
New Aspects of Flavour Model Building
in Supersymmetric Grand Unification

Martin Spinrath

München 2010





New Aspects of Flavour Model Building
in Supersymmetric Grand Unification

Martin Spinrath

Dissertation

an der Fakultät für Physik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Martin Spinrath

aus Mönchengladbach

München, den 19. Mai 2010



Erstgutachter: PD Dr. Georg Raffelt

Zweitgutachter: Prof. Dr. Gerhard Buchalla

Tag der mündlichen Prüfung: 23. Juli 2010
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Zusammenfassung

Wir leiten Vorhersagen für Verhältnisse von Yukawa-Kopplungen in Großen Vereinheit-
lichten Theorien her, die von Operatoren mit Massendimension vier und fünf erzeugt wer-
den. Diese Relationen sind eine charakteristische Eigenschaft vereinheitlichter Flavour-
modelle und können die große Anzahl freier Parameter im Flavoursektor des Standard
Modells reduzieren.

Die Yukawa-Kopplungen der down-artigen Quarks und geladenen Leptonen erhalten in
supersymmetrischen Modellen tan β-verstärkte Schwellenkorrekturen, die groß sein können,
wenn tan β groß ist. In diesem Fall ist ihre sorgfältige Einbeziehung in die Renormierungs-
gruppenentwicklung obligatorisch. Wir analysieren diese Korrekturen und geben einfache
analytische Ausdrücke und numerische Abschätzungen für sie an.

Die Schwellenkorrekturen hängen empfindlich von den soften Supersymmetrie brechen-
den Parametern ab. Insbesondere bestimmen sie das globale Vorzeichen der Korrekturen
und damit, ob die betroffenen Yukawa-Kopplungen verstärkt oder unterdrückt werden. In
der minimalen supersymmetrischen Erweiterung des Standard Modells führt Supersym-
metrie Brechung viele freie Parameter ein, über die wir in unserem ersten, vereinfachten
Ansatz einige plausible Annahmen machen. In einem zweiten, verfeinerten Ansatz verwen-
den wir stattdessen drei verbreitete Brechungsschemata, in denen alle soften Brechungspa-
rameter an der elektroschwachen Skala aus einer Handvoll Parameter berechnet werden.
In diesem Ansatz wenden wir verschiedene phänomenologische Einschränkungen auf die
supersymmetrischen Parameter an und finden auf diese Weise neue zulässige Relationen
für die Yukawa-Kopplungen, zum Beispiel yµ/ys = 9/2 bzw. 6 oder yτ/yb = 3/2 in SU(5).

Weiterhin untersuchen wir eine spezielle Klasse von Texturen von Quark-Massenma-
trizen für kleine tan β, in denen θu13 = θd13 = 0. Wir leiten Summenregeln für die Quark-
Mischungsparameter her und finden eine einfache Relation zwischen den beiden Phasen δu12

und δd12 und dem rechten Winkel α im Unitäritatsdreieck, die eine einfache Phasenstruktur
für die Quark-Massenmatrizen suggeriert. Hierbei ist ein Matrixelement rein imaginär und
die restlichen rein reell.

Um die vorhergehenden Überlegungen abzurunden, geben wir zwei explizite Flavour-
modelle im SU(5) Kontext an, eines für große und eines für kleine tanβ, welche die zu-
vor erwähnten Verhältnisse der Yukawa-Kopplungen implementieren. Die Modelle haben
interessante phänomenologische Konsequenzen wie zum Beispiel quasi-entartete Neutrino-
massen im Fall kleiner tanβ.
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Abstract

We derive predictions for Yukawa coupling ratios within Grand Unified Theories generated
from operators with mass dimension four and five. These relations are a characteristic
property of unified flavour models and can reduce the large number of free parameters
related to the flavour sector of the Standard Model.

The Yukawa couplings of the down-type quarks and charged leptons are affected within
supersymmetric models by tan β-enhanced threshold corrections which can be sizeable if
tan β is large. In this case their careful inclusion in the renormalisation group evolution is
mandatory. We analyse these corrections and give simple analytic expressions and numer-
ical estimates for them.

The threshold corrections sensitively depend on the soft supersymmetry breaking pa-
rameters. Especially, they determine the overall sign of the corrections and therefore if the
affected Yukawa couplings are enhanced or suppressed. In the minimal supersymmetric
extension of the Standard Model many free parameters are introduced by supersymmetry
breaking about which we make some plausible assumptions in our first simplified approach.
In a second, more sophisticated approach we use three common breaking schemes in which
all the soft breaking parameters at the electroweak scale can be calculated from only a
handful of parameters. Within the second approach, we apply various phenomenological
constraints on the supersymmetric parameters and find in this way new viable Yukawa
coupling relations, for example yµ/ys = 9/2 or 6 or yτ/yb = 3/2 in SU(5).

Furthermore, we study a special class of quark mass matrix textures for small tanβ
where θu13 = θd13 = 0. We derive sum rules for the quark mixing parameters and find a
simple relation between the two phases δu12 and δd12 and the right unitarity triangle angle
α which suggests a simple phase structure for the quark mass matrices where one matrix
element is purely imaginary and the remaining ones are purely real.

To complement the aforementioned considerations, we give two explicit flavour models
in a SU(5) context, one for large and one for small tanβ which implement the Yukawa
coupling relations mentioned before. The models have interesting phenomenological con-
sequences like, for example, quasi-degenerate neutrino masses in the case of small tan β.
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CHAPTER 1

Introduction

The Standard Model of elementary particle physics (SM) [1–3] has been tested to high
accuracy and successfully describes the electroweak and strong interactions of all observed
particles [4]. Despite these great achievements there remain unresolved issues such as the
hierarchy problem, the non-unification of gauge couplings or the unknown source of dark
matter in the universe, which point to new physics beyond the SM.

One possible solution to these problems is the idea of low energy supersymmetry (SUSY)
[5, 6]. In principle, it can solve all aforementioned issues. It stabilises the electroweak
scale [7], changes the renormalisation group (RG) evolution of the gauge couplings in such
a way that the gauge couplings almost exactly unify at a high energy scale [8] and the
lightest SUSY particle is a viable candidate for dark matter as long as it does not carry
colour or electromagnetic charge [9, 10]. Hence a supersymmetric extension of the SM is
quite appealing, but it has yet to be proven that nature is indeed supersymmetric.

The main focus of this thesis, however, lies on a different intriguing puzzle of the SM,
the origin and nature of quark and lepton masses and mixings. Within the SM, quark
and lepton masses and mixings arise from Yukawa couplings which are essentially free and
undetermined due to basis ambiguities. In this context, it is particularly challenging to
explain the strong hierarchy among the masses of the three families of quarks and charged
leptons as well as the strong suppression of the neutrino masses and the fact that quark
mixings are small whereas there is large mixing between mass and flavour eigenstates in
the lepton sector.

One hint towards a solution to this puzzle is the idea of unification of the fundamental
forces of the SM. In addition to providing a unified origin of the gauge interactions, Grand
Unified Theories (GUTs) based, e.g. on the gauge symmetry groups SU(5) [11] or SO(10)
[12] also unify quarks and leptons of the SM in representations of the unified gauge groups.
This property makes them attractive frameworks to address the flavour puzzle since therein
the Yukawa couplings within a particular family can be related. Indeed, an interesting
observation in this context is that in supersymmetric theories with large tan β, the Yukawa
couplings of the up-type quark, down-type quark and charged lepton of each generation
are of similar order of magnitude at the GUT scale which is a prediction in a wide class of
GUTs.



4 1. Introduction

In (SUSY) GUTs the Yukawa couplings for different types of fermions of one genera-
tion can be generated from common operators involving the GUT representations. After
GUT symmetry breaking the resulting Yukawa couplings typically have similar values. De-
pending on the specific operator, the group theoretical Clebsch–Gordan (CG) factors from
GUT symmetry breaking can even lead to predictions for the ratios between the Yukawa
couplings, see, e.g. [13, 14]. Such relations, after evolving them from the GUT scale to
low energies via their renormalisation group equations (RGEs) and including threshold
effects [15–18], can be compared to experimental results for the quark masses and provide
crucial tests of unified models of fermion masses and mixings in a top-down approach.

Another attractive feature of left-right symmetric GUTs is the appearance of right-
handed neutrinos in their particle spectra, which become massive after spontaneous sym-
metry breaking to the SM and thereby lead to the small observed neutrino masses via the
seesaw mechanism [19]. In order to make the running gauge couplings meet at the so-called
GUT scale MGUT ≈ 2×1016 GeV, the idea of Grand Unification is typically combined with
low-energy SUSY.

From the bottom-up perspective it is desirable to know the approximate GUT scale val-
ues of the quark and lepton masses and mixing parameters in order to construct successful
GUT models of flavour. The experimental data on the masses of the strange quark and
the muon, for example, extrapolated to the GUT scale by means of renormalisation group
(RG) running within the SM, give rise to the so-called Georgi–Jarlskog (GJ) relations [13]
yµ/ys = 3 and ye/yd = 1/3 at the GUT scale. This can be realised from a CG factor after
GUT symmetry breaking. The GJ relations have become a popular building block in many
classes of unified flavour models.

In SUSY GUTs another intriguing possibility emerges, which is the unification of all
third family Yukawa couplings, i.e. of yt, yb, yτ and furthermore, in the context of the
seesaw mechanism, of yν at the GUT scale. It is well known that a careful inclusion
of SUSY threshold corrections is required [15–18], in order to investigate whether this
relation can be realised in a given model of low-energy SUSY. These threshold effects are
particularly relevant in the case of large tan β where yt = yb = yτ seems achievable. Despite
the possible importance of SUSY threshold effects, these effects are often ignored in studies
which extrapolate the running fermion masses to the GUT scale, see, e.g. [20, 21]. In this
work we include the SUSY threshold corrections and derive alternative Yukawa coupling
relations besides the GJ relation and (partial) third family Yukawa coupling unification
compatible with wide ranges of the SUSY parameter space in three common SUSY breaking
schemes.

Besides SUSY GUTs there have to be more additional ingredients for a fundamental
theory of nature. The mass hierarchy between different families is not yet explained and
SUSY GUTs do not shed any light on this question either. Indeed, in the SM or GUTs,
with or without SUSY, a specific structure of the Yukawa matrices has no intrinsic meaning
due to basis ambiguities in flavour space. For example, one can always work in a basis in
which, say, the up quark mass matrix is taken to be diagonal with the quark mixing arising
entirely from the down quark mass matrix, or vice versa, and analogously in the lepton
sector. This is symptomatic of the fact that neither the SM nor GUTs are candidates for
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a complete theory of flavour.
The situation changes somewhat once these theories are extended to include a family

symmetry spontaneously broken by extra Higgs fields called flavon fields. These family
symmetries can allow Yukawa couplings, in particular for the first and second generation,
to be generated only via higher-dimensional effective operators leading to a certain sup-
pression compared to apparently natural values of order one. Besides that, there is an ad
hoc approach for the structure of Yukawa coupling matrices pioneered some time ago by
Fritzsch [22, 23] and currently represented by myriads of proposed effective Yukawa tex-
tures, see, e.g. [22–27]. The starting assumption there is that (in some basis) the Yukawa
matrices exhibit certain nice features such as symmetries or zeros in specific elements
which have become known as texture zeros and which we adopt later on to derive relations
between quark masses and mixing parameters [28].

Furthermore, besides the discovery of neutrino masses and mixing, which may even
be termed a neutrino revolution, there are many questions about neutrinos which remain
unanswered. Perhaps the most pressing of them is the origin, nature and magnitude of
neutrino masses, since neutrino oscillations only provide information about the squared
mass differences between neutrino species. These are independent of the absolute neutrino
mass scale or the nature of the neutrino mass, i.e. Dirac or Majorana. In the absence
of any confirmed experimental signal from either beta decay end-point experiments or
neutrinoless double beta decay experiments, the most stringent limits on the absolute
neutrino mass scale come, indirectly, from cosmology, where one typically obtains a limit
on the absolute neutrino mass scale expressed in terms of the lightest neutrino mass as
mlightest . 0.2 eV [29]. Thus, there remains the interesting possibility that neutrinos are
quasi-degenerate, which one may roughly define as mlightest > 0.05 eV, where the lower limit
is approximately set equal to the square root of the atmospheric neutrino mass squared
difference.

In addition to the question of neutrino masses and their hierarchy, also the question
of the neutrino mixing pattern arises. The phenomenologically viable idea of approximate
tri-bimaximal (TB) lepton mixing [30] strongly suggests that some kind of non-Abelian
discrete family symmetry is at work. The observed symmetry may arise either directly or
indirectly from a range of discrete symmetry groups [31,32].

If we assume a GUT-type structure relating quarks and leptons at a certain high energy
scale, the mixings in the lepton and the quark sector are related to each other. For example,
the SUSY GUT model based on SO(10) with family symmetry PSL(2, 7) proposed in [33]
is based on the type II seesaw mechanism, leads to TB mixing and allows quasi-degenerate
neutrinos. On the other hand, the SUSY A4 model in [34] based on the type I seesaw
mechanism also leads to TB mixing and allows for quasi-degenerate neutrinos.

More generally, there is a huge literature on family symmetry models based on A4

[35–39] or other symmetries [40–43] (with or without Grand Unification), some of which
can accommodate TB mixing with quasi-degenerate neutrinos. However, to our knowledge,
in all of the above examples the prediction of mee as a function of the lightest neutrino
mass is subject to phase uncertainties. This is resolved in our flavour models [44,45].

The thesis is organised as follows: In Part II we introduce the theoretical framework
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relevant for this thesis. We give a brief overview of the SM in Ch. 2 with an emphasis on
the flavour sector and we also discuss some of the open problems of the SM relevant for this
work. After a short motivation we review some basic formal aspects of SUSY, introduce
the Minimal Supersymmetric extension of the SM (MSSM) and give a short introduction
to SUSY breaking in Ch. 3. Afterwards, in Ch. 4, we explain basic features of GUTs based
on the SU(5) model.

In Part III We extend the approach by Georgi and Jarlskog [13] to higher dimensional
operators and propose new candidate relations for Yukawa couplings at the GUT scale. To
be more concrete, we discuss dimension five operators which can generate effective Yukawa
couplings in SU(5) and Pati–Salam (PS) [46] theories. These operators give alternative
Yukawa coupling ratios besides the ones already known from dimension four operators.

GUT scale Yukawa couplings in the MSSM for medium and large tanβ are discussed
in Part IV. The inclusion of SUSY threshold corrections, which are discussed in Ch. 6, is
of special importance in this tanβ regime. In Ch. 7 we implement the SUSY threshold
corrections in the RG evolution of the Yukawa couplings in a somewhat simplified approach
and cast a first glance at GUT scale Yukawa couplings. This provides the motivation
for the more sophisticated approach in Ch. 8 where we calculate full spectra in order to
phenomenologically constrain viable GUT scale Yukawa ratios. This part concludes with
a discussion of possible implications for alternative GUT scale Yukawa coupling ratios in
Ch. 9 where we also present a concrete application in form of a flavour model.

Part V focuses on the discussion of small tan β. We start this discussion with sum rules
for the quark mixing angles and phases and their relation to the unitarity triangle for a
special class of quark mass textures in Ch. 10. After that we present a predictive flavour
model for small tan β in Ch. 11.

We summarise and conclude in Part VI.
The appendix can be found in Part VII where we fix notations and conventions in

App. A and discuss representations of SU(N) in App. B. In App. C we give detailed plots
of our phenomenological scan described in Ch. 8. The appendix is concluded with a brief
discussion of the discrete symmetry groups Zn and A4 in App. D which are used in our
flavour models.



PART II

Theoretical Framework





CHAPTER 2

The Standard Model of Particle Physics

The Standard Model of particle physics (SM) [1–3] is one of the most precisely tested
physical theories [4]. It successfully describes all known elementary particles and their
interactions to high accuracy except for gravity. In the following a short overview of the
basic ingredients of the SM which are relevant for this work are given.

2.1 Gauge Interactions and Field Content

The SM is a renormalisable quantum-field theory whose gauge interactions are described
by the SM gauge group GSM, which is a direct product of three groups GSM = SU(3)C ×
SU(2)L × U(1)Y and the space-time symmetry of the Poincaré group.

The strong interactions of quantum chromodynamics (QCD) are symmetric under
SU(3)C transformations while the electroweak (EW) interactions obey the SU(2)L×U(1)Y
symmetry. The generators of the non-Abelian groups SU(3)C and SU(2)L can be written
as Hermitian matrices that fulfil the commutation relations of the corresponding Lie alge-
bra. Since U(1)Y is Abelian and has only one generator the corresponding commutation
relation is trivial. If we denote the generators of SU(3)C by T a, a = 1, . . . , 8, the generators
of SU(2)L with I i, i = 1, . . . , 3 and the generator of U(1)Y with Y , then the commutation
relations are

[T a, T b] = ifabcT c , [I i, Ij] = iεijkIk , [Y, Y ] = 0 , (2.1)

where the real totally antisymmetric tensors fabc and εijk are the structure constants of
the corresponding Lie algebras.

Every particle of the SM can be written as a tensor with certain symmetry properties
under SU(3)C and SU(2)L transformations. These properties define the representation
of the field under the non-Abelian gauge groups. In App. B we give more details on
these kind of representations. Here we classify the fields only according to the dimension
of their representation of SU(3)C and SU(2)L and their hypercharge qY which gives the
transformation properties under the U(1)Y group. For example the left-handed doublet
quarks are SU(3)C triplets 3 and SU(2)L doublets 2 with hypercharge qY = 1/3. The
complete field content of the SM is listed in Tab. 2.1. There we also see that quarks and
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Name Particles Quantum Numbers

Quarks

(
u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

(
3,2,+1

3

)
u†R, c†R, t†R

(
3,1,−4

3

)
d†R, s†R, b†R

(
3,1,+2

3

)
Leptons

(
νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

(1,2,−1)

e†R, µ†R, τ †R (1,1,+2)

Higgs Field H (1,2,+1)

Gauge Bosons g (8,1, 0)
W (1,3, 0)
B (1,1, 0)

Table 2.1: Field content of the SM. The representations and charges are given in the
order (SU(3)C , SU(2)L, U(1)Y ). While the quarks and leptons are fermions with spin 1/2,
the Higgs and the gauge fields are bosons with spin 0 respectively spin 1.

leptons appear in each case in three copies, the so-called families or generations, which
have the same quantum numbers and as we see later differ only in their Yukawa couplings.
The operator of electromagnetic charge is given by the Gell-Man–Nishijima relation

Q = I3 +
Y

2
. (2.2)

In a gauge theory with an unbroken symmetry the gauge bosons have to be strictly
massless since a mass term for them is forbidden by the underlying symmetry. However,
this turns out not to be the case for the EW symmetry. For example the W± bosons
have a mass of 80.4 GeV [4, 47]. In the SM we assume that the EW gauge symmetry
SU(2)L × U(1)Y is spontaneously broken by a non-vanishing vacuum expectation value
(vev) of a scalar field, i.e. the so-called Higgs field.

We assume that the Higgs potential is of the form

V (H) = µ2H†H + λ(H†H)2 , (2.3)

which is renormalisable and invariant under SU(2)L × U(1)Y transformations. For µ2 < 0
the minimum of the Higgs potential is not at the origin of the field space but shifted to
a finite value. Since we observe the U(1)em symmetry of electromagnetism in nature we
have to demand that this symmetry remains unbroken. This can be achieved by giving the
electrically neutral component of the Higgs doublet a non-vanishing vev v

Q 〈0|H|0〉 =

(
I3 +

Y

2

)(
0

v/
√

2

)
= 0 . (2.4)
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By replacing the original Higgs field in the Lagrangian with a Higgs field expanded around
this minimum the original invariance of the Lagrangian under SU(2)L×U(1)Y disappears.
The ground state of the system does not respect the EW symmetry. Only the (smaller)
symmetry of electromagnetism U(1)em remains.

After electroweak symmetry breaking (EWSB) the original SU(2)L × U(1)Y quantum
numbers have no meaning anymore. Under the U(1)em subgroup one of the components
of the SU(2)L gauge boson triplet and the B boson have the same quantum numbers and
therefore can mix. Conveniently this is written as(

Z
γ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W 3

B

)
, W± =

1√
2

(W 1 ∓ iW 2) , (2.5)

where on the left-hand sides of the equations the mass (and electric charge) eigenstates
are given and on the right-hand side the states in the unbroken EW theory. The weak
mixing angle is defined as cos θW = g2/

√
g2

2 + g′2 with g2 being the coupling constant of
the SU(2)L gauge theory and g′ being the coupling constant of the U(1)Y gauge theory.
The charged W± bosons acquire the mass MW = (v/2)g2 and the Z boson acquires the
mass MZ = (v/2)

√
g2

2 + g′2 while the photon γ remains massless as it should be. The weak
mixing angle is also related to the gauge boson masses via cos θW = MW/MZ .

2.2 The Flavour Sector of the Standard Model

The origin of the masses of the gauge bosons was discussed in the last section. Now we
turn to the fermion masses. There are two bases for the fermions. On the one hand the
mass eigenstates and on the other hand the gauge eigenstates which define the flavour of
a given particle. In the following we discuss the difference between these two bases. There
are six quark flavours: up, down, charm, strange, top and bottom and six lepton flavours:
electron, muon, tau and the corresponding three neutrino flavours. Flavour physics is
the physics of the Yukawa matrices and subsequently the physics of transitions between
different flavours. In the SM there is no mixing in the lepton sector although it is known
that neutrinos mix. However, this is not included in the SM and in this section we therefore
only discuss how quark mixing is introduced in the SM.

In the unbroken EW phase fermions as well as gauge bosons are strictly massless since
a direct mass term for them is forbidden by gauge symmetry. For the SM fields in the EW
broken phase only Dirac mass terms are allowed because of the U(1)em gauge symmetry.
But Dirac mass terms couple right-handed to left-handed fields which is forbidden by
SU(2)L gauge invariance. It is possible to build gauge invariant combinations from the
Higgs field, one SU(2)L doublet and one SU(2)L singlet field. We define the following
vectors in flavour space

Q′ ≡
((

u′L
d′L

)
,

(
c′L
s′L

)
,

(
t′L
b′L

))T
, L′ ≡

((
ν ′eL
e′L

)
,

(
ν ′µL
µ′L

)
,

(
ν ′τL
τ ′L

))T
, (2.6)
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D′L ≡

d′Ls′L
b′L

 , U ′L ≡

u′Lc′L
t′L

 , E ′L ≡

e′Lµ′L
τ ′L

 , N ′L ≡

ν ′eLν ′µL
ν ′τL

 , (2.7)

D′R ≡

d′Rs′R
c′R

 , U ′R ≡

u′Rc′R
t′R

 , E ′R ≡

e′Rµ′R
τ ′R

 , (2.8)

where a subscript L at D′, U ′, E ′ and N ′ denotes the SU(2)L doublet fields and a subscript
R denotes the SU(2)L singlet fields. We have written all fields with a prime to label them
as gauge eigenstates. Since in the SM no right-handed neutrinos are included because
they are sterile under GSM we have only the vector N ′L and no N ′R vector. Due to the
absence of right-handed neutrinos in the SM no renormalisable coupling of the neutrinos
to the Higgs field can be written down in the Lagrangian and neutrinos are strictly massless.
Nevertheless, in experiment it was found out, that at least two neutrinos have to be massive,
for reviews see, e.g. [32,48,49].

Since the three generations of matter have the same quantum numbers under the SM
gauge group the generations can mix. It turns out that the couplings of matter to gauge
fields and the couplings to the Higgs field are twisted against each other. The kinetic terms
are always diagonal in flavour space. Even after a rotation the new kinetic terms are still
diagonal as long as the rotation is unitary which is the case in the SM. To discuss fermion
mixings in the SM we need the gauge interaction terms

Lint = −eJµemAµ −
e

sin θW cos θW
JµNCZµ −

e√
2 sin θW

(JµCCW
+
µ + h.c.) , (2.9)

where we have written down the interactions in the EW broken phase with the electro-
magnetic current

Jµem = Qu

(
Ū ′Lγ

µU ′L + Ū ′Rγ
µU ′R

)
+Qd

(
D̄′Lγ

µD′L + D̄′Rγ
µD′R

)
+Qe

(
Ē ′Lγ

µE ′L + Ē ′Rγ
µE ′R

)
.

(2.10)

Here Qu, Qd and Qe are the electric charges of the up-type quarks, down-type quarks and
charged leptons. The weak neutral current is given by

JµNC =
1

2
Ū ′Lγ

µU ′L −
1

2
D̄′Lγ

µD′L +
1

2
N̄ ′Lγ

µN ′L −
1

2
Ē ′Lγ

µE ′L − sin2 θWJ
µ
em , (2.11)

and the weak charged current by

JµCC = Ū ′Lγ
µD′L +N ′Lγ

µE ′L . (2.12)

It should be noted that the currents are diagonal in flavour space.
Now we turn to the Yukawa couplings, i.e. the couplings of the fermions to the Higgs

field
LYuk = −Y ij

e L̄
′iHE ′jR − Y

ij
d Q̄

′iHD′jR + Y ij
u Q̄

′iεH∗U ′jR + h.c. , (2.13)
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Observable Experimental Value

mu in MeV 1.22+0.48
−0.40

mc in GeV 0.59± 0.08
mt in GeV 162.9± 2.8

md in MeV 2.76+1.19
−1.14

ms in MeV 52± 15
mb in GeV 2.79± 0.09

me in MeV 0.48529
mµ in MeV 102.47
mτ in MeV 1742.2± 0.2

θCKM
12 0.2257+0.0009

−0.0010

θCKM
13 0.00359+0.00020

−0.00019

θCKM
23 0.0415+0.0011

−0.0012

δCKM 1.2023+0.0786
−0.0431

Table 2.2: Running masses of the SM fermions in the MS renormalisation scheme at the
top-scale mt(mt) = 162.9 GeV taken from [21] and the CKM mixing angles and phase at
the weak scale extracted from [4]. We do not give the experimental errors for the electron
and the muon mass since they are negligibly small.

where ε is the totally antisymmetric tensor with ε12 = −1 acting in the SU(2)L space and
i, j = 1, 2, 3 is the family index. The Yukawa couplings are three complex three-by-three
matrices. If the Higgs field develops a vev the Yukawa matrices generate mass matrices
for the fermions of the form Mf = Yfv/

√
2, where f = u, d, e. If the SM would include

right-handed neutrinos, mass terms for neutrinos could be generated in the same way but
it is yet unclear if these kind of mass terms, the so-called Dirac mass terms, are the correct
description for neutrino masses. Neutrinos could as well be Majorana particles for which
a mass term with different properties can be constructed.

Within the SM there is no reason for the Yukawa couplings to be diagonal. In the quark
sector it is experimentally proven that at least one of the Yukawa matrices is non-diagonal
since otherwise there would be no quark-mixing. Therefore the following unitary rotations
in flavour space are defined

U ′L = VuLUL , U ′R = VuRUR , D′L = VdLDL , D′R = VdRDR ,

N ′L = VνLNL , E ′L = VeLEL , E ′R = VeRER .
(2.14)

With these choices we can diagonalise all Yukawa and mass matrices respectively via

VuLMuV
†
uR

= diag(mu,mc,mt) , (2.15)

VdLMdV
†
dR

= diag(md,ms,mb) , (2.16)
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VeLMeV
†
eR

= diag(me,mµ,mτ ) . (2.17)

Experimental values for the fermion masses at the top-scalemt(mt) are collected in Tab. 2.2.
The electromagnetic and the neutral current in Eqs. (2.10) and (2.11) are invariant

under these field redefinitions. This is not the case for the charged current

JµCC = ŪLγ
µVuLV

†
dL
DL +NLγ

µVνLV
†
EL
EL . (2.18)

There is no mass matrix for the neutrinos and therefore we can choose VνL = VeL such
that there is no lepton mixing in the gauge interactions. This is different for the quarks.
VuL and VdL are already fixed by the diagonalisation conditions. The matrix VuLV

†
dL

is the
Cabibbo–Kobayashi–Maskawa (CKM) matrix VCKM [50], see also App. A.1.

We count now the number of free parameters of the CKM matrix for n generations. A
unitary n×n matrix has n2 real parameters. By rephasing the quark fields (2n−1) phases
can be absorbed. As observables n(n − 1)/2 angles and (n − 1)(n − 2)/2 phases remain.
In the SM, where n is equal to three, there are three real mixing angles and one phase.
Throughout this thesis we use the PDG parameterisation [4]

VCKM =

 c12c13 s12c13 s13e−iδCKM

−s12c23 − c12s23s13eiδCKM c12c23 − s12s23s13eiδCKM s23c13

s12s23 − c12c23s13eiδCKM −c12s23 − s12c23s13eiδCKM c23c13

 , (2.19)

where sij and cij are abbreviations for sin θCKM
ij and cos θCKM

ij . The three angles θCKM
12 ,

θCKM
13 and θCKM

23 are the CKM angles and δCKM is the CKM phase. Experimental values
for the mixing angles and the CKM phase are collected in Tab. 2.2. The CKM phase is
of special phenomenological importance because it induces violation of the CP symmetry,
the symmetry between matter and antimatter.

2.3 Open Questions in the Standard Model

In this section we discuss some of the open questions in the SM. Although the SM describes
nature to a very high accuracy there are some open issues. One of the big open questions
is the unification of the SM with a theory of gravity into a theory of quantum gravity. We
do not address this question within this thesis. Also, in the following, we mention only
those problems which are of special importance for this work.

2.3.1 Neutrino Masses

The question of how to embed neutrino masses into the SM was already mentioned several
times before. Neutrinos are massive, see, for example, the reviews [32, 48, 49], whereas in
the SM there is no mass term for the neutrinos and they are strictly massless.

One might think that it is straightforward to give neutrinos a mass by including right-
handed neutrinos and writing down a Dirac mass term as it works out in the same way
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for all the other fermions. But this is not the only possible way to add a mass term
for neutrinos. If neutrinos are Majorana particles, which means that they are their own
antiparticles, then there is also the possibility to write down a mass term which has different
properties. One consequence of the Majorana nature of neutrinos would be the possibility
of neutrinoless double beta decay. Another consequence for Majorana neutrinos is that in
the leptonic mixing matrix, the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [51],
two additional CP violating phases appear which cannot be absorbed in the lepton fields.

If neutrinos are Majorana particles the smallness of the neutrino masses could be el-
egantly explained by the seesaw mechanism [19]. To explain this, we assume for the
moment that there is only one left-handed neutrino and we add a right-handed neutrino
to our theory, then the neutrinos can have a Dirac mass mD, which couples left-handed
to right-handed neutrinos, and a Majorana mass mR, which couples right-handed to right-
handed neutrinos. In this simplest extension there is no direct renormalisable mass term
for the left-handed neutrinos allowed due to the U(1)Y symmetry. Such a term could nev-
ertheless be introduced by including, for example, scalar SU(2)L triplets. Different ways
of implementing the seesaw mechanism are classified by their additional field content to
generate neutrino masses. In the type I seesaw mechanism extra gauge singlet fermions
are added, which are commonly called right-handed neutrinos. Models with an additional
scalar SU(2)L triplet are often referred to as type II seesaw mechanism. These are the
only types of seesaw mechanism relevant for this work.

Let us go back to the mechanism itself. If the masses mD and mR fulfil the relation
mD � mR we have two mass eigenstates. One is the heavy mass eigenstate N which
primarily consists of the original right-handed neutrino with a mass mN ≈ mR and one
is the light eigenstate ν which consists primarily of the left-handed neutrino with mν ≈
m2
D/mR. This mechanism can be extended straight-forwardly to three generations.

Although mD can be expected to be of the order of the other fermion masses, the
masses of the light neutrinos are still small due to the suppression by the large masses mR.
In the context of left-right symmetric extensions of the SM this can be easily implemented
because heavy right-handed neutrinos are necessary ingredients of these theories.

2.3.2 The Hierarchy Problem

In the SM the Higgs boson mass is not protected by a symmetry. Therefore it can have
large radiative corrections. In a naive renormalisation scheme, where at a high scale Λ the
loop momenta are cut off, the radiative corrections to the Higgs boson mass are given by

δm2
H =

Λ2

16π2
c0 log

Λ

µR
, (2.20)

to leading order where c0 = 3/(2v2)(m2
H+2M2

W +M2
Z−4m2

t )
2. Roughly speaking the Higgs

boson mass is proportional to the cutoff scale as long as there is no severe amount of fine-
tuning between the bare Higgs boson mass and the loop corrections. If the SM is valid up to
the Planck scale at which a theory of quantum gravity has to be invoked, the Higgs boson
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Figure 2.1: Triangle diagram contributing to an anomaly with external currents ja, jb

and jc and chiral fermions running in the loop.

mass would also be expected to be of the order of the Planck scale. Electroweak precision
data [4, 52] however prefers a Higgs boson with a mass around the EW scale. Without
introducing new physics the SM therefore has a large amount of fine tuning because the
hierarchy between the EW scale and the Planck scale is not protected by any symmetry.
The most prominent solution to this problem is supersymmetry which is introduced in the
next chapter.

2.3.3 Charge Quantisation and Anomaly Cancellation

From the mathematical point of view the charges of a U(1) gauge group do not have to
be quantised. Therefore it is quite astonishing that the charges of the U(1)Y respectively
U(1)em group in the SM are quantised in such a way, that the hydrogen atom is neutral to
very high precision. In the SM the lepton and the quark sector appear to be very distinct
from each other so that it is very surprising that the sum of the three proton valence quark
charges are just the negative of the electron charge. This can be explained in the context
of GUTs and is explained in Ch. 4.

In a chiral gauge theory like the SM, so called anomalies appear. A symmetry is
called anomalous if the symmetry is broken by radiative corrections although the tree-
level Lagrangian respects this symmetry. In terms of Feynman diagrams the existence
of an anomaly can be calculated by evaluating the diagram in Fig. 2.1. The result is
proportional to

Aabc = Tr[ta{tb, tc}] , (2.21)

where the ta are the group generators belonging to the external currents in the triangle
graph. Every possible configuration of external currents has to be checked.

In the SM the anomaly Aabc vanishes as it should be to keep the gauge symmetries
unbroken. However, this happens only due to the fact that the anomalies from the loops
with quarks and leptons cancel. This is a surprising result and seems to be connected to
charge quantisation since there we need a similar cancellation between the electric charges
of the leptons and the quarks. Nevertheless, charge quantisation and anomaly cancellation
are related to each other but not necessarily quite the same. For example in a SU(5)
embedding of the SM, charge quantisation follows directly from the structure of the gauge
group but the necessary anomaly cancellation between different representations is still
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Figure 2.2: Pattern of fermion masses in the SM. The 1 σ errors are multiplied with a
factor of three.

accidental within SU(5). Nevertheless, it can be shown that SO(10) for example, another
well motivated candidate for a GUT group, is free of gauge anomalies.

2.3.4 The Flavour Puzzle

The SM has 19 free parameters from which 13 are related to the flavour sector. That seems
unsatisfactory for a fundamental physical theory. Also the pattern of the fermion masses
in the SM, see Fig. 2.2, seems to demand a deeper understanding. For example, the masses
of the up-type quarks differ by a factor of approximately one thousand from each other
whereas the down-type quark masses differ by approximately a factor of one hundred from
each other.

This becomes even worse by including neutrino masses and mixings. This introduces
three additional masses, three additional mixing angles and, depending on the nature of
the neutrinos, i.e. Dirac or Majorana, one or three additional CP violating phases. The
hierarchy between the masses gets even stronger. It is known that the sum of the neutrino
masses cannot be larger than about 0.6 eV [29]. Even if the neutrino masses are close to
this upper bound the top quark would still be about 1011 times heavier.

However, this is not the only strange pattern in the flavour sector. The mixing angles
in the quark and the lepton sector are very different from each other. While the mixing
angles are all small in the quark sector in the lepton sector two mixing angles are known
to be large while the third one is very small. One of the leptonic mixing angles is even
close to maximal.

Although the SM (respectively an extension with right-handed neutrinos) can in prin-
ciple describe these patterns by imposing that the masses and mixing angles are just as
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we observe them, maybe there is a more fundamental theory which elegantly describes the
flavour patterns. For example, the PMNS matrix can be described in terms of discrete
symmetries which may be interpreted as a hint towards an underlying family symmetry.



CHAPTER 3

Supersymmetry

In this chapter we want to review some fundamental concepts of supersymmetry (SUSY)
based on [53–55]. We start with a short motivation for supersymmetric field theories in
Sec. 3.1 and then discuss some basic formal aspects of SUSY necessary for this thesis in
Sec. 3.2. We end this chapter with an introduction to the MSSM in Sec. 3.3 and a brief
discussion of SUSY breaking in Sec. 3.4.

3.1 Motivation

The initial motivation for introducing supersymmetry in particle physics was the realisation
that despite a no-go theorem by Coleman and Mandula [56] the S-matrix can have sym-
metries beyond the internal symmetries and the Poincaré symmetry. This no-go theorem
can be circumvented by introducing symmetries whose algebras fulfil anti-commutation
relations instead of commutation relations [57]. This class of symmetries is called super-
symmetries. But it turned out that supersymmetric field theories have other nice properties
of which we give now three prominent examples.

Probably the most prominent feature of SUSY is the solution of the hierarchy problem,
see Sec. 2.3.2. In a supersymmetric version of the SM, where SUSY is unbroken, the
radiative corrections to the Higgs mass are exactly cancelled by diagrams with SUSY
partners of the SM particle fields in the loops. Even in a field theory with softly broken
SUSY the radiative corrections to the Higgs boson mass are under control as long as the
scale of the SUSY particle masses is not too far above the TeV scale [7]. Therefore the
prospects of finding SUSY at the LHC is very high, see, e.g. [58–63].

