probability of accidental correlation would not lead 

to a peak like that seen in Figure 4-3. The graph with reversed time axis of 

the onsets of local Ca2+-transients (inset Figure 4-3) serves as a control 

on the one hand side and is on the other hand illustrating the mentioned 

effect. Furthermore, since there is no peak in the graph with the reversed 

time axis, similar periodicities in the occurrence of local Ca2+-transients 

and electrophysiological events can be excluded to cause the peak in 

Figure 4-3.  

The broadness of the peak (± 0.5 s) and the symmetrical shape of the 

graph are due to the long duration of the bursts of synaptic input that 

occur in developing hippocampal slices. During the entire duration of 

bursts many individual synapses are activated but also many 
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electrophysiological events are detected. Thus, the histogram shows a 

large proportion of electrophysiological events preceding local 

Ca2+-transients but it also shows a large proportion of local Ca2+-transients 

preceding electrophysiological events.  

The synaptic Ca2+-transients are probably evoked by a series of events 

starting with the binding of a transmitter to a postsynaptic receptor. The 

activation of the postsynaptic receptor entails a depolarization of the 

postsynaptic membrane, which in turn results in opening of voltage-gated 

calcium channels and thus leads to an influx of Ca2+-ions. The increasing 

concentration of Ca2+-ions finally enhances the fluorescence efficacy of 

the calcium dye. This series of events could be expected to cause some 

delay from the synaptic activation to the occurrence and detection of the 

local Ca2+-transients. However, even though it is a series of many events, 

the delay would be in the range of milliseconds, thus it was not detectable 

with the imaging settings described here.  

Also exactly the opposite, namely a delay of the electrophysiological 

events compared to the local Ca2+-transients caused by the time it takes 

the current to reach the soma, is not patent in the graph. This is not 

surprising, as the conduction velocity is estimated to be in the range of 

0.12 m/s and faster than 1 m/s (Kawaguchi and Fukunishi, 1998; Stuart et 

al., 1993). Therefore, even synaptic currents evoked far out in the 

dendritic tree need only a very short time to reach the soma or the axon 

hillock. Assuming a speed of 0.12 m/s, a signal needs less than 10 ms 

(8.33 ms) for a distance 1 mm. The recorded field of view with the settings 

used is 208 µm x 208 µm. Since for this analysis the most basal apical 

dendrites are taken the maximal distance is less than 200 µm. This would 

lead to a maximum travelling time of less than 2 ms within the field of view 

which is far below the temporal resolution of the imaging settings used 

(imaging frequency 10 Hz). Even for recordings far out in the tips of the 

dendrites the maximal distance is probably less than 500 µm, meaning 

that even here the time it takes for the electrophysiological signal to reach 

the soma is far below the temporal resolution of the imaging.  
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As a next step, I investigated the dependence of the correlated local 

Ca2+-transients on activation of ionotropic glutamate receptors. Blocking 

ionotropic glutamate receptors with APV and NBQX completely eliminated 

the peak in the histogram (Figure 4-3). Nevertheless, synaptic currents 

and local Ca2+-transients still occurred, although at a lowered rate. That 

means a systematic correlation between these events would still be visible 

in the histogram plot.  

This result clearly shows the existence of a subset of local Ca2+-transients, 

which not only systematically coincided with synaptic currents, but also 

depended on glutamate receptor activation. 

5.2 Stimulated Ca2+-transients   

To confirm the synaptic origin of the correlated local Ca2+-transients, I set 

out to stimulate local Ca2+-transients by presynaptic stimulation. Various 

techniques could be used to stimulate axons that make contact onto the 

imaged cells. The two most common ones are patching of a connected 

cell and stimulation by extracellular current injection. I chose to stimulate 

by extracellular current injection in close distance to the imaged dendrite, 

since for the purpose of this investigation, this approach had various 

advantages compared to paired patching: First, placing an extracellular 

stimulation electrode close to the imaged cell is easier and faster to 

accomplish than patch clamping of a second cell in the same slice. 

Second, extracellular stimulation leads to stimulation of not only a single 

axon but a bunch of axons, thus increasing the chance that one of those is 

contacting the imaged cell within the recorded field of view. This is an 

important factor since the connectivity in hippocampal slices at this age is 

low (Pavlidis and Madison, 1999; Sorra and Harris, 1993; Malinow, 1991). 

This low connectivity would render finding and patching connected pairs of 

cells unlikely. Especially as patching a connected pair would not be 

sufficient. Additionally, the stimulated synapse connecting those two 

neurons would have to be within the field of view of the camera. 



 Discussion 
 __________________________________________________________  
 

75 
 

Extracellular stimulation does, in general, not stimulate a single or a 

predefined subset of axons but this was also not required to confirm the 

synaptic origin of the correlated local Ca2+-transients. To exclude 

stimulation of the entire network, the stimulation strength was adjusted to 

just reliably trigger a synaptic current in the patched cell. Too strong 

stimulation was to be avoided, since it could evoke local Ca2+-transients 

by directly depolarizing a part of the dendrite of the imaged cell, especially 

as the stimulation electrode was placed in close proximity to the recorded 

and imaged cell. Thus, stimulation strength needed to be adapted to a 

level at which direct stimulation could be excluded. 

