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1. Overview 

Since the groundbreaking synthesis of urea by Friedrich Wöhler and the development of the 

elementary analysis by Justus von Liebig in the 19th century, organic chemistry underwent 

fundamental progress. Some milestones that should be mentioned are the development of nuclear 

magnetic resonance spectroscopy which became a very powerful analytical method for organic 

chemists helping to determinate organic structures and to understand the way how organic 

reactions proceed.1 During the last years, large progress was achieved in the field of asymmetric 

synthesis2 as well as in organometallic chemistry3 for which several Nobel prizes have been 

awarded. Since there is an intensive need of new agrochemicals and materials as well as novel 

pharmaceuticals for mankind due to the permanent changes in environment and healthcare a 

consistent development of new synthetic methods is needed which fulfill requirements for fast 

adoption into the chemical community. For example, new reagents should have some desirable 

properties like an excellent selectivity and reactivity combined with low costs, environmental-

friendliness and a high functional group tolerance. Furthermore, the transformation of organic 

molecules should occur in an atom-economic fashion.4  Organometallic chemistry has the 

potential to fulfill these requirements. For the last decades, a large range of metals were applied 

in synthetic organic chemistry to solve ongoing problems.3 The reactivity of organometallics 

strongly depends on the character of the metal-carbon bond providing many possibilities for 

tuning the wanted organometallic reagents.5  For instance, organolithium compounds show 

excellent reactivity towards numerous electrophiles.6 However, a low selectivity is observed due 

to the ionic character of the lithium carbon bond. On the other hand, organoboron reagents are 

well established organometallics due to their air- and moisture stability which is a result of the 

almost covalent carbon-boron bond.7 These compounds show a high functional group tolerance. 

However, for the transformation with different electrophiles the lack of the reactivity of 

organoboron compounds must be overcome by transmetalations with appropriate catalysts and 

often the formation of boronates as well as harsh reaction conditions are required. Moreover, the 

                                                 
1 P. J. Hore, Nuclear Magnetic Resonance, Oxford University Press: Oxford, 1995. 
2 (a) R. Noyori, Angew. Chem. Int. Ed. 2002, 41, 2008; (b) S. Kobayashi, M. Sugiura, Adv. Synth. Catal. 2006, 348, 
1496. 
3 (a) Handbook of Functionalized Organometallics; P. Knochel, Ed., Wiley-VCH: Weinheim, 2005; (b) Metal-
Catalyzed Cross-Coupling Reactions, 2nd ed., A. de Meijere, F. Diederich, Wiley-VCH: Weinheim, 2004. 
4 B. M. Trost, Science 1991, 254, 1471. 
5 A. Boudier, L. O. Bromm, M. Lotz, P. Knochel, Angew. Chem. Int. Ed. 2000, 39, 4414. 
6 G. Wu, M. Huang, Chem. Rev. 2006, 106, 2596. 
7 N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457. 
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toxicological properties of these organometallics are not absolutely user-friendly. Another class 

of stable organometallics having an exceptional functional group tolerance are organoindium 

reagents. The research field of these organometallics is permanently growing, but major 

drawbacks for industrial applications are the methods of preparation, in which expensive indium 

metal or salts are used.8  

 

2. Preparation of Functionalized Organozinc Reagents 

2.1. Introduction  

Organozinc reagents are known for more than 150 years. The first preparation of diethylzinc was 

reported by Frankland who synthesized it in summer 1848 by the reaction of finely granulated 

zinc and ethyl iodide.9 Below 150 °C, no reaction occurred but at around 200 °C the ethyl iodide-

zinc reaction proceeded with ‘tolerable rapidity’. A colourless mobile liquid together with white 

crystals were obtained. Over the years, the potential of these organozinc reagents for synthetic 

applications has found only few interest due to the meanwhile established organomagnesium 

reagents by Grignard10 and moreover due to the accessibility of organolithium reagents. These 

organometallics show a significant higher reactivity towards various electrophiles and therefore, 

organozincs were only used for Reformatsky- (zinc enolates)11 and Simmons-Smith reactions 

(cyclopropanations)12 due to the easier handling of the involved organometallic reagents. On the 

other hand, organolithium and –magnesium reagents show a significantly lower functional group 

tolerance than organozinc reagents and this fact was long ignored by the synthetic community. 

The moderate reaction of organometallic zinc compound is due to the more covalent character of 

the carbon-zinc bond in comparison with the related lithium and magnesium organometallics. 5, 13 

This strong metal-carbon bond can be seen as a great advantage because functionalized 

organozincs are stable at temperatures where a decomposition of the corresponding 

organolithium and -magnesium reagents normally occurs.14 However, as a result of the high 

energy of the empty d-orbital at the zinc center no participation of organozinc reagents in 

                                                 
8 (a) Y.-H. Chen, P. Knochel, Angew. Chem. Int. Ed. 2008, 47, 7648; (b) Y.-H. Chen, M. Sun, P. Knochel, Angew. 
Chem. Int. Ed. 2009, 48, 2236; (c) S. Araki, T. Hirashita, Comprehensive Organometallic Chemistry III, Vol. 9, P. 
Knochel, Ed., Pergamon Press: Oxford, 2007; (d) J. Auge, N. Lubin-Germain, J. Uziel, Synthesis 2007, 1739. 
9 E. Frankland, Liebigs Ann. Chem. 1848, 71, 171 and 213; D. Seyferth, Organometallics 2001, 20, 2940. 
10 V. Grignard, Compt. Rend. Acad. Sci. Paris 1900, 130, 1322. 
11 (a) A. Fürstner, Angew. Chem. Int. Ed. 1993, 32, 164; (b) S. Reformatsky, Chem. Ber. 1887, 20, 1210. 
12 H. E. Simmons, T. L. Cairns, A. Vladiuchick, C. M. Hoiness, Org. React. 1972, 20, 1. 
13 I. Antes, G. Frenking, Organometallics 1995, 14, 4263. 
14 Handbook of Grignard Reagents, G. S. Silverman, P. E. Rakita, Eds., Marcel Dekker: New York, 1996. 
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common organic reactions is observed. A milestone in this field was the discovery of a range of 

possible transmetalation reactions of organozinc compounds with various transition-metal salts.15 

Due to the empty, energetically low p-orbitals at the zinc center, an interaction with the d-orbitals 

of the transition metal occurs resulting in the formation of a highly reactive intermediate (Scheme 

1).16  

 

 

Scheme 1: Transmetalation reaction of organozinc reagents with various transition metal salts. 
 

In other words, organozinc reagents which show an exceptional functional group tolerance react 

with almost all kinds of electrophiles in the presence of the appropriate catalyst. Since these 

discoveries, an absolute breakthrough has occurred in the field of organozinc chemistry. 17 

Organozinc reagents can be divided into three major classes, namely organozinc halides (RZnX), 

diorganozincs (R1ZnR2) and zincates (R1R2R3ZnM; M often Li or MgX). Furthermore, the more 

ionic character the carbon-zinc bond is (more negative charge is located at the carbon attached to 

the zinc ion), the more reactive are the corresponding zinc reagents, as illustrated in Scheme 2. 

 

 

Scheme 2: Reactivity series of organozinc reagents. 
  

                                                 
15 (a) E. Negishi, Acc. Chem. Res. 1982, 15, 571; (b) P. Knochel, M. C. P. Yeh, S. C. Berk, J. Talbert, J. Org. Chem. 
1988, 53, 2390. 
16 (a) P. Knochel, R. D. Singer, Chem. Rev. 1993, 93, 2117; (b) P. Knochel, M. J. Rozema, C. E. Tucker, C. 
Retherford, M. Furlong, S. AchyuthaRao, Pure Appl. Chem. 1992, 64, 361. 
17 (a) P. Knochel, N. Millot, A. L. Rodriguez, C. E. Tucker, Org. React. 2001, 58, 417; (b) P. Knochel, H. Leuser, L.-
Z. Gong, S. Perrone, F. F. Kneisel, Handbook of Functionalized Organometallics; P. Knochel, Ed., Wiley-VCH: 
Weinheim, 2005; (c) P. Knochel, J. J. Almena Perea, P. Jones, Tetrahedron 1998, 54, 8275; (d) Organozinc 
Reagents, P. Knochel, P. Jones, Eds., Oxford University Press: New York, 1999; (e) P. Knochel, F. Langer, M. 
Rottländer, T. Stüdemann, Chem. Ber. 1997, 130, 387; (f) P. Knochel, S. Vettel, C. Eisenberg, Appl. Organomet. 
Chem. 1995, 9, 175. 
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2.2. Direct zinc insertion into organic halides using zinc metal 

The most general preparation method for functionalized organozinc halides (1) is the direct 

insertion of zinc metal into organic halides in THF. Using this method, almost any functional 

group is tolerated (Scheme 3). Only a few groups such as an azide or a nitro function which can 

accept an electron from the zinc surface hamper the preparation of the related organozinc 

compounds. Furthermore, to achieve good insertion results, the activation of the zinc metal is 

essential due to the oxide layer covering the zinc surface. Typically, 1,2-dibromoethane (5 mol%, 

reflux, 1 min) followed by TMSCl (1 mol%, reflux, 1 min) were used to activate the zinc metal 

for the insertion.18  

 

FG R X
Zn dust, THF

conditions
FG R ZnX

FG = CO2R, CN, halide, enoate, NH2, RNH, (TMS)2N, RCONH,
(RCO)2N, (RO3)Si, (RO)2PO, RS, RSO, RSO2, PhCOS

R = aryl, alkyl, allyl, benzyl

X = I, Br, Cl

O

O

ZnI

O
N

NN

N

ZnI

O

OAcOAc

AcO

ZnI

O

1: > 85%

N
H

ZnI

1a: 87%
(30 °C, 4 h, ref. 15b)

1b: 80%
(25 °C, 3 h, ref. 19a)

1c: > 98%
(25 °C, 1 h, ref . 19b)

1d: 90%
(25 °C, 2 h, ref. 19c)  

Scheme 3: Preparation of functionalized organozinc reagents by the direct insertion of zinc metal 
into the corresponding iodides. 

 

A broad range of polyfunctional organozincs are easily accessible by the method described 

above.19 The insertion of zinc dust into a sp2-carbon-iodide bond is generally problematic and 

therefore higher reaction temperatures or polar cosolvents are necessary.20 Alternatively, the 

reduction of zinc chloride by lithium naphthalenide in THF provides highly reactive zinc metal 

                                                 
18 (a) M. Gaudemar, Bull. Soc. Chim. Fr. 1962, 5, 974; (b) E. Erdik, Tetrahedron 1987, 43, 2203. 
19 (a) T. M. Stevenson, B. Prasad, J. Citineni, P. Knochel, Tetrahedron Lett. 1996, 37, 8375; (b) P. Knochel, C. 
Janakiram, Tetrahedron 1993, 49, 29; (c) H. P. Knoess, M. T. Furlong, M. J. Rozema, P. Knochel, J. Org. Chem. 
1991, 56, 5974. 
20 T. N. Majid, P. Knochel, Tetrahedron Lett. 1990, 31, 4413. 
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(Zn*),21 which can, for example, insert into 3-iodoisoquinoline (2) providing the corresponding 

zinc reagent 3 (Scheme 4).22 

 

 

Scheme 4: Preparation of heteroarylzinc reagent 3 by insertion of highly active Zn*-metal. 
 

Since highly active Zn* decomposes over time and, moreover, two equivalents lithium 

naphthalenide are required for its preparation, an efficient and very simple new method for the 

direct zinc insertion into aromatic bromides and iodides was demonstrated which overcomes all 

the previously mentioned drawbacks. Thus, the reaction of ethyl 4-iodobenzoate (4a) with zinc 

dust at 70 °C for 24 h did not provide the expected arylzinc iodide 5a. Contrary, performing the 

insertion in the presence of stoichiometric amounts of LiCl furnished the desired zinc compound 

5a within 24 h at 25 °C in more than 95% yield (Scheme 5).23 Subsequent allylation reaction 

provided the benzoate 6 within 1 h in 94% yield. 

 

 

Scheme 5: Preparation of 4-(ethoxycarbonyl)phenylzinc iodide (5a) in the absence and in the 
presence of stoichiometric amounts of LiCl. 

 

Similarly, the bromo-substituted furan 7 as well as bromocyclohexane (8) were converted to the 

corresponding organozinc reagents 9-10 and provided after a Pd-catalyzed cross-coupling with 4-

iodobenzonitrile as well as after a acylation with benzoyl chloride the expected products 11and 

12 in 89-94% yield (Scheme 6). 

                                                 
21 (a) R. D. Rieke, Science 1989, 246, 1260; (b) M. V. Hanson, R. D. Rieke, J. Org. Chem. 1991, 56, 1445; (c) R. D. 
Rieke, P. T.-J. Li, T. P. Burns, S. T. Uhm, J. Org. Chem. 1981, 46, 4323; (d) M. V. Hanson, R. D. Rieke, J. Am. 
Chem. Soc. 1995, 117, 1445; (e) R. D: Rieke, M. V. Hanson, Tetrahedron 1997, 53, 1925. 
22 T. Sakamoto, Y. Kondo, N. Murata, H. Yamanaka, Tetrahedron 1993, 49, 9713. 
23 A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 6040. 
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Scheme 6: Preparation of heteroaromatic aryl- and secondary alkylzinc bromides 9 and 10. 
 

It can be envisioned that due to the influence of LiCl, the prepared organozinc halide is highly 

soluble in THF and is easily released from the metal surface. This allows a rapid reaction of 

additional organohalides with zinc and the deactivation is not favored. 

 

2.3. The iodine-zinc exchange reaction 

Diorganozinc reagents are more reactive than organozinc halides.5 Besides the typical preparation 

of diorganozincs by transmetalation of organolithium or -magnesium reagents using one half-

equivalent of zinc salt,24 a practical way for their preparation is the iodine-zinc exchange reaction 

using diethylzinc leading to functionalized zinc reagents of the type (FG-R)2Zn (13; Scheme 7).25 

One major advantage, compared to the transmetalations described above, is the functional group 

tolerance. Catalytic amounts of copper(I)-salts are necessary to achieve good exchange 

reactions.26  

 

FG RCH2I
Et2Zn (1. 5 equiv)

CuI (0.3 mol%)
(FG RCH2)Zn

13  

Scheme 7: Cu(I)-catalyzed iodine-zinc exchange reaction. 

                                                 
24 K. Nützel, Methoden der Organischen Chemie, Metallorganische Verbindungen Be, Mg, Ca, Sr, Ba, Zn, Cd, Vol. 
13/2a, Thieme: Stuttgart, 1973. 
25 Diorganozinc reagents can be also prepared by boron-zinc exchange, see: (a) P. Knochel, A. Boudier, L. O. 
Bromm, E. Hupe, J. A. Varela, A. Rodriguez, C. Koradin, T. Bunlaksananusorn, H. Laaziri, F. Lhermitte, Pure Appl. 
Chem. 2000, 72, 1699; (b) P. Knochel, E. Hupe, W. Dohle, D. M. Lindsay, V. Bonnet, G. Queguiner, A. Boudier, F. 
Kopp, S. Demay, N. Seidel, M. I. Calaza, V. A. Vu, I. Sapountzis, T. Bunlaksananusorn, Pure Appl. Chem. 2002, 74, 
11. 
26 (a) M. J. Rozema, A. Sidduri, P. Knochel, J. Org. Chem. 1992, 57, 1956; (b) M. J. Rozema, C. Eisenberg, H. 
Lütjens, R. Ostwald, K. Belyk, P. Knochel, Tetrahedron Lett. 1993, 34, 3115. 
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The aforementioned exchange reaction is limited to alkyl iodides. Therefore, a Li(acac) catalyzed 

novel iodine-zinc exchange was developed using aryl iodides and diisopropylzinc (Scheme 8).27 

This new reaction provides access to functionalized diarylzinc reagents of type 14.  

 

 

Scheme 8: Li(acac)-catalyzed iodine-zinc exchange with aromatic iodides furnishing diarylzincs. 
 

The reaction is performed in a Et2O:NMP mixture at 25 °C. The use of Li(acac) is crucial to 

promote the transfer of the second alkyl group R and the proposed intermediated 15 is shown as 

an “ate-complex” which can be seen in analogy to the known boranate-complex in the Suzuki 

cross-coupling reaction.28  Several sensitive functional groups can be tolerated during this 

exchange as exemplarily shown in Scheme 9. 

Scheme 9: Selective I/Zn-exchange reaction on aromatic iodide 16 followed by an acylation. 
 

2.4. Preparation of highly functionalized arylzinc reagents by directed metalations 

Recently, the preparation of the mild and chemoselective base TMP2Zn·2MgCl2·2LiCl was 

reported.29 Using this base, an efficient and convenient access to functionalized diarylzinc 

reagents is possible. The Lewis acid LiCl is responsible for the excellent solubility of both the 
                                                 
27 F. F: Kneisel, M. Dochnahl, P. Knochel, Angew. Chem. Int. Ed. 2004, 43, 1017. 
28 N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457. 
29 (a) S. H. Wunderlich, P. Knochel, Angew. Chem. Int. Ed. 2007, 46, 7685; (b) Z. Dong, G. C. Clososki, S. H. 
Wunderlich, A. Unsinn, J. Li, P. Knochel, Chem. Eur. J. 2009, 15, 457. 
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base and the formed diarylzincs. Moreover, MgCl2 leads to the high reactivity of the base in 

analogy to the presented iodine-zinc exchange presented above. Thus, the reaction of the nitro-

substituted benzofuran 17 with TMP2Zn·2MgCl2·2LiCl provided the desired heterodiarylzinc 

compound 18 which led to the deuterated product 19 in 82% yield (Scheme 10). 

 

O
NO2 TMP2Zn�2MgCl2�2LiCl (0.55 equiv)

THF, -25 °C, 1.5 h O
NO2

Zn

18a17

D2O (excess)

20 min O
NO2

D

19: 82%

2

[a] Complexed salts have been
omitted for the sake of clarity  

Scheme 10: Preparation of diarylzinc reagent 18 by using TMP2Zn·2MgCl2·2LiCl. 
 

Due to the thermal stability and functional group tolerance of organozinc reagents even at higher 

temperatures, 30 difficult substrates for directed metalation can be converted to the expected 

diarylzinc compounds using microwave techniques, as shown for N,N-diethylbenzamide which 

provided the corresponding zinc reagent 20 within 5 h (Scheme 11).31 Subsequent Pd-catalyzed 

cross-coupling led to the biphenyl 21 in 85% yield.  

TMP2Zn�2MgCl2�2LiCl (0.6 equiv)
THF, MW, 120 °C, 5 h

without MW: no conversion

CONEt2

21: 85%

CF3

20: > 90%[a]

CONEt2

Zn
2 (1.1 equiv)

Pd(dba)2 (5 mol%)
tfp (10 mol%)
25 °C, 24 h

CONEt2

CF3

I

[a] Complexed salts have been
omitted for the sake of clarity  

Scheme 11: Preparation of bisarylzinc reagent 20 using microwave irradiation.  
 

However, using TMP2Zn·2MgCl2·2LiCl, only unsatisfactory results in terms of reaction 

selectivity and yield are obtained with some electron-poor heteroaromatics. Therefore, a more 

selective base (TMPZnCl·LiCl) was developed which showed, in contrast to the previously 

demonstrated base a very good chemoselectivity towards functionalized heterocycles even at 

                                                 
30 P. Walla, C. O. Kappe, Chem. Commun. 2004, 564. 
31 S. H. Wunderlich, P. Knochel, Org. Lett. 2008, 10, 4705. 
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ambient temperatures.32 Moreover, this new base allows a direct way for the preparation of 

functionalized aryl- and heteroarylzinc halides. By using TMPZnCl·LiCl, 3,6-dichloropyridazine 

(22) was zincated within 30 min providing the corresponding heteroarylzinc chloride 23 which 

led to the expected iodinated pyridazine 24 in 84% yield. 

 

 

Scheme 12: Direct metalation of 3,6-dichloropyridazine (22) using the mild base 
TMPZnCl·LiCl to provide the corresponding heteroaryl zinc chloride 23. 

 

 

 

  

                                                 
32 (a) M. Mosrin, P. Knochel, Org. Lett. 2009, 11, 1837; (b) M. Mosrin, G. Monzon, T. Bresser, P. Knochel, Chem. 
Commun. 2009, 5615. 
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3. Lewis-Acid Promoted Additions of Functionalized Organomagnesium and 
Organozinc Reagents to Carbonyl Derivatives 

The additions of lithium or magnesium organometallics to aldehydes, ketones and imines are 

highly important carbon-carbon bond formation reactions. 33  Grignard reagents show a 

significantly higher functional group tolerance than the corresponding lithium counterparts and 

therefore their use became more and more frequent over the last years.34 However, such 1,2-

additions to enolizable ketones are often complicated if sterically hindered or unreactive Grignard 

reagents are used (Scheme 13). In these cases, the formation of the tertiary alcohol 25 proceeds 

along with several side reactions such as enolization (leading to 26) or β-hydride transfer (leading 

to the secondary alcohol 27).  

 

 

Scheme 13: Possible products of the reaction of a Grignard reagent with enolizable ketones. 
 

The formation of byproducts 26 and 27 can be considerably reduced by using a Lewis acid 

activation of the ketone. Lanthanide halides35 such as CeCl3 introduced by Imamoto have proven 

to be especially effective. In the presence of CeCl3, the 1,2-addition reaction of a Grignard 

reagent to a ketone is favored and the formation of byproducts of type 26 and 27 is  

                                                 
33 (a) The Chemistry of Organolithium Compounds, Z. Rappoport, I. Marek, Eds., Wiley, Chichester, 2004; (b) B. J. 
Wakefield, The Chemistry of Organolithium Compounds, Pergamon Press: New York, 1974; (c) R. Noyori, M. 
Kitamura, Angew. Chem. Int. Ed. 1991, 30, 49; (d) K. Tomioka, I. Inoue, M. Shindo, K. Koga, Tetrahedron Lett. 
1990, 31, 6681; (e) The Chemistry of Organomagnesium Compounds; Z. Rappoport, I. Marek, Eds., Wiley, 
Chichester, 2008; (f) M. R. Luderer, W. F. Bailey, M. R. Luderer, J. D. Fair, R. J. Dancer, M. B. Sommer, 
Tetrahedron: Asymmetry, 2009, 20, 981; (g) J. M. Mallan, R. L. Bebb, Chem. Rev. 1969, 69, 693; (h) Grignard 
Reagents - New Developments, H. G. Richey, Jr., Ed., Wiley: Chichester, 2000. 
34 (a) P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp, T. Korn, I. Sapountzis, V. A. Vu, Angew. 
Chem. Int. Ed. 2003, 42, 4302; (b), A. Boudier, L. O. Bromm, M. Lotz, P. Knochel, Angew. Chem. Int. Ed. 2000, 39, 
4414; (c) F. Kopp, I. Sapountzis, P. Knochel, Synlett 2003, 885; (d) Dietmar Seyferth, Organometallics, 2009, 28, 
1598; (e) J. J. Eisch, Organometallics, 2002, 21, 5439; (f) A. Wolan, Y. Six, Tetrahedron 2010, 66, 15.  
35 For selected reviews on the use of lanthanide derivatives, see: (a) K. C. Nicolaou, S. P. Ellery, J. S. Chen, Angew. 
Chem. Int. Ed. 2009, 48, 7140; (b) V. Nair, A. Deepth, Tetrahedron 2009, 65, 10745; (c) G. A. Molander, Chem. 
Rev. 1992, 92, 29; (d) G. A. Molander, J. A. C. Romero, Chem. Rev. 2002, 102, 2161; (e) T. J. Boyle, L. A. M. 
Ottley, Chem. Rev. 2008, 108, 1896; (f) G. A. Molander, Pure Appl. Chem. 2000, 72, 1757; (g) S. Kobayashi, M. 
Sugiura, H. Kitagawa, W. W.-L. Lam, Chem. Rev. 2002, 102, 2227; (h) P. G. Steel, J. Chem. Soc., Perkin Trans. 1 
2001, 21, 2727; (i) For an selected article about the reduction of ketones in the presence of lanthanide halides, see: J.-
L. Luche, J. Am. Chem. Soc. 1978, 100, 2226.  



 
A. Introduction  12 

reduced.36 A recent example using CeCl3 for the addition of a Grignard reagent to a ketone is 

demonstrated in the reaction sequence in Scheme 14 to provided an precursor for the total 

synthesis of (±)-actinophyllic acid.37  

 

 

Scheme 14: Application of CeCl3 in natural product synthesis. 
 

Two explanations are commonly used to describe the influence of CeCl3 in these addition 

reactions. On the one hand lanthanide salts activate in a Lewis-acid fashion the ketone due to the 

oxophilic behavior of these salts. On the other hand, a transmetalation of the Grignard reagent to 

the lanthanide salt is possible. The resulting organolanthanides are less basic and therefore a 

deprotonation of alpha-acidic ketones should not occur.38  Recently, the preparation of THF-

soluble LaCl3·2LiCl complex has been reported.39 It was found that this complex is highly 

efficient in improving the addition of Grignard reagents to ketones and imines (Scheme 15). 

 

 

Scheme 15: Addition of pyridylmagnesium chloride (28a) to camphor (29) in the presence of 
different lanthanide salts. 

                                                 
36 (a) T. Imamoto, Y. Sugiyura, N. Takiyama, Tetrahedron Lett. 1984, 25, 4233; (b) T. Imamoto, Pure and Appl. 
Chem. 1990, 62, 747; (c) T. Imamoto, N. Takiyama, K. Nakamura, T. Hatajima, Y. Kamiya, J. Am. Chem. Soc. 1989, 
111, 4392; (d) S. Panev, V. Dimitrov, Tetrahedron: Asymmetry 2000, 11, 1517; (e) D. A. Conlon, D. Kumke, C. 
Moeder, M. Hardiman, G. Hutson, L. Sailer, Adv. Synth. Catal. 2004, 346, 1307. 
37 (a) C. L. Martin, L. E. Overman, J. M. Rohde, J. Am. Chem. Soc. 2008, 130, 7568; (b) For another example using 
CeCl3 in natural product synthesis, see: Q. Wang, C. Chen, Org. Lett. 2008, 10, 1223. 
38 (a) M. Badioli, R. Ballini, M. Bartolacci, G. Bosica, E. Torregiani, E. Marcantoni, J. Org. Chem. 2002, 67, 8938; 
(b) H.-J. Liu, K.-S. Shia, X. Shang, B.-Y. Zhu, Tetrahedron 1999, 55, 3803; (c) V. Dimitrov, K. Kostova, M. Genov, 
Tetrahedron Lett. 1996, 37, 6787; (d) T. Imamoto, T. Kusumoto, Y. Tawarayama, Y. Sugiura, T. Mita, Y. Hatanaka, 
M. Yokoyama, J. Org. Chem. 1984, 49, 3904. 
39 A. Krasovskiy, F. Kopp, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 497. 
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Furthermore, the direct alkylation of benzophenone (30) with Grignard reagents in the presence 

of a catalytic amount of ZnCl2 (10 mol%) was very recently reported (equation 1, Scheme 16).40 

Moreover, isopropylation of acetophenone (31) proceeds along the same way (equation 2). 

Interestingly, by using a catalytic amount of ZnCl2 the addition of alkylmagnesium reagents to 

ketones 30 and 31 led to the tertiary alcohols 32-33 without significant formation of reduction 

products 34 and 35. 

 

 

Scheme 16: Addition of alkylmagnesium reagents to ketones in the presence of ZnCl2 (cat.).  
 

These results were explained by assuming that the addition of an organomagnesium reagent to a 

carbonyl derivative in the presence of catalytic amounts of ZnCl2 proceeds via a catalytic cycle 

including a six-membered transition state (Scheme 17). First, a active Zn(II)-ate complex is 

formed by the reaction of the Grignard reagent with ZnCl2 followed by the addition to the ketone. 

Therefore, the [MgCl]+-moiety coordinates to the carbonyl group followed by the attack of 

[R2Zn-R]- and finally release of the adduct and regeneration of the active zinc intermediate.   

 

 

                                                 
40 (a) M. Hatano, S. Suzuki, K. Ishihara, J. Am. Chem. Soc. 2006, 128, 9998; (b) M. Hatano, S. Suzuki, K. Ishihara, 
Synlett 2010, 321; (c) M. Hatano, T. Miyamoto, K. Ishihara, Curr. Org. Chem. 2007, 11, 127; (d) M. Hatano, K. 
Ishihara, Synthesis 2008, 1647; (e) M. Hatano, K. Ishihara, Acid Catalysis in Modern Organic Synthesis, Vol. 1, H. 
Yamamoto, K. Ishihara, Eds., Wiley-VCH: Weinheim, 2008. 
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Scheme 17: Proposed catalytic cycle for the addition of organomagnesium reagents to ketones in 
the presence of catalytic amounts of ZnCl2. 

 

The addition of organozinc reagents to carbonyl derivatives is widely studied, mainly in the field 

of asymmetric synthesis. Common ways for the preparation of dioorganozincs are 

transmetalation reactions of the corresponding lithium- or magnesium reagents with zinc salts or 

hydroboration of an olefin and subsequent boron zinc exchange.25 Then, the additions of these 

zinc organometallics to aldehydes,41 ketones,42 or aldimines43 proceed often in the presence of a 

chiral ligand as exemplarily shown in Scheme 18.  
 

H

O

Et

OHEt2Zn (3.0 equiv)
(R)-37 (10 mol%)

25 °C, 8 h
THF : toluene

99%, 93% ee

Me Me

36

OH

OH

PPh2

O

PPh2

O
(R)-37  

Scheme 18: Addition of Et2Zn to benzaldehyde 36 in the presence of the chiral ligand 37. 

                                                 
41 (a) For selected reviews, see: L. Pu, H.-B. Yu, Chem. Rev. 2001, 101, 757; (b), K. Soai, S. Niwa, Chem. Rev. 1992, 
92, 833; (c) See also: J. Rudolph, M. Lormann, C. Bolm, S. Dahmen, Adv. Synth. Catal. 2005, 347, 1361; (d) C. 
Bolm, N. Hermanns, J. P. Hildebrand, K Muniz, Angew. Chem. Int. Ed. 2000, 39, 3465; (e) M. Hatano, T. 
Miyamoto, K. Ishihara, Adv. Synth. Catal. 2005, 347, 1561; (f) L. Salvi, J. G. Kim, P. J. Walsh, J. Am. Chem. Soc. 
2009, 131, 12483; (g) C. E. Tucker, P. Knochel, J. Am. Chem. Soc. 1991, 113, 9888; (h) W. Oppolzer, R. N. 
Radinov, Helv. Chim. Acta 1979, 62, 1701; (i) M. Hatano, T. Miyamoto, K. Ishihara, J. Org. Chem. 2006, 71, 6474; 
(j) W.-S. Huang, L. Pu, J. Org. Chem. 1999, 64, 4222; (k) J. L. von dem Bussche-Hünnefeld, D. Seebach, 
Tetrahedron Lett. 1992, 33, 5719; (l) P. Wipf, W. Xu, Tetrahedron Lett. 1994, 35, 5197. 
42 (a) V. J. Forrat, O. Prieto, D. J. Ramon, M. Yus, Chem. Eur. J. 2006, 12, 4431; (b) M. Hatano, T. Miyamoto, K. 
Ishihara, Org. Lett. 2007, 9, 4535; (c) K. Yearick, C. Wolf, Org. Lett. 2008, 10, 3915. 
43 (a) For a selected review, see: K. Yamada, K. Tomioka, Chem. Rev. 2001, 101, 757; (b) See also: K. P. Chiev, S. 
Roland, P. Mangeney, Tetrahedron: Asymmetry 2002, 13, 2205.   
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4. Transition Metal-Catalyzed Cross-Coupling Reactions of Functionalized 
Organometallics With Unsaturated Thioethers  

The transition metal-catalyzed cross-coupling reactions of unsaturated thioethers as well as thiols 

with Grignard reagents have been pioneered by Wenkert and Takei in 1979.44, 45 They represent 

attractive methods for converting a carbon-sulfur bond into a carbon-carbon bond (Scheme 19). 

 

SMe

Me-C6H4-MgBr (5.0 equiv)
Ni(PPh3)2Cl2 (10 mol%)

benzene, 80 °C, 30 h

74%

Me

N

N

Ph(CH2)3MgBr(1.5 equiv)
NiCl2(dppp) (3 mol%)

Et2O, 40 °C, 8 h

92%

N

N

Me

Me

Me

Me SMe

Wenkert et al.:

Takei et al .:

 

Scheme 19: Nickel-catalyzed cross-couplings reported by Wenkert and Takei in 1979. 
 

Based on these first results, Fukuyama and especially Liebeskind and co-workers could extremely 

extend the scope of this cross-coupling reaction leading to a general ketone synthesis. Thus, 

functionalized thioesters 38 and 39 were converted to the corresponding ketones 40-41 using 

organozinc reagents or organoboronic acids in a palladium-catalyzed cross-coupling reaction 

(Scheme 20).46  

                                                 
44 (a) E. Wenkert, T. W. Ferreira, E. L. Michelotti, J. Chem. Soc.,Chem. Commun. 1979, 637; (b) H. Okamura, M. 
Miura, H. Takei, Tetrahedron Lett. 1979, 20, 43; (c) H. Takei, M. Miura, H. Sugimura, H. Okamura, Chem. Lett. 
1979, 8, 1447; (d) E. Wenkert, T. W. Ferreira, J. Chem. Soc., Chem. Commun. 1982, 840; (e) E. Wenkert, M. E. 
Shepard, A. T. McPhail, J. Chem. Soc., Chem. Commun. 1986, 1390; (f) E. Wenkert, D. Chianelli, J. Chem. Soc., 
Chem. Commun. 1991, 627. 
45 For selected reviews, see: (a) S. R. Dubbaka, P. Vogel, Angew. Chem. Int. Ed. 2005, 44, 7674; (b) H. Prokopcova, 
C. O. Kappe, Angew. Chem. Int. Ed. 2009, 48, 2276. 
46 (a) H. Tokuyama, S. Yokoshima, T. Yamashita, T. Fukuyama, Tetrahedron Lett. 1998, 39, 3189; (b) L. S. 
Liebeskind, J. Srogl,  J. Am. Chem. Soc. 2000, 122, 11260; (c) J. Srogl, G. D. Allred, L. S. Liebeskind, J. Am. Chem. 
Soc. 1997, 119, 12376; (d) C. Savarin, J. Srogl, L. S. Liebeskind, Org. Lett. 2000, 2, 3229; (e) J. M. Villalobos, J. 
Srogl, L. S. Liebeskind, J. Am. Chem. Soc. 2007, 129, 15734; (f) L. S. Liebeskind, H. Yang, H. Li, Angew. Chem. 
Int. Ed. 2009, 48, 1417; (g) Y. Yu, L. S. Liebeskind, J. Org. Chem. 2004, 69, 3554; (h) C. L. Kusturin, L. S. 
Liebeskind, W. L. Neumann, Org. Lett. 2002, 4, 983. 
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Scheme 20: Ketone synthesis using thioesters and various organometallic reagents in Pd-
catalyzed cross-coupling reactions. 

 

Furthermore, organostannanes47  as well as organoindium reagents48  were also used as 

nucleophilic partners for the direct synthesis of ketones starting from the corresponding 

thioesters.    

More recently, this Pd-catalyzed reaction was used in modified ways to couple organoboronic 

acids49 or organostannanes50 with heteroaromatic thioethers 42 and 43 (Scheme 21). To perform 

these cross-couplings stoichiometric amounts of Cu(I)-salts are also necessary. The expected 

heterobiphenyls 44-45 were obtained in good yields. 

 

                                                 
47 R. Wittenberg, J. Srogl, M. Egi, L. S. Liebeskind, Org. Lett. 2003, 5, 3033. 
48 B. W. Fausett, L. S. Liebeskind, J. Org. Chem. 2005, 70, 4851. 
49 (a) L. S. Liebeskind, J. Srogl, Org. Lett. 2002, 4, 979; (b) S. Oumouch, M. Bourotte, M. Schmitt, J.-J. 
Bourguignon, Synthesis 2005, 25; (c) A. Aguilar-Aguilar, E. Pena-Cabrera, Org. Lett. 2007, 9, 4163; (d) A. Lengar, 
C. O. Kappe, Org. Lett. 2004, 6, 771; (e) H. Prokopcova, C. O. Kappe, J. Org. Chem. 2007, 72, 4440; (f) W. van 
Rossom, W. Maes, L. Kishore, M. Ovaere, L. van Meervelt, W. Dehaen, Org. Lett. 2008, 10, 585; (g) K. Itami, D. 
Yamazaki, J. Yoshida, J. Am. Chem. Soc. 2004, 126, 15396; (h) C. Kusturin, L. S. Liebeskind, H. Rahman, K. 
Sample, B. Schweitzer, J. Srogl, W. L. Neumann, Org. Lett. 2003, 5, 4349. 
50 M. Egi, L. S. Liebeskind, Org. Lett. 2003, 5, 801. 
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N

CN

42 44: 72%

NMe
CuTC (1.3 equiv)
Pd2(dba)3 (4 mol%), tfp (16 mol%)
THF, 50 °C, 18 h

B(OH)2 (1.1 equiv)

SSMe

CN

Me
EtO2C

Me

Me

CO2Et

O

OCu

copper(I)-thiophene-
2-carboxylate (CuTC)

N

N

43 45: 79%

N

N
CuMeSal (2.2 equiv), Pd(PPh3)4 (5 mol%)
THF, 50 °C, 18 h

Sn(n-Bu)3 (1.1 equiv)

SPh

copper(I)-3-methylsalicylate
(CuMeSal)

O

O
Me

OH

OCu

O

Scheme 21: Pd-catalyzed cross-couplings of organoboronic acids and organostannanes with  
     thioether-substituted heterocycles. 

  
An explanation for the success of these cross-couplings using organomagnesium or -zinc reagents 

is an efficient transmetalation step towards the intermediate 46 which is promoted by the 

formation of an ‘ate’ intermediate due to the high reactivity of Grignard reagents or, in the case 

of organozinc compounds, by the polarization of the palladium-sulfur bond due to the 

thiophilicity of the zinc cation (Scheme 22).49a On the other hand, to ensure a “base-free” 

transmetalation in the case of organoboronic acids, the Cu(I)-carboxylate plays an important role 

due to the polarisation of the Pd-S bond and moreover the activation of the trivalent boron by 

coordination of the carboxylate anion to the boron species.  

 

 

Scheme 22: Explanation for the need of Cu(I)-carboxylates in palladium-catalyzed cross-
couplings of organoboronic acids with thioethers as well as thioesters. 

 

Beside the known Ni-catalyzed cross-couplings of vinyl sulfides with organomagnesium 

reagents,44b, d cross-coupling reactions of alkenyl sulfides with Grignard reagents in the presence 
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of an iron catalyst were recently reported leading to functionalized  

styrenes (Scheme 23).51  

 

 

Scheme 23: Iron-catalyzed cross-coupling of 4-methoxyphenylmagnesium bromide with phenyl 
vinyl sulfide leading to methoxy-4-vinylbenzene.  

 

 

 

 

 

 

 

 

 

 

 

 

  

                                                 
51 K. Itami, S. Higashi, M. Mineno, J. Yoshida, Org. Lett. 2005, 7, 1219. 
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5. Objectives 

Organozinc reagents are an important class of organometallics.16 However, the preparation of 

benzylic zinc reagents is still problematic and normally low temperatures are required to avoid 

the formation of homo-coupling products. Moreover, due to various difficulties, cheap benzylic 

chlorides are only rarely used to date for the preparation of the corresponding benzylic zinc 

reagents. The aim of the first project was the preparation of highly functionalized benzylic zinc 

chlorides by direct zinc insertion in the presence of LiCl into the corresponding benzylic 

chlorides as well as reaction with common electrophiles (Scheme 24). Furthermore, the transition 

metal-catalyzed cross-couplings of benzylic zinc chlorides with various electrophiles leading to 

the important class of diarylmethanes were investigated. 

 

 

Scheme 24: Preparation of benzylic zinc chlorides and reaction with common electrophiles as 
well as transition metal-catalyzed cross-couplings. 

 

Furthermore, an in situ preparation of benzylic zinc chlorides and subsequent cross-coupling 

reaction with electrophiles under transition metal catalysis in a one-pot procedure was performed. 

 

 

Scheme 25: In situ generation of benzylic zinc chlorides followed by Pd-catalyzed 
cross-coupling reactions. 

 

Additionally, the preparation of heterobenzylic zinc chlorides was investigated (Scheme 26). 
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Scheme 26: Preparation of heterobenzylic zinc chlorides. 

 

Moreover, the preparation of benzylic zinc chlorides was extended to the direct insertion of 

magnesium into benzylic chlorides in the presence of ZnCl2 and LiCl and subsequent reaction 

with different electrophiles (Scheme 27). 

 

 

Scheme 27: Preparation of benzylic zinc chlorides by direct insertion of magnesium in the 
presence of ZnCl2 and LiCl into benzylic chlorides. 

 

Lanthanide halides are often used to support an efficient addition of Grignard reagents to 

enolizable ketones. However, CeCl3 and LaCl3·2LiCl have been used so far only in a 

stoichiometric fashion. Therefore, in a second project, the addition of functionalized magnesium 

reagents to carbonyl derivatives in the presence of catalytic amounts of LaCl3·2LiCl was 

investigated (Scheme 28).  

 

 

Scheme 28: Addition of Grignard reagents to ketones in the presence of LaCl3·2LiCl (cat.). 
 

Since functionalized organozinc reagents are only rarely used towards the addition to carbonyl 

derivatives, the direct addition of highly functionalized organozinc compounds to aldehydes, 

ketones and carbon dioxide mediated by stoichiometric amounts of MgCl2 was developed 

(Scheme 29).  
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Scheme 29: Addition of functionalized organozinc reagents to carbonyl derivatives. 
 

As a further project, a novel Cu(I)-mediated direct carbometalation reaction was developed using 

thioether-substituted alkynes and functionalized diarylzinc reagents, which gave access to tetra-

substituted alkenes (Scheme 30).  

 

 

Scheme 30: Cu(I)-mediated carbometalation using diarylzinc reagents. 
 

Due to the facile introduction of thioether-groups to heterocycles as advantage compared to 

halogen substituents, the aim of the fourth project was the transition metal-catalyzed cross-

couplings of methylthio-substituted N-heterocycles with functionalized organozinc reagents 

(Scheme 31).  

 

 

Scheme 31: Pd- or Ni-catalyzed cross-coupling reactions of heterocyclic thioethers with 
functionalized organozinc compounds. 
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1. Preparation and Applications of Benzylic Zinc Chlorides 

1.1. Preparation of functionalized benzylic zinc chlorides by LiCl-mediated zinc insertion 
into benzylic chlorides 

1.1.1. Introduction  

Benzylic groups are widespread moieties in organic chemistry. They are extensively used as 

protecting groups in the total synthesis of complex structures.52 Besides, in numerous biologically 

active compounds as well as pharmaceuticals, benzylic groups are important structural motives. 

 

 

Scheme 32: Presence of benzylic moieties in natural products and pharmaceuticals.   
 

Orphiodilactone B (49) is a complex molecule with a unique carbon skeleton bearing three 

benzylic groups (Scheme 32).53 It was isolated from the orphiuroid Ophiocoma scolopendrina. 

Cytotoxic activity of Orphiodilactone B (49) against P388 murine leukemia cells was 

demonstrated. PSI-697 (50), another benzylic derivative, is a potential candidate for the treatment 

                                                 
52 (a) T. W. Greene, P. G. M. Wuts, Protective Groups in Organic Synthesis, 3rd ed., Wiley: New York, 1999; (b) F. 
A. Luzzio, J. Chen, J. Org. Chem. 2008, 73, 5621; (c) H. Lam, S. E. House, G. B. Dudley, Tetrahedron Letters 2005, 
46, 3283; (d) G. A. Eller, W. Holzer, Heterocycles 2004, 63, 2537. 
53 R. Ueoka, T. Fujita, S. Matsunaga, J. Org. Chem. 2009, 74, 4396. 
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of atherothrombotic vascular events and is already in clinical development.54 Its structural 

scaffold is based on quinoline salicylic acid and contains a benzylic group in 2-position. As 

inhibitor for HIV integrase and viral replication, 2,4-diketobutanoic acid derivatives are attractive 

molecules for pharmaceutical applications.55 S-1360 (51), containing a oxotriazole moiety and a 

2-(4-fluorobenzyl)furan, is a molecule which also entered clinical development. Azelastine (52), 

a phthalazine derivative bearing a 4-chlorobenzyl group, is widely used as anti-histaminic 

agent.56 Finally, the alkaloid naamine G (53) which was isolated from the sponge Leucetta 

chagosensis shows strong antifungal activity against phytopathogenic fungus Cladosporium 

herbarum.57 Moreover, naamine G (53) exhibits cytotoxicity against human cervix carcinoma 

(HeLa) cell lines. Two substituted benzylic groups combined with a 2-aminoimidazole moiety 

constitutes the main structure of naamine G (53). Due to the common usage of the benzylic group 

in organic synthesis it would be advantageous to have benzylic organometallic reagents in hand 

with a high functional group tolerance as well as an easy high yielding preparation, long-time 

stability and good toxicological properties.  

Benzylic lithium reagents show very high reactivity due to the strong ionic character of the 

carbon-lithium bond. Therefore, the functional group tolerance of these organometallic reagents 

is low.58  If benzylic lithium reagents are prepared by a metal-halogen exchange reaction, 

formation of the Wurtz-coupling product occurs even at very low temperatures.59 The direct 

metalation reaction can be complicated because strong bases are required and, therefore, ring 

metalation products can be obtained.60 Benzylic magnesium reagents show a slightly higher 

functional group tolerance but a simple preparation of these organometallics and suppression of 

side reactions (Wurtz coupling product) is still problematic.61  In 2006, a new and easy 

                                                 
54 N. Kaila, K. Janz, A. Huang, A. Moretto, S. DeBernardo, P. W. Bedard, S. Tam, V. Clerin, J. C. Keith, Jr., D. H. 
H. Tsao, N. Sushkova, G. D. Shaw, R. T. Camphausen, R. G. Schaub, Q. Wang, J. Med. Chem., 2007, 50, 40. 
55 T. Kawasuji, T. Yoshinaga, A. Sato, M. Yodo, T. Fujiwara, R. Kiyama, Bioorg. Med. Chem. 2006, 14, 8430 (and 
references cited therein). 
56 F. Horak, U. P. Zieglmayer, Expert Rev. Clin. Immunol. 2009, 5, 659. 
57 (a) Z. Jin, Nat. Prod. Rep. 2005, 22, 196; (b) W. Hassan, R. Edrada, R. Ebel, V. Wray, A. Berg, R. van Soest, S. 
Wiryowidagdo, P. Proksch, J. Nat. Prod. 2004, 67, 817. 
58 (a) J. N. Reed, Science of Synthesis, V. Snieckus, Ed., 2006, 8a, 329; (b) B. J. Wakefield, Organolithium Methods, 
Academic Press: New York, 1988; (c) S. L. Hargreaves, B. L. Pilkington, S. E. Russell, P. A. Worthington, 
Tetrahedron Lett. 2000, 41, 1653. 
59 W. E. Parham, L. D. Jones, Y. A. Sayed, J. Org. Chem. 1976, 41, 1184. 
60 J. L. Wardell, Preparation and Use in Organic Synthesis of Organolithium and Group IA Organometallics; The 
Chemistry of the Metal-Carbon Bond. The Chemistry of Functional Groups, Vol. 4, .S. Patai, Ed., Wiley: New York, 
1987.  
61 (a) T. P. Burns, R. D. Rieke, J. Org. Chem. 1987, 52, 3674; (b) R. A. Benkeser, D. C. Snyder, J. Org. Chem. 1982, 
47, 1243; (c) K. V. Baker, J. M. Brown, N. Hughes, A. J. Skarnulis, A. Sexton, J. Org. Chem. 1991, 56, 698; (d) S. 
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preparation for benzylic magnesium reagents was demonstrated using a sulfur-magnesium 

exchange (Scheme 33).62  

 

 

Scheme 33: Preparation of benzylic magnesium reagents through a sulfur-magnesium exchange. 
 

One major disadvantage of benzylic magnesium reagents is still the intolerance towards sensitive 

functions like esters, nitriles or ketones.  

Functionalized benzylic zinc halides play a unique role since the high reactivity of corresponding 

benzylic lithium and magnesium compounds preclude the presence of most functional groups in 

these organometallics. Benzylic zinc reagents can be prepared by the direct zinc insertion into 

benzylic bromides, mesylates and phosphates. During the insertion of zinc (activated using 1,2-

dibromoethane) into benzylic bromides, the temperature for the insertion must be kept strictly 

between 0 to 5 °C to avoid the formation of homo-coupling products (Scheme 34). 63, 64 

 

 

Scheme 34: Preparation of benzylic zinc bromides. 
 

                                                                                                                                                              
Harvey, P. C. Junk, C. L. Raston, G. Salem, J. Org. Chem. 1988, 53, 3134; (e) C. L. Raston, G. Salem, J. Chem. 
Soc., Chem. Commun. 1984, 1702; (f) C. L. Raston, S. Harvey, J. Chem. Soc., Chem. Commun. 1988, 652. 
62 A. H. Stoll, A. Krasovskiy, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 606. 
63 (a) S. C. Berk, M. C. P. Yeh, N. Jeong, P. Knochel, Organometallics 1990, 9, 3053; (b) S. C. Berk, P. Knochel, M. 
C. P. Yeh, J. Org. Chem. 1988, 53, 5791; (c) M. Yuguchi, M. Tokuda, K. Orito, J. Org. Chem. 2004, 69, 908; (d) J. 
X. Wang, Y. Fu, Y. L. Hu, Chin. Chem. Lett. 2002, 5, 405; (e) H. Stadtmüller, B. Greve, K. Lennick, A. Chair, P. 
Knochel, Synthesis 1995, 69; (f) C. Gosmini, Y. Rollin, C. Cebehenne, E. Lojou, V. Ratovelomanana, J. Perichon, 
Tetrahedron Lett. 1994, 35, 5637. 
64 1,2-Dibromoethane and TMSCl are used for the zinc activation; see also (ref 18). 
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To perform the zinc insertion into benzylic mesylates or phosphates in the presence of a lithium 

halide (LiBr or LiI), elevated temperatures and the use of polar cosolvents are required (Scheme 

35).65, 66  

 

X

Zn (1.2 equiv), LiI (0.2 equiv)
1,2-dibromoethane (5 mol%)
TMSCl (1 mol%)

DMPU, 35 °C to 60 °C,
12 h - 24 h

FG
ZnX

FG

X = OMs, OP(O)(OEt)2
FG = Br, OMe, OAc  

Scheme 35: Preparation of benzylic zinc mesylates and -phosphates.64 
 

1.1.2. Direct zinc insertion into benzylic chlorides in the presence of LiCl 

The above mentioned drawbacks hamper a more general application of zinc organometallics.67 

Recently, it has been reported that LiCl considerably facilitates the rate of zinc insertion.23, 68 

Therefore, this new method was applied to the preparation of benzylic zinc reagents using cheap 

benzylic chlorides, commercially available zinc dust and LiCl.69 The activation of zinc dust was 

generally performed using 1,2-dibromoethane (5 mol%) and TMSCl (1 mol%).64 As a 

comparative example the insertion of zinc dust into benzyl chloride (53a) was examined in the 

absence (Scheme 36) and in the presence of LiCl (Scheme 37). 

 

                                                 
65 C. Jubert, P. Knochel, J. Org. Chem. 1992, 57, 5425. 
66 For alternative preparation methods of benzylic zinc reagents, see: (a) via fragmentation reaction: C. Piazza, N. 
Millot, P. Knochel, J. Organomet. Chem. 2001, 624, 88; (b) via homologation of triorganozincates: T. Harada, T. 
Kaneko, T. Fujiwara, A. Oku, J. Org. Chem. 1997, 62, 8966. 
67 For the use of benzylic zinc reagents in organic synthesis, see: (a) S. Klein, I. Marek, J.-F. Normant, J. Org. Chem. 
1994, 59, 2925; (b) M. Rottländer, P. Knochel, Tetrahedron Lett. 1997, 38, 1749; (c) A. M. Egorov, J. Phys. Org. 
Chem. 2006, 19, 664; (d) D. Huang, J.-X. Wang, Synlett 2007, 2272; (e) A. Paul Krapcho, D. J. Waterhouse, A. 
Hammach, R. Di Domenico, E. Menta, A. Oliva, S. Spinelli, Synth. Commun. 1997, 27, 781; (f) T. J. Anderson, D. 
A. Vicic, Organometallics 2004, 23, 623; (g) J.-X. Wang, K. Wang, L. Zhao, H. Li, Y. Fu, Y. Hu, Adv. Synth. Catal. 
2006, 348, 1262; (h) Y. Fellahi, D. Mandin, P. Dubois, J. E. Ombetta-Goka, J. Guenzet, J. P. Chaumont, Y. Frangin, 
Eur. J. Med. Chem. 1996, 31, 77; (i) J.-X. Wang, Y. Fu, Angew. Chem. Int. Ed. 2002, 41, 2757; (j) S. N. Thorn, T. 
Gallagher, Synlett 1997, 185; (k) E. Negishi, A. O. King, N. Okukado, J. Org. Chem. 1977, 42, 185; (l) G. Wu, Z.-
W. Cai, M. S. Bednarz, O. R. Kocy, A. V. Gavai, J. D. Godfrey, Jr., W. N. Washburn, M. A. Poss, P. M. Sher, J. 
Comb. Chem. 2005, 7, 99. 
68 N. Boudet, S. Sase, P. Sinha, C.-Y. Liu, A. Krasovskiy, P. Knochel, J. Am. Chem. Soc. 2007, 129, 12358. 
69 1 mol benzyl chloride: 3.86 €; 1 mol LiCl: 7.44 €; 1 mol benzyl bromide: 76.58 €; Sigma-Aldrich, 2010. 
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Scheme 36: Preparation of benzylzinc chloride (54a) in the absence of LiCl. 
 

The preparation of benzylzinc chloride (54a) by the direct insertion of zinc dust into benzyl 

chloride (53a) in the absence of LiCl must be performed at an elevated temperature (40 °C) and 

full conversion is achieved only after 16 h. 

In contrast, the zinc insertion64 into benzyl chloride (53a) in the presence of LiCl proceeded 

easily within 6.5 h at 40 °C or at 25 °C within 18 h without the formation of significant amounts 

of homo-coupling products (< 5%; Scheme 37). The use of stoichiometric amounts of LiCl is 

essential for a fast zinc insertion. 

 

 

Scheme 37: Preparation of benzylzinc chloride (54a) in the presence of LiCl  
either at 40 °C or at 25 °C. 

 

A range of functionalized benzylic zinc chlorides was easily prepared by this new method and 

numerous functional groups are tolerated during the formation of the benzylic zinc reagents 

(Scheme 38).70 

 

 

Scheme 38: Preparation of benzylic zinc reagents of type 54 by the direct insertion of zinc dust 
into the corresponding benzylic chlorides of type 53 in the presence of LiCl. 

                                                 
70 For an investigation of  the formation of organozincate anions using ESI-spectroscopy, see: K. Koszinowski, P. 
Böhrer, Organometallics 2009, 28, 771. 



 
B. Results and Discussion  29 

Thus, the addition of 2-chlorobenzyl chloride (53b, 1.0 equiv) to zinc dust (1.5 equiv) and LiCl 

(1.5 equiv) at 0 °C followed by 2 h of stirring at 25 °C provided almost quantitatively 2-

chlorobenzylzinc chloride 54b (in 99% yield as determined by iodometric titration, entry 1 

Table 1).71 4-Fluorobenzyl chloride 53c was smoothly converted to the corresponding benzylic 

zinc chloride 54c within 24 h at 25 °C in 87% yield (entry 2). Furthermore, treatment of 2-

bromobenzyl chloride 53d with commercially available zinc dust in the presence of LiCl at 

ambient temperature led to the related benzylic zinc reagent 54d in 92% yield (entry 3). Related 

bromo-, iodo- and (trifluoromethyl)-substituted benzylic chlorides 53e-g reacted smoothly under 

these conditions leading to the benzylic zinc reagents 54e-g in 94-99% yield (entries 4-6). 

 

Table 1: Preparation of halogen-substituted benzylic zinc chlorides of type 54. 

Entry Benzylic chloride Time (h)a Benzylic zinc chloride Yield (%)b 

1 
 

53b 

2 
 

54b 

99c 

2  
53c 

24  
54c 

87d 

3  
53d 

2  
54d 

92c 

4  
53e 

4  
54e 

95c 

5 
  

53f 

2 
  

54f 

99c 

6  
53g 

9 
 

54g 

94c 

[a] Reaction time at 25 °C. [b] Yield determined by iodometric titration. [c] Zn (1.5 equiv), LiCl 
(1.5 equiv) were used. [d] Zn (2.0 equiv), LiCl (2.0 equiv) were used.   

  

Even electron-rich benzylic chlorides reacted with zinc dust and LiCl under the standard protocol 

affording the expected benzylic zinc chlorides although electron-donor substituted benzylic 

chlorides are often prone to carbocation-induced side-reactions.72  Under the mild reaction 

                                                 
71 A. Krasovskiy, P. Knochel, Synthesis 2006, 5, 890. 
72 (a) I. Lee, J. Phys. Org. Chem. 1996, 9, 661; (b) D. Stadler, A. Goeppert, G. Rasul, G. A. Olah, G. K. S. Prakash, 
T. Bach, J. Org. Chem. 2009, 74, 312; (c) S. T. A. Berger, A. R. Ofial, H. Mayr, J. Am. Chem. Soc. 2007, 129, 9753. 
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conditions, these side reactions are normally disfavored. Thus, 3,4,5-trimethoxybenzyl chloride 

(53h) was easily converted within 3.5 h at 25 °C (zinc dust 2.0 equiv, LiCl 2.0 equiv) to the 

corresponding benzylic zinc compound 54h in 78% yield (entry 1 of Table 2). Similarly, the 

reaction of 4-methoxybenzyl chloride (53i) and 2-methoxybenzyl chlorides (53j) furnished 

readily the related benzylic zinc chlorides 54i-j  in 73% respectively 92% yield (entries 2-3). 

Also, the electron-rich benzylic chlorides 53k-l led smoothly to the related zinc compound 54k 

and 54l within 1-2 h (Zn 1.5 equiv, LiCl 1.5 equiv) in 77-93% yield (entries 4-5). 

 

Table 2: Preparation of electron-donor substituted benzylic zinc chlorides (54h-l). 

Entry Benzylic chloride Time (h)a Benzylic zinc chloride Yield (%)b 

1 
 

53h 

3.5 
 

54h 

78c 

2  
53i 

6.5  
54i 

73d 

3  
53j 

4.5  
54j 

92d 

4  
53k 

1 
 

54k 

93d 

5 
  

53l 

2 
  

54l 

77d, e 

[a] Reaction time at 25 °C. [b] Yield determined by iodometric titration. [c] Zn (2.0 equiv), LiCl 
(2.0 equiv) were used. [d] Zn (1.5 equiv), LiCl (1.5 equiv). [e] 7% of the homo-coupling product was 
observed. 
 

The effect of LiCl on the rate of the zinc insertion into benzylic chlorides has been well studied in 

the case of 3-(ethoxycarbonyl)benzyl chloride (53m). In the absence of LiCl the insertion 

reaction must be performed at 35-45 °C for 48 h (comditions A, Scheme 39). In the presence of 

LiCl (1.5 equiv) 3-(ethoxycarbonyl)benzylzinc chloride (54m) is smoothly prepared within 5.5 h 

at 25 °C without the formation of significant amounts of homo-coupling products (< 5%; 

conditions B). 
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Scheme 39: Preparation of 3-(ethoxycarbonyl)benzylzinc chloride (54m) by the insertion of zinc 
dust into benzylic chloride 53m in the absence or in the presence of LiCl. 

 

The reaction time can be shortened to 3.5 h and the yield of the benzylic zinc reagent 54m can be 

improved to 85% if two equivalents of zinc dust and LiCl are used (entry 1 of Table 3). Also the 

para-substituted 4-(ethoxycarbonyl)benzyl chloride 53n is readily converted to 4-

(ethoxycarbonyl)benzylzinc chloride (54n) within 1 h in 64% yield (entry 2). Similarly, cyano 

groups are tolerated by this new method. Thus, 3-cyanobenzyl chloride (53o) and 4-cyanobenzyl 

chloride (53p) were smoothly converted to the corresponding benzylic zinc chlorides 54o and 

54p in 2 h respectively 3 h in 83-93% yield (entries 3 and 4). Various benzylic zinc reagents 

bearing a keto group in the meta-position have also been prepared. The reactions of the benzylic 

chlorides 53q-s with zinc dust at 25 °C provided easily the desired zinc reagents 54q-s in 64-72% 

yield (entries 5-7). 
 

Table 3: Preparation of ester-, cyano- and keto-substituted benzylic zinc 
chlorides of type 54m-s. 

Entry Benzylic chloride Time (h)a Benzylic zinc chloride Yield (%)b 

1  
53m 

3.5  
54m 

85c 

2  
53n 

1  
54n 

64c 

3 
 

53o 

3 
 

54o 

93d 

4  
53p 

2  
54p 

83d 

5 
 

53q 

3.5 
 

54q 

72d 
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Table 3 continued 

6 
 

53r 

9 
 

54r 

64d 

7 
 

53s 

3 
 

54s 

72d 

[a] Reaction time at 25 °C. [b] Yield determined by iodometric titration. [c] Zn (2.0 equiv), LiCl 
(2.0 equiv) were used. [d] Zn (1.5 equiv), LiCl (1.5 equiv) were used.   

 

Even the acetyl-substituted benzylic chloride 53t was converted to the expected benzylic zinc 

reagent 54t within 3.5 h at 25 °C (Scheme 40). 

 

 

Scheme 40: Preparation of 3-acetylbenzylzinc chloride (54t). 
 

Remarkably, the keto group present in the benzylic zinc chlorides 54q-t is quite stable with 

respect to enolization. The 3-propionylbenzylzinc chloride (54s) has a half-life of one month at 

25 °C and the acetyl-substituted benzylic zinc 54t is stable for several days (t1/2 = 2 days, 25 °C, 

Scheme 41). 

 

Scheme 41: Stability of 3-acetylbenzylzinc chloride (54t). 
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Moreover, secondary benzylic zinc chlorides can also be prepared (Scheme 42). Thus, addition of 

1-chloroethylbenzene to zinc dust (1.5 equiv) and LiCl (1.5 equiv) at 25 °C gave the desired zinc 

compound 54u in 85% yield. Benzhydryl chloride furnished the expected secondary benzylic 

zinc chloride 54v in 64% yield under the standard reaction conditions. In contrast, cumyl chloride 

(a tertiary benzylic chloride) did not afford the corresponding zinc species due to competitive 

elimination. 

 

 

Scheme 42: Preparation of benzylzinc chloride (54a) and secondary benzylic zinc  
chlorides 54u-v at 25 °C. 

 

Comparison of the different insertion times shows that the better the second substituent in the 

benzylic position stabilizes the benzylic radical, the shorter is the time for the insertion. More 

noteworthy, the yield of the zinc reagent drops as the stability of the benzylic radical increases 

due to the formation of homo-coupling product.  

 

1.1.3. Reaction of functionalized benzylic zinc chlorides with various electrophiles 

These new benzylic zinc chlorides were treated with various electrophiles leading to a range of 

polyfunctional products of type 56 (Scheme 43 and Table 4 - Table 7).  

 

 

Scheme 43: Reactions of various benzylic zinc chlorides of type 54 with a variety of 
electrophiles leading to polyfunctional products of type 56. 

 

The benzylic zinc reagent 54b was subject to a range of useful reactions with electrophiles (Table 

4). Thus, the copper(I)-catalyzed reaction of 2-chlorobenzylzinc chloride (54b; 1.0 equiv) with 3-
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bromocyclohex-1-ene (55a; 1.3 equiv) at 0 °C, catalyzed with CuCN·2LiCl,15b led to the product 

56a in 94% yield (entry 1). Then, 54b (1.0 equiv) reacted with S-(4-bromophenyl) 

benzenesulfonothioate73 (57a; 0.8 equiv) at 25 °C in 1 h to give the expected thioether 56b in 

89% yield (entry 2). Also, copper (I)-mediated 1,4-addition of cyclohex-2-enone (58a; 0.8 equiv) 

with CuCN·2LiCl (1.0 equiv) and TMSCl74 (2.0 equiv) furnished the Michael adduct 56c in 93% 

yield (entry 3). The copper(I)-catalyzed reaction with 4-nitrobenzyl bromide (59a; 0.8 equiv) 

provided the nitro compound 56d in 89% yield (entry 4). Furthermore, the Pd-catalyzed cross-

coupling reaction75 of ethyl 4-iodobenzoate (4a; 0.8 equiv) in the presence of Pd(PPh3)4 (2 mol%) 

as catalyst at 60 °C gave the expected diarylmethane derivative 56e in 97% yield in 5 h (entry 5). 

A copper(I)-mediated acylation reaction of 2-chlorobenzylzinc chloride (54a) with acetyl 

chloride (60a) led to the ketone 56f in 89% yield (entry 6) and the addition of 54a to 2-

chlorobenzaldehyde (61a) furnished the benzylic alcohol 56g in 87% yield on a 20 mmol scale 

reaction (entry 7).  

 

Table 4: Reactions of halogen-substituted benzylic zinc reagents 54b-g with various 
electrophiles. 

Entry 
Benzylic zinc 

chloride 
Electrophile 

Temperature 
(°C) / Time (h)  

Product 
Yield 
(%) a 

1 
 

54b 
 

55a 

25/ 1.5   
56a 

94b 

2 54b 

 
57a 

25 / 1 

 
56b 

89 

3 54b 
 

58a 

-40 to 25 / 15 
 

56c 

93c 

4 54b 

59a 

0 / 3 

 
56d 

89b 

 

                                                 
73 /K. Fujiki, N. Tanifuji, Y. Sasaki, T. Yokoyama, Synthesis 2002, 343. 
74 E. Nakamura, S. Matsuzawa, Y. Horiguchi, I. Kuwajima, Tetrahedron Lett. 1986, 27, 5181. 
75  (a) Q. Mingxing, E. Negishi, Tetrahedron Lett. 2005, 46, 2927; (b) E. Metay, Q. Hu, E. Negishi, Org. Lett. 2006, 
8, 5773; (c) E. Negishi, M. Qian, F. Zeng, L. Anastasia, D. Babinski, Org. Lett. 2003, 5, 1597. 
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Table 4 continued 

5 54b 
 

4a 

60 / 5  
56e 

97d 

6 54b 
 

60a 

-40 to 25 / 13.5 
 

56f 

89c 

7 54b 
 

61a 

0 / 3 

 
56g  

87e 

8   
54c 

 
55b 

-60 to 0 / 2  
 

56h 

93b 

9 54c  
60b 

-40 to 25 / 15  
56i 

95c 

10  
54d  

58b 

-60 to 0 / 15 
 

56j 

96c 

11  
54e  

61b 

25 / 17 

56k 

98 

12 54e 
 

60c 

-40 to 0 / 18 
 

56l 

92c 

13 54e  
60b 

-60 to -20 / 15  
56m 

96c 

14 54e 
 

58a 

-40 to 25 / 16 
 

56n 

91c, f 

15  
54f  

61c 

25 / 5 

 
56o 

87 

16 54f 
 

58a 

-40 to 25 / 15 
 

56p 

72c 
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Table 4 continued 

17 54f 
 

55b 

-60 to 0 / 1 
 

56q 

86b 

18 

54g  
61d 

25 / 6 

 
56r 

86 

[a] Yield of isolated analytically pure product. [b] Reaction performed in the presence of catalytic amounts of 
CuCN·2LiCl. [c] Stoichiometric amounts of CuCN·2LiCl and, in the case of 1,4-additions, TMSCl were used. [d] 
Pd(PPh3)4 (2 mol%) was used. [e] Reaction performed on a 20 mmol scale. [f] Reaction performed on a 5 mmol 
scale. 

 

4-Fluorobenzylzinc chloride (54c) reacted in a Cu(I)-catalyzed allylation using ethyl (2-

bromomethyl)acrylate76  (55b) and in a Cu(I)-mediated acylation with 3,3-dimethylbutyryl 

chloride (60b; 0.7 equiv) to the functionalized products 56h-i (entries 8-9). The 2-bromo-

substituted benzylic zinc chlorides 54d furnished with 3-iodocyclohex-2-enone (58b) the 3-

substituted cyclohex-2-enone 56j in 96% yield within 15 h (entry 10). The high reactivity of 

benzylic zinc chlorides allowed an efficient addition to benzaldehydes in the absence of any 

catalyst. Thus, the benzylic alcohol 56k was obtained by the reaction of 3-bromobenzylzinc 

chloride (54e) with 3,4-dichlorobenzaldehyde (61b; 98% yield; entry 11). Moreover, Cu(I)-

mediated reactions of 54e with cyclopropylcarbonyl chloride (60c), 3,3-dimethylbutyryl chloride 

(60b) and cyclohex-2-enone (58a) provided the functionalized ketones 56l-n in 91-96% yield 

(entries 12-14). According to the reaction procedures described above, the 2-iodo-substituted 

benzylic zinc chloride 54f reacted with various electrophiles (61c, 58a, 55b) to the expected 

products 56o-q in 72-87% (entries 15-17). Finally, addition of 3-(trifluoromethyl)benzylzinc 

chloride 54g with benzothiophene-3-carbaldehyde (61d) furnished the heterocyclic benzylic 

alcohol 56r in 86% yield (entry 18). 

Also, electron-rich benzylic zinc chlorides such as 54h-l reacted smoothly with a range of 

electrophiles. Thus, the trimethoxy-substituted benzylic zinc chloride 54h underwent a smooth 

allylation with ethyl (2-bromomethyl)acrylate (55b; 0.8 equiv) in 1 h to give the allylated 

derivative 56s in 98% yield (entry 1 of Table 5). In an analogous manner, 4-methoxybenzylzinc 

chloride (54i) was allylated to afford the acrylate 56t in 97% yield (entry 2). After 

transmetalation using CuCN·2LiCl, acylation reaction of the electron-rich benzylic zinc chloride 
                                                 
76  (a) J. Villieras, M. Rambaud, Synthesis 1982, 11, 924; (b) J. Villieras, M. Rambaud, Org. Synth. 1988, 66, 220. 
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54j with the acid chloride 60d led to the desired ketone 56u within 21 h in 99% yield (entry 3). 

