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 CHAPTER I: INTRODUCTION  

Due to the great advances in recombinant DNA technology in the mid 1970s 

nowadays approximately 20 % of new drug applications involve a protein as active 

compound [1]. Unfortunately, proteins generally require parenteral administration for 

systemic delivery and the plasma half-lives of proteins are often very short, which is 

associated with frequent injections or administration via infusions. One way to 

overcome the related problems like poor patient compliance, increased occurrence of 

side effects, or cost consuming hospitalisation is the development of sustained 

release systems which should allow prolongated systemic or local delivery of the 

protein drug with the therapeutically desired dosing rate [2-3].  

For that purpose research has been focused on the embedding of peptides and 

proteins in microspheres, or solid or in-situ forming implant systems based on 

synthetic biodegradable polymers, mainly poly(D,L-lactic acid) (PLA) and poly(lactic-

co-glycolic acid) (PLGA). However, despite the early success of such systems for the 

delivery of small peptides no controlled release device for proteins is on the market. 

This limited success can be explained with the fragile, three-dimensional 

macromolecular protein structure rendering proteins susceptible to a variety of 

chemical and physical degradation pathways during the manufacturing, storage and 

release [2, 4]. In order to overcome this restriction lipid derived drug delivery systems 

have been proposed as an alternative [5-8]. Apart from matrix-like solid systems like 

lipid micro-particles and solid lipid implants liposomal drug carriers gained great 

interest offering the benefit of transporting the drug to certain target sites. However, 

especially traditional liposomes, such as unilamellar vesicles or multilamellar vesicles, 

often reveal an insufficient retention of the incorporated drug due to leakage of the 

phospholipid membrane. For instance, multilamellar liposomes loaded with 

granulocyte-macrophage colony stimulating factor (GM-GCSF) provided a sustained 

release of the cytokine over only 24 hours after subcutaneous administration [8]. 

Another potential problem might be that the generation of liposomes with a 

homogeneous size often comes along with low encapsulation efficiencies for 

hydrophilic drugs. Above these hurdles liposome processing methods often involve 

conditions that might induce protein denaturation and/or aggregation [5]. In order to 

prolong the release period very large (100µm), multivesicular liposomes or liposome 
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clusters have been proposed [9]. A further promising delivery concept, which has up 

to now not been evaluated for protein delivery, is the encapsulation of a 

macromolecular drug into vesicular phospholipid gels (VPGs). These gels display 

highly concentrated, semisolid, aqueous phospholipid dispersions, generated by a 

‘forced hydration’ of phospholipids in the presence of relatively low amounts of water. 

The inner structure of the obtained semisolid pastes can be described as a matrix of 

tightly packed phospholipid vesicles. Depending on the phospholipid content and the 

preparation method the size and the morphology of these vesicles varies from small 

and unilamellar to large multivesicular or multilamellar [10-11]. 

So far it has been shown in literature that VPGs can serve as sustained release 

systems for various low molecular weight drugs, especially in the field of anticancer 

treatment [11-12]. First important success was achieved by loading of VPGs with the 

small peptide hormone cetrorelix: in vitro release experiments showed a wide range 

of cetrorelix release periods, ranging from 24 hours to a predicted sustained release 

of over more than 3 months [13]. However, still it was unclear if VPGs might be 

suitable for the delivery of high molecular weight drugs. 

Compared to traditional liposomal formulations VPGs have been shown to facilitate a 

more sustained drug release and furthermore, difficulties associated with the low 

encapsulation efficiencies can be overcome, since even the fraction of drug which is 

not liposomally encapsulated during the preparation process is localized in-between 

the vesicles of the phospholipid matrix and thereby also retained in the gel. Moreover 

the manufacturing protocols are not only rather straightforward and easy to up-scale 

but also advantageous with regard to protein stability and safety as they avoid the 

usage of organic solvent. 

1. GENERAL CONSIDERATION ON PHARMACEUTICAL PROTEINS 

Peptides and proteins are polymers formed by amino acids’ joining with each other 

when the carboxyl group condenses with the amino group to eliminate water [14]. 

There are twenty natural amino acids to construct all physiological peptides and 

proteins. The distinction between proteins and peptides is normally defined by the 

number of amino acids and molecular weight. The proteins typically contain 50 or 

more amino acids resulting in a molecular weight above 5kD. For instance, Insulin 
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has a molecular weight of 5800, and is one of the smallest pharmaceutically relevant 

proteins available. Four levels of protein structure are principally described as the 

primary, secondary, tertiary, and the quaternary structures. Because proteins have 

higher numbers of amino acids within one molecule, only proteins can form the 

tertiary and quaternary structures, but not peptides.  

Proteins have a uniquely important place in therapeutics for various physiological 

purposes due to the high specificity. Advances in biotechnology have led to 

significantly increasing production of biologically active proteins. However, the 

number of pharmaceutical proteins that reached the market is still limited despite the 

continuing trend of proteins to act as therapeutic agent. One of the most challenging 

tasks in the formulation of proteins into pharmaceuticals is to ensure the protein 

stability. Physical and chemical instabilities of proteins are broadly classified as 

shown in Table I-1. In most cases, protein degradation involves more than one 

pathway of physical or chemical instabilities, which are tied to each other [14-16].  

Table I-1. Instability of proteins [14-16] 

 Physical Instability Chemical Instability 

Referred to Loss of secondary, tertiary, or quaternary 
structure 

Covalent modification of the protein via 
bond formation or cleavage 

Including 

Denaturation 

Aggregation 

Precipitation 

Adsorption to surfaces 

Hydrolysis 
Deamidation 

Oxidation 
Disulfide exchange 

B-elimination 
Racemization 

 

2. ADMINISTRATION ROUTES AND EXISTING PROBLEMS 

Proteins and peptides play a very important role in replacement therapy and are now 

well accepted for systemic treatment of certain diseases in medical practice. 

Parenteral injection is the most common route for proteins’ administration since the 

bioavailability of these therapeutic agents is poor when administered nonparenterally. 

Many other administration routes have been tried out, and various degrees of 

success have been achieved [14, 17]. 
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2.1. PARENTERAL DELIVERY 

The therapeutic peptide and protein drugs are mostly available for parenteral 

administration in the market [14]. However, frequent administration is normally 

required due to the often short half life for the delivery of peptides and proteins 

parentally. It results in poor patient compliance and high cost of the health care 

system.  Intravenous injection or infusion is preferred when the peptide or protein 

drugs show significant degradation at the subcutaneous or intramuscular injection 

site. Thus intravenous injection may allow a smaller dosage as the drug is not lost by 

proteolytic degradation. However, high peak drug concentration occurs after 

intravenous injection, which might lead to local or systemic side effects [14, 18-19]. 

The intramuscular and subcutaneous routes of drug injection are often used when 

drugs cannot be injected intravenously because of their low aqueous solubility and/or 

when the high peak concentration creates a problem. Compared with intravenous 

injection, intramuscular and subcutaneous routes have fewer problems associated 

with the compatibility of the injection components with full blood in the circulation. A 

relatively longer duration of action is permitted resulting in less frequent 

administration. In addition, the subcutaneous route are mostly preferred by patients 

due to the feasibility of self administration and consequently improved compliance. 

However, these administration routes are also more problematic in terms of 

immunogenicity and local irritation. Moreover, the drug release after subcutaneous 

injection or intramuscular is known to be affected by many variables (e.g. drug 

lipophilicity , drug solubility. initial drug concentration, injection depth, body 

movement, blood supply at the injection site) [18]. Thus non parenteral formulations 

have been widely investigated to address these problems.   

2.2. ORAL DELIVERY  

Oral delivery of therapeutic proteins is theoretically the most preferable 

administration route due to its accompanying advantages of patient comfort, ease of 

administration, decreased medical costs, and improved patient compliance, but has 

been a challenge for decades. The relatively large size and hydrophilic nature of 

proteins limit the absorption of these molecules in the gastrointestinal tract. The 

gastrointestinal tract is rich in proteolytic enzymes, which are designed by nature to 

digest dietary proteins as well as therapeutic proteins with the same efficiency. Thus, 
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the major barriers for oral delivery of therapeutic proteins include poor intrinsic 

permeability, luminal and cellular enzymatic degradation, rapid clearance, and 

chemical and conformational stability of proteins [20-21].  

Consequently, the bioavailability of therapeutic proteins by oral administration is poor. 

Conventional pharmaceutical approaches to address these barriers, which have 

been successful with traditional organic drug molecules, have not been effective for 

peptide and protein formulations. Meanwhile, various specific approaches are under 

investigation for oral delivery of proteins and peptides. 

The adsorption of proteins and peptides varies from different regions of the intestine. 

For example, the preferred adsorption site is the duodenum for cyclosporine, and the 

upper GI tract for octreotide [22-23]. Hence site specific delivery may offer a solution 

to improve the drug transport and absorption. The stomach has harsh conditions for 

protein drugs due to the acidic environment and enzymatic activity while the colon 

offers a high population of bacteria and largely anaerobic species. Enteric coating is 

typically exploited to avoid dissolution in stomach and to target the proteins and 

peptides to the colon [24-25].  Saffran [25] has coated peptide drugs with polymers 

cross-linked with azoaromatic groups to form an impervious film to protect orally 

administered drugs from digestion in the stomach and small intestine. 

Chemical modification is another approach to improve the oral absorption of proteins. 

In Milstei’s study [26], low molecular weight compounds have been attached to 

protein molecules to form a conjugated molecule. The interaction of these carrier 

molecules with the proteins reversibly destabilizes the native state of the molecule 

favouring a partially unfolded conformation. These intermediate protein 

conformations are transport competent and are able to be absorbed through the 

intestinal tissue and into the bloodstream. However, this approach is generally more 

suitable for peptides than for proteins due to the structural complexity of proteins. 

Protease inhibitors can reduce the proteolytic breakdown of therapeutic proteins in 

the GI tract, and may consequently promote oral adsorption [14, 27]. For example, 

the pancreatic trypsin inhibitor protected insulin in the intestine of rats. Some 

inhibitors that inhibit insulin-degrading enzymes, including N-ethylmaleimide, 1, 10-

phenanthroline and pchloromercuribenzoate dramatically improved insulin transport 

across the ileum. The drawbacks of inhibiting agents, such as the risk of toxic side 
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effect, might be eliminated with advanced drug delivery systems. The introduction of 

delivery system containing mucoadhesive polymers with immobilized protease 

inhibitor, which provides associative binding contact with the mucosa, reduced drug 

degradation between the delivery system and the absorbing membrane [28]. 

The use of carrier systems such as nano-particles, microspheres and liposomes can 

also offer promising approaches to enhance protein oral delivery. Normally a 

combination of two or more approaches is required with the goal to improve the oral 

bioavailability of therapeutic proteins from less than 1% to 10% or higher. Kimura [29] 

has reported a formulation with insulin and protease inhibitor encapsulated in 

polymeric hydrogel spheres. In this case, insulin and inhibitor are released from the 

gel and provide a significant and prolonged reduction of blood glucose level.  

2.3. ALTERNATIVE ROUTES 

Because of the shortcomings of the parenteral and oral dosage forms, alternatively 

delivery routes are under active investigations.  

The transdermal route of delivery is particularly attractive because it avoids protein 

degradation via the gastrointestinal tract and the hepatic first-pass effect, and the 

delivery can be interrupted by simply removing the device. However, the major 

problem is the low permeability of proteins across the skin which is an excellent 

barrier to hydrophilic, polar macromolecules [30]. The use of ultrasound energy can 

be applied to enhance the systemic delivery of protein molecules. In addition, other 

promising enhancement techniques have been developed, such as that applying 

micro-needles and jet propulsion can bypass the stratum corneum barrier to permit 

direct access to the viable epidermis [14]. For the topical delivery, growth factors 

have been applied for post surgery wounds showing accelerated healing effect [31]. 

Moreover, application of delivery systems, such as hydrogels [32]and liposomes [33] 

are tried to enhance the topical delivery of proteins.  

The use of the pulmonary route may soon become one of the most promising routes 

for local and systemic delivery of therapeutic proteins. For non-invasive delivery of 

biologics, it was discovered that the large highly absorptive surface area of the lung 

could be used for local and systemic delivery of proteins such as insulin. Promising 
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results with an absolute bioavailability > 56% were achieved for alpha-Interferon by 

the pulmonary route [34].  

Recombinant human granulocyte colony-stimulating factor (rhG-CSF) has been 

prepared in powder formulations for inhalation [35]. The protein retained in vitro and 

in vivo bioactivity using rabbits as animal model. The market product Exubera® was 

developed for inhalation of insulin. Moreover, liposomes and microspheres have 

been widely investigated as the pulmonary delivery carrier for the controlled release 

of drugs to the lung. However, the major problem is that the lungs are capable of 

metabolizing proteins, of which the metabolic pathways may be different from those 

observed in the intestine. Thus, case-by -case investigations might be necessary to 

test the feasibility of the pulmonary administration.  

In addition, other mucosal routes such as vaginal administration have been 

investigated for therapeutic proteins. Systemic delivery of insulin across the vaginal 

mucosa was studied in ovariectomized rats given subsequent estrogen treatment. 

Enhancers were necessary to achieve decreased blood glucose levels. However, 

variable and often severe histological changes were observed in the vaginal 

epithelium after treatment with the enhancer systems [36]. 

2.4. CONTROLLED DRUG DELIVERY SYSTEM 

There are many challenges to develop an efficient controlled-release drug delivery 

system. Normally a high drug loading efficiency is desired and the delivery system 

should have the feasibility in drug release at various rates to meet different treatment 

schedules. Moreover, the formulation components should meet some basic biological, 

physical, and technological requirements as summarized in Table I-2 [37]. 

Table I-2. Optimal features of materials for protein delivery   

Biological properties Physical properties Technological properties 
Non-cytotoxic Injectable scalable 

Non-immunogenic Mechanical strength Easy production or 
purification 

Non-infectious Suitable Viscosity Retaining full protein 
stability 

Biodegradable with non-toxic products Suitable Elasticity  

 



Chapter I: Introduction 8

 

Besides, for the therapeutic proteins, retention of biological activity is a big issue 

since the proteins are susceptible to proteolysis, chemical modification, and 

denaturation during formulation production, storage, administration, and release [38].  

The research on synthetic biodegradable polymer systems such as poly(D,L-lactide) 

(PLA), and Poly(Lactic-co-glycolic acid) has gained first interests for sustained 

release formulations for therapeutic proteins [39].  However, limited success was 

achieved due to the inherent drawbacks of the polymeric systems. Protein instability 

occurs in the manufacturing process, as well as during the release and storage [4, 

40]. Alternatively, hydrogels have been investigated for protein delivery, which exhibit 

more hydrophilic property and appear more suitable for proteins than the other 

polymeric system.  

Recently, more interests were raised in the biocompatible natural materials (e.g. 

lipids [41]) as alternative to synthetic polymers. Lipids such as triglycerides and 

monoglycerides can be formulated into implants simply by compressing or extrusion. 

Importantly beside the good biocompatibility and easy manufacture process, lipid 

implants cause less detrimental effect on the incorporated proteins [42-43].  

Besides the traditional use of liposomes as drug carriers which circulate in the blood 

stream upon intravesicular administration, some attempts have been made to 

establish liposome-based local depots for sustained drug delivery. One of these 

novel liposome based systems is the multivesicular vesicles which have a bi-liquid 

foam structure with a large particle size ranging from 1–100μm [44].  Multivesicular 

liposomes can be administered by subcutaneous, intramuscular, intra-tumoral or into 

cavities injection for sustained delivery of proteins and anticancer agents [45-49].  

Moreover, vesicular phospholipid gels consisting of phospholipid vesicles were 

introduced as an intermediate to enhance the storage stability of liposomes. First 

investigation on small compounds and peptides showed its potential application as a 

depot for the controlled delivery over a prolonged period [50-51].  

3. POLYMERIC SYSTEM 

The desirable characteristic of polymer systems for drug delivery are: minimal effect 

on biological systems after introduction into the body, in vivo degradability at a well-
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defined rate to nontoxic and readily excreted degradation products, absence of toxic 

impurities or residual chemicals e.g. cross-linking agents. Synthetic and naturally 

occurring polymer based systems have been developed in various forms, including 

nano-particles, micro-particles, films, and matrix devices, etc [52-53].   

3.1. POLY (LACTIC-CO-GLYCOLIC ACID) SYSTEM 

A frequently investigated polymeric system for controlled release is based on 

poly(lactic-co-glycolic acid) (PLGA) especially in the form of injectable micro-particles. 

PLGA is a linear polyester that hydrolyzes by an acid or base catalyzed reaction to 

form the natural metabolites, glycolic and lactic acids [54-55]. Thus these polymeric 

systems are biocompatible, biodegradable, and considered safe. Until now, liquid 

drug-polymer formulations generating (semi-) solid micro-particles (in situ forming 

micro-partices, ISM) on subcutaneous or intramuscular injection have grown 

exponentially. There were some market products developed with these PLGA 

systems, e.g. Nutropin Depot® developed by Genetech and Alkermes jointly as once 

or twice a month injection formulation by loading recombinant human growth 

hormone (hGH) into PLGA micro-particles.  

The capability of the system in releasing therapeutically useful proteins in a 

controlled manner have been widely investigated [38, 55-56]. However, protein 

instability during preparation, storage and release resulting in incomplete release of 

native protein has become recognized as a major problem [4, 57-58]. 

In most cases organic solvents have to be utilized to prepare the polymeric system. 

Protein was loaded either by emulsifying an aqueous protein solution with the organic 

polymer phase or suspending the solid protein powder in the organic polymer phase. 

Denaturizing stresses were associated with this emulsion and the suspension loading 

[57, 59-60]. Moreover, the incorporated proteins are faced to a completely altered 

microenvironment [4, 58, 61] inside the matrix during degradation. The generated 

degradation products are accumulatively entrapped within the matrices and might 

consequently result in a low pH [62], an increased osmotic pressure [63], and 

accumulation of reactive species [64]. As a result, the structural integrity of the 

protein to be delivered can be adversely affected.  
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The use of various stabilization approaches has rendered some success in 

increasing protein stability, but, still, full preservation of the native protein structure 

remains a major challenge in the formulation of protein-loaded PLGA micro-particles 

[3, 65-70]. Moreover, individual proteins exhibit unfortunately large differences in 

sensitivity to stress factors. For a rational optimization of protein stability, one must 

first establish the stage at which degradation occurs and identify the stress factors 

compromising the stability of the particular protein. Then, a rational stabilization 

approach can be followed to ensure the safety and efficacy of these protein-loaded 

PLGA micro-particles [4].  

3.2. HYDROGEL 

As an alternative to the PLGA systems hydrogels were developed for protein delivery. 

Hydrogels are defined as cross-linked polymer matrices that exhibit the ability to 

swell in water without dissolving and to retain a large amount of water within its three-

dimensional structure. Hydrogels have been proposed for local, sustained delivery of 

proteins and other biological pharmaceuticals because of their soft tissue 

biocompatibility, the ease with drug loading and the high degree of feasibility 

achieved by selecting the physical and chemical properties of the polymer network 

[71]. Moreover, the cross-linked polymeric networks can also protect proteins from 

the potentially harsh environment in the vicinity of the release site, such as the acidic 

environment of the stomach [38, 71-73].   

Hydrogels are formulated by chemical cross-linking or physical cross-linking. 

Chemical linking results in a high mechanical strength of gels, while the incorporated 

drug or protein might be affected by the chemical reactions or by the cross-linking 

agents and loses the bioactivity consequently. Thus physical cross-linking gained 

more and more interests, which can be established by e.g. ionic, hydrophobic, or 

coiled-coil interactions [74]. 

A variety of synthetic or natural polymeric hydrogels (e.g. collagen) have been 

employed as the controlled release systems for drug delivery [72, 75-76]. Among the 

wide investigations, in situ forming hydrogels gained considerable interests. The in-

situ cross-linking mechanisms render the system injectable and so that an invasive 

surgical placement can be avoided [77-78]. An aqueous mixture of gel precursors 

and bioactive agents were administered using a syringe into bodies. Cross-linking of 
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the gel precursors can happen either induced by the change in temperature or pH, or 

chemically by Michael type addition reaction or disulfide bond formation in the body 

environment [74, 79]. A temperature-sensitive and in-situ forming hydrogel system 

was developed by Chung [80-81] for the delivery of human growth hormone (hGH). A 

sustained release in a zero-order fashion was observed for 13 days controlled by a 

diffusion/erosion coupled mechanism.  

However, the major drawback of the system is the slow gelation which is caused by 

the time lag between injection of a liquid mixture of gel precursors and protein drugs 

and the formation of a cross-linked gel network[38]. Thus, rapid initial burst and drug 

overdose were observed since a large amount of drugs diffuse away from the 

injection site after injection and before the hydrogels formed. Hence, injectable 

hydrogel systems were developed with a tunable gelation rate to achieve better 

therapeutic output [74, 82]. Delgado [82] has prepared a N,N-dimethylacrylamide-

based hydrogels for the controlled release of bioactive agents including lysozyme, 

bovine serum albumin, and rabbit IgG. The rate of protein release showed a 

dependence on both the molecular weight of the protein and the amount of cross-

linker utilized to prepare the hydrogels. Neither the toxicity against human dermal 

fibroblasts nor the immunogenicity in mice was observed for the hydrogels. 

4. LIPIDIC SYSTEMS 

Lipids are referred to a group of naturally-occurring molecules which includes fats, 

waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), as well as 

mono-glycerides, triglycerides, phospholipids. Lipids may be broadly defined as 

hydrophobic or amphiphilic small molecules; the amphiphilic nature of some lipids 

allows them to form structures such as liposomes, or membranes in an aqueous 

environment [83].   

Bangham [84] was probably the first to recognize the potential of the lipid shells for 

delivering soluble materials for extended periods. In the past few decades, research 

into conventional liposomes with unilamellar and multilamellar vesicles played a 

major role in the area of injectable drug delivery systems.  Significant efforts in basic 

and applied research institutions led to the clinical development and ultimate 

approval by regulatory agencies for human use of a lipid complex (AbelcetTM, 

http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Fat
http://en.wikipedia.org/wiki/Wax
http://en.wikipedia.org/wiki/Sterol
http://en.wikipedia.org/wiki/Vitamin
http://en.wikipedia.org/wiki/Monoglycerides
http://en.wikipedia.org/wiki/Diglycerides
http://en.wikipedia.org/wiki/Phospholipids
http://en.wikipedia.org/wiki/Hydrophobe
http://en.wikipedia.org/wiki/Amphiphile
http://en.wikipedia.org/wiki/Liposome
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AmphotecTM) and three liposome formulations, AmbiSomeTM, DaunoXomeTM and a 

Stealth liposome DOXILTM [85-86]. These products have been developed for 

intravascular administration. The advantages conferred by the lipid complex, 

liposome and stealth liposome technologies include enhancement of circulation times, 

and reduced toxicity by lipid encapsulation. For protein delivery, incorporation of IL-2 

into liposomes seemed to prolong of the local (intra-and/or peritumoral) residence 

time of the cytokine and thereby to improve the antitumor effects [87-88]. However, 

an insufficient retention of the incorporated drug was often observed due to a 

leakage of the phospholipid membrane.  

                               
Figure I-1. Structures of some common lipids. 

In order to address the issue, the most novel lipidic systems for protein delivery, e.g. 

lipid implants, multivesicular liposomes, vesicular phospholipid gels, will be discussed 

in detail below.  

4.1. LIPID IMPLANTS  

Lipophilic materials including cholesterols [89] as well as fatty acids, glycerides, and 

waxes can be used to form lipidic implant systems. In contrast to polymeric implants, 

the high compressibility of lipids allows the formation of solid matrices by traditional 

compression at mild conditions. Different techniques can be applied to generate the 

lipid protein blend: the protein in the solid form can be physically mixed with either 

the lipid powder or with the precipitated lipid powder, or alternatively the protein can 

be co-precipitated with the lipid powder [41, 90-96]. 
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In the working group of Winter et al, many successes has been achieved on the 

study of this novel model depot system for the controlled release of proteins.  

A promising platform for the delivery of rh-interferon-2α based on tristearin implants 

was developed by Mohl [90, 92, 97].  Polyethylene glycol 6000 was incorporated into 

the implants as release modifier. Varying amounts of polyethylene glycol 6000 and 

tristearin were mixed with the lyophilized protein and subsequently compressed to 

form the implants. Over 90% of the entrapped protein was released from the implants 

for over 1 month in virtually monomeric form in vitro. The implants using the 

preparation technique maintained the protein integrity both in the formation process, 

and in the release tests. The addition of hydroxypropyl-β-cyclodextrin (HP-β-CD) was 

applied to stabilize the protein and improve the storage stability of the matrix.  

Herrmann [98-101] has further investigated the role of PEG on the protein release 

from the implants. Implants containing 5-20% PEG showed significantly changed 

release profiles of the entrapped protein. The underlying mass transport mechanisms 

were investigated by monitoring the release of IFN-α, HP-β-CD and PEG into 

phosphate buffer pH 7.4 simultaneously and fitting the results to Fick's second law of 

diffusion.  It was suggested that the release of IFN-α from PEG-free implants was 

purely diffusion controlled while in contrast the reduced protein solubility and a 

reversible IFN-a precipitation during release in PEG-containing matrices were shown 

to control the protein release.  

The in vivo release of the IFN-α implant was performed by Schwab [102] using 

rabbits as the animal model. Protein serum concentrations with the therapeutically 

relevant level maintained nearly constant for 9 days after implantation. However, the 

serum protein level abruptly weared off from the tenth day. It was assumed that IFN-

α was continuously released from the implant after 9 days but the released protein in 

the serum was quantitatively captured by the rabbit antibodies. Good biocompatibility 

and little matrix erosion were observed for the implants. Moreover, a close in vivo–in 

vitro release correlation was revealed by computer modelling in the work.  
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4.2. MULTIVESICULAR LIPOSOMES 

Multivesicular liposomes (MVLs, Trade name DepoFoamTM) are spherical lipid 

vesicles with a size range of several micrometers. The particles are composed of 

multiple non-concentric aqueous chambers bound by a network of lipid bi-layers 

which appears like foam under microscopic examination (Figure 4) [103]. Compared 

with conventional liposomes, the unique structure of MVLs renders a higher aqueous 

volume-to-lipid ratio, which facilitates loading of water-soluble drugs and improves 

their encapsulation. The active ingredient is encapsulated within the non-concentric 

internal aqueous chambers so that a single breach in the external membrane will not 

result in a total release of the internal aqueous content. Moreover, MVLs are not 

rapidly cleared by tissue macrophages due to their large size [104-109]. 

MVLs can be applied as a drug depot, which has efficient entrapment of hydrophilic 

molecules including a variety of therapeutic proteins, providing slow release of drugs 

delivered through different routes of administration. Further, these particles are more 

stable than conventional liposomes due to the higher mechanical strength of the 

unique structure [103, 110-111].    

                

 

Figure  I-2. Microscopy images of Multivesicular Liposomes [103, 110-111]   

4.2.1. PREPARATION METHOD 

In order to prepare MVLs, one neutral lipid (e.g. triglyceride) and at least one usual 

membrane forming lipids (e.g. phospholipids) must be included in the lipid 

compositions. When the neutral lipid is omitted, conventional multilamellar vesicles or 

unilamellar vesicles are formed instead of multivesicular liposomes [46]. The neutral 

lipid acts as hydrophobic space filler at bilayer intersection points and stabilizes these 
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junctions, and is also present as oil droplets dispersed in the encapsulated aqueous 

compartments.  

Kim [44, 103, 112] has evaluated the influence of triolein and other lipid compositions 

on the capture volume and drug encapsulation efficiency of MVLs. In a mixture with 

phosphatidylcholine, cardiolipin and cholesterol (4.5:1:4.5 in mole ratio) maximal 

capture volume and encapsulation efficiency are obtained in the triolein mole fraction 

range of 0.01–0.08. At lower triolein content the capture efficiency is reduced 

markedly. 

A two step emulsification process is critical to form MVLs whereas other types of 

smaller liposomes rather than MVLs are formed if other methods are used even with 

the same required mixtures of phospholipids and triglycerides The first step is making 

a ‘‘water-in-oil’’ emulsion: the lipids in one or more volatile organic solvents are 

emulsified with drug containing water phase under input of high mechanical energy. 

This emulsion is then mixed with a second immiscible aqueous component at less 

mechanical energy so that a water-in-oil-in-water (w/o/w) double emulsion is formed. 

The organic solvent is removed generally by evaporation, by reduced pressure or by 

passing a stream of gas over or through the suspension. Cross filtration is used to 

remove the un-entrapped drugs. The characteristics of prepared MVLs, such as 

particle size, viscosity, and conductivity are affected by many factors including mixing 

speed, mixing time, energy input, and temperature in the double emulsification 

process [46, 103, 113]. However, the preparations can not undergo terminal 

sterilisation and are too big for filtration through microbe-retentive filters. Therefore a 

GMP-conform process for commercial scale production was established with aseptic 

processing techniques containing a set of four sequential unit operations namely first 

emulsion, second emulsion, solvent extraction, and microfiltration [46]. 

4.2.2. INFLUENCE FACTORS ON THE RELEASE   

The release rate of the biologically active compound from MVLs can be modified by 

utilizing a suitable neutral lipid component (triglycerides) in the preparation. Slower 

release rates are observed by incorporating long chain triglycerides in MVLs. 

Triglycerides having mono-unsaturated fatty acids containing about 14–18 carbons in 

the acyl chain and those with saturated fatty acid ester moieties containing about 10–



Chapter I: Introduction 16

 

12 carbons in the acyl chain generally lead to slow release, among which triolein or 

tripalmitolein are mostly utilized. The neutral lipids inducing fast release are selected 

from triglycerides having saturated fatty acid ester moieties containing from about 6 

to 8 carbons in the acyl chain with a molecular weight from about 387 to 471. 

Tricaprylin, and mixtures of tricaprylin and tricaproin, or mixed chain C6 to C8 

triglycerides are most preferred. However, the use of neutral lipids with less than 6 

carbons (e.g. tricaproin) in the acyl chain results in a rapid release of the 

encapsulated compound. The reason is assumed that the stabilizing effect on the 

structure of the particle by longer chain length is then missing. In mixtures, the 

concentration of the shorter versus longer chain triglycerides determines the release 

rate [111, 114-115]. 

