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Zusammenfassung

Gängige Theorien der mathematischen Finanzwirtschaft wie zum Beispiel
der Mean-Variance-Ansatz zur Portfolio-Selektion oder Modelle zur Bewer-
tung von Wertpapieren basieren alle auf der Annahme, dass Renditen im
Zeitablauf unabhngig und identisch verteilt sind und einer Normalverteilung
folgen. Empirische Untersuchungen liefern jedoch signifikante Hinweise dahin-
gehend, dass diese Annahme für wichtige Anlageklassen unzutreffend ist.
Stattdessen sindWertpapierrenditen zeitabhängige Volatilitäten, Heavy Tails
(schwere Verteilungsränder), Tail Dependence (Extremwertabhängigkeit) sowie
Schiefe gekennzeichnet. Diese Eigenschaften haben Auswirkungen sowohl
auf die theoretische als auch praktische Modellierung in der Finanzwirtschaft.
Nach der Präsentation des theoretischen Hintergrundes spricht die Arbeit die
Modellierungsprobleme an, die sich aus diesen häufig beobachteten Phänome-
nen ergeben. Speziell werden Fragen bezüglich der Modellierung von Markt-
und Kreditrisiken volatiler Märkte behandelt als auch Probleme bei der
Portfolio-Optimierung unter Verwendung alternativer Risikomae und Ziel-
funktionen. Fragen der praktischen Implementierung wird dabei besondere
Aufmerksamkeit gewidmet.
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Abstract

The cornerstone theories in finance, such as mean-variance model for port-
folio selection and asset pricing models, that have been developed rest upon
the assumption that asset returns follow an iid Gaussian distribution. There
is, however, strong empirical evidence that this the assumption does not
hold for most relevant asset classes. Financial return series typically exhibit
volatility clustering, heavy-tailedness, tail dependence, and skewness. These
properties have implications for both theoretical and practical modeling in
finance. After providing some theoretical background, this thesis addresses
modeling issues arising from these commonly observed phenomena. Specif-
ically, questions pertaining assessing and modeling market- and credit-risk
in volatile markets and portfolio-optimization problems under use of al-
ternative risk measures and objective functions are investigated. Practical
implementation is a concern throughout the analysis.
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Preface

The recent crash in September-October 2008 demonstrated there is a clear
need for a unified system based on realistic assumptions for the behavior
of financial variables. Most of the existing systems are based on the muti-
variate Gaussian distribution which empirical work has shown in numerous
studies it fails to describe the returns of financial variables. Not only does
it fail on a stand-alone level but also on a multivariate level, where a failure
to describe dependence between variables can be greatly misleading about
diversification opportunities.

Evidently, there is a need for the decision making process in financial
institutions to be supported by a more sophisticated tool. It should be a
unified framework for market and credit risk estimation and portfolio opti-
mization based on heavy-tailed, skewed distributions with realistic downside
risk measures and flexible copula functions to capture properly dependence.
In this thesis, we present such a conceptual approach working with the class
of stable Paretian and Skewed Student’s t distributions and the Expected
tail loss risk measure. We present numerical examples supporting our ap-
proach. The system described here has been implemented successfully in
the Cognity risk management platform.

I would like to thank Prof Stefan Mittnik for his patience and encour-
agement over the years and the members of the examination committee. I
would also like to thank my husband Todor Iotov for his constant support.

January 20, 2009 Borjana Racheva-Iotova
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Chapter 1

Probabilistic Models for

Assets Returns

1.1 Introduction

The cornerstone theories in finance such as mean-variance model for port-
folio selection and asset pricing models that have been developed rest upon
the assumption that asset returns follow a normal distribution. Yet, there is
little, if any, credible empirical evidence that supports this assumption for
financial assets traded in most markets throughout the world. Moreover, the
evidence is clear that financial return series are heavy-tailed and, possibly,
skewed. Fortunately, several papers have analyzed the consequences of re-
laxing the normality assumption and developed generalizations of prevalent
concepts in financial theory that can accommodate heavy-tailed returns (see
Rachev and Mittnik (2000) and Rachev (2003) and references therein).

Mandelbrot (1963) strongly rejected normality as a distributional model
for asset returns, conjecturing that financial return processes behave like
non-Gaussian stable processes. To distinguish between Gaussian and non-
Gaussian stable distributions. The latter are commonly referred to as ”stable
Paretian” distributions or ”Levy stable” distributions 1.

While there have been several studies in the 1960s that have extended
Mandelbrot’s investigation of financial return processes, probably, the most
notable is Fama (1963) and Fama (1965). His work and others led to a con-
solidation of the stable Paretian hypothesis. In the 1970s, however, closer
empirical scrutiny of the ”stability” of fitted stable Paretian distributions
also produced evidence that was not consistent with the stable Paretian hy-
pothesis. Specifically, it was often reported that fitted characteristic expo-

1Stable Paretian is used to emphasize that the tails of the non-Gaussian stable density
have Pareto power-type decay ”Levy stable” is used in recognition of the seminal work of
Paul Levy’s introduction and characterization of the class of non-Gaussian stable laws.
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14 Chapter 1. Probabilistic Models for Assets Returns

nents (or tail-indices) did not remain constant under temporal aggregation2.
Partly in response to these empirical ”inconsistencies”, various alternatives
to the stable law were proposed in the literature, including fat-tailed dis-
tributions being only in the domain of attraction of a stable Paretian law,
finite mixtures of normal distributions, the Student t-distribution, and the
hyperbolic distribution.

A major drawback of all these alternative models is their lack of stability.
As has been stressed by Mandelbrot and argued by Rachev and Mittnik
(2000), among others, the stability property is highly desirable for asset
returns. This is particularly evident in the context of portfolio analysis and
risk management. Only for stable distributed returns does one obtain the
property that linear combinations of different return series (e.g., portfolios)
follow again a stable distribution. Indeed, the Gaussian law shares this
feature, but it is only one particular member of a large and flexible class of
distributions, which also allows for skewness and heavy-tailedness.

Recent attacks on Mandelbrot’s stable Paretian hypothesis focus on the
claim that empirical asset return distributions are not as heavy-tailed as the
non-Gaussian stable law suggests. Studies that come to such conclusions are
typically based on tail-index estimates obtained with the Hill estimator. Be-
cause sample sizes beyond 100,000 are required to obtain reasonably accurate
estimates, the Hill estimator is highly unreliable for testing the stable hy-
pothesis. More importantly, the Mandelbrot’s stable Paretian hypothesis is
interpreted too narrowly, if one focuses solely on the marginal distribution of
return processes. The hypothesis involves more than simply fitting marginal
asset return distributions. Stable Paretian laws describe the fundamental
”building blocks” (e.g., innovations) that drive asset return processes. In
addition to describing these ”building blocks”, a complete model should be
rich enough to encompass relevant stylized facts, such as

1. non-Gaussian, heavy-tailed and skewed distributions

2. volatility clustering (ARCH-effects)

3. temporal dependence of the tail behavior

4. short- and long-range dependence

An attractive feature of stable models — not shared by other distribu-
tional models — is that they allow us to generalize Gaussian-based financial
theories and, thus, to build a coherent and more general framework for fi-
nancial modeling. The generalizations are only possible because of specific
probabilistic properties that are unique to (Gaussian and non-Gaussian) sta-
ble laws, namely, the stability property, the Central Limit Theorem and the

2For a more recent study, see Akgiray and Booth (1988) and Akgiray and Lamoureux
(1989).
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Invariance Principle for stable processes 3. Concerning short- and long-range
dependence, see Racheva-Iotova and Samorodnitsky (2003). For an empiri-
cal study of mortgage pass-through securities, see Fabozzi et al. (2006).

1.2 One-dimensional unconditional models

As pointed out in Rachev and Mittnik (2000), stable distributions are at-
tractive because they have an important desirable property — domains of
attraction. Loosely speaking, according to this property, if a distribution is
in the domain of attraction of a stable law, it has properties which are close
to those of the specified stable law. The domain of attraction is completely
determined by the tail behavior of the distribution. As a result, it is reason-
able to adopt the stable law as the ”idealized” model if the true distribution
has the appropriate tail behavior.

Another attractive feature is the stability property. Stable laws have an
important shape parameter which governs the properties of the distribution.
It is called the index of stability and is denoted by α. Because of the signif-
icance of the index of stability, stable distributions are also called α-stable.
According to the stability property, appropriately centralized and normal-
ized sums of independent identically distributed (i.i.d.) α-stable random
variables is again α-stable.

A well-known property of stable non-Gaussian distributions is that, due
to the power decay of the tails, they do not possess a finite second mo-
ment. Certainly the application of infinite-variance distributions as theo-
retical models of bounded variables, such as financial assets returns, seems
inappropriate. Moreover any empirical distribution has a finite variance,
hence it may seem that infinite variance distributions are inapplicable in
any context. Nevertheless there is ample empirical evidence that the prob-
ability of large deviations of the changes in stock market prices is so great
that any statistical theory based on finite-variance distributions is impossi-
ble to predict accurately. As it is remarked in Mandelbrot (1963) and Fama
(1965), the sum of a large number of these variables is often dominated by
one of the summands which is a theoretical property of infinite variance dis-
tributions. Hence an infinite-variance distribution may be an appropriate
probabilistic model.

The problem of parameter estimation of stable distributions was first
tackled by Mandelbrot then by Fama and Roll, Fama and Roll (1968) and
Fama and Roll (1971). This is a non-trivial task because, with a few excep-
tions, there are no closed-form expressions for the probability density func-
tions (p.d.f.) and cumulative distribution functions (c.d.f.)4. For example

3Detailed accounts of properties of stable distributed random variables can be found
in Samorodnitsky and Taqqu (1994) and Janicki and Weron (1994).

4A description of the various methods to approximate the stable p.d.f. and c.d.f., see
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the classical maximum likelihood method, in this case, depends on numeri-
cal approximations of the density and could be extremely time-consuming.
Moreover standard estimation techniques based on asymptotic results which
rely on a finite second moment are irrelevant.

Mathematical models with application of stable laws in finance, eco-
nomics and other areas can be found in Adler et al. (1998), Embrechts et al.
(1997) and Rachev and Mittnik (2000). We continue with a rigorous defini-
tion of the family of α-stable distributions.

1.2.1 Definition and basic properties of stable distributions

Definition and parametrizations

There are several equivalent ways to define the class of α-stable distributions.
The first definition identifies the stability property.

Definition 1. A random variable X is said to have stable distribution
if for any n ≥ 2, there is a positive number Cn and a real number Dn such
that

X1 +X2 + . . .+Xn
d
= CnX +Dn

where X1, X2, . . . , Xn are independent copies of X and
d
= means equality in

distribution.

The second definition states that stable distributions are the only distri-
butions that can be obtained as limits of properly normalized sums of i.i.d.
random variables.

Definition 2. A random variable X is said to have a stable distribution
if it has a domain of attraction, i.e. if there is a sequence of i.i.d. random
variables Y1, Y2, . . . and sequences of positive numbers {dn} and real numbers
{an} such that

Y1 + Y2 + . . .+ Yn
dn

+ an
d→ X

where
d→ denotes convergence in distribution.

The third definition specifies the characteristic function of stable laws.

Definition 3. A random variable X is said to have a stable distribution
if there are parameters 0 < α ≤ 2, σ > 0, −1 ≤ β ≤ 1, µ ∈ R such that its
characteristic function (ch.f.) has the following form

ϕ(t) = EeitX =

{
exp{−σα|t|α(1− iβ t

|t| tan(
πα
2 )) + iµt}, α 6= 1

exp{−σ|t|(1 + iβ 2
π

t
|t| ln(|t|)) + iµt}, α = 1

(1.1)

Stoyanov and Racheva-Iotova (2004b)
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where t
|t| = 0 if t = 0.

Proofs of the equivalence between the three definitions can be found in
Zolotarev (1986).

The parameter α is the index of stability, β is a skewness parameter, σ is
a scale parameter and µ is a location parameter. Since stable distributions
are uniquely determined by the four parameters, the common notation is
Sα(σ, β, µ). IfX is said to have stable distribution, we writeX ∼ Sα(σ, β, µ).
One can easily notice that if β = 0 and µ = 0, the ch.f. becomes real-
valued, hence the random variable is symmetric. If X belongs to the class
of symmetric α-stable distributions, we write X ∼ SαS. If X ∼ SαS then
the ch.f. of X has the simple form

ϕ(t) = exp{−σα|t|α}

If α = 2, we arrive at the ch.f. of the Gaussian distribution, that is if
X ∼ S2(σ, β, µ), then

ϕ(t) = EeitX = exp{−σ2|t|2 + iµt}

Hence X has the Gaussian distribution with mean equal to µ and vari-
ance equal to 2σ2: X ∼ N(µ, 2σ2). Note that in this case β is irrelevant.
Nevertheless the Gaussian distribution is usually associated with β = 0.

The parametrization in Definition 3 is one possible way to define the
characteristic function. It has the advantage that the parameters are easy
to interpret in terms of shape and location. However there is a serious
disadvantage when it comes to numerical or statistical work — it is discon-
tinuous at α = 1 and β 6= 0, i.e. if α → 1, β → β∗ 6= 0, σ → σ∗ and
µ→ µ∗ then the limit function is not the ch.f. of the stable random variable
S1(σ

∗, β∗, µ∗). This drawback is not an inherent property of the class of
α-stable laws and appears because of the special form of the classical ch.f.
given in Definition 3. As noted in Samorodnitsky and Taqqu (1994), it is
possible to change the parametrization in order to have convergence in dis-
tribution when α → α∗, β → β∗, σ → σ∗ and µ → µ∗. An alternative
parametric representation of the ch.f. equipped with this property is the
following

ϕ(t) =

{
exp{−|σt|α + iσtβ(|σt|α−1 − 1) tan(πα2 ) + iµ1t}, α 6= 1
exp{−|σt|+ iσtβ 2

π ln |σt|+ iµ1t}, α = 1
(1.2)

where 0 < α ≤ 2, −1 ≤ β ≤ 1, σ > 0 and µ1 ∈ R.

Let us denote the parametrization defined in equation (1.1) as P0 and
the continuous one defined in (1.2) as P1. The relation between P0 and P1

is given in terms of the parameters µ and µ1
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µ1 =

{
µ+ βσ tan πα

2 , α 6= 1
µ, α = 1

(1.3)

Obviously P0 is different from P1 only when β 6= 0. An attractive feature
of the continuous parametrization is that it is not necessary to consider the
case α = 1 separately, i.e. it can be defined by means of the limit α → 1.
Convergence in distribution follows because of the one-to-one relationship
between the cumulative distribution functions (c.d.f.s) and the ch.f.s. More-
over it is preferable to have a continuous parametrization in statistical and
numerical work.

The two parametrizations defined in this section do not comprise all
possible parametric representations of the ch.f. of stable laws. In Zolotarev
(1986) there are more examples which appear to be appropriate in different
situations.

Basic properties

The basic properties we shall consider are easier to establish when working
with P0. Most of them follow directly from the particular form of equation
(1.1). The proofs can be found in Samorodnitsky and Taqqu (1994).

Property 1. Let X1 and X2 be independent random variables such that
X1 ∈ Sα(σ1, β1, µ1) and X2 ∈ Sα(σ2, β2, µ2). Then X1 + X1 ∈ Sα(σ, β, µ),
with

σ = (σα1 + σα2 )
1

α , β =
β1σ

α
1 + β2σ

α
2

σα1 + σα2
, µ = µ1 + µ2

Property 2. Let X ∈ Sα(σ, β, µ) and a ∈ R. Then X+a ∈ Sα(σ, β, µ+
a)

Property 3. Let X ∈ Sα(σ, β, µ) and a ∈ R, a 6= 0. Then

aX ∈ Sα(|a|σ, sign(a)β, aµ), α 6= 1

aX ∈ S1(|a|σ, sign(a)β, aµ− 2

π
(ln(|a|)σβ)), α = 1

The first three properties identify σ and µ as a scale and a shift parameter
respectively.

Property 4. For any 0 < α < 2, if X ∈ Sα(σ, β, 0), then −X ∈
Sα(σ,−β, 0)

We shall use the standard notation for the cumulative distribution func-
tion and probability density function: P (X < x) = F (x;α, β) specifies the
c.d.f. and f(x;α, β) = F ′(x;α, β) denotes the p.d.f. of a random variable
X ∼ Sα(1, β, 0). The fact that we consider only standardized random vari-
ables is not limiting. By Properties 2 and 3 it follows that if X ∈ Sα(σ, β, µ),
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then (X − µ)/σ ∈ Sα(1, β, 0). Furthermore because of the symmetry intro-
duced by Property 4, it is sufficient to examine only the c.d.f. and the p.d.f.
of X ∈ Sα(1, β, 0), with β ≥ 0 and then take advantage of the expressions:

• if β < 0:

f(x;α, β) = f(−x;α,−β), F (x;α, β) = 1− F (−x;α,−β) (1.4)

• if σ 6= 1 and µ 6= 0:

f(x) =
1

σ
f

(
x− µ

σ
;α, β

)
, F (x) = F

(
x− µ

σ
;α, β

)
(1.5)

where f(x) and F (x) are the p.d.f. and the c.d.f. of X ∈ Sα(σ, β, µ)
respectively.

The parameter β is a skewness parameter because of the next property.

Property 5. X ∈ Sα(σ, β, µ) is symmetric if and only if β = 0 and
µ = 0. It is symmetric about µ if and only if β = 0.

The distribution is said to be skewed to the right if β > 0 and to the
left if β < 0. It is said to be totally skewed to the right if β = 1 and totally
skewed to the left if β = −1.

Stable distributions can be used as a theoretical model when empirical
data is heavy-tailed. As we have mentioned in the introduction, empirical
studies confirm that financial time series possess this property. The appli-
cation of stable laws in this aspect is motivated by the fact that the tail of
the stable law approaches zero as a power function. This is what is called
”Pareto-like” behavior of the tail because of the same power decay of the tail
of the Pareto distribution. The next property provides a rigorous description
of the tail behavior.

Property 6. Let X ∈ Sα(σ, β, µ) 0 < α < 2. Then

lim
λ→∞

λαP (X > λ) = Cα
1 + β

2
σα

lim
λ→∞

λαP (X < −λ) = Cα
1− β

2
σα

where

Cα =

(∫ ∞

0
x−α sin(x)dx

)−1

=

{ 1−α
Γ(2−α) cos(πα/2) , α 6= 1

2/π, α = 1
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Figure 1.1: Stable densities.

The tail behavior of the Gaussian distribution as λ→ ∞ is specified by

P (X < −λ) = P (X > λ) ∼ 1

2
√
πσλ

e−
λ2

4σ2

The difference in the asymptotic behavior of the tails of α-stable distribu-
tions, with α < 2 and the Gaussian distribution motivates the distinction
between Gaussian and non-Gaussian stable distributions. The latter are also
called Pareto stable or Lévy stable as mentioned in the introduction.

The power decay of the tail of Pareto stable distributions implies that
they do not possess a finite second moment. More exactly

Property 7. Let X ∈ Sα(σ, β, µ) and 0 < α < 2. Then

E|X|p <∞, 0 < p < α

E|X|p = ∞, α ≤ p

As a consequence, if α ≤ 1, then the corresponding α-stable distribution
does not have a finite first absolute moment. Therefore statistical techniques
valid for the Gaussian distribution are not applicable for the stable Paretian
distributions5.

The absolute moments considered in Property 7 can be computed.

5For a review of the different methods of estimation of the stable distribution param-
eters, see Stoyanov and Racheva-Iotova (2004c)
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Property 8. Let X ∈ Sα(σ, β, µ), 0 < α < 2 and β = 0 if α = 1. Then
for any 0 < p < α there exists a constant cα,β(p), such that:

(E|X − µ|p)1/p = cα,β(p)σ, (1.6)

where cα,β(p) = (E|X0|p)1/p, X0 ∈ Sα(1, β, 0)

The constant cα,β(p) can be explicitly calculated, see Samorodnitsky and
Taqqu (1994)

(cα,β(p))
p =

2p−1Γ
(
1− p

α

)

p
∫∞
0 u−p−1 sin2 udu

·

·
(
1 + β2 tan2

πα

2

)p/2α
cos
( p
α
arctan

(
β tan

απ

2

))

= (cα,0(p))
p ·

·
(
1 + β2 tan2

πα

2

)p/2α
cos
( p
α
arctan

(
β tan

απ

2

))

(1.7)

The shift parameter µ has the following nice property if α > 1:

Property 9. If 1 < α ≤ 2, the location parameter µ equals the mathe-
matical expectation of X ∈ Sα(σ, β, µ).

Property 10. Let X ∈ Sα′(σ, 0, 0) and let 0 < α < α′. Let Y be an
α/α′-stable random variable, totally skewed to the right

Y ∈ Sα/α′

((
cos

πα

2α′

)α′/α
, 1, 0

)

and assume that X and Y are independent. Then

Z = Y 1/α′

X ∈ Sα(σ, 0, 0)

This property6 implies that if X is zero mean Gaussian random variable
and if Y is a positive α/2-stable random variable independent of X, then

Z = Y 1/2X

is symmetric α-stable. This shows that every symmetric α-stable random
variable is conditionally Gaussian.

6For a proof, see Samorodnitsky and Taqqu (1994). This property has an important
implication in the multivariate sub-Gaussian model which finds application in portfolio
theory, see Section 1.5 and Ortobelli et al. (2004) and the references therein.
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1.2.2 Definition of skewed Student’s t distribution

The skewed Student’s t distribution is defined through the following stochas-
tic representation:7

X := µ+ γW + Z
√
W (1.8)

where W ∈ IG(ν/2, ν/2) and Z ∈ N(0, σ2), Z is independent of W , γ ∈ R

is a parameter accounting for the skewness, µ ∈ R is location parameter
vector and ν stands for the degrees of freedom. The notation IG(ν/2, ν/2)
stands for the inverse gamma distribution with parameters ν/2.

The skewed Student’s t distribution allows for closed-form expression of
its density,

fX(x) =
aK(ν+1)/2

(√
(ν + (x− µ)2/σ2)γ2/σ2

)
exp((x− µ)γ/σ2)

(ν + (x− µ)2/σ2)γ2/σ2)−
ν+n
4

(
1 + (x−µ)2/σ2

ν

) ν+1

2

where x ∈ R, K is the modified Bessel function of the third kind and

a =
2

2−ν−1

2

Γ(ν/2)(πν)1/2
√
|Σ|

.

The skewed Student’s t distribution can be used to model heavy-tails
and skewness. Figure 1.2 shows the stable and skewed Student’s t fits to a
sample of observed returns. Both models are clearly better than the stan-
dard normal model. In different market conditions, the two skewed and
heavy-tailed models may perform differently. Therefore, a practical risk
management system should have them both as possible choices for modeling
one-dimensional returns.

1.3 Parameter estimation of stable distributions

Generally speaking, parameter estimation techniques for the class of stable
laws come into three categories - quantile methods, characteristic function
based methods and maximum likelihood. The approaches from the first
type use predetermined empirical quantiles to estimate stable parameters.
For example the method of Fama and Roll (1968), Fama and Roll (1971)
for symmetric α-stable distributions and its modified version of McCulloch
(1986) for the skewed case belong to this group.

Chf based methods include the method of moments approach suggested
by Press (1972) and regression-type procedures proposed by Koutrouvelis

7For more information, see Section 12.7 in Rachev and Mittnik (2000).
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Figure 1.2: Stable, skewed Student’s t, and Gaussian distributions fitted to
real data.

(1981) and Kogon and Williams in Adler et al. (1998). Simulation stud-
ies available in the literature (Adler et al. (1998), Akgiray and Lamoureux
(1989)), show the superiority of the regression-type estimation over the
quantile methods.

The validity of maximum likelihood estimation (MLE) theory was demon-
strated by DuMouchel (1973). The comparison studies between MLE and
the quantile method of McCulloch in Rachev and Mittnik (2000) recommend
the maximum likelihood estimator.

In this section we shall review and compare McCulloch’s quantile method,
the method of moments, the regression-type estimator of Kogon andWilliams
and MLE.8

1.3.1 Quantile method of McCulloch

The estimation procedure proposed by McCulloch (1986) is a generalization
of the quantile method in Fama and Roll (1971) for the symmetric case.
The estimates of stable parameters in parametrization P0 are consistent and
asymptotically normal if 0.6 < α ≤ 2. We shall adopt the standard notation
for theoretical and empirical quantiles, namely xp is the p-th quantile if
F (xp) = p, where F (x) is the cdf of a random variable and given a sample

8For additional information, see Stoyanov and Racheva-Iotova (2004a).
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of observations x1, x2, . . . , xn, then x̂p is the sample quantile if Fn(x̂p) = p,
where Fn(x) is the sample cdf.

According to McCulloch (1986), let us define two functions of theoretical
quantiles :

vα =
x0.95 − x0.05
x0.75 − x0.25

vβ =
x0.95 + x0.05 − 2x0.50

x0.95 − x0.05

The functions vα and vβ have this special form because by expression (1.5)
it appears that they do not depend on the scale and the location parameter,
i. e.

∣∣∣∣
vα = φ1(α, β)
vβ = φ2(α, β)

(1.9)

Employing equation (1.4), we have that F (−xp;α,−β) = F (x1−p;α, β) and
therefore we have the relations:

φ1(α, β) = φ1(α,−β)
φ2(α, β) = −φ2(α,−β)

(1.10)

The system of equations (1.9) can be inverted and the parameters α and β
can be expressed as functions of the quantities vα and vβ :

∣∣∣∣
α = ψ1(vα, vβ)
β = ψ2(vα, vβ)

(1.11)

Replacing vα and vβ in equations (1.11) with their sample counterparts v̂α
and v̂β:

v̂α =
x̂0.95 − x̂0.05
x̂0.75 − x̂0.25

v̂β =
x̂0.95 + x̂0.05 − 2x̂0.50

x̂0.95 − x̂0.05

yields estimators α̂ and β̂:

∣∣∣∣
α̂ = ψ1(v̂α, v̂β)

β̂ = ψ2(v̂α, v̂β)
(1.12)

The functions ψ1(.) and ψ2(.) are tabulated in Tables 1.1 and 1.2. It should
be noted that because of property (1.10), we have that:
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vβ
0 0.1 0.2 0.3 0.5 0.7 1

2.439 2 2 2 2 2 2 2
2.5 1.916 1.924 1.924 1.924 1.924 1.924 1.924
2.6 1.808 1.813 1.829 1.829 1.829 1.829 1.829
2.7 1.729 1.73 1.737 1.745 1.745 1.745 1.745
2.8 1.664 1.663 1.663 1.668 1.676 1.676 1.676
3 1.563 1.56 1.553 1.548 1.547 1.547 1.547
3.2 1.484 1.48 1.471 1.46 1.448 1.438 1.438

vα 3.5 1.391 1.386 1.378 1.364 1.337 1.318 1.318
4 1.279 1.273 1.266 1.25 1.21 1.184 1.15
5 1.128 1.121 1.114 1.101 1.067 1.027 0.973
6 1.029 1.021 1.014 1.004 0.974 0.935 0.874
8 0.896 0.892 0.887 0.883 0.855 0.823 0.769
10 0.818 0.812 0.806 0.801 0.78 0.756 0.691
15 0.698 0.695 0.692 0.689 0.676 0.656 0.595
25 0.593 0.59 0.588 0.586 0.579 0.563 0.513

Table 1.1: α = ψ1(vα, vβ) = ψ1(vα,−vβ)

vβ
0 0.1 0.2 0.3 0.5 0.7 1

2.439 0 2.16 1 1 1 1 1
2.5 0 1.592 3.39 1 1 1 1
2.6 0 0.759 1.8 1 1 1 1
2.7 0 0.482 1.048 1.694 1 1 1
2.8 0 0.36 0.76 1.232 2.229 1 1
3 0 0.253 0.518 0.823 1.575 1 1
3.2 0 0.203 0.41 0.632 1.244 1.906 1

vα 3.5 0 0.165 0.332 0.499 0.943 1.56 1
4 0 0.136 0.271 0.404 0.689 1.23 2.195
5 0 0.109 0.216 0.323 0.539 0.827 1.917
6 0 0.096 0.19 0.284 0.472 0.693 1.759
8 0 0.082 0.163 0.243 0.412 0.601 1.596
10 0 0.074 0.174 0.22 0.377 0.546 1.482
15 0 0.064 0.128 0.191 0.33 0.478 1.362
25 0 0.056 0.112 0.167 0.285 0.428 1.274

Table 1.2: β = ψ2(vα, vβ) = −ψ2(vα,−vβ)
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β
0 0.25 0.5 0.75 1

0.5 2.588 3.073 4.534 6.636 9.144
0.6 2.337 2.635 3.542 4.808 6.247
0.7 2.189 2.392 3.004 3.844 4.775
0.8 2.098 2.244 2.676 3.265 3.912
0.9 2.04 2.149 2.461 2.886 3.356
1 2 2.085 2.311 2.624 2.973
1.1 1.98 2.04 2.205 2.435 2.696
1.2 1.965 2.007 2.125 2.294 2.491

α 1.3 1.955 1.984 2.067 2.188 2.333
1.4 1.946 1.967 2.022 2.106 2.211
1.5 1.939 1.952 1.988 2.045 2.116
1.6 1.933 1.94 1.962 1.997 2.043
1.7 1.927 1.93 1.943 1.961 1.987
1.8 1.921 1.922 1.927 1.936 1.947
1.9 1.914 1.915 1.916 1.918 1.921
2 1.908 1.908 1.908 1.908 1.908

Table 1.3: vσ = φ3(α, β) = φ3(α,−β)

ψ1(vα, vβ) = ψ1(vα,−vβ)
ψ2(vα, vβ) = −ψ2(vα,−vβ)

In other words, the sign of v̂β determines the sign of β.
Since there are no closed-form expressions for the functions ψ1(.) and

ψ2(.), we compute estimates of α and β from the statistics v̂α and v̂β using
the values in Tables 1.1 and 1.2 and linear interpolation for intermediate
values. If it happens that v̂α is below 2.439, α̂ should be set equal to 2 and
β̂ equal to zero. Table 1.2 contains values larger than 1 for more precise
interpolation. If β̂ > 1, it should be reduced to 1.

