Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München

Stickstoffheterocyclen als Chelatliganden

Tobias Kerscher aus Roding

2010

Erklärung

Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 von Herrn Prof. Dr. Peter Klüfers betreut.

Ehrenwörtliche Versicherung

Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet.

München, den 08.06.2010

Kender Tulos

Dissertation eingereicht am 08.06.2010 1. Gutachter: Prof. Dr. P. Klüfers 2. Gutachter: Prof. Dr. T. M. Klapötke Mündliche Prüfung am 09.07.2010

Die vorliegende Arbeit wurde in der Zeit von Januar 2007 bis Juni 2010 am Department für Chemie und Biochemie der Ludwig-Maximilians-Universität München unter Anleitung von Herrn Prof. Dr. Peter Klüfers durchgeführt. Für meine Eltern und Silke

Danksagung

Herrn PROF. DR. PETER KLÜFERS danke ich für die freundliche Unterstützung durch ihn und seinen Arbeitskreis, sowie die Stellung und Finanzierung des Themas.

Herrn PROF. DR. THOMAS M. KLAPÖTKE danke ich für die freundliche Unterstützung, das Bereitstellen zweier Synthesen durch seinen Arbeitskreis und die Übernahme des Koreferates.

Der Hanns-Seidel Stiftung danke ich für die idelle und finanzielle Förderung während der letzten zweieinhalb Jahre. Insbesondere möchte ich mich bei Herrn PROF. DR. HANS-PETER NIEDERMEIER, Herrn DR. RUDOLF PFEIFFEN-RATH und Herrn PROF. DR. SEIDEL für die freundliche Unterstützung, die netten Gespräche und die zahllosen Anregungen bedanken.

Ganz besonders möchte ich mich bei folgenden Personen bedanken, die alle zum Gelingen dieser Arbeit beigetragen haben:

- Herrn DR. PETER MAYER für die zahllosen Anregungen und Hilfestellungen beim Messen und Auswerten der Röntgenstrukturanalysen.
- Meinen Forschungspraktikaten und Bachelor-Studenten CHRISTINA MÜLLER, WOLFGANG KÜGEL, SARAH ILLI, ANNA HEIMERL, PATRICK ZELLER, PHILIPP PUST, TANJA PROMMNITZ und ERWIN WIESEN-MAYER.
- Den übrigen Mitgliedern des Arbeitskreises, insbesondere Frau LIDA HOLOWATI, sowie den AnalytikerInnen der NMR-Spektroskopie, der Elementaranalyse, der PC-Wartungsgruppe und der Massenspektrometrie.

Inhaltsverzeichnis

I	Ei	nleitu	ng		1
1	Einl	eitung			3
	1.1	Allger	meines .		3
	1.2	Zielse	tzung de	r Arbeit	5
II	Er	gebni	sse		7
2	Syn	these	und Cha	rakterisierung von Liganden	9
	2.1 2.2	Allger Synth	meines . ese und	röntgenkristallographische Untersuchungen an	9
		Pyrrol	lliganden		9
		2.2.1	Monom	ere Pyrrole	11
			2.2.1.1	<i>N</i> , <i>N</i> -Dimethyl(pyrrol-2-yl)amid	11
			2.2.1.2	(Pyrrol-2-yl)methylcarbonsäureesther	12
			2.2.1.3	(4-Methyl-pyrrol-3-yl)ethylcarbonsäureester) .	14
			2.2.1.4	(3,4-Dimethyl-pyrrol-2-yl)O-methyl-thio-	
				carbonsäureester	15
		2.2.2	Kohlens	stoffverbrückte Dipyrrole	16
			2.2.2.1	Di(pyrro-2-yl)methan	17
			2.2.2.2	Di(pyrro-2-yl)keton	19
	2.3	Synth	ese und	röntgenkristallographische Untersuchungen an	
		Pyraz	olligande	en	24
		2.3.1	Kohlens	stoffverbrückte Pyrazole	25
			2.3.1.1	Di(pyrazol-1-yl)methan	25
			2.3.1.2	(2-H-Pyrazol-1-yl)-(pyrazol-1-yl)methanium	
				chlorid	26

			0010	Twi/marra al 1 ml)mathan	27
	a 4	0 1	2.3.1.3		Ζ1
	2.4	Synth	ese und	rontgenkristallographische Untersuchungen an	0.1
		Imida	zolligand		31
		2.4.1	Schwefe	elverbrückte Imidazole	32
			2.4.1.1	Di(1-methyl-imidazol-2-yl)sulfan	32
	2.5	Synth	ese von T	riazolliganden	34
	2.6	Synth	ese und	röntgenkristallographische Untersuchungen an	
		Tetraz	zolligande	en	35
		2.6.1	Monom	ere Tetrazole	36
			2.6.1.1	5-Benzyl-tetrazol	36
			2.6.1.2	1-Methyl-5-benzyl-tetrazol	38
		2.6.2	Kohlens	stoffverbrückte Tetrazole	39
			2.6.2.1	Di(tetrazol-5-yl)methan	39
		2.6.3	Sticksto	ffverbrückte Tetrazole	40
			2.6.3.1	(2-Isopropyl-tetrazol-5-yl)-(2-H-tetrazol-5-	
				yl)amin	40
			2.6.3.2	Di(2-benzyl-tetrazol-5-yl)amin	42
			2.6.3.3	(Benzyl)di(2-methyl-tetrazol-5-yl)amin	43
3	Met	allkom	plexe		47
3	Met 3.1	allkom Synth	plexe ese und r	öntgenkristallographische Untersuchungen von	47
3	Met 3.1	allkom Synth Komr	plexe ese und r	öntgenkristallographische Untersuchungen von t derivatisierten Pyrrolliganden	47
3	Met 3.1	allkom Synth Komp 3 1 1	plexe ese und r blexen mi	öntgenkristallographische Untersuchungen von t derivatisierten Pyrrolliganden	47 47 47
3	Met 3.1	allkom Synth Komp 3.1.1	plexe ese und r blexen mi ⁻ Allgemo Di-(pyr)	öntgenkristallographische Untersuchungen von t derivatisierten Pyrrolliganden	47 47 47 47
3	Met 3.1	allkom Synth Komp 3.1.1 3.1.2	plexe ese und r blexen mi Allgeme Di-(pyr) 3 1 2 1	öntgenkristallographische Untersuchungen von t derivatisierten Pyrrolliganden	47 47 47 47 47
3	Met 3.1	allkom Synth Komp 3.1.1 3.1.2 Synth	plexe ese und r blexen mir Allgeme Di-(pyrr 3.1.2.1	öntgenkristallographische Untersuchungen von t derivatisierten Pyrrolliganden eines ro-2-yl)-keton als Ligand Kupfer(II) öntgenkristallographische Untersuchungen von	47 47 47 47 47
3	Met 3.1 3.2	allkom Synth Komp 3.1.1 3.1.2 Synth Komr	plexe ese und r blexen mi Allgeme Di-(pyr 3.1.2.1 ese und r	öntgenkristallographische Untersuchungen von t derivatisierten Pyrrolliganden eines ro-2-yl)-keton als Ligand Kupfer(II) öntgenkristallographische Untersuchungen von t derivatisierten Pyrazolliganden	47 47 47 47 47 47
3	Met 3.1 3.2	allkom Synth Komp 3.1.1 3.1.2 Synth Komp	plexe ese und r blexen mi Allgeme Di-(pyrr 3.1.2.1 ese und r blexen mi	öntgenkristallographische Untersuchungen von t derivatisierten Pyrrolliganden eines ro-2-yl)-keton als Ligand Kupfer(II) öntgenkristallographische Untersuchungen von t derivatisierten Pyrazolliganden	47 47 47 47 47 47 49
3	Met 3.1 3.2	allkom Synth Komp 3.1.1 3.1.2 Synth Komp 3.2.1	plexe ese und r olexen mir Allgeme Di-(pyrr 3.1.2.1 ese und r olexen mir Allgeme	öntgenkristallographische Untersuchungen von t derivatisierten Pyrrolliganden eines ro-2-yl)-keton als Ligand Kupfer(II) öntgenkristallographische Untersuchungen von t derivatisierten Pyrazolliganden eines	47 47 47 47 47 47 49 49
3	Met 3.1 3.2	allkom Synth Komp 3.1.1 3.1.2 Synth Komp 3.2.1 3.2.2	plexe ese und r blexen mir Allgema Di-(pyrr 3.1.2.1 ese und r blexen mir Allgema Di-(pyrr 3.2.2.1	öntgenkristallographische Untersuchungen von t derivatisierten Pyrrolliganden eines ro-2-yl)-keton als Ligand Kupfer(II) öntgenkristallographische Untersuchungen von t derivatisierten Pyrazolliganden eines azol-1-yl)methan als Ligand	47 47 47 47 47 47 49 49 49
3	Met 3.1 3.2	allkom Synth Komp 3.1.1 3.1.2 Synth Komp 3.2.1 3.2.2	plexe ese und r blexen mi Allgema Di-(pyra 3.1.2.1 ese und r blexen mi Allgema Di-(pyra 3.2.2.1	öntgenkristallographische Untersuchungen von t derivatisierten Pyrrolliganden eines ro-2-yl)-keton als Ligand Kupfer(II) öntgenkristallographische Untersuchungen von t derivatisierten Pyrazolliganden eines azol-1-yl)methan als Ligand Palladium(II)	47 47 47 47 47 47 49 49 49 49 51
3	Met 3.1 3.2	allkom Synth Komp 3.1.1 3.1.2 Synth Komp 3.2.1 3.2.2	plexe ese und r olexen mir Allgeme Di-(pyrr 3.1.2.1 ese und r olexen mir Allgeme Di-(pyra 3.2.2.1 3.2.2.2	öntgenkristallographische Untersuchungen von t derivatisierten Pyrrolliganden eines ro-2-yl)-keton als Ligand Kupfer(II) öntgenkristallographische Untersuchungen von t derivatisierten Pyrazolliganden eines azol-1-yl)methan als Ligand Palladium(II) Vanadium(IV)	47 47 47 47 47 47 49 49 49 49 51 52
3	Met 3.1 3.2	allkom Synth Komp 3.1.1 3.1.2 Synth Komp 3.2.1 3.2.2	plexe ese und r blexen mir Allgeme Di-(pyrr 3.1.2.1 ese und r blexen mir Allgeme Di-(pyrr 3.2.2.1 3.2.2.2 3.2.2.3	öntgenkristallographische Untersuchungen von t derivatisierten Pyrrolliganden eines ro-2-yl)-keton als Ligand Kupfer(II) öntgenkristallographische Untersuchungen von t derivatisierten Pyrazolliganden eines azol-1-yl)methan als Ligand Palladium(II) Vanadium(IV) Nickel(II)	47 47 47 47 47 47 49 49 49 49 51 53 55
3	Met 3.1 3.2	allkom Synth Komp 3.1.1 3.1.2 Synth Komp 3.2.1 3.2.2	plexe ese und r blexen mir Allgeme Di-(pyrr 3.1.2.1 ese und r blexen mir Allgeme Di-(pyrr 3.2.2.1 3.2.2.2 3.2.2.3 3.2.2.4	öntgenkristallographische Untersuchungen von t derivatisierten Pyrrolliganden	47 47 47 47 47 49 49 49 49 51 53 55
3	Met 3.1 3.2	allkom Synth Komp 3.1.1 3.1.2 Synth Komp 3.2.1 3.2.2	plexe ese und r blexen mir Allgeme Di-(pyr) 3.1.2.1 ese und r blexen mir Allgeme Di-(pyr) 3.2.2.1 3.2.2.2 3.2.2.3 3.2.2.4 3.2.2.5 2.2.2 (öntgenkristallographische Untersuchungen von t derivatisierten Pyrrolliganden	47 47 47 47 47 47 49 49 49 49 51 53 55 58 58
3	Met 3.1 3.2	allkom Synth Komp 3.1.1 3.1.2 Synth Komp 3.2.1 3.2.2	plexe ese und r blexen mir Allgeme Di-(pyr) 3.1.2.1 ese und r blexen mir Allgeme Di-(pyr) 3.2.2.1 3.2.2.2 3.2.2.3 3.2.2.4 3.2.2.5 3.2.2.6 2.2.2.7	öntgenkristallographische Untersuchungen von t derivatisierten Pyrrolliganden	47 47 47 47 47 49 49 49 49 51 53 55 58 59 (0)
3	Met 3.1 3.2	allkom Synth Komp 3.1.1 3.1.2 Synth Komp 3.2.1 3.2.2	plexe ese und r blexen mir Allgeme Di-(pyrr 3.1.2.1 ese und r blexen mir Allgeme Di-(pyra 3.2.2.1 3.2.2.2 3.2.2.3 3.2.2.4 3.2.2.5 3.2.2.6 3.2.2.7	öntgenkristallographische Untersuchungen von t derivatisierten Pyrrolliganden	47 47 47 47 47 49 49 49 49 51 53 55 58 59 60

		3.2.2.9	Cadmium(II)	66
		3.2.2.10	Quecksilber(II)	71
	3.2.3	Tri-(pyra	zol-1-yl)methan als Ligand	74
		3.2.3.1	Cobalt(II)	74
		3.2.3.2	Cadmium(II)	76
		3.2.3.3	Blei(II)	77
3.3	Synthe	ese und rö	öntgenkristallographische Untersuchungen von	
	Komp	lexen mit	imidazolhaltigen Liganden	80
	3.3.1	Allgeme	ines	80
	3.3.2	Neue Im	iidazolkomplexe	80
		3.3.2.1	Palladium(II)	80
		3.3.2.2	Nickel(II)	82
3.4	Synthe	ese und rö	öntgenkristallographische Untersuchungen von	
	Komp	lexen mit	triazolhaltigen Liganden	85
	3.4.1	Allgeme	ines	85
	3.4.2	Neue Tri	iazolkomplexe	85
		3.4.2.1	Kupfer(II)	85
		3.4.2.2	Nickel(II)	86
	3.4.3	Di(1,2,4-	triazol-1-yl)-methan als Ligand	89
		3.4.3.1	Kupfer(II)	89
	3.4.4	Natrium	-1,2,4-bistriazol-1-yl-boranat als Ligand	90
		3.4.4.1	Kupfer(II)	90
3.5	Synthe	ese und rö	öntgenkristallographische Untersuchungen von	
	Komp	lexen mit	tetrazolhaltigen Liganden	93
	3.5.1	Allgeme	ines	93
	3.5.2	Di(tetraz	zol-5-yl)-amin als Ligand	93
		3.5.2.1	Nickel(II)	93
	3.5.3	(2-Methy	yl-tetrazol-5-yl)-(tetrazol-5-yl)-amin als Ligand .	96
		3.5.3.1	Thallium(I)	96
		3.5.3.2	Blei(II)	98
	3.5.4	Di(2-me	thyl-tetrazol-5-yl)-amin als Ligand	100
		3.5.4.1	Palladium(II)	100
	3.5.5	Di(2-me	thyl-tetrazol-5-yl)benzyl-amin als Ligand	101
		3.5.5.1	Kupfer(II)	101
	3.5.6	Di(tetraz	zol-5-yl)-methan als Ligand	102
		3.5.6.1	Kupfer(II)	102

3.6	Synthese und röntgenkristallographische Untersuchungen von						
	Nitros	yl-Komp	lexen	105			
	3.6.1	Neue [R	$u(NO)Cl_5]^{2-}$ -Salze	105			
	3.6.2	K ₂ [Ru(N	$IO[F_5]$	107			
3.7	Synthese und röntgenkristallographische Untersuchungen von						
	NO ₂ -k	Komplexe	n	108			
	3.7.1	Allgeme	ines	108			
		3.7.1.1	NiNO ₂ -Komplexe mit Di(pyrazol-1-yl)methan	108			
		3.7.1.2	NiNO ₂ -Komplexe mit Di(2-methyl-tetrazol-5-				
			yl)-amin	114			

III Computerchemie

4	The	oretisc	her Hinte	ergrund der quantenchemischen Rechnungen	ı 119
	4.1	Schrö	dinger-Gl	eichung und Born-Oppenheimer-Näherung	119
	4.2	Die H	artree-Fo	ck-Näherung	120
	4.3	Mølle	r-Plesset-	Störungstheorie	121
	4.4	Couple	ed-cluster-	Methoden	124
	4.5	Dichte	efunktion	altheoriemethoden	126
	4.6	Basiss	ätze		128
5	The	oretisc	her Hinte	ergrund der moleküldynamischen Rechnunge	n131
	5.1	Klassi	sche Mol	eküldynamik	131
	5.2	Car-P	arrinello-	Moleküldynamik	132
	5.3	Born-	Oppenhei	imer-Dynamik	134
	5.4	Ebene	e Wellen u	Ind Pseudopotentiale	134
6	Ber	echnur	ngen der	Grundzustandspotentialhyperfläche und ange) -
	reg	ter Zus	tände		137
	6.1	Allgei	meines .		137
		6.1.1	Basissät	ze und Methoden	138
		6.1.2	Comput	terchemische Untersuchungen an größeren Ru-	
			thenium	nitrosylkomplexen	143
			6.1.2.1	Allgemeines	143
			6.1.2.2	Untersuchungen an $[Ru(NO)Cl_2(mida)]^-$	143
			6.1.2.3	Untersuchungen an $[Ru(NO)Br_2(mida)]^-$	145

117

	6.1.2.4	Untersuchungen an $[Ru(NO)I_2(mida)]^-$	147				
	6.1.2.5	Untersuchungen an $[Ru(NO)Cl_3(koji)]^-$	149				
	6.1.2.6	Untersuchungen an $[Ru(NO)Br_3(koji)]^-$	150				
	6.1.2.7	Untersuchungen an $[Ru(NO)I_3(koji)]^-$	152				
	6.1.2.8	Untersuchungen an [Ru(NO)Cl ₂ (his)]	154				
	6.1.2.9	Untersuchungen an [Ru(NO)Br ₂ (his)]	156				
	6.1.2.10	Untersuchungen an [Ru(NO)I ₂ (his)]	158				
	6.1.2.11	Untersuchungen an $[Ru(NO)Br_2(dap)]^-$	160				
	6.1.2.12	Untersuchungen an $[Ru(NO)I_2(dap)]^-$	161				
	6.1.2.13	Untersuchungen an $[Ru(NO)Cl_3(dap)]^-$	163				
	6.1.2.14	Untersuchungen an $[Ru(NO)Br_3(dap)]^-$	165				
	6.1.2.15	Untersuchungen an $[Ru(NO)I_3(dap)]^-$	167				
	6.1.2.16	Untersuchungen an $[Ru(NO)Cl_2(tda)]^-$	169				
	6.1.2.17	Untersuchungen an $[Ru(NO)Br_2(tda)]^-$	171				
6.1.3	Berechn	ungen von NMR-Spektren für große Rutheni-					
	umnitro	sylkomplexe	173				
6.1.4	Untersu	chungen an [Ru(NO)(dap)Cl ₂]	179				
6.1.5	Untersuchungen an kleinen symmetrischen Rutheni-						
	umnitro	sylkomplexen	185				
	6.1.5.1	Allgemeines	185				
	6.1.5.2	$[Ru(NO)(NH_3)_5]^{3+}$	185				
	6.1.5.3	$[Ru(NO)I_5]^{2-}$	186				
	6.1.5.4	$[\operatorname{Ru}(\operatorname{NO})\operatorname{Br}_5]^{2-}$	188				
	6.1.5.5	$[Ru(NO)Cl_5]^{2-} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	190				
	6.1.5.6	$[Ru(NO)F_5]^{2-}$	192				
	6.1.5.7	Vergleich der hochsymmetrischen [Ru(NO)Hal5] ⁻² -				
		Komplexe	194				
6.1.6	Untersu	chungen am Modellsystem $[Ru(NO)F_5]^{2-}$	195				
6.1.7	CPMD		202				
	6.1.7.1	Allgemeines	202				
	6.1.7.2	Simulation des S-Komplexes	202				
	6.1.7.3	Simulation des I-Komplexes	204				
	6.1.7.4	Born-Oppenheimer-Simulation der lichtindu-					
		zierten Isomerisierung	205				

IV Diskussion

207

7	Diskussion					
	7.1	Aufbau einer Ligandbibliothek	209			
	7.2	Untersuchungen zur Komplexbildungsneigung der Liganden .	209			
	7.3	Schaltbare Verbindungen	210			

V Zusammenfassung

8

223

Zusa	ammenfassung	215
8.1	Allgemeines	215
8.2	Darstellung einer Ligandbibliothek	216
8.3	Untersuchungen zur Komplexbildung	216
8.4	Darstellung schaltbarer Komplexe	218
8.5	Computerchemische Untersuchungen zum Mechanismus der	
	Isomerisierung von Ruthenium-Nitrosylverbindungen	220

VI Experimenteller Abschnitt

9	Ехр	perimenteller Abschnitt					
	9.1 Allgemeine Arbeitsbedingungen						
	9.2	Darste	ellung von zur Ligandsynthese benötigten Verbindungen	227			
		9.2.1	Darstellung von Benzyliodid	227			
		9.2.2	Darstellung von 3-Ethylester-4-methylpyrrol	227			
		9.2.3	Darstellung von 3,4-Dimethylpyrrol	229			
	9.3 Synthese von metallhaltigen Vorläuferverbindungen						
		9.3.1	Synthese von Rutheniumnitrosyltrichlorid-Trihydrat	231			
		9.3.2	Darstellung von Kalium-pentachlorido-nitrosyl-				
			ruthenat(III)	232			
		9.3.3	Darstellung von Tetrabutylammonium-pentachlorido-				
			nitrosyl-ruthenat(III)	232			
		9.3.4	Darstellung von Tetraphenylphosphonium-pentachlorido)-			
			nitrosyl-ruthenat(III)	233			
		9.3.5	Darstellung von $(Ph_4As)_2[Ru(NO)Cl_5] \cdot CH_2Cl_2 \cdot \cdot \cdot \cdot$	234			
	9.4	Synthe	ese der Liganden	235			
		9.4.1	Darstellung von pyrazolhaltigen Liganden	235			
	9.4.1.1 Darstellung von Di(pyrazol-1-yl)methan						

Inhaltsverzeichnis

	9.4.1.2	Darstellung von Natrium-di(pyrazol-1-	
		yl)boranat	236
	9.4.1.3	Darstellung von Tri(pyrazol-1-yl)methan	237
9.4.2	Darstell	ung von pyrrolhaltigen Liganden	238
	9.4.2.1	Darstellung von Di(pyrrol-2-yl)thion	238
	9.4.2.2	Darstellung von Di(pyrrol-2-yl)keton	239
	9.4.2.3	Darstellung von Di(pyrrol-2-yl)methan	240
	9.4.2.4	Darstellung von Di(pyrrol-2-yl)phenyl-methan	240
	9.4.2.5	Darstellung von (3,4-Dimethyl-pyrrol-2-yl)O-	
		methyl-thiocarbonsäureester	241
	9.4.2.6	Darstellung von (Pyrrol-2-yl)methylcarbon-	
		säureesther	242
	9.4.2.7	Darstellung von <i>N,N</i> -Dimethyl(pyrrol-2-	
		yl)amid	243
9.4.3	Darstell	ung von imidazolhaltigen Liganden	244
	9.4.3.1	Darstellung von Di(1-methyl-imidazol-2-	
		yl)sulfan	244
9.4.4	Darstell	ung von triazolhaltigen Liganden	245
	9.4.4.1	Versuchte Darstellung von Tri(1,2,4-triazol-1-	
		yl)methan	245
	9.4.4.2	Darstellung einer Mischung von Di(1,2,4-	
		triazolyl)methan-Stereoisomeren mittels Pha-	
		sentransferkatalyse	246
	9.4.4.3	Darstellung von Di(1,2,4-triazol-1-yl)methan	
		über Diiodmethan	247
	9.4.4.4	Darstellung von Di(1,2,4-triazol-1-yl)methan	
		aus Dichlormethan	248
	9.4.4.5	Darstellung von Natrium-di(1,2,4-triazol-1-	
		yl)-boranat	249
9.4.5	Darstell	ung von tetrazolhaltigen Liganden	250
	9.4.5.1	Darstellung von 5-Benzyltetrazol	250
	9.4.5.2	Darstellung von 5-Benzyl-methyl-tetrazol	251
	9.4.5.3	Darstellung von Di(tetrazol-5-yl)amin-	
		Monohydrat	252
	9.4.5.4	Darstellung von Di(2-methyl-tetrazol-5-	
		yl)amin-Monohydrat	253

Inhaltsverzeichnis

		9.4.5.5	Darstellung von (2-Methyl-tetrazol-5-yl)-	
			(tetrazol-5-yl)amin	254
		9.4.5.6	Darstellung von (2-Isopropyl-tetrazol-5-yl)-	
			(tetrazol-5-yl)amin	255
		9.4.5.7	Darstellung von Di(2-benzyl-tetrazol-5-yl)amin	256
		9.4.5.8	Darstellung von Di(2-methyl-tetrazol-5-	
			yl)benzylamin	257
		9.4.5.9	Darstellung von Di(tetrazol-5-yl)methan	259
9.5	Darste	llung der	Metallkomplexe	261
	9.5.1	Metallko	omplexe von Di(pyrrol-2-yl)keton	261
		9.5.1.1	Kupfer(II)	261
	9.5.2	Metallko	omplexe von Di(pyrazol-1-yl)-methan	262
		9.5.2.1	Allgemeines	262
		9.5.2.2	Allgemeine Arbeitsanleitung zur Darstel-	
			lung von Metallkomplexen mit Di(pyrazol-	
			1-yl)methan	262
		9.5.2.3	Palladium(II)	262
		9.5.2.4	Ruthenium(II)	263
		9.5.2.5	Umsetzung von Ru(NO)Cl ₃ mit Di(pyrazol-1-	
			yl)methan	264
	9.5.3	Darstell	ung von Übergangsmetallkomplexen mit	
		Tri(pyra	zol-1-yl)methan	267
		9.5.3.1	Allgemeine Arbeitsvorschrift zur Darstellung	
			von Komplexen mit Tri(pyrazol-1-yl)methan .	267
	9.5.4	Darstellı	ung der Metallkomplexe mit Imidazol	269
		9.5.4.1	Allgemeines	269
		9.5.4.2	Palladium(II)	269
		9.5.4.3	Nickel(II)	269
	9.5.5	Darstellı	ung der Metallkomplexe mit triazolhaltigen Li-	
		ganden		270
		9.5.5.1	Allgemeines	270
		9.5.5.2	Kupfer(II) mit 1,2,4-Triazol	270
		9.5.5.3	Nickel(II) mit 1,2,4-Triazol	271
		9.5.5.4	Kupfer(II) mit Natrium-di(1,2,4-triazol-1-	
			yl)boranat	271
		9.5.5.5	Kupfer(II) mit Di(1,2,4-triazol-1-yl)methan	272

9.5.6	Darstell	ung von tetrazolhaltigen Metallkomplexen 272
	9.5.6.1	Nickel(II) mit Di(tetrazol-5-yl)amin
	9.5.6.2	Metallkomplexe von (2-Methyl-tetrazol-5-yl)-
		(tetrazol-5-yl)amin
	9	.5.6.2.1 Allgemeine Arbeitsvorschrift zur
		Umsetzung von Metallsalzen mit
		(2-Methyl-tetrazol-5-yl)-(tetrazol-5-
		yl)amin
	9.5.6.3	Palladium(II) mit Di(2-methyl-tetrazol-5-yl)amin276
	9.5.6.4	Kupfer(II) mit Di(2-methyl-tetrazol-5-
		yl)benzylamin
	9.5.6.5	Kupfer(II) mit Di(tetrazol-5-yl)methan 277
9.5.7	9.5.7 Nickelkomplexe mit NO ₂	
	9.5.7.1	Darstellung von $[Ni(NO_2)(10)_2(H_2O)]Cl \cdot H_2O$
		(61)
	9.5.7.2	Darstellung von $[Ni(NO_2)(10)_2]((C_6H_5)_4B)$ (62) 278
	9.5.7.3	Darstellung von [Ni ₃ (NO ₂) ₆ (10) ₂ (H ₃ COH) ₂] \cdot C ₆ H ₁₄
		(63)
	9.5.7.4	Darstellung von $[Ni(NO_2)_2(24)_2](64) \dots 280$
9.5.8	Darstell	ung von $K_2[Ru(NO)F_5] \cdot H_2O(60)$

VII Anhang

Α	Ergebnisse der mit Gaussian durchgeführten computerchemi		
	schen Berechnungen	285	
	A.1 Berechnete Energien für kleine symmetrische Rutheniumnitro-		
	sylkomplexe	. 285	
	A.2 Für größere Rutheniumnitrosylkomplexe berechnete Energien	. 291	
в	Liste der verwendeten Chemikalien	301	
С	Abbildungen zu den Kristallstrukturen	305	
D	Angaben zu den Strukturbestimmungen	361	
VI	III Literaturverzeichnis	391	

283

Verzeichnis der nummerierten Verbindungen¹

- 1* (Pyrrol-2-yl)methylcarbonsäureesther
- 2* (3,4-Dimethyl-pyrrol-2-yl)*O*-methyl-thiocarbonsäureester
- 3* *N,N*-Dimethyl(pyrrol-2-yl)amid
- 4* (4-Methyl-pyrrol-3-yl)ethylcarbonsäureester)
- 5 Phenyl-di(pyrrol-2-yl)methan
- **6**^{*} Di(pyrrol-2-yl)methan
- 7 Di(pyrrol-2-yl)thion
- 8* Di(pyrrol-2-yl)keton
- 9* Mischkristall von 8 und (C₆H₅)PCl
- **10*** Di(pyrazol-1-yl)methan
- 11 Tri(pyrazol-1-yl)methan
- 11b* Tri(pyrazol-1-yl)methan (neues Polymorph)
- 11c* Tri(pyrazol-1-yl)methan (neues Polymorph)
- 12 Natrium-di(pyrazol-1-yl)boranat
- 13* Di(pyrazol-1-yl)methaniumchlorid
- 14 Di(imidazol-1-yl)keton
- 15* Di(imidazol-2-yl)sulfan
- 16 Di(1,2,4-triazol-1-yl)methan
- 17 Tri(1,2,4-triazol-1-yl)methan
- 18 Natrium-di(1,2,4-triazol-1-yl)boranat
- 19* 5-Benzyltetrazol
- 20* 5-Benzyl-2-methyl-tetrazol
- 21* Di(tetrazol-5-yl)methan
- 22* Di(tetrazol-5-yl)amin
- 23* (2-Methyl-tetrazol-5-yl)(tetrazol-5-yl)amin
- 24* Di(2-methyl-tetrazol-5-yl)amin
- 25* (2-Isopropyl-tetrazol-5-yl)(tetrazol-5-yl)amin
- 26* Di(2-benzyl-tetrazol-5-yl)amin
- 27* Di(2-methyl-tetrazol-5-yl)benzylamin
- **28**^{*} $((C_4H_9)_4N)[Cu(8H_{-2})(8H_{-1})]$
- **29**^{*} $[Pd(10)_2]Cl_2 \cdot 2 H_2O$
- **30**^{*} $[V(10)Cl_2(O)(H_2O)] \cdot H_2O$
- **31*** [Ni(10)₂(H₂O)₂]Cl₂
- 32^* [Fe₂(10)₄Cl₂][FeCl₄]₂
- $\textbf{33^*} \quad [Os_2(\textbf{10})_2O_6] \cdot 6 \ H_2O$
- 34^* [Co(10)₂(H₂O)₂]Cl₂
- 35^* [Ru(10)₂Cl₂] · 2 DMF
- 36^* [Zn(10)₂(H₂O)₂](NO₃)₂
- 37* [Zn(10)(Cl)₂]
- 38^* [Zn(10)₂Cl₂] (38)

¹mit * gekennzeichnete Verbindungen wurden kristallin erhalten.

- 39* $[Cd(10)_2(H_2O)_2](NO_3)_2$
- $[Cd(10)_2Cl_{1.89}(NO_3)_{0.11}]$
- 40*

- 41* $[Cd(10)_2(NO_3)_2]$
- 42* $[Hg(10)Cl_2]$
- 43* $[Co(11)_2]Cl_2 \cdot 2 H_2O$
- 44* $[Cd(11)_2(NO_3)][Cd(11)(NO_3)_3]$
- 45* $[Pb(11)_2(NO_3)_2]$
- 46* [Pd(imidazol)₄]Cl₂
- 47* [Ni(imidazol)₆]Cl₂
- 48* $[Cu(1,2,4-triazol)Cl_2]_n$
- 49* $[Ni_3(1,2,4-triazol)_6Cl_2(H_2O)_4]$
- 50* $[Cu(16)Cl]_nCl_n$
- 51* $\{(C_4H_9)_4N)[Cu(18)_2Cl_2] \cdot 5H_2O\}_n$
- 52* $[Na_5Ni(22H_{-2})_3(OH)(H_2O)_8]_n$
- 53* $Tl(23H_{-1})$

62*

63*

64*

65

- 54* $[Pb(23H_{-1})_2]_n \cdot (H_2O)_n$
- 55* $[Pd(24)Cl_2] \cdot 3 H_2O$
- 56* $[Cu(27)(NO_3)]$
- 57* $(NH_4)_2[Cu(16H_{-2})_2]$
- 58* $\{(C_6H_5)_4A_8\}_2[Ru(NO)Cl_5]$

- 59* ${(C_6H_5)_4P}_2[Ru(NO)Cl_5]$

- 60* $K_2[Ru(NO)F_5] \cdot H_2O$

 $[Ni(NO_2)(10)_2]((C_6H_5)_4B)$

 $[Ni_3(NO_2)_6(10)_2(H_3COH)_2] \cdot C_6H_{14}$

- 61*

 $[Ni(NO_2)_2(24)_2]$

 $[Ru(NO)Cl_3(10)]$

- $[Ni(NO_2)(10)_2(H_2O)]Cl \cdot H_2O$

Abkürzungsverzeichnis

- DFT *density functional theory*
- DMF Dimethylformamid
- DMSO Dimethylsulfoxid
- IR Infrarot
- NMR nuclear magentic resonance
- TD-DFT time dependent density functional theory

Abstract

In this thesis, crystal structures of metal complexes of various five membered heterocyclic compounds are presented. The heterocyclic compounds were either already literature known or newly synthesized, in which case crystal structures of the compounds are also included.

The investigation was concentrated on compounds that might show photoisomeric behaviour. Here, nitrosyl and nitrito comlexes were considered, since both are known to undergo isomerization reactions by the influence of light. Experimental and computational chemical investigations on some model compounds lead to the conclusion that the sterical demand of the equatorial ligands and the shape and the electrostatic properties of the cavity around the nitrosyl or nitrito ligand in the crystal have a large influence on the relative stability of the different isomers and the reaction pathways between them as well on the electronic ground state potential hypersurface as on those of the excited states.

Teil I Einleitung

1 Einleitung

1.1 Allgemeines

In lebenden Zellen werden Reaktionen durch Biokatalysatoren, Enzyme, katalysiert. Die katalytischen Zentren von Enzymen enthalten häufig Metalle, die entweder über mehrere Aminosäureseitenketten mit dem Apoprotein verknüpft sind oder als prosthetische Gruppe mit nicht-proteinogenen Liganden umgeben sind, die meist über Wasserstoffbrückenbindungen oder lipophile Wechselwirkungen an das Apoprotein angebunden sind. Beiden Verknüpfungsmöglichkeiten treten auch gemeinsam auf. Die Anbindung der Metalle an die Aminosäureseitenketten des Proteins erfolgt häufig über die Carboxylatgruppen der Aminosäureanionen Aspartat und Glutamat, über die Schwefelatome der Aminosäuren Methionin und Cystein oder über die Stickstoffatome von Histidinseitenketten. In vielen prosthetischen Gruppen vorkommende Liganden sind Derviate von Porphyrin, bei denen die Anbindung an das Apoprotein über Wasserstoffbrückenbindungen von Substituenten am Porphyrinring, lipophile Gruppen oder kovalente Anbindung über zum Beispiel Thioester erfolgt. Da der Porphyrinring nur vier Koordinationsstellen in einer Ebene belegt, erfolgt häufig eine Anbindung einer Aminosäureseitenkette in einer axialen Position, wodurch die prosthetische Gruppe nochmals im Enzym verankert ist.

Sowohl bei der Anbindung über Histidinseitenketten als auch in einem Porphyrinring wird das Metall von einem Stickstoffatom, das Teil eines Fünfringheterocyclus ist, koordiniert. Häufige Metallkationen, die in zellulären Prozessen von Bedeutung sind und in einer derartigen Umgebung vorliegen können sind Eisen (zum Beispiel in Cytochrom c, in Hämoglobin oder in Myoglobin; siehe Abb. 1.1 und unter anderem [1]), Kupfer (zum Beispiel in Hämocyanin) und Zink (zum Beispiel strukturell in Zinkfingerprotei-

Abbildung 1.1: Darstellung der Kristallstruktur von Myoglobin des Schwarzflossenthunfischs mit dem Protein als Cartoon und der prosthetischen Gruppe, ein Eisenatom koordiniert von Protoporphyrin-IX, als Kugel-Stabmodell (aus [1]). Die prosthetische Gruppe ist über eine Histidinseitenkette, die an das Eisenatom koordiniert, mit dem Apoprotein verknüpft. Die sechste Koordinationsstelle am Eisen nimmt in der Struktur ein Sauerstoffatom ein (die beiden Liganden sind ebenfalls als Kugel-Stabmodell dargestellt).

nen, katalytisch in Proteasen) [2]. Eine Koordinationsumgebung aus stickstoffhaltigen Liganden wurde somit bei sehr vielen Metalloproteinen gefunden.

Eine ähnliche Koordinationsumgebung wird auch für Enzyme, die im Körper von Vertebraten die Zelluläre Antwort auf den Botenstoff Stickstoffmonoxid regulieren, angenommen. Stickstoffmonoxid erweitert unter anderem die Blutgefäße, ist aber auch an der Immunantwort auf Infektionen beteiligt (siehe zum Beispiel [3]). Auch die Freisetzung von Stickstoffmonoxid aus Nitrit wird vermutlich von Häm-Enzymen katalysiert [4]. Bei der bakteriellen Denitrifizierung scheinen Cytochrome auch am Abbau von Stickstoffmonoxid beteiligt zu sein [5]. Somit ist anzunehmen, dass eine ähnliche Koordinationsumgebung auch bei Enzymen, die das Stickstoffmonoxid in Vertebraten abbauen, vorliegt. Als Modellsystem könnten hier Stickstoffmonoxidkomplexe an Metallen mit Stickstoffheterocyclen als Liganden dienen.

Außerdem können Stickstoffmonoxidkomplexe durch Licht zu Isomerisierungsreaktionen vom Nitrosylkomplex in einen Isonitrosylkomplex oder einen *side-on*-Komplex angeregt werden. Dieser Schaltprozess, der gut mittels IR-Spektroskopie beobachtet werden kann, könnte eine technische Anwendung als molekularer Datenspeicher finden [6–8]. Bisher ist allerdings kein vollständiger Reaktionsumsatz bei diesen Schaltprozessen bekannt. Meist können nur wenige Prozent der Komplexe einer Probe in einen Isonitrosyloder side-on-Komplex umgewandelt werden und die Rückreaktion wird üblicherweise bereits bei sehr tiefen Temperaturen induziert. Die Untersuchungen sind nicht auf Nitrosylkomplexe begrenzt, sondern schließen viele verschiedene Liganden und Zentralmetalle, bei denen sich die Infrarotabsorptionen eines durch Lichtanregung erzeugbaren Isomers vom zu Beginn vorliegenden Isomer unterscheiden, ein [6, 9, 10]. Ein Ziel vieler neuerer Arbeiten ist aus diesem Grund, die Stabilität der Isonitrosylkomplexe und side-on-Komplexe zu erhöhen, mit dem Ziel, das reversible Schalten von Komplexen bei Raumtemperatur mit hohen Ausbeuten zu ermöglichen [7, 8, 11–13]. Der side-on-Komplex konnte bei Natriumnitroprussid auch röntgenkristallographisch nachgewiesen werden [14]. Um die Bindungsverhältnisse in den Ausgangskomplexen und den durch Lichtanregung dargestellten Isomeren zu verstehen, wurden auch bereits mehrere computerchemische Studien veröffentlicht, die sich aber meist mit symmetrischen Systemen beschäftigen [11, 15, 16]. Fast alle diese Studien beschäftigen sich vor allem mit dem Einfluss des Liganden, der sich in trans-Position zum Nitrosylliganden befindet [17–21].

1.2 Zielsetzung der Arbeit

In dieser Arbeit soll zuerst eine Bibliothek möglicher Liganden aus derivatisierten Fünfringstickstoffheterocyclen aufgebaut werden, die die Koordinationseigenschaften eines Porphyrinrings modellieren sollen (siehe Abb.

Abbildung 1.2: Als Modellverbindung für das Porphyrin (links) sollen in dieser Arbeit Derivate des rechts gezeigten Di(pyrro-2-yl)methan eingesetzt werden. Di(pyrro-2-yl)methan ist dabei einem halben Porphyrin (Mitte) ähnlich. Die C-H-Gruppen des Di(pyrro-2-yl)methan sollen sukkzessive isolobal durch Stickstoffatome ersetzt werden.

1.2). Um einer technischen Anwendung näher zu kommen, soll dabei der Stickstoffgehalt der Fünfringheterocyclen varriiert und damit die elektronische Struktur des Komplexes und die Absorptionsbanden der Liganden so beeinflusst werden, dass die Absorptionsbanden des schaltbaren Liganden möglichst nicht von anderen Absorptionsbanden überlagert werden. Dazu sollen statt der Pyrrole, die dem Porphyrinring am nächsten kommen, Pyrazole, Imidazole, Triazole oder Tetrazole verwendet werden. Um die Koordinationseigenschaften dieser Liganden zu untersuchen, sollen diese dann mit verschiedenen Metallkationen umgesetzt werden. Danach soll versucht werden, schaltbare Komplexe aufzubauen. Zugleich sollen bereits bekannte Komplexe computerchemisch untersucht werden, um einen Einblick in die Isomerisierungsreaktionen zu bekommen und daraus Regeln für die Synthese neuer Komplexverbindungen abzuleiten, die dann im Idealfall bei höheren Temperaturen und mit besseren Ausbeuten vom Nitrosyl- zum Isonitrosyl- oder den side-on-Komplexen geschaltet werden können. Hier wird besonderer Wert auf den Einfluss der Liganden gelegt, die in cis-Stellung zum Nitrosylliganden stehen.

Teil II

Ergebnisse

2 Synthese und Charakterisierung von Liganden

2.1 Allgemeines

Porphyrin hat vier Fünfringheterocyclen, die einem Pyrrolring vergleichbar sind und deren Stickstoffatome zur Koordination an Metalle dienen können. Eine Teilung des Porphyrins in der Mitte ergibt zwei Einheiten, bei denen Fünfringheterocyclen über ein Atom verbrückt sind. Auch andere Modellsysteme, die im Abstand zwischen den beiden dann koordinierenden Stickstoffatomen ähnlich sind, sind denkbar.

Um eine Veränderung der Koordinationsfähigkeit und Absorptionsbanden der Liganden zu erreichen, liegt der isolobale Austausch einzelner Atomgruppen in den Heterocyclen oder am verbrückenden Atom nahe. Eine Auswahl derartiger Liganden wurde synthetisiert und deren Komplexbildungsneigungen mit verschiedenen Metallen untersucht. Da häufig paramagnetische Metalle eingesetzt wurden, wurde vor allem die Röntgenstrukturanalyse als analytische Methode eingesetzt.

2.2 Synthese und röntgenkristallographische Untersuchungen an Pyrrolliganden

Es wurden verschiedene Pyrrole mit unterschiedlichen Substitutionsmustern dargestellt, von denen einige bereits literaturbekannt sind. Um das Substitutionsmuster zweifelsfrei zu belegen, wurden die synthetisierten Pyrrole, wenn möglich, mittels Röntgenstrukturanalyse untersucht, was bei dieser Stoffklasse bisher sehr selten war. Besonders wichtig erschienen hierbei die intermolekularen Wechselwirkungen, dass heißt vor allem klassische und nichtklas-

Schema 1: Übersicht über die synthetisierten Pyrrolliganden.

sische Wasserstoffbrückenbindungen, um mit diesen Hinweise auf Polarisierungen und Ladungen innerhalb der organischen Moleküle, und damit auf mögliche Bindungsstellen, zu finden.

Das Stickstoffatom des Pyrrolrings muss zur Komplexierung deprotoniert vorliegen, was sich in wässriger Umgebung als relativ schwierig herausstellte. Aus diesem Grund wurde versucht das Lösemitteln zu wechseln, was sich vor allem mit den Metallsalzen als schwierig erwies. Um diese in organischen Lösemittel zu lösen, wurden meist Phasentransferkatalysatoren *in situ* oder auch als Gegenionen in Komplexsalzen verwendet.

In Schema 1 ist eine Übersicht über die synthetisierten Pyrrole gezeigt. Die Verbindungen **5**, **6**, **7** und **8** sind bereits literaturbekannt, bei **6** und **8** wurden im Laufe der Untersuchungen neue Polymorphe oder Salze beziehungsweise Mischkristalle gefunden. Diese und die bisher nicht literaturbekannten Verbindungen werden im Folgenden genauer beschrieben.

2.2.1 Monomere Pyrrole

Eine Auswahl unterschiedlich substituierter Pyrrole wurde auf dem Weg zur Synthese von einatomverbrückten Dipyrrolverbindungen dargestellt. Obwohl einige der Verbindungen bereits literaturbekannt waren, waren die meisten bisher nicht röntgenkristallographisch untersucht. Einige von ihnen eignen sich möglicherweise auch als Liganden.

2.2.1.1 N,N-Dimethyl(pyrrol-2-yl)amid

Abbildung 2.1: ORTEP-Darstellung von **3**. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: N1-C1 1.372(2), N1-C3 1.348(2), O2-C5 1.245(2), N2-C5 1.342(2), N2-C7 1.457(3), N2-C8 1.456(2); ausgewählte Bindungswinkel [°]: O2-C5-C1 119.05(18), O2-C5-N2 120.00(19), N2-C5-C1 120.95(16); ausgewählte Torsionswinkel [°]: N1-C1-C2-C4 -0.4(2), N1-C1-C5-O2 -22.9(3), N1-C1-C5-N2 156.34(16).

Das substituierte Pyrrol **3** kristallisiert in farblosen Blöcken in der monoklinen Raumgruppe C2/*c*. Eine ORTEP-Darstellung der Kristallstruktur ist in Abb. 2.2.1.1, eine Darstellung der Packung der Moleküle in der Elementarzelle im Anhang in Abb. C.3 gezeigt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.2. Bindungslängen und Bindungswinkel sind normal. Die Synthese erfolgt wie in 9.4.2.7 ausgeführt.

Das Wasserstoffatom des Stickstoffatoms im Pyrrolring bildet in der Kristallstruktur eine Wasserstoffbrückenbindung zum Carbonylsauerstoffatom eines benachbarten Moleküls aus, was zu wasserstoffverbrückten Dimeren führt. Eines dieser Dimere ist in Abb. 2.2 dargestellt. Das Wasserstoffbrückenbindungsnetzwerk kann mittels der Graphensatzanalyse mit ei-

Abbildung 2.2: MERCURY-Darstellung eines wasserstoffverbrückten Dimers in der Kristallstruktur von 3, dargestellt mit Blickrichtung entlang [100]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ 1 - x, 1 - y, -z. Der Abstand zwischen dem Wasserstoffbrückenbindungsdonor N1 und dem akzeptor O2ⁱ beträgt 2.818(2) Å.

nem $R_2^2(10)$ Deskriptor bezeichnet werden. Es gibt keine weiteren relevanten Wechselwirkungen in der Packung der Kristallstruktur.

Das Molekül könnte als zweizähniger Ligand über N1 und O2 an ein Metall koordinieren.

2.2.1.2 (Pyrrol-2-yl)methylcarbonsäureesther

Das substituierte Pyrrol 1 kristallisiert in farblosen Plättchen in der monoklinen Raumgruppe $P2_1/c$. Eine ORTEP-Darstellung der Kristallstruktur ist in Abb. 2.3, eine Darstellung der Packung der Moleküle in der Elementarzelle im Anhang in Abb. C.1 gezeigt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.1. Bindungslängen und Bindungswinkel sind normal. Die Synthese erfolgt wie in 9.4.2.6 ausgeführt, eine genauere Beschreibung ist in [22] zu finden.

Das Wasserstoffatom des Pyrrolstickstoffs bildet eine Wasserstoffbrückenbindung zu einem Carbonylsauerstoffatom einer Estergruppe eines benachbarten Moleküls aus. Dieses Verknüpfungsmuster führt zu Ketten ent-

Abbildung 2.3: ORTEP-Darstellung von 1. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: N1-C4 1.356(4), N1-C1 1.363(4), O1-C5 1.342(4), O2-C5 1.220(4), O1-C6 1.436(4); ausgewählte Bindungswinkel [°]: O1-C5-C1 111.9(3), O2-C5-C1 124.2(3); ausgewählte Torsionswinkel [°]: N1-C1-C5-O1 -176.2(3), N1-C1-C5-O2 4.1(5), N1-C1-C2-C3 -0.3(4).

Abbildung 2.4: MERCURY-Darstellung einer wasserstoffverbrückten Kette in der Kristallstruktur von 1, dargestellt mit Blickrichtung entlang [100]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnungen: ⁱ -x, -1.5 + y, 0.5 - z; ⁱⁱ x, -1 + y, z; ⁱⁱⁱ -x, -0.5 + y, 0.5 - z; ^{iv} -x, 0.5 + y, 0.5 - z; ^v x, 1 + y, z. Der Abstand zwischen dem Wasserstoffbrückenbindungsdonor N1 und dem -akzeptor O2ⁱ beträgt 2.929(4) Å.

lang [010] und kann mittels Graphensatzanalyse mit einem $C_2^2(5)$ Deskriptor bezeichnet werden. Ein Ausschnitt einer dieser Ketten ist in Abb. 2.4 gezeigt.

Das Molekül könnte über N1 und O2 als zweizähniger Ligand an ein Metall binden. Eine Bindung über N1 und O1 erscheint unwahrscheinlicher, ist aber dennoch möglich.

2.2.1.3 (4-Methyl-pyrrol-3-yl)ethylcarbonsäureester)

Abbildung 2.5: ORTEP-Darstellung von 4. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: C3-C6 1.453(2), O1-C6 1.3408(18), O2-C6 1.2145(18), O1-C7 1.4544(18); ausgewählte Bindungswinkel [°]: O1-C6-C3 112.94(12), O2-C6-C3 124.38(15), O1-C7-C8 107.33(14); ausgewählte Torsionswinkel [°]: C2-C3-C6-O2 -7.7(2), C6-O1-C7-C8 179.17(13).

Das substituierte Pyrrol 4 kristallisiert in hellgelben Blöcken in der monoklinen Raumgruppe C2/c. Eine ORTEP-Darstellung der Kristallstruktur ist in Abb. 2.5, eine Darstellung der Packung der Moleküle in der Elementarzelle im Anhang in Abb. C.4 gezeigt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.2. Bindungslängen und Bindungswinkel sind normal. Die Synthese erfolgt wie in 9.2.2 ausgeführt, eine genauere Beschreibung ist in [23] zu finden.

In der Kristallstruktur bilden sich durch Wasserstoffbrückenbindungen vom Pyrrolstickstoff N1 zum Carbonylsauerstoff des Esters Ketten entlang [101] aus. Bei diesen Ketten alterniert die Stellung der Substituenten (siehe Abb. 2.6). Es gibt keine weiteren relevanten Kontakte im Kristall.

Das Molekül könnte als zweizähniger Ligand über N1 und O2, ggf. auch über N1 und O1 wirken.

Abbildung 2.6: MERCURY-Darstellung von eines Ausschnitts einer der durch Wasserstoffbrückenbindungen gebildeten Ketten in der Kristallstruktur von 4, dargestellt mit Blickrichtung entlang [100]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ x + 0.5, -y + 0.5, z + 0.5; ⁱⁱ x - 0.5, -y + 0.5, z - 0.5; ⁱⁱⁱ x - 1, y, z - 1. Der Abstand zwischen N1 und O2ⁱ beträgt 2.809(2) Å.

2.2.1.4 (3,4-Dimethyl-pyrrol-2-yl) O-methyl-thiocarbonsäureester

Abbildung 2.7: ORTEP-Darstellung von **2**. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: S1-C7 1.6498(16), O1-C7 1.3399(19), O1-C8 1.441(2); ausgewählte Bindungswinkel [°]: O1-C7-C1 111.53(13), O1-C7-S1 124.02(12), C1-C7-S1 124.45(12); ausgewählte Torsionswinkel [°]: N1-C1-C7-S1 -1.1(2), C8-O1-C7-C1 -175.27(14).

Das substituierte Pyrrol **2** kristallisiert in farblosen Blöcken in der monoklinen Raumgruppe $P2_1/c$. Eine ORTEP-Darstellung der Kristallstruktur ist in Abb. 2.7, eine Darstellung der Packung der Moleküle in der Elementarzelle im Anhang in Abb. C.2 gezeigt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.1. Bindungslängen und Bindungswinkel sind normal. Die Synthese erfolgt wie in 9.4.2.5 ausgeführt, eine genauere Beschreibung ist in [24] zu finden.

Abbildung 2.8: MERCURY-Darstellung von Dimeren, die durch intermolekulare Kontakte mit 0.3 Å unter der Summe der van-der-Waals-Radien der Atome gebildet werden, abgebildet entlang [100]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ 1 - x, 1 - y, 1 - z. Der Abstand zwischen N1 und S1ⁱ beträgt 3.3601(14) Å.

In der Kristallstruktur werden durch intermolekulare Kontakte des Wasserstoffatoms des Pyrrolstickstoffatoms zu einem Schwefelatom eines benachbarten Moleküls Dimere gebildet, die nach Graphensatzanalyse mit einem $R_2^2(10)$ Deskriptor beschrieben werden können. Der Abstand des Kontakts ist um etwa 0.3 Å unter der Summe der van-der-Waals-Radien der beteiligten Atome. Eines dieser Dimere ist in Abb. 2.8 dargestellt.

Die Verbindung könnte über N1 und S1 oder, weniger wahrscheinlich über N1 und O1, als zweizähniger Ligand an ein Metall binden.

2.2.2 Kohlenstoffverbrückte Dipyrrole

Eine Auswahl an kohlenstoffverbrückten 2,2'-Dipyrrolen wurde dargestellt, von denen nur einige vorher schon strukturell untersucht worden waren. Wieder liegt der Fokus der Röntgenstrukturuntersuchungen auf der Identifizierung möglicher Metallbindungsstellen der Moleküle.

2.2.2.1 Di(pyrro-2-yl)methan

Abbildung 2.9: ORTEP-Darstellung von 6. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: C6-C5 1.492(3), C1-C5 1.497(3); ausgewählte Bindungswinkel [°]: N2-C6-C5 121.7(2), N1-C1-C5 120.4(2), C6-C5-C1 115.0(2); ausgewählte Torsionswinkel [°]: N2-C6-C5-C1 -64.8(3).

Di(2-pyrro)methan wurde nach 9.4.2.3 dargestellt und durch Sublimation gereinigt. Im Gegensatz zu Beschreibungen in der Literatur, kristallisiert es in farblosen Nadeln in der monoklinen Raumgruppe P2₁. Eine ORTEP-Darstellung der Kristallstruktur ist in Abb. 2.9, eine Darstellung der Packung der Moleküle in der Elementarzelle im Anhang in Abb. C.5 gezeigt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.3. Bindungslängen und Bindungswinkel sind normal.

In der Kristallstruktur sind keine klassischen Wasserstoffbrückenbindungen ausgebildet. Allerdings gibt es einen Kontakt mit 0.2 Å unter der Summe der van-der-Waals-Radien der beteiligten Atome zwischen dem Wasserstoffatom des Pyrrolstickstoffatoms mit einem benachbarten Pyrrolring (einer dieser Kontakte ist in Abb. 2.10 gezeigt). Entgegen den Erwartungen zeigt die N-H-Gruppe nicht auf das Stickstoffatom des benachbarten Pyrrolrings, sondern zur entgegengesetzten C-C-Bindung. Dies ist konsistent mit Rechnungen an Pyrrolringen, die zeigen, dass dieser Teil des Pyrrolrings eine negative Partialladung aufweist.

Interessanterweise gibt es zwei verschiedene Bindungsmodi des N- $H \cdots \pi$ -Kontakts. In einem der Kontakte zeigt die N-H Gruppe auf die Kohlen-

Abbildung 2.10: MERCURY-Darstellung der zwei N-H··· Ring Kontakte von **6** mit 0.2Å unter dem van-der-Waals-Radius der beteiligten Atome. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ 1 - *x*, -0.5 + *y*, 2 - *z*; ⁱⁱ 1 - *x*, -0.5 + *y*, 1 - *z*. Abstände: N1ⁱ-C2: 3.3052, N1ⁱ-C3: 3.4929, N1ⁱ-C1: 3.4992, N2ⁱⁱ-C8: 3.2838, N2ⁱⁱ-C9: 3.4823, N2ⁱⁱ-C7: 3.5033.

stoffatome in 2-, 3- und 4-Position, in den anderen auf die Kohlenstoffatome in 3-, 4- und 5-Position.

Diese N-H··· π -Kontakte führen zur Bildung von Schichten senkrecht zu [100] (siehe Abb. 2.11).

Die beiden Stickstoffatome der Pyrrolringe sollten in der Lage sein, an ein Zentralmetall zu koordinieren. Das Molekül sollte also als zweizähniger Ligand eingesetzt werden können.

Abbildung 2.11: MERCURY-Darstellung einer der durch N-H··· π -Kontakte gebildeten Schichten in der Kristallstruktur von 6, dargestellt entlang [100]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

2.2.2.2 Di(pyrro-2-yl)keton

Abbildung 2.12: ORTEP-Darstellung von 8. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: C1-C9 1.445(3), O1-C9 1.261(3), C5 C9 1.441(3); ausgewählte Bindungswinkel [°]: O1-C9-C5 119.3(2), O1-C9-C1 118.7(2), C5-C9-C1 122.0(3); ausgewählte Torsionswinkel [°]: N1-C1-C9-C5 175.8(2).

Eine Kristallstruktur von Di(pyrro-2-yl)keton ist bereits in der orthorhombischen Raumgruppe P2₁2₁2₁ literaturbekannt [25]. Während den Untersuchungen an **8** als Komplexligand wurde ein neues Polymorph gefunden, das in gelben Plättchen in der orthorhombischen Raumgruppe I*bca* auskristallisiert. Eine ORTEP-Darstellung dieser Kristallstruktur von **8** ist in Abb. 2.9, eine Darstellung der Packung der Moleküle in der Elementarzelle im Anhang in Abb. C.5 gezeigt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.3. Bindungsabstände und -winkel sind im typischen Bereich für organische Molekülstrukturen.

In der in [25] beschriebenen Kristallstruktur von 8 bilden die Moleküle durch N-H···O Wasserstoffbrückenbindungen gebildete Ketten entlang [100]. Dabei bildet nur eine der beiden N-H-Gruppen des Moleküls diese Wasserstoffbrückenbindungen aus, während die zweite N-H-Gruppe einen π -Kontakt mit einem benachbarten Pyrrolring ausbildet, wodurch die Ketten zu einem dreidimensionalen Netzwerk im Kristall verbrückt werden.

Im Gegensatz zu dieser bereits bekannten Struktur bildet das hier gefundene Polymorph N-H···O wasserstoffverbrückte dimere Einheiten von 8. Das Sauerstoffatom ist allerdings Akzeptor einer weiteren Wasserstoffbrückenbindung einer anderen N-H-Gruppe, wodurch mit klassischen Wasserstoffbrückenbindungen aufgebaute Ketten entlang [010] ausgebildet werden (siehe Abb. 2.13).

Abbildung 2.13: MERCURY-Darstelluing eines Ausschnitts eines der durch N-H···O Wasserstoffbrückenbindungen gebildeten Kette in der Kristallstruktur von 8, dargestellt mit Blickrichtung entlang [010]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

Die wasserstoffverbrückten Ketten sind mit den benachbarten Ketten durch π - π -Wechselwirkungen verbrückt. Zwar ist der Abstand der Zentroide mit etwa 3.983 Å relativ lang, aber der Ebenenabstand zweier benachbarter Pyrrolringe beträgt 3.564 Å und ist somit im Bereich von π - π -Wechselwirkung.

Während der Untersuchungen zur Komplexbildungsneigung von **8** wurde die Bildung eines Mischkristalls von **8** mit Tetraphenylphosphoniumchlorid beobachtet. Der Mischkristall **9** bildet gelbe Plättchen und kristallisiert in der triklinen Raumgruppe PĪ. Eine ORTEP-Darstellung ist in Abb. 2.14 gezeigt, eine Darstellung der Packung der Moleküle in der Elementarzelle im Anhang in Abb. C.7. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.4.

Die Bildung des Mischkristalls ist auf die Möglichkeit zurückzuführen, dass hier mehr Wasserstoffbrückenbindungen ausgebildet werden können, als es in den Kristallen der Reinstoffe möglich wäre. In einem Kristall, der nur aus **8** besteht gibt es für zwei Pyrrolgruppen, die als Wasserstoffbrückenbindungsdonoren fungieren, nur eine Carbonylgruppe als Akzeptor. In einem Kristall, der nur aus Tetraphenylphosphoniumchlorid besteht, gibt es keinen Donor für das im Kristall vorhandene Chlorid als Wasserstoffbrückenbindungsakzeptor. Im Mischkristall ist zusätzlich Wasser als Donor vorhanden, wodurch sich die Anzahl von Wasserstoffbrückenbindungsdonoren und -akzeptoren angleicht.

Auch bei dieser Kristallstruktur sind Dimere von **8** eines der Baumotive. Sie sind über ein anderes, sehr oft zu findendes Baumotiv in Kristallstrukturen, nämlich zwei von zwei Wassermolekülen verbrückte Chloridanionen, verbrückt. Vier der **8**-Dimere und vier der $Cl_2(H_2O)_2$ -Baueinheiten bildenen eine Struktur, die in der Aufsicht wie eine Masche in einem Maschendrahtzaun aussieht. In den Maschen liegen die Tetraphenylphosphonium-Gegenionen (siehe Abb. 2.15).

In jeder Masche sind dabei nur zwei der vier $(Cl)_2(H_2O)_2$ -Baueinheiten der Länge nach eingebaut, während die anderen beiden nur mit einem Chloridanion eine Ecke überbrücken. Alle vier $(Cl)_2(H_2O)_2$ -Baueinheiten verbrücken allerdings zur nächsten Masche, während die 8-Dimere nur innerhalb einer Masche verbrückend wirken.

Abbildung 2.14: ORTEP-Darstellung der asymetrischen Einheit im Mischkristall von **8** und (C₆H₅)PCl. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: C34-C35 1.449(3), O31-C35 1.244(2), C35-C36 1.449(3); ausgewählte Bindungswinkel [°]: O31-C35-C36 119.21(19), O31-C35-C34 120.13(19), C34-C35-C36 120.61(17); ausgewählte Torsionswinkel [°]: N31-C34-C35-C36 -174.11(17).

Abbildung 2.15: MERCURY-Darstellung einer aus vier Dimeren Baueinheiten von 8 und vier Baueinheiten aus zwei über zwei Wassermoleküle verbrückte Chloridoanionen aufgebaute Masche, dargestellt entlang [100]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Zwei der (Cl)₂(H₂O)₂-Einheiten verbrücken die 8-Dimere der länge nach, zwei nur mit einem Chloridoanion. Alle vier (Cl)₂(H₂O)₂-Baueinheiten verbrücken zur angrenzenden Masche.

2.3 Synthese und röntgenkristallographische Untersuchungen an Pyrazolliganden

Schema 2: Übersicht über die synthetisierten Pyrazolliganden.

Die meisten pyrazolbasierten Liganden erwiesen sich im Laufe der Arbeit als einfach synthetisierbar und, vor allem die kohlenstoffverbrückten Liganden, als relativ stabil unter den zur Komplexierung von Metallen nötigen Bedingungen. Die Synthesen waren häufig gut skalierbar und meist konnte auch ein sauberes Produkt in guten Ausbeuten isoliert werden. Aus diesem Grund wurden derartige Liganden zur Untersuchung neuer Reaktionswege gewählt. Dabei wurden nicht nur Reaktionswege zur Komplexierung von Metallen ausgearbeitet, sondern auch das Komplexierungsverhalten verschiedener Metalle mit Stickstoffheterocyclen insgesamt untersucht, um dabei Erfahrung für weitere Untersuchungen mit Liganden, die in der Synthese oder der Handhabung deutlich schwieriger sind, zu sammeln.

Eine Übersicht über die dargestellten pyrazolhaltigen Liganden ist in Tabelle 2 gezeigt. Verbindung **12** erwies sich in wässriger Umgebung als über mehrere Tage stabil, die Komplexierung eines Metalls führte allerdings, vermutlich aufgrund der Lewisazidität des Metalls, meist sehr rasch zur Zersetzung von **12**, wodurch zwar neue Pyrazolkomplexe, allerdings keine Komplexe des Liganden, isoliert werden konnten. Von den beiden Liganden **10** und **11** wurden im laufe der Komplexierungsuntersuchungen neue Polymorphe bzw. Salze charakterisiert, die im folgenden genauer beschrieben werden.

2.3.1 Kohlenstoffverbrückte Pyrazole

2.3.1.1 Di(pyrazol-1-yl)methan

Abbildung 2.16: ORTEP-Darstellung von **10**. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ -x, y, -z + 0.5. Ausgewählte Bindungslängen [Å]: N1-C3 1.3369(18), N1-N2 1.3539(15), N1-C4 1.4461(15); ausgewählte Bindungswinkel [°]: N1-C4-N1ⁱ 111.79(16). ausgewählte Torsionswinkel [°]: N2-N1-C4-N1ⁱ -83.16(11).

Di(pyrazol-1-yl)methan wurde bereits röntgenkristallographisch untersucht [26, 27]. Während den Untersuchungen zur Komplexbildungsneigung dieses Liganden mit verschiedenen Metallen wurde ein neues Polymorph von **10** entdeckt. In diesem Polymorph kristallisiert **10** in Form farbloser Plättchen in der monoklinen Raumgruppe C2/*c* im Gegensatz zum bereits literaturbekannten Polymorph, in dem die Verbindung in der orthorhombischen Raumgruppe P2₁2₁2₁ vorliegt.

Eine ORTEP-Darstellung der Kristallstruktur von **10** ist in Abb. 2.16, eine Darstellung der Packung der Moleküle in der Elementarzelle ist im Anhang in Abb. C.8 gezeigt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.4. Abstände und Bindungswinkel sind normal.

Im Gegensatz zum literaturbekannten Polymorph wird das hier vorgestellte Polymorph durch Umkristallisieren aus Wasser erhalten. Die wichtig-

Abbildung 2.17: MERCURY-Darstellung eines Ausschnitts einer durch C-H···N Kontakte gebildeten Kette in der Kristallstruktur von 10 mit Blickrichtung entlang [010]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

sten strukturellen Baueinheiten im Kristall sind C-H···N Kontakte mit 0.2 Å unter der Summe der van-der-Waals-Radien der beteiligten Atome. Während im literaturbekannten Polymorph nicht nur C-H···N, sondern vor allem C-H··· π Kontakte wichtig sind, sind in diesem Polymorph nur diese C-H···N Kontakte relevant. Diese Wechselwirkungen führen zu Ketten entlang [001] (siehe Abb. 2.17).

Wie zu erwarten ist das Wasserstoffatom in 5-Position des Pyrazolrings das Azideste im Molekül und bildet deswegen Kontakte zur basischsten Stelle im Molekül, dem Stickstoffatom in 2-Position des Pyrazolrings aus. Das Molekül sollte also als zweizähniger Ligand über diese beiden Stickstoffatome an ein Metall binden können.

2.3.1.2 (2-H-Pyrazol-1-yl)-(pyrazol-1-yl)methanium chlorid

Die Basizität des Stickstoffatoms in 2-Position des Pyrazolrings in **10** zeigt sich auch in einem Hydrochlorid (**13**) das bei den Komplexbildungsuntersuchungen von **10** aus saurer wässriger, chloridhaltiger Lösung dargestellt wurde. Das Hydrochlorid **13** kristallisiert in Form blauer Plättchen in der monoklinen Raumgruppe $P2_1/n$. Eine ORTEP-Darstellung der Kristallstruktur des Moleküls ist in Abb. 2.18, eine Darstellung der Packung der Moleküle in der Elementarzelle im Anhang in Abb. C.11 gezeigt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.6. Bindungslängen und -winkel sind im typischen Bereich für Kristallstrukturen organischer Verbindungen, unter-

Abbildung 2.18: ORTEP-Darstellung von 13. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Bindungslängen und Bindungswinkelsind im für organische Kristallstrukturen typischen Bereich, unterscheiden sich allerdings leicht zwischen dem protonierten und dem nichtprotonierten Pyrazolring des Moleküls. Ausgewählte Bindungslängen [Å]: N1-N2 1.345(4), N2-C3 1.344(4), N2-C7 1.443(4), N3-C6 1.331(4), N3-N4 1.351(4), N3-C7 1.475(4); ausgewählte Bindungswinkel [°]: C3-N2-N1 112.9(3), C6-N3-N4 108.8(3), N2-C7-N3 111.2(3). ausgewählte Torsionswinkel [°]: N1-N2-C7-N3 85.4(4).

scheiden sich allerdings zwischen den beiden Pyrazolringen im Molekül, da einer von beiden protoniert ist.

Die einzige relevante Wechselwirkung in der Kristallstruktur ist die Wasserstoffbrückenbindung des protonierten Stickstoffatoms eines der Pyrazolringe zum Chloridanion. Außer dieser Wasserstoffbrückenbindung gibt es nur noch einige sehr schwache C-H···Cl Kontakte (etwa 0.1 Å unter dem van-der-Waals-Radien der beteiligten Atome). Der wichtigste Faktor für den Zusammenhalt eines Kristalls von **13** scheinen ionische Wechselwirkungen zu sein.

2.3.1.3 Tri(pyrazol-1-yl)methan

Tri(pyrazol-1-yl)methan wurde bereits röntgenkristallographisch untersucht [28]. Das literaturbekannte Polymorph kristallisiert in der orthorhombischen Raumgruppe $P2_12_12_1$. Während den Untersuchungen zur Komplexbildungsneigung von Tri(pyrazol-1-yl)methan wurden zwei neue Polymorphe gefun-

den. Obwohl das literaturbekannte Polymorph aus organischen Lösemitteln kristallisiert wurde und bei diesen Bedingungen das häufigste, vielleicht einzige Polymorph darstellt, kristallisieren alle drei Polymorphe aus Wasser aus. In Wasser ist **11b** das häufigste Polymorph (etwa 60%), seltener ist das literaturbekanne Polymorph (etwa 30%) und am seltensten das Polymorph **11c**(etwa 10%). Eine genauere Beschreibung der Wechselwirkungen im Polymorph **11b** ist in [29] zu finden.

Abbildung 2.19: ORTEP-Darstellung von **11b**. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: N1-C10 1.4486(17), N3-C10 1.4397(18), N5-C10 1.4475(18); Ausgewählte Bindungswinkel [°]: N1-C10-H10 107.5, N3-C10-H10 107.5, N5-C10-H10 107.5; ausgewählte Torsionswinkel [°]: N4-N3-C10-N5 66.40(16), N4-N3-C10-N1 –58.53(17).

Eine ORTEP-Darstellung der Kristallstruktur von **11b** ist in Abb. 2.19, eine Darstellung der Packung der Moleküle in der Elementarzelle im Anhang in Abb. C.9 gezeigt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.5. Bindungswinkel und Bindungslängen sind im für organische Kristallstrukturen typischen Bereich.

Die wichtichsten Bauelemente in der Kristallstruktur des in der Literatur beschriebenen Polymorphs sind durch $C-H\cdots N$ Kontakte gebildete Dimere mit einem Abstand von etwa 0.3 Å unter der Summe der van-der-WaalsRadien der Atome. Diese Dimere werden mit weiteren $C-H \cdots N$ Kontakten in einem Abstand von etwa 0.2 Å unter der Summe der van-der-Waals-Radien zu Trimeren erweitert.

Abbildung 2.20: MERCURY-Darstellung eines Ausschnitts einer durch C-H····N Kontakte gebildeten Kette in der Kristallstruktur von 11b, dargestellt mit Blickrichtung entlang [100]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

Diese Dimere finden sich auch in der Kristallstruktur des Polymorphs **11b**. Allerdings sind sie hier über andere C-H···N Kontakte zu Ketten entlang [100] erweitert (siehe Abb. 2.20) und beide Kontakte sind nur etwa 0.2 Å unter der Summe der van-der-Waals-Radien der beteiligten Atome.

Das Polymorph **11c** kristallisiert in farblosen Blöcken in der triklinen Raumgruppe PĪ. Eine ORTEP Darstellung der Kristallstruktur ist in Abb. 2.21, eine Darstellung der Packung der Moleküle in der Elementarzelle im Anhang in Abb. C.10 gezeigt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.5. Bindungslängen und -winkel sind im typischen Bereich für Kristallstrukturen organischer Moleküle.

Auch im Polymorph **11c** sind die Dimere als Baueinheiten wieder vertreten. Hier ist der Abstand der C-H···N Kontakte in den Dimeren mit etwa 0.4 Å unter der Summe der van-der-Waals-Radien der beteiligten Atome deutlich kürzer als in den anderen beiden Polymorphen. In diesem Polymorph sind die Dimere mit weiteren C-H···N Kontakten (etwa 0.2 Å unter der Summe der van-der-Waals-Radien) zu Tetrameren erweitert (siehe Abb. 2.22).

Um diese im Vergleich zu den anderen Polymorphen veränderte Anordnung einzunehmen, hat sich die Stellung der Pyrazolringe gegeinander

Abbildung 2.21: ORTEP-Darstellung von **11c**. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: N1-C10 1.445(2), N3-C10 1.446(2), N5-C10 1.443(2); Ausgewählte Bindungswinkel [°]: N1-C10-H10 106.5, N3-C10-H10 106.5, N5-C10-H10 106.5; ausgewählte Torsionswinkel [°]: N4-N3-C10-N1 47.54(19), N4-N3-C10-N5 –80.18(18).

stark geändert. Das kann unter anderem an verschiedenen Diederwinkeln, wie zum Beispiel dem Winkel N4-N3-C10-N5 gesehen werden, der sich von -58.53(17) in **11b** zu -80.18(18) in **11c** ändert, obwohl sich die Bindungsabstände und Bindungswinkel in den Molekülen der beiden Polymorphe kaum ändern. Zugleich erhöht sich die Dichte vom literaturbekannten Polymorph von 1.347 g cm⁻¹ auf 1.352 g cm⁻¹ in **11b** und nochmals auf 1.361 g cm⁻¹ in **11c**.

Abbildung 2.22: MERCURY-Darstellung eines Tetramers, das über C-H···N Kontakte in der Kristallstruktur von **11c** gebildet wird. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ 1 - x, -y, 1 - z; ⁱⁱ -x, 1 - y, 1 - z; ⁱⁱⁱ -1 + x, 1 + y, z. Kontakte, die etwa 0.4 Å unter der Summe der vander-Waals-Radien sind, werden grün, Kontakte, die etwa 0.2 Å unter der Summe der van-der-Waals-Radien sind, rot dargestellt.

2.4 Synthese und röntgenkristallographische Untersuchungen an Imidazolliganden

Schema 3: Übersicht über die synthetisierten und gekauften Imidazolliganden.

Synthesen von Imidazolliganden konnten nur mit geringen Ausbeuten durchgeführt werden. Die kommerziell erhältlichen Diimidazolderivate erwiesen sich als sehr instabil unter den Bedingungen der Komplexierungsreaktionen.

Eine Übersicht über die verwendeten Moleküle ist in Tabelle 3 gezeigt.

Verbindung **14** wurde gekauft und ohne weitere Aufreinigung eingesetzt. Verbindung **15** wurde neu dargestellt und ist im folgenden genauer beschrieben.

