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Abbreviations 

BM Basement membrane 

DP Dermal papilla 

E Embryonic day 

ECM Extracellular matrix 

EM Electron microscopy 

EPU Epidermal proliferative unit 

FA Focal adhesion 

FAK Focal adhesion kinase 

FC Focal complex 

GAP GTPase activating protein 

GEF Guanine nucleotide exchange factors 

HF Hair follicle 

HM Hair matrix 

HS Hair shaft 

ILK Integrin-linked kinase 

IRS Inner root sheath 

K Keratin 

MAPK Mitogen-activated protein kinase 

ORS Outer root sheath 

P Postnatal day 

PAK P21-activated kinases 

PH Pleckstrin-homology 

PINCH Particularly interesting new cysteine-histidine-rich protein 

RTK Receptor tyrosine kinase 

vWFA von Willebrand factor A 
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Summary 

The adhesion receptor family of β1 integrins is crucial during development 

and tissue homeostasis. Nonetheless, an important and still largely 

unanswered question is how integrins mediate intracellular functions. 

Numerous integrin adaptor molecules have been identified but the precise 

function of them, especially in vivo remains to be clarified. During 

homeostasis of the epidermis and its appendages β1 integrins regulate the 

adhesion to the basement membrane (BM) and its assembly, the tightly 

regulated programmes of differentiation, maintenance of stem cells, migratory 

processes and proliferation. 

Integrin-linked kinase (ILK) is part of the tri-molecular ILK-PINCH-Parvin (IPP) 

complex and directly binds integrins. Within the IPP-complex the stability of all 

three members is interdependent. We investigated whether ILK and PINCH1 

are required for integrin-mediated functions in skin epithelium and re-

evaluated the current concept of protein interdependence. 

Conditional ablation of PINCH1 or ILK in keratinocytes in mice caused 

epidermal defects and hair loss reminiscent of the β1 integrin-deficiency. In 

the epidermis integrin-mediated adhesion was decreased leading to blistering, 

BM disruption and epidermal hyperthickening accompanied by abnormal 

differentiation and proliferation. The mutant hair follicles were highly distorted 

and stunted and failed to initiate epithelial outgrowth pointing towards 

impaired keratinocyte migration. In vitro studies attributed the migration defect 

to impaired focal adhesion formation and actin assembly. This, in turn, 

affected cell spreading and the formation of stable lamellipodia protrusions 

which impaired directional and persistent migration. However, both 

phenotypes differed as loss of PINCH1 also affected cell-cell adhesion and 

compromised actin-dependent processes more severely.  

In summary our data show that ILK and PINCH1 play important roles 

downstream of β1 integrin in keratinocytes. However, PINCH1 has also 

functions that are independent from the IPP-complex. 
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Introduction 

The integrin receptor family 

Integrins have been discovered in the 1980’s as cell surface receptors specific 

for all metazoa. They physically link the extracellular matrix (ECM) to the 

cytoskeleton and different cell signaling machineries. The property to 

physically link structural proteins of the ECM with structural proteins of the 

intracellular (actin, intermediate filaments) compartments was the reason why 

they were named integrins (Hynes, 1987). Integrins are heterodimeric 

transmembrane receptors, composed of an α and a β subunit 

Figure 1: Integrin receptor family 
Integrin heterodimers grouped by their main recognition or cell type specificities. The nine αA-
domain containing α subunits are indicated (*). 
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that bind in addition to ECM proteins a variety of other ligands such as soluble 

proteins, cell surface receptors of neighboring cells or pathogens. Both 

subunits are type I transmembrane proteins with a large extracellular domain, 

a transmembrane domain and short cytoplasmic domains. The only exception 

is the long cytoplasmic tail of the β4 integrin subunit. In vertebrates 8 β and 18 

α subunits exist and the non-covalent association of αβ pairs leads to the 

formation of 24 heterodimers known to date which can be grouped by their 

main ligand specificities (Figure 1) (Hynes, 2002). 

Each particular integrin can bind several ligands and most ligands can be 

bound by more than one integrin. Ligand-binding of integrin receptors requires 

preceding activation in order to prevent undesirable cell adhesion. This 

activation depends on signaling cues, requires an intramolecular, 

conformational switch and the presence of divalent cations. 

Despite the overlapping ligand preferences it has become clear that each 

integrin has a specific function for the organism. This is demonstrated by the 

large variety of phenotypes of knock-outs or integrin mutations in mice. The 

defects range from peri-implantation lethality as in the case of β1 integrin, 

through developmental defects, perinatal lethality and tissue-specific postnatal 

abnormalities (Table 1). 

These studies indicate how crucial integrins are for development, immune 

response, leukocyte traffic and homeostasis. Accordingly many integrins are 

at the heart of human diseases and exploited as targets for therapeutic 

approaches. 

Integrins have been studied extensively over the last 20 years which has 

improved the understanding of integrin structure, regulation and function. Yet, 

the signal transmission triggered by integrins and their regulation is a field of 

ongoing investigations (reviewed by Arnaout et al., 2005; Hynes, 2002; Luo et 

al., 2007). 
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Integrin Viability Phenotype Reference 

α1 V Reduced tumor vascularization Gardner et al., 1996 

α2 V Delayed platelet aggregation and 
reduced mammary gland branching 

Holtkotter et al., 2002  
Chen et al., 2002 

α3 PEL Kidney tubule defects, reduced 
branching in lungs and mild skin 
blistering 

Kriedberg et al., 1996 
DiPersio et al., 1997 

α4 E11/14 Chorioallantoic fusion defect and heart 
defects 

Yang et al., 1995 

α5 E10/11 Defects in mesodermal and vascular 
development and neural crest apoptosis 

Yang et al., 1993 

α6 PEL Severe skin and sqamous epithelia 
blistering 

Georges-Labouesse et al., 1996 

α7 V Muscular dystrophy Mayer et al., 1997 

α8 PEL Small or absent kidneys Muller et al., 1997 

α9 POL Lymphatic duct defect Huang et al., 2000 

α10 V Mild skeletal abnormalities Bengtsson et al., 2005 

αv EL10/PEL EL10: placental defects; PEL: cerebral 
vascular defects, cleft palate 

Bader et al., 1998 

αIIb V No platelet aggregation Tronik-Le Roux et al., 2000 

αL V Impaired leukocyte recruitment Schmits et al., 1996 

αM V Defective phagocytosis and apoptosis of 
neutrophils 

Coxon et al., 1996 

αE V Reduced intraepithelial lymphocytes Schon et al., 1999 

β1 EL6.5 Peri-implantation lethality Fässler and Meyer, 1995 

β2 V Leukocytosis and skin infections Scharffetter-Kochanek et al., 1998 

β3 V No platelet aggregation, osteosclerosis Hodivala-Dilke et al., 1999 

β4 PEL Severe skin and sqamous epithelia 
blistering 

van der Neut et al., 1996 

β5 V No obvious defects Huang et al., 2000 

β6 V Skin inflammation and impaired lung 
fibrosis 

Huang et al., 1996 

β7 V No Peyer’s patches and reduced 
intraepithelial lymphocytes 

Wagner et al., 1996 

β8 EL10/PEL EL10: placental defects; PEL: cerebral 
vascular defects 

Zhu et al., 2002 

Table 1: Integrin gene knock-out phenotypes 

For almost all integrins, except α11, αD and αX knock-out mice have been generated; almost 
each of them displays a specific phenotype. References that are listed are not included in the 
refrence list. EL, embryonic lethal; V, viable; PEL, perinatal lethality; POL, postnatal lethality 
(Table modified from Hynes, 2002).  
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1.1. Structure of the integrins 

1.1.1. Integrin extracellular domains and ligand 
binding 

The large extracellular domains of integrins are responsible for ligand binding 

and comprise over 100 kDa for α subunits and more than 75 kDa for β 

subunits. The extracellular parts associate within an αβ dimers and both 

subunits contribute to the ligand specificity, although not necessarily in direct 

ligand binding. Half of the α subunits contain an additional, extracellular αA 

domain involved in ligand binding. 

The αA domain (~190 kDa) from αM was the first integrin structure that was 

resolved and shown to be a core of parallel β sheets surrounded by α helices, 

resembling von Willebrand factor A (vWFA) domains known to be involved in 

protein-protein interactions. Indeed, the ligand binding of αA domain 

containing integrins occurs through this domain. Divalent cations are further 

required for ligand binding of integrins. A metal ion binding site was identified 

within the αA ligand binding domain (Lee et al., 1995) and was termed metal 

ion-dependent adhesion site (MIDAS). Since the integrin and the ligand 

contribute to the coordination of the metal ion, ligand binding leads to changes 

in the metal ion coordinating residues of the integrins. This triggers 

conformational alterations within the entire domain. Indeed, the αA domain 

was shown to take either a “closed” or “open” conformation depending on the 

absence or presence of the ligand (Emsley et al., 1997; Emsley et al., 2000; 

Hynes, 2002). The open form has a high affinity to bind ligands and can 

therefore be termed “active” conformation (Xiong et al., 2000). 

The first crystal structure of an entire extracellular domain was the αA 

domain-lacking αVβ3 integrin (Xiong et al., 2001). The structure revealed 12 

distinct domains within the integrin ectodomain - four in the αV subunit and 

eight in the β3 subunit - assembling into a globular head with two legs. The 

ligand binding head is composed of a β-propeller domain of the α subunit 
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complexed with the βA domain that is homologous to the αA domain. In 

addition to the MIDAS cation binding site two adjacent metal ion binding sites 

were characterized: ADMIDAS (adjacent to metal-ion dependent adhesion 

site) and LIMBS (ligand-induced metal ion-binding site). The domain structure 

of the extracellular integrin parts is represented in Figure 2. 

 

Figure 2: Integrin architecture 

Integrin domain structure and rearrangements during activation are represented. The β 
subunit lower legs are flexible and separate during activation. They are shown in what may be 
the predominant (solid representation) and less predominant (dashed lines) orientations 
(Cartoon modified from Luo et al., 2007). 

 

Surprisingly and in contrast to previous electron microscopy (EM) images 

(Nermut et al., 1988), this first structure revealed that the head was bent over 

by 135° towards the legs. Since the elucidation of this first structures, several 

studies showed that the bent conformation represents the low affinity, 

“inactive” state and that activation and ligand-binding is associated with both 
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conformational changes within the ligand binding head and metal ion 

coordination sites (“closed” and “open” similar to αA) (Xiong et al., 2002) and 

the opening of the integrin extracellular domain towards an extended 

conformation in a switch-blade-like fashion (Figure 2) (Takagi et al., 2003; 

Xiao et al., 2004). 

Thus, three conformations of the integrin extracellular part have been 

resolved by crystallography and EM. The bent conformation with a closed 

headpiece and the extended conformation with either closed or open head 

conformations with high ligand affinities (reviewed by Luo et al., 2007). 

The conformational switches associated with the high affinity state of integrins 

can also be triggered by the exchange of the physiological cations Ca2+ and 

Mg2+ against Mn2+, which triggers a change in the metal ion coordination of 

the ligand binding domains. 

1.1.2. Integrin transmembrane and cytoplasmic 
domains 

In their inactive conformation integrin transmembrane domains are associated 

with each other. Consistently, in the bent αVβ3 structure, the α and β subunit 

ectodomain C-termini were only a few angstroms apart (Xiong et al., 2001). 

Upon activation or after Mn2+-induced extension of the extracellular domain 

they undergo a spatial separation. This concept is supported by studies that 

artificially inactivated integrins in solution with a C-terminal clamp (Takagi et 

al., 2001) or by mutation- and FRET-based assays proving that the 

association is disrupted during activation (Kim et al., 2003). 

Integrin cytoplasmic tails are very small compared to the extracellular parts, 

usually less than 50 amino acids - with the exception of β4 cytoplasmic tail 

that contains over 1000 amino acids. The cytoplasmic tails of integrins interact 

with each other with low affinity. This was first shown by surface plasmon 

resonance for recombinant αIIb and β3 integrin cytoplasmic peptides (Vallar 

et al., 1999). The interactions take place between membrane-proximal helices 

of both subunits (Vinogradova et al., 2002) which are highly conserved in the 

vast majority of subunits. Interactions of the cytoplasmic domains of α and β 
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subunits have been proposed to restrain integrin in an inactive state. 

Abrogation of the cytoplasmic domain interactions by deletions or mutations 

within membrane-proximal regions generally results in integrin activation. 

Finally, integrin cytoplasmic tails link to the cytoskeleton and represent 

binding sites for intracellular molecules. Talin is one of the best studied direct 

binding partners of integrin β subunit cytoplasmic tail. 

Talin binding sites in the β subunits overlap with the interaction sites for 

α subunits. Due to the high affinity for the talin head, talin head binding 

abrogates integrin cytoplasmic domain interaction and separates the tails, 

thereby leading to integrin activation (Calderwood et al., 2002; Vinogradova et 

al., 2004; Vinogradova et al., 2002). Talin binding, therefore, is the first 

example of how integrin cytoplasmic parts can regulate the activation and 

function of the extracellular domain. The interactions of other cytoplasmic 

proteins with integrin tails will be discussed in a separate chapter (Chapter 

2.1). 

1.2. Bidirectional regulation of integrin function 
and signaling 

Aberrant activation or failure of integrin activation can be detrimental to an 

organism and is at the heart of many human diseases. Activation of integrins 

is a tightly and multi-dimensionally controlled process. 

Based on the structural informations of integrin extracellular and intracellular 

domains, the following model for integrin regulation became widely accepted: 

The different conformational states of integrins exist in equilibrium. The bent 

conformation has a low affinity for ligand binding and is characterized by the 

tight association of the α and β transmembrane and cytoplasmic domains. 

Pertubations of cytoplasmic domain interaction induce separation of both 

cytoplasmic and transmembrane domains resulting in integrin extension and 

favors the activated state with an open, ligand-binding site exposed 

headpiece. Generally, this model is compared with a switch-blade-like 

mechanism. 



Introduction 

 

 

 - 19 - 

1.2.1. Inside-out signaling 

The control of the ligand binding affinity of the extracellular domain from within 

the cell via integrin cytoplasmic domains is generally referred to as “inside-

out” signaling. It is currently believed that the binding of talin to the membrane 

proximal NPxY/F motifs in the β subunit cytoplasmic domain is a final step in 

switching integrins into the high affinity state, as downregulation of talin 

ablated integrin activation by integrin activators such as CD98 or activated R-

Ras (Tadokoro et al., 2003) and talin1-deficient platelets lack integrin 

activation in vitro and in vivo (Nieswandt et al., 2007). However, several 

studies show that the talin requirement for integrin activation might not fit to 

the entire integrin family, i.e. β2 and β7 integrins seems to be distinct as β2 is 

constitutively linked to talin in resting neutrophils and β7 binds talin only poorly 

(Calderwood et al., 2001; Sampath et al., 1998). Obviously, talin binding as a 

last common step in activation is preceeded by other physiological regulators. 

The role of serine/threonine and of tyrosine phosphorylation of the α and β 

subunit cytoplasmic tails with respect to integrin activation remains unclear. 

Transient integrin activation additionally requires rapid deactivation and may 

involve downregulatory integrin binding partners.  

Activation of integrins by the non-physiological induction via Mn2+, however, 

decouples the requirement for inside-out signaling from activation. 

1.2.2. Integrin avidity 

Lateral association of integrins within the plasma membrane or clustering are 

critical for linking the ligand-bound integrin to the cytoskeleton (Hato et al., 

1998). However, it remains unclear whether changes in integrin lateral 

distribution contribute to integrin priming or represent an important step for 

strengthening integrin adhesions. 

Polar distribution of integrins in the lamellipodium of migrating cells is 

achieved by vesicular trafficking and represents an important step during cell 

migration (Katagiri et al., 2003; Shimonaka et al., 2003). It is also believed 

that clustering is dependent on the presence of multi-valent ligand clusters 
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(Kim et al., 2004). This idea is further supported by recent data restricting the 

integrin lateral association by distributing RGD ligands on nanoscale patterns, 

High inter-ligand distances do not abrogate cell attachment but impair cell 

spreading and migration (Cavalcanti-Adam et al., 2007) suggesting that 

regulation of integrin affinity and avidity may occur sequentially. Important to 

note is that changes in integrin affinity do not influence integrin avidity and 

vice versa, indicating that the regulation of both processes occurs 

independently from each other. 

The mechanisms resulting in integrin redistribution during initial stages of 

activation are not known. Oligomerization of transmembrane domains, or 

implication of lipid rafts were proposed, but their exact involvement remains to 

be discovered. 

1.2.3. Outside-in signaling 

Extracellular ligand binding by integrins regulates a large variety of biological 

responses within the cell including cytoskeletal re-organization, gene 

expression, survival, differentiation, adhesion and motility. Individual integrin 

receptors transmit extracellular cues to the cytoplasm via conformational 

changes. Extracellular engagement triggers the separation of transmembrane 

and cytoplasmic domains which in turn enables interactions with a large 

variety of intracellular binding partners that will be discussed in the following 

paragraph. The essential requirement for the separation between the α and β 

subunit for outside-in signaling has been recently demonstrated (Zhu et al., 

2007). Additional modes for modifying intracellular responses might include 

integrin clustering or the interaction with other cell surface proteins such as 

tetraspanins or uPAR (Hemler, 2003; Wei et al., 1999). 
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Integrin function in signaling and matrix adhesion 

Integrin functions such as actin binding and signaling mediated by integrin- 

binding proteins touch imortant areas of the presented research and will 

therefore be discussed in-depth in the following chapters. 

1.3. Cytoplasmic integrin binding proteins 

As described above, integrin cytoplasmic tails play an important role in 

regulating the bi-directional signaling of integrins. The recruitment of proteins 

that bind the integrin cytoplasmic domain triggers changes in integrin ligand 

affinities and is also responsible for all signals transduced from the outside 

towards the cytoplasm. Integrin cytoplasmic tails lack intrinsic enzymatic 

activities. β subunit tails regulate essential functions for integrins, such as 

subcellular localization and activation of signaling pathways (Liu et al., 2000). 

To date more than 20 proteins have been identified to bind integrin β tails 

(Table 2). Many of them are involved in cytoskeletal interactions and 

dynamics (mostly actin-binding) or in signaling. 

The cytoplasmic α tails between different integrins are less conserved. 

Therefore, α subunits are involved in the regulation of unique integrin 

receptors functions either by directly initiating signaling events or by 

modulating β subunit signaling. However, only few proteins that bind to α 

subunit tails have been elucidated thus far. They include F-actin, caveolin-1, 

paxillin and calcium-binding proteins (Liu et al., 2000). 

Intriguingly, the binding sites of various cytoplasmic tail binding proteins are 

overlapping, excluding their simultaneous binding to the same integrin 

molecule. This implies an increased complexity for the functions triggered by 

integrin-binding partners (Geiger et al., 2001; Liu et al., 2000). 

A profound discussion of the diverse functions of all integrin cytoplasmic tail 

interacting proteins would reach far beyong the scope of this introduction. The 

interested reader is therefore referred to excellent reviews on the integrin 

interactome and downstream signaling (Liu et al., 2000; Schwartz and 

Ginsberg, 2002; Wiesner et al., 2005; Zaidel-Bar et al., 2007). 
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Binding partner Integrin subunit Reference 
 

Actin binding proteins   
Talin β1, β2, β3 Horwitz et al., 1986; Knezevic et al., 1996; 

Pfaff et al., 1998; Goldmann, 2000 
Filamin β1, β2, β3, β7 Pavalko et al.,1989; Loo et al., 1998;  

Pfaff et al., 1998; Goldmann, 2000 
α-actinin β1, β2 Otey et al., 1990; Pavalko et al., 1991; 

Cattelino et al., 1999 
F-actin α2 Kieffer et al., 1995 
Myosin β3 Jenkins et al., 1998; Sajid et al., 2000 
Skelemin β1,β3 Reddy et al., 1998 
Tensin-1 β1, β3, β5, β7 Calderwood et al., 2003 
 

Signaling proteins   

ILK β1,β3 Hannigan et al., 1996 
FAK β1,β2,β3 Schaller et al., 1995; Chen et al., 2000 
Cytohesin-1 β2 Kolanus et al., 1996 
Cytohesin-3 β2 Hmama et al., 1999 
Dok-1 β1, β3, β5, β7 Calderwood et al., 2003 
c-src β3 Arias-Salgado et al., 2003 
 

Other proteins   

Paxillin β1, β3, α4 Schaller et al., 1995; Chen et al., 2000;  
Liu et al., 1999 

Grb2 β3 Law et al., 1996 
Shc β3 Law et al., 1996 
β3-endonexin β3 Shattil et al., 1995; Eigenthaler et al., 1997 
TAP-20 β5 Tang et al., 1999 
CIB αIIb Naik et al., 1997; Shock et al., 1999; 
Calreticulin α Rojiani et al., 1991; Leung-Hagesteijn et 

al., 1994; Coppolino et al., 1995 
Caveolin-1 α Wary et al., 1998 
Rack1 β1, β2, β5 Liliental et al., 1998 
WAIT-1 β7 Rietzler et al., 1998 
JAB1 β2 Bianchi et al., 1998 
Melusin β1 Brancaccio et al., 1999 
MIBP β1 Li et al., 1999 
ICAP-1 β1 Chang et al., 1997; Zhang and Hemler, 

1999 
CD98 β1, β3 Zent et al., 2000 
DRAL/FHL2 α3, α7, β2 Wixler et al., 2000 
Dab1 β1, β3 Calderwood et al., 2003 
Dab2 β3, β5 Calderwood et al., 2003 
Eps8 β1, β3, β5 Calderwood et al., 2003 

Table 2: Integrin cytoplasmic domain-binding proteins 

The α subunits are highlighted in red. References that are listed are not found in the 

reference list (Table modified from Liu et al., 2000). 
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1.4. Signaling via integrins 

Physiological responses following integrin adhesion depend on integrin tail 

associated proteins, as integrin cytoplasmic tails lack enzymatic activities. 

Interestingly, the focal-adhesion kinase (FAK), integrin-linked kinase (ILK) and 

c-src are to date the only proteins with ascribed kinase activity among the 

direct binding partners. Others have been directly involved in cell cycle 

regulation (β3 endonexin) or transcriptional co-activation (JAB1). More 

importantly however, integrin-binding proteins such as Paxillin, Shc, Grb2, 

FAK and ILK contribute to a further recruitment of signaling molecules and 

adaptors to the sites of integrin adhesion. This leads to the assembly of a 

large signaling hub upon integrin engagement and clustering (Liu et al., 2000). 

Integrins regulate mitogenic signaling, survival, differentiation and cytoskeletal 

remodelling by affecting a variety of intracellular pathways. The efficiency of 

the MAP (mitogen-activated protein) kinase pathways is regulated by integrins 

at several levels, i.e. through recruitment of Grb2 and son-of-sevenless (Sos) 

complex, p21-activated kinases (PAKs) or Rap1 (Juliano, 2002). Other 

important signaling pathways that are downstream of integrin-mediated 

adhesions include PI3K and NF-κB. 

Another significant aspect of integrin function is the cross-talk between 

integrins and other signaling receptors, such as receptor tyrosine kinases 

(RTKs), G-coupled receptors and cytokine receptors that converge at the level 

of MAP kinase or PI3K signaling. This coupling allows integrins to integrate 

ECM cues with growth or differentiation signals. Finally, the regulation of Rho-

GTPases (particularly Rac, Rho and Cdc42) affects cellular key processes, 

but most importantly the dynamic of the actin cytoskeleton.  

For detailed information on integrin signaling the reader is referred to several 

reviews (Giancotti and Ruoslahti, 1999; Guo and Giancotti, 2004; Juliano, 

2002; Schwartz and Ginsberg, 2002). 
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1.5. Integrin-actin connections 

1.5.1. Anatomy and complexity of integrin 
adhesions 

Adhesions with the ECM are formed by all types of adherent cells, but differ in 

morphology, cellular localization and molecular composition. They are very 

dynamic structures that bring the cell membrane in close contact with the 

substrate and build around ligand-activated integrins. At present, focal 

complexes (FCs), focal adhesions (FAs), fibrillar adhesions and podosomes 

are known as classical matrix adhesion structures. FCs are small dot-like 

adhesion sites that are mainly found at the edges of cellular protrusions. FCs 

are highly dynamic, often transient and upon maturation transform into FAs. 

Mature FAs are less dynamic, have an elongated shape and are often found 

in the periphery of cells. Through a complex of various accessory proteins, 

they anchor actin stress fibers to the cell membrane. Fibrillar adhesions are 

found in the central parts of cultured cells, are alined with extracellular 

fibronectin fibrils and contain α5β1 and tensin. Podosomes are the typical 

adhesion structures of osteoclasts and hematopoetic cells and are composed 

of an actin core surrounded by a cylindrical matrix adhesion structure (Berrier 

and Yamada, 2007; Geiger et al., 2001; Wiesner et al., 2005). 

While their morphology seems well defined, the molecular composition of 

matrix adhesions is more complex. Over 50 proteins are transiently or stably 

found in matrix adhesions and many can affect these structures without being 

directly associated with them. It is known that their molecular composition 

differs among the types of adhesions. In addition, their degree of complexity is 

likely to be even higher due to several reasons (Berrier and Yamada, 2007; 

Wiesner et al., 2005; Zamir and Geiger, 2001a; Zamir and Geiger, 2001b). 

First, the intracellular pool of available FA components differs between cell 

types and tissues. Second, numerous modular proteins with several binding 

sites are found in matrix adhesions allowing a multitude of possibilities for 

protein-protein interactions. Finally, simultaneous association of several 



Introduction 

 

 

 - 25 - 

partners is often excluded due to overlapping binding sites or allosteric 

modulation of binding site exposure. 

Current models believe that different integrin interactors and FA components 

may be present within one large adhesion site or that different proteins may 

bind consecutively (Geiger et al., 2001). The molecular and functional 

differences among integrin adhesions will certainly still provide intriguing 

areas of profound research in the future. 

 

Figure 3: Molecular complexity of cell-matrix adhesion 

Various proteins can localize to integrin-adhesion sites. Proteins that directly bind integrin and 
actin are depicted as golden rods, other direct integrin binding patners are shown in blue. 
Actin associated proteins are presented in green. Additional signaling molecules and adaptor 
proteins are also found (drawn in violet) (Cartoon is taken from Geiger et al., 2001). 

