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I am among those who think that science has great beauty. 
A scientist in his laboratory is not only a technician: 

He is also a child placed before natural phenomena which 
impress him like a fairy tale.

Marie Curie (1867 - 1934)
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SUMMARY

Generation of an expression system for human granzyme B (grB) and analysis 

of the in vitro and in vivo efficiency 

The serine protease granzyme B (grB) was found to induce apoptosis in  membrane-Heat 

shock protein 70 (Hsp70) positive tumor cells via a perforin-independent pathway (Gross et 

al. 2003b). The goal was to produce high amounts of active human grB for  in vitro and in 

vivo experiments. A protein expression system and a suitable purification procedure were 

established. After testing four different systems (Natural Killer cell line YT,  Pichia pastoris, 

Sf9/Baculovirus,  Human Embryonic  Kidney  cells  HEK293),  enzymatically  and biologically 

active grB was successfully produced by a stably transfected HEK293 cell line. A purification 

method was established for the HEK293-derived grB, which was secreted in an inactive form 

containing  a  (His)6 tag at  the  amino  terminus.  The  purification  involves  (His)6 tag-nickel 

affinity chromatography, removal of the  (His)6 tag, activation of grB by enterokinase (EK) 

digestion and affinity chromatography using a heparin column. Approximately 2 mg per liter 

cell culture supernatant of pure active human grB has been purified. The enzymatic activity 

was verified  in  a chromogenic substrate assay.  The efficacy of  grB to specifically  target 

membrane-Hsp70 positive mouse tumor cells was proven in a 2D monolayer cell  system 

using  the murine colon carcinoma cell line  CT26, which shows a stable membrane-Hsp70 

expression. A significant  induction  of  apoptosis  by  grB was  shown for  CT26 cells  using 

caspase-3 assay and DAPI staining. In contrast, normal mouse cells,  lacking membrane-

Hsp70 expression were found to be resistant to grB mediated apoptosis. Also, a reduction in 

clonogenic cell survival of CT26 cells was observed after grB treatment. 3D tumor spheroids 

mimic the in vivo tumor tissue organization. grB has been shown to affect the integrity of the 

CT26 spheroid surface, induces tumor cell apoptosis and reduces the size of spheroids. The 

effective  dose  range  of  grB  from spheroid  experiments  was  considered  in  initial  mouse 

experiments. The influence of grB on solid tumors was tested in a syngeneic BALB/c CT26 

spheroid mouse model and showed good  tolerability and safety. A tendency toward anti-

tumoral effects of grB was visible, but needs to be confirmed by further animal experiments. 

Injections of active grB into patients bearing membrane-Hsp70 positive tumors might provide 

an innovative tumor therapy.  However,  leukemia appear  to be unlikely  to profit  from this 

approach since leukemic blasts frequently express grB inhibitors.
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ZUSAMMENFASSUNG (SUMMARY IN GERMAN)

Herstellung von humanem Granzym B (grB) mittels eines Expressionssystems 

und Analyse der in vitro und in vivo Effizienz

Die Serinprotease Granzym B (grB) induziert selbst in Abwesenheit von Perforin Apoptose in 

Tumorzellen, die das Hitzeschockprotein Hsp70 auf ihrer Zellmembran exprimieren (Gross et 

al. 2003b). Ziel dieser Arbeit war es, humanes grB in ausreichender Menge für in vitro und in 

vivo Experimente herzustellen und aufzureinigen. Nachdem vier unterschiedliche Systeme 

getestet  wurden  (NK  Zelllinie  YT, Pichia  pastoris,  Sf9/Baculovirus,  humane  HEK293 

Zelllinie), konnte enzymatisch aktives sowie biologisch funktionelles grB mittels einer stabil 

transfizierten  HEK293  Zelllinie  gewonnen  werden.  grB  wird  von  den  HEK293  Zellen  in 

inaktiver Form und mit  N-terminalem (His)6 tag exprimiert.  Folgende Aufreinigungsschritte 

führten  zum  Erfolg:  Zuerst  wird  grB  über  (His)6 tag-Nickel-Affinitätschromatographie 

aufgereinigt, anschließend wird der (His)6 tag mittels Enterokinase von grB abgespalten, was 

gleichzeitig zur Aktivierung von grB führt. In einem letzten Schritt wird das aktive grB über 

eine Heparin Säule aufgereinigt. Auf diese Weise konnten etwa 2 mg reines, aktives grB pro 

Liter Zellkulturüberstand von transfizierten HEK293 Zellen gewonnen werden. Durch einen 

Substrattest  konnte  die  enzymatische Aktivität  von grB durch Umsatz zu einem farbigen 

Produkt nachgewiesen werden. Die Wirksamkeit von grB wurde im 2D Zellkulturmodell mit 

der  murinen  Kolonkarzinom Mauszelllinie  CT26,  die  Hsp70  auf  der  Membran exprimiert, 

nachgewiesen. Ich konnte zeigen, dass grB in CT26 Zellen Apoptose induziert, wohingegen 

normale  Mauszellen,  welche  kein  Hsp70  auf  ihrer  Zellmembran  exprimieren,  nicht  in 

Apoptose gehen. Anhand von Koloniebildungsassays (CFA) konnte nach grB Behandlung 

ein signifikant vermindertes klonogenes Überleben festgestellt werden. Die Wirkung von grB 

wurde auch in 3D Tumorsphäroiden getestet. Diese stellen ein geeignetes Modellsystem dar, 

um  den  Aufbau  von  Tumorgewebe  nachzuahmen.  Die  Behandlung  mit  grB  beeinflusst 

zunächst  die  Integrität  der  Oberfläche  der  Sphäroide,  induziert  Apoptose  und  verringert 

schließlich die Sphäroidgröße. Für erste Mausexperimente wurde die Dosis, welche in den 

Sphäroidexperimenten  wirksam  war,  verwendet.  In  einem  syngenen  BALB/c 

Tumormausmodell,  in  dem CT26 Tumorsphäroide eingesetzt  wurden,  wurde die Wirkung 

von grB auf solide Tumoren  in vivo getestet. Diese Experimente haben gezeigt, dass das 

exogen zugegebene grB keine Nebenwirkungen in Mäusen erzeugt. Die Tendenz zu einer 

Tumorverkleinerung  deutete  sich  an,  muss  aber  noch  durch  weitere  Mausexperimente 

bestätigt  werden. Sollten  grB  Injektionen  zukünftig  als  Therapie  für  Tumorpatienten 

angewendet  werden,  käme  diese  Therapie  nur  für  Tumoren  in  Frage,  die  keine  grB 

Inhibitoren exprimieren. Es hat sich gezeigt, dass Leukämien zumeist sehr schlecht auf eine 

grB Behandlung ansprechen, da sie häufig grB Inhibitoren produzieren.
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                                                                                                         1 INTRODUCTION 

1 INTRODUCTION

1.1 Heat Shock Protein 70 family (HSP70)

1.1.1 Characterization and functions

Heat Shock Proteins (HSP; Abbreviations for Heat Shock Protein families are written 

in capital letters, whereas isoforms are written in lower case letters after starting with 

a capital letter) were originally discovered by Ritossa in the 1960s (Ritossa 1962). He 

exposed salivary gland cells from Drosophila melanogaster to elevated temperatures 

and examined their chromosomes. Ritossa found an unusual "puffing pattern" that 

indicated the elevated transcription of a gene that codes for HSP. Apart from heat 

shock, other “stress stimuli” including thermal stress, physical stress (e.g. UV light, 

gamma-irradiation),  chemical  stressors  (oxygen  radicals,  toxic  chemicals,  heavy 

metals,  cytostatic drugs), as well as viral or bacterial infections, have the ability to 

strongly upregulate HSP. 

One  very  important  family  of  HSPs  consists  of  ubiquitously-expressed  highly 

conserved heat shock proteins: the heat shock protein 70 (HSP70) members, which 

were named due to their molecular size of around 70 kDa. According to the new 

nomenclature system, they are now called HSPA  (Kampinga et al.  2009).  These 

highly  conserved  components  of  the  chaperone  system  exist  in  prokaryotic  and 

eukaryotic cells. The best characterized HSP70 member in E. coli is DnaK. In human 

cells,  more  than  17  genes  and  30  pseudo  genes  encode  for  HSP70  proteins 

(Brocchieri et al. 2008). 

Together  with  other  co-chaperones,  HSP70  family  members  are  responsible  for 

protein  folding  and  help  to  protect  cells  from environmental  stress,  which  cause 

protein denaturation and aggregation.  By temporarily binding to hydrophobic amino 

acids,  HSP70  prevents  partially-denatured  proteins  from aggregating,  and  allows 

them  to  refold.  It  should  be  noted  that  HSP70  family  members  mediate  many 

functions under physiological conditions, such as the folding of nascent polypeptides 

and transport across membranes in addition to their role in stress response.

All  members of the HSP70 family  consist  of  a  44 kDa amino-terminal  nucleotide 

binding domain (NBD) und a 28 kDa carboxy-terminal domain, which can be divided 

into a 15 kDa substrate binding domain (SBD) and a 10 kDa alpha helical structure 

domain (Patury et al. 2009). 
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Members  of  the  HSP70  family  are  located  in  the  cytosol,  in  the  lumen  of  the 

endoplasmatic  reticulum  (ER),  in  mitochondria,  in  endosomal  compartments,  in 

lysosomes, in the nucleus and in chloroplasts of plant cells. Furthermore, HSP70 is 

found in the intercellular space and on the plasma membrane of tumor cells. 

1.1.2 Intracellular HSP70

Two major isoforms of HSP70 exist, the constitutively expressed Hsc70 (HSPA8; 73 

kDa) and the stress-inducible form Hsp70 (HSPA1A; 72 kDa). They are present in 

the  cytoplasma  and  in  the  nucleus.  The  constitutively  expressed  Hsc70  is 

responsible for folding and unfolding of newly synthesized proteins, protein transport 

processes  across  membranes,  formation  and  dissociation  of  protein-protein 

complexes, as well as protein degradation under physiological conditions. However, 

the protective functions following stress are mainly mediated by the inducible Hsp70. 

In addition to its stabilizing function of hydrophobic domains of stressed proteins, it  

inhibits a number of steps in intrinsic and extrinsic apoptosis pathways. Intracellular 

Hsp70 safeguards the  cell  from lysosomal  membrane permeabilization,  activation 

and  translocation  of  pro-apoptotic  factors  and  the  release  of  cytochrome c  from 

mitochondria.  Furthermore,  intracellular  Hsp70  is  able  to  suppress  cellular 

senescence pathways (Patury et al. 2009).

The  HSP70 family member BiP (Grp78;  HSPA5) is  present in the endoplasmatic 

reticulum (ER) and is responsible for the correct folding and quality control of ER 

proteins.  The  mitochondrial  isoform mtHsp70  (Grp75;  HSPA9)  is  involved  in  the 

import and export of proteins from the mitochondria (Patury et al. 2009). 

Due to these  widespread functions, HSP70 family members are considered central 

mediators of proteome homeostasis  (Patury et al. 2009). Hence, it is not surprising 

that  HSP70 members are involved in  many diseases,  including cancer.  Cytosolic 

Hsp70 is overexpressed in a wide range of human cancers. This has been found to 

serve as a marker for poor prognosis in breast cancer, endometrial cancer, uterine 

cervical cancer, and transitional cell  carcinoma of the bladder and overexpression 

correlates with an enhanced frequency of lymph node metastasis in breast and colon 

cancer patients (Ciocca and Calderwood 2005). 
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1.1.3 Extracellular HSP70

For  a long time,  HSP70 family  members  were  thought  to  be  exclusively  located 

intracellular.  However,  recently  it  was  shown  that  HSP70  can  be  released  into 

extracellular compartments by a variety of viable cell types. HSP70 is secreted under 

various stress conditions, e.g. by tumor cells and antigen-presenting cells (APC). In 

the latter HSP70 plays a role in antigen processing and presentation (Barreto et al. 

2003; DeNagel and Pierce 1992; Hartl 1996). While the mechanism of release has 

not been completely understood yet, it appears that the extracellular transport from 

tumor  cells  occurs  via  a  non-classical  pathway  involving  lysosomal  endosomes 

(Mambula and Calderwood 2006). 

1.1.4 Tumor-specific Hsp70 plasma membrane localization

Although Hsp70 does not contain a transmembrane domain in its sequence, we and 

others identified an unusual  membrane-bound form of  stress-inducible Hsp70 (72 

kDa) on tumor cells (Ferrarini et al. 1992; Hantschel et al. 2000; Multhoff et al. 1995b; 

Tamura et al. 1993). Normal tissues were found to be negative for membrane-Hsp70 

(Gastpar et al 2004) (FIG. 1). A variety of biopsies and cell lines were screened using 

the monoclonal antibody cmHsp70.1 (multimmune GmbH, Munich, Germany), which 

is highly specific for the inducible Hsp70. This antibody recognizes an 8-mer amino 

acid sequence, 453-461 NLLGRFEL, which is exposed to the extracellular milieu of  

viable tumor cells. Approximately 15 to 20% of the total cellular Hsp70 content of  

tumor  cells  is  present  on  the  cell  surface  (Gehrmann  et  al.  2008a).  Hsp70  is 

transported to the plasma membrane through an alternative pathway, since inhibitors 

of  the  ER  and  Golgi  transport  pathway  do  not  affect  the  membrane-Hsp70 

expression. Co-localization of Hsp70 with the membrane protein caveolin-1, which is  

involved  in  receptor-independent  endocytosis,  indicates  a  caveolin-1  associated 

membrane-anchorage (Gehrmann M.,  dissertation). Recently, it was found that the 

tumor-specific  plasma  membrane  localization  of  Hsp70  is  enabled  by 

glycosphingolipid globotriasylceramide (Gb3) in cholesterol rich microdomains (CRM) 

in gastrointestinal tumors (Falguieres et al. 2008; Gehrmann et al. 2008a). 
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Membrane-Hsp70 expression of tumors is a negative prognostic marker for patients 

with lower rectal carcinomas and non-small cell lung cancer (NSCLC). The overall 

survival of patients with membrane-Hsp70 positive tumors is significantly lower than 

that  of  their  membrane-Hsp70  negative  counterparts  (Pfister  et  al.  926-35). 

Metastases  frequently  express  higher  levels  of  membrane-Hsp70  compared  to 

primary  tumors  (Botzler  et  al.  1998;  Farkas  et  al.  2003).  Membrane-Hsp70 

expression on tumor cells is elevated by radiation  (Gehrmann et al. 2008b), under 

hypoxia (Schilling et al. 2009) and by treatment with chemotherapeutics affecting the 

tubulin  network  (Gehrmann  et  al.  2002).  These  findings  highlight  the  clinical 

significance of determining the membrane status of Hsp70 and the urgent medical 

need to specifically target Hsp70 in patients with membrane-Hsp70 positive tumors. 

In  summary,  overexpression  of  HSP70  family  members  either  in  the  cytosol  or 

associated  to  the  plasma  membrane  seems  to  indicate  a  more  aggressive  and 

treatment-resistant  type  of  cancer.  Membrane-Hsp70  has  been  found  to  protect 

tumors  against  radiation-  or  chemotherapy-induced  apoptosis,  especially  after  a 

second treatment procedure (Gehrmann et al. 2008b). Therefore, therapies utilizing 

membrane-Hsp70 as a tumor-selective target structure for cytolytic attack by natural  

killer (NK) cells could provide an innovative strategy to treat highly aggressive tumors 

(Botzler et al. 1996; Multhoff et al. 1995a; Multhoff et al. 1997; Multhoff et al. 1999). 

FIG. 1:  Membrane-Hsp70 expression. Between 40-80% of different tumor entities express Hsp70 

on their plasma membrane. In contrast normal tissues lack a membrane-Hsp70 expression. More 

than 1000 tumor biopsies and their corresponding normal tissue were tested in our group by flow 

cytometry analysis. Scheme was kindly provided by Prof. Dr. G. Multhoff and slightly modified.
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1.2 Natural killer (NK) cells

1.2.1 Characterization and functions

Human Natural Killer (NK) cells are large granular lymphocytes that comprise around 

15% of all lymphocytes. NK cells are important effector cells of the innate immune 

system, and act as the first line of defence against invading pathogens and tumor 

cells. NK cells kill their target cells by different routes and are able to directly lyse 

target  cells  via  activating  receptors.  These  cytotoxic  capacities  of  NK  cells  are 

generally  mediated by  two pathways:  the extrinsic  pathway involving  cell  surface 

receptors  with  death  ligands  or  the  granzyme  (gr)-pathway,  which  involves  the 

release of cytotoxic granules. The latter pathway will  be discussed in more detail  

later.  NK  cells  also  mediate  antibody-dependent  cellular  cytotoxicity  (ADCC)  via 

binding of the membrane receptor CD16 to the tail region of antibodies (Fc; fragment 

crystallizable).  Another  indirect  killing  strategy  involves  attracting  the  attention  of 

other  immune  cells  by  secreting  immunoregulatory  cytokines.  These  interactions 

trigger an antigen-specific immune response mediated by T cells  (Andoniou et al. 

2008). 

Mature human NK cells are phenotypically defined by the expression of CD56 (neural 

cell  adhesion molecule),  and the lack of  expression of  CD3 and T cell  receptors 

(Robertson and Ritz 1990). Based on the cell-surface density of CD56, two different 

subsets of  NK cells exist  that have unknown functional  significance. The majority 

(90%)  of  human NK cells  express  low-density  CD56 (CD56dim),  and  high-density 

CD16  (CD16bright).  A  minority  group  of  NK  cells  expresses  a  high-density  CD56 

(CD56bright) and low-density CD16 (CD16dim) or lacks expression altogether. Resting 

cells expressing CD56dim are considered to be the cytotoxic sub-population. They are 

mainly present in the peripheral blood, while the cytokine-producing CD56bright cells 

are  predominantly  found  in  lymphoid  organs.  It  has  been  speculated  that  the 

CD56bright cells may comprise precursors of the CD56dim NK cells (Poli et al. 2009).

Evidence has accumulated  that NK (“Natural” Killer) cells, which are thought to kill 

their target without prior activation as representing innate immunity, as well as show 

features of adaptive immunity including memory (Sun et al. 2009). 
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1.2.2 Mechanisms of target recognition

The proteins encoded by the genes of the major histocompatibility complex (MHC) 

were expressed on the surface of cells and display antigens from the cell itself (“self”)  

and from invading pathogens (“non-self”) to T cell  lymphocytes and NK cells.  NK 

cells preferentially recognize and kill target cells with downregulated, lost, or altered 

classical and non-classical self-MHC class I molecule expression. This behaviour is 

termed the “missing self” theory by Kiessling (Kiessling et al. 1975a; Kiessling et al. 

1975b;  Ljunggren  and  Karre  1990).  NK cells  recognize  and  kill  target  cells  in  a 

complex way that involves the expression of activatory or inhibitory receptors. These 

multiple receptor-ligand pairs between NK and target cells are described vividly as 

the “NK cell zipper” (Vivier et al. 2008). Various types of NK cell receptors (NKR) play 

a role in these interactions. Four major human NKR-families have been identified:  

killer cell immunoglobulin-like receptors (KIR), immunoglobulin-like transcripts (ILT), 

C-type lectin receptors (CLR), and natural cytotoxicity receptors (NCR). Additional 

cell  surface  molecules  (e.g.  2B4)  act  as  co-receptors  that  are  also  involved  in 

triggering the NK cell functions. 

All inhibitory receptors (e.g. KIR-L, LAIR-1, CD94-NKG2A) share a common signaling 

motif  in  their  cytoplasmic region termed immunoreceptor  tyrosine-based inhibitory 

motif (ITIM), which starts the intracellular signaling pathway contributing to ban the 

NK cells from killing. Activatory and co-activatory signals are transmitted via their 

receptors  (e.g.  KIR-S,  CD94-NKG2C,  CD94-NKG2D)  through  different  signaling 

pathways.  These  pathways  begin  with  immunoreceptor  tyrosine-based  activatory 

motif  (ITAM)-bearing NK receptor complexes, DAP10-associated NKG2D receptor 

complexes and the 2B4 receptor system. The interplay between the signals received 

by an NK cell is extremely dynamic and is regulated in a spatial and temporal way 

(Lanier 2008).

Accessorily,  NK cells have other recognition strategies for “infection non-self”  and 

“stress-induced  self”.  Additionally,  tumor-associated  molecules  present  positively 

regulating ligands. 

Infiltration by NK cells may be associated with better prognosis in squamous cell 

lung, gastric and colorectal carcinomas (Coca et al. 1997). Tumor cells are ideal NK 

cell  targets  if  their  expression  of  MHC  class  I  antigens  are  completely  lost  or  

downregulated.  Additionally,  tumor  cells  bearing  a  variety  of  altered  self  stress-
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inducible proteins make good NK cell targets (Chang et al. 2005; Gasser et al. 2005). 

Our laboratory identified membrane-Hsp70 as a target recognition structure for NK 

cells on tumor cells (Multhoff et al. 1997).

1.3 Granzyme B (grB)

Upon  activation,  NK  cells  secrete  cytotoxic  granules  towards  the  immunological 

synapse  (IS)  between  the  NK  cell  and  a  target  cell. The  granules  release 

macromolecular complexes containing the lymphocyte serine proteases granzymes 

(gr)  that  induce  apoptosis  in  target  cells.  gr  are  the  focus  of  this  thesis,  which 

describes expression, purification and  in vitro as well as  in vivo characterization of 

granzyme B (grB).

1.3.1 Characterization and functions

Granzyme genes (approved gene symbol GZM) are only identified in mammals. Ten 

genes are known in mice (GZMA, B-G, K, M and N),  while there are five genes 

characterized  in  humans  (GZMA,  B,  H,  K,  M)  (Pardo  et  al.  2009).  GZM  are 

transcribed with  a signal  sequence that  directs  their  mRNA for  translation  to  the 

endoplasmic reticulum (ER). In the ER, a pro-enzyme is produced that is inactive by 

holding an amino-terminal dipeptide. In the Golgi, gr are tagged with a mannose-6-

phosphate used to target the gr to the lytic granules. Once inside the granules, gr are 

activated by removal of the dipeptide by the dipeptidyl peptidase I (cathepsin C) and 

the active gr molecule is stored on a scaffold of the chondroitin-sulfate proteoglycan 

serglycin (SG). Storage in this scaffolding, in combination with the acidic pH of the 

lytic  granules,  acts  to  minimize  the  proteolytic  activity  of  gr  (Chowdhury  and 

Lieberman 2008). It is shown that grA, B, C, K and M induce apoptosis in vitro, but 

more recent results indicate that also degeneration of the extracellular matrix (ECM) 

and inflammation can be mediated by gr (Buzza et al. 2005). grA and grB seem to be 

the most frequently expressed gr and they are the best characterized gr. Knowledge 

about the functions of the other gr is more rudimentary (Cullen et al. 2010; Hoves et 

al. 2010; Pardo et al. 2009).
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grB  is  a  serine  protease  consisting  of  227  amino  acids  in  its  active  form.  The 

substrate specificity of  human grB is unusual for a serine protease, as it  cleaves 

peptide  bonds  after  aspartyl  residues,  optimally  after  the  tetrapeptide isoleucin-

glutamic acid-proline-aspartic acid (IEPD). The arginine residue R-226 in grB is the 

major structural element responsible for the substrate specificity (Caputo et al. 1999). 

This  enzyme  is  mainly  produced  by  activated  cytotoxic  T  cells  and  NK  cells. 

However, recent discoveries have shown that it can also be expressed under certain 

pro-inflammatory  conditions  by  CD4+ cells,  mast  cells,  activated  macrophages, 

neutrophils, basophils, dendritic cells, T regulatory cells and B cells. In rare cases, 

grB can be found in non-immune cells in certain disease states such as solid tumor 

cells,  smooth muscle cells,  keratinocytes and chondrocytes,  type II  pneumocytes, 

sertoli cells, primary spermatocytes, granulose cells, and syncytial trophoblasts in the 

placenta (Boivin et al. 2009). 