The second motivation which concerns us is gauge coupling unification. The sizes of
the three gauge couplings in the SM depend on the energy scale at which they are probed.
While they only come close to each other in the SM at a scale of roughly 1014 GeV the
gauge couplings almost perfectly unify at a scale of roughly 1016 GeV in the MSSM [64],
see also Fig. 3.1. Unification of gauge couplings is an essential ingredient for GUTs where
the three SM gauge groups are unified to one simple group. From that point of view SUSY
and GUTs seem to fit together quite well.
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Figure 3.1: Running of the gauge couplings on one-loop level in the SM (left) and the
MSSM (right). The SUSY scale MSUSY was set to MZ ≈ 90 GeV.

The third argument often invoked in favour of SUSY is that within SUSY models in
which the lightest SUSY particle (LSP) is stable on cosmological time scales this particle
is a viable candidate for dark matter. This is true, for example, in R-parity conserving
SUSY models like the MSSM. There, the LSP is stable and if it carries neither colour nor
electric charge, like a neutralino or the gravitino, it is a good candidate for dark matter,
for a recent review see [65]. Nevertheless, this third argument in favour of SUSY plays
only a minor role in this thesis since our main focus is not on cosmological aspects.

3.2 Some Formal Aspects of Supersymmetry

In the following we discuss some basic formal properties of SUSY acting as a foundation
for the rest of the work.

3.2.1 The Supersymmetry Algebra

Since the SUSY algebra is based on anticommutation relations the generators of the SUSY
algebra have to be fermionic operators Qα and their conjugate Q̄α̇ [5, 6]. The generators
of the SUSY algebra Qα and Q̄α̇ are Weyl spinors, see App. A.3. Their algebra is given by

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0 ,

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ .
(3.1)

We are working here in N = 1 SUSY where there is only one type of SUSY generator.

Besides commuting with the generators of GSM the commutation relations for Qα and
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Q̄α̇ with the generators of the Poincaré group are the following

[Qα, Pµ] = [Q̄α̇, Pµ] = 0 ,

[Qα,Mµν ] = −1

2
(σµν)α

βQβ ,

[Q̄α̇,Mµν ] = −1

2
(σ̄µν)α̇

β̇Q̄β̇ .

(3.2)

The matrices σµ, σµν and σ̄µν are defined in Eqs. (A.19) and (A.20). P µ are the generators
for space-time translations and Mµν are the generators for Lorentz transformations.

In Eq. (3.1) the connection between SUSY and gravity is insinuated. Indeed by changing
to local SUSY transformations, gravity can be incorporated in to what is called Supergrav-
ity (SUGRA) [66]. Nevertheless, we work here only with global SUSY transformations
which only induce constant translations in Minkowski space.

Although we seem to restrict ourselves here to some very special SUSY transformations
(global, N = 1 SUSY), these transformations are most relevant for phenomenological
applications and already give gauge coupling unification and a solution to the hierarchy
problem. However, introducing extended SUSY with N > 1 in four dimensions leads to
conceptual problems since this does not allow for chiral fermions and parity violation to
the observed amount [67].

In the application of SUSY to particle physics every fermionic state is related to a
bosonic state, or vice versa, via

Qα|fermion〉 = |boson〉 or Qα|boson〉 = |fermion〉 . (3.3)

This already follows from the conservation of angular momentum. Since the SUSY gener-
ator is a spinor it carries fractional spin and therefore changes the statistic of a given state
if it is applied on that state.

A particle f and its superpartner f̃ must have the same mass if SUSY is unbroken:

m2
f̃
|f̃〉 = P 2|f̃〉 = P 2Q|f〉 = QP 2|f〉 = Qm2

f |f〉 = m2
f |f̃〉 , (3.4)

where we have used the fact that the SUSY generators commute with the momentum
operator P . Identical masses for a particle and its superpartner are not in agreement with
experiment. The superpartner of, e.g. the electron was not found so far in experiment.
That means that if SUSY is a symmetry of nature it has to be broken. We come back to
this point in Sec. 3.4 but before we discuss an elegant way of describing fields and their
superpartners in terms of superfields.

3.2.2 Superspace and Superfields

The description of SUSY via superfields in superspace is an elegant way to handle SUSY
transformations and writing down SUSY invariant Lagrangians. Superspace extends the
four-dimensional Minkowski space with two additional Grassmann valued dimensions, for
a discussion of Grassmann variables see App. A.5.
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Every point in this space has the same number of bosonic and fermionic degrees of
freedom (dof) and is given by the supercoordinate X = (xµ, θα, θ̄

α̇) where xµ are the
usual four coordinates in Minkowski space and θα and θ̄α̇ are additional Grassmann valued
coordinates.

A superfield Φ = Φ(x, θ, θ̄) in superspace contains all bosonic and fermionic components
of a given supermultiplet. Since Grassmann numbers are nilpotent we can expand the
superfield in the Grassmann variables and the result is a finite series

Φ(x, θ, θ̄) = φ(x) + θψ(x) + θ̄χ̄(x) + θθF (x) + θ̄θ̄H(x) + θσµθ̄Aµ(x)

+ (θθ)θ̄λ̄(x) + (θ̄θ̄)θξ(x) + (θθ)(θ̄θ̄)D(x) ,
(3.5)

where φ, F,H,D are complex scalar fields, Aµ is a complex vector field and ψ, χ̄, λ̄, ξ are
two-component Weyl spinor fields. The four complex scalars and the complex vector field
give 16 bosonic dof while the four Weyl spinors give 16 fermionic dof. These are more
dof than we need for describing fields with a spin not greater than one. Imposing (SUSY)
covariant constraints on a superfield reduces the number of dof and we end up with an
irreducible representation of SUSY where the redundant field components are removed.

Since Grassmann variables anticommute we can use them to rewrite the SUSY algebra
in Eq. (3.1) in terms of commutation relations

[θQ, θQ] = [θ̄Q̄, θ̄Q̄] = 0 ,

[θQ, θ̄Q̄] = 2θσµθ̄Pµ ,

[θQ, Pµ] = [θ̄Q̄, Pµ] = 0 .

(3.6)

We know from the theory of Lie algebras how to construct the transformation of the
corresponding symmetry from such relations. Hence, we obtain for a group element of a
(global) SUSY transformation

S(yµ, ξ
α, ξ̄α̇) = exp

(
−i(ξαQα + ξ̄α̇Q̄

α̇ + yµP
µ)
)
, (3.7)

where yµ is a Minkowski variable and ξ and ξ̄ are Grassmann variables. This transformation
can be applied to the superfield Φ

S(yµ, ξ, ξ̄)Φ(xµ, θ, θ̄) = Φ(xµ + yµ + i ξσµθ̄ − i θσµξ̄, ξ + θ, ξ̄ + θ̄) . (3.8)

If we expand the above results in ξ and ξ̄ we get the infinitesimal SUSY transformation
δS(ξ, ξ̄) acting on a superfield as

δS(ξ, ξ̄)Φ(x, θ, θ̄) = −i[ξQ+ ξ̄Q̄]Φ(x, θ, θ̄)

=

[
ξα

∂

∂θα
+ ξ̄α̇

∂

∂θ̄α̇
+ i(ξσµθ̄ − θσµξ̄)

∂

∂xµ

]
Φ(x, θ, θ̄) ,

(3.9)

from which a linear representation of the SUSY generators can be derived

Qα = i ∂α − (σµθ̄)α∂µ , (3.10)

Q̄α̇ = −i ∂̄α̇ + (θσµ)α̇∂µ , (3.11)

Pµ = i ∂µ , (3.12)
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where we have made use of the abbreviations ∂α = ∂/∂θα, ∂̄α̇ = ∂/∂θ̄α̇ = −εα̇β̇∂/∂θ̄β̇ and
∂µ = ∂/∂xµ. Now we have everything together to define the SUSY covariant derivatives Dα

and D̄α̇ in analogy to the covariant derivatives in gauge theories. The covariant derivatives
have to be invariant under the SUSY transformations δS, i.e. [ξQ+ ξ̄Q̄, Dα] = 0, which can
also be written in terms of anticommutation relations as

{Dα, Qβ} = {Dα, Q̄β̇} = {D̄α̇, Qβ} = {D̄α̇, Q̄β̇} = 0 . (3.13)

Using all of the above equations, explicit expressions for Dα and D̄α̇ can be derived

Dα = i ∂α + (σµθ̄)α∂µ ,

D̄α̇ = −i ∂̄α̇ − (θσµ)α̇∂µ ,

{Dα, D̄β̇} = −2(σµ)αβ̇Pµ .

(3.14)

Having this definitions at hand we can define the superfield constraints for the fields we
are interested in

D̄α̇Φ = 0 → left-handed chiral superfield, (3.15)

DαΦ = 0 → right-handed anti-chiral superfield, (3.16)

Φ = Φ† → vector superfield. (3.17)

A product of two chiral superfields is again a chiral superfield whereas the product of a
chiral and a conjugated chiral superfield gives a vector superfield.

Solving Eq. (3.15) a left-handed chiral superfield ΦL can be written as

ΦL(x, θ, θ̄) = φ(x) +
√

2θψ(x) + θθF (x) + i θσµθ̄∂µφ(x)

− i√
2

(θθ)
(
∂µψ(x)σµθ̄

)
− 1

4
(θθ)(θ̄θ̄)∂µ∂µφ(x) .

(3.18)

Comparing the left-handed chiral superfield with a general superfield, see Eq. (3.5), we see
that the θ̄ and the θ̄θ̄ components do not enter and the other components are partially
related to each other. ΦL has four fermionic dof from the two-component Weyl spinor
ψ(x) and four bosonic dof from the two complex scalar fields φ(x) and F (x). So in general
a chiral superfield still has the same number of bosonic and fermionic dof. Hence it is
guaranteed that the SUSY algebra closes.

Nevertheless, there is a subtlety. If the superfield is put on-shell the dof of the spinor
field ψ reduces to two. In this case the equations of motion of the auxiliary field F become
trivial (F = F ∗ = 0) and thus the field F can be eliminated from the superfield.

The behaviour of the component fields under infinitesimal SUSY transformations is

δS(ξ, ξ̄)φ(x) =
√

2ξψ(x) ,

δS(ξ, ξ̄)ψα(x) =
√

2F (x)ξα −
√

2
(
σµξ̄
)
α
∂µφ(x) ,

δS(ξ, ξ̄)F (x) = ∂µ

(
i
√

2ψ(x)σµξ̄
)
.

(3.19)
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Here we want to stress two points. First of all we see here explicitly that via a SUSY
transformation, fermionic dof are transformed into bosonic dof and vice versa. Secondly
the SUSY transformation of the auxiliary field F is a total derivative and hence does not
play any role in the action of a physical system.

In complete analogy,the relations for right-handed chiral superfields can be derived via
ΦR = ΦL = (ΦL)†. The (non-Abelian) SUSY gauge transformations with generators T a

and gauge coupling g transform a chiral superfield as

ΦL → e−2 i gΛΦL and ΦL → ΦLe2 i gΛ̄ , (3.20)

where Λ = ΛaT a and Λa(x, θ, θ̄) are chiral superfields.
In Eq. (3.17) we defined the constraint for a vector superfield V (x, θ, θ̄) which gives in

component notation

V (x, θ, θ̄) = C(x) + i θχ(x)− i θ̄χ̄(x) + θσµθ̄Aµ(x)

+
i

2
θθ [M(x) + iN(x)]− i

2
(θ̄θ̄) [M(x)− iN(x)]

+ i(θθ)θ̄

[
λ̄(x) +

i

2
σ̄µ∂µχ(x)

]
− i(θ̄θ̄)θ

[
λ(x) +

i

2
σµ∂µχ̄(x)

]
+

1

2
(θθ)(θ̄θ̄)

[
D(x)− 1

2
∂µ∂µC(x)

]
,

(3.21)

where C,M,N,D are real scalar fields, χ, λ are complex Weyl spinors and Aµ is a real
spin-one vector field. Off-shell, the eight bosonic dof match again the eight fermionic dof.
We also still have the freedom to choose a gauge. Accordingly we choose the Wess–Zumino
gauge [6] where C = M = N = 0 and χ = 0. Then we end up with the gauge field Aµ, the
gaugino λ, its fermionic superpartner, and the bosonic auxiliary field D.

The field D plays an analogous role for vector superfields as F did for the chiral super-
fields. Off-shell it is needed to match the bosonic and fermionic dof and close the SUSY
algebra whereas on-shell it can be eliminated by its equations of motion.

The behaviour of the component fields under infinitesimal SUSY transformations is

δS(ξ, ξ̄)Aµ = i
(
ξσµλ̄− λσµξ̄

)
− ∂µ(ξχ+ ξ̄χ̄) ,

δS(ξ, ξ̄)λα = −iD ξα −
1

2
(σµσ̄ν)α

βξβ(∂µAν − ∂νAµ) ,

δS(ξ, ξ̄)D = ∂µ
(
−ξσµλ̄+ λσµξ̄

)
.

(3.22)

Again we see that SUSY transforms bosonic into fermionic dof and vice versa and the
SUSY transformation of the auxiliary field D is a total derivative.

Under a non-Abelian SUSY gauge transformation the vector superfield V transforms
as

e2gV → e−2 i gΛ̄e2gV e2 i gΛ , (3.23)

where V = V aT a. For Abelian gauge groups this simplifies to

V → V + i(Λ− Λ̄) . (3.24)
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Now we have defined all necessary superfields and their transformations and we can
continue by building SUSY invariant Lagrangians.

3.2.3 Supersymmetric Lagrangians

In this section we want to discuss how to construct Lagrangian densities L(x) invariant
under SUSY and gauge transformations out of chiral and vector superfields.

To be more concrete the action has to be invariant under infinitesimal SUSY transfor-
mations

δS

∫
d4xL(x) = 0 . (3.25)

Therefore it is sufficient if L(x) changes only up to a total space-time derivative under SUSY
transformations. From Eqs. (3.19) and (3.22) we know that the F -terms of chiral and the
D-terms of vector superfields transform as total derivatives under SUSY transformations
and therefore a SUSY invariant action can be constructed from them. We define

L(x) ≡ LF + LD =

∫
d2θLf +

∫
d2θ d2θ̄Ld + h.c., (3.26)

where in LF only the F -terms of Lf appear whereas in LD only the D-terms of Ld appear
due to the Grassmann nature of θ and θ̄, cf. App. A.5.

We start with the discussion of Lf which is an analytic function of chiral superfields
and therefore a chiral superfield itself. Lf can be given in terms of the gauge invariant
holomorphic superpotential W ,

Lf =W({Φi}) =
∑
i

aiΦi +
1

2

∑
ij

mijΦiΦj +
1

3!

∑
ijk

λijkΦiΦjΦk , (3.27)

where all Φi are left-chiral superfields and the couplings mij, λijk are totally symmetric
under the interchange of i, j, k. We do not want to spoil the renormalisability of our
theory for which reason only terms maximally trilinear in the superfields appear in the
superpotential. The F -term of the superpotential is given in terms of the component fields
φi, ψi and Fi∫

d2θW({Φi}) =
∑
i

aiFi +
∑
ij

mij

(
φiFj −

1

2
ψiψj

)
+
∑
ijk

λijk
2

(φiφjFk − φiψjψk)

=
∑
j

∂W(φ)

∂φj
Fj −

1

2

∑
jk

∂2W(φ)

∂φj∂φk
ψjψk , (3.28)

where in the last line the superpotential is understood to be a function of only the scalar
fields φi. This provides us with mass terms for the fermions and Yukawa-type interactions.

Now we have a closer look on LD. This provides us with kinetic terms for scalars and
fermions since they are of the form Φ̄Φ. To be more concrete the gauge invariance of the
SUSY Lagrangian demands that

Ld = Φ̄ e2gV Φ , (3.29)
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cf. Eqs. (3.20) and (3.23). We also have to replace everywhere the usual derivative ∂µ with
the gauge covariant derivative Dµ

∂µ → Dµ = ∂µ + i gAaµT
a , (3.30)

where T a are the generators of the gauge transformations and Aaµ are the vector components
of a general vector superfield. Since we now know the structure of Ld we can write down
LD in component notation

LD =
∑
i

∫
d2θ d2θ̄ Φ̄i e

2gV Φi

=
∑
i

[
DµφiD

µφ∗i + i ψ̄iσ̄
µDµψi −

√
2g
(
ψ̄iλ̄ψi + ψ∗i λψi

)
+ gφ∗iT

aDaψi + F ∗i Fi

]
,

(3.31)

which involves, besides kinetic terms for the scalars and fermions, interaction terms of the
scalars and fermions with the gauge boson fields and “SUSY-gauge interactions” involving
gauginos.

Now we are only lacking kinetic terms for gauginos and gauge bosons and couplings
between gauge bosons and gauginos although they are allowed by gauge invariance. These
terms are added to our theory by introducing the additional part Lkin,

Lkin =
1

16g2
Tr(WαW

α) , (3.32)

to the Lagrangian where Wα are field strength tensors defined as

Wα ≡
1

4
D̄D̄ e−2gVDαe2gV . (3.33)

For Abelian gauge groups, Eq. (3.33) simplifies to

Wα =
g

2
D̄D̄DαV . (3.34)

It can be easily shown that WαW
α is gauge invariant. Wα is a chiral superfield and hence

also WαW
α is chiral. Therefore Lkin is a chiral superfield and the F -component transform

as a total derivative under SUSY transformations and can be added to the F -term of the
SUSY Lagrangian

1

16g2

∫
d2θ [Tr(WαW

α) + h.c.] = −1

4
F a
µνF

µν a + i λ̄aσ̄µ(Dµλ)a +
1

2
DaDa , (3.35)

with the usual field strength tensors

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , (3.36)
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where fabc are the gauge group structure constants.
In summary the final SUSY Lagrangian F -term reads

LF =

∫
d2θLf + h.c.

=

∫
d2θ

[
W +W

]
+

1

16g2

∫
d2θ [Tr(WαW

α) + h.c.] ,

(3.37)

and the complete SUSY Lagrangian is given by L = LF + LD where LD is given by
Eq. (3.31) and LF is given by Eq. (3.37).

It is interesting to note that if we expand the SUSY Lagrangian in component fields
the auxiliary fields F and D do not obtain any kinetic terms as we already said before.
We can define from them the scalar potential V ,

V ≡
∑
i

(
−F ∗i Fi −

∂W
∂φi

Fi −
∂W(φ∗)

∂φ∗i
F ∗i

)
+

1

2

∑
a

DaDa , (3.38)

where Fi is the F -component of the superfield Φi and Da is the D-component of the
vector superfield V a. Since the auxiliary fields have no kinetic terms their Euler–Lagrange
equations read

∂L
∂F

=
∂L
∂D

= 0 . (3.39)

With the help of these equations we can eliminate F and D from the Lagrangian. The
scalar potential is then

V =
∑
i

F ∗i Fi +
1

2

∑
a

(Da)2 =
∑
i

∂W(φ)

∂φi

∂W(φ∗)

∂φ∗i
+

1

2

∑
l

g2
l

∑
a

(∑
i

φ∗iT
a
l φi

)2

, (3.40)

where l sums over the gauge groups of the theory with the corresponding gauge coupling gl
and generators T al . The scalar potential is a sum of absolute values squared and therefore
positive for every field configuration.

3.3 The Minimal Supersymmetric Extension of the

Standard Model

In this section we want to discuss the minimal supersymmetric extension of the SM (MSSM)
[68–70]. This SUSY extension of the SM is minimal in the sense that it introduces the
least possible amount of new fields without spoiling the solution to the hierarchy problem.
It is based on the following principles:

• The SM is extended by N = 1 SUSY.

• The MSSM is invariant under the SM gauge group.



28 3. Supersymmetry

Superfield Label Bosonic Part Fermionic Part Quantum Numbers

chiral Q q̃L = (ũL, d̃L)T qL = (uL, dL)T
(
3,2,+1

3

)
chiral Ū ũ∗R ūR

(
3,1,−4

3

)
chiral D̄ d̃∗R d̄R

(
3,1,+2

3

)
chiral L l̃L = (ν̃L, ẽL)T lL = (νL, eL)T (1,2,−1)

chiral Ē ẽ∗R ēR (1,1,+2)

chiral Hu hu = (h+
u , h

0
u)
T h̃u = (h̃+

u , h̃
0
u)
T (1,2,+1)

chiral Hd hd = (h0
d, h
−
d )T h̃d = (h̃0

d, h̃
−
d )T (1,2,−1)

vector Ga ga g̃a (8,1, 0)

vector W i W i W̃ i (1,3, 0)

vector B B B̃ (1,1, 0)

Table 3.1: Field content of the MSSM. The superfields are labelled with a capital letter.
The SUSY partners of the SM fields (cf. Tab. 2.1) are denoted with a tilde and the
subscripts L and R of the scalar SUSY fields refer to the chirality of the corresponding
fermionic partner. We have suppressed family and colour indices for the chiral matter
fields to streamline notation. The index a = 1, . . . , 8 enumerates the vector superfields of
SU(3)C and the index i = 1, 2, 3 enumerates the vector superfields of SU(2)L.

• The SUSY breaking scale is near the EW scale.

• R-parity is conserved.

The first two principles are related to the requirement of minimality and lead to the field
content as described in Sec. 3.3.1. The third principle is needed to guarantee that the
MSSM solves the hierarchy problem. SUSY breaking is discussed in Sec. 3.4 and in the
MSSM leads to the parameters as described in Sec. 3.3.3. R-parity conservation is required
to forbid fast proton decay and is discussed in Sec. 3.3.2.

3.3.1 Field Content of the MSSM

In principle the MSSM field content is already fixed by using the SM gauge group and
restricting ourselves to N = 1 SUSY and the requirement of not introducing unnecessary
additional fields. Although the field content can be derived straightforwardly we want to
discuss the fields in a little bit more detail in the following.

Since the generators of the SM gauge group commute with the SUSY generators the
fields in each supermultiplet have to have the same quantum numbers. Within the SM
there are no pairs of fermions and bosons having the same gauge quantum numbers apart
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from the lepton and the Higgs doublet. There was a proposal that they are contained in the
same supermultiplet [71] but this would result, apart from missing anomaly cancellation,
in lepton-number violation and a neutrino mass incompatible with experimental data.
Therefore SUSY partners of both doublets have to be added to the field content of the SM.

All fermions in the SM are chiral and hence have to belong to a chiral superfield.
So for every fermion an additional complex scalar is added in the MSSM with the same
quantum numbers. The naming scheme is that in front of the name of the fermion a ‘s’ as
abbreviation for scalar is added. So the scalar partner of the τ -lepton is called ‘stau’. The
scalar partner of the b-quark is called sbottom and so on. The generic term for the scalar
partners of the fermions is correspondingly sfermions. The label of the SUSY partner of a
fermion f is denoted with a tilde f̃ .

The gauge bosons of the SM are vector fields and therefore they also belong to vector
superfields. The fermionic partners therein are called gauginos. In more detail the SUSY
partner of the gluon g is called gluino g̃, the SUSY partners of the W i-bosons Winos W̃ i

and the SUSY partner of the B-boson is called Bino B̃. After EW symmetry breaking
the electrically neutral gauginos are Majorana particles whereas the electrically charged
gauginos are combined to form Dirac particles.

The Higgs sector of the MSSM cannot be minimally extended by putting the SM Higgs
into a chiral superfield. The superpotential has to be holomorphic. Thus there may not
appear a field and its conjugate at the same time in the superpotential. But in the SM
the up-type quarks couple to the Higgs field while the charged leptons and the down-
type quarks couple to its conjugate. If we want to give all fermions a mass via the Higgs
mechanism we therefore have to add another Higgs doublet. This has the consequence that
in the MSSM five physical Higgs bosons appear in the particle spectrum and not only one
as in the SM. These two Higgs doublets are included in two chiral superfields with opposite
hypercharge. The fermionic partners of the Higgs bosons are called Higgsinos. Since the
chiral Higgs fields are conjugated to each other their gauge anomaly contributions cancel
which is an additional nice feature of the MSSM.

We have collected the complete field content of the MSSM in Tab. 3.1.

3.3.2 R-Parity

The superpotential from Eq. (3.27) has to respect the SM gauge group and with the field
content of the MSSM, see Tab. 3.1, the most general superpotential doing this can be
decomposed as [72,73]

W =WR +W /R , (3.41)

where the two parts, written in terms of the MSSM superfields, are

WR = (Yu)ijQiεHuŪj − (Ye)ijLiεHdĒj − (Yd)ijQiεHdD̄j + µHdεHu , (3.42)

W /R =
1

2
λijkLiεLjĒk + λ′ijkLiεQjD̄k + κiLiεHu +

1

2
λ′′ijkD̄iD̄jŪk , (3.43)
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where we have suppressed gauge indices. The ε tensors are inserted to contract the SU(2)L
indices. Due to gauge invariance λijk and λ′′ijk are antisymmetric in the first two indices.
Factors of 1/2 are introduced to avoid double counting in scattering amplitudes.

The superpotential WR is necessary since it induces fermion Yukawa couplings and
masses. The last term, the Higgs µ term, is necessary as well to generate successful
electroweak symmetry breaking.

The first three terms in Eq. (3.43) violate lepton number while the last term violates
baryon number. The combination of baryon and lepton number violating operators gives
rise to rapid proton decay [74]. Such operators should hence be strongly suppressed since
there are severe bounds on proton decay, see, e.g. [75,76].

In the SM such operators are absent because there baryon and lepton number are ac-
cidentally preserved and hence proton decay is no problem within the SM. In the MSSM
an additional symmetry has to be invoked. In principle there are three discrete symme-
tries which are consistent with an underlying anomaly-free U(1) gauge theory. Global
symmetries are broken by quantum gravity effects and therefore a gaugeable discrete U(1)
subgroup is desirable [77–79]. In the MSSM R-parity [80] or equivalently matter parity
is invoked and we do not discuss the other two possibilities, proton-hexality and baryon-
triality.

By introducing R-parity to each particle a multiplicative discrete quantum number PR
is assigned where

PR = (−1)3(B−L)+2s (3.44)

with B being the baryon number, L the lepton number and s the spin of the given particle.
Since the spin enters here the different components of a superfield have differentR-parities.
Our definition is such that the SM fields have even R-parity whereas SUSY particles have
odd R-parity. Imposing this symmetry forbids the superpotential W /R from Eq. (3.43) as
desired.

3.3.3 MSSM Spectrum and Soft SUSY Parameters

In this section we want to discuss briefly the new parameters introduced by (softly broken)
SUSY and the resulting spectrum.

If SUSY was unbroken it would be a very economic extension of the SM. In the MSSM
without the SUSY breaking terms only one additional parameter is added. The new
parameter is the µ parameter that mixes the two Higgs superfields in the superpotential,
see (3.42). Although this is very economic, the question arises why this parameter is of the
order of the EW scale to generate correct EW symmetry breaking and not of the GUT or
the Planck scale. This is the so-called µ-problem [81] which can be solved by introducing
an additional symmetry and a gauge singlet which breaks this symmetry and generates µ
spontaneously. Those kinds of models are called NMSSM, see, e.g. [82]. Nevertheless, we
want to stick to the MSSM here, where µ is simply assumed to be of the right scale.

If SUSY is broken the MSSM is not so economic anymore. Indeed there are about
100 soft SUSY breaking parameters. Those parameters are called soft because they do
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not spoil the solution to the hierarchy problem. So the number of additional parameters
in the MSSM is restricted by the demand of not reintroducing quadratic divergences in
the theory. In the following we classify the soft SUSY breaking parameters. For a more
extensive treatment, see, e.g. the review [83].

First of all there are mass terms for the gauginos

−1

2
(M1B̃B̃ +M2W̃W̃ +M3g̃g̃) + h.c. , (3.45)

where we have suppressed gauge indices. Secondly there are the Higgs mass parameters

−m2
huh

†
uhu −m2

hd
h†dhd − (bhuεhd + h.c.) . (3.46)

These mass terms together with the F - and D-terms generate the whole Higgs potential
which breaks EW symmetry. Furthermore there are the three-by-three sfermion mass
matrices before EW symmetry breaking

−q̃†Lm
2
Q̃
q̃L − ũ∗Rm2

Ũ
ũR − d̃∗Rm2

D̃
d̃R − l̃†Lm

2
L̃
l̃L − ẽ∗Rm2

Ẽ
ẽR , (3.47)

and finally the trilinear couplings

−(AU q̃Lhuũ
∗
R − ADq̃Lhdd̃∗R − AE l̃Lhdẽ∗R) + h.c. . (3.48)

The sfermion mass matrices and the trilinear couplings are matrices in family space which
can give rise to additional flavour transitions. Their structures are thereby severely con-
strained by phenomenology. But to this point within the MSSM itself, their structure is
not restricted, which gives rise to the SUSY flavour problem. The SUSY flavour problem
is an extension of the SM flavour problem in the sense that the MSSM contains even more
flavourful quantities than the SM whose patterns have to be explained.

The soft parameters also introduce a lot of additional complex phases which result in
electric dipole moments that are severely constrained by phenomenology as well. The open
question of the phases in the MSSM is the SUSY CP problem.

We now summarise briefly the MSSM spectrum. First of all, in addition to the SM
spectrum there are the sfermions. For every fermion in the SM we have two scalar partners
appearing in the spectrum. After EW symmetry breaking the left- and right-handed scalars
mix and give two different mass eigenstates per fermion. So there are all in all twelve
squarks and nine sleptons. Since there are no right-handed neutrinos in the SM there are
also no right-handed sfermions in the MSSM.

The gluinos, the superpartners of the gluon, are their own mass eigenstate while the
other gauginos mix with the Higgsinos after EW symmetry breaking. The electrically
charged Winos mix with the electrically charged Higgsino components and give the two
charginos. The electrically neutral Wino, the Bino and the neutral Higgsinos form four
mass eigenstates called the neutralinos. The lightest neutralino is also a natural dark
matter candidate as long as R-parity is conserved and the lightest neutralino is the LSP.

We would also like to restate here that the MSSM is a two Higgs doublet model and
therefore in the MSSM there are five physical Higgs mass eigenstates. If the Higgs potential
preserves the CP symmetry there are two CP even mass eigenstates, one CP odd mass
eigenstate and two oppositely charged Higgs bosons with the same mass.
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3.4 Supersymmetry Breaking

We know that SUSY, even if it is realised in nature, has to be broken. In this section
we therefore discuss briefly how SUSY can be broken in general and then we give three
explicit, popular examples of SUSY breaking schemes.

3.4.1 General Aspects of SUSY Breaking

We start our discussion of SUSY breaking with some general aspects. If SUSY is sponta-
neously broken the vacuum state |0〉 is no longer invariant under SUSY transformations
Qα|0〉 6= 0 and Q̄α̇|0〉 6= 0 where Qα and Q̄α̇ are the SUSY generators, cf. (3.1). The SUSY
algebra relates the Hamiltonian H to the SUSY generators via

H = P 0 =
1

4
(Q1Q̄1 + Q̄1Q1 +Q2Q̄2 + Q̄2Q2) . (3.49)

Therefore in broken global SUSY the vacuum energy has to be strictly positive

〈0|H|0〉 =
1

4

(
|Q1|0〉|2 +

∣∣Q̄1|0〉
∣∣2 + |Q2|0〉|2 +

∣∣Q̄2|0〉
∣∣2) > 0 . (3.50)

Furthermore, neglecting space-time dependent effects and fermion condensates the vev
of the Hamiltonian 〈0|H|0〉 is equal to the vev of the scalar potential 〈0|V|0〉 which is
generated by the F - and D-terms, see Eq. (3.40). That tells us that SUSY is broken if
at least one of the auxiliary field components has a non-vanishing vev for all possible field
configurations. Such a vev generates mass terms for the SUSY partners of a given theory.
In spontaneously broken SUSY theories a sum rule for the tree-level squared masses of the
particles can be derived, see, e.g. [53],

STr(m2) ≡
∑
j

(−1)j(2j + 1)Tr(m2
j) = 0 , (3.51)

where the sum is taken over all particles with spin j and the last equality is valid in theories
with non-anomalous U(1) gauge symmetries, as the U(1)Y in the MSSM.

If we would assume a family symmetry or simply conservation of individual lepton
numbers the sum rule (3.51) decomposes into different blocks and one obtains, for example,
for the (s)electrons

m2
ẽ1

+m2
ẽ2

= 2m2
e , (3.52)

which is in conflict with experiment since there are no charged scalars in this mass regime. If
we would impose lepton flavour violation as it is suggested by neutrino oscillations it is still
very difficult to obtain viable SUSY partner masses in agreement with phenomenological
data from the lepton masses and lepton flavour violation. Therefore, a different scenario
is proposed where SUSY is broken in a hidden sector and the breaking is then mediated
to the visible sector via (flavour-blind) interactions or radiative corrections. Before we
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discuss three of these breaking scenarios we want to discuss briefly how to give the F - or
the D-terms a vev.

In the MSSM neither the F - nor the D-terms can acquire a vev. One simple example
to give a vev to the F -terms is the model proposed by O’Raifeartaigh [84]. The proposed
superpotential with three superfields is

W = −kΦ1 +mΦ2Φ3 +
y

2
Φ1Φ2

3 , (3.53)

which is only allowed if Φ1 is a gauge singlet. From this superpotential the scalar potential
with the corresponding F -terms can be derived

V = |F1|2 + |F2|2 + |F3|2 ,

F1 = k − y

2
φ∗3

2 , F2 = −mφ∗3 , F3 = −mφ∗2 − yφ∗1φ∗3 .
(3.54)

Here F1 = 0 and F2 = 0 cannot be fulfilled simultaneously, so one of the F -terms acquires
a vev and SUSY is spontaneously broken.

The D-terms of a U(1) symmetry can obtain a vev due to the fact that for U(1)
symmetries a term linear in the auxiliary field D can be introduced into the scalar potential

V = κD − 1

2
D2 − gD

∑
i

qi|φi|2 , (3.55)

where κ is a constant with units of [mass]2 and qi are the charges of the scalar fields φi
under the U(1) transformation. The term linear in D is called Fayet–Iliopoulos term since
Fayet and Iliopoulos proposed this kind of SUSY breaking [85]. The presence of this linear
term changes the equations of motions to

D = κ− g
∑
i

qi|φi|2 . (3.56)

If we assume that all the scalar fields φi have F -term masses mi

V =
∑
i

|mi|2|φi|2 +
1

2
(κ− g

∑
i

qi|φi|2)2 , (3.57)

and |mi|2 > gqiκ for each i we have a SUSY breaking minimum which preserves the U(1)
symmetry. In the MSSM one could try to use the U(1)Y group for SUSY breaking but this
does not work out since squarks and sleptons have no superpotential mass terms and in
this case the minimum of the superpotential in the above equation would break SU(3)C
or U(1)em which is excluded by experiment.

We now have an idea how SUSY could be broken and we know that this cannot happen
at tree-level in the visible sector. In the following we want to discuss three scenarios for the
mediation of SUSY breaking which lead to special structures for the soft SUSY parameters.
Indeed this is what is usually done due to our missing understanding of SUSY breaking.
The soft SUSY breaking terms which are compatible with the solution to the hierarchy
problem are parameterised in terms of a few parameters motivated by a certain SUSY
breaking scenario. Here, we discuss only three common scenarios used in this work.
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3.4.2 Minimal Anomaly Mediated Supersymmetry Breaking

The anomaly mediated SUSY breaking scenario (AMSB) is based on the assumption of
extra dimensions. If there are extra dimensions and SUSY is broken on a separate brane
this breaking is mediated to the visible world via the superconformal anomaly [86].

The parameter m3/2, the vev of the auxiliary field in the supergravity multiplet, deter-
mines the overall mass scale of the SUSY particle masses. However, in the simplest AMSB
model the sleptons are tachyonic. To resolve this issue, in the minimal AMSB scenario
(mAMSB) an additional universal scalar soft mass m0 is introduced. The spectrum is com-
pletely determined by the four parameters m3/2, m0, tan β and µ. The two parameters µ,
the Higgs superfield mixing parameter, and tanβ, the ratio of the Higgs vevs, are needed
to describe EWSB completely. Although µ is in principle a free parameter, the modulus
of µ can be calculated from conditions for successful EWSB if all other parameters of the
Higgs potential are known. The sign of µ stays undetermined and usually is not counted
as a free parameter since it has only two possible values and as we discuss later in more
detail a negative µ parameter is disfavoured by measurements of the anomalous magnetic
moment of the muon (g− 2)µ, see Sec. 8.3.5. So in the end we are left with only the three
parameters m3/2, m0 and tan β.

Explicitly, the boundary conditions at the GUT scale for a = 1, 2, 3 in mAMSB are
given by

Ma(MGUT) =
β(ga)

ga
m3/2 ,

Ay(MGUT) = −βy
y
m3/2 ,

m̃2
f̃
(MGUT) = −1

4

[
β(ga)

∂γf̃
∂ga

+ βy
∂γf̃
∂y

]
m2

3/2 +m2
0 ,

(3.58)

where Ma are the gaugino masses, Ay the trilinear couplings, m̃f̃ the sfermion soft mass
parameters, β(ga) are the β functions of the gauge couplings ga, βy the β function of the
Yukawa coupling y and the γf̃ is the anomalous dimension of the superfield f̃ .

