
   

 

 

 

ACTIVITY-DEPENDENT CHANGES IN A NEURONAL 
CIRCUIT IMPORTANT FOR SOUND LOCALIZATION 

 

 

 

Dissertation 

of the 

Graduate School of Systemic Neurosciences 

of 

Ludwig-Maximilians-University Munich 

 

 

 

Submitted by 

Benjamin Haßfurth 

Munich, May 2010 

 

 



 

  2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supervisor:   PD Dr. Ursula Koch 

Second expert appraiser: Prof. Benedikt Grothe 

Day of the oral defense: 31.08.2010 

 



 

  3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Für meine Familie 



 

 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  5 

TABLE OF CONTENTS 

 

SUMMARY          9 

ZUSAMMENFASSUNG        13 

1 INTRODUCTION 

1.1 The evolution of hearing        17 

1.2 Sound transmission in the ear        19 

1.3 Auditory processing         21 

1.4 The superior olivary complex - interaural level differences and interaural time 
differences          25 

1.5 Early developmental changes in the superior olivary complex - preparing for 
the acoustic environment        30 

1.6 Activity-dependent adaptations in the superior olivary complex - optimizing 
sound localization         32 

1.7 GABAB receptors and their relevance for auditory processes    34 

1.8 HCN channels - structure and function       37 

1.9 Aims of this study         39 

2 MATERIAL AND METHODS 

2.1 General methods         41 

2.2 HCN channel specific methods        42 

2.2.1 Drugs and solutions         42 

2.2.2 Data acquisition and analysis        42 

2.2.3 Cochlear ablations         43 

2.3 GABAB receptor specific methods       44 

2.3.1 Drugs and solutions         44 

2.3.2 Experimental procedure        44 

2.3.3 Data acquisition and analysis        45 

2.3.4 Immunohistochemistry        46 

 



  CONTENTS 
 

 6 

3 SENSORY DEPRIVATION REGULATES THE DEVELOPMENT OF THE 
HYPERPOLARIZATION-ACTIVATED CURRENT IN AUDITORY 
BRAINSTEM NEURONS 

3.1. Introduction          47 

3.2 Results           48 

3.2.1 The Ih current has a larger impact on the voltage response in the LSO 
than in the MNTB         48 

3.2.2 Ih current properties differ between the LSO and the MNTB    50 

3.2.3 Ih current but not current density differs along the tonotopic axis of the 
LSO but not the MNTB        52 

3.2.4 Ih current increases after hearing onset in the LSO but not in the MNTB  53 

3.2.5 Bilateral cochlear ablations have opposite effects in the LSO and the MNTB  55 

3.2.6 Bilateral cochlear ablation modulates the membrane properties of LSO neurons 58 

3.2.7 Unilateral sensory deprivation changes Ih properties in the LSO   59 

3.3 Discussion          60 

3.3.1 Developmental changes in Ih properties differ between the LSO and the MNTB  61 

3.3.2 Neuronal activity regulates Ih current amplitude     61 

3.3.3 Mechanism of Ih modulation        63 

3.3.4 Functional consequences of Ih modulation in the auditory brainstem   63 

4 THE MAMMALIAN ITD DETECTION CIRCUIT IS DIFFERENTIALLY 
CONTROLLED BY GABAB RECEPTORS DURING DEVELOPMENT 

4.1 Introduction          65 

4.2 Results           66 

4.2.1 GABAB receptors modulate all four major inputs to MSO neurons   66 

4.2.2 The relative effect of GABABR activation on inhibitory and excitatory currents  
changes during development        68 

4.2.3 GABABR immunostaining changes from a predominantly dendritic to a mostly 
somatic location during development       69 

4.2.4 At all developmental stages GABABRs control transmitter release probability 
 on the excitatory and inhibitory inputs to MSO principal neurons   71 

4.2.5 Before hearing onset MNTB fiber stimulation activates presynaptic GABABRs  73 

4.2.6 The LNTB-MSO projection has no GABAergic component after hearing onset  75 

4.2.7 Presynaptic GABABRs are not activated by retrograde GABA release in the MSO 76 

4.2.8 Anatomical evidence for other GABAergic input to MSO neurons   78 

4.2.9 Raising spontaneous activity levels induces GABABRs activation even later during 
development          80 

4.3 Discussion          81 

4.3.1 Developmental changes of presynaptic GABABRs distribution    82 

 



  CONTENTS 
 

 7 

4.3.2 MNTB and LNTB fiber stimulation activates GABABRs in the MSO only before 
hearing onset          82 

4.3.3 Endogenous GABABR activation in the MSO after hearing onset   84 

4.3.4 Possible functional significance of GABABRs in the MSO before and after 
hearing onset          84 

5 GENERAL DISCUSSION 

5.1 Consequences of neuronal activity - adaptive and homeostatic mechanisms to  
regulate faithful auditory processing       88 

5.1.1 Synaptic plasticity in the auditory system at different developmental stages  89 

5.1.2 Excitability as an option to control overall activity levels in the auditory brainstem 92 

5.2 Auditory circuits are balanced by metabotropic receptors    94 

5.2.1 GABABRs in developing neuronal circuits      94 

5.2.2 A comparison of further GPCRs in the auditory brainstem    96 

5.2.3 The functional role of GABABRs in an ITD detection circuitry    98 

5.3 Concluding remarks         99 

6 BIBLIOGRAPHY         101 

7 LIST OF ABBREVIATIONS        131 

8 ACKNOWLEDEGMENTS        135 



 

  8 

 



 

  9 

SUMMARY 

Aside from recognizing and distinguishing sound patterns, the ability to localize sounds in the 

horizontal plane is an essential component of the mammalian auditory system. It facilitates 

approaching potential mating partners and allows avoiding predators. 

The superior olivary complex (SOC) within the auditory brainstem is the first site of binaural 

interaction and its major projections and inputs are well investigated. The adult input pattern, 

however, is not set from the beginning but changes over the period of development. 

Mammals including humans experience different stages and conditions of hearing during 

auditory development. The human brain for instance has to perform a transition after birth 

from the perception of sound waves transmitted in amniotic fluid to the perception of airborne 

sounds. Furthermore, small mammals like rodents, which are common model organisms for 

auditory research, perceive airborne sounds for the first time some days after birth, when 

their ear canals open. The basic neuronal projections and the intrinsic properties of neurons, 

such as the expression of specific ion channels, are already established and adjusted in the 

SOC during the perinatal period of partial deafness. An additional refinement of inputs and 

further adaptations of intrinsic characteristics occur with the onset of hearing in response to 

the new acoustic environment. It is likely that with ongoing maturation well-established inputs 

within the sound localization network need these adaptations to balance anatomical changes 

such as an increasing head size. In addition, short-term adjustments of synaptic inputs in the 

adult auditory system are equally necessary for a faithful representation of auditory space. A 

recent study suggests that these short-term adaptations are partially represented at the 

auditory brainstem level. 

The question of how intrinsic properties change during auditory development, to what extent 

auditory experience is involved in these changes and the functional implications of these 

changes on the sound localization circuitry is only partially answered. I used the 

hyperpolarization-activated and cyclic nucleotide-gated cation channels (HCN channels), 

which are a key determinant of the intrinsic properties of auditory brainstem neurons, as a 

target to study the influence of auditory experience on the intrinsic properties of neurons in 

the auditory brainstem. 

Another important question still under discussion is how neurons in the auditory brainstem 

might fine-tune their firing behavior to cope optimally with an altered acoustic environment. 

Recent data suggest that auditory processing is also affected by modulatory mechanisms at 

the brainstem level, which for instance change the input strength and thus alter the spike 

output of these neurons. One possible candidate is the metabotropic GABAB receptor 

(GABABR) which has been shown to be abundant in the adult auditory brainstem, although 

GABAergic projections are scarce in the mature auditory brainstem. 
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These questions were investigated by performing whole-cell patch-clamp recordings of SOC 

neurons from Mongolian gerbils at different developmental stages in the acute brain slice 

preparation. Specific currents and receptors were isolated using pharmacological means. 

Immmunohistochemical results additionally supported physiological findings. 

In the first study, I investigated the developmental regulation of HCN channels in the SOC 

and their underlying depolarizing current Ih, which has been shown to regulate the excitability 

of neurons and to enhance the temporally precise analysis of binaural acoustic cues. I 

characterized the developmental changes of Ih in neurons of the lateral superior olive (LSO) 

and the medial nucleus of the trapezoid body (MNTB), which in the adult animals show 

different HCN subunit composition. I showed that right after hearing onset there was a strong 

increase of Ih in the LSO and just a minor increase in the MNTB. In addition, the open 

probability of HCN channels was shifted towards more positive voltages in both nuclei and 

the activation time constants accelerated during the first days of auditory experience. These 

results implicate that Ih is actively regulated by sensory input activity. I tested this hypothesis 

by inducing auditory deprivation which was achieved by surgically removing the cochlea in 

gerbils before hearing onset. The effect was opposite in neurons of the MNTB and the LSO. 

Whereas in LSO neurons auditory deprivation resulted in increased Ih amplitude, MNTB 

neurons displayed a moderate decrease in Ih. These results suggest that auditory experience 

differentially changes the amount of HCN channels dependent on the subunit composition or 

possibly alters intracellular cAMP levels, thereby shifting the voltage dependence of Ih. This 

regulatory mechanism might thus maintain adequate excitability levels within the SOC. 

A second study was carried out to investigate the role of GABABRs in the medial superior 

olive (MSO). Upon activation, these metabotropic receptors are known to decrease the 

release probability of neurotransmitters at the presynapse thereby altering excitatory and 

inhibitory currents at the postsynaptic site. Neurons in the MSO analyze interaural time 

differences (ITDs) by comparing the relative timing of the excitatory inputs from the two ears 

using a coincidence mechanism. In addition, these neurons receive a precisely timed 

inhibitory input from each ear which shifts ITDs in the physiological relevant range. Since the 

major inhibitory input changes its transmitter type from mixed GABA/glycinergic to only 

glycinergic after hearing onset it was now interesting to examine the mediated effects of 

GABABRs, which have been shown to be abundant in the prehearing and adult MSO of 

gerbils. Furthermore, revealing the precise expression pattern of GABABRs and their 

influence on excitatory and inhibitory currents in the MSO during auditory development 

should provide further evidence of their functional relevance. Performing pharmacological 

experiments I could now demonstrate that the activation of GABABRs before hearing onset 

decreases the current of excitatory inputs stronger than that of inhibitory inputs whereas a 

switch is performed after hearing onset and inhibitory currents are stronger decreased 
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compared to excitatory currents. In a similar way, also the expression pattern of GABABRs 

changes before and after hearing onset as revealed by immunohistochemistry. Since the 

main inhibitory inputs to the adult MSO are purely glycinergic, it was commonly assumed that 

GABABRs occupy only a minor role in the mature auditory brainstem. Contradictory to this, it 

was possible to activate presynaptic GABABRs by synaptic stimulation even in adult animals 

and to observe a profound decrease of inhibitory current in MSO neurons. These results 

suggest GABAergic projections of yet unknown origin targeting the MSO. It is therefore quite 

likely that GABABRs modulate and possibly improve the localization of low frequency sounds 

even in adult mammals. 

Summarized, the outcome of this thesis contributes to a better understanding of the 

developmental adaptation in the auditory system and demonstrates that the orderly 

specification of intrinsic properties within the SOC is dependent on auditory experience. 

Moreover, I show that even in mature animals the synaptic strength of MSO inputs can be 

modulated by synaptic GABA release. This should emphasize the importance of modulatory 

mechanisms and could be the basis for future studies concerning the field of sound 

localization. 
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ZUSAMMENFASSUNG 

Neben dem Erkennen und Unterscheiden von Klangbildern ist die Fähigkeit Schall in der 

horizontalen Ebene zu lokalisieren ein wesentlicher Bestandteil des auditorischen Systems 

von Säugetieren. So wird hierdurch die Annäherung an mögliche Paarungspartner erleichtert 

oder das Meiden von Raubtieren ermöglicht. 

Der obere Olivenkomplex (SOC) im auditorischen Hirnstamm ist die erste Stelle binauraler 

Wechselwirkung und die Hauptprojektionen innerhalb dieses Komplexes sind hinreichend 

untersucht. Das adulte Muster der Eingänge ist jedoch zu Anfang noch nicht endgültig 

festgelegt und ändert sich im weiteren Verlauf der Entwicklung. Säugetiere, einschließlich 

des Menschen, durchlaufen während ihrer auditorischen Entwicklung verschiedene Stadien 

und Zustände des Hörens. So muss das menschliche Gehirn beispielsweise nach der Geburt 

eine Umstellung der Schallwahrnehmung in Fruchtwasser hin zur Schallwahrnehmung in Luft 

vollziehen. Des Weiteren nehmen kleine Säuger, wie Nagetiere (übliche Modellorganismen 

für die Hörforschung), luftübertragenen Schall erst einige Tage nach der Geburt mit dem 

Öffnen ihrer Gehörgänge wahr. Die grundlegenden Projektionen und intrinsischen 

neuronalen Eigenschaften, wie z.B. die Expression spezifischer Ionenkanäle, sind bereits 

während des geburtsnahen Zeitraums teilweiser Taubheit im SOC ausgebildet und 

angepasst. Mit Hörbeginn finden eine zusätzliche Verfeinerung des Eingangsmusters und 

weitere Anpassungen intrinsischer Eigenschaften als Antwort auf eine neue akustische 

Umgebung statt. Es ist durchaus möglich, dass vorhandene Eingänge innerhalb des 

Schaltkreises zur Schalllokalisierung diese Angleichungen mit fortschreitender Reifung 

benötigen, um anatomische Veränderungen wie einen zunehmenden Kopfumfang 

auszugleichen. Darüber hinaus sind kurzfristige Anpassungen synaptischer Eingänge des 

adulten auditorischen Systems gleichermaßen notwendig, um eine zuverlässige Darstellung 

des auditorischen Raumes wiederzugeben. In einer kürzlich veröffentlichten Studie wurde 

vorgeschlagen, dass diese kurzfristigen Anpassungen teilweise auf Ebene des auditorischen 

Hirnstammes wieder zu finden ist. 

Die Fragen, wie sich intrinsische Eigenschaften während der auditorischen Entwicklung 

verändern, in welchem Ausmaß auditorische Erfahrung daran beteiligt ist und die Frage nach 

der funktionellen Bedeutung dieser Änderungen für den Schaltkreis zur Schalllokalisierung 

sind nur teilweise beantwortet. 

Ich verwendete die Hyperpolarisations-aktivierten Zyklonukleotid-gesteuerten 

Kationenkanäle (HCN Kanäle), die ein bestimmender Faktor der intrinsischen Eigenschaften 

auditorischer Hirnstamm-Neurone sind, als Ansatzpunkt, um den Einfluss auditorischer 

Erfahrung auf ebendiese Eigenschaften von Neuronen des auditorischen Hirnstammes zu 

untersuchen. 
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Eine weitere und immer noch diskutierte Frage ist, wie Neurone des auditorischen 

Hirnstammes ihr Antwortverhalten feinabstimmen könnten, um eine veränderte akustische 

Umgebung optimal zu verarbeiten. Neueste Daten lassen vermuten, dass die Verarbeitung 

auditorischer Signale auch durch modulatorische Mechanismen auf Ebene des Hirnstammes 

beeinflusst wird. Diese Mechanismen können beispielsweise die Stärke der Eingänge und 

somit das Ausgangssignal auditorischer Neurone verändern. Ein möglicher Kandidat hierfür 

ist der metabotrope GABAB Rezeptor (GABABRs), der, wie bereits gezeigt wurde, reichhaltig 

im adulten auditorischen Hirnstamm exprimiert wird, obwohl GABAerge Projektionen im 

reifen auditorischen Hirnstamm kaum zu finden sind. 

Diese Fragestellungen wurden an akuten Hirnschnittpräparationen mit Hilfe von 

Ganzzellableitung von SOC Neuronen Mongolischer Wüstenrennmäuse in unterschiedlichen 

Entwicklungsstadien durchgeführt. Spezifische Ströme und Rezeptoren wurden 

pharmakologisch isoliert und immunhistochemische Ergebnisse unterstützten die so 

erhaltenen physiologischen Erkenntnisse. 

In der ersten Studie untersuchte ich die entwicklungsabhängige Regulierung von HCN 

Kanälen im SOC und den durch diese Kanäle vermittelten Strom Ih, der erwiesenermaßen 

die neuronale Erregbarkeit bestimmt und die zeitlich präzise Analyse von binauralen 

akustischen Signalen verstärkt. Ich charakterisierte entwicklungsbedingte Veränderungen 

von Ih in Neuronen der lateralen oberen Olive (LSO) und des medialen Nukleus des 

Trapezkörpers (MNTB), die in adulten Tieren eine unterschiedliche Zusammensetzung von 

HCN Untereinheiten aufweisen. Ich konnte zeigen, dass es direkt nach Hörbeginn einen 

starken Anstieg von Ih in der LSO und nur einen geringen Anstieg im MNTB gibt. Zusätzlich 

wurde die Öffnungswahrscheinlichkeit der HCN Kanäle beider Nuklei in Richtung positiverer 

Spannung verschoben und die Zeitkonstanten der Aktivierung beschleunigten sich während 

der ersten Tage der Hörerfahrung. Diese Ergebnisse implizieren, dass Ih durch sensorische 

Aktivität reguliert wird. Diese Hypothese testete ich durch das Herbeiführen auditorischer 

Deprivation, erzielt durch operative Entfernung der Cochlea in Wüstenrennmäusen vor 

Hörbeginn. Der zu beobachtende Effekt war gegensätzlich in Neuronen der LSO und des 

MNTB. Während auditorische Deprivation in LSO Neuronen in einem Anstieg der Ih 

Amplitude resultierte, zeigten Neurone des MNTB eine geringfügige Verringerung von Ih. 

Diese Ergebnisse lassen darauf schließen, dass auditorische Erfahrung entweder die Menge 

an HCN Kanälen unterschiedlich verändert, abhängig von der Zusammenstellung der 

Untereinheiten, oder möglicherweise intrazelluläre cAMP Konzentrationen abändert und 

dadurch die Spannungsabhängigkeit von Ih verschiebt. Dieser regulatorische Mechanismus 

könnte deshalb dafür verantwortlich sein, einen entsprechenden Grad an Erregbarkeit 

innerhalb des SOC beizubehalten. 
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Eine zweite Studie wurde durchgeführt, um die Rolle der GABABRs in der medialen oberen 

Olive (MSO) zu untersuchen. Nach ihrer Aktivierung verringern diese metabotropen 

Rezeptoren die Wahrscheinlichkeit der Ausschüttung von Neurotransmittern an der 

Präsynapse und verändern dadurch erregende und hemmende Ströme an der Postsynapse. 

Neurone in der MSO analysieren interaurale Zeitunterschiede (ITDs) indem sie das zeitliche 

Aufeinandertreffen von erregenden Eingängen beider Ohren durch einen 

Koinzidenzmechanismus vergleichen. Ferner erhalten diese Neurone zeitlich präzise 

abgestimmte hemmende Eingänge von beiden Ohren, mit denen ITDs in den physiologisch 

relevanten Bereich verschoben werden. Da sich in den größten hemmenden Eingängen der 

vorherrschende Transmitter-Typ von gemischt GABA/glyzinerg zu rein glyzinerg nach 

Hörbeginn ändert, war es nun interessant, die durch GABABRs vermittelten Effekte zu 

untersuchen. Reichhaltige GABABR Expression wurde bereits sowohl in der MSO von Tieren 

vor Hörbeginn, wie auch in adulten Wüstenrennmäusen gezeigt. Allerdings sollte nun das 

genaue Expressionsmuster der GABABRs und ihr Einfluss auf erregende und hemmende 

Ströme in der sich entwickelnden MSO untersucht werden, um dadurch weitere Hinweise auf 

ihre funktionelle Bedeutung zu erhalten. Durch pharmakologische Experimente konnte ich 

nun zeigen, dass die Aktivierung von GABABRs vor Hörbeginn Ströme erregender Eingänge 

stärker verringert, als die hemmender Eingänge. Dieses Bild änderte sich nach Hörbeginn 

komplett, denn nun wurde die Amplitude hemmender Ströme stärker reduziert als die 

erregender Ströme. In ähnlicher Weise änderte sich auch das Expressionsmuster von 

GABABRs vor und nach Hörbeginn, wie durch immunohistochemische Experimente deutlich 

gemacht werden konnte. Da die hemmenden Haupteingänge der adulten MSO rein glyzinerg 

sind, wurde allgemein angenommen, dass GABABRs nur eine kleine Rolle im reifen 

auditorischen Hirnstamm einnehmen. Im Widerspruch dazu war es sogar in adulten Tieren 

möglich präsynaptische GABABRs durch synaptische Stimulation zu aktivieren und eine 

signifikante Verringerung hemmender Ströme in MSO Neuronen zu beobachten. Diese 

Ergebnisse deuten auf bis jetzt noch unbekannte GABAerge Projektionen in der MSO hin. Es 

ist deshalb durchaus möglich, dass GABABRs die Lokalisierung tief-frequenten Schalls selbst 

in adulten Tieren modulieren und möglicherweise sogar noch verbessern. 

Zusammengefasst trägt das Ergebnis dieser Arbeit zu einem besseren Verständnis 

entwicklungsbedingter Anpassungen im auditorischen System bei und demonstriert, dass die 

geregelte Spezifizierung intrinsischer Eingänge innerhalb des SOC abhängig ist von 

auditorischer Erfahrung. Des Weiteren zeige ich, dass die synaptische Stärke von MSO 

Eingängen sogar in adulten Tieren durch synaptische GABA Ausschüttung moduliert werden 

kann. Dies soll die Bedeutung modulatorischer Mechanismen unterstreichen und könnte die 

Grundlage für weitere Studien auf dem Gebiet der Schalllokalisierung darstellen. 
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1 INTRODUCTION 

1.1 The evolution of hearing 

At the end of the Devonian period, 360 million years ago, hearing did not exist. Various 

aquatic vertebrate groups inhabited the ancient sea (Panthalassa) and the sheer perception 

of sound sources was a rather challenging issue for animals. In order to understand this 

difficulty, we first have to define sound and sound localization. 

The American Heritage Dictionary of the English Language (Fourth Edition, Houghton Mifflin 

Company 2006) describes sound as a traveling wave which is an oscillation of pressure 

transmitted through a solid, liquid or gas, composed of frequencies within the range of 

hearing and of a level sufficiently strong to be heard. When we speak of sound localization, 

we mean the process of detecting the origin of a pressure variation in a given medium. It is 

now obvious that fish encounter problems detecting sounds in their natural environment. 

Since their tissue has approximately the same density as the surrounding medium, their 

bodies follow the amplitude of traveling sound waves in water. One could therefore regard 

fish as being acoustically transparent. Exploiting the environment for as much information as 

possible is beneficial and can be essential for any organism. Hence, these animals evolved 

an organ called the lateral line, which detects disturbances in streaming water produced, for 

example, by prey or enemies in the near-field (Denton and Gray 1982; Webb 1989). At that 

time, vertebrates already possessed an inner ear, which presumably was able to perceive 

outer vibrations to some degree by comparing hair cell deflections with the body position in 

space. It seems that the control of equilibrioception and proprioception was initially the major 

task of the inner ear. In this way it most likely supported the adequate function of the lateral 

line (Van Bergeijk 1966). The vertebrate conquest of land during the late Devonian period 

(Clack 1997) was the initial trigger to develop hearing as one of the most sophisticated 

biological sensory systems, which is capable of localizing both prey and predator, as well as 

selecting relevant mating partners. 

When tetrapods first populated the landmass (Pangaea) about 360 million years ago, they 

conquered a completely new niche, with few predators and abundant space as well as food 

resources. However, compared with the open sea, the environment on land changed more 

rapidly forcing terrestrial animals to adapt constantly to altering conditions. In fact, during the 

next 100 million years, new species evolved which developed new types of locomotion, 

reproduced on land and were completely independent from an aquatic habitat. Since at that 

point the landmass became progressively more populated with species now competing for 

food and space, further adaptations were necessary. The refinement of sensory systems in 
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several animal species enabled them to improve their hunting or flight behavior and therefore 

opened the possibility to occupy entirely new niches. One milestone in this process was the 

evolution of tympanic middle ears which first occurred in parareptiles approximately 260 

million years ago (Fig.1.1) and was documented recently in fossil finds (Muller and Tsuji 

2007). The novel and outstanding feature of such ears was the tympanum (eardrum) which 

for the first time allowed perception of high frequency airborne sounds. The tympanum itself 

is a thin membrane that separates the external ear from the middle ear. It transmits sound 

from the air to an auditory ossicle, the columella, inside the middle ear from where the sound 

energy is then transferred to the inner ear for further auditory processing. The columella 

derived from the hyomandibula, a jaw suspension bone, which was adapted to relay 

deflections of the tympanic membrane to the inner ear. 

 
Figure 1.1: The evolution of vertebrate ears. During the transition from water to land, tympanic middle ears capable of receiving 
airborne sound evolved separately among the ancestors of modern frogs, turtles, lizards, archosaurs (birds and crocodilians) 
and mammals. Extinct forms (e.g. parareptiles), non-anuran amphibians, coelacanths and many actinopterygian groups are 
omitted from this diagram (Schnupp and Carr 2009 modified from Walker and Liem 1994). 

 

Even though it was speculated that fish without a functional middle ear theoretically have 

also been able to perceive low frequency airborne sounds by actively decoding sound-

induced vibrations of the skull in their inner ear, the necessity for a system able to acquire 

precise auditory input is obvious (Christensen-Dalsgaard and Carr 2008). Soon it turned out 

to be beneficial to discern a difference of self-emitted sounds, sounds from possible mating 

partners or noise that is produced by potential predators. Moreover, an elaborate auditory 

system including a functional middle ear was so beneficial that tympanic ears have emerged 

independently at least five more times, i.e. in the lines leading to amphibians, turtles, 

lepidosaurs, archosaurs and mammals (Allin 1975; Christensen-Dalsgaard and Carr 2008; 

Clack 1997; Grothe 2000; Manley 2000). The latter evolved three middle ear ossicles 

(malleus, incus and stapes) from the hyomandibula and adjacent jawbones. This trait makes 

mammals phylogenetically unique compared to all other vertebrate classes. 
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Anatomical adaptations for the perception of airborne sounds were already quite valuable, 

though one has to ask the following questions: Is the capability to be aware of the existence 

of a nearby sound source all there is to hearing? Would it not be much more advantageous 

to avoid or approach this sound source by detecting its precise origin? One aspect that has 

not been mentioned so far is the bilateralism of the auditory system. Indeed, without two 

spatially separated acoustic detectors, pinpointing sound sources would be by far less 

accurate, relying solely on monaural spectral cues provided by the directional filtering of 

sounds by outer ears (Schnupp and Carr 2009; Wightman and Kistler 1997). The bilateralism 

of the auditory system could be regarded as the crucial point for the evolution of directional 

hearing. Only this feature allowed for the computation of binaural spectral cues, making 

accurate sound localization possible. 