McCulloch provides estimator for the scale parameter σ which is very
similar to the estimator given by Fama and Roll. Let us first define vσ as:

vσ =
x0.75 − x0.25

σ
= φ3(α, β)

The function ψ3(α, β) is given in Table 1.3. Employing the same arguments
that led us to equations (1.10) yields the relation φ3(α, β) = φ3(α,−β). The
estimator σ̂ is received after replacing α and β with the estimates found
according to equations (1.12):

σ̂ =
x̂0.75 − x̂0.25

φ3(α̂, β̂)

Estimation of the location parameter µ is a more involved affair because
of the discontinuity of the parametric representation of the chf P0 when
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β
0 0.25 0.5 0.75 1

0.5 0 -0.061 -0.279 -0.659 -1.198
0.6 0 -0.078 -0.272 -0.581 -0.997
0.7 0 -0.089 -0.262 -0.52 -0.853
0.8 0 -0.096 -0.25 -0.469 -0.742
0.9 0 -0.099 -0.237 -0.424 -0.652
1 0 -0.098 -0.223 -0.383 -0.576
1.1 0 -0.095 -0.208 -0.346 -0.508
1.2 0 -0.09 -0.192 -0.31 -0.447

α 1.3 0 -0.084 -0.173 -0.276 -0.39
1.4 0 -0.075 -0.154 -0.241 -0.335
1.5 0 -0.066 -0.134 -0.206 -0.283
1.6 0 -0.056 -0.111 -0.17 -0.232
1.7 0 -0.043 -0.088 -0.132 -0.179
1.8 0 -0.03 -0.061 -0.092 -0.123
1.9 0 -0.017 -0.032 -0.049 -0.064
2 0 0 0 0 0

Table 1.4: φ4(α, β) = φ4(α,−β)

α → 1 and β 6= 0. First we estimate the shifted location parameter ζ
defined by:

ζ = x0.50 + σsign(β)φ4(α, β) (1.13)

where φ4(α, β) is tabulated in Table 1.4 and has the property φ4(α, β) =
φ4(α,−β). The location parameter µ is related to ζ according to:

µ =

{
ζ − βσ tan πα

2 , α 6= 1
ζ, α = 1

(1.14)

Replacing the parameters in equations (1.13) and (1.14) with their sample
counterparts yields the estimator µ̂:

ζ̂ = x̂0.50 + σ̂sign(β̂)φ4(α̂, β̂)

and

µ̂ =

{
ζ̂ − β̂σ̂ tan πα̂

2 , α̂ 6= 1

ζ̂ , α̂ = 1

It should be observed that a significant advantage of the method con-
sidered is the lack of heavy computations. On the personal homepage of
McCulloch (http://www.econ.ohio-state.edu/jhm/jhm.html) a FORTRAN
implementation of the algorithm is publicly available.
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1.3.2 Chf based methods

The characteristic function based methods rely on the sample chf for pa-
rameter estimation. The sample chf is defined as:

ϕ̂(t) =
1

n

n∑

j=1

eitxj , t ∈ R (1.15)

where x1, x2, . . . , xn is a sample of independent, identically distributed (iid)
observations on a random variable X. Since |ϕ̂(t)| ≤ 1, all moments of the
random variable ϕ̂(t) are finite and, according to equation (1.15), for any t
it is the sample mean of the iid random variables eitxj . As a consequence,
from the law of large numbers, it can be inferred that the sample chf is a
consistent estimator of the chf ϕX(t) = EeitX , t ∈ R of a random variable
X.

The method of moments

Press (1972) suggested a simple and straightforward approach to estimation
of parameters of stable laws which was called the method of moments. His
approach is based on certain transformations of the chf in parametrization
P0. From the parametric representation (1.1) it follows that

|ϕ(t)| = exp(−σα|t|α), t ∈ R (1.16)

and therefore − ln |ϕ(t)| = σα|t|α for any real t.

Case α 6= 1. If we choose t1 and t2 such that t1 6= t2 6= 0, we have the
following system of two equations:

∣∣∣∣
− ln |ϕ(t1)| = σα|t1|α
− ln |ϕ(t2)| = σα|t2|α

which can be solved for α and σ. Replacing the chf for its sample equivalent
ϕ̂(t) yields the estimators α̂ and σ̂:

α̂ =
ln ln |ϕ̂(t1)|

ln |ϕ̂(t2)|
ln | t1t2 |

(1.17)

and

ln σ̂ =
ln |t1| ln(− ln |ϕ̂(t2)|)− ln |t2| ln(− ln |ϕ̂(t1)|)

ln
∣∣∣ ϕ̂(t1)ϕ̂(t2)

∣∣∣
(1.18)

Estimation of the skewness and the location parameter requires more efforts.
Let us first denote the imaginary part of the logarithm of the chf in P0 as
u(t):
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u(t) = ℑ(lnϕ(t)) = µt+ σα|t|αβsign(t) tan πα
2

Then if we choose two non-zero values t3 and t4 such that t3 6= t4 we can
write a system of two equations:

∣∣∣∣∣
u(t3)
t3

= µ+ σα|t3|α−1β tan πα
2

u(t4)
t4

= µ+ σα|t4|α−1β tan πα
2

It is possible to solve the system for β and µ and again replacing α, σ and
u(t) with their sample counterparts yields the required estimators. Since

ϕ̂ξ(t) =

(
1

n

n∑

j=1

cos txj

)
+ i

(
1

n

n∑

j=1

sin txj

)

and taking advantage of the properties of complex numbers we achieve the
estimator û(t):

tan û(t) =

∑n
j=1 sin txj∑n
j=1 cos txj

Finally for β̂ and µ̂ we have:

β̂ =

û(t4)
t4

− û(t3)
t3[

|t4|α̂−1 − |t3|α̂−1
]
σ̂α̂ tan πα̂

2

(1.19)

and

µ̂ =
|t4|α̂−1 û(t3)

t3
− |t3|α̂−1 û(t4)

t4

|t4|α̂−1 − |t3|α̂−1
(1.20)

Case α = 1. If α = 1, equation (1.16) allows us to construct the estimator
σ̂ directly:

σ̂ = − ln |ϕ(t1)|
t1

where t1 6= 0. Similar arguments as in the case α 6= 1 lead us to:

β̂ =

û(t3)
t3

− û(t4)
t4

2
π σ̂ ln | t4t3 |

µ̂ =
ln |t4| û(t3)t3

− ln |t3| û(t4)t4

ln |t4| − ln |t3|
where t3 6= t4 and both are non-zero.
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The estimators of stable parameters are consistent since they are based
on ϕ̂(t), ℜϕ̂(t) and ℑϕ̂(t) which are consistent estimators of ϕ(t), ℜϕ(t)
and ℑϕ(t) by the law of large numbers. The question which still remains
is the best way to choose t1, . . . , t4, since obviously the derived estimators
are not invariant of their choice. Koutrouvelis in his simulation studies in
Koutrouvelis (1980) uses the values t1 = 0.2, t2 = 0.8, t3 = 0.1 and t4 = 0.4,
which are selected for the normalized case (σ = 1, µ = 0). Because of the
following property of the chf of an arbitrary random variable X:

ϕσX+µ(t) = eitµϕX(σt)

it is clear that for different σ and µ we shall have to choose different values
for t1, . . . , t4 to achieve equal performance, i.e. the values determined for the
normalized case will not be equally “good” for a non-normalized case. For
this reason, if we aim at estimation of stable parameters by the method of
moments, we need first to find initial estimates of the scale and the location
parameter and to normalize the sample. Without incurring significant addi-
tional computational burden, initial estimates could be computed with the
help of a quantile method. For such purposes Koutrouvelis (1980) uses the
method of Fama and Roll (1968), Fama and Roll (1971) despite the bias in
the estimate of σ even in the symmetric case. We shall adopt his approach
in our computations.

To summarize, the algorithm for estimating stable parameters by the
method of moments, given a sample of iid observations x1, x2, . . . , xn, is as
follows:

1. Compute initial estimates σ̂0 and µ̂0 of σ and µ respectively, according
to:

σ̂0 =
x̂0.72 − x̂0.28

1.654

and µ̂0 equals the 50% truncated sample average - the mean of the
middle 50% of the ordered observations.

2. Normalize the sample with the initial estimates:

x′k = (xk − µ̂0)/σ̂0, k = 1, 2, . . . n

3. Using the normalized sample x′1, x
′
2, . . . , x

′
n, calculate α̂, β̂, σ̂1 and µ̂1

according to equations (1.17), (1.19), (1.18) and (1.20) respectively.

4. Compute the final estimates σ̂ and µ̂:

σ̂ = σ̂0σ̂1, µ̂ = σ̂0µ̂1 + µ̂0
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The regression-type estimator of Kogon-Williams

Regression-type estimators are also based on the sample chf. It is possi-
ble to derive simple expressions, linear with respect to stable parameters,
and construct estimators using the least squares technique. Kogon and
Williams suggest such a procedure in Adler et al. (1998) with the chf be-
ing parametrized according to the continuous parametrization P1 defined in
equation (1.2). Their approach is similar to the that of Koutrouvelis (1980)
and Koutrouvelis (1981).

The linear equations follow directly from the convenient form of the
logarithm of the chf:

ln[−ℜ(lnϕ(t))] = α lnσ + α ln |t| (1.21)

ℑ(lnϕ(t)) = µ1t+ βσt(|σt|α−1 − 1) tan
πα

2
(1.22)

Estimators of the stable parameters can be constructed using the method
of least squares after replacing the chf for the sample chf. Certainly here we
face the same problem as in the method of moments - the sample chf should
be evaluated for certain values of the argument. Koutrouvelis gives tables
in Koutrouvelis (1980) and Koutrouvelis (1981) which relate the values of
the sample chf argument to the value of the index of stability α and the
sample size. The major advantage of the procedure in Adler et al. (1998)
is that the provided values of the sample chf argument are invariant of
any other parameters. Having conducted numerous experiments, Kogon
and Williams report in Adler et al. (1998) that the most suitable choice is
tk = {0.1+ 0.1k, k = 0, 1, . . . , 9} - 10 equally spaced points in the interval
[0.1, 1]. Undoubtedly the sample should be normalized before applying the
method of least squares, otherwise the optimal selection of the sample chf
arguments would depend on the scale and the modified location parameter.
For preliminary estimation of σ and µ, it is suggested to use the quantile
method of McCulloch.

The algorithm is as follows:

1. Given a sample of iid observations x1, x2, . . . , xn first we find prelimi-
nary estimates σ0 and µ01 utilizing the quantile method of McCulloch
and we normalize the observations:

x′j =
xj − µ̂01

σ̂0
, j = 1, 2, . . . n

2. Next we consider the regression equation constructed from equation
(1.21):

yk = b+ αwk + ǫk, k = 0, 1, . . . 9
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where yk = ln[−ℜ(ln ϕ̂(tk))], wk = ln |tk|, tk = {0.1 + 0.1k, k =
0, 1, . . . , 9} and ǫk denotes the error term. We find α̂ and b̂ according to
the method of least squares using the normalized sample x′1, x

′
2, . . . , x

′
n.

The estimator σ̂1 of the scale parameter of the normalized sample is:

σ̂1 = exp

(
b̂

α̂

)

3. Estimators β̂ and µ̂11 of the skewness parameter and the modified
location parameter respectively are derived from the second regression
equation based on (1.22):

zk = µ11tk + βvk + ηk, k = 0, 1, . . . 9

where zk = ℑ(ln ϕ̂(tk)), vk = σ̂1tk(|σ̂1tk|α̂−1 − 1) tan πα̂
2 , tk = {0.1 +

0.1k, k = 0, 1, . . . , 9} and ηk is the error term.

4. The final estimators σ̂ and µ̂1 proceed from:

σ̂ = σ̂0σ̂1, µ̂1 = µ̂01 + σ̂0µ̂11

If we aim at estimating the location parameter µ, we need to take advantage
of the connection between the two parametric forms P0 and P1:

µ̂ = µ̂1 − β̂σ̂ tan
πα̂

2

In Adler et al. (1998) there is a huge Monte Carlo study in which the method
of Kogon-Williams is compared to the approach in Koutrouvelis (1980),
Koutrouvelis (1981). The result is that from computational viewpoint the
former is more efficient. It is definitely superior to the latter when α is
close to zero and β 6= 0. The approach of Koutrouvelis outperforms that of
Kogon-Williams only in the estimation of β.

1.3.3 Maximum likelihood

The method of maximum likelihood is very attractive because of the good
asymptotic properties of the estimates, provided that the likelihood function
obeys certain general conditions. The likelihood function is defined as:

L(x1, x2, . . . xn|θ) =
n∏

k=1

f(xk|θ)

where x1, x2, . . . xn is a sample of iid observations of a random variable X,
f(x|θ) is the pdf of X, and θ is a vector of parameters. In the case of stable
distributions, θ = (α, β, σ, µ). Maximum likelihood estimates are found by
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searching for that parameter values which maximize the likelihood function,
or equivalently, the log-likelihood function:

θ̂n = argmax
θ

log(L(x1, x2, . . . xn|θ)) (1.23)

DuMouchel studied the applicability of maximum likelihood theory in
the case of α-stable distributions in DuMouchel (1973) by verifying whether
the likelihood function complies with a set of conditions that guarantee the
validity of the theory. The theorem proved in the paper and adapted to
parametrization P0 is the following

Theorem 1. When sampling from a stable distribution, θ̂n, the maxi-
mum likelihood estimate for θ = (α, β, σ, µ) based on the first n observations,
restricted so that α̂n, the estimate of α, satisfies α̂n > ǫ, ǫ arbitrarily small
and positive, is consistent and asymptotically normal as long as θ0, the true
value of θ is in the interior of the parameter space (that is the cases α0 ≤ ǫ,
α0 = 2 and |β| = 1 are excluded) and the additional case (α0 = 1, β0 6= 0) is
excluded.

Clearly if we intend to derive expressions for MLE analytically, we need
to have closed-form expressions for the pdfs of stable laws. Such expressions
are not known to exist in the general case and the problem of MLE of stable
parameters should be attacked numerically, i.e. we have to numerically
search for the solution of problem (1.23) in which the pdf is approximated.
Approaches to numerical approximation of the pdfs and the cdfs of stable
laws are considered in Stoyanov and Racheva-Iotova (2004c). For practical
calculations, we use the FFT-method combined with a Bergström series
expansion for tail approximation.

1.3.4 Choice of an estimation method

A risk system based on stable distributions have to be flexible enough to
support a number of fitting methods. In terms of accuracy, the MLE is
superior but is slow while the characteristic function based method is a lot
faster but may have a difficulty in estimating the skewness. The quantile
method is fastest but is least accurate. Thus, the choice which method to use
does not have a definite answer since sometimes practitioners prefer speed
to accuracy, especially when portfolios are large.

1.4 Conditional one-dimensional models

The analysis of empirical behavior of stock returns data has shown that the
conditional first and second moments are time-dependent, see for example
Fama and French (1988) and French et al. (1989). The temporal dependence
is different with respect to whether the returns are measured over shorter
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or longer horizons. In a model that explains these phenomena, information
of past market movements is incorporated and thus a conditional distri-
bution model is more suitable than a unconditional one. We say that the
model is conditional if the distribution of asset returns is conditional on the
information of past market movements or a more general information set.

One natural class of models is the auto-regressive moving average (ARMA)
processes. They have the property that the conditional distribution is ho-
moskedastic, i.e. the conditional volatility is constant. If we assume the
ARMA(p,q) process of auto-regressive order p and moving average order q
to model the return time series rt of an asset, then

rt = a0 +

p∑

i=1

airt−i +

q∑

j=1

bjǫt−j (1.24)

where {ǫt} is a white-noise process9, also called the innovations process,
{ai}pi=1 and {bj}qj=1 are parameters that are estimated from historical data.
The order (p, q) of the process can be determined by following the standard
Box-Jenkins identification methodology10.

The assumption of conditional homoskedasticity often does not hold in
financial data. An empirically observed phenomenon is the volatility cluster-
ing — a large return in absolute value is usually followed by relatively large
returns in absolute value and their magnitude gradually subsides. Models
that can capture such behavior are the conditional heteroskedastic models.
The first proposed model belonging to this class is the autoregressive condi-
tional heteroskedastic model (ARCH) and was described in Engle (1982). It
was further generalized by Bollerslev’s GARCH model in Bollerslev (1986).
If we assume a GARCH(p,q) model for rt, then

rt = σtǫt

σ2t = a0 +

p∑

i=1

air
2
t−i +

q∑

j=1

bjσ
2
t−j

(1.25)

where {ǫt} is a white-noise process, {ai}pi=1 and {bj}qj=1 are parameters that
are estimated from historical data. If q = 0, then (1.25) reduces to an
ARCH(p) model. A common assumption for the white-noise process is that
{ǫt} are independent, zero-mean random variables distributed according to
the Gaussian law. Even though the tails of the Gaussian distribution de-
cay exponentially, the unconditional distribution of rt has heavier tails and
certain moments could be infinite. Nevertheless recent studies suggest that

9The process {ǫt} is white-noise process if the random variables {ǫt} are uncorrelated,
have zero mean and finite variance.

10See for example, Box and Jenkins (1976), Hamilton (1994) and Brokwell and Davis
(1991).
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GARCH-filtered residuals have heavier tails than the Gaussian distribution
and thus, a heavy-tailed assumption for the innovations could be more ad-
equate. The stable GARCH model was proposed in Panorska et al. (1995)
and Mittnik et al. (1996). Necessary and sufficient conditions for existence
and uniqueness of a stationary stable GARCH process were derived. In Mit-
tnik et al. (2002), the stable power-GARCH model, Sα,β,δGARCH(p,q), is
studied. If rt ∈ Sα,β,δGARCH(p,q), then

rt = σtǫt

σδt = a0 +

p∑

i=1

ai|rt−i|δ +
q∑

j=1

bjσ
δ
t−j

(1.26)

where {ǫt} are i.i.d. and ǫt ∈ Sα(1, β, 0) and the power parameter δ satisfies
0 < δ < α. The GARCH(p,q) model with Gaussian innovations is a special
case of the stable power-GARCH model when α = δ = 2.

Many other autoregressive models have been proposed in literature such
as Integrated GARCH, Exponential GARCH, etc. and also ARMA-GARCH
generalizations that combine processes of type (1.24) and (1.26).

1.5 Multivariate models

For the purposes of portfolio risk estimation, beside assuming a proper prob-
abilistic model for the distribution of the return of an asset, yet another thing
is important. It is the proper modeling of the dependence between assets
returns. A well-known fact is that in market crashes, the prices of many as-
sets fall down, i.e. many assets have negative returns at one moment of time
and thus the idea that assets returns might be independent breaks down.
Certainly it is not only during market crashes that the proper modeling of
dependence matters.

The most simple notion of dependence between two random variables is
the correlation between them. Unfortunately it is a measure of linear depen-
dence and is the right notion of dependence if the multivariate distribution
of assets return is Gaussian. It is certainly inappropriate if assets returns
are heavy-tailed, as empirical studies have shown, because of infinite second
moments.

Many ways exist to model dependence and many measures have been in-
troduced11. One way to deal with the problem is to presume a multivariate
distribution for the vector of assets returns. Knowing the multivariate c.d.f.,
it is possible in theory to compute all kinds of joint probabilities. There are
some popular multivariate models like the multivariate Gaussian or the mul-
tivariate Student t, etc. that belong to the class of the multivariate elliptical

11For more details, see Embrechts et al. (2002)
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distributions. This class is fairly flexible and contains representatives with
heavy-tails.

Another example is the class of the multivariate stable distributions. It
should be remarked that both classes are not mutually exclusive — the sub-
Gaussian laws are both elliptical and multivariate stable. Except for the
multivariate Gaussian distribution, all multivariate stable laws are heavy-
tailed. They are a suitable choice for a theoretical model also because all
linear combinations of the marginals, and thus the marginals themselves,
are one-dimensional α-stable laws. There is one peculiarity, all linear com-
binations have one and the same index of stability which is the same as the
index of stability of the multivariate law. In effect, using this class as a
probabilistic model means that we assume one and the same tail behavior
for the assets returns.

This restriction is not present in the class of the operator stable laws. As
a matter of fact, multivariate stable laws appear as a special case, i.e. opera-
tor stable laws generalize the family of the multivariate stable distributions.
Operator stable laws arise from generalization of the central limit theorem
and they have domains of attraction. All marginals have different indices of
stability that depend on the characteristic exponent of the multivariate law,
which is a matrix in this case.

There is yet another way to arrive at a multivariate model. It is to
specify separately the marginal distributions and the dependence structure.
This could be done through the use of copulas.

1.5.1 Elliptical distributions

The class of the elliptical distributions provides a rich source of multivariate
distributions that share many of the tractable properties of the multivariate
Gaussian distribution. We begin with a definition and characterization of the
sub-class of the spherical distributions. Then we proceed with the elliptical
distributions.

Definition 4. Let X be a n-dimensional random vector. X is said to
be spherically distributed, or simply spherical, if and only if X

d
= OX for

every n× n orthonormal matrix O and
d
= denotes equality in distribution.

The class of the spherical distributions is rotationally symmetric accord-
ing to the definition. This is because orthonormal transforms of vectors do
not change their norms but just their orientation. Let U be uniformly dis-
tributed on the unit sphere Sn, Sn := {x ∈ Rn : ||x|| = 1} where ||x|| denotes
the Euclidean norm. Then every random vector X which can be represented

as X
d
= RU where R is a non-negative random variable independent of U ,

is rotationally symmetric and thus spherical. The statement also appears
correct if considered in reverse direction, any spherical random vector is nec-
essarily representable by RU and R is called the generating random variate
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of X.

It is possible to characterize the spherical distributions in terms of their
characteristic function ϕX(t) = E exp(i〈t,X〉) where t ∈ Rn and 〈t,X〉 =∑n

k=1 tkXk denotes the dot product.

Theorem 2. A random vector X is spherically distributed if and only
if its characteristic function has the form ϕX(t) = φX(tT t).

The function φX(·) is called characteristic generator of X. This repre-
sentation implies a simple form of the characteristic function of any affine
transformation of a spherical distribution.

Proposition 1. Let X be a k-dimensional spherically distributed ran-
dom vector with characteristic generator φX(·). Further, let Λ ∈ Rn×k

be an arbitrary matrix and µ ∈ Rn. Then the characteristic function of
Y = µ+ ΛX has the form

ϕY (t) = exp(itTµ)φX(tTΣt), t ∈ Rn

where Σ = ΛΛT .

Proof. The statement is verified directly using the special representation of
the characteristic function of spherical random vectors.

Definition 5. If X is a n-dimensional random vector and, for some
µ ∈ Rn and some n × n nonnegative definite, symmetric matrix Σ, the
characteristic function ϕX−µ(t) of X−µ is a function of the quadratic form
tTΣt, ϕX−µ(t) = φ(tTΣt), we say that X has an elliptical distribution with
parameters µ, Σ and φ, and we write X ∈ En(µ,Σ, φ).

When n = 1, the class of elliptical distributions coincides with the class
of one-dimensional symmetric distributions. If X ∈ En(µ, I, φ) where I
is the identity matrix, then X is spherically distributed. Also, because of
Proposition 1, every affinely transformed spherical random vector is ellip-
tically distributed. The following stochastic representation shows that the
converse is true if the transformation matrix has full rank.

Theorem 3. X ∈ En(µ,Σ, φ) with rank(Σ) = k if and only if there
exist a random variable R ≥ 0 independent of U , a k-dimensional random
vector uniformly distributed on the unit sphere Sk, and a n × k matrix Λ
with ΛΛT = Σ, such that

X
d
= µ+RΛU

where
d
= denotes equality in distribution.

Proof. For the proof, see Fang et al. (1994).
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If X ∈ En(µ,Σ, φ), where Σ is a diagonal matrix, then X has uncorre-
lated components if the variance of the components of X is finite. If X has
independent components, then X ∈ N(µ,Σ). It should be remarked that
the multivariate normal distribution is the only one among the elliptical dis-
tributions where uncorrelated components imply independent components.
A random vector X ∈ En(µ,Σ, φ) does not necessarily have density. If X
has a density function f(x), then it has a special form.

Theorem 4. Let X ∈ En(µ,Σ, φ) where µ ∈ Rn and Σ ∈ Rn×n is

positive definite. Then X can be represented stochastically by X
d
= µ+RΛU

with ΛΛT = Σ according to Theorem 3. Further let the c.d.f. of R be
absolutely continuous. Then the p.d.f. of X is given by

fX(x) =
√
det(Σ−1) · gR

(
(x− µ)TΣ−1(x− µ)

)
, x 6= µ, (1.27)

where

gR(t) =
Γ
(
n
2

)

2πn/2
t−

n−1

2 · fR
(√

t
)
, t > 0 (1.28)

and fR(t) is the p.d.f. of R.

Proof. A proof and a more general result for semi-definite Σ can be found
in Frahm (2004).

The function gR(·) is called density generator . Given the density of the
generating variate R, one can compute the density generator of the corre-
sponding elliptical distribution. Note that the contour lines of the density
function form ellipsoids in Rn. For this reason the elliptical distributions
are often called elliptically contoured distributions.

Given the distribution ofX, the representation En(µ,Σ, φ) is non-unique.
It uniquely determines µ but Σ and φ(·) are determined up to a positive con-
stant. More precisely, if X ∈ En(µ1,Σ1, φ1) and X ∈ En(µ2,Σ2, φ2), then

µ1 = µ2 Σ1 = cΣ2 φ1(·) = φ2(·/c)
for some constant c > 0. It comes out that it is possible to choose the
characteristic generator φ such that cov(X) = Σ if covariances are defined,
see Embrechts et al. (2003) for an example.

Affine transformations of elliptical random vectors have also elliptical
distribution

Theorem 5. Let X ∈ En(µ,Σ, φ) and B be a q × n matrix and b ∈ Rq.
Then

b+BX ∈ En(b+Bµ,BTΣB, φ)
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Proof. For a proof, see Embrechts et al. (2003).

If we partition X, µ and Σ into

X =

(
X1

X2

)
µ =

(
µ1
µ2

)
Σ =

(
Σ11 Σ12

Σ21 Σ22

)

where X1 and µ1 are r× 1 vectors and Σ11 is a r× r matrix. As a corollary
from the above theorem if follows that

X1 ∈ Er(µ1,Σ11, φ) and X2 ∈ En−r(µ2,Σ22, φ)

Therefore the marginal distributions of the elliptical distributions are ellip-
tical and with the same characteristic generator. The next result states that
the conditional distribution of X1 given X2 is elliptical but in general not
with the same characteristic generator.

Theorem 6. Let X ∈ En(µ,Σ, φ) with Σ strictly positive definite. Then
the conditional distribution of X1 given that X2 = x

X1|X2 = x ∈ Er(µ̃, Σ̃, φ̃)

where µ̃ = µ1+Σ12Σ
−1
22 (x−µ2) and Σ̃ = Σ11−Σ12Σ

−1
22 Σ21. Moreover φ̃ = φ

if and only if X ∈ N(µ,Σ).

Proof. For the proof, see Fang et al. (1994).

The next result states that linear combinations of independent, ellipti-
cally distributed random vectors with the same dispersion matrix Σ up to a
positive constant remain elliptical.

Theorem 7. Let X ∈ En(µ,Σ, φ) and X̃ ∈ En(µ̃, cΣ, φ̃) with c > 0 be
independent. Then for a, b ∈ R,

aX + bX̃ ∈ En(aµ+ bµ̃,Σ, φ∗), where φ∗(u) = φ(a2u)φ̃(b2cu)

Proof. The proof uses the partficular form of the characteristic function from
the definition, see Embrechts et al. (2003).

A practical problem with the elliptical distributions in multivariate risk
modeling is that all marginals are of the same type, which may not be very
realistic. In the remaining part of the section we give as examples some of
the most widely used representatives of the class.

Example 1. (Multivariate Gaussian distribution) Let µ ∈ Rn and
Λ ∈ Rn×n such that Σ := ΛΛT ∈ Rn×n is positive definite. The random
vector X ∈ N(µ,Σ) is elliptically distributed since it is representable as

X
d
= µ+

√
χ2
nΛU
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where U is a n-dimensional random vector with uniform distribution on the
unit sphere Sn and χ2

n is a χ2-distributed random variable with n degrees
of freedom, independent of U , see Frahm (2004) and the references therein.