3.4.3 Minimal Gauge Mediated Supersymmetry Breaking

In the minimal gauge mediated SUSY breaking scenario (mGMSB) [87] SUSY breaking
is mediated via gauge interactions. The messenger fields are assumed to be complete
five-dimensional representations of SU(5). This choice does not spoil gauge coupling uni-
fication. The SUSY breaking sector is coupled on one-loop level to the gauginos and on
two-loop level to the remaining SUSY fields. The trilinear couplings arise at two-loop order
and are additionally suppressed by a factor of αa/4π, a = 1, 2, 3, and hence are negligibly
small. Since SUSY breaking is mediated via gauge interactions the soft scalar masses are
predicted to be universal at Λ.

In these scenarios the SUSY spectrum depends on six parameters: the messenger mass
mmess, the number of 5⊕ 5 messenger fields n5, the soft SUSY breaking mass scale Λ, the
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constant cgrav needed to calculate the gravitino mass, tan β and the sign of µ. The modulus
of µ can be calculated from the conditions for successful EWSB as in the mAMSB case.
Later on we set cgrav = 1 without loss of generality, since we do not investigate observables
depending on the gravitino mass. Thus we are left with only four free parameters in this
case.

The universal boundary conditions are applied at the messenger scale and read for the
gaugino masses Ma, a = 1, 2, 3 and the sfermion soft mass parameters m̃f̃

Ma(mmess) =
g2
a

16π2
n5Λg̃

(
Λ

mmess

)
,

m̃f̃ (mmess) = 2Λ2
∑
a

(
g2
a

16π2

)2

Can5f̃

(
Λ

mmess

)
,

(3.59)

where Ca is the quadratic Casimir invariant of the MSSM scalar field in question and

g̃(x) =
1

x2
[(1 + x) ln(1 + x) + (1− x) ln(1− x)] ,

f̃(x) =
1 + x

x2

[
ln(1 + x)− 2Li2

(
x

1 + x

)
+

1

2
Li2

(
2x

1 + x

)]
+ (x→ −x) ,

(3.60)

are functions appearing in the calculation of the loop diagrams.

3.4.4 Constrained Minimal Supersymmetric Standard Model

The constrained MSSM (CMSSM) is a SUSY breaking scenario inspired by supergravity
(SUGRA) theories where SUSY breaking is mediated via gravitational interactions [88,89].
To avoid large flavour changing neutral currents (FCNC) usually the assumption is made
that the couplings of the SUSY breaking sector to the visible sector is universal in flavour
space. This kind of model is called minimal supergravity (mSUGRA) since a minimal
choice for the Kähler potential is used [89]. There is a subtle difference between CMSSM
and mSUGRA concerning the gravitino mass which shall not bother us here since we always
assume that the gravitino is not the LSP and for the other parts it is irrelevant.

The boundary conditions for the soft SUSY breaking parameters at the GUT scale are
then

Ma(MGUT) = m1/2 ,

AY (MGUT) = A0Y ,

m̃2
f̃
(MGUT) = m2

0 ,

(3.61)

where Ma, a = 1, 2, 3, are the gaugino masses, AY are the trilinear couplings which are
assumed to be proportional to the particular Yukawa matrices Y and m̃f̃ are the sfermion
masses. All in all in the CMSSM we have therefore four parameters fully describing the
MSSM spectrum. They are m1/2, A0, m0 and tan β. The absolute value of µ is determined
from the conditions for EWSB and the sign of µ is set to be positive due to the constraint
from the anomalous magnetic moment of the muon.
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CHAPTER 4

Grand Unified Theories

In this chapter we discuss the idea of Grand Unified Theories (GUTs) on the basis of SU(5)
gauge theory which is the smallest simple gauge group containing the SM gauge group and
being compatible with the field content of the SM. This GUT is of special importance for
this work since later on we construct explicit flavour models within SU(5).

The guiding principle behind GUTs is the quest for unification of forces. The SM knows
three gauge interactions which can be described in terms of symmetry groups. Therefore it
seems compelling to look for a larger group which contains the SM gauge group and hence
describes the SM gauge interactions in terms of one simple group. Besides unification of
forces, GUTs also shed some light on the questions of neutrino masses, charge quantisation
and anomaly cancellation. Very recently it was even shown how to embed the inflaton into
a GUT representation [90].

The first step towards a GUT was the unification of colour and lepton number in the
Pati–Salam (PS) model [46] with the gauge group SU(4)C × SU(2)L × SU(2)R. Later on
also simple groups were proposed, like SU(5) [11], SO(10) [12] or E6 [91]. Here we want to
discuss the relevant features of GUTs via the example of SU(5). Our treatment of GUTs
is based on the presentations in [92].

We start with an introduction to SU(5) and describe the field content in Sec. 4.1.
Afterwards we discuss how electric charge is quantised in Sec. 4.2, the unification of gauge
couplings in Sec. 4.3 and proton decay in Sec. 4.4. We end this chapter with a brief
summary about symmetry breaking and fermion masses within SU(5) in Sec. 4.5.

4.1 Introduction to SU(5) and Field Content

A general representation of SU(5) can be written as a tensor under SU(5), for more details,
see App. B. The transformation matrices U are in this case

[U ]im = [exp(iαaλa/2)]im , (4.1)

where the indices i,m = 1, . . . , 5 and a = 0, . . . , 23. The αa are the transformation param-
eters and the λa are the generators of SU(5) (The group SU(N) has N2 − 1 generators).
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The generators of SU(5) are Hermitian, traceless 5 × 5 matrices with the normalisation
Tr(λaλb) = 2δab, for example

λ3 =


0

0
0

1
−1

 and λ0 =
1√
15


2

2
2
−3

−3

 . (4.2)

The SU(3)C × SU(2)L decomposition of a given representation is given by identifying
the first three components of an SU(5) index i = 1, 2, 3 as colour indices and the last
two components of an SU(5) index i = 4, 5 as weak isospin indices. Below we label for
convenience colour indices with Greek letters, α, β, . . ., and weak isospin indices with Latin
letters, r, s, . . ..

Taking a closer look at the SM field content, cf. Tab. 2.1, we see that all the left-handed
matter fields fit nicely into the two representations

F = 5 = (3,1) + (1,2) =
(
dcR dcB dcG e −ν

)
L
,

T = 10 = (3,1) + (3,2) + (3,1) =
1√
2


0 −ucG ucB −uR −dR
ucG 0 −ucR −uB −dB
−ucB ucR 0 −uG −dG
uR uB uG 0 −ec
dR dB dG ec 0


L

.
(4.3)

where we have given the decomposition under SU(3)C × SU(2)L, see also [93]. The lower
indices R, B and G denote the quark colours and the index L denotes that F and T are
left-handed. The hypercharge of the fields is discussed in the next section.

The gauge bosons of the SM are all unified into the twenty-four-dimensional adjoint
representation of SU(5) Aij which can be decomposed as

Aij = 24 = (8,1) + (1,3) + (1,1) + (3,2) + (3,2) . (4.4)

Using the index-labelling convention as described above we can identify the SM gauge
bosons as

• Aαβ = (8,1) are the gluons of SU(3)C .

• Ars = (1,3) are the W bosons of SU(2)L.

•
√

3/20Arr −
√

1/15Aαα = (1,1) is the U(1)Y B-field.

Then twelve of the gauge bosons in Aij are still unassigned. They carry both SU(3)C and
SU(2)L indices

Arα = (3,2) and Aαr = (3,2) , (4.5)
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which are commonly denoted as X and Y gauge bosons

Arα = (Xα, Yα) and Aαr =

(
Xα

Y α

)
. (4.6)

In the next section we derive the operator for electromagnetic charge, but already here we
note that the new gauge bosons have the electric charges

QX = −4

3
and QY = −1

3
. (4.7)

The Higgs fields are discussed in Sec. 4.5 where we discuss symmetry breaking.

4.2 Charge Quantisation

If the SM gauge group is unified into one simple non-Abelian group, electric charge has
to be quantised since the eigenvalues of the generators of a simple non-Abelian group are
discrete. Electric charge Q is an additive quantum number and therefore must be a linear
combination of diagonal generators. SU(5) is a Lie group of rank four and therefore also
has four diagonal generators. Q has to commute with the generators of SU(3)C and then
only two possibilities remain, namely T 3 and T 0 with T a = λa/2. T 3 is the diagonal
generator of weak isospin and hence we have

Q = I3 +
Y

2
= T 3 + c T 0 . (4.8)

The coefficient c can be determined by comparing the eigenvalues of Y with the eigenvalues
of T 0 and we obtain

c = −
√

5

3
. (4.9)

For the fundamental representation this yields the correct electric charge,

Q(F̄i) =


−1

3

−1
3

−1
3

1
0

 = Qi δij . (4.10)

The conjugate representation 5 has the opposite charge Q(F i) = −Qi δij. For a rank two
tensor ψ the electric charge can be calculated via

Q(ψij) = Qi +Qj ,

Q(ψji ) = Qi −Qj .
(4.11)

It can be checked that for the ten-dimensional fermion representation T or the twenty-four-
dimensional adjoint representation Aij the charges of the fields are correctly reproduced as
well. For higher-rank tensors the above formula can be generalised straightforwardly.
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It is interesting to note that in GUTs a relation between colour and electromagnetic
charge emerges. Since the generators of SU(N) groups are traceless we get the relation

NC Qd +Qec = 0 , (4.12)

from Eq. (4.10) where NC is the number of colours. In SU(3)C there are exactly three
colours which enforces that quarks carry 1/3 of the charge of leptons. Within SU(5) (and
other GUTs) the pattern of gauge quantum numbers hence seems to be a lot less arbitrary
than in the SM.

We note that charge quantisation emerges here only since all generators of charge are
part of a non-Abelian gauge group. If electric charge is a linear combination of generators
where one generators belongs to a U(1) factor as it is the case, for example, in flipped
SU(5) with the gauge group SU(5)×U(1) charge does not have to be quantised anymore.
Nevertheless charge quantisation is a salient feature in a wide class of models as long as
neutrinos are Majorana particles [94]. In our concrete flavour models in Chs. 9 and 11 we
always assume that neutrinos are Majorana particles.

We now turn to anomaly freedom in SU(5). In SU(N) gauge theories the anomaly
from Eq. (2.21) simplifies to

Aabc = Tr[ta{tb, tc}] =
1

2
A(R) dabc , (4.13)

where R is the considered representation and dabc are the symmetric structure constants
of the gauge group. A(R) is independent of the generators and therefore we use ta = tb =
tc = Q to calculate the ratio of the anomalies of the matter content

A(F )

A(T )
=

TrQ3(F )

TrQ3(T )
=

3(1/3)2 + (−1)3 + 03

3(−2/3)3 + 3(2/3)3 + 3(−1/3)3 + 13
= −1 . (4.14)

Hence, by the extension of the gauge group to SU(5) the theory remains free of anomalies.
Nevertheless, this anomaly cancellation still appears accidental. However, on the level of
SO(10) this cancellation is lifted to an intrinsic feature.

4.3 Unification of Gauge Couplings

In GUTs the gauge couplings have to unify to match the covariant derivatives

DSM
µ = ∂µ + i g3

8∑
a=1

gaµT
a + i g2

3∑
r=1

W r
µI

r + i g′Bµ
Y

2
,

DSU(5)
µ = ∂µ + i g5

23∑
a=0

Aaµ
λa

2
,

(4.15)

where g3, g2 and g′ are the SM gauge couplings, gaµ, W r
µ and Bµ are the SM gauge fields

with their generators T a, Ir and Y/2. Correspondingly g5 is the SU(5) gauge coupling
with the gauge fields Aaµ and generators λa/2.
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As we have already discussed in the last section hypercharge is not correctly normalised.
The matching to a generator of SU(5) gives

Y = −
√

5

3
λ0 and g′ = −

√
3

5
g1 , (4.16)

where g1 is the correctly normalised gauge coupling of the U(1)Y group. With the help of
this definition the two covariant derivatives of the SM and SU(5) can be matched if the
gauge couplings unify,

g1 = g2 = g3 = g5 . (4.17)

This relation obviously is not true at the weak scale, but gauge couplings run and at a
high scale this relation can be satisfied to a high accuracy, see Fig. 3.1. As we have already
discussed in Ch. 3 this unification works out much better in the MSSM. That is one of the
reasons why we mainly discuss SUSY GUTs in this thesis. The extension of non-SUSY
GUTs to SUSY GUTs is straightforward since the SUSY generators commute with the
generators of internal symmetry groups. All fields are extended to superfields and we have
to introduce the EWSB Higgs doublets in pairs. This is discussed in the next section.

We now give the RGEs for the gauge couplings and discuss shortly how to determine
the GUT scale from them, the scale at which the gauge couplings unify. The RGEs at
one-loop level are given by

16π2µR
dgi
dµR

= big
3
i , (4.18)

where µR is the renormalisation scale and i = 1, 2, 3 enumerates the gauge group. The
bi are the β-function coefficients and have the values (b3, b2, b1) = (−7,−19/6, 41/10) in
the SM and (b3, b2, b1) = (−3, 1, 33/5) in the MSSM. The analytic solution of the above
differential equation is

1

g2
i (µR)

=
1

g2
i (µ0)

+
bi

8π2
ln
µR
µ0

, (4.19)

where µ0 is the boundary scale which we set to MZ since the gauge couplings at this
scale are well determined. Setting two of the GUT scale gauge couplings equal allows us
to determine the GUT scale from that equation. For the non-SUSY case this would be
roughly 1014 GeV but we are not interested in this case since the gauge couplings within the
SM unify poorly. In the MSSM case the GUT scale MGUT is approximately 2× 1016 GeV,
a value we use in the rest of this thesis as the definition for the GUT scale.

From the unification condition (4.17) we can now predict the third gauge coupling. For
the fine structure constant at the GUT scale we have α5(MGUT) ≈ 1/24 from which the
third gauge coupling at the GUT scale can be determined and via its RGE evolution we
can compare its low energy value with the experimental data. As mentioned above in the
SM the gauge couplings unify poorly and hence the prediction there is also bad in contrast
to the MSSM where the gauge couplings unify, or in other words, the prediction for the
third gauge coupling is good.
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Figure 4.1: Feynman diagrams contributing to proton decay. After integrating out the
heavy gauge bosons X and Y they give effective dimension six operators mediating proton
decay which are the dominant contribution in non-SUSY SU(5).Q

Q
Q
L

H1 H2
Figure 4.2: Supergraph contributing to proton decay in SUSY GUTs. The cross denotes
a mass insertion. After going to component notation and integrating out the heavy Hig-
gsino triplets it gives effective dimension five operators mediating proton decay in SUSY
SU(5).

4.4 Proton Decay

We do not focus in this thesis on proton decay but, nevertheless, it is one important
prediction of GUTs and the discovery of proton decay is often claimed to be a smoking gun
signature of GUTs although for example in R-parity violating SUSY models the proton
also is not stable. The proton is even unstable in the SM due to sphaleron processes but
they are so strongly suppressed that proton decay in the SM is far beyond experimental
reach.

In non-SUSY GUTs the main contribution to proton decay stems from effective dimen-
sion six operators generated by the exchange of the heavy gauge bosons X and Y , depicted
in Fig. 4.1. In SUSY GUTs with R-parity conservation the main contribution to proton
decay is mediated by the exchange of heavy triplets, depicted in Fig. 4.2. Closely related to
proton decay in SUSY GUTs is hence the doublet-triplet-splitting problem. If the triplets
could be made arbitrarily heavy, proton decay could be strongly suppressed. The question
is how to make the triplet components of the five-dimensional Higgs representations heavy
while keeping the doublet components light.

We do not discuss these issues and possible solutions here in detail, for more information
see, e.g. [76,95], or for a recent concrete SO(10) model compatible with actual bounds on
proton decay, see [96]. Throughout this thesis we simply assume that some mechanism is
at work which resolves these issues since our main focus is on the flavour sector.
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4.5 Symmetry Breaking and Fermion Masses

The SU(5) can be spontaneously broken similar as the SU(2)L × U(1)Y is broken in the
SM. In the simplest case the necessary Higgs field is in a twenty-four-dimensional adjoint
representation of SU(5) which breaks the GUT group to the SM group provided the vev is
proportional to λ0, cf. Eq. (4.2). The vev is obviously invariant under the SM gauge group.
The additional gauge bosons X and Y become massive by the spontaneous breakdown of
SU(5) and have GUT scale masses if the vev of the twenty-four is of the order of the GUT
scale.

In the simplest case the SM symmetry breaking is triggered by a five-dimensional
representation of SU(5) or in the SUSY case by a pair of five-dimensional representations
conjugated to each other. For the masses of the down-type quarks and charged leptons,
a conjugated five-dimensional representation is needed which we call H̄5. The doublet
component then acquires an EW scale vev and the operators generating the masses for
the down-type quarks and charged leptons have the structure yFTH̄5 with y being the
Yukawa coupling. Since such operators give simultaneously masses to down-type quarks
and charged leptons the ratio of the respective Yukawa couplings is fixed at the GUT
scale. In this case the Yukawa couplings are even exactly equal. This relation is only
approximately true for the third generation and Yukawa coupling ratios at the GUT scale
are one of the main topics of this thesis and are discussed in detail later on. The up-type
quark masses can be generated by an operator of the form yTTH5 where again y is the
Yukawa coupling.

Here, it becomes clear why flavour model building in the context of (SUSY) GUTs is
appealing. In SU(5) we only have two types of flavours (F and T ) appearing in three copies,
one for each generation. This is much more economic than in the SM. In SO(10), all matter
fields of one generation are unified into one single sixteen-dimensional representation and
thus there appears only one type of flavour in three copies which is even more economic.
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PART III

New GUT Predictions for
Yukawa Coupling Ratios





CHAPTER 5

New GUT Predictions for
Yukawa Coupling Ratios

In this chapter we discuss GUT predictions for Yukawa coupling ratios based on [14]. We
focus on SU(5) [11] and PS [46] GUTs which we assume to be embedded in a SO(10)
GUT [12]. We do not work out this embedding explicitly but we use it as a motivation
for the possible Higgs field content. We want to emphasise here that, although the focus
of this thesis is on SUSY GUTs, the results of this chapter rely on the underlying group
structure only and are therefore also valid in non-SUSY GUTs.

Within unified theories Yukawa couplings emerge from operators involving the unified
fermion representations as well as Higgs fields in GUT representations where one of the
fields has to contain an EW Higgs. Thus in general, each such operator generates Yukawa
couplings for different types of fermions, for example for down-type quarks as well as for
charged leptons, which are related to each other by the group theoretical Clebsch–Gordan
(CG) factors from GUT symmetry breaking.

5.1 Conditions for Predictions

Now we clarify under which conditions such relations lead to observable predictions for
quark and lepton masses.

The first condition results in simple relations between entries of the Yukawa matrices
and the quark and charged lepton masses and it demands that the Yukawa matrices in the
flavour basis are hierarchical and dominated by the diagonal elements. This situation is
approximately realised in many approaches to unified model building, but only regarding
the second and third generation. In other words we claim that the masses of the second
generation of quarks and charged leptons are directly related to the 2-2 entries of the
Yukawa matrices and the masses of the third generation to the 3-3 entries. For the masses
of the first generation of fermions this condition is often violated and the relation to
the elements of the Yukawa matrices depends on additional assumptions, e.g. whether
there is a texture zero in the 1-1 entry of the Yukawa matrices, see, e.g. [97]. For the
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phenomenological analysis later on we therefore focus mainly on the second and third
generation.

The second condition is that there is only one operator dominating the relevant el-
ements of the Yukawa matrices. This requirement is necessary because if, for instance,
two operators would contribute with similar strength, the resulting prediction would be an
intermediate value and it would be difficult to disentangle the fundamental relations and
respective operators.

In this chapter we assume that these two conditions are satisfied sufficiently well.

5.2 b− τ Unification and Georgi–Jarlskog Relations

There are two examples of quark and lepton mass relations at the GUT scale which are
ubiquitous in many classes of unified models of flavour. These are third partial family
Yukawa unification, or b-τ unification, and the so-called Georgi–Jarlskog (GJ) relations [13],
i.e. yµ/ys = 3 and ye/yd = 1/3.

In the following, we review them briefly in the context of SU(5) GUTs. In SU(5) all
the SM matter fields are contained in the representations F i and T i, where i is the family
index, see Ch. 4 and App. B for more details. If the Yukawa matrix 3-3 entries for down-
type quarks and charged leptons are generated by an operator of the form F 3T 3H̄5 where
the five-dimensional H̄5 contains an EW Higgs SU(2)L doublet, then it is easy to see that
the resulting prediction is yb/yτ = 1, i.e. b-τ Yukawa coupling unification. On the other
hand, if the relevant 2-2 entries of the Yukawa matrices are generated by the operator
F 2T 2H̄45 with the EW Higgs field contained in the 45-dimensional SU(5) representation
H̄45 then yµ/ys = −3 is predicted. This results from the fact that the H̄45 can be written
as a traceless tensor and for the trace to vanish the factor of −3 for the charged leptons
has to compensate the colour factor of 3 for the quarks. In the following we choose the
Yukawa couplings to be positive, which is the reason for referring to the GJ relation as
yµ/ys = 3. The second GJ relation ye/yd = 1/3 emerges from a special assumption about
the Yukawa matrix texture where the 1-1 entry is zero.

In the following we derive in addition to b-τ unification and the GJ relations various
alternative relations between quark and lepton Yukawa couplings emerging from higher-
dimensional operators in unified theories.

5.3 New GUT Predictions

When the conditions specified in Sec. 5.1 are satisfied, the predicted relations between
quark and lepton Yukawa couplings at the GUT scale mainly depend on the specific op-
erator which dominates the relevant entries of the Yukawa matrices. The simplest types
of operators in this context are the renormalisable ones, for example the operators men-
tioned above which lead to b-τ unification and the GJ relation for the second generation.
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CX �X
Figure 5.1: Feynman graph with heavy messenger fields X and X̄. When the mes-
senger fields are effectively integrated out of the theory below their mass scales, higher-
dimensional operators are generated which can lead to GUT relations between quark and
lepton Yukawa couplings.

The different predictions result from different Higgs representations which contain the EW
Higgs(es).

The procedure to obtain possible predictions for Yukawa coupling ratios in these cases is
the following: The operators include two matter fields and one Higgs field. For the matter
fields, the common matter representations of the unified theories are chosen. Doing so, the
possible representations of the Higgs field are fixed by the condition that the operator has
to be a gauge singlet after contracting all gauge indices and that the Higgs field has to
include the usual SM (MSSM) Higgs(es). Explicit expressions for the Higgs vevs are given
later.

New possibilities, in addition to the Yukawa coupling ratios of 1 and −3 can arise in
particular when effective, higher-dimensional operators are taken into account. In many
unified flavour models using family symmetries, the renormalisable dimension-four op-
erators are forbidden by that symmetry and the Yukawa couplings are generated from
higher-dimensional operators in the effective theory limit. Later on we give explicit ex-
amples which use the relations proposed in this chapter. Non-renormalisable operators
are typically generated from integrating out messenger fields X and X̄, cf. Fig. 5.1. The
(super)fields A, B, C and D can be either matter or Higgs fields. In total the effective
operator has to contain two matter fields, one Higgs field breaking EW symmetry and one
Higgs field with a GUT scale vev. The latter is only allowed to break the unified gauge
symmetry but not the EW symmetry. At low energies, the Yukawa operators of the SM
(MSSM) are realised with some of the Yukawa couplings related to each other due to the
underlying unified group structure.

We restrict ourselves to messenger fields and GUT scale Higgs fields which are included
in the common SO(10) representations, i.e. 10, 16, 45, 54, 120, 126 and 210 and their
conjugates under SO(10). With these restrictions, we cover the cases of most GUT models
based on SO(10) broken to the SM gauge group via PS or SU(5). For a list of used
representations and their symmetry properties in terms of Young tableaux see App. B.4.
In the next subsections we derive the results for the cases of (SO(10) broken to the SM
via) SU(5) or PS. A summary of the results is contained in Tabs. 5.2 and 5.4.
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5.3.1 Predictions from SU(5) Unification

As mentioned before, we perform our analysis at the stage of SU(5) or PS unification for
simplicity. However, what we have in mind is a possible embedding into SO(10) GUTs. In
GUTs based on the unifying gauge group SU(5), the fermions of the SM are embedded in
the GUT representations F i and T i, see Ch. 4, where i = 1, 2, 3 is the family index. The
F i and T i, plus an extra SM singlet, form the matter representations 16i of SO(10).

The commonly used GUT representations for the Higgs fields in SU(5) are H̄5, H24 and
H̄45. Their notation and vevs are specified as(

H̄5

)a
= 5

a
, 〈

(
H̄5

)5〉 = v5 , (5.1)

(H24)ab = 24 a
b , 〈(H24)ab〉 = v24(2δaαδ

α
b − 3δaβδ

β
b ) , (5.2)(

H̄45

)ab
c

= −
(
H̄45

)ba
c

= 45
ab
c , 〈

(
H̄45

)i5
j
〉 = v45

(
δij − 4δi4δj4

)
, (5.3)

where a, b = 1, . . . , 5, α = 1, 2, 3, β = 4, 5 and i, j = 1, . . . , 4. The vevs v5 and v45 are
assumed to be of the EW scale whereas v24 is of the order of the GUT scale. H24 breaks
SU(5) down to GSM. For the determination of the vevs of the GUT-breaking Higgs fields we
have neglected the influence of the vevs of the Higgs fields which break the EW symmetry,
which provides a very good approximation.

In addition, we also consider the 75-dimensional Higgs representation H75. H24 and
H75 are the only nontrivial representations which are included in the common SO(10)
representations and have a SM singlet component that can obtain a GUT scale vev without
breaking the SM gauge symmetries. The vev of H75 is constructed via its Young tableau,
see App. B, from the vev of H24 which preserves the SM gauge group.

At dimension four, only operators containing H̄5 and H̄45 can generate Yukawa cou-
plings for the down-type quarks and charged leptons. The H̄5 gives b-τ unification and the
H̄45 the GJ relation already mentioned in Sec. 5.2. For the construction of the dimension-
five operators we can add an additional H24 or a H75 to the dimension-four operators.
All possible resulting combinations of external and messenger fields are listed in Tab. 5.1,
including the corresponding Yukawa coupling ratio. If the messenger representation in the
table has an index, there is more than one way to combine the fields A and B or C and D
to form this representation.

The resulting relations are collected in Tab. 5.2. Since the operators do not relate
the up-type quark Yukawa couplings to any other Yukawa couplings, we only present the
predicted ratio ye/yd, where e and d stand for any charged lepton and down-type quark of
the same generation. Higher-dimensional operators involving the Higgs representation H24

have also been considered in [98]. The possible CG factor 3/2 is mentioned there as well,
however it has not been postulated as a GUT prediction. The CG factor of 3/2 was also
already claimed in [99] as a correction term to make the relations yd/ys and ye/yµ viable
in SU(5) but it was not used there as a postulated Yukawa coupling relation as well.

To illustrate how the relations from dimension five operators are generated, let us
discuss the operator leading to the new prediction ye/yd = 9/2. Using the notation of
Fig. 5.1 we can assign A = F , B = H24, C = T and D = H̄45. At the left vertex F
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(A, B) (C, D) X ye/yd

(F , T ) (H̄5, H24) 5 1
(F , T ) (H̄5, H24) 45 -3
(F , T ) (H̄5, H75) 45 -3
(F , T ) (H̄45, H24) 5 1
(F , T ) (H̄45, H24) 451 -3
(F , T ) (H̄45, H24) 452 -
(F , T ) (H̄45, H75) 5 1
(F , T ) (H̄45, H75) 451 -3
(F , T ) (H̄45, H75) 452 -
(F , H̄5) (T , H24) 10 6
(F , H̄5) (T , H24) 15 0
(F , H̄5) (T , H75) 10 -3
(F , H̄45) (T , H24) 10 -18
(F , H̄45) (T , H24) 40 0
(F , H̄45) (T , H75) 10 9
(F , H̄45) (T , H75) 40 0
(F , H24) (T , H̄5) 5 -3/2
(F , H24) (T , H̄5) 45 3/2
(F , H75) (T , H̄5) 45 -3
(F , H24) (T , H̄45) 5 9/2
(F , H24) (T , H̄45) 45 -1/2
(F , H75) (T , H̄45) 45 1
(F , H75) (T , H̄45) 50 0

Table 5.1: Dimension-five operators within SU(5) unification and resulting predictions
for the GUT scale ratios ye/yd, where e and d stand for any charged lepton and down-type
quark of the same generation. A,B,C,D and X correspond to the fields in the Feynman
graph in Fig. 5.1 which generates the dimension-five operator after integrating out the
heavy messenger fields. The index of the Higgs fields H gives the dimension of their
representation. If the messenger representation X has an index, there is more than one
way to combine the fields A and B or C and D to form this representation leading to
possibly different predicted ratios ye/yd. A dash means that yd is zero. At the stage of
SU(5) unification the dimension-five operators predict no relation between the up-type
quark Yukawa couplings and any other Yukawa couplings.
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Operator Dimension ye/yd

4 1
-3

5 -1/2
1
±3/2

-3
9/2
6
9

-18

Table 5.2: Summary of possible SU(5) predictions for the GUT scale ratios ye/yd, where
e and d stand for any charged lepton and down-type quark of the same generation.

and H24 are combined to a 5 to couple to the messenger field X = 5. From the vev of
H24 the down-type quarks are multiplied by a factor of 2 and the leptons by a factor of
−3, cf. Eq. (5.2). At the right vertex T and H̄45 are combined to form a 5. Since H̄45

is traceless, this, similar to the GJ relation, leads to an additional relative factor of −3
for the down-type quarks compared to the charged leptons. In combination, this gives the
relative factor of 9/2.

5.3.2 Predictions from Pati–Salam Unification

We now turn to the case of classes of SO(10) GUTs where the breaking to the SM proceeds
via the PS breaking chain (Remember: GPS = SU(4)C × SU(2)L× SU(2)R). At the stage
of PS unified theories, the fermions of the SM are embedded in the representations (4,2,1)
and (4,1,2) of the PS gauge group as

Ri
αa = (4,2,1)i =

(
uRL uBL uGL νL
dRL dBL dGL e−L

)i
, (5.4)

R̄iαx = (4,1,2)i =

(
d̄RR d̄BR d̄GR e+

R

ūRR ūBR ūGR ν̄R

)i
, (5.5)

where α = 1, . . . , 4 is an SU(4)C index, a, x = 1, 2 are SU(2)L,R indices and i = 1, 2, 3 is a
family index. The fields in Ri form SU(2)L doublets and the fields in R̄i SU(2)L singlets
as indicated by the index L and R. The MSSM Higgs SU(2)L doublets hu and hd are
contained in the bi-doublet representation

hax = (1,2,2) =

(
h+
u h0

d

h0
u h−d

)
. (5.6)
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(A, B) (C, D) X (ye/yd, yu/yd, yν/yu)

(R, φ) (R̄, h) (4,2,3) (1, 1, 1)

(R, R̄) (h, φ̂) (15,2,2) (-3, 1, -3)

(R, R̄) (h, φ̃) (15,2,2) (-3, 1, -3)

(R, R̄) (h̃, φ) (15,2,2) (-3, 1, -3)

(R, R̄) (h̃, φ̂) (1,2,2) (1, 1, 1)

(R, R̄) (h̃, φ̂) (151,2,2) (-3, 1, -3)

(R, R̄) (h̃, φ̂) (152,2,2) (-3, 1, -3)

(R, h̃) (R̄, φ̂) (4,1,2) (9, 1, 9)

(R̄, h̃) (R, φ̂) (4,2,1) (9, 1, 9)

(R, R̄) (h̃, φ̃) (1,2,2) (1, 1, 1)

(R, R̄) (h̃, φ̃) (15,2,2)1 (-3, 1, -3)

(R, R̄) (h̃, φ̃) (15,2,2)2 (-3, 1, -3)

(R, h̃) (R̄, φ̃) (4,1,2) (9, 1, 9)

(R̄, h̃) (R, φ̃) (4,2,1) (9, 1, 9)

Table 5.3: Dimension-five operators within PS unification and resulting predictions for
the GUT scale ratios ye/yd, yu/yd and yν/yu, where ν, e, d and u stand for any neutrino,
charged lepton, down-type and up-type quark of the same generation. A,B,C,D and X
correspond to the fields in the Feynman graph in Fig. 5.1 which generates the dimension-
five operator after integrating out the heavy messenger field. For a description of the
fields and their representation see Sec. 5.3.2. If the messenger representation X has an
index, there is more than one way to combine the fields A and B or C and D to form this
representation leading to possibly different predicted ratios.
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It acquires the vevs vu and vd in the h0
u and h0

d directions, respectively, which break the
EW symmetry. The breaking of the PS gauge symmetry to the SM can be achieved with
the Higgs representations

Hαb = (4,1,2) =

(
uRH uBH uGH νH
dRH dBH dGH e−H

)
, (5.7)

H̄αx = (4,1,2) =

(
d̄RH d̄BH d̄GH e+

H

ūRH ūBH ūGH ν̄H

)
, (5.8)

obtaining GUT scale vevs in the neutrino directions 〈νH〉 and 〈ν̄H〉.
Alternative to the bi-doublet and the quartets, other representations can contain the

SM (MSSM) Higgs fields or can break the PS group to the SM. For example, the PS
representation h̃ = (15,2,2) can contain Higgs SU(2)L doublets which can develop an
EW scale vev. This representation leads to the GJ relation in PS: The fifteen-dimensional
representation can be written as a traceless tensor and the relative factor of −3 for the
leptons comes in to compensate the number of quark colours.

The PS group is left-right symmetric and hence there are also Yukawa coupling relations
for the up-type quark and neutrino sector. For the neutrino Yukawa couplings, dimension
four operators with h (h̃) lead to the relation yν/yu = 1 (yν/yu = −3).

Furthermore, the PS Higgs representations φ = (1,1,3), φ̂ = (15,1,1) and φ̃ =
(15,1,3) can arise from the common SO(10) representations and they have singlet com-
ponents which can develop a GUT scale vev. Their inclusion in the effective operators
which generate the Yukawa couplings can lead to new relations for the GUT scale Yukawa
coupling ratios. We note that there are other fields like SU(4)C sextets or complete singlets
common in PS models which we do not consider here explicitly, since they do not lead to
new predictions.

In Tab. 5.3 we have listed the possible combinations of external and messenger fields
which can appear in the diagram of Fig. 5.1. The results for the GUT scale Yukawa ratios
ye/yd and yu/yd, where e, d and u stand for any charged lepton, down-type and up-type
quark of the same generation, are presented in Tab. 5.4. Furthermore, we also list the
results for certain dimension-six operators from [100], for which only the fields R, R̄, h, H
and H̄ are taken into account.
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Operator Dimension (ye/yd, yu/yd)

4 (1, 1)
(-3, 1)

5 (1, 1)
(-3, 1)
(9, 1)

6 (0, 1/2)
(0, ±1)
(0, 2)

(3/4, 0)
(3/4, 1/2)
(3/4, ±1)
(3/4, 2)
(1, 0)

(1, 1/2)
(1, ±1)
(1, 2)
(2, 0)

(2, 1/2)
(2, ±1)
(2, 2)
(-3, 0)

(-3, 1/2)
(-3, ±1)
(-3, 2)

Table 5.4: Summary of possible PS predictions for the GUT scale ratios ye/yd and yu/yd,
where e, d and u stand for any charged lepton, down-type quark and up-type quark of the
same generation. The predictions from certain dimension-six operators, taken from [100],
are also included. Predictions for yν/yu can be read off from Tab. 5.3 respectively looked
up in [100].
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PART IV

The Case of Medium and Large tanβ





CHAPTER 6

Supersymmetric Threshold Corrections
to the Yukawa Couplings

In this chapter we discuss supersymmetric threshold corrections to the Yukawa couplings
based on [18]. For medium or large tanβ in the MSSM it is well known that supersymmetric
one-loop corrections to the Yukawa couplings are enhanced and that they therefore can
have a large impact on the GUT scale Yukawa couplings and trigger Yukawa coupling
unification like yt = yb = yτ [15–17, 101, 102]. Here we discuss the corrections in the
EW unbroken phase, since this is a good approximation and the results can be given in a
compact analytic form. The discussion of their implementation in the RG running and the
resulting GUT scale Yukawa couplings is postponed to the next chapter.

We start with a description of the corrections within an effective field theory approach
in Sec. 6.1 where it is shown how these corrections come in and in Sec. 6.2 we give explicit
expressions and numerical values for the SUSY threshold corrections in the EW unbroken
phase which can be used as simple estimates in model building.

6.1 Effective Field Theory Approach

In the effective field theory approach, field degrees of freedom which cannot be excited can
be integrated out of the theory and then give, for example, new vertices. In the following,
we want to discuss one example, which is quite important for the Yukawa couplings in
SUSY models with large tanβ [15–17].

As we have discussed in Ch. 3 in the MSSM, on tree-level, the down-type quarks and
charged leptons couple only to the down-type Higgs field hd while the up-type quarks
couple only to the up-type Higgs field hu. This statement is not true anymore on one-loop
level. On one-loop level, the down-type quarks and charged leptons couple to the up-type
Higgs hu as well via the diagrams shown in Figs. 6.1 and 6.2. Similar diagrams apply to
the up-type quarks generating a coupling of them to the down-type Higgs field hd which
give negligible corrections as we discuss later on. The diagrams are shown for the case of
broken SUSY but unbroken EW symmetry. In this chapter we use this approximation for
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Figure 6.1: Feynman diagrams contributing to the SUSY threshold corrections to down-
type quark Yukawa couplings in the EW unbroken phase.
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Figure 6.2: Feynman diagrams contributing to the SUSY threshold corrections to
charged lepton Yukawa couplings in the EW unbroken phase.
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simplicity reasons. It turns out that this is quite good [103] and later on we use a more
precise approach, which, however, gives less insight about parameter dependencies.