Similarly, 6-chloro-1,3-benzodioxol-5-ylmethylzinc chloride (54k) was readily acylated with 3,3-

dimethylbutyryl chloride (60b) providing the product 56v in 93% yield (entry 4). 4-

(Methylthio)benzylzinc chloride (54l) was also converted into the corresponding ketone 56w 

(71%; entry 5) in 4 h by using propionyl chloride (60e; 0.8 equiv) in the presence of CuCN·2LiCl 

(0.5 equiv). 

 

Table 5: Reactions of electron-rich benzylic zinc reagents 54h-l with different electrophiles. 

Entry Benzylic zinc 
chloride 

Electrophile Temperature 
(°C) / Time (h)  

Product Yield 
(%) a 

1 

54h 

 
55b 

-60 to 0 / 1 

56s 

98b 

2 

54i 
 

55b 
-40 to 0 / 1 

56t 

97b 

3 
 

54j  
60d 

-40 to 25 / 21 

 
56u 

99c 

4 
 

54k 
 

60b 
-60 to 25 / 15 

 
56v 

93c 

5 

 54l 
 

60e 
0 to 25 / 4 

 
56w 

71c 

[a] Yield of isolated analytically pure product. [b] Catalytic amounts of CuCN·2LiCl were used. [c] 
Stoichiometric amounts of CuCN·2LiCl were used. 

 

Benzylic zinc reagents 54m-n bearing an ester function in meta- or para-position reacted 

smoothly with various electrophiles. Thus, the reaction with 4-bromobenzaldehyde (61e; 

0.8 equiv) furnished the benzylic alcohol 56x in 91% yield (entry 1 of Table 6). Also, a 

copper(I)-mediated 1,4-addition of 3-(ethoxycarbonyl)benzylzinc chloride (54m) to cyclohex-2-

enone (58a; 0.8 equiv) with CuCN·2 LiCl (1.0 equiv) and TMSCl (2.0 equiv) led to the Michael 

adduct 56y in 97% yield (entry 2). Furthermore, reaction of 54m with thiophene-3-carbaldehyde 

(61f) and S-methyl methanesulfonothioate (57b) provided the functionalized products 56z-aa in 

88% yield (entries 3-4). A Cu(I)-mediated acylation reaction of 54n with the acid choride 60d led 
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to the desired ketone 56ab in 43% yield (entry 5). The use of the benzylic zinc reagent 54o, 

which bears a cyano group on the aromatic ring, towards a Pd-catalyzed cross-coupling reaction 

with 3-iodoanisole (4b; 0.8 equiv) provided the diarylmethane 56ac in 88% yield (entry 6). This 

benzylic zinc reagent was used to prepare various ketones in 78-97% yield (56ad-ae; entries 7 

and 8). Smooth reaction of the para-cyano-substituted benzylic zinc chloride 54p with ethyl (2-

bromomethyl)acrylate (55b) and S-(4-fluorophenyl) benzenesulfonothioate (57c) furnished the 

acrylate 56af and the thioether 56ag (81-95%, entries 9-10). 

 

Table 6: Reactions of ester, cyano and keto-substituted benzylic zinc reagents 54m-t with 
various electrophiles. 

Entry Benzylic zinc chloride Electrophile 
Temperature 

(°C) / Time (h) Product 
Yield 
(%) a 

1  
54m 

 61e 

25 / 4.5 

56x 

91 

2 54m 
 

58a 

-40 to 25 / 15 
 

56y 

97b 

3 54m 

 
61f 

25 / 22 
 

56z 

88 

4 54m 
 

57b 

25 / 25  
56aa 

88 

5 

54n 
60d 

-40 to 25 / 20 

56ab 

43b 

6  
54o 

 
4b 

60 / 5 

56ac 

88c 

7 54o 
 

58a 

-40 to 25 / 15 
 

56ad 

97b 

8 54o  
60b 

-60 to -20 / 15  
56ae 

78b 
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Table 6 continued 

9  
54p 

 
55b 

-60 to 0 / 1 
  

56af 

81d, e 

10 54p 

 
57c 

25 / 1.5 

 
56ag 

95 

11 
 

54q 
 

60f 

-20 / 15 
  

56ah 

85b 

12 54q 

61b 

25/ 5.5 

56ai 

95 

13 

 
54r 

 
60g 

-40 to 25 / 20 
 

56aj 

51b 

14 
 

54s 

 
55b 

-60 to 0 / 1 
  

56ak 

92d 

15 54s  
60b 

-60 to -20 / 15 
 

56al 

69b 

16 
  

54t 

 
60b 

-60 to -20 / 15 
 

56am 

74b 

17 54t  
55b 

-60 to 0 / 1 
  

56an 

97d 

18 54t 

61b 

25 / 3 

56ao 

82 

[a] Yield of isolated analytically pure product. [b] Stoichiometric amounts of CuCN·2LiCl and, in the case of 
1,4-additions, TMSCl were used. [c] Pd(PPh3)4 (2 mol%) was used. [d] Reaction performed in the presence of 
catalytic amounts of CuCN·2LiCl. [e] Reaction performed on a 8 mmol scale.  
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Notably, the keto group on the benzylic zinc reagents is compatible with various reactions such 

as allylation, acylation and nucleophilic attack on an aldehyde. Thus, the products 56ah-al were 

obtained in 51-95% yield after reactions with various electrophiles (entries 11-15). A Cu(I)-

mediated reaction of the acetyl-substituted benzylic zinc reagent 54t with 3,3-dimethylbutyryl 

chloride (60b) as well as a Cu(I)-catalyzed allylation using ethyl (2-bromomethyl)acrylate (55b) 

furnished the highly functionalized products 56am-an in 74-97% yield (entries 16-17). Finally, 

the addition of 3-acetylbenzylzinc chloride (54t) to 3,4-dichlorobenzaldehyde (61b) in the 

absence of any catalyst provided the benzylic alcohol 56ao within 3 h at 25 °C (82%; entry 18).  

By the copper(I)-mediated acylation reaction of benzylzinc chloride (54a) with benzoyl chloride 

(60f) benzyl phenyl ketone (56ap) was easily prepared in 92% yield (entry 1 of Table 7). 

Furthermore, benzylzinc chloride (54a) was allylated with ethyl (2-bromomethyl)acrylate (55b; 

0.8 equiv) to give the expected unsaturated ester 56aq (93%; entry 2). Acylation is also possible 

with the secondary benzylic zinc reagent 54u. Thus, reaction of 54u with 3,3-dimethylbutyryl 

chloride (60b; 0.7 equiv) in the presence of CuCN·2LiCl (1.0 equiv) gave the ketone 56ar in 

96% yield (entry 3). Also the secondary benzylic zinc reagent 54v is readily converted into the 

corresponding α,β-unsaturated ester 56as in 96% yield by allylic substitution reaction using ethyl 

(2-bromomethyl)acrylate (55b; entry 4). 

 

Table 7: Reactions of benzylzinc chloride (54a) and secondary benzylic zinc reagents 54u-v 
with different electrophiles. 

Entry 
Benzylic zinc 

chloride 
Electrophile 

Temperature 
(°C) / Time (h)  

Product Yield (%) a 

1  
54a  

60f 

-40 to 25 / 20 
 

56ap 

92b, c 

2 54a  
55b 

-60 to 0 / 1 
 

56aq 

93d 

3 
 

54u 

 
60b 

-60 to  25 / 15 
 

56ar 

96b 
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Table 7 continued 

4 
 

54v 

 
55b 

-60 to 0 / 1 
 

56as 

96d 

[a] Yield of isolated analytically pure product. [b] Stoichiometric amounts of CuCN·2LiCl were used. 
[c] 12 mmol scale. [d] Reaction performed in the presence of catalytic amounts of CuCN·2LiCl.  
 

Benzylic zinc reagents can also be used to prepare phenyl acetic acid derivatives which are useful 

intermediates and targets in pharmaceutical research.77 Two possible ways have been explored 

(Scheme 44). The first is a Pd-catalyzed acylation78 with ethyl chloroformate (60h) as an 

electrophile. Alternatively, a copper(I)-mediated acylation with ethyl cyanoformate (60i) as the 

electrophilic species was developed. Thus, Pd-catalyzed acylation of the benzylic zinc chloride 

54b with ethyl chloroformate (60h) in the presence of Pd(PPh3)4 (5 mol%) at 25 °C in 6.5 h led to 

the phenylacetic acid ethyl ester 62a in 81% yield. To perform the copper(I)-mediated reaction, it 

was essential to prepare the mixed diorganozinc compound of the type ArCH2ZnCH2SiMe3
79 by 

adding TMSCH2Li at -30 °C to 54b. After transmetalation to copper with CuCN·2LiCl and the 

addition of Mander’s reagent80 (ethyl cyanoformate; 60i), the expected ethyl phenylacetic ester 

62a was obtained in 77% yield. 

 

Scheme 44: Preparation of phenylacetic acid derivative 62a by either Pd-catalyzed or  

  copper(I)-mediated acylation reaction. 
 

In a similar manner, the phenylacetic acid derivative 62b was smoothly prepared by the Pd-

catalyzed reaction of 3-(ethoxycarbonyl)benzylzinc chloride (54m) with ethyl chloroformate 

(60h) on a 10 mmol scale (76%, entry 1 of Table 8). 

                                                 
77 A. Garcia Martinez, A. Herrera Fernandez, D. Molero Vilchez, M. L. Laordon Gutiérrez, L. R. Subramanian, 
Synlett 1993, 229 (and references cited therein). 
78 E. Negishi, V. Bagheri, S. Chatterjee, F.-T. Luo, J. A. Miller, A. T. Stoll, Tetrahedron Lett. 1983, 24, 5181. 
79 ArCH2ZnCl is not reactive enough and the mixed reagent ArCH2ZnCH2SiMe3 gives better results; see also: S. 
Berger, F. Langer, C. Lutz, P. Knochel, T. A. Mobley, C. K. Reddy, Angew. Chem. Int. Ed. 1997, 36, 1496. 
80 L. N. Mander, S. P. Sethi, Tetrahedron Lett. 1983, 24, 5425. 
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Table 8: Preparation of phenylacetic acid derivatives of type 62. 

Entry Benzylic zinc chloride Electrophile 
Temperature 

(°C) / Time (h)  Product 
Yield 
(%) a 

1 

54m 
 

60h 
25 / 6 

62b 

76b, c 

2  
54f 

 
60i 

0 / 6 
 

62c   

59d 

[a] Yield of isolated analytically pure product. [b] Pd(PPh3)4 (2.5 mol%) was used. [c] Reaction performed in a 
10 mmol scale. [d] After transmetalation using LiCH2TMS, stoichiometric amounts of CuCN·2LiCl were used; 
reaction scale: 5 mmol. 

 

Furthermore, copper(I)-mediated acylation reaction of 2-iodobenzylzinc chloride (54f) with ethyl 

cyanoformate (60i) led to the phenylacetic ester derivative 62c in 59% yield (entry 2). 

 

1.1.4. Synthesis of papaverine 

As an application, the alkaloid papaverine (63; 1-(3,4-dimethoxybenzyl)-6,7-

dimethoxyisoquinoline) was synthesized. Papaverine81 is primarily used for the treatment of 

vasospasm81k and was isolated from Papaver somniferum in 1848.81l 

The synthesis started with a condensation reaction of 3,4-dimethoxybenzaldehyde (60h) with 

aminoacetaldehyde dimethylacetal to provide the imine 64 within 6 h in quantitative yield 

(Scheme 45). Reduction of 64 led to the benzylic amine 65 in 86% yield. Protection of the amino 

function using tosyl chloride furnished the sulfonamide 66 in 99% yield. Subsequent Pomeranz-

Fritsch reaction provided 6,7-dimethoxyisoquinoline (67) within 22 h in 86% yield.82 

                                                 
81 (a) H. P. Schmauder, D. Gröger, H. Grüner, D.  Lohmann, Pharmazie 1988, 43, 313; (b) A. Buzas, J.-Y. Merour, 
G. Lavielle, Heterocycles 1985, 23, 2561; (c) I. D. Rae,  P. M. Simmonds, Aust. J. Chem. 1987, 40, 915; (d) A. R. de 
Lera, S. Aubourg, R. Suau, L. Castedo, Heterocycles 1987, 26, 675; (e) N. P. Peet, G. L. Karrick, R. J. Barbuch, J. 
Heterocycl. Chem. 1987, 24, 715; (f) J. R. Falck, S. Manna, J. Org. Chem. 1981, 46, 3742; (g) A. Pictet, M. 
Finkelstein, Ber. Dtsch. Chem. Ges. 1909, 42, 1979; (h) F. D. Popp, W. E. McEwen, J. Am. Chem. Soc. 1957, 79, 
3773; (i) C. D. Gilmore, K. M. Allan, B. M. Stoltz, J. Am. Chem. Soc. 2008, 130, 1558; (j) R. Hirsenkorn, 
Tetrahedron Lett. 1991, 32, 1775; (k) H.-M. Liu, Y.-K. Tu, J. Clin. Neurosci. 2002, 9, 561; (l) For the isolation of 
papaverine: G. Merck, Liebigs Ann. Chem. 1848, 66, 125. 
82  (a) A. Ioanaviciu, S. Antony, Y. Pommier, B. L. Staker, L. Stewart, M. Cushman, J. Med. Chem. 2005, 48, 4803; 
(b) D. L. Boger, C. E. Brotherton, M. D. Kelley, Tetrahedron 1981, 37, 5181; (c) J. B. Henderickson, C. Rodriguez, 
J. Org. Chem. 1983, 48, 3344; (d) N. Saito, C. Tanaka, T. Satomi, C. Oyama, A. Kubo, Chem. Pharm. Bull. 2004, 
52, 282. 
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Scheme 45: Preparation of 2-iodo-6,7-dimethoxyisoquinoline (68). 
 

Magnesiation of 67 with TMPMgCl·LiCl83 (TMP = 2,2,6,6-tetramethylpiperidyl) at 25 °C for 

4 h, followed by iodolysis provided the iodo-substituted isoquinoline 68 in 73% yield. The 

preparation of the second intermediate for the papaverine synthesis started with the conversion of 

3,4-dimethoxybenzyl alcohol (69) to the corresponding benzylic chloride 53w (Scheme 46). 

Thus, reaction of 69 with LiCl, NEt3 and mesyl chloride furnished the chloride 53w in 69% yield 

within 15 h. Direct zinc insertion into 53w in the presence of LiCl within 4 h provided 3,4-

dimethoxybenzylzinc chloride (54w) in 72% yield. In order to receive a good yield of 54w, it was 

crucial to use four equivalents of zinc and LiCl for the zinc insertion. 

 

 

Scheme 46: Preparation of 3,4-dimethoxybenzylzinc chloride (54w). 
 

                                                 
83 A. Krasovskiy, V. Krasovskaya, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 2958. 
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The last step for the papaverine (63) synthesis included a Pd-catalyzed cross-coupling reaction of 

the benzylic zinc chloride 54w and iodo-substituted isoquinoline 68 using Pd(OAc)2 (2.5 mol%) 

and S-Phos84 (5.0 mol%) as catalytic system (Scheme 47). Thus, papaverine (63) was provided 

within 1.25 h at 25 °C in 68% yield over 8 steps (longest linear sequence: 6 steps).85 

 

 

Scheme 47: Synthesis of papaverine (63) by Pd-catalyzed cross-coupling reaction. 
 

1.2. Efficient Nickel-catalyzed cross-coupling reactions of benzylic zinc chloride with 
aromatic halides 

1.2.1. Introduction 

Diarylmethanes are important subunits in organic synthesis as well as in pharmaceutically 

important molecules and therefore recently received a lot of attention.86 By example, beclobrate 

(69) is a potent triglyceride- and cholesterol-lowering substance (Scheme 48).87 Moreover, N,N-

diethyl-2-[(4-phenylmethyl)phenoxy]ethanamine·hydrochloride (DPPE) (70) is a specific ligand 

for the anti-estrogen binding site (AEBS) and is now in clinical phase III trials for the treatment 

of chemotherapeutically refractive cancers.88 

                                                 
84  (a) M. D. Charles, P. Schultz, S. L. Buchwald, Org. Lett. 2005, 7, 3965; (b) K. W. Anderson, R. E. Tundel, T. 
Ikawa, R. A. Altman, S. L. Buchwald, Angew. Chem. Int. Ed. 2006, 45, 6523; (c) T. E. Barder, S. L. Buchwald, Org. 
Lett. 2004, 6, 2649. 
85 The copper-catalyzed cross-coupling with the magnesiated isoquinoline (67) and 3,4-dimethoxybenzyl chloride 
(53w) did not provide the expected papaverine (63). 
86 (a) T. A. Chappie, J. M. Humphrey, M. P. Allen, K. G. Estep, C. B. Fox, L. A. Lebel, S. Liras, E. S. Marr, F. S. 
Menniti, J. Pandit, C. J. Schmidt, M. Tu, R. D. Williams, F. V. Yang, J. Med. Chem. 2007, 50, 182; (b) L.-W. Hsin, 
C. M. Dersch, M. H. Baumann, D. Stafford, J. R. Glowa, R. B. Rothman, A. E. Jacobson, K. C. Rice, J. Med. Chem. 
2002, 45, 1321; (c) P. D. Leeson, J. C. Emmett, V. P. Shah, G. A. Showell, R. Novelli, H. D. Prain, M. G. Benson, 
D. Ellis, N. J. Pearce, A. H. Underwood, J. Med. Chem. 1989, 32, 320; (d) J. S. Wai, M. S. Egbertson, L. S. Payne, 
T. E. Fisher, M. W. Embrey, L. O. Tran, J. Y. Melamed, H. M. Langford, J. P. Guare, Jr, L. Zhuang, V. E. Grey, J. P. 
Vacca, M. K. Holloway, A. M. Naylor-Olsen, D. J. Hazuda, P. J. Felock, A. L. Wolfe, K. A. Stillmock, W. A. 
Schleif, L. J. Gabryelski, S. D. Young, J. Med. Chem. 2000, 43, 4923. 
87 (a) C. Wanner, H. Wieland, P. Schollmeyer, W. H. Hörl, Eur. J. Clin. Pharmacol. 1991, 40, 85; (b) J. Kischel, I. 
Jovel, K. Mertins, A. Zapf, M. Beller, Org. Lett. 2006, 8, 19. 
88 (a) M. Poirot, P. De Medina, F. Delarue, J.-J. Perie, A. Klaebe, J.-C. Faye, Bioorg. Med. Chem. 2000, 8, 2007; (b) 
C. C. Teo, O. L. Kon, K. Y. Sim, S. C. Ng, J. Med. Chem. 1992, 35, 1330. 
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Scheme 48: Selected diarylmethane derivatives.  
 

A common way for the preparation of various diarylmethane derivatives is the addition of an 

organometallic species to functionalized benzaldehydes followed by subsequent reduction.89 

Alternative ways for their formations are on the one hand transition-metal catalyzed reactions of 

a benzylic organometallic reagent and an aromatic halide (pathway A, Scheme 49). 90 On the 

other hand, aromatic organometallics can be cross-coupled under transition metal catalysis with 

benzylic halides leading to functionalized diarylmethanes (pathway B, Scheme 49).91  

 

 

Scheme 49: Preparation of diarylmethane derivatives by various possible cross-couplings.  
 

Since the first reported cross-coupling reaction of benzylic zinc bromides under Ni catalysis92 

only a few examples for diarylmethane synthesis have been reported using benzylic zinc halides 

under transition metal catalysis.58c, 93 

                                                 
89 (a) Y.-Q. Long, X.-H. Jiang, R. Dayam, T. Sanchez, R. Shoemaker, S. Sei, N. Neamati, J. Med. Chem. 2004, 47, 
2561; (b) X. Wu, A. K. Mahalingam, M. Alterman, Tetrahedron Lett. 2005, 46, 1501. 
90 (a) Y. Suh, J. Lee, S.-H. Kim, R. D. Rieke, J. Organomet. Chem. 2003, 684, 20; (b) S. Y. Park, M. Kang, J. E. Yie, 
J. M. Kim, I.-M. Lee, Tetrahedron Lett. 2005, 46, 2849; (c) A. Flaherty, A. Trunkfield, W. Barton, Org. Lett. 2005, 
7, 4975; (d) A. Garcia Martinez, J. Osio Barcina, M. del Rosario Colorado Heras, A. de Fresno Cerezo, Org. Lett. 
2000, 2, 1377.  
91 (a) M. Amatore, C. Gosmini, Chem. Commun. 2008, 5019; (b) C. C. Kofink, P. Knochel, Org. Lett. 2006, 8, 4121; 
(c) R. Kuwano, M. Yokogi, Chem. Commun. 2005, 5899; (d) L. Chahen, H. Doucet, M. Santelli, Synlett 2003, 1668; 
(e) S. Langle, M. Abarbri, A. Duchene, Tetrahedron Lett. 2003, 44, 9255; (f) B. P. Bandgar, S. V. Bettigeri, J. 
Phopase, Tetrahedron Lett. 2004, 45, 6959; (g) S. M. Nobre, A. L. Monteiro, Tetrahedron Lett. 2004, 45, 8225. 
92 E. Negishi, A. O. King, N. Okukado, J. Org. Chem. 1977, 42, 1821. 
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1.2.2. Ni-catalyzed cross-coupling reactions with benzylic zinc chlorides using 
Ni(acac)2/PPh3 

Nickel catalysts are significantly cheaper than palladium catalysts. Therefore, a cross-coupling 

reaction of benzylic zinc chlorides of type 54 with aromatic bromides and chlorides of type 71a-e 

based on nickel as catalytic source was developed (Scheme 50).  
 

 

Scheme 50: Nickel-catalyzed cross couplings of benzylic zinc chlorides with aromatic halides. 
 

By screening of several catalytic systems, Ni(acac)2 (0.5 mol%) combined with PPh3 (2 mol%) in 

a THF:NMP = 4:1 mixture at 60 °C was found to be the most efficient system.94 Using this cheap 

and convenient catalytic system, it was possible to synthesize various functionalized 

diarylmethanes of type 72 (Table 9). 
  

Table 9: Reaction of functionalized benzylic zinc chlorides with various aromatic and hetereo-
aromatic bromides and chlorides under Nickel catalysis. 

Entry Benzylic zinc chloride Electrophile Time (h)a Product Yield 
(%) b 

1 
 

54c  
71a 

3 
 

72a 

78 

2 

54m  
71b 

4 

72b 

45 

3  
54o  

71a 

4 
 

72c 

43 

      

                                                                                                                                                              
93 (a) J. E. Utas, B. Olofsson, B. Akermark, Synlett 2006, 1965; (b) B. Betzemeier, P. Knochel, Angew. Chem. Int. 
Ed. 1997, 36, 2623; c) For a review of the activation of benzylic derivatives by Pd-catalysis, see: B. Liegault, J.-L. 
Renaud, C. Bruneau, Chem. Soc. Rev. 2008, 37, 290. 
94 Screening of the catalytic systems was done by M. A. Schade. For further information, see: Ph.D. thesis M. A. 
Schade, Ludwig-Maximilians-University, Munich. 
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Table 9 continued 

4 

54s 
 

71c 

6 
 

72d 

71 

5 

54t 71d 

16 

72e 

51 

6 
 

54u 71e 

12 
  

72f 

95 

[a] Reaction time for the Ni-catalyzed cross-couplings at 60 °C. [b] Yield of isolated analytically pure product. 

 

Thus, the Ni-catalyzed cross coupling reaction of 4-fluorobenzylzinc chloride (54c) with ethyl 2-

chloronicotinate (71a) furnished the heterodiarylmethane 72a within 3 h in 78% yield (entry 1 of 

Table 1). A smooth reaction of 3-(ethoxycarbonyl)benzylzinc chloride (54m) with the aromatic 

bromide 71b led to the trisubstituted diarylmethane 72b in 45% yield (entry 2). Similarly, 3-

cyanobenzylzinc chloride (54o) provided after Ni-catalyzed cross-coupling reaction with ethyl 2-

chloronicotinate (71a) the nicotinic acid derivative 72c in 43% yield (entry 3). Furthermore, the 

benzylic zinc reagent 54s reacted with 2-chlorobenzonitrile (71c) within 6 h giving the keto-

substituted diarylmethane derivate 72d in 71% yield (entry 4). In an analogous manner, 3-

acetylbenzylzinc chloride (54t) readily provided after easily cross-coupling reaction with ethyl 3-

bromobenzoate (71d) the expected product 72e in 51% yield. Finally, Ni-catalyzed cross-

coupling reaction of the secondary benzylic zinc reagent 54u with ethyl 4-bromobenzoate (71e) 

led to the diarylmethane compound 72f in 95% yield (entry 6). 

 

1.3. Pd-catalyzed cross-couplings of benzylic zinc chlorides with unsaturated bromides 
bearing relatively acidic protons 

Several bioactive substances bear relatively acidic functions like amines and alcohols combined 

with the benzyl moiety (Scheme 51). For example, the oxadiazole amine derivative S10087 (73) 

containing a dimethoxy-substituted benzylic group is a known library substance showing anti-

HIV activity.95 Moreover, xylometazoline (74) acts as vasoconstrictor. 96 Its structural backbone 

                                                 
95 G. Barreiro, J. T. Kim, C. R. W. Guimaraes, C. M. Bailey, R. A. Domaoal, L. Wang, K. S. Anderson, W. L. 
Jorgensen, J. Med. Chem. 2007, 50, 5324. 
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is based on a benzylimidazoline containing a secondary amine function. Dapagliflozin (75) is a 

new potent inhibitor for the treatment of type 2 diabetes that contains a sugar scaffold condensed 

with a functionalized diarylmethane motive.97  Finally, clofoctol (76), a benzylic phenol 

derivative, is widely used as antibacterial.98  

 

 

Scheme 51: Bioactive substances containing relatively acidic protons and the benzyl moiety. 
 

To construct such molecules these sensitive functions are usually protected. Therefore, a classical 

natural product synthesis often contains several protection and deprotection steps which lengthen 

the linear sequence and cause additional costs and chemical waste. Although organoboronic acids 

are common reagents for cross-coupling reactions with organic halides bearing sensitive acidic 

functions99 due to their air-stability as well as their commercial availability, there are still several 

disadvantages related to these organometallics. One is their tendency to form non-stoichiometric 

admixtures of boroxines. Moreover, harsher reaction conditions are required for organoboron 

compounds than for the related Negishi cross-couplings. 100 Recently, it was shown that benzylic 

zinc reagents posses remarkably low basicity.101 Therefore, Pd-catalyzed cross-coupling reactions 

using benzylic zinc chlorides of type 54c with unsaturated bromides in the presence of an amino- 

as well as an alcohol function were successfully performed (Scheme 52). 

 

                                                                                                                                                              
96 A. G. van Velzen, A. J. H. P. van Riel, C. Hunault, T. E. van Riemsdijk, I. de Vries, J. Meulenbelt, Clin. Toxicol. 
2007, 45, 290. 
97 W. Meng, B. A. Ellsworth, A. A. Nirschl, P. J. McCann, M. Patel, R. N. Girotra, G. Wu, P. M. Sher, E. P. 
Morrison, S. A. Biller, R. Zahler, P. P. Deshpande, A. Pullockaran, D. L. Hagan, N. Morgan, J. R. Taylor, M. T. 
Obermeier, W. G. Humphreys, A. Khanna, L. Discenza, J. G. Robertson, A. Wang, S. Han, J. R. Wetterau, E. B. 
Janovitz, O. P. Flint, J. M. Whaley, W. N. Washburn, J. Med. Chem. 2008, 51, 1145. 
98 M. Del Tacca, R. Danesi, S. Senesi, M. Gasperini, A. Mussi, C. A. Angeletti, J. Antimicrob. Chemother. 1987, 19, 
679. 
99 E. Bey, S. Marchais-Oberwinkler, M. Negri, P. Kruchten, A. Oster, T. Klein, A. Spadaro, R. Werth, M. Frotscher, 
B. Birk, R. W. Hartmann, J. Med. Chem. 2009, 52, 6724. 
100 Selected publication highlighting problems using organoboronic reagents: T. Watanabe, N. Miyaura, A. Suzuki, 
Synlett 1992, 207. 
101 G. Manolikakes, M. A. Schade, C. Munoz Hernandez, H. Mayr, P. Knochel, Org. Lett. 2008, 10, 2765. 
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Scheme 52: Pd-catalyzed cross-couplings of benzylic zinc reagents with unsaturated halides 
bearing relatively acidic protons. 

 

Thus, reaction of 4-fluorobenzylzinc chloride (54c) with N-(2-bromoprop-2-en-1-yl)aniline (77a) 

provided the cross-coupling product 78a within 24 h in 61% yield without prior protection of the 

aniline function (entry 1 of Table 10). Similarly, 3-(trifluoromethyl)benzylzinc chloride (54g) led 

to the aniline derivative 78b in 87% yield (entry 2). Smooth Pd-catalyzed cross-coupling reaction 

of 4-methoxybenzylzinc chloride (54i) with 4-bromo-2-chloroaniline (77b) provided the desired 

diarylmethane 78c in 77% yield (entry 3).  

 

Table 10: Cross-couplings of benzylic zinc reagents with various bromo-aniline derivatives. 

Entry Benzylic zinc chloride Electrophile Time (h)a Product Yield (%)b 

1 
 

54c 
 

77a 

24 
 

78a 

61 

2 

54g 
77a 8  

78b 

87 

3  
54i 

 
77b 

6.25 
 

78c 

77 

[a] All reactions were performed at 25 °C. [b] Yield of isolated analytically pure product.  

 

This protocol allowed also the tolerance of more acidic functions than the amine function present 

in anilines. Thus, cross-coupling reaction of the benzylic zinc reagent 54h with 4-bromophenol 

(77c) provided the expected product in 42% yield (entry 1 of Table 11). Furthermore, 3-

cyanobenzylzinc chloride (54o) was smoothly reacted with 4-bromobenzyl alcohol (77d) within 

1.5 h leading to the desired product 78e in 84% yield (entry 2). 
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Table 11: Cross-couplings of benzylic zinc reagents with different alcohol derivatives. 

Entry Benzylic zinc chloridea Electrophile Time (h)b Product Yield (%)c 

1 

54h 
 

77c 
1.5 

 
78d 

42 

2  
54o 77d 

1.5 

78e 
84 

[a] The benzylic zinc reagent was slowly added over a period of 90 min using a syringe pump. [b] All reactions were 
performed at 25 °C. [c] Yield of isolated analytically pure product.  
 

1.4. Palladium-catalyzed one-pot reaction of in situ generated benzylic zinc chlorides with 
aromatic bromides 

1.4.1. Introduction 

Transition metal-catalyzed reactions are among the most important reactions for carbon-carbon 

bond formation.3b Especially, palladium-catalyzed reactions have found numerous 

applications.102 One of the main advantages for the Suzuki cross-coupling reaction is the use of 

air and moisture stable boronic acids and their derivatives. On the other hand, an important 

limitation of these boronic compounds is their preparation requiring the corresponding 

magnesium or lithium species which limits the presence of functional groups.103 Organozinc 

reagents display much higher reactivity in Pd-catalyzed cross-coupling reactions.104 Moreover, 

these reagents can be prepared in the presence of sensitive functional groups. A major drawback 

of these organometallics is the instability towards air and moisture.16 

In initial experiments, ethyl 4-iodobenzoate (4a; 1.0 equiv) was treated with zinc dust (1.5 equiv) 

and LiCl (1.5 equiv) in THF. 105 The zinc reagent 5a was obtained within 10 h at 50 °C (> 98% 

conversion, Scheme 53). Then, 3-bromobenzonitrile (71f; 0.8 equiv) and PEPPSI-IPr106 

(0.5 mol %) were added. After 1.5 h of reaction time at 25 °C, ethyl 3'-cyanobiphenyl-4-

                                                 
102 J. Tsuji, Palladium Reagents and Catalysts, Innovations in Organic Synthesis, Wiley: New York, 1995. 
103 (a) N. Miyaura, Advances in Metal-Organic Chemistry, Vol. 6, L. S. Liebeskind, Ed., JAI: London, 1998, 187; (b) 
S. V. Ley, A. W. Thomas, Angew. Chem. Int. Ed. 2003, 42, 5400; (c) A. F. Littke, G. C. Fu, Angew. Chem. Int. Ed. 
2002, 41, 4176. 
104 E. Negishi, Metal-Catalyzed Cross-Coupling Reactions, 2nd ed., A. de Meijere, F. Diederich, Eds., Wiley-VCH: 
Weinheim, 2004. 
105 The experiment was performed by Dr. Shohei Sase and Milica Jaric and is given here for the sake of 
completeness. For further information, see: diploma thesis M. Jaric, LMU Munich, 2007. 
106  PEPPSI = pyridine-enhanced precatalyst preparation, stabilization and initiation; IPr = diisopropylphenyl-
imidazolium derivative. 
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carboxylate (79) was obtained in 83% isolated yield without prior removal of the excess of zinc 

powder.  

 

 

Scheme 53: Preliminary experiments of one-pot Negishi cross-coupling reaction using the 
palladium catalyst PEPPSI-IPr. 

 

The palladium catalyst PEPPSI-IPr, introduced by Organ, displays a broader applicability 

compared to common catalysts like Pd(PPh3)4.
107 This catalyst is easily synthesized and air-

stable. Moreover, shorter reaction times and higher yields are generally observed.  

 

1.4.2. PEPPSI-IPr catalyzed cross-coupling reactions of benzylic zinc chlorides with aryl 
bromides in the presence of zinc dust 

The preparation of functionalized benzylic zinc chlorides of type 54 and subsequent cross-

coupling reactions in a one-pot fashion facilitates the handling of these water and air-sensitive 

organozinc intermediates. In situ generated polyfunctional benzylic zinc reagents 54c-u obtained 

by the addition of zinc and LiCl to the corresponding benzylic chlorides 53c-u smoothly 

underwent Pd(0)-catalyzed cross-coupling reactions with aryl bromides 71b-k in the presence of 

PEPPSI-IPr as catalyst (Scheme 54).  

                                                 
107 (a) C. J. O’Brien, E. A. B. Kantchev, C. Valente, N. Hadei, G. A. Chass, A. Lough, A. C. Hopkinson, M. G. 
Organ, Chem. Eur. J. 2006, 12, 4743; (b) M. G. Organ, S. Avola, I. Dubovyk, N. Hadei, E. A. B. Kantchev, C. J. 
O’Brien, C. Valente, Eur. J. Chem. 2006, 12, 4749; (c) For the use of PEPPSI-IPr, see also: (i) M. G. Organ, M. 
Abdel-Hadi, S. Avola, I. Dubovyk, N. Hadei, E. A. B. Kantchev, C. J. O’Brien, M. Sayah, C. Valente, Chem. Eur. J. 
2008, 14, 2443; (ii) M. G. Organ, M. Abdel-Hadi, S. Avola, N. Hadei, J. Nasielski, C. J. O’Brien, C. Valente, Chem. 
Eur. J. 2007, 13, 150; (iii) G. Shore, S. Morin, D. Mallik, M. G. Organ, Chem. Eur. J. 2008, 14, 1351; (iv) C. 
Valente, S. Baglione, D. Candito, C. J. O’Brien, M. G. Organ, Chem. Commun. 2008, 735. 
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Scheme 54: Cross-couplings of benzylic zinc chlorides with aromatic bromides  

    using PEPPSI-IPr. 

  
Very low catalyst loadings are sufficient (0.25 mol%) to perform these cross-coupling reactions. 

Thus, 4-fluorobenzyl chloride (53c) was readily converted to the corresponding benzylic zinc 

intermediate 54c within 24 h at 25 °C. Subsequent cross-coupling reaction with methyl 2-

bromobenzoate (71g; 0.5 equiv) furnished the desired diarylmethane 80a in 96% yield (entry 1 of 

Table 12). Similarly, reaction of 3,4,5-trimethoxybenzyl chloride (53h) with zinc dust (1.5 equiv) 

and LiCl provided the desired benzylic zinc reagent 54h within 4 h (entry 2). Pd-catalyzed cross-

coupling with 4-bromobenzonitrile (71h) led to the expected product 80b in 99% yield. 

Moreover, 3-(ethoxycarbonyl)- as well as 3-cyano-substituted benzylic chlorides 53m-o were 

smoothly converted to the corresponding benzylic zinc chlorides 54m-o which led, after Pd-

catalyzed cross-couplings with different aromatic bromides 71b and 71i, to the diarylmethanes 

80c-d (entry 3 and 4). Several keto-functions present on benzylic chlorides can be tolerated by 

this protocol. Thus, direct zinc insertion into 3-pentanoylbenzyl chloride (53q) provided the 

desired benzylic zinc chloride intermediate 54q. After one-pot Pd-catalyzed cross-coupling with 

ethyl 3-bromobenzoate (71d), the disubstituted diarylmethane 80e was obtained within 2 h in 

92% yield (entry 5). Similarly, 3-propionylbenzyl chloride (53s) led to 3'-propionylbiphenyl-4-

carbonitrile (80f) in 79% yield (entry 6). In an analogous manner, 3-acetylbenzyl chloride (53t) 

was smoothly converted to the corresponding zinc intermediate 54t by direct zinc insertion within  
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4 h. Subsequent cross-couplings in a one-pot fashion with either 1-bromo-3-

(trifluoromethyl)benzene (71j), ethyl 4-bromobenzoate (71e) or 1-bromo-3-methoxybenzene 

(71k) led to the desired diarylmethanes 80g-i in 60-94% yield (entries 7-9). Finally, the 

secondary benzylic chloride 53u was easily converted to the corresponding secondary benzylic 

zinc intermediate 54u which provided after Pd-catalyzed cross-coupling reaction with 4-

bromobenzonitrile (71h) the expected 1,1-diarylethane derivative 80j in 94% yield (entry 10). 

 

Table 12: PEPPSI-IPr catalyzed cross-coupling reaction of in situ generated benzylic zinc 
chlorides 54 with aromatic bromides 71 at 25 °C. 

Entry Benzylic chloridea Electrophile Time 
(h)b 

Product Yield (%) c 

1 
 

53c (25 °C, 24 h)  
71g 

24 
 

80a 

96d 

2 
 

53h (25 °C, 4 h) 
 

71h 

15 
 

80b 

99e 

3  
53m (25 °C, 4 h)f 

 
71i 

4 
 

80c 

94d 

4  
53o (25 °C, 3.5 h)  

71b 

15.5 
 

80d 

85d 

5 
 

53q (25 °C, 4 h) 71d 

2 
 

80e 

92e 

6 
 

53s (25 °C, 4 h) 
 

71h 

2 
  

80f 

79e 

7 
 

53t (25 °C, 4 h) 

 
71j 

5 
 

80g 

86e 

8 53t 

71e 

2 

 
80h 

94e 
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Table 12 continued 

9 53t  
71k 

5 
 

80i 

60e 

10 
 

53u (25 °C, 15 h) 

 

 
71h 

8 
 

80j 

94d 

[a] Reaction conditions for the zinc insertion are given using Zn (1.5 equiv), LiCl (1.5 equiv). [b] Reaction time 
for the Pd-catalyzed cross-couplings at 25 °C. [c] Yield of isolated analytically pure product. [d] 0.6 equivalents 
of the electrophile were used. [e] 0.5 equivalents of the electrophile were used. [f] Zn (2.0 equiv), LiCl 
(2.0 equiv) were used for the insertion step.  

 
1.5. Preparation of diheterobenzylic zinc reagents and heterobenzylic zinc chlorides  

1.5.1. Introduction 

The heteromethylene group is also a present motive in several natural products as well as in lead 

structures for pharmaceuticals and therefore an interesting research target is the preparation of 

heterobenzylic zinc reagents (Scheme 55). 

 

 

Scheme 55: Heterobenzylic groups present in various bioactive compounds. 
 

Thus, Tsitsikammafuran (81), extracted from Dysidea sponge in a very low yield (0.8 mg, 

0.0004% dry wt. of sponge), bears a heterobenzylic furan scaffold.108 Furthermore, lead structure 

RWJ 3720 (82) is a potent antinociceptive agent which showed a good binding at the α2D 

adrenergic receptor (Ki = 18 nM).109 Also the isoquinolylmethyl derivate 83 was found to be a 

                                                 
108 K. L. McPhail, D. E. A. Rivett, D. E. Lack, M. T. Davies-Coleman, Tetrahedron 2000, 56, 9391. 
109 (a) T. M. Ross, M. C. Jetter, M. E. McDonnell, R. E. Boyd, Charlene D. Connelly, R. P. Martinez, M. A. Lewis, 
E. E. Codd, R. B. Raffa, A. B. Reitz, J. Med. Chem. 2000, 43, 1423; (b) R. E. Boyd, C. Royce Rasmussen, J. B. 
Press, R. B. Raffa, E. E. Codd, C. D. Connelly, Q. S. Li, R. P. Martinez, M. A. Lewis, H. R. Almond, A. B. Reitz, J. 
Med. Chem. 2001, 44, 863. 
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highly active inhibitor of human platelet phosphodiesterase 5 (PDE5).110 It structural motive is 

based on a heterobenzylic isoquinoline group attached to a dihydropurindione core. 

 

1.5.2. Preparation of heterobenzylic zinc reagents and further reactions 

Heterobenzylic zinc reagents were prepared by two different methods. The first possibility for the 

preparation of these zinc reagents was the direct metalation using the mild base 

TMP2Zn·2MgCl2·2LiCl.29, 111 Therefore, methyl-substituted heteroaromatics were smoothly 

deprotonated to furnish the heterobenzylic zinc reagent 84 (Scheme 56). However, to succeed in 

the formation of the heterobenzylic zinc reagent it is crucial that the methyl group is in activated 

position to the nitrogen atom (2- or 4-position of the pyridine ring).  

 

 

Scheme 56: General preparation of bis-heterobenzylic zinc reagents by direct metalation using 
TMP2Zn·2MgCl2·2LiCl. 

 
Thus, 2-chloro-4-methylpyridine (85) was easily metalated using TMP2Zn·2MgCl2·2LiCl 

(0.6 equiv) within 3 h at 0 °C (Scheme 57). Transmetalation of the bis-heterobenzylic zinc 

reagent 86 with CuCN·2LiCl and subsequent acylation using benzoyl chloride (60f) furnished the 

heterocyclic ketone 87 in 60%. Moreover, the zinc reagent 86 was smoothly allylated with ethyl 

(2-bromomethyl)acrylate (55b) under Cu(I)-catalysis to provide the desired product 88 in 98% 

yield.  

                                                 
110 N. J. Arnold, R. Arnold, D. Beer, G. Bhalay, S. P. Collingwood, S. Craig, N. Devereux, M. Dodds, A. R. Dunstan, 
R. A. Fairhurst, D. Farr, J. D. Fullerton, A. Glen, S. Gomez, S. Haberthuer, J. D. I. Hatto, C. Howes, D. Jones, T. H. 
Keller, B. Leuenberger, H. E. Moser, I. Muller, R. Naef, P. A. Nicklin, D. A. Sandham, K. L. Turner, M. F. Tweed, 
S. J. Watson, M. Zurini, Bioorg. Med. Chem. Lett. 2007, 17, 2376. 
111 For metalation of picoline derivatives, see: (a) T. Kaminski, P. Gros, Y. Fort, Eur. J. Org. Chem. 2003, 3855; (b) 
F. A. Davis, J. Y. Melamed, S. S. Sharik, J. Org. Chem. 2006, 71, 8761. 
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Scheme 57: Preparation of bis[(2-chloropyridin-4-yl)methyl]zinc (86) and subsequent reactions 
with different electrophiles. 

 
Also a direct addition of the pyridyl-substituted zinc reagent 86 to benzaldehyde (61g) in the 

absence of any catalyst led to the heterobenzylic alcohol 89 within 4.5 h in 97% yield. 

However, the preparation of heterobenzylic zinc reagents by direct metalation reaction with 

TMP2Zn·2MgCl2·LiCl totally fails in the case of unactivated methyl group such as in the case of 

3-picoline.112 Therefore, a zinc insertion into heterobenzyl chlorides was developed. Thus, direct 

zinc insertion in the presence of LiCl into 2-chloro-5-(chloromethyl)pyridine (90a) led smoothly 

to the corresponding heterobenzylic zinc chloride 91a within 2.5 h in 78% yield (Scheme 58). 

 

NCl

Cl

NCl

ZnCl·LiCl
Zn (1.5 equiv)
LiCl (1.5 equiv)

THF, 25 °C, 2.5 h

90a 91a: 78%  

Scheme 58: Preparation of (6-chloropyridin-3-yl)methylzinc chloride (91a).18 

                                                 
112 For metalation of 3-picoline derivatives with strong bases, see: (a) A. D. Miller, R. Levine, J. Org. Chem. 1959, 
24, 1364; (b) M. Albrecht, C. Riether, Synlett 1995, 309; (c) E. D. Kaiser, J. D. Petty, Synthesis 1975, 705. 
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The chloro-substituent in 2 position is absolutely crucial for the formation of the heterobenzylic 

zinc reagent 91a. Direct zinc insertion into (3-chloromethyl)pyridine led only to decomposition 

probably due to direct alkylation reactions of the starting material. 

Moreover, reaction of 4-(chloromethyl)-3,5-dimethylisoxazole (90b) with commercially available 

zinc dust in the presence of LiCl provided the expected heterobenzylic zinc reagent 91b within 

4.5 h in 90% yield (Scheme 59). 

 

 

Scheme 59: Preparation of (3,5-dimethylisoxazol-4-yl)methylzinc chloride (91b).18 
 

These new heterobenzylic zinc reagents, prepared by direct zinc insertion into the corresponding 

heterobenzylic chlorides were reacted with various electrophiles. 

 

 

Scheme 60: Reaction of heterobenzylic zinc reagents with various electrophiles. 
 

Thus, reaction of (6-chloropyridin-3-yl)methylzinc chloride (91a) with benzaldehyde (61g) led to 

the heterobenzylic alcohol 92a in 99% yield (entry 1 of Table 13). Moreover, Cu(I)-mediated 

acylation with 4-chlorobenzoyl chloride (60d) furnished the ketone 92b in 62% yield (entry 2). 

Similarly, (3,5-dimethylisoxazol-4-yl)methylzinc chloride (91b) reacted with 4-chlorobenzoyl 

chloride (60d) to provide the desired isoxazole 92v within 27 h in 81% yield (entry 3). Smooth 

Pd-catalyzed cross-coupling reaction of (3-thienylmethyl)zinc chloride (91c) with ethyl 4-

bromobenzoate (71e) led to the diarylmethane derivative 92d in 65% yield (entry 4). 
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Table 13: Reaction of heterobenzylic zinc reagents 91a-c with various electrophiles 

Entry 
Heterobenzylic zinc 

chloride Electrophile 
Temperature (°C) / 

Time (h)  Product 
Yield 
(%) a 

1 

91a  
61g 

0 to 25 / 17 

 
92a 

99 

2 91a 
 

60d 

-40 to 25 / 20 

92b 

62b 

3 
 

91b 
 

60d 

-40 to 25 / 27 

 
92c 

81b 

4  
91c113 71e 

18 / 25 
 

92d 

65c 

[a] Yield of isolated analytically pure product. [b] Stoichiometric amounts of CuCN·2LiCl were used. [c] 
Pd(OAc)2 (2.0 mol%) and S-Phos (4.0 mol%) were used.  

 

Interestingly, reaction of (3,5-dimethylisoxazol-4-yl)methylzinc chloride (91c) with 3,4-dichloro-

benzaldehyde (61b) did not provide the expected addition product. In fact, the heterobenzylic 

zinc reagent 91b reacted equally to the known chemistry of allylic zinc reagents114 as well as 

similarly to special examples of benzylic zinc compounds115  and heterobenzylic copper 

derivatives116 and provided the alcohol 92e within 5 h in 81% yield (Scheme 61). 

 

 

Scheme 61: Preparation of the benzylic alcohol 92e by the direct addition of (3,5-dimethyl-
isoxazol-4-yl)methylzinc chloride (91b) to 3,4-dichlorobenzaldehyde (61b). 

                                                 
113 For the preparation of (3-thienylmethyl)zinc chloride (91c) as well as additional reaction conditions, see. A. J. 
Wagner, Ph.D. thesis, LMU Munich. 
114 H. Ren, G. Dunet, P. Mayer, P. Knochel, J. Am. Chem. Soc. 2007, 129, 5376. 
115 (a) I. Klement, K. Lennick, C. E. Tucker, P. Knochel, Tetrahedron Lett. 1993, 34, 4623; (b) V. F. Raaen, J. F. 
Eastham, J. Am. Chem. Soc. 1960, 82, 1349. 
116 A. Sidduri, M. J. Rozema, P. Knochel, J. Org. Chem. 1993, 58, 2694. 
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The configuration of the alcohol 92e was confirmed by X-ray analysis and an ORTEP plot is 
presented in Figure 1. 

 

 

Figure 1: ORTEP representation of the alcohol 92e. 

 

 
1.6. Preparation of benzylic zinc chlorides by the direct insertion of magnesium into 

benzylic chlorides in the presence of ZnCl2 and LiCl 

1.6.1. Introduction 

In 2008, a mild and easy preparation of arylmagnesium reagents by the direct insertion of 

magnesium in the presence of LiCl into halogen-substituted aromatics was reported.117 This work 

extended considerably the previously documented preparation and applications of Grignard 

reagents.118 However, there were also some limitations. Mainly, in the case of an ester group 

attached to an aromatic bromide, the method described above needed to be modified. Therefore, 

stoichiometric amounts of ZnCl2 were added to transmetalate in situ the formed Grignard reagent 

to the corresponding organozinc halide. Thus, methyl 2-bromobenzoate (71g) reacted with 

magnesium powder in the presence of ZnCl2 and LiCl to furnish the desired organozinc reagent 

93a which was subsequently acylated with the acid chloride 60d providing the benzophenone 94 

in 77% yield (Scheme 62).119  

                                                 
117 F. Piller, P. Appukkuttan, A. Gavryushin, M. Helm, P. Knochel, Angew. Chem. Int. Ed. 2008, 47, 6802. 
118 (a) A. Krasovskiy, P. Knochel, Angew. Chem. Int. Ed. 2004, 43, 3333; (b) A. Krasovskiy, B. F. Straub, P. 
Knochel, Angew. Chem. Int. Ed. 2006, 45, 159. 
119 F. M. Piller, A. Metzger, M. A. Schade, B. H. Haag, A. Gavryushin, P. Knochel, Chem. Eur. J. 2009, 15, 7192. 
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Scheme 62: Preparation of the ester-substituted aryl zinc reagent 93a and subsequent acylation 
reaction with benzoyl chloride 60d. 

 

1.6.2. Preparation of benzylic zinc chlorides by the Mg/ZnCl2/LiCl method 

This mild method was adapted for the preparation of benzylic organometallics. Thus, reaction of 

2-chlorobenzyl chloride (53b) with magnesium turnings in the presence of LiCl led only to large 

amount of Wurtz-coupling product (Scheme 63). Only traces of the benzylic magnesium reagent 

were formed. In strong contrast, by performing the insertion reaction in the presence of 

stoichiometric amounts of ZnCl2, 2-chlorobenzylzinc chloride·MgCl2 (95b) is readily formed and 

the amount of homo-coupling product is below 5%. Moreover, it has to be pointed out that no 

activation of the magnesium is required.  

 

 

Scheme 63: Influence of ZnCl2 for the preparation of benzylic zinc chlorides of type 95. 
 

In contrast to the previously described insertion method into benzylic chlorides using zinc dust 

and LiCl (chapter 1, p. 23 ff.), the magnesium insertion in the presence of zinc chloride and 

lithium chloride allows shorter insertion times due to the use of a more strongly reducing metal 

and proceeds at a lower temperature. Thus, direct zinc insertion (Zn powder; 2.0 equiv) in the 

presence of LiCl (2.0 equiv) into 4-fluorobenzyl chloride (53c) furnished the corresponding 

benzylic zinc chloride 54c after a reaction time of 24 h at 25 °C. On the other hand, direct 
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magnesium insertion (Mg turnings; 2.5 equiv) into benzylic chloride 53c in the presence of ZnCl2 

(1.1 equiv) and LiCl (1.25 equiv) in THF resulted in complete conversion to the zinc reagent 95c 

within 45 min at 25 °C (Scheme 64). 

 

 

Scheme 64: Comparison of the preparation times for 4-fluorobenzylzinc chloride (54c or 95c) 
either by the Zn/LiCl method or by the Mg/ZnCl2/LiCl method. 

 

Furthermore, by using 0.5 equivalents of ZnCl2, this alternative method allows the preparation of 

bisbenzylic zinc reagents of the type (ArCH2)2Zn.  

Ranges of functionalized benzylic zinc reagents of type 95 have been successfully prepared by 

this new procedure described above, using commercially available benzylic chlorides of type 53 

and magnesium turnings in the presence of ZnCl2 and LiCl. These reactions proceed via 

intermediate benzylic magnesium compounds 96, which are in situ transmetalated to the 

corresponding benzylic zinc chlorides of type 95. Subsequent reactions of the functionalized 

benzylic zinc reagents 95 with various electrophiles (E+) provided a range of benzylic derivatives 

of type 97 (Scheme 65). 

 

 

Scheme 65: General procedure for the preparation of benzylic zinc chlorides by the 
Mg/ZnCl2/LiCl method and subsequent reactions of these organometallics with 
common electrophiles. 
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In a typical experiment, the reaction of 2-chlorobenzyl chloride (53b) with magnesium turnings 

(2.5 equiv), ZnCl2 (1.1 equiv) and LiCl (1.25 equiv) easily occurred at 25 °C within 45 min 

providing the benzylic zinc reagent 95b. Its subsequent reaction with S-(4-fluorophenyl) 

benzenesulfonothioate (57c; 0.7 equiv) led to the asymmetrically substituted sulfide 97a within 

17 h in 86% yield (Scheme 66). 

 

 

Scheme 66: Insertion of magnesium into 2-chlorobenzyl chloride (53b) in the presence of ZnCl2 
and LiCl and subsequent reaction with benzenesulfonothioate 57c. 

 

Similarly, allylation of the zinc reagent 95c with ethyl (2-bromomethyl)acrylate (55b) provided 

the unsaturated ester 97b in 77% yield (entry 1 of Table 14). As mentioned above, 4-fluorobenzyl 

chloride (53c) is readily converted to the corresponding benzylic zinc reagent 95c within 45 min. 

Addition of 95c to 4-bromobenzaldehyde (61e) gave the benzylic alcohol 97c in 51% yield 

(entry 2). 3-(Trifluoromethyl)benzyl chloride (53g) was converted to the benzylic zinc 

organometallic 95g within 30 min at 25 °C. Reaction with 2-chlorobenzaldehyde (61a) or S-(3-

cyanobenzyl) benzenesulfonothioate (57d) gave the benzylic alcohol 97d and, respectively, the 

dibenzylic sulfide 97e in 85-86% yield (entries 3 and 4). Also, electron-rich benzylic chlorides 

are converted to the corresponding zinc reagents without the formation of homo-coupling 

products. Thus, 3,4,5-trimethoxybenzylzinc chloride 95h was obtained after reaction of 3,4,5-

trimethoxybenzyl chloride (53h) with magnesium, ZnCl2 and LiCl (25 °C, 1 h). Cu(I)-mediated 

treatment with 4-chlorobenzoyl chloride (60d) provided the ketone 97f in 56% yield (entry 5). 

Moreover, 4-methoxybenzyl chloride (53i) was readily converted to the expected benzylic zinc 

chloride 95i within 2 h and subsequent reaction with (S)-(4-bromophenyl) benzenesulfonothioate 

(57a) yielded the sulfide 97g in 88% (entry 6). Similarly, 2-methoxybenzyl chloride (53j) reacted 

under standard conditions to provide the corresponding benzylic zinc chloride 95j within 45 min. 

Its copper(I)-mediated acylation with cyclopropanecarbonyl chloride (60c) as well as reaction 

with 3-chlorobenzaldehyde (61c) furnished the desired products 97h-i in 89-92% yield (entries 7 
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and 8). Furthermore, the direct magnesium insertion in the presence of ZnCl2 and LiCl into (4-

methylthio)benzyl chloride (53l) led to the thioether-substituted benzylic zinc chloride 95l within 

1.5 h reaction time at 25 °C. Subsequent addition to 4-bromobenzaldehyde (61e) or Cu(I)-

mediated addition to 3-iodocyclohex-2-enone (58b) provided the alcohol 97j as well as the 

substituted cyclohex-2-enone 97k in 62-82% yield (entries 9 and 10).  

 

Table 14: Preparation of benzylic zinc chlorides 95 by the Mg/ZnCl2/LiCl method and 
  their subsequent reaction with various electrophiles (part 1). 

Entry 
Benzylic zinc 

chloridea 
Electrophile Conditionsb  Product 

Yield 
(%) c 

1  
53b (0.75 h) 

 
55b 

25 / 0.75 

 
97b 

77d 

2 
 

53c (0.75 h)  
61e 

25 / 2 

 
97c 

51 

3 

53g (0.5 h)  
61a 

25 / 1 
OH

Cl

F3C

 
97d 

85 

4 53g (0.5 h) 

 
57d 

25 / 2 

97e 

86 

5 

53h (1.0 h) 
 

60d 

-20 to 25 / 2 

97f 

56e 

6 

53i (2.0 h) 
 

57a 

25 / 17 

97g 

88 

7 
 

53j (1.0 h) 
 

60c 

-20 to 25 / 6.5 
 

97h  

89e 
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Table 14 continued 

8 53j (1.0 h) H

O

Cl

 
61c 

25 / 4 

 
97i 

92 

9 

53l (1.5 h)  
61e 

25 / 2 

97j 

82 

10 53l (1.5 h) 
 

58b 

-40 to 0 / 18 
 

97k 

62f 

[a] Reaction time for the insertion step at 25 °C. [b] Temperature (°C) / time (h) for the reaction step with the 
electrophile. [c] Yield of isolated analytically pure product.  [d] The reaction was performed in the presence 
of catalytic amounts of CuCN·2LiCl. [e] Stoichiometric amounts of CuCN·2LiCl were used. [f] 
Stoichiometric amounts of CuCN·2LiCl and TMSCl were used. 

 

Sensitive functional groups are also tolerated by this method. Thus, the reaction of 3-

(ethoxycarbonyl)benzyl chloride (53m) with Mg/ZnCl2/LiCl at 25 °C for 2 h provided the 

corresponding zinc reagent 95m. Its copper(I)-mediated reaction with 4-chlorobenzoyl chloride 

(60d), as a representative acid chloride, led to the benzylic ketone 97l in 82% yield (Scheme 67). 

 

 

Scheme 67: Insertion of magnesium into 3-(ethoxycarbonyl)benzyl chloride (53m) in the 
presence of ZnCl2 and LiCl and subsequent Cu(I)-mediated acylation reaction.  

 

Moreover, Pd-catalyzed cross-coupling reaction of 95m with 4-iodoanisole (4c) using PEPPSI-

IPr (0.25 mol%) as catalyst led to the expected product 97m in 78% yield (entry 1 of Table 15). 

Additionally, the zinc reagent 95m smoothly reacted with S-(4-chlorophenyl) 

benzenesulfonothioate (57e) to furnish the sulfide 97n within 2 h in 67% yield (entry 2). 

Analogously, a cyano function is tolerated as well. Thus, 3-cyanobenzyl chloride (53o) was 

cleanly converted to the corresponding zinc reagent 95o within 2 h at 25 °C and a copper(I)-

catalyzed allylation of the latter with ethyl (2-bromomethyl)acrylate (55b) provided the desired 
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acrylate 97o (79%; entry 3). Similarly, reaction with 3,4-dichlorobenzaldehyde (61b) and Cu(I)-

mediated 1,4-addition to 3-iodocyclohex-2-enone (58b) led to the expected products 97p and 97q 

in 77-83% yield (entries 4 and 5). Furthermore, reaction of benzyl chloride (53a) under standard 

conditions led to benzylzinc chloride (95a) at 25 °C in 2 h. Then, reaction with S-(4-

methoxyphenyl) benzenesulfonothioate (57f) provided the sufide 97r in 78% yield (entry 6). 

Analogous to the reaction times for the direct LiCl-mediated zinc insertion into secondary 

benzylic chlorides 53u-v, the direct magnesium insertion in the presence of ZnCl2 and LiCl into 

secondary benzylic chlorides 53u-v proceeded also faster than the magnesium insertion into 

benzyl chloride (53a; see also Scheme 42). Thus, 1-(chloroethyl)benzene (53u) or 1,1-

diphenylchloromethane (53v) are smoothly converted to the corresponding secondary benzylic 

zinc reagents 95u-v within 30 min to 1 h. Subsequent reaction with 4-bromobenzaldehyde (61e) 

or Cu(I)-mediated acylation with acetyl chloride (60a) yielded the adducts 97s and 97t in 68-70% 

yield (entries 7 and 8).  

 

Table 15: Preparation of benzylic zinc chlorides 95 by the Mg/ZnCl2/LiCl method and 
  their subsequent reaction with various electrophiles (part 2). 

Entry 
Benzylic zinc 

chloridea 
Electrophile Conditionsb  Product 

Yield 
(%) c 

1 
 

53m (2.0 h) 
 

4c 

25 / 21 
 

97m 

78d 

2 53m (2.0 h) 

 
57e 

25 / 2 

97n  

67 

3 
 

53o (2.0 h) 
 

55b 

25 / 1 

 
97o 

79e 

4 53o (2.0 h) 
 

61b 

25 / 2 

 
97p 

83 

5 53o (2.0 h) 
 

58b 

-60 to 0 / 18 
 

97q 

77f 
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Table 15 continued 

6  
53a (2.0 h) 

57f 

25 / 13 

 
97r 

78 

7 
 

53u (1.0 h) 
 

61e 

25 / 2 

 
97s (dr = 2:1) 

70  

8 

 
53v (0.5 h at 0 °C) 

 
60a 

-20 to 10 / 24 

 
 

97t 

68g 

[a] Reaction time for the insertion step at 25 °C. [b] Temperature (°C) / time (h) for the reaction step with the 
electrophile. [c] Yield of isolated analytically pure product. [d] The reaction is performed in the presence of 
PEPPSI-IPr (0.25 mol%). [e] The reaction is performed in the presence of catalytic amounts of CuCN·2LiCl. [f] 
Stoichiometric amounts of CuCN·2LiCl and TMSCl were used. [g] Stoichiometric amounts of CuCN·2LiCl were 
used.  

 

This in situ method (Mg, ZnCl2, LiCl) also has the advantage of producing more reactive 

benzylic zinc reagents due to the in situ generation of MgCl2, which accelerates the addition to 

carbonyl derivatives. Thus, for benzylzinc chloride (95a) generated by using Mg/ZnCl2/LiCl 

method, the reaction with electron-rich 4-(dimethylamino)benzaldehyde (61h) led to the desired 

benzylic alcohol 97u in 98% isolated yield after a reaction time of only 1 h at 25 °C (Scheme 68). 

In contrast, by generating 54a via the Zn/LiCl-method, the addition to benzaldehyde 61h did not 

provide the expected product 97u in any appreciable amount. Only 20% conversion of the 

aldehyde 61h was observed after a reaction time of 20 h at 25 °C.  

 

 

Scheme 68: Different reactivity of benzylzinc chloride (54a or 95a) depending on its preparation. 
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2. Lewis-Acid Promoted Additions of Functionalized Organomagnesium and 
Organozinc Reagents to Carbonyl Derivatives 

2.1. Addition of Grignard reagents to ketones in the presence of catalytic amounts of 
LaCl 3·2LiCl 

2.1.1. Introduction 

As mentioned in the general introduction, CeCl3 is commonly used to activate carbonyl groups 

towards the attack of an organomagnesium reagent. However, the low solubility of CeCl3 in THF 

requires the use of stoichiometric amounts of this relatively expensive salt. The general problem 

of insolubility of the lanthanide salt is elegantly solved by using the THF-soluble complex 

LaCl3·2LiCl. Recently, this method was applied to the synthesis of tryptamines and related 

heterocycles.120, 121 However, LaCl3·2LiCl has been used so far only in stoichiometric amounts, 

while a catalytic version of this reaction would be highly appreciable considering industrial 

applications of this methodology.122  

 

2.1.2. LaCl 3·2LiCl-catalyzed addition of organomagnesium reagents to enolizable ketones  

A comparative study of the use of LaCl3·2LiCl in stoichiometric and catalytic amounts for 1,2-

addition reactions of various Grignard reagents to ketones was investigated (Scheme 2). 

 

 

Scheme 69:  Addition of Grignard reagents (28a-j ) to ketones (58c-j ) in the presence of variable 
amount of LaCl3·2LiCl. 

 

Therefore, organomagnesium reagents of type 28 were added to ketones of type 58 premixed 

with either 100 mol% or 30 mol% of LaCl3·2LiCl or in the absence of the lanthanum salt. 

Lowering the amount of LaCl3·2LiCl below 30 mol% often resulted in heterogeneous reaction 

mixtures. Thus, the reaction of cyclohexylmagnesium bromide (28b) with the easily enolizable 

                                                 
120 (a) K. C. Nicolaou, A. Krasovskiy, U. Majumder, V. E. Trepanier, D. Y.-K. Chen, J. Am. Chem. Soc. 2009, 131, 
3690; (b) K. C. Nicolaou, A. Krasovskiy, V. E. Trepanier, D. Y.-K. Chen, Angew. Chem. Int. Ed. 2008, 47, 4217. 
121 For the prepartion of aryl- and heteroaryl-lanthanum reagents by directed ortho-metalation reactions, see: S. H. 
Wunderlich, P. Knochel, Chem. Eur. J. 2010, 16, 3260. 
122 The addition of Grignard reagents to imines requires only 10 mol% of LaCl3·2LiCl. An isolated example of the 
addition of PhMgBr to camphor using 10 mol% of LaCl3·2LiCl has also been reported (ref. 39). 
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ketone 58c in the presence of one equivalent of LaCl3·2LiCl provided the tertiary alcohol 98a in 

93% yield (entry 1 of Table 16). By using 30 mol% of LaCl3·2LiCl a similar yield (87%) was 

achieved. Without the addition of LaCl3·2LiCl only 33% of the alcohol 98a was isolated. 

 

Table 16: Addition of Grignard reagents to different ketones in the presence of LaCl3·2LiCl. 

Entry 
Grignard 
reagent  Ketone  Product  

Yield (%) a in the presence of variable 
amounts of LaCl3·2LiCl  

100 mol% 30 mol% 0 mol% 

1 
 

28bc 

 
58c  

98a 

93 87 33b 

2  
28cd  

58d  
98b 

86 65 <3 

3  
28dd  

58e 
 

98c 

95 94 69 

4 
 

28ed 

 
58d  

98d 

97 93 67b 

5 

28fe 
 

58f 
 

98ef 

76 66 22 

6 
 

28ge 
 

30 
 

98f 

72 72 13 

7 

 
28he 

 
58g  

98g 

77 84 87 

8 

 
28ie 

 
58h 98h 

76 83 81 
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Table 16 continued 

9 

 
28je 

 
58i  

98i 

73 74 84 

10 

28ae 
 

58c  
98jf 

71 67 22 

11 

28fe 
 

58j  
98k 

59 65 75 

[a] Yield of isolated analytically pure product. [b] Yields determined by 1H-NMR. [c] The Grignard reagent was 
prepared by direct magnesium insertion in the presence of LiCl according to ref.117. [d] The Grignard reagent is 
commercially available. [e] The Grignard reagent was prepared by halogen-magnesium exchange reaction using 
i-PrMgCl·LiCl according to ref. 118. [f] Experiments were performed by Dr. Andrei Gavryushin and are given 
here for the sake of completeness. 

 

The reaction of the secondary alkylmagnesium reagent i-PrMgCl (28c) with 1,3-diphenylacetone 

(58d) is strongly influenced by the addition of LaCl3·2LiCl. Thus, the alcohol 98b was obtained 

in 86% with stoichiometric amount of LaCl3·2LiCl and in 65% yield in the presence of 30 mol% 

of LaCl3·2LiCl (entry 2). In the absence of LaCl3·2LiCl, only traces of the alcohol 98b were 

obtained due to the occurrence of competing reduction and enolization reactions. With MeMgCl 

(28d) which does not possess β-hydrogen atoms, similar yields were obtained regardless of the 

amount of the lanthanum salt added (entry 3). Reaction of phenylmagnesium chloride (28e) with 

the enolizable ketone 58d led to the desired alcohol 98d in 93-97% in the presence of either 30 or 

100 mol% of LaCl3·2LiCl (entry 4). Without LaCl3·2LiCl, a yield of 67% was achieved. In the 

reaction of naphthylmagnesium chloride (28f) with the less sterically hindered cyclohexyl methyl 

ketone (58f), the influence of LaCl3·2LiCl is relatively strong (entry 5). The uncatalyzed reaction 

afforded the product 98e in 22% yield, in the presence of 30 mol% of LaCl3·2LiCl a yield of 66% 

was obtained. Using stoichiometric amounts of LaCl3·2LiCl led to the product 98e in 76% yield. 

In the absence of a catalyst, sterically hindered Grignard reagents do not react satisfactorily with 

ketones bearing acidic protons. Thus, reaction of 2-(trifluoromethyl)phenylmagnesium chloride 

(28g) and acetophenone (30) furnished the corresponding alcohol 98g in 72% yield only in the 

presence of LaCl3·2LiCl, independently on whether 100 or 30 mol% were used (entry 6). A poor 

yield of 98f (13%) was observed in the absence of LaCl3·2LiCl. Treatment of dicyclopropyl 

ketone (58g), cyclopropyl methyl ketone (58h) and cyclohexanone (58i) with various 
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organomagnesium reagents 28h-j led to the desired alcohols 98g-i in similar yields almost 

regardless of the LaCl3·2LiCl amount (entries 7-9). However, the positive influence of 

LaCl3·2LiCl was well demonstrated in the case of heteroaromatic organomagnesium compounds 

such as 2-pyridylmagnesium chloride (28a; entry 10). Its reaction with ketone 58c led to the 

desired alcohol 98j in 71% yield only in the presence of LaCl3·2LiCl. Using electron-rich 

arylmagnesium reagent 28f and enolizable ketone 58j the alcohol 98k was obtained in lower 

yields with LaCl3·2LiCl than without the use of LaCl3·2LiCl (entry 11). These results show that 

for the addition of electron-rich organomagnesium species the influence of LaCl3·2LiCl on the 

product yield can be negative.  

An upscaling of the above described procedure gave satisfactory results (Scheme 70). The 

reaction of ketone 58d either with secondary alkylmagnesium reagent 28c in the presence of 

LaCl3·2LiCl (100 mol%) or with aryl magnesium reagent 28e in the presence of LaCl3·2LiCl (30 

mol%) furnished the expected alcohols 98b and 98d in 83-88% yield. 