As shown in chapter 4.2.3 local Ca2+-transients could be triggered by 

extracellular current injections. This proof of principle was a necessary 

element in the chain of evidence indicating the synaptic origin of 

correlated local Ca2+-transients. Importantly, in those experiments 

stimulation triggered synaptic currents and local Ca2+-transients 

instantaneously, thus rendering it unlikely that the stimulation caused the 

Ca2+-transients indirectly by secondary effects due to the excitation of the 

entire network. Furthermore, repeated stimulation in individual cells 

triggered local Ca2+-transients repeatedly and reliably at the very same 

sites, rendering an accidental coincidence unlikely. It can be excluded that 

direct stimulation of the imaged dendrite triggered the Ca2+-transients 

since the observed stimulated Ca2+-transients never occurred at the part 

of the dendritic tree closest to the stimulation electrode. Moreover, the 

stimulated Ca2+-transients resembled the spontaneous occurring ones in 

terms of duration and extension, indicating that the same mechanisms 

(activation of ionotropic glutamate receptors) may be involved in triggering 

these transients. Altogether and despite the low number of successfully 

stimulated cells, the information gained by the stimulation experiments 

seems sufficient to confirm the synaptic origin of the correlated local 

Ca2+-transients. 
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5.3 Ca2+-transients as reporter of glutamatergic 

transmission 

Not all local Ca2+-transients report synaptic activity, some are also 

triggered by other events, like BDNF signaling (Lang et al., 2007) or by 

Ins(1,4,5)P3, which triggers Ca2+-release from intracellular stores 

(Nakamura et al., 1999). Therefore, to utilize local Ca2+-transients as 

reporter of synaptic activity it was required to distinguish between synaptic 

and non-synaptic local Ca2+-transients. Assuming that synaptic and 

non-synaptic transients occur at different sites each Ca2+-transient was 

assigned to a site along the dendrite. Subsequently, the synaptic 

character of each site was determined based on the fraction of local 

Ca2+-transients being correlated with synaptic currents at this site. As 

threshold for assigning a site to be synaptic a correlation of at least 1.5 

times the by chance correlation was chosen (chapter 3.2.5.5).  

Blocking ionotropic glutamate receptors by APV and NBQX did not lower 

the rate of local Ca2+-transients at non-synaptic sites but almost 

completely silenced synaptic sites (Figure 4-5) This demonstrates the 

capability to selectively discriminate between synaptic and non-synaptic 

sites upon the fraction of local Ca2+-transients being correlated with 

synaptic currents. Furthermore, any imprecision in assigning local 

Ca2+-transients to sites would hinder the clear separation into synaptic, i.e. 

glutamate receptor dependent, and non-synaptic sites, not affected by of 

APV and NBQX. Thus, the combination of the almost complete absence of 

local Ca2+-transients at synaptic sites and the unchanged activity at 

non-synaptic sites in presence of APV and NBQX also confirmed the 

chosen way to assign individual local Ca2+-transients to their respective 

sites and to distinguish between individual sites.   

APV and NBQX in the extracellular solution affect not only the imaged cell, 

but also influence the activity of the entire slice. That means the observed 

effect of APV and NBQX was not necessarily caused by direct blocking of 

the imaged synaptic sites. Also a reduction of the activity of the entire slice 
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could entail a reduced activity at the imaged sites. However, this 

possibility could be excluded in a different set of recordings, in which 

voltage gated sodium channels were blocked using TTX. TTX treatment 

prevents cells from spiking, thus remaining transmitter release is caused 

by spontaneous fusion of individual presynaptic vesicles with the 

presynaptic membrane (Brown et al., 1979). The frequency of the 

spontaneous vesicle fusions can be increased by latrotoxin  (Deak et al., 

2009). In recordings in the presence of TTX and latrotoxin synaptic 

currents as well as local Ca2+-transients at synaptic and at non-synaptic 

sites could be observed. Yet, when additionally ionotropic glutamate 

receptors were blocked by NBQX and APV, sites previously described as 

synaptic sites did not reveal local Ca2+-transients any longer. 

Nevertheless, local Ca2+-transients at non-synaptic sites as well as 

synaptic currents, most likely reflecting GABAergic currents, were still 

observed. 

Given that synaptic sites were almost completely silenced in the presence 

of APV and NBQX while non-synaptic sites continued firing without 

significant changes in frequency, the technique presented enables to 

visualize synaptic transmission. More precisely, it enables to visualize the 

purely excitatory, glutamatergic part of transmission without further need 

of pharmaceutical identification.  