In the limit of heavy superpartner particle masses, the relevant couplings for, i.e. the
d-quarks, are

LYuk = ydhdεqLd̄R − δỹdhcuεqLd̄R + h.c.

EWSB−→ −(ydvd + δỹdvd)d̄RdL − ydh0
dd̄RdL − δỹdh0∗

u d̄RdL + h.c. ,
(6.1)

where yd is the tree-level MSSM d-quark Yukawa coupling and δỹd the Yukawa coupling to
the wrong Higgs field hu generated effectively. Hence, after EWSB the d-quark mass has
contributions from both Higgs fields

md = ydvd + δỹdvu = m
(0)
d (1 + ηd tan β) , (6.2)

where we have used that m
(0)
d = ydvd, ηd = δỹd/yd and tanβ = vu/vd. Here, we can see

that the SUSY threshold corrections encoded in ηd are more important for larger tan β,
since the one-loop suppression in ηd can be partially cancelled in this case.

In our analysis we have included these corrections in form of a matching relation between
the SM Yukawa couplings ySM

i and the MSSM Yukawa couplings yMSSM
i at the SUSY scale

MSUSY:

yMSSM
i =

ySM
i

cos β(1 + ηi tan β)
, (6.3)

for i = e, µ, τ, d, s and b. This matching relation concerns only the charged leptons and
down-type quarks. In the matching relation for the up-type quarks cot β instead of tan β
appears. For large tan β this induces a suppression in addition to the one-loop suppression.
That is the reason for not including the SUSY threshold corrections for the up-type quarks
and simply using the tree-level matching relation

yMSSM
i =

ySM
i

sin β
, (6.4)

for i = u, c and t. We have not included neutrino Yukawa couplings due to the lack of right-
handed neutrinos in the MSSM but they would fulfil the same matching relation as the
up-type quarks. The SM model Yukawa couplings ySM

i can be calculated via ySM
i = m̄i/v,

where m̄i are the MS-masses of the fermions and v is the vev of the SM Higgs. Note that
since the calculation in this and the next chapter is one-loop, we can use MS-quantities as
well as DR-quantities. In the following we drop the MSSM-label for the Yukawa couplings
and imply y ≡ yMSSM.

For large tan β, the correction to the Yukawa couplings ηi tan β can become quite size-
able. In principle, it can even happen that the one-loop corrections are larger than the
tree-level couplings. In this case the down-type quark and charged lepton masses would
predominantly be generated by the coupling to the up-type Higgs field hu. For that reason
higher order calculations seem to be necessary. However, it can be shown that this relative
tan β-enhancement is a one-loop effect and does not repeat in higher orders [104].
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6.2 Formulas and Numerical Values

In this section we give explicit formulas for the quantities ηi in Eq. (6.3), which in addition
to tan β govern the size of the SUSY threshold corrections. The formulas are exactly valid
for the case of unbroken EW symmetry, which is appropriate for the situation that the
sparticle masses are in the TeV range and that we apply the matching conditions at these
energies above the EW scale MEW. There are also expressions for the full corrections [105]
which we use later on. Nevertheless, here and in the next chapter we use the simplified
Ansatz because it offers more insight into the parameter dependencies.

Turning to the corrections for the down-type quarks we can decompose the corrections
as ηi = ηGi + ηBi + ηWi + ηyδib, with [106]

ηGi = −2αS
3π

µ

M3

H2(uQ̃i , ud̃i) , (6.5)

ηBi =
1

16π2

[
g′2

6

M1

µ

(
H2(vQ̃i , x1) + 2H2(vd̃i , x1)

)
+
g′2

9

µ

M1

H2(wQ̃i , wd̃i)

]
, (6.6)

ηWi =
1

16π2

3g2
2

2

M2

µ
H2(vQ̃i , x2) , (6.7)

ηy = − y2
t

16π2

At
µ
H2(vQ̃3

, vũ3) , (6.8)

where uf̃ = m2
f̃
/M2

3 , vf̃ = m2
f̃
/µ2, wf̃ = m2

f̃
/M2

1 , x1 = M2
1/µ

2 and x2 = M2
2/µ

2 for

i = d, s, b and all mass parameters are assumed to be real. The correction ηy is only
relevant for the b-quarks due to the strong hierarchy of the quark Yukawa couplings. The
function H2 is defined as

H2(x, y) =
x lnx

(1− x)(x− y)
+

y ln y

(1− y)(y − x)
. (6.9)

Note that H2 is negative for positive x and y and |H2| is maximal if its arguments are
minimal, and vice versa.

The corrections for the charged leptons stem from diagrams similar to the ones for
the quarks and are shown in Fig. 6.2. One difference between the corrections for quarks
and charged leptons is of course that the SUSY QCD loop contributions ηGi are absent.
Another difference concerns the contributions ηBi with binos in the loops, where due to
the different hypercharge of the charged leptons the prefactors for these contributions are
changed. In the last term in Eq. (6.10) this causes an enhancement by a factor of −9
compared to the corresponding term in the quark sector in Eq. (6.6). The contribution
from the diagrams with winos ηWi , on the other hand, is equal for quarks and leptons. A
further difference between the corrections for quarks and charged leptons is that in the
seesaw framework, which we consider later on, the τ -lepton Yukawa coupling does not
have a relevant correction of the ηy-type because the corresponding vertex correction is
suppressed by the heavy mass scale of the right-handed neutrinos. For the corrections for
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SUSY Parameter in TeV Case g+ Case g− Case a

mf̃ [0.5, 1.5] [0.5, 1.5] [0.5, 1.5]

M1 [0.5, 1] [0.5, 1] [1.65, 3.3]
M2 [1, 2] [1, 2] [0.5, 1]
M3 [3, 6] [3, 6] [-9, -4.5]
µ 0.5 -0.5 0.5
At ±1 ±1 ±1

MSUSY 1 1 1

Table 6.1: Example ranges of SUSY parameters at the matching scale MSUSY used in
our analyses in Chs. 6 and 7. The choices of gaugino masses in the cases g± are inspired
by universal gaugino masses at the GUT scale and in case a by anomaly-mediated SUSY
breaking. We can therefore use the low-energy approximations M1 : M2 : M3 = 1 : 2 : 6
for the cases g± and M1 : M2 : M3 = 3.3 : 1 : −9 for case a as constraints.

the charged leptons we find

ηBi =
1

16π2

[
g′2

2

M1

µ

(
−H2(vL̃i , x1) + 2H2(vẽi , x1)

)
− g′2 µ

M1

H2(wL̃i , wẽi)

]
, (6.10)

ηWi =
1

16π2

3g2
2

2

M2

µ
H2(vL̃i , x2) , (6.11)

for i = e, µ, τ .
To give a list of numerical values of the SUSY threshold corrections at the matching

scale MSUSY we have to specify the soft SUSY parameters and the µ parameter entering
the SUSY threshold corrections ηi. This is usually the aim of SUSY breaking schemes,
where the low scale soft SUSY breaking parameters are calculated from only a handful of
parameters, see also Sec. 3.4. This is not what we do here. Here, we simply impose values
for the SUSY parameters at the scale MSUSY.

All parameters should be around the TeV scale because we do not want to spoil the
solution to the hierarchy problem and since otherwise the approximation of having only
one matching scale fails. Nevertheless, to make the parameter space manageable, we have
used low energy relations between the gaugino mass parameters. For the cases g+ and
g− we have used the relation M1 : M2 : M3 = 1 : 2 : 6 which is inspired by CMSSM
scenarios, see Sec. 3.4.4 for more details and references. For case a, we have used the
relation M1 : M2 : M3 = 3.3 : 1 : −9 which is inspired by AMSB scenarios, see Sec. 3.4.2
for more details and references. Note that in case a the gluino mass parameter has a
negative sign which switches the sign of the SUSY QCD contribution ηGi in comparison to
the case g+.

We only introduce relations for the gaugino mass parameters. For the sfermion mass
parameters mf̃ and the µ and At parameters we do not apply restrictions from a specific
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SUSY Threshold Correction Case g+ Case g− Case a

ηGi in 10−3 [3.52, 9.31] [-9.31, -3.52] [-7.85, -3.10]

ηBi for quarks in 10−3 [-0.31, -0.08] [0.08, 0.31] [-0.30, -0.16]

ηBi for leptons in 10−3 [-0.18, 0.30] [-0.30, 0.18] [0.01, 0.30]

ηWi in 10−3 [-2.21, -0.98] [0.98, 2.21] [-2.21, -0.72]

ηy/sign(At) in 10−3 [0.84, 4.65] [-4.65, -0.84] [0.84, 4.65]

Table 6.2: Ranges for the various contributions to the SUSY threshold corrections cor-
responding to the example ranges of SUSY parameters in Tab. 6.1 for i = d, s, b and
i = e, µ, τ , respectively. For the charged leptons there is no contribution ηGi and ηy. The
ranges for ηWi are the same for quarks and leptons.

model of SUSY breaking. The example ranges are chosen such that we can neglect ef-
fects which are suppressed by MEW/MSUSY, like mixing between left- and right-handed
sfermions, and such that our approach of one-step matching is justified to a good approx-
imation. We note that left-right mixing effects may nevertheless be important [103], for
instance in so-called inverted scalar mass hierarchy scenarios [107]. We also note that we
do not specify here the remaining SUSY parameters which do not enter the formulas for
the threshold corrections and hence we cannot apply various relevant phenomenological
constraints on the spectrum. We extend our approach to a more phenomenological one in
the next chapter. The SUSY parameter ranges we have used in this analysis are listed in
Tab. 6.1.

The numerical values for the SUSY threshold corrections, the main result of this chap-
ter, are listed in Tab. 6.2. First of all, we see that the ηGi and the ηy corrections give
the largest contributions. The EW corrections are smaller due to the smaller gauge cou-
plings but they can still be in the 10% region of the leading corrections. Especially for the
charged leptons, the EW corrections are important since they are the only corrections. For
the down-type quarks, the threshold corrections can make up to 50% and therefore cannot
be neglected at all as long as tanβ is large.

In the next chapter, we include these threshold corrections into the RGE running of the
Yukawa couplings and study their effects on the GUT scale Yukawa couplings and their
ratios.
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CHAPTER 7

Yukawa Couplings at the GUT Scale:
A First Glance

The main purpose of this chapter based on [18] is to include SUSY threshold corrections
in the renormalisation group evolution of the Yukawa couplings and calculate the possible
GUT scale ranges for quark and charged lepton Yukawa couplings as well as for the ra-
tios ye/yd, yµ/ys, yτ/yb and yt/yb, which are important input parameters for GUT model
building. Despite the possible importance of SUSY threshold effects, in studies which in-
terpolate the running of the Yukawa couplings to the GUT scale, these effects are typically
ignored [20,21].

Nevertheless, the effects of SUSY threshold corrections on the possibility of third family
Yukawa unification yt = yb = yτ and also on the less restrictive possibility yb = yτ ,
emerging in SU(5) GUTs, has been extensively studied in the literature, see, e.g. [15–17,
101,102]. Furthermore, recent studies [108] have addressed the phenomenological viability
of this relation and have pointed out that under certain assumptions on the soft breaking
parameters at the GUT scale, yt = yb = yτ may be already quite challenged by experimental
data from B physics.

Regarding yµ/ys, compared to [109] we include additional corrections from electroweak
loops with binos and winos for quarks and charged leptons, which, as we have shown in
the last chapter, can have significant impact. Furthermore, instead of trying to fit the
GJ relations by a sparticle spectrum, our aim is to analyse which alternative GUT scale
relations may be possible and whether the GJ relation lies within the projected GUT scale
ranges.

We start our discussion of possible GUT scale Yukawa couplings in Sec. 7.1 with a
description of the semianalytic approach we have used to include the SUSY threshold
corrections in the RG evolution. This approach is quite easy to implement by using the
ranges for the SUSY threshold corrections we derived in the last chapter and collected in
Tab. 6.2. Afterwards we discuss the dependencies of the GUT scale Yukawa couplings on
the soft SUSY parameters and possible additional right-handed neutrino thresholds. We
end this chapter with a discussion of the impact of the whole sparticle spectrum on the
GUT scale Yukawa couplings and ratios summarised in Fig. 7.3 and Tabs. 7.4 and 7.5.



68 7. Yukawa Couplings at the GUT Scale: A First Glance

7.1 Renormalisation Group Running from the EW to

the GUT Scale

The calculation of Yukawa couplings of quarks and charged leptons at the GUT scale can
be accomplished by solving the corresponding renormalisation group equations (RGEs)
from the low-energy to the GUT scale. For this we use the REAP package introduced
in [110], where also a summary of the relevant RGEs can be found.

For our analysis, we take as input values the running quark and lepton masses at the
top scale mt(mt), which have been calculated in [21] with recent experimental values for
the low-energy quark and charged lepton masses, and evolve them first to the SUSY scale
MSUSY using the SM RGEs.

At the SUSY scale we match the SM with the MSSM to obtain the running MS Yukawa
couplings via Eqs. (6.3) and (6.4) in our numerical approach. Since we consider one-loop
running only, we can neglect issues of scheme dependence such as transformations from MS
to DR quantities. Two-loop running (and scheme-dependent) effects are small compared
to the tanβ-enhanced threshold corrections and can be neglected. For the semianalytic
approach we have neglected the SUSY threshold corrections at the SUSY scale for a first
approximation and not taken them into account until the GUT scale which turns out to
be a good approximation.

As next step, we solve the RGEs from the SUSY scale to MGUT taking into account
possible intermediate right-handed neutrino thresholds as discussed in [111]. For our nu-
merical calculations we use REAP, which solves the complete set of one-loop RGEs and
automatically includes right-handed neutrino thresholds. We comment on possible effects
of right-handed neutrino thresholds depending on additional degrees of freedom in seesaw
models, in Sec. 7.3.3. If not stated otherwise, they are ignored in our remaining analysis.

We note that there are SUSY scenarios which may lead to corrections to our approach
in this chapter of one-step matching at the SUSY scale in the EW unbroken phase. For
example, if the sparticle spectrum is light, effects of EWSB may have to be taken into
account for the calculation of the SUSY threshold corrections. Another example is the
possibility of having a split sparticle spectrum, in which case matching at one scale would
be a bad approximation. When we present explicit examples in the following, we choose
parameters where our assumptions are justified to a good approximation.

7.2 Semianalytic Approach

The ranges for the ηi from Tab. 6.2 can be used to obtain analytic estimates for the ratios
of the Yukawa couplings at the GUT scale. For example, in leading order the GUT scale
ratio ye/yd is given by

ye(MGUT)

yd(MGUT)
≈ ŷe(MGUT)

ŷd(MGUT)

1 + ηd tan β

1 + ηe tan β
=
ŷe(MGUT)

ŷd(MGUT)
(1 + (ηd − ηe) tan β) +O(η2

e tan2 β) ,

(7.1)
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tan β ŷe in 10−4 ŷµ in 10−2 ŷτ

30 0.62 1.31 0.23
40 0.88 1.85 0.34
50 1.21 2.55 0.51

tan β ŷd in 10−4 ŷs in 10−2 ŷb

30 1.57 0.30 0.18
40 2.22 0.43 0.26
50 3.06 0.59 0.39

tan β ŷu in 10−6 ŷc in 10−4 ŷt

30 2.73 1.33 0.49
40 2.75 1.34 0.50
50 2.77 1.35 0.52

Table 7.1: Best-fit values for the Yukawa couplings at the GUT scale without SUSY
threshold corrections (case 0) for MSUSY = 1 TeV and different values of tanβ.

where ŷ(MGUT) denotes the Yukawa couplings at the GUT scale without SUSY threshold
corrections included. We use the analogous formula for the second generation. For the ratio
yt/yb keep in mind that ηt is set to zero since this threshold is suppressed by tan β. Later
on we compare these estimates with the numerical results for the same ranges of MSSM
parameters, cf. Tab. 7.3. For the values of the masses and Yukawa couplings at the GUT
scale, we take the values calculated with REAP setting all SUSY threshold corrections to
zero and using the best-fit values for the fermion masses as low-energy input. These values
for the Yukawa couplings are collected in Tab. 7.1. In the following we refer to the case
without SUSY threshold corrections as case 0.

The results of these estimates are collected in Tab. 7.2. We note that these estimates
are naive in the sense that we have combined the maximal and minimal values of each of the
contributions to ηi, neglecting possible correlations between them. For example, we do not
account for the effect that the QCD corrections become large if M3 and thus the gaugino
masses are large and the sfermion masses small, whereas the wino corrections become large
if the gaugino masses and the sfermion masses are small. However, as we see later, the
estimates nevertheless work pretty well. Another effect we can immediately see from the
analytic estimates is that yb can become non-perturbatively large if ηb tan β is absolutely
large but negative. In fact, it can even occur that ηi tan β ≈ −1 if tanβ is sufficiently
large, which spoils the perturbative expansion in yb. Whenever non-perturbative values of
yb occur, we only give the upper boundaries of the ranges yτ/yb and yt/yb and the lower
boundary for yb itself in the result tables.
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Case 0 Case g+ Case g− Case a

ye/yd 0.39 [0.35, 0.64] [0.15, 0.44] [0.16, 0.44]
yµ/ys 4.35 [3.83, 7.01] [1.69, 4.87] [1.81, 4.85]
yτ/yb 1.32 [1.16, 2.13] ≤ 1.48 ≤ 1.47
yt/yb 1.93 [1.65, 2.92] ≤ 2.21 ≤ 1.98

Table 7.2: Semianalytic estimates for the ranges of the Yukawa coupling ratios at the
GUT scale corresponding to the example ranges of SUSY parameters in Tab. 6.1 for
tanβ = 40. Case 0 refers to the case without SUSY threshold corrections. For the ranges
involving yb, the lower boundaries depend on the cut we had to introduce in order to keep
yb perturbative up to MGUT and thus have been omitted.

The naive estimates already suggest that with SUSY thresholds included, a wide range
of GUT scale values of down-type quark and charged Yukawa couplings could be realised.
Taking a preliminary look at the predicted ratio for yµ/ys, the naive estimates suggest that
with the SUSY parameters of case g+, the GUT scale value of yµ/ys is typically significantly
larger than the GJ relation of yµ/ys = 3. On the other hand, the scenarios g− and a are
well compatible with the GJ relation. Beyond the GJ relation, the naive estimates also
imply that with SUSY thresholds included, a large variety of GUT model predictions for
these ratios might be compatible with the low-energy data on quark and lepton masses. A
full numerical analysis for the example SUSY parameter ranges g± and a is presented at
the end of this chapter.

7.3 Parameter Dependencies

In the following we discuss the dependencies of the GUT scale Yukawa coupling ratios
on the SUSY parameters. We start with the discussion of the µ parameter and tan β
which are important parameters for EWSB. Afterwards we continue with MSUSY and At.
The SUSY scale should be around the TeV scale in order not to spoil the solution to
the hierarchy problem. For the trilinear coupling At there is no such constraint and in
CMSSM the trilinear couplings are essentially free parameters. Especially the sign can
be chosen which makes this parameter very interesting since it can enhance or suppress
the SUSY threshold corrections depending on the sign. After a brief discussion of possible
right-handed neutrino threshold effects we turn to the discussion of the impact of the whole
sparticle spectrum summarised in Fig. 7.3 and Tabs. 7.4 and 7.5.

7.3.1 Dependence on µ and tanβ

Before we proceed with the numerical analysis for the example ranges of MSSM parameters
of Tab. 6.1, we discuss the dependence on µ and tan β, which have been kept fixed so far.
The dependence on µ is rather important, because all corrections are proportional to µ or
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1/µ. The parameter µ therefore gives the overall sign of the corrections and determines if
the Yukawa couplings are enhanced or reduced by the SUSY threshold effects. In addition,
tan β is very important due to the fact that the threshold corrections are almost linear in
tan β and because for successful complete third family Yukawa unification we need a large
value of tanβ.

To isolate the effects of these parameters, we have turned off the right-handed neutrino
thresholds, put At to zero and all the other soft SUSY breaking parameters and the SUSY
scale to 1 TeV with both signs allowed for M3 but with positive M1 and M2. In Figs. 7.1
and 7.2 the numerical results are presented as contour plots in the µ-tan β plane for the
four ratios ye/yd, yµ/ys, yτ/yb and yt/yb for different combinations of the signs of µ and
M3.

There are several interesting points we would like to remark: First, the overall de-
pendence in the plots illustrates the anticipated behaviour from the fact that the leading
contribution from gluino loops is proportional to µ and that the overall size of the correc-
tions is proportional to tanβ. They also illustrate that for µM3 < 0 (second and third
row in the figures) the total corrections enhance the down-type quark Yukawa couplings
leading to more stringent restrictions for the possible values of tan β from perturbativity
of yb up to the GUT scale. On the other hand, for µ > 0 and M3 > 0 (first row in the
figures) the total corrections lower the down-type quark Yukawa couplings and in principle
larger values for tan β are possible.

Second, interesting conclusions can also be drawn from comparing the second to the
third row of the figures. From the leading SUSY QCD contribution which is invariant
under a simultaneous change of sign in µ and M3, one might expect that the plots in
the second and third row look very similar if understood as results for |µ|. Differences
are entirely induced by the contributions from wino and bino loops, since we have chosen
At = 0. Inspection of the numerical results show significant differences for µ < 0 and
M3 > 0 and µ > 0 and M3 < 0, which confirms that the EW contributions are indeed
important and cannot be ignored as we have already concluded from our estimates for the
SUSY threshold corrections in the last chapter.

7.3.2 Dependence on MSUSY and At

The GUT scale values of the quark and lepton Yukawa couplings also depend on MSUSY

and At. While the correction to the bottom Yukawa coupling can be significant as can be
seen from Tab. 6.2, the effects on the down and strange quark Yukawa couplings are quite
weak since they only stem from indirect effects (modified RG evolution) due to the change
of the bottom Yukawa coupling.

We have also looked at the dependence on MSUSY by fixing all other parameters and
varying only MSUSY. We find that changing MSUSY can have some effect on the GUT scale
value of the Yukawa couplings due to the difference in the RGEs between SM and MSSM;
however this effect is typically much smaller than the uncertainty induced by the quark
mass errors and the sparticle spectrum, and it nearly cancels out when we consider Yukawa
coupling ratios. We have therefore fixed MSUSY to 1 TeV in our numerical examples.
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Figure 7.1: Contour plots for the GUT scale ratios ye/yd (left side) and yµ/ys (right
side) for M3 > 0, µ > 0 (first row), M3 > 0, µ < 0 (second row) and M3 < 0, µ > 0 (third
row) in the µ-tanβ plane. In the grey areas labelled with NP the value of yb becomes
non-perturbatively large.
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Figure 7.2: Contour plots for the GUT scale ratios yτ/yb (left side) and yt/yb (right
side) for M3 > 0, µ > 0 (first row), M3 > 0, µ < 0 (second row) and M3 < 0, µ > 0 (third
row) in the µ-tanβ plane. In the grey areas labelled with NP the value of yb becomes
non-perturbatively large.
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7.3.3 Right-handed Neutrino Threshold Effects

For analysing the possible dependence on threshold effects from the right-handed neutrino
sector, we have taken the three examples for SUSY parameters from our analysis on the
µ and tan β dependence from the previous chapter and fixed µ to ±0.5 TeV and tan β
to 40. For these example parameter points we have investigated the effects for the three
different scenarios of sequential dominance [43, 112–114] also used as examples in [115].
With the largest neutrino Yukawa coupling being O(1), we found that the deviations are
typically smaller than 5 %, which is small compared to the SUSY threshold effects in our
examples and also compared to the uncertainties induced by the present quark mass errors,
especially for the first and second generation.

7.3.4 Impact of the Sparticle Spectrum

As already stated in the previous chapter, the GUT scale values of the quark and lepton
Yukawa couplings strongly depend on the sparticle spectrum. We analyse now its impact
numerically in more detail. Because of the large number of relevant parameters, we do not
attempt to discuss each of them separately, but rather make a parameter scan.

For our scan, we take the three example ranges of SUSY parameters used for our
analytic estimates for the SUSY threshold corrections in Ch. 6, which are listed explicitly
in Tab. 6.1. In addition, for tan β we assume a range from 30 to 50. The sfermion mass
parameters and At are scanned with a step size of 1 TeV including At = 0, the mass of the
lightest gaugino was changed with a step size of 0.5 TeV and tan β is scanned with a step
size of 10.

Although this seems to be a rather coarse scan, we note that we have discussed in Ch. 6
that the extremal values of the SUSY threshold corrections correspond to the extremal
values of the SUSY parameters. Therefore, increasing the number of points would not lead
to enlarged ranges for the GUT scale quantities but only lead to more dense point clouds
in the plots in Fig. 7.3.

The parameter points for which yb becomes non-perturbative have been dropped from
our analysis. We note that for simplicity we have introduced a slightly more restrictive cut
and included only parameter points where yb < 1 at MSUSY which ensures perturbativity
up to MGUT but eventually removes a few allowed parameter points with large but still
perturbative yb.

Furthermore, we have put MSUSY to be 1 TeV. The masses of the first two sfermion
generations have been assumed identical, which is inspired by universal high scale bound-
ary conditions for sfermions. We note that a small mass splitting does not change the
conclusions from this plot. However, a large mass splitting can reduce the threshold effects
due to a reduced value of the function |H2| in the formulas (6.5) to (6.11).

The results of our parameter scans are presented as scatter plots in Fig. 7.3. The
grey areas correspond to the 1σ quark mass errors for each shown data point. In the first
column, ys and yd have been varied, and in the second column yb and yt, using best-fit
values for the remaining fermion masses. In comparison to the quark mass errors, the
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Figure 7.3: Scatter plots illustrating the ranges of GUT scale ratios ye/yd, yµ/ys, yτ/yb
and yt/yb corresponding to the example scan ranges of SUSY parameters in Tab. 6.1
including At = 0 for tanβ = 30, 40 and 50 (first row: case g+, second row: case g−, third
row: case a). The green dashed lines in the left plots correspond to the GJ relations.
In the right plots they indicate the ratios yτ/yb = 1 and yt/yb = 1. The green stars
correspond to case 0 (no SUSY threshold corrections). The point-bands in the plots on
the right correspond to the different values of tanβ. The grey areas correspond to the
(1σ) quark mass errors for each shown data point.
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charged lepton mass errors are negligible. In Fig. 7.3 only those data points are shown
where yb, including its 1σ error, stays perturbative.

For comparison we have also included the best-fit values, which would be obtained
without SUSY threshold effects. It can be seen that, with SUSY threshold corrections
included, the shown ratios for almost all parameter points are significantly shifted to larger
values for the case g+ and to smaller values for the cases g− and a.

The plots also reveal some interesting features, which we discuss now. For example we
notice that small values for yµ/ys are correlated (nearly linearly) to small values of ye/yd.
This correlation is connected to our assumption that the sfermion masses of the first two
families are assumed to be identical. Nevertheless, because of the quark mass errors, this
correlation is somewhat smeared.

Looking next at the third family relations yτ/yb versus yt/yb, we find that there is
an additional tan β dependence, which is due to the fact that the relation of top mass
to Yukawa coupling differs from the relations for down-type quarks and charged leptons
by a factor of tanβ. For all three cases we can therefore distinguish three bands, which
correspond to the three values of tanβ in our parameter scan. The scans show that for
the cases g− and a it is in principle possible to obtain third family Yukawa unification for
tan β ≈ 50 (in fact for tan β somewhat below 50 in case a), whereas for g+ we found that
it could not be exactly realised. Although yb ≈ yt can be achieved for tan β = 50, At =
−1 TeV, µ = 0.5 TeV, light gaugino masses, md̃3

= 1.5 TeV and mQ̃3
= mũ3 = 0.5 TeV,

we found yτ/yb & 1.1 in the considered parameter range.
As a first glance on the new relations for the second generation we see that the ratio

yµ/ys = 9/2 can be achieved for all three scenarios and yµ/ys = 6 is easily achieved within
case g+ while it is slightly above the edge of the 1σ area for the other cases. For the
third generation the relation yτ/yb = 3/2 from SU(5) for case g+ seems possible which is
again slightly above the 1σ ranges for the other cases. For the cases g− and a the relation
yt = 2yb = 2yτ from PS seems to be possible. Nevertheless, these considerations should be
studied in more detail as we do it in the next chapter. There, the whole SUSY spectrum
is specified in terms of SUSY breaking schemes and various phenomenological constraints
are applied. This is important since a constraint for the anomalous magnetic moment of
the muon (g − 2)µ, for example, would strongly disfavour the case g−.

The ranges for the quark and lepton Yukawa couplings and their mentioned ratios
at the GUT scale are presented in Tab. 7.3 without quark mass errors. They can be
compared to the results of our semianalytic treatment given in Tab. 7.2. Comparing the
two tables, one can see that the “mean values” of the ranges agree well for the first two
generations, however the extremal values are somewhat different. This is no surprise since
in our naive estimates we have generically overestimated the ranges of the ηi since we have
ignored possible correlations between the corrections. For the third generation, the ranges
(boundaries) are slightly shifted. This effect is caused by the modified RG running with
SUSY threshold corrections included. For the first two generations this effect is smaller
due to the smaller Yukawa couplings.

While the quark mass errors are still ignored in Tabs. 7.2 and 7.3, they are included in
our final results listed in Tabs. 7.4 and 7.5. Here, we have varied all the quark mass errors
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Case 0 Case g+ Case g− Case a

ye/yd 0.39 [0.45, 0.55] [0.26, 0.34] [0.24, 0.36]
yµ/ys 4.35 [4.95, 6.03] [2.92, 3.80] [2.65, 3.92]
yτ/yb 1.32 [1.23, 2.23] ≤ 1.40 ≤ 1.35
yt/yb 1.93 [1.67, 3.03] ≤ 2.17 ≤ 1.76

ye in 10−4 0.88 [0.87, 0.97] [0.80, 1.09] [0.92, 1.44]
yµ in 10−2 1.85 [1.83, 2.06] [1.68, 2.31] [1.95, 3.05]

yτ 0.34 [0.34, 0.39] [0.31, 0.44] [0.36, 0.60]

yd in 10−4 2.22 [1.66, 2.10] [2.39, 3.80] [2.73, 5.73]
ys in 10−2 0.43 [0.32, 0.40] [0.46, 0.73] [0.52, 1.10]

yb 0.26 [0.16, 0.30] ≥ 0.23 ≥ 0.29

yu in 10−6 2.75 [2.73, 2.76] [2.74, 2.83] [2.75, 2.87]
yc in 10−3 1.34 [1.33, 1.35] [1.34, 1.38] [1.34, 1.40]

yt 0.50 [0.48, 0.51] [0.50, 0.58] [0.50, 0.62]

Table 7.3: Ranges for the GUT scale Yukawa couplings and ratios corresponding to the
example ranges of SUSY parameters in Tab. 6.1, including additionally At = 0 from our
numerical analysis with tanβ = 40. Case 0 refers to the case without SUSY threshold
corrections. Quark mass errors are not yet included. The results can be compared with
the semianalytic estimates of Tab. 7.2. Our final results, which include the experimental
mass errors, are given in Tabs. 7.4 and 7.5. Where yb becomes non-perturbatively large
we have given only the boundary for which yb stays perturbative up to the GUT scale.

simultaneously. Comparing case 0 (without SUSY threshold corrections) to the cases g±
and a, we see that the ranges for all types of Yukawa couplings, for down-type quarks,
charged leptons and up-type quarks for all three generations can be significantly affected
by the SUSY threshold corrections. We note that for the up-type quarks, the changes are
indirect in the sense that they are induced by modified RG running mainly due to the
corrected b-quark and τ -lepton Yukawa couplings.
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tan β Ratio Case 0 Case g+ Case g− Case a

30 ye/yd [0.28, 0.67] [0.30, 0.86] [0.21, 0.61] [0.20, 0.62]
yµ/ys [3.39, 6.07] [3.73, 7.79] [2.54, 5.49] [2.40, 5.63]
yτ/yb [1.27, 1.38] [1.20, 2.02] [0.71, 1.43] [0.60, 1.39]
yt/yb [2.56, 3.02] [2.36, 4.19] [1.50, 3.28] [1.14, 2.87]

40 ye/yd [0.28, 0.67] [0.31, 0.93] [0.19, 0.59] [0.17, 0.60]
yµ/ys [3.39, 6.07] [3.85, 8.41] [2.28, 5.30] [2.07, 5.47]
yτ/yb [1.26, 1.38] [1.16, 2.32] ≤ 1.46 ≤ 1.41
yt/yb [1.77, 2.11] [1.55, 3.31] ≤ 2.38 ≤ 1.94

50 ye/yd [0.28, 0.67] [0.32, 1.00] [0.16, 0.57] [0.14, 0.59]
yµ/ys [3.39, 6.07] [3.98, 9.06] [2.02, 5.12] [1.72, 5.31]
yτ/yb [1.25, 1.38] [1.08, 2.73] ≤ 1.49 ≤ 1.43
yt/yb [1.22, 1.50] [0.94, 2.74] ≤ 1.81 ≤ 1.31

Table 7.4: Ranges for the GUT scale ratios ye/yd, yµ/ys, yτ/yb and yt/yb corresponding
to the example ranges of SUSY parameters g+, g− and a defined in Tab. 6.1 including
At = 0. The results have been extracted from the parameter scan with tanβ = 30, 40
and 50, where in addition to the SUSY threshold corrections the present experimental
errors for the quark masses have been included. Case 0 refers to the case without SUSY
threshold corrections. Where yb becomes non-perturbatively large we have given only the
boundary for which yb stays perturbative up to the GUT scale.
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tan β Yukawa Coupling Case 0 Case g+ Case g− Case a

30 ye in 10−4 0.62 [0.62, 0.67] [0.58, 0.66] [0.63, 0.79]
yµ in 10−2 [1.30, 1.32] [1.32, 1.41] [1.22, 1.40] [1.34, 1.66]

yτ 0.23 [0.23, 0.25] [0.22, 0.25] [0.24, 0.30]

yd in 10−4 [0.92, 2.26] [0.75, 2.14] [0.98, 3.11] [1.06, 3.89]
ys in 10−2 [0.21, 0.39] [0.17, 0.37] [0.23, 0.53] [0.25, 0.67]

yb [0.17, 0.18] [0.12, 0.20] [0.16, 0.34] [0.18, 0.48]

yu in 10−6 [1.79, 3.88] [1.78, 3.89] [1.78, 3.93] [1.79, 3.98]
yc in 10−3 [1.14, 1.54] [1.13, 1.54] [1.14, 1.56] [1.14, 1.58]

yt [0.46, 0.51] [0.46, 0.52] [0.46, 0.54] [0.46, 0.57]

40 ye in 10−4 [0.87, 0.88] [0.86, 0.99] [0.79, 1.62] [0.91, 1.77]
yµ in 10−2 [1.83, 1.87] [1.82, 2.08] [1.67, 3.43] [1.93, 3.74]

yτ [0.34, 0.35] [0.34, 0.39] [0.30, 0.67] [0.36, 0.76]

yd in 10−4 [1.30, 3.21] [0.97, 3.05] [1.40, 8.41] [1.59, 9.81]
ys in 10−2 [0.30, 0.55] [0.23, 0.52] [0.33, 1.44] [0.37, 1.69]

yb [0.25, 0.27] [0.15, 0.33] ≥ 0.22 ≥ 0.27

yu in 10−6 [1.79, 3.91] [1.78, 3.92] [1.79, 4.07] [1.80, 4.15]
yc in 10−3 [1.14, 1.55] [1.14, 1.56] [1.14, 1.62] [1.14, 1.65]

yt [0.47, 0.53] [0.46, 0.54] [0.47, 0.65] [0.48, 0.72]

50 ye in 10−4 [1.18, 1.23] [1.13, 1.53] [1.04, 2.31] [1.30, 3.80]
yµ in 10−2 [2.50, 2.60] [2.39, 3.24] [2.19, 4.89] [2.74, 8.04]

yτ [0.50, 0.52] [0.47, 0.69] [0.42, 1.07] [0.56, 2.20]

yd in 10−4 [1.77, 4.46] [1.20, 4.56] [1.91, 12.22] [2.36, 22.68]
ys in 10−2 [0.41, 0.77] [0.28, 0.78] [0.44, 2.10] [0.55, 3.90]

yb [0.36, 0.42] [0.19, 0.60] ≥ 0.30 ≥ 0.43

yu in 10−6 [1.81, 3.95] [1.79, 4.00] [1.80, 4.18] [1.81, 4.21]
yc in 10−3 [1.15, 1.57] [1.14, 1.59] [1.15, 1.66] [1.16, 1.67]

yt [0.49, 0.56] [0.46, 0.59] [0.48, 0.78] [0.50, 0.86]

Table 7.5: Ranges for the GUT scale values of the Yukawa couplings corresponding
to the example ranges of SUSY parameters g+, g− and a defined in Tab. 6.1 including
At = 0. The results have been extracted from the parameter scan with tanβ = 30, 40
and 50, where in addition to the SUSY threshold corrections the present experimental
errors for the quark masses have been included. Case 0 refers to the case without SUSY
threshold corrections. Where yb becomes non-perturbatively large we have given only the
boundary for which yb stays perturbative up to the GUT scale.
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CHAPTER 8

Yukawa Couplings at the GUT Scale:
A Phenomenological Approach

When testing the predictions of SUSY GUTs for quark and lepton Yukawa coupling ra-
tios ye/yd, yµ/ys, yτ/yb and yt/yb the tan β-enhanced SUSY threshold corrections are of
particular importance, as has been emphasised in the last two chapters, see also [18, 109].
In this chapter based on [14] we extend the analysis of the preceding chapter and analyse
which ratios between quark and lepton Yukawa couplings can be realised at the GUT scale
when phenomenological constraints are taken into account. For explicitness, we consider
three minimal, but characteristic SUSY breaking scenarios, namely mAMSB, mGMSB
and CMSSM, which provide boundary conditions for the soft SUSY parameters, as is al-
ready briefly reviewed in Sec. 3.4. After RG evolution to low energies and including SUSY
threshold corrections, see Sec. 8.2, we apply the phenomenological constraints described in
Sec. 8.3.

