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2 INTRODUCTION 

2.1 Background and aim of the study 

Cancer-treatment is still one of the biggest challenges in developed countries despite the 

global efforts and the major steps forward concerning cancer treatment during the last 

decades. The main problems of cancer therapy are selectivity of chemotherapeutics used 

and therefore acute and long-term side effects, the probability of relapses and resistance to 

chemotherapeutic agents. Many standard chemotherapeutics act via targeting mitochondria, 

thus inducing the release of cytotoxic proteins from mitochondria into the cytosol, which 

results in induction of cell death by apoptosis 1. Bcl-2 was identified as a proto-oncogene 

involved in B-cell lymphoma and prevents apoptosis by acting on mitochondria. 

Overexpression of Bcl-2 often confers chemoresistance and thus is a promising target to 

combat drug resistance 2, 3. 

Sesquiterpene lactones have been intensively studied concerning their anticancer properties 

during the last years. Helenalin holds impressive effects on cancer cells in vitro and in vivo 4. 

More importantly, besides its well known capacity to inhibit NF-κB, our group has shown that 

helenalin selectively kills human Jurkat T-leukemia cells by targeting the mitochondrial 

pathway of apoptosis. Interestingly, helenalin was also able to induce cell death in two highly 

resistant Jurkat cell lines, which overexpress the antiapoptotic proteins Bcl-2 or Bcl-XL. The 

mechanism of how helenalin overcomes resistance mediated by Bcl-2 family members has 

not been studied yet. 

 

 

Thus, it was the aim of the present work  

• to examine the type of cell death induced by helenalin in Bcl-2 
overexpressing Jurkat cells and 

• to study the underlying mechanisms how helenalin overcomes

Bcl-2-mediated cell death resistance in Jurkat cells. 



INTRODUCTION 11 

2.2 Sesquiterpene lactones 

Sesquiterpene lactones (STLs) are important secondary metabolites of plants, predominantly 

found in the sunflower family (Asteraceae). Structurally, they represent C15-terpenoids and 

their derivatives, which can be further divided into other groups, e.g. the pseudoguaianolide-

type STLs, where helenalin belongs to. STLs possess cytotoxic 5-8 as well as anti-

inflammatory 9-14 potential. Moreover, they exhibit antibacterial, analgesic, positive inotropic, 

as well as migraine inhibiting properties 5, 15. Preparations from flowers of Arnica montana are 

used externally in traditional medicine to treat various inflammatory diseases. The anti-

inflammatory activity of STL has been mainly linked to an inhibition of the transcription factor 

nuclear factor kappa B (NF-κB). 

The biological activity of STLs has been associated with α,β-unsaturated carbonyl structural 

elements like an α-methylene-γ-lactone or an α,β-unsubstituted cyclopentenone moiety 12, 14. 

These α,β-unsaturated carbonyl structures can react with nucleophiles, especially cysteine 

sulfhydryl groups of biological molecules (such as endogenous glutathione) by a Michael-

type addition 4, 6, 16. It is therefore not surprising, that STLs have been shown to inhibit a 

variety of important sulfhydryl-bearing enzymes 16. Existence of a α-methylene-γ-lactone 

group was essential for their cytotoxic activity and an α,β-unsaturated ester or 

cyclopentenone strengthened this property 6. Moreover, cytotoxicity of STLs is strongly 

dependent on the number and type of alkylating centers. The molecular conformation and 

the number of H-bond acceptors are also important as noncovalent interactions of STLs with 

proteins may precede alkylation 14. Importantly, a number of STL-derived drugs are now in 

phase I-II of clinical trials against a variety of cancer types such as blood-lymph tumors, 

metastatic breast cancer and nonsmall cell lung cancer 17. 

2.2.1 Helenalin 
Helenalin is a naturally occurring sesquiterpene lactone extracted from Arnica montana and 

Arnica chamissonis ssp. foliosa possessing two α,β-unsaturated carbonyl structural 

elements. The structure of helenalin is shown in Figure 1. 

O O

O

OH

H

 

Figure 1 Chemical structure of helenalin. 
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The antitumoral activity of helenalin was first reported in 1967. Helenalin was the most active 

constituent of a collection of Helenium autumnale screened by the NCI in an in vivo assay 

employing the murine P388 lymphocytic leukaemia 18. Helenalin is cytotoxic to a variety of 

tumor cells in culture such as human Tmolt3 leukemia, colon adenocarcinoma, cervical 

adenocarcinoma, osteosarcoma, and glioma cells 7, 19-21 and has also shown in vivo 

antitumor activity against Walker 256 carcinoma in rats, Ehrlich ascites carcinoma in mice 

and P388 lymphocytic leukaemia in mice 4. In contrast to other STLs, studies on helenalin 

derivatives have shown that the contribution of a cyclopentenone group to its cytotoxicity is 

considerably higher than that of the methylene lactone group 22. The α,β-unsaturated 

cyclopentenone shows higher reactivity with GSH (glutathione; γ-L-glutamyl-L-

cysteinylglycine) 16, and this may probably be the reason why inhibition of GSH synthesis 

increases cytotoxicity 23, whereas high GSH levels in tumor cells correlate with decreased 

effects of helenalin 24. Helenalin influences a variety of necessary events in the cells by 

inhibition of Akt (also in preadipocytes) 25, protein synthesis (by induction of eIF2α 

phosphorylation), DNA synthesis 4, and telomerase 26. It also shows anti-proliferative effects 

(post-transcriptional nuclear p21 accumulation and inhibition of p27 degradation, protein 

interactions between p21 and cyclin-dependent kinase 2 (CDK2) are increased, G1 arrest) 27. 

Moreover, helenalin also holds anti-inflammatory properties in vitro and in vivo. Helenalin 

reduces edema and chronic-adjuvant-provoked arthritis in the rat 28 and it inhibits the 

migration and chemotaxis of human neutrophils 12, as well as the activities of 5-lipoxigenase 

and leukotriene C4 synthase 29. In line with this, it was shown that helenalin significantly 

reduces leukocyte infiltration in the mammary gland and decreases S.aureus intracellular 

growth and experimental S.aureus infection in vivo 30. In addition, helenalin induces 

apoptosis or inhibits proliferation in activated CD4+ T cells, and downregulates pro-

inflammatory surface receptors and IL-2 production. Thus, helenalin possesses 

immunosuppressive activity suited for treatment of deregulated and unwanted T cell-

mediated immune response 31. Helenalin inhibits DNA binding of NF-κB by alkylating p65 at 

Cys38, but not modifying p50. Although a slight inhibition of IκB degradation of STLs was 

also detected, this effect was secondary to alkylation of NF-κB 9, 32-35. Experiments using 

surface-plasmon resonance method showed that helenalin interacts with the NF-κB protein 

RelA (p65) but not with IKKα and IKKβ (IκB kinase α and and β), and also not with 

glutathione at physiological pH to any significant extent, but could bind to reduced form of 

glutathione at higher pH (pH 8) 35. 

Previous work of Dirsch et al. showed that helenalin induces caspase-dependent apoptosis 

in leukaemia Jurkat T-cells (S-Jurkat cells) through the classical mitochondrial pathway, 

including cytochrome c release preceding caspase activation. The helenalin-induced 

signaling pathway did not require the death receptor CD95. Interestingly, healthy human 
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activated blood mononuclear cells were not affected. Although helenalin induces a 

mitochondria-dependent pathway of apoptosis in S-Jurkat cells, overexpression of the 

mitochondria protecting proteins Bcl-2 and Bcl-XL failed to prevent helenalin-induced cell 

death 21. Yet, the underlying mechanisms of this phenomenon have not been investigated up 

to now. 

2.3 Bcl-2 

2.3.1 The Bcl-2 family  
The Bcl-2 family has been grouped into three classes. One class inhibits apoptosis (Bcl-2, 

Bcl-XL, Mcl-1, Bcl-B, Bcl-W and A1), whereas the other shows pro-apoptotic properties (Bax, 

Bak and Bok). Both classes share several regions of sequence homology, BH (Bcl-2 

homology) domains (BH1-4 for anti-apoptotic members, BH1-3 for pro-apoptotic members). 

The third divergent class of BH3-only proteins (Bad, Bik, Bid, HRK, Bim, Bmf, Puma, Noxa) 

posesses a conserved BH3 domain. 

Bax and Bak undergo conformational changes upon activation, oligomerize and form pores 

in the outer mitochondrial membrane allowing the release of proteins into the cytosol. 

Despite intensive investigation, the exact mechanism of this process and how antiapoptotic 

proteins might regulate it, is still controversial. It is thought that Bcl-2 blocks Bax and Bak 

oligomerisation by binding to the nascent multimers and capping further chain 

elongation 36-38. Regardless of the exact mode of activation of Bax and Bak, the ratio of anti- 

versus pro-apoptotic Bcl-2 proteins rather than the expression levels of one particular 

molecule of the Bcl-2 family regulates apoptosis sensitivity. 

2.3.2 Regulation of Bcl-2 by phosphorylation 
Phosphorylation of Bcl-2 in the flexible loop domain is the major regulatory mechanism, 

modulating the function of Bcl-2. It has been shown that either mono- (S70) or multisite (T69, 

S70, S87) phosphorylation of Bcl-2 is required for antiapoptotic function of Bcl-2 39. 

Moreover, it has been shown that Bcl-2 functions as an antioxidant 40, and phosphorylated 

Bcl-2 slows down G1/S cell cycle transition in association with decreased ROS and 

increased p27 (CDK2 inhibitor) levels 41. However, other investigators have shown that the 

multiple-site phosphorylation by JNK abrogates survival function of Bcl-2 in paclitaxel-

induced apoptosis 42. Thus, it seems that the type of stimulus, other regulatory pathways and 

the degree and duration of the phosphorylation at specific residues of Bcl-2 produce different 

outcomes 43. 



14  INTRODUCTION 

2.4 Cell death 

Cell death has historically been subdivided into regulated and unregulated forms of cell death 

but there is emerging evidence that this simple classification does not adequately explain the 

various cell death mechanisms as there exist multiple non-apoptotic, regulated forms of cell 

death, some of which overlap apoptosis 44. 

2.5 Apoptosis 

The term apoptosis is based on the morphological characteristics of cells dying from 

apoptosis, including cellular shrinkage, membrane blebbing and ultimately fragmentation into 

membrane bound apoptotic bodies 45. Apoptosis, which is also called cell death type I, is 

controlled both positively and negatively by the B-cell lymphoma protein-2 (Bcl-2) family 

members and involves the sequential activation of caspases 44 (although caspase-

independent forms of apoptosis can also occur). During apoptosis, the integrity of plasma 

membrane is conserved but phosphatidylserine (PS) becomes exposed on the cell surface. 

PS exposure functions as an “eat me” signal for macrophages, which mediate the effective 

clearance of apoptotic cells. The quick removal of a dying cell is crucial for immune tolerance 

and tissue homeostasis. Apoptosis is suggested not to trigger inflammation as the immediate 

clearance of the dying cell prevents the release of intracellular contents. Additionally, the 

production of anti-inflammatory mediators by phagocytes suppresses inflammation and 

assists the “immunologically silent” clearance of the cells 46. 

Apoptosis can be initiated by two types of signals: intracellular stress signals such as DNA 

damage, oxidative stress or oncogene activation causing the activation of the intrinsic or 

mitochondrial apoptosis pathway, or extracellular ligands such as Fas ligand, TNFα or TRAIL 

(TNF-related apoptosis-inducing ligand) causing activation of the extracellular or death-

receptor apoptosis pathway 45. The intrinsic pathway is characterized by the permeabilization 

of the mitochondrial outer membrane causing the release of pro-apoptotic proteins form the 

intermembrane space such as cytochrome c, AIF (apoptosis inducing factor), EndoG 

(endonuclease G), Smac/Diablo (second mitochondira derived activator of caspases/direct 

IAP binding protein with low pI) and Omi/HtrA2 (high temperature requirement protein A2). 

This process is tightly regulated by Bcl-2 family members. Release of cytochrome c, which is 

involved in the electon transport, leads to the energy-dependent (ATP/dATP) formation of a 

complex, the apoptosome, which consists of cytochrome c, Apaf-1 (apoptotic protease-

activating factor-1) and the initiator caspase-9. Subsequently, caspase-9 is activated which 

activates further downstream executioner caspases such as caspase-3, which finally leads to 

cell death 38. Accidental activation of caspases is negatively regulated by inhibitors of 

apoptosis proteins (IAPs), which are in turn inactivated by Smac and Omi/HtrA2. The latter is 
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a serine protease and has been reported to cleave cIAPs and to participate in caspase-

independent apoptosis. Smac is the best known antagonist of the IAP family and competes 

with caspase-9 for binding to XIAP and therefore gives rise for induction of apoptosis 47. 

AIF and EndoG both induce caspase-independent cell death. AIF translocates to the nucleus 

and induces chromatin condensation and high molecular weight DNA fragmentation. 

Translocation of EndoG to the nucleus also results in internucleosomal DNA 

fragmentation 48. 

The extrinsic pathway triggers apoptosis by binding of proapoptotic ligands to their cell 

surface receptors from the tumor necrosis factor receptor (TNFR) family such as TNFR1, 

TRAIL or CD95 (= Fas, APO-1). This results in the recruitment of intracellular adaptor 

proteins such as FADD and formation of the death inducing signaling complex (DISC) which 

brings about activation of procaspase-8. Active caspase-8 can activate effector caspases, 

which is sufficient to induce apoptosis in type I cells. Moreover, caspase-8 can cleave pro-

apoptotic BH3-only protein Bid into t-Bid, which translocates to mitochondria to induce 

mitochondrial membrane permeabilisation. This amplification loop is necessary in type II 

cells, where the sole activation of caspase-8 is not sufficient to induce apoptosis 49. 

Ca2+

mitochondrium

proapoptotic proteins

Mitochondrial
Pathway

ER

Apoptotic stimulusDeath Receptor
Pathway

JNK

effector

caspases-3/-7

ER 
stress

Smac/Diablo

active

caspase-8

active

caspase-9

IAPs

Cell death

TNFα, Fas or TRAIL

cell membrane

death
receptor

Bid t-Bid

Ca2+Ca2+

mitochondrium

proapoptotic proteins

Mitochondrial
Pathway

ERER

Apoptotic stimulusDeath Receptor
Pathway

JNK

effector

caspases-3/-7

ER 
stress

Smac/Diablo

active

caspase-8

active

caspase-8

active

caspase-9

IAPs

Cell death

TNFα, Fas or TRAIL

cell membrane

death
receptor

Bid t-Bid

 

Figure 2 Schematic representation of intrinsic and extrinsic apoptotic pathway. Stimulation of the death receptor 
initiates the extrinsic pathway by activation of caspase-8. Subsequent activation of executioner caspases leads to 
cell death. Cleavage of Bid by caspase-8 amplifies the extrinsic pathway by activation of the mitochondrial 
pathway. The intrinsic pathway of apoptosis is induced by intracellular stress signals and results in the release of 
several mitochondrial apoptotic mediators. Subsequent formation of the apoptosome leads to activation of 
caspase-9. Caspases are negatively regulated by IAPs, which in turn are inhibited by Smac/Diablo. ER stress-
mediated calcium-release and JNK activation also promote induction of the intrinsic pathway of apoptosis. 
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2.6 Necrosis 

There is now evidence that necrosis, traditionally considered an accidental form of cell death, 

can in be initiated or modulated by programmed control mechanisms. ROS (reactive oxygen 

species), calcium-ions, poly-ADP-ribose polymerase (PARP), calcium-activated 

nonlysosomal proteases (calpains) and cathepsins are some of the mediators of necrosis 50. 

Yet, several of them are also known to induce apoptosis such as calcium. The identification 

of an intracellular serpin (protease inhibitor) which prevents necrosis indicates that necrosis 

can be regulated, programmed and driven by a peptidase stress-response pathway 51. 

Necrosis is morphologically characterized by vacuolation of cytoplasm, organelle breakdown, 

cytoplasmic swelling, breakdown of the plasma membrane 52, 53 and induction of inflammation 

due to the release of cellular contents and proinflammatory molecules such as damage-

associated molecular pattern (DAMP) molecules, e.g. high-mobility group box 1 (HMGB1) 

protein, which activate the innate immune cells and thus promote an alerting system for 

defensive or reparative response 54. Moreover, processes like mitochondrial swelling, 

permeability transition (PT) pore opening, loss of mitochondrial membrane potential and 

ROS production are observed. Necrotic cells can also exhibit changes in nuclear morphology 

but no organized chromatin condensation and DNA fragmentation as seen in apoptotic 

processes. Recently, two forms of “programmed necrosis” have been described: necroptosis 

and PARP1-mediated necrotic death 44. 