2.4.1 Schwefelverbrückte Imidazole

2.4.1.1 Di(1-methyl-imidazol-2-yl)sulfan

Abbildung 2.23: ORTEP-Darstellung von **15**. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmtrieauszeichnung: ⁱ -x, -y, -z + 0.5. Ausgewählte Bindungslängen [Å]: S1-C1 1.7563(14), N1-C4 1.456(2); Ausgewählte Bindungswinkel [°]: C1-S1-C1ⁱ 101.80(9), C1-N1-C4 127.76(13); ausgewählte Torsionswinkel [°]: C1ⁱ-S1-C1-N2 -87.29(12), C4-N1-C3-C2 179.83(17).

Di(1-methyl-imidazol-2-yl)sulfan (**15**) kristallisiert in farblosen Blöcken in der tetragonalen Raumgruppe P4₁2₁2. Eine ORTEP-Darstellung der Kristallstruktur von **15** ist in Abb. 2.19, eine Darstellung der Packung der Moleküle in der Elementarzelle im Anhang in Abb. C.12 gezeigt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.6. Bindungslängen und Winkel sind normal.

Da im Molekül kein Wasserstoffbrückenbindungsdonor vorhanden ist, gibt es keine klassischen Wasserstoffbrückenbindungen in der Kristallstruktur. Allerdings führen C-H···N Kontakte mit etwa 0.2 Å unter dem van-der-Waals Abständen zur Ausbildung eines dreidimensionalen Netzwerks in der Kristallstruktur. Zwei dieser Kontakte sind in Abb. 2.24 dargestellt. Diese Kontakte werden von den Kohlenstoffatomen in 5-Position der Pyrazolringe zu

Abbildung 2.24: MERCURY-Darstellung zweier C-H···N Kontakte in der Kristallstruktur von **15**. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ -y, -x, 0.5 - z; ⁱⁱ -0.5 + x, -0.5 - y, 0.75 - z; ⁱⁱⁱ 0.5 - x, -0.5 + y, 0.25 - z. Die dargestellten Kontakte sind 0.2 Å unter der Summe der vander-Waals Abständen.

den Stickstoffatomen in 3-Position ausgebildet. Das Wasserstoffatom des Kohlenstoffs in 4-Position ist nicht an den Kontakten beteiligt.

2.5 Synthese von Triazolliganden

Schema 4: Übersicht über die synthetisierten Triazolliganden.

Die Synthese von triazolhaltigen Liganden lieferte aufgrund der beiden möglichen Positionen des Protons am Stickstoffatom häufig Isomerengemische. Wo dies vermieden werden konnte, waren die Ausbeuten leider sehr gering. Auch erwiesen sich die dargestellten triazolhaltigen Liganden als relativ instabil bei den zur Komplexierung von Metallen verwendeten Bedingungen, was nach der Zersetzung der Liganden zur Isolierung bisher nicht charakterisierter Triazolkomplexe führte.

Die in Schema 4 gezeigten Verbindungen konnten dargestellt und NMRspektroskopisch nachgewiesen werden. Bei **16** und **17** wurden nicht nur das dargestellte 1,1- beziehungsweise 1,1,1-Bindungsisomer, sondern auch die entsprechenden Isomere mit Beteiligung des Stickstoffatoms in 4-Position NMR-spektroskopisch nachgewiesen.

Von den triazolhaltigen Ligandmolekülen wurden im Laufe der Untersuchungen keine neuen Kristallstrukturen erhalten.

2.6 Synthese und röntgenkristallographische Untersuchungen an Tetrazolliganden

Schema 5: Übersicht über die synthetisierten Tetrazolliganden.

Die Darstellung tetrazolhaltiger Liganden gelang üblicherweise mit hohen Ausbeuten und ergab meist Produkte mit ausreichender Reinheit. Diese Liganden erwiesen sich meist als stabil unter den zur Komplexierung von Metallen verwendeten Bedingungen, aber haben häufig eine starke Tendenz dazu, Koordinationspolymere zu bilden, die nicht kristallin anfallen. Um die Polymerisierung zu unterbinden und im Idealfall kristalline Substanzen zu erhalten wurden verschiedene Alkylierungsversuche durchgeführt, um Koordinationsstellen vor der Komplexierung zu blockieren.

Eine Übersicht über die synthetisierten Liganden ist in Tab. 5 gezeigt. Die Verbindungen **19,20** und **21** sind bereits literaturbekannt, allerdings wurden neue, zum Teil die ersten Kristallstrukturen der Moleküle erhalten. Die Synthesen der Verbindungen **22** und **24** wurden von Dr. Jörg Stiersdorfer aus dem Arbeitskreis von Prof. Klapötke freundlicherweise zur Verfügung gestellt [30]. Darauf aufbauend wurde eine Reihe weiterer Derivate dargestellt. Die Kristallstrukturen dieser neuen Verbindungen sind ebenfalls im folgenden beschrieben.

2.6.1 Monomere Tetrazole

2.6.1.1 5-Benzyl-tetrazol

Abbildung 2.25: ORTEP-Darstellung von **19**. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: C1-C7 1.5092(19), C7-C8 1.4865(17); ausgewählte Bindungswinkel [°]: C8-C7-C1 112.19(11); ausgewählte Torsionswinkel [°]: C1-C7-C8-N1 109.83(14). 5-Benzyl-tetrazol kristallisiert in farblosen Blöcken in der monoklinen Raumgruppe $P2_1/c$. Eine ORTEP-Darstellung der Kristallstruktur ist in 2.25, eine Darstellung der Packung der Moleküle in der Elementarzelle in C.13 gezeigt. Die Synthese der Verbindung erfolgt wie in 9.4.5.1 beschrieben. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.7. Bindungsabstände und Bindungswinkel sind im für Kristallstrukturen organischer Moleküle typischen Bereich.

Abbildung 2.26: MERCURY-Darstellung der durch Verknüpfung der wasserstoffverbrückten Ketten durch C-H···N Kontakte aufgebauten Schichten in der Kristallstruktur von **19**, dargestellt mit Blickrichtung entlang [100]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ x, -y + 1/2, z + 1/2. Der Abstand zwischen dem Wasserstoffbrückenbindungsdonor N1 und dem -akzeptor N4ⁱ beträgt 2.8394(15) Å, die Wasserstoffbrückenbindungen sind in der Abbildung grün dargestellt. Die blau dargestellten Kontakte sind 0.2 Å unter der Summe der van-der-Waals Abständen.

In der Kristallstruktur bildet das Wasserstoffatom am Stickstoff in 1-Position des Tetrazolrings Wasserstoffbrückenbindungen zum Stickstoff in 4-Position eines angrenzenden Moleküls aus. Dadurch entstehen Ketten entlang [001]. Diese Ketten werden über C-H···N Kontakte der CH₂ Gruppe mit dem Stickstoff eines benachbarten Moleküls in 3-Position mit einem Abstand von etwa 0.2 Å unter der Summe der van-der-Waalsradien der beteiligten Atome zu Schichten senkrecht zu [100] vernetzt. Eine Darstellung eines Ausschnitts aus einer solchen Schicht ist in Abb. 2.26 gezeigt.

2.6.1.2 1-Methyl-5-benzyl-tetrazol

Abbildung 2.27: ORTEP-Darstellung von **20**. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: N1-C9 1.453(3), C1-C2 1.489(3), C2-C3 1.508(3); ausgewählte Bindungswinkel [°]: C1-N1-C9 130.62(18), C1-C2-C3 114.82(17); ausgewählte Torsionswinkel [°]: N1-C1-C2-C3 -170.8(2).

1-Methyl-5-benzyl-tetrazol kristallisiert in farblosen Plättchen in der monoklinen Raumgruppe $P2_1/c$. Eine ORTEP-Darstellung der Kristallstruktur ist in 2.27, eine Darstellung der Packung der Moleküle in der Elementarzelle in C.14 gezeigt. Die Synthese der Verbindung erfolgt wie in 9.4.5.2 beschrieben. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.7. Bindungsabstände und Bindungswinkel sind im für Kristallstrukturen organischer Moleküle typischen Bereich.

In diesem Molekül ist die 1-Position des Tetrazolrings durch eine Methylgruppe blockiert und die 5-Position trägt eine sterisch anspruchsvolle Benzylgruppe. Diese beiden Substituenten sollten die Polymerisationsneigung bei der Umsetzung mit Metallen herabsetzen.

Abbildung 2.28: ORTEP-Darstellung von **21**. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: C1-C2 1.494(2), C2-C3 1.493(2); ausgewählte Bindungswinkel [°]: C3-C2-C1 111.62(14); ausgewählte Torsionswinkel [°]: N1-C1-C2-C3 116.42(18), C1-C2-C3-N5 –127.80(18).

2.6.2 Kohlenstoffverbrückte Tetrazole

2.6.2.1 Di(tetrazol-5-yl)methan

Ein Polymorph von Di(tetrazol-5-yl)methan ist bereits literaturbekannt [31] und kristallisiert in der orthorhombischen Raumgruppe $Pca2_1$. Während der Komplexbildungsuntersuchungen von Di(tetrazol-5-yl)methan (**21**) wurde ein neues Polymorph gefunden. **21** wurde wie in 9.4.5.9 beschrieben dargestellt und kristallisiert in dem hier beschriebenen Polymorph in farblosen Blöcken in der monoklinen Raumgruppe C2/*c*. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.8. Bindungslängen und Bindungswinkel sind in dem für Kristallstrukturen organischer Verbindungen typischen Bereich.

Im Gegensatz zum bereits literaturbekannten Polymorph, das wasserstoffverbrückte Schichten senkrecht zu [001] hat, bildet das hier beschriebene Polymorph wasserstoffverbrückte Ketten entlang [010] (siehe Abb. 2.29). Es gibt keine weiteren relevanten Kontakte in der Kristallstruktur.

Dieses Molekül kann als zweizähniger Ligand eingesetzt werden. Aufgrund der ungeschützten Tetrazole dürfte der Ligand bei der Umsetzung mit Metallen auch zur Bildung von Koordinationspolymeren neigen.

Abbildung 2.29: MERCURY-Darstellung eines Ausschnitts einer durch Wasserstoffbrückenbindungen gebildeten Kette in der Kristallstruktur von **21**, dargestellt mit Blickrichtung entlang [100]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Wasserstoffbrückenbindungsabstände (Donor - Akzeptor): N1-N8 2.787(2) und N5-N3 2.864(2).

2.6.3 Stickstoffverbrückte Tetrazole

2.6.3.1 (2-Isopropyl-tetrazol-5-yl)-(2-H-tetrazol-5-yl)amin

Abbildung 2.30: ORTEP-Darstellung von **21**. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Aus Übersichtlichkeitsgründen ist nur eines der beiden Moleküle in der assymetrischen Einheit abgebildet. Ausgewählte Bindungslängen [Å]:N5-C1 1.357(3), N5-C2 1.372(3), N8-C3 1.479(3); ausgewählte Bindungswinkel [°]: C1-N5-C2 123.60(19), N9-N8-C3 123.53(19), N8-C3-C4 109.46(18), N8-C3-C5 109.92(19); ausgewählte Torsionswinkel [°]: C1-N5-C2-N9 –178.5(2), N9-N8-C3-C4 50.0(3), N9-N8-C3-C5 –73.8(3).

Das einfach substituierte Bistetrazolylamin **25** kristallisiert in farblosen Plättchen in der monoklinen Raumgruppe $P2_1/c$. Eine ORTEP-Darstellung der Kristallstruktur von **25** ist in Abb. 2.30, eine Darstellung der Packung der Moleküle in der Elementarzelle im Anhang in Abb. C.16 gezeigt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.8. Bindungsabstände und -winkel sind normal.

Abbildung 2.31: MERCURY-Darstellung eines Ausschnitts einer wasserstoffverbrückten Kette in der Kristallstruktur von **25**. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnungen: ⁱ 2 - x, -y, 2 - z; ⁱⁱ 1 - x, -y, -z; ⁱⁱⁱ x, y, -1 + z; ^{iv} 1 - x, -y,-1 - z. Wasserstoffbrückenbindungen sind grün, Kontakte mit etwa 0.2 Å unter der Summe der van-der-Waals-Radien der beteiligten Atome rot dargestellt.

In der Kristallstruktur bilden sich wasserstoffverbrückte Ketten entlang [101] aus (siehe Abb. 2.31). Interessanterweise existiert zu jedem zweiten mit einer Isopropylgruppe substituierten Tetrazol keine Wasserstoffbrückenbindung, sondern nur ein Kontakt mit einem Stickstoffatom eines benachbarten Moleküls mit etwa 0.2 Å unter der Summe der van-der-Waals-Radien der beiden Stickstoffatome. Diese Assymmetrie des Wasserstoffbrückenbindungsnetzwerks ist somit auf sterische Hinderung durch die Isopropylgruppe zurückzuführen.

In diesem Molekül trägt einer der beiden Tetrazolringe einen Isopropylsubstituenten um die Bildung von Koordinationspolymeren bei der Umsetzung des Liganden mit Metallen zu erschweren. Der zweizähnige Ligand dürfte trotzdem eingeschränkt verbrückend wirken.

2.6.3.2 Di(2-benzyl-tetrazol-5-yl)amin

Abbildung 2.32: ORTEP-Darstellung von **26**. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: N5-C1 1.3716(19), N5-C2 1.3625(19), N2-C17 1.4690(19), N7-C27 1.4563(19); ausgewählte Bindungswinkel [°]: C2-N5-C1 125.50(13), N2-C17-C11 110.77(13), N7-C27-C21 110.95(13); ausgewählte Torsionswinkel [°]: C2-N5-C1-N1 7.2(2), N1-N2-C17-C11 -51.56(19), N6-N7-C27-C21 -61.31(18).

Das substituierte Bistetrazolylamin **26** kristallisiert in farblosen Plättchen in der monoklinen Raumgruppe $P2_1/c$. Eine ORTEP-Darstellung der Kristallstruktur von **26** ist in Abb. 2.32, eine Darstellung der Packung der Moleküle in der Elementarzelle im Anhang in Abb. C.17 gezeigt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.9. Bindungsabstände und -winkel sind in dem für Kristallstrukturen organischer Moleküle typischen Bereich.

In der Kristallstruktur sind jeweils zwei Moleküle von **26** über Wasserstoffbrückenbindungen zu einem Dimer verknüpft (siehe Abb. 2.33). In dieser Kristallstruktur gibt es keine anderen relevanten Kontakte.

Die großen organischen Reste in 2-Position der beiden Tetrazolringe sollten die Stickstoffatome einer Seite des Moleküls abschirmen und damit die Bildung von Koordinationspolymeren bei der Umsetzung mit Metallen er-

Abbildung 2.33: MERCURY-Darstellung eines wasserstoffverbrückten Dimers in der Kristallstruktur von **26**. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ 1 - x, 1 - y, -z.

schweren. Einen Hinweis auf die Richtigkeit dieser Annahme geben bereits die Wasserstoffbrückenbindungen in der Kristallstruktur, die nicht mehr als unendlich ausgedehnte Netzwerke oder Ketten, sondern als Dimere vorliegen.

2.6.3.3 (Benzyl)di(2-methyl-tetrazol-5-yl)amin

27 kristallisiert in farblosen Kristallen in der monoklinen Raumgruppe $P2_1/c$ aus. Eine ORTEP-Darstellung der Kristallstruktur von 27 ist in Abb. 2.34 gezeigt, eine Darstellung der Packung der Moleküle in der Elementarzelle ist im Anhang in Abb. C.16 dargestellt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.9. Bindungslängen und Bindungswinkel sind in dem Bereich, der für organische Molekülstrukturen zu erwarten ist.

In der Molekülstruktur sind die einzigen relevanten Wechselwirkungen π - π -Kontakte der N-H verbrückten Tetrazolringe mit einem Abstand der Zentroide zweier Tetrazolringe von etwa 3.274 Å.

Durch die sterische Abschirmung einer Seite des Moleküls sollte die Bildung von polymeren Strukturen erschwert werden, da nicht mehr alle Stick-

Abbildung 2.34: ORTEP-Darstellung von 27. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: N5-C2 1.374(3), N5-C1 1.382(3), N5-C10 1.475(3); ausgewählte Bindungswinkel [°]: C2-N5-C1 123.52(17), N1-N2-C4 121.71(19), N6-N7-C3 122.46(17); ausgewählte Torsionswinkel [°]: C2-N5-C10-C11 78.7(2).

stoffatome zur Koordination zur Verfügung stehen. Das Molekül sollte somit als zweizähniger Neutralligand einsetzbar sein.

Abbildung 2.35: MERCURY-Darstellung eines über eine π - π Wechselwirkung verbrückten Dimers von **27**. Der grün eingezeichnete Abstand zweier Zentroide beträgt 3.274 Å. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ 1 - x, 1 - y, -z.

3 Metallkomplexe

3.1 Synthese und röntgenkristallographische Untersuchungen von Komplexen mit derivatisierten Pyrrolliganden

3.1.1 Allgemeines

Die Komplexbildungsuntersuchungen von pyrrolhaltigen Verbindungen an Metallen erwiesen sich als wenig erfolgreich. Vor allem in Wasser scheinen sich keine Komplexe zu bilden oder die Verbindungen zersetzen sich. Als weiteres Problem stellt sich die Lichtempfindlichkeit der meisten Pyrrolverbindungen dar. Nach dem Wechsel des Lösemittels und mittels Phasentransferkatalyse konnte allerdings der im Folgenden beschriebe Komplex erhalten werden.

3.1.2 Di-(pyrro-2-yl)-keton als Ligand

3.1.2.1 Kupfer(II)

Eine ORTEP-Darstellung der Kristallstruktur von $((C_4H_9)_4N)[Cu(8H_{-2})(8H_{-1})]$ (28) ist in Abb. 3.1 gezeigt, eine Darstellung der Packung des Komplexes in der Elementarzelle ist im Anhang in Abb. C.19 dargestellt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.10.

Ungewöhnlich ist bei diesem Komplex die Koordination des gleichen Liganden innerhalb desselben Komplexes mit zwei verschiedenen Koordinationsmustern. Einmal bindet der Ligand als zweifach negativ geladener Ligand über die beiden Stickstoffatome der Pyrrolringe, einmal als einfach negativ

Abbildung 3.1: ORTEP-Darstellung 28. Aus Gründen der von Übersichtlichkeit wird Tetrabutylammoniumkation das nicht gezeigt und nur das Anion dargestellt. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: Cu1-N1 1.918(3), Cu1-N2 1.917(3), Cu1-N12 1.923(3), Cu1-O2 2.046(2); ausgewählte Bindungswinkel [°]: N2-Cu1-N1 92.82(12), N2-Cu1-N12 157.36(12), N1-Cu1-N12 97.98(12), N2-Cu1-O2 95.97(10), N1-Cu1-O2 156.62(10); ausgewählte Torsionswinkel [°]: O2-C14-C15-N12 -9.6(4), N2-Cu1-N1-C1 -164.8(3).

geladener Ligand mit einem der beiden Stickstoffatome und mit dem verbrückenden Carbonylsauerstoffatom.

Die verbleibende N-H-Funktion bildet in der Kristallstruktur Wasserstoffbrückenbindungen zum nichtkoordinierenden Carbonylsauerstoffatom aus, was zu über Wasserstoffbrückenbindungen vernetzten Ketten entlang [001] führt (siehe Abb. 3.2). Es gibt keine weiteren relevanten Wechselwirkungen in der Kristallstruktur.

Abbildung 3.2: MERCURY-Darstellung eines Ausschnitts einer wasserstoffverbrückten Kette in der Kristallstruktur von **28**, dargestellt mit Blickrichtung entlang [100]. Der Abstand des Donors N11 zum Akzeptor O1 entspricht 2.768(3) Å. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

3.2 Synthese und röntgenkristallographische Untersuchungen von Komplexen mit derivatisierten Pyrazolliganden

3.2.1 Allgemeines

Die Komplexbildungsuntersuchungen an pyrazolhaltigen Liganden erwiesen sich als sehr erfolgreich. Meistens konnten Komplexe aus wässriger Lösung erhalten werden, eine Zersetzung der Liganden war mit Übergangsmetallen selten, allerdings wurden diese Reaktionen mit starken Lewissäuren wie Aluminium relativ häufig beobachtet. Im folgenden sind die Kristallstrukturen der erhaltenen Komplexe dargestellt.

3.2.2 Di-(pyrazol-1-yl)methan als Ligand

3.2.2.1 Palladium(II)

Das Kation in $[Pd(10)_2]Cl_2 \cdot 2 H_2O(29)$ (siehe Abb. 3.3) ist bereits als Chlorid literaturbekannt [32, 33]. Die in der Literatur beschriebene Synthese erfolgt unter Luft- und Feuchtigkeitsausschluss . Aus diesem Grund sind in der bereits bekannten Struktur keine Wassermoleküle enthalten. Die hier vorgestellte Synthese findet dagegen sehr viel einfacher an Luft statt. Dadurch wird der

Abbildung 3.3: ORTEP-Darstellung von $[Pd(10)_2]Cl_2 \cdot 2 H_2O$ (29). Aus Gründen der Übersichtlichkeit werden die Chloridanion sowie die Wassermoleküle nicht dargestellt und nur das Kation gezeigt. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ -x + 0.5, -y + 0.5, -z. Ausgewählte Bindungslängen [Å]: Pd1-N3 2.0058(14), Pd1-N2 2.0173(14); ausgewählte Bindungswinkel [°]: N3-Pd1-N2 88.57(6), N3ⁱ-Pd1-N3 180.0, N2-Pd1-N2ⁱ 180.00(7), N4-C4-N1 109.74(13); ausgewählte Torsionswinkel [°]: N3ⁱ-Pd1-N2-N1 150.49(12), N4-C4-N1-N2 64.61(19).

Komplex in größeren Mengen zugänglich. Dies ermöglicht es, ihn als Edukt für spätere Arbeiten zu verwenden. Zugleich sind in der Kristallstruktur, aufgrund der andersartigen Reaktionsbedingungen, zwei Wassermoleküle pro Formeleinheit enthalten.

In der in dieser Arbeit beschrieben Kristallstruktur liegt das Kation neben zwei Chloridanionen und zwei Wassermolekülen pro Formeleinheit vor. **29** kristallisert in der monoklinen Raumgruppe C2/c. Eine Darstellung der Packung des Komplexes in der Elementarzelle ist im Anhang in Abb. C.20 dargestellt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.10.

In der Kristallstruktur gibt es zwischen den Wassermolekülen und den Chloridanionen klassische Wasserstoffbrückenbindungen, die zu wasserstoff-

Abbildung 3.4: MERCURY-Darstellung eines Ausschnitts des durch C-H···O und C-H···Cl Kontakte gebildeten dreidimensionalen Netzwerks in der Kristallstruktur von **29**. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ -x + 1/2, -y + 1/2, 1 - z, ⁱⁱ x + 1/2, y + 1/2, z, ⁱⁱⁱ 1 - x, y, 1/2 - z, ^{iv} x, 1 - y, 1/2 + z, ^v 1 - x, 1 - y, 1 - z. Wasserstoffbrückenbindungen (Abstände O99-Cl1: 2.386(17), O99-Clⁱⁱⁱ: 2.324(17)) sind grün, C-H···X Kontakte unter 0.4 Å der vander-Waals-Radien blau, C-H···X Kontakte unter 0.2 Å der van-der-Waals-Radien rot dargestellt.

verbrückten $Cl_2(H_2O)_2$ Baueinheiten führen. Die Methylengruppe des Liganden bildet relativ starke C-H···X Wechelswirkungen zu diesen Beueinheiten aus, was zu C-H···X Kontakten von unter 0.4 Å unter der Summe der van-der-Waals-Radien führt. Weiter stabilisiert wird die Anordnung durch zusätzliche C-H···X Kontakte aus den Pyrazolringen des Liganden, allerdings nur noch mit etwa 0.2 Å unter dem van-der-Waals-Radien der beteiligten Atome. Ein Ausschnitt aus dem dadurch entstehenden dreidimensionalen Netzwerk ist in Abb. 3.4 gezeigt, in der alle erwähnten Wechselwirkungen eingezeichnet sind.

3.2.2.2 Vanadium(IV)

Der Vanadiumkomplex $[V(10)Cl_2(O)(H_2O)] \cdot H_2O$ (30) kristallisiert in grünen Blöcken in der orthorhombischen Raumgruppe Pca2₁. Eine OR-

Abbildung 3.5: ORTEP-Darstellung von $[V(10)Cl_2(O)(H_2O)] + H_2O$ (30). Aus gründen der Übersichtlichkeit werden die Wassermoleküle nicht dargestellt und nur der Komplex gezeigt. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: V1-O1 1.586(3), V1-O4 2.226(4), V1-N4 2.123(4), V1-N1 2.130(4), V1-Cl1 2.3896(13), V1-Cl2 2.3653(12); ausgewählte Bindungswinkel [°]: O1-V1-N1 95.24(16), O1-V1-N4 94.92(17), O1-V1-O4 176.27(16), O1-V1-Cl1 98.13(13), O1-V1-Cl2 98.39(13), N3-C4-N2 110.2(4); ausgewählte Torsionswinkel [°]: V1-N1-N2-C4 3.5(6).

TEP-Darstellung des Komplexes ist in Abb. 3.5 gezeigt, wobei aus Übersichtlichkeitsgründen auf die Darstellung des in der Kristallstruktur enthaltenen Wassermoleküls pro Formeleinheit verzichtet wurde. Eine Darstellung der Packung des Komplexes in der Elementarzelle ist im Anhang in Abb. C.21 dargestellt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.11.

In der Kristallstruktur bilden sich Wasserstoffbrückenbindungen zwischen den Kristallwassermolekülen, den Aqualiganden und den Chloridoliganden des Komplexes aus. Dies führt zu wasserstoffverbrückten Schichten senkrecht zu [010] (siehe Abb. 3.6). Diese Schichten sind durch C-H···O Kontakte mit einem Abstand unter 0.3 Å zu einem dreidimensionalen Netzwerk verbrückt.

Abbildung 3.6: MERCURY-Darstellung eines Ausschnitts der durch Wasserstoffbrückenbindungen gebildeten Schichten in der Kristallstruktur von **30**, dargestellt mit Blickrichtung entlang [010]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

3.2.2.3 Nickel(II)

Der Nickelkomplex $[Ni(10)_2(H_2O)_2]Cl_2$ (31) kristallisiert in blauen Plättchen in der triklinen Raumgruppe PĪ. Eine ORTEP-Darstellung des Komplexes ist in Abb. 3.7 gezeigt. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.22. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.11.

Das Nickelatom ist oktaedrisch von zwei zweizähnigen Di(pyrazol-1yl)-methan Liganden in der Äquatorebene und zwei axialen Aqualiganden koordiniert. In der Kristallstruktur bilden die Aqualiganden Wasserstoffbrückenbindungen zu den Chloridanionen aus. Dadurch entstehen wasserstoffverbrückte Ketten entlang [100]. Ein Ausschnitt dieser Ketten ist in Abb.

Abbildung 3.7: ORTEP-Darstellung von $[Ni(10)_2(H_2O)_2]Cl_2$ (31). Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ= -x, -y, -z. Ausgewählte Bindungslängen [Å]: Ni1-N1 2.0889(14), Ni1-N4 2.0723(13), Ni1-O1 2.0970(12); ausgewählte Bindungswinkel [°]: N1-Ni1-O1 87.33(6), N4-Ni1-N1 88.24(5); ausgewählte Torsionswinkel [°]: N1-N2-C4-N3 -62.35(19).

3.8 gezeigt. Die Ketten werden durch C-H···Cl und C-H··· π -Kontakte (unter 0.2 Å unter der Summe der van-der-Waals-Radien der Atome) der aromatischen C-H-Gruppen der Pyrazolringe des Liganden zu den Chloridanionen bzw. zum nächsten Pyrazolring zu Schichten senkrecht zu [001] vernetzt.

Abbildung 3.8: MERCURY-Darstellung eines Ausschnitts der durch Wasserstoffbrückenbindungen gebildeten Ketten in der Kristallstruktur von 31, dargestellt mit Blickrichtung entlang [001]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

3.2.2.4 Eisen(III)

Der zweikernige Eisenkomplex $[Fe_2(10)_4Cl_2][FeCl_4]_2$ (32) kristallisiert in orangen Blöcken in der monoklinen Raumgruppe P2₁/*c*. Eine ORTEP-Darstellung des Komplexes ist in Abb. 3.9 gezeigt, wobei aus Übersichtlichkeitsgründen das Gegenion, $[FeCl_4]^-$, nicht dargestellt ist. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.23. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.12.

In der Kristallstruktur von **32** führen C-H····Cl-Kontakte mit 0.3 Å unter der Summe der van-der-Waals-Radien der beteiligten Atome zur Bildung von Ketten entlang [110]. Ein Ausschnitt einer solchen Kette ist in Abb. 3.10 gezeigt. Außer diesen Wechselwirkungen gibt es keine relevanten Wechselwirkungen in der Struktur.

Abbildung 3.9: ORTEP-Darstellung des Komplexkations von [Fe₂(**10**)₄Cl₂][FeCl₄]₂ (**32**). Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ -x, -y, -z. Ausgewählte Bindungslängen [Å]: Fe1-N1 2.197(6), Fe1-N3 2.164(6), Fe1-N5 2.151(6), Fe1-N7 2.151(6), Fe1-Cl1 2.498(2), Fe1-Cl1ⁱ 2.528(2); ausgewählte Bindungswinkel [°]: Cl1-Fe1-Cl1ⁱ 86.58(7), N3-Fe1-N1 85.7(2), N7-Fe1-N1 89.5(2), N5-Fe1-N7 84.5(2); ausgewählte Torsionswinkel [°]: N1-Fe1-Cl1-Fe1ⁱ 174.00(17), N1-N2-C4-N4 -71.1(9).

Abbildung 3.10: MERCURY-Darstellung eines Ausschnitts der durch C-H····Cl-Kontakte gebildeten Ketten entlang [110] in der Kristallstruktur von **32**, dargestellt mit Blickrichtung entlang [010]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

3.2.2.5 Osmium(VI)

Abbildung 3.11: ORTEP-Darstellung von $[Os_2(10)_2O_6] \cdot 6 H_2O$ (33). Aus Gründen der Übersichtlichkeit werden die pro Formeleinheit in der Elementarzelle vorhandenen sechs Wassermoleküle nicht dargestellt. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ -x, -y, -z + 1. Ausgewählte Bindungslängen [Å]: Os1-O1 1.978(5), Os1-O3 1.749(6), Os1-O4 1.732(6), Os1-N1 2.139(7), Os1-N3 2.136(6); ausgewählte Bindungswinkel [°]: N3-Os1-N1 85.0(3), O4-Os1-O3 165.0(3), O3-Os1-O1 95.2(3), O1-Os1-O1ⁱ 79.4(2); ausgewählte Torsionswinkel [°]: N1-N2-C7-N4 -60.5(10).

Der zweikernige Osmiumkomplex $[Os_2(10)_2O_6] \cdot 6 H_2O(33)$ kristallisiert in braunen Blöcken in der monoklinen Raumgruppe $P2_1/c$. Beide Osmiumatome sind oktaedrisch von einem zweizähnig koordinierenden Di-(pyrazol-1-yl)methanliganden, zwei Oxidoliganden und zwei verbrückenden Oxidoliganden umgeben. Eine ORTEP-Darstellung des Komplexes ist in Abb. 3.11 gezeigt, wobei aus Übersichtlichkeitsgründen die pro Formeleinheit in der Struktur vorhandenen sechs Kristallwassermoleküle nicht dargestellt sind. Eine Darstellung der Packung des Komplexes in der Elementarzelle ist im Anhang in Abb. C.24 dargestellt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.12.

In der Kristallstruktur konnten die Positionen der Wasserstoffatome der Kristallwassermoleküle nicht ermittelt werden. Aufgrund der Abstände ist von einem komplexen, dreidimensionalen Netzwerk von Wasserstoffbrückenbindungen im Kristall auszugehen.

3.2.2.6 Cobalt(II)

Abbildung 3.12: ORTEP-Darstellung des Komplexkations von $[Co(10)_2(H_2O)_2]Cl_2$ (34). Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ -x, -y, -z. Ausgewählte Bindungslängen [Å]: Co1-O1 2.1000(17), Co1-N1 2.1275(19), Co1-N4 2.114(2); ausgewählte Bindungswinkel [°]: O1-Co1-N1 88.34(8), O1-Co1-N4 89.10(7), N4-Co1-N1 87.86(8); ausgewählte Torsionswinkel [°]: N4-N3-C4-N2 64.9(2).

Der Cobaltkomplex $[Co(10)_2(H_2O)_2]Cl_2$ (34) kristallisiert in gelben Blöcken in der triklinen Raumgruppe P1. Eine ORTEP-Darstellung des Komplexes ist in Abb. 3.12 gezeigt, wobei aus Übersichtlichkeitsgründen das Chloridanion nicht dargestellt wird. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.25. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.13.

Die koordinierenden Aqualiganden bilden Wasserstoffbrückenbindungen zu den Chloridanionen aus. Dies führt zu wasserstoffverbrückten Ketten

Abbildung 3.13: MERCURY-Darstellung eines Ausschnitts der durch wasserstoffverbrückten Ketten entlang [100] in der Kristallstruktur von **34**, dargestellt mit Blickrichtung entlang [001]. Donor-Akzeptor-Abstände: O1-Cl2ⁱ 3.1564(19) und O1-Cl2ⁱⁱ 3.065(3) mit den Symmetrieauszeichnungen ⁱ -x, -y + 1, -z + 1 und ⁱⁱ x - 1, y, z Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

entlang [100] (siehe Abb. 3.13). Diese Ketten sind mit C-H··· π Wechselwirkungen mit 0.3 Å unter den van-der-Waals-Radien der Atome und C-H···Cl Wechselwirkungen mit 0.2 Å unter der Summe der van-der-Waals-Radien der Atome zu einem dreidimensionalen Netzwerk verbrückt.

3.2.2.7 Ruthenium(II)

Der Rutheniumkomplex $[Ru(10)_2Cl_2] \cdot 2$ DMF (35) kristallisiert in gelben Plättchen in der triklinen Raumgruppe PĪ. Eine ORTEP-Darstellung des Komplexes ist in Abb. 3.14 gezeigt, wobei aus Übersichtlichkeitsgründen das pro Formeleinheit enthaltene Molekül DMF nicht dargestellt ist. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.26. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.13.

In der Kristallstruktur bilden sich C-H \cdots O Kontakte von den CH₂-Gruppen des Liganden zu den Sauerstoffatomen des DMF im Kristall aus. Diese Kontakte sind mit 0.3 Å unter der Summe der van-der-Waals-Radien

Abbildung 3.14: ORTEP-Darstellung von $[Ru(10)_2Cl_2] \cdot 2$ DMF (35). Aus Gründen der Übersichtlichkeit werden die beiden DMF-Moleküle pro Formeleinheit nicht abgebildet. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: . Ausgewählte Bindungslängen [Å]: Ru1-N1 2.0686(19), Ru1-N4 2.066(2), Ru1-Cl1 2.4229(8); ausgewählte Bindungswinkel [°]: N1-Ru1-Cl1 93.33(6), N4-Ru1-Cl1 92.81(7), N4-Ru1-N1 86.89(8); ausgewählte Torsionswinkel [°]: N4-N3-C4-N2 -62.7(3).

relativ stark, was auf die Lewissäureazidität des zentralen Rutheniums zurückzuführen ist (siehe Abb. 3.15). Durch diese Wechselwirkung ist das DMF in der Kristallstruktur in einer definierten Lage und ordnet nicht fehl.

Abbildung 3.15: MERCURY-Darstellung eines der durch Kontakte des Komplexes **35** mit den benachbarten DMF-Molekülen in der Kristallstruktur von **35**entstandenen Heterotrimers. Die Abstände sind 0.3 Å unter der Summe der van-der-Waals-Radien der Atome. Symmetrieauszeichnungen: ⁱ x + 1, y, -1 + z, ⁱⁱ 1 - x, 1 - y, -z, ⁱⁱⁱ -x, 1 - y, 1 - z Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

3.2.2.8 Zink(II)

Bei der Komplexierung von Di-(pyrazol-1-yl)methan an Zink zeigt sich eine Besonderheit. Hier können aus einer Reaktionslösung Kristallstrukturen verschiedener Komplexe isoliert werden. Eine Erklärung für dieses Phänomen liefert die sich beim langsamen Eintrocknen der Reaktionslösung verändernde Lösemittelpolarität. Zuerst bilden sich Kristalle eines Zinkkomplexes mit Wasser in der Koordinationssphäre, der Komplex **36**. Mit abnehmendem Wasseranteil in der Mutterlauge werden zunehmend unpolarere Komplexe gebildet (**37** und **38**).

Bei der Reaktion von Di-(pyrazol-1-yl)methan mit Zink bei relativ starker Verdünnung der Lösung erhält man farblose Blöcke des Zinkkomplexes $[Zn(10)_2(H_2O)_2](NO_3)_2$ (36). Das Zink ist oktaedrisch koordiniert. Die beiden zweizähnigen Stickstoffliganden 10 liegen in der Äquatorialebene, während die Aqualiganden axial stehen. Der Komplex kristallisiert in der triklinen Raumgruppe P1. Eine ORTEP-Darstellung des Komplexes ist in Abb. 3.16 gezeigt, wobei aus Übersichtlichkeitsgründen die zwei pro Formeleinheit ent-

Abbildung 3.16: ORTEP-Darstellung des Komplexkations von $[Zn(10)_2(H_2O)_2](NO_3)_2$ (36). Es ist nur eines der beiden in der assymetrischen Einheit der Elementarzelle vorhandenen Komplexkationen abgebildet. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ -x, -y, -z. Ausgewählte Bindungslängen [Å]: Zn2-N1 2.120(2), Zn2-N4 2.192(2), Zn2-O2 2.116(2) ; ausgewählte Bindungswinkel [°]: O2-Zn2-N1 90.29(9), O2-Zn2-N4 88.80(9), N1-Zn2-N4 87.46(8); ausgewählte Torsionswinkel [°]: N1-N2-C4-N3 -63.1(3).

haltenen Nitratanionen nicht dargestellt ist. Eine Darstellung der Packung des Komplexes in der Elementarzelle ist im Anhang in Abb. C.27 gezeigt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.14.

Die Aqualiganden des Komplexes bilden in der Kristallstruktur Wasserstoffbrückenbindungen zu den Nitratanionen aus. Diese führen zu wasserstoffverbrückten Schichten senkrecht zu [100] (Siehe Abb. 3.17). Diese Schichten werden durch C-H···O Kontakte der CH₂-Gruppe des Liganden unter 0.3 Å der van-der-Waals-Radien der Atome zu einem dreidimensionalen Netzwerk verbrückt.

Trocknet die Lösung weiter ein, so scheidet sich aus der Lösung der Neutralkomplex $[Zn(10)(Cl)_2]$ (37) in Form farbloser Blöcke ab.

Das Zink ist tetraedrisch von zwei Chloridoliganden und einem Di-(pyrazol-1-yl)methanliganden, der zweizähnig koordiniert, umgeben. Der

Abbildung 3.17: MERCURY-Darstellung eines Ausschnitts einer wasserstoffverbrückten Schicht in der Kristallstruktur von **36**. Donor-Akzeptor Abstände: O2-O92 2.760(3), O2-O80 2.822(3), O1-O92ⁱⁱ 2.833(3), O1-O81 2.876(3) mit ⁱⁱ x, y - 1, z. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

Komplex kristallisiert in der monoklinen Raumgruppe C*c*. Eine ORTEP-Darstellung des Komplexes ist in Abb. 3.18 gezeigt. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.28. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.14.

In der Kristallstruktur von **37** gibt es keine relevanten Wechselwirkungen, das heißt, weder Wasserstoffbrückenbindungen noch Kontakte unter 0.2 Å der van-der-Waals-Radien der Atome.

Wird die Lösung weiter eingeengt, so scheidet sich ein weiterer Komplex, $[Zn(10)_2Cl_2]$ (38), aus der schon relativ unpolaren Lösung ab. Auch hier handelt es sich wieder um einen Neutralkomplex.

Abbildung 3.18: ORTEP-Darstellung von [Zn(10)Cl₂] (37). Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: Zn1-N1 2.063(3), Zn1-N4 2.052(3), Zn1-Cl1 2.2201(9), Zn1-Cl2 2.2041(9); ausgewählte Bindungswinkel [°]: N1-Zn1-Cl1 109.28(9), Cl2-Zn1-Cl1 119.99(4); ausgewählte Torsionswinkel [°]: N1-N2-C4-N3 64.9(4).

Das Zink ist tetraedrisch von zwei Chloridoliganden und zwei Di-(pyrazol-1-yl)methanliganden, die beide einzähnig koordinieren, umgeben. Der Komplex kristallisiert in der monoklinen Raumgruppe $P2_1/c$. Eine OR-TEP-Darstellung des Komplexes ist in Abb. 3.19 gezeigt. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.29. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.15.

In der Kristallstruktur von **37** gibt es keine relevanten Wechselwirkungen, das heißt weder Wasserstoffbrückenbindungen noch Kontakte unter 0.1 Å der van-der-Waals-Radien der Atome.

Interessant ist bei diesem Komplex die nur einzähnige Koordination durch den potentiell zweizähnigen Liganden. Dies erklärt sich zum einen aus einem Überschuss des Liganden in der Synthese, zum anderen dadurch, dass dieser Komplex erst gegen Ende des Einengens der Lösung erhalten wird und dadurch eine relativ stark unpolare Lösung mit geringen Wasseranteil vorliegt.

Abbildung 3.19: ORTEP-Darstellung von [Zn(10)₂Cl₂] (38). Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: Zn1-N4 2.0341(17), Zn1-N11 2.0463(17), Zn1-Cl1 2.2204(5), Zn1-Cl2 2.2575(5); ausgewählte Bindungswinkel [°]: N4-Zn1-N11 104.78(7), N4-Zn1-Cl1 117.29(5), N4-Zn1-Cl2 103.30(5), Cl1-Zn1-Cl2 114.72(2); ausgewählte Torsionswinkel [°]: N1-N2-C7-N3 -84.1(2), N11-N12-C14-N13 -96.2(2).

3.2.2.9 Cadmium(II)

Auch bei der Komplexierung von Di-(pyrazol-1-yl)methan an Cadmium zeigt sich, wie bei Zink, dass aus aus einer Reaktionslösung Kristallstrukturen verschiedener Komplexe isoliert werden können. Eine Erklärung für dieses Phänomen liefert die sich beim langsamen eintrocknen der Reaktionslösung verändernde Lösemittelpolarität. Zuerst bilden sich Kristalle eines Cadmiumkomplexes mit Wasser in der Koordinationssphäre, der Komplex **39**. Mit abnehmenden Wasseranteil, und damit abnehmender Polarität, in der Mutterlauge, bilden sich zunehmend unpolarere Komplexe (**40** und **41**).

Bei relativ starker Verdünnung der Reaktionslösung erhält man farblose Blöcke des Cadmiumkomplexes $[Cd(10)_2(H_2O)_2](NO_3)_2$ (39). Das Cadmium ist oktaedrisch von zwei Aqualiganden und zwei Di-(pyrazol-1-yl)methanliganden, die beide zweizähnig koordinieren, umgeben. Der Komplex kristallisiert in der monoklinen Raumgruppe P2₁/*c*. Eine ORTEP-Darstellung des

Abbildung 3.20: ORTEP-Darstellung des Komplexkations von $[Cd(10)_2(H_2O)_2](NO_3)_2$ (**39**). Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ -x, -y, -z. Ausgewählte Bindungslängen [Å]: Cd1-N1 2.301(2), Cd1-N4 2.3349(19), Cd1-O99 2.3518(19); ausgewählte Bindungswinkel [°]: N1-Cd1-N4 83.72(7), N1-Cd1-O99 88.95(7), N4-Cd1-O99 93.58(7); ausgewählte Torsionswinkel [°]: N1-N2-C4-N3 69.8(3).

Komplexes ist in Abb. 3.20 gezeigt. Eine Darstellung der Packung des Komplexes in der Elementarzelle ist im Anhang in Abb. C.30 dargestellt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.15.

Tabelle 3.1: Abstände [Å] und Winkel [°] der Wasserstoffbrückenbindungen in **39**. D: Donor-Atom, A: Akzeptor-Atom. In Klammern: Standardabweichung der letzten Dezimalstelle. Bei der Strukturlösung wurde der Abstand vom Wasserstoff zum Sauerstoff auf 0.84 Å und zwischen zwei an Sauerstoff gebundenen Wasserstoffatomen auf 1.34 Å fixiert. Symmetrieauszeichung: ⁱ 1 - x, -y, 1 - z; ⁱⁱ 1 - x, y - 0.5, -z + 0.5.

D	Н	А	$D \cdots A$	D-H	$H{\cdots}A$	D-H···A
O99 O99	H991 H992	O12 ⁱ O11 ⁱⁱ O12 ⁱⁱ	0.82(4) 0.823(18) 0.823(18)	2.14(2) 2.019(18) 2.58(3)	2.940(4) 2.841(3) 3.159(4)	165(4) 177(4) 128(3)

Abbildung 3.21: MERCURY-Darstellung eines Ausschnitts der wasserstoffverbrückten Schichten senkrecht zu [100] in der Kristallstruktur von **39**. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

In der Kristallstruktur bilden sich Wasserstoffbrückenbindungen von den Aqualiganden zu den Nitratanionen aus (Abstände siehe Tabelle 3.1). Dadurch bilden sich Schichten senkrecht zu [100] (siehe Abb. 3.21). Diese Schichten sind zu einem dreidimensionalen Netzwerk über C-H···O Kontakte der CH₂-Gruppe des Di(pyrazol-1-yl)-methans zu einem dreidimensionalen Netzwerk verbrückt.

Aus konzentrierteren Reaktionslösungen erhält man farblose Plättchen des Cadmiumkomplexes $[Cd(10)_2Cl_{1.89}(NO_3)_{0.11}]$ (40). Hier ist das Cadmium oktaedrisch von zwei Di-(pyrazol-1-yl)methan-liganden, die beide zweizähnig koordinieren, und zwei Chloridoliganden umgeben. Einer der beiden Chloridoliganden ist in der Kristallstruktur zu etwa 11.3% durch einen Nitratoliganden ersetzt, wodurch sich die Koordinationszahl des Cadmium bei diesen Komplexen auf sieben erhöht. Die Verbindung kristallisiert in der monoklinen Raumgruppe $P2_1/c$. Eine ORTEP-Darstellung beider Komplexe ist in Abb. 3.22, eine Darstellung der Packung des Komplexes in der Elementarzelle im Anhang in Abb. C.31 gezeigt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.16.

Betrachtet man in der Kristallstruktur nur die Komplexe mit zwei Chlo-

Abbildung 3.22: ORTEP-Darstellung von $[Cd(10)_2Cl_{1.89}(NO_3)_{0.11}]$ (40). In der Kristallstruktur kann eines der beiden koordinierenden Chloridoanionen gegen ein Nitratoanion ausgetauscht werden (Die Besetzung des Nitratoanion ist bei etwa 11.3 %). Der Komplex mit zwei koordinierenden Chloridoanionen ist links, der seltenere Fall, dass ein Cl2 durch einen Nitratoiganden ersetzt wird, rechts dargestellt. Das Nitratoanion wurde nur isotrop verfeinert. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: Cd1-N1 2.478(5), Cd1-N4 2.353(5), Cd1-N11 2.496(5), Cd1-N14 2.356(5), Cd1-Cl1 2.5509(12), Cd1-Cl2 2.585(2), Cd1-O21 2.63(3), Cd1-O22 2.30(3); ausgewählte Bindungswinkel [°]: N11-Cd1-Cl2 169.28(12), Cl1-Cd1-Cl2 100.57(6), O22-Cd1-Cl1 101.8(7), O22-Cd1-O21 47.3(7); ausgewählte Torsionswinkel [°]: N1-N2-C4-N3 75.1(6), N11-N12-C14-N13 73.8(6).

ridoliganden, so führen C-H····Cl Kontakte mit einem Abstand von 0.2 Å unter der Summe der van-der-Waals-Radien der beteiligten Atome zu Ketten entlang [001] (siehe Abb. 3.23). Hierbei fällt auf, dass Cl2, also der Chloridoligand, der durch einen Nitratoliganden in der Kristallstruktur bei einigen Komplexen ersetzt wird, keine Kontakte ausbildet.

Betrachtet man dagegen die Komplexe, bei denen Cl2 durch Nitrat ersetzt ist, so bilden sich durch C-H···O und C-H···Cl Kontakte Schichten senkrecht zu [101] aus. Das Nitrat ersetzt also offensichtlich Cl2 in der Kristallstruktur Aufgrund der besseren C-H-Wechselwirkungen.

Aus konzentrierteren Reaktionslösungen erhält man ausserdem farblose

Abbildung 3.23: MERCURY-Darstellung eines Ausschnitts der durch C-H… Cl Kontakte gebildeten Ketten entlang zu [001] in der Kristallstruktur von 40, abgebildet mit Blickrichtung entlang [010]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

Abbildung 3.24: ORTEP-Darstellung von [Cd(10)₂(NO₃)₂] (41). Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Der Abstand von Cd1 zu O22 beträgt etwa 2.805 Å, weshalb keine Bindung eingezeichnet wurde. Ausgewählte Bindungslängen [Å]: Cd1-N1 2.414(2), Cd1-N4 2.334(2), Cd1-N11 2.332(2), Cd1-N14 2.516(2), Cd1-O21 2.419(2), Cd1-O31 2.522(3), Cd1-O32 2.488(3); ausgewählte Bindungswinkel [°]: O21-Cd1-O32 114.09(9), N1-Cd1-O32 150.60(9), O32-Cd1-O31 48.42(9); ausgewählte Torsionswinkel [°]: N1-N2-C4-N3 –77.1(3), N11-N12-C14-N13 72.1(3). Plättchen des Cadmiumkomplexes $[Cd(10)_2(NO_3)_2]$ (41). Hier ist das Cadmium von zwei Di-(pyrazol-1-yl)methan-liganden, die beide zweizähnig koordinieren, und zwei Nitratoliganden umgeben. Die Verbindung kristallisiert in der monoklinen Raumgruppe P2₁/*c*. Eine ORTEP-Darstellung des Komplexes ist in Abb. 3.24, eine Darstellung der Packung des Komplexes in der Elementarzelle im Anhang in Abb. C.32 gezeigt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.16.

Abbildung 3.25: MERCURY-Darstellung eines Ausschnitts der durch C-H···O Kontakte gebildeten Schichten senkrecht zu [010] in der Kristallstruktur von **41**. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

In der Kristallstruktur bilden sich durch C-H···O Kontakte mit einem Abstand von etwa 0.3 Å Schichten senkrecht zu [010] (siehe Abb. 3.25). Diese Schichten werden durch weitere, etwas schwächere C-H···O Kontakte mit einem Abstand von etwa 0.2 Å mit den darüber- und darunterliegenden Schichten zu einem dreidimensionalen Netwerk vernetzt.

3.2.2.10 Quecksilber(II)

Im Komplex [Hg(**10**)Cl₂] (**42**) ist das Quecksilber tetraedrisch von zwei Chloridoliganden und einem Di-(pyrazol-1-yl)methanliganden, der zweizähnig ko-

Abbildung 3.26: ORTEP-Darstellung von [Hg(10)Cl₂] (42). Da der Komplex in der Kristallstruktur stark fehlgeodnet ist, wird nur der Komplex mit der höchsten Besetzungswahrscheinlichkeit gezeigt. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: Cl1-Hg1 2.348(2), Cl2-Hg1 2.333(2), N1-Hg1 2.581(7), N3-Hg1 2.469(6); ausgewählte Bindungswinkel [°]: Cl2-Hg1-Cl1 155.71(8), N3-Hg1-N1 78.3(2), Cl1-Hg1-N1 98.16(17); ausgewählte Torsionswinkel [°]: N1-N2-C4-N4 –77.4(9).

ordiniert, umgeben. Der Komplex kristallisiert in der monoklinen Raumgruppe $P2_1/c$. Eine ORTEP-Darstellung des Komplexes ist in Abb. 3.26 gezeigt. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.33. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.17.

Die Kristallstruktur weist eine starke Fehlordnung auf, bei der der Komplex um etwa $\frac{1}{2}$ in [010]-Richtung verschoben vorliegt. Da der analoge Komplex mit Zink isoliert und röntgenkristallographisch untersucht werden konnte, kann die hier beschriebene Struktur als gesichert angenommen werden.

In der Struktur fällt eine regelmäßige Anordnung der Komplexe entlang der [010]-Richtung auf (siehe Abb. 3.27). Die Abstände der aromatischen Ringe sind mit etwa 4.2 Å etwas zu groß, um eine π - π -Wechselwirkung anzunehmen. Vermutlich ist deshalb eine Fehlordnung entlang dieser Achse relativ leicht möglich, indem bei einem Kristallbaufehler nicht mehr abwechselnd auf einen Komplex von einer Seite einer von der anderen Seite folgt, sondern

Abbildung 3.27: MERCURY-Darstellung eines Ausschnitts der regelmäßigen angeordneten Komplexe entlang [010] in der Kristallstruktur von **42**. Der Abstand zweier Zentroide beträgt etwa 4.2 Å. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

zwei Komplexe mit der gleichen Orientierung übereinander zu liegen kommen.

3.2.3 Tri-(pyrazol-1-yl)methan als Ligand

3.2.3.1 Cobalt(II)

Abbildung 3.28: ORTEP-Darstellung des Komplexkations von $[Co(11)_2]Cl_2 \cdot 2 H_2O$ (43). Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: Co1-N1 2.1202(13), Co1-N3 2.1087(13), Co1-N5 2.1451(14); ausgewählte Bindungswinkel [°]: N3-Co1-N1 83.41(5), N3-Co1-N5 83.82(5), N1-Co1-N5 85.23(5), N3ⁱ-Co1-N3 180.0; ausgewählte Torsionswinkel [°]: N3ⁱ-Co1-N1-N2 -139.43(12), N3-Co1-N1-N2 40.57(12).

Das Kation des Komplexes $[Co(11)_2]Cl_2 \cdot 2 H_2O$ (43; Siehe Abb. 3.28) ist bereits literaturbekannt und unter anderem mit Nitrat als Gegenion in [32,33] und mit einem Komplexanion in [34] beschrieben. In der in dieser Arbeit beschrieben Struktur liegt das Kation neben Chlorid als Anion und zwei Wassermolekülen pro Formeleinheit vor. 43 kristallisiert in der triklinen Raumgruppe PĪ. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.34. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.17.

Abbildung 3.29: MERCURY-Darstellung eines Ausschnitts der durch Wasserstoffbrückenbindungen und C-H···O oder C-H···Cl Kontakte gebildeten Schichten in der Kristallstruktur von 43, dargestellt mit Blickrichtung entlang [001]. Wasserstoffbrückenbindungen werden grün, C-H···Cl Kontakte der C-H-Gruppe des Liganden rot und C-H···O Kontakte eines der Pyrazolringe des Liganden orange dargestellt. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

In der Kristallstruktur bilden die Wasserstoffatome der Wassermoleküle Wasserstoffbrückenbindungen zu den Chloridanionen aus. Außerdem bildet die C-H-Gruppe des Liganden einen Kontakt zum Chloridanion aus (etwa 0.4 Å unter dem van-der-Waals Abstand), der somit einer nichtklassischen Wasserstoffbrückenbindung entspricht. Aus einem der drei Pyrazolringe bildet sich ein C-H···O Kontakt mit einem Abstand von 0.3 Å unter dem van-der-Waals-Radius zu einem der in der Kristallstruktur vorhandenen Wassermoleküle aus. Diese Wechselwirkungen führen zu verbrückten Schichten senkrecht zu [011] (siehe Abb. 3.29).

Das Wasserstoffatom der C-H Gruppe von Tri-(pyrazol-1-yl)methan ist relativ azide, was auch ¹H-NMR-spektroskopisch beim freien Liganden durch

die starke Verschiebung beobachtet werden kann. In diesem Fall scheint die Azidität dieses Protons durch das lewissaure Zentralmetall in direkter Nähe noch verstärkt zu werden, was zu $C-H \cdots Cl$ Kontakten führt, die durch die kurzen Abstände nahezu mit klassischen Wasserstoffbrückenbindungen vergleichbar sind.

3.2.3.2 Cadmium(II)

Abbildung 3.30: ORTEP-Darstellung des Komplexations (links) und des Komplexanions (rechts) von [Cd(11)₂(NO₃)][Cd(11)(NO₃)₃]
(44). Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: Cd2-N11 2.308(3), Cd2-N23 2.322(3), Cd2-N21 2.361(3), Cd2-N15 2.415(3), Cd2-O83 2.546(3), Cd2-O84 2.564(3), Cd2-N25 2.603(3), Cd2-O83 2.546(3), Cd1-O99 2.300(2), Cd1-O89 2.320(2), Cd1-N1 2.344(3), Cd1-O94 2.371(2), Cd1-N5 2.387(3), Cd1-N3 2.400(3); ausgewählte Bindungswinkel [°]: N11-Cd2-N23 149.28(10), N23-Cd2-N21 78.37(9), O83-Cd2-O84 49.97(8), N95-O99-Cd1 108.14(19), N1-Cd1-N5 77.65(9); ausgewählte Torsionswinkel [°]: N11-Cd2-N15-N16 34.2(2), N5-Cd1-N1-N2 37.6(2).

Das Cadmiumcadmat $[Cd(11)_2(NO_3)][Cd(11)(NO_3)_3]$ (44) kristallisiert in farblosen Kristallen in der orthorhombischen Raumgruppe P*bca* aus. Eine OR-TEP-Darstellung des Komplexkations und des Komplexanions ist in Abb. 3.30 gezeigt. In der Struktur sind die koordinierenden Nitratmoleküle leicht fehlgeordnet, was auf eine hohe Beweglichkeit dieser Liganden hinweißt. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.35. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.18.

Komplexanion und Komplexkation sind bei dieser Verbindung aus den gleichen Bausteinen aufgebaut. Das Kation zeigt mit einer achtfachen Koordination eine hohe Koordinationszahl. Vor allem beim Kation, aber auch beim Anion, wäre die Nachbildung einer Enzymtasche durch die Liganden denkbar, da nur ein kleiner Teil des Metalls nicht vom Liganden abgeschirmt wird.

3.2.3.3 Blei(II)

Der Bleikomplex $[Pb(11)_2(NO_3)_2]$ (45) kristallisiert in farblosen Blöcken in der monoklinen Raumgruppe C2/*c* aus. Eine ORTEP-Darstellung des Komplexes ist in Abb. 3.31 gezeigt. In der Struktur sind die koordinierenden Nitratmoleküle leicht fehlgeordnet, was auf eine hohe Beweglichkeit dieser Liganden hinweist. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.36. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.18.

Die Azidität des Wasserstoffatoms der zentralen C-H Gruppe des Liganden wird durch die Koordination des Blei(II) verstärkt. Darum bilden sich C-H···O Kontakte aus, die mit 0.5 Å unter der Summe der van-der-Waals-Radien der Atome einen für C-H..O Kontakte sehr kurzen, fast an eine Wasserstoffbrückenbindung erinnernden Abstand aufweisen (siehe Abb. 3.32). Diese starke Azidität des C-H Atoms könnte unter anderem eine Erklärung für die Zersetzung des Liganden bei der Umsetzung mit vielen anderen, vor allem stärker geladenen Metallkationen, sein.

Abbildung 3.31: ORTEP-Darstellung von $[Pb(11)_2(NO_3)_2]$ (45). Die Struktur weist eine Fehlordnung der Nitratgruppen auf, weshalb hier nur die Nitratgruppen mit der größten Besetzungsdichte abgebildet sind. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichungen: ⁱ -x, y, -z + 1/2. Ausgewählte Bindungslängen [Å]: Pb1-N1 2.740(2), Pb1-N4 2.742(2), Pb1-O90 2.757(2); ausgewählte Bindungswinkel [°]: N1-Pb1-N4 67.52(7), N4-Pb1-O90 96.21(7), N1-Pb1-N1ⁱ 136.03(11); ausgewählte Torsionswinkel [°]: N1ⁱ-Pb1-N1-C1 124.3(3).

Abbildung 3.32: MERCURY-Darstellung eines Ausschnitts der durch C-H···O Kontakte (0.5 Å unter der Summe der van-der-Waals-Radien der Atome) gebildeten Schichten in der Kristallstruktur von 45, dargestellt mit Blickrichtung entlang [001]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Da die koordinierenden Nitratmoleküle fehlgeordnet sind, ist nur das Molekül mit der höchsten Besetzungswahrscheinlichkeit abgebildet.

3.3 Synthese und röntgenkristallographische Untersuchungen von Komplexen mit imidazolhaltigen Liganden

3.3.1 Allgemeines

Die Komplexbildungsuntersuchungen von imidazolhaltigen Liganden waren weitgehend erfolglos. Unter den zur Komplexierung verwendeten Bedingungen zersetzten sich die Liganden. Es wurden dann die entsprechenden Imidazolkomplexe erhalten. Einige neue Imidazolkomplexe sind im Folgenden beschrieben.

3.3.2 Neue Imidazolkomplexe

3.3.2.1 Palladium(II)

Abbildung 3.33: ORTEP-Darstellung von [Pd(imidazol)₄]Cl₂ (**46**). Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichungen: ⁱ -x + 0.5, -y + 0.5, -z. Ausgewählte Bindungslängen [Å]: Pd1-N1 2.015(5), Pd1-N3 2.019(6); ausgewählte Bindungswinkel [°]: N1-Pd1-N3 90.0(2); ausgewählte Torsionswinkel [°]: N3-Pd1-N1-C1 85.0(6).

Der Paladiumkomplex [Pd(imidazol)₄]Cl₂ (**46**) ist bereits in der Literatur beschrieben [35], allerdings handelt es sich hierbei nur um Studien anhand

von pulverdiffraktometrischen Daten und keine röntgenkristallographische Untersuchung der Struktur am Einkristall. Während der Komplexierungsuntersuchungen mit der Verbindung **14** wurde nach Zersetzung des Liganden ein Einkristall des Imidazolkomplexes isoliert. **46** kristallisiert in farblosen Stäbchen und im Gegesatz zur in der Literatur beschriebenen triklinen Raumgruppe, in der monoklinen Raumgruppe C2/*c*. Das Palladium ist im Komplex quadratisch planar von vier neutralen Imidazolliganden umgeben. Eine OR-TEP-Darstellung des Komplexes ist in Abb. 3.33 gezeigt. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.37. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.19.

Abbildung 3.34: MERCURY-Darstellung eines Ausschnitts der durch Wasserstoffbrückenbindungen gebildeten Schichten in der Kristallstruktur von **46**, dargestellt mit Blickrichtung entlang [100]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

Tabelle 3.2: Abstände [Å] und Winkel [°] der Wasserstoffbrückenbindungen in **46**. D: Donor-Atom, A: Akzeptor-Atom. In Klammern: Standardabweichung der letzten Dezimalstelle. Bei der Strukturlösung wurde der Abstand vom Wasserstoff zum Stickstoff auf 0.88 Å festgesetzt. Symmetrieauszeichung: ⁱ -x + 0.5, y - 0.5, -z + 0.5.

D	Н	А	$D\!\cdots\!A$	D-H	$H{\cdot} \cdot \cdot A$	D-H···A
N2	H201	Cl1 ⁱ	0.88	2.34	3.139(6)	150.4
N4	H4	Cl1	0.88	2.35	3.209(6)	164.7

In der Kristallstruktur bilden sich durch Wasserstoffbrückenbindungen von den protonierten Imidazolstickstoffatomen zu den Chloridgegenionen Schichten senkrecht zu [100]. Ein Ausschnitt aus einer dieser Schichten ist in Abb. 3.34 gezeigt, die Wasserstoffbrückenbindungen sind in Tabelle 3.2 aufgeführt. Es gibt keine weiteren relevanten Wechselwirkungen in der Kristallstruktur.

3.3.2.2 Nickel(II)

Das Kation des Nickelkomplexes [Ni(imidazol)₆]Cl₂ (47), bei dem das Nickel oktaedrisch von sechs neutralen Imidazolliganden umgeben ist, ist mit verschiedenen Gegenionen bereits literaturbekannt. Auch mit Chlorid als Gegenion ist der Komplex bereits mehrfach beschrieben [36, 37], allerdings ist in diesen Strukturen Kristallwasser enthalten, was zum Beispiel in [37] ausführlich diskutiert wird. Im Gegesatz dazu enthält die hier beschriebene Kristallstruktur kein Wasser.

47 kristallisiert in blauen Blöcken in der triklinen Raumgruppe PĪ. Eine ORTEP-Darstellung des Komplexes ist in Abb. 3.35 gezeigt. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.38. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.19.

In der Kristallstruktur bilden sich durch Wasserstoffbrückenbindungen Schichten senkrecht zu [010]. Eine Abbildung eines Ausschnitts einer dieser Schichten ist in Abb. 3.36, eine Übersicht über die Abstände der Wasserstoffbrückenbindungen in Tabelle 3.3 gezeigt.

Abbildung 3.35: ORTEP-Darstellung von [Ni(imidazol)₆]Cl₂ (**47**). Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichungen: ⁱ -x, -y, -z. Ausgewählte Bindungslängen [Å]: Ni1-N1 2.1326(14), Ni1-N3 2.1378(15), Ni1-N5 2.1078(15); ausgewählte Bindungswinkel [°]: N1-Ni1-N3 87.22(6), N5-Ni1-N1 92.37(6); ausgewählte Torsionswinkel [°]: N3ⁱ-Ni1-N1-C3 63.17(16).

Tabelle 3.3: Abstände [Å] und Winkel [°] der Wasserstoffbrückenbindungen in 47. D: Donor-Atom, A: Akzeptor-Atom. In Klammern: Standardabweichung der letzten Dezimalstelle. Bei der Strukturlösung wurde der Abstand vom Wasserstoff- zum Stickstoffatom auf 0.88 Å festgesetzt. Symmetrieauszeichung: ⁱ x, y + 1, z - 1; ⁱⁱ x, y + 1, z; ⁱⁱⁱ x - 1, y + 1, z; ^{iv} x + 1, y + 1, z + 1.

D	Η	А	$D\!\cdot \cdot \cdot A$	D-H	$H{\cdots}A$	D-H···A
N2	H2	Cl1 ⁱ	0.88	2.43	3.1912(17)	145.5
N4	H4	Cl1 ⁱⁱ	0.88	2.33	3.2071(17)	171.2
N6	H6	Cl1 ⁱⁱⁱ	0.88	2.60	3.2685(17)	133.9
N6	H6	Cl1 ^{iv}	0.88	2.80	3.3650(19)	123.1

Abbildung 3.36: MERCURY-Darstellung eines Ausschnitts der durch Wasserstoffbrückenbindungen gebildeten Schichten in der Kristallstruktur von 47, dargestellt mit Blickrichtung entlang [010]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.
3.4 Synthese und röntgenkristallographische Untersuchungen von Komplexen mit triazolhaltigen Liganden

3.4.1 Allgemeines

Die Komplexbildungsuntersuchungen von Triazolkomplexen ergaben, dass die Liganden zur Bildung von Koordinationspolymeren neigen, was eine Untersuchung der unlöslichen, polykristallinen Reaktionsprodukte erschwert. Trotzdem konnten, wie im Folgenden gezeigt, einige neue Komplexe mit verschiedenen Liganden erhalten werden. Auch nach Zersetzung der Liganden wurden häufig neue Verbindungen erhalten. Kristallstrukturanalysen dieser Komplexe sind im Folgenden dargestellt. Häufig wurden die Produkte als Koordinationspolymere erhalten.

3.4.2 Neue Triazolkomplexe

3.4.2.1 Kupfer(II)

Das Koordinationspolymer [Cu(1,2,4-triazol)Cl₂]_{*n*} (**48**) kristallisiert in grünen Plättchen in der monoklinen Raumgruppe C2/*c*. Das Kupfer ist oktaedrisch von vier verbrückenden Chloridoliganden und zwei über die 1,2-Stickstoffatome verbrückenden Triazolliganden umgeben. Dadurch entstehen polymere Ketten entlang [001] (siehe Abb. 3.38). Eine ORTEP-Darstellung des Komplexes ist in Abb. 3.37 gezeigt. Eine Darstellung der Packung des Komplexes in der Elementarzelle ist im Anhang in Abb. C.39 dargestellt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.20.

In der Kristallstruktur gibt es eine gegabelte Wasserstoffbrückenbindung, bei der das Wasserstoffatom des Stickstoffatoms in 4-Position eines jeden Triazolrings zwischen zwei Chloridatome von angrenzenden koordinationspolymeren Strängen zeigt. Die Abstände dieser Wechselwirkungen sind etwas unter 0.3 Å unter der Summe der van-der-Waals-Radien der beteiligten Atome, wodurch die Ketten zu dreidimensionalen Netzwerken vernetzt werden.

Abbildung 3.37: ORTEP-Darstellung der asymmetrischen Einheit in der Elementarzelle des Koordinationspolymers [Cu(1,2,4triazol)Cl₂]_n (**48**). Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ -x + 1, y, -z + 0.5; ⁱⁱ -x + 1, -y + 1, -z + 1, ⁱⁱⁱ -x + 1, y, -z + 1.5, ^{iv} x, -y + 1, z + 0.5, ^v x, -y + 1, z - 0.5. Ausgewählte Bindungslängen [Å]: Cu1-N1 1.9841(17), Cu1-Cl1 2.3336(5), N1-N1ⁱ 1.374(3), N1-C1 1.308(3); ausgewählte Bindungswinkel [°]: Cl1ⁱⁱ-Cu1-Cl1 180.00(2); ausgewählte Torsionswinkel [°]: Cl1ⁱⁱ-Cu1-N1-C1 132.9(2).

Abbildung 3.38: MERCURY-Darstellung eines Ausschnitts eines der Stränge entlang [001] in der Kristallstruktur des Koordinationspolymers 48, dargestellt mit Blickrichtung entlang [100]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

3.4.2.2 Nickel(II)

Der dreikernige Nickelkomplex [Ni₃(1,2,4-triazol)₆Cl₂(H₂O)₄] (**49**) kristallisiert in blauen Blöcken in der monoklinen Raumgruppe C2/c. Alle drei Nickel

Abbildung 3.39: ORTEP-Darstellung von **49**. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichungen: i - x, -y, -z. Ausgewählte Bindungslängen [Å]: N1-Ni1 2.1006(14), N4-Ni1 2.1010(14), N7-Ni1 2.0683(14), N2-Ni2 2.0793(15), N5-Ni2 2.0871(15), N8-Ni2 2.0653(15), Ni2-O1 2.1025(13), Ni2-O2 2.1046(13), Ni2-Cl1 2.3763(5); ausgewählte Bindungswinkel [°]: N7-Ni1-N1 91.16(6), N7-Ni1-N4 90.87(6), N2-Ni2-O1 178.54(6); ausgewählte Torsionswinkel [°]: Ni1-N7-N8-Ni2 1.43(19).

sind oktaedrisch umgeben. Das zentrale Nickelatom ist dabei von sechs Stickstoffen der Triazolliganden koordiniert, während die äußeren Nickelatome jeweils von drei Triazolliganden, zwei Aqualiganden und einem Chloridoliganden koordiniert werden. Somit ergibt sich eine vierfach positive Ladung des Komplexkations. Pro Formeleinheit sind sechs Wassermoleküle und 4 Chloridanionen in der Struktur enthalten. Eine ORTEP-Darstellung des Komplexes ist in Abb. 3.39 gezeigt. Eine Darstellung der Packung des Komplexes in der Elementarzelle ist im Anhang in Abb. C.40 dargestellt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.20.

In der Literatur sind bereits ähnliche Komplexe bekannt [38, 39]. Hierbei handelt es sich allerdings um Nitrate, bei denen der dreikernige Komplex aufgrund der fehlenden Koordination durch eines der Gegenionen als sechsfach positiv geladenes Kation vorliegt. Bei [39] ist außerdem das Triazol an verschiedenen Positionen substituiert, was die Vergleichbarkeit beeinträchtigt.

In der Kristallstruktur bildet sich ein komplexes, dreidimensionales Wasserstoffbrückenbindungsnetzwerk aus. Eine Übersicht über die Wasserstoffbrückenbindungen ist in Tabelle 3.4 gegeben.

Tabelle 3.4: Abstände [Å] und Winkel [°] der Wasserstoffbrückenbindungen in **49**. D: Donor-Atom, A: Akzeptor-Atom. In Klammern: Standardabweichung der letzten Dezimalstelle. Bei der Strukturlösung wurde der Abstand von den Wasserstoff- zu den Stickstoffatomen auf 0.88 Å festgesetzt. In den Wassermolekülen wurde der Abstand der Wasserstoff- zu den Sauerstoffatomen auf 0.84 Å und der Abstand zwischen den beiden Wasserstoffatomen auf 1.34 Å festgesetzt. Symmetrieauszeichung: ⁱ -x, y, -z + 0.5; ⁱⁱ x + 0.5, -y + 0.5, z + 0.5; ⁱⁱⁱ -x + 0.5, y + 0.5, -z + 0.5; ^{iv} x, -y, z - 0.5; ^v x, -y, z + 0.5; ^{vi} -x + 0.5, -y + 0.5, -z + 1; ^{vii} -x + 0.5, -y + 0.5, -z; ^{viii} -x + 1, y, -z + 0.5.

D	Н	А	$D\!\cdots\!A$	D-H	$H{\cdots}A$	D-H···A
N3	H301	Cl2 ⁱ	0.88	2.28	3.0983(16)	153.9
N6	H601	Cl3 ⁱⁱ	0.88	2.30	3.0897(16)	149.9
N9	H901	Cl1 ⁱⁱⁱ	0.88	2.42	3.2175(16)	150.1
N9	H901	Cl1 ^{iv}	0.88	2.66	3.1947(16)	120.5
O1	H11	O4 ^v	0.827(15)	1.948(16)	2.770(2)	172(2)
O1	H12	Cl3 ^{vi}	0.824(15)	2.294(16)	3.1138(15)	174(2)
O2	H21	Cl2	0.832(15)	2.277(17)	3.0969(14)	169(2)
O2	H22	O3 ^{iv}	0.842(15)	1.871(17)	2.702(2)	169(2)
O4	H41	Cl2 ^{vii}	0.844(16)	2.314(17)	3.1554(16)	175(3)
O4	H42	Cl1 ⁱⁱⁱ	0.84(4)	2.59(2)	3.3965(17)	161(3)
O5	H51	Cl3 ^{vi}	0.865(17)	2.247(18)	3.112(2)	179(3)
O5	H52	O4 ^{viii}	0.843(17)	2.20(3)	2.933(2)	145(3)
O5	H52	O5 ^{viii}	0.843(17)	2.51(3)	3.002(4)	118(3)
O3	H32	Cl2 ⁱ	0.838(17)	2.344(19)	3.1728(19)	170(3)
O3	H31	O5 ^{vi}	0.834(17)	2.04(2)	2.834(3)	158(3)

3.4.3 Di(1,2,4-triazol-1-yl)-methan als Ligand

3.4.3.1 Kupfer(II)

Abbildung 3.40: ORTEP-Darstellung der asymmetrischen Einheit in der Elementarzelle des Koordinationspolymers [Cu(16)Cl]_nCl_n (50). Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: Cl5-Cu1 2.7651(14), Cu2-N3 2.029(6), Cu2-N6 2.004(6), Cu2-N9 2.018(6), Cu2-N12 2.013(6); ausgewählte Bindungswinkel [°]: N15-Cu1-Cl5 91.22(14), N6-Cu2 N990.7(2), Cl5-Cu1-Cl5ⁱ 179.56(11); ausgewählte Torsionswinkel [°]: N12-Cu2-N3-C1 124.0(5).

Das Koordinationspolymer $[Cu(16)Cl]_nCl_n$ (50) kristallisiert in blauen Blöcken in der orthorhombischen Raumgruppe *Ic2m*. Das Kupfer ist oktaedrisch von zwei verbrückenden Chloridoliganden und vier über die 2,4-Stickstoffatome in den Triazolen verbrückenden 16-Liganden umgeben. Dadurch entsteht ein dreidimensionales polymeres Netzwerk mit Kanälen, in denen die Chloridgegenionen stark fehlgeordnet vorliegen. Eine ORTEP-Darstellung des Komplexes ist in Abb. 3.40, eine Abbildung mit Blickrichtung entlang der Kanäle in Abb. 3.41 gezeigt. Eine Darstellung der Packung des Komplexes in der Elementarzelle ist im Anhang in Abb. C.41 dargestellt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.21.