The random variable
√
χ2
k is the generating variate of X. This is easily

seen by considering the standard normal distribution which is the underlying
spherical distribution with characteristic generator φX(s) = exp(−s/2). The
density generator can be readily obtained because R =

√
χ2
n,

gR(t) =
1

(2π)n/2
· exp(−t/2)

and in line with Theorem 4, we obtain the multivariate Gaussian p.d.f.

fX(x) =

√
detΣ−1

(2π)n/2
exp

(
−(x− µ)TΣ−1(x− µ)

2

)
, x ∈ Rn (1.29)

Example 2. (Multivariate t-distribution) Consider the random vec-
tor

Y
d
= µ+

X√
χ2
ν

ν

, ν ∈ N

where µ ∈ Rn and X ∈ N(0,Σ). Then Y is said to be multivariate t-
distributed with ν degrees of freedom, location vector µ and dispersion matrix
Σ, Y ∈ tn(µ,Σ, ν). The random vector allows for the stochastic representa-
tion

Y
d
= µ+

1√
χ2
ν

ν

·
√
χ2
nΛU

where χ2
ν and χ2

n are independent and have χ2 distribution, U is uniformly
distributed on the unit sphere Sn provided that Λ has full rank, and is in-
dependent of χ2

ν and χ2
n, Σ = ΛΛT . Hence for the generating variate we

have

R
d
=

√
χ2
n

χ2
ν

ν

d
=
√
nFn,ν

where Fn,ν denotes a F-distributed random variable. The density generator
is

gR(t) =
Γ
(
n+ν
2

)

Γ
(
ν
2

) · 1

(νπ)n/2
·
(
1 +

t

ν

)−n+ν
2

and in line with Theorem 4, we obtain the multivariate t-distribution p.d.f.
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fX(x) =
Γ
(
n+ν
2

)

Γ
(
ν
2

) ·
√
detΣ−1

(νπ)n/2
·
(
1 +

(x− µ)TΣ−1(x− µ)

ν

)−n+ν
2

, x ∈ Rn

(1.30)

1.5.2 Multivariate stable distributions

Multivariate stable laws can be introduced by extending Definition 1 of one-
dimensional stable distributions. The multivariate Gaussian distribution
is a particular representative. Gaussian vectors possess the property that
any linear combination of its components is a one-dimensional Gaussian
distribution. This property is shared by multivariate stable laws — linear
combinations of vector components have univariate stable distribution.

As in the one-dimensional case, stable random vectors can be character-
ized in terms of their characteristic function. Its definition involves a finite
measure on the unit sphere in Rn called spectral measure and a vector µ that
can be interpreted as a shift parameter. The spectral measure describes the
skewness and the scale of the distribution. If certain conditions are imposed
on it, the multivariate distribution can become symmetric, that is X and
−X have the same distribution.

The sub-Gaussian distributions are a sub-class of symmetric multivari-
ate stable laws and are often considered in the applications because of their
simple structure. They can be viewed as Gaussian random vectors with
randomized covariance matrix. They also belong to the class of the ellip-
tical distributions and estimators of their dispersion matrix can be readily
constructed.

Definition and basic properties

The stability property in Rn is introduced as in R1.

Definition 6. A random vector X is said to be a stable random vector
in Rn if for any positive numbers A and B there is a positive number C and
a vector D ∈ Rn such that

AX(1) +BX(2) d
= CX +D

where X(1) and X(2) are independent copies of X.

The vector X is called strictly stable if Definition 6 holds with D = 0 for
any A > 0 and B > 0. The vector is called symmetric stable if it is stable

and satisfies the additional relation X
d
= −X. Concerning the marginal

distributions and linear combinations of vector components, we have the
next
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Theorem 8. Let X be a stable (respectively, strictly stable, symmet-
ric stable) vector in Rn. Then there is a constant α ∈ (0, 2] such that in
Definition 6, C = (Aα + Bα)1/α. Moreover, any linear combination of the
components of X of the type Y =

∑n
k=1 bkXk = bTX is an α-stable (respec-

tively, strictly α-stable, symmetric α-stable) random variable.

Proof. A proof is given in Samorodnitsky and Taqqu (1994).

It is straightforward to obtain the next

Corollary 1. A random vector is stable if and only if for any k ≥ 2,
there is an α ∈ (0, 2] and a vector Dk such that

X(1) +X(2) + . . .+X(k) d
= k1/αX +Dk

where X(1), X(2), . . . , X(k) are independent copies of X.

Multivariate stable vectors have domains of attraction — they are weak
limits of normalized sums of i.i.d. random vectors. The result contained in
Corollary 1 is a special case of this property. The random vector Y is said
to be in the normal domain of attraction of the α-stable vector X if for any
sequence of i.i.d. copies Y (1), Y (2), . . . , Y (k)..., there is a sequence of vectors
Ak such that

k−1/α(Y (1) + Y (2) + . . .+ Y (k) −Ak)
d→ X (1.31)

where the notation
d→ denotes convergence in distribution. As a matter of

fact, Corollary 1 states that α-stable random vectors belong to their own
normal domains of attraction.

The parameter α is called the index of stability or characteristic ex-
ponent. According to Theorem 8, all linear combinations bTX of a stable
random vector are α-stable random variables. The converse is generally not
true.

Theorem 9. Let X be a random vector in Rn.

1. If all linear combinations bTX have strictly stable distributions, then
X is a strictly stable random vector.

2. If all linear combinations are symmetric stable, then X is a symmetric
stable random vector.

3. If all linear combinations are stable with index of stability α ≥ 1, then
X is a stable random vector.

Proof. A proof is given in Samorodnitsky and Taqqu (1994).

As we have remarked, stable random vectors can be described in terms
of their characteristic function ϕX(t) = exp(i〈t,X〉).
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Theorem 10. Let 0 < α < 2. Then X is an α-stable random vector in
Rn if and only if there exists a finite measure Γ on the unit sphere Sn and
a vector µ ∈ Rn such that

a) if α 6= 1,

ϕX(t) = exp

{
−
∫

Sn
|〈t, s〉|α

(
1− i · sign(〈t, s〉) tan πα

2

)
Γ(ds) + i〈t, s〉

}

b) if α = 1,

ϕX(t) = exp

{
−
∫

Sn
|〈t, s〉|

(
1− i

2

π
sign(〈t, s〉) log |〈t, s〉|

)
Γ(ds) + i〈t, s〉

}

The pair (Γ, µ) is unique and is called spectral decomposition.

Example 3. (One-dimesional stable distributions) Suppose that
n = 1. Then S1 consists of the two points {−1} and {1} and the spectral
measure is concentrated on them. Writing the characteristic function for
α 6= 1 as given in Theorem 10 and comparing it to the one in Definition 3,
we obtain the following relations between the univariate stable parameters
and the spectral measure:

σ = (Γ({1}) + Γ({−1}))1/α, β =
Γ({1})− Γ({−1})
Γ({1}) + Γ({−1})

The skewness parameter β is zero only if the measure is symmetric.

Example 4. (Linear combinations) Let X be a stable random vector
with characteristic function given in Theorem 10. We know that any lin-
ear combination Yb = 〈b,X〉 has an α-stable distribution Sα(σb, βb, µb). To
determine the parameters σb, βb and µb, let γ be any real number and set
t = γb in the characteristic function given in Theorem 10. The resulting
function of γ is the characteristic function of the random variable Yb. We
receive

σb =

(∫

Sn
|〈b, s〉|αΓ(ds)

)1/α

, βb =
1

σαb

∫

Sn
|〈b, s〉|αsign(〈b, s〉)Γ(ds)

and

µb =





〈b, µ〉 if α 6= 1

〈b, µ〉 − 2

π

∫

Sn
〈b, s〉 log |〈b, s〉|Γ(ds) if α = 1

By choosing suitable vectors b, one can obtain the marginal distributions.
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A necessary and sufficient condition for a random variable to be symmet-
ric is its characteristic function to be real-valued. The next result describes
the characteristic function of symmetric α-stable (SαS) vectors.

Theorem 11. X is a symmetric α-stable vector in Rn with 0 < α < 2 if
and only if there exists a unique symmetric finite measure on the unit sphere
Sn such that

ϕX(t) = exp

{
−
∫

Sn
|〈t, s〉|αΓ(ds)

}
(1.32)

Γ is the spectral measure of the symmetric α-stable random vector X.

Proof. For a proof, see Samorodnitsky and Taqqu (1994).

Equation (1.32) holds also in the Gaussian case, but then the spectral
measure Γ is not unique and thus the spectral decomposition is not a useful
concept12.

The covariance function is an extremely powerful tool in the study of
Gaussian random elements but it is not defined when α < 2. The covariation
is designed to replace the covariance when 1 < α < 2 but unfortunately it
lacks some of the nice properties of the covariance. Nevertheless it is a useful
concept. We start with a definition of signed power. Let a and p be real
numbers. The signed power a<p> is introduced by a<p> = |a|psign(a).

Definition 7. Let X1 and X2 be jointly SαS with α > 1 and let Γ be
the spectral measure of the random vector (X1, X2). The covariation of X1

on13 X2 is the real number

[X1, X2]α =

∫

S2
s1s

<α−1>
2 Γ(ds)

If α = 2, it is possible to show that for a bi-variate random vector,

∫

S2
s2kΓ(ds) =

1

2
DXk, k = 1, 2, and [X1, X2]2 =

1

2
cov(X1, X2)

and therefore covariation reduces to covariance.

In the more general case, when we consider n-dimensional random vec-
tors, the following result holds. It shows how to compute the covariation of
two components of a random vector in terms of the spectral measure of the
vector.

12See Samorodnitsky and Taqqu (1994) for several examples.
13It appears that covariation is not symmetric in its arguments. Nevertheless, [X1, X2]α

is often called the covariation of X1 and X2, see Samorodnitsky and Taqqu (1994) for
details.
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Proposition 2. Let X = (X1, X2, . . . , Xn) be n-dimensional SαS ran-
dom vector with α > 1 and spectral measure ΓX . Then

[Xi, Xj ]α =

∫

Sn
sis

<α−1>
j ΓX(ds)

and

[Xi, Xi]α =

∫

Sn
|si|<α>ΓX(ds) = σαXi

where σXi
denotes the scale parameter of the vector element Xi.

Proof. For a proof, see Samorodnitsky and Taqqu (1994).

The covariation is related to the joint moment EXY <p−1>.

Proposition 3. Let (X,Y ) be jointly SαS with α > 1. Then for all
1 < p < α,

EXY <p−1>

E|Y |p =
[X,Y ]α
||Y ||αα

where ||Y ||α denotes the scale parameter of Y .

In effect, using the expression for the p-th absolute moment in Property 7,
we can obtain an estimator for the covariation.

Example 5. (Sub-Gaussian distributions) Let X ∈ N(0, Q) and Y
be a positive random variable such that

Y ∈ Sα/2

((
cos

πα

4

)2/α
, 1, 0

)

Then the random vector Z =
√
Y X has a SαS distribution since any linear

combination of its components is a symmetric stable random variable, see
Theorem 9 and Property 10. The random variable Z is said to be a sub-
Gaussian symmetric α-stable vector. The characteristic function of Z has a
simple form

ϕZ(t) = exp

(
−
(
1

2
tTQt

)α/2
)

(1.33)

see Samorodnitsky and Taqqu (1994) for a proof. Now it is easy to see that
the sub-Gaussian stable random vectors have elliptical distributions. Let
µ ∈ Rn. According to Definition 5, it follows that the random vector µ +√
Y X ∈ En(µ,Q, φ), with characteristic generator φ(s) = exp(−(s/2)α/2).

The covariation between the components of Z can be explicitly computed.
Let us denote the elements of Q by qij, i, j = 1, 2, . . . , n. Thus qij = EXiXj
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is the covariance between the elements of the Gaussian vector. The covari-
ation between Zi and Zj equals14

[Zi, Zj ]α = 2−α/2qijq
(α−2)/2
jj =

qij
2

·
(qjj

2

)(α−2)/2
(1.34)

and according to Proposition 2, the covariation between Zj and Zj equals

[Zj , Zj ]α =
(qjj

2

)α/2
= σαZj

(1.35)

Taking advantage of Proposition 3, Property 7 and Lemma ??, it is possible
to construct moment-type estimators of the dispersion matrix. Transforming
equation (1.35), we obtain

qjj
2

=

(
cos(p1π/2)Γ(1− p1)

Γ(1− p1/α)
E|Zj |p1

)2/p1

where j = 1, 2, . . . , n and from equation (1.34),

qij
2

=
(qjj

2

) 2−p
2 cos(pπ/2)Γ(1− p)

Γ(1− p/α)
EZiZ

<p−1>
j

where i, j = 1, 2, . . . , n, i 6= j, 0 < p1 < α and 1 < p < α. Certainly
the diagonal elements are estimated separately and thus p1 should not be
necessarily equal to p. Suppose that we have a sample of i.i.d. observa-
tions Z(1), Z(2), . . . , Z(N) of the random vector Z. Then the moment-type
estimators corresponding to the equations above are

q̂jj
2

=

(
cos(pπ/2)Γ(1− p)

Γ(1− p/α)

1

N

N∑

k=1

∣∣∣Z(k)
j

∣∣∣
p
)2/p

where j = 1, 2, . . . , n and

q̂ij
2

=

(
q̂jj
2

) 2−p
2 cos(pπ/2)Γ(1− p)

Γ(1− p/α)

1

N

N∑

k=1

Z
(k)
i

(
Z

(k)
j

)<p−1>

where i, j = 1, 2, . . . , n, i 6= j.

The multivariate Gaussian distribution appears as a special case of the
sub-Gaussian family when α→ 2. This is easily seen from the characteristic
function in equation 1.33. Therefore when p→ α→ 2, the dispersion matrix
Q transforms into the variance-covariance matrix.

14See Samorodnitsky and Taqqu (1994) for a proof.
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1.5.3 Operator stable distributions

Theorem 8 implies that if we assume the multivariate stable distribution as
a theoretical model for assets returns, then all marginals, i.e. asset returns,
have one and the same index of stability, hence one and the same tail be-
havior. Moreover, any portfolio has the same index of stability as any of
its components. This may not be very realistic as empirical studies sug-
gest that the tail behavior varies with asset classes, see Rachev and Mittnik
(2000). Operator stable distributions generalize the multivariate α-stable
distributions. They arise from the generalized central limit theorem with
matrix scaling. Matrix scaling is natural when we are dealing with random
vectors and the limit distribution allows for components with different tail
behavior.

Definition and basic properties

In this section we give the formal definition and some basic properties.

Definition 8. A random vector X is said to be an operator stable ran-
dom vector in Rn if there exists a matrix E ∈ Rn×n and a vector ak such
that

k−E(X(1) +X(2) + . . .+X(k) − ak)
d
= X (1.36)

where X(1), X(2), . . . , X(k) are independent copies of X.

In Definition 8, k−E means an integer number raised to a matrix power.
This is defined through the power series expansion of the exponent

tA = exp(log(t)A) = I +
∞∑

m=1

(log(t)A)m

m!
(1.37)

where t is a positive number, A is an arbitrary square matrix and I is the
identity matrix. Certainly equation (1.37) makes sense for linear operators
defined in abstract spaces but we shall confine our considerations in Rn

where the linear space of linear operators is represented by the linear space
of square matrices. The matrix E is called an exponent of the operator
stable random vector X.

It is straightforward to find the inverse and the transpose of the scaling
matrix from (1.37). Actually

tA · t−A = I

(tA)T = tA
T (1.38)

and therefore (k−E)−1 = kE and (k−E)T = k−ET
. Using the definition

and (1.38), we can arrive at an expression for the characteristic function of
operator stable laws. Rewriting equation (1.36), we obtain
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X(1) +X(2) + . . .+X(k) d
= kEX + ak

The characteristic function of the right hand-side equals

ϕkEX+ak
(t) = E exp(i〈t, kEX + ak〉) = exp(i〈t, ak〉)E exp(i〈t, kEX〉)

= exp(i〈t, ak〉)E exp
(
i〈(kE)T t,X〉

)

= exp(i〈t, ak〉)ϕX

(
(kE)T t

)

= exp(i〈t, ak〉)ϕX

(
kE

T

t
)

The characteristic function of the left hand-side is the k -th power of ϕX(t)
because the vectors in the sum are i.i.d. and the equality in distribution
implies15

(ϕX(t))k = ei〈t,ak〉ϕX

(
kE

T

t
)

Operator stable vectors have domains of attraction.

Definition 9. We say that the random vector Y belongs to the gener-
alized domain of attraction of some operator stable random vector X with
exponent E if there is a sequence of vectors ak

k−E(Y (1) + Y (2) + . . .+ Y (k) − ak)
d→ X

where Y (1), Y (2), . . . , Y (k) are independent copies of Y .

Thus the operator stable laws belong to their own domain of attraction.

The tail behavior of the operator stable random vector is determined by
the eigenvalues of its exponent. It is possible to represent16 every n × n
exponent by a unique spectral decomposition based on the real part of the
eigenvalues which allows us to write E = PBP−1, where P is a change of
coordinates matrix and B is block-diagonal with

B =




B1 0 . . . 0
0 B2 . . . 0
...

...
. . .

...
0 0 . . . Bp




where Bi is a ni × ni matrix. Every eigenvalue of Bi has real part equal
to ai, 1/2 ≤ a1 < a2 < . . . < ap and n1 + n2 + . . . + np = n. Since
B is block-diagonal and consists of p blocks, it follows that we arrive at

15See (Rachev and Mittnik, 2000, 339) for the general case with linear operators, Meer-
schaert and Scheffler (2003), Meerschaert and Scheffler (2001) and the references therein
for more information on operator stable distributions.

16See Meerschaert and Scheffler (2003) and Meerschaert and Scheffler (2001).
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a spectral decomposition of the entire space Rn such that any x ∈ Rn is
representable as x = x1+ . . .+xp where xi belong to the sub-space spanned
by the eigenvectors corresponding to the i-th eigenvalue. Moreover, these
sub-spaces are E-invariant, that is if y belongs to the sub-space spanned by
the eigenvectors corresponding to the i-th eigenvalue, then the vector Ey
belongs to the same sub-space.

Given a non-zero vector b ∈ Rn, we can write its spectral decomposition
as b = b1 + . . .+ bp where bi is in the corresponding E-invariant sub-space.
Let us define

α(b) = min
i

(
1

ai
: bi 6= 0

)

that is the number α(b) is the smallest 1/ai from those eigenvalues that
correspond to non-zero components in the spectral decomposition of the
vector b. In Meerschaert and Scheffler (2001) it is shown that the next
property holds

Proposition 4. Let X be an operator stable vector in Rn with exponent
E and let b ∈ Rn. Then for any small δ > 0 we have

λ−α(b)−δ < P (|〈b,X〉| > λ) < λ−α(b)+δ (1.39)

for all λ > 0 sufficiently large.

In other words, the tail behavior of the linear combination 〈b,X〉 is dom-
inated by the component with the heaviest tail. This also means that
E|〈b,X〉|s exists for 0 < s < α(b) and diverges for s > α(b).

If we write the spectral decomposition of the random vector X = X1 +
. . . + Xp, projecting it on the sub-spaces spanned by the corresponding
eigenvectors, we see that eachXi from the spectral decomposition is operator
stable with some exponent Ei that has the same real part ai. We say that
Xi is spectrally simple with index αi = 1/ai and it has the tail behavior
(1.39) with α(b) = αi.

Example 6. (Multivariate α-stable distributions) If X is operator
stable with the simple exponent E = aI where a ≥ 1/2 is a real number and
I is the identity matrix, then Definition 8 shows that X has a multivariate
α-stable distribution. In this case the change of coordinates matrix P in the
spectral decomposition is the identity matrix and B = E. There is only one
spectral component and the tail behavior is the same in every radial direction
by Proposition 4.

Example 7. (Operator stable distributions with a diagonal ex-
ponent matrix) Let X be a n-dimensional operator stable vector with ex-
ponent
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E =




a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . an




where 1/2 ≤ a1 < a2 < . . . < an. Then the spectral decomposition is such
that p = n, P = I and B = E, that is the sub-spaces spanned by the
eigenvectors are the coordinate axes. Projecting the vector X onto the i-th
coordinate axis, shows that Xi is αi-stable with αi = 1/ai.

As a matter of fact, when the exponent is a diagonal matrix, it is possible
to calculate the rescaling matrix using the definition (1.37) and noticing
that the m-th power of a diagonal matrix translates into raising the diagonal
elements to the m-th power,

k−E =




k−1/α1 0 . . . 0

0 k−1/α2 . . . 0
...

...
. . .

...

0 0 . . . k−1/αn




For any non-zero vector b, the tail of the linear combination 〈b,X〉 decays
like the power function λ−α(b), where α(b) = min(αi : bi 6= 0). Thus, if we
have a portfolio of assets with multivariate distribution as X in this example,
the tail behavior of the portfolio returns will be governed by the asset with
the heaviest tail in which we have invested a non-zero amount.

For more examples, see Meerschaert and Scheffler (2003).

1.5.4 Multivariate skewed Student’s t distribution

Another multivariate model with applications in finance is a skewed version
of Student’s t distribution. As the name suggests, it allows for skewed
and heavy-tailed representatives. In the literature, there are many ways to
introduce a skewed version of Student’s t distribution. We focus on one
particular model which has a suitable stochastic representation and belongs
to the class of subordinated models.

Definition

The form of the multivariate skewed Student’s t distribution we are using is
defined through the following stochastic representation:17

X := µ+ γW + Z
√
W

17For more information, see Section 12.7 in Rachev and Mittnik (2000).
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where W ∈ IG(ν/2, ν/2), and Z ∈ N(0,Σ), Z is independent of W , γ =
(γ1, . . . , γn) is a n-dimensional vector accounting for the skewness, µ =
(µ1, . . . , µn) is n-dimensional location parameter vector and ν stands for
the degrees of freedom. We denote this distribution by X ∈ tn(ν, µ,Σ, γ).
The notation IG(ν/2, ν/2) stands for the inverse gamma distribution with
parameters ν/2. Thus, W is a one-dimensional random variable and Z is
a random vector having a zero-mean multivariate normal distribution with
covariance matrix

Σ =




σ11 σ12 . . . σ1n
σ21 σ22 . . . σ2n
...

...
. . .

...
σn1 σn2 . . . σnn


 .

The multivariate skewed Student’s t distribution allows for closed-form
expression of its density,

fX(x) =
aK(ν+n)/2

(√
(ν + (x− µ)′Σ−1(x− µ))γ′Σ−1γ

)
exp((x− µ)′Σ−1γ)

(ν + (x− µ)′Σ−1(x− µ))γ′Σ−1γ)−
ν+n
4

(
1 + (x−µ)′Σ−1(x−µ)

ν

) ν+n
2

where x ∈ Rn, and K denotes the modified Bessel function of the third kind
and

a =
2

2−ν−n
2

Γ(ν/2)(πν)n/2
√
|Σ|

.

1.5.5 Generalized subordinated models

In section 1.5.3, we discussed operator stable distributions. We mentioned
they are a class of multivariate distributions allowing for different tail be-
havior of the marginals. In practice however, they are too complicated to
be used. Thus, we employ other multivariate models which, in a way sim-
ilar to operator stable distributions, allow for different tail behavior of the
marginals. We call these models generalized subordinated models because
the construct is based on the idea of subordination. Their specific feature
is that we use different subordinators for the different marginals. Thus, we
have the flexibility of choosing the subordinators to be a vector of depen-
dent or independent random variables. Since the subordinators control the
extreme events, the corresponding models can be called dependent or inde-
pendent tail models. From a practical viewpoint, the dependent tail models
make more sense because in market crashes extreme negative returns occur
jointly. Thus, we will describe the dependent tail models only.
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The generalized sub-Gaussian stable model

The generalized sub-Gaussian stable model, as the name suggests, is based
on the idea of the sub-Gaussian stable distribution we considered in Example
5. The multivariate distribution is defined through the following stochastic
representation

Z =




√
Y1X1√
Y2X2

. . .√
YnXn


 (1.40)

where X = (X1, . . . , Xn) ∈ N(0,Σ) and Y = (Y1, . . . , Yn) is a vector of
subordinators such that

Yi ∈ Sαi/2

((
cos

παi

4

)2/αi

, 1, 0

)
, i = 1, n

and all components of Y are functionally dependent. That is, all compo-
nents of Y can be represented as F−1

i (U), i = 1, n, where U is one and
the same random variable for all components with a uniform distribution.
The random vector Z is said to be a generalized sub-Gaussian symmetric
α-stable vector.

Apparently, the tail behavior of each component is governed by the
tail index αi which means that the model allows for different tail behav-
ior. Furthermore, the sub-Gaussian distribution appears as a special case if
α1 = . . . = αn.

The generalized skewed stable model

The generalized skewed stable model can be viewed as an extension to the
generalized sub-Gaussian stable model in which an additional term is added
to account for skewness. The stochastic representation is as follows,

W =




2−1/α1Z1 + V1
2−1/α2Z2 + V2
. . .

2−1/αnZn + Vn




where the vector Z = (Z1, . . . , Zn) has the generalized sub-Gaussian stable
distribution with the stochastic representation given in (1.40) and the ran-
dom variables V1, . . . , Vn are independent and Vi distributed according to a
stable law with parameters:

α = αi, β = 2βi, σ = 2−1/α2σi, µ = µi

In effect, the random variable Wi, which is the i-th component of the vector
W , has a skewed stable distribution Wi ∈ Sαi

(σi, βi, µi).
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The generalized skewed Student’s t model

The generalized skewed Student’s t model is constructed in a similar way to
the generalized sub-Gaussian stable model. The multivariate distribution is
introduced through the following stochastic representation,

Z =




µ1 + γ1W1 +
√
W1Z1

µ2 + γ2W2 +
√
W2Z2

. . .
µn + γnWn +

√
YnZn


 (1.41)

where Z ∈ N(0,Σ),Wi ∈ IG(ν/2, ν/2), i = 1, . . . , n andWi are independent
of Z butWi are functionally dependent among themselves, i.e. Wi = F−1

i (U)
where U is one and the same uniformly distributed random variable. The
random vector Z is said to be a generalized skewed Student’s t vector.

1.5.6 Constructing multivariate distributions with copulas

It is possible to construct a multivariate model by merging together one-
dimensional distributional assumptions for the marginals and one special
multivariate function responsible for the modeling of the dependence be-
tween them. This special function is called a copula. The word copula
is coined to emphasize that this is a function which “joins togethe” one-
dimensional distribution functions to form multivariate distribution func-
tions. Technically a function is a copula if it is a cumulative distribution
function on the unit cube [0, 1]n with uniformly distributed marginals. In
this section, we briefly describe this technique without delving into the de-
tails of copula properties or exhaust all available methods for copula con-
struction. Throughout this section, for a function f(·), we denote by Domf
and Ranf the domain and the range of f(·), i.e. f : Domf → Ranf .

Definition and basic properties

We give the definition18 and some basic properties.

Definition 10. An n-dimensional copula is a function C(·) with domain
[0, 1]n such that C(·) is a cumulative distribution function and the marginals
Ck(·), k = 1, 2 . . . , n satisfy Ck(x) = x, x ∈ [0, 1].

The most important result regarding copulas is the following theorem
known as Sklar’s theorem.

Theorem 12. Let H(·) be an n-dimensional c.d.f. with marginals F1(·), F2(·), . . . ,
Fn(·). Then there exists a copula C(·) such that for all x ∈ Rn,

18For a more detailed introduction into the properties of the copula functions and their
application, see Embrechts et al. (2003) and Nelsen (1999).
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H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

If F1(·), F2(·), . . . , Fn(·) are all continuous, then C(·) is unique; otherwise the
copula is uniquely determined on RanF1×. . .×RanFn. Conversely, if C(·) is
a copula and F1(·), F2(·), . . . , Fn(·) are distribution functions, then the func-
tion H(·) is an n-dimensional c.d.f. with marginals F1(·), F2(·), . . . , Fn(·).

Proof. For a proof, see Sklar (1996).

From Sklar’s theorem, we see that for continuous multivariate c.d.f.,
the univariate marginals and the multivariate dependence structure can be
separated and the dependence structure can be represented by a copula.

Next we define the generalized inverse of a c.d.f.

Definition 11. Let F (·) be a univariate distribution function. We de-
fine the generalized inverse of F (·) as

F−1(t) = inf{x ∈ R|F (x) ≥ t}
for all t ∈ [0, 1] using the convention that inf{∅} = −∞.

Corollary 2. Let H(·) be an n-dimensional c.d.f. with continuous marginals
F1(·), F2(·), . . . , Fn(·) and a copula C(·). Then for any u = (u1, . . . , un) ∈
[0, 1]n,

C(u1, . . . , un) = H(F−1
1 (u1), . . . , F

−1
n (un))

The corollary can be used to calculate the copula of a given multivariate
c.d.f. In the following examples we illustrate that.

Example 8. (The Gaussian copula) Let Φ(·) denote the standard
one-dimensional normal distribution function and ΦΣ(·) denote the standard
multivariate normal distribution function with correlation matrix Σ. Then

C(u1, . . . , un) = ΦΣ

(
Φ−1(u1), . . . ,Φ

−1(un)
)

=

∫ Φ−1(u1)

−∞
. . .

∫ Φ−1(un)

−∞
f(x1, . . . , xn)dx1 . . . dxn

(1.42)

where f(x1, . . . , xn) is the multivariate Gaussian p.d.f. given in (1.29), rep-
resents the Gaussian copula because we know that all marginals of the stan-
dard multivariate normal distribution are one-dimensional standard normal
distributions. Now it is possible to construct a multivariate model G(·) that
has a Gaussian copula and arbitrary continuous marginals by considering

G(x1, . . . , xn) = ΦΣ

(
Φ−1(F1(x1)), . . . ,Φ

−1(Fn(xn))
)

where F1(·), F2(·), . . . , Fn(·) are the desired continuous c.d.f. of the marginals.
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Example 9. (The t-distribution copula) Let tν(·) denote the one-
dimensional t-distribution c.d.f. with ν degrees of freedom and tν,Σ(·) denote
the multivariate t-distribution c.d.f. with ν degrees of freedom and dispersion
matrix Σ. The copula of the t-distribution19 is given by

C(u1, . . . , un) = tν,Σ
(
t−1
ν (u1), . . . , t

−1
ν (un)

)

=

∫ t−1
ν (u1)

−∞
. . .