Necroptosis has been reported as a form of programmed necrotic cell death under conditions 

where apoptotic cell death is prevented 55. Although induction of autophagy has been 

observed in a number of cell lines by necroptotic signaling, autophagy seems to be a 

downstream consequence of necroptosis rather than a contributing factor. Moreover, 

activation of necroptosis requires the kinase activity of RIP1 (receptor interacting protein 1), 

which is not required for NF-κB and apoptosis signaling in Jurkat cells 56. Furthermore, RIP3 

has been identified as a crucial upstream activating kinase that regulates RIP1-dependent 

necroptosis 57. RIP1 translocates into mitochondria and induces disruption of the bonding of 

ANT (adenine nucleotide translocase) with cyclophilin D (CypD), a peptidyl-prolyl isomerase, 

causing rapid mitochondrial dysfunction that is associated with necroptosis. Other execution 

steps, including activation of phospholipase A2 and lipoxygenases have been described 44. 

Necrostatins are well characterized inhibitors of RIP1 and therefore commonly used 

inhibitors of necroptosis. 

PARP1-mediated necrosis is initiated by DNA strand breaks e.g. by alkylating DNA damage, 

which rapidly activates PARP1. Overactivation of PARP1 mediates depletion of cytosolic 

NAD+ and subsequently induction of necrosis by “energy collapse” in glycolytic cells. PARP1 

inhibitors were developed as chemopotentiators of DNA damaging anticancer agents. 

Moreover, PARP1 activation causes specific release of HMGB1, which can alert immune 
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cells to the presence of dangerous cells with damaged DNA. But PARP1 also mediates cell 

death induced by secondary DNA damage. Here, PAR (poly-ADP-ribose) polymer is 

translocated into the cytosol, which subsequently causes translocation of AIF from 

mitochondria to the nuclei, where it induces cell death. PARP1-mediated cell death 

furthermore involves TRAF2-RIP1 (TNF receptor-associated factor 2) dependent JNK 

activation, which contributes to mitochondrial dysfunction and necrotic death, the relationship 

between this process and necroptosis remains unclear 44. 

Necrosis often takes place when other cell death programs such as apoptosis or autophagy 

are blocked 58, thus necrosis is a mechanism to overcome resistance to apoptosis as 

observed in several human tumors 52, 59 and has been observed in apoptosis-defective breast 

carcinomas treated with anthracyline-based therapy in the clinic 60. Moreover, the 

inflammatory component of necrotic death has potential advantage of stimulating an immune 

response that could increase the efficacy of chemotherapy e.g. of the Abl kinase inhibitor 

imatinib 52. On the other hand, sustained inflammatory response can stimulate tumor 

development. Whether necrosis plays a major role in tumorigenesis is still unclear, as it is 

almost impossible to experimentally prevent or induce necrosis in vivo without affecting other 

types of cell death. 

Cell death

mitochondrium

JNK

TNFα

cell membrane

TNFR

R
IP

1

nucleus

PARP1

PAR 
polymer

R
IP

1

TR
AF

2

mitochondrial
dysfunction

AIF

DNA 
degradation

Autophagy

NAD+ loss

energy
collapseROS

ANT

CypD

Necroptosis PARP1-mediated necrosis

?

Cell death

mitochondriummitochondrium

JNK

TNFα

cell membrane

TNFR

R
IP

1

nucleus

PARP1

PAR 
polymer

R
IP

1

TR
AF

2

mitochondrial
dysfunction

AIFAIF

DNA 
degradation

AutophagyAutophagy

NAD+ loss

energy
collapseROSROS

ANTANT

CypD

Necroptosis PARP1-mediated necrosis

?

 

Figure 3 Schematic representation of necrotic signaling. Stimulation of the TNFR leads to activation of RIP1. 
Through RIP1 kinase activity, the association between ANT and CypD is disrupted and resulting in ATP depletion 
and the accumulation of ROS. Autophagy can be activated during necroptosis, but it only contributes to cell death 
in some cell types. DNA damage activates PARP1. Two pathways of PARP1-mediated cell death are shown: 
energy collapse and AIF translocation. TRAF2-RIP1 dependent JNK activation contributes to mitochondrial 
dysfunction and necrotic death. 
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2.7 Autophagy 

Macroautophagy, hereafter referred to as autophagy (self eating), which is also called cell 

death type II, is a multistep process that is characterized by the formation of double- or multi-

membraned autophagic vacuoles called autophagosomes. Subsequently, autolysosomes are 

generated by fusion of the outer membranes of the autophagosomes and late endosomes or 

lysosomes, which results in vesicular sequestration and degradation of long-lived 

cytoplasmatic proteins and organelles such as mitochondria 61. Autophagy is required for 

mammalian embryogenesis. It is also observed in cells after exposure to a variety of 

metabolic and therapeutic stresses such as growth factor deprivation, shortage of nutrients, 

inhibition of the receptor tyrosine kinase/Akt/mammalian target of rapamycin (mTOR) 

signaling (e.g. by stimulation with rapamycin), accumulation of intracellular calcium and ER 

stress. It is still controversial whether autophagy is protective or toxic for cells. Some reports 

show strong evidence that autophagy prevents inflammation and cancer. Although 

autophagy serves as tumor suppressor mechanism, autophagy is also a stress survival 

pathway and inhibition of autophagy could enhance chemotherapy 62, 63. The molecular 

understanding of autophagy was enhanced by the discovery of autophagy-related genes 

(Atg), which are involved in the control of autophagy. Eighteen yeast Atg, which are required 

for autophagosome formation have been identified and several mammalian homologues 

have already been characterized 44. The initial steps of autophagy induction are the inhibition 

of the mTOR Ser/Thr kinase, which blocks autophagy and the activation of mammalian 

Vsp34 61. The formation of the complex consisiting of the protein Beclin1, Vps34 (a class III 

phosphatidylinositol 3-kinase), UVRAG (UV irradiation resistance-associated tumor 

suppressor gene) and a myristylated kinase (p150 or Vps15) is required for the initiation of 

the autophagosomes formation as Vps34 becomes activated and catalyzes generation of 

phosphatidylinositol-3-phosphate, which is necessary for vesicle nucleation. Further 

downstream, two major conjugation systems are necessary for autophagosomes formation 

and vesicle elongation as both contribute to the conjugation of phosphatidylethanolamine 

(PE) to the soluble form of LC3 (named LC3 I) resulting in its conversion to LC3 II, which is 

associated with peripheral membranes of autophagosomes. These conjugation systems are 

closely related to ubiquitin-conjugation systems to proteins. The Atg12-Atg5 conjugation 

pathway results in covalent conjugation of Atg12 to Atg5 and the formation of a larger 

complex containing oligomerized Atg16. Atg12-Atg5 formation is constitutive and not 

influenced by autophagy-inducing stimuli 62-64. After maturation to autolysosomes, the inner 

membrane as well as the luminal content is digested by lysosomal enzymes within the acidic 

compartment 61. 

Inhibition of autophagy can be achieved by the use of 3-MA (3-methyladenine), which is a 

PI3K inhibitor (inhibiting Vps34) or chloroquine, which inhibits fusion of autophagosomes with 
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lysosomes. Moreover, small interfering RNAs, which are capable to inhibit Beclin1, Vsp34, 

Atg5, Atg10, Atg12 or Lamp2 (lysosomal-associated membrane protein 2) can be used. 

Induction of autophagy is achieved by the use of rapamycin, which inhibits mTOR activity 61, 

65. 

2.7.1 Crosstalk between apoptosis and autophagy 
Depending on the circumstances, autophagy can protect cells against cell death but it also 

can cause cellular demise. The cytotoxic effect of autophagy can be explained by the direct 

massive self-destructive potential of autophagy or by enabling the induction of apoptosis by 

the autophagic process. Numerous studies have described an existing cross-talk between 

apoptosis and autophagy. There are three possibilities how this cross-talk can take place. 

The first possibility is a kind of apoptosis/autophagy partnership where both, apoptosis and 

autophagy, can lead to cell death, or, autophagy can occur upstream of apoptosis whereas it 

also simultaneously modulates independent means of cell death, or, apoptosis may suppress 

autophagy. The second possibility is that autophagy suppresses apoptosis by promoting cell 

survival. A third possibility is that autophagy enables apoptosis, which means that autophagy 

itself does not lead to cell death but enables the apoptotic program by participation in certain 

morphological changes 61, 66. 

2.8 ER stress and autophagy 

2.8.1 ER stress 
Cellular stresses as perturbed calcium homeostasis (calcium overload or depletion of the ER 

calcium pool 67), redox state or decreased ATP levels can interfere with protein folding. This 

causes protein misfolding and activation of an adaptive stress response (UPR), thus trying to 

increase folding capacity of the ER (endoplasmatic reticulum) by induction of proteins 

involved in chaperoning, protein folding and degradation pathways. Transduction of the UPR  

(unfolded protein response) is provided by three ER located stress sensors, PKR-like ER 

kinase (PERK), inositol-requiring enzyme 1 (IREα and -β) and activating transcription factor 6 

(ATF6α and -β), which are all bound to glucose-related protein 78 (GRP78) when ER stress 

is absent. Initiation of UPR is triggered by dissociation of GRP78 from all three sensors. 

Activated IRE1 recruits TRAF2 that in turn recruits apoptosis signal-regulating kinase 1 

(ASK1) which activates JNK (stress-activated c-Jun N-terminal protein kinase). Activated 

PERK phosphorylates the α-subunit of eukaryotic translocation initiation factor-2 (eIF2α) 

which leads to translation suppression. Moreover, the PERK-eIF2α pathway also induces 

translation of UPR target genes through selective upregulation of the translation of the 

transcription factor ATF4. 62, 68. If the stress, however, is too great, cell death can be induced. 

Many studies have shown that ER stress can lead to induction of apoptosis through 
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activation of caspase-12/-4 (which activates caspase-9) and CHOP (transcription factor 

downstream of PERK and ATF6, which downregulates Bcl-2), IRE1-JNK (targets several Bcl-

2 family proteins) and calcium (promotes release of cytochrome c) pathways. Recent reports 

however, have reported that ER stress can trigger autophagy, as well. 

2.8.2 ER stress - autophagy link 
ER stress can be a potent inducer of autophagy although it is still not clear whether 

autophagy in this context is ultimately a cytoprotective mechanism or a precursor to a form of 

non-apoptotic cell death resembling necrosis 69, 70. Continued autophagy is detrimental to cell 

survival as a consequence of excess organelle and macromolecuar catabolism similar to 

prolonged UPR, which leads to cell death via apoptosis. On the contrary, induction of 

autophagy shows cytoprotective capacity, as it is important to counteract ER expansion and 

to degrade protein aggregates during ER stress 68. Beclin1, located at mitochondria, the ER 

and the trans-Golgi network, is an important inducer of autophagy and has been discovered 

as a Bcl-2 interacting protein by its BH3 (Bcl-2 homology) domain 71 whereby only ER-tagged 

Bcl-2 suppresses Beclin1-dependent autophagy 72. Beclin1 itself fails to induce apoptosis 71. 

On the other hand, Bcl-2 bound to Beclin1 still maintains its full antiapoptotic capacity. 

Besides, Bcl-2/Beclin1 interaction can be disrupted by different stimuli subsequently inducing 

autophagy. Not only the phosphorylation of Bcl-2 (e.g. by JNK) or the phosphorylation of 

Thr119 in the BH3 domain of Beclin1 (by DAP-kinase) can lead to disruption of the complex, 

also the competitive distraction by other BH3-only proteins (e.g. Bad) or pharmacological 

BH3 peptidomimetic agents (e.g. ABT-737) can activate autophagy 73. 

The ER represents the most important storage site for Ca2+ in the cell. Upon ER stress, high 

amounts of Ca2+ can be released into the cytosol, mediating further downstream effects such 

as apoptosis 67, 74 or autophagy. Ca2+-mediated activation of protein kinase Cθ (PKCθ) and of 

Ca2+/calmodulin-dependent kinase kinase-β (CaMKKβ) was recently reported to induce 

autophagy in the context of ER stress 75, 76. In addition to the effects of Ca2+ released from 

ER into cytosol, it is also likely that altered concentrations of ER stored Ca2+ directly affects 

UPR signal transduction events that are relevant to cell death regulation 77. 
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Figure 4 Schematic representation of autophagic signaling. Metabolic and therapeutic stresses as well as ER 
stress can induce autophagy. Nutrient deprivation suppresses mTOR activity, which in turn inhibits induction of 
autophagy. Two arms of UPR have been implicated in regulating autophagy during ER stress. The IRE1/JNK 
pathway enhances autophagy and PERK signaling also potentiates autophagy, possibly via transcriptional 
upregulation of Atg 12. Bcl-2 is capable of inhibiting autophagy through direct binding to Beclin1. Inhibitory binding 
of Bcl-2 to Beclin1 is disrupted by JNK mediated phosphorylation of Bcl-2, which results in the formation in the 
multiprotein complex consisting of Beclin1, UVRAG, Vps15 and Vps34. This leads to activation of the PI3K 
Vps34, which is necessary for vesicle nucleation. Two ubiquitin-like conjugation systems (LC3 I/II and Atg12-
Atg5) are required to form double membrane-walled autophagosomes. Fusion between autophagosomes and 
lysosomes forms autolysosomes wherein sequestered material is degraded. 

2.9 Mechanism how Bcl-2 protects from cell death 

Bcl-2 is embedded in the outer mitochondrial membrane (OMM), the ER and the nuclear 

envelope by a C-terminal hydrophobic membrane-spanning domain, with most of its amino-

acids in the cytosol 78, 79. Whereas the function of Bcl-2 in the nuclear membrane is not as 

clear, it exerts its pro-survival activity by acting on mitochondrial pathway of apoptosis and on 

ER. 

2.9.1 Bcl-2-mediated regulation of mitochondrial membrane 
permeabilization 
Bcl-2 counteracts the pro-apoptotic capacity of Bax and Bak and therefore prevents the 

release of pro-apoptotic factors such as cytochrome c from the mitochondria 80, 81. Moreover, 

mitochondria are also well known mediators of necrotic cell death. The mitochondrial 

membrane permeability transition (MPT) occurs after opening of a channel complex induced 
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by calcium overload or oxidative stress. This channel complex has been termed the 

permeability transition pore (PTP) and is thought to consist of the voltage-dependent anion 

channel (VDAC:outer membrane channel), the adenine nucleotide translocator (ANT:inner 

membrane channel), cyclophilin D (CypD) and possibly further molecules. CypD-dependent 

MTP leads to permeability of both, the inner and the outer mitochondrial membrane finally 

causing necrosis. As Bcl-2 has the ability to block the MPT probably by inhibiting VDAC 

activity or other unknown channels involved in MPT, it can therefore block MPT-dependent 

necrosis in addition to its well established ability to inhibit apoptosis 82. Additionally, it has 

been shown that in isolated pancreatic mitochondria PTP mediates loss of mitochondrial 

membrane potential but not cytochrome c release 83, 84. Defects in the electron chain 

transport in respiring mitochondria causes accumulation of ROS within the cells, causing 

cellular swelling and plasma membrane rupture, as well as rupture of lysosomes and release 

of hydrolytic enzymes that destroy proteins, nucleic acids and lipids. MOMP (mitochondrial 

outer membrane permeabilization) also releases several proteins that contribute to non-

apoptotic cell death, including DNAse, endonuclease G and AIF 85. 

However, Bcl-2 overexpression cannot always protect from cell death as seen in 

lymphocytes overexpressing Bcl-2, which are not protected against apoptosis induced by 

death receptor ligands 86, 87. This is due to the fact that in these cell types, also called cell 

type I, the two apoptotic pathways can be largely independent and caspase-8 activation by 

the death receptor pathway is sufficient to activate effector caspases without amplification 

loop mediated by mitochondria. 