 

RMgCl (1.1 equiv)

LaCl3�2LiCl (30-100 mol%)

THF, 0 °C to 25 °C

Ph Ph

O

Ph Ph

OH

R

58d

R= i-Pr: (98b): 83% (100 mol% LaCl3�2LiCl)

Ph: (98d): 88% (30 mol% LaCl3�2LiCl)

98b-d

 

Scheme 70: Upscaled reaction (20 mmol) of ketone 58d with either i-PrMgCl (28c) using 
100 mol% of  lanthanum salt or PhMgCl (28e) using 30 mol% of LaCl3·2LiCl.  
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2.2. Addition of functionalized organozinc reagents to aldehydes, ketones and carbon 
dioxide under mediation of MgCl2 

2.2.1. Introduction 

The alcohol function is an important structural motive and present in many natural products as 

well as in pharmaceuticals demonstrated examplarily in the racemic antitussive agent clobutinol 

(99)123 and the antiparkinsonian compound trihexyphenidyl (100; Scheme 71).124 One of the most 

common approaches towards the synthesis of alcohols is the addition of organometallic reagents 

to ketones or aldehydes.33  

 

Scheme 71: Presence of the alcohol function in various pharmaceuticals. 
 

Organozinc reagents are versatile tools in organic synthesis.17 Their intrinsic moderate reactivity 

towards electrophiles can be dramatically increased by transmetalations with catalytic amounts of 

various transition metal complexes.125 However, for reactions with a ketone or an aldehyde such 

transmetalations are less appropriate. In these cases, a Lewis-acid complexation126 of the 

carbonyl group is usually a more suitable activation.127 As already mentioned in the general 

introduction, the addition of organozinc reagents to carbonyl derivatives has widely been 

investigated. However, one major drawback is the fact that diorganozinc reagents have to be used 

due to the higher reactivity compared to organozinc halides. Moreover, these organozinc reagents 

have to be used in large excess, usually one to four equivalents, to achieve completeness of the 

                                                 
123 C. Bellocq, R. Wilders, J.-J. Schott, B. Louerat-Oriou, P. Boisseau, H. Le Marec, D. Escande, I. Baro, Mol. 
Pharmacol. 2004, 66, 1093. 
124 (a) T. D. Sanger, A. Bastian, J. Brunstrom, D. Damiano, M. Delgado, L. Dure, D. Gaebler-Spira, A. Hoon, J. W. 
Mink, S. Sherman-Levine, L. J. Welty, J. Child Neurol. 2007, 22, 530; (b) A. Giachetti, E. Giraldo, H. Ladinsky, E. 
Montagna, Br. J. Pharmac. 1986, 89, 83. 
125 For selected example, see: (a) J. Shi, X. Zeng, E. Negishi, Org. Lett. 2003, 5, 1825; (b) A. Gavryushin, C. Kofink, 
G. Manolikakes, P. Knochel, Org. Lett. 2005, 7, 4871; (c) M. C. P. Yeh, P. Knochel, L. E. Santa, Tetrahedron Lett. 
1988, 29, 3887; (d) C. K. Reddy, P. Knochel, Angew. Chem. Int. Ed. 1996, 35, 1700; (e) I. Kazmierski, M. 
Bastienne, C. Gosmini, J.-M. Paris, J. Périchon, J. Org. Chem. 2004, 69, 936; (f) Y. Tamaru, T. Nakamura, M. 
Sakaguchi, H. Ochiai, Z. Yoshida, J. Chem. Soc., Chem. Commun. 1988, 610; (g) D. Seebach, A. K. Beck, B. 
Schmidt, Y. M. Wang, Tetrahedron 1994, 50, 4363. 
126 (a) J. G. Kim, P. J. Walsh, Angew. Chem. Int. Ed. 2006, 45, 4175; (b) H. Li, P. J. Walsh, J. Am. Chem Soc. 2005, 
127, 8355; (c) S.-J. Jeon, H. Li, P. J. Walsh, J. Am. Chem Soc. 2005, 127, 16416. 
127 (a) H. Yamamoto, In Lewis-Acids in Organic Synthesis, Vol. 2, Wiley-VCH: Weinheim, 2000; (b) see also ref. 40. 
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reactions. Furthermore, the functional group tolerance is low due to the problems in the 

preparation methods of these organozincs species. As presented in chapter 1.6. (p. 58 ff), benzylic 

zinc chlorides prepared by the direct insertion of magnesium into benzylic chlorides in the 

presence of zinc chloride and lithium chloride showed a significantly higher rate for the addition 

to carbonyl derivatives. This result is explained due to the presence of magnesium chloride which 

is generated in situ during the preparation of the zinc reagent (Scheme 68).Therefore, the addition 

of functionalized aryl-, alkyl- and benzylic zinc reagents, prepared by the Mg/ZnCl2/LiCl 

method, to various carbonyl derivatives was investigated.128 

 

2.2.2. Addition of functionalized organozinc reagents to carbonyl derivatives 

Thus, the addition of PhZnI (5b) prepared by the insertion of zinc dust in the presence of LiCl 

into iodobenzene,23 to 2-chlorobenzaldehyde (61a) required 72 h at 25 °C to reach completion 

and afforded (2-chlorophenyl)(phenyl)methanol (101) in 60% yield (Scheme 72). In contrast, by 

using PhZnI·MgCl2 (93b) prepared by the reaction of iodobenzene with magnesium turnings, 

ZnCl2 and LiCl,117 a complete conversion was obtained within 1 h at 25 °C. The desired alcohol 

101 was obtained in 88% yield. The presence of MgCl2 (1.0 equiv) is responsible for this 

dramatic rate acceleration.129 

 

 

Scheme 72: Comparison of the reactivity of phenylzinc idodide (5b) and phenylzinc 
iodide·MgCl2 (93b) towards the addition to 2-chlorobenzaldehyde (61a).   

 

                                                 
128 For a crystal structure of PhZnBr·MgCl2 obtained after transmetalation of PhMgBr with ZnCl2, see: L. Jin, C. Liu, 
J. Liu, F. Hu, Y. Lan, A. S. Batsanov, J. A. K. Howard, T. B. Marder, A. Lei, J. Am. Chem. Soc. 2009, 131, 16656. 
129 (a) For Mg-salt enhanced reactivity of organometallic reagents, see: L. A. Paquette, Encyclopedia of Reagents for 
Organic Synthesis, Vol. 5, Wiley-VCH: New York, 1995; (b) B. Marx, E. Henry-Basch, P. Fréon, C. R. Chim. 1967, 
264, 527. 
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Also, by external addition of MgCl2
130 to phenylzinc iodide (5b) or 2-chlorobenzaldehyde (61a), 

the addition rate is improved. Thus, premixing of MgCl2 with phenylzinc iodide (5b) followed by 

the addition to 2-chlorobenzaldehyde (61a) provided the alcohol 101 within 2 h in 79% yield 

(Table 17). Furthermore, addition reaction of zinc reagent 5b to a premixed solution of MgCl2 

with 2-chlorobenzaldehyde (61a) under similar reaction conditions led to the expected product 

within 2 h in 78% yield.    

 

Table 17: Reaction of phenylzinc iodide (5b) with 2-chlorobenzaldehyde (61a) under 
mediation of additionally added MgCl2. 

Entry Zinc reagent Additive Time (h)a Product Yield (%)b 

1 
PhZnI·LiCl 

5b 

MgCl2 

(premixed with 
zinc reagent 

61a) 

2 
 

101 

79 

2 5b 
MgCl2 

(premixed with 
aldehyde 61a 

2 101 78 

 [a] Reaction time at 25 °C. [b] Yield of isolated analytically pure product.  
 

It is known that in the case of Grignard reagents the counterion plays an important role towards 

the addition reaction to carbonyl groups.131  Therefore, the reaction described above was 

investigated regarding the influence of the zinc counterion. Thus, addition of phenylzinc 

chloride·MgCl2 (93c) to 2-chlorobenzaldehyde (61a) provided the alcohol 101 in 60 min in 86% 

yield (entry 1 of Table 18). Reaction of PhZnBr·MgCl2 (93d) with aldehyde 61a led to full 

conversion in 30 min and provided the expected product in 93% yield (entry 2). As already 

demonstrated in Scheme 72, reaction of PhZnI·MgCl2 (93b) with aldehyde 61a furnished the 

desired alcohol 101 in 60 min in 88% (entry 3). 

 

 

 

 

                                                 
130 MgCl2 was freshly prepared as 0.5 M solution in THF by the reaction of magnesium turnings with 1,2-
dichloroethane. 
131 M. T. Reetz, N. Harmat, R. Mahrwald, Angew. Chem. Int. Ed. 1992, 31, 342. 
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Table 18: Addition of various phenylzinc halides complexed with MgCl2 to  
2-chlorobenzaldehyde (61a). 

Entry Zinc reagent Time (min)a Product Yield (%)b 

1 
PhZnCl·MgCl2·LiCl 

93c 
60 

 
101 

86 

2 
PhZnBr·MgCl2·LiCl 

93d 
30 101 93 

3 
PhZnI·MgCl2·LiCl 

93b 
60 101 88 

[a] Reaction time at 25 °C. [b] Yield of isolated analytically pure product.  
 

Diorganozinc reagents are more reactive than organozinc halides132 and these reagents were 

found particularly well suited for addition reactions to ketones. The reaction of bis(4-

methoxyphenyl)zinc (102) prepared from 4-bromoanisole (n-BuLi,  -78 °C, 2 h; then ZnCl2 

(0.5 equiv)) to 4-isobutylacetophenone (58k) does not proceed (25 °C, 12 h). However, the 

corresponding diarylzinc reagent (103a) which was prepared by direct insertion of magnesium 

into 4-bromoanisole in the presence of LiCl and 0.5 equivalents of ZnCl2 underwent a smooth 

addition to the ketone 58k within 2 h at 25 °C and provided the tertiary alcohol 104 in 78% yield 

(Scheme 73). It is noteworthy that both Ar-groups are transferred to the ketone in the addition 

reaction.133, 134  

 

 

Scheme 73: Addition of diarylzinc reagents 102 and 103a to ketone 58k in the presence or 
absence of MgCl2. 

 

                                                 
132 S. Matsubara, T. Ikeda, K. Oshima, K. Utimoto, Chem. Lett. 2001, 30, 1226. 
133 This experiment was performed by Sebastian Bernhardt and is given here for the sake of completeness.  
134 For further informations, see: Ph.D. thesis S. Bernhardt, LMU Munich. 
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Functionalized benzylic zinc reagents show the same behaviour and the addition of the ester-

substituted benzylic zinc reagent 54m prepared by the insertion of zinc dust in the presence of 

LiCl into 3-(ethoxycarbonyl)benzyl chloride (53m) to the aldehyde 61h did not proceed at 25 °C 

(Scheme 74). Heating of the reaction mixture at 50 °C for 14 h only led to a conversion of 60%. 

In strong contrast, by using the same zinc reagent complexed with MgCl2 (95m) and prepared by 

the reaction of 3-(ethoxycarbonyl)benzyl chloride (53m) with magnesium turnings in the 

presence of ZnCl2 and LiCl, a full conversion was achieved within 6 h at 25 °C and the secondary 

alcohol 105 was isolated in 80% yield. Bisbenzylic zinc reagents of type 106 

(ArCH2)2Zn·2MgCl2 can also be prepared, as already discussed in chapter 1.6. and used for 

efficient addition reactions.  

 

Me2N

OH

NMe2

THF, 25 °C

54ma 105 95ma

6 h, 80%

ZnCl

O

H

6 h, 0%

ZnCl�MgCl261h

Me2N

THF, 25 °C

O

H

61h

CO2Et CO2Et CO2Et

[a] Complexed LiCl has been
omitted for the sake of clarity.  

Scheme 74: Addition of benzylic zinc chlorides 54m and 95m to benzaldehyde 61h. 
 

Finally, the functionalized alkylzinc reagent 107a (no MgCl2 present) and 108a (complexed with 

MgCl2) showed a similar reactivity difference.135 Thus, the reaction of 107a with trifluoromethyl 

phenyl ketone (58l) required 48 h at 25 °C, whereas by using 108a, a complete conversion is 

reached within 6 h at 25 °C leading to the tertiary alcohol 109 in 76-77% yield (Scheme 75). 

 

                                                 
135 For the preparation of alkylzinc reagents by the direct insertion of magnesium into alkyl bromides in the presence 
of ZnCl2 and LiCl, see: T. D. Blümke, F. M. Piller, P. Knochel, Chem. Commun. 2010, in press. 



 
B. Results and Discussion  76 

 

Scheme 75: Addition of cyano-substituted alkylzinc reagents 107a and 108a to ketone 58l. 
 

These MgCl2-mediated addition reactions have an excellent reaction scope (Table 19 and Table 

20). Thus, tolylzinc iodide·MgCl2 (93e) added at 25 °C to 4-cyanobenzaldehyde (61i) within 13 h 

affording the alcohol 110a in 73% yield (entry 1 of Table 19). Electron-rich heteroarylzinc 

reagent 93f added to benzaldehyde 61i furnishing the heterobenzylic secondary alcohol 110b in 

98% yield (entry 2). Interestingly, a copper-free acylation reaction is possible. Thus, the electron-

rich arylzinc reagent 4-(trimethylsilyl)phenylzinc bromide·MgCl2 (93g) reacted with 4-

chlorobenzoyl chloride (60d) leading to the benzophenone derivative 110c in 81% yield 

(entry 3). As indicated above (Scheme 73), it is advantageous to use bisarylzinc derivative of type 

103 (Ar2Zn·2MgX2·2LiCl; 0.6 equiv; X = Cl, Br).134 In these cases, both aryl-groups are 

transferred in the carbonyl addition reaction. Thus, the reaction of bis(2-

trifluoromethylphenyl)zinc·2MgX2 (103b; X = Cl, Br) proceeded smoothly with the heterocyclic 

aldehyde 61j and furnished the pyridyl alcohol 110d in 82 % yield (entry 4). Furthermore, the 

addition of the electron-poor zinc reagent 103c to the aldehyde 61k led to the desired alcohol 

110e in 85% yield (entry 5). The addition of bis(4-methoxyphenyl)zinc·2MgX2 (103a; X = Cl, 

Br) to 4-cyanoacetophenone (58m) provided the tertiary alcohol 110f within 1 h in 62% yield 

(entry 6). The electron-rich arylzinc reagent bis(4-trimethylsilylphenyl)zinc·2MgX2 (103d; X = 

Cl, Br) reacted with 4-cyanobenzaldehyde (61i) and the benzhydryl alcohol 110g was obtained in 

almost quantitative yield (entry 7). Furthermore, bis(4-N,N-dimethylaminophenyl)zinc·2MgX2 

(103e; X = Cl, Br) reacted with dicyclopropyl ketone (58g) in 24 h leading to the desired product 

110h (74%; entry 8). Also, bis(2-N,N-dimethylaminophenyl)zinc·2MgX2 (103f; X = Cl, Br) 

reacted smoothly with the benzaldehyde 61l providing the alcohol 110i within 3 h reaction time 

in 93% yield (entry 9). The bis(5-pyrazolyl)zinc species 103g as well as the bis(1,2-oxazol-4-
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yl)zinc compound 103h added to various substituted benzaldehydes providing heterocyclic 

secondary alcohols (110j-m) in 76-91% yield (entries 10-13). 

 

Table 19: Addition of aryl- and heteroarylzinc reagents of type 93 and 103 to  

various carbonyl derivatives. 

 

Entry Zinc reagenta 
Carbonyl 
derivative 

Time (h)b Product 
Yield 
(%) c 

1 
 

93e  
61i 

13 
 

110a 

73 

2 

 
93f 

61i 10 
 

110b 

98 

3 
 

93g  
60d 

18e 
 

110c 

81 

4 
 

103bd  
61j 

8 
 

110d 

82 

5 
 

103cd  
61k 

10 
 

110e 

85 

6 
 

103ad  
58m 

1 
 

110f 

62 
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Table 19 continued 

7 

103dd  
61i 

6 
 

110g 

95 

8 
 

103ed 
 

58g 

24e 
 

110h 

74 

9 
 

103fd  
61l 

3 
 

110i 

93 

10 

 
103g  

61m 

15 

 
110j 

91 

11 103g 
 

61c 

6 
 

110k 

80 

12 
 

103hd 
 

61b 

24 
 

110l 

83 

13 103hd 

61n 

14 

 
110m 

76 

[a] Complexed LiCl has been omitted for the sake of clarity. [b] All reactions are performed at 25 °C unless 
otherwise indicated. [c] Isolated yield of analytically pure product. [d] X = Cl, Br. [e] Reaction performed at 50 °C. 

 

Benzylic zinc reagents are similarly activated by the presence of MgCl2. Thus, electron-poor 4-

fluorobenzylzinc chloride·MgCl2 (95c) added to α-tetralone (58e) and acetophenone 58m 

providing the products 111a-b in 74-80% yield (entries 1 and 2 of Table 20). Moreover, addition 

of zinc reagent 95c to benzophenone 58n provided the tertiary alcohol 111c in 78% yield 

(entry 3). 4-Methoxybenzylzinc chloride·MgCl2 (95i) reacted well with 4-

(dimethylamino)benzaldehyde (61h) and 4-acetylbenzonitrile (58m) furnishing the benzylic 

alcohols 111d-e in 74-99% yield (entries 4 and 5). The ester-substituted benzylic zinc reagent 

95m smoothly added within 16 h to trifluoromethyl phenyl ketone (58l) leading to the alcohol 
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111f in 87% yield (entry 6). Instead of using benzylic zinc chlorides of type 95 

(ArCH2ZnCl·MgCl2; 1.2 equiv) it is also possible to use bisbenzylic zinc compounds of type 106 

((ArCH2)2Zn·2MgCl2; 0.6 equiv). Usually, both benzylic groups are transferred to the 

electrophile. Recently, it has been reported that both aryl N-(2-pyridylsulfonyl)aldimines and 

Cu(II)-catalysis are required for adding various zinc reagents.136 However, the presence of MgCl2 

allows a direct addition of organozincs to N-tosylimines. Thus, the reaction of bis(3-

(ethoxycarbonyl)benzyl)zinc·2MgCl2 (106a) with the N-tosylimine 61o affords the expected N-

tosylamine derivative 111g in 86% yield within 24 h at 25 °C (entry 7). Furthermore, the benzylic 

zinc reagent 106a added to 4-fluorophenylmethyl ketone (58o; 50 °C, 24 h) leading to the tertiary 

alcohol 111h in 68% yield (entry 8). Electron-rich methoxy-substituted benzylic zinc reagent 

106b reacted well with dicyclopropyl ketone (58g) within 1 h at 25 °C and furnished the benzylic 

alcohol 111i within 1 h at 25 °C in 84% yield (entry 9). 
 

Table 20: Addition of benzylic zinc reagents of type 95 and 106 to different carbonyl derivatives. 

 

Entry Zinc reagenta 
Carbonyl 
derivative 

Time 
(h)b Product 

Yield 
(%) c 

1  
95c  

58e 

9 

 
111a 

74 

2 
 

95c 
 

58m 

15 

 
111b 

80 

      
      
      

                                                 
136 (a) J. Esquivias, R. G. Arrayas, J. C. Carretero, Angew. Chem. Int. Ed. 2007, 46, 9257; (b) A. Cote, A. B. 
Charette, J. Am. Chem. Soc. 2008, 130, 2771; (c) Using benzylic zinc reagent 95m (1.2 equiv) under similar reaction 
conditions led to 90% conversion of the aldimine 61n. 
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Table 20 continued 

3 95c 
 

58n 

48 

 
111c 

78 

4 

95i 
61h 

1 

111d 

99 

5 95i 
 

58m 

14 

111e 

74 

6 

95m  
58l 

16 
 

111f 

87 

7 

106a  
61o 

24 
 

111g 

86 

8 106ad 
 

58o 

24e 

111h 

68 

9 

106b 
 

58g 

1 
 

111i 

84 

[a] Complexed LiCl has been omitted for the sake of clarity. [b] All reactions are performed at 25 °C unless 
otherwise indicated. [c] Isolated yield of analytically pure product. [d] 1.2 Equivalents were used. [e] Reaction 
performed at 50 °C. 
 

Remarkably, the presence of MgCl2 allows the addition of aryl and benzylic zinc reagents to CO2 

(1 bar) at 25 °C in THF without the need of a polar solvent137 or transition metal catalysis.138 

Thus, bis(4-methoxyphenyl)zinc·2MgX2 (103a; X = Cl, Br) added in THF to CO2 (1 bar, 25 °C, 

                                                 
137 K. Kobayashi, Y. Kondo, Org. Lett. 2009, 11, 2035. 
138 C. S. Yeung, V. M. Dong, J. Am. Chem. Soc. 2008, 130, 7826. 
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3 h) providing 4-methoxybenzoic acid (112) in 94% yield (Scheme 76).139 Furthermore, reaction 

of bis(benzylzinc)·2MgCl2 (106c) with CO2 led to phenylacetic acid (113) in 76% yield. 

 

 

Scheme 76: Preparation of carboxylic acids 112 and 113 by the direct reaction of organozinc 
reagents 103 and 106 with carbon dioxide under mediation of MgCl2. 

 

The acceleration effect of MgCl2 may be rationalized by the following explanations. The usual 6-

membered transition state (A) is modified by the presence of MgCl2 (Scheme 77) .
140 Thus, the 

organozinc regent R3ZnCl which complexes the carbonyl group, is replaced by MgCl2 (see the 

transition state B). Since MgCl2 is a stronger Lewis-acid than the zinc compound R3ZnCl, a more 

effective activation of the carbonyl group towards the addition of the zinc reagent is expected.  

 

 

Scheme 77: Proposed MgCl2-modified six membered transition state for the addition of R3ZnCl 
to carbonyl reagents (R1R2CO). 

 

The results described above showed that the addition of an organometallic reagent to a carbonyl 

group depends not only on the reactivity of the carbon-metal bond, but also on a Lewis-acid 

                                                 
139  In a comparative experiment, performed by S. Bernhardt and given here for the sake of completeness, 
4-MeO(C6H4)ZnBr·MgCl2·LiCl added to carbon dioxide within 6 h reaction time under similar reaction conditions to 
reach full conversion of the zinc reagent; see ref. 134. 
140 (a) C. Lambert, F. Hampel, P. von R. Schleyer, Angew. Chem. Int. Ed. 1992, 31, 1209; (b) M. Uchiyama, S. 
Nakamura, T. Ohwada, M. Nakamura, E. Nakamura, J. Am. Chem. Soc. 2004, 126, 10897. 
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activation of this carbonyl group. Both of these effects should be considered for predicting the 

addition rates of organometallics. Similar synergetic effects have been reported.141,142 

 

  

                                                 
141 E. Negishi, Chem. Eur. J. 1999, 5, 411. 
142 (a) Y. N. Belokon, W. Clegg, R. W. Harrington, C. Young, M. North, Tetrahedron 2007, 63, 5287; (b) Y. N. 
Belokon, Pure Appl. Chem. 1992, 64, 1917; (c) Y. N. Belokon, W. Clegg, R. W. Harrington, V. I. Maleev, M. North, 
M. O. Pujol, D. L. Usanov, C. Young, Chem. Eur. J. 2009, 15, 2148. 
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3. Carbocupration of Alkynes With Functionalized Diorganozinc Reagents 

3.1. Introduction 

The stereo- and regioselective formation of tetrasubstituted olefins is still a challenge in the field 

of organic chemistry.143 One major way to obtain these substances is the direct carbometalation 

of alkynes. Several possible products can be formed as illustrated in Scheme 78.  

 

 

Scheme 78: Possible isomers obtained by carbometalation reactions of alkynes. 
 

A range of carbometalation reactions is known today mainly involving copper, magnesium, tin 

and boron reagents.144  Recently, it was shown that arylzinc reagents were used for 

carbometalation reactions of alkynes in the presence of catalytic amounts of cobalt dibromide.145 

In this work the use of symmetrical alkynes is mainly described. In the case of unsymetrically 

substituted alkynes without directing group, the selectivity of the regioisomers decreases 

(Scheme 79). 

 

                                                 
143 (a) J. F. Normant, A. Alexakis, Synthesis 1981, 841; (b) O. Reiser, Angew. Chem. Int. Ed. 2006, 45, 2838; (c) K. 
Itami, T. Nokami, Y. Ishimura, K. Mitsudo, T. Kamei, J. Yoshida, J. Am. Chem. Soc. 2001, 123, 11577; (d) F. 
Alonso, I. P. Beletskaya, M. Yus, Chem. Rev. 2004, 104, 3079; (e) D. Hamels, P. M. Dansette, E. A. Hillard, S. Top, 
A. Vessieres, P. Herson, G. Jaouen, D. Mansuy, Angew. Chem. Int. Ed. 2009, 48, 9124; (f) J. P. Das, H. Chechik, I. 
Marek, Nat. Chem. 2009, 1, 128; (g) A. Abramovitch, I. Marek, Eur. J. Org. Chem. 2008, 4924; (h) I. Marek, Chem. 
Eur. J. 2008, 14, 7460. 
144 (a) A. B. Flynn, W. W. Ogilvie, Chem. Rev. 2007, 107, 4698; (b) C. Zhou, R. C. Larock, Org. Lett. 2005, 7, 259; 
(c) H. Oda, M. Morishita, K. Fugami, H. Sano, M. Kosugi, Chem. Lett. 1996, 25, 811; (d) K. Itami, T. Kamei, J. 
Yoshida, J. Am. Chem. Soc. 2003, 125, 14670; (e) R. B. Miller, M. I. Al-Hassan, J. Org. Chem. 1985, 50, 2121. 
145 K. Murakami, H. Yorimitsu, K. Oshima, Org. Lett. 2009, 11, 2373. 
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Scheme 79: Arylzincation of alkynes by cobalt catalysis. 
 

Furthermore, functionalized organozinc reagents can be transmetalated with stoichiometric 

amounts of copper(I)- salts providing highly reactive organocopper reagents which were used for 

carbometalation reactions of alkynes 114 and 115 and, after subsequent reaction of the 

intermediate vinylic cuprate with different electrophiles, substituted olefins 116 and 117 were 

obtained (Scheme 80).146  

 

 

Scheme 80: Copper(I)-mediated carbometalation reactions on various acetylenes with alkylzincs.   
 

3.2. Carbocupration reaction on thioether-substituted alkynes 

Copper(I)-mediated carbocupration reactions using arylzinc reagents are less investigated 

probably due to the difficulties in the preparation method of the organozincs. Since 

functionalized arylzinc reagents are readily available, these reagents were used in 

carbometalation reactions. A comparative study was performed showing the influence of the 

preparation method of the zinc reagent on the following carbocupration (Scheme 81).  

 

                                                 
146 (a) S. A. Rao, P. Knochel, J. Am. Chem. Soc. 1991, 113, 5735; (b) A. Sidduri, P. Knochel, J. Am. Chem. Soc. 
1992, 114, 7579; (c) A. Levin, A. Basheer, I. Marek, Synlett 2010, 329; (d) C. Meyer, I. Marek, G. Courtemanche, J.-
F. Normant, Tetrahedron 1994, 50, 11665; (e) For a nickel-catalyzed carbozincation of alkynes, see: T. Stüdemann, 
P. Knochel, Angew. Chem. Int. Ed. 1997, 36, 93. 
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Ph SMe
Ph

Ph SMe

CuXconditions

118a 119a

PhZnI�LiCl (5b; 3.0 equiv) conversion of 118a: < 10%
CuCN�2LiCl (1.5 equiv) (25 °C, 23 h)

Ph2Zn�2MgCl2�2LiCl (103i; 1.5 equiv) full conversion of 118a
CuCN�2LiCl (1.5 equiv) (25 °C, 23 h)  

 

Scheme 81: Influence of MgCl2 on the carbometalation of alkyne 118a with phenylzinc reagents. 

 
Thus, the transmetalation of PhZnI (5b, 3.0 equiv) which was prepared by the direct insertion 

into phenyliodide in the presence of LiCl with CuCN·2LiCl (1.5 equiv) provided the 

corresponding arylcopper reagent which did not react with alkyne 118a (1.0 equiv). On the other 

hand, the related organocopper compound prepared by the reaction of CuCN·2LiCl (1.5 equiv) 

with Ph2Zn·2MgCl2·2LiCl (103i, 1.5 equiv; prepared by transmetalation using PhMgCl 

(3.0 equiv) and ZnCl2·LiCl solution (1.5 equiv)) smoothly led to the vinylic copper intermediate 

119a within 23 h at 25 °C.147 One can say that in the presence of stoichiometric amounts of 

MgCl2 the carbometalation reaction occurs. Having this novel reaction in hand, several thioether-

substituted alkynes were subjected to copper(I)-mediated carbometalation reaction with 

functionalized diorganozinc reagents.  

 

Table 21: Carbocupration of thioether-substituted alkynes with functionalized 
diarylzinc reagents. 

 

 

 

 
                                                 
147 For the use of vinylic sulfides, see: (a) A. Sabarre, J. Love, Org. Lett. 2008, 10, 3941; (b) H. Kuniyasu, A. 
Ohtaka, T. Nakazono, M. Kinomoto, H. Kurosawa, J. Am. Chem. Soc. 2000, 122, 2375; (c) M. Su, W. Yu, Z. Jin, 
Tetrahedron Lett. 2001, 42, 3771; (d) P. A. Magriotis, T. J. Doyle, K. D. Kim, Tetrahedron Lett. 1990, 31, 2541; (e) 
S. Kanemura, A. Kondoh, H. Yorimitsu, K. Oshima, Sythesis 2008, 2659; (f) N. Taniguchi, Tetrahedron 2009, 65, 
2782. 
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Entry Zinc reagenta Alkyneb Electrophilec Productd Yield 
(%) e 

1 

 
103a 118b (25 °C, 6 h) 

I2 

 

(-40 °C, 10 min) 
 

120b (E/Z = 99:1)e 

 

82 

2 103a 118b (25 °C, 6 h) 
allyl bromide 

 
(-60 to 0 °C, 1 h) 

 
120c (E/Z =  99:1)e 

 

91 

3 

 
103j 

 
118c (25 °C, 24 h)d 

 
55b 

(-40 to 0 °C, 1 h) 

 
120d (E/Z = 94:6)e 

68 

4 

 
103k 

 
118d (25 °C, 16 h)d 

 

 
55b 

(-60 to -20 °C, 2 h) 

 
120e (E/Z = 68:32)e 

51 

5 
 

103i 
 

118e (25 °C, 15 h)d 

I2 

 
(-40 °C, 10 min) 

  
120f (E/Z = 96:4)e 

80148 

[a] LiCl has been omitted for the sake of clarity; X = Cl, Br. [b] Reaction conditions for the carbometalation step. 
First, the zinc reagent (1.5 equiv) was transmetalated using CuCN·2LiCl (1.5 equiv; -20 °C, 15 min). [c] Conditions 
for the reaction with the electrophile. [d] E/Z-ratio determined by 2D-NMR. [e] Yield of isolated analytically pure 
product.  
 

Thus, the reaction of bis(4-methoxyphenyl)zinc·2MgX (103a; 1.5 equiv; X = Cl, Br) with the 

alkyne 118b (1.0 equiv) in the presence of CuCN·2LiCl (1.5 equiv) provided the vinylic copper 

                                                 
148 The experiment was performed by Cora Dunst and is given here for the sake of completeness. For further 
informations, see: Ph.D. thesis Cora Dunst, LMU Munich. 
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intermediate 119b within 6 h at 25 °C. Its subsequent reaction with iodine led to the vinylic 

iodide 120b in 82% yield with an excellent E/Z-ratio determined by 2D-NMR (entry 1 of Table 

21). Similarly, the copper species 119b was smoothly allylated using allyl bromide providing the 

alkene 120c in 91% yield (E/Z-ration = 99:1, entry 2). Furthermore, the alkyne 118c was prone to 

stereoselective Cu(I)-mediated carbometalation reaction using the ester-substituted arylzinc 

reagent 103j and provided the expected olefin 120d after allylation reaction with ethyl (2-

bromomethyl)acrylate (55b) in 68% yield (entry 3). The fluoro-substituted acetylene 118d was 

used in the carbometalation reaction with bis(4-cyanophenyl)zinc·2MgX2 (104k; X = Cl, Br) and 

the desired vinyl sulfide 120e was obtained in 51% yield with an E/Z-ration of 68:32 (entry 4). 

Finally, the alkylacetylene 118e underwent smooth carbometalation with bis(phenyl)zinc·MgCl2 

(104k) and led to the vinylic iodide 120f in 80% yield (entry 5). 
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4. Transition Metal-Catalyzed Cross-Coupling Reactions of Functionalized 
Organozinc Reagents With Methylthio-Substituted N-Heterocycles  

4.1. Introduction 

Transformation of a carbon-sulfur bond into a carbon-carbon bond via transition metal catalysis 

is an efficient tool in organic synthesis, as shown in the introduction. Nevertheless, organozinc 

reagents are rarely used for such cross-couplings. One of the first documented examples for the 

Pd-catalyzed reaction of heterocyclic thioethers with organozinc reagents was the reaction of 

methylthio-substituted pyridine 121 with benzylzinc bromide in the presence of Pd(PPh3)4 at 

elevated temperatures leading to the heterodiarylmethane 122 (Scheme 82).149  

 

 

Scheme 82:  Palladium-catalyzed cross-coupling reaction of benzylzinc bromide with  

 2-(methylthio)pyridine (121) at elevated temperatures. 
 

Very recently, it was shown that the functionalization of oxazoles was achieved by Pd- or Ni-

catalyzed reactions of methylthio-substituted oxazoles using arylzinc reagents (Scheme 83).150 

 

 

Scheme 83: Ni-catalyzed cross-coupling reaction for the functionalization of oxazole derivatives. 

                                                 
149 (a) M. E. Angiolelli, A. L. Casalnuovo, T. P. Selby, Synlett 2000, 905; (b) J. Srogl, W. Liu, D. Marshall, L. S. 
Liebeskind, J. Am. Chem. Soc. 1999, 121, 9449; (c) For Pd-catalyzed reactions of organozinc reagents with 
thioimidates, see: (i) I. Ghosh, P. A. Jacobi, J. Org. Chem. 2002, 67, 9304; (ii) W. P. Roberts, I. Ghosh, P. A. Jacobi, 
Can. J. Chem. 2004, 82, 279; (iii) D. M. Mans, W. H. Pearson, J. Org. Chem. 2004, 69, 6419; (d) For cross-coupling 
reactions of vinyl sulfides with benzylic and allylic zinc reagents under nickel catalysis, see: Y. Baba, A. Toshimitsu, 
S. Matsubara, Synlett 2008, 2061. 
150 K. Lee, C. M. Counceller, J. P. Stambuli, Org. Lett. 2009, 11, 1457. 



 
B. Results and Discussion  89 

4.2. Palladium-catalyzed cross-coupling reactions of functionalized organozinc reagents 
with methylthio-substituted N-heterocycles 

It can be difficult to introduce a halogen substituent to heterocyclic systems. Therefore, the use of 

the methylthio-group for cross-couplings has a great advantage due to the easy introduction of 

this group as well as the long-time stability of thioether-substituted heterocycles.151 The classical 

way to prepare methylthio-substituted heterocycles are condensation reactions of for example 

thiourea with 1,3-dioxo systems followed by methylation of the resulting thiol.152 Alternatively, 

substitution reactions of a heteroaromatic halogen using NaSMe in DMF are possible.153 Thus, 3-

chloro-6-methoxypyradazine (123) was converted to the expected methylthio-product 124a in 

69% yield (Scheme 84).  

 

 

Scheme 84: Preparation of methylthio-substituted pyridazine 124a by classical  
substitution reaction. 

 

Also, by using the selective bases TMPMgCl·LiCl or TMP2Mg·2LiCl several heterocycles can be 

easily metalated and reacted with various sulfonothioates in order to introduce the thioether 

moiety to the heterocyclic system.83, 154  Thus, 2-bromopyridine (125) was reacted with 

TMPMgCl·LiCl and subsequent reaction with S-methyl methanesulfonothioate (57b) led to the 

desired methylthio-substituted pyrimidine 124b in 70% yield (Scheme 85).155 

 

 
 

                                                 
151 For reactions of organomagnesium as well as organozinc reagents with tetramethylthiuram disulfide, see: (a) A. 
Krasovskiy, A. Gavryushin, P. Knochel, Synlett 2005, 2691; (b) A. Krasovskiy, A. Gavryushin, P. Knochel, Synlett 
2006, 792. 
152 (a) D. G. Crosby, R. V. Berthold, H. E. Johnson, Org. Synth. 1963, 43, 68; (b) L. Bethge, D. V. Jarikote, O. Seitz, 
Bioorg. Med. Chem. 2008, 16, 114; (c) J. E. Arguello, L. C. Schmidt, A. B. Penenory, Org. Lett. 2003, 5, 4133. 
153 (a) L. Testaferri, M. Tiecco, M. Tingoli, D. Bartoli, A. Massoli, Tetrahedron 1985, 41, 1373; (b) B. A. Johns,  K. 
S. Gudmundsson, E. M. Turner, S. H. Allen, V. A. Samano, J. A. Ray, G. A. Freeman, F. L. Boyd, Jr., C. J. Sexton, 
D. W. Selleseth, K. L. Creech, K. R. Moniri, Bioorg. Med. Chem. 2005, 13, 2397. 
154 (a) G. C. Clososki, C. J. Rohbogner, P. Knochel, Angew. Chem. Int. Ed. 2007, 46, 7681; (b) C. J. Rohbogner, G. 
C. Clososki, P. Knochel, Angew. Chem. Int. Ed. 2008, 47, 1503; (c) G. Chauviere, B. Bouteille, B. Enanga, C. de 
Albuquerque, S. L. Croft, M. Dumas, J. Perie, J. Med. Chem. 2003, 46, 427. 
155 M. Mosrin, P. Knochel, Org. Lett. 2008, 10, 2497. 
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Scheme 85: Preparation of methylthio-substituted pyrimidine (124b) by metalation procedures. 
 

Furthermore, the catalytic system for the Pd-catalyzed cross-coupling of organozinc reagents 

with heterocyclic thioethers was optimized to perform this reaction at ambient temperature. Thus, 

the reaction of benzylzinc chloride (54a) with 4-methyl-2-(thiomethyl)pyrimidine (124c) in the 

absence of any catalyst led to no conversion of the pyrimidine 124c (entry 1 of Table 22). Using 

PdCl2(dppe) as well as Pd(dba)2/tfp no conversion of the pyrimidine 124c was observed too 

(entries 2 and 3). By using PEPPSI-IPr, the cross-coupling took place and after 19 h only 27% 

starting material was left (entry 4). The best catalytic system for the cross-coupling of organozinc 

reagents with heterocyclic thioethers was found to be Pd(OAc)2/S-Phos (entry 5).84 Additionally, 

is was observed that these cross-couplings can also be performed using a cheap nickel catalyst. 

Thus, reaction of pyrimidine 124c with benzylzinc chloride (54a) using NiCl2(PPh)2 led to full 

conversion of the heterocyclic species 124c within 12 h at 60 °C (entry 6).   

 

Table 22: Screening of various transition-metal-ligand systems for the cross-coupling of 
methylthio-substituted pyrimidine 124c with benzylzinc chloride (54a).  

 

 
 

Entry Catalyst (2 mol%) Ligand (4 mol%) Conversiona 

1 - - 0 

2 PdCl2 dppe 0 

3 Pd(dba)2 tfp <5 

4 PEPPSI-IPr - 73 

5 Pd(OAc)2 S-Phos 93 

6 NiCl2 PPh 95 (60 °C, 12 h) 
[a] Conversions were determined by GC-analysis of a hydrolyzed reaction 
aliquot using tetradecane as internal standard. 
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Having a robust catalytic system in hand, several organozinc reagents were reacted with different 

methylthio-substituted heterocyclic compounds. These cross-couplings were mainly performed at 

25 °C (Scheme 86). 

 

 
Scheme 86: Pd-catalyzed cross-coupling reactions of functionalized organozinc reagents with 

methylthio-substituted N-heterocycles. 
 

Thus, the reaction of 4-methoxyphenylzinc iodide (5c) with 2-(methylthio)-5-

(trifluoromethyl)pyridine (124d) provided the cross-coupling product 126a in 95% yield (entry 1 

of Table 23). Smooth cross-coupling of the nicotinic acid derivative 124e with 4-

(ethoxycarbonyl)phenylzinc iodide (5a) led to the heterocyclic diester 126b in 67% yield (entry 

2) Cyano-substituted pyrazine 124f was smoothly converted to the substituted pyrazine 126c in 

57% yield (entry 3). Furthermore, electron-rich triazines underwent the cross-coupling as well. 

Thus, dimethoxy-substituted triazine 124g reacted with 3-(ethoxycarbonylphenyl)zinc iodide (5d) 

furnishing the triazine 126d in 84% yield (entry 4). Furthermore, Pd-catalyzed cross-coupling of 

the substituted pyrazole 124h with 4-cyanophenylzinc iodide (5e) led to the expected product 

126e in 52% yield (entry 5). Moreover, heterocyclic zinc reagents readily participate in the cross-

coupling under these conditions. Thus, 2-thienylzinc iodide (5f) reacted with the substituted 

pyridine 124i and pyridazine 124a as well as the quinazoline 124j leading to the heterocyclic 

biphenyls 126f-h in 91-95% yields (entries 6-8). 
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Table 23:  Reaction of aromatic and heteroaromatic zinc reagents (5) with methylthio-
substituted N-heterocycles (124) under palladium catalysis.  

Entry 
Aryl- and 

heteroarylzinc 
reagent 

Electrophile Time (h)a Product Yield (%)b 

1 
 

5c 
 

124d 

1 

126a 

95 

2 

5a 
 

124e 

6 

 
126b 

67 

3 
 

5c 
 

124f 

5 

 
126c 

57 

4 

5d  
124g 

21 

126d 

84 

5 
 

5e 
 

124h 

1.5c 
 

126e 

52 

6  
5f  

124i 

18 

 
126f 

93 

7 5f 
 

124a 

5c 
N
N

MeO

S  
126g 

91 

8 5f 
 

124j 

10 

 
126h 

95 

[a] The reaction time for the Pd-catalyzed cross-coupling is given. All reactions were performed at 25 °C 
unless otherwise indicated. [b] Yield of isolated analytically pure product. [c] The reaction was performed 
at 50 °C. 

 

These Pd-catalyzed cross-coupling reactions proceed also well with benzylic zinc reagents of 

type 54. Thus, reaction of 3,4,5-trimethoxybenzylzinc chloride (54h) with the ester-substituted 

pyrimidine 124k afforded the 2-benzylated pyrimidine 126i in 88% yield (entry 1 of Table 24). 
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Smooth cross-coupling reaction of the functionalized pyrimidine 124c with 3-

(ethoxycarbonyl)benzylzinc chloride (54m) provided the heterocyclic diarylmethane 126j (73%, 

entry 2). Similarly, pyridazine 124a and quinazoline 124j underwent also efficient cross-

couplings with various benzylic zinc reagents bearing an ester or a nitrile group furnishing the 

desired products 126k-l in 71-78% yield (entries 3 and 4). Moreover, methylthio-substituted 

benzothiazole 124l provided, after Pd-catalyzed cross-coupling reaction with 3,4,5-

trimethoxybenzylzinc chloride (54h), easily the desired product 126m within 16 h reaction time 

in 70% yield (entry 5).  

 

Table 24: Reaction of benzylic zinc reagents (54) with methylthio-substituted N-hetero-
cycles (124) under palladium catalysis.  

Entry Benzylic zinc chloride Electrophile Time (h)a Product 
Yield 
(%) b 

1 

54h 
 

124k 

1.5 

 
126i 

 

88 

2 

54m  
124c 

24 

 
126j 

73 

3 

54o 
 

124a 

14c 
126k 

 

71 

4 

54n  
124j 

12c 

 
126l 

 

78 

5 

54h 
 

124l 
16 

126m 

70 

[a] Reaction time for the Pd-catalyzed cross-coupling is given. All reactions were performed at 25 °C unless 
otherwise indicated. [b] Yield of isolated analytically pure product. [c] The reaction was performed at 50 °C. 
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The scope of this Pd-catalyzed cross-coupling reaction was extended to alkylzinc reagents. Thus, 

3-cyanopropylzinc bromide (107b) reacted with trifluoromethyl-substituted pyridine 124d 

providing the pyridine 126n within 16 h at 25 °C in 84% yield (Scheme 87). 

 

 

Scheme 87: Cross-coupling reaction of 3-cyanopropylzinc bromide (107b) with  
2-(methylthio)-5-(trifluoromethyl)pyridine (124d) at 25 °C. 

 
A selective bis-functionalization of pyrimidines in positions 2 and 4 can be achieved. Cross-

coupling occurs first in position 2 or 4 depending on the substrate. Thus, the reaction of 2-bromo-

4-(methylthio)pyrimidine (124b) with 4-methoxybenzylzinc chloride (54i) proceeded rapidly in 

the presence of Pd(dba)2/tfp leading to intermediate 127a (25 °C, 3 h; equation 1, Scheme 88).  

 

 

Scheme 88: Selective one-pot cross-couplings of 2-bromo-4-(methylthio)pyrimidine (124b) 
or 4-iodo-2-(methylthio)pyrimidine (124m) using Pd(dba)2/tfp and  
in situ Pd(OAc)2/S-Phos. 
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After a direct addition of a second catalyst system (Pd(OAc)2/S-Phos) to the reaction mixture, a 

second cross-coupling occurred with 4-(ethoxycarbonyl)phenylzinc iodide (5a) providing the 2,4-

disubstituted pyrimidine 126o in 68% overall yield. Alternatively, 4-iodo-2-

(methylthio)pyrimidine (124m) was converted into the regioisomeric 2,4-disubstituted pyrimidine 

126p by performing first a cross-coupling with 4-methoxybenzylzinc chloride (54i) using 

Pd(dba)2/tfp (25 °C, 10 min; leading to 127b) followed by a second cross-coupling with the 

arylzinc reagent 5a in the presence of Pd(OAc)2/S-Phos (25 °C, 20 h). The pyrimidine 126p was 

obtained in 80% overall yield in this one-pot double cross-coupling sequence (equation 2). 

This Pd-catalyzed cross-coupling reaction can be easily scaled up. Thus, 10 mmol scale reaction 

of the ester-substituted arylzinc iodide 5a with the methylthio-substituted pyrimidine 124c led to 

the heterocyclic biphenyl 126q within 18 h at 25 °C in 91% yield (Scheme 89). 

 

N

N

Me

ZnI�LiCl

N

N

Me

CO2Et

(5a; 1.5 equiv)

Pd(OAc)2 (2.5 mol%)

S-Phos (5.0 mol%)

25 °C, 18 h

124c 126q: 91%
(10 mmol scale)

SMe

EtO2C

 

Scheme 89: Cross-coupling reaction of arylzinc iodide 5a with pyrimidine (124c) under 
palladium catalysis on a 10 mmol scale. 

 

4.3. Nickel-catalyzed cross-coupling reactions of functionalized organozinc reagents with 
methylthio-substituted N-heterocycles  

During the  screening of the catalytic system for the palladium catalyzed cross-coupling reaction 

of methylthio-substituted N-heterocycles with organozinc reagents it was found, that this cross-

coupling can be also performed under nickel catalysis (entry 6 of Table 22), lowering the catalyst 

system cost. Therefore, an optimization of the nickel catalytic systems was performed.156 It was 

found that by using Ni(acac)2 (2.5 mol%) and DPE-Phos157 (5.0 mol%) a broad reaction scope 

was achieved and the cross-couplings could be completed in 7-24 h at 25 °C (Scheme 90).  

 

                                                 
156 The screening of the nickel/ligand catalytic systems was performed by Laurin Melzig. For further information, see 
also: Ph.D. thesis Laurin Melzig, LMU Munich. 
157 DPE = bis(2-diphenylphosphinophenyl)ether. 
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Scheme 90: Ni-catalyzed cross-coupling reactions of functionalized organozinc reagents with 
methylthio-substituted N-heterocycles at 25 °C. 

 

Thus, the cross-coupling proceeded well with a range of functionalized aryl- and heteroarylzinc 

reagents. The reaction of ethyl 2-(methylthio)nicotinate (124e) with 3-

(ethoxycarbonyl)phenylzinc iodide (5d) provided the functionalized pyridine 128a in 91% yield 

(entry 1 of Table 25). Similarly, 2-(methylthio)nicotinonitrile (124i) reacted with 4-

(ethoxycarbonyl)phenylzinc iodide (5a) leading to the heterocyclic biphenyl 128b in 69% yield 

(entry 2). Electron-poor zinc reagents 5d-e bearing an ester or a nitrile function readily reacted 

with 4-methyl-2-(methylthio)pyrimidine 124c leading to the functionalized pyrimidines 128c-d in 

73-95% yield (entries 3 and 4). Furthermore, 3-(ethoxycarbonyl)phenylzinc iodide (5d) reacted 

smoothly with the 2-(methylthio)pyrazine (124n) and 6,7-dimethoxy-4-(methylthio)quinazoline 

(124j) leading to the polyfunctional heterocycles 128e and 128f in 74-80% yield (entries 5 and 

6). The reaction of trifluoromethyl-substituted triazine 124o with 2-thienylzinc iodide (5f) gave 

the triazine 128g in 94% yield (entry 7). Using this method, it was possible to prepare the anti-

inflammatory agent158 128h in 87% yield by cross-coupling reaction of the 2,4,6-substituted 

triazine 124g with the heteroarylzinc reagent 5f (entry 8). The reaction protocol was also applied 

to benzylic zinc reagents of type 54. Thus, the 2-(methylthio)-5-(trifluoromethyl)-substituted 

pyridine 124d reacted with 3-(ethoxycarbonyl)benzylzinc chloride (54m) furnishing the expected 

product 128i in 74% yield (entry 9). Similarly, the pyridine 124i and the pyrimidine 124c were 

cross-coupled with benzylic zinc reagents bearing a chloro-substituent as well as a sensitive 

nitrile group leading to the heterocyclic diarylmethanes 128j-k in 69-94% yield (entries 10-11).  

 

                                                 
158 (a) R. Menicagli, S. Samaritani, G. Signore, F. Vaglini, L. Dalla Via, J. Med. Chem. 2004, 47, 4649; (b) C. 
Dianzani, M. Collino, M. Gallicchio, S. Samaritani, G. Signore, R. Menicagli, R. Fantozzi, J. Pharm. Pharmacol. 
2006, 58, 219; (c) S. Samaritani, G. Signore, C. Malanga, R. Menicagli, Tetrahedron 2005, 61, 4475. 
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Table 25: Reaction of aromatic, heteroaromatic and benzylic zinc reagents (5 and 54) with 
methylthio-substituted N-heterocycles (124) under nickel catalysis.  

Entry Zinc reagent Electrophile Time (h)a Product Yield 
(%) b 

1  
5d 

 
124e 

14  

 
128a 

91 

2 
 

5a 
 

124i 
18 

 
128b 

69 

3   
5d  

124c 

12 

 
128c 

95 

4 
 

5e 
124c 18 

 
128d 

73 

5   
5d 

 
124n 

14 

 
128e 

74 

6   
5d  

124j 

18 

 
128f 

80 

7  
5f 

 
124o 

16 

 
128g 

94 

8 5f 
 

124g 

16 

 
128h 

87 

9 

54m 
 

124d 
24 

128i 

74 
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Table 25 continued 

10  
54b 

 
124i 

24 

 
128j 

69 

11  
54o  

124c 

7 

 
128k 

94 

[a] Reaction time for the Ni-catalyzed cross-coupling reaction at 25 °C is given. [b] Yield of isolated 
analytically pure product. 

 

Finally, this Ni-catalyzed cross-coupling reaction was scaled up. Thus, reaction of 4-

methoxybenzylzinc chloride (54i) with the 2-(methylthio)pyrazine 124n provided the 

heterocyclic diarylmethane 128l within 15 h at 25 °C in 84% yield. 

 

 

Scheme 91: Cross-coupling reaction of 4-methoxybenzylzinc chloride (54i) with 
2-(methylthio)pyrazine (124n) under nickel catalysis on a 10 mmol scale. 
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5. Summary and Outlook 

This work was focused on the preparations and applications of benzylic zinc chlorides. 

Furthermore, the Lewis acid promoted additions of organomagnesium and organozinc reagents to 

carbonyl derivatives were investigated. Additionally, a novel Cu(I)-mediated carbometalation 

reaction using functionalized arylzinc reagents was developed. Finally, mild and convenient 

transition metal-catalyzed cross-couplings of thioether-substituted N-heterocycles with 

organozinc compounds were studied. 

 

5.1. Preparation and applications of benzylic zinc chlorides 

In summary, the LiCl-mediated direct insertions of commercially available zinc dust into 

benzylic chlorides under mild conditions was explored. The desired highly functionalized 

benzylic zinc chlorides are easily accessible in excellent yields and are normally storable over 

months without significant loss of reactivity (Scheme 92). 

 

 

Scheme 92: Preparation of functionalized benzylic zinc chlorides. 
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These novel benzylic zinc reagents were reacted with various electrophiles leading to 

polyfunctionalized products (Scheme 93). Moreover, it was possible to establish an easy access to 

phenylacetic acid derivative as well as the alkaloid papaverine (Scheme 93). 

 

 

Scheme 93: Reaction of benzylic zinc chlorides with different electrophiles leading to 
polyfunctionalized products. 

 

Furthermore, benzylic zinc reagents were prone to Ni-catalyzed cross-coupling reactions 

providing the important class of diarylmethanes (Scheme 94). 

 

Scheme 94:  Ni-catalyzed cross-couplings of benzylic zinc chlorides with aromatic halides. 
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Additionally, benzylic zinc chlorides underwent smooth Pd-catalyzed cross-couplings with 

unsaturated bromides bearing free amino or alcohol function without previous protections 

(Scheme 95). 

 

Scheme 95: Pd-catalyzed cross-couplings of benzylic zinc reagents with unsaturated bromides 
bearing acidic protons. 

 

The preparation of benzylic zinc chlorides and their transition metal-catalyzed cross-couplings 

were modified to a one-pot procedure providing an easy access to diarylmethanes without the 

handling of air and moisture sensitive zinc compounds. 

 

Scheme 96: Pd-catalyzed cross-couplings of in situ generated benzylic zinc chloride with 
aromatic bromides in the presence of residual zinc dust. 

 

Furthermore, heterobenzylic zinc reagents were prepared by metalation reactions of methyl-

substituted heterocycles using TMP2Zn·2MgCl2·2LiCl (Scheme 97). 
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Scheme 97: Application of TMP2Zn·2MgCl2·2LiCl to prepare heterobenzylic zinc reagents. 
 

Alternatively, the direct insertion of zinc dust into heterobenzylic chlorides in the presence of 

LiCl was examined giving an access to heterobenzylic zinc reagent as exemplarily shown in 

Scheme 98. Analogously, these zinc reagents were reacted with different electrophiles providing 

polyfunctional heterocyclic products. 

 

 

Scheme 98: Preparation of heterobenzylic zinc reagents by direct zinc insertion into 
heterobenzylic chlorides and reactions thereof with various electrophiles. 

 

Furthermore, benzylic zinc chlorides were smoothly prepared by the direct insertion of 

magnesium into benzylic chlorides in the presence of ZnCl2 and LiCl. Their subsequent reactions 

with different electrophiles led to highly functionalized products (Scheme 99). 
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Scheme 99: Preparation of benzylic zinc chlorides by Mg insertion into benzylic chlorides in the 
presence of ZnCl2/LiCl and subsequent reactions with various electrophiles. 

 

The previously described methods can be extended to the preparation of benzylic aluminum and 

benzylic manganese reagents by direct metal insertion as well as by the insertion of magnesium 

into benzylic chlorides in the presence of the corresponding metal salt which should provide new 

benzylic organometallics having different chemical properties. 

  

5.2. Lewis-acid promoted additions of functionalized organomagnesium and organozinc 
reagents to carbonyl derivatives 

It was demonstrated that by using the THF-soluble complex LaCl3·2LiCl in a catalytic fashion 

organomagnesium reagents easily add to enolizable ketones to provide the expected alcohols in 

similar yields to when using LaCl3·2LiCl in stoichiometric amounts (Scheme 100).   
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Scheme 100: Addition of Grignard reagents to enolizable ketones in the presence of 
catalytic amounts of LaCl3·2LiCl. 

 

Furthermore, it was demonstrated that functionalized organozinc reagents add to aldehydes, 

ketones and even carbon dioxide in the presence of stoichiometric amounts of MgCl2 under mild 

conditions (Scheme 101).  

 

Scheme 101: Addition of functionalized organozinc reagents to carbonyl derivatives in the 
presence of stoichiometric amounts of MgCl2. 
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The catalytic use of LaCl3·2LiCl for the addition of a Grignard reagent to a ketone can be 

extended to a catalytic use of the lanthanum salt for reductions of 1,4-systems having a positive 

influence for industrial processes. Furthermore, the addition of zinc organometallics to carbonyl 

derivatives should be performed in the presence of various magnesium or aluminum salts to 

change the reaction scope. Also the addition of organozinc reagents to carbonyl derivatives in the 

presence of a chiral ligand should be investigated. Moreover, this method can find important 

applications in the pharmaceutical and agrochemical industry due to the high functional group 

tolerance of the utilized zinc reagents which is normally not given for the corresponding Grignard 

compounds. 

 

5.3. Carbocupration of alkynes with functionalized diorganozinc reagents 

A novel Cu(I)-mediated carbometalation reaction was developed using thioether-substituted 

alkynes and functionalized diarylzinc reagents (Scheme 102). The reaction proceeds in very good 

stereo- and regioselectivity providing tetrasubstituted olefins in good yields. 

 

 
Scheme 102: Carbometalation reactions on thioether-substituted alkynes. 
 

As an extension of this method the use of benzylic zinc reagents as well as various alkynes 

bearing directing groups should be possible.  
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5.4. Transition metal-catalyzed cross-coupling reactions of functionalized organozinc 
reagents with methylthio-substituted N-heterocycles  

A mild Pd-catalyzed cross-coupling reaction of organozinc reagents with N-heterocycles was 

studied. Numerous methylthio-substituted N-heterocycles were used as electrophiles and the 

coupling products were generally obtained in good to excellent yields (Scheme 103). 

 

 

Scheme 103: Pd-catalyzed cross-couplings of organozinc reagents with heterocyclic thioethers. 
 

Furthermore, selective one-pot cross-coupling procedures were developed. 
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Scheme 104: Selective Pd-catalyzed cross-coupling reactions of organozinc halides with 
pyrimidines bearing a halogen and a thioether substituent. 

 

The method was extended to Nickel-catalyzed cross-coupling reactions of functionalized 

organozinc reagents with methylthio-substituted N-heterocycles. All reactions could be 

performed at ambient temperature. Moreover, the reaction scope is similar to the Pd-catalyzed 

cross-couplings (Scheme 105). 

 

 

Scheme 105: Ni-catalyzed cross-couplings of organozinc reagents with heterocyclic thioethers. 
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These methods allow smooth cross-couplings of highly functionalized organozinc reagents with 

stable thioether-substituted N-heterocycles and they can find several applications in fields where 

the cross-couplings of halogen-substituted heterocycles are not possible due to the instability of 

the starting materials as well as the difficulties in their preparations.  
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1. General Considerations 

All reactions were carried out with magnetic stirring and, if the reagents were air or moisture 

sensitive, in flame-dried glassware under argon. Syringes which were used to transfer reagents 

and solvents were purged with argon prior to use.  

 

1.1. Solvents 

Solvents were dried according to standard procedures by distillation over drying agents and 

stored under argon. 

CH2Cl2 was predried over CaCl2 and distilled from CaH2. 

DMF  was heated to reflux for 14 h over CaH2 and distilled from CaH2.  

EtOH  was treated with phthalic anhydride (25 g/L) and sodium, heated to reflux for 6 h and 

distilled. 

Et2O was predried over calcium hydride and dried with the solvent purification system SPS-400-

2 from INNOVATIVE TECHNOLOGIES INC. 

NMP was heated to reflux for 14 h over CaH2 and distilled from CaH2. 

Pyridine was dried over KOH and distilled 

THF  was continuously refluxed and freshly distilled from sodium benzophenone ketyl under 

nitrogen. 

Toluene was predried over CaCl2 and distilled from CaH2. 

Triethylamine  was dried over KOH and distilled 

Solvents for column chromatography were distilled prior to use.  

 

1.2. Reagents 

All reagents were obtained from commercial sources and used without further purification unless 

otherwise stated. Liquid aldehydes and acid chlorides were distilled prior to use. Following 

compounds were prepared according to literature procedures: 3-(ethoxycarbonyl)benzyl 

chloride,63a sulfonothioate derivatives,73 2-iodocyclohex-2-en-1-one, 159  

ethyl (2-bromomethyl)- acrylate,76 (2-bromoprop-2-en-1-yl)phenylamine, 160  

2,4-dimethoxy-6-(methylthio)-1,3,5-triazine,161  6,7-dimethoxy-4-(methylthio)quinazoline,161  

                                                 
159 M. E. Krafft, J. W. Cran, Synlett 2005, 1263. 
160 J. Barluenga, F. Foubelo, F. J. Fananas, M. Yus; J. Chem. Soc. Perkin Trans 1 1989, 553 
161 A. Metzger, L. Melzig, C. Despotopoulou, P. Knochel, Org. Lett. 2009, 11, 4228. 
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1-methyl-5-(methylthio)-1H-pyrazole, 162 ethyl 4-[2-(methylthio)pyrimidin-4-yl]benzoate,163 2-

bromo-4-(methylthio)pyrimidine,155 4-iodo-2-(methylthio)pyrimidine,164  2-(methylthio)-4-(2-

thienyl)-6-(trifluoromethyl)pyrimidine.165  

 

i-PrMgCl·LiCl  solution in THF was purchased from Chemetall. 

i-PrMgCl  solution in THF was purchased from Chemetall 

PhMgCl solution in THF was purchased from Chemetall 

n-BuLi  solution in hexane was purchased from Chemetall. 

TMPMgCl·LiCl  was prepared according to a literature procedure (ref. 83). 

TMP2Zn·2MgCl2·2LiCl was prepared according to a literature procedure (ref. 29a).  

CuCN·2LiCl  solution (1.00 M) was prepared by drying CuCN (80.0 mmol, 7.17 g) and LiCl 

(160 mmol, 6.77 g) in a Schlenk-tube under vacuum at 140 °C for 5 h. After cooling, 80 mL dry 

THF were added and stirring was continued until the salt was dissolved.  

ZnCl2 solution (1.00 M) was prepared by drying ZnCl2 (100 mmol, 136 g) in a Schlenk-flask 

under vacuum at 140 °C for 5 h. After cooling, 100 mL dry THF were added and stirring was 

continued until the salt was dissolved.  

LiCl  solution (0.5 M) was prepared by drying LiCl (100 mmol, 4.23 g) in a Schlenk-flask under 

vacuum at 140 °C for 5 h. After cooling, 200 mL dry THF were added and stirring was continued 

until the salt was dissolved.  

ZnCl2/LiCl  solution (1.1/1.5 M) was prepared by drying LiCl (15.9 g, 375 mmol) and ZnCl2 

(37.5 g, 275 mmol) under high vacuum (1 mbar) for 5 h at 140 °C. After cooling to 25 °C, dry 

THF (250 mL) was added and stirring was continued until the salts were dissolved. 

 

1.3. Content determination of organometallic reagents 

Organzinc and organomagnesium reagents were titrated against I2 in a 0.5 M LiCl solution in 

THF.71  

                                                 
162 C. Despotopoulou, L. Klier, P. Knochel, Org. Lett. 2009, 11, 3326. 
163 (a) Ethyl 4-[2-(methylthio)pyrimidin-4-yl]benzoate was obtained as chemical gift from Dr. M. Mosrin and is 
herewith gratefully acknowledged; (b) See also: (i) C. Gosmini, J. Y. Nedelec, J. Perichon, Tetrahedron Lett. 2000, 
41, 201; (ii) C. J. Rohbogner, S. H. Wunderlich, G. C. Clososki, P. Knochel, Eur. J. Org. Chem. 2009, 1781. 
164 A. J. Majeed, O. Antonsen, T. Benneche, K. Undheim, Tetrahedron 1989, 45, 993. 
165 A. F. C Flores, L. Pizzuti, S. Brondani, M. Rossato, N. Zanatta, M. A. P Martins, J. Braz. Chem. Soc. 2007, 18, 
1316. 
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Organolithium  reagents were titrated against menthol using 1,10-phenanthroline as indicator in 

THF.  

TMPMgCl·LiCl and TMP2Zn·2MgCl2·2LiCl were titrated against benzoic acid using 4-

(phenylazo)diphenylamine as indicator in THF.  

 

1.4. Chromatography 

Flash column chromatography was performed using silica gel 60 (0.040-0.063 mm) from 

Merck.  

Thin layer chromatography was performed using SiO2 pre-coated aluminium plates (Merck 60, 

F-254). The chromatograms were examined under UV light at 254 nm and/or by staining of the 

TLC plate with one of the solutions given below followed by heating with a heat gun: 

- KMnO4 (3.0 g), 5 drops of conc. H2SO4 in water (300 mL). 

- Phosphomolybdic acid (5.0 g), Ce(SO4)2 (2.0 g) and conc. H2SO4 (12 mL) in water 

(230 mL). 

 

1.5. Analytical data 

NMR  spectra were recorded on VARIAN Mercury 200, BRUKER AXR 300, VARIAN VXR 

400 S and BRUKER AMX 600 instruments. Chemical shifts are reported as δ-values in ppm 

relative to the residual solvent peak of CHCl3 (δH : 7.25, δC : 77.0). For the characterization of the 

observed signal multiplicities the following appreviations were used: s (singlet), d (doublet), t 

(triplet), q (quartet), quint (quintet), sept (septet), m (multiplet) as well as br (broad). 

Mass spectroscopy: High resolution (HRMS) and low resolution (MS) spectra were recorded on 

a FINNIGAN MAT 95Q instrument. Electron impact ionization (EI) was conducted with an 

electron energy of 70 eV.  

For the combination of gas chromatography with mass spectroscopic detection, a GC/MS from 

Hewlett-Packard HP 6890 / MSD 5973 was used.  

Infrared  spectra (IR) were recorded from 4500 cm-1 to 650 cm-1 on a PERKIN ELMER 

Spectrum BX-59343 instrument. For detection a SMITHS DETECTION DuraSamplIR II 

Diamond ATR sensor was used. The absorption bands are reported in wavenumbers (cm-1) 

Melting points (M.p.) were determined on a BÜCHI B-540 apparatus and are uncorrected. 
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2. Typical Procedures (TP) 

2.1. Typical procedure for the preparation of benzylic zinc chlorides by LiCl-mediated 
direct zinc insertion into benzylic chlorides (TP1) 

A Schlenk-flask equipped with a magnetic stirring bar and a septum was charged with LiCl (1.5–

2.0 equiv). The flask was heated with a heat gun (400 °C) for 10 min under high vacuum. After 

cooling to 25 °C, the flask was flushed with argon (3 times). Zinc dust (1.5–2.0 equiv) was added 

followed by THF. 1,2-Dibromoethane was added (5 mol%) and the reaction mixture was heated 

until ebullition occurs. After cooling to 25 °C, trimethylsilyl chloride (1 mol%) was added and 

the mixture was heated again until ebullition occurs. The benzylic chloride (1.0 equiv) was added 

at the required temperature (usually 25 °C) as a solution in THF (usually 4 M). When capillary 

GC analysis of a hydrolyzed aliquot containing an internal standard showed a conversion of 

> 98%, the Schlenk-flask was centrifuged for 75 min at 2000 rpm or the reaction mixture was 

allowed to settle down for some hours. The yield of the resulting benzylic zinc chloride was 

determined by iodiometric titration.71  

 

2.2. Typical procedure for the reaction of benzylic zinc chlorides with aldehydes (TP2 ) 

In a dry argon-flushed Schlenk flask, equipped with a magnetic stirring bar and a septum, the 

aldehyde (1.0 equiv) was dissolved in THF at 0 °C and the benzylic zinc chloride (1.3 equiv) was 

added dropwise. The resulting solution was allowed to warm to 25 °C and was stirred for the 

required time. Then, sat. aq. NH4Cl (20 mL) solution was added. The phases were separated and 

the aq. layer was extracted with Et2O (3 x 20 mL). The combined organic extracts were dried 

over MgSO4. Evaporation of the solvents in vacuo and purification by flash column 

chromatography afforded the expected alcohols. 

 

2.3. Typical procedure for the reaction of benzylic zinc chlorides with acid chlorides (TP3) 

Into a dry argon-flushed Schlenk flask, equipped with a magnetic stirring bar and a septum, 

CuCN·2LiCl solution (1.4 equiv) was added: Then, the desired benzylic zinc chloride (1.4 equiv) 

was added dropwise at -25 °C. The resulting reaction mixture was stirred for 15 min at this 

temperature. Then, the solution was cooled to the required temperature and the acid chloride 

(1.0 equiv) was added dropwise. The reaction mixture was stirred for the given time and allowed 

to warm to 25 °C. Then, a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 2:1 was added, the 
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phases were separated and the aq. layer was extracted with Et2O (3 x 100 mL). The combined 

organic extracts were dried over MgSO4. Evaporation of the solvents in vacuo and purification by 

flash column chromatography afforded the expected ketones. 

 

2.4. Typical procedure for the reaction of benzylic zinc chlorides with unsaturated ketones 
(TP4) 

Into a dry argon-flushed Schlenk flask, equipped with a magnetic stirring bar and a septum, 

CuCN·2LiCl solution (1.25 equiv) was added. Then, the desired benzylic zinc chloride 

(1.25 equiv) was added dropwise at -25°C. The resulting reaction mixture was stirred for 15 min 

at this temperature. Then, the solution was cooled to the required temperature and a mixture of 

the unsaturated ketone (1.0 equiv), trimethylsilyl chloride (2.5 equiv) and THF was added 

dropwise. The reaction mixture was stirred for the given time and allowed to reach 25 °C. Then, a 

mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 2:1 was added. The phases were separated and 

the aq. layer was extracted with Et2O (3 x 100 mL). The combined extracts were dried over 

MgSO4. Evaporation of the solvents in vacuo and purification by flash column chromatography 

afforded the expected ketones. 