 

1.2 Sound transmission in the ear 

With the evolution of tympanic ears, mammalian vertebrates have acquired excellent sound 

localization mechanisms. In land-living animals such as the majority of mammals, airborne 

sounds represent the most important auditory signal. However, in order to be localized, a 

sound first of all has to be perceived. Thus, the mammalian auditory system holds many 

specialized features enabling animals to make optimal use of airborne sound signals. 

Once airborne sound waves reach the peripheral mammalian ear (Fig.1.2) they impinge on 

the tympanic membrane, thereby transferring energy and causing vibration in the tympanum. 

However, as we have seen in chapter 1.1, the terrestrial auditory system evolved from an 

aquatic one which raises a serious issue. Since air, as the “carrier of sound” is a medium of 

low acoustic impedance and the inner ear as the “terminal of sound” is filled with a liquid 

lymph of high impedance, roughly 99.9% of the sound energy would be lost during the 

transmission of vibration between those two media. Thus, the middle ear accomplishes an 

impedance modification by a mechanical conversion of energy in the cavum tympani, a gas-

filled cavity, to overcome this problem. Since the cavum tympani has the same impedance 

level as the extra-tympanic medium, it allows the sound-driven oscillation of the auditory 

ossicles via the tympanum without a great loss of energy. The sound-driven osscilations of 

the tympanic membrane in a medium of low impedance are picked up by the auditory 

ossicles. Using leverage effects they transfer the now mechanical energy onto a medium of 

high impedance, the inner ear’s endolymph. The stapes moves back and forth, transferring 

the vibration onto the oval window, one of two thin membranes separating the middle ear 

from the inner ear. As the endolymph is a liquid of high rigidity more strength is needed to 
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cause its vibration. This is, apart form the leverage effect, achieved by a difference in surface 

area between the small oval window and the large tympanic membrane. Based on the 

different surface area the relatively large amplitudes of tympanic vibration are minimized by 

the ossicles but simultaneously the strength of the ossicle deflection is higher (conservation 

of energy). This enforcement enables the deflection of the small oval window in the rigid and 

almost incompressible endolymph, thus creating pressure waves in the entire cochlea. The 

cochlea is a snail-shaped structure in the inner ear, which possesses specialized features to 

resolve and convert the frequency and intensity components within each sound signal for 

auditory perception (Kelly and Chen 2009). Yet, pressure wave transmission is only made 

possible by the second membrane, the round window. It moves out when the stapes pushes 

in and moves in when the stapes pulls out rendering movement of the rigid lymph possible. 

Figure 1.2: The mammalian ear. Sound 
travels through the ear canal at the outer 
ear and vibrates the tympanum in the 
middle ear. Vibrations are further 
transmitted, mediated by the ossicles in 
the gas-filled cavum tympani, to the 
cochlea in the inner ear. Another part of 
the inner ear is the vestibular system. 
Equilibrioception and proprioception are 
under the control of the vestibular 
apparatus. The Eustachian tube is 
important for maintaining an intact middle 
ear and connects the cavum tympani with 
the pharynx. With the additional 
pharyngeal gas volume, it can equalize 
pressure differences to prevent possible 
damage of the tympanum. 

 

 

 

One of the characteristic features in the cochlea is the basilar membrane; a membrane that 

is situated inside the coiled cochlea, perpendicular to the oval window. The basilar 

membrane is stiff at its origin with decreasing rigidity towards the apical end. Its width 

decreases continuously and, accordingly, the stiffness of the membrane decreases about 

hundred-fold over its length. The whole membrane is embedded in fluid and as it vibrates, 

waves travel from the stiff part of the basilar membrane towards the softer part (Von Bekesy 

1956a; b), increasing in amplitude with traveled distance. At this stage, the basilar membrane 

serves as a first frequency filter. As the pressure wave travels it does not move the basilar 

membrane much, but a burst of energy is suddenly released when the wave reaches the 

membrane’s resonant point causing its maximal deflection. The resonant point itself is 

defined by the membrane’s width and stiffness in comparison to the pressure wave’s 

frequency, thus different sound frequencies differentially excite discrete regions in the 

cochlea, corresponding to a range from 0.1 to 20 kHz, e.g. in humans (Fettiplace and 

Hackney 2006). Low frequencies induce maximum deflection of the basilar membrane at the 
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basal part of the cochlea, high frequencies at the most apical part. At the resonant point, the 

released energy is strong enough to move cellular transducers in the organ of Corti, namely 

the stereocilia of the inner and outer hair cells (IHCs and OHCs, respectively), to generate 

electrical receptor potentials that represent the acoustic stimulus. Besides their opposing 

position in the cochlea, also functional differences have been described for both hair cell 

classes. Information about the acoustic environment (speech, music or other sounds in the 

outside world) is relayed primarily by the electrical signals of IHCs, whereas the main task of 

OHCs is to boost the stimulus by electromechanical feedback (Dallos 1992; Fettiplace and 

Hackney 2006). Again, we come across a feature in the auditory system of mammals which 

makes this animal class unique in evolutionary history, namely the separation of function 

between IHCs and OHCs (Fettiplace and Hackney 2006). Finally, the rising IHC and OHC 

receptor potentials produce chemically mediated excitation in the peripheral terminals of 

cochlear afferent neurons. The graded potentials of the hair cells are now converted into a 

binary “all-or-none” code based on the generation of action potentials (APs). Via the auditory 

nerve (VIIIth cranial nerve), these APs travel to the cochlear nucleus, the first station of the 

auditory central nervous system. 

 

1.3 Auditory processing 

The “standard model” of auditory processing begins with the frequency decomposition 

performed in the inner ear, which has already been outlined in chapter 1.2. The resulting 

spectro-temporal activity patterns of hair cells and auditory nerve fibers form a new 

representation of the incoming auditory stimulus (Nelken 2008). Henceforth, the mechanical 

and physical nature of the perceived sound wave is completely abolished and is translated 

into an ionic current code that is used through the ascending auditory pathway to convey 

information of enormous complexity (Fig.1.3). 

At the level of the cochlear nucleus (CN) auditory nerve fibers split up to innervate three 

individual regions of the CN, the dorsal cochlear nucleus (DCN), the posteroventral cochlear 

nucleus (PVCN) and the anteroventral cochlear nucleus (AVCN) (Brawer et al. 1974). Each 

of these subdivisions has specific tasks. While neurons of the ventral cochlear nucleus aid in 

the localization of a sound stimulus on the horizontal axis, the DCN, probably via type IV 

neurons (Davis 2002), is involved in sound source localization in the vertical plane (May 

2000). For this vertical localization, mammals use spectral cues, which are modifications in 

the spectra produced by the interactions of sound with the external ear (pinna) (Blauert 1996; 

Musicant et al. 1990; Oertel and Young 2004). The DCN integrates auditory with nonauditory 
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input and is thought to play a role in the orientation of the head toward sounds of interest and 

in the suppression of responses to self-generated sounds (May 2000; Shore 2005; Young et 

al. 1995; Zhao et al. 2009). 

The PVCN projects to periolivary cell groups (Warr 1972; 1969) and strongly to contralateral 

upstream nuclei mainly involved in the transmission of monaural sound signaling. 

Nevertheless, studies showed that PVCN terminals also target nuclei important for binaural 

sound integration in the superior olivary complex (SOC) (Harrison and Irving 1964; 

Thompson and Thompson 1987). 

Neurons of the AVCN primarily target auditory brainstem regions essential for binaural 

processing, and thus sound localization in the azimuthal plane (Cant and Casseday 1986; 

Smith et al. 1991; Smith et al. 1993). Therefore, the strongest projections of AVCN neurons 

terminate within the SOC and the medial nucleus of the trapezoid body (MNTB), transmitting 

a high-fidelity copy of the activity of the auditory nerve to these more central auditory 

brainstem nuclei (Brawer et al. 1974; Goldberg and Brownell 1973; Rose et al. 1974). 

Interestingly, a typical feature of a subset of neurons in the AVCN is their phase-locking 

response to auditory stimuli (Brugge et al. 1970; Smith et al. 1991) which is not observed in 

the DCN. In auditory physiology, phase-locking describes the phenomenon that auditory 

nerve fibers (and most auditory neurons involved in temporal coding) tend to fire an AP at a 

preferred phase of individual cycles of a pure tone (Galambos and Davis 1943; Kiang et al. 

1965). This firing behavior encodes the temporal fine structure of auditory stimuli in a 

microsecond range with very high temporal precision (Koppl 1997). 

Both the CN and the SOC directly innervate the nucleus of the lateral lemniscus (NLL), which 

comprises three spatially separated regions (dorsal, intermediate and ventral) (Adams 1979; 

Glendenning et al. 1981; Nordeen et al. 1983; Oliver 2000) and the inferior colliculus (IC) in 

the midbrain (Caird and Klinke 1987; Kuwada and Yin 1983; McAlpine et al. 1998; Nordeen 

et al. 1983; Zook and Casseday 1982). Basically, the NLL analyzes the temporal features of 

sound and forwards this information to the IC (Batra 2006; Benson and Cant 2008; Covey 

and Casseday 1991). However, since the NLL receives afferent inputs from the SOC and the 

CN, it was always regarded important for binaural signal processing (Brugge et al. 1970; 

Kelly et al. 1998; Kuwada et al. 2005; Markovitz and Pollak 1994; Siveke et al. 2006). 

Especially the dorsal part of the NLL (DNLL) is actively engaged in binaural processing and 

sound localization (Ito et al. 1996; Kelly et al. 1998). Another distinct role recently assigned to 

the DNLL is the so-called “precedence effect”, which describes a phenomenon that enables 

the auditory system to suppress echoes without eliminating their overall perception (Pecka et 

al. 2007; Pollak 1997). Essentially, echoes produced in a reverberant environment are 

perceived without being actually localized, thus the DNLL filters out information relevant for 
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sound localization without interfering with the perception of echoes. Key features for this task 

are reciprocal projections made between the ipsi- and contralateral DNLL. 

The ventral part of the NLL (VNLL) is less well understood, but it has been suggested that it 

is important for the processing of monaural temporal features of sounds (Covey and 

Casseday 1991). Moreover, Ranjan Batra (2006) postulated recently that the VNLL converts 

the temporal code present at the level of the SOC in a rate code at the level of the IC (Joris 

et al. 2004; Langner and Schreiner 1988). 

The function of the intermediate part of the NLL (INLL), on the other hand, is still not clear. 

Previous studies provide evidence that the INLL transmits ongoing information about the 

duration and intensity of a sound to the IC (Covey and Casseday 1991; Huffman et al. 

1998a; b), however, more physiological studies need to be carried out in the INLL to disclose 

its major function. 

All information gathered in the NLL, may it be monaural or binaural, is passed on to the IC 

which, unlike the NLL, is involved in refining information regarding the location of signals in 

the acoustic environment (Caspary et al. 2008; Pollak et al. 2003). 

Figure 1.3: Stages of ascending auditory 
processing. Signals deriving from the cochlea are 
transmitted via the eighth nerve (N.VIII) to the 
cochlear nucleus (CN). Here, the auditory 
pathway splits up and targets all three subunits 
of the CN separately, namely the anteroventral 
cochlear nucleus (AVCN), the posteroventral 
cochlear nucleus (PVCN) and the dorsal 
cochlear nucleus (DCN). Each of these nuclei 
projects to the contralateral nucleus of the lateral 
lemniscus (NLL) as well as to the contralateral 
inferior colliculus (IC). Fibers of the AVCN 
additionally target the contralateral medial 
nucleus of the trapezoid body (MNTB), the 
superior olivary complex (SOC) and the superior 
periolivary nucleus (SPN, not shown). From the 
SOC ascending projections are made with the 
ipsilateral NLL and mainly with the dorsal region 
of the contralateral NLL, as well as with the ipsi- 
and contralateral IC. The NLL and the IC strongly 
interact with further connections to the respective 
nucleus opposite from the midline. From the level 
of the IC information is further transmitted to the 
medial geniculate nucleus (MGN), which in turn 
projects to the respective auditory cortex (AC). 
The ACs of both hemispheres are themselves 
linked by strong projections. 
Depicted in this graph are the most relevant 
ascending auditory pathways although other 
important neural connections exist. Descending 
projections are entirely omitted. Also only one 
side of the auditory pathway is shown. 
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It is hardly appropriate to talk about the IC as one general nucleus. Similar to the NLL and 

CN, subdivisions can be distinguished (external and central part of the IC). Even though the 

IC comprises a diverse subset of cells (principal cells and interneurons) with different 

characteristic spiking patterns (Tan et al. 2007; Xie et al. 2008), its contribution to sound 

localization can be generalized as follows. Neurons in the IC more or less merge all incoming 

projections to generate an output function in which all principal localization cues are already 

evaluated. This includes computation of early monaural and binaural information deriving 

from the SOC as well as from the NLL. However, complex artificial stimuli like sinusoidally 

amplitude modulated sounds (SAMs) or sinusoidally frequency modulated sounds (SFMs) 

have been shown to be bandpass filtered at the level of the IC (Langner et al. 2002; Langner 

and Schreiner 1988; Rees and Moller 1983; 1987). Usually, SAMs and SFMs are well 

represented by precise phase-locked responses in the SOC and NLL at frequencies of up to 

500Hz (Grothe 1994; Huffman et al. 1998b; Joris and Yin 1995), thereby reflected by a 

temporal code at the level of the auditory brainstem. The signal embedded in the initial 

temporal code is further processed as a rate code at the level of the IC. This conversion 

decreases the relevance of the precise spike-timing and puts more emphasis on the overall 

frequency of action potentials. Specialized neurons in the IC tuned to narrow ranges of 

modulation frequencies pick this signal up and further refine the auditory output pattern 

(Casseday et al. 1997; Rees and Moller 1983; Schuller 1979). The increasing selectivity for 

periodicity suggests active neuronal filter mechanisms even at the level of the IC (Koch and 

Grothe 1998). Since almost all acoustic signals mammals perceive in their natural 

environment are temporally modulated in their amplitude and frequency, this feature is highly 

significant. Neurons in the central nucleus of the IC also exhibit directional sensitivity when 

tested with spectrally rich sounds (Aitkin and Martin 1990; Aitkin and Martin 1987; Delgutte et 

al. 1999). Whereas some neurons require binaural stimulation to achieve spatial selectivity, 

other neurons exhibit this property under monaural conditions. 

Apart from mutual interactions that are implemented via neuronal projections between the 

two ICs, the output signal of the inferior colliculus is conveyed further to the medial 

geniculate nucleus (MGN) within the thalamic area. From here, efferent fibers ascend to the 

auditory cortex (AC). These thalamocortical projections are known to constitute a network 

since they are topographically arranged and largely reciprocal (single MGN divisions project 

to several AC areas, which in turn each project to multiple MGN targets) (Winer and Lee 

2007). Several MGN divisions also project to the amygdala, a group of nuclei forming part of 

the limbic system and therefore involved in memory and emotion processing, to establish 

auditory-limbic interactions (Shinonaga et al. 1994). These connections have been shown to 

be essential for autonomic learning based on auditory cues (LeDoux et al. 1986). 

Interestingly enough, all AC areas receive MGN input (Huang and Winer 2000), thus 
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thalamic connections may synchronize auditory, attentional, and limbic processes. The MGN 

and the AC form a feedback-loop as shown by Suga (1994), however, the role of this loop is 

still under discussion. While Suga and colleagues propose a contribution to cortical plasticity 

for the thalamo-cortico-thalamo loop (Gao and Suga 1998; 2000; Suga and Ma 2003) others 

entirely omit these projections in their model for plasticity in the AC (Weinberger 2004). In 

general the MGN is related doubtless to activity forwarded to the AC. 

Compared to subcortical structures, rather complex auditory information processing takes 

place at the level of the auditory cortex (Nelken and Bar-Yosef 2008). The AC is the 

acoustically responsive part of the neocortex and represents the highest level of processing 

in the ascending auditory pathway. This is also true for the process of sound localization in 

the azimuthal plane. Jenkins and Merzenich (1984) demonstrated an essential role for the 

AC in the normal localization of brief sounds. Behavioral testing in cats following lesions 

indicated that the primary auditory cortex, a subfield of the AC, is probably sufficient for 

normal binaural azimuthal sound localization behavior. In some studies, AC damage 

interfered with auditory phenomena known as interaural level difference (ILD) and interaural 

time difference (ITD) perception (Bisiach et al. 1984; Yamada et al. 1996). ILDs as well as 

ITDs are encoded in the SOC, and represent the first stage of binaural sound localization 

processing. Hence, it is most interesting to shed more light on the mechanisms of ILD and 

ITD detection. 

 

1.4 The superior olivary complex - interaural level differences and 

interaural time differences 

The importance of sound localization for terrestrial mammals was mentioned in chapter 1.1. 

In the following, the specific features of sound localization in the horizontal plane (azimuth) 

regarding the superior olivary complex are going to be described. 

Natural sounds consist of several frequencies though of course not all frequencies are 

necessarily embedded in every sound pattern. This perhaps trivial statement nevertheless 

has fundamental relevance for the localization of sound sources. The characteristic 

wavelengths of sounds vary with the sound’s frequency. Consequently, to localize the 

broadest range of frequencies possible, two at least partially independent mechanisms have 

evolved in the auditory system. One system covers high frequencies, defined as sound 

waves with a wavelength smaller than the head diameter. The other system localizes sounds 

of low frequencies with wavelengths larger than the head diameter. The phenomenon of 
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utilizing two separate localization cues dependent on the frequency was first postulated by 

Lord Rayleigh under the name “The duplex theory of sound localization” (Rayleigh 1907). 

The first acoustic cue underlying the sound localization system for high frequency sounds are 

interaural level differences (ILDs) created by the head’s acoustic shadow. This means that 

the skull attenuates high frequency sound waves emitted left or right of the head, resulting in 

differences of sound pressure levels between the two ears (Fig.1.4). The lateral superior 

olive (LSO), a nucleus in the SOC, then further processes these level differences by 

comparing two inputs; an ipsilateral excitatory input from spherical bushy cells (SBCs) in the 

AVCN and a contralateral inhibitory input deriving from MNTB neurons (Brawer et al. 1974; 

Cant and Casseday 1986; Webster and Trune 1982; Wu and Oertel 1984) (Fig.1.4). The 

output rate of LSO is thus described by a subtractive function of the ipsilateral excitatory and 

contralateral inhibitory inputs. In other words, the more a sound is shadowed by the head the 

weaker the spike output of the contralateral LSO is going to be (Boudreau and Tsuchitani 

1968; Tsuchitani and Boudreau 1969). Each LSO neuron holds its own minimal ILD at which 

complete suppression or complete saturation of the response rate occurs, but whether the 

integrated overall neuron population of both LSOs codes for the location of a sound source 

dependent on the spike-frequency (population-rate code) or whether a defined group of 

sharply tuned neurons within one LSO represents the spatial position of an object (labeled-

line-code) remains an unanswered question to date. The resulting output signal is then 

passed on to the NLL and IC for further processing. 

   
                                     ∆ level        ventral 
 
Figure 1.4: Interaural level differences (ILDs) are processed by neurons in the lateral superior olive (LSO). The skull dampens a 
high frequency sound deriving from the right or left side of the listener. The incoming sound signal is transferred by the eighth 
nerve and reaches the LSO via the AVCN and/or MNTB. By summing these two inputs up, the LSO codes for sound pressure 
level difference (∆ level in dB) between the two ears. On the ipsilateral side, excitatory projections directly innervate neurons in 
the LSO, whereas from the contralateral side excitatory projections first innervate neurons in the MNTB, which then send 
inhibitory afferents to the LSO. Together, both inputs to the LSO generate an output function that codes for the position of the 
sound source. (red arrows: excitation, blue arrows: inhibition) 

 

In contrast to high frequency sound, low frequency sound waves travel longer distances, thus 

animals with spatially large behavioral ranges like carnivores, ungulates or primates, and 

animals living in an open space like the desert are more dependent on localizing the sources 

of low frequency sound emission (Grothe 2000). Therefore, certain animal classes evolved a 

second binaural sound localization mechanism to localize signals relying solely on the 
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different arrival time of sound waves at each ear; the interaural time differences (ITDs) 

(Goldberg and Brown 1968; Spitzer and Semple 1995; Yin and Chan 1990). Unlike high 

frequency sound waves, which are always attenuated by the head before being perceived by 

the contralateral ear, low frequency sound waves do not experience significant sound 

pressure level changes between the two ears. This statement, however, was demonstrated 

wrong for very close low-frequency sounds (distance for humans: 1-2m). Within this range, 

significant near-field ILDs are produced, which can be utilized to localize low frequency 

sound sources (Shinn-Cunningham et al. 2000). On the other hand, ITDs can also be 

conveyed by the envelopes of high-frequency sounds and thus elicit similar responses as the 

fine structure of low frequency sounds alone as observed by in vivo recordings from neurons 

of the guinea pig IC (Griffin et al. 2005). This study agrees with results reported at the same 

time indicating that low frequency LSO neurons are sensitive to ITDs (Tollin and Yin 2005). 

These two findings contradict the strict dichotomy of the “duplex theory” but will be regarded 

as exceptions for an overall valid hypothesis in this thesis. Hence, generally spoken, sounds 

composed of wavelengths larger than the head diameter, which is in a first approximation 

equal to the inter-ear-distance, instead circle around the head before they impinge on the 

contralateral ear (Fig.1.5). The resulting cue is a well-defined delay dependent on (1) the 

medium the sound is transmitted in (2) the position of the sound source in the azimuth and 

(3) the head size. Head sizes of course vary amongst mammals. Larger species exhibit 

larger ITDs because the time sound waves need to travel from ear to ear increases with 

increasing inter-ear-distance (Masterton et al. 1967). Humans, for example, experience ITDs 

of up to 660µs (Feddersen et al. 1957), dogs up to 800µs (Goldberg and Brown 1968; 1969; 

Grothe and Neuweiler 2000), cats around 300µs (Yin and Chan 1990), whereas some bats, 

due to their small head size experience maximal ITDs of about 30µs (Pollak 1988). 

As seen already for the processing of ILDs, the AVCN is also the first relay site in the ITD 

circuitry. Again, two cell populations contribute to the processing of binaural cues, namely 

globular bushy cells (GBCs) and SBCs (Brawer et al. 1974; Osen 1969). However unlike in 

the LSO, contra- as well as ipsilateral SBCs send direct glutamatergic excitatory projections 

to the MSO, mostly targeting the dendritic region of MSO neurons (Clark 1969; Stotler 1953) 

(Fig.1.5). By integrating these two excitatory inputs from each ear, the MSO functions as a 

coincidence detector for binaural input. 
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     ∆ time        ventral 
 
Figure 1.5: Interaural time differences (ITDs) are processed by neurons in the medial superior olive (MSO). Sounds with long 
wavelengths, deriving from the right or left side of the listener, circle the skull and cause a specific delay (∆ time) between the 
two ears. This small time difference between the arrivals of the sound at the two ears is further passed on through the eighth 
nerve and reaches the MSO via the AVCN, the MNTB and LNTB. Ipsilaterally, excitatory projections from the AVCN and 
inhibitory projections from the LNTB target the MSO. From the contralateral side, the MSO receives excitatory input directly from 
the AVCN as well as inhibitory input from the MNTB. Both MNTB and LNTB serve as a relay and turn the excitatory input from 
the AVCN into an inhibitory output to the MSO. (red arrows: excitation, blue arrows: inhibition) 

 

This excitatory/excitatory detection mechanism could be sufficient to localize sound sources 

in the azimuthal plane by integrating delay lines as proposed in the Jeffress model (Jeffress 

1948). As described above for the LSO, a labeled-line code of best ITD responses aligned in 

the physiological relevant range would code for the position of the sound source in the 

azimuth. For a long time, the model of delay lines was commonly accepted for all animal 

species, especially because studies in birds demonstrated that the theoretical concept of 

Jeffress fitted the anatomical properties of the avian auditory brainstem (Parks and Rubel 

1975; Young and Rubel 1986; 1983). Furthermore, electrophysiological recordings from barn 

owls and chicken speak in favor of the Jeffress model even though slight modifications in the 

delay line model have been suggested (Carr and Konishi 1990; Overholt et al. 1992). 

Nevertheless, skepticism arose whether the Jeffress model is also applicable to the 

mammalian ITD detection system (Brand et al. 2002; Fitzpatrick et al. 2000; Grothe 2003; 

Grothe and Neuweiler 2000; McAlpine et al. 2001). Two major aspects contradict the idea 

that the mammalian MSO functions as a Jeffress-type coincidence encoding structure. First, 

the Jeffress model proposes different lengths of axons to compensate for differences in 

sound travel times outside the head. Neither the contra- nor the ipsilateral inputs to the MSO, 

as revealed by anatomical studies, followed the model postulated by Jeffress. Hence, no 

convincing evidence has been found to date for the existence of such delay lines in 

mammals (Beckius et al. 1999; Smith et al. 1993). Moreover, one has to take into 

consideration, that the Jeffress model does not incorporate inhibitory input. Although the 

nucleus laminaris (NL), the avian analog to the MSO, and the MSO itself receive both more 

than only two major inputs involved in sound localization, differences in the input pattern are 

present. In contrast to the NL, which receives one inhibitory gamma-aminobutyric-acid 

releasing (GABAergic) projection that has recently been shown to increase the precision of 

phase-locking (Funabiki et al. 1998), the MSO is targeted by two inhibitory glycinergic 

projections. These two inputs originate from the lateral and medial nucleus of the trapezoid 
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body (LNTB and MNTB, respectively) (Fig.1.5) projecting to the somatic region of the 

neurons in mature animals (Cant and Hyson 1992; Clark 1969; Kapfer et al. 2002; Kuwabara 

and Zook 1992; Wenthold et al. 1987; Werthat et al. 2008). MNTB and LNTB neurons are 

excited by GBCs and release the inhibitory neurotransmitters GABA (early in development) 

and glycine onto MSO neurons (Grothe and Sanes 1993; Helfert et al. 1989; Magnusson et 

al. 2005; Smith et al. 2000). Based on extremely fast synapses in the MNTB, the calyces of 

Held, and a defined distribution pattern of inputs, with inhibitory projections on the somata 

and excitatory projections on the dendrites (Kapfer et al. 2002), it has been suggested that 

the contralateral inhibitory input precedes the excitatory input to the MSO. Furthermore, due 

to the excitation-to-inhibition conversion in the LNTB without ultra-fast kinetics, the ipsilateral 

inhibition could lag the ipsilateral excitation (Brand 2003; Grothe 2003; Grothe and Park 

1998; Grothe and Sanes 1994). A theoretical model predicts that inhibitory input shapes the 

sum of excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs, respectively) in 

such a way that the peak of the resulting net potential is slightly shifted (Brand et al. 2002; 

Pecka et al. 2008). At the ipsilateral side of the sound source, the summed postsynaptic 

potential would peak earlier due to the shift by glycinergic inhibition. On the contralateral 

side, however, the peak of the summed postsynaptic potential occurs with a small delay 

caused by glycinergic inhibition (Grothe 2003). Together, ipsi- and contralateral net potentials 

could now code for the position of the sound source in the azimuth based on the interaural 

delay between the peaks of the two net potentials. In vivo studies recently supported this 

model assumption by demonstrating that the maximal spike rate of MSO neurons was shifted 

towards ITD=0 without glycinergic inhibitory input (Brand et al. 2002; Pecka et al. 2008). 