∫ t−1
ν (un)

−∞
f(x1, . . . , xn)dx1 . . . dxn

(1.43)

where f(x1, . . . , xn) is the multivariate t-distribution p.d.f. given in equation
(1.30). Again, as in the previous example, one can construct a multivariate
model with the t-distribution copula and arbitrary continuous marginals.

Example 10. (The skewed t-distribution copula) The skewed Stu-
dent’s t copula is defined as the copula of the multivariate distribution of X.
Therefore, the copula function is

C(u1, . . . , un) = FX(F−1
1 (u1), . . . , F

−1
n (un))

where FX is the multivariate distribution function of X and F−1
k (uk), k =

1, n is the inverse c.d.f of the k-th marginal of X. That is, FX(x) has the
density fX(x) defined above and the density function fk(x) of each marginal
is

fk(x) =

aK(ν+1)/2

(√(
ν + (x−µk)2

σkk

)
γ2
k

σkk

)
exp

(
(x− µk)

γk
σkk

)

((
ν + (x−µk)2

σkk

)
γ2
k

σkk

)− ν+1

4
(
1 + (x−µk)2

νσkk

) ν+1

2

, (1.44)

where x ∈ R, σkk is the k-th diagonal element in the matrix Σ.

A copula can also be specified explicitly, without a reference to some
known multivariate distribution.

Example 11. (The bivariate Gumbel copula) Consider the bivariate
family of functions

Cθ(u, v) = exp

(
−
[
(− log u)θ + (− log v)θ

]1/θ)
(1.45)

where (u, v) ∈ [0, 1]2 and θ ≥ 1. It is simple to verify that Cθ(u, v) is a
bivariate c.d.f. in the unit cube. Equation (1.45) is known as the bivari-
ate Gumbel family. It is a class of copulas, which is a sub-class of the
Archimedean copulas, see Embrechts et al. (2003) and Nelsen (1999).

19The copula of the t-distribution is usually called just t-copula.
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Let X1, X2, . . . , Xn be random variables with csontinuous c.d.f. F1(·),
F2(·), . . . , Fn(·) and joint distribution function H(·). Then there is a unique
copula describing the dependence of the vector (X1, X2, . . . , Xn)

T ,

H(x1, . . . , xn) = P (X1 < x1, . . . , Xn < xn) = C(F1(x1), . . . , Fn(xn))

The random variables are independent if and only if

H(x1, . . . , xn) =
n∏

k=1

Fk(xk)

and we can arrive at a particular expression for the copula of a vector with
independent components.

Theorem 13. Let (X1, X2, . . . , Xn)
T be a vector of continuous random

variables with copula C(·). X1, X2, . . . , Xn are independent if and only if
C(u1, . . . , un) = u1u2 . . . un.

One nice property of copulas is that for strictly monotone transforma-
tions of the random variables, copulas are either invariant, or change in
certain simple ways. Note that if a random variable is continuous, a strictly
monotone transformation of it is also a continuous random variable.

Theorem 14. Let (X1, X2, . . . , Xn)
T be a vector of continuous random

variables with copula C(·). If for k = 1, 2, . . . , n, gk(·) is strictly increasing,
then the vector (g1(X1), g2(X2), . . . , gn(Xn))

T has the same copula C(·).

Proof. For a proof, see Embrechts et al. (2003).

The general case, in which gk(·) are strictly monotone, is discussed for ex-
ample in Embrechts et al. (2003).

The reasoning in examples 8 and 9 shows that in order to construct
a multivariate model, it is sufficient to have one-dimensional assumptions
for the marginals and a different assumption for the dependence structure
through the copula. Thus choosing an appropriate copula is related to pre-
suming a proper dependence model. As intuition suggests, some dependence
concepts are indeed copula properties. We shall consider only the concept of
tail dependence, for a more thorough description see Embrechts et al. (2003).
The concept of tail dependence relates to the amount of dependence in the
upper-right-quadrant tail or the lower-left-quadrant tail and is appropriate
for studying the dependence between extreme events. Since it appears that
the tail dependence between two random variables X1 and X2 is a copula
property, it is invariant under strictly increasing transformation of X1 and
X2.

Definition 12. Let (X1, X2)
T be a vector of continuous random vari-

ables with marginal distribution functions F1(·) and F2(·), and a copula C(·).
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a) The coefficient of upper tail dependence λU of (X1, X2)
T is defined as

λU = lim
u→1−

P
(
X2 > F−1

2 (u)|X1 > F−1
1 (u)

)

or equivalently as

λU = lim
u→1−

1− 2u+ C(u, u)

1− u

provided that the limit λU ∈ [0, 1] exists. If λU ∈ (0, 1], X1 and X2 are
said to be asymptotically dependent in the upper tail, or the copula is
said to have upper tail dependence. If λU = 0, X1 and X2 are said to
be asymptotically independent in the upper tail, or the copula is said
to have upper tail independence.

b) The coefficient of lower tail dependence λL of (X1, X2)
T is defined as

λU = lim
u→0+

P
(
X2 < F−1

2 (u)|X1 < F−1
1 (u)

)

or equivalently as

λU = lim
u→0+

C(u, u)

u

provided that the limit λL ∈ [0, 1] exists. If λL ∈ (0, 1], X1 and X2 are
said to be asymptotically dependent in the lower tail, or the copula is
said to have lower tail dependence. If λL = 0, X1 and X2 are said to
be asymptotically independent in the lower tail, or the copula is said
to have lower tail independence.

It turns out that the Gaussian copula is upper and lower tail independent
on condition that the correlation coefficient is below one. The t-distribution
copula is upper and lower tail dependent which is influenced by the degrees
of freedom and the correlation coefficient, a table of values for λU is given in
Embrechts et al. (2003). The tail dependence is radially symmetric in these
two examples because they are particular cases of the family of the elliptical
distributions. In the general case, symmetry is not necessarily present.

1.6 The Monte Carlo method

Numerical methods that are known as Monte Carlo methods can be loosely
described as statistical simulation techniques. Statistical simulation is de-
fined, in quite general terms, to be any method that utilizes sequences of
random numbers to perform simulation. This technique derives its name
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from the casinos in Monte Carlo — a Monte Carlo simulation uses random
numbers to model a process.

In the field of mathematical finance, Monte Carlo methods are used to
value and analyze basic financial models as well as complex instruments,
portfolios and investments by simulating various sources of uncertainty af-
fecting their value. Afterwards, on the basis of the generated scenarios, we
determine a number of statistics. The advantage of Monte Carlo methods
over other techniques become more evident as the dimensions (sources of
uncertainty) of the problem increase.

Traditionally, Monte Carlo techniques depend on a number generation
method that mimics randomness as well as possible. The general principle
of random number generation is as follows. Given the current value of
one or more (usually internally stored) state variables, apply an iterative
mathematical algorithm to obtain a new set of values for the state variables,
and use a specific formula to obtain a new uniform (0, 1) variate from the
current values of all the state variables. The generated numbers can never
be truly random, only pseudo-random as they are generated according to
some deterministic algorithm and after a (large) number of random number
generations the sequence will start repeating itself. The number of iterations
before replication starts is a measure of the quality of a random number
generator and usually is called the period of the random number generator.

The most commonly used pseudo-random number generation methods
are known as congruential generators first proposed by Lehmer (1951). The
basic idea is to produce integer values mn on a given interval [0,M −1], and
to return a uniform (0, 1) variate un by rescaling20. The next integer variate
is calculated by the mod21 operation

mn+1 = (amn + c) mod M (1.46)

whereM , a, and c are called the modulus, the multiplier, and the increment,
respectively.

Note that equation (1.46) is piecewise affine with the same multiplier
over all pieces. Thus, it preserves the volume of any given subinterval of
[0,M − 1], which is why it is called a congruential generator. Frequently,
the constant c in equation (1.46) is chosen to be zero, whence we commonly
encounter the name linear congruential generator. There is a lot of literature
on good choices for a andM, and not all of it is trustworthy. One reasonable
choice, proposed by Park and Miller (1988) is: a = 16807 and M = 231 − 1.

20The common method for rescaling is to set un = mn/M. Since mn can, however, take
on the value 0, which we usually want to avoid, it is recommended to rescale according to
un = (mn + 1)/(M + 1).

21mod operation finds the remainder of division of one number by another. Given
two numbers, a (the dividend) and n (the divisor), a modulo n (abbreviated as, and
sometimes red as “a mod n”) is the remainder, on division of a by n.
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The period of this generator is equal to 231−2. These constants are normally
set in the code and are never user-defined.

Another random number generator technique that has become increas-
ingly popular recently is the Mersenne Twister. The name is to indicate
that the period of the sequence is a Mersenne number, i.e. a prime num-
ber that can be written in the form 2n − 1 for some n ∈ N. The period
of the Mersenne twister as published by Matsumoto and Nishimura (1998)
is 219937 − 1. Clearly, for all practical purposes, this number generator can
be assumed to have infinite periodicity. The Cognity scenario generation
engine uses the Mersenne twister generator.

Most simulations entail sampling random variables or random vectors
from distributions other than the uniform. A typical simulation procedure
uses methods for transforming samples from the uniform distribution to
samples from other distributions. There is a large literature on both gen-
eral purpose methods and specialized algorithms for specific cases. In the
appendix to this chapter, we provide details about two of most widely used
methods: the inverse transform method and the acceptance-rejection method.

1.6.1 Generation of scenarios from a stable distribution

For generation of random numbers from a stable distribution, we take ad-
vantage of the Chambers-Mallows-Stuck generator which is described below.

Property 11. Chambers-Mallows-Stuck generator. The following
algorithm generates random numbers distributed according to Sα(σ, β, µ).

1. Generate two independent random numbers u1 ∈ Exp(1) and u2 ∈
U(−π/2, π/2).

(a) If α 6= 1,

zi = sα,β × sinα(u2 + bα,β))

(cosu2)1/α
×
(
cos(u2 − α(u2 + bα,β))

u1

)(1−α)/α

where

sα,β =

[
1 + β2 tan2

πα

2

]1/(2α)

bα,β =
arctan(β tan πα

2 )

α
,

(b) If α = 1,

zi =
2

π

[(
π

2
+ βu2

)
tanu2 − β log

(
u1 cosu2
π
2 + βu2

)]
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2. The random variable z has normalized stable distribution, i.e. the scale
parameter is equal to 1 and the location parameter is equal to 0. For
arbitrary values of σ and µ, use the following transform

s = σz + µ

The distribution of the random variable z is Sα(σ, β, µ).

For additional information on numerical work with stable distributions,
see for example Janicki and Weron (1994).

1.6.2 Generation of scenarios from a multivariate normal dis-

tribution

The first step in the algorithm for sampling from a multivariate normal law is
the decomposition of the covariance matrix. In a risk system, it makes sense
to have a number of methods for covariance matrix decomposition. The two
traditional algorithms are — the Cholesky decomposition and the eigenvalue
decomposition. The former is computationally more efficient but works only
with positive definite matrices. The latter is more general and works with
positive semi-definite matrices. Before any method for decomposition is
executed, the loaded covariance matrix can be verified for consistency. We
use a necessary condition, which is the Cauchy-Schwartz inequality:

cov(r1, r2) ≤
√
V ar(r1)

√
V ar(r2)

or in terms of the covariance matrix elements:

|σij | ≤
√
σii

√
σjj , where Σ = {σij}ni,i=1

This inequality may signal which elements in the covariance matrix are
problematic if the covariance matrix is improper. This question arises when
the covariance matrix is manipulated after being estimated if, for exam-
ple, we would like to include stress-tests on the correlations between some
variables.

Cholesky decomposition The assumption here is that the estimated matrix
Σ is positive definite. Find a matrix C, such that:

CTC = Σ

The matrix C is a triangular one. The result from this decomposition, which
the next step uses, is the transposed matrix C, i.e. the result is A = CT .
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Eigenvalue decomposition The assumption here is that we work with posi-
tive semi-definite matrices. Every covariance matrix is positive semi definite.
Decompose the estimated covariance matrix into a product of three matrices:

Σ = BΛBT

where Λ is a diagonal matrix with the eigenvalues λi on the main diagonal,
B is a matrix with the eigenvectors corresponding to the eigenvalues in Λ.

This decomposition is always possible because the covariance matrix is
real and symmetric; moreover the eigenvalues are non-negative (this fact is
used for a second verification for covariance matrix consistency). There are
standard algorithms to find the eigenvalues and the corresponding eigen-
vectors. Having obtained the matrix B and the matrix Λ , we receive the
matrix A:

A = B
√
ΛBT

where with
√
Λ we denote a matrix, such that

√
Λ
√
Λ = Λ . Therefore the

matrix
√
Λ is diagonal and the elements on the main diagonal are

√
λi. It

can be easily verified that the resulting matrix A in this case is symmetric.

Generation of multivariate normal vectors This stage can be subdivided
into three parts:

• Generate n independent random numbers from standard Gaussian dis-
tributionN(0, 1) with mean 0 and variance 1. We have a n-dimensional
vector X = (X1, X2, . . . , Xn) with independent components, i.e. the
multivariate distribution is Gaussian with zero mean and the covari-
ance matrix is the identity matrix. The algorithm for generation of
Gaussian random numbers follows the Box-Muller approach:

1. Generate two independent uniformly distributed random num-
bers U1, U2 ∼ U(0, 1),

2. Compute X1 and X2 using the following transform:

X1 =
√

−2 lnU1 cos 2πU2

X2 =
√
−2 lnU1 sin 2πU2

3. X1 and X2 are independent, N(0, 1) distributed random num-
bers. Repeat previous steps until we have the desired number of
random variates.

• Using the matrix A, computed in the previous step, calculate

Y = AX

As a result, Y has multivariate Gaussian distribution with covariance
matrix equal to the estimated matrix Σ.
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• Repeat previous two steps N number of times. In effect we have ran-
dom vectors (Yk, k = 1, 2, . . . , N) drawn from a n-dimensional Gaus-
sian distribution with desired parameters, or, to phrase it differently,
N states of the world.




Y11 Y12 . . . Y1n
Y21 Y22 . . . Y2n
. . . . . . . . . . . .
YN1 YN2 . . . YnN




In a practical risk system, the algorithm starts with the Cholesky de-
composition and if the algorithm cannot produce the decomposed matrix,
it switches to the more general eigenvalue decomposition. This is necessary
for greater efficiency. In case the matrix is positive definite, there is no need
to resort to the slower algorithm even if it is more general.

1.6.3 Generation of scenarios from the Generalized sub-Gaussian

stable model

The Generalized sub-Gaussian stable model is a practical application of
the stochastic representation. In this section, we assume that the stable
parameters of all marginal distributions have been already estimated. We
denote them with (α̂i, β̂i, σ̂i, µ̂i), for i = 1, . . . , n. The estimation can be
performed according to any of the methods discussed in this Chapter.

1. Generation of multivariate Gaussian random vectors. Simu-
late i.i.d. n-dimensional random vectors yk, k = 1, 2, . . . , N drawn
from a multivariate Gaussian law with covariance matrix equal to the
estimated matrix Σ.

2. Generation of subordinators. Simulate i.i.d. n-dimensional ran-
dom vectors xk, k = 1, 2, . . . , N with components distributed accord-
ing to a stable law with parameters

αi =
α̂i

2
, βi = 0, σi =

σ̂2i
cov(i, i)/2

[
cos

πα̂i

4

]2/α̂i

, µi = 0 (1.47)

where i = 1, 2, . . . , n. The generation is performed by fixing the ran-
dom numbers u1 and u2 in the Chambers-Mallows-Stuck algorithm for
all risk variables, see Property 11. In this manner, we obtain function-
ally dependent subordinators.

3. Generation of final simulations.

Using the generated vectors from the previous steps, compute:
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zk = yk
√
xk, k = 1, 2, . . . , N

where by multiplication of vectors we mean element by element mul-
tiplication, i.e. zk is an n-dimensional random vector, the i -th com-
ponent of the vector zk is distributed according to a symmetric stable
law with parameters α̂i and σ̂i.

1.6.4 Generation of scenarios from the Generalized skewed

stable model

One additional step is added to the algorithm for the Generalized Symmetric
Stable Model that is responsible for the asymmetry.

1. Generation of multivariate Gaussian random vectors. The
same as the corresponding step in Section 1.6.3.

2. Generation of subordinators. The same as the corresponding step
in Section 1.6.3.

3. Generation of final simulations. The same as the corresponding
step in Section 1.6.3.

4. Generation of skewed stable variates. Simulate i.i.d. vectors
vk, k = 1, 2, . . . , N with independent components, each component
distributed according to a stable law with parameters:

αi = α̂i, βi = 2β̂i, σi = 21/α̂i σ̂i, µi = 0

Then using the random vectors zk generated in the previous step,
compute

wk = 2−2/α̂i

(
21/α̂izk + vk

)





Chapter 2

Market Risk

2.1 Introduction

The concept of investment risk has become central in portfolio theory and
many definitions have been proposed in the literature. In a recent survey,
Holton (2004), risk is defined as ”an exposure to a proposition of which one
is uncertain”. It can be argued that risk is a subjective phenomenon, it
is related to an investor’s perception of exposure and uncertainty. Even if
a true operational definition is impossible to obtain, still we would like to
define some aspects of risk that would allow to quantify it.

Risk is commonly characterized as a subjective, relative and multi -
dimensional phenomenon.1 It is relative and multi-dimensional in the sense
that we might want to measure it with respect to a benchmark, or more
generally, with respect to multiple benchmarks. Risk is also asymmetric
because it is related to a potential loss; that is, downside movement of
prices. In this aspect, risk is not identical with uncertainty, thought the two
concepts are related.

Attempts to quantify risk have led to the notion of a risk measure. It is
a functional that assigns a numerical value to a random variable which is in-
terpreted as loss. Since risk is subjective, risk measures are strongly related
to ”utility functions”. From historical point of view, the optimal investment
decision always corresponds to the solution of an ”expected utility maxi-
mization problem”. In particular, the link between expected utility theory
and the risk of some admissible investments is generally represented by the
consistency of the risk measure with a stochastic order. As a consequence of
the consistency, the best investments of a given category of investors (non-
satiable, risk-averse, non-satiable and risk-averse) are among the less risky
ones. But the converse is generally not true; that is, we cannot guarantee
that all the less risky choices are the best ones even if the risk measure is
consistent with some stochastic order. In fact, any risk measure associates

1See the Rachev, Fabozzi and Menn (2005)

65
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only a real number to a random variable, while the stochastic orders compare
cumulative distribution functions. Then, intuitively, a single number cannot
summarize the information derived from a portfolio distribution function.
This is the principal reason every risk measure is in a sense incomplete.

From historical perspective, Markowitz (1952) was the first to recognize
the relationship between risk and reward and introduced standard deviation
as a proxy for risk. Thus standard deviation was recognized as a measure of
risk. Unfortunately risk is an asymmetric phenomenon and thus standard
deviation is not a good risk measure because it symmetrically penalizes po-
tential loss as well as potential profit. Also, it is incapable of describing the
risk of low-probability events as the default risk. Finally, it is not consistent
with second-order stochastic dominance and thus with the expected utility
approach for portfolio selection2. The deficiencies of the standard devia-
tion as a risk measure were acknowledged by Markowitz who was the first
to suggest the semi-standard deviation as a substitute, Markowitz (1959).
Ogryczak and Ruszczynski (2001) also proposed semi-variance models and
showed the consistency with second-order stochastic dominance. Other risk
measures have also been proposed, for example Value-at-Risk and Expected
tail loss. The former is widely used in practice but does not satisfy the very
natural property of sub-additivity3. The latter is consistent with second
order stochastic dominance under some weak conditions.

It is only recently that a systematic approach towards risk measures
has been undertaken. Artzner et al. (1998), concerned with banking reg-
ulations, proposed an axiomatic approach to the definition of a risk mea-
sure. They presented a set of four properties for measures of risk and they
called measures satisfying these properties, coherent risk measures. Un-
fortunately, coherent risk measures are generally not consistent with second
order stochastic dominance, see Pflug (1998). Consistency with second order
stochastic dominance of the more general family of the convex risk measures
was studied in DeGiorgi (2005).

2.2 Risk measures

In this section we give a formal definition of a risk measure and also examples
of some classes of risk measures4. Let (Ω,F , P ) be a probability space and
G be a set of real-valued random variables which are F-measurable.

Definition 13. A risk measure is a mapping ρ : G → R.

Every risk measure induces a class of random variables

2This is illustrated by the (µ, σ) paradox.
3See the next section.
4More examples can be found in Pflug (1998)
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Aρ := {X ∈ G|ρ(X) ≤ 0}
which are acceptable in the sense that they carry no positive risk. The class
Aρ is called the acceptance set of the risk measure ρ(·).

2.2.1 Coherent risk measures

Artzner et al. (1998) propose several axioms that a risk measure should
satisfy, otherwise it may lead to undesirable conclusions. The risk measure
is defined on the future value of a position.

Definition 14. A functional ρ(·) on the space of real-valued random
variables is called a coherent risk measure if it is:

1. monotonous: X, Y ∈ G; Y ≥ X =⇒ ρ(Y ) ≤ ρ(X)

2. sub-additive: X, Y, X + Y ∈ G =⇒ ρ(X + Y ) ≤ ρ(X) + ρ(Y )

3. positively homogeneous: X ∈ G, h > 0, hX ∈ G =⇒ ρ(hX) =
hρ(X)

4. translation invariant: X ∈ G, a ∈ R =⇒ ρ(X + a) = ρ(X)− a

Monotonicity implies that the risk measure should give a warning when the
financial asset has a sure loss (if Y = 0 then ρ(X) > 0). Sub-additivity
property ensures a diversification effect. Positive homogeneity makes sense
because of liquidity concerns — when all positions are increased by a multi-
ple, risk is increased by the same multiple because it is getting more difficult
to liquidate larger positions. Translation invariance implies that the risk-free
asset should reduce the amount of risk by exactly the worth of the risk-free
asset.

These axioms are desirable for the purpose of risk management. It is
possible to find a representation of coherent risk measures in terms of a
functional defined on classes of probability measures, for details see Artzner
et al. (1998).

2.2.2 Convex risk measures

If we relax the positive homogeneity assumption, we obtain the more general
class of convex risk measures.

Definition 15. A functional ρ(·) on the space of real-valued random
variables is called a convex risk measure if it is:

1. monotonous: X, Y ∈ G; Y ≥ X =⇒ ρ(Y ) ≤ ρ(X)

2. convex: X, Y,∈ G, λ ∈ [0, 1] =⇒ ρ(λX + (1 − λ)Y ) ≤ λρ(X) +
(1− λ)ρ(Y )
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3. translation invariant: X ∈ G, a ∈ R =⇒ ρ(X + a) = ρ(X)− a

Representation theorems for convex risk measures can be found in Föllmer
and Schied (2002a), and for a more extensive treatment, see Föllmer and
Schied (2002b).

2.3 Particular representatives

In this section we give particular examples of risk measures and briefly
comment on their advantages and disadvantages.

2.3.1 Value-at-Risk

Value-at-risk, or VaR, has been widely accepted as a risk measure in the
last decade and has been incorporated into industrial regulations (see Khin-
danova and Rachev (2000) for an overview). The main reason is because it is
conceptually easy. It is defined as the minimum level of loss at a confidence
level of solvency of 1− α. That is VaR can be interpreted as the minimum
amount of capital needed as reserve in order to prevent insolvency which
happens with probability α.

Definition 16. The VaR at confidence level 1 − α is defined as the
negative of the lower α-quantile of the gain/loss distribution, where α ∈
(0, 1),

V aRα(X) = − inf
x
{x|P (X ≤ x) ≥ α}

While VaR is intuitive, generally it fails to satisfy the sub-additivity
property of coherent risk measures which makes it a bad choice for portfolio
optimization problems. Yet another pitfall of VaR is that it only provides a
minimum bound for losses and ignores any huge potential loss beyond that
level.

2.3.2 Expected tail loss

While VaR has gained a lot of attention during the late nineties and early this
century, that fact that it is not a coherent risk measure casts doubt on any
application of VaR. As a coherent alternative to VaR, conditional value-at-
risk (CVaR), expected shortfall or expected tail loss (ETL) was introduced.
Similar concepts were also introduced: mean excess loss, mean shortfall,
worse conditional expectation, tail conditional expectation or tail VaR. The
definition varies across different authors. Acerbi and Tasche (2002) clarify
the ambiguity in the definitions of VaR and CVaR and show the equivalence
of the CVaR and the expected shortfall. At the same time independently,
Rockafellar and Uryasev (2002) also show the equivalence and generalize
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their finding to general loss distributions, which incorporate discontinuity.
For a discussion and comparison between ETL and VaR, see Yamai and
Yoshiba (2002b) and Yamai and Yoshiba (2002a).

Definition 17. The expected tail loss at level α is defined as

ETLα(X) = E(−X| −X > V aRα(X))

where V aRα(X) is the value-at-risk measure.

The ETL can be interpreted as the average loss beyond VaR. For a proof
that ETL is coherent, see for example Zhang and Rachev (2004).

2.4 Closed-form expressions of ETL

If we assume a particular distribution of X in Definition 17, then it could
be possible to arrive at particular expressions5 for ETLǫ(X). In this section
first we give some simple examples and then we proceed with the case X ∈
Sα(σ, β, µ) which is much more involved.

Example 12. (The Normal distribution) Let us assume that X ∈
N(µ, σ2). Then (X − µ)/σ ∈ N(0, 1) and since ETL is coherent,

ETLǫ(X) = σETLǫ

(
X − µ

σ

)
+ µ (2.1)

The expected tail loss of the standardized random variable is easier to com-
pute.

ETLǫ

(
X − µ

σ

)
=: ETLǫ(Y )

= −1

ǫ

∫ −V aRǫ(Y )

−∞

x√
2π

exp

(
−x

2

2

)
dx

=
1

ǫ
√
2π

exp

(
−(V aRǫ(Y ))2

2

)

Therefore

ETLǫ(X) =
σ

ǫ
√
2π

exp

(
−(V aRǫ(Y ))2

2

)
+ µ

where Y = (X − µ)/σ.

5Throughout this section, there is a minor change in notation. To avoid ambiguity,
the ETL level is denoted by ǫ, while the letter α is reserved for the tail index of stable
distributions.
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Example 13. (The t-distribution) Let us assume that X has t-distribution
with ν degrees of freedom, X ∈ t(ν). Then

ETLǫ(X) = −1

ǫ

∫ −V aRǫ(X)

−∞
x
Γ
(
ν+1
2

)

Γ
(
ν
2

) 1√
νπ

(
1 +

x2

ν

)− ν+1

2

dx

= −Γ
(
ν+1
2

)

Γ
(
ν
2

) 1√
νπ

ν

2ǫ

∫ −V aRǫ(X)

−∞

(
1 +

x2

ν

)− ν+1

2

d

(
1 +

x2

ν

)

=





Γ( ν+1

2 )
Γ( ν

2 )

√
ν

(ν−1)ǫ
√
π

(
1 + (V aRǫ(X))2

ν

) 1−ν
2

, ν > 1

∞ , ν = 1

If ν = 1, then X follows a Cauchy distribution which has unbounded math-
ematical expectation and the infinite ETL in this case is not surprising.

As the above example indicates, the ETL is not always finite. The
Cauchy distribution is a special case of the class of α-stable distributions
and we can expect that for some members of the class the ETL will be finite,
for others it will diverge. The condition for the absolute convergence of the
corresponding integral is E(max(−X, 0)) < ∞. Therefore from Property 7
we can see that for α > 1, the ETL is finite and is unbounded otherwise.

Example 14. (The stable distribution) The expression will be stated
for the standardized case, i.e. X ∈ Sα(1, β, 0). As a matter of fact, using
the properties of translation invariance and positive homogeneity of the ETL,
given that σ > 0 and µ ∈ R are a scale and a location parameter respectively,
it follows

ETLǫ(σX + µ) = σETLǫ(X)− µ

where σX + µ ∈ Sα(σ, β, µ); the strategy is the same as in Example 12.
Let X ∈ Sα(1, β, 0) with α > 1. If V aRǫ(X) 6= 0, then the conditional

VaR of X at significance level ǫ admits the following integral representation

ETLǫ(X) =
α

1− α

|V aRǫ(X)|
πǫ

∫ π/2

−θ0

g(θ) exp
(
−|V aRǫ(X)| α

α−1 v(θ)
)
dθ

(2.2)

where

g(θ) =
sin(α(θ0 + θ)− 2θ)

sinα(θ0 + θ)
− α cos2 θ

sin2 α(θ0 + θ)
,

v(θ) =
(
cosαθ0

) 1

α−1

(
cos θ

sinα(θ0 + θ)

) α
α−1 cos(αθ0 + (α− 1)θ)

cos θ
,
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θ0 =
1
α arctan

(
β tan πα

2

)
and β = −sign(V aRǫ(X))β.

Furthermore, if V aRǫ(X) = 0, then

ETLǫ(X) =
2Γ
(
α−1
α

)

(π − 2θ0)

cos θ0

(cosαθ0)1/α
. (2.3)

Example 15. (The skewed Student’s t distribution)

It is possible to compute the VaR and ETL of the skewed Student’s t
distribution defined in (1.8) even though the formulae are involved and the
complexity is similar to the case of stable distributions. We first provide the
expressions for VaR and then proceed with the ETL.