 

2.5. Typical procedure for the Ni-catalyzed cross-coupling reactions of benzylic zinc 
chlorides with aromatic halides (TP5) 

In a dry argon-flushed Schlenk flask equipped with a septum and a magnetic stirring bar, the 

aromatic bromide or chloride (2.00 mmol, 1.0 equiv) was dissolved in NMP (0.4 mL) and PPh3 

(0.1 mL, 0.04 mmol, 0.4 M in THF, 2 mol%) was added. Then, Ni(acac)2 
(0.1 mL, 0.01 mmol, 0.1 

M in THF, 0.5 mol%) was added. After the addition of the corresponding benzylic zinc reagent 

(2.40 mmol, 1.2 equiv), the reaction mixture was warmed to 60 °C and stirred for the given time 

until GC-analysis showed full conversion of the electrophile. The reaction mixture was quenched 

with sat. aq. NH4Cl solution and extracted with Et2O (3 times). The combined organic phases 

were dried over MgSO4 
and the solvent was removed in vacuo. The product was purified by flash 

column chromatography.  
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2.6. Typical procedure for the Pd-catalyzed cross-coupling reaction with a bromo-aniline 
(TP6) 

A dry and argon flushed Schlenk-flask, equipped with a magnetic stirring bar and a septum, was 

charged with the bromo-aniline (1.0 equiv), Pd(OAc)2 (1 mol%), S-Phos (2 mol%) and THF. 

After stirring the reaction mixture for 5 min, the zinc reagent was added. The reaction mixture 

was stirred for the given time at 25 °C. Then, the reaction mixture was quenched with a sat. aq. 

NH4Cl solution, extracted with Et2O (3 times). The combined organic phases were washed with 

an aq. thiourea solution and dried over MgSO4. Purification of the crude residue obtained after 

evaporation of the solvents by flash column chromatography yielded the desired product.  

 

2.7. Typical procedure for the Pd-catalyzed cross-coupling reaction with a bromo-alcohol 
(TP7) 

A dry and argon flushed Schlenk-flask, equipped with a magnetic stirring bar and a septum, was 

charged with the bromo-alcohol (1.0 equiv), Pd(OAc)2 (1 mol%), S-Phos (2 mol%) and THF. 

After stirring the reaction mixture for 5 min, the zinc reagent was added slowly over 90 min 

using a syringe pump at 25 °C. Then, the reaction mixture was quenched with a sat. aq. NH4Cl 

solution, extracted with Et2O (3 times). The combined organic phases were washed with an aq. 

thiourea solution and dried (MgSO4). Purification of the crude residue obtained after evaporation 

of the solvents by flash chromatography yielded the desired product.  

 

2.8. Typical procedure for the one-pot Negishi cross-coupling reaction (TP8) 

A Schlenk-flask, equipped with a magnetic stirring bar and a septum, was charged with LiCl 

(1.5  equiv). The flask was heated with a heat gun (400 °C) for 10 min under high vacuum. After 

cooling to 25 °C, the flask was flushed with argon (3 times). Zinc dust (1.5 equiv) was added 

followed by THF. 1,2-Dibromoethane was added (5 mol%) and the reaction mixture was heated 

to ebullition for 15 s. After cooling to 25 °C, trimethylsilyl chloride (1 mol%) was added and the 

mixture was heated to ebullition for 15 s. The benzylic chloride (1.0 equiv) was added at the 

required temperature (usually 25 °C) as a solution in THF (usually 4 M). When capillary GC 

analysis of a hydrolyzed aliquot containing an internal standard showed a conversion of > 98%, 

the aromatic bromide was added, followed by PEPPSI-IPr. The reaction mixture was stirred at 

25 °C until GC analysis of a hydrolyzed aliquot containing an internal standard showed a 

conversion of > 98%. Then, sat. aq. NH4Cl solution was added (20 mL). The phases were 
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separated and the aq. layer was extracted with CH2Cl2 (3 x 20 mL). The combined extracts were 

dried over MgSO4. Evaporation of the solvents in vacuo and purification by flash 

chromatography afforded the expected diarylmethanes. 

 

2.9. Typical procedure for preparation of benzylic zinc chlorides by magnesium insertion in 
the presence of ZnCl2 and LiCl (TP9) 

A dry and argon-flushed Schlenk-flask, equipped with a magnetic stirring bar and a septum, was 

charged with magnesium turnings (122 mg, 5.00 mmol). LiCl (5.00 mL, 2.50 mmol, 0.5 M in 

THF) and ZnCl2 (2.20 mL, 2.20 mmol, 1.00 M in THF) were added. The benzylic chloride 

(2.00 mmol) was added in one portion at the given temperature. The reaction mixture was stirred 

for the given time and then canulated to a new Schlenk-flask for the reaction with an electrophile.  

 

2.10. Typical procedure for the addition of organomagnesium reagents to carbonyl 
derivatives in the presence of variable amounts of LaCl3·2LiCl (TP10) 

A dry and argon-flushed Schlenk-flask, equipped with a magnetic stirring bar and a septum, was 

charged with the carbonyl derivative (1 equiv) in LaCl3·2LiCl solution (1 equiv) and the reaction 

mixture was stirred for 1 h. Then, the organomagnesium reagent (1.1 equiv) was added dropwise 

at 0 °C. The reaction mixture was stirred for the given time at the required temperature until GC-

analysis of a quenched reaction aliquot showed complete conversion. Then, the reaction mixture 

was cooled to 0 °C and quenched with sat. aq. NH4Cl solution and extracted with Et2O (3 times). 

The combined organic phases were dried over Na2SO4. Evaporation of the solvents in vacuo and 

purification by flash column chromatography afforded the expected alcohols. 

 

2.11. Typical procedure for the preparation of zinc reagents using Mg and ZnCl2/LiCl 
solution (TP11) 

A dry and argon-flushed Schlenk-flask, equipped with a magnetic stirring bar and a septum, was 

charged with magnesium turnings (2.5 equiv). Then, ZnCl2/LiCl (1.1/1.5 M) solution was added 

(1 mL / mmol for the preparation of organozinc reagents of type RZnX·MgX2·LiCl (X = Cl, Br); 

0.5 mL / mmol for the preparation of diorganozinc reagents of type R2Zn·2MgX2·LiCl (X = Cl, 

Br)). The organic halide (1.0 equiv) was added dropwise as a solution in THF using a water 

cooling bath to keep the temperature below 30 °C. The reaction mixture was stirred for the given 

time until GC-analysis of a quenched reaction aliquot showed complete conversion. Then, the 
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supernatant solution was carefully cannulated to a new dry and argon-flushed Schlenk-flask 

through a syringe filter. The concentration of the zinc reagent was determined by iodometric 

titration. 

 

2.12. Typical procedure for the addition of organozinc reagents of type RZnX·MgX2·LiCl 
or diorganozinc reagents of type R2Zn·2MgX2·LiCl to carbonyl derivatives (TP12) 

A dry and argon-flushed Schlenk-flask, equipped with a magnetic stirring bar and a septum, was 

charged with the carbonyl derivative (1.5 mmol) in THF (1 mL). Then, the organozinc reagent 

RZnX·MgX2·LiCl (1.8 mmol, 1.2 equiv; X = Cl, Br) or the diorganozinc reagent 

R2Zn·2MgX2·LiCl (0.9 mmol, 0.6 equiv; X = Cl, Br) was added dropwise. The reaction mixture 

was stirred for the given time until GC-analysis of a quenched reaction aliquot showed complete 

conversion. Then, the reaction mixture was cooled to 0 °C and quenched with sat. aq. NH4Cl 

solution and extracted with EtOAc (3 x 50 mL). The combined organic phases were dried over 

MgSO4. Evaporation of the solvents in vacuo and purification by flash column chromatography 

afforded the expected products. 

 

2.13. Typical procedure for the addition of organozinc reagents to carbon dioxide (TP13) 

A Schlenk-flask, equipped with a magnetic stirring bar and a septum, was flame-dried under high 

vacuum. After cooling to 25 °C, the flask was filled with dry CO2(g) and the organozinc reagent 

(typically 1.0 mmol for Ar2Zn or (ArCH2)2Zn) was added. Then, dry CO2(g) was bubbled through 

the reaction mixture (ca. 5 min) until a balloon attached to the reaction flask by a short length 

rubber tubing and a needle adapter was inflated. The reaction mixture was stirred for the given 

time and temperature until the zinc reagent had been completely consumed (quenching of 

reaction aliquots with I2 and GC-analysis). The reaction mixture was diluted with Et2O (20 mL) 

and sat. aq. NaHCO3 (30 mL) was added. After filtration, the organic phase was separated and 

extracted with sat. aq. NaHCO3 (3 x 30 mL). The combined aq. phases were carefully acidified 

with HCl (5 M) until pH < 5 and extracted with Et2O (3 x 100 mL). The combined organic phases 

were dried over Na2SO4. Evaporation of the solvents in vacuo provided the corresponding 

carboxylic acids. 
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2.14. Typical procedure for the Pd-catalyzed cross-coupling reaction of organozinc 
reagents with methylthio-substituted N-heterocycles (TP14) 

In a dry argon-flushed Schlenk flask, equipped with a magnetic stirring bar and a septum, the 

aromatic thioether (1.00 mmol), Pd(OAc)2 (2.5 mol%) and S-Phos (5.0 mol%) were dissolved in 

THF (1 mL). After 10 min of stirring, the zinc reagent (1.5 mmol) was added dropwise and the 

reaction mixture was stirred for the given time at the required temperature until GC-analysis of a 

hydrolyzed aliquot showed full consumption of the electrophile. The reaction mixture was 

quenched with sat. aq. Na2CO3 solution and extracted with EtOAc (3 x 25 mL). The combined 

organic layers were dried over Na2SO4. Evaporation of the solvents in vacuo and purification by 

flash column chromatography afforded the expected products. 

 

2.15. Typical procedure for the Ni-catalyzed cross-coupling reaction of organozinc 
reagents with methylthio-substituted N-heterocycles (TP15) 

In a dry argon-flushed Schlenk flask, equipped with a magnetic stirring bar and a septum, the 

aromatic thioether (1.00 mmol), Ni(acac)2 (2.5 mol%) and DPE-Phos (5.0 mol%) were dissolved 

in THF (1 mL). After 10 min of stirring, the zinc reagent (1.5 mmol) was added dropwise and the 

reaction mixture was stirred for the given time at 25 °C until GC-analysis of a hydrolyzed aliquot 

showed full consumption of the electrophile. The reaction mixture was quenched with sat. aq.  

Na2CO3 solution and extracted with EtOAc (3 x 25 mL). The combined organic layers were dried 

over Na2SO4. Evaporation of the solvents in vacuo and purification by flash column 

chromatography afforded the expected products. 
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3. Preparation and Applications of Benzylic Zinc Chlorides  

3.1. Prepartion of the starting materials 

2-Bromobenzyl chloride (53d)  

 

To a solution of LiCl (2.54 g, 60.0 mmol, dried for 10 min under high vacuum at 400 °C using a 

heat gun) in THF (50 mL) was added 2-bromobenzyl alcohol (3.74 g, 20.0 mmol) at 0 °C. Then, 

NEt3 (5.56 mL, 40.0 mmol) was added dropwise, followed by mesyl chloride (2.32 mL, 

30.0 mmol). The reaction mixture was allowed to reach 25 °C within 15 h. Then, CH2Cl2 

(300 mL) was added and the solution was washed with water (3 x 250 mL). The combined 

extracts were dried over MgSO4. Evaporation of the solvents in vacuo and purification by flash 

chromatography (silica gel, pentane / Et2O = 98:2) afforded the benzylic chloride 53d (3.67 g, 

89%) as a colourless oil.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.58 (dd, J = 8.0 Hz, 1.2 Hz, 1H), 7.48 (dd, J = 7.4 Hz, 

1.6 Hz, 1H), 7.35-7.28 (m, 1H), 7.22-7.15 (m, 1H), 4.70 (s, 2H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 136.6, 133.1, 130.8, 130.0, 127.8, 124.1, 46.1.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3060 (w), 2968 (w), 1588 (w), 1570 (w), 1470 (m), 1438 

(m), 1280 (w), 1264 (m), 1210 (w), 1046 (w), 1026 (s), 820 (m), 762 (m), 728 (vs), 672 (s), 656 

(m), 570 (m).  

MS (EI, 70 eV): m/z (%) = 204 (M+, 25), 171 (98), 169 (100), 90 (22), 84 (15), 63 (11).  

HRMS (C7H6BrCl): calc.: 203.9341; found: 203.9339. 

 

4-(Ethoxycarbonyl)benzyl chloride (53n) 

 

N,N-Dimethylpyridin-4-amine (305 mg, 2.50 mmol) was dissolved in ethanol (4 mL) and 

pyridine (7.5 mL) at 0 °C. 4-(Chloromethyl)benzoyl chloride (9.45 g, 50.0 mmol, in 2.5 mL 

Et2O) was added dropwise. Then, the reaction mixture was warmed to 25 °C and added to a dilute 

HCl/Et2O mixture = 1:1 (200 mL). The phases were separated and the organic layer was washed 

successively with H2O (100 mL) and brine (100 mL), then dried over MgSO4. Evaporation of the 

solvents in vacuo afforded the benzylic chloride 53n (9.51 g, 96%) as a pale yellow liquid which 

was used without further purification.  
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1H-NMR (300 MHz, CDCl3): δ / ppm = 8.06-7.98 (m, 2H), 7.47-7.41 (m, 2H), 4.59 (s, 2H), 4.37 

(q, J = 7.0 Hz, 2H), 1.38 (q, J = 7.2 Hz, 3H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.0, 142.1, 130.4, 129.9, 128.4, 61.1, 45.3, 14.3.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 2982 (w), 1712 (s), 1614 (w), 1578 (w), 1446 (w), 1414 

(w), 1368 (m), 1306 (w), 1270 (vs), 1178 (m), 1100 (vs), 1020 (s), 920 (w), 856 (w), 804 (m), 

772 (m), 710 (vs), 676 (m), 622 (w).  

MS (EI, 70 eV): m/z (%) = 198 (M+, 11), 170 (29), 163 (12), 155 (28), 153 (100), 135 (26), 89 

(19).  

HRMS (C10H11ClO2): calc.: 198.0448; found: 198.0446. 

 

3-Cyanobenzyl chloride (53o) 

 

LiCl (6.36 g, 150 mmol) was dried (high vacuum, heat gun 400 °C, 10 min). 3-

(Bromomethyl)benzonitrile (9.80 g, 50.0 mmol) was added followed by THF (100 mL) at 0 °C. 

The reaction mixture was refluxed for 5 h. The resulting suspension was transferred into a 

separation funnel, washed with water (3 x 150 mL) and dried over MgSO4 followed by the 

evaporation of the solvents in vacuo. Again, LiCl (6.36 g, 150 mmol) was dried (high vacuum, 

heat gun 400 °C, 10 min) and the crude product was added followed by THF (100 mL) at 0 °C. 

The reaction mixture was refluxed for 5 h. The resulting suspension was transferred into a 

separation funnel, washed with water (3 x 150 mL) and dried over MgSO4 followed by the 

evaporation of the solvents in vacuo. Once again, LiCl (6.36 g, 150 mmol) was dried (high 

vacuum, heat gun 400 °C, 10 min) and the crude product was added followed by THF (100 mL) 

at 0 °C. The resulting suspension was transferred into a separation funnel, washed with water 

(3 x 150 mL) and dried over MgSO4 followed by the evaporation of the solvents in vacuo. 

Purification by flash chromatography (short column, silica gel, pentane / Et2O = 9:1) afforded the 

benzylic chloride 53o (7.47 g, 99%) as a white solid. 

M.p. (°C): 73-75. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 7.70-7.65 (m, 1H), 7.65-7.57 (m, 2H), 7.52-7.43 (m, 

1H), 4.58 (s, 2H). 
13C-NMR (300 MHz, CDCl3): δ / ppm = 138.8, 132.8, 131.9, 131.9, 129.6, 118.2, 112.9, 44.6. 
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IR (Diamond-ATR, neat): ν~  / cm-1 = 3060 (w), 2227 (m), 1584 (w), 1484 (m), 1445 (m), 1275 

(m), 1240 (m), 1153 (m), 930 (w), 907 (m), 894 (w), 804 (s), 718 (m), 701 (vs), 679 (vs). 

MS (EI, 70 eV): m/z (%) = 151 (M+, 100), 117 (17), 116 (83), 89 (45), 63 (11). 

HRMS (C8H6ClN): calc.: 151.0189; found: 151.0183. 

 

4-Cyanobenzyl chloride (53p)  

 

LiCl (1.40 g, 33.0 mmol) was dried (high vacuum, heat gun ca. 400 °C, 10 min). 4-

(Bromomethyl)benzonitrile (2.16 g, 11.0 mmol) was added followed by THF (20 mL) at 25 °C. 

The reaction mixture was refluxed for 12 h. The resulting suspension was transferred into a 

separation funnel, washed with water (1 x 50 mL) and dried over MgSO4 followed by filtration 

and evaporation of the solvents in vacuo. Again, LiCl (1.40 g, 33.0 mmol) was dried (high 

vacuum, heat gun ca. 400 °C, 10 min) and the crude product was added followed by THF 

(20 mL) at 0 °C. The reaction mixture was refluxed for 12 h. The resulting suspension was 

transferred into a separation funnel, washed with water (1 x 50 mL) and dried over MgSO4 

followed by the evaporation of the solvents in vacuo. Purification by flash chromatography (short 

column, silica gel, pentane / Et2O = 5:1) afforded the benzylic chloride 53p (1.62 g, 97%) as a 

white solid.  

M.p. (°C): 84-85.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.64 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 4.59 

(s, 2H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 142.4, 132.5, 129.2, 118.4, 112.2, 45.0.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 2228 (m), 1416 (m), 1290 (m), 1266 (m), 1212 (m), 848 

(s), 830 (s), 740 (m), 708 (m), 660 (vs).  

MS (EI, 70 eV): m/z (%) = 151 (M+, 61), 116 (100), 71 (14), 59 (11).  

HRMS (C8H6ClN):  calc.: 151.0189; found: 151.0184. 
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3-Pentanoylbenzyl chloride (53q) 

 

Butylmagnesium chloride (12.2 mL, 18.0 mmol, 1.48 M in THF/toluene) was added to ZnCl2 

(18.8 mL, 18.8 mmol, 1.00 M in THF) at -25 °C. The mixture was stirred for 30 min. 

CuCN·2LiCl (19.5 mL, 19.5 mmol, 1.00 M in THF) was added and the reaction mixture was 

stirred for additional 30 min. 3-(Chloromethyl)benzoyl chloride (2.84 g, 15.0 mmol) was added 

dropwise and the mixture was stirred for 2 h. The reaction mixture was quenched with 60 mL of a 

mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 2:1. The phases were separated and the organic 

layer was extracted with 60 mL of a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 2:1. The 

combined aqueous layers were extracted with Et2O (3 x 250 mL). The combined organic extracts 

were dried over MgSO4. Evaporation of the solvents in vacuo and purification by flash 

chromatography (silica gel, pentane / Et2O = 2:1) afforded the benzylic chloride 53q (2.89 g, 

91%) as colourless liquid. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 7.97-7.95 (m, 1H), 7.90 (dt, J = 7.7 Hz, 1.3 Hz, 1H), 

7.60-7.56 (m, 1H), 7.45 (t, J = 7.7 Hz, 1H), 4.62 (s, 2H), 2.96 (t, J = 7.1 Hz, 2H), 1.77-1.66 (m, 

2H), 1.47-1.34 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 200.2, 138.3, 137.8, 133.1, 129.3, 128.3, 128.3, 45.9, 

38.7, 26.6, 22.7, 14.2. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2957 (m), 2931 (w), 2871 (w), 1717 (w), 1682 (s), 1443 

(w), 1260 (m), 1233 (w), 1199 (w), 1179 (m), 1162 (m), 1109 (w), 1036 (w), 790 (w), 760 (w), 

704 (vs), 654 (m). 

MS (EI, 70 eV): m/z (%) = 210 (M+, 6), 175 (13), 170 (19), 168 (54), 155 (33), 154 (12), 153 

(100), 125 (25), 89 (18). 

HRMS (C12H15ClO): calc.: 210.0811; found: 210.0798. 

 

3-Isobutyrylbenzyl chloride (53r) 

 

ZnCl2 solution (18.8 mL, 18.8 mmol, 1.00 M in THF) was added to i-PrMgCl·LiCl (11.3 mL, 

18.0 mmol, 1.59 M in THF) at -10 °C. The mixture was stirred for 30 min. CuCN·2LiCl (19.5 mL, 
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19.5 mmol, 1.00 M in THF) was added and the reaction mixture was stirred for additional 30 min. 

3-(Chloromethyl)benzoyl chloride (2.84 g, 15.0 mmol) was added dropwise and the mixture was 

stirred for 2 h. The reaction mixture was quenched with 100 mL of a mixture of sat. aqueous 

NH4Cl / NH3 (25% in H2O) = 2:1. The layers were separated and the organic layer was extracted 

with 100 mL of a mixture of sat. aqueous NH4Cl / NH3 (25% in H2O) = 2:1. The combined 

aqueous layers were extracted with Et2O (3 x 250 mL). The combined extracts were dried over 

MgSO4. Evaporation of the solvents in vacuo and purification by flash chromatography (silica 

gel, pentane / Et2O = 4:1) afforded the ketone 53r (2.91 g, 98%) as colourless liquid.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.97-7.94 (m, 1H), 7.91-7.86 (m, 1H), 7.60-7.55 (m, 

1H), 7.46 (t, J = 7.6 Hz, 1H), 4.62 (s, 2H), 3.62-3.46 (m, 1H), 1.21 (d, J = 6.9 Hz, 6H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 203.9, 138.1, 136.6, 132.8, 129.1, 128.3, 128.2, 45.6, 

35.4, 19.1.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 2972 (w), 2934 (w), 2874 (w), 1682 (s), 1604 (w), 1586 

(w), 1466 (w), 1444 (w), 1384 (w), 1270 (w), 1242 (m), 1186 (w), 1148 (m), 1104 (w), 1090 (w), 

1022 (m), 996 (m), 924 (w), 808 (w), 702 (vs), 674 (m), 644 (m).  

MS (EI, 70 eV): m/z (%) = 196 (M+, 37), 161 (62), 154 (100), 125 (29), 118 (28), 89 (94). 

HRMS (C11H13ClO):  calc.: 196.0655; found: 196.0656. 

 

3-Propionylbenzyl chloride (53s) 

 

Ethylmagnesium bromide (21.2 mL, 18.0 mmol, 0.85 M in t-BuOMe) was added to ZnCl2 

(18.8 mL, 18.8 mmol, 1.00 M in THF) at -25 °C. The mixture was stirred for 30 min. 

CuCN·2LiCl (19.5 mL, 19.5 mmol, 1.00 M in THF) was added and the reaction mixture was 

stirred for additional 30 min. 3-(Chloromethyl)benzoyl chloride (2.84 g, 15.0 mmol) was added 

dropwise and the mixture was stirred for 2 h. The reaction mixture was quenched with 60 mL of a 

mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 2:1. The phases were separated and the organic 

layer was extracted with 60 mL of a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 2:1. The 

combined aqueous layers were extracted with Et2O (3 x 250 mL). The combined organic extracts 

were dried over MgSO4. Evaporation of the solvents in vacuo and purification by flash 
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chromatography (silica gel, pentane / Et2O = 1:1) afforded the benzylic chloride 53s (2.89 g, 

94%) as colourless liquid. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 7.98-7.95 (m, 1 H), 7.90 (dt, J = 7.7 Hz, 1.3 Hz, 1H), 

7.60-7.56 (m, 1H), 7.45 (t, J = 7.5 Hz, 1H), 4.62 (s, 2H), 3.00 (t, J = 7.3 Hz, 2H), 1.22 (t, 

J = 7.3 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 200.5, 138.3, 137.6, 133.1, 129.3, 128.2, 128.2, 45.9, 

32.1, 8.4. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2978 (w), 1682 (s), 1604 (w), 1586 (w), 1444 (w), 1378 

(w), 1350 (m), 1270 (w), 1242 (s), 1184 (m), 1164 (s), 974 (m), 786 (m), 704 (vs). 

MS (EI, 70 eV): m/z (%) = 182 (M+, 7), 153 (100), 147 (14), 125 (27), 90 (14), 89 (19), 44 (16). 

HRMS (C10H11ClO): calc.: 182.0498; found: 182.0472. 

 

3-Acetylbenzyl chloride (54t) 

 

Methylmagnesium chloride (7.03 mL, 18.0 mmol, 2.56 M in THF) was added to ZnCl2 (18.8 mL, 

18.8 mmol, 1.00 M in THF) at -10 °C. The mixture was stirred for 30 min. CuCN·2LiCl 

(19.5 mL, 19.5 mmol, 1.00 M in THF) was added and the reaction mixture was stirred for 

additional 30 min. 3-(Chloromethyl)benzoyl chloride (2.84 g, 15.0 mmol) was added dropwise 

and the mixture was stirred for 2 h. The reaction mixture was quenched with 60 mL of a mixture 

of sat. aq. NH4Cl / NH3 (25% in H2O) = 2:1. The phases were separated and the organic layer 

was extracted with 60 mL of a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 2:1. The 

combined aqueous layers were extracted with Et2O (3 x 250 mL). The combined organic extracts 

were dried over MgSO4. Evaporation of the solvents in vacuo and purification by flash 

chromatography (silica gel, pentane / Et2O = 3:1) afforded the benzylic chloride 53t (2.46 g, 

97%) as colourless liquid. 
1H-NMR (600 MHz, C6D6): δ / ppm = 7.74-7.71 (m, 1H), 7.58 (dt, J = 7.7 Hz, 1.4 Hz, 1H), 

7.12-7.04 (m, 1H), 6.93 (t, J = 7.7 Hz, 1H), 4.02 (s, 2H), 2.06 (s, 3H). 
13C-NMR (150 MHz, C6D6): δ / ppm = 196.0, 138.2, 137.9, 132.8, 128.9, 128.4, 128.2, 45.5, 

26.1.   
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IR (Diamond-ATR, neat): ν~  / cm-1 = 1680 (vs), 1604 (m), 1586 (w), 1440 (m), 1428 (m), 1356 

(s), 1280 (s), 1258 (s), 1192 (s), 1174 (m), 976 (w), 956 (w), 798 (m), 702 (vs), 688 (s). 

MS (EI, 70 eV): m/z (%) = 168 (M+, 3), 164 (13), 153 (17), 149 (100), 121 (17), 65 (19), 43 (19). 

HRMS (C9H9ClO): calc.: 168.0342; found: 168.0317. 

 

3.2. Preparation of benzylic zinc chlorides by LiCl-mediated zinc insertion into benzylic 
chlorides 

Benzylzinc chloride (54a) 

 

According to TP1 benzyl chloride (53a) (2.53 g, 20.0 mmol, in 5 mL THF) was added dropwise 

at 25 °C to a suspension of LiCl (1.27 g, 30.0 mmol) and zinc dust (1.96 g, 30.0 mmol) in 5 mL 

THF (activation: BrCH2CH2Br (0.09 mL, 5 mol%), TMSCl (0.03 mL, 1 mol%)). The reaction 

mixture was stirred for 20 h at 25 °C. After centrifugation iodometric titration of 54a indicates a 

yield of 87%. 

 

2-Chlorobenzylzinc chloride (54b) 

 

According to TP1 2-chlorobenzyl chloride (53b; 3.22 g, 20.0 mmol, in 5 mL THF) was added 

dropwise at 0 °C to a suspension of LiCl (1.27 g, 30.0 mmol) and zinc dust (1.96 g, 30.0 mmol) 

in 5 mL THF (activation: BrCH2CH2Br (0.09 mL, 5 mol%), TMSCl (0.03 mL, 1 mol%)). The 

reaction mixture was stirred for 15 min at 0 °C followed by 1.75 h at 25 °C. After centrifugation 

iodometric titration of 54b indicates a yield of 99%.   

 

4-Fluorobenzylzinc chloride (54c) 

 

According to TP1 4-fluorobenzyl chloride (53c; 2.17 g, 15.0 mmol, in 4 mL THF) was added 

dropwise at 25 °C to a suspension of LiCl (1.27 g, 30.0 mmol) and zinc dust (1.96 g, 30.0 mmol) 

in 3.5 mL THF (activation: BrCH2CH2Br (0.07 mL, 5 mol%), TMSCl (0.02 mL, 1 mol%)). The 

reaction mixture was stirred for 24 h at 25 °C. After centrifugation iodometric titration of 54c 

indicates a yield of 87%.   
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2-Bromobenzylzinc chloride (54d) 

 

According to TP1 2-bromobenzyl chloride (53d; 3.39 g, 16.5 mmol, in 4 mL THF) was added 

dropwise at 0 °C to a suspension of LiCl (1.05 g, 24.8 mmol) and zinc dust (1.62 g, 24.8 mmol) 

in 4.3 mL THF (activation: BrCH2CH2Br (0.07 mL, 5 mol%), TMSCl (0.02 mL,1 mol%)). The 

reaction mixture was stirred for 10 min at 0 °C followed by 110 min at 25 °C. After 

centrifugation iodometric titration of 54d indicates a yield of 92%. 

 

3-Bromobenzylzinc chloride (54e) 

 

According to TP1 3-bromobenzyl chloride (53e; 4.11 g, 20.0 mmol, in 5 mL THF) was added 

dropwise at 25 °C to a suspension of LiCl (1.27 g, 30.0 mmol) and zinc dust (1.96 g, 30.0 mmol) 

in 3.5 mL THF (activation: BrCH2CH2Br (0.09 mL, 5 mol%), TMSCl (0.03 mL, 1 mol%)). The 

reaction mixture was stirred for 4 h at 25 °C. After centrifugation iodometric titration of 54e 

indicates a yield of 95%. 

 

2-Iodobenzylzinc chloride (54f) 

 

According to TP1 2-iodobenzyl chloride (53f; 5.05 g, 20.0 mmol, in 5 mL THF) was added 

dropwise at 0 °C to a suspension of LiCl (1.27 g, 30.0 mmol) and zinc dust (1.96 g, 30.0 mmol) 

in 5 mL THF (activation: BrCH2CH2Br (0.09 mL, 5 mol%), TMSCl (0.03 mL, 1 mol%)). The 

reaction mixture was stirred for 20 min at 0 °C followed by 100 min at 25 °C. After 

centrifugation iodometric titration of 54f indicates a yield of 99%.  

 

3-(Trifluoromethyl)benzylzinc chloride (54g) 

 

According to TP1 3-(trifluoromethyl)benzyl chloride (53g; 2.92 g, 15.0 mmol, in 4 mL THF) 

was added dropwise at 25 °C to a suspension of LiCl (954 mg, 22.5 mmol) and zinc dust (1.47 g, 

22.5 mmol) in 3.5 mL THF (activation: BrCH2CH2Br (0.07 mL, 5 mol%), TMSCl (0.02 mL, 
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1 mol%)). The reaction mixture was stirred for 9 h at 25 °C. After centrifugation iodometric 

titration of 54g indicates a yield of 94%. 

 

3,4,5-Trimethoxybenzylzinc chloride (54h) 

 

According to TP1 3,4,5-trimethoxybenzyl chloride (53h; 2.71 g, 12.5 mmol, solution in 3 mL 

THF) was added dropwise at 0 °C to a suspension of LiCl (1.06 g, 25.0 mmol) and zinc dust 

(1.64 g, 25.0 mmol) in 3.5 mL THF (activation: BrCH2CH2Br (0.05 mL, 5 mol%), TMSCl 

(0.02 mL, 1 mol%)). The ice bath was removed and the reaction mixture was stirred for 3 h at 

25 °C. After centrifugation iodometric titration of 54h indicates a yield of 78%. 

 

4-Methoxybenzylzinc chloride (54i) 

 

According to TP1 4-methoxybenzyl chloride (53i; 1.57 g, 10.0 mmol, in 5 mL THF) was added 

dropwise at 0 °C to a suspension of LiCl (636 mg, 15.0 mmol) and zinc dust (981 mg, 

15.0 mmol) in 5 mL THF (activation: BrCH2CH2Br (0.04 mL, 5 mol%), TMSCl (0.01 mL, 

1 mol%)). The reaction mixture was stirred for 6.5 h at 25 °C. After centrifugation, iodometric 

titration of 54i indicates a yield of 73%. 

 

2-Methoxybenzylzinc chloride (54j) 

 

According to TP1 2-methoxybenzyl chloride (53j; 2.35 g, 15.0 mmol, in 4 mL THF) was added 

dropwise at 25 °C to a suspension of LiCl (954 mg, 22.5 mmol) and zinc dust (1.47 g, 

22.5 mmol) in 3.5 mL THF (activation: BrCH2CH2Br (0.07 mL, 5 mol%), TMSCl (0.02 mL, 

1 mol%)). The reaction mixture was stirred for 4.5 h at 25 °C. After centrifugation iodometric 

titration of 54j indicates a yield of 92%. 
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6-Chloro-1,3-benzodioxol-5-ylmethylzinc chloride (54k) 

 

According to TP1  6-chloro-1,3-benzodioxol-5-ylmethyl chloride (53k; 4.10 g, 20.0 mmol, in 

5 mL THF) was added dropwise at 0 °C to a suspension of LiCl (1.27 g, 30.0 mmol) and zinc 

dust (1.96 g, 30.0 mmol) in 5 mL THF (activation: BrCH2CH2Br (0.09 mL, 5 mol%), TMSCl 

(0.03 mL, 1 mol%)). The ice bath was removed and the reaction mixture was stirred for 1 h at 

25 °C. After centrifugation iodometric titration of 54k indicates a yield of 93%.  

 

4-(Methylthio)benzylzinc chloride (54l) 

 

According to TP1  4-(methylthio)benzyl chloride (53l, 2.59 g, 15.0 mmol, in 3 mL THF) was 

added dropwise at 0 °C to a suspension of LiCl (954 mg, 22.5 mmol) and zinc dust (1.47 g, 

22.5 mmol) in 4.5 mL THF (activation: BrCH2CH2Br (0.07 mL, 5 mol%), TMSCl (0.02 mL, 

1 mol%)). The reaction mixture was stirred for 2 h at 25 °C. After centrifugation, iodometric 

titration of 54l indicates a yield of 77%.   

 

3-(Ethoxycarbonyl)benzylzinc chloride (54m) 

 

 According to TP1 3-(ethoxycarbonyl)benzyl chloride (53m; 3.97 g, 20.0 mmol, in 5 mL THF) 

was added dropwise at 25 °C to a suspension of LiCl (1.70 g, 40.0 mmol) and zinc dust (2.62 g, 

40.0 mmol) in 5 mL THF (activation: BrCH2CH2Br (0.09 mL, 5 mol%), TMSCl (0.03 mL, 

1 mol%)). The reaction mixture was stirred for 3.5 h at 25 °C. After centrifugation iodometric 

titration of 54m indicates a yield of 85%. 

 

4-(Ethoxycarbonyl)benzylzinc chloride (54n) 

 

According to TP1 4-(ethoxycarbonyl)benzyl chloride (53n; 1.99 g, 10.0 mmol, in 2.5 mL THF) 

was added dropwise at 0 °C to a suspension of LiCl (848 mg, 20.0 mmol) and zinc dust (1.31 g, 

20.0 mmol) in 2.5 mL THF (activation: BrCH2CH2Br (0.04 mL, 5 mol%), TMSCl (0.01 mL, 
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1 mol%)). The reaction mixture was stirred for 10 min at 0 °C followed by 50 min at 25 °C. After 

centrifugation iodometric titration of 54n indicates a yield of 64%. 
 

3-Cyanobenzylzinc chloride (54o) 

 

 According to TP1 3-cyanobenzyl chloride (53o; 3.03 g, 20.0 mmol, in 5 mL THF) was added 

dropwise at 0 °C to a suspension of LiCl (1.27 g, 30.0 mmol) and zinc dust (1.96 g, 30.0 mmol) 

in 5 mL THF (activation: BrCH2CH2Br (0.09 mL, 5 mol%), TMSCl (0.03 mL, 1 mol%)). The ice 

bath was removed and the reaction mixture was stirred for 3 h at 25 °C. After centrifugation 

iodometric titration of 54o indicates a yield of 93%. 

 

4-Cyanobenzylzinc chloride (54p) 

 

According to TP1 4-cyanobenzyl chloride (53p; 1.57 g, 10.4 mmol, in 3 mL THF) was added 

dropwise at 0 °C to a suspension of LiCl (660 mg, 15.6 mmol) and zinc dust (1.02 g, 15.6 mmol) 

in 2 mL THF (activation: BrCH2CH2Br (0.05 mL, 5 mol%), TMSCl (0.01 mL, 1 mol%)). The 

reaction mixture was stirred for 2 h at 25 °C. After centrifugation iodometric titration of 54p 

indicates a yield of 83%. 

 

3-Pentanoylbenzylzinc chloride (54q) 

  

According to TP1 3-pentanoylbenzyl chloride (53q; 4.21 g, 20.0 mmol, in 5 mL THF) was added 

dropwise at 25 °C to a suspension of LiCl (1.27 g, 30.0 mmol) and zinc dust (1.96 g, 30 mmol) in 

5 mL THF (activation: BrCH2CH2Br (0.09 mL, 5 mol%), TMSCl (0.03 mL, 1 mol%)). The 

reaction mixture was stirred for 3.5 h at 25 °C. After centrifugation iodometric titration of 54q 

indicates a yield of 72%. 
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3-Isobutyrylbenzylzinc chloride (54r) 

 

According to TP1 3-isobutyrylbenzyl chloride (53r; (2.18 g, 10.9 mmol, in 3 mL THF) was 

added dropwise at 25 °C to a suspension of LiCl (699 mg, 16.5 mmol) and zinc dust (1.08 g, 

16.5 mmol) in 2.5 mL THF (activation: BrCH2CH2Br (0.05 mL, 5 mol%), TMSCl (0.01 mL, 

1 mol%)). The reaction mixture was stirred for 9 h at 25 °C. After centrifugation iodometric 

titration of 54r indicates a yield of 64%. 

 

3-Propionylbenzylzinc chloride (54s): 

 

 According to TP1 3-propionylbenzyl chloride (53s; 2.01 g, 11.0 mmol, in 3.5 mL THF) was 

added dropwise at 25 °C to a suspension of LiCl (0.70 g, 16.5 mmol) and zinc dust (1.08 g, 

16.5 mmol) in 3 mL THF (activation: BrCH2CH2Br (0.05 mL, 5 mol%), TMSCl (0.01 mL, 

1 mol%)). The reaction mixture was stirred for 3 h at 25 °C. After centrifugation iodometric 

titration of 54s indicates a yield of 72%. 

 

3-Acetylbenzylzinc chloride (54t) 

 

According to TP1 3-acetylbenzyl chloride (54t; 1.85 g, 11.0 mmol, in 2.5 mL THF) was added 

dropwise at 25 °C to a suspension of LiCl (0.70 g, 16.5 mmol) and zinc dust (1.08 g, 16.5 mmol) 

in 3 mL THF (activation: BrCH2CH2Br (0.05 mL, 5 mol%), TMSCl (0.01 mL, 1 mol%)). The 

reaction mixture was stirred for 3.5 h at 25 °C. After centrifugation iodometric titration of 54t 

indicates a yield of 68%.  
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1-Phenylethylzinc chloride (54u) 

 

According to TP1 1-phenylethyl chloride (53u; 2.81 g, 20.0 mmol, in 5 mL THF) was added 

dropwise at 0 °C to a suspension of LiCl (1.27 g, 30.0 mmol) and zinc dust (1.96 g, 30.0 mmol) 

in 5 mL THF (activation: BrCH2CH2Br (0.09 mL, 5 mol%), TMSCl (0.03 mL, 1 mol%)). The ice 

bath was removed and the reaction mixture was stirred for 11 h at 25 °C. After centrifugation 

iodometric titration of 54u indicates a yield of 85%. 

 

(Diphenylmethyl)zinc chloride (54v) 

 

According to TP1 1,1'-(chloromethylene)dibenzene (53v; 3.04 g, 15.0 mmol, in 4 mL THF) was 

added dropwise at 0 °C to a suspension of LiCl (954 mg, 22.5 mmol) and zinc dust (1.47 g, 

22.5 mmol) in 3.5 mL THF (activation: BrCH2CH2Br (0.07 mL, 5 mol%), TMSCl (0.02 mL, 

1 mol%)). The reaction mixture was stirred for 15 min at 0 °C followed by 4.5 h at 25 °C. After 

centrifugation iodometric titration of 54v indicates a yield of 64%. (8% of the homo-coupling 

product was observed. 

 

3.3. Preparation of the title compounds 

1-Chloro-2-(cyclohex-2-en-1-ylmethyl)benzene (56a) 

 

3-Bromocyclohexene (55a; 419 mg, 2.60 mmol) was added to 2-chlorobenzylzinc chloride (54b; 

1.23 mL, 2.00 mmol, 1.62 M in THF) at 0 °C followed by CuCN·2LiCl (0.01 mL, 0.01 mmol, 

1.00 M in THF). The mixture was stirred for 1.5 h at 25 °C. The reaction mixture was quenched 

with sat. aq. NH4Cl solution. The phases were separated and the aq. layer was extracted with 

Et2O (3 x 5 mL). The combined extracts were dried over MgSO4. Evaporation of the solvents in 

vacuo and purification by flash chromatography (silica gel, pentane) afforded the cyclohexene 

56a (389 mg, 94%) as a colourless liquid.  
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1H-NMR  (600 MHz, CDCl3): δ / ppm = 7.33 (dd, J = 7.7 Hz, 1.3 Hz, 1H), 7.20-7.11 (m, 3H), 

5.72-5.68 (m, 1H), 5.58-5.54 (m, 1H), 2.77-2.72 (m, 1H), 2.69-2.65 (m, 1H), 2.51-2.43 (m, 1H), 

2.02-1.96 (m, 2H), 1.77-1.66 (m, 2H), 1.55-1.47 (m, 1H), 1.33-1.27 (m, 1H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 138.5, 134.3, 131.4, 131.0, 129.5, 127.5, 127.3, 126.4, 

40.0, 35.4, 28.8, 25.4, 21.2. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3017 (m), 2922 (s), 2857 (m), 2834 (m), 1473 (s), 1446 

(m), 1439 (m), 1052 (m), 1032 (m), 746 (vs), 718 (m), 683 (m), 665 (m). 

MS (EI, 70 eV): m/z (%) = 208 (M+, 9), 206 (31), 125 (22), 82 (12), 81 (24), 80 (100), 79 (24). 

HRMS (C13H15Cl):  calc.: 206.0862; found: 206.0840. 

 

1-{[(4-Bromophenyl)thio]methyl}-2-chlorobenzene 4-bromophenyl 2-chlorobenzyl sulphide 

(56b) 

 

To a solution of S-(4-bromophenyl) benzenesulfonothioate (57a; 658 mg, 2.00 mmol) in THF 

(4 mL) at 25 °C was added 2-chlorobenzylzinc chloride (54b; 1.55 mL, 2.4 mmol, 1.55 M in 

THF). The reaction mixture was stirred for 1 h. The reaction mixture was quenched with sat. aq. 

NH4Cl solution. The phases were separated and the aq. layer was extracted with CH2Cl2 

(3 x 20 mL). The combined extracts were dried over MgSO4. Evaporation of the solvents in 

vacuo and purification by flash chromatography (silica gel, pentane) afforded the sulfide 56b 

(559 mg, 89%) as a colourless liquid.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.40-7.33 (m, 3H), 7.23-7.10 (m, 5H), 4.18 (s, 2H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 134.8, 134.8, 134.1, 132.4, 131.9, 130.6, 129.7, 128.7, 

126.8, 120.9, 37.0.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 1567 (w), 1471 (vs), 1442 (s), 1386 (m), 1235 (w), 1090 

(s), 1068 (m), 1051 (s), 1037 (s), 1006 (vs), 804 (s), 757 (s), 741 (vs), 728 (s), 698 (m), 681 (s), 

666 (m).  

MS (EI, 70 eV): m/z (%) = 316 (35), 314 (50), 312 (M+, 100), 127 (15), 125 (26), 107 (43), 98 

(15), 90 (13), 89 (40), 63 (20).  

HRMS (C13H10BrClS):  calc.: 311.9375; found: 311.9366. 
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3-(2-Chlorobenzyl)cyclohexanone (56c) 

 

According to TP4 a mixture of cyclohex-2-en-1-one (58a; 480 mg, 5.00 mmol) and TMSCl 

(1.60 mL, 12.5 mmol) in 2 mL THF was added dropwise to a mixture of CuCN·2LiCl (6.30 mL, 

6.30 mmol, 1.00 M in THF) and 2-chlorobenzylzinc chloride (54b; 3.83 mL, 6.24 mmol, 1.63 M 

in THF) at -40 °C. The reaction mixture was allowed to reach 25 °C within 15 h and was 

quenched with a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 2:1 (20 mL). Purification by 

flash chromatography (silica gel, pentane / Et2O = 4:1) afforded the ketone 56c (1.03 g, 93%) as a 

colourless liquid. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 7.33-7.27 (m, 1H), 7.18-7.05 (m, 3H), 2.81-2.62 (m, 

2H), 2.38-1.94 (m, 6H), 1.89-1.78 (m, 1H), 1.66-1.48 (m, 1H), 1.47-1.32 (m, 1H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 211.4, 137.5, 134.4, 131.5, 129.9, 128.0, 126.9, 47.9, 

41.6, 40.6, 39.6, 31.2, 25.3.   

IR (Diamond-ATR, neat): ν~  / cm-1 = 2936 (w), 2864 (w), 1708 (vs), 1476 (m), 1444 (m), 1348 

(w), 1312 (w), 1224 (m), 1128 (w), 1052 (m), 1036 (m), 748 (vs), 680 (s), 596 (w). 

MS (EI, 70 eV): m/z (%) = 222 (M+, 3), 187 (39), 186 (23), 164 (18), 142 (19), 130 (10), 129 

(24), 127 (11), 125 (28), 115 (16), 97 (87), 91 (29), 89 (14), 69 (100), 55 (46), 44 (15), 41 (58). 

HRMS (C13H15ClO):  calc.: 222.0811; found: 222.0800. 

 

1-Chloro-2-[2-(4-nitrophenyl)ethyl]benzene (56d) 

 

To a solution of 4-nitrobenzyl bromide (59a; 594 mg, 2.75 mmol) in 2.7 mL THF at 0 °C was 

added successively 2-chlorobenzylzinc chloride (54b; 2.17 mL, 3.3 mmol, 1.62 M in THF) and 

CuCN·2LiCl (0.01 mL, 0.01 mmol, 1.00 M in THF). The mixture was stirred for 3 h at 0 °C. The 

reaction mixture was quenched with sat. aq. NH4Cl solution. The phases were separated and the 

aq. layer was extracted with Et2O (5 x 5 mL). The combined extracts were dried over MgSO4. 

Evaporation of the solvents in vacuo and purification by flash chromatography (silica gel, 

pentane / Et2O = 98:2) afforded the diarylethane 56d (643 mg, 89%) as a white solid. 

M.p. (°C): 67-68. 
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1H-NMR (600 MHz, CDCl3): δ / ppm = 8.14-8.11 (m, 2H), 7.38-7.34 (m, 1H), 7.32-7.29 (m, 

2H), 7.18-7.13 (m, 2H), 7.09-7.06 (m, 1H), 3.07-3.00 (m, 4H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 149.3, 146.7, 138.2, 134.1, 130.7, 129.9, 129.6, 128.1, 

127.1, 123.9, 36.0, 35.4.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 2932 (w), 2854 (w), 1596 (m), 1509 (s), 1470 (m), 1457 

(m), 1444 (m), 1334 (m), 1313 (m), 1256 (m), 1107 (m), 1049 (m), 1036 (m), 829 (s), 750 (vs), 

698 (s). 

MS (EI, 70 eV): m/z (%) = 263 (11), 261 (M+, 29), 127 (33), 125 (100), 89 (13). 

HRMS (C14H12ClNO2): calc.: 261.0557; found: 261.0560. 

 

Ethyl 4-(2-chlorobenzyl)benzoate (56e) 

 

To a solution of ethyl 4-iodobenzoate (4a; 690 mg, 2.50 mmol) in 2.5 mL THF at 25 °C was 

added successively 2-chlorobenzylzinc chloride (54b; 1.96 mL, 3.00 mmol, 1.53 M in THF) and 

Pd(PPh3)4 (69 mg, 2 mol%). The resulting reaction mixture was heated to 60 °C for 5 h. After 

cooling to 25 °C the reaction mixture was diluted with Et2O (5 mL) and quenched with sat. aq. 

NH4Cl solution. The phases were separated and the aq. layer was extracted with Et2O (5 x 5 mL). 

The combined extracts were dried over MgSO4. Evaporation of the solvents in vacuo and 

purification by flash chromatography (silica gel, pentane / Et2O = 9:1) afforded the diarylmethane 

56e (667 mg, 97%) as a pale yellow liquid.   
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.06-8.01 (m, 3H), 7.46-7.42 (m, 1H), 7.34-7.28 (m, 

2H), 7.27-7.18 (m, 2H), 4.42 (q, J = 7.2 Hz, 2H), 4.21 (s, 2H), 1.44 (t, J = 7.2 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.8, 145.0, 138.0, 134.5, 131.3, 130.0, 129.9, 129.1, 

128.9, 128.2, 127.2, 61.1, 39.5, 14.6.   

IR (Diamond-ATR, neat): ν~  / cm-1 = 2980 (w), 1712 (vs), 1610 (m), 1473 (w), 1443 (m), 1415 

(m), 1366 (w), 1271 (vs), 1177 (m), 1103 (s), 1050 (m), 1039 (m), 1020 (m), 747 (s). 

MS (EI, 70 eV): m/z (%) = 276 (23), 275 (15), 274 (M+, 77), 248 (10), 246 (30), 239 (13), 232 

(38), 231 (17), 230 (100), 211 (21), 203 (12), 201 (32), 167 (20), 166 (39), 165 (67). 

HRMS (C16H15ClO2): calc.: 274.0671; found: 274.0748. 
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1-(2-Chlorophenyl)acetone (56f) 

 

According to TP3 acetyl chloride (60a; 166 mg, 2.11 mmol) was added dropwise to a mixture of 

CuCN·2LiCl (3.00 mL, 3.00 mmol, 1.00 M in THF) and 2-chlorobenzylzinc chloride (54b; 

1.96 mL, 3.00 mmol, 1.53 M in THF) at –40 °C. The reaction mixture was allowed to reach 25 °C 

within 13.5 h and was quenched with a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 2:1 

(30 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 98:2) afforded the 

ketone 56f (315 mg, 89%) as a colourless liquid.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.41-7.34 (m, 1H), 7.26-7.16 (m, 3H), 3.83 (s, 2H), 2.19 

(s, 3H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 204.9, 134.4, 132.9, 131.6, 129.5, 128.6, 127.0, 48.3, 

29.6.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3060 (vw), 3001 (vw), 2907 (vw), 1720 (s), 1474 (m), 

1444 (m), 1410 (m), 1356 (m), 1323 (m), 1219 (w), 1158 (s), 1127 (w), 1053 (s), 1040 (m), 746 

(vs), 716 (m), 682 (s), 631 (m).  

MS (EI, 70 eV): m/z (%) = 168 (M+, 5), 141 (11), 133 (44), 125 (32), 91 (8), 89 (14), 59 (6), 42 

(100).  

HRMS (C9H9ClO):  calc.: 168.0342; found: 168.0329. 

 

1,2-Bis(2-chlorophenyl)ethanol (56g) 

 

According to TP2 2-chlorobenzylzinc chloride (54b; 18.0 mL, 28.1 mmol, 1.56 M in THF) was 

reacted with 2-chlorobenzaldehyde (61a; 2.81 g, 20.0 mmol, in 10 mL THF) at 0 °C. After 3 h, 

the reaction mixture was quenched with sat. aq. NH4Cl (200 mL). Purification by flash 

chromatography (silica gel, pentane / Et2O = 7:1) afforded the benzylic alcohol 56g (4.67 g, 87%) 

as a white solid.  

M.p. (°C): 86-88.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.68-7.62 (m, 1H), 7.46-7.20 (m, 7H), 5.50 (dd, 

J = 8.8 Hz, 4.1 Hz, 1H), 3.33 (dd, J = 13.9 Hz, 4.1 Hz, 1H), 3.11 (dd, J = 13.7 Hz, 8.9 Hz, 1H), 

2.07 (s, 1H).  
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13C-NMR (75 MHz, CDCl3): δ / ppm = 141.1, 135.5, 134.6, 132.0 (double), 129.6, 129.4, 128.6, 

128.1, 127.3, 127.1, 126.7, 70.2, 41.5.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3332 (w), 3257 (w), 2939 (w), 1572 (w), 1473 (m), 1442 

(m), 1433 (m), 1346 (w), 1176 (w), 1123 (w), 1056 (m), 1047 (s), 1030 (s), 996 (m), 758 (vs), 

746 (vs), 723 (s), 699 (s), 680 (m), 628 (m), 585 (m), 558 (s), 555 (s).  

MS (EI, 70 eV): m/z (%) = 266 (M+, 1), 178 (7), 143 (34), 141 (100), 128 (18), 126 (58), 113 

(15), 91 (16), 77 (48).  

HRMS (C14H12Cl2O): calc.: 266.0265; found: 266.0251. 

 

Ethyl 2-[2-(4-fluorophenyl)ethyl]acrylate (56h)  

 

To a solution of ethyl (2-bromo)methylacrylate (55b; 965 mg, 5.00 mmol) in 3 mL THF 

at -60 °C was added 4-fluorobenzylzinc chloride (54c; 4.12 mL, 6.00 mmol, 1.45 M in THF) 

followed by CuCN·2LiCl (0.01 mL, 0.01 mmol, 1.00 M in THF). The reaction mixture was 

stirred at -60 °C for 1.5 h, followed by stirring at 0 °C for additional 30 min. Workup as usual 

and purification by flash chromatography (silica gel, pentane / Et2O = 98:2) afforded the acrylate 

56h (1.03 g, 93%) as colourless liquid.  
1H-NMR (600 MHz, CDCl3): δ / ppm = 7.14-7.10 (m, 2H), 6.97-6.92 (m, 2H), 6.15-6.13 (m, 

1H), 5.47-5.45 (m, 1H), 4.21 (q, J = 7.2 Hz, 2H), 2.79-2.72 (m, 2H), 2.61-2.54 (m, 2H), 1.30 (t, 

J = 7.2 Hz, 3H).  
13C-NMR (150 MHz, CDCl3): δ / ppm = 167.0, 161.3 (d, 1JC-F = 243.7 Hz), 139.9, 137.0 (d,  
4JC-F = 3.1 Hz), 129.8 (d, 3JC-F = 7.6 Hz), 125.2, 115.0 (d, 2JC-F = 21.0 Hz), 60.6, 34.1, 34.0, 14.2.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 2932 (w), 2984 (w), 1632 (w), 1304 (m), 524 (m), 944 

(m), 1028 (m), 1092 (m), 1156 (m), 820 (s), 1132 (s), 1220 (s), 1184 (s), 1712 (s), 1508 (s).  

MS (EI, 70 eV): m/z (%) = 222 (M+, 5), 209 (9), 176 (13), 148 (7), 109 (100), 101 (8), 83 (6). 

HRMS (C13H15FO2): calc.: 222.1056; found: 222.1032. 
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1-(4-Fluorophenyl)-4,4-dimethylpentan-2-one (56i) 

 

According to TP3 3,3-dimethylbutyryl chloride (60b; 377 mg, 2.80 mmol) was added dropwise 

to a mixture of CuCN·2LiCl (3.92 mL, 3.92 mmol, 1.00 M in THF) and 4-fluorobenzylzinc 

chloride (54c; 2.69 mL, 3.93 mmol, 1.46 M in THF) at  -40 °C. The reaction mixture was allowed 

to reach 25 °C within 15 h and was quenched with a mixture of sat. aq. NH4Cl / NH3 (25% in 

H2O) = 4:1 (25 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 98:2) 

afforded the ketone 56i (555 mg, 95%) as a pale yellow liquid. 
1H-NMR  (600 MHz, CDCl3): δ / ppm = 7.15-7.10 (m, 2H), 7.02-6.97 (m, 2H), 3.36 (s, 1H), 2.35 

(s, 1H), 1.00 (s, 9H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 207.8, 162.1 (d, 1JC-F = 245.1 Hz), 131.2 (d, 3JC-F = 

8.1 Hz), 130.1 (d, 4JC-F = 3.4 Hz), 115.7 (d, 2JC-F = 21.6 Hz), 54.4, 51.2, 31.3, 29.9.   

IR (Diamond-ATR, neat): ν~  / cm-1 = 2956 (m), 1712 (s), 1508 (vs), 1364 (m), 1352 (m), 1220 

(vs), 1160 (m), 1084 (m), 1064 (m), 824 (m), 780 (m), 524 (m). 

MS (EI, 70 eV): m/z (%) = 208 (M+, 3), 109 (53), 99 (60), 71 (17), 57 (100), 43 (13), 42 (16). 

HRMS (C13H17FO): calc.: 208.1263; found: 208.1261. 

 

3-(2-Bromobenzyl)cyclohex-2-en-1-one (56j) 

 

According to TP4 3-iodocyclohex-2-en-1-one (58b; 666 mg, 3.00 mmol) was added dropwise at 

–60 °C to a mixture of CuCN·2LiCl (3.90 mL, 3.90 mmol, 1.00 M in THF) and 2-

bromobenzylzinc chloride (54d; 2.52 mL, 3.90 mmol, 1.55 M in THF). The reaction mixture was 

allowed to reach slowly 0 °C within 15 h and was quenched with a mixture of sat. aq. 

NH4Cl / NH3 (25% in H2O) = 2:1 (100 mL). Purification by flash chromatography (silica gel, 

pentane / Et2O = 2:1) afforded the unsaturated ketone 56j (779 mg, 96%) as a colourless oil.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.55 (dd, J = 8.0 Hz, 1.3 Hz, 1H), 7.29-7.22 (m, 1H), 

7.19-7.07 (m, 2H), 5.68-5.64 (m, 1H), 3.65 (s, 2H), 2.40-2.29 (m, 4H), 2.05-1.94 (m, 2H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 199.6, 163.3, 136.6, 133.1, 131.2, 128.7, 127.6, 127.0, 

125.1, 43.9, 37.3, 29.7, 22.6.  
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IR (Diamond-ATR, neat): ν~  / cm-1 = 3054 (vw), 2944 (w), 2926 (w), 2887 (w), 2868 (w), 2823 

(vw), 1664 (vs), 1627 (m), 1567 (w), 1470 (m), 1426 (m), 1371 (m), 1348 (m), 1323 (m), 1245 

(m), 1190 (m), 1131 (w), 1023 (s), 967 (m), 884 (m), 749 (vs), 659 (s).  

MS (EI, 70 eV): m/z (%) = 264 (M+, 53), 235 (55), 185 (50), 15 (66), 129 (100), 115 (14), 90 

(12), 67 (24).  

HRMS (C13H13BrO):  calc.: 264.0150; found: 264.0142. 

 

2-(3-Bromophenyl)-1-(3,4-dichlorophenyl)ethanol (56k) 

Br

OH

Cl

Cl

 

According to TP2 3-bromobenzylzinc chloride (54e; 1.72 mL, 2.68 mmol, 1.56 M in THF) was 

reacted with 3,4-dichlorobenzaldehyde (61b; 361 mg, 2.1 mmol, in 1.5 mL THF). After 17 h the 

reaction mixture was quenched with sat. aq. NH4Cl solution. Purification by flash 

chromatography (silica gel, pentane / Et2O = 98:2) afforded the alcohol 56k (699 mg, 98%) as a 

white solid.  

M.p. (°C): 64-65. 
1H-NMR  (600 MHz, CDCl3): δ / ppm = 7.43 (d, J = 2.0 Hz, 1H), 7.41-7.34 (m, 3H), 7.16 (t, J = 

7.7 Hz, 1H), 7.12 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 7.06 (d, J = 7.5 Hz, 1H), 4.81 (dd, J = 8.4 Hz, 

4.6 Hz, 1H), 2.96-2.85 (m, 2H), 2.09 (s, 1H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 143.6, 139.6, 132.6, 132.4, 131.5, 130.4, 130.1, 130.0, 

128.1, 127.8, 125.1, 122.6, 73.8, 45.4.   

IR (Diamond-ATR, neat): ν~  / cm-1 = 3288 (m), 1564 (m), 1470 (s), 1424 (m), 1202 (m), 1128 

(m), 1070 (s), 1046 (s), 1026 (s), 998 (s), 884 (s), 782 (vs), 668 (vs). 

HRMS (ESI; C15H12BrCl 2O3): calc.: 388.9352 ([M+HCO2]
-); found: 388.9360 ([M+HCO2]

-). 

 

2-(3-Bromophenyl)-1-cyclopropylethanone (56l) 

 

According to TP3 cyclopropanecarbonyl chloride (60c; 320 mg, 3.07 mmol) was added dropwise 

to a mixture of CuCN·2LiCl (4.2 mL, 4.2 mmol, 1.00 M in THF) and 3-bromobenzylzinc chloride 

(54e; 2.75 mL, 4.2 mmol, 1.53 M in THF) at -40 °C. The reaction mixture was allowed to reach 
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0 °C within 18 h and was quenched with a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 2:1 

(100 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 98:2) afforded the 

ketone 56l (675 mg, 92%) as a colourless liquid.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.42-7.35 (m, 2H), 7.23-7.10 (m, 2H), 3.79 (s, 2H), 

2.00-1.89 (m, 1H), 1.08-1.00 (m, 2H), 0.91-0.83 (m, 2H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 207.3, 136.5, 132.5, 130.1, 130.0, 128.2, 122.6, 49.9, 

20.2, 11.4. 

IR (Diamond-ATR, neat): ν~  / cm-1 =3007 (w), 1693 (s), 1593 (w), 1567 (m), 1474 (m), 1428 

(m), 1379 (s), 1205 (m), 1066 (vs), 1021 (m), 997 (m), 900 (m), 886 (m), 816 (m), 787 (m), 766 

(s), 695 (s), 681 (m), 670 (m), 664 (m), 600 (m), 568 (m), 565 (m).  

MS (EI, 70 eV): m/z (%) = 238 (M+, 4), 168 (7), 90 (8), 69 (100), 59 (6), 45 (5), 44 (16), 40 (21).  

HRMS (C11H11BrO): calc.: 237.9993; found: 237.9983. 

 

1-(3-Bromophenyl)-4,4-dimethylpentan-2-one (56m) 

 

According to TP3 3,3-dimethylbutyryl chloride (60b; 581 mg, 4.32 mmol) was added dropwise 

to a mixture of CuCN·2LiCl (6.02 mL, 6.02 mmol, 1.00 M in THF) and 3-bromobenzylzinc 

chloride (54e; 1.72 mL, 6.02 mmol, 1.53 M in THF)  at  -60 °C. The reaction mixture was 

allowed to reach -20 °C overnight and was quenched with a mixture of sat. aq. 

NH4Cl / NH3 (25% in H2O) = 2:1 (25 mL). Purification by flash chromatography (silica gel, 

pentane / Et2O = 98:2) afforded the ketone 56m (1.11 g, 96%) as a pale yellow liquid.  
1H-NMR (600 MHz, CDCl3): δ / ppm = 7.40-7.37 (m, 1H), 7.33-7.32 (m, 1H), 7.18 (t, 

J = 7.8 Hz, 1H), 7.11-7.08 (m, 1H), 3.62 (s, 2H), 2.35 (s, 2H), 1.00 (s, 9H).  
13C-NMR (150 MHz, CDCl3): δ / ppm = 206.9, 136.4, 132.5, 130.1, 130.0, 128.2, 122.6, 54.3, 

51.3, 31.1, 29.7.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 2868 (m), 1596 (m), 1188 (m), 1222 (m), 996 (m), 1428 

(m), 1350 (m), 1568 (m), 2954 (m), 668 (s), 1364 (s), 696 (s), 1474 (s), 772 (s), 1072 (vs), 

1714 (vs).  

MS (EI, 70 eV): m/z (%) = 268 (M+, 6), 180 (16), 169 (16), 99 (100), 90 (15), 71 (14), 57 (79). 

HRMS (C13H17BrO):  calc.: 268.0463; found: 268.0457. 
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3-(3-Bromobenzyl)cyclohexanone (56n) 

 

According to TP4 a mixture of cyclohex-2-en-1-one (58a; 480 mg, 5.00 mmol) and TMSCl 

(1.60 mL, 12.5 mmol) in 2 mL THF was added dropwise to a mixture of CuCN·2LiCl (6.25 mL, 

6.25 mmol, 1.00 M in THF) and 3-bromobenzylzinc chloride (56e; 4.08 mL, 6.25 mmol, 1.53 M 

in THF) at -40 °C. The reaction mixture was allowed to reach 25 °C within 16 h and was 

quenched with a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 2:1 (60 mL). Purification by 

flash chromatography (silica gel, pentane / Et2O = 4:1) afforded the ketone 56n (1.22 g, 91%) as 

a colourless liquid.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.36-7.30 (m, 1H), 7.29-7.25 (m, 1H), 7.14 (t, 

J = 7.8 Hz, 1H), 7.07-7.00 (m, 1H), 2.65-2.50 (m, 2H), 2.43-2.17 (m, 3H), 2.12-1.94 (m, 3H), 

1.91-1.79 (m, 1H), 1.70-1.52 (m, 1H), 1.43-1.28 (m 1H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 211.0, 141.7, 132.0, 129.9, 129.3, 127.7, 122.4, 47.6, 

42.5, 41.3, 40.6, 30.8, 25.0.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 2926 (m), 1707 (vs), 1565 (m), 1473 (m), 1447 (m), 1424 

(m), 1224 (m), 1070 (m), 997 (m), 857 (m), 778 (m), 753 (m), 696 (m), 668 (m).  

MS (EI, 70 eV): m/z (%) = 266 (M+, 31), 210 (38), 208 (38), 170 (12), 129 (26), 115 (12), 97 

(100), 90 (16), 69 (70), 55 (38), 40 (37).  

HRMS (C13H15BrO):  calc.: 266.0306; found: 266.0297. 

 

1-(3-Chlorophenyl)-2-(2-iodophenyl)ethanol (56o) 

 

According to TP2 2-iodobenzylzinc chloride (54f; 1.28 mL, 1.96 mmol, 1.53 M in THF) was 

reacted with 3-chlorobenzaldehyde (61c; 211 mg, 1.5 mmol, in 1.5 mL THF). After 5 h, the 

reaction mixture was quenched with sat. aq. NH4Cl solution. Purification by flash 

chromatography (silica gel, pentane / Et2O = 9:1 to 7:3) afforded the alcohol 56o (470 mg, 87%) 

as a pale yellow solid. 

M.p. (°C): 68-70. 



 
C. Experimental Section  141 
1H-NMR  (600 MHz, CDCl3): δ / ppm = 7.86 (dd, J = 7.8 Hz, 1.2 Hz, 1H), 7.46-7.44 (m, 1H), 

7.30-7.24 (m, 4H), 7.18 (dd, J = 7.5 Hz, 1.8 Hz, 1H), 6.96-6.93 (m, 1H), 5.01-4.97 (m, 1H), 3.17-

3.13 (m 1H), 3.08-3.03 (m, 1 H), 1.92 (d, J = 3.3 Hz, 1H).  
13C-NMR (150 MHz, CDCl3): δ / ppm = 145.7, 140.4, 139.7, 134.4, 131.3, 129.7, 128.7, 128.3, 

127.8, 125.9, 123.9, 100.9, 72.8, 50.4.   

IR (Diamond-ATR, neat): ν~  / cm-1 = 3322 (w), 3252 (w), 1596 (w), 1575 (w), 1468 (m), 1435 

(m), 1198 (m), 1055 (s), 1015 (s), 884 (m), 783 (s), 746 (s), 725 (s), 695 (vs). 

MS (EI, 70 eV): m/z (%) = 358 (M+, 1), 218 (100), 142 (8), 141 (27), 77 (13). 

HRMS (C14H12ClIO):  calc.: 357.9621; found: 357.9629. 

 

3-(2-Iodobenzyl)cyclohexanone (56p) 

 

According to TP4 a mixture of cyclohex-2-en-1-one (58a; 480 mg, 5.00 mmol) and TMSCl 

(1.60 mL, 12.5 mmol) in 2 mL THF was added dropwise to a mixture of CuCN·2LiCl (6.30 mL, 

6.30 mmol, 1.00 M in THF) and 2-iodobenzylzinc chloride (54f; 4.81 mL, 6.25 mmol, 1.30 M in 

THF) at -40 °C. The reaction mixture was allowed to reach 25 °C within 15 h and was quenched 

with a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 2:1 (20 mL). Purification by flash 

chromatography (silica gel, pentane / Et2O = 4:1) afforded the ketone 56p (1.13 g, 72%) as a 

colourless liquid. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 7.80 (dd, J = 7.8 Hz, 1.2 Hz, 1 H), 7.28-7.22 (m, 1H), 

7.13-7.09 (m, 1H), 6.91-6.85 (m, 1H), 2.82-2.64 (m, 2H), 2.43-1.98 (m, 6H), 1.95-1.83 (m, 1H), 

1.70-1.53 (m, 1H), 1.53-1.37 (m, 1H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 211.3, 142.2, 139.7, 130.4, 128.1 (overlap), 101.0, 47.6, 

47.2, 41.4, 39.5, 30.9, 25.1.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 2933 (m), 2863 (m), 1706 (vs), 1466 (m), 1446 (m), 1224 

(m), 1008 (s), 744 (s), 646 (m). 

MS (EI, 70 eV): m/z (%) = 314 (M+, 9), 217 (18), 188 (13), 187 (100), 1269 (15), 115 (16), 97 

(66), 91 (22), 89 (12), 69 (72), 55 (34), 41 (33). 

HRMS (C13H15IO):  calc.: 314.0168; found: 314.0166. 
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Ethyl 2-[2-(2-iodophenyl)ethyl]acrylate (56p) 

 

2-Iodobenzylzinc chloride (54f; 3.92 mL, 6.00 mmol, 1.53 M in THF) was added to a solution of 

ethyl (2-bromomethyl)acrylate (55b; 965 mg, 5.00 mmol) in 3 mL THF at -60 °C followed by 

CuCN·2LiCl (0.01 mL, 0.01 mmol, 1.00 M in THF). The reaction mixture was stirred at -60 °C 

for 30 min, followed by stirring at 0 °C for additional 30 min. Then, the reaction mixture was 

quenched by adding a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 9:1 (100 mL). 