These results clearly speak in favor of a substantial contribution from glycinergic inhibition to 

sound source encoding in the MSO. Sound localization in mammals is therefore seemingly 

achieved otherwise than only by differences in axonal length as proposed by Jeffress 70 

years ago. 

This brings us back to the divergent evolutionary pathways of tympanic ears. As described in 

chapter 1.1 hearing evolved differently in animal classes during the Triassic period. The 

mammalian MSO and the avian NL provide good evidence for the individual achievement of 

sound localization systems based on similar principles. Yet, from this evolutionary 

perspective ILDs represent the primary binaural cue for the localization of sound sources. 

Hence, it is not surprising that in humans, ILDs dominate over conflicting ITDs in the high 

frequency range (Grothe 2000; Wightman and Kistler 1992). 
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1.5 Early developmental changes in the superior olivary complex - 

preparing for the acoustic environment 

Small rodents like mice, rats and gerbils cannot hear until approximately postnatal day 12 

(P12). Before this hearing onset, the animals’ ear canals are closed and the auditory system 

is not exposed to acoustic information. Nevertheless, the SOC performs several 

developmental changes to prepare itself for optimal sound localization. Here, activity 

independent factors as for instance, genetically determined factors, and activity-dependent, 

i.e., spontaneous activity, which is not sound evoked, have to be considered. 

The SOC undergoes fundamental morphological alterations before hearing onset. Tracing 

experiments in rats demonstrated that target-specific innervations are formed at the level of 

the SOC already at embryonic stages (Kandler and Friauf 1993). The connections are 

established with remarkable precision and aberrant projections usually do not occur (Kandler 

and Friauf 1995). It therefore seems that a crude topography, most probably genetically 

determined by molecular markers including Eph receptors and their ligands, the ephrins 

(Cramer 2005; Huffman and Cramer 2007; Miko et al. 2007), emerges already early before 

hearing onset. However, the functional fine-structure of the topographic map is developed 

further after birth but still before hearing onset as it has been shown for the LSO-MNTB 

pathway (Kim and Kandler 2003; Noh et al. 2010). At that stage, spontaneous activity 

patterns, more precisely, the spontaneous glutamate co-release at inhibitory synapses is 

most likely responsible for the elimination and strengthening of synapses. An additional 

example for synapse refinement before acoustic experience is the calyx of Held, a giant 

presynaptic terminal in the MNTB (Held 1891; Morest 1968). It develops from a diffuse 

conglomerate of presynaptic endings (P0-P3) into a cup-shaped structure in neonatal 

rodents (P3-P7) almost fully covering the targeted MNTB neuron (Kandler and Friauf 1993; 

Kil et al. 1995). Spontaneous activity is likely to underlie this process as well as other 

structural refinement processes in the SOC. 

In several brain structures including the SOC, the release of the neurotransmitters glycine 

and GABA depolarizes neurons at early perinatal stages (Chen et al. 1996; Cherubini et al. 

1990; Kandler and Friauf 1995; Lohrke et al. 2005). Consequently, chloride currents 

mediated by glycine receptors (GlyRs) and GABAA receptors (GABAARs) are usually 

excitatory in very young animals. Functional implications for the auditory brainstem have 

been proposed by Kandler and Friauf (1995) in such a way that early postnatal SOC neurons 

express voltage-sensitive Ca2+ channels which could be activated by glycine- and GABA-

induced depolarization. Hence, the cytosolic Ca2+ concentration would increase in these 

neurons similar to what has been observed in embryonic spinal cord neurons (Reichling et al. 
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1994; Wang et al. 1994). During the very early development of neural structures in the 

auditory brainstem, the glycinergic pathway might therefore transiently behave like an 

excitatory pathway and use the same Ca2+-dependent cellular mechanisms known to be 

involved in strengthening and reshaping excitatory connections (Malenka 1994). A chloride 

reversal potential (ECl
-) positive to the resting membrane potential is the underlying reason for 

the depolarizing action of inhibitory neurotransmitter. At least in the LSO it has been 

demonstrated that neurons become hyperpolarizing through the action of the outward-

directed K-Cl cotransporter KCC2 (Balakrishnan et al. 2003). Although KCC2 is expressed in 

neonatal animals, the protein is not functionally embedded in the membrane rendering ECl
- 

more positive. KCC2 transporters then slowly become membrane bound and decrease the 

chloride reversal potential, a process that is completed before hearing onset and thus 

achieved devoid of evoked auditory activity. 

Another striking difference between neonatal non-hearing and adult hearing rodents is the 

composition of inhibitory neurotransmitter in the auditory brainstem. For the neonatal SOC, 

GABA is the primary inhibitory neurotransmitter and a graded developmental switch towards 

glycine is performed a few days before hearing onset (Kotak et al. 1998; Nabekura et al. 

2004; Smith et al. 2000). It is still not quite clear whether a presynaptic transition from GABA 

to glycine alone (Helfert et al. 1989) is responsible for the lack of GABAergic IPSPs shortly 

before hearing onset or whether the target receptors, GABAARs, are constantly degenerating 

with ongoing development (Nabekura et al. 2004). Again, sound evoked activity is not likely 

to play a role for this transition of transmitter preference. The functional role of early 

GABAergic signaling is an ongoing discussion. A number of studies indicate that GABAergic 

transmission is an important signal during development. Results from in vitro experiments 

suggest that GABA can modulate synaptogenesis (Corner and Ramakers 1992; Redburn 

1992), and GABAAR expression (Hablitz et al. 1989). Furthermore, it has been suggested 

that GABA is released in neonates and activates a metabotropic pathway contributing to 

input deletion in the LSO (Kotak et al. 1998). 

Most importantly, one has to mention that not all of these changes are completed precisely 

before hearing onset. These processes should be understood as ongoing changes of the 

SOC that occur mostly independent from evoked auditory input. Other processes, which are 

related more obviously to acoustic experience and directed auditory perception, will be 

described in the next chapter. 
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1.6 Activity-dependent adaptations in the superior olivary complex - 

optimizing sound localization 

Although the auditory system provides a fitting model to study activity-dependent processes 

based on non-hearing and hearing conditions, attributing observed effects to one of the 

mentioned conditions is not always straightforward. Some adjustments are established early 

before hearing onset and are just more or less refined with the beginning of directional 

auditory input. One should not forget that neurons in the SOC experience spontaneous 

activity via GBCs and SBCs from the auditory nerve even in silence (Hermann et al. 2007; 

Kopp-Scheinpflug et al. 2008; Kreinest et al. 2009; Lu et al. 2007; Smith et al. 2000). 

Therefore, it might be appropriate to speak of an optimization in the SOC through the 

adaptation of existing structures by directional auditory input rather than to speak of a 

development of new structures per se at hearing onset. 

So far, two approaches have been used to study the effects of sound evoked activity in the 

auditory brainstem. One possibility to gain insight in the role of activity for sound localization 

is to raise animals under conditions which omit the directivity of sound sources or even the 

perception of sound itself. This can be achieved either by rearing animals in an environment 

enriched with omnidirectional noise, or to some degree by deafening animals prior to hearing 

onset. For example, around hearing onset, a process named “fenestration” begins to 

decrease the surface of the calyx of Held (Kandler and Friauf 1993; Kil et al. 1995). With 

maturation, the appearance of the calyces turn into a more finger-like structure which has 

been suggested recently to allow better transmitter clearance and thus more precise signal 

transmission in the MNTB of adult rats (Taschenberger et al. 2002). This development, 

however, is partially dependent on auditory experience since pharmacological deafening of 

animals prior to hearing onset significantly delayed fenestration (Ford et al. 2009). 

Furthermore, as described earlier, inhibitory MSO inputs are widely scattered along the entire 

neuron before hearing onset but primarily target the somatic region in adult animals (see 

chapter 1.4). This confinement only occurs in species with good low frequency hearing 

underlining the importance of glycinergic inhibition for ITD detection. Interestingly, noise-

reared animals lack this refinement of inhibitory inputs and maintain the dispersed 

distribution pattern of glycinergic projections even after maturation (Kapfer et al. 2002). 

Corroborating these data, the morphology of MNTB axons is crucially dependent on normal 

acoustic activity in the auditory system. The number of branch points and endsegments of 

the axonal arbor is strongly reduced in an environment containing ITD and ILD cues and 

inputs are selectively eliminated from the dendrites of MSO neurons (Werthat et al. 2008). 

Masking ITD and ILD cues by rearing gerbils in omnidirectional noise, though, halts the 
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development of MNTB axon morphology at a state comparable to animals before hearing 

onset. As structural conversions are happening in the MSO, synaptic properties change as 

well. The decay time of IPSCs and IPSPs decreases dramatically in MSO neurons with the 

onset of hearing (Chirila et al. 2007; Magnusson et al. 2005; Smith et al. 2000). These 

findings are in agreement with the somatic refinement of glycinergic inputs and the 

alterations in principal cell morphology regarding dendritic branch points, total cell length and 

cell membrane area after hearing onset (Kapfer et al. 2002; Rautenberg et al. 2009). 

Furthermore, the input resistance of MSO neurons in the gerbil decreases, possibly due to a 

higher expression and/or membrane bound occurrence of voltage-activated cation channels 

(Hassfurth et al. 2009; Scott et al. 2005) (see chapter 3.2.1 for comparison). 

Anatomical data already ruled out that all changes in the SOC described so far originated 

from a simple signal transduction cascade based on spontaneous activity in the auditory 

nerve (Kapfer et al. 2002; Werthat et al. 2008). Nevertheless, in order to ascribe functional 

effects to observations made in noise-reared animals, it became necessary to conduct 

physiological studies under similar conditions. Yet Magnusson et al. (2005) as well as Seidel 

and Grothe (2005), reported results of altered acoustic conditions by rearing pups in constant 

uncorrelated noise, thus omitting directional sound cues. After this treatment, ITD coding was 

disturbed as shown by extracellular recordings from DNLL neurons suggesting that ITD 

tuning develops only with normal acoustic experience (Seidl and Grothe 2005). Evidence for 

the underlying process causing impaired ITD coding has been given in a patch-clamp study. 

Here, whole-cell recordings from the MSO showed that the frequency of miniature IPSCs as 

well as the peak conductance of evoked IPSCs in young adult gerbils significantly differed 

from normally raised animals and more or less resembled the current properties around 

hearing onset (Magnusson et al. 2005). Thus, a direct connection between directional sound 

evoked activity and SOC development has been demonstrated. 

A different approach to prove activity-dependent adaptations in the auditory brainstem of 

rodents was undertaken by comparing the characteristics of congenitally deaf with wild type 

mice (Leao et al. 2006a). Congenitally deaf mice do not experience spontaneous auditory 

nerve activity prior to (or following) opening of the ear canals, thus making them an adequate 

model organism to study influences of spontaneous activity in the SOC. Previous 

physiological and anatomical studies in rodents indicated that a precise tonotopic 

organization, meaning the orderly representation of the sound frequency to which neurons 

are most sensitive, is present in the SOC even before central auditory pathways are 

activated by sound experience (Friauf 1992; Kandler and Friauf 1993; Sanes and Siverls 

1991). Hence, the more interesting it was that in the MNTB of congenitally deaf mice this 

gradient does not exist shortly after hearing onset. At least in the MNTB, the absence of 

tonotopy is reflected by a lack of medio-lateral potassium channel gradients (Kv3.1 and 
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Kv1.1) as well as a lacking HCN channel gradient (Leao et al. 2006b). Unfortunately, long-

term changes were not addressed in this study. It was suggested that the absence of 

spontaneous firing rates of AVCN neurons is responsible for the lack of a topographic 

potassium channel gradient. Interestingly, this gradient also weakened in the LSO of normal 

hearing rats with maturation (Barnes-Davies et al. 2004), thus it is debatable whether the 

Kv1.1 gradient is induced by spontaneous activity or whether the lack of acoustic experience 

just accelerates the decrease of the potassium channel gradient. However, in young adult 

congenitally deaf mice, an increase in the fenestration of the calyces of Held exists when 

compared to normal hearing mice. Both deaf and normal mice had evidence of spontaneous 

CN activity in vivo, even though in deaf mice, the auditory nerve had no spontaneous activity 

(Leao et al. 2006b). It is therefore possible that the spontaneous CN activity is responsible 

for the appropriate development of connections and fenestrated giant synapses in deaf mice 

(Youssoufian et al. 2008). 

In summary it is difficult to determine the exact consequences acoustic experience would 

have on the development of current properties and cell morphology. Animal models, surgery 

techniques and rearing methods are always open to possible side effects and give rise to 

further controversy. 

 

1.7 GABAB receptors and their relevance for auditory processes 

Various ion channels and transmitter receptors are responsible for maintaining the proper 

function of neurons (Debanne et al. 2003; Perez-Otano and Ehlers 2005). The properties of 

SOC neurons are likewise controlled and regulated by distinct channels and receptors. Two 

major subdivisions of receptors can be classified in the mammalian brain: ionotropic and 

metabotropic receptors. Ionotropic receptors (or ligand-gated ion channels) possess a pore 

region and are characterized by their direct action on ion flow. Upon transmitter binding, their 

pore region is permeable for ions; hence an outward or inward current is built up, depending 

on the receptor, its ion permeability, the actual potential and the present ion concentration. 

Some examples for ionotropic receptors have been mentioned above as e.g. glycine 

receptors and GABAA receptors. These receptors usually generate hyperpolarizing currents 

in the SOC and function as chloride channels upon activation. Nevertheless, at neonatal 

stages the action of GABA and glycine is depolarizing with major implications for cell 

development (Kakazu et al. 1999; Kandler and Friauf 1995; Lohrke et al. 2005). Other 

examples for ionotropic receptors would be the excitatory AMPA and Kainate receptors as 

well as NMDA receptors which conduct mostly sodium, potassium and in some cases 
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calcium. Metabotropic receptors, in contrast, mediate indirect inhibitory or excitatory action. 

These receptors utilize neurotransmitters as ligands, which, when bound to the receptors, 

initiate cascades that can lead to channel-opening or other cellular effects. Metabotropic 

receptors mostly activate intracellular G-proteins and kinases which usually have manifold 

effects on cell properties. However, because the signaling is not direct as for ionotropic 

receptors, effects normally take longer to develop but also last longer. Recent studies 

described such a coupling to G-proteins for several classes of receptors, therefore classified 

as G-protein-coupled receptors (GPCRs). Attwood and Findlay (1994) have made great 

effort in defining the probably biggest class of GPCRs, the rhodopsin-like GPCRs, which 

comprises serotoninergic, dopaminergic and endocannabinoid neurotransmitter signaling 

(Attwood and Findlay 1994; Binzen et al. 2006; Guo and Ikeda 2004). Other well-investigated 

and important classes regarding signal regulation are metabotropic GPCRs including 

metabotropic glutamate receptors and GABAB receptors (GABABRs) (Kaupmann et al. 1997; 

Nakanishi 1994). 

First evidence that the MSO expresses GABABRs was recently provided by histochemical 

studies in the Mongolian gerbil and the Rhesus Macaque (Heise et al. 2005; Hilbig et al. 

2007). GABABRs are relevant for auditory processing as physiological studies with focus on 

the AVCN, LSO and MNTB showed (Kotak et al. 2001; Lim et al. 2000; Magnusson et al. 

2008; Sakaba and Neher 2003). Several functional implications have been suggested so far. 

The activation of GABABRs was proposed, for instance, to help developing the temporal 

precision of LSO neurons by eliminating inappropriate inhibitory projections (Kotak and 

Sanes 2000). Furthermore, dendritically released GABA controls synaptic input by a 

GABABR based feedback mechanism. This in turn, allows LSO neurons to adapt and extend 

their range of coding in order to match the sensory environment and accurately represent 

auditory space (Magnusson et al. 2008). Additionally, the fidelity of spike trains could be 

increased in MNTB neurons after activation of GABABRs since the downmodulation of 

calcium current is most important for all forms of synchronous release (Sakaba and Neher 

2003). The putatively underlying principles of such control mechanisms based on the 

modulation of effective transmitter amount will be introduced in the following. 

From a systematic view, GABABRs are part of the seven-transmembrane domain receptor 

superfamily and are closely associated with G-proteins (Fig.1.6). Opposing to GABAARs, 

GABABRs do not open upon GABA binding but mediate indirect effects via a G-protein 

cascade. GABABRs can be situated both, pre- and postsynaptically, however, the effects 

mediated by these receptors are differently established at the pre- and the postsynapse 

(Yamada et al. 1999). 
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Functional GABABRs at the postsynaptic site activate G-protein coupled inwardly rectifying 

potassium channels (GIRK channels) which are permeable to K+-ions, thus hyperpolarize the 

neuron upon activation (Jones et al. 1998; Luscher et al. 1997). The activation is enabled by 

a conformation change of the G-protein itself. The βγ-subunit of the heterotrimeric G-protein 

dissociates from the α-subunit and binds to GIRK channels thereby increasing the open-state 

of the channel. Due to the concentration gradient of K+, an efflux of potassium is achieved, 

which is long lasting (seconds) compared to ionotropic signaling (milliseconds) (Isaacson 

1998). Several forms of the α-subunit exist making it difficult to explain some effects 

straightforward. The αs-subunit e.g. activates the andenylate cyclase which synthesizes 

cyclic adenosine monophosphate (cAMP) from adenosine triphosphate (ATP). Depending on 

synaptic activity, cAMP levels increase and modulate the open-probability of HCN channels 

(DiFrancesco 1999). On the other hand, the αi-subunit inhibits the synthesis of cAMP from 

ATP, and thus can cause completely opposite effects upon activation. Hence, the knowledge 

of the present composition of G-protein subunits is of great importance for the 

comprehension of GABABR mediated effects. 

Figure 1.6: The GABAB receptor and two 
possible modes of action. Both subunits (R1 and 
R2) of the GABABR need to be coupled for 
functionality. Upon activation by the 
neurotransmitter GABA, the GABABR induces a 
conformation change in the bound heterotrimeric 
G-protein, which causes an exchange of GDP for 
GTP. In this high-energy state, the G-protein 
dissociates in its βγ-subunit and α-subunit, both 
further mediating distinct intrinsic processes. The 
βγ-subunit, for example, activates K+ permeable 
GIRK channels and inhibits calcium channels 
whereas the α-subunit activates adenylate 
cyclase resulting in production of cAMP from 
ATP. Source: http://www.sigmaaldrich.com 

 

 

Yet, GABABRs are also expressed and functionally membrane bound at the presynapse. The 

most relevant mechanism here is the lowering of intracellular Ca2+ by inactivation of calcium 

channels (Isaacson 1998; Misgeld et al. 1995; Takahashi et al. 1998; Wojcik and Neff 1984). 

However, this feature is not solely restricted to the presynapse since studies also reported 

inhibition of calcium channels at the postsynaptic site (Harayama et al. 1998; Mann-Metzer 

and Yarom 2002). Calcium is at both locations essential for the proper function of the 

SNARE complex, a protein complex which brings intracellular vesicles in close distance to 

the cell’s membrane, thus easing exocytosis. Due to the lowered Ca2+ concentration, the 

probability for a conformation change in the SNARE complex is decreased. Therefore 

neurotransmitter vesicles are less likely to fuse with the cell membrane. Conclusively, the 



   1 INTRODUCTION 
 

 37 

release probability of neurotransmitter is decreased resulting in a presynaptically mediated 

depression of synaptic strength. Since it was demonstrated that GABABRs are expressed at 

inhibitory as well as at excitatory presynapses, the change in release probability can affect 

the inhibition as well as the excitation (Kabashima et al. 1997; Lei and McBain 2003; Lim et 

al. 2000). 

 

1.8 HCN channels - structure and function 

Unlike ligand-gated ion channels which open or close depending on binding of transmitter, 

voltage-gated ion channels open or close depending on a voltage gradient. In fact, these 

channels are activated by well-defined changes in the membrane potential at close proximity. 

The most important voltage-gated ion channels are probably potassium- and sodium-

channels. Approximately 30% of the energy expended by cells is used to maintain the 

gradient of sodium and potassium ions across the cell membrane (Ackerman and Clapham 

1997). Voltage-gated sodium-channels (Nav channels) possess a selective filter in the pore 

region that is determined by the charge of the situated amino acids and allows only positive 

ions to pass. Furthermore, since the pore has a small diameter, the large K+-ions cannot 

pass through this channel, making it only permeable for small Na+ ions. Voltage-gated 

potassium-channels (Kv channels), though, possess an amino acid sequence (glycine-

tyrosine-glycine) which is located in the pore region and represents a typical motif for the 

conductance of K+-ions (Doyle et al. 1998). By actively gating K+-ions through the pore via 

these charged amino acids, only this motif defines the ion-filter properties of Kv
 channels 

making it hundred-fold selective for the bigger K+- over the smaller Na+-ions. 

Almost the same motif is present in the pore region of the hyperpolarization-activated and 

cyclic nucleotide-gated cation channel (HCN channel), another channel permeable for K+ and 

Na+ (Fig.1.7). As in Kv
 channels, its pore region is formed by 6 transmembrane helices (S1-6) 

with a positive charged segment S4 that functions as the voltage-sensor. However, this 

channel is the only known member among the superfamily of voltage-gated ion channels that 

is activated upon hyperpolarization (Ludwig et al. 1998; Santoro et al. 1998). Hence, the 

resulting cation current (Ih) is depolarizing and mainly Na+-based since the selectivity filter in 

HCN channels is not as rigid, possibly due to the exchange of certain amino acids, compared 

to the filter in common Kv
 channels (Vaca et al. 2000). It therefore gates ions not as actively 

through HCN channels as through Kv
 channels and thus enables Na+-ions to pass easily. 

This is reflected by the only four-fold preference of K+-ions over Na+-ions (Choe and 

Robinson 1998; Ludwig et al. 1999a). 
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Figure 1.7: Model of an HCN channel. The pore region is 
positioned between segment 5 and 6 and enables the influx of Na+ 
and K+ ions. Segment 4 is the voltage sensor of the channel 
responsible for the proper activation during hyperpolarized states. 
The activation and deactivation of the HCN channel is regulated 
by modulation of the cAMP-binding site at the C-terminus. For 
clarity, only two of the four subunits are shown in this picture. 
Adapted from (Ludwig et al. 1999a) 

 

 

 

Four members of the HCN family have been isolated so far (HCN1-4) and an assembly of 

four of these isoforms constitutes a functional tetrameric channel. However, the channel can 

be composed homomeric as well as heteromeric dependent on the cell’s requirement. The 

major differences among the isoforms are the discrete activation kinetics. HCN1 channels 

activate fastest and at more depolarized voltages followed by HCN2 and HCN3. Homomeric 

HCN4 channels are by far the slowest activating HCN channels (Ludwig et al. 1999b; Stieber 

et al. 2005; Stieber et al. 2003; Wahl-Schott and Biel 2009). Furthermore, HCN channels are 

also ligand-gated, which additionally separates them from Nav and Kv channels. The cyclic 

nucleotide-binding domain at the C terminus of the protein is responsible for modulating the 

activity of the channel and is connected to S6 by the so-called C-linker. Induced by the 

binding of cyclic nucleotides, mainly cAMP, the channel undergoes a conformation change at 

this linker domain. The C-terminus is pulled away from its original position in front of the pore 

opening to a more distant position, thereby facilitating the activation of the HCN channel 

(Wainger et al. 2001). HCN channels have profound assignments in the brain. Although it is 

almost not feasible to disclose the HCN subunit composition by electrophysiological means 

in native tissue, several basic properties underlying HCN channels have been revealed. They 

are thought to underlie the native pacemaker current termed Ih contributing to the control of 

the resting membrane potential and to the rhythmic activity of excitable cells (Bal and 

McCormick 1997; Luthi and McCormick 1998a; b; Robinson and Siegelbaum 2003). 

The role of HCN channels in auditory processing is still an open field for research. HCN 

channels have been just recently demonstrated to be expressed at high levels in the auditory 

brainstem (Koch et al. 2004; Koch and Grothe 2003; Leao et al. 2006a; Notomi and 

Shigemoto 2004) which makes them an interesting target for electrophysiological studies 

(Bal and Oertel 2000; Golding et al. 1999). It has been already proven that in neurons of the 

auditory brainstem, the large Ih current lowers the membrane time constant and thus enables 

these neurons to process their sound evoked inputs on a very fast time scale (Golding et al. 

1999; Koch and Grothe 2003; Leao et al. 2006a; Yamada et al. 2005). Short membrane time 

constants are typical features of the auditory circuitry and important for high-fidelity sound 
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localization. Hence, it is essential to understand the properties of Ih current in the auditory 

brainstem to gain further insight in the processing of auditory input per se. 

 

1.9 Aims of this study 

Basically, two major projects were conducted in this thesis which both addressed the 

question how the mammalian sound localization circuit develops and further adapts to 

altering activity levels during maturation. 

In the first project (chapter 3), I investigated the highly expressed HCN channels in the SOC 

(see chapter 1.8). The depolarizing current Ih mediated by these channels has been shown to 

regulate the excitability of neurons and to enhance the temporally precise analysis of the 

binaural acoustic cues. Asking the question whether the properties of Ih current would 

change before and after hearing onset, I examined neurons of the LSO and the MNTB with 

electrophysiological means. Moreover, I tested the hypothesis that Ih currents are actively 

regulated by sensory input activity in performing bilateral and unilateral cochlear ablations 

before hearing onset, resulting in a chronic auditory deprivation. 