The VaR formula for skewed-T random variable, that is, the value of
x0 = VaRα is coming as the unique zero of the following equation (provided
γ > 0)

g(x0) = −α+
2C

√
π

γ

∫ ∞

0
t−(ν+2)/2e−

νγ2

4t Φ

(
γx0√
2t

−
√
2t

)
dt = 0.

For negative skewness the value of x0 = VaRα is coming as the unique
zero of the next equation (i.e., provided γ < 0)

g(x0) = 1− α+
2C

√
π

γ

∫ ∞

0
t−(ν+2)/2e−

νγ2

4t Φ

(
γx0√
2t

−
√
2t

)
dt = 0,

In both cases the zero, x0 of g, is sought on the interval (−∞, 0] provided
α < α0 or, on the interval [0,+∞) provided α > α0.

In order to arrive at an expression for the ETL, we consider four differ-
ent cases depending on the skewness parameter and the VaR level:

Case 1: x0 ≥ 0, γ > 0,

ETL1 = E[X|X > x0] =
1

P (X > x0)

∫ ∞

x0

xf(x)dx

Case 2: x0 ≤ 0, γ > 0,

ETL2 = E[X|X < x0] =
1

P (X < x0)

∫ x0

−∞
xf(x)dx

Case 3: x0 ≥ 0, γ < 0,

ETL3 = E[X|X > x0] =
1

P (X > x0)

∫ ∞

x0

xf(x)dx

Case 4: x0 ≤ 0, γ < 0,

ETL4 = E[X|X < x0] =
1

P (X < x0)

∫ x0

−∞
xf(x)dx

It is possible to compute the ETL in these four cases:
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ETL1 =
γν

(1− α)(ν − 2)
+

4C

(1− α)γ2
KI

ETL2 =
−4C

αγ2
KI

ETL3 =
4C

(1− α)γ2
KI

ETL4 =
γν

α(ν − 2)
+

−4C

αγ2
KI

where

KI =

[
Kλ−1(β)

(
2

β

)λ−1

eγx0 −√
π

∫ ∞

0
t−λ+1/2e−

νγ2

4t Φ(h0)dt

]

in which

β =
√
νγ2 + (γx0)2 and h0 =

γx0√
2t

−
√
2t.

For poofs and additional details, see Dokov et al. (2008).

2.5 ETL estimation from a sample

Suppose that we have a sample of observed portfolio returns and we are
not aware of their distribution. Provided that we do not impose any dis-
tributional model, the ETL of portfolio return can be estimated from the
sample of observed portfolio returns. Denote the observed portfolio re-
turns by r1, r2, . . . , rn at time instants t1, t2, . . . , tn. The numbers in the
sample are given in order of observation. Denote the sorted sample by
r(1) ≤ r(2) ≤, . . . ,≤ r(n). Thus, r(1) equals the smallest observed portfolio
return and r(n) is the largest. The ETL of portfolio returns at tail probability
ǫ is estimated according to the formula6

ÊTLǫ(r) = −1

ǫ


 1

n

⌈nǫ⌉−1∑

k=1

r(k) +

(
ǫ− ⌈nǫ⌉ − 1

n

)
r(⌈nǫ⌉)


 (2.4)

where the notation ⌈x⌉ stands for the smallest integer larger than x.7 The
“hat” above ETL denotes that the number calculated by equation (2.4) is

6This formula is a simple consequence of the definition of ETL for discrete distributions,
see the appendix to this chapter. A detailed derivation is provided by Rockafellar and
Uryasev (2002).

7For example, ⌈3.1⌉ = ⌈3.8⌉ = 4.
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an estimate of the true value because it is based on a sample. This is a
standard notation in statistics.

We demonstrate how equation (2.4) is applied in the following example.
Suppose that the sorted sample of portfolio returns is -1.37%, -0.98%, -
0.38%, -0.26%, 0.19%, 0.31%, 1.91% and our goal is to calculate the portfolio
ETL at 30% tail probability. In this case, the sample contains 7 observations
and ⌈nǫ⌉ = ⌈7× 0.3⌉ = 3. According to equation (2.4), we calculate

ÊTL0.3(r) = − 1

0.3

(
1

7
(−1.37%− 0.98%) + (0.3− 2/7)(−0.38%)

)

= 1.137%.

Formula (2.4) can be applied not only to a sample of empirical observa-
tions. We may want to work with a statistical model for which no closed-
form expressions for ETL are known. Then we can simply sample from the
distribution and apply formula (2.4) to the generated simulations.

Besides formula (2.4), there is another method for calculation of ETL.
It is based on the minimization formula

ETLǫ(X) = min
θ∈(R)

(
θ +

1

ǫ
E(−X − θ)+

)
(2.5)

in which we replace the mathematical expectation by the sample average,

ÊTLǫ(r) = min
θ∈(R)

(
θ +

1

nǫ

n∑

i=1

max(−ri − θ, 0)

)
. (2.6)

Even though it is not obvious, equations (2.4) and (2.6) are completely
equivalent.

The minimization formula in equation (2.6) is appealing because it can be
calculated through the methods of linear programming. It can be restated as
a linear optimization problem by introducing auxiliary variables d1, . . . , dn,
one for each observation in the sample,

min
θ,d

θ +
1

nǫ

n∑

k=1

dk

subject to −rk − θ ≤ dk, k = 1, n
dk ≥ 0, k = 1, n
θ ∈ R.

(2.7)

The linear problem (2.7) is obtained from (2.6) through standard meth-
ods in mathematical programming. We briefly demonstrate the equivalence
between them. Let us fix the value of θ to θ∗. Then the following choice of
the auxiliary variables yields the minimum in (2.7). If −rk − θ∗ < 0, then
dk = 0. Conversely, if it turns out that −rk − θ∗ ≥ 0, then −rk − θ∗ = dk.
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In this way, the sum in the objective function becomes equal to the sum of
maxima in equation (2.6).

Applying (2.7) to the sample in the example above, we obtain the opti-
mization problem,

min
θ,d

θ +
1

7× 0.3

7∑

k=1

dk

subject to 0.98%− θ ≤ d1
−0.31%− θ ≤ d2
−1.91%− θ ≤ d3
1.37%− θ ≤ d4
0.38%− θ ≤ d5
0.26%− θ ≤ d6
−0.19%− θ ≤ d7
dk ≥ 0, k = 1, 7
θ ∈ R.

The solution to this optimization problem is the number 1.137% which is
attained for θ = 0.38%. In fact, this value of θ coincides with the VaR at
30% tail probability and this is not by chance but a feature of the problem
which is demonstrated in the appendix to this chapter. We verify that the
solution of the problem is indeed the number 1.137% by calculating the
objective in equation (2.6) for θ = 0.38%,

ETLǫ(r) = 0.38% +
0.98%− 0.38% + 1.37%− 0.38%

7× 0.3
= 1.137%.

Thus, we obtain the number calculated through equation (2.4).

2.6 Computing portfolio ETL in practice

We assume that there are n common stocks with random returns described
by the random variables X1, . . . , Xn. Thus, the portfolio return is repre-
sented by

rp = w1X1 + . . .+ wnXn

where w1, . . . , wn are the weights of the common stocks in the portfolio.

2.6.1 The multivariate normal assumption

If the stock returns are assumed to have a multivariate normal distribution,
then the portfolio return has a normal distribution with variance w′Σw,
where w is the vector of weights and Σ is the covariance matrix between
stock returns. The mean of the normal distribution is
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Erp =

n∑

k=1

wkEXk

where E stands for the mathematical expectation. Thus, under this as-
sumption the ETL of portfolio return at tail probability ǫ can be expressed
in closed-form through the closed-form expression of the normal distribution,

ETLǫ(rp) =

√
w′Σw

ǫ
√
2π

exp

(
−(V aRǫ(Y ))2

2

)
− Erp

= Cǫ

√
w′Σw − Erp

(2.8)

where Cǫ is a constant independent of the portfolio composition and can
be calculated in advance. In effect, due to the limitations of the multivari-
ate normal assumption, the portfolio ETL appears symmetric and is repre-
sentable as the difference between the properly scaled standard deviation of
the random portfolio return and portfolio expected return.

2.6.2 The Historical Method

Generally, the historical method is not related to any distributional assump-
tions. We use the historically observed portfolio returns as a model for the
future returns and apply formula (2.4) or (2.6).

While the historical method seems to be more general as it is free of any
distributional hypotheses, it has a number of major drawbacks.

1. It assumes that the past trends will continue in the future. This is not
a realistic assumption because we may experience extreme events in
the future, for instance, which have not happened in the past.

2. It treats the observations as independent and identically distributed
(i.i.d.) which is not realistic. The daily returns data exhibits clustering
of the volatility phenomenon, autocorrelations and so on, which are
sometimes a significant deviation from the i.i.d. assumption.

3. It is not reliable for estimation of ETL at very high confidence levels.
A sample of one year of daily data contains 250 observations which is
a rather small sample for the purpose of the 99% ETL estimation.

We emphasize that it is very inaccurate for low tail probabilities, e.g.
1% or 5%. Even with one year of daily returns which amounts to 250
observations, in order to estimate the ETL at 1% probability, we have to
use the 3 smallest observations which is quite insufficient. What makes
the estimation problem even worse is that these observations are in the tail
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of the distribution; that is, they are the smallest ones in the sample. The
implication is that when the sample changes, the estimated ETL may change
a lot because the smallest observations tend to fluctuate a lot.

2.6.3 The Hybrid Method

The hybrid method is a modification of the historical method in which the
observations are not regarded as i.i.d. but certain weights are assigned to
them depending on how close they are to the present. The weights are
determined using the exponential smoothing algorithm. The exponential
smoothing accentuates the most recent observations and seeks to take into
account time-varying volatility phenomenon.

The algorithm of the hybrid approach consists of the following steps.

1. Exponentially declining weights are attached to historical returns, start-
ing from the current time and going back in time. Let rt−k+1, . . . , rt−1, rt
be a sequence of k observed returns on a given asset, where t is the
current time. The i-th observation is assigned a weight

θi = c∗λt−i,

where 0 < λ < 1, and c = 1−λ
1−λk is a constant chosen such that the sum

of all weights is equal to one,
∑
θi = 1.

2. Similarly to the historical simulation method, the hypothetical future
returns are obtained from the past returns and sorted in increasing
order.

3. The VaR measure is computed from the empirical c.d.f. in which each
observation has probability equal to the weight θi.

Generally, the hybrid approach is appropriate for VaR and ETL estima-
tion of heavy-tailed time series. It overcomes, to some degree, the first and
the second deficiency of the historical method but it is also not reliable for
VaR estimation of very high confidence levels.

According to the hybrid method, different weights are assigned to the
observations by which the more recent observations get a higher weight. The
rationale is that the observations far back in the past have less impact on
the portfolio risk at the present time.

The hybrid method can be adapted for ETL estimation. The weights
assigned to the observations are interpreted as probabilities and, thus, the
portfolio ETL can be estimated from the resulting discrete distribution ac-
cording to the formula
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ÊTLǫ(r) = −1

ǫ




kǫ∑

j=1

pjr(j) +


ǫ−

kǫ∑

j=1

pj


 r(kǫ+1)


 (2.9)

where r(1) ≤ r(2) ≤ . . . ≤ r(km) denotes the sorted sample of portfolio
returns or payoffs and p1, p2, . . . , pkm stand for the probabilities of the sorted
observations; that is, p1 is the probability of r(1). The number kǫ in equation
(2.9) is an integer satisfying the inequalities,

kǫ∑

j=1

pj ≤ ǫ <

kǫ+1∑

j=1

pj .

Equation (2.9) follows directly from the definition of ETL8 under the as-
sumption that the underlying distribution is discrete without the additional
simplification that the outcomes are equally probable.

2.6.4 The Monte Carlo Method

In practice, computing portfolio ETL is done through the Monte Carlo
method. We hypothesize a parametric model for the multivariate distri-
bution of financial returns, we fit the model, and then we generate a large
number of scenarios. From the generated scenarios, we compute scenarios
for portfolio return. Employing formula (2.4), we calculate portfolio ETL
at a specified tail probability ǫ.

We can regard the generated scenarios as a sample from the fitted model
and thus the computed ETL in the end appears as an estimate of the true
ETL. The larger the sample, the closer the estimated ETL is to the true
value. If we regenerate the scenarios, the portfolio ETL number will change
and it will fluctuate around the true value. Figure 2.1 illustrates this phe-
nomenon for the standard normal distribution with ǫ = 0.01, for which the
true value ETL0.01(X) = 2.665. This stochastic variability is an issue in-
herent in the Monte Carlo method and cannot be avoided. In this context,
the Monte Carlo method can be viewed as a numerical method of comput-
ing portfolio ETL when the hypothesized multivariate model does not allow
portfolio ETL to be computed analytically. In this section, we discuss the
asymptotic distribution of the estimator in (2.4) which we can use to deter-
mine approximately the variance of (2.4) when the number of scenarios is
large.

Before proceeding to a more formal result, let us check what intuition
may suggest. If we look at equation (2.4), we notice that the leading term

8A formal proof can be found in Rockafellar and Uryasev (2002). The reasoning in
Rockafellar and Uryasev (2002) is based on the assumption that the random variable
describes losses while in equation (2.9), the random variable describes the portfolio return
or payoff.
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Figure 2.1: Boxplot diagrams of the fluctuation of the ETL at ǫ = 1% of
the standard normal distribution based on 100 independent samples. The x-
axis represents number of scenarios. (Reproduced from Figure 7.4 in Rachev,
Stoyanov and Fabozzi (2008))
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is the average of the smallest observations in the sample. The fact that we
average observations reminds of the central limit theorem (CLT) and the
fact that we average the smallest observations in the sample suggests that
the variability should be influenced by the behavior of the left tail of the
portfolio return distribution. Basically, a result based on the CLT would
state that the distribution of the ETL estimator becomes more and more
normal as we increase the sample size. Applicability of the CLT however
depends on certain conditions such as finite variance which guarantee certain
regularity of the random numbers. If this regularity is not present, the
smallest numbers in a sample may vary quite a lot as they are not naturally
bounded in any respect. Therefore, for heavy-tailed distributions we can
expect that the CLT may not hold and the distribution of the estimator in
such cases may not be normal at all.

The formal result in Stoyanov and Rachev (2007b) confirms these ob-
servations. Taking advantage of the generalized CLT, we can demonstrate
that

Theorem 15. Suppose that X is random variable with distribution func-
tion F (x) which satisfies the following conditions

• xαF (x) = L(x) is slowly varying at infinity, i.e. limx→∞ L(tx)/L(x) =
1, ∀t > 0.

•
∫ 0
−∞ xdF (x) <∞

• F (x) is differentiable at x = qǫ where qǫ is the ǫ-quantile of X.

Then, there exist cn n = 1, 2, ..., such that for any 0 < ǫ < 1,

c−1
n

(
ÊTLǫ(X)− ETLǫ(X)

)
w→ Sα∗(1, 1, 0) (2.10)

in which
w→ denotes weak limit, 1 < α∗ = min(α, 2), and cn = n1/α

∗

L0(n)/ǫ

where L0 is a function slowly varying at infinity and ÊTLǫ(X) is computed
from a sample of independent copies of X according to equation (2.4).

This theorem implies that the limit distribution of the ETL estimator
in (2.4) is necessarily a stable distribution totally skewed to the left. In the
context of the theorem, we can think of X as a random variable describing
portfolio return. If the index α governing the left tail of X is α ≥ 2, then
the above result reduces to the classical CLT as in this case α∗ = 2 and the
limit distribution is normal. This case is considered in detail in Stoyanov
and Rachev (2007a).

Stable distributed returns

In this section, we consider the case in which portfolio return distribution
is a stable law with parameter 1 < α < 2. Under this assumption, α∗ =
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Figure 2.2: The density of the sample ETL as the number of scenarios
increases together with the limit stable law, X ∈ S1.5(1, 0.7, 0). (Reproduced
from Figure 2 in Stoyanov and Rachev (2007b))

α and thus the limit distribution of the ETL estimator is also a stable
law with parameter α. That is, we are not in the case of the classical
CLT. We carry out a Monte Carlo study in order to see for how many
scenarios the limit distribution Theorem 15 is sufficiently close to the real
distribution of the estimator. We choose X ∈ S1.5(1, 0.70) and we generate
2,000 samples from the corresponding distribution the size of which equals
n = 250; 1, 000; 10, 000; and 100, 000. Figure 2.2 shows the density of the
random variable in the left part of equation (2.10) and how it approaches the
limit distribution, i.e. the right part of (2.10), as the number of scenarios
increases.

Student’s t distribution

If we assume that portfolio return has a Student’s t distribution, then the
degree of freedom parameter ν determines the tail thickness. In the notation
of Theorem 15, α = ν and, therefore, if ν ≥ 2, then the asymptotic distri-
bution of the ETL estimator is normal. Even though it is normal, the tail
thickness influences the convergence rate which means that the acceptance
of the limit distribution as an approximate model decreases as ν decreases.
The rationale is that the higher ν is, the more regular the random variable
is.
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No tail truncation With tail truncation

ν ǫ = 0.01 ǫ = 0.05 ǫ = 0.01 ǫ = 0.05

3 70000 17000 12000 4000

4 60000 9000 11500 3600

5 50000 7000 11000 3300

6 23000 4500 11000 3200

7 14000 4200 10500 3100

8 13000 4100 10000 3000

9 12000 4000 10000 3000

10 12000 3900 10000 3000

15 11000 3850 10000 2950

25 10000 3800 10000 2900

50 10000 3750 10000 2900

∞ 10000 3300 10000 2900

Table 2.1: The number of observations sufficient to accept the normal dis-
tribution as an approximate model when X has Student’s t distribution for
different values of ν and ǫ (Reproduced from Table 1 and Table 4 in Stoyanov
and Rachev (2007b).)

The first two columns of Table 2.6.4 show how the number of scenarios
changes when ǫ = 0.01 and ǫ = 0.05 which correspond to the two standard
choices of 95% and 99% for the confidence level of the ETL. The numbers
in the table are calculated by generating 2,000 samples of a given size which
we use to approximate the distribution of the left part of equation (2.10).
We use the Kolmogorov distance in order to check if the hypothesis of a
normal distribution can be accepted. We notice that the minimum number
of scenarios increases from about 10,000 when ν = 25 to 70,000 when ν = 3
for ǫ = 0.01. For additional details, see Stoyanov and Rachev (2007a).

The effect of tail truncation

In the introduction, we noted that one way to deal with the issue that a
heavy-tailed model may have an infinite volatility is to apply a tail trunca-
tion. This means that we truncate the tails of the distribution very far away
from the center, e.g. at 0.1% and 99.9% quantiles. This is not so artificial as
it may seem. Stock exchanges usually have regulations according to which
trading stops if a given market index drops too much. Essentially, this reg-
ulation does not allow panick in the market to result in arbitrarily large
losses. If the truncation is done far away from the center of a distribution,
the general shape of the distribution is preserved and the descriptive power
of the model does not deteriorate.

The implementation of a tail truncation method increases dramatically
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the stochastic stability of the ETL estimator in two ways. First, if the
portfolio return distribution is such that the limit law of the ETL estimator
is stable, after tail truncation the limit law becomes normal. However, the
convergence rate to the normal distribution depends on how far away from
the center we truncate — the deeper we go into the tails, the slower the
convergence rate. Second, if the limit law of the ETL estimator is normal,
tail truncation increases the convergence rate. The last two columns of
Table 2.6.4 illustrate this observation when portfolio returns are assumed to
have Student’s t distribution for a truncation threshold equal to the 0.1%
quantile. We notice that the minimum number of scenarios drops from
70,000 to 12,000 when ν = 3 and ǫ = 0.01. Stoyanov and Rachev (2007b)
provide additional examples and details.

For an additional discussion of ETL including geometric interpretations,
see Rachev, Stoyanov and Fabozzi (2008) and Stoyanov et al. (2008).

2.7 Risk budgeting with ETL

The concept of ETL allows for scenario-based risk decomposition which is
a concept similar to the standard deviation based percentage contribution
to risk (PCTR). The practical issue is to identify the contribution of each
position to portfolio risk and since ETL is a tail risk measure, percentage
contribution to ETL allows one to build a framework for tail risk budgeting.
The approach largely depends on one of the coherence axioms given Artzner
et al. (1998), which is the positive homogeneity property

ETLǫ(aX) = aETLǫ(X), a > 0.

Euler’s formula is valid for such functions. According to it, the risk measure
can be expressed in terms of a weighted average of the partial derivatives
with respect to portfolio weights,

ETLǫ(w
′X) =

∑

i

wi
∂ETLǫ(w

′X)

∂wi

where w is a vector of weights, X is a random vector describing the multi-
variate return of all financial instruments in the portfolio, and w′X is the
portfolio return. The left hand-side of the equation equals total portfolio
risk and if we divide both sides by it, we obtain the tail risk decomposition,

1 =
∑

i

wi

ETLǫ(w′X)

∂ETLǫ(w
′X)

∂wi

=
∑

i

pi.
(2.11)
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In order to compute the percentage contribution to risk of the i-th po-
sition, the i-th summand pi in (2.11), we have to calculate first the partial
derivative. It turns out that the derivative can be expressed as a conditional
expectation,

∂ETLǫ(w
′X)

∂wi
= −E(Xi|w′X < −V aRǫ(w

′X)).

when X is an absolutely continuous random variable, see Zhang and Rachev
(2004) and the references therein. The conditional expectation can be com-
puted through the Monte Carlo method.

2.7.1 Identifying risk diversifiers and risk contributors

Exploiting a link between percentage contribution to ETL and the global
minimum ETL portfolio, we can arrive at a rule for identifying ETL diver-
sifiers and ETL contributors in long-only portfolios.

Consider the global minimum portfolio ETL problem,

min
w
ETLǫ(w

′X)

s.t.

w′e = 1.

where e is a vector of ones and the condition w′e = 1 means that the sum of
all weights should be equal to 1. Due to the convexity property of ETL, this
problem has a unique minimum which can be obtained through the standard
first-order optimality conditions for constrained optimization problems. The
solution of the optimization problem is the global minimum ETL portfolio
which should satisfy the conditions,

∇ETLǫ(w
′X) = λe, (2.12)

where ∇ETLǫ(w
′X) is the gradient of ETL computed at the optimal so-

lution and λ is the Lagrange multiplier. The Lagrange multiplier can be
explicitly computed,

λ = w′∇ETLǫ(w
′X) = ETLǫ(w

′X),

in which we make use of Euler’s formula. Equation (2.12) implies that the
partial derivatives of the global minimum ETL portfolio are all equal and
the percentage contribution to ETL of the i-th position equals the weight of
this position. On the basis of this observation, a simple rule can be designed
identifying risk diversifiers and risk contributors for long-only portfolios:

• If pi > wi, then the i-th position is a risk contributor.
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• If pi < wi, then the i-th position is a risk diversifier.

• If pi = wi, then the i-th position is neither a contributor nor a diver-
sifier.

The rationale is that if we increase marginally the weights of the diversifiers
and decrease marginally the weights of the contributors, making sure that
the weights sum up to one, the ETL of the new portfolio is marginally
improved. In case pi = wi for all i, then we are holding the global minimum
ETL portfolio and the risk cannot be marginally reduced.

The analysis presented above is valid for long-only portfolios because
negative weights change the sign of the percentage contribution statistics
pi and identifying contributors and diversifiers by comparing to wi may be
problematic. For arbitrary portfolios however, we can use another rule for
marginal rebalancing which is based solely on the partial derivatives of ETL,

• Compute the partial derivatives of ETL for a given portfolio w.

• Sort the portfolio positions by the derivatives in a decreasing order.

• The position on top is a risk contributor and the position at the bottom
is a risk diversifier.

• In order to improve marginally portfolio risk, decrease the weight of
the position on top by a small amount and increase the weight of the
position at the bottom making sure all weights sum up to one.

If the partial derivative of the position on top equals the partial derivative
of the position at the bottom, then we are holding the global minimum ETL
portfolio and no marginal improvement of risk is possible.

2.8 Computing the market risk of financial port-

folios

From the discussion so far, we can draw the conclusion that the Monte Carlo
method is general enough to be applied in reality and to become the frame-
work of building a risk management system. ETL can be reliably computed
using scenarios which can also be used to compute marginal and incremental
risk statistics. Therefore, a practical and powerful risk management system
can be based upon this concept.

Such a risk management system should have two basic components —
a scenario generation engine and a risk calculation engine. FinAnalytica’s
Cognity risk management system is an industry first on-line portfolio risk
management system based on demonstrably realistic asset return distribu-
tions and which is built on the basis of the Monte Carlo engine.
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2.8.1 Scenario generation engine

The scenario generation engine itself can be organized to contain a variety
of models. The most simple workflow is through the discussed generalized
multivariate stable and skewed Student’s t models. Under this assumption,
the marginal distributions are assumed to be either skewed stable or skewed
Student’s t and the dependence structure is introduced through the covari-
ance matrix of the Gaussian component in the stochastic representation.
Thus, the marginal distribution parameters and the covariance matrix can
be estimated separately and then scenarios can be produced by means of
the stochastic representation.

Alternatively, one can directly work with a copula model such as the
skewed Student’s t copula. In this case, the marginal distributions can be
any combination between stable, skewed Student’s t, and normal distri-
butions. Similarly, the marginal distribution parameters can be estimated
separately from the copula model parameters and after that scenarios can
be produced from the multivariate model.

We can generalize the two cases into one three-step procedure.

Algorithm SG 1

1. Estimate the marginal distribution parameters for the variables which
need to be simulated.

2. Estimate the parameters of the dependence model.

3. Produce simulations for the variables from the fitted multivariate model.

This procedure can be directly applied for equity portfolios, for example.
The variables we are interested in are only the equity returns. For more
complex portfolios however, some variables have to be modeled in a more
specific way. For instance, if there are bonds in the portfolio, then we have
to model the corresponding yield curve and the scenario generation engine
should provide scenarios for it as well. One simple model for the yield
curve is through a principal component analysis (PCA) which means that
we assume a linear model for the interest rates comprising the yield curve.

A linear model can be required by other considerations as well. For ex-
ample, we may want to explain equity returns through certain factors and
then check the portfolio risk coming from a part or all of these factors. In
such a case, we would construct a regression model in which equity returns
are the dependent variable and the factor returns are the explanatory vari-
ables,

r = α+
n∑

k=1

βkfk + ǫ,



86 Chapter 2. Market Risk

where r is the return of the dependent variable, fk is the return of the k-
th independent variable and ǫ is the residual. Then we would simulate all
dependent variables and the residuals and produce scenarios for them. The
scenarios for the equity returns are then produced through the fitted factor
model. It is apparent that the general structure of the algorithm of scenarios
generation for the dependent variable is invariant of the probabilistic model.
Therefore, we can develop an algorithm according to the following steps.

Algorithm SG 2

1. Fit the presumed linear model using the available historical data. Store
the regression coefficients (all α and βk, k = 1, n in the equation above)
and the calculated residuals.

2. Estimate the distribution parameters of the factor returns and the
residuals.

3. Estimate the parameters of the assumed dependence model between
factor returns and residuals.

4. Generate scenarios for the factor returns and the residuals.

5. Compute the scenarios for the dependent variables through the fitted
linear model making use of the stored regression coefficients.

Clearly, Algorithm SG 1 is a special case of Algorithm SG 2 when all coef-
ficients in the linear model are equal to zero.

In this discussion, we skip questions related to estimation of linear models
and assume that some algorithm is employed for this purpose. Our goal is to
demonstrate that the all situations arising in practice can be fitted into the
current framework of modeling financial variables with skewed and heavy-
tailed distributions with a copula model for the dependence structure.

2.8.2 Risk calculation engine

Having generated scenarios for the relevant variables, it remains to carry
out the calculation of portfolio risk. Depending on the portfolio composi-
tion, this part of the process may turn out to be the most computationally
intensive one. For example, availability of scenarios for equity returns is
sufficient for risk analysis of purely equity portfolios. However, if there are
derivatives in the portfolio, they need to be evaluated.

In the Monte Carlo framework, the derivatives can be evaluated in each
state of the world; that is, for each vector of scenarios. Only then we can
compute the positions value and, finally, the portfolio value in each state of
the world. The very final step is to compute the ETL and the correspond-
ing marginal and incremental risk statistics using the available scenarios on
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position and portfolio level. Therefore, the key steps in the risk calculation
engine are the following ones.

Algorithm RC

1. Evaluate the positions values in each state of the world. This step may
demand time consuming derivatives pricing routines.

2. Compute the portfolio value in each state of the world.

3. Calculate risk and additional risk statistics on portfolio and position
level.

As we noted, sometimes it is important to see the risk on portfolio and
position level coming from one factor or group of factors. For example, this
factor could be a market index, a currency, or a given yield curve. In such a
case, we can assume that all other variables retain their present values in the
scenarios and we simulate only the variables we are interested in. Thus, the
final scenarios are driven only by the changes of the simulated variables and,
therefore, the portfolio risk statistics represent the impact on the portfolio
coming from the corresponding variables. Evidently, this does not require
reworking Algorithm RC but only the scenarios input.

For additional information, see Rachev, Racheva-Iotova, Stoyanov and
Fabozzi (2008) and also Rachev, Martin, Racheva-Iotova and Stoyanov (2008).