Soluble grB is found in the serum of normal healthy individuals at concentrations up 

to 15-40 pg/ml and at elevated levels in various diseases. Presently, it is unknown 

whether this phenomenon is caused by leakage from the IS during killing or if grB is 

actively released into the serum (Buzza and Bird 2006; Cullen et al. 2010; Spaeny-

Dekking  et  al.  1998). Extracellular  grB  degrades  and  remodels  the  extracellular 

matrix (ECM) by direct cleavage of vitronectin, fibronectin and laminin. grB-mediated 

degradation  of  ECM  may  influence  tumor  metastasis  and  potentially  enhances 

lymphocyte  migration  (Buzza  et  al.  2005;  Pardo  et  al.  2007).  Extracellular  grB 

promotes inflammation by producing ECM fragments, which leads to the release of 

pro-inflammatory cytokines from immune cells.  Nevertheless, the recent discovery 

that grB deficient  mice demonstrate a profound resistance to LPS-induced shock 

provides  evidence  that  grB  also  plays  an  important  role  in  the  regulation  of  

inflammation (Metkar et al. 2008). In general, the existence of grB-expressing cells in 

the absence of the pore-forming protein perforin (PFN) gives a clue that there might 

be more so far unidentified roles of grB in immunity (Cullen et al. 2010). Therefore, it 

is not surprising that elevated levels of grB in the absence of PFN are measureable 

in several inflammatory diseases, including joint destruction in rheumatoid arthritis 

and atherosclerosis, as well as in vascular pathologies, in allergic reactions and in 

autoimmune diseases (Boivin et al. 2009; Cullen et al. 2010; Hagn et al. 2009). 

grB must enter the cell’s cytosol to induce apoptosis. Therefore, the first step is grB’s 

uptake  into  the  target  cell. There  is  still  a  controversial  debate  about  the  exact 
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mechanism of grB uptake. In traditional models, the delivery of grB into the target cell  

is thought to be mediated by PFN (schematic FIG. 2A). PFN is a Ca2+ dependent, 70 

kDa protein that multimerizes in the target cell plasma membrane and forms pores of 

5 to 20 nm diameter (Sauer et al. 1991; Tschopp et al. 1986). Early models proposed 

the formation of pores in the target cell membrane so that grB could easily stream 

inside the target cell. Later, it was shown that grB is also been taken up in a PFN-

independent  manner,  but  without  the  addition  of  a  lytic  agent  no  apoptosis  was 

caused in target cells (Froelich et al. 1996; Pinkoski et al. 1998). 

Other  models suggest a system where grB is taken up by pinocytosis or receptor-

independent endocytosis (schematic FIG. 2B). Afterwards PFN is able to release grB 

from endosomes into the cytosol,  where it  initiates apoptosis  (Keefe et  al.  2005; 

Pipkin and Lieberman 2007; Shi et al. 2005). Additionally, alternative mechanisms for 

grB entry have been proposed (no schematic figures are shown from the following). It  

is  assumed  that  a  complex  consisting  of  SG  and  grB  and  interacting  PFN  can 

incorporate into target cell membranes and delivers grB without pores (Grujic et al. 

2005). It is still not clear whether grB is taken up by pinocytosis or by a receptor-

mediated  endocytosis  mechanism.  Controversy  exists  about  the  uptake  via 

mannose-6-phosphate receptors on target cells  (Dressel et al. 2004; Motyka et al. 

2000; Veugelers et al. 2006). Bird et al. have speculated that the positively charged 

grB  might  leave  its  binding  partner  SG  and  bind  to  the  negatively  charged  cell  

surface.  The uptake would subsequently  be enabled by non-selective pinocytosis 

(Bird et al. 2005). 

Our laboratory has suggested a novel mechanism for a PFN-independent uptake of 

grB  into  membrane-Hsp70  expressing  tumor  cells.  This  mechanism  leads  to 

apoptosis without perforin or the need for other membrane permeabilizing reagents 

(Gross et al. 2003b) (FIG. 2C).
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              A B C

FIG. 2: Schemes for different grB uptake models. A Perforin (PFN)-pore-model. In the traditional 

model, perforin (PFN) builds up a pore so that grB can enter the cytosol. B PFN-endosome-release 

model.  grB and PFN are taken up by endocytosis.  PFN releases grB from endosomes into  the 

cytosol, where grB induces apoptosis. C Hsp70-grB interaction model. grB in the absence of PFN 

can be taken up by membrane-Hsp70 positive  tumor cells  and induces apoptosis.  The accurate 

mechanism of uptake is unknown, but it is mediated by Hsp70-grB interaction. 

Apoptosis is induced as soon as grB enters the cytosol. The grB-pathway represents 

a  pathway  of  apoptosis  induction  in  addition  to  the  extrinsic  or  death  receptor 

pathway  and  the  intrinsic  or  mitochondrial  pathway.  All  three  of  these  pathways 

finally converge into the same terminal pathway, starting with cleavage of caspase-3 

and ending in nuclear fragmentation. The grB-pathway is split in two sub-pathways. 

In  the  first  sub-pathway,  the  effector  caspase-3  (and  others  e.g.  caspase-7;  not  

shown in FIG. 3) is directly activated by grB and promotes DNA fragmentation. Other 

substrates  of  the  caspase  pathway  such  as  the  inhibitor  of  caspase-activated 

deoxyribonuclease (ICAD) and procaspase-8 can also be directly cleaved and finally  

lead to DNA fragmentation (FIG. 3, arrows on top from left to right: 2, 3 and 4). In the 

second sub-pathway, grB starts mitochondria-dependent apoptosis through inducing 

permeability of the mitochondrial outer membrane starting with cleavage of Bid and 

Mcl-1 (FIG. 3, arrows on top from left to right: 4, 5 and 6). There are interferences 

between the two sub-pathways concerning caspase-8, which is able to cleave Bid 

and caspase-3 (FIG. 3, arrows on top from left to right: 4). Additionally, the cleavage 

of procaspase-9 induced by cytochrom c release triggers apoptosome formation and 

finally caspase-3 cleavage (FIG. 3, downstream).  Accessorily, grB is able to by-pass 

the caspase cascade and the mitochondrial sub-pathway by directly cleaving lamin 
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B, which leads immediately to a loss of integrity of the nuclear membrane (FIG. 3; 

first  arrow on top).  It  is  controversially discussed, whether the mitochondrial  sub-

pathway is the main pathway in humans, which is physiologically relevant (Boivin et 

al.  2009;  Chavez-Galan  et  al.  2009;  MacDonald  et  al.  1999).  However,  the 

mitochondrial sub-pathway seems to be of minor importance in mice models (Cullen 

et al. 2010).

FIG. 3: grB-mediated apoptosis pathways.  grB initiates apoptosis by directly cleaving caspases 

(mainly caspase-3 but also other caspases) or by processing caspase substrates such as the inhibitor 

of caspase-activated deoxyribonuclease (ICAD), which leads to CAD translocation into the nucleus, 

where CAD cleaves DNA (caspase cascade pathways). grB also triggers a mitochondrial apoptosis 

pathway, which starts with the cleavage of Bid to a truncated form (gtBid) or Mcl-1 that in the end 

triggers  mitochondrial  cytochrom c  release.  Cytochrom c activates procaspase-9,  which leads  to 

apoptosome  formation,  caspase  activation  and  finally  to  apoptosis.  An  additional  interference 

between the two pathways occurs after procaspase-8 cleavage.  Another mode of action for inducing 

apoptosis by grB is its ability to cleave the nuclear membrane protein lamin B, which leads to loss of  

integrity of the nuclear membrane (direct cleavage; figure adapted from (Boivin et al. 2009)).
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Interestingly,  grB  induces  not  only  apoptosis  directly  through  the  mentioned 

pathways but also extracellular grB that cleaves extracellular matrix proteins might 

finally induce anoikis. Anoikis is a form of programmed cell death induced by loss of 

cell-matrix  interaction  (Buzza et  al.  2005;  Prakash et  al.  2009). Additionally,  grB 

proteolyzes extracellular proteins or cell surface receptors, like Notch1 and FGFR1, 

which  prevents  signaling  needed  to  boost  proliferation  and  survival.  These  are 

additional functions of grB for enhancement of apoptosis (Loeb et al. 2006).

1.3.2 grB mediated lysis of membrane-Hsp70 positive tumor cells

Our group has  shown that the 14-mer peptide TKDNNLLGRFELSG (TKD), derived 

from  the  carboxy-terminal  extracellular  domain  of  Hsp70,  functions  as  a  target 

recognition  structure  for  NK  cells  (schema  shown  in  FIG.  4). The  C-type  lectin 

receptor  CD94  is  involved  in  NK  cell  interaction  with  the  extracellular  part  of  

membrane-Hsp70. However, the mechanism how NK cells lyse membrane-Hsp70 

positive tumor cells remains elusive  (Gastpar et  al.  2004; Gross et al.  2003a).  In 

order  to  better  understand this  process,  we  looked  for  an  interaction  partner  for  

membrane-Hsp70 from NK cells. We have shown protein-protein interaction between 

grB and Hsp70  and  peptide-protein  interaction  between  grB and TKD by  affinity 

chromatography. grB, released by TKD/IL-2 activated NK cells, mediates apoptosis 

mainly in membrane-Hsp70 positive tumor cells. Therefore, it was proven that grB 

binds specifically  to  the  cell  surface of  membrane-Hsp70  positive  tumor  cells,  is 

taken up selectively and causes apoptosis without the need of PFN. This leads to the 

proposal  that  a  novel  PFN-independent  grB-stimulated  apoptosis  pathway  exists 

(Gross et al.  2003b). De Maio et al.  have shown that Hsc70 forms a functionally 

stable ATP-dependent cation channel in acidic phospholipid membranes  (Arispe et 

al. 2002; Arispe and De Maio 2000). In collaboration with De Maio, we have shown 

that  Hsp70  forms ion  channels  on  the  cell  surface  of  membrane-Hsp70  positive 

tumor cells. No channel formation has been observed in membrane-Hsp70 negative 

tumor cells (unpublished data). Therefore, it was assumed that Hsp70 serves as an 

entry port for grB into membrane-Hsp70 positive tumor target cells. Whether Hsp70 

forms  channels  or  uptake  occurs  through  pinocytosis  or  receptor-dependent  or 

-independent endocytosis has not yet been elucidated.

26



                                                                                                         1 INTRODUCTION 

FIG. 4: The peptide TKD stimulates NK cells. Hsp70 stimulates the activity of NK cells. By protease 

digestion the stimulating part of Hsp70 is localized to the carboxy-terminal end of Hsp70. Finally, the  

14-mer peptide TKDNNLLGRFELSG (TKD), derived from the carboxy-terminal extracellular domain 

of Hsp70 was found to be sufficient for NK cell activation. The schematic figure was kindly provided  

by Prof. Dr. G. Multhoff.

1.4 Aim of the study

This thesis is based on the finding that the specific plasma membrane localization of 

Hsp70 on tumor, but not on normal cells, facilitates the uptake of the human serine 

protease grB and initiates apoptosis  in  a  PFN-independent  manner  (Gross et  al. 

2003b). The goal of this work was to establish a protein expression system and a 

suitable  purification procedure,  for  producing  high  amounts  of  active  human grB. 

Afterwards, the enzymatic and biological activity of human grB was tested in vitro in 

mouse tumor cells, which expose Hsp70 on their membrane. Additionally, grB was 

tested  in  a  spheroid  assay.  These  model  systems  are  essential  for  a  better 

understanding of the mode of grB action. The impact of enzymatically active human 

grB was tested in a syngeneic tumor mouse model. Initially, the potential side effects 

were studied; secondly the effects on the growth reduction of tumors in mice therapy 

were  examined.  These  results  will  contribute  to  further  develop  the  idea  of  a 

molecular  therapy  based  on  a  novel  PFN-independent,  grB-mediated  pathway 

leading to apoptosis in membrane-Hsp70 positive tumor cells.
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2. MATERIAL AND METHODS

2.1 Chemicals and devices

Most chemicals and reagents were obtained from Sigma-Aldrich (Inc., St. Louis, MO, 

USA) or from Carl  Roth (Carl  Roth GmbH & Co.KG, Karlsruhe, Germany) unless 

otherwise stated. Chemicals and materials are described in detail where mentioned 

later on in the text for the first time. A few standard devices and consumable supplies 

are mentioned here. 

device company
4°C refrigerator Premium frost-free Liebherr International AG, Bulle, Switzerland
-20°C Comfort Liebherr
-80°C Hera Freeze HFU586 Basic Thermo Fisher Scientific, Rockford, IL, USA
analytical scales standard A566 Ohaus corp., Pine Brook, NJ, USA
cryogenic storage system Biosafe® Cryotherm GmBH & Co KG, Kirchen, Germany
Fresco 17 centrifuge Heraeus/Thermo Fisher Scientific
heating plate and magnetic stirrer 
MR3001K

Heidolph Instruments GmbH, Schwabach, Germany

micro ultra centrifuge Discovery 
M120

Sorvall/Hitachi/Thermo Scientific

multifuge 3SR+Centrifuge Heraeus/Thermo Fisher Scientific
pipettes Eppendorf AG, Hamburg, Germany
pipettor IBS pipetboy acu Integra Biosciences GmbH, Fernwald, Germany
scales EW620-3NM Kern & Sohn GmbH, Balingen-Frommern, Germany
test tube shaker REAX top Heidolph Instruments
ultrapure water system Direct-Q Millipore corp., Billerica, MA, USA

consumable material company
reaction tubes 0.5 ml, 1 ml, 2 ml Eppendorf
FalconTMtubes 15 ml, 50 ml, 250 ml BD Biosciences
pipette tips Eppendorf / Sarstedt AG, Nürnbrecht, Germany
96-well tissue culture test plates, flat 
bottom

TPP, Trasadingen, Switzerland

96-well tissue culture test plates, U-
bottom low evaporation lid 

BD Biosciences, Heidelberg, Germany

6-, 12-, 24-well tissue culture test 
plates, flat bottom

Corning Incorporated, Corning, NY, USA

tissue culture dishes 10 cm2 TPP

2.2 Microorganisms

2.2.1 Bacterial strain Escherichia coli (E. coli)

Chemical  competent  DH5 E.  coli were  used  for  transformation  and  plasmid 

amplification for cloning of grB into the vector for HEK293 transfection. 
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2.2.2 Yeast strain Pichia pastoris

The  Pichia  pastoris strain  X-33 (genotype:  wild-type,  phenotype:  Mut+  (methanol 

utilizing plus)) cultivated at 28-30°C was used for recombinant protein expression. 

Cloning  for  secreted  expression  of  proteins  was  done  by  means  of  the 

EasySelectTMPichia  expression  kit  (Life  Technologies),  according  to  the 

manufacturer’s protocol. Cloning of grB was oriented on the literature, where mature 

grB  tagged  by  Myc-epitope and  (His)6  tag  were  cloned  in  a  pPIC9  vector  (Life 

Technologies) and these plasmids were transformed into Pichia pastoris GS115 cells 

(Life Technologies)  (Giesubel et al. 2006; Sun et al. 1999).  However, we cloned 

mature  grB  with  a  carboxy-terminal  (His)6  tag  using  the  pICZA  vector  (Life 

Technologies) in Pichia pastoris X-33.  This was done by our cooperation partner K. 

Zettlitz from the working group of Prof. Dr. R. Kontermann (Institute for Cell Biology 

and Immunology, University of Stuttgart, Germany). I received the supernatants to 

establish  a  suitable  purification  procedure  for  grB  and  to  perform  tests  for  its 

enzymatic  and  biological  activity.  Therefore,  the  cloning,  the  transfection  through 

electroporation  and  the  production  procedure  are  not  mentioned  in  this  study  in 

detail. 

2.3 Cell culture and cells 

Cells were cultivated under sterile conditions at the appropriate temperature and CO 2 

concentrations. Cell culture was performed under a laminar flow (Hera Safe KS18, 

Thermo Fisher Scientific).

All  flasks  used were  obtained from Corning (T12.5,  T25,  T75,  T162) and sterile, 

single-use  pipettes  were  obtained  from  Sarstedt.  All  cell  lines  were  screened 

regularly  for  mycoplasma  contamination  by  an  enzyme  immunoassay  (Roche 

Diagnostics  GmbH,  Mannheim,  Germany)  detecting  Mycoplasma  arginini, 

Mycoplasma  hyorhinis,  Mycoplasma  laidlawii,  and  Mycoplasma orale.  Only 

mycoplasma-free cell lines were used.
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2.3.1 Cell lines for the production of human granzyme B (grB)

2.3.1.1 NK cell line YT

material / device ingredients company
YT cell medium RPMI-1640 medium

supplemented with 
10% heat-inactivated fetal calf 
serum (FCS),
1 mM sodium-pyruvate, 

2 mM L-glutamine,
100 IU/ml penicillin, 
100 μg/ml streptomycin, 
100 U/ml IL-2 (Proleukin®S) 

Life Technologies Corporation, 
Carlsbad, CA, USA

PAA laboratories GmbH, 
Pasching, Austria 
PAN Biotech GmbH, 
Aidenbach, Germany
PAN
Life Technologies
Life Technologies 
Novartis, Basel, Switzerland

The human NK leukemia cell line YT (Yodoi et al. 1985) (ATCC 434; DSMZ GmbH, 

Braunschweig,  Germany)  was cultivated under  standard conditions at  37°C,  95% 

humidity,  5% CO2 in an incubator (Heraeus BBD 6220, Thermo Fisher Scientific). 

According to the doubling time of 40-50 h, the YT suspension cells were seeded at a 

low cell density of 0.1 to 0.2 x 106
 cells/ml three times a week. 

2.3.1.2 Sf9 insect cells

material / device ingredients company
TNM-FH L-glutamine, yeast extract, 

lactalbumin hydrolysate, 0.35 
g/ml NHCO3, 10% FCS

Genaxxon Bioscience, Ulm, 
Germany

10 µg transfection-ready cDNA OriGene Technologies, Inc., 
Rockville, USA

high-titer, ready-to-use grB 
producing baculovirus stock

Orbigen Inc., San Diego, CA, 
USA

Adherent cells were grown at 27°C without the need of a humidified environment or 

additional  CO2 (incubator  TECO20;  Selutec  GmbH,  Hechingen,  Germany).  Cells 

were split three times a week and 4 x 106 were seeded in 15 ml TNM-FH medium per 

T75 flask. Detachment of cells was performed through mechanically knocking against 

the flask. 

The Sf9/baculovirus expression system for human grB was produced as follows: 10 

µg human grB cDNA was ordered from OriGene as transfection-ready. Subcloning 

into a Baculovirus transfer vector was accomplished by Orbigen. M. Gehrmann from 
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our group tested three clones to find the most efficient granzyme B (grB) producing 

one. The production of high-titer, ready-to-use virus stock was performed by Orbigen. 

The transfection  of  Sf9  cells  was performed as further  explained:  Sf9 cells  were 

freshly seeded at 7 x 106 cells per T75 flask in 13 ml TNM-FH medium. Cells were 

put back into the incubator to adhere slightly within around 15 min. To each flask, 2 

ml of high-titer baculovirus supernatant, from the stock or supernatant obtained from 

the  last  transfection  was  added  for  transfection.  The cells  were  incubated under 

standard  conditions  for  around  4  days.  Transfection  and  grB  production  were 

successful when cells stopped dividing, lost adherence and enlarged, but did not look 

lysed.  The  supernatant  containing  detached  cells  and  the  attached  cells  were 

combined. Centrifugation was performed at 400 x g at 4°C for 5 min. The supernatant 

containing virus was stored for  further  transfections at  4°C (it  is  also possible  to 

isolate the virus and store frozen at -80°C; for this purpose see the protocol provided 

by Orbigen). The cell pellet was resuspended in 30 ml of ice-cold phosphate buffered  

saline (PBS; Life Technologies) and centrifuged at 400 x g at 4°C for 5 min. After 

discarding  the  supernatant,  cells  were  lysed  immediately  (see  2.6.1.1)  and 

purification of grB was performed.

2.3.1.3 Human Embryonic Kidney (HEK293) cells

material / device ingredients company
HEK293 medium 
(used for cell culture)

RPMI-1640 medium 
supplemented with 5% heat 
inactive FCS, 6 mM L-
glutamine, 1 mM sodium-
pyruvate and antibiotics (100 
IU/ml penicillin and 100 µg/ml 
streptomycin)

Opti-MEM® I reduced serum 
medium (1X)
(used for production)

liquid, with L-glutamine, 2400 
mg/l sodium bicarbonate, 
HEPES, sodium pyruvate, 
hypoxanthine, thymidine, trace 
elements, growth factors

Life Technologies 

The  Human Embryonic Kidney cells 293 (HEK293; ACC305; DSMZ) were cultured 

by trypsin/Ethylene-Diamine-Tetra-Acetic (EDTA; 0.05%/0.02% in PBS without Ca + 

Mg; PAN) digestion for 2 min at 37°C and seeded at 1 x 106 cells per T75 flask in 15 

ml medium. 
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For production of inactive grB, the stably transfected HEK293 cell line (clone C10) 

was freshly thawed for each production cycle. 3 x 106 cells were thawed, washed and 

seeded into a T75 flask. Zeocin (300 µg/ml; Life Technologies) selection was started 

immediately and proceeded for the next 2 passages.  Cells were expanded to 20 

T162 flasks within approximately 9 days. As soon as there were enough cells, grB 

production was started: Cells were grown to 80% confluency (normally on day 2 after 

passaging) and the medium was removed. The cell layer was washed with PBS and 

25 ml of OptiMEM (Life Technologies) without any additives as carefully added to  

each  T162  flask.  Every  3-4  days  (4  times)  the  grB  containing  supernatant  was 

collected and fresh medium was added to the cells. In total 2 l of supernatant were 

gained from one production cycle.

2.3.2 Target cell lines

Tumor cell lines and the endothelial cells were cultured under standard conditions at 

37°C, 95% humidity, 5% CO2 in an incubator.

2.3.2.1 Human CX+ cells

material / device ingredients company
CX+ medium RPMI-1640 medium 

supplemented with 5% heat 
inactive FCS, 6 mM L-
glutamine, 1 mM sodium-
pyruvate and antibiotics (100 
IU/ml penicillin and 100 µg/ml 
streptomycin)

The human tumor subline CX+ was derived by fluorescence activated cell sorting 

(FACS) of the CX-2 colon carcinoma cell line (Nr. 300160; CLS Cell Lines Services, 

Eppelheim,  Germany) (Ovejera  et  al.  1978) using  the  Hsp70-specific  monoclonal 

antibody cmHsp70.1  (Multhoff 1997) (multimmune GmbH, Munich, Germany). CX+ 

cells  were  kept  in  culture  under  exponential  growth  conditions  by  regular  cell 

passaging. Every 3-4 days, cells were trypsinated for 1 min and 0.5 x 10 6
 cells were 

cultured per T25 culture flasks.
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2.3.2.2 Human K562 cells

material / device ingredients company
K562 cell medium RPMI-1640 medium 

supplemented with 10% heat 
inactive FCS, 6 mM L-
glutamine, 1 mM sodium-
pyruvate and antibiotics (100 
IU/ml penicillin and 100 µg/ml 
streptomycin)

The  human  myelogenous  cell  line  K562  was  purchased  from  ATCC  (CCL243, 

Rockville, MD) and the suspension cells were diluted 5 x 104 per ml into new medium 

two times a week to keep them under exponential growth conditions.

2.3.2.3 Mouse CT26 cells

material / device ingredients company
CT26 medium RPMI-1640 medium 

supplemented with 5% fetal calf 
serum, 6 mM L-glutamine, 1mM 
pyruvate, 100 IU/ml penicillin 
and 100 µg/ml streptomycin, 
non-essential amino acids (100 
x solution) and 
50 µM -mercaptoethanol

PAA 

Life Technologies

The  murine  colon  adenocarcinoma  cell  line CT26  (CT26.WT,  ATCC  CRL-2638) 

(Wang et al. 1995) is derived from a carcinogen-induced, undifferentiated tumor from 

a BALB/c mouse. Cells were cultured twice a week by trypsin/EDTA digestion (30 s 

at 37°C) and seeded at 1 x 106 cells per T75 flask in 20 ml medium. Cells were used 

until passage 50. 