Abbildung 3.41: ORTEP-Darstellung der Kanäle in der Kristallstruktur des Koordinationspolymers **50** mit Blickrichtung entlang [001]. Die Chloridionen in den Kanälen sind stark fehlgeordnet, weshalb hier nur die Chloridionen mit der höchsten Besetzungswahrscheinlichkeit abgebildet sind. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

3.4.4 Natrium-1,2,4-bistriazol-1-yl-boranat als Ligand

3.4.4.1 Kupfer(II)

Das Koordinationspolymer $\{(C_4H_9)_4N\}[Cu(18)_2Cl_2] \cdot 5 H_2O\}_n$ (51) kristallisiert in blauen Plättchen in der monoklinen Raumgruppe C2/*c*. Das Kupfer ist oktaedrisch von zwei Chloridoliganden und vier über die Stickstoffatome in 4-Position in den Triazolen verbrückenden 18-Liganden umgeben. Dadurch entstehen Schichten senkrecht zu [100] (siehe Abb. 3.43). Eine ORTEP-Darstellung der asymmetrischen Einheit des Komplexes ist in Abb. 3.42 gezeigt. Eine Darstellung der Packung des Komplexes in der Elementarzelle ist im Anhang in Abb. C.42 dargestellt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.21.

In den Hohlräumen ist das Kation, Tetrabutylammonium, eingelagert. Die koordinationspolymeren Schichten sind untereinander durch die Kristallwassermoleküle über Wasserstoffbrückenbindungen verbunden. Eine Übersicht über die in der Struktur vorkommenden Wasserstoffbrückenbindungen ist in Tabelle 3.5 gegeben.

Abbildung 3.42: ORTEP-Darstellung der eines Ausschnitts des anionischen Netzwerks und des Kations des Koordinationspolymers $\{(C_4H_9)_4N\}[Cu(18)_2Cl_2] \cdot 5 H_2O\}_n$ (51). Aus Gründen der Übersichtlichkeit wurde auf die Darstellung der pro Formeleinheit in der Kristallstruktur vorhandenen fünf Wassermoleküle verzichtet. Das Gegenion, Tetrabutylammonium, ist stark fehlgeordent, weshalb hier nur die Ketten mit der höchsten Besetzungsdichte abgebildet sind. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ x, -y, z – 0.5. Ausgewählte Bindungslängen [Å]: Cu1-N3 1.997(4), Cu1-N6 2.032(4) ; ausgewählte Bindungswinkel [°]: N3-Cu1-N6 90.38(17); ausgewählte Torsionswinkel [°]: C1-N1-B1-N4ⁱ 95.9(6).

Abbildung 3.43: MERCURY-Darstellung der Schichten in der Kristallstruktur des Koordinationspolymers **51** mit Blickrichtung entlang [100]. Aus Übersichtlichkeitsgründen wird nur das anionische Netzwerk gezeigt. Die Tetrabutylamoniumkationen liegen in der Struktur in den Hohlräumen des anionischen Netzwerks vor. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

Tabelle 3.5: Abstände [Å] und Winkel [°] der Wasserstoffbrückenbindungen in **51**. D: Donor-Atom, A: Akzeptor-Atom. In Klammern: Standardabweichung der letzten Dezimalstelle. Bei der Strukturlösung wurde der Abstand von den Wasserstoff- zu den Stickstoffatomen auf 0.88 Å festegesetzt. In den Wassermolekülen wurde der Abstand der Wasserstoff- zu den Sauerstoffatomen auf 0.84 Å und der Abstand zwischen den beiden Wasserstoffatomen auf 1.34 Å festgesetzt. Symmetrieauszeichung: i - x + 0.5, y + 0.5, -z + 0.5; ii - x, -y + 1, -z; iii x, -y, z - 0.5.

D	Η	А	D···A	D-H	$H{\cdots}A$	D-H···A
O92	H921	N2 ⁱ	0.83(5)	2.22(7)	2.869(7)	135(8)
O92	H922	O92 ⁱⁱ	0.83(2)	2.39(8)	2.840(11)	114(8)
O91	H911	Cl1	0.83(5)	2.41(10)	3.013(6)	130(11)
O90	H901	Cl1	0.83(2)	2.27(5)	3.047(7)	157(11)
O90	H902	N5 ⁱⁱⁱ	0.83(2)	2.45(7)	3.148(8)	143(10)

3.5 Synthese und röntgenkristallographische Untersuchungen von Komplexen mit tetrazolhaltigen Liganden

3.5.1 Allgemeines

Die Komplexbildungsuntersuchungen an tetrazolhaltigen Liganden erwiesen sich ebenfalls als erfolgreich. Meistens konnten Komplexe aus wässriger Lösung erhalten werden, eine Zersetzung der Liganden war nur selten zu beobachten. Die erhaltenen Komplexverbindungen erwiesen sich, zumindest in den verwendeten kleinen Mengen, als weitgehend ungefährlich in der Handhabung. Im Folgenden sind die Kristallstrukturen der erhaltenen Komplexe dargestellt.

3.5.2 Di(tetrazol-5-yl)-amin als Ligand

3.5.2.1 Nickel(II)

Der Nickelkomplex $[Na_5Ni(22H_{-2})_3(OH)(H_2O)_8]_n$ (52) kristallisiert in farblosen Blöcken in der triklinen Raumgruppe PĪ. Das Nickel ist oktaedrisch von drei Di(tetrazol-5-yl)-amindianionen umgeben. Pro Formeleinheit sind fünf Natriumkationen und acht Wassermoleküle mit einem Hydroxidion zu einem dreidimensionalen Netzwerk verbrückt. Die Di(tetrazol-5-yl)-amindianionen koordinieren hierbei über die Stickstoffatome in 1-Position an Nickelatom und über eines der Stickstoffatome in 3- oder 4-Position an Natriumkationen. Eine ORTEP-Darstellung des anionischen Teilkomplexes ist in Abb. 3.44 gezeigt. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.43. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.22.

Die Wassermoleküle bilden ein stark verzweigtes Wasserstoffbrückenbindungsnetzwerk aus. Hinzu kommt, dass sich das Hydroxid in der Kristallstruktur nicht klar lokalisieren lässt, sondern hierfür mehrere mögliche Positionen in Betracht kommen. Eine Übersicht über die Wasserstoffbrückenbindungen in der Kristallstruktur ist in Tabelle 3.6 aufgeführt.

Abbildung 3.44: ORTEP-Darstellung von $[Na_5Ni(22H_{-2})_3(OH)(H_2O)_8]_n$ (52). Aus Übersichtlichkeitsgründen wird nur das Komplexanion dargestellt. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: Ni1-N9 2.068(3), Ni1-N1 2.076(3), Ni1-N20 2.080(3), Ni1-N18 2.080(3), Ni1-N10 2.095(3), Ni1-N28 2.096(3); ausgewählte Bindungswinkel [°]: N9-Ni1-N1 84.06(10), N9-Ni1-N18 88.12(10), N1-Ni1-N10 173.56(10); ausgewählte Torsionswinkel [°]: C1-N5-C2-N9 -1.6(5).

Tabelle 3.6: Abstände [Å] und Winkel [°] der Wasserstoffbrückenbindungen in der Kristallstruktur von **52**. D: Donor-Atom, A: Akzeptor-Atom. In Klammern: Standardabweichung der letzten Dezimalstelle. Bei der Strukturlösung wurde der Abstand von den Wasserstoff- zu den Stickstoffatomen auf 0.88 Å festgesetzt. In den Wassermolekülen wurde der Abstand der Wasserstoffzu den Sauerstoffatomen auf 0.84 Å und der Abstand zwischen den beiden Wasserstoffatomen auf 1.34 Å festgesetzt. Symmetrieauszeichung: ⁱ -x + 1, -y + 1, -z; ⁱⁱ -x + 1, -y + 1, -z + 1; ⁱⁱⁱ x - 1, y, z; ^{iv} -x + 1, -y + 2, -z + 1; v - x, -y + 1, -z; ^{vi} x, y + 1, z; ^{vii} x + 1, y, z; ^{viii} -x + 1, -y, -z; ^{ix} x + 1, y - 1, z; ^x x + 1, y, z; ^{xi} x + 1, y + 1, z.

D	Н	А	$D\!\cdots A$	D-H	$H{\cdots}A$	D-H···A
N5	H51	N27 ⁱ	0.88	2.25	3.090(4)	158.5
N5	H51	N26 ⁱ	0.88	2.41	3.279(4)	169.0
N14	H141	O11	0.88	2.08	2.935(4)	162.3
N24	H24	N11 ⁱⁱ	0.88	2.15	2.957(4)	151.8
O11	H11	N6 ⁱ	0.825(18)	2.088(19)	2.882(4)	162(4)
O11	H12	O42 ⁱⁱⁱ	0.812(18)	2.36(2)	3.146(4)	164(4)
O12	H121	N6 ⁱ	0.84(4)	2.30(2)	3.094(4)	160(4)
O12	H122	O23 ⁱ	0.842(18)	1.952(19)	2.792(4)	176(4)
O13	H131	N21 ^{iv}	0.68(3)	2.38(3)	3.045(4)	171(5)
O13	H132	O41	0.857(16)	2.306(16)	3.100(4)	154(3)
O21	H211	N17 ^v	0.827(18)	2.33(3)	3.009(4)	139(4)
O21	H212	N3 ^{vi}	0.837(18)	1.938(19)	2.761(4)	167(4)
O22	H221	N17 ^{vii}	0.826(18)	2.43(3)	2.998(4)	127(4)
O22	H222	N4 ^{viii}	0.826(18)	2.02(2)	2.814(4)	160(5)
O23	H231	N8 ⁱ	0.839(18)	1.99(2)	2.784(4)	157(4)
O23	H232	O31 ⁱ	0.857(18)	2.03(2)	2.884(4)	172(4)
O31	H312	N21 ^{ix}	0.818(18)	2.12(3)	2.828(4)	144(4)
O41	H411	N15 ^x	0.814(18)	2.13(2)	2.922(4)	162(4)
O41	H412	O31	0.838(18)	2.49(3)	3.196(4)	142(3)
O42	H421	N22 ^{iv}	0.833(18)	2.08(2)	2.891(4)	164(4)
O42	H422	N2 ^{xi}	0.85(4)	2.07(2)	2.864(4)	156(4)

3.5.3 (2-Methyl-tetrazol-5-yl)-(tetrazol-5-yl)-amin als Ligand

3.5.3.1 Thallium(I)

Abbildung 3.45: ORTEP-Darstellung von Tl(23H_{−1}) (53). Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: Tl1-N5 2.661(4), Tl1-N1 2.714(4); ausgewählte Bindungswinkel [°]: N5-Tl1-N1 63.80(11); ausgewählte Torsionswinkel [°]: C2-N9-C1-N1 −0.4(7).

Bei der Verbindung Tl($23H_{-1}$) (53) handelt es sich um ein Thalliumsalz von (2-Methyl-tetrazol-5-yl)-(tetrazol-5-yl)-amin. Die Verbindung kristallisiert in farblosen Plättchen in der triklinen Raumgruppe PĪ. Eine ORTEP-Darstellung des Salzes ist in Abb. 3.45 gezeigt. Eine Darstellung der Packung des Komplexes in der Elementarzelle ist im Anhang in Abb. C.46 dargestellt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.22.

In der Kristallstruktur bildet das Anion, $23H_{-1}$, Dimere mit einem relativ kurzen Abstand von etwa 0.6 Å unter der Summe der van-der-Waals-Radien der Atome aus. Diese sind zu Ketten entlang [100] über ebenfalls relativ kurze Wechselwirkungen zu den Thalliumkationen verbrückt (siehe Abb. 3.46). Das Thalliumkation hat zwei nahe Nachbarn mit Abständen von 2.66 Å und 2.71 Å. Es weist noch weitere Kontakte zu weiter entfernten Stickstoffatomen auf, so dass die Koordinationszahl bei etwa fünf bis sechs liegt, wenn alle

Abbildung 3.46: MERCURY-Darstellung eines Ausschnitts eines der durch Tl····N Kontakte aufgebauten Stränge von 23_{−H}-Dimeren entlang [100] in der Kristallstruktur von Tl(23H_{−1}) dargestellt mit Blickrichtung entlang [010]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

Wechselwirkungen mit einem Abstand bis 0.2 Å unter der Summe der vander-Waals-Radien einbezogen werden.

3.5.3.2 Blei(II)

Abbildung 3.47: ORTEP-Darstellung der Koordinationsumgebung des Bleis in der Elementarzelle der Kristallstruktur von $[Pb(23H_{-1})_2]_n \cdot H_2O$ (54). Aus Übersichtlichkeitsgründen ist das pro Formeleinheit in der Kristallstruktur enthaltene Wassermolekül nicht dargestellt. Die Darstellung der thermischen Schwingungsellipsoide entspricht 30% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichung: 1 - x + 1, -y + 1, -z, ⁱⁱ x + 1, y, z. Ausgewählte Bindungslängen [Å]: Pb1-N1 2.734(3), Pb1-N5 2.616(3), Pb1-N10 2.673(3), Pb1-N14 2.478(3), Pb1-N15 2.780(3); ausgewählte Bindungswinkel [°]: N5-Pb1-N1 65.35(10), N14-Pb1-N5 72.91(10); ausgewählte Torsionswinkel [°]: C1-N9-C2-N5 14.8(6).

Das Koordinationspolymer $[Pb(23H_{-1})_2]_n \cdot (H_2O)_n$ (54) kristallisiert in farblosen Blöcken in der triklinen Raumgruppe PĪ. Das zentrale Bleiatom ist von vier stark koordinierenden und einem etwas schwächer koordinierendem (Abstand etwa 0.6 Å unter der Summe der van-der-Waals-Radien) 23_{-H} -Liganden umgeben. Zwei der nahen Liganden fungieren als zweizähnige, zwei als einzähnige Liganden, der weiter enfernte Ligand koordiniert einzähnig und verbrückt diese Einheiten zugleich zu einem koordinationspolymeren Strang in Richtung [100] (siehe Abb. 3.48). Eine ORTEP-Darstellung der asymmetrischen Einheit des Komplexes ist in Abb. 3.47 gezeigt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.23.

Die koordinationspolymeren Stränge sind über Wasserstoffbrückenbindungen mit den benachbarten Strängen vernetzt. Blickt man in Richtung der koor-

Abbildung 3.48: MERCURY-Darstellung eines Ausschnitts der im Koordinationspolymer 54 enthaltenen Stränge entlang [100] dargestellt mit Blickrichtung entlang [010]. Der grün eingezeichnete Kontakt ist etwa 0.6 Å unter der Summe der van-der-Waals-Radien der beteiligten Atome. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

dinationspolymeren Stränge, so bilden die Wasserstoffbrückenbindungen Schichten senkrecht zu [100] (siehe Abb. 3.49). Eine Übersicht über die Wassserstoffbrückenbindungen ist in Tabelle 3.7 gegeben.

Tabelle 3.7: Abstände [Å] und Winkel [°] der Wasserstoffbrückenbindungen in der Kristallstruktur von 54. D: Donor-Atom, A: Akzeptor-Atom. In Klammern: Standardabweichung der letzten Dezimalstelle. Bei der Strukturlösung wurde in den Wassermolekülen der Abstand der Wasserstoff- zu den Sauerstoffatomen auf 0.84 Å und der Abstand zwischen den beiden Wasserstoffatomen auf 1.34 Å festgesetzt. Symmetrieauszeichung: ⁱ -x, -y, -z; ⁱⁱ x, y, z + 1.

D	Η	А	$D{\cdots}A$	D-H	$H{\cdot} \cdot \cdot A$	D-H···A
N9	H9	N8 ⁱ	0.88	2.00	2.863(4)	168.3
N18	H18	N17 ⁱⁱ	0.88	2.01	2.876(5)	167.5
O1	H11	N13	0.87(8)	2.19(8)	3.039(7)	166(9)
O1	H12	N16 ⁱⁱ	0.88(7)	2.26(9)	2.992(7)	141(11)

Abbildung 3.49: MERCURY-Darstellung eines Ausschnitts der im Koordinationspolymer 54 durch Wasserstoffbrückenbindungen gebildeten Schichten senkrecht zu [100] dargestellt mit Blickrichtung entlang [100]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

3.5.4 Di(2-methyl-tetrazol-5-yl)-amin als Ligand

3.5.4.1 Palladium(II)

Der neutrale Palladiumkomplex $[Pd(24)Cl_2] \cdot 3 H_2O$ (55) kristallisiert in gelben Stäbchen in der monoklinen Raumgruppe $P2_1/c$. Das Palladium ist quadratisch planar von einem Di(2-methyl-tetrazol-5-yl)-aminliganden, der zweizähnig koordiniert, und von zwei Chloridoliganden umgeben. In der Kristallstruktur sind pro Formeleinheit drei Wassermoleküle enthalten, allerdings kann aus der Elektronendichteverteilung der Röntgenstrukturanalyse nicht auf die Lage der Wasserstoffatome geschlossen werden. Eine ORTEP-Darstellung des Komplexes ist in Abb. 3.50 gezeigt. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.46. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.23.

Abbildung 3.50: ORTEP-Darstellung von [Pd(24)Cl₂] · 3 H₂O (55). Aus Übersichtlichkeitsgründen werden in der Darstellung die pro Formeleinheit in der Struktur vorhandenen drei Wassermoleküle nicht dargestellt. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: Pd1-N1 2.030(2), Pd1-N6 2.026(3), Pd1-Cl1 2.2774(7), Pd1-Cl2 2.2878(7); ausgewählte Bindungswinkel [°]: N6-Pd1-N1 86.42(10), Cl1-Pd1-Cl2 89.17(3), N1-Pd1-Cl2 92.60(7); ausgewählte Torsionswinkel [°]: C2-N5-C1-N1 15.4(5).

3.5.5 Di(2-methyl-tetrazol-5-yl)benzyl-amin als Ligand

3.5.5.1 Kupfer(II)

Der neutrale Kupferkomplex [Cu(27)(NO₃)] (56) kristallisiert in blauen Stäbchen in der monoklinen Raumgruppe $P2_1/c$. Das Kupferatom ist quadratisch planar von einem zweizähnig koordinierenden Di(2-methyl-tetrazol-5yl)benzyl-aminliganden und zwei einzähnig koordinierenden Nitratoliganden umgeben. Eines der beiden freien Sauerstoffatome der beiden Nitratliganden befindet sich in etwa in axialer Position mit einem Abstand zum Kupfer von etwa 2.392 bzw. 2.449 Å, was auf eine stark verzerrte oktaedrische Koordination hinweist. Eine ORTEP-Darstellung des Komplexkations ist in Abb. 3.51 gezeigt. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.47. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.24.

Abbildung 3.51: ORTEP-Darstellung von [Cu(27)(NO₃)] (56). Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: Cu1-N1 1.9656(15), Cu1-N6 1.9749(15), Cu1-O21 1.9951(13), Cu1-O24 1.9708(13), Cu1-O22 2.3910(14); ausgewählte Bindungswinkel [°]: N1-Cu1-N6 86.72(6), N1-Cu1-O24 171.03(6), N1-Cu1-O21 93.36(6), O21-Cu1-O22 58.29(5); ausgewählte Torsionswinkel [°]: C1-N5-C2-N6 3.6(3).

3.5.6 Di(tetrazol-5-yl)-methan als Ligand

3.5.6.1 Kupfer(II)

Der Kupferkomplex (NH₄)₂[Cu(**16**H₋₂)₂] (**57**) kristallisiert in blauen Blöcken in der monoklinen Raumgruppe P2₁/*c*. Das Kupferatom ist verzerrot oktaedrisch von zwei nahen zweizähnig koordinierenden und zwei weiter entfernten einzähnig koordinierendenDi(tetrazol-5-yl)-methan-Dianionen umgeben. Die beiden Liganden in der Äquatorialebene koordinieren über die 1-Position der Tetrazolringe und sind mit einem Abstand von 2.02 Å bzw. 1.99 Å deutlich näher als die beiden über die 4-Position koordinierenden axialen Liganden mit einem Abständ von 2.55 Å. Die axialen Liganden fungieren ihrerseits wieder als zweizähnige Liganden bei einem benachbarten Kupferatom. Dadurch bilden sich anionische koordinationspolymere Schichten senkrecht zu [100], in deren Zwischenräumen die Ammoniumkationen eingelagert sind.

Abbildung 3.52: ORTEP-Darstellung des Komplexanions von $(NH_4)_2[Cu(16_{-2H})_2]$ (57). Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichung: ⁱ -x, -y + 1, -z + 1. Ausgewählte Bindungslängen [Å]: Cu1-N1 2.0220(14), Cu1-N5 1.9935(14); ausgewählte Bindungswinkel [°]: N5-Cu1-N1 85.96(6), N5ⁱ-Cu1-N1 94.04(6); ausgewählte Torsionswinkel [°]: C1-C2-C3-N5 -40.6(2).

Eine ORTEP-Darstellung des Komplexkations ist in Abb. 3.51 gezeigt. Ein Ausschnitt des anionischen Koordinationspolymers ist in Abb. 3.53 dargestellt. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.47. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.24.

In der Kristallstruktur sind die Schichten des Koordinationspolymers durch Wasserstoffbrückenbindungen des Ammoniumkations mit den darüber- und darunterliegenden Schichten vernetzt. Eine Übersicht über die in der Kristallstruktur vorliegenden Wasserstoffbrückenbindungen ist in Tabelle 3.8 gegeben.

Abbildung 3.53: MERCURY-Darstellung eines Ausschnitts der im Koordinationspolymer 57 vorliegenden anionischen Schichten senkrecht zu [100] dargestellt mit Blickrichtung entlang [100]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

Tabelle 3.8: Abstände [Å] und Winkel [°] der Wasserstoffbrückenbindungen in der Kristallstruktur von **57**. D: Donor-Atom, A: Akzeptor-Atom. In Klammern: Standardabweichung der letzten Dezimalstelle. Bei der Strukturlösung wurde in den Wassermolekülen der Abstand der Wasserstoff- zu den Sauerstoffatomen auf 0.84 Å und der Abstand zwischen den beiden Wasserstoffatomen auf 1.34 Å festgesetzt. Symmetrieauszeichung: ⁱ -x + 1, -y + 1, -z + 1; ⁱⁱ -x, -y + 1, -z + 1; ⁱⁱⁱ x, -y + 0.5, z - 0.5; ^{iv} -x + 1, y - 0.5, -z + 1.5.

D	Н	А	$D{\cdots}A$	D-H	$H{\cdot}{\cdot}{\cdot}A$	$D\text{-}H\text{-}\cdots A$
N10	H102	N3 ⁱ	0.82(3)	2.13(3)	2.936(2)	165(2)
N10	H101	N6 ⁱⁱ	0.90(3)	2.00(3)	2.857(2)	158(2)
N10	H104	N2 ⁱⁱⁱ	0.94(3)	2.00(3)	2.921(2)	165(2)
N10	H103	N4 ^{iv}	0.91(3)	2.06(3)	2.955(2)	169(2)

3.6 Synthese und röntgenkristallographische Untersuchungen von Nitrosyl-Komplexen

3.6.1 Neue [Ru(NO)Cl₅]²⁻-Salze

Abbildung 3.54: ORTEP-Darstellung des Anions von {(C₆H₅)₄As}₂[Ru(NO)Cl₅] (58). Das Kation und das in der Kristallstruktur pro Formeleinheit enthaltenene Dichlormethan sind aus Übersichtlichkeitsgründen nicht dargestellt. Die NO-Gruppe weist eine 1:1-Fehlordung mit einem Chloridoliganden auf. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: Ru1-Cl1 2.3601(9), Ru1-Cl2 2.3824(8), Ru1-Cl5a 2.391(3), Ru1-N1b 1.730(10); ausgewählte Bindungswinkel [°]: Cl3-Ru1-Cl2 90.37(3), N1b-Ru1-Cl3 178.1(2), O1b-N1b-Ru1 174.0(7).

Um die Löslichkeit in organischen Lösemitteln zu ermöglichen wurden von [Ru(NO)Cl₅]^{2–} zwei neue Salze mit großen Kationen dargestellt.

Das Tetraphenylarsoniumsalz $\{(C_6H_5)_4As\}_2[Ru(NO)Cl_5]$ (58) kristallisiert in violetten Blöcken in der triklinen Raumgruppe PĪ aus. Eine ORTEP-Darstellung des Anions des Komplexes ist in Abb. 3.54 gezeigt. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.49. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.25.

In der Kristallstruktur weist der Nitrosylligand eine Fehlordnung mit einem der Chloridoliganden auf, womit es zwei Orientierungen des Nitrosyls gibt. Beide Orientierungen weisen keinen Kontakt mit Molekülen der Umgebung auf. In der Struktur haben nur die beiden Chloridoliganden Cl3 und Cl4, also zwei, die nicht an der Fehlordung beteiligt sind, C-H \cdots Cl Kontakte mit den Benzolgruppen der Kationen mit einem Abstand von etwa 0.2 Å unter der Summe der van-der-Waals-Radien der Atome auf.

Das Tetraphenylphosphoniumsalz $\{(C_6H_5)_4P\}_2[Ru(NO)Cl_5]$ (59) kristallisiert ebenfalls in violetten Blöcken in der triklinen Raumgruppe PĪ aus. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.50. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.25.

In der Kristallstruktur weist der Nitrosylligand eine Fehlordnung mit einem der Chloridoliganden auf, so dass es also zwei Orientierungen des Nitrosylliganden gibt. Beide Orientierungen weisen keinen Kontakt mit Molekülen der Umgebung auf. In der Struktur haben nur die beiden Chloridoliganden Cl1 und sein inversionssymmetrisches Spiegelbild, die beide nicht an der Fehlordung beteiligt sind, C-H···Cl Kontakte mit der CH₂-Gruppe des Dichlormethans mit einem Abstand von etwa 0.3 Å unter der Summe der van-der-Waals-Radien der Atome.

Die fehlenden Kontakte und die Fehlordung weisen darauf hin, dass sich bei diesen Kristallstrukturen der Rutheniumnitrosylkomplex aufgrund der großen Kationen und der damit weitgehend unpolaren Umgebung vergleichbar einem Gasphasenkomplex sein sollte, also mit den berechneten Ergebnissen gut vergleichbar sein sollte. Die Umgebung sollte hier die Isomerisierung von Nitrosyl- zum Isonitrosylkomplex kaum beeinflussen. Das Fehlen der Wechselwirkungen zeigt sich auch in der Verschiebung der N-O-Schwingung im IR-Spektrum von etwa 1900 cm⁻¹ beim Kaliumsalz (aus [40]) zu etwa 1829 cm⁻¹ beim Tetraphenylphosphoniumsalz zeigt. Laut [40] zeigt der isotype Iodkomplex $[Ru(NO)I_5]^{2-}$ (Kristallstrukturen siehe [41, 42]) die Bande der N-O-Streckschwingung im Infrarotspektrum bei etwa 1840 cm⁻¹. Somit ist also die durch den Tausch des Kations in der Kristallstruktur hervorgerufene Verschiebung stärker als die durch den Austausch aller Chloridoliganden zu Iodidoliganden herbeigeführte Verschiebung der N-O-Streckschwingung im Infrarotspektrum, was den sehr starken Einfluss der Umgebung auf die Nitrosyl-Metallbindung nochmals vor Augen führt.

3.6.2 K₂[Ru(NO)F₅]

Abbildung 3.55: ORTEP-Darstellung des Anions von K₂[Ru(NO)F₅] · H₂O (60). Die Kaliumkationen und das in der Kristallstruktur pro Formeleinheit enthaltenene Wassermolekül sind aus Übersichtlichkeitsgründen nicht dargestellt. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: Ru1-F1 1.920(2), Ru1-F2 1.980(2), Ru1-F3 1.958(2), Ru1-N1 1.716(3), N1-O1 1.160(4); ausgewählte Bindungswinkel [°]: F1-Ru1-F2 84.94(9), N1-Ru1-F1 178.51(11),O1-N1-Ru1 177.4(3).

Synthese und eine Kristallstruktur von $K_2[Ru(NO)F_5] \cdot H_2O$ (60) sind bereits literaturbekannt (siehe [43]). Bei der Synthese der Verbindung wurde eine neue Modifikation entdeckt.

Der Fluoridkomplex **60** kristallisiert in purpurnen Stäbchen in der orthorhombischen Raumgruppe Pbca. Eine ORTEP-Darstellung des Anions des Komplexes ist in Abb. 3.55 gezeigt. Dabei ist das Ruthenium oktaedrisch von fünf Fluorid- und einem Nitrosylliganden umgeben. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.51. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.26.

In der Kristallstruktur bilden sich fluoridoverbrückte Schichten der Rutheniumkomplexe und Kaliumkaliumkationen senkrecht zu [001]. Die Nitrosylgruppen und die an das Kaliumkation koordinierenden Wassermoleküle zeigen zwischen diese Schichten. Dabei bilden die Wassermoleküle Wasserstoffbrückenbindungen zu Fluoridliganden der nächsten Schicht aus und vernetzen so die Schichten (siehe Tabelle 3.9).

Tabelle 3.9: Abstände [Å] und Winkel [°] der Wasserstoffbrückenbindungen in **60**. D: Donor-Atom, A: Akzeptor-Atom. In Klammern: Standardabweichung der letzten Dezimalstelle. Bei der Strukturlösung wurde der Abstand vom Wasserstoff- zum Sauerstoffatom auf 0.84 Å und zwischen zwei an Sauerstoff gebundenen Wasserstoffatomen auf 1.34 Å fixiert. Symmetrieauszeichung: ⁱ -x + 1/2, y - 1/2, z.

D	Н	А	$D{\cdots}A$	D-H	$H{\cdots}A$	$D\text{-}H\text{-}\cdot\cdot A$
O99	H991	F4	0.82(4)	2.04(2)	2.853(4)	169(4)
O99	H992	F2 ⁱ	0.82(4)	2.02(2)	2.836(4)	172(4)

3.7 Synthese und röntgenkristallographische Untersuchungen von NO₂-Komplexen

3.7.1 Allgemeines

Da bei Nitrosylkomplexen die Isonitrosylkomplexe aufgrund der Geschwindigkeit der Rückreaktion zum Nitrosylkomplex nicht Faßbar waren, wurden die Untersuchungen auf von Nitrosyl auf NO₂ ausgeweitet, um diese Komplexe als Modellsystem zu betrachten. Besonders interessant erwies sich hier Nickel als Zentralmetall, da mit diesem Übergangsmetall Komplexe mit den verschiedenen Koordinationsmöglichkeiten des Nitrits dargestellt werden konnten.

3.7.1.1 NiNO₂-Komplexe mit Di(pyrazol-1-yl)methan

Es konnten drei neue NiNO₂-Komplexe mit unterschiedlicher Koordinationsumgebung dargestellt werden. Bei allen drei Komplexen tritt der Nitritoligand in unterschiedlichen Koordinationen auf. In **61** koordiniert der Nitritoligand über das Stickstoffatom, bei **62** über die beiden Sauerstoffatome und bei **63** über ein Sauerstoff- und das Stickstoffatom. Die Synthesen der Komplexe sind relativ ähnlich, allerdings erhält man je nach Lösemittel, Gegenionen und Reaktionsdauer jeweils ausschließlich einen Komplex als Hauptprodukt.

Der Nickelnitritkomplex $[Ni(NO_2)(10)_2(H_2O)]Cl \cdot H_2O$ (61) kristallisiert in braunen Blöcken in der monoklinen Raumgruppe P2₁. Eine ORTEP-Darstellung des Komplexes ist in Abb. 3.56 gezeigt. Hier ist das Nickel ok-

Abbildung 3.56: ORTEP-Darstellung von $[Ni(NO_2)(10)_2(H_2O)]Cl \cdot H_2O$ (61). Das pro Formeleinheit in der Kristallstruktur vorhandene nichtkoordinierende Wassermolekül ist aus Ubersichtlichkeitsgründen nicht dargestellt. Das Chloridanion weist eine starke Fehlordnung auf, weshalb hier nur die Position mit der höchsten Besetzungswahrscheinlichkeit gezeigt wird. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: Ni1-N1 2.078(2), Ni1-N4 2.091(2), Ni1-N11 2.0946(19), Ni1-N14 2.088(2), Ni1-O23 2.1014(18), N30-Ni1 2.172(2), N30-O30 1.235(3), N30-O31 1.225(3); ausgewählte Bindungswinkel [°]: N1-Ni1-N4 88.67(8), N14-Ni1-N11 87.60(8), O23-Ni1-N30 176.44(8), O31-N30-O30 117.5(2). ausgewählte Torsionswinkel [°]: N1-N2-C4-N3 -60.8(3), N11-N12-C14-N13 -63.5(3).

taedrisch von zwei Di(pyrazol-1-yl)-methan-, einem Nitrito- κN - und einem Aqualiganden umgeben. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.52. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.26.

In der Kristallstruktur bilden sich wasserstoffverbrückte Ketten entlang [010] (siehe Abb. 3.57). Diese Ketten sind über C-H···O und C-H···Cl Kontakte mit einem Abstand von etwa 0.2 Å unter der Summe der van-der-Waals-Radien der beteiligten Atome senkrecht zu [001] zu Schichten verbrückt.

Abbildung 3.57: MERCURY-Darstellung eines Ausschnitts der durch Wasserstoffbrückenbindungen erzeugten Ketten entlang [010] in der Kristallstruktur von **61**, dargestellt mit Blickrichtung entlang [001]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Da das Gegenion Chlorid fehlgeordnet ist, ist nur das Chloridanion mit der höchsten Besetzungswahrscheinlichkeit abgebildet.

Der Nickelnitritokomplex $[Ni(NO_2)(10)_2]((C_6H_5)_4B)$ (62) kristallisiert in blauen Blöcken in der monoklinen Raumgruppe P2₁/*c*. Eine ORTEP-Darstellung des Komplexkations ist in Abb. 3.58 gezeigt. Hier ist das Nickel oktaedrisch von zwei Di(pyrazol-1-yl)-methan-, und einem über beide Sauerstoffatome koordinierenden Nitritoliganden umgeben. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.53. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.27.

In der Kristallstruktur bilden sich über C-H···O Kontakte mit etwa 0.3 Å unter der Summe der van-der-Waals-Radien der beteiligten Atome Ketten entlang [001] aus. An diese anionischen Ketten lagern sich Kationen an, was zu C-H···C Kontakten mit etwa 0.2 Å unter der Summe der van-der-Waals-Radien der beteiligten Atome führt. Ein Ausschnit der anionischen Ketten mit den Kationen ist in Abb. 3.59 gezeigt.

Der Nickelnitritokomplex $[Ni_3(NO_2)_6(10)_2(H_3COH)_2] \cdot C_6H_{14}$ (63) kristallisiert in gelben Blöcken in der orthorhombischen Raumgruppe *Cmca*. Eine ORTEP-Darstellung des Komplexes ist in Abb. 3.60 gezeigt. In dem Dreikernkomplex ist das zentrale Nickelatom von sechs Nitritoliganden umgeben, die

Abbildung 3.58: ORTEP-Darstellung des Kations von $[Ni(NO_2)(10)_2]((C_6H_5)_4B)$ (62). Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen [Å]: Ni1-N1 2.082(2), Ni1-N4 2.039(2), Ni1-N5 2.082(2), Ni1-N8 2.058(2), Ni1-O1 2.1181(19), Ni1-O2 2.0902(18); ausgewählte Bindungswinkel [°]: N4-Ni1-N1 86.81(9), N4-Ni1-N8 98.98(9), O2-Ni1-O1 59.77(7); ausgewählte Torsionswinkel [°]: N1-N2-C4-N3 -62.6(3), N5-N6-C11-N7 -61.0(3).

alle über das Stickstoffatom binden und von denen je drei zu einem der beiden äußeren Nickelatome verbrücken. Die beiden äußeren Nickelatome sind oktaedrisch von drei über je ein Sauerstoffatom koordinierenden Nitrito-, einem Di(pyrazol-1-yl)-methan- und einem Methanolliganden umgeben. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.54 gezeigt. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.27.

In der Kristallstruktur ist neben dem Neutralkomplex ein Molekül n-Hexan pro Formeleinheit enthalten, das eine sehr starke Fehlordnung aufweist. Aus diesem Grund wurden nur die Kontakte der Komplexmoleküle untereinander untersucht. Hier führen C-H···O Kontakte in der Kristallstruktur zu einem dreidimensionalen Netzwerk.

Abbildung 3.59: MERCURY-Darstellung eines Ausschnitts der durch C-H···O erzeugten Ketten entlang [001] in der Kristallstruktur von 62, dargestellt mit Blickrichtung entlang [100]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Die Kationen bilden ebenfalls Kontakte zu diesen anionischen Ketten aus. Abstände von 0.3 Å unter der Summe der van-der-Waals-Radien der Atome sind grün, von 0.2 Å rot dargestellt.

Abbildung 3.60: ORTEP-Darstellung von $[Ni_3(NO_2)_6(10)_2(H_3COH)_2] \cdot C_6H_{14}$ (63). Auf die Darstellung des pro Formeleinheit in der Kristallstruktur vorhandenen n-Hexanmoleküls wurde aus Übersichtlichkeitsgründen verzichtet. Die Darstellung der thermischen Schwingungsellipsoide entspricht 30% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ x, -y, -z; ⁱⁱ -x, -y, -z; ⁱⁱⁱ -x, y, z. Ausgewählte Bindungslängen [Å]: Ni1-N1 2.069(4), Ni1-O1 2.078(4),Ni1-O2 2.042(5), Ni2-N4 2.086(5); ausgewählte Bindungswinkel [°]: N1-Ni1-N1ⁱⁱ 89.0(2), N4-Ni2-N5 92.33(14); ausgewählte Torsionswinkel [°]: N1-N2-C4-N2 -66.0(6).

3.7.1.2 NiNO₂-Komplexe mit Di(2-methyl-tetrazol-5-yl)-amin

Abbildung 3.61: ORTEP-Darstellung von $[Ni(NO_2)_2(24)_2]$ (64). Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit. Symmetrieauszeichnung: ⁱ -x, -y, -z. Ausgewählte Bindungslängen [Å]: Ni1-N1 2.099(4), Ni1-N9 2.090(4), Ni1-O20 2.048(3); ausgewählte Bindungswinkel [°]: N9-Ni1-N1 82.16(16), N9-Ni1-N1ⁱ 97.84(16),O20-Ni1-N9 87.64(15), O21-N20-O20 116.4(4). ausgewählte Torsionswinkel [°]: C1-N5-C2-N9 16.7(8).

Der neutrale Nickelkomplex $[Ni(NO_2)_2(24)_2]$ (64) kristallisiert in farblosen Stäbchen in der triklinen Raumgruppe PĪ. Eine ORTEP-Darstellung des Komplexes ist in Abb. 3.61 gezeigt. Hier ist das Nickel oktaedrisch von zwei Di(2-methyl-tetrazol-5-yl)-amin- und zwei über je einen Sauerstoff koordinierenden Nitritoliganden umgeben. Eine Darstellung der Packung des Komplexes in der Elementarzelle befindet sich im Anhang in Abb. C.55. Die Daten zur Kristallstruktur befinden sich im Anhang in Tabelle D.28.

In der Kristallstruktur führen Wasserstoffbrückenbindungen des Aminatickstoffatoms des Liganden **24** zu den freien Sauerstoffatomen der Nitratoliganden zu Ketten entlang [010]. Ein Ausschnitt einer dieser Ketten ist in Abb. 3.62 dargestellt. Es gibt keine weiteren relevanten Wechselwirkungen in der Kristallstruktur.

Abbildung 3.62: MERCURY-Darstellung eines Ausschnitts der durch Wasserstoffbrückenbindungen erzeugten Ketten entlang [010] in der Kristallstruktur von **64**, dargestellt mit Blickrichtung entlang [001]. Die Darstellung der thermischen Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

Teil III

Computerchemie

4 Theoretischer Hintergrund der quantenchemischen Rechnungen

4.1 Schrödinger-Gleichung und Born-Oppenheimer-Näherung

In der Quantenmechanik werden Teilchen durch Wellenfunktionen beschrieben, bei Molekülen also sowohl die Atomkerne als auch die Elektronen. Die einzelnen Energieniveaus *E* sind Eigenwerte der Schrödinger-Gleichung

$$\hat{H}\Psi = E\Psi \tag{4.1}$$

Als Lösungsfunktionen dieser Gleichung ergeben sich die Gesamtwellenfunktionen Ψ des Moleküls. Der Hamiltonoperator \hat{H} setzt sich aus der kinetischen Energie der Kerne \hat{T}_{nuc} , der kinetischen Energie der Elektronen \hat{T}_{el} , der Elektron-Elektron-Wechselwirkung $\hat{V}_{el,el}$, der Kernabstoßung $\hat{V}_{nuc,nuc}$ und der Kern-Elektron-Wechselwirkung $\hat{V}_{nuc,el}$ zusammen.

$$\hat{H} = \hat{T}_{nuc} + \hat{T}_{el} + \hat{V}_{el,el} + \hat{V}_{nuc,nuc} + \hat{V}_{nuc,el}$$
(4.2)

Die Wellenfunktion des Moleküls hängt von den Koordinaten der Kerne R und von den Koordinaten der Elektronen r ab.

Da die Kerne etwa um den Faktor 1000 schwerer sind als die Elektronen, kann für den Grundzustand als Näherung angenommen werden, dass sich die Wellenfunktion in eine Kern- und eine Elektronenwellenfunktion separieren lässt (Born-Oppenheimer-Näherung). Dabei wird angenommen, dass sich die viel leichteren Elektronen sofort auf das jeweilige Potentialfeld der trägeren Kerne einstellen. Die elektronische Wellenfunktion ist deshalb nur noch parametrisch von der Position der Kerne *R* abhängig.

Da die Bewegung der Kerne vernachlässigt wird, wird die kinetische Energie der Kerne \hat{T}_{nuc} als Nullpunkt genommen. Die Kernabstoßung wird als abstandsabhängiges Potential zur elektronischen Schrödinger-Gleichung hinzuaddiert.

$$\hat{H}_{el}(r)\Psi(r;R) = E_{el}(R)\Psi(r;R) \quad mit \ \hat{H}_{el}(r) = \hat{T}_{el} + \hat{V}_{el,el} + \hat{V}_{nuc,el} \quad (4.3)$$

Aus den Lösungen der elektronischen Schrödinger-Gleichung für verschiedene Kernabstände *R* und der jeweiligen Kernabstoßung ergeben sich die elektronischen Potentialhyperflächen des Moleküls.

Als Vereinfachung wird bei quantenchemischen Berechnungen angenommen, dass sich die Kerne wie Punktteilchen verhalten, die Kernwellenfunktion wird also nicht berechnet.

Auf Grund der in Gleichung 4.3 beschriebenen elektronischen Schrödingergleichung ist die Kern-Elektron-Wechselwirkung $\hat{V}_{nuc,el}$ und die kinetische Energie der Elektronen \hat{T}_{el} berechenbar. Die Zwei-Elektronen-Terme sind sehr aufwendig zu berechnen.

4.2 Die Hartree-Fock-Näherung

Die Wellenfunktion Ψ der Elektronen mit den Koordinaten x_i kann näherungsweise als Slaterdeterminante aus Spinorbitalen χ_i beschrieben werden.

$$\Psi(x_{1}, x_{2}, ..., x_{n}) = \frac{1}{\sqrt{N}} \begin{vmatrix} \chi_{i}(x_{1}) & \chi_{j}(x_{1}) & \cdots & \chi_{k}(x_{1}) \\ \chi_{i}(x_{2}) & \chi_{j}(x_{2}) & \cdots & \chi_{k}(x_{2}) \\ \vdots & \vdots & & \vdots \\ \chi_{i}(x_{N}) & \chi_{j}(x_{N}) & \cdots & \chi_{k}(x_{N}) \end{vmatrix}$$
(4.4)

Die Slaterdeterminante ist eine $N \times N$ Determinante bei N Elektronen im System. Slaterdeterminanten tragen der Ununterscheidbarkeit der Elektronen
Rechnung und führen damit die Austauschwechselwirkungen in die Beschreibung des Systems ein.

Für die Zwei-Elektronen-Terme ergibt sich hieraus ein Coulomb-Operator \hat{f} und ein Austauschoperator \hat{k} . Der Coulomb-Operator beschreibt die Wechselwirkung eines Elektrons mit dem gemittelten Feld aller anderen Elektronen im Molekül, der Austauschoperator ergibt sich aus der Quantenmechanik und hat keine klassischen Analoga.

Somit ergibt sich für den Fock-Operator folgende Form:

$$\hat{f} = \hat{T}_{el} + \hat{V}_{nuc,el} + \sum_{a} \hat{J} + \sum_{a} \hat{\kappa}$$
(4.5)

Dabei laufen beide Summen über die Anzahl aller Elektronen des Systems.

Diese Näherungen, unter anderem die Nichtberücksichtigung der Elektronenkorrelation, liefern einigermaßen gute Abschätzungen für Bindungsabstände und Reaktionsenergien. Aktivierungsenergien und Ionisationsenergien werden allerdings systematisch falsch beschrieben und schwanken um die experimentellen Werte mit relativ großer Standardabweichung. Aus diesem Grund wurden verschiedene Verbesserungen eingeführt.

4.3 Møller-Plesset-Störungstheorie

Eine Verbesserung des Hartree-Fock-Ansatzes kann über den Einsatz einer Störungsrechnung erreicht werden. Der Hartree-Fock-Ansatz beschreibt die Elektron-Elektron-Wechselwirkung, also die Abstoßung der Elektronen, schlecht, da diese durch ein gemitteltes Feld beschrieben wird.

Wird der ungestörte Operator \hat{H}^0 so definiert, dass er die Summe der Ein-Elektronen-Fock-Operatoren darstellt

$$\hat{H}^0 = \sum_{m=1}^n \hat{f}_m$$
(4.6)

und beschreibt der Operator \hat{H} den realen Hamiltonoperator, so kann der Störoperator \hat{H}_p als Differenz aus exaktem elektronischem molekularem Hamiltonoperator und ungestörtem Hamiltonoperator betrachtet werden.

$$\lambda \hat{H}_p = \hat{H} - \hat{H}^0 \tag{4.7}$$

Somit stellt der Störoperator die Differenz zwischen exakter interelektronischer Abstoßung und der exakten Energie des Systems und dem in der Hartree-Fock-Näherung berechneten elektronischen Potential sowie der berechneten Energie des Systems dar. Der Parameter λ stellt einen Vorfaktor für den Störoperator dar. Einsetzen in die elektronische molekulare Schrödinger-Gleichung ergibt somit allgemein

$$\hat{H}\Psi_n = (\hat{H}^0 + \lambda \hat{H}_p)\Psi_n = E_n\Psi_n \tag{4.8}$$

für das n-te Energieniveau. Werden Ψ_n und E_n als Taylorreihen mit Potenzen von λ entwickelt, so ergibt sich für die gestörte Wellenfunktion und die Energieeigenwerte:

$$\Psi_{n} = \Psi_{n}|_{\lambda=0} + \frac{\partial \Psi_{n}}{\partial \lambda}\Big|_{\lambda=0} \lambda + \frac{\partial^{2} \Psi_{n}}{\partial^{2} \lambda}\Big|_{\lambda=0} \frac{\lambda^{2}}{2!} + \cdots$$

$$E_{n} = E_{n}|_{\lambda=0} + \frac{\partial E_{n}}{\partial \lambda}\Big|_{\lambda=0} \lambda + \frac{\partial^{2} E_{n}}{\partial^{2} \lambda}\Big|_{\lambda=0} \frac{\lambda^{2}}{2!} + \cdots$$
(4.9)

Somit ist sichergestellt, dass, wenn keine Störung vorhanden ist und λ somit gegen 0 geht, sowohl die Wellenfunktion als auch die Energieeigenwerte gegen die ungestörte Funktion und ungestörten Werte gehen.

Mit

$$\Psi_n^{(k)} = \frac{1}{k!} \left. \frac{\partial^k \Psi_n}{\partial \lambda^k} \right|_{\lambda=0} , \qquad E_n^{(k)} = \frac{1}{k!} \left. \frac{\partial^k E_n}{\partial \lambda^k} \right|_{\lambda=0} , k = 1, 2, \dots$$
(4.10)

ergibt sich

$$\Psi_n = \Psi_n^{(0)} + \lambda \Psi_n^{(1)} + \lambda^2 \Psi_n^{(2)} + \dots + \lambda^k \Psi_n^{(k)} + \dots$$

$$E_n = E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \dots + \lambda^k E_n^{(k)} + \dots$$
 mit k = 1,2,3,..., (4.11)

wobei $\Psi_n^{(k)}$ die Störung der Wellenfunktion k-ter Ordnung und $E_n^{(k)}$ die

Störung der Energie k-ter Ordnung angibt. Als zusätzlich Normalisierungsbedingung wird

$$\langle \Psi_n^{(0)} | \Psi_n \rangle = 1 \tag{4.12}$$

eingeführt. Dadurch sind die Korrekturen zur Wellenfunktion orthogonal zur ungestörten Wellenfunktion.

Einsetzen in die Schrödinger-Gleichung und Sortieren nach den Exponenten von λ ergibt

$$\hat{H}^{0}\Psi_{n}^{(0)} + \lambda(\hat{H}_{p}\Psi_{n}^{(0)} + \hat{H}^{0}\Psi_{n}^{(1)}) + \lambda^{2}(\hat{H}^{0}\Psi_{n}^{(2)} + \hat{H}_{p}\Psi_{n}^{(1)}) + \dots = E_{n}^{(0)}\Psi_{n}^{(0)} + \lambda(E_{n}^{(1)}\Psi_{n}^{(0)} + E_{n}^{(0)}\Psi_{n}^{(1)}) + \lambda^{2}(E_{n}^{(2)}\Psi_{n}^{(0)} + E_{n}^{(1)}\Psi_{n}^{(1)} + E_{n}(0)\Psi_{n}^{(2)}) + \dots$$

$$(4.13)$$

Die Koeffizienten mit gleicher Potenz von λ müssen auf beiden Seiten der Gleichung gleich sein. Somit ergibt sich für λ^0 die ungestörte Schrödinger-Gleichung. Für λ^1 ergibt sich

$$\hat{H}^{0}\Psi_{n}^{(1)} - E_{n}^{(0)}\Psi_{n}^{(0)} = E_{n}^{(1)}\Psi_{n}^{(0)} - \hat{H}_{p}\Psi_{n}^{(0)}$$
(4.14)

Werden beide Seiten mit $\Psi_m^{(0)*}$ multipliziert und über den gesamten Raum integriert, so ergibt sich nach Auflösen nach der Energie der Störung erster Ordnung:

$$E_n^{(1)} = \langle \Psi_n^{(0)} | \hat{H}_p | \Psi_n^{(0)} \rangle$$
(4.15)

Der Energiekorrekturterm 2. Ordnung ergibt sich analog als

$$E_n^{(2)} = \sum_{s \neq 0} \frac{|\langle \Psi_n^{(0)} | \hat{H}_p | \Psi_s^{(0)} \rangle|^2}{E_0^{(0)} - E_s^{(0)}}$$
(4.16)

Zur Energiekorrektur 2. Ordnung tragen nur die Terme der Slaterdeterminate bei, die Zweifachanregungen entsprechen. Aus der Orthonormalität der Spinorbitale folgt, dass nur die vier bei der Anregung beteiligten Spinorbitale, die beiden Spinorbitale, aus denen angeregt wird (u_a und u_b) und die beiden Spinorbitale (u_i und u_j), in die angeregt wird, zur Korrektur beitragen. Somit ergibt sich für die Energiekorrektur 2. Ordnung

$$E_0^{(2)} = \sum_{b=a+1}^{\infty} \sum_{a=n+1}^{\infty} \sum_{i=j+1}^{n} \sum_{j=1}^{n-1} \frac{|\langle ab|r_{12}^{-1}|ij\rangle - \langle ab|r_{12}^{-1}|ji\rangle|^2}{\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b}$$
(4.17)

mit

$$\langle ab|r_{12}^{-1}|ij\rangle = \int \int u_a^*(1)u_b^*(2)r_{12}^{-1}u_i(1)u_j(2)d\tau_1 d\tau_2$$
(4.18)

dabei entspricht die Korrektur 1. Ordnung dem Variationsintegral für die Hartree-Fock-Wellenfunktion des Grundzustandes. Somit gilt für die Hartree-Fock-Energie

$$E_{HF} = E_0^{(0)} + E_0^{(1)} (4.19)$$

Eine Verbesserung der Energie ergibt sich also erst ab der Korrektur 2. Ordnung. Da die Störung klein ist und die Korrektur 2. Ordnung den größten Teil der Verbesserung beiträgt, wird meist die als MP2 (Møller-Plesset-Störungsrechnung 2. Ordnung) bezeichnete Methode verwendet. Störungsrechnungen höherer Ordnung können analog hergeleitet werden und werden als MP3, MP4, ... MP*n* bezeichnet.

Quantenchemische Rechnungen, die mit der Møller-Plesset-Störungstheorie durchgeführt werden, liefern üblicherweise eine Verbesserung zu Rechnungen, die mit der Methode Hartree-Fock durchgeführt werden und sind größenkonsistent. Allerdings kann die mit einer Møller-Plesset-Störungsrechnung berechnete Energie unter der realen Energie liegen.

4.4 Coupled-cluster-Methoden

In *coupled-cluster*-Methoden wird die exakte, nicht-relativistische elektronische Grundzustandswellenfunktion Ψ über die normierte Hartree-Fock-Wellenfunktion des Grundzustandes Φ_0 und den Operator $e^{\hat{T}}$ beschrieben.

$$\Psi = e^{\hat{T}} \Phi_0 \tag{4.20}$$

Der Operator $e^{\hat{T}}$ wird als die Taylorreihenentwicklung in Gleichung 4.21 definiert.

$$e^{\hat{T}} \equiv 1 + \hat{T} + \frac{\hat{T}^2}{2!} + \frac{\hat{T}^3}{3!} + \dots = \sum_{k=0}^{\infty} \frac{\hat{T}^k}{k!}$$
(4.21)

Der Cluster-Operator \hat{T} ist hierbei

$$\hat{T} \equiv \hat{T}_1 + \hat{T}_2 + \dots + \hat{T}_n \tag{4.22}$$

mit *n* Elektronen im Molekül. Der Operator \hat{T}_n erzeugt aus der Grundzustandsslaterdeterminate eine Linearkombination aus allen möglichen Slaterdeterminaten, in welchen *n* Elektronen angeregt sind. So erzeugt der Einelektron-Anregungsoperator \hat{T}_1 aus der Grundzustands-Slaterdeterminate eine Linearkombination aus allen möglichen Ein-Elektron-Anregungen, indem in der Slaterdeterminate sukzessive einzelne Orbitale u_i durch virtuelle Orbitale u_a ersetzt werden. Analog werden die anderen Anregungsoperatoren definiert (Ein-Elektron-Anregungsoperator und Zwei-Elektronen-Anregungsoperator vgl. Gleichung 4.23)

$$\hat{T}_1 \Phi_0 \equiv \sum_{a=n+1}^{\infty} \sum_{i=1}^n t_i^a \Phi_i^a, \quad \hat{T}_2 \Phi_0 \equiv \sum_{b=a+1}^{\infty} \sum_{a=n+1}^{\infty} \sum_{j=i+1}^n \sum_{i=1}^{n-1} t_{ij}^{ab} \Phi_{ij}^{ab}$$
(4.23)

Die wichtigsten Beiträge für den Operator $e^{\hat{T}}$ resultieren aus den Cluster-Operatoren \hat{T}_2 und \hat{T}_1 . Diese Beiträge werden, mit einigen Näherungen, in der Methode CCSD als $e^{\hat{T}}$ verwendet. Beim Operator \hat{T}_2 werden zum Beispiel die Vierfachanregungen durch das Produkt von Zweifachanregungen ausgedrückt.

Die coupled-cluster-Methoden sind, da die Anzahl der möglichen Anre-

gungen von der Basissatzgröße abhängt, stark basissatzabhängig. Mit einem hinreichend großen Basissatz ermöglichen sie eine sehr genaue Beschreibung des Systems, allerdings steigt mit der Basissatzgröße und der Anzahl der in den Methoden verwendeten Cluster-Operatoren der Rechenaufwand sehr stark.

Ein Sonderfall dieser Methode ist die sogenannte *complete-active-space*-Methode (CAS). Hier wird ein sogenannter *active space* definiert, der aus besetzten und unbesetzten Orbitalen besteht. Innerhalb dieses *active space* werden alle Anregungen berechnet und die daraus resultierende Wellefunktion bis zur Selbstkonsistenz wieder als Ausgangsfunktion verwendet (CAS-SCF). Meist werden für die besetzten Orbitale die obersten Molekülorbitale einer Hartree-Fock Rechnung verwendet und für die unbesetzten eine ähnlich hohe oder etwas geringere Anzahl an freien, tiefliegenden Orbitalen.

4.5 Dichtefunktionaltheoriemethoden

Die Bewegung der Elektronen ist korreliert, was in der Hartree-Fock-Näherung nur unzureichend beschrieben wird. Aus diesem Grund wird unter anderem mit Dichtefunktionaltheoriemethoden im Kohn-Sham-Formalismus versucht, vor allem die Korrelationswechselwirkung besser zu beschreiben.

Nach dem Kohn-Sham-Theorem ergeben sich alle Eigenschaften eines Moleküls aus der Elektronendichte ϱ . Werden die Zwei-Elektronen-Terme als Funktional der Elektronendichte genähert, so ergibt sich aus der Kohn-Sham-Gleichung

$$[\hat{T}_{el} + \hat{V}_{nuc,el} + \int \frac{\varrho(r_1)}{|r - r_1|} dr_1 + V_{XC}] \Psi_i(x) = \epsilon_i \Psi_i(x)$$
(4.24)

die Energie ϵ_i des Orbitals i aus dessen Wellenfunktion Ψ_i .

Das Austausch-Korrelationspotential V_{XC} ergibt sich aus der Funktionalableitung der Austausch-Korrelationsenergie E_{XC} nach der Elektronendichte.

$$V_{XC}(r) = \frac{\delta E_{XC}[\varrho]}{\delta \varrho}$$
(4.25)

Für die Austausch-Korrelationsenergie $E_{XC}^{LDA}[\varrho]$ wird in der *local density appro-*

ximation (LDA) angenommen, dass sie aus der Summe der Austauschenergie $E_X^{LDA}[\varrho]$ und der Korrelationsenergie $E_C^{LDA}[\varrho]$ berechnet werden kann.

$$E_{XC}^{LDA} = E_X^{LDA} + E_C^{LDA} \tag{4.26}$$

Für die Austauschenergie ergibt sich aus der Theorie des homogenen Elektronengases:

$$E_X^{LDA} = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} \int |\varrho(r)|^{\frac{4}{3}} dr$$
(4.27)

Die Elektronenkorrelation kann in keiner einfachen analytischen Form beschrieben werden. Es gibt unter anderem genäherte Ausdrücke von Vosko, Wilk und Nusair (VWN).

In der *local spin density approximation* (LSDA) wird das Konzept der LDA so ausgeweitet, dass je ein Elektron mit α - oder β -Spin ein Orbital besetzt, wodurch zum Beispiel Einelektronenübertragungsreaktionen oder offenschalige Spinsysteme, beziehungsweise Systeme, die sich nicht im Singulettzustand befinden, besser beschreiben werden können.

Becke führte für Dichtefunktionalberechnungen die Austauschenergie E_X^{B88} ein:

$$E_X^{B88} = E_X^{LSDA} - \beta \sum_{\omega=\alpha,\beta} \int \frac{(\varrho^{\omega})^{\frac{4}{3}} \left(\frac{|\nabla \varrho^{\omega}|}{(\varrho^{\omega})^{\frac{4}{3}}}\right)^2}{1 + 6\beta \frac{|\nabla \varrho^{\omega}|}{(\varrho^{\omega})^{\frac{4}{3}}} sinh^{-1} \left(\frac{|\nabla \varrho^{\omega}|}{(\varrho^{\omega})^{\frac{4}{3}}}\right)} dr$$
(4.28)

mit dem freien Parameter β , der durch Anpassen an den Hartree-Fock-Austausch für Edelgase zu 0.0042 ermittelt wurde.

Die Methode B3LYP ist ein an experimentelle Daten angepasstes Hybridfunktional. Die Austauschkorrelationsenergie berechnet sich bei dieser Methode über

$$E_{XC}^{B3LYP} = (1 - a_0 - a_X)E_X^{LSDA} + a_0E_X^{HF} + a_XE_X^{B88} + (1 - a_c)E_c^{VWN} + a_cE_c^{LYP}$$
(4.29)

 $E_{\rm C}^{LYP}$ ist die Korrelationsenergie nach Lee, Yang und Parr. Die Anpassung der berechneten an experimentelle Atomisierungsenergien liefert $a_0 = 0.20$, $a_X = 0.72$ und $a_{\rm C} = 0.81$.

Dichtefunktionalmethoden werden, zur Unterscheidung zu *ab-initio*-Methoden wie die Hartree-Fock-Methode oder Coupled-Cluster-Methoden, als *first-principles*-Methoden bezeichnet.

4.6 Basissätze

In quantenchemischen Berechnungen werden Atomorbitale (Einelektronenwellenfunktionen) Ψ_i üblicherweise durch Linearkombinationen von Basisfunktionen Φ_μ ausgedrückt.

$$\Psi_i = \sum_{\mu=1}^n c_{\mu i} \Phi_\mu \tag{4.30}$$

Die Koeffizienten $c_{\mu i}$ werden als *molecular orbital expansion coefficients* oder kurz als MO Koeffizienten bezeichnet.

Als Basisfunktionen werden üblicherweise nicht die die atomare elektronische Struktur sehr gut beschreibenden Slaterfunktionen, sondern die numerisch einfacher handhabbaren Gaussfunktionen verwendet. Da sich ein Orbital schlecht mit einer einzigen Gaussfunktion g beschreiben lässt, werden hierbei meist Linearkombinationen von Gaussfunktionen (*primitives*) verwendet.

$$\Phi_{\mu} = \sum_{s} d_{\mu s} g_s \tag{4.31}$$

Eine deutliche Verbesserung der Beschreibung wird durch sogenannte *split-valence*-Basissätze erreicht. Dabei werden die Orbitale für die Valenzelektronen mit mehreren Basisfunktionen beschrieben. Die Nichtvalenzelektronen werden bei diesen Basissätzen meist durch einzelne Basisfunktionen beschrieben. Die Notation für derartige Basissätze ist *m-noG*, wobei *m* die Zahl der zu einer Basisfunktion kontrahierten Gaussfunktionen, die zur Beschreibung der Nichtvalenzelektronen verwendet werden, darstellt. Die Orbitale der Va-

lenzschale werden jeweils in zwei (oder mehr) Basisfunktionen aufgeteilt, wobei jeweils eine der beiden durch *n* Gaussfunktionen, die andere durch *o* Gaussfunktionen beschrieben wird. Um eine bessere Beschreibung der Richtungsabhängigkeit chemischer Bindungen zu erreichen, werden zu den atomaren Basisfunktionen häufig ein oder mehrere Orbitale höherer Schalen hinzugemischt. Die dabei verwendeten Orbitale werden hinter dem Basissatz in Klammern angegeben. So bedeutet der Basissatz 6-31G(d,p) zum Beispiel, dass die Nichtvalenzelektronen mit sechs Gaussfunktionen beschrieben werden. Die Orbitale der Valenzelektronen werden jeweils mit zwei Basisfunktionen werden jeweils mit zwei Basisfunktionen beschrieben, von denen eine aus drei, die andere aus einer Gaussfunktionen kontrahiert wird. Zu den atomaren Basisfunktionen der Wasserstoffatome werden p-Funktionen, zu denen der 2. Periode d-Funktionen hinzugefügt.

Die Koeffizienten der Gaussfunktionen wurden für die einzelnen Atome optimiert, für die meisten Basissätze allerdings für die Methode Hartree-Fock. Neuere Basissätze wurden unter anderem auch für die CC-Methoden optimiert. Diese Basissätze werden meist mit dem Vorsatz cc (*correlation-consistent*) bezeichnet.

Weitere Verbesserungen bei der Beschreibung der Moleküle, beziehungsweise vor allem negativ geladener Teilchen, werden durch das Hinzufügen sogenannter diffuser Funktionen erreicht. Das kann entweder durch weitere Orbitale höherer Schalen (zum Beispiel 2df für die 2. Periode) oder durch die Verwendung sogenannter *augmented* Basissätze erreicht werden. 4.6 Basissätze

5 Theoretischer Hintergrund der moleküldynamischen Rechnungen

5.1 Klassische Moleküldynamik

In der klassischen Moleküldynamik werden Atome als harte oder weiche Kugeln fester Größe mit newtonschen Bewegungsgleichungen beschrieben.

$$\underline{F}_i = m_i \underline{\ddot{r}}_i \tag{5.1}$$

Dabei ist F_i die auf das *i*-te Teilchen wirkende Kraft, m_i die Masse des *i*-ten Teilchens und $\underline{\ddot{r}}_i$ die Beschleunigung des Teilchens. In einem Vielteilchensystem sind die Kräfte auf die einzelnen Teilchen zeitabhängig, weshalb sich hier die Formulierung in der Hamilton-Dynamik besser eignet. In einem isolierten System ist die von allen Teilchenpositionen \underline{r}_i und Impulsen \underline{p}_i abhängige Hamiltonfunktion $\mathcal{H}({\underline{r}_i}; {p_i})$ konstant, also gilt

$$\mathcal{H}(\{\underline{r}_i\}; \{p_i\}) = const. \tag{5.2}$$

Außerdem folgt aus der Definition des isolierten Systems, dass

$$\mathcal{H}(\{\underline{r}_i\}; \{\underline{p}_i\}) \equiv \frac{1}{2m} \sum_i \frac{1}{m_i} \underline{p}_i^2 + U(\{\underline{r}_i\}) = E \quad .$$
(5.3)

 $U(\{\underline{r}_i\})$ bezeichnet die potentielle Energie, die ein Teilchen mit den Koordinaten \underline{r}_i hat. *E* bezeichnet die Gesamtenergie des Systems. In einem geschlossenen System gilt, dass die Hamiltonfunktion konstant ist, was somit auch im isolierten System gilt. Ableiten der Hamiltonfunktion nach der Zeit ergibt die Gleichungen 5.4 und 5.5

$$\frac{d\mathcal{H}}{dt} = 0 = \sum_{i} \frac{\partial\mathcal{H}}{\partial\underline{p}_{i}} \cdot \underline{\dot{p}}_{i} + \sum_{i} \frac{\partial\mathcal{H}}{\partial\underline{r}_{i}} \underline{\dot{r}}_{i}$$
(5.4)

$$\frac{d\mathcal{H}}{dt} = 0 = \sum_{i} \frac{\underline{p}_{i}}{m_{i}} \cdot \underline{\dot{p}}_{i} + \sum_{i} \frac{\partial U}{\partial \underline{r}_{i}} \underline{\dot{r}}_{i}$$
(5.5)

Einsetzen der beiden Gleichungen in einander ergibt

$$\frac{\partial \mathcal{H}}{\partial \underline{p}_i} = \frac{\underline{p}_i}{m_i} = \underline{\dot{r}}_i \tag{5.6}$$

und

$$\frac{\partial \mathcal{H}}{\partial \underline{r}_i} = \frac{\partial U}{\underline{r}_i} = -\underline{\dot{p}}_i \quad . \tag{5.7}$$

Diese beiden Gleichungen sind die Hamilton-Bewegungsgleichungen.

Treffen sich zwei Atome in der Dynamik, so wird im einfachsten Fall angenommen, dass sich die Atome wie harte Kugeln verhalten und aneinander abprallen. Erweiterungen der Dynamik geben den Kugeln Elastizität oder beschreiben die Annäherung zweier Atome mit einem Lennard-Jones-Potential. Moleküle werden meist mittels geeigneter Kraftfeldmodelle, dass heißt eines Kugel-Feder-Modells, dargestellt, bei der sowohl die Abstände als auch Bindungs- und Diederwinkel über Federkonstanten, die üblicherweise aus experimentellen Daten gewonnen wurden, beschrieben werden. Intermolekulare Wechselwirkungen werden meist durch Lennard-Jones-Potentiale und elektrostatische Wechselwirkungen beschrieben.

5.2 Car-Parrinello-Moleküldynamik

Da in der klassischen Moleküldynamik die Bindungen durch Federkonstanten ausgedrückt werden, können mit diesen Methoden keine chemischen Reaktionen beschrieben werden. Für die moleküldynamische Beschreibung chemischer Reaktionen kann unter anderem die Car-Parrinello-Moleküldynamik eingesetzt werden. Hier werden die Kerne klassisch beschrieben.

$$M_i \underline{\ddot{R}}_i = -\frac{\partial}{\partial \underline{R}_i} E_{KS} \tag{5.8}$$

 M_i stellt die Masse, <u>R</u>_i die Koordinaten des Kerns i, E_{KS} die Kohn-Sham Energie, bei der zur mittels Dichtefunktionaltheorie berechneten elektronischen Energie des Systems die Kernabstoßung hinzugerechnet wird, dar.

Die Elektronen werden analog dem Kohn-Sham-Theorem beschrieben.

$$\left[-\frac{1}{2}\nabla^2 + V_{eff}(\underline{r})\right]\Psi_i = \sum_j \epsilon_{ij}\Psi_j$$
(5.9)

 V_{eff} stellt das effektive, auf die Elektronen wirkende Potential, ϵ_{ij} die Energie und Ψ_i und Ψ_j die Wellenfunktion des Orbitals i und j dar. Zusätzlich wird eine auf die Orbitale wirkende Kraft eingeführt,

$$\mu_i \ddot{\Psi}_i = -\left[-\frac{1}{2}\nabla^2 + V_{eff}(\underline{r})\right] \Psi_i + \sum_j \epsilon_{ij} \Psi_j$$
(5.10)

 μ_i ist eine virtuelle Masse der Elektronen, die meist deutlich über der realen Elektronenmasse liegt (etwa 400–600 Mal so groß wie die Elektronenruhemasse). Mit den Gleichungen 5.8 und 5.10 wird die Bewegung von Elektronen und Kernen während der Dynamik beschrieben. Durch die kleine virtuelle Kraft auf die Orbitale weicht das System dabei leicht von der Born-Oppenheimer-Potentialhyperfläche ab.

Ein Maß für die Abweichung von der Born-Oppenheimer-Potentialhyperfläche stellt der Unterschied zwischen der klassischen Energie $E_{classical}$

$$E_{classical} = \sum_{i} \frac{1}{2} M_i \underline{\dot{R}}_i^2 + E_{KS}$$
(5.11)

und der durch den gesammten Hamilton
operator des Systems bestimmten Energie E_{Ham}

$$E_{Ham} = \sum_{i} \frac{1}{2} M_i \underline{\dot{R}}_i^2 + \sum_{i} \frac{1}{2} \mu_i \langle \dot{\Psi}_i | \dot{\Psi}_j \rangle + E_{KS}$$
(5.12)

dar. Die Energie, die mit dem Gesamthamiltonoperator berechnet wird, sollte bei einer Car-Parinello-Moleküldynamik (CPMD) möglichst konstant sein. Der Unterschied zur klassischen Energie des Systems sollte klein sein.

Um gute Ergebnisse zu erzielen, muss man für die mit CPMD errechneten Moleküldynamiken üblicherweise einen Zeitschritt von 0.1 fs – 0.2 fs verwenden.

5.3 Born-Oppenheimer-Dynamik

In der Born-Oppenheimer-Dynamik wird die Born-Oppenheimer-Potentialhyperfläche des Systems nicht verlassen. Dazu wird in jedem Schritt der Dynamik eine Minimierung der elektronischen Wellenfunktion durchgeführt. Die Bewegungsgleichungen ergeben sich damit zu

$$M_{i}\underline{\ddot{R}}_{i} = -\frac{\partial}{\partial \underline{R}_{i}}min\{E_{KS}\}$$
(5.13)

und

$$0 = -\left[-\frac{1}{2}\nabla^2 + V_{eff}(\underline{r})\right]\Psi_i + \sum_j \epsilon_{ij}\Psi_j$$
(5.14)

Die Zeitschritte werden bei einer Born-Oppenheimer-Dynamik üblicherweise mit 0.5 fs – 1.0 fs etwas größer als bei einer CPMD gewählt. Durch die nach jedem Schritt zu erfolgende Optimierung der elektronischen Wellenfunktion benötigt die Born-Oppenheimer-Dynamik meist sehr viel mehr Rechenzeit als eine vergleichbare Car-Parinello-Moleküldynamik.

5.4 Ebene Wellen und Pseudopotentiale

Zur Beschreibung der elektronischen Struktur von Atomen in Rechnungen mit periodischen Randbedingungen eignen sich ebene Wellen besser als Gaussfunktionen. Ebene Wellen sind über

$$f_G^{PW}(r) = \frac{1}{\sqrt{\Omega}} e^{iGr}$$
(5.15)

definiert. Ω ist das Volumen der Elementarzelle, *r* der Raumvektor im Realraum. Mit dem G-Vektor, beziehungsweise dessen Betrag, wird die Anzahl der verwendeten ebenen Wellen über den sogenannten *cut off* festgelegt. Je größer der Energie-*cut-off* und damit der maximale Betrag des G-Vektors, umso mehr ebene Wellen werden verwendet und umso besser kann das System beschrieben werden.

Ebene Wellen eignen sich besonders gut, wenn sich die Elektronendichte im Raum nur wenig ändert. Somit kann die innere elektronische Struktur von Atomen nur schlecht beschrieben werden. Da zur Beschreibung der chemischen Reaktivität meist nur die Valenzelektronen notwendig sind, verwendet man Pseudopotentiale um die inneren Schalen der Atome zu beschreiben. Pseudopotentiale sollten im Inneren möglichst homogen sein und an den Rändern stetig und stetig differenzierbar in eine Beschreibung durch ebene Wellen übergehen.

Mit der Definition der Pseudopotentiale können Systeme relativ genau und mit einem weniger hohen *cut off,* dass heißt ressourcenschonender beschrieben werden. Die einzelnen Parameter und Funktionen der Pseudopotentiale werden dabei an das jeweilige Atom und System angepasst. 5.4 Ebene Wellen und Pseudopotentiale

6 Berechnungen der Grundzustandspotentialhyperfläche und angeregter Zustände

6.1 Allgemeines

Bei den computerchemischen Untersuchungen an Ruthenium-nitrosyl-Komplexen wurde zuerst ein Modellsystem mit verschiedenen Methoden und Basissätzen berechnet und die berechneten strukturellen Parameter mit experimentellen Werten verglichen (siehe 6.1.1). In diesen Untersuchungen zeigte sich, dass eine Kombination der Hybridmethode B3LYP mit einem SDD-Pseudopotential mit dem entsprechenden Basissatz für Ruthenium und einem aug-cc-pVDZ Basissatz für die Elemente der ersten, zweiten, dritten und vierten Periode gute Ergebnisse bei einem vertretbaren Rechenzeitaufwand erbrachten. Diese Kombination wurde deshalb für die weiteren Untersuchungen verwendet. Sind Elemente der vierten oder höheren Periode im Komplex vorhanden (zum Beispiel Iod), so wurde für diese Elemente ebenfalls das SDD-Pseudopotential mit den dazugehörigen Basisfunktionen verwendet. Diese Berechnungen wurden mit dem Programmpaket Gaussian [44] durchgeführt.

Für die meisten computerchemischen Untersuchungen konnten keine *ab-initio*-Methoden genutzt werden, da bei Verwendung des Programmpakets Gaussian [44] keine stabile elektronische Wellenfunktion berechnet werden konnte.

Für *scans* der elektronischen Grundzustandspotentialhyperfläche wurde die schnellere und stabilere Dichtefunktionaltheoriemethode (DFT-Methode) BLYP verwendet, obwohl an einigen, meist vom Minimum weiter entfernten, Stellen der elektronischen Grundzustandspotentialhyperfläche selbst mit dieser Methode keine stabile Wellenfunktion gefunden werden konnte.