The osmolarity of the aqueous phase containing the drug that is mixed with the 

immiscible solvent phase containing lipids is an important determinant of in vivo rates 

of release. The rate of release of the active substance into the surrounding in vivo 

environment can be decreased by increasing osmolarity of this solution. The decay 

half-life of the amount of cytarabine MVLs containing higher amount of cytarabin 

showed slower in vivo release rate than those containing lower content. Since the 

concentration gradient of drug between the inside of the particle and the peritoneal 

fluid for MVLs containing more drug is greater than those containing less,  it is 

assumed that increased osmolarity of the drug containing aqueous solution (first 

aqueous solution) decreases the in vivo release rate of the active compound from 

MVLs [116]. Thus the in vivo release is suggested to be dominated by mechanisms 

other than simple diffusion [111]. 

 Acids in the first aqueous solution are shown to have profound effect on the in vivo 

release rates. The half-life of cytarabine MVLs ranged from for 1.6 to 37.2 h 

depending on the acid added to a solution of cytarabine at a constant concentration, 

which consequently suggests the permeation of the salt complex is an important 

determinant of drug release in vivo [114]. 

It was suggested that the overall release mechanism of MVLs is composed of at least 

three components namely, diffusion, erosion and attrition [117-118]. For the diffusion 

component, particle number (measured by hemocytometry) remains constant but the 

amount of drug retained within the MVL particles decreases over time. Particle size 
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remains essentially constant, except when the particles act as osmometers sensing 

the loss of solute. For the erosion component, both particle concentration and 

internal drug concentration remain constant while particle size decreases. When the 

attrition part of the mechanism is operative, particle concentration decreases while 

internal drug concentration and size remain constant. 

4.2.3. MVLS FOR  CONTROLLED DRUG DELIVERY 

Several hydrophilic molecules including a variety of therapeutic peptides and proteins 

have been efficiently entrapped in MVLs which offers a novel approach to sustained-

release drug delivery [107, 119-121]. MVLs formulations can be administrated 

through injection into body cavities including intrathecal, epidural, intraperitoneal, 

subcutaneous, intramuscular but due to the particle size of up to 5μm, MVLs are not 

suited for intravascular injection [122-123]. 

The MVLs’ particles are retained at the injection site and thus serve as a depot 

releasing the entrapped drug in a sustained manner over several days to weeks after 

non-vascular administration while drugs entrapped in conventional small liposomes 

normally last several hours to a few days after intravascular administration.  

4.2.3.1. APPLICATION FOR SMALL COMPOUNDS 

TOLIYAT [108] has reported MVLs for the delivery of desferrioxamine which is 

normally administered by the parenteral routes due to the poor absorption efficiency 

in the gastrointestinal tract. The results showed not only triolein in the lipid containing 

organic phase but also lysine in the second aqueous solution played significant 

effects on the captured volumes of the vesicles whereas cholesterol content in lipids 

has no significant effect. The effective concentration range for triolein is between 1.7 

to 3.4 mg/ml and for lysine is is between 20 and 40mM. Large MVLs particles were 

obtained with a size between 15-35μm and a capture volume of about 27%. The in 

vitro studies in 0.9% NaCl at 37 ºC showed that 57% of desferrioxamine has released 

from MVLs in 9 days without a rapid initial burst.  

Cisplatin [cis-dichlorodiamine platinum (II)] is one of the most effective antitumor 

agents in the treatment of testicular, ovarian, head and neck, and lung cancer. Due to 

the hydrophobic property, the loading efficiency of cisplatin was limited for 



Chapter I: Introduction 18

 

conventional liposomes (with unilamellar or multilamellar vesicle structure) and the 

pegylated liposomes [124-125].  Xiao [126] has investigated the cisplatin entrapped 

MVLs. The drug loading capacity of MVLs was improved to 0.148–0.444 mg per mg 

of lipid in contrast a drug to lipid ratio of 0.014 for pegylated liposomes. In vitro 

release of MVLs encapsulated cisplatin was over 7 days. The encapsulated drug 

showed much higher drug concentration in plasma as well as at the tumour site 

compared with unencapsulated drug after subcutaneous injection into mice 

inoculated with the murine carcinoma 180 (S180) tumour. Moreover, a longer 

circulation time was observed resulting in higher therapeutic efficiency to decrease 

tumor growth for MVLs cisplatin than uncapsulated cisplatin solution. 

US FDA has approved two MVL formulations for clinical use. DepoCytTM is the first 

clinically available MVL formulation, which contains the antineoplastic agent 

cytarabine for the treatment of malignant lymphomatous meningitis via intrathecal 

injection. MVLs encapsulated cytarabine is released in a sustained manner with 

cytotoxic concentrations in cerebrospinal fluid over 2 weeks after intrathecal injection. 

DepoCytTM has good tolerability from the early efficiency data.The use of MVLs 

encapsulated cytarabine was expected to reduce the dosing frequency from twice a 

week to once every other week and improves the outcome compared with frequent 

intrathecal injections of unencapsulated cytarabine [127-129] . 

DepoDurTM is a morphine loaded MVL formulation and it has heen approved for its 

single epidural injection in the treatment of postoperative pain. Animal experiments 

have confirmed the saftty, efficiency of encapsulated morphine after epidural 

administration. The half time in plasma and CSF were prolonged by different factors 

when administrating encapsulated morphine. However, no clinical studies suggest 

that the use of DepoDurTM decreases the amount of systemically administered 

analgesics needed for adequate postoperative pain control in humans. Due to the 

sustained release fashion of MVLs, it may provide superior pain control during the 

first 1-2 postoperative days compared with epidural administration of unencapsulated 

morphine or intravenous administration of an opioid.  However, three to four times 

lower peak plasma concentrations were observed for the encapsulated morphine 

compared with administrating the same dose of unencapsulated drug. Moreover, 

some safety concerns remain because it is impossible to predict how long patients 

may be at risk of experiencing serious adverse effects [130-132]. 
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4.2.3.2. APPLICATION FOR PEPTIDES AND PROTEINS 

The versatility of the MVLs technique has also been demonstrated using peptide and 

protein drugs [49, 107, 110, 121, 133]. In general, as a sustained-release formulation 

of therapeutic proteins and peptides, MVLs have many advantages including high 

drug loading efficiency, low content of free drug in the suspension, little chemical 

change in the drug caused by the formulation process, narrow particle size 

distribution, and spherical particle morphology. Drug release assays of various 

protein loaded MVLs have been conducted in vitro in biological media such as 

human plasma. The results indicate that these formulations provide sustained 

release of encapsulated drug over a period from a few days to several weeks, and 

that the rate of release can be modulated. In vivo pharmacodynamic studies in rats 

also showed a sustained therapeutic effect over a prolonged period.  

Progenipoietin is a dual receptor agonist of fetal liver tyrosine kinase-3 and 

granulocyte colony-stimulating factor receptors. The novel chimeric protein was 

entrapped into MVLs to develop a sustained delivery formulation. Various 

phospholipid blends containing DOPC, DEPC, and DPPG and two kinds of 

triglcerides including triolein and tricaprylin have been used to modulate the delivery 

profile. Examined by RP-HPLC, the encapsulated protein remained intact in the 

MVLs formulation. Pharmacodynamic studies were performed in rats using 

subcutaneous injection with a single dose of 1mg/kg (either the free protein or the 

MVLs entrapped protein). The same dose of progenipoietin doubled the count of 

neutrophil granulocytes in peripheral blood for 9 days after administering 

encapsulated drug, while the count was back to baseline within 3 days of injecting 

unencapsulated drug. Encapsulation of progenipoietin in MVLs led to retention of its 

structural integrity and maintenance of its biological activity in vivo over several days. 

Thus, a single dose of MVLs encapsulated progenipoietin was expected to improve 

hematopoietic recovery time after chemotherapy, and for other indications that 

require multiple daily doses of progenipoietin [134]. 

Langston [114, 135] has examined the efficiency of entrapped myelopoietins, a 

therapeutic grow factor, after subcutaneous injection in rats. A single injection of 

MVLs encapsulated myelopoietins results in elevated neutrophil counts for 10 days, 

which is a 5-fold increase in contrast to only 2 days for un-encapsulated drugs. The 
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duration of the pharmacodynamic effect of encapsulated drug can be modulated by 

varying the triglyceride (tricaprylin) content of the matrix from 10 days to 4 days, 

which offers the flexibility for controlled delivery of cytokine therapeutics. No increase 

in the extent of deamidation was observed during encapsulation and in vivo release.  

A sustained release MVLs formulation of interferon (IFNα-2b) for subcutaneous 

administration was developed by Qiu [136]. Encapsulation efficiency of interferon 

was enhanced to about 60% by optimizing the protein-lipid ratio. Both the SDS-

PAGE and HPLC analyses showed that the proteins were chemically intact. ELISA 

was performed and showed that the antibody binding affinity for the protein after 

encapsulation was only slightly reduced, indicating that substantial native structure 

remained after preparation. There was considerable protein detected in the 

circulation for more than 5 days using rats as animal models. The serum half-life was 

estimated to be approximately 30 h. Moreover, the in vivo release profile could be 

modified by varying the size of the MVL preparations. By the work of Bonetti [137],  a 

linear release of encapsulated interferon was observed with a half-life time of 384hrs 

in human plasma.  

In Katre’s [107] work, Insulin-like Growth Factor I was entrapped into MVLs to 

achieve sustained therapeutic blood levels which would replace repeated 

administration. IGF-I was encapsulated in this system with good efficiency. The 

median size of MVLs particles ranged from 18 to 20µm.  The integrity of the 

encapsulated protein was maintained, as characterized by physiochemical (HPLC, 

SDS-PAGE) and by biological methods (mitogenic activity). The in vitro studies in 

human plasma at 37 °C showed that the MVLs released 70-80% of the entrapped 

protein in 6-7 days without initial burst. In a pharmacokinetic in vivo study, after 

subcutaneous injections in rats, IGF-I levels were sustained for 5-7 days with 

entrapped protein formulation, whereas the free IGF-I was cleared in 1 day. 

Importantly, the full biological activity of the entrapped protein was maintained over at 

least 5 days at 37 °C, both for the protein released from the MVLs particles and for 

the drug retained in the particles. The protein in the MVLs and the lipid vesicle itself 

are assumed to have long-term shelf life stability at 4 °C for at least 12 months. 
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As a summary, MVL system was shown to be capable of efficiently encapsulating 

therapeutic proteins and peptides and effectively providing controlled delivery of 

these biologically active macromolecules.  

4.3. VESICULAR PHOSPHOLIPID GELS  

Vesicular phospholipid gels were first described as highly concentrated lipid 

dispersions, which normally consisted of 300mg/g-600m/g lipids [11, 138-140]. VPGs 

have a gel-like consistency formed by numerous densely packed vesicles. The 

aqueous compartments are both within the cores and in-between the vesicles so that 

the system is suitable for entrapping hydrophilic compounds including peptides and 

proteins. The gels are formulated by high-pressure homogenisation or dual 

asymmetric centrifugation. First investigations have shown that small water soluble 

compounds could be retained by vesicular phospholipid gels over extended periods 

of hours up to several weeks within an in-vitro set-up. 

4.3.1. PREPARATION METHODS 

4.3.1.1. HIGH PRESSURE HOMOGENIZATION 

High pressure homogenization is basically used for preparing VPGs of small and 

unique vesicle sizes. The preparation approach is based on the one-step technique 

as originally described by Brandl, in which no organic solvent is involved [139, 141]. 

Briefly, dry lipids are mixed with water or buffer with gentle shaking. After a period of 

swelling, the raw lipid dispersions were processed with a high-pressure homogenizer.  

The device APV micro lab 40 can be normally used for lab scale production (with a 

batch size of 40ml).   

A pressure of 70MPa with 10 processing times is usually appropriate to obtain finely 

dispersed gels which are available for spontaneous hydration (dispersion) leading to 

the formation of small liposome in the size range below 100nm. 

The size distribution of the liposomes depends on the applied pressure, the number 

of homogenisation cycles, as well as the lipid type and content. Adding of cholesterol 

results in a slightly increased vesicle size of redispersed VPGs [123, 142-144].  

4.3.1.2. DUAL ASYMMETRIC CENTRIFUGE 
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Dual asymmetric centrifugation has been known as a convenient technology for the 

rapid mixing of viscous components [145-146]. For example, by application of the 

mixer nano-CaCO3 can disperse uniformly in polymer-composites (nano-CaCO3 is 

dispersed as filler between the polymers. By adding a lower content of the fillers, the 

mechanical properties of the composites can be improved significantly) [145-146]. 

The working principle of this special centrifugation technique is that the sample is not 

only rotated around a central axis but also around a second axis in the centre of the 

sample container as shown in Figure I-3. The main rotation arm of the DAC forms an 

angle of about 40° with the rotation plane. At this angle, the rotating arm forces the 

content of the vial into the corner between the bottom and the vial wall [147]. The vial 

holder rotates in the opposite direction with approximately one fourth of the rotating 

arm's frequency. The combination of these two contra-rotating movements makes 

efficient homogenization of viscous materials possible [148-149].   

 

Figure I-3. Schematic drawing of the dual asymmetric centrifuge, SpeedMixerTM DAC 150 FVZ, 
Hauschild GmbH & Co KG, Hamm, Germany  [147].   

DAC was recently applied for production of Vesicular phospholipid gels, which have 

previously been formulated by phospholipid/water blends using high pressure 

homogenizer. In contrast to the preparation technique with high pressure 

homogenizer, DAC is a fast, easy and straight forward method without specific need 

of know-how. Moreover, a small scale production for lab scale study is feasible using 

DAC, which directly lowers the cost. In addition, aseptic production is easily achieved 

with the method using a hermetically sealed sample vial.  
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In Massing’s [147] study, the lipid blends consisting of hydrogenated egg 

phosphatidylcholine and cholesterol of a ratio of 55:45 (mole/mole) was 

homogenized with aqueous solution (Batch size: 0.25g-3.7g) by DAC (150 FVZ, 

Hauschild GmbH & Co KG, Hamm, Germany) using brown injection vials as sample 

container. In their study, glass beads or stainless steel beads were added to the 

sample mixture as homogenizing aid.  Multiples of 5 min-runs were performed until 

the desired mixing time was reached.  After production, the VPGs were redispersed 

with a double volume of 0.9% sodium chloride solution to produce a liposome 

dispersion. The liposome size was used to evaluate the process parameters. When 

the lipid concentration in the blends varied from 350mg/g to 450mg/g, the liposome 

size did not significantly differ while an even higher lipid concentration of 500 mg/g 

led to a slightly higher mean liposome size and variability. Both the duration of DAC-

homogenization and DAC-speed had influence on the size and the size distribution. 

A mixing period over 30 minutes at the speed of 3540 rpm was found necessary to 

obtain smallest liposomes and the lowest variability in mean size. Comparably small 

particles can be obtained from VPGs produced by High pressure homogenizer within 

a much shorter processing period. This contrast offered the hint that DAC generated 

a gentler shear force compared to High pressure homogenizer, which might be more 

applicable for entrapping sensitive compounds, e.g. proteins.  Adding glass beads or 

stainless steel beads, regardless of the amount and size, all seemed to improve the 

mixing efficiency resulting in smaller liposome sizes (less than 100nm) and more 

homogenous distributions. Without adding the beads, the particle size was in the 

range from about 110nm to160nm. Moreover, the influence of the batch size (from 

0.25g to 4g) was also evaluated and no significant influence on the liposome sizes 

was found.  Hence, they have concluded an optimized process (Table. I-3) to prepare 

small liposomes (around 60nm) in a highly reproducible manner. However, a broad 

particle distribution was observed for VPG’ dispersions prepared by DAC which was 

the same situation with those prepared by High pressure homogenizer. The trapping 

efficiency of the model compound calcein was higher in the case of VPGs prepared 

by DAC compared with HPH.  

Table. I-3 Optimized parameters for VPGs’ production with DAC process[147] 

Lipid contwnt Batch size Duration of DAC DAC-speed Homogenizing aid 

400 mg/g 0.5 g 30 min or longer
3540 rpm 

(maximum) 
 

glass beads 1 mm, amount: 100% 
(equal amount as compared to 

batch amount) 
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As mentioned above, VPGs can been utilized as storage-stable intermediates for 

liposomes, as well as semisolid depot formulations for sustained release of 

entrapped drugs [143]. For the former purpose of developing a VPGs based 

liposomal formulation, DAC was fully demonstrated as a suitable method beside high 

pressure homogenizer for production of small liposomes which are applicable for 

parenteral administration. Moreover, autoclaving is no longer necessary since using 

hermetically sealed sample vial in addition with inert gas can easily provide a sterile 

production environment for entrapping sensitive compounds e.g. proteins in VPGs. 

The lysophosphatidylcholine generated in the sterile process conditions of DAC was 

lower compared with the process of High pressure homogenizer plus autoclaving 

(0.23% vs. 1.2%). In contrast to the High pressure homogenizer where a relatively 

large batch size is normally necessary, various batch sizes from below a gram up to 

several kilo grams can be processed by using different sizes of sample vials and 

DACs.   

Moreover, it was predicted that sensitive drugs and bioactive compounds e.g. 

peptides, proteins could be entrapped within VPGs by DAC without significant 

degradation since the processing temperature could be maintained low by dividing 

the mixing into a series of short DAC-runs combined with sample cooling in between 

[147].  

In summary, major problems for the VPG production by HPH and further liposome 

preparation (including overly large batch sizes, sterility and safety issues or the harsh 

conditions which limit the entrapment of sensitive compounds) may be overcome by 

using DAC.  

4.3.2. CHARACTERIZATION OF VPGS 

The morphology of VPGs was revealed by freeze-fracture electron microscopy [150-

151]. The inner structure was described as a matrix of densely packed vesicles within 

the semisolid pastes. The influence of the mechanical stress, lipid content, and lipid 

type on the morphology was studied. When magnetic stirring was used for 

processing, very heterogeneous multilamellar vesicles are found whereas after high 

pressure homogenization, the pastes predominantly consist of homogenous small 

and unilamellar vesicles as long as the lipid content is less than 450mg/g (Figure I-4). 
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However, the characteristics of the vesicles within homogenized pastes depend on 

the lipid content. When a higher lipid content is applied, large multilamellar vesicles 

and planar lamellar stacks are found beside small unilamellar vesicles which leads to 

more heterogeneous in size extending to a range of several 10μm (Figure I-5) [140]. 

The gel pastes prepared with lipid blends containing DMPC, DPPC or mixtures 

thereof showed domains of ripple phases beside areas of vesicular character, which 

indicated incompletely hydration.  

 
Figure I-4. Freeze-fracture electron micrograph of vesicular phospholipid gel based on 450mg/g lipids, 
soy PC, prepared by high pressure homohenization (10 cycles at 70MPa). Predominantly small 
unilamellar vesicles (SUVs) in the size range below 100nm, with some larger vesiclesin the several 
hundred nanometer range [50, 140, 143]. 

 

Figure I-5. Freeze-fracture electron micrograph of vesicular phospholipid gel based on 500mg/g lipids, 
soy PC, prepared by high pressure homohenization (10 cycles at 70MPa). Partly small unilamellar 
vesicles (SUVs) in the size range below 100nm, as well as larger vesicles in the micrometer-range [50, 
140, 143]. 
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4.3.3. APPLICATION OF VPGS FOR DRUG DELIVERY 

4.3.3.1. VPGS BASED LIPOSOMES 

VPGs have emerged both as intermediates for liposome production and as semisolid 

depot formulations for loco-regional sustained release of drugs upon implantation or 

injection.  

By mixing with excess aqueous medium and mechanical agitation, VPGs can be 

transferred into conventional liposome dispersions [152]. Redispersing the VPGs by 

using a ball mill, the occurrence of larger particles could be widely suppressed, as 

indicated by photon correlation spectroscopy.  

With the technique of VPGs based liposomes, encapsulation efficiencies of 

hydrophilic compounds into small unilamellar liposomes are improved compared with 

other liposome preparation techniques so that removal of unencapsulated drug may 

be avoided. Moreover, small and uniform vesicle sizes could be achieved at the 

same time. Improved storage stability is expected for the liposomes prepared this 

way.  

Autoclaved VPGs have already been used in first animal experiments [153]. In 

general, steam sterilisation is considered applicable for VPGs which maintained their 

vesicular structure but showed a slight increase of vesicle size. This size drift was 

deemed irrelevant for safety despite the influence on the pharmacokinetics of 

liposomes redispersed from VPGs. For the application of VPGs as local-depot 

formulation, the bigger vesicle sizes and corresponding increase in packing density 

were assumed to slow down the erosion of the matrix and therefore lead to a slower 

release of the hydrophilic marker [11, 140, 154]. 

 A liposomal formulation of gemcitabine based on VPGs was reported as a highly 

effective gemcitabine delivery system through intravenous administration [153]. The 

hydrophilic anticancer agent Gemcitabine can be entrapped in a stable manner into 

small liposomes through the VPG approach with a satisfactory drug entrapment 

efficiency and sufficient storage stability for potential clinical use. Redispersed VPGs 

consisted of 33% liposomally entrapped and 67% free gemcitabine. In vivo 

pharmacokinetics and antitumor activity showed efficiency compared to the 

conventional formulations due to the sustained release and passive tumor targeting 
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of the liposomes. Using the VPG concept, another antitumor agent Vincristine [155] 

was passively entrapped in small liposomes with efficient entrapment and good 

retention without using deleterious acidic pH values. Furthermore, such a liposomal 

formulation allowed application without removing non-entrapped drug, and provided a 

prolonged shelf-life of the liposomes. By redispering VPGs, it was possible to 

develop liposomal formulation of Bendamustine [156] which was difficult with 

conventional liposome preparation techniques because of the insufficient stability of 

Bendamustine in aqueous solutions. A sterile DAC process with optimized 

processing parameters was performed to achieve small particles within VPGs. The 

gel pastes were subsequently redispersed into liposomes with an average size of 

about 62.5 nm and an entrapment efficiency of around 41.5%. Entrapped 

Bendamustine showed a better stability in aqueous solution.  Moreover, an enhanced 

antitumor efficacy was observed in cell culture for liposomal Bendamustine. 

4.3.3.2. VPGS AS LOCAL DEPOT SYSTEMS 

Local delivery is frequently the only feasible strategy to achieve locally high 

concentrations of therapeutic substances. Some proteins, such as chemokines, 

cannot be delivered systemically because their mode of action requires a 

concentration gradient. Local rather than systemic delivery may be the preferred 

route of protein delivery in the case of that: (i) the protein can not reach the site of 

action; (ii) the protein acts undesirably on other organs; (iii) high local concentrations 

are needed; or (iv) local concentration gradients need to be established [157-158]. 

The use of the undiluted VPGs as implants for the local administration of drugs was 

applied to meet the requirement. The multivesicular morphology of VPGs offers the 

potential as local depot as the pastes appeared to retain entrapped drugs when in 

contact with excess aqueous medium [50, 138, 143].  

Tardi [11] has used Calcein (Mw 623) as a hydrophilic model to evaluate the in vitro 

release behaviour of VPGs. The small water-soluble compound could be retained 

within the matrix over extended periods of hours up to several weeks depanding on 

the lipid content within the various formulations of VPGs. The released calcein and 

released phosphatidylcholine were both quantified so that two mechanisms 

controlling the release were found occurring at the same time: (1) erosion of the 

matrix with release of liposomal compounds and the compounds trapped in between 
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(2) diffusion through the matrix. In addition, increasing the lipid content of lipids 

decreases matrix erosion rate and consequently slows down the release of the 

entrapped model, whereas no influence was observed of the entrapped calcein.  

Kaiser [159] has prepared different formulations of 5-fluorouracil loaded VPGs with 

hydrogenated soy phosphatidylcholine and cholesterol by high pressure 

homogenization. The entrapment efficiency of liposomal 5-fluorouracil redispersed 

from VPGs was around 40%.  A prolonged half-life time of the antitumor agent 

released from VPGs was found to be in the order of 4–5 h and the kinetics was 

typical for matrix-controlled drug diffusion. Thus it was suggested VPGs were 

applicable as implants with controlled release properties or, after redispersion, as 

intravenously injected liposomal formulations.  

Another potential application concerns prolonged systemic delivery of peptide 

hormones after implantation [13, 160-161]. VPGs were prepared with 300mg/g-500 

mg/g egg phosphatidylcholine and 0.5–10 mg/g cetrorelix acetate (CXA) using High 

pressure homogenization. The in vitro release behaviour of the peptide loaded VPGs 

were influenced by the lipid content, the drug content within the formulations, and 

also the interactions between the two factors. A fast complete release within 24hrs 

was observed for the formulation consisting of 0.5 mg/g CXA and 400 mg/g lipids 

while a sustained release of therapeutically relevant CXA doses over up to 6 weeks 

also appeared feasible with the formulation containing 8.5 mg/g and 360 mg/g lipids. 

Erosion of the phospholipid matrix was found to be the main release mechanism, 

following zero order or first order kinetics depending on the composition of the VPGs. 

CXA-concentration dependent drug–drug or drug–lipid interactions were assumed to 

be responsible for the change in release kinetics and the decrease of CXA release at 

high concentrations of the peptide. VPGs were thus considered as a promising new 

approach for the sustained release of peptide hormones. 

In addition, Farkas [162-163] has incorporated β-sitosterol into VPGs of 

hydrogenated phospholipids and chlorhexidin digluconate, which led to the phase 

transition of the gels to the less ordered fluid vesicular state. The membrane 

deformability and the system dispersity were increased as a result of increasing the 

β-sitosterol ratio in the lipid blends. Moreover, the release extent of chlorhexidine 

from the matrix was significantly increased.  
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As a summary, current work has shown promising results of VPGs as controlled 

delivery system. The feasibility of the system has been demonstrated by varying the 

components of VPGs to modulate the in vitro release behaviour. 
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 CHAPTER II: AIM OF THE THESIS 

Lipid based carriers have attracted increasing scientific and commercial attention 

during the least few years for controlled delivery of proteins concerned with stability 

issues [164]. 

Vesicular phospholid gels have emerged as a novel lipid based formulation with a 

three-dimensional network. The gel formulations can be applied both as 

intermediates for liposome production and as semisolid depot formulations for loco-

regional sustained release of drugs upon implantation or injection [50, 123, 143, 152]. 

As a loco-regional application, the sustained release character of vesicular 

phospholipid gels has been demonstrated using the small water soluble compounds 

[152, 165]. First important success was achieved by loading of VPGs with the small 

peptide hormone cetrorelix: in vitro release experiments showed a wide range of 

cetrorelix release periods, ranging from 24 hours to a predicted sustained release of 

over more than 3 months [13]. However, still it was unclear whether VPGs might be 

suitable for the delivery of proteins due to the inherent instabilities of the 

macromolecules. Therefore, the first major aim of the present work was to develop 

various protein-loaded VPGs.  

Second, dual asymmetric centrifuge was introduced as an alternative for the 

traditional preparation method of VPGs with high pressure homogenisation [147]. 

Thus lab scale preparation became feasible. Our second part of work was to develop 

a suitable preparation method for loading protein into VPGs.  

Moreover, morphology and rheological behaviour of VPGs have been investigated in 

previous work [151-152]. For the intro release tests, Grohganz [160, 166] has 

developed a RP-HPLC method to quantify released cetrorelix from the gel matrix. 

Various organic solvents and surfactants have been tried out to extract the peptide 

from the release fractions since liposomes in the release fractions got strong 

interference if they are not disrupted.  However, for the protein loaded VPGs, we 

have to develop suitable characterization methods both for the gel matrix and for the 

entrapped protein.       
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As a brief, the project was to focus on: 
 

• Preparation of VPGs with various phospholipid contents and compositions, to 

evaluate their influence on the physical character of VPGs, as well as the 

influence on the in vitro release behaviour.  

• Preparation of VPGs with various proteins, for each protein to evaluate the 

influence of protein concentration on the physical character of VPGs, as well 

as the influence on the in-vitro release behaviour.  

• Establishment of analytical methods for various proteins and phospholipids. 

• Adaption of the release system. 

• In vitro release tests of the various VPG formulations and analysis of the 

released fractions. 

• Investigation on the in vitro release kinetics of the formulations. 

• Establishment of an ELISA method for the in vivo experiment. 

• Preparation of VPGs for intra-articular application in the animal models. 
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CHAPTER III: MATERIALS AND METHODS 

1. MATERIALS 

1.1. FLUORESCEIN ISOTHIOCYANATE-DEXTRAN (FITC-DEXTRAN) 

FITC-dextran (FD-40, with an average molecular weight of 40kDa) was supplied from 

Sigma-Aldrich, Steinheim, Germany. The molecular structure is shown in Figure III-1 

[167]. FITC-dextran is a water-soluble yellow powder. It has good stability at pH 4-10 

at room temperature and excellent biocompatibility in vivo. FITC-dextrans have been 

used as tracers for studying microcirculation or membrane permeability in vivo [168-

170]. Besides, FITC-dextrans were also applied as hydrophilic macromolecular 

models to evaluate drug delivery systems [171-172].  

 

Figure III-1. Structure of FITC-dextran. 

1.2. ERYTHROPOETIN (EPO) 

EPO is a glycoprotein with a molecular weight of 30.4kDa, 40% of which is ascribed 

to carbohydrates [172]. The protein molecule contains a single-chain with 165 amino 

acids [173]. EPO is produced primarily by the kidney and to a lesser extent in the 

liver. The physiological function of EPO is to regulate the red blood cell production 

[174-176].  Besides, the protein is also involved in the wound healing process [177] 

as well as the brain’s response to neuronal injury [178]. The iso-electric point of EPO 

is around a pH value from 4.2 to 4.6 [179]. 
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The protein bulk used in this work had a concentration of either 0.65 mg/ml or 

0.75mg/ml in 20 mM phosphate buffer pH 7.2, containing 20 mM sodium chloride. 

However, further concentrating of these protein bulks was needed for the study.  