2.3.2.4 Isolation of CD31+ endothelial mouse cells

Isolation of CD31+ endothelial mouse cells was kindly performed by our lab member 

W. Sievert and cells were provided for my experiments.

To obtain CD31 positive  cells, the subcutis from the back of two BALB/c mice was 

removed aseptically  and rinsed 3 times with  PBS on ice.  Then the subcutis  was 

disintegrated into 1 mm pieces with a scalpel and digested in 10 ml of collagenase A 
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(Roche Diagnostics) dissolved in HBSS (Life Technologies)/10 % FCS at 37°C under 

rotation for 45 min. This pre-digested cell-clump was passed through a needle (18G) 

10 times to dissociate any pieces. The single cell suspension was filtered through a 

70  µm  mesh and washed twice with HBSS/10% FCS (500 x g, 10 min). The cells 

were resuspended in 6 ml of HBSS/10% FCS and incubated with 10 µl of magnetic 

dynabeads (Life Technologies) coated with CD31 antibody (BD Biosciences) at RT 

for 20 min. The cells with bound beads were washed 5 times with HBSS/10% FCS 

using the magnet  DynaMagTM-15 for selection (Life Technologies). CD31 positive 

cells  were  seeded in  3 ml  of  endothelial  cell  growth medium (PromoCell  GmbH, 

Heidelberg, Germany) in a gelatin coated T12.5 culture flask.  Cells were cultured 

twice a week by trypsin/EDTA digestion for 1 min at 37°C and seeded at 3 x 10 5 cells 

per T75 flask in 20 ml of medium. Cells for experiments were cultured at least two 

passages after magnetic separation and only cells up to passage 4 were used. 

2.4 Animal model

Female BALB/c mice were obtained from an animal breeding colony (Charles River 

Laboratories,  Inc.,  Wilmington,  MA,  USA)  and  maintained  in  pathogen-free, 

individually  ventilated  cages  (Tecniplast,  Hohenpeissenberg,  Germany).  Animals 

were  fed  a  sterilized,  laboratory  rodent  diet  (Meika,  Großaitingen,  Germany)  and 

were used for experiments between 10 and 12 weeks of age. All animal experiments 

were  approved  by  the  “Regierung  von  Oberbayern”  and  were  performed  in 

accordance with institutional guidelines. 

For a  syngeneic mouse model, spheroids from the BALB/c-derived CT26 cell  line 

(see 2.3.2.3 and 2.7.5) were used for tumor growth. A single seven day old CT26 

spheroid  per  mouse  was  injected  intraperitoneally  (IP),  while  the  animal  was 

manually restrained. Weighing of the mice was performed at every step and mice 

were identified by ear punch. On day 6 after spheroid injection, the grB treatment  

started. 3 groups of 5 animals were used for each experiment. The first group was 

the control group, which was not treated at all. The second and the third groups were 

treated  with  inactive  grB  or  active  grB,  respectively  the  same concentration  and 

volume. In the first experiment, mice received 20 µg per g body weight inactive or  

active grB on days 6 and 7. In the second experiment, grB was given on days 6, 7,  
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13 and 14 to double the overall dose. The rest of the experiment was performed as 

stated above. Mice were monitored for one hour after each injection for irregularities.  

On day 21 after spheroid injection mice were anesthetized. For anesthesia a freshly 

prepared xylazine (4 mg/ml; stock 20 mg/ml, 2% Xylazin Rompun, Bayer Healthcare, 

Animal  Health  Division  Monheim,  Germany)  plus  ketamine (80  mg/ml;  stock  100 

mg/ml,  10%  Ketamin  Intervet/Schering-Plough  Animal  Health,  Boxmeer,  The 

Netherlands)  mixture was used.  40 µl  per  20 g of  the xylazine-ketamin mix was 

injected IP. A blood sample was taken from the anaesthetized mice from the orbital 

sinus or plexus via a microhematocrit tube. After 30 min of blood clotting, blood was 

centrifuged (750 x g, RT, 10 min), the serum aliquoted and frozen at -80°C. Mice  

were sacrified by cervical dislocation and the tumor, liver, kidney, lung, heart and 

spleen were resected. Tumors were weighted. Tumors and organs were immediately 

fixed in 3.7% formalin (1:10 dilution of 37% formaldehyde in PBS) to obtain paraffin 

slides for pathohistology.

2.5 Molecular biology 

2.5.1 Polymerase chain reaction (PCR)

material / device ingredients company
cDNA of human pre-pro-
GZMB (pCMV6-XL4)

cDNA template in the cloning 
vector pCMV6-XL4

OriGene Technologies, Inc., 
Rockville, USA

dNTPs, 10 mM Fermentas, Burlington, USA
PCR cycler RoboCycler 96 Stratagene, La Jolla, USA
cloning primers see below Thermo Fisher Scientific
Taq buffer with (NH4)2SO4, 10 x Fermentas
Taq DNA-polymerase (1 U/μl) Fermentas

The cDNA fragment encoding granzyme B (gene symbol GZMB) was amplified by 

PCR using the following oligonucleotides as primers: AgeI-GZMB-back (5‘ TTT ACC 

GGT ATC ATC GGG GGA CAT GAG  3’)  for  producing mature grB respectively 

using AgeI-(His)6-EK-GZMB-back (5‘ TTT ACC GGT CAT CAT CAT CAT CAT CAT 

GAC GAC GAC GAC AAA ATC 3’) for inactive and tagged grB and for both GZMB-

Stop-EcoRI-forward (5’ CCG GAA TTC TTA GTA GCG TTT CAT GGT TTT C 3’). 
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The PCR reaction mix was prepared as:

cDNA template 0.5 μl

10 x Taq buffer with (NH4)2SO4 5 μl

MgCl2 4 μl

forward primer (10 pmol/μl) 1 μl 

reverse primer (10 pmol/μl) 1 μl 

dNTPs 2.5 μl

Taq DNA-Polymerase 1.25 μl

sterile dH2O ad 50 μl

The amplification was performed using the following PCR program:

pre-cycle 5 min 94 °C

denaturation 1 min 94 °C

annealing 1 min 55 °C

elongation 1 min 72 °C

cycles 30x     

post-cycle 5 min 72 °C

end hold on 4 °C

2.5.2 Agarose gel electrophoresis and DNA gel extraction

material / device ingredients company
DNA loading buffer, 5 x 1 ml TAE buffer, 50x; 2.5 ml 

glycerol; 0.02% (w/v) 
bromphenol blue; ad 10 ml H2O

ethidium bromide Roth
Gene RulerTM DNA Ladder Fermentas
NucleoSpin Extract II, PCR 
Clean-up Gel extraction kit

Macherey-Nagel GmbH & Co. 
KG, Düren, Germany

ready agarose precast gel 
system

BioRad, Hercules, CA, USA

TAE buffer 40 mM TRIS,  8 mM sodium 
acetate, 1 mM EDTA (pH 7.8)

transilluminator, gel 
documentation system Felix

Biostep, Jahnsdorf, Germany

Analysis  and purification  of  DNA (amplified  or  digested  DNA)  was performed by 

horizontal agarose  gel  electrophoresis.  DNA samples  were  mixed  with  5  x  DNA 

loading buffer and separated using a 1% agarose gel containing 1  μg/ml ethidium 

bromide in TAE buffer. Samples were run at 85 V for 60 min. Relevant DNA bands 

were excised under UV light and extracted with a DNA gel extraction kit, according to  

the manufacturer’s protocol. DNA was eluted in 30 μl of sterile dH2O.
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2.5.3 Restriction digestion and ligation

material / device ingredients company
AgeI 10 U /μl Fermentas
alkaline calf intestine 
phosphatase (CIP) (5 U/μl)

Fermentas

buffer 0 Fermentas
EcoRI 10 U /μl Fermentas
ligase buffer (10 x) Fermentas
NucleoSpin Extract II, PCR 
Clean-up Gel extraction
kit

Macherey-Nagel

pSECTagA vector (5.2 kb) Life Technologies
pSECTagAL1 modified vector pSECTagA vector with an 

additional AgeI in its cloning site 
modifications by AG 
Kontermann, Stuttgart, 
Germany

T4 DNA ligase (5 U/μl) Fermentas

Ten  μg vector DNA or the total amount of DNA extracted from agarose gels were 

digested in a total  volume of 50  μl.  Restriction enzymes (20 U/reaction)  and the 

corresponding buffers were added. The incubation was performed for 3 h. For buffer 

exchange, the PCR Clean-up Gel extraction kit was used. To avoid vector religation, 

digested vector DNA was dephosphorylated after restriction digestion by adding 1 U 

CIP to the reaction mix and incubating at 37°C for 1 h. Ligation was performed at RT 

for 1 h with 1 µl of T4 DNA ligase and 2 µl of  ligase buffer (10 x) in a total volume of 

20 µl.  Different  concentrations of the linearized and dephosphorylated vector and 

insert were assembled to find the best ratio for ligation. As a control for religation the  

linear, dephosphorylated vector without insert was used. 

2.5.4 Transformation of E. coli

material / device ingredients company
LB medium (low salt) 10 g pepton, 5 g NaCl, 5 g 

Yeast Extract (< 90 mM salt), ad 
1l (pH 7.5), autoclave

LBamp plate LB medium (low salt) + 2% 
agar, 100 µg/ml ampicillin

petri dishes Thermo Fisher Scientific

100 µl of chemical competent DH5 E. coli cells and 10 µl of the ligation preparation 

were mixed on ice and incubated for 15 min. Then the mixture was placed for 45 s in 

a 42°C tempered water bath and thereafter another 1 min on ice. Next, 1 ml of low 

salt LB-medium was added and cells were incubated at 37°C for 1 h while shaking. 
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The  cells  were  centrifuged  (17,000  x  g,  4°C,  1  min)  and  the  supernatant  was 

discarded. Cells were resuspended in the remaining medium and plated on an LB amp 

plate, which was incubated at 37°C overnight.

2.5.5 Screening of clones

material / device ingredients company
mastermix (20 µl per tube) 10 µl Red Taq, 9.2 µl dH2O, 0.4 

µl of each primer (50 pmol/µl)
REDTaqTMReady Mix Sigma
pSECTagA sequencing primer 
pET-Seq1                   
  

5' - TAA TAC GAC TCA CTA 
TAG G - 3'

Thermo Fisher Scientific

pSECTagA sequencing primer 
pSec-Seq2

5' - TAG AAG GCA CAG TCG 
AGG - 3'

Thermo Fisher Scientific

The single clones,  which were grown overnight  on the amp selection plate were 

tested for the grB insert. For this, the clones were screened by PCR (see 2.5.1) with 

the above mentioned primers, which start amplifying outside of the multiple cloning 

site (marked in the vector sequence in the appendix). A mastermix was prepared on 

ice and for each clone tested, 20 µl thereof was preloaded in PCR-tubes. The single  

colonies  were  picked  with  a  sterile  toothpick,  dipped  into  its  PCR-tube  and 

simultaneously streaked out on a masterplate, which was cultured at 37°C overnight. 

The PCR was performed as mentioned in 2.5.1. and analyzed on an agarose-gel.  

Positive clones were identified by bands of the predicted insert size. As a negative 

control, the empty vector was used.

2.5.6 Plasmid purification 

material / device ingredients company
incubator with shaker HAT 
Multitron 2 

Infors AG, Basel, Switzerland

Nucleo Bond® Xtra Midi Macherey-Nagel

A clone streaked out on the masterplate and validated by the analytical agarose-gel, 

was used to inoculate an overnight culture in 100 ml of LB medium including 100 

µg/ml  ampicillin  and  1%  glucose.  Plasmids  were  extracted  using  a  commercial 
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purification kit  following the manufacturer’s  instructions.  The purified plasmid was 

resuspended in 100 µl of sterile water. 

2.5.7 DNA concentration determination and sequence analysis

material / device ingredients company
spectrophotometer 
GeneQuant

GE Healthcare, Little Chalfont, 
UK

DNA absorbance was measured photometrically at  the wavelengths 260 

nm and 280 nm  with the spectrophotometer.  The purity was determined by 

the ration OD260/280. The concentration was calculated by the formula: 

cDNA [μg/μl] = OD260 ∗ dilution factor ∗ 0.05 

Sequences were validated by GATC Biotech AG (Konstanz,  Germany)  using the 

sequencing primers (mentioned in 2.5.5). 
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2.6 Protein biochemistry 

2.6.1 Basic methods

2.6.1.1 Cell lysate

material / device ingredients company
insect cell lysis buffer 50 mM TRIS, 150 mM NaCl, 1% 

Nonidet P40 (pH 7.8)
PMSF dissolved in ethanol 
(100 mM stock solution)
protease inhibitor cocktail (25 
x stock solution)

Roche Diagnostics

TRIS-buffered saline (TBS) 1 mM TRIS, 0.9 % (w/v) NaCl 
(pH 8.5)

TBST TBS with  1% (v/v) Triton X-100 
(TBST)

This protocol was utilized to produce cell lysates e.g. for  Western blot applications. 

Fresh 1 mM PMSF and protease inhibitors (from frozen stocks at -20°C) were added 

to TBST, which was stored at 4°C for several months. Cell pellets were resuspended 

in 100 µl of TBST for each 1 x 106 cells. Lysis was performed in TBST buffer on ice 

for 45 min, while vortexing every 10 min. Insoluble material was pelleted at 17,000 x 

g at 4°C for 10 min and the protein containing supernatant was stored at -80°C for 

further experiments.

In order to perform lysis of Sf9 and YT cells for purification of grB other protocols 

were used. These methods are mentioned below for Sf9 cells and for the YT lysate in  

the corresponding section  2.6.2.1. Sf9 cells  were lysed by  resuspending the cell 

pellet in 1 ml of insect cell lysis buffer for each 4 x 106 cells and incubation on ice for 

45  min,  mixing  cautiously  every  10  min.  The  insoluble  material  was  pelleted  at 

10,000 x g at 4°C for 30 min and the grB containing supernatant was saved for the 

further purification. 

2.6.1.2 TCA-precipitation

Protein  precipitation  by  trichloroacetic  acid (TCA)  was  used  to  concentrate  cell 

culture supernatant for grB detection in Western blots. Therefore, 40% TCA solution 

was  mixed  1:1  with  cell  culture  supernatant  and  then  incubated  20  min  on  ice. 

Centrifugation was performed at 17,000 x g at 4°C for 20 min and supernatant was 
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discarded. Pellets were washed twice with 500 µl of acetone and centrifuged for 15 

min. Pellets were resuspended in 1 x reducing sample buffer. When the pellet turned 

yellow, TAE-buffer was added to neutralize TCA leftovers until the solution became 

blue again. 

2.6.1.3 Protein quantification assay

material / device ingredients company
BCA protein assay kit BSA standard (2 mg/ml),

solution A, solution B
Pierce/Thermo Fisher Scientific

Bio-RAD protein assay, dye 
reagent concentrate

Bio-RAD, Hercules, USA

BSA standard (2 mg/ml) Pierce/Thermo Fisher Scientific
plate reader EL808 BioTek, Bad Friedrichshall, 

Germany

Protein  quantification was either  performed by BCA assay or  by Bradford assay. 

Standards and samples were measured in duplicate in a 96-well plate. 

The BCA assay was executed using a BCA protein assay kit. Colorimetric detection 

of proteins is based on the biuret reaction (copper reduction by means of peptide 

bindings  in  alkaline  milieu),  linked  to  the  stable,  sensitive  chelating  reagent 

bicinchoninacid. For quantification of protein different concentrations of BSA, diluted 

in the same buffer as the samples, act as a standard. This assay is quite insensitive 

to detergents. The plate was incubated at 37°C for 2 h and the absorbance was 

measured at 550 nm.

The  protein determination by the Bradford assay was performed with a purchased 

dye reagent concentrate according to the manufacturer’s instructions. The principle 

of this assay is that proteins form a complex with the dye coomassie brilliant blue G-

250 in acid milieu. Therefore, a quantitative, colorimetric detection of this complex 

was performed at around 595 nm. For quantification, a standard curve of different 

BSA concentrations was measured simultaneously.  Absorbance was measured at 

RT at 570 nm after 5 min incubation.
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2.6.1.4 grB ELISA

grB from different lots and expression systems was quantified by standard ELISA 

technique. grB ELISA was performed following the instructions of the grB ELISA kit 

(Gene-Probe, Inc., San Diego, CA, USA). Briefly, grB antibody-coated 96-well plates 

were  incubated  with  100  μl  of  samples  or  standard  solutions  at  different 

concentrations in combination with the secondary capture antibody, for 3 h at room 

temperature. After two washing steps, freshly prepared avidin-peroxidase was added 

for 30 min and afterwards substrate solution for another 12-15 min. Sulfuric acid was 

added to stop the reaction. Plates were measured at 450 nm and at the reference 

wavelength 650 nm using the plate reader.

2.6.1.5 Enzymatic activity assay

material / device ingredients company
substrate reaction buffer 10 mM HEPES, 140 mM NaCl, 

2.5 mM CaCl2 (pH 7.4 at RT)
Ac-IEPD-pNA substrate VIII Merck KGaA, Darmstadt, 

Germany

The colorimetric grB substrate Ac-IEPD-pNA (Ac-Ile-Glu-Thr-Asp-p-Nitroanilide,) was 

dissolved in DMSO. For qualitative measurements (e. g. to identify the grB containing 

fractions from the heparin purification step), 5 µl of sample were incubated with 200 

µM of chromogenic substrate in reaction buffer in a total volume of 100 µl (for the 

stability assay 30 µl of sample in 100 µl were used). For determining specific activity,  

different  concentrations of  purified grB were measured  (Dalken et  al.  2006).  The 

absorption  of  the  cleaved  substrate  was  measured  in  a  96-well  plate  at  the 

wavelength 405 nm using the reader after incubation at 37°C for 60 min.
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2.6.1.6 SDS-PAGE, silver staining and Western blot

material / device ingredients company
Amersham HyperfilmTM ECL 
High Performance 
chemiluminescence film

GE Healthcare

blotting buffer 20% methanol, 25 mM TRIS, 
190 mM glycin, 0.1% SDS (w/v)

chemicals for fixation and 
development

Tetenal, Norderstedt, Germany

ECL detection kit GE Healthcare
electrophoresis buffer 25 mM TRIS, 190 mM glycin
electrophoresis system Hoefer 
Pharmacia Biotech SE 250

GE Healthcare

full range rainbow recombinant 
protein molecular weight 
marker

GE healthcare

grB antibody, monoclonal 
(1:2000)

clone 2C5, mouse IgG2a BD Biosciences

nitrocellulose membrane filter 
paper sandwich

Life Technologies 

PI-9 antibody (polyclonal goat 
anti-SERPINB9) (1:500)

Everest Biotech Ltd., 
Oxfordshire, UK

reducing sample buffer, 4 x 100 mM DTT, 5% SDS, 10% 
glycerol, 0.06 M TRIS, 0.2 
mg/ml bromphenol blue (pH 6.8)

resolving gel 10%/15% acrylamide solution, 
0.38 M TRIS (pH 8.8), 0.1% 
(w/v) SDS, 0.1% (w/v) APS, 
0.0004 % (v/v) TEMED

Roti®-Black P silver staining kit Roth
secondary mouse anti-IgG 
horseradish peroxidase 
antibody (1:2000)

Dianova, Hamburg, Germany

semi-dry blotting system 
Hoefer Semiphor

GE Healthcare

skim milk, 5% 5% skim milk powder in TPBS Heirler Cenovis GmbH, 
Radolfzell, Germany

stacking gel 5% acrylamide solution (37.5:1 
acrylamide : N,N-
methylenbisacrylamide), 0.13 M 
TRIS (pH 6.8), 0.1% (w/v) SDS, 
0.1% (w/v) APS, 0.001% (v/v) 
TEMED

TPBS PBS with 0.1% Tween 20 Tween 20 from Merck 
X-Omat M-35 Developer Eastman Kodak, Rochester, 

NY, USA

The stacking and resolving gels were polymerized in a gel caster. Protein samples 

were mixed with reducing sample buffer and heated for 5 min to 95°C according to 

the literature  (Laemmli  1970).  Proteins were  separated by  their  molecular  weight 

using SDS-PAGE at a 10% or a 15% polyacrylamide slab gel in a gel electrophoresis  

chamber.  200  ng of  pure  protein per  lane  (except  of  the  elution  fractions,  there 

volumes of approximately 200 ng of grB in the highest fractions were loaded), 10 µg 
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of cell lysate or 5 µl of marker (0.5 µl of marker for silver staining) were applied.  

Subsequently,  the  gels  were  either  silver-stained  following  the  manufacturer’s 

instructions  to  visualize  protein  bands  or  further  blotted  on  a  nitrocellulose 

membrane. Blotting was performed with 50 V and 0.8 mA pro cm2 for 30 min for grB 

(31 kDa) and 45 min for larger proteins.  Blots were blocked with 5% skim milk in 

TPBS at RT for 1 h. Membranes were incubated with the primary antibody at the 

above mentioned dilutions in 5% skim milk at RT for 1 h.  Afterwards, blots were 

washed  with  TPBS  and  incubated  with  the  secondary  antibody  coupled  with 

horseradish peroxidise (HRP), for 1 h at RT.  Bands were visualized using the ECL 

kit.  Blots  were  exposed  on  a  chemiluminescence  film  for  normally  5  s  for  grB 

detection  or  and  3  min  for  Protease  Inhibitor-9  (PI-9)  detection.  Western  blot 

quantification was performed with ImageJ (National  Institute  of  Health,  Bethesda, 

MA, USA).

2.6.2 grB purification methods 

2.6.2.1 Nucleus protein isolation

material / device ingredients company
YT lysis buffer I 0.5% (v/v) Nonidet P40, 25 mM 

KCl, 5 mM MgCl2, 10 mM TRIS 
(pH 8.0)

YT lysis buffer II YT lysis buffer I, 1% (v/v) Triton 
X-100

YT nuclear protein extraction 
buffer

0.5% (v/v) Nonidet P40,  5 mM 
EDTA, 10 mM TRIS (pH 8.0 at 
4°C)

For grB purification, YT cell culture was expanded to harvest around 2 x 107 cells at 

each timepoint. The pellet was washed twice with PBS and stored as a dry pellet at  

-80°C until around 2 x 108 cells were collected. The pellet was resuspended in 20 ml 

of  ice-cold  YT  lysis  buffer  per  2  x  108 cells  and  incubated  for  30  min  on  ice. 

Centrifugation was performed at 1,000 x g at 4°C for 5 min. Supernatant was then 

removed. The pellet was resuspended in YT lysis buffer II. Then the centrifugation 

step was repeated, supernatant was removed and the pellet was resuspended in 

buffer  II  and  incubated  on  ice  for  10  min.  After  a  next  centrifugation  step,  the 

supernatant was removed and the pellet was resuspended in 5 ml of nuclear protein 

extraction  buffer.  The  next  centrifugation  step  was  performed  in  the  micro  ultra 
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centrifuge (50,000 x g, 4°C, 30 min). The supernatant containing nuclear proteins 

was saved and further purified for grB. 

2.6.2.2 Heparin affinity chromatography

material / device ingredients company
Äkta prime GE Healthcare
heparin buffer A 10 mM TRIS, 0.1 M NaCl, (pH 

8.0 at 4°C)
heparin buffer B 10 mM TRIS, 1 M NaCl, (pH 8.0 

at 4°C)
HiTrapTMHeparin HP (1 ml/5 
ml)

heparin sepharose high 
performance

GE Healthcare

The heparin binding capacity is around 3 mg protein per ml material. Therefore, the 

volume of the heparin column was chosen after estimating the amount of grB in the 

sample. Heparin affinity chromatography was performed at 4°C using an Äkta purifier 

at a flow rate of 1 ml/min for columns containing 1 ml of heparin sepharose and a  

flow rate of 2.5 ml/min for 5 ml columns. The run was monitored by the software Äkta 

View (GE Healthcare).  The  heparin column was equilibrated with heparin buffer A. 