Purification by flash chromatography (silica gel, pentane / Et2O = 9:1 + 1 vol-% NEt3) afforded 

the acrylate 56p (1.42 g, 86%) as colourless liquid.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.80 (d, J = 6.9 Hz, 1H), 7.32-7.14 (m, 2H), 6.93-6.81 

(m, 1H), 6.17 (s, 1H), 5.53 (d, J = 1.4 Hz, 1H), 4.22 (d, J = 7.2 Hz, 2H), 2.95-2.85 (m, 2H), 2.63-

2.54 (m, 2H), 1.31 (t, J = 7.2 Hz, 3H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 167.0, 143.9, 139.7, 139.4, 129.6, 128.3, 127.8, 125.5, 

100.4, 60.7, 39.9, 32.4, 14.2.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3057 (vw), 2978 (w), 2932 (w), 2903 (vw), 2868 (vw), 

1711 (vs), 1629 (m), 1562 (w), 1465 (m), 1368 (m), 1299 (m), 1251 (m), 1240 (m), 1180 (vs), 

1136 (vs), 1102 (m), 1027 (m), 1010 (s), 943 (m), 814 (m), 747 (vs), 717 (m), 645 (s).  

MS (EI, 70 eV): m/z (%) = 330 (M+, 2), 217 (100), 175 (14), 157 (12), 131 (13), 129 (51), 90 

(26), 64 (6).  

HRMS (C13H15IO2): calc.: 330.0117; found: 330.0110. 

 

1-(1-Benzothien-3-yl)-2-[3-(trifluoromethyl)phenyl]-ethanol (56r) 

OH

SF3C

 

According to TP2 3-(trifluoromethyl)benzylzinc chloride (54g; 1.39 mL, 2.09 mmol, 1.50 M in 

THF) was reacted with benzothiophene-3-carbaldehyde (61d; 260 mg, 1.60 mmol, in 0.5 mL 

THF) at 0 °C. The ice-bath was removed. After 6 h, the reaction mixture was quenched with sat. 

aq. NH4Cl (50 mL). The phases were separated and the aq. layer was extracted with CH2Cl2 
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(3 x 50 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 3:1) afforded the 

benzylic alcohol 56r (441 mg, 86%) as a yellow oil.  
1H-NMR (400 MHz, C6D6): δ / ppm = 7.68-7.64 (m, 1H), 7.59-7.55 (m, 1H), 7.39 (s, 1H), 7.25 

(d, J = 7.4 Hz, 1H), 7.20-7.15 (m, 1H), 7.12-7.07 (m, 1H), 6.92-6.88 (m, 1H), 6.86 (t, J = 7.7 Hz, 

1H), 6.78-6.76 (m 1H), 4.68 (t, J = 6.3 Hz, 1H), 2.79 (d, J = 6.2 Hz, 2H), 1.24 (s, 1H).  
13C-NMR (100 MHz, C6D6): δ / ppm = 141.3, 139.7, 139.2, 137.5, 133.2 (q, 4JC-F = 1.2 Hz), 

130.6 (q, 2JC-F = 31.7 Hz), 128.7, 126.5 (q, 3JC-F = 3.8 Hz), 125.0 (q, 1JC-F = 272.5 Hz), 124.7, 

124.2, 123.4 (q, J = 3.8 Hz), 123.2, 122.6, 122.6, 70.5, 43.4.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 2970 (w), 2919 (w), 1739 (m), 1450 (m), 1428 (m), 1365 

(m), 1326 (s), 1217 (m), 1201 (m), 1160 (s), 1118 (vs), 1098 (s), 1072 (s), 797 (m), 761 (s), 732 

(s), 701 (s), 657 (s).  

MS (EI, 70 eV): m/z (%) = 322 (M+, 2), 240 (2), 164 (100), 135 (21), 91 (8).  

HRMS (C17H13F3OS): calc.: 322.0639; found: 322.0630. 

 

Ethyl 2-[2-(3,4,5-trimethoxyphenyl)ethyl]acrylate (56s) 

 

To a solution of ethyl (2-bromomethyl)acrylate (55b; 579 mg, 3.00 mmol) in 1.5 mL THF 

at -60 °C was added 3,4,5-trimethoxybenzylzinc chloride (54h; 7.40 mL, 3.75 mmol, 0.51 M in 

THF) followed by CuCN·2LiCl (0.01 mL, 0.01 mmol, 1.00 M in THF). The reaction mixture was 

stirred at -60 °C for 30 min followed by stirring at 0 °C for additional 30 min. Then, the reaction 

mixture was quenched by adding sat. aq. NH4Cl solution. The phases were separated and the aq. 

layer was extracted with Et2O (3 x 20 mL). The combined extracts were dried over MgSO4. 

Evaporation of the solvents in vacuo and purification by flash chromatography (silica gel, 

pentane / Et2O = 7:1) afforded the acrylate 56s (867 mg, 98%) as colourless liquid. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 6.36 (s, 2H), 6.11 (s, 1H), 5.48 (s, 1H), 4.17 (q, 

J = 7.1 Hz, 2H), 3.79 (s, 6H), 3.77 (s, 3H), 2.73–2.63 (m, 2H), 2.62-2.51 (m, 2H), 1.26 (t, 

J = 7.2 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 167.3, 153.3, 140.3, 137.5, 136.4, 125.3, 105.6, 61.0, 

60.8, 56.2, 35.6, 34.2, 14.4.   
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IR (Diamond-ATR, neat): ν~  / cm-1 = 2936 (w), 2840 (w), 1712 (m), 1588 (m), 1508 (m), 1456 

(m), 1420 (m), 1332 (m), 1236 (s), 1184 (s), 1120 (vs), 1008 (m), 944 (m), 820 (m). 

MS (EI, 70 eV): m/z (%) = 294 (M+, 31), 182 (20), 181 (100), 148 (7), 121 (9). 

HRMS (C16H22O5): calc.: 294.1467; found: 294.1457. 

 

Ethyl 2-[2-(4-methoxyphenyl)ethyl]acrylate (56t) 

 

To a solution of ethyl 2-bromomethylacrylate (55b; 772 mg, 4.00 mmol) in THF (2 mL) at  

-40 °C was added 4-methoxybenzylzinc chloride (54i; 7.19 mL, 5.00 mmol, 0.70 M in THF) 

followed by CuCN·2LiCl (0.01 mL, 1.00 M in THF). The reaction mixture was stirred at -40 °C 

for 30 min, followed by stirring at 0 °C for additional 30 min. Then, the reaction mixture was 

quenched by adding sat. aq. NH4Cl solution. The phases were separated and the aq. layer was 

extracted with Et2O (3 x 50 mL). The combined extracts were dried over MgSO4. Evaporation of 

the solvents in vacuo and purification by flash chromatography (silica gel, pentane / Et2O = 98:2) 

afforded the acrylate 56t (0.91 g, 97%) as colourless liquid.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.14-7.06 (m, 2H), 6.86–6.79 (m, 2H), 6.15-6.13 (m, 

1H), 5.49-5.46 (m, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.78 (s, 3H), 2.78–2.69 (m, 2H), 2.62-2.53 (m, 

2H), 1.31 (t, J = 7.1 Hz, 3H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 167.1, 157.8, 140.2, 133.5, 129.3, 125.0, 113.7, 60.6, 

55.2, 34.1, 34.0, 14.2.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 2936 (w), 1712 (s), 1612 (m), 1512 (vs), 1300 (m), 1244 

(vs), 1176 (vs), 1132 (s), 1104 (m), 1032 (s), 944 (m), 816 (s), 520 (m).  

MS (EI, 70 eV): m/z (%) = 234 (M+, 50), 189 (31), 161 (12), 121 (100), 115 (10), 91 (25), 77 

(30).  

HRMS (C14H18O3): calc.: 234.1256; found: 234.1233. 
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1-(4-Chlorophenyl)-2-(2-methoxyphenyl)ethanone (56u) 

 

According to TP3 4-chlorobenzoyl chloride (60d; 411 mg, 2.35 mmol) was added dropwise to a 

mixture of CuCN·2LiCl (3.29 mL, 3.29 mmol, 1.00 M in THF) and 2-methoxybenzylzinc 

chloride (54i; 2.19 mL, 3.29 mmol, 1.50 M in THF) at -40 °C. The reaction mixture was allowed 

to reach 25 °C within 21 h and was quenched with a mixture of sat. aq. NH4Cl / NH3 (25% in 

H2O) = 2:1 (100 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 14:1) 

afforded the ketone 56u (605 mg, 99%) as a white solid.  

M.p. (°C): 56-57.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.99-7.94 (m, 2H), 7.44-7.38 (m, 2H), 7.29-7.22 (m, 

1H), 7.16 (dd, J = 7.8 Hz, 1.7 Hz, 1H), 6.95-6.85 (m, 2H), 4.23 (s, 2H), 3.78 (s, 3H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 196.8, 157.0, 139.2, 135.2, 130.9, 129.8, 128.8, 128.5, 

123.4, 120.7, 110.6, 55.4, 39.9. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2988 (w), 2954 (w), 2940 (w), 2912 (w), 2832 (w), 1692 

(vs), 1590 (s), 1494 (s), 1466 (m), 1398 (m), 1334 (s), 1288 (m), 1238 (vs), 1208 (s), 1196 (s), 

1174 (m), 1110 (s), 1086 (s), 1026 (s), 992 (s), 816 (vs), 766 (vs), 758 (vs), 568 (m).  

MS (EI, 70 eV): m/z (%) = 260 (M+, 19), 141 (31), 139 (100), 121 (22), 111 (14), 91 (24).  

HRMS (C15H13ClO2): calc.: 260.0604; found: 260.0599. 

 

1-(6-Chloro-1,3-benzodioxol-5-yl)-4,4-dimethylpentan-2-one (56v) 

 

According to TP3 3,3-dimethylbutyryl chloride (60b; 377 mg, 2.80 mmol) was added dropwise 

to a mixture of CuCN·2LiCl (3.92 mL, 3.92 mmol, 1.00 M in THF) and 6-chloro-1,3-

benzodioxol-5-ylmethylzinc chloride (54k; 2.80 mL, 3.92 mmol, 1.40 M in THF) at  -60 °C. The 

reaction mixture was allowed to reach 25 °C within 15 h and was quenched with a mixture of sat. 

aq. NH4Cl / NH3 (25% in H2O) = 5:1 (25 mL). Purification by flash chromatography (silica gel, 

pentane / Et2O = 95:5) afforded the ketone 56v (703 mg, 93%) as a pale yellow liquid. 
1H-NMR  (600 MHz, CDCl3): δ / ppm = 6.84 (s, 1H), 6.63 (s, 1H), 5.95 (s, 2H), 3.70 (s, 2H), 

2.38 (s, 2H), 1.02 (s, 9H). 
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13C-NMR (150 MHz, CDCl3): δ / ppm = 206.5, 147.4, 146.7, 126.0, 125.7, 110.9, 109.8, 101.7, 

54.3, 49.2, 31.0, 29.6.   

IR (Diamond-ATR, neat): ν~  / cm-1 = 2952 (m), 2904 (w), 1716 (m), 1504 (s), 1480 (vs), 1364 

(m), 1248 (s), 1232 (s), 1120 (s), 1036 (vs), 984 (m), 932 (s), 840 (s), 724 (w), 684 (w). 

MS (EI, 70 eV): m/z (%) = 268 (77), 171 (76), 169 (50), 110 (23), 99 (100), 71 (65), 57 (43), 41 

(33). 

HRMS (C14H17ClO3): calc.: 268.0866; found: 268.0855. 

 

1-[4-(Methylthio)phenyl]butan-2-one (56w) 

 

According to TP3 propanoyl chloride (60e; 95.3 mg, 1.03 mmol, in 0.5 mL THF) was added 

dropwise at -20 °C to a mixture of CuCN·2LiCl (0.50 mL, 0.50 mmol, 1.00 M in THF) and 4-

(methylthio)benzylzinc chloride (54l; 0.85 mL, 1.20 mmol, 1.42 M in THF). The reaction 

mixture was stirred at 0 °C and slowly warmed to 25 °C within 4 h. Then, a mixture of sat. aq. 

NH4Cl / NH3 (25% in H2O) = 9:1 (25 mL) was added and the phases were separated. The aq. 

layer was extracted with Et2O (5 x 20 mL). The combined extracts were dried over MgSO4. 

Evaporation of the solvents in vacuo and purification by flash chromatography (silica gel, 

pentane / Et2O = 9:1) afforded the ketone 56w (143 mg, 71%) as a white solid.  

M.p. (°C): 42-43.  
1H-NMR (600 MHz, CDCl3): δ / ppm = 7.23-7.19 (m, 2H), 7.13-7.10 (m, 2H), 3.63 (s, 2H) 2.46 

(q, J = 7.3 Hz, 2H), 2.46 (s, 3H), 1.02 (t, J = 7.3 Hz, 3H).  
13C-NMR (150 MHz, CDCl3): δ / ppm = 208.8, 137.0, 131.3, 129.8, 127.0, 49.2, 35.2, 16.0, 7.8. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2978 (w), 2937 (w), 2922 (w), 2903 (w), 1711 (vs), 1601 

(w), 1496 (s), 1456 (m), 1438 (m), 1413 (s), 1378 (m), 1351 (m), 1317 (m), 1111 (s), 1098 (m), 

1087 (m), 1038 (s), 1020 (m), 993 (m), 969 (m), 959 (m), 866 (m), 823 (m), 803 (vs), 725 (m), 

667 (m).  

MS (EI, 70 eV): m/z (%) = 194 (M+, 26), 137 (100), 122 (11), 57 (10). 

HRMS (C11H14OS): calc.: 194.0765; found: 194.0747. 
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Ethyl 3-[2-(4-bromophenyl)-2-hydroxyethyl]benzoate (56x) 

 

According to TP2 3-(ethoxycarbonyl)benzylzinc chloride (54m; 4.10 mL, 5.33 mmol, 1.30 M in 

THF) was reacted with 4-bromobenzaldehyde (61e; 775 mg, 4.2 mmol, in 3 mL THF). After 

4.5 h the reaction mixture was quenched with sat. aq. NH4Cl solution. Purification by flash 

chromatography (silica gel, pentane / Et2O = 7:3) afforded the alcohol 56x (1.33 g, 91%) as a 

white solid. 

M.p. (°C): 65-66. 
1H-NMR  (600 MHz, CDCl3): δ / ppm = 7.92-7.90 (m, 1H), 7.86-7.85 (m, 1H), 7.47-7.44 (m, 

2H), 7.37-7.30 (m, 2H), 7.22-7.19 (m, 2H), 4.91-4.87 (m, 1H), 4.36 (q, J = 7.1 Hz, 2H), 3.04-

3.01 (m, 2H), 1.97 (d, J = 3.1 Hz, 1H), 1.39 (t, J = 7.2 Hz, 3H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 166.5, 142.5, 137.9, 134.1, 131.5, 130.7, 130.4, 128.5, 

127.9, 127.6, 121.5, 74.6, 61.0, 45.6, 14.3.   

IR (Diamond-ATR, neat): ν~  / cm-1 = 3466 (w), 1704 (s), 1682 (s), 1484 (m), 1446 (m), 1400 

(m), 1366 (m), 1278 (s), 1200 (s), 1108 (s), 1066 (s), 1024 (s), 1004 (s), 746 (vs), 698 (s). 

MS (EI, 70 eV): m/z (%) = 348 (M+, <1), 164 (100), 136 (29), 135 (13), 118 (10), 92 (10), 91 

(16), 90 (11), 78 (10), 77 (20).  

HRMS (C17H17BrO3): calc.: 348.0361; found: 348.0372. 

 

Ethyl 3-[(3-oxocyclohexyl)methyl]benzoate (56y) 

 

According to TP4 a mixture of cyclohex-2-en-1-one (58a; 480 mg, 5.0 mmol) and TMSCl 

(1.60 mL, 12.5 mmol) in 2 mL THF was added dropwise to a mixture of CuCN·2LiCl (6.30 mL, 

6.30 mmol, 1.0 M in THF) and 3-(ethoxycarbonyl)benzylzinc chloride (54m; 4.46 mL, 

6.24 mmol, 1.40 M in THF) at -40 °C. The reaction mixture was allowed to reach 25 °C within 

15 h and was quenched with a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 2:1 (20 mL). 

Purification by flash chromatography (silica gel, pentane / Et2O = 5:1 to 1:1) afforded the 

cyclohexanone 56y (1.26 g, 97%) as a colourless liquid. 
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1H-NMR  (300 MHz, CDCl3): δ / ppm = 7.82-7.78 (m, 1H), 7.74-7.72 (m, 1H), 7.28-7.24 (m, 

1H), 7.24-7.21 (m, 1H), 4.28 (q, J = 7.2 Hz, 2H), 2.63-2.53 (m, 2H), 2.28-2.21 (m, 2H), 2.20-

2.13 (m, 1H), 2.01-1.89 (m, 3H), 1.79-1.73 (m, 1H), 1.57-1.47 (m, 1H), 1.33-1.25 (m, 1H), 1.30 

(t, J = 7.2 Hz, 3H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 211.2, 166.7, 140.0, 133.7, 130.8, 130.2, 128.6, 127.7, 

61.1, 47.8, 42.9, 41.5, 40.9, 31.0, 25.2, 14.5. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2936 (w), 1708 (vs), 1444 (m), 1368 (w), 1276 (vs), 1196 

(s), 1108 (s), 1024 (m), 864 (w), 748 (s), 700 (m), 672 (w). 

MS (EI, 70 eV): m/z (%) = 260 (M+, 30), 215 (36), 214 (79), 164 (26), 129 (39), 121 (83), 115 

(20), 97 (80), 91 (33), 69 (100), 55 (46), 41 (50). 

HRMS (C16H20O3): calc.: 260.1412; found: 260.1386. 

 

Ethyl 3-[2-hydroxy-2-(3-thienyl)ethyl]benzoate (56z) 

 

According to TP2 3-(ethoxycarbonyl)benzylzinc chloride (54m; 3.07 mL, 3.90 mmol, 1.27 M in 

THF) was reacted with 3-thiophencarbaldehyde (61f; 337 mg, 3.00 mmol, in 1.5 mL THF) at 

0 °C. After 22 h at 25 °C, the reaction mixture was quenched with sat. aq. NH4Cl (50 mL). The 

phases were separated and the aq. layer was extracted with CH2Cl2 (3 x 50 mL). Purification by 

flash chromatography (silica gel, pentane / Et2O = 3:1) afforded the benzylic alcohol 56z 

(730 mg, 88%) as a pale yellow solid.  

M.p. (°C): 44-46.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.94-7.82 (m, 2H), 7.37-7.26 (m, 3H), 7.14-7.08 (m, 

1H), 7.09-7.03 (m, 1H), 4.99 (dd, J = 6.9 Hz, 6.4 Hz, 1H), 4.34 (q, J = 7.2 Hz, 2H), 3.16-3.00 (m, 

2H), 2.22 (s, 1H), 1.37 (t, J = 7.2 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.6, 145.0, 138.2, 134.0, 130.5, 130.4, 128.3, 127.7, 

126.1, 125.5, 120.9, 71.2, 60.9, 44.8, 14.3.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3350 (w), 3267 (w), 3100 (w), 2980 (w), 2924 (w), 1711 

(vs), 1605 (w), 1587 (w), 1472 (w), 1443 (m), 1363 (m), 1279 (s), 1261 (s), 1196 (s), 1106 (s), 

1060 (s), 1029 (s), 922 (m), 853 (s), 792 (s), 757 (s), 727 (vs), 673 (m). 
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MS (EI, 70 eV): m/z (%) = 276 (M+, 1), 231 (13), 164 (100), 136 (42), 118 (12), 113 (35), 91 

(18), 85 (22).  

HRMS (C15H16O3S): calc.: 276.0820; found: 276.0817. 

 

Ethyl 3-[(methylthio)methyl]benzoate (56aa) 

 

3-(Ethoxycarbonyl)benzylzinc chloride (54m; 1.82 mL, 2.40 mmol, 1.32 M in THF) was added 

dropwise to S-methyl methanethiosulfonate (57b; 254 mg, 2.01 mmol) at 25 °C. After 25 h, the 

reaction mixture was quenched with sat. aq. NH4Cl (25 mL). The phases were separated and the 

aq. layer was extracted with CH2Cl2 (3 x 25 mL). The combined extracts were dried over MgSO4. 

Evaporation of the solvents in vacuo and purification by flash chromatography (silica gel, 

pentane) afforded the thioether 56aa (370 mg, 88%) as a yellow liquid.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.98-7.88 (m, 2H), 7.50 (d, J = 7.6 Hz, 1H), 7.38 (t, 

J = 7.6 Hz, 1H), 4.36 (q, J = 7.2 Hz, 2H), 3.69 (s, 2H), 1.98 (s, 3H), 1.38 (q, J = 7.2 Hz, 3H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.4, 138.7, 133.2, 130.7, 129.8, 128.5, 128.2, 61.0, 

38.0, 14.9, 14.3.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 2979 (w), 2914 (w), 1713 (vs), 1605 (w), 1587 (w), 1442 

(m), 1366 (m), 1303 (m), 1277 (vs), 1236 (s), 1190 (s), 1102 (s), 1078 (s), 1021 (m), 912 (w), 863 

(w), 818 (w), 761 (m), 730 (s), 714 (m), 699 (s), 682 (m).  

MS (EI, 70 eV): m/z (%) = 210 (M+, 28), 181 (11), 163 (100), 135 (18), 119 (39), 91 (12), 77 (6). 

HRMS (C11H14O2S): calc.: 210.0715; found: 210.0711. 

 

Ethyl 4-[2-(4-chlorophenyl)-2-oxoethyl]benzoate (56ab)  

 

According to TP3 4-chlorobenzoyl chloride (60d; 350 mg, 2.00 mmol) was added dropwise to a 

mixture of CuCN·2LiCl (2.60 mL, 2.60 mmol, 1.00 M in THF) and 4-(ethoxycarbonyl)benzylzinc 

chloride (54n; 2.20 mL, 2.60 mmol, 1.18 M in THF) at -40 °C. The reaction mixture was allowed 

to reach 25 °C within 20 h and was quenched with a mixture of sat. aq. NH4Cl / NH3 (25% in 
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H2O) = 2:1 (50 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 9:1) 

afforded the ketone 56ab (261 mg, 43%) as a white solid.  

M.p. (°C):141-143.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.03-7.97 (m, 2H), 7.95-7.89 (m, 2H), 7.46-7.39 (m, 

2H), 7.34-7.28 (m, 2H), 4.35 (q, J = 7.2 Hz, 2H), 4.30 (s, 2H), 1.37 (t, J = 7.1 Hz, 3H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 195.6, 166.3, 139.9, 139.2, 134.6, 129.9 (double), 129.5, 

129.3, 129.0, 60.9, 45.4, 14.3.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 2981 (m), 2970 (m), 2928 (m), 1739 (s), 1728 (s), 1705 

(s), 1681 (vs), 1586 (m), 1489 (m), 1399 (m), 1366 (s), 1267 (s), 1229 (s), 1216 (s), 1200 (s), 

1091 (s), 1022 (s), 1015 (m), 992 (s), 930 (m), 875 (m), 824 (s), 797 (m), 758 (vs), 725 (s).  

MS (EI, 70 eV): m/z (%) = 302 (M+, 1), 257 (8), 141 (31), 139 (100), 111 (13).  

HRMS (C17H15ClO3): calc.: 302.0710; found: 302.0716. 

 

3-(3-Methoxybenzyl)benzonitrile (56ac) 

 

To a solution of 3-iodoanisole (4b; 585 mg, 2.5 mmol) in 2.0 mL THF at 25 °C was added 

successively 3-cyanobenzylzinc chloride (54o; 2.03 mL, 3.00 mmol, 1.48 M in THF) and 

Pd(PPh3)4 (139 mg, 5.0 mol%). The resulting reaction mixture was heated to 60 °C for 5 h. After 

cooling to 25 °C, the reaction mixture was diluted with Et2O (5 mL) and quenched with sat. aq. 

NH4Cl solution. The phases were separated and the aq. layer was extracted with Et2O (5 x 5 mL). 

The combined extracts were dried over MgSO4. Evaporation of the solvents in vacuo and 

purification by flash chromatography (silica gel, pentane / Et2O = 9:1) afforded the diarylmethane 

56ac (492 mg, 88%) as a colourless liquid. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 7.51-7.34 (m, 4H), 7.26-7.20 (m, 1H), 6.81-6.67 (m, 

3H), 3.97 (s, 2H), 3.78 (s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 160.2, 142.7, 141.2, 133.6, 132.6, 130.2, 130.0, 129.5, 

121.5, 119.2, 115.2, 112.8, 112.0, 55.4, 41.6.   

IR (Diamond-ATR, neat): ν~  / cm-1 = 2937 (w), 2228 (s), 1596 (s), 1582 (s), 1488 (s), 1453 (m), 

1435 (m), 1257 (vs), 1151 (m), 1048 (s), 779 (m), 741 (m), 686 (s). 

MS (EI, 70 eV): m/z (%) = 224 (15), 223 (M+, 100), 222 (12), 208 (13), 190 (10). 

HRMS (C15H13NO): calc.: 223.0997; found: 223.0988. 
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3-(3,3-Dimethyl-2-oxobutyl)benzonitrile (56ad) 

 

According to TP4 a mixture of cyclohex-2-en-1-one (58a; 480 mg, 5.00 mmol) and TMSCl 

(1.60 mL, 12.5 mmol) in  THF (2 mL) was added dropwise to a mixture of CuCN·2LiCl 

(6.30 mL, 6.30 mmol, 1.00 M in THF) and 3-cyanobenzylzinc chloride (54o; 4.05 mL, 6.25 mmol, 

1.55 M in THF) at -40 °C. The reaction mixture was allowed to reach 25 °C within 15 h and was 

quenched with a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 2:1 (20 mL). Purification by 

flash chromatography (silica gel, pentane / Et2O = 3:1) afforded the cyclohexanone 56ad (1.03 g, 

97%) as a pale yellow liquid.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.53-7.46 (m, 1H), 7.43-7.32 (m, 3H), 2.73-2.57 (m, 

2H), 2.42-2.18 (m, 3H), 2.14-1.95 (m, 3H), 1.90-1.79 (m, 1H), 1.71-1.53 (m, 1H), 1.45-1.29 (m, 

1H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 210.6, 140.8, 133.5, 132.5, 130.1, 129.2, 118.8, 112.5, 

47.5, 42.4, 41.2, 40.5, 30.7, 24.9.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 2933 (w), 2863 (w), 2227 (m), 1706 (vs), 1582 (w), 1483 

(w), 1448 (m), 1429 (w), 1346 (w), 1312 (w), 1277 (w), 1258 (w), 1225 (m), 1100 (w), 1059 (w), 

912 (w), 901 (w), 866 (w), 796 (m), 753 (w), 723 (m), 691 (s), 572 (w), 558 (w).  

MS (EI, 70 eV): m/z (%) = 213 (M+, 52), 155 (78), 142 (12), 116 (28), 97 (100), 89 (15), 69 (93), 

55 (45).  

HRMS (C14H15NO): calc.: 213.1154; found: 213.1153. 

 

3-(3,3-Dimethyl-2-oxobutyl)benzonitrile (56ae) 

 
According to TP3 2,2-dimethylpropionyl chloride (60b; 225 mg, 1.87 mmol) was added 

dropwise to a mixture of CuCN·2LiCl (2.6 mL, 2.6 mmol) and 3-cyanobenzylzinc chloride (54o; 

1.9 mL, 2.6 mmol, 1.37 M in THF) at  -60 °C. The reaction mixture was allowed to reach -20 °C 

within 15 h and was quenched with a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 5:1 

(25 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 6:1) afforded the 

ketone 56ae (292 mg, 78%) as a white solid.  

M.p. (°C): 39-40.  
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1H-NMR (600 MHz, C6D6): δ / ppm = 7.03-7.01 (m, 1H), 6.98-6.95 (m, 2H), 6.74 (t, J = 7.8 Hz, 

1H), 3.13 (s, 2H), 0.89 (s, 9H).  
13C-NMR (150 MHz, C6D6): δ / ppm = 209.7, 136.7, 134.0, 133.2, 130.2, 128.8, 118.9, 112.9, 

44.3, 42.2, 26.1. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2956 (m), 2226 (m), 1700 (s), 1482 (m), 1364 (m), 1330 

(s), 1058 (vs), 1020 (s), 808 (m), 770 (vs), 684 (vs).  

MS (EI, 70 eV): m/z (%) = 201 (M+, <1), 117 (28), 116 (22), 85 (22), 57 (100), 41 (30).  

HRMS (C13H15NO): calc.: 201.1154; found: 201.1131. 

 

Ethyl 2-[2-(4-cyanophenyl)ethyl]acrylate (56af) 

 

4-Cyanobenzylzinc chloride (54p; 6.90 mL, 10.0 mmol, 1.45 M in THF) was added to a solution 

of ethyl (2-bromomethyl)acrylate (55b; 1.54 g, 8.00 mmol) in 4 mL THF at -60 °C followed by 

CuCN·2LiCl (0.01 mL, 1.00 M in THF). The reaction mixture was stirred at -60 °C for 30 min, 

followed by stirring at 0 °C for additional 30 min. Then, the reaction mixture was quenched by 

adding a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 9:1 (100 mL). Purification by flash 

chromatography (silica gel, pentane / Et2O = 3:1) afforded the acrylate 56af (1.48 g, 81%) as 

colourless oil.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.58-7.51 (m, 2H), 7.29-7.22 (m, 2H), 6.17-6.10 (m, 

1H), 5.48-5.43 (m, 1H), 4.19 (d, J = 7.1 Hz, 2H), 2.88-2.79 (m, 2H), 2.65-2.54 (m, 2H), 1.28 (t, 

J = 7.1 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ / ppm = 166.7, 147.0, 139.3, 132.1, 129.3, 125.6, 119.0, 109.9, 

60.7, 35.0, 33.4, 14.2. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2983 (w), 2936 (w), 2228 (m), 1710 (vs), 1631 (w), 1608 

(m), 1506 (w), 1445 (w), 1412 (w), 1369 (m), 1309 (m), 1273 (m), 1254 (m), 1184 (vs), 1135 (s), 

1105 (m), 1027 (m), 947 (m), 838 (m), 820 (s), 668 (w).  

MS (EI, 70 eV): m/z (%) = 229 (M+, 12), 183 (80), 155 (35), 127 (11), 116 (100), 89 (23), 43 

(15).  

HRMS (C14H15NO2): calc.: 229.1103; found: 229.1096. 
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S-(4-Fluorophenyl) (4-cyanophenyl)methanesulfono-thioate (56ag) 

 

To S-(4-fluorophenyl) benzenesulfonothioate (57c; 644 mg, 2.40 mmol, in 1.0 mL THF) was 

added dropwise 4-cyanobenzylzinc chloride (54p; 2.30 mL, 2.88 mmol, 1.25 M in THF). The 

reaction mixture was stirred for 1.5 h followed by the addition of sat. aq. NH4Cl solution at 0 °C. 

The phases were separated and the aq. layer was extracted with Et2O (3 x 50 mL). Purification by 

flash chromatography (silica gel, pentane / Et2O = 95:5) afforded the thioether 56ag (552 mg, 

95%) as a white solid.  

M.p. (°C): 50-51.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.58-7.52 (m, 2H), 7.30-7.21 (m, 4H), 7.01-6.91 (m, 

2H), 4.03 (s, 2H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 162.4 (d, 1JC-F = 248.2 Hz), 143.3, 134.2 (d,  
3JC-F  = 8.3 Hz), 132.2, 129.5, 129.2 (d, J = 3.4 Hz), 118.7, 116.1 (d, J = 21.9 Hz), 110.9, 40.4. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3064 (w), 3044 (w), 2930 (w), 2856 (w), 2360 (w), 2342 

(w), 2228 (m), 1862 (w), 1734 (w), 1606 (m), 1590 (w), 1506 (m), 1488 (s), 1416 (m), 1400 (m), 

1298 (w), 1216 (s), 1180 (m), 1158 (m), 1104 (m), 1090 (m), 1014 (w), 968 (w), 924 (w), 904 

(w), 856 (s), 812 (vs), 804 (vs), 760 (s), 712 (w), 630 (s).  

MS (EI, 70 eV): m/z (%) = 243 (M+, 35), 127 (5), 117 (8), 116 (100), 89 (9) 83 (6), 63 (2). 

HRMS (C14H10FNS): calc.: 243.0518; found: 243.0513. 

 

1-[3-(2-Oxo-2-phenylethyl)phenyl]pentan-1-one (56ah) 

 

According to TP3 benzoyl chloride (60f; 278 mg, 1.98 mmol) was added dropwise to a mixture 

of CuCN·2LiCl (2.60 mL, 2.60 mmol, 1.00 M in THF) and 3-pentanoylbenzylzinc chloride (54q; 

2.30 mL, 2.64 mmol, 1.15 M in THF) at -20 °C. The reaction mixture was stirred for 15 h at this 

temperature followed by quenching with a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 5:1 

(25 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 9:1) afforded the 

ketone 56ah (470 mg, 85%) as a white solid. 
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M.p. (°C): 33-36. 
1H-NMR  (600 MHz, CDCl3): δ / ppm = 8.03-8.00 (m, 2H), 7.86-7.83 (m, 2H), 7.59-7.55 (m, 

1H), 7.49-7.40 (m, 4H), 4.35 (s, 2 H), 2.94 (t, J = 7.4 Hz, 2H), 1.73-1.67 (m, 2H), 1.43-1.35 (m, 2 

H), 0.94 (t, J = 7.4 Hz, 3H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 200.4, 197.0, 137.4, 136.4, 135.0, 134.1, 133.4, 129.2, 

128.8, 128.7, 128.5, 126.7, 45.1, 38.4, 26.4, 22.4, 13.9.   

IR (Diamond-ATR, neat): ν~  / cm-1 = 2956 (w), 2932 (w), 1678 (vs), 1594 (m), 1580 (m), 1446 

(m), 1328 (m), 1266 (m), 1206 (s), 1164 (m), 994 (m), 974 (m), 748 (s), 692 (vs). 

MS (EI, 70 eV): m/z (%) = 280 (M+, 6), 223 (6), 105 (100), 77 (17). 

HRMS (C19H20O2): calc.: 280.1463; found: 280.1439. 

 

1-{3-[2-(3,4-Dichlorophenyl)-2-hydroxyethyl]phenyl}pentan-1-one (56ai) 

 

According to TP3 3-pentanoylbenzylzinc chloride (54q; 2.40 mL, 2.59 mmol, 1.08 M in THF) 

was reacted with 3,4-dichlorobenzaldehyde (61b; 350 mg, 2.00 mmol, in 1.5 mL THF). After 

5.5 h the reaction mixture was quenched with sat. aq. NH4Cl solution. Purification by flash 

chromatography (silica gel, pentane / Et2O = 2:1) afforded the alcohol 56ai (665 mg, 95%) as a 

white solid.  

M.p. (°C): 47-48. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 7.84-7.80 (m, 1H), 7.75-7.72 (m, 1H), 7.45-7.30 (m, 4 

H), 7.16-7.11 (m, 1H), 4.92-4.85 (m, 1H), 3.04-3.00 (m, 2H), 2.01 (t, J = 7.4 Hz, 2H), 2.11-1.93 

(s, 1H), 1.76-1.62 (m, 2H), 1.47-1.32 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 200.5, 143.8, 137.8, 137.4, 134.1, 132.6, 131.5, 130.4, 

129.0, 128.8, 127.9, 126.7, 125.2, 73.9, 45.7, 38.4, 26.5, 22.5, 13.9.   

IR (Diamond-ATR, neat): ν~  / cm-1 = 3427 (w), 2956 (m), 2930 (m), 2871 (w), 1673 (s), 1601 

(w), 1583 (m), 1466 (s), 1440 (m), 1379 (m), 1319 (m), 1261 (m), 1231 (m), 1199 (m), 1179 (m), 

1163 (m), 1129 (m), 1057 (s), 1028 (vs), 885 (m), 820 (s), 787 (m), 764 (m), 730 (m), 692 (s), 

675 (s).  

MS (EI, 70 eV): m/z (%) = 350 (M+, <1), 293 (7), 177 (15), 176 (100), 175 (14), 119 (8). 

HRMS (C19H20Cl2O2): calc.: 350.0840; found: 350.0839. 
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1-{3-[2-(2-Furyl)-2-oxoethyl]phenyl}-2-methyl-propan-1-one (56aj) 

 

According to TP3 2-furoyl chloride (60g; 261 mg, 2.00 mmol) was added dropwise to a mixture 

of CuCN·2LiCl (2.60 mL, 2.60 mmol, 1.00 M in THF) and 3-isobutyrylbenzylzinc chloride (54r; 

2.36 mL, 2.60 mmol, 1.10 M in THF) at -40 °C. The reaction mixture was allowed to reach 25 °C 

within 20 h and was quenched with a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 2:1 

(50 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 3:1) afforded the 

ketone 56aj (259 mg, 51%) as a yellow oil. 
1H-NMR (600 MHz, CDCl3): δ / ppm = 7.88 (s, 1H), 7.84 (d, J = 8.1 Hz, 1H), 7.62-7.59 (m, 

1H), 7.50 (d, J = 7.6 Hz, 1H), 7.42 (d, J = 7.6 Hz, 1H), 7.27-7.24 (m, 1H), 6.56-6.52 (m, 1H), 

4.18 (s, 2H), 3.56-3.50 (m, 1H), 1.19 (d, J = 6.9 Hz, 6H).  
13C-NMR (150 MHz, CDCl3): δ / ppm = 204.3, 186.1, 152.3, 146.7, 136.5, 134.5, 134.0, 129.5, 

128.9, 127.1, 117.9, 112.5, 45.0, 35.4, 19.1. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3132 (vw), 2972 (w), 2934 (w), 2873 (w), 1673 (vs), 

1568 (m), 1465 (s), 1439 (m), 1384 (m), 1335 (m), 1288 (m), 1235 (s), 1149 (s), 1084 (m), 1039 

(m), 1019 (s), 994 (s), 912 (m), 882 (m), 836 (m), 764 (s), 734 (s), 708 (m), 685 (m), 643 (m), 

594 (s), 576 (m).  

MS (EI, 70 eV): m/z (%) = 256 (M+, 10), 214 (65), 185 (21), 128 (20), 118 (11), 95 (100), 90 

(20).  

HRMS (C16H16O3): calc.: 256.1099; found: 256.1097. 

 

Ethyl 2-[2-(3-propionylphenyl)ethyl]acrylate (56ak) 

 

To a solution of ethyl (2-bromomethyl)acrylate (55b; 560 mg, 2.90 mmol) in 1.5 mL THF 

at -60 °C was added 3-propionylbenzylzinc chloride (54s; 2.80 mL, 3.48 mmol, 1.25 M in THF) 

followed by CuCN·2LiCl (0.01 mL, 0.01 mmol, 1.00 M in THF). The reaction mixture was 

stirred at -60 °C for 30 min followed by stirring at 0 °C for additional 30 min. Then, the reaction 

mixture was quenched by adding sat. aq. NH4Cl solution. The phases were separated and the aq. 

layer was extracted with Et2O (3 x 20 mL). The combined extracts were dried over MgSO4. 
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Evaporation of the solvents in vacuo and purification by flash chromatography (silica gel, 

pentane / Et2O = 95:5) afforded the acrylate 56ak (694 mg, 92%) as a pale yellow liquid.  
1H-NMR  (300 MHz, CDCl3): δ / ppm = 7.80-7.74 (m, 2H), 7.39-7.34 (m, 2H), 6.16-6.14 (m, 

1H), 5.48 (q, J = 1.3 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 2.98 (q, J = 7.1 Hz, 2H), 2.89-2.80 (m, 

2H), 2.66-2.59 (m, 2H), 1.30 (t, J = 7.2 Hz, 3H), 1.21 (t, J = 7.3 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 200.9, 167.0, 141.9, 139.8, 137.1, 133.1, 128.5, 128.0, 

125.8, 125.4, 60.7, 34.8, 33.8, 31.8, 14.2, 8.3.   

IR (Diamond-ATR, neat): ν~  / cm-1 = 2978 (w), 2938 (w), 1712 (vs), 1684 (vs), 1300 (m), 1240 

(s), 1184 (vs), 1164 (s), 1132 (s), 1028 (m), 944 (m), 782 (s), 694 (s). 

MS (EI, 70 eV): m/z (%) = 260 (M+, 23), 232 (16), 231 (100), 214 (11), 213 (11), 185 (16), 147 

(28), 129 (14), 128 (12), 118 (10), 91 (12), 90 (19), 57 (15). 

HRMS (C16H20O3): calc.: 260.1412; found: 260.1419. 

 

4,4-Dimethyl-1-(3-propionylphenyl)pentan-2-one (56al) 

 

According to TP3 3,3-dimethylbutyryl chloride (60b; 192 mg, 1.44 mmol) was added dropwise 

to a mixture of CuCN·2LiCl (1.88 mL, 1.88 mmol, 1.00 M in THF) and 3-propionylbenzylzinc 

chloride (54s; 1.76 mL, 1.88 mmol, 1.07 M in THF) at  -60 °C. The reaction mixture was allowed 

to reach -20 °C within 15 h and was quenched with a mixture of sat. aq. NH4Cl / NH3 (25% in 

H2O) = 5:1 (25 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 9:1) 

afforded the ketone 56al (246 mg, 69%) as a white solid.  

M.p. (°C): 39.4-41.5.  
1H-NMR (600 MHz, CDCl3): δ / ppm = 7.86-7.83 (m, 1H), 7.77-7.75 (m, 1H), 7.41 (t, 

J = 7.6 Hz, 1H), 7.37-7.35 (m, 1H), 3.73 (s, 2H), 2.99 (q, J = 7.3 Hz, 2H), 2.38 (s, 2H), 1.21 (t, 

J = 7.2 Hz, 3H), 1.00 (s, 9H).  
13C-NMR (150 MHz, CDCl3): δ / ppm = 207.2, 200.6, 137.2, 134.7, 134.0, 129.0, 128.8, 126.7, 

54.4, 51.6, 31.8, 31.1, 29.7, 8.2.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 2947 (m), 2938 (m), 2899 (w), 2867 (w), 1711 (s), 1677 

(vs), 1604 (w), 1459 (m), 1440 (m), 1411 (m), 1404 (m), 1369 (m), 1364 (m), 1340 (s), 1311 (m), 
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1247 (m), 1235 (m), 1193 (m), 1167 (s), 1149 (m), 1085 (s), 1037 (m), 1024 (m), 983 (m), 898 

(m), 778 (vs), 747 (m), 697 (vs), 647 (w), 571 (m).  

MS (EI, 70 eV): m/z (%) = 246 (M+, 2), 217 (9), 148 (23), 147 (33), 118 (11), 99 (75), 71 (18), 

57 (100), 43 (11), 41 (14).  

HRMS (C16H22O2): calc.: 246.1620; found: 246.1626. 

 

1-(3-Acetylphenyl)-4,4-dimethylpentan-2-one (56am) 

 

According to TP3 3,3-dimethylbutyryl chloride (60b; 192 mg, 1.44 mmol) was added dropwise 

to a mixture of CuCN·2LiCl (1.88 mL, 1.88 mmol, 1.00 M in THF) and 3-acetylbenzylzinc 

chloride (54t; 1.68 mL, 1.88 mmol, 1.12 M in THF) at  -60 °C. The reaction mixture was stirred 

for 15 h at -20 °C and quenched with a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 5:1 

(25 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 7:3) afforded the 

ketone 56am (248 mg, 74%) as a pale yellow liquid. 
1H-NMR  (600 MHz, CDCl3): δ / ppm = 7.85-7.82 (m, 1H), 7.75-7.74 (m, 1H), 7.43-7.40 (m, 

1H), 7.38-7.36 (m, 1H), 3.73 (s, 2H), 2.58 (s, 3H), 2.37 (s, 2H), 1.00 (s, 9H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 207.1, 197.9, 137.4, 134.7, 134.2, 129.2, 128.8, 127.0, 

54.4, 51.5, 31.1, 29.6, 26.6.   

IR (Diamond-ATR, neat): ν~  / cm-1 = 2868 (w), 1920 (w), 1602 (w), 1584 (w), 2953 (m), 1439 

(m), 790 (m), 1063 (m), 1083 (m), 1189 (m), 1713 (m), 1356 (s), 693 (s), 1269 (s), 1681 (vs). 

MS (EI, 70 eV): m/z (%) = 232 (M+, 3), 134 (18), 133 (50), 99 (100), 90 (15), 71 (17), 57 (72), 

43 (27). 

HRMS (C15H20O2): calc.: 232.1463; found: 232.1447. 

 

Ethyl 2-[2-(3-acetylphenyl)ethyl]acrylate (56an) 

 

To a solution of ethyl 2-bromomethylacrylate (55b; 193 mg, 1.00 mmol) in THF (3 mL) 

at -60 °C was added 3-acetylbenzylzinc chloride (54t; 1.16 mL, 1.30 mmol, 1.12 M in THF) and 

CuCN·2LiCl (0.01 mL, 0.01 mmol, 1.00 M in THF). The reaction mixture was stirred at -60 °C 
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for 30 min, followed by stirring at 0 °C for additional 30 min. Then, the reaction mixture was 

quenched by adding sat. aq. NH4Cl solution. The phases were separated and the aq. layer was 

extracted with Et2O (3 x 100 mL). The combined extracts were dried over MgSO4. Evaporation 

of the solvents in vacuo and and purification by flash chromatography (silica gel, pentane / Et2O 

= 9:1 to 6:1) afforded the acrylate 56an (239 mg, 97%) as colourless liquid.  
1H-NMR (600 MHz, CDCl3): δ / ppm = 7.80-7.75 (m, 2H), 7.41-7.34 (m, 2H), 6.16-6.14 (m, 

1H), 5.50-5.47 (m, 1H), 4.21 (q, J = 7.1 Hz, 2H), 2.87-2.81 (m, 2H), 2.65-2.60 (m, 2H), 2.59 (s, 

3H), 1.30 (q, J = 7.1 Hz, 3H).  
13C-NMR (150 MHz, CDCl3): δ / ppm = 198.3, 167.0, 142.0, 139.8, 137.3, 133.3, 128.6, 128.2, 

126.2, 125.4, 60.7, 34.8, 33.8, 26.7, 14.2.   

IR (Diamond-ATR, neat): ν~  / cm-1 = 2980 (w), 2931 (w), 1711 (s), 1682 (vs), 1438 (m), 1357 

(m), 1300 (m), 1270 (s), 1241 (m), 1184 (vs), 1133 (s), 1114 (m), 1026 (m), 946 (m), 795 (m), 

693 (s).  

MS (EI, 70 eV): m/z (%) = 234 (M+, 23), 201 (18), 200 (29), 185 (29), 157 (19), 133 (100), 129 

(20), 118 (11), 90 (18), 42 (48).  

HRMS (C15H18O3): calc.: 246.1156; found: 246.1143. 

 

1-{3-[2-(3,4-Dichlorophenyl)-2-hydroxyethyl]phenyl}-ethanone (56ao) 

 

According to TP2 3-propionylbenzylzinc chloride (54t; 3.12 mL, 3.12 mmol, 1.00 M in THF) 

was reacted with 3,4-dichlorobenzaldehyde (61b; 420 mg, 2.40 mmol, in 2 mL THF) at 25 °C. 

After 3 h, the reaction mixture was quenched with sat. aq. NH4Cl (5 mL). Purification by flash 

chromatography (silica gel, pentane / Et2O = 2:1 + 1 vol-% NEt3) afforded the benzylic alcohol 

56ao (609 mg, 82%) as a white solid.  

M.p. (°C): 65-67.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.84-7.80 (m, 1H), 7.77-7.75 (m, 1H), 7.45-7.31 (m, 

4H), 7.16-7.11 (m, 1H), 4.89 (dd, J = 7.3 Hz, 6.1 Hz, 1H), 3.03 (s, 1H), 3.01 (d, J = 1.9 Hz, 1H), 

2.57 (s, 3H), 2.11 (s, 1H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 198.1, 143.9, 137.9, 137.4, 134.3, 132.6, 131.5, 130.4, 

129.2, 128.8, 128.0, 127.0, 125.3, 73.9, 45.6, 26.6.  
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IR (Diamond-ATR, neat): ν~  / cm-1 = 3353 (w), 2921 (w), 1676 (s), 1601 (m), 1583 (m), 1467 

(m), 1438 (m), 1389 (m), 1357 (s), 1271 (s), 1189 (m), 1129 (m), 1056 (m), 1028 (s), 957 (m), 

906 (m), 887 (m), 820 (s), 792 (s), 730 (s), 692 (vs), 674 (s).  

MS (EI, 70 eV): m/z (%) = 308 (M+, <1), 212 (11), 174 (85), 147 (44), 135 (90), 119 (27), 111 

(100), 91 (95), 75 (21), 43 (57).  

HRMS (C16H14Cl2O2): calc.: 308.0371; found: 308.0371. 

 

1,2-Diphenylethanone (56ap) 

 

According to TP3 benzoyl chloride (60f; 1.69 g, 12.0 mmol) was added dropwise to a mixture of 

CuCN·2LiCl (16.8 mL, 16.8 mmol, 1.00 M in THF) and benzylzinc chloride (54a; 11.1 mL, 

16.8 mmol, 1.52 M in THF) at -40 °C. The reaction mixture was allowed to reach 25 °C within 

20 h and was quenched with a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 2:1 (100 mL). 

Purification by flash chromatography (silica gel, pentane / Et2O = 9:1) afforded the ketone 56ap 

(2.17 g, 92%) as a pale yellow solid.  

M.p. (°C): 55-57.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.06-7.98 (m, 2H), 7.59-7.51 (m, 1H), 7.50-7.41 (m, 

2H), 7.37-7.21 (m, 5H), 4.29 (s, 2H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 197.6, 136.6, 134.5, 133.1, 129.4, 128.6, 128.6, 128.6, 

126.8, 45.5.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3564 (vw), 3058 (w), 3027 (w), 2922 (vw), 2904 (w), 

1682 (s), 1593 (m), 1579 (m), 1496 (m), 1447 (m), 1336 (m), 1323 (m), 1216 (m), 1199 (m), 

1076 (m), 1026 (m), 991 (m), 750 (s), 728 (s), 711 (m), 698 (vs), 686 (vs), 662 (s), 648 (m), 619 

(m), 565 (vs).  

MS (EI, 70 eV): m/z (%) = 196 (M+, 2), 165 (5), 105 (100), 91 (13), 77 (41), 69 (6), 61 (5), 51 

(8), 44 (32).  

HRMS (C14H12O): calc.: 196.0888; found: 196.0872.  
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Ethyl 2-(2-phenylethyl)acrylate (56aq) 

 

To a solution of ethyl 2-bromomethylacrylate (55b; 965 mg, 5.00 mmol) in THF (2.5 mL) at  

-60 °C was added benzylzinc chloride (54a; 3.85 mL, 6.00 mmol, 1.56 M in THF) and 

CuCN·2LiCl (0.01 mL, 0.01 mmol, 1.00 M in THF). The reaction mixture was stirred at -60 °C 

for 30 min, followed by stirring at 0 °C for additional 30 min. Then, the reaction mixture was 

quenched by adding sat. aq. NH4Cl solution. The phases were separated and the aq. layer was 

extracted with Et2O (3 x 100 mL). The combined extracts were dried over MgSO4. Evaporation 

of the solvents in vacuo and and purification by flash chromatography (silica gel, pentane / Et2O 

= 98:2) afforded the acrylate 56aq (948 mg, 93%) as colourless liquid.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.33-7.24 (m, 2H), 7.23-7.15 (m, 3H), 6.18-6.14 (m, 

1H), 5.52-5.47 (m, 1H), 4.23 (q, J = 7.1 Hz, 2H), 2.85-2.76 (m, 2H), 2.67-2.58 (m, 2H), 1.32 (q, 

J = 7.2 Hz, 3H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 167.1, 141.4, 140.1, 128.4, 128.3, 125.9, 125.0, 60.6, 

34.9, 33.9, 14.2. 

 IR (Diamond-ATR, neat): ν~  / cm-1 = 2980 (w), 2932 (w), 1712 (vs), 1632 (w), 1456 (w), 1308 

(m), 1240 (m), 1184 (s), 1156 (m), 1132 (s), 1028 (m), 944 (m), 748 (m), 700 (vs).  

MS (EI, 70 eV): m/z (%) = 234 (M+, 7), 158 (17), 130 (26), 91 (100), 65 (11), 57 (13).  

HRMS (C13H16O2): calc.: 204.1150; found: 204.1144. 

 

5,5-Dimethyl-2-phenylhexan-3-one (56ar) 

 

According to TP3 3,3-dimethylbutyryl chloride (60b; 382 mg, 2.84 mmol) was added dropwise 

to a mixture of CuCN·2LiCl (3.90 mL, 3.90 mmol, 1.00 M in THF) and 1-phenylethylzinc 

chloride (54u; 2.73 mL, 3.90 mmol, 1.43 M in THF) at  -60 °C. The reaction mixture was allowed 

to reach 25 °C within 15 h and was quenched with a mixture of sat. aq. NH4Cl / NH3 (25% in 

H2O) = 9:1 (25 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 95:5) 

afforded the ketone 56ar (556 mg, 96%) as a colourless liquid. 
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1H-NMR  (600 MHz, CDCl3): δ / ppm = 7.39-7.35 (m, 2H), 7.32-7.28 (m, 1H), 7.26-7.23 (m, 

2H), 3.76 (q, J = 6.9 Hz, 1H), 2.37 (d, J = 15.3 Hz, 1H), 2.23 (d, J = 15.5 Hz, 1H), 1.40 (d, J = 

6.9 Hz, 3H), 1.00 (s, 9H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 210.3, 140.5, 128.8, 128.0, 127.0, 54.4, 53.2, 30.9, 

29.6, 17.4.   

IR (Diamond-ATR, neat): ν~  / cm-1 = 2952 (m), 2868 (w), 1712 (s), 1492 (w), 1452 (m), 1364 

(m), 1068 (w), 1044 (w), 1028 (w), 1016 (w), 912 (w), 756 (m), 700 (vs), 548 (m), 520 (w). 

MS (EI, 70 eV): m/z (%) = 204 (M+, 3), 105 (63), 99 (74), 83 (14), 79 (11), 71 (29), 69 (13), 57 

(100), 55 (13), 43 (23). 

HRMS (C14H20O): calc.: 204.1514; found: 204.1525. 

 

Ethyl 2-(2,2-diphenylethyl)acrylate (56as) 

 

(Diphenyl)methylzinc chloride (54v; 5.42 mL, 3.90 mmol, 0.72 M in THF) was added to a 

solution of ethyl (2-bromomethyl)acrylate (55b; 579 mg, 3.00 mmol) in THF (3 mL) at -60 °C 

followed by CuCN·2LiCl (0.01 mL, 1.00 M in THF). The reaction mixture was stirred at -60 °C 

for 30 min, followed by stirring at 0 °C for additional 30 min. Then, the reaction mixture was 

quenched by adding a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 8:1 (100 mL). 

Purification by flash chromatography (silica gel, pentane / Et2O = 98:2) afforded the acrylate 

56as (804 mg, 96%) as colourless oil.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.39-7.21 (m, 10H), 6.16-6.14 (m, 1H), 5.40-5.37 (m, 

1H), 4.34 (t, J = 7.9 Hz, 1H), 4.26 (d, J = 7.2 Hz, 2H), 3.19-3.13 (m, 2H), 1.36 (t, J = 7.1 Hz, 

3H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 167.1, 144.0, 138.5, 128.4, 128.0, 126.8, 126.2, 60.6, 

49.9, 38.0, 14.2.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3061 (vw), 3027 (w), 2981 (w), 2936 (vw), 1709 (s), 

1630 (w), 1600 (w), 1494 (w), 1464 (w), 1450 (m), 1368 (w), 1330 (w), 1300 (m), 1231 (w), 

1187 (s), 1134 (s), 1082 (w), 1028 (m), 944 (m), 863 (w), 816 (w), 788 (w), 742 (s), 697 (vs), 

602 (m).  
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MS (EI, 70 eV): m/z (%) = 280 (M+, 2), 235 (3), 167 (100), 165 (14), 152 (9), 128 (2), 105 (3), 

77 (2).  

HRMS (C19H20O2): calc.: 280.1463; found: 280.1461  

 

Ethyl (2-chlorophenyl)acetate (62a) 

 

Reaction 1 using ethyl chloroformate:  

To 2-chlorobenzylzinc chloride (54b; 2.62 mL, 4.00 mmol, 1.50 M in THF) at -30 °C was added 

THF (0.5 mL) followed by Pd(PPh3)4 (116 mg, 5.0 mol%). The reaction mixture was stirred for 5 

min. Then, ethyl chloroformate (60h, 227 mg, 2.09 mmol) was added dropwise. Stirring was 

continued for 10 min at -30 °C followed by 6.25 h at 25 °C. The reaction mixture was quenched 

by adding a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 4:1 (15 mL). The phases were 

separated and the aq. layer was extracted with CH2Cl2 (3 x 50 mL). The combined extracts were 

dried over MgSO4. Evaporation of the solvents in vacuo and purification by flash 

chromatography (silica gel, pentane / Et2O = 98:2) afforded the phenylacetic acid ester 62a 

(336 mg, 81%) as colourless liquid. 

 

Reaction 2 using ethyl cyanoformate:  

To 2-chlorobenzyl zinc chloride (54b; 0.67 mL, 1.00 mmol, 1.50 M in THF) at -30 °C was added 

dropwise TMSCH2Li (1.00 mL, 1.00 mmol, 1.00 M in pentane). The reaction mixture was stirred 

for 30 min. CuCN·2LiCl solution (1.00 mL, 1.00 mmol, 1.00 M in THF) was added dropwise and 

the mixture was stirred for additional 30 min. Ethyl cyanoformate (60i; 150 mg, 1.5 mmol) was 

added dropwise. Stirring was continued for 10 min at -30 °C followed by 6 h at 0 °C. The 

reaction mixture was quenched by adding a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 2:1 

(15 mL). The phases were separated and the aq. layer was extracted with CH2Cl2 (3 x 50 mL). 

The combined extracts were dried over MgSO4. Evaporation of the solvents in vacuo and 

purification by flash chromatography (silica gel, pentane / Et2O = 98:2) afforded the phenylacetic 

acid ester 62a (152 mg, 77%) as colourless liquid.  
1H-NMR  (300 MHz, CDCl3): δ / ppm = 7.42-7.34 (m, 1H), 7.32-7.17 (m, 3H), 4.17 (q, 

J = 7.1 Hz, 2H), 3.76 (s, 2H), 1.25 (t, J = 7.2 Hz, 3H). 
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13C-NMR (150 MHz, CDCl3): δ / ppm = 170.5, 134.5, 132.5, 131.4, 129.4, 128.6, 126.8, 61.0, 

39.2, 14.1.   

IR (Diamond-ATR, neat): ν~  / cm-1 = 2981 (w), 1731 (vs), 1475 (m), 1445 (m), 1415 (w), 1367 

(m), 1335 (m), 1279 (m), 1246 (m), 1216 (s), 1156 (vs), 1122 (m), 1053 (s), 1028 (s), 928 (w), 

885 (w), 859 (w), 827 (w), 741 (vs), 681 (s), 626 (w). 

MS (EI, 70 eV): m/z (%) = 198 (M+, 4), 163 (100), 135 (23) 127 (78), 125 (35, 89 (21).    

HRMS (C10H11ClO2): calc.: 198.0448; found: 198.0462. 

 

Ethyl 3-(2-ethoxy-2-oxoethyl)benzoate (62b) 

 

Ethyl chloroformate (60h; 1.09 g, 10.0 mmol) was solved in THF (5 mL) at -30 °C. Then, 

Pd(PPh3)4 (290 mg, 0.25 mmol, 2.5 mol%) was added and the mixture was stirred for 10 min. 3-

(Ethoxycarbonyl)benzylzinc chloride (54m; 9.09 mL, 12.0 mmol, 1.32 M in THF) was added 

dropwise. The reaction mixture was stirred for 6 h at 25 °C. Then, sat. aq. NH4Cl / NH3 (25% in 

H2O) = 9:1 (100 mL) was added. The phases were separated and the aq. layer was extracted with 

CH2Cl2 (3 x 150 mL). The combined extracts were dried over MgSO4. Evaporation of the 

solvents in vacuo and purification by flash chromatography (silica gel, pentane / Et2O = 9:1) 

afforded the ester 62b (1.79 g, 76%) as colourless liquid.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.96-7.91 (m, 2H), 7.49-7.45 (m, 1H), 7.41-7.35 (m, 

1H), 4.36 (q, J = 7.1 Hz, 2H), 4.14 (q, J = 7.1 Hz, 2H), 3.65 (s, 2H), 1.38 (t, J = 7.2 Hz, 3H), 1.24 

(t, J = 7.1 Hz, 3H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 171.1, 166.3, 134.4, 133.7, 130.8, 130.3, 128.5, 128.3, 

61.0 (double), 41.1, 14.3, 14.1.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 2982 (w), 1715 (vs), 1589 (w), 1446 (m), 1367 (m), 1278 

(vs), 1251 (s), 1192 (s), 1156 (s), 1104 (s), 1081 (s), 1025 (s), 902 (w), 863 (w), 741 (s), 725 (m), 

685 (m).  

MS (EI, 70 eV): m/z (%) = 236 (M+, 99), 208 (33), 192 (18), 191 (87), 164 (100), 136 (54), 135 

(89), 119 (95), 77 (16), 59 (11).  

HRMS (C13H16O4): calc.: 236.1049; found: 236.1033. 
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Ethyl (2-iodophenyl)acetate (62c) 

 

TMSCH2Li (5.00 mL, 5.00 mmol, 1.00 M in pentane) was added dropwise to 2-iodobenzylzinc 

chloride (54f; 3.76 mL, 5.00 mmol, 1.33 M in THF) at -30 °C, followed by THF (1 mL). The 

resulting mixture was stirred for 30 min. Then, CuCN·2LiCl (5.00 mL, 5.00 mmol, 1.00 M in 

THF) was added and stirring was continued for additional 30 min. Ethyl cyanoformate (60i; 

625 mg, 6.31 mmol) was added dropwise and the reaction mixture was stirred for 6 h at 0 °C. The 

reaction mixture was quenched with 30 mL of a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 

2:1. The phases were separated and the organic layer was extracted again with 30 mL of a 

mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 2:1. The combined aq. layers were extracted 

with Et2O (3 x 100 mL). The combined organic extracts were dried over MgSO4. Evaporation of 

the solvents in vacuo and purification by flash chromatography (silica gel, pentane / Et2O = 98:2) 

afforded the ester 62c (859 mg, 59%) as a white solid.  

M.p. (°C): 51-52.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.87-7.81 (m, 1H), 7.34-7.24 (m 2H), 6.99-6.91 (m, 

1H), 4.18 (q, J = 7.1 Hz, 2H), 3.78 (s, 2H), 1.23 (t, J = 7.1 Hz, 3H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 170.5, 139.5, 137.9, 130.6, 128.8, 128.4, 101.0, 61.0, 

46.3, 14.2.  

IR (Diamond-ATR, neat): ν~  / cm-1 =2987 (w), 2944 (w), 2906 (w), 1726 (s), 1564 (w), 1469 

(m), 1411 (m), 1366 (m), 1338 (s), 1277 (m), 1214 (s), 1171 (s), 1162 (s), 1113 (m), 1029 (s), 

1012 (vs), 926 (m), 888 (m), 760 (s), 734 (vs), 681 (m), 647 (s), 594 (m), 574 (s).  

MS (EI, 70 eV): m/z (%) = 289 (M+, 4), 216 (100), 163 (60), 135 (96), 107 (11), 90 (54), 63 (13), 

43 (10).  

HRMS (C10H11IO2): calc.: 289.9804; found: 289.9803.  

 

N-[(1E)-(3,4-Dimethoxyphenyl)methylene]-2,2-dimethoxyethanamine (64) 

 

To a solution of 3,4-dimethoxybenzyaldehyde (60h; 8.31 g, 50.0 mmol) in 150 mL toluene was 

added aminoacetaldehyde dimethylacetal (8.24 mL, 76.0 mmol). The reaction mixture was 

refluxed for 6 h and the water was removed by using Dean–Stark apparatus. After cooling to 
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25 °C, the solvent was removed in vacuo. The yellow oil was dissolved in CH2Cl2 (50 mL) and 

washed with water (4 x 50 mL), then dried over Na2SO4. Evaporation of the solvents in vacuo 

gives the imine 64 (12.8 g, 100%) as a pale yellow solid which was used without further 

purification. The spectroscopic data match the literature.82a 

M.p. (°C): 55-56. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.18-8.17 (m, 1H), 7.41 (d, J = 1.9 Hz, 1H), 7.14 (dd, 

J = 8.1 Hz, 1.9 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 4.65 (t, J = 5.4 Hz, 1H), 3.91 (s, 3H), 3.89 (s, 

3H), 3.73 (dd, J = 5.4 Hz, 1.3 Hz, 2H), 3.40 (s, 6H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 163.0, 151.4, 149.2, 129.3, 123.3, 110.3, 108.8, 103.9, 

63.4, 55.9, 55.9, 54.1.   

IR (Diamond-ATR, neat): ν~  / cm-1 = 3001 (w), 2932 (w), 2912 (w), 2884 (w), 2832 (w), 1641 

(s), 1600 (m), 1583 (s), 1512 (s), 1464 (s), 1444 (m), 1422 (s), 1396 (m), 1361 (m), 1334 (w), 

1305 (w), 1263 (vs), 1238 (vs), 1187 (m), 1158 (s), 1137 (vs), 1092 (s), 1066 (s), 1036 (s), 1015 

(vs), 996 (s), 971 (s), 959 (vs), 868 (s), 850 (m), 822 (s), 809 (s), 780 (m), 752 (s), 636 (s), 621 (s) 

 

(3,4-Dimethoxybenzyl)(2,2-dimethoxyethyl)amine (65) 

 

To a solution of N-[(1E)-(3,4-dimethoxyphenyl)methylene]-2,2-dimethoxyethanamine (64; 

12.8 g, 50.0 mmol) in ethanol (50 mL) was added sodium borohydride (3.78 g, 100 mmol) and 

the reaction mixture was stirred for 60 h at 25 °C. Then, water (150 mL) was added carefully. 

The phases were separated and the aq. layer was extracted with CH2Cl2 (3 x 300 mL). The 

combined extracts were washed with water (3 x 300 mL), brine (1 x 300 mL) and then dried over 

Na2SO4. Evaporation of the solvents in vacuo gives the amine 65 (11.0 g, 86%) as a pale yellow 

liquid which was used without further purification. The spectroscopic data match the literature.82a 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 6.88-6.85 (m, 1H), 6.84-6.76 (m, 2H), 4.46 (t, 

J = 5.5 Hz, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 3.72 (s, 2H), 3.34 (s, 6H), 2.72 (d, J = 5.8 Hz, 2H). 
13C-NMR (75Hz, CDCl3): δ / ppm = 148.8, 147.9, 132.6, 120.1, 111.2, 110.9, 103.7, 55.7, 55.7, 

53.7, 53.5, 50.3. 

MS (EI, 70 eV): m/z (%) = 255 (M+, 2), 180 (5), 151 (100), 107 (3), 75 (14).  

HRMS (C13H21NO4): calc.: 255.1464; found: 255.1471. 
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N-(3,4-dimethoxybenzyl)-N-(2,2-dimethoxyethyl)-4-methylbenzenesulfonamide (66) 

MeO

MeO
N

MeO OMe

S OO

Me

 

Pyridine (3.40 mL, 42.0 mmol) was added dropwise at 0 °C to a solution of 3,4-

dimethoxybenzyl)(2,2-dimethoxyethyl)amine (65; 7.66 g, 30.0 mmol) in CH2Cl2 (60 mL). Tosyl 

chloride (7.43 g, 39.0 mmol) was added and the reaction mixture was allowed to warm to 25 °C 

within 15 h and then poured on sat. aq. NaHCO3 solution. The phases were separated and the aq. 

layer was extracted with CH2Cl2 (3 x 100 mL), then dried over MgSO4. Evaporation of the 

solvents in vacuo and purification by flash chromatography (silica gel, pentane / Et2O = 1:2) 

afforded the sulphonamide 66 (12.2 g, 99%) as a pale yellow liquid.   
1H-NMR  (300 MHz, CDCl3): δ / ppm = 7.74-7.68 (m, 2H), 7.30-7.24 (m, 2H), 6.73-6.71 (m, 

2H), 6.66-6.64 (m, 1H), 4.38 (s, 2H), 4.33 (t, J = 5.4 Hz, 1H), 3.81 (s, 3H), 3.71 (s, 3H), 3.23 (s, 

6H), 3.18 (d, J = 5.4 Hz, 2H), 2.39 (s, 3H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 149.0, 148.5, 143.1, 137.7, 129.5, 128.4, 127.1, 121.0, 

111.3, 110.7, 103.8, 55.8, 55.6, 54.5, 52.2, 48.3, 21.4. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2935 (w), 2834 (w), 1595 (w), 1514 (s), 1438 (m), 1337 

(s), 1255 (s), 1236 (s), 1155 (vs), 1066 (s), 1026 (vs), 997 (s), 911 (s), 813 (s), 760 (s), 706 (m), 

658 (vs). 

MS (EI, 70 eV): m/z (%) = 409 (M+, <1), 254 (5), 151 (28), 91 (4), 75 (100). 

HRMS (C20H27NO6S): calc.: 409.1559; found: 409.1546.   

 

6,7-Dimethoxyisoquinoline (67) 

 

To a solution of N-(3,4-dimethoxybenzyl)-N-(2,2-dimethoxyethyl)-4-methylbenzenesulfonamide 

(66; 12.1 g, 29.5 mmol) in dioxane (280 mL) was added 6N HCl (22 mL). The reaction mixture 

was refluxed for 22 h. After cooling to 25 °C the solution was poured on water. The phases were 

separated and the aq. phase was extracted with Et2O (2 x 250 mL), CH2Cl2 (3 x 250 mL). The 

combined aq. phases were treated with NaOH (10%) solution until pH >9. The aq. phase was 

extracted with Et2O (2 x 250 mL) and CH2Cl2 (3 x 250 mL). The combined extracts were dried 
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over MgSO4. Evaporation of the solvents in vacuo and purification by flash chromatography 

(silica gel, EtOAc) afforded the isoquinoline 67 (4.78 g, 86%) as a white solid. 

M.p. (°C): 93-95. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.98 (s, 1H), 8.33 (d, J = 5.6 Hz, 1H), 7.42 (d, 

J = 5.8 Hz. 1H), 7.11 (s, 1H), 6.98 (s, 1H), 3.95 (s, 6H).  
13C-NMR (150 MHz, CDCl3): δ / ppm = 152.8, 150.1, 149.8, 141.8, 132.3, 124.6, 119.0, 105.1, 

104.4, 55.9, 55.9. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3015 (w), 2836 (w), 1573 (m), 1502 (s), 1477 (s), 1459 

(m), 1433 (m), 1412 (s), 1335 (s), 1248 (vs), 1206 (s), 1138 (vs), 1001 (s), 923 (s), 852 (vs), 755 

(s), 632 (s). 