Für die Berechnung der *scans* auf der elektronischen Grundzustandspotentialhyperfläche wurde entweder das Programmpaket Gaussian [44] mit obiger Basissatzkombination oder Turbomole [45] mit dem tripple- ζ -Basissatz def-TZVP, der Pseudopotentiale für die Elemente der höheren Perioden enthält, verwendet.

Zum Abschätzen der Form der elektronisch angeregten Potentialhyperflächen wurden TD-DFT Einzelpunktrechnungen auf Geometrien aus *scans* der elektronischen Grundzustandspotentialhyperfläche mit dem Programmpaket Turbomole [45] mit der Methode BLYP und dem Basissatz def-TZVP durchgeführt.

Gefundene Minima wurden mit Frequenzanalysen, die keine imaginären Frequenzen enthielten, Übergangszustände mit Frequenzanalysen, die eine imaginäre Frequenz enthielten, bestätigt.

Für die Berechnung von NMR-Spektren wurde ein *single point* mit dem Hybridfunktional PBE1PBE, einem SDD-Pseudopotential für Ruthenium und einem 6-311++G(2d,p)-Basissatz für alle anderen Atome auf einer vorher mit B3LYP/SDD/6-31G(d,p) optimierten Struktur berechnet. Diese Vorgehensweise ist im Arbeitskreis bereits etabliert und wird auch in [46] empfohlen.

6.1.1 Basissätze und Methoden

Um die in den weiteren Untersuchungen zu verwendenden Methoden und Basissätze festzulegen, wurde der bereits im Arbeitskreis von Barth synthetisierte und experimentell untersuchte Rutheniumnitrosylkomplex [Ru(NO)(tacn)(Cl)₂]⁺ (tacn: 1,4,7-Triazacyclononan, ein dreizähniger Neutralligand) [47] verwendet, da hier bereits experimentelle Vergleichswerte vorlagen. Eine Darstellung des Komplexes ist in Abbildung 6.1 gezeigt.

Alle Berechnungen an diesem Komplex unter Verwendung des Programmpakets Gaussian mit *ab-initio*-Methoden (wie HF, MP2, CAS-SCF) schlugen fehl, da keine stabile elektronische Wellenfunktion berechnet beziehungsweise minimiert werden konnte. Aus diesem Grund wurde die Hybridmethode B3LYP mit verschiedenen Basissätzen verwendet und mit den expe-

Abbildung 6.1: Struktur des mit B3LYP/SDD/aug-cc-pVDZ berechneten [Ru(NO)(tacn)(Cl)₂]⁺-Komplexes. Ruthenium ist grau, Chlor braun, Stickstoff blau, Sauerstoff rot, Kohlenstoff grün und Wasserstoff weiß dargestellt.

rimentellen Daten verglichen. Neben der Wahl der Kombination aus Methode und Basissatz stellte sich auch die Frage nach dem Spinzustand der zu berechnenden Komplexe.

Bereits die ersten Rechnungen mit dem Pseudopotential SDD und dem zugehörigen Basissatz, beziehungsweise dem Allelektronenbasissatz DZVP für alle Atome zeigte, dass die berechneten Bindungsabstände und -winkel (siehe Tabelle 6.1.1) nur für den Singulett-Zustand eine gute Übereinstimmung mit den experimentellen Daten (siehe Tabelle 6.1.1) zeigten, was auch mit den experimentellen Befunden zu diesem Komplex übereinstimmt. Darum wurden für die weiteren Untersuchungen nur noch Singulettzustände betrachtet.

Nun wurden für Ruthenium zwei Pseudopotentiale und für die anderen Atome zwei Basissätze untersucht. Alle untersuchten Pseudopotentiale und Basissätze konnten die experimentellen Bindungsabstände und -winkel sehr

Bindungsabstände							
Ru–NO	1.734(7)						
Ru–Cl1	2.419(2)						
Ru–Cl2	2.415(2)						
Ru–N2	2.099(7)						
Ru–N3	2.099(8)						
Ru–N4	2.088(7)						
N-O	1.167(11)						
Bindungs	swinkel						
Cl-Ru-Cl	87.55(8)						
O1–N1–Ru	173.3(9)						
N1-Ru-N2	175.7(4)						

Tabelle 6.1: Experimentell gefundene Bindungsabstände und -winkel für das <u>Kation in der Kristallstru</u>ktur von [Ru(NO)(tacn)(*cis*-(Cl₂)]I \cdot H₂O (aus [47]).

gut beschreiben. Da das SDD-Pseudopotential für Ruthenium die Abstände zum Liganden etwas besser als LanL2DZ beschreiben konnte, wird im weiteren dieses Pseudopotential verwendet (siehe Tabelle 6.1.1).

Vor allem für die Vorhersage von IR Spektren ist eine möglichst gute Beschreibung der elektronischen Struktur des Komplexes wünschenswert. Hier erscheint für alle Atome außer Ruthenium der aug-cc-pVDZ-Basissatz als guter Kompromiss zwischen Rechenzeitaufwand und Genauigkeit.

	I	I						I	1				Ι
ngsabstände [Å e angegeben.	Quintett -5895.3382965		2.32080 2.27801	2.23117	1.18313	2.31828 7.74257	2.19848	1.53327		98.740	130.526	156.013	169.299
berechnete Bindu Geter Sind in Hartre	B3LYP/DZVP Triplett -5895.3942471		2.33735 2.33219	1.96305	1.16276	2.19581	2.18145	1.53211		100.637	138.811	175.460	164.174
I B3LYP/DZVP I otalen Energien <i>H</i>	Singulett -5895.420086	abstände	2.39272 2.38182	1.77818	1.14844	2.17458 2.20027	2.17535	1.52826	swinkel	92.401	176.596	178.424	161.577
B3LYP/SDD und 2)]-Kation. Die to	Quintett -1546.9054041	Bindungs	2.33783 2.32282	2.07437	1.24579	2.22324	2.1/ 4 0/ 2.15507	1.53897	Bindung	97.233	130.583	158.584	169.427
pinzustände mit (NO)(tacn) <i>cis</i> -(Cl	B3LYP/SDD Triplett -1546.9591519		2.36663 2.36459	1.91241	1.20481	2.15951 2.16407	2.13974 2.13974	1.53953		99.495	142.966	175.670	165.281
r verschiedene Sj cel [°] für das [Ru	Singulett –1546.9884887		2.41683 2.40732	1.75298	1.18703	2.14782 2.15201	2.13591	1.53537		92.206	176.341	178.262	162.643
Tabelle 6.2: Fü Bindungswink	E _{tot}		Ru-Cl1 Ru-Cl2	Ru–NO	N-O	Ru-N2 D., N2	Ru-N4	C5-C6		Cl-Ru-Cl	Ru-N-O	N2-Ru-N1	N3-Ru-Cl2

N3-Ru-Cl2 162.454 162.032 162.056	N2-Ru-N1 176.895 178.243 178.235	Ru–N–O 174.671 177.532 176.040	CI-Ru-CI 93.081 92.262 92.161	Bindungswinkel	C5-C6 1.53564 1.52652 1.52227	Ru–N4 2.13849 2.14731 2.15372	Ru–N3 2.15443 2.16953 2.17781	Ru–N2 2.13275 2.16396 2.16471	N-O 1.18282 1.14426 1.13201	Ru–NO 1.77246 1.74791 1.76247	Ru-Cl2 2.43157 2.36913 2.37103	Ru-Cl1 2.44313 2.38074 2.38409	Bindungsabstände	E_{tot} -655.4588175 -1547.2104985 -1546.	B3LYP/LanL2DZ B3LYP/SDD/aug-cc-pVDZ B3LYP,	Habelle 6.5: Mit der Hybridmethode boltif berechnete bildungsabsiam [Ru(NO)(tacn) <i>cis</i> -(Cl ₂)] ⁺ mit verschiedenen Basissätz / Pseudopotential Hartree angegeben.
162.056	178.239	176.040	92.161	vinkel	1.52227	2.15372	2.17781	2.16471	1.13201	1.76247	2.37103	2.38409	stände	-1546.2771534	2 B3LYP/LanL2DZ/ 6-311++G(2df, 2dp)	ngsabstande [A] und bindungswinkei [1] rur den Kompiex opotentialkombinationen. Die totalen Energien E _{tot} sind in

6.1.2 Computerchemische Untersuchungen an größeren Rutheniumnitrosylkomplexen

6.1.2.1 Allgemeines

Die computerchemischen Untersuchungen wurden an bereits im Arbeitskreis synthetisierten Komplexen begonnen und dann auf Komplexe, deren Synthese geplant war, ausgeweitet. Aus diesen Komplexen wurden zwei Modellsysteme ausgewählt und genauer untersucht.

Die berechneten Frequenzen der NO-Streckschwingung ergaben, mit Ausnahme der Isonitrosylkomplexe, mit den experimentellen Werten gut vergleichbare Ergebnisse. Die NO-Streckschwingung des Isonitrosylkomplexes wird mit den verwendeten Methoden (BLYP und B3LYP) immer als zu hoch berechnet.

Der Nitrosylkomplex wird mit N-Komplex, der Isonitrosylkomplex mit I-Komplex und der *side-on*-Komplex mit S-Komplex abgekürzt. Wurden mehrere *side-on*-Komplexe gefunden, so werden sie vom energetisch niedrigeren zum höheren mit einem Indexbuchstaben bezeichnet. S_b ist also energetisch ungünstiger als S_a. Bei Diederwinkeln vom zwei gleichartigen Atomen zum Ruthenium und dem Nitrosylliganden wird derjenige Diederwinkel angegeben, der möglichst wenig von der Linearität (also von +/ – 180° und 0°) abweicht . Da sich die beiden Diederwinkel in diesem Fall nur um wenige Grad unterscheiden und der Unterschied in der Fehlergenauigkeit der Methode liegt, wird auf die Angabe des zweiten Diederwinkels verzichtet.

6.1.2.2 Untersuchungen an [Ru(NO)Cl₂(mida)]⁻

Das Komplexanion $[Ru(NO)Cl_2(mida)]^-$ wurde von A. Zangl synthetisiert [48]. Im Komplex ist das Rutheniumatom oktaedrisch von zwei Chlorido-, einem dreizähnigen Methyliminodiacetato- (mida) und einem Nitrosylliganden umgeben. Bei dem Komplex konnten fünf Minima der elektronischen Potentialhyperfläche lokalisiert werden. Eines dieser Minima entspricht dem Nitrosyl-, eines dem Isonitrosyl- und drei entsprechen drei energetisch unterschiedlichen *side-on*-Komplexen. Darstellungen der Komplexe sind in Abb. 6.2 gezeigt.

Abbildung 6.2: Abbildungen der mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)Cl₂(mida)]⁻ berechneten N-, I- und drei sideon-Komplexe (S_a, S_b und S_c). Der S_a-Komplex liegt auf einer N_{eq}-Ru-Bindungsachse (N_{eq}-Ru–N-O-Torsionswinkel: 167.8°), der S_b-Komplex auf einer O_{eq}-Ru–Bindungsachse (O_{eq}-Ru–N-O-Torsionswinkel: 163.4°) und der S_c-Komplex auf einer Cl_{eq}-Ru-Bindungsachse (N_{eq}-Ru–N-O-Torsionswinkel: -1.5°; Cl gegenüber des Stickstoffatoms). Ruthenium ist grau, Chlor braun, Stickstoff blau, Sauerstoff rot, Kohlenstoff grün und Wasserstoff weiß dargestellt.

Tabelle 6.4: Mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)Cl ₂ (mida)] ⁻ berech-
nete relative totale Energien (E_{tot}) , nullpunktschwingungskorrigierte Energi-
en (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex),
der side-on-Komplexe (Sa, Sb und Sc) im Vergleich zum Nitrosylkomplex (N-
Komplex; wird als 0 gesetzt) in kJ/mol. Darunter sind die berechneten Fre-
quenzen der NO-Streckschwingung in cm ⁻¹ unkorrigiert und korrigiert (Kor-
rekturfaktor aus [46]) angegeben.

	Ν	Ι	Sa	Sb	Sc
E _{tot}	0.0	189.3	139.3	140.8	156.6
E ₀	0.0	187.1	135.5	136.4	152.4
H298	0.0	187.6	136.0	136.8	152.9
$\tilde{v}(NO)$	1911	1891	1616	1601	1568
0.961 · $\tilde{v}(NO)$	1836	1817	1553	1539	1507

Der Nitrosylkomplex wird als der stabilste, der Isonitrosylkomplex als der instabilste errechnet, die drei side-on-Komplexe liegen dazwischen. Zwei der side-on-Komplexe, Sa und Sb, unterscheiden sich nur um 0.6 kJ/mol in ihrer energetischen Lage, während S_c mit 16.9 kJ/mol deutlich über S_a liegt. Bei den beiden tieferliegenden side-on-Komplexen zeigt das Stickstoffatom des Nitrosylliganden auf ein Stickstoff- beziehungsweise Sauerstoffatom der Äquatorebene des Komplexes, während beim S_c-Komplex das Stickstoffatom auf einen Chloridoliganden zeigt. Da errechnet wird, dass das Stickstoffatom des Stickstoffmonoxids näher am Rutheniumatom als das Sauerstoffatom liegt (Sa Abstände: Ru-N 1.90 Å, Ru-O 2.19 Å; Sb Abstände: Ru-N 1.92 Å, Ru-O 2.22 Å; Sc Abstände: Ru-N 1.92 Å, Ru-O 2.13 Å), deutet dieser Energieunterschied auf sterische Hinderung durch den äquatorialen Chloridoliganden hin (relative Energien siehe Tabelle 6.4, absolute Energien siehe Tabelle A.11 im Anhang). Die errechneten NO-Streckschwingungen der Komplexe liegen, mit Ausnahme des Isonitrosylkomplexes, im zu erwartenden Bereich (siehe Tabelle 6.4).

6.1.2.3 Untersuchungen an [Ru(NO)Br₂(mida)]⁻

Das Komplexanion [Ru(NO)Br₂(mida)]⁻ wurde als Vergleich zu einem von A. Zangl synthetisierten Komplex (siehe 6.1.2.2) untersucht. Im Komplex ist das Rutheniumatom oktaedrisch von zwei Bromido-, einem dreizähnigen Methyliminodiacetato- (mida) und einem Nitrosylliganden umgeben. Bei dem Komplex konnten fünf Minima der elektronischen Potentialhyperfläche lokalisiert werden. Eines dieser Minima entspricht dem Nitrosyl-, eines dem Isonitrosyl- und drei entsprechen drei energetisch unterschiedlichen *side-on*-Komplexen. Darstellungen der Komplexe sind in Abb. 6.3 gezeigt.

Der Nitrosylkomplex wird als der stabilste, der Isonitrosylkomplex als der instabilste errechnet, die drei *side-on*-Komplexe liegen dazwischen. Das Stickstoffatom des Stickstoffmonoxids wird näher am Rutheniumatom als das Sauerstoffatom errechnet (S_a Abstände: Ru-N 1.93 Å, Ru-O 2.25 Å; S_b Abstände: Ru-N 1.92 Å, Ru-O 2.22 Å; S_c Abstände: Ru-N 1.97 Å, Ru-O 2.20 Å). Die relativen Energien der Komplexe sind in Tabelle 6.5 aufgelistet (für die absoluten Energien siehe Tabelle A.10 im Anhang). Die errechneten NO-

Abbildung 6.3: Abbildungen der mit B3LYP/SDD/aug-cc-pVDZ für $[Ru(NO)Br_2(mida)]^-$ berechneten N-, I- und drei *side-on*-Komplexe (S_a, S_b und S_c). Der S_a-Komplex liegt zwischen der N-Ru- und der angrenzenden Br-Ru-Bindungsachse (N-Ru–N-O-Torsionswinkel: 130.7°), der S_b-Komplex auf einer O_{eq}-Ru-Bindungsachse (O_{eq}-Ru–N-O-Torsionswinkel: 162.0°) und der S_c-Komplex zwischen den beiden Br-Ru-Bindungsachsen (Br-Ru–N-O-Torsionswinkel: -122.6° ; Cl gegenüber des Stickstoffatoms). Ruthenium ist grau, Chlor braun, Stickstoff blau, Sauerstoff rot, Kohlenstoff grün und Wasserstoff weiß dargestellt.

Streckschwingungen der Komplexe liegen, mit Ausnahme des Isonitrosylkomplexes, im zu erwartenden Bereich (siehe Tabelle 6.5). Tabelle 6.5: Mit B3LYP/SDD/aug-cc-pVDZ für $[Ru(NO)Br_2(mida)]^-$ berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex), der *side-on*-Komplexe (S_a, S_b und S_c) im Vergleich zum Nitrosylkomplex (N-Komplex; wird als 0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	Ν	Ι	Sa	S _b	Sc
E _{tot}	0.0	191.9	138.8	146.3	155.0
E ₀	0.0	189.9	134.7	141.9	149.8
H ₂₉₈	0.0	190.2	135.2	142.3	150.7
$ ilde{ u}(NO)$	1912	1891	1601	1600	1584
0.961 $\cdot ilde{ u}(NO)$	1837	1817	1539	1538	1522

6.1.2.4 Untersuchungen an [Ru(NO)I₂(mida)]⁻

Das Komplexanion $[Ru(NO)I_2(mida)]^-$ wurde als Vergleich zu dem von A. Zangl synthetisierten analogen Chloridkomplex (siehe 6.1.2.2) untersucht. Im Komplex ist das Rutheniumatom oktaedrisch von zwei Iodido-, einem dreizähnigen Methyliminodiacetato- (mida) und einem Nitrosylliganden umgeben. Bei dem Komplex konnten sechs Minima der elektronischen Potentialhyperfläche lokalisiert werden. Eines dieser Minima entspricht dem Nitrosyl-, eines dem Isonitrosyl- und vier entsprechen energetisch unterschiedlichen *side-on*-Komplexen. Darstellungen der Komplexe sind in Abb. 6.4 gezeigt.

Der Nitrosylkomplex wird als der stabilste, der Isonitrosylkomplex als der instabilste errechnet, die drei *side-on*-Komplexe liegen dazwischen. Das Stickstoffatom des Stickstoffmonoxids wird näher am Rutheniumatom als das Sauerstoffatom errechnet (S_a Abstände: Ru-N 1.93 Å, Ru-O 2.24 Å; S_b Abstände: Ru-N 1.98 Å, Ru-O 2.18 Å; S_c Abstände: Ru-N 1.92 Å, Ru-O 2.21 Å; S_d Abstände: Ru-N 1.97 Å, Ru-O 2.18 Å). Die relativen Energien der Komplexe sind in Tabelle 6.6 aufgeführt (für die absoluten Energien siehe Tabelle A.9 im Anhang). Die errechneten NO-Streckschwingungen der Komplexe liegen, mit Ausnahme des Isonitrosylkomplexes, im zu erwartenden Bereich (siehe Tabelle 6.6).

Abbildung 6.4: Abbildungen der mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)I₂(mida)]⁻ berechneten N-, I- und vier side-on-Komplexe (S_a, S_b, S_c und S_d). Der S_a-Komplex liegt zwischen der N-Ru- und der angrenzenden I-Ru-Bindungsachse 132.8°), (N-Ru–N-O-Torsionswinkel: der S_b-Komplex zwischen den beiden I-Ru-Bindungsachsen (I-Ru-N-O-Torsionswinkel: -125.9°), der S_c-Komplex auf der O_{eq}-Ru-Bindungsachse (Oeq-Ru-N-O-Torsionswinkel: 161.7°) und der Sd-Komplex zwischen der Oeq-Ru- und der angrenzenden I-Ru-Bindungsachse (O_{eq}-Ru–N-O-Torsionswinkel: –144.8°). Ruthenium ist grau, Iod braun, Stickstoff blau, Sauerstoff rot, Kohlenstoff grün und Wasserstoff weiß dargestellt.

Tabelle 6.6: Mit B3LYP/SDD/aug-cc-pVDZ für $[Ru(NO)I_2(mida)]^-$ berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex), der *side-on*-Komplexe (S_a , S_b und S_c) im Vergleich zum Nitrosylkomplex (N-Komplex; wird als 0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	Ν	Ι	Sa	S _b	Sc	S _d
E _{tot}	0.0	197.0	139.4	149.8	154.2	158.0
E_0	0.0	195.1	135.3	144.8	149.7	153.0
H_{298}	0.0	195.5	135.8	145.5	150.3	153.7
$\tilde{v}(NO)$	1905	1889	1584	1548	1595	1565
$0.961 \cdot \tilde{\nu}(NO)$	1831	1815	1522	1488	1533	1504

6.1.2.5 Untersuchungen an [Ru(NO)Cl₃(koji)]⁻

Abbildung 6.5: Abbildungen der mit B3LYP/SDD/aug-cc-pVDZ für $[Ru(NO)Cl_3(koji)]^-$ berechneten N-, I- und zwei *side-on*-Komplexe (S_a und S_b). Der S_a-Komplex liegt auf der O_{eq}-Ru-Bindungsachse (O_{eq}-Ru–N-O-Torsionswinkel: -179.7°) und der S_b-Komplex auf der Cl-Ru-O_{eq}-Bindungsachse (O_{eq}-Ru–N-O-Torsionswinkel: 1.0°). Ruthenium ist grau, Stickstoff blau, Chlor braun, Sauerstoff rot, Kohlenstoff grün und Wasserstoff weiß dargestellt.

Das Komplexanion [Ru(NO)Cl₃(koji)]⁻ wurde von A. Zangl synthetisiert [48]. Im Komplex ist das Rutheniumatom oktaedrisch von drei Chlorido-, einem zweizähnigen Kojisäureanion- (koji) und einem Nitrosylliganden umgeben. Bei dem Komplex konnten vier Minima der elektronischen Potentialhyperfläche lokalisiert werden. Eines dieser Minima entspricht dem Nitrosyl-, eines dem Isonitrosyl- und zwei entsprechen energetisch unterschiedlichen *side-on*-Komplexen. Darstellungen der Komplexe sind in Abb. 6.5 gezeigt.

Der Nitrosylkomplex wird als der stabilste, der Isonitrosylkomplex als der instabilste errechnet, die beiden *side-on*-Komplexe liegen dazwischen. Bei dem energetisch tieferliegenden *side-on*-Komplex S_a zeigt das Stickstoffatom des Nitrosylliganden auf ein Sauerstoffatom der Äquatorebene des Komplexes, während beim S_b-Komplex das Stickstoffatom auf einen Chloridoliganden zeigt. Da errechnet wird, dass das Stickstoffatom des Stickstoffmonoxids

Tabelle 6.7: Mit B3LYP/SDD/aug-cc-pVDZ für $[Ru(NO)Cl_3(koji)]^-$ berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex) und der *side-on*-Komplexe (S_a und S_b) im Vergleich zum Nitrosylkomplex (N-Komplex; wird als 0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	N	Ι	Sa	S _b
E _{tot}	0.0	193.5	142.4	166.8
E ₀	0.0	191.5	145.8	162.2
H ₂₉₈	0.0	192.0	138.9	162.8
$ ilde{v}(NO)$	1928	1906	1618	1583
0.961 $\cdot ilde{v}(NO)$	1853	1832	1555	1521

näher am Rutheniumatom als das Sauerstoffatom liegt (S_a Abstände: Ru-N 1.89 Å, Ru-O 2.20 Å; S_b Abstände: Ru-N 1.92 Å, Ru-O 2.12 Å) und keine stabilen *side-on*-Komplexe auf der Cl-Ru-Cl-Achse gefunden werden konnten, deutet der Energieunterschied zwischen S_a und S_b auf sterische Hinderung durch den äquatorialen Chlorliganden hin (relative Energien siehe Tabelle 6.7, absolute Energien siehe Tabelle A.6 im Anhang). Die errechneten NO-Streckschwingungen der Komplexe liegen, mit Ausnahme des Isonitrosylkomplexes, im zu erwartenden Bereich (siehe Tabelle 6.7).

6.1.2.6 Untersuchungen an [Ru(NO)Br₃(koji)]⁻

Das Komplexanion [Ru(NO)Br₃(koji)][–] wurde als Vergleich zum von A. Zangl synthetisiert analogen Chloridkomplex (siehe 6.1.2.5) untersucht. Im Komplex ist das Rutheniumatom oktaedrisch von drei Bromido-, einem zweizähnigen Kojisäureanion- (koji) und einem Nitrosylliganden umgeben. Bei dem Komplex konnten sechs Minima der elektronischen Potentialhyperfläche lokalisiert werden. Eines dieser Minima entspricht dem Nitrosyl-, eines dem Isonitrosylkomplex und vier entsprechen energetisch unterschiedlichen *side-on*-Komplexen. Darstellungen der Komplexe sind in Abb. 6.6 gezeigt.

Der Nitrosylkomplex wird als der stabilste, der Isonitrosylkomplex als der instabilste errechnet, die vier *side-on*-Komplexe liegen dazwischen. Das

Abbildung 6.6: Abbildungen der mit B3LYP/SDD/aug-cc-pVDZ für $[Ru(NO)Br_3(koji)]^$ berechneten N-, I- und zwei side- $(S_a, S_b, S_c \text{ und } S_d)$. Der S_a -Komplex on-Komplexe O_{eq}-Ru-Bindungsachse (O_{eq}-Ru-N-Oliegt auf der Torsionswinkel: -179.5°), der S_b-Komplex zwischen zwei I-Ru-Bindungsachsen (I-Ru–N-O-Torsionswinkel: -123.9°), der Sc-Komplex zwischen den anderen beiden Ru-I-Bindungsachsen (I-Ru–N-O-Torsionswinkel: 115.2°) und der Sd-Komplex auf der Br-Ru-Oeg-Bindungsachse (Oeg-Ru-N-O-Torsionswinkel: 2.4°). Ruthenium ist grau, Stickstoff blau, Chlor braun, Sauerstoff rot, Kohlenstoff grün und Wasserstoff weiß dargestellt.

Stickstoffatom des Stickstoffmonoxids wird als näher am Rutheniumatom als das Sauerstoffatom errechnet (S_a Abstände: Ru-N 1.89 Å, Ru-O 2.20 Å; S_b Abstände: Ru-N 1.96 Å, Ru-O 2.18 Å; S_c Abstände: Ru-N 1.96 Å, Ru-O 2.18 Å; S_d Abstände: Ru-N 1.92 Å, Ru-O 2.12 Å). Die relativen Energien der Komplexe sind in Tabelle 6.8 aufgeführt (für die absoluten Energien siehe Tabelle A.11 im Anhang). Die errechneten NO-Streckschwingungen der Komplexe liegen, mit Ausnahme des Isonitrosylkomplexes, im zu erwartenden Bereich (siehe Tabelle 6.8). Tabelle 6.8: Mit B3LYP/SDD/aug-cc-pVDZ für $[Ru(NO)Br_3(koji)]^-$ berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex) und der *side-on*-Komplexe (S_a und S_b) im Vergleich zum Nitrosylkomplex (N-Komplex; wird als 0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	N	Ι	Sa	S _b		
$E_{tot} \\ E_0 \\ H_{298}$	0.0	196.6	147.5	167.1	167.5	171.0
	0.0	194.7	142.9	161.7	162.2	165.9
	0.0	195.2	143.9	162.8	163.3	166.9
$ ilde{v}(NO)$	1929	1908	1618	1611	1611	1583
0.961 $\cdot ilde{v}(NO)$	1854	1834	1555	1584	1548	1521

6.1.2.7 Untersuchungen an $[Ru(NO)I_3(koji)]^-$

Das Komplexanion $[Ru(NO)I_3(koji)]^-$ wurde als Vergleich zum von A. Zangl synthetisiert analogen Chloridkomplex (siehe 6.1.2.5) untersucht. Im Komplex ist das Rutheniumatom oktaedrisch von drei Iodido-, einem zweizähnigen Kojisäureanion- (koji) und einem Nitrosylliganden umgeben. Bei dem Komplex konnten sechs Minima der elektronischen Potentialhyperfläche lokalisiert werden. Eines dieser Minima entspricht dem Nitrosyl-, eines dem Isonitrosyl- und vier entsprechen energetisch unterschiedlichen *side-on*-Komplexen. Darstellungen der Komplexe sind in Abb. 6.7 gezeigt.

Der Nitrosylkomplex wird als der stabilste, der Isonitrosylkomplex als der instabilste errechnet, die vier *side-on*-Komplexe liegen dazwischen. Bei dem energetisch tieferliegenden *side-on*-Komplexen S_a und S_b zeigt das Stickstoffatom des Nitrosylliganden in Richtung der Molekülhälfte mit dem äquatorialen Sauerstoffatom, während bei den S_c- und S_d-Komplexen das Stickstoffatom auf die andere Molekülhälfte weist. Das Stickstoffatom des Stickstoffmonoxids wird als näher am Rutheniumatom als das Sauerstoffatom errechnet (S_a Abstände: Ru-N 1.89 Å, Ru-O 2.20 Å; S_b Abstände: Ru-N 1.92 Å, Ru-O 2.22 Å; S_c Abstände: Ru-N 1.97 Å, Ru-O 2.16 Å; S_d Abstände: Ru-N 1.97 Å, Ru-O 2.16 Å). Somit ist auch hier die Form der elektronischen Potentialhyperfläche bei den *side-on*-Komplexen stark vom Platzbedarf der

Abbildung 6.7: Abbildungen der mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)I₃(koji)]⁻ berechneten N-, I- und vier side-on-Komplexe (Sa, Sb, Sc und Sd). Der Sa-Komplex liegt auf der O_{eq}-Ru-Bindungsachse (O_{eq}-Ru–N-O-Torsionswinkel: -179.5°), der S_b-Komplex zwischen der O_{ea}-Ru-Bindungsachse und einer benachbarten Ru-I Bindungsachse (O_{eq}-Ru–N-O-Torsionswinkel: –150.1°), der S_c-Komplex zwischen zwei I-Ru-Bindungsachsen (I-Ru–N-O-Torsionswinkel: -126.7°) und der S_d-Komplex zwischen den anderen beiden Ru-I-Bindungsachsen (I-Ru–N-O-Torsionswinkel: 126.8°). Ruthenium ist grau, Stickstoff blau, Chlor braun, Sauerstoff rot, Kohlenstoff grün und Wasserstoff weiß dargestellt.

Iodidoliganden abhängig. Komplexe, bei denen das Stickstoffatom des Nitrosylliganden zum kleineren, in der Äquatorebene des Komplexes liegenden, Sauerstoffatom zeigt, sind bevorzugt gegenüber den Komplexen, bei denen sich der Nitrosylligand näher an den Iodidoliganden befindet. Die relativen Energien der Komplexe sind in Tabelle 6.9 aufgeführt (für die absoluten Energien siehe Tabelle A.9 im Anhang). Die errechneten NO-Streckschwingungen der Komplexe liegen, mit Ausnahme des Isonitrosylkomplexes, im zu erwartenden Bereich (siehe Tabelle 6.9). Tabelle 6.9: Mit B3LYP/SDD/aug-cc-pVDZ für $[Ru(NO)I_3(koji)]^-$ berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex) und der *side-on*-Komplexe (S_a und S_b) im Vergleich zum Nitrosylkomplex (N-Komplex; wird als 0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	N	Ι	Sa	S _b		
$E_{tot} \\ E_0 \\ H_{298}$	0.0	201.3	152.7	153.5	163.2	163.7
	0.0	200.6	149.0	149.3	159.4	159.8
	0.0	201.1	150.4	150.8	160.3	160.7
$ ilde{v}(NO)$	1925	1906	1609	1608	1576	1576
0.961 $\cdot ilde{v}(NO)$	1850	1832	1546	1545	1514	1514

6.1.2.8 Untersuchungen an [Ru(NO)Cl₂(his)]

Der Komplex [Ru(NO)Cl₂(his)] wurde von A. Zangl synthetisiert [48]. Im Komplex ist das Rutheniumatom oktaedrisch von zwei Chlorido-, einem dreizähnig koordinierenden Histidinato- (his) und einem Nitrosylliganden umgeben. Bei dem Komplex konnten vier Minima der elektronischen Potentialhyperfläche lokalisiert werden. Eines dieser Minima entspricht dem Nitrosyl-, eines dem Isonitrosyl- und zwei entsprechen energetisch unterschiedlichen *side-on*-Komplexen. Darstellungen der Komplexe sind in Abb. 6.8 gezeigt.

Der Nitrosylkomplex wird als der stabilste, der Isonitrosylkomplex als der instabilste errechnet. Die beiden *side-on*-Komplexe liegen dazwischen. Bei dem energetisch tieferliegenden *side-on*-Komplex S_a zeigt das Stickstoffatom des Nitrosylliganden auf das Stickstoffatom derAmingruppe des Histidinliganden, während beim S_b-Komplex das Stickstoffatom auf einen Chloridoliganden weist. Das Stickstoffatom des Stickstoffmonoxids wird näher am Rutheniumatom als das Sauerstoffatom errechnet (S_a Abstände: Ru-N 1.91 Å, Ru-O 2.24 Å; S_b Abstände: Ru-N 1.93 Å, Ru-O 2.14 Å). Die relativen Energien der Komplexe sind in Tabelle 6.10 aufgeführt (für die absoluten berechneten Energien siehe Tabelle A.7 im Anhang). Die Ausbildung stabiler *side-on*-Komplexe entlang der N_{Imidazol}-Ru-Bindungsachse ist durch

Abbildung 6.8: Abbildungen der mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)Cl₂(his)] berechneten N-, I- und zwei side-on-Komplexe (S_a und S_b). Der S_a-Komplex liegt auf der N_{Amin}-Ru-Bindungsachse (N_{Amin}-Ru–N-O-Torsionswinkel: 166.6°) und der S_b-Komplex auf der Cl-Ru-N_{Amin}-Bindungsachse (N_{Amin}-Ru–N-O-Torsionswinkel: 8.5°). Ruthenium ist grau, Stickstoff blau, Chlor braun, Sauerstoff rot, Kohlenstoff grün und Wasserstoff weiß dargestellt.

Tabelle 6.10: Mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)Cl₂(his)] berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex) und der *side-on*-Komplexe (S_a und S_b) im Vergleich zum Nitrosylkomplex (N-Komplex; wird als 0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	N	Ι	Sa	S _b
E_{tot} E_0 H_{298}	0.0	191.0	126.5	160.1
	0.0	188.4	122.4	155.2
	0.0	189.1	123.1	155.8
$ ilde{v}(NO)$	1936	1910	1639	1597
0.961 · $ ilde{v}(NO)$	1860	1836	1575	1535

 π -Wechselwirkungen des Heteroaromaten gehindert. Die errechneten NO-Streckschwingungen der Komplexe liegen, mit Ausnahme des Isonitrosylkomplexes, im zu erwartenden Bereich (siehe Tabelle 6.10).

6.1.2.9 Untersuchungen an [Ru(NO)Br₂(his)]

Abbildung 6.9: Abbildungen der mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)Br₂(his)] berechneten N-, I- und vier side-on-Komplexe (S_a, S_b, S_c und S_d). Der S_a-Komplex liegt auf der N_{Amin}-Ru-Bindungsachse (N_{Amin}-Ru–N-O-Torsionswinkel: 169.1°), der S_b-Komplex zwischen der N_{Imidazol}-Ru- und der benachbarten Br-Ru-Bindungsachse (N_{Imidazol}-Ru–N-O-Torsionswinkel: -147.4°), der S_c-Komplex zwischen den Br-Ru-Bindungsachsen (Br-Ru–N-O-Torsionswinkel: 122.1°) und der S_d-Komplex auf der I-Ru-N_{Amin}-Bindungsachse (N_{Amin}-Ru–N-O-Torsionswinkel: 15.3°). Ruthenium ist grau, Stickstoff blau, Brom braun, Sauerstoff rot, Kohlenstoff grün und Wasserstoff weiß dargestellt.

Der Komplex [Ru(NO)Br₂(his)] wurde als Vergleich zu dem von A. Zangl synthetisierten analogen Chloridkomplex (siehe 6.1.2.8) untersucht. Im Komplex ist das Rutheniumatom oktaedrisch von zwei Bromido-, einem dreizähnig koordinierenden Histidinato- (his) und einem Nitrosylliganden
umgeben. Bei dem Komplex konnten sechs Minima der elektronischen Potentialhyperfläche lokalisiert werden. Eines dieser Minima entspricht dem Nitrosyl-, eines dem Isonitrosyl- und vier entsprechen energetisch unterschiedlichen *side-on*-Komplexen. Darstellungen der Komplexe sind in Abb. 6.9 gezeigt.

Tabelle 6.11: Mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)Br₂(his)] berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex) und der *side-on*-Komplexe (S_a und S_b) im Vergleich zum Nitrosylkomplex (N-Komplex; wird als 0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	Ν	Ι	Sa	S _b	Sc	S _d
E _{tot}	0.0	193.5	131.8	157.3	160.5	162.9
E_0	0.0	190.9	127.6	151.9	155.3	157.5
H_{298}	0.0	191.5	128.3	153.1	156.1	158.5
$\tilde{\nu}(NO)$	1938	1908	1633	1643	1605	1594
$0.961 \cdot \tilde{\nu}(NO)$	1862	1834	1569	1579	1542	1532

Der Nitrosylkomplex wird als der stabilste, der Isonitrosylkomplex als der instabilste errechnet. Die vier *side-on*-Komplexe liegen dazwischen. Das Stickstoffatom des Stickstoffmonoxids wird näher am Rutheniumatom als das Sauerstoffatom errechnet (S_a Abstände: Ru-N 1.91 Å, Ru-O 2.23 Å; S_b Abstände: Ru-N 1.98 Å, Ru-O 2.21 Å; S_c Abstände: Ru-N 2.00 Å, Ru-O 2.17 Å; S_d Abstände: Ru-N 1.94 Å, Ru-O 2.15 Å). Die Ausbildung stabiler *side-on*-Komplexe entlang der N_{Imidazol}-Ru-Bindungsachse ist durch π -Wechselwirkungen des Heteroaromaten gehindert. Die Positionen entlang der N_{Amin}-Ru-Bindungsachse sind bevorzugt, allerdings hat der große Bromligand starken Einfluß auf die energetische Lage dieser Komplexe (S_a und S_d). Die relativen Energien der Komplexe sind in Tabelle 6.11 aufgeführt (für die absoluten berechneten Energien siehe Tabelle A.10 im Anhang). Die errechneten NO-Streckschwingungen der Komplexe liegen, mit Ausnahme des Isonitrosylkomplexes, im zu erwartenden Bereich (siehe Tabelle 6.11).

6.1.2.10 Untersuchungen an [Ru(NO)I₂(his)]

Abbildung 6.10: Abbildungen der mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)I₂(his)] berechneten N-, I- und vier *side-on*-Komplexe (S_a, S_b, S_c und S_d). Der S_a-Komplex liegt auf der N_{Amin}-Ru-Bindungsachse (N_{Amin}-Ru–N-O-Torsionswinkel: 174.6°), der S_b-Komplex zwischen der N_{Amin}-Ru- und der benachbarten I-Ru-Bindungsachse (N_{Amin}-Ru–N-O-Torsionswinkel: -150.7°), der S_c-Komplex zwischen den I-Ru-Bindungsachsen (I-Ru–N-O-Torsionswinkel: 125.7°) und der S_d-Komplex zwischen der I-Ru und der N_{Imidazol}-Ru-Bindungsachse (N_{Imidazol}-Ru–N-O-Torsionswinkel: 139.0°). Ruthenium ist grau, Stickstoff blau, Iod braun, Sauerstoff rot, Kohlenstoff grün und Wasserstoff weiß dargestellt.

Der Komplex [Ru(NO)I₂(his)] wurde als Vergleich zu dem von A. Zangl synthetisierten analogen Chloridkomplex (siehe 6.1.2.8) untersucht. Im Komplex ist das Rutheniumatom oktaedrisch von zwei Iodido-, einem dreizähnig koordinierenden Histidinato- (his) und einem Nitrosylliganden umgeben. Bei dem Komplex konnten sechs Minima der elektronischen Potentialhyperfläche lokalisiert werden. Eines dieser Minima entspricht dem Nitrosyl-, eines dem Isonitrosyl- und vier entsprechen energetisch unterschiedlichen *side-on*-Komplexen. Darstellungen der Komplexe sind in Abb. 6.10 gezeigt.

Tabelle 6.12: Mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)I₂(his)] berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex) und der *side-on*-Komplexe (S_a und S_b) im Vergleich zum Nitrosylkomplex (N-Komplex; wird als 0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	Ν	Ι	Sa	S _b	Sc	S _d
E _{tot}	0.0	198.5	138.9	141.5	153.9	154.6
E_0	0.0	196.0	134.5	136.5	149.0	149.8
H_{298}	0.0	196.6	135.3	137.6	149.6	150.4
$\tilde{\nu}(NO)$	1933	1902	1622	1598	1558	1598
$0.961 \cdot \tilde{\nu}(NO)$	1858	1828	1559	1536	1497	1536

Der Nitrosylkomplex wird als der stabilste, der Isonitrosylkomplex als der instabilste errechnet. Die vier side-on-Komplexe liegen dazwischen. Bei dem energetisch tieferliegenden side-on-Komplexen Sa zeigt das Stickstoffatom des Nitrosylliganden auf das Stickstoffatom der Amingruppe des Histidinliganden, während das Stickstoffatom der anderen side-on-Komplexe jeweils zwischen zwei Bindungsachsen der äquatorialen Liganden zeigt. Das Stickstoffatom des Stickstoffmonoxids wird näher am Rutheniumatom als das Sauerstoffatom errechnet (Sa Abstände: Ru-N 1.91 Å, Ru-O 2.22 Å; Sb Abstände: Ru-N 1.95 Å, Ru-O 2.21 Å; Sc Abstände: Ru-N 2.00 Å, Ru-O 2.16 Å; S_d Abstände: Ru-N 1.99 Å, Ru-O 2.19 Å). Die relativen Energien der Komplexe sind in Tabelle 6.12 aufgeführt (für die absoluten Energien siehe Tabelle A.9 im Anhang). Der Iodidoligand hat einen großen Platzbedarf, weshalb die side-on-Komplexe, mit Ausnahme von Sa, zwischen die äquatorialen Ligandbindungsachsen zeigen. Die errechneten NO-Streckschwingungen der Komplexe liegen, mit Ausnahme des Isonitrosylkomplexes, im zu erwartenden Bereich (siehe Tabelle 6.12).

Abbildung 6.11: Abbildungen der mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)Br₂(dap)]⁻ berechneten N-, I- und zwei side-on-Komplexe (S_a und S_b). Der S_a-Komplex liegt auf der N_{Amin an C2}-Ru-Bindungsachsen (N_{Amin}-Ru–N-O-Torsionswinkel: 159.5°) und der S_b-Komplex zwischen den beiden Br-Ru–Bindungsachsen (Br-Ru–N-O-Torsionswinkel: 121.9°). Ruthenium ist grau, Stickstoff blau, Brom braun, Sauerstoff rot, Kohlenstoff grün und Wasserstoff weiß dargestellt.

6.1.2.11 Untersuchungen an [Ru(NO)Br₂(dap)]⁻

Das Komplexanion [Ru(NO)Br₂(dap)]⁻ wurde als Vergleich zu dem von A. Zangl synthetisierten analogen Chloridkomplex untersucht (siehe 6.1.4). Im Komplex ist das Rutheniumatom oktaedrisch von zwei Bromido-, einem dreizähnigen Aminoalaninato- (dap) und einem Nitrosylliganden umgeben. Bei dem Komplex konnten vier Minima der elektronischen Potentialhyperfläche lokalisiert werden. Eines dieser Minima entspricht dem Nitrosyl-, eines dem Isonitrosyl- und zwei entsprechen energetisch unterschiedlichen *side-on*-Komplexen. Darstellungen der Komplexe sind in Abb. 6.11 gezeigt.

Der Nitrosylkomplex wird als der stabilste, der Isonitrosylkomplex als der instabilste errechnet. Die beiden *side-on*-Komplexe liegen dazwischen.

Tabelle 6.13: Mit B3LYP/SDD/aug-cc-pVDZ für $[Ru(NO)Br_2(dap)]^-$ berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex) und der *side-on*-Komplexe (S_a und S_b) im Vergleich zum Nitrosylkomplex (N-Komplex; wird als 0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	Ν	Ι	Sa	Sb
$E_{tot} \\ E_0 \\ H_{298}$	0.0	197.5	133.5	161.0
	0.0	194.8	128.9	155.8
	0.0	195.5	129.9	156.7
$ ilde{ u}(NO)$	1942	1911	1626	1603
0.961 $\cdot ilde{ u}(NO)$	1866	1836	1563	1540

Das Stickstoffatom des Stickstoffmonoxidliganden wird näher am Rutheniumatom als das Sauerstoffatom errechnet (S_a Abstände: Ru-N 1.92 Å, Ru-O 2.25 Å; S_b Abstände: Ru-N 2.00 Å, Ru-O 2.16 Å). Eine Übersicht über die relativen Energien der Komplexe ist in Tabelle 6.13 zusammengestellt (für die absoluten Energien siehe Tabelle A.10 im Anhang). Die errechneten NO-Streckschwingungen der Komplexe liegen, mit Ausnahme des Isonitrosylkomplexes, im zu erwartenden Bereich (siehe Tabelle 6.13).

6.1.2.12 Untersuchungen an [Ru(NO)I₂(dap)]⁻

Das Komplexanion $[Ru(NO)I_2(dap)]^-$ wurde als Vergleich zu dem von A. Zangl synthetisierten analogen Chloridkomplex berechnet (siehe 6.1.4). Im Komplex ist das Rutheniumatom oktaedrisch von zwei Iodido-, einem dreizähnigen Aminoalaninato- (dap) und einem Nitrosylliganden umgeben. Bei dem Komplex konnten sechs Minima der elektronischen Potentialhyperfläche lokalisiert werden. Eines dieser Minima entspricht dem Nitrosyl-, eines dem Isonitrosyl- und vier entsprechen energetisch unterschiedlichen *side-on*-Komplexen. Darstellungen der Komplexe sind in Abb. 6.12 gezeigt.

Der Nitrosylkomplex wird als der stabilste, der Isonitrosylkomplex als der instabilste errechnet. Die vier *side-on*-Komplexe liegen dazwischen. Das Stickstoffatom des Stickstoffmonoxidliganden wird näher am Rutheniuma-

Abbildung 6.12: Abbildungen der mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)I₂(dap)]⁻ berechneten N-, I- und vier side-on-Komplexe (S_a, S_b, S_c und S_d). Der S_a-Komplex liegt zwischen den beiden N_{Amin}-Ru-Bindungsachsen (N_{Amin}-Ru-N-O-Torsionswinkel: -129.2°), der S_b-Komplex zwischen einer N_{Amin}-Ru- und einer I-Ru-Bindungsachsen (N_{Amin}-Ru-N-O-Torsionswinkel: -142.2°), der S_c-Komplex auf einer N_{Amin}-Ru-I-Bindungsachse (N_{Amin}-Ru-N-O-Torsionswinkel: 144.3°) und der S_d-Komplex zwischen den beiden I-Ru-Bindungsachsen (I-Ru-N-O-Torsionswinkel: 123.8°). Ruthenium ist grau, Stickstoff blau, Iod braun, Sauerstoff rot, Kohlenstoff grün und Wasserstoff weiß dargestellt.

tom als das Sauerstoffatom errechnet (S_a Abstände: Ru-N 1.92 Å, Ru-O 2.25 Å; S_b Abstände: Ru-N 1.96 Å, Ru-O 2.20 Å; S_c Abstände: Ru-N 1.98 Å, Ru-O 2.19 Å; S_d Abstände: Ru-N 2.01 Å, Ru-O 2.15 Å). Auch hier beeinflusst der Platzbedarf der Iodidoliganden sehr stark die Ausprägung möglicher Minima. Eine Übersicht über die relativen berechneten Energien der Komplexe ist in Tabelle 6.14 zusammengestellt (für die absoluten Energien siehe Tabelle A.8 im Anhang). Die errechneten NO-Streckschwingungen der Komplexe liegen, mit Ausnahme des Isonitrosylkomplexes, im zu erwartenden Bereich (siehe Tabelle 6.14). Tabelle 6.14: Mit B3LYP/SDD/aug-cc-pVDZ für $[Ru(NO)I_2(dap)]^-$ berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex) und der *side-on*-Komplexe (S_a , S_b , S_c und S_d) im Vergleich zum Nitrosylkomplex (N-Komplex; wird als 0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	N	Ι	Sa	S _b	Sc	Sd
E_{tot}	0.0	202.3	140.9	146.0	149.7	154.3
E_0	0.0	199.7	136.0	141.1	145.1	149.4
H_{298}	0.0	200.3	137.1	142.0	145.7	150.0
$ ilde{v}(NO)$	1937	1903	1615	1580	1584	1552
0.961 $\cdot ilde{v}(NO)$	1861	1831	1552	1518	1522	1491

6.1.2.13 Untersuchungen an [Ru(NO)Cl₃(dap)]⁻

Das Komplexanion [Ru(NO)Cl₃(dap)]⁻ wurde als Vergleich zu einem von A. Zangl synthetisierten Chloridkomplex berechnet (siehe 6.1.4). Im Komplex ist das Rutheniumatom oktaedrisch von drei Chlorido-, einem zweizähnigen Aminoalaninato- (dap) und einem Nitrosylliganden umgeben. Bei dem Komplex konnten fünf Minima der elektronischen Potentialhyperfläche lokalisiert werden. Eines dieser Minima entspricht dem Nitrosyl-, eines dem Isonitrosylund drei entsprechen energetisch unterschiedlichen *side-on*-Komplexen. Darstellungen der Komplexe sind in Abb. 6.13 gezeigt.

Der Nitrosylkomplex wird als der stabilste, der Isonitrosylkomplex als der instabilste errechnet. Die drei *side-on*-Komplexe liegen dazwischen. Bei den energetisch tieferliegenden *side-on*-Komplexen S_a und S_b liegt der Nitrosylligand auf der N_{eq}-Ru-Cl-Bindungsachse, nur beim energetisch höher liegenden *side-on*-Komplex S_c zeigt das Stickstoffatom des Nitrosylliganden zwischen zwei äquatoriale Chloratome. Das Stickstoffatom des Stickstoffmonoxidliganden wird näher am Rutheniumatom als das Sauerstoffatom errechnet (S_a Abstände: Ru-N 1.90 Å, Ru-O 2.21 Å; S_b Abstände: Ru-N 1.92 Å, Ru-O 2.13 Å; S_c Abstände: Ru-N 1.97 Å, Ru-O 2.20 Å). Hier beeinflusst der Platzbedarf der Chloridoliganden die Ausprägung möglicher Minima. Wird die elektronisch günstige Position parallel zu einer Bindungsachse sterisch

Abbildung 6.13: Abbildungen der mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)Cl₃(dap)]⁻ berechneten N-, I- und drei *side-on*-Komplexe (S_a, S_b und S_c). Der S_a-Komplex liegt auf der N_{Amin}-Ru-Bindungsachse (N_{Amin}-Ru–N-O-Torsionswinkel: 175.5°), der S_b-Komplex auf der Cl-Ru-N_{Amin}-Bindungsachse (N_{Amin}-Ru–N-O-Torsionswinkel: -1.7°) und der S_c-Komplex zwischen zwei Cl-Ru-Bindungsachsen (Cl_{eq}-Ru–N-O-Torsionswinkel: 120.2°). Ruthenium ist grau, Stickstoff blau, Chlor braun, Sauerstoff rot, Kohlenstoff grün und Wasserstoff weiß dargestellt.

nicht zu stark behindert, so wird sie eingenommen. Sonst wird eine Position zwischen den äquatorialen Liganden bevorzugt. Eine Übersicht über die relativen Energien der Komplexe ist in Tabelle 6.15 zusammengestellt (für die absoluten Energien siehe Tabelle A.8 im Anhang). Die errechneten NO-Streckschwingungen der Komplexe liegen, mit Ausnahme des Isonitrosylkomplexes, im zu erwartenden Bereich (siehe Tabelle 6.15). Tabelle 6.15: Mit B3LYP/SDD/aug-cc-pVDZ für $[Ru(NO)Cl_3(dap)]^-$ berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex) und der *side-on*-Komplexe (S_a und S_b) im Vergleich zum Nitrosylkomplex (N-Komplex; wird als 0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	Ν	Ι	Sa	S _b	Sc
E _{tot}	0.0	192.6	133.1	159.1	166.0
E ₀	0.0	190.4	129.0	154.4	169.4
H ₂₉₈	0.0	190.0	129.7	154.9	161.5
$ ilde{ u}(NO)$	1918	1899	1621	1565	1620
0.961 $\cdot ilde{ u}(NO)$	1843	1825	1558	1504	1557

6.1.2.14 Untersuchungen an [Ru(NO)Br₃(dap)]⁻

Das Komplexanion [Ru(NO)Br₃(dap)]⁻ wurde als Vergleich zu einem von A. Zangl synthetisierten Chloridkomplex berechnet (siehe 6.1.4). Im Komplex ist das Rutheniumatom oktaedrisch von drei Bromido-, einem zweizähnigen Aminoalaninato- (dap) und einem Nitrosylliganden umgeben. Bei dem Komplex konnten fünf Minima der elektronischen Potentialhyperfläche lokalisiert werden. Eines dieser Minima entspricht dem Nitrosyl-, eines dem Isonitrosylund drei entsprechen energetisch unterschiedlichen *side-on*-Komplexen. Darstellungen der Komplexe sind in Abb. 6.14 gezeigt.

Der Nitrosylkomplex wird als der stabilste, der Isonitrosylkomplex als der instabilste errechnet. Die drei *side-on*-Komplexe liegen dazwischen. Bei dem energetisch tieferliegenden *side-on*-Komplex S_a zeigt das Stickstoffatom des Nitrosylliganden auf das Aminstickstoffatom in der Äquatorebene des Komplexes. Bei den beiden energetisch höher liegenden *side-on*-Komplexen zeigt das Stickstoffatom des Nitrosylliganden zwischen zwei äquatoriale Bromatome (S_b), beziehungsweise auf das der Amingruppe gegenüberliegende Bromatom (S_c). Das Stickstoffatom des Stickstoffmonoxidliganden wird näher am Rutheniumatom als das Sauerstoffatom errechnet (S_a Abstände: Ru-N 1.90 Å, Ru-O 2.22 Å; S_b Abstände: Ru-N 1.98 Å, Ru-O 2.19 Å; S_c Abstände: Ru-N 1.92 Å, Ru-O 2.13 Å). Auch hier beeinflusst der Platzbedarf der Bro-

Abbildung 6.14: Abbildungen der mit B3LYP/SDD/aug-cc-pVDZ für $[Ru(NO)Br_3(dap)]^$ berechneten N-, I- und drei sideon-Komplexe (S_a, S_b und S_c). Der S_a-Komplex liegt der N_{Amin}-Ru-Bindungsachse auf (N_{Amin}-Ru–N-O-Torsionswinkel: -175.0°), der S_b-Komplex zwischen zwei Br-Ru-Bindungsachsen (Br_{eq}-Ru–N-O-Torsionswinkel: -125.2°) und der Sc-Komplex auf der Br-Ru-NAmin-Bindungsachse (N_{Amin}-Ru–N-O-Torsionswinkel: -1.7°). Ruthenium ist grau, Stickstoff blau, Brom braun, Sauerstoff rot, Kohlenstoff grün und Wasserstoff weiß dargestellt.

midoliganden sehr stark die Ausprägung möglicher Minima. Trotzdem wird die elektronisch günstige Position parallel zu einer Bindungsachse, falls sie sterisch nicht zu stark gehindert ist, eingenommen. Eine Übersicht über die relativen berechneten Energien der Komplexe ist in Tabelle 6.16 zusammengestellt (für die absoluten Energien siehe Tabelle A.7 im Anhang). Die errechneten NO-Streckschwingungen der Komplexe liegen, mit Ausnahme des Isonitrosylkomplexes, im zu erwartenden Bereich (siehe Tabelle 6.16). Tabelle 6.16: Mit B3LYP/SDD/aug-cc-pVDZ für $[Ru(NO)Br_3(dap)]^-$ berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex) und der *side-on*-Komplexe (S_a und S_b) im Vergleich zum Nitrosylkomplex (N-Komplex; wird als 0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	Ν	Ι	Sa	S _b	Sc
E _{tot}	0.0	196.0	139.1	163.7	164.2
E ₀	0.0	193.7	134.6	158.4	159.2
H ₂₉₈	0.0	194.3	135.6	159.3	159.9
$ ilde{ u}(NO)$	1920	1902	1625	1594	1566
0.961 $\cdot ilde{ u}(NO)$	1845	1828	1562	1532	1505

6.1.2.15 Untersuchungen an [Ru(NO)I₃(dap)]⁻

Das Komplexanion [Ru(NO)I₃(dap)]⁻ wurde als Vergleich zu einem von A. Zangl synthetisierten Chloridkomplex untersucht (siehe 6.1.4). Im Komplex ist das Rutheniumatom oktaedrisch von drei Iodido-, einem zweizähnigen Aminoalaninato- (dap) und einem Nitrosylliganden umgeben. Bei dem Komplex konnten fünf Minima der elektronischen Potentialhyperfläche lokalisiert werden. Eines dieser Minima entspricht dem Nitrosyl-, eines dem Isonitrosylund drei entsprechen energetisch unterschiedlichen *side-on*-Komplexen. Darstellungen der Komplexe sind in Abb. 6.15 gezeigt.

Der Nitrosylkomplex wird als der stabilste, der Isonitrosylkomplex als der instabilste errechnet. Die drei *side-on*-Komplexe liegen dazwischen. Das Stickstoffatom des Stickstoffmonoxidliganden wird näher am Rutheniumatom als das Sauerstoffatom errechnet (S_a Abstände: Ru-N 1.90 Å, Ru-O 2.22 Å; S_b Abstände: Ru-N 1.98 Å, Ru-O 2.17 Å; S_c Abstände: Ru-N 1.98 Å, Ru-O 2.19 Å). Auch hier beeinflusst der Platzbedarf der Iodidoliganden sehr stark die Ausprägung möglicher Minima. Nur auf der Bindungsachse zum äquatorialen Aminstickstoffatom ist ein *side-on*-Minimum vorhanden, bei den von den Iodidoliganden dominierten Bindungsachsen werden die Positionen zwischen den Bindungsachsen bevorzugt. Eine Übersicht über die relativen berechneten Energien der Komplexe ist in Tabelle 6.17 zusammengestellt (für

Abbildung 6.15: Abbildungen der mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)I₃(dap)]⁻ berechneten N-, I- und drei side-on-Komplexe (S_a, S_b und S_c). Der S_a-Komplex liegt auf der N_{Amin}-Ru-Bindungsachse (N_{Amin}-Ru-N-O-Torsionswinkel: 169.7°), der S_b-Komplex zwischen zwei I-Ru-Bindungsachsen (I-Ru–N-O-Torsionswinkel: –127.3°) und der S_c-Komplex zwischen zwei I-Ru-Bindungsachsen (I-Ru–N-O-Torsionswinkel: –142.2°). Ruthenium ist grau, Stickstoff blau, Iod braun, Sauerstoff rot, Kohlenstoff grün und Wasserstoff weiß dargestellt.

die absoluten Energien siehe Tabelle A.8 im Anhang). Die errechneten NO-Streckschwingungen der Komplexe liegen, mit Ausnahme des Isonitrosylkomplexes, im zu erwartenden Bereich (siehe Tabelle 6.17). Tabelle 6.17: Mit B3LYP/SDD/aug-cc-pVDZ für $[Ru(NO)I_3(dap)]^-$ berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex) und der *side-on*-Komplexe (S_a und S_b) im Vergleich zum Nitrosylkomplex (N-Komplex; wird als 0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	Ν	Ι	Sa	S _b	Sc
E_{tot} E_0 H_{298}	0.0	202.3	146.5	161.5	161.5
	0.0	200.2	141.6	156.3	156.3
	0.0	200.7	142.9	157.1	157.1
$ ilde{ u}(NO)$	1917	1899	1610	1560	1566
0.961 $\cdot ilde{ u}(NO)$	1842	1825	1547	1498	1505

6.1.2.16 Untersuchungen an [Ru(NO)Cl₂(tda)]⁻

Das Komplexanion [Ru(NO)Cl₂(tda)]⁻ wurde von A. Zangl synthetisiert [48]. Im Komplex ist das Rutheniumatom oktaedrisch von zwei Chlorido-, einem dreizähnigen Thiodiacetato- (tda) und einem Nitrosylliganden umgeben. Bei dem Komplex konnten sechs Minima der elektronischen Potentialhyperfläche lokalisiert werden. Eines dieser Minima entspricht dem Nitrosyl-, eines dem Isonitrosylkomplex und vier entsprechen energetisch unterschiedlichen *sideon*-Komplexen. Darstellungen der Komplexe sind in Abb. 6.16 gezeigt.

Der Nitrosylkomplex wird als der stabilste, der Isonitrosylkomplex als der instabilste errechnet. Die vier *side-on*-Komplexe liegen dazwischen. Bei dem energetisch am tiefsten liegenden *side-on*-Komplex S_a zeigt das Stickstoffatom des Nitrosylliganden zwischen das Schwefel- sowie ein äquatoriales Chloratom. Beim S_b- und S_c-Komplex, die energetisch beide nahezu gleich sind, zeigt das Stickstoffatom des Nitrosylliganden einmal auf das Schwefelatom und einmal auf das äquatoriale Sauerstoffatom. Nur beim energetisch ungünstigsten *side-on*-Minimum (S_d) zeigt das Stickstoffatom des Nitrosylliganden auf ein Chloratom. Bei den *side-on*-Komplexen wird das Stickstoffatom näher am Rutheniumatom als das Sauerstoffatom des Nitrosylliganden errechnet (S_a Abstände: Ru-N 1.93 Å, Ru-O 2.23 Å; S_b Abstände: Ru-N 1.92 Å, Ru-O 2.19 Å; S_c Abstände: Ru-N 1.93 Å, Ru-O 2.16 Å; S_d Abstände: Ru-N

Abbildung 6.16: Abbildungen der mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)Cl₂(Tda)]⁻ berechneten N-, I- und vier *side-on*-Komplexe (S_a, S_b, S_c und S_d). Der S_a-Komplex liegt zwischen der S-Ru- und der benachbarten Ru-Cl-Bindungsachse (S-Ru–N-O-Torsionswinkel: 118.1°), der S_b-Komplex auf der S-Ru-Bindungsachse (S-Ru–N-O-Torsionswinkel: 167.3°), der S_c-Komplex auf der O_{eq}-Ru-Bindungsachse (O_{eq}-Ru– N-O-Torsionswinkel: 161.1°) und der S_d-Komplex auf der Cl-Ru-S-Bindungsachse (S-Ru–N-O-Torsionswinkel: -0.2°). Ruthenium ist grau, Stickstoff blau, Chlor braun, Schwefel gelb, Sauerstoff rot, Kohlenstoff grün und Wasserstoff weiß dargestellt.

1.92 Å, Ru-O 2.14 Å). Bei dem Komplex scheinen die *side-on*-Minima sehr stark durch den Platzbedarf der äquatorialen Liganden bestimmt. So ist der stabilste *side-on*-Komplex derjenige, bei dem sich der Nitrosylligand zwischen zwei der äquatorialen Liganden befindet. Die relativen Energiewerte der Komplexe sind in Tabelle 6.18 aufgeführt (für die absoluten berechenten Energien siehe Tabelle A.6 im Anhang). Die errechneten NO-Streckschwingungen der Komplexe liegen, mit Ausnahme des Isonitrosylkomplexes, im zu erwartenden Bereich (siehe Tabelle 6.18). Tabelle 6.18: Mit B3LYP/SDD/aug-cc-pVDZ für $[Ru(NO)Cl_2(Tda)]^-$ berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex) und der *side-on*-Komplexe (S_a , S_b , S_c und S_d) im Vergleich zum Nitrosylkomplex (N-Komplex; wird als 0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	N	Ι	Sa	S _b	Sc	Sd
E_{tot}	0.0	189.9	140.8	144.4	145.1	163.3
E_0		187.9	136.3	139.7	140.7	158.6
$\frac{H_{298}}{\tilde{\nu}(NO)}$ 0.961 · $\tilde{\nu}(NO)$	0.0	188.4	137.1	140.7	141.3	159.2
	1925	1905	1611	1618	1623	1579
	1850	1831	1548	1555	1560	1517

6.1.2.17 Untersuchungen an [Ru(NO)Br₂(tda)]⁻

Das Komplexanion [Ru(NO)Br₂(tda)]⁻ wurde als Vergleich zu dem von A. Zangl synthetisierten analogen Chloridkomplex (siehe 6.1.2.16) untersucht. Im Komplex ist das Rutheniumatom oktaedrisch von zwei Bromido-, einem dreizähnigen Thiodiacetato- (tda) und einem Nitrosylliganden umgeben. Bei dem Komplex konnten sechs Minima der elektronischen Potentialhyperfläche lokalisiert werden. Eines dieser Minima entspricht dem Nitrosyl-, eines dem Isonitrosyl- und vier entsprechen energetisch unterschiedlichen *side-on*-Komplexen. Darstellungen der Komplexe sind in Abb. 6.17 gezeigt.

Der Nitrosylkomplex wird als der stabilste, der Isonitrosylkomplex als der instabilste errechnet. Die vier *side-on*-Komplexe liegen dazwischen. Bei dem energetisch am tiefsten liegenden *side-on*-Komplex S_a zeigt das Stickstoffatom des Nitrosylliganden zwischen das Schwefel- und ein äquatoriales Bromatom. Beim S_b- und S_c-Komplex, die energetisch beide nahezu gleich sind, zeigt das Stickstoffatom des Nitrosylliganden einmal auf das äquatoriale Sauerstoffatom und einmal zwischen die beiden Bromatome. Allerdings weicht der Nitrosylligand beim S_b-Komplex um fast 20° von der direkten Lage auf der Ru-O_{eq}-Bindungsachse ab. Nur beim energetisch ungünstigsten *side-on*-Minimum (S_d) liegt der Nitrosylligand direkt auf einer Bindungsachse der äquatorialen Liganden. Bei den *side-on*-Komplexen wird das Stickstoffatom

Abbildung 6.17: Abbildungen der mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)Br₂(Tda)]⁻ berechneten N-, I- und vier *side-on*-Komplexe (S_a, S_b, S_c und S_d). Der S_a-Komplex liegt zwischen der S-Ru- und der benachbarten Ru-Br-Bindungsachse (S-Ru–N-O-Torsionswinkel: 126.1°), der S_b-Komplex auf der O_{eq}-Ru-Bindungsachse (O_{eq}-Ru–N-O-Torsionswinkel: 160.0°), der S_c-Komplex zwischen den beiden Br-Ru-Bindungsachsen (Br-Ru–N-O-Torsionswinkel: –118.2°) und der S_d-Komplex auf der Br-Ru-S-Bindungsachse (S-Ru–N-O-Torsionswinkel: 7.5°). Ruthenium ist grau, Stickstoff blau, Brom braun, Schwefel gelb, Sauerstoff rot, Kohlenstoff grün und Wasserstoff weiß dargestellt.

näher am Rutheniumatom als das Sauerstoffatom des Nitrosylliganden errechnet (S_a Abstände: Ru-N 1.94 Å, Ru-O 2.23 Å; S_b Abstände: Ru-N 1.93 Å, Ru-O 2.22 Å; S_c Abstände: Ru-N 1.98 Å, Ru-O 2.19 Å; S_d Abstände: Ru-N 1.93 Å, Ru-O 2.15 Å). Bei dem Komplex sind die *side-on-*Minima sehr stark durch den Platzbedarf der Liganden bestimmt. Die relativen Energiewerte der Komplexe sind in Tabelle 6.19 aufgeführt (für die absoluten berechenten Energien siehe Tabelle A.7 im Anhang). Die errechneten NO-Streckschwingungen der Komplexe liegen, mit Ausnahme des Isonitrosylkomplexes, im zu erwartenden Bereich (siehe Tabelle 6.19). Tabelle 6.19: Mit B3LYP/SDD/aug-cc-pVDZ für $[Ru(NO)Br_2(tda)]^-$ berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex) und der *side-on*-Komplexe (S_a , S_b , S_c und S_d) im Vergleich zum Nitrosylkomplex (N-Komplex; wird als 0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	Ν	Ι	Sa	S _b	Sc	S _d
E_{tot} E_0	0.0	192.5 190.5	142.6 138.0	150.2 145.6	154.1 149.1	166.3 161.1
H_{298}	0.0	191.0	138.9	146.3	149.9	162.2
$0.961 \cdot \tilde{\nu}(NO)$	1920 1851	1900 1832	1544	1621 1558	1538	1519 1519

6.1.3 Berechnungen von NMR-Spektren für große Rutheniumnitrosylkomplexe

Es wurden für im Arbeitskreis von H. Giglmeier [49] synthetisierte Komplexe ¹³C-NMR-Verschiebungen berechnet. Die relativen Verschiebungen wurden auf Tetramethylsilan (TMS) bezogen, indem von der gemittelten absoluten Verschiebung der Kohlenstoffatome des TMS die einzelnen berechneten absoluten Verschiebungen der Kohlenstoffatome der Komplexe subtrahiert wurden. Die Darstellung der Komplexe befindet sich in den Tabellen 6.20 bis 6.22. Die relativen Verschiebungen der Komplexeignale sind in den Tabellen 6.23 und 6.24, die absoluten Verschiebungen sind im Anhang in den Tabellen A.12 bis A.14 aufgelistet.

Tabelle 6.20: Darstellung der mit B3LYP/SDD/6-31G(d,p) berechneten Strukturen der bezeichneten Komplexe und von Tetramethylsilan (TMS).

Tabelle 6.21: Darstellung der mit B3LYP/SDD/6-31G(d,p) berechneten Strukturen der bezeichneten Komplex. Tabelle 6.22: Darstellung der mit B3LYP/SDD/6-31G(d,p) berechneten Strukturen der bezeichneten Komplex.

Tabelle 6.23: Mit PBE1PBE/SDD/6-311++G(2d, p)//B3LYP/SDD/6-31G(d,p) berechnete auf Tetramethylsilan (TMS) bezogene relative ¹³C-NMR Verschiebungen für den bezeichneten Komplex.

			I	Hel162F	ξ			
Kohlenstoffatom	C3	C4	C5	C7	C8	C13	C14	
δ	158.5	161.2	135.3	129.9	147.8	159.8	160.0	
Kohlenstoffatom	C15	C16	C17	C22	C23	C24	C25	
δ	128.4	128.5	148.8	161.6	158.5	130.1	134.9	
Kohlenstoffatom	C27	C33	C34	C39				
δ	147.9	84.8	186.5	23.2				
]	Hel162S	5			
Kohlenstoffatom	C3	C4	C5	C7	C8	C13	C14	
δ	158.5	161.6	134.9	130.1	147.9	160.0	159.8	
Kohlenstoffatom	C15	C16	C17	C22	C23	C24	C25	
δ	128.5	128.4	148.8	161.2	158.5	129.9	135.3	
Kohlenstoffatom	C27	C33	C35	C37				
δ	147.8	84.8	186.5	23.2				
			T	Hol1641	2			
Kohlenstoffatom	C3	C4] C5	Hel164F	Х С8	C13	C14	
Kohlenstoffatom δ	C3 158 5	C4 161 1] C5 135.6	Hel164F C7 129 9	C8 148.0	C13 159 9	C14 159 8	
Kohlenstoffatom δ	C3 158.5 C15	C4 161.1 C16	I C5 135.6 C17	Hel164F C7 129.9 C22	C8 148.0 C23	C13 159.9 C24	C14 159.8 C25	
Kohlenstoffatom δ Kohlenstoffatom δ	C3 158.5 C15 128.4	C4 161.1 C16 128 4	I C5 135.6 C17 148 7	Hel164F C7 129.9 C22 161 5	C8 148.0 C23 159 1	C13 159.9 C24 130.3	C14 159.8 C25 135.3	
Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom	C3 158.5 C15 128.4 C27	C4 161.1 C16 128.4 C33	5 135.6 C17 148.7 C34	Hel164F C7 129.9 C22 161.5 C39	C8 148.0 C23 159.1 C42	C13 159.9 C24 130.3	C14 159.8 C25 135.3	
Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ	C3 158.5 C15 128.4 C27 148.2	C4 161.1 C16 128.4 C33 84.8	135.6 C17 148.7 C34 185.0	Hel164F C7 129.9 C22 161.5 C39 40.3	C8 148.0 C23 159.1 C42 176.3	C13 159.9 C24 130.3	C14 159.8 C25 135.3	
Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ	C3 158.5 C15 128.4 C27 148.2	C4 161.1 C16 128.4 C33 84.8	E5 135.6 C17 148.7 C34 185.0	Hel164F C7 129.9 C22 161.5 C39 40.3	C8 148.0 C23 159.1 C42 176.3	C13 159.9 C24 130.3	C14 159.8 C25 135.3	
Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ	C3 158.5 C15 128.4 C27 148.2	C4 161.1 C16 128.4 C33 84.8	C5 135.6 C17 148.7 C34 185.0	Hel164F C7 129.9 C22 161.5 C39 40.3 Hel164S	C8 148.0 C23 159.1 C42 176.3	C13 159.9 C24 130.3	C14 159.8 C25 135.3	
Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ	C3 158.5 C15 128.4 C27 148.2 C3	C4 161.1 C16 128.4 C33 84.8 C4	E C5 135.6 C17 148.7 C34 185.0	Hel164F C7 129.9 C22 161.5 C39 40.3 Hel164S C7	C8 148.0 C23 159.1 C42 176.3 C8	C13 159.9 C24 130.3	C14 159.8 C25 135.3	
Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ	C3 158.5 C15 128.4 C27 148.2 C3 158.6	C4 161.1 C16 128.4 C33 84.8 C4 161.7	E 5 135.6 C17 148.7 C34 185.0	Hel164F C7 129.9 C22 161.5 C39 40.3 Hel164S C7 130.6	C8 148.0 C23 159.1 C42 176.3 C8 148.3	C13 159.9 C24 130.3 C13 159.6	C14 159.8 C25 135.3 C14 160.2	
Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom	C3 158.5 C15 128.4 C27 148.2 C3 158.6 C15	C4 161.1 C16 128.4 C33 84.8 C4 161.7 C16	C5 135.6 C17 148.7 C34 185.0	Hel164F C7 129.9 C22 161.5 C39 40.3 Hel164S C7 130.6 C22	C8 148.0 C23 159.1 C42 176.3 C8 148.3 C23	C13 159.9 C24 130.3 C13 159.6 C24	C14 159.8 C25 135.3 C14 160.2 C25	
Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ	C3 158.5 C15 128.4 C27 148.2 C3 158.6 C15 128.4	C4 161.1 C16 128.4 C33 84.8 C4 161.7 C16 128.7	C5 135.6 C17 148.7 C34 185.0 C5 134.9 C17 148.4	Hel164F C7 129.9 C22 161.5 C39 40.3 Hel164S C7 130.6 C22 161.2	C8 148.0 C23 159.1 C42 176.3 C8 148.3 C23 158.4	C13 159.9 C24 130.3 C13 159.6 C24 129.8	C14 159.8 C25 135.3 C14 160.2 C25 135.4	
Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom	C3 158.5 C15 128.4 C27 148.2 C3 158.6 C15 128.4 C27	C4 161.1 C16 128.4 C33 84.8 C4 161.7 C16 128.7 C33	C5 135.6 C17 148.7 C34 185.0 C5 134.9 C17 148.4 C34	Hel164F C7 129.9 C22 161.5 C39 40.3 Hel164S C7 130.6 C22 161.2 C39	C8 148.0 C23 159.1 C42 176.3 C8 148.3 C23 158.4 C42	C13 159.9 C24 130.3 C13 159.6 C24 129.8	C14 159.8 C25 135.3 C14 160.2 C25 135.4	

Tabelle 6.24: Mit PBE1PBE/SDD/6-311++G(2d, p)//B3LYP/SDD/6-31G(d,p) berechnete auf Tetramethylsilan (TMS) bezogene relative ¹³C-NMR Verschiebungen für den bezeichneten Komplex.