1.3. GRANULOCYTE COLONY-STIMULATING FACTOR (G-CSF) 

Recombinant human (rh-) G-CSF was provided with a concentration of 4.04 mg/ml.  

The protein buffer consisted of 10mM sodium acetate buffer, 0.004% Tween and 5% 

Sorbitol with a pH of 3.9. 

Mouse granulocyte colony-stimulating factor (G-CSF) was first recognized and 

purified by Rafael Duarte in 1983 [180]. and the human form was cloned later in 1986 

[181]. G-CSF is a single, non-glycosylated, polypeptide chain containing 175 amino 

acids and having a molecular mass of 18.8 kDa. G-CSF is a cytokine which naturally 

regulates the survival, proliferation, and differentiation of hematopoietic cells [182-

183]. rh G-CSF has been therapeutically utilized to increase the production of 

neutrophils, as well as to mobilize the hematopoietic stem cells [183]. However, due 

to the short human plasma life (ca. 3.5hr) and limited therapeutic efficiency, multiple 

injections are normally required to achieve the desired therapeutic outcome [184]. 

1.4. MONOCLONAL ANTIBODY IMMUNOGLOBULIN G (MAB) 

The antibody used in the study is a monoclonal recombinant human IgG antibody. 

The monoclonal antibody is produced by a type of immune cells that are all clones of 

a single parent cell. The IgG antibodies are composed of 4 peptide chains with 

molecular weight of about 150 kDa. There are two identical heavy chains (ca. 50kDa) 

linked to each other and to a light chain (ca.25kDa) each by disulfide bonds. The 

resulting tetramer forms the Y-like antibody. Each IgG has two antigen binding sites. 

IgG is the most abundant immunoglobulin constituting 75% of serum 

immunoglobulins in humans. IgG antibodies are predominately involved in the 

secondary immune response. The presence of specific IgG generally corresponds to 

maturation of the antibody response [185-188]. 

The monoclonal IgG antibody bulk was provided with a concentration of 17.6mg/ml in 

50 mM phosphate buffer pH 6.4, containing 150mM sodiudm chloride and 0.1% BSA.  

http://en.wikipedia.org/wiki/White_blood_cell
http://en.wikipedia.org/wiki/Cloning
http://en.wikipedia.org/wiki/Peptide
http://en.wikipedia.org/wiki/KDa
http://en.wikipedia.org/wiki/Disulfide_bonds
http://en.wikipedia.org/wiki/Antigen
http://en.wikipedia.org/wiki/Blood_plasma
http://en.wikipedia.org/wiki/Memory_B_cell
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1.5. PHOSPHOLIPIDS 

The following phospholipids were kind gifts from Lipoid GmbH (Ludwigshafen, 

Germany): Egg lecithin (E 80) containing 80%-85% phosphatidylcholine (PC) was 

used as the basic liposome forming phospholipid. The other major compounds in E 

80 are specified (certificate of analysis) as: phosphatidylethanolamine (7.0–9.5%), 

lysophosphatidylcholin (less than 3%), sphingomyelin (2–3%) and triglycerides (less 

than 3%). DOTAP (1, 2-dioleoyloxy-3-trimethylammonium propane chloride) was 

used as a cationic, DPPA (dipalmitoylphosphatidic acid) as an anionic phospholipid. 

The other phospholipids used in the work were generously provided by 

PHOSPHOLIPID GmbH (Cologne, Germany).  

1.6. CHEMICALS  AND REAGENTS 

Acetic acid (100 %), p.A., VWR International GmbH, Darmstadt, Germany 

Acetonitril, CH3CN, gradient grade, VWR International GmbH, Darmstadt, Germany 

Basic fibroblast growth factor, bFGF, PROSPEC, Israel 

Chloroform, CHCl3, p.A., Merck KGaA, Darmstadt, Germany 

Dipotassium hydrogen phosphate, K2HPO4, p.A., VWR International GmbH, Darmstadt, Germany 

Disodium hydrogen phosphate dihydrate, Na2HPO4 x 2 H2O, p.A., VWR Int. GmbH, Germany 

Ethanol, p.A., Merck KGaA, Darmstadt, Germany 

FLuorescamine, Sigma-Aldrich, Steinheim, Germany  

Hexane, p.A., Merck KGaA, Darmstadt, Germany 

Lyophilised bovine serum albumin, 66kDa, Fraction V, Sigma-Aldrich, Steinheim, Germany 

Methylene blue, VWR International GmbH, Darmstadt, Germany 

N, N-Dimethylformamide, DMF, Merck KGaA, Darmstadt, Germany 

Octyl ß-D-glucopyranoside, ODG, Sigma-Aldrich, Steinheim, Germany  

Potassium chloride, KCl, p.A., VWR International GmbH, Darmstadt, Germany 

Sodium azide, NaN3, p.A., VWR International GmbH, Darmstadt, Germany 

Sodium borate, Sigma-Aldrich, Steinheim, Germany  

Sodium chloride, NaCl, p.A., VWR International GmbH, Darmstadt, Germany 

Sodium deoxycholate, DOC, Thermo Fischer Scientific Inc 

Sodium dihydrogen phosphate monohydrate, NaH2PO4 x H2O, p.A., VWR Int. GmbH, Germany 

Sodium dodecyl sulphate, C12H25NaO4S, VWR International GmbH, Darmstadt, Germany 

Sodium hydroxide, NaOH, p.A., VWR International GmbH, Darmstadt, Germany 

Trifluoroacetic acid, TFA, p.A, Merck KGaA, Darmstadt, Germany 

Triton X-100, Sigma-Aldrich, Steinheim, Germany 

Tween®80, Polysorbate 80, Serva, Heidelberg, Germany 

Ultra pure water, taken from Purelab Plus®, USF GmbH, Ransbach-Baumbach, Germany 



Chapter III: Materials and methods 35

 

2. METHODS 

2.1. UP-CONCENTRATION OF PROTEINS  

The protein bulk solutions were concentrated to the desired concentrations by 

ultrafiltration using Vivaspin tubes (Sartorius Stedim Biotech GmbH, Goettingen, 

Germany). According to the molecular weight of the proteins, various Vivaspin tubes 

were used as shown in Table III-1. 

The concentrated proteins were quantified by UV photometry at 280nm and 

calculated with the extinction co-efficiency. For each protein, the integrity proved to 

be maintained from the ultrafiltration process by HPLC.   

Table III-1. Concentrating of proteins with Vivaspin tubes 

Protein Concentrating fold  Centrifugal 
concentrators 

Centrifugal 
conditions 

Extinction coefficiency 
at 280nm. 

EPO Ca. 10 x Vivaspin 20ml, 5kDa 
membrane cut-off. 0,743ml/mg.cm [189] 

G-CSF Ca. 2-8 x Vivaspin 2ml, 3kDa 
membrane cut-off. 0,860ml/mg.cm [190]  

mAb-IgG Ca. 2-4 x Vivaspin 20ml,100kDa 
membrane cut-off. 

Swing Bucket Rotor, 
Centrifugation at 
3000rpm, 15°C, 
multiple runs of 
30minutes till 
desired 
concentration 
achieved 1,499ml/mg.cm  

 

2.2. PREPARATION OF VESICULAR PHOSPHOLIPID GELS 

In the first steps, FITC-dextran loaded VPGs were formulated either by High pressure 

homogenization or Dual asymmetric centrifugation to compare the preparation 

methods. Proteins were loaded into VPGs by DAC.    

2.2.1. PREPARATION BY HIGH PRESSURE HOMOGENIZATION 

The preparation method of VPGs using High pressure homogenization was first 

described by Brandl [50, 139, 143, 151-152]. FITC-Dextran was used as the 

macromolecular model instead of proteins to evaluate the suitability of the 

preparation method. Briefly, FITC-dextran was dissolved in destilled water. 

Phospholipids were subsequently added to the FITC-dextran solution. The blends 
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were allowed to swell for 10 minutes and then fed into the high-pressure 

homogeniser (APV Micron Lab 40, APV Homogeniser, Luebeck, Germany). The 

mixture was homogenised 2-7 times at 70 MPa at room temperature. The batch size 

was between 40 and 45 g. After homogenization the gels were stored in capped 

glass vials at 2–8°C.  

2.2.2. PREPARATION BY DUAL ASYMMETRIC CENTRIFUGATION 

The preparation of VPGs using Dual asymmetric centrifugation was based on the 

method described by Massing et al [191]. Modifications were made in order to avoid 

potential heat-stability problems with the proteins. Briefly, FITC-dextran or proteins 

were incorporated by direct loading, i.e. EPO solution (formulated in 20mM PBS 

buffer, pH 7.2) was added to the accurately weighed lipids and homogenized by 

means of a dual asymmetric centrifuge (SpeedMixerTM DAC 150 FVZ, Hauschild 

GmbH & Co KG, Hamm, Germany) (Figure III-2.) in a 25ml cylindrical container (PP, 

Duerrmann GmbH, Hohenlinden, Germany). For homogenization a process speed of 

3500 rpm was utilized in all experiments. According to the first report on the 

utilization of DAC and the fact that a continuous long-time centrifugation run causes a 

significant temperature increase in the product, multiple centrifugation steps of 1.5-

minutes were added up to a total mixing time of 45 mins with interrupts for cooling at 

2-8°C. In addition, methylene blue loaded VPGs were prepared to demonstrate the 

homogeneity distribution of VPGs.  

 

 

Figure III-2. The dual asymmetric centrifugation, SpeedMixerTM DAC 150 FVZ 
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2.3. MICROSCOPIC STUDIES 

Microscopic studies of protein loaded VPGs were carried out using an Olympus 

microscope. Magnifications at 400 x was applied in order to visualise the surfaces of 

the VPGs. Microscopic pictures were collected with a TK-C1380 colour video camera 

(camera digital – ½ inch CDD, JVC Professional Products GmbH, Friedberg, 

Germany) coupled with Lucia software. 

2.4. RHEOLOGY  

The rheologic behavior of VPGs was studied on the rotational rheometer (Physica 

MCR 100, Anton Paar GmbH, Ostfildern, Germany) with cone and plate geometry. 

The shear rate was set to 10-100 s-1. About 1g of VPGs were used for each 

measurement. The temperature was set to 25°C. The viscosity of VPGs was 

compared at the fixed shear rate of 37.9 s-1.  

2.5. TEXTURE ANALYSIS 

Texture analysis was performed to evaluate the gel strength of VPGs. The 

measurement was performed on a texture analyzer (TA.XT plus, Stable Micro 

Systems, UK) with a micro-probe of 4mm in diameter. The test speed was set to 

0.50mm/sec. A gel volume of 1.5ml (in u-bottom eppendorf tubes) was used for each 

measurement. The value given by the texture analyzer is the gel strength expressed 

in gram versus time plot according to the standard “Bloom test” for determination of 

the gelatine’s gel strength. 

2.6. DISPERSIONS OF VPGS 

VPGs were accurately weighed and dispered with excess aqueous buffer solutions to 

form the liposomes. Vigorous vortex (Heidolph REAX Top, Heidolph GmbH, 

Germany) was applied to offer a mechanical agitation.  

2.7. PARTICLE SIZE ANALYSIS AND ZETA POTENTIAL MEASUREMENT 

Particle size analysis and zeta potential measurement was conducted on the 

Zetasizer nano ZS (Malvern Instruments, UK). The vesicle size of liposomes 

dispersed from VPGs and from release fractions were analyzed and represented as 

intensity-weighted averages. 
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The Zeta potential is the electric potential at the shear plane of a particle [191]. The 

ionic interaction between proteins and lipids was evaluated by measuring the zeta 

potential of dispersed VPGs. The test temperature was set to 25 °C.  

2.8. TURBIDITY 

The turbidity of the release fractions was determined to reflect the release degree of 

the VPGs matrix. The Nephla turbidity photometer (Dr Lange GmbH-Berlin, Germany) 

used in the study has a measurement range of 0.001-1000 FNU at the working 

wavelength of 860 nm.  

2.9. EXTRACTION OF PROTEINS FROM THE VPG MATRIX 

Liposomes in the dispersions of VPGs or in the release fractions from VPGs were 

found to have strong interference with the entrapped proteins in characterization and 

quantification. Therefore, extraction processes had to be applied, which allows the 

quantitative recovery of the proteins from the liposome fractions without having 

detrimental effects on the protein integrity. Since individual proteins exhibit. large 

differences in extraction process, a case-by-case investigation was performed testing 

several organic solvents and surfactants.  

2.9.1. EXTRACTION OF EPO 

Chloroform was found suitable for EPO extraction. For disperions or release fractions 

containing uncharged and negatively charged lipids, 0.3 ml of chloroform were added 

per ml of release medium sample volume. In the case of samples containing cationic 

lipids, 200mM sodium chloride was added to reduce the ionic interaction between 

EPO and cationic lipids before 0.3ml chloroform was added per release sample 

volume. Afterwards the mixtures were vortexed and centrifuged (at 3000rpm, 15°C, 

30 mins). The upper aqueous phase was analyzed by reverse phase-HPLC to 

quantify the EPO content. The protein stability was evaluated by gel electrophoresis 

(SDS-PAGE). 

2.9.2. EXTRACTION OF G-CSF 

In order to extract G-CSF from liposome containing samples, the following steps 

were performed: 1.5mg/ml phospholipids (E 80) were added to the sample solutions. 
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The pH was adjusted to 3.5. 0.4ml/ml DMF was then added to the dispersions. Lipids 

were removed by centrifugation (3000rpm, 15°C, 30mins).  Protein concentration was 

determined by using a Reverse phase-HPLC, and protein stability was evaluated by 

gel electrophoresis (SDS-PAGE).  

2.9.3. EXTRACTION OF MAB IGG 

0.015% sodium deoxycholate (DOC) was added first to reduce the interaction 

between the antibody and lipids. After incubating at 37°C for 20mins, 1ml/ml 

chloroform was added to dissolve the lipids. The protein remains in the aqueous 

phase after centrifugation at 3000rpm for 30mins (15°C). Protein concentration was 

determined by using a micro BCA assay (Pierce, Bonn, Germany). 

2.10.  SODIUM DODECYL SULPHATE POLYACRYLAMIDE GEL ELECTROPHORESIS 

The integrity of proteins after incorporation was analyzed by SDS-PAGE with non-

reducing conditions. The proteins were extracted by applying the suitable method as 

described in 2.10. The protein containing samples were diluted with Tris-buffer pH 

6.8 containing 2% SDS and incubated for 20min at 90 °C. Unstained molecular 

standard (Mark12 TM, Invitrogen, Groningen, Netherlands) was used as the molecular 

weight marker. For EPO and G-CSF, 20µl of the samples were loaded into the 10% 

Bis-Tris gel wells (NuPAGE® Novex 10 % Bis-Tris Pre-Cast Gel 1.0 mm, Invitrogen, 

Groningen, Netherlands). Electrophoresis was performed at a constant current mode 

of 40 mA in a MES running buffer (Invitrogen Groningen, Netherlands). The gels 

were stained either with silver staining kit (SilverXpress® Stain Kit, Invitrogen) or a 

coomassie blue kit (Colloidal Blue Staining Kit ® Stain Kit, Invitrogen) , and dried 

using a DryEase ® Gel Drying System (Invitrogen). For the monoclonal antibody, the 

electrophoresis was performed on the 7% Tris-acetate gels (NuPAGE® Novex 7% 

Tris-acetate Pre-Cast Gel 1.0 mm from Invitrogen, Groningen, Netherlands) in a 7% 

Tris-acetate/SDS running buffer (Invitrogen Groningen, Netherlands).  

2.11.  IN VITRO RELEASE TESTS 

Flow-through release cells were made of Teflon material (Figure III-3, by the 

workshop of the Department of Chemistry and Pharmacy, LMU, Munich) based on 

the design described by Tardi [11]. The donor compartment (lower compartment) had 
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a rectangular cross-section in order to ensure a relatively constant contact area even 

if some portions of the VPG were lost due to erosion. The acceptor compartment 

(upper compartment) on the other hand showed a semicircular cross-section, which 

was beneficial for the facilitation of a laminar flow. 

 

 

 

 

 

 

 

Figure III-3. The custom-made release cells for the in vitro tests, made by the workshop of the 
Department of Chemistry and Pharmacy, LMU, Munich 

Teflon tubing was used in order to minimize the surface adsorption of the released 

proteins. In order to study the erosion of VPGs, no membrane was used between the 

donor and acceptor compartment. The cells were filled with 1g accurately weighed 

VPGs and kept at 37°C by a water bath (Thermomix; B. Braun Biotech International). 

The pumping rate was set to 1ml/hr by using a multi-syringe pump (KDS 220, KD 

Scientific Inc). For EPO and mAb IgG, 40mM PBS buffer pH 7.4 containing 80mM 

sodium chloride was used as acceptor medium while 20mM PBS buffer pH 7.4 was 

used for G-CSF release.  

2.12. QUANTIFICATION OF RELEASED DRUGS 

2.12.1. DETERMINATION OF FITC-DEXTRAN CONCENTRATION BY FLUORESCENCE 

PHOTOMETRY 

The FITC-dextran concentration upon release fractions was determined by using 

Varian fluorescence spectrometer Cary eclipse. 1.8ml ethanol was added to 2ml 

samples to dissolve the liposomes. The excitation wavelength was fixed at 488 nm, 

and the emission was collected at 517nm.   
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2.12.2. QUANTIFICATION OF PROTEIN BY HPLC 

Size exclusion-HPLC (SE-HLC) and Reverse phase-HPLC (RP-HPLC) are the two 

standard methods for protein analysis. SE-HPLC is often used in protein 

quantification and aggregation monitoring. RP-HPLC can be applied to assess the 

protein concentration and the amount of chemically modified protein e.g. oxidized 

species 

2.12.2.1. SE-HPLC OF EPO 

SE-HPLC of EPO was performed on a TSKgel size exclusion column (G3000SWXL, 

7.8mm x 30.0mm, Tosoh Biosep, Stuttgart, Germany). The mobile phase consisted 

of 100 mM disodium hydrogen phosphate dihydrate and 200mM sodium chloride with 

a pH of 7.0. The flow rate was set to 0.7 ml/min and the injection volume was 100µl. 

EPO was detected at 215nm (UV detector, Spectra Series 1100, San Jose, CA, USA) 

with a retention time of about 12.5mins. 

2.12.2.2. RP-HPLC OF EPO 

RP- HPLC of EPO was performed on a Spectra-Physics HPLC system (San Jose, 

CA, USA), equipped with a ternary gradient pump (Spectra-Physics SP 8800), an 

autosampler (Spectra Series AS 100) and a UV detector (Spectra Series 1100). The 

system was controlled by HPLC ChromQuest software. The analysis was conducted 

on Phenomenex C18 Jupiter columns (5µm, 250 x 4.6mm, Aschaffenburg, Germany) 

with a flow rate of 0.5ml/min. The UV detector was operated at 215nm. The injection 

volume was 100µl. The eluents were: (A) 0.1% TFA in ultrapure water and (B) 84% 

CH3CN (in ultrapure water) with 0.08% TFA. The gradient started with 80% eluent  A, 

over a period of 10min decreased to 40% A and then lasted for 5min. Afterwards, 

eluent  A decreased to 0% in 5 min, and finally returned to 80% over a 5min period.  

2.12.2.3. RP-HPLC OF G-CSF 

The ProSwiftTM RP-2H column (ProSwiftTM, 4.6 x 50mm, Dionex) was used for RP-

HPLC of G-CSF. The UV detector was operated at 215nm. The injection volume was 

100µl. Gradient elution was performed as shown in Table III-2. The eluent A 

consisted of 0.12% TFA in destilled water, and the eluent B consisted of 90% CH3CN 

(in ultrapure water) and 0.1% TFA.   
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Table III-2. Gradient elution for RP-HPLC of G-CSF 

Time/min 0 5 10 25 30 35 40 45 
Eluent A% 100 80 60 60 40 20 0 100 
Eluent B% 0 20 40 40 60 80 100 0 
Flow rate 1.5ml/min 

2.12.3. QUANTIFICATION OF PROTEIN BY PROTEIN ASSAYS 

2.12.3.1. FLUORESCAMINE PROTEIN ASSAY 

Fluorescamine assay was assessed for the quantification of G-CSF in the lipid 

containing samples. The assay was based on the principle that fluorescamine reacts 

rapidly with primary amines in proteins, to yield highly fluorescent products [192-193].  

A modified process using the 96 well-microplate as described by Lorenzen [194] was 

performed. Briefly, 150µl of the protein containing samples (in PBS buffer pH 7.4) 

and standards were pipetted into microplate wells (Nunc MaxiSorp™, Roskilde, 

Denmark). Fluorescamine was dissolved in acetone resulting in a concentration of 

3mg/ml. The microplate was placed on a microplate shaker and 50µl of the 

fluorescamine solution was added to each well. After shaking for a minute, the 

fluorescence was determined by using an excitation wavelength of 400nm 

(bandwidth: 20nm), and an emission wavelength of 460nm (bandwidth: 20nm). 

2.12.3.2. CBQCA ASSAY 

The CBQCA Protein Quantitation Kit (Molecular Probe, Invitrogen) was evaluated for 

the quantification of MAB. The assay utilizing the ATTO-TAG CBQCA reagent (3-(4-

carboxybenzoyl)quinoline-2-carboxaldehyde) has proven a rapid and highly sensitive 

method for quantitating amines in solution, including the accessible amines in 

proteins [195-197].The protein samples were diluted into 0.1 M sodium borate buffer 

pH 9.3. 5 µL of 20 mM KCN (supplied in the kit) was added and the reaction was 

started by adding 10µl of 5mM CBQCA (in 0.1 M sodium borate buffer pH 9.3). After 

incubating for 1 hour (room temperature, protected from light), the samples were 

measured with the FLUOstar Omega multifunctional micro-plate reader (BMG 

LABTECH GmbH. Offenburg, Germany). The excitation wavelength was set to 

485nm, and the emission was collected at 580nm. 
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2.12.3.3. MICRO  BCA ASSAY 

The micro BCA protein assay is based on the following reactions: First, the working 

reagent (Cu2+) is reduced by protein in an alkaline environment [198-199]; 

Bicinchoninic acid (BCA) subsequently chelates with the reduced (Cu1+) cation to 

form the intense purple-colored reaction product. The water-soluble product exhibits 

a linear behaviour with increasing protein concentrations.  

The procedure for microplate mode followed instructions from the manufacture. 

Briefly, 150µl of the working reagent was added to 150µl sample solutions in the 

microplates (Nunc MaxiSorp™, Roskilde, Denmark). After incubating at 37°C for 2hrs, 

the samples were measured at 562nm.  Prior to assay the lipids containing samples, 

protein extraction (as described in 2.10) was needed to eliminate the interference of 

lipids. The concentration of the mAb IgG from release fractions or from VPGs’ 

redispersions was determined by using this micro BCA assay. It was a major 

consideration in developing the extraction method for the antibody that some often 

used organic solvents and surfactants including Triton, DMF, and Tween were 

reported to have interference with the assay at a certain amount [200-201]. The 

micro BCA assay was used for the quantification of MAB in absence and in presence 

of lipids in the context.  

2.13. QUANTIFICATION OF PHOSPHATIDYLCHOLINE BY THE ENZYMATIC ASSAY 

An enzymatic assay (LabAssay Phospholipid, Wako, Neuss, Germany) was used to 

quantify the phospholipid content in the release medium following the manufacturer’s 

instruction [202]. Shortly, phospholipids in the samples are hydrolyzed to choline in a 

reaction catalyzed by phospholipase D. The subsequent reaction of choline produces 

hydrogen peroxide, which causes the quantitative production of a blue pigment. The 

assay was performed in 96-well microplates (Nunc MaxiSorp™, Roskilde, Denmark). 

The amount of phospholipids E 80 in the samples were determined by measuring the 

absorbance at 600nm using the Fluostar Omega multimode microplate reader (BMG 

LABTECH, Offenburg, Germany).  

2.14. ENZYME-LINKED IMMUNOSORBENT ASSAYS OF G-CSF 

In order to assess the protein concentration in the serum/plasma samples, G-CSF 

was assayed by the enzyme-linked immunosorbent assays (ELISA). For example, 
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the Quantikine (DCS50, R&D Systems) Human G-CSF Immunoassay used in the 

study was a solid phase ELISA designed to measure G-CSF in cell culture 

supernates, serum, and plasma. It contains E. coli-expressed recombinant human G-

CSF and antibodies raised against the protein. It has been shown to accurately 

quantitate recombinant human G-CSF without obvious cross reactivity with rabbit 

serums [203]. The detailed steps of the assay followed the manual by the supplier. 

Another two ELISA kits: RayBio Human G-CSF ELISA from RayBiotech., Human G-

CSF Instant ELISA Kit from Bender MedSystems, have also been assessed in the 

work, but were not chosen finally due to insufficient results.   
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 CHAPTER IV: TENTATIVE EXPERIMENTS 

In a first approach, FITC-dextran (40KDa) was applied as hydrophilic 

macromolecular model to establish the preparation and characterization methods. 

1. PREPARATION OF VPGS USING FITC-DEXTRAN AS DRUG MODEL 

The preparation of VPGs can be performed either by high pressure homogenization 

(HPH) [11, 140] or by dual asymmetric centrifugation (DAC) [147]. Using a HPH, it is 

suitable for the production of VPGs which can be redispersed into very small (less 

than 100nm) and homogeneous liposomes [139, 143, 151-152].  However, a 

relatively large batch size is necessary (tens of grams) even for a lab scale HPH.  In 

the early stages of development of VPGs formulations there is a clear need to 

produce batch sizes of about several grams or even less.  

With the introduction of the DAC, production of VPGs with small batch sizes (about 

several grams) has become feasible, which is especially useful for entrapment of 

expensive biological materials such as proteins [147].  

1.1. HIGH PRESSURE HOMOGENIZATION 

The HPH method to prepare VPGs was first described by Brandl [10]. Briefly, FITC-

dextran (40KDa) was dissolved in destilled water. Phospholipids were subsequently 

added to the FITC-dextran solution. The blends were allowed to swell and then fed 

into the high-pressure homogeniser (APV Micron Lab 40, Luebeck, Germany).  

Based on the previous findings [11, 152], a lipid content of 400mg/g (egg PC, 

PHOSPHOLIPON) was used for VPGs’ preparation by HPH. The concentration of 

FITC-Dextran was 2mg/g for basic research. The mixture was homogenized at 

70MPa for 2-7 cycles. The batch size was between 40g and 45g. 

All the obtained VPGs showed a semi-solid consistency. The viscosity of the VPGs 

increased with the increasing homogenization cycles judged by visual examination. 

The gel strength of VPGs was determined by texture analysis (The texture analysis 

method used here is according to the “Bloom test”  for determination of the gelatine’s 

gel strength which is normally expressed in the mass values).  
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The gel strength value of VPGs was increased from 18g to 86g as the 

homogenization cycles increased from 2 to 7 times (Figure IV-1). 

VPGs were redispered with excess aqueous buffer solutions (PBS buffer pH 7.4) to 

form the liposomes by applying vigorous vortex. Over 90% of the particles were in 

the range of 87nm-129nm for all the VPGs prepared by HPH. The vesicle size was 

slightly decreased when the process cycle was increased from 2 to 6 times while the 

particle size was much smaller for the VPGs homogenized after 7 cycles (Figure IV-

2).  
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 Figure IV-1. Gel strength (mean±SD, n=3) of 
VPGs prepared by high pressure homogenization. 
VPGs were processed by various homogenization 
cycles (as indicated in the figure). 

Figure IV-2. Particle size of VPG dispersions 
(mean±SD, n=3), influence of homogenization 
cycles (as indicated in the figure). 
 

 

 

1.2. DUAL ASYMMETRIC CENTRIFUGATION 

As described in the Chapter I, dual asymmetric centrifugation (DAC) is a double 

DAC (SpeedMixerTM150 FVZ, Hauschild) was used for the preparation of VPGs. 

centrifugation technique where the sample is not only rotated around a central axis 

but also around a second axis in the centre of the sample container. Due to this 

combination of two contra-rotating movements efficient homogenization of viscous 

materials is possible. Compared with HPH, the manufacturing process using DAC 

can be easily modulated to control the system temperature which might be an 

essential factor for protein entrapment. Moreover, sterile production can be easily 

realized by performing the centrifugation with a hermetically sealed sample container 

[147].  

The preparation process was based on the method described by Massing et al [147]. 

FITC-dextran was incorporated by direct loading: the FITC-dextran solution was 

added to accurately weighed lipids resulting in a semisolid dispersion. 
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Homogenization was performed with a centrifugation speed of 3500rpm. In previous 

studies, glass beads were used as homogenization aid. However, in our work we 

omitted the use of beads in order to avoid potential heat-stability and protein 

adsorption problems. Since a long time run of centrifugation causes the temperature 

increasing of the system which might have interference on the bioactivity of the 

protein, multiples of 1.5-minute runs were set up to a total mixing time of 45 minutes. 

Using this procedure an average process temperature of below 40°C could be 

maintained during the production, which appeared appropriate for the incorporation 

of sensitive proteins. 

The VPGs were prepared with various contents of lipids (egg PC, PHOSPHOLIPON) 

in the range from 400mg/g to 550mg/g. The concentration of FITC-dextran was 

2mg/g in all the formulations. The gel strength was determined by texture analysis. 

As it can be seen in Figure IV-3, increasing the lipid content resulted in higher gel 

strength. The gel strength value was 5g for VPGs based on 400mg/g lipids while it 

was 60g for VPGs containing 550mg/g lipids.  

VPGs were also loaded with various contents of FITC-Dextran in the range from 

1mg/g to 3mg/g with the lipid content of 550mg/g in all the formulations. In general, 

the gel strength was increased as incorporating more FITC-Dextran within the VPGs. 

The gel strength value was 46g for VPGs containing 1mg/g FITC-Dextran while 

VPGs with 2mg/g FITC-Dextran got a value of 60g and VPGs with 3mg/g FITC-

Dextran had a gel strength value of 70g (Figure IV-4). 
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 Figure IV-3. Gel strength (mean±SD, n=3) of 
VPGs formulations with various lipid contents 
(as indicated in the figure). All gels were based 
on egg PC and loaded with 2mg/g FITC-
Dextran. 