As mentioned, local Ca2+-transients are caused by various events, thus 

they can be clustered in different groups. These groups might differ in their 

properties like duration, extension and amplitude. In this study only 

synaptic and non-synaptic local Ca2+-transients were discerned, but the 

non-synaptic local Ca2+-transients are a rather heterogeneous group as 

indicated by a large variation in their appearance. This suggests that 

non-synaptic transients are enclosing different subgroups of 

Ca2+-transients. Although, discerning between the subgroups of 

non-synaptic local Ca2+-transients might be interesting for further studies, 

it was beyond the scope of this thesis, which focuses on investigating 

synaptic activation patterns.  
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Yet, to distinguish between synaptic and non-synaptic transients merely 

upon the imaging data might be of great interest. This would allow 

monitoring synaptic activity in cells without the requirement of 

simultaneous patching the imaged cells, which could be advantageous for 

many applications. It would, for example, facilitate conducting long lasting 

experiments, since patch clamp recordings are difficult to maintain over 

longer periods of time. The comparison of the properties of local 

Ca2+-transients at synaptic versus non-synaptic sites showed that these 

two subsets of local Ca2+-transients indeed significantly differed in 

duration and extension (Figure 4-7). Unfortunately, a closer investigation 

revealed that the magnitude of the difference in relation to the standard 

deviation was too small to allow a classification of individual sites merely 

upon the imaging data. Hence, for future studies it might be worth 

investigating different approaches to gauge duration, extension and 

amplitude of the detected local Ca2+-transients. Using different ways of 

filtering the imaging data as well as further enhancing the imaging quality 

might facilitate and improve an exact and faithful measurement of these 

properties. But also analyzing various other parameters of the signals, like 

rise time or decay time or normalizing each signal to the diameter of the 

stretch of dendrite of its site might help separating the different groups of 

local Ca2+-transients.  

An alternative and complete different approach would be to distinguish 

between synaptic and non-synaptic sites upon the correlation between 

sites. During bursts of activity many local Ca2+-transients occurred 

synchronously. The sites at which those transients occurred were 

exclusively synaptic sites. Since synchronous activation of many 

non-synaptic sites was not observed, synaptic sites could be detected as 

those sites that are activated simultaneously with other sites. It remains to 

be shown, how many of the synaptic sites can be detected with this 

local-local correlation method and if this method works in slices of different 

developmental stages, but nevertheless this seems to be a promising 

approach.   
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5.4 Developmental changes 

Visualizing synaptic inputs in pyramidal neurons in hippocampal slices 

from older rats (P7-8) revealed an increased frequency and density of 

synaptic Ca2+-transients (chapter 4.3). This most likely reflects the 

increasing number of synapses and the increasing frequency of synaptic 

activation due to the formation of glutamatergic synapses during the first 

postnatal weeks, which has been described previously (Hsia et al., 1998b; 

Ben Ari, 2001). The density of synaptic inputs at this developmental stage 

is already at the spatial resolution limit of the setup used. Furthermore, in 

even later stages of development also the temporal resolution of the used 

imaging settings would probably not allow distinguishing between synaptic 

and non-synaptic local Ca2+-transients upon the fraction of correlated local 

Ca2+-transients. The frequency of synaptic activation in those slices would 

probably exceed the frame rate and thus most Ca2+-transients would 

appear to be correlated. Thus, a separation of synaptic and non synaptic 

sites upon the correlation of the site with synaptic currents would be 

rendered the impossible. However, these problems could be overcome by 

various approaches.  

To reach a spatial and temporal resolution sufficient to reliably visualize 

synaptic activity in adult slices, different imaging approaches should be 

taken into consideration. For instance, fast two-photon microscopy could 

provide the high spatial and high temporal resolution needed if only a few 

selected spots of interest, like synapses, or a few lines along the dendrite 

of interest are scanned (Helmchen and Denk, 2005; Denk et al., 1994; 

Denk et al., 1996; Denk et al., 1990). This approach would require a 

scanning microscope, i.e. a two-photon microscope, capable of fast 

scanning along arbitrary lines in x-y-z-dimension. One problem when 

scanning only along defined lines is that small movements of the dendrite 

or the entire cell could resemble local Ca2+-transients in the imaging data. 

This would impair the signal detection as those movements can hardly be 

distinguished from local Ca2+-transients. To overcome this problem the 

two-photon setup should ideally allow recording two emitted wavelength 
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simultaneously thus being capable of ratiometric imaging. This would 

allow imaging cells stained with two different dyes, being one a calcium 

sensitive dye, like for example, Oregon Green BAPTA 1, and the other a 

calcium insensitive dye, like Alexa Fluo 594. Since these two dyes could 

be excited simultaneously by a two-photon laser and the emitted 

wavelengths could be separated and imaged simultaneously using 

appropriate filter sets in two independent emission pathways, this 

approach would enable imaging both dyes without lowering the temporal 

resolution. Movements of the imaged slice or dendrite would affect both 

datasets equally, thus using an F0 deduced from the calcium insensitive 

imaging (Alexa Fluo 594) could help to detect the movements and thereby 

improve the signal detection (Svoboda and Yasuda, 2006; Helmchen, 

2005; Oertner, 2002; Grewe and Helmchen, 2009).  

But also with conventional fluorescence microscopy the spatial resolution 

can be increased, for example by reducing the binning. But, reducing the 

binning reduces the signal to noise ratio and thus, impairs the signal 

detection. This impairment could be mitigated by either using more light, 

which would lead to increased phototoxicity, or by using objectives with a 

higher numerical aperture, which would decrease the focal volume. 