The grB containing sample was loaded onto the column and washed with buffer A. 

When the base line was reached again (280 nm absorption), elution was started. grB 

was eluted with gradually increasing concentrations of buffer B to 100%. 20 fractions 

of 2 ml each were collected for 1 ml columns and 20 fractions of 4 ml each were 

collected  for  5  ml  columns.  The  protein  content  of  the  different  fractions  was 

determined and their grB concentration was ascertained by grB ELISA (2.6.1.4) and 

Western  blot  analysis  (2.6.1.6).  The  purity  was  analyzed  by  silver-stained  SDS-

PAGE (2.6.1.6).

2.6.2.3 Nickel affinity chromatography

material / device ingredients company
his buffer A 20 mM TRIS, 20 mM imidazole, 

500 mM NaCl (pH 8.0 at 4°C)
his buffer B 20 mM TRIS, 500 mM 

imidazole, 500 mM NaCl (pH 
8.0 at 4°C)

HisTrapTMFF (1 ml) nickel sequarose G fast flow GE Healthcare
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For  (His)6  tagged  proteins,  a  nickel  column (HisTrapTMFF)  was  used  for  the  first 

purification step. The binding capacity of the nickel sepharose G fast flow is 40 mg 

protein per ml material, so that columns containing 1 ml of material were sufficient for  

my purpose. Nickel affinity chromatography was performed by Äkta purifier of a flow 

rate of 1 ml/min at 4°C. The HisTrapTMFF column was equilibrated with his buffer A. 

The grB  sample  was  mixed  with  20  mM imidazole  loaded onto  the  column and 

washed with buffer A until the base line (280 nm absorption) was reached again. grB 

was eluted with gradually increasing concentrations of his buffer B to 100% within 20 

ml, while 20 fractions of 1 ml each were collected. Protein content of the different 

fractions was determined and their grB concentration was ascertained by grB ELISA 

(2.6.1.4)  and  Western  blot  analysis  (2.6.1.6). The purity  was  analyzed  by  silver-

stained SDS-PAGE (2.6.1.6).

2.6.2.4 Activation procedure through enterokinase (EK) digestion

material / device ingredients company
enterokinase (EK) bovine, 
recombinant expressed in E. 
coli; 28 kDa 

Sigma

EK buffer 500 mM TRIS, 2 mM CaCl2 (pH 
8 at RT) plus 1% Tween-20; 
(buffer was produced without 
Tween-20, which was added not 
until finishing the concentration 
step) 

Inactive grB, derived from transfected HEK293 cells, was concentrated to 1.5 mg/ml, 

while the buffer was exchanged to EK buffer (2.6.2.5). 0.02 U of recombinant bovine 

EK was added per mg protein and this mix was incubated at RT on a rotator for 16 h.

2.6.2.5 Buffer exchange

material / devices ingredients company
disposable PD-10 desalting 
columns IMPROVED

GE Healthcare

Amicon Ultra-15 centrifugal 
filter units

MWCO 10000 Millipore

46



                                                                                       2 MATERIAL AND METHODS

These  two  methods  for  buffer  exchange  were  performed  as  described  in  the 

manufacturer’s instructions. Buffer exchange via PD-10 columns was the method of 

choice if the volume was less than 10 ml and an enhancement of volume of at least  

1.4-fold  was  acceptable.  Amicon  Ultra-15  centrifugal  filter  units  were  chosen  to 

exchange buffer and simultaneously concentrate protein.

2.6.2.6 Filtration

material / devices ingredients company
SFCA filter unit 500 ml 75 mm 
diameter (0.45 µm pore size) 

Nalgene/Thermo Fisher 
Scientific

Supor® membrane (0.2 µm 
pore size)

sterile filter PALL Corporation, Port 
Washington, NY, USA

Culture supernatant was centrifuged (500 x g, 4°C, 10 min) and filtered through a low 

protein binding SFCA filter unit (0.45 µm) before chromatography steps. For sterile 

filtration of proteins, the low protein binding Supor® membrane (0.2 µm) syringe filter 

was used.

2.6.2.7 Storage

Every purification procedure was performed as  fast  as possible  to  quickly  freeze 

purified grB and preserve degradation. Sterile filtered grB in PBS was shock frosted 

in liquid nitrogen and stored at -80°C. A new aliquot was carefully thawed on ice for  

each usage in experiment. No freeze-thaw cycles were performed. 

2.7 Cell biology

2.7.1 Transient and stable transfection of HEK293 cells

For transient grB transfection, 1 x 106 HEK293 cells were seeded in 2 ml of medium 

per well of a 6-well plate. On the next day, 166 µl of OptiMEM was combined with 

6.66 µl of lipofectamineTM2000 (Life Technologies) and this solution A was incubated 

at RT for 5 min. Solution B was prepared from 166 µl of OptiMEM and 2.66 µg of the  
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plasmid.  Solution  A  and B were  mixed gently  and  the  emerging  solution  C  was 

incubated at RT for 20 min. While solution C was incubating, cells were prepared: 

The medium was removed  and 1.33 ml  of  OptiMEM was added  per  well.  Next, 

solution C was added dropwise and the cells were further incubated under standard 

conditions.  On  the  next  day,  the  supernatant  was  removed,  centrifuged  and 

transferred to a reaction tube. The supernatant was screened by Western blot for  

secreted  grB.  Also,  cell  lysates  and  precipitated  cell  culture  supernatants  were 

tested. 

For producing stable cell lines, the transfection was performed as stated above. 24 h 

after the transfection, cells were diluted. For this, cells were trypsinated and all cells 

were seeded into a 10 cm2  tissue culture dish in 8 ml of HEK293 medium. On the 

next  day,  300  µg/ml  zeocin  was  added  to  start  the  selection  process.  Medium 

containing 300 µg/ml zeocin was exchanged regularly. After 1.5 to 2 weeks, non-

transfected  cells  died  off  and  stably  transfected  cells  were  expanded.  After 

expansion,  3  x  106  cells  per  cryovial  (TPP) were frozen in  a  NalgeneTMCryo 1°C 

freezing container (Thermo Fisher Scientific) in 10% DMSO, 50% FCS, 40% RPMI-

1640. Frozen cells were stored in the gas phase above liquid nitrogen.

2.7.2 Single cell cloning

Single cell cloning was performed to find the best grB producing clone of transfected 

HEK293 cells. Cells were diluted to 2 cells per ml and 200 µl of this cell suspension 

was pipetted in each well of a 96-well U-bottom plate (on average 0.4 cells per well). 

After two weeks, clones were transferred to fresh wells of a 96-well  flat-bottomed 

plate and gradually expanded. 

2.7.3 grB stability assay

2 x 104 CT26 cells were seeded into half of the wells of a 96-well flat-bottom plate. 

The  other  wells  were  blocked  with  CT26  medium.  After  24  h,  the  medium was 

removed and the wells were washed with PBS. For testing the stability of grB under 

cell culture conditions, 200 µl of grB (4 µg/ml) in RPMI-1640 without phenol red (Life 
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Technologies) was applied to half  of  the wells with cells and to half  of  the wells  

without cells. To the remaining wells, RPMI-160 without phenol red and without grB 

was added. At different timepoints, the medium was removed, centrifuged, aliquoted 

and frozen at -80 °C. 

2.7.4 Colony forming assay (CFA)

1.5 x 102 CT26 cells per well were seeded in 0.5 ml of medium in 24-well plates. The 

outer wells were filled with PBS. After 24 h, the old medium was removed and cells 

were treated with grB diluted in CT26 medium in triplett for each treatment condition 

(0.04, 0.1, 0.2, 0.4, 0.6, 0.8, or 1 µg/ml). After seven days, colonies were fixed and 

stained. The medium was removed from the dishes and wells were washed with 1 ml  

of  PBS.  Colonies  were  fixed  with  methanol  (-20°C)  for  5  min.  The  fixative  was 

removed and colonies were stained with 1 ml of 0.1% crystal violet for 2 min. The 

plates were rinsed with tap water and dried. Colonies consisting of more than 50 cells  

were counted. The plating efficiency (PE) was determined as the number of counted 

colonies divided by the number of seeded cells. The survival fraction was calculated 

as the PE of treated colonies divided by the PE of untreated colonies. 

2.7.5 Production of spheroids

High affinity plates (Corning Costar 96-well EIA/RIA, Thermo Fisher Scientific) were 

coated with sterile 1% agarose (Sigma) dissolved in RPMI-1640 without phenol red. 

5 x 103 cells in 200 µl of CT26 medium were pipetted into each well. 

For in vitro experiments, the spheroids were grown under standard conditions for 4 

days. Then, the spheroids were transferred to a fresh uncoated plate to avoid effects 

of agarose coating during the treatment. This procedure consists of isolating single 

spheroids of the same size and placing each in a 1.5 ml reaction tube filled with 1 ml  

of PBS for washing. The tubes were closed and mixed by rotation. After this washing 

procedure, the spheroids were transferred to a 96-well U-bottom plate filled with 100 

µl  of  RPMI-1640 per  well.  Treatment was performed in  200 µl  of  RPMI-1640 as 

described in the corresponding section (2.7.6).
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For  in vivo  experiments, the spheroids were grown for 7 days. After that time, the 

spheroids were pipetted into a 50 ml tube filled with 30 ml RPMI plus 10% FCS and  

the  closed  falcon  was  turned  over  to  wash  the  spheroids.  Each  spheroid  was 

aspirated in 0.2-0.3 ml 5% FCS-containing RPMI-1640 using a 1 ml syringe (luer-

lokTMtip, BD; sterican® 0.7 x 30 mm, B.Braun Melsungen AG, Melsungen, Germany). 

A single spheroid per BALB/c mouse was injected IP. 

2.7.6 grB apoptosis assays

material ingredients company
camptothecin (cam) powder was dissolved in DMSO 

for a 10 mM stock solution
Sigma

PE-conjugated monoclonal 
active caspase-3 antibody 
apoptosis kit I

BD Biosciences 

Vectashield mounting medium containing 
DAPI

Vector Laboratories Inc., 
Burlingame, CA, USA

For monolayer apoptosis assays analyzed by FACS cytometry, 5 x 105 CT26 mouse 

tumor cells or CD31 positive cells obtained from BALB/c mice were seeded into 6-

well plates in 3 ml of RPMI-1640 mixed at the appropriate concentrations of grB and 

camptothecin (cam; 4 µg/ml or 10 µM, end concentration respectively) as a positive 

control  for  apoptosis  induction,  or  PBS  alone  as  negative  control.  Cells  were 

incubated at 37°C for an additional 4 to 48 h. After the various timepoints, fractions of 

apoptotic cells were determined by annexin-V staining (see 2.7.7.2) or caspase-3 

staining  for  flow  cytometry  analysis  (see  2.7.7.3).  Simultaneously,  an  Hsp70/PI-

staining was performed for each sample as stated in 2.7.7.1. 

For  monolayer  apoptosis  assays  analyzed  by  DAPI  and  caspase-3  fluorescence 

microscopy,  0.25 x 106 cells in 1.5 ml of  CT26 medium were seeded into 2-well 

chamber slides (Thermo Fisher Scientific). After 24 h incubation, the medium was 

changed to RPMI-1640 without additives as a negative control or to RPMI-1640 with 

grB (4  µg/ml),  or  cam (4  µg/ml).  After  an  additional  48  h  incubation  period,  the 

detached cells in the supernatants and the attached cells on the chamber slides were 

washed with PBS once and stained separately with active caspase-3-PE antibody. 

Contrary to the FACS analysis for caspase-3, a PE-coupled antibody was used for  

fluorescence microscopy, since FITC-labeled caspase-3 bleaches out faster than PE. 
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Chamber  slides  as  well  as  detached  cells  were  covered  in  mounting  medium 

containing DAPI and analyzed by bright field and by fluorescence microscopy.

Apoptosis  was  induced  in spheroids  in  the  following  way:  After  transferring  the 

spheroids to a fresh 96-well U-bottom plate, different concentrations of grB (4, 10, 20,  

40, and 80 µg/ml), 4 µg/ml cam, or PBS were added to the spheroids. Medium was 

added  to  a  total  volume  of  200  µl.  Every  third  day,  spheroids  were  treated  by 

replacing  half  of  the  medium with  fresh  medium containing  additives.  48  h  after  

treatment 10 spheroids were picked and their 3D-tissue structure was disrupted with 

trypsin/EDTA for 15 min at 37°C and pipetting up and down. Cells were counted and 

caspase-3  staining  and  flow  cytometry  analysis  were  performed as  described  in 

2.7.7.3. 

2.7.7 Flow cytometry analysis

Cells were analyzed by flow cytometry on a FACS Calibur instrument endowed with 

Cell Quest Pro Version 6.0 software (BD Biosciences).

2.7.7.1 Membrane-Hsp70 staining

material ingredients company
cmHsp70.1-FITC/isotype 
mouse IgG1-FITC

multimmune GmbH, Munich, 
Germany/ BD Biosciences

FACS buffer 10% FCS in PBS
MHC class I/isotype mouse 
IgG1-FITC

Sigma-Aldrich/BD Biosciences

MHC class I H2Dd/isotype 
mouse IgG2a-FITC

abcam plc, Cambridge, 
UK/abcam

propidium iodide (PI) 100 µg/ml stock solution (100 x) 
in PBS

For the cmHsp70.1-FITC staining, it is important to use the correct antibody dilution 

as mentioned for each individual lot. The FITC-conjugated mouse IgG1 was used as 

an  isotype  matched  control  antibody.  As  positive  control  for  adjusting  the  right 

settings, MHC class I-FITC (5 µl) was used for human cell lines and MHC class I H2Dd 

(0.2  µg)  was used  for  cells  derived  from BALB/c  mice  together  with  appropriate 

isotype controls. The staining should be performed with 1 x 105 cells in a 1.5 ml tube. 

Cells were washed once with 1 ml of FACS buffer. After centrifugation (500 x g, 4°C,  
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5 min), the supernatant was removed completely. Antibody was administered to the 

pellet  and  mixed.  Staining  was  performed  on  ice,  in  the  dark  for  30  min.  After 

washing the cell pellet with 1 ml FACS buffer, the pellet was resuspended in 500 µl of 

FACS buffer and transferred to a FACS tube (5 ml polystyrene round-bottom tube 

Falcon,  BD Biosciences).  To differentiate  between dead and viable cells,  PI  was 

added and FACS analysis was performed immediately. The percentage of positively  

stained cells was calculated as the number of specifically-stained, propidium iodide 

(PI)-negative, viable cells minus the number of cells stained with an isotype-matched 

control.

2.7.7.2 Annexin-V staining

material ingredients company
Annexin-V-FLUOS Roche
annexin buffer 10 mM HEPES, 140 mM NaCl, 

2.5 mM CaCl2 (pH 7.4)
annexin solution 10 µl Annexin-V-FLUOS in 1 ml 

annexin buffer

2 x 105 cells were washed subsequently in PBS and in annexin buffer (500 x g, RT, 5 

min). The pellet was stained using 100 µl of annexin solution at RT in the dark for 15 

min. 400 µl of annexin buffer and 5 µl of PI were added and flow cytometry analysis 

was  performed immediately.  Annexin/PI  double  staining  represents  late  apoptotic 

and necrotic cells, while annexin only stained cells represent early apoptotic cells.

2.7.7.3 Caspase-3 staining

material ingredients company
FITC-conjugated monoclonal 
active caspase-3 antibody 
apoptosis kit I

see components below BD Biosciences 

FITC conjugated monoclonal 
rabbit anti-active caspase-3 
antibody

BD Biosciences

Cytofix/CytopermTM solution neutral pH-buffered saline, 
saponin, 4% (w/v) 
paraformaldehyde

BD Biosciences

Perm/WashTM buffer FCS, sodium azide, saponin BD Biosciences
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The principle of this assay is based on a quantitative FACS measurement of active 

caspase-3, a key protease that is activated during the early stages of apoptosis.  A 

FITC-conjugated monoclonal active caspase-3 antibody apoptosis kit was used. The 

provided  antibody  recognizes  human  and  mouse  active  caspase-3.  Briefly,  the 

procedure was performed as stated below: Cells were trypsinated and combined with 

detached  cells  from  the  supernatant.  Cells  were  washed  twice  with  PBS  and 

subsequently incubated 20 min on ice in 100 µl of Cytofix/Cytoperm solution. After 

fixation,  cells  were  washed  twice  with  100  µl  of  Perm/Wash.  Active  caspase-3 

antibody was added (20 µl of Perm/Wash plus 4 µl of caspase-3-FITC per tube) and 

incubation was performed at RT in the dark for 30 min. 1 ml of Perm/Wash was then 

added and cells were washed by centrifugation. For FACS analysis, the pellet was 

resuspended in 500 µl of Perm/Wash.

2.7.8 Light and immunofluorescence microscopy

Cell culture, monolayer experiments and determination of spheroids’ diameter were 

analyzed using a Zeiss Axiovert 3500 light microscope equipped with 10 x, 20 x and 

32 x objectives. Pictures were taken with the camera FinePix S1 Pro; Carl Zeiss, 

MicroImaging  GmbH,  Oberkochen,  Germany).  For  fluorescence  microscopy, 

samples were analyzed using a Zeiss Axioscop 2 plus microscope equipped with 10 

x, 20 x, and 100 x objective (Achroplan oil) and standard filters. Multiplicative shading 

corrections were performed using the software Axiovision version  4.7.1 (Zeiss) and 

photographs  were  taken  using  the Axio  Cam  MRc5 camera  (Zeiss).  The  same 

microscope was used in the bright field modus for analyzing hematoxylin and eosin 

(HE)  stained  tissue  paraffin  slides.  Image  procession  was  performed  with  the 

software Photoshop version CS3 (Adobe Systems Inc., San Jose, CA, USA).
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2.8 Histopathology and immunohistochemistry

2.8.1 Preparation of histological paraffin sections

material / devices ingredients company
automated alcohol series 
Shandon Excelsior ES

Thermo Fisher Scientific

disposable embedding base 
molds (15 x 15 mm)

Thermo Fisher Scientific

cytomation pen DakoCytomation
glass slides superfrost ultra 
plus

Thermo Fisher Scientific

hematoxylin Mayer’s haematoxylin, 
pharmacy of hospital rechts der 
Isar, Munich, Germany

microtom Microm HM355S Microm; now: Thermo Fisher 
Scientific

microtome blade R35 PFM, Cologne, Germany
stretching table medite OTS 
40

Medite, Burgdorf, Germany

tissue block system TB588 Microm; now: Thermo Fisher 
Scientific

tissue cool plate COP20 Medite, Burgdorf, Germany
tissue flotation bath medite 
TFB 35

Medite, Burgdorf, Germany

tissue processing cassettes Roth

The  mouse  tumor  and  organs  were  fixed  in  3.7%  PBS-buffered  formalin  for 

approximately one week, dehydrated and embedded in paraffin. Afterwards, the fixed 

tissue was cut in pieces and placed in a tissue processing cassette and transferred 

through  baths  of  rising  ethanol  to  remove  the  water.  This  was  followed  by  the 

hydrophobic clearing agent xylene to remove the alcohol, and finally molten paraffin,  

the  infiltration  agent,  which  replaces the  xylene.  This  was  performed by  a  robot  

(Shandon Excelsior ES) at the Institute of Pathology of the Hospital rechts der Isar.

The protocol for embedding and deparaffinizing spheroids was modified and adapted 

to the special need of these very small tissue parts. Fixed spheroids were transferred 

to glass slides into an area marked by the fatty cytomation pen. For better visibility  

the spheroids were prestained with 200 µl of freshly filtered hematoxylin for 1 min. 

The remaining liquid was pipetted off the slide and the spheroid was washed with  

PBS for 5 min. Next, an alcohol series was performed in ascending order: 50%, 70%, 

96%, and 100% ethanol, and finally 100% xylene. Thereby, the higher concentrated 

ethanol and xylene did not need to be pipetted off because they evaporated under 

the chemical hood. I took special care that the spheroids did not dry out. Immediately 

after the xylene was nearly evaporated, the spheroid was pipetted into a reaction 
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tube, which was filled with hot, liquid paraffin. The content was completely filled into 

an embedding form and incubated another 10 min on a heating plate, before it was 

covered and cooled down.

Paraffin  blocks were pre-cooled at  -15°C (lung 4°C) and consecutive slices were 

performed at  2.5  µm thickness  for  spheroids,  mouse  organs  (liver,  kidney,  lung, 

heart, spleen) and mouse tumors. For the mouse organs consecutive slices from two 

different areas at a distance of 100 µm were performed. Slices were placed in a 45°C 

preheatened water bath for stretching, placed on glass slides and for 10 min on a 

pre-heated stretching table. Slides were incubated at 60°C in the incubator for 1 h 

and then stored at RT.

2.8.2 Hematoxylin and Eosin (HE) staining

Formalin-fixed, paraffin-embedded sections on glass slides were stained with Eosin 

(Eosin  y-solution  0.5% aqueous,  Merck)  and Hematoxylin  (HE).  HE staining  was 

performed for mouse organs, mouse tumors and CT26 spheroids according to the 

following standard protocol. 

step solution period
1. xylene (A 1) 30 min
2. xylene (A 2) 30 min
3. ethanol 100% (1) 10 min
4. ethanol 100% (2) 10 min
5. ethanol 96% (1) 5 min
6. ethanol 96% (2) 5 min
7. ethanol 70% 5 min
8. ethanol 50% 5 min
9. dH2O 5 min
10. Hematoxylin 1 min
11. warm tap H2O (not dH2O) 10 min running water
12. eosin Y-solution 0.5% aqueous (Merck) + 2 drops 

glacial acetic acid per 200 ml
2 min

13. dH2O 5 min
14. ethanol 50% 5 min
15. ethanol 70% 5 min
16. ethanol 96% 5 min
17. ethanol 100% 5 min
18. xylene (B) 5 min
19. mounting with Eukitt (O. Kindler, Freiburg, Germany) 

and covering with a cover slip (24 x 60 mm; Menzel , 
Braunschweig, Germany / Thermo Fisher Scientific
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2.9 Statistics

Error bars represent the standard deviations (S.D.) of the number (n) of experiments 

as indicated. The significance of the data was determined by the student’s t-test or 

the  paired  student’s  t-test  using  SigmaPlot  (Erkrath,  Germany).  The  following  p-

values were used as limits for significance levels: *p ≤ 0.05 (5%); **p ≤ 0.01 (1%); 

***p ≤ 0.001 (0.1%).
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3 RESULTS

3.1 Human granzyme B (grB) production

In this study, I established a method for expressing and purifying enzymatically and 

biologically  active  granzyme  B  (grB)  sufficient  for  animal  studies.  The  HEK293 

expression system was chosen after testing four different systems. The advantages 

and disadvantages of each system are described shortly for all  systems and with 

detailed data for the HEK293 system.

3.1.1 Isolation of endogenous grB from YT cell nuclei

grB is not only present in the cytotoxic granules of the NK leukemia cell line YT, but  

also in the nuclei. Human grB derived from YT cell nuclei is perforin-free (Trapani et 

al.  1994;  Trapani  et  al.  1996).  Therefore,  I  isolated  the  nuclei  of  YT  cells  and 

extracted  proteins  with  high  salt  buffer.  DNA  was  pelleted  using  a  micro  ultra 

centrifuge and grB was further purified by heparin affinity chromatography via the 

FPLC purification system Äkta prime. Immobilized heparin exhibits a high affinity for 

grB that also naturally interacts with cell surface heparan sulphate (Veugelers et al. 