Performing the above-described analysis, we arrive at phenomenologically allowed GUT
scale ratios within the considered parameter ranges of the three SUSY breaking scenarios
mAMSB, mGMSB and CMSSM. These results are independent of any underlying GUT
model. Finally, in Sec. 8.5, we compare them with the GUT predictions considered in
Ch. 5.

8.1 SUSY Breaking Parameters

SUSY, if realised in nature, obviously has to be broken in order to be consistent with
the experimental non-observation of sparticles so far. To keep SUSY as a solution to the
hierarchy problem this breaking should be soft as it is discussed in Ch. 3.

In this thesis we consider three common and characteristic examples for supersymmetry
breaking scenarios, namely mAMSB [86], mGMSB [87] and CMSSM [88,89] which provide
boundary conditions for the soft SUSY breaking parameters at high energies. Since we have
already discussed these three SUSY breaking schemes in Sec. 3.4 we give in Tab. 8.1 only
the ranges and stepwidths for the soft SUSY breaking parameters which we have used in
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mAMSB Parameter Minimum Maximum Stepwidth

m0 in TeV 0 3 0.1
m3/2 in TeV 20 200 10

tan β 20 60 2.5

mGMSB Parameter Minimum Maximum Stepwidth

n5 1 5 1
Λ in TeV 10 200 20
mmess 1.01Λ 105Λ 104Λ
cgrav 1 1 -
tan β 20 60 2

CMSSM Parameter Minimum Maximum Stepwidth

m0 in TeV 0 3 0.2
m1/2 in TeV 0 3 0.2
A0 in TeV -3 3 1.5

tan β 20 60 5

Table 8.1: Parameter ranges and stepwidths used in our numerical scan for the mAMSB,
mGMSB and CMSSM scenario (from top to bottom).

our numerical scan. In all schemes we choose the sign of µ to be positive in order to improve
consistency with the experimental results on (g − 2)µ, as is discussed in Sec. 8.3.5. The
absolute value of µ is determined numerically to achieve successful electroweak symmetry
breaking.

We note that we have not included neutrino masses in our analysis since we focus
on Yukawa coupling ratios for charged fermions and right-handed (s)neutrinos are also
not included in the minimal SUSY breaking scenarios mAMSB [86], mGMSB [87] and
CMSSM [88,89].

8.2 Numerical Procedure

Using the soft breaking parameters specified in the last section as high scale boundary
conditions, the MSSM parameters are run to low energies using a modified version of
SoftSUSY 2.0.18 [116] which we have used for calculating the spectrum. SoftSUSY runs in
loops to achieve consistency with high scale boundary conditions as well as with low scale
input, thereby determining |µ|. From SoftSUSY we read out the Yukawa couplings of the
quarks and charged leptons at the GUT scale. Our modifications to the SoftSUSY code
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are the following:

• In SoftSUSY 2.0.18, the threshold corrections are included as self-energy corrections
to the fermion masses, but only for the third generation. We have included the SUSY
threshold corrections for the first two generations, using mainly the formulas of [105].
The large logs appearing in the formulas in [105] are already resummed in the gauge
couplings and therefore are not included anymore, see also [116]. For the first two
generations we have set the external momenta of the fermions to zero. This provides
a very good approximation since corrections are of the order of mf/MSUSY, where
mf is the mass of the corresponding (light) fermion and MSUSY is the mass scale of
the SUSY particles involved in the loops. We have also updated the experimental
data on the quark masses according to [21], see also Tab. 2.2.

• We have furthermore modified SoftSUSY 2.0.18 to include left-right mixing for the
first two families, which was set to zero. The left-right sfermion mixing angle θf̃ is
defined (at tree-level) as

sin(2θf̃ ) =
2mf (Af − µ tan β)

m2
f̃1
−m2

f̃2

, (8.1)

where f = e, µ, τ , d, s and b. Af is the corresponding trilinear coupling and
m2
f̃1/2

are the corresponding mass eigenvalues of the sfermion mass matrix. For our

study it was necessary to include left-right mixing for all families since we found
that for some parameter points it is not negligible. For example, in the mAMSB
scenario for m0 = 500 GeV, m3/2 = 20 TeV and tanβ = 30 we obtain θs̃ ≈ 0.58
and θb̃ ≈ 0.35. This large mixing can be understood from the fact that the splitting
between the sfermion mass eigenstates in this example is mainly driven by the mass
of the corresponding fermion. Then both, the numerator and the denominator of
Eq. (8.1), are small, leading to a sizeable mixing.

• Some of the points in our parameter scan are already excluded by SoftSUSY and
are not displayed in our results. This happens for example if the spectrum contains
tachyons or if it is not possible to achieve successful EWSB, see the SoftSUSY manual
[116]. In addition, we have also made SoftSUSY reject parameter points where the
calculated SUSY threshold corrections are so large that the perturbative expansion
is spoiled.

Regarding the calculation of some of the experimental constraints described in detail
in the next section, we have exported the SUSY spectra calculated from SoftSUSY to
micrOMEGAs 2.2 CPC [117] using the SLHA [118] interface.

8.3 Experimental Constraints

We turn now to the discussion of the experimental constraints used in our analysis. We
briefly discuss below each experimental constraint and give references for further details.
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8.3.1 Direct Detection

The LEP experiments have searched for SUSY particles with negative results [4]. In our
analysis we exclude parameter points with a chargino or slepton (sneutrino and charged
slepton) lighter than the LEP bounds.

We have not applied the LEP bound for the Higgs boson mass which holds only in
the SM (or approximately for a SM-like Higgs). However, for almost all parameter points
which pass the remaining constraints we have checked that the lightest CP-even Higgs
boson was heavier than the LEP bound and for the other parameter points it was still
above 105 GeV. For these points there may be some tension with the LEP data. However,
for the outcome of our study it makes no difference if they are included or excluded.

8.3.2 Electroweak Precision Observables

We have furthermore included constraints from electroweak precision observables (EWPO)
such as the W boson mass MW and the effective leptonic weak mixing angle sin2 θeff . These
observables are known to a high accuracy from LEP and Tevatron.

In [47] a combined world result for the W boson mass of

MW = 80.429± 0.039 GeV (8.2)

is given and in [119] the up-to-date experimental result for the effective leptonic weak
mixing angle is listed as

sin2 θeff = 0.23153± 0.00016 . (8.3)

By applying these results as a constraint we demand that the theoretical predictions for a
given parameter point calculated by our modified SoftSUSY version lie within the above
given 1σ errors.

8.3.3 BR(b→ sγ)

The decay b→ sγ occurs in the SM as well as in the MSSM at one loop level, which makes
it very interesting as a probe of physics beyond the SM. The present experimental value
for BR(b→ sγ), released by the Heavy Flavour Averaging Group (HFAG), is [120]

BR(b→ sγ) =
(
3.55± 0.24+0.09

−0.10 ± 0.03
)
× 10−4 , (8.4)

where the first error is the combined statistical and uncorrelated systematic uncertainty,
and the other two errors are correlated systematic theoretical uncertainties and corrections
respectively.

We evaluate BR(b → sγ) for our data points using micrOMEGAs [117] and exclude
the data points which do not lie within the interval

(
3.55+0.36

−0.37

)
× 10−4. For our analysis we

simply sum the errors to define the allowed region.
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8.3.4 BR(Bs → µ+µ−)

The present experimental upper limit on BR(Bs → µ+µ−) from the Fermilab Tevatron
collider is 5.8× 10−8 at the 95 % C.L. [121]. The SM prediction for this branching ratio is
(3.4± 0.5)×10−9 [122], leaving some room for a possible large SUSY contribution. We have
calculated this contribution using the micrOMEGAs package. We impose the constraint
that the SUSY contribution does not exceed the experimental bound minus the lower limit
of the SM contributions.

An approximate formula for the SUSY corrections to BR(Bs → µ+µ−) is [103,123]

BR(Bs → µ+µ−) ' 3.5× 10−5

[
tan β

50

]6 [
τBs

1.5 ps

] [
FBs

230 MeV

]2 [ |Vts|
0.04

]2

× m̄4
t

M4
A

(16π2εY )

(1 + ε̃3 tan β)2(1 + ε0 tan β)2

(8.5)

where m̄t is the running top mass and ε̃3 = ε0 + y2
t εY . The full expressions for ε0 and εY

can be found in [103, 123]. The branching ratio is proportional to tan6 β as well as to εY ,
which in turn is proportional to the trilinear coupling of the stops. This means that large
tan β and a large trilinear coupling pushes the branching ratio to larger values whereas a
heavier CP-odd Higgs boson can suppress the branching ratio.

8.3.5 Anomalous Magnetic Moment of the Muon

The results for the anomalous magnetic moment of the muon (g−2)µ or for the parameter
aµ = 1/2 (g − 2)µ respectively are still not completely settled. In particular there is some
tension between the preliminary τ data from BELLE [124] and the e+e− data [125] for the
hadronic contributions, for a review see, e.g. [126]. With the e+e− data for the hadronic
contributions and the final result of the Brookhaven E821 experiment [127] the difference
between the experiment and the theoretical SM prediction is

aexp
µ − atheo

µ = (27.5± 8.4)× 10−10 (8.6)

equivalent to a 3.3σ deviation. Three other recent evaluations yield slightly different num-
bers [128]. Because of the discrepancies between the electron and the τ data and the slight
differences in the theoretical predictions we only use as constraint that the SUSY contri-
butions to (g − 2)µ have the right sign to make aexp

µ − atheo
µ smaller and that they are not

too large, 0 ≤ aµ ≤ 35.9× 10−10.
For the calculation of (g−2)µ we use micrOMEGAs which has implemented the formulas

from [129]. There is also an approximate formula given in [126] for the case that all SUSY
parameters are set to MSUSY, sgn(M1) = sgn(M2) and all parameters are real:

δaSUSYµ ≈ 13 tanβ sgn(µM1,2)

(
100 GeV

MSUSY

)2

10−10 . (8.7)
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From this formula we already see that large values of tanβ can lead to conflicts with
experimental observations if also the SUSY scale is not too large. The anomalous magnetic
moment receives also larger corrections for smaller smuon and muon-sneutrino masses and
larger neutralino and chargino masses. Furthermore, we can also see the dependence on
the sign of µ. For example, our constraints exclude a negative µ if both M1 and M2 are
positive.

8.3.6 Dark Matter

In the R-parity conserving MSSM the LSP provides an interesting candidate for the dark
matter particle. It may be the lightest neutralino, but may alternatively be the gravitino.
The WMAP Collaboration, after five years of data taking, has released Ωmh

2 = 0.1143±
0.0034 for the dark matter density in the Universe [10].

If one makes the assumption of a standard cosmological evolution as well as that dark
matter predominantly consists of the lightest neutralino, this would imply rather strong
constraints on the parameter space of SUSY models. However, other particles may con-
tribute to dark matter in addition to a neutralino LSP, which relaxes this bound to the
requirement that the relic density of the neutralino, which we require to be the LSP, should
not exceed the dark matter observed by WMAP.

We discuss this relaxed bound separately in the following, since it may be taken as
a possible constraint under additional assumptions. However, since it can be avoided if,
for instance, the cosmological evolution is non-standard or if a small amount of R-parity
violation is introduced, we do not include it in our final results. Furthermore, in mGMSB
the gravitino is the LSP and its relic density depends on its mass, which we treat as a free
parameter in this setup such that no constraint can be applied.

8.4 Allowed Quark and Lepton Mass Ratios at the

GUT Scale

Performing the numerical scan over the parameter ranges for the SUSY breaking scenarios
specified in Sec. 8.1, we obtain as final results the scatter plots with allowed GUT scale
values for the quark and lepton Yukawa coupling ratios of interest shown in Fig. 8.1. For
each of the parameter points, corresponding to specific boundary conditions for the SUSY
breaking parameters at high energies, we apply the experimental constraints from direct
searches, EWPO, BR(Bs → µ+µ−), BR(b → sγ) and (g − 2)µ described in Sec. 8.3.
Detailed Plots for each experimental constraint separately are given in App. C.

Values shown in black are consistent with the applied constraints, whereas dots in
red mark parameter points which are excluded. We note that there is no one-to-one
correspondence between the soft SUSY breaking parameters and the Yukawa coupling
ratios. Therefore it can happen that allowed and forbidden parameter points give the
same result and that black dots overlap with red ones. The grey regions around the black
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dots indicate the allowed ratios when the experimental 1σ errors on the quark masses
are included. The other lines and dots correspond to possible GUT predictions and are
discussed in Sec. 8.5 in more detail. We now discuss the impact of the experimental
constraints in the considered SUSY breaking scenarios.

8.4.1 mAMSB

The first row in Fig. 8.1 shows the combined results for mAMSB. For the considered
mAMSB parameter range, see Tab. 8.1, we can see from the left plot that, with quark
mass errors included, yµ/ys in the range from 2.48 to 5.72 and ye/yd in the range from
0.21 to 0.65 are possible. The right plot shows that for yτ/yb values in the range from 0.98
to 1.30 and for yt/yb in the range from 1.37 to 4.78 are allowed. Compared to the yellow
squads indicating the values calculated without taking the SUSY threshold corrections
into account, we see that all ratios are reduced. As discussed in the previous chapter and
in [18, 109], the reason for this is that the sign of the dominant tan β-enhanced correction
parameter ηGi is negative for negative gluino mass M3 when µ is positive, which enhances
the down-type Yukawa couplings at the SUSY scale and finally lowers the possible values
of the ratios at MGUT. Large SUSY threshold corrections, and thus lower values of the
GUT scale ratios correspond to large tanβ. The plots also show that there is a strong
correlation between yµ/ys and ye/yd, which stems from the fact that the masses of the first
two sfermion generations are very similar.

One can see from the plots how the phenomenological constraints restrict the possible
effects of the threshold corrections on the GUT scale ratios. First of all, a sparticle spectrum
free of tachyons already excludes values of m0 below about 200 GeV. Furthermore, we found
that large values of tan β above 50 did not lead to a viable spectrum. These parameter
points were rejected by the numerics and are not displayed in Fig. 8.1. In the parameter
range we considered, the strongest constraint was b→ sγ, which disfavours large values of
tan β. In mAMSB, EWPO also provide a significant constraint and disfavour large values
of tan β. Compared to b → sγ and EWPO, the limits from Bs → µ+µ− and (g − 2)µ are
much less constraining, cf. Fig. C.1. Including all constraints the minimal allowed m0 rises
to about 600 GeV and the maximal tanβ reduces to about 45.

Finally, under the assumption that the neutralino is the LSP, stable due to R-parity,
and that the evolution of the universe is standard up to temperatures where the LSP
freezes out, the LSP relic density could be used as an additional constraint. In particular
the parameter points which lead to a LSP relic density larger than the dark matter density
or where the LSP is charged would be excluded. The impact which this constraint would
have is shown in Fig. C.1. The consequence would be that only a small region where the
threshold corrections are comparatively small would remain allowed.

8.4.2 mGMSB

The combined results for mGMSB are shown in the second row in Fig. 8.1. Compared
to the case of mAMSB and following the arguments of Sec. 8.4.1, positive M3 with posi-
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tive µ leads to a positive threshold correction parameter ηGi which lowers the down-type
Yukawa couplings and consequently enlarges the Yukawa coupling ratios compared to the
case without threshold effects included. For the considered mGMSB parameter range, see
Tab. 8.1, we can see from the left plot that, with quark mass errors included, yµ/ys in the
range from 3.62 to 7.69 and ye/yd in the range from 0.30 to 0.87 are possible. The right
plot shows that for yτ/yb values in the range from 1.35 to 2.09 and for yt/yb in the range
from 1.01 to 5.26 are allowed.

Turning to the individual experimental constraints, in mGMSB with the parameter
range specified in Tab. 8.1 all applied constraints lead to a significant reduction of the
possible GUT scale ratios. As in mAMSB, the strongest constraint comes from b → sγ,
followed by EWPO and (g−2)µ and finally by limits from direct searches and Bs → µ+µ−,
cf. Fig. C.2. We note that due to the correlation between yµ/ys and ye/yd many parameter
points lead to the same ratio which means that the dots would lie on top of each other. If
at least one of the parameter points is consistent with the phenomenological constraints,
the ratio is shown in black. Dark matter constraints are not discussed since the gravitino is
generically the LSP in GMSB and the gravitino mass essentially represents a free parameter
in our setup.

8.4.3 CMSSM

In the CMSSM, as in mGMSB, with positive M3 and µ the SUSY threshold corrections
tend to reduce the down-type Yukawa couplings and consequently enlarge the Yukawa
coupling ratios at the GUT scale. The combined results for CMSSM are shown in the
third row of Fig. 8.1. For the CMSSM parameter ranges specified in Tab. 8.1 we find that,
with quark mass errors included, yµ/ys can be in the range from 3.44 to 7.73 and ye/yd in
the range from 0.29 to 0.87. The right plot shows that for yτ/yb values in the range from
1.28 to 2.10 and for yt/yb in the range from 0.97 to 5.71 are allowed.

Fig. C.3 shows the impact of the individual constraints. The main consequence regard-
ing the allowed GUT scale ratios is that points where the SUSY threshold corrections tend
to reduce the GUT scale ratios are excluded. This is in agreement with [108], where it
has been argued that third family Yukawa coupling unification within the inverted scalar
mass hierarchy scenario [107] requires a region of parameter space where A0 ≈ −2m0 and
µ,m1/2 � m0 and that this inevitably leads to conflicts with bounds on, e.g. Bs → µ+µ−

because of the large trilinear coupling. We note that we have not focused on this spe-
cific correlation between the parameters which explains why we have only relatively few
(excluded) parameter points which are close to third family Yukawa unification.

We see there also the constraints coming from the requirement that the neutralino relic
density does not exceed the observed dark matter density, under the assumptions that the
neutralino is the stable LSP and that the cosmic history is standard. We find that the
impact of this constraint would be that a certain region with large tanβ would be favoured.
However, we would like to note that there are comparatively thin parameter space regions
which lead to a viable neutralino relic density, i.e. the so-called funnel and coannihilation
regions. Since our parameter space is comparatively coarse, we cannot exclude that we have
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missed viable parameter points in these thin regions. Such points could lead to additional
possibilities for allowed GUT scale ratios. The few points with larger yt/yb, i.e. smaller
tan β, belong to these thin parameter space regions. Due to this and the fact that the
dark matter constraint applies only under additional assumptions, this constraint is not
included in the final results.

8.5 Allowed GUT Scale Ratios Compared to Theory

Predictions

As discussed in the previous section, within mAMSB, mGMSB and CMSSM only certain
ranges of GUT scale ratios ye/yd, yµ/ys, yτ/yb and yt/yb are allowed when phenomenological
constraints from electroweak precision observables, B physics, (g− 2)µ and mass limits on
sparticles are taken into account. In this section we compare these ranges with the possible
predictions for these ratios from unified theories. Fig. 8.1 contains our final results. The red
dots correspond to parameter points which are excluded by phenomenological constraints,
while the black dots are allowed with grey regions indicating the experimental 1σ errors
on the quark masses.

The possible theory predictions discussed in Ch. 5 are shown in Fig. 8.1 as green and
blue lines and dots. We note that for Yukawa coupling ratios only the modulus of the
ratio is relevant, since a sign only corresponds to a global phase redefinition. We display
therefore in the following always the modulus of the predicted ratios. The different colours
have the following meaning: Green straight lines denote the predictions from SU(5) GUTs
and the dashed lines in green and blue denote the predictions which can arise in PS and
SU(5) unification. For the third family the dark blue points denote the predictions from
operators up to dimension five in PS unification, whereas the light blue points denote
predictions which can arise from certain dimension-six operators.

We have collected the results of this section also in Tab. 8.2 where a checkmark (cross)
denotes (in)compatibility with our phenomenological scan described in the previous sec-
tions. In the following we want to discuss this in more detail.

8.5.1 GUT Predictions in the mAMSB Scenario

From Fig. 8.1 we see that mAMSB is the only considered scenario where the GJ relation
yµ/ys = 3 is allowed. Its realisation requires intermediate tan β (around 30) and a compar-
atively heavy sparticle spectrum corresponding to m0 above about 1 TeV and m3/2 above
about 100 TeV. Interestingly, this parameter region would also be compatible (with quark
mass errors included) with the second GJ relation ye/yd = 1/3, which arises in the presence
of a texture zero in the 1-1 elements of the Yukawa matrices and under the assumption
that they are symmetric.

In addition to the GJ relation, mAMSB is also compatible with the ratio yµ/ys = 9/2.
This ratio arises in all scenarios whenever the SUSY threshold corrections are comparatively
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Figure 8.1: Final results for mAMSB, mGMSB and CMSSM. The (red) black points are
the (excluded) allowed points after applying the constraints. The grey regions indicate
the uncertainties from experimental quark mass errors. The green lines are predictions
from SU(5), the dashed lines from SU(5) and PS and the (light) blue points from PS
(dimension-six operators). The yellow squads are the GUT scale Yukawa ratios without
including SUSY threshold corrections for tanβ = 20, 30, 40, 50 and 60 from top to bottom.
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small, for instance if tan β is small such that there is no tan β enhancement. In Fig. 8.1
the yellow squad shows the GUT scale ratios which would result when the SUSY threshold
corrections were ignored. In the absence of SUSY threshold corrections a value close to
yµ/ys = 9/2 would result as well.

Regarding the third generation we find that third family Yukawa unification yt = yb =
yτ is not compatible with mAMSB. The parameter points which come close to this relation
are all excluded because either the spectrum contains tachyons and/or because it is not
possible to achieve successful electroweak symmetry breaking there. Partial third family
Yukawa unification yτ/yb = 1 turns out to be possible. Interestingly, yτ/yb = 1 is realised in
combination with yt/yb = 2. Both relations can emerge simultaneously from a dimension-
six operator within PS unified theories.

The GUT predictions yt = 2yb = 2yτ and yµ/ys = 3 can be realised for the same
region of parameter space where tan β is intermediate and the sparticle spectrum is rather
heavy. We would like to note that including the dark matter constraint would exclude
this parameter space region, see Fig. C.1. However, for example, in variants of mAMSB
where a small amount of R-parity violation is introduced or in non-standard cosmology,
this constraint might be avoided.

8.5.2 GUT Predictions in the mGMSB and CMSSM Scenarios

The allowed GUT scale ranges within mGMSB and CMSSM differ significantly from the
ranges in mAMSB. This is due to the fact that the sign of the generically dominant tan β-
enhanced SUSY QCD threshold correction is governed by sgn(µM3) which is positive in
mGMSB and CMSSM but negative in mAMSB. It has turned out that mGMSB and
CMSSM are in fact compatible with the same theory predictions. We therefore discuss
both scenarios together in this subsection.

For mGMSB and CMSSM the GJ relation yµ/ys = 3 is disfavoured. For small tanβ,
i.e. small threshold corrections, both scenarios (and also mAMSB) are compatible with
yµ/ys = 9/2. In addition, for large tan β, i.e. large SUSY threshold corrections, the theory
prediction yµ/ys = 6 can be compatible with phenomenological constraints. The GUT
scale ratios yµ/ys = 9/2 as well as yµ/ys = 6 can be realised in SU(5) GUTs, however,
within our setup, not from the PS gauge group.

Regarding the third generation we again find that third family Yukawa unification
yt = yb = yτ is incompatible. However, interesting alternative relations are compatible
with data: One example is the GUT scale prediction yτ/yb = 3/2 which arises in the
context of SU(5) GUTs. It can be realised for moderate values of tan β, e.g. tanβ ≈ 25 in
CMSSM, while it would be disfavoured for large values of tan β. We would like to remark
that this region of parameter space is also consistent with the GUT prediction yµ/ys = 9/2.
For large tan β, i.e., large SUSY threshold corrections, on the other hand, the relations
yτ/yb = 2 and yt/yb = 1 are allowed. Interestingly, the relation 2yt = 2yb = yτ can
also emerge as a prediction from dimension-six operators within PS unified theories. The
parameter space where 2yt = 2yb = yτ is realised additionally allows to realise the GUT
relation yµ/ys = 6. However, while yµ/ys = 6 appears in SU(5) the relation 2yt = 2yb = yτ



92 8. Yukawa Couplings at the GUT Scale: A Phenomenological Approach

Prediction Gauge Group mAMSB mGMSB CMSSM

yµ/ys = 3 SU(5), PS X × ×
yτ/yb = 1 SU(5), PS X × ×
yµ/ys = 6 SU(5) × X X
yµ/ys = 9/2 SU(5) X X X
yτ/yb = 3/2 SU(5) × X X
yt = yb = yτ PS × × ×

2yt = 2yb = yτ PS × X X
yt = 2yb = 2yτ PS X × ×

Table 8.2: Comparison of GUT scale predictions for Yukawa coupling ratios to phe-
nomenological data. A checkmark (cross) denotes (in)compatibility within the phe-
nomenological constraints, see also Fig. 8.1. For the origin of the predictions see Ch. 5.

can emerge from PS. In our scan we found no parameter point in mGMSB and CMSSM
where partial third family Yukawa unification yτ/yb = 1 was compatible with experimental
constraints.

8.5.3 Comparison with the Previous Approach

In the last chapter, see also [18], the impact of the tan β-enhanced SUSY threshold cor-
rections on all down-type quark and charged lepton Yukawa couplings has been analysed
numerically and analytically. For this purpose the threshold corrections have been treated
in the EW unbroken phase. The possible ranges for the GUT scale values of the Yukawa
couplings and their ratios have been calculated for three example ranges of low energy
SUSY parameters and are collected in Fig. 7.3 and Tabs. 7.4 and 7.5.

Compared to the previous approach our results are in good qualitative agreement,
cf. Fig. 7.3 where the results are presented in a similar way as in Fig. 8.1. The example
SUSY parameter range a was inspired by anomaly mediated SUSY breaking and the SUSY
parameter ranges g+ (and g−) by scenarios with gaugino unification and µ > 0 (µ < 0).
Quantitatively there are, nevertheless, differences, which are larger for the third family.
For example for tan β = 30 in the mAMSB case we find, before applying experimental
constraints, yµ/ys can be in the range 2.41–5.73, whereas in case a we found the very
similar range 2.40–5.63. On the other hand, for the ratio yτ/yb we find an allowed range of
0.94–1.28 within mAMSB compared to 0.60–1.39 for the example SUSY parameter range
a. However, since in the present study we are considering explicit SUSY breaking scenarios
at high energy resulting in different low energy SUSY spectra, there is no reason to expect
perfect quantitative agreement.

The main difference from our previous approach is of course that the consideration of
explicit SUSY breaking scenarios allows to take phenomenological constraints into account.
Their restrictions on the allowed GUT scale ratios depend on the explicit minimal SUSY
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breaking scenario. However, we expect that some consequences are also characteristic
for variants of the considered schemes. For example, it has turned out that there is a
certain tension between realising GUT predictions which require large SUSY threshold
corrections and the experimental constraints which basically restrict the effects of SUSY
loops to the observables. It has also turned out that, contrary to claims in [18,109], it may
be challenging to realise third family Yukawa unification in AMSB-like SUSY breaking
scenarios.
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CHAPTER 9

Implications for GUT Model Building
and a Concrete Application

In the previous chapters we have seen that comparatively wide ranges of Yukawa coupling
ratios are allowed at the GUT scale, if possible SUSY threshold corrections are taken
into account. In turn some of these are compatible with our newly proposed ratios from
Ch. 5. From today’s perspective, since we do not have any experimental confirmation for
low-energy SUSY and thus no knowledge of the sparticle spectrum, this can have a large
impact for GUT model building as we discuss in Sec. 9.1.

Subsequently, we turn to a concrete application, a SO(3)× SU(5) GUT flavour model
in Sec. 9.2, based on [44] (work in progress). The model predicts TB neutrino mixing
after the SO(3) family symmetry is broken as an indirect result of the assumed neutrino
flavon alignment via constrained sequential dominance (CSD) [43,112–114]. The neutrino
flavons break the SO(3) symmetry and are assumed to be aligned along the columns of
the TB mixing matrix, but quadratic combinations of the neutrino flavons respect the
neutrino family symmetry accidentally as discussed in [31]. Further flavons are assumed to
be misaligned compared to the neutrino flavons and together they are responsible for quark
and charged lepton masses and quark mixing. We make a detailed fit to quark masses and
mixing using the misaligned quark flavons and show that a simple ansatz for the phase of
one of the misaligned quark flavons leads to successful quark CP violation. Thereby we
take advantage of the proposed Yukawa coupling ratios yµ/ys = 6 and yτ/yb = −3/2 which
are viable for large tanβ as discussed in the preceding chapters. Interestingly, the phases
in the quark and lepton sector have one common origin resulting in definite predictions for
the effective neutrino mass mee appearing in neutrinoless double beta decay in contrast to
the general case where due to phase uncertainties no sharp prediction is possible [130].

9.1 Implications for GUT Model Building

In the following, we discuss some of the implications of the preceding chapters on GUT
model building. We start with a brief comparison of our findings with previous studies.



96 9. Implications for GUT Model Building and a Concrete Application

9.1.1 Comparison with Previous Studies

The viability of third family Yukawa unification yt = yb = yτ and also the less restrictive
possibility yb = yτ has been extensively studied in the literature, see, e.g. [14, 17, 18, 101,
102, 108, 109, 131]. A recent study [108] has reconsidered the phenomenological viability
of this relations and it has been pointed out that in a variant of the CMSSM with non-
universal soft Higgs mass parameters the relation yt = yb = yτ is quite challenged by
the experimental data from B physics. In [109] the authors find b-τ Yukawa coupling
unification to be viable for small tanβ = 1.3 and large tan β = 38. While for small
tan β the SUSY threshold corrections are negligible, for large tanβ they fit the threshold
corrections without phenomenological viability check.

For the GJ relation, it has been shown in [14,18,109], that the threshold corrections can
be consistent with the latest experimental data on quark masses. If the GJ relations are
assumed at high energies, this can be understood as a constraint on the SUSY parameter
space and points to scenarios with AMSB-like SUSY breaking with M3 < 0 and µ > 0
if phenomenological consistency with experimental results on (g − 2)µ is assumed to be
restored by SUSY loops [126].

Another interesting aspect is that the newly proposed Yukawa coupling ratios at the
GUT scale open up new possibilities for constructing SUSY GUT models to address the
flavour problem. One example for an application of such alternative GUT scale ratios
yµ/ys and ye/yd can be found in [132], where an approach has been presented to realise
the phenomenologically successful relation θMNS

12 + θCKM
12 ≈ π/4, the so-called quark-lepton

complementarity [133], in unified theories. In this approach, the Yukawa matrices for
the charged leptons and down-type quarks emerge from the identical higher-dimensional
operators where quarks and leptons are unified in representations of the PS gauge group.
After spontaneous breaking of PS to the SM gauge group, CG factors lead to different
GUT scale values for the charged lepton and down-type quark Yukawa couplings. In the
approach of [132], for example, yµ/ys = 2 was postulated at MGUT which we have however
found to be challenged even within the mAMSB scenario.

More generally, the assumption that the Yukawa matrices for the charged leptons and
down-type quarks are generated from the same set of higher-dimensional operators in
quark-lepton unified theories leads to a large variety of possible ratios yµ/ys and ye/yd
which correspond to different choices of operators and their associated CG factors. In
Tab. 8.2 we give a collection of possible CG factors in the context of SU(5) or PS theories.
Any of the viable combinations of CG factors which results in ratios yµ/ys and ye/yd
consistent with the phenomenological constraints are a priori interesting new options for
GUT model building.

9.1.2 GUT Scale Ratios for the First Fermion Generation

As discussed in Ch. 5, predictions for the ratios between quark and charged lepton masses
at the GUT scale can arise if two conditions are satisfied: a hierarchical structure of the
Yukawa matrices and the situation that one single GUT operator dominates the relevant



9.1 Implications for GUT Model Building 97

Yukawa matrix element. The simplest case which can lead to predictions for the first
generation of fermions is that the submatrix for the first and the second fermion generation
is also hierarchical. Then the masses of the first fermion generation would be approximately
determined by the diagonal elements (i.e. the 1-1 elements) of the corresponding Yukawa
matrices and the phenomenologically allowed range for ye/yd can directly be compared to
the theory predictions in Tabs. 5.2 and 5.4 of Ch. 5. The theory prediction ye/yd = 1/2,
possible in SU(5), or the relation ye/yd = 3/4 from PS unification would be compatible
with the experimental constraints.

In many GUT models of fermion masses and mixings, however, a different situation
is realised: There, the Yukawa matrices are symmetric and have vanishing 1-1 entries,
see, e.g. [97]. In this case, the mass of the electron and down-type quark are inversely
proportional to the masses of the second generation and, in addition, depend on the 1-2
entries of the Yukawa matrices which are equal to the 2-1 entries by assumption. More
precisely, the prediction for the ratio ye/yd is then given by

ye
yd

=
ys
yµ

(Ye)
2
12

(Yd)2
12

. (9.1)

For (Ye)12/(Yd)12 = 1 and yµ/ys = 3 we recover the second GJ relation ye/yd = 1/3 which
is consistent with our results when quark mass errors are included. Interestingly, it is
possible to realise both relations within mAMSB. With (Ye)12/(Yd)12 = 1, no alternative
GUT prediction for yµ/ys is consistent with the above assumptions, due to the strong
correlation between ye/yd and yµ/ys as shown in Fig. 8.1.

However, with a different CG factor relating (Ye)12 and (Yd)12, the alternative GUT
predictions yµ/ys = 9/2 and yµ/ys = 6 can well be consistent with the assumption of
symmetric Yukawa matrices with zero 1-1 elements: The relation yµ/ys = 9/2 is consistent
with ye/yd = 1/2, which would require (Ye)12/(Yd)12 ≈ 3/2. Similarly, yµ/ys = 6 is
consistent with ye/yd = 3/2, which would require (Ye)12/(Yd)12 ≈ 2. Of course, when
one of the above assumptions, i.e. symmetric Yukawa matrices and zero 1-1 elements, is
dropped then there are more possibilities. For example, without vanishing 1-1 element the
relation (Ye)12/(Yd)12 = 1 can well be compatible with yµ/ys = 9/2 or yµ/ys = 6.

9.1.3 Charged Lepton Corrections to Neutrino Mixing Angles

In many GUT models of fermion masses and mixings, characteristic predictions can arise
for the neutrino mixing angles which are, however, perturbed by the mixing coming from
the charged lepton sector, see, e.g. [134, 135]. One typical example is the leptonic mixing
angle θMNS

13 . In many models the 1-3 mixing from the neutrino sector is very small or even
zero (θν13 = 0). Nevertheless, a total lepton mixing θMNS

13 can be induced from the possible
corrections caused by mixing in the charged lepton mass matrix and is then given by

θMNS
13 ≈ θe12√

2
, (9.2)
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where θe12 is the charged lepton 1-2 mixing angle for a hierarchical mass matrix given by
θe12 ≈ (Ye)

2
12/(Ye)

2
22. Assuming, for instance,

(Ye)
2
12

(Yd)2
12

= 1 and

∣∣∣∣ (Ye)2
22

(Yd)2
22

∣∣∣∣ ≈ yµ/ys = 3 , (9.3)

we obtain
θMNS

13 ≈ θd12/(3
√

2) , (9.4)

where θd12 is the 1-2 mixing of the down-type quark mass matrix Yd. Interestingly, in many
GUT models θd12 is approximately equal to the Cabibbo angle θC ≈ 13◦, which under
the above assumptions would yield θMNS

13 ≈ 3◦. This value emerges in many models as a
prediction for the neutrino mixing θMNS

13 , closely related to the GJ relation yµ/ys = 3.
In this context we would like to remark that the alternative GUT predictions yµ/ys =

9/2 and yµ/ys = 6 can lead to new predictions for the leptonic mixing angle θMNS
13 , following

the above chain of arguments. In particular, when yµ/ys = 9/2 is realised in a unified model
it could predict

θMNS
13 ≈ 2 θC/(9

√
2) ≈ 2◦ . (9.5)

Analogously, yµ/ys = 6 could lead to the prediction

θMNS
13 ≈ θC/(6

√
2) ≈ 1.5◦ , (9.6)

for the so far unmeasured leptonic mixing angle. Additional predictions are possible when
the assumption (Ye)

2
12/(Yd)

2
12 = 1 is replaced by a different group theoretical CG factor.