Additionally, increasing the spatial resolution would tremendously increase 

the amount of data recorded. Doubling the spatial resolution would result 

in quadrupling the amount of data, making handling and analysis of the 

acquired data demanding. Furthermore, the approach to discern synaptic 

and non-synaptic sites upon the correlation of the local Ca2+-transients 

with synaptic currents at each site in mature slices, would additionally 

require an increased temporal resolution as mentioned above. This could 

be achieved by reducing the exposure time, which would in turn decrease 

the imaging quality and increase the amount of data recorded. In addition 

to these disadvantages, the possible increase in temporal resolution with 

the described experimental setup is limited and would most probably not 

be sufficient to map synaptic inputs in slices of adult rats. But, different 

approaches of discerning synaptic and non-synaptic sites could be used 

as already mentioned in chapter 4.3. For those approaches the temporal 
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resolution would not have to be increased, but nevertheless, they would 

require a setup providing sufficient spatial resolution to clearly separate 

individual sites. As discussed in chapter 5.3 synaptic and non synaptic 

local Ca2+-transients might be distinguishable merely upon the imaging 

data. If one succeeds in finding criteria to clearly separate synaptic and 

non-synaptic local Ca2+-transients in slices of young rats one still would 

need to show that these criteria remain unchanged in the more mature 

slices. But, as it is shown in Figure 4-7, the magnitude of the difference in 

duration of synaptic and non-synaptic transients is already decreased at 

slices of P7-8 rats. At the first glance this could indicate an impaired 

distinction, but this indication may be misleading for several reasons. 

Firstly, cells with too high electrophysiological activity were excluded from 

the analysis (see chapter 3.2.5.5). Secondly, an impaired distinction due 

to high electrophysiological activity would result in non-synaptic sites to be 

assigned to be synaptic, since some local Ca2+-transients would 

accidentally appear to be correlated due to the high fraction of frames in 

which synaptic currents are detected. Thus, high levels of 

electrophysiological activity would indeed decrease the average duration 

of the synaptic events, since the non-synaptic events were on average 

shorter lasting. But, it seems unlikely, that only a certain sub-population of 

the non-synaptic sites, for example, those displaying short lasting 

Ca2+-transients, would be assigned to be synaptic. Consequently the 

duration of the non-synaptic events would not necessarily be changed or 

increased. Thirdly, neither the standard deviation of the synaptic transients 

nor the standard deviation of the non-synaptic transients was dramatically 

changed, which would be expected if an impaired distinction would be 

responsible for the changed properties. Taken together, the reduced 

magnitude of difference in duration of synaptic and non-synaptic events 

seems to reflect a real change in the properties of the transients and not 

an impaired distinction of sites. That means in turn, that properties that 

reliably discern synaptic and non-synaptic sites at a given age, do not 

necessarily discern sites at different stages of development.as they may 

change during development. 
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Most promising to reliably distinguish between synaptic and non-synaptic 

sites in slices with high electrophysiological activity is, in my eyes, an 

approach that takes use of the correlation between synaptic sites, as 

described in chapter 5.3. But, also prior using this approach it would need 

to be shown that it works in later stages of development. 

5.5 Mapping synaptic inputs in individual neurons 

Having established local Ca2+-transients as indicator of synaptic 

transmission, I mapped active synapses across large parts of the dendritic 

tree of individual neurons. The fast z-stepping as described in chapter 

3.2.4 was a necessary prerequisite, which allowed gathering 

comprehensive data of large parts of the dendritic tree within the field of 

view. Nevertheless, the whole dendritic arborization of a pyramidal cell 

was larger than the field of view thus making imaging sessions at different 

locations along the dendritic tree of a single neuron and subsequent 

assembling of the acquired data inevitable.  

Mapping large parts of the dendritic arborization of individual CA3 

pyramidal neurons illustrated that synaptic local Ca2+-transients were 

detectable across the entire dendritic tree. However, the density of 

synaptic input seemed to be lower in regions more distal than close by the 

soma leading to the concern that classification of sites could be impaired 

by attenuation of the electrical currents originating at sites farther apart 

from the recording site - the soma. This attenuation could in principle lead 

to a reduced detection efficacy of small synaptic currents of distal 

synapses (Djurisic et al., 2004; Henze et al., 1996) and therefore to an 

increased probability of wrongly assigning a distal site to be non-synaptic. 

However, the ratio between synaptic and non synaptic local 

Ca2+-transients was not reduced in distal dendrites compared to proximal 

dendrites making an impaired classification of sites unlikely (see chapter 

4.4).  

To summarize and view the data gathered from mapping individual 

neurons, I chose to represent it in a diagram, similar to a conventional 
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Sholl diagram (Figure 4-10). This allowed analyzing data gathered from 

many individual neurons despite their different geometries (Sholl, 1953). 

While a conventional Sholl diagram represents the structural complexity of 

a cell against the distance from the soma, the functional Sholl diagram 

reflects the synaptic input received at a given distance of the soma.  

Comparing a conventional Sholl diagram with the functional Sholl 

diagrams revealed that the structural complexity of a given area differed 

widely from its functional significance in terms of synaptic inputs. 