2006). Herewith,  20 fractions of 2 ml were eluted with gradually increasing NaCl 

concentrations. The protein content of the different fractions was determined and the 

grB concentration was measured by  ELISA and Western  blot  analysis.  The grB-

containing  fractions  were  determined  to  be  9  and  10  and  correspond  to  NaCl 

concentrations of 660 to 800 mM (see FIG. 5). By using this method approximately 

0.8 mg endogenous grB was purified from 2 x 108 YT cells which were cultured in 0.5 

l of medium. The purity of grB as determined by silver-stained SDS-PAGE analysis 

was about 70% (data not shown). In Western blot analysis grB antibody detected 

besides grB (31 kDa) another band at 67 kDa (FIG. 5). A band of this size was 

identified by Sun et al. as a complex consisting of the grB inhibitor Protease Inhibitor-

9 (PI-9/Serpin B9) complexed with grB. Detailed analyses have shown that the grB 

inhibitor  co-purifies  with  grB  (Sun  et  al.  1996).  It  is  proposed  that  the  inhibitor 

inactivates the grB not stored in cytotoxic granules in order to mediate self-protection 

in YT cells. This 42 kDa inhibitor is covalently bound to grB and the 67 kDa grB-PI-9-

complex  is  stable  in  SDS-PAGE. The  grB-PI-9-complex  was  affirmed  in  my 
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purification  by  visualization  by  an antibody against  PI-9  (data  not  shown).  In  the 

consulted  literature  about  grB  in  NK  cell  nuclei,  a  protein  band  at  the  identical 

molecular weight of the grB-PI-9-complex is also present in Western blot analysis; 

however, this band was not commented as the inhibitor (Trapani et al. 1994). 

Despite  the  presence  of  the  inhibitor,  some  enzymatic  activity  was  seen  in  a 

qualitative enzymatic  assay using the chromogenic substrate N-acetyl-Ile-Glu-Thr-

Asp-p-nitroanilide  (Ac-IEPD-pNA).  The  cleavage  of  this  substrate  results  in  an 

increase in the absorption at a wavelength of 405 nm. However, apoptosis induction 

could not be detected by annexin-V assay in membrane-Hsp70 expressing human 

cell lines after 4 and 24 h treatment with grB at concentrations of 100 ng/ml to 10 

µg/ml  (assay  described  in  2.7.7.2  and  3.1.3).  In  contrast,  the  positive  control 

topoisomerase I inhibitor camptothecin (cam) was able to induce apoptosis (data not 

shown).  A  concentration  of  40  µg/ml  grB  was  required  to  induce  apoptosis. 

Experiments were not continued at this high concentration because 40 µg/ml grB 

exceed  the  concentrations  used  in  literature  for  perforin-dependent  and  perforin-

independent apoptosis assays (Azuma et al. 2007; Giesubel et al. 2006; Gross et al. 

2003b; Kurschus et al. 2004). 

These data reveal that only a small part of the isolated grB is biologically active. Most  

likely, the small amount of grB inhibitor drastically affects the biological activity of grB 

(FIG. 5).

FIG. 5:  Purification of grB from nuclei of YT cells.  Western blot analysis of a representative 

purification.  The purification process involves a heparin  column.  1  µg lysate  (L)  and 1 µl  of  the  

fractions  4-11  (around  200  ng  in  fraction  9)  from 20  fractions  of  2  ml  total  volume  each  were 

analyzed, shown from left to the right. For this Western blot, a grB-specific antibody was used and the  

blot was developed 5 min to visualize the grB-PI-9-contamination. grB protein is visible at around 31 

kDa, whereas the covalent grB-PI-9-complex has a size of 67 kDa. The grB-containing fractions were 

determined to be 9 and 10 and correspond to NaCl concentrations of 660 to 800 mM.
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3.1.2 Purification of grB produced by Pichia pastoris

Pichia  pastoris is  regarded  as  an  established  eukaryotic  cell  system  for  the 

production of a number of recombinant proteins. The system allows post-translational 

modifications,  which  are  needed  by  higher  eukaryotic  cells  such  as  proteolytic 

processing,  disulfide  bond  formation,  folding,  and  glycosylation.  It  was  chosen 

because it  is  faster,  easier,  and less  expensive  to  use than expression  systems 

derived from higher eukaryotes such as insect and mammalian tissue culture cell  

systems. Usually, the yields are higher compared to other systems. The system was 

established  by  our  cooperation  partner  (K.  Zettlitz,  laboratory  of  Prof.  Dr.  R. 

Kontermann,  Institute  for  Cell  Biology  and  Immunology,  University  of  Stuttgart,  

Germany).  I  obtained  supernatants  derived  from  Pichia  pastoris secreting  (His)6-

tagged mature grB for purification. The mature form of grB comprises 227 amino 

acids (EC number 3.4.21.79) starting with Ile-21  (Trapani et al.  1988). The signal 

peptide (pre-sequence: amino acids 1-18) and the prodomain (pro-sequence: amino 

acids 19-20) were effectively deleted on DNA level. After heparin affinity purification, 

only 0.3 mg grB could be obtained from 0.5 l of culture supernatant. This was very  

low compared to a single purification process in YT cells. The enzymatic activity was 

proven by a qualitative substrate assay using the colorimetric substrate  Ac-IEPD-

pNA. The grB produced by Pichia pastoris did not induce apoptosis in membrane-

Hsp70 expressing human cell lines (measured by annexin-V assay; data not shown). 

The molecular weight was about 35 kDa, whereas the molecular weight of YT cell-

derived grB shown in SDS-PAGE was only 31 kDa. Therefore, it was assumed that 

the  missing  apoptosis  induction  was  due  to  a  different  glycosylation  pattern. 

Regarding the low yield and the lack of function, a different expression system was 

tested. 

3.1.3 Purification of grB produced by Sf9/Baculovirus

Sf9 cells are derived from pupal ovarian tissue of the Fall armyworm  Spodoptera 

frugiperda.  Sf9  cells  are  easily  infected  with  recombinant  baculovirus  and 

consequently  comprise  a  suitable  eukaryotic  expression  system  for  eukaryotic 

proteins that  require  post-translational  modifications.  The transfection of  Sf9 cells 
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with  grB-producing  Baculovirus  and  the  lysis  of  the  cells  were  performed  as 

explained in 2.3.1.2 and 2.6.1.1. It has to be noted that it is important to use lysis 

buffer without protease inhibitors. My previous experiments indicated that protease 

inhibitors negatively affect the enzymatic activity of grB (data not shown).  3 x 107 

transfected  cells  were  harvested  and  lysed.  grB  was  further  purified  from  the 

supernatant  by  heparin  affinity  chromatography  via  the  FPLC purification  system 

Äkta prime. Herewith, 20 fractions of 2 ml were eluted with gradually increasing salt 

concentrations. The protein content was determined for each fraction separately. The 

grB  concentration  was  confirmed  by  grB  ELISA  and  Western  blot  analysis. 

Ultimately, around 0.3 mg of recombinant grB with a purity of 70% were obtained 

from 3  x  107 cells.  The  enzymatic  activity  was  shown  using  a  qualitative  assay 

measuring the cleavage of the colorimetric substrate  Ac-IEPD-pNA. Apoptosis was 

measured by annexin-V/propidium iodide (PI) staining using flow cytometry analysis. 

Whereas annexin-V binds to  phosphatidylserine exposed on the outer membrane 

leaflet of apoptotic cells, PI staining is a marker for late apoptotic and necrotic cells. 

The membrane-Hsp70 positive (> 80%) human colon carcinoma cell line CX+ was 

incubated with 2-20 µg/ml grB for 24 h. As a positive control 4 µg/ml of cam were 

used  and  as  a  negative  control  (ctrl),  PBS  was  added  in  identical  amounts. 

Trypsinated  and  detached  cells  in  the  supernatant  were  collected,  pooled  and 

stained with annexin-V/PI. The amount of annexin-V positive cells not stained by PI 

marks the cells in early apoptosis (FIG. 6;  black bars:  early apoptotic cells).  The 

induction of cell death was determined by an increase in annexin-V positive cells plus  

annexin-V/PI  double-positive  cells  (FIG.  6,  grey  bars:  early  apoptotic  and  late 

apoptotic/necrotic cells).

These cell  death  measurements  gave no hint  for  any biological  activity  targeting 

membrane-Hsp70 positive cells (FIG. 6; compare the first two bars of the negative 

control (ctrl) with the middle two bars of grB; n = 4). In contrast, the positive control 

cam was able to induce significant cell death (FIG. 6; two bars on the right side;  p* = 

0.02;  p** = 0.003). Since neither early nor late apoptosis could be induced by grB 

derived from Sf9 cells, this expression system was not further developed.
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FIG.  6:  Sf9/Baculovirus-derived  grB  tested  on  CX+  cells  for  apoptosis  induction.  The 

membrane-Hsp70  expressing  tumor  cell  line  CX+  (>  80%)  was  used  to  test  the  ability  of  

Sf9/Baculovirus-derived grB to induce apoptosis. Cells were treated for 24 h with PBS (ctrl),  with  

different  concentrations of  grB (grB) and with  4 µg/ml  cam as positive  control  (cam).  In  the first  

experiment, 2 µg/ml grB was used, which was raised to 4 µg/ml grB in the second experiment and to  

20 µg/ml grB in the third and fourth experiment. The experiments were pooled due to the fact that 

apoptosis  was not  even induced at the highest  concentration.  Here,  the mean  ±  S.D. of  the four 

independent experiments is shown. Bars represent significance between cam and the corresponding 

ctrl (p* = 0.02; p** = 0.003).

3.1.4 Production of grB by mammalian HEK293 cells

Finally, a human embryonic kidney (HEK293) cell expression system was tested. I 

performed the cloning and transfection in the laboratory of Prof. Dr. R. Kontermann 

(Institute of Cell Biology and Immunology of the University of Stuttgart). 

A modified  pSECTagA vector (pSECTagAL1; 5.2 kb) with a cleavage site for the 

restriction enzyme AgeI in its multiple cloning site was used to express active grB. As 

active grB might harm the HEK293 cells, an alternative cloning strategy to produce 

inactive grB was pursued. Active mature and inactive GZMB (approved gene symbol 
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for granzyme B) were amplified by PCR from the template of human pre-pro-GZMB 

(cDNA) cloned into a pCMV6-XL4 cloning vector. For amplification of the sequence 

for active mature GZMB without the signal sequence for secretion (gene sequence 

coding for amino acids 1-18) and the inactivating prodomain (gene sequence coding 

for amino acids 19-20) the primers  AgeI-GZMB-back (5‘ TTT ACC GGT ATC ATC 

GGG GGA CAT GAG  3’) and GZMB-Stop-EcoRI-forward (5’ CCG GAA TTC TTA 

GTA GCG TTT CAT GGT TTT C 3’) were used (FIG. 7; primers in upper row). To 

generate inactive GZMB the coding sequence for a (His)6 tag was placed after the 

cutting site for AgeI  and the GZMB gene was modified by replacing the pre-pro-

peptide with the coding sequence for an EK cleavage site between the mature GZMB 

and the sequence coding for the (His)6 tag by PCR (FIG. 8B). Therefore, the primers 

AgeI-(His)6-EK-GZMB-back (5‘ TTT ACC GGT CAT CAT CAT CAT CAT CAT GAC 

GAC GAC GAC AAA ATC 3’) and GZMB-Stop-EcoRI-forward were used (FIG. 7; 

primers in lower row). 

FIG. 7: Scheme of the PCR for the mature and the inactive grB gene construct. For PCR, primers 

(back) were designed that insert an AgeI cleavage site on the 5’ end of the construct and delete the 

sequence  coding for  the pro-pro-peptide.  For  the  construct  used  for  inactive  GZMB between the 

cutting site for AgeI and the sequence for mature GZMB (cDNA) an additional sequence for a (His) 6 

tag and for an EK cutting site were included due to the primer sequence. For both constructs, the 

forward primer was designed for annealing at the end of the mature GZMB, including the TAA-Stop  

sequence and additionally inserting a cleavage site for the restriction enzyme EcoRI .

Both PCR products, the mature GZMB and the inactive GZMB, were digested with 

AgeI  and EcoRI  and inserted  into  the  respective  restriction  sites  of  the  modified 

pSECTagA vector resulting in the plasmids pSECTagAgeI-GZMB (5794 base pairs 

(bps);  FIG.  8A)  and  pSECTagAgeI-(His)6-EK-GZMB  (5827  bps;  FIG.  8B).  After 

ligation, the plasmids were transformed into E. coli and the amplified plasmids were 
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extracted. The purified plasmids were resuspended in sterile water and the sequence 

was  validated.  In  both  strategies,  the  in-frame fusion  after  the  Ig  -chain  leader 

sequence enabling secretion of heterologous proteins was confirmed. The mature 

GZMB was correctly inserted, but the inactive GZMB contained a mutation of the 

base 390. In the base triplett AAG, the G was replaced by an A representing a silent  

mutation  (lysine   lysine).  The  plasmid  map  and  the  entire  sequence  of 

pSECTagAgeI-(His)6-EK-GZMB are shown in the appendix.

A

B

FIG. 8: Schematic representation of the constructed vectors used to clone mature and inactive 

grB.  ATG represents the start  codon and the Ig leader tags the mRNA for becoming a secreted 

protein.  The inserts were each cloned into an additive AgeI site and the existing EcoRI site of the  

multiple cloning site of the pSecTagA vector.  A  The mature GZMB was cloned into the vector to 

express the coding sequence of  227 amino acids starting with Ile-21.  B The inactive GZMB was 

cloned into the vector to express a (His)6 tag, the enterokinase (EK) site and the mature grB. 

First, I tried to establish the HEK293 cell system for producing active recombinant 

human  grB.  After  successful  cloning  and  transient  transfection,  active  grB  was 

expressed by HEK293 cells and was detectable in the TCA-precipitated supernatant.  

Next, a stable transfection was performed (data not shown). However, under these 

conditions HEK293 cells were harmed by the active grB.  HEK293 cells lost  their 

adherence  and  underwent  apoptosis.  The  yields  decreased  even  more  when 

HEK293 cells were cultivated in the FCS free producing medium OptiMEM. 

Therefore,  the  strategy  was  to  produce  inactive  grB,  which  would  not  harm the 

producing cells. HEK293 cells were transiently transfected with pSECTag-Age-(His)6-

EK-grB.  The  presence  of  inactive  recombinant  human  grB  in  the  cell  culture 

supernatant  of  transiently  transfected  HEK293  cells  was  tested  by  Western  blot 

analysis. After the transient production was proven successfully (data not shown), the 

transfection procedure was performed by selection of stably transfected cells via 300 
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µg/ml  zeocin.  Those  stably  transfected  cells  secreted  (His)6-EK-grB  into  the  cell 

culture supernatant.  The expressed protein consisted of the mature grB amino acid 

sequence, starting with IIGGH and ending with MKRY. Amino-terminally a (His)6 tag 

was expressed and the mature grB was inactive by the sequence DDDDK forming a 

new  inactivating  prodomain  which  could  be  cleaved  by  enterokinase  (schematic 

protein shown in FIG. 9).

FIG. 9: Inactive grB expressed by HEK293 cells. The HEK293-derived grB was expressed in its 

inactive  form  by  the  amino  acid  sequence  DDDK  representing  an  EK  cutting  site.  A  (HIS)6 tag 

(HHHHHH) was expressed amino-terminally to the EK cutting site and thus gets cut off during EK 

activation. The activated grB represents the mature grB starting with the amino acid sequence IIGGH 

and ending with MKRY without any further modifications.

Single cell cloning was performed in two 96-well plates to isolate the best producing 

clone and to establish a monoclonal production cell line. After selection, nine clones 

grew and were  subsequently  expanded.  The C10 clone (nomenclature  based on 

wells in a 96-well plate) was chosen as the best producing clone (data not shown).  

For grB production, the cells were expanded to 20 T162 flasks at a confluency of 

80%.  The  cells  were  cultured  for  2  weeks  and  the  supernatant  of  500  ml  was 

collected every 3-4 days. After centrifugation (500 x g, 4°C, 10 min) and filtration to 

remove detached cells, the supernatant was immediately applied to a nickel column. 

After washing, the bound (His)6-EK-grB was eluted with increasing concentrations of 

imidazole ranging from 20 to 500 mM. 20 fractions at a volume of 1 ml each were 

collected. Fractions 8-12, which refer to imidazole concentrations of 168 to 308 mM 

were found to contain (His)6-EK-grB. The presence of grB was proven by SDS-PAGE 

with  subsequent  silver staining or Western blot  analysis as shown (FIG.  10A+B). 

Before the next step, the grB-containing fractions from the four consecutively purified 

cell culture supernatants were pooled (pool 1). The buffer was substituted with EK 
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buffer and the grB was concentrated to a final concentration of 1.5 mg/ml. The EK 

digestion was performed removing the inactivation site and the (His)6 tag so that grB 

became activated. The efficiency of the EK digestion was tested by silver staining 

(FIG.  10C)  and  Western  blot  analysis  (FIG.  10D).  Lane  -EK  shows  grB  before 

digestion (MW ~34 kDa), lane +EK shows digested activated grB, which results in a 

lower molecular weight (MW ~31 kDa).

Pool 1 containing activated grB (pool 1; +EK) was administered to a heparin column 

because the highly positively charged grB has a strong affinity for  the negatively  

charged heparin column. Elution was performed using a gradient of  0.1 to 1.5 M 

NaCl and 20 fractions of 2 ml each were collected. Activated grB was detected in 

fractions  9  and  10  at  NaCl  concentrations  of  660  to  800  mM and  pooled  (FIG.  

10C+D, pool2a). After changing the buffer to PBS and sterile filtration, aliquots were 

frozen at -80°C (FIG. 10C+D, lane pool2b).  

TAB.1  shows  the  results  of  six  grB  preparations.  Starting  with  two  liters  of 

supernatant,  8.0  ±  1.9  mg  grB  was  purified  after  the  nickel  column  purification 

(TAB.1, column 1). Following the EK digestion and heparin column, 4.9 ± 2.0 mg grB 

was obtained (TAB.1, column 2). After buffer exchange to PBS and sterile filtration, 

4.0 ± 1.6 mg highly pure grB (> 95 %) was obtained (TAB.1, pure grB). 

These preparations yielded sufficient amounts of grB to perform in vitro and in vivo 

experiments.
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A

 

B

C

D

FIG. 10:  Purification of human grB expressed in HEK293 cells. 

Silver-stained SDS-PAGE and Western blots analyses are shown for a representative purification. 

A-B Illustrate the first step of the purification process using a nickel column for (His) 6 tag purification. 

Fractions 6-15 were analyzed by SDS-PAGE, shown from left to right. Equal volumes of each fraction  

were applied (200 ng in fraction with the highest concentration). The grB-containing fractions were 

determined to be 8-12 and pooled.  A Silver-stained SDS-PAGE gel. B Western blot using the grB-

specific antibody 2C5.

C-D Represent the further steps of the purification process and show from left to the right: Pool of the 

grB-containing fractions from the (His)6 tag purification (Pool 1 -EK; 200 ng protein was applied); EK 

digestion  (Pool  1  +EK;  200  ng  protein  was  applied);  fractions  8-12  from  heparin  affinity 

chromatography (fractions 8-12; equal volumes of each fraction were applied; 200 ng in fraction with 

the highest concentration). Fractions 9 and 10 were chosen as grB-containing fractions and pooled 

(Pool 2a; 200 ng protein was applied). In the end, buffer was exchanged to PBS and the grB was  

sterile filtered (Pool 2b; 200 ng protein was applied) and stored at -80°C.

C Silver-stained SDS-PAGE gel. D Western blot using the grB-specific antibody 2C5.

TAB.1 Amount of grB produced by HEK293 cells after different purification steps from 

2 liters of supernatant (comparison of 6 different preparations). 

PURIFICATION 1 2 3 4 5 6
STEP MEAN ± S.D.

column 1 7.0 mg 9.0 mg 6.0 mg 5.8 mg 10.0 mg 10.0 mg 8.0 ± 1.9 mg
column 2 3.2 mg 5.5 mg 3.3 mg 3.7 mg 5.3 mg 8.4 mg 4.9 ± 2.0 mg
pure grB 2.5 mg 4.8 mg 2.2 mg 3.4 mg 4.4 mg 6.6 mg 4.0 ± 1.6 mg
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3.2 Enzymatic activity and in vitro stability 

The enzymatic activity of various lots of activated grB purified from HEK293 cells was 

proven in a substrate Ac-IEPD-pNA assay. By increasing the concentration of grB up 

to 6.2 µg/ml, the absorption at 405 nm increased from the base line 0.037 ± 0.001  up 

to 0.430 ± 0.016 (FIG. 11). The graph shows mean values of three independent grB 

purification  procedures.  The  enzymatic  activity  of  HEK293  cell-derived  grB  was 

greater than that of  same amounts of grB derived from YT cells,  Sf9/Baculovirus 

transfection  and  Pichia  pastoris expression  (data  not  shown).  Due  to  the  high 

conformity  of  the  results,  high  activity  and  the  high  yields,  grB  purified  from the 

HEK293 expression system was used for all further experiments.

FIG. 11: Enzymatic activity of recombinant human grB. grB at the indicated concentrations was 

incubated with chromogenic substrate (200 µM Ac-IETD-pNA) at 37°C for 60 min. Absorption was 

measured at 405 nm. Results are derived from 3 independent purifications. Mean values ± S.D. are 

shown.

Before starting further in vitro experiments, it was important to determine the stability 

of grB under cell culture conditions. Therefore, 4 µg/ml grB was added to cell culture 

and to pure medium. Incubation was performed under cell culture conditions (37°C; 

5% CO2; 95% humidity) and enzymatic activity was measured in the supernatant 
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after  different  timepoints  (FIG.  12).  In  cell-conditioned supernatant  the  enzymatic 

activity of active grB steadily decreased from day 0 to day 9 from 100% to 36 ± 8% 

(FIG. 12). Approximately on day 6, the activity fell below the value of 50%. These 

data were confirmed by ELISA. A decline of grB to 50% of the starting concentration 

was measurable within 12 days (data not shown). As a result of these data, grB was 

re-newed every 3 days in cell culture experiments (> 50% activity). 

The absence of cells did not affect the activity of grB, compared to the data obtained 

by cell-conditioned supernatant (data not shown). grB that was thawed and stored at 

4°C instead of incubated at 37°C showed only a decrease of 10% activity within 10 

days (data not shown).

FIG. 12: Stability of grB (4 µg/ml) under cell culture conditions. The enzymatic activity of grB, 

which was incubated together  with  cells  under cell  culture  conditions,  was measured with  the 

chromogenic substrate Ac-IEPD-pNA at day 1 to day 9. 30 µl of supernatant were added to 100 µl 

of total volume to process 200 µM substrate. Mean values of 3 independent experiments ± S.D. 

are shown.
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3.3 Biological activity in cell culture

3.3.1 Apoptosis assay in a mouse cell system

3.3.1.1 CT26 tumor mouse cells

 

HEK293-derived  inactive  grB,  which  was  purified  and activated by  EK digestion,  

shows high enzymatic activity and perforin-independent apoptotic activity in human 

membrane-Hsp70  bearing  cancer  cells  (annexin-V  assay  (2.7.7.2)  and  caspase 

assay (2.7.7.3); data not shown). Gross et al. have already shown that grB alone,  

without any perforin, shows apoptotic activity specifically towards human cancer cells 

expressing Hsp70 on their plasma membrane (Gross et al. 2003b). 

As a next step to further develop a grB-based therapy, it is necessary to test the  

activity of grB in a syngeneic tumor mouse model. Therefore, human grB was tested 

against  mouse  tumor  cells,  which  express  Hsp70  on  their  membrane.  The 

membrane-Hsp70 positive colon adenocarcinoma cell line CT26 (50-60 %), derived 

from BALB/c  mice  was  tested  for  its  sensitivity  to  human  grB.  CT26  cells  were 

incubated with grB (4 µg/ml) for different periods of time. As a positive control, cells 

were incubated with cam (4 µg/ml) and as a negative control (ctrl), PBS was added.  