9.2 A GUT Flavour Model for Large tanβ

In this section, we propose and describe a SUSY GUT model based on the unified SU(5)
gauge group as well as on the family symmetry SO(3) amended by a product of Zn sym-
metries, cf. Tab. 9.1. For a description of Zn symmetries, see App. D.1. Note that it
is always possible to replace any product of commuting discrete symmetries by a single
Abelian group U(1) with a suitable choice of charges for the fields, i.e. it is possible to
replace the Z2

3 × Z4
2 symmetry by a single U(1) symmetry with an appropriate choice of

charges.
Indeed many models in the literature use an Abelian U(1) symmetry rather than a

product of Zn symmetries to control the operators. Although this looks simpler, it should
be remarked that first an U(1) symmetry has infinitely many more group elements than
any discrete symmetry, and second one must then confront the question of Goldstone
bosons once the assumed global U(1) symmetry is broken. If the auxiliary symmetry
is gauged, one must further complicate the model by ensuring that it is anomaly free.
Therefore, a discrete symmetry, even a large one, has definite advantages over a continuous
U(1) symmetry. Furthermore, large discrete symmetries are ubiquitous in string theory
constructions. Finally, the discrete symmetry used here is a rather simple one consisting of
a product of Z3 and Z2 parity factors. Thus we regard this model as simple and attractive
compared to other models invoking an U(1) symmetry instead.
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9.2.1 Symmetries and Field Content

Let us start introducing the model by specifying the field content and the symmetries. The
SM matter fields are contained in the fields Fi and Ti, see Ch. 4, where i is a family index.
In our model, we assume that the three generations Fi form a triplet representation 3 of
a SO(3) family symmetry while the three Ti form singlets under SO(3). We note that
for this model every symmetry with real triplet representations is suitable. Nevertheless,
we choose here the SO(3) family symmetry. In the second model later on, we use an A4

family symmetry instead, although there we only need real triplet representations as well.
In the following, we suppress the SO(3) indices. In addition to the matter fields Fi and
Ti, we consider two right-handed neutrinos, singlets under SU(5) as well as under SO(3),
labelled by N1 and N2.

SU(5) is spontaneously broken by the vev of the H24 field, electroweak symmetry is
broken by the vevs of the Higgs fields H5, H̄5, H ′5, H̄ ′5 and SO(3) is spontaneously broken
by the vevs of the flavon fields, i.e. the family symmetry breaking Higgs fields φ123, φ23, φ3

and φ̃23. We comment below on the specific directions in which we assume SO(3) to be
broken by the flavons.

Furthermore, we consider additional heavy messenger fields which, after effectively
integrating them out of the theory, give rise to higher-dimensional operators generating the
Yukawa coupling matrices as well as the mass matrix of the gauge singlet (right-handed)
neutrinos N1 and N2.

The field content of our model as well as the symmetries are specified in Tab. 9.1. We
would like to point out that we do not explicitly consider the full flavour and GUT Higgs
sector of the model and just assume that the SU(5) and SO(3) breaking vevs are aligned
in the desired directions of field space. We assume that in these sectors issues like doublet-
triplet splitting are resolved. Without specifying these sectors, a reliable calculation of the
proton decay rate is also beyond the scope of the present work.

9.2.2 The SO(3)× SU(5) Symmetric Superpotential

With the field content and symmetries specified in Tab. 9.1 the superpotential contains
the following renormalisable terms:

WH = µ5H5H̄5 + µ′5H
′
5H̄
′
5 + µ24H

2
24 (9.7)

WX =
∑
i

(
MUiUiŪi +MXiXiX̄i +MX′i

X ′iX̄
′
i +MZiZiZ̄i

)
+MY Y Ȳ +MY ′Y

′Ȳ ′ (9.8)

Wint = κFiFφiX
′
i + κTiTiH̄5X̄i + κ̃FFH̄

′
5Y + κ̃TT2φ̃23Ȳ

′ + κNiNiH5X̄i

+ λφiφ
2
iZi + λNiN

2
i Z̄i + λTiT

2
i Ui + λHiHŪiZ̄i + λ̃HY

′Y ′H5

+ λXH24XiX̄
′
i + λYH24Y

′Ȳ + a3T
2
3H5 . (9.9)

Integrating out the heavy messenger superfields denoted by U , X, Y and Z, the Feyn-
man diagrams in Figs. 9.1, 9.2 and 9.3 lead to the following effective non-renormalisable
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SU(5) SO(3) Z2 Z6 Z3 Z
′
2 Z

MP
2

Chiral Matter

F 5̄ 3 + 0 0 + −
T1, T2, T3 10, 10, 10 1, 1, 1 +, +, − 0, 2, 0 1, 0, 0 +, +, + −, −, −
N1, N2 1, 1 1, 1 +, + 0, 2 1, 0 +, + −, −

Flavons & Higgs Multiplets

φ23, φ123, φ3 1, 1, 1 3, 3, 3 +, +, − 0, 4, 0 2, 0, 0 −, −, − +, +, +

φ̃23 1 3 + 1 0 − +
H5, H̄5 5, 5 1, 1 +, + 0, 0 0, 0 +, + +, +
H ′5, H̄ ′5 5, 5 1, 1 +, + 3, 3 0, 0 +, + +, +
H24 24 1 + 0 0 − +

Matter-like Messengers

X1, X2, X3 5, 5, 5 1, 1, 1 +, +, − 0, 2, 0 1, 0, 0 +, +, + −, −, −
X̄1, X̄2, X̄3 5̄, 5̄, 5̄ 1, 1, 1 +, +, − 0, 4, 0 2, 0, 0 +, +, + −, −, −

Y , Ȳ 10, 10 3, 3 +, + 3, 3 0, 0 +, + −, −
X ′1, X ′2, X ′3 5, 5, 5 1, 1, 1 +, +, − 0, 2, 0 1, 0, 0 −, −, − −, −, −
X̄ ′1, X̄ ′2, X̄ ′3 5̄, 5̄, 5̄ 1, 1, 1 +, +, − 0, 4, 0 2, 0, 0 −, −, − −, −, −
Y ′, Ȳ ′ 10, 10 3, 3 +, + 3, 3 0, 0 −, − −, −

Higgs-like Messengers

U1, U2 5, 5 1, 1 +, + 0, 2 1, 0 +, + +, +
Ū1, Ū2 5̄, 5̄ 1, 1 +, + 0, 4 2, 0 +, + +, +
Z1, Z2 1, 1 1, 1 +, + 0, 4 2, 0 +, + +, +
Z̄1, Z̄2 1, 1 1, 1 +, + 0, 2 1, 0 +, + +, +

Table 9.1: Representations and charges of the superfields. The subscript i on the fields
Ti, Ni, Ui, Ūi, Xi, X̄i, X ′i, X̄

′
i and Zi, Z̄i is a family index. The flavon fields φi, φ̃23 can be

associated to a family via their charges under Z2 × Z6 × Z3. The subscripts on the Higgs
fields H, H̄, H ′ and H̄ ′ denote the transformation properties under SU(5). MP stands
for matter parity.
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superpotential terms in the SU(5) and SO(3) unbroken phase:

WYl = F

(
b1
φ23

M
T1 + b2

φ123

M
T2 + b3

φ3

M
T3

)
H̄5 + b̃2F

φ̃23

M
T2H̄

′
5 , (9.10)

WYu =

(
a3T

2
3 + a2

φ2
123

M2
T 2

2 + ã2
φ̃2

23

M2
T 2

2 + a1
φ2

23

M2
T 2

1

)
H5 , (9.11)

WYν = F

(
aν1

φ23

M
N1 + aν2

φ123

M
N2

)
H5 , (9.12)

WMR
ν = aR1

φ2
23

M2
N2

1 +

(
aR2

φ2
123

M2
+ ãR2

φ̃2
23

M2

)
N2

2 , (9.13)

where he have introduced an effective messenger scale M .
After GUT symmetry breaking the SU(2)L doublet components from H5 and H ′5 as

well as H̄5 and H̄ ′5 respectively mix and only the light states acquire the SU(2)L breaking
vevs which give the fermion masses. We parameterise the Higgs mixing with the mixing
angles γ and γ̄ respectively as(

H5

H ′5

)
=

(
cγ −sγ
sγ cγ

)(
Hl

Hh

)
,(

H̄5

H̄ ′5

)
=

(
cγ̄ −sγ̄
sγ̄ cγ̄

)(
H̄l

H̄h

)
,

(9.14)

where we have used the common abbreviations cγ ≡ cos γ and sγ ≡ sin γ and similar for
the other angle γ̄. The light Higgs doublets are denoted with an index l while the heavy
Higgs doublets are denoted with an index h.

The effective couplings a and b appearing in the effective superpotential in Eqs. (9.10)-
(9.13) can be expressed in terms of the fundamental couplings from Eq. (9.9), the messenger
masses from (9.8), the Higgs mixing angles and the effective messenger scale M as

bi =
κFiλXκTi

cγ̄

Mv24

MXiMX′i

, b̃2 =
κ̃FλY κ̃T
sγ̄

Mv24

MYMY ′
, (9.15)

ã2 =
s2
γ̄

cγ

M2
X2
M2

X′2

v2
24MU2MZ2

λT2λH2λ̃φ
κ̃2
Fλ

2
X κ̃

2
T

+
s2
γ̄

cγ

M2
X2
M2

X′2

v2
24M

2
Y

λ̃H
κ̃2
Fλ

2
Y

, (9.16)

ai =
c2
γ̄

cγ

M2
Xi
M2

X′i

v2
24MUiMZi

λTiλHiλφi
κ2
Fiλ

2
Xκ

2
Ti

, (9.17)

aνi =
cγ̄
cγ

κNi
κTi

, (9.18)

aRi = c2
γ̄

M2
Xi
M2

X′i

v2
24MZi

λφiλNi
κ2
Fiλ

2
Xκ

2
Ti

, ãR2 =
s2
γ̄

3

M2
YM

2
Y ′

v2
24MZ2

λ̃φλN2

κ2
F2λ

2
Y κ

2
T2

. (9.19)
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Figure 9.1: Supergraph diagrams inducing effective superpotential operators for the
down-type quarks and charged leptons.
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Figure 9.2: Supergraph diagrams inducing effective superpotential operators for the
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Figure 9.3: Supergraph diagrams inducing effective superpotential operators for the
neutrino sector.
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9.2.3 Vacuum Alignment

In the following, we assume that the vevs of the SO(3) breaking flavon fields point in the
following directions in field space

b1
〈φ23〉
M

=

 0
1
−1

 ε23 , b2
〈φ123〉
M

=

1
1
1

 ε123 , b3
〈φ3〉
M

=

0
0
1

 ε3 . (9.20)

These relations also define the quantities ε123, ε23 and ε3. The breaking of SO(3) along the
field directions of φ123 and φ23 allows us to realise TB neutrino mixing via CSD [43,112–114].
In the rest of this chapter, we assume that CP is only broken spontaneously by the vev of
the flavon φ̃23.

A priori, for the flavon φ̃23 one may suppose a less constrained alignment,

b̃2
〈φ̃23〉
M

=

0
v
w

 ε̃23 . (9.21)

However, empirically we find that the numerical fit to quark masses and mixings, in partic-
ular quark CP violation, seems strongly to prefer that the vacuum alignment of the flavon
φ̃23 has its second component along the imaginary direction. To simplify the results of the
numerical fit, we shall restrict ourselves to the case:

v = −i . (9.22)

In some future more ambitious theory, one may attempt to reproduce Eq. (9.22) as a result
of some special vacuum alignment, but here we shall simply regard it as a special choice,
or ansatz, which leads to a successful fit to quark CP violation.

9.2.4 Numerical Fit to the SM Fermion Masses and Mixings

We define our conventions for the Yukawa matrices such that the operators of the form
FTφH̄ and T 2φ2H give the following Yukawa terms in the Lagrangian:

LYuk = −(Y ∗d )ijqid̄jhd − (Y ∗e )ijliējhd − (Y ∗u )ijqiūjhu + h.c. , (9.23)

where the SU(5) relation Yd = Y T
e is fulfilled, if all CG factors are one. The convention

we use here is the same as the one used by the Particle Data Group [4].

The Yukawa matrices for the quarks and charged leptons coupling to the light Higgs
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Parameter Fit Value

ε123 in 10−4 6.56
ε23 in 10−4 −5.74
ε̃23 in 10−3 −2.23

ε3 −0.155
w 3.21

ŷu in 10−6 2.87
ŷc in 10−3 1.39

ŷt 0.526

ηl tan β in 10−2 −3.42
ηq tan β in 10−2 3.00
ηu tan β in 10−2 10.5

Table 9.2: The model parameters for tanβ = 30 and MSUSY = 500 GeV from a fit to
the experimental data.

Quantity (at mt(mt)) Model Experiment Deviation

yτ in 10−2 1.00 1.00 −0.0133%
yµ in 10−4 5.89 5.89 0.0444%
ye in 10−6 2.79 2.79 0.0139%

yb in 10−2 1.58 1.58± 0.05 −0.0190σ
ys in 10−4 2.54 2.99± 0.86 −0.5206σ

yd in 10−6 15.8 15.9+6.8
−6.6 −0.0081σ

yt 0.938 0.936± 0.016 0.0827σ
yc in 10−3 3.39 3.39± 0.46 0.0001σ

yu in 10−6 7.00 7.01+2.76
−2.30 −0.0063σ

θCKM
12 0.2257 0.2257+0.0009

−0.0010 −0.0302σ

θCKM
23 0.0412 0.0415+0.0011

−0.0012 −0.2811σ

θCKM
13 0.0037 0.0036± 0.0002 0.3309σ

δCKM 1.2850 1.2023+0.0786
−0.0431 1.0524σ

Table 9.3: Fit results for the quark Yukawa couplings and mixing and the charged lepton
Yukawa couplings at low energy compared to experimental data. A pictorial representation
of the agreement between our predictions and experiment can also be found in Fig. 9.4.
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doublets are then given from Eqs. (9.10), (9.11), (9.20) and (9.21) by

Yu =

2a1ε
2
23 0 0

0 3a2ε
2
123 + (w2 − 1)ã2

2ε̃
2
23 0

0 0 a3

 ≡
ŷu 0 0

0 ŷc 0
0 0 ŷt

 , (9.24)

Yd =

 0 ε23 −ε23

ε123 ε123 + i ε̃23 ε123 + wε̃23

0 0 ε3

 , (9.25)

Y T
e =

 0 c23ε23 −c23ε23

c123ε123 c123ε123 + i c̃23ε̃23 c123ε123 + wc̃23ε̃23

0 0 c3ε3

 , (9.26)

where c3, c23, c̃23 and c123 are the CG factors arising from GUT symmetry breaking and
we have used the notation described above for the flavon vevs with v = −i. We note that
in the definition for the Yukawa matrices we have introduced a complex conjugation and
therefore a phase factor of +i appears in the 2-2 elements of Yd and Ye.

With the given representations of the flavon and Higgs fields we obtain

c123 = −3/2 , c23 = −3/2 , c3 = −3/2 , c̃23 = 6 . (9.27)

Since we consider large values of tanβ, the 1-loop SUSY threshold corrections are important
and, taking the actual experimental values of the fermion masses into account, the GUT
scale value of yµ/ys prefers c̃23 = 6 and the GUT scale value of yτ/yb prefers c3 = −3/2,
as argued in Chs. 7 and 8.

For the detailed fit of the model to the data we have applied the following procedure:

• In a first step, we took the fermion masses at the scale mt(mt) as provided by [21]
and the low energy values for the CKM parameters and calculated their RG evolution
numerically with the REAP software package [110] without SUSY threshold correc-
tions up to the GUT scale MGUT = 2× 1016 GeV within the MSSM with tan β = 30
and a SUSY scale of MSUSY = 500 GeV. There, we determined a first rough estimate
of the parameters. We should mention that it is not possible to determine a2 and
ã2 simultaneously since they are fixed by the charm quark mass only. Therefore, we
can effectively determine the three parameters ŷu, ŷc and ŷt only.

• In a second step, we have implemented the SUSY threshold corrections in the RGE
evolution via the matching conditions

yMSSM
u,c,t =

ySM
u,c,t

sin β
, (9.28)

yMSSM
e,µ,τ = (1− ηl tan β)

ySM
e,µ,τ

cos β
, (9.29)

yMSSM
d,s = (1− ηq tan β)

ySM
d,s

cos β
, (9.30)
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Figure 9.4: Pictorial representation of the deviation of our predictions from low energy
experimental data for the charged lepton Yukawa couplings and quark Yukawa couplings
and mixing parameters. The deviations of the charged lepton masses are given in % while
all other deviations are given in units of standard deviations σ. The thick blue line gives
the 1% (1σ) bound while the dashed line gives the 2% (2σ) bound. The red crosses denote
our predictions.

yMSSM
b = (1− (ηq + ηu) tan β)

ySM
b

cos β
, (9.31)

θMSSM
ij =

1− ηq tan β

1− (ηq + δ3jηu) tan β
θSM
ij , (9.32)

δMSSM
CKM = δSM

CKM , (9.33)

at the SUSY scale MSUSY = 500 GeV, cf. Ch. 6 and [16, 18]. In Ch. 6 we have also
given ranges for the values of ηi, which are consistent with the fitted values, where

ηl ≈ ηBτ + ηWτ , (9.34)

ηq ≈ ηGb + ηBb + ηWb , (9.35)

ηu ≈ ηy . (9.36)

At the low energy scale mt(mt) we have performed a χ2 fit with the GUT scale
parameters as input. The fit gave a total χ2 of 1.6 where we have assumed a relative
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error of 1% for the charged lepton masses. Since we have 11 parameters and 13
observables this corresponds to a χ2/dof of 0.8 which is very good.

The results for the GUT scale parameters are listed in Tab. 9.2. In Tab. 9.3 the low
energy results are shown and compared to experimental data. A graphical illustration of
the deviations is given in Fig. 9.4. They illustrate that our minimal example model, with
the assumed vacuum alignment of Eqs. (9.20) and (9.21) with the v = −i, can fit the data
well and leads to testable predictions.

We would like to remark that the parameters depend on tan β and MSUSY and are also
subject to several theoretical uncertainties. For example, we have not included the full
flavour structure of the soft parameters. In a more sophisticated approach, there can be
deviations from the matching formulas (9.28)-(9.33). Due to such additional theoretical
uncertainties, we do not explicitly give the errors on the high energy parameters or low
energy predictions. The important input parameters for us are the charged lepton masses
and quark mixing angles which have an experimental error much smaller than these un-
certainties.

9.2.5 The Neutrino Sector

We now turn to the neutrino sector. We start with the derivation of the mass matrix for
the light neutrino states. The neutrino Yukawa matrix is obtained from Eq. (9.12) as

Yν =

 0 aν2ε123

aν1ε23 aν2ε123

−aν1ε23 aν2ε123

 . (9.37)

Additionally, we have a diagonal mass matrix for the two right-handed neutrinos from
Eq. (9.13),

MR =

(
2aR1ε

2
23 0

0 3aR2ε
2
123 + 3(w2 − 1)ãR2 ε̃

2
23

)
. (9.38)

Using the seesaw relation

mν = −v2
uYνM

−1
R Y T

ν , (9.39)

we obtain for the neutrino mass matrix

mν =
m3

2

0 0 0
0 1 −1
0 −1 1

+
m2

3

1 1 1
1 1 1
1 1 1

 , (9.40)

with

m2 = −v2
u

a2
ν2
ε2123

aR2ε
2
123 + (w2 − 1)ãR2 ε̃

2
23

and m3 = −v2
u

a2
ν1

aR1

. (9.41)

These two parameters can have either sign.
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From the structure of mν , we obtain TB mixing in the neutrino sector,

θν13 = 0◦ , θν23 = 45◦ , θν12 = arcsin
1√
3
≈ 35.3◦ . (9.42)

From the lepton sector we get the additional mixing contributions

θe13 = 0◦ , θe23 = 0◦ , |θe12| =
∣∣∣∣ c123ε123

c123ε123 − i c̃23ε̃23

∣∣∣∣ ≈ 4.2◦ . (9.43)

There is also a complex phase introduced by the charged lepton Yukawa matrix which can
be calculated to

δe12 = arctan

(
c̃23ε̃23

c123ε123

)
≈ 85.8◦ . (9.44)

For the approximate calculation of the MNS mixing parameters at the GUT scale we
can use [135,136]:

sMNS
23 e−iδMNS

23 ≈ sν23e−iδν23 − θe23 ,

sMNS
13 e−iδMNS

13 ≈ θν13e−iδν13 − sν23θ
e
12e−i(δν23+δe12) ,

sMNS
12 e−iδMNS

12 ≈ sν12e−iδν12 − cν23c
ν
12θ

e
12e−iδe12 ,

(9.45)

where we have already discarded RG corrections which are small for the case of hierarchical
neutrino masses [110, 137]. For simplicity, we first want to assume that m2 and m3 have
the same sign. In this case, the phases δνij are trivial. For the total leptonic mixing angles
we then obtain

θMNS
12 ≈ 35.2◦ ,

θMNS
13 ≈ 3.0◦ ,

θMNS
23 ≈ 45◦ .

(9.46)

For the phases we have δMNS
13 = δe12−π ≈ −94.2◦, δMNS

12 = −4.2◦ and δMNS
23 = 0◦ from which

the final MNS phases can be calculated according to [135,136]

δMNS = δMNS
13 − δMNS

12 ≈ −90◦ ,

α1 = 2(δMNS
12 + δMNS

23 ) = 2δMNS
12 ≈ −8.4◦ ,

α2 = 2δMNS
23 ≈ 0◦ ,

(9.47)

where α1 and α2 are the Majorana phases as in the PDG parameterisation where they are
contained in a diagonal matrix diag(eiα1/2, eiα2/2, 1). This is not the whole story yet, since
we made the assumption that m2 and m3 have the same sign. If they have opposite signs,
we get α2 = 180◦, while the other phases remain the same.

Thus, in summary, the predictions of our model for the leptonic mixing parameters are
compatible with the experimental 1σ ranges at low energy which are: θMNS

12 = (34.5±1.0)◦,
θMNS

13 = (5.7+3.0
−3.9)◦ and θMNS

23 = (42.3+5.3
−2.8)◦, taken from [138].
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We note that with the mixing pattern of our model, i.e. TB mixing produced in the
neutrino sector, and charged lepton mixing corrections from θe12 only, the leptonic mixing
angles and the Dirac CP phase δMNS satisfy the lepton mixing sum rule [43,134,139,140]

θMNS
12 − θMNS

13 cos(δMNS) ≈ arcsin(1/
√

3) . (9.48)

The approximately maximal CP violation, i.e. δMNS ≈ −90◦, only leads to small deviations
of the solar mixing angle from its TB value of arcsin(1/

√
3), although the charged lepton

corrections generate θMNS
13 ≈ 3.0◦.

The predictions of our model for the leptonic mixing angles and Dirac CP phase δMNS

stated in Eqs. (9.46) and (9.47) can be tested accurately by ongoing and future precision
neutrino oscillation experiments [141].

The kinematic mass accessible in the single beta decay end-point experiment KATRIN
is

m2
β ≡ m2

1c
2
12c

2
13 +m2

2s
2
12c

2
13 +m2

3s
2
13 . (9.49)

In our case, neutrino masses are strictly hierarchical m3 � m2 > m1 = 0 such that we can
determine the masses m2 and m3 from the mass squared differences and obtain

m2
β =

(
3.2+0.2
−0.3

)
× 10−5 eV2 , (9.50)

which is beyond the reach of the upcoming experiments.
The effective mass relevant for neutrinoless double beta decay reads

mee = |m1c
2
12c

2
13e

iα1 +m2s
2
12c

2
13e

iα2 +m3s
2
13e

2 i δMNS| , (9.51)

which is calculated to

mee = (2.8± 0.1)× 10−3 eV or mee = (3.0± 0.1)× 10−3 eV , (9.52)

depending on the Majorana phase α2. This is also beyond the reach of upcoming exper-
iments. However, we note that neutrinoless double beta decay is an unavoidable conse-
quence in the this model.



110 9. Implications for GUT Model Building and a Concrete Application



PART V

The Case of Small tanβ





CHAPTER 10

Quark Mixing Sum Rules and the
Right Unitarity Triangle

In the last part we have discussed Yukawa couplings in SUSY GUTs for medium and large
tan β. In this part we turn our attention to the case of small tan β. We start our discussion
of that particular case in this chapter with a discussion of quark mixing sum rules and their
relation to the right unitarity triangle in the quark sector based on [28].

We assume here that the Yukawa matrices are generated by the vacuum alignment of
some family symmetry breaking flavon fields. This point of view defines a preferred basis,
which we shall refer to as the flavour basis. We adopt this point of view since in such
frameworks, the resulting low energy effective Yukawa matrices are expected to have a
correspondingly simple form in the flavour basis associated with the high energy simple
flavon vacuum alignment. This suggests that it may be useful to look for simple Yukawa
matrix structures in a particular basis, since such patterns may provide a bottom-up route
towards a theory of flavour based on a spontaneously broken family symmetry.

Unfortunately, experiment does not tell us directly the structure of the Yukawa matrices
and the complexity of the problem, in particular the basis ambiguity from the bottom-up
perspective, generally hinders the prospects of deducing even the basic features of the
underlying flavour theory from the experimental data. We are left with little alternative
but to follow an ad hoc approach pioneered some time ago by Fritzsch [22,23] and currently
represented by the myriads of proposed effective Yukawa textures, see, e.g. [22–27], whose
starting assumption is that in some basis the Yukawa matrices exhibit certain nice features
such as symmetries or zeros in specific elements which have become known as texture
zeros. For example, in his classic paper, Fritzsch pioneered the idea of having six texture
zeros in the 1-1, 2-2, 1-3 entries of the Hermitian up and down quark Yukawa (or mass)
matrices [22].

Unfortunately, these six-zero textures are no longer consistent with experimental data,
since they imply the bad prediction |Vcb| ∼

√
ms/mb, so texture zerologists have been

forced to retreat to the (at most) four-zero schemes discussed, for example, in [25–27]
which give up on the 2-2 texture zeros allowing the good prediction |Vcb| ∼ ms/mb.

However, it turns out that four-zero textures featuring zeros in the 1-1 and 1-3 en-



114 10. Quark Mixing Sum Rules and the Right Unitarity Triangle

tries of both up and down Hermitian mass matrices may also lead to the bad prediction
|Vub|/|Vcb| ∼

√
mu/mc unless |Vcb| results from the cancellation of quite sizeable up- and

down-type quark 2-3 mixing angles, leading to non-negligible induced 1-3 up- and down-
type quark mixing [27]. Another possibility is to give up on the 1-3 texture zeros, as well
as the 2-2 texture zeros, retaining only two texture zeros in the 1-1 entries of the up and
down quark matrices [25]. We reject here both of these options, and instead choose to
maintain up to four texture zeros, without invoking cancellations, for example by making
the 1-1 element of the up (but not down) quark mass matrix nonzero, while retaining 1-3
texture zeros in both the up and down quark Hermitian matrices, as suggested in [26].

In this chapter we discuss phenomenologically viable textures for hierarchical quark
mass matrices which have both 1-3 texture zeros and negligible 1-3 mixing in both the up
and down quark mass matrices. We derive quark mixing sum rules applicable to textures of
this type, in which Vub is generated from Vcb as a result of 1-2 up-type mixing in Sec. 10.1,
in direct analogy to the lepton sum rules derived in [43, 134–136, 139, 140], and especially
discuss how to use the sum rules to show how the right-angled unitarity triangle, i.e.,
α ≈ 90◦, relates to the phases in the up and down quark mass matrices.

In Sec. 10.2 we show how this phase structure can be accounted for by a remarkably
simple scheme involving real mass matrices apart from a single element of either the up
or down quark mass matrix being purely imaginary. Fritzsch and Xing have previously
emphasised how their four-zero scheme with 1-1 and 1-3 texture zeros in the Hermitian up
and down quark mass matrices can be used to accommodate right unitarity triangles [27],
but since their scheme involves large 2-3 and non-negligible 1-3 up and down quark mixing,
our sum rules are not applicable to their case. Therefore, the textures in [25] and [27] do
not allow us to explain α ≈ 90◦ by simple structures with a combination of purely real
and purely imaginary matrix elements. Recently, it has become increasingly clear that
current data is indeed consistent with the hypothesis of a right unitarity triangle, with the
best fits giving

(
α = 90.7+4.5

−2.9

)◦
[142], and this provides additional impetus for our scheme.

The phenomenological observation that α ≈ π/2 has also motivated other approaches,
see, e.g. [143–145], which are complementary to the approach developed in this chapter.
In Sec. 10.2 we discuss also textures with nonzero 1-3 elements in the up sector which,
however, turn out to be disfavoured.

We conclude this chapter in Sec. 10.3 with a discussion of the implications of zero 1-3
mixing for the charged lepton and neutrino sectors in the framework of GUTs and show
how the quark mixing sum rules may be used to yield an accurate prediction for the reactor
mixing angle.

10.1 Quark Mixing Sum Rules

We start our derivation of quark mixing sum rules with the derivation of sum rules for the
mixing angles and afterwards we derive a sum rule for the phases. In this whole discussion
we always suppose that θd13 = θu13 = 0. This can be understood as a direct result from a
flavon vacuum alignment, see, e.g. [146]. Therefore, although from the SM point of view
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this corresponds only to a convenient choice, it becomes a nontrivial assumption at the
level of a specific flavour model.

10.1.1 Mixing Angle Sum Rules

We use the conventions for the CKM matrix as defined in App. A.1. For θd13 = θu13 = 0,
Eq. (A.8) simplifies to

V ′CKM = UuL
12
†UuL

23
†UdL

23 U
dL
12 . (10.1)

Then, by equating the right-hand sides of Eqs. (A.9) and (10.1) and expanding to leading
order in the small mixing angles, we obtain the following relations (up to cubic terms in
the physical quark mixing angles):

θ23e
−iδ23 = θd23e

−iδd23 − θu23e
−iδu23 , (10.2)

θ13e
−iδ13 = −θu12e

−iδu12(θd23e
−iδd23 − θu23e

−iδu23) , (10.3)

θ12e
−iδ12 = θd12e

−iδd12 − θu12e
−iδu12 . (10.4)

For convenience we drop in this chapter the superscript CKM in the quark mixing angles
θCKM
ij . Let us first consider Eq. (10.3), which can be transformed into

θ13e
−iδ13 = −θu12θ23e

−i(δu12+δ23) , (10.5)

where θ13 and θ23 stand for the measurable 1-3 and 2-3 mixing angles in the quark sector,
respectively. Taking the modulus of Eq. (10.5), the 1-2 angle entering the up-sector rotation
(VuL) in the flavour basis obeys

θu12 =
θ13

θ23

= (4.96± 0.30)◦ . (10.6)

where the 1σ errors are displayed [4].
Similarly, combining Eq. (10.4) with Eq. (10.5) one receives

θ12 −
θ13

θ23

e−i(δ13−δ23−δ12) = θd12e
−i(δd12−δ12) . (10.7)

This, together with the identification Eq. (A.10) gives rise to the quark sector sum rule1

θd12 =

∣∣∣∣θ12 −
θ13

θ23

e−iδCKM

∣∣∣∣ =
(
12.0+0.39

−0.22

)◦
(10.8)

which is valid up to higher order corrections. The present best-fit value and the 1σ errors
are also displayed.

1We would like to remark that for θu12 � θd12, the sum rule may be further simplified to θ12− θ13
θ23

cos δ =
θd12. For similar considerations in the lepton sector, see, e.g. [43,134,139].
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Needless to say, the relations (10.6) and (10.8) apply at the scale at which the flavour
structure emerges, often close to the scale of Grand Unification. Thus, in principle, the
renormalisation group (RG) effects should be taken into account. However, due to the
smallness of the mixing angles in the quark sector and the hierarchy of the quark masses,
the RG corrections to the above relations are small and can be neglected here to a good
approximation.

10.1.2 Phase Sum Rule

It is interesting that, with the 1-2 mixing angles in the up and down sector derived from
the physical parameters, the 1-2 phase difference in the up and down sectors can also be
determined. Indeed, combining all three equations (10.2), (10.3) and (10.4), one obtains

θ13θ12

θ23

eiδCKM = −θu12(θd12e
−i(δd12−δu12) − θu12) . (10.9)

Using Eqs. (10.6) and (10.8) we can solve Eq. (10.9) for δd12 − δu12 and obtain (at 1σ level)

δd12 − δu12 = (91.5+5.5
−4.0)◦ , (10.10)

which is remarkably close to π/2. We emphasise that this is a consequence of zero 1-3
mixing in the up and down sectors, θd13 = θu13 = 0. Otherwise the dependence on θ23 and
δ23 would not cancel and the phase δ13 could give a contribution.

We show now that, assuming quark textures with negligible 1-3 up and down quark
mixing, corresponding to 1-3 texture zeros for hierarchical quark mass matrices, δd12 − δu12

is approximately equal to the unitarity triangle angle α. This comes from its definition:

α = arg

(
− VtdV

∗
tb

VudV ∗ub

)
= arg

(
−(s12s23 − c12c23s13e

iδCKM)c23c13

c12c13s13eiδCKM

)
≈ arg

(
1− θ12θ23

θ13

e−iδCKM

)
.

(10.11)

For the second term in the argument, we can use Eqs. (10.2), (10.3) and (10.4):

α ≈ arg

(
1 +

θ23e
iδ23(θd12e

iδd12 − θu12e
iδu12)

θu12e
iδu12θ23eiδ23

)

= arg

(
θd12

θu12

ei(δ
d
12−δu12)

)
= δd12 − δu12 .

(10.12)

Thus, one can see that the angle α is nothing but the phase difference δd12 − δu12, corre-
sponding to a very simple phase sum rule

α ≈ δd12 − δu12 . (10.13)
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10.2 Quark Mass Matrices with 1-3 Texture Zeros

Since we have now the quark mixing sum rules at hand we apply them to various types
of textures. We end this section with a discussion of textures with nonzero 1-3 elements
to which our sum rules are not directly applicable. However, we find in this case a severe
deviation between our prediction and experimental data as long as we stick to our proposed
simple phase structure of the mass matrices.

10.2.1 Real/Imaginary Matrix Elements for α = 90◦

According to the phase sum rule in Eq. (10.13), the experimental observation that α ≈ 90◦,
or the equivalent determination in Eq. (10.10), suggests looking at quark mass matrices
with 1-3 texture zeros and with δd12 or δu12 at the special values±π/2. This would correspond
to a set of rather specific textures of the quark mass matrices with, for example, purely
imaginary 1-2 elements in either Mu or Md while the 2-2 elements remain real. For a
discussion of the relation between the phases of the mixing angles and the phases of the
matrix elements see, e.g. [114]. For instance, the following patterns naturally emerge:

Mu =

au −ibu 0
∗ cu du
∗ ∗ eu

 , Md =

au bd 0
∗ cd dd
∗ ∗ ed

 , (10.14)

or

Mu =

au bu 0
∗ cu du
∗ ∗ eu

 , Md =

au ibd 0
∗ cd dd
∗ ∗ ed

 , (10.15)

where au, bu, cu, du, eu and ad, bd, cd, dd, ed are real parameters, and the elements marked
by “*” are irrelevant as long as the hierarchy of the mass matrix is large enough, or,
equivalently, as long as the mixing angles in VuR and VdR are small. These textures are all
phenomenologically viable, and consistent with α = 90◦, and their simple phase structure
provides a post justification of our assumption of 1-3 texture zeros and negligible 1-3
up- and down-type quark mixing. However, the above textures are clearly not the most
predictive ones and, for example, do not relate the up and down quark 1-2 mixing angles
to masses. This requires additional assumptions, such as additional texture zeros and
Hermitian or symmetric matrices, as we discuss now.

10.2.2 Four-Zero Textures Confront the Sum Rules

Under the additional assumptions of symmetric or Hermitian mass matrices in the 1-2
block and zero textures in the 1-1 positions of the quark mass matrices, i.e.,

Mu =

 0 bu 0
bu cu du
∗ ∗ eu

 and Md =

 0 ibd 0
±ibd cd dd
∗ ∗ ed

 , (10.16)
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we obtain as additional predictions the GST relations [97] with 1σ errors displayed,

θu12 =

√
mu

mc

=
(
2.61+0.54

−0.46

)◦
, (10.17)

θd12 =

√
md

ms

=
(
13.2+3.4

−3.3

)◦
. (10.18)

Here we already see a conflict in the up sector. The prediction for θu12 from the sum
rule in Eq. (10.6) is quite different (several σ away) from the GST relation above. That
suggests that the texture in the up sector should be modified to be in good agreement with
experiment. By contrast the prediction from the sum rule in Eq. (10.8) for θd12 is in very
good agreement within the errors with the GST result in Eq. (10.18), and therefore it is
quite plausible to keep the simple texture ansatz for the down sector.

Combining Eqs. (10.17) and (10.18) with the sum rules in Eqs. (10.6) and (10.8), the
two relations ∣∣∣∣θ12 −

θ13

θ23

e−iδCKM

∣∣∣∣ =

√
md

ms

(10.19)

and
θ13

θ23

=

√
mu

mc

(10.20)

emerge. We emphasise that these results do not hold for the textures in [27] where the
2-3 up and down quark mixings are large and the 1-3 up and down quark mixings are
non-negligible.

The compatibility of Eq. (10.19) with the experimental results for the down-type quark
masses and mixing parameters [4] is illustrated in Fig. 10.1. We note that RG running for
the quark masses, as well as their potential SUSY threshold corrections, are very similar
for the first two generations and thus cancel out in their ratio. For our estimates, we have
considered the running quark masses at the top mass scale mt(mt) [21]. The CKM phase
δCKM is extracted for given

√
md/ms. The solid blue line shows the relation for best-

fit values of the parameters while the dashed blue lines indicate the range with 1σ errors
included. The dashed horizontal and vertical black lines (and solid black lines) show the 1σ
errors (and best-fit values) for δCKM and

√
md/ms, respectively. The relation of Eq. (10.19)

is well compatible with the present data. Future more precise experimental measurements
(for instance at LHCb or B factories) and, in particular, an improved knowledge on md,
e.g. from lattice QCD, are required to test it more accurately.