 

Given the high degree of complexity within the field of matrix adhesion it is 

important to emphasize that the following paragraphs of actin binding and 

regulation cannot claim to be exhaustive and universally valid but 

demonstrate the current principles for ECM–cytoskeletal connections. 



Introduction 

 

 

 - 26 - 

1.5.2. Actin binding via integrins 

The major structural function of matrix adhesions is to mediate the connection 

to the actin cytoskeleton. This can be achieved by a variety of integrin-binding 

proteins that bind actin either directly or indirectly. 

 

Direct actin binding 
 

Talin1,2 form antiparallel homodimers of two 270 kDa subunits that play a key 

role in integrin activation. Integrin β subunit binding is mainly mediated by the 

FERM domain in the head region of the molecule whereas the rod-shaped tail 

contains two binding sites for F-actin and G-actin. Talin binds and activates 

vinculin that additionally promotes and stabilizes F-actin crosslinks (Critchley, 

2005). 

α-actinins are a family consisiting of four 100 kDa proteins that form 

homodimers and bind to β integrins and actin. FAK dependent 

phosphorylation decreases its association with actin in vitro (Otey and 

Carpen, 2004). 

Tensin is a 220 kDa protein that contains three actin binding domains. 

Binding to the integrin β1 subunit is only weak, but it strongly binds to β3,  β5 

and β7. A Src Homology 2 (Sh2) domain in the C-terminus mediates binding 

to other tyrosine-phosphorylated adhesion plaque proteins such as FAK or 

p130Cas (Lo, 2004). Recently three additional family members have been 

identified (Lo, 2006). 

Filamins, a family of three members, are 280 kDa modular and dimeric 

proteins that crosslink F-actin. In addition to integrins filamins associate with 

other receptors and numerous actin regulatory proteins (Popowicz et al., 

2006). 
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Indirect actin binding 
 

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that binds via 

its N-terminal FERM domain to integrin cytoplasmic tails in vitro. Although 

FAK is one of the most prominent adhesion plaque proteins, the in vivo 

relevance of the direct integrin binding is still unclear. Via its FA targeting 

(FAT) sequence it can bind to talin and paxillin and thereby link to and 

regulate F-actin (Mitra et al., 2005). 

Integrin-linked kinase (ILK), the 52 kDa putative non-receptor 

serine/threonine kinase is composed of four N-terminal ankyrin repeats, a 

pleckstrin-homology domain and a C-terminal kinase domain that mediates 

the binding to integrin β1 and β3 subunits. ILK connects to the actin 

cytoskeleton via binding to the parvins, paxillin or kindlins. ILK and its binding 

partners as well as their functional relevance for actin regulation and signaling 

will be presented in the following chapter. 

The kindlin family of 3 three proteins binds to integrin β1 and β3 and 

regulates the actin matrix adhesions and actin anchorage via ILK, migfilin and 

vinculin (Montanez, Ussar, Moser and Fässler, unpublished observation). 

Paxillin binds with high affinity to the α4 integrin subunit and also the β1 

integrin. Its direct interaction partners vinculin and α-parvin bind to actin. 

Paxillin also binds ILK and FAK and seems to be one of the earliest proteins –

together with talin - recruited to nascent adhesion sites (Turner, 2000). 

In addition there are actin binding proteins known to be associated with 

integrin adhesion sites that are not closely connected to integrins. Many of 

them are multi-domain proteins wich mediate the coordinated recruitment of 

actin binding and regulatory proteins as well as signaling molecules 

(Brakebusch and Fässler, 2003; Geiger et al., 2001; Lo, 2006; Wiesner et al., 

2005). 

1.5.3. Actin regulation via integrins 

Many of the actin-binding proteins not only bind, but are also involved in the 

regulation of the actin turnover. Indeed the integrin-actin connection is highly 
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dynamic and subject to many regulatory processes. Rapid actin turnover is 

required for the dynamic processes during cell motility. 

The Arp2/3 complex is the key protein in actin network assembly whose actin-

nucleating activity depends on the presence of activators. The best 

characterized Arp2/3 activator family is the WASp/Scar family (Mullins et al., 

1998). Current models describe N-WASp as the main Arp2/3 activator in 

filopodia and WAVE2 as the predominant activator in lamellipodia even 

though this is known to be a simplified concept (Vartiainen and Machesky, 

2004; Wiesner et al., 2005). 

Integrins recruit or activate various activators of the Arp2/3 complex. WASp 

and N-WASp can be phosphorylated by Src-family kinases and FAK has 

recently been reported to bind and phosporylate N-WASp. Alternatively, N-

WASp is recruited to integrin adhesions through the adaptor proteins Nck2 

and PINCH (‘particularly interesting new cysteine-histidine-rich protein’)-ILK 

complex (Tu et al., 1998) or vinculin (DeMali et al., 2002). Cortactin, present 

in matrix adhesions such as podosomes, directly binds and activates Arp2/3 

(Uruno et al., 2001). 

The global control of the actin cytoskeleton through the concerted action of 

Rho-family GTPases has become a universal paradigm (Etienne-Manneville 

and Hall, 2002). Therefore, the regulation of Rho-GTPases or Rho-GTPase 

effectors – guanine nucleotide exchange factors (GEFs) or GTPase-activating 

proteins (GAPs) – by matrix adhesion components represents an important 

axis of integrin-actin signaling. However, Eps8 is the only GEF identified so 

far that is recruited to matrix adhesions via direct integrin interaction 

(Calderwood et al., 2003). Many GEFs are recruited to integrin adhesion sites 

via binding to other adhesion plaque proteins. The Rac-GEF Dock180 can be 

recruited through Crk and p130Cas by activated FAK or through Nck2 to the 

PINCH-ILK complex (Hsia et al., 2003; Tu et al., 2001). Paxillin can recruit the 

Rac/Cdc42 GEF β-PIX whereas β-parvin binds to α-PIX (Rosenberger et al., 

2003; Turner et al., 1999). 
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Negative or positive regulation of Rho activity occurs though p190RhoGAP 

recruited by Src (Arthur et al., 2000) or p190RhoGEF through FAK (Zhai et 

al., 2003).  

The recruitment of GEFs to matrix adhesions via polyphosphoinositides 

(PIPs) represents another mechanism of regulating GEF activity (Schmidt and 

Hall, 2002). 

Recently it became evident that not only the activation per se but also 

localized targeting of active GTPases Rac or Rho is required for the 

intracellular spatial regulation of actin dynamics (Del Pozo et al., 2004; Del 

Pozo et al., 2002; Watanabe et al., 1999). 

 

 

ILK, PINCH and Parvin 

Integrin-associated proteins are required for regulating intracellular key 

functions of integrins. Among them, three proteins have emerged as important 

regulators of integrin-mediated functions, namely ILK, PINCH and parvin. 

1.6. ILK 

ILK was first identified in 1996 in a yeast two-hybrid screen for proteins that 

could bind to the cytoplasmic tail of β1 integrin (Hannigan et al., 1996). The 52 

kDa protein was named based on the described kinase activity towards the 

integrin β1 integrin cytoplasmic tail. Subsequently, ILK binding to β3 integrin 

was also shown (Pasquet et al., 2002; Yamaji et al., 2002). The domain 

structure of ILK reveals the presence of three N-terminal ankyrin repeats and 

an additional putative ankyrin module, followed by a pleckstrin-homology (PH) 

– like domain and a putative serine/threonine kinase domain located at the C-

terminus. 

Cell biological studies revealed that changes in ILK protein levels are crucially 

affecting both cell morphology and function. Most strikingly ILK could be 

implicated in the regulation of cell spreading, cell-ECM adhesion, ECM 
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assembly, cell proliferation and cell-cell adhesion (Novak et al., 1998; Radeva 

et al., 1997; Sakai et al., 2003; Vespa et al., 2005; Wu et al., 1998). 

Many of these cellular functions are integrin- or actin-dependent processes 

and indeed, ILK interaction partners implement several actin regulatory 

functions. 

PINCH binds to ILK via its first ankyrin repeat and links to important actin 

regulators, such as DOCK180 and PAK via binding to Nck2 (Tu et al., 1999; 

Tu et al., 1998). MIG2/kindlin-2 is binding to ILK via its kinase domain. 

MIG2/kindlin-2 in turn binds via migfilin and filamin to actin (Tu et al., 2003) 

and Monatez et al., submitted). Also the parvins, a family of actin-binding 

proteins, bind the kinase domain of ILK (Nikolopoulos and Turner, 2000; 

Yamaji et al., 2001). β-parvin was shown to interact with the GEF α-PIX, 

which may activate Rac1 and Cdc42 (Rosenberger et al., 2003). Finally, the 

ILK kinase domain binding to paxillin recruits further actin binding proteins 

(Nikolopoulos and Turner, 2001) (Figure 4).  

The requirement for ILK in the regulation of the integrin-actin connection has 

been further validated in vivo. In C. elegans loss of pat-4/ILK leads to severe 

adhesion defects with muscle detachment and embryonic lethality (Mackinnon 

et al., 2002). In D. melanogaster loss of ILK leads to muscle detachment due 

to a detachment of F-actin from the cell membrane containing βPS integrin 

(Zervas et al., 2001). Constitutive ablation of ILK in mice leads to peri-

implantation lethality around E5.5, as early as the loss of β1 integrin. Studies 

in embryoid bodies, mimicking early embryogenesis, revealed defects in 

polarity of the epiblast leading to abnormal actin distribution (Sakai et al., 

2003). 
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Figure 4: ILK-PINCH-Parvin complex in FAs 

ILK interacts with several proteins that link to the actin cytoskeleton. ILK-PINCH-Parvin form 
the heterotrimeric IPP complex. PINCH also regulates the actin cytoskeleton via additional 
adaptors and links to RTK signaling. Newly identified PINCH interactors such as Thymosin β4 
and RSU-1 are not depicted (Cartoon taken from Grashoff et al., 2004). 

 

In addition to the regulation of the integrin-actin connection, ILK is involved in 

downstream signaling events via its kinase function. Although ILK C-terminus 

shows important homology to canonical serine/threonine kinases, it lacks 

conserved residues within the catalytic kinase domain responsible for ATP- 

and peptide binding and phosphotransfer (Hannigan et al., 1996). 

Nonetheless, both immunoprecipitated and recombinant ILK has been shown 

to phosphorylate several substrates in vitro, such as Akt/PKB and GSK3β 

(Delcommenne et al., 1998; Persad et al., 2001) and others (Table 1; (Legate 

et al., 2006)). In many cell types overexpression of ILK also leads to 

increased Akt/PKB and GSK3β phosphorylation, while expression of a 

dominant-negative mutant of ILK - E359K - reduces the phosphorylation 

(Delcommenne et al., 1998; Novak et al., 1998). However, other studies did 
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not detect defects in kinase activity upon this mutation. Instead the interaction 

with paxillin and α-parvin was disrupted, affecting ILK recruitment to FAs 

(Nikolopoulos and Turner, 2002; Yamaji et al., 2001). In effect, changes in the 

ILK protein-protein interactions were observed for the majority of ILK mutants 

studied so far (Attwell et al., 2003; Filipenko et al., 2005; Nikolopoulos and 

Turner, 2002; Persad et al., 2001). 

In vivo, the evidence for ILK kinase activity is similarly controversial. In both C. 

elegans and D. melanogaster dominant negative ILK mutants are able to fully 

rescue the loss of ILK (Mackinnon et al., 2002; Zervas et al., 2001). In mice 

conditional ablation of ILK does not impair PKB/Akt and GSK3β 

phosphorylation in many cell types such as chondrocytes, fibroblasts, 

hepatocytes and keratinocytes (Gkretsi et al., 2007; Grashoff et al., 2003; 

Lorenz et al., 2007; Sakai et al., 2003; Terpstra et al., 2003). However, in 

many other cell types such as macrophages, endothelial cells, neurons or 

leukocytes Akt/PKB or GSK3β signaling was altered (Friedrich et al., 2004; 

Friedrich et al., 2002; Gary et al., 2003; Troussard et al., 2003). 

These discrepancies might reflect cell-type-specific differences in the 

requirement for ILK in Akt/PKB or GSK3β activation or suggest the possibility 

that ILK might affect Akt/PKB signaling rather indirectly. 

The reader is referred to the first publication presented in this PhD thesis and 

further excellent reviews for additional information about the recent concepts 

concerning the function of this exciting molecule (Grashoff et al., 2004; Legate 

et al., 2006) 

1.7. PINCH 

PINCH1 was initially described as a marker for senescent erythrocytes 

(Rearden, 1994). A second isoform, PINCH2, was subsequently identified in 

vertebrates (Braun et al., 2003; Zhang et al., 2002a), while invertebrates such 

as C. elegans or D. melanogaster possess only one PINCH orthologue (Clark 

et al., 2003; Hobert et al., 1999). The 37kDa PINCH proteins are composed of 

five tandemly repeated LIM domains, each composed of two cysteine-rich 

zinc-fingers that mediate protein-protein interactions, and a short C-terminal 
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tail that comprises a nuclear localization sequence. PINCH1,2 both bind to 

ILK via the first LIM domain in a mutually exclusive manner (Tu et al., 1999; 

Zhang et al., 2002a). 

In vitro studies showed that PINCH1 – together with ILK – is required for 

actin-dependent processes such as spreading and migration and that PINCH2 

can compensate for the loss of PINCH1 (Fukuda et al., 2003; Stanchi et al., 

2005). Depletion of PINCH1 also triggered apoptosis via impairing Akt 

phosphorylation on Ser473 and Thr 308, both required for full Akt activation. 

Loss of ILK only affected Ser473 phosphorylation (Fukuda et al., 2003). The 

molecular mechanism of this regulation remains unclear. 

In addition to ILK, PINCH1 has been shown to bind Nck2, a SH3- and SH2-

containing adaptor protein that binds to the fourth LIM domain on PINCH1. 

Nck2 interacts with growth factor receptors and key components of small 

GTPase signaling (Tu et al., 1998). Nck2 regulates actin dynamics through 

several pathways: via the WASp family members and the Arp2/3 complex and 

via small GTPases and PAK or DOCK180 (Buday et al., 2002). The disruption 

of the PINCH1-Nck2 interaction severly affects cell spreading, emphasizing its 

importance for actin-dynamic processes (Vaynberg et al., 2005; Velyvis et al., 

2003). However, it is currently unclear whether the PINCH1-Nck2 interaction 

is of any relevance in vivo, as mice with a genetic deletion for either Nck1 or 

Nck2 are phenotypically normal, suggesting their functional compensation. 

PINCH1, however, has been demonstrated not to bind Nck1 (Tu et al., 1998). 

An additional link to the actin cytoskeleton stems from the interaction of 

PINCH with Thymosin β4, a small peptide sequestering G-actin monomers 

known to regulate actin-driven cellular processes (Bock-Marquette et al., 

2004; Sun and Yin, 2007). Furthermore, PINCH1 has been shown to interact 

with Ras-suppressor protein RSU-1 in both vertebrates (Dougherty et al., 

2005) and D. melanogaster (Kadrmas et al., 2004) which negatively regulates 

the JNK activity (Figure 4). 

Several studies in vivo and in vitro have also revealed nuclear localization of 

PINCH (Hobert et al., 1999; Li et al., 2005; Zhang et al., 2002a). Although 

other LIM domain proteins have been shown to shuttle between adhesion 
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sites and the nucleus (Hervy et al., 2006), no nuclear function has so far been 

attributed to PINCH. 

Genetic studies in C. elegans revealed that Unc-97/PINCH colocalizes with 

integrins and is required for the integrity of integrin attachment sites, therefore 

being essential for development (Hobert et al., 1999; Norman et al., 2007). 

Similar requirements of PINCH for integrin-dependent processes such as cell 

attachment and actin organization were also shown in the D. melanogaster 

(Clark et al., 2003). In the adult mouse, PINCH1 and PINCH2 are widely 

(co)expressed in a large number of tissues, whereas during early embryonic 

development only PINCH1 is expressed (Braun et al., 2003). PINCH2 

deficient mice do not show any overt phenotype, but the upregulation of 

PINCH1 in tissues with most prominent PINCH2 expression, suggests the 

possibility of functional compensation of the two isoforms in vivo (Stanchi et 

al., 2005). Genetic ablation of PINCH1 in mice, however, leads to early 

embryonic lethality during implantation. Analysis of embryoid bodies, which 

model peri-impantation, revealed defects in endodermal and epiblast 

adhesion to an abnormal basement membrane (BM) and in addition abnormal 

cell-cell adhesion and increased apoptosis (Li et al., 2005; Liang et al., 2005) 

which were not observed upon ablation of β1 integrin and ILK in the same 

system. 

1.8. ILK-PINCH-Parvin complex 

The heterotrimeric ILK-PINCH-Parvin (IPP) complex is formed through 

simultaneous binding of ILK to PINCH and parvin family members (Figure 4). 

Assembly of the IPP complex occurs in the cytoplasm prior to the recruitment 

into FAs (Fukuda et al., 2003; Zhang et al., 2002b) and complex formation is 

critical for stability and recruitment of each individual IPP member into FAs. 

In vitro studies showed that downregulation of one member results in a 

concomitant degradation of the other components. The reduction occurs on 

protein level and can be rescued by inhibition of the proteasome (Fukuda et 

al., 2003). However, the expression of PINCH1 LIM1-domain in PINCH2-

deficient cells leads to a stabilization of ILK levels (Stanchi et al., 2005) or 
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expression of the N-terminal ankyrin-repeat domain of ILK in ILK-deficient 

cells rescues PINCH (Grashoff and Fässler, unpublished data). 

Nevertheless, localization of the IPP complex to FAs critically depends on the 

presence of the full-length proteins within the complex, indicating that 

additional IPP interactions are required for FA targeting. Those could 

potentially include binding to integrins, Paxillin or Mig-2/kindlin-2, as mutation 

of the Paxillin binding site of ILK leads to IPP complex displacement from FAs 

in cells (Nikolopoulos and Turner, 2001) and in C. elegans the Mig-2/Kindlin-2 

orthologue UNC-112 is essential for ILK localization to integrin adhesion sites 

(Mackinnon et al., 2002). 

The significance of the intact IPP complex for cell-matrix adhesion and actin 

organization is well established, while it is still unclear whether IPP complex 

members can exert IPP-independent functions. Degradation of the IPP 

components upon deletion of one member is not always complete (Fukuda et 

al., 2003; Li et al., 2005), opening up the possibility for functions of individual 

IPP members outside of the complex. 

PINCH1 might have a role in the formation or stabilization of cell-cell 

adhesions independently from ILK as suggested by studies in embroid bodies 

(Li et al., 2005; Sakai et al., 2003). ILK however was also detected in cell-cell 

contacts in keratinocytes where it contributed to cell-adherens junction 

formation (Vespa et al., 2005; Vespa et al., 2003). Nuclear shuttling is 

described for PINCH1 in several systems (Campana et al., 2003; Hobert et 

al., 1999; Li et al., 2005), but recently also ILK was shown to translocate to 

the nucleus in a phosphorylation-dependent manner (Acconcia et al., 2007).  

Despite first hints towards seperate functions of ILK, PINCH and parvins, the 

evidences are still puzzling and will require further investigations in the 

upcoming years. 

 

Skin 

The skin is a multilayered organ which covers the outer surface of the 

mammalian body. It is composed of an epithelial compartment, the epidermis, 
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and a mesenchymal compartment, the dermis which are separated by a BM 

and the adipose subcutis underneath. Appendages such as hair follicles (HFs) 

and sweat glands are interspersed in the epithelium. 

The skin provides a barrier which prevents loss of body fluids from the inside 

and protects against infectious agents, temperature changes, and trauma or 

substance uptake from the outside. The epidermal potential for continuous 

self-renewal and wound repair following injury due to the presence of stem 

cells is crucial for the maintenance of its vital functions. 

1.9. Epidermal architecture and homeostasis 

The epidermis is a stratified squamous epithelium that is composed of several 

layers of keratinocytes. Only the basal layer that is in direct contact with the 

underlying BM contains proliferating cells. Basal keratinocytes express 

integrins and can be distinguished through the specific expression of keratin 

5/14 (K5/14). During stratification cells leave the basal layer and move 

towards suprabasal locations, where they withdraw from cell cycle, switch off 

integrin expression and enter a specific differentiation programme. This 

process gives rise to spinous and granular layers and culminates with the 

production of terminally differentiated dead corneocytes of the stratum 

corneum that will eventually be shed from the epidermal surface. Structural 

properties of suprabasal keratinocytes depend to a large extend on keratins 

therefore keratinocytes also alter the pattern of keratin expression during 

differentiation. K1/10 are characteristic for the intermediate spinous layer, 

whereas granular layer and the outermost stratum corneum can be 

distinguished by the expression of loricrin and filaggrin, respectively (Figure 5) 

(Blanpain and Fuchs, 2006; Fuchs and Raghavan, 2002). 

Interestingly, it is still unclear how the formation of a multilayered epithelium – 

stratification – is really achieved. Experimental evidence from in vitro studies 

suggests a process referred to as delamination that is effectively leading to 

the formation of a multilayered epithelium. Basal keratinocytes weaken their 

adhesion to the BM and are pushed off into the spinous layers by their 
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neighboring cells in a process that likely requires apical actin dynamics (Vaezi 

et al., 2002; Watt and Green, 1982). 

 

Figure 5: Architecture of the stratified epidermis 

The program of epidermal differentiation is shown in this schematic, illustrating the BM at the 
base, the proliferative basal layer, and the three differentiation stages: spinous layer, granular 
layer, and outermost stratum corneum. At the right key markers for differentiation are 
indicated (Cartoon modified from Fuchs, 2008). 

 

Alternatively, mitotic spindle orientation perpendicular to the BM during basal 

cell division might directly place one of the two daughter cells into suprabasal 

position. During stratification of murine skin the majority of cell divisions was 

shown to be asymmetric with a spindle orientation perpendicular to the BM 

and this preferential spindle orientation was dependent on the presence of β1 
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of cell division and/or delamination during epidermal stratification (Figure 6A). 

integrin (Lechler and Fuchs, 2005). More recently however, this model has 

been challenged by a report showing that only three percent of spindles lie 

perpendicular to the basal layer in mouse postnatal epidermis (Clayton et al., 

2007). Therefore, more studies are now needed to determine the importance

 

Figure 6: Models of epidermal stratification and self-renewal 

(A): During delamination basal cells weaken the adhesion to the BM upon commitment to 
suprabasal cell fate. Commited cells are pushed towards spinous layers. Asymmetric cell 
division of basal cells leads to the direct localization of a commited daugther cell in 
suprabasal position. (B) The epidermis is composed of distinct epidermal proliferative units 
(EPUs) with each one stem cell per unit. Transit-amplifying (TA) cells divide up to 4-5 times. 
In the single progenitor model the epidermis is maintained by one type of epidermal 

rogenitors (EPCs) that may undergo an unlimited number of divisions. p

 

Constant epidermal regeneration capacity is ensured by the presence of 

epidermal stem cells. According to the classical epidermal proliferative unit 

(EPU) model the basal layer of keratinocytes contains stem cells, that are 

very slowly cycling, transit-amplifying cells that are able to undergo a limited 

number of cell divisions and post-mitotic basal cells. Each EPU, one descrete 

epidermal segment, is maintained by a single stem cell and is constant in size 

(Potten, 1981). However, also the presence of two types of epidermal 

progenitor cells has lately been questioned by a single-type progenitor model 



Introduction 

 

 

 - 39 - 

 β1 integrin would determine the 

properties of stem cells in the epidermis. 

1.10. HF morphogenesis and cycling 

ensation of specific fibroblasts in the 

llicular 

d differentiation are 

the HF rapidly decreases and the lower HF portion degenerates through 

for clonal populations of the epidermis (Clayton et al., 2007) (Figure 6B). This 

debate has currently led to live discussions (Fuchs, 2008; Jones et al., 2007), 

which will set the stage for upcoming investigations. High expression of β1 

integrin is speculated to be a hallmark of human epidermal stem cells (Jones 

et al., 1995), however this finding has not been confirmed ever since for 

murine epidermis and it is unclear how

The development of HFs from the fetal epidermis during morphogenesis 

involves a tigthly controlled signaling exchange with the underlying 

mesenchyme (Blanpain and Fuchs, 2006; Hardy, 1992; Paus et al., 1999; 

Schmidt-Ullrich and Paus, 2005). Following inductive signals the first 

morphological signs of HF formation become evident at embryonic day (E) 14 

when epidermal keratinocytes get organized into an easily recognizable hair 

placode accompanied by the cond

underlying mesenchyme (Figure 7). 

During epithelial downward extension, the keratinocytes enwrap the dermal 

condensate, so-called dermal papilla (DP) at their base. Inductive signals from 

the DP maintain a high proliferation of the adjacent hair matrix (HM) 

keratinocytes. During later stages of morphogenesis, HM daughter cells move 

upwards the HF and differentiate into the six cylindric layers of inner root 

sheath (IRS) and hair shaft (HS) layers. The outer layer of the follicle is then 

called outer root sheath (ORS) which is continuous with the interfo

epidermis, expresses integrins and K5/14 and is surrounded by a BM. 

HF morphogenesis lasts until postpartum and occurs in asynchronous 

manner. By postnatal day (P) 3 approximately 30 % of the HFs have 

morphologically completed morphogenesis, downgrowth however still 

continues (Paus et al., 1999). By P14 both downgrowth an

completed. Throughout postnatal life HF growth is cyclic. 

By the onset of the regression phase – catagen – keratinocyte proliferation in 
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apoptosis. The DP is dragged towards the permanent portion of the HF 

through an epithelial strand surrounded by the retracting BM.  

 

Figure 7: Development and cycling of HFs 

Morphology of HFs during selected stages of HF morphogenesis and cycling (Cartoon 
modified from Paus and Cotsarelis, 1999). 

 

The quiescent phase is referred to as telogen. Each new hair cycle begins 

during anagen with the induction of a proliferative hair germ at the bottom of 

the HF in response to signals from the DP and subsequent progression to a 
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mature HF involving downgrowth and differentiation (Figure 7) (Muller-Rover 

et al., 2001; Paus and Cotsarelis, 1999). In contrast to human HFs, the 

murine hair coat is particular in undergoing synchronized hair cycling during 

the first postnatal cycles. 

The bulge, a specific region within the proximal ORS just below the 

sebaceous gland, is the natural niche for HF stem cells and represents the 

permanent portion of the HF during cycling. During growth periods transit-

amplifying cells constantly migrate from the bulge along the ORS to maintain 

the proliferative cell pool of the HM. 