Figure IV-4. Gel strength (mean±SD, n=3) of 
VPGs formulations with various FITC-Dextran 
contents (as indicated in  the figure). All gels 
were based on egg PC. 
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Comparing the VPGs prepared by HPH with the VPGs prepared by DAC, the VPGs 

prepared by HPH had a higher gel strength valule (ranging from 18g to 86g 

depending on the homogenization cycle) than the VPGs prepared with DAC (5g) 

based on the same contents of lipids (400mg/g egg PC) and FITC-dextran (2mg/g). It 

was assumed that the difference between the properties of VPGs prepared by HPH 

and those by DAC were due to the preparation technology of the different devices. In 

agreement with previous report [147], this comparison clearly shows that the shear 

forces generated by DAC are much lower than those generated by HPH, which on 

the other hand might be advantageous when sensitive compounds are entrapped 

within VPGs.   

2. HOMOGENEITY OF VPGS  

It might be argued that a non-uniform drug distribution of the VPGs could be caused 

by the manufacture process by dual asymmetric centrifugation. Consequently 

variations of drug loading could be possible.  

Methylene blue was used as model drug compound for homogeneity evaluations of 

the manufactured VPGs due to its colour enabling a convenient visual control. 

Methylene blue was dissolved in destilled water and subsequently added to the lipids 

in a cylindrical container (Figure IV-5a-5b). VPGs were formulated with dual 

asymmetric centrifugation as described previously. No obvious darker or lighter areas 

were visible (Figure IV-5c), being a result of homogeneous methylene blue contents 

in the gels. 

 
 

      (a)                                     (b)                                     (c) 

 
 

 

Figure IV-5. Images of VPGs loading with methylene blue: (a) the addition of lipids in the cylindrical 
container; (b) methylene blue and lipid mixture before dual asymmetric centrifugation; (c) VPGs with 
loading of methylene blue (the mixture after dual asymmetric centrifugation). 
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3. IN VITRO RELEASE TESTS 

Flow-through cells were made of Teflon material based on the design described by 

Tardi (Figure IV-6a) [11] for in vitro release tests. The donor compartment (lower 

compartment) had a rectangular cross-section in order to ensure a relatively constant 

contact area of about 250 mm2 (50mm x 5mm) even when portions of the VPG were 

lost due to erosion. The acceptor compartment (upper compartment) on the other 

hand showed a semicircular cross-section, which was beneficial for the facilitation of 

a laminar flow [3, 9]. 

Teflon tubing was used in order to minimize the surface adsorption of the released 

protein. In order to allow the erosion of VPGs, no membrane was used. The cells 

were filled with 1g accurately weighed VPG and kept at 37°C by a water bath. PBS 

buffer (40mM, pH 7.4) was used as acceptor medium and the flow rate was set to 

1ml/hr by using a syringe pump (Figure IV-6b). The concentration of FITC-Dextran 

upon release fractions was determined by fluorescence photometry (Excitation 

wavelength: 488nm, Emission wavelength: 517nm). 0.2ml of a release fraction was 

diluted to 2.0ml by adding ethanol to dissolve the lipids. The results were represented 

as the average of triplicates.  

 

 
                                              

 

  (a)                                                                 (b) 
Figure IV-6. In vitro release set-up: (a) Schematic drawing of the release cell; (b) Release system. 

 

VPGs were prepared with various concentrations of lipids (egg PC, 

PHOSPHOLIPON). The concentration of FITC-Dextran was 2mg/g in all the 

formulations. As it can be seen in Figure IV-7, the release behavior could be adjusted 

by the variation of the phospholipid concentration. Slower release rates were 

observed with increasing the lipid concentrations. For instance, the release of VPGs 
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prepared with 550mg/g lipids lasted more than 288hrs, whereas the release of FITC-

Dextran was terminated after 50hrs for VPGs based on 400mg/g lipids. This 

confirmed that it should be possible to achieve a desired release profile for 

proteinaceous substances by optimizing the formulation of VPGs with respect to its 

gel properties. Moreover, it was importantly found that the release of the 

macromolecules from various VPG-formulations all followed a close to zero-order 

kinetics.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure IV-7. Cumulative release of FITC-Dextran from VPGs based on various concentrations of egg 
PC (Mean± standard deviation, n = 3 each).  
 

The turbidity of the release fractions was determined to reflect the erosion of the 

VPG-matrix. It was found that the turbidity of the release fractions was in parallel with 

the release content within the whole release period (Figure IV-8 showed the VPGs 

based on 550mg/g lipids and 2mg/g FITC-Dextran for example). Since the turbidity of 

the release fractions was mostly from the lipids eroded from the matrices, it was 

assumed that erosion of VPGs is the controlling mechanism for the release of FITC-

Dextran as a macromolecular weight model. This is in agreement with former 

observations which showed that mainly matrix erosion governed the delivery of small 

molecular weight drugs [11] and peptides [51] from VPGs. 
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Figure IV-8. Release percentage of FITC-Dextran (left Y-axis) and turbidity of the release fractions 
(right Y-axis) at each time point. VPGs were based on 550mg/g lipids (egg PC, PHOSPHOLIPON) 
and 2 mg/g FITC dextran. 
 

The vesicle size of the release fractions was also determined at each time interval by 

PCS. As summarized in Table IV-1, the release fractions from various VPG-

formulations mainly consisted of small liposomes,  
 

Table IV-1. Particle size of release fractions from VPGs based on various contents of lipids.       

VPGs Based on 
400mg/g lipids 

Based on 
450mg/g lipids 

Based on 
500mg/g lipids 

Based on 
550mg/g lipids 

Particle size of 
release fraction 170nm-232nm 185nm-258nm 184nm-250nm 199nm-290nm 

4. SUMMARY AND CONCLUSION 

In this chapter, FITC-Dextran was used as drug model for the loading of 

macromolecules. Various VPG-formulations were prepared using high pressure 

homogenization and dual asymmetric centrifugation respectively. Texture analysis 

was performed to characterize the gels. The gel strength was also found influenced 

by the variation of lipid content and drug content within the VPGs prepared by DAC.  

In order to demonstrate the homogeneity of the drug distribution, methylene blue was 

entrapped within the VPGs. Upon visual and quantitative examination, a sufficient 

homogeneity was revealed of the drug loading.  

In vitro release tests were set up using flow-through cells as described by Tardi[11]. 

Sustained release of FITC-Dextran from various VPG-formulations was observed 

following a close to zero-order kinetics. Moreover, the release rate can be modified 

by incorporating various amounts of lipids within VPGs. Slower release was observed 

by the addition of more lipids within the system. Turbidity of the release fractions was 

determined, which reflect the erosion of the matrices. Accordingly, it was 

consequently found erosion is the controlling mechanism for the release of the 
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macromolecular drugs as the determined turbidity was in parallel with the released 

amount of FITC-Dextran at each sample point. This result was in agreement with the 

previous work that matrix erosion governed the delivery of small molecular weight 

drugs [11] and peptides [51] from VPGs. The vehicle size was determined and was 

shown small liposomes (less than 300nm) released from the matrices. As summary, 

based on the obtained results it could be stated that VPGs possessed great potential 

as alternative system for the controlled delivery of proteins. 
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CHAPTER V: DEVELOPMENT OF EPO LOADED VESICULAR 
PHOSPHOLIPID GELS 

VPGs represented a promising approach for the sustained in-vitro release of peptide 

drugs [13]. As shown in Chapter IV, we used FITC-dextran as a drug model to 

demonstrate the suitability of VPGs for sustained delivery of macromolecular 

compounds. However, due to the sensitivity of the three dimensional structure and 

inherent instability of proteins, it was still unclear whether the system can be applied 

to proteins.   

Therefore, it was the aim of the following work to assess the potential of Vesicular 

phospholipid gels as alternative delivery system for therapeutic proteins. 

Erythropoietin, the first model protein, was incorporated into various VPGs 

formulations by using dual asymmetric centrifugation. The protein stability and in vitro 

release behaviour were used as main criteria to evaluate the suitability of the system. 

In order to characterize and to quantify the incorporated protein, different extraction 

protocols were investigated. Physicochemical characterizations were performed for 

the EPO loaded VPGs. 

1. PREPARATION OF EPO LOADED VPGS 

In this work production of protein loaded VPGs was performed with a DAC 

(SpeedMixerTM150 FVZ, Hauschild GmbH & Co KG, Hamm, Germany). The 

preparation process was based on the method described by Massing et al [147]. In 

previous studies, glass beads were used as homogenization aid. However, in our 

work, we omitted the use of beads in order to avoid potential heat-stability problems 

with the protein. Then, EPO was incorporated by direct loading, i.e. EPO solution 

(formulated in 20mM PBS buffer, pH 7.2) was added to the accurately weighed lipids 

and homogenized by means of a dual asymmetric centrifugation in a cylindric 

container of 25 ml total volume. The phospholipids’ (egg phosphatidylcholine, E 80) 

content ranged from 300mg/g to 550mg/g in total weight of the gels. The formulation 

contained a total protein drug load of 3.8 mg/g gel. Lipid blends consisting of egg 

phosphatidylcholine and charged lipids (egg PC: DPPA/ 9:1; egg PC: DOTAP/ 8:2, in 

total 500mg/g) were used to evaluate the influence of the lipid charge. For 

homogenization a process speed of 3500 rpm was utilized in all experiments. 

According to the first report on the utilization of DAC [147] and the fact that a 
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continuous long-time centrifugation run causes a significant temperature increase in 

the product, multiple centrifugation steps of 1.5-minutes were added up to a total 

mixing time of 45 mins with interrupts for cooling at 2-8°C. Using this procedure 

aprocess temperature of below 40°C could be maintained during the production, 

which appeared appropriate for the incorporation of temperature sensitive proteins. 

The inner structure of VPGs has been revealed by freeze-fracture electron 

microscopy in previous work [151, 165], which was described as a matrix of densely 

packed vesicles within the pastes. Upon visible examination it was observed that all 

the VPGs obtained exhibited a viscous semi-solid consistency. With increasing the 

lipid content in the formulations, the obtained VPGs showed increased viscosity and 

behaved less fluidity.  Upon optical microscopic inspection all the formulations 

exhibited a homogeneous appearance (Figure V-1). Increased packing density was 

observed for the VPGs containing more lipids which might lead to the decreased 

fluidity. 
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                            (d). VPGs containing 500mg/g lipids; (e). VPGs containing 550mg/g lipids            

 (a). VPGs containing 300mg/g lipids; (b). VPGs containing 400mg/g lipids;  (c). VPGs containing 450mg/g lipids     

 

Figure V-1.  Light micrograph of VPG formulations based on various contents of egg PC (LIPOID E80) 
and 3.8mg/g EPO at 400X magnification. (a). 300mg/g, (b). 400mg/g, (c). 450mg/g, (d). 500mg/g, (e). 
550mg/g.   
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2. RHEOLOGY AND TEXTURE ANALYSIS 

Bender [150] has investigated the complex viscosities of VPGs formulated with 

various types of lipids with oscillation rheometry. The viscoelastic character in the gel 

state increased due to decreased fluidity in the membrane bilayers and in the VPG 

structure. 

In our study, the rheologic behavior of VPGs was studied by a rotational rheometry 

(Physica MCR 100, Anton Paar). The measurement was performed at 25°C. The 

viscosities of VPGs were compared at a fixed shear rate of 37.9 s-1 (Figure V-2). 

Increasing the lipid content resulted in increased viscosity whereas adding a certain 

amount of charged lipid DOTAP or DPPA had little influence on the gel viscosity 

(Figure V-3). 
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 Figure V-2. Viscosity (mean±SD, n=3) of VPGs 
formulations with various lipid contents (as 
indicated in the figure). All gels were based on 
egg PC (LIPOID E80) and loaded with 3.8mg/g 
EPO (formulated in PBS buffer 20mM).  

Figure V-3. Viscosity (mean±SD, n=3) of 
VPGs formulations with various lipid 
compositions (as indicated in the figure). All 
gels were based on 500mg/g lipids or lipid 
blends and loaded with 3.8mg/g EPO 
(formulated in PBS buffer (20mM). 

 

 

 

Texture analysis was performed with the TA.XT plus texture analyzer (Stable Micro 

Systems, UK) to determine the gel strength (represented as the maximal force value). 

More rigidity of VPGs was observed by increasing the lipid content of the 

formulations (Figure V-4). Incorporating charged lipid DOTAP or DPPA slightly 

increased the gel strength compared with the VPGs containing egg PC only (Figure 

V-5).  
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 Figure V-4. Gel strength value (mean±SD, n=3) 

of VPGs formulations with various lipid contents 
(as indicated in the figure). All gels were based 
on egg PC or and loaded with 3.8mg/g EPO 
(formulated in PBS buffer (20mM). 
 

Figure V-5. Gel strength value (mean±SD, n=3) 
of VPGs formulations with various lipid 
compositions (as indicated in the figure). All gels 
were based on 500mg/g lipids or lipid blends 
and loaded with 3.8mg/g EPO (formulated in 
PBS buffer (20mM). 

 

 

 

3. EVALUATION OF PROTEIN STABILITY BY SDS-PAGE 

SDS-PAGE was performed to determine whether the manufacture process e.g. the 

mechanical shear force on the protein integrity. Since organic solvents or surfactants 

were applied in the protein extraction process from VPGs’ dispersions or release 

fractions, it was also necessary to evaluate their effect on the protein integrity. The 

samples were analysed by non-reducing SDS-PAGE with subsequent coomassie 

blue staining or silver staining. Electrophoresis was performed on the Bis-Tris Pre-

Cast Gel (Invitrogen, Groningen, Netherlands) in the MES running buffer (Invitrogen). 

Since the presence of lipids had a strong interference with the protein in SDS-PAGE 

analysis (data not shown), it was necessary to apply extraction agents. As the first 

step various extraction agents (as indicated in Table V-1) were applied to the lipid-

free EPO samples. The protein solutions were emulsified with organic solvents by 

vortex, and EPO was subsequently recovered from the aqueous phase after 

centrifugation. If Triton X-100 was applied, incubation with the protein solutions was 

needed at 37°C for 30 minutes.  

Table V-1.  Organic solvents and surfactants applied for EPO extraction 

 Organic solvents Surfactants 

Extraction agent Ethanol Dichloromethane Chloroform Triton X-100 
Applied amount to 1ml VPGs’ 
dispersions 1ml/ml 1ml/ml 1ml/ml 5% 
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The obtained protein samples were analysed by gel electrophoreses with subsequent 

coomassie blue staining (Figure V-6). Only the band of monomer EPO was 

detectable irrespective of the extraction agents. Hence it can be stated that applying 

the extraction agents induced no instability of EPO.  

 

                                    
 

 

 

 

 

 

 

  

 
Figure V-6. Influence of extraction agents on the EPO stability. Lane 1/ lane 5, adding ethanol to EPO; 
lane 2 / lane 6, adding Triton X-100 to EPO; lane 3 / lane 7, adding dichloromethane to EPO; lane 4 / 
lane 8, adding chloroform to EPO; lane 9, EPO standard solution; lane 10, molecular weight  maker. 
SDS-PAGE with subsequent blue staining. 
 

Further investigations applied these organic solvents and surfactants to extract EPO 

from freshly prepared VPGs (500mg/g egg PC and 3.8mg/g EPO). The formulation 

process was performed with DAC as described above in Chapter III. The protein had 

a concentration of 3.8mg/g in the final VPGs formulations. Aliquots of 0.2 g gel were 

dispersed in 10ml PBS buffer with vigorous vortex. EPO was extracted and analysed 

by SDS-PAGE with subsequent coomassie blue staining. No band was observed 

when ethanol was used to dissolve the lipids (Figure V-7, lane 1/ lane 5) indicating 

low protein recovery from extraction. As shown in lane 2 and lane 6, adding Triton X-

100 caused bands’ tailing, which was probably caused by the lipids remained in the 

samples. Only monomeric bands were detectable by applying chloroform (as 

indicated in lane 4/ lane 8) or dichloromethane (as indicated in lane 3/ lane 7) for lipid 

extraction and subsequently recovering EPO from the aqueous phase. Due to the 

higher protein recovery chloroform was used in the further investigations for 

extraction of EPO from lipid containing samples for the SDS-PAGE analysis.   
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Figure V-7. Extraction of EPO from VPGs. Lane 1/ lane 5, applying ethanol to extract EPO from VPGs; 
lane 2 / lane 6, applying Triton X-100 to extract EPO from VPGs; lane 3 / lane 7, applying 
dichloromethane to extract EPO from VPGs; lane 4 / lane 8, applying chloroform to extract EPO from 
VPGs; lane 9, EPO standard in PBS buffer 20mM; lane 10, molecular weight maker. SDS-PAGE with 
subsequent blue staining. 
 

However, it was important to exclude the possibility that the protein aggregates or 

fragments which were probably induced either in the manufacture process or in the 

extraction process might not be extracted and then not detected by the SDS-PAGE 

analysis. Further investigations were carried out by stressing the protein to generate 

aggregation or degradation products. In brief: EPO solutions were incubated at 60°C 

for 24hrs and on the other hand the protein was oxidized with hydrogen peroxide. 

Lipids (egg PC, 1.5mg/ml) were dispersed into these stressed-protein solutions. 

Chloroform was applied and the extracted proteins were analysed by SDS-PAGE 

with subsequent silver staining (To improve the sensitivity of the PAGE method, 

silver staining was used instead of coomassie blue staining in further work). 

Denatured protein samples without adding lipids or applying extraction process were 

analysed directly as the control. As shown in Figure V-8, it could be concluded that: (I) 

Denatured EPO could be extracted from lipids using chloroform and detected by the 

SDS-PAGE (lane5, lane 6, and lane 8); (II) Applying chloroform for EPO extraction 

did not create more denatured protein fractions (No additional band was observed for 

extracted proteins, see: lane 3 and lane 5; lane 4 and lane 6; lane 7 and lane 8); (III) 

As expected, the detection of aggregate and fragment fractions was dependant on 

the loading content of the protein. Some denatured fractions became invisible at 

lower concentrations (comparing lane 3/ lane 5 with lane 4/ lane 6). Consequently, it 
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could be stated that the developed extraction protocol with chloroform and the SDS-

PAGE were suitable for evaluation the stability of entrapped EPO from VPGs.  
                                       
  
 

 

 

 

 

 

 

 

 

 

 

Figure V-8. Analysis of denatured EPO samples. SDS-PAGE with subsequently silver staining:  

 

 

 

 

 

 

 

 

 

Lane 1, molecular weight marker 
Lane 2, EPO standard in PBS buffer 20mM 
Lane 3, denatured EPO by incubating at 60°C for 24hrs with a total protein concentration of 750µg/ml.  
Lane 4, denatured EPO by incubating at 60°C for 24hrs with a total protein concentration of 50µg/ml.  
Lane 5, denatured EPO (by incubating at 60°C for 24hrs) extracted from lipids containing samples, with a total 
protein concentration of 750µg/ml. 
Lane 6, denatured EPO (by incubating at 60°C for 24hrs) extracted from lipids containing samples, with a total 
protein concentration of 50µg/ml. 
Lane 7, oxidized EPO, with a total protein concentration of 150µg/ml. 
Lane 8, oxidized EPO extracted from lipids containing samples, with a total protein concentration of 150µg/ml.

 

 

 

 

 

 
 

 

 

 

 

 

Figure V-9. Proof of EPO integrity within VPGs formulations. Lane 1, molecular weight maker; lane 2 
to 5: EPO extracted with chloroform from various VPG formulations based on 500mg/g egg PC and 
3.8mg/g EPO, lane 6 to 9, EPO standard in PBS buffer 20mM. SDS-PAGE with subsequently silver 
staining. 
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Consequently, the influence of the manufacturing process on the integrity of EPO 

was studied by SDS-PAGE with subsequent silver staining. Chloroform was applied 

to extract EPO from freshly prepared gels (containing 500mg/g egg PC and 3.8mg/g 

protein). As shown in Figure V-9, no aggregation or fragmentation bands of EPO 

were observed. It could be concluded that EPO was maintained stable within VPGs 

after production, which encouraged further investigation of the in-vitro release tests. 

4. DEVELOPMENT OF QUANTIFICATION METHOD OF EPO  

As described previously, VPG formulations offer the unique property that drug 

incorporation is achieved either within the tightly packed lipid vesicles or in-between 

them. Consequently, it can be expected that EPO is released from the gel matrix 

both in free form and in liposomal form. Therefore it is essential to develop an 

extraction method that allows the quantitative recovery of the protein from the 

liposome fraction without having detrimental effects on the protein integrity. In 

previous work, Qi [172, 204] used chloroform to extract EPO from liposome solutions 

prior to quantitative analysis by RP-HPLC. In a comparative study on the extraction 

efficiency of the decapeptide cetrorelix from liposome dispersions 2.5% Triton X-100 

and hexane were the best choices among several detergents and organic solvents. 

However, it should be also noticed that the Triton X-100 containing samples featured 

creation of multiple peaks [160]. Also the detergent 30 mM octyl ß-D-glucopyranoside 

(ODG) has been suggested for protein extraction [205].  

4.1. SAMPLE PREPARATION  

Since the released amount of VPGs at each time interval was unknown, it was 

important to develop an extraction protocol and a subsequent quantification method 

which featured a high robustness against variations of the lipids as well as against 

variations in the protein amount which make this method suitable for protein 

quantification during in-vitro release studies.  

Initial screening of the extraction methods was done with a constant EPO 

concentration of 10µg/ml. The extraction agents and analytical methods for initial 

screening were used as in Table V-2. Surfactants were accurately weighed and 

added to lipid containing EPO samples and incubated for a short period before 
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injection to HPLC. Alternatively, the lipids were extracted by organic solvents and 

EPO was subsequently recovered from the water phase.  

To investigate the influence of variation in the lipid content on the analysis method, 

various amounts of lipids were dispersed by applying vigorous vortex in PBS buffer 

pH 7.4 (release medium) and diluted to the concentration of 0.5mg/ml, 1.5mg/ml and 

5.0mg/ml respectively (These concentrations were assumed to be around the 

concentrations which would be expected in the release fractions during the release 

tests.).  

Table V-2.  Extraction and quantification protocol   

Applied surfactants or 
organic solvents Volume/Concentration HPLC-Method Reference 

Triton X-100 1.25%- 5.0% SEC, RP Grohganz, 2004 [160] 
Tween 80 0.03% SEC, RP Hermeling, 2003 [206] 

ODG 10 mM - 50 mM SEC,RP Gonzalez, 1981[205] 
Hexane 0.3 m l – 4 ml per 1 ml sample RP Grohganz, 2004 [160] 

Chloroform 0.3 ml – 4 ml per 1 ml sample RP Qi,1995[172] 
Acetonitrile 1 ml per 1 ml sample RP - 

 

4.2. SE-HPLC METHOD 

A classical size exclusion HPLC approach using SEC column (TSK-Gel G3000Wxl, 

7.8 mm x 30.0 cm) with a flow rate of 0.7 ml/min and UV detection at 215 nm was 

applied for EPO analysis as the start point. The mobile phase consisted of 100 mM 

disodium hydrogen phosphate dehydrate and 200 mM sodium chloride, adjusted with 

hydrochloric acid to a pH of 7.0. EPO solutions of known concentrations (3.0 – 37.5 

μg/mL) were used to generate the calibration curve (Figure V-10). As shown in 

Figure V-11a, dimers (5.7± 0.4%) were detected in the protein bulk solutions.  

The next step under investigation was to evaluate possibilities for protein 

quantification in the presence of various amounts of phospholipids. 

Applying Triton X-100 caused generation of additional peaks and baseline shift. 

Moreover, EPO could not be totally separated from the Triton (Figure V-11b) Adding 

0.03% Tween 80 produced a peak around the retention time of EPO, which could not 

be baseline separated from the EPO peak (Figure V-11c). It caused problems in 

quantification especially for the proteins with low concentrations. Applying either 

30mM (Figure V-11d) or 50mM ODG no protein peak could be identified. Whether 
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there possibly occurs aggregation or degradation of EPO could not be clarified. 

Consequently, judged by the obtained results no suitable extraction protocol for SE-

HPLC could be developed and it could be stated that a SE-HPLC method might not 

be suitable for the determination of EPO in presence of lipids due to the lack of 

sensitivity and high cost. 

 

 
Figure V-10. Response curve of EPO standard solution by SE-HPLC, n=3 

The next step under investigation was to evaluate possibilities for protein 

quantification in the presence of various amounts of phospholipids. 

Applying Triton X-100 caused generation of additional peaks and baseline shift. 

Moreover, EPO could not be totally separated from the Triton (Figure V-11b) Adding 

0.03% Tween 80 produced a peak around the retention time of EPO, which could not 

be baseline separated from the EPO peak (Figure V-11c). It caused problems in 

quantification especially for the proteins with low concentrations. Applying either 

30mM (Figure V-11d) or 50mM ODG no protein peak could be identified. Whether 

there possibly occurs aggregation or degradation of EPO could not be clarified. 

Consequently, judged by the obtained results no suitable extraction protocol for SE-

HPLC could be developed and it could be stated that a SE-HPLC method might not 

be suitable for the determination of EPO in presence of lipids due to the lack of 

sensitivity and high cost. 
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(a)    EPO Bulk                                               (b) EPO extracted with Triton X-100               

(c)  EPO extracted with Tween 80                           (d) EPO extracted with ODG 
 
 

Figure V-11. SE-HPLC chromatograms of EPO. (a) EPO bulk, detection of aggregated specimen; (b) 
EPO extracted from lipids containing samples by applying 2.5% Triton; (c) EPO extracted from lipids 
containing samples by applying 0.03% Tween 80; (d) EPO extracted from lipids containing samples by 
applying 30 mM ODG.  
 

4.3. RP-HPLC METHOD 

Compared with SE-HPLC, reverse phase HPLC method has many advantages in our 

case, such as the flexibility in choosing extraction agents and robustness against the 

variation of lipids in the samples from the release fractions.     

4.3.1. VALIDATION OF THE HPLC METHOD 

For EPO quantification a RP-HPLC method using a Phenomenex C18 Jupiter column 

(5 µm, 250 x 4.6 mm) together with UV detector (215nm) was developed. Gradient 

elution was carried out (Table V-3) with eluent A containing 0.1% TFA (in ultrapure 

water) and eluent B containing 84% CH3CN and 0.08% TFA. EPO has a retention 

time around 15 minutes (Figure V-11). No obvious oxidized specimen was observed 

for the EPO bulk material. Calibration of lipid-free protein samples was established 

with the protein concentration ranging from 3.0µg/ml to 15.0µg/ml.  
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Table V-3.  Gradient elution for RP-HPLC of EPO 

Time/min Eluent A Eluent B Flow rate 
0 80% 20% 

10 40% 60% 
15 40% 60% 
20 0% 100% 
25 80% 20% 

0.5ml/min 

4.3.2. EVALUATION OF DETERGENTS AND ORGANIC SOLVENTS FOR EPO EXTRACTION 

The next step under investigation was to evaluate possibilities for protein 

quantification in the presence of lipids. To simulate the conditions expected during in-

vitro release EPO solutions were spiked with lipid dispersions (with a final lipid 

concentration of 1.5mg/ml) and the recovery of EPO was determined by the 

aforementioned RP-HPLC method and compared to the HPLC-response of lipid-free 

EPO solutions after applying a detergent or an organic solvent. Initial screening of 

the extraction methods was done with a constant EPO concentration of 10µg/ml.  

The ability of several extraction strategies to recover EPO from VPG dispersion is 

summarized in Table V-4. Among the detergents only Triton-X featured an 

acceptable protein recovery of around 90.7 % (as shown in Figure V-12a). In the 

organic solvent group the extraction of the lipids by chloroform resulted in a recovery 

of 84.6 % (Figure V-12b) whereas with hexane and acetonitrile a disastrous protein 

loss was observed. As the extraction involves the generation of water organic solvent 

interfaces proteins tend to adsorbs onto this interfaces which usually accounts for 

protein unfolding and/or aggregation [55, 207-209]. Presumably these processes 

explain the large quantities of EPO lost due to the extraction with hexane. Compared 

to the liposome disruption process caused by Triton-X the recovery of EPO by 

extraction with chloroform was slightly lower. Nevertheless, the extraction of the lipids 

by chloroform and subsequent recovery of EPO from the water phase was chosen for 

further investigations as subsequent injections of Triton X-100 containing samples 

strongly reduced the column efficiency.  

Table V-4. Recovery of EPO determined by RP-HPLC (mean± standard deviation, n = 3 each). For 
protein extraction a VPG dispersion containing 1.5 mg/ml lipid (egg PC, LIPOID E80) and an initial 
protein concentration of  10 µg/ml was treated with several detergents or organic solvents. 

Applied agent for EPO recovery CHCl3 Triton  Tween ODG Hexane AcCN 

Applied concentration per ml 
VPG dispersion 0.3ml 2.5% 0.03% 30mM 0.3ml 0.3ml 

Recovery/% 84.6±5.3 90.7±2.2 43.0±7.6 48.2±12.8 8.7±0.2 0 
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CHCl3

 (a) EPO extracted with Triton X-100, EPO bulk 
was shown as standard. 

(b) EPO extracted with chloroform, EPO 
bulk was showed as standard  

Figure V-12. RP-HPLC of EPO. (a) EPO extracted with Triton, EPO bulk was shown as standard; (b) 
EPO extracted with chloroform, EPO bulk was shown as standard.  
 

4.4. VALIDATION OF THE DEVELOPED QUANTIFICATION METHOD 

4.4.1. CALIBRATION 

The influence of various protein concentrations on the extraction efficacy was 

evaluated. Figure V-13a shows the AUC of extracted EPO by adding chloroform in 

comparison to the calibration curve in the absence of any lipids. Obviously, a good 

correlation was achieved between the detected AUCs of extracted and untreated 

EPO solutions. Based on these data and an acceptable linearity the extraction by 

chloroform was used as the standard method for EPO quantification for the in-vitro 

release studies.  