2.9.2 Bcl-2-mediated regulation of calcium flux in the ER 
Even though a lot of research has focused on the actions of Bcl-2 family on the mitochondria, 

it is long known that Bcl-2 has an antiapoptotic role at the ER. The ER has been identified as 

a critical early checkpoint that regulates the initiation of mitochondria-dependent pathway of 

apoptosis in response to severe or prolonged ER stress although the exact mechanisms 

remain controversial 68. The ER represents the most important storage site for Ca2+ in the 

cell. Calcium import and export is tightly regulated by two main transporters: the 

sarcoplasmatic/endoplasmatic reticulum calcium-ATPase (SERCA) (active import of Ca2+) 

and the inositol triphosphate (IP3) receptor (IP3R) mediating transient release of Ca2+ into the 

cytosol. The release of Ca2+ is a critical early event for the initiation of apoptosis induced in 

many apoptotic signals, as a consequence of organelle disruption, free radical production 

and activation of Ca2+-dependent phosphatases and proteases such as calcineurin and 

calpain 67, 88. Bcl-2 can interact with both IP3R and SERCA. Interaction of Bcl-2 with IP3R 

leads to permanent leakage of Ca2+, lowering resting state of ER Ca2+-content and also 

reduces IP3R-opening upon stress. Parallel blockade of SERCA attenuates active import of 

Ca2+, which also reduces the amount of Ca2+ in the ER. Interestingly, interaction between 
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Bcl-2 and IP3R is inhibited by ER localized Bax and Bak and it is also dependent on its 

phosphorylation status. JNK activation, which is caused by the inositol-requiring enzyme 1 

(IRE1)/apoptosis signal regulating kinase 1 (ASK1) kinase arm of the unfolded protein 

response (UPR), leads to phosphorylation of Bcl-2 probably attenuating Bcl-2-mediated 

regulation of IP3R and causing Bcl-2 degradation by proteasome 68. 

EndoG

mitochondrium

cell membrane

AIF

ER

Bcl-2 Beclin1

TNFα, Fas or TRAIL

death
receptor

ApoptosisNecrosis Autophagy

R
IP

1

caspase-8

cyt c

caspase-9
VDAC

ROS

EndoG

mitochondrium

cell membrane

AIFAIF

ERER

Bcl-2Bcl-2 Beclin1Beclin1

TNFα, Fas or TRAIL

death
receptor

ApoptosisNecrosis Autophagy

R
IP

1

caspase-8caspase-8

cyt c

caspase-9caspase-9
VDAC
VDAC

ROSROS

 

Figure 5 Bcl-2 inhibits different modes of cell death due to close communication with mediators of apoptosis, 
autophagy and necrosis. Apoptosis and necrosis share the same upstream TNFR. Bcl-2 blocks VDAC and 
consequent disruption of mitochondrial permeability after RIP1 activation and thus prevents the release of pro-
necrotic factors such as endoG and AIF and increase of ROS. Bcl-2 suppresses mitochondrial membrane 
permeabilization and cytochrome c release downstream of caspase-8. Additionally, autophagy induction is 
inhibited by Bcl-2 by inhibitory binding to Beclin1, an essential component of the mammalian autophagy system. 
The image is adapted from 81. 

As Bcl-2 blocks cell death by a variety of different mechanisms, it is not surprising that Bcl-2 

overexpression has been implicated in tumor survival pathways via its pro-metastatic activity 

in human non-small cell lung cancer cells and breast cancer cells 89, 90, as well as its pro-

angiogenic activity as seen in its modulation of vascular endothelial growth factor (VEGF) 

expression 91, 92. Bcl-2 may also act to inhibit the innate antitumor immune response by 

promoting VEGF production 93, as VEGF is known to inhibit the innate antitumor immune 

response 94. Bcl-2 has been implicated in immunosilencing and it has been shown that Bcl-2 

inhibition provokes antitumor response in activated T cells 95. 
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2.10 Significance to overcome Bcl-2-mediated resistance 

One hallmark of human cancers is the ability to evade apoptosis. Generally, cell death can 

be inhibited by an increase of anti-apoptotic molecules and/or by a reduction or defective 

function of pro-apoptotic proteins. Subsequently, an enhancement in the ratio of anti- to pro-

apoptotic Bcl-2 proteins has been observed in a variety of cancers and has been correlated 

to tumor cell survival and apoptosis resistance 96. A characteristic feature of follicular 

lymphoma is the overexpression of Bcl-2, caused by the t(14;18) chromosome translocation, 

placing the bcl-2 oncogene into the immunoglobulin heavy chain gene locus, leading to its 

permanent expression 97. Moreover, studies on transgenic mice showed, that overexpression 

of Bcl-2 promotes neoplastic transformation of B and T lymphocytes and also of myeloid cells 
98, 99. It has been discovered, that overexpression of Bcl-2 is common in many types of 

human cancer and has frequently been correlated with decreased susceptibility to 

chemotherapeutics and to increased radioresistance 2, 96. Interestingly, Bcl-2 overexpression 

does not promote cell proliferation as most previously discovered oncogenes do, Bcl-2 

overexpression rather inhibits cell death, purging apoptosis as a prominent tumor-

suppression mechanism 100. Therefore, the combined overexpression of Bcl-2 and MYC, an 

oncogene causing increased proliferation, synergize potently in the development of 

lymphomas and certain other types of cancer 101. 

2.10.1 Bcl-2 inhibitors in cancer therapy 
Interfering with the pro-survival function of Bcl-2 provides suitable means to take aim at 

tumor cells. Different mechanisms to target and antagonize anti-apoptotic Bcl-2 have been 

developed and these drugs are already evaluated in several pre-clinical models and early 

clinical trials. There are different strategies to target Bcl-2. On the one hand there are Bcl-2 

inhibitors such as chemical compounds (antisense-oligodeoxynucleotides targeting Bcl-2 

mRNA: Genasense, also called G3139/Oblimseren currently used in phase II/III clinical trials 

e.g. in CLL alone or in combination with other chemotherapeutics) or natural compounds 

(Gossypol in Phase I/II), on the other hand BH3 mimetics have been developed based on 

protein-protein interactions between anti-and pro-apoptotic proteins of the Bcl-2 family, which 

represent non-peptidic compounds such as Bim-like mimetics (Obatoclax) or Bad-like 

mimetics (ABT-737, oral ABT-263, Phase I). BH3 mimetics competitively bind to the 

hydrophobic cleft thus displacing pro-apoptotic Bcl-2 family members from the heterodimeric 

complex, which subsequently can unleash pro-death molecules 102-104. 
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2.10.2 Overcoming cell death resistance by Bcl-2 overexpression using 
helenalin 
There is a need to develop additional strategies to overcome Bcl-2-mediated resistance, not 

only by directly targeting the Bcl-2 protein using Bcl-2 inhibitors, but also by circumventing 

cell death pathways that are blocked by Bcl-2. As previously mentioned, our group has 

already shown that helenalin is able to induce cell death despite of Bcl-2 overexpression in 

Jurkat T-cells. Yet, the type of cell death as well as the underlying mechanisms induced by 

helenalin in this cell line have not been investigated up to now. As helenalin showed 

promising effects in these highly resistant cancer cells, it was necessary to find out how 

helenalin overcomes Bcl-2-mediated resistance. 
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MATERIALS AND METHODS 
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3 MATERIALS AND METHODS 

3.1 Materials 

3.1.1 Biochemicals, inhibitors, dyes, buffers and cell culture reagents 

Table 1 Biochemicals and inhibitors, dyes and cell culture reagents 

Reagent Producer 

3-MA Merck , Darmstadt, Germany 

Ac-DEVD-AFC (Caspase-3 substrate) Bachem, Bubendorf, Germany 

Ac-LETD-AFC (Caspase-8 substrate) Bachem, Bubendorf, Germany 

BAPTA-AM Invitrogen, Karlsruhe, Germany 

BMS-345541 Sigma-Aldrich, Taufkirchen, Germany 

Bradford ReagentTM Bio-Rad, Munich, Germany 

Collagen A/G Biochrom AG, Berlin, Germany 

CompleteTM Roche diagnostics, Penzberg, Germany 

Cycloheximide Axxora, Lörrach, Germany 

DCDHF diacetate Axxora, Lörrach, Germany 

Deferoxamine mesylate (DFO) Sigma-Aldrich, Taufkirchen, Germany 

DMSO Sigma-Aldrich, Taufkirchen, Germany 

CPRG Roche diagnostics, Penzberg, Germany 

Etoposide Merck , Darmstadt, Germany 

FCS gold PAA Laboratories, Pasching, Austria 

Fura-2 AM BIOTREND GmbH, Cologne, Germany 

G418 Merck , Darmstadt, Germany 

Helenalin Axxora, Lörrach, Germany 

Human Annexin V-FITC Kit  Bender MedSystems, Vienna, Austria 

JC-1 iodide Axxora, Lörrach, Germany 

Na3VO4  ICN Biomedicals, Aurora, Ohio, USA 

N-acetyl-L-cysteine (NAC) Sigma-Aldrich, Taufkirchen, Germany 

NaF  Merck, Darmstadt, Germany 

NEAA Invitrogen, Karlsruhe, Germany 

Necrostatin-1 Merck , Darmstadt, Germany 

Paclitaxel (Tax) Sigma-Aldrich, Taufkirchen, Germany 

Page RulerTM Prestained Protein Ladder Fermentas, St. Leon-Rot, Germany 

Penicillin PAA Laboratories, Pasching, Austria 
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PMSF  Sigma Aldrich, Munich, Germany 

Polyacrylamide Roth GmbH, Karlsruhe, Germany 

Propidium iodide (PI) Sigma-Aldrich, Taufkirchen, Germany 

Q-VD-OPh Merck , Darmstadt, Germany 

RPMI 1640 PAN Biotech, Aidenbach, Germany 

Sodium pyruvate Merck, Darmstadt, Germany 

SP600125 Merck , Darmstadt, Germany 

Streptomycin PAA Laboratories, Pasching, Austria 

Thapsigargin (TG) Sigma-Aldrich, Taufkirchen, Germany 

Tris-HCl Sigma-Aldrich, Taufkirchen, Germany 

Triton X-100 Merck, Darmstadt, Germany 

Tumor necrosis factor α (TNFα) Repro Tech GmbH, Hamburg, Germany 

UCF101 Merck , Darmstadt, Germany 

β-Phenylethyl isothiocyanate (PEITC) Sigma-Aldrich, Taufkirchen, Germany 
 

Helenalin was dissolved in DMSO and further diluted in PBS. Final DMSO concentration did 

not exceed 0.1%, a concentration verified not to interfere with the experiments performed. 

Table 2 Commonly used buffers 

HEPES buffer (pH 7.4)  PBS+ Ca2+/Mg2+ (pH 7.4) 

NaCl 125 mM  NaCl  137 mM

KCl 3 mM  KCl 2.68 mM

NaH2PO4 1.25 mM  Na2HPO4  8.10 mM

CaCl2 2.5 mM  KH2PO4  1.47 mM

MgCl2 1.5 mM  MgCl2  0.25 mM

Glucose 10 mM  H2O  

HEPES 10 mM    

H2O    

   PBS (pH 7.4) 

   NaCl  132.2 mM

   Na2HPO4  10.4 mM

   KH2PO4  3.2 mM

   H2O 
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3.1.2 Technical equipment 

Table 3 Technical equipment 

Name Device Producer 

Culture flasks, plates, dishes Disposable cell culture 
material 

TPP, Trasadigen, 
Switzerland 

Curix 60 Tabletop film processor Agfa, Cologne, Germany 

Cyclone Storage Phosphor Screens Canberra-Packard, 
Schwadorf, Austria 

FACSCalibur Flow cytometer Becton Dickinson, 
Heidelberg, Germany 

FACSCanto II Flow cytometer Becton Dickinson, 
Heidelberg, Germany 

Mikro 22R Table centrifuge Hettich, Tuttlingen, Germany 

Nanodrop® ND-1000 Spectrophotometer Peqlab, Wilmington, DE, 
USA 

Nucleofector II Electroporation device Lonza GmbH, Cologne, 
Germany 

Odyssey 2.1 Infrared Imaging System  LI-COR Biosciences, 
Lincoln, NE, USA 

Orion II Microplate 
Luminometer 

Luminescence Berthold Detection Systems, 
Pforzheim, Germany 

SpectraFluor PlusTM Microplate multifunction 
reader 

Tecan, Männedorf, Austria 

SunriseTM Microplate absorbance 
reader 

Tecan, Männedorf, Austria 

Vi-Cell™ XR Cell viability analyzer Beckman Coulter, Fullerton, 
CA, USA 

 

3.2 Cell Culture 

3.2.1 Cell lines 
Human leukemia Jurkat T cells transfected with vector control (Neo Jurkat) or Bcl-2 (Bcl-2 

Jurkat) 105, kindly provided by Drs. P.H. Krammer and H. Walczak, Heidelberg, Germany, 

were cultured in RPMI 1640 containing 2 mM L-glutamine (PAN Biotech, Aidenbach, 

Germany), supplemented with 10% heat inactivated FCS gold (PAA Laboratories, Cölbe, 

Germany) and 1% pyruvate (Merck, Darmstadt, Germany). Medium of transfected cells was 

supplemented with 0.5-1 mg/ml G418 (PAA Laboratories, Cölbe, Germany) at least every 

fifth passage. 
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Human leukemia Jurkat T cells (J16) (S-Jurkat) were kindly provided by P.H. Krammer and 

H. Walczak, Heidelberg, Germany. S-Jurkat cells were cultured in RPMI 1640 containing 2 

mM L-glutamine, supplemented with 10% FCS gold and 1% pyruvate. 

MCF-7 were purchased from DSMZ and cultured (37°C and 5% CO2) in RPMI 1640 

containing 2 mM L-glutamine, supplemented with 10% heat inactivated FCS gold, 1x non-

essential amino acids (NEAA), 1 mM pyruvate and 10 µg/ml human insulin. To create stably 

Bcl-2 overexpressing MCF-7 cells (Bcl-2 MCF-7) and the empty-vector control cell line (Neo 

MCF-7), 2 x 106  MCF-7 cells were transfected with 3 µg of pcDNA3 Bcl-2 vector (Addgene 

plasmid 8768 42) or empty vector pcDNA3 (Invitrogen, Karlsruhe, Germany) using the 

Nucleofector® II device (program P-020) in combination with the Amaxa® Cell Line 

Nucleofector Kit® V (both from LONZA Cologne AG, Cologne, Germany), according to the 

manufacturer’s instructions, respectively. Subsequently, cells were permanently cultivated 

with G418 (500 µg/ml) to select for stable expression. 

The human pancreatic cancer cell line L3.6pl was kindly provided by Christiane J. Bruns 

(Department of Surgery, Klinikum Großhadern, LMU Munich, Germany). The cells were 

cultivated on 0.001% Collagen G-coated culture flasks and stimulation plates in RPMI 1640 

containing 2 mM L-glutamine, supplemented with 10% heat inactivated FCS gold, 1x non-

essential amino acids (NEAA) and 1 mM pyruvate. To create stably Bcl-2 overexpressing 

L3.6pl cells (Bcl-2 L3.6pl) and the empty vector control cell line (Neo L3.6pl), 4 x 106 L3.6pl 

cells were either transfected with 3 µg of pcDNA3 Bcl-2 vector or empty vector pcDNA3 

(Invitrogen, Karlsruhe, Germany) using the Nucleofector® II device (program C-019) in 

combination with the Amaxa® Cell Line Nucleofector Kit® V (both from LONZA Cologne AG, 

Cologne, Germany), according to the manufacturer’s instructions. Subsequently, cells were 

permanently cultivated with G418 (250 µg/ml) to select for stable expression. 

3.2.2 Cell culture 
Cell lines were cultivated at 37°C with 5% CO2 in a humidified incubator. Jurkat cell lines 

were maintained at the density below 1 x 106 and used up to passage 25. All adherent cells 

were passaged after reaching 80-90% confluency. MCF-7 cells were used up to passage 25 

and L3.6pl cells were used up to passage 35. For splitting and seeding, adherent cells were 

washed once with pre-warmed PBS, T/E was added and cells were incubated at 37°C and 

the enzymatic reaction was stopped by adding new medium as soon as cells were detached. 

Subsequently, cells were centrifuged and supplied with fresh medium. 

The cell density and viability was determinded using ViCELLTM cell viability analyzer 

(Beckman Coulter, Krefeld, Germany). 
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Table 4 Solutions and regents for cell culture 

Trypsin/EDTA (T/E)  Collagen G 

Trypsin  0.05%  Collagen G 0.001%

EDTA  0.20%  PBS 

PBS  
 

For heat inactivation, FCS gold was partially thawed for 30 min at room temperature. 

Subsequently, it was totally thawed at 37°C. Finally, FCS was inactivated at 56°C for 30 min. 

FCS was aliquoted and stored at -20°C. 