The molecular mechanisms underlying HF development and cycling are still 

poorly understood, but genetic studies in mice reveal the importance of 

signaling pathways involving Wnts, bone morphogenic proteins (Bmps), sonic 

hedgehoc (Shh), fibroblast growth factor (FGF), epidermal growth factor 

(EGF), NFκB and Notch signaling (reviewed in Blanpain and Fuchs, 2006 and 

Schmidt-Ullrich and Paus, 2005). 

1.11. The role of integrins in the epidermis and HFs 

Integrins are the main receptors for cell-BM attachment in vivo, therefore 

several integrins are found to be expressed in and to be of essential 

importance for the function of keratinocytes.  

1.11.1. Integrin expression in skin epithelium 

Integrins are predominantly found in basal and ORS keratinocytes that are in 

direct contact with a BM. Constitutively expressed integrins are α2β1 integrin 

(collagen receptor), α3β1 (laminin receptor), α9β1 (tenascin receptor), α6β4 

(laminin receptor) and to lower amounts αVβ5 (vitronectin receptor). Certain 

integrins, mainly fibronectin receptors (α5β1, αVβ6 and α9β1), are expressed 

or upregulated during pathological conditions such as skin wounding or tumor 

development (Watt, 2002). 

In undamaged skin α6β4 is concentrated at the BM zone and is the core 

component of hemidesmosomes anchoring the keratin filaments to the BM. 
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α3β1 integrin might be involved in hemidesmosome nucleation at the BM 

zone (Litjens et al., 2006). The role of α2β1 integrin in vivo is still unclear, 

even though it is expressed at very abundant levels in the epidermis. α2β1 

integrin localizes both to the baso-lateral and apical surfaces and is required 

for keratinocyte adhesion to type 1 collagen in vitro (Zhang et al., 2006). 

Interestingly, the expression of α2β1, α3β1 and α6β4 integrins along the ORS 

varries in distinct subdomains of the HF (Commo and Bernard, 1997). 

1.11.2. Analysis of integrin function in epidermal 
and HF biology 

The importance of integrins and their ligands for epidermal and HF integrity in 

vivo is most directly demonstrated by the generation of integrin knock-out 

mice. 

In order to circumvent embryonic or early postnatal lethality as observed in 

several constitutive integrin knock-out mice, such as β1 or β4 integrin (see 

Table 1) different genetic and technical tools have been employed to study 

integrin function in the skin epithelium in vivo. The Cre-loxP system has been 

commonly used to target gene deletion specifically to keratinocytes. The 

promoters from the K14 or K5 genes direct Cre recombinase expression to 

basal keratinocytes, sebaceous gland and ORS cells and thereby also to all 

differentiated keratinocytes. Endogenous K5 and K14 are known to be 

expressed starting around E9.5 during embryogenesis when epidermal and 

HF morphogenesis begins (Byrne et al., 1994). However, it is of importance to 

consider that different mouse lines expressing the Cre recombinase under 

exogenous K5- or K14-promotors only show effective Cre activity at slightly 

later stages and might delete target genes with varying efficiencies or kinetics 

influencing the observed phenotypes. This has been the case for the 

keratinocyte-specific deletion of β1 integrin (Brakebusch et al., 2000; 

Raghavan et al., 2000). Additional possibilities for gene function analysis 

during adulthood are given through the availability of inducible Cre-expressing 

mouse lines or grafting methods using immuno-compromised mice (Conti et 

al., 2003; Lopez-Rovira et al., 2005). 
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Constitutive deletion of either α6 or β4 integrin in mice leads to neonatal 

lethality due to severe detachment of the epidermis and other sqamous 

epithelia through absence of hemidesmosomes, reminiscent of the human 

disorder epidermolysis bullosa (Dowling et al., 1996; Georges-Labouesse et 

al., 1996; van der Neut et al., 1996). Mice carrying a constitutive α3-integrin 

null mutation die also shortly after birth (Kreidberg et al., 1996) due to kidney 

and/or lung failure. Skin analysis at birth revealed milder blistering at the 

dermal-epidermal junction due to BM disruption, suggesting a role for α3β1 in 

the establishment of BM integrity (DiPersio et al., 1997). Epidermal 

morphogenesis per se was, however, not altered in mice lacking α3 and α6 

integrins (DiPersio et al., 2000). Grafting experiments using α3 integrin-

deficient epidermis revealed stunted HF growth and differentiation 

accompagnied by an abnormal actin cytoskeleton in HF keratinocytes upon 

lack of α3 integrin (Conti et al., 2003). 

1.11.3. β1 integrin function in epidermis and HF 

Conditional ablation of β1 integrin in keratinocytes leads to early lethality 

either shortly after birth due to severe blistering and dehydration when K14-

Cre is used (Raghavan et al., 2000) or later due to impaired food intake and 

developmental retardation following K5-Cre mediated deletion (Brakebusch et 

al., 2000). 

In the interfollicular epidermis β1 integrin was responsible for 

hemidesmosome formation and BM integrity, leading to epidermal 

detachment and reduced expression of α6 and β4 integrins in mutant 

keratinocytes. Terminal differentiation of epidermal keratinocytes was not 

affected, suggesting that integrin downregulation is not the central molecular 

switch for initiation of differentiation. However, in postnatally surviving mice 

the epidermis became hyperplastic even though keratinocyte proliferation was 

decreased. Keratinocyte migration both in vitro and upon wounding in vivo 

was impaired. 
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Most strikingly the loss of β1 caused progressive hair loss in mice leading to 

an almost complete alopecia by an age of four weeks. The reduced number of 

hairs was caused by severe HF malformations ranging from premature growth 

arrest during morphogenesis to hyperthickened ORS and severe distortions 

accompanied by a reduced HM proliferation. Concomitant with the loss of 

hair, infiltrating macrophages accumulated around abnormal HFs, pro-

inflammatory cytokines became upregulated and the mice developed a 

dermal fibrosis (Brakebusch et al., 2000; Grose et al., 2002; Lopez-Rovira et 

al., 2005; Raghavan et al., 2000; Watt, 2002). Recent data showed that 

LM511 (laminin-10) whose major receptor in keratinocytes is α3β1 is 

particularly enriched in the specialized BM around elongating hair germs and 

that its deletion impaired HF development. 

Altogether these data suggest that integrins and their ligands play crucial 

roles in skin epithelium that reach far beyond simply anchoring keratinocytes 

to the underlying BM. Particularly β1 integrins are required for keratinocyte 

migration, HF development and BM integrity. They maintain the balance 

between proliferation and differentiation.  
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Aim of the thesis 

The adhesion receptor family of β1 integrins is essential for embryonic 

development, as embryos lacking the β1 integrin die during implantation. The 

use of tissue-specific gene deletion strategies in mice showed that this 

integrin family is of crucial importance for BM integrity, cell adhesion, 

migration, proliferation and differentiation in several tissues, such as skin, 

cartilage or muscle in vivo. Nonetheless, an important and still largely 

unanswered question is how integrins mediate these functions. Numerous 

integrin adaptor molecules have been identified but the precise function of 

each especially in vivo remains to be clarified. 

During homeostasis the skin epithelium and its appendages require the 

controlled deposition of, and adhesion to BM molecules, tightly regulated 

programmes of differentiation, maintenance of stem cells, migratory 

processes and sustained proliferation. All above mentioned processes 

strongly depend on β1 integrin signaling via integrin-associated molecules. 
 

AIM1 
Analysis of the functional relevance of the integrin-adaptor molecule ILK for 

β1 integrin-dependent processes in skin epithelium via gene targeting in 

keratinocytes. 
 

ILK forms a heterotrimeric IPP complex with PINCH and parvin family 

members and this complex formation is required for protein stability. 

Downregulation of one member concomitantly triggers proteasomal 

degradation of the others. However, it is unclear whether also IPP-

independent functions might exist for each of the binding partners. 
 

AIM2 
Analysis of PINCH1 functions in keratinocytes by conditional gene targeting in 

keratinocytes to gain insight into shared and independent functions of ILK and 

PINCH1. 



Short Summaries 

 

 

 - 47 - 

Short summaries of publications 

 

Publication 1: Integrin-linked kinase: integrin's 
mysterious partner 

This review article summarizes the present knowledge about the functions of 

ILK, a direct interaction partner of β1 and β3 integrins. We address cell 

biological properties as well as ILK functions in vivo with a particular focus on 

the present controversy regarding its postulated kinase activity. 

ILK is one member of the intracellular cytoplasmic plaque recruited to integrin 

adhesion sites which is present as a ternary complex together with PINCH 

and parvin family members. ILK-PINCH-parvin- (IPP-) complex formation is 

vital for the protein stability of each complex member and necessary for focal 

adhesion (FA) targeting through possible candidates such as integrins, paxillin 

and kindlins. One core function of the IPP-complex is to provide a binding 

platform for actin regulatory proteins. Thereby ILK is implicated in cell 

spreading, FA formation, cell adhesion and ECM assembly. On the other 

hand, ILK has been associated with cell proliferation drawing special attention 

to the kinase activity due to its potential implication in tumor growth. Among 

the kinase substrates are GSK3β and PKB/Akt implicated in cell growth and 

survival. During development, ILK loss causes severe muscle attachment 

defects in worms and flies that were fully rescued by kinase-dead ILK 

mutants. Loss of ILK in mice caused early embryonic lethality. Conditional 

ablation in chondrocytes reduced skeletal growth but did not affect GSK3β 

and PKB/Akt, whereas PKB/Akt phosphorylation was decreased in ILK-

deficient macrophages. 

In summary, ILK is essential during development due to its essential role in 

actin organization. The kinase activity, however, remains controversial. 
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Publication 2: Integrin-linked kinase is required for 
epidermal and HF morphogenesis 

Integrin β1 is crucial for epidermal and hair follicle (HF) integrity. ILK binds to 

integrins, links to the actin cytoskeleton and is thought phosphorylate several 

substrates, among them GSK3β. In this present article we report the 

keratinocyte-restricted ablation of the ILK gene in mice and addressed the 

functional requirement for ILK downstream of integrin β1 in vivo. 

 

ILK ablation caused epidermal defects and progressive hair loss. In the 

epidermis integrin-mediated adhesion was reduced resulting in blister 

formation at the dermal-epidermal junction, basement membrane (BM) 

disruption and altered keratinocyte polarity. Additionally, epidermal 

differentiation and proliferation were altered, characterized by abundant 

integrin-expressing and proliferating keratinocytes in suprabasal layers.  

HF differentiation strongly depends on active wnt-signaling stabilizing β-

catenin through GSK3β phosphorylation. ILK-deficient HFs displayed wnt- 

signaling activity excluding a functional importance for ILK activity function in 

this signaling pathway. However, mutant HFs accumulated proliferating cells 

along the ORS during morphogenesis and failed to initate outgrowth during 

cycling. This suggested a migration defect of ILK-mutant keratinocytes as 

neither stem cell maintenance nor proliferation were compromised. In vitro 

studies confirmed a defect in directional and persistent migration due to 

reduced focal complex and focal adhesion formation and thus impaired 

stabilization of lamellipodia in ILK-deficient cells. 

 

We conclude that ILK is crucial for epidermal and HF morphogenesis due to 

its functions in integrin adhesion and actin dynamics and is dispensable for 

wnt signaling. 
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Publication 3: PINCH-1 works in an ILK-dependent as 
well as independent manner in keratinocytes  

PINCH1 is a LIM-only domain protein that is recruited to integrin adhesion 

sites in a heterotrimeric complex together with ILK and parvin family members 

(IPP-complex). Within the IPP-complex protein stabilities of all three members 

are interdependent. In order to address whether PINCH1 and ILK are indeed 

obligate partners we generated mice with a keratinocyte-restricted deletion of 

PINCH1. 

PINCH1 ablation resulted in epidermal defects and progressive hair loss 

reminiscent of the phenotypes of ILK-deficient skin epithelium. Impaired 

integrin-mediated adhesion resulted in epidermal blistering and basement 

membrane disruption. The hyperthickened epidermis contained abnormally 

located integrin-expressing, proliferating suprabasal cells. Yet, abnomal cell 

polarity as observed by basal actin accumulation did not result in an altered 

orientation of mitotic spindles during epidermal cell division. In striking 

contrast to ILK-deficient keratinocytes cell-cell adhesions were weakened and 

lacked vinculin recruitment. The mutant hair follicles (HFs) were highly 

distorted and shortened. During morphogenesis proliferating cells 

accumulated along the ORS. Later, at the initiation of cycling, the outgrowth of 

mutant HF keratinocytes failed resulting in organ destruction by inflammatory 

macrophages. Impaired keratinocyte migration was associated in vitro with 

severe failure in focal adhesion formation and actin cytoskeleton assembly. 

 

In summary, our data show that PINCH1 plays important roles for epidermis 

and HF biology. With regard to cell-cell adhesion, actin assembly and integrin 

adhesion the defects observed upon PINCH1 loss exceed the keratinocyte-

specific ILK-null phenotype. This implies that PINCH1 also acts independently 

through the recruitment of other interaction partners or though IPP-

independent stabilization in novel cellular compartments. 
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Integrin-mediated cell adhesion regulates a vast number

of biological processes including migration, survival and

proliferation of cells. It is therefore not surprising that defects in

integrin function are often rate-limiting for development and

profoundly affect the progression of several diseases. The

functions of integrins are mediated through the recruitment of

cytoplasmic plaque proteins. One of these is integrin-linked

kinase, which connects integrins to the actin cytoskeleton and

transduces signals through integrins to the extracellular matrix

and from integrins to various subcellular compartments.
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Abbreviations

aPIX PAK-interactive exchange factor-a

BM basement membrane

CH calponin homology

CPI-17 protein-kinase-C-dependent phosphatase inhibitor

of 17 kDa

Dock180 180-kDa protein downstream of CRK

EB embryoid body

ECM extracellular matrix

EMT epithelial-to-mesenchymal transition

FA focal adhesions

GSK-3 glycogen synthase kinase 3

ILK integrin-linked kinase

ILKAP ILK-associated phosphatase

Mig-2 mitogen inducible gene-2

MLC myosin light chain

PAK p21-activated serine/threonine kinase

PDK 3-phosphoinositide-dependent kinase

PH pleckstrin homology

PHI-1 phosphatase holoenzyme inhibitor 1

PI3K phosphatidylinositol-3-kinase

PINCH particularly interesting new cysteine-histidine-rich protein

PIP3 phosphoinositol trisphosphate

PTEN protein tyrosine phosphatase and tensin homolog

Introduction
Cell adhesion is mediated by multiprotein complexes

composed of adhesion receptors, extracellular matrix

(ECM) proteins and cytoplasmic plaque proteins. The

cell adhesion receptors determine the specificity of the

cell–cell or the cell–ECM interaction and recruit cyto-

plasmic plaque proteins to the cell adhesion site. The

cytoplasmic plaque proteins transduce signals initiated

by the adhesion receptor, link the adhesion receptors to

the cytoskeleton and regulate the functional properties of

the adhesion receptors themselves.

Integrins are a large family of adhesion receptors com-

prising >20 members that mediate highly dynamic cell–

cell and cell–ECM interactions. The association and the

release of integrin–ligand interactions are achieved by the

ability of integrins to adopt different conformations. The

active conformation is triggered by intracellular signals

and cytoskeleton assembly and results in ligand binding,

integrin clustering and recruitment of cytoplasmic plaque

proteins into integrin attachment sites called focal adhe-

sions (FAs) [1,2]. One protein that plays a central role in

integrin activation and signaling is integrin-linked kinase

(ILK) [3]. ILK is composed of three structurally distinct

domains: three ankyrin repeats near the N terminus (a

fourth ankyrin repeat was identified in human ILK but

lacks well-conserved residues), a short linker sequence,

and a kinase domain at the C terminus. The linker

domain, together with sequences from the N terminus

of the kinase domain, shares some similarities with pleck-

strin homology (PH) domains (Figure 1).

In the present review we will discuss the functional

properties of ILK, which are governed by ILK’s interac-

tion partners and kinase activity. The first part of this

review summarizes biochemical and cell biological stu-

dies of ILK and the second part deals with in vivo
experiments from invertebrates and mice.

Cell biology and biochemistry of ILK
Overexpression of ILK as well as loss or reduction of ILK

expression in cells profoundly affects their morphology

and function. The most striking changes are impaired

cell spreading, abnormal cell adhesion to and assembly

of ECM proteins, delayed formation of FAs and altered

cell proliferation [3–6,7��]. How can these defects be

explained? Important hints have come from the identi-

fication of ILK binding partners (Table 1), from their

mode of interaction with ILK and from the identification

of substrates for the ILK kinase domain (Table 2).

ILK — a platform for actin regulatory proteins

Almost all adaptor proteins that bind either directly or

indirectly to ILK regulate the actin cytoskeleton and
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hence could be responsible for the shape change and FA

dysfunction associated with altered ILK expression (Fig-

ure 1). Pinch (‘particularly interesting new cysteine-his-

tidine-rich protein’) was the first interactor to be

identified [8]. Pinch-2, a Pinch homologue, was subse-

quently identified in mice and humans [9,10]. They are

both composed of five LIM domains and a nuclear

localization signal (NLS) at the C terminus. The first

LIM domain binds the first ankyrin repeat of ILK. The

interaction has been well-characterized using structural

[11], biochemical and cell biological approaches [8,9].

The fourth LIM domain of Pinch-1 was shown to bind

with very low affinity to the SH2/SH3 adaptor protein

Nck2, which in turn interacts with growth factor receptors

and recruits a large number of proteins, including actin

modulators such as Dock180 (180-kDa protein down-

stream of CRK) and the p21-activated serine/threonine

kinase (PAK) [8,12,13]. Whether Pinch-1 interacts with

Nck2 in vivo is not clear. Since mice and cells lacking

Nck2 are normal [14] but mice lacking Pinch-1 die during

implantation (F Stanchi and R Fässler, unpublished) this

interaction does not seem to be crucial for Pinch-1 func-

tion. It has been shown that Pinch-2 can translocate into

the nucleus [9]. Its role there, however, is unclear.

566 Cell-to-cell contact and extracellular matrix

Figure 1

ILK binds Pinch and parvin and this ternary complex subsequently locates to the plasma membrane through the interaction with the cytoplasmic

domain of activated b1 and b3 integrin subunits as well as unknown FAs component(s). Binding to phospholipids results in the activation of

the kinase function of ILK, which in turn leads to the phosphorylation of GSK3b and PKB/Akt. Finally, ILK can recruit several adaptor proteins,

which are able to regulate actin dynamics or actin attachment to FAs. The molecules presented in Figure 1 are not drawn to scale. AKT, protein

kinase B/Akt; RTK, receptor tyrosine kinase; WASP, Wiskott-Aldrich syndrome protein.

Table 1

ILK interacting proteins, the location of their binding site on

ILK and the method(s) used to confirm their interaction.

Interactor Domain Detection Reference

b1 integrin C terminus Y2H/IP [3]

b3 integrin C terminus IP [3,61]

ILKAP N terminus Y2H/IP [62]

Mig-2/Kindlin-2 C terminus Y2H [21��]
a-parvin C terminus Y2H/IP [18]

b-parvin C terminus Y2H/IP [19]

paxillin C terminus IP [15]

Pinch-1 N terminus Y2H/IP/CC [8,11]

Pinch-2 N terminus IP [9]

PIP3 PH — [26]

CC, co-crystallization; IP, co-immunopreciptiation; Y2H,

yeast-two-hybrid assay

Table 2

Putative targets of the ILK kinase activity and the amino

acid residue(s) phosphorylated by ILK.

Target Phosphorylation site Reference

ILK (Ser343) [35,40]

b1 integrin (Ser785) [3]

b3 integrin — [61]

b-parvin — [19]

GSK-3b (Ser9) [26,62]

PKB/Akt (Ser473) [26]

MLC-20 (Thr18/Ser19) [42]

MYPT-1 (Thr695, Thr495/Thr709) [43,44]

CPI-17 (Thr38) [45]

PHI-1 (Thr57) [45]

MYPT1, myosin phosphatase target subunit isoform 1.
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A search for paxillin binding proteins showed that the

kinase domain of ILK contains sequences resembling a

paxillin binding subdomain (PBS) motif, which firmly

binds paxillin [15]. The ILK–paxillin interaction is neces-

sary but not sufficient to recruit ILK into FAs, where the

complex may modulate the function of other paxillin

binding proteins such as vinculin,a-actinin, talin andFAK.

Several laboratories have simultaneously shown that par-

vins, a new family of F-actin binding proteins, bind the

kinase domain of ILK [16–19]. The parvins comprise

three members (a-parvin or actopaxin or CH-ILK bind-

ing protein; b-parvin or affixin; and g-parvin) and are

composed of two calponin homology (CH) domains that

bind ILK, paxillin and F-actin. b-parvin was shown to

interact with the guanine nucleotide exchange factor a-
PIX (PAK-interactive exchange factor-a), which may

activate Rac1 and Cdc42 [20]. Parvins are found in FAs

and apparently do not colocalize to stress fibers [16,17].

An important future task will be to map the binding sites

of ILK, paxillin and F-actin on the CH domains and to

test whether their binding occurs simultaneously or is

mutually exclusive.

A recent paper identified an additional ILK binding

partner in Caenorhabditis elegans, termed UNC-112

[21��]. UNC-112 contains a FERM domain [22] and is

important for the recruitment of the ILK orthologue, Pat-

4, to muscle attachment sites. The mammalian ortholo-

gue of UNC-112, Mig-2/Kindlin-2, was shown to bind the

LIM-domain-containing adaptor protein migfilin, which

in turn binds filamin [23�]. It will be interesting to see

whether Mig-2/Kindlin-2 also binds ILK in mammalian

cells and whether this interaction modulates the function

of filamin, which is mutated in a variety of human dis-

eases.

ILK, Pinch and parvin — a ternary complex required

for stability and focal adhesion localization

The association of ILK, Pinch and parvin into a ternary

protein complex happens before their recruitment into

FAs [24�] and serves at least two purposes: it stabilizes the

individual proteins and targets the individual components

into FAs [24�,25�]. Loss of ILK expression in cells leads to

the degradation of Pinch and parvin and, conversely, loss

of Pinch expression diminishes ILK and parvin levels

[25�]. The degradation can be prevented either by inhi-

biting the proteasome [25�] or by expressing short N-

terminal fragments of ILK (the ankyrin repeats) in ILK-

deficient cells (C Grashoff, R Fässler, unpublished data)

or Pinch (the first LIM domain) in Pinch-deficient cells

(F Stanchi, R Fässler, unpublished data). Their recruit-

ment into FAs, however, cannot be rescued with these

fragments. These results support the notion that ILK and

Pinch must have binding partner(s) that facilitate FA

targeting. Possible candidates for ILK targeting partners

are integrins, paxillin and Mig-2/Kindlin-2. It has been

shown that nematodes lacking b integrin fail to localize

ILK to cell attachment sites [21��]. Mammalian cells may

have a similar requirement for b integrin to localize ILK,

but this has not been shown yet with cell lines lacking

either b1 or b3 or both integrin subunits. Paxillin binds

ILK via its N-terminal leucine-rich motifs and targets to

FAs via the C-terminal LIM domains. Mutation in the

paxillin binding site of ILK prevents ILK/Pinch/parvin

recruitment to FAs [15]. Mig-2/Kindlin-2 could also play a

role since the worm orthologue UNC-112 is essential for

localization of Pat-4/ILK to integrin-containing attach-

ment sites [21��]. No candidate binding partners are

currently known that could promote recruitment of Pinch

into FAs.

The dependence of ILK, Pinch and parvin stability on

the formation of a ternary complex has implications for

the interpretation of overexpression experiments. Accu-

mulation of ILK in the cytoplasm of ILK-overexpressing

cells may cause a partial depletion of Pinch and parvin

from FAs, resulting in an impaired FA function. This

could explain why cells either lacking [7��] or overex-

pressing ILK [3] have similar phenotypes: they both show

a rounded morphology and have decreased adhesive

properties.

The kinase activity of ILK

Despite the sequence differences between the ILK

kinase domain and other protein kinases (important resi-

dues in the activation loop of the kinase are not con-

served) the similarity was immediately recognized and

investigated [3]. Initial studies showed that GST-tagged

ILK purified from bacteria or mammalian cells could

phosphorylate serine and threonine residues in peptides

representing the b1 integrin tail, and model substrates

such as myelin basic protein [3].

ILK kinase activity took center stage when it was sug-

gested to be directly associated with cell proliferation,

tumor growth and metastasis [4,26–29]. On the one hand,

overexpression of ILK in cells results in anchorage-

independent cell cycle progression [5] and epithelial-

to-mesenchymal transition (EMT) of non-tumorigenic

as well as tumorigenic epithelial cells [4,29]. Inhibition

of ILK kinase activity, on the other hand, suppresses cell

growth in culture as well as growth of human colon

carcinoma cells in SCID mice [30]. Several lines of

experimental evidence suggest that these phenotypes

are largely attributed to enhanced ILK kinase activity

and phosphorylation of GSK3b and PKB/Akt [26], two

key enzymes involved in a diverse array of cell functions

including cell proliferation, survival and insulin responses

[31,32]. ILK-dependent phosphorylation of GSK3b in

epithelial cells downregulates GSK3b kinase activity

[26]. This in turn is associated with reduced E-cadherin

expression, enhanced AP1 activity and increased b-cate-
nin–Lef/Tcf activity [4,33], which induces the expression
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of cell-cycle-promoting genes such as cyclins and c-myc

[5,34]. The reduced E-cadherin expression could be due

to a direct effect of the b-catenin-Lef/Tcf complex on

E-cadherin gene expression [4]. Alternatively, ILK can

reduce E-cadherin levels indirectly by triggering snail

expression, which in turn represses E-cadherin gene

expression [30].