However, as the release studies will also include investigations on the influence of 

the lipid charge, the extraction efficacy in the presence of negatively and positively 

charged lipids was determined. For that purpose EPO solutions were spiked with 

VPG dispersions based either on the lipid blend of negatively charged DPPA and egg 

PC in a ratio of 1 to 9 or on a mixture of the cationic lipid DOTAP and egg PC in a 

ratio of 8 to 2. For the negatively charged lipid formulation the response curve 

revealed no differences compared to the uncharged lipid formulation (Figure V-13a). 

However, the recovery of EPO from cationic lipid dispersions was dramatically 

reduced (Figure V-13b). This poor extraction efficiency can presumably be explained 

by electrostatic interaction between the positively charged lipid vesicles and the 
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negatively charged protein (EPO has an isoelectric point of 4.2 to 4.6. At pH 7.4, 

EPO is negatively charged.). Furthermore, to confirm this, zeta potential 

measurements were performed and the results are shown in Table V-5.  

Table V-5. Zeta potential measurements. EPO was formulated in PBS buffer with a pH of 7.4.  VPGs 
were dispersed by the same PBS buffer resulting in a lipid content of 1.5mg/ml.   

Samples Zeta potential 
ζ/mV 

EPO without any lipids, in PBS buffer pH 7.4 -7.8±0.4 
uncharged gel vesicles, dispersed in PBS buffer,  pH 7.4 -3.4±0.7 
negatively charged gel vesicles (Egg PC/ DPPA 9:1) dispersed in PBS buffer, pH 
7.4 -6.0±0.8 

positively charged VPGs (Egg PC/ DOTAP 8:2) dispersed in PBS buffer,  pH 7.4 +14.0±0.9 
EPO + uncharged gel vesicles, redispersed in PBS buffer,  pH 7.4 -2.8±0.4 
EPO + negatively charged gel vesicles (Egg PC/ DPPA 9:1) dispersed in PBS 
buffer,  pH 7.4 -4.5±0.4 

EPO + positively charged gel vesicles (Egg PC/ DOTAP 8:2) dispersed in PBS 
buffer,  pH 7.4 +7.7±0.7 

 

To reduce these interactions various amounts of sodium chloride were added to the 

protein containing VPG formulation before the standard extraction protocol using 

chloroform was carried out. As shown in Figure V-13b the addition of at least 200 mM 

sodium chloride resulted in a suitable response curve similar to that of uncharged 

lipids.  

 

 

 

 

 

 

 

 

 

 
 

                   (a)                                                                (b)   

Figure V-13. Response curve of EPO standard solution in comparison to the recovery after extraction 
from VPG dispersion based on uncharged lipids/charged lipid blends. Extraction was performed with 
CHCl3 either by the standard protocol (a) or after the addition of 200mM sodium chloride (b). 
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4.4.2. INFLUENCE OF CENTRIFUGATION CONDITIONS 

A centrifugation process was involved in the extraction protocol using chloroform. 

Thus it was necessary to evaluate the effect of centrifugation conditions on the 

protein recovery. The samples contain a lipid content of 1.5mg/ml and 10µg/ml of 

EPO. The centrifugation duration was varied from 15 minutes to 30 minutes and the 

centrifugation speed was set to either 1500rpm or 3000rpm. The centrifugation was 

performed at 0°C or 15°C. 

As shown in Table V-6, in general the centrifugation conditions have marginal effect 

on the protein recovery. Low temperature at 0°C was preferred concerning the 

protein instability. Best recovery was achieved when centrifugation was performed at 

3000rpm for 30 minutes. So this condition was applied in the standard extraction 

protocol for EPO extraction.   

Table V-6. EPO recovery: effect of centrifugation conditions (n=3). The samples contain a lipid content 
of 1.5mg/ml and 10µg/ml of EPO. 

Temperature Centrifugation speed 
Recovery of EPO 

(centrifugation for 15mins)
Recovery of EPO 

(centrifugation for 30mins) 
0°C 1500rpm 82.9±1.0% 87.0±0.8% 
15°C 1500rpm 84.4±1.9% 84.4±1.4% 
0°C 3000rpm 89.1±1.3% 90.5±0.7% 
15°C 3000rpm 81.9±0.8% 86.8±2.8% 

4.4.3. INFLUENCE OF CHLOROFORM AMOUNT 

Further investigations were carried out in order to exclude the possibility that adding 

more chloroform might induce the protein aggregation or degradation and 

consequently reduce the protein recovery. An increasing amount of chloroform 

ranging from 0.3ml to 4ml per ml was added to 1ml lipid containing protein samples 

respectively. The samples were centrifuged and the extracted EPO was quantified by 

RP-HPLC as described above. Table V-7 showed that the amount of chloroform had 

little influence on the EPO recovery. It was suggested that the extraction method 

featured the flexibility in dissolving larger amount of lipids if in the release fractions by 

applying more chloroform. For the current study, 0.3ml Chloroform per ml sample 

was preferred in the standard extraction protocol. 

Table V-7.  Protein recovery (n=3): Effect of chloroform amount. The samples contain a lipid content of 
1.5mg/ml and 10µg/ml of EPO.  The protein was extracted by applying various amount of chloroform. 

Volume of chloroform per ml sample 0.3ml 1ml 2ml 4ml 
Recovery of EPO 87.8±1.9% 90.1±2.3% 86.0±2.2% 89.4±2.3%
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4.4.4. INFLUENCE OF LIPID AMOUNT 

It was important to evaluate the robustness of the extraction and quantification 

method against the variation of the lipid content in the samples for the release tests. 

Various amounts of lipids (egg PC) were dispersed into PBS buffer resulting in 

concentrations of 0.5mg/ml, 1.5mg/ml and 5.0mg/ml respectively. These 

concentrations were assumed to be around the concentrations which were expected 

in the release fractions during the release tests. The proteins were extracted from all 

the samples by applying the same standard protocol using 0.3ml/ml chloroform. As a 

result, varying the lipid content in the samples had little influence on the EPO 

recovery (Table V-8). Since the amount of eroded lipids was unknown in the released 

fractions, this result allows concluding that the extraction of EPO from released 

fractions will be fine in the range up to ca. 5mg/ml lipid in the release samples.  

Table V-8.  EPO recovery: Effect of the lipids content (n=3). The samples contain 10µg/ml of EPO.            

Lipid content in the sample 0.5mg/ml 1.5mg/ml 5.0mg/ml 
Recovery of EPO 86.7±1.4% 89.7±2.4% 88.7±2.9% 

4.4.5. RECOVERY OF OXIDIZED PRODUCTS 

In addition, it was also necessary to survey whether denatured EPO could be 

recovered from lipids using the developed extraction protocol and detected by the 

RP-HPLC. EPO solutions were incubated with hydrogen peroxide to generate 

oxidized products. Lipids were dispersed to these oxidized protein containing 

solutions and resulted in a concentration of 1.5mg/ml. The samples were extracted 

and quantified by RP-HPLC. The recoveries of these oxidized products containing 

EPO samples (Table V-9) were comparable to those non-oxidized samples. As a 

conclusion, the extraction method with chloroform and RP-HPLC are capable for the 

quantification of oxidized products containing EPO.  

Table V-9.  Recovery of the oxidized products containing EPO samples (n=3). The samples contain 
1.5mg/ml of lipids.  The protein was extracted by applying chloroform. 

Concentration of 
EPO 

Percentage of the 
oxidized products in 

the samples 

Recovery of the oxidized product containing proteins 
in percentage/%,  

150µg/ml 7.3±0,5% 82,7±4,4% 
30µg/ml 10.4%±0,7% 76,2±3,1% 
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4.5. SUMMARY OF THE QUANTIFICATION METHOD 

It can be expected that EPO is released from the gel matrix both in free form and in 

liposomal form. Therefore it is essential to develop an extraction method that allows 

the quantitative recovery of the protein from the lipid containing samples without 

having detrimental effects on protein integrity. In the work of this chapter, several 

organic solvents and surfactants have been tried out. Using chloroform to extract 

lipids and subsequently recovering EPO from the water phase was found suitable in 

our case. A reverse phase HPLC method with gradient elution was developed for 

quantification of extracted proteins. Calibration of the extracted proteins was 

established with acceptable linearity and moreover it was in comparison to the 

calibration curve of the lipid-free proteins. The developed extraction and 

quantification method featured a high robustness against variations of the lipid as 

well as against variations in the protein amount. It was also possible to recover 

oxidized protein products from lipid containing samples with a comparable recovery. 

Hence it could be stated that the developed method was suitable for protein 

quantification during in-vitro release studies, which made it possible for the further 

investigations on the in vitro release of VPGs.  

5. IN VITRO RELEASE BEHAVIOUR OF EPO LOADED VPGS 

In vitro release behaviour is the most important characteristic for VPGs. So far it has 

been shown in literature that VPGs can serve as sustained release systems for 

various low molecular weight drugs, especially in the field of anticancer treatment 

[11,12] Grohganz [13] has entrapped the small peptide hormone cetrorelix into VPGs: 

in vitro release of the peptide from VPGs ranged from 24 hours to a predicted 

sustained release of over more than 3 months. The release mechanism of VPGs has 

been demonstrated by Tardi [11] using calcein as the model compound: the 

entrapped drug released via erosion of the lipid matrix as well as diffusion out of the 

swollen VPGs. This holds true for the small molecular weight substances. In the case 

of the peptide, it was demonstrated that free diffusion of the peptide through the 

tightly packed lipid matrix could not be expected due to its missing lipophilicity and 

the larger molecular size. Hence it could be assumed that erosion was also the 

dominating factor for protein release from VPGs. It was the aim of our work to reveal 

the protein release behaviour from VPGs and proof the hypothesis. In vitro release 
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tests were performed in flow-through cells (as described in Chapter IV) with PBS 

buffer pH 7.4 at 37°C. The influence of the lipid content and the composition of the 

VPG on the release behavior was evaluated. The released EPO was extracted by the 

developed protocol using chloroform and subsequently quantified by RP-HPLC. To 

investigate the erosion of the matrix, lipid content in the release fractions was 

quantified by an enzymatic assay. Moreover, the protein stability during release was 

examined by SDS-PAGE. The vesicle size of the release fractions was analyzed with 

PCS. Protein adsorption to the release system was also studied.    

5.1. INFLUENCE OF THE LIPID CONTENT 

The influence of lipid concentration on the release of VPGs was the first factor to be 

evaluated. VPGs were prepared with a constant EPO content of 3.8mg/g and 

increasing lipid concentration from 300mg/g to 550 mg/g egg PC (E 80). As it can be 

seen in Figure V-14 increasing the lipid concentration from 300mg/g to 550 mg/g 

decreases the release rate of EPO from the VPGs. From 400mg/g to 500 mg/g lipid 

the system was rather robust and lipid concentration did not have much effect on the 

release kinetics. For instance VPGs consisting of 400mg/g, 450mg/ml and 500 mg/ml 

lipid all delivered about 60% of the incorporated EPO within 280 hours. In contrast, 

VPGs based on 550mg/g lipid released only 40% of the drug and VPGs with 

300mg/ml about 75% of the drug load within this time period.  Importantly, EPO was 

released from all formulations in a linear manner with no burst effect. This trend of 

the influence of the lipid content was in good agreement with the earlier studies on 

the calcein and the peptide CXA.  

The amount of phospholipid content in the release fractions was analyzed by an 

enzymatic assay (LabAssay Phospholipid, Wako, Neuss, Germany). The assay was 

performed in 96-well plates. The adsorption of the reaction product was measured at 

600nm. Figure V-15 showed the lipid release profiles from VPGs based on various 

contents of uncharged egg PC. As a result, low lipid concentration facilitated fast 

erosion of lipids while higher lipid concentration delayed matrix erosion. A closer 

investigation on the release mechanism is discussed later.  
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Figure V-14. Cumulative release of EPO from VPGs based on various concentrations of egg PC 
(LIPOID E80) (Mean± standard deviation, n = 3 each). The protein concentration in all formulations 
was 3.8mg/g. 

 

Figure V-15. Lipid release (Erosion) from VPGs based on various concentrations of egg PC (LIPOID 
E80) (Mean± standard deviation, n = 3 each). The protein concentration in all formulations was 
3.8mg/g. 

5.2. INFLUENCE OF THE LIPID COMPOSITION 

In order to investigate the influence of lipid composition, release tests of two VPG 

formulations with charged lipids (E 80/ DPPA 9:1, E 80/ DOTAP 8:2, respectively, 

total lipid concentration 500mg/g) were performed. A constant protein concentration 

of 3.8 mg/g was used in these formulations. As it can be seen in Figure V-16 the 

negatively charged gel vesicles (Egg PC/ DPPA 9:1) delivered the incorporated 
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protein in a comparable manner to the uncharged formulation whereas the positively 

charged VPGs (Egg PC/ DOTAP 8:2) revealed a strongly accelerated release rate. In 

agreement with protein release the erosion of lipids from VPGs containing positively 

charged DOTAP was faster than from uncharged or negatively charged gel 

formulations (Figure V-17).  

 

                         

Figure  V-16. Influence of lipid charge on the in-vitro release of EPO. The VPGs consist either of pure 
egg PC (LIPOID E80); a mixture of egg PC (LIPOID E80) and DPPA in the ration 9:1 or a mixture of  
egg PC (LIPOID E80) to DOTAP in the ratio 8 to 2. The lipid concentration in all formulations was 
500 mg/ml (mean± standard deviation, n = 3 each). 

  

Figure V-17. Influence of lipid charge on the release of lipid. The VPGs consist either of pure egg PC; 
a mixture of egg PC and DPPA in the ration 9:1 or a mixture of egg PC to DOTAP in the ratio 8 to 2. 
The lipid concentration in all formulations was 500 mg/ml and the concentration of EPO was 3.8mg/g. 
(mean± standard deviation, n = 3 each). 
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However, in contrast the gel rigidity and viscosity measured (Chapter V.2) did not 

show pronounced differences between VPGs containing positively charged lipids and 

uncharged/negatively charged gels. Hence it was assumed that the electrostatic 

interaction between the positively charged lipid vesicles and the release medium 

(PBS buffer pH 7.4) facilitates the erosion as well as the EPO release from the 

system.  

5.3. RELEASE MECHANISM 

In general drug release from VPGs can be explained by two mechanisms: drug 

diffusion out of the lipid matrix and/or erosion of the matrix [11, 51].  

As shown in Figure V-18 (taking VPGs containing 550mg/g lipids and 3.8mg/g EPO 

for example), the correlation between the lipid release (erosion of the phospholipid 

matrix) and the release of EPO was found constantly although the absolute values 

differed in various VPG formulations. Clearly, erosion is the dominant mechanism 

controlling EPO release. This is in agreement with former observations which 

showed that mainly matrix erosion governed the delivery of small molecular weight 

drugs [12, 50, 138, 155] and peptides [51] from VPGs. Moreover, it was found that 

the lipid charge was of dominant importance besides a strong influence of the lipid 

concentration on the matrix erosion. 

 

Figure V-18. Daily release percentage of EPO and lipid (erosion of phospholipid matrix) from VPGs. 
The y axis is the daily released percentage of the total protein/lipid content within VPGs. (VPGs 
contained  550 mg/g egg PC and 3.8 mg/g EPO. (Mean ± SD, n = 3 each) 
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5.4. INTEGRITY OF THE RELEASED PROTEIN FROM VPGS 

EPO was liberated from VPGs in a continuous manner over days, delivering at least 

60% of the incorporated proteins. The remaining protein was not detectable in the 

release medium despite the fact that the matrices were completely eroded after 3 

weeks of incubation.    

Consequently, the stability of proteins released from VPGs (Taking VPGs consisting 

of 400mg/g lipids and 3.8mg/g EPO for example) was examined. The proteins were 

extracted by applying chloroform (as described previously) from release fractions. 

SDS-PAGE was performed with subsequent silver staining.   

As a result, the presence of dimer specimen was evident in all EPO samples (Figure 

V-19). However, the release process of EPO from VPGs did not feature the creation 

of this dimer fraction detected in all release fractions since the dimer was already 

present in the EPO bulk materials (referring to the SE-HPLC of EPO bulk, Figure V-

11a).  

 

 

 

 

 

 

 

  

   

Figure  V-19. EPO stability released from VPGs consisted of 400mg/g lipids and 3.8mg/g EPO. Lane1, 
EPO released after 216hrs; lane 2, EPO released after 168hrs; lane 3, EPO released after 96hrs; lane 
4, EPO released after 48hrs; lane 5, EPO standard solution; lane 6, molecular weight maker. 

 

5.5. PARTICLE SIZE DISTRIBUTION 

The most important morphological characteristic of liposomes and VPGs is the 

vesicle size and distribution. The vesicular morphology has been confirmed by cryo 

electron microscopy of dispersed samples [152]. The other standard method for 

determination of the size distribution of liposomes is PCS.  
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In this work, the vesicle size of the release fractions was analyzed with PCS. The 

results were represented as intensity-weighted averages. As shown in Table V-10, 

the mean particle sizes of all the EPO VPG formulations were in the range up to ca. 

270nm.  

Table V-10. Mean particle size of release fractions from VPGs based on various contents of lipids.      

EPO VPGs Based on 
400mg/g lipids 

Based on 
450mg/g lipids 

Based on 
500mg/g lipids 

Based on 
550mg/g lipids 

Particle size of 
release fraction 172nm-205nm 175nm-239nm 156nm-261nm 188nm-271nm 

 

In previous work, Grohganz [13] has determined the particle size of liposome 

dispersions from Cetrorelix loaded VPGs which were formulated by high pressure 

homogenizer. In his work, all the formulations showed a particle size of around 30 - 

50 nm for more than 90% of all the particles. The relatively larger vesicles in our case 

can probably be ascribed to the different preparation technique (In our work, 

formulation of VPGs was performed on DAC) as already observed in the work of 

Massing [147]. However, the EPO loaded VPGs are suitable for application as a 

depot for in situ application. 

6. ADSORPTION STUDY OF EPO 

As shown in Figure V-14 and Figure V-16, protein release levelled off before 

reaching 100% of the total drug load. For PLGA based protein depot systems 

incomplete protein release was often correlated with protein denaturation and/or 

aggregation occurring during system preparation or within the release period or 

during storage [55, 208]. However, as explained above protein aggregation due to 

the manufacturing can be excluded. Protein loss might occur due to adsorption of 

EPO on exposed surfaces since as amphiphilic molecules proteins tend to adsorb on 

interfaces, In order to evaluate adsorption in the release setup EPO solution (10µg/ml) 

alone or spiked with highly diluted VPG dispersions (with a lipid content of 1.5mg/ml) 

was continuously pumped with a flow rate of 1ml/hr through the release system. As it 

can be seen in Figure V-20 already after 12 hours the protein concentration 

decreased by 10µg/ml to 82% for the unspiked and to 93% for the phospholipid 

spiked EPO solution. For the VPGs consisting of 300mg/g lipids and 3.8mg/g EPO, 

75% of the protein was recovered after the total erosion of the matrices. Since EPO 

was expected to release from VPGs both in free form and in liposomally entrapped 
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form, the protein loss caused by unspecific adsorption was in the range from 7% to 

18%. Accordingly, the incomplete protein release was mainly caused by unspecific 

adsorption onto the flow-through release system surfaces.  

Typical means to avoid such adsorption, e.g. addition of surfactants were not applied 

because they would have affected erosion and release heavily by dispersion of the 

VPGs. 

                     

Figure V-20. Adsorption of EPO on the in-vitro release system. The adsorption behaviour of EPO was 
studied in the presence and in the absence of diluted VPG dispersions.  The flow rate was fixed at 
1ml/hr and the cells were incubated at 37°C.  

7. SUMMARY AND CONCLUSION 

In the first part of this section manufacturing strategy based on the dual asymmetric 

centrifugation was developed to produce EPO loaded VPGs. The temperature of the 

preparation process could be controlled with multiple centrifugations and cooling in-

between.  

The obtained VPGs all exhibited rubbery consistency with homogenous morphology 

under visual and microscopic inspection. On the other hand, increasing the lipid 

content in the VPG-formulations resulted in the increased gel rigidity and viscosity.  

SDS-PAGE was performed to analyze the stability of EPO entrapped in VPGs.  

Extraction agents including organic solvents and surfactants were applied to 

eliminate the influence of the lipids. No detrimental effect of the extraction methods 

was found by the SDS-PAGE. Applying chloroform to extract lipids and subsequently 

recover EPO from the aqueous phase was found the most suitable extraction method 

which featured highest protein recovery. Moreover, denatured products of the protein 

could also be recovered from the lipid containing samples and detected by the SDS-
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PAGE. Hence it could be stated the analysis method was established and well 

validated.  SDS-PAGE analysis of EPO extracted from the VPGs matrix revealed no 

aggregates or fragments, and it was concluded that the formulation procedure 

caused no detrimental effect of EPO. 

As the protein stability was not affected by the formulation process the prerequisite 

for a successful sustained release system based on lipids was fulfilled and further 

investigations on the in-vitro release studies were encouraged. However, a major 

obstacle was found in the protein quantification from the release fractions since the 

presence of lipids had strong interference on the routine analysis methods (e.g. 

HPLC, photometry). Therefore it was essential to develop an extraction method that 

allowed the quantitative recovery of the protein from the liposome fraction without 

having detrimental effects on the protein integrity. As for quantification, RP-HPLC 

was found to have more advantages in our case than SE-HPLC in robustness and 

flexibility in choosing the extraction agents. Among the organic solvents and 

surfactants tried out, applying chloroform for extraction of the lipids and subsequent 

recovering of EPO from the water phase was found most suitable. Calibration of 

extracted EPO from lipids was established with acceptable linearity. In the case of 

lipids containing egg PC or negatively charged lipid blends, good correlations were 

achieved between the detected AUCs of extracted and untreated lipid-free EPO 

solutions. However, due to the electrostatic interaction between the positively 

charged lipid vesicles and the negatively charged protein, the recovery of EPO from 

cationic lipid dispersions was dramatically reduced. Hence, the extraction protocol 

was modified by addition of at least 200 mM NaCl to reduce the interaction and 

consequently resulted in a suitable response curve similar to that of uncharged lipids. 

In addition, the influence of the centrifugation conditions on the protein recovery was 

evaluated to achieve an optimised process. Importantly for the release tests, 

variations of the lipid amount as well as variations in the protein amount had little 

effect on the EPO recovery. It was also possible to recover oxidized protein products 

from lipid containing samples with a comparable recovery. With the developed 

quantification method of EPO in lipid containing samples, it was possible for the 

further investigations on the in vitro release of VPGs.  

The release profile could be tailored by varying the lipid content within VPGs 

formulations. Irrespective of the investigated formulation all VPGs delivered the 
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protein over prolonged periods of time at close to linear kinetics without any burst 

effect. For instance formulations based on 300mg/g lipid delivered 83% EPO after 

280 hours while gels based on 550mg/g lipid liberated 64% within 400 hours. Beside 

the lipid content, the lipid charge also had a strong influence on the release behavior. 

Incorporating 20% of positively charged lipids (DOTAP) into VPGs resulted in a 

strongly accelerated release rate while adding the 10% of negatively charged lipids 

(DPPA) delivered the incorporated protein in a comparable manner to the uncharged 

formulation. It was assumed that the erosion of the VPG matrix was facilitated due to 

the ionic interaction between the lipid vesicle and the buffer solution in the case of 

the addition of positively charged lipids. The desired release kinetics can easily be 

achieved by adjusting the lipid content or the lipid charge. From the parallelism of 

release and erosion kinetics found for all formulations it was concluded that erosion 

rather than diffusion was the dominant release controlling mechanism for these 

macromolecule-loaded VPGs.  

Importantly, SDS-PAGE analysis of EPO extracted from VPGs’ release fractions 

revealed no further aggregates or fragments beside the denatured products that 

already existed in the protein bulk solutions. Hence the in vitro process featured no 

detrimental effect on the protein incorporated within VPGs detected by SDS-PAGE. 

The vesicle size of the liposomes released from VPGs was majorly in the range up to 

300nm .This result encouraged the expectation that a large number of protein drugs 

can be transferred into stable liposomes when using VPGs as a depot. 

In the final section of this chapter, the protein adsorption onto the release system 

was investigated since incomplete release was observed for the in vitro release tests.    

As a result, the protein got 7% lost after 12 hours in presence of lipids while much 

more protein loss (18%) was observed without liposomal entrapment. Since the 

protein was released from VPGs both in free form and in liposome form, the 

adsorption of EPO in the release fractions was in the range from 7% to 18%. This 

unspecific adsorption to the release system mainly contributed to the incomplete 

release of EPO from the matrices and should be corrected from the results to reveal 

the real situation of in vivo application of the VPGs. 

Thus it was assumed the unspecific adsorption led to the incomplete protein release 

from VPGs. However, surfactant was not used since it might affect erosion and 

release by dispersion of the VPGs. 
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As conclusion, a sustained release of EPO from VPGs over several hundred hours 

was observed depending on the formulations. The release of EPO from VPGs is 

dependant on the erosion of the lipid matrix. Varying the lipid content and 

composition can modify the erosion and the EPO release profile. Moreover, the 

protein released from VPGs is expected both in free form and in liposomally 

entrapped form. These two parts could be differentiated by using asymmetric flow 

Field Flow Fractionation (AFFF) technique in future work.  
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CHAPTER VI: VPGS FOR GROWTH FACTOR DELIVERY 
Growth factors contribute to tissue regeneration at various stages of cell proliferation 

and differentiation [210-211]. Although many studies using growth factors have been 

carried out, limited success has been achieved due to their very short half-life time in 

vivo to retain the biological activity. Thus, many different controlled release devices 

have been optimized for controlled delivery of the growth factors. Choi [212] has 

reported a sustained release of G-CSF over a week in vitro by using PLGA based 

nanoparticles. Hydrogels based on polyethylene glycol or other copolymers  have 

been investigated for delivering insulin-like growth factor (IGF-1) [213] and vascular 

endothelial growth factor (VEGF) [214]. A combination of PLGA microspheres 

embedded in a PLGA matrix has been used for rapid delivery of VEGF from the 

PLGA matrix followed by a sustained release of platelet derived growth factor (PDGF) 

from the embedded microspheres [215]. This combination delivery of multiple growth 

factors has shown improved growth of stable blood vessels around tissue 

engineering constructs. Gelatin based hydrogels were used for the immobilization 

and controlled release of human recombinant basic fibroblast growth factor (bFGF) 

and G-CSF. The co-delivery of the bFGF and G-CSF highly increased endothelial 

branch point formation than the delivery of either growth factor alone [216].  

The aim of this chapter is to develop the VPGs with loading of growth factors. 

Various VPG-formulations of granulocyte colony-simulating factor (G-CSF) were 

prepared and characterized with the established methods. In vitro release behavior 

was evaluated to address the potential of the system for the delivery the growth 

factors. In vivo experiments would be carried out using rats as animal model. VPGs 

prepared with various doses of G-CSF, bFGF and a combination of the two growth 

factors would be applied in the rupture of the tendon to offer a sustained release of 

proteins. The therapeutic effect for the implantation of VPGs would be evaluated.  In 

order to study the pharmacokinetics, ELISA was performed to develop a 

quantification method of G-CSF in the serum.     

1. PREPARATION OF G-CSF LOADED VPGS 

The G-CSF stock solution used here has a concentration of 4.0mg/ml in 10mM 

acetate buffer pH 3.9 containing 0.004% Tween and 5% sorbitol. Egg 

phosphatidylcholine (E80) were supplied from LIPOID. G-CSF VPGs were 
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formulated in DAC following the procedure described in the method section. In brief,  

the protein solution was added to the lipids. The mixture was homogenized in DAC 

by multiple runs of 1.5-minutes (to a total mixing time of 45 minutes) at a process 

speed of 3500 rpm. The samples were cooled at 2-8°C at interrupts (after 6-10 runs) 

to control the system temperature below 40°C.  Several formulations were prepared 

to evaluate the influence of the lipid and protein content on the release behaviour. 

The lipid content was varied between 400mg/g and 550mg/g. The concentrations of 

G-CSF were varied from 2.2mg/ml to 8.4mg/ml.   

2. TEXTURE ANALYSIS AND RHEOLOGY TEST OF G-CSF VPGS 

The Texture analyser (TA.XT plus, Stable Micro Systems, UK) recorded the forces 

(Figure VI-1a) which occured when the probe (4mm in diameter) was pushed with a 

speed of 0.5mm/s into the tested VPGs. The gel strength of VPGs was represented 

as the maximal force value. The rheology behaviour of MAB VPGs was studied by a 

rotational viscometer (Physica MCR 100, Anton Paar) at 25°C. The shear viscosity 

was provided versus shear rate ranging from 10-1 and 100-1 (up and down curve, 

Figure VI-1b).  
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Figure VI-1. (a) Texture analysis of G-CSF loaded VPGs: recorded force trace when the probe (4mm 
in diameter) was pushed with a speed of 0.5mm/s into the tested VPGs. VPGs were based on 
450mg/g lipids and 2.2mg/g G-CSF. (b) Rheological behaviour of VPGs. VPGs were based on 
450mg/g lipids and 4mg/g G-CSF. 
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The influence of the lipid content in VPG-formulations on both the gel strength and 

viscosity was investigated. VPGs were prepared by various lipid contents ranging 

from 400mg/g to 490mg/g. A constant G-CSF concentration of 4mg/g was used in all 

the formulations. Increased gel strength was found by incorporating more lipids within 

VPGs (Figure VI-2a). The maximal force of VPGs based on 400mg/g lipids was 

16.4g, while the value of VPGs consisted of 490mg/g lipids was 52.6g. As for the 

rheological behaviour of VPGs, the viscosity was compared at the same shear rate of 

37.9s-1. As shown in Figure VI-2b, increasing the lipid content also resulted in 

increased viscosity.  

   
                              (a)                                                                                       (b) 

Figure VI-2. (a) Gel strength (mean±SD, n=3) of G-CSF loaded VPGs. VPGs were prepared by 
various contents of lipids (as indicated in the figure) and a constant G-CSF concentration of 4mg/g. (B) 
Viscosity (mean±SD, n=3) of G-CSF loaded VPGs. VPGs were prepared by various contents of lipids 
(as indicated in the figure) and a constant G-CSF concentration of 4mg/g. 
 