			Н	lel165EI	N		
Kohlenstoffatom	C3	C4	C5	C7	C8	C13	C14
δ	157.3	161.6	134.0	129.1	147.4	160.6	159.7
Kohlenstoffatom	C15	C16	C17	C22	C23	C24	C25
δ	127.7	127.9	147.7	160.7	163.4	128.4	134.5
Kohlenstoffatom	C27	C35	C36	C37	C42		
δ	146.7	101.0	80.4	98.3	83.1		
			T	T 11/PT	V		
	\sim	\sim	E C1	lel165E	Χ	C10	C14
Kohlenstoffatom	C2	C3	C4	C5	C12	C13	C14
∂	78.8	100.4	96.5	74.6	160.1	134.4	147.5
Kohlenstoffatom	C15	C16	C17	C19	C20	C21	C22
δ	129.9	161.8	159.8	160.0	124.2	147.8	128.2
Kohlenstoffatom	C23	C25	C26	C27	C28		
δ	162.1	158.7	134.0	147.4	129.5		
	Hal167						
				Hel167			
Kohlenstoffatom	C1	C2	C3	Hel167 C5	C6	C10	C12
Kohlenstoffatom δ	C1 148.0	C2 130.1	C3 161.4	Hel167 C5 158.5	C6 135.3	C10 159.8	C12 159.8
Kohlenstoffatom δ Kohlenstoffatom	C1 148.0 C13	C2 130.1 C14	C3 161.4 C15	Hel167 C5 158.5 C16	C6 135.3 C18	C10 159.8 C19	C12 159.8 C20
Kohlenstoffatom δ Kohlenstoffatom δ	C1 148.0 C13 128.6	C2 130.1 C14 148.6	C3 161.4 C15 128.6	Hel167 C5 158.5 C16 161.3	C6 135.3 C18 158.6	C10 159.8 C19 135.2	C12 159.8 C20 147.9
Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom	C1 148.0 C13 128.6 C21	C2 130.1 C14 148.6 C23	C3 161.4 C15 128.6 C26	Hel167 C5 158.5 C16 161.3	C6 135.3 C18 158.6	C10 159.8 C19 135.2	C12 159.8 C20 147.9
Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ	C1 148.0 C13 128.6 C21 130.0	C2 130.1 C14 148.6 C23 185.3	C3 161.4 C15 128.6 C26 77.5	Hel167 C5 158.5 C16 161.3	C6 135.3 C18 158.6	C10 159.8 C19 135.2	C12 159.8 C20 147.9
Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ	C1 148.0 C13 128.6 C21 130.0	C2 130.1 C14 148.6 C23 185.3	C3 161.4 C15 128.6 C26 77.5	Hel167 C5 158.5 C16 161.3	C6 135.3 C18 158.6	C10 159.8 C19 135.2	C12 159.8 C20 147.9
Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ	C1 148.0 C13 128.6 C21 130.0	C2 130.1 C14 148.6 C23 185.3	C3 161.4 C15 128.6 C26 77.5	Hel167 C5 158.5 C16 161.3 Hel169	C6 135.3 C18 158.6	C10 159.8 C19 135.2	C12 159.8 C20 147.9
Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ	C1 148.0 C13 128.6 C21 130.0	C2 130.1 C14 148.6 C23 185.3	C3 161.4 C15 128.6 C26 77.5	Hel167 C5 158.5 C16 161.3 Hel169 C7	C6 135.3 C18 158.6	C10 159.8 C19 135.2	C12 159.8 C20 147.9
Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ	C1 148.0 C13 128.6 C21 130.0 C3 158.3 C15	C2 130.1 C14 148.6 C23 185.3 C4 161.8	C3 161.4 C15 128.6 C26 77.5 C5 133.8	Hel167 C5 158.5 C16 161.3 Hel169 C7 129.1	C6 135.3 C18 158.6 C8 147.3	C10 159.8 C19 135.2 C13 159.6	C12 159.8 C20 147.9 C14 159.8
Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ	C1 148.0 C13 128.6 C21 130.0 C3 158.3 C15	C2 130.1 C14 148.6 C23 185.3 C4 161.8 C16	C3 161.4 C15 128.6 C26 77.5 C5 133.8 C17	Hel167 C5 158.5 C16 161.3 Hel169 C7 129.1 C22	C6 135.3 C18 158.6 C8 147.3 C23	C10 159.8 C19 135.2 C13 159.6 C24	C12 159.8 C20 147.9 C14 159.8 C25
Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ	C1 148.0 C13 128.6 C21 130.0 C3 158.3 C15 128.1	C2 130.1 C14 148.6 C23 185.3 C4 161.8 C16 128.1	C3 161.4 C15 128.6 C26 77.5 C5 133.8 C17 147.5	Hel167 C5 158.5 C16 161.3 Hel169 C7 129.1 C22 162.0	C6 135.3 C18 158.6 C8 147.3 C23 159.3	C10 159.8 C19 135.2 C13 159.6 C24 129.8	C12 159.8 C20 147.9 C14 159.8 C25 134.2
Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ Kohlenstoffatom δ	C1 148.0 C13 128.6 C21 130.0 C3 158.3 C15 128.1 C27	C2 130.1 C14 148.6 C23 185.3 C4 161.8 C16 128.1 C33	C3 161.4 C15 128.6 C26 77.5 C5 133.8 C17 147.5 C34	Hel167 C5 158.5 C16 161.3 Hel169 C7 129.1 C22 162.0	C6 135.3 C18 158.6 C8 147.3 C23 159.3	C10 159.8 C19 135.2 C13 159.6 C24 129.8	C12 159.8 C20 147.9 C14 159.8 C25 134.2

Abbildung 6.18: Abbildungen der mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)Cl₂(dap)]⁻ berechneten N-, I- und drei side-on-Komplexe (S_a, S_b und S_c). Der S_a-Komplex liegt auf einer N_{Amin}-Ru-Bindungsachsen (N_{Amin an C2}-Ru–N-O-Torsionswinkel: -163.6°), der S_b-Komplex auf einer Cl-Ru-N_{Amin}-Bindungsachse (N_{Amin an C3}-Ru–N-O-Torsionswinkel: -22.4°) und der S_c-Komplex auf der anderen Cl-Ru-N_{Amin}-Bindungsachse (N_{Amin an C2}-Ru–N-O-Torsionswinkel: 18.3°). Ruthenium ist grau, Stickstoff blau, Chlor braun, Sauerstoff rot, Kohlenstoff grün und Wasserstoff weiß dargestellt.

Als Modellsystem für genauere Untersuchungen der elektronischen Grundzustandspotentialhyperfläche wurde der relativ kleine Neutralkomplex [Ru(NO)(dap)Cl₂] bestimmt. Im Gegensatz zu den literaturbekannten Untersuchungen weist dieser Komplex keine lokale C₄ Symmetrie in der Äquatorebene des oktaedrischen Komplexes auf. Es wurden fünf Minima der elektronischen Grundzustandspotentialhyperfläche gefunden. Eines der Minima entspricht dem Nitrosyl- (N-) und eines dem Isonitrosylkomplex (I-Komplex). Drei Minima beschreiben geometrisch unterschiedliche *side-on-* Komplexe (S_a-, S_b- und S_c-Komplex), die sich auch in ihrer energetischen Lage unterscheiden.

Tabelle 6.25: Mit B3LYP/SDD/aug-cc-pVDZ für $[Ru(NO)Cl_2(dap)]^-$ berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex) und der *side-on*-Komplexe (S_a , S_b und S_c) im Vergleich zum Nitrosylkomplexe (N-Komplex; wird als 0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	Ν	Ι	Sa	S _b	Sc
E _{tot}	0.0	195.0	128.1	151.8	157.9
E ₀	0.0	192.3	123.7	147.1	153.0
H ₂₉₈	0.0	193.0	124.5	147.7	153.7
$ ilde{ u}(NO)$	1940	1913	1629	1588	1582
0.961 $\cdot ilde{ u}(NO)$	1864	1838	1565	1526	1520

Der Nitrosylkomplex wird als der stabilste, der Isonitrosylkomplex als der instabilste errechnet. Die drei gefundenen *side-on*-Komplexe liegen energetisch dazwischen. Beim stabilsten *side-on*-Komplex, S_a, zeigt das Stickstoffatom des Nitrosylliganden auf ein Aminstickstoffatom in der Äquatorebene des Komplexes. Die beiden anderen *side-on* Komplexe liegen um 23.2 kJ/Mol (S_b) beziehungsweise 29.2 kJ/Mol (S_c) über dem S_a-Komplex. Bei diesen beiden Minima zeigt das Stickstoffatom des Nitrosylliganden jeweils auf ein Chloratom. Die relativen Energien sind in Tabelle 6.25 aufgeführt (absolute Energien siehe Tabelle A.6 im Anhang). Bei allen drei *side-on*-Komplexen wird das Stickstoffatom des Nitrosyls näher am Ruthenium als das Sauerstoffatom errechnet (S_a Abstände: Ru-N 1.92 Å, Ru-O 2.25 Å; S_b Abstände: Ru-N 1.93 Å, Ru-O 2.16 Å; S_c Abstände: Ru-N 1.93 Å, Ru-O 2.15 Å). Die errechneten Frequenzen der NO-Streckschwingung liegen, mit Ausnahme des I-Komplexes, im zu erwartenden Bereich.

Um einen besseren Einblick in die Bindungssitation der *side-on*-Komplexe zu bekommen, wurde ein *scan* entlang des Torsionswinkels Cl-Ru–N-O (Cl gegenüber N an C3) als reaktive Koordiante der Umwandlung der verschiedenen gefundenen *side-on*-Minima ineinander durchgeführt (siehe Abb. 6.19).

Abbildung 6.19: Darstellung des mit BLYP/SDD/aug-cc-pVDZ für [Ru(NO)Cl₂(dap)]⁻ berechneten *scans* entlang des Diederwinkels Cl-Ru–N-O. Der Niedrigste Punkt des *scans* wurde als 0 gesetzt und die relative totale Energie der anderen *scan*-Punkte darauf bezogen.

Der *scan* zeigt ein flaches Minimum, falls das Stickstoffatom des Nitrosylliganden auf die beiden Amingruppen zeigt und zwei kleinere Minima, wenn es auf eines der beiden Chloratome zeigt. Die drei Übergangsstrukturen konnten lokalisiert werden. Für die Übergangsstruktur zwischen S_a und S_b (STS_{ab}) wurde eine imaginäre Frequenz von 140 cm⁻¹, zwischen S_a und S_c (STS_{ac}) eine imaginäre Frequenz von 150 cm⁻¹ und zwischen S_b und S_c (STS_{bc}) eine imaginäre Frequenz von 101 cm⁻¹ berechnet. Diese imaginären Frequenzen entsprechen, wie zu erwarten, der jeweiligen Drehung des Stickstoffmonoxidmoleküls um den Cl-Ru–N-O- Torsionswinkel von einem der Minima zum jeweils anderen. Eine Übersicht über die gefundenen Minima und Maxima ist in Abb. 6.20 gezeigt.

Wie daraus ersichtlich ist, sind die Übergangsstrukturen nur wenige

Abbildung 6.20: Übersicht über die mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)Cl₂(dap)]⁻ berechneten Enthalpien bei 298 K (H₂₉₈) der *side-on-*Komplexe. Der *side-on-*Komplex S_a wurde als 0 gesetzt und die relative totale Energie der anderen Komplexe darauf bezogen.

kJ/Mol über den benachbarten Nebenminima. Die Umwandlungsreaktionen der *side-on*-Komplexe ineinander dürfte somit kaum gehindert sein und die Verteilung der *side-on*-Komplexe sollte somit von der thermodynamischen Lage der verschiedenen Komplexe abhängen. Zum Abschätzen der bei Raumtemperatur vorliegenden Verteilung der *side-on*-Komplexe kann also die Gibbs-Helmholtz-Gleichung (siehe Gleichung 6.1) verwendet werden.

$$\Delta G^0 = -RT \cdot \ln(k) \tag{6.1}$$

Da keine Änderung der Teilchenzahl während der Reaktion auftritt, kann der Unterschied der Gibbschen freien Energie ΔG^0 mit dem Enthalpieunterschied der beiden Komplexe abgeschätzt werden. *R* bezeichnet die allgemeine Gaskonstante und *T* die Temperatur. Daraus ergibt sich für die Reaktionskontante *k* für die Reaktion von S_a zu S_b ein Wert von 8.6152 · 10⁻⁵ und für die Reaktion von S_a zu S_c ein Wert von 7.7419 · 10⁻⁶. Somit liegt also bei beiden Reaktionen das Gleichgewicht fast vollständig auf der Seite des S_a-Komplexes. Bei Raumtemperatur sollten von allen *side-on*-Komplexen somit über 95% im Minimum des S_a-Komplexes vorliegen. Die Orbitale der *side-on*-Komplexe zeigen kaum Unterschiede untereinander. Die Orbitale des Nitrosyl- und des Isonitrosylkomplexes sind sich ebenfalls sehr ähnlich, allerdings ist in den Orbitalen des Isonitrosylkomplexes die Rückbindung des Metallatoms zum Stickstoffmonoxidliganden etwas schwächer ausgeprägt.

Die Isomerisierungsreaktion vom N- zum S- und vom S- zum I-Komplex wurde ebenfalls untersucht. Alle Versuche, mittels des Ru-N-O-Winkels als reaktiver Koordinate einen *scan* vom S- zum I-Komplex durchzuführen, scheiterten, da außerhalb der Minima keine stabile Wellenfunktion berechnet werden konnte. Nach Abgleich mit anderen computerchemischen Untersuchungen liegt die Vermutung nahe, dass sich in diesem Bereich konische Durchschneidungen befinden, was die beschriebenen Probleme erklären würde. Allerdings konnte ein Reaktionsweg mit minimaler Energie auf der elektronischen Grundzustandspotentialhyperfläche vom N-Komplex zum S-Komplex und zurück mit einem *scan* entlang des Ru-N-O-Winkels des Komplexes als reaktiver Koordinate ermittelt werden.

Wird der *scan* ausgehend vom N-Komplex durchgeführt, so steigt die Energie zuerst an, überschreitet ein Maximum, dann fällt das System in ein *side-on*-Nebenminimum (S_b). Bei der Übergangsstruktur wechselt der Nitrosylligand seine Orientierung um nahezu 180° im Vergleich zu den äquatorialen Bindungsachsen des Komplexes. Wird der *scan* allerdings vom S_b-Komplex begonnen, so ändert der Nitrosylligand zuerst seine Orientierung und kommt zu einer dem S_a-Komplex vergleichbaren Ausrichtung, wobei hier der Ru-N-O-Bindungswinkel nicht mit der Lage im S_a-Komplex übereinstimmt. Allerdings liegt diese Orientierung in der Energie unter dem S_b-Komplex. Ausgehend von dieser Orientierung des Nitrosylliganden wird ein Weg bis zu einer Übergangsstruktur beschritten. Hier dreht sich der Nitrosylligand nochmals um fast 180°, bevor der Pfad der minimalen Energie zum N-Komplex führt.

Die Übergangsstrukturen erscheinen aus dem Energieprofil wenig verlässlich. Aufgrund deren Form aus dem berechneten *scans* ist anzunehmen, dass auch hier bereits konische Durchschneidungen vorliegen, das Energieprofil also nicht so stark wie beim *scan* zum N-Komplex abfallen soll-

Abbildung 6.21: Darstellung der beiden mit BLYP/SDD/aug-cc-pVDZ für [Ru(NO)Cl₂(dap)]⁻ durchgeführten *scans*. Die totale Energie ist in Hartree angegeben. Die Punkte des *scan* vom S_b-Komplex zum N-Komplex sind mit roten Diamanten markiert, die Punkte des *scans* vom N-Komplex zum *side-on*-Komplex mit schwarzen Kreisen. Die Pfeile geben die jeweilige Orientierung des Stickstoffmonoxids im Vergleich zu den Bindungsachsen der äquatorialen Liganden an. Dabei stellen sie den ON-Vektor, wie rechts oben mit einem weißen Pfeil gezeigt, mit Blickrichtung der Ruthenium-Nitrosylbindungsachse dar.

te. Vermutlich kommt die untere einhüllende Kurve beider Wege dem realen Pfad minimaler Energie nahe.

6.1.5 Untersuchungen an kleinen symmetrischen Rutheniumnitrosylkomplexen

6.1.5.1 Allgemeines

Um die Relevanz eines Modellsystems für die Berechnungen der angeregten Zustände, des [Ru(NO)F₅]-Dianions, für Komplexe mit anderen Liganden zu untersuchen, wurden eine Reihe kleiner symmetrischer Komplexe berechnet. Zugleich sollten die computerchemischen Untersuchungen Hinweise auf stabilisierende und destabilisierende Einflüsse der verschiedenen Liganden geben.

6.1.5.2 $[Ru(NO)(NH_3)_5]^{3+}$

Abbildung 6.22: Abbildungen der mit BLYP/SDD/aug-cc-pVDZ für [Ru(NO)(NH₃)₅]³⁺ berechneten N-, I-, S- und TS-Komplexe. Der S-Komplex liegt auf einer (NH₃)_{eq}-Ru-(NH₃)_{eq} Bindungsachse (N_{eq}-Ru–N-O-Torsionswinkel: 0.0°), die Übergangsstruktur STS liegt zwischen zwei äquatorialen Aminliganden (N_{eq}-Ru–N-O-Torsionswinkel: 46.1°). Ruthenium ist grau, Stickstoff blau, Sauerstoff rot und Wasserstoff weiß dargestellt.

Im Komplextrikation $[Ru(NO)(NH_3)_5]^{3+}$ ist das Rutheniumatom von fünf Aminliganden und einem Nitrosylliganden oktaedrisch koordiniert. Der Nitrosyl- und Isonitrosylkomplex hat nach der freien Strukturoptimierung aufgrund der Stellung der Wasserstoffatome der Aminliganden nur noch eine C_{2v}-Symmetrie, da die jeweils gegenüberliegenden äquatorialen Aminliganden auf Deckung stehen. Die cis-ständigen Aminliganden sind um jeweils 120° verkippt. Allerdings brechen die Wasserstoffe des axialen Aminliganden diese Symmetrie. Die Komplexe sind in Abb. 6.22 dargestellt.

Tabelle 6.26: Mit BLYP/SDD/aug-cc-pVDZ berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex), der *side-on*-Komplexe (S-Komplex) und der Übergangszustände zwischen den vier *side-on*-Komplexen (STS-Komplex) im Vergleich zum Nitrosylkomplex (N-Komplex; wird als 0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	N-Komplex	I-Komplex	S-Komplex	STS-Komplex
E _{tot} E ₀ H ₂₉₈	0.0 0.0 0.0	+155.6 +152.0 +154.0	+159.2 +155.8 +156.7	+177.5 +171.7 +171.8
$ ilde{v}(NO)$ 0.994 · $ ilde{v}(NO)$	1934 1922	1821 1810	1651 1641	1683 1673

Interessanterweise wird bei diesem Komplex der *side-on*-Komplex in etwa gleich oder weniger stabil als der Isonitrosylkomplex errechnet. Der Übergangszustand zwischen den Minima der vier aus Symmetriegründen energetisch entarteten *side-on*-Komplexe liegt 15.1 kJ/mol über den jeweiligen Minima. Für die Übergangsstruktur wurde eine imaginäre Frequenz von 188.8 cm⁻¹ berechnet. Eine Übersicht über die berechneten relativen Energiewerte ist in Tabelle 6.26 gegeben, die berechneten absoluten Energien sind im Anhang in Tabelle A.3. Für die NO-Streckschwingung werden zu erwartenden Werte errechnet. Für den Isonitrosylkomplex wird eine Erniedrigung der NO-Streckschwingung von 112 cm⁻¹, für den *side-on*-Komplex um 281 cm⁻¹ errechnet (siehe Tabelle 6.26).

6.1.5.3 $[Ru(NO)I_5]^{2-}$

Das Komplexdianion $[Ru(NO)I_5]^{2-}$ hat nach der Strukturoptimierung ohne Festsetzung einer Symmetrie sowohl beim Nitrosyl- als auch beim Isonitrosylkomplex nahezu C_{4v} Symmetrie. Ein BLYP-*scan* der elektronischen Grundzustandspotentialhyperfläche entlang eines I-Ru–N-O-Torsionswinkels für die *side-on* Koordination des Nitrosylliganden zeigt Maxima für den Fall, dass der Nitrosylligand parallel zu einer der äquatorialen Ru-I Bindungsachsen liegt

Abbildung 6.23: Strukturen der mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)I₅]²⁻ berechneten N-, I-, S- und STS-Komplexe. Der S-Komplex liegt zwischen zwei Iodidoliganden (I_{eq}-Ru-N-O-Torsionswinkel: -48.5°), die Übergangsstruktur STS liegt genau auf einer I-Ru-I Bindungsachse (I_{eq}-Ru-N-O-Torsionswinkel: 0.0°). Ruthenium ist grau, Stickstoff blau, Sauerstoff rot und Iod kupferfarben dargestellt.

und Minima, falls der Nitrosylligand in der Mitte zwischen zwei angrenzenden Ru-I Bindungsachsen liegt (Komplexe siehe Abb. 6.23). Eine Darstellung der elektronischen Potentialhyperschnittfläche ist in Abb. 6.27 gezeigt.

Dies steht im Widerspruch zur aus einem Ligandenfeldmodell zu erwartenden Koordination, da hier eine Stabilisierung der side-on-Koordination durch die d_{xz} oder d_{yz} Orbitale des Zentralmetalls erwartet wird. Hier überwiegt offensichtlich der sterische Anspruch der Iodidoliganden gegenüber der elektronischen Stabilisierung. Ein in der bei Phosphanen übliches Maß für den sterischen Anspruch eines Liganden ist der Tolmanwinkel. Errechnet man einen ähnlichen sterischen Anspruch für die Iodidoliganden, indem man den Ionenradius von Iodid (2.06 Å) und vom Rutheniumtrikation (0.82 Å, beide aus [50]) als Näherung verwendet, so ergibt sich ein sterischer Anspruch für ein Iodid von 91.3°. Es bleiben somit auf einer I-Ru-I Bindungsachse nur 88.7° für einen weiteren Liganden oberhalb des Rutheniums frei. Wird ein ähnlicher Winkel für den Nitrosylliganden berechnet, so ergibt sich aus dem Atomradius des Sauerstoffatoms (0.56 Å für ein Sauerstoffatom mit einer Doppelbindung) und des Stickstoffatoms (0.60 Å für ein Stickstoffatom mit einer Doppelbindung; beide Werte aus [50]) ein Platzbedarf von 97.9°, was für die Hypothese einer sterischen Hinderung als Grund für die Form der elektronischen Grundzustandspotentialhyperfläche spricht.

Der N-Komplex wird energetisch als der günstigste, der I-Komplex als

Tabelle 6.27: Mit B3LYP/SDD/aug-cc-pVDZ berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex), der *side-on*-Komplexe (S-Komplex) und der Übergangszustände zwischen den vier *side-on*-Komplexen (STS-Komplex) im Vergleich zum Nitrosylkomplex (N-Komplex; wird als 0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	N-Komplex	I-Komplex	S-Komplex	STS-Komplex
E _{tot} E ₀ H ₂₉₈	0.0 0.0 0.0	+200.4 +198.5 +199.0	+148.4 +143.7 +144.5	+164.3 +159.0 +158.1
$ ilde{ u}(NO) \\ 0.961 \cdot ilde{ u}(NO)$	1897 1823	1895 1821	1571 1510	1582 1520

der ungünstigste errechnet. Die *side-on*-Komplexe liegen dazwischen (siehe Tabelle 6.27 für die relativen Energien, für die absoluten Energien siehe Tabelle A.2 im Anhang). Die vier Übergangsstrukturen der vier *side-on*-Komplexe sind aufgrund der im Molekül vorliegenden Symmetrie genauso wie die vier stabilen *side-on*-Komplexe energetisch entartet. Die Übergangsstrukturen werden als um 13.6 kJ/mol (berechnete Enthalpie bei 298 K) instabiler als die S-Komplexe errechnet. Es wurde eine imaginäre Frequenz von 139 cm⁻¹ berechnet. Die berechneten Streckschwingungen der NO-Bindung liegen im zu erwartenden Bereich, allerdings wird für den Isonitrosylkomplex eine ungewöhnlich hohe Streckschwingung von nur 1821 cm⁻¹ errechnet (siehe Tabelle 6.27).

6.1.5.4 [Ru(NO)Br₅]²⁻

Das Komplexdianion [Ru(NO)Br₅]^{2–} hat nach der freien Strukturoptimierung sowohl beim Nitrosyl- als auch beim Isonitrosylkomplex nahezu C_{4v} Symmetrie. Ein BLYP-*scan* der elektronischen Grundzustandspotentialhyperfläche entlang eines Br-Ru–N-O-Torsionswinkels für die *side-on*-Koordination des Nitrosylliganden zeigt Maxima für den Fall, dass der Nitrosylligand parallel zu einer der äquatorialen Ru-Br Bindungsachsen liegt und Minima, falls der

Abbildung 6.24: Strukturenen der mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)Br₅]²⁻ berechneten N-, I-, S- und STS-Komplexe. Der S-Komplex liegt zwischen zwei Bromidoliganden (Br_{eq}-Ru–N-O-Torsionswinkel: -48.5°), die Übergangsstruktur STS liegt genau auf einer Br-Ru-Br Bindungsachse (Br_{eq}-Ru– N-O-Torsionswinkel: 0.0°). Ruthenium ist grau, Stickstoff blau, Sauerstoff rot und Brom kupferfarben dargestellt.

Nitrosylligand in der Mitte zwischen zwei angrenzenden Ru-Br Bindungsachsen liegt (Komplexe siehe Abb. 6.24). Eine Darstellung der elektronischen Potentialhyperschnittfläche ist in Abb. 6.27 gezeigt.

Wird der sterische Anspruch eines Bromidoliganden berechnet, so erhält man für den Ionenradius von Bromid (1.82 Å; aus [50]) analog zur Rechnung in 6.1.5.3 einen sterischen Anspruch von 87.2°, womit für den Nitrosylliganden auf einer Br-Ru-Br-Bindungsachse 92.8° zu Verfügung stehen. Also behindert auch hier die Sterik der Liganden das Ausbilden einer stabilen Rückbindung. Auch hier sind die Positionen zwischen den Bindungsachsen energetisch bevorzugt. Allerdings ist die sterische Hinderung bereits schwächer ausgeprägt als beim analogen Iodidkomplex.

Der N-Komplex wird energetisch als der günstigste, der I-Komplex als der ungünstigste errechnet. Die *side-on*-Komplexe liegen dazwischen (relative berechente Energien siehe Tabelle 6.28, absolute berechnete Energien siehe Tabelle A.1 im Anhang). Die vier Übergangsstrukturen der vier *side-on*-Komplexe sind aufgrund der im Molekül vorliegenden hohen Symmetrie genauso wie die vier stabilen *side-on*-Komplexe identisch. Die Übergangsstrukturen werden als um 8.0 kJ/mol (berechnete Enthalpie bei 298 K) instabiler als die S-Komplexe errechnet. Für sie wurde eine imaginäre Frequenz von 89 cm⁻¹ berechnet. Die berechneten Frequenzen der NO- Tabelle 6.28: Mit B3LYP/SDD/aug-cc-pVDZ berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex), der *side-on*-Komplexe (S-Komplex) und der Übergangszustände zwischen den vier *side-on*-Komplexen (STS-Komplex) im Vergleich zum Nitrosylkomplex (N-Komplex; wird als 0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	N-Komplex	I-Komplex	S-Komplex	STS-Komplex
E_{tot} E_0 H_{298}	0.0 0.0 0.0	+192.3 +190.5 +190.9	+150.2 +145.3 +146.2	+160.2 +155.3 +154.2
$ ilde{v}(NO)$ 0.961 $\cdot ilde{v}(NO)$	1900 1826	1896 1822	1589 1527	1587 1525

Streckschwingung liegen, mit Ausnahme der des Isonitrosylkomplexes, im zu erwartenden Bereich (siehe Tabelle 6.28).

6.1.5.5 [Ru(NO)Cl₅]²⁻

Abbildung 6.25: Strukturen der mit B3LYP/SDD/aug-cc-pVDZ für [Ru(NO)Cl₅]^{2–} berechneten N-, I-, S- und STS-Komplexe. Der S-Komplex liegt zwischen zwei Chloridoliganden (Cl_{eq}-Ru–N-O-Torsionswinkel: 48.5°), die Übergangsstruktur STS liegt genau auf einer Cl-Ru-Cl Bindungsachse (Cl_{eq}-Ru–N-O-Torsionswinkel: 0.0°). Ruthenium ist grau, Stickstoff blau, Sauerstoff rot und Chlor grün dargestellt.

Das Komplexdianion [Ru(NO)Cl₅]^{2–} hat nach der freien Strukturoptimierung sowohl beim Nitrosyl- als auch beim Isonitrosylkomplex nahezu C_{4v} Symmetrie. Ein BLYP-*scan* der elektronischen Grundzustandspotentialhyperfläche entlang eines Cl-Ru–N-O-Torsionswinkels für die *side-on*-Koordination des Nitrosylliganden zeigt nur sehr schwache Maxima für den Fall, dass der Nitrosylligand parallel zu einer der äquatorialen Ru-Cl Bindungsachsen liegt und sehr schwache Minima, falls der Nitrosylligand in der Mitte zwischen zwei angrenzenden Ru-Cl-Bindungsachsen liegt. Diese Minima und Maxima liegen bei diesem Komplex innerhalb der Fehlergenauigkeit der Methode, die Orientierung des Nitrosylliganden kann also nicht mit Sicherheit errechnet werden. Eine Darstellung der berechneten Komplexe ist in Abbildung 6.25, eine Darstellung der elektronischen Potentialhyperschnittfläche in Abb. 6.27 gezeigt.

Wird hier, analog zu 6.1.5.3, der sterische Anspruch der Chloridoliganden aus dem Radius für ein Chloridanion (1.67 Å) berechnet, so erhält man 84.2°. Somit stehen 95.8° für den Nitrosylliganden entlang einer Cl-Ru-Cl-Bindungsachse zur Verfügung, was schon sehr nahe am geschätzten Platzbedarf eines Nitrosylliganden von 97.9° liegt. Bei diesem Komplex scheint sich die sterische Behinderung der parallellen Ausrichtung zu den äquatorialen Bindungsachsen mit den elektronischen Stabilisierungen dieser Orientierung in etwa auszugleichen.

Tabelle 6.29: Mit B3LYP/SDD/aug-cc-pVDZ berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex), der *side-on*-Komplexe (S-Komplex) und der Übergangszustände zwischen den vier *side-on*-Komplexen (STS-Komplex) im Vergleich zum Nitrosylkomplex (N-Komplex; wird als 0.0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	N-Komplex	I-Komplex	S-Komplex	STS-Komplex
E_{tot}	0.0	+187.7	+152.7	+157.7
E_0	0.0	+185.9	+147.6	+152.7
H_{298}	0.0	+186.3	+148.7	+151.4
$ ilde{v}(NO)$	1897	1892	1597	1584
0.961 $\cdot ilde{v}(NO)$	1823	1818	1535	1522

Der N-Komplex wird energetisch als der günstigste, der I-Komplex als der ungünstigste errechnet. Die *side-on*-Komplexe liegen dazwischen (relative berechnete Energien siehe Tabelle 6.29, absolute berechnete Energien siehe Tabelle A.2 im Anhang). Die vier Übergangsstrukturen der vier *side-on*-Komplexe sind aufgrund der im Molekül vorliegenden hohen Symmetrie genauso wie die vier stabilen *side-on*-Komplexe energetisch entartet. Die Übergangsstrukturen werden als um 2.7 kJ/mol (berechnete Enthalpie bei 298 K) instabiler als die S-Komplexe errechnet (berechnete imaginäre Frequenz: 36.7 cm⁻¹), was innerhalb der Fehlergenauigkeit der verwendeten Methode liegt. Eine sichere Vorhersage über stabile Orientierungen und Übergangsstrukturen der *side-on*-Koordination ist bei diesem Komplex Aufgrund der computerchemischen Untersuchungen auf dem verwendet Niveau nicht machbar. Die berechneten NO-Streckschwingungsfrequenzen liegen, mit Ausnahme des Isonitrosylkomplexes, im zu erwartenden Bereich (siehe Tabelle 6.29).

6.1.5.6 [Ru(NO)F₅]²⁻

Abbildung 6.26: Strukturen der mit B3LYP/SDD/aug-cc-pVDZ für $[Ru(NO)F_5]^{2-}$ berechneten N-, I-, S- und STS-Komplexe. Hier liegt der S-Komplex genau auf einer F-Ru-F Bindungsachse (F_{eq}-Ru–N-O-Torsionswinkel: 0.0°), die Übergangsstruktur STS liegt zwischen zwei Fluoridoliganden (F_{eq}-Ru–N-O-Torsionswinkel: 48.2°). Ruthenium ist grau, Stickstoff blau, Sauerstoff rot und Fluor hellblau dargestellt.

Das Komplexdianion $[Ru(NO)F_5]^{2-}$ hat nach der freien Strukturoptimierung sowohl beim Nitrosyl- als auch beim Isonitrosylkomplex nahezu C_{4v} Symmetrie. Ein BLYP-*scan* der elektronischen Grundzustandspotentialhyper-
fläche entlang eines F-Ru–N-O-Torsionswinkels für die *side-on*-Koordination des Nitrosylliganden zeigt Minima für den Fall, dass der Nitrosylligand parallel zu einer der äquatorialen Ru-F-Bindungsachsen liegt und Maxima falls der Nitrosylligand in der Mitte zwischen zwei angrenzenden Ru-F-Bindungsachsen liegt. Eine Darstellung der berechneten Komplexe ist in Abbildung 6.26, eine Darstellung der elektronischen Potentialhyperschnittfläche in Abb. 6.27 gezeigt.

Wird hier, analog zu 6.1.5.3, der sterische Anspruch der Fluoridoliganden aus dem Radius für ein Fluoridanion (1.19 Å) berechnet, so erhält man 72.6°. Somit stehen 107.6° für den Nitrosylliganden entlang einer F-Ru-F-Bindungsachse zur Verfügung. Hier überwiegt somit die elektronische Stabilisierung der parallelen Ausrichtung des Nitrosylliganden zu einer äquatorialen Ru-F Bindung über den sterischen Anspruch des Liganden, was in guter Übereinstimmung mit dem abgeschätzen Platzbedarf steht.

Tabelle 6.30: Mit B3LYP/SDD/aug-cc-pVDZ berechnete relative totale Energien (E_{tot}), nullpunktschwingungskorrigierte Energien (E_0) und Enthalpien bei 298 K (H_{298}) des Isonitrosylkomplexes (I-Komplex), der *side-on*-Komplexe (S-Komplex) und der Übergangszustände zwischen den vier *side-on*-Komplexen (STS-Komplex) im Vergleich zum Nitrosylkomplex (N-Komplex; wird als 0.0 gesetzt) in kJ/mol. Darunter sind die berechneten Frequenzen der NO-Streckschwingung in cm⁻¹ unkorrigiert und korrigiert (Korrekturfaktor aus [46]) angegeben.

	N-Komplex	I-Komplex	S-Komplex	STS-Komplex
E_{tot} E_0 H_{298}	0.0 0.0 0.0	+184.3 +182.6 +183.0	+142.9 +139.3 +139.4	+160.3 +154.6 +153.8
$ ilde{ u}(NO) \\ 0.961 \cdot ilde{ u}(NO) ext{}$	1812 1741	1797 1727	1466 1409	1505 1446

Der N-Komplex wird energetisch als der günstigste, der I-Komplex als der ungünstigste errechnet. Die *side-on*-Komplexe liegen dazwischen (relative berechnete Energien siehe Tabelle 6.30, absolute berechnete Energien siehe Tabelle A.2 im Anhang). Die vier Übergangsstrukturen der vier *sideon*-Komplexe sind aufgrund der im Molekül vorliegenden hohen Symmetrie genauso wie die vier stabilen *side-on*-Komplexe energetisch entartet. Die Übergangsstrukturen werden mit einer imaginären Frequenz von 166 cm⁻¹ als um 14.4 kJ/mol (berechnete Enthalpie bei 298 K) instabiler als die S-Komplexe errechnet. Die NO-Streckschwingungen werden als ungewöhnlich niedrig errechnet (siehe Tabelle 6.30), was auf den stark elektronegativen Liganden Fluor zurückzuführen ist.

6.1.5.7 Vergleich der hochsymmetrischen [Ru(NO)Hal₅]⁻²-Komplexe

Abbildung 6.27: Strukturen der aus *scans* mit BLYP/SDD/aug-cc-pVDZ entlang des jeweiligen O-N–Ru-Hal-Torsionswinkels berechneten Schnittflächen der elektronischen Potentialhyperflächen von [Ru(NO)F₅]^{2–}, [Ru(NO)Cl₅]^{2–}, [Ru(NO)Br₅]^{2–} und [Ru(NO)I₅]^{2–}. Der niedrigste Energiewert des jeweiligen *scans* wurde als Nullpunkt genommen, um eine Vergleichbarkeit des Energieprofils zu ermöglichen. Darstellung der berechneten Energiewerte: [Ru(NO)F₅]^{2–} (türkise Kreise), [Ru(NO)Cl₅]^{2–} (grüne Sterne), [Ru(NO)Br₅]^{2–} (orange Dreiecke) und [Ru(NO)I₅]^{2–} (violette Vierecke).

Vergleicht man die Energieprofile der scans entlang der O-N-Ru-Hal Tor-

sionswinkel der [Ru(NO)Hal₅]-Dianionen, so zeigt sich, dass der Fluoridkomplex bei den *side-on*-Komplexen ein Maximum hat, wenn der Bromid- und Iodidkomplex ein Minimum aufweisen, also bei der Position des Nitrosyls genau zwischen zwei Halogenliganden. Demzufolge weist Fluor auch ein Minimum bei paralleler Ausrichtung des Nitrosylliganden zu den äquatorialen Ru-Hal-Bindungsachsen auf, während der Bromid- und der Iodidkomplex hier ein Maximum haben (siehe Abb. 6.27). Der Chloridkomplex hat eine relativ ebene Schnittfläche, die Form der berechneten elektronischen Potentialhyperschnittfläche zeichnet in etwa die Form der bei den schwereren Homologen berechneten nach, allerdings liegen die berechneten Energieunterschiede im Bereich der Fehlergenauigkeit der verwendeten Methode.

Beim Fluoridkomplex überwiegen somit die elektronischen Faktoren, während bei den schwereren Homologen zunehmend die sterische Abstoßung eines *side-on* koordinierenden Liganden an Bedeutung gewinnt. Beim Bromid- und Iodidkomplex ist die sterische Abstoßung stärker als die durch eine Rückbindung der Metall- d_{xz} beziehungsweise d_{yz} herbeigeführte elektronische Stabilisierung.

Fluoridkomplexe eignen sich somit vermutlich besser als Modellsystem für kleine, stark geladene Liganden, wie RO^- oder R_2N^- . Eine Vorhersage für Komplexe mit Elementen der vierten und fünften Periode ist nur bedingt machbar. Vor allem die elektronische Situation in den Komplexen sollte allerdings gut beschrieben werden, andererseits muss bei Extrapolationen aufbauend auf den an Fluoridkomplexen aus Rechnungen erhaltenen Vorhersagen vor allem auf mögliche sterische Einflüsse der Liganden geachtet werden.

6.1.6 Untersuchungen am Modellsystem $[Ru(NO)F_5]^{2-}$

Aufgrund der relativ geringen Elektronenzahl und dem Fehlen sterischer Einflüsse scheint das Modellsystem $[Ru(NO)F_5]^{2-}$ gut geeignet, um einen Einblick in die durch Lichtanregung induzierten Isomerisierungsprozesse und die strahlungslosen Rückreaktionen zu bekommen. Dazu wurde mit BLYP/def-TZVP versucht, einen Pfad minimaler Energie auf der Grundzustandspotentialhyperfläche vom Nitrosyl- über einen *side-on-* zum Isonitrosylkomplex zu finden. Dann wurden Singulett TD-DFT-Anregungen mit

BLYP/def-TZVP und dem Programmpaket Turbomole [45] an diesem Komplex an mit BLYP/def-TZVP berechneten Grundzustandstrukturen berechnet.

Abbildung 6.28: Darstellung der mit TD-DFT auf den Strukturen eines mit BLYP/def-TZVP durchgeführten *scans* (mit dem Ru-N-O-Winkel als Reaktionskoordinate) berechenten angeregten Zustände. In diesem *scan* wurde *C_s*-Symmetrie verwendet. Der Nitrosylligand und drei Ru-F-Bindungen liegen in der Spiegelebene. Die Drehung des Nitrosylligandne erfolgt somit parallel zu einer äquatorialen Ru-F-Bindungsachse. Die berechneten Energiewerte des *scans* sind mit schwarzen Rauten für den Grundzustand (GZ), mit roten Quadraten für die A'-Zustände und mit grünen Rauten für die A"-Zustände dargestellt.

Bei einem *scan* entlang des Ru-N-O-Winkels als Reaktionskoordinate und festgesetzter C_s -Symmetrie des Komplexes, wobei die Spiegelebene durch den Nitrosylliganden und zwei äquatoriale und die axiale Ru-F-Bindung geht, konnte in weiten Teilen ein Pfad minimaler Energie vom Nitrosyl- zum Isonitrosylkomplex simuliert werden (siehe Abb. 6.28). Wie bei den vorhergehenden Versuchen, einen *scan* zwischen dem Nitrosyl-, den *side-on*-Komplexen und dem Isonitrosylkomplex durchzuführen, zeigt sich auch hier, dass die Re-

gionen der Übergangsstrukturen nur unzureichend mit nicht-variationellen Methoden beschrieben werden können. Im hier beschriebenen scan sind diese Bereiche bei einem Ru-N-O-Winkel von etwa 50° und 135°. In beiden Fällen handelt es sich um vermiedene Kreuzungen des Grundzustandes mit den darüberliegenden S1- und S2-Zuständen. Bei den im Vergleich zum Rest des scans höhersymmetrischen Start- und Endpunkten, also dem Nitrosyl- und Isonitrosylkomplexen (die beide eine C_{4v}-Symmetrie aufweisen) ist der stabilste angeregte Zustand doppelt entartet. Im Laufe des scans wird diese Entartung nach der Reduzierung der Symmetrie auf C_s aufgehoben. Der niedrigste A'-Zustand liegt in der Nähe des Nitrosyl- und Isonitrosylkomplexes über dem A"-Zustand, in der Nähe des side-on-Komplexes allerdings unter dem stabilsten A"-Zustand. Er weist Minima sowohl für dem Nitrosyl-, dem Isonitrosyl- als auch einem side-on-Komplex vergleichbare Strukturen auf. Dagegen weist der unterste A"-Zustand nur zwei Minima bei dem Nitrosyl- und dem Isonitrosylkomplex vergleichbaren Geometrien und ein Maximum beim side-on-Komplex des Grundzustandes auf. Würde eine Anregung in den untersten A"-Zustand vom Nitrosylkomplex erfolgen, so könnte also nur der Isonitrosylkomplex, aber kein side-on-Komplex erzeugt werden.

Ein zweidimensionaler *scan* entlang des Ru-N-O-Winkels und eines F_{eq} -Ru-N-O-Diederwinkels liefert eine dreidimensionale elektronische Potentialhyperschnittfläche (siehe Abb. 6.29). In dem *scan* wird der Ru-N-O-Winkel von 0° bis 170° untersucht. Aufgrund der hohen Symmetrie des [Ru(NO)F₅]-Komplexdianions wird der F_{eq} -Ru-N-O-Torsionswinkel nur von 0° bis 45° untersucht. In der Grundzustandspotentialhyperfläche sind die drei verschiedenen Minima, der Nitrosylkomplex als tiefstes, der Isonitrosylkomplex als höchstes und der *side-on*-Komplex in der Mitte zu erkennen. Der *side-on*-Komplex zeichnet sich als ausgedehnete Vertiefung in etwa in der Mitte der Darstellung ab. Ihren tiefsten Punkt hat diese Vertiefung bei einem Torsionswinkel von 0°. Ein Pfad minimaler Energie ist, da die Übergangsstrukturen mit der verwendeten Methode nicht zuverlässig beschrieben werden können, aus den Daten nicht abzuschätzen.

Aufbauend auf den berechneten Grundzustandsstrukturen werden Einzelpunktrechnungen mit TD-DFT für Singulettanregungen durchgeführt. Wie zu erwarten können für die Bereiche, in denen sich die einzelnen Zustände

Abbildung 6.29: Darstellung der elektronischen Potentialhyperschnittfläche des mit BLYP/def-TZVP berechneten zweidimensionalen scans mit dem Ru-N-O-Winkel und dem F-Ru-N-O-Diederwinkel als Reaktionskoordinate. Aus Symmetriegründen wurde der F-Ru-N-O-Diederwinkel nur von 0° bis 45° untersucht. Die berechneten Energiewerte sind in Hartree angegeben. Unter der dreidimensionalen Darstellung sind Höhenlinien eingezeichnet.

sehr nahe am Grundzustand befinden, keine verlässlichen Datenpunkte berechnet werden, weshalb diese Datenpunkte nicht dargestellt werden. Qualitativ ähneln der S1- und S2-Zustand den in Abb. 6.28 dargestellten untersten A'- und A"-Zuständen, wobei der S1-Zustand der unteren, der S2-Zustand in etwa der oberen einhüllenden Kurve entspricht, obwohl bei der oberen einhüllenden Kurve vermutlich vor allem in der Nähe des Nitrosylkomplexes noch Anteile des S3-Zustands enthalten sein dürften.

Betrachtet man die elektronische Potentialhyperschnittfläche des S1-Zustands genauer (siehe Abb. 6.31), so fällt auf, dass sie in ihrer Form der elektronische Potentialhyperschnittfläche des Grundzustands ähnelt. Sie weist wie diese ein Minimum bei einer Nitrosyl-, eines bei einer Isonitrosyl- und Minima bei *side-on-*artigen Koordinationen auf. Das *side-on-*Minimum befindet sich allerdings erst bei einem Ru-N-O Winkel von etwa 85°. Ein weiterer Unterschied zum Grundzustand ist, dass sich die beim S1-Zustand energetisch günstigste *side-on-*Koordination bei einer Stellung des Nitrosylliganden

Abbildung 6.30: Darstellung der elektronischen Potentialhyperschnittflächen der verschiedenen Zustände von mit TD-DFT BLYP/def-TZVP berechneten zweidimensionalen *scans* mit dem Ru-N-O-Winkel und dem F-Ru-N-O-Diederwinkel als Reaktionskoordinaten. Die TD-DFT Rechnungen wurden als Einzelpunktrechnungen mit den Strukturen des Grundzustands durchgeführt. Hier werden der Grundzustand (GZ) und die elektronisch angeregten Zustände S1 bis S5 dargestellt. Die berechneten Energiewerte sind in Hartree angegeben.

zwischen zwei äquatorialen Liganden befindet, also bei einem F_{eq} -Ru-N-O-Torsionswinkel von 45° auftritt.

Die Betrachtung der berechneten elektronischen Potentialhyperschnittfäche des S2-Zustands (siehe Abb. 6.32) zeigt auch hier drei Minima. Eines entspricht hinsichtlich der Koordination annähernd dem Nitrosyl-, eines dem Isonitrosyl- und eines einem *side-on*-Komplex. Das *side-on*-Minimum ist nur wenig ausgeprägt und möglicherweise auf die Nähe des S1-Zustandes zurückzuführen. Allerdings liegt auch hier eine leichte Bevorzugung einer *side-on*-Position zwischen den äquatorialen Liganden vor.

Abbildung 6.31: Darstellung der elektronischen Potentialhyperschnittflächen des mit TD-DFT BLYP/def-TZVP berechneten S1-Zustands. Der zweidimensionale *scan* wurde mit dem Ru-N-O-Winkel und dem F-Ru-N-O-Diederwinkel als Reaktionskoordinaten durchgeführt. Die TD-DFT Rechnungen wurden als Einzelpunktrechnungen mit den Geometrien des Grundzustands durchgeführt. Die berechneten Energiewerte sind in Hartree angegeben. Fehlende Punkte wurden durch die umgebenden Punkte abstandsabhängig interpoliert, um eine geschlossene Fläche darstellen zu können.

Abbildung 6.32: Darstellung der elektronischen Potentialhyperschnittflächen des mit TD-DFT BLYP/def-TZVP berechneten S2-Zustands. Der zweidimensionale *scan* wurde mit dem Ru-N-O-Winkel und dem F-Ru-N-O-Diederwinkel als Reaktionskoordinaten durchgeführt. Die TD-DFT Rechnungen wurden als Einzelpunktrechnungen mit den Geometrien des Grundzustands durchgeführt. Die berechneten Energiewerte sind in Hartree angegeben. Fehlende Punkte wurden durch die umgebenden Punkte abstandsabhängig interpoliert, um eine geschlossene Fläche darstellen zu können.

6.1.7 CPMD

6.1.7.1 Allgemeines

Die moleküldynamischen Rechungen wurden mit dem Programm *Car Parinello Molecular Dynamics* (CPMD, [51]) auf 64-bit PC mit Betriebssystem Linux durchgeführt. Die Rechnungen mit CPMD und dem BLYPund LDA-Funktional wurden mit dem in [52] beschriebene *Goedecker*-Pseudopotentialen für alle Atome durchgeführt. Es wird ein *cut-off* von 120 Rydberg verwendet.

Die moleküldynamischen Simulationen werden an einzelnen Molekülen durchgeführt, der Ladungsausgleich erfolgt durch ein diffuses Feld. Es wird eine ausreichend große Elementarzelle in der Simulation verwendet, um falschen Ergebnissen durch das Feld vorzubeugen. Für die Simulationen mit CPMD wird ein Zeitschritt von 2 au (0.048 fs), für die Simulationen mit BORN-OPPENHEIMER-Dynamik ein Zeitschritt von 10 au (0.24 fs) verwendet. Vorhergehende Strukturoptimierungen mit dem *preconditioned conjugate gradients*-Algorithmus (PCG-Algorithmus) werden mit einem Zeitschritt von 20 au (0.48 fs) durchgeführt.

6.1.7.2 Simulation des S-Komplexes

Ausgehend vom in 6.1.5.6 berechneten *side-on-*Minimum wird zuerst eine Strukturoptimierung durchgeführt. Anschließend wird der Komplex bei 100 K temperiert. Nachdem die Temperatur über 48 fs nur wenig um 100 K schwankt, wird der Komplex vorsichtig erwärmt. Nach je 48 fs, in denen der Komplex aufgeheizt wird, wird die Simulationen 480 fs ohne Einschränkungen simuliert. Dadurch wird sicher gestellt, dass die CPMD-Simulation nicht zu schnell aufgeheizt wird und sinnvolle Ergebnisse liefert.

Bei einer simulierten Temperatur von etwa 8900 K klappt der Nitrosylligand vom *side-on*-Komplex in den N-Komplex um (siehe Abb. 6.33). Hierbei lockert sich der Nitrosylligand zuerst parralel zu einer äquatorialen Ru-F-Bindungsachse. In der Nähe der Übergangsstruktur dreht sich der Nitrosylligand in eine Position zwischen zwei äquatoriale Liganden und richtet sich

Abbildung 6.33: Isomerisierungsreaktion des *side-on*-Komplexes zum Nitrosylkomplex. Die Simulation wurde mit BLYP und der LS-DA mit einem *cut off* von 120 Rydberg durchgeführt. Darunter sind die zeitlichen Abstände der einzelnen Bilder bezogen auf das erste Bild angegeben. Die Isomerisierungsreaktion dauert somit etwa nur 240 fs. Ruthenium ist grau, Fluor türkis, Stickstoff blau und Sauerstoff rot dargestellt.

dann zum Nitrosylkomplex auf (siehe Abb. 6.34). Die Isomerisierungsreaktion dauert in der Simulation unter 240 fs.

Abbildung 6.34: Isomerisierungsreaktion des *side-on*-Komplexes zum Nitrosylkomplex mit Blickrichtung entlang der NO-Ru-Achse. Die Simulation wurde mit BLYP und der LSDA mit einem *cut off* von 120 Rydberg durchgeführt. Darunter sind die zeitlichen Abstände der einzelnen Bilder bezogen auf das erste Bild angegeben. Ruthenium ist grau, Fluor türkis, Stickstoff blau und Sauerstoff rot dargestellt.

6.1.7.3 Simulation des I-Komplexes

Nach einer Strukturoptimierung aufbauend auf der in 6.1.5.6 berechneten Struktur kann der Isonitrosylkomplex mit CPMD simuliert werden. Die temperaturinduzierten Schwingungen der einzelnen Liganden sind gut zu beobachten. Allerdings kann auch nach deutlichem Aufheizen keine Isomierisierungsreaktion beobachtet werden.

6.1.7.4 Born-Oppenheimer-Simulation der lichtinduzierten Isomerisierung

Abbildung 6.35: Born-Oppenheimer-Simulation des ersten angeregten Zustands des Nitrosylkomplexes. Der Nitrosylligand beginnt sich gleich nach der Anregung aus der Grundzustandsstruktur seitlich wegzudrehen. Die Berechnungen wurden mit einem *cut off* von 120 Rydberg durchgeführt. Darunter sind die zeitlichen Abstände der einzelnen Bilder bezogen auf das erste Bild angegeben. Ruthenium ist grau, Fluor türkis, Stickstoff blau und Sauerstoff rot dargestellt.

Ausgehend von einer Strukturoptimierung des Grundzustands des Nitrosylkomplexes (aufbauend auf der in 6.1.5.6 berechneten Struktur) wurden die ersten Schritte einer TD-DFT-Born-Oppenheimer Moleküldynamiksimulation durchgeführt. Schon nach wenigen Simulationsschritten beginnt das Stickstoffmonoxid aus seiner Ruhelage abzuknicken und sich gleichzeitig in Richtung der Mitte der Bindungsachsen zweier äquatorialer Fluorliganden zu drehen (siehe Abb. 6.35). Bei 0.0 fs beträgt der Ru-N-O-Winkel 179.8°, bei 95.5 fs beträgt der Ru-N-O-Winkel 172.6° und der F-Ru-N-O-Torsionswinkel –45.0°. Aufgrund des hohen Rechenzeitaufwandes wurde auf eine vollständige Simulation des angeregten Zustands verzichtet. 6.1 Allgemeines

Teil IV

Diskussion

7 Diskussion

7.1 Aufbau einer Ligandbibliothek

In dieser Arbeit wurde zuerst eine Ligandbibliothek mit einer Reihe zweizähniger stickstoffheterocyclenhaltiger Liganden aufgebaut. Als Grundmuster wurde dabei der Porphyrinring verwendet. Wird dieser gedanklich in zwei Hälften zerteilt, so werden zwei C_2 -symmetrische Bruchstücke erhalten. Um die Koordinationsfähigkeit und die elektronischen Eigenschaften möglicher Komplexe beeinflussen zu können, werden die darin vorkommenden Pyrrolringe durch stickstoffreichere Fünfringheterocyclen ersetzt. Im nächsten Schritt wurde untersucht, ob und unter welchen Bedingungen die synthetisierten Stickstoffheterocyclen an Metalle binden.

7.2 Untersuchungen zur Komplexbildungsneigung der Liganden

Die Untersuchungen zur Komplexbildungsneigung der synthetisierten Pyrrolliganden ergaben, dass sich die Verbindungen dieser Verbindungsklasse unter den verwendeten Bedingungen nicht gut als Liganden eignen. Unter anderem bereitet die Lichtempfindlichkeit der dargestellten Stickstoffheterocyclen Probleme. Auch konnte der Pyrrolstickstoff in den meist verwendeten protischen Lösemitteln nicht gut deprotoniert werden. Hinzu kommt, dass viele der dargestellten Liganden in polaren Lösemitteln unlöslich, während die meisten Metallsalze nur schwer oder gar nicht in organischen Lösemitteln löslich sind. Mittels Phasentransferkatalyse konnte allerdings ein neuer Kupferkomplex (**28**) isoliert werden.

Die dargestellten Pyrazolverbindungen erwiesen sich als gute Liganden.

Sie sind bei Raumtemperatur oder zumindest in der Hitze wasserlöslich und konnten mit vielen Metallsalzen umgesetzt werden. Allerdings zersetzten sich die Pyrazolboranate häufig.

Von imidazolhaltigen Liganden konnten meist nur wenige Milligramm synthetisiert werden, was zu wenig für die Komplexbildungsuntersuchungen war. Die durchgeführten Umsetzungen mit Metallsalzen führten in allen Fällen zur Zersetzung der Imidazolverbindung und zu den entsprechenden Imidazolkomplexen, die mittels Kristallstrukturanalyse nachgewiesen werden konnten.

Die dargestellten Triazolverbindungen sind üblicherweise beständig. Auch hier zersetzen sich die Boranate zum Teil in Triazol und Borsäure. In diesen Fällen konnten üblicherweise die dem eingesetzten Metallsalz entsprechenden Triazolkomplexe isoliert werden. Die Triazolliganden neigen zur Polymerbildung, das als Pulver aus der Reaktionslösung ausfällt. Die eindeutige Analyse derartiger Polymere gestaltet sich als schwierig, da meist keine Einkristalle für eine Röntgenstrukturanalyse vorliegen. Trotzdem konnten einige neue Komplexe der Triazolderivate erhalten werden, unter anderem die Kristallstrukturen von zwei Koordinationspolymeren. Eines der beiden Koordinationspolymere, das Koordinationspolymer [Cu(16)Cl]_nCl_n (50), bildet ein kationisches Netzwerk aus. Im Netzwerk sind kanalförmige Hohlräume, in denen die Chloridanionen stark fehlgeordnet sind, auf was einen Anionenleiter hinweisen könnte.

Die dargestellten Tetrazolverbindungen neigen nicht zur Zersetzung. Da sie aber ebenfalls dazu neigen, Koordinationspolymere auszubilden, erwies sich auch hier der Nachweis gebildeter Komplexierungsprodukte häufig als schwierig. Trotzdem konnten mehrere neue Komplexe mit diesen Liganden dargestellt und röntgenkristallographisch nachgewiesen werden.

7.3 Schaltbare Verbindungen

Die Darstellung neuer schaltbarer Verbindungen lieferte zuerst neue Salze des Rutheniumnitrosylpentachlorid-Komplexdianions. Sowohl beim bereits literaturbekannten Tetrabutylammonium- als auch bei den beiden neuen Tetraphenylphosphonium- und Tetraphenylarsoniumsalzen tritt im Vergleich zum Kaliumsalz eine Verschiebung der Nitrosyl-IR-Schwingung um etwa 70–80 cm⁻¹ auf. Dieser Unterschied ist ziemlich groß im Vergleich zu den beim Austausch von Liganden gemessenen Änderungen der Nitrosyl-IR-Schwingung. Offensichtlich haben nicht nur die Liganden, sondern auch die Umgebung des Komplexes einen sehr starken Einfluss auf die Stärke der Metall-Nitrosylbindung. Auch die Annahme, dass Übergangszustände, angeregte Zustände und Nebenminima der elektronischen Grundzustandspotentialhyperfläche von der direkten Umgebung des Nitrosylliganden beeinflusst werden, liegt nahe.

In weiteren Versuchen konnten Nickelnitritokomplexe mit Pyrazol- und Tetrazolliganden dargestellt werden. Auch hier zeigte sich der starke Einfluss der Umgebung auf die gebildeten Komplexe. Wird zum Beispiel ein Nickelkomplex mit **10** und Nitrit aus einer wässrigen Umgebung dargestellt, so bindet das Nitrit über das Stickstoffatom, während die Reaktion in einem unpolaren Lösemittel mit einem großen Gegenion einen Komplex mit einem über beide Sauerstoffatome anbindendem Nitrit liefert. Unter anderen Bedingungen konnte auch ein dreikerniger Nickelkomplex mit verbrückender Koordination des Nitrits über eines der Sauerstoffatome und das Stickstoffatom dargestellt werden. Allerdings bringt auch ein Wechsel des Liganden eine Änderung der Koordination des Nitrits am Nickel. Wird ein Nickelnitritkomplex in Wasser mit **24** dargestellt, so bindet hier das Nitrit über ein Sauerstoffatom an.

Die computerchemischen Untersuchungen der Nitrosyl- und Isonitrosylkomplexe zeigten, dass die beiden Isomere bei den untersuchten Komplexen in ihren Orbitalen weitgehend übereinstimmen. Wie zu erwarten wird die Rückbindung beim Isonitrosylkomplex als etwas schwächer als im Nitrosylkomplex vorhergesagt. Da die Isomerisierungsreaktionen vom Isonitrosylkomplex zum Nitrosylkomplex über den *side-on*-Komplex erfolgt, wurde dieser genauer untersucht. Bei Komplexen, die in der Äquatorebene keine lokale C_4 -Symmetrie aufweisen, wurden zwischen zwei und vier energetisch unterschiedliche *side-on*-Komplexe als Minima der elektronischen Grundzustandspotentialhyperfläche berechnet. Die Lage der *side-on*-Komplexe wird sehr stark vom Platzanspruch der äquatorialen Liganden bestimmt. So wird für einen [Ru(NO)F₅]^{2–}-Komplex die Orientierung des Nitrosylliganden parallel zu einer Ru-F-Bindungsachse als die stabilste berechnet, während bei einem $[Ru(NO)I_5]^{2-}$ die Orientierung zwischen zwei Ru-I-Bindungsachsen als die stabilste und die parallele Ausrichtung als Übergangsstruktur berechnet wird.

TD-DFT-Berechnungen der angeregten Zustände beim $[Ru(NO)F_5]^{2-}$ -Komplex ergaben im S1-Zustand ein etwas anderes Bild, hier wurde die Orientierung des Nitrosylliganden zwischen zwei Ru-F-Bindungsachsen als die stabilste vorhergesagt. Das deutet darauf hin, dass man mit geeigneter Wahl der Liganden die Pfade minimaler Energie des Grundzustandes und der angeregten Zustände unabhängig voneinander beeinflussen könnte.

Somit ergibt sich für die Synthese neuer schaltbarer Nitrosylkomplexe, dass die Umgebung einen großen Einfluss auf die Stabilität und möglicherweise auch auf den Schaltprozess hat. Messungen an neuen Komplexen sollten also in Reinsubstanz vorgenommen werden und bei geladenen Komplexen verschiedene Gegenionen zu den Komplexionen untersucht werden. Zugleich sollte es möglich sein, durch einen gezielten sterischen Anspruch der äquatorialen Liganden in den Komplexen die Isomerisierungsreaktion vom Isonitrosylkomplex zum Nitrosylkomplex zu erschweren, ohne die nach Lichtanregung im angeregten Zustand ablaufende Isomerisierung vom Nitrosylkomplex zum Isonitrosylkomplex stark zu beeinflussen.

Teil V

Zusammenfassung

8 Zusammenfassung

8.1 Allgemeines

Schema 6: Die Koordination von Stickstoffmonoxid an ein Metall kann zu einem Nitrosylkomplex (links), einem Isonitrosylkomplex (Mitte) oder einem *side-on-*Komplex (rechts) führen. Bei vielen Komplexe kann die Isomerisierungsreaktion von einem Nitrosylkomplex zu einem der anderen Bindungsisomere photochemisch durchgeführt werden.

In dieser Arbeit wurde zuerst eine Ligandbibliothek aus derivatisierten Fünfringheterocyclen dargestellt. Die synthetisierten Heterocyclen sollen als Modellsystem für Porphyrin dienen. Anschließend wurde ihre Komplexbildung mit verschiedenen Metallen untersucht um dann Komplexe, die sich als photochemische molekulare Schalter eignen würden, darzustellen. Dazu wurden Nitrosylkomplexe, die photochemisch in Isonitrosylkomplexe oder *sideon*-Komplexe (siehe Schema 6) überführbar sein sollten und Nitritokomplexe, die über das Stickstoffatom oder ein oder beide Sauerstoffatome an ein Metallzentrum binden können, synthetisiert und, im Fall der Nitrosylkomplexe, computerchemisch untersucht.

Schema 7: Eine Auswahl der Stickstoffheterocyclen, die den synthetisierten Verbindungstyp zeigen soll.

8.2 Darstellung einer Ligandbibliothek

Arbeit konnte Bibliothek aus Im Laufe der eine derivatisierten Fünfringheterocyclen als mögliche Liganden dargestellt werden. Es wurden dabei Pyrrole, Pyrazole, Imidazole, 1,2,4-Triazole und Tetrazole als Grundkörper der Heterocyclen verwendet. Meist wurden zweizähnige, seltener dreizähnige Liganden dargestellt, die in ihrem Aufbau den in Schema 7 gezeigten Verbindungstypen ähnlich sind. Während ein Teil der Verbindungen nach optimierten und dadurch leicht abgewandelten Literaturvorschriften dargestellt wurde, konnten auch einige bisher nicht beschriebene Derivate (unter anderem Verbindung 15) dargestellt werden. Von vielen der literaturbekannten Verbindungen sind in der Arbeit zum ersten Mal die Kristallstrukturen beschrieben oder es wurden während den Komplexbildungsuntersuchungen neue Polymorphe erhalten. So konnten unter anderem für die literaturbekannte Verbindung Tri(pyrazol-1-yl)methan (11) zwei, für Di(pyrazol-1-yl)methan (10, siehe auch Schema 7) ein bisher nicht bekanntes Polymorph beschrieben werden.

8.3 Untersuchungen zur Komplexbildung

Mit den dargestellten und einer käuflichen Verbindung wurden Untersuchungen zur Komplexbildung durchgeführt. Die Komplexierung der Pyrrolligan-

Kation von 28

Abbildung 8.1: ORTEP-Darstellungen des Komplexanions von (28).

den erwies sich als schwierig, da die Liganden unter Lichteinfluss polymerisieren und in protischen Lösemitteln nur schwer deprotoniert werden können. Andererseits sind die meisten Metallsalze nicht in organischen Lösemitteln löslich. Trotzdem gelang die Synthese eines neuen Kupferkomplexes (**28**; siehe Abb. 8.1) mittels Phasentransferkatalyse mit zwei Di(pyrrol-2-yl)keton (**8**) als Ligand. Die Pyrrolverbindung koordiniert einmal über beide deprotonierte Stickstoffatome der Pyrrolringe und einmal über ein deprotoniertes Stickstoffatom und das Sauerstoffatom der Cabonylgruppe. Das zweite Pyrrolstickstoffatom ist noch protoniert. Für den einfach negativ geladenen Komplex liegt ein Tetrabutylammoniumkation aus dem Phasentransferkatalysator als Gegenion in der Kristallstruktur vor.

Abbildung 8.2: ORTEP-Darstellungen der drei Zinkkomplexe mit dem Liganden Di(pyrazol-1-yl)methan (**10**). Die Darstellung erfolgt ohne gegebenenfalls in der Kristallstruktur vorhandene Lösemittelmoleküle oder Gegenionen.

Pyrazolverbindungen erwiesen sich als sehr gute Liganden in den Komplexbildungsuntersuchungen und es konnten viele neue Komplexverbindungen dargestellt werden. Vor allem das in der Synthese relativ einfach zugängliche Di(pyrazol-1-yl)methan erwies sich als sehr guter und auch sehr variabler Ligand. So erbrachte die Umsetzung mit Zinkdikationen nicht nur eine, sondern drei Verbindungen aus der gleichen Reaktionslösung. Bei den isolierten Komplexen tritt der Ligand überraschenderweise auch einzähnig auf (Darstellungen der Komplexe siehe Abb. 8.2). Die mit Zink isolierten Verbindungen konnten zum Teil mit Cadmium, zum Teil mit Quecksilber ebenfalls dargestellt werden, wobei die einfache Koordination nur bei Zink mittels Röntgenstrukturanalyse nachgewiesen werden konnte.

Die verwendeten Imidazolliganden zersetzten sich unter den verwendeten Komplexierungsbedingungen. Es konnten teilweise bisher nicht beschriebene Kristallstrukturen der Zersetzungsprodukte isoliert werden.

Die Umsetzung der dargestellten Triazolliganden mit Metallsalzen ergab meist Koordinationspolymere. Hier gelang die Charakterisierung zweier bisher nicht beschriebener Koordinationspolymere mittels Röntgenstrukturanalyse. Eines (**51**) der beiden Polymere bildet aus Kupferkationen, Chloridoliganden und Di(1,2,4-triazol-1-yl)boranat ein anionisches Netzwerk mit Tetrabutylammoniumkationen in den Hohlräumen, das andere (**50**) bildet aus Kupferkationen, Chloridliganden und Di(1,2,4-triazol-1yl)methan ein kationisches dreidimensionales Netzwerk mit Chloridanionen in kanalförmigen Hohlräumen der Kristallstruktur.

Auch die dargestellten Tetrazolliganden neigen zur Bildung von Koordinationspolymeren, allerdings nicht so stark wie die Triazolverbindungen. Es konnten auch mit diesen Verbindungen einige neue Komplexe erhalten werden. Mit der bisher nicht beschriebenen Verbindung Di(2-benzyl-tetrazol-5-yl)amin wurde ein Kupferkomplex (56) erhalten, auch mit Di(tetrazolyl)methan wurde ein bisher nicht beschriebener Kupferkomplex (57) erhalten.

8.4 Darstellung schaltbarer Komplexe

Mit dem Pentachloridonitrosylruthenatanion konnten zwei neue Salze mit den Kationen Tetraphenylphosphonium und Tetraphenylarsonium dargestellt werden. Interessant ist hierbei die starke Änderung der IR-Nitrosylstreckschwingungsfrequenz um etwa 70 cm⁻¹ im Vergleich zum

Abbildung 8.3: ORTEP-Darstellungen der Nickelnitritokomplexe. Die Darstellung erfolgt ohne gegebenenfalls in der Kristallstruktur vorhandene Lösemittelmoleküle oder Gegenionen.

Kaliumsalz. Eine deratig starke Änderung konnte bisher durch den Austausch der Liganden am Rutheniumzentrum kaum erreicht werden.

Um weitere Einblicke in die Isomerisierungsprozesse zu bekommen, wurden eine Reihe von Nitrito-Komplexen mit dem Zentralmetall Nickel dargestellt. Hierbei konnte bei dem verwendeten Liganden Di(pyrazol-1yl)methan allein durch die Polarität der Umgebung die Anbindung des Nitritoliganden gesteuert werden. In einem stärker polaren Lösemittel wie Wasser bindet der Nitritoligand über das Stickstoffatom an das Nickelatom (61), während in einer unpolareren Umgebung die Anbindung über beide Sauerstoffatome bevorzugt scheint (62). Auch ein Wechsel des Liganden zu Di(2methyl-pyrazol-5-yl)amin ändert in Wasser die bevorzugte Koordination des Nitritoliganden zur Bindung über ein Sauerstoffatom (64). Unter geeigneten Bedingungen konnte auch die Koordination über ein Sauerstoffatom und das Stickstoffatom und in einem dreikernigen Komplex (63) dargestellt werden (Abbildungen der Komplexe siehe Abb. 8.3). Somit haben nicht nur die am Komplex direkt gebundenen Liganden, sondern auch die Umgebung des Komplexes starken Einfluss auf die Stabilität der verschiedenen Bindungsisomere.

8.5 Computerchemische Untersuchungen zum Mechanismus der Isomerisierung von Ruthenium-Nitrosylverbindungen

In Laufe der Arbeit wurde eine Reihe bereits im Arbeitskreis dagestellter oder noch nicht dargestellter Rutheniumnitrosylverbindungen computerchemisch untersucht. Bei allen untersuchten Komplexen konnten Minima der elektronischen Grundzustandspotentialhyperfläche gefunden werden, die einem Nitrosylkomplex, einem Isonitrosylkomplex und einem oder mehreren Komplexen, bei denen der Nitrosylligand *side-on* koordiniert ist, entsprechen.

Da der *side-on*-Komplex bei den Isomerisierungsreaktionen vom Isonitrosylkomplex zum Nitrosylkomplex durchlaufen werden muss, wurde dieser genauer untersucht. Dabei wurden die ersten detaillierten Untersuchungen an einem oktaedrischen Nitrosylkomplex, der keine lokale C₄-Symmetrie in der Äquatorebene aufweist, durchgeführt. Bei dem Modellkomplex wurden dementsprechend drei energetisch unterschiedliche *side-on*-Minima gefunden. Auch ein Pfad minimaler Energie und die Übergangsstrukturen konnten zwischen diesen *side-on*-Minima berechnet werden. Diese und weitergehende Untersuchungen an kleineren Modellsystemen weisen darauf hin, dass sterische Einflüsse der äquatorialen Liganden auf die Stabilität des *side-on*-Komplexes einen großen Einflüsse auf die Übergangsstrukturen der Isomerisierungsprozesse zwischen dem Nitrosyl-, dem Isonitrosyl- und den *side-on*-Komplexen bestehen.

Die Isomerisierung vom *side-on*-Komplex zum Nitrosylkomplex konnte für den Modellkomplex $[Ru(NO)F_5]^{2-}$ mit moleküldynamischen Methoden simuliert werden. Erste Simulationen im angeregten Zustand zeigen, dass sich der Nitrosylligand nach einer Lichtanregung sofort von einem stickstoffgebundenen Komplex in Richtung eines *side-on*-Komplexes wegdreht. Es konnten elektronische Potentialhyperschnittflächen für die Drehung in den angeregten Zuständen mit TD-DFT-Methoden berechnet werden, wobei die Methode in der Nähe von konischen Durchschneidungen nur noch wenig Aussagekraft besitzt. Trotzdem kann man die zu erwartende Drehrichtung des Nitrosylliganden abschätzen. Die spezifische Blockade von definierten Drehrichtungen, die nur bei der Isomerisierung auf der elektronischen Grundzustandspotentialhyperfläche, aber nicht bei den Reaktionen in den angeregten Zuständen überschritten werden, scheint somit bei geeigneter Wahl der Liganden möglich und ein vielversprechender Ansatz um die Lebensdauer der bei Raumtemperatur metastabilen Isonitrosylkomplexe und *side-on*-Komplexe zu verlängern.

Teil VI

Experimenteller Abschnitt

9 Experimenteller Abschnitt

9.1 Allgemeine Arbeitsbedingungen

Alle folgenden Arbeitsschritte wie Präparation, Aufarbeitung sowie weitere Schritte wurden, wenn nicht anders vermerkt, an Luft durchgeführt. Schutzgasreaktionen wurden unter Argon-Schutzgasatmosphäre (Argon 4.8, F. MES-SER, Griesheim) und unter wasserfreien Bedingungen durchgeführt. Die verwendeten Lösemittel wurden dann nach Standardmethoden getrocknet und gereinigt.

Die bei den Umsetzungen verwendeten Ausgangsverbindungen wurden kommerziell bezogen und ohne weitere Reinigung eingesetzt (für eine Liste der eingesetzten Chemikalen siehe Anhang B). Produkte wurden im Feinvakuum von Lösemittelresten befreit. Ausbeuten beziehen sich auf die im Unterschuss eingesetzte Verbindung.

NMR-Spektroskopische Daten wurden an folgendem Gerät gemessen und wurden auf die gelisteten Substanzen als Referenz bezogen:

Die NMR-Spektren wurden bei 25°C aufgenommen. ¹¹B-, ¹⁵N- und ¹³C-NMR-Spektren wurden, wenn nicht anders vermerkt, ¹H-entkoppelt aufgenommen.

Zur Röntgenstrukturanalyse stand am Department Chemie und Biochemie ein Diffraktometer mit Flächendetektor (Oxford Xcalibur CCD und Nonius Kappa CCD) mit Tieftemperatureinheit zur Verfügung. Die Strukturen wurden mit SHELXS gelöst und nach der Methode der kleinsten Fehlerquadrate mit Vollmatrixverfahren auf F^2 -Werten mit SHELXL verfeinert [53]. Die Darstellung erfolgt, wenn nicht anders bezeichnet, mit thermischen Schwingungsellipsoiden mit 50% Aufenthaltswahrscheinlichkeit.

9.2 Darstellung von zur Ligandsynthese benötigten Verbindungen

9.2.1 Darstellung von Benzyliodid

Schema 8: Darstellung von Benzyliodid.

Ausgangsstoffe: Benzylchlorid, Iodwasserstoffsäure (57% in Wasser), Natriumdisulfit, Dichlormethan, Wasser.

Durchführung: Die Darstellung von Benzyliodid wurde nach einer modifizierten Synthese analog [54] durchgeführt.