Full activation of PKB/Akt requires PIP3-dependent

phosphorylation of two residues: Thr308 and Ser473

[32]. Whereas PDK-1 (3-phosphoinositide-dependent

kinase 1) phosphorylates Thr308, ILK has been identified

as ‘PDK-2’, which phosphorylates Ser473 via a direct

interaction at the plasma membrane [26,35]. Besides

possessing a kinase activity, ILK fulfils other require-

ments of a PDK2, including PIP3 binding and regulation

of its activity by PI3K (phosphatidylinositol-3-kinase) or

PTEN (protein tyrosine phosphatase and tensin homo-

log) [26,27]. However, some doubts about ILK’s kinase

activity arose when it was reported that it has no Ser473

phosphorylation activity [36,37�]. These doubts were

reinforced by genetic studies in invertebrates and mice

that demonstrated normal Ser473 phosphorylation in the

absence of ILK [7��,21��,38]. Loss-of-function mutations

of ILK in worms and flies show no defects that can be

explained by impaired PKB/Akt activity, but develop

severe muscle defects that are fully rescued when differ-

ent kinase-dead versions of ILK are expressed [21��,38].
Similarly, fibroblasts with or without the ILK gene phos-

phorylate Ser473 to a similar extent following insulin or

PDGF stimulation [7��], and neither chondrocytes nor

keratinoyctes change their steady-state Ser473 phosphor-

ylation after ILK gene ablation in vivo [39] (T Sakai and

R Fässler, unpublished). These findings convincingly

demonstrate that ILK — even if it has Ser473 phosphor-

ylation activity — is not the only PDK2. These findings,

however, do not exclude the possibility that ILK med-

iates the phosphorylation of PKB/Akt and other target

proteins in an indirect manner, for example by recruiting a

kinase or inhibiting a phosphatase [37�,40]. Support for
such a notion also comes from gene ablation experiments.

Monocytes lacking ILK expression show reduced Ser473

phosphorylation [41�]. Similarly, ILK-null fibroblasts,

which respond normally to insulin treatment, fail to

maintain Ser473 phosphorylation levels to the same

extent as normal cells upon PDGF treatment [7��].
Furthermore, they display a slightly reduced steady state

level of Ser473 phosphorylation under normal culture

conditions (T Sakai and R Fässler, unpublished).

Other targets of the ILK kinase activity (Table 2) are b-
parvin [19], the regulatory myosin light chain (MLC) [42],

and MLC phosphatase [43,44] and its regulators CPI-17

(protein-kinase-C-dependent phosphatase inhibitor of 17

kDa) and PHI-1 (phosphatase holoenzyme inhibitor 1)

[45]. The significance of their phosphorylation, however,

is not clear.

Since ILK regulates so many essential cellular functions it

is important to settle the debate on ILK’s kinase activity.

Solving the structure of the ILK kinase domain will be

very informative, as will the analysis of mice carrying

‘kinase-dead’ versions of the ILK gene and the identifi-

cation of PDK2(s). In addition to these new experimental

approaches, new reagents to probe ILK’s function will be

useful. The E359K mutation in ILK, for example, was

originally found to lack kinase activity and was therefore

used in many studies as a ‘kinase-dead’ version of ILK. It

turns out, however, that the mutation does not affect

kinase activity but rather impairs paxillin binding and FA

targeting [46�]. Furthermore, a polyclonal anti-ILK anti-

serum that recognizes a 59 kDa band of unknown origin

instead of the 52 kDa sized ILK has been used in a large

number of studies and could potentially have given mis-

leading results [3,6,47].

Studies of ILK/Pinch/parvin in invertebrates
and mice
The attachment sites of the body wall muscle to the

hypodermis of C. elegans are called dense bodies and

resemble FA-like structures. They contain b-pat-3 integ-
rin (the only b integrin subunit in C. elegans), pat-4/ILK,
UNC-97/Pinch, pat-6/parvin and UNC-112/Mig-2 and

loss-of-function alleles of these proteins lead to severe

adhesion defects manifesting as muscle detachment and

embryonic lethality [21��,22,48,49�]. The loss-of-function

studies also reveal that b-pat-3 integrin is required to

recruit ILK to the plasma membrane [21��] and that

integrins are partially mislocalized in the absence of

pat-4/ILK [21��] or UNC-112/Mig-2/Kindlin-2 [22]. A

recent report showed that the Zn2+-finger-containing

transcription factor UNC-98 can bind UNC-97/Pinch

and is also required for muscle attachment to the body

wall [50�]. UNC-98 shuttles between dense bodies and

the nucleus where it binds DNA and probably regulates

gene transcription. So far an ortholog of the UNC-98 gene

has not been identified in flies or mammals.

Drosophila melanogaster has a similar requirement for bPS
integrins, ILK and Pinch in muscle cell attachment

[38,51��]. Interestingly, loss of bPS integrin function in

flies leads to detachment of ECM from the cell mem-

brane, while loss of ILK function leads to detachment of

F-actin from the plasma membrane, indicating an impor-

tant role for ILK in actin stabilization at integrin attach-

ment sites [38]. The severe muscle defect in worms or

flies lacking ILK can be fully rescued by the expression

of different kinase-dead ILK transgenes, supporting the

idea that ILK functions as an important adaptor protein,

independent of its kinase activity [21��,38].

The loss of ILK expression in mice leads to peri-implan-

tation lethality similar to what is seen upon loss of b1
integrin expression [7��,52]. The cause of the develop-

mental arrest was studied in embryoid bodies (EBs)
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[7��,53,54]; these studies showed that b1-integrin-mutant

EBs are unable to deposit a basement membrane (BM),

while ILK-null EBs produce a BM but fail to polarize the

epiblast (a primitive tissue that will give rise to all three

germ layers). Since addition of laminin to b1-integrin-null
EBs rescues the BM assembly phenotype and allows

epiblast development it is likely that b1 integrin and

ILK function independently during the peri-implantation

period [54].

Conditional loss of ILK in chondrocytes leads to skeletal

growth retardations characterized by abnormal chondro-

cyte shape and decreased proliferation in vivo [39,55], and
diminished chondrocyte spreading on ECM and reduced

stress fiber formation in vitro [39]. Similar, albeit more

severe, defects are also observed in mice with a chon-

drocyte-specific deletion of the b1 integrin gene [56],

indicating that b1 integrins and ILK are both required for

normal chondrocyte function. The mechanism leading to

reduced chondrocyte proliferation in the absence of ILK

expression is not understood; altered phosphorylation of

PKB/Akt or GSK-3b was excluded [39]. A conditional

deletion or reduction of ILK gene expression in macro-

phages, on the other hand, results in a strong inhibition

of the PKB/Akt-Ser473 phosphorylation associated with

apoptosis [41�], indicating that ILK kinase activity might

differ depending on the cell type.

Overexpression of ILK in mammary glands of transgenic

mice leads to tumor formation [29]. Similarly, pharma-

cological inhibition of ILK in prostate carcinoma cells

causes them to proliferate much less rapidly in vivo
[57��]. These findings can principally be explained by

the oncogenic activities of ILK (activation of PKB/Akt,

inhibition of GSK-3b, and stimulation of AP-1, NF-kB
and b-catenin–Lef/Tcf transcription factors) and its abil-

ity to promote tumor angiogenesis. ILK promotes blood

vessel invasion into tumors in two ways: ILK induces

HIF1a-dependent VEGF expression in tumor cells,

which in turn regulates endothelial cell migration and

proliferation in an ILK kinase-dependent manner [57��].
The importance of ILK for tumor pathology is under-

scored by the fact that a large number of malignant tumors

display increased ILK levels and kinase activity [58], and

in some tumor types ILK levels correlate with tumor

grade [59,60].

Outlook
ILK has many interesting functional facets and work in

both invertebrates and mice has revealed an essential role

for ILK in development. There is a general consensus

that ILK plays a central role in the reorganization of the

F-actin cytoskeleton and its attachment to FAs. The role

of ILK as a kinase is more controversial. Since a large

number of ILK functions rely on kinase activity, includ-

ing EMT, proliferation and VEGF expression, this con-

troversy should urgently be settled. This can be assisted

by solving the structure of the ILK kinase domain, using

continued genetic approaches or the well-defined anti-

bodies that have become available over the past few years.

As has already been done in flies and worms, it should be

tested in mice whether point mutations in the kinase

domain of ILK impair the function of the molecule.

An important future task will be to identify the signals

that trigger assembly of the ILK/Pinch/parvin complex, to

identify the proteins that recruit the core complex into

FAs, and to establish how the core complex modulates

integrin functions and regulates actin dynamics. The

availability of cell lines and mice that lack ILK and

the progress in proteomics and live cell imaging should

together help to dissect these mechanisms and to clarify

ILK’s role in integrin-mediated cell adhesion.
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Introduction

The skin is composed of an epithelial (epidermis and hair folli-

cle [HF]) and a mesenchymal compartment (dermis, subcutis, 

and dermal papilla [DP]) joined and maintained together by a 

basement membrane (BM). The interfollicular epidermis con-

tains multiple layers of keratinocytes at different stages of dif-

ferentiation, from a basal layer of undifferentiated, proliferating 

keratinocytes attached to the BM, to terminally differentiated, 

cornifi ed cells (Fuchs and Raghavan, 2002). The HF is an epi-

dermal appendage, which arises as an epithelial cone from the 

fetal epidermis after a series of epithelial–mesenchymal cues. 

The mature HF epithelium consists of a central hair shaft (HS), 

surrounded by an inner and an outer root sheath (IRS and ORS, 

respectively). HS and IRS differentiation from the hair matrix 

(HM) is induced by mesenchymal cues from the connective 

 tissue sheath and the DP. The mature HF has the ability to invo-

lute and regenerate, with cyclically alternating periods of rapid 

growth (anagen), apoptosis-driven regression (catagen), and 

relative quiescence (telogen). During each growth period, the 

progeny (transient amplifying [TA] cells) of epithelial stem 

cells located in the bulge region of the ORS extends into the 

mesenchymal compartment and generates a new HM. Here, 

epithelial cells change migration direction and terminally 

differentiate into IRS or HS (Paus and Cotsarelis, 1999).

Basal keratinocytes express several integrins, including 

α2β1, α3β1, α9β1, αvβ5, and α6β4 integrins (Watt, 2002). 

The α6β4 integrin is the core component of hemidesmosomes 

anchoring keratin fi laments to the BM, whereas α3β1 and α9β1 

integrins link the actin cytoskeleton to the BM. The α2β1 is 

found around the entire basal keratinocytes, where it is thought 

to mediate cell–cell interactions. ORS cells express α2β1, 

α3β1, and α6β4 integrins at different levels according to the 

 region of the HF (Commo and Bernard, 1997). In vitro studies 

with keratinocytes and genetic manipulations in mice revealed 

that β1 integrins regulate adhesion and differentiation of epider-

mal cells and play an essential role for hair germ invagination, 

ORS cell migration, and sustained HM proliferation during HF 
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morphogenesis (Brakebusch et al., 2000; Raghavan et al., 2000; 

Watt, 2002; Grose et al., 2002). An important and still largely 

unanswered question is how integrins mediate these functions 

in skin and HFs. Because integrin cytoplasmic domains lack 

 actin binding sites and enzymatic activity, signaling is imple-

mented through accessory molecules such as talin, α-actinin, 

and integrin-linked kinase (ILK; Brakebusch and Fässler, 2003). 

ILK is composed of N-terminal ankyrin repeats, a pleckstrin 

homology–like domain and a putative, C-terminal kinase domain 

(Hannigan et al., 1996; Grashoff et al., 2004, Legate et al., 

2006). ILK was given its name based on the enzymatic activity 

of its kinase domain (Delcommenne et al., 1998; Novak et al., 

1998; Persad et al., 2000), which was shown to phosphorylate 

several target proteins, including protein kinase B (PKB)/Akt 

and glycogen synthase kinase (GSK) 3β. The signifi cance of 

the ILK activity, however, is controversial as in vitro and in vivo 

results in fl ies, worms, and mice point toward an adaptor rather 

than an enzymatic function of ILK (Lynch et al., 1999; Zervas 

et al., 2001; Mackinnon et al., 2002; Hill et al., 2002; Grashoff 

et al., 2003; Sakai et al., 2003). A recent report proposed that the 

ILK activity is biologically relevant for transformed epithelial 

cells but not normal cells (Troussard et al., 2006). Whether the 

controversy may indeed be ascribed to the different biological 

systems used in the past to investigate ILK function awaits fur-

ther studies. Another important function of ILK is its ability to 

link integrins to the actin cytoskeleton and to modulate actin 

 reorganization (Zervas et al., 2001; Mackinnon et al., 2002; 

Grashoff et al., 2003; Sakai et al., 2003). Almost all proteins 

that bind ILK bind and/or regulate actin dynamics. They include 

PINCH1 and PINCH2, which bind actin modulators and con-

nect ILK to growth factor receptors, the parvin family of F-actin 

binding proteins, and paxillin, which recruits actin binding and 

regulatory proteins, including vinculin, talin, α-actinin, and 

FAK (for reviews see Grashoff et al., 2004; Legate et al., 2006). 

HF development and cycling is crucially dependent on the in-

activation of GSK-3β in HM cells (Fuchs et al., 2001; Huelsken 

et al., 2001). Active, nonphosphorylated GSK-3β can phosphor-

ylate β-catenin bound to a protein complex, collectively called 

the β-catenin degradation complex. Phosphorylation of GSK-3β 

inactivates the kinase and leads to stabilization and trans-

location of β-catenin to the nucleus, where it associates with the 

Lef1/Tcf family of DNA binding proteins to activate the tran-

scription of target genes, such as cyclin D1, c-myc, homeobox 

containing transcription factors, Lef1, and hair-specifi c keratins 

(Zhou et al., 1995; for review see Logan and Nusse, 2004). ILK 

can modulate the stability of β-catenin either through phos-

phorylating GSK-3β (Delcommenne et al., 1998; Novak et al., 

1998) or through inhibiting the β-catenin degradation complex 

(Oloumi et al., 2006) and could therefore play a central role for 

HF morphogenesis.

To test the function of ILK during epidermis and HF de-

velopment, we deleted the ILK gene in keratinocytes. We found 

that loss of ILK compromises epidermal keratinocyte adhesion 

and disrupts HF formation, leading to progressive hair loss. The 

HF defect was not due to an abnormal β-catenin stability, HM 

differentiation, or stem cell maintenance. Instead, the accumu-

lation of proliferating ORS cells points to an impaired HF 

downward growth in vivo.

Results

Deletion of ILK in keratinocytes leads 

to progressive hair loss

To delete the ILK gene in keratinocytes, fl oxed ILK mice were 

intercrossed with animals carrying the keratin 5 (K5)–Cre trans-

gene (ILK-K5 mice). Littermates carrying heterozygous fl oxed 

Figure 1. Keratinocyte-restricted deletion of 
ILK causes progressive hair loss. (A) ILK protein 
level in epidermal lysates of ILK Co and ILK-K5 
mice. (B) Back skin of 2-wk-old ILK Co and ILK-
K5 animals stained for ILK and α6 integrin. ILK 
is expressed in basal keratinocytes of the epi-
dermis (E), ORS, HM, DP, arrector pili muscle 
(AP), and dermis (D). ILK-K5 skin retains ILK ex-
pression in DP and dermis but lacks ILK expres-
sion in epidermis, HM, and ORS. Bar, 25 μm. 
(C) Control and ILK-K5 animals at 8 wk of age.
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ILK gene and the K5-Cre transgene served as controls (ILK Co). 

K5-mediated Cre expression deleted the ILK gene in back 

skin at around embryonic day 15, decreased ILK levels in new-

born skin, and led to the loss of the ILK protein thereafter 

(Fig. S1 A, available at http://www.jcb.org/cgi/content/full/

jcb.200608125/DC1). Western blot analysis in back skin epider-

mis of 6-d-, 2-wk-, 4-wk-, and 10-wk-old mice confi rmed the 

sustained absence of ILK (Fig. 1 A). Immunostained sections of 

2-wk-old control mice revealed ILK in basal epidermal kerati-

nocytes, ORS, HM, DP, and the arrector pili muscle (Fig. 1 B). 

ILK was absent from epidermis and HF epithelium of ILK-K5 

skin but still present in DP (Fig. 1 B).

ILK-K5 animals were indistinguishable from control 

 littermates at birth. At 1–2 wk, when control animals developed 

their hair coat, ILK-K5 animals had scattered hair with partial 

alopecia. This appearance endured until around 4 wk of age and 

was followed by progressive hair loss, leading to persistent alo-

pecia by 6–8 wk (Fig. 1 C). A reticular pigmentation pattern de-

veloped on the back skin of 8-wk-old ILK-K5 mice (Fig. 1 C), 

whereas hair coat and hair cycle–dependent skin color changes 

occurred normally in control mice.

Loss of ILK causes severe epidermal 

and HF abnormalities

The epidermis of ILK-K5 mice was morphologically normal at 

birth and postnatal day (P) 2 but became progressively hyper-

plastic (at P7–9, four to fi ve cell layers, and at P28, six to seven 

cell layers; Fig. 2, A and B). Although basal keratinocytes were 

polarized and tightly attached to the BM in control skin, they 

appeared fl attened in the mutant epidermis and were often 

 detached along the dermal–epidermal junction (DEJ; Fig. 2, 

A and B, asterisks). The detachment became more severe with 

age (at P7, 5–10% of total epidermal length; at P14, 30–50%; 

and at P70, up to 70%) but did not result macroscopically in 

visible skin blisters.

The most striking phenotype was a severe impairment of 

HF development in ILK-K5 mice characterized by a progres-

sive growth retardation, which was fi rst visible at around P2 

(Fig. 2, A and D). By P14, control mice had completed HF mor-

phogenesis, with all hair bulbs residing deep in the subcutis. In 

contrast, ILK-K5 HFs diverged into two subpopulations. (1) 

Approximately 33% of the mutant HFs reached the fi nal stages 

of HF morphogenesis but were shortened and profoundly dis-

torted. They displayed substantial hyperplasia of the ORS with 

up to six cell layers and condensed DPs (Fig. 2, A, C, and D, ▲). 

(2) Approximately 66% of the mutant HFs were arrested in their 

development. They failed to reach down deeper than the reticu-

lar dermis and showed defective morphogenesis with distorted 

or absent HS formation and misshapen HM and DP (Fig. 2, A, 

C, and D, ■). A plausible explanation for the varying HF popu-

lations is the combination of an asynchronous HF morphogenesis 

(Paus et al., 1999) and the perinatal loss of ILK protein 

Figure 2. Keratinocyte-restricted deletion of ILK leads to epidermal hyperplasia and epidermolysis and perturbs HF development and growth. (A) Hematoxylin-
eosin staining of sections derived from back skin of control and ILK-K5 mice. ILK-K5 mice display stunted HF morphogenesis leading to two HF types 
(▲, fully developed; ■, shortened and prematurely arrested), progressive epidermal detachment (asterisks), and dermal pigment deposition (arrowheads). 
Bar, 100 μm. (B) Epidermis from 2-wk-old ILK-K5 mice is hyperplastic and detached from the underlying dermis (asterisks). ILK-K5 keratinocytes show a fl at-
tened morphology. Bar, 25 μm. (C) High magnifi cation of hematoxylin-eosin–stained HFs from 9-d-old back skin. ILK-K5 HFs have multilayered ORS (▲) or 
show premature growth arrest with loosely attached, malformed DP (arrow; ■). Bar, 50 μm. (D) ILK-K5 HF growth is perturbed during morphogenesis and 
cycling. HF lengths of a minimum of 100 HFs per time point are presented as histograms. PC, panniculus carnosum; E, epidermis; D, dermis.
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expression: fully developed HFs (Fig. 2, ▲) lost ILK late in 

morphogenesis, whereas arrested HFs (■) lost ILK early in 

morphogenesis. At P28, none of the ILK-K5 HFs was able to 

initiate anagen characterized by HF downgrowth into the sub-

cutis (Fig. 2, A and D). By 10 wk of age, the ILK-K5 HFs were 

resorbed (Fig. 2 A) and melanin condensates within the dermis 

gave rise to a reticular skin pigmentation (Fig. 1 C).

Loss of ILK compromises keratinocyte 

adhesion and BM maintenance

Cell detachment in ILK-K5 skin points to a compromised inte-

grin function that could be caused by altered expression, activ-

ity, localization, or weaker linkage to the actin cytoskeleton. 

Integrin function was tested with adhesion assays using fi bro-

nectin (FN), collagen I (Col I), collagen IV (Col IV), and lam-

inin 332 (LM332) as substrates. Although interaction with 

poly-l-lysine was similar between ILK-K5 and control ke-

ratinocytes, adhesion to the ECM substrates was signifi cantly 

 diminished in ILK-K5 keratinocytes (Fig. 3 A).

Integrin expression determined by FACS revealed strong 

β1 integrin expression and a comparable Mn2+-triggered activa-

tion of β1 integrins on freshly isolated control and ILK-K5 

 keratinocytes. However, a subpopulation of ILK-K5 cells expressed 

lower levels of β1 integrin (Fig. S1 B). The expression levels of 

the α6, β4, and αv integrin subunits were not changed on ILK-

K5 keratinocytes, whereas the α3 and α2 integrin chains were 

slightly up-regulated (Fig. S1 B). In situ immunostaining re-

vealed differences in integrin localization at the cellular level. In 

control skin, β1 integrin was expressed around the entire  surface 

of basal keratinocytes (Fig. 3 B) and β4 and α6 integrins along 

the DEJ (Fig. 3 B and Fig. 4). In ILK-K5 skin, the β1 integrin 

subunit was present on basal keratinocytes but also on many su-

prabasal cells (Fig. 3 B), which maintained K14 expression (Fig. 

3 B, middle). The localization of α6 and β4 integrins on ILK-K5 

basal keratinocytes was comparable to control skin, with the ex-

ception of a few areas lacking detectable α6 and β4 integrin and 

some suprabasal cells showing a strong staining for α6 and β4 

integrin (Fig. 3 B). The latter cell population likely expressed 

similar levels of α6β4 integrins as basal keratinocytes, as FACS 

analysis of freshly isolated keratinocytes did not distinguish two 

populations of α6β4-expressing keratinocytes (Fig. S1 B).

The decreased keratinocyte adhesion was associated with 

severe BM defects. Although control skin showed a linear stain-

ing of LM332 along the DEJ and around HFs, ILK-K5 skin dis-

played irregular deposits of LM332 at the DEJ with areas of 

massive LM332 (Fig. 3 B, asterisks) diffusion into the dermis 

and dotlike deposits adjacent to integrin-positive suprabasal 

 keratinocytes (Fig. 3 B, right, arrowhead). EM of a control skin 

revealed a regular BM structure at the DEJ, whereas mutant skin 

showed an abnormal BM with discontinuities in the lamina densa 

between hemidesmosomes (Fig. 3 C). The number of hemides-

mosomes was normal except in areas with detached epidermis, 

where the number was reduced. Collectively, these data demon-

strate that loss of ILK weakens integrin-mediated adhesion of 

basal keratinocytes to the BM and abrogates BM integrity.

ILK regulates proliferation and 

differentiation of epidermal keratinocytes

ILK-defi cient epidermis was hyperplastic (Fig. 2 A). Ki67 immuno-

staining revealed that P4 epidermis from control as well as 

Figure 3. ILK ablation impairs keratinocyte adhesion, inte-
grin expression, and BM integrity and alters proliferation 
in vivo. (A) Cell adhesion of ILK-K5 keratinocytes from 4-d-old 
mice on FN, Col I, Col IV, and LM332 is signifi cantly reduced 
compared with control keratinocytes. Adhesion to poly-L-lysine 
(PLL) is not different (mean + SD of three independent experi-
ments; ***, P < 0.001). (B) Integrin expression in epidermis 
from 2-wk-old mice. In control skin, β1 and β4 integrins are 
expressed in basal keratinocytes, whereas in ILK-K5 skin both 
integrins are also found on suprabasal keratinocytes (arrow-
heads). In ILK-K5 mice, β4 integrin shows discontinuous stain-
ing on basal keratinocytes, LM332 diffuses into the upper 
dermis (asterisks), and β1 integrin–expressing suprabasal 
cells retain K14 expression. Bars, 25 μm. (C) Electron micro-
graphs of back skin sections of 2-wk-old control and ILK-K5 
mice. Control skin exhibits a continuous lamina densa (aster-
isks) and hemidesmosomes (arrowhead), whereas ILK-K5 skin 
shows a discontinuous lamina densa, which is preserved at 
hemidesmosomes (arrowhead) but largely absent in between. 
Bar, 0.25 μm. (D) Ki67 staining revealed the presence of pro-
liferating cells in ILK-K5 suprabasal layers. Suprabasal BrdU+ 
cells express β4 integrin. Bars, 25 μm.
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ILK-K5 skin contained comparable numbers of proliferating 

cells almost exclusively in the basal layer. At P7, however, ILK-

K5 skin contained normal numbers of proliferating cells in the 

basal layers and, in addition, a signifi cant number of proliferat-

ing cells in the suprabasal layers (Fig. S2, A and B, available 

at http://www.jcb.org/cgi/content/full/jcb.200608125/DC1). The 

ectopic keratinocyte proliferation was also observed in Ki67-

immunostained skin (Fig. 3 D). It occurred in areas with aber-

rant and normal BM and was associated with β1 and β4 integrin 

expression (Fig. 3 D).

To test whether loss of ILK expression also affected pro-

liferation of primary keratinocytes in vitro, we performed BrdU 

incorporation assays. In three independent experiments, we 

found an increased incorporation of BrdU in ILK-K5 keratino-

cytes when compared with control cells (Fig. S2 C). Surpris-

ingly, however, the phosphorylation of known ILK targets 

involved in cell cycle control, such as Ser9 of GSK-3β and 

Ser473 of PKB/Akt, and the expression of D-type cyclins were 

not changed in ILK-K5 epidermal lysates (Fig. S2 D).

The defective keratinocyte adhesion could trigger a chronic 

wound healing response with infi ltrating infl ammatory cells, 

which in turn may induce the ectopic proliferation of suprabasal 

keratinocytes in vivo. To test this, we searched skin sections 

from control and ILK-K5 mice for the presence of granulocytes 

and macrophages. As expected, granulocyte and macrophage 

infi ltrates were absent from P7 as well as P14 control skin (Fig. 

S3, A and B, available at http://www.jcb.org/cgi/content/full/

jcb.200608125/DC1). ILK-K5 skin also lacked granulocyte 

and macrophage infi ltration at P7 (Fig. S3, A and B), when 

abundant proliferation of suprabasal keratinocyte was already 

evident (Fig. S2 B). At P14, however, macrophages accumulated 

around ILK-K5 HFs and granulocytes beneath the epidermis 

(Fig. S3, A and B).

The presence of proliferating, integrin-positive keratino-

cytes in suprabasal layers points to an aberrant differentiation 

and/or mislocalization of undifferentiated ILK-K5 keratinocyte. 