Results of this project are also published in 

Hassfurth B, Magnusson AK, Grothe B, Koch U. Sensory deprivation regulates the 

development of the hyperpolarization-activated current in auditory brainstem neuron. Eur J 

Neurosci 30(7):1227-38, 2009. 

Throughout the development, GABABRs are widely expressed in the mammalian brain. They 

contribute to long-term plastic changes in input strength in the immature auditory brainstem 

and are involved in the short-term regulation of the strength and dynamics of excitatory and 

inhibitory inputs in the LSO, thereby modulating sound analysis in mature animals 

(Magnusson et al. 2008). Thus, the primary goal of the second part of this thesis (chapter 4) 

was to determine if GABABRs also play such a substantial role in the MSO. As the MSO 

performs several morphological and intrinsic adaptations during development I asked the 

following questions: To what extent are excitatory and inhibitory projections controlled by 

GABABRs? Do GABABRs follow a developmental pattern in their regulation of the main inputs 

to the MSO? Additionally, I wanted to examine whether endogenous GABABR activation in 

the MSO is altered during a critical period (P8-32) of auditory brainstem development. Using 

a combination of whole-cell patch-clamp recordings in acute brain slices and 

immunostainings, I characterized developmental changes in GABABR mediated regulation of 

synaptic inputs to neurons in the MSO. 

A manuscript of this project has been submitted to the Journal of Neuroscience. 
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In order to accomplish both of these in vitro studies, Mongolian gerbils (Meriones 

unguiculatus) were used as experimental animals. Compared with most other small rodents, 

gerbils are able to localize the emitted low frequency sounds of predators more efficiently 

and can communicate over longer distances in their natural habitat, tunnel systems as well 

as open steppe. The prerequisite for such outstanding localization of low frequency sound 

(<2kHz) as well as sound localization in the high frequency range (~2kHz-60kHz) is a well 

evolved MSO and LSO (see chapter 1.4 and 1.5). In contrast to e.g. mice, which lack a well-

developed MSO, the gerbil SOC comprises both nuclei, thus rendering it an excellent model 

organism to investigate MSO and LSO related processes on an electrophysiological level. 

The fact, that these rodents possess auditory thresholds comparable to those measured for 

humans is interesting and probably most relevant for future research concerning auditory 

processes (Brown 1987; Heffner and Heffner 1988; Klumpp and Eady 1957; Ryan 1976). 

Additionally, since rodents undergo postnatal pre-hearing as well as hearing conditions, they 

have been the object of extensive electrophysiological studies and are well characterized 

regarding auditory development. 

Carrying out this thesis, further insight in the physiological aspects of the mammalian 

superior olivary complex has been gained especially with respect to developmental 

adaptations of intrinsic cellular properties and the dynamic modulation of input strength. 
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2 MATERIAL AND METHODS 

2.1 General methods 

All experiments were performed in conformity with the rules set by the EC Council Directive 

(86/89/ECC) and German animal welfare legislation. 

Acute transverse brain slices (140-190µm) of the auditory brainstem containing MSO, LSO, 

MNTB and LNTB were obtained from gerbils (Meriones unguiculatus) aged P8-P32. To 

minimize potentially damaging Ca2+-influx into the neurons a low-sodium, high-sucrose slice 

solution containing 85 NaCl, 2.5 KCl, 1.3 NaH2PO4, 2.5 NaHCO3, 75 sucrose, 25 glucose, 

0.5 CaCl2 and 4 MgCl2 (all in mM) was used for the slicing procedure. Following decapitation 

under isofluorane anaesthesia, the brainstem was carefully removed and placed in the 

oxygenated ice-cold slice solution (95%O2, 5%CO2). The block of tissue was then glued with 

cynoacrylic glue onto a bath chamber that was filled with ice-cold slice solution. Slices were 

cut in the rostral direction from the level of the facial nerve, with a vibratome (VT1000S; 

Leica, Wetzlar, Germany), and subsequently incubated at 32°C in oxygenated (95%O2, 

5%CO2) artificial cerebrospinal fluid (aCSF) containing (in mM): 125 NaCl, 2.5 KCl, 1.25 

NaH2PO4, 26 NaHCO3, 25 glucose, 2 CaCl2 and 1 MgCl2 (pH 7.4) for 5min, after which they 

were allowed to cool down to room temperature (22±2°C). Recordings were obtained within 

4-5h after the preparation. 

For recordings, slices were transferred to the recording chamber and superfused 

continuously with oxygenated aCSF at a rate of 1-2 ml/min. All recordings were made at 

32±1°C. Slices were viewed through an upright microscope (Zeiss Axioscope; Oberkochen; 

Germany) using a 40× water-immersion objective (Achroplan, Zeiss) and infrared-differential 

interference optics equipped with an infrared-sensitive digital camera (KP-M2R, Hitachi 

Kokusai Electric, Tokyo, Japan). Whole-cell voltage- and current-clamp recordings were 

performed from the SOC with a Multiclamp 700A amplifier (Axon Instruments, Union City, 

CA, USA). Borosilicate glass microelectrodes (GC150F-10, Harvard Apparatus, Edenbridge, 

UK) were pulled on a DMZ Universal Puller (Zeitz Instruments, Munich, Germany), yielding a 

final tip resistance of 2-3.5MΩ. The series resistance ranged from 5-13MΩ and was 

compensated by 70-80% for voltage-clamp recordings. Furthermore, the series resistance 

was monitored throughout the duration of these experiments and was not allowed to vary by 

more than 20%. For current-clamp experiments, the bridge balance was applied. 
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2.2 HCN channel specific methods 

2.2.1 Drugs and solutions 

For all voltage- and current-clamp recordings glass electrodes were filled with an internal 

solution containing (in mM) 130 K-gluconate, 5 KCl, 10 HEPES, 1 EGTA, 2 Na2-ATP, 2 Mg-

ATP, 0.3 Na2-GTP, 10 Na-phosphocreatine, adjusted to pH 7.3 with KOH. To isolate the Ih 

current during voltage clamp recordings, the following pharmacological agents were used: 

1µM tetrodotoxin (TTX), (Tocris-Cookson, Bristol, UK), 2mM 4-aminopyridine (4-AP) and 

200µM barium chloride dihydrate (BaCl) (both Sigma-Aldrich, Deisenhofen, Germany). Ih 

current was blocked with the specific HCN channel antagonist ZD7288 (20-50µM) (Tocris-

Cookson, Bristol, UK). All drugs were dissolved in dH2O stored at -20°C, diluted prior to the 

experiment and added to the perfusate during the experiment. 

 

2.2.2 Data acquisition and analysis 

Whole-cell voltage and current clamp signals were low pass filtered at 10kHz with a 4-pole 

Bessel filter and digitized at rate of 20-50kHz. pCLAMP (Version 10.2; Axon Instruments) 

was used for recordings and stimulus generation. Traces were digitally filtered at 2-5kHz. 

Data was analyzed with Clampfit (Version 10) or using custom-made routines in IGOR 

(Wavemetrics, Lake Oswego, OR). 

LSO neurons were only included in the analysis if the compensated capacitance was larger 

than 20pF. These neurons display an onset spike in response to depolarizing currents and a 

depolarizing sag upon hyperpolarization and most likely correspond to the LSO principal 

neurons which show sensitivity to interaural level differences (ILDs) during sound stimulation 

(Adam et al. 1999; Magnusson et al. 2008). Since about 80% of the large neurons in the 

gerbil LSO show principal cell like bipolar morphology (Helfert and Schwartz 1987), we 

assume that the large majority of our data derives from LSO principle neurons. 

All voltages were corrected for a liquid junction potential of -11.6mV. The input resistance 

(Rin) was calculated in the current-clamp mode by using Ohm’s law from the peak or the 

steady state of the voltage deflection in response to a -200pA step current injection. 

Similarly, membrane time constants were measured from the voltage deflection induced by a 

-200pA current injection. During baseline voltage clamp recordings, the membrane potential 

was held at -62mV. To elicit the Ih current, voltage steps (1.5s) were applied from -52 to -

127mV in steps of 5mV. Current amplitude was calculated as the current difference during 
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baseline voltage and 1.35s after the voltage step induction. Current density was calculated 

by dividing the current amplitude by the neuron’s compensated capacitance as read from the 

MultiClamp Commander. 

Activation time constants (τ) were obtained by fitting the current traces of the -127 to -72mV 

steps after the capacitive current artifact with the sum of two exponential functions, 

fast slow/ /
1 2(t)

t t
A e A e

− τ − τ
ƒ = +  

where τfast and τslow are the fast and slow time constants of the current activation and A1 and 

A2 the respective amplitudes. The effective time constant of Ih activation, the weighted τ, was 

calculated for each measurement according to (Balakrishnan et al., 2009): 

τ weighted = (A1*τfast+A2*τslow)/(A1+A2). 

In order to obtain voltage-dependent steady-state activation curves, tail currents for each 

voltage step were measured about 10% below the maximal tail current amplitude for each 

test voltage, normalized to the maximal current (Imax) evoked by all test voltages and plotted 

as a function of the preceding test voltage. The resulting curves were fitted with the 

Boltzmann function: 

I = Imax/(1+exp[(V-Vhalf)/k)])+Ioff , 

where Ioff is the offset current, Imax is the maximal tail current, V is the test voltage, Vhalf is the 

half-activation voltage, and k is the slope of the Boltzmann function. 

All numbers in the text refer to the values obtained by current measurements induced by a 

voltage step to -112mV. Results are presented as means ± S.E.M and statistical significance 

was determined with a paired or unpaired Student’s two-tailed t-test. 

 

2.2.3 Cochlear ablations 

Bilateral and unilateral cochlear ablations (CA) were performed on gerbils at P10. Briefly, 

gerbils were anaesthetized with a mixture of Medetomidin (1µg/kg), Midazolam (0.1mg/kg) 

and Fentanyl (0.1mg/kg) (MMF). An incision in the skin was made behind the pinna, the 

muscles were gently removed and the bulla opened with forceps. After aspirating the middle 

ear mesenchyme, the round window was opened and the cochlea was removed either by 

using forceps or by aspiration with a fine cannula. Small pieces of gel foam were inserted 
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into the inner and middle ear cavities and the incision in the skin was closed using a 

cyanoacrylate adhesive. 

The anaesthesia was antagonized with Atipamezol-Flumazenil-Naloxon (AFN), and 0.1ml of 

sterile 0.9% NaCl solution was injected under the skin to substitute fluid loss. The gerbils 

were returned to their mothers as quickly as possible. During the brainslice preparation, the 

temporal bone was checked under the microscope for a complete removal of the cochlea. 

Only animals in which the entire cochlea cavity was filled with gel foam were included in the 

study (about 80% of animals undergoing surgery). Bilaterally CA animals that were further 

processed for immunostaining (MAP2) showed the typically bilateral dendritic atrophy of 

neurons in the medial superior olive, which is indicative of a bilateral hearing loss. 

 

2.3 GABAB receptor specific methods 

2.3.1 Drugs and solutions 

Whole-cell voltage-clamp recordings were carried out using a Cs-based internal solution 

comprising 70 CsMeSO4, 70 CsCl, 10 HEPES, 10 EGTA, 2 Na2-ATP, 2 Mg-ATP, 0.3 Na2-

GTP, 1 CaCl2 (all in mM) and adjusted to pH 7.3 with CsOH. Voltage-gated sodium and 

potassium currents were blocked by adding QX-314 [1mM] and TEA-Cl [5mM] to the 

electrode solution before usage. For whole-cell current-clamp recordings we used an internal 

solution consisting of 130 K-gluconate, 5 KCl, 10 HEPES, 1 EGTA, 2 Na2-ATP, 2 Mg-ATP, 

0.3 Na2-GTP, 10 Na-phosphocreatine, adjusted to pH 7.3 with KOH. 

Additionally, the following pharmacological agents were used. 6,7-dinitroquinoxaline-2,3-

dione (DNQX), DL-2-amino-5-phosphonopentanoic acid (DL-APV), SR95531, SCH50911, 

(R)-Baclofen (all Tocris-Cookson, Bristol, UK), strychnine, NO711 hydrochloride, 4-

aminopyridine (4-AP) (all Sigma-Aldrich, Deisenhofen, Germany). All drugs were dissolved in 

dH2O and stored at -20°C. Prior to the experiment, aliquots were thawed and added to the 

perfusate during the experiment. 

 

2.3.2 Experimental procedure 

MSO principal neurons were optically identified through the bipolar fusiform shape of their 

somata with dendrites extending medially and laterally. In addition, only neurons with 

capacities larger than 20pF, as read from the compensation of the MultiClamp amplifier, 
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were regarded as principal neurons and included in this study. Evoked synaptic responses 

were elicited with a glass microelectrode (tip opening 1-2µM) filled with NaCl [2M], which was 

positioned in the ipsilateral MNTB or the ipsilateral LNTB fiber tract 100 to 150µm away from 

the somatic region of the MSO. An analog isolated pulse generator (BSI 950, Dagan 

Corporation, Minneapolis, MN, USA) at a rate of 0.2Hz triggered a bipolar (+/−), paired 

stimulus pulse (from now on referred to as test pulse) with an inter-stimulus interval of 20ms. 

The threshold stimulus strength was typically 20-80V with pulse durations between 200 and 

400µs. 

Inhibitory postsynaptic currents (IPSCs) were pharmacologically isolated by bath application 

of the AMPA receptor antagonist DNQX [10µM]. Excitatory postsynaptic currents (EPSCs) 

were evoked in the presence of the glycine receptor antagonist strychnine [1µM]. In all 

experiments, DL-APV [50µM] was applied to block NMDA receptors and SR95531 [10µM] to 

block GABAA receptors. To determine GABABR mediated effects the corresponding agonist 

Baclofen [1µM] was applied to the perfusate. This Baclofen concentration is slightly above 

the IC50 values of the dose-response-curve for the excitatory ([IC50]=0.62µM) and inhibitory 

([IC50]=0.2µM) inputs as measured in P14 old animals (Fig.4.2). Some of the train stimulation 

experiments were carried out under the presence of the synaptosomal GABA uptake blocker 

NO711 (preferred GAT-1 selectivity) to increase the residual GABA concentration during 

MNTB or LNTB stimulation. Dependent on the hypothesis, baseline conditions consisted in 

all experiments of 5 minutes with or without the 100Hz train preceding the test pulse. In some 

experiments, 4-AP [2mM] was used to raise spontaneous synaptic activity levels in the slice 

(Fig.4.9). 

 

2.3.3 Data acquisition and analysis 

The signals were filtered with a low-pass 4-pole Bessel filter at 10kHz, sampled at 20-50kHz 

and digitized using a Digidata 1322A interface (Axon Instruments). Traces were digitally 

filtered at 2-5kHz. Stimulus generation, data acquisition and offline analysis of data were 

performed using the pClamp Software (Version 10.2, Axon Instruments). The paired pulse 

ratio (PPR) was calculated as the mean amplitude of the synaptic response evoked by the 

second stimulus over that evoked by the first one. The coefficient of variation (CV) was 

calculated as the ratio between the standard deviation of synaptic current amplitude and the 

mean amplitude (Faber and Korn 1991). All data shown in percent reflect values normalized 

to baseline conditions. Figures, which display averaged evoked responses, consist of at least 

13 traces. Stimulation artifacts have been deleted for clarity in figures that show averaged 

traces. Results are expressed as mean ± standard error of mean (S.E.M.). Significant 



  2 MATERIALS AND METHODS 
 

 46 

differences are marked with a single asterisk for values of P<0.05, with a double asterisk for 

P<0.01 and with a triple asterisk for P<0.001. P-values in this study were obtained by using 

Student’s two-tailed paired or unpaired t test. 

 

2.3.4 Immunohistochemistry 

Animals of different age (P7, P18, P19, P30) were deeply anesthetized with isoflurane and 

then perfused with 0.9% Ringers solution (5min) followed by 4% paraformaldehyd (PFA) 

(30min). Brains were removed and postfixated in PFA over night at 4°C. The tissue was then 

sectioned at 40-60µm using a vibratome. Immunohistochemistry was applied to free floating 

sections. Following extensive rinsing in phosphate buffered saline (PBS), sections were 

exposed to a blocking solution (BS) containing 1% bovine serum albumin, 0.5% Triton X-100 

and 0.1% Saponin in PBS (30min). Subsequently, a double immunofluorescence labeling 

was performed with the following primary antibody combinations: guinea pig anti-GABABR1 

(1:2000; Chemicon International Inc., USA) / chicken anti-microtubule associated protein 2 

(MAP2) (1:1000; Neuromics, USA) and guinea pig anti-glycine transporter 2 (GlyT2) (1:1000; 

Millipore, USA) / mouse anti-glutamate decarboxylase 65 (GAD65) (1:500; Chemicon 

International Inc., USA) in PBS, containing the same BS overnight at 4°C. The 

immunoreactivity was visualized by incubating the sections with secondary antibodies raised 

in donkey and conjugated to either Cy3 (1:300; Chemicon International Inc., USA), Alexa 488 

(1:200; Molecular Probes, Germany) or Cy5 (1:200; Dianova, Germany) in BS for 3h at 37°C. 

Finally, the sections were rinsed, mounted, and cover-slipped with Vectashield medium 

(Vector Laboratories, Inc., USA). Confocal optical sections were acquired with a Leica TCS 

SP confocal laser-scanning microscope (Leica Microsystems, Germany) equipped with PL 

FLUOTAR 25x / 0.75 NA and HXC PL APO 63x / 1.32 NA oil immersion objectives. 

Fluorochromes were visualized using an argon laser with excitation wavelengths of 488nm 

(emission 510–540nm) for Alexa 488, a DPSS laser with a laser line of 561nm (emission 

565–600nm) for Cy3, and a helium-neon laser with an excitation wavelength of 633nm 

(emission 640-760nm) for Cy5. Stacks of eight-bit greyscale images were obtained with axial 

distances of 300 or 1000nm between optical sections and pixel sizes of 310 to 781nm 

depending on the selected objective. After stack acquisition, Z chromatic shift between color 

channels was corrected. RGB stacks, montages of RGB optical sections, and average-

intensity projections were created using ImageJ 1.37k plugins. 
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3 SENSORY DEPRIVATION REGULATES THE 
DEVELOPMENT OF THE HYPERPOLARIZATION-
ACTIVATED CURRENT IN AUDITORY 
BRAINSTEM NEURONS 

3.1. Introduction 

Voltage-gated ion channels largely determine the excitability and the integrative properties of 

neurons. One important candidate are the HCN channels, which are widely expressed in the 

brain (Notomi and Shigemoto 2004), open upon hyperpolarization and produce a mixed 

cation depolarizing current (Ih). Four different HCN isoforms (HCN1-4) are expressed in the 

mammalian brain, which significantly differ in their physiological properties (Wahl-Schott and 

Biel 2009). HCN1 channels activate faster and at more depolarized voltages compared to 

HCN2-4 channels. Moreover, the modulation of the voltage dependence via cAMP is less 

pronounced in HCN1 compared to HCN2-4 channels. However, Ih channels can form 

heteromers with properties that are not the algebraic sum of the four different channel 

subunits (Chen et al. 2001). Functionally, Ih is thought to stabilize the membrane resting 

potential (Hu et al. 2002; Nolan et al. 2007) and to decrease membrane time constants to 

allow subthreshold integration of synaptic inputs with high temporal precision (Magee 1998; 

1999). Ih also contributes to the generation of oscillatory or rhythmic behavior of single 

neurons or neural networks in the cortex, hippocampus and thalamus (Dickson et al. 2000; 

Fisahn et al. 2002; Nolan et al. 2004; Pape and McCormick 1989). 

Neurons in the auditory brainstem display one of the largest Ih current amplitudes in the 

entire brain (Bal and Oertel 2000; Banks et al. 1993; Koch and Grothe 2003; Leao et al. 

2006a). In these neurons, the large Ih current lowers the membrane time constant and thus 

enable these neurons to process their sound evoked inputs on a very fast time scale 

(Golding et al. 1999; Koch and Grothe 2003; Leao et al. 2006a; Yamada et al. 2005). 

Neurons in the superior olivary complex (SOC), the first site of binaural processing in the 

auditory brainstem, differentially express the various HCN subunits (Koch et al. 2004; Leao 

et al. 2006a; Notomi and Shigemoto 2004). Whereas HCN1 is mainly expressed in the lateral 

(LSO) and medial superior olive (MSO), the HCN2 and HCN4 isoforms are predominantly 

found in the MNTB. This distribution of HCN isoforms corresponds well to the Ih current 

properties measured in neurons of the LSO and MNTB of mice (Leao et al. 2006a). Thus, an 

important question is how Ih is regulated during development and what role neural activity 

levels play during this process. Here we show that at the onset of sound evoked activity Ih 

profoundly increases in LSO neurons but not in MNTB neurons. Moreover, a loss of sensory 
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activity considerably changes Ih amplitude and the voltage dependence of Ih activation in 

these neurons. These Ih changes are of opposite polarity in neurons of the LSO and the 

MNTB, which might reflect the differential HCN channel composition in the respective nuclei. 

 

3.2 Results 

3.2.1 The Ih current has a larger impact on the voltage response in the LSO than in the 

MNTB 

The influence of Ih current activation on membrane properties of principal neurons in the LSO 

and the MNTB of gerbils was tested at postnatal day 17 (P17). After this developmental time 

point the cellular properties of superior olivary complex neurons change only little 

(Magnusson et al. 2005; Scott et al. 2005). The voltage response to step current injections of 

various amplitudes (duration: 1s) was recorded and compared between LSO and MNTB 

neurons. Both, LSO and MNTB neurons responded with a single spike to a depolarizing 

current injection and displayed a depolarizing sag (arrow) during hyperpolarizing current 

injections which is indicative of Ih activation (Fig.3.1A and B). However, input resistance to 

hyperpolarizing current injections (-200pA) was almost 10 times smaller in LSO compared to 

MNTB neurons for the peak (closed circle) (LSO: 29±10MΩ, n=9; MNTB: 206±22MΩ, n=4) 

as well as for the steady state (open circle) voltage (LSO: 14±4MΩ, n=9; MNTB; 132±9MΩ, 

n=4). In addition, membrane time constants were about five times shorter in LSO 

(2.0±0.7ms) compared to MNTB (7.9±1.2ms) neurons. In both types of neurons bath 

application of the selective HCN channel blocker ZD7288 [20µM] hyperpolarized the resting 

membrane potential and increased the input resistance as well as the membrane time 

constant for both LSO and MNTB neurons (Fig.3.1C). However, blocking Ih induced much 

larger changes in input resistance and membrane time constant in LSO compared to MNTB 

neurons. These results provide evidence that Ih differentially affects membrane properties of 

neurons in the gerbil LSO and MNTB, as previously shown for mouse auditory brainstem 

neurons (Leao et al. 2006a). 
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Figure 3.1: Pharmacological blockade of Ih changes the membrane properties of neurons in the LSO and MNTB in 17-day-old 
animals (P17). These changes are considerably larger in LSO compared to MNTB neurons. (A) Upper panel: Voltage response 
of an LSO neuron to depolarizing and hyperpolarizing current step injections (-600 to 1600pA). The arrow indicates the large 
depolarizing sag which is caused by the activation of the Ih current. Lower panel: voltage response of an LSO neuron to a 
hyperpolarizing current step injection (-200pA) under control conditions and during pharmacological blockade of Ih with ZD7288 
[20µM]. (B) Upper panel: Voltage response of an MNTB neurons to a de- and hyperpolarizing current step injection (-400 to 
400pA). The depolarizing sag induced by Ih activation (indicated by the arrow) was smaller compared to the LSO neurons 
indicating a smaller Ih current in MNTB compared to LSO neurons. Lower panel: voltage response of an MNTB neuron to a 
hyperpolarizing current step injection (-200pA) under control conditions and during pharmacological blockade of Ih with ZD7288 
[20µM]. (C) Averages of the resting membrane potential (Vrest), the peak (Rin peak) (•), steady state input resistance (Rin SS) (o) 
and the membrane time constant (τ membrane) under control conditions and during pharmacological blockade of the Ih current 
with ZD7288 [20µm] in the LSO and the MNTB. The level of significance between the groups was determined by using 
Student’s paired t-test. The n-values for each group are stated in the results section. 
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3.2.2 Ih current properties differ between the LSO and the MNTB 

Differences in Ih current properties between LSO and MNTB neurons were measured by 

applying various holding potentials (-52mV to -127mV) from a holding potential of -62mV. Ih 

current was pharmacologically isolated by bath application of TTX [1µM], BaCl [200µM] and 

4-AP [2mM]. In both LSO and MNTB neurons, a slowly activating, large inward current 

developed upon hyperpolarization of the membrane. This current was blocked by bath 

application of the specific Ih blocker ZD7288 [50µM] in both LSO and MNTB neurons 

(Fig.3.2A and B). The Ih current amplitude, measured when the evoked Ih current had 

reached steady state, was more than six times larger in LSO compared to MNTB neurons (at 

-112mV) (LSO: -3202±371pA, n=19, MNTB: -494±31pA, n=19; p≤0.001) (Fig.3.2C). Ih 

current density (at -112mV), which accounts for the neuron’s size obtained by capacitance 

measurements, was still almost three times larger in LSO compared to MNTB neurons (LSO: 

-110±12pA/pF, n=19, MNTB: -41±3pA/pF, n=19; p≤0.001) (Fig.3.2D). Voltage dependence of 

Ih current activation was determined by a tail-current analysis (Fig.3.2E). Tail current 

amplitudes for various holding potentials were measured about 10% below the peak, 

normalized to the maximal current amplitude and fitted with a Boltzmann function. The half 

activation voltage was significantly more depolarized in the LSO compared to MNTB neurons 

(at -112mV) (LSO: -76±1.3 mV, n=19; MNTB: -84±2mV, n=19; p≤0.001) (Fig.3.2F). 