Specifically, the number of dendritic branches at the most proximal parts 

of the apical dendrites was found to be low, but the synaptic activity in this 

area was high in relative terms (normalized to the length of dendrite) as 

well as in absolute terms (frequency of synaptic activations). This area 

corresponds in parts still to the pyramidal cell layer and in parts to the 

stratum lucidum. In stratum lucidum mossy fibers pass through the CA3 

region and are known to form synapses onto pyramidal neurons. It has 

been shown, that in the hippocampus of rats mossy fibers start extending 

into the CA3 region at very early stages of development  (Dailey et al., 

1994). Already in the first postnatal week immature contacts between 

mossy fibers and CA3 pyramidal neurons are formed (Stirling and Bliss, 

1978). But, even though potentials evoked by mossy fibers can be 

recorded in CA3 pyramidal neurons already at P2 (Bliss et al., 1974), the 

well known giant synapses, connecting mossy fibers and CA3 pyramidal 

neurons in the adult hippocampus, start to emerge only in the second 

week after birth (Dailey et al., 1994; Stirling and Bliss, 1978). Thus, it is 

likely that at least a part of the observed synaptic activity in this area 

represented activation of immature synapses of mossy fibers.  

Another area that revealed high levels of activity is the area spanning from 

100 µm - 170 µm distance of the soma. This area represents the stratum 

radiatum, thus it contains mostly associational connections between CA3 

neurons. In this area also the Schaffer collateral connections are located, 

but Schaffer collaterals are fibers connecting CA3 neurons to CA1 
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neurons  (Amaral and Lavenex, 2007), thus, they should not contribute in 

firing CA3 neurons. 

The absolute frequency of synaptic input in the basal dendrites was higher 

than in any part of the apical dendrite. However, in this area, which is 

called the stratum oriens, there was also a large number of dendritic 

branches. Thus, the density of synaptic input was similar to the active 

regions of the apical dendrites described before. Dendrites in stratum 

oriens, receive input mainly from CA3 to CA3 associational connections, 

although it has been shown that at least in slice cultures mossy fibers can 

terminate in this region (Robain et al., 1994). 

The frequency and density of the input at distances of 200 µm and more 

was low. This might be due to the fact that the slices were not yet mature 

and thus the dendrites were still growing. Thus, that region of the 

dendrites was relatively young and maybe not yet as densely innervated 

as the older parts of the dendritic tree. 

It is intriguing, that the structural complexity of the dendritic arborization in 

different regions of an individual cell did not correlate with the amount of 

input impinging onto these parts. However, the data gathered and 

presented here reflects only one stage of development. The functional 

Sholl diagrams of more mature slices or of slices from adult rats remain to 

be investigated. It would be interesting to map synaptic activity in slices of 

different developmental stages and compare the resulting functional and 

structural Sholl diagrams. Subsequently, one could relate the changing 

activation patterns with the developmental events that have been shown 

to occur in each developmental stage. However, mapping the synaptic 

activation patterns of later developmental stages requires a different 

approach as mentioned in chapter 5.4. 

Another interesting question would be to study differences between slice 

cultures, acute slices and the in vivo situation. For example, it has been 

shown that pyramidal neurons in the CA3 region in slice cultures are not 

as densely packed as they are in vivo (Robain et al., 1994) and also the 

localization of the mossy fibers has been shown to be less extended in 
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vivo than in cultured slices (Robain et al., 1994). Nevertheless, so far little 

is known about differences in the synaptic activation patterns in slice 

cultures, acute slices and in vivo. Here, the isolation of slice cultures from 

external inputs should be reflected in the functional Sholl diagram, and this 

isolation from external inputs might also influence the fate of existing 

connections. Furthermore, in the in vivo situation there is also a high 

connectivity between the hippocampi in the two hemispheres, which does 

not exist in slice cultures or in acute slices, which is also missing in slice 

cultures and in acute slices. That means, differences in the functional 

Sholl diagram between the in vivo situation and the in vitro situation are to 

be expected, but to what extent this differences influence the entire wiring 

diagram remains speculative and has to be investigated.  

It is important to keep in mind that the maps of synaptic activation do not 

allow any prediction about the impact of a certain region on firing action 

potentials. The maps of synaptic activation are a descriptive 

representation of the frequency and density of synaptic input impinging 

onto the dendritic arbor of cell in different regions. The influence on the 

membrane potential at the soma of the cell exerted by each synaptic 

activation depends on a variety of factors. Aside from the distance from 

the soma, also the existence, the number, and the distribution of voltage 

gated ion channels and many other factors may shape the actual impact 

of an individual synaptic activation and thus its probability in firing the 

neuron.  

5.6 Synaptic patterns during bursts of synaptic 

activation 

Spontaneous activity propagating through the developing brain is a major 

factor shaping the initial synaptic wiring diagram in many brain areas, 

amongst them the hippocampus (Ben-Ari et al., 1989a; Kasyanov et al., 

2004; Mohajerani and Cherubini, 2006; Sipila et al., 2006). In the 

hippocampus this spontaneous activity is mostly referred to as giant 

depolarization potentials (GDPs). In voltage clamp recordings they are 
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reflected by huge synaptic currents caused by barrages of synaptic input 

impinging on the recorded cell within a very short time window. Since I 

was interested in temporal-spatial-patterns of synaptic activity, I analyzed 

the activated synapses during successive bursts. However, no repetitive 

patterns of synaptic activation could be found. Different representations of 

the synaptic activation pattern during successive bursts (Figure 4-11) were 

created and examined by colleagues of mine as well as by myself to 

search for the occurrence of recurrent patterns of activations. 