To investigate differentiation, we analyzed the expression of 

epidermal keratins. K14 was expressed in basal cells and weakly 

extended into the fi rst suprabasal layer of control epidermis 

(Fig. 4 A). In ILK-K5 skin, K14 was expressed suprabasally in 

up to fi ve cell layers (Fig. 4 A). Normal suprabasal cells switched 

off K14 and K5 expression and instead expressed K10 (Fig. 

4 A). In ILK-K5 epidermis, K10 was absent from basal cells but 

strongly expressed in the four to fi ve suprabasal cell layers. In 

addition, there were often patches of cells lacking K10 but ex-

pressing integrins (Fig. 4 A, asterisks) and high levels of K14 

(Fig. 4 A and Fig. 3 B). Furthermore, although loricrin was con-

fi ned to the stratum granulosum and appeared as a thin linear 

signal in control epidermis, in ILK-K5 epidermis, loricrin was 

found in two to three cell layers, which contained large and 

round keratinocytes with prominent nuclei (Fig. 4 A). These 

data suggest that loss of ILK sustains proliferation and expres-

sion of basal layer markers in suprabasal cell layers and delays 

keratinocyte differentiation.

ILK maintains polarity of 

epidermal keratinocytes

ILK-defi cient keratinocytes have a fl attened shape (Fig. 2 B), 

suggesting that their polarity was impaired. To investigate 

keratinocyte polarity in vivo, we compared F-actin and the dis-

tribution of cell–cell adhesion molecules between control and 

ILK-K5 epidermis. In control epidermis, F-actin distributed to 

the apical and lateral plasma membranes of basal keratinocytes, 

whereas in ILK-K5 epidermis, the F-actin was also present at 

the basal plasma membrane zone facing the BM, where it 

frequently colocalized with nidogen (Fig. 4 B). Similar F-actin 

 defects were also seen in mutant HFs (Fig. 4 C).

In normal skin, E-cadherin and its junctional adaptor 

protein β-catenin were found at the lateral and apical plasma 

membrane of basal keratinocytes (Fig. 4 B and not depicted). 

Figure 4. Loss of ILK retards differentiation 
and disturbs polarity of epidermal keratino-
cytes. (A) Double immunostaining for K14, 
K10, or loricrin (Lor) and α6 integrin on back 
skin of 2-wk-old control and ILK-K5 animals. 
ILK-K5 epidermis shows several cell layers ex-
pressing K14 and loricrin, respectively. Inte-
grin α6 expression is discontinuous in ILK-K5 
skin and present on suprabasal cells (aster-
isks). Bar 25 μm. (B) Immunostaining for F-actin, 
β-catenin, and plakoglobin in 2-wk-old mouse 
skin. In control epidermis, F-actin and β-catenin 
are absent from the basal side of basal ke-
ratinocytes. In ILK-K5 epidermis, F-actin and 
β-catenin are found basally adjacent to nido-
gen (arrowheads). Plakoglobin localizes to the 
lateral–apical sides of basal keratinocytes 
of both control and ILK-K5 mice. Bar, 25 μm. 
(C) F-actin overlaps with α6 integrin in the mutant 
HF (arrowheads). Bars, 50 μm. (D) Western 
blot analysis reveals similar expression levels 
of E-cadherin and β-catenin in control and ILK-
K5 epidermal lysates.
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In ILK-K5 skin, the E-cadherin and β-catenin staining was nor-

mally distributed in areas where the epidermis was attached to 

the dermis. In areas where the epidermis was detached from the 

BM, both E-cadherin and β-catenin were redistributed to the 

basal side of basal keratinocytes (Fig. 4 B and not depicted). In 

epidermal lysates, E-cadherin and β-catenin protein levels were 

indistinguishable between control and ILK-K5 samples (Fig. 

4 D). The expression and localization of desmosomal components 

such as plakoglobin and desmoplakin (Fig. 4 B and not de-

picted), as well as the ultrastructure of desmosomes (Fig. S3 C), 

were unaffected in all areas of the ILK-K5 epidermis. We con-

clude that ILK controls cell polarity by maintaining the inte-

grity of the actin cytoskeleton and BM and not by regulating 

E-cadherin expression or the formation of cell–cell junctions.

Loss of ILK permits normal 𝛃-catenin–Lef1 

signaling and HF differentiation

A possible role of ILK for hair epithelium differentiation stems 

from the observation that ILK controls β-catenin–Lef1–mediated 

gene transcription either by phosphorylating and inactivating 

GSK-3β (Delcommenne et al., 1998) or by stabilizing β-catenin 

(Oloumi et al., 2006). To test whether GSK-3β and the down-

stream β-catenin–Lef1 complex were affected by the loss of 

ILK, we performed a series of different experiments. Immuno-

blotting of lysates from freshly isolated keratinocytes revealed 

that the total levels of GSK-3β and the extent of phosphor-

ylation of Ser9 did not differ between control and ILK-K5 

samples (Fig. S2 D). Immunostaining revealed that Lef1 and 

nuclear β-catenin were present in the precortical HM and HS 

cortex of control as well as fully developed ILK-K5 HFs (Fig. 5, 

A and B, ▲). Moreover, both proteins could clearly be de-

tected in the Ki67-positive HM cells of prematurely growth-

 arrested ILK-K5 HFs (Fig. 5, A and B, ■). To determine the 

activity of the nuclear β-catenin–Lef1 transcription factor com-

plex, ILK-K5 mice were intercrossed with reporter mice, in which 

β-galactosidase expression is controlled by nuclear β-catenin–

Lef1 (Maretto et al., 2003). The expression of β-galactosidase 

was clearly visible in the HS of control and fully developed 

ILK-K5 HFs (Fig. 5 C, ▲) and in cells of growth-retarded 

ILK-K5 HFs (Fig. 5 C, ■). Normal activity of the β-catenin–

Lef1 complex was further confirmed by determining the 

β-catenin–Lef1–dependent expression of IRS-specifi c keratins. 

The IRS keratin K6irs1 (Fig. 5 D) and K6irs2-4 (not depicted) 

were normally expressed in ILK-K5 HFs. Similarly, the expres-

sion of ORS keratins and several HS-specifi c markers (e.g., hHa1) 

was also normal in both populations of ILK-K5 HF (even 

though the localization of the K6irs1-positive cells in the short-

ened mutant HF was abnormal; Fig. 5 D). Altogether, these 

fi ndings demonstrate that ILK regulates neither the phosphory-

lation of GSK-3β and the stability and activity of β-catenin in 

HFs nor the differentiation of HM into the IRS or HS.

ILK loss leads to accumulation and 

premature proliferation of ORS cells

Loss of β1 integrin expression leads to reduced proliferation of 

epidermal keratinocytes and HF matrix cells (Brakebusch et al., 

2000; Raghavan et al., 2000). To assess whether altered prolif-

eration of the ILK-K5 HM accounts for the abnormal hair 

Figure 5. ILK-K5 HFs show normal 𝛃-catenin stability and hair-specifi c differentiation. (A) Control and mutant 2-wk skin sections stained for Ki67 and Lef1 
show an increased number of Ki67+ cells in the ORS (arrowheads), yet retained Lef1 expression in the HM and DP of ILK-K5 HFs. (B) Control and mutant 
2-wk skin sections stained for β-catenin revealed nuclear β-catenin (arrowheads) in precortical HM and proximal HS cortex in both control and long (▲) 
and short (■) ILK-K5 HFs. (C) BatGal reporter mice were intercrossed with ILK-K5 and control animals. LacZ activity is present in precortical HM and HS 
cortex of both control and ILK-K5 HFs. (D) Immunostaining of K14 for the ORS, of keratin K6irs1 for the IRS, and of keratin hHa1 for HS cortex and α6 inte-
grin. ILK-K5 HFs revealed the presence of a multilayered K14+ ORS. K6irs1 and hHa1 were expressed but mislocalized in short ILK-K5 HFs (arrowheads). 
Bars, 50 μm.
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development, we performed BrdU incorporation assays and de-

termined Ki67 expression. At P7, both fully developed ILK-K5 

HFs (Fig. 6 A, ▲) as well as growth-retarded HFs (Fig. 6 A, ■) 

showed an elevated number of proliferating cells in the ORS. 

To quantify the number of proliferating cells, we counted their 

numbers on fully developed ILK-K5 HFs (Fig. 6 A, ▲), thereby 

ensuring comparison of identical HF developmental stages. 

Counting of proliferating cells in P7 ILK-K5 HFs revealed that 

the increased number of proliferating ORS cells was associated 

with a slight but not signifi cantly lower amount of proliferating 

cells in the HM (Fig. 6, B–D). At P14, however, the number of 

proliferating cells signifi cantly diminished in the HM and 

further increased in the ORS (Fig. 6, B–D), suggesting that 

ILK-defi cient, rapidly proliferating TA cells are capable of 

proliferating but accumulate in the ORS. Moreover, neither 

TUNEL assays nor immunostaining for activated caspase-3 re-

vealed an elevation in apoptotic cell numbers, indicating that cell 

survival was unaffected in the ILK-K5 HFs (unpublished data).

The ORS cells originate from the CD34-positive stem cell 

population that is located in the hair bulge (Blanpain and Fuchs, 

2006). To determine whether ILK loss led to the elimination of 

CD34-positive cells, we immunostained P24 skin sections. Both 

control and ILK-K5 HFs contained CD34-positive cells in their 

hair bulges (Fig. 6 E). The formation of secondary hair germs is 

driven by the proliferation of hair bulge-derived TA cells trig-

gered by the inductive activity of the DP. At P24, normal HFs 

are at the onset of anagen, and Ki67+ TA cells appeared adja-

cent to the DP (Fig. 6 F, left). Ki67 staining of ILK-K5 skin 

 revealed the presence of two types of HFs: 	65% contained 

proliferating cells, suggesting that ILK-K5 HFs were princi-

pally capable of entering early stages of anagen (Fig. 6 F, middle). 

The remaining ILK-K5 HFs lacked proliferating cells (Fig. 

6 F, right), likely because they were detached from the DP (Fig. 

6 E, right) or connected to a malformed DP (Fig. 2 C) and, 

hence, did not receive the inductive signals. Collectively, these 

data suggest that ILK-K5 HFs contain CD34-positive stem cells 

that give rise to TA cells, which require ILK to migrate down to 

the HM or to trigger the downward growth of hair germs.

ILK is required for directional migration 

of keratinocytes

In ILK-K5 HFs, rapidly proliferating TA cells accumulate in the 

ORS, suggesting that ILK regulates their migration along the 

LM332-containing BM lining the HF. To test this assumption, 

we isolated keratinocytes from control and ILK-K5 mice and 

compared their migration behavior using different assays.

We fi rst performed transwell migration assays and observed 

that migration of primary ILK-K5 keratinocytes on LM332, 

as well as their invasion through laminin-rich matrigel, was 

signifi cantly impaired (Fig. 7 A). Next, we scratched mono-

layers of primary keratinocytes and observed the closure of 

the scratch over 12 h using time-lapse video microscopy. 

Figure 6. ILK-defi cient HFs accumulate proliferating cells in 
the ORS. (A) Fully developed ILK-K5 HFs display a hyperplastic 
ORS (++). Both types of ILK-K5 HFs (▲, ■) show an elevated 
number of Ki67-positive ORS cells. Auber’s line (green line; 
Auber, 1952) demarks the border between the proliferative 
and nonproliferative zones of the HM. Bar, 50 μm. (B) Quanti-
fi cation of BrdU+ cells in ILK Co and ILK-K5 HFs as a percent-
age of total cells in the ORS. The number of proliferating cells 
in the ORS is signifi cantly increased in mutant HFs. (C) The 
percentage of proliferating cells in the HM is normal in 7-d 
HFs but signifi cantly reduced in 14-d ILK-K5 HFs. (D) The 
overall number of cells is signifi cantly reduced in the HM of 
7- and 14-d ILK-K5 HFs. A minimum of 25 HFs were evaluated 
for B, C, and D at each time point (error bars indicate 95% 
confi dence interval of mean values; *, P < 0.05; ***, P < 
0.001). (E) Double immunostaining of CD34 and LM332 on 
skin sections of 24-d-old animals reveals the presence of a 
CD34+ bulge region (arrowheads) in ILK Co as well as ILK-
K5 HFs. Note that ILK-K5 HFs display a severely abnormal 
morphology at this stage sometimes with detached DP 
(bracket). Bar, 25 μm. (F) Double immunostaining of Ki67 
and LM332 on skin sections of 24-d-old animals. Proliferating 
hair germ is formed in HFs with DP and absent in ILK-K5 HFs 
without DP. HG, hair germ. Bar, 25 μm.
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After scratching, control keratinocytes displayed directional migra-

tion and invaded the denuded area (Fig. 7, B and D) with a mean 

wound closure speed of 42.3 μm/h, leading to the closure of the 

scratch within 12 h (Fig. 7 C). In contrast, ILK-K5 keratinocytes 

often stopped and migrated back- and sideward (Fig. 7 D), with 

a reduced wound closure speed of 9.7 μm/h (Fig. 7, B and C). 

Furthermore, single-cell tracking at the migration front revealed 

a migration velocity of 0.7 ± 012 μm/min by ILK-K5 keratino-

cytes versus 0.9 ± 016 μm/min by control cells (P < 0.01).

To more closely evaluate the migration defect, we per-

formed time-lapse microscopy of single keratinocytes. Control 

keratinocytes formed broad, usually single and stable leading 

edge lamella with a mean persistence of 985 ± 339 s that 

 allowed single cells to directionally migrate (Fig. 8, A and B; 

and Video 1, available at http://www.jcb.org/cgi/content/full/

jcb.200608125/DC1). In sharp contrast, ILK-K5 lamellae were 

instable and collapsed within 618 ± 332 s (Fig. 8 B). Further-

more, the mutant cells constantly extended new lamellae toward 

different directions simultaneously, which gave rise to frequent 

changes of the migration direction and consequently prohibited 

directional movement (Fig. 8 A and Video 2).

To precisely characterize lamellipodia behavior, we moni-

tored and quantifi ed the plasma membrane extension rates of 

migrating cells using kymography (Hinz et al., 1999) over a pe-

riod of 20 min. The lamellipodia of ILK-K5 keratinocytes per-

sisted for a signifi cantly shorter time (Fig. 8 C) and protruded 

more frequently than those of control keratinocytes (Fig. 8 D). 

Collectively, these data indicate that ILK is important for the 

stability and dynamics of the lamellae/lamellipodia and hence 

for directional migration of keratinocytes.

Loss of ILK leads to reduced 

spreading, focal adhesion (FA) formation, 

and FAK activation

The reduced adhesion of ILK-K5 keratinocytes to the ECM 

(Fig. 2 B and Fig. 3 A) can diminish the fi xation of plasma 

membrane protrusions to the ECM, impair cytoskeletal re-

organizations, and compromise integrin-triggered signaling, which 

in turn can cause the abnormal formation of leading-edge lamelli-

podia and impaired directional migration.

To test whether ILK is critical for the formation of 

 integrin adhesion sites and integrin signaling, we isolated 

 control and ILK-K5 keratinocytes. Both cultured cell types had 

comparable integrin profi les, β1 integrin activity, and α6β4-

containing migration track patterns at the rear of the cell (Fig. 

S4, A and B, available at http://www.jcb.org/cgi/content/full/

jcb.200608125/DC1). The size of ILK-K5 cells was smaller, 

reaching a threefold smaller spreading area 40 h after plating 

on a mixture of Col I and FN (Fig. S4 C). Talin staining of 

 adherent cells revealed that ILK-K5 keratinocytes formed fewer 

Figure 7. Loss of ILK impairs migration. (A) 
Freshly isolated keratinocytes were subjected 
to migration on LM332 and invasion through 
Matrigel. ILK-K5 keratinocytes show impaired 
migration and invasion (mean + SD of three 
independent experiments; ***, P < 0.001). 
(B) Time-lapse microscopy of a scratch assay. ILK-
K5 keratinocyte exhibit delayed wound closure. 
Bar, 100 μm. (C) Quantifi cation of the wound 
closure in the scratch assay. ILK-K5 wound clo-
sure is retarded (error bars indicate 95% confi -
dence interval of mean values). (D) Reduced 
directionality of single ILK-K5 keratinocytes in 
the leading front of keratinocytes after scratch 
induction (fi ve representative cells selected out 
of 40 analyzed for each genotype).

Figure 8. ILK-K5 keratinocytes exhibit reduced lamellipodia stability. 
(A) Time-lapse microscopy of single control and ILK-K5 keratinocytes. ILK-K5 
keratinocytes formed instable lamellipodia, leading to a constant change 
of direction (green arrows indicate the protrusion and red arrows the 
retraction of the cell). Single frames chosen from Videos 1 and 2 (available 
at http://www.jcb.org/cgi/content/full/jcb.200608125/DC1). Bar, 
10 μm. (B) Quantifi cation of lamella stability. ILK-K5 keratinocytes exhibit 
signifi cantly reduced lamella stability. (C and D) Quantifi cation of lamelli-
podia persistence (C) and lamellipodia frequency (D). Compared with 
control keratinocytes, ILK-K5 lamellipodia protrusions are signifi cantly less 
stable and occur more frequently. Error bars in indicate 95% confi dence 
interval of mean values. ***, P < 0.001.
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focal complexes (FCs) in the leading-edge lamellipodia (Fig. 

9 A). Additional immunostaining for paxillin and FAK showed 

that only 30% of the cells contained mature FAs (Fig. 9, B and D) 

whose number per cell and size were signifi cantly reduced 

(Fig. 9 C). The number of FAs in relation to the cell contact 

area, however, was not altered between ILK Co and ILK-K5 

keratinocytes. In line with the severe spreading defect, ILK-

K5 keratinocytes contained fewer stress fi bers than control cells 

(Fig. 9, A, B, and D).

ILK can associate with several FA components, which in 

turn can modulate the activity of adaptor and signaling proteins, 

including FAK and Rac1 (Legate et al., 2006). Therefore, we 

tested whether their function is affected in ILK-K5 cells. Al-

though total FAK levels were normal in ILK-K5 keratinocytes, 

the auto-activated form of FAK (pY397-FAK), as well as other 

tyrosine residues, such as Y861, were reduced (Fig. 9 E).

To test whether Rac-1 can be activated upon cell adhesion, 

we determined the levels of GTP-loaded Rac1 before and after 

cell seeding on LM322. Both ILK-K5 and control keratinocytes 

activated Rac1 to a similar extent (Fig. 9 F), indicating that the 

absence of ILK does not impair Rac1 activation in keratino-

cytes. Moreover, growth factor–induced activation of Rac1 

became similarly increased in control and ILK-K5 keratinocytes 

(unpublished data).

Discussion

In the present paper, we report that a keratinocyte-restricted 

deletion of the ILK gene in mice leads to abnormal HF morpho-

genesis and epidermal defects with blisters, ectopic keratinocyte 

proliferation in suprabasal cell layers, and abnormal keratino-

cyte differentiation. Mutant HFs produced proliferating pro-

genitor cells, which accumulated in the ORS and failed to 

replenish the HM. In vitro experiments revealed that ILK-

defi cient keratinocytes were unable to fi rmly stabilize lamelli-

podia, leading to impaired directional migration and providing 

a potential explanation for the accumulation of progenitor cells 

in the ORS.

Epidermal morphogenesis

The most prominent defects of the ILK-defi cient epidermis 

were detachment from the dermal–epidermal BM and hyper-

thickening. The hyperthickened epidermis contained a normal 

number of proliferating keratinocytes in the basal layer and, 

surprisingly, also proliferating keratinocytes ectopically in the 

suprabasal layers. The cycling cells in the suprabasal layers ex-

pressed markers of basal keratinocytes, including K5 and K14; 

β1, α6, and β4 integrins; and LM332, and were unevenly dis-

tributed. They were detected in areas where the epidermis was 

fi rmly attached to the BM but also in epidermal stretches above 

microblisters. A similar hyperplastic epidermis was previously 

observed in transgenic mice ectopically expressing β1 integrin 

in the stratum granulosum (Carroll et al., 1995). The β1 trans-

genic keratinocytes were hyperproliferative, which was thought 

to be triggered by an excessive cytokine release from infi ltrat-

ing infl ammatory cells. Because we did not observe a chronic 

wounding response with an obvious infl ammatory infi ltrate 

(likely because the blistering was mild) at P7, when suprabasal 

proliferation was already evident, the proliferation and hyper-

plasia of the ILK-K5 epidermis must be triggered by a different 

Figure 9. Impaired formation of FAs but 
 normal Rac1 activation in ILK-K5 keratinocytes. 
(A, left) Immunostaining of primary control and 
ILK-K5 keratinocytes for talin and F-actin. Con-
trol and ILK-K5 keratinocytes contain talin in 
FAs. ILK-K5 cells are enlarged twofold com-
pared with control cells. Bars, 10 μm. (right) A 
close up demonstrates talin in FCs at the lead-
ing edge of control cells (arrowheads). ILK-K5 
keratinocytes have fewer talin-positive FCs at 
the leading edge (arrowheads). Bars, 2.5 μm. 
(B) Immunostaining of control and ILK-K5 kera-
tinocytes for paxillin, F-actin, and DAPI. Bars, 
10 μm. (C) Quantifi cation of paxillin-contain-
ing FAs. ILK-K5 keratinocytes exhibit reduced 
size and amount of paxillin containing FAs 
compared with control keratinocytes. Error 
bars indicate 95% confi dence interval of mean 
values. *, P < 0.05; ***, P < 0.001. (D) Immuno-
staining of primary control and ILK-K5 kerati-
nocytes for FAK, F-actin, and DAPI. Note that 
mutant keratinocytes form fewer FAs that are 
poorly linked to thin and disorganized actin 
fi bers. Bars, 10 μm. (E) Western blot analysis 
of protein lysates from primary keratinocytes 
showing reduced FAK phosphorylation levels 
in the absence of ILK. (F) Western blot analysis 
of a GTPase pull-down assay showing normal 
activation of Rac1 in primary ILK-K5 keratino-
cytes after 30 min of adhesion on a LM322-
rich matrix.
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mechanism. A possible explanation is that the proliferating 

basal keratinocytes detach because of an impaired adhesion 

strength, which leads to their ectopic location and marked thick-

ening of the epidermis. It could also be that an accelerated 

 proliferation rate contributes to the ectopic distribution of 

 proliferating keratinocytes. Such a notion is supported by the 

elevated proliferation rate of primary keratinocytes in vitro. 

However, it is currently unclear why ILK-K5 keratinocytes 

would proliferate better than their normal control counterparts. 

Finally, delayed terminal differentiation of suprabasal keratino-

cytes may additionally contribute to the epidermal hyperplasia. 

In ILK-K5 epidermis, the K5- and K14-positive keratinocyte 

zone extended into several layers of the K10-positive stratum 

granulosum. Also the loricrin-positive cell compartment was 

increased. Interestingly, epidermal thickening and delay in ke-

ratinocyte differentiation was also observed in the β1 integrin–

defi cient epidermis (Brakebusch et al., 2000). In contrast to the 

ILK-K5 skin, however, the hyperthickened, β1 integrin–null 

epidermis contained fewer proliferating basal keratinocytes 

(Brakebusch et al., 2000; Raghavan et al., 2000), suggesting 

that β1 integrins accomplish keratinocyte differentiation 

through ILK and keratinocyte proliferation through an ILK-

independent mechanism.

The diminished integrin-mediated attachment of keratino-

cytes to the BM resulted in blister formation, deterioration of the 

BM, and abnormal distribution of E-cadherin and β-catenin above 

blisters. In attached epidermis, E-cadherin and β-catenin were 

normally distributed, suggesting that ILK affects E-cadherin–

based cell–cell adhesion structures rather indirectly. This is in 

contrast to previous reports showing that ILK regulates E-cadherin 

expression (Tan et al., 2001) and assembly of E-cadherin–based 

cell–cell adhesions (Vespa et al., 2005).

HF development and cycling

The most impressive phenotype of ILK-K5 mice is their pro-

gressive hair loss, which is completed at the age of 6–8 wk. 

Upon completion of morphogenesis, ILK-K5 skin revealed two 

types of abnormal HFs: long HFs with multilayered ORS and 

short, immature HFs that were stuck in the dermis. The exis-

tence of two types of HFs is most easily explained by the asyn-

chronous development of HFs over a period of several days. 

The depletion of the ILK protein around birth is consequently 

hitting HFs later (long HFs; Figs. 2, 5, and 6, ▲) or earlier (short 

HFs; Figs. 2, 5, and 6, ■) in their development. In both types 

of HFs, although much more pronounced in long HFs, we ob-

served an accumulation of proliferating cells in the hyperthick-

ened ORS. The concomitant reduction of proliferating cells in 

the HM and the presence of CD34-postive stem cells in the hair 

bulge suggest that TA cells are generated but fail to migrate 

down to and replenish the HM, arresting HF development and 

maintenance. It is conceivable that hyperproliferation, like in 

the epidermis, may additionally contribute to the hyperthicken-

ing of the ORS.

We also observed abnormal localization of DPs during 

HF morphogenesis and detachment of the DP from 	35% 

ILK-K5 HFs in P24 mice. Because the DP is releasing signals 

that are required for HF development and maintenance 

(Panteleyev et al., 1998), such abnormalities are likely to con-

tribute to the hair loss. Interestingly, ILK-K5 HFs still connec-

ted to the DP could respond to the inductive signals and trigger 

sustained proliferation. In spite of the successful induction of 

anaphase, however, downward migration of the mutant HF 

epithelium was never observed.

What could be the underlying mechanism for the defec-

tive migration? Our analysis of primary keratinocytes revealed 

that loss of ILK alters the formation of mature FAs and prevents 

persistent, directional migration. Single-cell imaging demon-

strated that ILK-K5 keratinocytes are perfectly able to form 

membrane protrusions but are unable to stabilize them over a 

prolonged period of time. As a consequence, lamellipodia are 

short-lived and frequently collapse. Interestingly, ILK-K5 kera-

tinocytes swiftly respond with the formation of new lamelli-

podia, often simultaneously at multiple sites of the cell. In vivo 

such a high turnover rate of lamellipodia would force migrating 

ILK-K5 ORS cells to continuously change the direction of 

movement, which, along with the reduced migration velocity, 

could explain their accumulation in the ORS and their handicap 

to arrive in the HM.

Molecularly, we found several defects that could account 

for the impaired directional persistence and migration speed. 