In the following, we consider some examples of possible modifications to the textures in
the up sector which are phenomenologically acceptable, while leaving the successful down
sector texture unchanged, and retaining the successful real and imaginary scheme which
leads to the right unitarity triangle. Then we discuss in Sec. 10.2.5, the idea of relaxing
the up quark 1-3 texture zero which turns out to be disfavoured. Therefore we first restrict
ourselves to either relaxing the up quark 1-1 texture zero, or relaxing symmetry in the 1-2
up quark sector.
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Figure 10.1: Graphical illustration of the relation of Eq. (10.19). The (dashed) blue
lines indicate the predicted best-fit (1σ) values of δCKM for given

√
md/ms under the

assumptions of Sec. 10.2.2, and the dashed horizontal and vertical black lines (and solid
black lines) show the 1σ errors (and best-fit values) for δCKM and

√
md/ms, respectively.

10.2.3 Relaxing the Up Quark 1-1 Texture Zero

One possible modification to the four zero textures is to introduce a nonzero element in
the 1-1 position of the up quark mass matrix, i.e.

Mu =

au bu 0
bu cu du
∗ ∗ eu

 and Md =

 0 ibd 0
±ibd cd dd
∗ ∗ ed

 . (10.21)

As a result, we obtain the up sector relation

mu ≈ au −
b2
u

cu
(10.22)

which allows to adjust au, which is of the order of the up quark mass, while bu/cu ≈ θu12

has to be equal to the value obtained in Eq. (10.6) using the sum rule. For the down
sector, there is still the successful prediction from Eq. (10.18) leading to the successful sum
rule relation of Eq. (10.19). Furthermore, as discussed in Sec. 10.2.1, the Dirac phase of
the CKM matrix is correct. We note that there exist several variants of the texture. For
example, we can choose the 1-2 element of Md real, the 1-2 element of Mu purely imaginary
and all the other elements also real. These variants are valid as long as bu/cu is real and
bd/cd is purely imaginary, or vice versa.
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We emphasise that the elements marked by “*” are irrelevant as long as the hierarchy
of the mass matrix is large enough, so they may be replaced by zeros or, if the matrices
are Hermitian, the 3-1 elements may be zero while the 3-2 elements are determined by
Hermiticity. Since the sum rule in Eq. (10.2) shows that Vcb is determined only by the
difference in 2-3 mixing angles in the up and down sectors, it is also possible to set either
du or dd equal to zero without changing the physical predictions. In this way it is possi-
ble to arrive at some of the four-zero textures discussed, for example, in [26]. However,
we emphasise that here we are additionally assuming the real and imaginary structures
consistent with the right unitarity triangle and this was not discussed in [26].

10.2.4 Relaxing the Up Quark 1-2 Symmetry

A second option for a texture consistent with experimental data consists in relaxing the
symmetry of the 1-2 block in the up sector, while keeping the texture zero in the 1-1
position:

Mu =

 0 bu 0
b′u cu du
∗ ∗ eu

 and Md =

 0 ibd 0
±ibd cd dd
∗ ∗ ed

 . (10.23)

The two up-sector relations

mu ≈ bub
′
u/cu , mc ≈ cu , θu12 =

bu
cu

(10.24)

can be simultaneously fulfilled by choosing bu, b
′
u and cu appropriately. The prediction

from Eq. (10.18) and the prediction for δCKM do not change and remain compatible with
data. We note that there exist several variants of the texture. As before, it is sufficient to
have bu/cu real and bd/cd purely imaginary, or vice versa.

10.2.5 Textures with Nonzero 1-3 Elements

With nonzero 1-3 elements, δCKM depends not only on δd12−δu12 but also on other parameters
(in particular δu,d13 and δu,d23 ) and the simple quark mixing sum rules in Eqs. (10.6) and (10.8)
are no longer valid. Examples of this type of texture include (with real parameter fu)

Mu =

 0 bu fu
bu cu du
∗ ∗ eu

 , Md =

 0 ibd 0
ibd cd dd
∗ ∗ ed

 , (10.25)

and

Mu =

 0 bu ifu
bu cu du
∗ ∗ eu

 , Md =

 0 ibd 0
ibd cd dd
∗ ∗ ed

 , (10.26)

but also variations with different elements chosen either purely imaginary or real.
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We demonstrate our approach for this case by means of the texture in Eq. (10.25). The
starting point is here (similar to Eqs. (10.2)-(10.4)):

θ23e
−iδ23 = θd23e

−iδd23 − θu23e
−iδu23 , (10.27)

θ13e
−iδ13 = −θu13e

−iδu13 − θu12θ23e
−i(δu12+δ23) , (10.28)

θ12e
−iδ12 = θd12e

−iδd12 − θu12e
−iδu12 , (10.29)

where we have also neglected terms of order O(θ13θij). From our texture ansatz, we know

the phases δ
u/d
12 , δ

u/d
23 and δu13. For the values of θ

u/d
12 , we take the values from the GST

relations, i.e. Eq. (10.17), which hold here because of the zeros in the 1-1 position and the
symmetric structure for the first two generations. Then we can calculate θu13 and δCKM

in terms of the known quantities and obtain δCKM = (78.83+3.62
−3.35)◦. This result is several

standard deviations away from the measurements.
Beyond the particular example discussed above, we found that the inconsistency of the

prediction for δCKM also appears in all other cases with δ23, δ
u/d
12 and δ

u/d
13 being either zero

or ±π. Furthermore, the same happens for textures with fu = 0 and fd 6= 0, where fd
denotes the 1-3 element of Md. We conclude that under these conditions textures with
nonzero 1-3 elements are disfavoured.

10.3 Quark-Lepton Mixing Relations

Extending the notion of zero 1-3 mixing to the lepton sector (i.e. under the assumption
of θν13 = θe13 = 0), the presently unknown mixing angle θMNS

13 of the leptonic MNS mixing
matrix satisfies the relation (analogous to Eq. (10.6))

θMNS
13 = sin θMNS

23 θe12 , (10.30)

where θe12 is the 1-2 mixing in the charged lepton mass matrix Me. This relation has
emerged before, for example, in the context of lepton sum rules in [43,134,139].

In many classes of GUT models of flavour, the 1-2 mixing angles corresponding to Me

and Md are related by a group theoretical Clebsch factor, for example θd12 = 3θe12 [13]. In
general, it is usually assumed that θd12 is of the order of the Cabibbo angle, leading to a
prediction θMNS

13 ∼ 3◦ [43–45, 134, 139]. However, in the context of Fritzsch-type textures,
which are based on Hermitian matrices with 1-1, 2-2 and 1-3 texture zeros, this prediction
can be made more precise by using the sum rule which relates θd12 to down-type quark
masses. Thus, applying Eq. (10.8) at low energies and taking the present experimental
data for the quark mixing angles, and for θMNS

23 (taken from [147]), one can make the
rather precise prediction

θMNS
13 =

(
2.84+0.22

−0.18

)◦
(10.31)

which gives sin2 θMNS
13 = 0.0025+0.0004

−0.0003 and holds under the assumption of texture zeros in
the 1-3 elements of the mass matrices (or more precisely θu13 = θd13 = θν13 = θe13 = 0)
and θd12 = 3θe12. Of course, Eq. (10.31) is only a single example out of a larger variety of
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predictions which may arise in unified flavour models, see the chapters before or [14]. We
emphasise that the main use of Eq. (10.8) in this context is that it allows to “determine”
the down quark mixing θd12, which is generically involved in relations between quark and
lepton mixing angles, from measurable quantities.

We note that in the lepton sector, the RG corrections, see, e.g. [110,137], can be signif-
icant, depending on the absolute neutrino mass scale (and on tan β in a SUSY framework)
and other effects, such as canonical normalisation on the mixing angles, can also be size-
able [134–136, 140]. Furthermore, relaxing the 1-1 texture zero in the up quark sector
may switch on a nonzero 1-3 mixing angle in the neutrino sector via partially constrained
sequential dominance [43,112–114].



CHAPTER 11

A GUT Flavour Model for Small tanβ

In this chapter, based on [45], we propose a type II upgrade [42] model based on an
A4 family symmetry, amended by some discrete Z2

3 × Z3
2 symmetries with SU(5) grand

unification. The model proposed here is similar to the first flavour model we proposed, but
there are also some substantial differences, like, e.g. the type II seesaw contribution in the
neutrino sector. We predict TB neutrino mixing via CSD [43,112–114] like in Ch. 9.

It is interesting to ask in what class of theories would we learn the most about the
neutrino mass scale from the discovery of neutrinoless double beta decay? Clearly the
answer would be those theories which predict the effective neutrino mass parameter mee

uniquely as a function of the neutrino masses without ambiguities from unknown phases,
but the next question is whether such theories do exist? Perhaps surprisingly the answer
is in the affirmative, and, even more surprisingly, the class of theories which have this
property turn out to uniquely specify the way that the seesaw mechanism is implemented
in terms of a particular interplay between the type I and type II seesaw mechanisms.

The effect of a type II upgrade unit matrix structure in the neutrino sector implies that
for quasi-degenerate neutrino masses the Majorana CP phases are small and thus mee ≈
mlightest. In general having quasi-degenerate or hierarchical neutrino masses does not lead to
a sharp prediction for the neutrinoless double beta decay observable mee as a function of the
neutrino masses due to the presence of unknown phases in the neutrino mass matrix [130].
Allowing for arbitrary Majorana phases and considering a quasi-degenerate neutrino mass
spectrum and TB mixing, mee can still be in the approximate interval [mlightest/3,mlightest].
For the quarks and charged leptons further flavons are needed, misaligned to the neutrino
flavons, to fit the observable masses and mixing angles. For all flavons we assume here the
same vacuum alignment as in Ch. 9. As expected, the type II upgrade model predicts the
neutrinoless double beta decay mass observable to be approximately equal to the neutrino
mass scale, independently of phases.

In order for radiative corrections not to modify too much the TB mixing predictions for
quasi-degenerate neutrinos [148], we shall restrict ourselves to low values of tanβ < 1.5.
For such low tan β, a viable GUT scale ratio of yµ/ys is achieved within SUSY SU(5) GUTs
using a CG factor of 9/2, as proposed in the previous chapters. For the third generation
we use b-τ -Yukawa coupling unification yτ/yb = 1 at the GUT scale which is viable for low
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SU(5) A4 Z2 Z
′
3 Z

′
2 Z3 Z

MP
2

Chiral Matter

F 5 3 + 0 + 0 -
T1, T2, T3 10, 10, 10 1, 1, 1 +, +, - 0, 1, 0 +, +, + 1, 0, 0 -, -, -
N1, N2 1, 1 1, 1 +, + 0, 1 +, + 1, 0 -, -

Flavons & Higgs Multiplets

φ23, φ123, φ3 1 3 +, +, - 0, 2, 0 +, + ,+ 2, 0, 0 +, + ,+

φ̃23 24 3 + 2 - 0 +
H5, H̄5 5, 5 1, 1 +, + 0, 0 +, + 0, 0 +, +
H15, H̄15 15, 15 1, 1 +, + 0, 0 +, + 0, 0 +, +
H45, H̄45 45, 45 1, 1 +, + 2, 1 -, - 0, 0 +, +

Matter-like Messengers

A5, Ā5 5, 5 1, 1 +, + 1, 2 -, - 0, 0 -, -
A10, Ā10 10, 10 3, 3 +, + 0, 0 +, + 0, 0 -, -
A1 1 3 + 0 + 0 -

Higgs-like Messengers

B, B̄ 5, 5 1, 1 +, + 1, 2 +, + 0, 0 +, +
C1, C̄1 1, 1 1, 1 +, + 0, 0 +, + 2, 1 +, +
C2, C̄2 1, 1 1, 1 +, + 2, 1 +, + 0, 0 +, +

Table 11.1: Representations and charges of the superfields. The subscript i on the fields
Ti, Ni and Ci is a family index. The flavon fields φi, φ̃23 can be associated to a family via
their charges under Z2

3 × Z3
2. The subscripts on the Higgs fields H, H̄ and extra vector-

like matter fields A, Ā denote the transformation properties under SU(5). MP stands for
matter parity.

tan β, see, e.g. [109].
The layout of the remainder of this chapter is as follows. In Sec. 11.1 we present

the symmetries and the field content of the model and in Sec. 11.2 its superpotential.
Afterwards we perform a numerical fit to the quark and charged lepton masses and quark
mixing angles and CP phase in Sec. 11.3. We conclude this chapter with a discussion of
the neutrino sector in Sec. 11.4.

11.1 Symmetries and Field Content

The full model is specified in Tab. 11.1. Compared to the previous model specified in
Tab. 9.1 the first thing to notice is that we use here only the discrete subgroup A4 instead
of the full SO(3) symmetry group (for a brief description of A4 see App. D.2). Nevertheless,
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there is no principle difference between these two possibilities in our models since in both
cases only the singlet and the real triplet representations appear which have the same
transformation properties under SO(3) and A4. Furthermore, the additional symmetry is
here Z2

3 × Z3
2 with one Z2 factor less than before.

The main difference between the two models lies in the field content, especially in the
messenger sector and we have here no H24 but additional Higgs fields in the 15-dimensional
representations of SU(5). They contain SU(2)L-triplet Higgs fields that obtain an induced
vev after electroweak symmetry breaking. This induces a type II seesaw contribution to
the neutrino mass matrix which is, to leading order, proportional to the unit matrix and
can increase the neutrino mass scale without modifying the prediction for the leptonic
mixing angles. There is another difference regarding the Higgs sector. We consider here
instead of two additional five-dimensional Higgs representations H ′5 and H̄ ′5 two additional
45-dimensional Higgs representations H45 and H̄45 which have some influence on the CG
factors as we discuss later.

The matter sector, namely the fields Fi, Ti and Ni are the same as before.
SU(5) is spontaneously broken by the vev of the φ̃23 field, electroweak symmetry is

broken by the vevs of the Higgs fields H5, H̄5, H45, H̄45 and A4 is spontaneously broken
by the vevs of the flavon fields, i.e. the family symmetry breaking Higgs fields, φ123, φ23,
φ3 and φ̃23.

The heavy messenger fields are specified in Tab. 11.1 and give rise to higher-dimensional
operators generating the Yukawa coupling matrices as well as the mass matrix of the gauge
singlet (right-handed) neutrinos Ni after effectively integrating them out of the theory.

We would like to remark that we do not explicitly consider the full flavour and GUT
Higgs sector of the model and just assume that the SU(5) and A4 breaking vevs are aligned
in the desired directions of field space. We assume that in these sectors issues like doublet-
triplet splitting are resolved. Without specifying these sectors, a reliable calculation of the
proton decay rate is not possible and beyond the scope of the present thesis. The focus of
this chapter is to illustrate that quasi-degenerate light neutrino masses can be realised via
a type II upgrade in a SU(5) GUT framework.

There is an additional contribution to the neutrino mass matrix proportional to the
unit matrix from the messenger field A1 which is a singlet under SU(5) and a triplet under
A4. When it is integrated out, it induces a contribution to the neutrino mass operator
which is proportional to the unit matrix like the type II upgrade part.

11.2 The A4 × SU(5) Symmetric Superpotential

With the field content and symmetries specified in Tab. 11.1 the superpotential contains
the following renormalisable terms:

WH = µ5H5H̄5 + µ15H15H̄15 + µ45H45H̄45 + λ̄15H̄15H5H5 + λ15H15H̄5H̄5 , (11.1)

WA = MA10A10Ā10 +MA5A5Ā5 +MA1A
2
1 +MBBB̄ +MC1C̄1C1 +MC2C̄2C2 (11.2)

Wint = κFiFφiA10 + κ̃F2Fφ̃23A5 + κTiTiH̄5Ā10 + κ̃T2T2H̄45Ā5 + y∆H15FF
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+ λH5A10Ā10 + λ̃H5C̄2B̄ + κ′TC2T
2
2 + κ′φC2φ

2
23 + κ̃′φC̄2φ̃

2
23 + atH5T

2
3

+ κ̄FFH̄5A1 + κNiNiφiA1 + ξφiCiφ
2
i + ξNiC̄iN

2
i . (11.3)

Integrating out the heavy messenger superfields denoted by Ai, B, Ci and their con-
jugates, the Feynman diagrams in Figs. 11.1, 11.2 and 11.3 lead to the following effective
non-renormalisable superpotential terms in the SU(5) and A4 unbroken phase:

WYl =
1

MA10

F (b1φ23T1 + b2φ123T2 + b3φ3T3) H̄5 +
b̃2

MA5

Fφ̃23T2H̄45 , (11.4)

WYu =

(
a12

M2
A10

T1T2(φ123 · φ23) +
a13

M2
A10

T1T3(φ3 · φ23) +
a23

M2
A10

T2T3(φ123 · φ3)

)
H5 ,

+

(
a33T

2
3 +

a22

M2
A10

T 2
2 φ

2
123 +

a11

M2
A10

T 2
1 φ

2
23 +

ã22

M2
A5

T 2
2 φ̃

2
23

)
H5 , (11.5)

WYν =
1

MA10

F (aν1φ23N1 + aν2φ123N2)H5 , (11.6)

W∆
ν = y∆H15FF , (11.7)

W d=5
ν =

κ̄2
F

MA1

FH5FH5 , (11.8)

WMR
ν =

aR11

M2
A10

φ2
23N

2
1 +

aR22

M2
A10

φ2
123N

2
2 +

aR12

M2
A10

(φ123 · φ23)N1N2 . (11.9)

After GUT symmetry breaking, the SU(2)L doublet components from H5 and H45 as
well as H̄5 and H̄45 respectively mix and only the light states acquire the SU(2)L breaking
vevs which give the fermion masses. We parameterise the Higgs mixing with the mixing
angles γ and γ̄ respectively (

H5

H45

)
=

(
cγ −sγ
sγ cγ

)(
Hl

Hh

)
,(

H̄5

H̄45

)
=

(
cγ̄ −sγ̄
sγ̄ cγ̄

)(
H̄l

H̄h

)
,

(11.10)

where we have used the common abbreviations cγ ≡ cos γ and sγ ≡ sin γ and similar for
the other angle γ̄. The light Higgs doublets are denoted with an index l while the heavy
Higgs doublets are denoted with an index h. We use here the same labels for the Higgs
mixing angles and other quantities as in Ch. 9. Nevertheless from the context it should be
clear which quantity belongs to which model.

The effective couplings a and b appearing in the effective superpotential can be ex-
pressed in terms of the fundamental couplings from Eq. (11.3), the messenger masses from
(11.2) and the Higgs mixing angles as

a11 =
c2
γ̄

cγ

λ

κ2
F1

, a22 =
c2
γ̄

cγ

λ

κ2
F2

+
c2
γ̄

cγ

M2
A5

MBMC2

κ′T λ̃κ
′
φ

κ2
F2κ

2
T2

, a33 =
at
cγ

+
c2
γ̄

cγ

λ

κF3κF3

, (11.11)

ã22 =
s2
γ̄

cγ

λ

κ̃2
F2

+
s2
γ̄

cγ

M2
A5

MBMC2

κ′T λ̃κ̃
′
φ

κ̃2
F2κ̃

2
T2

, aij =
c2
γ̄

cγ

λ

κFiκFj
for i 6= j , (11.12)
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Figure 11.1: Supergraph diagrams inducing effective superpotential operators for the
down-type quarks and charged leptons.

H5
�23; ~�23T2
�23; ~�23T2

H5
�j�i
TjTi

�A10 A10 A10 �A10

C2�C2�BB

a)

b)

T3
T3 
)

H5at
�T i

�0T

�

~�

�T i

�0�; ~�0�
Figure 11.2: Supergraph diagrams inducing effective superpotential operators for the
up-type quarks.
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bi =
κFiκTi
cγ̄

, b̃2 =
κ̃Fiκ̃Ti
sγ̄

, (11.13)

aνi =
cγ̄
cγ

MA10

MA1

κNiκ̄F
κFiκTi

, (11.14)

aRi = c2
γ̄

M2
A10

MA1

κ2
Ni

κ2
Fiκ

2
Ti

+ c2
γ̄

M2
A10

MCi

ξφiξNi
κ2
Fiκ

2
Ti

, aR12 = c2
γ̄

M2
A10

MA1

κN1κN2

κF1κT1κF2κT2

. (11.15)

We assume a vacuum alignment for the A4 breaking flavons very similar to Eqs. (9.20)
and (9.21). There is only one difference due to the different messenger sector, resulting in
different coefficients. Explicitly we make the ansatz

b1
〈φ23〉
MA10

=

 0
1
−1

 ε23 , b2
〈φ123〉
MA10

=

1
1
1

 ε123 , b3
〈φ3〉
MA10

=

0
0
1

 ε3 , (11.16)

which also defines the quantities ε123, ε23 and ε3. The breaking of A4 along the field
directions of φ123 and φ23 allows us to realise TB neutrino mixing via CSD [43, 112–114].
It is also worth noting that the flavon vevs 〈φ123〉 and 〈φ23〉 are orthogonal, causing some
of the terms in the superpotential to give a vanishing contribution to the mass matrices.
In the following, we assume that CP is only broken spontaneously by the vev of the flavon
φ̃23. For the flavon φ̃23 we use the ansatz

b̃2
〈φ̃23〉
MA5

=

 0
−i
w

 ε̃23 , (11.17)

which is again motivated empirically.

11.3 Numerical Fit to the SM Fermion Masses and

Mixings

The convention for the Yukawa matrices used here is fixed in (9.23). From Eqs. (11.4),
(11.5), (11.16) and (11.17) the Yukawa matrix coupling the up-type quarks to the light
up-type Higgs doublet is given as

Yu =

 2a11ε
2
23 0 a13ε23ε3

0 3a22ε
2
123 + (w2 − 1)ã2

22ε̃
2
23 a23ε123ε3

a13ε23ε3 a23ε123ε3 a33

 , (11.18)
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whereas the Yukawa matrices coupling the down-type quarks and charged leptons to the
light down-type Higgs doublet are given as

Yd =

 0 ε23 −ε23

ε123 ε123 + i ε̃23 ε123 + wε̃23

0 0 ε3

 , (11.19)

Y T
e =

 0 c23ε23 −c23ε23

c123ε123 c123ε123 + i c̃23ε̃23 c123ε123 + wc̃23ε̃23

0 0 c3ε3

 , (11.20)

where c3, c23, c̃23 and c123 are the CG factors arising from GUT symmetry breaking, see
Ch. 5. In Yu we have used the orthogonality of the flavon vevs 〈φ23〉 and 〈φ123〉. We note
that in the definition for the Yukawa matrices we have introduced a complex conjugation
and thus a phase factor of +i appears in the 2-2 elements of Yd and Ye.

With the given representations of the flavon and Higgs fields, see Tab. 11.1, we obtain
the following CG coefficients

c123 = 1 , c23 = 1 , c3 = 1 , c̃23 = 9/2 . (11.21)

For such small values of tanβ as we consider, the 1-loop SUSY threshold corrections are
small and, taking the actual experimental values of the strange quark and muon masses
into account, the GUT scale value of yµ/ys prefers c̃23 = 9/2, as argued in Chs. 7 and 8.

The texture in Eq. (11.19) is pretty similar to the ones suggested in the last chapter. We
have here also all matrix elements purely real apart from the 2-2 element which is purely
imaginary. Nevertheless, we cannot apply here the sum rules derived in the last chapter
since the 1-3 mixing in the up- and down-sector does not vanish. Therefore, although
this choice of phases is inspired by the previous considerations it is not clear beforehand
that the textures appearing in this model are successful in describing the quark CP phase.
However, we show now that this choice is meaningful.

From the charged lepton Yukawa matrix we can derive the following approximate rela-
tions for the eigenvalues

yτ ≈ c3ε3 , yµ ≈ |c123ε123 + i c̃23ε̃23| , ye ≈
c23ε23c123ε123

yµ
. (11.22)

Furthermore, since there is no 1-2 mixing from the up-sector, the mixing angle θ12 is
approximately given as

θCKM
12 ≈

∣∣∣∣ ε23

ε123 + i ε̃23

∣∣∣∣ . (11.23)

From these four equations the four ε’s can be calculated and the relation for the CKM
phase gives at the GUT scale

| tan δCKM| ≈
∣∣∣∣ ε̃23

ε123

∣∣∣∣ ≈ 1.22 . (11.24)
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Parameter Value

2a11ε
2
23 in 10−6 9.62

3a22ε
2
123 in 10−4 −1.10

(w2 − 1)ã22ε̃
2
23 in 10−3 −1.10

a13ε23ε3 in 10−3 −2.92
a23ε123ε3 in 10−2 3.21

a33 2.44

ε123 in 10−5 5.88
ε23 in 10−5 4.30
ε̃23 in 10−4 −1.61
ε3 in 10−2 1.12

w 1.44

Table 11.2: The model parameters for tanβ = 1.4 and MSUSY = 500 GeV from a fit to
the experimental data.

Quantity (at mt(mt)) Model Experiment Deviation

yτ in 10−2 1.00 1.00 −0.027%
yµ in 10−4 5.89 5.89 −0.029%
ye in 10−6 2.79 2.79 −0.130%

yb in 10−2 1.58 1.58± 0.05 0.086σ
ys in 10−4 2.83 2.99± 0.86 −0.184σ

yd in 10−6 27.6 15.9+6.8
−6.6 1.723σ

yt 0.938 0.936± 0.016 0.084σ
yc in 10−3 3.54 3.39± 0.46 0.318σ

yu in 10−6 6.70 7.01+2.76
−2.30 −0.134σ

θCKM
12 0.2257 0.2257+0.0009

−0.0010 −0.022σ

θCKM
23 0.0413 0.0415+0.0011

−0.0012 0.004σ

θCKM
13 0.0036 0.0036± 0.0002 −0.157σ

δCKM 1.1782 1.2023+0.0786
−0.0431 −0.560σ

Table 11.3: Fit results for the quark Yukawa couplings and mixing and the charged lepton
Yukawa couplings at low energy compared to experimental data. A pictorial representation
of the agreement between our predictions and experiment can also be found in Fig. 11.4.
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Figure 11.4: Pictorial representation of the deviation of our predictions from low energy
experimental data for the charged lepton Yukawa couplings and quark Yukawa couplings
and mixing parameters. The deviations of the charged lepton masses are given in % while
all other deviations are given in units of standard deviations σ. The thick blue line gives
the 1% (1σ) bound while the dashed line gives the 2% (2σ) bound. The red crosses denote
our predictions.

The RG evolution of the measured value for δCKM gives a GUT scale value of 1.20. So
the prediction for the CKM phase is already remarkably good if we only take the lepton
masses and the value for θ12 into account which are measured to a high accuracy.1

For the detailed fit of the model to the data we applied the following procedure: We have
taken the GUT scale Yukawa matrices from Eqs. (11.18), (11.19) and (11.20) and calculated
their RG evolution down to the scale mt(mt) for tan β = 1.4 2 and MSUSY = 500 GeV with
the REAP software package [110]. At the low scale we performed a χ2 fit to the quark
masses and mixing and charged lepton masses depending on the parameters of the GUT
scale Yukawa matrices. The fit gave a total χ2 of about 3.5 where we have assumed
a relative error of 1% for the charged lepton masses and for the other observables we

1We would like to remark that with the assumed spontaneous CP violation, real detYu and detYd and
with the small |ε̃23| = O(10−4), the model might also provide a solution to the strong CP problem, along
the lines discussed in [149].

2We note that in the MSSM small values of tanβ are somewhat constrained due to bounds on the Higgs
mass. However, we emphasise that our model may well be formulated in the context of the NMSSM or
other non-minimal SUSY models where tanβ of order one can readily be realised without these constraints.
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have taken the experimental errors. Since we have 11 parameters and 13 observables this
corresponds to a χ2/dof of about 1.6. This is a good fit since we have neglected theoretical
uncertainties like, e.g. threshold corrections which could be treated as additional errors on
the data lowering the total χ2.

The results for the GUT scale parameters are listed in Tab. 11.2. We remark that
these parameters depend on tanβ and MSUSY and are also subject to several theoretical
uncertainties. For example, we note that the Higgs fields H15 and H̄15 containing the
Higgs triplets of the type II seesaw mechanism have masses at an intermediate energy
scale between MGUT and MEW. Their effects are not included in the RG analysis. The
effects are small and may be neglected if y∆ is small, but they could be sizeable if y∆ is
large.3 Due to the additional theoretical uncertainties, we do not explicitly give the errors
on the high energy parameters or low energy predictions. The important input parameters
for us are the charged lepton masses and quark mixing angles which have a experimental
error much smaller than these uncertainties.

In Tab. 11.3 the low energy results are shown and compared to experimental data.
A graphical illustration is given in Fig. 11.4. They illustrate that our minimal example
model, with the assumed vacuum alignment of Eqs. (11.16) and (11.17), can fit the data
well and leads to testable predictions. We turn now to the results for the neutrino sector.

11.4 The Neutrino Sector

The neutrino Yukawa matrix is obtained from Eq. (11.6) as

Yν =

 0 aν2ε123

aν1ε23 aν2ε123

−aν1ε23 aν2ε123

 . (11.25)

Additionally we have a diagonal mass matrix for the two right-handed neutrinos from
Eq. (11.9),

MR =

(
2aR1ε

2
23 0

0 3aR2ε
2
123

)
, (11.26)

and a diagonal type II seesaw contribution coming from Eqs. (11.7) and (11.8),

ML =

m0 0 0
0 m0 0
0 0 m0

 . (11.27)

Using the seesaw relation,

mν = ML − v2
uYνM

−1
R Y T

ν , (11.28)

3Since the coupling y∆ gives a contribution proportional to the unit matrix, it affects only the RG
evolution of the mass eigenvalues, but not of the mixing angles. Nevertheless, the possibility of additional
RG effects from y∆ provides a theoretical uncertainty in our setup.
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we obtain for the neutrino mass matrix

mν = m0

1 0 0
0 1 0
0 0 1

+
mI

3

2

0 0 0
0 1 −1
0 −1 1

+
mI

2

3

1 1 1
1 1 1
1 1 1

 , (11.29)

with

m0 = c2
γv

2
u

y∆λ̄15

µ15

+ c2
γv

2
u

κ̄2
F

MA1

, mI
2 = −v2

u

a2
ν2

aR2

and mI
3 = −v2

u

a2
ν1

aR1

. (11.30)

In our model we therefore identify the neutrino masses as m1 = m0, m2 = m0 + mI
2 and

m3 = m0 + mI
3, where, without loss of generality, we can take m0 to be positive and real

while mI
2,m

I
3 are real but can take either sign. With |m0| � |mI

3|, |mI
2| a quasi-degenerate

mass spectrum of the light neutrinos can be explained in a natural way. Below, we will
mainly restrict ourselves to this case.

From the structure of mν we obtain TB mixing in the neutrino sector,

θν13 = 0 , θν23 = 45◦ , θν12 = arcsin
1√
3
≈ 35.3◦ . (11.31)

From the lepton sector we get the additional mixing contributions

θe13 = 0 , θe23 = 0 , |θe12| =
∣∣∣∣ c123ε123

c123ε123 − i c̃23ε̃23

∣∣∣∣ ≈ 4.6◦ . (11.32)

There is also a complex phase introduced by the charged lepton Yukawa matrix which can
be calculated in the same way as in the quark sector

δe12 = arctan

(
c̃23ε̃23

c123ε123

)
≈ −85.4◦ . (11.33)

For the approximate calculation of the MNS mixing parameters at the GUT scale we
can use [135,136]:

sMNS
23 ≈ sν23 − θe23 ,

sMNS
13 e−iδMNS

13 ≈ θν13 − sν23θ
e
12e−iδe12 ,

sMNS
12 e−iδMNS

12 ≈ sν12 − cν23c
ν
12θ

e
12e−iδe12 ,

(11.34)

where we have already discarded all trivial phases and RG corrections which we discuss
later. For the total leptonic mixing angles we obtain

θMNS
12 ≈ 35.1◦ ,

θMNS
13 ≈ 3.3◦ ,

θMNS
23 ≈ 45.0◦ .

(11.35)
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For the phases we have δMNS
13 = π − δe12 ≈ 94.6◦, δMNS

12 = 4.6◦ and δMNS
23 = 0◦ from which

the final MNS phases can be calculated according to [135,136]

δMNS = δMNS
13 − δMNS

12 ≈ 90.0◦ ,

α1 = 2(δMNS
12 + δMNS

23 ) = 2δMNS
12 ≈ 9.3◦ ,

α2 = 2δMNS
23 ≈ 0◦ ,

(11.36)

where α1 and α2 are the Majorana phases as in the PDG parameterisation where they are
contained in a diagonal matrix diag(eiα1/2, eiα2/2, 1).

Similar to the model proposed in Ch. 9 the leptonic mixing angles and the Dirac CP
phase δMNS satisfy the lepton mixing sum rule [43,134,139,140]

θMNS
12 − θMNS

13 cos(δMNS) ≈ arcsin(1/
√

3) , (11.37)

where the approximately maximal CP violation, i.e. δMNS ≈ 90◦, leads only to small devi-
ations of the solar mixing angle from its TB value of arcsin(1/

√
3) although the charged

lepton corrections generate θMNS
13 ≈ 3.3◦.

So far, we have discussed the neutrino mixing parameters at the GUT scale. To calculate
the predictions at low energies we have to take RG running of the parameters into account.

11.4.1 Renormalisation Group Corrections

For a quasi-degenerate neutrino mass spectrum, RG corrections to the neutrino parameters
can in principle change the high scale predictions dramatically. However, as has been
discussed for type II upgraded seesaw models in [42] and more generally in [110, 137], for
small tan β and small neutrino Yukawa couplings (in our example model they are much
smaller than yτ ) the corrections to the mixing angles and CP phases are under control.
Setting the small Majorana phases to zero and with δMNS = 90◦ we can estimate in leading
order [110,137]

d θMNS
12

d ln(µ/µ0)
≈ − y2

τ

32π2
sin(2θMNS

12 )(sMNS
23 )2 |m1 +m2|2

∆m2
sol

, (11.38)

d θMNS
13

d ln(µ/µ0)
≈ 0 , (11.39)

d θMNS
23

d ln(µ/µ0)
≈ − y2

τ

32π2
sin(2θMNS

23 )
(cMNS

12 )2|m2 +m3|2 + (sMNS
12 )2|m1 +m3|2

∆m2
atm

, (11.40)

where µ is the renormalisation scale. In the case of quasi-degenerate neutrino masses,
we can further use the approximation m3 ≈ m2 ≈ m1 = m0. Integrating these equations
approximately with the parameters on the right side taken constant and equal to their GUT
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scale values, we obtain the following estimated low energy values of the mixing angles

θMNS
12 |mt(mt) ≈ θMNS

12 |MGUT
+ 0.15◦

m2
0

(0.1 eV)2
, (11.41)

θMNS
13 |mt(mt) ≈ θMNS

13 |MGUT
, (11.42)

θMNS
23 |mt(mt) ≈ θMNS

23 |MGUT
± 0.01◦

m2
0

(0.1 eV)2
. (11.43)

In the last equation, the “+” applies for a normal neutrino mass ordering, whereas the “−”
applies for an inverted mass ordering, i.e. the case ∆m2

atm < 0. It is important to note
that both mass orderings can be realised in our model. The strong suppression for the RG
running of θMNS

13 is caused by the particular values of the CP violating phases in our model.
For similar reasons the running of the CP phases themselves is also suppressed, as can be
seen using the analytic results in [110,137]. In summary, RG correction are under control
in our setup and only cause comparatively small corrections to the mixing parameters in
the lepton sector.

In summary, the predictions of our model for the leptonic mixing parameters are com-
patible with the experimental 1σ ranges at low energy which are: θMNS

12 = (34.5 ± 1.0)◦,
θMNS

13 = (5.7+3.0
−3.9)◦ and θMNS

23 = (42.3+5.3
−2.8)◦, taken from [138], as long as m0 is smaller than

the cosmological bounds suggest, m0 . 0.2 eV [29]. The predictions of our model for the
leptonic mixing angles and Dirac CP phase δMNS stated in Eqs. (11.35) and (11.36) can be
tested accurately by ongoing and future precision neutrino oscillation experiments [141].

11.4.2 Predictions for Beta Decay Experiments

The effective mass relevant for neutrinoless double beta decay is

mee = |m1c
2
12c

2
13e

iα1 +m2s
2
12c

2
13e

iα2 +m3s
2
13e

2 i δMNS| , (11.44)

while the kinematic mass accessible in the single beta decay end-point experiment KATRIN
is

m2
β ≡ m2

1c
2
12c

2
13 +m2

2s
2
12c

2
13 +m2

3s
2
13 . (11.45)

For a quasi-degenerate neutrino mass spectrum (m0 = m1 ' m2 ' m3) we obtain that

mβ ≈ m0 (11.46)

directly gives information about the absolute neutrino mass scale.
On the other hand, due to the phases appearing in Eq. (11.44) there is typically a

sizeable ambiguity in the relation between mee and m0, as long as the Majorana CP phases
are not predicted. Allowing, for instance, for arbitrary Majorana phases and considering
a quasi-degenerate neutrino mass spectrum (m0 = m1 ' m2 ' m3) with small θMNS

13 , mee

can still be in the approximate interval mee ∈ [m1/3,m1].
This ambiguity is resolved in our model, and in type II upgraded seesaw models in

general, since the type II contribution to the neutrino mass matrix being proportional to
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Figure 11.5: Prediction for effective mass mee relevant for neutrinoless double beta
decay as a function of the mass of the lightest neutrino mlightest, for an inverted neutrino
mass ordering (∆m2

31 < 0, upper line) and for a normal mass ordering (∆m2
31 > 0, lower

line). The bands represent the experimental uncertainties of the mass squared differences.
The mass bounds from cosmology [29] and from the Heidelberg-Moscow experiment [150]
are displayed as grey shaded regions. The red lines show the expected sensitivities of the
GERDA experiment in phase I and II [151].

the unit matrix (with |m0| � |mI
3|, |mI

2|) results in small Majorana CP phases and thus
we predict:

mee ≈ m0 (type II upgraded models). (11.47)

The assumed dominance of m0 in type II upgraded models allows to realise a quasi-
degenerate neutrino spectrum (with normal or inverted mass ordering) in a natural way,
without any tuning of parameters. Our prediction for mee as a function of the lightest
neutrino mass mlightest is shown in Fig. 11.5.