MS (EI, 70 eV): m/z (%) = 189 (M+, 100), 174 (11), 146 (24), 117 (8), 103 (6), 91 (6). 

HRMS (C11H11NO2): calc.: 189.0790; found: 189.0788. 

 

1-Iodo-6,7-dimethoxyisoquinoline (68) 

 

To a solution of 6,7-dimethoxyisoquinoline (67; 946 mg, 5.00 mmol) in THF (5 mL) was added 

TMPMgCl·LiCl (5.13 mL, 6.00 mmol, 1.17 M in THF) at 25 °C. The reaction mixture was stirred 

for 4 h. Iodine (1.52 g, 6.00 mmol) was dissolved in THF (3 mL) in a second flask at -40 °C. To 

this solution the magnesium compound was added dropwise. The solution was stirred 10 min at  

-40 °C, then 10 min at 0 °C. The reaction mixture was quenched by adding a mixture of sat. aq. 

NH4Cl solution and sat. aq. Na2S2O3 solution, then sat. aq. NaHCO3 until pH >7. The phases 

were separated and the aq. phase was extracted with CH2Cl2 (3 x 100 mL), then dried over 

MgSO4. Evaporation of the solvents in vacuo and purification by flash chromatography (silica 

gel, pentane / Et2O = 1:4) afforded the iodo-substituted isoquinoline 68 (1.14 g, 73%) as a pale 

yellow solid. 

M.p. (°C): 140-141 (decomposition). 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.06 (d, J = 5.6 Hz, 1H), 7.37 (d, J = 5.1 Hz, 1H), 7.29 

(s, 1H), 6.59 (s, 1H), 4.03 (s, 3H), 4.00 (s, 3H).  
13C-NMR (150 MHz, CDCl3): δ / ppm = 153.3, 151.3, 141.8, 132.4, 127.9, 124.6, 120.0, 111.0, 

105.0, 56.3, 56.1. 
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IR (Diamond-ATR, neat): ν~  / cm-1 = 2936 (w), 1504 (s), 1473 (s), 1458 (s), 1431 (s), 1392 (s), 

1296 (s), 1251 (s), 1226 (s), 1140 (vs), 1006 (s), 929 (s), 858 (vs), 774 (s), 671 (s). 

MS (EI, 70 eV): m/z (%) = 315 (M+, 53), 189 (12), 188 (100), 145 (3), 94 (6). 

HRMS (C11H10INO2): calc.: 314.9751; found: 314.9756. 

 

4-(Chloromethyl)-1,2-dimethoxybenzene (53w) 

 

To a solution of LiCl (2.54 g, 60.0 mmol, dried for 10 min under high vacuum at 400 °C using a 

heat gun) in THF (50 mL) was added 3,4-dimethoxybenzyl alcohol (69; 3.30 g, 20.0 mmol) at 

0 °C. Then, NEt3 (5.60 mL, 40.0 mmol) was added dropwise, followed by mesyl chloride 

(2.33 mL, 30.0 mmol). The reaction mixture was allowed to reach 25 °C within 15 h. Then, 

CH2Cl2 (300 mL) was added and the solution was washed with water (3 x 250 mL). The 

combined extracts were dried over MgSO4. Evaporation of the solvents in vacuo and purification 

by flash chromatography (silica gel, pentane / Et2O = 4:1) afforded the benzylic chloride 53w 

(2.56 g, 69%) as a white solid. 

M.p. (°C): 55-56. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 6.94-6.88 (m, 1H), 6.89 (s, 1H), 6.83-6.77 (m, 1H), 4.54 

(s, 2H), 3.87 (s, 3H), 3.85 (s, 3H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 149.1, 149.0, 129.9, 121.0, 111.6, 110.9, 55.8, 55.8, 

46.6. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3010 (w), 2935 (w), 2838 (w), 1593 (m), 1514 (s), 1463 

(s), 1450 (m), 1437 (m), 1259 (s), 1232 (vs), 1154 (vs), 1139 (vs), 1036 (s), 1022 (vs), 848 (s), 

815 (s), 685 (vs). 

MS (EI, 70 eV): m/z (%) = 186 (M+, 17), 151 (100), 107 (9), 91 (3), 77 (4). 

HRMS (C9H11ClO2): calc.: 186.0448; found: 186.0434. 

 

3,4,-Dimethoxybenzyl zinc chloride (54w)  

 

According to TP1 3,4-dimethoxybenzyl chloride (53w; 933 mg, 5.00 mmol, in 2 mL THF) was 

added dropwise at 0 °C to a suspension of LiCl (848 mg, 20.0 mmol) and zinc dust (1.31 g, 
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20.0 mmol) in 2 mL THF (activation: BrCH2CH2Br (0.02 mL, 5 mol%), TMSCl (0.01 mL, 

1 mol%)). The reaction mixture was stirred for 2 h at 0 °C followed by stirring for 2.5 h at 25 °C. 

After centrifugation iodometric titration of 54w indicates a yield of 72%. 

 

Papaverine (63) 

N

MeO

MeO

MeO

MeO  

To a solution of 1-iodo-6,7-dimethoxyisoquinoline (68; 315 mg, 1.00 mmol) in THF (3 mL) was 

added S-Phos (20.5 mg, 0.05 mmol, 5.0 mol%), Pd(OAc)2 (5.6 mg, 0.03 mmol, 2.5 mol%). Then, 

3,4,-dimethoxybenzylzinc chloride (54w; 2.00 mL, 1.40 mmol, 0.70 M in THF) was added 

dropwise. The reaction mixture was stirred for 1.25 h at 25 °C, then quenched by adding a 

mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 5:1. The phases were separated and the aq. layer 

was extracted with CH2Cl2 (5 x 50 mL). The combined extracts were dried over MgSO4. 

Evaporation of the solvents in vacuo and purification by flash chromatography (silica gel, 

pentane / Et2O = 1:4, + 2 vol-% NEt3, + 2 vol-% EtOH) afforded papaverine 63 (229 mg, 68%) as 

pale yellow solid. 

M.p. (°C): 144-146. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.35 (d, J = 6.0 Hz, 1H), 7.46 (d, J = 5.7 Hz, 1H), 7.37 

(s, 1H), 7.06 (s, 1H), 6.83–6.80 (m, 2H), 6.75 (d, J = 8.1 Hz, 1H), 4.58 (s, 2H), 4.00 (s, 3H), 3.91 

(s, 3H), 3.81 (s, 3H), 3.77 (s, 3H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 157.7, 152.3, 149.7, 149.0, 147.4, 140.9, 133.4, 132.2, 

122.8, 120.4, 118.6, 111.8, 111.1, 105.2, 104.1, 55.9, 55.8, 55.8, 55.7, 42.2. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2956 (w), 2939 (w), 2835 (w), 1504 (vs), 1478 (s), 1463 

(s), 1454 (m), 1434 (s), 1414 (s), 1257 (vs), 1232 (vs), 1202 (s), 1157 (s), 1153 (s), 1147 (s), 1139 

(vs), 1075 (m), 1045 (m), 1028 (vs), 986 (s), 875 (s), 867 (m), 860 (s), 843 (s), 822 (s), 805 (m), 

785 (s), 768 (m), 736 (m), 732 (m), 661 (s), 645 (m). 

MS (EI, 70 eV): m/z (%) = 339 (M+, 55), 324 (75), 308 (20), 154 (13). 

HRMS (C20H21NO4): calc.: 339.1471; found: 339.1455. 
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3.3 Efficient Nickel-catalyzed cross-coupling reactions of benzylic zinc chloride with 
aromatic halides 

Ethyl 2-(4-fluorobenzyl)nicotinate (72a) 

 

According to TP5 4-fluorobenzylzinc chloride (54c; 1.98 mL, 2.40 mmol, 1.21 M in THF) was 

reacted with ethyl 2-chloronicotinate (71a; 371 mg, 2.00 mmol in 0.4 mL NMP), PPh3 
(0.1 mL, 

0.04 mmol, 0.4 M in THF) and Ni(acac)2 
(0.1 mL, 0.01 mmol, 0.1 M in THF). The reaction 

mixture was stirred for 3 h. Purification by flash chromatography (silica gel, pentane / Et2O = 

1:1) afforded the ester 72a (407 mg, 78%) as a pale yellow oil. 
1H-NMR  (600 MHz, CDCl3): δ / ppm = 8.67 (dd, J = 5.0 Hz, 1.8 Hz, 1H), 8.17 (dd, J = 7.8 Hz, 

1.9 Hz, 1H), 7.25-7.20 (m, 3H), 6.94-6.89 (m, 2H), 4.54 (s, 2H), 4.32 (q, J = 7.0 Hz, 2H), 1.33 (t, 

J = 7.2 Hz, 3H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 166.3, 161.4 (d, 1JC-F = 243.7 Hz), 161.0, 151.8, 138.8, 

135.2 (d, 4JC-F = 3.1 Hz), 130.4 (d, 3JC-F = 7.9 Hz), 126.0, 121.3, 115.0 (d, 2JC-F = 21.0 Hz), 61.5, 

41.4, 14.1. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2988 (m), 2970 (m), 1720 (vs), 1601 (w), 1583 (w), 1568 

(m), 1507 (s), 1438 (m), 1365 (s), 1296 (m), 1256 (s), 1217 (vs), 1157 (m), 1129 (s), 1094 (s), 

1078 (vs), 1057 (s), 1017 (m), 860 (m), 810 (m), 790 (s), 747 (s), 607 (m). 

MS (EI, 70 eV): m/z (%) = 259 (M+, 100), 230 (61), 213 (86), 184 (70), 157 (11), 109 (11), 93 

(10). 

HRMS (C15H14O2NF): calc.: 259.1009; found: 259.1006. 

 

Ethyl 3-[3,5-bis(trifluoromethyl)benzyl]benzoate (72b) 

 

According to TP5 3-(ethoxycarbonyl)benzylzinc chloride  (54m; 1.90 mL, 2.40 mmol, 1.26 M in 

THF) was reacted with 1-bromo-3,5-bis(trifluoromethyl)benzene (71b; 586 mg, 2.00 mmol in 

0.4 mL NMP), PPh3 
(0.1 mL, 0.04 mmol, 0.4 M in THF) and Ni(acac)2 

(0.1 mL, 0.01 mmol, 0.1 M 

in THF). The reaction mixture was stirred for 4 h. Purification by flash chromatography (silica 

gel, pentane / Et2O = 95:5) afforded the ester 72b (331 mg, 45%) as a white solid.  



 
C. Experimental Section  171 

M.p. (°C): 55-57. 
1H-NMR (600 MHz, CDCl3): δ / ppm = 7.96-7.93 (m, 1H), 7.90-7.88 (m, 1H), 7.73 (s, 1H), 7.62 

(s, 2H), 7.41 (t, J = 7.6 Hz, 1H), 7.36-7.33 (m, 1H), 4.37 (q, J = 7.2 Hz, 2H), 4.14 (s, 2H), 1.38 (t, 

J = 7.2 Hz, 3H).   
13C-NMR (150 MHz, CDCl3): δ / ppm = 166.3, 142.9, 139.0, 133.2, 131.8 (q, 2JC-F = 33.4 Hz), 

131.2, 130.0, 129.0, 128.9 (m), 128.2, 123.3 (q, 1JC-F = 272.6 Hz), 120.5 (m), 61.1, 41.2, 14.3.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 2989 (w), 2970 (w), 2911 (w), 1739 (m), 1712 (s), 1447 

(m), 1376 (s), 1278 (vs), 1255 (s), 1205 (s), 1164 (s), 1110 (vs), 1027 (m), 930 (m), 921 (m), 868 

(m), 843 (m), 752 (s), 728 (m), 708 (s), 699 (s), 682 (s). 

MS (EI, 70 eV): m/z (%) = 376 (M+, 18), 357 (11), 348 (25), 331 (100), 283 (17), 233 (15), 165 

(17). 

HRMS (C17H18O2): calc.: 376.0898; found: 376.0888. 

 

Ethyl 2-(3-cyanobenzyl)nicotinate (72c)  

  

According to TP5 3-cyanobenzylzinc chloride (54o; 0.94 mL, 1.20 mmol, 1.27 M in THF) was 

reacted with ethyl 2-chloronicotinate (71a; 186 mg, 1.00 mmol in 0.2 mL NMP), PPh3 
(0.05 mL, 

0.02 mmol, 0.4 M in THF) and Ni(acac)2 
(0.05 mL, 0.005 mmol, 0.1 M in THF). The reaction 

mixture was stirred for 4 h. Purification by flash chromatography (silica gel, pentane / Et2O = 

1:1) afforded the ester 72c (115 mg, 43%) as a colourless oil. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.68 (dd, J = 4.8 Hz, 1.8 Hz, 1H), 8.23 (dd, J = 8.0 Hz, 

1.8 Hz, 1H), 7.57-7.52 (m, 2H), 7.47-7.43 (m, 1H), 7.37-7.31 (m, 1H), 7.28 (dd, J = 8.0 Hz, 

4.8 Hz, 1H), 4.59 (s, 2H), 4.33 (q, J = 7.1 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H).       
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.0, 159.9, 152.1, 141.0, 138.9, 133.7, 132.6, 129.9, 

128.9, 125.7, 121.7, 119.0, 112.1, 61.6, 41.7, 14.2. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2983 (w), 2229 (m), 1717 (vs), 1581 (m), 1568 (m), 1483 

(w), 1436 (m), 1366 (w), 1259 (vs), 1172 (w), 1131 (s), 1079 (vs), 1058 (s), 1016 (m), 861 (w), 

823 (w), 781 (s), 742 (s), 712 (m), 689 (s).  

MS (EI, 70 eV): m/z (%) = 266 (M+, 63), 265 (100), 237 (41), 221 (33), 193 (75), 164 (14). 

HRMS (C16H14N2O2): calc.: 266.1055; found: 266.1057. 
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2-(3-Propionylbenzyl)benzonitrile (72d) 

 

According to TP5 3-propionylbenzylzinc chloride (54s; 1.63 mL, 1.80 mmol, 1.10 M in THF) 

was reacted with 2-chlorobenzonitrile (71c; 206 mg, 1.50 mmol in 0.3 mL NMP), PPh3 
(0.08 mL, 

0.03 mmol, 0.4 M in THF) and Ni(acac)2 
(0.075 mL, 0.0075 mmol, 0.1 M in THF). The reaction 

mixture was stirred for 6 h. The reaction mixture was quenched with sat. aq. NH4Cl solution 

(50 mL) and extracted with CH2Cl2 (3 x 50 mL). Purification by flash chromatography (silica gel, 

pentane / Et2O = 3:1) afforded the nitrile 72d (265 mg, 71%) as a white solid.  

M.p. (°C): 50-52. 
1H-NMR (600 MHz, CDCl3): δ / ppm = 7.84-7.80 (m, 2H), 7.65-7.61 (m, 1H), 7.52-7.48 (m, 

1H), 7.43-7.41 (m, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.33-7.29 (m, 1H), 7.27 (d, J = 8.1 Hz, 1H), 

4.25 (s, 2H), 2.97 (q, J = 7.2 Hz, 2H), 1.19 (t, J = 7.2 Hz, 3H). 
13C-NMR  (150 MHz, CDCl3): δ / ppm = 200.6, 144.1, 139.2, 137.3, 133.4, 133.0, 133.0, 130.0, 

128.9, 128.3, 127.0, 126.4, 118.0, 112.5, 40.0, 31.8, 8.1. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2970 (m), 2935 (m), 2901 (m), 2224 (m), 1739 (m), 1684 

(s), 1597 (m), 1488 (m), 1445 (m), 1437 (m), 1407 (m), 1375 (s), 1347 (m), 1238 (s), 1217 (m), 

1163 (s), 1080 (m), 1066 (m), 1028 (m), 980 (w), 963 (m), 944 (w), 918 (m), 851 (m), 789 (s), 

765 (s), 755 (vs), 711 (m), 694 (s), 647 (m), 634 (m). 

MS (EI, 70 eV): m/z (%) = 249 (M+, 2), 220 (100), 192 (10), 190 (19), 178 (9), 165 (19), 116 (4), 

89 (3). 

HRMS (C17H15NO): calc.: 249.1154; found: 249.1152. 

 

Ethyl 3-(3-acetylbenzyl)benzoate (72e) 

 

According to TP5 3-acetylbenzylzinc chloride (54t; 2.27 mL, 2.40 mmol, 1.07 M in THF, 

addition via syringe pump over 30 min) was reacted with ethyl 3-bromobenzoate (71d; 458 mg, 

2.00 mmol in 0.4 mL NMP), PPh3 
(0.1 mL, 0.04 mmol, 0.4 M in THF) and Ni(acac)2 

(0.1 mL, 

0.01 mmol, 0.1 M in THF). The reaction mixture was stirred for 16 h. Purification by flash 
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chromatography (silica gel, pentane / Et2O = 4:1) afforded the ester 72e (289 mg, 51%) as a 

yellow oil. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.92-7.86 (m, 2H), 7.82-7.76 (m, 2H), 7.40-7.32 (m, 

4H), 4.35 (q, J = 7.2 Hz, 2H), 4.07 (s, 2H), 2.57 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H).  
13C-NMR  (75 MHz, CDCl3): δ / ppm = 198.1, 166.5, 141.1, 140.7, 137.5, 133.6, 133.3, 130.9, 

129.9, 128.8, 128.6, 128.5, 127.6, 126.5, 61.0, 41.5, 26.7, 14.3. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2981 (w), 2928 (w), 1714 (s), 1682 (s), 1602 (w), 1585 

(m), 1484 (w), 1437 (m), 1392 (w), 1358 (m), 1268 (vs), 1193 (s), 1104 (s), 1081 (m), 1021 (m), 

977 (w), 954 (w), 918 (w), 861 (w), 789 (m), 753 (s), 718 (s), 690 (s), 587 (s), 559 (m). 

MS (EI, 70 eV): m/z (%) = 282 (M+, 100), 268 (52), 237 (61), 194 (9), 165 (72), 152 (10), 43 

(35). 

HRMS (C18H18O3): calc.: 282.1256; found: 282.1249. 

 

Ethyl 4-(1-phenylethyl)benzoate (72f) 

 

According to TP5 1-phenylethylzinc chloride (54u; 1.78 mL, 2.40 mmol, 1.35 M in THF) was 

reacted with ethyl 4-bromobenzoate (71e; 458 mg, 2.00 mmol in 0.4 mL NMP), PPh3 
(0.1 mL, 

0.04 mmol, 0.4 M in THF) and Ni(acac)2 
(0.1 mL, 0.01 mmol, 0.1 M in THF). The reaction 

mixture was stirred for 12 h. Purification by flash chromatography (silica gel, pentane / Et2O = 

98:2) afforded the ester 72f (485 mg, 95%) as a colourless liquid.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.00-7.93 (m, 2H), 7.33-7.26 (m, 4H), 7.23-7.16 (m, 

3H), 4.36 (q, J = 7.1 Hz, 2H), 4.20 (q, J = 7.1 Hz, 1H), 1.66 (t, J = 7.3 Hz, 3H), 1.37 (t, J = 

7.1 Hz, 3H). 
13C-NMR  (75 MHz, CDCl3): δ / ppm = 166.5, 151.5, 145.4, 129.7, 128.5, 128.4, 127.6, 127.5, 

126.3, 60.7, 44.8, 21.6, 14.3. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3085 (vw), 3061 (vw), 3028 (vw), 2973 (w), 2934 (vw), 

2905 (vw), 2876 (vw), 1712 (s), 1610 (m), 1574 (vw), 1494 (w), 1451 (w), 1415 (w), 1391 (w), 

1367 (m), 1310 (w), 1271 (vs), 1178 (m), 1102 (s), 1055 (w), 1019 (s), 980 (w), 910 (w), 857 

(m), 758 (m), 738 (m), 698 (vs), 646 (w), 634 (w), 595 (w). 

MS (EI, 70 eV): m/z (%) = 254 (M+, 100), 239 (45), 209 (40), 181 (41), 165 (57), 91 (6). 
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HRMS (C17H18O2): calc.: 254.1307; found: 254.1305. 

 

3.4. Pd-catalyzed cross-couplings of benzylic zinc chlorides with unsaturated bromides 
bearing relatively acidic protons 

N-[2-(4-fluorobenzyl)prop-2-en-1-yl]aniline (78a) 

 

According to TP6 4-fluorobenzylzinc chloride (54c, 3.34 mL, 2.40 mmol, 0.72 M in THF) was 

added to a solution of (2-bromo-allyl)-phenyl-amine (77a; 424 mg, 2.00 mmol), Pd(OAc)2 

(4.5 mg, 0.02 mmol) and S-Phos (16.4 mg, 0.04 mmol) in THF (2 mL). The reaction mixture was 

stirred for 24 h at 25 °C. Purification by flash chromatography (silica gel, pentane / Et2O = 98:2) 

afforded the aniline 78a (295 mg, 61%) as a pale yellow oil. 
1H NMR (300 MHz, CDCl3): δ / ppm = 7.21-7.11 (m, 4H), 7.05-6.94 (m, 2H), 6.74-6.67 (m, 

1H), 6.59-6.51 (m, 2H), 5.14-5.10 (m, 1H), 4.95-4.91 (m, 1H), 3.88 (s, 1H), 3.65 (s, 2H), 3.39 (s, 

2H). 
13C NMR (75 MHz, CDCl3): δ / ppm = 161.5 (d, 1JC-F = 244.0 Hz), 148.0, 146.0, 134.7 (d, 4JC-F 

= 3.1 Hz), 130.3 (d, 3JC-F = 7.7 Hz), 129.1, 117.4, 115.2 (d, 2JC-F = 21.1 Hz), 112.8, 112.5, 48.1, 

40.1.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3419 (vw), 3051 (vw), 2909 (vw), 2839 (vw), 1651 (w), 

1601 (s), 1504 (vs), 1432 (w), 1313 (m), 1268 (m), 1252 (m), 1218 (s), 1180 (m), 1156 (m), 1092 

(m), 1071 (w), 1016 (w), 993 (w), 901 (m), 852 (m), 812 (m), 777 (m), 747 (vs), 690 (s). 

MS (EI, 70 eV): m/z (%) = 241 (M+, 100), 147 (55), 132 (28), 109 (25), 106 (72), 93 (16), 77 

(25).  

HRMS (C16H16FN):  calc.: 241.1267; found: 241.1262. 

 

N-{2-[3-(trifluoromethyl)benzyl]prop-2-en-1-yl}anili ne (78b) 

 

According to TP6 3-(trifluoromethyl)benzylzinc chloride (54g; 1.60 mL, 2.40 mmol, 1.50 M in 

THF) was added to a solution of (2-bromo-allyl)-phenyl-amine (77a; 424 mg, 2.00 mmol), 

Pd(OAc)2 (4.5 mg, 0.02 mmol) and S-Phos (16.4 mg, 0.04 mmol) in THF (2 mL). The reaction 
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mixture was stirred for 8 h at 25 °C. Purification by flash chromatography (silica gel, 

pentane / Et2O = 98:2) afforded the aniline 78b (437 mg, 87%) as a yellow oil. 
1H NMR (600 MHz, CDCl3): δ / ppm =  7.51-7.46 (m, 2H), 7.43-7.38 (m, 2H), 7.17-7.12 (m, 

2H), 6.72-6.68 (m, 1H), 6.65-6.52 (m, 2H), 5.17 (d, J = 0.9 Hz, 1H), 4.94 (d, J = 0.9 Hz, 1H) 3.82 

(s, 1H), 3.66 (s, 2H), 3.47 (s, 2H). 
13C NMR (150 MHz, CDCl3): δ / ppm = 148.0, 145.3, 140.1, 132.3 (q, J = 1.3 Hz), 130.8 (q, 
2JC-F = 32.1 Hz), 129.2, 128.8, 125.5 (q, 3JC-F = 3.9 Hz), 124.2 (q, 1JC-F = 272.3 Hz), 123.2 (q,  
3JC-F = 4.0 Hz), 117.5, 113.2, 112.8, 48.1, 40.6.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3420 (vw), 3054 (vw), 2913 (vw), 1603 (s), 1506 (m), 

1448 (w), 1327 (vs), 1161 (s), 1117 (vs), 1093 (s), 1072 (s). 

MS (EI, 70 eV): m/z (%) = 291 (M+, 100), 276 (18), 132 (29), 129 (21), 106 (95). 

HRMS (C17H16F3N):  calc.: 291.1235; found: 291.1227. 

 

2-Chloro-4-(4-methoxybenzyl)aniline (78c) 

 

According to TP6 4-methoxybenzylzinc chloride (54i, 1.94 mL, 2.40 mmol, 1.24 M in THF) was 

added to a solution of 4-bromo-2-chloroaniline (77b; 413 mg, 2.00 mmol), Pd(OAc)2 (4.5 mg, 

0.02 mmol) and S-Phos (16.4 mg, 0.04 mmol) in THF (2 mL). The reaction mixture was stirred 

for 6.25 h at 25 °C. Purification by flash chromatography (silica gel, pentane / Et2O = 9:1 to 3:1) 

afforded the aniline 78c (381 mg, 77%) as a yellow oil. 
1H NMR (600 MHz, CDCl3): δ / ppm = 7.10-7.06 (m, 2H), 7.06 (d, J = 1.9 Hz, 1H), 6.87 (dd, J 

= 8.1 Hz, 1.9 Hz, 1H), 6.85-6.81 (m, 2H), 6.68 (d, J = 8.1 Hz, 1H), 3.92 (s, 2H), 3.79 (s, 2H), 

3.78 (s, 3H) . 
13C NMR (150 MHz, CDCl3): δ / ppm = 157.9, 140.9, 133.2, 132.6, 129.7, 129.4, 128.0, 119.3, 

115.9, 113.9, 55.2, 39.8.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3465 (vw), 3062 (vw), 3029 (vw), 2983 (vw), 1707 (w), 

1602 (w), 1580 (vw), 1494 (w), 1446 (m), 1369 (w), 1305 (vs), 1271 (s), 1225 (w), 1164 (s), 

1124 (vs), 1095 (s), 1032 (vs), 960 (w), 928 (m), 910 (w), 883 (w), 840 (w), 766 (vs), 698 (vs). 

MS (EI, 70 eV): m/z (%) = 247 (M+, 100), 212 (69), 180 (12), 168 (12), 140 (13), 106 (17). 

HRMS (C14H14ClNO):  calc.: 247.0764; found: 247.0756. 
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4-(3,4,5-Trimethoxybenzyl)phenol (78d) 

 

According to TP7 3,4,5-trimethoxybenzylzinc chloride (54h, 2.47 mL, 2.40 mmol, 0.97 M in 

THF) was slowly added over 90 min using a syringe pump to a solution of 4-bromophenol (77c; 

346 mg, 2.00 mmol), Pd(OAc)2 (4.5 mg, 0.02 mmol) and S-Phos (16.4 mg, 0.04 mmol) in THF 

(2 mL) at 25 °C. Purification by flash chromatography (silica gel, pentane / Et2O = 1:1) afforded 

the phenol 78d (232 mg, 42%) as a white solid. 

M.p. (°C): 119-120. 
1H NMR (300 MHz, CDCl3): δ / ppm = 7.07-7.00 (m, 2H), 6.79-6.73 (m, 2H), 6.38 (s, 2H), 5.22 

(s, 1H), 3.84 (s, 2H), 3.82 (s, 3H), 3.79 (s, 6H). 
13C NMR (75 MHz, CDCl3): δ / ppm = 154.0, 153.1, 137.3, 136.0, 132.8, 129.9, 115.3, 105.7, 

60.8, 56.0, 41.2.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3338 (w), 1612 (w), 1592 (m), 1511 (m), 1462 (m), 1444 

(w), 1438 (w), 1420 (m), 1342 (w), 1318 (w), 1262 (w), 1240 (s), 1224 (m), 1189 (w), 1172 (w), 

1126 (vs), 1040 (w), 1001 (m), 971 (w), 862 (w), 846 (w), 824 (m), 783 (w), 720 (vw), 669 (m). 

MS (EI, 70 eV): m/z (%) = 274 (M+, 100), 259 (19), 227 (9), 184 (8), 107 (5). 

HRMS (C16H18O4):  calc.: 274.1205; found: 274.1208. 

 

3-[4-(Hydroxymethyl)benzyl]benzonitrile (78e) 

 

According to TP7 3-cyanobenzylzinc chloride (54o, 1.89 mL, 2.40 mmol, 1.27 M in THF) is 

slowly added over 90 min using a syringe pump to a solution of (4-bromophenyl)methanol (77d; 

374 mg, 2.00 mmol), Pd(OAc)2 (4.5 mg, 0.02 mmol), S-Phos (16.4 mg, 0.04 mmol) in THF 

(2 mL) at 25 °C. Purification by flash chromatography (silica gel, pentane / Et2O = 1:1) afforded 

the nitrile 78e (375 mg, 84%) as a yellow solid. 

M.p. (°C): 53-55. 
1H NMR (600 MHz, CDCl3): δ / ppm = 7.51-7.33 (m, 4H), 7.31 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 

8.4 Hz, 2H), 4.65 (s, 2H), 3.99 (s, 2H), 1.95 (s, 1H). 
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13C NMR (150 MHz, CDCl3): δ / ppm = 142.5, 139.3, 138.7, 133.3, 132.2, 129.9, 129.2, 129.0, 

127.4, 118.8, 112.4, 64.9, 41.0.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3404 (m), 2921 (m), 2853 (m), 2228 (s), 1582 (w), 1512 

(w), 1482 (m), 1419 (m), 1209 (w), 1031 (s), 1016 (s), 794 (s), 750 (m), 730 (m), 686 (vs).  

MS (EI, 70 eV): m/z (%) = 223 (M+, 80), 221 (18), 224 (12), 192 (63), 165 (41), 116 (40), 107 

(100), 91 (14), 79 (35), 44 (38). 

HRMS (C15H13NO):  calc.: 223.0997; found: 223.0988. 

 

3.5. Palladium-catalyzed one-pot reaction of in situ generated benzylic zinc chlorides with 
aromatic bromides 

Methyl 2-(4-fluorobenzyl)benzoate (80a)  

 

According to TP8 – zinc insertion: 4-fluorobenzyl chloride (53c; 723 mg, 5.00 mmol), LiCl 

(318 mg, 7.50 mmol) and Zn (490 mg, 7.50 mmol) in THF (2.5 mL), t1 = 25 °C for 24 h; cross-

coupling: methyl 2-bromobenzoate (71g; 645 mg, 3.00 mmol), PEPPSI-IPr (8.5 mg, 

0.013 mmol), THF (1.0 mL), t2 = 25 °C for 24 h; work-up and purification: extracted with Et2O 

(3 × 20 mL), purified by flash chromatography (silica gel, pentane / Et2O = 98:2) to give the 

diarylmethane 80a as a colourless liquid (702 mg, 96%). 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.90 (dd, J = 7.9 Hz, 1.3 Hz, 1H), 7.47-7.39 (m, 1H), 

7.33-7.25 (m, 1H), 7.22-7.17 (m, 1H), 7.13-7.06 (m, 2H), 6.98-6.89 (m, 2H), 4.34 (s, 2H), 3.82 

(s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 167.9, 161.2 (d, 1JC-F = 243.8 Hz), 142.0 (d, 6JC-F = 1.0 

Hz), 136.5 (d, 4JC-F = 3.4 Hz), 132.1, 131.5, 130.8, 130.2 (d, 3JC-F = 7.7 Hz), 129.8, 126.4, 115.0 

(d, 2JC-F = 21.4 Hz), 51.9, 38.8 (d, 5JC-F = 0.5 Hz). 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2952 (w), 2360 (w), 2342 (w), 1718 (vs), 1602 (m), 1576 

(w), 1508 (s), 1434 (m), 1258 (vs), 1220 (s), 1192 (m), 1158 (m), 1128 (s), 1094 (s), 1076 (s), 

1048 (m), 1016 (w), 966 (w), 914 (w), 844 (m), 822 (m), 802 (m), 776 (s), 732 (vs), 704 (m), 664 

(m). 

MS (EI, 70 eV): m/z (%) = 244 (M+, 3), 212 (100), 183 (38), 133 (10), 109 (5), 91 (5). 

HRMS (C15H13FO2): calc.: 244.0900; found: 244.0895.  
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4-(3,4,5-Trimethoxybenzyl)benzonitrile (80b)  

 

According to TP8 – zinc insertion: 3,4,5-trimethoxybenzyl chloride (53h; 1.08 g, 5.00 mmol), 

LiCl (318 mg, 7.50 mmol) and Zn (490 mg, 7.50 mmol) in THF (2.5 mL), t1 = 25 °C for 4 h; 

cross-coupling: 4-bromobenzonitrile (71h; 455 mg, 2.50 mmol), PEPPSI-IPr (8.5 mg, 

0.013 mmol), THF (1.0 mL), t2 = 25 °C for 15 h; work-up and purification: extracted with Et2O 

(3 × 20 mL), purified by flash chromatography (silica gel, pentane / Et2O = 3:1) to give the 

diarylmethane 80b as a white solid (698 mg, 99%). 

M.p. (°C): 60-62. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.60-7.54 (m, 2H), 7.31-7.25 (m, 2H), 6.34 (s, 2H), 3.95 

(s, 2H), 3.81 (s, 3H), 3.80 (s, 6H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 153.4, 146.5, 136.6, 134.8, 132.3, 129.5, 118.9, 110.1, 

105.9, 60.8, 56.0, 42.2. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2990 (w), 2940 (w), 2836 (w), 2360 (w), 2342 (w), 2224 

(w), 1590 (s), 1508 (m), 1500 (m), 1464 (m), 1422 (m), 1338 (w), 1324 (w), 1238 (s), 1186 (w), 

1128 (vs), 1016 (w), 998 (s), 978 (m), 944 (w), 904 (w), 854 (w), 832 (m), 818 (m), 808 (m), 734 

(m), 666 (m), 644 (m). 

MS (EI, 70 eV): m/z (%) = 283 (M+, 100), 268 (54), 240 (12), 225 (9), 209 (6), 166 (4), 154 (4), 

127 (5), 116 (10). 

HRMS (C17H17NO3): calc.: 283.1208; found: 283.1203. 

 

Ethyl 3-[4-(trifluoromethyl)benzyl]benzoate (80c)  

 

According to TP8 – zinc insertion: 3-(ethoxycarbonyl)benzyl chloride (53m; 993 mg, 

5.00 mmol), LiCl (424 mg, 10.0 mmol) and Zn (654 mg, 10.0 mmol) in THF (2.5 mL), t1 = 25 °C 

for 4 h; cross-coupling: 1-bromo-4-(trifluoromethyl)benzene (71i; 667 mg, 2.97 mmol), 

PEPPSI-IPr (8.5 mg, 0.013 mmol), THF (1.0 mL), t2 = 25 °C for 4 h; work-up and purification: 

extracted with CH2Cl2 (3 × 20 mL), purified by flash chromatography (silica gel, pentane / Et2O 

= 95:5) to give the diarylmethane 80c as a colourless liquid (857 mg, 94%). 



 
C. Experimental Section  179 
1H-NMR (600 MHz, CDCl3): δ / ppm = 7.93-7.90 (m, 1H), 7.90-7.88 (m, 1H), 7.54 (d, J = 8.1 

Hz, 2H), 7.37 (t, J = 7.6 Hz, 1H), 7.35-7.33 (m, 1H), 7.28 (d, J = 8.1 Hz, 2H), 4.36 (q, J = 7.2 Hz, 

2H), 4.07 (s, 2H), 1.38 (t, J = 7.1 Hz, 3H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 166.5, 144.5 (q, 4JC-F = 1.3 Hz), 140.2, 133.3, 130.9, 

130.0, 129.1, 128.7, 128.7 (q, 2JC-F = 32.3 Hz), 127.7, 125.5 (q, 3JC-F = 3.9 Hz), 124.2 (q, 1JC-F = 

271.9 Hz), 61.0, 41.4, 14.3. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2985 (vw), 1715 (s), 1619 (w), 1588 (w), 1445 (w), 1418 

(w), 1368 (w), 1322 (vs), 1278 (s), 1188 (m), 1161 (s), 1119 (s), 1104 (vs), 1065 (vs), 1018 (s), 

939 (w), 852 (m), 816 (m), 764 (w), 742 (vs), 695 (m), 672 (m), 639 (m), 596 (m). 

MS (EI, 70 eV): m/z (%) = 308 (M+, 39), 280 (20), 263 (100), 235 (23), 215 (9), 165 (30). 

HRMS (C17H15F3O2): calc.: 308.1024; found: 308.1022. 

 

3-[3,5-Bis(trifluoromethyl)benzyl]benzonitrile (80d)  

 

According to TP8 – zinc insertion: 3-cyanobenzyl chloride (53o; 758 mg, 5.00 mmol), LiCl 

(318 mg, 7.50 mmol) and Zn (490 mg, 7.50 mmol) in THF (2.5 mL), t1 = 25 °C for 3.5 h; cross-

coupling: 1-bromo-3,5-bis(trifluoromethyl)benzene (879 mg, 3.00 mmol), PEPPSI-IPr (8.5 mg, 

0.013 mmol), THF (1.0 mL), t2 = 25 °C for 15.5 h; work-up and purification: extracted with Et2O 

(3 × 20 mL), purified by flash chromatography (silica gel, pentane / Et2O = 95:5 to 9:1) to give 

the diarylmethane 80d as a white solid (844 mg, 85%). 

M.p. (°C): 66-67. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.77 (m, 1H), 7.60 (m, 2H), 7.59-7.54 (m, 1H), 7.49-

7.43 (m, 2H), 7.43-7.38 (m, 1H), 4.14 (s, 2H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 141.8, 140.2, 133.3, 132.3, 132.1 (q, 2JC-F = 33.3 Hz), 

130.8, 129.8, 128.9 (m), 123.1 (q, 1JC-F = 273.1 Hz), 120.9 (m), 118.5, 113.1, 40.9.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3675 (w), 2989 (m), 2970 (m), 2229 (w), 1739 (s), 1374 

(s), 1275 (s), 1229 (s), 1217 (s), 1165 (s), 1123 (vs), 1109 (vs), 944 (m), 911 (m), 903 (m), 881 

(m), 842 (m), 804 (m), 737 (m), 726 (m), 708 (s), 692 (s), 682 (s). 

MS (EI, 70 eV): m/z (%) = 329 (M+, 100), 309 (68), 289 (13), 260 (33), 240 (30), 190 (25), 

116 (8). 
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HRMS (C16H9F6N): calc.: 329.0639; found: 329.0628. 

 

Ethyl 3-(3-pentanoylbenzyl)benzoate (80e)  

 

According to TP8 – zinc insertion: 3-pentanoylbenzyl chloride (53q; 843 mg, 4.00 mmol), LiCl 

(254 mg, 6.00 mmol) and Zn (392 mg, 6.00 mmol) in THF (2.0 mL), t1 = 25 °C for 4 h; cross-

coupling: ethyl 3-bromobenzoate (71d; 458 mg, 2.00 mmol), PEPPSI-IPr (6.8 mg, 0.01 mmol), 

THF (1.0 mL), t2 = 25 °C for 2 h; work-up and purification: extracted with CH2Cl2 (3 × 20 mL), 

purified by flash chromatography (silica gel, pentane / Et2O = 15:1 to 7:1) to give the 

diarylmethane 80e as a colourless liquid (595 mg, 92%). 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.92-7.86 (m, 2H), 7.82-7.75 (m, 2H), 7.40-7.31 (m, 

4H), 4.35 (q, J = 7.1 Hz, 2H), 4.07 (s, 2H), 2.92 (t, J = 7.3 Hz, 2H), 1.76-1.62 (m, 2H), 1.45-1.30 

(m, 2H), 1.37 (t, J = 7.1 Hz, 3H), 0.93 (t, J = 7.3 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 200.5, 166.5, 141.0, 140.7, 137.4, 133.3 (overlap), 130.8, 

129.9, 128.8, 128.6, 128.3, 127.6, 126.2, 60.9, 41.5, 38.4, 26.4, 22.4, 14.3, 13.9. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2957 (m), 2931 (m), 2871 (w), 1714 (vs), 1681 (s), 1443 

(m), 1366 (m), 1276 (vs), 1190 (s), 1159 (m), 1104 (m), 1081 (m), 1022 (m), 745 (m), 703 (m). 

MS (EI, 70 eV): m/z (%) = 324 (M+, 3), 282 (25), 267 (100), 237 (10), 236 (51), 166 (12), 165 

(30), 161 (13). 

HRMS (C21H24O3): calc.: 324.1725; found: 324.1714. 

 

4-(3-Propionylbenzyl)benzonitrile (80f)  

 

According to TP8 – zinc insertion: 3-propionylbenzyl chloride (53s; 365 mg, 2.00 mmol), LiCl 

(127 mg, 3.00 mmol) and Zn (196 mg, 3.00 mmol) in THF (1.0 mL), t1 = 25 °C for 4 h; cross-

coupling: 4-bromobenzonitrile (71h; 182 mg, 1.0 mmol), PEPPSI-IPr (3.4 mg, 0.005 mmol), 

THF (1.0 mL), t2 = 25 °C for 2 h; work-up and purification: extracted with CH2Cl2 (3 × 20 mL), 

purified by flash chromatography (silica gel, pentane / Et2O = 7:1) to give the diarylmethane 80f 

as a white solid (196 mg, 79%). 
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M.p. (°C): 83-84. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.83-7.71 (m, 2H), 7.53 (d, J = 8.3 Hz, 2H), 7.42-7.20 

(m, 4H), 4.04 (s, 2H), 2.93 (q, J = 7.1 Hz, 2H), 1.17 (t, J = 7.3 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 200.6, 146.0, 139.9, 137.4, 133.3, 132.4, 129.6, 129.0, 

128.3, 126.5, 118.8, 110.3, 41.8, 31.8, 8.2. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2978 (w), 2938 (w), 2227 (m), 1683 (vs), 1602 (m), 1506 

(m), 1413 (m), 1349 (m), 1240 (s), 1177 (m), 1160 (s), 1020 (m), 973 (m), 859 (m), 813 (s), 783 

(s), 746 (s), 695 (s). 

MS (EI, 70 eV): m/z (%) = 249 (M+, 100), 221 (26), 220 (31), 191 (42), 190 (86), 165 (75), 152 

(11). 

HRMS (C17H15NO): calc.: 249.1154; found: 249.1131. 

 

1-{3-[3-(Trifluoromethyl)benzyl]phenyl}ethanone (80g)  

 

According to TP8 – zinc insertion: 3-acetylbenzyl chloride (53t; 674 mg, 4.00 mmol), LiCl (254 

mg, 6.00 mmol) and Zn (392 mg, 6.00 mmol) in THF (2.0 mL), t1 = 25 °C for 3 h; cross-

coupling: 1-bromo-3-(trifluoromethyl)benzene (71j; 450 mg, 2.00 mmol), PEPPSI-IPr (6.8 mg, 

0.01 mmol), THF (1.0 mL), t2 = 25 °C for 5 h; work-up and purification: extracted with ether (3 

× 20 mL), purified by flash chromatography (silica gel, pentane / Et2O = 4:1) to give the 

diarylmethane 80g as a colourless liquid (476 mg, 86%). 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.84-7.78 (m, 2H), 7.51-7.31 (m, 6H), 4.09 (s, 2H), 2.58 

(s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 198.0, 141.3, 140.6, 137.6, 133.6, 132.2 (q, 4JC-F = 

1.3 Hz), 130.9 (q, 2JC-F = 32.2 Hz), 129.1, 129.0, 128.6, 126.7, 125.5 (q, 3JC-F = 3.8 Hz), 124.1 

(m, 1JC-F = 272.1 Hz), 123.3 (q, 3JC-F = 3.9 Hz), 41.5, 26.7. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 1682 (s), 1436 (w), 1358 (m), 1329 (s), 1268 (s), 1159 (s), 

1117 (vs), 1094 (s), 1072 (vs), 915 (m), 790 (s), 749 (m), 719 (m), 701 (s), 692 (s), 655 (m). 

MS (EI, 70 eV): m/z (%) = 278 (M+, 21), 263 (100), 215 (12), 165 (23), 43 (13). 

HRMS (C16H13F3O): calc.: 278.0918; found: 278.0921. 
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Ethyl 4-(3-acetylbenzyl)benzoate (80h)  

 

According to TP8 – zinc insertion: 3-acetylbenzyl chloride (53t; 337 mg, 2.00 mmol), LiCl 

(127 mg, 3.00 mmol) and Zn (196 mg, 3.00 mmol) in THF (1.0 mL), t1 = 25 °C for 3 h; cross-

coupling: ethyl 4-bromobenzoate (71e; 229 mg, 1.00 mmol), PEPPSI (3.4 mg, 0.005 mmol), THF 

(1.0 mL), t2 = 25 °C for 2 h; work-up and purification: extracted with CH2Cl2 (3 × 20 mL), 

purified by flash chromatography (silica gel, pentane / Et2O = 7:1) to give the diarylmethane 80h 

as a white solid (264 mg, 94%). 

M.p. (°C): 78-80. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.99-7.93 (m, 2H), 7.82-7.77 (m, 2H), 7.41-7.32 (m, 

2H), 7.26-7.21 (m, 2H), 4.35 (q, J = 7.1 Hz, 2H), 4.07 (s, 2H), 2.56 (s, 3H), 1.36 (t, J = 7.2 Hz, 

3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 198.1, 166.5, 145.6, 140.8, 137.5, 133.7, 129.9, 128.9, 

128.9 (overlap), 128.8, 128.6, 126.6, 60.9, 41.7, 26.7, 14.3. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2984 (w), 1706 (vs), 1673 (vs), 1609 (m), 1580 (m), 1478 

(m), 1416 (m), 1363 (s), 1288 (s), 1274 (vs), 1194 (s), 1177 (s), 1125 (s), 1103 (s), 1021 (s), 958 

(m), 920 (s), 856 (m), 792 (s), 763 (s), 720 (vs), 698 (vs). 

MS (EI, 70 eV): m/z (%) = 282 (M+, 48), 267 (100), 237 (26), 165 (20), 111 (12), 43 (11). 

HRMS (C18H18O3): calc.: 282.1256; found: 282.1234. 

 

1-[3-(3-Methoxybenzyl)phenyl]ethanone (80i)  

 

According to TP8 – zinc insertion: 3-acetylbenzyl chloride (53t; 337 mg, 2.00 mmol), LiCl (127 

mg, 3.00 mmol) and Zn (196 mg, 3.00 mmol) in THF (1.0 mL), t1 = 25 °C for 3 h; cross-

coupling: 1-bromo-3-methoxybenzene (71k; 187 mg, 1.00 mmol), PEPPSI-IPr (3.4 mg, 

0.005 mmol), THF (1.0 mL), t2 = 25 °C for 5 h; work-up and purification: extracted with CH2Cl2 

(3 × 20 mL), purified by flash chromatography (silica gel, pentane / Et2O = 7:1) to give the 

diarylmethane 80i as a white solid (145 mg, 60%). 

M.p. (°C): 78-80. 
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1H-NMR (300 MHz, CDCl3): δ / ppm = 7.84-7.74 (m, 2H), 7.43-7.33 (m, 2H), 7.21 (t, J = 

7.9 Hz, 1H), 6.81-6.69 (m, 3H), 4.00 (s, 2H), 3.76 (s, 3H), 2.57 (s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 198.2, 159.8, 141.9, 141.5, 137.4, 133.7, 129.5, 128.7, 

128.6, 126.3, 121.3, 114.8, 111.5, 55.1, 41.8, 26.7. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3003 (vw), 2938 (w), 2836 (w), 1680 (s), 1598 (s), 1583 

(s), 1488 (s), 1454 (m), 1434 (m), 1356 (m), 1267 (vs), 1257 (vs), 1162 (m), 1148 (s), 1047 (s), 

778 (s), 740 (s), 690 (vs). 

MS (EI, 70 eV): m/z (%) = 240 (M+, 84), 226 (20), 225 (100), 197 (21), 182 (18), 165 (43), 153 

(21), 44 (17), 42 (23). 

HRMS (C16H16O2): calc.: 240.1150; found: 240.1132. 

 

Ethyl 3-[4-(trifluoromethyl)benzyl]benzoate (80j)  

 

According to TP8 – zinc insertion: (1-chloroethyl)benzene (53u; 703 mg, 5.00 mmol), LiCl 

(318 mg, 7.50 mmol) and Zn (490 mg, 7.50 mmol) in THF (1.0 mL), t1 = 25 °C for 15 h; cross-

coupling: 4-bromobenzonitrile (71h; 546 mg, 3.00 mmol), PEPPSI-IPr (8.5 mg, 0.013 mmol), 

THF (1.0 mL), t2 = 25 °C for 8 h; work-up and purification: extracted with CH2Cl2 (3 × 20 mL), 

purified by flash chromatography (silica gel, pentane / Et2O = 98:2) to give the 1,1-diarylethane 

80j as a colourless liquid (586 mg, 94%). 
1H-NMR (600 MHz, CDCl3): δ / ppm = 7.56 (d, J = 8.6 Hz, 2H), 7.33-7.27 (m, 4H), 7.21 (t, J = 

7.4 Hz, 1H), 7.18 (d, J = 7.2 Hz, 2H), 4.19 (q, J = 7.5 Hz, 1H), 1.64 (d, J = 7.2 Hz, 3H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 151.9, 144.7, 132.2, 128.6, 128.4, 127.5, 126.6, 119.0, 

109.9, 44.9, 21.4. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3031 (vw), 2973 (w), 2934 (w), 2876 (w), 2222 (m), 1912 

(vw), 1606 (w), 1598 (w), 1502 (w), 1491 (m), 1452 (m), 1416 (w), 1374 (w), 1302 (w), 1176 

(w), 1122 (w), 1086 (w), 1045 (w), 1028 (w), 1019 (w), 982 (w), 840 (s), 771 (s), 730 (s), 702 

(vs), 600 (s), 559 (s). 

MS (EI, 70 eV): m/z (%) = 207 (M+, 36), 192 (100), 165 (18), 95 (5), 83 (4). 

HRMS (C15H13N): calc.: 207.1048; found: 207.1038. 
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3.6. Preparation of diheterobenzylic zinc reagents and heterobenzylic zinc chlorides 

2-(2-Chloropyridin-4-yl)-1-phenylethanone (87)  

 

To a solution of 2-chloro-4-methylpyridine (85; 357 mg, 2.80 mmol) in THF (1.5 mL) was added 

TMP2Zn·2MgCl2·2LiCl (4.19 mL, 1.55 mmol, 0.37 M in THF) at 0 °C. The reaction mixture was 

stirred for 3 h. Then, the reaction mixture was cooled to -30 °C. CuCN·2LiCl (3.10 mL, 

3.10 mmol, 1.00 M in THF) was added and the reaction mixture was stirred for 30 min. Then, 

benzoyl chloride (60f; 281 mg, 2.00 mmol) was added at -78 °C and the reaction mixture was 

slowly warmed to -20 °C within 22 h. Then, a mixture of sat. aq. NH4Cl / NH3 (25% in 

H2O) = 2:1 was added (50 mL). The phases were separated and the aq. layer was extracted with 

CH2Cl2 (3 x 50 mL). The combined extracts were dried over MgSO4. Evaporation of the solvents 

in vacuo and purification by flash chromatography (silica gel, pentane / Et2O = 1:4) afforded the 

pyridine 87 (279 mg, 60%) as a white solid.  

M.p. (°C): 90-92. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.33 (d, J = 5.1 Hz, 1H), 8.02-7.93 (m, 2H), 7.65-7.56 

(m, 1H), 7.53-7.44 (m, 2H), 7.26-7.24 (m, 1H), 7.15-7.09 (m, 1H), 4.27 (s, 2H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 195.0, 151.7, 149.6, 146.7, 136.0, 133.8, 128.9, 128.4, 

125.4, 123.7, 44.0. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3062 (vw), 2914 (vw), 1688 (s), 1597 (m), 1579 (w), 

1550 (w), 1446 (w), 1416 (w), 1388 (m), 1325 (m), 1290 (w), 1230 (m), 1208 (m), 1184 (w), 

1124 (w), 1088 (m), 992 (m), 915 (w), 898 (w), 886 (w), 860 (w), 792 (m), 756 (vs), 722 (m), 

690 (s), 674 (m). 

MS (EI, 70 eV): m/z (%) = 231 (M+, 1), 105 (100), 77 (32), 63 (1), 51 (8). 

HRMS (C13H10ClNO3): calc.: 231.0451; found: 231.0439. 
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Ethyl 4-(2-chloropyridin-4-yl)-2-methylidenebutanoate (88)  

 

To a solution of 2-chloro-4-methylpyridine (85; 255 mg, 2.00 mmol) in THF (1 mL) was added 

TMP2Zn·2MgCl2·2LiCl (3.24 mL, 1.20 mmol, 0.37 M in THF) at 0 °C. The reaction mixture was 

stirred for 3 h. Then, the reaction mixture was cooled to -60 °C and ethyl 2-

(bromomethyl)acrylate (55b; 541 mg, 2.80 mmol) was added followed by CuCN·2LiCl 

(0.01 mL, 0.01 mmol, 1.00 M in THF). The reaction mixture was stirred for 30 min at -60 °C and 

additional 30 min at 0 °C. Then, sat. aq. NH4Cl solution (20 mL) was added. The phases were 

separated and the aq. layer was extracted with CH2Cl2 (3 x 20 mL). The combined extracts were 

dried over MgSO4. Evaporation of the solvents in vacuo and purification by flash 

chromatography (silica gel, pentane / Et2O = 4:1) afforded the pyridine 88 (472 mg, 98%) as a 

yellow liquid.  
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.25 (d, J = 5.1 Hz, 1H), 7.16-7.12 (m, 1H), 7.04-7.00 

(m, 1H), 6.18-6.15 (m, 1H), 5.48 (q, J = 1.3 Hz, 1H), 4.20 (q, J = 7.0 Hz, 2H), 2.83-2.73 (m, 2H), 

2.64-2.55 (m, 2H), 1.29 (t, J = 7.1 Hz, 3H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.6, 153.7, 151.6, 149.5, 138.9, 125.9, 124.2, 122.7, 

60.8, 33.9, 32.5, 14.2. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2982 (w), 2930 (w), 1711 (vs), 1631 (w), 1593 (s), 1548 

(m), 1466 (m), 1445 (w), 1386 (s), 1311 (m), 1296 (m), 1277 (m), 1256 (m), 1241 (m), 1183 (vs), 

1135 (s), 1086 (s), 1028 (m), 990 (m), 945 (m), 900 (m), 875 (m), 835 (s), 818 (m), 721 (m), 711 

(w), 684 (w), 635 (w). 

MS (EI, 70 eV): m/z (%) = 239 (M+, 12), 210 (18), 194 (24), 165 (100), 151 (16), 140 (12), 130 

(82), 103 (16), 91 (18), 77 (20), 63 (11), 51 (15).  

HRMS (C12H14ClNO2): calc.: 239.0713; found: 239.0701. 
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2-(2-Chloropyridin-4-yl)-1-phenylethanol (89)  

 

To a solution of 2-chloro-4-methylpyridine (85; 357 mg, 2.80 mmol) in THF (1.5 mL) was added 

TMP2Zn·2MgCl2·2LiCl (4.19 mL, 1.55 mmol, 0.37 M in THF) at 0 °C. The reaction mixture was 

stirred for 3 h. Then, benzaldehyde (60g; 228 mg, 2.15 mmol) was added and the reaction 

mixture was slowly warmed to 25 °C and stirred for 4.5 h. Sat. aq. NH4Cl / NH3 (25% in 

H2O) = 8:1 was added (10 mL). The phases were separated and the aq. layer was extracted with 

CH2Cl2 (3 x 100 mL). The combined extracts were dried over Na2SO4. Evaporation of the 

solvents in vacuo and purification by flash chromatography (silica gel, pentane / Et2O = 1:1) 

afforded the pyridine 89 (485 mg, 97%) as a white solid.  

M.p. (°C): 80-82. 
1H-NMR (400 MHz, DMSO-d6): δ / ppm = 8.25 (dd, J = 5.1 Hz, 0.6 Hz, 1H), 7.38-7.27 (m, 

5H), 7.25-7.19 (m, 2H), 5.43 (d, J = 4.7 Hz, 1H), 4.87-4.80 (m, 1H), 2.98-2.92 (m, 1H), 2.91-

2.84 (m, 1H). 
13C-NMR (100 MHz, DMSO-d6): δ / ppm = 152.4, 149.9, 149.1, 145.0, 127.9, 126.9, 125.8, 

125.0, 124.4, 72.2, 44.1. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3311 (w), 3063 (w), 2946 (w), 2909 (w), 2834 (vw), 1596 

(s), 1547 (m), 1452 (w), 1431 (m), 1387 (s), 1332 (m), 1277 (w), 1237 (w), 1220 (w), 1204 (w), 

1124 (w), 1086 (s), 1051 (vs), 1026 (m), 1010 (m), 996 (m), 918 (w), 900 (w), 888 (w), 847 (m), 

816 (m), 761 (m), 752 (m), 735 (m), 717 (s), 700 (vs). 

MS (EI, 70 eV): m/z (%) = 233 (M+, <1), 215 (1), 180 (1), 127 (100), 107 (63), 79 (36).  

HRMS (C13H12ClNO):  calc.: 233.0607; found: 233.0595. 

 

6-Chloropyridin-3-yl)methylzinc chloride (91a)   

 

According to TP1 2-chloro-5-(chloromethyl)pyridine (90a; 1.62 g, 10.0 mmol, in 4 mL THF) 

was added dropwise at 0 °C to a suspension of LiCl (848 mg, 20.0 mmol) and zinc dust (1.31 g, 

20.0 mmol) in THF (1 mL) (activation: BrCH2CH2Br (0.04 mL, 5 mol%), TMSCl (0.01 mL, 
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1 mol%)). The reaction mixture was stirred for 2.5 h at 25 °C. After centrifugation iodometric 

titration of 91a indicates a yield of 78%. 

 

(3,5-Dimethylisoxazol-4-yl)methylzinc chloride (91b)  

 

According to TP1 4-(chloromethyl)-3,5-dimethylisoxazole (90b; 1.02 g, 7.00 mmol) was added 

dropwise at 25 °C to a suspension of LiCl (455 mg, 10.5 mmol) and zinc dust (687 mg, 

10.5 mmol) in THF (3.5 mL) (activation: BrCH2CH2Br (0.03 mL, 5 mol%), TMSCl (0.01 mL, 

1 mol%)). The reaction mixture was stirred for 4 h at 25 °C. After centrifugation iodometric 

titration of 91b indicates a yield of 90%. 

 

2-(6-Chloropyridin-3-yl)-1-phenylethanol (92a)  

OH
NCl  

According to TP2 (6-chloropyridin-3-yl)methylzinc chloride (91a; 2.33 mL, 2.40 mmol, 1.03 M 

in THF) was reacted with benzaldehyde (60g; 212 mg, 2.00 mmol, in 1.0 mL THF) at 0 °C. The 

reaction mixture was slowly warmed to 25 °C within 17 h and was quenched with sat. aq. NaCl 

solution (50 mL). The phases were separated and the aq. layer was extracted with EtOAc 

(3 x 50 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 1:1) afforded the 

benzylic alcohol 92a (463 mg, 99%) as a white solid. 

M.p. (°C): 115-116. 
1H-NMR (400 MHz, DMSO): δ / ppm = 8.14 (d, J = 2.5 Hz, 1H), 7.63 (dd, J = 8.2, 2.5 Hz, 1H), 

7.37 (dd, J = 8.2, 0.6 Hz, 1H), 7.34-7.27 (m, 4H), 7.25-7.19 (m, 1H), 5.40 (d, J = 4.5 Hz, 1H 

(‘OH’)), 4.76 (dt, J = 7.9, 4.8 Hz, 1H), 2.93 (dd, J = 13.7, 4.9 Hz, 1H), 2.86 (dd, J = 13.7, 8.0 Hz, 

1H). 
13C-NMR (100 MHz, DMSO): δ / ppm = 150.5, 147.8, 144.9, 140.7, 134.0, 127.9, 126.8, 125.8, 

123.3, 72.6, 41.4. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3346 (w), 1738 (w), 1586 (w), 1568 (m), 1459 (s), 1434 

(m), 1387 (m), 1312 (m), 1215 (m), 1203 (m), 1111 (m), 1092 (m), 1076 (m), 1060 (s), 1027 (m), 

826 (s), 763 (s), 738 (m), 700 (vs), 685 (s), 638 (s), 615 (m). 
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MS (EI, 70 eV): m/z (%) = 233 (M+, <1), 129 (83), 107 (100), 91 (26), 79 (64), 51 (8).  

HRMS (C13H13ClNO):  calc.: 234.0686; found: 234.0686. 

 

1-(4-Chlorophenyl)-2-(6-chloropyridin-3-yl)ethanone (92b)  

  

According to TP3 4-chlorobenzoyl chloride (60d; 404 mg, 2.31 mmol) was added dropwise to a 

mixture of CuCN·2LiCl (3.00 mL, 3.00 mmol, 1.00 M in THF) and (6-chloropyridin-3-

yl)methylzinc chloride (91a; 2.42 mL, 3.00 mmol, 1.24 M in THF)  at -40 °C. The reaction 

mixture was allowed to reach 25 °C within 20 h and was quenched with a mixture of sat. aq. 

NH4Cl / NH3 (25% in H2O) = 2:1 (100 mL). Purification by flash chromatography (silica gel, 

pentane / Et2O = 1:1) afforded the ketone 92b (379 mg, 62%) as a white solid.  

M.p. (°C): 124-125. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.25 (d, J = 2.4 Hz, 1H), 7.96-7.89 (m, 2H), 7.55 (dd, J 

= 8.2 Hz, 2.6 Hz, 1H), 7.48-7.42 (m, 2H), 7.30 (d, J = 7.7 Hz, 1H), 4.24 (s, 2H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 194.6, 150.3, 150.2, 140.2, 140.1, 134.3, 129.7, 129.2, 

128.7, 124.1, 41.3. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3091 (vw), 1938 (vw), 1678 (s), 1586 (m), 1568 (m), 

1490 (w), 1457 (s), 1401 (m), 1382 (m), 1323 (m), 1289 (m), 1248 (w), 1226 (m), 1204 (m), 

1184 (m), 1169 (m), 1133 (w), 1108 (m), 1087 (s), 1026 (m), 1014 (m), 988 (s), 858 (m), 833 

(vs), 820 (s), 793 (s), 741 (m), 716 (m), 635 (m), 627 (m).  

MS (EI, 70 eV): m/z (%) = 265 (M+, 5), 141 (100), 126 (4), 111 (52), 75 (14), 63 (3), 50 (3).  

HRMS (C13H9Cl2NO): calc.: 265.0061; found: 265.0057. 

 

1-(4-Chlorophenyl)-2-(3,5-dimethylisoxazol-4-yl)ethanone (92c)  

 

According to TP3 4-chlorobenzoyl chloride (60d; 350 mg, 2.00 mmol) was added dropwise to a 

mixture of CuCN·2LiCl (2.80 mL, 2.80 mmol, 1.00 M in THF) and (3,5-dimethylisoxazol-4-

yl)methylzinc chloride (91b; 2.37 mL, 2.80 mmol, 1.18 M in THF) at -40 °C. The reaction 
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mixture was allowed to reach 25 °C within 27 h and was quenched with a mixture of sat. aq. 

NH4Cl / NH3 (25% in H2O) = 2:1 (100 mL). Purification by flash chromatography (silica gel, 

pentane / Et2O = 1:1) afforded the ketone 92c (403 mg, 81%) as a white solid.  

M.p. (°C): 139-141. 
1H-NMR (300 MHz, C6D6): δ / ppm = 7.51-7.45 (m, 2H), 7.06-7.00 (m, 2H), 3.22 (s, 2H), 1.95 

(s, 3H), 1.79 (s, 3H). 
13C-NMR (75 MHz, C6D6): δ / ppm = 193.5, 166.0, 159.6, 139.7, 134.9, 129.8, 129.0, 107.3, 

32.1, 10.7, 10.2. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2930 (vw), 1687 (vs), 1647 (m), 1586 (m), 1571 (m), 

1486 (w), 1455 (m), 1420 (m), 1398 (m), 1333 (m), 1263 (m), 1212 (s), 1194 (s), 1089 (s), 1015 

(m), 987 (vs), 957 (m), 888 (m), 840 (s), 817 (vs), 759 (vs), 748 (vs), 692 (s). 

MS (EI, 70 eV): m/z (%) = 249 (M+, 3), 206 (40), 141 (100), 113 (17), 111 (53), 75 (19), 68 (25), 

43 (20).  

HRMS (C13H12ClNO2): calc.: 249.0557; found: 249.0559. 

 

Ethyl 4-(thiophen-3-ylmethyl)benzoate (92d)  

 

(3-Thienylmethyl)zinc chloride (91c; 1.67 mL, 1.20 mmol, 0.72 M in THF) was added dropwise 

to a mixture of ethyl 4-bromobenzoate (71e; 229 mg, 1.00 mmol), Pd(OAc)2 (4.5 mg, 2.0 mol%) 

and S-Phos (16.4 mg, 4.0 mol%) in THF (1 mL) at 25 °C. The reaction mixture was stirred for 

18 h. Then, sat. aq. NH4Cl solution (20 mL) was added. The phases were separated and the aq. 

layer was extracted with EtOAc (3 x 20 mL). The combined extracts were dried over MgSO4. 

Evaporation of the solvents in vacuo and purification by flash chromatography (silica gel, 

pentane / Et2O = 9:1) afforded the thiophene 92d (160 mg, 65%) as a yellow liquid. 
1H-NMR (400 MHz, C6D6): δ / ppm = 8.13-8.08 (m, 2H), 6.96-6.91 (m, 2H), 6.86 (dd, J = 

4.9 Hz, 2.9 Hz, 1H), 6.59 (dd, J = 4.9 Hz, 1.4 Hz, 1H), 6.54-6.51 (m, 1H), 4.14 (q, J = 7.2 Hz, 

2H), 3.58 (s, 2H), 1.03 (t, J = 7.1 Hz, 3H). 
13C-NMR (100 MHz, C6D6): δ / ppm = 166.2, 146.0, 140.6, 130.1, 129.3, 129.0, 128.4, 125.9, 

121.7, 60.7, 36.5, 14.3. 
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IR (Diamond-ATR, neat): ν~  / cm-1 = 3101 (vw), 2981 (w), 2906 (vw), 1713 (s), 1610 (w), 

1576 (vw), 1416 (w), 1366 (w), 1275 (vs), 1176 (m), 1102 (s), 1021 (m), 942 (w), 919 (vw), 859 

(w), 832 (w), 764 (m), 713 (m)..  

MS (EI, 70 eV): m/z (%) = 246 (M+, 100), 218 (10), 201 (84), 173 (77), 128 (11), 97 (20).  

HRMS (C14H14O2S): calc.: 246.0715; found: 246.0715. 

 

3,5-Dimethyl-4-methylene-4,5-dihydroisoxazol-5-yl)(phenyl)methanol (92e; rac)  

 

According to TP2 (3,5-dimethylisoxazol-4-yl)methylzinc chloride (91b; 2.49 mL, 3.03 mmol, 

1.22 M in THF) was reacted with 3,4-dichlorobenzaldehyde (61b; 408 mg, 2.33 mmol, in 0.5 mL 

THF) at 0 °C. The reaction mixture was slowly warmed to 25 °C within 5 h and was quenched 

with sat. aq. NH4Cl solution (20 mL). The phases were separated and the aq. layer was extracted 

with Et2O (5 x 50 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 1:1 + 1 

vol-% NEt3) afforded the racemic alcohol 92e (541 mg, 81%, d:r = 95:5) as a white solid. 

M.p. (°C): 90-92. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.49-7.46 (m, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.25-7.20 

(m, 1H), 5.33 (d, J = 0.8 Hz, 1H), 4.72-4.70 (m, 1H), 4.66-4.64 (s, 1H), 2.71 (sbr, 1H), 2.00 (s, 

3H), 1.39 (s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 155.6, 150.3, 137.7, 132.0, 131.8, 129.7, 129.6, 127.1, 

110.0, 88.7, 76.6, 22.4, 9.7. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3510 (m), 2987 (m), 2970 (m), 2925 (m), 1648 (m), 1562 

(m), 1468 (m), 1453 (m), 1434 (m), 1401 (m), 1395 (m), 1370 (m), 1351 (m), 1333 (m), 1295 

(m), 1282 (m), 1250 (m), 1202 (m), 1170 (m), 1129 (m), 1086 (m), 1062 (s), 1028 (s), 939 (m), 

902 (s), 889 (vs), 854 (m), 833 (s), 821 (m), 745 (vs), 727 (s), 695 (m), 671 (s), 616 (m). 

MS (EI, 70 eV): m/z (%) = 286 ([M+H]+, <1), 173 (100), 145 (39), 113 (14), 108 (14), 96 (11),  

82 (15), 74 (24), 68 (34), 43 (53).  

HRMS (C13H13Cl2NO2): calc.: 286.0402 ([M+H]+); found: 286.0396 ([M+H]+). 
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3.7. Preparation of benzylic zinc chlorides by the direct insertion of magnesium into 
benzylic chlorides in the presence of ZnCl2 and LiCl  

2-Chlorobenzyl 4-fluorophenyl sulfide (97a) 

 

The zinc reagent 95b was prepared according to TP9 from 2-chlorobenzyl chloride (53b; 

322 mg, 2.00 mmol) in 45 min at 25 °C. The freshly prepared zinc reagent 95b was added to S-

(4-fluorophenyl) benzenesulfonothioate (57c; 376 mg, 1.4 mmol) in 1 mL THF at 25 °C and the 

mixture was stirred for 17 h. The reaction mixture was quenched with sat. aq. NH4Cl solution 

(100 mL) and extracted with Et2O (3 x 100 mL). The combined organic layers were dried over 

MgSO4 and concentrated in vacuo. Flash chromatography (silica gel, pentane / Et2O = 95:5) 

furnished the sulfide 97a (306 mg, 86%) as a yellow liquid. 
1H-NMR (600 MHz, CDCl3): δ / ppm = 7.37-7.33 (m, 1H), 7.32-7.27 (m, 2H), 7.19-7.15 (m, 

1H), 7.14-7.08 (m, 2H), 6.97-6.92 (m, 2H), 4.13 (s, 2H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 162.3 (d, 1JC-F = 247.4 Hz), 135.2, 134.3 (d, 3JC-F =  

8.1 Hz), 134.0, 130.7, 130.1 (d, 4JC-F = 3.4 Hz), 129.7, 128.6, 126.6, 115.9 (d, 2JC-F = 21.9 Hz), 

38.3 (d, 6JC-F = 1.1 Hz).    