Moreover, Ih activation time constant (τweighted: see methods) was significantly faster in LSO 

compared to MNTB neurons (at -112mV) (LSO: 82±6ms, n=18, MNTB: 268±16ms, n=18; 

p≤0.001) (Fig.3.2F). These finding corroborate previous data of Ih properties in the mouse 

auditory brainstem (Koch et al. 2004; Leao et al. 2006a; Notomi and Shigemoto 2004). 
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Figure 3.2: Ih current amplitude, activation time constants and voltage dependence differs between neurons in the LSO and 
MNTB. (A) Current traces recorded from an LSO at P17 neuron induced by de- and hyperpolarizing voltage steps (-52 to -
127mV) from a holding potential of -62mV under control conditions and during pharmacological blockade of Ih with ZD7288 
[50µM]. ZD7288 blocked more than 90% of the current in the beginning of the voltage step, however, a voltage-dependent slow 
unblocking effect of the channel was observed when measured at 32°C. The inset displays the enlarged tail current (scale bar: 
200pA, 200ms). (B) Current traces recorded from an MNTB neuron induced by de- and hyperpolarizing voltage steps (-62 to -
127mV) from a holding potential of -50mV under control conditions and during pharmacological blockade of Ih with ZD7288 
[50µM]. The inset displays the enlarged tail current (scale bar: 50pA, 100ms). C) Averages of Ih amplitudes in LSO and MNTB 
neurons induced by hyperpolarizing voltage steps (-62 to -127mV) measured when the current had reached the steady state 
levels (approximately 1.35s after step voltage induction). Ih amplitude was more than six times larger in LSO compared to MNTB 
neurons. (D) Averages of Ih current density in LSO and MNTB neurons obtained by dividing the Ih amplitude by the 
compensated capacitance of each neuron. (E) Averages of the voltage dependence of Ih activation as obtained from tail current 
measurements in LSO and MNTB neurons. Values are fitted with a Boltzmann function to obtain half voltage activation. Values 
are displayed setting the maximum and the minimum of the Boltzmann function to 1 and 0 respectively (F) Averages of the 
weighted activation time constants of LSO and MNTB neurons obtained by fitting a double exponential function to the current 
traces and calculating the effective weighted activation time constant (see methods). Level of significance between the groups 
and the n-values for each group are stated in the results section. 
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3.2.3 Ih current but not current density differs along the tonotopic axis of the LSO but not 

the MNTB 

Neurons in the MNTB and the LSO of gerbils are tonotopically organized with high 

frequencies represented in the medial part and low frequencies represented in the lateral 

part of the respective nuclei (Kopp-Scheinpflug et al. 2003; Sanes et al. 1989). Voltage-gated 

ion channels can account for differences in firing capability and subthreshold integration that 

has been shown to differ depending on the neuron’s best frequency (Barnes-Davies et al. 

2004; Brew and Forsythe 2005). We tested whether Ih properties of LSO and MNTB neurons 

differs depending on the neuron’s position along the tonotopic axis of the nucleus. In the 

LSO, Ih current amplitude was significantly larger in the lateral (low frequency) compared to 

the medial (high frequency) part of the nucleus (LSO medial: -2452±493pA, n=9; lateral: -

3878±470 pA, n=10; p≤0.05) (Fig.3.3A). However, neurons in the lateral part of the LSO had 

larger capacitance measurements compared to neurons in the medial part of the respective 

nuclei, which indicates that they were larger. This is in agreement with the differences in 

anatomically measured soma size across the tonotopic axis of the LSO (Koch and Sanes 

1998). As a consequence, Ih current density did not differ along the tonotopic axis of the LSO 

(LSO medial: -113±25pA/pF, n=9; LSO lateral: -108±10pA/pF, n=10) (Fig.3.3B). Interestingly, 

neurons in the lateral part of the LSO, which are tuned to low sound frequency, had more 

depolarized voltage dependence than neurons in the medial, high frequency part of the 

nuclei (LSO medial: -80±1mV, n=9; LSO lateral: -72±2mV, n=10; p≤0.001) (Fig.3.3C). The 

differences in Ih current between medial and lateral LSO neurons are also reflected in the 

voltage response to hyperpolarizing step current injections (-200pA). Neurons in the lateral 

part of the LSO had on average a lower input resistance (LSO medial: 51±14MΩ, n=5; LSO 

lateral: 14±9MΩ, n=5; p≤0.05) (Fig.3.3D) and shorter membrane time constants (LSO 

medial: 1.1±0.4ms, n=5; LSO lateral: 3.2±1.3ms, n=5; p≤0.05) (Fig.3.3D) compared to 

neurons in the medial part of the LSO. Blocking Ih with ZD7288 [20µM] induced a larger 

change in resting potential, input resistance and membrane time constant in neurons located 

in the lateral compared to the medial part of the LSO (Fig.3.3D). 

For MNTB neurons, no difference in Ih amplitude, Ih current density or the voltage 

dependence of Ih activation was observed between the medial and the lateral part of the 

nucleus (data not shown). 
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Figure 3.3: Ih amplitude but not current density differs across the tonotopic axis of the LSO. (A) Averages of Ih amplitude in the 
medial and the lateral part of the LSO. In the medial part of the LSO neurons are tuned to higher sound frequencies compared 
to the lateral part of each nucleus where low sound frequencies are represented. (B) Average Ih current densities in the medial 
and the lateral part of the LSO. (C) Averages of the normalized tail current amplitudes fitted with a Boltzmann equation in the 
medial and the lateral part of the LSO. (D) Changes in resting membrane potential (Vrest), input resistance (Rin) and membrane 
time constant (τ membrane) induced by pharmacological blockade of Ih with ZD7288 [20µM] during hyperpolarizing step current 
injection as in Fig.3.1. For A, B, C the level of significance between the groups is stated in the results section. For D the level of 
significance between the groups was determined by using Student’s paired t-test. The n-values for each group are given in the 
result section. 

 

3.2.4 Ih current increases after hearing onset in the LSO but not in the MNTB 

Several studies support the idea that the various HCN subunits differ in their developmental 

time course (Surges et al. 2006; Vasilyev and Barish 2002). Analyzing the amplitude and the 

activation properties of Ih at several developmental stages before and after hearing onset 

revealed significant differences in Ih development between LSO and MNTB neurons. In the 
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LSO, Ih current density profoundly increased just after hearing onset (P10: -28±3pA/pF, 

n=14; P14: -119±11pA/pF, n=17; p≤0.001), whereas only a small change in Ih current density 

was detected in MNTB neurons (P10: -29±7pA/pF, n=10; P14: -36±2pA/pF, n=16; p≤0.05) 

(Fig.3.4A). No significant change in the neuron’s measured capacity, an indicator for neuron 

cell size, was observed during this developmental period. In the LSO, changes in Ih current 

density were accompanied by a significant positive shift of the half activation voltage, 

meaning that more HCN channels were open at the neuron’s resting membrane potential in 

P14 compared to P10 animals (Fig.3.4B) (P10: -87±1mV, n=14; P14: -78±1mV, n=17; 

p≤0.001). For both LSO and MNTB neurons, the activation time constants accelerated 

between P10 and P14 (LSO P10: 285±21ms, n=10; LSO P14: 96±9ms, n=17; p≤0.001; 

MNTB P10: 509±61ms, n=7; MNTB P14: 324±25ms, n=14; p≤0.001) (Fig.3.4C). After P14 no 

further significant changes in Ih properties were observed in the LSO and the MNTB. 

However, a small increase in Ih current density in LSO neurons between P17 and P22 (LSO 

P17: 110±12pA/pF, n=19; p≤0.001; LSO P22: 143±20pA/pF, n=7; p=0.17) cannot be 

excluded due to a reduced sample size in P22 animals, as revealed by power analysis. 



  3 HCN CHANNELS IN THE SOC 
 

 55 

 
Figure 3.4: Developmental increase of Ih is considerably larger in the LSO compared to the MNTB. (A) Averages of Ih current 
density in LSO and MNTB neurons before hearing onset (P10), two days after hearing onset (P14) and at an age when 
neuronal properties are mature-like (P17). (B) Averages of normalized Ih tail current amplitudes of LSO and MNTB neurons at 
the same ages as in A. (C) Averages of the weighted activation time constant in LSO and MNTB neurons at different 
developmental stages. Level of significance between the groups and the n-values for each group are stated in the results 
section. 

 

3.2.5 Bilateral cochlear ablations have opposite effects in the LSO and the MNTB 

Several factors indicate that sensory activity might influence the expression density and the 

functional properties of Ih channels. For example, directly at hearing onset Ih currents are 

maximally upregulated in the LSO and the voltage dependence shifts towards more positive 

potentials. Moreover, a short- or long-term increase in neural activity can modulate Ih current 
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properties in the cortex (Shah et al. 2004) or the hippocampus (Campanac et al. 2008). We 

tested whether chronic auditory deprivation starting before hearing onset, which leads to a 

complete loss of sound evoked neuronal activity and presumably also to a substantial 

decrease in general auditory brainstem neuronal activity (Tucci et al. 1999), modulates Ih 

current properties in auditory brainstem neurons. Auditory deprivation was achieved by 

removing both cochleae (bilateral CA) at P10, two days before hearing onset. Four days after 

bilateral CA (at P14), Ih current density (control: -119±11pA/pF, n=16; bilateral CA: -

116±10pA/pF, n=23; p=0.85), activation time constants (control: 97±9pA/pF, n=16; bilateral 

CA: 131±14pA/pF, n=23; p=0.07) and half-activation voltage (control: -77±1mV, n=16; 

bilateral CA: -77±1mV, n=23; p=0.95) did not differ significantly between LSO neurons of 

control and bilateral CA animals. However, only three days later, at P17, Ih current density in 

the LSO was significantly increased compared to control animals (control: -110±12pA/pF, 

n=19; bilateral CA: -174±15pA/pF, n=19; p≤0.01) (Fig.3.5A). This increase was paralleled by 

a small depolarization of Ih half activation voltage (control: -76±1mV, n=19; bilateral CA: -

72±1mV, n=19; p≤0.05) (Fig.3.5B). Changes in current density and voltage dependence 

were, however, dependent on the tonotopic location of the neurons. Neurons in the high 

frequency limb of the LSO showed a larger increase in Ih current density (control: -

113±25pA/pF, n=9; bilateral CA: -202±20pA/pF, n=10; p≤0.05) and a large depolarization of 

Ih half activation voltage (control: -80±1mV, n=9; bilateral CA: -70±1mV, n=10; p≤0.001) 

(Fig.3.5B inset) compared to neurons in the low frequency limb of the LSO, where the 

increase in Ih current density was much smaller (control: -108±10pA/pF, n=10; bilateral CA: -

145±18pA/pF, n=9; p≤0.05) and the half activation voltage did not change (control: -72±2mV, 

n=10; bilateral CA: -75±1mV, n=9; n.s.). Capacitance changes induced by bilateral CA were 

only observed in the low frequency region of the LSO, where no neurons with capacitances 

above 35pF could be found anymore. Activation time constants changed neither in the high 

nor in the low frequency limb of the LSO (Fig.3.5C). 
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Figure 3.5: Bilateral cochlear ablations increase Ih in LSO neurons but decrease Ih in neurons of the MNTB. (A) Averages of Ih 
current density in LSO and MNTB neurons of control animals and of animals that were bilaterally cochlear ablated at P10. (B) 
Averages of normalized Ih tail current amplitudes of LSO and MNTB neurons of control and bilateral cochlear ablated (bilateral 
CA) animals. The inset in the right panel displays the averages of normalized tail current amplitudes of LSO neurons that were 
located in the medial (high frequency) limb of the LSO. (C) Averaged weighted Ih activation time constants of LSO and MNTB 
neurons in control and bilateral CA animals. Level of significance between the groups and the n-values for each group are 
stated in the results section. 

 

In contrast to the LSO, at a comparable age (P17), the Ih current density in MNTB neurons 

was significantly reduced by bilateral cochlear ablation (control: -41±3pA/pF, n=19; bilateral 
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CA: -31±3pA/pF, n=15; p≤0.05) (Fig.3.5A). No significant changes in Ih activation time 

constant and Ih half activation voltage occurred in MNTB neurons (Fig.3.5B and C). 

Conversely to the LSO, the reduction in Ih current density in the MNTB was not dependent on 

the tonotopic arrangement of the neurons (data not shown). These results show that sensory 

deprivation differentially affects Ih currents in the LSO and the MNTB. 

 

3.2.6 Bilateral cochlear ablation modulates the membrane properties of LSO neurons 

A large increase in Ih current density and a positive shift of the voltage dependence should 

result in a decrease of membrane resistance and a change in the resting membrane potential 

of the sensory deprived neurons. This is especially true in the medial part of the LSO where 

changes in Ih current density are largest. To test this hypothesis, we compared the voltage 

responses to hyper- and depolarizing step current injections of control neurons and of 

neurons from bilateral CA animals exclusively from the high frequency, medial part of the 

LSO. As expected, injection of hyper- and depolarizing step currents resulted in smaller 

voltage changes in LSO neurons from bilateral CA compared to control animals (Fig.3.6A 

and B). On average LSO neurons from bilateral CA animals showed both a significantly 

lower input resistance at the peak (at -200pA: control: 45±5MΩ, n=7; bilateral CA: 29±4MΩ, 

n=6; p≤0.05) and the steady state voltage (at -200pA: control: 17±2MΩ, n=7; bilateral CA: 

12±2MΩ, n=6; p≤0.05) (Fig.3.6C). Moreover, the resting membrane potential in bilateral CA 

animals was more depolarized compared to control animals (control: -64±1mV, n=7; bilateral 

CA: -59±1mV, n=6; p≤0.001) (Fig.3.6C). 
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Figure 3.6: Bilateral cochlear ablations change the membrane properties of neurons in the high frequency region of the LSO. 
(A) Voltage responses to de- and hyperpolarizing current step injections (-600 to +800pA) of LSO neurons in control and 
bilateral CA animals. (B) Averaged voltage responses at the peak (•) and the steady state (•) of LSO neurons in response to de- 
and hyperpolarizing current injections. (C) Averages of the resting membrane potential (Vrest), the peak (Rin peak) and the steady 
state (Rin SS) input resistance for -200pA step current injections in control and bilateral CA animals. The level of significance 
between the groups was determined by using the Student’s unpaired t-test (* p≤0.05, ** p≤0.01, *** p≤0.001). The n-values for 
each group are stated in the results section. 

 

3.2.7 Unilateral sensory deprivation changes Ih properties in the LSO 

Neurons in the LSO receive an excitatory input from the ipsilateral cochlear nucleus and an 

inhibitory input from the ipsilateral MNTB, which is driven by sound activity from the 

contralateral ear. Here we tested whether a change in the balance of excitation and inhibition 

induced by unilateral deafening modulates Ih current properties in LSO neurons. Unilateral 

cochlear ablations resulted in a transient decrease in Ih current density at P14 on the ipsi- 

and the contralateral side (control: -119±11pA/pF, n=16; ipsilateral CA: -56±7pA/pF, n=12; 

contralateral CA: -32±7pA/pF, n=9; both p≤0.001) (Fig.3.7A). Moreover, the half activation 

voltage was shifted to more hyperpolarized potentials (control: -78±1mV, n=16; ipsilateral 

CA: -84±2mV, n=7; contralateral CA: -88±2mV, n=5; both p≤0.001). This could explain the 

previously observed increase in input resistance of LSO neurons a few days after unilateral 

cochlear ablation (Kotak and Sanes 1997). Only three days later, at P17, a small increase of 

Ih current density was observed ipsilateral to the ablated site, similar to the bilateral cochlea 

ablated animals (control: -110±12pA/pF, n=19; ipsilateral CA: -156±13pA/pF, n=16; p≤0.05) 

(Fig.3.7B). This increase was still present in 22-day-old animals (control: -144±20pA/pF, n=7; 

ipsilateral CA: -216±25pA/pF, n=6; p≤0.05) suggesting that a reduction of sound evoked 
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excitatory inputs slowly upregulates Ih. In contrast to bilateral cochlear ablations, there was 

no change in the voltage dependence. Ablation of the contralateral cochlea, which 

diminishes inhibitory neuronal activity, did not result in any significant changes of Ih current 

density after P14 (Fig.3.7B and D). This indicates that a reduction in inhibitory inputs alone is 

not sufficient to cause long-term changes in Ih properties. It is, however, also possible that 

other homeostatic mechanisms rebalance neuronal activity levels. 

 

Figure 3.7: Unilateral cochlear ablation causes a transient bilateral decrease of Ih in LSO neuron around hearing onset. A few 
days later, at P17 and at P22, Ih is increased ipsilateral to the ablation, whereas no change occurs on the contralateral side. 
Averages of Ih current density of LSO neurons in P14 (A), P17 (B) and P22 (C) control animals and in age-matched unilateral 
cochlear ablated animals either ipsilateral or contralateral to the ablation. Level of significance between the groups and the n-
values for each group are stated in the results section. 

 

3.3 Discussion 

The results of the present study demonstrate that the development of Ih current properties 

differs between LSO and MNTB neurons. Moreover, neuronal activity levels oppositely 

regulate Ih development in the two nuclei. In LSO neurons, the Ih current significantly 

increases within a few days after hearing onset, whereas during the same developmental 

period the increase of Ih in MNTB neurons is very small. Furthermore, at P17 LSO neurons 

have considerably larger Ih amplitudes, faster activation time constants and more depolarized 

voltage dependences compared to MNTB neurons, which corroborates previous data 

obtained in the mouse (Leao et al. 2006a). Changing neuronal activity levels by bilateral 

cochlear ablations before hearing onset causes an increase in Ih in LSO neurons, and also 

alters the integrative membrane properties of these cells. Conversely, MNTB neurons display 

a small decrease in Ih amplitude after sensory deprivation. We suggest that these differences 

in Ih development and regulation between the LSO and the MNTB could be a reflection of the 

different HCN subunits expressed in the respective nuclei (Koch et al. 2004; Leao et al. 

2006a; Notomi and Shigemoto 2004). 
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3.3.1 Developmental changes in Ih properties differ between the LSO and the MNTB 

Here we show that shortly after hearing onset, which occurs around P12, Ih amplitude of LSO 

neurons considerably increases, the activation time constant accelerate and the voltage 

activation shifts to more depolarized potentials. As a result the membrane properties of LSO 

neurons, such as input resistance and membrane time constant, profoundly change during 

the first days after hearing onset reaching similar levels in the low frequency region to 

neurons in the MSO (Magnusson et al. 2005; Scott et al. 2005). Since Ih strongly attenuates 

temporal summation of excitatory and inhibitory inputs (Koch and Grothe 2003; Magee 

1999), LSO neurons in mature animals are likely to analyze their excitatory and inhibitory 

inputs with high temporal fidelity and little temporal integration. 

Recent experiments show that developmental changes of Ih properties in hippocampal CA1 

pyramidal neurons are similar to the present results (Surges et al. 2006). In these neurons 

changes in Ih properties are correlated to a relative increase in the HCN1 subunit expression, 

whereas the HCN2 and HCN4 subunit expression levels remain the same during postnatal 

development (Surges et al. 2006; Vasilyev and Barish 2002). A similar mechanism, namely a 

change in the HCN subunit composition from a mixed HCN1, HCN2, and HCN4 composition 

in immature animals to a predominant HCN1 composition in more mature animals, could also 

be the underlying cause for the acceleration of membrane time constants and the shift in the 

voltage dependence in LSO neurons. In contrast, developmental changes in Ih properties 

were much smaller in MNTB neurons, where Ih is mostly generated by HCN2 and HCN4 

subunits that are expressed early during development and may display only small 

developmental changes in analogy with hippocampus (Surges et al. 2006; Vasilyev and 

Barish 2002). 

 

3.3.2 Neuronal activity regulates Ih current amplitude 

The profound up-regulation of Ih in LSO neurons directly after hearing onset strongly 

suggests that neuronal activity levels, which increase considerably with the onset of sound 

evoked activity (Kotak and Sanes 1995; Sanes and Rubel 1988), regulate Ih amplitude and 

properties. However, opposite to our expectations, sensory deprivation before hearing onset 

up-regulates Ih, shifts the voltage dependence of the current to a more positive potential and 

reduces the input resistance in principal neurons of the LSO. In a similar study in adult rats 

sensory deprivation depolarizes the resting membrane potential and decreases the 

membrane time constants and the input resistance in presumed bushy cells of the 

anteroventral cochlear nucleus (Francis and Manis 2000). Since bushy cells have large Ih 
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conductances (Cao et al. 2007), these changes might result from an up-regulation of Ih 

current in these neurons. In contrast, bushy cells in mutant deaf mice show no change in 

excitability or Ih amplitude, whereas in these mice Ih is up-regulated in MNTB neurons (Leao 

et al. 2005). These diverging effects depending on the auditory deprivation model point to the 

complexity of factors that regulate ion channel density and function in auditory brainstem 

neurons. An important question arising is how consistent the activity-dependent regulation of 

Ih is in other brain structures and whether it is dependent on the underlying HCN subunit. In 

cortical structures, a massive increase in neuronal activity during seizure activity causes a 

chronic decrease of Ih. For example, pharmacological induced seizures strongly reduce Ih 

current density and negatively shift the voltage dependence of the Ih current in pyramidal 

neurons of the hippocampal CA1 region and the enterorhinal cortex (Jung et al. 2007; Shah 

et al. 2004). This is also paralleled by a hyperpolarization of the resting membrane potential 

and an increase in input resistance of these neurons. 

Moreover, previous studies have shown that activity-dependent changes in Ih are dependent 

on the subunits expressed in the respective neurons. Whereas HCN1 protein or mRNA 

levels consistently decrease after seizure activity (Jung et al. 2007; Richichi et al. 2008), 

HCN2 subunit levels can either increase or decrease dependent on the experimental 

situation (Brewster et al. 2002; Jung et al. 2007; Richichi et al. 2008). This could also explain 

why in contrast to the down-regulation of Ih in MNTB neurons by cochlear ablations, MNTB 

neurons in mutant deaf mice showed increased Ih amplitudes compared to normal hearing 

mice (Leao et al. 2005). 

An alternative explanation for the differences in Ih regulation between cochlear ablated and 

mutant deaf mice could be different compensatory changes induced in the two deafness 

models. Anatomical labeling with activity markers has shown that total activity levels in 

auditory brainstem are substantially lower in unilateral and bilateral cochlear ablated animals 

or animals with genetic hearing loss (Durham et al. 1989; Tucci et al. 1999). Moreover, one 

study in the chicken indicate that the activity levels are virtually absent in the ipsilateral 

nucleus magnocellularis (analogue to cochlear nucleus) several hours after unilateral 

cochlear ablation (Born et al. 1991). However, to compensate for the decreased activity 

levels, bilateral cochlea ablated and congenitally deaf mice display a variety of synaptic 

adaptations such as increased release probability and receptor strength which are 

dependent on the specific synapse studied and the deafness model (Cao et al. 2008; 

Durham et al. 1989; Futai et al. 2001; Leao et al. 2004; Oleskevich and Walmsley 2002; 

Oleskevich et al. 2004; Tucci et al. 1999). In this respect, the observed increase in Ih in LSO 

neurons and the decrease in MNTB neurons cochlear ablations might be another mechanism 

by which the auditory brainstem nuclei recover some neural activity. Interestingly, the 
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olivocochlear efferent system has been shown to exert bilateral control of the auditory-nerve 

excitability (Darrow et al. 2006). A retrograde degeneration of the efferent terminals could 

therefore, following a unilateral cochlear ablation, affect the excitability of the remaining input 

driving the excitatory and inhibitory inputs to the LSO. 

 

3.3.3 Mechanism of Ih modulation 

A possible mechanism underlying the observed changes in Ih properties could be a change in 

transcription rate or turn-over rate of the HCN channels. Alternatively, these changes could 

also be due to alterations in basic second messenger activity such as cAMP which 

profoundly modulates HCN channel properties (Ludwig et al. 1998; Wainger et al. 2001). In 

fact, chronic changes in Ih amplitude induced by cortical seizures were in most cases 

paralleled by a change in HCN mRNA (Brewster et al. 2002; Richichi et al. 2008) or protein 

level (Jung et al. 2007; Shah et al. 2004). This indicates that neuronal activity can regulate Ih 

on the transcriptional level, a mechanism that depends on calcium influx (Richichi et al. 

2008). Whether this is also the case following cochlear ablations remains to be determined in 

future experiments. What are the underlying mechanisms for the changes in voltage 

dependence and the activation time constant and how do these factors correlate to changes 

in Ih amplitude? The voltage dependence and the activation time constant of Ih are 

determined by the HCN subunit composition, but can also be transiently regulated by second 

messengers such as cAMP (Ludwig et al. 1998; Wainger et al. 2001). Therefore, changes in 

cAMP levels induced by the activation of G-protein coupled receptors could alter Ih properties 

(Frere and Luthi 2004; Ulens and Tytgat 2001). One possibility is that basal cAMP levels are 

modulated in LSO neurons of cochlear ablated animals there by shifting the voltage 

dependence of Ih in these cells. However, it is also possible that the responsiveness of the 

HCN channels to cAMP-levels is altered by cochlear ablations due to differences in the 

subunit composition or the heteromerization of the channels which both can be modulated by 

neuronal activity levels (Brewster et al. 2005; Zha et al. 2008). 

 

3.3.4 Functional consequences of Ih modulation in the auditory brainstem 

In this study we demonstrate an increase in Ih current amplitude in the LSO following auditory 

sensory deprivation. Since Ih modulates the excitability of neurons by two opposing effects, 

namely by a depolarization of the resting membrane potential which increases excitability, 

and by a decrease in input resistance rendering synaptic inputs less efficient, it is unclear 
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what net effect increased Ih currents have on the excitability of LSO neurons. Therefore, 

changes in the functional excitability can go either way depending on the relative contribution 

of the two effects (Fan et al. 2005; Jung et al. 2007). In the LSO, pharmacological up-

regulation of Ih with forskolin, a cAMP activator generates an increase in spontaneous and 

sound-evoked discharge activity in vivo (Shaikh and Finlayson 2005), whereas 

pharmacological blockade of Ih decreases the excitability of these neurons (Shaikh and 

Finlayson 2003). The underlying mechanism could be related to the more positive voltage 

dependence of Ih in LSO neurons which causes a substantial depolarization of the resting 

membrane potential closer to spike threshold and thereby increases excitability in these 

neurons. It would be interesting to explore whether such a change in excitability, induced by 

an activity-dependent up-regulation of Ih, could relate to pathological conditions such as 

tinnitus and hyperacusis. 
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4 THE MAMMALIAN ITD DETECTION CIRCUIT IS 
DIFFERENTIALLY CONTROLLED BY GABAB 
RECEPTORS DURING DEVELOPMENT 

4.1 Introduction 

Neurons in the medial superior olive (MSO), a nucleus in the mammalian auditory brainstem, 

analyze sound direction based on interaural time differences (ITDs) (Brand et al. 2002; 

Goldberg and Brown 1968; Spitzer and Semple 1995; Yin and Chan 1990). This is achieved 

using a coincidence detection mechanism, which compares the relative arrival times of the 

two excitatory inputs deriving from the contralateral and the ipsilateral anteroventral cochlear 

nucleus (AVCN) (Cant and Casseday 1986; Skottun 1998). In addition, MSO neurons 

receive major inhibitory projections originating from the medial and the lateral nucleus of the 

trapezoid body (MNTB and LNTB) (Cant and Hyson 1992; Grothe and Sanes 1993; 

Kuwabara and Zook 1992) (Fig.4.1A). These inhibitory inputs adjust the output signal of 

MSO neurons such that large changes in the discharge rate are occurring within the 

physiological relevant range of ITDs an animal experiences (Brand et al. 2002; Pecka et al. 