Chapter 3

Credit Risk

3.1 Introduction

Cognity CreditRisk System is an integrated risk framework based on heavy-
tailed risk models and downside risk measures. The methodology is appli-
cable to all financial instruments worldwide with inherent credit risk and
provides a full picture of portfolio credit risks incorporating extreme loss
dependencies which can signal over concentration and indicate actions to
benefit from diversification in a mark-to-market framework.1 The system
includes all necessary components for active risk management which help
determine investment decisions, actions to reduce portfolio risk, consistent
risk-based credit limits and rational economic capital. For more information
on the recent advances in credit risk modeling, see Cowell and ans S. Trueck
(2008).

Cognity CreditRisk System comprises two models for credit risk evalua-
tion for complex portfolios of instruments with inherent credit risk – Asset
Value Approach (Model 1) and Stochastic Default Rate Model (Model 2).
The choice of the model depends on several factors:

• The nature of the analyzed portfolio. Asset Value model (AVM) will
work best for portfolios with a great number of market driven instru-
ments and mainly corporate obligors. On the opposite, the accuracy
of the Stochastic Default Rate Model (DRM) is not influenced by the
types of obligors (corporate, retails, etc.).

• Goals of the analysis. Assessing portfolio risk driven by changes in debt
value caused by changes in obligor credit quality (including default)
is achievable using the first model. The second model considers only
default as a credit event.

1See D’Sourza et al. (2002) for comparison between stable non-Gaussian and Gaussian
approach for credit default swap valuation.
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• Availability of data. The two models have significant differences in the
type of input data requirements.

• IT Capacity. The second model requires is more computationally in-
tensive.

3.2 Asset Value Model

There are four key steps in the Monte Carlo approach to credit risk modeling
in the Asset-Value model:

Step 1. Modeling the dependence structure between market risk fac-
tors and the credit risk drivers.

Step 2. Scenario generation — each scenario corresponds to a possible
“state of the world” at the end of our risk horizon. For the purposes of
credit risk modeling, the “state of the world” is just the credit rating
of each of the obligors in our portfolio and the corresponding values
of the market risk factors affecting the portfolio.

Step 3. Portfolio valuation— for each scenario, we evaluate the portfolio
to reflect the new credit ratings and the values of the market risk
factors. This step offers us a large number of possible future portfolio
values.

Step 4. Summarize results — having the scenarios generated in the pre-
vious steps, we get an estimate for the distribution of the portfolio
value. One may then choose to report any number of descriptive statis-
tics for this distribution.

We provide a schema in Figure 3.1 which summarizes the calculation
process and then we explain in detail the key steps outlined above. The
general methodology described below is valid for every Monte Carlo ap-
proach to credit risk modeling in the Asset-Value model. We describe the
improvements we have introduced in the models.

3.2.1 Model dependence structure

The general assumption of the model is that the driver of credit events is
the asset value of a company. This means one should be able to model the
dependence structure between asset values of the counterparties. As in Cred-
itMetrics, at this point we assume that the dependence structure between
asset values of two firms can be approximated by the dependence structure
between the stock prices of those firms. This fact offers a very natural solu-
tion to the problem: if we are successful in modeling dependence structure
between the stock prices and all relevant market risk factors (interest rates,
exchange rates, etc.), then we accomplish simultaneously two goals:
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Figure 3.1: The schema summarizes the calculation process by showing the
data required for each step and highlighting the key components of the
model.
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• We construct dependency between credit risk events of our obligors

• We model dependency between market risk factors and the credit risk
drivers

If one uses as a measure of dependence the correlation between risk
factors (as in CreditMetrics), the above task is trivial — all one needs is to
estimate the correlation matrix for the stock prices and the relevant market
risk factors.

The correlation is a widespread concept in modern finance and insurance
and stands for a measure of dependence between random variates. However,
as we noted in Section 1.5.6, this term is very often incorrectly used to mean
any notion of dependence. Actually correlation is one particular measure
of dependence among many. Of course, in the world of multivariate normal
distribution and, more generally in the world of spherical and elliptical dis-
tributions, it is the accepted measure, see Chapter 1 for more information
regarding spherical and elliptical distributions. Yet empirical research shows
that real data seldom seems to have been generated from a distribution be-
longing to this class.

There are at least three major drawbacks of the correlation method. Let
us consider the case of two real-valued random variables X and Y.

1. The variances of X and Y must be finite or the correlation is not
defined. This assumption causes problems when working with heavy-
tailed data. For instance the variances of the components of a bivariate
t(n) distributed random vector for n ≤ 2 are infinite, hence the corre-
lation between them is not defined.

2. Independence of two random variables implies correlation equal to
zero, the opposite, generally speaking, is not correct — zero correlation
does not imply independence. A simple example is the following: Let
X ∼ N(0, 1) and Y = X2. Since the third moment of the standard
normal distribution is zero, the correlation between X and Y is zero
despite the fact that Y is a function of X which means that they
are dependent. Only in the case of multivariate normal distribution
zero correlation and independence are interchangeable notions. This
statement is not valid if only the marginal distributions are normal
and the joint distribution is non-normal. The example on Figure 3.2
illustrates this fact

3. The correlation is not invariant under non-linear strictly increasing
transformations T : R → R which is a serious disadvantage. In general
corr(T (X), T (Y )) 6= corr(X,Y ).

A more prevalent approach is to model dependency using copulas, see Sec-
tion 1.5.6 for more details on copulas. The use of copulas offers the following
advantages:
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Figure 3.2: 5000 simulated data from two bivariate distributions with nor-
mal marginals and identical correlation of 0.9 but different dependence struc-
tures.

• The nature of dependency that can be modeled is more general. In
comparison, only linear dependence can be explained by the correla-
tion.

• Dependence of extreme events can be modeled.

• Copulas are indifferent to continuously increasing transformations (not
only linear as it is true for correlations): If (X1, . . . , Xn)

t has copula
C and T1, . . . , Tn are increasing continuous functions, then the vector
(T1(X1), . . . , Tn(Xn))

t also has copula C.

This is extremely important in Asset-Value models for credit risk, be-
cause this property postulates that the asset values of two firms shall have
exactly the same copula as the stock prices of these two companies. The
latter is true if we consider the stock price of a company as a call option
on its assets and if the option pricing function giving the stock price is con-
tinuously increasing with respect to the asset values. Cognity Credit Risk
Module supplies both models for describing dependence structure:

• The simplified approach using correlations like a measure for depen-
dency
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• The copula approach. Our model accounts for the joint extreme move-
ments at the same time not incurring significant computational bur-
den. This is done by different treatment of the extremes and the body
of the distribution trying to avoid in this way the curse of dimension-
ality.

As a conclusion to this part of the discussion it is worth saying that
in case there is no information about stock prices for a given obligor we
employ the idea of segmentation described in CreditMetrics. The essence of
this approach is that the user determines the percentage of the allocation
of obligor volatility among the volatilities of certain market indexes and
explains the dependence between obligors by the dependence of the market
indexes that drive obligor volatility.

3.2.2 Scenario generation

In this section, we discuss how to generate scenarios of future credit ratings
for the obligors in our portfolio and simultaneously for the changes of the
market risk factors. Each set of future credit ratings and values of the
market risk factors corresponds to a possible “state of the world” at the end
of our risk horizon.

We shall rely heavily on the asset value model. The steps to scenario
generation are as follows:

1. Establish asset-return thresholds for the obligors in the portfolio.

2. Generate scenarios of asset returns and the market risk factors using
appropriate distribution — this is an assumption to be imposed.

3. Map the asset return scenarios to credit rating scenarios.

If we are using a multivariate normal distribution as a probability model
for the log-returns of asset values and market risk factors, generating sce-
narios is a simple matter of generating correlated, normally distributed vari-
ables. There is a well known algorithm, see Section 1.6.2 in Chapter 1.

However, it is a widely accepted critique of the normal distribution that
it fails to explain certain properties of financial variables — fat tails and
excess kurtosis. The family of Stable distributions that we are proposing
contains as a special case the Gaussian (Normal) distribution. However,
non-Gaussian Stable models do not possess the limitations of the normal one
and all share a similar feature that differentiates them from the Gaussian
one – heavy probability tails. In addition they are completely described by
four parameters which control, in addition to the variability and mean, the
degrees of heavy tails and skewness. Thus they can model greater variety
of empirical distributions including skewed ones. For more information on
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stable distributions and how multivariate models can be constructed and
simulated, see Chapter 2.

When using stable distributions the following sub-steps are required:

1. Estimate the parameters of the stable distribution for each factor (as-
set values or market risk factor) using historical data. There are several
approaches; maximum likelihood estimation provides the most accu-
rate results.

2. This first sub-step models the marginal distributions of our risk drivers.

3. Employ the dependence structure model in Section 1 and construct a
multivariate distribution the marginals of which are stable with esti-
mated parameters from step 2.

4. Generate scenarios sampled from the multivariate probability model
developed in step 3.

5. Transform the generated scenarios to stable marginals by using the
universe of the fitted stable cdf in step 1.

Once we have scenarios for the asset values, we only need to assign credit
ratings for each scenario. This is done by comparing the asset value in each
scenario to the rating thresholds.

3.2.3 Portfolio valuation

For non-default scenarios, the portfolio valuation step consists in applying
a valuation model for each particular position within the portfolio over each
scenario. The yield curve corresponding to the credit rating of the obligor
for this particular scenario should be used.

For default scenarios, the situation is slightly different. There are two
approaches dealing with the recovery rate required for default scenarios:

• Assume constant recovery rates — then the value of a position in case
of a default scenario is simply the nominal amount times recovery rate.

• Allow the recovery rate to be a random variable.

As discussed in many empirical analysis recovery rates are not determin-
istic quantities but rather display a large amount of variation. This variation
of value in the case of default is a significant contributor to risk. Recovery
rates are modelled using a Beta distribution with a specified mean and stan-
dard deviation. In this case, for each default scenario for a given obligor, we
should generate a random recovery rate for each particular transaction with
defaulted obligor. The value of a given position in case a particular default
scenario is realized will be different.
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If we have derivatives in the portfolio, it is possible to apply non-standard
derivative pricing under the stable assumption. For this purpose we model
the volatility in the stochastic process of the underlying as random. The
distribution of the random volatility is a maximally skewed stable law called
a subordinator and is in line with a more general assumption about the price
process of the underlying, called a subordinated process. For more details,
refer to Rachev and Mittnik (2000). In the case of non-standard derivative
pricing, we have the following steps:

1. Estimate the parameters of the subordinator from the returns series
of the underlying.

2. In each state of the world generate a random volatility from the fitted
distribution in step 1.

3. In each state of the world estimate the value of the derivative using
the available realizations of the random volatility and the value of the
underlying.

3.2.4 Summarize results

Having the portfolio value scenarios generated in the previous steps, we ob-
tain an estimate for the distribution of the portfolio values. We may then
choose to report any number of descriptive statistics for this distribution.
The calculation of statistics is one and the same for both models. For exam-
ple, mean and standard deviation of future portfolio value can be obtained
from the simulated portfolio values using sample statistics. Because of the
skewed nature of the portfolio distribution, the mean and standard devia-
tion may not be good measures of risk. Since the distribution of values is
not normal, we cannot infer percentile levels from the standard deviation.
Given the simulated portfolio values, we can compute better measures, for
example empirical quantiles, or mean shortfall.

To this point, we have considered only statistics, which describe the
portfolio distribution. We would also like to consider individual assets and
to ascertain how much risk each asset contributes to the portfolio. To this
end, we can use marginal and incremental risk statistics:

• Marginal ETL. Marginal ETL stands for the derivative of ETL with
respect to the position weight. The resulting number indicates how
much portfolio risk changes provided that we increase by a small
amount the weight of the corresponding position. In Section 2.7 we
consider the more general idea of risk budgeting with ETL which can
be directly applied.

• Incremental ETL. Incremental ETL is simply the difference between
portfolio ETL and the ETL of the same portfolio but with this position
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removed. Thus, if the position is a risk diversifier, the incremental
ETL will be a negative number because the ETL of the portfolio with
the position removed will be larger. This analysis concerns adding or
removing the entire position.

3.3 Default-rate model

There are five key steps in the Monte Carlo Approach to Credit Risk Mod-
eling based on Stochastic Modeling of Default Rate:

Step 1. Build econometric models for default rates and for the explana-
tory variables. An econometric model is evaluated for the default prob-
ability of a segment based on explanatory variables (macro-factors,
indexes, etc.) using historical data for default frequencies in a given
segment and historical time series for the explanatory variables.

Step 2. Generate scenarios. Each scenario corresponds to a possible
“state of the world” at the end of our risk horizon. Here, the “state
of the world” is a set of values for the market variables and for the
explanatory variable defined in Step 1.

Step 3. Estimate default probabilities under each scenario for each of
the segments using the scenario values of the explanatory variables and
the model estimated in Step 1. Simulate sub-scenarios for the status
of each obligor (default/non-default) based on the estimated default
probability.

Step 4. Portfolio valuation. For each scenario, revalue the portfolio to
reflect the new credit status of the obligor and the values of the market
risk factors. This step generates a large number of possible future
portfolio values.

Step 5. Summarize results. Having the scenarios generated in the pre-
vious steps, we possess an estimate for the distribution of portfolio
values. We may then choose to report any descriptive statistics for
this distribution.

We provide a schema in Figure 3.3 describing the calculation process
and then we continue with a detailed description of the key steps outlined
above.

3.3.1 Build the econometric models

This first step is in fact the most challenging and critical task of the model.
Two crucial models should be defined and estimated:
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Figure 3.3: The schema summarizes the process showing the data required
for each step and highlighting the key components of the model.
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• An econometric model for default probability of a segment based on
explanatory variables like macro-factors, indexes, etc.

• Time series model for explanatory variables.

Default probability models should be evaluated for each user-defined seg-
ment. The segment definitions can be flexible enough based on the following
criteria

• credit rating

• industry

• region

• size of the company, provided the time series of default rates are avail-
able for each of the segments.

The explanatory variables that might be suitable to represent the systematic
risk of the default rates in the chosen country-industry-segments depend on
the nature of the portfolio and might be

• industry indices

• macro variables (GDP, unemployment)

• long-term interest rates, exchange rates, etc.

The first task is to define a model for the default probability of a segment
based on explanatory variables (macro-factors, indexes, etc.) using historical
data for default frequencies in a given segment and historical time series
for the explanatory variables. In other words we choose a function f and
estimate its parameters such that

DFs,t = f(X1,t, . . . , XN,t) (3.1)

where DFs,t is the default frequency in the segment s for the time period t,
Xi,t is the value of the i-th explanatory variable at time t, i = 1 . . . N

The second model is a time-series model for explanatory variables. The
usual way to model dependent variables (as also suggested in CreditPortfolio-
View) is to employ some kind of ARMA (p, q) model. That is the same as
assuming that

Xt = a0 +

p∑

i=1

aiXt−i +

q∑

j=1

bjet−i + et, where et is N(0, σ2).

It is important to note that the proper modeling of the default rate will
depend very much on the proper modeling of the dependent variables.
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Another crucial component of the model is the residual distribution mod-
eling. We can observe that the real distribution of residuals deviates form
the assumption of the model — residuals are not normal. They are

• skewed

• with fatter tails

• with higher peak around the center of the distribution

• and there is a volatility clustering

Thus the improper use of normal residuals will end up with “incorrect”
scenarios (simulations) for the possible default rates.

For the modeling of macro-factors, we propose the following more general
model – stable vector AR(1)-ARCH – type model. Under this model
Xt = A1Xt−1 + Et , where Xt = (X1, . . . , Xn)

′ is the vector of explanatory
variables, A1 is n by n-matrix, Et = (e1,t, . . . , en,t)

′ is the vector of residuals
which are modeled by multivariate stable ARCH model, see also Racheva-
Iotova et al. (2003). Employing stable residuals results in:

• fatter tails of the residuals

• higher variability of default rates

The ARCH component of the model takes care of volatility clustering. More-
over, since the model is a vector autoregressive model we will eventually
succeed in modeling joint behavior of macro-factors.

Note 1: Relevant market variables (like interest rates) are also included in
the model.

3.3.2 Generate scenarios

Each scenario corresponds to a possible “state of the world” at the end of
our risk horizon. Here, the “state of the world” is a set of values for the
market variables and for the explanatory variable defined in Step 1.

The scenarios are simulated according to the vector-autoregressive model
discussed in Step 1. The important feature of the model is that the macro-
factors and market risk factors are modeled by a joint probability distri-
bution (See note 1 above). The latter means that the realizations of the
market risk factors depend on the realizations of the macro-factors.
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3.3.3 Estimate default probabilities

In the third step, the default probabilities are estimated under each scenario
for each of the segments using the simulated values of the explanatory vari-
ables and the model estimated in Step 1. Then we simulate sub-scenarios
for the status of each obligor (default/non-default) based on the estimated
default probability. For each scenario set j in Step 2, we estimate the prob-
ability of default for each segment based on the model estimated in Step
1

Ps,j = fs(X1,j , . . . , XN,j)

where Ps,j is the default probability for the segment s under j-th simulation.
Now, for each scenario j, we generate independent sub-scenarios for each

counterparty state (default or no-default) based on its probability of default
Ps,j .

At this point, we have obtained the full set of scenarios describing the
possible “states of the world” in terms of market risk factor values and
obligor states (default or non-default).

3.3.4 Portfolio valuation

For each scenario, we revalue the portfolio to reflect the new credit status
of the obligor and the values of the market risk factors. The result is a
large number of possible future portfolio values. This step is similar to the
corresponding step in the AVM described in the previous section. The only
difference is that in the current model there is a simplification –it considers
only default or non-default status for an obligor.

3.3.5 Summary of the results

At this point, we have created a number of possible future portfolio values.
The final task is then to synthesize this information into meaningful risk
estimates. We can use any of the descriptive statistics from the previous
section.





Chapter 4

Optimal Portfolios

4.1 Introduction

There are two basic approaches to the problem of portfolio selection under
uncertainty. One of them is the stochastic dominance approach, based on the
axiomatic model of risk-averse preferences. Unfortunately, the optimization
problems that arise are not easy to solve in practice. The other is the reward-
risk analysis. According to it, the portfolio choice is made with respect to
two criteria — the expected portfolio return and portfolio risk. A portfolio
is preferred to another one if it has higher expected return and lower risk.
There are convenient computational recipes and geometric interpretations of
the trade-off between the two criteria. A disadvantage of the latter approach
is that it cannot capture the richness of the former. As a matter of fact,
the relationship between the two approaches is still a research topic (see
Ogryczak and Ruszczynski (2001) and the references therein).

Related to the reward-risk analysis is the reward-risk ratio optimiza-
tion. Since the publication of the Sharpe ratio, see Sharpe (1966), which is
based on the mean-variance analysis, some new performance measures like
the STARR ratio, the Minimax measure, Sortino-Satchell ratio, Farinelli-
Tibiletti ratio and most recently the R-ratio1 and the GR-ratio2 have been
proposed (for an empirical comparison, see Biglova et al. (2004), Rachev,
Jasic, Biglova and Fabozzi (2005) and the references therein). The new ra-
tios take into account empirically observed phenomena, that assets returns
distributions are fat-tailed and skewed, by incorporating proper reward and
risk measures.

Another area, where the reward-risk ratio analysis is applicable, is the
construction of momentum strategies. In the last decade, it was discovered
that asset returns exhibit persistent momentum behavior in intermediate
horizons — simple strategies of ranking and selecting stocks as winners and

1The R-ratio is an abbreviation for the Rachev-ratio
2The GR-ratio is an abbreviat0ion for the Generalized Rachev ratio
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losers are able to generate significant profit. It has been ascertained that
these effects are present in the US markets, Europe and emerging markets
and also in samples from different periods of time. Yet there is not an
accepted explanation of the existence of momentum strategies by any con-
ventional or non-conventional theory, see Rachev, Jasic, Biglova and Fabozzi
(2005).

In this chapter, first we briefly describe the the Markowitz problem and
the related Sharpe ratio optimization. Next we continue with a generaliza-
tion, introducing the stochastic dominance analysis and the consequences
when different multivariate assumptions for the assets return distribution
are imposed. In section 4.4 we describe the optimal portfolio problem with
ETL as a risk measure, and comment on the numerical difficulties. Finally,
we describe how a portfolio optimization module can be integrated into the
scenarios based risk management discussed in the previous chapters.3 For
additional information on the framework, see also Racheva-Iotova and Stoy-
anov (2008).

4.2 The mean-variance analysis and the Sharpe

ratio

The classical mean-variance framework introduced by Markowitz in the
1950’s (Markowitz (1952)) is the first proposed model of the second type
and we shall briefly describe it. Suppose that at time t0 = 0 we have an
investor who can choose to invest among a universe of n assets. Having
made the decision, he keeps the allocation unchanged until the moment t1
when he can make another investment decision based on the new information
accumulated up to t1. The vector of assets returns r = (r1, r2, . . . , rn)

T is
stochastic with expected value Er = (Er1, Er2, . . . , Ern)

T . The result of the
investment decision is a portfolio with composition w = (w1, w2, . . . , wn)

T

where wi is the portfolio weight corresponding to the i -th item, i.e. the
share of the initial endowment invested in the i -th asset. We require that
the weights of all portfolio items sum up to 1, wT e =

∑n
i=1wi = 1 where

e = (1, 1, . . . , 1) ∈ Rn. The expected portfolio return, expressed in terms of
the individual items, equals

µp =
n∑

i=1

wiEri = wTEr

A key point in Markowitz’s approach is that the standard deviation of
portfolio return σp is assumed to be the measure of risk. If we denote

3Concerning application of heavy-tailed distributions in portfolio choice theory, see
Ortobelli et al. (2005).
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Σ = {cov(ri, rj)}ni,j=1 to be the covariance matrix of the portfolio items,
then

σ2p =
∑

i,j

wiwjcov(ri, rj) = wTΣw

Sometimes the investor faces certain exogenous constraints. For instance,
a certain subset of the assets is not allowed to constitute more than a given
fraction of total portfolio value. A portfolio that satisfies all constraints in
the selection problem will be called admissible or feasible. Where appropri-
ate, we shall denote the set of all feasible portfolios by X.

The main principle behind the mean-variance analysis can be summa-
rized briefly in two ways:

1. From all feasible portfolios with a given upper bound on σp, find the
ones that have maximum expected return µp;

2. From all feasible portfolios with a given lower bound on µp, find the
ones that have minimum risk σp;

Behind the two formulations of the principle, we can find two optimiza-
tion problems:

max
w

wTEr

subject to wT e = 1
wTΣw ≤ R∗

Lb ≤ Aw ≤ Ub

(4.1)

and

min
w

wTΣw

subject to wT e = 1
wTEr ≥ R∗
Lb ≤ Aw ≤ Ub

(4.2)

where R∗ is the upper bound on portfolio risk, R∗ is the lower bound on
portfolio return, A ∈ Rk×n is a matrix, Lb ∈ Rk is a vector of lower bounds
and Ub ∈ Rk is a vector of upper bounds. The set of k double linear inequal-
ities Lb ≤ Aw ≤ Ub generalizes all exogenous constraints. The solution of
Problem (4.1) or Problem (4.2) represents the optimal portfolio or the port-
folio that is most preferable among the set of all feasible portfolios. As a
matter of fact, the originally proposed problem by Markowitz in his seminal
work is Problem (4.2) and it is known as the Markowitz problem4. The
optimal portfolio wo found in this way is a function of the imposed bounds

4For the general dualty theorems of the type of Problems (4.1) and (4.2), see Rachev
and Rüschendorf (1998)
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R∗ or R∗ depending on whether we consider Problem (4.1) or Problem (4.2).
Let us choose Problem (4.2) for the sake of being unambiguous. Then as
we have explained wo = wo(R∗). Changing the parameter R∗ we obtain the
set of all optimal portfolios, or the mean-variance efficient set. We denote
it by Eo. The curve (woTEr,woTΣwo) where wo ∈ Eo is called the efficient
frontier .

We need to remark that there is a third way to arrive at the mean-
variance efficient set. It is by considering the optimization problem:

max
w

wTEr − λwTΣw

subject to wT e = 1
Lb ≤ Aw ≤ Ub

(4.3)

where λ > 0 is a parameter. In this representation, the objective function
wTEr− λwTΣw is interpreted as a utility function and λ is called the risk-
aversion parameter. Since it is possible to show that the three problems are
equivalent (see, for example, Rockafellar and Uryasev (2002) and Palmquist
et al. (2002)), the mean-variance efficient set can be obtained by the problem
above via varying the risk-aversion parameter.

Suppose that we have received the portfolios from the mean-variance
efficient set and that we can compare and choose among all of them. Are
we indifferent towards all these portfolios? We can compare them in terms
of their expected return for a unit of risk, that is we can compare the ratios

SR(wo) =
woTEr√
woTΣwo

(4.4)

for all portfolios wo ∈ Eo. We would prefer the portfolio with the highest
ratio as it provides the highest expected return for a unit of risk. That is
we solve the problem

max
w∈Eo

wTEr√
wTΣw

(4.5)

Geometrically, the point on the Efficient frontier that corresponds to the
solution of Problem (4.5) is where a straight line passing through the origin
is tangent to the Efficient frontier (see Figure 4.1). The optimal portfolio
received is called the tangent portfolio5. The ratio defined in equation (4.4)
is a version of the reward-to-variability ratio called the Sharpe ratio, hence
the notation. It was first introduced to measure the performance of mutual
funds and was originally proposed as the ratio between the expected excess
return (the expected return of the fund above a benchmark portfolio return)
and the standard deviation of the returns of the fund, see Sharpe (1966) and
Sharpe (1994).

5The optimal portfolio is known as the Markowitz market portfolio, or can also be
called tangent portfolio with zero risk-free rate.
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Figure 4.1: The efficient frontier and the tangent portfolio

4.3 Generalization of the mean-variance analysis

An accepted theory of asset choice under uncertainty is the stochastic dom-
inance approach, which is connected to the expected utility theory. Ex-
pected utility representation of agent’s preferences is present if there exists
a function u(·) such that a random consumption X is preferred to a random
consumption Y if and only if E(u(X)) ≥ E(u(Y )), where E(·) is the expec-
tation under the agent’s probability belief. The formal approach was first
introduced by Neumann and Morgenstern (1953).

Usually two assumptions are made for a utility function:

1. u(·) is a non-decreasing and a non-constant function, meaning that a
rational decision maker would prefer more than less. Such decision
makers are called non-satiable. Let us denote the set of those utility
functions by U1

2. u(·) is assumed concave, i.e. the decision maker is risk averse. Let us
denote by U2 the set of all u(·) ∈ U1 that are concave.

In the stochastic dominance approach, random variables are compared
by pointwise comparison of some functions constructed from their distri-
bution function, see for example Ortobelli and Rachev (2001) and the nu-
merous references therein. In the context of portfolio selection, the random
variables are the random portfolio returns. Let w and v are two feasible
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portfolio compositions. Then the corresponding portfolio returns are wT r
and vT r, where r is the random vector of portfolio items returns. The pref-
erence relation is defined on the random portfolio returns and it is naturally
translated into the space of portfolio compositions. We say that portfolio w
dominates portfolio v in the sense of the first degree stochastic dominance
(FSD), wT r �FSD vT r, if all investors having utility functions in U1 prefer
wT r to vT r. The following equivalence holds:

wT r �FSD vT r ⇐⇒ FwT r(t) ≤ FvT r(t), ∀t ∈ R (4.6)

where FX(t) is the cumulative distribution function of the random variable
X. FSD is a general relation, according to which wT r �FSD vT r within all
non-satiable investors, no matter how risk-averse or risk-seeking they are.

For decision making under risk, another concept is more important.
Portfolio w dominates portfolio v in the sense of the second degree stochastic
dominance (SSD), wT r �SSD vT r, if all investors having utility functions in
U2 prefer wT r to vT r. We have the next equivalence relation:

wT r �SSD vT r ⇐⇒
∫ t

−∞
FwT r(u)du ≤

∫ t

−∞
FvT r(u)du, ∀t ∈ R

(4.7)
If wT r �SSD vT r, then wT r is preferred among all non-satiable investors,
who are risk-averse.

An additional relation is constructed by Rothschild and Stiglitz (1970).
Portfolio w dominates portfolio v in the sense of Rothschild-Stiglitz domi-
nance (RSD), wT r �RSD vT r, if all investors with concave utility functions
prefer wT r to vT r. Again, we have an equivalence relation in terms of some
functions of the corresponding cumulative distribution functions:

wT r �RSD vT r ⇐⇒





wTEr = vTEr,∫ t

−∞
FwT r(u)du ≤

∫ t

−∞
FvT r(u)du, ∀t ∈ R

(4.8)
Further on, it is possible to show that the next implications hold: FSD =⇒

SSD and RSD =⇒ SSD. The relationship between stochastic dominance
and the mean-risk models, see Ogryczak and Ruszczynski (2001) and De-
Giorgi (2005).