The influence of the G-CSF content within VPG-formulations on both the gel strength 

and viscosity was also investigated. VPGs were prepared by varying the protein 

contents from 2.2mg/g to 8.4mg/g. A constant lipid concentration of 450mg/g was 

used in all the formulations. As shown in Figure VI-3a, VPGs based on 2.2mg/g G-

CSF had a gel strength value of 28.4g while VPGs containing 4.0mg/g G-CSF got a 

similar value of 27.1g. When the lipid content was further increased to 8.4mg/g, the 

gel strength was much higher (49.4g). However, the viscosity got little influenced by 

changing the protein content in this concentration range taken the standard deviation 

into consideration (Figure VI-3b). In accordance with the results of texture analysis, 

the viscosity (13.3 Pa.s) of VPGs based on 4.0mg/g G-CSF was slightly lower than 

that of VPGs based on 2.2mg/g.  

Comparing G-CSF VPGs with EPO VPGs, the gel strength and viscosity of G-CSF 

VPGs were lower than those of EPO VPGs which were based on the same content 

of lipids (EPO was formulated with 20mM PBS buffer while G-CSF was formulated 
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with 10mM acetate buffer). Further experiments were performed and it was found 

that the buffer ingredients in the protein solutions have strong influence on the gel 

strength and viscosity. Therefore the difference in the gel texture was attributed to be 

the different buffers used in the different protein samples. 

 
                                         (a)                                                                    (b) 

Figure VI-3. (a) Gel strength (mean±SD, n=3) of G-CSF loaded VPGs. VPGs were prepared by 
various contents of G-CSF (as indicated in the figure) and a constant lipid concentration of 450mg/g. 
(b) Viscosity (mean±SD, n=3) of G-CSF loaded VPGs. VPGs were prepared by various contents of G-
CSF (as indicated in the figure) and a constant lipid concentration of 450mg/g. 
 

3. EVALUATION OF G-CSF STABILITY BY SDS-PAGE 

The integrity of G-CSF was analyzed by non-reducing SDS-PAGE with subsequent 

silver staining. In brief: the electrophoresis was performed on the Bis-Tris Pre-Cast 

Gel (Invitrogen, Groningen, Netherlands) in the MES running buffer (Invitrogen).  

Without applying an extraction process, the analysis of G-CSF VPGs (redispersed in 

PBS buffer pH 7.4 resulting in a protein concentration of 100ug/ml) was strongly 

interfered by the presence of lipids (Figure VI-4a). Hence organic solvents and 

surfactants including chloroform, dichloromethane, ethanol and Triton X-100, were 

tried out to dissolve the lipids. As surface active molecules, proteins tend to adsorb at 

water/organic solvent interfaces. Since this adsorption step can induce protein 

instability [55, 217], the influence of the extraction agents on the protein stability was 

evaluated as the start point. It was found that adding ethanol to the G-CSF in 

absence of any lipids resulted in low protein recovery (as indicated by the band 

intensity). Beside the acceptable recoveries, no aggregation or fragmentation fraction 

was observed when other extraction agents were applied to the G-CSF without lipids 

(Figure. VI-4b). Then these extraction agents except ethanol were applied for the 

extraction of G-CSF from VPGs. As shown in Figure VI-4c, the dissolution of the 
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lipids by adding Triton X-100 resulted in the highest recovery of G-CSF without any 

detection of degradation products. Though the methods using chloroform and 

dichloromethane revealed lower extraction efficiencies, none of these methods 

featured aggregation or fragmentation of G-CSF. Accordingly, the formulation 

process to entrap G-CSF within VPGs suggested no detrimental effect on the protein 

stability.  
   

 

                       (a)                                                  (b)                                                         (c) 

Figure VI-4.  Influence of the formulation process on the GCSF stability, by SDS-PAGE, silver staining.  

(a): lane 1, molecular weight marker; lane 2, G-CSF standard; lane 3, G-CSF VPGs’ dispersions 
without applying extraction process.  

(b): lane 1, G-CSF solution (in absence of lipids) with adding Triton X-100; lane 2, G-CSF solution (in 
absence of lipids) with adding dichloromethane; lane 3, G-CSF solution (in absence of lipids) with 
adding chloroform; lane 4, G-CSF solution (in absence of lipids) with adding ethanol; lane 5, G-CSF 
standard; lane 6, molecular weight marker.  

(c): lane 1 G-CSF VPGs, the protein was extracted by applying Triton X-100; lane 2, G-CSF VPGs, 
the protein was extracted by applying dichloromethane; lane 3, G-CSF VPGs, the protein was 
extracted by applying chloroform; lane 4, G-CSF standard;  lane 5, molecular weight marker.      

4. CHARACTERISATION OF THE SECONDARY PROTEIN STRUCTURE WITHIN VPGS 

FTIR-spectroscopy has been suggested to analyze the secondary structure of 

proteins embedded within controlled release devices [218-220]. However, vibration of 

the matrix materials in the spectrum was observed, which might have interference on 

the spectra of the embedded proteins [219]. Van de Weert [219] has tried out to 

correct the spectra of lysozyme embedded within PLGA microspheres by the spectra 

of the blank PLGA microspheres. However, it was found that the background from 

the blank could not be completely removed because of the baseline slopes and 

distorted peak shapes especially in the carbonyl stretch vibration of PLGA. Moreover, 
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the different adsorption characteristics of protein–loaded microspheres were also 

suggested to restrict the subtraction of the spectrum of blank PLGA microspheres 

[219]. In the work of Herrmann [100], the same problem was observed for the IFN-α 

embedded in a lipid extrudate. The variations of the subtraction factor either involved 

an over-subtraction or an under-subtraction of the lipid contributions, leading to 

negative or positive features between 1700 and 1800 cm-1. 

In this context, FTIR with the ATR-technique was used for the analysis of G-CSF 

either formulated in the buffer (10mM acetate buffer pH 3.9) or embedded within 

VPGs.  

 
                                                 (a)                                                                   (b) 

Figure VI-5: ATR-spectrum, (a) G-CSF in the buffer solution; (b) G-CSF VPGs (without subtraction) 
based on 450mg/g lipids and 4mg/g G-CSF and placebo VPGs based on 450mg/g lipds.  

As illustrated in Figure VI-5a, the spectra recorded by the ATR-technique revealed a 

protein signal in the amid l/amid II region for the G-CSF in buffer solution.  

The potential of FTIR to characterize the secondary structure of proteins embedded 

within VPGs was investigated subsequently. G-CSF VPGs were freshly prepared 

with 450mg/g lipids and 4mg/g G-CSF. As shown in Figure VI-5b, the spectrum of G-

CSF VPGs was influenced by the background from placebo VPGs. Yang [220] 

suggested a flat baseline in the region at 1730 - 1710 cm-1as criterion for successful 

background subtraction. However, it was not possible to fulfil this request with the G-

CSF loaded VPGs studied here.  

In addition, several extraction methods were applied to eliminate the influence of the 

matrix background. However, lipids could not be removed clearly, and the left lipids 

still got strong interference. Hence we have no access to use FTIR to examine the 

protein stability in the study.  
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5. QUANTIFICATION METHOD FOR RELEASED G-CSF  

A quantification and extraction method was needed for MAB analysis from lipid 

containing samples. Since the released amount of VPGs at each time interval was 

unknown, the quantification method should feature a high robustness against 

variations of the lipids as well as against variations in the protein amount which make 

this method suitable for protein quantification during in-vitro release studies. The 

fluorescamine assay and reverse phase HPLC method were assessed in the 

following.  

5.1. THE FLUORESCAMINE ASSAY 

Anderson [221] has used a fluorescamine assay to detect microgram quantities of 

GM-CSF in presence of dimyristoyl phosphatidyl choline (DMPC). Accordingly, the 

assay was performed for the quantification of G-CSF from the liposome fractions. A 

modified process using the 96 well-microplate as described by Lorenzen [194] was 

performed. Briefly, 150µl of the protein containing samples (in PBS buffer pH 7.4) 

and standards were pipetted into microplate wells (Nunc MaxiSorp™, Roskilde, 

Denmark). Fluorescamine was dissolved in acetone resulting in a concentration of 

3mg/ml. The microplate was placed on a microplate shaker and 50µl of the 

fluorescamine solution was added to each well. After shaking for a minute, the 

fluorescence was determined by using an excitation wavelength of 400nm 

(bandwidth: 20nm), and an emission wavelength of 460nm (bandwidth: 20nm). 

Placebo VPGs were dispersed with PBS buffer pH 7.4 resulting in lipid 

concentrations from 0.5mg/ml to 5mg/ml. To simulate the conditions expected during 

in-vitro release G-CSF solutions (10µg/ml) were spiked with diluted VPG dispersions 

and the recovery of G-CSF was determined and compared to the results of lipid-free 

G-CSF solutions by the assay. As shown in Table VI-1. The results of the assay were 

strongly influenced by the presence of various contents of lipids. Thus it could be 

stated the assay appeared not suitable in our case. 

Table VI-1. Recovery of G-CSF from liposome containing samples, by the fluorescamine assay, n=8 

Lipid concentration 0.5mg/g lipids 1.5mg/g lipids 5.0mg/g lipids 
G-CSF recovery 142±13% 159±24% 243±37% 
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5.2. RP-HPLC METHOD 

From the experiences in developing the quantification method of EPO, reverse phase 

HPLC appeared reasonable for G-CSF quantification in the samples containing 

liposomes. The method was developed with a ProSwiftTM RP-2H column (4.6*50mm, 

Dionex). Gradient elution was performed as shown in Table VI-2. The eluent A 

consisted of 0.12% TFA in destilled water, and the eluent B consisted of 90% CH3CN 

(in destilled water) and 0.1% TFA. The UV detector was operated at 215nm. The 

injection volume was 100µl. 

Table VI-2. Gradient elution for RP-HPLC of G-CSF 

Time/min 0 5 10 25 30 35 40 45 
Eluent A% 100 80 60 60 40 20 0 100 
Eluent B% 0 20 40 40 60 80 100 0 
Flow rate 1.5ml/min 

 

G-CSF had a retention time around 28minutes (Figure VI-6). The calibration curve 

was generated with the protein concentrations ranging from 2.5µg/ml to 20.0µg/ml for 

the G-CSF solutions in absence of lipids (Figure VI-7).  

 
Figure VI-6. RP-HPLC chromatogram of G-CSF 
standard, 5µg/ml 
 

Figure VI-7. Calibration of G-CSF standard, 
concentrations of G-CSF ranged from 2.5µg/ml 
to 20.0µg/ml, R2=0.990 

 

 

 
 

5.3. EXTRACTION METHOD 

To determine the concentration of G-CSF in the release fractions, an extraction 

method is necessary for the dissolution of the lipids and extraction of the protein. The 

extraction method should allow the quantitative recovery of the protein from the 
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liposome fractions without having detrimental effects on the protein integrity. To 

simulate the conditions expected during in-vitro release G-CSF solutions were spiked 

with diluted VPG dispersions and the recovery of G-CSF was determined and 

compared to the HPLC-response of lipid-free G-CSF solutions after applying a 

detergent or an organic solvent. For the initial screening of the extraction methods, 

the samples were prepared with a G-CSF concentration of 10µg/ml and a lipid 

content of 1.5mg/ml. 

5.3.1. METHOD DEVELOPMENT  

In Chapter V it was shown that applying chloroform for the dissolution of lipids 

resulted in good recovery of EPO. Thus as a start point, chloroform (0.3ml per ml 

sample) was applied for extraction of G-CSF from lipids containing samples. The 

protein was recovered from the supernatant and subsequently quantified by the 

aforementioned RP-HPLC method. As shown in Figure VI-8a, a low protein recovery 

of 22.5±2.0% was observed for G-CSF extracted by applying chloroform. Thus other 

extraction methods had to be assessed.   

In previous work, Grohganz [204] used Triton X-100 for the dissolution of liposomes 

and extraction of the decapeptide cetrorelix from VPGs. Accordingly, 5% Triton X-

100 was applied for G-CSF extraction. As shown in Figure VI-8b, Triton X-100 has 

generated multiple peaks which could not be totally separated from the protein peak. 

This phenomenon was already observed in the application of Triton X-100 for EPO 

extraction. In addition, a fluorescence detector (Excitation wavelength: 280nm, 

Emission wavelength: 340nm) was also used aimed to eliminate the influence of the 

Triton X-100. However, similar results were obtained which made the extraction 

method with applying Triton X-100 not suitable in this case. 

Methanol has been used  to dissolve lipids in the G-CSF liposome samples prior to 

HPLC analysis [222]. Hence, this method was also assessed in our work. 1ml 

methanol was applied to extract G-CSF from the lipid (1.5mg/ml) containing samples. 

However, our challenge here is the variation of the lipid content as well as the 

variation of the protein content in the released samples.  
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      (a)                                                                               (b) 

Figure VI-8.  RP-HPLC chromatograms of G-CSF, (a) extracted G-CSF by applying chloroform, G-
CSF standard was shown as reference, (b) G-CSF by applying Triton X-100 for dissolving the lipids, 
G-CSF standard was shown as reference. 

Unfortunately, it was observed that the recovery of G-CSF was influenced by the 

original protein content in the samples when methanol was applied for lipid 

dissolution (Table VI-3). At lower protein concentrations the protein recoveries were 

implausibly high, which was probably caused by the baseline noise. In comparison 

about 48% was recovered from 10µg/ml G-CSF. However, the dilution effect of 

methanol has to be taken into account since methanol is miscible with the buffer 

solution. Regardless of this point, the method using methanol for extraction appeared 

not suitable for the quantification of released G-CSF from VPGs.  

Table VI-3. Recovery of G-CSF from liposome containing samples, methanol was added to dissolve 
the lipids, n=3 

Concentration G-CSF 2.5µg/ml 5.0µg/ml 7.5µg/ml 10µg/ml 
G-CSF recovery±SD% 336.7±40.4% 95.9±-9.0% 58.9±1.9% 48.2±8.6% 

 

When chloroform was added to the G-CSF samples, the recovery of G-CSF was only 

about 22.5% for the lipids (1.5mg/ml) containing samples, whereas it was 

interestingly found about 100% of the protein was recovered in absence of lipids. Our 

hypothesis was that the low recovery of G-CSF could be caused by the interaction 

between the protein and the lipids. Due to the interaction a part of the proteins were 

transported to the organic phase with the lipids, which consequently resulted in low 

protein content recovered from the aqueous phase. Some trials were made aimed to 

reduce the interaction: The pH of the solution was adjusted to change the protein 

charge (G-CSF has a pI of 6.1 [223], The zeta potential in various buffer conditions 

was shown in Table VI-4.). Chloroform was added for lipid extraction and the 
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recovered protein was quantified by the developed RP-HPLC method. As shown in 

Table VI-4, the recovery of the G-CSF was even worse at either a pH of 3.0 or pH 

10.0. Thus varying the charge of the protein failed to improve the extraction efficiency 

of the method. 

Table VI-4. G-CSF recovery: influence of the protein charge, the protein was extracted by applying 
chloroform. 

G-CSF Sample 
G-CSF in liposome 
containing samples, pH 
7.4. 

G-CSF in liposome 
containing samples, pH 
3.0. 

G-CSF in liposome 
containing samples, pH 
10.0. 

Concentration 10 µg/ml 

Zeta potential ζ/mV -4.4±0.3 4.4±0.3 -20.8±1.0 

Recovery±SD% 22.5±2.0% 10.3±5.8% 7.6±12.5% 

 

However, low protein recovery by applying chloroform might also be induced by the 

protein instability occurred at the interface [209, 224] since the presence of lipids 

might create an improved interface between the protein and the organic solvent. 

Consequently some trials were made based on the report that adding a high amount 

of sucrose could improve the stability of the protein [225].  Accordingly, sucrose was 

added to the samples, and the G-CSF was extracted by applying chloroform and 

quantified by RP-HPLC. As a result, the addition of sucrose could not efficiently 

improve the protein recovery (Table VI-5) whereas resulted in high viscosity of the 

samples which might harm the HPLC column.  

Table VI-5. G-CSF recovery: the addition of sucrose on the recovery of G-CSF. The protein was 
extracted by applying chloroform and subsequently quantified by RP-HPLC. 

Concentration of sucrose 0 50mM 250mM 1M 2M 

Concentration of G-CSF 10µg/ml 

Recovery±SD% 22.5±2.0% 14.7±5.8% 17.5±2.2% 34.3±2.0% 28.0±5.0% 

5.3.2. VALIDATION OF THE FINAL EXTRACTION METHOD WITH N,N-DIMETHYLFORMAMID 

N,N-Dimethylformamid (DMF) is a water-miscible organic solvent which has been 

used in the fluorescamine assay for protein-lipid isolation process. The function of the 

organic solvent was reported to suppress the influence of the residual lipids allowing 

direct comparison of samples with and without lipids [226]. Accordingly, 0.4ml DMF 

was added to 1ml G-CSF solutions (in PBS buffer) in presence of 1.5mg/ml lipids. 

After centrifugation (3000rpm for 30mins, at 15°C), the lipid was precipitated and the 
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protein was recovered from the solution. The protein was quantified by the developed 

RP-HPLC method.  

As a result of the RP-HPLC analysis, the extraction by applying DMF at a pH 

environment of 7.4 featured the creation of oxidized G-CSF species whereas only 

monomeric protein with good recovery was observed at a pH of 3.5 (Figure VI-9). 

However, it was not surprising to find that the extraction effect was better at a low pH 

environment when G-CSF was exposed to organic solvent as CHI [223] had found 

out that G-CSF was more stable in a buffer solution of pH 3.5 rather than of pH 7.4.    

 

Figure VI-9. RP-HPLC of G-CSF, the protein was extracted from liposome containing samples (lipid 
concentration: 1.5mg/ml) by applying DMF. (a), G-CSF standard, 10µg/ml; (b), G-CSF extracted from 
liposome containing samples (PBS buffer pH 3.5); (c), G-CSF extracted from lipid containing samples 
(PBS buffer pH 7.4) 

The extraction method with DMF was further evaluated at low pH. The recovery of G-

CSF extracted by applying DMF from the lipid containing samples was calculated to 

be 91.4% at a pH of 3.5. Further investigations showed that in the pH range from 3.0 

to 3.8, the protein recovery maintained relatively stable above 90% (Table VI-6). For 

the consideration of the in vitro release tests which were performed with PBS buffer 

pH 7.4, the release fractions needed a pH adjustment to 3.5 prior to the addition of 

DMF for extraction.  

Table VI-6. Recovery of G-CSF: influence of the pH values of the PBS solution, the pH ranged from 
3.0 to 3.8. The lipid content was 1.5mg/ml and the protein content was 10µg/ml in all the samples; 
DMF was used for protein extraction. 

pH of the sample 3.0 3.2 3.5 3.8 
G-CSF recovery±SD% 98.8±1.4% 96.1±-3.5% 91.4±1.9% 92.5±5.6% 
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Further investigations were carried out to see whether the extraction efficiency of G-

CSF by using DMF was influenced by the lipid content within the samples. The lipid 

contents were varied between 0.5mg/ml and 5mg/ml (This concentration range was 

assumed to be around the lipid concentration in the release fractions).The protein 

concentration in all the samples was 10µg/ml. It was found that a lower protein 

recovery of 68% was obtained for the samples containing the lowest lipid content 

(0.5mg/ml). In comparison, there was a plateau of the extraction efficiency at a level 

of more than 90% for all the other samples containing a lipid content of more than 

1.5mg/ml (Figure VI-10). This phenomenon can be explained in a way that the 

presence of sufficient amount of lipids can reduce the exposure of G-CSF to the 

organic solvent and consequently reduce the protein loss due to the addition of DMF.  

In this case, an extra amount of 1.5mg lipid (per ml sample) should be necessarily 

added to the release samples to achieve a high and repeatable protein recovery for 

the quantification aim.  
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Figure VI-10. Recovery of the G-CSF: influence of the lipid content within the samples. The lipid 
content was varied from 0.5mg/ml to 5mg/ml; the protein content was 10µg/ml in all the samples; DMF 
was used for protein extraction. 

In summary, the quantification method for G-CSF in the release fractions was fixed 

as followings: (1) 1.5mg/ml lipid (from VPG-disperions) is added to the release 

fractions. (2) The pH of the samples is adjusted to 3.5. (3) 0.4ml/ml DMF is added 

and the lipids are precipitated after centrifugation (3000rpm for 30mins, at 15°C). (4) 

G-CSF is recovered from the aqueous solution and subsequently quantified by the 

RP- HPLC.  

Figure VI-11 shows the AUCs of G-CSF with this method in comparison to the 

calibration curve in the absence of any lipids (The calibrations were established with 

protein concentrations ranging from 2.5µg/ml to 20µg/ml).  The extraction method by 
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applying DMF was used as standard method for G-CSF quantification for the in-vitro 

release studies.  

                             

Figure VI-11. Response curve of G-CSF standard in comparison to the protein samples recovered 
after extraction from liposome containing samples. The lipids were precipitated by adding DMF. 

6. IN VITRO RELEASE OF G-CSF FROM VPGS  

In vitro release tests were conducted within flow through cells at 37°C as described in 

the method section. PBS buffer pH 7.4 (20mM) was used as acceptor medium. The 

released G-CSF from VPGs was extracted by applying DMF and quantified by RP-

HPLC. The release data are presented as the average of triplicates.  

6.1. INFLUENCE OF THE LIPID CONTENT 

The influence of the lipid content on the release behavior of G-CSF VPGs was first 

investigated. VPGs were prepared with various lipid (egg PC, LIPOID E80) contents 

ranging from 400mg/g to 490mg/g (Table IV-7). The concentration of G-CSF was 

4mg/g in all these formulations. The pH of release fractions were adjusted to 3.5 by 

adding hydrogen chloride for analysis if not otherwise stated. 

Table IV-7. Formulations of G-CSF VPGs based on various contents of lipids. 

 Lipid Concentration G-CSF Concentration 
G-CSF VPGs_1 400mg/g Egg PC (Lipoid E80) 
G-CSF VPGs_2 450mg/g Egg PC (Lipoid E80) 
G-CSF VPGs_3 490mg/g Egg PC (Lipoid E80) 

4mg/g 

 

As it can seen in Figure IV-12, G-CSF VPGs based on 400mg/g lipids delivered 63% 

of the total entrapped proteins over 408hrs while VPGs containing 450mg/g lipids 
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released 43% and VPGs with 490mg/g lipids released 35% within the same period. 

Increasing the lipid content from 400mg/g to 450 mg/g decreased the release rate of 

G-CSF from the VPGs. In comparison, the release behavior of the systems was little 

influenced when the lipid content was increased from 450mg/g to 490 mg/g. 

Moreover, it was observed that G-CSF was released from all formulations in a close 

to linear manner without initial burst.  

 
Figure VI-12. Cumulative release of G-CSF from VPGs based on various concentrations of lipids (egg 

PC, LIPOID E80) (Mean± standard deviation, n = 3 each).  

6.2. INFLUENCE OF THE G-CSF CONTENT 

In Grohganz’s work, the release behaviour of the decapeptide cetrorelix from VPGs 

was found also dependant on the content of the peptide entrapped within VPGs [51].  

Accordingly, the influence of the G-CSF content on the release behaviour of the 

system was investigated. VPGs were prepared with various concentrations of G-CSF 

as shown in Table VI-8. The lipid content in all these VPG-formulations was 450mg/g 

(egg PC, LIPOID E80). 

Table VI-8. Formulations of G-CSF VPGs based on various contents of proteins 

 Lipid Concentration G-CSF Concentration (in the final formulations) 

G-CSF VPGs_2 4.0mg/ml 
G-CSF VPGs_4 

450mg/g Egg PC (Lipoid E80)
8.4mg/ml 
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In comparison to VPGs based on 4.0mg/g G-CSF which delivered 43% of the 

incorporated proteins, the formulations containing 8.4mg/g G-CSF showed a far 

slower release from which about 11% of the total entrapped G-CSF was released 

over 600hrs (Figure VI-13). This finding was in agreement with the work on the 

decapeptide cetrorelix that increasing the content of the peptide within VPGs could 

result in reduced release rate.  This behaviour may also be described as drug–drug 

and drug–lipid interactions, which in turn increase the overall stiffness of the 

VPGs[51] (as also indicated by the texture analysis of G-CSF VPGs in Figure VI-3a), 

thus slowing down the erosion of the lipid matrix and leading to a slower release of 

G-CSF.  

 
Figure VI-13. Cumulative release of G-CSF from VPGs based on various concentrations of G-CSF 

(Mean± standard deviation, n = 3 each). The lipid concentration in the formulations was 450mg/g.  

6.3. DAILY RELEASE AMOUNT  

The releases from various VPG-formulations were calculated and are summarized in 

Table VI-9. It was confirmed the VPG system showed no initial burst for the G-CSF 

release. From 450mg/g to 490 mg/g lipid the system was rather robust and the lipid 

concentration did not have much effect on the release kinetics. However, by 

increasing the lipid content from 400mg/g to 450mg/g the initial protein release and 

daily release amount were both reduced while increasing the content of G-CSF from 

4.0mg/g to 8.4mg/g also decreased the release rate. For the effect of the protein 

content on the release behavior, our hypothesis was made that G-CSF plays a role 

as glue in-between the liposome vesicles within the matrix and consequently 
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increasing the protein content results in delayed erosion due to the enhanced 

structure which was also indicated in the gel strength as shown in Figure VI-3a. In 

summary, it can be stated that desired release profiles of G-CSF loaded VPGs could 

be achieved by varying either the lipid content or the protein content within VPGs. 

Moreover, the obtained results have revealed the possibility for the development of 

formulations for sustained delivery of G-CSF through local application.  
 

Table VI-9. Daily release of G-CSF from 1g VPGs based on various compositions. 

Formulation G-CSF 
VPGs_1 

G-CSF 
VPGs_2 

G-CSF 
VPGs_3 

G-CSF 
VPGs_4 

Lipid content 400mg/g 450mg/g 490mg/g 450mg/g 

G-CSF content 4.0mg/g 4.0mg/g 4.0mg/g 8.4mg/g 
Initial release (Day 1) 64μg 32μg 43μg 49μg 
Daily release amount 56μg-388μg 32μg-204μg 32μg-150μg 25μg- 76μg 

Average release amount per 
day 149μg 88μg 89μg 43μg 

Daily release percentage of 
the incorporated protein/% 3.7% 2.2% 2.2% 0.5% 

 

6.4. INVESTIGATIONS ON THE IMCOMPLETE PROTEIN RELEASE 

For all the G-CSF loaded VPG-formulations investigated above, the protein release 

leveled off before reaching 100% of the incorporated amount.  

However, RP -HPLC did not indicate the existence of denatured protein materials in 

the release media (Figure VI-14). 

 
Figure VI-14. Chromatograms of GCSF. (1) G-CSF, DMF applied to dissolve lipids (2) G-CSF from 

release fractions, DMF applied to dissolve lipids. 
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Moreover, the stability of G-CSF (15µg/ml, in simulation to the concentration of G-

CSF in the release fractions) at 37°C within buffer solutions was also investigated. It 

was found that G-CSF has a massive loss (63%) after 8 days incubation under a 

condition of 20mM PBS buffer pH 7.4 while 90% of G-CSF has left in a PBS buffer 

pH of 3.5 (Figure VI-15). No peak for the oxidized products was observed by the RP-

HPLC. 

Accordingly, the G-CSF bulk solutions used for VPGs’ preparation were formulated 

with the low pH (3.5) and the presence of 5% sorbit. In the situation of in vitro release 

tests, PBS buffer pH 7.4 was used as acceptor medium. As G-CSF was theoretically 

entrapped within as well as in-between the lipid vesicles, it was easy to image that 

the part of G-CSF entrapped in-between the vesicles would be exposed to the 

massive volume of PBS release buffer pH 7.4 (which did not compromise the protein 

stability) along with the erosion process.  Thus concerning the stability issue of G-

CSF itself under the physical conditions, it was not surprising to find the incomplete 

release of G-CSF from the VPGs. 
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 Figure VI-15. G-CSF stability in various buffer conditions, at 37°C, 15µg/ml. 

Since the release tests were conducted with PBS buffer pH 7.4 at 37°C, it was not 

surprising to find incomplete release of the G-CSF from VPGs concerning the protein 

stability under the release conditions. 

As it can be also seen from Figure 16, the addition of 5% sorbitol or 1M sucrose 

appeared to improve the stability of G-CSF at pH 7.4. Based on these results and the 

previous report that the stability of G-CSF could be improved at pH 7.4 in presence of 
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sucrose [223], G-CSF VPGs were prepared by incorporating sucrose (the formulation 

is shown in Table VI-10) and the release tests were performed subsequently.   
 

Table VI-10. Addition of sucrose into the VPGs,  

 Lipid Content G-CSF Content 
(in the final formulations) Sucrose Content 

G-CSF VPGs_3 - 
G-CSF VPGs_5 

490mg/g Egg PC (Lipoid E80) 4.0mg/ml 
0.16g 

 

As it can be seen the VPGs containing sucrose delivered the incorporated G-CSF in 

a comparable manner to the VPGs without sucrose. Namely the addition of sucrose 

could not significantly improve the degree of G-CSF release from the systems 

(Figure VI-16).  It was assumed that the mass of sucrose entrapped within VPGs was 

insufficient to function considering the large volume of the release buffer in the entire 

release tests. 

 
Figure VI-16. Cumulative release of G-CSF from VPGs with and without sucrose (Mean ± standard 
deviation, n = 3 each). The lipid concentration in the formulations was 490mg/g, and the protein 
concentration was 4.0mg/g. 
 

7. IN VIVO EXPERIMENTS 

7.1. PROVIDING BACK GROUNDS 

Ruptures of the rotator cuff, in the supraspinatus muscles in particular, are among 

the most common degenerative injuries. They mainly occur in older age as 

degenerative diseases and are associated with pain and movement restrictions. 
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Untreated ruptures are deemed as a form of pre-arthrosis and therefore require an 

optimal treatment to prevent long-term damage to the shoulder osteoarthritis [227-

228].  