Unfortunately, no reoccurring motif and no pattern describing the 

activations during successive bursts could be found. As shown (Figure 

4-12), even bursts with similar amplitude and time course reflect 

activations of different sets of synapses.  

However, this does not necessarily mean that the synaptic activation 

patterns during successive bursts are completely random. Various 

reasons might hinder spotting patterns of synaptic activation. First of all, 

recordings represent only a relative short time slot. Thus, also all chosen 

representations, which were used to search for patterns of activation, can 

only display this short period of time. This complicates the detection of a 

potential periodicity in synaptic activation. Secondly, even though analysis 

was done completely automatically to guarantee reliability and objectivity, 

there are still variations in the reliability of signal detection, for example 

due to changes in the imaging quality. These variations may affect 

consecutive recordings or even consecutive images unequally thus 

leading to a variance in the analysis, which in turn could make the 

recognition of a pattern more difficult. However, most important is the fact 

that only patterns that are specifically searched for can be found, making 

the detection of complicated and uncommon patterns unlikely. Short 

lasting often repeated motifs are easier to detect than complicated long 

lasting ones that occur only infrequently. Different approaches can be 

chosen to search for patterns. It seems promising to take advantage of our 

inherited ability to categorize and to recognize all sorts of patterns. This 

ability was crucial for the surviving of our ancestors, as it allowed 

identification of certain patterns being a sign for food or warning of danger. 
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Consequently, there must have been an evolutionary pressure enhancing 

our mental sorting mechanisms. But, to find the occurring motifs, it is 

essential to find a representation of the data revealing the underlying 

patterns. For this purpose, uncommon representations like representing 

each synaptic site by a defined tone pitch and subsequently listening to 

the “melody” of bursts might be useful. A first attempt in this direction was 

rather unsuccessful but this can be due to the fact that synapses were not 

represented as harmonic tones but rather as arbitrary noises. 

5.7 Correlated activation of individual pairs of 

synapses 

5.7.1 Correlation vs. vertical distance from the soma 

According to the postulate of Hebb, synapses that persistently take part in 

firing a neuron should be strengthened (Hebb, 1949). To take part in firing 

a neuron the electrical signals generated by synaptic activation are to 

reach the initial segment of the axon, the axon hillock, to depolarize it 

above a certain threshold to finally evoke an action potential, which in turn 

triggers transmitter release in presynaptic terminals (Stuart et al., 1997). 

Multiple signals arriving at the same point in time at the axon hillock add 

up and are, therefore, more likely to reach the threshold for evoking an 

action potential (Agmon-Snir and Segev, 1993). Thus inputs being 

correlated at the initial segment of the soma should be more likely to be 

stabilized or strengthened. Axons pass the dendrites of CA 3 pyramidal 

neurons in an almost orthogonal angle. Thus, it seemed likely that 

neighboring axons make contact at the same distance from the soma. 

Assuming that neighboring axons carry similar information this could lead 

to an increased likelihood of synchronous synaptic activation at similar 

vertical distances from the soma. However, neither pairs of synapses at 

the same vertical distance from the soma nor pairs of synapses at the 

same distance from the soma along the dendrite revealed a significant 

higher likelihood to be activated in concert than any random pair of 
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synapses (Figure 4-13). However, the low connectivity of the 

hippocampus in this stage of development which entails a low probability 

of neighboring axons to make contact with one and the same CA3 

pyramidal neuron might also hinder such a correlation to occur. 

5.7.2 Correlation vs. inter-synapse-distance 

It has been proposed already in 1967 that dendrites shape the synaptic 

current (Rall et al., 1967). This shaping of the synaptic current already 

implies that synaptic currents originating in different regions of the 

dendritic tree have different impact on the cell body and thus different 

probabilities to contribute in firing the neuron. Furthermore, recent 

publications suggest that dendrites act not only as passive cable like 

structures, but as active, information integrating units (Hausser and Mel, 

2003; Hausser et al., 2000). These non-linearities may serve various 

requirements. In some cells they seem to simply compensate for the 

different attenuation of currents evoked at different distances from the 

soma (Stricker et al., 1996; Magee and Cook, 2000). However, recent 

studies suggest that parts of dendrites may also act as computational 

units. For example it has been shown that dendrites are capable of 

amplifying synaptic currents depending on the size of the current and the 

context of the synaptic activation, like activity at neighboring synapses 

(Johnston et al., 1996). This is proposed as a mechanism boosting the 

computational power and information storage capacity (Poirazi and Mel, 

2001) by increasing the number of computational units within the system. 