4.3.1 The portfolio choice problem

Assume that the market is frictionless, there are no arbitrage opportunities
and all investors are price takers. An investor with a utility function u(·)
would like to know which feasible portfolio composition w maximizes the
expected value of the utility function u(·). In effect, the investor would
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be interested in the following portfolio composition sets, which are called
efficient sets, for more details see Rachev and Mittnik (2000):

Wi =




w ∈ X

∣∣∣∣∣∣∣∣

w ∈ arg sup
x∈X

E(u(xT r)), u(·) ∈ Ui, and

6 ∃y ∈ arg sup
x∈X

E(u(xT r)) : E(v(yT r)) ≥ E(v(wT r)),

for all v(·) ∈ Ui and strictly for some v(·), i = 1, 2





where X is the set of all admissible portfolios. W1 represents the set of
all feasible portfolio compositions which are not dominated according to
FSD, i.e. which maximize the expected utility of non-satiable investors. W2

represents all feasible portfolios which are not dominated according to SSD
— portfolios that maximize the expected utility of non-satiable, risk-averse
investors. In a similar way, we define the efficient set for the risk-averse
investors:

W̃ =




w ∈ X

∣∣∣∣∣∣∣∣

w ∈ arg sup
x∈X

E(u(xT r)), u(·) is concave, and

6 ∃y ∈ arg sup
x∈X

E(u(xT r)) : E(v(yT r)) ≥ E(v(wT r)),

for all concave v(·) and strictly for some v(·)





W̃ represents all feasible portfolio compositions that are not dominated ac-
cording to RSD.

In order to obtain the above definitions, we implicitly fix the investor
with utility function u(·). Also we can consider the next group of efficient
sets:

Ti =

{
w ∈ X

∣∣∣∣
6 ∃y ∈ X : E(v(yT r)) ≥ E(v(wT r)),
for all v(·) ∈ Ui and strictly for some v(·), i = 1, 2

}

and

T̃ =

{
w ∈ X

∣∣∣∣
6 ∃y ∈ X : E(v(yT r)) ≥ E(v(wT r)),
for all concave v(·) and strictly for some v(·)

}

As a consequence of these definitions and the relations among various
types of stochastic dominance rules, we have that Ti ⊆Wi, i = 1, 2, T̃ ⊆ W̃ ,
T̃ ⊆ T2 and W̃ ⊆W2.

Clearly, the optimization problems that generate the efficient sets Ti,
i = 1, 2 and T̃ on the basis of relations (4.6), (4.7) and (4.8) are continuum
dimensional. It appears that if we assume a particular distributional hy-
pothesis for the random vector r, sometimes it is possible to formulate an
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optimization problem that is more simple and is consistent with a stochastic
dominance order. For example, if r follows the multivariate Gaussian dis-
tribution with mean Er and covariance matrix Σ, r ∈ N(Er,Σ), problem
(4.2) is consistent with RSD, and therefore with SSD.

The class of the elliptical distributions

Owen and Rabinovitch (1983) extend the classical results with the nor-
mal distribution for the more general class of the elliptical distributions,
E(µ,Q, φ). There are representatives of the elliptical family which have
infinite variance and can be used to model heavy-tailed series. For a de-
scription of the basic properties, see Section 1.5.1. The next dominance
rules can be verified under the assumption of the elliptical distribution for
portfolio items returns, see (Rachev and Mittnik, 2000, 433-435).

1. Elliptical stochastic order for non-satiable investors. Suppose that
portfolio vT r has the same dispersion as portfolio wT r, i.e. wTQw =
vTQv, and also vTEr < wTEr. Then for every t ∈ R,

t− wT r

wTQw
≤ t− vT r

vTQv
and FwT r(t) ≤ FvT r(t)

Therefore wT r �FSD vT r.

2. Elliptical stochastic order for risk-averse investors. Suppose that wTEr =
vTEr = m and we have the dispersion relation wTQw < vTQv. Then
for every t ∈ R,

∫ t

−∞
FwT r(u)du ≤

∫ t

−∞
FvT r(u)du

Therefore wT r �RSD vT r.

3. Elliptical stochastic order for non-satiable, risk-averse investors. Give
two portfolios w and v with mean relation wTEr ≥ vTEr and disper-
sion relation wTQw ≤ vTQv, where at least one inequality is strict, it
follows that wT r �SSD vT r.

Markowitz (1959) and Tobin (1958) define the efficient frontier for non-
satiable, risk-averse investors whose portfolio distributions are unambigu-
ously characterized by mean and variance. The same can be expressed by
the following mean-dispersion dominance rule in the elliptical world. We say
that the portfolios in the market are ordered by the mean-dispersion domi-
nance rule if for every couple of portfolios wT r and vT r with wTEr ≥ vTEr
and wTQw ≤ vTQv where at least one inequality is strict, wT r is preferable
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to vT r and, in effect, dominates it. It is clear that the elliptical stochastic
order 3) justifies the Markowitz-Tobin rule. By applying this rule to all
admissible portfolios, we obtain the Markowitz-Tobin efficient frontier —
these are the portfolios which are not dominated in the sense of SSD.

Under the assumption of the elliptical distribution, the portfolio disper-
sion is a measure of risk. Hence solving a problem of type (4.2) with Σ = Q
provides optimal portfolios which are not dominated in the sense of RSD
and belong to the classic extended Markowitz-Tobin mean-dispersion fron-
tier. If we do not restrict the portfolio positions to be long only and allow
unlimited short selling, it is possible to find a closed-form solution.

Theorem 16. Suppose that there are n ≥ 2 risky assets traded in a
frictionless economy where unlimited short selling is allowed and suppose
that portfolio returns belong to the same elliptical family with non-singular
dispersion matrix Q. It is also assumed that the random gross returns on
any asset cannot be expressed as a linear combination of the gross returns
on other assets. Then the solutions of the constrained problem:

min
w

wTQw

subject to
wT e = 1
wTEr = m

(4.9)

are all the portfolio compositions w, satisfying the following analytic relation:

w =
(CQ−1µ−BQ−1e)m+AQ−1e−BQ−1µ

AC −B2
(4.10)

Equivalently, in the mean-dispersion plane we have the relationship

σ2(AC −B2)−m2C + 2mB −A = 0

where µ = Er, m = wTµ, e = (1, 1, . . . , 1)T , A = µTQ−1µ, B = eTQ−1µ,
C = eTQ−1e and σ2 = wTQw.

Proof. See (Rachev and Mittnik, 2000, 435-437).

A risk-free asset can be included in the optimal portfolio problem, see
(Rachev and Mittnik, 2000, 436).

All portfolio compositions from (4.10) are not dominated in the sense of
RSD. As a matter of fact, by the elliptical stochastic order rule for risk averse
investors, every portfolio not dominated in the sense of RSD must have
minimum dispersion for a fixed mean. Therefore the portfolio compositions
from (4.10) belong to T̃ , which is also called Markowitz-Tobin frontier. If we
apply the mean-dispersion dominance rule, we obtain the Markowitz-Tobin
efficient frontier. It consists of all portfolios that satisfy:



112 Chapter 4. Optimal Portfolios

w =
(CQ−1µ−BQ−1e)m+AQ−1e−BQ−1µ

AC −B2
, with m ≥ B

C

It is possible to show that if portfolio items returns belong to the elliptical
family with non-singular dispersion matrix, the mean-dispersion dominance
rule is equivalent to SSD, see (Rachev and Mittnik, 2000, 438-439) and the
references therein.

Translation and scale invariant classes of distributions

Some of the results obtained for the family of the elliptical distributions
can be generalized for any location and scale invariant class of distributions,
for more details see Ortobelli et al. (2003) and Ortobelli et al. (2004). We
say that a class of distributions is location and scale invariant, we use the
notation στk(a), if it has the following characteristics:

1. Every distribution FX ∈ στk(a) is described by a vector of k parame-
ters

(mX , σX , a1,X , . . . , ak−2,X) ∈ Rk

where mX is the mean of X and σX is a positive scale parameter of X.
It is assumed that the class is weakly determined by its parameters.
That is the equality

(mX , σX , a1,X , . . . , ak−2,X) = (mY , σY , a1,Y , . . . , ak−2,Y )

implies that X
d
= Y and the converse is not necessarily true.

2. If FX ∈ στk(a), then for every admissible real t the translated distri-
bution FX+t belongs to the same class with parameters

(mX + t, σX , a1,X , . . . , ak−2,X)

3. If FX ∈ στk(a), then for every admissible positive λ the re-scaled
distribution FλX belongs to the same class with parameters

(λmX , λσX , a1,X , . . . , ak−2,X)

On condition that the distribution of the random portfolio returns be-
long to a translation and scale invariant class, we can identify a stochastic
dominance relation.
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Theorem 17. Suppose that the distribution functions of all random
portfolio returns belong to one and the same class στk(a). Let wT r and
vT r be two portfolios which are unbounded from below. Their distribution
functions are described by the parameters

(mwT r, σwT r, a1, . . . , ak−2) and (mvT r, σvT r, a1, . . . , ak−2)

respectively. Then the following statements are equivalent:

1. mwT r ≥ mvT r and σwT r ≤ σvT r with at least one equality strict.

2. wT r �SSD vT r

Proof. For the proof, see Ortobelli et al. (2003).

As a corollary, it follows that we can formulate an optimization problem
the solutions of which are consistent with SSD. The optimization problem
is given in the next

Corollary 3. Under the conditions of Theorem 17, let us consider the
problem

min
w

σwT r

subject to
wT e = 1
wTEr = m
a1,wT r = a∗1
a2,wT r = a∗2
. . .
ak,wT r = a∗k

(4.11)

where a∗1, a
∗
2, . . . , a

∗
k are predefined values. The solutions of problem (4.11)

are consistent with SSD.

The optimization problem (4.11) can be more or less difficult, depending
on the relationship between the scale of the portfolio distribution, σwT r,
and portfolio weights w on one hand, and the functions ai,wT r = f(w),
i = 1, . . . , k on the other. For example, problem (4.9) is a version of (4.11)
for the translation and scale invariant class of the elliptical distributions.
Because of the specific properties of the elliptical family, the portfolio scale
is a quadratic function of portfolio weights which makes (4.9) suitable to
handle computationally. Unfortunately this is not always the case — there
are classes of distributions for which σwT r is a more complicated function of
w and the additional parameters of the location and scale invariant family
that can make the optimization problem very difficult.

Let us have a closer look at the conditions of Theorem 17 and problem
(4.11). Taking advantage of the generic properties of the location and scale
invariant class, we obtain the following result.
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Theorem 18. Suppose that the distribution functions of all random
portfolio returns belong to one and the same class στk(a) and that ρ(·) is a
positive risk measure with the property ρ(ax) = aρ(x), a > 0. The following
statements hold.

1. Let us have two portfolios w and v such that their distributions are
described by

(m,σwT r, a1, . . . , ak−2) and (m,σvT r, a1, . . . , ak−2)

respectively. Then

vT r �RSD wT r ⇐⇒ ρ(wT r) ≤ ρ(vT r)

2. Let X = {w ∈ D ⊂ Rn|wTEr = m, aj,wT r = a∗j , j = 1, . . . , k}, then

arg min
w∈X

ρ(wT r) = arg min
w∈X

σwT r

Proof. For a proof, see Stoyanov (2005).

Since, as we have mentioned, the class of the elliptical distributions is
a particular example of a location and scale invariant class, the result of
Theorem 18 holds for it as well. Both results in Theorem 18 do not hold if
we allow some of the additional parameters aj , j = 1, . . . , k to depend on
the portfolio composition. In this case, the choice of different classes of risk
measures will generate different optimal solutions.

The class of the multivariate α-stable distributions

Empirical research in the field of finance has shown that the Gaussian dis-
tribution cannot account for the observed properties of the distribution of
assets returns — heavy tails, asymmetry and excess kurtosis. Mandelbrot
and Fama, in their pioneering work in the 1960s, reject the assumption of
normality and suggest a more general family of distributions — the class of
stable laws. For more recent studies on the application of stable distribu-
tions in finance, see Rachev and Mittnik (2000), Rachev (2003) and Rachev
(2004).

A natural candidate for a multivariate distributional assumption is the
class of the multivariate stable laws. If we assume that the vector of as-
sets returns is in the domain of attraction of a multivariate stable distribu-
tion then we can take the limit distribution as an approximate probabilistic
model. That is, suppose r ∈ Sα(Γ, µ), where Γ(·) is the spectral measure
and µ is a vector location parameter, then according to the properties of the
multivariate stable distributions, portfolio returns follow a univariate stable
distribution with the same index of stability, wT r ∈ Sα(σw, βw, µw) where
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σw =

(∫

Sn

|wT s|αΓ(ds)
)1/α

, βw =
1

(σwT r)
α

∫

Sn

|wT s|αsign(wT s)Γ(ds),

and µw = wTµ

An important assumption is α > 1, because in this case the mathematical
expectation of portfolio returns is finite and µw = wTEr. Actually this
is a consequence of the more general result about the distribution of linear
combinations of the components of multivariate α-stable vectors, see Section
1.5.2 for more details about their properties.

Clearly portfolio returns belong to one and the same distribution fam-
ily. Moreover σw and µw are a scale and a location parameters respectively.
Hence we have a location and scale invariant class with four parameters,
στ4(a), and all results from the previous paragraph can be applied (Theo-
rems 17 and 18). We can formulate an optimization problem, equivalent to
problem (4.11), which is consistent with SSD:

min
w

σw

subject to
wT e = 1
wTEr = m
βw = β∗

(4.12)

Clearly, in this case, the scale parameter σw and the additional parameter
βw are complicated functions of w. For alternative optimization problems, in
which σw and βw are replaced by functions of some moments, see Ortobelli
et al. (2003).

Another difficulty with problem (4.12), and generally with the class of
multivariate stable distributions, is that the spectral measure Γ(·) is hard to
estimate from empirical data. The portfolio choice problem is significantly
simplified if we consider a sub-class of the multivariate stable family, the
class of the sub-Gaussian distributions where the parameter estimation is
a more simple task. The sub-Gaussian stable laws are shifted symmetric
multivariate α-stable laws, see Section 1.5.2 for the definition and some
properties. For this multivariate distributional assumption, portfolio returns
follow the symmetric stable law wT r ∈ Sα(σw, 0, µw) with

σw =
√
wTQw, and µw = wTµ

where Q is a positive definite matrix called the dispersion matrix and µ = Er
is the vector of expected returns (recall that we assume α > 1). The sub-
Gaussian stable laws form a special case of the more general class of the
elliptical distributions and for this reason problem (4.12) reduces to problem
(4.9) and has a closed-form solution provided that unlimited short selling
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is allowed, see Theorem 16. For more details about this kind of elliptical
problem and empirical studies of the optimization problem, see Ortobelli
et al. (2003), Ortobelli et al. (2004) and Ortobelli et al. (2005).

The class of the operator stable distributions

A property of the class of the multivariate stable distributions is that all
marginals have one and the same index of stability. Empirical research has
shown that the indices of stability vary with asset types. Thus a more
realistic distributional assumption would be one that allows for different
tail behaviour of the marginal distributions. The class of operator stable
distributions has this advantage. This class also arises from limit theorems
and the multivariate stable laws appear as a special case; employing it,
we do not lose the theoretical appeal that the limit theorems provide. See
Meerschaert and Scheffler (2003) and the references therein and Kozubowski
et al. (2003) for other multivariate models. Also, see Section 1.5.3 for more
details about the class of operator stable distributions.

If we assume that the vector of assets returns is in the domain of attrac-
tion of an operator stable distribution, then we can use the limit distribution
as an approximate mathematical model. Suppose that r is operator stable
with exponent

E =




a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . an




where 1/2 ≤ ai < 1, i = 1, . . . , n then each marginal is α-stable with
exponent αi = 1/ai ∈ (1, 2], i = 1, . . . , n. It comes out that if we have
a portfolio w = (w1, . . . , wn), then the portfolio return wT r is a random
variable with tail behavior P (|wT r| > t) ∼ Ctαw where C is some constant
and aw = mini(αi : wi 6= 0), which means that the heaviest tail among
those of the items with non-zero weight will dominate. That is, the random
variable wT r is in the domain of attraction of some α-stable distribution
Sαw(σw, βw, µw). In case αw > 2, then the portfolio return is in the domain
of attraction of the Gaussian distribution because it has a finite second
moment. That is why we can write that αw = min(αw, 2). Since σw and
µw are a scale and a location parameter, we can again pose the problem in
terms of a location and scale invariant class στ4(a) and use the corresponding
results in Theorems 17 and 18. The optimization problem corresponding to
(4.11), and hence consistent with SSD, is
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min
w

σw

subject to
wT e = 1
wTEr = m
αw = α∗

βw = β∗

(4.13)

As in the case of the multivariate stable assumption, σw, βw and αw can
be replaced by functions of some moments, see Ortobelli et al. (2003). The
constraint αw = α∗ can also be regarded as being equivalent to excluding
certain assets from the optimal portfolio. Since aw = mini(αi : wi 6= 0),
then if αk, k ∈ K ⊂ {1, . . . , n} is below the target α∗, then the assets in
the index set K will not be included in the optimal portfolio. Due to the
existence of some estimation error, one could leave that to the optimization
problem.

4.4 The ETL portfolio optimization model

In recent years, significant efforts have been dedicated to building exten-
sions to the classical mean-variance analysis. The principal reason is that it
leads to correct decisions only when the vector of assets returns follows the
multivariate normal distribution, i.e. r ∈ N(Er,Σ), and, as we have noted,
there is ample empirical evidence against that assumption. The extensions
involve including different risk measures in the optimization problems. In
the next sections we describe the extension of the modified equivalents to
(4.1) and (4.2) and the related optimal reward-risk ratio problems.

The mean-variance principle can be extended for a general risk measure
ρ(·), not necessarily coherent, and the corresponding optimization problems
can be re-stated. For example, Problem (4.2) becomes:

min
w

ρ(wT r)

subject to wT e = 1
wTEr ≥ R∗
Lb ≤ Aw ≤ Ub

(4.14)

The difficulty of solving in practice problem (4.14) depends on the par-
ticular choice of the risk measure ρ(·). Generally, if the risk measure is a
convex function of w, then the optimization problem belongs to the class
of the convex problems and can be solved using the methods of convex op-
timization. The assumption of convexity is very natural because it allows
diversification. If additionally ρ(·) is differentiable, then one can take ad-
vantage of a method for numerical optimization of smooth functions, for
example gradient methods, or sequential quadratic programming methods.
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Sometimes, when the risk measure is more specific, the problem can be
further simplified. We have already discussed the case of the standard devi-
ation being a risk-measure or, more generally, the dispersion in the elliptical
family, in which case the (4.14) reduces to a quadratic programing problem.
There are examples in which (4.14) reduces to a linear programing problem
— when the risk measure can be linearized. For instance this is the case
when ρ(·) is the ETL function or a spectral measure of risk, see Rockafellar
and Uryasev (2002) and Acerbi and Simonetti (2002).

Certainly very often more than one approach is applicable for solving
(4.14). For a linearizable risk measure, it is possible to use either the un-
derlying linear programming problem or the more general convex problem.
Each approach has its advantages and one should be able to assess the trade-
off and choose the most suitable for the corresponding application. We are
not going to discuss (4.14) in its most general form. Such general discus-
sions can be found in Rachev, Stoyanov and Fabozzi (2008). We consider
the special case when the risk measure is the ETL.

In the the beginning of this chapter, we noted that the mean-variance
framework employs variance as a proxy for risk. However, variance is not a
true risk measure because it penalizes symmetrically profit and loss. There-
fore, a reasonable question is if we can extend the reasoning in the previous
section with a quantity which performs better at measuring risk. In the
Cognity system, we have adopted ETL and, thus, we have extended the
mean-variance framework into the mean-ETL framework in which we mea-
sure risk by means of ETL.

Practically, the mean-variance principles remain valid after replacing
variance with ETL. We can re-define the three basic types of problems we
discussed in the previous section:

• minimize ETL subject to a constraint on portfolio expected return;

• maximize portfolio expected return subject to a constraint on portfolio
ETL;

• maximize a utility function composed of portfolio expected return and
portfolio ETL;

In order to illustrate the new framework, we provide an example with
the utility function approach. The utility function is composed of two terms
— one responsible for portfolio expected return and another for portfolio
ETL

max
w

[Erp − λ× ETLǫ(rp)] (4.15)

where w is a vector containing portfolio weights, rp stands for portfolio
return rp = w′r, and λ is a positive risk-aversion coefficient. The magnitude
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of the risk-aversion coefficient represents portfolio manager risk preferences,
i.e., higher λ value stipulates higher risk-averse attitude. Note that unlike
the mean-variance framework, the optimal solution depends on one addi-
tional parameter which defines the risk measure — the tail probability of
the ETL. Varying the tail probability while holding the risk-aversion param-
eter fixed will lead to different optimal allocations.

4.4.1 Model statement

By definition, ETL at tail probability 1− ǫ, denoted by ETLǫ(rp), is the av-
erage of the value-at-risk (VaR) numbers larger than the VaR of the portfolio
loss (−rp)6 at tail probability 1− ǫ. The complement of the tail probability,
i.e., the value of ǫ, is a user-specified quantity. It should be chosen in such a
way that it best suits investment and risk-averse preferences of the investors.

From a mathematical viewpoint, the optimization problems involving
ETL belong to the general class of convex programming problems. How-
ever, the structure of the ETL allows for a significant simplification of the
optimization problem when we consider scenarios. Thus, at the cost of intro-
ducing additional variables, the optimization problem can be formulated as
a linear programming problem which, as far as the structure is concerned, is
simpler than quadratic problems. We say that a problem is linear when the
objective function is a linear function also the set of constraints is defined
by means of linear equations. In the sequel, we define the model by means
of the linearization technique developed in Rockafellar and Uryasev (2002).

The scenarios utilized in the portfolio optimization module are generated
on the basis of the assumptions specified in the scenario generation settings.
Generally, the model relies on a set of available scenarios which can be gen-
erated from any parametric model. Thus, we can generate scenarios based
on stable distributions, or a more general model involving factor analysis,
and a dependence model such as the skewed Student’s t copula. Suppose
that for a given number of n funds, we simulate k returns scenarios per fund.
Thus we obtain a k × n matrix, H, containing those scenarios in rows (and
columns per fund)

H =




r11 r12 . . . r1n
r21 r22 . . . r2n
...

...
. . .

...
rk1 rk2 . . . rkn


 , (4.16)

where rij stands for the i-th return scenario of the j-th fund. The matrix

H can be constructed from historical observations7 as well. Employing this

6Note, portfolio return rp implies portfolio loss (−rp).
7In such case the time is modeled by the index i for historical dates ranging from time

t1 to time tk.
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matrix notation let us state the linear programming formulation of the min-
imum ETL problem for portfolio w and funds returns scenarios H

ETLǫ(Hw) = min
w,θ,d

θ +
1

kǫ
d′e

s.t. −Hw − θe ≤ d
w′e = 1
d ≥ 0, θ ∈ R

(4.17)

where d′ = (d1, . . . , dk) is a vector of auxiliary variables, e = (1, . . . , 1) ∈ Rk

is a vector of ones, and θ ∈ R is an additional variable coming from the lin-
earization technique and yielding the VaR quantile at tail probability ǫ. For
additional information about the optimization problem, see Rockafellar and
Uryasev (2002). The first inequality in (4.17) involves vectors and must be
interpreted in a component-wise manner (i.e., one inequality for each vector
entry, in other words, one inequality for each scenario). Mathematically,
this is expressed by the following equivalent relation

−Hw − θe ≤ d ⇐⇒

∣∣∣∣∣∣∣∣

−r1w − θ ≤ d1
−r2w − θ ≤ d2
. . .
−rkw − θ ≤ dk

where ri is the i-th row in H for i ranging from 1 to k, that is, the vector
ri contains the i-th scenario for each fund in our portfolio.

The portfolio model in (4.17) optimizes the ETL of a portfolio by finding
a composition w which minimizes ETL. The model may seem somewhat
complicated because of the vector-matrix notations, but in fact, it has a
very simple structure. The objective function is a linear function and all
constraints are linear equalities and inequalities. There are very efficient
algorithms for solving such types of so-called linear programming problems.

The minimum ETL problem (4.17) can be extended with other linear
constraints such as the expected returns constraint

Erp ≡ w′µ ≥ R∗.

All relevant types of such constraints are described in the next section.
In a similar fashion, we formulate the maximum expected portfolio return

problem subject to an upper bound R∗ on the ETL quantity. For this reason,
we include the objective function of (4.17) in the constraint set as follows

max
w,θ,d

w′µ

s.t. −Hw − θe ≤ d
w′e = 1

θ +
1

kǫ
d′e ≤ R∗

d ≥ 0, θ ∈ R.

(4.18)
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The structure of the resulting formulation (4.18) is again a linear program-
ming problem.

The objective function in the last two optimization models (4.17) and
(4.18) can have a more composite form such as the one shown in (4.15)
combining risk and return. We still can transform it in easy-to-optimize
linear function

max
w,θ,d

[
w′µ− λ×

(
θ +

1

kǫ
d′e

)]
. (4.19)

In this utility-type objective function we might additionally include a turnover
expression without breaking the nice structure.

4.4.2 The ETL efficient frontier

By varying λ and solving problem (4.19), we arrive at the set of mean-ETL
efficient portfolios. These portfolios can be also obtained either through
solving (4.17) or (4.18) with an appropriate lower or upper bound constraint,
R∗ or R∗, on the expected return or on the ETL quantity, respectively. When
we plot the expected return and the ETL of the efficient portfolios in the
mean-ETL plane we arrive at the mean-risk efficient frontier (EF). The EF
shows the trade-off between risk (namely ETL) and expected return of the
mean-ETL efficient portfolios.

From a mathematical viewpoint, the most robust way to obtain the
EF is through the minimum ETL optimization given in (4.17). In an EF
optimization, the corresponding model is repeatedly solved subject to a
series of lower bounds on the portfolio expected return.

The EF graph shows the trade-off between risk and return of the reward-
risk efficient portfolios. he EF is built in the following way. First, we solve
for the so-called global minimum risk portfolio. That is, we minimize the
portfolio risk (measured through variance or ETL) leaving the return un-
constrained. Second, we solve for the maximum portfolio expected return
leaving the portfolio risk unconstrained. These two portfolio optimization
models yield the end points of the EF graph. Then, a uniform grid is
constructed for the upper bounds on the expected return, and a series of
portfolio optimization problems is solved — minimizing the risk for each
level of portfolio return on the uniform grid. The resulting risk-return pairs
are plotted as shown on top part of Figure 4.2.

The bottom part of Figure 4.2 illustrates how portfolio weights change
along the efficient frontier. An important observation from the plots on these
figures concerns the so-called portfolio diversification. That is, portfolios
corresponding to lower risk and return values (EF points on the left side
of the graph) are more diversified portfolios. In other words, more funds
are being included in the optimal portfolio allocation. So that the portfolio
risk is being diversified among more funds. The left side of the two figures
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Figure 4.2: The top plot shows the efficient frontier in the mean-ETL plane.
The bottom plot shows the compositions of the optimal portfolios along
the efficient frontier. Both plots have the same horizontal axis. The shaded
areas correspond to the values of the portfolio weights w1 through w5 located
from the bottom to the top on the graph.
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shows significant percent holdings allocated among all weights w’s. On the
other hand, the right side of the two figures shows percent holdings allocated
only between two w’s weights which indicates that these portfolios are more
concentrated.

This observation is related to portfolio diversification is actually the cor-
nerstone of the highly spelled-out trade-off between risk and return. Diver-
sified portfolios are less risky but they also have smaller expected return.
Higher return portfolios are more risky and, i.e. less diversified.

An important property of the EF plot is that if the expected return is
viewed as a function of the ETL or standard deviation, this function is a
concave one. This property is basically due to the diversification effect, for
a mathematical proof, see Stoyanov (2005). If a fund manager constructs
all possible portfolios from the funds included, then all these portfolios will
appear below the EF line. Portfolios which are not placed on the EF line are
called suboptimal portfolios. When we solve a minimum risk or maximum
return portfolio optimization problem, then we always obtain a portfolio on
the EF line.

Concerning the efficient portfolios along the EF line, they can also be
compared in terms of their risk-adjusted return. Thus, among the EF portfo-
lios the most valuable one is the portfolio which yields the maximum return
to risk ratio. Provided the portfolio risk is identified with the portfolio stan-
dard deviation then the resulting return-to-risk ratio is called the Sharpe
Ratio. Similarly, if the portfolio risk is measured by the portfolio ETL then
the resulting ratio is called the STARR Ratio.

4.5 STARR ratio optimization

A key step in the investment management process is measurement of port-
folio performance. A formula which quantifies the portfolio performance is
called a performance measure. A widely used measure of performance is the
Sharpe ratio. In essence, it is the ratio between the average active portfolio
return and the standard deviation of portfolio return. In this way, it is a
reward-to-variability ratio in which the variability is computed by means of
the standard deviation.

As pointed out in the previous chapter, standard deviation penalizes
both the upside and the downside potential of portfolio return. Therefore,
it is not a very appropriate choice as a measure of performance. This defi-
ciency was recognized and many alternatives to the Sharpe ratio have been
proposed in the literature. Some of them are reward-to-variability ratios
in which a downside dispersion measure is used in the denominator. One
example is the Sortino ratio, in which the downside semi-standard deviation
is used as a measure of variability.

Other types of performance measures are reward-to-risk ratios. In con-
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trast to the reward-to-variability ratios, they calculate the risk-adjusted ac-
tive reward of the portfolio. For example, the Sortino-Satchell ratio calcu-
lates the average active return divided by a lower partial moment of the
portfolio return distribution. And, the STARR ratio calculates the average
active return divided by ETL at a given tail probability. Another ratio com-
monly referred as the MAR ratio is the Calmar ratio, see Rachev, Fabozzi
and Menn (2005) and Rachev, Stoyanov and Fabozzi (2008). It is a perfor-
mance measure that is used in comparing Commodity Trading Advisors or
alternative asset managers. The Calmar ratio is the absolute value of the
ratio of the annual compounded return divided by the largest drawdown8

incurred to date. Such ratios with values close to 1 are very rare in real
world trading for an extended period of time. For example, if we are striv-
ing for a compounded annual return of 20% than we can expect our largest
drawdown to be at least minus twenty percent.