Growth factors represent one of the most important roles involved in tendon healing 

[229]. Chan [229-230] has demonstrated that the basic fibroblast growth factor (bFGF) 

is active in simulation of cellular proliferation and collagen III expression. G-CSF is 

shown to be capable in mobilizing cells [231-232]. In vivo use of the growth factors 

has shown some promise in recent years. Recent studies have suggested that by 

using two or more growth factors in combination may in fact promote mature vessel 

formation. [215-216]. However, a major challenge of the use of growth factors in vivo 

is the delivery of the therapeutic molecules to the target cells in a specific and 

sustained manner [210, 216, 233].  

To achieve continuous therapeutic effect, various carriers have been investigated for 

the delivery of growth factors. These include gelatine hydrogels [234], collagen [235], 

and chitosan-based fleeces [236]. Pieper [237] has reported the loading of bFGF to 

cross-linked collagenous matrices with covalently attached heparin sulfate for 

subcutaneous implantation. For this system in vitro release was reported over 30 

days. In vivo evaluation in rats has revealed an intense and prolonged tissue 

response and considerably promoted generation of new tissue. Application of the 

FGF entrapped chitosan hydrogel was found to significantly induce wound 

contraction and accelerate wound closure in mice [238]. No generally acknowledged 

dosing scheme has been established for the long-term application of the growth 

factors but the following data might be helpful for the estimation of therapeutical 

relevant doses: In the work of Pieper [237], loading 1260 μg/g matrix of bFGF 

resulted in an average release of 12ng/day during the in vitro release over 30 days. 

Ono [239] has reported that applying 1-10μg/day of bFGF both alone and in 

combination with collagen matrix was effective in wound contraction using a 

simulated in vivo delayed healing type model. Richa [240] has used 10 μg/kg/day of 

G-CSF for stem cell mobilization in humans. Single injections of 5μg/kg or 250 μg/kg 

of G-CSF were given to examine the pharmacological action of G-CSF in mice [241]. 

The biocompatibility and biodegradability of phospholipid based delivery systems 

have been widely demonstrated in previous works [242-246]. 
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In this context, VPGs were loaded with growth factors including G-CSF and bFGF. 

Their implantation possesses a new and promising approach for the improved 

healing of the tendon and the angiogenic stimulation.  Due to the specific 

characteristic of the VPG-system, a continuous release of the growth factors in situ 

with therapeutically relevant levels could be expected. 

7.2. EXPERIMENTAL SET-UP 

The in vivo evaluation of growth factor loaded VPGs will be performed using Sprague 

Dawley rats as the animal model (This work will be carried out by the Technical 

University Munich, Sport-orthopedics). In rats the structure of the shoulder girdle is 

similar to that of humans. Moreover, they have also proved as experimental animals 

in the study of the muscle-tendon pathology at the shoulder joint [247-248].  

The tendon is separated from the shoulder muscle of the rats (Figure 17a). Growth 

factors (G-CSF and/or bFGF) are then applied in a continuous manner. This can be 

achieved either by infusion of the protein solutions using the osmotic pumps (model 

2004, ALZET) or by the sustained release of proteins from VPGs which contain 

liposomal fractions. The therapeutic effect (e.g. histology) and pharmacokinetics of 

the protein will be evaluated.    
 

 

 

 

 

 

 

 (a)                                        (b)                                            (c) 
 

Figure VI-17. (a) Rupture of tendons in rats. (b) Cross section of osmotic pump, model 2004, ALZET. 

(c) Application of VPGs based on 450mg/g lipids and various concentrations of growth factors. 

The ALZET pumps (Figure 17b) operate because of an osmotic pressure difference 

between a compartment within the pump, called the salt sleeve, and the tissue 

environment in which the pump is implanted. These mini osmotic pumps can deliver 

a variety of solutions including protein solutions at zero-order rates for periods up to 4 

weeks [249]. The volume delivery rate of the pump was proved to be 0.28±0.01μl/hr 

by using methylene blue (at 590nm) for the pumps Model 2004 (lot.No.10172-07) 
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used in our study. Different dosing rates can be achieved by varying the 

concentration of agent in the solution or suspension used to fill the pump reservoir 

[249]. The filling volume was calculated from the net weight of the loading solutions, 

and in our case it was determined to be 251.8±6.0μl in average.  

In our work, the desired dose infused daily from the pumps was 5μg/day for G-CSF 

while for bFGF was 0.5μg/day to maintain the therapeutic effect. As shown in Table 

VI-11, G-CSF was diluted from the bulk materials with the acetate buffer pH 3.9. 

bFGF lyophilized powder was obtained from PROSPEC. It was reconstituted with 

PBS buffer and 0.1% BSA [250]. A combination of the two proteins was also 

preparation in acetate buffer. The protein solutions were filled into the pumps and 

delivered for the animal experiment. 

Table VI-11. Formulations of the growth factor solutions for the osmotic pumps.  

 G-CSF bFGF G-CSF und bFGF 

Concentration 834 µg/ml 83.4 µg/ml G-CSF (834µg/ml) and bFGF 
(83.4µg/ml) 

Dose pro 24h 5µg 0.5µg 5µg G-CSF and 0.5µg bFGF 

Formulation 
10 mM acetate buffer pH 3.9 
0.004% Tween 
5% sorbitol 

10 mM PBS pH 7.4 
0.1% BSA 

10 mM acetate buffer pH 3.9 
0.004% Tween 
5% sorbitol 

As described in the introduction section, VPGs can be easily prepared under sterile 

conditions. The lipid based system has good biocompatibility [242-246] and will 

dissolve after a defined period itself based on the observation of in-vitro release tests 

in our work. Furthermore, in vitro release tests have showed that VPGs loaded with 

G-CSF could deliver the protein with therapeutically relative dose over a defined 

period of up to 4 weeks.  

Table VI-12. Formulations of VPGs, loaded with various contents of growth factors 

Protein G-CSF 

Buffer in protein solutions 
10 mM acetate buffer pH 3.9 

0.004% Tween 
5% sorbitol 

Protein concentration per ml VPGs 200µg 2mg 
Lipid content per ml VPGs 450mg/g 

Expected release amount pro 24h 1µg 10µg 

Concerning the texture of the gels, VPGs based on 450mg/g lipids (egg PC, LIPOID 

E80) were chosen for the in vivo tests. The protein solutions (or buffer solutions) will 

be added to be sterile phospholipids in the sample containers (25ml, PP) under the 
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laminar flow. Aseptic production is achieved using the hermetically sealed sample 

vials. The prepared gels will be transferred into 1ml syringes (B.Braun Melsungen AG, 

Germany) under the aseptic conditions. 0.2ml of VPGs will be implanted to the 

rupture of the tendons in each of the rats (10 rats for each group). Placebo VPGs 

(based on 450mg/g lipids) will first be applied as control group and to evaluate the 

biocompatibility of the gels as well. The potentially therapeutically relevant 

formulations were planned as shown in Table VI-12. Various protein concentrations 

were entrapped within VPGs to achieve different doses. The serum samples will be 

taken from the rats after implantation of the gels at planned intervals, and the 

concentration of G-CSF will be quantified with the developed method of ELISA for the 

pharmacokinetics study. 

7.3. ELISA OF HUMAN G-CSF 

In order to investigate the pharmacokinetics of G-CSF from VPGs, the rat serum will 

be collected at predetermined intervals. An ELISA was developed as quantification 

method for G-CSF in serum.  

As a start point, the cross-reactivity of the ELISA assay was evaluated. To simulate 

the conditions from the animal tests, G-CSF was spiked with placebo rat serum. 

Three ELISA kits have been assessed. As for the RayBio Human G-CSF ELISA, the 

placebo serum samples got a high OD background (2.477±0.746) which indicated 

cross-reactivity with the assay, and no correlation could be established for the serum 

spiked samples.  

Another ELISA kit (Human G-CSF Instant ELISA, Bender) was also evaluated. The 

working procedure of the assay was simplified as the detection antibody and 

streptavidin-HRP (color reagent) beside the coating antibody were readily included in 

the assay plate so that the binding starts simply by adding the samples or destilled 

water. A correlation (R2=0.971) could be established for the protein stock solutions 

(Figure VI-18). However, the serum samples appeared to have strong cross-reactivity 

with the assay as the placebo serum alone got strong background signals. 
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Figure VI-18. Response curve of Human G-CSF stock solution, by Instant Human G-CSF ELISA 

(Bender) n=3. 

The Quantikine G-CSF Immunoassay (DCS50, R&D Systems) contains E. coli-

expressed recombinant human G-CSF and antibodies raised against the protein. It 

has demonstrated accurate quantification of the recombinant human G-CSF without 

measurable cross-reactivity with mouse serum[251].  

The optical density was determined at 490nm and subtracted from the readings at 

650nm for correction. It was recommended in the manual that the log transformation 

of the data could result in better linearity. Correlation was established for the G-CSF 

stock solutions with concentrations ranging from 78pg/ml to 1250pg/ml (Figure VI-19).  

 
Figure VI-19. Response curve of Human G-CSF stock solution, Quantikine Human G-CSF ELISA, n=3 

Importantly, placebo serum samples showed little background (Table VI-13). To 

evaluate the influence of the serum spiking, the G-CSF bulk was spiked with serum 

in two different levels resulting in the same protein concentration (625pg/ml). The 

result showed the recoveries of G-CSF from spiking were both around 78% (Table 

12), which could be acceptable for the study. Moreover, the spiking ratio has shown 

little influence on the result which is promising for the quantification of released G-
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CSF since the protein-serum ratio is uncertain in the serum samples from the animal 

experiments.  

Table VI-13.  ELISA of Human G-CSF spiked with serum samples: influence of the serum spiking.  

Sample Optical density Recovery/% 

Serum Blank 0.072±0.010 - 

G-CSF stock, 625pg/ml 1.232±0.136  
G-CSF spiked with serum in a ratio of 1:1, 
625pg/ml in the final solution 0.966±0.043 78.4% 

G-CSF spiked with serum in a ratio of 1:4, 
625pg/ml in the final solution 0.968±0.126 78.5% 

 

The calibration of G-CSF spiked with serum samples (in a ratio of 1:1) was 

established as shown in Figure VI-20. Good correlation was established for the 

response curve of the stock materials and the serum spiked samples. Thus based on 

the obtained results, this Quantikine Human G-CSF ELISA was found suitable for the 

quantification of G-CSF in the rat serum. However, currently no pharmacokinetics 

results were obtained because the animal studies have been postponed due to the 

fact that the authorization by the clinical committee has been delayed. 
 

 
Figure VI-20. Response curve of Human G-CSF spiked with rat serum in a ratio of 1:1, Quantikine 

Human G-CSF ELISA, n=3 

8. CONCLUSION 

In this chapter, VPGs are used for the delivery of growth factors. Various 

formulations of G-CSF VPGs were prepared and characterized by the texture 

analysis and rheological tests. Suitable gel strength and viscosity for the aim of easy 

application and sustained release could be achieved by adjusting the lipid content 

and the protein content within the matrices.  
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No detrimental effect of G-CSF was found of the preparation process in dual 

asymmetric centrifuge analyzed by SDS-PAGE. FTIR was not assessable for the 

analysis of G-CSF within VPGs.   

For the quantification of G-CSF from liposome containing samples, a reverse-phase 

HPLC method was developed. Several extraction methods were assessed according 

to the literatures and previous work. When chloroform was applied to the G-CSF in 

absence of any lipids, the protein was 100% recovered from the aqueous solution. 

However, it was found that the presence of lipids highly reduced the protein recovery 

from liposome containing samples when chloroform was applied for lipid extraction. 

Thus it was assumed that interaction existed between the lipids and the proteins.  

Accordingly, N,N-Dimethylformamid was used for the protein-lipid isolation. The lipids 

were precipated and G-CSF was recovered from the aqueous solution. The 

extraction method works under a buffer condition of pH 3.5 whereas there were 

oxidized products observed for G-CSF exposed to DMF at pH 7.4 which was 

associated with the fact that G-CSF has better stability in an acidic environment [225]. 

A correlation was established between the extracted protein and the standard. Thus, 

the method was applied as the standard for quantification of G-CSF in the release 

fractions. 

Generally, the in-vitro release studies demonstrated the potential of VPGs for 

sustained delivery of G-CSF. It was observed that G-CSF was released from all 

formulations in a linear manner following the zero-order kinetics. Increasing the lipid 

content from 400mg/g to 450mg/g resulted in slower release rate. However, the 

VPG-system appeared robust when the lipid content was changed from 450mg/g to 

490mg/g (For VPGs based on 400mg/g lipids and 4.0mg/g G-CSF 63% of the total 

entrapped protein was delivered over 408hrs whereas VPGs based on 450mg/g 

lipids delivered 43% and VPGs with 490mg/g lipids delivered 35% within the same 

period.). To investigate the influence of the loading amount of proteins, VPGs were 

also prepared with a higher protein concentration (8.4mg/g). As a result, higher 

protein loading resulted in a much slower release of 11% within the same period. 

Concerning the determined gel strength and rheology, the VPGs with loading of 

8.4mg/g G-CSF had a higher gel strength and viscosity (see Figure VI-3) compared 

with the VPGs containing 4.0mg/g G-CSF. It was assumed that the delayed release 
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of G-CSF was attributed to the enhanced gel properties due to the interaction 

between the drug and drug as well as the interaction between the drug and lipids.  

The incomplete protein release was attributed to the instability of G-CSF under the 

release conditions (PBS buffer pH 7.4, 37°C). More than 60% of G-CSF was lost 

after 8 days (216hrs) incubation at 37°C. Though the addition of sucrose or sorbitol 

was proved to improve the stability of G-CSF at pH 7.4, no obvious improvement in 

the protein recovery from the release of VPGs containing sucrose was observed. 

Comparing with the massive volume of the release buffer, the amount of sucrose 

within VPGs was too little to function. However, it was not possible to incorporate a 

large amount of sucrose into the matrices.  

Concerning the in vivo tests, the experiment was set up based on the fact that the 

lipid based VPG-system possesses excellent biocompatibility [50, 123] and the 

growth factors were shown healing effect of wounds in recent research [229].  In 

collaboration with Sport-orthopedics of Technical University Munich, the experiment 

was performed using rats as animal model. The basic fibroblast growth factor (bFGF), 

granulocyte colony-simulating factor (G-CSF), and a combination of both will be 

applied for the rupture of tendons. VPGs with the loading of these growth factors 

were expected to release the entrapped protein in a sustained manner after 

implantation based on the results of the in vitro release. On the other hand, osmotic 

pumps were used to offer a stable infusion of the protein solutions over a period of 28 

days for the matters of comparison. The healing effect (e.g. histology) and the 

pharmacokinetics of the protein released from VPGs will be evaluated. The 

Quantikine G-CSF Immunoassay was validated for the quantification of G-CSF in the 

serum samples. No cross-reactivity of the assay was observed with the rat serum. 

However, the experiment was still ongoing since the animal studies have been 

postponed due to the fact that the authorization by the clinical committee has been 

delayed. The related results would be included later in a publication.  
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CHAPTER VII: MAB LOADED VPGS  
Our data so-far indicated that the advantageous use of VPGs can be extended to 

protein drugs. In Chapter V and Chapter VI, cytokines which possess a molecular 

weight below 40kDa were used as model proteins. However, considering the growing 

value of the global therapeutic monoclonal antibody (MAB) market an increasing 

demand for improved delivery of these large multidomain proteins arose. With more 

than 400 ongoing studies targeting a broad range of diseases MAB therapeutics will 

surely dominate the new approvals of biotech drugs [252]. 

Nevertheless, only limited work has been conducted in the field of controlled and/or 

local release of MAB. Today most approved MAB therapeutics are formulated for 

intraveneous infusion (i.v.) or repeated subcutaneous injection (s.c.) requiring large 

quantities of drug for systemic distribution [253-254]. Due to the relatively high costs 

of both the drug itself and the way of administration antibody therapy is comparatively 

expensive. In contrast, the direct local controlled release of antibodies at the intended 

site of action (e.g. in knee joints, at a tumour site, at the eyes, and other topical 

application sites) would allow a spatial control over antibody distribution and thus 

lower dosing requirements. In addition, the typical benefits of controlled release 

formulations such as improved patient compliance reduced systemic exposure would 

be associated with this way of administration.  

As for proteins in general controlled delivery of antibodies requires sophisticated 

formulation strategies to meet the demands of instable and complex bio-

macromolecular drugs. So far only polymers were exploited as carriers for controlled 

release devices lacking either biodegradation, maintenance of antibody stability or 

sufficient release kinetics [2, 4, 254].  

Based on the investigations on VPGs for cytokine delivery these lipid-based 

formulations appear suitable to form a new delivery platform for monoclonal 

antibodies. Therefore, the main object of the study in this Chapter will be a careful 

evaluation of the benefits and boundaries of VPG-based controlled antibody delivery. 

To fulfil a broad range of needs for various indications an ideal delivery system 

should permit tailoring of antibody dose and release kinetics. Therefore, within the 

context of this study various formulation strategies will be investigated to modify the 

release kinetics.  
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1. PREPARATION OF MAB LOADED VPGS 

1.1. CONCENTRATING MAB BULK 

A high protein concentration was necessary for the preparation of MAB VPGs 

considering the therapeutically relevant doses. MAB stock solution (17mg/ml) was 

concentrated by ultrafiltration with Vivaspin tubes (100KDa, 20ml). The concentration 

of MAB was determined with UV photometry at 280nm using the extinction 

coefficiency (1.499ml/mgXcm). SE-HPLC was performed to check the stability of the 

protein after the concentrating process. As shown in Figure. VII-1, the MAB monomer 

was maintained the same before and after the up-concentrating, namely no 

detrimental effect was induced by the ultrafiltration process.  Besides, the percentage 

of protein dimer and fragments were slightly reduced in the concentrated protein 

samples (Table VII-1).   

Table VII-1. SE-HPLC results of MAB bulk and concentrated samples. mean±SD, n=3 

 Monomer% Dimer/% Fragments/% 
MAB Bulk 94.63±0.15%  4.4±0.09%  0.97±0.09% 
MAB concentrated 96.40±0.13%  2.75±0.05%  0.79±0.09% 
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Figure VII-1. SE-HPLC of MAB. (a) bulk solution, unconcentrated, 1.55mg/ml; (b) concentrated MAB 

solution,  0.67mg/ml (100 times diluted).  

1.2. FORMULATION OF MAB LOADED VPGS 

In general, the preparation of MAB VPGs followed the procedure described in the 

method section. MAB was formulated with 50 mM phosphate buffer pH 6.4, 

containing 150mM sodium chloride and 0.1% BSA. The phospholipid used here was 

egg phosphatidylcholine (E80, LIPOID). Homogenization of the mixture was 

performed by means of the dual asymmetric centrifugation in a cylindric container of 
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25 ml total volume. Multiple runs of 1.5-minutes were added up to a total mixing time 

of 45 mins at a process speed of 3500 rpm. The samples were cooled at 2-8°C at 

interrupts to control the system temperature.  

A number of different VPGs were produced in order to evaluate the influence of VPG 

composition on the release properties (Table VII-2).The content of phospholipid was 

varied between 350 and 450 mg/g. A variety of MAB concentrations was investigated 

ranging from 9.4 mg/g (in the final VPGs formulations) for basic research to 37.4 

mg/g for therapeutically relevant levels. 

Table VII-2. Formulation of MAB VPGs 

(a) Influence of the lipid concentration                          (b) Influence of the protein concentration 

Formulation MAB 
VPGs_1

MAB 
VPGs_2 

MAB 
VPGs_3

Lipid 
content 350mg/g 400mg/g 450mg/g

MAB 
content 9.4mg/g 

Formulation MAB 
VPGs_3

MAB 
VPGs_4 

MAB 
VPGs_5 

Lipid 
content 450mg/g 

MAB 
content 9.4mg/g 17.6mg/g 37.4mg/g 

2. TEXTURE ANALYSIS AND RHEOLOGY 

The texture analyser (TA.XT plus, Stable Micro Systems, UK) recorded the forces 

(Figure VII-2a) which occured when the probe (4mm in diameter) was pushed into 

the tested VPGs. The gel strength of VPGs was represented as the maximal force 

value according to the “Bloom test” method. The rheology behavior of MAB VPGs 

was studied by a rotational viscometer (Physica MCR 100, Anton Paar) at 25°C. The 

shear viscosity was provided versus shear rate ranging from 10-1 and 100-1 (Figure 

VII-2b).  

As shown in Figure VII-3a, the gel strength increased with the lipid content when the 

content of MAB was kept constant (9.4mg/g) within VPGs. The maximal force 

reached a value of 64.2g for VPGs containing 500mg/g lipids, whereas VPGs 

containing 350mg/g had a value of 8.1g. Figure VII-3b showed the gel strength of 

VPGs containing 17.6mg/g MAB (with a value of 40.3g) was a little higher than the 

VPGs containing 9.4mg/g MAB (with a value of 36.7g). However, it was surprisingly 

found that the gel strength value of VPGs containing 37.4mg/g MAB was much lower 

than the other two formulations. Our explanation was that the presence of very high 

content of proteins may reduce the gel strength whereas the gel strength increases 
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with the protein concentration in a low concentration range (less than 17.6mg/g in the 

case of MAB). 

 

up+down curve 

  (a)                                                                               (b)                                 
 

Figure VII-2. (a) Texture analysis of MAB loaded VPGs: recorded force trace when the probe (4mm in 
diameter) was pushed with a speed of 0.5mm/s into the tested VPGs. (VPGs containing 400mg/g 
lipids and 9.4mg/g MAB) (b) Rheological behaviour of VPGs. Gel strength (VPGs containing  450mg/g 
lipids and 37.4mg/g MAB). 

As shown in Figure VII-3a, the gel strength increased with the lipid content when the 

content of MAB was kept constant (9.4mg/g) within VPGs. The maximal force 

reached a value of 64.2g for VPGs containing 500mg/g lipids, whereas VPGs 

containing 350mg/g had a value of 8.1g. Figure VII-3b showed the gel strength of 

VPGs containing 17.6mg/g MAB (with a value of 40.3g) was a little higher than the 

VPGs containing 9.4mg/g MAB (with a value of 36.7g). However, it was surprisingly 

found that the gel strength value of VPGs containing 37.4mg/g MAB was much lower 

than the other two formulations. It was assumed that the gel strength and viscosity 

could reach a peak value at an optimized drug-lipid ratio due to the drug-drug and 

drug-lipid interaction. Non-linear trend could be expected for the influence of the 

protein content on the gel strength and viscosity. In a low protein concentration range, 

the gel strength increases with increasing the protein content within the matrices 

whereas the gels got less stiff at a much higher protein content.  

The viscosity of various VPG formulations was compared at the shear rate of 37.9s-1. 

When the lipid content was increased from 350mg/g to 500mg/g, the viscosity of the 

gels increased from 0.6Pa.s to 21.6Pa.s (Figure VII-4a). Increasing the content of 
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MAB resulted in decreased viscosity of VPGs (Figure VII-4b). However, the influence 

is not dramatic concerning the deviations.  

  
                                  (a)                                                                         (b)  

Figure VII-3. Gel strength (mean±SD, n=3) of mAb loaded VPGs. (a) Influence of the lipid content, 
VPGs were based on 9.4mg/g mAb IgG; (b) Influence of the protein content, VPGs were based on 
450mg/g lipids. 

As a conclusion, the gel strength and viscosity of VPGs both increased when the lipid 

content increased, whereas the gel strength and viscosity were of low values when 

there was a high content of MAB incorporated within VPGs.   

 

(a) (b)  

Figure VII-4. Viscosity of mAb VPGs (mean±SD, n=3). (a) influence of the lipid content, VPGs were 
based on 9.4mg/g mAb IgG; (b) Influence of the protein content, VPGs were based on 450mg/g lipids. 

3. EVALUATION OF MAB STABILITY BY SDS-PAGE 

SDS-PAGE was conducted to examine the stability of MAB entrapped into VPGs. 

Non-reducing SDS-PAGE analysis was performed with subsequent silver staining. 

0.05g freshly prepared VPGs (500mg/g lipids) were accurately weighed and 

redispersed in 4ml PBS buffer (40mM, pH 7.4). The concentration of the MAB in the 

VPG-redispersions was around 100µg/ml. In order to eliminate (or minimize) the 
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influence of lipids on the results of SDS-PAGE, various agents including chloroform, 

5% Triton X-100, and 5% SDS, have been tried out to dissolve the lipids and extract 

the antibody. 0.3ml/ml chloroform was added to dissolve the lipids. The MAB was 

recovered in the supernatant aqueous solution after centrifugation at 3000rpm for 

30mins. Chloroform was also added to MAB standard solutions to investigate the 

influence of the organic solvent itself on the protein integrity. On the other hand, 5% 

Triton or 5% SDS was added to the lipid containing solutions. The surfactant 

containing samples were incubated at 37°C for 30mins respectively before running of 

the SDS-PAGE. 

The results were shown in Figure VII-5. The MAB solutions with the addition of 

chloroform (lane 3/8) showed exactly the same bands as the standard solutions 

(100µg/ml, lane 2/7), which indicates that adding chloroform causes no instability of 

the antibody. When chloroform was used to extract the protein from VPGs, no 

difference was observed for the extracted MAB (lane 4/9) from the standard (lane 

2/7). Moreover, judged on the stained density the extraction recovery of MAB by 

adding chloroform was high. In the case of adding Triton to dissolve liposomes, band 

shrifts (lane 5/10) were observed which might be probably induced by interaction 

between the proteins and Triton. By adding SDS, we observed more pronounced 

aggregations and fragments (lane 6/11).  

                        
 

 

 

 

 

 

 
 

Figure VII-5. SDS-PAGE analysis of MAB integrity: 

 
 

 

 

 

Lane 1, molecular weight marker 
Lane 2/7, MAB standard 
Lane 3/8, MAB with adding chloroform 
Lane 4/9, MAB VPGs extracted by adding chloroform 
Lane 5/10, MAB VPGs extracted by adding 5% Triton X-100 
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Hence it can be stated that: (1) Adding chloroform for extraction causes no instability 

of the MAB; (2) Aggregate and fragment fractions beside the monomer can also be 

extracted by adding chloroform; (3)  The formulation process to entrap MAB into 

VPGs by dual asymmetric centrifugation has no influence on the protein stability. In 

summary, the SDS-PAGE results provide evidence that the formulation technology of 

VPGs is applicable for MABs, and adding chloroform is suitable to extract MAB for 

SDS-PAGE analysis. 

4. QUANTIFICATION METHOD FOR  MAB IN PRESENCE OF LIPIDS  

Quantification and extraction method were needed for MAB analysis from lipid 

containing samples. Since the released amount of VPGs at each time interval was 

unknown, the quantification method should feature a high robustness against 

variations of the lipids as well as against variations in the protein amount which make 

this method suitable for protein quantification during in-vitro release studies. CBQCA 

assay and micro BCA protein assay were tried out to quantify MAB instead of the 

HPLC method due to the detection limit and sensitivity of the SEC column.  

4.1. CBQCA ASSAY 

CBQCA Protein Quantitation Kit (Molecular Probe, Invitrogen) provides a rapid and 

highly sensitive method for the quantitation of proteins in solution. The kit utilizes the 

ATTO-TAG CBQCA reagent (3-(4-carboxybenzoyl) quinoline-2-carboxaldehyde) 

originally developed as a chromatographic derivatization reagent for amines. This 

reagent has also proven extremely useful for quantitating amines in solution, 

including the accessible amines in proteins. Importantly, it was reported by using this 

assay lipoproteins and other lipid associated proteins could be assayed without any 

manipulation to extract lipids [255].  

4.1.1. CALIBRATION  

A calibration curve for MAB without lipids was generated in the concentration range 

between 0.74 µg/ml and 44.40 µg/ml. BSA was assayed as reference. A series of 

lipid containing MAB samples were prepared with a lipid content of 5mg/ml. In order 

to minimize the influence of lipids in the samples on the protein analysis, 0.3 ml/ml 

chloroform was added to extract the lipids before the assay. Fluorescence 
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measurements were performed with 96-well (white) micro-plates (Nalge NUNC, 

Denmark) and FLUOstar Omega multifunctional micro-plate reader (BMG LABTECH, 

Germany). The excitation wavelength was set to 485nm, and the emission was 

measured at 580nm (The choice of excitation and emission wavelengths was limited 

by the device filters). 

For each calibration, PBS buffer (40mM) pH 7.4 was assayed as blank and used for 

background correcting. As shown in Figure VII-6: There was good calibration line 

established for BSA as the reference standard (R2 = 0.994). For MAB without lipids, 

similar response curve was obtained despite that the linearity was poor (R2 = 0.963) 

which was probably caused by operating errors (Large deviations might occur in 

handling with 5µl and 10µl sample volumes).  

 
Figure VII-6. Calibrations of the proteins by CBQCA Assay. BSA was used as the reference standard. 
Lipid free MAB and MAB extracted from lipids were assayed to develop the method. 

4.1.2. INFLUENCE OF THE LIPID CONTENT  

As described previously in the method development of EPO and G-CSF 

quantification, the influence of the lipid content on the assay was investigated since 

the released amount of VPGs at each time interval was unknown. Various amounts 

of lipids were dispersed into PBS buffer resulting in concentrations ranging from 

0.5mg/ml to 5.0mg/ml. The concentration of MAB was 7.4µg/ml in all the samples. 

The lipids were extracted by applying 0.3 ml/ml chloroform and the proteins were 

recovered from the aqueous supernatant.  
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Figure VII-7. Influence of lipid content on the protein recovery. The lipid concentration within the 
samples was varied between 0mg/ml and 5mg/ml. The protein concentration was determined by the 
CBQCA assay. The results were represented by the fluorescence density as shown for the left axis, 
n=9. The protein recovery was calculated as compared to the original protein concentration and shown 
for the right axis. 

Unfortunately, it was found that the lipid content had influence on the results of the 

assay (Figure VII-7). When the lipid content was more than 1.5mg/ml, the 

fluorescence density was much higher than expected. We have applied chloroform to 

remove a major part of the lipids. However, it was assumed there were a small part 

of lipids remained in the supernatant due to the interaction between the protein and 

lipids. The presence of lipids obviously disturbs the assay. However, this 

phenomenon was undesirable in our case since the lipid content was uncertain for 

the release samples and it might consequently led to bad repeatability in the MAB 

quantification from the release samples. Moreover, the CBQCA assay was hard to 

handle due to the small sample volumes (5µl-10µl) and the very toxic substances e.g. 

potassium cyanide used for reaction. Therefore, the CBQCA assay appeared not 

suitable for the need of quantification of MAB for the release tests.  