3.2.3 Seeding for experiments 
Only G418 free medium was used for experiments. Unless indicated otherwise, cells were 

seeded as follows: 

Jurkat cells were seeded at 7 x 105 cells/ml (for experiments up to 24 h) or at 3.5 x 105 (for 

stimulation time for 48 h) at least 5 h before stimulation or at 5 x 105 cells/ml the day before 

(about 16 h before stimulation) in 24-well plates, respectively. 

L3.6pl cells were seeded at 0.7-1 x 105 cells/well in Collagen G coated 24-well plates or at 

2.5 x 105 cells/well in 6-well plates about 16 h before stimulation, respectively. 

MCF-7 cells were seeded at 1 x 105 cells/well in 24-well plates about 16 h before stimulation. 

3.2.4 Freezing and thawing 
From all cell lines nitrogen stocks were prepared. After centrifugation (180 x g, 10 min, 4°C) 

cells were resuspended in the appropriate freezing medium (70% normal medium for each 

cell line, 10% DMSO and 20% additional FCS gold) and cells were transferred to cryovials 

(2-4 x 106 cells in 1.5 ml per vial) and frozen overnight at -20°C. Cells were then kept at 80°C 

and if desired, transferred to liquid nitrogen (-196°C) after two days for long-term storage. 

3.3 Flow cytometry 

Flow cytometry (FCM) has been used for the analysis of cell death, ROS generation and 

mitochondrial membrane dissipitation. Measurements were performed on a FACSCanto II or 

on a FACSCalibur (Becton Dickinson, Heidelberg, Germany), respectively. Cells were 

illuminated by a blue argon laser (488 nm). 
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Table 5 FACS buffer for FACSCalibur 

Sheath fluid (pH 7.37) 

NaCl 8.12 g

KH2PO4 0.26 g

Na2HPO4 2.35 g

KCl 0.28 g

Na2EDTA 0.36 g

LiCl 0.43 g

NaN3 10 mM

H2O ad 1,000 ml
 

3.3.1 Quantification of Cell death 
Quantification of cell death was either performed according to Nicoletti et al. 106, labeled as 

Nicoletti assay, by propidium iodide (PI) exclusion assay or by Annexin-V/PI double staining. 

3.3.1.1 Nicoletti assay 

Briefly, cells were seeded in 24 well-plates. Growth medium was exchanged (for MCF-7 and 

L3.6pl) and cells were stimulated with desired substances for the indicated times. After 

stimulation, cells were washed with PBS and incubated in a buffer containing 0.1% sodium 

citrate, 0.1% Triton X-100 and 50 µg/ml PI overnight at 4°C and analyzed by flow cytometry 

on a FACS Calibur (Becton Dickinson, Heidelberg, Germany). Nuclei to the left of the G1-

peak containing hypodiploid DNA were considered dead. If indicated, specific cell death was 

calculated as: [(absolute cell death of compound-treated cells – absolute cell death of 

untreated cells) / (100 – absolute cell death of untreated cells) x 100]. 

3.3.1.2 PI exclusion assay 

After stimulation, cells were washed with PBS and incubated with a solution of PBS and PI  

(5 µg/ml) for 30 min at room temperature in the dark. PI stained cells were detected by flow 

cytometry using FACS Calibur (Becton Dickinson, Heidelberg, Germany). Cell death was 

analyzed employing histogram plots except experiments with stimulation time for 24 h and 48 

h, which were analyzed employing dot plots. 

3.3.1.3 Annexin-V/PI double staining 

Bcl-2 Jurkat and Neo Jurkat cells were either left untreated (Co) or treated with helenalin  

20 µM for the indicated time points. Cells were double stained with Annexin V-

FITC/Propidium iodide (PI) using human Annexin V-FITC Kit (Bender MedSystems, Vienna, 
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Austria) according to the manufacturer’s protocol. Briefly, stimulated cells were collected in 

FACS tubes, centrifuged (600 x g, 5 min, room temperature), washed with PBS and 

resuspended in 195 µl binding buffer (10 mM Hepes/NaOH pH 7.4, 140 mM NaCl, 2.5 mM 

CaCl2) with 5 µl of the provided Annexin V-FITC solution. After incubation at room 

temperature under light protection for 10 minutes, samples were washed with PBS and 

resuspended in 190 µl of binding buffer and 10 µl of PI stock solution (20 µg/ml) and 

subsequently analyzed by flow cytometry using FACS Canto II (Becton Dickinson, 

Heidelberg, Germany). 

3.3.2 Measurement of ROS generation 
Bcl-2 Jurkat cells were left untreated (Co) or treated with helenalin (20 µM) for the indicated 

times, centrifuged (600 x g, 5 min, room temperature) and resuspended in PBS. Samples 

were stained with the oxidation-sensitive dye 2’,7’-dichlorodihydrofluorescein diacetate 

(DCDHF diacetate, 10 µM) for 30 minutes at 37°C in the dark. Subsequently, cells were 

centrifuged, diluted in fresh PBS and analyzed by flow cytometry using FACS Calibur 

(Becton Dickinson, Heidelberg, Germany). 

3.3.3 Measurement of mitochondrial potential dissipitation 
Bcl-2 Jurkat cells left untreated (Co) or treated with helenalin 20 µM for the indicated time 

point. Subsequently, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazol-carbocyanine iodide 

(JC-1) was directly added into the wells at a final concentration of 1.25 µM and cells were 

incubated for 15 min at 37°C. After centrifugation (600 x g, 5 min, room temperature), 

samples were resuspended in PBS and analyzed by flow cytometry using FACS Canto II 

(Becton Dickinson, Heidelberg, Germany). An increase in green fluorescence (FITC-A 

channel) indicates loss of mitochondrial membrane potential. 

3.4 Clonogenic assay 

Neo Jurkat and Bcl-2 Jurkat cells were left untreated or treated with helenalin (20 µM) or 

etoposide (2 µM) for 2 h. Subsequently, cells were washed with PBS and resuspended in 

culture medium (5 x 105 cells/ml). Cell suspensions were diluted 1:10 with methylcellulose 

(0.52%) medium containing 40% FCS. Cells were seeded in 96-well plates (100 µl) and 

colonies were scored after 7 days of culture using the S.CORE-colony forming assay Online 

Imaging Analysis System from S.CO LifeScience (Garching, Germany). 

Neo L3.6pl and Bcl-2 L3.6pl cells were seeded in 6-well plates (2.5 x 105 cells/well) and 

either left untreated (Co) or treated with helenalin (5, 10, 20 µM) or paclitaxel (Tax; 500 nM) 

for 2 h. Subsequently, cells were collected by trypsinization, centrifuged (1000 rpm, 5 min) 

and supported with fresh medium. Cells were then seeded in 6 well-plates (1 x 104 cells/well) 
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and allowed to grow for 6 days. Afterwards, cells were stained with crystal violet (0.5% 

crystal violet in 20% methanol) for 15 min., unbound crystal violet was removed by washing 

with water and the plates were air dried. Pictures of the wells were taken. Afterwards, 

intracellular crystal violet was solved with sodium citrate solution (0.05 M Na3-citrate, 50% 

ethanol) and absorption was measured at 550 nm in a SpectraFluor PlusTM (Tecan). 

Untreated cells (Co) were set as 100% viable cells. 

3.5 Western blot 

3.5.1 Whole lysate preparation 
For Western blot analysis, cells were treated as indicated and at least 2 wells of a 24-well 

plate per sample were pooled. Cell samples were collected by centrifugation, washed with 

ice-cold PBS and lysed in the appropriate lysis buffer for 30 min at 4°C. Lysates were 

homogenized with an ultrasonic device and centrifuged at 10,000 x g for 10 min at 4°C and 

supernatants were collected into new tubes. One part of the lysate was used for 

determination of protein concentration (Bradford), the rest was diluted with 5x SDS sample 

buffer (4 parts lysate, 1 part buffer) or with 3x Laemmli buffer (2 parts lysate, 1 part buffer) 

and boiled for 5 min at 95°C. Samples were used immediately or stored at -20°C. 

Table 6 Buffers for the preparation of total cell lysates 

Lysis buffer  Lysis buffer for phospho-proteins 
Tris-HCl, pH 7.5 30 mM  Tris-Base 20 mM

NaCl 150 mM  NaCl 137 mM

EDTA 2 mM  EDTA 2 mM

Triton X-100 1%  Triton X-100 1%

Complete™  C3H7Na2O6P 20 mM

   NaF 10 mM

  Na3VO4 2 mM

   Na4P2O7 2 mM

   PMSF 1 mM

   Glycerol 10%

   Complete™ 
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Table 7 Sample buffer 

5x SDS sample buffer  3x Laemmli buffer 

Tris-HCl, pH 6.8 3.125 M, 100 µl  Tris-HCl 187.5 mM

Glycerol 500 µl  Glycerol 30%

SDS 20% 250 µl  SDS 6%

DTT 16% 125 µl  Bromphenolblue 0.025%

Pryonin Y 5% 5 µl  β-Mercaptoethanol 12.5%

H2O ad 1,000 µl  H2O 
 

3.5.2 Preparation of cytosolic and mitochondrial fractions 
Release of cytochrome c from mitochondria was analyzed according to Leist et al. 107. Briefly, 

cells were treated as indicated and cell samples were collected by centrifugation and washed 

with ice-cold PBS. Subsequently, the cell pellet was resuspended in permeabilization buffer 

and incubated for 20 min at 4°C. Permeabilized cells were centrifuged (230 x g, 10 min, 4°C), 

the supernatant was removed and centrifuged again (10 min, 20,000 x g) to clear from any 

remaining cell fragments. The obtained cytosolic fraction was separated by SDS-PAGE and 

probed for mitochondrial proteins as described below. The remaining pellet of the first 

centrifugation was resuspended in 0.1% Triton/PBS (15 min, 4°C), centrifuged (20,000 x g, 

4°C, 10 min) and the supernatant containing mitochondrial fraction was analyzed by SDS-

PAGE. Purity of cytosolic fractions was assessed by incubating membranes with VDAC. 

Table 8 Permeabilization buffer 

Permeabilization buffer 
Mannitol 210 mM 

Sucrose 70 mM

Hepes, pH 7.2 10 mM

EGTA 0.2 mM

Succinate 5 mM

BSA 0.15%

Digitonin 60 µg/ml

H2O 
 

3.5.3 Immunoprecipitation 
Bcl-2 Jurkat cells were left untreated (Co) or treated with helenalin (20 µM) for 2 h or 6 h. At 

least 4 wells of a 24-well plate per sample were pooled. One additional well was left 

untreated (whole cell lysate sample). After stimulation, cells were lysed in general lysis buffer 
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and the amount of protein was determined. The whole cell lysate sample was immediately 

frozen at -85°C. The other samples were treated as follows: For each sample, 300-400 µg 

protein was filled up to a final volume of 250 µl with lysis buffer and 2.5 µl of Beclin1 antibody 

was added. The samples were gently shaken over night at 4°C by end over end rocking. In 

the next step, 50 µl Protein A Agarose Beads (50%v/v, Sigma) for each sample were 

centrifuged (14,000 rpm, 1 min, 4°C), washed and resuspended in lysis buffer and added to 

the samples. Subsequently, samples were gently inverted at 4°C for approximately 3 h. The 

precipitates were centrifuged (14,000 rpm, 1 min, 4°C), and 40 µl of the supernatant were 

kept as binding control (BC). The remaining pellet was carefully washed three times with 500 

µl lysis buffer. After completely removing the last wash solution, samples were mixed with β-

mercaptoethanol containing 3x Laemmli buffer and boiled at 95°C for 5 minutes. Also 20 µl of 

the whole cell lysate, 2 µl of Beclin1 antibody (antibody control) and 20 µl of the binding 

controls (BC) were boiled with 3x Laemmli buffer, respectively. All samples were analyzed by 

Western blot. 

For a selective detection of Beclin1 protein without hindrance by interfering 

immunoprecipitating immunoglobulin heavy and light chains, the Rabbit TrueBlot™: HRP 

anti-rabbit IgG antibody (NatuTec GmbH, Frankfurt a.M., Germany) was used. 

3.5.4 Protein quantification 
In order to employ equal amounts of proteins in all samples for Western blot analysis, protein 

concentrations were determined using Bradford assay. After measurement, protein 

concentration was adjusted by adding 1x SDS sample buffer. 

Bradford Assay (Bradford solution, Bio-Rad, Munich, Germany) was performed as described 

previously 108. Coomassie Brillant Blue as a dye is used, which binds to proteins. 10 µl 

protein samples (1:10 dilution in water) were incubated with 190 µl Bradford solution for 5 

min. Thereafter, absorbance was measured photometrically at 592 nm using Tecan 

Sunrise™ Microplate absorbance reader (TECAN, Männedorf, Austria). Protein standards 

were obtained by diluting a stock solution of bovine serum albumin (BSA, 2 mg/ml). Linear 

regression was used to determine the actual protein concentration of each sample. 

3.5.5 SDS-PAGE 
Proteins were separated by discontinuous SDS-polyacrylamid gel electrophoresis (SDS-

PAGE) according to Laemmli 109. Equal amounts of protein were loaded on discontinuous 

polyacrylamide gels, consisting of a separation and stacking gel, and separated using the 

Mini-PROTEAN 3 electrophoresis module (Bio-Rad, Munich, Germany). The concentration of 

RotiphoreseTM Gel 30 (acrylamide) in the separating gel was adjusted for an optimal 

separation of the proteins depending on their molecular weights. Electrophoresis was carried 

out at 100 V for 21 min for protein stacking and 200 V for 45 min for protein separation. The 
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molecular weight of proteins was determined by comparison with the prestained protein 

ladder PageRulerTM. 

Table 9 Acrylamide gels and acrylamide concentration in the separation gel 

Stacking gel  Separation gel (10%) 

RotiphoreseTM Gel 30 1.7 ml  RotiphoreseTM Gel 30 5 ml

Tris-HCl 1.25 M, (pH 6.8) 1 ml  Tris-HCl 1.5 M, (pH 8.8) 3.75 ml

SDS 10% 100 µl  SDS 10% 150 µl

TEMED 20 µl  TEMED 15 µl

APS 10% 100 µl  APS 10% 75 µl

H2O 7.0 ml  H2O 6.1 ml

     

Acrylamide concentration Proteins

7.5% 70-120 kDa

10% 70-30 kDa

12% 60-20 kDa

15% 10-45 kDa
 

Table 10 Elecrophoresis buffer 

Electrophoresis buffer 
Tris 4.9 mM

Glycine 38 mM

SDS 0.1%

H2O 
 

3.5.6 Tank electroblotting 
After protein separation, proteins were transferred onto a nitrocellulose membrane (Hybond-

ECLTM, Amersham Bioscience, Freiburg, Germany) by electro tank blotting 110. A blotting 

sandwich was prepared in a box filled with 1x tank buffer to avoid bubbles as follows: 

cathode – pad – blotting paper – separating gel (from SDS-PAGE) – nitrocellulose 

membrane – blotting paper – pad – anode. The membrane was equilibrated with 1x tank 

buffer 45 minutes prior to running the tank blot. Sandwiches were mounted in the Mini Trans-

Blot® system (Bio-Rad, Munich, Germany), ice-cold 1x tank buffer was filled into the chamber 

and a cooling pack was inserted to avoid excessive heat. Transfers were carried out at 4°C, 

either at 100 V for 90 min or at 23 V over night. 
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Table 11 Tank blotting buffer 

5x Tank buffer  1x Tank buffer 

Tris base 240 mM  5x Tank buffer 20%

Glycine 195 mM  Methanol 20%

H2O  H2O 
 

3.5.7 Protein detection 
Prior to the immunological detection of the relevant proteins, unspecific protein binding sites 

were blocked. Therefore, the membranes were incubated in non-fat dry milk powder (Blotto) 

5% or BSA 5% for 2 h at room temperature. Afterwards, detection of the proteins was 

performed by incubating the membrane with the respective primary antibody at 4°C overnight 

(Table 12). After three washing steps with PBS containing 0.1% Tween (PBS-T), the 

membrane was incubated with the secondary antibody, followed by 3 additional washing 

steps. All steps regarding the incubation of the membrane were performed under gentle 

agitation. In order to visualize the proteins, two different methods have been used depending 

on the labels of the secondary antibodies: enhanced chemiluminescence or infrared imaging. 