IR (Diamond-ATR, neat): ν~  / cm-1 = 1739 (vw), 1589 (m), 1488 (vs), 1472 (m), 1443 (m), 

1420 (w), 1396 (w), 1289 (w), 1226 (s), 1155 (m), 1090 (m), 1051 (m), 1037 (m), 1013 (w), 944 

(w), 880 (w), 820 (s), 758 (s), 742 (s), 733 (s), 683 (m), 668 (m), 629 (m).  

MS (EI, 70 eV): m/z (%) = 252 (M+, 21), 127 (36), 125 (100), 89 (11), 63 (5).  

HRMS (C13H10ClFS): calc.: 252.0176; found: 252.0176. 

 

Ethyl 2-[2-(2-chlorophenyl)ethyl]acrylate (97b)  

 

The zinc reagent 95b was prepared according to TP9 from 2-chlorobenzyl chloride (53b; 

322  mg, 2.00 mmol) in 45 min at 25 °C. The freshly prepared zinc reagent 95b was added to 

ethyl (2-bromomethyl)acrylate (55b; 309 mg, 1.60 mmol) in 0.5 mL THF at 25 °C. CuCN·2LiCl 

(0.01 mL, 0.01 mmol, 1.00 M in THF) was added and the mixture was stirred for 45 min. The 

reaction mixture was quenched with sat. aq. NH4Cl solution (45 mL) followed by 25% aq. NH3 
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solution (5 mL) and extracted with Et2O (3 x 50 mL). The combined organic layers were dried 

over MgSO4 and concentrated in vacuo. Flash chromatography (silica gel, pentane / Et2O = 98:2) 

furnished the acrylate 97b (295 mg, 77%) as a colourless liquid. 
1H-NMR (600 MHz, CDCl3): δ / ppm = 7.33 (dd, J = 7.6 Hz, 1.3 Hz, 1H), 7.21-7.10 (m, 3H), 

6.15 (d, J = 1.3 Hz, 1H), 5.49 (d, J = 1.3 Hz, 1H), 4.21 (q, J = 7.3 Hz, 2H), 2.94-2.89 (m, 2H), 

2.64-2.59 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H).  
13C-NMR (150 MHz, CDCl3): δ / ppm = 167.0, 139.8, 138.9, 134.0, 130.5, 129.4, 127.5, 126.7, 

125.4, 60.7, 32.7, 32.1, 14.2. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2982 (w), 2936 (w), 1713 (vs), 1631 (w), 1475 (m), 1443 

(m), 1303 (m), 1182 (s), 1139 (s), 1113 (m), 1052 (m), 1035 (s), 944 (m), 816 (m), 749 (vs), 673 

(m).  

MS (EI, 70 eV): m/z (%) =  238 (M+, 11), 193 (12), 164 (10), 157 (39), 129 (13), 127 (31), 125 

(100), 89 (8). 

HRMS (C13H15O2Cl): calc.: 238.0761; found: 238.0762. 

 

1-(4-Bromophenyl)-2-(4-fluorophenyl)ethanol (97c)  

 

The zinc reagent 95c was prepared according to TP9 from 4-fluorobenzyl chloride (53c; 289 mg, 

2.00 mmol) in 45 min at 25 °C. The freshly prepared zinc reagent 95c was added to 4-

bromobenzaldehyde (61e; 259 mg, 1.40 mmol) in 1 mL THF at 0 °C. The mixture was stirred for 

2 h at 25 °C. The reaction mixture was quenched with sat. aq. NH4Cl solution (50 mL) and 

extracted with Et2O (3 x 50 mL). The combined organic layers were dried over MgSO4 and 

concentrated in vacuo. Flash chromatography (silica gel, pentane / Et2O = 1:1 + 1 vol-% NEt3) 

furnished the alcohol 97c (209 mg, 51%) as a pale yellow solid. 

M.p. (°C): 62-64. 
1H-NMR (300 MHz, C6D6): δ / ppm = 7.21-7.21 (m, 2H), 6.79-6.63 (m, 6H), 4.25 (dd, J = 

7.6 Hz, 5.5 Hz, 1H), 2.65-2.48 (m, 2H), 1.19 (s, 1H).  
13C-NMR (75 MHz, C6D6): δ / ppm = 162.1 (d, 1JC-F = 244.3 Hz), 143.3, 133.7 (d, 4JC-F = 

3.1 Hz), 131.5, 131.3 (d, 3JC-F = 7.7 Hz), 127.9, 121.4, 115.2 (d, 2JC-F = 21.1 Hz), 74.4, 45.1. 



 
C. Experimental Section  193 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3603 (w), 2923 (w), 2875 (vw), 2854 (vw), 1601 (w), 

1507 (m), 1486 (w), 1402 (w), 1274 (w), 1212 (m), 1157 (m), 1092 (w), 1049 (m), 1009 (m), 873 

(w), 821 (vs), 806 (m), 762 (w), 713 (w).  

MS (EI, 70 eV): m/z (%) = 294 (M+, <1), 276, (3), 185 (100), 157 (20), 110 (90), 77 (42), 51 (5).   

HRMS (C14H12BrFO):  calc.: 294.0056; found: 294.0059. 

 

1-(2-Chlorophenyl)-2-[3-(trifluoromethyl)phenyl]ethanol (97d) 

 

The zinc reagent 95g was prepared according to TP9 from 3-(trifluoromethyl)benzyl chloride 

(53g; 389 mg, 2.00 mmol) in 30 min at 25 °C. The freshly prepared zinc reagent 95g was added 

to 2-chlorobenzaldehyde (61a; 197 mg, 1.40 mmol) and the mixture was stirred for 1 h at 25 °C. 

The reaction mixture was quenched with sat. aq. NH4Cl solution (50 mL) and extracted with 

CH2Cl2 (3 x 50 mL). The combined organic layers were dried over MgSO4 and concentrated in 

vacuo. Flash chromatography (silica gel, pentane / Et2O = 7:1) furnished the alcohol 97d 

(357 mg, 85%) as a colourless solid. 

M.p. (°C): 44-45. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.62-7.15 (m, 8H), 5.33 (dd, J = 8.8 Hz, 3.3 Hz, 1H), 

3.18 (dd, J = 13.8 Hz, 3.3 Hz, 1H), 2.89 (dd, J = 13.8 Hz, 8.8 Hz, 1H), 1.99 (s, 1H).  
13C-NMR (150 MHz, CDCl3): δ / ppm = 140.9, 139.1, 133.0 (q, 4JC-F = 1.5 Hz), 131.5, 130.7 (q, 
2JC-F = 32.1 Hz), 129.4, 128.8, 128.7, 127.2, 127.0, 126.3 (q, 3JC-F = 4.0 Hz), 124.2 (q, 1JC-F = 

272.3 Hz), 123.5 (q, 3JC-F = 4.0 Hz), 71.5, 43.7. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3332 (w), 3254 (w), 2932 (w), 1476 (w), 1448 (m), 1332 

(s), 1322 (s), 1254 (w), 1198 (m), 1172 (s), 1160 (s), 1114 (vs), 1098 (s), 1072 (s), 1048 (s), 1034 

(s), 1004 (m), 910 (m), 854 (m), 794 (s), 758 (s), 722 (m), 708 (s), 698 (s), 660 (m), 650 (m), 622 

(m), 586 (s). 

MS (EI, 70 eV): m/z (%) = 300 (M+, <1), 283 (4), 281 (10), 159 (15), 143 (100), 141 (32), 139 

(12), 113 (22), 77 (46). 

HRMS (C15H12ClF3O): calc.: 300.0529; found: 300.0535. 
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3-({[3-(Trifluoromethyl)benzyl]thio}methyl)benzonit rile (97e) 

 

The zinc reagent 95g was prepared according to TP9 from 3-(trifluoromethyl)benzyl chloride 

(53g; 389 mg, 2.00 mmol) in 30 min at 25 °C. The freshly prepared zinc reagent 95g was added 

to S-(3-cyanobenzyl) benzenesulfonothioate (57d; 405 mg, 1.40 mmol) in THF (1 mL) at 25 °C. 

The mixture was stirred for 2 h at 25 °C. The reaction mixture was quenched with sat. aq. NH4Cl 

solution (50 mL) and extracted with CH2Cl2 (3 x 50 mL). The combined organic layers were 

dried over MgSO4 and concentrated in vacuo. Flash chromatography (silica gel, pentane / Et2O = 

9:1) furnished the sulfide 97e (372 mg, 86%) as a colourless oil. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.56-7.35 (m, 8H), 3.64 (s, 2H), 3.60 (s, 2H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 139.4, 138.6, 133.3, 132.3, 132.2 (q, 4JC-F = 1.3 Hz), 

131.0 (q, 2JC-F = 32.3 Hz), 130.9, 129.4, 129.1, 125.6 (q, 3JC-F = 3.8 Hz), 124.1 (q, 3JC-F = 3.9 Hz), 

123.9 (q, 1JC-F = 272.4 Hz), 118.5, 112.7, 35.5, 35.1.    

IR (Diamond-ATR, neat): ν~  / cm-1 = 2230 (w), 1598 (vw), 1582 (w), 1482 (w), 1450 (w), 1430 

(w), 1328 (vs), 1240 (w), 1226 (w), 1162 (s), 1118 (vs), 1092 (s), 1070 (s), 1002 (w), 900 (m), 

800 (m), 738 (m), 700 (s), 684 (s), 658 (s), 606 (w), 558 (w). 

MS (EI, 70 eV): m/z (%) = 307 (M+, 33), 191 (10), 159 (100), 148 (13), 116 (25). 

HRMS (C16H12F2NS): calc.: 307.0643; found: 307.0638. 

 

1-(4-Chlorophenyl)-2-(3,4,5-trimethoxyphenyl)ethanone (97f) 

 

The zinc reagent 95h was prepared according to TP9 from 3,4,5-trimethoxybenzyl chloride (53h;  

433 mg, 2.00 mmol) in 1 h at 25 °C. The freshly prepared zinc reagent 95h was cooled to -20 °C 

and CuCN·2LiCl (2.00 mL, 2.00 mmol, 1.00 M in THF) was added. After stirring for 15 min 4-

chlorobenzoyl chloride (60d; 245 mg, 1.40 mmol) was added and the mixture warmed to 25 °C 

and stirred for 2 h. The reaction mixture was quenched with sat. aq. NH4Cl solution (20 mL) 

followed by 25% aq. NH3 solution (5 mL) and extracted with Et2O (3 x 30 mL). The combined 
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organic layers were dried over Na2SO4 and concentrated in vacuo. Flash chromatography (silica 

gel, pentane / Et2O = 1:1) furnished the ketone 97f (253 mg, 56%) as a yellow solid. 

M.p. (°C): 109-111. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.97-7.90 (m, 2H), 7.45-7.39 (m, 2H), 6.44 (s, 2H), 4.17 

(s, 2H), 3.81 (s, 6H), 3.81 (s, 3H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 196.3, 153.3, 139.7, 136.9, 134.7, 129.9, 129.6, 129.0, 

106.3, 60.8, 56.0, 45.7.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3061 (vw), 3011 (vw), 2943 (w), 2842 (w), 2754 (vw), 

1681 (m), 1589 (m), 1505 (m), 1458 (m), 1424 (m), 1391 (m), 1322 (s), 1233 (m), 1123 (vs), 

1089 (m), 1036 (w), 993 (m), 846 (m), 812 (w), 788 (w), 758 (w), 728 (m).  

MS (EI, 70 eV): m/z (%) = 320 (M+, 18), 181 (100), 148 (4), 139 (11), 111 (4). 

HRMS (C17H17ClO4): calc.: 320.0815; found: 320.0812. 

 

1-Bromo-4-[(4-methoxybenzyl)thio]benzene (97g)  

 

The zinc reagent 95i was prepared according to TP9 from 4-methoxybenzyl chloride (53i; 

313 mg, 2.00 mmol) in 2 h at 25 °C. The freshly prepared zinc reagent 95i was added to S-(4-

bromophenyl) benzenesulfonothioate (57a; 461 mg, 1.40 mmol) in THF (1 mL) at 0 °C. The 

mixture was stirred for 17 h at 25 °C. The reaction mixture was quenched with sat. aq. NH4Cl 

solution (50 mL) and extracted with Et2O (3 x 50 mL). The combined organic layers were dried 

over MgSO4 and concentrated in vacuo. Flash chromatography (silica gel, pentane / Et2O = 9:1) 

furnished the sulfide 97g (379 mg, 88%) as a white solid. 

M.p. (°C): 100-102. 
1H-NMR (400 MHz, C6D6): δ / ppm = 7.09-7.04 (m, 2H), 7.02-6.97 (m, 2H), 6.86-6.80 (m, 2H), 

6.71-6.64 (m, 2H), 3.67 (s, 2H), 3.24 (s, 3H).  
13C-NMR (100 MHz, C6D6): δ / ppm = 159.4, 136.4, 132.0, 131.3, 130.2, 129.1, 120.1, 114.2, 

54.7, 38.2.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3015 (w), 2962 (w), 2921 (w), 2837 (w), 1738 (w), 1611 

(m), 1583 (w), 1511 (m), 1473 (m), 1454 (m), 1441 (m), 1382 (w), 1302 (m), 1254 (m), 
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1233 (m), 1176 (m), 1128 (w), 1089 (m), 1027 (s), 1005 (m), 837 (s), 806 (vs), 755 (s), 741 (m), 

702 (m), 637 (w).. 

MS (EI, 70 eV): m/z (%) = 308 (M+, 4), 241 (3), 189 (5), 121 (100), 108 (18), 91 (12), 77 (18), 

51 (7).  

HRMS (C14H13BrOS): calc.: 307.9870; found: 307.9864. 

 

1-Cyclopropyl-2-(2-methoxyphenyl)ethanone (97h)  

 

The zinc reagent 95j was prepared according to TP9 from 2-methoxybenzyl chloride (53j; 

313 mg, 2.00 mmol) in 1 h at 25 °C. The freshly prepared zinc reagent 95j was added to 

CuCN·2LiCl (2.00 mL, 2.00 mmol, 1.00 M in THF) at -20 °C. After stirring for 15 min 

cyclopropanecarbonyl chloride (60c; 146 mg, 1.4 mmol) was added and the mixture was slowly 

warmed to 25 °C within 6.5 h. The reaction mixture was quenched with sat. aq. NH4Cl solution 

(200 mL) followed by 25% aq. NH3 solution (50 mL) and extracted with Et2O (3 x 250 mL). The 

combined organic layers were dried over MgSO4 and concentrated in vacuo. Flash 

chromatography (silica gel, pentane / Et2O = 8:1) furnished the ketone 97h (238 mg, 89%) as a 

colourless liquid. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.29-7.21 (m, 1H), 7.18-7.13 (m, 1H), 6.96-6.85 (m, 

2H), 3.80 (s, 3H), 3.79 (s, 2H), 2.00-1.90 (m, 1H), 1.06-0.99 (m, 2H), 0.84-0.76 (m, 2H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 208.7, 157.5, 131.1, 128.3, 123.7, 120.6, 110.5, 55.3, 

45.0, 19.6, 10.8.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3008 (w), 2838 (vw), 1694 (s), 1602 (w), 1590 (w), 1494 

(s), 1464 (m), 1440 (m), 1378 (s), 1320 (w), 1290 (w), 1244 (vs), 1200 (m), 1112 (m), 1070 (s), 

1048 (m), 1024 (s), 930 (w), 898 (m), 818 (w), 750 (vs), 658 (w), 604 (w), 576 (w).  

MS (EI, 70 eV): m/z (%) = 190 (M+, 58), 121 (44), 91 (62), 65 (47), 41 (100).  

HRMS (C12H14O2): calc.: 190.0994; found: 190.0983. 
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1-(3-Chlorophenyl)-2-(2-methoxyphenyl)ethanol (97i) 

 

The zinc reagent 95j was prepared according to TP9 from 2-methoxybenzyl chloride (53j; 

313 mg, 2.00 mmol) in 1 h at 25 °C. The freshly prepared zinc reagent 95j was added to 3-

chlorobenzaldehyde (61c; 197 mg, 1.40 mmol) in THF (1 mL) at 0 °C. The mixture was stirred 

for 4 h at 25 °C. The reaction mixture was quenched with sat. aq. NH4Cl solution (50 mL) and 

extracted with Et2O (3 x 50 mL). The combined organic layers were dried over MgSO4 and 

concentrated in vacuo. Flash chromatography (silica gel, pentane / Et2O = 4:1) furnished the 

alcohol 97i (338 mg, 92%) as a colourless solid. 

M.p. (°C): 60-61. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.42-7.39 (m, 1H), 7.30-7.21 (m, 4H), 7.10-7.05 (m, 

1H), 6.95-6.87 (m, 2H), 4.98-4.91 (m, 1H), 3.87 (s, 3H), 3.13 (dd, J = 13.6 Hz, 4.1 Hz, 1H), 2.95 

(dd, J = 13.6 Hz, 8.8  Hz, 1H), 2.64 (d, J = 2.9 Hz, 1H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 157.5, 146.6, 134.1, 131.5, 129.4, 128.2, 127.3, 126.1, 

126.0, 123.9, 120.8, 110.5, 73.7, 55.4, 41.2. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3322 (w), 3252 (w), 2946 (w), 2922 (w), 2838 (w), 1600 

(m), 1492 (s), 1468 (s), 1438 (m), 1420 (m), 1292 (m), 1238 (vs), 1200 (m), 1182 (m), 1114 (s), 

1080 (m), 1062 (s), 1050 (s), 1032 (s), 1008 (m), 872 (m), 786 (s), 764 (s), 750 (vs), 728 (m), 708 

(s), 692 (s), 642 (m), 604 (s), 558 (s). 

MS (EI, 70 eV): m/z (%) = 262 (M+, <1), 165 (2), 122 (100), 91 (25), 77 (13). 

HRMS (C15H15ClO2): calc.: 262.0761; found: 262.0747. 

 

1-(4-Bromophenyl)-2-[4-(methylthio)phenyl]ethanol (97j) 

 

The zinc reagent 95l was prepared according to TP9 from 4-(methylthio)benzyl chloride (53l; 

345 mg, 2.00 mmol) in 1.5 h at 25 °C. The freshly prepared zinc reagent 95l was added to 4-

bromobenzaldehyde (61e; 259 mg, 1.40 mmol) in 1 mL THF at 25 °C. The mixture was stirred 

for 2 h. The reaction mixture was quenched with sat. aq. NH4Cl solution (50 mL) and extracted 

with CH2Cl2 (3 x 50 mL). The combined organic layers were dried over MgSO4 and concentrated 
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in vacuo. Flash chromatography (silica gel, pentane / Et2O = 3:1) furnished the alcohol 97j 

(372 mg, 82%) as a colourless solid. 

M.p. (°C): 117-119. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.48-7.42 (m, 2H), 7.22-7.16 (m, 4H), 7.09-7.03 (m, 

2H), 4.81 (dd, J = 7.6 Hz, 5.5 Hz, 1H), 2.98-2.88 (m, 2H), 2.46 (s, 3H), 1.86 (s, 1H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 142.6, 136.7, 134.3, 131.5, 130.0, 127.6, 126.9, 121.4, 

74.6, 45.4, 16.0. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3310 (w), 2914 (w), 1494 (m), 1488 (m), 1434 (m), 1424 

(m), 1404 (m), 1092 (m), 1058 (s), 1008 (m), 1000 (m), 882 (w), 822 (vs), 792 (s), 716 (w).  

MS (EI, 70 eV): m/z (%) = 322 (M+, 3), 187 (14), 185 (16), 138 (100), 123 (30), 91 (7), 77 (14). 

HRMS (C15H15BrOS): calc.: 322.0027; found: 322.0018. 

 

3-[4-(Methylthio)benzyl]cyclohex-2-en-1-one (97k) 

 

The zinc reagent 95l was prepared according to TP9 from 4-(methylthio)benzyl chloride (53l; 

345 mg, 2.00 mmol) in 1.5 h at 25 °C. The freshly prepared zinc reagent 95l was added to 

CuCN·2LiCl (2.00 mL, 2.0 mmol, 1.00 M in THF) at -20 °C. After stirring for 15 min, 3-

iodocyclohex-2-enone (58b; 311 mg, 1.40 mmol) was added at -40 °C and the mixture was 

slowly warmed to 0 °C within 18 h. The reaction mixture was quenched with sat. aq. NH4Cl 

solution (100 mL) followed by 25% aq. NH3 solution (50 mL) and extracted with Et2O (3 x 

150 mL). The combined organic layers were dried over MgSO4 and concentrated in vacuo. Flash 

chromatography (silica gel, pentane / Et2O = 1:1) furnished the cyclohexenone 97k (201 mg, 

62%) as a yellow oil. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.22-7.16 (m, 2H), 7.09-7.03 (m, 2H), 5.84-5.81 (m, 

1H), 3.44 (s, 2H), 2.45 (s, 3H), 2.37-2.30 (m, 2H), 2.26-2.19 (m, 2H), 1.99-1.87 (m, 2H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 199.8, 164.6, 136.9, 133.7, 129.5, 126.9, 126.8, 43.9, 

37.2, 29.1, 22.6, 15.9.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3675 (w), 2989 (m), 2970 (m), 2920 (m), 1739 (s), 1663 

(vs), 1624 (m), 1493 (m), 1425 (m), 1404 (m), 1370 (s), 1349 (m), 1323 (m), 1230 (s), 1217 (s), 

1191 (m), 1092 (m), 1066 (m), 1016 (m), 968 (m), 886 (m), 834 (w), 807 (m), 794 (m), 756 (m), 

728 (w), 660 (w). 
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MS (EI, 70 eV): m/z (%) = 232 (M+, 100), 176 (22), 157 (15), 137 (28), 129 (26), 122 (11), 

115 (9).  

HRMS (C14H16OS): calc.: 232.0922; found: 232.0922. 

 

Ethyl 3-[2-(4-chlorophenyl)-2-oxoethyl]benzoate (97l) 

 

The zinc reagent 95m was prepared according to TP9 from 3-(ethoxycarbonyl)benzyl chloride 

(53m; 397 mg, 2.00 mmol) in 2 h at 25 °C. The freshly prepared zinc reagent 95m was added to 

CuCN·2LiCl (2.00 mL, 2.00 mmol, 1.00 M in THF) at -20 °C. After stirring for 15 min, 4-

chlorobenzoyl chloride (60d; 245 mg, 1.40 mmol) was added and the mixture was stirred for 

1.5 h at 0 °C followed by 30 min at 25 °C. The reaction mixture was quenched with sat. aq. 

NH4Cl solution (40 mL) followed by 25% aq. NH3 solution (20 mL) and extracted with Et2O (3 x 

50 mL). The combined organic layers were dried over MgSO4 and concentrated in vacuo. Flash 

chromatography (silica gel, pentane / Et2O = 9:1) furnished the ketone 97l (347 mg, 82%) as a 

colourless solid. 

M.p. (°C): 76-78. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.97-7.90 (m, 4H), 7.46-7.35 (m, 4H), 4.35 (q, J = 

7.1 Hz, 2H), 4.30 (s, 2H), 1.37 (t, J = 7.2 Hz, 3H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 195.8, 166.3, 139.8, 134.7, 134.4, 133.9, 130.9, 130.6, 

129.9, 129.0, 128.7, 128.3, 61.0, 45.0, 14.3. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2984 (w), 2914 (w), 1694 (vs), 1588 (m), 1394 (m), 1332 

(s), 1280 (s), 1208 (vs), 1170 (s), 1108 (s), 1088 (s), 1030 (s), 1000 (s), 990 (s), 944 (m), 832 (s), 

814 (vs), 796 (m), 752 (vs), 722 (s), 710 (m), 584 (m), 562 (s). 

MS (EI, 70 eV): m/z (%) = 302 (M+, 1), 259 (6), 257 (20), 141 (100), 139 (13), 113 (12), 111 

(40). 

HRMS (C17H15ClO3): calc.: 302.0710; found: 302.0702. 
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Ethyl 3-(4-methoxybenzyl)benzoate (97m) 

 

The zinc reagent 95m was prepared according to TP9 from 3-(ethoxycarbonyl)benzyl chloride 

(53m; 397 mg, 2.00 mmol) in 2 h at 25 °C. A dry and argon-flushed Schlenk-flask was charged 

with 4-iodoanisole (4c; 328 mg, 1.40 mmol) and PEPPSI-IPr (3.4 mg, 0.25 mol%). THF (1.0 mL) 

was added. The freshly prepared zinc reagent 95m was added and the reaction mixture was 

stirred for 21 h at 25 °C. The reaction mixture was quenched with sat. aq. NH4Cl solution 

(10 mL) and extracted with Et2O (3 x 10 mL). The combined organic layers were dried over 

MgSO4 and concentrated in vacuo. Flash chromatography (silica gel, pentane / Et2O = 10:1) 

furnished the diarylmethane 97m (295 mg, 78%) as a colourless liquid. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.92-7.83 (m, 2H), 7.37-7.31 (m, 2H), 7.13-7.06 (m, 

2H), 6.86-679 (m, 2H), 4.36 (q, J = 7.2 Hz, 2H), 3.96 (s, 2H), 3.77 (s, 3H), 1.38 (t, J = 7.2 Hz, 

3H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.7, 158.1, 141.8, 133.3, 132.6, 130.6, 129.9, 129.8, 

128.4, 127.3, 114.0, 60.9, 55.2, 40.8, 14.3. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2982 (w), 2934 (w), 2906 (w), 2836 (w), 1714 (s), 1610 

(m), 1586 (w), 1510 (s), 1464 (m), 1442 (m), 1366 (m), 1276 (s), 1244 (vs), 1176 (s), 1102 (s), 

1080 (s), 1030 (s), 928 (w), 810 (m), 764 (s), 738 (s), 690 (m), 670 (m), 606 (m). 

MS (EI, 70 eV): m/z (%) = 270 (M+, 100), 241 (20), 225 (23), 197 (32), 165 (13), 232 (23).   

HRMS (C17H18O3): calc.: 270.1256; found: 270.1252. 

 

Ethyl 3-{[(4-chlorophenyl)thio]methyl}benzoate (97n) 

 

The zinc reagent 95m was prepared according to TP9 from 3-(ethoxycarbonyl)benzyl chloride 

(53m; 397 mg, 2.00 mmol) in 2 h at 25 °C. The freshly prepared zinc reagent 95m was added to 

S-(4-chlorophenyl) benzenesulfonothioate (57e; 399 mg, 1.40 mmol) in THF (1 mL) at 0 °C. The 

mixture was stirred for 2 h at 25 °C. The reaction mixture was quenched with sat. aq. NH4Cl 

solution (50 mL) and extracted with Et2O (3 x 50 mL). The combined organic layers were dried 
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over MgSO4 and concentrated in vacuo. Flash chromatography (silica gel, pentane to 

pentane / Et2O = 98:2) furnished the sulfide 97n (288 mg, 67%) as a yellow solid. 

M.p. (°C): 41-43. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.94-7.88 (m, 2H), 7.45-7.39 (m, 1H), 7.37-7.30 (m, 

1H), 7.20 (s, 4H), 4.36 (q, J = 7.2 Hz, 2H), 4.09 (s, 2H), 1.38 (t, J = 7.2 Hz, 3H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.2, 137.6, 134.0, 133.1, 132.8, 131.9, 130.8, 129.9, 

129.0, 128.5, 128.5, 61.0, 39.1, 14.3. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3052 (w), 2992 (w), 2934 (w), 1708 (s), 1584 (w), 1470 

(s), 1444 (m), 1390 (m), 1282 (s), 1264 (m), 1234 (s), 1194 (s), 1176 (m), 1108 (s), 1090 (s), 

1022 (m), 1006 (m), 944 (m), 934 (m), 806 (s), 778 (s), 730 (vs), 688 (s), 674 (m), 586 (m). 

MS (EI, 70 eV): m/z (%) = 306 (M+, 23), 163 (100), 135 (12), 119( 18) 89 (6). 

HRMS (C16H15ClO2S): calc.: 306.0481; found: 306.0481. 

 

Ethyl 2-[2-(3-cyanophenyl)ethyl]acrylate (97o) 

 

The zinc reagent 95o was prepared according to TP9 from 3-cyanobenzyl chloride (53o; 303 mg, 

2.00 mmol) in 2 h at 25 °C. The freshly prepared zinc reagent 95o was added to ethyl (2-

bromomethyl)acrylate (55b; 270 mg, 1.40 mmol) in 0.5 mL THF at 25 °C. CuCN·2LiCl 

(0.01 mL, 0.01 mmol, 1.00 M in THF) was added and the mixture was stirred for 60 min. The 

reaction mixture was quenched with sat. aq. NH4Cl solution (45 mL) followed by 25% aq. NH3 

solution (5 mL) and extracted with CH2Cl2 (3 x 50 mL). The combined organic layers were dried 

over MgSO4 and concentrated in vacuo. Flash chromatography (silica gel, pentane / Et2O = 1:1) 

furnished the acrylate 97o (255 mg, 79%) as a colourless liquid. 

1H-NMR (600 MHz, CDCl3): δ / ppm = 7.497.45 (m, 2H), 7.42-7.39 (m, 1H), 7.37 (t, J = 

7.6 Hz, 1H), 6.15 (d, J = 1.3 Hz, 1H), 5.46 (q, J = 1.2 Hz, 1H), 4.21 (q, J = 7.0 Hz, 2H), 2.84-

2.80 (m, 2H), 2.62-2.57 (m, 2H), 1.30 (t, J = 7.2 Hz, 3H).     
13C-NMR (150 MHz, CDCl3): δ / ppm = 166.7, 142.7, 139.3, 133.1, 132.0, 129.8, 129.1, 125.7, 

118.9, 112.3, 60.8, 34.4, 33.5, 14.2. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2983 (w), 2935 (w), 2230 (m), 1710 (vs), 1631 (w), 1583 

(w), 1483 (w), 1445 (w), 1369 (w), 1300 (m), 1256 (m), 1186 (vs), 1134 (s), 1095 (m), 1028 (m), 

945 (m), 917 (w), 797 (s), 690 (s). 
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MS (EI, 70 eV): m/z (%) = 229 (M+, 10), 183 (71), 155 (34), 116 (100), 89 (14).  

HRMS (C14H15NO2): calc.: 229.1103; found: 229.1090. 

 

3-[2-(3,4-Dichlorophenyl)-2-hydroxyethyl]benzonitrile (97p)  

 

The zinc reagent 95o was prepared according to TP9 from 3-cyanobenzyl chloride (53o; 303 mg, 

2.00 mmol) in 2 h at 25 °C. The freshly prepared zinc reagent 95o was added to 3,4-

dichlorobenzaldehyde (61b; 245 mg, 1.40 mmol) in 1 mL THF at 0 °C. The mixture was stirred 

for 2 h at 25 °C. The reaction mixture was quenched with sat. aq. NH4Cl solution (50 mL) and 

extracted with CH2Cl2 (3 x 50 mL). The combined organic layers were dried over MgSO4 and 

concentrated in vacuo. Flash chromatography (silica gel, pentane / Et2O = 7:3) furnished the 

alcohol 97p (341 mg, 83%) as a white solid. 

M.p. (°C): 96-97. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.55-7.47 (m, 2H), 7.44-7.33 (m, 4H), 7.11 (dd, J = 

8.2 Hz, 2.0 Hz, 1H), 4.86 (t, J = 6.4 Hz, 1H), 2.99 (d, J = 6.4 Hz, 2H), 2.02-1.89 (s, 1H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 143.5, 138.9, 134.1, 133.1, 132.7, 131.8, 130.5, 130.5, 

129.2, 127.8, 125.1, 118.7, 112.5, 73.6, 45.1. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3328 (m), 3260 (m), 2232 (m), 1484 (m), 1470 (s), 1426 

(m), 1398 (m), 1202 (m), 1142 (m), 1058 (s), 1028 (s), 1014 (m), 904 (m), 818 (s), 798 (vs), 690 

(s), 650 (s), 602 (m).  

MS (EI, 70 eV): m/z (%) = 291 (M+, 2), 179 (13), 177 (100), 175 (61), 147 (29), 117 (71), 111 

(19), 90 (13), 75 (12). 

HRMS (C15H11Cl2NO): calc.: 291.0218; found: 291.0214. 

 

3-[(3-Oxocyclohex-1-en-1-yl)methyl]benzonitrile (97q)  

 

The zinc reagent 95o was prepared according to TP9 from 3-cyanobenzyl chloride (53o; 303 mg, 

2.00 mmol) in 2 h at 25 °C. The freshly prepared zinc reagent 95o was added to CuCN·2LiCl 

(2.00 mL, 2.00 mmol 1.00 M in THF) at -20 °C. After stirring for 15 min, 3-iodocyclohex-2-
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enone (58b; 311 mg, 1.40 mmol) was added at -60 °C and the mixture was slowly warmed to 0°C 

within 18 h. The reaction mixture was quenched with sat. aq. NH4Cl solution (100 mL) followed 

by 25% aq. NH3 solution (50 mL) and extracted with Et2O (3 x 150 mL). The combined organic 

layers were dried over MgSO4 and concentrated in vacuo. Flash chromatography (silica gel, 

pentane / Et2O = 1:2) furnished the cyclohexenone 97q (227 mg, 77%) as a yellow liquid. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.58-7.52 (m, 1H), 7.47-7.36 (m, 3H), 5.80-5.76 (m, 

1H), 3.53 (s, 2H), 2.40-2.32 (m, 2H), 2.27-2.20 (m, 2H), 2.03-1.91 (m, 2H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 199.3, 162.6, 138.4, 133.6, 132.5, 130.7, 129.5, 127.4, 

118.5, 112.9, 43.7, 37.2, 29.3, 22.5. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2926 (w), 2228 (m), 1660 (vs), 1626 (m), 1600 (w), 1582 

(w), 1484 (w), 1428 (m), 1372 (m), 1348 (m), 1324 (m), 1250 (m), 1192 (m), 1128 (w), 968 (m), 

906 (m), 884 (m), 796 (s), 758 (m), 724 (m), 694 (s), 672 (m), 556 (m).  

MS (EI, 70 eV): m/z (%) = 211 (M+, 62), 183 (100), 154 (48), 140 (16), 67 (23). 

HRMS (C14H13NO): calc.: 211.0997; found: 211.0994. 

 

1-(Benzylthio)-4-methoxybenzene (97r)  

 

The zinc reagent 95a was prepared according to TP9 from benzyl chloride (53a; 253 mg, 

2.00 mmol) in 2 h at 25 °C. The freshly prepared zinc reagent 95a was added to S-(4-

methoxyphenyl) benzenesulfonothioate (57f; 393 mg, 1.40 mmol) in THF (1 mL) at 25 °C. The 

mixture was stirred for 13 h at 25 °C. The reaction mixture was quenched with sat. aq. NH4Cl 

solution (50 mL) and extracted with Et2O (3 x 50 mL). The combined organic layers were dried 

over MgSO4 and concentrated in vacuo. Flash chromatography (silica gel, pentane / Et2O = 15:1) 

furnished the sulfide 97r (252 mg, 78%) as a pale yellow solid. 

M.p. (°C): 51-52. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.33-7.19 (m, 7H), 6.86-6.78 (m, 2H), 4.01 (s, 2H), 3.80 

(s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 159.1, 138.1, 134.0, 128.8, 128.3, 126.9, 126.0, 114.4, 

55.2, 41.2. 
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IR (Diamond-ATR, neat): ν~  / cm-1 = 3675 (w), 2989 (m), 2970 (m), 1739 (s), 1595 (m), 1571 

(m), 1492 (s), 1465 (m), 1453 (s), 1435 (m), 1365 (m), 1307 (w), 1284 (m), 1232 (s), 1217 (s), 

1203 (s), 1180 (s), 1117 (m), 1105 (m), 1095 (m), 1070 (m), 1023 (s), 1004 (m), 914 (m), 808 

(vs), 794 (m), 778 (m), 710 (vs), 695 (vs), 637 (s), 626 (m).  

MS (EI, 70 eV): m/z (%) = 230 (M+, 100), 139 (22), 91 (98), 65 (7). 

HRMS (C14H14OS): calc.: 230.0765; found: 230.0745. 

 

1-(4-Bromophenyl)-2-phenylpropan-1-ol (97s) 

 

The zinc reagent 95u was prepared according to TP9 from 1-(chloroethyl)benzene (54v; 281 mg, 

2.00 mmol) in 1 h at 25 °C. The freshly prepared zinc reagent 54u was added to 4-

bromobenzaldehyde (61e; 259 mg, 1.40 mmol) in THF (1 mL) at 25 °C. The mixture was stirred 

for 2 h. The reaction mixture was quenched with sat. aq. NH4Cl solution (50 mL) and extracted 

with CH2Cl2 (3 x 50 mL). The combined organic layers were dried over MgSO4 and concentrated 

in vacuo. Flash chromatography (silica gel, pentane / Et2O = 9:1) furnished the alcohol 97s 

(285 mg, 70%) as a colourless solid. Two diastereomers were observed with a ratio of 2:1. 

Analtical data for the main diastereomer is given. 

M.p. (°C): 63-65. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.57-7.07 (m, 9H), 4.66 (d, J = 8.5 Hz, 1H), 3.06-2.94 

(m, 1H), 1.90 (sbr, 1H), 1.13 (d, J = 7.1 Hz, 3H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 142.8, 141.4, 131.3, 128.7, 128.7, 128.0, 127.1, 121.5, 

79.0, 48.1, 18.0. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3378 (w), 3028 (w), 2968 (w), 2896 (w), 2878 (w), 2360 

(vw), 1602 (w), 1488 (m), 1450 (m), 1406 (m), 1378 (w), 1198 (w), 1092 (m), 1070 (m), 1036 

(m), 1026 (m), 1004 (s), 992 (m), 906 (m), 834 (m), 820 (s), 774 (m), 756 (s), 698 (vs), 658 (m), 

628 (m), 620 (m), 608 (m), 580 (s), 568 (m), 556 (m).  

MS (EI, 70 eV): m/z (%) = 290 (M+, 2), 211 (8), 185 (22), 91 (100), 78 (66), 51 (20). 

HRMS (C15H15BrO): calc.: 290.0306; found: 290.0302. 
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1,1-Diphenylacetone (97t) 

 

The zinc reagent 95v was prepared according to TP9 from 1,1'-(chloromethylene)dibenzene 

(53v; 405 mg, 2.00 mmol) in 30 min at 0 °C. The freshly prepared zinc reagent 95v was added to 

CuCN·2LiCl (2.00 mL, 2.00 mmol, 1.00 M in THF) at -20 °C. After stirring for 15 min, acetyl 

chloride (60a; 110 mg, 1.40 mmol) was added and the mixture was slowly warmed to 10 °C 

within 24 h. The reaction mixture was quenched with sat. aq. NH4Cl solution (90 mL) followed 

by 25% aq. NH3 solution (30 mL) and extracted with Et2O (3 x 120 mL). The combined organic 

layers were dried over MgSO4 and concentrated in vacuo. Flash chromatography (silica gel, 

pentane / Et2O = 5:1) furnished the ketone 97t (199 mg, 68%) as a colourless liquid. 

M.p. (°C): 100-102. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.34-7.17 (m, 10H), 5.09 (s, 1H), 2.21 (s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 206.4, 138.2, 128.9, 128.7, 127.2, 65.0, 30.0.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3669 (vw), 2989 (m), 2970 (m), 1738 (s), 1714 (s), 1598 

(w), 1494 (m), 1451 (m), 1419 (w), 1354 (s), 1228 (m), 1217 (m), 1152 (m), 1080 (m), 1032 (m), 

893 (w), 753 (m), 695 (vs), 629 (w). 

MS (EI, 70 eV): m/z (%) = 210 (M+, 1), 167 (100), 152 (15), 139 (4), 43 (11). 

HRMS (C15H14O): calc.: 210.1045; found: 210.1041. 

 

1-[4-(Dimethylamino)phenyl]-2-phenylethanol (97u) 

 

The zinc reagent 95a was prepared according to TP9 from benzyl chloride (53u; 253 mg, 

2.00 mmol) in 2 h at 25 °C. The freshly prepared zinc reagent 95a was added to 4-

(dimethylamino)benzaldehyde (61h; 209 mg, 1.40 mmol) at 25 °C. The mixture was stirred for 

1 h. The reaction mixture was quenched with sat. aq. NH4Cl solution (50 mL) and extracted with 

CH2Cl2 (3 x 50 mL). The combined organic layers were dried over MgSO4 and concentrated in 

vacuo. Flash chromatography (silica gel, pentane / Et2O = 1:1) furnished the alcohol 97u 

(331 mg, 98 %) as a yellow solid.  
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M.p. (°C): 57-59. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.34-7.18 (m, 7H), 6.78-6.70 (m, 2H), 4.81 (t, J = 6.7 

Hz, 1H), 3.02 (d, J = 6.7 Hz, 2H), 2.95 (s, 6H), 1.94 (s, 1H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 150.1, 138.5, 131.9, 129.4, 128.4, 126.9, 126.3, 112.5, 

75.1, 45.7, 40.7.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3312 (m), 3054 (w), 3026 (w), 2922 (m), 2856 (m), 2812 

(w), 1618 (s), 1526 (s), 1448 (m), 1358 (s), 1336 (m), 1324 (m), 1232 (m), 1188 (m), 1170 (m), 

1068 (m), 1020 (s), 1002 (m), 946 (m), 814 (s), 794 (m), 746 (s), 732 (s), 696 (vs), 638 (m), 

620 (m), 608 (s).  

HRMS (ESI; C16H20NO): calc.: 242.1545 ([M+H]+); found: 242.1540 ([M+H]+). 
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4. Lewis-Acid Promoted Additions of Functionalized Organomagnesium and 
Organozinc Reagents to Carbonyl Derivatives 

4.1. Addition of Grignard reagents to ketones in the presence of catalytic amounts of 
LaCl 3·2LiCl 

2-Cyclohexyl-1-phenylpropan-2-ol (98a)  

 

Condition A (100 mol% LaCl3·2LiCl): according to TP10 cyclohexylmagnesium bromide (28b; 

5.79 mL, 2.20 mmol, 0.38 M in THF) was added to a solution of phenylacetone (58c; 268 mg, 

2.00 mmol) in LaCl3·2LiCl (3.85 mL, 2.00 mmol, 0.52 M in THF). The reaction mixture was 

stirred for 15 min at 25 °C. Purification by flash chromatography (silica gel, pentane / Et2O = 9:1 

+ 1 vol-% NEt3) afforded the alcohol 98a (406 mg, 93%) as a colourless liquid. 

Condition B (30 mol% LaCl3·2LiCl): cyclohexylmagnesium bromide (28b; 5.79 mL, 2.20 mmol, 

0.38 M in THF), phenylacetone (58c; 268 mg, 2.00 mmol, in 2.5 mL THF), LaCl3·2LiCl 

(1.15 mL, 0.60 mmol, 0.52 M in THF), 15 min at 25 °C. The alcohol 98a (382 mg, 87%) was 

obtained as a colourless liquid. 

Condition C (no LaCl3·2LiCl present): cyclohexylmagnesium bromide (28b; 5.79 mL, 

2.20 mmol, 0.38 M in THF), phenylacetone (98a; 268 mg, 2.00 mmol, in 3.5 mL THF), 1.75 h at 

25 °C. The alcohol 58c was obtained in 33% yield (yield determined by 1H-NMR after 

purification by flash chromatography). 
1H-NMR (300 MHz, C6D6): δ / ppm = 7.18-7.04 (m, 5H), 2.66 (d, J = 13.1 Hz, 1H), 2.50 (d, J = 

13.3 Hz, 1H), 1.89-1.54 (m, 5H), 1.30-0.87 (m, 7H), 0.87 (s, 3H). 
13C-NMR (75 MHz, C6D6): δ / ppm = 138.4, 131.1, 128.3, 126.5, 73.8, 48.0, 45.6, 28.1, 27.3, 

27.1 (double), 27.0, 23.9.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3467 (vw), 3028 (vw), 2923 (m), 2852 (m), 1604 (vw), 

1494 (w), 1451 (m), 1377 (w), 1346 (w), 1195 (w), 1138 (w), 1107 (w), 1083 (m), 1060 (w), 

1031 (w), 937 (w), 892 (m), 849 (w), 802 (w), 769 (w), 736 (m), 726 (m), 700 (vs). 

MS (EI, 70 eV): m/z (%) = 218 (M+, < 1), 200 (2), 180 (10), 127 (100), 109 (42), 92 (75), 83 

(43), 67 (18), 55 (25). 

HRMS (C15H22O): calc.: 218.1617; found: 218.1649. 
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2-Benzyl-3-methyl-1-phenylbutan-2-ol (98b) 

Ph Ph

OH

Me Me  

Condition A (100 mol% LaCl3·2LiCl): according to TP10 i-PrMgCl (28c; 1.29 mL, 2.20 mmol, 

1.70 M in THF) was added to a solution of 1,3-diphenylacetone (58d; 421 mg, 2.00 mmol) in 

LaCl3·2LiCl (3.85 mL, 2.00 mmol, 0.52 M in THF). The reaction mixture was stirred for 5 min at 

25 °C. Purification by flash chromatography (silica gel, pentane / Et2O = 98:2 + 1 vol-% NEt3) 

afforded the alcohol 98b (436 mg, 86%) as a white solid. 

Condition B (30 mol% LaCl3·2LiCl): i-PrMgCl (28c; 1.29 mL, 2.20 mmol, 1.70 M in THF), 1,3-

diphenylacetone (58d; 421 mg, 2.00 mmol, in 2.5 mL THF), LaCl3·2LiCl (1.15 mL, 0.60 mmol, 

0.52 M in THF), 5 min at 25 °C. The alcohol 98b (333 mg, 65%) was obtained as a white solid. 

Condition C (no LaCl3·2LiCl present): i-PrMgCl (28c; 1.29 mL, 2.20 mmol, 1.70 M in THF), 1,3-

diphenylacetone (58d; 421 mg, 2.00 mmol, in 3.5 mL THF), 1.75 h at 25 °C. The alcohol 98b  

was obtained in < 3% yield (GC). 

Condition D (100 mol% LaCl3·2LiCl; upscaled reaction): i-PrMgCl (28c; 14.4 mL, 22.3 mmol, 

1.55 M in THF), 1,3-diphenylacetone (58d; 4.27 g, 20.3 mmol), LaCl3·2LiCl (39.0 mL, 

20.3 mmol, 0.52 M in THF), 1 h at 25 °C. The alcohol 98b (4.30 g, 83%) was obtained as a white 

solid. 

M.p. (°C): 59-60. 
1H-NMR (300 MHz, C6D6): δ / ppm = 7.21-7.08 (m, 10H), 2.78 (d, J = 13.7 Hz, 2H), 2.54 (d, 

J = 13.7 Hz, 2H), 1.78-1.67 (m, 1H), 1.09 (s, 1H), 0.90 (d, J = 6.7 Hz, 6H). 
13C-NMR (75 MHz, C6D6): δ / ppm = 138.0, 131.2, 128.3, 126.5, 76.1, 41.8, 34.2, 17.4.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3560 (w), 3064 (vw), 3024 (vw), 2983 (vw), 2958 (w), 

2942 (w), 2930 (w), 2917 (w), 2877 (vw), 2852 (vw), 1602 (w), 1494 (m), 1470 (w), 1454 (w), 

1434 (w), 1366 (w), 1350 (w), 1272 (w), 1235 (w), 1195 (w), 1181 (w), 1080 (m), 1049 (w), 

1031 (m), 985 (w), 893 (w), 861 (w), 770 (w), 751 (s), 709 (s), 701 (vs).  

MS (EI, 70 eV): m/z (%) = 236 ([M-H2O]+, <1), 163 (53), 145 (11), 119 (11), 91 (100), 71 (11), 

43 (12). 

HRMS (C18H22O): calc.: 236.1551 ([M-H2O]+); found: 236.1551 ([M-H2O]+). 
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1-Methyl-1,2,3,4-tetrahydronaphthalen-1-ol (98c)  
HO Me

 

Condition A (100 mol% LaCl3·2LiCl): according to TP10 MeMgCl (28d; 0.74 mL, 2.20 mmol, 

2.99 M in THF) was added to a solution of α-tetralone (58e; 292 mg, 2.00 mmol) in LaCl3·2LiCl 

(3.85 mL, 2.00 mmol, 0.52 M in THF). The reaction mixture was stirred for 2 h at 25 °C. 

Purification by flash chromatography (silica gel, pentane / Et2O = 9:1 + 1 vol-% NEt3) afforded 

the alcohol 98c (307 mg, 95%) as a white solid. 

Condition B (30 mol% LaCl3·2LiCl): MeMgCl (28d; 0.74 mL, 2.20 mmol, 2.99 M in THF,), α-

tetralone (58e; 292 mg, 2.00 mmol, in 2.5 mL THF), LaCl3·2LiCl (1.15 mL, 0.60 mmol, 0.52 M 

in THF), 2 h at 25 °C. The alcohol 98c (306 mg, 94%) was obtained as a white solid. 

Condition C (no LaCl3·2LiCl present): MeMgCl (28d; 0.74 mL, 2.20 mmol, 2.99 M in THF,), α-

tetralone (58e; 292 mg, 2.00 mmol, in 3.5 mL THF), 2 h at 25 °C. The alcohol 98c (224 mg, 

69%) was obtained as a white solid. 

M. p. (°C): 92-94. 
1H-NMR (300 MHz, C6D6): δ / ppm = 7.58-7.52 (m, 1H), 7.11-7.04 (m, 1H), 7.04-6.98 (m, 1H), 

6.90-6.84 (m, 1H), 2.60-2.39 (m, 2H), 1.70-1.42 (m, 5H), 1.39 (s, 3H).  
13C-NMR (75 MHz, C6D6): δ / ppm = 143.7, 136.2, 128.8, 127.1, 126.9, 126.5, 70.2, 40.0, 31.1, 

30.2, 20.7.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3313 (m), 2969 (w), 2933 (m), 2865 (w), 1487 (m), 1440 

(m), 1366 (m), 1337 (m), 1284 (m), 1230 (w), 1184 (m), 1152 (m), 1103 (s), 1066 (m), 1048 (m), 

990 (m), 949 (m), 930 (s), 854 (m), 761 (vs), 728 (s), 686 (s). 

MS (EI, 70 eV): m/z (%) = 162 (M+, 1), 147 (100), 129 (56), 119 (17), 91 (32), 84 (34), 44 (6). 

HRMS (C11H14O): calc.162.1045; found: 162.1040.  

 

1,2,3-Triphenylpropan-2-ol (98d)  

 

Condition A (100 mol% LaCl3·2LiCl): according to TP10 PhMgCl (28e; 1.38 mL, 2.20 mmol, 

1.60 M in THF) was added to a solution of 1,3-diphenylacetone (58d; 421 mg, 2.00 mmol) in 

LaCl3·2LiCl (3.85 mL, 2.00 mmol, 0.52 M in THF). The reaction mixture was stirred for 1 h at 
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25 °C. Purification by flash chromatography (silica gel, pentane / Et2O = 98:2 + 1 vol-% NEt3) 

afforded the alcohol 98d (582 mg, 97%) as a white solid. 

Condition B (25 mol% LaCl3·2LiCl): PhMgCl (28e; 1.38 mL, 2.20 mmol, 1.60 M in THF), 1,3-

diphenylacetone (58d; 421 mg, 2.00 mmol, in 3.0 mL THF), LaCl3·2LiCl (0.96 mL, 0.50 mmol, 

0.52 M in THF), 2.5 h at 25 °C. The alcohol 98d (538 mg, 93%) was obtained as a white solid. 

Condition C (no LaCl3·2LiCl present): PhMgCl (28e; 1.38 mL, 2.20 mmol, 1.60 M in THF), 1,3-

diphenylacetone (58d; 421 mg, 2.00 mmol, in 3.5 mL THF), 2.5 h at 25 °C. The alcohol 98d was 

obtained in 67% yield (yield determined by 1H-NMR after purification by flash chromatography). 

Condition D (30 mol% LaCl3·2LiCl; upscaled reaction): PhMgCl (28e; 12.9 mL, 20.7 mmol, 

1.60 M in THF), 1,3-diphenylacetone (58d; 3.96 g, 18.8 mmol, in 25 mL THF), LaCl3·2LiCl 

(10.8 mL, 5.64 mmol, 0.52 M in THF), 1 h at 25 °C. The alcohol 98d (4.75 g, 88%) was obtained 

as a white solid. 

M. p. (°C): 85-86. 
1H-NMR (400 MHz, C6D6): δ / ppm = 7.15-7.10 (m, 3H), 7.10-7.04 (m, 2H), 7.04-6.97 (m, 6H), 

6.97-6.90 (m, 4H), 3.11 (d, J = 13.5 Hz, 2H), 2.99 (d, J = 13.5 Hz, 2H), 1.72 (sbr, 1H). 
13C-NMR (100 MHz, C6D6): δ / ppm = 146.0, 136.9, 131.1, 128.1, 127.9, 126.7, 126.6, 126.2, 

76.9, 49.0.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3565 (w), 3058 (vw), 3027 (w), 2925 (w), 1598 (w), 1495 

(m), 1454 (m), 1444 (w), 1349 (w), 1324 (w), 1273 (w), 1256 (w), 1158 (vw), 1103 (w), 1080 

(w), 1064 (w), 1033 (w), 1008 (w), 918 (w), 867 (w), 799 (w), 774 (m), 755 (s), 711 (s), 697 (vs), 

647 (s). 

MS (EI, 70 eV): m/z (%) = 288 (M+, <1), 197 (100), 179 (7), 105 (90), 77 (28), 44 (6). 

HRMS (C21H20O): calc.: 288.1514; found: 288.1503. 

 

1-Phenyl-1-[2-(trifluoromethyl)phenyl]ethanol (98f)  

 

Condition A (100 mol% LaCl3·2LiCl): into a flame dried and argon-flushed flask, 2-

(trifluoromethyl)bromobenzene (495 mg, 2.20 mmol) was added followed by i-PrMgCl·LiCl 

(1.32 mL, 2.16 mmol, 1.64 M in THF). The reaction mixture was stirred for 1.5 h. Then, the 

resulting aromatic Grignard reagent 28g was added to acetophenone (30; 240 mg, 2.00 mmol) in 

LaCl3·2LiCl (3.85 mL, 2.00 mmol, 0.52 M in THF) according to TP10. The reaction mixture was 
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stirred for 2 h at 0 °C. Purification by flash chromatography (silica gel, pentane / Et2O = 7:1 + 

1 vol-% NEt3) afforded the alcohol 98f (384 mg, 72%) as a pale yellow liquid. 

Condition B (30 mol% LaCl3·2LiCl): 2-(trifluoromethyl)bromobenzene (495 mg, 2.20 mmol), 

i-PrMgCl·LiCl (1.32 mL, 2.16 mmol, 1.64 M in THF), acetophenone (30; 240 mg, 2.00 mmol, in 

2.5 mL THF), LaCl3·2LiCl (1.15 mL, 0.60 mmol, 0.52 M in THF), 2 h at 0 °C. The alcohol 98f 

(381 mg, 72%) was obtained as a pale yellow liquid. 

Condition C (no LaCl3·2LiCl present): 2-(trifluoromethyl)bromobenzene (495 mg, 2.20 mmol), i-

PrMgCl·LiCl (1.32 mL, 2.16 mmol, 1.64 M in THF), acetophenone (30; 240 mg, 2.00 mmol, in 

3.5 mL THF), 2  h at 0 °C. The alcohol 98f (67 mg, 13%) was obtained as a pale yellow liquid. 
1H-NMR (600 MHz, C4D10O): δ / ppm = 7.80 (d, J = 7.6 Hz, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.49 

(t, J = 7.4 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.29 (d, J = 8.1 Hz, 2H), 7.18 (t, J = 7.6 Hz, 2H), 

7.11 (t, J = 7.4 Hz, 1H), 4.31 (s, 1H), 1.93 (s, 3H).  
13C-NMR (150 MHz, C4D10O): δ / ppm = 149.9 (q, 4JC-F = 1.6 Hz), 148.4 (q, 4JC-F = 1.4 Hz), 

131.6 (q, 5JC-F = 1,1 Hz), 129.9, 129.5 (q, 2JC-F = 31.6 Hz), 128.8 (q, 3JC-F = 6.7 Hz),  128.4, 

127.7, 127.1, 126.5 (q, 5JC-F = 0.8 Hz), 125.4 (q, 1JC-F = 273.4 Hz),  76.7, 33.0 (q, 4JC-F = 1.7 Hz).  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3463 (vw), 2983 (vw), 1602 (w), 1494 (w), 1446 (m), 

1304 (vs), 1271 (s), 1164 (s), 1122 (vs), 1095 (s), 1032 (vs), 928 (m), 910 (m), 765 (vs), 754 (s), 

698 (vs). 

MS (EI, 70 eV): m/z (%) = 266 (M+, 2), 251 (100), 231 (61), 211 (29), 183 (6), 169 (5), 121 (5). 

HRMS (C15H13F3O): calc.: 266.0918; found: 266.0905.  

 

4-[Dicyclopropyl(hydroxy)methyl]benzonitrile (98g)  

 

Condition A (100 mol% LaCl3·2LiCl): into a flame dried and argon-flushed flask, 4-

iodobenzonitrile (504 mg, 2.20 mmol, in 1 mL THF) was added followed by i-PrMgCl·LiCl 

(1.32 mL, 2.16 mmol 1.64 M in THF) at 0 °C. The reaction mixture was stirred for 2 h. Then, the 

resulting aromatic Grignard reagent 28h was added to dicyclopropylmethanone (58g; 220 mg, 

2.00 mmol) in LaCl3·2LiCl (3.85 mL, 2.00 mmol, 0.52  M in THF) according to TP10. The 

reaction mixture was stirred for 2.5 h at 25 °C. Purification by flash chromatography (silica gel, 
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pentane / Et2O = 3:1 + 1 vol-% NEt3) afforded the alcohol 98g (328 mg, 77%) as a pale yellow 

solid. 

Condition B (30 mol% LaCl3·2LiCl): 4-iodobenzonitrile (504 mg, 2.20 mmol, in 1 mL THF), 

i-PrMgCl·LiCl (1.32 mL, 2.16 mmol, 1.64 M in THF), dicyclopropylmethanone (58g; 220 mg, 

2.00 mmol, in 2.5 mL THF), LaCl3·2LiCl (1.15 mL, 0.60 mmol, 0.52 M in THF), 2.5 h at 25 °C. 

The alcohol 98g (357 mg, 84%) was obtained as a pale yellow solid. 

Condition C (no LaCl3·2LiCl present): 4-iodobenzonitrile (504 mg, 2.20 mmol, in 1 mL THF), i-

PrMgCl·LiCl (1.32 mL, 2.16 mmol, 1.64 M in THF), dicyclopropylmethanone (58g; 220 mg, 

2.00 mmol, in 3.5 mL THF), 2.5 h at 25 °C. The alcohol 98g (371 mg, 87%) was obtained as a 

pale yellow solid. 

M.p. (°C): 78-80. 
1H-NMR (300 MHz, C6D6): δ / ppm = 7.29-7.23 (m, 2H), 7.15-7.10 (m, 2H), 1.01 (sbr, 1H), 

0.75-0.63 (m, 2H), 0.43-0.33 (m, 2H), 0.30-0.17 (m, 4H), 0.10-(-0.01) (m, 2H). 
13C-NMR (75 MHz, C6D6): δ / ppm = 153.1, 131.6, 126.4, 119.1, 110.9, 73.0, 20.7, 2.3, 0.1.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3518 (m), 3089 (vw), 3004 (w), 2226 (m), 1735 (vw), 

1605 (m), 1500 (w), 1460 (w), 1400 (m), 1332 (w), 1191 (m), 1161 (m), 1106 (m), 1052 (w), 

1028 (s), 1003 (m), 965 (m), 909 (m), 881 (m), 853 (m), 831 (vs), 656 (m). 

MS (EI, 70 eV): m/z (%) = 213 (M+, <1), 185 (100), 170 (37), 154 (7), 143 (20), 130 (80), 127 

(8), 102 (19), 69 (13), 41 (6). 

HRMS (C14H15NO): calc.: 213.1154; found: 213.1145. 

 

Ethyl 4-(1-cyclopropyl-1-hydroxyethyl)benzoate (98h) 

 

Condition A (100 mol% LaCl3·2LiCl): into a flame dried and argon-flushed flask, ethyl 4-

iodobenzoate (607 mg, 2.20 mmol, in 1 mL THF) was added followed by i-PrMgCl·LiCl 

(1.32 mL, 2.16 mmol, 1.64 M in THF) at -20 °C. The reaction mixture was stirred for 30 min at -

20 °C. Then, the resulting aromatic Grignard reagent 28i was added to 1-cyclopropylethanone 

(58h; 220 mg, 2.00 mmol) in LaCl3·2LiCl (3.85 mL, 2.00 mmol, 0.52 M in THF) according to 

TP10. The reaction mixture was stirred for 2.5 h at 25 °C. Purification by flash chromatography 
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(silica gel, pentane / Et2O = 3:1 + 1 vol-% NEt3) afforded the alcohol 98h (354 mg, 76%) as a 

yellow oil. 

Condition B (30 mol% LaCl3·2LiCl): ethyl 4-iodobenzoate (607 mg, 2.20 mmol, in 1 mL THF), 

i-PrMgCl·LiCl (1.32 mL, 2.16 mmol, 1.64 M in THF), 1-cyclopropylethanone (58h; 220 mg, 

2.00 mmol, in 2.5 mL THF), LaCl3·2LiCl (1.15 mL, 0.60 mmol, 0.52 M in THF), 2.5 h at 25 °C. 

The alcohol 98h (389 mg, 83%) was obtained as a yellow oil. 

Condition C (no LaCl3·2LiCl present): ethyl 4-iodobenzoate (607 mg, 2.20 mmol, in 1 mL THF), 

i-PrMgCl·LiCl (1.32 mL, 2.16 mmol, 1.64 M in THF), 1-cyclopropylethanone (58h; 220 mg, 

2.00 mmol, in 3.5 mL THF), 3 h at 25 °C. The alcohol 98h (378 mg, 81%) was obtained as a 

yellow oil. 
1H-NMR (300 MHz, C6D6): δ / ppm = 8.24-8.16 (m, 2H), 7.49-7.42 (m, 2H), 4.15 (d, J = 

7.0 Hz, 2H), 1.27 (sbr, 1H), 1.24 (s, 3H), 1.03 (t, J = 7.1 Hz, 3H), 0.97-0.84 (m, 1H), 0.45-0.22 

(m, 3H), 0.20-0.09 (m, 1H). 
13C-NMR (75 MHz, C6D6): δ / ppm = 166.4, 154.0, 129.7, 129.4, 125.5, 72.3, 60.8, 28.9, 23.1, 

14.3, 2.0, 1.1.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3490 (w), 2980 (w), 1698 (s), 1610 (w), 1574 (vw), 1448 

(w), 1406 (m), 1368 (m), 1272 (vs), 1182 (m), 1100 (s), 1046 (m), 1018 (s), 926 (w), 900 (m), 

860 (m), 770 (s), 706 (m). 

MS (EI, 70 eV): m/z (%) = 234 (M+, <1), 219 (22), 206 (100), 193 (23), 189 (17), 161 (19), 143 

(5), 133 (6), 91 (7), 43 (10). 

HRMS (C14H18O3): calc.: 234.1256; found: 234.1238. 

 

1-(4-Methoxyphenyl)cyclohexanol (98i)  

 

Condition A (100 mol% LaCl3·2LiCl): into a flame dried and argon-flushed flask, 4-iodoanisole 

(515 mg, 2.20 mmol, in 1 mL THF) was added followed by i-PrMgCl·LiCl (1.32 mL, 2.16 mmol, 

1.64 M in THF) at 25 °C. The reaction mixture was stirred for 1 h at 25 °C. Then, the resulting 

aromatic Grignard reagent 28j was added to cyclohexanone (58i; 196 mg, 2.00 mmol) in 

LaCl3·2LiCl (3.85 mL, 2.00 mmol, 0.52 M in THF) according to TP10. The reaction mixture was 
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stirred for 2 h at 25 °C. Purification by flash chromatography (silica gel, pentane / Et2O = 4:1 + 

1 vol-% NEt3) afforded the alcohol 98i (303 mg, 73%) as a colourless liquid. 

Condition B (30 mol% LaCl3·2LiCl): 4-iodoanisole (515 mg, 2.20 mmol, in 1 mL THF), 

i-PrMgCl·LiCl (1.32 mL, 2.16 mmol, 1.64 M in THF), cyclohexanone (58i; 196 mg, 2.00 mmol, 

in 2.5 mL THF), LaCl3·2LiCl (1.15 mL, 0.60 mmol, 0.52 M in THF), 2 h at 25 °C. The alcohol 

98i (306 mg, 74%) was obtained as a colourless liquid. 

Condition C (no LaCl3·2LiCl present): 4-iodoanisole (515 mg, 2.20 mmol, in 1 mL THF), 

i-PrMgCl·LiCl (1.32 mL, 2.16 mmol, 1.64 M in THF), cyclohexanone (58i; 196 mg, 2.00 mmol, 

in 3.5 mL THF), 2 h at 25 °C. The alcohol 98i (348 mg, 84%) was obtained as a colourless liquid. 
1H-NMR (300 MHz, C6D6): δ / ppm = 7.39-7.33 (m, 2H), 6.88-6.81 (m, 2H), 3.36 (s, 3H), 1.88-

1.56 (m, 7H), 1.54-1.43 (m, 2H), 1.19 (s, 1H), 1.17-1.04 (m, 1H). 
13C-NMR (75 MHz, C6D6): δ / ppm = 158.8, 142.5, 126.1, 113.7, 72.5, 54.8, 39.3, 25.9, 22.5.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3443 (w), 2930 (m), 2856 (w), 1739 (w), 1608 (m), 1582 

(w), 1510 (s), 1447 (m), 1298 (m), 1244 (vs), 1212 (m), 1177 (s), 1132 (w), 1112 (m), 1036 (s), 

1021 (m), 966 (m), 904 (w), 849 (m), 824 (vs), 792 (m). 

MS (EI, 70 eV): m/z (%) = 206 (M+, 38), 163 (100), 150 (24), 135 (33), 77 (5), 55 (6). 

HRMS (C13H18O2): calc.: 206.1307; found: 206.1300. 

 

1-(1-Naphthyl)cyclopentanol (98k)  

 

Condition A (100 mol% LaCl3·2LiCl): according to TP10 naphthylmagnesium chloride (28f; 

3.44 mL, 2.20 mmol, 0.64 M in THF) was added to a solution of cyclopentanone (58j; 168 mg, 

2.00 mmol) in LaCl3·2LiCl (3.85 mL, 2.00 mmol, 0.52 M in THF). The reaction mixture was 

stirred for 1 h at 25 °C. Purification by flash chromatography (silica gel, pentane / Et2O = 9:1 + 1 

vol-% NEt3) afforded the alcohol 98k (251 mg, 59%) as a yellow solid. 

Condition B (30 mol% LaCl3·2LiCl): naphthylmagnesium chloride (28f; 3.44 mL, 2.20 mmol, 

0.64 M in THF), cyclopentanone (58j; 168 mg, 2.00 mmol, in 2.5 mL THF), LaCl3·2LiCl 

(1.15 mL, 0.60 mmol, 0.52 M in THF), 2 h at 25 °C. The alcohol 98k (277 mg, 65%) was 

obtained as a yellow solid. 
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Condition C (no LaCl3·2LiCl present): naphthylmagnesium chloride (28f; 3.44 mL, 2.20 mmol, 

0.64 M in THF), cyclopentanone (58j; 168 mg, 2.00 mmol, in 3.5 mL THF), 2 h at 25 °C. The 

alcohol 98k (317 mg, 75%) was obtained as a yellow solid. 

M.p. (°C): 74-75. 
1H-NMR (300 MHz, C6D6): δ / ppm = 8.84 (dd, J = 8.6 Hz, 0.8 Hz, 1H), 7.70 (dd, J = 8.0 Hz, 

1.7 Hz, 1H), 7.61 (d, J = 8.2 Hz, 1H), 7.41-7.33 (m, 2H), 7.33-7.26 (m, 1H), 7.25-7.18 (m, 1H), 

2.16-1.83 (m, 6H), 1.66-1.49 (m, 2H), 1.32 (sbr, 1H). 
13C-NMR (100 MHz, C6D6): δ / ppm = 142.6, 135.4, 132.5, 129.1, 128.7, 128.1, 125.5, 125.5, 

124.8, 122.8, 83.8, 40.8, 23.9.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3296 (w), 3043 (vw), 2955 (w), 2871 (w), 1735 (vw), 

1598 (w), 1508 (w), 1385 (w), 1317 (w), 1241 (w), 1191 (w), 1109 (w), 1061 (w), 997 (m), 951 

(w), 935 (w), 907 (w), 880 (w), 861 (w), 797 (m), 774 (vs), 656 (m), 641 (m). 

MS (EI, 70 eV): m/z (%) = 212 (M+, 78), 194 (9), 183 (42), 170 (23), 165 (32), 155 (100), 141 

(26), 127 (27). 

HRMS (C15H16O): calc.: 212.1201; found: 212.1191. 

 

4.2. Addition of functionalized organozinc reagents to aldehydes, ketones and carbon 
dioxide under mediation of MgCl2 

4.2.1. Preparation of the organozinc reagents  

Phenylzinc iodid (93b) 

 

According to TP11 iodobenzene (3.06 g, 15.0 mmol, in 10.0 mL THF) was reacted with 

magnesium turnings (911 mg, 37.5 mmol) in a THF solution (15 mL) of ZnCl2 (16.5 mmol) and 

LiCl (22.5 mmol) at 25 °C for 2 h. After subsequent cannulation to another argon-flushed 

Schlenk-flask, iodometric titration of the zinc reagent 93b indicated a concentration of 0.68 M. 

 

Tolylzinc iodid (93e) 

ZnI·MgCl2

Me  

According to TP11 4-iodotoluene (2.17 g, 10.0 mmol, in 6.00 mL THF) was reacted with 

magnesium powder (608 mg, 25.0 mmol) in a THF solution (10 mL) of ZnCl2 (11.0 mmol) and 
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LiCl (15.0 mmol) at 25 °C for 45 min. After subsequent cannulation to another argon-flushed 

Schlenk-flask, iodometric titration of the zinc reagent 93e indicated a concentration of 0.52 M. 

 

(3-Methyl-1-phenyl-1H-pyrazol-5-yl)zinc chlorid (93f) 

 

According to TP11 5-chloro-3-methyl-1-phenyl-1H-pyrazole (963 mg, 5.00 mmol, in 2.5 mL 

THF) was reacted with magnesium turnings (304 mg, 12.5 mmol) in a THF solution (5 mL) of 

ZnCl2 (6.5 mmol) and LiCl (7.5 mmol) at 25 °C for 4 h. After subsequent cannulation to another 

argon-flushed Schlenk-flask, iodometric titration of the zinc reagent 93f indicated a concentration 

of 0.57 M.   