4.2. MICRO BCA ASSAY 

4.2.1. THE METHOD 

The principle of the micro BCA assay is that colored products are formed when the 

working reagent (Cu2+) is reduced by protein in an alkaline environment. This water 

soluble complex exhibits a strong absorbance at 562nm that is linear with increasing 

protein concentrations.  

The procedure for microplate mode follows the instructions provided by the 

manufacture of the test reagents. Briefly, the working reagent is added to sample 
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solutions in the microplates. The mixture is incubated at 37°C for 2hrs. The optical 

density is measured at 562nm after the mixture is cooled down to room temperature.   

Lipids are known to cause high background in the assay. Therefore, an extraction 

method is necessary to remove lipids and recover protein before the assay is applied. 

Some often used organic solvents and surfactants, including Triton, DMF, Tween 

have interference with the assay. Adding SDS can not efficiently eliminate the 

influence of the lipids [256-258]. Based on the experience from EPO extraction, 

chloroform has tried out as the start point.   

4.2.2. CALIBRATION OF THE STANDARD 

BSA was used as a standard reference to validate the assay. Calibration of MAB 

standard solutions was established with concentrations in the range from 0.5µg/ml to 

20µg/ml (Figure VII-8).  

 
Figure VII-8. Calibration of MAB standard solutions, BSA was used as reference, n=6. 

In general, the OD values of MAB were slightly higher than the reference BSA. Good 

linearity and repeatability were achieved for both proteins. Therefore this assay was 

applicable for quantification of MAB. Further investigations were carried out for in 

presence of lipids.   

4.2.3. EXTRACTION METHOD WITH CHLOROFORM 

4.2.3.1. CALIBRATION 
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A series of lipid containing samples was prepared with a constant lipid concentration 

of 1.5mg/ml and various MAB concentrations between 0 and 20µg/ml. 0.3 ml/ml 

chloroform was added to dissolve the lipids. The antibody was recovered in the upper 

aqueous solutions and quantified by the micro BCA assay. As shown in Figure VII-9, 

good linearity and acceptable repeatability were achieved for the extracted MAB. A 

good correlation was established for the lipid-free MAB and the extracted samples. 

The recovery of the extraction method by applying chloroform was calculated 72% by 

using the slopes of the two calibration curves. 

 
Figure VII-9. Calibration of extracted MAB samples, MAB standard solution was used as reference, 
linear fit, n=12.  

4.2.3.2. INFLUENCE OF LIPID CONTENT ON THE MAB RECOVERY 

The influence of the lipid content on the recovery of MAB was investigated by using 

the micro BCA assay in combination with the extraction method. Various amounts of 

lipids were dispersed into PBS buffer resulting in concentrations ranging from 

0.5mg/ml to 5.0mg/ml. The concentration of MAB was 5µg/ml in all the samples. As 

shown in Figure VII-10, the recovery of MAB was stable (91.7%~97.9%) when the 

lipid content was between 0 and 1.5mg/ml. However, the recovery was much higher 

(138.9%) than expected when the lipid content was increased further to 5.0mg/ml. It 

was consequently assumed that a part of lipids might remain in the aqueous solution 

and cause additional optical density when the amount was high enough. Hence, 

further investigation was carried out aimed to eliminate the influence by adding more 

chloroform (applying 1ml or 3ml chloroform per ml sample) to dissolve the lipids. 
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Figure VII-10. Influence of the lipid content on the MAB recovery, micro BCA assay, MAB 
concentration: 5µg/ml, 0.3ml/ml chloroform was added to dissolve the lipids.  
 

4.2.3.3. INFLUENCE OF CHLOROFORM  AMOUNT 

A series of MAB samples (MAB concentration: 5µg/ml) were prepared with lipid 

content varying from 0.5mg/ml to 5mg/ml. Various amounts of chloroform (0.3ml/ml, 

1ml/ml, and 3ml/ml) were applied to dissolve the lipids within the samples.  As shown 

in Figure VII-11, the amount of chloroform applied in the range between 0.3ml/ml and 

3ml/ml got marginal effect on the assay results. Namely, adding more chloroform was 

not efficient to dissolve the rest part of lipids in the aqueous solution. Therefore, it 

was a must to find another method to remove the lipids which caused the 

interference. A protein precipitation method by using sodium deoxycholate was tried 

out for the next step.     
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Figure VII-11. Influence of the chloroform content on the MAB recovery, micro BCA assay, MAB 
concentration: 5µg/ml.  

4.2.4. ADDING SODIUM DEOXYCHOLATE  

Sodium deoxycholate (DOC) is a kind of water soluble ionic detergent, commonly 

used for membrane protein and lipid isolation. In order to eliminate the influence of 

lipids, DOC was added before adding chloroform aimed to reduce the interaction 

between the protein and lipids. 0.01ml 1.5% sodium deoxycholate was added to 1ml 
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lipid containing MAB samples. After incubating at 37°C for 20mins, 1ml/ml chloroform 

was added to dissolve the lipids. The protein remained in the aqueous phase. 

Samples from the upper solution were assayed by the micro BCA assay. 

As a start point, the influence of adding DOC and chloroform on the protein recovery 

in absence of lipids was first evaluated. 79% of the MAB were recovered from lipid 

extraction at the low concentration of 2.5µg/ml whereas 95% were recovered at the 

high concentration of 20µg/ml. This phenomenon was similar to the situation of 

applying chloroform alone for EPO extraction.  

A series of samples were prepared with various lipid contents ranging from 0.5mg/ml 

to 5mg/ml. The MAB concentration was 5µg/ml in all the samples. DOC and 

chloroform were applied and the protein was recovered from the aqueous solution. 

The supernatant was assayed after centrifugation process.   

For the samples containing 0.5mg/ml lipids protein recovery was 115.7% whereas 

the protein recovery was around 100% for the samples containing 1.5mg/ml or 

5.0mg/ml lipids (Figure VII-12). However, compared with the other methods it could 

be stated the lipid content got less interference on the recovery of MAB extracted 

from lipids when DOC and chloroform were applied, which encouraged further 

investigations. 
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Figure VII-12. Influence of the lipid content on the protein recovery, DOC and chloroform were applied 
for extraction. n=12  

MAB solutions of known concentrations (2.5 – 20μg/mL) in presence of 5.0mg/ml 

lipids were used to generate the calibration curve (Figure VII-13). The AUCs of 

extracted MAB by adding DOC and chloroform were in comparison to the calibration 

curve in the absence of any lipids. Obviously, a good correlation was achieved 

between the detected AUCs of extracted and untreated MAB solutions. Based on 
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these data and an acceptable linearity the extraction by adding DOC and chloroform 

appeared suitable for MAB quantification for the in-vitro release studies.  

 
Figure VII-13. Calibration of MAB standard and extracted MAB from lipid containing samples, 
extraction was performed by adding DOC and chloroform, n=12. 

4.2.5. SUMMARY OF THE QUANTIFICATION METHOD 

The major criteria to develop the quantification method of the MAB for the in vitro 

release tests is the robustness against the variation of the lipid and protein content in 

the release fractions. For the CBQCA assay, the presence of lipids showed great 

interference on the fluorescence output. Different calibration curve of extracted MAB 

from lipid containing samples was observed from the lipid-free samples. Alternatively, 

a commonly used protein assay - micro BCA assay was used for the quantification of 

MAB. Calibration of the MAB standard was first established with good linearity and 

repeatability. Applying chloroform alone for MAB extraction could not eliminate the 

influence of the lipids when there was a large amount of lipids in the samples. It was 

assumed that there was interaction between the MAB and lipids. Therefore, DOC 

was used for the protein and lipid isolation before adding chloroform for extraction.  

As a result, the influence of the lipids was minimized. The calibration was established 

for the extracted MAB in simulation to the MAB standard samples in absence of lipids. 

In summary it could be stated that the micro BCA assay in combination with the 

developed extraction method using DOC and chloroform, suitable for the 

determination of MAB in the release fractions, was developed and validated for the 
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quantification of MAB in presence of liposomes taking the variation of lipid and 

protein amount into account. 

5. STABILITY STUDY OF MAB AT 37°C 

The influence of the manufacturing process on the integrity of MAB was studied by 

extracting the protein from VPGs and subsequent analysis by SDS-PAGE. As shown 

in Figure VII-5 similar bands were observed to the MAB standard. Encouraged by 

these results the question arose whether this excellent stability could also be 

maintained at elevated temperature during in-vitro release. To simulate the 

conditions during in-vitro release VPG formulations based on 450mg/g lipids and 

9.4mg/g MAB were incubated at 37°C in Eppendorf tubes. At predetermined points of 

time the samples were taken out and the protein was extracted by applying DOC and 

chloroform (as described above). For matters of comparison MAB solutions with a 

concentration of 9.4mg/g in PBS buffer (40mM) was incubated at 37°C.   

The recovery from the gel formulation was comparable with that observed with the 

liquid formulation (Figure VII-14). Both got little protein loss (less than 10%) after 14 

days incubation at 37°C.  
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Figure VII-14. Stability of MAB with a VPG formulation based on 450mg/g lipids and 9.4mg/g MAB 
compared to the protein stability in PBS buffer. Both the liquid and the gel formulation were incubated 
at 37°C (mean± standard deviation, n = 3 each).  
 

Beside the quantitative analysis of MAB during the incubation, SDS-PAGE was 

performed (as described previously see Chapter VII.3) to reveal the stability of the 

proteins at 37°C.  



Chapter VII: MAB loaded VPGs 122

 

 

  

 

 

 

 

 

 

 

 

 

 

 
    
 

 

 

 

 

 

 

 

 

 
 
 

 
 
Figure VII-15. SDS-PAGE analysis of MAB stability incubated at 37°C:  (a) solution of MAB in PBS 
buffer pH 7.4, 9.4mg/ml. (b) MAB VPGs based on 450mg/g lipids and 9.4mg/g. The protein was 
extracted by applying chloroform.  
 
For both the MAB solutions (Figure VII-15a) and the MAB extracted from VPGs 

(Figure VII-15b), the band pattern observed from the incubated samples was the 

same as for the protein bulk materials. Therefore it could be stated the solution of 

MAB (PBS buffer pH 7.4) had good stability at 37°C. Also a good stability of MAB 

incorporated within the VPGs was revealed: compared to the protein standard no 

pronounced aggregation or degradation products showed up during the whole 

incubation period at 37°C.  

   (a)                                                        

Lane 1, MAB solution after 14 days incubation 

Lane 2, MAB solution after 12 days incubation 

Lane 3, MAB solution after 10 days incubation  

Lane 4, MAB solution after 8 days incubation 

Lane 5, MAB solution after 6 days incubation  

Lane 6, MAB solution after 4 days incubation 

Lane 7, MAB solution after 2 days incubation 

Lane 8, MAB solution after 1 days incubation 

Lane 9, MAB standard solution 

Lane 10, molecular weight  maker 

 

     (b)                                                          

Lane 1, MAB VPGs after 14 days incubation 

Lane 2, MAB VPGs after 12 days incubation 

Lane 3, MAB VPGs after 10 days incubation  

Lane 4, MAB VPGs after 8 days incubation 

Lane 5, MAB VPGs after 6 days incubation  

Lane 6, MAB VPGs after 4 days incubation 

Lane 7, MAB VPGs after 2 days incubation 

Lane 8, MAB VPGs after 1 days incubation 

Lane 9, MAB standard solution 

Lane 10, molecular weight  maker 

 

(a) 

(b) 
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6. ADSORPTION OF MAB TO THE RELEASE SYSTEM 

It was observed for the EPO VPGs that protein release leveled off before reaching 

100% of the total protein incorporated. It was found that incomplete release of EPO 

from VPGs was mainly caused by unspecific adsorption onto the flow-through 

release system surfaces. Therefore, the adsorption of MAB to the release system 

was first evaluated before performing the in vitro release tests of MAB VPGs. The 

MAB solution (in PBS buffer pH 7.4) with a concentration of 10µg/ml was pumped 

through the release set with a flow rate of 1ml/hr over a time period of 11hrs. In 

contrast to the results of EPO, no adsorption of MAB was observed to the release 

system (Figure VII-16), which made it possible to expect 100% release of the total 

MAB incorporated into VPGs.   

 
Figure VII-16. Adsorption of MAB onto the in-vitro release system. The solution of MAB with a 
concentration of 10µg/ml was pumped through the release system with a flow rate of 1ml/hr. The 
system was incubated at 37°C. 

7. IN VITRO RELEASE BEHAVIOUR OF MAB (IGG) LOADED VPGS 

7.1. INFLUENCE OF THE LIPID CONTENT 

In vitro release tests of MAB VPGs were conducted at 37°C within flow through cells 

as described previously. PBS buffer (40mM) pH 7.4 was used as acceptor medium. 

The flow rate was set to 1ml/hr controlled by the syringe pump.  

VPGs were prepared with various lipid contents (Table VII-1a). The lipid content 

ranged from 350mg/g to 450mg/g. The MAB content within VPGs was 9.4mg/g in 

these formulations. In general, the influence of the lipid content on the release 

behavior was not pronounced (Figure VII-17). VPGs based on 350mg/g delivered 

89% of the total MAB loaded into VPGs over 600hrs (25 days), whereas VPGs 
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containing 400mg/g released 90% over 750hrs (over 31 days) and VPGs based on 

450mg/g lipids released 100% over 1000hrs (over 41 days). Moreover, the initial 

release rate of VPGs based on 350mg/g lipids was much higher (ca. 16%). A close to 

zero-order release kinetics was observed for VPGs based on 400mg/g and 450mg/g 

lipids.  

 
Figure VII-17. Cumulative release of MAB from VPGs based on various contents of lipids (Mean± 
standard deviation, n = 3 each). The protein concentration in all formulations was 9.4mg/g. 
 

7.2. INFLUENCE OF THE MAB CONTENT 

In order to investigate the influence of the MAB content in VPGs on the release 

profiles, VPGs were prepared with various MAB content ranging from 9.4mg/g to 

37.4mg/g (Table VII-1b), while the lipid content was 450mg/g in all the formulations. 

For the three formulations, total release of entrapped MAB from VPGs was achieved 

over 1000hrs (over 41 days, Figure VII-18). In general, the MAB content within VPGs 

showed little influence on the release behavior. However, it was interestingly 

observed that there was a fast release phase for the VPGs based on 37.4mg/g MAB 

in the time period between 700hrs and 900hrs, which was probably caused by the 

accelerated erosion due to the lack of stiffness in the later phase of the release.   
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Figure VII-18. Cumulative release MAB from VPGs based on various contents of MAB (Mean± 
standard deviation, n = 3 each). The lipid concentration in all formulations was 450mg/g. 
 

7.3. QUANTIFICATION OF PHOSPHATIDYLCHOLINE CONTENT  

The LabAssay Phospholipid (Wako, Neuss, Germany) was used to quantify the 

phospholipid content in the release fractions based on the method described 

previously. The assay was performed by measuring the absorption at 600 nm. In 

Figure VII-19 it was shown that the release of lipids from various VPG formulations. 

Faster lipid erosion was observed for the VPGs based on 350mg/g lipids. Besides, 

the other formulations showed similar erosion profiles. Comparing the release 

profiles of MAB from VPGs (Figure VII-17 and Figure VII-18), it was found that the 

lipid erosion was in parallel with the protein release (Figure VII-20 showed the VPGs 

containing 37.4mg/g MAB and 450mg/g lipids for example). It could consequently be 

stated that erosion is the dominant mechanism controlling the release of MAB from 

VPGs, which is in agreement with former observations in the EPO release. 
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Figure VII-19a. Cumulative release amount of phospholipid from VPGs based on various lipid contents. 

(Mean± standard deviation, n = 3 each).  
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Figure VII-19b. Cumulative release amount of phospholipid from VPGs based on various MAB 

contents. (Mean± standard deviation, n = 3 each).  
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Figure VII-20. Daily releasae percentage of MAB and lipid from VPGs based on 450mg/g lipids and 

37.4mg/g MAB. (Mean± standard deviation, n = 3 each).  
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7.4. SDS-PAGE OF THE RELEASED PROTEINS FROM VPGS 

The quality of released MAB from VPGs (Taking VPGs based on 450mg/g lipids and 

37.4mg/g EPO for example; only limited samples can be analyzed due to the low 

protein concentration in the release fractions.) was examined with SDS-PAGE. The 

proteins were extracted by adding DOC and chloroform subsequently (as described 

above) from release fractions. Non-reducing SDS-APGE were performed with silver 

staining. 50µl of extracted protein solutions were diluted into 100µl with Tris-buffer pH 

6.8 containing 2 % SDS. Electrophoresis was performed in a 7% Tris-acetate/SDS 

running buffer (Invitrogen). 

MAB recovered from release fractions of VPGs showed fraction bands similar to the 

MAB standard (Figure VII-21) despite that some fragment species in the standard 

were not detectable in the release samples (Some fragmentation fractions might be 

removed in the concentrating process). However, the release procedure of VPGs did 

not feature the creation of further aggregation or fragmentation species.  

                                   
 

 

 

 

                       Lane 1/2, MAB release after 216hr 

Lane 3/4, MAB release after 264hr 

Lane 5/6, MAB release after 192hr 

Lane 7, MAB standard solution 

Lane 8, molecular weight marker 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure VII-21. MAB stability from release samples of VPGs based on 450mg/g lipids and 37.4mg/g 
MAB. SDS-PAGE with silver staining.  

8. SUMMARY AND DISCUSSION 

In Chapter V and Chapter VI, EPO and G-CSF have been loaded into VPGs 

respectively. In vitro release tests showed the potential of VPGs for sustained 

delivery of these cytokines. Based on the previous work, the suitability of VPGs as 

the delivery system for the monoclonal antibody was evaluated. Various MAB VPG 

formulations were development which allowed an almost complete and sustained 

release of the entrapped antibody. 
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Initially, VPGs were prepared with various lipid and MAB contents. The obtained 

formulations were characterized by texture analyzer and rheometer. Increasing the 

lipid content could increase both of the gel strength and viscosity whereas 

incorporating more protein resulted in slightly decreased gel viscosity.  

Again, the influence of the formulation process on the stability of the entrapped 

proteins was evaluated. Taken the experiences from previous work, chloroform and 

several surfactants were tried out for MAB extraction. The extracted MAB by applying 

chloroform showed the same bands with the standard samples. It was consequently 

concluded that MAB maintained stable within VPGs after formulation process in DAC, 

which fulfilled the prerequisite for a successful sustained release system.  

For quantification of MAB in the release fractions from VPGs, CBQCA and micro 

BCA assay were tried out. However, the release samples could not be directly 

assayed since the lipids thereof got strong interference on the assay output. 

Moreover, the screening of extraction agents was limited for the both assays since 

some mostly used surfactants or organic (e.g. Triton X-100) were not compatible. 

Thus chloroform appeared the first choice for the MAB extraction in this case. 

Despite that the CBQCA assay was reported to work well in presence of lipids [255], 

it was found the results of the assay were influenced by the lipid content in the 

samples even though a major part of the lipids had been removed by applying 

chloroform. Besides, poor linearity and repeatability were observed for the CBQCA 

assay. As for the micro BCA assay, the protein recovery was also affected by the 

lipid content at a high concentration if adding chloroform alone for extraction. 

However, it was also found adding more chloroform could not efficiently change the 

extraction efficiency. Finally the extraction method was improved by using a 

surfactant – sodium deoxycholate before chloroform was added. The effect of the 

DOC (sodium deoxycholate) was assumed to reduce the interaction between the 

MAB and the lipids, and thus more lipids could be extracted to the organic phase by 

adding chloroform subsequently. The quantification method was established for the 

extracted MAB from lipid containing samples. A good correlation was generated for 

the results of the lipid containing and lipid-free samples. Based on the developed 

method, it was possible to quantify the MAB from VPGs or from VPGs’ release 

fractions.   
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Protein denaturation and/or aggregation were found occurring within the release 

period or during storage for PLGA based protein depot systems, which consequently 

correlated with the incomplete protein release [55, 208]. Thus, the stability of MAB 

within VPGs was examined after incubation at 37°C to simulate the conditions during 

the in vitro release tests. As a result, the stability of MAB from VPGs was comparable 

to the MAB solutions, for both of which little protein was lost after 14 days incubation 

at 37°C. SDS-PAGE also confirmed that MAB maintained the stability both in 

solutions and in VPGs. It could be stated that the encapsulation of MAB within the 

lipid matrix did not feature the creation of protein instabilities under the conditions 

during in vitro release tests.  

However, protein loss can also be induced by adsorption on exposed surfaces as 

amphiphilic molecule proteins tend to adsorb on interfaces. In the case of MAB, it 

was found that there was no protein lost after pumping the MAB solutions through the 

release set over a time period of 11hrs. Thus the unspecific adsorption of MAB could 

be excluded. Based on the promising results of the adsorption and stability study, it 

was expected 100% protein recovery could be achieved from the in vitro release 

tests.  

Then the in vitro release tests of various MAB VPG formulations were carried out. In 

general, the lipid content as well as the protein content incorporated into VPGs had 

no dramatic influence on the release profiles. All the formulations showed sustained 

release of MAB from VPGs over at least 600hrs: VPGs based on 350mg/g delivered 

89% of the total MAB within VPGs over 600hrs, whereas the other VPGs containing 

400mg/g or 450mg/g lipids released 90% over 750hrs. A close to zero-order release 

kinetics was observed for all the formulations. Linear fit was made for the release 

curves. Judged on the slope, it was found increasing either the lipid content or the 

MAB content could slight decrease the release rate. Moreover, it was shown that the 

initial release and daily release amount of MAB from VPGs could be modified by 

varying the compositions of the VPGs. In addition, SDS-PAGE analysis revealed that 

the stability was maintained of MAB released from VPGs. Therefore it can be stated 

that the VPG formulations feature the flexibility for therapeutically applications 

besides the fulfilled protein stability issues. 
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In addition, the release of lipids was found in line with MAB release. Thus erosion 

was proved to be the dominant mechanism controlling the MAB release from the lipid 

matrix which was in agreement with the results of EPO VPGs. 

In a summary, it can be concluded that the VPGs possess a great potential as an 

alternative approach to formulate depot delivery systems for MAB. The protein 

instability problems which always hampered the development of the other sustained 

release systems were solved by using VPGs. The MAB maintained the stability 

during system preparation, as well as within the release period. Moreover, the 

release profiles can be easily modified to achieve desired kinetics. 
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CHAPTER VIII: FINAL SUMMARY 
Within the scope of the present thesis, it was aimed to evaluate the potential of 

vesicular phospholipid gels as local depot system for protein delivery. Focus was 

also necessarily put on the development of suitable quantification methods for 

various proteins in presence of lipids to meet the requirement of the in vitro release 

tests.  

In Chapter I, the protein release systems are introduced in general. Background of 

the application of pharmaceutical proteins is first presented. Controlled release 

systems for protein delivery are reviewed into aspects of the polymeric systems and 

the lipid based systems.  The success and major limit of the polymer based PLGA 

and hydrogel systems are stated.  On the other hand, the increasing interest is 

revealed in the development of protein release devices based on lipidic materials. 

The principles of the lipid based systems and several promising features are 

presented. A close overview is focused on the novel lipid based systems: lipid 

implants, multivesicular liposomes, and vesicular phospholipid gels. The 

manufacturing technique and the related application are illustrated in details. 

The objectives of the thesis are summarized in Chapter II. Chapter III lists the 

materials and methods that are employed in the present work, where three different 

protein drugs are used: erythropoietin (EPO), granulocyte colony stimulating factor 

(G-CSF), and monoclonal antibody immunoglobulin G (MAB IgG) 

In Chapter IV, grounds are provided using FITC-Dextran as a macromolecular model 

for protein delivery from vesicular phospholipid gels. The high pressure 

homogenization and dual asymmetric centrifugation (DAC) technique were utilized 

for the production of VPGs. DAC appeared a suitable device for the lab-scale 

preparation of VPGs. The release system was set up with flow through cells for the in 

vitro release tests as described by Tardi[11]. Sustained release of FITC-Dextran from 

various VPG formulations was observed from ca. 50hrs up to more than 288hrs with 

zero-order kinetics. Incorporating higher amounts of lipids resulted in more delayed 

drug release. Importantly, the suitability of VPGs for the delivery of macromolecular 

compounds was demonstrated in this Chapter.  
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In the following chapters, three protein models (EPO (Chapter V), G-CSF (Chapter 

VI), and MAB (Chapter VII)) were loaded into the VPG matrices using the DAC 

method. The preparation protocol established by Massing [147] was optimized by 

including cooling steps in-between the multiple DAC runs to control the system 

temperature. Under microscopic observation, densely packed vesicle structures were 

observed for the prepared VPGs. Texture analysis and rheological test were 

performed to determine the gel characters, including the gel strength and viscosity, 

which might potentially influence the release behaviour of the system. It was found 

that the gel strength and viscosity increased with increasing the lipid content within 

the VPGs. The gel strength and viscosity were also influenced by varying the loading 

amount of proteins and changing the lipid compositions within the matrices. Moreover, 

the buffer ingredients contributed to the various values of the gel strength and 

viscosity of the VPGs containing the same content of lipids but various kinds of 

proteins. 

SDS-PAGE was performed to examine the influence of the formulation process by 

using DAC on the stability of various proteins. The presence of the matrix material-

lipids has shown influence on the protein bands of the electrophoresis results. Thus 

various extraction protocols for each protein were assessed aimed to eliminate the 

influence of the lipids. A case-by-case study was necessarily performed to exclude 

the influence of the addition of the extraction agents due to the different characters of 

various proteins. In general, EPO, G-CSF, and MAB all maintained the integrity 

within the matrices after the loading process.  

In vitro release tests of VPGs loaded with various proteins were performed using the 

established in vitro release system.  To determine the concentration of the released 

protein from VPGs, a quantification method for each protein was needed in presence 

of unknown contents of lipids.  For EPO (Chapter V), the addition of chloroform to 

dissolve the lipids was applied to the release fractions prior to the RP-HPLC 

quantification of EPO. The quantification in combination with the extraction protocol 

showed robustness against the variation of the protein concentration as well as the 

variation of the lipid content and lipid composition within the release samples. 

Sustained release of EPO was observed from various VPG-formulations over a time 

period of 280hours to over 400hrs. A close to zero-order kinetic was found without 

initial burst. Increasing the lipid content from 300mg/g to 550mg/g resulted in delayed 
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release of EPO from VPGs whereas the lipid content had little effect on the release 

profiles in the range from 400mg/g to 500mg/g. Furthermore, the lipid charge also 

had strong influence on the release behavior. Incorporating 20% of positively 

charged lipids (DOTAP) into VPGs resulted in a strongly accelerated release rate 

while adding 10% of negatively charged lipids (DPPA) delivered the incorporated 

protein in a comparable manner to the uncharged formulation. The lipid content 

released from VPGs was determined to study the matrix erosion which was found to 

be the dominant mechanism in controlling the EPO release from the matrices. The in 

vitro released EPO was analyzed with SDS-PAGE and was found to be unchanged 

as compared to standard materials. The release fractions were shown containing free 

EPO and EPO liposomes (in the range up to 300nm).  

For the quantification of G-CSF (Chapter VI), a RP-HPLC method was developed 

where N,N-Dimethylformamid was used to precipitate the lipids in the release 

samples. The extraction method worked under the conditions of low pH value (pH 3.5) 

which favoured the stability of G-CSF.  The in vitro release tests have demonstrated 

the potential of VPGs for sustained delivery of growth factors. A sustained release of 

G-CSF from various VPG-formulations was observed following zero-order kinetic too. 

Increasing the lipid content within the matrices resulted in slower release rate. About 

63% of the total entrapped G-CSF was delivered from the VPGs containing 400mg/g 

lipids and 4.0mg/g G-CSF over 408hrs (17 days) whereas VPGs containing 450mg/g 

lipids delivered 43% and VPGs containing 490mg/g lipids delivered 35% within the 

same period. Moreover, VPGs containing a higher content of G-CSF (8.4mg/g) 

revealed a slower release of 11% within 408hrs (17 days). However, the in vitro 

release conditions (pH 7.4, at 37°C) did not favor the stability of G-CSF, which 

contributed to the incomplete release of G-CSF from VPGs. To reveal the suitability 

of VPGs for the local application, G-CSF loaded VPGs will now be implanted to the 

rupture of tendons in vivo. The experiment will be performed using rats as animal 

model. The healing effect (e.g. histology) and the pharmacokinetics of the G-CSF 

VPGs will be evaluated. ELISA (Quantikine G-CSF Immunoassay) was developed for 

the quantification of G-CSF in the serum samples. However, the in vivo studies can 

not be included into this thesis since the authorization by the clinical committee had 

been delayed.  
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The study on the EPO VPGs and G-CSF VPGs has shown the potential of the 

system for the delivery of cytokines. In order to investigate the feasibility of the VPGs, 

the monoclonal antibody (MAB) loaded VPGs were developed and evaluated in the 

Chapter VII. A micro BCA assay was used for the determination of MAB content in 

the VPGs’ release fractions. Sodium deoxycholate was added to eliminate the 

influence of lipids within the samples prior to the assay.  The release profiles of MAB 

from VPGs were little influenced by the lipid and protein content within the 

formulations. Sustained release of MAB was observed over 1000hrs (42days) 

following zero-order kinetics. Again, it was shown that erosion was the dominating 

mechanism controlling the protein release from VPGs. In addition, the protein 

integrity was maintained in the release fractions analyzed by SDS-PAGE.  

In summary, the development of VPGs can be considered as the most promising 

strategy for sustained local protein delivery. Accordingly, major achievements were 

reached in the context: First, the manufacture process was shown to be suitable for 

the production of VPGs with loading of proteins. Second, the suitability of the lipid 

based VPG system was revealed in vitro for the sustained delivery of various kinds of 

proteins. A long term release (over a couple of weeks) was observed following the 

zero-order kinetics. As conclusion, the knowledge obtained so far should enable to 

transfer the developed system to a variety of other pharmaceutical proteins. 
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