Table 12 Primary antibodies 

Antigen Source Provider 

AIF Rabbit polycl. Chemicon 

Akt Rabbit polycl. Cell Signaling 

Apaf-1 Mouse IgG1 BD Biosciences 

Bcl-2 Goat polycl. Santa Cruz 

Bcl-2 Mouse monocl. Merck 

Beclin1 Rabbit polycl. Cell Signaling 

BiP/GRP78 Mouse IgG2a BD 

caspase-3 Rabbit polycl. Santa Cruz 

caspase-9 Rabbit polycl. Cell Signaling 

cytochrome c Rabbit polycl. Cell Signaling 

eIF2α(D-3) Mouse IgG1 Santa Cruz 

GADD153/CHOP10 Rabbit polycl. Sigma 

IκBα Rabbit polycl. Cell Signaling 

JNK Rabbit polycl. Cell Signaling 

LC3B (G40) Rabbit polycl. Cell Signaling 

mTOR Rabbit polycl. Cell Signaling 

phos.-AktS473 Mouse IgG2b Cell Signaling 
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phos.-c.JunS63 Rabbit polycl. Cell Signaling 

phos.-eIF2αS51 Rabbit polycl. Cell Signaling 

phos.-IκBαS32 Rabbit polycl. Santa Cruz 

phos.-JNKT183/Y185 Rabbit polycl. Cell Signaling 

phos.-mTORS2448 Rabbit polycl. Cell Signaling 

Smac Mouse IgG1 Cell Signaling 

VDAC Rabbit polycl. Cell Signaling 

β-actin Mouse monocl. Chemicon 
 

Antibodies were diluted according to the manufacturer’s instructions. 

3.5.7.1 Enhanced chemiluminescence 

Membranes were incubated for 2 h with HRP-conjugated secondary antibodies (Table 13). 

For detection, luminol was used as a substrate. The membranes were incubated with ECL 

(enhanced chemiluminescence) solution for 1 minute (ECL Plus Western Blotting Detection 

Reagent RPN 2132, GE Healthcare, Munich, Germany). The appearing luminescence was 

detected by exposure of the membrane to an X-ray film (Super RX, Fuji, Düsseldorf, 

Germany) and subsequently developed with a Curix 60 Developing system (Agfa-Gevaert 

AG, Cologne, Germany).  

3.5.7.2 Infrared imaging 

Secondary antibodies coupled to IRDyeTM 800 and Alexa Fluor® 680 with emission at 800 

and 700 nm, respectively, were used. Membranes were incubated for 1 h. Protein bands of 

interest were detected using the Odyssey imaging system (Li-COR Biosciences, Lincoln, 

NE). Secondary antibodies used for this type of protein detection are listed in (Table 13). 

Table 13 Secondary antibodies 

Antibody Dilutions in Blotto 1% Provider 

Goat anti-mouse IgG1: HRP 1:1,000 Biozol 

Goat anti mouse IgG: HRP 1:1,000 Southern Biotechnology 

Goat anti-rabbit: HRP 1:1,000  Dianova 

Donkey anti-goat: HRP 1:1,000 Santa Cruz 

TrueBlot™: HRP anti-rabbit IgG 1:1,000 NatuTec GmbH 

Alexa Fluor® 680 Goat anti-mouse IgG 1:10,000 Molecular Probes 

Alexa Fluor® 680 Goat anti-rabbit IgG 1:10,000 Molecular Probes 

IRDyeTM 800CW Goat anti-mouse IgG 1:20,000 LI-COR Biosciences 

IRDyeTM 800CW Goat anti-rabbit IgG 1:20,000 LI-COR Biosciences 
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3.5.8 Staining of gels and membranes 
Gels were stained for 30 minutes in the Coomassie staining solution and destained with the 

Coomassie destaining solution to control equal loading of the gel and the performance of the 

transfer. A 0.2% Ponceau S in 5.0% acetic acid solution was used to stain membranes. 

Destaining was performed in distilled water. 

Table 14 Gel staining solution 

Coomassi staining solution  Coomassi destaining solution 

Coomassie blue 3.0 g  Glacial acetic acid 100 ml

Glacial acetic acid 100 ml  Ethanol 333 ml

Ethanol 450 ml  H2O ad 1,000 ml

H2O ad 1,000 ml  
 

3.6 Transfection of cells 

For transient transfection with the indicated siRNA and plasmids, respectively, cells were 

electroporated using the Nucleofector® II device in combination with the Amaxa® Cell Line 

Nucleofector Kit® V (both from LONZA Cologne AG, Cologne, Germany) according to the 

manufacturer’s instructions.  

3.6.1 Transfection with Apaf-1 and AIF siRNA 
Sense and antisense siRNA oligonucleotides corresponding to nucleotides 978-998 of  

Apaf-1 (AATTGGTGCACTTTTACGTGA) 111, to the AIF nucleotides 

GGAAATATGGGAAAGATCCdTdT 112 and oligonucleotides corresponding to a scrambled 

sequence were purchased from Biomers.net GmbH (Ulm, Germany) and annealed to create 

the double-stranded siRNAs. Bcl-2 Jurkat cells were transfected with 3 µg of scrambled, 

Apaf-1 or AIF siRNAs. Cells were stimulated 48 h after transfection. 

3.6.2 Transfection with plasmids 
Bcl-2 and Neo Jurkat cells as well as MCF-7 and L3.6pL cells were transfected with plasmids 

as indicated in the appropriate experiments. 

3.7 Reporter gene assay 

Bcl-2 and Neo Jurkat cells (4 x 106) were co-transfected with 4 µg of plasmid containing 5.7 

kB of human NF-κB promoter driving a firefly luciferase gene (pNF-κB-Luc, Stratagene, 

Lajolla, CA, USA) and 506 ng of a β-galactosidase plasmid (pβ-Gal, 6.83 kB, Promega, 

Mannheim, Germany) using the Nucleofector® II device (program C-019) in combination with 
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the Amaxa® Cell Line Nucleofector Kit® V (both from LONZA Cologne AG, Cologne, 

Germany), according to manufacturer’s instructions, respectively. 100 µl of cells suspension 

(5 x 105 cells/ml) was seeded in 96-well plates (round bottom; TPP Trasadigen, Switzerland). 

12 h after transfection, cells were left untreated (Co) or treated with helenalin 20 µM for the 

indicated times. Subsequently, plates were centrifuged (1500 rpm, 10 min, 4°C), cells were 

washed once with ice-cold PBS and 80 µl/well of passive lysis buffer (Cat#E194A; Promega, 

Mannheim, Germany) was added and samples were frozen at -85°C over night. Afterwards, 

plates were incubated for 15 min under gentle agitation at room temperature and 

subsequently, 50 µl of the lysate per sample were transferred into white 96-well plates. 

Luciferase activity was measured with Orion II Microplate Luminometer (Berthold Detection 

Systems, Pforzheim, Germany) using luciferase assay buffer. 

As a control, β-galactosidase activity was measured in a plate-reading multifunction 

photometer SpectraFluor PlusTM (Tecan, Männedorf, Austria) at 505 nm. Briefly, 20 µl of cell 

lysate per sample was transferred into 96-well plates and 180 µl of substrate buffer was 

added (200 µl of 50nM CPRG, 20 µl β-mercaptoethanol in 20 ml Z-buffer). The enzyme 

activity of β-galactosidase was calculated as the difference between fluorescence at 0 h to 

48 h. Luciferase activity was normalized to β-galactosidase activity and NF-kB activity thus 

obtained is expressed as x-fold activity referring to untreated Neo Jurkat cells. 

Table 15 Buffers for reportergene assay 

Z-buffer (pH 7.01)  Luciferase assay buffer (pH 7.8) 

Na2HPO4 60 mM  D-Luciferin 470 µM

NaH2PO4 40 mM  Coenzym A 270 µM

KCl 10 mM  DTT 33.3 mM

MgCl2 10 mM  ATP 530 µM

H2O  MgSO4 2.67 mM

   Tricine 20 mM

   EDTA 0.1 mM

   H2O 
 

3.8 Electrophoretic mobility shift assay (EMSA) 

3.8.1 Praparation of nuclear extracts 
Nuclear extracts were prepared from either untreated or stimulated Neo Jurkat and Bcl-2 

Jurkat cells, respectively. In order to gain a usable amount of nuclear protein, 1 x 106 cells 

were used per sample. Following stimulation, cells were scraped on ice after washing twice 

with ice-cold PBS. After centrifugation (1,500 rpm, 5 min, 4°C), the supernatant was 
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discarded and 400µl of nuclear extraction buffer A was added to the remaining pellet. 

Samples were incubated at 4°C for 15 min on ice, 25 µl NP-40 10% were added and 

samples were centrifuged (12,000 rpm, 1 min, 4°C) immediately. The supernatant was 

removed and the remaining pellet was suspended in 50 µl buffer B. Samples were incubated 

at 4°C for 15 min with continuous shaking. After centrifugation (12,000 rpm, 5 minutes, 4°C) 

supernatants were frozen at -80°C and nuclear proteins were kept until used for protein 

quantification (by Bradford assay) and electro mobility shift assay (EMSA). 

Table 16 Extraction buffers for nuclear proteins 

Extraction Buffer A  Extraction Buffer B 

HEPES, pH 7.9 10 mM  HEPES, pH 7.9 20 mM

KCl 10 mM  NaCl 0.4 mM

EDTA 0.1 mM  EDTA 0.1 mM

EGTA 0.1 mM  EGTA 0.1 mM

DTT 1.0 mM  DTT 1.0 mM

PMSF 0.5 mM  PMSF 0.5 mM

H2O  Glycerol 25%

   H2O 
 

3.8.2 Binding reaction and electrophoretic separation 
The oligonucleotide for NF-κB with the consensus sequence 5’-AGT TGA GGG GAC TTT 

CCC AGG C-3’ was purchased from Promega. Using the T4 polynucleotide kinase the 

oligonucleotides were 5’ end-labeled with [γ-32P]-ATP. Equal amounts of nuclear protein (1-2 

µg) were incubated with 2 µg poly(dIdC) and 3 µl of freshly prepared reaction buffer for 10 

min at room temperature. For the supershift assay, 1 µl of the respective antibody, p65 or 

p50 (both goat polyclonal antibody, 200 µg/0.1 ml, Santa Cruz Biotechnology, Heidelberg, 

Germany), was added before incubation at room temperature. The binding reaction was 

started by adding 1 µl of the radioactive-labeled oligonucleotide and carried out for 30 min at 

room temperature. The protein-oligonucleotide complexes were separated by gel 

electrophoresis (Power Tec™ HC, BioRad) with 0.25 x TBE buffer at 100 V for 60 min using 

non-denaturating polyacrylamide gels (5% PAA, 20% glycerol). After electrophoresis, gels 

were exposed to Cyclone Storage Phosphor Screens (Canberra-Packard, Schwadorf, 

Austria) for 24 hours, followed by analysis with a phosphor imager station (Cyclone Storage 

Phosphor System, Canberra-Packard). 
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Table 17 Buffers and gels for EMSA 

5x Binding Buffer  Loading Buffer 

Tris/ HCl 50 mM  Tris/HCl 250 mM

NaCl 250 mM  Glycerol 40%

MgCl2 5.0 mM  Bromphenolblue 0.2%

EDTA 2.5 mM    

Glycerol 20%    

     

Reaction buffer  10x TBE, pH 8.3 

5x binding buffer 90%  Tris 890 mM

Loading buffer 10%  Boric acid 890 mM

DTT 2.6 mM  EDTA 20 mM

   H2O 

Non-denaturating PAA gels 4.5%  

10 x TBE 5.3%  

RotiphoreseTM Gel 30 15.8%  

Glycerol 2.6%  

TEMED 0.05%  

APS 0.08%  

H2O  
 

3.9 Caspase activity assay 

Jurkat cells were left untreated (Co) or stimulated with helenalin or PEITC, respectively. 

PEITC has been described to induce caspase activity in Bcl-2 Jurkat cells 113, 114. Afterwards, 

cells were collected by centrifugation, washed with ice cold PBS and stored with 70 

µl/sample of lysis buffer (Buffer A: 5 mM MgCl2, 1 mM EGTA, 0.1% Triton-X-100, 25 mM 

HEPES pH 7.5) at -85°C over night. Afterwards, lysates were centrifuged (10,000 x g, 10 

min, 4°C), supernatants were collected and incubated in a black 96-well plate with Buffer B 

(HEPES 50 mM, sucrose 1%, CHAPS 0.1%, pH 7.5) and caspase substrates, Ac-LETD-AFC 

for caspase-8 or Ac-DEVD-AFC (Bachem, Bubendorf, Germany) for caspase-3, respectively. 

The reading was performed in a plate-reading multifunction photometer (SpectraFluor PlusTM, 

Tecan, Männedorf, Austria) at 37°C. The caspase activity was calculated from the difference 

between fluorescence 0 h to 2 h of substrate incubation. Protein concentration of samples 

was used for normalisation. Capase activity is expressed as x-fold increase of caspase 

activity compared to the control. 
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3.10 Calcium measurement 

Changes in intracellular calcium levels were analyzed with Fura-2 AM. Fura-2 free of Ca2+-

ions emits fluorescence upon excitation at 380 nm, but after binding to Ca2+, fluorescence 

shifts to 340 nm. Therefore, the 340:380 nm ratio of fluorescence intensity provides a 

parameter for calcium release. Briefly, Jurkat cells were centrifuged (180 x g, 5 min, 23°C), 

washed once with Hepes buffer and resuspended at 2 x 106 cells per ml in Hepes buffer 

containing 3 µM Fura-2 AM. Cell suspension was incubated for 30 min at 37°C; later, a 

volume of 300 ml cell suspension was transferred to an Adhesion Slide (Marienfeldt) and 

incubated at 37°C for further 15 min. After three washing steps with Hepes buffer, cells were 

stimulated with helenalin or thapsigargin for 10 min and fluorescence was assayed by 

microscopy (Axiovert 200). Ratio was calculated by TILLVision software. 

3.11 Transmission Electron Microscopy 

S-Jurkat and Bcl-2 Jurkat cells were left untreated (Co) or treated with helenalin for 8 hours, 

collected by centrifugation, resuspended and fixed in fixing solution (2.5% glutaraldehyde in 

fixative buffer: 75 mM cacodylate, 75 mM NaCl, 2 mM MgCl2, pH 7.0) for 1 h. Subsequently, 

cells were washed several times for increasing periods in fixative buffer, postfixed in 1% 

OsO4 in fixative buffer and washed with buffer and aqua dest. Cells were dehydrated with a 

graded series of acetone. Cells were infiltrated with Spurr low-viscosity epoxyresin and 

polymerized at 65°C. Pictures were taken with a Zeiss EM 912 transmission electron 

microscope with integrated Ω-filter, operated in “zero-loss-mode”. 

3.12 Statistical Analysis 

All experiments were performed at least three times. Results are expressed as mean value 

SEM. Statistical analysis was performed with GraphPad PrismTM version 3.0 for Windows 

(GraphPad Software, San Diego California, USA). One-way ANOVA with Bonferroni multiple 

comparison post-test or unpaired two-tailed Student’s t-test were performed. P values < 0.05 

were considered significant. 
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RESULTS 
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4 RESULTS 

4.1 Helenalin overcomes Bcl-2-mediated resistance 

Based on the data of Dirsch et al., showing that helenalin also induces cell death in Bcl-2 

overexpressing Jurkat cells 21, we compared helenalin to the classical chemotherapeutic 

agent etoposide concerning cell death induction and clonogenic survival after treatment of 

Bcl-2 Jurkat cells and the vector control cell line (Neo Jurkat cells). We could confirm that 

overexpression of the antiapoptotic protein Bcl-2 does not protect from cell death induced by 

helenalin. Moreover, helenalin almost completely inhibited colony growth in both Jurkat cells 

overexpressing Bcl-2 and the control cell line (Figure 6 A-B). In contrast, the classical 

chemotherapeutic agent etoposide is not able to induce cell death and does not suppress the 

clonogenic survival of Bcl-2 overexpressing cells, whereas it shows clear effects in Neo 

Jurkat cells. 
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Figure 6 Helenalin overcomes Bcl-2-mediated resistance in Jurkat cells. A, Neo Jurkat or Bcl-2 Jurkat cells were 
either left untreated (Co) or treated with helenalin (Hel) or etoposide (Eto) with the indicated concentrations for 24 
h. Cell death was quantified by Nicoletti assay. B, Neo Jurkat and Bcl-2 Jurkat cells were left untreated (Co) or 
stimulated with helenalin (Hel) or etoposide (Eto) with the indicated concentrations for 2 h and a clonogenic assay 
was performed. Results are represented as the number of colonies referred to untreated cells (Co). Data are 
expressed as mean ± SEM (n=3). *, p < 0.001 (ANOVA, Bonferroni). Protein extracts from Neo/Bcl-2 Jurkat cells 
were prepared and Bcl-2 protein levels were analyzed by Western blot. Experiments for Figure 6 were performed 
by N. López Antón. 