12 h (black bars), 24 h (grey bars), and 48 h (white bars) after treatment, adherent  

and non-adherent cells were pooled and the percentage of caspase-3 positive cells 

was determined by flow cytometry analysis  (FIG. 13A).  The percentage of active 

caspase-3 positive cells indicating early apoptosis increased from 3 ± 0% to 22 ± 9% 

after 12 h, to 39 ± 17% after 24 h, and to 54 ± 8% after 48 h grB treatment (FIG. 13A, 

left and middle groups of bars). The apoptotic effect was comparable after treatment 

with cam (FIG. 13A, middle and right group of bars). The data represent the mean of  

three to ten independent experiments ± S.D. Values which are significantly different 

between ctrl and grB treatment are indicated with asterisks (***  p = 0.0001; **  p = 

0.009). 

Light microscopical analyses 48 h after treatment with 4 µg/ml grB show  that the cells 

change their morphology in cell culture (FIG. 13B, compare ctrl (top) with the grB-

treated cells (middle)). Loss of adherence is shown by a round-shaped appearance 

(FIG.  13B,  middle).  Similar  effects  were  observed  by  cam  treatment  (FIG.  13B, 

bottom). The pictures illustrate representative views of one out of three experiments.

The data were confirmed by fluorescence microscopy analyses of CT26 cells (FIG. 

13C). Cells were grown in chamber slides for 24 h and then treated with 4 µg/ml grB 
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(middle column), 4 µg/ml cam (right column) or were kept untreated (ctrl, left column) 

for 48 h. Analysis was performed for adherent cells in chamber slides (FIG. 13C, top 

row), and for detached cells collected from the supernatant (FIG. 13C, bottom row).  

Cells were stained with a PE-labeled antibody against caspase-3 (red staining) for 30 

min, and mounted with Vectashield containing DAPI (blue staining). Representative 

pictures are shown in FIG. 13C. Adherent control cells (upper left panel) show typical 

nuclear  blue  staining  with  dotted  intensive  blue  staining  due  to  the  structural 

organization of the nucleus. Cell nuclei have a regular round ellipsoid form with a  

sharp  border.  The  differences  between  the  cells  are  small.  No  red  staining  of  

caspase-3  expression  is  detectable.  There  were  only  a  few cells  present  in  the 

supernatant of control cells (FIG. 13C, bottom left). These cells are not healthy and 

show characteristics such as decreased size of their nuclei and a homogenous blue 

staining.  grB-treated  cells  (FIG.  13C,  middle  row)  tend  to  undergo  apoptosis 

characterized by decreased size of their nuclei, irregular border shape, and a nearly 

homogenous  blue  staining  due  to  the  loss  of  the  structural  organization  of  the 

nucleus, which leads to nucleus fragmentation. The slight red staining indicates the 

activation of caspase-3 in adherent cells (FIG. 13C, middle row, upper panel) and is 

much more pronounced in the detached cells (FIG. 13C, middle row, bottom panel). 

Cam-treated cells show similar characteristics as grB-treated cells (FIG. 13C, right 

column of panels). 
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A B

C

FIG. 13:  Induction of apoptosis in murine CT26 tumor cells by recombinant human grB. CT26 

cells  were treated with PBS (ctrl)  as negative control,  with 4 µg/ml grB (grB) and with 4 µg/ml 

camptothecin (cam) as positive control at timepoints as indicated.  A For caspase-3 staining, cells 

were collected 12 h (black bars), 24 h (grey bars) or 48 h after treatment (white bars) and stained  

with a fluorescence labeled antibody. The fraction of active caspase-3 positive cells was determined 

by flow cytometry analysis. The data represent the mean of 3-10 independent experiments ± S.D. 

Bars represent significance between grB and the corresponding ctrl (p*** = 0.0001;  p** = 0.009). 

B Light microscopical bright field analysis of adherent growing CT26 cells treated 48 h either with 

PBS (ctrl), 4 µg/ml grB or 4 µg/ml cam.  Pictures are representative for independent experiments 

with similar results (n = 3, objective 20 x, scale bar 100 µm). C Fluorescence microscopical analysis 

of CT26 cells. Cells were grown in chamber slides for 24 h and treated with human grB, cam or left  

untreated (ctrl) for 48 h. Detached cells were collected and are shown in the lower row. The blue  

pattern shows nuclear staining with DAPI and the red staining highlights active caspase-3. Pictures 

show typical results of independent experiments (n = 3, objective 100 x, scale bar 10 µm).
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The induction of late apoptosis/necrosis (PI positive cells [%])  12 h, 24 h and 48 h 

after treatment with 4 µg/ml grB or cam was measured by flow cytometry analysis. In 

FIG. 14A the mean values of four independent experiments ± S.D. are illustrated. 

FIG. 14A shows that both, grB and cam, induce cell death but cam to a higher extent  

than grB. The opposite effect was detected after determination of cell numbers. While 

untreated cells show an increase in cell numbers at each timepoint, grB- and cam-

treated cells start to diminish from 12 h onwards (FIG. 14B mean values  ± S.D. of 

independent experiments after 12 h (n = 5), 24 h (n = 9) and 48 h (n = 4) treatment). 

A B

FIG. 14: Changes in the amounts of PI positive cells and cell numbers after incubation with 

PBS (ctrl), grB and cam. CT26 cells were treated with PBS as a negative control (ctrl), 4 µg/ml grB 

(grB) or 4 µg/ml cam as positive control at the timepoints indicated. Cells were collected 12 h (black 

bars), 24 h (grey bars) or 48 h after treatment (white bars), counted and stained by PI. A The fraction 

of PI positive cells was determined by flow cytometry analysis. The data represent the mean of 4 

independent experiments ± S.D.  B Cell numbers were determined by manually counting cells in a 

Neubauer counting chamber by light microscopy. The data represent the mean of 4-9 independent  

experiments ± S.D.

3.3.1.2 Normal mouse cells

To exclude that grB has a negative effect on normal cells that lack the membrane 

expression of Hsp70, CD31 positive endothelial cells were tested. The CD31 positive 

cells investigated were derived from BALB/c mice after sorting by magnetic beads. 

These  cells  were  chosen  because  they  come  into  direct  contact  with  grB  after 

intravenous (IV) injection. No notable staining with cmHsp70.1 monoclonal antibody 

was detected by flow cytometry (data not shown). CD31 positive cells from BALB/c 
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mice (normal) and CT26 tumor cells (tumor) were treated with either PBS or 4 µg/ml 

active grB. Microscopical analyses showed that in contrast to CT26 cells, the CD31 

positive mouse endothelial cells retain their adherence and regular morphology even 

48 h after treatment with 4 µg/ml grB (compare grB-treated cells from FIG. 15B with 

FIG.  13B).  Cells  in  supernatant  and  adherent  cells  were  collected  24  h  after  

treatment and stained for active caspase-3 with a FITC labeled antibody. The fraction 

of cells positive for active caspase-3 was determined by flow cytometry (FIG. 15A). 

After incubation with grB (4 µg/ml), the percentage of caspase-3 expressing normal 

mouse cells remained nearly unchanged (3 ± 0% to 7 ± 6%) (FIG. 15A, left side). The 

fraction of caspase-3 positive tumor cells with an initial value of 3 ± 1% increased to 

35 ± 11% following grB treatment (4 µg/ml) (FIG. 15A; right side). The data represent 

the mean values of six independent experiments ± S.D. Significant differences were 

shown  between  grB  and  PBS treatment  of  CT26  tumor  cells  (p***  =  0.001).  In 

contrast to tumor cells, endothelial cells showed no statistically significant change in 

the amount of active caspase-3 positive cells (p = 0.2).  Most importantly,  I  could 

show a significant difference in grB-mediated apoptosis between normal murine cells 

and CT26 tumor cells (p*** = 0.001). 

In addition to the high enzymatic activity, I  have shown that the grB produced by 

HEK293 cells  is  biologically  active.  It  specifically  induces apoptosis  in  monolayer 

mouse tumor cells expressing Hsp70 on their membrane, but not in normal mouse 

cells that lack a membrane-Hsp70 expression. 
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A B

FIG. 15: Treatment of murine endothelial cells and CT26 mouse tumor cells with recombinant 

human grB. CD31+ cells from BALB/c mice (normal) and CT26 tumor cells (tumor) were treated with 

PBS as negative control and 4 µg/ml grB. 

A Detached and adherent cells were collected 24 h after treatment and stained for active caspase-3 

by a fluorescence labeled antibody. The fraction of cells positively stained for active caspase-3 was 

determined by flow cytometry. The data represent the mean from six independent experiments ± S.D. 

Asterisks represent significance between grB and PBS treatment of CT26 tumor cells (p*** = 0.001) 

and between grB treatment of  normal  murine cells  and CT26 tumor cells  (p***  = 0.001).  B Light 

microscopical phase contrast analyses were shown of adherent growing CD31+ cells from BALB/c 

mice either treated with PBS (ctrl) or with 4 µg/ml grB for 24 h. Untreated and treated cells show 

regular  morphology with  extensions.  Pictures are typical  for  independent  experiments with  similar 

results (n = 3, objective 20 x, scale bar 100 µm).

3.3.2 Clonogenic survival of CT26 cells after grB treatment

To address the question, whether grB influences clonogenic survival, colony forming 

assays  (CFA)  were  performed  (2.7.4).  Contrary  to  apoptosis,  CFA  indicate  the 

influence of grB on the long term survival of cells that do not immediately undergo 

apoptosis.

Only a few colonies were observed at the same concentration (4 µg/ml)  used in 

apoptosis assays.  Therefore,  colony formation of  grB-treated cells  was monitored 

after treatment with concentrations ranging from 0.04 µg/ml to 4 µg/ml grB (FIG. 16, 

n = 2-3). Clonogenic survival of grB treated cells was largely reduced, even at lower  
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concentrations than used for apoptosis induction. Survival fractions of colonies after  

0.6 µg/ml (p* = 0.03), 0.8 µg/ml (p** = 0.01), 2 µg/ml (p* = 0.02) and, 4 µg/ml (p*** = 

0.00002) were significantly different to the untreated control.

FIG. 16: Colony forming assay (CFA) showing clonogenic survival of grB-treated CT26 cells.  

The data represent the mean from 3 independent experiments ± S.D. in the concentration range from 

0.04 µg/ml to 1 µg/ml or from 2 independent experiments ± S.D. in the concentration range from 2 

µg/ml to 4 µg/ml. Values were determined in triplett in each experiment. Plates were fixed and stained 

after  6 days of  treatment.  Asterisks represent  significance between survival  fraction of  untreated 

colonies and each point of treatment (from left to the right:  p* = 0.03,  p** = 0.01,  p* = 0.02,  p*** = 

0.00002).

3.3.3 Escape strategies of human K562 cells 

Due  to  its  comparable  membrane-Hsp70  expression  levels  (~50%)  the  human 

leukemic  cell  line  K562 was  chosen in  addition  to  the  CT26 mouse  cell  line  for 

apoptosis  assays using grB obtained from HEK293 cells.  Following incubation of 

K562 cells with grB (4 µg/ml)  for  4,  12,  24 and 48 h only 3.6  ± 4.5% apoptosis 

induction was measured over all timepoints (n = 4). A Western blot analysis revealed 

that in contrast to the solid tumor cell lines XF354, SAS, CX+, CX-, and SkBr3, the 

leukemic cell lines K562 and YT, and the lymphoma Daudi express the grB inhibitor 

PI-9 as determined by Western blot analysis (FIG. 17). The grB inhibitor is detected 

by a 42 kDa band in all three leukozyte-derived cell lines (FIG. 17; first three lanes). 

None of the five solid tumor cell lines showed this band (FIG.16; lanes 4-8). 
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FIG. 17: Western blot analysis for the grB inhibitor PI-9. 10 µg of protein from lysed cells were 

analyzed for PI-9 inhibitor expression using Western blot. YT cells, which were known to produce the 

grB inhibitor were used as positive control. K562 and Daudi cells were checked for grB inhibitor, as  

well as the solid tumor cell lines XF354, SAS, CX+, CX- and SkBr3. One representative result out of  

three independent experiments analyzing PI-9 in YT and in K562 cells is shown.

3.4 Biological activity in multicellular spheroids

3.4.1 Growth delay and histology

To simulate a more tumor-relevant model system, the effect of grB was tested on 

multicellular spheroids. Spheroids grown from CT26 cells were cultured for four days, 

followed by a treatment period of up to 14 days. The spheroids were treated with 

different  concentrations  of  grB  and  their  diameters  were  analyzed  by  light 

microscopy.  One representative result out of six experiments is shown (FIG. 18A). 

Untreated spheroids grew in a regular manner and pictures were taken on days 0, 1, 

6, 7, and 14 (FIG. 18A, ctrl, left column). The spheroids were round shaped with a  

clearly defined border reaching their maximum size on day 6. The spheroids exposed 

to the same grB concentration (4 µg/ml) used for the monolayer experiments lost 

their integrity 24 h after start of the treatment (FIG. 18A, second column, day 1). After  

14 days of treatment, the border of the spheroids looked frazzled and the diameter 

started  to  decrease  (FIG.  18A,  second column,  bottom panel).  The  effects  were 

much more pronounced in spheroids treated with a 20 times higher grB concentration 

(FIG.  18A,  80  µg/ml  grB,  third  column).  Treatment  with  cam  results  also  in  a 

decrease  of  spheroid  diameter  (FIG.  18A,  right  column,  compare  top  panel  with 

bottom  panel).  In  comparison  to  the  grB-treated  spheroids,  the  surface  of  cam-

treated spheroids stayed regular (FIG. 18A, compare right column, bottom panel with 

third column, bottom panel).  

The diameters of the spheroids were measured on day 0, 1, 3, 6, 7, 10 and 14 (FIG. 

18B). The spheroids began at similar sized diameters of 565 ± 30 µm on day 0. No 
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significant changes in spheroid diameters were seen up to day 3 (see TAB.2 for  p 

values corresponding to FIG. 18B). On day 6, the cam-treated spheroids differed 

significantly from the ctrl. From day 7 onwards, the cam-treated and the grB-treated 

spheroids showed a significant decrease in size (TAB.2). A comparison between day 

0 and day 14 showed that the control spheroids grew from 555 ± 27 µm to 610 ± 48 

µm, the cam-treated spheroids decreased in size from 556 ± 25 µm to 429 ± 37 µm, 

and the grB-treated spheroids reduced in size from 583 ± 30 µm to 446 ± 36 µm 

(FIG. 18B).

On days 0, 1, 3, 6, 7, 10, and 14, the spheroids were fixed in 3.7% PBS-buffered 

formalin,  paraffin  embedded  and  cut  into  2.5  µm  sections  in  order  to  perform 

hematoxylin and eosin (HE) staining. Here, spheroids are shown 3 (FIG. 18C, upper 

row) and 7 days (FIG. 18C, lower row) after treatment with PBS (FIG. 18C, ctrl, left 

column), 4 µg/ml grB, 40 µg/ml grB (FIG. 18C, two middle columns) or 4 µg/ml cam 

(FIG.  18C,  right  column).  The  pictures  show that  the  grB-treated  spheroids  lost 

integrity,  in  contrast  to  cam-treated  spheroids,  which  diminished  in  size.  One 

representative result of two experiments is shown. 
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A

B C

FIG. 18: Treatment of CT26 spheroids with recombinant human grB. Four day old CT26 spheroids 

were transferred to 96-well plates and treated for 14 days with PBS as negative control (ctrl), with 4 

µg/ml grB, 80 µg/ml grB or with 4 µg/ml cam as positive control. A Light microscopical analyses from 

the multicellular spheroids were photographed at timepoints as indicated. One representative result 

out of six experiments is shown (objective 10 x, scale bar 100 µm).  B Diameters of spheroids were 

measured up to 14 days after initial treatment. Curves are shown from spheroids treated with PBS 

(ctrl; black dots), 80 µg/ml grB-treated spheroids (grB; white dots) or from spheroids after 4 µg/ml cam 

treatment (cam; black triangles). The data represent the mean from six independent experiments ± 

S.D. Starting at day seven, the diameter of grB-treated spheroids significantly differs from ctrl (p** = 

0.004), cam-treated spheroids significantly differ from ctrl (p** = 0.006) beginning at day six. C CT26 

spheroids  were  stained  with  hematoxylin  and  eosin  (HE).  Four  day  old  CT26  spheroids  were 

transferred to 96-well plates and treated with PBS as negative control (ctrl), 4 µg/ml and 40 µg/ml grB 

or with 4 µg/ml cam as positive control. At different timepoints, spheroids were fixed in 3.7% formalin 

(3 and 7 days are shown). HE staining was performed on paraffin sections on glass slides. Light  

microscopical analyses from the multicellular spheroids were performed. One representative result out 

of two experiments is shown (scale bar 100 µm, objective 10 x).
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TAB.2 Statistical significance of spheroid shrinkage 

This table shows the  p-values and significance representing asterisks of grB-treated versus control 

spheroids (ctrl-grB) and of cam-treated versus control spheroids (ctrl-cam) corresponding to FIG. 18B.

DAYS
SIGNIFICANCE 1 3 6 7 10 14

p (ctrl-grB)

0.17 0.14 0.25
**

0.0040
**

0.0063
***

0.00031
p (ctrl-cam)

0.92 1.0
**

0.0061
**

0.0022
**

0.0019
**

0.0012

3.4.2 Apoptosis assay

To determine if the increase in size of the grB-treated spheroids in the first days is  

due to  proliferation or  if  this  phenomenon is  simply due to  reduced integrity  and 

therefore  more  space  between  apoptotic  cells,  the  spheroids  were  examined  by 

apoptosis assay after a 48 h incubation period with 4, 10, 20, 40 and 80 µg/ml grB. 

To  compare  the  results  with  the  monolayer  experiments  the  caspase-3  assay 

combined with flow cytometry analysis was used. Spheroids were trypsinated and 

single cell suspensions were prepared. Cells were incubated with FITC-conjugated 

antibody against caspase-3 and the fraction of caspase-3 positive cells was analyzed 

by flow cytometry (FIG. 19). I found a concentration-dependent correlation between 

the administered grB and the percentage of caspase-3 positive cells. The amount of 

positive cells increased from 3 ± 2% to 8 ± 0% after incubation with 4 µg/ml grB. High 

concentrations  of  80  µg/ml  resulted  in  an  increase of  up  to  57  ± 3% (FIG.  19). 

Spheroids treated with PBS as a negative control,  showed no elevated apoptosis 

rates. The data represent the mean of 3-4 independent experiments ± S.D. Bars 

represent significantly different values between ctrl and grB-treated (4 µg/ml (p*** = 

0.000007) and 80 µg/ml (p** = 0.0003)) cells.
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FIG. 19: Caspase-3 activation in CT26 spheroids. Spheroids were treated with PBS (ctrl) or grB at 

concentrations as indicated.  Spheroids  were  trypsinated to  achieve  single  cell  suspensions,  and 

stained for  active caspase-3 with  a fluorescence labeled antibody.  Fractions of  active caspase-3 

positive  cells  were  determined  by  flow cytometry  analysis.  The  data  represent  the  mean of  3-4 

independent experiments ± S.D. Bars represent significance between ctrl and the most important two 

grB concentrations of 4 µg/ml (p*** = 0.000007) and 80 µg/ml (p** = 0.0003).

Here, I show that grB reduces the size of 3D spheroids, diminishes their integrity and 

induce apoptosis. However, in these experiments, higher grB concentrations were 

used to obtain comparative effects as in 2D cell culture.

3.5 grB therapy for tumor bearing mice

First  mouse experiments were performed using a syngeneic BALB/c CT26 tumor 

mouse model. It was planned to define toxicity, the effective dose of grB, and the 

anti-tumoral  in vivo activity. One CT26 spheroid grown for seven days from 5 x 103 

CT26  cells,  was  intraperitoneally  (IP)  injected  per  mouse.  Tumor-bearing  mice 

received  20  µg  of  active  or  inactive  grB  (not  activated  by  enterokinase  during 

purification procedure) per g body weight on day 6 and day 7 after spheroid injection.  
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Another control group received no treatment. The time scale of this first experiment is  

shown in FIG. 20A. After IP injection of grB into tumor-bearing mice, the animals 

were monitored during the first hour after injection and then once a day.  No adverse 

events were observed in the first group of mice. Therefore, in a second experiment 

grB was injected on days 6, 7, 13 and 14 with 20 µg per g body weight. The time 

scale of this second experiment is shown in FIG. 20B. In both experiments mice were 

sacrificed on day 21 and inspected for adverse effects and tumor growth reduction. 

Tumors and organs were resected for histological studies. Mice, whose tumor grew 

exponentially, started to loose weight and showed side effects. Blood was taken from 

the mice at the end of each experiment and the serum was tested for human grB by 

ELISA technique holding a sensitivity of 20 pg/ml. grB was not detectable on day 14 

(first experiment) respectively day 7 (second experiment) after the last grB injection. 

A

B

FIG. 20:  Scheme of first and second mice experiments. 

A Tumor-bearing BALB/c mice were injected IP with 20 µg active or inactive grB per g mouse or with 

PBS as negative control on days 6 and 7 after spheroid injection in the first experiment. B  Mice were 

injected on days 6, 7, 13 and 14 resulting in dose doubling in the second experiment.  A+B Both 

experiments were finished at day 21.
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3.5.1 Tumor weight

The weight  of  the resected tumors  was determined on day 21.  Tumors below a 

weight of 0.1 g, which did not grow, and tumor spheroids showing a spreaded growth 

were excluded from the evaluation. 

In the first experiment, no tumor reduction was detected by treatment at an overall  

dose  of  40  µg  per  g  body  weight  (data  not  shown).  However,  in  the  second 

experiment, a tumor reduction by grB treatment was visible at an overall dose of 80 

µg per g body weight (FIG. 21). Tumors weighed 1.17 ± 0.31 g from untreated mice 

(n = 2; FIG. 21, ctrl, left balk), 0.60 ± 0.45 g from control mice treated with inactive 

grB (n = 3; FIG. 21, inact grB, middle balk) and 0.33 ± 0.12 g from active grB-treated 

mice  (n  =  3;  FIG.  21,  grB,  right  balk),  respectively.  Tumor  weight  decreases 

significantly after treatment with active grB (p* = 0.046 compared to ctrl  and  p* = 

0.044  compared  to  inactive  grB).  The  tumor  weight  difference  between  ctrl  and 

inactive grB was not  significantly  different  (p =  0.49).  Since it  was detected that 

inactive grB shows a small amount of activity in Ac-IEPD-pNA substrate assay, this 

could be an explanation for minor effects of inactive grB on the tumor size. Due to the 

relatively  low  number  of  mice,  these  results  need  to  be  confirmed  in  a  larger  

experiment.
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FIG. 21: grB therapy in a syngeneic mouse model (second experiment). CT26 spheroid tumor-

bearing BALB/c mice were treated via IP injection for 4 times with 20 µg active grB per g body weight 

(grB). As negative control mice were treated with grB, which was not activated by EK digestion (inact  

grB) or mice were not treated at all (ctrl). For each group 5 mice were used. Tumors below a weight 

of 0.1 g, which did not grow, and tumor spheroids showing a spreaded growth were excluded from 

the evaluation. Therefore, for evaluation, 2 mice for the untreated group and 3 mice for each of the  

other two groups were available. The error bars represent  +  S.D. between tumor weights of each 

group.  Bars  represent  significance  between ctrl  and  grB-treated  tumors  (p*  =  0.046)  as  well  as 

between inact grB and active grB (p* = 0.044), whereas between ctrl and inact grB no significance 

was demonstrated (p = 0.49). 

3.5.2 Histopathology of tumors and organs

After  inspecting  the  tumors  with  respect  to  their  sizes,  histologically  detectable 

changes resulting from the grB therapy were examined. The vitality of the tumors 

was estimated from HE stained sections for the amount of healthy areas, which are 

defined  by  numerous  mitosis,  compact  tumor  tissue,  and  random  single  cell  

apoptosis.  The  apoptotic/necrotic  areas  were  recognizable  by  eosin  staining, 

apoptotic bodies, bulked ECM, densed nuclei and nuclear fragmentation. No severe 

differences between the first  and the second experiment were found, so that  the 

following findings are valid for both experiments. The grB-treated tumors showed no 

worse  overall  vitality  than  untreated  or  inactive  grB-treated  control  tumors. 