2008). 

In adult animals, this inhibition is mediated by glycine (Helfert et al. 1989; Smith et al. 2000). 

Yet, in neonatal animals up to postnatal day 12 (P12), gamma-aminobutyric acid (GABA) 

also represents an important inhibitory transmitter, as MNTB fiber stimulation activates 

GABAA receptor mediated currents in neurons of the medial and lateral superior olive (Kotak 

et al. 1998; Kullmann et al. 2002; Nabekura et al. 2004; Smith et al. 2000). In most brain 

regions, GABA not only induces a chloride current via GABAA receptors, but also activates 

the metabotropic GABAB receptor (GABABR). On the postsynaptic site, GABABR activation 

triggers a direct inhibitory action via the activation of potassium channels (Luscher et al. 

1997; Nicoll 2004; Pitler and Alger 1994). Presynaptically situated GABABRs modulate the 

release probability of inhibitory and excitatory neurotransmitters by depressing Ca2+-currents 

(Isaacson 1998; Takahashi et al. 1998; Wojcik and Neff 1984). Additionally, GABABRs can 

be indirectly involved in long-term plastic changes of synaptic efficacy (Chang et al. 2003; 

Kamikubo et al. 2007). In the mature auditory brainstem, GABABRs primarily contribute to the 

dynamic regulation of transmitter release. We have previously shown that in the lateral 

superior olive (LSO), GABABR activation by retrogradely released GABA regulates the 

balance of excitation and inhibition and thereby adjusts the sensitivity of these neurons to 

interaural intensity differences (Magnusson et al. 2008). Furthermore, presynaptic GABABRs 

have been implicated in decreasing short-term synaptic depression and might thereby 

improve faithful synaptic transmission for the representation of sound structure (Brenowitz et 
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al. 1998; Mapelli et al. 2009). Preliminary immunostainings have revealed that in the auditory 

brainstem GABABRs are not only present before hearing onset, when the MNTB releases 

both GABA and glycine, but also in adult animals, when the MNTB input has become 

glycinergic (Heise et al. 2005; Hilbig et al. 2007). The primary goal of this study was to 

determine whether the GABABR mediated regulation of the main excitatory and inhibitory 

inputs to the MSO changes during development. Moreover, we wanted to show to what 

extent endogenous GABABR activation in the MSO is altered during this developmental 

period. 

 

4.2 Results 

4.2.1 GABAB receptors modulate all four major inputs to MSO neurons 

Neurons in the medial superior olive (MSO) show strong immunoreactivity against GABAB 

receptors (GABABRs) (Fig.4.1B, left panel). At higher magnification, this staining appears 

punctuated with a distribution over the entire cell body and along the proximal dendrites 

(Fig.4.1B, right panel), which suggests a functional role of GABABRs in MSO neurons. Using 

whole-cell voltage-clamp recordings from MSO neurons in acute brain slices, we investigated 

whether pharmacological activation of GABABRs modulates the excitatory and inhibitory 

inputs to MSO neurons. These experiments, as well as the immunolabeling in Fig.4.1B were 

performed in 19-day-old animals, an age when the properties of the excitatory and inhibitory 

inputs to the MSO are considered to be adult-like (Magnusson et al. 2005; Scott et al. 2005; 

Sonntag et al. 2009). In adult animals, MSO neurons receive two excitatory glutamatergic 

inputs from the ipsi- and contralateral AVCN and two inhibitory glycinergic inputs from the 

ipsilateral MNTB and LNTB (Fig.4.1A). Inhibitory and excitatory postsynaptic currents (IPSCs 

and EPSCs) were evoked by either stimulation of the ipsi- or contralateral fiber tract to MSO 

neurons. Since the excitatory and inhibitory inputs from each side run in the same fiber 

bundle (Cant and Hyson 1992; Grothe and Sanes 1993; Kuwabara and Zook 1992; Smith et 

al. 1993), fiber stimulation usually resulted in a mixed excitatory/inhibitory response. For this 

reason EPSCs and IPSCs had to be isolated pharmacologically by antagonizing either the 

excitatory or the inhibitory inputs, respectively (see methods). 
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Figure 4.1: Pharmacological activation of GABABRs depresses excitatory and inhibitory currents at all four major inputs to the 
MSO. (A) The MSO circuit with its respective inputs from the MNTB, LNTB ipsi- and contralateral AVCN (red afferents: 
excitatory, blue afferents: inhibitory). (B) Fluorescent GABABR staining of the MSO in P19 gerbils (red: GABABR1; green: 
MAP2). left panel GABABRs were expressed along the entire dorso-ventral extent of the MSO (scale bar, 50µm). right panel 
Cytosolic as well as marginal GABABR1 staining was detectable (scale bar 10µm). (C) Example time course of IPSC amplitude 
depression during bath-application of Baclofen (MNTB fiber stimulation). (D) Example time course of EPSC amplitude 
depression during bath-application of Baclofen (contralateral AVCN fiber stimulation). (E) top panels IPSCs under control and 
Baclofen conditions. bottom panels EPSCs under control and Baclofen conditions (examples display averaged evoked 
responses). (F) Summary and statistics of the modulatory effect of Baclofen on current amplitude for all major inputs to the 
MSO. (asterisks represent P-values obtained by Student’s two-tailed unpaired t test) 

 

To find out whether GABABR activation regulates MSO inputs, GABABRs were 

pharmacologically activated by bath-application of Baclofen [1µM], a concentration that lies 

within the dynamic part of the dose-response-curve for excitatory and inhibitory currents 

(Fig.4.2). As depicted in Figure 4.1C and D Baclofen rapidly decreased the amplitude of both 

evoked IPSCs and evoked EPSCs. In general, both excitatory and inhibitory inputs projecting 
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to the MSO profoundly decreased in amplitude upon activation of GABABRs by Baclofen 

application (Fig.4.1E). (MNTB: control -6.9 ± 1.2nA, Baclofen -2.8 ± 0.5nA, n=7; LNTB: 

control -1.7 ± 0.5nA, Baclofen -0.8 ± 0.2nA, n=5; contra AVCN: control -3.1 ± 0.6nA, 

Baclofen -1.9 ± 0.6nA, n=7; ipsi AVCN: control -3.3 ± 1.0nA, Baclofen -2.1 ± 0.6nA, n=4). 

However, the relative decrease of current amplitude by Baclofen application was strongest 

for MNTB inputs whereas the excitatory inputs were significantly less affected (MNTB: 59.4 ± 

3.5%, n=7; contra AVCN: 42.2 ± 5.8%, n=7; LNTB: 45.8 ± 9.2%, n=5; ipsi AVCN: 35.3 ± 

2.9%, n=4; MNTB-contra AVCN: P≤0.05; MNTB-ipsi AVCN: P≤0.001) (Fig.4.1F). On the 

contrary, the time course (decay time) of both the inhibitory or excitatory currents was not 

changed by pharmacological activation of GABABRs with Baclofen [1µM] (data not shown). 

 
Figure 4.2: Baclofen modulates inhibitory and excitatory currents within a similar dynamic range in the MSO. left panel Dose-
response-curve for the effect of Baclofen on IPSC amplitudes mediated by GABABR activation in P14 animals ([IC50]=0.20µM). 
right panel Dose-response-curve for the effect of Baclofen on EPSC amplitudes mediated by GABABR activation in P14 animals 
([IC50]=0.62µM). 

 

4.2.2 The relative effect of GABABR activation on inhibitory and excitatory currents changes 

during development 

Before hearing onset, which occurs around P12, the MNTB projections to the lateral superior 

olive (LSO) and the MSO undergo several structural and functional changes. Most 

importantly, these inputs change from a mixed GABA/glycinergic to a pure glycinergic 

transmitter phenotype (Kotak et al. 1998; Kullmann et al. 2002; Nabekura et al. 2004; Smith 

et al. 2000). In addition, this input switches from being depolarizing to hyperpolarizing due to 

a significant decrease in the postsynaptic chloride concentration (Kakazu et al. 1999; Kandler 

and Friauf 1995; Lohrke et al. 2005). Our next goal was to determine whether GABABRs 

might be involved in these functional changes. Therefore, we quantified GABABR induced 

input modulation in MSO neurons considerably before hearing onset (P9), shortly after 

hearing onset (P14), at a more mature stage (P19) and from mature animals (P32) by 

application of Baclofen [1µM]. In all age groups tested, Baclofen depressed the inhibitory 
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inputs evoked by MNTB fiber stimulation. Interestingly, this GABABR mediated effect on the 

inhibitory inputs remained approximately constant during all developmental stages tested 

(Fig.4.3A). In contrast, GABABR mediated depression of the excitatory, glutamatergic inputs 

decreased significantly after hearing onset (P9 contra AVCN: 78.1 ± 2.7%, n=5; P14 contra 

AVCN: 47.4 ± 2.8%, n=6; P≤0.001) (Fig.4.3B). This decrease of GABABR mediated 

regulation of the excitatory inputs continued up to P32 when input properties are generally 

considered to be mature (P19 contra AVCN: 42.2 ± 5.7%, n=7; P32 contra AVCN: 19.6 ± 

2.5%, n=4; P≤0.05) (Fig.4.2B). Similar developmental changes of GABABR mediated 

modulation of inputs were observed for the projections from the LNTB and the ipsilateral 

AVCN (Tab.4.1). Taken together, these data suggest that before hearing onset GABABRs 

more strongly regulate the excitation, whereas in the matured system their effect mainly 

remains in regulating the inhibitory input strength. 

 
Table 4.1: Values show the decrease in current amplitude by Baclofen [1µM] and are normalized to control conditions. Effect of 
Baclofen [1µM] on ISPC and EPSC amplitudes evoked by stimulation of the respective input fibers recorded from neurons in the 
MSO. 

 

4.2.3 GABABR immunostaining changes from a predominantly dendritic to a mostly somatic 

location during development 

This developmental decrease of Baclofen effect on the excitatory MSO inputs was 

corroborated by immunostainings against the GABABR1 subunit in fixed tissue sections at 

different developmental stages (P7, P19, P30). In general, MSO neurons showed antibody 

reactivity for GABABRs at all age groups tested (Fig.4.3C). Nevertheless, differences 

between the age groups became obvious by qualitatively comparing the distribution pattern 

of GABABR staining with the general dendritic MAP2 staining. At P7, GABABR staining was 

profound in the dendritic region medial and lateral to the MSO somata whereas the somatic 
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region was only slightly immunoreactive. In contrast, at P19 and even more pronounced later 

during development (at P30) GABABR immunoreactivity was considerably stronger at the 

MSO somata, whereas an obvious decrease of dendritic staining was detectable compared 

to gerbils before hearing onset. Physiological and anatomical data together strongly indicate 

a developmental change of the presynaptic GABABR distribution. During early developmental 

stages GABABRs seem to be mainly located on the excitatory inputs, which mostly 

terminated on the dendrites (Clark 1969; Russell and Moore 1999; Stotler 1953). In more 

mature animals GABABRs seem to be predominantly located on the presynaptic inputs at the 

soma, which are mostly glycinergic and thus inhibitory (Kapfer et al. 2002). 

 
Figure 4.3: Physiological efficiency and anatomical distribution of GABABRs changes during maturation for excitatory but not 
inhibitory inputs. (A) Average decrease of normalized IPSC amplitudes by Baclofen [1µM] for different age groups (MNTB fiber 
stimulation). (B) Average decrease of normalized EPSC amplitudes by Baclofen [1µM] for different age groups (contralateral 
AVCN fiber stimulation). (C) top panels Antibody labeling in the MSO against GABABR1 (red) and MAP2 (green) at different 
developmental stages bottom panels isolated immunofluorescence of GABABR1 (scale bars: 50µm). (asterisks represent P-
values obtained by Student’s two-tailed unpaired t test) 
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4.2.4 At all developmental stages GABABRs control transmitter release probability on the 

excitatory and inhibitory inputs to MSO principal neurons 

In most cases modulation of input strength by GABABR activation is achieved either by 

presynaptic changes in release probability or by postsynaptic activation of K+-currents. Since 

in the previous experiments postsynaptic potassium channels were blocked 

pharmacologically (see methods), the above-described decrease in synaptic strength by 

Baclofen application is likely to be induced via activation of presynaptically situated 

GABABRs. In order to test this hypothesis, we analyzed the paired pulse ratios (PPRs) of 

evoked IPSCs and EPSCs before and during pharmacological activation of GABABRs. For 

both excitation and inhibition, Baclofen significantly increased the PPR before (P9) and after 

hearing onset (P19), most likely reflecting a reduction in transmitter release probability at the 

given presynaptic input (Fig.4.4A). We also analyzed the coefficient of variation (CV), an 

additional measurement to estimate changes in presynaptic release probability, for all major 

MSO inputs. Current amplitudes exhibited a stronger fluctuation in peak sizes after 

application of Baclofen (Fig.4.4B). To visualize this effect we show a Gaussian function fitted 

to the IPSC amplitude distribution evoked by MNTB stimulation. As for the PPR, Baclofen 

application increased the CV for excitatory and inhibitory inputs before and after hearing 

onset. Finally, the mean frequency of both, inhibitory and excitatory spontaneous events 

recorded in the absence of tetrodotoxin (TTX) declined significantly during Baclofen 

application for both pre-hearing and more mature animals (Fig.4.4C). Taken together, these 

data suggest that the observed reduction in input strength by GABABR activation is achieved 

by a reduction in transmitter release probability via presynaptic GABABRs before hearing 

onset as well as later during development. 



  4 GABAB RECEPTORS IN THE MSO 
 

 72 

 
Figure 4.4: GABABRs are located presynaptically at inhibitory and excitatory inputs to the MSO before and after hearing onset. 
(A) left PPR of IPSCs and EPSCs decreased during exposure to Baclofen (examples display averaged evoked responses of 
P19 neurons). right Summary and statistics of Baclofen [1µM] induced changes in PPR for all stimulation conditions in animals 
before (P9) and after (P19) hearing onset. (B) left top Single IPSCs (grey) illustrate the scatter around the mean (black) under 
control conditions and during Baclofen application in a P19 animal (IPSC amplitudes during Baclofen conditions were 
normalized to the mean of the first IPSCs under control conditions). left bottom Distribution of normalized IPSC amplitudes 
under control conditions and during Baclofen application. Gaussian fit for the variance of IPSC amplitudes around the mean 
became broader during Baclofen application. right Quantification of CVs of normalized evoked postsynaptic currents (ePSCs) 
for control conditions and with Baclofen for the two age groups. (C) left Example raw traces of spontaneous excitatory activity 
under control conditions (black) and during Baclofen exposure (grey). right Quantification of inhibitory and excitatory 
spontaneous activity changes induced by application of Baclofen [1µM]. (ctr: control; BAC: Baclofen) (asterisks represent P-
values obtained by Student’s two-tailed paired t test) 
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4.2.5 Before hearing onset MNTB fiber stimulation activates presynaptic GABABRs 

During early pre-hearing postnatal stages, LSO and MSO neurons receive a mixed 

GABAergic and glycinergic inhibition from inputs originating from the MNTB, whereas after 

hearing onset inhibitory transmission from the MNTB is predominantly glycinergic (Kotak et 

al. 1998; Smith et al. 2000). Hence, we next asked the question if in young animals (P8) 

GABA release from MNTB fibers activates GABABRs and thereby modulates the glycinergic 

and/or glutamatergic inputs to MSO neurons. If, at this age, MNTB neurons indeed release 

GABA together with glycine from their terminals, this should activate GABABRs located 

presynaptically on the same synapse and thereby decrease the release probability of the 

glycinergic transmission. This was tested by analyzing the amplitude of the glycinergic 

inhibitory currents in response to a test stimulus 200ms after a high frequency train 

stimulation of MNTB fibers (100Hz, 200ms). If GABABRs were activated during this high 

frequency stimulation, the GABABR antagonist SCH50911 [10µM] should block the GABABR 

induced decrease in transmitter release probability of the glycinergic input. Surprisingly, 

pharmacological blockade of GABABRs did not induce a significant change in the amplitude 

of the inhibitory current at this developmental stage (7.8 ± 5.6%, n=5) (Fig.4.5A and E). This 

suggested that high frequency firing of the MNTB inputs alone was not sufficient to elevate 

the GABA concentration high enough to activate GABABRs effectively. However, performing 

the same experiment but applying the GABA uptake blocker NO711 [50µM] to increase the 

overall GABA concentration, resulted in a significant decrease in the IPSC amplitude (38.2 ± 

5.3%, n=5; P≤0.01) (Fig.4.5B and E). This decrease in IPSC amplitude was completely 

abolished by the GABABR antagonist SCH50911 [10µM] (-1.8 ± 4.7%, n=4) (Fig.4.5C and E) 

and differed significantly from application of NO711 alone (P≤0.01). 

Before hearing onset MNTB fibers also terminate on the dendrites of MSO neurons (Kapfer 

et al. 2002; Werthat et al. 2008) which also receive the majority of excitatory inputs from the 

ipsi- and contralateral AVCN (Clark 1969; Russell and Moore 1999; Stotler 1953). Therefore, 

GABA released from MNTB fibers should potentially also activate GABABRs located on the 

excitatory presynaptic terminals, which at this developmental stage show high sensitivity to 

very low concentrations of Baclofen (see Fig.4.3B). Indeed, stimulating the fibers of the 

trapezoid body as in the previous experiment in combination with the application of the 

GABA uptake blocker NO711 resulted in a decrease of the excitatory currents similar to that 

observed for the inhibitory currents (25.7 ± 8.0%, n=4; P≤0.05) (Fig.4.5D and E). This 

indicates that before hearing onset GABA release most likely originating from MNTB 

terminals controls transmitter release via GABABR activation of both the excitatory and the 

inhibitory inputs of MSO neurons. 
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Figure 4.5: Before hearing onset (P8) high frequency MNTB fiber stimulation activates GABABRs at the excitatory and inhibitory 
MSO inputs, but only under the prerequisite of a GABA uptake inhibitor. (A) Example traces of averaged IPSCs evoked by 
MNTB fiber stimulation (stimulation protocol: high frequency stimulation (100Hz, 200ms); 200ms gap; test pulse with ISI=20ms) 
under control conditions and during GABABR blockade with SCH50911. (B) Example traces of averaged IPSCs evoked by 
MNTB fiber stimulation (see A) under control conditions and during bath-application of the GABA uptake inhibitor NO711. 
NO711 application decreased the response to the test pulse after high frequency MNTB fiber stimulation. (C) Blocking 
GABABRs abolished the NO711 induced amplitude change after high frequency MNTB fiber stimulation. (D) Example traces of 
averaged EPSCs evoked by AVCN fiber stimulation (stimulation protocol see A) under control conditions and during bath-
application of the GABA uptake inhibitor NO711. NO711 application decreased also excitatory currents after high frequency 
fiber stimulation. (E) Quantification of the GABABR mediated decrease in IPSC and EPSC amplitudes induced by high 
frequency fiber stimulation during application of GABABR blocker and/or GABA uptake inhibitor (all at P8). (asterisks under 
columns represent P-values obtained by Student’s two-tailed paired t test; asterisks between columns represent P-values 
obtained by Student’s two-tailed unpaired t test) 

 



  4 GABAB RECEPTORS IN THE MSO 
 

 75 

Several studies show that even after hearing onset MNTB neurons release GABA from their 

synaptic terminals at their target sites (Kotak et al. 1998; Nabekura et al. 2004; Smith et al. 

2000). Yet, these results are based on the activation of GABAA receptors induced by MNTB 

fiber stimulation. Focusing on GABABR, we asked whether at later developmental stages 

potential GABA release from MNTB terminals could activate GABABRs on the presynaptic 

terminals of the MTNB inputs in animals just after hearing onset. However, at P14 high 

frequency stimulation of trapezoid body fibers in combination with NO711 application had 

only marginal effects on glycinergic IPSCs (4.1 ± 3.3%, n=5) (Fig.4.6C). This suggests that 

after hearing onset GABA release from MNTB neurons is not sufficient to activate GABABRs 

even in the presence of GABA uptake blockers. 

 

4.2.6 The LNTB-MSO projection has no GABAergic component after hearing onset 

Previous anatomical studies provide evidence that the ipsilateral inhibitory input to the MSO, 

the LNTB, comprises GABAergic neurons also in adult animals (Helfert et al. 1989; Roberts 

and Ribak 1987; Spirou et al. 1998). Thus, we attempted to find out if the LNTB could serve 

as a GABA source for the activation of GABABRs before hearing onset and also later during 

development. Accordingly, we stimulated the ipsilateral fiber tract projecting from the LNTB 

to the MSO. At P8, the application of NO711 depressed glycinergic current amplitudes to a 

similar degree as already observed for MNTB fiber stimulation (28.2 ± 3.2%, n=6; P≤0.001) 

(Fig.4.6A and C). At P14, however, high frequency stimulation of the LNTB fibers in 

combination with NO711 application did not activate presynaptic GABABRs on the inhibitory 

inputs (NO711 5.2 ± 1.6%, n=5) (Fig.4.6B and C). This suggests that after hearing onset, 

despite the presence of GABA immunopositive LNTB cells, LNTB inputs to the MSO do not 

provide enough GABA to induce GABABR mediated control of MSO inputs. 
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Figure 4.6: High frequency LNTB fiber stimulation only activates GABABRs before but not after hearing onset. Similar to the 
MNTB, GABABRs are only activated under the prerequisite of the GABA uptake inhibitor NO711. (A) Example traces of 
averaged IPSCs evoked by LNTB fiber stimulation (stimulation protocol same as in Fig.4.5A) under control conditions and 
together with the GABA uptake inhibitor NO711 in a pre-hearing animal (P8). (B) Example traces of averaged IPSCs evoked by 
LNTB fiber stimulation (stimulation protocol same as in Fig.4.5A) under control conditions and together with the GABA uptake 
inhibitor NO711 in animals after hearing onset (P14). (C) Statistical analysis of GABABR mediated changes in IPSC amplitude in 
response to the test pulse before and after hearing onset for MNTB and LNTB inputs to the MSO. (asterisks represent P-values 
obtained by Student’s two-tailed paired t test) 

 

4.2.7 Presynaptic GABABRs are not activated by retrograde GABA release in the MSO 

We have previously demonstrated that neurons in the LSO retrogradely release GABA upon 

spiking activity (Magnusson et al. 2008). This GABA activates presynaptic GABABRs on the 

respective inputs thereby modulating transmitter release. Since neurons in the LSO and the 

MSO receive similar inputs, we tested whether this scenario might also hold for MSO 

principal cells. As in the LSO, this was tested by inducing high frequency spiking activity 

(100-300Hz, 500ms) in MSO principle cells by short current step injections well above 

spiking threshold (1.5-2.5nA) (Fig.4.7A). If spiking activity retrogradely released GABA and 

thereby activated presynaptic GABABRs, the amplitude of the postsynaptic potentials induced 

by fiber stimulation should decrease and the PPR should increase. However, neither the 

amplitude nor the PPR of EPSPs or IPSPs were changed by the preceding high frequency 

spiking activity of the MSO neurons (Fig.4.7B and C). This indicates that, unlike in the LSO, 
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spiking activity of MSO neurons does not activate presynaptic GABABRs by presumed 

retrograde release of GABA. This is also consistent with the lack of GABA- and GAD- 

immunoreactivity in neurons of the MSO (Roberts and Ribak 1987). 

 
Figure 4.7: Presynaptic GABABRs in the MSO are not activated via retrograde GABA release from MSO neurons. (A) Averaged 
traces (30 trials) of evoked IPSPs in response to MNTB fiber stimulation (ISI: 20ms) under control conditions (control) and with a 
preceding 300Hz action potential train (high frequency AP) induced by short current pulse injections (2nA). (B) left panel 
Normalized and averaged IPSP amplitudes (n=4) under control conditions (0-6min) and with preceding high frequency action 
potential firing of the MSO neuron at 100Hz, 200Hz, and 300Hz (6-15min). Averaged recordings show pharmacologically 
isolated IPSPs (action potentials were elicited by current injection). Preceding AP firing of MSO neurons did not induce 
significant amplitude modulations of IPSPs. right panel Quantification of PPR for each stimulation frequency revealed no 
significant changes induced by preceding AP firing of the neuron (C) left panel Normalized and averaged EPSPs (n=5) under 
control conditions (0-6min) and with preceding high frequency action potential firing of the MSO neuron at 100Hz, 200Hz, and 
300Hz (6-15min). Averaged recordings show pharmacologically isolated EPSPs (action potentials were elicited by current 
injection). Preceding AP firing of MSO neurons did not induce significant amplitude modulations of EPSPs. right panel 
Quantification of PPR for each stimulation frequency revealed no significant changes induced by preceding AP firing of the 
neuron. (ctr: control) 
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4.2.8 Anatomical evidence for other GABAergic input to MSO neurons 

In the previous experiments, we found that after hearing onset, despite clear evidence for 

pharmacological activation of presynaptic GABABRs in adult animals, neither the MNTB nor 

the LNTB input seems to release enough GABA to activate these receptors. We also did not 

observe GABABR activation by retrogradely released GABA from MSO principal neurons. To 

identify possible other sources of GABA on MSO neurons, we performed antibody stainings 

on paraformaldehyde fixed brainstem sections containing the MSO (P18) against the GABA 

synthesizing enzyme GAD65. To evaluate the distribution of GAD65 positive inputs, the 

dendrites of MSO neurons were visualized with a MAP2 antibody. Confocal microscopy at 

low magnification showed widely distributed GAD65 staining along the somata and dendrites 

of MSO neurons indicating the presence of GABAergic inputs at the soma and the dendrites. 

We also tested if possible GABAergic inputs colocalized with the presynaptic endings 

deriving from the MNTB or LNTB, by immunostaining against the glycine transporter 2 

(GlyT2) (Fig.4.8A). In contrast to the GAD65 distribution, the GlyT2 staining was very 

focused and dense only on the somata. At higher magnification it became apparent that only 

little colocalization of GAD65 and GlyT2 positive synapses could be detected. Most of the 

GAD65 associated staining was not in close proximity to GlyT2 positive terminal endings. 