0.63 g (5.00 mmol) Benzylchlorid und 2.56 g (20.00 mmol; 57% in Wasser) Iodwasserstoffsäure werden 20 Minuten bei 105°C gerührt. Dann wird die Reaktion durch die Zugabe von 50 mL kaltem Wasser abgebrochen und drei Mal mit 25 mL Dichlormethan extrahiert. Die vereinigten organischen Phasen werden mit 30 mL gesättigter Natriumdisulfitlösung gewaschen, anschließend wird das Lösemittel entfernt. Man erhält 1.03 g Benzyliodid als farblose, lichtsensitive Flüssigkeit (94.50% Ausbeute).

Benzyliodid:

¹H NMR (CDCl₃): δ = 7.5 (m, 5H, Ar-H), 4.5 (s, 2H, CH₂). ¹³C NMR{¹H} (CDCl₃): δ = 139.2, 128.6, 128.2, 127.6, 6.1.

9.2.2 Darstellung von 3-Ethylester-4-methylpyrrol

Ausgangsstoffe: Natriumhydrid, (*p*-Toluolsulfonyl)methylisocyanid, Crotonsäureethylester, Natriumsulfat, Dichlormethan, Aluminiumoxid, Dimethylsulfoxid (DMSO), Diethylether, Wasser.

Schema 9: Darstellung von 3-Ethylester-4-methylpyrrol.

Durchführung: Die Darstellung von 3-Ethylester-4-methylpyrrole wurde nach einer modifizierten Vorschrift analog zu [55] durchgeführt. Die Reaktion wird unter Argon-Schutzgasatmosphäre und unter Ausschluss von Feuchtigkeit durchgeführt.

2.00 g (80 mmol) Natriumhydrid werden in 100 mL trockenem Diethylether suspendiert. Unter Eiskühlung wird eine Lösung von 3.90 g (20 mmol) (*p*-Toluolsulfonyl)methylisocyanid und 2.59 mL (20 mmol) Crotonsäureethylester gelöst in 100 mL einer Mischung aus trockenem Diethylether und DMSO (2:1) langsam zugetropft. Nach dem Erwärmen auf Raumtemperatur wird die Reaktionsmischung weitere 30 Minuten gerührt. Dann werden langsam 160 mL Wasser zugegeben. Nach weiteren 30 Minuten rühren bei Raumtemperatur wird die organische Phase von der wässrigen Phase getrennt und die wässrige Phase wird drei Mal mit 20 mL Diethylether extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet und zur Trockene eingeengt. Das ölige Rohprodukt wird mit Dichlormethan als Laufmittel und Aluminiumoxid als stationärer Phase säulenchromatographisch gereinigt. Es werden gelbe Kristalle, die noch immer mit etwas Öl bedeckt sind, erhalten und ohne weitere Reinigung weiter umgesetzt.

Schema 10: Darstellung von 3, 4-Dimethylpyrrol.

9.2.3 Darstellung von 3,4-Dimethylpyrrol

Ausgangsstoffe: Natrium-di[2-methoxyethoxy]-alanat (70% in Toluol), Benzol, Chloroform, Silica, Wasser.

Hinweis: Bei der Reaktion wird Aufgrund der Empfindlichkeit des Produktes und um gute Ausbeuten zu erzielen Benzol als Lösemittel verwendet.

Durchführung: Die Darstellung von 3,4-Dimethylpyrrol wurde analog der in [55] beschriebenen Darstellung durchgeführt. Die Reaktion wird unter Argon-Schutzgasatmosphäre und unter Ausschluss von Feuchtigkeit durchgeführt.

Das Rohprodukt der Umsetzung 9.2.2 wird in trockenem Benzol gelöst. Zu dieser Lösung wird eine Lösung von 5.23 mL (13.2 mmol) Natrium-di[2methoxyethoxy]-alanat (70% in Toluol) in 10 mL Benzol langsam zugetropft. Dann wird die Reaktionslösung 18 Stunden bei Raumtemperatur gerührt. Anschließend werden langsam 40 mL Wasser zugegeben. Nachdem die Gasentwicklung beendet ist, wird das gebildete Aluminiumoxid abfiltriert und die beiden Phasen getrennt. Die organische Phase wird zwei Mal mit 50 mL Wasser gewaschen und anschließend zur Trockene eingeengt. Das Rohprodukt wird säulenchromatographisch mit Chloroform als Laufmittel und Silica als stationäre Phase und anschließender Destillation aufgereinigt. Es werden 1.00 g (10 mmol) einer farblosen, lichtempfindlichen Flüssigkeit erhalten (50 % Ausbeute bezogen auf die in 9.2.2 verwendeten Edukte).

3,4-Dimethylpyrrol

¹H NMR (CDCl₃): δ = 7.7 (s, 1H), 6.51–6.52 (m, 2H), 2.04 (s, 6H).

9.3 Synthese von metallhaltigen Vorläuferverbindungen

9.3.1 Synthese von Rutheniumnitrosyltrichlorid-Trihydrat

$$2 \operatorname{RuCl}_{3} \xrightarrow{1 \text{M HCl}} 2 \operatorname{Ru(NO)Cl}_{3} \bullet 3 \operatorname{H}_{2} O$$

$$+ 3 \operatorname{NaNO}_{2}$$

$$+ 2 \operatorname{HCl}$$

$$+ 2 \operatorname{H}_{2} O$$

$$- 2 \operatorname{NaCl}$$

$$- \operatorname{NaNO}_{2}$$

Schema 11: Darstellung von Rutheniumnitrosyltrichlorid-Trihydrat.

Ausgangsstoffe: Ruthenium(III)-chlorid-Trihydrat, Salzsäure 1 M, Natriumnitrit, Ethanol.

Durchführung: Die Darstellung von Rutheniumnitrosyltrichlorid-Trihydrat wird nach einer modifizierten Synthese analog zu [56] durchgeführt.

2.0 g (9.6 mmol) Ruthenium(III)-chlorid-Trihydrat werden in 18 mL 1 M Salzsäure gelöst und auf 100°C erwärmt. Anschließend wird langsam eine gesättigte Lösung von 2.0 g Natriumnitrit in Wasser während einer Stunde zugetropft. Dann wird die Reaktionslösung eine weitere Stunde bei 100°C gerührt. Anschließend wird die rote Lösung zur Trockene eingeengt. Dann wird der rote Feststoff in Ethanol aufgenommen und der entstandene farblose Niederschlag abfiltriert. Die rote Lösung wird nochmals zur Trockene eingeengt.

Man erhält 2.9 g (9.3 mmol) Rutheniumnitrosyltrichlorid-Trihydrat als dunkelrotes Pulver (97.0% Ausbeute).

Rutheniumnitrosylchlorid-Trihydrat:

IR: $\tilde{\nu} = 3467, 2976, 2931, 2902, 1884, 1612, 1581, 1447, 1395, 1381, 1354, 1266, 1129, 1084, 1036, 1014, 868, 835, 803, 723.$

9.3.2 Darstellung von Kalium-pentachlorido-nitrosyl-ruthenat(III)

 $RuCl_{3} \xrightarrow{100 \circ C} K_{2}[Ru(NO)Cl_{5}]$ $+ 3 KNO_{2}$ + 2 HCl $- H_{2}O$ $- KNO_{3}$ - NO

Schema 12: Darstellung von K₂[Ru(NO)Cl₅].

Ausgangsstoffe: Ruthenium(III)-chlorid-Trihydrat (RuCl₃ · 3 H₂O), Salzsäure konz., Natriumnitrit, Diethylether, Wasser.

Durchführung: Die Darstellung von $K_2[Ru(NO)Cl_5]$ wird analog zu [48] durchgeführt.

7.99 g (30.57 mmol) RuCl₃ · 3 H₂O werden in 60 mL Wasser gelöst und auf 80°C erwärmt. Dann werden 7.81 g (91.80 mmol) festes Natriumnitrit in einem Schwung zugegeben. Anschließend werden 60 mL konzentrierte Salzsäure langsam zugetropft. Dann wird die Reaktionslösung 75 Minuten bei 80°Cgerührt. Nach dem Abkühlen auf Raumtemperatur wird die Reaktionslösung bis auf wenige mL eingeengt. Der gebildete dunkle Niederschlag wird abfiltriert und zuerst mit wenigen Tropfen kaltem Wasser, dann mit Diethylether gewaschen. Man erhält 10.81 g (27.97 mmol) K₂[Ru(NO)Cl₅] als dunkelrote Kristalle (91.48% Ausbeute).

9.3.3 Darstellung von Tetrabutylammonium-pentachloridonitrosyl-ruthenat(III)

Ausgangsstoffe: Kalium-pentachlorido-nitrosyl-ruthenat(III) (K₂[Ru(NO)Cl₅]), Tetrabutylammoniumchlorid, Chloroform, Wasser.

 $\begin{array}{r} \mathsf{CHCl}_3 \ / \ \mathsf{H}_2\mathsf{O} \\ \mathsf{K}_2[\mathsf{Ru}(\mathsf{NO})\mathsf{Cl}_5] \ + \ 2 \ ((\textit{n}\text{-}\mathsf{Bu})_4\mathsf{N})\mathsf{Cl} & \xrightarrow{\mathsf{RT}} \\ \hline & - \ 2 \ \mathsf{KCl} \end{array} \qquad ((\textit{n}\text{-}\mathsf{Bu})_4\mathsf{N})_2[\mathsf{Ru}(\mathsf{NO})\mathsf{Cl}_5] \end{array}$

Schema 13: Darstellung von (*t*-Bu₄N)₂[Ru(NO)Cl₅].

Durchführung: Die Synthese wird leicht abgewandelt analog einer literaturbekannten Vorschrift durchgeführt [57].

5.15 g (13.0 mmol) K₂[Ru(NO)Cl₅] werden in 50 mL Wasser gelöst. Dann werden 8.40 g (29.0 mmol) Tetrabutylammoniumchlorid unter Rühren zugegeben. Die Mischung wird mit 50 mL Chloroform extrahiert. Die organische Phase wird abgetrennt und über Natriumsulfat getrocknet, dann zur Trockene eingeengt. Man erhält 10.32 g (13.0 mmol) (n-Bu₄N)₂[Ru(NO)Cl₅] als violette Kristalle (100% Ausbeute).

Tetrabutylammonium-pentachlorido-nitrosyl-ruthenat(III):

IR: $\tilde{\nu} = 2960, 2938, 2873, 2445, 2176, 1984, 1834, 1643, 1469, 1382, 1348, 1272, 1153, 1108, 1067, 1031, 1009, 926, 881, 796, 746, 611, 580, 548, 533, 524.$

9.3.4 Darstellung von Tetraphenylphosphoniumpentachlorido-nitrosyl-ruthenat(III)

 $K_{2}[Ru(NO)Cl_{5}] + 2 (Ph_{4}P)Cl \xrightarrow{CH_{2}Cl_{2} / H_{2}O}{RT} (Ph_{4}P)_{2}[Ru(NO)Cl_{5}]$

Schema 14: Darstellung von Tetraphenylphosphonium-pentachloridonitrosyl-ruthenat(III) ((Ph₄P)₂[Ru(NO)Cl₅]·H₂CCl₂).

Ausgangsstoffe: Kalium-pentachlorido-nitrosyl-ruthenat(III) (K₂[Ru(NO)Cl₅]), Tetraphenylphosphoniumchlorid, Dichlormethan, Wasser.

Durchführung: Die Synthese von Tetraphenylphosphonium-pentachloridonitrosyl-ruthenat(III) ((Ph_4P)₂[Ru(NO)Cl₅]·CH₂Cl₂) ist leicht modifiziert, aber analog der in 9.3.3 beschriebenen Synthese. 0.50 g (1.29 mmol) K₂[Ru(NO)Cl₅] werden in 10 mL Wasser gelöst und unter Rühren mit 1.06 g (2.58 mmol) Tetraphenylphosphoniumchlorid versetzt. Die Mischung wird dreimal mit 10 mL Dichlormethan extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet und zur Trockene eingeengt. Man erhält 1.34 g (1.29 mmol) (Ph₄P)₂[Ru(NO)Cl₅]·CH₂Cl₂ als rote Kristalle (100% Ausbeute).

 $((C_6H_5)_4P)_2[Ru(NO)Cl_5] \cdot CH_2Cl_2:$

IR: $\tilde{\nu} = 3054, 1829, 1584, 1483, 1436, 1408, 1338, 1315, 1268, 1186, 1168, 1107, 1028, 996, 856, 720, 716, 686.$

9.3.5 Darstellung von $(Ph_4As)_2[Ru(NO)CI_5] \cdot CH_2CI_2$

$$K_{2}[Ru(NO)Cl_{5}] + 2 (Ph_{4}As)Cl \xrightarrow{RT} (Ph_{4}As)_{2}[Ru(NO)Cl_{5}]$$

Schema 15: Darstellung von (Ph₄As)₂[Ru(NO)Cl₅]·CH₂Cl₂.

Ausgangsstoffe: Kalium-pentachlorido-nitrosyl-ruthenat(III) (K₂[Ru(NO)Cl₅]), Tetraphenylarsoniumchlorid, Chloroform, Wasser.

Durchführung: Die Synthese von $(Ph_4As)_2[Ru(NO)Cl_5] \cdot CH_2Cl_2$ ist analog der in 9.3.4 beschriebenen Synthese.

 $0.50 \text{ g} (1.29 \text{ mmol}) \text{ K}_2[\text{Ru}(\text{NO})\text{Cl}_5]$ werden in 10 mL Wasser gelöst, dann werden unter Rühren 1.08 g (2.58 mmol) Tetraphenylarsoniumchlorid zugegeben. Die Mischung wird dreimal mit 10 mL Dichlormethan extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet und anschließend zur Trockene eingeengt. Man erhält 1.50 g (1.29 mmol) (Ph₄As)₂[Ru(NO)Cl₅]·CH₂Cl₂ in Form roter Kristalle (100% Ausbeute).

$((C_6H_5)_4As)_2[Ru(NO)Cl_5] \cdot CH_2Cl_2:$

IR: $\tilde{\nu} = 3369, 3055, 1818, 1576, 1545, 1480, 1437, 1380, 1340, 1312, 1251, 1184, 1080, 1032, 996, 740.$

9.4 Synthese der Liganden

9.4.1 Darstellung von pyrazolhaltigen Liganden

9.4.1.1 Darstellung von Di(pyrazol-1-yl)methan

Schema 16: Darstellung von Di(pyrazol-1-yl)methan.

Ausgangsstoffe: Pyrazol, Kaliumhydroxid, Tetrabutylammoniumchlorid, Kaliumcarbonat, Dichlormethan, Silica, Ethylacetat, Chloroform.

Durchführung: Die Darstellung von Di(pyrazol-1-yl)methan erfolgt nach einer modifizierten Synthese analog zu [58].

12.26 g Pyrazol (0.18 mol) werden mit 16.20 g zerriebenem Kaliumhydroxid, 4.40 g Tetrabutylammoniumchlorid, 5.50 g Kaliumcarbonat und 100 mL Dichlormethan vermischt. Die Reaktionsmischung wird unter starkem Rühren 36 Stunden refluxiert. Nach Abfiltrieren wird die Lösung zur Trockene eingeengt. Man erhält 8.20 g (55.3 mmol) Rohprodukt, das mit etwa 5% Tetrabutylammoniumchlorid verunreinigt ist (61.5 % Ausbeute).

Das Tetrabutylammoniumchlorid kann säulenchromatographisch entfernt werden. Dazu wird Silica als stationäre Phase verwendet und die Verunreinigung mit Ethylacetat abgewaschen. Anschließend wird das Produkt mit Chloroform eluiert. Das Rohprodukt wird allerdings üblicherweise ohne weitere Aufreinigung eingesetzt.

Di(pyrazol-1-yl)methan:

¹H NMR (CDCl₃): *δ* = 7.60 (d, Pyrazol-CH, 2H), 7.45 (d, Pyrazol-CH, 2H), 6.23 (s, CH₂, 2H), 6.20 (t, Pyrazol-CH, 2H).

¹³C NMR (CDCl₃): δ = 140.8 (Pyrazol-C), 129.8 (Pyrazol-C), 107.1 (Pyrazol-C), 65.2 (CH₂). ¹³C NMR (DMSO-d6): δ = 140.6 (Pyrazol-C), 131.1 (Pyrazol-C), 106.8 (Pyrazol-C), 64.8 (CH₂).

9.4.1.2 Darstellung von Natrium-di(pyrazol-1-yl)boranat

Schema 17: Darstellung von Natrium-di(pyrazol-1-yl)boranat.

Ausgangsstoffe: Pyrazol, Natriumborhydrid, Toluol.

Durchführung: Die Darstellung von Natrium-di(pyrazol-1-yl)boranat erfolgt nach einer modifizierten Synthese analog zu [59]. Die Reaktion wird unter Argon-Schutzgasatmosphäre und unter Ausschluss von Feuchtigkeit durchgeführt.

10.00 g (146.9 mmol) Pyrazol werden bei 120°C vorsichtig geschmolzen. Zur farblosen Schmelze wird portionsweise 1.00 g (26.4 mmol) Natriumborhydrid zugegeben. Dabei tritt Gasentwicklung auf. Die Reaktionsmischung wird 1 Stunde bei 120°C gerührt und dann heißin auf Raumtemperatur gekühlte 100 mL Toluol gegossen. Es bildet sich nach kurzer Zeit ein farbloser Niederschlag, der abgenutscht und zweimal mit kaltem Toluol gewaschen wird. Man erhält 2.80 g (19.1 mmol) des farblosen Natrium-di(pyrazol-1-yl)-boranats (72.2 % Ausbeute).

Natrium-di(pyrazol-1-yl)boranat:

¹H NMR (D₂O): *δ* = 7.52 (d, Pyrazol-CH, 2H), 7.39 (d, Pyrazol-CH, 2H), 6.09 (t, CH₂, 2H), 4.0–3.0 (m, BH₂, 2H).

¹³C NMR (D₂O): δ = 140.3, 136.0, 104.4. ¹¹B NMR (D₂O): δ = -8.6. ¹¹B NMR (D₂O; ¹H gekoppelt): δ = -7.9 (J_{BH} = 94 Hz).

9.4.1.3 Darstellung von Tri(pyrazol-1-yl)methan

Schema 18: Darstellung von Tri-(pyrazol-1-yl)methan.

Ausgangsstoffe: Pyrazol, Tetrabutylammoniumchlorid, Natriumcarbonat, Chloroform, Diethylether, Natriumchlorid, Aktivkohle, Natriumsulfat, Wasser.

Durchführung: Die Darstellung von Tri(pyrazol-1-yl)methan wird mit einer modifizierten Synthese analog zu [60] durchgeführt.

20.00 g (0.29 mol) Pyrazol und 4.70 g (16.9 mmol) Tetrabutylammoniumchlorid werden mit 300 mL Wasser vermischt. Zur Reaktionsmischung werden 187.00 g Natriumcarbonat zugegeben. Nach dem Abkühlen der Reaktionsmischung auf Raumtemperatur werden 147.00 mL Chloroform zugegeben und die Reaktionslösung drei Tage refluxiert. nach dem abkühlen auf Raumtemperatur wird dreimal mit 150 mL Diethylether extrahiert. Die vereinigten organischen Phasen werden dreimal mit gesättigter Natriumchloridlösung gewaschen und dann mit Aktivkohle entfärbt. Nach dem Abfiltrieren wird die organische Phase über Natriumsulfat getrocknet und anschließend bis zur Trockene eingeengt. Man erhält 12.6 g (58.8 mmol) sauberes Produkt als farblose Kristalle (40.6 % Ausbeute).

Tri-(pyrazol-1-yl)methan

¹H NMR (CDCl₃): δ = 8.41 (s, CH, 1H), 7.66 (d, Pyrazol-CH, 3H), 7.57 (d, Pyrazol-CH, 3H), 6.36 (dd, Pyrazol-CH, 3H). ¹³C NMR (CDCl₃): δ = 141.9 (Pyrazol-C), 129.6 (Pyrazol-C), 107.4 (Pyrazol-C), 83.4 (CH).

9.4.2 Darstellung von pyrrolhaltigen Liganden

9.4.2.1 Darstellung von Di(pyrrol-2-yl)thion

Schema 19: Darstellung von Di(pyrrol-2-yl)thion.

Ausgangsstoffe: Pyrrol, Diethylether, Thiophosgen, Methanol, Silica, Chloroform.

Durchführung: Die Darstellung von Di(pyrrol-2-yl)thion wird nach einer modifizierten Synthese analog zu [61] durchgeführt. Die Darstellung erfolgt unter Argon-Schutzgasatmosphäre.

9.52 g (4.41 mol) frisch destilliertes Pyrrol wird in 20 mL Diethylether gelöst und auf 0°C gekühlt. Zu der Lösung wird eine ebenfalls auf 0°C gekühlte Lösung von 5.32 mL (0.07 mol) Thiophosgen in 30 mL Diethylether langsam unter Eiskühlung zugetropft, wobei sich die Reaktionslösung dunkelrot verfärbt. Nach dem Ende der Zugabe des Thiophosgens wird die Reaktionsmischung langsam auf Raumtemperatur erwärmt und dann für weitere 30 Minuten bei Raumtemperatur gerührt. Dann werden 16 mL Methanol zugegeben und weitere 30 Minuten gerührt. Anschließend wird die Reaktionsmischung zur bis Trockene eingeengt und säulenchromatographisch mit Silica als stationäre Phase und Chloroform als Laufmittel aufgereinigt. Das rote Produkt wird in reiner Form als dritte Fraktion erhalten. Man erhält 0.63 g Di(pyrrol-2-yl)thion als rote Kristalle (5.1% Ausbeute).

Di(pyrrol-2-yl)thion:

¹H NMR (CDCl₃): δ = 9.76 (s, N-H, 2H), 7.19 (m, 2H), 7.04 (m, 2H), 6.30 (m, 2H).

¹³C NMR (CDCl₃): δ = 193.3, 127.7, 114.8, 112.6.

9.4.2.2 Darstellung von Di(pyrrol-2-yl)keton

Schema 20: Darstellung von Di(pyrrol-2-yl)keton.

Ausgangsstoffe: Di(pyrrol-2-yl)thion, Wasserstoffperoxid, Kaliumhydroxid, Methanol, Wasser.

Durchführung: Die Darstellung von Di(pyrrol-2-yl)keton wird nach einer modifizierten Synthese nach [61] durchgeführt.

1.00 g (5.68 mmol) Di(pyrrol-2-yl)thion und 1.25 g (22.33 mmol) Kaliumhydroxid werden in 31.25 mL Methanol gelöst. Dann werden langsam 4.13 mL Wasserstoffperoxid zugetropft. Anschließend wird die Reaktionsmischung fünf Minuten refluxiert. Dann wird die Reaktionslösung in 50 mL Wasser gegeben und 20 Minuten auf 0°C gekühlt. Der gebildete farblose Feststoff wird abfiltriert und im Feinvakuum getrocknet. Man erhält 0.23 g Di(pyrrol-2-yl)keton als farbloses Pulver (24.8% Ausbeute).

Di(pyrrol-2-yl)keton:

¹H NMR (CDCl₃): δ = 10.02 (s, N-H, 2H), 7.16 (m, 2H), 7.07 (m, 2H), 6.34 (m, 2H). ¹³C NMR (CDCl₃): δ = 130.9, 124.2, 116.3, 111.1.

9.4.2.3 Darstellung von Di(pyrrol-2-yl)methan

Schema 21: Darstellung von Di(pyrrol-2-yl)methan.

Ausgangsstoffe: Pyrrol, Paraformaldehyd, Trifluoressigsäure, Natriumhydroxid.

Durchführung: Die Darstellung von Di(pyrrol-2-yl)methan erfolgt nach einer modifizierten Synthese nach [62].

Durch eine Mischung von 0.50 g (16.70 mmol) Paraformaldehyd in 116 mL frisch destilliertem Pyrrol wird 10 Minuten Argon geleitet um die Lösung zu entgasen. Nach dem erwärmen der Reaktionslösung auf 55°C werden 0.19 g (1.67 mmol) Trifluoressigsäure als Katalysator zugegeben und dann bei dieser Temperatur 45 Minuten gerührt. Nach dem Abkühlen auf Raumtemperatur werden zum Beenden der Reaktion 2.00 g (50 mmol) Natriumhydroxid zugegeben. Anschließend wird die Reaktionsmischung eine Stunde bei Raumtemperatur gerührt. Dann wird der Feststoff abfiltriert und die Reaktionslösung zur Trockene eingeengt. Das Rohprodukt wird durch Sublimation gereinigt. Man erhält 0.23 g (1.57 mmol) Di(pyrrol-2-yl)methan als farblose Nadeln (92.35% Ausbeute).

Di(pyrrol-2-yl)methan:

¹H NMR (CDCl₃): δ = 7.74 (ws, N-H, 2H), 6.63 (m, 2H), 6.16 (m, 2H), 6.05 (m, 2H).

¹³C NMR (CDCl₃): 129.0, 117.3, 108.3, 106.4.

9.4.2.4 Darstellung von Di(pyrrol-2-yl)phenyl-methan

Ausgangsstoffe: Pyrrol, Benzaldehyd, Indium(III)-chlorid (Indiumtrichlorid), Natriumhydroxid, Ethanol, Wasser.

Schema 22: Darstellung von Di(pyrrol-2-yl)phenyl-methan.

Durchführung: Die Darstellung von Di(pyrrol-2-yl)phenyl-methan wird nach einer modifizierten Synthese analog zu [62] durchgeführt.

1.52 g (1.45 mL; 14.3 mmol) Benzaldehyd werden zu 100 mL Pyrrol unter Argon-Schutzgasatmosphäre gegeben und 10 Minuten durch durchleiten von Argon durch die Lösung entgast. Dann werden 0.32 g (1.45 mmol) Indiumtrichlorid als Katalysator zugegeben. Die Reaktionsmischung wird 90 Minuten bei Raumtemperatur gerührt, dann werden, zum Beenden der Reaktion, 1.7 g (42.5 mmol) Natriumhydroxid zugegeben. Anschließend wird die Reaktionsmischung weitere 45 Minuten gerührt. Der farblose Feststoff wird abfiltriert und mit wenig Pyrrol gewaschen. Anschließend wird die Lösung zur Trockene eingeengt. Das Rohprodukt wird aus einer Mischung aus 13.7 mL Ethanol und 3.4 mL Wasser umkristallisiert. Man erhält 1.59 g (7.15 mmol) des farblosen, kristallinen Produkts (50.0% Ausbeute).

Di(pyrrol-1-yl)phenyl-methan:

¹H NMR (CDCl₃): δ = 7.91 (ws, N-H, 2H), 7.40–7.15 (m, 5H), 6.69 (m, 2H), 6.17 (m, 2H), 5.92 (m, 2H), 5.47 (s, 1H). ¹³C NMR (CDCl₃): 142.0, 132.5, 128.6, 128.4, 127.0, 117.2, 108.4, 107.2, 43.9. ¹⁴N NMR (CDCl₃): -232.6.

9.4.2.5 Darstellung von (3,4-Dimethyl-pyrrol-2-yl)*O*-methyl-thiocarbonsäureester

Ausgangsstoffe: 3,4-Dimethylpyrrol, Thiophosgen, Methanol, Diethylether, Silica, Chloroform.

Schema 23: Darstellung von (3,4-Dimethyl-pyrrol-2-yl)*O*-methyl-thiocarbonsäureester.

Durchführung: Die Synthese wird unter Argon-Schutzgasatmosphäre und unter Ausschluss von Wasser durchgeführt.

Zu 0.70 g (7.35 mmol) 3,4-Dimethylpyrrol in 3 mL Diethylether wird eine Lösung von 0.28 mL (3.50 mmol) Thiophosgen in 3 mL Diethylether unter Eiskühlung langsam zugetropft. Die Reaktionslösung wird nun langsam auf Raumtemperatur erwärmt und 45 Minuten gerührt. Nach der Zugabe von 10 mL Methanol wird die Reaktionslösung für weitere 30 Minuten gerührt. Dann wird die Reaktionslösung vom Lösemittel befreit. Das ölige Rohprodukt wird säulenchromatographisch mit Silica als stationärer Phase und Chloroform als Laufmittel gereinigt. Man erhält ein dunkles Öl, aus dem mittels Sublimation kleine Mengen von (3,4-Dimethyl-pyrrol-2-yl)*O*-methylthiocarbonsäureester als farblose Kristalle erhalten werden konnte.

3,4-Dimethyl-2-(thioameisensäureesther)-pyrrol:

¹H NMR (CDCl₃): δ = 9.15 (s, 1H, N-H), 6.77 (d, 1H), 4.20 (s, 3H), 2.26 (s, 3H), 1.99 (s, 1H).

9.4.2.6 Darstellung von (Pyrrol-2-yl)methylcarbonsäureesther

Schema 24: Darstellung von (Pyrrol-2-yl)methylcarbonsäureesther.

Ausgangsstoffe: 3,4-Dimethylpyrrol, Phosgenlösung (20 % in Toluol), Methanol, Diethylether.

Durchführung: Die Synthese wird unter Argon-Schutzgasatmosphäre und unter Ausschluss von Feuchtigkeit durchgeführt.

1.02 g (15.2 mmol) Pyrrol werden in 50 mL Diethylether vorgelegt, auf 0°C gekühlt und langsam mit 8 mL Phosgenlösung (20 % in Toluol) tropfenweise versetzt. Nach dem Zutropfen wird die Reaktionslösung auf Raumtemperatur erwärmt und dann eine Stunde gerührt. Dann werden 5 mL Methanol zugegeben und für weitere 30 Minuten gerührt. Nach dem Einengen der Reaktionslösung zur Trockene werden durch Sublimation 0.92 g (7.4 mmol) farblose Kristalle von (Pyrrol-2-yl)methylcarbonsäureesther erhalten (48.4 % Ausbeute).

(Pyrrol-2-yl)methylcarbonsäureesther:

¹H NMR (CDCl₃): δ = 9.07 (s, 1H, N-H), 6.95 (m, 1H), 6.91 (m, 1H), 6.26 (m, 1H), 3.85 (s, 3H). ¹³C NMR (CDCl₃): δ = 145.1, 122.7, 115.2, 110.5, 51.4.

9.4.2.7 Darstellung von N,N-Dimethyl(pyrrol-2-yl)amid

Schema 25: Darstellung von *N*,*N*-Dimethyl(pyrrol-2-yl)amid.

Ausgangsstoffe: Pyrrol, Phosgenimminiumchlorid, Acetonitril, Silica, Methanol, Chloroform. **Durchführung:** Die Synthese wird unter Argon-Schutzgasatmosphäre und unter Ausschluss von Feuchtigkeit durchgeführt.

In 4 mL Acetonitril werden 280 mg (1.70 mmol) Phosgenimminiumchlorid vorgelegt und bei 0°C mit einer Lösung von 228 mg (3.40 mmol) Pyrrol in 2 mL Acetonitril tropfenweise versetzt. Die grüne Reaktionslösung wird langsam auf Raumtemperatur aufgewärmt und zur Trockene eingeengt. Nach einer säulenchromatographischen Aufreinigung mit Silica als Stationärer Phase und zuerst Chloroform, dann einem Gradienten bis zu einer Mischung von Chloroform zu Methanol 100 : 4, erhält man in der vierten Fraktion das grüne Rohprodukt. Umkristallisieren aus Chloroform bringt wenige farblose Kristalle von *N,N*-Dimethyl(pyrrol-2-yl)amid.

*N,N-*Dimethyl(pyrrol-2-yl)amid:

¹H NMR (CDCl₃): δ = 10.23 (s, 1H, N-H), 6.90 (m, 1H), 6.56 (m, 1H), 6.22 (m, 1H), 3.21 (s, 6H). ¹³C NMR (CDCl₃): δ = 162.8, 125.2, 121.1, 112.7, 109.5, 38.1.

9.4.3 Darstellung von imidazolhaltigen Liganden

9.4.3.1 Darstellung von Di(1-methyl-imidazol-2-yl)sulfan

Schema 26: Darstellung von Di(1-methyl-imidazol-2-yl)sulfan.

Ausgangsstoffe: 1-Methylimidazol, Tetrahydrofuran (THF), *n*-Butyllithium Lösung in Hexan (2.5 M), Thiophosgen, Methanol, Silica, Dichlormethan, Ethanol.

Durchführung: Die Synthese wird unter Argon-Schutzgasatmosphäre und unter Ausschluss von Feuchtigkeit durchgeführt.

1.38 mL (1.42 g; 17.29 mmol) 1-Methylimidazol werden in 15 mL THF vorgelegt und auf -78° C gekühlt. Dann werden 6.90 mL (1.11 g; 17.29 mmol) einer Lösung von n-Buthyllithium in Hexan (2.5 M) zugetropft. Die nun gelbe Reaktionslösung wird auf Raumtemperatur erwärmt. Dann wird die Lösung wieder auf -78° C gekühlt und mit 0.6 mL (0.90 g; 7.89 mmol) einer Thiophosgenlösung in 15 mL THF tropfenweise versetzt. Die braune Reaktionslösung wird über Nacht langsam auf Raumtemperatur erwärmt. Dann werden 10 mL Methanol zugegeben. Nach chromatographischer Aufreinigung mit Silica als stationärer Phase und einer Mischung von Dichlormethan und Ethanol im Volumenverhältnis 9 : 1 erhält man als vierte Fraktion kleine Mengen des Produkts in Form farbloser Blöcke.

9.4.4 Darstellung von triazolhaltigen Liganden

9.4.4.1 Versuchte Darstellung von Tri(1,2,4-triazol-1-yl)methan

Schema 27: Darstellung von Tri-(1,2,4-triazol-1-yl)-methan.

Ausgangsstoffe: 1,2,4-Triazol, Tetrabutylammoniumchlorid, Natriumcarbonat, Chloroform, Diethylether, Natriumchlorid, Aktivkohle, Natriumsulfat. **Durchführung:** Die Darstellung von Tri-(1,2,4-triazol-1-yl)methan wurde mit einer leicht modifizierten Synthese analog der Darstellung von Tri(pyrazol-1yl)methan (Siehe 9.4.1.3) versucht.

Zu einer Lösung von 10.00 g (145.00 mmol) 1,2,4-Triazol und 2.40 g (8.64 mmol) Tetrabutylammoniumchlorid in 150 mL Wasser werden langsam 94.00 g (887.00 mmol) Natriumcarbonat zugegeben. Nach dem Abkühlen auf Raumtemperatur werden 75 mL (930.00 mmol) Chloroform zugegeben. Dann wird die Reaktionsmischung 72 Stunden refluxiert. Anschließend wird der Feststoff abfiltriert, die Lösung dreimal mit 30 mL Diethylether extrahiert, die vereingten organischen Phasen zweimal mit 50 mL gesättigter Natriumchloridlösung gewaschen und mit Aktivkohle entfärbt. Dann wird die organische Phase über Natriumsulfat getrocknet.

Nach dem Einengen zur Trockene erhält man einen farblosen Feststoff, der laut NMR-spektroskopischen Daten eine Mischung aus den möglichen Stereoisomeren darstellt. Versuche, eines der Stereoisomere zu isolieren blieben erfolglos. Die NMR-Signale konnten den Stereoisomeren nicht einwandfrei zugeordnet werden.

9.4.4.2 Darstellung einer Mischung von Di(1,2,4-triazolyl)methan-Stereoisomeren mittels Phasentransferkatalyse

Schema 28: Darstellung einer Mischung von Di(1,2,4-triazolyl)methan-Stereoisomeren.

Ausgangsstoffe: 1,2,4-Triazol, Tetrabutylammoniumchlorid, Kaliumhydroxid, Kaliumcarbonat, Dichlormethan. **Durchführung:** Die Darstellung einer Mischung von verschiedenen Di(1,2,4triazolyl)methan-Sterioisomeren wird nach einer leicht modifizierten Synthese analog der Synthese von Di(pyrrazol-1-yl)methan (Siehe 9.4.1.1) durchgeführt.

Zu einer Lösung von 6.22 g (90.00 mmol) 1,2,4-Triazol in 50 mL Dichlormethan werden 8.08 g (144.00 mmol) fein zerriebenes Kaliumhydroxid, 19.90 g (144.00 mmol) Kaliumcarbonat und 2.22 g (8.00 mmol) Tetrabutylammoniumchlorid unter Rühren gegeben. Dann wird die Reaktionsmischung 48 Stunden refluxiert. Anschließend wird der Feststoff abfiltriert und die farblose Lösung zur Trockene eingeengt.

Aufgrund der beiden möglichen Positionen des Wasserstoffatoms im Triazol, sind drei Bindungsisomere denkbar. Davon wurden im isolierten Feststoff zwei, das Di(1,2,4-triazol-1-yl)methan und das 1,2,4-Triazol-1-yl-1,2,4triazol-4-yl-methan, NMR-spektroskopisch nachgewiesen werden.

Di(1,2,4-triazol-1-yl)methan:

¹H NMR (CD₂Cl₂): $\delta = 8.53$ (2H), 7.90 (2H), 6.51 (2H).

1,2,4-Triazol-1-yl-1,2,4-triazol-4-yl-methan:

¹H NMR (CD₂Cl₂): δ = 9.01 (1H), 8.71 (2H), 6.72 (2H), 6.51 (1H).

9.4.4.3 Darstellung von Di(1,2,4-triazol-1-yl)methan über Diiodmethan

Schema 29: Darstellung von Di(1,2,4-triazol-1-yl)methan über Diiodmethan.

Ausgangsstoffe: 1,2,4-Triazol, Dimethylformamid (DMF), Kalium-*tert*butanolat, Diiodmethan, Wasser, Diethylether, Natriumchlorid, Natriumsulfat. **Durchführung:** Die Synthese wird unter Stickstoff-Schutzgasatmosphäre und unter Feuchtigkeitsausschluss durchgeführt.

Zu einer Lösung von 0.50 g (7.24 mmol) 1,2,4-Triazol in 10 mL Dimethylformamid werden 0.81 g (7.24 mmol) Kalium-*tert*-butanolat langsam unter Rühren zugegeben. Die Reaktionsmischung wird eine Stunde refluxiert und dann auf Raumtemperatur abgekühlt. Dann werden 0.29 mL (0.97 g, 3.62 mmol) Diiodmethan zugegeben und die Reaktionsmischung eine weitere Stunde refluxiert. Nach dem Abkühlen auf Raumtemperatur werden 50 mL Wasser zugegeben und die wässrige Phase dreimal mit 50 mL Diethylether extrahiert. Die vereinigten organischen Phasen werden zweimal mit 20 mL gesättigter Natriumchloridlösung gewaschen und dann über Natriumsulfat getrocknet. Anschließend wird die Lösung bis zur Trockene eingeengt.

Man erhält 25 mg Di(1,2,4-triazol-1-yl)methan als farbloses Pulver (4.6% Ausbeute).

Di(1,2,4-triazol-1-yl)methan:

¹H NMR (CD₂Cl₂): δ = 8.38 (2H), 7.92 (2H), 6.40 (2H).

9.4.4.4 Darstellung von Di(1,2,4-triazol-1-yl)methan aus Dichlormethan

Schema 30: Darstellung von Di(1,2,4-triazol-1-yl)methan über Dichlormethan.

Ausgangsstoffe: 1,2,4-Triazol, Dimethylformamid (DMF), Kalium-*tert*butanolat, Dichlormethan, Wasser, Diethylether, Natriumchlorid, Natriumsulfat.

Durchführung: Die Synthese wird unter Luft- und Feuchtigkeitsausschluss durchgeführt.

Zu einer Lösung von 3.00 g (43.44 mmol) 1,2,4-Triazol in 10 mL Dimethylformamid werden 4.86 g (43.44 mmol) Kalium-*tert*-butanolat langsam unter Rühren zugegeben. Die Reaktionsmischung wird auf Raumtemperatur abgekühlt, dann werden 1.44 mL (1.83 g, 21.72 mmol) Dichlormethan langsam zugetropft. Anschließend wird die Reaktionsmischung drei Tage bei Raumtemperatur gerührt. Dann werden 120 mL Wasser zugegeben und die wässrige Phase dreimal mit 70 mL Diethylether extrahiert. Die vereingten organischen Phasen werden zweimal mit 40 mL gesättigter Natriumchloridlösung gewaschen sowie über Natriumsulfat getrocknet. Anschließend wird die Lösung zur Trockene eingeengt. Man erhält 31 mg Di(1,2,4-triazol-1yl)methan als farblosen Feststoff (0.5% Ausbeute).

Di(1,2,4-triazol-1-yl)methan:

¹H NMR (CD₂Cl₂): δ = 8.38 (2H), 7.91 (2H), 6.40 (2H). ¹³C NMR (CD₂Cl₂): δ = 153.3, 144.4, 60.2.

9.4.4.5 Darstellung von Natrium-di(1,2,4-triazol-1-yl)-boranat

Schema 31: Darstellung von Natrium-di-(1,2,4-triazol-1-yl)-boranat.

Ausgangsstoffe: 1,2,4-Triazol, Natriumborhydrid, Wasser, Diethylether.

Durchführung: Die Darstellung von Natrium-ditriazolyl-borat erfolgt nach einer modifizierten Synthese analog zu [59]. Die Reaktion wird unter Argon-Schutzgasatmosphäre und unter Ausschluss von Feuchtigkeit durchgeführt.

3.65 g (52.9 mmol) 1,2,4-Triazol werden bei 135°C vorsichtig geschmolzen. 1.0 g (26.5 mmol) Natriumborhydrid werden portionsweise zugegeben. Dabei tritt Gasentwicklung auf. Die Reaktionsmischung wird eine Stunde bei 135°C gerührt und dann auf Raumtemperatur gekühlt. Die Reaktionsmischung wird auf Wasser gegeben und mit Diethylether extrahiert. Die wässrige Phase wird anschließend bis zur Trockene eingeengt. Man erhält 3.2 g (18.6 mmol) farbloses Pulver (70.2 % Ausbeute), das mit geringen Mengen an Polyboranaten und etwa 15% Natrium-(1,2,4-triazol-1-yl)-(1,2,4-triazol-5-yl)-borat verunreinigt ist.

Natrium-di-(triazol-1-yl)-boranat:

¹H NMR (D₂O): δ = 8.31 (s, 2H), 7.9 (s, 2H), 4.3–2.8 (m, BH₂, 2H). ¹³C NMR (D₂O): δ = 152.0, 148.8. ¹¹B NMR (D₂O): δ = -10.3. ¹¹B NMR (D₂O; ¹H gekoppelt): δ = -10.2 (J_{BH} = 127.16 Hz).

9.4.5 Darstellung von tetrazolhaltigen Liganden

9.4.5.1 Darstellung von 5-Benzyltetrazol

Schema 32: Darstellung von 5-Benzyltetrazol.

Ausgangsstoffe: Benzylcyanid, Dimethylformamid (DMF), Natriumazid, Ammoniumchlorid, Wasser, Salzsäure.

Durchführung: Die Darstellung von 5-Benzyltetrazol erfolgt nach [55]. Die Reaktion wird unter Argon-Schutzgasatmospäre und unter Ausschluss von Feuchtigkeit durchgeführt.

2.29 mL (2.34 g; 20.00 mmol) Benzylcyanid werden in 10 mL DMF mit 1.43 g (22.00 mmol) Natriumazid und 1.18 g (22.00 mmol) Ammoniumchlorid versetzt und für acht Stunden auf 125°C erhitzt. Anschließendes Einengen zur Trockene liefert ein Öl, welches in 10 mL Wasser gegeben wird, wobei ein farbloser Niederschlag ausfällt. Der pH-Wert der Lösung wird mit Salzsäure auf 2 eingestellt und die Reaktionsmischung über Nacht auf 4°C gekühlt. Der entstandene Niederschlag wird anschließend abgenutscht und mit wenig kaltem Wasser gewaschen. Man erhält 2.55 g (15.9 mmol) 5-Benzyltetrazol als farblose Kristalle (79.5 % Ausbeute).

5-Benzyltetrazol:

¹H NMR (Aceton-d₆): $\delta = 10.3$ (s, NH, 1H), 7.35–7.25 (m, Phenyl-H, 5H), 4.34 (s, CH₂, 2H). ¹³C NMR{¹H} (Aceton-d₆): 155.9 (Tetrazol-C), 136.0 (Ar-C), 129.0 (4 Ar-C), 127.3 (Ar-C), 29.5 (CH₂). ¹⁴N NMR{¹H} (Aceton-d₆): -4.3, -103.2.

9.4.5.2 Darstellung von 5-Benzyl-methyl-tetrazol

Schema 33: Darstellung einer Mischung von 5-Benzyl-1-methyl-tetrazol und 5-Benzyl-2-methyl-tetrazol.

Ausgangsstoffe: Benzyltetrazol, Natriumhydroxid, Methyliodid, Aceton, Benzol, Wasser, Natriumsulfat.

Hinweis: Um gute Ausbeuten zu erzielen wird zum Extrahieren Benzol verwendet.

Durchführung: Die Darstellung von 5-Benzyl-2-methyl-tetrazol wird abgewandelt analog zu [63] durchgeführt.

2.82 g (11.40 mmol) 5-Benzyltetrazol werden in 5 mL Wasser mit 0.93 g (23.20 mmol) Natriumhydroxid versetzt. Dann wird unter Rühren eine Lösung von 1.65 g (0.73 mL; 11.5 mmol) Methyliodid in 19 mL Aceton zuge-tropft. Dann wird die Reaktionsmischung eine Stunde refluxiert, bevor nochmals eine Lösung von 1.65 g (0.73 mL; 11.5 mmol) Methyliodid in 19 mL Aceton zugetropft wird. Nach einer weiteren Stunde Reflux wird die Reaktionslösung auf Raumtemperatur abgekühlt, mit 50 mL Wasser versetzt und mit und 50 mL Benzol extrahiert. Die Benzolphase wird dreimal mit 25 mL Wasser gewaschen und dann über Natriumsulfat getrocknet. Nach dem Einengen zur Trockene erhält man 1.60 g (9.19 mmol) einer Mischung aus 5-Benzyl-1-methyl-tetrazol und 5-Benzyl-2-methyl-tetrazol als farblose Kristalle (80.7 % Ausbeute).

9.4.5.3 Darstellung von Di(tetrazol-5-yl)amin-Monohydrat

Schema 34: Darstellung von Di(tetrazol-5-yl)amin-Monohydrat.

Ausgangsstoffe: Natriumdicyanamid, Natriumazid, Ethanol, Wasser, Salzsäure, Diethylether.

Warnhinweis: Tetrazole mit kleinen organischen Resten können explosiv sein! Produkt nicht am Feinvakuum trocknen! **Durchführung:** Die Darstellung von Di(tetrazol-5-yl)amin wird nach [30, 64, 65] durchgeführt.

Zu einer Suspension von 44.5 g (0.50 mol) Natriumdicyanamid und 65.0 g (1.00 mol) Natriumazid in 400 mL Ethanol und 250 mL Wasser werden unter Reflux 750 mL 2 M Salzsäure über fünf Stunden zugetropft. Dann wird die Reaktionsmischung 48 Stunden refluxiert.

Nach dem Abkühlen auf 0°Cim Eisbad werden 50 mL konzentrierte Salzsäure unter Umschwenken zugegeben. Nach fünf Minuten wird der gebildete weiße Niederschlag abfiltriert und mit kleinen Mengen kaltem Ethanol und Diethylether gewaschen. Nach dem Trocknen an Luft erhält man 72.30 g Di(tetrazol-5-yl)amin-Monohydrat als farbloses Pulver (84.5% Ausbeute).

Di(tetrazol-5-yl)amin:

¹H NMR (DMSO-d₆): δ = 12.0 (s, 1H, N5-H), 9.61 (s, 2H, N1-H). ¹³C NMR{¹H} (DMSO-d₆): 153.8. EA berechnet für C₂H₅N₉O (M = 171.12) C: 14.04; H: 2.95; N: 73.67 — EA gefunden: C: 14.03; H: 2.89; N: 72.92.

9.4.5.4 Darstellung von Di(2-methyl-tetrazol-5-yl)amin-Monohydrat

Schema 35: Darstellung von Di(2-methyl-tetrazol-5-yl)amin-Monohydrat.

Ausgangsstoffe: Di(tetrazol-5-yl)amin, Natriumhydroxid, Wasser, Methyliodid, Aceton.

Warnhinweis: Tetrazole mit kleinen organischen Resten können explosiv sein! Produkt nicht am Feinvakuum trocknen! **Durchführung:** Die Darstellung von Di(2-methyl-tetrazol-5-yl)amin-Monohydrat wird nach einer in [30,65] beschriebenen Synthese durchgeführt.

Eine Mischung von 17.1 g (0.1 mol) Di(tetrazol-5-yl)amin und 8.00 g (0.2 mol) NaOH werden in 100 mL Wasser auf 60°C erwärmt, bis eine klare, rote Lösung erhalten wird.

Anschließend werden 12.5 mL (0.21 mol) Methyliodid in 50 mL Aceton unter Reflux zugetropft. Die Reaktionslösung wird 12 Stunden refluxiert und anschließend auf 4°C abgekühlt. Der gebildete farblose Niederschlag wird abfiltriert, zweimal mit wenig Aceton gewaschen und an Luft getrocknet.

Man erhält 8.1 g (40.7 mmol) Di(2-methyl-tetrazol-5-yl)amin als farbloses Pulver (40.7% Ausbeute).

Di(2-methyl-tetrazol-5-yl)amin:

¹H NMR (DMSO-d₆): δ = 10.9 (s, 1H, N5-H), 4.3 (s, 6H, CH₃). ¹³C NMR{¹H} (DMSO-d₆): δ = 162.4, 40.0. EA berechnet für C₂H₅N₉O (M = 171.12) C: 24.12; H: 4.55; N: 63.29 — EA gefunden: C: 25.52; H: 3.97; N: 66.86.

9.4.5.5 Darstellung von (2-Methyl-tetrazol-5-yl)-(tetrazol-5-yl)amin

Schema 36: Darstellung von (2-Methyl-tetrazol-5-yl)-(tetrazol-5-yl)amin.

Ausgangsstoffe: Di(tetrazol-5-yl)amin, Natriumhydroxid, Wasser, Methyliodid, Aceton, Salzsäure.

Warnhinweis: Tetrazole mit kleinen organischen Resten können explosiv sein! Produkt nicht am Feinvakuum trocknen! **Durchführung:** 6.84 g (40.00 mmol) Di(tetrazol-5-yl)amin und 3.20 g (80.00 mmol) Natriumhydroxid werden in 70 mL Wasser gegeben und so lange auf 60°C erwärmt, bis man eine klare rote Lösung erhält. In die Lösung wird eine Stunde eine Lösung von 2.50 mL Iodmethan in 15 mL Aceton zugetropft. Dann wird die Reaktionsmischung 12 Stunden refluxiert und anschließend auf 4°C abgekühlt. Dann wird die Lösung mit verdünnter Salzsäure versetzt, wobei sich ein farbloser Niederschlag bildet. Es wird so lange verdünnte Salzsäure zugegeben, bis sich kein weiterer Niederschlag mehr bildet. Der farblose Niederschlag wird abfiltriert und an Luft getrocknet. Zur Aufreinigung wird der Niederschlag in 30 mL 2 M Natriumhydroxidlösung gelöst und nochmals durch die Zugabe von verdünnter Salzsäure gefällt. Der Niederschlag wird abfiltriert, mit wenig kaltem Wasser und Diethylether gewaschen und an Luft getrocknet. Man erhält 2.00 g (2-Methyl-tetrazol-5-yl)-(tetrazol-5-yl)amin als farbloses Pulver (27.0% Ausbeute).

(2-Methyl-tetrazol-5-yl)-(tetrazol-5-yl)amin:

¹H NMR (DMSO-d₆): δ = 11.8 (s, 1H, N5-H), 4.6 (s, 1H, N1-H), 4.3 (s, 3H, CH₃). ¹³C NMR{¹H} (DMSO-d₆): δ = 161.8, 154.0, 40.3. ¹⁵N NMR{¹H} (DMSO-d₆): δ = -4.7, -17.5, -109.1, -110.1, -113.1, -315.7. EA berechnet für C₃H₅N₉ (M = 167.13) C: 21.56; H: 3.02; N: 75.42 — EA gefunden: C: 20.76; H: 3.04; N: 75.17.

9.4.5.6 Darstellung von (2-Isopropyl-tetrazol-5-yl)-(tetrazol-5-yl)amin

Ausgangsstoffe: Di(tetrazol-5-yl)amin, Natriumhydroxid, Wasser, 2-Iodpropan, Aceton, Diethylether.

Warnhinweis: Tetrazole mit kleinen organischen Resten können explosiv sein! Produkt nicht am Feinvakuum trocknen!

Durchführung: 3.42 g (20.00 mmol) Di(tetrazol-5-yl)amin und 1.60 g (40.00 mmol) Natriumhydoxid werden in 35 mL Wasser gegeben und so lange auf 60°C erwärmt, bis sich alles gelöst hat. Zu der klaren Lösung wird

Schema 37: Darstellung von (2-Isopropyl-tetrazol-5-yl)-(tetrazol-5-yl)amin.

im Verlauf einer Stunde eine Lösung von 3.99 mL (40.00 mmol) 2-Iodpropan in 15 mL Aceton zugetropft. Die Reaktionsmischung wird 12 Stunden refluxiert und anschließend auf 4°C gekühlt. Beim Abkühlen bildet sich ein farbloser Niederschlag, der abfiltriert und mit Diethylether gewaschen wird. Dann wird das Produkt an Luft getrocknet. Man erhält 1.15 g (2-Isopropyltetrazol-5-yl)-(tetrazol-5-yl)amin als farbloses Pulver (26.9% Ausbeute).

(2-Isopropyl-tetrazol-5-yl)-(tetrazol-5-yl)amin:

¹H NMR (DMSO-d₆): δ = 11.6 (s, 1H, N5-H), 4.99 (sept., 1H, CH, ³*J*_{CH-CH₃}=6.60 Hz), 1.45 (d, 6H, CH₃, ³*J*_{CH₃-CH}=6.60 Hz). ¹³C NMR{¹H} (DMSO-d₆): δ = 161.0, 56.4, 21.6. EA berechnet für C₅H₁₁N₉ (M = 213.20) C: 28.17; H: 5.20; N: 59.13 — EA gefunden: C: 27.63; H: 4.43; N: 59.26.

9.4.5.7 Darstellung von Di(2-benzyl-tetrazol-5-yl)amin

Ausgangsstoffe: Di(tetrazol-5-yl)amin, Natriumhydroxid, Benzyliodid, Wasser, Aceton, Diethylether.

Durchführung: 3.42 g (20.00 mmol) Di(tetrazol-5-yl)amin und 1.60 g (40.00 mmol) Natriumhydoxid werden in 35 mL Wasser gegeben und so lange auf 60°C erwärmt, bis sich alles gelöst hat. Unter Lichtausschluss wird

Schema 38: Darstellung von Di(2-benzyl-tetrazol-5-yl)amin.

zu der roten Lösung eine Lösung von 8.72 g (40.00 mmol) frisch nach 9.2.1 dargestelltem Benzyliodid in 15 mL Aceton über eine Stunde zugetropft. Die aus zwei Phasen bestehende Reaktionmischung wird unter starkem Rühren 12 Stunden refluxiert und dann auf 4°C abgekühlt. Die Phasen werden getrennt, dann wird die organische Phase eingeengt, bis ein braunes Öl erhalten wird. Nach dem Lagern des Öls bei 4°C über Nacht hat sich ein gelber Niederschlag gebildet, der abgetrennt und aus Diethylether umkristallisiert wird. Man erhält 0.80 g Di(2-benzyl-tetrazol-5-yl)amin als farbloses Pulver (11.4% Ausbeute).

Di(2-benzyl-tetrazol-5-yl)amin:

¹H NMR (DMSO-d₆): δ = 11.0 (s, 1H, N5-H), 7.4–6.8 (m, 10H, ArH), 5.8 (s, 4H, CH₂). ¹³C NMR{¹H} (DMSO-d₆): δ = 162.0, 134.2, 128.8, 128.4, 128.1, 55.9. ¹⁵N NMR{¹H} (DMSO-d₆): δ = -4.9, -76.2, -102.1, -107.8, -316.4.

9.4.5.8 Darstellung von Di(2-methyl-tetrazol-5-yl)benzylamin

Ausgangsstoffe: Di(1-methyl-tetrazol-5-yl)amin, Tetrahydrofuran (THF), Li-

Schema 39: Darstellung von Di(2-methyl-trazol-5-yl)benzylamin.

thiumaluminiumhydrid, Benzylchlorid, Wasser, Natriumchlorid, Magnesiumsulfat, Aceton, Diethylether.

Durchführung: Die Reaktion wird unter Luft- und Feuchtigkeitsausschluss durchgeführt.

0.40 g (2.00 mmol) Di(2-methyl-tetrazol-5-yl)amin werden in 20 mL THF gelöst. Unter Rühren werden langsam 0.08 g (2.00 mmol) Lithiumaluminiumhydrid zugegeben. Unter Gasentwicklung bildet sich hierbei ein grauer Niederschlag. Nach dem Ende der Gasentwicklung werden 0.34 mL (2.00 mmol) Benzylchlorid zugetropft. Dann wird die Reaktionsmischung 18 Stunden bei Raumtemperatur gerührt und Anschließend mit 20 mL Wasser versetzt. Nach dem Abklingen der Gasentwicklung wird die Reaktionsmischung zweimal mit 15 mL Diethylether extrahiert. Die vereingten organischen Phasen werden mit 20 mL gesättigter Natriumchloridlösung gewaschen und über Magnesiumsulfat getrocknet. Nach dem Entfernen des Lösemittels verbleibt ein farbloses Öl, aus dem sich nach drei Tagen bei Raumtemperatur an Luft Kristalle abscheiden. Das Rohprodukt wird in möglichst wenig einer 1:1 Mischung aus Aceton und Wasser gelöst und die Lösung wieder etwas eingeengt. Über Nacht bilden sich farblose Nadeln des Produkts. Man erhält 0.08 g Di(2-methyl-tetrazol-5-yl)benzylamin als farblose Nadeln (14.7% Ausbeute).

Di(2-methyl-tetrazol-5-yl)benzylamin:

¹H NMR (DMSO-d₆): $\delta = 7.32-7.27$ (m, 5H, ArH), 4.29 (s, 2H, CH₂), 3.30 (s, 6H, CH₃). ¹³C NMR{¹H} (DMSO-d₆): $\delta = 164.2$, 137.4, 129.0, 127.9, 127.7, 52.7, 40.1. ¹H NMR (CDCl₃): $\delta = 7.38-7.21$ (m, 5H, ArH), 5.46 (s, 2H, CH₂), 4.27 (s, 6H, CH₃). ¹³C NMR{¹H} (CDCl₃): $\delta = 164.2$, 136.6, 128.5, 127.9, 127.6, 52.4, 40.0. EA berechnet für C₁₁H₁₃N₉ (M = 271.28) C: 48.70; H: 4.83; N: 46.47 — EA gefunden: C: 48.63; H: 4.77; N: 46.48.

9.4.5.9 Darstellung von Di(tetrazol-5-yl)methan

Schema 40: Darstellung von Di(tetrazol-5-yl)methan.

Ausgangsstoffe: Malonsäuredinitril, Dimethylformamid (DMF), Natriumazid, Ammoniumchlorid, Salzsäure, Natronlauge, Wasser, Ethanol, Acetonitril.

Warnhinweis: Tetrazole mit kleinen organischen Resten können explosiv sein! Produkt nicht am Feinvakuum trocknen!

Durchführung: Die Darstellung von Di(tetrazol-5-yl)-methan wird nach [66] durchgeführt. Die Reaktion wird unter Argon-Schutzgasatmospäre und unter Ausschluss von Feuchtigkeit durchgeführt.

0.66 g (10.00 mmol) Malonsäuredinitril werden in 10 mL DMF vorgelegt und mit 1.43 g (22.00 mmol) Natriumazid und 1.18 g (22.00 mmol) Ammoniumchlorid versetzt. Nach 7 Stunden bei 95°C wird die Reaktionslösung auf Raumtemperatur abgekühlt und dann bis zur Trockene eingeengt. Der Rückstand wird in 10 mL Wasser aufgenommen und der pH-Wert der Lösung mit Natronlauge auf 9 eingestellt. Dann wird die Reaktionslösung zur Trockene eingeengt. Anschließend wird der Rückstand nochmals in 10 mL Wasser aufgenommen und der pH-Wert der Lösung mit Salzsäure auf 2 eingestellt. Dann wird die Reaktionslösung zur Trockene eingeengt, erneut in Ethanol aufgenommen, zur Trockene eingeengt. Der gelbe Feststoff wird anschließend aus Acetonitril umkristallisiert. Man erhält 1.33 g (8.74 mmol) Di(tetrazol-5-yl)methan als gelbe Kristalle (87.4 % Ausbeute).

Di(tetrazol-5-yl)-methan:

¹³C NMR{¹H} (dmso-d₆): 152.2 (Tetrazol-C), 18.8 (CH₂).

9.5 Darstellung der Metallkomplexe

9.5.1 Metallkomplexe von Di(pyrrol-2-yl)keton

9.5.1.1 Kupfer(II)

Schema 41: Darstellung von 28.

Ausgangsstoffe: Di(pyrrol-2-yl)keton (8), Dimethylformamid (DMF), Kalium-*tert*-butanolat (*t*-BuOK), Kupfer(II)-chlorid-Hexahydrat (CuCl₂ \cdot 6 H₂O), Tetrabutylammoniumchlorid, Dichlormethan, Wasser.

Durchführung: Die Reaktion wurde unter Argon-Schutzgasatmosphäre und unter Ausschluss von Feuchtigkeit durchgeführt.

160 mg (1.00 mmol) Di(pyrrol-2-yl)keton (8) wurden in 10 mL DMF vorgelegt und mit 244 mg (2.00 mmol) *t*-BuOK versetzt. Die Reaktionsmischung wurde 30 Minuten bei Raumtemperatur gerührt. Es wurden 121 mg (0.50 mmol) CuCl₂ · 6 H₂O mit 278 mg (1.00 mmol) Tetrabutylammonium-chlorid verrieben und mit 5 mL Dichlormethan extrahiert. Die entstandene Lösung von ((*n*-Bu)₄N)₂[CuCl₄] in Dichlormethan wurde anschließend von nicht gelösten Eduktresten abdekantiert und langsam zur Lösung von 8 in DMF zugetropft.

Die Lösung wurde 30 Minuten bei Raumtemperatur gerührt, dann in 25 mL Wasser gegeben und zweimal mit 10 mL Dichlormethan extrahiert. Die vereingten organischen Phasen wurden über Nacht eingedampft. Es wurden orange bis braune Kristalle von **28** erhalten.

9.5.2 Metallkomplexe von Di(pyrazol-1-yl)-methan

9.5.2.1 Allgemeines

Die meisten Metallkomplexe wurden über die allgemeine Arbeitsanleitung (siehe Kapitel 9.5.2.2) dargestellt. Metallkomplexe, bei denen abweichende Reaktionsbedingungen nötig waren, werden in den Kapiteln 9.5.2.3 bis 9.5.2.5 beschrieben.

9.5.2.2 Allgemeine Arbeitsanleitung zur Darstellung von Metallkomplexen mit Di(pyrazol-1-yl)methan

Schema 42: Allgemeine Arbeitsvorschrift zur Darstellung von Komplexen mit 10 und dem Metallsalz MX_m .

Ausgangsstoffe: Zink(II)-chlorid (ZnCl₂), Cadmium(II)-nitrat-Tetrahydrat (Cd(NO₃)₂ · 4H₂O), Quecksilber(II)-chlorid (HgCl₂), Vanadium(III)-chlorid (VCl₃), Cobalt(II)-chlorid-Hexahydrat (CoCl₂ · 6 H₂O), Nickel(II)-chlorid-Hexahydrat (NiCl₂ · 6 H₂O), Kaliumosmatat(VI)-Dihydrat (K₂OsO₄ · 2 H₂O), Eisen(III)-chlorid (FeCl₃), Di(pyrazol-1-yl)methan (**10**), Wasser.

Durchführung: Die entsprechenden Mengen (siehe Tabellen 9.1 und 9.2) an Di(pyrazol-1-yl)methan (**10**) und Metallsalz wurden in 15 mL Wasser gegeben und fünf Minuten refluxiert. Anschließend wurde die Reaktionslösung vorsichtig auf Raumtemperatur abgekühlt und über mehrere Tage bei Raumtemperatur zum langsamen Eindampfen an Luft gelagert.

9.5.2.3 Palladium(II)

Ausgangsstoffe: Palladium(II)-chlorid (PdCl₂), Natriumchlorid (NaCl), Di(pyrazol-1-yl)methan (**10**), Dimethylsulfoxid (DMSO), Wasser.

Schema 43: Darstellung von 29.

Durchführung: 89.0 mg (0.50 mmol) $PdCl_2$ wurden mit 58.0 mg (1.00 mmol) NaCl in 5 ml Wasser fünf Minuten refluxiert und zur Trockene eingeengt. Das entstandene Natriumtetrachloridopalladat (Na₂PdCl₄) wurde in 5 mL Wasser mit 148 mg (1.00 mmol) Di(pyrazol-1-yl)-methan versetzt und 1 Minute auf Refluxtemperatur erhitzt. Nach dem Abkühlen wurde der entstandene orange Niederschlag abfiltriert und in 5 mL DMSO gelöst. Die orange Lösung wurde über mehrere Wochen zum langsamen Einengen offen an Luft gelagert. Man erhält wenige Kristalle [Pd(10)₂]Cl₂ · H₂O (29).

9.5.2.4 Ruthenium(II)

Schema 44: Darstellung von 35.

Ausgangsstoffe: Ruthenium(III)-chlorid-Trihydrat (RuCl₃ · 3 H₂O), Dimethylformamid (DMF), Di(pyrazol-1-yl)methan (**10**).

Durchführung: 207 mg (1.00 mmol) $RuCl_3 \cdot 3 H_2O$ wurden in 20 mL DMF mit 296 mg (2.00 mmol) **10** versetzt und 10 Stunden refluxiert. Durch anschließendes Entfernen des Lösemittels wurde ein gelbes Pulver und ein braunes Öl

erhalten. Das braune Öl wurde abgetrennt und verworfen. Das gelbe Pulver wurde in möglichst wenig DMF gelöst und über eine Woche zum langsamen Eingeengen offen an Luft gelagert. Man erhält wenige Kristalle [$Ru(10)_2Cl_2$] · DMF (**35**).

9.5.2.5 Umsetzung von Ru(NO)Cl₃ mit Di(pyrazol-1-yl)methan

Schema 45: Darstellung von 65.

Ausgangsstoffe: $Ru(NO)Cl_3 \cdot H_2O$, Diethylether, Di(pyrazol-1-yl)methan (10).

Durchführung: Zu einer Löung von 256 mg (1.00 mmol) $Ru(NO)Cl_3 \cdot H_2O$ in 10 mL Diethylether wurde eine Lösung von 148 mg (1.00 mmol) Di(pyrazol-1-yl)-methan in 10 mL Diethylether langsam zugetropft. Die Lösung verdunkelte sich und ein brauner Niederschlag fiel aus. Man erhielt nach abfiltrieren $[Ru(NO)(10)Cl_3]$ (65) als braunes Pulver. Aus der Lösung konnten keine Kristalle, die sich zur Röntgenstrukturanalyse eignen, erhalten werden.

[Ru(NO)(**10**)Cl₃] (**65**) ¹³C NMR (DMSO-d6): δ = 145.7, 137.5, 108.5, 63.4.
Tabelle 9.1: Angaber Di(pyrazol-1-yl)meth	n zur eingesetzt <u>ian (10)</u> .	en Stoffmenge 1	1 und Masse	e <i>m</i> bei d	er Reaktion von Übergan,	ssmetallsalzen mit
Metallsalz	n(Metallsalz)	m(Metallsalz)	n(1 0)	m(1 0)	Zusätzliche Informationen	Erhaltene Verbindungen
ZnCl ₂	1.00 mmol	136 mg	1.00 mmol	148 mg	Zugabe von fünf Trop- fon Long HNIO-	36
ZnCl ₂	1.00 mmol	136 mg	2.00 mmol	296 mg	Zugabe von fünf Trop-	36, 37, 38
ZnCl ₂	1.00 mmol	136 mg	3.00 mmol	444 mg	Zugabe von fünf Trop- fen konz. HNO ₃	36, 37, 38
Cd(NO ₃) ₂ ·4H ₂ O	1.00 mmol	308 mg	1.00 mmol	148 mg		39
Cd(NO ₃) ₂ ·4H ₂ O Cd(NO ₃) ₂ ·4H ₂ O	1.00 mmol 1.00 mmol	308 mg 308 mg	2.00 mmol 3.00 mmol	296 mg 444 mg		39, 40, 41 39, 40, 41
HeCl	1.00 mmol	272 mg	1.00 mmol	148 me		42
HgCl ₂	1.00 mmol	272 mg	2.00 mmol	296 mg		42
HgCl ₂	1.00 mmol	272 mg	3.00 mmol	444 mg		42

Tabelle 9.2: Angaber Di(pyrazol-1-yl)meth	n zur eingesetzt 1an (10).	en Stoffmenge	n und Mass	e m bei d	er Reaktion von Übergar	ngsmetallsalzen mit
Metallsalz	n(Metallsalz)	m(Metallsalz)	n(10)	m(10)	Zusätzliche	Erhaltene
VCl ₃ VCl ₃	1.00 mmol 1.00 mmol	157 mg 157 mg	2.00 mmol 3.00 mmol	296 mg 444 mg		30 30
CoCl ₂ ·6H ₂ O	2.00 mmol	476 mg	2.00 mmol	296 mg		34
$C_0Cl_2 \cdot 6H_2O$ $C_0Cl_2 \cdot 6H_2O$	2.00 mmol 2.00 mmol	476 mg 476 mg	4.00 mmol 6.00 mmol	592 mg 888 mg		34 34
NiCl ₂ ·6H ₂ O	1.00 mmol	238 mg	2.00 mmol	296 mg		31
K ₂ OsO ₄ ·2 H ₂ O K ₂ OsO ₄ ·2 H ₂ O	1.00 mmol 1.00 mmol	368 mg 368 mg	1.00 mmol 2.00 mmol	148 mg 296 mg		33 33
FeCl ₃	2.00 mmol	324 mg	4.00 mmol	592 mg	Rohprodukt aus Etha- nol umkristallisiert	32

9.5 Darstellung der Metallkomplexe

9.5.3 Darstellung von Übergangsmetallkomplexen mit Tri(pyrazol-1-yl)methan

9.5.3.1 Allgemeine Arbeitsvorschrift zur Darstellung von Komplexen mit Tri(pyrazol-1-yl)methan

Schema 46: Allgemeine Arbeitsvorschrift zur Darstellung von Komplexen mit 11 und dem Metallsalz MX_m .

Ausgangsstoffe: Blei(II)-nitrat (Pb(NO₃)₂), Cobalt(II)-chlorid-Hexahydrat (CoCl₂ ·6 H₂O), Cadmium(II)-nitrat-Tetrahydrat (Cd(NO₃)₂ ·4 H₂O), Tri(pyrazol-1-yl)methan (**11**), Wasser.

Durchführung: Die in Tabelle 9.3 angegebenen Mengen an Tri(pyrazol-1-yl)methan (11) und dem entsprechendem Metallsalz wurden in 30 mL Wasser gegeben und fünf Minuten refluxiert. Dann wurde die Reaktionslösung auf Raumtemperatur abgekühlt und über mehrere Wochen zum langsamen Eindampfen an Luft stehen gelassen.

yl)methan (11).	C	C			
Metallsalz	n(Metallsalz)	m(Metallsalz)	n(11)	m(11)	Erhaltene Verbindungen
$Cd(NO_3)_2 \cdot 4 H_2O$	1.00 mmol	308 mg	1.00 mmol	214 mg	44
$Cd(NO_3)_2 \cdot 4 H_2O$	1.00 mmol	$308 \mathrm{mg}$	2.00 mmol	418 mg	44
CoCl ₂ ·6 H ₂ O	1.00 mmol	238 mg	1.00 mmol	214 mg	43
$C_0Cl_2 \cdot 6H_2O$	1.00 mmol	238 mg	2.00 mmol	428 mg	43
$Pb(NO_3)_2$	1.00 mmol	331 mg	1.00 mmol	214 mg	45
$Pb(NO_3)_2$	1.00 mmol	331 mg	2.00 mmol	418 mg	45

	Rom	лсл
Cd(NO ₃); Cd(NO ₃);	Metallsali	<u>y</u> l)methan

9.5 Darstellung der Metallkomplexe

9.5.4 Darstellung der Metallkomplexe mit Imidazol

9.5.4.1 Allgemeines

Die Umsetzung imidazolhaltiger Liganden lieferte nur Imidazolkomplexe aus den Zersetzungsprodukten des Liganden.

9.5.4.2 Palladium(II)

Schema 47: Darstellung von 46.

Ausgangsstoffe: Palladium(II)-chlorid (PdCl₂), Natriumchlorid (NaCl), Dimethylformamid (DMF), Di(imidazol-1-yl)keton (**14**).

Durchführung: 177 mg (1.00 mmol) PdCl₂ wurden mit 117 mg (2.00 mmol) NaCl vermörsert und in 10 mL DMF gelöst. Zu dieser Lösung wurde langsam eine Lösung von 161 mg (1.00 mmol) Di(imidazol-1-yl)keton (**14**) in 5 mL DMF zugetropft. Nach dem offenen stehenlassen der Lösung bei Raumtemperatur über mehrere Wochen an Luft erhielt man orange Kristalle von **46**.

9.5.4.3 Nickel(II)

Ausgangsstoffe: Nickel(II)-chlorid-Hexahydrat (NiCl₂ \cdot 6 H₂O), Dimethylformamid (DMF), Di(imidazol-1-yl)keton (14).

Durchführung: 324 mg (2.00 mmol) Di(imidazol-1-yl)carbonyl (14) wurden in 5 mL Dimethylformamid (DMF) gelöst und langsam unter Rühren in eine Lösung von 238 mg (1.00 mmol) NiCl₂ · 6 H₂O in 15 mL DMF getropft. Die Reaktionslösung wurde mehrere Wochen bei Raumtemperatur offen an Luft stehen gelassen. Es wurden wenige blaue Kristalle von 47 erhalten.

Schema 48: Darstellung von 47.

9.5.5 Darstellung der Metallkomplexe mit triazolhaltigen Liganden

9.5.5.1 Allgemeines

Die Umsetzung triazolhaltiger Liganden lieferte teils neue Komplexe der Liganden, teils Triazolkomplexe aus den Zersetzungsprodukten der Liganden.

9.5.5.2 Kupfer(II) mit 1,2,4-Triazol

Schema 49: Darstellung von 48.

Ausgangsstoffe: Kupfer(II)-chlorid-Hexahydrat (CuCl₂ · 6 H₂O), Salzsäure (2 M), Natrium-di(1,2,4-triazol-1-yl)boranat (**18**), Wasser.

Durchführung: 243 mg (1.00 mmol) $CuCl_2 \cdot 6 H_2O$ wurden in 5 mL Wasser vorgelegt und mit 5 Tropfen 2 M HCl angesäuert. Dazu wurde langsam eine Lösung von 344 mg (2.00 mmol) Natrium-di(1,2,4-triazol-1-yl)boranat (**18**) in 5 mL Wasser getropft. Die Reaktionslösung wurde dunkelblau. Dann wurde die Reaktionslösung mehrere Wochen bei Raumtemperatur zum Einengen an Luft stehen gelassen. Man erhielt Kristalle von **48**.

9.5.5.3 Nickel(II) mit 1,2,4-Triazol

Schema 50: Darstellung von 49.

Ausgangsstoffe: Nickel(II)-chlorid-Hexahydrat (NiCl₂ · 6 H_2O), Salzsäure (2 M), Natrium-di(1,2,4-triazol-1-yl)boranat (**18**), Wasser.

Durchführung: 238 mg (1.00 mmol) NiCl₂ · 6 H₂O wurden in 5 mL Wasser vorgelegt und mit 5 Tropfen 2 M HCl angesäuert. Dazu wird langsam eine Lösung von 344 mg (2.00 mmol) Natrium-di(1,2,4-triazol-1-yl)boranat (**18**) in 5 mL Wasser getropft. Die vorher grüne Reaktionslösung wurde blau. Dann wurde die Reaktionslösung zum Einengen mehrere Wochen bei Raumtemperatur an Luft stehen gelassen. Es wurden Kristalle von **49** erhalten.