To verify that helenalin not only affects resistant leukaemia cells, we stably overexpressed 

Bcl-2 in two further cell lines, the breast cancer cell line MCF-7 and the highly metastatic 

human pancreatic carcinoma cell line L3.6pl. As shown in Figure 7, helenalin induces cell 

death and abrogates clonogenic survival despite of elevated Bcl-2 levels in both cell lines, 

whereas other classical chemotherapeutic agents like etoposide, staurosporine or paclitaxel 

affected the vector control cells in a more significant way than the Bcl-2 protected cells. 

These results underline the anti-resistance potential of helenalin also in solid tumors 

overexpressing Bcl-2. 
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Figure 7 Helenalin overcomes Bcl-2-mediated resistance in MCF-7 and L3.6pl cells. A, Neo MCF-7 or Bcl-2 
MCF-7 cells were treated with staurosporine (Sta; 48 h) or helenalin (Hel; 24 h) with the indicated concentrations 
and cell death was quantified by Nicoletti assay. Data are expressed as mean ± SEM (n=3). *, p < 0.01 (ANOVA, 
Bonferroni). B, Neo L3.6pl or Bcl-2 L3.6pl were treated with etoposide (Eto), solvent (DMSO) or helenalin (Hel) 
with the indicated concentrations for 24 h. Cell death was either quantified by Nicoletti assay (Eto; quantified as 
specific cell death as described in “Material and Methods”) or PI exclusion assay for helenalin-treated cells. Data 
are expressed as mean ± SEM (n=3). *, p < 0.001 (ANOVA, Bonferroni). C, For the clonogenic assay, Neo L3.6pl 
and Bcl-2 L3.6pl cells were either left untreated (Co) or treated with paclitaxel (Tax) or helenalin (Hel) with the 
indicated concentrations for 2 h. Data are expressed as mean ± SEM (n=3). *, p < 0.001 (ANOVA, Bonferroni). 
Protein extracts from Neo/Bcl-2 MCF-7cells and Neo/Bcl-2 L3.6pl cells were prepared and Bcl-2 protein levels 
were analyzed by Western blot.  

4.2 Helenalin does not abrogate mitochondrial function of Bcl-2 
and acts independently of the mitochondria and the apoptosome 

4.2.1 Mitochondrial function 
Focus was now put on the mechanisms leading to cell death in Bcl-2-overexpressing Jurkat 

cells. As shown in the Western blot, helenalin did neither alter Bcl-2 protein level nor induce 

its phosphorylation as observed by treatment with paclitaxel (Figure 8 A). In line with this, 

helenalin did not abrogate the function of Bcl-2 on mitochondria as the mitochondrial 
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membrane potential (MMP) was kept nearly intact yet after 6 h of helenalin-treatment and 

only minute amounts of cytochrome c are released into the cytosol in Bcl-2 overexpressing 

compared to vector control cells treated with helenalin (Figure 8 B-C).  
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Figure 8 Helenalin does not abrogate mitochondrial function of Bcl-2. A, Bcl-2 Jurkats were treated with helenalin 
(Hel; 20 µM) for the indicated times or as a control inducing Bcl-2 phosphorylation, with paclitaxel (Tax; 1 µM, 16 
h) and Western blot analysis was performed. B, Neo Jurkat and Bcl-2 Jurkat cells were treated with helenalin 
(Hel; 20 µM, 6 h) and the loss of mitochondrial membrane potential (MMP) was determined by staining cells with 
JC-1. Histograms of one representative experiment out of triplicates of untreated (Co) and helenalin-treated cells 
(Hel) are shown. C, For Western blot analysis of cytochrome c release, Neo Jurkat and Bcl-2 Jurkat cells were 
treated with helenalin (Hel; 20 µM) for the indicated times. Cytosolic and membrane fractions were prepared. 
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Purity of cytosolic fractions was assessed by incubating membranes with VDAC antibody. Experiments for Figure 
8 A and C were performed by N. López Antón. 

To underline these findings, transmission electron microscopy (TEM) was carried out. TEM 

pictures clearly show a different morphology of mitochondria of wild type and Bcl-2 

overexpressing Jurkat cells exposed to helenalin (Figure 9). As previously described, loss of 

mitochondrial membrane potential, cytochrome c release and caspase activation is observed 

in helenalin-treated wildtype Jurkat cells 21. This classical mitochondria driven intrinsic 

pathway process is characterized by the change of morphology of mitochondria resulting in 

small, round and more numerous organelles including disruption of cristae junctions, opening 

of the cristae and expansion of the intermembrane space (IMS) 115-117. Accordingly, as shown 

in TEM pictures of helenalin-treated wildtype Jurkat cells, mitochondria are characterized by 

the partial or complete loss of the cristae-structure. On the contrary, mitochondria of 

helenalin-treated Bcl-2 Jurkat cells show well defined transverse cristae as seen in untreated 

cells. Loss of cristae-structure could not be observed here. 
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Figure 9 Influence of helenalin on mitochondrial morphology. A, Bcl-2 Jurkat cells were treated with helenalin 
(Hel; 20 µM) for 8 h and samples were prepared for TEM microscopy. B, As a control for the induction of 
apoptosis, wild type S-Jurkat cells were treated with helenalin (Hel; 10 µM, 8 h). Black arrows indicate 
mitochondria. N: nucleus, L: lipid body, V: vacuole. 

4.2.2 Caspase dependency 
As a next step the participation of the classical apoptosome pathway was investigated. The 

apoptosome consist of cytochrome c, Apaf-1 and the initiator caspase-9. Silencing of Apaf-1 

via siRNA did not influence the induction of cell death by helenalin (Figure 10 A) suggesting 

that helenalin-induced cell death occurs independently of the apoptosome and the 

mitochondrial pathway of apoptosis. Along this line, Western blot analysis (Figure 10 B), as 

well as measurement of caspase-3 like and caspase-8 activity (Figure 10 C-D) and 

employment of the pan-caspase inhibitor Q-VD-OPh (Figure 10 E) revealed no involvement 

of caspases in helenalin-induced cell death in Bcl-2 overexpressing cells. The chemical β-

phenylethyl isothiocyanate (PEITC) was used as positive control, known to induce caspase-

dependent cell death in Bcl-2 Jurkat cells 113, 114. 
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Figure 10 Classical mitochondrial pathway and caspases are not involved in helenalin-induced cell death. A, Bcl-
2 Jurkat cells were transiently transfected with scrambled (scr) or Apaf-1 siRNA oligonucleotides and treated with 
helenalin (Hel; 20 µM, 24 h). Cell death was quantified by Nicoletti assay. Apaf-1 protein levels in transfected cells 
were analyzed by Western blot. B, Western blot analysis of caspase activation in Bcl-2 Jurkat cells after 
incubation with helenalin (Hel; 20 µM) for the indicated times. Arrows indicate proforms of caspase-9 and -3 and 
location of their active, cleaved forms, respectively. C and D, Determination of capase-3 like and caspase-8 
activity in Bcl-2 Jurkat cells. Cells were treated with helenalin (Hel; 20 µM) or β-phenylethyl isothiocyanate 
(PEITC; 20 µM) for the indicated time points and caspase activity was determined. E, Bcl-2 Jurkat cells were 
treated with β-phenylethyl isothiocyanate (PEITC; 20 µM) or helenalin (Hel; 20 µM) for 16 h and cell death was 
measured by PI exclusion. If indicated, cells were pre-incubated with the pan-caspase inhibitor Q-VD-OPh (10 
µM) for 1 h. Data are expressed as mean ± SEM (n=3). *, p < 0.001 (ANOVA, Bonferroni). Experiments for Figure 
10 A and B were performed by N. López Antón. 

Since caspases are not the main players in helenalin-mediated cell death in Bcl-2 

overexpressing Jurkat cells, the role of the caspase-independent apoptotic factors such as 

the serine protease Omi/HtrA2 and the endonuclease AIF were investigated. Silencing of AIF 

and use the Omi inhibitor UCF (Figure 11 A-B) revealed that these caspase-independent 

mediators are unlikely to be involved in helenalin evoked cell death. Evidence for a non-
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apoptotic cell death signaling of helenalin was finally provided by analysis of 

phosphatidylserin at the outer cell membrane (Annexin V staining), a classical sign of early 

apoptosis. Interestingly, the Bcl-2 overexpressing cells did not show significant translocation 

of phosphatidylserin after helenalin-treatment for 8 h, whereas the vector control cells (Neo 

Jurkat cells) were clearly Annexin V positive (Figure 11 C). 
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Figure 11 Diverse mitochondria-derived caspase-independent apoptotic factors are not invoved in helenalin-
induced cell death. A, Bcl-2 Jurkat cells were transfected with scrambled (scr) or AIF siRNA oligonucleotides and 
cells were treated with helenalin (Hel; 20 µM) for the indicated times. Cell death was measured by Nicoletti assay. 
Western blot showing AIF protein levels in scramble (scr) or AIF siRNA transfected cells. B, Bcl-2 Jurkat cells 
were left untreated (Co) or preincubated with the Omi/HtrA2 inhibitor UCF101 (10 µM) for 1 h and then treated 
with helenalin (Hel; 20 µM) for 16 h or 24 h, respectively. Cell death was quantified by Nicoletti assay. C, Neo 
Jurkat and Bcl-2 Jurkat cells were left untreated (Co) or treated with helenalin (Hel; 20 µM) for 8 h and PI/Annexin 
V-FITC staining was performed. Dot plots of one representative experiment are shown. Data are expressed as 
mean ± SEM (n=3). Experiments for Figure 11 A and B were performed by N. López Antón.  

4.3 Mechanisms of helenalin’s bypass of Bcl-2-mediated 
cytoprotection  

4.3.1 ER stress, autophagy and necroptosis 
In search for nonapoptotic events leading to cell death, we first focused on autophagy. 

Depending on the context, autophagy enhances cell survival or commits the cell to non-

apoptotic cell death. ER stress induction has recently been linked to induction of autophagy 
69, 118. Nevertheless, no evidence for ER stress-induced by helenalin is given since helenalin 

did not affect the expression of BiP/GRP78 and GADD153/CHOP, two major UPR-

upregulated proteins during ER stress (Figure 12 A). Furthermore, increased Ca2+-levels, as 

seen after treatment with thapsigargin, an inhibitor of the endoplasmatic reticulum Ca2+ 
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ATPase (SERCA), was not observed after incubation with helenalin (Figure 12 B). However, 

a strong induction of JNK, a rapid phosphorylation of eIF2α and dephosphorylation of mTOR 

in Bcl-2 overexpressing cells were observed upon helenalin-treatment (Figure 12 C-E).  
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Figure 12 Helenalin does not cause ER stress. A, For the Western blot analysis of proteins involved in ER stress, 
Bcl-2 Jurkat cells were treated with helenalin (Hel; 20 µM) for the indicated time points. B, Intracellular calcium-
levels were determined. Thapsigargin (TG) was used as a control for rapid increase of intracellular calcium-levels. 
The average-value curve of 3 independent experiments is shown. C-E, Levels of phosphorylation status of JNK, 
eIF2α and mTOR were determined by Western blot analysis. Rapamycin (Rapa; 6 h) was used as a control to 
induce dephosphorylation of mTOR at Ser2448. Experiments for Figure 12 C were performed by N. López Antón. 

Activation of JNK, phosphorylation of eIF2α and inhibition of mTOR have been linked to 

induction of autophagy 69, 118. By the use of 3-MA (3-methyladenine), a well established 

inhibitor of autophagy 65, we wanted to investigate if helenalin induces autophagy. Although 

the PI3K inhibitor 3-MA partly diminishes helenalin-induced cell death after 16 h of 

stimulation (Figure 13 A), it could not prevent cell death by helenalin after a longer 

stimulation time (also see Figure 15 C). Activity of 3-MA was confirmed by analysis of the 

phosphorylation status of the PI3K downstream target Akt (insert). Bcl-2 is an important 

inhibitor of autophagy by binding Beclin1 and thus preventing the induction of autophagy. 

The Bcl-2/Beclin1 complex can be disrupted by activated JNK. Investigation of the interaction 

of Bcl-2 with Beclin1 by immunoprecipitation assay in our cells revealed, that there was no 

interaction detectable neither in the controls nor in helenalin-treated cells (Figure 13 B). 

Furthermore, no accumulation of LC3 II, commonly observed during autophagy, could be 

detected by Western blot (Figure 13 C). Most importantly, electron microscopic examination 

did not reveal characteristic autophagolysosomes within helenalin–treated Bcl-2 

overexpressing cells (data not shown). 
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We next focused on mediators involved in signaling events of programmed necrosis. 

Necrostatin-1 (Nec-1) inhibits RIP1 and acts as a specific inhibitor of necroptotic cell death 
119. Exposure of Bcl-2 Jurkat cells to Nec-1 before helenalin-treatment did not prevent cell 

death arguing against necroptosis as a mode of cell death in these cells. In contrast, Nec-1 

abrogated necroptosis induced by TNF-α in the presence of cycloheximide and the pan-

caspase inhibitor Q-VD-OPh in S-Jurkat cells (positive control) 55, 120 (Figure 13 D and insert). 

As already mentioned, helenalin induced early JNK activation and this has also been 

associated with programmed necrosis 44. Yet, JNK activation by helenalin does not contribute 

to cell death as indicated by the employment of SP600125, a commonly used JNK inhibitor 

(activity was confirmed by analyzing the phosphorylation of the JNK downstream target c-

Jun) (Figure 13 E and insert). 
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Figure 13 Helenalin induces neither autophagy nor necroptotic cell death. A, Bcl-2 Jurkat cells were treated with 
helenalin (Hel; 20 µM) either with or without a 1 h-pretreatment with the autophagy inhibitor 3-MA (10 mM). Cell 
death was quantified by PI exclusion assay. Insert shows Western blot analysis of phosphorylation satuts of Akt 
after treatment with the PI3K inhibitor 3-MA (10 mM; 24h). B, Bcl-2 Jurkat cells were treated with helenalin (20 
µM) for the indicated times. Beclin1 was immunoprecipitated and the amount of co-precipitated Bcl-2 was 
detected by Western blot analysis. IP: immunoprecipitated samples, BC: binding conrol, Ly: whole cell lysate 
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sample, AB: antibody control. C, For the Western blot analysis of the autophagy-induced conversion of LC3 I to 
LC3 II, Bcl-2 Jurkat cells were treated with helenalin (Hel; 20 µM) for the indicated times. D, If indicated, Bcl-2 
Jurkat cells were incubated with necrostatin-1 (Nec-1; 30 µM) 1 h before treatment with helenalin (Hel; 20 µM, 16 
h). Insert: Induction of necroptotic cell death in S-Jurkat cells with a combination of TNFα (10ng/ml), 
cycloheximide (C; 1 µg/ml) and pan-caspase inhibitor Q-VD-OPh (10µM), which is reduced by a 1 h-pretreatment 
with Nec-1 (30 µM). Cell death was quantified by PI exclusion assay, respectively. E, Bcl-2 Jurkat cells were 
treated with helenalin (Hel; 20 µM, 16 h) either with or without a 1 h-pretreatment with the specific JNK inhibitor 
SP600125 (10 µM). Cell death was quantified by PI exclusion assay. Western blot analysis of JNK downstream 
target p cJun(Ser63) after helenalin- and SP600125-treatment of Bcl-2 Jurkat cells. Data are expressed as mean 
± SEM (n=3). *, p < 0.001 (ANOVA, Bonferroni). 