This indicates that MSO neurons at P18 receive GABAergic projections mainly from other 

sources than the glycinergic MNTB or LNTB neurons. 
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Figure 4.8: GABAergic inputs to the MSO after hearing onset are not colocalized with glycinergic inputs. Increasing 
spontaneous activity pharmacologically in slice preparations to in vivo-like levels activates GABABRs with a significant effect on 
inhibitory inputs. (A) top panels low power (25x) magnification of antibody staining in P18 animals revealed a somatodendritic 
expression of GAD65 (green), whereas GlyT2 (red) was concentrated at the somatic region (scale bar, 50µm). bottom panels at 
high power magnification (63x) colocalization of GAD65 and GlyT2 was scarce (scale bar, 10µm). (B) Time course of averaged 
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IPSC amplitudes (n=16) evoked by MNTB fiber stimulation under in vivo-like spontaneous synaptic activity levels before and 
during GABABR blocker application (arrow indicates the start of GABABR blocker application). During the entire time course 
spontaneous activity levels had been raised by 4-AP [2mM] in the bath which had no effect on IPSC amplitudes (n=8). (C) 
Summary and statistics on the effect of in vivo-like spontaneous activity levels on GABABR activation for IPSCs and EPSCs in 
P14-P18 animals. (D) IPSC amplitudes of P14 and P18 animals are equally affected by GABABR activation. (E) Time course of 
averaged EPSC amplitudes (n=9) evoked by AVCN fiber stimulation under in vivo-like spontaneous activity levels before and 
during GABABR blocker application (arrow indicates the start of GABABR blocker application). During the entire time course 
spontaneous activity levels had been raised by 4-AP [2mM] in the bath. (asterisks under columns represent P-values obtained 
by Student’s two-tailed paired t test; asterisks between columns represent P-values obtained by Student’s two-tailed unpaired t 
test) 

 

4.2.9 Raising spontaneous activity levels induces GABABRs activation even later during 

development 

We next asked the question whether these GABAergic terminals could serve as a possible 

source for GABA release that activates the GABABRs located on the MSO inputs. To test 

this, spontaneous synaptic transmitter release was increased by applying 4-AP [2mM] to the 

perfusate. 4-AP is a non-selective blocker of low-threshold potassium channels (KLT) and has 

been shown to depolarize neurons thereby lowering the action potential threshold and 

increasing the spontaneous firing rate in e.g. the hippocampus and mouse inner hair cells 

(Avoli et al. 1996; Marcotti et al. 2003). In the present experiment, 4-AP elevated the 

spontaneous frequency of IPSCs (Fig.4.9) in MSO neurons (55.8 ± 2.9Hz, n=23) to values 

that resemble in vivo-like spontaneous firing frequencies of MNTB neurons (Hermann et al. 

2007). 

 
Figure 4.9: Single traces of evoked IPSCs in response to 
MNTB fiber stimulation (test pulse) under control conditions 
and with pharmacologically (4-AP [2mM]) increased 
spontaneous activity levels in P18 brainstem slices (EPSCs 
were pharmacologically blocked). top panel Under control 
conditions, hardly any spontaneous activity from MSO inputs 
was detectable. middle panel During 4-AP application, 
frequency and amplitude of spontaneous events dramatically 
increased. bottom panel Stimulation protocol with test pulse. 
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The influence of possible GABA release through elevated spontaneous release was now 

tested by application of the GABABR inhibitors SCH50911 [10µM] or CGP55845 [2µM]. The 

results from these recordings were pooled since the data displayed no differences among 

drugs. MNTB fibers were stimulated to investigate GABABRs induced changes of MNTB 

input currents. As depicted in Figure 4.8B IPSC amplitudes significantly increased when 

GABABR activity was blocked compared to baseline conditions (4-AP alone). This implies 

that under baseline conditions, when spontaneous activity is raised by 4-AP, presynaptic 

GABABRs were endogenously activated which resulted in a reduction of IPSC amplitudes. 

Application of the GABABR antagonists then abolished this GABABR mediated depression of 

the current, resulting in an increase of current amplitude (22.3 ± 4.2%, n=16; P≤0.01) 

(Fig.4.8C). Since neither 4-AP (-6.9 ± 7.6%, n=8) nor GABABR inhibitors alone (-3.8 ± 5.9%, 

n=4) increased peak current amplitudes (Fig.4.8C), this effect could be ascribed directly to 

the activation of GABABRs. No difference was observed between P14 and P18 gerbils which 

indicates that this mechanism persists in more mature animals (P14: 21.3 ± 5.0%, n=9; P18: 

23.5 ± 7.8%, n=7) (Fig.4.8D). Interestingly, excitatory input currents did not display an 

increase in amplitude during GABABR blockade which suggests that the GABA released by 

spontaneous activity did not activate the GABABRs on the excitatory inputs (Fig.4.8E) (P14-

18: -5.6 ± 6.6%, n=9) (Fig.4.8C). This is in line with the observed downregulation of 

GABABRs on the dendrites later during development. Taken together, these results show that 

even considerably beyond hearing onset, GABA is released onto MSO neurons, which 

selectively modulates the amplitude of the inhibitory inputs. The origin and thus the activation 

pattern of this GABAergic projection needs to be determined in future studies. 

 

4.3 Discussion 

The present data show that GABABRs differentially modulate the excitatory and inhibitory 

inputs of MSO neurons at all developmental stages. Around hearing onset the GABABR 

mediated depression of the excitatory inputs greatly decreases, whereas the GABABR 

mediated depression of the inhibitory inputs remains constant throughout the same period. 

This developmental decay in GABABR induced EPSC depression is paralleled by a 

progressive loss of GABABR expression in the dendritic region after hearing onset. 

Furthermore, we provide evidence that the source of GABA for GABABR activation changes 

during development. Only before hearing onset, MNTB and LNTB fiber stimulation activates 

presynaptic GABABRs on the excitatory and inhibitory inputs to MSO neurons. After hearing 

onset, GAD65 positive endings that lack GlyT2 reactivity suggest GABA sources other than 

the MNTB or the LNTB. 
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4.3.1 Developmental changes of presynaptic GABABRs distribution 

We have found that GABABRs regulate transmitter release at the major inhibitory and 

excitatory inputs to MSO neurons throughout all developmental stages. Yet, the relative 

effect of GABABRs on excitation and inhibition changes during the first postnatal weeks. 

Regulation of transmitter release by presynaptic GABABRs is a widespread mechanism in the 

brain, and has been described in several auditory regions, such as the auditory brainstem 

(Isaacson 1998; Lim et al. 2000; Magnusson et al. 2008; Takahashi et al. 1998; Tang et al. 

2009; Yamauchi et al. 2000), midbrain (Sun et al. 2006), and the auditory cortex (Wehr and 

Zador 2005). Furthermore, GABABRs have been implicated in both the regulation of circuit 

formation during development (Behar et al. 2000; Represa and Ben-Ari 2005), and in the 

acute modulation of network properties in the mature animal (Magnusson et al. 2008; Oswald 

et al. 2009; Pan et al. 2009; Scanziani 2000). Consistent with our data, anatomical and 

physiological studies in other brain structures suggest that presynaptic GABABRs are present 

and functional on excitatory and inhibitory inputs early during development and in adult 

animals (Gaiarsa et al. 1995; Kirmse and Kirischuk 2006; Lopez-Bendito et al. 2002; Varela 

et al. 1997). However, there is little information on changes of GABABRs function during 

development. Here, we show that GABABR mediated depression of the excitatory inputs 

declined significantly right after hearing onset with a further decline over several weeks. In 

contrast, we observed that GABABR mediated depression of inhibition remains constant 

during development similar to the CA3 region of the hippocampus (Caillard et al. 1998). An 

important question arising is how these GABABRs are regulated. One possibility is that the 

decline in GABABR number is developmentally programmed. However, it is more likely that 

overall activity levels regulate the availability of GABABRs. Indeed, excess excitation as well 

as augmented glutamate levels can down-regulate GABABR expression and increase 

internalization of receptor protein (Buhl et al. 1996; Haas et al. 1996; Vargas et al. 2008), 

which in both cases would result in an altered GABABR efficacy as observed for the 

excitatory MSO inputs.  

 

4.3.2 MNTB and LNTB fiber stimulation activates GABABRs in the MSO only before hearing 

onset 

Our data indicate that before hearing onset high frequency firing of MNTB neuron activates 

GABABRs on both the excitatory and inhibitory inputs to MSO neurons. Similarly, previous 

physiological data show that before hearing onset also postsynaptic GABAA receptors on 

MSO neurons are activated by MNTB fiber stimulation (Smith et al. 2000). This suggests that 

indeed GABA released from the MNTB fiber terminals activates the presynaptic GABABR. 



  4 GABAB RECEPTORS IN THE MSO 
 

 83 

The fact that at the MNTB-LSO projection GABA and glycine is even released from the same 

synaptic terminals or vesicles (Nabekura et al. 2004) indicates that GABABR mediated 

regulation of glycine and GABA transmitter release is autosynaptic, and should therefore be 

similar for both transmitter types. Consequently, during prolonged firing of MNTB neurons 

GABA release should decrease and GABABR activation of the inputs should decline in a self-

regulating process. 

As GABA is released from the inhibitory MNTB terminals and diffuses to the excitatory 

presynaptic sites, GABABR mediated depression of excitation is most likely heterosynaptic. 

Heterosynaptic activation of GABABRs has been shown to occur at many different sites in the 

brain (Guetg et al. 2009; Lei and McBain 2003; Mitchell and Silver 2000). In the MSO the 

relatively large distance between the release sites and the excitatory presynaptic endings 

should result in much lower concentrations of GABA at the excitatory compared to the 

inhibitory terminals (Kapfer et al. 2002). Why is the amplitude of GABABR mediated 

depression then similar for inhibition and excitation? One possible explanation is a differential 

sensitivity of the receptors to GABA, which might be the underlying cause for the larger effect 

of baclofen on excitation than inhibition that we observed before hearing onset. In the 

hippocampus, heterosynaptic GABABRs located on the excitatory inputs are indeed more 

efficient in down-regulating transmitter release compared to the GABABRs on the inhibitory 

inputs due to a different subunit composition (Guetg et al. 2009). 

One unexpected result of our measurements was that even several days before hearing 

onset MNTB fiber stimulation only activated presynaptic GABABRs in the presence of the 

GABA uptake blocker NO711. It is possible that in P8 animals the concentration of released 

GABA is not sufficient to activate the presynaptic GABABRs without N0711 (Smith et al. 

2000). However, even at P5, when stimulation of the MNTB-MSO projection still elicits a 

substantial GABAA receptor response (Smith et al. 2000), presynaptic GABABR activation in 

the absence of NO711 was negligible (personal observation). In general, physiological 

activation of GABABRs usually requires strong stimulation intensities suggesting that the 

pooling of synaptically released GABA is required for their activation (Isaacson 1998; 

Scanziani 2000). This is consistent with ultrastructural data showing that most GABABRs are 

located peri- or extrasynaptically (Fritschy et al. 2004; Lopez-Bendito et al. 2004; Lujan and 

Shigemoto 2006). Indeed, in many studies using acute brain slice preparations GABA uptake 

blockers were required to activate presynaptic GABABRs (Lei and McBain 2003; Mitchell and 

Silver 2000; Mouginot et al. 1998). This also highlights the important role of GABA-uptake 

mechanisms for the regulation of GABA concentration. 
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4.3.3 Endogenous GABABR activation in the MSO after hearing onset 

All previous studies so far had focused on the developmental reduction in the activation of 

ionotropic GABAA receptors by MNTB fiber activity (Kotak et al. 1998; Smith et al. 2000). Our 

study indicates that also presynaptic GABABRs cannot be activated by MNTB or LNTB fiber 

stimulation after hearing onset. Furthermore, unlike in the LSO, spiking activity of the MSO 

neurons does not retrogradely activate the GABABRs on the presynaptic terminals. Under 

which physiological conditions are the GABABRs in the MSO then activated? In agreement 

with previous anatomical studies (Adams and Mugnaini 1990; Helfert et al. 1989; Roberts 

and Ribak 1987), our antibody labeling against the GABA synthesizing enzyme GAD65 

revealed a large number of GABAergic fibers contacting the soma and the proximal 

dendrites. We therefore propose that GABA released from these GAD65 positive terminals 

mediates this GABABR induced depression of inhibitory inputs. But where do these GAD65 

positive fibers originate, and under which physiological circumstances are they activated? 

Several possibilities have been discussed in the literature, including the ventral nucleus of 

the trapezoid body, the superior periolivary nucleus (SPN) and descending fibers from the 

inferior colliculus (Roberts and Ribak 1987). The experimental evidence for any of these 

projections is sparse (Kiss and Majorossy 1983; Schwartz and Wittebort 1976) and future 

experiments are required to determine the origin of the GABAergic terminals to MSO 

neurons in adult animals. 

 

4.3.4 Possible functional significance of GABABRs in the MSO before and after hearing 

onset 

The observed shift in the effect of GABABR mediated depression of excitation and inhibition 

suggests a change of GABABR function before and after hearing onset. Before hearing 

onset, we found a profound depression of the excitatory inputs by GABABR activation. The 

functional interpretation of the GABABR mediated depression of inhibitory inputs before 

hearing onset is complex. In neonatal animals, the chloride reversal is positive to the resting 

membrane potential, which results in a depolarization of neurons during activation of the 

GABA/glycinergic inputs (Kakazu et al. 1999; Kandler and Friauf 1995; Lohrke et al. 2005). 

Hence, during this period all the main inputs to the MSO are excitatory. Accordingly, 

GABABRs might be the main source of inhibition in the MSO by decreasing transmitter 

release from the excitatory and the depolarizing GABA/glycinergic inputs during periods of 

high frequency spontaneous spiking activity. This scenario has previously been suggested 

for the neonatal hippocampal network (Gaiarsa et al. 1995; McLean et al. 1996), and could 

represent an effective mechanism to prevent overexcitation of neurons in the neonatal brain 
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and protecting them from apoptosis. In this case, the GABABR mediated inhibition of 

excitation should remain elevated in deafened animals where the chloride reversal potential 

stays depolarizing (Shibata et al. 2004). 

Several lines of evidence indicate that the function of the presynaptic GABABRs changes 

after hearing onset. First, at this developmental stage GABABR activation mostly modulates 

the strength of the inhibitory inputs to the MSO, whereas in pre-hearing animals the main 

GABABR effect is dampening excitation. Second, whereas in neonatal animals GABA is 

released during high frequency firing of MNTB and LNTB neurons, our data indicate that 

after hearing onset fibers other than the MNTB or LNTB release GABA. Whether these fibers 

are driven by sound or whether they are associated with an attention driven descending 

system is unclear at the moment, but in both cases activation of these fibers should result in 

a tonic downregulation of the inhibitory inputs to the MSO. We do know from previous 

experiments that the inhibitory inputs from the MNTB and LNTB to the MSO neurons 

modulate ITD processing by shifting the steepest slope of the ITD function to the 

physiological relevant range (Brand et al. 2002; Pecka et al. 2008). This implies that a 

GABABR mediated downregulation of the inhibitory inputs would modify the shape of the ITD 

function, or more specifically, move the peak towards the midline and decrease spike 

frequency changes within the physiological relevant range. In this case, GABABR activation 

would provide a mechanism to dynamically regulate ITD analysis in the MSO. 
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5 GENERAL DISCUSSION 

The main emphasis of this thesis is put on developmental and activity-dependent processes 

in the mammalian superior olivary complex. Neuronal features contributing to sound 

localization were investigated in particular to contribute to a better understanding of auditory 

processes in the developing brain. 

As outlined in the first part of this thesis I was able to demonstrate that the development of 

the slowly activating and depolarizing current Ih, is under control of activity-driven processes 

in the mammalian SOC. Several changes of neuronal properties in the auditory brainstem in 

response to altered activity levels after hearing onset have been discovered to date (Kapfer 

et al. 2002; Magnusson et al. 2005; Nabekura et al. 2004; Scott et al. 2005; Smith et al. 

2000; Werthat et al. 2008). Hence, this study corroborates recent findings insofar as I find 

that acoustic experience is essential for the maintenance of appropriate ion channel levels, 

thus shifting excitability to the relevant working range in a neural brainstem circuit. 

Interestingly, two nuclei belonging to the same neural circuitry expose opposite Ih amplitude 

changes upon sensory deprivation. Therefore, in line with the observed differences in initial 

current characteristics these results strongly indicate either a change in the amount of 

functional HCN channels or a shift in the voltage dependence amongst the respective nuclei 

concurrently with a potentially different scheme of excitability regulation. 

In a second study I could show how metabotropic receptors influence the balancing of 

excitatory and inhibitory inputs in the MSO during development. With ongoing maturation, the 

formerly dampening effect of presynaptic GABABRs on excitatory currents is nearly abolished 

whereas it remains constant for inhibitory currents at all developmental stages. It seems that 

the age-dependent expression pattern of GABABRs, accompanied by a change of the main 

release site of GABA, is responsible for the graded effect on glutamatergic currents. 

Furthermore, I show for the first time that GABAergic projections exist even in the mature 

MSO, which modulate glycinergic currents via GABABRs. During in vivo-like spontaneous 

activity levels GABABR activation affects glycinergic transmitter release. As a functional 

consequence, this process might adjust ITD analysis dynamically dependent on activity 

levels in the auditory brainstem (Brand et al. 2002; Pecka et al. 2008). 

Aside from the auditory system, the entire brain has to perform several dynamic adaptations 

to maintain a neuronal environment that is able to cope with the ongoing processes of neural 

circuit refinement. Plasticity might be of anatomical, physiological or molecular nature, their 

common feature being the adaptation of the neural network to new environmental 

experience. However, these dynamic processes could theoretically endanger the stability of 
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networks. Hebbian forms of plasticity, for example, have a particularly strong destabilizing 

effect on network activity, because they tend to drive synaptic strengths towards their 

maximum or minimum values (Hebb 1949; Miller 1996; Turrigiano and Nelson 2004). These 

positive feedback mechanisms include long-term potentiation (LTP) and long-term 

depression (LTD) of synaptic inputs (Bliss and Collingridge 1993; Bliss and Lomo 1973; 

Goda and Stevens 1996; Hebb 1949). Without a negative feedback mechanism, ongoing 

plasticity would lead to network destabilization, a loss of information and at its worst to 

apoptosis (Yu and Goda 2009). The necessary counterpart to stabilize complex circuits is 

defined as homeostatic plasticity, comprising processes that dynamically adjust synaptic 

strengths and intrinsic properties in the correct direction to promote stability. 

Results presented in this thesis show a dynamic regulation of intrinsic properties as well as 

an ongoing balancing of synaptic inputs in the developing auditory brainstem. In the 

following, I will discuss to what degree voltage-gated ion channels and metabotropic 

receptors contribute to adaptation or neural homeostasis as a whole and which tasks might 

fall to HCN channels and GABABRs in particular to maintain the neuronal network for the 

processing of binaural information within an optimal operational range in the SOC. 

 

5.1 Consequences of neuronal activity - adaptive and homeostatic 

mechanisms to regulate faithful auditory processing 

Action potentials (APs) or “spikes” constitute the basis for activity-driven processes in the 

mammalian brain. Cell-to-cell communication, signal transduction, plastic changes and, first 

and foremost, cell viability are just some characteristics APs are responsible for. The studies 

of Katz, Hodgkin and Huxley (1952), conducted in the squid giant axon, demonstrated that 

the generation of sodium spikes is dependent on voltage-gated sodium and potassium 

channels. This result launched an entire field of research on voltage-gated ion channels 

(VGICs). Later, apart from studies on VGICs contributing to the generation of APs, channels 

largely responsible for the intrinsic properties of a neuron as e.g. the input resistance and the 

membrane time constant got into the focus of researchers. A prominent example for such a 

channel is the ligand- and voltage-gated HCN channel, which has been discovered and 

characterized in the mammalian heart and brain (Ludwig et al. 1998; Santoro et al. 1998). 

Both the channel protein and the underlying current Ih have previously been shown to be 

present in the auditory brainstem (Bal and Oertel 2000; Banks et al. 1993; Koch et al. 2004; 

Leao et al. 2006a). However, I could now show that altered sensory input to the auditory 

brainstem directly influences Ih in the SOC (Hassfurth et al. 2009). This result is supported by 



  5 GENERAL DISCUSSION 
 

 89 

studies, carried out in the SOC as well as in other regions of the brain, demonstrating that 

developing neural circuits are not hard-wired and undergo structural and functional changes 

including modified synaptic strength (Barth and Malenka 2001; Dailey and Smith 1996; Di 

Marco et al. 2009; Kotak and Sanes 2003). It is already known that spontaneous and evoked 

electrical activity plays a critical role in the maturation of central neuronal circuits. Complete 

or partial sensory deprivation influences activity levels producing alterations at all levels of 

the auditory system, and these effects are most profound during early development. Recent 

findings, in developing and young animals, make clear that synaptic and membrane 

properties, in fact, are altered following induced hearing loss (Francis and Manis 2000; 

Oleskevich and Walmsley 2002). A change in synaptic strength, for instance, was reported in 

the LSO, the AC and the IC before (Kotak et al. 2007; Kotak and Sanes 1996; Vale et al. 

2004). Further, a change in sensory input has been shown to influence neuronal excitability 

in the auditory cortex (Kotak et al. 2005). Adaptations to altered sensory input regarding Ih in 

the SOC now strongly suggest that auditory experience changes excitability in brainstem 

neurons by regulating intrinsic properties and speaks for a contribution of VGICs to overall 

excitability in sensory systems. 

 

5.1.1 Synaptic plasticity in the auditory system at different developmental stages 

It is now apparent that we must distinguish increased or decreased efficacy of synaptic 

transmission (synaptic plasticity) from persistent changes in intrinsic neuronal excitability 

(intrinsic plasticity). While LTP and LTD of synaptic inputs is typically associated with a 

change in the efficacy of neurotransmission (Bliss and Collingridge 1993; Bliss and Lomo 

1973; Goda and Stevens 1996; Hebb 1949), intrinsic plasticity is usually mediated by 

changes in the expression level or biophysical properties of ion channels in the cellular 

membrane (Zhang and Linden 2003). Classical NMDA receptor dependent synaptic 

plasticity, as it has been discovered for the first time in the mammalian hippocampus (Bashir 

et al. 1991; Malenka and Nicoll 1993; Mulkey and Malenka 1992), has not been revealed in 

the SOC to date and only one study provides weak evidence for NMDA receptor dependent 

LTP and LTD in the DCN, a brainstem structure with cerebellum-like characteristics (Fujino 

and Oertel 2003; Mugnaini et al. 1980). Recently, Tzounopoulos and colleagues (2004) 

found that synapses in the DCN can be modulated by precise timing-correlated stimulation 

patterns of pre- and postsynaptic neurons. This spike-timing dependent plasticity (STDP) is a 

phenomenon that is based on the rules of LTP and LTD, commonly referred to as the 

associativity and input specificity rules. Briefly, inputs targeting the same neuron can 

influence each other’s synaptic strength if the sequence of excitatory or inhibitory 
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postsynaptic potentials falls in a critical time window, mostly in the order of tens of 

milliseconds (Bi and Poo 1998; Markram et al. 1997; Zhang et al. 1998). It is not unexpected 

that Tzounopoulos et al. observed activity-dependent modulation of synaptic strength since 

neurons of the DCN share many features with cerebellar neurons (Manis et al. 1994; Zhang 

and Oertel 1993). Synaptic connections in the cerebellum are known to adapt their properties 

to varying input patterns (Armano et al. 2000; Bosman et al. 2008; D'Angelo et al. 1999), 

which makes these brain regions suitable for ongoing memory storage and learning. The 

auditory brainstem, apart from the DCN, is in contrast thought to be more hard-wired than 

cortical and cerebellar structures. 

Functional elimination of MNTB-LSO connections occurs primarily during the first postnatal 

week (Kim and Kandler 2003; but see Sanes and Siverls 1991). Thus, at least prior to 

hearing onset, a special form of LTD, which is Ca2+-dependent and relies on postsynaptic 

GABABRs can be found in the LSO of gerbils (Chang et al. 2003; Kotak et al. 2001; Kotak 

and Sanes 2000). Here, low-frequency stimulation of MNTB fibers induces a significant 

depression of inhibitory currents and it is possible that this reduction in synaptic efficacy 

causes some input refinement to the LSO before hearing onset. Additionally, Kullmann and 

Kandler (2008) reported recently that MNTB-elicited Na+-spikes generate widespread, global 

Ca2+-responses in the dendritic tree of neonatal LSO neurons. This Ca2+-signal might be the 

trigger for early synaptic plasticity observed in the LSO. The mechanism, by which the Ca2+-

signal is conveyed, was not addressed in this study, but it seems possible that voltage-

dependent Ca2+-channels are involved. This is especially likely given the latest in-vitro 

recordings of MSO neurons performed in gerbils before hearing onset. These experiments 

revealed Ca2+-spikes, which could be caused by spontaneous activity under natural 

conditions and are possibly mediated by L- and T-type voltage-gated calcium channels or 

even by NMDA receptors (Cherry and Golding 2010). In this respect, the Ca2+-signal may 

constitute the basis for the generation of a basic projection pattern in the MSO. 

Later in development, adaptive plasticity is embodied in the activity-dependent elimination of 

glycinergic MNTB-MSO projections (Kapfer et al. 2002; Werthat et al. 2008) and axonal 

pruning in the MNTB-LSO pathway of maturing rodents (Kim and Kandler 2003; Sanes et al. 

1992; Sanes and Siverls 1991; Sanes and Takacs 1993). It has been suggested that, 

auditory experience during a critical period after hearing onset is responsible for the 

observed structural changes in the SOC. Yet, it is still not clear whether input refinement 

relies on Hebbian plasticity or if other intrinsic prerequisites, either at the pre- or the 

postsynaptic site, have to be fulfilled. The long time course (days) of this structural 

adaptation to sound localization requirements makes it almost impossible to be observed in 

slice preparations. It seems tempting to explain this input restriction by an input-specific 

decrease in glycinergic synaptic strength around hearing onset. This was proposed in a 
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theoretical model exploiting basic STDP rules. A critical time window for IPSPs or EPSPs 

paired with postsynaptic APs would consequently induce long-term potentiation or 

depression in MSO neurons (Leibold and van Hemmen 2005). However, STDP could not be 

induced experimentally in animals shortly after hearing onset (personal observation). Even 

though it is difficult to comment on negative results, one possible explanation for the absence 

of STDP in the MSO is the small fraction of NMDA receptor mediated current in these 

neurons (Kiri Couchman personal communication, Smith et al. 2000) compared to NMDA 

currents measured in hippocampal CA1 pyramidal neurons, which show prominent LTP and 

LTD of their inputs (Otmakhova et al. 2002). The probability for Ca2+ mediated synaptic 

plasticity decreases even further because the membrane time constant becomes shorter and 

APs of MSO neurons get extremely fast and small after hearing onset (Magnusson et al. 