9.5.5.4 Kupfer(II) mit Natrium-di(1,2,4-triazol-1-yl)boranat

Schema 51: Darstellung von 51.

Ausgangsstoffe: Kupfer(II)-chlorid-Hexahydrat (CuCl₂ \cdot 6 H₂O), Tetrabutylammoniumchlorid, Acetonitril, Natrium-di(1,2,4-triazol-1-yl)boranat (**18**), Wasser.

Durchführung: 242 mg (1.00 mmol) $CuCl_2 \cdot 6 H_2O$ und 278 mg (1.00 mmol) Tetrabutylammoniumchlorid wurden in 5 mL einer Mischung aus Acetonitril und Wasser (1:1) vorgelegt und tropfenweise mit einer Lösung von 344 mg (2.00 mmol) Natrium-di(1,2,4-triazol-1-yl)boranat (18) in 5 mL einer Mischung aus Wasser und Acetonitril (1:1) versetzt. Dann wurde die Reaktionslösung zum Einengen mehrere Wochen bei Raumtemperatur an Luft stehen gelassen. Man erhielt Kristalle von 51.

9.5.5.5 Kupfer(II) mit Di(1,2,4-triazol-1-yl)methan

Schema 52: Darstellung von 50.

Ausgangsstoffe: Kupfer(II)-chlorid-Hexahydrat (CuCl₂ · 6 H₂O), Di(1,2,4-triazol-1-yl)methan (**16**), Wasser.

Durchführung: 242 mg (1.00 mmol) $CuCl_2 \cdot 6 H_2O$ wurden in 5 mL Wasser vorgelegt und tropfenweise zu einer Lösung von 150 mg (1.00 mmol) Di(1,2,4-triazol-1-yl)methan (**16**) in 5 mL Wasser gegeben. Der entstandene Niederschlag wurde abfiltriert und die Reaktionslösung zum Einengen mehrere Wochen bei Raumtemperatur offen an Luft gelagert. Man erhielt Kristalle von **50**.

9.5.6 Darstellung von tetrazolhaltigen Metallkomplexen

9.5.6.1 Nickel(II) mit Di(tetrazol-5-yl)amin

Ausgangsstoffe: Nickel(II)-chlorid-Hexahydrat (NiCl₂ · 6 H₂O), Di(tetrazol-5-yl)amin (**22**) Natriumhydroxid (NaOH), Wasser.

Schema 53: Darstellung von 52.

Warnhinweis: Tetrazole können explosiv sein. Nur in kleinen Mengen (unter 0.5 g) arbeiten! Nicht im Vakuum trocknen!

Durchführung: 153 mg (1.00 mmol) Di(tetrazol-5-yl)amin (**22**) wurden in 2 mL Wasser gelöst. Nach der Zugabe von 80.0 mg (2.00 mmol) Natriumhydroxid und fünf Minuten Rühren bei Raumtemperatur hat sich das Di(tetrazol-5-yl)-amin gelöst. Dann wird langsam eine Lösung von 119 mg (0.50 mmol) NiCl₂ ·6 H₂O in 2 mL Wasser zugetropft. Anschließend wird die Reaktionslösung 1 Minuten refluxiert, was zu einer roten Lösung führt. Die Reaktionslösung wird auf Raumtemperatur abgekühlt und zum Einengen mehrere Wochen offen an Luft gelagert. Man erhält kleine Kristalle von **52**.

9.5.6.2 Metallkomplexe von (2-Methyl-tetrazol-5-yl)-(tetrazol-5-yl)amin

Schema 54: Allgemeine Arbeitsvorschrift zur Darstellung von Komplexen mit **23** und dem Metallsalz MX_m .

9.5.6.2.1 Allgemeine Arbeitsvorschrift zur Umsetzung von Metallsalzen mit (2-Methyl-tetrazol-5-yl)-(tetrazol-5-yl)amin

Ausgangsstoffe: Blei(II)-nitrat (Pb(NO₃)₂), Thallium(I)-nitrat (TlNO₃), (2-Methyl-tetrazol-5-yl)-(tetrazol-5-yl)amin (**23**), Wasser.

Warnhinweis: Tetrazole können explosiv sein. Nur in kleinen Mengen (unter 0.5 g) arbeiten! Nicht im Vakuum trocknen!

Durchführung: Die in Tabelle 9.4 angegebenen Mengen an Metallsalz wurden, wenn nicht anders angegeben, in 10 mL Wasser gelöst. Dann wurden die in der gleichen Tabelle angegebenen Mengen von (2-Methyl-tetrazol-5-yl)-(tetrazol-5-yl)amin (**23**) zugegeben, die Rekationslösung eine Minute refluxiert und anschließend auf Raumtemperatur abgekühlt. Dann wurde die Lösung zum Einengen mehrere Wochen bei Raumtemperatur offen an Luft gelagert.

labelle 9.4: Ar tetrazol-5-yl)-(t	ıgaben zur eing etrazol-5-yl)ami	esetzten Stottme n (23).	nge <i>n</i> und N	Masse <i>m</i>	oei der Keaktion von Metallsalz	en mit (2-Methyl-
Metallsalz	n(Metallsalz)	m(Metallsalz)	n(23)	m(23)	Zusätzliche Informationen	Erhaltene Verbindung
Pb(NO3)2 Pb(NO3)2	1.00 mmol 0.50 mmol	331 mg 166 mg	1.00 mmol 1.00 mmol	181 mg 181 mg		54 54
TINO ₃ TINO ₃ TINO ₃	1.00 mmol 0.50 mmol 0.33 mmol	266 mg 133 mg 88.0 mg	1.00 mmol 1.00 mmol 1.00 mmol	181 mg 181 mg 181 mg	5 Minuten Reflux 5 Minuten Reflux 5 Minuten Reflux	53 53

9.5.6.3 Palladium(II) mit Di(2-methyl-tetrazol-5-yl)amin

Schema 55: Darstellung von 55.

Ausgangsstoffe: Palladium(II)-chlorid (PdCl₂), Natriumchlorid (NaCl), Di(2-methyl-tetrazol-5-yl)amin (24), Wasser.

Warnhinweis: Tetrazole können explosiv sein. Nur in kleinen Mengen (unter 0.5 g) arbeiten! Nicht im Vakuum trocknen!

Durchführung: Natriumtetrachloridopalladinat (Na₂PdCl₄) wurden durch fünf Minuten refluxieren von 178 mg (1.00 mmol) PdCl₂ und 116 mg (2.00 mmol) NaCl in 10 ml Wasser und anschließendem einengen zur Trockene dargestellt. Dann wurden 199 mg (1.00 mmol) Di(2-methyl-tetrazol-5-yl)amin (24) zu einer Lösung des Na₂[PdCl₄] in 30 mL Wasser gegeben und fünf Minuten refluxiert. Dann wurde die Reaktionslösung auf Raumtemperatur abgekühlt und zum langsamen Einengen mehrere Wochen bei Raumtemperatur offen an Luft gelagert. Man erhielt Kristalle von 55.

9.5.6.4 Kupfer(II) mit Di(2-methyl-tetrazol-5-yl)benzylamin

Ausgangsstoffe: Kupfer(II)-nitrat-Trihydrat (Cu(NO₃)₂ \cdot 3 H₂O), Di(2-methyl-tetrazol-5-yl)benzylamin (27), Aceton.

Durchführung: 136 mg (0.50 mmol) Di(2-methyl-tetrazol-5-yl)benzylamin (27) und 121 mg (0.50 mmol) $Cu(NO_3)_2 \cdot 3 H_2O$ wurden in 30 mL Aceton gelöst und fünf Minuten refluxiert. Dann wurde die Reaktionslösung auf Raumtemperatur abgekühlt und zum langsamen Einengen mehrere Wochen offen bei Raumtemperatur an Lift gelagert. Es wurden Kristalle von **56** erhalten.

Schema 56: Darstellung von 56.

9.5.6.5 Kupfer(II) mit Di(tetrazol-5-yl)methan

Schema 57: Darstellung von 57.

Ausgangsstoffe: Kupfer(II)-chlorid-Hexahydrat (CuCl₂ \cdot 6 H₂O), Natriumhydroxid (NaOH), Di(tetrazol-5-yl)methan (**16**), Wasser.

Warnhinweis: Tetrazole können explosiv sein. Nur in kleinen Mengen (unter 0.5 g) arbeiten! Nicht im Vakuum trocknen!

Durchführung: 100 mg (0.66 mmol) Di(tetrazol-5-yl)methan (**16**) wurden in 5 mL Wasser mit 52.0 mg (1.32 mmol) NaOH versetzt. Die Lösung wurde langsam zu einer Lösung von 78.0 mg (0.33 mmol) $CuCl_2 \cdot 6 H_2O$ in 5 mL Wasser zugetropft. Der entstandene Niederschlag wurde abfiltriert und die Lösung zum Einengen mehrere Wochen bei Raumtemperatur offen an Luft gelagert. Es wurden Kristalle von **57** erhalten.

9.5.7 Nickelkomplexe mit NO₂

9.5.7.1 Darstellung von [Ni(NO₂)(10)₂(H₂O)]Cl · H₂O (61)

Schema 58: Darstellung von 61.

Ausgangsstoffe: [Ni(**10**)₂(H₂O)₂]Cl₂ (**31**), Salzsäure (1 M; HCl), Natriumnitrit (NaNO₂), Wasser.

Durchführung: 1.00 g (1.00 mmol) $[Ni(10)_2(H_2O)_2]Cl_2$ (**31**) wurden wie in 9.5.2 beschrieben dargestellt, in 9 mL 1 M HCl gelöst und auf 100 °C erwärmt. Dann wurde im Laufe von 45 Minuten langsam eine gesättigte Lösung von 2.00 g (29.0 mmol) NaNO₂ in Wasser zugetropft. Die Reaktionslösung wurde weitere 15 Minuten bei 100 °C gerührt und dann auf Raumtemperatur abgekühlt. Nach einigen Tagen offenem lagern bei Raumtemperatur an Luft wurden braune Kristalle von **61** erhalten.

9.5.7.2 Darstellung von [Ni(NO₂)(10)₂]((C₆H₅)₄B) (62)

Ausgangsstoffe: $[Ni(10)_2(H_2O)_2]Cl_2$ (**31**), Natriumtetraphenylborat (Na(B(C₆H₅)₄)), Natriumnitrit (NaNO₂), Ethanol, Tetrahydrofuran (THF), Wasser.

Durchführung: Die Reaktion wird unter Stickstoff-Schutzgasatmosphäre und unter Ausschluss von Feuchtigkeit durchgeführt.

231 mg (1.00 mmol) $[Ni(10)_2(H_2O)_2]Cl_2$ (31) wurden wie in 9.5.2 beschrieben dargestellt und am Feinvakuum getrocknet. Das grüne Pulver wurde

Schema 59: Darstellung von 62.

in 5 mL Ethanol aufgenommen und mit 340 mg (1.00 mmol) Natriumtetraphenylborat versetzt. Der entstandene hellblaue Niederschlag wurde abfiltriert und mit THF extrahiert. Die entstandene hellblaue Lösung wurde zur Trockene eingeengt und im Feinvakuum getrocknet.

Der blaue Feststoff wurde mit 1.18 g (17.0 mmol) NaNO₂ und 7.5 mL THF versetzt und drei Stunden refluxiert. Nach dem Abkühlen auf Raumtemperatur wurde der Niederschlag abfiltriert, der wenige blaue Kristalle von **62** enthielt.

9.5.7.3 Darstellung von $[Ni_3(NO_2)_6(10)_2(H_3COH)_2] \cdot C_6H_{14}$ (63)

THF / Methanol / <i>n</i> -Hexan	
((<i>n</i> -Bu) ₄ N)Cl	
Rückfluss - 4°C	
+ 3 NiCl ₂ • 6 H ₂ O	63
+ 6 NaNO ₂	
+ 2 CH ₃ OH	
+ C ₆ H ₁₄	
- 6 NaCl	
- 18 H ₂ O	

Schema 60: Darstellung von 63.

Ausgangsstoffe: Nickel(II)-chlorid-Hexahydrat (NiCl₂ · 6 H₂O), Tetrabutylammoniumchlorid ((N(C₄H₉)₄)Cl), Di(pyrazol-1-yl)methan (**10**), Natriumnitrit (NaNO₂), Tetrahydrofuran (THF), *n*-Hexan (C₆H₁₄), Methanol.

Durchführung: Die Reaktion wird unter Stickstoff-Schutzgasatmosphäre und unter Ausschluss von Feuchtigkeit durchgeführt.

238 mg (1.00 mmol) NiCl₂ · 6 H₂O, 148 mg (1.00 mmol) Di(pyrazol-1yl)methan (**10**), 1.18 g (17.0 mmol) NaNO₂ und 278 mg (1.00 mmol) Tetrabutylammoniumchlorid wurden in 7.5 mL THF aufgeschlämmt und 3.5 Stunden refluxiert. Nach dem Abkühlen auf Raumtemperatur wurde die Reaktionsmischung abfiltriert und der Filterkuchen mit wenig kaltem THF gewaschen. Die grüne Lösung wurde auf die Hälfte ihres Volumens eingeengt und mit 3.7 mL *n*-Hexan versetzt, worauf sich ein grünes Öl abschied. Nach dem Abtrennen wurde das Öl mit 7.5 mL Methanol versetzt und bei 4 °C gelagert.

Nach einigen Tagen bildeten sich Kristalle von 63.

9.5.7.4 Darstellung von [Ni(NO₂)₂(24)₂] (64)

Schema 61: Darstellung von 64.

Ausgangsstoffe: Nickel(II)-chlorid-Hexahydrat (NiCl₂ · 6 H₂O), Di(2-methyl-tetrazol-5-yl)amin (24), Natriumnitrit (NaNO₂), Salzsäure (halbkonz.; HCl), Wasser.

Warnhinweis: Tetrazole können explosiv sein. Nur in kleinen Mengen (unter 0.5 g) arbeiten! Nicht im Vakuum trocknen!

Durchführung: 200 mg (1.00 mmol) Di(2-methyl-tetrazol-5-yl)amin (**24**) wurden in 50 mL halbkonzentrierter HCl gelöst und mit 119 mg (0.50 mmol) $NiCl_2 \cdot 6 H_2O$ versetzt. Zur Lösung wurden im Laufe von 10 Minuten 400 mg (5.80 mmol) NaNO₂ gegeben, worauf sich die Lösung gelb verfärbte. Nach mehrtägigem offenem Lagern an Luft bei Raumtemperatur wurden Kristalle von **64** erhalten.

9.5.8 Darstellung von $K_2[Ru(NO)F_5] \cdot H_2O$ (60)

 KHF_{2} $K_{2}[Ru(NO)Cl_{5}] \xrightarrow{KHF_{2}} 60 + 5 HCl$ - 5 KF - 5 HCl

Schema 62: Darstellung von 60.

Ausgangsstoffe: Kalium-pentachlorido-nitrosyl-ruthenat(III) (K₂[Ru(NO)Cl₅]), Kaliumhydrogendifluorid (KHF₂), Ethanol, Wasser.

Warnhinweis: Fluoride sind giftig! Handschuhe tragen! Es werden Salzsäuredämpfe freigesetzt!

Durchführung: Die Darstellung von Kalium-pentafluorido-nitrosylruthenat(III)-Monohydrat (**60**) erfolgt nach [43].

1.00 g K₂[Ru(NO)Cl₅] werden mit 10.0 g KHF₂ vermischt und 24 Stunden bei 170°C am Feinvakuum getrocknet. Dann wird die Mischung in einem Platintiegel geschmolzen und eine Stunde bei 320°C belassen. Dann wird die Temperatur für eine Stunde auf 350°C erhöht. Nach dem abkühlen auf Raumtemperatur wird die Reaktionsmischung in 150 mL Wasser gelöst und dann das Produkt durch die Zugabe von 150 mL Ethanol ausgefällt. Das Rohprodukt wird aus Wasser umkristallisiert. Man erhält purpurne Kristalle von **60**. 9.5 Darstellung der Metallkomplexe

Teil VII

Anhang

Anhang A

Ergebnisse der mit Gaussian durchgeführten computerchemischen Berechnungen

A.1 Berechnete Energien für kleine symmetrische Rutheniumnitrosylkomplexe

	-13095.914608 -13095.904306 -13095.890620	-13095.91853 -13095.908108 -13095.893650	-13095.9024961 -13095.890927 -13095.876634	-13095.9757427 -13095.963467 -13095.949347	E _{tot} E ₀ H ₂₉₈
		$u(NO)Br_5]^{2-}$	[R		
	-2526.2007042 -2526.188560 -2526.176200	-2526.2026155 -2526.190489 -2526.177237	-2526.1892681 -2526.175907 -2526.162891	-2526.2607751 -2526.246720 -2526.233866	E _{tot} E ₀ H ₂₉₈
		tu(NO)Cl ₅] ²⁻	[R		
	724.2435727 724.227985 724.217545	724.2501847 724.233824 724.223045	724.2344354 724.217309 724.206425	724.3046185 724.286863 724.276125	E _{tot} E ₀ H ₂₉₈
		Ru(NO)F ₅] ^{2–}	I		
	side-on-Übergangsstruktur	side-on-Komplex	I-Komplex	N-Komplex	
ingungskorrigierte Energien 1en [Ru(NO)Br5] ^{2–} Komplex zwei <i>side-on-</i> Minima auf der	Energien <i>E</i> _{tot} , nullpunktschw Ru(NO)Cl ₅] ^{2–} Komplex und c Übergangsstruktur zwischen	^Z berechnete totale I Ru(NO)F ₅] ^{2–} , den [R vezieht sich auf die U verfläche.	DD/aug-cc-pVDZ 3 K H ₂₉₈ für den [R bergangsstruktur b tandspotentialhyp	A.1: Mit B3LYP/S Enthalpien bei 298 ree. Die <i>side-on-</i> Üb nischen Grundzus	Tabelle E ₀ und in Hart <u>elektro</u>

A.1 Berechnete Energien für kleine symmetrische Rutheniumnitrosylkomplexe

$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	labell(E ₀ unc auf die	e A.2: Mit B3LYP I Enthalpien bei 2 : Übergangsstruk	/SDD/aug-cc-p 298 K H ₂₉₈ für d tur zwischen zv	VDZ berechnete to en [Ru(NO)I5] ^{2–} K vei <i>side-on</i> -Minima	otale Energien E _{tot} , nullpunktschwingungskorrigierte Energien omplex in Hartree. Die <i>side-on-</i> Übergangsstruktur bezieht sich auf der elektronischen Grundzustandspotentialhyperfläche.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		N-Komplex	I-Komplex	<i>side-on-</i> Komplex [Ru(NO)I ₅] ²⁻	<i>side-on-</i> Übergangsstruktur
$\begin{array}{llllllllllllllllllllllllllllllllllll$					
	$E_{\rm tot}$	-282.2862276	-282.2098895	-282.2297111	-282.2236373
$H_{298} = -282.260074 = -282.184264 = -282.205050 = -282.199869 = -282.199869 = -282.199869 = -282.199869 = -282.184264 = -282.205050 = -282.199869 = -282.184264 = -282.205050 = -282.205050 = -282.199869 = -282.184264 = -282.205050 = -282.205050 = -282.184264 = -282.205050 = -282.205050 = -282.184264 = -282.205050 = -282.205050 = -282.205050 = -282.184264 = -282.2050500 = -282.2050500 = -282.2050500 = -282.2050500 = -282.2050500 = -282.205000 = -282.205000 = -282.205000 = -282.205000 = -282.205000 = -282.2050000 = -282.2050000 = -282.2050000 = -282.205000000000000000000000000000000000$	E_{0}	-282.274858	-282.199241	-282.220128	-282.214287
	H_{298}	-282.260074	-282.184264	-282.205050	-282.199869

Е ₀ Н ₂₉₈	Etot			Tabelle E ₀ und sich au fläche.
-506.398673 -506.38279	-506.599205		N-Komplex	A.3: Mit BLYF Enthalpien bei ıf die Übergan
-506.340762 -506.324130	-506.539995	D	I-Komplex	//SDD/aug-cc-j 298 K H ₂₉₈ für gsstruktur zwia
-506.339316 -506.323105	-506.538575	Ru(NO)(NH ₃) ₅] ³⁺	side-on-Komplex	pVDZ berechnete den [Ru(NO)(NH ₃ schen zwei <i>side-on</i>
-506.333269 -506.317351	-506.531610		<i>side-on-</i> Übergangsstruktur	totale Energien <i>E</i> _{tot} , nullpunk ;) ₅] ³⁺ Komplex in Hartree. Die -Minima auf der elektronisch
				tschwingungskorrigierte Energien <i>side-on-</i> Übergangsstruktur bezieht en Grundzustandspotentialhyper-

Tabelle A.4: Mit BLYP/SDD/aug-cc-pVDZ in *scans* entlang des bezeichneten Diederwinkels am [Ru(NO)F₅]²⁻ Komplex

und am [Ru(NO)I ₅] ²⁻ K	omplex berechnet	e totale Energien E	tot in Hartree.	_	
Hal-Ru-N-O Winkel in Grad	0	5	10	15	20
[Ru(NO)F ₅] ²⁻ [Ru(NO)Cl ₅] ²⁻ [R11(NO)Br ₅] ²⁻	-724.196591961 -2526.0712189 -13095.8619166	-724.196417107 -2526.0712128 -13095.8619585	-724.195910038 -2526.07119940 -13095.8620855	-724.195117596 -2526.07119148 -13095.8622977	-724.194112677 -2526.07120341 -13095.8625868
[Ru(NO)]5] ²⁻	-282.0170143	-282.0171118	-282.017397037	-282.017845224	-282.018413735
Hal-Ru–N-O Winkel in Grad	25	30	35	40	45
[Ru(NO)F5] ²⁻ [Ru(NO)Cl5] ²⁻	-724.192988749 -2526.07124562	-724.191853187 -2526.07132016	-724.190824407 -2526.07141758	-724.190034452 -2526.07151601	-724.189630398 -2526.07158839
[Ru(NO)Br ₅] ²⁻ [Ru(NO)I ₅] ²⁻	$-13095.8629336\\-282.019046816$	-13095.8633077 -282.019681640	-13095.8636689 -282.020254604	-13095.8639719 -282.020708549	-13095.8641743 -282.020998832

Tabelle A.5: Mit BLYP/ [Ru(NO)I ₅] ^{2–} Komplex	'SDD/aug-cc-pVDZ ; berechnete totale E 	Z in <i>scans</i> entlang energien E _{tot} in Ha	des bezeichneten I ırtree.	Diederwinkels am	$[Ru(NO)F_5]^{2-}$ und ar
Hal-Ru–N-O Winkel in Grad	50	55	60	65	70
[Ru(NO)F ₅] ^{2–} [Ru(NO)Cl ₅] ^{2–} [Ru(NO)Br ₅] ^{2–} [Ru(NO)I ₅] ^{2–}	-724.189749078 -2526.07161217 -13095.8642437 -282.021094136	-724.190429430 -2526.07157707 -13095.8641630 -282.020976923	-724.191545670 -2526.07149020 -13095.8639339 -282.020644948	-724.192874123 -2526.07137695 -13095.8635809 -282.020115849	-724.194192685 -2526.07127297 -13095.8631514 -282.019432957
Hal-Ru–N-O Winkel in Grad	75	80	85	06	
[Ru(NO)F ₅] ^{2–} [Ru(NO)Cl ₅] ^{2–} [Ru(NO)Br ₅] ^{2–} [Ru(NO)I ₅] ^{2–}	-724.195321903 -2526.07120833 -13095.8627104 -282.018669468	-724.196132646 -2526.07119125 -13095.8623262 -282.017926998	-724.196545981 -2526.07120477 -13095.8620544 -282.017333273	-724.196531415 -2526.07122036 -13095.8619271 -282.017032927	

A.2 Für größere Rutheniumnitrosylkomplexe berechnete Energien

E _{tot} E ₀ H ₂₉₈		E ₀ H ₂₉₈	$E_{\rm tot}$		E _{tot} E ₀ H ₂₉₈			Tabelle E ₀ and [Ru(N(
-1999.593989 -1999.498639 -1999.482164		-2138.265879 -2138.247471	-2138.3856267		-1696.051005 -1695.910259 -1695.893267		N-Komplex	A.6: Mit B3LYP/ Enthalpien bei 2 <u>)(tda)Cl₂]⁻ Kon</u>
-1999.5216530 -1999.4270660 -1999.4103960		-2138.1929530 -2138.1743310	-2138.3119257		-1695,978902 -1695,838978 -1695,821815		I-Komplex	SDD/aug-cc-pV) 98 K H ₂₉₈ für eine 1plex in Hartree.
-1999.5317909 -1999.4382320 -1999.4215220	[Ru(NO)	-2138.2041070 -2138.1854600	-2138.3220894	[Ru(NO)	-1695.997389 -1695.858289 -1695.841146	[Ru(NO)	S _a	DZ berechnete to en [Ru(NO)(dap)
-1999.5387159 -1999.4454140 -1999.4283340)(tda)Cl ₂]	-2138.2133010 -2138.1945520	-2138.3313707	(koji)Cl ₃] [_]	-1695.997955 -1695.858640 -1695.841466	(dap)Cl ₂] ⁻	side-on-] S _b	tale Energien E _{tot} Cl ₂] [–] Komplex, e
-1999.5389854 -1999.44454140 -1999.4285720			I		-1695.991364 -1695.852207 -1695.835048		Komplexe S _c	, nullpunktschwir inen [Ru(NO)(koji
-1999.5403777 -1999.4467210 -1999.4299380								ngungskorrigierte i)Cl ₃] [–] Komplex 1
1	•			1		1		Energien ınd einen

E ₀ and [Ru(N(e A.7: Mit B3LYP/ Enthalpien bei 2 <u>(amal)Br3] Ko</u>	SDD/aug-cc-pVI 98 K H ₂₉₈ für eir mplex in Hartree.	JZ berechnete tot: nen [Ru(NO)(tda)	ale Energien E _{tot} , Br ₂] ⁻ Komplex, ε	nullpunktschwin inen [Ru(NO)(hi	gungskorrigierte Energie s)Cl2] Komplex und eine	ua Su
	N-Komplex	I-Komplex	S_a	side-on-Ko S _b	omplexe S _c		
			[Ru(NO)(1	:da)Br2] ⁻			
$egin{array}{c} E_{ m tot} \ E_0 \ H_{298} \end{array}$	-6227.4777881 -6227.3832400 -6227.3662330	-6227.4044564 -6227.3106700 -6227.2934800	6227.4144399 6227.3218670 6227.3044710	-6227.4191006 -6227.3264530 -6227.3091500	-6227.4205892 -6227.3277750 -6227.3104940	-6227.4234748 -6227.3306750 -6227.3133330	
			[Ru(NO)	(his)Cl ₂]			
E _{tot} E ₀ H ₂₉₈	-1693.7171588 -1693.5528250 -1693.5362410	$\begin{array}{c} -1693.6444083\\ -1693.4810540\\ -1693.4642300\end{array}$	$\begin{array}{c} -1693.6561619\\ -1693.4937140\\ -1693.4768860\end{array}$	-1693.6689804 -1693.5062010 -1693.4893650			
			[Ru(NO)(a	mal)Br ₃] ⁻			
E _{tot} E ₀ H ₂₉₈	-8326.197567 -8326.069332 -8326.05175	-8326.122932 -8326.995537 -8325.977752	-8326.135018 -8326.008707 -8325.990837	-8326.135232 -8326.009016 -8325.991085	-8326.144596 -8326.018062 -8326.000117		

F F F Ę Ľ F -E

E_0 and $[Ru(N)$	$O(amal)I_2$ Kom	plex in Hartree.		aı) (-13] Nompr	בא, פווופוו ןוּאַמעניאַט		ompiex (
	N-Komplex	I-Komplex	S _a	side-on-Kc S _b	omplexe S _c		
			[Ru(NO)(ar	nal)Cl ₃] ⁻			
Etot	-1984.371723	-1984.298350	-1984.308503	-1984.311134	-1984.321011		
H_{298}		-1984.109800 -1984.152820	-1984.181263 -1984.164032	-1984.183340 -1984.166544	-1984.193231 -1984.176137		
			[Ru(NO)(a	mal)I ₃] ⁻			
$E_{\rm tot}$	-637.979541	-637.902473	-637.918034	-637.918032	-637.917994	-637.923746	
E_{0} H_{298}	-637.851926 -637.833925	-637.775689 -637.757488	-637.792395 -637.774105	-637.792391 -637.774102	-637.792322 -637.774056	-637.797989 -637.779483	
			[Ru(NO)(;	amal)I ₂]			
Etot	-626.414116	-626.337054	-626.355350	-626.357111	-626.359493	-626.360455	
E ₀ H ₂₉₈	-626.285180 -626.270424	-626.209116 -626.194115	-626.228292 -626.213301	-626.229925 -626.214936	$-626.231430 \\ -626.216330$	-626.233366 -626.218196	

Taball > α Mit R3I VP /SDD /2 NUDZ h 2 2 Ц Ц ÷ 2 2 ŕ† e Energien und einen

Tabellé E ₀ and [Ru(N(e A.9: Mit B3LY I Enthalpien be 0)(his)I2] Kom	P/SDD/aug-cc [.] i 298 K H ₂₉₈ fü <u>olex in Hartree.</u>	-pVDZ berechn Ir einen [Ru(N(ete totale Ener;))(mida)I2] Ko	gien E _{tot} , nullp [.] mplex, einen []	unktschwingungs Ru(NO)(koji)I ₃] ⁻	korrigierte Energien Komplex und einen
_	N-Komplex	I-Komplex	\mathbf{S}_{a}	side-on-Ko S _b	omplexe S _c		
			[Ru(NO)(mida)I2]			
$E_{ m tot}$ E_0 $ m H_{298}$	-798.454695 -798.315227 -798.297416	798.379643 798.240912 798.222946	798.394498 798.256955 798.238876	-798.395964 -798.258224 -798.240166	798.397652 798.260067 798.242000	-798.401609 -798.263709 -798.245682	
			[Ru(NO)(koji)I3]-			
$E_{ m tot}$ E_0 $ m H_{298}$	-791.994498 -791.876934 -791.857317	-791.917831 -791.800518 -791.780709	-791.932152 -791.816052 -791.796115	-791.932324 -791.816210 -791.796280	$\begin{array}{r} -791.936039\\ -791.820059\\ -791.799872\end{array}$	-791.936335 -791.820155 -791.800042	
			[Ru(NO)	(his)I ₂]			
E _{tot} E ₀ H ₂₉₈	-796.117545 -795.954647 -795.937175	-796.041939 -795.879993 -795.862296	-796.058650 -795.897609 -795.879876	796.058912 795.897902 795.880195	-796.063644 -795.902667 -795.884779	-796.064641 -795.903410 -795.885628	

TUNT						
	N-Komplex	I-Komplex		side-on-Ko	omplexe	
			S_a	S_b	S_c	
			[Ru(NO)(ł	uis)Br ₂]		1
$E_{\rm tot}$	-5921.5988268	-5921.5251433	-5921.5367784	-5921.5376911	-5921.538914	-5921.548635
Ъ	-5921.435387	-5921.362661	-5921.375390	-5921.376233	-5921.377514	-5921.386795
H_{298}	-5921.418240	-5921.345288	-5921.357871	-5921.358776	-5921.359934	-5921.369377
			[Ru(NO)(mi	$[da)Br_2]^{2-}$		
$E_{\rm tot}$	-5923.934049	-5923.8609727	-5923.881176	-5923.8783369	-5923.8749977	
Б	-5923.794138	-5923.721808	-5923.742838	-5923.740083	-5923.737077	
H ₂₉₈	-5923.776588	-5923.704133	-5923.725083	-5923.722375	-5923.710206	
			[Ru(NO)(ar	nal)Br ₂] [–]		
$E_{\rm tot}$	-5751.8931798	-5751.8179632	-5751.8318428	-5721.8423332	I	I
Fo	-5751.763733	-5751.689533	-5751.704396	-5751.714643		
H	-5751.749269	-5751.674813	-5751.689603	-5751.699810		

'SDD/aug-cc-pVDZ 8 K H ₂₉₈ für einen [Rı <u>nplex in Hartree.</u> I-Komplex	berechnete totale Energien E _{tot} , nullpunktschwingungskorrigierte Energie. u(NO)(koji)Br ₂] ⁻ -Komplex, einen [Ru(NO)(mida)Cl ₂] ⁻ -Komplex und eine.	<i>side-on-</i> Komplexe S, S, S,
	/SDD/aug-cc-pVDZ 8 K H ₂₉₈ für einen [F mplex in Hartree.	I-Komplex
	Tabelle E ₀ und [Ru(NC	

[Ru(N	O)(amal)Br ₂] ⁻ Ko I	mplex in Hartree.				
	N-Komplex	I-Komplex		side-on-K	omplexe	
			S_a	S_b	${ m S}_c$	
			[Ru(NO)(]	koji)Br ₂]		Ι
$E_{\rm tot}$	-8480.2119349	-8480.1370368	-8480.1447671	-8480.1483058	-8480.1468109	-8480.1481249
E ₀	-8480.093300	-8480.019147	-8480.038883	-8480.031701	-8480.030110	-8480.031533
H_{298}	-8480.074118	-8479.999766	-8480.019300	-8480.012110	-8480.010551	-8480.011935
			[Ru(NO)(m	nida)Cl ₂] ⁻		
$E_{\rm tot}$	-1696.051005	-1695.978902	-1695.997955	-1695.997389	-1695.991364	
Е ₀	-1695.910259	-1695.838978	-1695.858640	-1695.858289	-1695.852207	
H_{298}	-1695.893267	-1695.821815	-1695.841466	-1695.841146	-1695.835048	
			[R ₁₁ /N]O)(a	mal)Br.l-		

Tabelle A.12: Mit I bungen für die bez	PBE1PH seichne	3E/SDI ten Kor	D/6-31: mplexe	1++G(2	d, p)/	/B3LY	P/SD]	D/6-31	lG(d,p) bere	chnete	absol	ute 13	C-NMR	Verschie-
))) 1	1))	Helle	62R)	1))) 1	
Kohlenstoffatom δ	C3 28.9	C4 26.2	52.1	57.5	39.7	C13 27.6	C14 27.5	C15 59.0	C16 58.9	C17 38.6	C22 25.9	C23 28.9	C24 57.3	C25 52.5	
Kohlenstoffatom	C27	C33	C34	C39											
δ	39.6	102.7	1.0	164.2											
							Hel1(52S							
Kohlenstoffatom	C3	C4	G	C7	C8	C13	C14	C15	C16	C17	C22	C23	C24	C25	
δ	28.9	25.9	52.5	57.3	39.6	27.5	27.6	58.9	59.0	38.6	26.2	28.9	57.5	52.1	
Kohlenstoffatom	C27	C33	C35	C37											
δ	39.6	102.7	1.0	164.3											
							Hel16	54R							
Kohlenstoffatom	C3	C4	G	C7	C8	C13	C14	C15	C16	C17	C22	C23	C24	C25	
δ	28.9	26.3	51.9	57.6	39.4	27.5	27.6	59.0	59.1	38.8	25.9	28.4	57.2	52.1	
Kohlenstoffatom	C27	C33	C34	C39	C42										
δ	39.3	102.7	2.4	147.1	11.2										
							Hel1(54S							
Kohlenstoffatom	C3	C4	G	C7	C8	C13	C14	C15	C16	C17	C22	C23	C24	C25	
δ	28.9	25.8	52.5	56.9	39.2	27.8	27.3	59.1	58.8	39.0	26.3	29.1	57.6	52.1	
Kohlenstoffatom	C27	C33	C34	C39	C42										
δ	39.5	104.2	3.1	145.8	8.7										

Tabelle A.13: Mit F	'BE1PB]	E/SDL	0/6-311	++G(2d	l, p)//ł	33LYP,	/SDD/	(6-31G	(d,b)	verech	nete al	osolute	e 13C-	NMR Verschie
The second secon														
						ہلے	Hel165	EZ						
Kohlenstoffatom	C	C4	C3	C7	C8	C13	C14	C15	C16	C17	C22	C23	C24	C25
δ	30.2	25.9	53.4	58.4	40.1	26.8	27.8	59.7	59.5	39.8	26.7	24.1	59.0	53.0
Kohlenstoffatom	C27	C35	C36	C37	C42									
δ	40.7	86.4	107.1	89.1	104.3									
						µЦ4	Hel165	ΕX						
Kohlenstoffatom	C	C3	C4	C3	C12	C13	C14	C15	C16	C17	C19	C20	C21	C22
δ	108.6	87.1	91.0	112.9	27.4	53.1	39.9	57.6	25.6	27.7	27.4	59.2	39.7	59.3
Kohlenstoffatom	C23	C25	C26	C27	C28									
δ	25.4	28.8	53.5	40.1	57.9									
							Hel16	Þ						
Kohlenstoffatom	C1	C2	C	C3	C6	C10	C12	C13	C14	C15	C16	C18	C19	C20
δ	39.5	57.3	26.0	28.9	52.2	27.7	27.7	58.8	38.9	58.9	26.2	28.9	52.2	39.5
Kohlenstoffatom	C21	C23	C26											
δ	57.5	2.1	109.9											

Tabelle A.14: Mit P bungen für die beze	BE1PBI eichnet	E/SDD, en Kom	/6-311+ .plexe u	+G(2d, nd für	p)//E Tetram	33LYP, 1ethyls	/SDD/ ilan (T	'6-31G MS).	(d,p) ł	perech	nete al	osolute	e 13C-	NMR Ver	schi
							TMS	-							
Kohlenstoffatom δ	187 4	187 5	C10	C14 187 4											
							Hel16	9							
Kohlenstoffatom	C_3	C4	G	C7	C8	C13	C14	C15	C16	C17	C22	C23	C24	C25	
δ	29.2	25.6	53.6	58.3	40.2	27.9	27.6	59.4	59.4	39.9	25.5	28.1	57.6	53.2	
Kohlenstoffatom	C27	C33	C34												
б	40.4	103.7	106.1												

ie-
Anhang B

Liste der verwendeten Chemikalien

Aceton	$\geq 99.5\%$	Fluka
Acetonitril	98%	Merck
Aktivkohle	reinst	Grüssing
Aluminiumoxid	$\geq 98\%$	Sigma Aldrich
Ammoniumchlorid	$\geq 99.5\%$	Sigma Aldrich
Argon	4.8	F. Messer, Griesheim
Benzol	$\geq 99.5\%$	Merck
Benzylchlorid	99%	Merck
Benzylcyanid	$\geq 98\%$	Fluka
Blei(II)-nitrat	$\geq 99\%$	Fluka
<i>n</i> -Butyllithium Lösung in Hexan (2.5 M)	23% in Hexan	Chemetall
Cadmium(II)-nitrat-Tetrahydrat	p.a.	Fluka
1,1'-Carbonyldiimidazol	$\geq 90\%$	Aldrich
Chloroform	$\geq 99\%$	Sigma Aldrich
Cobalt(II)-chlorid-Hexahydrat	98%	Sigma Aldrich
Crotonsäureethylester	96%	Acros Organics
Dichlormethan	99.5%	Acros Organics
Diethylether	$\geq 99\%$	Fluka
Diiodmethan	_	EGA-Chemie

Dimethylformamid	99.80%	VWR
Dimethylsulfoxid	99.99%	Acros Organics
Eisen(III)–chlorid	98%	Fluka
Ethanol	$\geq 99.8\%$	Fluka
Ethylacetat	99.5%	Acros Organics
<i>n</i> -Hexan	95%	Acros Organics
Indium(III)-chlorid	99.995%	Acros Organics
2-Iodpropan	98%	Merck
Iodwasserstoffsäure	(57% in Wasser)	Merck
Kaliumcarbonat	$\geq 99\%$	Acros Organics
Kaliumhydrogendifluorid	$\geq 99.0\%$	Sigma Aldrich
Kaliumhydroxid	85%	Merck
Kaliumosmatat(VI)-Dihydrat	$\geq 98\%$	Riedel-de Haën
Kalium-tertbutanolat	95%	Aldrich
Kupfer(II)-chlorid-Hexahydrat	95%	Fluka
Kupfer(II)-nitrat-Trihydrat	99.5%	Merck
Lithiumaluminiumhydrid	98%	Merck
Magnesiumsulfat	99%	Grüssing
Malonsäuredinitril	99%	Acros Organics
Methanol	$\geq 99.9\%$	Biesterfeld Graen
1-Methylimidazol	99%	Aldrich
Methyliodid	99%	Riedel-de Haën
(p-Toluolsulfonyl)methylisocyanid	98%	Acros Organics
Natronlauge	50%	Sigma Aldrich
Natriumazid	99%	Acros Organics
Natriumborhydrid	98%	Sigma Aldrich
Natriumcarbonat	99.95%	Sigma Aldrich
Natriumchlorid	99.5%	Merck
Natriumdicyanamid	97%	Acros Organics
Natrium-di[2-methoxyethoxy]-alanat	70% in Toluol	Fluka

Natriumdisulfit	99%	Merck
Natriumhydrid	60% in Öl	Aldrich
Natriumhydroxid	$\geq 98\%$	Sigma Aldrich
Natriumnitrit	$\geq 97\%$	Sigma Aldrich
Natriumsulfat	99%	Acros Organics
Natriumtetraphenylborat	99.5%	Fluka
Nickel(II)-chlorid-Hexahydrat	≥98%	Fluka
Palladium(II)-chlorid	≥99.9%	Aldrich
Paraformaldehyd	96%	Acros Organics
Phosgenimminiumchlorid	techn.	Aldrich
Phosgenlösung	20 % in Toluol	Fluka
Pyrazol	98%	Acros Organics
Pyrrol	≥97.0%	Fluka
Quecksilber(II)-chlorid	p.a.	Normapur
Ruthenium(III)-chlorid-Trihydrat	99.9%	ABCR
Salzsäure	37%	Merck
Salzsäure Silica	37%	Merck Sigma Aldrich
Salzsäure Silica Stickstoff	37% _ _	Merck Sigma Aldrich Hausanlage
Salzsäure Silica Stickstoff Tetrabutylammoniumchlorid	37% - - 95%	Merck Sigma Aldrich Hausanlage Acros Organics
Salzsäure Silica Stickstoff Tetrabutylammoniumchlorid Tetrahydrofuran	37% - - 95% 99.995%	Merck Sigma Aldrich Hausanlage Acros Organics Acros Organics
Salzsäure Silica Stickstoff Tetrabutylammoniumchlorid Tetrahydrofuran Tetraphenylarsoniumchlorid	37% - - 95% 99.995% 97%	Merck Sigma Aldrich Hausanlage Acros Organics Acros Organics Sigma Aldrich
Salzsäure Silica Stickstoff Tetrabutylammoniumchlorid Tetrahydrofuran Tetraphenylarsoniumchlorid Tetraphenylphosphoniumchlorid	37% - - 95% 99.995% 97% 98%	Merck Sigma Aldrich Hausanlage Acros Organics Acros Organics Sigma Aldrich
Salzsäure Silica Stickstoff Tetrabutylammoniumchlorid Tetrahydrofuran Tetraphenylarsoniumchlorid Tetraphenylphosphoniumchlorid Thallium(I)-nitrat	37% - - 95% 99.995% 97% 98% ≥99.0%	Merck Sigma Aldrich Hausanlage Acros Organics Acros Organics Sigma Aldrich Sigma Aldrich
Salzsäure Silica Stickstoff Tetrabutylammoniumchlorid Tetrahydrofuran Tetraphenylarsoniumchlorid Tetraphenylphosphoniumchlorid Thallium(I)-nitrat Thiophosgen	37% - - 95% 99.995% 97% 98% ≥99.0% 97%	Merck Sigma Aldrich Hausanlage Acros Organics Acros Organics Sigma Aldrich Sigma Aldrich Fluka
Salzsäure Silica Stickstoff Tetrabutylammoniumchlorid Tetrahydrofuran Tetraphenylarsoniumchlorid Tetraphenylphosphoniumchlorid Thallium(I)-nitrat Thiophosgen Toluol	37% - - 95% 99.995% 97% 98% ≥99.0% 97% 99%	Merck Sigma Aldrich Hausanlage Acros Organics Acros Organics Sigma Aldrich Sigma Aldrich Fluka Sigma Aldrich Acros Organics
Salzsäure Silica Stickstoff Tetrabutylammoniumchlorid Tetrahydrofuran Tetraphenylarsoniumchlorid Tetraphenylphosphoniumchlorid Thallium(I)-nitrat Thiophosgen Toluol 1,2,4-Triazol	37% - - 95% 99.995% 97% 98% $\geq 99.0\%$ 97% 99% 99.5%	Merck Sigma Aldrich Hausanlage Acros Organics Acros Organics Sigma Aldrich Sigma Aldrich Fluka Sigma Aldrich Acros Organics
Salzsäure Silica Stickstoff Tetrabutylammoniumchlorid Tetrahydrofuran Tetraphenylarsoniumchlorid Tetraphenylphosphoniumchlorid Thallium(I)-nitrat Thiophosgen Toluol 1,2,4-Triazol Trifluoressigsäure	37% - - 95% 99.995% 97% 98% $\geq 99.0\%$ 97% 99% 99% 99%	Merck Sigma Aldrich Hausanlage Acros Organics Acros Organics Sigma Aldrich Sigma Aldrich Fluka Sigma Aldrich Acros Organics Acros Organics
Salzsäure Silica Stickstoff Tetrabutylammoniumchlorid Tetrahydrofuran Tetraphenylarsoniumchlorid Tetraphenylphosphoniumchlorid Thallium(I)-nitrat Thiophosgen Toluol 1,2,4-Triazol Trifluoressigsäure Vanadium(III)-chlorid	37% - - 95% 99.995% 97% 98% $\geq 99.0\%$ 97% 99% 99% 99% 99% 99% 99%	Merck Sigma Aldrich Hausanlage Acros Organics Acros Organics Sigma Aldrich Fluka Sigma Aldrich Acros Organics Acros Organics Acros Organics
Salzsäure Silica Stickstoff Tetrabutylammoniumchlorid Tetrabutylammoniumchlorid Tetraphenylarsoniumchlorid Tetraphenylphosphoniumchlorid Thallium(I)-nitrat Thiophosgen Toluol 1,2,4-Triazol Trifluoressigsäure Vanadium(III)-chlorid Wasser	37% - - 95% 99.995% 97% 98% ≥99.0% 97% 99% 99.5% 99% 97% entionisiert	Merck Sigma Aldrich Hausanlage Acros Organics Acros Organics Sigma Aldrich Sigma Aldrich Fluka Sigma Aldrich Acros Organics Acros Organics Aldrich

Zink(II)-chlorid-Dihydrat 98% Strem Chemicals

Anhang C Abbildungen zu den Kristallstrukturen

Die ORTEP-Darstellungen verwenden das CPK-Farbschema, die SCHAKAL-Darstellungen weichen vom CPK-Farbschema ab.

Abbildung C.1: SCHAKAL-Darstellung der Kristallstruktur von 1 mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe $P2_1/c$ eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß).

Abbildung C.2: SCHAKAL-Darstellung der Kristallstruktur von 2 mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe $P2_1/c$ eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Schwefel (gelb, groß).

Abbildung C.3: SCHAKAL-Darstellung der Kristallstruktur von **3** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe C2/*c* eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß).

Abbildung C.4: SCHAKAL-Darstellung der Kristallstruktur von 4 mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe C2/*c* eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß), Sauerstoff (rot, groß).

Abbildung C.5: SCHAKAL-Darstellung der Kristallstruktur von 6 mit Blickrichtung entlang [001]. Es sind die Symmetrieelemente der Raumgruppe P2₁ eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß).

Abbildung C.6: SCHAKAL-Darstellung der Kristallstruktur von **8** mit Blickrichtung entlang [001]. Es sind die Symmetrieelemente der Raumgruppe I*bca* eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß).

Abbildung C.7: SCHAKAL-Darstellung der Kristallstruktur von 9 mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe P1 eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Chlor (gelb, groß).

Abbildung C.8: SCHAKAL-Darstellung der Kristallstruktur von **10** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe C2/c eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß).

Abbildung C.9: SCHAKAL-Darstellung der Kristallstruktur von **11b** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe PĪ eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß).

Abbildung C.10: SCHAKAL-Darstellung der Kristallstruktur von **11c** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe PĪ eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß).

Abbildung C.11: SCHAKAL-Darstellung der Kristallstruktur von **13** mit Blickrichtung entlang [001]. Es sind die Symmetrieelemente der Raumgruppe $P2_1/n$ eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß), Chlor (gelb, groß).

Abbildung C.12: SCHAKAL-Darstellung der Kristallstruktur von **15** mit Blickrichtung entlang [100]. Die Symmetrieelemente der Raumgruppe P4₁2₁2 sind über der Darstellung entlang der Blickrichtung [001] abgebildet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß), Schwefel (gelb, groß).

Abbildung C.13: SCHAKAL-Darstellung der Kristallstruktur von **19** mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe $P2_1/c$ eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß).

Abbildung C.14: SCHAKAL-Darstellung der Kristallstruktur von **20** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe $P2_1/c$ eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß).

Abbildung C.15: SCHAKAL-Darstellung der Kristallstruktur von **21** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe C2/*c* eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß).

Abbildung C.16: SCHAKAL-Darstellung der Kristallstruktur von **25** mit Blickrichtung entlang [001]. Es sind die Symmetrieelemente der Raumgruppe $P2_1/c$ eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß).

Abbildung C.17: SCHAKAL-Darstellung der Kristallstruktur von **26** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe $P2_1/c$ eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß).

Abbildung C.18: SCHAKAL-Darstellung der Kristallstruktur von **27** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe $P2_1/c$ eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß).

Abbildung C.19: SCHAKAL-Darstellung der Kristallstruktur von **28** mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe Cc eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Kupfer (blau, groß).

Abbildung C.20: SCHAKAL-Darstellung der Kristallstruktur von **29** mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe C2/*c* eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Chlor (gelb, groß), Palladium (dunkelgrau, groß).

Abbildung C.21: SCHAKAL-Darstellung der Kristallstruktur von **30** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe P*ca*2₁ eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Chlor (gelb, groß), Vanadium (blau, groß).

Abbildung C.22: SCHAKAL-Darstellung der Kristallstruktur von **31** mit Blickrichtung entlang [001]. Es sind die Symmetrieelemente der Raumgruppe P1 eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Chlor (gelb, groß), Nickel (blau, groß).

Abbildung C.23: SCHAKAL-Darstellung der Kristallstruktur von **32** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe $P2_1/c$ eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß), Chlor (gelb, groß), Eisen (blau, groß).

Abbildung C.24: SCHAKAL-Darstellung der Kristallstruktur von **33** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe $P2_1/c$ eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß), Sauerstoff (rot, groß), Osmium (blau, groß).

Abbildung C.25: SCHAKAL-Darstellung der Kristallstruktur von **34** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe P1 eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß), Sauerstoff (rot, groß), Chlor (gelb, groß), Cobalt (blau, groß).

Abbildung C.26: SCHAKAL-Darstellung der Kristallstruktur von **35** mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe P1 eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Chlor (gelb, groß), Ruthenium (blau, groß).

Abbildung C.27: SCHAKAL-Darstellung der Kristallstruktur von **36** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe P1 eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Zink (blau, groß).

Abbildung C.28: SCHAKAL-Darstellung der Kristallstruktur von 37 mit Blickrichtung entlang [001]. Es sind die Symmetrieelemente der Raumgruppe Cc eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß), Chlor (gelb, groß), Zink (blau, groß).

Abbildung C.29: SCHAKAL-Darstellung der Kristallstruktur von **38** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe P2₁/*c* eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß), Chlor (gelb, groß), Zink (blau, groß).

Abbildung C.30: SCHAKAL-Darstellung der Kristallstruktur von **39** mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe $P2_1/c$ eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Cadmium (blau, groß).

Abbildung C.31: SCHAKAL-Darstellung der Kristallstruktur von **40** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe P2₁/*c* eingezeichnet. Der Niotratligand weist eine Fehlordnung mit einem Chloridliganden auf. Deshalb ist der Komplex je zweimal mit einem Nitratliganden und mit einem Chloridliaganden dargestellt. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß), Sauerstoff (rot, groß), Cadmium (blau, groß), Chlor (gelb, groß).

Abbildung C.32: SCHAKAL-Darstellung der Kristallstruktur von **41** mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe P2₁/*c* eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß), Sauerstoff (rot, groß), Cadmium (blau, groß).

Abbildung C.33: SCHAKAL-Darstellung der Kristallstruktur von **42** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe $P2_1/c$ eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß), Chlor (gelb, groß), Quecksilber (blau, groß). Da die Struktur fehlgeordnet ist, werden nur die jeweiligen Atome mit der höchsten Besetzungswahrscheinlichkeit dargestellt.

Abbildung C.34: SCHAKAL-Darstellung der Kristallstruktur von **43** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe P1 eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Chlor (gelb, groß), Cobalt (blau, groß).

Abbildung C.35: SCHAKAL-Darstellung der Kristallstruktur von 44 mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe Pbca eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Cadmium (blau, groß).

Abbildung C.36: SCHAKAL-Darstellung der Kristallstruktur von **45** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe C2/*c* eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Blei (blau, groß).

Abbildung C.37: SCHAKAL-Darstellung der Kristallstruktur von **46** mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe C2/*c* eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß), Chlor (gelb, groß), Palladium (dunkelgrau, groß).

Abbildung C.38: SCHAKAL-Darstellung der Kristallstruktur von 47 mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe P1 eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß), Chlor (gelb, groß), Nickel (blau, groß).

Abbildung C.39: ORTEP-Darstellung der Kristallstruktur von **48** mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe C2/*c* eingezeichnet. Atome: Kohlenstoff (grau), Wasserstoff (hellgrau, klein), Stickstoff (blau), Kupfer (orange), Chlor (grün).

Abbildung C.40: SCHAKAL-Darstellung der Kristallstruktur von **49** mit Blickrichtung entlang [001]. Es sind die Symmetrieelemente der Raumgruppe C2/*c* eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Chlor (gelb, groß), Nickel (blau, groß).

Abbildung C.41: ORTEP-Darstellung der Kristallstruktur von **50** mit Blickrichtung entlang [100]. Die Symmetrieelemente der Raumgruppe I*c*2*m* sind über der Darstellung entlang der Blickrichtung [001] abgebildet. Da das Chloridgegenion eine Fehlordnung aufweist, wurde nur das Chlor mit der höchsten Besetzungswahrscheinlichkeit abgebildet. Atome: Kohlenstoff (grau), Wasserstoff (hellgrau, klein), Stickstoff (blau), Kupfer (orange), Chlor (grün).

Abbildung C.42: ORTEP-Darstellung der Kristallstruktur von **51** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe C2/*c* eingezeichnet. Da das Tetrabutylammoniumkation eine Fehlordnung aufweist, wurden nur die jeweilige Orientierung mit der höchsten Besetzungswahrscheinlichkeit abgebildet. Atome: Kohlenstoff (grau), Wasserstoff (hellgrau, klein), Stickstoff (blau), Kupfer (orange), Chlor (grün), Sauerstoff (rot), Bor (rosa).

Abbildung C.43: SCHAKAL-Darstellung der Kristallstruktur von 52 mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe P1 eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Natrium (violett, groß), Nickel (blau, groß).

Abbildung C.44: SCHAKAL-Darstellung der Kristallstruktur von 53 mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe P1 eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß), Thallium (blau, groß).

Abbildung C.45: SCHAKAL-Darstellung der Kristallstruktur von 54 mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe P1 eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß), Sauerstoff (rot, groß), Blei (blau, groß).

Abbildung C.46: SCHAKAL-Darstellung der Kristallstruktur von 55 mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe P2₁/*c* eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Chlor (gelb, groß), Palladium (dunkelgrau, groß). Die Wasserstoffatome des Wassers konnten in der Elektronendifferenzkarte nicht gefunden werden und sind deshalb nicht abgebildet.

Abbildung C.47: SCHAKAL-Darstellung der Kristallstruktur von **56** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe $P2_1/c$ eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Kupfer (blau, groß).

Abbildung C.48: SCHAKAL-Darstellung der Kristallstruktur von 57 mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe $P2_1/c$ eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß), Kupfer (blau, groß).

Abbildung C.49: SCHAKAL-Darstellung der Kristallstruktur von **58** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe P1 eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Chlor (gelb, groß), Ruthenium (blau, groß), Arsen (rosa, groß).

Abbildung C.50: SCHAKAL-Darstellung der Kristallstruktur von **59** mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe P1 eingezeichnet. Da der Nitrosylligand fehlgeordnet ist, ist nur eine der beiden möglichen Lagen dargestellt. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Stickstoff (grün, groß), Sauerstoff (rot, groß), Ruthenium (blau, groß), Chlor (gelb, groß), Phosphor (braun, groß).

Abbildung C.51: SCHAKAL-Darstellung der Kristallstruktur von **60** mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe P*bca* eingezeichnet. Atome (in Kugeldarstellung): Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Fluor (cyan, groß), Ruthenium (blau, groß), Kalium (violett, groß).

Abbildung C.52: SCHAKAL-Darstellung der Kristallstruktur von **61** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe $P2_1$ eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Chlor (gelb, groß), Nickel (blau, groß).

Abbildung C.53: SCHAKAL-Darstellung der Kristallstruktur von **62** mit Blickrichtung entlang [010]. Es sind die Symmetrieelemente der Raumgruppe P2₁/*c* eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Bor (dunkelgrau, groß), Nickel (blau, groß).

Abbildung C.54: SCHAKAL-Darstellung der Kristallstruktur von **63** mit Blickrichtung entlang [100]. Es sind die Symmetrieelemente der Raumgruppe C*mca* eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Nickel (blau, groß).

Abbildung C.55: SCHAKAL-Darstellung der Kristallstruktur von 64 mit Blickrichtung entlang [001]. Es sind die Symmetrieelemente der Raumgruppe P1 eingezeichnet. Atome (in Kugeldarstellung): Kohlenstoff (grau, nur als Verbindungspunkt), Wasserstoff (hellgrau, klein), Sauerstoff (rot, groß), Stickstoff (grün, groß), Nickel (blau, groß).

Anhang D Angaben zu den Strukturbestimmungen

Seite 361 von 402

	1	n
		Z C LL NOC
Summernormer $M_{1/2} \approx a^{1-1}$	$C_6 \Pi_7 NO_2$	$C_8\Pi_{11}NO5$
M _r /g mol ⁻¹	125.13	169.24
Kristallsystem		monoklin
Kaumgruppe	PZ_1/c	$P_{2_1/c}$
	7.5346(19)	7.4399(2)
b/A	5.4598(14)	13.9413(5)
c/A	14.730(4)	8.4118(2)
α/Å	90	90
β/Å	100.55(2)	96.928(2)
$\gamma/\text{\AA}$	90	90
$V/Å^3$	595.7(3)	866.12(4)
Z	4	4
$\rho/\mathrm{g}\mathrm{cm}^{-3}$	1.395	1.298
u/mm^{-1}	0.106	0.315
Kristallgröße/mm	$0.38 \times 0.16 \times 0.06$	$0.25 \times 0.21 \times 0.18$
Temperatur/K	200(2)	200(2)
Diffraktometer	Oxford Xcalibur KappaCCD	Nonius KappaCCD
Strahlung	ΜοΚα	ΜοΚα
Anode	Feinfokusröhre	Drehanode
Aufnahmeleistung/kW	2.00	3.025
θ -Bereich/°	3.98–27.76	3.75-27.49
Reflexe für Metrik		15311
Absorptionskorrektur	keine	keine
Transmissionsfaktoren		
Reflexe gemessen	3029	3806
unabh. Reflexe	1357	1980
Rint	0 1184	0.0152
Mittelwert $\sigma(I)/I$	0.1979	0.0217
Reflexe mit $I > 2\sigma(I)$	552	1724
$x_{1}y$ (Wichtung)	0.0661.0	0.0650.0.2867
Verfeinerung	a	a
Extinktionsparameter		
Flack-Parameter		
Parameter	84	104
restraints	0	0
$R(F_{obc})$	0.0746	0.0413
$R_{\rm eff}(F^2)$	0 1801	0 1216
S	0.935	1 090
- shift/error _{max}	0.001	0.001
max Restdichte/e Å $^{-3}$	0.273	0.330
min Restdichte / e $Å^{-3}$	-0.265	-0.281
$\Pi \Pi $	0.200	0.201

Tabollo D 1. Angahan 711	r Strukturbootimmung	won 1 und 7
Tabelle D.1. Aligabell Zu	i Shukturbesimmung	

^aWasserstoffatome an Kohlenstoffatomen und Stickstoffatomen wurden in idealer Geometrie berechnet, wobei U_{iso} an das Trägeratom gekoppelt ist.

	3	4
Summenformel	$C_7 H_{10} N_2 O$	$C_{\circ}H_{11}NO_{2}$
$M_{\rm r}/{\rm g}~{\rm mol}^{-1}$	138 17	153.18
Kristallsystem	monoklin	monoklin
Raumgruppe	C^{2}/c	C^2/c
a/Å	15 662(2)	11 3757(5)
h/Å	6 8877(15)	10.9074(4)
c/Δ	13 640(3)	10.9074(4) 14 1470(4)
$\alpha / ^{\circ}$	90	90
R/°	91 617(14)	110644(2)
$\gamma / ^{\circ}$	90	90
V/Δ^3	1470 8(5)	1642 64(11)
7	8	8
$a/a \mathrm{cm}^{-3}$	1 248	1239
μ/gcm^{-1}	0.086	0.080
µ/IIIII Kristallaröße /mm	0.000	0.009 0.22 × 0.12 × 0.08
Tomporatur /K	$0.32 \times 0.10 \times 0.00$	$0.23 \times 0.12 \times 0.00$
Diffraktomator	200(2) Oxford Vaslibur KappaCCD	200(2) Nonius KannaCCD
Strahlung		Molius KappaCCD
Anada	Foinfolguerähre	Drohanada
Autrahmalaiatuna /IdM		2 025
Aumanmeleistung/kw	2.00	5.025 2.41 .07.46
Deflexe für Metrile	3.90-27.48	5.41-27.40 9547
Abaamatian alaamalataan	lucino	0047
Absorptionskorrektur	Keine	Keine
Padaua samasaan	4124	25(0
Keflexe gemessen	4134	3569
unabh. Keflexe	1680	1859
K_{int}	0.0504	0.0591
Mittelwert $\sigma(I)/I$	0.0774	0.0287
Reflexe mit $I \ge 2\sigma(I)$	749	1468
x, y (Wichtung)	0.0593,0	a
Verfeinerung	14	и
Extinktionsparameter		
Flack-Parameter		100
Parameter	93	103
restraints	0	0
$R(F_{obs})$	0.0449	0.0447
$R_{\rm w}(F^2)$	0.1264	0.1241
S	0.881	1.064
shift/error _{max}	0.001	0.000
max. Restdichte/e Å $^{-3}$	0.188	0.208
min. Restdichte/e $Å^{-3}$	-0.153	-0.192

Tabelle	e D.2:	Angaben	zur Stru	kturbestin	nmung voi	n 3 und 4.

^{*a*}Wasserstoffatome wurden in idealer Geometrie berechnet, wobei U_{iso} an das Trägeratom gekoppelt ist.

	6	8
Summenformel	$C_{9}H_{10}N_{2}$	C ₀ H ₈ N ₂ O
$M_r/g \text{ mol}^{-1}$	146.19	160.17
Kristallsystem	monoklin	orthorhombisch
Raumgruppe	$P2_1$	Ihca
a/Å	60814(2)	17 7081(14)
h/Å	7 3521(3)	13 4825(9)
c/Å	9.0363(4)	20,0080(18)
$\alpha / ^{\circ}$	90	90
B/°	100 755(2)	90
$\gamma / ^{\circ}$	90	90
$V/Å^3$	396 93(3)	4776 9(7)
7	2	24
$a/a \mathrm{cm}^{-3}$	2 1 223	1 336
$p/g \text{ cm}^{-1}$	0.075	0.001
µ/IIIII Vristallaräße /mm	0.075	0.091 0.28 \times 0.10 \times 0.01
Tomporatur /V	$0.29 \times 0.06 \times 0.02$	$0.26 \times 0.19 \times 0.01$
Diffueltemeter	200(2) Nonius Kanna CCD	200(2) Nonius KannaCCD
Strahlung	Mollas KappaCCD	
Arrada	MONA Drohanada	MORA Duch an a da
Anoue	2 02E	2 02F
Aumanmeleistung/ KW	3.025	3.025
Deflected film Materia	5.41-27.42	3.39-23.28
Alexandrian alexandrian	5610 Latina	0030
Absorptionskorrektur	keine	keine
Iransmissionsfaktoren	100	10574
Reflexe gemessen	1805	12574
unabh. Keflexe	974	1719
K _{int}	0.0264	0.0892
Mittelwert $\sigma(I)/I$	0.0319	0.0568
Reflexe mit $I \ge 2\sigma(I)$	813	
x, y (Wichtung)	0.0507, 0.0454	0.0505, 0.5973
Verfeinerung	<i>u</i>	υ
Extinktionsparameter	0.086(18)	
Flack-Parameter		
Parameter	102	176
restraints	1	0
$R(F_{obs})$	0.0390	0.0465
$R_{\rm W}(F^2)$	0.1058	0.1257
S	1.120	1.079
shift/error _{max}	0.001	0.001
max. Restdichte/e $Å^{-3}$	0.136	0.153
min. Restdichte/e Å ⁻³	-0.148	-0.241

Tabelle D.3: Angaben zur Strukturbestimmung von 6 und 8.

 a Wasserstoffatome an Kohlenstoffatomen und Stickstoffatomen wurden in idealer Geometrie berechnet, wobei U_{iso} für alle Wasserstoffatome gleich ist.

^bWasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, wobei wobei U_{iso} an das Trägeratom gekoppelt ist. Wasserstoffatome an Stickstoffen wurden frei verfeinert.

	9	10
Summenformel	$C_{42}H_{38}CIN_4O_3P$	$C_7H_8N_4$
$M_r/g \text{ mol}^{-1}$	713.18	148.17
Kristallsystem	triklin	monoklin
Raumgruppe	P1	C^2/c
a/Å	11.5048(3)	17.3182(7)
h/Å	13 6225(4)	4 2495(2)
c/Å	13 7646(3)	10.3697(5)
$\alpha / ^{\circ}$	65 6060(10)	90
B/°	71 152(2)	102 833(3)
$\gamma/^{\circ}$	85 513(2)	90
$V/Å^3$	1855 50(9)	744 08(6)
7	2	4
a/a cm ⁻³	1 276	1 323
μ/mm^{-1}	0 101	0.088
µ/ mm Kristallaröße /mm	0.171 0.11 \times 0.09 \times 0.06	0.000 $0.207 \times 0.280 \times 0.070$
Tomporatur /K	200(2)	200(2)
Diffraktomotor	Nonius KannaCCD	Nonius KannaCCD
Strahlung	MoK ^{<i>n</i>}	MoKa
Anode	Drehanode	Drehanode
Aufnahmeleistung/kW	3 025	3.025
A-Bereich /°	3 14-27 40	4 21-27 50
Reflexe für Metrik	8219	955
Absorptionskorrektur	keine	keine
Transmissionsfaktoren	Reffic	Refite
Reflexe gemessen	15950	1587
unabh Reflexe	8399	855
R _{int}	0.0472	0.0152
Mittelwert $\sigma(I)/I$	0.0692	0.0227
Reflexe mit $I > 2\sigma(I)$	5352	704
x, y (Wichtung)	0.0430, 0.3149	0.0437, 0.4711
Verfeinerung	а	b
Extinktionsparameter		0.029(5)
Flack-Parameter		
Parameter	466	52
restraints	3	0
$R(F_{obs})$	0.0470	0.0394
$R_{\rm W}(F^2)$	0.1118	0.1084
S	1.016	1.082
shift/error _{max}	0.001	0.001
max. Restdichte/e Å ⁻³	0.481	0.141
min. Restdichte/e Å $^{-3}$	-0.345	-0.165

Tabelle D.4: Angaben zur Strukturbestimmung von 9 und 10.

^aWasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, wobei wobei U_{iso} an das Trägeratom gekoppelt ist. Wasserstoffatome an Stickstoffen wurden frei verfeinert.

^bWasserstoffatome wurden in idealer Geometrie berechnet, wobei wobei U_{iso} an das Trägeratom gekoppelt ist.

11b11c Summenformel $C_{10}H_{10}N_6$ $C_{10}H_{10}N_6$ $M_r/g \text{ mol}^{-1}$ 214.24214.24KristallsystemtriklintriklinRaumgruppe $P\bar{1}$ $P\bar{1}$ $a/Å$ 7.7216(9)7.86960(19) $b/Å$ 7.8946(6)10.38350(19) $c/Å$ 9.4143(10)13.88380(19) $a/°$ 99.292(8)75.2421(19) $\beta/°$ 100.023(9)78.1677(19) $\gamma/°$ 107.045(9)74.5510(19) $V/Å^3$ 526.36(10)1045.918(19) Z 24 $\rho/g \text{ cm}^{-3}$ 1.3521.361 μ/mm^{-1} 0.0910.091Kristallgröße/mm0.34 × 0.20 × 0.140.27 × 0.18 × 0.14Temperatur/K200(2)200(2)DiffraktometerOxford Xcalibur KappaCCDNonius KappaCCD
Summenformel $C_{10}H_{10}N_6$ $C_{10}H_{10}N_6$ $M_r/g \text{ mol}^{-1}$ 214.24214.24KristallsystemtriklintriklinRaumgruppe $P\bar{1}$ $P\bar{1}$ $a/Å$ 7.7216(9)7.86960(19) $b/Å$ 7.8946(6)10.38350(19) $c/Å$ 9.4143(10)13.88380(19) $\alpha/^\circ$ 99.292(8)75.2421(19) $\beta/^\circ$ 100.023(9)78.1677(19) $\gamma/^\circ$ 107.045(9)74.5510(19) $V/Å^3$ 526.36(10)1045.918(19) Z 24 $\rho/g \text{ cm}^{-3}$ 1.3521.361 μ/mm^{-1} 0.0910.091Kristallgröße/mm0.34 × 0.20 × 0.140.27 × 0.18 × 0.14Temperatur/K200(2)200(2)DiffraktometerOxford Xcalibur KappaCCDNonius KappaCCD
$M_r/g \text{ mol}^{-1}$ 214.24 214.24 KristallsystemtriklintriklinRaumgruppe $P\bar{1}$ $P\bar{1}$ $a/Å$ 7.7216(9)7.86960(19) $b/Å$ 7.8946(6)10.38350(19) $c/Å$ 9.4143(10)13.88380(19) $a/°$ 99.292(8)75.2421(19) $\beta/°$ 100.023(9)78.1677(19) $\gamma/°$ 107.045(9)74.5510(19) $V/Å^3$ 526.36(10)1045.918(19) Z 24 $\rho/g \text{ cm}^{-3}$ 1.3521.361 μ/mm^{-1} 0.0910.091Kristallgröße/mm0.34 × 0.20 × 0.140.27 × 0.18 × 0.14Temperatur/K200(2)200(2)DiffraktometerOxford Xcalibur KappaCCDNonius KappaCCD
KristallsystemtriklintriklinRaumgruppe $P\bar{1}$ $P\bar{1}$ $a/Å$ 7.7216(9)7.86960(19) $b/Å$ 7.8946(6)10.38350(19) $c/Å$ 9.4143(10)13.88380(19) $\alpha/^{\circ}$ 99.292(8)75.2421(19) $\beta/^{\circ}$ 100.023(9)78.1677(19) $\gamma/^{\circ}$ 107.045(9)74.5510(19) $V/Å^3$ 526.36(10)1045.918(19) Z 24 $\rho/g cm^{-3}$ 1.3521.361 μ/mm^{-1} 0.0910.091Kristallgröße/mm0.34 × 0.20 × 0.140.27 × 0.18 × 0.14Temperatur/K200(2)200(2)DiffraktometerOxford Xcalibur KappaCCDNonius KappaCCD
Raumgruppe $P1$ $P1$ $a/Å$ 7.7216(9)7.86960(19) $b/Å$ 7.8946(6)10.38350(19) $c/Å$ 9.4143(10)13.88380(19) $\alpha/^{\circ}$ 99.292(8)75.2421(19) $\beta/^{\circ}$ 100.023(9)78.1677(19) $\gamma/^{\circ}$ 107.045(9)74.5510(19) $V/Å^3$ 526.36(10)1045.918(19) Z 24 $\rho/g cm^{-3}$ 1.3521.361 μ/mm^{-1} 0.0910.091Kristallgröße/mm0.34 × 0.20 × 0.140.27 × 0.18 × 0.14Temperatur/K200(2)200(2)DiffraktometerOxford Xcalibur KappaCCDNonius KappaCCD
a/A 7.7216(9)7.86960(19) $b/Å$ 7.8946(6)10.38350(19) $c/Å$ 9.4143(10)13.88380(19) $\alpha/^{\circ}$ 99.292(8)75.2421(19) $\beta/^{\circ}$ 100.023(9)78.1677(19) $\gamma/^{\circ}$ 107.045(9)74.5510(19) $V/Å^3$ 526.36(10)1045.918(19)Z24 $\rho/g cm^{-3}$ 1.3521.361 μ/mm^{-1} 0.0910.091Kristallgröße/mm0.34 × 0.20 × 0.140.27 × 0.18 × 0.14Temperatur/K200(2)200(2)DiffraktometerOxford Xcalibur KappaCCDNonius KappaCCD
$b/Å$ 7.8946(6)10.38350(19) $c/Å$ 9.4143(10)13.88380(19) $\alpha/^{\circ}$ 99.292(8)75.2421(19) $\beta/^{\circ}$ 100.023(9)78.1677(19) $\gamma/^{\circ}$ 107.045(9)74.5510(19) $V/Å^3$ 526.36(10)1045.918(19) Z 24 $\rho/g \mathrm{cm}^{-3}$ 1.3521.361 μ/mm^{-1} 0.0910.091Kristallgröße/mm0.34 × 0.20 × 0.140.27 × 0.18 × 0.14Temperatur/K200(2)200(2)DiffraktometerOxford Xcalibur KappaCCDNonius KappaCCD
$c/Å$ 9.4143(10)13.88380(19) $\alpha/^{\circ}$ 99.292(8)75.2421(19) $\beta/^{\circ}$ 100.023(9)78.1677(19) $\gamma/^{\circ}$ 107.045(9)74.5510(19) $V/Å^3$ 526.36(10)1045.918(19) Z 24 $\rho/g \mathrm{cm}^{-3}$ 1.3521.361 μ/mm^{-1} 0.0910.091Kristallgröße/mm0.34 × 0.20 × 0.140.27 × 0.18 × 0.14Temperatur/K200(2)200(2)DiffraktometerOxford Xcalibur KappaCCDNonius KappaCCD
$\alpha/^{\circ}$ 99.292(8)75.2421(19) $\beta/^{\circ}$ 100.023(9)78.1677(19) $\gamma/^{\circ}$ 107.045(9)74.5510(19) $V/Å^3$ 526.36(10)1045.918(19) Z 24 $\rho/g \mathrm{cm}^{-3}$ 1.3521.361 μ/mm^{-1} 0.0910.091Kristallgröße/mm0.34 × 0.20 × 0.140.27 × 0.18 × 0.14Temperatur/K200(2)200(2)DiffraktometerOxford Xcalibur KappaCCDNonius KappaCCD
$\beta/^{\circ}$ 100.023(9)78.1677(19) $\gamma/^{\circ}$ 107.045(9)74.5510(19) $V/Å^3$ 526.36(10)1045.918(19) Z 24 $\rho/g \mathrm{cm}^{-3}$ 1.3521.361 μ/mm^{-1} 0.0910.091Kristallgröße/mm0.34 × 0.20 × 0.140.27 × 0.18 × 0.14Temperatur/K200(2)200(2)DiffraktometerOxford Xcalibur KappaCCDNonius KappaCCD
$\gamma/^{\circ}$ 107.045(9)74.5510(19) $V/Å^3$ 526.36(10)1045.918(19)Z24 $\rho/g \mathrm{cm}^{-3}$ 1.3521.361 μ/mm^{-1} 0.0910.091Kristallgröße/mm0.34 × 0.20 × 0.140.27 × 0.18 × 0.14Temperatur/K200(2)200(2)DiffraktometerOxford Xcalibur KappaCCDNonius KappaCCD
$V/Å^3$ 526.36(10)1045.918(19) Z 24 $\rho/g \mathrm{cm}^{-3}$ 1.3521.361 μ/mm^{-1} 0.0910.091Kristallgröße/mm0.34 × 0.20 × 0.140.27 × 0.18 × 0.14Temperatur/K200(2)200(2)DiffraktometerOxford Xcalibur KappaCCDNonius KappaCCD
Z24 $\rho/g \mathrm{cm}^{-3}$ 1.3521.361 μ/mm^{-1} 0.0910.091Kristallgröße/mm0.34 × 0.20 × 0.140.27 × 0.18 × 0.14Temperatur/K200(2)200(2)DiffraktometerOxford Xcalibur KappaCCDNonius KappaCCD
$\begin{array}{lll} \rho/g\ cm^{-3} & 1.352 & 1.361 \\ \mu/mm^{-1} & 0.091 & 0.091 \\ Kristallgröße/mm & 0.34 \times 0.20 \times 0.14 & 0.27 \times 0.18 \times 0.14 \\ Temperatur/K & 200(2) & 200(2) \\ Diffraktometer & Oxford Xcalibur KappaCCD \\ Nonius KappaCCD \\ Noni$
μ/mm^{-1} 0.0910.091Kristallgröße/mm $0.34 \times 0.20 \times 0.14$ $0.27 \times 0.18 \times 0.14$ Temperatur/K200(2)200(2)DiffraktometerOxford Xcalibur KappaCCDNonius KappaCCD
Kristallgröße/mm $0.34 \times 0.20 \times 0.14$ $0.27 \times 0.18 \times 0.14$ Temperatur/K200(2)200(2)DiffraktometerOxford Xcalibur KappaCCDNonius KappaCCD
Temperatur/K200(2)200(2)DiffraktometerOxford Xcalibur KappaCCDNonius KappaCCD
Diffraktometer Oxford Xcalibur KappaCCD Nonius KappaCCD
Stranlung MoKa MoKa
Anode Feinfokusröhre Drehanode
Aufnahmeleistung/kW 2.00 3.025
<i>θ</i> -Bereich/° 3.92–26.31 3.31–27.61
Reflexe für Metrik 1494 4684
Absorptionskorrektur analytical keine
Transmissionsfaktoren 0.9753–0.9887
Reflexe gemessen 4340 9129
unabh. Reflexe 2117 4812
R _{int} 0.0298 0.0388
Mittelwert $\sigma(I)/I$ 0.1155 0.0500
Reflexe mit $I \ge 2\sigma(I)$ 1054 3410
x, y (Wichtung) 0.0400, 0 0.1030, 0.1352
Verfeinerung ^a ^a
Extinktionsparameter
Flack-Parameter
Parameter 145 289
restraints 0 0
$R(F_{obs})$ 0.0365 0.0585
$R_{w}(F^2)$ 0.0818 0.1721
S 0.829 1.036
shift/error _{max} 0.001 0.001
max. Restdichte/e Å ^{-3} 0.132 0.298
min. Restdichte / e Å ^{-3} -0.183 -0.287

T-1-11-D	T . A	C1.1.1			. 111.	
Labelle D.	5: Angaben	zur Strukt	urbestimm	lung voi	n 110 i	una 11c.