4.3.2 Helenalin inhibits Bcl-2-induced NF-κB activity 
Since a link between Bcl-2 and the nuclear factor κB signaling pathway has been described 

for other cell lines 121, we next examined if Bcl-2 overexpressing Jurkat cells show increased 

NF-κB activity and if helenalin is able to interfere. In fact, as seen in Figure 14 A, nuclear shift 

as well as a NF-κB activity assay clearly show that Bcl-2 overexpression leads to increased 

constitutive NF-κB activity, known to be mediator of survival and death resistance in 

leukemia cells 122. Helenalin significantly reduces NF-κB binding and activity in Bcl-2 

overexpressing cells (Figure 14 B). The subunit composition of NF-κB was investigated by a 

supershift assay. The shift of the band or decreased binding activity indicate that the upper 

band consist of p65 and p50 both, in the control and TNFα-treated cells. 
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Figure 14 Helenalin overcomes Bcl-2-mediated resistance by inhibition of protective NF-κB activity. A, In order to 
determine the basic NF-κB activity in untreated Neo Jurkat and Bcl-2 Jurkat cells (Co), a reportergene assay, as 
well as electrophoretic mobility shift assay (EMSA) were performed. NF-κB activity is diagrammed as x-fold 
activity referring to untreated Neo Jurkat cells. Data are expressed as mean ± SEM (n=3). *, p < 0.001 (Student’s 
t-test). B, Helenalin’s capacity to inhibit NF-κB promotor activity and DNA binding capacity was proved by 
reportegene assay (left panel) and EMSA (right panel). For the reportergene assay, Neo Jurkat and Bcl-2 Jurkat 
cells were either left untreated (Co) or treated with helenalin (Hel; 20 µM) for 6.5 h. Data are expressed as mean 
± SEM (n=3). *, p < 0.0001 (Student’s t-test) versus controls, respectively. For the electrophoretic mobility shift 
assay, Bcl-2 Jurkat cells were left untreated (Co) or treated with helenalin (Hel; 20 µM, 2 h). Nuclear proteins 
were isolated, P32-labeled NF-κB consensus sequence oligonucleotides were added. C, Subunit composition of 
NF-κB was determined by supershift assay. EMSA was performed without or with specific anibodies (AB) against 
p65 and p50 (2 µg per sample) which were added to the binding reactions before performance of EMSA. Nuclear 
protein was prepared from untreated or TNFα (TNF)-treated (10 ng/ml; 30 min) cells. 

The NF-κB inhibitor BMS-345541 (N-(1,8-Dimethylimidazo[1,2-a]quinoxalin-4-yl)-1,2-

ethanediamine hydrochloride), acting on the IκB kinase complex 123, was also able to induce 

cell death in Bcl-2 protected cells (Figure 15 A), yet to a minor extent in comparison with 

helenalin. Moreover, as shown by Western blot analysis (Figure 15 B), helenalin also 

reduced phosphorylation of Akt, which is another important factor in cancer cells concerning 
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cell growth and survival 124. However, the PI3K inhibitors 3-MA and wortmannin, which both 

efficiently inhibit Akt downstream of PI3K, neither induced cell death in Bcl-2 overexpressing 

cells themselves nor added to the cytotoxicity of helenalin or BMS in Bcl-2 overexpressing 

Jurkat cells. As shown before, 3-MA rather reduced or delayed cell death induction by 

helenalin. 
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Figure 15 Helenalin overcomes Bcl-2-mediated resistance by inhibition of protective NF-κB activity. A, Bcl-2 
Jurkat cells were treated with increasing concentrations of the NF-κB inhibitor BMS-345541 (BMS) for 48 h. Cell 
death was measured by PI exclusion assay. B, The level of phosphorylation status of Akt at Ser473 after 
treatment of Bcl-2 Jurkat cells with helenalin (Hel; 20 µM) or with the positive control wortmannin (WM; 6 h) was 
analyzed by Western blot. C, Bcl-2 Jurkat cells were incubated with the PI3K inhibitor 3-MA (10 mM) or 
wortmannin (WM 20 µM or 40 µM) 1 h before treatment with helenalin (20 µM) or BMS-345541 (BMS; 20 µM) and 
cell death was measured after 48 h using PI exlcusion assay. Data are expressed as mean ± SEM (n=3). *, p < 
0.001 (ANOVA, Bonferroni). 

4.3.3 Helenalin induces cell death by induction of ROS 
The focus on NF-κB inhibition and cell death induction asks for further mediators. Factors 

downstream of NF-κB inhibition leading to cell death are increased levels of free iron. This 

process is mediated by downregulation of iron storage protein FHC and in turn ROS 

production 122. As shown in Figure 16 A, helenalin induced ROS synthesis comparable to the 

positive control H2O2, measured by increase of fluorescence of the ROS-sensitive dye 2’,7’-

Dichlorodihydrofluorescein diacetate (DCDHF) and the use of antioxidants such as NAC or 

Tiron completely prevents cell death. Moreover, cell death by helenalin involves iron-ions as 

the use of the iron chelator desferrioxamine (DFO) inhibited cell death by helenalin (Figure 

16 B-C). 
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Figure 16 Helenalin induces cell death by generating ROS. A, After incubation with helenalin (Hel; 20 µM) for the 
indicated times, Bcl-2 Jurkat cells were stained with DCDHF diacetate and analyzed by flow cytometry. The x-fold 
increase of ROS generation compared to untreated (Co) cells is shown (left panel). An increase of DCDHF 
fluorescence correlates with augmented levels of ROS after treatment with helenalin (Hel; 20 µM) or H2O2 (17.6 
µM, 30 min). Representative histogram plot is shown (right panel). B, Bcl-2 Jurkat cells were pretreated with NAC 
or Tiron for 1h before incubation with helenalin (Hel; 20 µM) for 24 h or treated with solvent as a control. Cell 
death was measured by Nicoletti assay. C, To investigate the influence of iron on helenalin-induced formation of 
ROS, Bcl-2 Jurkat cells were treated with helenalin alone (Hel; 20 µM), or in combination with deferoxamine 
mesylate (DFO; 20 µM) for 16 h and cell death was measured by PI exclusion. Data are expressed as mean ± 
SEM (n=3). *, p <0.001 (ANOVA, Bonferroni). Experiments for Figure 16 B were performed by N. López Antón. 
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5 DISCUSSION 

Evasion of cell death of cancer cells is still a challenging problem for the efficacy of cancer 

treatment and the development of new anticancer therapies. Many chemotherapeutic agents 

induce apoptosis via the intrinsic or the extrinsic pathway. Thus, one possibility for cancer 

cells to evade cell death, especially apoptosis, is the overexpression of anti-apoptotic 

proteins such as Bcl-2, which is frequently observed in many types of human cancer. New 

strategies have to be found to overcome Bcl-2-mediated resistance, by directly targeting the 

Bcl-2 protein e.g. by the use of Bcl-2 inhibitors, or by circumventing cell death pathways that 

are blocked by Bcl-2. Helenalin has been proofed to be effective in a variety of tumor 

cells 7, 19, 20 and has also shown in vivo antitumor activity 4. Interestingly, helenalin has 

recently gained considerable attention as lead structure for treatment of inflammation 9, 30, 31 

whereas the related STL parthenolide has been preferentially appreciated as experimental 

tumor drug 125-127. However, own and others work attribute antitumor activity even in vivo also 

to helenalin 4, 7, 19-21, 128, 129.  

5.1 Untypical signaling of helenalin-induced cell death 

5.1.1 Apoptosis 
First, the common players and downstream effects of apoptosis signaling such as release of 

cytochrome c and subsequently apoptosome-formation as well as caspase activation were 

investigated. By overcoming Bcl-2-mediated resistance, helenalin does not behave like a 

specific Bcl-2 inhibitor since neither typical mitochondrial activation features such as 

cytochrome c release, disruption of mitochondrial membrane potential and caspase 

activation nor classical apoptosis have been observed for helenalin in comparison to specific 

Bcl-2 inhibitors such as the compound ABT-737 104. Phosphorylation of Bcl-2 in the flexible 

loop domain is the major regulatory mechanism, which modulates the function of Bcl-2. Other 

investigators have shown that the multiple-site phosphorylation by JNK abrogates survival 

function of Bcl-2 in paclitaxel-induced apoptosis 42. Although JNK is activated as an early 

event after helenalin-treatment, we do not observe phosphorylation of Bcl-2, suggesting that 

Bcl-2 remains unaffected. This assumption is underlined by the fact that mitochondrial 

membrane potential is conserved in Bcl-2 overexpressing Jurkat cells even after 6 h of 

helenalin-treatment. Other reports have shown that sustained JNK activation, e.g. induced by 

ROS, is responsible for induction of apoptosis and necrosis 130-133 and JNK activation has 

also been described in the context of autophagy 134, 135. Yet, by the use of a JNK inhibitor we 

could exclude that helenalin-induced JNK activation is responsible for cell death induction, 

suggesting that the observed activation of JNK might rather be a stress response. 
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5.1.2 Autophagy 
We focused on autophagy in an attempt to characterize the type of cell death induced by 

helenalin in Bcl-2 overexpressing cells since this process is linked and influenced by Bcl-2 

and NF-κB. Besides, autophagy has recently been described to be a downstream event of 

ER stress 69, 118, 136. Therefore we first focused on important events during ER stress such as 

upregulation of BiP/GRP78 and CHOP/GADD153, JNK activation, Ca2+-release and 

phosphorylation of eIF2α 77, 137, 138. Yet, no evidence for ER stress is given since helenalin did 

not affect the expression of BiP/GRP78 and CHOP/GADD153. Others have shown that ER 

stress induces caspase-4/12 activation upstream of mitochondria leading to caspases-9/3 

activation and apoptosis 139, 140, thus, the fact that caspases are not involved in helenalin-

induced cell death supports the finding that ER stress is not induced. The ER represents the 

most important storage site for Ca2+ in the cell. Upon ER stress, high amounts of calcium 

ions can be released into the cytosol, mediating further downstream effects such as 

apoptosis 67, 74 or autophagy by calcium-mediated activation of PKCθ and of CaMKKβ 75, 76. It 

is believed that also the source and the amount of increased calcium ions may induce 

different types of cell death. The influx of calcium across the plasma membrane triggers 

necrosis, whereas the release of calcium from the ER might rather induce apoptosis 50. We 

could not observe increased calcium-levels after helenalin-treatment, although helenalin has 

been reported to decrease cellular glutathion levels 141, 142, which is frequently associated 

with an increase of resting intracellular calcium-levels, which finally is responsible for 

cytotoxicity 143. Yet, increase of intracellular calcium-levels was also not observed after 

stimulation with helenalin alone in other studies 143, 144. Phosphorylation of eIF2α leads to 

impaired protein synthesis as a result of UPR. It has already been described that helenalin 

inhibits protein synthesis 4, 145 by activating eIF2α-kinase causing phosphorylation of eIF2α 

and inhibition of eIF3. Indeed, we do observe early phosphorylation of eIF2α, but this is 

unlikely to be caused by UPR in our model. Phosphorylation of eIF2α is rather caused by a 

direct influence of helenalin on protein-synthesis in Bcl-2 overexpressing cells. Although we 

observe reduction of cell death to a certain extend after 16 h when cells were pre-treated 

with 3-MA, we could not see an entire prevention of helenalin-induced cell death by 3-MA 

especially after longer stimulation times. These findings suggest that cell death induction by 

helenalin is just delayed but not prevented by 3-MA. We do not observe an influence on 

helenalin-induced cell death by the use of wortmannin, another PI3K and autophagy inhibitor. 

Although 3-MA is a commonly used autophagy inhibitor, recent reports have shown that it 

also inhibits other processes, which are not specific for macroautophagy (e.g. other 

degradative pathways or 3-MA mediated inhibition of UPR activation by ER stress). Thus, 

results obtained by the singular use of 3-MA to implicate autophagy, should be interpreted 

with caution 65, 118. To exclude that cell death induced by helenalin is accompanied or caused 
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by autophagic signaling, it was necessary to investigate other markers for autophagy such as 

the conversion of LC3 I to membrane-bound LC3 II. After helenalin-treatment, no increase of 

LC3 II in the Western blot analysis could be observed. Weak processing of LC3 in WT Jurkat 

clones has been described before, probably due to hyperactive mTOR signaling that results 

in these PTEN (phosphatidylinositol(3,4,5)-triphosphate phosphatise)-deficient cells 146. 

Consequently, no evidence for autophagy is given since we could not detect increase of 

LC3 II levels or typical formation of autophagosomes after helenalin-treatment. 

5.1.3 Helenalin-induced cell death shows necrotic features 
Our investigations show that apoptosis and autophagy are not induced by helenalin. This fact 

led us consider necrosis as the type of cell death caused by helenalin in Bcl-2 Jurkat cells. 

Although necrosis has always been considered as an accidental form of cell death, recent 

studies showing that initiation of necrosis could be blocked by inhibition of discrete cellular 

processes let to the idea that necrosis could be ”programmed”. Likewise, programmed 

necrosis takes place in patients treated with chemotherapeutics and an important physiologic 

role for programmed necrosis in response to viral infection has been suggested 52. Two 

forms of programmed necrosis have been described, necroptosis and PARP1-mediated 

necrotic death. Necroptosis depends on the kinase activity of RIP1, which can be inhibited by 

necrostatin-1. The inhibition of cell death by necrostatin-1 thus proves the induction of 

necroptosis. Moreover, induction of autophagy during necroptosis has also been observed 44. 

Since the use of RIP-1 inhibitor necrostatin-1 does not influence helenalin-induced cell death 

and we do not observe induction of autophagy, helenalin-induced necrosis can not be linked 

to necroptotic pathways. Other forms of programmed necrosis such as PARP1-mediated 

necrosis have also to be taken into consideration. However, it is unlikely that helenalin 

induces PARP1-mediated necrosis in Bcl-2 overexpressing Jurkat cells, as the two major 

players of this pathway, AIF and JNK, are not involved (shown by use of AIF siRNA 

experiments and the use of JNK inhibitor). 

Yet, helenalin-induced cell death is characterized by necotic features, as Bcl-2 

overexpressing cells lack PS exposure and show an early onset becoming PI positive. The 

theory, that necrosis is the type of cell death induced by helenalin in this cell line is also 

supported by the fact that characteristics of other possible pathways leading to cell death, 

such as apoptosis or autophagy, cannot be detected. 

5.2 NF-κB inhibition and ROS formation are crucial for helenalin-
induced cell death 

Helenalin has been shown to interfere with the signal transduction through nuclear factor 

NF-κB 9, 34 playing a pivotal role in inflammation, tumorigenesis and cancer 147, 148. Persistent 
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NF-κB signaling can facilitate the six hallmarks of cancer: self-sufficient growth, insensitivity 

to growth-inhibitory signals, evasion of apoptosis, limitless replicative potential, sustained 

angiogenesis, and tissue invasion and metastasis. Several NF-κB proteins are found to be 

overexpressed in several cancers 149. Thus, NF-κB is another crucial player for cell survival 

and apoptosis resistance in many cancer types, especially in lymphomas 150, 151. Therefore, 

several small inhibitors of NF-κB activation such as IκB kinase (IKKα or IKKβ inhibitors, 

NEMO peptide, thalidomide or antisense oligonucleotides and small interfering RNAs 

targeting IKK or NF-κB subunits) and the proteasome (bortezomib) or of the DNA binding of 

NF-κB (oligonucleotides that mimic the NF-κB consensus binding site) are under intensive 

investigation 150. Malignant cells that exhibit constitutive NF-κB activation are relatively 

resistant to radio- or chemotherapy, and NF-κB inhibitors increase their sensitivity to such 

anticancer treatments 152, most likely by downregulating antiapoptotic NF-κB target genes 

such as c-IAPs, c-FLIP, Bcl-2, and Bcl-XL. These publications and numerous other recently 

published data on NF-κB in hematological malignancies indicate that there is high probability 

that indirect or direct NF-κB inhibitors will be used as cancer therapeutics in the future 150. 

Interestingly, besides mitochondria-protecting effects of Bcl-2, a link between Bcl-2 and 

constitutive activation of NF-κB has been described in a number of recent reports. Bcl-2 

mediates phosphorylation of IκBα at Ser 32 and Ser 36 followed by its proteasomal 

degradation. This mechanism is mediated by the N-terminal BH4 domain of Bcl-2 153. Further 

investigation showed that Bcl-2 signals through Raf-1/MEKK-1 signaling complex to activate 

IKKβ 154. In line with this, it has been found that downregulation of Bcl-2 attenuates NF-κB 

activation because Bcl-2-mediated degradation of the cytoplasmatic inhibitor IκBα is 

essential for NF-κB activation 154. This mechanism causes resistance to TNFα-induced 

apoptosis. In another study it has been shown that Bcl-2 overexpression leads to increased 

activity of Akt as well as IKK (as a downstream target), by direct interaction of Bcl-2 with Akt 
155. Therefore it is not surprising, that also in other tumor cells, an overexpression of Bcl-2 

causing increased NF-κB activity leads to higher risk of tumor metastasis mediated by higher 

expression of MMP-9 121. 