2005; Scott et al. 2005; Smith et al. 2000). This could mean that the small somatic 

depolarization and the rapidly attenuated backpropagating spikes (Scott et al. 2007) are not 

strong enough to evoke sufficient Ca2+-influx in MSO neurons even during high-activity 

states. Thus, with ongoing development AP firing is less likely to influence internal Ca2+-

concentrations, which are essential for synaptic plasticity. In conclusion, latest findings 

regarding Ca2+-signaling in the neonatal SOC (Cherry and Golding 2010; Kullmann and 

Kandler 2008) might partially account for developmental adaptations involving glycinergic 

currents during early maturation (Magnusson et al. 2005; Scott et al. 2005) but the molecular 

mechanism, which induces input refinement remains elusive. 

The role of plasticity in the adult auditory system, however, is debatable. If we consider that 

ascending projections targeting higher nuclei remain within isofrequency bands (Kandler and 

Friauf 1993; Sanes and Siverls 1991) the question arises what kind of plasticity could be 

beneficial in the mature auditory system. Defined tonotopic maps are present at all 

developmental stages in the auditory brainstem (Kandler et al. 2009) and maintaining the 

well-established overall topographic organization seems reasonable in such a system. 

Nevertheless, some maps in higher auditory circuits can be adapted to altered sensory 

activity patterns in adult animals and Hebbian-like synaptic plasticity has been successfully 

induced in the auditory cortex (Chang and Merzenich 2003; Insanally et al. 2009; Kotak et al. 

2007). However, the period at which adaptation to a given stimulus occurs is critically 

dependent on the complexity of the stimulus. The more complex the stimulus, the later 

adaptive changes take place. It has been shown for instance, that plasticity for FM direction 

selectivity in rats happens not before P32, an age at which strong cortical responses develop 

(Insanally et al. 2009). On the other hand, a fundamental intervention like monaural sensory 

deprivation or a simple pure tone stimulus altered topographic auditory maps in AI only if 

applied around hearing onset (de Villers-Sidani et al. 2007; Popescu and Polley 2010). 

However, parts of the auditory system are apparently still plastic at mature stages and seem 
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to adapt to complex environmental input. Topographic refinement of initially broad projections 

has been reported in subcortical areas of adult animals as well and was shown to be 

dependent on auditory activity (Leake et al. 2006; Leake et al. 2002). Despite a basic 

tonotopy arranged even before auditory experience (Friauf 1992; Kandler and Friauf 1993; 

Koundakjian et al. 2007; Sanes et al. 1989; Snyder and Leake 1997) this topographic 

refinement implicates adaptive plasticity even in the mature auditory brainstem. Although 

input refinement and increased sensitivity to narrow frequency bands probably improves 

auditory perception in adult animals, a mechanism to balance overall activity levels would be 

applicable in the mature auditory system. At this stage, nuclei-specific inputs have to be 

adjusted to more or less fixed firing frequencies and a fundamental tonotopy should be 

sustained (Boudreau and Tsuchitani 1968; Grothe and Neuweiler 2000; McAlpine et al. 2001; 

Tollin 2003). Thus, it appears likely that dynamic processes in the auditory brainstem are 

regulated by adapting levels of excitability, which counteract possible activity-induced 

changes (Zhang and Linden 2003). In this way, existing pathways could be stabilized 

rendering cell-cell communication more reliable. Processes monitoring excitation and 

maintaining the functional properties of neurons are by definition homeostatic and could 

achieve such a balance (Davis and Bezprozvanny 2001). 

 

5.1.2 Excitability as an option to control overall activity levels in the auditory brainstem 

Homeostatic plasticity of intrinsic excitability was reported for the first time in cultured lobster 

stomatogastric ganglion neurons (Turrigiano et al. 1995) and later for mammalian cultured 

visual cortical neurons obtained from postnatal rats. Long-term activity deprivation raised the 

intrinsic neuronal excitability of these neurons by driving the magnitude of Na+ and K+ 

currents in opposite directions (Desai et al. 1999). Several other studies then reported 

changed VGIC properties in neuronal tissue because of increased or decreased general 

activity levels (Aptowicz et al. 2004; Gibson et al. 2006; van Welie et al. 2006). We have now 

found that sensory deprivation early during development changes the amount of Ih in the 

SOC (Hassfurth et al. 2009). In accordance with the altered Ih amplitude, we also observed 

effects on resting membrane potential and input resistance. Both could individually affect 

neuronal excitability (Fan et al. 2005; Jung et al. 2007), but whether this reflects a 

compensatory mechanism to regulate the homeostasis of intrinsic excitability is not known to 

date. 

Excitability in the auditory brainstem is regulated by the opposing interplay of two prominent 

currents: Ih and the low-threshold-activated potassium current IKLT (Brew and Forsythe 1995; 

Manis and Marx 1991) mediated by K+-channel of the KV1-type (Barnes-Davies et al. 2004; 
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Grissmer et al. 1994; Scott et al. 2007). KV1-channels produce an outward current, which is 

already activated at the membrane resting potentials thereby ensuring robust onset firing in 

response to prolonged current steps and phase-locked responses during repetitive 

stimulation. Thus, HCN channels might function as a counterweight to KV1 channels in order 

to maintain stable excitability levels (Trussell 1999). Consequently, a functional implication 

for the described activity-dependent regulation of Ih would be that the KV1 expression pattern 

is likewise affected by sensory activity. I have shown that with hearing onset, Ih increases 

substantially in the LSO and to a smaller degree in the MNTB. At the same time, RNA levels 

of the channel protein KV1.1 increase in the entire rodent brain (Hallows and Tempel 1998) 

and channels become progressively membrane-bound reflecting mature localization (Brew et 

al. 2003). Moreover, KV1 currents measured at the calyx of Held increase dramatically in the 

second postnatal week (Nakamura and Takahashi 2007) and were shown to increase even 

further in the MSO after hearing onset (Scott et al. 2005). It therefore seems possible that 

HCN and KV1 channels balance their expression patterns in concert, strictly dependent on 

each other. Homeostatic plasticity of Ih channels has been described before. Results from 

electrophysiological studies in neocortical cultured neurons indicate that Ih is downregulated 

after activity blockade (Gibson et al. 2006), whereas upregulation of activity gradually 

increases the amplitude of Ih at the soma of hippocampal CA1 pyramidal neurons in slice 

preparations (van Welie et al. 2004). The regulatory mechanisms concerning Ih are complex, 

though. (2005) reported that lowering synaptic activity levels in hippocampal slices by 

inducing LTD decreases excitability concurrently with an increase in Ih current, which would 

be in contrast to findings by Gibson et al. and van Welie and colleagues. More recently, it 

has been hypothesized furthermore that balanced changes to the transient outward 

potassium current IA
 and the inward current Ih could control neuronal gain while preserving 

intrinsic activity (Burdakov 2005), though experimental data is admittedly rare (MacLean et 

al. 2003). 

In contrast, compensatory mechanisms, which would override homeostatic plasticity, have 

been suggested for a murine KV1.1 knockout model (Brew et al. 2003). Here, MNTB neurons 

were highly hyperexcitable compared to wildtype animals without adaptive changes towards 

excitability. The observed hyperexcitability was explained by a shift in voltage dependency 

due to an exchange of KV1 subunits and was seemingly not compensated by other VGICs as 

for example HCN channels. This assumption does not agree with the idea of balanced 

excitability achieved by homeostatic plasticity between VGICs of different families. A second 

study corroborates this work and confirms that disrupting native ion channel compositions is 

not necessarily compensated by adapting intrinsic homeostasis. Here, isomer-specific HCN1 

knockout mice exhibited elevated excitability levels in cortical pyramidal cells, which are 

thought to influence neural network activity, especially with respect to epilepsy (Huang et al. 
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2009). This result would imply, that first, the loss of HCN subunits is not always compensated 

by VGICs alone (Chen et al. 2010), and second, HCN channels critically control neuronal 

excitability in an established network. 

Although it remains difficult to ascribe the exact overall homeostatic mechanism underlying 

changes in Ih levels to sensory excitation or deprivation, it seems clear that altered activity 

regulates the properties of voltage-gated ion channels in the developing auditory brainstem. 

 

5.2 Auditory circuits are balanced by metabotropic receptors 

5.2.1 GABABRs in developing neuronal circuits 

The impact of GABABR modulation on glutamatergic and glycinergic currents in the MSO 

differs during brainstem maturation (see chapter 4). Receptors initially expressed mainly in 

the dendritic region shift to exhibit a predominantly somatic expression pattern with ongoing 

development. It is known that inhibitory neurotransmitter, like GABA and glycine, initially 

depolarize neurons in the auditory brainstem due to a more positive ECl
- and thus convey 

excitatory action. Since presynaptic GABABR activation strongly decreases transmitter 

release at both glutamatergic and glycinergic inputs before hearing onset, I conclude that 

GABABRs might be the main source of inhibition in the MSO of neonatal animals by 

decreasing the overall released depolarizing neurotransmitter. Yet, GABABRs have only 

recently become the focus of interest concerning the mammalian as well as the avian sound 

localization systems (Burger et al. 2005; Hilbig et al. 2007; Isaacson 1998; Ishikawa et al. 

2005; Kotak et al. 2001; Lim et al. 2000; Lu et al. 2005; Magnusson et al. 2008; Tang et al. 

2009) but the relevance of GABABRs for the accurate development of neuronal circuits is 

known for long (Ben-Ari et al. 1994; Luhmann and Prince 1991; Wagner and Alger 1995). 

The development of a circuitry, however, requires longer periods of GPCR signaling. Second 

messenger cascades at the postsynaptic site are necessary to trigger effects, which could 

result in long-lasting phosphorylation and, finally, in novel protein expression. This just 

described mechanism has been proposed to underlie the elimination of MNTB projections to 

the LSO (Kotak et al. 2001; Kotak and Sanes 2000). Here, LTD at glycinergic synapses 

could be induced by stimulating the inhibitory inputs to the LSO at low frequencies and was 

proven to be dependent on postsynaptic GABABRs (Chang et al. 2003). Interestingly, LTD 

could only be induced before hearing onset, a time when dramatic structural changes are 

happening within the SOC. This finding is supported by an earlier study showing that the 

GABABR dependent LTD in the rat hippocampus is abolished in adult animals (Wagner and 

Alger 1995). 
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On a much shorter timescale, GABABRs can control networks by regulating neurotransmitter 

release. This could be helpful to quickly adapt excitatory and/or inhibitory to altered 

experience. Additionally, a similar role as I suggest for the network activity in the neonatal 

SOC for GABABRs has been proposed in the rat neonatal hippocampus (Gaiarsa et al. 1995; 

McLean et al. 1996). Here, the neuronal network in the CA3 region is controlled by the 

depressing action of GABABRs achieved by high levels of spontaneous GABA release. 

Contrary to the situation in the neonatal hippocampus, GABABRs in the mature hippocampus 

require highly synchronous release of GABAergic interneurons as seen for instance during 

epileptiform discharges (McLean et al. 1996). At this stage, the circuitry is mainly regulated 

by postsynaptic GABAARs. Another example for developmental changes in network 

regulation by GABABRs was observed in cerebellar slices (Astori et al. 2009). Here, inputs 

from GABAergic interneurons to two cell types, Purkinje cells and other inhibitory 

interneurons, are differentially regulated during development by presynaptic GABABRs. While 

inhibitory currents in Purkinje cells are decreasingly affected by the GABABR specific agonist 

Baclofen within two weeks, inhibitory currents and the frequency of mIPSCs in stellate cells 

are similarly reduced during drug application throughout development. The reason for the 

decrease in the effects of Baclofen is that synaptic terminals at Purkinje cells deriving from 

interneurons contain five-fold less GABABRs at P28 compared to P14 with presumably no 

significant changes in Baclofen binding affinity or sensitivity. The results of this study 

illustrate that downregulation of presynaptic GABABRs happens within days and thereby 

potentially increases neurotransmitter release. 

It has been speculated whether changing GABABR location patterns could originate from 

timely aligned expression of distinct subunits (GBR1a and GBR1b, respectively) since the 

predominant GBR1a subunits in the neonatal hippocampus might contribute to differential 

intracellular sorting and targeting by interaction with specific cytoplasmic proteins (Fritschy et 

al. 2004). Hence, tasks beyond G-protein activation might be devolved on GABABRs. 

Although I did not stain explicitly for GBR1a, its presence could explain the strong cytosolic 

GABABR staining in more mature MSO neurons. Despite the presence of postsynaptic 

GABABRs in prehearing animals affirmed by postsynaptic K+-current activity with Baclofen 

application, hearing animals, in contrast, lacked postsynaptic GABABR activity (own 

observations). GBR1a therefore might be important on a subcellular level in determining the 

final localization of GABABRs in a mature neuron and could help transporting GABABRs to 

the axonal terminal. Nevertheless, postsynaptic GABABRs have been likewise found in the 

auditory brainstem (Chang et al. 2003) but implications for a role in network development are 

rare (Juiz et al. 1994; Lujan et al. 2004). It is quite possible that input refinement is achieved 

via postsynaptic GABABRs in the LSO in particular because the amplitude of glycinergic 

currents is modulated by a G-protein dependent pathway, which can be achieved by 
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GABABR activation (Yevenes et al. 2006; Yevenes et al. 2003). We were able to mimic these 

effects on GlyRs, formerly observed in spinal cord cell culture, in the acute brain slice by 

intracellular application of activated G-protein subunits. However, in the MSO it is unlikely 

though it cannot be excluded that the activation of G-proteins via postsynaptic GABABRs 

influences GlyR characteristics. On a population level, Baclofen concentrations up to 100µM 

did not change the amplitude of glycinergic mIPSCs significantly, however, some MSO 

neurons showed a profound increase in mIPSC amplitudes, which could reflect postsynaptic 

GABABR activation (own observation). Yet, G-proteins are not necessarily activated by 

GABABRs alone. 

 

5.2.2 A comparison of further GPCRs in the auditory brainstem 

Also other metabotropic receptors have been thoroughly investigated and have been 

demonstrated to regulate developing or settled neuronal circuitries. Cannabinoid receptors 

(CB1Rs), serotonin (5-HT) receptors and metabotropic glutamate receptors (mGluRs) in 

particular, were scrutinized lately in the auditory system. Several studies dealt with the role of 

metabotropic receptors regarding network properties. Edwin Rubel was among the first 

scientists to investigate the function of metabotropic receptors in the auditory brainstem 

(Lachica et al. 1995; Lu et al. 2005; Lu and Rubel 2005; Zirpel et al. 1995). He focused on 

the avian auditory brainstem and found for instance that mGluRs are located postsynaptically 

in the nucleus magnocellularis (NM) likely contributing to Ca2+ homeostasis in NM neurons 

and thereby guaranteeing neuronal vitality. Moreover, presynaptically situated mGluRs in the 

nucleus laminaris (NL) (Lu et al. 2005) reduce transmitter release from neurons of the 

superior olivary nucleus (SON). In this mature neuronal network, metabotropic receptors (but 

GABABRs, too) have been shown to modulate exclusively single subsets of inputs. Hence, 

while the release of neurotransmitter is significantly dampened at GABAergic terminals, the 

efficacy of excitatory inputs remains unchanged. This study is of particular interest because I 

found a comparable effect on glycinergic and glutamatergic inputs in the MSO, the 

mammalian analogue to the NL. The authors postulated that such a circuit would possibly 

represent a feedback control, which could limit excessive GABA release and decrease the 

firing rate of GABA induced spikes (Tang et al. 2009). Metabotropic glutamate receptors are 

also found in the mammalian auditory brainstem (Barnes-Davies and Forsythe 1995; 

Elezgarai et al. 1999; Ene et al. 2003; Kushmerick et al. 2004; Sanes et al. 1998), the 

midbrain and the cerebrum (Bandrowski et al. 2002; Farazifard and Wu 2010; Petralia et al. 

1996; Shigemoto et al. 1993). Alterations in the expression pattern of mGluRs before and 

after hearing onset have been reported for the MNTB and the LSO (Elezgarai et al. 1999; 



  5 GENERAL DISCUSSION 
 

 97 

Ene et al. 2007), but data on the existence of mGluRs in the MSO is missing. Nevertheless, 

with respect to the MNTB pathway, pre- as well as postsynaptic mGlurs diminish after 

hearing onset in the LSO (Ene et al. 2007; Nishimaki et al. 2007) emphasizing their putative 

importance for network modulation in prehearing animals.  

Functional implications for CB1Rs and 5-HT receptors mostly cover mature networks (Hurley 

and Pollak 1999; 2005; Kushmerick et al. 2004; Penzo and Pena 2009; Thompson and 

Lauder 2005; Wang and Robertson 1997; Zhao et al. 2009). 5-HT receptors, too, have been 

associated with activity-driven developmental processes in the LSO. In neurons of animals 

younger than P9, serotonin increases the rate of spontaneous IPSCs. The presumptive 

mechanism for this change in inhibitory transmission is yet not ascribed to G-proteins on the 

postsynaptic site but rather to a direct excitatory action on MNTB neurons. One possibility 

might be that 5-HT modulates, thus, enhances a depolarizing current like Ih, which is 

prominent in MNTB neurons. An increase in spontaneous MNTB firing rate could thereby 

influence the structural and functional development of the SOC. In addition, it was suggested 

that presynaptic 5-HT receptors could modulate the balance of excitatory and inhibitory 

synaptic inputs to the LSO, thereby regulating ILD processing in mammals (Fitzgerald and 

Sanes 1999). More and more data is compiled during the last years clearly demonstrating 

the importance of regulatory mechanisms in the auditory brainstem. The abundance of 

metabotropic receptors in the brainstem emphasizes their significance for issues concerning 

structural refinement, gain and input balancing. Just recently, another example for the 

weighted balancing of excitatory and inhibitory inputs by GPCRs has been shown. Mature 

neurons of the DCN in rodents exhibited a disparity in input control upon activation of CB1Rs 

(Zhao et al. 2009). As CB1Rs are involved in long-term plasticity in the DCN (Tzounopoulos 

et al. 2007), the differential presynaptic modulation of excitatory and inhibitory inputs could 

exceed changes in transmitter release on a short timescale and build up to long-term effects 

implemented postsynaptically. 

Since many G-protein dependent pathways interact, concurrent activation of several 

metabotropic receptors should influence each other. This has yet not received much 

attention. One interesting example of this receptor interaction has been investigated at the 

calyx of Held. Pharmacological activation of postsynaptic mGluRs activated presynaptic 

CB1Rs by retrograde endocannabinoid release from MNTB neurons. This in turn resulted in 

lowered glutamate transmission at the calyx of Held and decreased excitatory currents 

(Kushmerick et al. 2004). It is currently not disclosed which function such a mechanism 

would be ascribed to, but it remains attractive to further investigate a system that is 

modulated by a well-defined interaction of separate types of metabotropic receptors. 
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In conclusion, metabotropic receptors other than GABABRs have been shown to modulate 

the synaptic drive in a developing system and to influence the proper formation of developing 

neural circuits. 

 

5.2.3 The functional role of GABABRs in an ITD detection circuit 

If we contemplate on the functional relevance of GABABR activation in the mature MSO one 

has to recall the distinct GABA release sites during development. We show that before 

hearing onset, inputs to the MSO are influenced by autosynaptic GABA release activating 

GABABRs on MNTB terminals and heterosynaptic GABA release acting on AVCN terminals. 

Moreover, as we know that MNTB-MSO projections are almost exclusively glycinergic at 

hearing onset (Smith et al. 2000) the question arises which source contributes the necessary 

GABA concentrations to activate GABABRs in mature MSO neurons. The results in this 

thesis exclude dendritic GABA release of the MSO itself as it has been shown for the LSO 

(Magnusson et al. 2008). Instead, we were able to stain for GABAergic terminals which were 

not co-localized with glycinergic MNTB/LNTB endings. Two possibilities now open up. First, 

GABA could be released by a set of fibers of yet unknown origin. Possible candidates for 

these sources are the SPN and the IC (Kiss and Majorossy 1983; Roberts and Ribak 1987; 

Schwartz and Wittebort 1976). The SPN receives bilateral, but predominantly contralateral 

input from neurons of the CN and ipsilateral input from the MNTB (Friauf and Ostwald 1988; 

Grothe et al. 1994). Despite differences in input pattern and firing characteristics between 

MSO and SPN neurons (Behrend et al. 2002; Dehmel et al. 2002) and assuming that SPN-

MSO projections existed, the SPN could modulate transmitter release in the MSO by acting 

on heterosynaptic GABABRs located at glycinergic and glutamatergic projections to MSO 

neurons. Therefore, the SPN might play a role in controlling the overall activity of the MSO in 

a feedforward-like manner. Such a mechanism could adapt the ITD function to altering levels 

of auditory input, similar as observed for the ILD function in the LSO. Although here GABA is 

released retrogradely, inhibitory and excitatory synapses are modulated with differential 

strength upon auditory input to fine-tune the binaural sensitivity (Magnusson et al. 2008). 

Fibers projecting back from the IC, in contrast, could refine the ratio of excitation and 

inhibition in the MSO via a feedback circuitry. In such a way, the output signal of MSO 

neurons could be dynamically adjusted by the IC to optimize the read-out of ITD signals in 

the midbrain. 

However, if we consider that GABA releasing cells are not categorically primary neurons, 

putative candidates for GABA release might also be glial cells. Weak evidence is already 

existing, indicating that glial cells at least synthesize GABA in the hippocampus under certain 
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conditions (Jow et al. 2004). This finding would be consistent with the GAD65-positive 

staining obtained in the MSO although double-staining with glia markers would be necessary 

to confirm this assumption. One possibility is that glial cells release GABA by reversing the 

normal GABA-transporter dependent GABA-uptake mechanisms (Barakat and Bordey 2002; 

Wu et al. 2007). This process has been reported for Bergmann glial cells in the cerebellum 

and was achieved by depolarizing individual glial cells. Even though it is not known, how glial 

cells are depolarized under natural conditions, it might be possible, that the densely packed 

astrocytes in the MSO release tonic concentrations of GABA during periods of high activity. If 

so, due to the high probability for GABABR activation even upon low concentrations of the 

agonist Baclofen, the free extracellular concentration of GABA in the auditory brainstem 

could have a profound effect on neurotransmission in the MSO (see chapter 4). If that was 

the case, GABA would act as a volume transmitter influencing GABABRs globally rather than 

restricted to certain synapses (Fuxe et al. 2007; Steinert et al. 2008). In modulating all four 

major inputs to the MSO, the activation of GABABRs would allow to dynamically adjust ITD 

coding on a longer timescale, possibly enabling azimuthal sound localization of high-fidelity 

even under varying environmental conditions. 

 

5.3 Concluding remarks 

The process of azimuthal sound localization demands a well-established neuronal network 

that is able to cope with exceptionally high firing frequencies at exceeding temporal 

accuracy. Faithful and stable neurotransmission is a key feature in the auditory brainstem. 

In this thesis, however, I provide further evidence that the mature auditory brainstem is not 

fixed in its biophysical and synaptic properties but rather needs to be dynamically regulated 

to operate with an optimum efficiency. Pinpointing the exact interplay of intrinsic neuronal 

characteristics and extrinsic network factors contributing to auditory processing, remains a 

demanding challenge. Nevertheless, a better understanding of such dynamics in auditory 

processing could support future clinical projects regarding e.g. hyperacusis and tinnitus or 

the development of improved auditory brainstem implants. 
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7 LIST OF ABBREVIATIONS 

4-AP   4-aminopyridine 

5-HT   serotonin 

τ   activation time constant 

AC   auditory cortex 

aCSF   artificial cerebrospinal fluid 

AFN   Atipamezol-Flumazenil-Naloxon 

AMPA   α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

AP   action potential 

ATP   adenosine triphosphate 

AVCN   anteroventral cochlear nucleus 

BAC   Baclofen 

BS   blocking solution 

CA   cochlear ablations 

cAMP   cyclic adenosine monophosphate 

CB1R   Cannabinoid receptor 

CN   cochlear nucleus 

CV   coefficient of variation 

DCN   dorsal cochlear nucleus 

DL-APV  DL-2-amino-5-phosphonopentanoic acid 

DNLL   dorsal nucleus of the lateral lemniscus 

DNQX   6,7-dinitroquinoxaline-2,3-dione 

ECl
-   chloride reversal potential 

EPSC   excitatory postsynaptic current 

EPSP   excitatory postsynaptic potential 

GABA   γ-Aminobutyric acid 

GABAAR  γ-Aminobutyric acid A receptor 

GABABR  γ-Aminobutyric acid B receptor 

GAD65  glutamate decarboxylase 65 

GAT   γ-Aminobutyric acid transporter 

GBC   globular bushy cell 

GlyR   glycine receptor 

GlyT2   glycine transporter 2 

G protein  guanine nucleotide-binding protein 

GIRK channel  G-protein coupled inwardly rectifying potassium channel 

GPCR   G-protein-coupled receptor 
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HCN   hyperpolarization-activated and cyclic nucleotide-gated cation channel 

IC   inferior colliculus 

IC50   half maximal inhibitory concentration 

Ih   HCN-mediated current 

IKLT   low-threshold-activated potassium current 

IHC   inner hair cell 

ILD   interaural level difference 

IPSC   inhibitory postsynaptic current 

IPSP   inhibitory postsynaptic potential 

ITD   interaural time difference 

K   slope of the Boltzmann function 

KLT   low-threshold potassium channels 

Kv
 channels  voltage-gated potassium channel 

KCC2   K-Cl cotransporter 2 

LNTB   lateral and medial nucleus of the trapezoid body 

LSO   lateral superior olive 

LTD   long-term depression 

LTP   long-term potentiation 

MAP2   microtubule associated protein 2 

mGluR   metabotropic glutamate receptor 

MGN   medial geniculate body 

mIPSC   miniature inhibitory postsynaptic current 

MNTB   medial nucleus of the trapezoid body 

Nav
 channels  voltage-gated sodiumchannel 

NL   nucleus laminaris 

NLL   nucleus of the lateral lemniscus 

NM   nucleus magnocellularis 

NMDA   N-methyl D-aspartate 

OHC   outer hair cell 

P   postnatal day 

PBS   phosphate buffered saline 

PFA   paraformaldehyd 

PPR   paired pulse ratio 

PVCN   posteroventral cochlear nucleus 

SBC   spherical bushy cell 

SAM   sinusoidally amplitude modulated sound 

SFM   sinusoidally frequency modulated sound 
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SOC   superior olivary complex 

SPN   superior periolivary nucleus 

STDP   spike-timing dependent plasticity 

TTX   tetrodotoxin 

Rin   input resistance 

VGIC   voltage-gated ion channel 
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