Interestingly,  the  necrotic/apoptotic  areas  were  localized  differently.  As  listed  in 

TAB.3, the negative tumors of one out of three mice in the first experiment and both 

mice of the second experiment showed necrosis in the inner central area and not at 

the  border  of  the  tumors.  In  contrast,  necrosis  was  found  predominantly  at  the 
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boundary area in all four tumors from grB-treated mice from the first experiment and 

in two of three tumors from the second experiment. Additionally, in rare cases, the 

area around vasculatures exhibited pathophysiological changes, which look similar to 

changes after radiation therapy. None of the grB-treated tumors showed necrosis in 

the center. Only two tumors with necrotic border areas were found in inactive grB-

treated tumors (one of four tumors in the first experiment and one of three tumors in 

the second experiment),  while  central  necrosis  was found in  one tumor from the 

second experiment (no tumor out of four in the first experiment and one tumor out of  

three in the second experiment). In FIG. 22A one exemplary tumor with necrosis in 

the center (R1), which was resected from an untreated mouse (FIG. 22A, ctrl),  is 

shown compared to another exemplary tumor, showing necrosis at its border (R2), 

which was derived from a grB-treated mouse (FIG. 22A, grB).

TAB.3 Location of necrotic/apoptotic areas in treated and untreated tumors

experime
nt

treatment 
of mice

number of mice 
with necrosis in 
central area of 
tumor (%)

number of mice 
with necrosis in 
border areas of 
tumor (%)

overall 
number of 
evaluated 
mice per 
group

first ctrl 1 (33 %) 0 (0 %) 3
first inactive grB 0 (0 %) 1 (25 %) 4
first grB 0 (0 %) 4 (100%) 4

second ctrl 2 (100 %) 0 (0%) 2
second inactive grB 1 (33 %) 1 (33 %) 3
second grB 0 (0 %) 2 (67 %) 3

No obvious adverse effects occurred during the treatment. Nevertheless, HE stained 

paraffin  sections of  the  vital  organs (liver,  kidneys,  lung,  heart  and spleen)  were 

analyzed for morphological abnormalities to exclude that grB could have an effect on 

normal  tissue.  The  HE  stained  organs  were  examined  via  light  microscopy  for 

pathophysiological  changes  and  my  findings  were  confirmed  by  Dr.  F.  Neff,  a 

pathologist  from  the  Institute  of  Pathology  of  the  Helmholtz  Center  Munich 

(Neuherberg, Germany). No pathophysiological changes were found in the examined 

organs; liver, heart, kidney, lung, heart and spleen (exemplary mice organs from one 

ctrl mouse and one grB-treated mouse shown in FIG. 22B). In each organ, a normal 

architecture, without infarcts or internal bleeding was found. Some irregularities were 

confirmed as artifacts.
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A

B

FIG.  22:  HE  stained  sections  from  tumor  and  organs.  Sections  from formalin-fixed  paraffin-

embedded tumors and organs where stained by HE and analyzed using light microscopy (objective 

20 x, indicated scale bar 100 µm). Here, tumor and organs from one exemplary untreated mouse 

(ctrl) and from one grB-treated mouse (grB) are shown.  A Tumors from ctrl and from grB-treated 

mouse. R1 marks the necrotic/apoptotic region in the tumor center of the ctrl  and R2 marks the 

necrotic/apoptotic region in tumor border area of the grB-treated mouse. B Liver, kidney, heart, lung 

and spleen are shown from the ctrl and from the grB-treated mouse.
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4 DISCUSSION

4.1 Production of active granzyme B (grB) expressed in mammalian cells 

Previously, we have demonstrated that granzyme B (grB) is able to induce perforin- 

independent apoptosis in membrane-Hsp70 positive tumor cells, but not in normal 

cells (Gross et al. 2003b). The aim of this study was to further develop the basis for a 

therapy  in  order  to  kill  membrane-Hsp70  positive  tumor  cells  by  grB  applied 

externally. Therefore, suitable amounts of grB were needed that show the ability to 

selectively  induce  perforin-independent  apoptosis.  For  that  reason,  four  different 

strategies to produce active grB for in vitro and in vivo experiments were tested. 

Human grB isolated from cytotoxic granules of the NK cell line YT is often bound to 

perforin and thus shows lower enzymatic activity (Xia et al. 1998). Trapani et al. have 

shown that more than 50% of total cellular grB is present in the nucleus of NK cells. 

The advantage of grB isolated from the nucleus is the absence of perforin. Therefore,  

I purified grB from nuclei of the NK cell line YT (Trapani et al. 1994). The purification 

yielded approximately 0.8 mg grB per 2 x 108 cells (3.1.1). Unfortunately, the grB 

inhibitor  Protease Inhibitor-9  (PI-9),  which  is  covalently  bound to  grB  (Sun et  al. 

1996) was co-purified (TAB.4; first column). 

As  PI-9  influences  the  biological  activity  of  grB, I  switched  to  a  recombinant 

expression system for the production of grB. Since the grB expressed in bacteria is 

not glycosylated, E. coli is an inadequate expression system (Kurschus et al. 2005). 

As glycosylation seems to be important for grB uptake by target cells, I used the 

eukaryotic recombinant expression system  Pichia pastoris.  Using this system, the 

mature  form of  grB was expressed and secreted.  grB was purified from the  cell 

culture supernatant (Giesubel et al. 2006). This procedure resulted in the production 

of 0.3 mg grB per liter supernatant. This yield was significantly lower compared to 

results described in the literature (1-2 mg/l) (Giesubel et al. 2006; Sun et al. 1999). It 

should be mentioned that the grB-containing yeast culture supernatant was shipped 

to  our  laboratory.  This  time  factor  could  be  the  reason  for  the  low  yield.  The 

glycosylation  of  grB  expressed  in  Pichia  pastoris was  higher  compared  to  that 

derived from human NK or T cells. The grB purified from  Pichia pastoris was not 

active  in  in  vitro  assays  despite  proven  enzymatic  activity  (3.1.2).  As  proper 

glycosylation  could  be  essential  for  the  grB  receptor  interaction  (Giesubel  et  al. 

2006), I assumed that the proposed slightly different glycosylation by Pichia pastoris 
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influences  the  biological  activity  of  grB.  The  glycosylation  pattern  could  be  also 

responsible for the lacking capacity to induce apoptosis in membrane-Hsp70 positive 

cells (TAB.4; second column). 

In  contrast  to  E.  coli  or  yeast,  insect  cells  are  able  to  fulfil  nearly  all  of  the 

posttranslational protein modifications (including glycosylation), which are necessary 

for the accurate maturation of human proteins. Therefore, a Baculovirus/Sf9 insect 

expression system was used for the expression of grB (3.1.3). My yield of 0.3 mg grB 

per 3 x 107 cells was comparable or even slightly higher than that described in the 

literature.  Previously,  the  Sf9/Baculovirus  system was used  for  the  production  of 

secreted mouse grB (Xia et al. 1998). However, the induction of apoptosis by grB in 

membrane-Hsp70 positive tumor cells also failed (TAB 4; third column). 

For this reason, I changed to a mammalian cell system to obtain all posttranslational 

modifications, which are necessary for the biological activity of grB. No mammalian 

expression system for stably producing enzymatically and biologically active grB has 

been published. First, I tried to directly express active grB in mammalian HEK293 

cells.  However,  under  conditions suitable for  the production,  active grB killed the 

HEK293 cells (3.1.4). Endogenous granzymes (gr) are expressed – like many other 

serine proteinases – as inactive zymogens that are activated by cathepsin C during 

packaging into granules. Therefore, they are not able to damage the producing cell  

line.  grB was expressed in  HEK293 cells  in  an inactive  form and activation  was 

performed after purification followed by an enterokinase (EK) cleavage. Compared to 

the  results  from  Dalken  et  al.,  who  purified  grB  from  Pichia  pastoris,  the  grB 

produced by HEK293 cells showed a higher enzymatic activity. 3 µg/ml of my grB 

was able to process 200 µM Ac-IETD-pNA substrate completely during the first hour. 

In comparison to HEK293-derived grB, at least 6 µg/ml of grB expressed in  Pichia 

pastoris are  needed  to  reach  saturation  in  an  Ac-IETD-pNA  substrate  assay 

performed in the same manner (Dalken et al. 2006). The grB produced from HEK293 

cells was able to induce apoptosis in human cancer cells and therefore was chosen 

for further experiments (TAB.4; fourth column). It should be emphasized that it is very 

important for the purposes of my work to use the mammalian expressed, fully active 

and inhibitor-free grB. Inaccurately modified grB is not able to induce apoptosis in 

membrane-Hsp70  positive  tumor  cells  in  a  perforin-independent  pathway.  Other 

laboratories who are using E. coli or Pichia pastoris-derived grB or grB purified from 

YT cells have not investigated the apoptotic action in a perforin-independent manner. 
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In  these  assays  proper  glycosylation  was  not  important  for  their  apoptosis 

experiments,  especially if  lytic agents were used to perform grB’s uptake into the 

target cells.

TAB.4 Comparison of the different production methods of grB

expression 

system

NK cell line YT Pichia pastoris Sf9/Baculovirus 

transfection

mammalian cell 

system HEK293
problem grB inhibitor; low 

biological activity

low biological 

activity; low yield; 

too much 

glycosylation

low biological 

activity _

publication Trapani et al. 

1994

Giesubel et al. 

2006; Sun et al. 

1999

Xia et al. 1998

(mouse grB)

publication of my 

work in preparation

4.2 Membrane-Hsp70 mediates perforin (PFN)-independent apoptosis of human 

grB in mouse cells

Gross  et  al.  (2003b)  previously  showed that  cell  surface-bound  Hsp70  mediates 

perforin-independent apoptosis by specific binding and uptake of grB. This specific  

binding and uptake could be blocked by the Hsp70 specific antibody cmHsp70.1. In 

our laboratory, the human colon carcinoma cell line CX-2 was sorted for sublines with  

a high and a low membrane-Hsp70 status. The resulting sublines CX+ (high; > 80%) 

and CX- (low;  < 30%) show membrane-Hsp70-dependent  sensibility  towards grB 

(Gross et al. 2003b).

Herein, it was shown that human grB also induces perforin-independent apoptosis in 

membrane-Hsp70 positive mouse tumor cells (3.3.1.1), whereas it has no effect on 

normal mouse cells lacking Hsp70 on their membrane (3.3.1.2). These data are a 

prerequisite  for  future  analysis  in  a  tumor  mouse  model.  Perforin-independent 

apoptosis was tested 12, 24 and 48 h after treatment. I detected early apoptotic cells 

by an annexin-V assay (FIG. 6), and determined the amount of cells, which were 

apoptotic without the possibility to recover, by caspase-3 assay (FIG. 13A+C). This 

“point  of  no  return”  represents  the  activation  of  the  effector  caspases.  Nucleus 

fragmentation was measured by DAPI staining as an additional endpoint of apoptosis 
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(FIG. 13C). All three assays revealed a time-dependent increase in apoptosis after 

grB treatment for 12 to 48 h. 

Normally,  the perforin-dependent  grB pathway is  investigated in combination with 

perforin or with other lytic agents (e.g. by the cationic lipid formulation Bioporter®, 

Gene Therapy Systems Inc., San Diego, CA, USA; (Azuma et al. 2007)). Typically, 

timepoints between 4 and 48 h have been used to measure apoptosis induction. 12 h 

was  determined  as  the  maximum  level  for  cell  surface  exposure  of 

phosphatidylserine, representing early apoptosis. Often, grB concentrations between 

10 ng/ml-10 µg/ml (tending towards concentrations in the range of [µg/ml]) have been 

used and a dose-dependent induction was detected and reached a plateau around 2 

µg/ml in one experimental approach (Azuma et al. 2007; Giesubel et al. 2006; Gross 

et al. 2003b; Kurschus et al. 2004) . Comparing these results from the literature with 

my  results,  no  great  difference  between  the  perforin-dependent  and  perforin-

independent induction of apoptosis with respect to the required time period and the 

concentration  range  can  be  assumed.  Also  I  observed  no  evident  differences 

between human and mouse cell lines concerning the perforin-independent pathway 

were observed. 

Additionally,  a  time-dependent  increase  detectable  in  the  percentage  of  late-

apoptotic  and  necrotic,  PI-positive  cells  was  shown  (FIG.  14A).  This  effect  was 

stronger  in  cam-treated  cells  than  in  grB-treated  cells  (FIG.  14A).  In  contrast,  

apoptosis induction measured by caspase-3 was stronger in grB-treated cells than in 

cam-treated cells (FIG. 13A). Photos illustrate that 48 h after treatment (either with 

cam or grB), caspase-3-stained cells had condensed and often fragmented nuclei.  

This confirms that 48 h represents a suitable timepoint to measure late apoptosis 

(FIG.  13).  These  experiments  suggest  that  the  induction  of  perforin-independent 

apoptosis is as fast as the induction by perforin-dependent apoptosis. In contrast, the 

induction of apoptosis by cam treatment was faster. This indicates that initiation of 

apoptosis by grB and cam might be mediated by different routes. Furthermore, the 

previously detected difference in apoptosis induction in membrane-Hsp70 positive 

human cells and in negative cells could be confirmed for mouse cells and is found 

only after treatment with grB, but  not with cam (3.3.1)  (Gross et al.  2003b).  The 

alkaloid cam inhibits DNA topoisomerase I by stabilizing the cleavable complex and 

thereby  causes  apoptosis.  While  grB  is  able  to  induce  apoptosis  through 
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mitochondrial leakage and the caspase cascade (Boivin et al. 2009), cam does not 

significantly affect the mitochondrial apoptosis pathway (Bredholt et al. 2009).

Moreover, anoikis, a special form of apoptosis, which is induced by the detachment 

of cells from extracellular matrices (ECM) could also contribute to apoptosis induced 

by  grB  (Buzza  et  al.  2005;  Pardo  et  al.  2007).  However,  grB  does  not  induce 

significant apoptosis in normal, membrane-Hsp70 negative mouse cells (FIG. 15). 

This contradicts the assumption that anoikis,  which would be a membrane-Hsp70 

independent  phenomenon,  plays  a  role  in  grB-mediated,  perforin-independent 

apoptosis. 

Apoptosis induction in a specific population of tumor cells may not result in the kill of  

all  tumor cells.  Therefore, clonogenic survival was measured by a colony forming 

assay (CFA; 3.3.2). The CFA serves as a validated endpoint to study the efficacy of 

drugs and radiotherapy. Clonogenicity was reduced to approximately 20% using 4 

µg/ml grB (FIG. 16). This indicates that lower grB concentrations are sufficient to 

reduce clonogenicity as compared to the induction of in vitro apoptosis. These results 

are in agreement with data from the literature. Different concentrations of cam were 

used for CFA and apoptosis induction, due to the stronger effects in the CFA assays 

(Havelka et al. 2007). 

4.3  Biological  activity  in  multicellular  spheroids consisting of  mouse tumor 

cells

To test the putative value of grB therapy not only on cells cultured as monolayer, but  

also in a system, which better reflects tumors  in vivo, experiments were performed 

using multicellular tumor spheroids (3.4). Spheroids represent an established model 

for in vitro 3D tissue structures that mimic in vivo tumor tissue organization including 

cellular  and  organotypic  histomorphological  features  (Dertinger  and  Hulser  1984; 

Friedrich et al. 2007; Sutherland 1988). Tumor spheroids have been established for 

testing anti-tumor drugs to improve pre-animal and pre-clinical selection (Friedrich et 

al.  2009;  Lin  and  Chang  2008).  My  results  consistently  show  that  much  higher 

concentrations of  grB (approximately  80 µg/ml)  are necessary to  obtain  levels  of 

apoptosis comparable to the monolayer culture (4 µg/ml grB; 3.4.2). Using low grB 

concentrations (4 µg/ml) only a slight loss of spheroid integrity was observed and 
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apoptosis occurred only in a small amount of cells, probably in the outer cell layer of 

the spheroids (FIG. 18A+19). This result was expected because cells in a spheroid 

formation are less accessible to drugs than cells in a monolayer formation.  Many 

drugs show reduced efficacy in the 3D pathophysiological environment compared to 

2D (Hirschhaeuser et al. 2010).

The  difference  in  induction  of  apoptosis  of  cam  and  grB  is  observable  in  3D 

spheroids, additionally to the mentioned 2D induction divergence. Whereas, in cam-

treated spheroids a gradual loss of size is detectable, grB first disturbs the spheroid’s 

integrity. This is another interesting hint for the utilized different apoptosis pathways 

(discussed in 4.2).

The results gained from the spheroid experiments serve as an estimation for future in  

vivo anti-tumor  dose  ranges  and  for  the  design  of  treatment  modalities  (Kunz-

Schughart 1999). Therefore, a dose in a similar order of magnitude was converted for 

in vivo studies from µg/ml to µg per g body weight.

4.4 Syngeneic tumor mouse model

For  pilot  animal  studies  a  syngeneic  BALB/c  CT26  tumor  mouse  model  was 

established based on the finding that human grB acts on tumor mouse cells and 

therefore, putative side effects on normal mouse cells could be analyzed. The results 

gained from the first two experiments were  quite  promising  (3.5).  Safety  and 

tolerability were proven by observation of mice and histochemistry. No irregularities 

or pathophysiological changes were found in  liver,  kidney, lung, heart  and spleen 

(3.5.2).

The tumor weight of grB-treated mice (overall dose of 80 µg per g body weight) was 

significantly less than that of mice treated with inactive grB or untreated mice (FIG. 

21). Additionally, higher overall  doses could be tested in future experiments since 

multiple doses of 20 µg per g body weight were found to be safe. 

Very interesting is the finding that apoptotic/necrotic regions were located mainly in 

peripheral areas of the grB-treated tumors. This indicates that the intraperitoneally 

(IP)-administered  grB  enters  the  tumor  from  the  surrounding  (3.5.2).  It  was  not 

assumed  that  grB  that  was  injected  IP  enters  the  blood  circulation.  However,  I  

observed increased necrotic/apoptotic areas close to vessels in individual cases. 
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Although, mouse  and  human  grB  have  distinct  structural  and  functional 

characteristics (Kaiserman et al. 2006), and despite the fact that there are differences 

in the substrate specifity, human grB is able to induce cell death in mouse tumors. It  

is known that human grB is inhibited 20 times better by the human inhibitor PI-9 than 

by  the  mouse  inhibitor  SPI-6  (Sun  et  al.  1997).  Therefore,  possible  escape 

mechanisms could not be simulated in this syngeneic model system. The relevance 

of escape mechanisms will be further enlightened below (4.5).  It was shown by  in 

vitro experiments  that  procaspase-3  was  as  well  activated  by  human grB  as  by 

mouse grB. In contrast, Bid, whose cleavage results in release of cytochrom c from 

mitochondria, was not processed as efficiently by mouse grB as by human grB (Bell 

et al. 2003). Moreover, mouse grB is 30 times less cytotoxic than human grB when 

applied  to  mice  (Kaiserman  et  al.  2006).  It  is  known  that  the  caspase  cascade 

pathway is favored in mice compared to the mitochondrial  pathway  (Cullen et al. 

2010). Whereas in humans, the influence of both pathways (caspase cascade and 

mitochondrial  pathway)  has not  been clarified  completely.  There  is  evidence that 

supports an intensified mitochondrial pathway in humans (Boivin et al. 2009; Chavez-

Galan et al. 2009; MacDonald et al. 1999). 

Nevertheless,  it  could not  be  concluded  that  using  human  grB  in  mice  induces 

naturally occurring apoptosis pathways. Therefore, I assume that the doses used in 

animal  experiments have to  be  altered for  humans.  Nevertheless,  these and the 

following  animal  experiments  provide  an  important  tool  to  demonstrate  in  vivo 

efficacy of human grB. 

4.5 Future prospects: grB as therapy 

Membrane-Hsp70-bearing  tumors  comprise  40-80%  of  various  tumor  entities  in 

humans. Therefore, Hsp70 constitutes a common object for targeted therapy. Three 

strategies of therapy against membrane-Hsp70 positive tumors are being pursued by 

our  group.  In  NK cell  therapy,  patient’s  NK cells  get  stimulated  ex  vivo against 

membrane-Hsp70 on tumor cells (with IL-2/TKD) (Krause et al. 2004). In the second 

strategy,  a  therapeutical  monoclonal  antibody targets  membrane-Hsp70 on tumor 

cells directly and leads to an antibody-dependent cellular cytotoxicity (ADCC) (Stangl 

et al.; in preparation). The strategy in my project is to develop a therapy based on the 
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apoptosis-inducing protein grB, which specifically induces apoptosis in membrane-

Hsp70 positive tumor cells.  The proposed therapy in  the future will  consist  of  IV 

injections  of  active  grB.  Results  gained  from  in  vitro and  preliminary  animal 

experiments propose an application for  grB administration as a novel  therapeutic  

concept. grB therapy for human cancer patients is supposed to increase the level of 

the cytotoxic lymphocyte protease grB in blood circulation. 

As  previously  mentioned,  I  applied  grB  concentrations  similar  to  those  used  in 

published  in  vitro studies  for  perforin-dependent  apoptosis  (see  4.2).  These 

concentrations exceed normal healthy patients serum levels of up to 15-40 pg/ml 

(very large variability) and also exceed the elevated levels found in various disease 

states (e.g. 250 pg/ml during severe meningitis), which elicit a cytotoxic lymphocyte-

mediated immune response. grB concentrations of up to 5.6 ng/ml have been found 

in synovial fluid of reactive arthritis disease states (Balkow et al. 2001; Boivin et al. 

2009; Buzza and Bird 2006). Nevertheless, the effective dose for therapy purposes is 

considerably  higher  than  the  physiological  or  pathophysiological  concentrations 

found in the serum. This is due to the efficient, probably high concentrations present 

in an immunological synapse (IS). Even though I used quite high concentrations of 

grB (4 µg/ml in monolayer experiments and 80 µg/ml in spheroid experiments), no 

conclusions could be drawn from the literature that such elevated levels in the serum 

would induce adverse effects  in vivo.  Since grB is present naturally in body fluids, 

humans should have a strong immunological tolerance, so that immune responses 

against grB are not expected. Additionally, my recombinantly produced grB is derived 

from a human expression system, which minimizes the risk of cellular or humoral 

immune responses. Also, the finding that the grB-PFN-pathway is more relevant for 

the graft versus leukemia effect than for the graft versus host effect, encounters for a 

safe treatment procedure with supportive but  not overreactive immune responses 

(Hsieh  et  al.  2000).  For  this  reason,  the  benefits  of  grB  therapy  should  greatly 

outweigh hazards by putative side effects.

Irradiation  increases  membrane-Hsp70  expression  on  surviving  tumor  cells 

(Gehrmann et al. 2005) and consequently sensitizes remaining cells for grB attack. 

Therefore, grB therapy could be applied especially as an adjuvant therapy following 

radiotherapy. Another putative application of grB therapy is to target metastases that 

often show a higher expression density of Hsp70 than the primary tumor (Ciocca and 

Calderwood 2005). Therefore, a megacolony model system will  be established as 
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another 3D cell culture system for measuring the combined effects of irradiation and 

grB in cooperation with PD Dr. J.  Kummermehr (Radiation Biology, LMU Munich, 

Germany)  (Kummermehr  et  al.  2001;  Tarnawski  et  al.  1998).  In  preliminary 

experiments, we already could show that CT26 cells are able to form multilayered 

megacolonies  and  show  regrowth  after  irradiation.  Additionally,  further  CFA 

experiments and in vivo experiments will be performed combining radiation and grB 

treatment to gain more knowledge about grB effects after radiation therapy.