Moreover, also NF-κB can influence Bcl-2 expression. Lymphoma cells with the t(14;18) 

translocation show high levels of nuclear NF-κB proteins, which activate the expression of 

Bcl-2. This activation is mediated by the CRE (cAMP response element) and the SP1 binding 

site 156. Another report shows that p50 homodimers of NF-κB, which act downstream of 

MEK/ERK, contribute to transcription of the Bcl-2 oncogene 157, 158. Additionally, it could be 

shown that p50 and p52 homodimers, in collaboration with Bcl-3, transactivate the Bcl-2 

promotor and that in breast cancer and leukemic (CLL) cells, high NF-κB expression was 

associated with high Bcl-2 expression 149. Although helenalin inhibits transcriptional activity of 

NF-κB in Bcl-2 Jurkat cells, we did not observe an influence on Bcl-2 expression levels in the 
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Western blot analysis after helenalin-treatment. Due to vector-driven overexpression of Bcl-2 

in Jurkat cells, the reduction of NF-κB activity by helenalin does not influence Bcl-2 levels in 

our model. However, as discussed below, we do observe that Bcl-2 overexpression leads to 

increased NF-κB activity in Jurkat cells. 

5.2.1 Increased NF-κB activity in Bcl-2 overexpressing Jurkat cells is 
inhibited by helenalin 
For the first time we show that Bcl-2 overexpressing Jurkat cells posess increased NF-κB 

activity, which might be additionally beneficial for the cells to survive chemotherapy. 

Therefore, targeting the NF-κB pathway in this cell line by the use of NF-κB inhibitors such as 

helenalin might be a promising strategy to overcome chemo-resistance. The impact of 

targeting NF-κB in cancer therapy is underlined by other studies on STLs showing that 

normal cells are normally not sensitive to the tested STLs. This is due to only basal NF-κB 

activity in normal cells, which is required for differentiation rather than for oncogenesis. 

Further, in contrast to normal hematopoietic stem cells, NF-κB signaling is elevated in 

leukaemia stem cells. This renders cancer stem cells (which are the reason for relapses after 

chemotherapy) sensitive to the STL parthenolide. Here, effective eradication of leukaemic 

stem and progenitor cells is due to inhibition of NF-κB and increase in ROS 17. 

The use of the NF-κB inhibitor BMS-345541 shows that cell death is induced due to inhibition 

of NF-κB in Bcl-2 overexpressing Jurkat cells. Yet, helenalin shows superior activity in 

comparison to BMS-345541. This might be due to the fact that helenalin binds to the 

transcriptional active p65 subunit of NF-κB in the nucleus 9, 32 whereas BMS-345541 only 

inhibits the upstream activator IκB-kinase complex 123. This means, that helenalin blocks NF-

κB activation pathway at the very end. It remains speculative that the IKK mediated NF-κB 

activation pathway does not play a major role in Bcl-2 overexpressing Jurkat cells, but it 

would explain the fact that BMS-345541 is not as potent as helenalin.  

5.2.2 Inhibition of Akt by helenalin 
Highly phosphorylated amounts of Akt have been found in type II cell lines, such as Jurkat 

cells, known to be deficient of PTEN, an upstream inhibitor of the Akt pathway 49. As shown 

by Western blot analysis, helenalin also strongly reduces phosphorylation of Akt, which has 

important function in cancer cells concerning cell growth and survival 124. PI3K inhibitors such 

as 3-MA and wortmannin, which both efficiently inhibit Akt downstream of PI3K, neither 

induce cell death in Bcl-2 overexpressing cells themselves nor add to the cytotoxicity of 

helenalin or BMS-345541 in Bcl-2 overexpressing Jurkat cells. Thus, helenalin-mediated Akt 

inhibition does not play a major role in cell death induction. 
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5.2.3 Helenalin induces ROS generation 
Increased ROS generation is commonly observed in cancer cells due to increased metabolic 

activity and holds cancer-promoting effects as ROS play an important role in stimulating cell 

growth and proliferation. Yet, high levels of ROS can also induce cellular damage, depending 

on the levels and also the duration of ROS stress. This fact and the assumption that cancer 

cells highly depend on their antioxidant systems to counteract increased ROS may provide 

an opportunity to kill tumor cells, as they might be highly vulnerable to further oxidative 

insults by exogenous agents 159. Bcl-2 is localized to the membranes of mitochondria, ER 

and nuclear envelope, which are all major sites of ROS production. While Bcl-2 has been 

described as an antioxidant because of its inhibitory effect on H2O2 induced lipid peroxidation 
40, there is also evidence that Bcl-2 may promote a pro-oxidant intracellular milieu as ectopic 

expression of Bcl-2 caused elevated constitutive level of superoxide anion and intracellular 

pH in leukaemia cells 160. Elevated COX activity and oxygen consumption and correlating O2
-

-production has been observed in Bcl-2 overexpressing tumor cells. This is probably due to 

heightened mitochondrial respiration suggesting an increased tendency to leak electrons for 

the generation of O2
- as a by-product 161. Yet, it is interesting that separate studies illustrate 

that Bcl-2 overexpressing cells have higher levels of total cellular GSH 162. 

We could show that helenalin induces early ROS generation and cell death induced in Bcl-2 

Jurkat cells is mediated by ROS as helenalin-mediated cell death is attenuated by treatment 

with antioxidants such as NAC and Tiron. Interestingly, the NF-κB pathway has been 

reported to regulate the expression of proteins or enzymes with antioxidative capacities 

preventing accumulation of toxic ROS 163-165. Ferritin heavy chain (FHC), a subunit of the iron 

storage protein Ferritin, has been found to be a target for constitutive NF-κB signaling in 

malignant lymphomas without additional stimuli. FHC owns ferroxidase activity converting 

toxic Fe2+ into non-toxic Fe3+. As iron plays an important role in the Fenton reaction 

generating toxic hydroxyl anions and hydroxyl radicals, the proper sequestration of 

intracellular iron (e.g. by FHC) is highly critical to avoid generation of oxidative stress. 

Inhibition of the constitutively active NF-κB pathway caused an increase in free intracellular 

iron by downregulation of ferritin heavy chain in CTCL cells and T cells from Sézary patients 

but not in T cells from normal healthy donors. This in turn induces massive production of 

ROS, which finally leads to cell death 122. Our own data support this notion also for Bcl-2 

overexpressing leukemia cells as helenalin-induced cell death is significantly decreased after 

treatment with the iron chelator DFO. 

Thus, clearly the inhibition of NF-κB, free intracellular iron and ROS are the main mediators 

of helenalin-induced cell death in Bcl-2 overexpressing Jurkat cells. 



76  DISCUSSION 

5.2.4 Overcoming pro-survival pathways via selective NF-κB inhibition 
and ROS generation 
Massive ROS generation can lead to both, apoptosis and necrosis. Apoptosis induction by 

H2O2 for instance is mediated by the release of cytochrome c and the activation of 

transcription factors like NF-κB which may upregulate death proteins or produce inhibitors of 

survival proteins 62. Further effects of ROS on mitochondria have been described such as 

DNA damage, facilitation of Ca2+-induced permeability transition pore opening, induction of 

dissociation of cardiolipin from cytochrome c, which then exits the mitochondria and activates 

mitochondrial pathway of apoptosis 166. As in our setting Bcl-2 overexpression protects cells 

from cytochrome c release and helenalin inhibits NF-κB, cells might be forced to switch to 

necrosis. A switch from apoptosis to necrosis can also occur due to inhibition of caspases 167 

or a drop in cellular levels of ATP caused by failure of mitochondrial energy production by 

oxidants/ROS 168, 169. Nevertheless, ROS represent important mediators that are involved in 

the transduction of the necrotic signal e.g upon stimulation with TNFα where ROS may be 

generated by mitochondria and glycolysis 62. Further, helenalin affects the antioxidative 

system by decreasing intracellular GSH levels 141, 142. Hence, by inhibiting NF-κB, helenalin 

probably constrains counterregulation by NF-κB-mediated upregulation of antioxidatives, 

confirming the assumption that helenalin might therefore cause ROS-stress which the cells 

cannot handle. To this end, helenalin-induced ROS production as shown here in parallel with 

impaired antioxidative properties of tumor cells treated with helenalin might account for this 

success. NF-κB inhibition by helenalin can act upstream of ROS generation or ROS 

generation after helenalin-treatment can contribute to inhibition of NF-κB (as ROS have been 

shown to inactivate NF-κB as it is sensitive to oxidative modifications of essential cystein 

residues 159. It seems that the increase of ROS occurs earlier than the inhibition of NF-κB by 

helenalin. Hence, it is possible that the upregulation of ROS levels is not primarly caused by 

impaired NF-κB activity, rather the damage caused by ROS generation might be increased 

by NF-κB inhibition as NF-κB acts as a transcription factor for antioxidatives which neutralize 

ROS. 

 

Several studies showed that helenalin influences a variety of necessary events in the cells by 

inhibition of Akt 25, protein synthesis (by induction of eIF2α phosphorylation) as well as DNA 

synthesis 4, and telomerase 26. It also shows anti-proliferative effects 27. In this study, we 

revealed a high chemotherapeutic potential of helenalin, as we were able to add a new way 

of helenalin’s influence on cell signaling by overcoming pro-survival pathways via selective 

NF-κB inhibition together with ROS generation.  
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SUMMARY AND CONCLUSION 
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6 SUMMARY AND CONCLUSION 

The present study highlights the plant compound helenalin to overcome Bcl-2-mediated 

chemoresistance of tumor cells. Thereby inhibition of Bcl-2-induced upregulation of NF-κB 

activity and ROS generation are major players in helenalin provoked non-apoptotic cell death 

in Bcl-2 overexpressing Jurkat cells. 

Interestingly, also with regard to our work, a link between Bcl-2 and constitutive activation of 

nuclear factor κB (NF-κB) has been described in other cells 153, 154. For the first time we show 

here that Bcl-2 overexpressing Jurkat T cells posess increased NF-κB activity as compared 

to empty vector control cells. Thus, Bcl-2 might not only prevent apoptosis by inhibition of 

pro-apoptotic Bax/Bak and subsequently abrogating the intrinsic mitochondrial pathway but 

also prevents cell death by inducing a NF-κB driven survival machinery. Using helenalin as 

tool we could in fact confirm this notion.  

In summary, helenalin abrogates Bcl-2-mediated chemoresistance not by impairing the 

Bcl-2-induced mitochondrial resistance but via inhibition of augmented NF-κB activity in Bcl-2 

overexpressing tumor cells and production of ROS leading to necrosis. Thus, helenalin 

circumvents classical pathways that are blocked by Bcl-2 overexpression. While other 

chemotherapeutic agents like etoposide or BMS-345541 are not able to considerably induce 

cell death in Bcl-2 overexpressing Jurkat cells, this uncommon mode of action seems to be 

the key for the success of helenalin. Helenalin therefore represents a promising compound to 

overcome chemoresistance by directly targeting survival strategies of cancer cells like 

NF-κB. 

 

In conclusion, we showed that 

• Jurkat cells overexpressing Bcl-2 possess increased NF-κB activity, 
which contributes to cell death resistance 

• by inhibition of NF-κB through helenalin this resistance can be 
overcome 

• ROS generation is crucial for cell death induced by helenalin 

• among all tested agents and inhibitors it is to emphasize that only 
helenalin is able to considerably induce cell death in these cells and this 
fact might be restricted to it’s unique mode of action. 

Therefore, helenalin is to highlight as a role model for the development of 
therapeutics for multi-resistant cancer cells. 
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8 APPENDIX 

8.1 Abbreviations 

AIF Apoptosis inducing factor 

ALL Acute lymphocytic leukemia 

AML  Acute myelogenous leukemia 

ANOVA Analysis of variance between groups 

ANT Adenine nucleotide translocator 

AP 1 Activator protein 1 

Apaf-1 Apoptotic protease-activating factor-1 

APS  Ammonium persulfate 

ASK1 Apoptosis signal-regulating kinase 1 

ATF6 Activating transcription factor 6  

ATP/dATP Adenosine-5’-triphosphate/2’-desoxyadenosine-5’-triphosphate 

Bcl B-cell lymphoma 

BH Bcl-2 homology 

BIR Baculoviral IAP repeats 

BSA  Bovine serum albumin 

CAD Caspase-activated DNase 

CaMKKβ Calcium/calmodulin-dependent kinase kinase-β  

CAPS 3-(Cyclohexylamino)-1-propanesulfonic acid 

CARD Caspase recruitment domain 

CDK Cyclin-dependent kinase 

cIAP Cellular inhibitor of apoptosis 

CLL  Chronic lymphocytic leukemia 

CPRG Chlorophenol Red-β-D-galactoside 

CypD Cyclophilin D 

DAMP Damage-associated molecular pattern 

DAP kinase Death-associated protein kinase 

DD Death domain 

DED Death effector domain 

DIABLO Direct IAP binding protein with low pI 

DISC Death inducing signaling complex 

DMSO Dimethyl sulfoxide 

DNA  Deoxyribonucleic acid 

DTT Dithiothreitol 
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ECL  Enhanced chemiluminescence  

EDTA  Ethylenediaminetetraacetic acid  

EGTA  Ethylene glycol-bis(2-aminoethylether)tetraacetic acid  

eIF2α Eukaryotic translocation initiation factor-2 

EMSA Electromobility shift assay 

EndoG Endonuclease G 

ER  Endoplasmatic reticulum 

FACS  Fluorescence-activated cell sorter  

FADD Fas-associated death domain 

FasL Fas ligand 

FCS g Fetal calf serum gold 

Fig Figure 

FL  Fluorescence 

FSC  Forward scatter 

GRP78 Glucose-related protein 78 

GTP/GDP  Guanosine-5’-tri/diphosphate  

h  Hour(s)  

Hele Helenalin 

HEPES  N-(2-hydroxyethyl)piperazine-N’-(2-ethanesulfonic acid)  

HFS Hypotonic fluorochrome solution 

HMGB1 high-mobility group box 1 

HRP  Horseradish peroxidase  

HtrA2 High temperature requirement protein A2 

IAP Inhibitor of apoptosis protein 

IKK IκB kinase 

IMM Inner mitochondrial membrane 

IP3 Inositol triphosphate  

IP3R Inositol triphosphate receptor  

IRE Inositol-requiring enzyme  

IRES Internal ribosome entry site 

JNK c-Jun N-terminal kinase 

kDa Kilo Dalton  

Lamp2 Lysosomal-associated membrane protein 2 

MAPK  Mitogen-activated protein kinase  

MMP Mitochondrial membrane potential 

MMP-9 Matrix metalloproteinase 9 

MOMP Mitochondrial outer membrane permeabilization 

MPT Mitochondrial membrane permeability transition  



92  APPENDIX 

mRNA  Messenger RNA 

NAC N-acetyl-L-cysteine 

NaF  Sodium fluoride 

NCI  National Cancer Institute 

NEAA Non essential amino acids 

Nec-1 Necrostatin-1 

NF-κB Nuclear factor-kappa B 

nt  Non-targeting 

OMM Outer mitochondrial membrane 

p- Phospho-  

PAA  Polyacrylamide 

PARP poly-ADP-ribose polymerase 

PBS  Phosphate buffered saline 

PBS-T  Phosphate buffered saline with Tween 

PE Phosphatidylethanolamine 

PERK PKR-like ER kinase 

pI Isoelectric point 

PI  Propidium iodide 

PKCθ Protein kinase Cθ  

PMSF  Phenylmethylsulphonylfluoride  

PS Phosphatidylserine 

PT Permeability transition 

PTEN Phosphatidylinositol(3,4,5)-triphosphate phosphatase 

PTP Permeability transition pore  

Q-VD-OPh N-(2-Quinolyl)valyl-aspartyl-(2,6-difluorophenoxy)methylketone 

RIP1 Receptor interacting protein 1 

RNA  Ribonucleic acid  

ROS  Reactive oxygen species 

rpm Rotations per minute 

SDS  Sodium dodecyl sulfate 

SDS-PAGE  Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEM  Standard error of mean 

Ser  Serine 

siRNA  Small interfering RNA 

Smac Second mitochondria derived activator of caspases 

SSC Sideward scatter 

T/E  Trypsin/EDTA 

Tax Paclitaxel 
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t-Bid Truncated Bid 

TEMED N,N,N’,N’ tetramethylethylene diamine 

TG Thapsigargine 

Thr Threonine 

TNFR1 TNF receptor1 

TNFα Tumor necrosis factor α 

TRAF2 TNF receptor-associated factor 2 

TRAIL TNF-related apoptosis inducing ligand 

Tris  Trishydroxymethylaminomethane 

UPR  Unfolded protein response 

UVRAG UV irradiation resistance-associated tumor suppressor gene 

VDAC Voltage dependent anion channel 

WM Wortmannin 

XIAP X-chromosome linked IAP 
 



94  APPENDIX 
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