There are examples in which a reward measure is used instead of the
average active return. For instance, the Farinelli-Tibiletti ratio is essentially
a ratio between an upside and a downside partial moment of the portfolio
return distribution. And, the Rachev ratio (R-ratio) is a ratio between
the average of upper quantiles of the portfolio return distribution and the
portfolio ETL which is, essentially, an average of the lower quantiles.

In this section we focus on solving the maximum STARR ratio portfo-
lio optimization problem. This is a reward-to-risk ratio where the risk is
measured by portfolio ETL. The abbreviation STARR stands for stable tail-
adjusted return ratio. The abbreviation initially comes from the assumption
that funds returns follow the stable distribution. However, the concept be-
hind STARR can be translated to any distributional assumption. Formally,
STARR is defined as

STARRǫ(w) =
E(rp − rb)

ETLǫ(rp − rb)

where rp is funds portfolio return, rb is a target benchmark return, and
ETLǫ is the average of the lower ǫ% of the portfolio active returns. If rb is
a constant benchmark return, then STARR equals

STARRǫ(w) =
w′µ− rb

ETLǫ(rp) + rb

where w′µ = Erp is the fund portfolio expected return. The target bench-
mark return can be set equal to zero if we are not interested in an active
optimization problem.

The allocation of the optimal STARR ratio problem is found by solving
the following optimization problem

8The drawdown is the measure of the decline from a historical peak in the cumulative
profit of a financial trading strategy.
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max
w

E(rp − rb)

ETLǫ(rp − rb)
s.t. w′e = 1

(4.20)

where additional constraints can also be added. Mathematically, by in-
troducing additional variables and constraints (4.20) can be reduced to a
problem with a simpler structure, see Rachev, Stoyanov and Fabozzi (2008)
for more information. As a result, it can be solved with a solver for linear
programming problems.

The solution of the max STARR ratio optimization problem yields a
portfolio which is represented by the point on the mean-ETL efficient frontier
studied in the previous section — this is the point which delivers the highest
mean return to ETL ratio.

4.6 Types of constraints

The optimization models in the mean-variance and the mean-ETL portfolio
optimization frameworks described in the last two sections can be solved sub-
ject to a variety of constraints. That is, each objective function such as mini-
mum variance, maximum return, minimum ETL, or the relevant utility-type
function combinations can be optimized subject to different user-specified
constraints. Generally, the constraints materialize certain investment goals
which portfolio managers should meet. Among those goals we may list some
fund-specific, geography, or strategy preferences as well as standard risk, re-
turn, and turnover requirements. All of these cases can be constructed in
the Cognity system.

In this section, we present in a more technical way four different types
of portfolio constraints that can be modeled in the system. These general
types of constraints, and their relevant subtypes, are:

• weight constraints

– box-type

– grouped by strategy, industry, geography

• expected return constraints

– absolute

– relative to a benchmark

• turnover constraints

• ETL constraints

– absolute
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– tracking error type

– difference

From a methodology viewpoint, any constraint which is either linear or is
equivalently representable by a set of linear constraints, can be incorporated
in the optimization problem.

Weight constraints

The box-type weight constraints allow bounding the portfolio weight of a
particular fund. If we denote the weight of the i-th fund by wi, then it
can be constrained, for example, between three and eight percent by the
following linear expression

a ≤ wi ≤ b.

The lower and upper bounds9 for wi are user-supplied in a box-type interface
in the Cognity system. We can use this constraint to specify a particular
investment amount rather than lower and upper bounds. If we want to
invest an exact amount of capital in a certain fund then we can specify an
equality wi = a = b instead of a two-sided inequality. In this case, regardless
of the type of optimization performed in Cognity, we will end up with an
optimal portfolio which satisfies our investment wish for that specific fund.
In the system, the lower and upper bounds, and the comparison sign are
specified in the weight constraint preferences.

Weight constraints applied on groupings of funds are also supported.
They have the general form

a ≤ wi1 + wi2 + ...+ wis ≤ b

where all s funds with corresponding weights wi1 , wi2 , ..., wis belong to a
certain group, i.e., belong to some strategy, industry, geography, etc. In
this way, we can bound the invested amount in a given preselected group of
funds.

Expected return constraints

The expected return constraint is modeled as explained already in the pre-
vious two sections. In particular, the absolute expected return constraint
has the form

Erp ≡ w′µ ≥ R∗ (4.21)

9Throughout Section 4.6, we assume that the lower and upper bound notations a and
b stand for some percent numbers, for example, a = 3% and b = 8%.
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The selection of the R∗ number is a responsibility of the portfolio manager.
The choice of R∗ should be made in a reasonable way because an inappro-
priate choice for the lower bound R∗ can make the corresponding model
infeasible — that is, the optimization solver in Cognity might not find any
allocation of portfolio weights wi’s that achieve an unrealistically high goal
R∗ for the portfolio expected return.

The expected return constraint may also be relative to the expected
return of a benchmark portfolio. The model formulation of such a constraint
is as follows

w′µ− Erb ≥ R∗

where rb denotes the return of the benchmark portfolio. Since in this case the
constraint is relative to the expected performance of a benchmark portfolio,
we call this constraint relative. The relative expected return constraint is
an ex-ante formulation of the goal of a portfolio manager to “beat” the
expected return of a benchmark portfolio, Erb, by a certain amount R∗.

Equivalently, the relative expected return constraint can be written as

E (rp − rb) ≥ R∗.

The last formulation of the expected return benchmark-type constraint in-
spires the formulation of a similar constraint for the ETL risk measure pre-
sented later in this section. Because of the ETL specifics, it turns out that
in that case we can distinguish two separate benchmark-type constraints.

Turnover constraints

Basically, the turnover constraint allows bounding from above the trading
volume incurred in portfolio rebalancing. The optimization goal can be any
of the goals already described in the chapter.

In the Cognity system, this feature is modeled through portfolio weights
wi’s and the initial portfolio weights denoted here by w0

i ’s. That is, we
assume we currently hold the open positions represented by w0

i ’s portfolio
weights. Based on the new information we gather, we look for a new optimal
allocation represented by wi’s weights. Mathematically, the turnover quan-
tity is modeled by the absolute value of the difference between the initial
and the (new) optimal holdings. That is, regardless of the fact whether we
will buy some or sell some shares the generated trading volume is given by
the following quantity

i-th fund turnover = |wi − w0
i |.

This holds because we get the money added or deducted from the position by
multiplying the initial and the final weights by the portfolio value. Summing
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up the turnover for all positions, we get the turnover for the whole portfolio,
which we can bound from above by a maximal admissible turnover,

n∑

i=1

|wi − w0
i | ≤ TO%

where TO denotes the upper bound. We can convert all numbers in this
constraint in dollar values by multiplying both sides of the inequality by
portfolio value. In effect, we buy and sell fund holdings for less than TO
percents of our invested capital.

From a mathematical viewpoint, the turnover constraint is not linear but
it can be equivalently transformed to a set of linear constraints by introduc-
ing a set of auxiliary variables δ+i and δ−i . While these auxiliary variables
are “hidden” from the Cognity user, they can be easily interpreted. The
first variable δ+i denotes the money added to the i-th position as percentage
from portfolio value and the variable δ−i denotes money deducted from the
i-th position as percentage from portfolio value. Thus, both variables are
non-negative and one of them should be always equal to zero because it is
always suboptimal to simultaneously buy and sell one and the same fund.
As a result, the difference between the initial and the optimal weights can
be represented in terms of the new variables,

wi − w0
i = δ+i − δ−i .

The non-negativity of the new variables and the fact that one of them is
always zero implies that the turnover can be expressed as

|wi − w0
i | = δ+i + δ−i .

Finally, the constraint on the portfolio turnover can be replaced by the
following set of linear constraints,

wi − w0
i = δ+i − δ−i

n∑

i=1

(δ+i + δ−i ) ≤ TO

where δ+i ≥ 0, δ−i ≥ 0 and the condition δ+i × δ−i = 0 for i = 1, n is satisfied
due to non-optimality of the converse.

ETL constraints

The ETL constraints provide a way for bounding the ETL on a portfolio or
sub-portfolio level from above. That is, generally speaking this constraint
ensures that the risk of the optimal portfolio will not exceed a certain limit.
A typical ETL constraint is
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θ +
1

kǫ
d′e ≤ R∗

−Hw − θe ≤ d
d ≥ 0, θ ∈ R,

(4.22)

where we bound the portfolio ETL quantity by an upper bound of R∗. In
this formulation, we utilize the linearization technique and a short-hand
notation for the linear representation (4.22) of the ETL constraint is

ETLǫ(rp) ≡ ETLǫ(Hw) ≤ R∗.

where rp denotes portfolio return. Concerning the linearized version, we
have to keep in mind that the additional variables d and θ are variables in
the optimization problem, i.e. we optimize with respect to them as well.

The constraint in (4.22), we call absolute ETL constraint. The quanti-
ties ǫ, H, and w correspond respectively to the tail probability, the set of
scenarios for the funds returns, and to the portfolio allocation, respectively.
Apart from the absolute ETL constraint, we distinguish between two other
types which concern the relative optimization problem, i.e. when the risk
is measured relative to a benchmark portfolio. These two types are the
tracking-error type and the difference type.

The tracking error ETL constraint is defined in a way similar to the
tracking-error functional in the benchmark tracking problem. Basically, the
tracking-error is defined as the standard deviation of the active return which
is the difference rp − rb. Similarly, the tracking-error ETL is introduced as
the ETL of the active return, ETL(rp − rb), at some tail probability level.
As a result, the tracking-error ETL constraint is simply an upper bound on
this quantity,

ETLǫ(rp − rb) ≤ R∗ (4.23)

where rb denotes the return of a benchmark portfolio.
In contrast, the difference type, as the name suggests, is essentially an

upper bound on the difference between the portfolio ETL and the benchmark
ETL,

ETLǫ(rp)− ETLǫ(rb) ≤ R∗ (4.24)

which bounds the ETL of our portfolio by the ETL of the benchmark port-
folio ETLǫ(rb) plus a certain constant R∗ which is user-defined in Cognity.

4.7 A schematic description of a portfolio opti-

mization module

From a general viewpoint, the main input to a portfolio optimization prob-
lem based on ETL is the matrix of scenarios. They are used to approximate
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Figure 4.3: A schematic description of an ETL-based portfolio optimization
module and its relationship with the scenario generation module.

portfolio risk and, as we noted, with their help the optimization problem can
be transformed to a linear programing problem. These generic properties
can be used to construct a portfolio optimization module which is based on
heavy-tailed scenarios produced from a scenario generation module. The
settings in the scenario generation module include preferences for marginal
distributions and dependence structure — the two components of the mul-
tivariate model describing the joint distribution of stock returns. Therefore,
the input to the portfolio optimization problem can be divided into two
groups:

• future scenarios describing possible outcomes for the vector of stock
returns

• optimization problem specific — constraints, objective function, ex-
pected returns (or user-specified alpha forecasts)

We discussed already there are a number of possible constraints. Some
of them do not require any additional information except upper or lower
bounds. These are easiest to specify directly in a user interface. There are
other, more involved constraints, such as the ETL constraint. It requires
the generated scenarios from the scenario generation module. The beta
constraint requires additional information from a factor model.
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Figure 4.3 describes the types of input. From the viewpoint of the port-
folio optimization problem, the model we employ to generate scenarios from
is completely irrelevant. The information needed for the computation of
portfolio risk is extracted from the generated scenarios and, thus, as long as
there are scenarios, the actual distributional assumptions are not needed. In
contrast, in the Markowitz framework the optimization problem is consistent
with a multivariate normal distribution by design. In the ETL-based frame-
work, the scenarios can be generated through a factor model or through
complicated combinations of time-series models and factor models. For this
reason, in case a factor model is defined, the factor model coefficients needed
for the beta constraint are provided by the scenario generation module.

4.8 Strategy construction based on ETL minimiza-

tion

In general, there are several types of strategies depending on whether the
risk and/or the expected return of the optimal portfolio are compared to
those of a benchmark with the goal of beating the benchmark. If so, then
the strategy is said to be active as opposed to the passive strategy of repli-
cating a benchmark. In the classical Markovitz framework, an example of
a benchmark tracking problem is the tracking error problem. In it, the
standard deviation of the excess return, which is called tracking error, is
minimized subject to constraints. The tracking error in this case is used to
measure the deviation of the optimal portfolio return relative to the bench-
mark. Certainly, this goal can be achieved through a better measure based
on the ETL rather than the standard deviation.

Other types of strategies can be distinguished. If short positions are not
allowed, then we have long only strategies, if short positions are allowed
we have long-short and as an extreme case of these appear the zero-dollar
strategies in which the dollar value of the long part exactly equals the dollar
value of the short part. The zero-dollar strategies generally give rise to more
complicated problems from mathematical viewpoint. One of the points in
having short positions in the portfolio is to gain return in both bearish and
bullish markets.

All problems considered can be extended with transaction cost or turnover
constraints. We do not consider them for brevity of exposition and clarity
of the optimization problem formulations. Also, all strategies are consid-
ered self-financing in the sense that inflows and outflows of capital are not
allowed.
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4.8.1 Long-only active strategy

The traditional equity portfolio is constructed and managed relative to an
underlying benchmark and aims at achieving active return while minimizing
the active risk. Typically the portfolio construction process in such cases
suffers from two main disadvantages - employment of tracking error as a
measure of the active risk which penalizes upside deviations from the market
and the lack of consideration of absolute risk which can play dramatic effect
in case of market crashes. For example, in periods when the risk of the
benchmark increases, the risk of the optimal solution will increase as well
since there is no absolute measure of it in the problem.

The traditional definition of the problem is:

min
w

var(w′r − rb)

subject to w′e = 1
w′Er − Erb ≥ R
Lb ≤ Aw ≤ Ub

(4.25)

where var stands for variance; i.e. in the objective there is the active vari-
ance. If we change the active variance for the tracking error, the optimal
solution will not change. Problem (4.25) is easier to solve because it reduces
to a quadratic problem for which there are efficient solvers. In (4.25), and
in all problems considered below, the double inequalities Lb ≤ Aw ≤ Ub in
matrix form are linear constraints on the weights and generalize all possi-
ble linear constraints that can be imposed, such as constraints by industry,
or simple box-type constraints either in absolute terms or relative to the
weight of the corresponding stocks in the benchmark. Actually, the relative
expected return constraint and the constraint that all weights sum up to
1, w′e = 1, can also be generalized in this fashion but we give them sepa-
rately as they have special meaning. The relative expected return constraint
is of practical importance and the constraint w′e = 1 guarantees that the
strategy is self-financing; i.e. in absence of transaction costs, the optimal
portfolio present value equals the present value of the initial portfolio.

A modification of (4.25) based on the ETL can be suggested in which
an additional absolute risk constraint is added. One possible version is:

min
w

ETLβ(w
′r − rb)

subject to w′e = 1
ETLα(w

′r) ≤ ETL∗

w′Er − Erb ≥ R
Lb ≤ Aw ≤ Ub

(4.26)

where the ETL in the objective is at the confidence level 1 − β which is
relative to the benchmark portfolio returns rb. The ETL in the constraint
set is in absolute terms and its confidence level is 1 − α which may differ
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form 1 − β. The upper bound ETL∗ is selected by the portfolio manager.
It has a direct interpretation due to the ETL being the average loss beyond
the corresponding VaR level, see the ETL definition in the previous chapter.

Suppose that all the constraints and the parameters in an optimization
problem have been selected, including the risk measure, in this case the
ETL and its confidence level, the additional weight constraints and, finally,
the multivariate model. Then the next step in the analysis is to run back-
testing calculations in order to see what we would have gained in terms of
risk-adjusted return, had we followed the strategy in the previous 1, 3 or
5 years for instance. In this way, we can compare several strategies and
decide on the best one. Problem (4.26) has the disadvantage that it may
become infeasible for some periods in a back-testing calculation because of
the absolute risk constraint or the relative expected return constraint. One
reason is that for some periods the upper bound ETL∗ may be too low and
there may not be a single portfolio satisfying it. An alternative formulation
of (4.26) can be more advantageous:

min
w

λ1ETLβ(w
′r − rb) + λ2ETLα(w

′r)− w′Er

subject to w′e = 1
Lb ≤ Aw ≤ Ub

(4.27)

In (4.27), the objective has a more complicated form. It can be viewed
as a utility function composed of three components with two positive risk-
aversion coefficients, λ1 and λ2, which signify the relative importance of
the three components. Note that, due to the linearity of the expectation,
the expected return of the benchmark can be ignored in (4.27). The two
aversion coefficients are free parameters in the problem and can be chosen by
the portfolio manager. Alternatively, they can be calibrated by a sequence
of back-testing calculations.

The main advantages of (4.26) or (4.27) to the traditional problem (4.25)
are:

• they allow for a non-normal distributional assumption

• the risk measure used penalizes only the downside deviations from the
market

• the absolute risk of the optimal portfolio can be controlled

In practice, (4.26) and (4.27) can be solved using the linearization pro-
cedure described in ... after we have produced scenarios from the fitted
parametric model. The type of the parametric model does not influence the
structure of the optimization problem; the technique is one and the same on
condition that scenarios are provided.
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4.8.2 Long-short strategy

Long/short hedge funds focus on security selection and aim at achieving
absolute returns keeping small market risk exposure by offsetting short and
long positions. The increased flexibility introduced by short positions al-
lows reducing dependence with the market and allows taking advantage of
overvalued as well as undervalued securities.

Suppose that the portfolio manager knows which stocks will be long
(winners) and which will be short (losers). The only remaining problem is
their relative proportions. In this case, both problems (4.26) and (4.27) can
be used without modification. The set Lb ≤ Aw ≤ Ub can be defined to
account for portfolio manager’s decision. For example, the box constraints
of all short stocks are of the type a% ≤ wi ≤ 0 ad those of the long stocks,
0 ≤ wi ≤ b%. The constraint w′e = 1 means that the weights are interpreted
as a percentage of the optimal portfolio present value, which, in absence of
transaction costs, equals the present value of the initial portfolio as the
strategy is by construction self-financing. Therefore this problem does not
control the ratio of the exposure of the long and the short legs. A constraint
of this type can easily be implemented by including

∑

i∈S
wi ≤

∑

i∈L
wi

where L and S are the sets of the long and short stocks respectively.

If the manager does not know which stocks to short, then the problem
becomes more involved. Basically, there are two options. On one hand,
the manager can screen the stocks prior to the optimization and decide
on the winners and the losers and after that proceed to the optimization.
The screening can be done by adopting a relevant criterion which could be
a performance measure. For example, the STARR ratio and the R-ratio
are completely compatible with problems (4.26) or (4.27) as they involve
the ETL as a risk measure; see the previous section for more details. In
summary, we suggest a two-step procedure:

a) rank the stocks according to a performance measure and choose the
winners and the losers

b) solve the optimization problem to get the optimal weights

On the other hand, the portfolio manager may decide to use a one-step
process. In this case, binary variables can be employed since the sign of
the weights is not known beforehand. The optimization problem becomes
numerically much more involved than the two-step alternative but provides
the true optimal solution. Such problems are solved with mixed-integer
programming (MIP) methods.
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In all problems considered above, there is a numerical stability issue.
When the long/short ratio approaches one, i.e. the zero-dollar problem, the
optimization problem becomes numerically unstable because the weights are
defined as a percentage of the present value which becomes zero at the limit.
Therefore, the zero-dollar problem is a singularity. To avoid this, the weights
can be redefined as a percentage of the total exposure instead; that is the
value of the long leg minus the value of the short leg. In effect, the constraint
w′e = 1 should be replaced.

4.8.3 Zero-dollar strategy

The zero-dollar strategy is a limit case of the long/short strategy in which
the value of the long leg equals in absolute terms the value of the short
leg, or, alternatively, the total exposure of the portfolio is split in halves
between the short and the long part. The optimization problem becomes
more involved because the intuitive formulation in (4.26) or (4.27) should be
modified since the weights cannot be defined as a percentage of the present
value which is equal to zero. The alternative of (4.27) is, for example:

min
w

λ1ETLβ(w
′r − rb) + λ2ETLα(w

′r)− w′Er

subject to
∑

i∈L
w = 1

∑
i∈S w = −1

Lb ≤ Aw ≤ Ub

(4.28)

where S is the set of the short stocks and L is the set of the long stocks.
The two new weight constraints mean that they are defined as a percentage
of the value of the long part. Thus, the sum of all weights is zero in contrast
to the formulation in (4.27). Here we face the same problems as in the
long/short case. Either we can use the two-step procedure outlined there,
or a one-step process involving MIP.

The same trick of changing the weight definition works with (4.25) and
(4.26) as well. Actually, if the weights are defined as a percentage of the
total exposure, then the sum of the positive weights equals 1/2 and the sum
of the negative weights to −1/2.

4.8.4 Other aspects

Apart from being long or long/short, there are other important features of
a strategy. One aspect is if it is correlated with an industry represented by
an index. It is very often the case that the portfolio manager demands that
the optimal portfolio should not be correlated with one or several indexes.
Similar requirements can be implemented in the optimization problems con-
sidered in the paper by including additional linear weight constraints.
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Suppose that the returns of the stocks can be represented by a multifac-
tor model in which the explanatory variables are the returns of the indexes:

ri = ai +

K∑

j=1

bijr
I
j + ǫi, i = 1, . . . , N

where rIj are the returns of the corresponding indexes, ai and bij are the
regression coefficients and ǫi are the residuals. The returns of a portfolio of
these stocks can be expressed in a similar way,

w′r = w′a+
K∑

j=1

w′bjr
I
j + ei.

Thus, in the optimization problem, we have to include additional constraints
involving the coefficients in the above equation since an optimal portfolio
with w′bj = 0 will be uncorrelated with the index j.

Certainly the reasoning relies on whether the multifactor model is real-
istic. If it is not, or the regression coefficients are not properly estimated,
then the optimal solution in reality will not be uncorrelated with the corre-
sponding indexes.

4.9 Optimization Example

In this section, we provide a back-testing example of a long-only optimal
portfolio strategy using the Russell 2000 universe. The back-testing time
period is ten years — from December 1993 to December 2004 with monthly
frequency. In the optimization algorithm, we use the proprietary stable
model in Cognity Risk & Portfolio Optimization System. In the strategies,
the Russell 2000 index is used as the benchmark; that is rb is the return of
Russell 2000.

The optimization constraints are the following.

• 0% to 3% limit on single stock

• ±3% industry exposure with respect to the benchmark; the industries
being defined by Ford Equity Research

• The active return is strictly positive

• The two-way turnover is below 15% per month. This constraint is
used as a soft constraint; i.e. may be exceeded at times. Also, no limit
is imposed in July because the benchmark is adjusted in July.

The back-testing is performed in the following way. We use 450 stocks
as initial universe. One year of daily data is used to calibration the model
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Figure 4.4: The time evolution of the present values of the stable ETL
portfolio compared to the Russell 2000 index.

and monthly scenarios are produced by it. Then a version of the optimal
portfolio problem (8) is solved in which a tail probability of 5% is selected
for the ETL. At the end of the month, the portfolio PV is calculated. The
process is repeated next month. Figure 4.4 shows the stable ETL portfolio
PV compared to the Russell 2000 index.

Additional information is given in Tables 1 and 2. The average monthly
turnover is defined as the dollar weighted purchases plus the dollar weighted
sales. Tables 3 and 4 provide details on return-risk ratios. The information
ratio is the active return per unit of tracking error.

On the basis of the charts and the information in the tables, it is obvious
that both the optimization problem type and the multivariate distributional
assumption are vital for the optimal portfolio performance and should be
considered.
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Figure 4.5: The time evolution of the present values of the Markowitz and
the stable ETL (scaled) portfolios compared to the Russell 2000 index

Stable ETL Markowitz

10 year 112
5 year 105 137
3 year 102 110
2 year 100 104
1 year 104 100

Table 4.1: Average holdings count

Stable ETL Markowitz

11 months 16% 18%
July 163% 85%

All months 27% 24%

Table 4.2: Average monthly turnover



4.9. Optimization Example 139

Stable ETL Markowitz

11 months 16% 18%
July 163% 85%

All months 27% 24%

Table 4.3: Average monthly turnover

Stable ETL Markowitz

10 year 0.74
5 year 0.71 0.29
3 year 0.93 -0.24
2 year 0.74 -0.57
1 year 1.22 1.03

Table 4.4: Annualized information ratio

Stable ETL Markowitz Russell 2000

10 year 1.01 0.42
5 year 0.92 0.68 0.36
3 year 1.22 0.71 0.58
2 year 2.13 1.99 1.82
1 year 1.66 2.16 1.19

Table 4.5: Sharpe ratios

Return Stable ETL Markowitz Russell 2000

10 year 17.90% 11.20%
5 year 18.10% 11.10% 7.90%
3 year 20.30% 9.90% 21.10%
2 year 34.00% 24.30% 28.60%
1 year 24.10% 21.50% 17.10%

Volatility Stable ETL Markowitz Russell 2000

10 year 17.70% 26.40%
5 year 19.60% 16.50% 21.80%
3 year 16.50% 14.00% 21.10%
2 year 15.90% 12.20% 15.70%
1 year 14.50% 10.00% 14.40%

Table 4.6: Annualized return and volatility
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Active Return Stable ETL Markowitz

10 year 6.70%
5 year 7.80% 3.30%
3 year 8.10% -2.20%
2 year 5.30% -4.30%
1 year 7.00% 6.40%

Tracking-error Stable ETL Markowitz

10 year 9.00%
5 year 11.10% 11.40%
3 year 8.70% 9.50%
2 year 7.20% 7.70%
1 year 5.70% 6.30%

Table 4.7: Annualized active return and annualized tracking-error



Conclusions

In this thesis, we presented a unified Monte-Carlo based framework for mar-
ket and credit risk estimation and portfolio optimization. The framework is
based on heavy-tailed, skewed distributions for modeling risk factor returns
and downside risk measures. As far as modeling stand-alone variables is
concerned, we considered the class of stable distributions and the class of
Skewed Student’s t distributions. For capturing the dependence structure
between variables, we considered a copula approach.

The system can work with or without a predefined factor model. When
the risk variables are highly correlated, it is more desirable to capture the
dependencies first via a factor model and then apply the framework on the
factor returns and the residuals. As a simple example, we can consider a
yield curve. The interest rates in one yield curve are extremely dependent
and in this case, it is desirable to take advantage of some factor model such
as the statistical factor model behind the principal components analysis.

The described system is a forward looking tool as it is based on the Monte
Carlo method. All risk statistics are computed on the basis of the generated
scenarios from the fitted multivariate model. The downside risk measure we
considered is the Expected tail loss, which apart from the straightforward
practical interpretation has appealing theoretical properties. As a conse-
quence, we can incorporate it with the heavy-tailed framework and build
risk budgeting tools and forward-looking portfolio optimization tools.

The recent turbulent events in September and October 2008 represent a
clear evidence that measuring and managing properly risk is a complicated
task. This task has to be performed looking at the portfolio from different
angles with an arsenal of different tools. Any myopic, one-sided approach
is doomed. For this purpose, practitioners need an integrated system based
on a common framework built upon realistic assumptions. Only in such en-
vironment can practitioners make their decisions better informed, achieving
an improved protection against adverse market movements.

The empirical examples presented here and published in a number of
papers support this concept. A more comprehensive study is forthcoming
in a book to be published by Wiley, Racheva-Iotova et al. (2009).
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Index

α-stable laws, see stable distributions

ARMA process, 34

average value-at-risk, ETL, 120, 129
absolute, 129

difference, 129
tracking error, 129

characteristic exponent, 36, 42
characteristic function, 16, 17, 37, 41,

42, 44, 45, 47

characteristic generator, 37, 38, 40
convex

optimization, 117

copula, 53
bivariate Gumbel, 55

Gaussian, 54
Student t, 55

covariance matrix, 105

credit risk, 89

density generator, 38

efficient frontier, 106, 110

efficient frontier, EF, 121

elliptical distributions, 36–41
ETL, see risk measures, expected tail

loss

Farinelli-Tibiletti ratio, 103

GARCH process, 34

Generalized Rachev ratio, 103

linear congruential generator, LCG,
59

linear programing, 118

market risk, 65
Markowitz-Tobin efficient frontier, 111
mean-variance analysis, 104, 107
minimum ETL/ETL optimization, 120

non-satiable investors, 108

portfolio constraints, 125
portfolio ETL constraints, 128
portfolio return constraints, 126
portfolio turnover constraints, 127
portfolio weight constraints, 126

quadratic programing, 118

Rachev ratio, 103
risk aversion coefficient, 118
risk measures

coherent, 67
convex, 67–68
expected tail loss, 68
normal distribution, 69
stable distribution, 69
Student t-distribution, 70

value-at-risk, 68
risk-averse investors, 109, 110

Sharpe Ratio, 123
Sharpe ratio, 104, 106
spherical distributions, 37
stable distributions, 13, 69

multivariate, 36, 41–46, 49, 114
one-dimensional, 15–21, 114
operator, 47–50, 116
sub-Gaussian, 45

stable Paretian hypothesis, 13
STARR Ratio, 123
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stochastic dominance order, 103, 107
elliptical, 110
first degree, 108
Rothschild-Stiglitz, 108, 111
second degree, 108, 111, 113, 115

tail index, see characteristic exponent
tracking error, 129
translation and scale invariant class,

112
turnover, 127

utility function, 107

VaR, see risk measures, value-at-risk