It  is  known  that  often  leukemia  cells  and  only  occasionally  some  solid  tumors 

including melanoma, breast, cervical and colon carcinoma, are able to escape from 

grB-mediated  apoptosis  induction  by  producing  serpin  grB  inhibitors  and  that  a 

number of mouse tumors express SPI-6, the mouse homologue of the human grB 

inhibitor PI-9 (Medema et al. 2001). My findings that all tested human leukemia cell 

lines, including K562 cells, but none of the solid tumors express PI-9, confirm this  

tendency described in the literature (3.3.3).  Immune escape via expressing a grB 

inhibitor could be a reason for tumors not  responding to this treatment. Therefore, 

grB therapy is recommended only for solid tumors, which are not expressing a grB 

inhibitor. Although leukemia cells are very well accessible by IV injection of grB, they 

should be excluded due to their high expression levels of grB inhibitor. Since grB acts 

on different apoptosis pathways (FIG. 3) escape mechanisms targeting one pathway 

are not able to block the whole action of grB (Dalken et al. 2006). To exclude escape 

mechanisms by inhibitor expression, a combination therapy together with grM could 

be considered.  grM is  known as a regulatory protease that  might  inactivate PI-9 

(Mahrus et al. 2004).

A major point that needs to be improved for therapy development is definitively the 

stability of  grB in the blood circulation. grB’s half-time life is approximately seven 

days at 37°C under cell culture conditions (3.2). Due to my finding that no grB is  

detectable  in vivo after seven days, it is possible that the stability of exogenously 

applied grB in the blood circulation is lower than in cell culture. The half-life times of 

proteins in plasma are often in the range of minutes to hours. On the other hand, grB 

is described to show intrinsic stability in extracellular body fluids due to its natural  

occurrence. grB therapy can only be successful, if grB is able to reach the tumor. 

This  could  be  achieved  by  high  concentrations  in  repeated  single  doses  or  

modifications  of  the  grB  structure  that  optimize  the  pharmacokinetic  properties. 

Modifications  of  grB,  such  as  substitutions,  acylation  and  PEGylation  (covalent 
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attachment of polyethylene glycol polymer chains) could lead to prolonged plasma 

half-life  times  (Werle  and  Bernkop-Schnurch  2006) and  thus  could  reduce  the 

amounts which are injected.

In summary, the combination of grB with radiation therapy needs to be tested in vitro 

and in vivo. The data that I present here strongly recommend further development of 

this innovative molecular therapy. The idea of targeting membrane-Hsp70 positive 

tumors should be approved in further mouse experiments using a higher number of 

animals.
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5 APPENDIX

Map of pSECTagAgeI-(His)6-EK-GZMB:

Sequence of pSECTagAgeI-(His)6-EK-GZMB:
                                                                   AgeI
                                                                  -+----
    1  atggagacag acacactcct gctatgggta ctgctgctct gggttccagg ttccaccggt catcatcatc atcatcatga
                                  Igk-leader'                                  (His)6 tag
         m  e  t   d  t  l   l  l  w  v   l  l  l   w  v  p   g  s  t  g   h  h  h   h  h  h
                                                                                    EK-site >>

   81  cgacgacgac aaaatcatcg ggggacatga ggccaagccc cactcccgcc cctacatggc ttatcttatg atctgggatc
       d  d  d  d   k  i  i   g  g  h   e  a  k  p   h  s  r   p  y  m   a  y  l  m   i  w  d
       >..EK-site..>>
       d  d  d  d   k
                     >>.................................GZMB.................................>
                       i  i   g  g  h   e  a  k  p   h  s  r   p  y  m   a  y  l  m   i  w  d

  161  agaagtctct gaagaggtgc ggtggcttcc tgatacaaga cgacttcgtg ctgacagctg ctcactgttg gggaagctcc
        q  k  s   l  k  r  c   g  g  f   l  i  q   d  d  f  v   l  t  a   a  h  c   w  g  s  s
       >.........................................GZMB........................................>
        q  k  s   l  k  r  c   g  g  f   l  i  q   d  d  f  v   l  t  a   a  h  c   w  g  s  s

  241  ataaatgtca ccttgggggc ccacaatatc aaagaacagg agccgaccca gcagtttatc cctgtgaaaa gacccatccc
         i  n  v   t  l  g   a  h  n  i   k  e  q   e  p  t   q  q  f  i   p  v  k   r  p  i
       >.........................................GZMB........................................>
         i  n  v   t  l  g   a  h  n  i   k  e  q   e  p  t   q  q  f  i   p  v  k   r  p  i

  321  ccatccagcc tataatccta agaacttctc caacgacatc atgctactgc agctggagag aaaggccaag cggaccagag
                                                                                  a
       p  h  p  a   y  n  p   k  n  f   s  n  d  i   m  l  l   q  l  e   r  k  a  k   r  t  r
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       >.........................................GZMB........................................>
       p  h  p  a   y  n  p   k  n  f   s  n  d  i   m  l  l   q  l  e   r  k  a  k   r  t  r

  401  ctgtgcagcc cctcaggcta cctagcaaca aggcccaggt gaagccaggg cagacatgca gtgtggccgg ctgggggcag
        a  v  q   p  l  r  l   p  s  n   k  a  q   v  k  p  g   q  t  c   s  v  a   g  w  g  q
       >.........................................GZMB........................................>
        a  v  q   p  l  r  l   p  s  n   k  a  q   v  k  p  g   q  t  c   s  v  a   g  w  g  q

  481  acggcccccc tgggaaaaca ctcacacaca ctacaagagg tgaagatgac agtgcaggaa gatcgaaagt gcgaatctga
         t  a  p   l  g  k   h  s  h  t   l  q  e   v  k  m   t  v  q  e   d  r  k   c  e  s
       >.........................................GZMB........................................>
         t  a  p   l  g  k   h  s  h  t   l  q  e   v  k  m   t  v  q  e   d  r  k   c  e  s

  561  cttacgccat tattacgaca gtaccattga gttgtgcgtg ggggacccag agattaaaaa gacttccttt aagggggact
       d  l  r  h   y  y  d   s  t  i   e  l  c  v   g  d  p   e  i  k   k  t  s  f   k  g  d
       >.........................................GZMB........................................>
       d  l  r  h   y  y  d   s  t  i   e  l  c  v   g  d  p   e  i  k   k  t  s  f   k  g  d

  641  ctggaggccc tcttgtgtgt aacaaggtgg cccagggcat tgtctcctat ggacgaaaca atggcatgcc tccacgagcc
        s  g  g   p  l  v  c   n  k  v   a  q  g   i  v  s  y   g  r  n   n  g  m   p  p  r  a
       >.........................................GZMB........................................>
        s  g  g   p  l  v  c   n  k  v   a  q  g   i  v  s  y   g  r  n   n  g  m   p  p  r  a

                                                                      EcoRI
                                                                     -+-----
  721  tgcaccaaag tctcaagctt tgtacactgg ataaagaaaa ccatgaaacg ctactaagaa ttctgcagat atccagcaca
         c  t  k   v  s  s   f  v  h  w   i  k  k   t  m  k   r  y  -  e   f  c  r   y  p  a
       >...........................GZMB.........................>>
         c  t  k   v  s  s   f  v  h  w   i  k  k   t  m  k   r  y

  801  gtggcggccg cccaccatca tcaccatcac taatctagag ggcccgaaca aaaactcatc tcagaagagg atctgaatag
       q  w  r  p   p  t  i   i  t  i   t  n  l  e   g  p  n   k  n  s   s  q  k  r   i  -  i

  881  cgccgtcgac catcatcatc atcatcattg agtttaaacc cgctgatcag cctcgactgt gccttctagt tgccagccat
                                                                pSec-Seq2 
        a  p  s   t  i  i  i   i  i  i   e  f  k   p  a  d  q   p  r  l   c  l  l   v  a  s  h

  961  ctgttgtttg cccctccccc gtgccttcct tgaccctgga aggtgccact cccactgtcc tttcctaata aaatgaggaa
         l  l  f   a  p  p   p  c  l  p   -  p  w   k  v  p   l  p  l  s   f  p  n   k  m  r

 1041  attgcatcgc attgtctgag taggtgtcat tctattctgg ggggtggggt ggggcaggac agcaaggggg aggattggga
       k  l  h  r   i  v  -   v  g  v   i  l  f  w   g  v  g   w  g  r   t  a  r  g   r  i  g

 1121  agacaatagc aggcatgctg gggatgcggt gggctctatg gcttctgagg cggaaagaac cagctggggc tctagggggt
        k  t  i   a  g  m  l   g  m  r   w  a  l   w  l  l  r   r  k  e   p  a  g   a  l  g  g

 1201  atccccacgc gccctgtagc ggcgcattaa gcgcggcggg tgtggtggtt acgcgcagcg tgaccgctac acttgccagc
         i  p  t   r  p  v   a  a  h  -   a  r  r   v  w  w   l  r  a  a   -  p  l   h  l  p

 1281  gccctagcgc ccgctccttt cgctttcttc ccttcctttc tcgccacgtt cgccggcttt ccccgtcaag ctctaaatcg
       a  p  -  r   p  l  l   s  l  s   s  l  p  f   s  p  r   s  p  a   f  p  v  k   l  -  i

 1361  gggcatccct ttagggttcc gatttagtgc tttacggcac ctcgacccca aaaaacttga ttagggtgat ggttcacgta
        g  a  s   l  -  g  s   d  l  v   l  y  g   t  s  t  p   k  n  l   i  r  v   m  v  h  v

 1441  gtgggccatc gccctgatag acggtttttc gccctttgac gttggagtcc acgttcttta atagtggact cttgttccaa
         v  g  h   r  p  d   r  r  f  f   a  l  -   r  w  s   p  r  s  l   i  v  d   s  c  s

 1521  actggaacaa cactcaaccc tatctcggtc tattcttttg atttataagg gattttgggg atttcggcct attggttaaa
       k  l  e  q   h  s  t   l  s  r   s  i  l  l   i  y  k   g  f  w   g  f  r  p   i  g  -

 1601  aaatgagctg atttaacaaa aatttaacgc gaattaattc tgtggaatgt gtgtcagtta gggtgtggaa agtccccagg
        k  m  s   -  f  n  k   n  l  t   r  i  n   s  v  e  c   v  s  v   r  v  w   k  v  p  r

 1681  ctccccagca ggcagaagta tgcaaagcat gcatctcaat tagtcagcaa ccaggtgtgg aaagtcccca ggctccccag
         l  p  s   r  q  k   y  a  k  h   a  s  q   l  v  s   n  q  v  w   k  v  p   r  l  p

 1761  caggcagaag tatgcaaagc atgcatctca attagtcagc aaccatagtc ccgcccctaa ctccgcccat cccgccccta
       s  r  q  k   y  a  k   h  a  s   q  l  v  s   n  h  s   p  a  p   n  s  a  h   p  a  p

 1841  actccgccca gttccgccca ttctccgccc catggctgac taattttttt tatttatgca gaggccgagg ccgcctctgc
        n  s  a   q  f  r  p   f  s  a   p  w  l   t  n  f  f   y  l  c   r  g  r   g  r  l  c

 1921  ctctgagcta ttccagaagt agtgaggagg cttttttgga ggcctaggct tttgcaaaaa gctcccggga gcttgtatat
         l  -  a   i  p  e   v  v  r  r   l  f  w   r  p  r   l  l  q  k   a  p  g   s  l  y

 2001  ccattttcgg atctgatcag cacgtgttga caattaatca tcggcatagt atatcggcat agtataatac gacaaggtga
       i  h  f  r   i  -  s   a  r  v   d  n  -  s   s  a  -   y  i  g   i  v  -  y   d  k  v
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 2081  ggaactaaac catggccaag ttgaccagtg ccgttccggt gctcaccgcg cgcgacgtcg ccggagcggt cgagttctgg
        r  n  -   t  m  a  k   l  t  s   a  v  p   v  l  t  a   r  d  v   a  g  a   v  e  f  w

 2161  accgaccggc tcgggttctc ccgggacttc gtggaggacg acttcgccgg tgtggtccgg gacgacgtga ccctgttcat
         t  d  r   l  g  f   s  r  d  f   v  e  d   d  f  a   g  v  v  r   d  d  v   t  l  f

 2241  cagcgcggtc caggaccagg tggtgccgga caacaccctg gcctgggtgt gggtgcgcgg cctggacgag ctgtacgccg
       i  s  a  v   q  d  q   v  v  p   d  n  t  l   a  w  v   w  v  r   g  l  d  e   l  y  a

 2321  agtggtcgga ggtcgtgtcc acgaacttcc gggacgcctc cgggccggcc atgaccgaga tcggcgagca gccgtggggg
        e  w  s   e  v  v  s   t  n  f   r  d  a   s  g  p  a   m  t  e   i  g  e   q  p  w  g

 2401  cgggagttcg ccctgcgcga cccggccggc aactgcgtgc acttcgtggc cgaggagcag gactgacacg tgctacgaga
         r  e  f   a  l  r   d  p  a  g   n  c  v   h  f  v   a  e  e  q   d  -  h   v  l  r

 2481  tttcgattcc accgccgcct tctatgaaag gttgggcttc ggaatcgttt tccgggacgc cggctggatg atcctccagc
       d  f  d  s   t  a  a   f  y  e   r  l  g  f   g  i  v   f  r  d   a  g  w  m   i  l  q

 2561  gcggggatct catgctggag ttcttcgccc accccaactt gtttattgca gcttataatg gttacaaata aagcaatagc
        r  g  d   l  m  l  e   f  f  a   h  p  n   l  f  i  a   a  y  n   g  y  k   -  s  n  s

 2641  atcacaaatt tcacaaataa agcatttttt tcactgcatt ctagttgtgg tttgtccaaa ctcatcaatg tatcttatca
         i  t  n   f  t  n   k  a  f  f   s  l  h   s  s  c   g  l  s  k   l  i  n   v  s  y

 2721  tgtctgtata ccgtcgacct ctagctagag cttggcgtaa tcatggtcat agctgtttcc tgtgtgaaat tgttatccgc
       h  v  c  i   p  s  t   s  s  -   s  l  a  -   s  w  s   -  l  f   p  v  -  n   c  y  p

 2801  tcacaattcc acacaacata cgagccggaa gcataaagtg taaagcctgg ggtgcctaat gagtgagcta actcacatta
        l  t  i   p  h  n  i   r  a  g   s  i  k   c  k  a  w   g  a  -   -  v  s   -  l  t  l

 2881  attgcgttgc gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca gctgcattaa tgaatcggcc aacgcgcggg
         i  a  l   r  s  l   p  a  f  q   s  g  n   l  s  c   q  l  h  -   -  i  g   q  r  a

 2961  gagaggcggt ttgcgtattg ggcgctcttc cgcttcctcg ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag
       g  r  g  g   l  r  i   g  r  s   s  a  s  s   l  t  d   s  l  r   s  v  v  r   l  r  r

 3041  cggtatcagc tcactcaaag gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa
        a  v  s   a  h  s  k   a  v  i   r  l  s   t  e  s  g   d  n  a   g  k  n   m  -  a  k

 3121  ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc tggcgttttt ccataggctc cgcccccctg acgagcatca
         g  q  q   k  a  r   n  r  k  k   a  a  l   l  a  f   f  h  r  l   r  p  p   d  e  h

 3201  caaaaatcga cgctcaagtc agaggtggcg aaacccgaca ggactataaa gataccaggc gtttccccct ggaagctccc
       h  k  n  r   r  s  s   q  r  w   r  n  p  t   g  l  -   r  y  q   a  f  p  p   g  s  s

 3281  tcgtgcgctc tcctgttccg accctgccgc ttaccggata cctgtccgcc tttctccctt cgggaagcgt ggcgctttct
        l  v  r   s  p  v  p   t  l  p   l  t  g   y  l  s  a   f  l  p   s  g  s   v  a  l  s

 3361  caatgctcac gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa gctgggctgt gtgcacgaac cccccgttca
         q  c  s   r  c  r   y  l  s  s   v  -  v   v  r  s   k  l  g  c   v  h  e   p  p  v

 3441  gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag tccaacccgg taagacacga cttatcgcca ctggcagcag
       q  p  d  r   c  a  l   s  g  n   y  r  l  e   s  n  p   v  r  h   d  l  s  p   l  a  a

 3521  ccactggtaa caggattagc agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac
        a  t  g   n  r  i  s   r  a  r   y  v  g   g  a  t  e   f  l  k   w  w  p   n  y  g  y

 3601  actagaagga cagtatttgg tatctgcgct ctgctgaagc cagttacctt cggaaaaaga gttggtagct cttgatccgg
         t  r  r   t  v  f   g  i  c  a   l  l  k   p  v  t   f  g  k  r   v  g  s   s  -  s

 3681  caaacaaacc accgctggta gcggtggttt ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag
       g  k  q  t   t  a  g   s  g  g   f  f  v  c   k  q  q   i  t  r   r  k  k  g   s  q  e

 3761  atcctttgat cttttctacg gggtctgacg ctcagtggaa cgaaaactca cgttaaggga ttttggtcat gagattatca
        d  p  l   i  f  s  t   g  s  d   a  q  w   n  e  n  s   r  -  g   i  l  v   m  r  l  s

 3841  aaaaggatct tcacctagat ccttttaaat taaaaatgaa gttttaaatc aatctaaagt atatatgagt aaacttggtc
         k  r  i   f  t  -   i  l  l  n   -  k  -   s  f  k   s  i  -  s   i  y  e   -  t  w

 3921  tgacagttac caatgcttaa tcagtgaggc acctatctca gcgatctgtc tatttcgttc atccatagtt gcctgactcc
       s  d  s  y   q  c  l   i  s  e   a  p  i  s   a  i  c   l  f  r   s  s  i  v   a  -  l

 4001  ccgtcgtgta gataactacg atacgggagg gcttaccatc tggccccagt gctgcaatga taccgcgaga cccacgctca
        p  v  v   -  i  t  t   i  r  e   g  l  p   s  g  p  s   a  a  m   i  p  r   d  p  r  s

 4081  ccggctccag atttatcagc aataaaccag ccagccggaa gggccgagcg cagaagtggt cctgcaactt tatccgcctc
         p  a  p   d  l  s   a  i  n  q   p  a  g   r  a  e   r  r  s  g   p  a  t   l  s  a
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 4161  catccagtct attaattgtt gccgggaagc tagagtaagt agttcgccag ttaatagttt gcgcaacgtt gttgccattg
       s  i  q  s   i  n  c   c  r  e   a  r  v  s   s  s  p   v  n  s   l  r  n  v   v  a  i

 4241  ctacaggcat cgtggtgtca cgctcgtcgt ttggtatggc ttcattcagc tccggttccc aacgatcaag gcgagttaca
        a  t  g   i  v  v  s   r  s  s   f  g  m   a  s  f  s   s  g  s   q  r  s   r  r  v  t

 4321  tgatccccca tgttgtgcaa aaaagcggtt agctccttcg gtcctccgat cgttgtcaga agtaagttgg ccgcagtgtt
         -  s  p   m  l  c   k  k  a  v   s  s  f   g  p  p   i  v  v  r   s  k  l   a  a  v

 4401  atcactcatg gttatggcag cactgcataa ttctcttact gtcatgccat ccgtaagatg cttttctgtg actggtgagt
       l  s  l  m   v  m  a   a  l  h   n  s  l  t   v  m  p   s  v  r   c  f  s  v   t  g  e

 4481  actcaaccaa gtcattctga gaatagtgta tgcggcgacc gagttgctct tgcccggcgt caatacggga taataccgcg
        y  s  t   k  s  f  -   e  -  c   m  r  r   p  s  c  s   c  p  a   s  i  r   d  n  t  a

 4561  ccacatagca gaactttaaa agtgctcatc attggaaaac gttcttcggg gcgaaaactc tcaaggatct taccgctgtt
         p  h  s   r  t  l   k  v  l  i   i  g  k   r  s  s   g  r  k  l   s  r  i   l  p  l

 4641  gagatccagt tcgatgtaac ccactcgtgc acccaactga tcttcagcat cttttacttt caccagcgtt tctgggtgag
       l  r  s  s   s  m  -   p  t  r   a  p  n  -   s  s  a   s  f  t   f  t  s  v   s  g  -

 4721  caaaaacagg aaggcaaaat gccgcaaaaa agggaataag ggcgacacgg aaatgttgaa tactcatact cttccttttt
        a  k  t   g  r  q  n   a  a  k   k  g  i   r  a  t  r   k  c  -   i  l  i   l  f  l  f

 4801  caatattatt gaagcattta tcagggttat tgtctcatga gcggatacat atttgaatgt atttagaaaa ataaacaaat
         q  y  y   -  s  i   y  q  g  y   c  l  m   s  g  y   i  f  e  c   i  -  k   n  k  q

 4881  aggggttccg cgcacatttc cccgaaaagt gccacctgac gtcgacggat cgggagatct cccgatcccc tatggtcgac
       i  g  v  p   r  t  f   p  r  k   v  p  p  d   v  d  g   s  g  d   l  p  i  p   y  g  r

 4961  tctcagtaca atctgctctg atgccgcata gttaagccag tatctgctcc ctgcttgtgt gttggaggtc gctgagtagt
        l  s  v   q  s  a  l   m  p  h   s  -  a   s  i  c  s   l  l  v   c  w  r   s  l  s  s

 5041  gcgcgagcaa aatttaagct acaacaaggc aaggcttgac cgacaattgc atgaagaatc tgcttagggt taggcgtttt
         a  r  a   k  f  k   l  q  q  g   k  a  -   p  t  i   a  -  r  i   c  l  g   l  g  v

 5121  gcgctgcttc gcgatgtacg ggccagatat acgcgttgac attgattatt gactagttat taatagtaat caattacggg
       l  r  c  f   a  m  y   g  p  d   i  r  v  d   i  d  y   -  l  v   i  n  s  n   q  l  r

 5201  gtcattagtt catagcccat atatggagtt ccgcgttaca taacttacgg taaatggccc gcctggctga ccgcccaacg
        g  h  -   f  i  a  h   i  w  s   s  a  l   h  n  l  r   -  m  a   r  l  a   d  r  p  t

 5281  acccccgccc attgacgtca ataatgacgt atgttcccat agtaacgcca atagggactt tccattgacg tcaatgggtg
         t  p  a   h  -  r   q  -  -  r   m  f  p   -  -  r   q  -  g  l   s  i  d   v  n  g

 5361  gactatttac ggtaaactgc ccacttggca gtacatcaag tgtatcatat gccaagtacg ccccctattg acgtcaatga
       w  t  i  y   g  k  l   p  t  w   q  y  i  k   c  i  i   c  q  v   r  p  l  l   t  s  m

 5441  cggtaaatgg cccgcctggc attatgccca gtacatgacc ttatgggact ttcctacttg gcagtacatc tacgtattag
        t  v  n   g  p  p  g   i  m  p   s  t  -   p  y  g  t   f  l  l   g  s  t   s  t  y  -

 5521  tcatcgctat taccatggtg atgcggtttt ggcagtacat caatgggcgt ggatagcggt ttgactcacg gggatttcca
         s  s  l   l  p  w   -  c  g  f   g  s  t   s  m  g   v  d  s  g   l  t  h   g  d  f

 5601  agtctccacc ccattgacgt caatgggagt ttgttttggc accaaaatca acgggacttt ccaaaatgtc gtaacaactc
       q  v  s  t   p  l  t   s  m  g   v  c  f  g   t  k  i   n  g  t   f  q  n  v   v  t  t

 5681  cgccccattg acgcaaatgg gcggtaggcg tgtacggtgg gaggtctata taagcagagc tctctggcta actagagaac
        p  p  h   -  r  k  w   a  v  g   v  y  g   g  r  s  i   -  a  e   l  s  g   -  l  e  n

 5761  ccactgctta ctggcttatc gaaattaata cgactcacta tagggagacc caagctggct agccacc
                                     pET Seq 1 
         p  l  l   t  g  l   s  k  l  i   r  l  t   i  g  r   p  k  l  a   s  h
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