We would like to remark that for smaller m0 one can also naturally extend the model to
hierarchical or inverted hierarchical neutrino masses without changing the predictions for
the leptonic mixing angles. With |m0| ≈ |mI

2| or |m0| ≈ |mI
3| or both, we also encounter

cases where the Majorana phases are close to π. For a quasi-degenerate spectrum, the
model disfavours these unnatural cases since they would correspond to heavily fine-tuned
parameters of the model. Similarly, an inverted strongly hierarchical spectrum would
require unnatural tuning between m0 and mI

3 to make m3 = |m0 − mI
3| very small. By

contrast, for a typical parameter choice of the model, a normally ordered hierarchical
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spectrum simply corresponds to |m0| � |mI
2|, |mI

3| and does not require any tuning at all.
It is also interesting to note that with the predicted phases there is no possibility to have
cancellations in Eq. (11.44) that could make mee vanish exactly.4 Neutrinoless double beta
decay is thus, also for smaller m0, an unavoidable consequence in the considered type II
upgraded seesaw model.

4In fact we find numerically that mee & 0.007 eV.
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CHAPTER 12

Summary and Conclusions

In this thesis we have derived possible GUT predictions for the ratios ye/yd, yµ/ys, yτ/yb
and yt/yb arising after GUT symmetry breaking at the unification scale. Such relations are a
characteristic property of unified flavour models. We have checked their phenomenological
viability and found interesting new options for model building. We have also discussed sum
rules for quark mixing parameters which are valid for a special class of mass matrix textures.
Finally, we have used our improved understanding of the GUT scale Yukawa matrices to
construct GUT flavour models in the SU(5) context with interesting phenomenological
consequences in the neutrino sector.

After deriving possible Yukawa coupling ratios from higher-dimensional operators in
SU(5) and PS we have investigated tan β-enhanced SUSY threshold corrections to the
down-type quark and charged lepton Yukawa couplings in the electroweak unbroken phase
which turn out to give significant corrections. Thus, the inclusion of SUSY threshold
corrections in the renormalisation group evolution of the Yukawa couplings is necessary
in the large tanβ regime. The threshold corrections are very sensitive to the soft SUSY
breaking parameters which are (partially) defined by the three parameter sets g±, inspired
by CMSSM with both signs of the µ parameter, and a, inspired by AMSB with positive µ
parameter.

Remarkably, the sign of the corrections is determined by the signs of the soft SUSY pa-
rameters which either results in an increase or decrease of the corrected Yukawa couplings
compared to their uncorrected values. The resulting ranges for the GUT scale Yukawa
couplings and ratios point towards alternative relations aside from the commonly assumed
(partial) third family Yukawa coupling unification and the Georgi–Jarlskog relations. How-
ever, they can also help to recover these relations which are somewhat challenged without
the inclusion of SUSY threshold corrections in the large tan β regime.

Nevertheless, these findings ask for a more sophisticated analysis including full expres-
sions for the SUSY threshold corrections which take into account effects from electroweak
symmetry breaking. For this analysis, the whole SUSY spectrum was calculated for the
three common SUSY breaking schemes mAMSB, mGMSB and CMSSM. Thus we are also
able to calculate various observables, namely the sparticle masses, the electroweak preci-
sion observables MW and sin2 θeff , BR(b→ sγ), BR(Bs → µ+µ−), the anomalous magnetic
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moment of the muon and the relic density of the lightest neutralino. We have used these
variables as phenomenological constraints for the soft SUSY parameters and thus also for
the resulting GUT scale Yukawa coupling ratios.

We have found new viable GUT relations for the Yukawa couplings besides the (partial)
third family Yukawa coupling unification and the Georgi–Jarlskog relations. For example,
in SU(5), we find the relations yτ/yb = ±3/2 and yµ/ys = 6 in the mGMSB and CMSSM
scenarios as well as yµ/ys = 9/2 in all three scenarios compatible with the phenomenological
constraints. For the PS model, we find the relations 2yt = 2yb = yτ in the mGMSB and
CMSSM scenario and yt = 2yb = 2yτ in the mAMSB scenario viable.

These results have some implications for GUT model building. First of all, it influences
the field content of the model if the newly proposed GUT scale ratios shall be used.
Furthermore, it is quite common in GUT models that the charged lepton Yukawa mixing
matrices are non-diagonal which leads to a nonzero 1-3 mixing angle in the leptonic mixing
matrix even if the 1-3 neutrino mixing vanishes as it happens to be the case, for example,
in models incorporating tri-bimaximal mixing in the neutrino sector.

For large tanβ we have constructed a flavour model based on the family symmetry
SO(3), amended by some discrete symmetries within a SU(5) GUT which incorporates
our newly proposed GUT relations yτ/yb = −3/2 and yµ/ys = 6 for tan β = 30. With a
simple ansatz for the flavon vevs we are able to fit all fermion masses and mixing angles
accurately.

The proposed model has interesting features in the neutrino sector. First of all, we
predict the Dirac CP phase to be δMNS ≈ −90◦. Since we predict θMNS

13 ≈ 3.0◦, future
neutrino oscillation experiments will be able to check the prediction for the yet unknown
reactor angle and the Dirac CP phase. The predictions for the remaining leptonic mixing
angles are close to TB mixing which will also be tested to higher accuracy in the near future.
Furthermore, we also predict the neutrinoless double beta decay mass observable mee to
be greater than zero but too small to be detected by ongoing or proposed experiments due
to the strongly hierarchical neutrino masses. Nevertheless, neutrinoless double beta decay
is an unavoidable consequence in our model.

After the large tan β case, we focus our attention on the case of small tan β. We have
started our discussion of this case with quark mass matrix textures with vanishing 1-3
elements for which we derived quark mixing sum rules. Interestingly, for such textures
there is a simple relation between the unitarity triangle angle α and the phases of the 1-2
and 2-2 elements. This relation suggests a simple phase pattern for the mass matrices
where one element is purely imaginary while all others are purely real. We discussed
variants of such textures and their phenomenological viability. Also, we have found that
the experimental result α ≈ 90◦ provides an impetus for having hierarchical textures
compatible with negligible 1-3 mixing in both the up and down quark mass matrices. This
can be related to the leptonic mixing angles in the context of unified theories. In particular,
it could influence the reactor mixing angle, although such considerations are strongly model
dependent.

In addition, we have also constructed a flavour model for small tanβ within SU(5) and
an A4 family symmetry amended by additional discrete symmetries. We note that both
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models can be formulated with an A4 or a SO(3) family symmetry since we only need
real triplet representations and therefore all other groups accommodating real triplets also
work. We have used b-τ Yukawa coupling unification and our newly proposed relation
for the second family yµ/ys = 9/2, both of which are viable for this tanβ regime. We
have used the same ansatz for the flavon vevs as in our previous model with which we can
describe all known fermion masses and mixing angles correctly. Furthermore, this model
implements a type II seesaw upgrade of a type I seesaw model and can thus easily describe
quasi-degenerate neutrino masses. In the quasi-degenerate regime, the prediction for the
effective neutrino mass parameter mee is in the reach of forthcoming neutrinoless double
beta decay experiments. Neutrino oscillation experiments can check the validity of this
model as well, since we predict TB mixing with small deviations. Noteworthy are the
predictions θMNS

13 ≈ 3.3◦ and δMNS ≈ 90◦.
We began our discussion of flavour model building in supersymmetric unification with

group theoretical considerations which depend on the underlying gauge structure only and
could therefore be used in non-supersymmetric models as well. Nevertheless, this analysis
was suggested by our investigation of GUT scale Yukawa couplings and ratios for which a
careful inclusion of SUSY threshold corrections is important, especially for the case of large
tan β. These two parts fit together and open up new possibilities in GUT model building by
choosing operators which generate the Yukawa couplings, different from the usual choices.
We have also considered mixing in the form of quark mixing sum rules emerging in a special
class of textures for small tanβ, which suggest a simple phase pattern in the quark mass
matrices. All these insights are collected in the two predictive GUT models of flavour
presented in this thesis.

The flavour models can be falsified, for example, by neutrinoless double beta decay
experiments since in both models the effective neutrino mass does not vanish. Quasi-
degenerate neutrinos which can be described by the second model will be tested soon by
the next generation of experiments. Indeed, if neutrinoless double beta decay were observed
in the near future this would herald another neutrino revolution in which the interest in
models with quasi-degenerate neutrinos would explode. Among the many possible models
of quasi-degenerate neutrinos, the type II upgrade models are distinguished by their pre-
diction that the neutrinoless double beta decay mass observable is approximately equal to
the neutrino mass scale.

Neutrino oscillation experiments can also shed more light on the fundamental flavour
structure. In this context, it is interesting to test deviations from TB mixing and, especially,
the size of the last missing leptonic mixing angle in order to to distinguish between different
models. Also, the leptonic Dirac CP phase is very interesting to measure since, as we have
shown in GUT models, this could be related to the Dirac CP Phase in the quark sector.

However, this is not the only possibility to gain additional insight into the structure
of fundamental physics. The LHC has very recently started operation with a centre-of-
mass energy of 7 TeV, an energy region never tested before in a laboratory. The LHC
will probably test the mechanism of electroweak symmetry breaking and if low-energy
supersymmetry is realised in nature it is also likely to be found. Knowledge of the sparticle
spectrum may point towards a certain supersymmetry breaking scheme which in turn points



144 12. Summary and Conclusions

towards certain GUT scale Yukawa coupling ratios and thus eventually towards the correct
underlying gauge group.

From this point of view, we live in exciting times since in the next few years we can
expect interesting data which will give us a much deeper insight not only into the flavour
structure of the Standard Model of particle physics but also into the flavour structure of
new physics which could even give a hint at the correct fundamental description of nature.

Nevertheless, there are still a lot of issues to examine. For the first two generations, a
better understanding of the quark masses is essential to constrain (GUT) flavour models,
as we have seen. The errors on the light quark masses are still pretty large and need
further improvement on experimental and theoretical side. Especially lattice calculations
are expected to improve our knowledge about the light quark masses.

Furthermore, many other open theoretical issues are worth further studies. First of
all, there is the flavon alignment for which we only employed a phenomenological ansatz.
It would be interesting to explicitly construct a mechanism which can generate such a
texture or flavon alignment. In this regard, it is especially interesting to reproduce the
simple phase structure in the context of spontaneous CP violation.

Also, the flavour models have some impact on the structure of the soft supersym-
metry breaking parameters which needs to be analysed. There are severe experimental
constraints from flavour physics and electric dipole moments which could further constrain
the parameter space of the flavour models.

Nevertheless, many ideas of how to extend the Standard Model of particle physics are
on the market and only experiments will tell which one is correct. One single observation
will certainly not be enough to distinguish between the vast variety of possible extensions.
Instead, the interplay and the correlations between different signals will point towards
classes of new physics. Flavour physics is the perfect playground for such measurements
due to the vast amount of observables related to the flavour sector some of which are
already measured with high precision, providing a perfect touchstone of new physics.
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APPENDIX A

Notation and Conventions

In this appendix we briefly summarise the notations and conventions used in this thesis.
We work in natural units where ~ = c = 1 and use the Minkowski metric with signature
{+,−,−,−}.

A.1 Conventions for the CKM Matrix

In this section we fix the conventions for the CKM matrix VCKM used throughout this
thesis. The CKM matrix is defined as the unitary matrix occurring in the charged current
part of the SM interaction Lagrangian expressed in terms of the quark mass eigenstates.
These mass eigenstates can be determined from the mass matrices in the Yukawa sector,
namely

LY = −ūiL(Mu)iju
j
R − d̄

i
L(Md)ijd

j
R + h.c. , (A.1)

where Mu and Md are the mass matrices of the up-type and down-type quarks, respectively.
The change from the flavour to the mass basis is achieved via bi-unitary transformations

VuLMuV
†
uR

= diag(mu,mc,mt) ,

VdLMdV
†
dR

= diag(md,ms,mb) ,
(A.2)

where VuL , VuR , VdL and VdR are unitary 3 × 3 matrices. The CKM matrix V ′CKM (in the
raw form, i.e. before the unphysical phases are absorbed into redefinitions of the quark
mass eigenstate field operators) is then given by

V ′CKM = VuLV
†
dL
. (A.3)

In this thesis we shall use the standard, or so-called PDG [4], parameterisation for the
CKM matrix after eliminating the unphysical phases with the structure

VCKM = R23U13R12 , (A.4)

where R23, R12 denote real, i.e. orthogonal, matrices, and the unitary matrix U13 contains
the observable phase δCKM. Alternative parameterisations, motivated by the observation
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that the unitarity triangle angle α is approximately 90◦, see, e.g. [152], have been suggested,
but we prefer to stick to the standard one.

However, in order to construct the physical CKM matrix VCKM in any given theory of
flavour one should begin with the raw CKM matrix V ′CKM defined in Eq. (A.3), where VuL
and VdL are general unitary matrices. Recall that a generic 3×3 unitary matrix V † can
always be written in terms of three angles θij, three phases δij (i < j) and three phases γi
in the form [114]

V † = U23U13U12 diag(eiγ1 , eiγ2 , eiγ3) , (A.5)

where the three unitary transformations U23, U13 and U12 are defined as

U12 =

 c12 s12e
−iδ12 0

−s12e
iδ12 c12 0

0 0 1

 , (A.6)

and analogously for U13 and U23. As usual, sij and cij are abbreviations for sin θCKM
ij and

cos θCKM
ij , and the θCKM

ij angles can always be made positive by a suitable choice of the δij’s.

It is convenient to use this parameterisation for both V †uL and V †dL , where the phases γi can
immediately be absorbed into the quark mass eigenstates. Thus, they can be dropped and
one is effectively left with

V †uL = UuL
23 U

uL
13 U

uL
12 and V †dL = UdL

23 U
dL
13 U

dL
12 , (A.7)

where V †uL involves the angles θuij and phases δuij, while V †dL involves the angles θdij and

phases δdij. Using Eqs. (A.3) and (A.7), V ′CKM can be written as

V ′CKM = UuL
12
†UuL

13
†UuL

23
†UdL

23 U
dL
13 U

dL
12 . (A.8)

On the other hand, V ′CKM can also be parameterised along the lines of Eq. (A.5),

V ′CKM = U23U13U12 diag(eiγ1 , eiγ2 , eiγ3) . (A.9)

By comparing Eq. (A.9) to Eq. (A.4), we see that the angles θij are the standard PDG
ones in VCKM, and five of the six phases of V ′CKM in Eq. (A.9) may be removed leaving the
standard PDG phase in VCKM identified as [114]

δCKM = δ13 − δ23 − δ12 . (A.10)

A.2 Pauli and Dirac Matrices

For the Pauli matrices we use the convention

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.11)
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which obey the commutation relation

[σi, σj] = 2 i εijkσk , (A.12)

where εijk is the totally antisymmetric tensor with three indices and ε123 = +1.
The Dirac matrices in four dimensions can be defined in terms of the Pauli matrices to

be

γ0 =

(
0 1

1 0

)
, γi =

(
0 σi

−σi 0

)
, γ5 = iγ0γ1γ2γ3 =

(
−1 0
0 1

)
, (A.13)

where all entries have to be understood as 2 × 2 matrices. The Dirac matrices obey the
Clifford algebra

{γµ, γν} = 2gµν , (A.14)

and the γµ matrices anticommute with the γ5 matrix,

{γµ, γ5} = 0 . (A.15)

A.3 Weyl Spinors

The left-chiral Weyl spinors ψα and their right-chiral conjugate ψ̄α̇ are two-component
spinors transforming under Lorentz transformations as

ψα →Mα
βψβ , ψ̄α̇ →

((
M−1

)†)α̇
β̇
ψ̄β̇ , (A.16)

where M = M(Λ) is the two-dimensional spinor representation of the Lorentz transforma-
tion Λ. The spinor indices α, β = 1, 2 and α̇, β̇ = 1, 2 can be raised and lowered with the
totally antisymmetric ε tensor where εαβ = εα̇β̇ = −εαβ = −εα̇β̇ and ε12 = −1.

The two spinors ψ and ψ̄ are related to each other via Hermitian conjugation

ψ̄α̇ ≡ (ψα)† = (ψ†)α̇ , ψα ,= (ψ̄α̇)† . (A.17)

and the scalar product of two Weyl spinors ξ and χ is defined to be

ξχ = ξαχα = χαξα = χξ ,

ξ̄χ̄ = ξ̄α̇χ̄
α̇ = χ̄α̇ξ̄

α̇ = χ̄ξ̄ = (ξχ)† = (χξ)† .
(A.18)

Keep in mind that ξαχα = −ξαχα and ξ̄α̇χ̄
α̇ = −ξ̄α̇χ̄α̇.

We define two four-vectors of Pauli matrices via

(σµ)αβ̇ ≡ (1, σi)αβ̇ and (σ̄µ)α̇β ≡ (1,−σi)α̇β . (A.19)

There are also antisymmetrised products of these four-vectors

(σµν)α
β ≡ i

2
(σµσ̄ν − σν σ̄µ)α

β and (σ̄µν)α̇β̇ ≡
i

2
(σ̄µσν − σ̄νσµ)α̇β̇ . (A.20)
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A.4 Dirac and Majorana Spinors

A Dirac spinor Ψ has four components and consists of two Weyl spinors ξα and χβ

Ψ =

(
ξα
χ̄β̇

)
and Ψ̄ = Ψ†γ0 =

(
χβ ξ̄α̇

)
. (A.21)

The charge conjugation of a Dirac spinor is defined to be

Ψc ≡ CΨ̄T =

(
χβ
ξ̄α̇

)
, (A.22)

where C = iγ0γ2 is the charge conjugation matrix which satisfies C−1γµC = −(γµ)T .
For Dirac spinors we can also define the chiral projection operators PL/R = 1

2
(1 ∓ γ5)

which project out the left- and right-chiral states of a Dirac field

ΨL ≡ PLΨ =

(
ξα
0

)
and ΨR ≡ PRΨ =

(
0
χ̄α̇

)
. (A.23)

Therefore ξα is called a left-chiral Weyl spinor and χ̄α̇ a right-chiral Weyl spinor.
If a spinor Ψ fulfils the Majorana condition

Ψc = Ψ , (A.24)

it consists of two identical Weyl spinors,

Ψ =

(
ξα
ξ̄β̇

)
and Ψ̄ = Ψ†γ0 =

(
ξβ ξ̄α̇

)
. (A.25)

This spinor is called a Majorana spinor. The corresponding field is its own antiparticle.

A.5 Grassmann Numbers

Grassmann numbers θα are anticommuting like fermions,

{θα, θβ} = {θ̄α̇, θ̄β̇} = {θα, θ̄β̇} = 0 . (A.26)

From these relations, it follows that the square of a Grassmann number θα has to vanish,
θαθα = 0, and the product of more than two Grassmann numbers is zero, θαθβθγ · · · = 0,
since in our case α, β, γ, . . . ∈ {1, 2}. The (Lorentz invariant) product of two Grassmann
spinors is defined via

θθ ≡ θαθα = εαβθ
αθβ = εαβθβθα , (A.27)

which gives the relations

θαθβ = −1

2
εαβ(θθ) , θαθβ = +

1

2
εαβ(θθ) ,

θ̄α̇θ̄β̇ = +
1

2
εα̇β̇(θ̄θ̄) , θ̄α̇θ̄β̇ = −1

2
εα̇β̇(θ̄θ̄) .

(A.28)
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The derivatives of the Grassmann variables are defined as

∂θβ

∂θα
≡ ∂αθ

β = δα
β ,

∂θ̄β̇
∂θ̄α̇
≡ ∂̄α̇θ̄β̇ = δα̇β̇ ,

∂θ̄β̇
∂θα

=
∂θβ

∂θ̄α̇
= 0 , (A.29)

where we use the conventions

∂α = −εαβ∂β , ∂α = −εαβ∂β , ∂̄α̇ = −εα̇β̇∂̄
β̇ , ∂̄α̇ = −εα̇β̇∂̄β̇ , (A.30)

to ensure, for example, δα
β = ∂αθ

β = ∂βθα.
The integration over Grassmann variables is defined as∫

dθα = 0 ,

∫
dθα θβ = δαβ ,∫

d2θ = 0 ,

∫
d2θ θα = 0 ,

∫
d2θ θαθβ = −1

2
εαβ ,

∫
d2θ(θθ) = 1 .

(A.31)

If θ and θ̄ are independent we have the following integral identities∫
dθdθ̄ θ̄θ = 1 and

∫
d4θ(θθ)(θ̄θ̄) = 1 . (A.32)
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APPENDIX B

SU(N) Representations

In this chapter we want to discuss some formal aspects of SU(N) representations based
on [92] since they play a crucial role in this thesis. We start with the transformation law of
SU(N) tensors in Sec. B.1. Afterwards we discuss the irreducible representations of SU(N)
and their diagrammatic representation as Young tableaux in Sec. B.2. Then we show in
Sec. B.3 how to use those tableaux to calculate the products of irreducible representations.
We conclude this chapter with Sec. B.4 where a list of representations is given which are
important for this work.

B.1 Transformation Law of Tensors

The SU(N) group can be written in the form of N×N unitary matrices with unit determi-
nant. Matrices act as linear transformations on a vector space. In the case of SU(N), the
matrices give rise to linear invertible transformations on the complex N -dimensional vector
space, CN . Let us denote an element of CN by ψ = (ψ1, ψ2, . . . , ψN)T and an element of
SU(N) by U with UU † = U †U = 1 and detU = 1. Then the transformation of the vector
in component notations reads as

ψi → ψ′i = Uijψj , (B.1)

where ψ′ is the transformed vector.
We can define a scalar product

(ψ, φ) ≡ ψ†φ = ψ∗i φi (B.2)

on the vector space CN which is invariant under SU(N) transformations. The transforma-
tion law for the conjugate vector is given by

ψ∗i → ψ′∗i = U∗ijψ
∗
j = ψ∗jU

†
ji . (B.3)

It is common to distinguish a vector from its conjugate by the position of its index. Con-
jugated vectors have upper indices, i.e.

ψi ≡ ψ∗i , Ui
j ≡ Uij and U i

j ≡ U∗ij . (B.4)
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In other words complex conjugation raises lower indices and vice versa. In this notation
the transformation laws for vectors become

ψi → ψ′i = Ui
jψj ,

ψi → ψ′i = U i
jψ

j .
(B.5)

The scalar product, see Eq. (B.2), simplifies to

(ψ, φ) = ψiφi , (B.6)

and the unitarity condition becomes

Uk
iUk

j = δi
j . (B.7)

One of the advantages of this notation is that a summation always involves upper and
lower indices so that we can contract indices as it is known for Lorentz indices. The ψi
vectors are the basis of the fundamental representation, denoted by N of SU(N) and the
ψi form the conjugate representation N. Throughout this thesis we label representations
with a bold typed d where d is the dimension of the given representation. By definition
ψi and ψi are elements of a N -dimensional vector space and hence for the fundamental
representation this rule is already fulfilled.

Higher-rank tensors are defined to have the same transformation properties as the
corresponding direct product of vectors. Therefore they have in general upper and lower
indices. Their transformation law is accordingly

ψ′
i1i2...ip
j1j2...jq

= (U i1
k1U

i2
k2 . . . U

ip
kp)(Uj1

l1Uj2
l2 . . . Ujq

lq)ψ
k1k2...kp
l1l2...lq

. (B.8)

These tensors give the bases for higher-dimensional representations of SU(N).
There are two important tensors which are invariant under SU(N) transformations.

First of all there is the Kronecker δ

δ′ij = U i
kUj

lδkl = U i
kUj

k = δij , (B.9)

where we have used the unitarity condition. The second invariant tensor is the totally
antisymmetric tensor in N dimensions, the Levi–Civita or ε tensor,

ε′i1i2...iN = Ui1
j1Ui2

j2 . . . UiN
jN εj1j2...jN = (detU)εi1i2...iN = εi1i2...iN , (B.10)

where we have used the definition of the determinant and the fact that the elements of
SU(N) have unit determinant. We stress here that the ε tensor can be used to lower and
raise SU(N) indices

εi1i2...iNψi2...iN = ψi1 . (B.11)

Hence, with the help of the ε tensor new representations can be constructed and every
totally antisymmetric SU(N) tensor is proportional to the ε tensor and transforms as a
scalar like the ε tensor.
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B.2 Irreducible Representations and Young Tableaux

The irreducible representations play a crucial role in the discussion of representations.
The higher-rank tensors as in Eq. (B.8) are usually the basis for reducible representations.
In order to decompose the reducible representations we make a symmetry decomposition
regarding the tensor indices.

The group transformations and an index permutation commute with each other since
a group transformation consists of identical matrices. As an illustration we discuss the ex-
ample of the second-rank tensor ψij. We define the permutation operator P12 which simply
interchanges the two indices, P12ψij = ψji, and commutes with the group transformation

P12ψ
′
ij = ψ′ji = Uj

lUi
kψlk = Ui

kUj
lP12ψkl . (B.12)

The eigenstates of P12 are the combinations

Sij =
1

2
(ψij + ψji) and Aij =

1

2
(ψij − ψji) , (B.13)

which are symmetric and antisymmetric respectively under P12. A second rank tensor of
SU(N) can always be decomposed in terms of those two tensors which cannot be decom-
posed any further. The second rank tensors Sij and Aij form two irreducible representations
of SU(N).

This statement can be generalised to a tensor of arbitrary rank. It is sufficient to find
all symmetry decompositions to have all irreducible representations of a given higher-rank
tensor.

This problem can be easily solved in terms of Young tableaux. A general Young tableau
is an arrangement of f boxes in rows and columns such that the length of rows does not
increase from top to bottom: f1 ≥ f2 ≥ . . . and

∑
i fi = f . For our needs f is the rank of

the tensor and we write the tensor always in a form with only lower indices (upper indices
can be lowered with the ε tensor). An example Young tableau corresponding to a rank
eight tensor ψi1i2i3i4;i5i6i7;i8 can take the form

. (B.14)

The shape of the Young tableau also defines the symmetry of the indices by the following
two rules:

1. Indices appearing in the same row of the tableau are first subject to symmetrisation.

2. Subsequently, indices appearing in the same column are subject to antisymmetrisa-
tion.

To illustrate these rules we give a simple example. The Young diagram

i j
k

(B.15)
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defines the tensor ψij;k = ψijk+ψjik−ψkji−ψjki. First the indices i and j are symmetrised
and afterwards the indices i and k are antisymmetrised.

There is a fundamental theorem relating Young tableaux and SU(N) representations
[153]: A tensor corresponding to the Young tableau of a given pattern forms the basis
of an irreducible representation of SU(N). Moreover if we enumerate all possible Young
tableaux under the restriction that there should be no more than N − 1 rows, the corre-
sponding tensors form a complete set, in the sense that all finite-dimensional irreducible
representations of the group are counted only once. This theorem is the basis for our above
statements but we do not give a proof here.

Another advantage of Young tableaux is that it is easy to calculate the dimension of
the corresponding representation from them. The dimension d of an irreducible SU(N)
representation is given by

d =
∏
i

N +Di

hi
, (B.16)

where Di is the distance to the first box and hi is the hook length associated to the ith
box. The product is taken over all boxes in the tableau. The distance to the first box is
defined by counting the number of steps going from the upper left corner of the tableau,
the first box, to the ith box. For every step to the right Di increases by one unit, whereas
for every step downwards Di decreases by one unit. As an example in the following tableau
Di is written in every box

0 1 2
-1 0
-2

. (B.17)

The hook length is defined by putting in the ith box a hook and then for every box,
the hook passes, one unit is added to the hook length. The hook has two arms. One arm
goes horizontally to the right and the other one vertically downwards. For example the
hook length of the first box in the tableau

• • •
• (B.18)

is four (the hook is denoted by the bullets) whereas the hook length of the fifth box in the
tableau

• • (B.19)

is equal to two. The hook always passes at least the starting box and hence the minimal
hook length is one.

To illuminate the dimension formula (B.16) we give an example in SU(6). The Young
tableau is

1 2
3 4

, (B.20)

where we have labelled the boxes from 1 to 4. The distances to the first box are D1 = 0,
D2 = 1, D3 = −1 and D4 = 0, cf. (B.17). The hook lengths are h1 = 3, h2 = 2, h3 = 2
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and h1 = 1. Therefore the dimension of the corresponding representation is

d =
∏
i

6 +Di

hi
= 2 · 7

2
· 5

2
· 6 = 105 . (B.21)

So the Young tableau in Eq. (B.20) depicts in SU(6) the 105-dimensional representation.

B.3 Reduction of Product Representations

We now turn to a further application of Young tableaux. With their help it is easy to
calculate the irreducible representations of the product of two irreducible representations.
By induction every product of representations can be evaluated. The algorithm how to do
this is:

1. Assign the same symbol, say a, to all boxes in the first row in the tableau of the first
factor. Then assign b to the second row, c to the third row and so on.

2. Attach boxes labelled with a to the tableau of the second factor in all possible ways,
such that that the resulting tableau is still a Young tableau and does not have more
than N rows in any column. It is also not allowed to have more than one a appearing
in any column. Repeat this with the boxes labelled with a b and so on.

3. After all boxes of the first factor have been added to the tableau of the second factor,
the added symbols have to be read from right to left in the first row, then the second
row and so on. The resulting sequence of symbols must form a lattice permutation,
that is a permutation where there are no fewer a’s than b’s to the left of any symbol,
no fewer b’s than c’s, and so on. If the sequence of symbols does not form a lattice
permutation the corresponding tableau is discarded from the product. For example
the permutation baa is not a lattice permutation while the permutation aba is a
lattice permutation.

We give now two examples in SU(3) to illustrate this algorithm. The first example is

3× 3 = a × =
a

+ a = 3 + 6 . (B.22)

Physically it can be interpreted as the combination of two quarks. Since two quarks can
be combined to form an anti-triplet, three quarks can be combined to form a singlet of
SU(3)C which is a baryon.
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The second example, corresponding to the combination of an anti-quark and a gluon,
is a little bit more complicated

3× 8 = a
b
×

= b ×

 a +
a

+
a


= a

b
+

a

b
+ a

b

= 15 + 6 + 3 ,

(B.23)

where we have already discarded the tableaux in the third step which do not give rise to a
lattice permutation. A good cross-check is that the product of the dimensions on the left
hand side has to be equal to the sum of the dimensions on the right hand side. There is
a comprehensive list of product representations in the appendix of [93]. Full columns (N
rows) in a tableau can be crossed out since they give only a trivial factor of one in the
calculation of the dimension.

The fact that full columns give only trivial contributions to the dimension of the repre-
sentation offers a simple possibility for determining the Young tableau of the conjugate of
a given representation. Simply fill out the given Young tableau to form a rectangle with N
rows where you may not add any columns. A full rectangle gives the trivial singlet repre-
sentation under SU(N). The added boxes, rotated by 180 degrees, give the Young tableau
of the conjugate representation. We give an example in SU(4). The Young tableau,

= 20 , (B.24)

has the conjugate representation

= 20 . (B.25)

B.4 List of Used Representations

In this section we list the SU(N) representations and their Young tableaux which are
important for this work. We only give either the representation or the conjugated one
depending on which Young tableau is more compact. The other representation can easily
be derived as described above.
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Representation Young Tableau

2

3

Table B.1: SU(2) representations and their Young tableaux relevant for this work.

Representation Young Tableau

4

15

Table B.2: SU(4) representations and their Young tableaux relevant for this work.

Representation Young Tableau

5

10

15

24

40

45

50

75

Table B.3: SU(5) representations and their Young tableaux relevant for this work.
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APPENDIX C

Detailed Plots for the
Phenomenological Scans

In this appendix, we show detailed plots from our parameter scan described in Ch. 8. We
show here the impact of eaech experimental constraint, see Sec. 8.3, on the allowed GUT
scale Yukawa coupling ratios for the three SUSY breaking schemes mAMSB, mGMSB and
CMSSM. The scan ranges are given in Tab 8.1.

For each of these scans, we plot the results for every experimental constraint defined in
Sec. 8.3, for the Yukawa coupling ratios ye/yd, yµ/ys, yτ/yb and yt/yb. Black points in the
plots are allowed by the respective experimental constraint, while red points are excluded.
There is no one-to-one correspondence between GUT scale Yukawa coupling ratios and the
SUSY parameters, so that black and red points may overlap when allowed and disfavoured
parameter points give the same ratios.

For the mGMSB scenario we do not show the plots for the CDM constraint, since in
this scenario the LSP is the gravitino which is not included within our calculations. Hence
the corresponding plot has no significance for the rest of our considerations.

We have not included quark mass errors in the plots here, however, we show them in
the final in Fig. 8.1.
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Figure C.1: Impact of experimental constraints from direct detection, EWPO, b→ sγ,
Bs → µ+µ−, (g − 2)µ and CDM on ye/yd and yµ/ys (upper plots) and yτ/yb and yt/yb
(lower plots) in mAMSB, cf. Ch. 8. Red dots denote parameter points which are excluded
by the constraint, while black dots indicate parameter points which are allowed. In the
lower plots for the third generation, the different lines of points correspond to different
values of tanβ, increasing from top to bottom.
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Figure C.2: Impact of experimental constraints from direct detection, EWPO, b→ sγ,
Bs → µ+µ− and (g − 2)µ on ye/yd and yµ/ys (upper plots) and yτ/yb and yt/yb (lower
plots) in mGMSB, cf. Ch. 8. Red dots denote parameter points which are excluded by
the constraint, while black dots indicate parameter points which are allowed. In the lower
plots for the third generation, the different lines of points correspond to different values
of tanβ, increasing from top to bottom.
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Figure C.3: Impact of experimental constraints from direct detection, EWPO, b→ sγ,
Bs → µ+µ−, (g − 2)µ and CDM on ye/yd and yµ/ys (upper plots) and yτ/yb and yt/yb
(lower plots) in CMSSM, cf. Ch. 8. Red dots denote parameter points which are excluded
by the constraint, while black dots indicate parameter points which are allowed. In the
lower plots for the third generation, the different lines of points correspond to different
values of tanβ, increasing from top to bottom.



APPENDIX D

Discrete Symmetries

In this chapter we briefly discuss some properties of the discrete symmetries we have used
as flavour symmetries. We start with a discussion of Zn symmetries and conclude with a
brief introduction to A4 based on [32].

D.1 Zn Symmetries

One of the simplest classes of discrete symmetries are the Zn symmetries with n ≥ 2.
The Zn groups form subgroups of U(1) and are Abelian as well. The simplest example
for this class of symmetries is Z2 under which a field can have either positive or negative
unit charge. An operator is neutral under such a Z2 if and only if the product of all field
charges is positive.

For n ≥ 3 the charge assignments are a little bit more complicated and there are in
principle two different ways how to label a charge. The charge qi of a field φi under Zn can
be written as

qi = e
2πiαi
n , (D.1)

where αi is an integer. In this thesis, especially in Chs. 9 and 11, we label the charge under
Zn with n ≥ 3 with αi instead of the qi. A field combination is neutral under Zn when the
condition ∏

i

qi = 1 , (D.2)

is fulfilled, which can be rewritten in terms of αi,∑
i

αi mod n = 0 . (D.3)

Here, we see why this class of symmetries is denoted with Zn, namely the charges αi can
be interpreted as elements of the residue class ring modulo n where multiples of n are
identical to the zero element.
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From the point of view of the qi charges we would prefer to call these groups cyclic
since all group elements of Zn are powers of one single element a with an = 1 where we
can identify a with a qi where αi equals one.

D.2 The A4 Symmetry

The alternating group A4 is the group of even permutations on four objects. It is the
symmetry group of a regular tetrahedron as well. The group A4 is a non-Abelian discrete
group with twelve elements and is generated by two elements S and T obeying

S2 = (ST )3 = T 3 = 1 . (D.4)

A4 has three one-dimensional representations given by

1 : S = 1 , T = 1 , (D.5)

1′ : S = 1 , T = e2πi/3 ≡ ω , (D.6)

1′′ : S = 1 , T = e4πi/3 ≡ ω2 . (D.7)

The Lagrangian has to form the singlet 1 since the two remaining one-dimensional repre-
sentations transform non-trivially under A4.

Besides the one-dimensional representations there is only one three-dimensional repre-
sentation left given by

T ′ =

0 1 0
0 0 1
1 0 0

 and S ′ =

1 0 0
0 −1 0
0 0 −1

 , (D.8)

where we have used a basis in which S ′ is diagonal. In this basis the singlet 1 combination
of two triplets a = (a1, a2, a3)T and b = (b1, b2, b3)T is given through the combination
a1b1 + a2b2 + a3b3. Throughout this thesis we only use the singlet representation 1 and the
triplet representation 3. The relevant tensor products are

1× 1 = 1 ,

1× 3 = 3 ,

3× 3 = 1 + 1′ + 1′′ + 3s + 3a .

(D.9)

In the last product we have labelled the symmetric combination with an index s and the
antisymmetric one with an index a.
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