However, non-linear integration in itself is not sufficient to affect the 

computational power. Another prerequisite to boost the computational 

power is a wiring scheme with a precision exceeding just cellular 

resolution. Only the combination of those two properties would allow 

single dendrites or parts of dendrites to be individual computational units 

and thus would multiply the number of computational units, which in turn 

would lead to an enhancement of the computational capacity of an 

individual neuron and thus the neuronal network as an entire 

(Govindarajan et al., 2006; Mel and Schiller, 2004). The idea that parts of 
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a single neuron and not the entire neuron might serve as smallest 

computational units has previously been proposed mainly on theoretical 

grounds (Poirazi and Mel, 2001). By now it has also been shown that 

plasticity mechanisms exist which could lead to a subcellular wiring 

precision (Engert and Bonhoeffer, 1997; Harvey and Svoboda, 2007). 

Some of those plasticity mechanisms seem to favor the potentiation of 

synapses along a dendrite being relatively often coactivated, thus 

preferentially connecting those axons to a common stretch of dendrite 

which share similar patterns of activation (Govindarajan et al., 2006; 

Mehta, 2004; Poirazi and Mel, 2001). Since the above described approach 

enables visualization of spontaneous synaptic activity, it seemed likely that 

a closer investigation of the patterns of co-activations of synapses could 

reveal the outcome of such a local plasticity rule.  

Investigation of the interrelation of correlation and distance of pairs of 

synapses revealed that synapses being in close neighborhood tend to fire 

more often in concert than synapses being farther apart from each other 

(Figure 4-15). This phenomenon was seen in the set of 10 completely 

automatically analyzed cells, but also in a single cell in which synaptic 

local Ca2+-transients were detected manually (see also chapter 3.2.5.6). 

Specifically, synaptic pairs in close neighborhood (0-8 µm and 8-16 µm) 

were significantly more often activated simultaneously than synapses 

being farther apart from each other. In contrast, activation of pairs of 

synapses at a specific delay of 200-300 ms showed no interrelation with 

distance, indicating that the time window for strengthening by co activation 

is short, more precisely less than 200 ms.  

The remaining question is which mechanism caused neighboring 

synapses to be more often activated than synapses being farther apart 

from each other. The effect could for example be caused by individual 

axons making multiple synapses in very close distance. However, this 

seems highly unlikely for a couple of reasons:  

Firstly, the connectivity in the hippocampus at this stage of development is 

extremely low, and even at later developmental stages axons form only 
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one to five synapses with a pyramidal cell and rarely more than one 

functional bouton with an individual dendrite (Pavlidis and Madison, 1999; 

Sorra and Harris, 1993). 

Secondly, in none of the stimulation experiments (chapter 4.2.3) 

pre-synaptic stimulation caused synaptic local Ca2+-transients at two 

synaptic sites at a distance of 20 µm or less. 

Thirdly, analysis of anatomical data (Lohmann and Bonhoeffer, 2008) 

revealed that the stained axons (more than 200) passed dendrites of 

pyramidal cells in an almost orthogonal angel and not in a single case one 

axon formed more than one synapse onto an individual dendrite within 

16 µm (chapter 4.6.2.1).  

Thus, a different mechanism seems to cause the interrelation of distance 

and correlation of synapses. As mentioned above, plasticity mechanisms 

have been shown to exist which strengthen neighboring synapses that 

display similar activity patterns (Govindarajan et al., 2006; Mehta, 2004; 

Poirazi and Mel, 2001). Such an increased likelihood for being 

strengthened and stabilized if correlated with one’s neighbors could be 

sufficient to entail the here observed effect and therefore to provide a 

basis for setting up a wiring diagram at subcellular resolution. Thus, these 

mechanisms seem to be the most likely explanation. Moreover the range 

estimated for such a local plasticity rule – around 10 µm (Harvey and 

Svoboda, 2007) - is similar to the distance for an increased likelihood of 

simultaneous activation of synapses found in this study.  
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6 CONCLUSION AND OUTLOOK 

In my thesis I developed a technique to visualize active glutamatergic 

synapses in developing CA3 pyramidal neurons. This technique allows 

mapping the synaptic input in large parts of the dendritic tree of individual 

neurons with single synapse precision. Even though calcium imaging is 

known to report for synaptic activity in spiny (Denk et al., 1996; Zito et al., 

2009; Murphy et al., 1994) as well as in non spiny dendrites (Goldberg et 

al., 2003; Murthy et al., 2000), until now the synaptic activity impinging 

onto individual neurons has never been mapped with single synapse 

precision and thus, the spatio-temporal patterns of synapse activation are 

poorly investigated.  

By mapping the synaptic activity of large parts of the dendritic tree and 

investigating the occurring spatio-temporal patterns I described a local 

activity pattern, namely an increased probability of neighboring synapses 

to be active in concert (Figure 6-1). The existence of such a local activity 

pattern shows that the synaptic wiring diagram has a subcellular 

specificity. This specificity is a prerequisite to enable parts of the dendritic 

tree to be independent computational units, which has been shown to 

tremendously increase the computational power of a single neuron and of 

the entire network (Poirazi and Mel, 2001). To my knowledge, this is the 

first time that patterns of spontaneous synaptic activity are visualized with 

single synapse precision. Consequently, it is also the first direct indication 

that in the synaptic wiring diagram synapses carrying similar input patterns 

are preferably connected in close proximity to one another, which might be 

the result of a local plasticity mechanism that has been described 

previously. 
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In future studies it would be interesting to investigate if similar 

spatio-temporal patterns can be found in different regions of the brain 

during development and might possibly even be a hallmark of the 

developing mammalian brain. On the other hand, if they occur only in 

certain areas of the brain, this would raise the question in which areas and 

why.  