First, ILK-K5 keratinocytes showed weakened integrin adhe-

sion, which could compromise the fi xation of lamellipodia. 

Second, the defective formation of integrin adhesion sites could 

lessen integrin-signaling pathways crucial for cell migration, 

such as the activation of FAK. Third, diminished integrin sig-

naling could, in turn, lead to an impaired spatiotemporal activa-

tion of small Rho-like GTPases. The stabilization of lamellipodia 

and directional migration of keratinocytes critically depends on 

the optimal activation of the small GTPase Rac1 (Nobes and 

Hall, 1999; Ridley et al., 2003). In vitro studies with human 

 keratinocytes revealed that high Rac1 activity can lead to in-

effi cient migration with low lamellipodia persistence (Borm 

et al., 2005). Likewise, reduced Rac1 activity in α3β1 integrin–

defi cient keratinocytes can also result in directional migration 

defects and short-lived leading-edge lamellipodia (Choma et al., 

2004). The ILK-K5 keratinocytes show a normal Rac1 activa-

tion after seeding on a LM322-enriched ECM, indicating that 

either ILK is not required for modulating Rac1 activity in 

 keratinocytes or we were unable to detect small but critical 

differences in Rac1 activation between control and ILK-K5 

keratinocytes. Thus, we anticipate that loss of ILK is suffi cient 

to compromise the dynamics of lamellipodia and FAs and, con-

sequently, results in altered cell migration.

An abnormal proliferation rate of HM cells could also 

 potentially contribute to hair loss in ILK-K5 mice. Loss of β1 

integrins impairs ORS cell migration and proliferation of HM 

cells (Brakebusch et al., 2000; Raghavan et al., 2000). In sharp 

contrast, we found robust proliferation in the HM of short 

 ILK-K5 HFs. In fully developed ILK-K5 HFs, the number of 

proliferating HM cells diminished with the accumulation 

of proliferating cells in the ORS. These fi ndings, along with the 

increased proliferation rate of primary ILK-K5 keratinocytes 

in vitro, suggest that HM cell proliferation can be sustained 

in the absence of ILK.
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ILK does not regulate GSK-3𝛃 activity 

in HFs

The inactivation of GSK-3β and the subsequent stability and 

nuclear translocation of β-catenin and formation of a Lef1–Tcf–

β-catenin complex plays a fundamental role for the differentia-

tion of the HM cells into the precortical HM and HS (DasGupta 

and Fuchs, 1999; Huelsken et al., 2001). The inactivation of 

GSK-3β and stabilization of β-catenin is achieved by Wnt sig-

nals (Logan and Nusse, 2004) or by ILK-dependent phosphory-

lation of GSK-3β (Delcommenne et al., 1998) and/or inhibition 

of the β-catenin destruction complex (Oloumi et al., 2006). De-

spite the high expression of ILK throughout the entire HM, we 

found no evidence for reduced GSK-3β phosphorylation in 

ILK-K5 keratinocytes, decreased β-catenin levels, diminished 

Lef1–Tcf–β-catenin activity (both in prematurely arrested as 

well as fully developed HFs), or impaired differentiation of HM 

keratinocytes into trichocytes. These fi ndings indicate that, con-

trary to what has been reported for intestinal and mammary epi-

thelial cells (Novak et al., 1998) and for HEK293 and L2 cells, 

ILK is not required to stabilize β-catenin in the HF epithelium 

to induce expression of HS keratins. These fi ndings, along with 

recent observations in mice with other organ-specifi c ILK dele-

tions (Grashoff et al., 2003; Niewmierzycka et al., 2005), sug-

gest that the ILK activity, at least toward GSK-3β and PKB/Akt, 

may not be required under physiological conditions in vivo.

Materials and methods

Mouse strains
To obtain mice with a keratinocyte-restricted deletion of the ILK gene, trans-
genic mice expressing Cre under the control of the keratin-5 promoter 
(Brakebusch et al., 2000) were crossed with fl oxed ILK mice (Grashoff 
et al., 2003; Sakai et al., 2003). Offspring were genotyped as described 
previously (Grashoff et al., 2003). BatGal transgenic mice carry Lef1/Tcf 
binding sites in front of a minimal promoter and the lacZ gene (Maretto 
et al., 2003) and were intercrossed with the ILK mutant mice.

Keratinocyte, epidermal lysate, and GTPase pull-down assay
Primary keratinocytes were cultured in keratinocyte growth medium con-
taining 8% FCS and low Ca2+ (45 μM) on cell culture dishes coated with 
a mixture of Col I (Cohesion) and FN (Invitrogen) to subconfl uence as de-
scribed previously (Romero et al., 1999). Protein lysates from keratinocytes 
or epidermis were separated by SDS gel electrophoresis, blotted, and 
 incubated with the indicated antibodies.

For GTPase pull-down assays, keratinocytes were cultivated to 70% 
confl uence. Cells were then serum starved overnight and detached by Tryp-
sin/EDTA treatment (Invitrogen). Detached cells were resuspended in 
 serum-free keratinocyte growth medium and kept for 30 min in suspension. 
For adhesion-induced GTPase activation, cells were plated on a LM332-
rich matrix produced by Rac-11P/SD squamous cell carcinoma cells for 
30 min (Sonnenberg et al., 1993). Cells were washed twice with PBS 
and then lysed in lysis buffer (50 mM Tris-HCl, pH 7.4, 100 mM NaCl, 
1% Nonidet P-40, 10% glycerol, 2 mM MgCl2, 1 mM NaF, and 1 mM 
Na3VO4; all from Sigma-Aldrich) supplemented with protease inhibitor 
cocktail tablets (Complete Mini, EDTA-free; Roche) and containing biotinyl-
ated PAK-CRIB peptide (a gift from J. Collard, Netherlands Cancer Institute, 
Amsterdam, Netherlands). Lysates were centrifuged at 20,000 g for 10 
min at 4°C, and the supernatant was subsequently incubated for 45 min at 
4°C. Next, lysates were incubated with streptavidin-conjugated agarose 
beads (GE Healthcare) for 30 min at 4°C. Beads were washed three times 
with lysis buffer, resuspended in 2× SDS sample buffer, and boiled for 
5 min at 95°C. The supernatant was subjected to SDS gel electrophoresis, 
Western blotting, and immunodetection by the indicated antibodies. The 
following antibodies were used for Western blot analysis: mouse mAb 
against ILK (clone 3; BD Biosciences); rat mAb against α-tubulin (Kilmartin 
et al., 1982); rabbit pAb against PKB/Akt and phospho-PKB/Akt (Ser473; 

Cell Signaling Technology); mouse mAb against GSK-3β (BD Biosciences); 
rabbit pAb against phospho–GSK-3β (Ser9; Biosource International); 
mouse mAb against cyclin D1/2 (Upstate Biotechnology); rabbit pAb 
against cyclin A (Santa Cruz Biotechnology, Inc.); rabbit pAb against 
p42/44 MAPK (Cell Signaling Technology); mouse mAb against phospho-
p42/44 MAPK Thr202/204 (New England Biolabs, Inc.); rat mAb against 
E-cadherin (Zymed Laboratories); rabbit pAb against β-catenin (Sigma-
 Aldrich); rabbit pAbs against FAK (Upstate Biotechnology) and pFAK 
(Tyr397and Tyr861; Biosource International); mouse mAb against Rac1 
(BD Biosciences); and goat anti–rat HRP, goat anti–mouse HRP, and goat 
anti–rabbit HRP (Bio-Rad Laboratories).

Histology and immunohistochemistry
Skin samples were fi xed in 4% PFA in PBS, pH 7.2, overnight, dehydrated 
in a graded alcohol series, and embedded in paraffi n (Paraplast X-tra; 
Sigma-Aldrich) or frozen unfi xed in OCT (Thermo Shandon). Immuno-
histochemistry of skin sections was performed as described previously 
(Brakebusch et al., 2000). For cellular immunostainings, keratinocytes were 
seeded on chamber slides (Nunc) coated with 5 μg/ml of purifi ed LM332 
or 30 μg/ml Col I and 10 μg/ml FN and allowed to spread for 40 h. Cells 
were washed in PBS, fi xed in 4% PFA, and incubated with the indicated 
antibodies. To determine BrdU incorporation, mice were injected with 
BrdU (100 μg/g body weight) 2 h before killing. Assessment of prolifera-
tion of cultured keratinocytes was performed with the Cell Proliferation 
ELISA according to the manufacturer’s protocol (Roche). The following anti-
bodies were used for immunohistology: rabbit pAb against ILK (Cell Signal-
ing Technology); FITC-conjugated mAb against integrin α6 (BD Biosciences); 
rat mAb against β1 integrin (Chemicon); rat mAb against β4 integrin (BD 
Biosciences); rabbit pAb against laminin-5 (Brakebusch et al., 2000); rab-
bit pAbs against keratins 6, 10, and 14 and loricrin (Covance); rat mAb 
against E-cadherin; rabbit pAb against β-catenin; rabbit pAb β-catenin 
(Huelsken et al., 2000); rat mAb against nidogen (Chemicon); rabbit pAb 
against desmoplakin (Research Diagnostics); rabbit pAb against plakoglo-
bin (Santa Cruz Biotechnology, Inc.); rabbit pAb against Lef1 (obtained 
from R. Grosschedl, Max Planck Institute of Immunobiology, Freiburg, Ger-
many); rat Ki67 (Dianova); guinea pig pAbs against HF keratins (K6hf, 
K6irs1, K6irs2, K6irs3, K6irs4, hHa4, hHa5, hHb2, hHb5, CK5, and 
CK14; made by L. Langbein, German Cancer Research Center, Heidel-
berg, Germany); rat mAb against CD34 (clone RAM34; eBioscience); 
FITC-conjugated mouse mAb and POD-conjugated mAb against BrdU 
(Roche); rabbit pAb against cleaved caspase-3 (Asp175; Cell Signaling 
Technology); mouse mAb against paxillin (BD Biosciences); rabbit pAbs 
against FAK (Upstate Biotechnology) and phospho-FAK (Tyr397 and 
Tyr861; Biosource International); mouse mAb against Talin (Sigma-
 Aldrich); phalloidin Alexa488 (Invitrogen); goat anti–mouse Cy3, goat 
anti–rat Cy3, goat anti–rabbit FITC, and donkey anti–rabbit Cy3 (Jackson 
ImmunoResearch Laboratories); goat anti–rabbit Alexa488 (Sigma-Aldrich); 
and goat anti–rat Alexa488 (Invitrogen). Images were collected at room 
temperature by confocal microscopy (DMIRE2; Leica) using the Leica Con-
focal Software (version 2.5 Build 1227) with 63× NA 1.4 or 100× NA 
1.4 oil objectives or by bright fi eld microscopy (Axioskop; Carl Zeiss 
 MicroImaging, Inc.) with 10× NA 0.3, 20× NA 0.5, or 40× NA 0.75 
objectives, a camera (DC500; Leica), and IM50 software.

FACS analysis
Flow cytometry was performed as described by Brakebusch et al. (2000). 
Antibodies used for FACS analysis are as follows: FITC-conjugated hamster 
mAb against integrin β1; rat mAb against integrin β1 9EG7; FITC-conjugated 
rat mAb against integrin α6; biotinylated rat mAb against integrin αV; rat 
mAb against integrin β4; FITC-conjugated hamster mAb against integrin 
α2; biotinylated rat mAb against integrin α5 (all obtained from BD Bio-
sciences); mouse mAb against integrin α3 (BD Biosciences); Streptavidin-
Cy5 (BD Biosciences); mouse mAb anti–rat FITC (BD Biosciences); and 
goat anti–mouse FITC (Jackson ImmunoResearch Laboratories).

Adhesion and transwell assays
Adhesion of epidermal keratinocytes to ECM proteins (poly-L-lysine [Sigma-
Aldrich], Col I, Col IV [a gift from R. Timpl, Max Planck Institute of Biochem-
istry, Martinsried, Germany], FN, and LM332) was measured as described 
previously (Fässler et al., 1995). Transwell migration and matrigel invasion 
assays of primary keratinocytes were performed as described by Thomas 
et al. (2001).

Cell-wounding assay
Monolayers were treated with 4 μg/ml Mitomycin C (Sigma-Aldrich) for 
4 h before scratching with a 200-μl plastic micropipette to obtain wound 
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widths of 500–600 μm. Live-cell recordings were performed immediately 
after wounding for 12 h at 37°C and 5% CO2 using a microscope (Axio-
vert; Carl Zeiss MicroImaging, Inc.) equipped with 10× NA 0.3, 20× NA 
0.4, 40× NA 0.6, and 100× NA 1.3 objectives, motorized scanning 
 table (Märzhäuser) and a stage incubator (EMBL Precision Engineering). 
Images were captured every 10 min with a cooled charge-coupled device 
camera (MicroMAX; Roper Scientifi c) using the MetaMorph software (Uni-
versal Imaging Corp.) for microscope control and data acquisition. Wound 
closure was quantifi ed by measuring the distance between both leading 
edges moving toward the wound in 20 randomly chosen regions. At least 
four independent scratch-wound experiments were used for calculations. 
Migration velocity was determined by calculating the slope of a linear re-
gression line. Single-cell tracking of cells within the leading edge was per-
formed using MetaMorph software, choosing 15 cells each in at least three 
independent experiments.

Cell spreading
Cells were seeded on Col I/FN-coated dishes (MatTek Corporation) and 
allowed to spread for the indicated time. Four images were taken by the 
live-cell recording unit for each time point, and cell area was assessed 
 using MetaMorph software.

Kymograph analysis
Lamellipodia dynamics and lamella stability was analyzed using kymogra-
phy (Hinz et al., 1999). We monitored at least 10 migrating cells over a 
period of 20 min with a frame rate of 4 s using the live-cell imaging unit 
(100× NA 1.3 objective). Subsequently, eight areas of interest across the 
cell lamella with a 1-pixel width were defi ned. The 1-pixel-wide images 
were pasted side-by-side to generate a composite image of membrane dy-
namic at a single point along the cell lamella. As described by Hinz et al. 
(1999), slopes of these lines were used to calculate the velocities, and 
 projections of these lines along the x axis (time) were used to calculate the 
persistence of protrusions.

Transmission EM
Transmission EM was performed as described previously (Grose et al., 2002).

Statistical analysis
Statistical evaluation was performed with SPSS software (SPSS, Inc). Statistical 
signifi cance between data groups was determined by Whitney U test and 
subdivided into three groups (*, P < 0.05; **, P < 0.01; ***, P < 0.001).

Online supplemental material
Fig. S1 shows the ILK expression on newborn and 2-d-old skin sections 
and the integrin-expression pattern on freshly isolated control and ILK-K5 
keratinocytes. Fig. S2 shows the numbers of proliferating cells in basal 
and suprabasal layers of control and ILK-K5 epidermis, in vitro prolifera-
tion of primary control and ILK-K5 keratinocytes, and the phosphorylation 
levels of GSK-3β and PKB/Akt. Fig. S3 shows immunostaining for Mac1 
and Gr1 on skin sections of 7-d- and 2-wk-old mice and transmission EM 
of desmosomal contacts in the epidermis. Fig. S4 shows the integrin-
 expression pattern and immunostaining for integrins on cultured primary 
control and ILK-K5 keratinocytes and spreading kinetics of freshly isolated 
keratinocyte. Video 1 shows time-lapse video microscopy of control 
keratinocytes. Video 2 shows time-lapse video microscopy of ILK-K5 keratino-
cytes. Online supplemental material is available at http://www.jcb.org/
cgi/content/full/jcb.200608125/DC1.
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Abstract 

PINCH1 is a LIM-only domain protein that forms a ternary complex together with 

integrin-linked kinase (ILK) and parvin (IPP-complex) and is subsequently 

recruited to integrin adhesion sites. We report here that the keratinocyte-

restricted deletion of the PINCH1 gene results in epidermal detachment from the 

epidermal-dermal basement membrane, epidermal hyperthickening and 

progressive hair loss in mice. The hyperthickened epidermis was characterized 

by the presence of cycling, integrin-positive keratinocytes in the suprabasal 

layers. This was likely due to impaired adhesion to and displacement from the 

BM rather than an aberrant orientation of mitotic spindles and thereby abnormal 

positioning of cycling cells. Interestingly, PINCH1-deficient keratinocytes 

displayed severe cell-cell adhesion defects, which were neither observed in ILK- 

nor β1 integrin-null epidermis. The mutant hair follicles were highly distorted and 

shortened. They failed to initiate epithelial downgrowth during cycling resulting in 

their elimination by inflammatory macrophages. Impaired hair downgrowth was 

associated with severe defects in focal adhesion formation, actin cytoskeleton 

assembly and migration of keratinocytes lacking PINCH1 in vitro. Our data show 

that PINCH1 is important for epidermis and hair follicle biology and that it acts 

together with as well as independent of β1 integrin and ILK. 
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BM, basement membrane; Col1: collagen type 1; d: days; DEJ: dermal-epidermal 
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Introduction 

The skin is the largest organ in mammals and provides multiple critical functions 

required for survival. It forms a tight barrier which prevents loss of body fluids 

from the inside and protects against infectious agents, temperature changes, 

trauma or substance uptake from the outside. The skin is composed of an 

epithelial compartment called epidermis, a mesenchymal compartment called 

dermis, a basement membrane (BM) which separates them, and the adipose 

subcutis. The epidermis is a stratified squamous epithelium composed of several 

layers. The basal cell layer is in direct contact with the underlying BM and 

contains a pool of stem and/or progenitor cells. Upon differentiation keratinocytes 

withdraw from cell cycle, undergo a distinct differentiation program and move 

upwards through spinous, granular layers and finally the stratum corneum before 

they slough off (Fuchs and Raghavan, 2002). Two distinct processes have been 

described to ensure epidermal stratification from the basal cell layer: (i) down-

modulation of the BM adhesion and suprabasal translocation of committed cells 

or (ii) asymmetric cell division of basal cells leading to the suprabasal positioning 

of one daughter cell (Lechler and Fuchs, 2005; Vaezi et al., 2002). It was recently 

reported, however, that the spindle orientation in dividing basal keratinocytes of 

adult mouse skin occurs parallel to the BM, thus favoring BM detachment as 

mechanism leading to epidermal stratification (Clayton et al., 2007). 

Hair follicles (HFs) arise from the epidermis during embryogenesis in response to 

a tightly controlled exchange of signaling molecules with the underlying 

mesenchyme. HF morphogenesis lasts until postpartum and is characterized by 

epithelial-mesenchymal interactions, localized downgrowth of the epithelium into 

the dermis and keratinocyte differentiation. The mature HF forms a unit between 

the epithelial cone and a specialized mesenchymal compartment, the dermal 

papilla (DP) located at the distal tip of the cone. The HF epithelium contains 

concentric layers such as the outer root sheath (ORS), inner root sheath (IRS), 

the central hair shaft (HS), and at its base the proliferating hair matrix cells that is 

in contact with the DP. The HF stem cells reside in the bulge, a specific region 
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within the proximal ORS. From there, transit-amplifying (TA) cells constantly 

migrate downwards along the ORS to replenish the proliferative cell pool of the 

hair matrix. After completion of morphogenesis HFs undergo life-long cycles of 

regression (catagen), quiescence (telogen) and re-growth (anagen) (Paus and 

Cotsarelis, 1999). 

Both cell-matrix and cell-cell adhesions play fundamental roles in maintaining the 

protective and barrier functions of the epidermis. Attachment to the BM is 

mediated by α6β4 integrins in hemidesmosomes and several members of the β1 

integrin subfamily. Intercellular adhesion within the epidermis in turn occurs via 

adherens junctions, desmosomes and tight junctions (Fuchs and Raghavan, 

2002). The tight interplay of the different adherens structures is crucial for the 

functional integrity of the epithelium. Disruptions of any of these components 

affects epidermal homeostasis, function and differentiation as well as HF 

formation/maintenance (Jamora and Fuchs, 2002). 

Integrins play a fundamental role in mediating cell-matrix adhesion. They are 

heterodimeric transmembrane receptors composed of an α and a β subunit that 

mediate binding to extracellular matrix components. Integrin engagement 

anchors the cytoskeleton to the cell membrane and regulates intracellular 

signaling cascades. Various integrins are found in the epidermis. Under normal 

conditions α2β1, α3β1, α6β4 and αvβ5 are expressed by basal and αvβ8 in 

suprabasal keratinocytes. Under pathological conditions such as response to 

injury or in vitro culture keratinocytes upregulate α5β1, αvβ6 and α9β1 (Watt, 

2002). α6β4 integrin is the core component of the hemidesmosomes anchoring 

basal keratinocytes to the underlying BM. It binds laminin-5 (LM332) and recruits 

intermediate filaments to hemidesmosomes. α3β1 integrin also binds LM332 and 

was suggested to be involved in hemidesmosome nucleation (Litjens et al., 

2006). The role of α2β1 integrin is still unclear. It is abundantly expressed, 

localizes both to the baso-lateral and apical surfaces and is required for 

keratinocyte adhesion to type 1 collagen in vitro (Zhang et al., 2006). A 

requirement for α2β1 integrin in keratinocyte migration is debated (Grenache et 
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al., 2007; Zweers et al., 2007). The ORS keratinocytes express α2β1, α3β1 and 

α6β4 integrins (Commo and Bernard, 1997). 

The role of the β1 integrin family in keratinocytes affects epidermal adhesion, 

proliferation and differentiation, BM maintenance, HF formation and wound 

healing (Brakebusch et al., 2000; Grose et al., 2002; Raghavan et al., 2000). 

As integrin cytoplasmic tails lack enzymatic activity as well as binding sites for 

cytoplasmic proteins, their functions depend on the recruitment of accessory 

proteins. One member of the “integrin adhesome” (Zaidel-Bar et al., 2007) is the 

integrin-linked kinase (ILK) that directly binds the β1 integrin cytoplasmic tail. ILK 

is composed of N-terminal ankyrin repeats and a C-terminal putative Ser/Thr 

protein kinase domain interspersed with a pleckstrin-homology-like domain. ILK 

binds C-teminally to the actin-binding parvin family consisting of α-, β- and γ-

parvin and via the first N-terminal ankyrin repeat to PINCH (Tu et al., 1999). The 

formation of the heterotrimeric ILK-PINCH-Parvin (IPP)-complex occurs in the 

cytosol and precedes its translocation to the integrin adhesion site. Interestingly, 

protein stability of each of the IPP-complex members depends on complex 

formation as depletion of one member leads to proteasomal degradation of the 

others (Fukuda et al., 2003; Grashoff et al., 2004; Legate et al., 2006). 

The PINCH family in vertebrates consists of two members: PINCH1 (LIMS1) and 

PINCH2 (LIMS2) whereas invertebrates such as Caenorhabditis elegans or 

Drosophila melanogaster possess only one PINCH ortholog. All PINCH proteins 

are composed of five LIM domains composed of two cysteine-rich zinc-fingers 

that mediate protein-protein interactions, and C-terminal nuclear localization 

sequences (Braun et al., 2003a; Rearden, 1994). Binding to ILK occurs through 

the first LIM domain (Tu et al., 1999). Genetic studies revealed that Unc-

97/PINCH is required for the integrity of integrin attachment sites and thus for 

normal development of C. elegans (Hobert et al., 1999; Norman et al., 2007) and 

D. melanogaster (Clark et al., 2003). In mice, PINCH1 and PINCH2 are 

expressed in a large number of tissues (Braun et al., 2003a). PINCH2 deficient 

mice do not show any overt phenotype, but upregulation of PINCH1 in tissues 

with prominent PINCH2 expression suggests functional compensation of the two 
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isoforms in vivo (Stanchi et al., 2005). Genetic ablation of PINCH1 in mice leads 

to early embryonic lethality during implantation characterized by impaired 

endodermal and epiblast adhesion to an abnormal BM, abnormal cell-cell 

adhesion and increased apoptosis (Li et al., 2005; Liang et al., 2005). In vitro 

studies in Hela cells showed that PINCH1 – together with ILK - is required for 

actin-dependent processes such as spreading and migration, and for cell 

survival. The loss of both PINCH1 and ILK triggered apoptosis via impairing Akt 

phosphorylation. Interestingly, loss of PINCH1 reduced Akt phophorylation on 

both the Ser473 and Thr 308, whereas loss of ILK selectively affected Ser473 

phosphorylation (Fukuda et al., 2003). 

The fourth LIM domain of PINCH can weakly bind Nck2, a SH3- and SH2-

containing adaptor protein. Nck2 in turn interacts with key components of growth 

factor receptor and GTPase signaling (Tu et al., 1998). Nck2 regulates actin 

dynamics through several pathways: via the WASP family members and the 

Arp2/3 complex, small GTPases and PAK or DOCK180 (Buday et al., 2002). 

Recent findings highlight the importance for the PINCH-Nck2 interaction for the 

regulation of cytoskeletal dynamics. Mutant PINCH defective for Nck2 binding is 

unable to localize to integrin adhesion sites. Furthermore, this mutant fails to 

rescue the spreading defects of PINCH1 and PINCH2 double null cells 

(Vaynberg et al., 2005; Velyvis et al., 2003). The use of deletion mutants of 

PINCH suggests that PINCH binding to different partners, i.e. Nck2 or ILK, might 

be crucial the for coupling integrin functions to downstream effectors (Norman et 

al., 2007; Xu et al., 2005). However, it is currently unclear whether the PINCH-

Nck2 interaction is of any relevance in vivo. Mice with a genetic deletion of either 

Nck1 or Nck2 are phenotypically normal due to functional redundancy although 

PINCH binds Nck2 only (Bladt et al., 2003; Tu et al., 1998). 

One additional link between the IPP-complex and the actin cytoskeleton is the 

interaction of PINCH and ILK with thymosin β4, a small, G-actin monomer 

sequestering peptide (Bock-Marquette et al., 2004). Furthermore, PINCH1 has 

been shown to interact with Ras-suppressor protein RSU-1 in both vertebrates 

(Dougherty et al., 2005) and D. melanogaster (Kadrmas et al., 2004) which 
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negatively regulates the JNK activity. Several studies in vivo and in vitro have 

also revealed nuclear localization of PINCH (Hobert et al., 1999; Li et al., 2005; 

Zhang et al., 2002). Although other LIM domain proteins also shuttle between 

adhesion sites and the nucleus (Hervy et al., 2006), no nuclear function has so 

far been attributed to PINCH. Despite the characterization of PINCH-specific 

interactors, the interdependence of protein stability within the IPP complex has 

hampered the identification of IPP-independent functions of PINCH or any other 

IPP-complex member. Only very recent findings that implicate PINCH1 in cell-cell 

adhesion or ILK in centrosome assembly assign separate functions, however, 

without addressing the molecular mechanisms (Fielding et al., 2008; Li et al., 

2005). 