^{*a*}Wasserstoffatome wurden in idealer Geometrie berechnet, wobei wobei U_{iso} an das Trägeratom gekoppelt ist.

	12	15
Summonformol	IJ C-H ₂ CIN	15 CaHanNaS
$M/(a mol^{-1})$	184.62	104 2528
Wir/g moi	104.03	194.2000 totragonal
Ristallsystem		
raungruppe	PZ_1/n 0.7591(4)	$P_{1}Z_{1}Z_{1}Z_{1}Z_{1}Z_{1}Z_{1}Z_{1}Z$
u/A	9.7301(4)	7.2100(2)
\mathcal{O}/A	12.6/07(7)	7.2100(2)
C/A	14.2954(8)	17.9246(5)
α/\circ	90	90
β/\circ	100.788(3)	90
$\gamma/$	90	90
V/A^3	1736.27(15)	931.79(4)
Z	8	4
$\rho/\mathrm{g}\mathrm{cm}^{-3}$	1.413	1.385
μ/mm^{-1}	0.388	0.304
Kristallgröße/mm	$0.23 \times 0.17 \times 0.11$	$0.953 \times 0.493 \times 0.346$
Temperatur/K	200(2)	200(2)
Diffraktometer	Nonius KappaCCD	Nonius KappaCCD
Strahlung	ΜοΚα	ΜοΚα
Anode	Drehanode	Drehanode
Aufnahmeleistung/kW	3.025	3.025
θ -Bereich/°	3.22-27.49	3.05-27.59
Reflexe für Metrik	7197	1115
Absorptionskorrektur	keine	keine
Transmissionsfaktoren		
Reflexe gemessen	13474	7155
unabh. Reflexe	3980	1080
R _{int}	0.0687	0.0394
Mittelwert $\sigma(I)/I$	0.0645	0.0214
Reflexe mit $I \ge 2\sigma(I)$	2287	1018
<i>x</i> , <i>y</i> (Wichtung)	0.1048,0	0.0386, 0.2216
Verfeinerung	а	а
Extinktionsparameter		
Flack-Parameter		-0.02(12)
Parameter	217	61
restraints	0	0
$R(F_{obs})$	0.0673	0.0287
$R_{\rm w}(F^2)$	0.1917	0.0788
S	1.046	1.130
shift/error _{max}	0.001	0.001
max. Restdichte/e Å $^{-3}$	1.259	0.174
min. Restdichte/e Å ⁻³	-0.315	-0.199

Tabelle D.6: Angaben	zur Strukturbestimmung	yon 13 und 15.

^{*a*}Wasserstoffatome an Kohlenstoffatomen und Stickstoffatomen wurden in idealer Geometrie berechnet, wobei wobei U_{iso} an das Trägeratom gekoppelt ist.

	19	20
Summenformel	$C_8H_8N_4$	$C_9H_{10}N_4$
$M_{\rm r}/{ m g}~{ m mol}^{-1}$	160.1780	174.2048
Kristallsystem	monoklin	monoklin
Raumgruppe	$P2_{1}/c$	$P2_{1}/c$
a/Å	8.6608(13)	10.6553(6)
b/Å	9.8339(13)	8.3587(6)
c/Å	9.5255(11)	10.4254(7)
α/°	90	90
β/°	92.860(11)	108.847(4)
$\gamma/^{\circ}$	90	90
$V/Å^3$	810.27(19)	878.75(10)
Ζ	4	4
$\rho/\mathrm{g}\mathrm{cm}^{-3}$	1.313	1.317
μ/mm^{-1}	0.087	0.086
Kristallgröße/mm	$0.32 \times 0.19 \times 0.18$	$0.30 \times 0.13 \times 0.04$
Temperatur/K	200(2)	200(2)
Diffraktometer	Oxford Xcalibur KappaCCD	Nonius KappaCCD
Strahlung	ΜοΚα	ΜοΚα
Anode	Feinfokusröhre	Drehanode
Aufnahmeleistung/kW	2.48	3.025
θ -Bereich/°	3.86–26.25	3.17-27.50
Reflexe für Metrik	1736	3559
Absorptionskorrektur	multi-scan	keine
Transmissionsfaktoren	0.83469-1.00000	
Reflexe gemessen	4383	6914
unabh. Reflexe	1634	2019
R _{int}	0.0262	0.0671
Mittelwert $\sigma(I)/I$	0.0440	0.0611
Reflexe mit $I \ge 2\sigma(I)$	1049	1126
<i>x</i> , <i>y</i> (Wichtung)	0.0452,0	0.0774, 0.0887
Verfeinerung	а	b
Extinktionsparameter		
Flack-Parameter		
Parameter	109	119
restraints	0	0
$R(F_{obs})$	0.0347	0.0529
$R_{\rm w}(F^2)$	0.0838	0.1612
S	0.904	1.042
shift/error _{max}	0.001	0.001
max. Restdichte/e Å ⁻³	0.147	0.201
min. Restdichte/e Å $^{-3}$	-0.180	-0.249

Tabelle D.7: Angaben zur Strukturbestimmung von 19 und 20.

^{*a*}Wasserstoffatome an Kohlenstoffatomen und Stickstoffatomen wurden in idealer Geometrie berechnet, wobei wobei U_{iso} an das Trägeratom gekoppelt ist.

^bWasserstoffatome wurden in idealer Geometrie berechnet, wobei wobei U_{iso} an das Trägeratom gekoppelt ist.

	21	25
Summenformel	$C_{\rm 2}H_{\rm 1}N_{\rm 2}$	$C-H_0N_0$
$M/(a \text{ mol}^{-1})$	152 14	105 2125
Kristallevetom	nonoklin	monoklin
Ristansystem	C_2/c	P_{2} , l_{c}
a/Å	1027(4)	100204(7)
u/A	10.3927(0) 0.2797(E)	10.9394(7)
0/A	9.3787(3)	21.0000(10)
C/A	13.1448(7)	7.5501(4)
$\alpha/2$	90	90 10F F12(4)
$\beta/2$	109.231(4)	105.513(4)
$\gamma/2$	90	90
V/A ³	1209.73(11)	1741.57(19)
Ζ, , , , , , , , , , , , , , , , , , ,	8	8
$\rho/\mathrm{g}\mathrm{cm}^{-3}$	1.671	1.489
μ/mm^{-1}	0.128	0.110
Kristallgröße/mm	$0.336 \times 0.330 \times 0.256$	$0.27 \times 0.24 \times 0.07$
Temperatur/K	200(2)	200(2)
Diffraktometer	Nonius KappaCCD	Nonius KappaCCD
Strahlung	ΜοΚα	ΜοΚα
Anode	Drehanode	Drehanode
Aufnahmeleistung/kW	3.025	3.025
θ -Bereich/°	3.74-27.50	3.36–27.50
Reflexe für Metrik	5054	42710
Absorptionskorrektur	keine	keine
Transmissionsfaktoren		
Reflexe gemessen	4861	12670
unabh. Reflexe	1381	3975
R _{int}	0.0605	0.1174
Mittelwert $\sigma(I)/I$	0.0448	0.1248
Reflexe mit $I \ge 2\sigma(I)$	954	1959
x, y (Wichtung)	0.0504, 0.4844	0.0342,0
Verfeinerung	а	a
Extinktionsparameter		
Flack-Parameter		
Parameter	100	257
restraints	0	0
$R(F_{obs})$	0.0428	0.0573
$R_{\rm w}(F^2)$	0.1215	0.1355
S	1.121	0.976
shift/error _{max}	0.001	0.001
max. Restdichte/e Å $^{-3}$	0.208	0.190
$D_{1} = \frac{1}{2} \frac{1}$	0 181	-0.272

Tabelle D.8: Angaben	zur Strukturbestimmur	ng von 21 und 25.
		0

^{*a*}Wasserstoffatome an Kohlenstoffatomen und Stickstoffatomen wurden in idealer Geometrie berechnet, wobei wobei U_{iso} an das Trägeratom gekoppelt ist.

	26	27
Summenformel	C_{1} H ₁ -N ₀	$C_{11}H_{12}N_0$
$M/q \text{ mol}^{-1}$	222 27	271 30
Kristallevetom	monoklin	monoklin
Riistalisystelli	D_{2}	D_{2}
a/Å	1721/C	10.2272(5)
u/A	17.0470(4)	10.2372(3)
	4.7303(2)	0.0100(3)
C/A	20.7257(5)	21.2479(9)
α/γ^{-1}	90	90 117 0(2(2)
$\beta/2$	114.453(2)	117.063(3)
$\gamma/2$	90 1FOF FF(0)	90
V/A ³	1595.57(9)	1282.04(10)
	4	4
$\rho/\mathrm{g}\mathrm{cm}^{-3}$	1.388	1.406
μ/mm^{-1}	0.093	0.097
Kristallgröße/mm	$0.31 \times 0.12 \times 0.02$	$0.63 \times 0.17 \times 0.13$
Temperatur/K	200(2)	200(2)
Diffraktometer	Nonius KappaCCD	Nonius KappaCCD
Strahlung	ΜοΚα	ΜοΚα
Anode	Drehanode	Drehanode
Aufnahmeleistung/kW	3.025	3.025
θ -Bereich/°	3.48-27.43	3.26-27.54
Reflexe für Metrik	19073	5379
Absorptionskorrektur	keine	keine
Transmissionsfaktoren		
Reflexe gemessen	11766	10225
unabh. Reflexe	3619	2935
R _{int}	0.0421	0.0891
Mittelwert $\sigma(I)/I$	0.0402	0.0704
Reflexe mit $I \ge 2\sigma(I)$	2756	1713
x, y (Wichtung)	0.0505, 0.5270	0.0757, 0.0586
Verfeinerung	a	а
Extinktionsparameter		
Flack-Parameter		
Parameter	230	183
restraints	0	0
$R(F_{obs})$	0.0461	0.0536
$R_{w}(F^2)$	0.1247	0.1558
S	1.057	1.044
shift/error _{max}	0.001	0.001
max. Restdichte / e Å $^{-3}$	0.179	0.192
min. Restdichte/e Å $^{-3}$	-0.266	-0.261
mm, $mount(m) < n$	0.200	0.201

Tabelle D.J. Aligabeli Zui Struktuibestillillulig voli 20 uliu 27.
--

^{*a*}Wasserstoffatome an Kohlenstoffatomen und Stickstoffatomen wurden in idealer Geometrie berechnet, wobei wobei U_{iso} an das Trägeratom gekoppelt ist.

	28	29
Summenformel	$C_{34}H_{49}CuN_5O_2$	$C_{14}H_{20}Cl_2N_8O_2Pd$
$M_r/g \text{ mol}^{-1}$	623.32	509.68
Kristallsystem	monoklin	monoklin
Raumgruppe	Cc	C^2/c
a/Å	8.5102(4)	9.0817(2)
h/Å	21.7655(11)	15 4116(4)
c/Å	17 8777(7)	14 0694(3)
$\alpha / ^{\circ}$	90	90
B/°	93 931(3)	102 160(2)
$\gamma/^{\circ}$	90	90
$V/Å^3$	3303.7(3)	1925.02(8)
Z	4	4
$\rho/g \mathrm{cm}^{-3}$	1.253	1.759
u/mm^{-1}	0.698	1 270
Kristalløröße/mm	0.650 0.46 × 0.08 × 0.04	$0.743 \times 0.497 \times 0.231$
Temperatur/K	200(2)	200(2)
Diffraktometer	Nonius KappaCCD	Nonius KappaCCD
Strahlung	ΜοΚα	ΜοΚα
Anode	Drehanode	Drehanode
Aufnahmeleistung/kW	3.025	3.025
θ -Bereich/°	3.33-27.46	3.03-27.48
Reflexe für Metrik	25527	7928
Absorptionskorrektur	keine	multi-scan
Transmissionsfaktoren		0.4871-0.7456
Reflexe gemessen	13138	14504
unabh. Reflexe	7392	2208
R _{int}	0.0711	0.0309
Mittelwert $\sigma(I)/I$	0.1222	0.0200
Reflexe mit $I \ge 2\sigma(I)$	4613	2035
x, y (Wichtung)	0.0099,0	0.0178, 3.0874
Verfeinerung	a	b
Extinktionsparameter		0.0067(3)
Flack-Parameter	-0.009(10)	
Parameter	393	131
restraints	2	3
$R(F_{\rm obs})$	0.0431	0.0198
$R_{\rm W}(F^2)$	0.0964	0.0507
S	0.965	1.101
shift/error _{max}	0.001	0.001
max. Restdichte/e Å ⁻³	0.305	0.544
min. Restdichte/e Å ⁻³	-0.317	-0.541

Tabelle D.10: Angaben zur Strukturbestimmung von 28 und 29.

^{*a*}Wasserstoffatome an Kohlenstoffatomen und Stickstoffatomen wurden in idealer Geometrie berechnet, wobei wobei U_{iso} an das Trägeratom gekoppelt ist.

^bWasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, Wasserstoffatome in Wassermolekülen wurden auf einen Abstand von 0.84 Å zum Sauerstoff und 1.34 Å zwischen den beiden Wasserstoffatomen festgesetzt. U_{iso} ist dabei an das Trägeratom gekoppelt.

	30	31
Summenformel	C7H9ClN4	$C_{14}H_{20}Cl_2N_8NiO_2$
$M_{\rm r}/{\rm g}~{\rm mol}^{-1}$	184.63	461.99
Kristallsystem	monoklin	triklin
Raumgruppe	$P2_1/n$	ΡĪ
a/Å	9.7581(4)	7.9937(2)
b/Å	12.6707(7)	8.3193(2)
c/Å	14.2954(8)	8.7839(2)
$\alpha / ^{\circ}$	90	103.250(2)
β/°	100.788(3)	113.795(2)
$\gamma/^{\circ}$	90	106.440(2)
$V/Å^3$	1736.27(15)	471.77(2)
Ζ	8	1
$ ho/{ m g}{ m cm}^{-3}$	1.413	1.626
μ/mm^{-1}	0.388	1.340
Kristallgröße/mm	$0.23\times0.17\times0.11$	$0.615 \times 0.557 \times 0.128$
Temperatur/K	200(2)	200(2)
Diffraktometer	Nonius KappaCCD	Nonius KappaCCD
Strahlung	ΜοΚα	ΜοΚα
Anode	Drehanode	Drehanode
Aufnahmeleistung/kW	3.025	3.025
θ -Bereich/°	3.22-27.49	3.05-27.49
Reflexe für Metrik	7197	2099
Absorptionskorrektur	keine	multi-scan
Transmissionsfaktoren		0.5597-0.7456
Reflexe gemessen	13474	10242
unabh. Reflexe	3980	2156
R _{int}	0.0687	0.0290
Mittelwert $\sigma(I)/I$	0.0645	0.0227
Reflexe mit $I \ge 2\sigma(I)$	2287	2005
x, y (Wichtung)	0.1048,0	0.0410, 0.1471
Verfeinerung	а	а
Extinktionsparameter		
Flack-Parameter		
Parameter	217	130
restraints	0	3
$R(F_{\rm obs})$	0.0673	0.0257
$R_{\rm w}(F^2)$	0.1917	0.0792
S	1.046	1.202
shift/error _{max}	0.001	0.001
max. Restdichte/e Å ⁻³	1.259	0.391
min. Restdichte/e Å ⁻³	-0.315	-0.528

Tabelle D.11: Angaben zur Strukturbestimmung von 30 und 31.

^aWasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, Wasserstoffatome in Wassermolekülen wurden auf einen Abstand von 0.84 Å zum Sauerstoff und 1.34 Å zwischen den beiden Wasserstoffatomen festgesetzt. U_{iso} ist dabei an das Trägeratom gekoppelt.
	32	33
Summenformel	C ₂₈ H ₃₂ Cl ₁₀ Fe ₄ N ₁₆	C ₁₄ H ₁₆ N ₈ O ₁₂ Os ₂
$M_r/g \text{ mol}^{-1}$	1170.60	868.73
Kristallsystem	monoklin	monoklin
Raumgruppe	$P2_1/c$	$P2_1/c$
a/Å	13.590(3)	9 054(3)
h/Å	6 9505(12)	10.707(4)
c/Δ	27 254(6)	13.078(4)
$\alpha / ^{\circ}$	90	90
и/ В / °	110 88(2)	105 52(3)
ρ / \circ	90	90
V/λ^3	2222 0(8)	1221 6(7)
V / A 7	2232.0(0)	1221.0(7)
\sum	2	2 262
$\rho/g \text{ cm}^2$	1.742	2.302
μ/mm^{-1}	1.917	10.465
Kristallgroße/mm	$0.16 \times 0.08 \times 0.05$	$0.13 \times 0.12 \times 0.08$
Temperatur/K	100(2)	200(2)
Diffraktometer	Oxford Xcalibur KappaCCD	Oxford Xcalibur KappaCCD
Strahlung	ΜοΚα	Μοκα
Anode	Feinfokusröhre	Feinfokusröhre
Aufnahmeleistung/kW	2.00	2.00
θ -Bereich/°	3.71–24.02	3.74–27.62
Reflexe für Metrik		
Absorptionskorrektur	numerisch	numerisch
Transmissionsfaktoren	0.7624–0.9138	0.4036-0.4643
Reflexe gemessen	12105	12072
unabh. Reflexe	3443	2758
R _{int}	0.0639	0.0581
Mittelwert $\sigma(I)/I$	0.1136	0.0717
Reflexe mit $I \ge 2\sigma(I)$	1990	1845
x, y (Wichtung)	0.0923,0	0.0507,0
Verfeinerung	a	b
Extinktionsparameter		
Flack-Parameter		
Parameter	262	163
restraints	0	0
$R(F_{obs})$	0.0658	0.0370
$R_{\rm w}(F^2)$	0.1631	0.0960
S	0.956	1.021
shift/error _{max}	0.001	0.001
max. Restdichte/e Å $^{-3}$	3.293	3.141
min. Restdichte/e Å $^{-3}$	-0.534	-2.393

Tabelle D.12: Angaben zur Strukturbestimmung von **32** und **33**.

^aWasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, wobei U_{iso} an das Trägeratom gekoppelt ist. Die hohen Restdichten stammen von einer geringen Fehlordnung des Komplexes, von der nur das Eisenatom gefunden werden kann.

^bWasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, wobei U_{iso} an das Trägeratom gekoppelt ist. Wasserstoffatome in Wassermolekülen wurden konnten in der Elektronendichtekarte nicht lokalisiert werden und wurden deshalb nicht in der Verfeinerung berücksichtigt. Die hohen Restdichten stammen von einer geringen Fehlordnung des Komplexes, von der nur das Osmiumatom gefunden werden kann.

	34	35
Summenformel	$C_{14}H_{20}Cl_2CoN_8O_2$	$C_{20}H_{30}Cl_2N_{10}O_2Ru$
$M_r/g \text{ mol}^{-1}$	462.05	614.51
Kristallsystem	triklin	triklin
Raumgruppe	PĪ	PĪ
a/Å	8.009(3)	8.316(5)
h/Å	8,390(3)	9 1127(13)
c/Å	8 776(2)	9 3393(15)
$\alpha / ^{\circ}$	10356(2)	80 597(13)
B/°	113 31(3)	86 67(2)
$\gamma / ^{\circ}$	106 95(3)	64 60(3)
$V/Å^3$	475 2(3)	630 7(4)
7	1	1
$a/a \mathrm{cm}^{-3}$	1 615	1 618
μ/mm^{-1}	1 212	0.873
µ/ IIIII Kristallaröße /mm	1.212 0.30 × 0.29 × 0.12	0.075
Tomporatur /K	$0.50 \times 0.29 \times 0.12$	$0.20 \times 0.11 \times 0.04$
Diffraktomotor	Ovford Ycalibur KappaCCD	Oxford Ycalibur KappaCCD
Strahlung		
Anodo	Foinfokueröhro	Foinfokusröhro
Aufnahmalaistung /kW	2.48	2 48
A Boroich /°	2.40	2.40 4 40 26 27
Roflovo für Motrik	2222	4.40-20.27
Absorptionskorroktur	2022	2027
Transmissionsfaktoren		
Poflovo comoscon	0.7022-0.8805	0.94003-1.00000 E005
weakh Defleye	1022	2557
	0.0280	2357
Λ_{int}	0.0200	0.0500
Ninterwert $U(I)/I$	0.0407	0.0042
Kellexe IIII $I \ge 20(1)$	1555	2114
<i>x, y</i> (wichtung)	0.0322, 0 a	0.0234,0
Verfeinerung		
Extinktionsparameter		
Flack-Parameter	100	170
Parameter	130	162
restraints	3	0
$R(F_{obs})$	0.0304	0.0315
$R_{\rm W}(F^2)$	0.0822	0.0583
S	1.000	0.929
shift/error _{max}	0.001	0.001
max. Restdichte/e A^{-3}	0.332	0.530
min. Restdichte/e Å ⁻³	-0.314	-0.555

Tabelle D.13: Angaben zur Strukturbestimmung von 34 und 35.

^aWasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, Wasserstoffatome in Wassermolekülen wurden auf einen Abstand von 0.84 Å zum Sauerstoff und 1.34 Å zwischen den beiden Wasserstoffatomen festgesetzt. U_{iso} ist dabei an das Trägeratom gekoppelt.

^bWasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, wobei U_{iso} an das Trägeratom gekoppelt ist.

	36	37
Summenformel	$C_{14}H_{20}N_{10}O_8Zn$	$C_7H_8Cl_2N_4Zn$
$M_r/g \text{ mol}^{-1}$	521.77	284.46
Kristallsvstem	triklin	monoklin
Raumgruppe	$P\bar{1}$	Сс
a/Å	8.8499(17)	13.8313(4)
b/Å	8.9137(14)	10.6787(4)
c/Å	14.053(6)	7.2689(2)
$\alpha/^{\circ}$	95.26(2)	90
β/°	90.53(3)	91.492(2)
$\gamma/^{\circ}$	108.021(15)	90
$V/Å^3$	1048.9(5)	1073.25(6)
Z	2	4
$\rho/\mathrm{g}\mathrm{cm}^{-3}$	1.652	1.760
u/mm^{-1}	1.237	2.750
Kristallgröße/mm	$0.30 \times 0.19 \times 0.10$	$0.323 \times 0.223 \times 0.202$
Temperatur/K	200(2)	200(2)
Diffraktometer	Oxford Xcalibur KappaCCD	Nonius KappaCCD
Strahlung	ΜοΚα	МоКα
Anode	Feinfokusröhre	Drehanode
Aufnahmeleistung/kW	2.48	3.025
θ -Bereich/°	3.71-26.31	3.67-27.48
Reflexe für Metrik	3762	1284
Absorptionskorrektur	multi-scan	multi-scan
Transmissionsfaktoren	0.732-0.884	0.5874-0.7456
Reflexe gemessen	8538	8786
unabh. Reflexe	4235	2383
R _{int}	0.0262	0.0396
Mittelwert $\sigma(I)/I$	0.0733	0.0401
Reflexe mit $I \ge 2\sigma(I)$	2671	2301
x, y (Wichtung)	0.0399, 0	0.0557, 0.2030
Verfeinerung	а	b
Extinktionsparameter		
Flack-Parameter		0.055(14)
Parameter	313	127
restraints	6	2
$R(F_{\rm obs})$	0.0334	0.0317
$R_{\rm w}(F^2)$	0.0837	0.0894
S	0.998	1.119
shift/error _{max}	0.001	0.001
max. Restdichte/e Å ⁻³	0.367	0.613
min. Restdichte/e Å ⁻³	-0.435	-0.675

Tabelle D.14: Angaben zur Strukturbestimmung von 36 und 37.

^aWasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, Wasserstoffatome in Wassermolekülen wurden auf einen Abstand von 0.84 Å zum Sauerstoff und 1.34 Å zwischen den beiden Wasserstoffatomen festgesetzt. U_{iso} ist dabei an das Trägeratom gekoppelt.

^bWasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, wobei U_{iso} an das Trägeratom gekoppelt ist.

	38	39
Summenformel	$C_{14}H_{16}Cl_2N_8Zn$	$C_{14}H_{20}CdN_{10}O_8$
$M_r/g \text{ mol}^{-1}$	432.62	568.80
Kristallsystem	monoklin	monoklin
Raumgruppe	$P2_1/c$	$P2_1/c$
a/Å	9.90640(10)	8.4610(2)
h/Å	12.9041(2)	14.3624(4)
c/Å	15,3294(3)	10 6896(2)
$\alpha / ^{\circ}$	90	90
B/°	114.7020(10)	125.2010(10)
$\gamma/^{\circ}$	90	90
$V/Å^3$	1780.29(5)	1061.46(4)
Z	4	2
$\rho/g \text{ cm}^{-3}$	1.614	1.780
u/mm^{-1}	1 695	1 095
Kristalløröße/mm	$0.689 \times 0.441 \times 0.202$	$0.345 \times 0.160 \times 0.116$
Temperatur/K	200(2)	200(2)
Diffraktometer	Nonius KappaCCD	Nonius KappaCCD
Strahlung	ΜοΚα	ΜοΚα
Anode	Drehanode	Drehanode
Aufnahmeleistung/kW	3.025	3.025
θ -Bereich/°	3.16-27.48	3.27-27.48
Reflexe für Metrik	4215	11471
Absorptionskorrektur	multi-scan	keine
Transmissionsfaktoren	0.4992-0.7456	
Reflexe gemessen	32526	8080
unabh. Reflexe	4060	2413
R _{int}	0.0394	0.0213
Mittelwert $\sigma(I)/I$	0.0237	0.0200
Reflexe mit $I \ge 2\sigma(I)$	3584	2091
<i>x</i> , <i>y</i> (Wichtung)	0.0441, 0.5524	0.0323, 1.1061
Verfeinerung	а	b
Extinktionsparameter		
Flack-Parameter		
Parameter	226	157
restraints	0	3
$R(F_{\rm obs})$	0.0308	0.0295
$R_{\rm w}(F^2)$	0.0893	0.0750
S	1.259	1.118
shift/error _{max}	0.001	0.001
max. Restdichte/e Å ⁻³	0.762	0.760
min. Restdichte/e Å $^{-3}$	-0.850	-0.712

Tabelle D.15:	Angaben	zur Struktur	bestimmung	von 38 und 39.

 a Wasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, wobei U_{iso} an das Trägeratom gekoppelt ist.

	40	41
Summenformel	$C_{14}H_{16}CdCl_{1.90}N_{8.10}O_{0.31}$	$C_{14}H_{16}CdN_{10}O_{6}$
$M_{\rm r}/{ m g}~{ m mol}^{-1}$	482.68	532.77
Kristallsystem	monoklin	monoklin
Raumgruppe	$P2_1/c$	$P2_{1}/c$
a/Å	11.1367(4)	10.2677(8)
b/Å	13.8968(5)	13.6686(11)
c/Å	16.4744(6)	16.9333(12)
$\alpha/^{\circ}$	90	90
β/°	132.559(2)	124.814(5)
$\gamma/^{\circ}$	90	90
$V/Å^3$	1878.02(12)	1951.1(3)
Z	4	4
$\rho/\mathrm{g}\mathrm{cm}^{-3}$	1.706	1.814
u/mm^{-1}	1.450	1.177
Kristallgröße/mm	$0.208 \times 0.192 \times 0.117$	$0.28 \times 0.27 \times 0.16$
Temperatur/K	200(2)	200(2)
Diffraktometer	Nonius KappaCCD	Oxford Xcalibur KappaCCD
Strahlung	ΜοΚα	ΜοΚα
Anode	Drehanode	Feinfokusröhre
Aufnahmeleistung/kW	3.025	2.48
θ -Bereich/°	3.36-27.50	3.77-26.31
Reflexe für Metrik	7325	10790
Absorptionskorrektur	multi-scan	multi-scan
Transmissionsfaktoren	0.6568-0.7456	0.700-0.828
Reflexe gemessen	26936	25031
unabh. Reflexe	4277	3965
R _{int}	0.0498	0.0300
Mittelwert $\sigma(I)/I$	0.0360	0.0262
Reflexe mit $I > 2\sigma(I)$	3328	2759
x, y (Wichtung)	0.0400, 2.2466	0.0372,0
Verfeinerung	a	b
Extinktionsparameter		
Flack-Parameter		
Parameter	240	280
restraints	6	0
$R(F_{obs})$	0.0379	0.0271
$R_{\rm W}(F^2)$	0.0956	0.0704
S	1.080	1.072
shift/error _{max}	0.001	0.001
max. Restdichte/e Å $^{-3}$	0.826	0.768
min. Restdichte/e Å $^{-3}$	-0.814	-0.513

Tabelle D.16:	Angaben zui	r Strukturbestimm	ung von 40 und 41 .
	0		

 a Wasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, wobei U_{iso} an das Trägeratom gekoppelt ist. Die U_{iso} aller Atome des mit einem Chloridliganden fehlgeordenten Nitratmoleküls wurden auf einen gemeinsamen Wert gesetzt und verfeinert.

^bWasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, wobei U_{iso} an das Trägeratom gekoppelt ist.

	42	43
Summenformel	C7HoCl2H9N4	$C_{20}H_{24}Cl_2C_0N_{12}O_2$
$M_{\rm e}/{\rm g}~{\rm mol}^{-1}$	419.66	594 34
Kristallsystem	monoklin	triklin
Raumgruppe	$P2_1/c$	PĪ
a/Å	172170 17287(3)	8 5378(2)
h/Å	8 3660(11)	8 6725(2)
c/Å	17 117(3)	9 3697(2)
$\alpha / ^{\circ}$	90	70 588(2)
R/°	116 665(18)	82 137(2)
ρ / \circ	90	82 738(2)
V/λ^3	20 2212 2(7)	645 74(3)
7 / A	2212.2(7) 8	1
$2 \alpha / \alpha cm^{-3}$	2 520	1 528
$p/g \text{ cm}^{-1}$	2.520	0.015
µ/IIIII Vristallaräße /mm	14.304 0.42 \times 0.14 \times 0.10	0.915 $0.20 \times 0.20 \times 0.12$
Tomporatur /V	$0.42 \times 0.14 \times 0.10$	$0.50 \times 0.20 \times 0.12$
Diffraktomator	200(2) Nonius Kanna CCD	200(2) Nonius KannaCCD
Strahlung	Molinus KappaCCD	Molius RappaCCD
Anada	Drohanada	Drohanada
Aufnahmalaistung /kW	2.48	2 025
A Boroich /°	2.40	3 32 27 48
Defleve für Metrik	5.95-20.20 6047	3.32-27.40 2000
Absorptionskorroktur	multi scan	2000 multi scan
Transmissionsfaktoren	0.026.0.228	0 6506 0 7456
Poflovo comoscon	15010	0.0000-0.7400
unabh Deflavo	13910	2048
	4401	2940
Nint Mittolwort $\sigma(I)/I$	0.0467	0.0240
Reflexe mit $L > 2\sigma(I)$	2808	2689
r_{1} (Wichtung)	0.0438 1.5774	0 0224 0 4803
Vorfoinorung	a	b
Extinktionsparameter		
Elack-Parameter		
Paramotor	272	175
restrainte	0	3
$R(F_{\perp})$	0 0329	0 0301
$R_{\rm res}(F^2)$	0.0921	0.0714
S	1 113	1 063
shift/error	0.001	0.001
max Restdichte / $e^{A^{-3}}$	2 067	0.415
min. Restdichte / e Å $^{-3}$	-1.349	-0.293

Tabelle D.17: Angaben zur Strukturbestimmung von 42 und 43.

^aWasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, wobei U_{iso} an das Trägeratom gekoppelt ist. Hier tritt eine starke Fehlordung des Komplexes auf. Etwa 5% der Komplexe sind um etwa 0.5 in Richtung [010] verschoben.

	44	45
Summenformel	C29 51H31 51Cd2N21 56O12 56	C ₂₀ H ₂₀ N ₁₄ O ₆ Pb
$M_r/g \text{ mol}^{-1}$	1113.94	759.69
Kristallsystem	orthorhombisch	monoklin
Raumgruppe	Pbca	C2/c
a/Å	15.2172(2)	14.0438(3)
h/Å	17.5435(2)	12.7123(3)
c/Å	30.8701(4)	15.3587(3)
$\alpha / ^{\circ}$	90	90
B/°	90	101 7490(10)
$\gamma/^{\circ}$	90	90
$V/Å^3$	8241.17(18)	2684.53(10)
Z	8	4
$\frac{1}{2}$ / g cm ⁻³	1.796	1.880
μ/mm^{-1}	1 121	6.349
Kristalløröße/mm	$0.246 \times 0.136 \times 0.125$	$0.290 \times 0.280 \times 0.190$
Temperatur/K	200(2)	200(2)
Diffraktometer	Nonius KappaCCD	Nonius KappaCCD
Strahlung	ΜοΚα	ΜοΚα
Anode	Drehanode	Drehanode
Aufnahmeleistung/kW	3.025	3.025
θ -Bereich/°	3.18–27.54	3.21-27.50
Reflexe für Metrik	113289	15149
Absorptionskorrektur	multi-scan	multi-scan
Transmissionsfaktoren	0.756-0.869	0.130512-0.299
Reflexe gemessen	85225	20822
unabh. Reflexe	9426	3077
R _{int}	0.0523	0.0321
Mittelwert $\sigma(I)/I$	0.0316	0.0217
Reflexe mit $I > 2\sigma(I)$	7599	2896
x, y (Wichtung)	0.0245, 16.5730	0.0182, 4.6509
Verfeinerung	a	a
Extinktionsparameter		
Flack-Parameter		
Parameter	616	195
restraints	3	1
$R(F_{obs})$	0.0361	0.0199
$R_{\rm w}(F^2)$	0.0858	0.0446
S	1.089	1.087
shift/error _{max}	0.002	0.001
max. Restdichte/e Å $^{-3}$	0.427	0.817
min. Restdichte/e Å $^{-3}$	-0.638	-1.189

Tabelle D.18: Angaben zur Strukturbestimmung von 44 und 45.

 a Wasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, wobei U_{iso} an das Trägeratom gekoppelt ist.

	46	47
Summenformel	C12H14Cl2NoPd	C10H24Cl2N12Ni
$M_{\rm r}/{\rm g}~{\rm mol}^{-1}$	449.63	538 10
Kristallsystem	monoklin	triklin
Raumgruppe	C^2/c	PĪ
a/Å	14 421(2)	8 1745(2)
h/Å	9.0412(14)	8 7000(2)
c/Å	13 990(3)	8 7539(29)
$\alpha / ^{\circ}$	90	89 5824(18)
R/°	115 506(9)	80 6313(17)
$\gamma/^{\circ}$	90	79 7828(18)
$V/Å^3$	1646 3(5)	604 37(19)
7	4	1
$a/a \mathrm{cm}^{-3}$	1 814	1 478
μ/mm^{-1}	1.014	1.470
µ/ IIIII Kristallaröße /mm	1.403 0.12 \times 0.03 \times 0.03	1.050 0.340 \times 0.214 \times 0.127
Tomporatur /K	$0.12 \times 0.03 \times 0.03$	$0.349 \times 0.214 \times 0.127$
Diffraktomotor	Nonius KappaCCD	Nonius KannaCCD
Strahlung	MoK ^{<i>n</i>}	MoKa
Anode	Drehanode	Drehanode
Aufnahmeleistung/kW	3 025	3 025
θ -Bereich /°	3 39-25 24	3 39-27 58
Reflexe für Metrik	1865	2702
Absorptionskorrektur	keine	multi-scan
Transmissionsfaktoren		0.695–0.874
Reflexe gemessen	3905	12661
unabh. Reflexe	1451	2773
R _{int}	0.0729	0.0268
Mittelwert $\sigma(I)/I$	0.0654	0.0235
Reflexe mit $I \ge 2\sigma(I)$	1138	2498
<i>x</i> , <i>y</i> (Wichtung)	0.0986, 1.1815	0.0492, 0.1889
Verfeinerung	а	а
Extinktionsparameter		
Flack-Parameter		
Parameter	106	151
restraints	0	0
$R(F_{\rm obs})$	0.0508	0.0301
$R_{\rm w}(F^2)$	0.1597	0.0930
S	1.066	1.200
shift/error _{max}	0.001	0.001
max. Restdichte/e Å $^{-3}$	0.628	0.467
min. Restdichte/e $Å^{-3}$	-0.809	-0.612

Tabelle D.17. Aligabeli Zui Suuktuibesullillulig Voli 40 uliu 47.

^{*a*}Wasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, wobei U_{iso} an das Trägeratom gekoppelt ist.

	48	49
Summenformel	$C_2H_3Cl_2CuN_3$	C ₁₂ H ₃₈ Cl ₆ N ₁₈ Ni ₃ O ₁₀
$M_{\rm r}/{\rm g}~{\rm mol}^{-1}$	203.51	983.43
Kristallsystem	monoklin	monoklin
Raumgruppe	C2/c	C2/c
a/Å	9.1714(4)	22.4493(3)
b/Å	11.3658(6)	14.3921(2)
c/Å	6.8002(3)	13.6035(2)
$\alpha / ^{\circ}$	90	90
B/°	129.760(2)	124.3090(10)
$\gamma/^{\circ}$	90	90
$V/Å^3$	544.92(4)	3630.47(9)
Z	4	4
$\rho/g \text{ cm}^{-3}$	2.481	1.799
u/mm^{-1}	4 859	2 051
Kristalløröße/mm	$0.14 \times 0.10 \times 0.04$	$0.25 \times 0.24 \times 0.22$
Temperatur/K	200(2)	200(2)
Diffraktometer	Nonius KappaCCD	Nonius KappaCCD
Strahlung	ΜοΚα	ΜοΚα
Anode	Drehanode	Drehanode
Aufnahmeleistung/kW	3.025	3.025
θ -Bereich/°	3.40-27.48	3.36-27.54
Reflexe für Metrik	1141	8108
Absorptionskorrektur	multi-scan	keine
Transmissionsfaktoren	0.5331-0.7456	
Reflexe gemessen	4123	15456
unabh. Reflexe	624	4171
R _{int}	0.0207	0.0255
Mittelwert $\sigma(I)/I$	0.0167	0.0191
Reflexe mit $I \ge 2\sigma(I)$	597	3867
<i>x</i> , <i>y</i> (Wichtung)	0.0135, 1.6222	0.0278, 6.9423
Verfeinerung	а	b
Extinktionsparameter		
Flack-Parameter		
Parameter	39	253
restraints	0	15
$R(F_{obs})$	0.0195	0.0253
$R_{\rm W}(F^2)$	0.0487	0.0643
S	1.206	1.052
shift/error _{max}	0.001	0.001
max. Restdichte/e Å $^{-3}$	0.374	0.557
min. Restdichte/e Å ⁻³	-0.395	-0.473

Tabelle D.20: Angaben zur Strukturbestimmung von 48 und 49.

 a Wasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, wobei U_{iso} an das Trägeratom gekoppelt ist.

	50	51
Summenformel	C ₃₀ H ₃₆ Cl ₆ Cu ₃ N ₃₆	$C_{24,10}H_{58}B_2Cl_2CuN_{13}O_5$
$M_r/g \text{ mol}^{-1}$	1304.27	766.13
Kristallsystem	orthorhombisch	monoklin
Raumgruppe	Ic2m	C2/c
a/Å	16.6018(5)	20.2893(7)
b/Å	17.3754(6)	13.9133(5)
c/Å	17.6710(5)	13.9972(4)
$\alpha/^{\circ}$	90	90
β/°	90	107.825(2)
$\gamma/^{\circ}$	90	90
$V/Å^3$	5097.4(3)	3761.6(2)
Z	4	4
$\rho/\mathrm{g}\mathrm{cm}^{-3}$	1.700	1.353
μ/mm^{-1}	1.623	0.774
Kristallgröße/mm	$0.189 \times 0.186 \times 0.177$	$0.179 \times 0.160 \times 0.097$
Temperatur/K	200(2)	200(2)
Diffraktometer	Nonius KappaCCD	Nonius KappaCCD
Strahlung	МоКα	ΜοΚα
Anode	Drehanode	Drehanode
Aufnahmeleistung/kW	3.025	3.025
θ -Bereich/°	3.29-27.67	3.14-27.50
Reflexe für Metrik	19422	14724
Absorptionskorrektur	keine	keine
Transmissionsfaktoren		
Reflexe gemessen	35332	14755
unabh. Reflexe	5569	4288
R _{int}	0.0499	0.0650
Mittelwert $\sigma(I)/I$	0.0349	0.0443
Reflexe mit $I \ge 2\sigma(I)$	4064	3718
<i>x, y</i> (Wichtung)	0.0563, 7.0787	0.0257, 49.4163
Verfeinerung	а	b
Extinktionsparameter	0.00059(7)	
Flack-Parameter	0.48(3)	
Parameter	366	299
restraints	1	13
$R(F_{\rm obs})$	0.0404	0.0893
$R_{\rm W}(F^2)$	0.1198	0.2164
S	1.052	1.240
shift/error _{max}	0.001	0.001
max. Restdichte/e Å ⁻³	1.243	0.403
min. Restdichte/e Å ⁻³	-0.710	-0.924

Tabelle D.21: Angaben zur Strukturbestimmung von **50** und **51**.

 a Wasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, wobei U_{iso} an das Trägeratom gekoppelt ist. Bei der Kristallstrukturbestimmung stellte sich heruas, dass der Datensatz vermutlich von einem Inversionszwillingskristall stammt, was den Flack-Paramater nahe 0.5 erklärt.

	52	53
Summenformel	C ₆ H ₂₁ N ₂₇ Na ₅ NiO ₉	C ₃ H ₄ N ₉ Tl
$M_r/g \text{ mol}^{-1}$	789.16	370.52
Kristallsvstem	triklin	triklin
Raumgruppe	ΡĪ	ΡĪ
a/Å	9.7882(3)	4.79300(19)
h/Å	11 8278(4)	7.32980(19)
c/Å	12 5111(4)	11 67970(19)
$\alpha / ^{\circ}$	81 795(2)	88 8047(19)
R/°	89 730(2)	78 6784(19)
$\gamma / ^{\circ}$	87 455(2)	72 6796(19)
V/λ^3	1/32 20(8)	72.0790(19) 383 780(10)
V / A 7	1432.20(8))
$\sum a/a am^{-3}$	2 1 820	2 206
$p/g \operatorname{cm}^{-1}$	1.050	3.200
μ/mm^{-1}	0.045	21.008
Kristaligroise/mm	$0.06 \times 0.05 \times 0.025$	$0.10 \times 0.09 \times 0.02$
Temperatur/K	200(2)	200(2)
Diffraktometer	Nonius KappaCCD	Nonius KappaCCD
Strahlung	ΜοΚα	ΜοΚα
Anode	Drehanode	Drehanode
Aufnahmeleistung/kW	3.025	3.025
θ -Bereich/°	3.25–27.59	3.35–27.51
Reflexe für Metrik	19042	9947
Absorptionskorrektur	keine	multi-scan
Transmissionsfaktoren		0.4441-0.7456
Reflexe gemessen	12532	8060
unabh. Reflexe	6615	1757
R _{int}	0.0580	0.0402
Mittelwert $\sigma(I)/I$	0.0987	0.0298
Reflexe mit $I \ge 2\sigma(I)$	4365	1661
<i>x, y</i> (Wichtung)	0.0559,0	0.0247, 0.4830
Verfeinerung	a	b
Extinktionsparameter		
Flack-Parameter		
Parameter	487	119
restraints	27	0
$R(F_{obs})$	0.0507	0.0216
$R_{\rm w}(F^2)$	0.1275	0.0511
S	1.014	1.088
shift/error _{max}	0.001	0.001
max. Restdichte / e Å $^{-3}$	1.014	1.270
min. Restdichte/e Å $^{-3}$	-0.846	-2.085

Tabelle D.22: Angaben zu	r Strukturbestimmung	von 52 und 53.

^aWasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, Wasserstoffatome in Wassermolekülen wurden auf einen Abstand von 0.84 Å zum Sauerstoff und 1.34 Å zwischen den beiden Wasserstoffatomen festgesetzt. U_{iso} ist dabei an das Trägeratom gekoppelt.

^bWasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, wobei U_{iso} an das Trägeratom gekoppelt ist.

	54	55
Summenformel	$C_6H_{10}N_{18}OPb$	$C_4H_7Cl_2N_9O_3Pd$
$M_{\rm r}/{\rm g}~{\rm mol}^{-1}$	557.51	406.49
Kristallsystem	triklin	monoklin
Raumgruppe	ΡĪ	$P2_{1}/c$
a/Å	7.27650(19)	7.10830(10)
b/Å	9.87270(19)	13.0980(3)
c/Å	11.34530(19)	16.0289(3)
α/°	97.3749(18)	90
β/°	93.7380(18)	113.9680(10)
$\gamma/^{\circ}$	98.4219(17)	90
$V/Å^3$	796.637(19)	1363.68(5)
Ζ	2	4
$ ho/\mathrm{g}\mathrm{cm}^{-3}$	2.324	1.980
μ/mm^{-1}	10.635	1.772
Kristallgröße/mm	$0.14 \times 0.06 \times 0.06$	$0.481 \times 0.161 \times 0.106$
Temperatur/K	200(2)	200(2)
Diffraktometer	Nonius KappaCCD	Nonius KappaCCD
Strahlung	ΜοΚα	ΜοΚα
Anode	Drehanode	Drehanode
Aufnahmeleistung/kW	3.025	3.025
θ -Bereich/°	3.24-27.51	3.14-27.51
Reflexe für Metrik	14334	14489
Absorptionskorrektur	multi-scan	multi-scan
Transmissionsfaktoren	0.4681-0.7456	0.5646273-0.833
Reflexe gemessen	15431	20875
unabh. Reflexe	3620	3110
Rint	0.0302	0.0278
Mittelwert $\sigma(I)/I$	0.0265	0.0193
Reflexe mit $I > 2\sigma(I)$	3488	2870
x, y (Wichtung)	0.0278.1.7949	0.0534.0.8820
Verfeinerung	a	b
Extinktionsparameter		0.0258(14)
Flack-Parameter		
Parameter	243	175
restraints	3	0
$R(F_{obc})$	0.0208	0.0333
$R_{\rm ev}(F^2)$	0.0553	0.0971
S	1 099	1 310
shift/errorman	0.002	0.001
max Restdichte / Δ^{-3}	2 422	1 646
min Restdichto / $a^{\lambda-3}$	_1 337	_1 548
mm. Resulting $\subset A$	1.007	1.010

Tabelle D.23: Angaben zur Strukturbestimmung von 54 und 55.

^aWasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, Wasserstoffatome in Wassermolekülen wurden auf einen Abstand von 0.84 Å zum Sauerstoff und 1.34 Å zwischen den beiden Wasserstoffatomen festgesetzt. U_{iso} ist dabei an das Trägeratom gekoppelt.

^bWasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, wobei U_{iso} an das Trägeratom gekoppelt ist. Wasserstoffatome in Wassermolekülen wurden konnten in der Elektronendichtekarte nicht lokalisiert werden und wurden deshalb nicht in der Verfeinerung berücksichtigt.

	56	57
Summenformel	$C_{11}H_{12}C_{11}N_{11}O_{4}$	$C_4H_{12}C_{11}N_{19}$
$M_{\rm r}/{\rm g}~{\rm mol}^{-1}$	458 86	399.88
Kristallsystem	monoklin	monoklin
Raumgruppe	$P2_1/c$	$P2_1/c$
a/Å	9 1221(2)	98740(2)
h/Å	12 6191(3)	9.8404(2)
c/Å	15.5102(3)	8 2985(2)
$\alpha / ^{\circ}$	90	90
R/°	97 3620(10)	109 843(2)
γ / \circ	90	90
$V/\dot{\Delta}^3$	1770 70(7)	758 44(3)
7	1770.70(7) A	2
$a/a \mathrm{cm}^{-3}$	1 721	1 751
μ/mm^{-1}	1.721	1.751
µ/IIIII Kristallaröße /mm	1.275	1.479 0.12 × 0.07 × 0.05
Tomporatur /K	$0.29 \times 0.08 \times 0.03$ 173(2)	$0.13 \times 0.07 \times 0.03$ 173(2)
Diffraktomotor	Nonius KannaCCD	Nonius KannaCCD
Strahlung	MoK ^a	MoK ^w
Anodo	Drohanodo	Drobanada
Aufnahmoloistung /kW	3 025	3 025
A Boroich /°	2 10 27 47	2 47 27 46
Deflove für Metrik	7507	2242
Abcomptional connection	7507 keine	5242 keine
Transmissionsfaktoron	Kenne	Kenne
Poflovo gomosson	14046	5003
unabh Baflava	14040	1721
	4043	1/31
Λ_{int}	0.0202	0.0179
Number $U(I)/I$	2520	1507
Kellexe IIII $I \ge 20(1)$	0.0276 1.0206	1097
<i>x</i> , <i>y</i> (wichtung)	0.0276, 1.0206 a	0.0551, 0.0405 b
Futin litication and a star		-
Extinktionsparameter		
Flack-Parameter	264	107
Parameter	264	127
restraints D(L)	0 0291	0 0248
$R(F_{obs})$	0.0281	0.0248
$R_{\rm W}(F^2)$	0.0728	0.0715
5	1.113	1.091
snift/error _{max}	0.001	0.001
max. Kestdichte/e A^{-3}	0.312	0.486
min. Restdichte/e A^{-3}	-0.387	-0.352

Tabelle D.24: Angaben zur Strukturbestimmung von 56 und 57.

^{*a*}Wasserstoffatome wurden in idealer Geometrie berechnet, wobei U_{iso} an das Trägeratom gekoppelt ist.

^bWasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, Wasserstoffatomen an Stickstoffatomen wurden frei verfeinert. Dabei ist U_{iso} an das Trägeratom gekoppelt.

	58	59
Summenformel	CE0H44AS2CloNOR11	C=0H44CloNOP2R11
$M_{\rm e}/{\rm g}~{\rm mol}^{-1}$	1244 82	1156 92
Kristallsvetem	triklin	triklin
Raumgruppe	PĪ	PĪ
a/Å	10 3245(9)	10 1363(9)
h/λ	10.0243(9) 11.0771(7)	10.1303(9) 11 1230(11)
c/λ	22,2102(16)	11.1237(11) 12.3287(0)
C/A	76.617(6)	70.762(8)
$\alpha / \alpha / \alpha$	70.017(0)	20.255(7)
p_{1}	77.765(6)	80.235(7)
$\frac{1}{\sqrt{3}}$	2570.8(2)	1284.00(10)
V / A ⁵ 7	2379.6(3)	1204.90(19)
\sum	2	1
$\rho/g \text{ cm}^{-1}$	1.603	1.495
μ/mm^{-1}	2.081	0.873
Kristallgröße/mm	$0.26 \times 0.25 \times 0.18$	$0.21 \times 0.17 \times 0.08$
Temperatur/K	200(2)	200(2)
Diffraktometer	Oxford Xcalibur KappaCCD	Oxford Xcalibur KappaCCD
Strahlung	ΜοΚα	ΜοΚα
Anode	Feinfokusröhre	Feinfokusröhre
Aufnahmeleistung/kW	2.00	2.00
θ -Bereich/°	3.74–25.25	3.75–25.25
Reflexe für Metrik		
Absorptionskorrektur	numerisch	numerisch
Transmissionsfaktoren	0.7136-0.7354	0.8926-0.9538
Reflexe gemessen	12503	6159
unabh. Reflexe	9170	4546
R _{int}	0.0175	0.0248
Mittelwert $\sigma(I)/I$	0.0530	0.0626
Reflexe mit $I \ge 2\sigma(I)$	6730	3370
x, y (Wichtung)	0.0314,0	0.0546,0
Verfeinerung	а	a
Extinktionsparameter		
Flack-Parameter		
Parameter	575	290
restraints	0	2
$R(F_{obs})$	0.0300	0.0442
$R_{\rm w}(F^2)$	0.0678	0.1067
S	0.995	1.080
shift/error _{max}	0.001	0.001
max. Restdichte/e Å $^{-3}$	0.597	0.674
min. Restdichte/e Å ⁻³	-0.599	-0.902

Tabelle D 25	Angahen zui	· Strukturbestimi	mung von 58 und 59
100CHC D.20.1	inguben Zu	Jununuluu	fiung von 50 und 57.

^{*a*}Wasserstoffatome wurden in idealer Geometrie berechnet, wobei U_{iso} an das Trägeratom gekoppelt ist.

	60	61
Summenformel	F ₅ H ₂ K ₂ NO ₂ Ru	C ₁₄ H ₂₀ ClN ₉ NiO ₄
$M_{\rm r}/{\rm g}~{\rm mol}^{-1}$	322.30	472.55
Kristallsystem	orthorhombisch	monoklin
Raumgruppe	Pbca	P2 ₁
a/Å	6.3295(2)	8.3996(2)
b/Å	12.5280(4)	13.1942(6)
c/Å	18.2942(6)	8.9067(4)
$\alpha/^{\circ}$	90	90
$\beta/^{\circ}$	90	103.250(3)
$\gamma/^{\circ}$	90	90
$V/Å^3$	1450.66(8)	960.82(7)
Z	8	2
$\rho/g \text{ cm}^{-3}$	2.951	1.633
u/mm^{-1}	3 355	1 192
Kristalløröße/mm	$0.10 \times 0.05 \times 0.04$	$0.413 \times 0.215 \times 0.188$
Temperatur/K	200(2)	200(2)
Diffraktometer	Nonius KappaCCD	Nonius KappaCCD
Strahlung	MoKα	MoKa
Anode	Drehanode	Drehanode
Aufnahmeleistung/kW	3 025	3 025
θ -Bereich /°	3 25-27 48	3 01-27 52
Reflexe für Metrik	5556	2271
Absorptionskorrektur	keine	keine
Transmissionsfaktoren	Relife	Relife
Reflexe gemessen	10174	4304
unabh. Reflexe	1662	4304
Rint	0.0423	0.0000
Mittelwert $\sigma(I)/I$	0.0284	0.0247
Reflexe mit $I > 2\sigma(I)$	1117	4124
x, y (Wichtung)	0.0280.1.0261	0.0388.0.4590
Verfeinerung	a	b
Extinktionsparameter		
Flack-Parameter		0.013(11)
Parameter	106	295
restraints	3	8
$R(F_{-1,-})$	0 0263	0 0290
$R(F^2)$	0.0200	0.0744
S	1 040	1.042
shift/error	0.001	0.001
max Restdicted Δ^{-3}	0.490	0.442
min Restdichto / $a^{\lambda-3}$	_1 04 7	_0 325
min. Kestaichte/e A	-1.042	-0.325

Tabelle D.26: Angaben zur Strukturbestimmung von 60 und 61.

^aWasserstoffatome in Wassermolekülen wurden auf einen Abstand von 0.84 Å zum Sauerstoff und 1.34 Å zwischen den beiden Wasserstoffatomen festgesetzt. U_{iso} ist dabei an das Trägeratom gekoppelt.

	62	63
Summenformel	$C_{20}H_{22}BN_0NiO_2$	C20HE2N14Ni2O14
$M_{\rm r}/{\rm g}~{\rm mol}^{-1}$	720.28	984 97
Kristallsvetem	monoklin	orthorhombisch
Raimgruppe	$P_{1/c}$	Cmca
a/Å	143762(4)	16 2234(5)
h/Δ	14.3702(4) 14 7240(4)	15.0452(4)
c/Å	17.3850(5)	15.0402(4) 15.0202(3)
c/A	90	90
и/ д / °	20 07 200(0)	90
p_{1}	97.522(2)	90
$\frac{\gamma}{\sqrt{3}}$	2650 15(18)	2715 01(17)
V / A ¹	3630.13(18) 4	5715.01(17)
\sum	4 1 011	4
$\rho/g \text{ cm}^{\circ}$	1.311	1.701
μ/mm^{-1}	0.578	1.593
Kristallgroße/mm	$0.16 \times 0.11 \times 0.08$	$0.286 \times 0.280 \times 0.182$
Temperatur/K	200(2)	200(2)
Diffraktometer	Nonius KappaCCD	Nonius KappaCCD
Strahlung	Μοκα	ΜοΚα
Anode	Drehanode	Drehanode
Autnahmeleistung/kW	3.025	3.025
θ -Bereich/°	3.17–27.48	3.02–27.51
Reflexe für Metrik	15654	14591
Absorptionskorrektur	keine	multi-scan
Transmissionsfaktoren		0.6063-0.7455
Reflexe gemessen	29041	22959
unabh. Reflexe	8359	2208
R _{int}	0.1020	0.0458
Mittelwert $\sigma(I)/I$	0.0943	0.0289
Reflexe mit $I \ge 2\sigma(I)$	4706	1863
<i>x, y</i> (Wichtung)	0.0493, 0.3639	0.1225, 11.2522
Verfeinerung	а	b
Extinktionsparameter		0.0101(13)
Flack-Parameter		
Parameter	460	149
restraints	0	2
$R(F_{\rm obs})$	0.0499	0.0678
$R_{\rm w}(F^2)$	0.1204	0.2055
S	1.006	1.131
<i>shift/error</i> _{max}	0.001	0.001
max. Restdichte/e Å ⁻³	0.437	0.773
min. Restdichte/e Å ⁻³	-0.309	-1.133

Tabelle D.27: Angaben zur Strukturbestimmung von 62 und 63.

^{*a*}Wasserstoffatome wurden in idealer Geometrie berechnet, wobei U_{iso} an das Trägeratom gekoppelt ist.

^bWasserstoffatome an Kohlenstoffatomen wurden in idealer Geometrie berechnet, Wasserstoffatomen an Stickstoffatomen wurden frei verfeinert. Dabei ist U_{iso} an das Trägeratom gekoppelt.

	64
Summenformel	C ₈ H ₁₄ N ₂₀ NiO ₄
$M_{\rm r}/{ m g}~{ m mol}^{-1}$	513.10
Kristallsystem	triklin
Raumgruppe	ΡĪ
a/Å	7.7864(9)
b/Å	8.8223(11)
c/Å	8.8325(11)
α/°	105.275(6)
β/°	114.255(7)
$\gamma/^{\circ}$	105.308(7)
$V/Å^3$	483.49(12)
Ζ	1
$\rho/\mathrm{g}\mathrm{cm}^{-3}$	1.762
μ/mm^{-1}	1.074
Kristallgröße/mm	$0.14 \times 0.03 \times 0.02$
Temperatur/K	200(2)
Diffraktometer	Nonius KappaCCD
Strahlung	ΜοΚα
Anode	Drehanode
Aufnahmeleistung/kW	3.025
θ -Bereich/°	3.15-27.67
Reflexe für Metrik	2120
Absorptionskorrektur	keine
Transmissionsfaktoren	
Reflexe gemessen	4161
unabh. Reflexe	2209
R _{int}	0.0861
Mittelwert $\sigma(I)/I$	0.1596
Reflexe mit $I \ge 2\sigma(I)$	1236
<i>x, y</i> (Wichtung)	0.0690,0
Verfeinerung	а
Extinktionsparameter	
Flack-Parameter	
Parameter	153
restraints	0
$R(F_{\rm obs})$	0.0558
$R_{\rm w}(F^2)$	0.1745
S	1.011
shift/error _{max}	0.001
max. Restdichte/e Å $^{-3}$	1.080
min. Restdichte/e Å ⁻³	-0.707

Tabelle D.28: Angaben zur Strukturbestimmung von 64.

^{*a*}Wasserstoffatome wurden in idealer Geometrie berechnet, wobei U_{iso} an das Trägeratom gekoppelt ist.

D Angaben zu den Strukturbestimmungen

Teil VIII

Literaturverzeichnis

Literaturverzeichnis

- Schreiter, E. R.; Rodrguez, M. M.; Weichsel, A.; Montfort, W. R.; Bonaventura, J. J. Biol. Chem. 2007, 282, 19773–19780.
- [2] Lippard, S. J.; Berg, J. M. Bioanorganische Chemie, 1st ed.; Spektrum Akademischer Verlag GmbH: Heidelberg, Berlin, Oxford, 1995.
- [3] Lawson, D. M.; Stevenson, C. E. M.; Andrew, C. R.; Eady, R. R. *The EMBO Journal* 2000, 19, 5661–5671.
- [4] Silagh-Dumitrescu, R. Inorg. Chem. 2004, 43, 3715–3718.
- [5] Moir, J. W. B. Biochim. Biophys. Acta 1999, 1430, 65–72.
- [6] Gütlich, P.; Garcia, Y.; Woike, T. Coord. Chem. Rev. 2001, 219–221, 839–879.
- [7] Schaniel, D.; Woike, T.; Merschjann, C.; Imlau, M. *Phys. Rev. B* 2005, 72, 195119.
- [8] Schaniel, D.; Woike, T.; Boskovic, C.; Güdel, H.-U. Chem. Phys. Lett. 2004, 390, 347–351.
- [9] Bitterwolf, T. E. Coord. Chem. Rev. 2006, 250, 1196–1207.
- [10] Coppens, P.; Novozhilova, I.; Kovalevsky, A. Chem. Rev. 2002, 102, 861– 883.
- [11] Delley, B.; Schefer, J. J. Chem. Phys. 1997, 107, 10067–10074.
- [12] Schaniel, D.; Woike, T.; Delley, B.; Boskovic, C.; Biner, D.; Krämer, K. W.; Güdel, H.-U. PCCP 2005, 7, 1164–1170.
- [13] Xu, N.; Lee, J.; Powell, D. R.; Richter-Addo, G. B. Inorg. Chim. Acta 2005, 358, 2855–2860.

- [14] Carducci, M. D.; Pressprich, M. R.; Coppens, P. J. Am. Chem. Soc. 1997, 119, 2669–2678.
- [15] Gorelsky, S. I.; Lever, A. B. P. Int. J. Quant. Chem. 2000, 80, 636–645.
- [16] Ishikawa, T.; Tanaka, K. Chem. Phys. Lett. 2005, 412, 164–170.
- [17] Sizova, O. V.; Sizov, V. V.; Baranovski, V. I. J. Mol. Struct. (THEOCHEM) 2004, 683, 97.
- [18] Sizova, O. V.; Lubimova, O. O. J. Mol. Struct. (THEOCHEM) 2004, 712, 33.
- [19] Sizova, O. V.; Lyubimova, O. O.; Sizov, V. V. Russ. J. Gen. Chem. 2004, 74, 317.
- [20] Sizova, O. V.; Sokolov, A. Y.; Skripnikov, L. V.; Baranovski, V. I. Polyhedron 2007, 26, 4680.
- [21] Schaniel, D.; Woike, T.; Delley, B.; Boskovic, C.; Biner, D.; Krämer, K. W.; Güdel, H.-U. *Phys. Chem. Chem. Phys.* **2005**, *7*, 1164.
- [22] Kerscher, T.; Mayer, P.; Klüfers, P. Acta Cryst. E 2009, 65, o2195.
- [23] Kerscher, T.; Klüfers, P.; Kügel, W.; Müller, C. Acta Cryst. E 2007, 63, 04779.
- [24] Kerscher, T.; Klüfers, P.; Kügel, W. Acta Cryst. E 2007, 63, 04217.
- [25] Norsten, T. B.; McDonald, R.; Branda, N. R. Chem. Comm. 1999, 8, 719.
- [26] Gallicano, K. D.; Paddock, N. L.; Rettig, S. J.; Trotter, J. Can. J. Chem. 1992, 70, 1855.
- [27] Churchill, M. R.; Churchill, D. G.; Huynh, M. H. V.; Takeuchi, K. J.; Castellano, R. K.; Jameson, D. L. J. Chem. Cryst. 1996, 26, 93.
- [28] McLauchlan, C. C.; Varda, A. N.; Giles, J. R. Acta Cryst. E 2004, 60, o1419.
- [29] Kerscher, T.; Pust, P.; Betz, R.; Klufers, P.; Mayer, P. Acta Cryst. E 2009, 65, 0108.
- [30] Stierstorfer, J.; Klapötke, T. M. Persönliche Mitteilung 2007.

- [31] Diop, C. A. K.; Mahon, M. F.; Molloy, K. C.; Ooi, L.; Raithby, P. R.; Venter, M. M.; J.Teat, S. Cryst. Eng. Comm 2002, 4, 462.
- [32] Keene, F. R.; T.Tiekink, E. R. Z. Kristallogr. 1994, 209, 548.
- [33] Astley, T.; Gulbis, J. M.; Hitchman, M. A.; Tiekink, E. R. T. J. Chem. Soc., Dalton Trans. **1993**, 509.
- [34] Moubaraki, B.; Murray, K. S.; T.Tiekink, E. R. Z. Kristallogr.- New Cryst. Struct. 2003, 218, 354.
- [35] Ranninger, M. C. N. J. Appl. Cryst. 1979, 12, 253–254.
- [36] Konopelski, J. P.; Reimann, C. W.; Hubbard, C. R.; Mighell, A. D.; Santoro, A. Acta. Cryst. B 1976, 32, 2911–2913.
- [37] Gong, Y.; Hu, C.; Li, H.; Pan, W.; Niu, X.; Pu, Z. J. Mol. Struct. 2005, 740, 153–158.
- [38] Reimann, C. W.; Zocchi, M. Acta Cryst. B 1971, 27, 682–691.
- [39] Ding, B.; Yi, L.; Shen, W.-Z.; Cheng, P.; Liao, D.-Z.; Yan, S.-P.; Jiang, Z.-H. J. Mol. Struct. 2006, 784, 138–143.
- [40] Durig, J. R.; McAllister, W. A.; Willis, J. N.; Mercer, E. E. Spectrochimica Acta 1966, 22, 1091–1100.
- [41] Mikhailov, Y. N.; Kanishcheva, A. S.; Svetlov, A. A. Russ. J. Inorg. Chem. 1989, 34, 1603–1605.
- [42] Khodashova, T. S.; Bokii, G. B. Zhurnal Strukturnoi Khimii 1960, 1, 151.
- [43] Sinitsyn, N. M., e. a. Russ. J. Inorg. Chem. 1983, 28, 1464.
- [44] Frisch, M. J. et al. Gaussian 03, Revision D.01, 2004, Gaussian, Inc., Wallingford CT.
- [45] TURBOMOLE V6.1 2009, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.

- [46] Levine, I. N. Quantum Chemistry, 5th ed.; Prentice Hall, Inc.: Upper Saddle River, New Jersey 07458, 2000.
- [47] Barth, M. Dissertation an der Ludwig-Maximilians Universität München 2005.
- [48] Zangl, A. Dissertation an der Ludwig-Maximilians Universität München 2009.
- [49] Giglmeier, H. Persönliche Mitteilung 2009.
- [50] Holleman, A. F.; Wiberg, E.; Wiberg, N. Lehrbuch der anorganischen Chemie, 101st ed.; Walter de Gruyter: Berlin, New York, 1995.
- [51] *CPMD*, Copyright IBM Corp 1990-2006, Copyright MPI für Festkörperforschung Stuttgart, 1997-2001.
- [52] Goedecker, S.; Teter, M.; Hutter, J. Physical Review B 1996, 54, 1703–1710.
- [53] Sheldrick, G. M. SHELXS97 und SHELXL97, 1997, Universität Göttingen, Deutschland.
- [54] Namavari, M.; Satyamurthy, N.; Phelps, M. E.; Barrio, J. R. Tet. Lett. 1990, 31, 4973–4976.
- [55] Houben-Weyl, Methoden der organischen Chemie, 4th ed.; Georg Thieme Verlag: Rüdigerstraße 14, D-70469 Stuttgart, 1994.
- [56] Fortney, C. F.; Geib, S. J.; tyan Lin, F.; Shepherd, R. E. *Inorg. Chim. Acta* 2005, 358, 2921–2932.
- [57] Emel'yanov, V. A.; Baidina, I. A.; Khranenko, S. P.; Gromilov, S. A.;
 Il'in, M. A.; Belyaev, A. V. J. Struct. Chem. 2003, 44, 37–45.
- [58] Field, L. D.; Messerle, B. A.; Rehr, M.; Soler, L. P.; Hambley, T. W. Organometallics 2003, 22, 2387–2395.
- [59] Trofimenko, S. J. Am. Chem. Soc. 1967, 89, 3170–3177.
- [60] Reger, D. L.; Grattan, T. C.; Brown, K. J.; Little, C. A.; Lamba, J. J. S.; Rheingold, A. L.; Sommer, R. D. J. Organomet. Chem. 2000, 607, 120–128.

- [61] Platter, M. J.; Aiken, S.; Bourhill, G. Tetrahedron 2002, 58, 2405–2413.
- [62] Littler, B. J.; Miller, M. A.; Hung, C.-H.; Wagner, R. W.; O'Shea, D. F.; Boyle, P. D.; Lindsey, J. S. J. Org. Chem. **1999**, 64, 1391–1396.
- [63] Henry, R. A. J. Am. Chem. Soc. 1951, 73, 4470–4470.
- [64] Friedrich, M.; Gálvez-Ruiz, J. C.; Klapötke, T. M.; Mayer, P.; Weber, B.; Weigand, J. J. *Inorg. Chem.* 2005, 44, 8044–8052.
- [65] Klapötke, T. M.; Mayer, P.; Stierstorfer, J.; Weigand, J. J. J. Mater. Chem.
 2008, 18, 5248–5258.
- [66] Finnegan, W. G.; Henry, R. A.; Lofquist, R. J. Am. Chem. Soc. 1958, 80, 3909–3911.

Literaturverzeichnis

Publikationen

Voll, J., Kerscher, T., Geppert, D., de Vivie-Riedle, R., *J. Photochem. Photobiol. A*, **2007**, *190*, 352.

Kerscher, T., Klapötke, T. M., Krumm, B., Polborn, K., Scherr, M., J. Fluorine Chem., 2006, 127, 1030.

Kerscher, T., Klüfers, P., Kügel, W., Acta Cryst. E, 2007, E63, 04217.

Kerscher, T., Klüfers, P., Kügel, W., Müller, C., Acta Cryst. E, 2007, E63, 04779.

Kerscher, T., Zeller, P., Mayer, P., Klüfers, P., Acta Cryst. E, 2008, E64, m1637.

Kerscher, T., Pust, P., Betz, R., Klüfers, P., Mayer, P., *Acta Cryst. E*, **2009**, *E65*, o108.

Kerscher, T., Betz, R., Klüfers, P., Mayer, P., Acta Cryst. E, 2009, E65, o211.

Giglmeier, H., Kerscher T., Klüfers, P., Mayer P., *Acta Cryst. E*, **2009**, *E65*, o592.

Kerscher, T., Prommnitz, T., Klüfers, P., Mayer, P., Acta Cryst. E, E65, 0405.

Kerscher, T., Mayer, P., Klüfers, P., Acta Cryst. E, 2009, E65, o2195.

Giglmeier, H., Kerscher, T., Klüfers, P., Schaniel, D., Woike, T., *Dalton Trans.*, **2009**, *42*, 9113 .

Posterpräsentationen

DFT Investigations on photoinduced linkage isomers of {RuNO}⁶ complexes with amino-acid-related ligands, Kerscher, T., Klüfers, P., *GDCh - Wissenschaftsforum Chemie 2007*, **2007**, Ulm, Deutschland.

DFT Investigations on photoinduced linkage isomers of {RuNO}⁶ complexes with amino-acid-related ligands, Kerscher, T., Klüfers, P., *14. Vortragstagung der Wöhler-Vereinigung*, **2008**, Garching/München, Deutschland.

Lebenslauf

Persönliche Daten

Name:	Tobias Kerscher
Geburtsdatum:	26.03.1981
Geburtsort:	Roding
Staatsangehörigkeit:	deutsch
Familienstand:	ledig

Schulische Ausbildung

1987 bis 1989:	Grundschule Waldmünchen
1989 bis 1991:	Grundschule Wetterfeld
1991 bis 2000:	Joseph von Fraunhofer Gymnasium, Cham
Schulabschluss:	Abitur im Juni 2000

Grundwehrdienst

Juli 2000 bis April 200	1:	Grundwehrdienst	in	der	Nordgaukaserne	in
		Cham.				

Hochschulausbildung

Okt. 2001 bis Sep. 2004:	Studium des Bachelor-Studiengangs Chemie					
	und Biochemie an der LMU München.					
Studienabschluss:	Bachelor of Science im September 2004					
Okt. 2004 bis Dez. 2006:	Studium des Master-Studiengangs Chemie an					
	der LMU München.					
Studienabschluss:	Master of Science im Dezember 2006					
Seit Januar 2007:	Anfertigung der vorliegenden Dissertation unter					
	Anleitung von Prof. Dr. P. Klüfers					

Beruflicher Werdegang

Mai 2001 bis August 2001:	Programmierer	bei	der	Firma	SMB-			
	Systemlösungen	in Kötz	ting					
Januar 2007 bis März 2008:	uar 2007 bis März 2008: Wissenschaftlicher Mitarbeiter im Arl							
	von Prof. Klüfers an der LMU München							
Seit März 2008:	Stipendiat der Ha	anns-Se	eidel-St	iftung				