The combination of techniques described in this thesis, namely 

simultaneously imaging the Ca2+-concentration and performing 

Figure 6-1 Scheme of subcellular wiring diagram 

Orange area shows electrical activity measured at shown positions. 

Note: Axons showing correlated activity are preferably connected in close neighborhood.  
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electrophysiological recordings, is not only applicable to study 

spontaneous activity, but could also be used to visualize stimulated 

synaptic activity. By doing so, one could, for example, map the distribution 

of synaptic inputs of different axons onto an individual postsynaptic 

neuron. If the data is analyzed in real time, one could also pair 

stimulations with spontaneous activity of neighboring synapses and 

investigate whether the potentiation of synapses is facilitated when two 

neighboring sites are activated simultaneously.  

It would be challenging to adapt the technique to visualize synaptic activity 

to the needs and limitations of in vivo imaging. For in vivo applications one 

would preferably choose an imaging approach without the requirement of 

simultaneously patching the imaged cell. As a criterion for defining 

synaptic sites one could, for example, take the correlation between sites 

as described in chapter 5.3. Visualizing synaptic activity in vivo would, for 

example, allow investigating the activation patterns triggered by sensory 

input, like visual stimuli. Subsequent comparison of the activation patterns 

evoked by sensory stimuli and the activation patterns evoked by 

spontaneous activity could allow deducing the “images” created by 

spontaneous activity. Furthermore, if spontaneous activity is indeed a 

major factor shaping the wiring diagram, spontaneously coactive axons 

should carry related information when transmitting sensory stimuli. For 

example, in topographically organized areas of the brain one might expect 

axons of neurons in neighboring receptive fields to be often 

simultaneously active. This might be reflected in the spontaneous activity 

shaping the wiring diagram. Thus, when mapping the synaptic input 

evoked by sensory stimulation of neighboring receptive fields, I would 

expect to see a similar local activation pattern like described in this thesis.  

Another question to address is how functionality is maintained over time in 

such a complex and plastic network like the mammalian brain. Are there 

synapses that do not show plasticity at all or do certain spontaneously 

occurring activity patterns strengthen “important” synapses or prevent 

them from getting depressed or eliminated?  
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Less challenging but, to my mind, not less interesting would be adapting 

the imaging technique to the requirements of the increased synapse 

density of more mature slices and investigating the activity patterns at 

different developmental stages. In this line, one might want to know 

whether in the adult brain adjacent synapses are more often 

synchronously active than synapses being farther apart from each other. 

Furthermore, it would be interesting to compare the functional Sholl 

diagram developed in this thesis with the structural Sholl diagram in 

mature systems. Is there a relation between the structural complexity and 

the synaptic activity in mature dendrites? On the long run, visualizing 

synaptic activity with single synapse precision might allow to map not only 

the synaptic activity but also the functional significance of a region, i.e. its 

impact on firing the cell.  

To my mind, visualizing synaptic activity and mapping the synaptic input of 

individual neurons is an important requirement, which might help 

deciphering the complex computations performed by individual neurons or 

even parts of a neuron. For example imaging calcium dynamics of 

electroporated cells at very high rates without performing 

electrophysiological recordings, might facilitate to map the synaptic input 

and simultaneously allow the cell for firing action potentials. Such an 

approach could allow, for example, the identification of those synapses 

that regularly contribute in firing a cell. Subsequently, one could 

investigate whether those synapses are strengthened over time. But also 

studying the compositions of synaptic activations that entail spiking of the 

neuron would be interesting. For example, visualizing excitatory and 

inhibitory synaptic activations simultaneously and correlating them to the 

output of the neuron could allow decrypting the various interactions of 

excitation, inhibition, attenuation and conductivity within the dendritic tree. 

Decoding these interactions is necessary in order to predict the output of 

an individual neuron upon a given input which would be a big step towards 

understanding how individual neurons process information. Figuring out 

how the individual elements of the brain process information is a 

necessary prerequisite to understand the function of the brain, 
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However, this is still a far way to go and it requires analyzing huge 

amounts of data, which is facilitated by modern computers. The current 

rapid progress in computer science and the accompanying improvements 

in available and affordable storage and computing systems allow acquiring 

huge amounts of data in short periods of time and subsequent handling 

and analysis of this of data. Complicated algorithms requiring immense 

computational power can be performed by relative standard computers 

and thus by normally equipped laboratories to an increasing extent. This is 

a necessary prerequisite to gain further insight into the mammalian brain 

with its estimated 1014 synaptic connections. Faster and more powerful 

computer systems in combination with more sophisticated methods of 

analysis will facilitate deciphering the complex interaction of structural and 

functional changes during development and during learning and memory 

formation, thus, eventually we might become able to understand how a 

brain works and become aware of the differences between species in 

perception, information processing and memory formation. 
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