To analyze PINCH1 function in vivo we conditionally ablated the PINCH1 gene in 

keratinocytes using the keratin5 (K5)-Cre transgene. By comparing the offsprings 

with the keratinocyte-specific depletions of ILK (Lorenz et al., 2007) we 

addressed the question whether ILK and PINCH1 function exclusively in concert 

with each other or whether IPP-independent functions play a role in 

keratinocytes. Our data demonstrate that PINCH1 is important for integrin-

mediated cell adhesion and cytoskeletal dynamics downstream of integrin and 

ILK. In vitro analysis of PINCH1-deficient keratinocytes revealed defective actin 

cytoskeleton formation and dynamics during adhesion, migration and spreading, 

reminiscent of but more pronounced than in the absence of ILK. Importantly, 

defects in intercellular adhesion were a consequence specific to PINCH1-

deficiency. These results suggest that PINCH1 functions downstream of integrins 

in the regulation of cell-matrix and cell-cell adhesion, partly in cooperation with 

ILK but partly via IPP-independent pathways. 
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Materials and Methods 

Mouse Lines 

To obtain mice with a keratinocyte-restricted deletion of the PINCH1 gene, a 

transgenic line expressing Cre under the control of the K5 promoter (Ramirez et 

al., 2004) was crossed with floxed PINCH1 animals (Li et al., 2005). Offspring 

were genotyped by PCR as described (Li et al., 2005). 

Keratinocyte cell culture and epidermal lysates 

Primary keratinocytes were isolated and cultured in keratinocyte growth medium 

(KGM) based on MEM (Spinner Modification; Sigma) containing 8% FCS, low 

Ca2+ (45 µM) and supplemented with growth factors on a mixture of Col1 

(Cohesion) and FN (Merck) (10µg/ml) as described (Montanez et al., 2007). In 

vitro differentiation of primary keratinocytes was induced by adding 1.2 mM CaCl2 

to KGM for 24 hours. 

Epidermal lysates were prepared from freshly isolated epidermal keratinocytes 

lysed in lysis buffer (1% Triton X-100; 1% Na-deoxycholate; 0.1% SDS; 50 mM 

HEPES, pH7.4; 150 mM NaCl; 10% glycerol; 100 mM NaF; 10 mM Na4P2O7; 1.5 

mM MgCl2; 1 mM EGTA; 1mM Na-orthovanadate; all from Sigma) supplemented 

with protease inhibitor cocktail tablets (Complete Mini, EDTA-free; Roche). 

Protein lysates were separated by SDS gelelectrophoresis, blotted and incubated 

with the indicated antibodies. 

The following antibodies were used for western blot analysis: mouse mAb 

against ILK (clone 3, BD Biosciences); mouse mAb against PINCH (BD 

Biosciences); rat mAb against tubulin (clone YL1/2, Millipore); goat anti rat-HRP, 

goat anti mouse-HRP (Biorad). 

Cell wounding assay and single cell analysis 

Cell wounding assays were performed with monolayers of primary keratinocytes 

treated with 4 µg/ml Mitomycin C (Sigma) for 4h prior to scratching with a 200µl 

plastic micropipette to obtain wound widths of 500–600 µm. Wound closure was 
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monitored for 12h with a frame rate of 10 min and quantified by measuring the 

distance between both leading edges moving towards the wound in 20 randomly 

chosen regions per time point. Migration velocity was determined by calculating 

the slope of a linear regression line. For single cell analysis, cells were monitored 

over a period of 20 min with a frame rate of 4s. All live cell recordings were 

performed at 37°C and 5% CO2 using a Zeiss Axiovert microscope equipped with 

a 10x NA0.3, 20x NA0.4, 40x NA0.6, 100x NA1.3 objectives, motorized scanning 

table (Märzhäuser) and a stage incubator (EMBL Precision Engineering). Images 

were captured with a cooled CCD camera (Roper Scientific MicroMAX) using the 

Metamorph software (Universal Imaging Corporation) for microscope control and 

data acquisition. 

FACS analysis 

Flow cytometry was carried out as previously described (Brakebusch et al., 

2000). Antibodies used for FACS analysis: FITC-conjugated hamster mAb 

against integrin β1; rat mAb against integrin β1 9EG7; FITC-conjugated rat mAb 

against integrin α6; biotinylated rat mAb against integrin αV; rat mAb against 

integrin β4; FITC-conjugated hamster mAb against integrin α2; biotinylated rat 

mAb against integrin α5 (all BD Biosciences); Streptavidin-Cy5 (BD Biosciences); 

mouse mAb anti rat-FITC (BD Biosciences); goat anti mouse-FITC (Jackson 

Immunoresearch). 

Adhesion assay 

Adhesion of epidermal keratinocytes to extracellular matrix proteins (Poly-L-

Lysine (Sigma), Col1 (Cohesion), FN (Merck), LM332 (M. Aumailley)) was 

measured as previously described (Fässler et al., 1995). 

Transmission Electron Microscopy 

TEM was performed as described in (Grose et al. 2000). 
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Histology and immunohistochemistry 

Skin samples were fixed in 4% PFA in PBS, pH 7.2, overnight, dehydrated in a 

graded alcohol series, and embedded in paraffin (Paraplast X-tra; Sigma) or 

frozen unfixed in OCT (Thermo Shandon). Histology and immunohistochemistry 

of skin sections was performed as described (Brakebusch et al., 2000; Montanez 

et al., 2007). Cultured keratinocytes were seeded on Col1 (Cohesion) and FN 

(Merck) (10µg/ml)-coated glass cover slips and allowed to spread for 40h prior to 

optional differentiation and fixation in 4% fresh PFA. Cells were incubated with 

the indicated antibodies as described in (Montanez et al., 2007). To determine 

BrdU incorporation, mice were injected with BrdU (100 µg/g body weight) 4h 

before sacrificing. 

The following antibodies were used for immunohistology: FITC-conjugated 

mouse mAb and POD-conjugated mAb against BrdU (Roche); rat mAb against 

E-cadherin (Zymed); rabbit pAb against α-catenin; rabbit pAb against β-catenin 

(Sigma); rabbit pAb β-catenin (Huelsken et al., 2000); rat mAb against CD34 

(clone RAM34, eBioscience); rabbit pAb against desmoplakin (Research 

Diagnostics); rat mAb against Gr1 (BD Biosciences); mouse mAb against ILK 

(Upstate); FITC-conjugated mAb against integrin α6 (BD Pharmingen, CA, USA); 

rat mAb against β1 integrin (Chemicon); rat mAb against β4 integrin (BD 

Pharmingen); rabbit pAbs against keratin 6, 10 and 14, Loricrin (Covance); rat 

mAb against Ki67 (Dianova); rabbit pAb against LM332 (obtained from M. 

Aumailley, Cologne, Germany); rat mAb against Mac1 (BD Biosciences); rat mAb 

against nidogen (Chemicon); rabbit pAb against Paxillin (Santa Cruz); mouse 

mAb against PINCH (BD Biosciences); rabbit pAb against plakoglobin (Santa 

Cruz); mouse mAb against Vinculin (Sigma); Phalloidin Alexa488 (Invitrogen); 

goat anti mouse-Cy3, goat anti rat-Cy3, goat anti rabbit-FITC and donkey anti 

rabbit-Cy3 (Jackson Immunoresearch); goat anti rabbit-Alexa488 (Sigma); goat 

anti rat-Alexa488 (Invitrogen). Images were collected at room temperature by 

confocal microscopy (DMIRE2; Leica) using the Leica Confocal Software 

(version 2.5 Build 1227) with 63x NA1.4 or 100x NA1.4 oil objectives, or by bright 

field microscopy (Axioskop; Zeiss) with 20x NA0.5 or 40x NA0.75 objectives, 
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Leica DC500 camera and the IM50 Software. For quantification of HF lengths 

mosaic images of entire skin sections were taken using the Zeiss Axio Imager.Z1 

with 10x NA0.25 objective. Mosaics were stitched and analyzed with the 

Axiovision software. 

Analysis of epidermal cell division 

Wholemounts of tail epidermis were prepared and stained as described by 

(Braun et al., 2003b). The following antibodies were used: rabbit pAb against 

phospho-histone H3 (Ser10) (Millipore); goat anti rabbit-Alexa488 (Sigma). 

Confocal stacks with a step size of 0.2 µm were collected at room temperature 

with the 63x NA1.4 oil objective using the DMIRE2 microscope (Leica) and Leica 

Confocal Software (version 2.5 Build 1227). Confocal stacks were 3D 

reconstructed and further analyzed by AMIRA® software (Visage Imaging). 
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Results 

Linkage of PINCH1 locus to the Cre-transgene insertion site 

In order to specifically delete PINCH1 from the keratinocytes in skin we 

intercrossed PINCH1loxP/loxP female animals (Li et al., 2005) with heterozygous 

PINCH1loxP/lwt males expressing the Cre recombinase under the control of the K5 

promoter (Ramirez et al., 2004). The number of newborn PINCH1loxP/loxP/K5-Cre 

(P1-K5) animals was significantly less than the expected Mendelian distribution 

of 25% (Table 1). Since the number of PINCH1loxP/wt pups without the K5-Cre 

transgene was comparably reduced and the other genotypes were evenly 

distributed with a frequency of 44 % (Table 1), we suspected a genetic linkage of 

the PINCH1 locus with the Cre-transgene, leading to co-segregation of the wild-

type PINCH1 allele and the K5Cre-transgene. We tested this hypothesis by 

breeding the heterozygous PINCH1loxP/lwt/K5-Cre males to wild type C57BL/6 

mice. From this mating in turn we obtained a strongly reduced number of 

PINCH1loxP/lwt/K5-Cre mice, supporting the assumption of genetic linkage 

between the loci. The resulting PINCH1loxP/lwt/K5-Cre males were subsequently 

used for intercrosses with PINCH1loxP/loxP female animals. The distribution of 

genotypes among the offspring followed the expected ratio with a “yield” of more 

than 40% of P1-K5 animals (Table 1). PINCH1loxP/lwt animals without Cre 

transgene were used as controls for all experiments (P1 Co). PINCH1 homo- or 

heterozygous floxed animals did not display abnormalities (Li et al., 2005). 

Deletion of PINCH1 in skin leads to progressive hair loss  

The efficient deletion of PINCH1 from the skin epithelium was confirmed by 

Western blotting of epidermal lysates from P1 Co and P1-K5 animals. Whereas 

the PINCH1 protein was efficiently ablated two days after birth, PINCH1 

expression was recovering with time resulting in a considerable amount of 

PINCH1 re-expression by the age of ten weeks (10w; Figure 1A). Important to 

note is that ILK levels are reduced upon deletion of PINCH1 but to a smaller 

extent than PINCH1 itself, suggesting that the residual ILK is stabilized even in 
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the absence of PINCH1. PINCH2 is not expressed under normal conditions in the 

epidermis or HFs and we did also not detect a compensatory upregulation in P1-

K5 epidermal lysates as the antibody used recognizes both PINCH isoforms. 

P1-K5 animals appeared normal at birth. During early postnatal development 

when control animals developed a dark skin color due to HF morphogenesis, P1-

K5 animals developed patchy skin pigmentation. At postnatal day 14 (P14) 

control mice had developed their normal hair coat. The hair coat of P1-K5 

animals by P14 was scattered with partial alopecia. By 8w after birth, when the 

first postnatal hair cycle was completed in controls, P1-K5 animals were almost 

without hairs (Figure 1B). Boldness and patchy skin pigmentation persisted 

during their entire life span, which was normal. 

Epidermal homeostasis and HF development depend on PINCH1 

Postnatal skin morphology was analyzed by hematoxylin and eosin staining on 

backskin sections. First signs of abnormal HF development in P1-K5 animals 

could be detected as early as P2 (arrow in Figure 2), while the interfollicular 

epidermis (IFE) appeared morphologically normal. At 2w of age clearly the IFE 

displayed several defects including hyperthickening, blistering at the dermal-

epidermal junction (DEJ) (asterisks in Figure 2), flattened shape and increased 

intercellular spacing of keratinocytes (Figure 2, 3A). At 10w of age epidermal 

aberrations became reverted in large areas of the P1-K5 skin with an almost 

complete absence of blistering and reduction of the hyperthickening, while only in 

a few areas the defects persisted or became even more severe (Figure 3A). 

Interestingly, melanin deposits were frequently observed in the P1-K5 IFE, which 

was never observed in the controls (arrow heads, Figure 3A). 

HF malformations in P1-K5 animals gradually aggravated with the age. During 

early postnatal development HFs normally asynchronously pass through the 

distinct stages of morphogenesis and steadily increase in length (Figure 2, 3C). 

By P14 control mice completed HF morphogenesis with all HFs residing deep in 

the subcutis and containing pigmented hair shafts (Figure 2, 3B, 3C). At P2 the 

HF defects became clearly visible in P1-K5 mice and ranged from severe 
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distortions to slight ORS hyperthickening, abnormal melanin deposition in the HF 

epithelium and condensed DPs. By P14 two subtypes of P1-K5 HFs could be 

observed: fully developed HFs that reached into the subcutis and developed a 

hyperthicknened ORS and condensed DP (▲; Figure 2, 3B); and short HFs that 

were residing in the dermis and were severely distorted with a misshapened or 

often absent DP ( ; Figure 2, 3B). At 23d when control mice were in telogen, 

P1-K5 HFs had a similar length as control HFs and morphologically resembled 

telogen HFs indicating that they responded to cycling cues. However, the HF 

outgrowth during the following anagen as seen in controls by 4w was absent in 

P1-K5 skin (Figure 2, 3C). By 10w HFs were absent from the P1-K5 skin and 

prominent melanin condensates were visible in the upper dermis mainly causing 

the reticular pigmentation (arrow heads in Figure 2). These data indicate that 

PINCH1 is required to maintain epidermal and HF homeostasis. 

Loss of PINCH1 impairs keratinocyte adhesion and integrin expression 

The epidermal blistering could be caused by impaired integrin expression, 

distribution and/or function, which would result in diminished keratinocyte 

adhesion. To test these possibilities we determined integrin levels on freshly 

isolated keratinocytes and found that their levels were only slightly altered. Small 

subpopulations of cells contained reduced levels of β1, β4 and α6 integrins 

(Figure 4A). Interestingly this population was lost from the P1-K5 populations in 

culture (Supplementary Figure 1). Immunostaining of control and P1-K5 skin 

sections revealed a similar distribution of β1 around the entire basal keratinocyte, 

and of β4 and α6 at the basal side adjacent to the BM. However, in P1-K5 skin 

β1 and β4 integrin were also frequently reduced in basal cells or found in clusters 

of suprabasal cells (arrow heads, Figure 4B). Important to note is also the 

accumulation of strong β1 integrin expressing cells underneath the epidermis 

when the BM is detached, indicating substantial alterations of the underlying 

mesenchyme (asterisks, Figure 4B). Adhesion assays with primary keratinocytes 

expanded in culture for 4-5 days revealed that loss of PINCH1 severely 
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abrogated adhesion to LM332, fibronectin (FN) and collagen type 1 (Col1) and 

was significantly more pronounced than in the absence of ILK (Figure 4C). 

Immunostaining for LM332 revealed that the BM was continuous and tightly 

attached to the basal keratinocytes in control skin. In contrast, P1-K5 skin often 

showed BM detachment from the basal keratinocytes and diffusion of LM332 into 

the dermis (Figure 4B). TEM of skin samples from 2w- and 4w-old animals also 

revealed a defective BM organization of P1-K5 skin with discontinous lamina 

densa. Hemidesmosomes were only present in areas with intact BM (arrowhead, 

Figure 4D). Interestingly, P1-K5 epidermis developed prominent cell-cell 

adhesion defects with large intercellular spaces with filamentous membrane 

protrusions connecting adjacent cells to each other (Figure 4D, right panels). 

These findings demonstrate that loss of PINCH1 impairs integrin-mediated 

adhesion of keratinocytes to the BM by affecting both integrin function and 

integrin expression and that PINCH1 is required for the maintenance of stable 

intercellular adhesion. 

PINCH1 ablation alters epidermal differentiation and proliferation 

The presence of integrin expressing cells in suprabasal layers pointed to an 

abnormal differentiation of P1-K5 epidermis. Therefore, we analyzed 

differentiation of IFE by immunstaining for characteristic keratins for basal (K14), 

spinous (K10) and granular layers (loricrin). In control skin K14 was restricted to 

the basal keratinocytes while P1-K5 epidermis frequently contained several 

layers of K14 expressing cells. Likewise, the number of K10 expressing 

suprabasal layers cells was also increased in P1-K5 skin (Figure 5A). Loricrin 

was confined to a very thin granular layer in the normal epidermis, while in P1-K5 

epidermis loricrin expression was observed in several layers of cells containing 

large, prominent nuclei. K6 known to be strongly expressed in injured skin was 

strongly upregulated in P1-K5 epidermis (Figure 5D). 

Thickening of the epidermis is often indicative for hyperproliferative epithelia. 

Quantitative analysis of Ki67-positive keratinocytes revealed ectopic proliferation 

in the suprabasal layers of P1-K5 hyperthickened epidermis (Figure 5B, 5C) 
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whereas proliferation was restricted to the basal layer in control epidermis. The 

suprabasal proliferating keratinocytes expressed β1 and β4 integrins (Figure 5D). 

Next we excluded an abnormal orientation of the division plane as cause for the 

presence of proliferating cells in the suprabasal layers of P1-K5 epidermis by 

determining the mitotic spindle orientation in wholemount tail skin preparations 

from control and P1-K5 animals (Figure 5E). 

These data suggest that the loss of PINCH1 alters epidermal differentiation and 

proliferation, but not mitotic spindle orientation in epidermal keratinocytes. 

Inflammatory responses in the P1-K5 skin 

Increased proliferation, epidermal hyperplasia and abnormal differentiation could 

also be caused by inflammation. As the skin is an immuno-competent organ, a 

small number of resident macrophages was present in the dermis of control 

animals at all stages analyzed (Figure 6A). At P2 the number of macrophages  

was scarce in P1-K5 skin. At P4 and P7, however, abnormal numbers of 

macrophages accumulated throughout the dermis and subcutis and around HFs 

(Figure 6A). Gr-1 expressing granulocytes were virtually absent from control skin 

while they were found around malformed HFs both at P4 and P7 (Figure 6B). 

Polarity and cell-cell adhesion defects P1-K5 keratinocytes 

Cell-cell adhesion, cell-ECM adhesion and cytoskeletal organization are essential 

for inducing and maintaining epithelial polarity. Filamentous (F)-actin and cell 

adherens junctions components, such as E-cadherin and β-catenin, were found 

laterally and apically in basal keratinocytes and around the entire cell surface of 

suprabasal cells. Basal keratinoyctes in the skin of P1-K5 lost their polarized F-

actin distribution and contained F-actin at the basal cell surface (Figure 7A). 

Similarly, cell adherens junction components such as E-cadherin or β-catenin 

were also found at the basal side of basal keratinocytes (Figure 7A). 

Furthermore, suprabasal layers developed intercellular spaces, most prominently 

in non-recovered areas of 10w-old skin (asterisks, Figure 7A, B). Plakoglobin 

(PG) is incorporated into both adherens junctions and desomosomes throughout 
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the IFE and thus expressed in a polarized, lateral-apical manner in control 

epidermis. In P1-K5 epidermis, however, PG was also often found adjacent to 

the DEJ where it colocalized with α6 integrin (Figure 7B). Interestingly, we 

observed patches of suprabasal cells and corneocytes lacking PG (arrowheads, 

magnified insert, Figure 7B). Defects in PG localization raised the question 

whether desmosomes were affected by P1-K5 skin. Desmoplakin marks 

desmosomal junctions (Figure 7B) and was clearly mislocalized to the basal side 

of basal P1-K5 keratinoyctes (Figure 7B). 

These data implicate PINCH1 in maintaining polarity and intercellular adhesion of 

keratinocytes by regulating the localization of components of cell-adherens 

junctions and desmosomes. 

P1-K5 HFs maintain stem cells, but their progeny fails to move along the 

ORS 

The HF as a micro-organ is maintained by stem cells in the bulge from which TA 

cells move along the ORS to replenish the proliferating hair matrix. To asses 

whether loss of PINCH1 affects HF proliferation, we stained for Ki67 and 

performed in vivo BrdU incorporation assays. To ensure the comparison of 

identical developmental stages we compared long, fully developed P1-K5 HFs 

(▲) with control HFs with completed morphogenesis. HFs from P1-K5 animals 

showed a higher proliferation rate in the ORS at P7 and P14 (Figure 8A, 8B) and 

a reduced HM size (Figure 8C). The proportion of proliferating cells in the HM 

was not altered in PINCH1 deficient HFs (Figure 8D). Shortened and 

developmentally arrested P1-K5 HFs ( ) also showed a sustained proliferation 

in the epithelium proximal to the DP (Figure 8A). 

The HF stem cell compartment was visualized by immunostaining CD34 on P24 

skin (Figure 8E). By P24 HFs are at the onset of anagen. Signals from the DP 

induce proliferation of HF keratinocytes triggering the anew outgrowth of the 

epithelium. Ki67 was strongly induced in the newly formed hair germs in control 

skin at P24. Proliferation was also induced in P1-K5 HFs, while HF downgrowth 

did not occur (Figure 8F, 3C). To further address the presence and functionality 
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of the DP we stained P14 and P26 skin sections for versican, which is expressed 

in the active DP and the dermal sheet of anagen HFs. Versican expression was 

also strong in P1-K5 DPs and dermals sheets and extended into the upper 

dermis adjacent to the DEJ (Supplementary Figure 2). 

Together these data demonstrate that keratinocytes in the P1-K5 HFs are able 

proliferate and respond to signals from active DPs. However, during 

morphogenesis proliferating cells accumulate within the ORS and at the 

beginning of the first HF cycle the outgrowth of the follicular epithelium fails to 

occur. 

P1-K5 keratinocytes display a spreading and migration defect 

Reduced cell adhesion implies a weakened interaction of the cell membrane with 

the ECM. This in turn can lead to destabilization of membrane protrusions, 

defects in cytoskeletal reorganizations and integrin signaling, thereby affecting 

spreading and migration. We therefore analyzed PINCH1 keratinocytes in vitro. 

Primary keratinocytes were isolated and cultured for 4-5 days prior to the 

experiments. P1-K5 keratinocytes tended to grow in tight colonies of round, 

poorly spread cells as compared to control keratinocytes (Figure 9A).  

When cells were allowed to spread on FN/Col1, P1-K5 keratinocytes poorly 

increased their size and reached a 4.3-fold smaller spreading area than control 

cells (Figure 9B). 

Control keratinocytes were polarized with a single, broad lamella at the front and 

retracting fibers at the rear and were randomly migrating under normal culture 

conditions (arrows, Figure 9C). In contrast, P1-K5 keratinocytes were hardly 

spread and had small, unstable protrusions with the entire cell body remaining 

round. Frequently, P1-K5 cells had several protrusions at the same time (arrows, 

Figure 9C). Collapses of membrane protrusions were often leading to almost 

complete detachment of the cell body. Interestingly, a high retrograde flow of 

actin could be detected in P1-K5 keratinocytes. In line with the lack of stable 

lamellae formation the PINCH1 null cells were more stationary than their control 

counterparts. The migratory potential of P1-K5 cells was tested in a scratch 
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wounding assay. Control keratinocytes developed a leading edge and migrated 

towards the scratch with a speed of 22.9 µm/h. In contrast, P1-K5 keratinocytes 

failed to from a leading edge and hardly moved towards the scratch (Figure D, 

E). In transwell assays and invasion through laminin-rich Matrigel P1-K5 cells 

were also drastically impaired (data not shown). 

These data indicate that PINCH1 is crucial for keratinocyte spreading and 

migration and the formation and anchoring of plasma membrane protrusions to 

the underlying substratum. 

Loss of PINCH1 affects focal adhesions (FAs) and F-actin distribution 

Defects in spreading and migration and the high rate of retrograde actin flow of 

PINCH1 deficient keratinocytes could be the cause of an impaired formation of 

integrin adhesion sites, inefficient anchoring of actin filaments to the plasma 

membrane or altered actin dynamics. We therefore cultured primary 

keratinocytes on glass cover slips coated with FN/Col1 and analyzed FA 

formation. 

Control keratinocytes were spread and formed stress fibers anchored to 

abundant FAs that contained PINCH1 and Paxillin (Figure 10A). The clusters of 

small P1-K5 cells were frequently surrounded by contaminating non-deleted 

cells, but could be easily distinguished by their morphology and the loss of 

PINCH1 expression (Figure 10A). Interestingly, Paxillin and Vinculin could not be 

detected in any discrete “FA”-like structure of P1-K5 cells (Figure 10A, 10B). The 

only more intensely stained cellular structures were thick, collapsed lamellar 

protrusions (arrowheads, Figure 10A). FAs mature from initial adhesions, called 

focal complexes (FCs) and are found at the leading edge of lamellipodia in 

normal keratinocytes (arrowheads, Figure 10B). In P1-K5 cells also “FC”-like 

structures were absent. 

In control keratinocytes PINCH1 colocalized with ILK in FAs at the tip of actin 

stress fibers. In the P1-K5 cells ILK was detected evenly in the cytoplasm (Figure 

10C). Contaminating melanocytes in the P1-K5 primary cultures expressed high 

amounts of ILK (asterisks, Figure 10C). The actin cytoskeleton was also severely 
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affected by loss of PINCH1. Stress fiber formation was observed in controls but 

virtually absent in P1-K5 cells. Furthermore, the overall staining intensity for F-

actin was lower than in control cells (Figure 10A, 10B, 10C). However, the 

defects in FA formation did not result from an impaired integrin expression, as 

the integrin expression of cultured keratinocytes was virtually normal, with the 

exception of an upregulation of α5 integrin (Supplementary Figure 1). 

Defects in LM332 assembly into an intact BM was observed in the skin of P1-K5 

animals. Abnormal secretion of LM332, one of the major BM molecules that 

keratinocytes bind to, could also compromise keratinocyte adhesion in cell 

culture. LM332 is deposited on the culture surface by control keratinocytes and 

left behind, when they are randomly migrating and secreted LM332 can also be 

observed around the P1-K5 keratinocytes (Figure 10D). 

Taken together these data suggest that PINCH1 is crucial for stress fiber 

formation and the assembly of FAs.  

 

In the absence of PINCH1 Vinculin is not recruited into cell-cell contacts 

In addition to impaired cell-matrix interactions, cell-cell adhesion was abnormal in 

P1-K5 skin. To further investigate the cause for the cell-cell adhesion 

abnormalities in vivo, we differentiated cultured primary keratinocytes in vitro by 

Ca2+ induction and analyzed the molecular composition of the cell-cell adhesion 

plaque. β-catenin and E-cadherin are the core components of cell-adherens 

junctions, which were found in the cytoplasm of undifferentiated keratinocytes 

and were recruited into cell-cell adhesions upon Ca2+-induced differentiation in 

control cells (Figure 11A). P1-K5 keratinocytes were able to assemble cell-

adherens junctions containing both β-catenin and E-cadherin (Figure 11A). 

However, P1-K5 cells were frequently detached and only connected via 

filamentous membrane protrusions (Figure 11A, arrowheads). It is further 

important to note that the architecture of the differentiated epithelial sheets was 

different between controls and P1-K5 cells. In contrast to control cells, cell shape 
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of P1-K5 cells remained roundish leading to an increased thickness of the 

differentiated epithelial clusters (left stripes, Figure 11A). 

We next addressed the question whether PINCH1 itself would localize to cell-cell 

adherens junctions. Therefore, keratinocytes were co-stained for β-catenin and 

PINCH1. No junctional localization of PINCH1 was observed (Figure 11A). 

Intriguingly, however, β-catenin and E-cadherin were found to be colocalized with 

PINCH1 outside of cell-cell adhesion in peripheral FA-resembling structures at 

the tips of actin fibers when the cell-cell contacts were not fully established 

(arrowheads, Figure 11B). Further analysis of the cell-adherens junction 

composition revealed that α-catenin was recruited to cell-cell adhesions in both 

control and P1-K5 keratinocytes but vinculin was absent from cell-cell contacts of 

PINCH1 null cells (Figure 11C, 11D). 

Desmosomal proteins such as Plakoglobin and Desmoplakin were found at the 

sites of cell-cell adhesions in control and PINCH1-deficient cells and no 

colocalization of PINCH1 with these proteins was observed (Figure 11D, 11E). 

Together these data indicate that PINCH1, although not localizing to cell-cell 

junctions, regulates the molecular composition and/or stabilization of cell 

adherens junctions as well as the cell shape in differentiated keratinocytes. 
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Discussion 

In this manuscript we present the keratinocyte-specific deletion of the IPP-

complex member PINCH1 in vivo. We report that PINCH1 was required for 

epidermal and HF integrity, similarly as its binding partner ILK. Genetic ablation 

of PINCH1 caused epidermal hyperplasia and detachment of the epidermis from 

the underlying dermis, abnormal differentiation, polarity and ectopic suprabasal 

proliferation in the epidermis. PINCH1 mutant HFs contained stem cells and 

showed a sustained proliferative capacity in combination with an impaired HF 

growth. This caused severe HF distortions and hair loss due to absent HF 

cycling. In vitro PINCH1 was required for cell adhesion and actin-dependent 

processes such as cell spreading and migration, FA and lamellipodia formation 

and/or stabilization. In sharp contrast to ILK, PINCH1 is required for the formation 

of stable cell-cell adhesions both in vivo and in vitro. 

Conditional ablation of PINCH1 resulted in skin abnormalities that did not affect 

life span. We previously published that loss of β1 integrin and ILK with K5-Cre 

caused similar postnatal defects in the skin epithelium (Brakebusch et al., 2000; 

Lorenz et al., 2007). Studies from other groups using K14-driven gene deletions 

of both ILK and β1 integrin in the skin epithelium resulted in early postnatal 

lethality which likely resulted from differences in the K14-transgene expression 

(Nakrieko et al., 2008; Raghavan et al., 2000). In order to ensure the direct 

comparability of the effects of PINCH1 deletion with our previous findings on ILK 

and β1 integrin function in keratinocytes, we ablated the PINCH1 gene using the 

K5-Cre transgene. 

Epidermal hyperthickening 

The epidermis of P1-K5 developed normally until the mice where 4d old. 

Thereafter, similarly to integrin β1 and ILK-deficient mice, the epidermis became 

hyperthickened, showed abnormal differentiation and blisters at the DEJ.  

Epidermal hyperplasia is frequently associated with hyperproliferation as 

observed in human pathologies such as psoriasis (Galadari et al., 2005). The P1-
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K5 hyperthickened epidermis frequently contained suprabasal proliferating cells. 

Interestingly, transgenic mice expressing suprabasal β1 integrin showed similar 

epidermal hyperthickening and hyperproliferation. In these mice the 

hyperproliferation was attributed to a dermal inflammatory response (Carroll et 

al., 1995). Abnormal differentiation, as observed in PINCH1 mutants, is also 

characteristic of psoriasis and was observed in integrin β1 transgenic mice. 

Inflammatory infiltrates of macrophages and granulocytes were present in the 

skin of PINCH1-deficient mice representing a potential explanation for the 

observed alterations. However, similar defects might also be triggered 

independently from inflammation. In integrin β1-deficient hyperthickenend 

epidermis the keratinocyte proliferation was reduced (Brakebusch et al., 2000) 

and in ILK-deficient epidermis the onset of epidermal hyperproliferation clearly 

preceded the inflammatory response (Lorenz et al., 2007). In addition, it was 

shown that the increased proliferation in the ILK-deficient keratinocytes was cell-

autonomous as primary cultured keratinocytes also proliferated more. 

Alternatively, the occurrence of suprabasal proliferating and integrin-expressing 

cells could result from misplacement of non-committed basal cells into 

suprabasal localization. In accordance with the latest findings of epidermal cell 

division, we observed mitotic spindles orientated parallel to the BM in normal IFE 

(Clayton et al., 2007) and this pattern remained unchanged upon PINCH1 loss. 

This finding was unexpected as PINCH1 clearly altered cell polarity with an 

abnormal actin cytoskeleton in vivo. Several lines of evidence point towards an 

involvement of IPP-complex members in cell polarity and mitotic spindle 

orientation. PINCH1 was identified as a binding partner of LKB1, a member of 

the PAR proteins involved in cell polarity (Brajenovic et al., 2004). ILK is found in 

centrosomes of HEK293 cells and has a functional role in mitotic spindle 

assembly and DNA segregation (Fielding et al., 2008). It remains, however, 

puzzling since loss of ILK decreased the mitotic index of these cells and we were 

at least not able to identify ILK in the centrosome in fibroblasts (A. Raducanu and 

R.Fässler, unpublished observations). Furthermore, it was shown previously that 

spindle axis orientation was controlled by integrin β1 in keratinocytes (Lechler 
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and Fuchs, 2005). These questions open an exciting field for further 

investigations if IPP complex members are indeed implicated in mitotic spindle 

orientation downstream of integrin in keratinocytes. 

As there no evidence for altered mitotic spindle orientation, another possible 

explanation is that non-committed basal keratinocytes detach because of an 

impaired adhesion, which leads to their ectopic localization and the epidermal 

hyperplasia. 

Epidermal cell-matrix and cell-cell adhesion 

The most striking difference compared to the ILK and integrin β1 mutant 

epidermis was the defective cell-cell junction formation in PINCH1-deficient 

epidermis. The ultrastructural analysis revealed the presence of desmosomes 

but increased intracellular spaces between them pointing towards a decreased 

stability of intercellular adhesion likely due to impaired stability of cell-adherens 

junctions. Primary keratinocytes lacking PINCH1 could be differentiated in 

cultured and formed cell-cell adhesions containing both adherens junctions and 

desmosomal components. Nonetheless, cellular morphology and cell-cell 

contacts were abnormal in the PINCH1-deficient cells. ILK had been described to 

contribute to epithelial sheet formation in keratinocytes representing a potential 

mechanism for PINCH1 localization to cell-cell junctions (Vespa et al., 2005; 

Vespa et al., 2003). ILK involvement in cell-cell junctions was, however, not 

confirmed in keratinocyte-specific ILK knock-outs in vivo (Lorenz et al., 2007; 

Nakrieko et al., 2008). Likewise, PINCH1 was not detected in mature cell-cell 

adhesions in Ca2+-differentiated keratinocytes in culture. Interestingly, however, 

PINCH1 colocalized at the tip of actin fibers with β catenin and E-cadherin in 

normal keratinocytes at the tip of membrane extensions probably involved in 

initial steps of cell-cell adhesions. β catenin was previously reported to localize 

together with dynein to filopodia-like extensions in developing contacts in an 

actin-dependent manner (Ligon et al., 2001). The analysis of the molecular 

composition of cell-cell junctions in vitro revealed an impaired recruitment of 

vinculin. Compromised unc-97/PINCH in C.elegans embryos was also leading to 
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an impaired spatial organization of integrin and vinculin during muscle body wall 

adhesion (Hobert et al., 1999). Vinculin localizes to both cell-matrix and cell-cell 

adhesions and binds in both locales to actin filaments. Although, this molecule 

might serve as an interesting link to the involvement of a FA protein in cell-cell 

adhesions as it localizes to both structures, the potential function of PINCH1 in 

cell-cell adhesion remains unclear to date. 

Blister formation at the DEJ indicated impaired integrin function. Interestingly, the 

integrin-mediated adhesion was even stronger affected upon loss of PINCH1 

than in the absence of ILK. Reduced adhesion to BM components resulted in 

vivo in impaired BM assembly leading to diffusion of BM molecules in the dermis 

and ultrastructurally abnormal deposits of BM components underneath the 

epithelium. The presence of hemidesmosomes in PINCH1-deficient basal 

keratinocytes strongly correlated with the quality of the BM. This is in line with 

current concepts that hemidesmosome formation is also driven from LM332 

outside the cell (Litjens et al., 2006). 

HF morphogenesis and homeostasis 

The most striking phenotype of the conditional P1-K5 mice was the progressive 

hair loss reminiscent of the phenotypes of both ILK- and integrin β1-deficient 

mice (Brakebusch et al., 2000; Lorenz et al., 2007). In normal mice HF 

morphogenesis was completed by P14 whereas in P1-K5 animals two types of 

HFs were found: fully developed HFs with a hyperthickened ORS (▲) and 

shortened, developmentally arrested HFs ( ) with a misshapen DP. Initiation of 

HF cycling appeared in a synchronous manner with the entry in telogen but 

subsequent HF outgrowth was completely blocked. Potential causes for HF 

growth defects were multiple, such as stem cell depletion, defective ORS cell 

migration, impaired hair matrix proliferation or impaired DP-keratinocyte cross-

talk. Neither an impaired stem cell maintenance nor proliferation defects per se 

were observed. ORS proliferation, however, was increased. A subpopulation of 

P1-K5 HFs lacked a DP by P24. For those HFs impaired DP interactions and 
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signaling are the most likely explanation for growth arrest (Panteleyev et al., 

1998).  

In general PINCH1 mutant HF characterization revealed strongly overlapping 

defects with the ILK mutants (Lorenz et al., 2007). Impaired HF growth after ILK 

deletion in keratinocytes was explained by an impaired downward migration of 

TA cells from the bulge. This defect was caused by an impaired stabilization of 

lamellipodia extensions compromising directional and persistent migration 

causing the accumulation of proliferative cells along the ORS in vivo. Expecting 

comparable defects of P1-K5 keratinocytes in vitro, it was remarkable to detect 

an even stronger effect of PINCH1 ablation on actin-driven processes such as 

cell spreading and migration. The severe alterations of keratinocyte actin-

dynamics represent a potential explanation for the high degree of HF 

malformations in vivo resulting in an earlier onset of dermal inflammation upon 

deletion of PINCH1 as compared to ILK. 

PINCH1 in actin dynamics 

Our analysis of primary keratinocytes revealed that P1-K5 primary cells formed 

only few, unstable membrane protrusions with the cell body remaining roundish, 

impairing stable cell adhesion, cell spreading and migration. 

What could be the underlying mechanisms for such strong requirement of 

PINCH1 exceeding the ILK phenotype? First, weakened integrin adhesion could 

compromise the stable fixation of lamellipodia to the substratum impairing force 

generation required for lamellipodia extension. Second, it is also conceivable that 

impaired stress fiber formation or anchoring compromises FA formation (Burridge 

et al., 1997). Indeed, these notions are further supported by the observation that 

detectable FC and FA formation is entirely absent in PINCH1-deficient 

keratinocytes. In addition, P1-K5 keratinocytes display a poorly developed actin 

filaments in culture. Molecularly, PINCH1 and ILK were shown to bind Thymosin 

β4, a small G-actin sequestering protein (Bock-Marquette et al., 2004). 

Therefore, it will be interesting to investigate whether the ratio of monomeric G-

actin to F-actin is changed in these keratinocytes. Interestingly, Thymosin β4 was 
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also implicated in HF growth via the regulation of stem cell progenitor migration 

from the bulge (Philp et al., 2004; Philp et al., 2007). Besides the pathways that 

are connecting PINCH1 via ILK to the regulation of the actin cytoskeleton via 

Parvins and Kindlins (Grashoff et al., 2004), PINCH1 also binds Nck2. Recent 

worked dissected the specific functions of PINCH1 subdomains and their 

interactors revealing that the LIM4-mediated interaction with Nck2 regulates cell 

morphology and migration independently from ILK (Xu et al., 2005). 

 

In summary our analysis clearly shows that PINCH1 must have IPP-complex and 

integrin-independent functions likely through the recruitment of other interaction 

partners or though IPP-independent stabilization in new cellular compartments. 

PINCH1 is implicated in cell-cell adhesion in keratinocytes as thus far only shown 

in embryoid bodies (Li et al., 2005). PINCH1 is crucial for FA formation assembly, 

thereby impairing cellular key functions such as spreading and migration. The 

challenging task for the upcoming investigations will be the identification of 

PINCH1-specific pathways and potential new interacting molecules involved in 

those. 
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Figure Legends 

Figure 1: Keratinocyte-restricted deletion of PINCH1 causes progressive 

hair loss in mice. 

(A) PINCH1 and ILK protein levels in epidermal lysates of P1 Co and P1-K5 

mice. (B) Control and P1-K5 animals at 2 weeks (w) and 8w of age. 

 

Figure 2: Keratinocyte-restricted deletion of PINCH1 leads to progressive 

HF abnormalities and HF resorption, epidermal hyperthickening and 

epidermolysis. 

Hematoxylin-eosin staining of back skin sections of P1 Co and P1-K5 mice from 

2 days (d) to 10w of age. First signs of abnormal HF morphogenesis in P1-K5 

skin are detected starting from 2d (arrows) leading to two HF types (▲fully 

developed; ■ shortened and developmentally arrested) by 14d, followed by 

progressive HF resorption. With HF loss dermal pigment accumulation occurs 
(arrowheads). P1-K5 epidermis becomes hyperplastic and detaches from the 

underlying dermis (asterisk) (bars 100 μm). epidermis (E); dermis (D); panniculus 

carnosum (PC); subcutis (SC) 

 

Figure 3: Loss of PINCH1 causes epidermal detachment at the DEJ, 

increased intercellular spaces, HF deterioration and growth retardation. 

(A) Epidermis from 2-w-old P1-K5 mice is hyperplastic and detaches from the 

underlying dermis (asterisk). P1-K5 keratinocytes show increased intercellular 

spaces. Melanin in the IFE is indicated (arrow heads, bar 25 μm). (B) High 

magnification of hematoxylin-eosin stained HFs from 14d-old back skin. P1-K5 

HFs have multilayered ORS and a condensed DP (▲) or show premature growth 

arrest with a malformed or absent DP (■) (bar 50μm). (C) P1-K5 HF growth is 

perturbed during morphogenesis and cycling. HF lengths of a minimum of 150 
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HFs per time point from each two animals are presented as histograms. HF 

length was measured from hematoxylin-eosin stained back skin sections. 

epidermis (E); dermis (D); panniculus carnosum (PC); subcutis (SC) 

 

Figure 4: PINCH1 loss severely impairs keratinocyte adhesion, integrin 

expression and BM integrity 

(A) Cell adhesion of primary P1-K5 keratinocytes is significantly reduced 

compared to control and ILK-K5 keratinocytes on FN, Col1 and LM332 

(mean+SD of three independent experiments). (B) Immunofluorescence (IF) of 

β1 and β4 integrin and LM332 on sections of back skin from 2-w-old mice. In P1 

Co skin both integrins are expressed in basal keratinocytes, while in P1-K5 skin 

integrins are devoid from basal cells in some areas and are also found on 

suprabasal keratinocytes (arrowheads). LM332 mainly diffuses from the DEJ 

(dashed line) into the upper dermis, as a sheet (BM, first panel) or in patches 

(second panel). Note the high β1 integrin expression in the cells of the upper 

dermis (asterisks) (bar 25 µm). (C) Cell surface expression of integrins on freshly 

isolated keratinocytes by FACS analysis (black histogram: P1 Co; red: P1-K5; 

dashed histograms: negative controls). The antibody β1 Ha2/5 recognizes total 

β1 integrin and β1 9EG7 a ligand-induced binding site and hence the active β1 

integrin. (D) EM of back skin sections of 2-w-old control and P1-K5 mice. Control 

skin exhibits a continuous lamina densa and hemidesmosomes (arrowheads). 

P1-K5 skin shows a discontinuous lamina densa (BM). Hemidesmosomes 

(arrowhead) are found when lamina densa is preserved. Desmosomal contacts 

(asterisks) are formed in both control and P1-K5 keratinocytes, while intercellular 

spaces are increased in P1-K5 epidermis (bar left 0.1 µm and right 0.2 µm). 

basement membrane (BM); dermal-epidermal junction (DEJ) 
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Figure 5: PINCH1 ablation alters keratinocyte differentiation and 

proliferation 

(A) Double-IF for K14, K10, loricrin (Lor), K6 and α6 integrin on back skin of 2-w-

old mice. P1-K5 epidermis shows increased layers of K14, K10 and Lor 

expression. Integrin α6 expression is discontinuous in P1-K5 skin (bar 25 μm). 

K6 is upregulated in P1-K5 epidermis. (B) Ki67 staining on back skin of 7-d-old 

mice revealed the presence of suprabasal proliferating cells in P1-K5 epidermis 

(bar 50 µm). (C) Quantification of Ki67-positive cells in the IFE of 7-d-old mice. a) 

basal; b) suprabasal (error bar represent mean+SD) (D) Double-IF for integrin β4 

and BrdU showing suprabasal, integrin-expressing cells in P1-K5 7d skin 

sections (bar 25 µm). (E) Slices in the direction of mitotic spindles taken from 3D 

reconstructions of tail epidermis wholemounts from 7-d-old mice stained with 

DAPI and quantification of the angles between mitotic axis and BM. 

 

Figure 6: Inflammatory cells are progressively recruited to the dermis of 

P1-K5 skin 

(A) IF for Mac-1 and LM332 on skin sections of 2-, 4- and 7-d-old mice. No 

macrophages are detected in the skin of 2-d-old control and P1-K5 mice, while 

skin from 4- and 7-d-old P1-K5 mice shows macrophage infiltration 

predominantly at the distorted HFs and underneath the epidermis (arrowhead, 

bar 100 µm). (B) IF for Gr1 and LM332 on skin sections of 2-, 4- and 7-d-old 

mice. At 2d and 4d Gr1-positive granulocytes accumulate in the dermis of P1-K5 

skin (bar 100 μm). 

 

Figure 7: PINCH1 loss disturbs polarity of epidermal keratinocytes 

(A) IF for F-actin and E-cadherin on sections of 2-w-old skin. In control epidermis 

F-actin and E-cadherin are absent from the basal side of basal kerationcytes. In 

P1-K5 epidermis, F-actin and E-cadherin are found basally (arrowheads). 

Intercellular gaps are frequently observed by E-cadherin staining in 10-w-old P1-
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K5 (asterisks, bar 50µm). (B) IF for desmoplakin (DSP) and plakoglobin (PG) on 

sections of 2-w-old skin. Desmosomal components localize to the lateral-apical 

sides of basal keratinocytes of control epidermis, whereas they colocalize with α6 

integrin at the basal side of basal keratinocytes in P1-K5 epidermis. Intercellular 

spaces (asterisks) and PG negative corneocytes (arrow heads) were detected by 

PG staining in 10-w-old P1-K5 (bar 50µm; insert 25 µm). 

 

Figure 8: P1-K5 HFs display a hyperproliferative ORS and respond to DP 

derived signals 

(A) P1-K5 HFs display a hyperplastic ORS with an elevated number of Ki67+ 

positive cells (▲,■ (bar 50 µm)). Auber’s line (green line; Auber, 1952) demarks 

the border between the proliferative and non-proliferative zones of the HM. (B) 

The proportion of proliferating cells in the ORS is increased in 7-d and 14-d 

mutant HFs. (C) The total number of HM cells is significantly reduced in 7-d and 

14-d P1-K5 HFs. (D) The percentage of proliferating cells in the HM is 

unchanged in mutant HFs compared to the controls. A minimum of 20 HFs was 

evaluated for (B, C, D) per genotype (error bars indicate mean + SD of two mice, 

*=p<0.05). (E) Double-IF of CD34 and LM332 on skin sections of 24-d-old 

animals reveals the presence of a CD34+ bulge region (arrowheads) in control 

and P1-K5 HFs (bar 50 µm). Note that P1-K5 HFs display a severely abnormal 

morphology at this stage sometimes with detached DP (bracket). (F) Double-IF of 

Ki67 and LM332 on skin sections of 24-d-old animals. Proliferation is induced in 

control and mutant HFs with DP and absent in P1-K5 HFs without DP (bar 50 

µm). 

 

Figure 9: P1-K5 keratinocytes display impaired cell spreading and 

migration 

(A) Primary keratinocytes were cultured for 6 days. P1-K5 keratinocytes form 

clusters of small, round cells. (B) P1 Co and P1-K5 keratinocytes were seeded 
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on Col1 and FN. The spreading was monitored at the indicated time points and 

the cell area of more than 100 cells was quantified per time point. P1-K5 

keratinocytes show reduced spreading (error bars indicate the 95% CI of mean 

values). (C) Time lapse microscopy of single control and P1-K5 keratinocytes. 

Control cells form stable lamellae, whereas P1-K5 keratinocytes are poorly 

spread, form small lamellar protrusions that frequently collapse and retract and 

show frequent collapses of membrane protrusions (green arrows indicate 

protrusion and red arrows retraction of the cell). (D) Time lapse microscopy of a 

scratch assay. P1-K5 keratinocytes exhibit impaired wound closure (bar 100µm). 

(E) Quantification of the wound closure in the scratch assay. P1-K5 wound 

closure is significantly retarded (error bars indicate 95% CI of mean values). 

 

Figure 10: No FA formation in P1-K5 keratinocytes 

IFs of primary control and P1-K5 keratinocytes. (A) In control keratinocytes 

PINCH1 localizes to Paxillin (Pax)-containing FAs at the tip of F-actin stress 

fibers. No FA formation is observed in P1-K5 keratinocyte clusters. Weak actin 

staining reveals the absence of stress fiber formation. Note that thickened cell 

protrusions appear Paxillin-rich (arrowheads). Cultures of PINCH-1 deficient cells 

are often contaminated with non-deleted cells (ND) (bar 25 µm). (B) Vinculin is 

recruited to FCs (arrowheads) and mature FAs in control keratinocytes. Both 

structures are missing in P1-K5 cell clusters (bar 25µm). (C) ILK is distributed 

diffusively in the cytoplasm of P1-K5 cells. High ILK expressing cells are 

melanocytes (asterisks) (bar 25 µm). (D) LM332 is normally deposited by P1-K5 

keratinocytes (bar 25 µm).  

 

Figure 11: Aberrant Ca2+-induced cell-cell adhesion in P1-K5 keratinocytes 

IFs of primary control and P1-K5 keratinocytes differentiated with 1.2mM CaCl2. 

(A) E-cadherin (E-Cad) and β-catenin (β-Cat) localize to cell-cell junctions in 

differentiated control and P1-K5 keratinocytes. Filamentous membrane 
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protrusions are formed between distant cells (arrowheads). Left panels show 

perpendicular view through a confocal Z-stack 3D-reconstruction which reveals 

the increased thickness of differentiated P1-K5 sheets. PINCH does not localize 

to cell-cell junctions (bars 50 µm). (B) β-catenin colocalizes with PINCH in 

peripheral FAs during the process of differentiation in P1 Co keratinocytes. E-

cadherin is found at the tip of actin stress fibers (arrowheads) (bars 50 µm, right 

panels bars 25µm). (C) α-catenin (α-Cat) is recruited to cell-cell adhesions of P1-

K5 keratinocytes (bars 50 µm). (D) Vinculin is recruited to cell-cell junctions in P1 

Co keratinocytes but is absent from cell-cell adhesions in mutant cells (bars 50 

µm). (E,F) Desmosomal components Plakoglobin (PG) and Desmoplakin (DSP) 

are found in cell-cell junctions of control and mutant keratinocytes (bars 50 µm). 

 

Supplementary Figure 1: Integrin profile of cultured, primary keratinocytes 

Cell surface expression of integrins on primary keratinocytes after 4-5 days in 

culture by FACS analysis (black histogram: P1 Co; red: P1-K5; dashed 

histograms: negative controls).  

 

Supplementary Figure 2: IF for versican on skin sections 

Double IF for versican and integrin α6 on skin sections of 14-d- and 26-d-old 

animals. Note the presence of active DPs and dermal sheet in control and mutant 

HFs as well as the strong upregulation of versican underneath the epidermis of 

mutants. Inserts show IFE from P1 Co skin sections. (bars 50 µm; inserts 25 µm).  
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Tables 

      
PINCH1loxP/loxP  

K5-Cre + 

PINCH1loxP/wt 

K5-Cre + 

PINCH1loxP/loxP 

K5-Cre - 

PINCH1loxP/wt 

K5-Cre -  

               

   Offsprings before 

recombination [%] 

(n=241)   
5.81 43.98 43.98 6.22 

 

         

   Offsprings after 

recombination [%]   

(n=71)   
40.85 5.63 9.86 43.66 

 

Table 1: Genotype distributions from PINCH1 and K5-Cre intercrosses 
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