 

Bis(4-methoxyphenyl)zinc (103a) 

 

According to TP11 4-bromoanisole (2.81 g, 15.0 mmol, in 10.0 mL THF) was reacted with 

magnesium turnings (911 mg, 37.5 mmol) in a THF solution (7.5 mL) of ZnCl2 (8.25 mmol) and 

LiCl (11.3 mmol) at 25 °C for 2 h. After subsequent cannulation to another argon-flushed 

Schlenk-flask, iodometric titration of the zinc reagent 103a indicated a concentration of 0.39 M. 

 

Bis[2-(trifluoromethyl)phenyl]zinc (103b) 

 

According to TP11 1-bromo-2-(trifluoromethyl)benzene (6.75 g, 30.0 mmol, in 15.0 mL THF) 

was reacted with magnesium turnings (729 mg, 75.0 mmol) in a THF solution (15 mL) of ZnCl2 

(16.5 mmol) and LiCl (22.5 mmol) at 25 °C for 3 h. After subsequent cannulation to another 

argon-flushed Schlenk-flask, iodometric titration of the zinc reagent 103b indicated a 

concentration of 0.42 M. 
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Bis(4-chlorophenyl)zinc (103c) 

 

According to TP11 1-bromo-4-chlorobenzene (3.83 g, 20.0 mmol, in 4.0 mL THF) was reacted 

with magnesium turnings (1.22 g, 50.0 mmol) in a THF solution (10 mL) of ZnCl2 (11.0 mmol) 

and LiCl (15.0 mmol) at 25 °C for 1.5 h. After subsequent cannulation to another argon-flushed 

Schlenk-flask, iodometric titration of the zinc reagent 103c indicated a concentration of 0.71 M. 

 

Bis(4-trimethylsilylphenyl)zinc (103d) 

 

According to TP11 (4-bromophenyl)trimethylsilane (2.29 g, 10.0 mmol, in 8.0 mL THF) was 

reacted with magnesium turnings (608 mg, 25.0 mmol) in a THF solution (5 mL) of ZnCl2 

(6.0 mmol) and LiCl (7.5 mmol) at 25 °C for 2 h. After subsequent cannulation to another argon-

flushed Schlenk-flask, iodometric titration of the zinc reagent 103d indicated a concentration of 

0.28 M. 

 

Bis[4-(dimethylamino)phenyl]zinc (103e) 

 

According to TP11 (4-bromophenyl)dimethylamine (8.00 g, 40.0 mmol, in 16.0 mL THF) was 

reacted with magnesium turnings (2.43 g, 100 mmol) in a THF solution (20 mL) of ZnCl2 

(22.0 mmol) and LiCl (30.0 mmol) at 25 °C for 1 h. After subsequent cannulation to another 

argon-flushed Schlenk-flask, iodometric titration of the zinc reagent 103e indicated a 

concentration of 0.41 M. 

 

Bis[2-(dimethylamino)phenyl]zinc (103f) 

 

According to TP11 (2-bromophenyl)dimethylamine (2.00 g, 10.0 mmol, in 6.7 mL THF) was 

reacted with magnesium turnings (608 mg, 25.0 mmol) in a THF solution (5.0 mL) of ZnCl2 

(5.5 mmol) and LiCl (7.5 mmol) at 25 °C for 2 h. After subsequent cannulation to another  
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argon-flushed Schlenk-flask, iodometric titration of the zinc reagent 103f indicated a 

concentration of 0.29 M. 

 

Bis(3-methyl-1-phenyl-1H-pyrazol-5-yl)zinc (103g) 

 

According to TP11 5-chloro-3-methyl-1-phenyl-1H-pyrazole (2.70 g, 14.0 mmol, in 9.3 mL 

THF) was reacted with magnesium turnings (851 mg, 34.9 mmol) in a THF solution (7 mL) of 

ZnCl2 (7.7 mmol) and LiCl (10.5 mmol) at 25 °C for 4 h. After subsequent cannulation to another 

argon-flushed Schlenk-flask, iodometric titration of the zinc reagent 103g indicated a 

concentration of 0.34 M.   

 

Bis(3,5-dimethylisoxazol-4-yl)zinc (103h) 

 

According to TP11 4-bromo-3,5-dimethylisoxazole (3.52 g, 20.0 mmol, in 10.0 mL THF) was 

reacted with magnesium turnings (1.22 mg, 50.0 mmol) in a THF solution (10 mL) of ZnCl2 (11.0 

mmol) and LiCl (15.0 mmol) at 25 °C for 1 h. After subsequent cannulation to another argon-

flushed Schlenk-flask, iodometric titration of the zinc reagent 103h indicated a concentration of 

0.20 M.   

 

(5-Cyano-5-methylhexyl)zinc bromide (107a) 

 

According to TP11 6-bromo-2,2-dimethylhexanitrile (2.04 g, 10.0 mmol, in  5.0 mL THF) was 

reacted with magnesium turnings (608 mg, 25.0 mmol) in a THF solution (10 mL) of ZnCl2 (11.0 

mmol) and LiCl (15.0 mmol) at 25 °C for 4 h. After subsequent cannulation to another argon-

flushed Schlenk-flask, iodometric titration of the zinc reagent 107a indicated a concentration of 

0.79 M. 
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4-Fluorobenzylzinc chloride (95c) 

 

According to TP11 4-fluorobenzyl chloride (2.17 g, 15.0 mmol, in 7.5 mL THF) was reacted 

with magnesium turnings (911 mg, 37.5 mmol) in a THF solution (15 mL) of ZnCl2 (16.5 mmol) 

and LiCl (22.5 mmol) at 25 °C for 45 min. After subsequent cannulation to another argon-flushed 

Schlenk-flask, iodometric titration of the zinc reagent 95c indicated a concentration of 0.39 M.   

 

4-Methoxybenzylzinc chloride (95i) 

 

According to TP11 4-methoxybenzyl chloride (1.10 g, 7.00 mmol, in 1.0 mL THF) was reacted 

with magnesium powder (425 mg, 17.5 mmol) in a THF solution (7.0 mL) of ZnCl2 (7.7 mmol) 

and LiCl (10.5 mmol) at 25 °C for 2 h. After subsequent cannulation to another argon-flushed 

Schlenk-flask, iodometric titration of the zinc reagent 95i indicated a concentration of 0.72 M.   

 

3-(Ethoxycarbonyl)benzylzinc chloride (95m) 

 

According to TP11 3-(ethoxycarbonyl)benzyl chloride (1.39 g, 7.00 mmol, in 3.75 mL THF) was 

reacted with magnesium turnings (425 mg, 17.5 mmol) in a THF solution (15 mL) of ZnCl2 (7.70 

mmol) and LiCl (10.5 mmol) at 25 °C for 2 h. After subsequent cannulation to another argon-

flushed Schlenk-flask, iodometric titration of the zinc reagent 95m indicated a concentration of 

0.40 M.   

 

Bis(3-ethoxycarbonyl)benzylzinc (106a) 

 

According to TP11 3-(ethoxycarbonyl)benzyl chloride (2.71 g, 13.6 mmol, in 12 mL THF)  was 

reacted with magnesium turnings (826 mg, 34.0 mmol) in a THF solution (6.80 mL) of ZnCl2 

(7.45 mmol) and LiCl (10.2 mmol) at 25 °C for 1.5 h. After subsequent cannulation to another 

argon-flushed Schlenk-flask, iodometric titration of the zinc reagent 106a (premix of an aliqout 

with excess ZnCl2 solution (1.00 M in THF)) indicated a concentration of 0.33 M.   
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Bis(3-methoxybenzyl)zinc (106b) 

 

According to TP11 3-methoxybenzyl chlorid (2.35 g, 15.0 mmol, in 8.0 mL THF) was reacted 

with magnesium turnings (608 mg, 25.0 mmol) in a THF solution (7.5 mL) of ZnCl2 (8.25 mmol) 

and LiCl (11.3 mmol) at 25 °C for 2 h. After subsequent cannulation to another argon-flushed 

Schlenk-flask, iodometric titration of the zinc reagent 106b (premix of an aliqout with excess 

ZnCl2 solution (1.00 M in THF)) indicated a concentration of 0.31 M. 

 

Bis(benzyl)zinc (106c) 

 

According to TP11 benzyl chlorid (1.27 g, 10.0 mmol, in 2.0 mL THF) was reacted with 

magnesium turnings (608 mg, 25.0 mmol) in a THF solution (5.0 mL) of ZnCl2 (5.5 mmol) and 

LiCl (7.5 mmol) at 25 °C for 1 h. After subsequent cannulation to another argon-flushed Schlenk-

flask, iodometric titration of the zinc reagent 106c (premix of an aliqout with excess ZnCl2 

solution (1.00 M in THF)) indicated a concentration of 0.42 M. 

 

4.2.2. Preparation of the title compounds 

(2-Chlorophenyl)(phenyl)methanol (101) 

 

According to TP12 phenylzinc iodide·MgCl2 (93b; 2.65 mL, 1.80 mmol, 0.68 M in THF) was 

added to 2-chlorobenzaldehyde (61a; 211 mg, 1.50 mmol, in 3.87 mL THF). The reaction 

mixture was stirred for 1 h at 25 °C. Purification by flash chromatography (silica gel, 

pentane / Et2O = 9:1 + 1 vol-% NEt3) afforded the alcohol 101 (289 mg, 88%) as a pale yellow 

solid. 

M.p. (°C): 71-73. 
1H-NMR (400 MHz, C6D6): δ / ppm = 7.59-7.52 (m, 1H), 7.37-7.31 (m, 2H), 7.13-7.06 (m, 3H), 

7.05-6.99 (m, 1H), 6.94-6.87 (m, 1H), 6.78-6.71 (m, 1H), 6.04 (s, 1H), 1.66 (sbr, 1H). 
13C-NMR (100 MHz, C6D6): δ / ppm = 143.1, 142.1, 132.7, 129.5, 128.7, 128.5, 128.5, 127.7, 

127.2, 127.1, 72.6.  
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IR (Diamond-ATR, neat): ν~  / cm-1 = 3174 (w), 1570 (vw), 1465 (w), 1456 (w), 1440 (w), 1315 

(w), 1236 (w), 1183 (m), 1122 (w), 1075 (w), 1059 (w), 1024 (m), 953 (w), 916 (vw), 877 (vw), 

853 (w), 824 (w), 760 (vs), 725 (m), 696 (s). 

MS (EI, 70 eV): m/z (%) = 218 (M+, 100), 201 (13), 183 (13), 165 (47), 140 (24), 112 ( 20), 105 

(70), 77 (38). 

HRMS (C13H11ClO):  calc.: 218.0498; found: 218.0493. 

 

Ethyl 3-{2-[4-(dimethylamino)phenyl]-2-hydroxyethyl}benzoate (105) 

 

According to TP12 3-(ethoxycarbonyl)benzylzinc chloride·MgCl2 (95m; 3.90 mL, 1.56 mmol, 

0.40 M in THF) was added to 4-(dimethylamino)benzaldehyde (61h; 194 mg, 1.30 mmol, in 

1.0 mL THF). The reaction mixture was stirred for 6 h at 25 °C. Purification by flash 

chromatography (silica gel, pentane / Et2O = 1:1 + 1 vol-% NEt3) afforded the alcohol 105 

(326 mg, 80%) as a yellow oil.   
1H-NMR (300 MHz, C6D6): δ / ppm = 8.21-8.17 (m, 1H), 8.08-8.02 (m, 1H), 7.19-7.15 (m, 3H), 

7.03 (t, J = 7.7, 1H), 6.61-6.54 (m, 2H), 4.66 (dd, J = 7.9 Hz, 5.5 Hz, 1H), 4.13 (q, J = 7.2 Hz, 

2H), 3.09-2.98 (m, 1H), 2.97-2.88 (m, 1H), 2.51 (s, 6H), 1.70 (sbr, 1H) 1.02 (t, J = 7.2 Hz, 3H). 
13C-NMR (75 MHz, C6D6): δ / ppm = 166.5, 150.4, 139.8, 134.5, 132.7, 131.2, 131.1, 128.6, 

127.7, 127.2, 112.7, 75.1, 60.7, 46.1, 40.3, 14.3.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3412 (w), 2980 (w), 2885 (w), 2801 (w), 1713 (s), 1614 

(m), 1521 (s), 1444 (m), 1348 (m), 1277 (vs), 1193 (vs), 1163 (s), 1104 (s), 1082 (s), 1022 (s), 

946 (m), 817 (s), 751 (s), 691 (m), 672 (w). 

MS (EI, 70 eV): m/z (%) = 313 (M+, <1), 295 (100), 267 (13), 222 (2), 178 (4), 125 (3), 110 (3). 

HRMS (C19H23NO3): calc.: 313.1678; found: 313.1669. 
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8,8,8-Trifluoro-7-hydroxy-2,2-dimethyl-7-phenyloctanenitrile (109) 

 

According to TP12 (5-cyano-5-methylhexyl)zinc bromide·MgCl2 (107a; 1.40 mL, 1.09 mmol, 

0.78 M in THF) was added to 2,2,2-trifluoro-1-phenylethanone (58l; 146 mg, 0.84 mmol). The 

reaction mixture was stirred for 6 h at 25 °C. Purification by flash chromatography (silica gel, 

pentane / Et2O = 4:1) afforded the alcohol 109 (192 mg, 76%) as a white solid.   

M.p. (°C): 76-78. 
1H-NMR (400 MHz, C6D6): δ / ppm = 7.46 (d, J = 7.8 Hz, 2H), 7.13-7.07 (m, 2H), 7.05-6.99 

(m, 1H), 2.40-2.19 (sbr, 1H), 1.96-1.85 (m, 1H), 1.69-1.59 (m, 1H), 1.13-0.92 (m, 3H), 0.78-0.66 

(m, 3H), 0.73 (s, 3H), 0.71 (s, 3H). 
13C-NMR (100 MHz, C6D6): δ / ppm = 137.0, 128.5, 128.5, 126.7 (q, 3JC-F = 1.3 Hz), 126.5 (q, 
1JC-F = 286.1 Hz), 124.7, 77.3 (q, 2JC-F = 27.8 Hz), 40.6, 35.1, 32.0, 26.4, 26.1, 25.5, 22.5.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3443 (w), 2978 (vw), 2941 (w), 2858 (vw), 2242 (vw), 

1502 (vw), 1470 (w), 1452 (w), 1406 (w), 1372 (w), 1307 (w), 1275 (m), 1243 (m), 1212 (m), 

1182 (m), 1151 (vs), 1075 (m), 987 (m), 934 (w), 916 (w), 895 (w), 767 (m), 734 (w), 704 (s), 

689 (m). 

HRMS (ESI; C16H20F3NO): calc.: 322.1395 ([M+Na]+); found: 322.1390 ([M+Na]+). 

 

4-[Hydroxy(4-methylphenyl)methyl]benzonitrile (110a) 

 

According to TP12 tolylzinc iodide·MgCl2 (93e; 3.46 mL, 1.80 mmol, 0.52 M in THF) was 

added to 4-formylbenzonitrile (61i; 197 mg, 1.50 mmol, in 0.5 mL THF). The reaction mixture 

was stirred for 13 h at 25 °C. Purification by flash chromatography (silica gel, pentane / Et2O = 

1:1) afforded the alcohol 110a (244 mg, 73%) as a pale yellow solid.   

M.p. (°C): 44-46. 
1H-NMR (400 MHz, C6D6): δ / ppm = 7.03-6.97 (m, 6H), 6.96-6.91 (m, 2H), 5.26 (d, J = 2.7 

Hz, 1H), 2.07 (s, 3H), 1.80 (d, J = 3.3 Hz, 1H). 
13C-NMR (100 MHz, C6D6): δ / ppm = 149.3, 140.8, 137.7, 132.0, 129.4, 127.0, 126.9, 118.9, 

111.3, 75.3, 21.0.  
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IR (Diamond-ATR, neat): ν~  / cm-1 = 3448 (m), 2234 (m), 1607 (m), 1503 (w), 1404 (m), 1322 

(w), 1265 (w), 1230 (m), 1189 (m), 1173 (m), 1120 (w), 1052 (s), 1018 (m), 871 (m), 812 (vs), 

770 (vs), 744 (m).  

MS (EI, 70 eV): m/z (%) = 223 (M+, 26), 208 (30), 189 (13), 130 (40), 121 (17), 118 (33), 104 

(29), 93 (100), 76 (35), 65 (25); 51 (14). 

HRMS (C15H13NO): calc.: 223.0997; found: 223. 0991. 

 

4-[Hydroxy(3-methyl-1-phenyl-1H-pyrazol-5-yl)methyl]benzonitrile (110b) 

 

According to TP12 (3-methyl-1-phenyl-1H-pyrazol-5-yl)zinc chloride·MgCl2 (93f; 3.16 mL, 

1.80 mmol, 0.57 M in THF) was added to 4-formylbenzonitrile (61i; 197 mg, 1.50 mmol, in 

2.0 mL THF). The reaction mixture was stirred for 10 h at 25 °C. Purification by flash 

chromatography (silica gel, pentane / Et2O = 1:1 to Et2O) afforded the alcohol 110b (425 mg, 

98%) as a white solid.   

M.p. (°C): 140-142. 
1H-NMR (300 MHz, C6D6): δ / ppm = 7.56-7.50 (m, 2H), 7.36 (s, 5H), 7.34-7.28 (m, 2H), 5.91 

(s, 1H), 5.75 (s, 1H), 3.43 (s, 1H), 2.22 (s, 3H). 
13C-NMR (75 MHz, C6D6): δ / ppm = 149.1, 146.7, 145.1, 139.1, 132.1, 129.2, 128.4, 126.9, 

125.5, 118.5, 111.5, 106.6, 67.1, 13.3.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3265 (w), 2927 (w), 2228 (m), 1598 (w), 1538 (m), 1502 

(m), 1440 (m), 1407 (m), 1370 (m), 1323 (w), 1230 (w), 1197 (w), 1055 (s), 1034 (s), 1028 (m), 

860 (m), 810 (vs), 797 (s), 770 (s), 748 (m), 698 (s), 685 (m), 660 (w).  

MS (EI, 70 eV): m/z (%) = 289 (M+, 100), 272 (8), 159 (36), 130 (11), 118 (6), 77 (19). 

HRMS (C18H15N3O): calc.: 289.1215; found: 289.1204. 

 

(4-Chlorophenyl)[4-(trimethylsilyl)phenyl]methanone (110c)  

 

According to TP12 4-(trimethylsilyphenyl)zinc bromide·2MgCl2 (93g; 2.40 mL, 1.80 mmol, 

0.75 M in THF) was added to 4-chlorobenzoyl chloride (60d; 525 mg, 3.00 mmol, in 6.0 mL 
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THF) and the reaction mixture was stirred for 18 h at 50 °C. Purification by flash 

chromatography (silica gel, pentane / Et2O = 98:2) afforded the ketone 110c (423 mg, 81%) as 

white solid.  

M.p. (°C): 67-69. 
1H-NMR (400 MHz, C6D6):  δ / ppm = 7.70-7.66 (m, 2H), 7.50-7.45 (m, 2H), 7.42-7.38 (m, 

2H), 7.03-6.97 (m, 2H), 0.18 (s, 9H). 
13C-NMR (100 MHz, C6D6):  δ / ppm = 194.6, 145.9, 138.6, 138.1, 136.3, 133.5, 131.6, 129.1, 

128.7, -1.4. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2956 (w), 1725 (vw), 1646 (m), 1586 (m), 1543 (w), 1482 

(w), 1387 (m), 1300 (m), 1283 (m), 1254 (m), 1173 (w), 1151 (w), 1085 (m), 1012 (w), 967 (w), 

958 (w), 929 (m), 836 (vs), 824 (vs), 754 (s), 741 (s), 706 (m), 672 (s). 

MS (EI, 70 eV): m/z (%) = 288 (M+, 29), 275 (100), 139 (10), 73 (7). 

HRMS (C16H17ClOSi): calc.: 288.0737; found: 288.0736. 

 

Pyridin-4-yl[2-(trifluoromethyl)phenyl]methanol (11 0d) 

 

According to TP12 isonicotinaldehyde (61j; 161 mg, 1.50 mmol) was added to bis[2-

(trifluoromethyl)phenyl]zinc·2MgX2 (103b; X = Cl, Br; 2.20 mL, 0.90 mmol, 0.41 M in THF). 

The reaction mixture was stirred for 8 h at 25 °C. Purification by flash chromatography (silica 

gel, Et2O + 1 vol-% NEt3) afforded the alcohol 110d (311 mg, 82%) as a white solid.  

M.p. (°C): 159-160. 
1H-NMR (400 MHz, DMSO-d6): δ / ppm = 8.50 (d, J = 1.6 Hz, 1H), 8.49 (d, J = 1.6 Hz, 1H), 

7.75-7.70 (m, 1H), 7.70-7.64 (m, 1H), 7.63-7.58 (m, 1H), 7.54-7.46 (m, 1H), 7.27-7.22 (m, 2H), 

6.48 (d, J = 4.7 Hz, 1H), 5.99 (d, J = 4.5 Hz, 1H). 
13C-NMR (100 MHz, DMSO-d6): δ / ppm = 152.7, 149.6, 142.2 (q, 4JC-F = 1.5 Hz), 132.9 (q, 
4JC-F = 1.1 Hz), 129.8, 128.1, 126.0 (q, 2JC-F = 29.6 Hz), 125.3 (q, 3JC-F = 5.8 Hz), 124.4 (q, 1JC-F 

= 274.0 Hz), 121.3, 68.4 (q, 4JC-F = 2.3 Hz).  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3042 (w), 2924 (w), 2850 (w), 1738 (w), 1602 (m), 1583 

(w), 1452 (m), 1416 (m), 1310 (s), 1282 (m), 1247 (w), 1152 (s), 1109 (vs), 1063 (s), 1051 (s), 

1032 (s), 1006 (s), 791 (s), 766 (s), 752 (s), 669 (m).  
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MS (EI, 70 eV): m/z (%) = 253 (M+, 72), 237 (17), 233 (18), 204 (60), 184 (28), 155 (100), 145 

(19), 127 (58), 106 (33), 80 (59), 51 (20). 

HRMS (C13H10F3NO): calc.: 253.0714; found: 253.0711. 

 

(6-Bromo-1,3-benzodioxol-5-yl)(4-chlorophenyl)methanol (110e)  

 

According to TP12  bis(4-chlorophenyl)zinc·2MgX2 (103c; X = Cl, Br; 6.00 mL, 0.90 mmol, 

0.15 M in THF) was added to 6-bromo-1,3-benzodioxole-5-carbaldehyde (61k; 344 mg, 

1.50 mmol, in 1.0 mL THF). The reaction mixture was stirred for 10 h at 25 °C. Purification by 

flash chromatography (silica gel, pentane / Et2O = 6:1 + 1 vol-% NEt3) afforded the alcohol 110e 

(438 mg, 85%) as pale yellow oil.  
1H-NMR (400 MHz, acetone-d6):  δ / ppm = 7.44-7.38 (m, 2H), 7.35-7.30 (m, 2H), 7.12 (s, 

1H), 7.02 (s, 1H), 6.07 (s, 1H), 6.05 (d, J = 1.0 Hz, 1H), 6.01 (d, J = 1.0 Hz, 1H), 2.83 (sbr, 1H).  
13C-NMR (100 MHz, acetone-d6):  δ / ppm = 148.8, 148.7, 143.7, 138.0, 133.2, 129.3, 129.0, 

112.9, 112.7, 108.8, 103.0, 73.6. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3316 (w), 2973 (w), 2896 (w), 1596 (vw), 1501 (m), 1471 

(vs), 1407 (m), 1388 (m), 1231 (s), 1103 (m), 1090 (m), 1035 (vs), 1013 (s), 966 (m), 931 (s), 

845 (s), 780 (m), 728 (w), 672 (w). 

MS (EI, 70 eV): m/z (%) = 342 (100), 340 (M+, 76), 229 (48), 209 (13), 201 (10), 149 (14), 139 

(50), 122 (35), 110 (10), 77 (18), 63 (8). 

HRMS (C14H10BrClO 3): calc.: 339.9502; found: 339.9504. 

 

4-[1-Hydroxy-1-(4-methoxyphenyl)ethyl]benzonitrile (110f)  

 

According to TP12 bis(4-methoxyphenyl)zinc·2MgX2 (103a; X = Cl, Br; 2.31 mL, 0.90 mmol, 

0.39 M in THF) was added to 4-acetylbenzonitrile (58m; 218 mg, 1.50 mmol, in 0.5 mL THF) 

and the reaction mixture was stirred for 1 h at 25 °C. Purification by flash chromatography (silica 

gel, pentane / Et2O = 9:1 + 1 vol-% NEt3) afforded the alcohol 110f (236 mg, 62%) as white 

solid.  
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M.p. (°C): 77-79. 
1H-NMR (400 MHz, C6D6): δ / ppm = 7.13-7.07 (m, 4H), 7.05-7.00 (m, 2H), 6.76-6.70 (m, 2H), 

3.30 (s, 3H), 1.70 (sbr, 1H), 1.50 (s, 3H).  
13C-NMR (100 MHz, C6D6):  δ / ppm = 159.3, 153.7, 139.5, 131.8, 127.4, 126.6, 118.9, 113.8, 

111.0, 75.2, 54.8, 30.5.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3494 (m), 2967 (w), 2231 (m), 1607 (m), 1504 (s), 1448 

(m), 1403 (m), 1367 (m), 1299 (w), 1245 (vs), 1194 (m), 1178 (s), 1134 (m), 1090 (m), 1061 (m), 

1028 (vs), 960 (w), 919 (m), 840 (s), 816 (s), 696 (w). 

MS (EI, 70 eV): m/z (%) = 253 (M+, 12), 235 (100), 220 (27), 190 (9), 151 (8), 130 (21), 43 (5). 

HRMS (C16H15NO2): calc.: 253.1103; found: 253.1094. 

 

4-{Hydroxy[4-(trimethylsilyl)phenyl]methyl}benzonit rile (110g) 

 

According to TP2b bis[4-(trimethylsilyl)phenyl]zinc·2MgX2 (103d; X = Cl, Br; 3.21 mL, 

0.90 mmol, 0.28 M in THF) was added to 4-formylbenzonitrile (61i; 197 mg, 1.50 mmol, in 

0.5 mL THF). The reaction mixture was stirred for 6 h at 25 °C. Purification by flash 

chromatography (silica gel, pentane / EtOAc = 12:1 + 1 vol-% NEt3) afforded the alcohol 110g 

(401 mg, 95%) as a pale yellow solid.   

M.p. (°C): 73-75. 
1H-NMR (300 MHz, C6D6): δ / ppm = 7.45-7.40 (m, 2H), 7.18-7.12 (m, 2H), 7.04-6.96 (m, 4H), 

5.27 (s, 1H), 1.82 (s, 1H), 0.20 (s, 9H). 
13C-NMR (75 MHz, C6D6): δ / ppm = 149.0, 144.2, 140.2, 133.9, 132.0, 127.0, 126.3, 118.8, 

111.5, 75.4, -1.2. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3243 (w), 2956 (w), 2902 (w), 2231 (w), 1598 (w), 1500 

(w), 1404 (w), 1328 (w), 1275 (w), 1250 (m), 1187 (w), 1172 (w), 1108 (w), 1028 (m), 1014 (m), 

836 (vs), 808 (vs), 745 (m), 678 (m). 

MS (EI, 70 eV): m/z (%) = 281 (M+, 5), 266 (100), 250 (17), 190 (6), 119 (3), 73 (7). 

HRMS (C17H19NOSi): calc.: 281.1236; found: 281.1223. 
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Dicyclopropyl[4-(dimethylamino)phenyl]methanol (110h) 

 

According to TP12 dicyclopropylmethanone (58g; 165 mg, 1.50 mmol) was added to bis[4-

(dimethylamino)phenyl]zinc·2MgX2 (103e; X = Cl, Br; 2.14 mL, 0.90 mmol, 0.42 M in THF). 

The reaction mixture was stirred for 24 h at 50 °C. Purification by flash chromatography (silica 

gel, pentane / EtOAc = 8:1 + 1 vol-% NEt3) afforded the alcohol 110h (257 mg, 74%) as a yellow 

oil. 
1H-NMR (400 MHz, C6D6) δ / ppm = 7.61-7.53 (m, 2H), 6.71-6.64 (m, 2H), 2.56 (s, 6H), 1.17-

1.08 (m, 2H), 1.05 (sbr, 1H), 0.67-0.58 (m, 2H), 0.52-0.44 (m, 2H), 0.41-0.33 (m, 2H), 0.31-0.20 

(m, 2H). 
13C-NMR (100 MHz, C6D6) δ / ppm = 149.8, 135.7, 127.1, 112.4, 73.1, 40.4, 21.5, 1.9, 0.7. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3084 (w), 3005 (w), 2882 (w), 2799 (w), 1612 (s), 1563 

(w), 1519 (vs), 1480 (m), 1444 (m), 1424 (w), 1346 (m), 1221 (m), 1191 (m), 1157 (s), 1056 (m), 

1024 (s), 992 (m), 947 (m), 914 (m), 871 (m), 849 (m), 812 (vs), 751 (w), 732 (w). 

MS (EI, 70 eV): m/z (%) = 231 (M+, 32), 213 (100), 198 (24), 190 (27), 185 (19), 172 (38), 141 

(14). 

HRMS (C15H21NO): calc.: 231.1623; found: 231.1616. 

 

[2-(Dimethylamino)phenyl][4-(trifluoromethyl)phenyl ]methanol (110i)  

 

According to TP12 bis[2-(dimethylamino)phenyl]zinc·2MgX2 (103f; X = Cl, Br; 3.00 mL, 0.90 

mmol, 0.30 M in THF). was added to 4-(trifluoromethyl)benzaldehyde (61l; 261 mg, 1.5 mmol) 

The reaction mixture was stirred for 3 h at 25 °C. Purification by flash chromatography (silica 

gel, pentane / EtOAc = 8:1 + 1 vol-% NEt3) afforded the alcohol 110i (413 mg, 93%) as a yellow 

oil. 
1H-NMR (400 MHz, DMSO-d6): δ / ppm = 7.63 (d, J = 8.2 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 

7.32-7.26 (m, 1H), 7.24-7.18 (m, 2H), 7.09-7.02 (m, 1H), 6.27 (d, J = 4.3 Hz, 1H), 6.01 (d, J = 

4.9 Hz, 1H), 2.61 (s, 6H).   
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13C-NMR (100 MHz, DMSO-d6):  δ / ppm = 151.6, 150.7 (q, 4JC-F = 1.5 Hz), 139.7, 128.0, 

128.0, 127.0 (q, 2JC-F = 31.9 Hz), 126.8, 124.8 (q, 3JC-F = 3.8 Hz), 124.4 (q, 1JC-F = 271.7 Hz), 

124.1, 120.3, 68.3, 45.4.    

IR (Diamond-ATR, neat): ν~  / cm-1 = 3390 (vw), 2945 (w), 2866 (w), 2833 (w), 2790 (w), 1618 

(w), 1599 (w), 1489 (m), 1454 (w), 1412 (w), 1322 (vs), 1160 (s), 1110 (s), 1065 (s), 1035 (m), 

1016 (s), 936 (m), 859 (m), 805 (m), 768 (m), 744 (m), 664 (m). 

MS (EI, 70 eV): m/z (%) = 295 (M+, 94), 280 (100), 276 (20), 262 (65), 242 (69), 173 (16), 145 

(12), 106 (9), 91 (10), 77 (11). 

HRMS (C16H16F3NO): calc.: 295.1184; found: 295.1178. 

 

[4-(Allyloxy)phenyl](3-methyl-1-phenyl-1H-pyrazol-5-yl)methanol (110j) 

 

According to TP12 4-(allyoxy)benzaldehyde (61m; 243 mg, 1.50 mmol) was added to bis(3-

methyl-1-phenyl-1H-pyrazol-5-yl)zinc·2MgCl2 (103g; 2.65 mL, 0.90 mmol, 0.34 M in THF). The 

reaction mixture was stirred for 15 h at 25 °C. Purification by flash chromatography (silica gel, 

pentane / EtOAc = 1:2 + 1 vol-% NEt3) afforded the alcohol 110j (439 mg, 91%) as a pale yellow 

oil.   
1H-NMR (400 MHz, C6D6): δ / ppm = 7.63-7.58 (m, 2H), 7.14-7.03 (m, 4H), 7.00-6.94 (m, 1H), 

6.77-6.71 (m, 2H), 6.05 (s, 1H), 5.86-5.74 (m, 1H), 5.66 (s, 1H), 5.25-5.17 (m, 1H), 5.05-4.99 

(m, 1H), 4.14-4.09 (m, 2H), 2.70 (s, 1H), 2.26 (s, 3H). 
13C-NMR (100 MHz, C6D6): δ / ppm = 158.6, 148.9, 146.9, 140.7, 135.1, 133.7, 129.0, 128.1, 

127.4, 125.4, 117.0, 114.7, 107.2, 68.6, 68.0, 13.7.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3241 (w), 3070 (w), 2923 (w), 2866 (w), 1609 (m), 1598 

(m), 1548 (w), 1502 (vs), 1458 (m), 1425 (m), 1366 (m), 1302 (m), 1239 (s), 1222 (s), 1173 (s), 

1127 (m), 1020 (vs), 997 (s), 920 (m), 793 (s), 763 (vs), 695 (vs), 673 (s), 659 (s). 

MS (EI, 70 eV): m/z (%) = 320 (M+, 100), 303 (35), 279 (96), 261 (34), 233 (13), 185 (24), 169 

(9), 159 (17), 77 (17), 41 (17). 

HRMS (C20H20N2O2): calc.: 320.1525; found: 320.1512. 
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(3-Chlorophenyl)(3-methyl-1-phenyl-1H-pyrazol-5-yl)methanol (110k)  

 

According to TP12 3-chlorobenzaldehyde (61c; 211 mg, 1.50 mmol) was added to bis(3-methyl-

1-phenyl-1H-pyrazol-5-yl)zinc·2MgCl2 (103g; 2.65 mL, 0.90 mmol, 0.34 M in THF). The 

reaction mixture was stirred for 6 h at 25 °C. Purification by flash chromatography (silica gel, 

pentane / Et2O = 1:1 + 1 vol-% NEt3) afforded the alcohol 110k (358 mg, 80%) as a white solid.   

M.p. (°C): 100-102. 
1H-NMR (400 MHz, C6D6): δ / ppm = 7.53-7.47 (m, 2H), 7.28-7.25 (m, 1H), 7.07-6.94 (m, 4H), 

6.87-6.83 (m, 1H), 6.74 (t, J = 7.7 Hz, 1H), 5.78 (s, 1H), 5.45 (s, 1H), 2.92 (s, 1H), 2.16 (s, 3H). 
13C-NMR (100 MHz, C6D6):  δ / ppm = 149.0, 145.8, 144.9, 140.3, 134.4, 129.6, 129.1, 127.8, 

127.7, 126.9, 125.5, 124.8, 107.3, 67.3, 13.5. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3261 (w), 2926 (vw), 1597 (w), 1575 (w), 1543 (w), 1504 

(m), 1481 (w), 1437 (m), 1370 (m), 1338 (w), 1298 (w), 1232 (w), 1194 (m), 1146 (w), 1130 (w), 

1098 (w), 1079 (w), 1050 (m), 1032 (s), 1000 (w), 918 (vw), 888 (w), 874 (w), 826 (w), 797 (vs), 

772 (vs), 726 (s), 697 (vs), 660 (m). 

MS (EI, 70 eV): m/z (%) = 298 (M+, 100), 221 (5), 204 (7), 185 (12), 159 (48), 139 (9), 116 (4), 

77 (11). 

HRMS (C17H15ClN2O): calc.: 298.0873; found: 298.0869. 

 

(3,4-Dichlorophenyl)(3,5-dimethylisoxazol-4-yl)methanol (110l) 

 

According to TP12 bis(3,5-dimethylisoxazol-4-yl)zinc·2MgX2 (103h; X = Cl, Br; 3.64 mL, 

1.20 mmol, 0.33 M in THF) was added to 3,4-dichlorobenzaldehyde (61b; 350 mg, 2.00 mmol, in 

1.0 mL THF). The reaction mixture was stirred for 24 h at 25 °C. Purification by flash 

chromatography (silica gel, pentane / EtOAc = 2:1 + 1 vol-% NEt3) afforded the alcohol 110l 

(451 mg, 83%) as a white solid. 

M.p. (°C): 108-110.   
1H-NMR (300 MHz, C6D6): δ / ppm = 7.54-7.50 (m, 1H), 7.01 (dd, J = 8.1 Hz, 1.4 Hz, 1H), 

6.69 (t, J = 7.9 Hz, 1H), 5.56 (s, 1H), 2.64 (s, 1H), 1.95 (s, 3H), 1.81 (s, 3H). 
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13C-NMR (75 MHz, C6D6): δ / ppm = 166.5, 158.9, 142.1, 133.5, 130.5, 129.5, 127.1, 126.3, 

114.5, 64.8, 11.2, 10.6.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3541 (vw), 3301 (w), 2954 (w), 2923 (m), 2853 (m), 1624 

(m), 1446 (m), 1414 (s), 1381 (m), 1323 (w), 1269 (m), 1176 (s), 1153 (m), 1063 (s), 1036 (s), 

877 (s), 818 (m), 776 (vs), 748 (s), 680 (s). 

MS (EI, 70 eV): m/z (%) = 271 (M+, 54), 236 (21), 228 (13), 212 (10), 195 (100), 173 (19), 126 

(76), 108 (14), 84 (25), 42 (35). 

HRMS (C12H11Cl2NO2): calc.: 271.0167; found: 271.0165. 

 

(3,5-Dimethylisoxazol-4-yl)[4-(1H-1,2,4-triazol-1-yl)phenyl]methanol (110m)  

 

According to TP12 bis(3,5-dimethylisoxazol-4-yl)zinc·2MgX2 (103h; X = Cl, Br; 3.64 mL, 

1.20 mmol, 0.33 M in THF) was added to 4-(1H-1,2,4-triazol-1-yl)benzaldehyde (61n; 346 mg, 

2.00 mmol, in 1.0 mL THF). The reaction mixture was stirred for 14 h at 25 °C. Purification by 

flash chromatography (silica gel, EtOAc + 1 vol-% NEt3) afforded the alcohol 110m (413 mg, 

76%) as a white solid. 
M.p. (°C): 129-130. 
1H-NMR (400 MHz, acetone-d6): δ / ppm = 9.01 (s, 1H), 8.08 (s, 1H), 7.89-7.81 (m, 2H), 7.62-

7.55 (m, 2H), 5.93 (s, 1H), 2.91 (sbr, 1H), 2.36 (s, 3H), 2.03 (s, 3H).   
13C-NMR (100 MHz, acetone-d6):  δ / ppm = 166.4, 159.4, 153.2, 144.0, 142.4, 137.1, 128.0, 

120.2, 117.7, 66.2, 11.3, 10.8. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3560 (vw), 3328 (m), 3124 (w), 3084 (w), 1608 (m), 1522 

(vs), 1458 (m), 1438 (m), 1424 (s), 1360 (m), 1320 (w), 1274 (s), 1248 (m), 1226 (m), 1194 (m), 

1174 (m), 1154 (s), 1050 (s), 1032 (s), 982 (s), 958 (m), 862 (s), 792 (vs), 674 (vs), 648 (m). 

MS (EI, 70 eV): m/z (%) = 270 (M+, 29), 253 (8), 211 (7), 172 (9), 146 (100), 124 (13), 82 (7), 

43 (9). 

HRMS (C14H14N4O4): calc.: 270.1117; found: 270.1115. 
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1-(4-Fluorobenzyl)-1,2,3,4-tetrahydronaphthalen-1-ol (111a) 

 

According to TP12 4-fluorobenzylzinc chloride·MgCl2 (95c; 3.12 mL, 2.40 mmol, 0.77 M in 

THF) was added to α-tetralone (58e; 292 mg, 2.00 mmol, in 1 mL THF). The reaction mixture 

was stirred for 9 h at 25 °C. Purification by flash chromatography (silica gel, pentane / Et2O = 

10:1 + 1 vol-% NEt3) afforded the alcohol 111a (378 mg, 74%) as a pale yellow oil.   
1H-NMR (400 MHz, C6D6): δ / ppm = 7.52-7.48 (m, 1H), 7.13-7.03 (m, 2H), 7.00-6.93 (m, 2H), 

6.93-6.89 (m, 1H), 6.83-6.75 (m, 2H), 2.98 (d, J = 13.8 Hz, 1H), 2.70 (d, J = 13.8 Hz, 1H), 2.56-

2.40 (m, 2H), 1.67-1.59 (m, 1H), 1.52-1.44 (m, 2H), 1.42-1.35 (s, 1H), 1.33-1.24 (m, 1H). 
13C-NMR (100 MHz, C6D6): δ / ppm = 162.2 (d, 1JC-F = 243.7 Hz), 143.1, 136.5, 133.8 (d, 4JC-F 

= 3.1 Hz), 132.5 (d, 3JC-F = 7.7 Hz), 128.8, 127.2, 127.2, 126.3, 114.8 (d, 2JC-F = 21.1 Hz), 72.4, 

47.7, 35.9, 29.9, 20.2.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3435 (w), 3064 (w), 3020 (w), 2933 (m), 2868 (w), 1603 

(m), 1507 (vs), 1488 (m), 1449 (m), 1345 (w), 1219 (vs), 1157 (s), 1095 (m), 1078 (m), 1016 (s), 

971 (m), 946 (m), 834 (s), 822 (s), 792 (m), 776 (s), 764 (s), 733 (vs). 

MS (EI, 70 eV): m/z (%) = 255 ([M-H]+, <1), 238 (19), 147 (100), 129 (45), 109 (13), 91 (26). 

HRMS (C17H17FO): calc.: 255.1185 ([M-H]+); found: 255.1209 ([M-H]+). 

 

4-[2-(4-Fluorophenyl)-1-hydroxy-1-methylethyl]benzonitrile (111b)  

  

According to TP12 4-fluorobenzylzinc chloride·MgCl2 (95c; 4.62 mL, 1.80 mmol, 0.39 M in 

THF) was added to 4-acetylbenzonitrile (58m; 218 mg, 1.50 mmol, in 0.5 mL THF) and the 

reaction mixture was stirred for 15 h at 25 °C. Purification by flash chromatography (silica gel, 

pentane / Et2O = 1:1 + 1 vol-% NEt3) afforded the alcohol 111b (305 mg, 80%) as yellowish 

solid. 

M.p. (°C): 93-95. 
1H-NMR (300 MHz, C6D6): δ / ppm = 7.07-7.01 (m, 2H), 6.91-6.85 (m, 2H), 6.73-6.64 (m, 2H), 

6.61-6.53 (m, 2H), 2.54 (d, J = 13.6 Hz, 1H), 2.49 (d, J = 13.6 Hz, 1H), 1.22 (sbr, 1H), 1.05 (s, 

3H). 



 
C. Experimental Section  232 
13C-NMR (75 MHz, C6D6):  δ / ppm = 162 (d, 1JC-F = 244.8 Hz), 152.5, 132.2 (d, 3JC-F = 7.9 Hz), 

132.2 (d, 4JC-F = 3.1 Hz), 131.7, 125.9, 118.9, 115.0 (d, 2JC-F = 21.0 Hz), 111.0, 73.9 (d, 5JC-F = 

1.4 Hz), 49.3, 28.8. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3468 (m), 2234 (m), 1739 (w), 1606 (m), 1504 (m), 1404 

(m), 1379 (m), 1298 (w), 1220 (s), 1198 (m), 1144 (m), 1098 (m), 1075 (m), 1018 (m), 933 (m), 

836 (vs), 821 (s), 770 (m), 734 (m), 709 (m), 679 (m). 

HRMS (ESI; C16H14FNO): calc.: 273.1403 ([M+NH4]
+); found: 273.1397 ([M+NH4]

+). 

 

1-(2-Chlorophenyl)-1-(4-chlorophenyl)-2-(4-fluorophenyl)ethanol (111c) 

 

According to TP12 4-fluorobenzylzinc chloride·MgCl2 (95c; 4.62 mL, 1.80 mmol, 0.39 M in 

THF) was added to (2-chlorophenyl)(4-chlorophenyl)methanone (58n; 377 mg, 1.50 mmol, in 

0.5 mL THF) and the reaction mixture was stirred for 48 h at 25 °C. Purification by flash 

chromatography (silica gel, pentane / Et2O / CH2Cl2 = 18:1:1) afforded the alcohol 111c (422 mg, 

78%) as yellow solid. 

M.p. (°C): 90-92. 
1H-NMR (400 MHz, C6D6): δ / ppm = 7.39 (dd, J = 7.8 Hz, 1.8 Hz, 1H), 7.07-7.00 (m, 3H), 

6.88-6.63 (m, 8H), 3.70 (d, J = 13.1 Hz, 1H), 3.04 (d, J = 13.1 Hz, 1H), 2.31 (sbr, 1H). 
13C-NMR (100 MHz, C6D6):  δ / ppm = 161.8 (d, 1JC-F = 244.2 Hz), 144.3, 142.2, 132.9, 132.2 

(d, 3JC-F = 7.8 Hz), 132.0, 132.0 (d, 4JC-F = 3.3 Hz), 130.8, 128.6, 128.5, 128.0, 127.9, 126.1, 

114.1 (d, 2JC-F = 21.0 Hz), 77.3 (d, 1JC-F = 1.4 Hz), 43.7. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3524 (vw), 3465 (vw), 1606 (w), 1510 (s), 1488 (m), 

1433 (m), 1401 (w), 1342 (w), 1269 (w), 1224 (s), 1159 (m), 1129 (w), 1092 (m), 1056 (w), 1035 

(m), 1014 (m), 1002 (m), 944 (w), 925 (w), 886 (vw), 822 (vs), 756 (vs), 748 (s), 724 (m), 

696 (m). 

HRMS (ESI; C20H15Cl3FO): calc.: 405.0466 ([M+HCO2]
+); found: 405.0462 ([M+HCO2]

+). 
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1-[4-(Dimethylamino)phenyl]-2-(4-methoxyphenyl)ethanol (111d) 

 

According to TP12 4-methoxybenzylzinc chloride·MgCl2 (95i; 36.1 mL, 13.0 mmol, 0.36 M in 

THF) was added to 4-(dimethylamino)benzaldehyde (61h; 1.49 g, 10.0 mmol, in 5 mL THF) and 

the reaction mixture was stirred for 1 h at 25 °C. Purification by flash chromatography (silica gel, 

pentane / Et2O = 2:5) afforded the alcohol 111d (2.68g, 99%) as yellow solid. 

M.p. (°C): 113-115.  
1H-NMR (400 MHz, C6D6): δ / ppm = 7.27-7.22 (m, 2H), 7.04-6.99 (m, 2H), 6.76-6.71 (m, 2H), 

6.63-6.58 (m, 2H), 4.75-4.70 (m, 1H), 3.30 (s, 3H), 3.06 (dd, J = 13.5 Hz, 7.4 Hz, 1H), 2.98 (dd, 

J = 13.5 Hz, 5.7 Hz, 1H), 2.53 (s, 6H), 1.66 (s, 1H). 
13C-NMR (100 MHz, C6D6):  δ / ppm = 158.7, 150.4, 133.0, 131.0, 130.9, 127.3, 114.0, 112.7, 

75.6, 54.7, 45.7, 40.3. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3556 (w), 2961 (w), 2931 (w), 2908 (w), 2856 (w), 2835 

(w), 1614 (m), 1522 (s), 1508 (s), 1440 (m), 1386 (w), 1354 (m), 1303 (w), 1243 (s), 1204 (m), 

1184 (m), 1175 (m), 1156 (m), 1106 (m), 1045 (m), 1027 (s), 995 (w), 947 (w), 875 (w), 825 

(vs), 762 (w), 706 (w), 638 (w). 

MS (EI, 70 eV): m/z (%) = 271 (M+, 2), 253 (58), 238 (27), 165 (6), 150 (100), 122 (7), 120 (6). 

HRMS (C17H21NO): calc.: 271.1572; found: 271.1570. 

 

4-[1-Hydroxy-2-(4-methoxyphenyl)-1-methylethyl]benzonitrile (111e) 

 

According to TP12 4-methoxybenzylzinc chloride·MgCl2 (95i; 2.23 mL, 1.61 mmol, 0.72 M in 

THF) was added to 4-acetylbenzonitrile (58m; 195 mg, 1.34 mmol, in 0.5 mL THF). The reaction 

mixture was stirred for 14 h at 25 °C. Purification by flash chromatography (silica gel, 

pentane / Et2O = 4:1 to 1:1 + 1 vol-% NEt3) afforded the alcohol 111e (264 mg, 74%) as a pale 

yellow solid.   

M.p. (°C): 120-121. 
1H-NMR (300 MHz, C6D6): δ / ppm = 7.10-7.04 (m, 2H), 7.00-6.94 (m, 2H), 6.74-6.63 (m, 4H), 

3.29 (s, 3H), 2.69 (d, J = 13.4 Hz, 1H), 2.61 (d, J = 13.6 Hz, 1H), 1.39 (s, 1H), 1.15 (s, 3H). 
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13C-NMR (75 MHz, C6D6): δ / ppm = 159.2, 152.9, 131.7, 131.7, 128.2, 126.1, 119.0, 113.9, 

110.9, 74.1, 54.7, 49.4, 29.0.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3485 (m), 2974 (w), 2936 (w), 2915 (w), 2840 (w), 2229 

(m), 1609 (m), 1582 (w), 1512 (s), 1443 (m), 1401 (m), 1370 (w), 1302 (m), 1284 (w), 1249 (vs), 

1225 (s), 1174 (m), 1142 (m), 1109 (m), 1074 (m), 1054 (m), 1030 (s), 952 (m), 938 (m), 842 (s), 

829 (vs), 763 (m). 

MS (EI, 70 eV): m/z (%) = 267 (M+, 1), 146 (6), 121 (100), 77 (5), 43 (6). 

HRMS (C17H17NO2): calc.: 267.1259; found: 267.1250. 

 

Ethyl 3-(3,3,3-trifluoro-2-hydroxy-2-phenylpropyl)b enzoate (111f) 

 

According to TP12 3-(ethoxycarbonyl)benzylzinc chloride·MgCl2 (95m; 3.00 mL, 1.20 mmol, 

0.40 M in THF) was added to 2,2,2-trifluoro-1-phenylethanone (58l; 174 mg, 1.00 mmol). The 

reaction mixture was stirred for 16 h at 25 °C. Purification by flash chromatography (silica gel, 

pentane / EtOAc = 4:1 + 1 vol-% NEt3) afforded the alcohol 111f (296 mg, 87%) as a colourless 

oil.   
1H-NMR (400 MHz, acetone-d6): δ / ppm = 7.80-7.78 (m, 1H), 7.76-7.72 (m, 1H), 7.62-7.57 

(m, 2H), 7.36-7.26 (m, 4H), 7.22-7.16 (m, 1H), 4.33-4.20 (m, 2H), 3.65 (d, J = 14.1 Hz, 1H), 

3.49 (d, J = 14.3 Hz, 1H), 2.82 (sbr, 1H), 1.30 (t, J = 7.1 Hz, 3H). 
13C-NMR (100 MHz, acetone-d6): δ / ppm = 167.2, 138.2, 136.9, 136.7, 133.4, 131.4, 129.6, 

129.3, 129.0, 128.9, 128.4 (q, 3JC-F = 1.6 Hz), 127.8 (q, 1JC-F = 286.3 Hz), 77.3 (q, 2JC-F = 

28.9 Hz), 61.9, 41.9, 15.2. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3445 (w), 2984 (vw), 1696 (s), 1608 (w), 1589 (w), 1449 

(m), 1370 (m), 1281 (s), 1205 (s), 1150 (vs), 1106 (s), 1084 (m), 1074 (m), 1019 (s), 966 (m), 

909 (w), 866 (w), 756 (m), 735 (m), 709 (s), 671 (m). 

MS (EI, 70 eV): m/z (%) = 339 ([M+H]+, 5), 293 (19), 175 (16), 164 (100), 136 (33), 118 (15), 

105 (19), 91 (14), 77 (6). 

HRMS (C18H17F3O3): calc.: 339.1208 ([M+H]+); found: 339.1196 ([M+H]+). 
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Ethyl 3-(2-{[(4-methylphenyl)sulfonyl]amino}-2-phenylethyl)benzoate (111g) 

 

According to TP12 bis(3-(ethoxycarbonyl)benzyl)zinc·2MgCl2 (106a; 3.33 mL, 1.1 mmol, 

0.33 M in THF) was added to 4-methyl-N-[(1E)-phenylmethylene]benzenesulfonamide (61o; 

519 mg, 2.00 mmol, in 1.0 mL THF). The reaction mixture was stirred for 24 h at 25 °C. 

Purification by flash chromatography (silica gel, pentane / EtOAc = 3:1 + 1 vol-% NEt3) afforded 

the amine 111g (728 mg, 86%) as a white solid.   

M.p. (°C): 114-116. 
1H-NMR (400 MHz, DMSO-d6): δ / ppm = 8.34 (d, J = 9.0 Hz, 1H), 7.73-7.68 (m, 1H), 7.67-

7.63 (m, 1H), 7.40-7.33 (m, 1H), 7.30-7.21 (m, 5H (incl. NH)), 7.21-7.10 (m, 3H), 7.00 (d, J = 

8.0 Hz, 2H), 4.47-4.38 (m, 1H), 4.29 (q, J = 7.2 Hz, 2H), 2.94-2.79 (m, 2H), 2.24 (s, 3H), 1.32 (t, 

J = 7.1 Hz, 3H). 
13C-NMR (100 MHz, DMSO-d6): δ / ppm = 165.6, 142.2, 141.6, 138.5, 138.4, 134.1, 130.0, 

129.5, 128.9, 128.3, 128.0, 127.0, 126.8, 126.5, 125.9, 60.6, 59.2, 43.0, 20.8, 14.2.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3269 (m), 2924 (m), 2856 (w), 1696 (vs), 1603 (w), 1589 

(w), 1494 (w), 1445 (m), 1426 (m), 1370 (m), 1328 (s), 1284 (vs), 1201 (s), 1158 (vs), 1107 (s), 

1092 (s), 1070 (m), 1027 (s), 963 (m), 908 (m), 837 (m), 812 (m), 755 (vs), 699 (m), 692 (m), 

664 (s). 

MS (EI, 70 eV): m/z (%) = 424 ([M+H]+, <1), 378 (6), 260 (100), 155 (25), 91 (26), 65 (3). 

HRMS (C24H25NO4S): calc.: 424.1583 ([M+H]+); found: 424.1564 ([M+H]+). 

 

Ethyl 3-[2-(4-fluorophenyl)-2-hydroxypropyl]benzoate (111h) 

 

According to TP12 1-(4-fluorophenyl)ethanone (58o; 276 mg, 2.0 mmol) was added to bis(3-

(ethoxycarbonyl)benzyl)zinc·2MgCl2 (106a; 6.67 mL, 2.2 mmol, 0.33 M in THF). The reaction 

mixture was stirred for 24 h at 50 °C. Purification by flash chromatography (silica gel, 

pentane / EtOAc = 4:1 + 1 vol-% NEt3) afforded the alcohol 111h (444 mg, 68%) as a pale 

yellow oil. 
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1H-NMR (400 MHz, C6D6): δ / ppm = 8.07-8.01 (m, 1H), 7.95-7.92 (m, 1H), 7.02-6.95 (m, 3H), 

6.95-6.91 (m, 1H), 6.82-6.74 (m, 2H), 4.17-4.08 (m, 2H), 2.76 (d, J = 13.3 Hz, 1H), 2.69 (d, J = 

13.3 Hz, 1H), 1.23 (s, 1H), 1.16 (s, 3H), 1.03 (t, J = 7.1 Hz, 3H). 
13C-NMR (100 MHz, C6D6): δ / ppm = 166.4, 162.0 (d, 1JC-F = 244.4 Hz), 143.6 (d, 4JC-F = 3.1 

Hz), 137.8, 135.1, 132.2, 130.8, 128.0, 128.0, 127.1 (d, 3JC-F = 8.0 Hz), 114.8 (d, 2JC-F = 21.0 Hz), 

73.9, 60.8, 50.5, 29.2, 14.2.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3480 (w), 2980 (w), 2930 (w), 1699 (s), 1603 (m), 1508 

(s), 1444 (m), 1368 (m), 1277 (vs), 1223 (s), 1199 (s), 1160 (m), 1106 (s), 1088 (s), 1015 (m), 

952 (w), 932 (w), 863 (m), 836 (s), 815 (m), 755 (s), 720 (s), 700 (m).  

MS (EI, 70 eV): m/z (%) = 302 (M+, <1), 184 (15), 257 (23), 211 (13), 196 (11), 164 (100), 139 

(88), 136 (42), 118 (11), 91 (18), 43 (36). 

HRMS (C18H19FO3): calc.: 302.1318; found: 302.1306. 

 

1,1-Dicyclopropyl-2-(3-methoxyphenyl)ethanol (111i) 

 

According to TP12 dicyclopropylmethanone (58g; 156 mg, 1.50 mmol) was added to bis(4-

methoxybenzyl)zinc·2MgCl2 (106a; 2.90 mL, 0.90 mmol, 0.31 M in THF). The reaction mixture 

was stirred for 1 h at 25 °C. Purification by flash chromatography (silica gel, pentane / Et2O = 9:1 

+ 1 vol-% NEt3) afforded the alcohol 111i (292 mg, 84%) as a colourless oil.   
1H-NMR (300 MHz, C6D6): δ / ppm = 7.16-7.08 (m, 1H), 7.02-6.98 (m, 1H), 6.94-6.88 (m, 1H), 

6.78-6.71 (m, 1H), 3.39 (s, 3H), 2.80 (s, 2H), 0.67-0.55 (m, 3H (incl. OH)), 0.44-0.32 (m, 4H), 

0.27-0.06 (m, 4H). 
13C-NMR (75 MHz, C6D6): δ / ppm = 159.9, 139.7, 129.0, 123.5, 117.2, 111.8, 70.6, 54.7, 49.4, 

19.0, 1.3, -0.2.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 3517 (w), 3084 (w), 3006 (w), 2919 (w), 2835 (w), 1601 

(m), 1584 (m), 1488 (s), 1453 (m), 1437 (m), 1312 (m), 1260 (vs), 1167 (s), 1153 (s), 1117 (m), 

1043 (s), 1022 (s), 994 (s), 913 (m), 875 (m), 865 (m), 826 (m), 778 (s), 749 (m), 738 (m), 

703 (s). 

MS (EI, 70 eV): m/z (%) = 232 (M+, <1), 214 (11), 185 (10), 122 (40), 111 (100), 91 (18), 77 

(13), 69 (77), 57 (11), 41 (26). 
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HRMS (C15H20O2): calc.: 232.1463; found: 232.1453. 

 

4-Methoxybenzoic acid (112) 

CO2HMeO
 

According to TP13 bis(4-methoxyphenyl)zinc·2MgX2 (103a; X = Br, Cl; 2.56 mL, 1.00 mmol, 

0.39 M in THF) was reacted with dry CO2(g) at 25 °C for 3 h. After purification, 4-

methoxybenzoic acid (112; 286 mg, 94%) was obtained as a white solid. 

M.p. (°C): 185-186 °C. 
1H-NMR (400 MHz, DMSO-d6): δ / ppm = 12.59 (s, 1H), 7.91-7.85 (m, 2H), 7.03-6.96 (m, 

2H), 3.81 (s, 3H). 
13C-NMR (100 MHz, DMSO-d6): δ / ppm = 166.9, 162.8, 131.3, 122.9, 113.8, 55.4. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2982 (w), 2940 (w), 2842 (w), 2542 (w), 1924 (w), 1678 

(vs), 1602 (s), 1576 (s), 1516 (m), 1426 (m), 1298 (s), 1260 (vs), 1166 (s), 1130 (s), 1106 (s), 

1024 (s), 924 (s), 844 (s), 824 (m), 772 (s), 696 (m), 634 (m), 614 (s). 

MS (EI, 70 eV): m/z (%) = 152 (M+, 100), 135 (86), 107 (10), 92 (16), 77 (25), 63 (12). 

HRMS (C8H8O3): calc.: 152.0473; found: 152.0468. 

 

Phenylacetic acid (113)  

 

According to TP13 bis(benzyl)zinc·2MgCl2 (106c; 2.38 mL, 1.00 mmol, 0.42 M in THF) was 

reacted with dry CO2(g) at 25 °C for 2.5 h. After purification, phenylacetic acid (113; 208 mg, 

76%) was obtained as a white solid. 

M.p. (°C): 80-82. 
1H-NMR (400 MHz, DMSO-d6): δ / ppm = 12.29 (sbr, 1H), 7.33-7.28 (m, 2H), 7.27-7.20 (m, 

3H), 3.56 (s, 2H). 
13C-NMR (100 MHz, DMSO-d6):  δ / ppm = 172.7, 135.0, 129.3, 128.2, 126.5, 40.7. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2921 (w), 1692 (s), 1498 (w), 1454 (w), 1407 (m), 1336 

(m), 1290 (w), 1228 (m), 1186 (m), 1074 (w), 892 (m), 839 (m), 751 (m), 699 (vs), 676 (s). 

MS (EI, 70 eV): m/z (%) = 136 (M+, 72), 91 (100), 65 (12), 44 (5). 

HRMS (C8H8O2): calc.: 136.0524; found: 136.0509.  
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5. Carbocupration of Alkynes With Functionalized Diorganozinc Reagents 

5.1. Preparation of the starting materials 

1-Bromo-2-{[(4-methoxyphenyl)thio]ethynyl}benzene (118b) 

 
To 1-bromo-2-ethynylbenzene (958 mg, 5.29 mmol) in THF (5 mL) was added MeMgCl 

(1.77 mL, 5.29 mmol, 2.99 M in THF) at 25 °C and the reaction mixture was stirred for 1 h. Then, 

S-(4-methoxyphenyl) benzenesulfonothioate (57f; 1.48 g, 5.29 mmol, in 5 mL THF) was added at 

-40 °C and the resulting reaction mixture was slowly warmed to 0 °C within 12 h. The reaction 

mixture was quenched with sat. aq. NH4Cl solution (50 mL) and extracted with Et2O (3 x 

50 mL). The combined organic layers were dried over Na2SO4 and concentrated in vacuo. Flash 

chromatography (silica gel, pentane / Et2O = 95:5) furnished the alkyne 118b (1.48 g, 86%) as a 

yellow oil. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.60-7.55 (m, 1H), 7.53-7.44 (m, 3H), 7.28-7.22 (m, 

1H), 7.18-7.11 (m, 1H), 6.94-6.88 (m, 2H), 3.80 (s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 159.1, 133.0, 132.4, 129.2, 129.0, 127.0, 125.3, 125.0, 

122.5, 115.1, 95.0, 82.4, 55.4. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2834 (w), 2169 (w), 1590 (m), 1491 (s), 1290 (m), 1243 

(vs), 1174 (s), 1025 (s), 820 (s), 749 (s), 681 (m).  

MS (EI, 70 eV): m/z (%) = 318 (M+, 90), 305 (23), 239 (100), 195 (34), 152 (21), 140 (19), 43 

(11). 

HRMS (C15H11BrOS): calc.: 317.9714; found: 317.9709. 

 
1-Fluoro-4-{[(4-methoxyphenyl)thio]ethynyl}benzene (118d) 

 

To 1-ethynyl-4-fluorobenzene (1.20 g, 10.0 mmol) in THF (10 mL) was added n-BuLi (4.20 mL, 

10.5 mmol, 2.50 M in THF) at -20 °C and the reaction mixture was stirred for 30 min. Then, 

freshly prepared MgCl2 (21.0 mL, 10.5 mmol 0.50 M in THF; prepared by the reaction of 1,2-

dichloroethane with magnesium turnings in THF) was added and the reaction mixture was stirred 
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for additional 30 min. Then, S-(4-methoxyphenyl) benzenesulfonothioate (57f; 3.08 g, 

11.0 mmol, in 10 mL THF) was added at -40 °C and the resulting reaction mixture was slowly 

warmed to 25 °C within 18 h. The reaction mixture was quenched with sat. aq. NH4Cl solution 

(50 mL) and extracted with Et2O (3 x 50 mL). The combined organic layers were dried over 

Na2SO4 and concentrated in vacuo. Flash chromatography (silica gel, pentane / Et2O = 98:2) 

furnished the alkyne 118d (2.08 g, 80%) as a yellow solid. 

M.p. (°C): 40-42. 
1H-NMR (400 MHz, CDCl3): δ / ppm =7.49-7.39 (m, 4H), 7.05-6.97 (m, 2H), 6.93-6.87 (m, 2H), 

3.80 (s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 162.6 (d, 1JC-F = 249.9 Hz), 159.1, 133.7 (d, 3JC-F = 

8.8 Hz), 129.0, 122.8, 119.1 (d, 4JC-F = 3.5 Hz), 115.6 (d, 2JC-F = 22.3 Hz), 115.1, 95.0, 76.8, 55.4. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2936 (w), 2836 (w), 1652 (vw), 1596 (m), 1574 (w), 1492 

(s), 1456 (m), 1438 (m), 1402 (w), 1294 (m), 1246 (m), 1230 (s), 1214 (s), 1176 (s), 1154 (s), 

1106 (m), 1092 (m), 1084 (m), 1024 (s), 1006 (m), 834 (vs), 814 (vs), 796 (s), 634 (w), 622 (w). 

MS (EI, 70 eV): m/z (%) = 258 (M+, 100), 243 (50), 215 (17), 199 (7), 183 (10), 170 (11), 107 

(12).  

HRMS (C15H11FOS): calc.: 258.0515; found: 258.0505. 

 

5.2. Preparation of the title compounds 

1-Bromo-2-{(E)-2-iodo-1-(4-methoxyphenyl)-2-[(4-methoxyphenyl)thio]vinyl}benzene 

(120b) 

 

Bis(4-methoxyphenyl)zinc·2MgX2 (103a; X = Br, Cl; 8.11 mL, 3.00 mmol, 0.37 M in THF) was 

added dropwise to CuCN·2LiCl (3.00 mL, 3.00 mmol, 1.00 M in THF) at -20 °C. The mixture 

was stirred for 30 min. Then, 1-bromo-2-{[(4-methoxyphenyl)thio]ethynyl}benzene (118b; 

638 mg, 2.00 mmol, in 1 mL THF) was added and the reaction mixture was stirred for 6 h at 

25 °C. The reaction mixture was added dropwise to another flask containing iodine (7.78 g, 

7.00 mmol) in THF (7 mL) at -40 °C. After stirring for 10 min, a mixture of sat. aq. 

NH4Cl / NH3 (25% in H2O) = 2:1 (100 mL) was added. The phases were separated and the aq. 
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layer was extracted with Et2O (3 x 100 mL). The combined extracts were dried over Na2SO4. 

Evaporation of the solvents in vacuo and purification by flash chromatography (silica gel, 

pentane / Et2O = 3:1 + 1 vol-% NEt3) afforded the vinylic iodide 120b (908 mg, 82%, E/Z = 

99:1) as a yellow oil.  
1H-NMR (400 MHz, acetone-d6): δ / ppm = 7.63 (dd, J = 8.1 Hz, 1.1 Hz, 1H), 7.51 (dd, J = 

7.6 Hz, 1.8 Hz, 1H), 7.45-7.37 (m, 5H), 7.27-7.21 (m, 1H), 6.99-6.93 (m, 2H), 6.91-6.86 (m, 2H), 

3.82 (s, 3H), 3.78 (s, 3H).  
13C-NMR (100 MHz, acetone-d6): δ / ppm = 161.1, 160.3, 152.4, 143.2, 136.7, 135.1, 133.7, 

131.4, 131.0, 130.1, 128.6, 127.6, 122.9, 115.5, 114.0, 97.7, 55.7, 55.5. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2956 (w), 2932 (w), 2870 (w), 2834 (w), 1590 (m), 1572 

(w), 1504 (m), 1492 (s), 1462 (m), 1440 (m), 1288 (m), 1244 (vs), 1172 (s), 1106 (w), 1064 (w), 

1028 (s), 952 (w), 910 (w), 826 (s), 770 (m), 742 (s), 708 (w), 656 (w), 640 (w). 

MS (EI, 70 eV): m/z (%) = 552 (M+, 14), 473 (24), 427 (69), 346 (100), 331 (24), 172 (9), 139 

(24). 

HRMS (C22H18BrIO 2S): calc.: 551.9256; found: 551.9249. 

 

1-Bromo-2-{(1Z)-1-(4-methoxyphenyl)-2-[(4-methoxyphenyl)thio]penta-1,4-dien-1-yl}-

benzene (120c) 

 

Bis(4-methoxyphenyl)zinc·2MgX2 (103a; X = Br, Cl; 4.05 mL, 1.50 mmol, 0.37 M in THF) was 

added dropwise to CuCN·2LiCl (1.50 mL, 1.50 mmol, 1.00 M in THF) at -20 °C. The mixture 

was stirred for 30 min. Then, 1-bromo-2-{[(4-methoxyphenyl)thio]ethynyl}benzene (118b; 

318 mg, 1.00 mmol, in 1 mL THF) was added and the reaction mixture was stirred for 6 h at 

25 °C. The reaction mixture was cooled to -50 °C and allyl bromide (436 mg, 3.60 mmol, in 

5 mL THF) was added. Then, the mixture was stirred for 30 min at -50 °C followed by 45 min at 

-30 °C. Then, a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 4:1 (100 mL) was added. The 

phases were separated and the aq. layer was extracted with Et2O (3 x 100 mL). The combined 

extracts were dried over Na2SO4. Evaporation of the solvents in vacuo and purification by flash 
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chromatography (silica gel, pentane / Et2O = 12:1 + 2 vol-% NEt3) afforded the olefine 120c 

(426 mg, 91%, E/Z = 99:1) as a yellow oil.  
1H-NMR (400 MHz, acetone-d6): δ / ppm = 7.63-7.59 (m, 1H), 7.47-7.43 (m, 1H), 7.42-7.36 (m, 

3H), 7.34-7.28 (m, 2H), 7.22-7.16 (m, 1H), 6.93-6.84 (m, 4H), 5.89-5.78 (m, 1H), 5.06-4.97 (m, 

2H), 3.79 (s, 3H), 3.76 (s, 3H), 3.01-2.96 (m, 2H).  
13C-NMR (100 MHz, acetone-d6): δ / ppm = 160.7, 159.8, 144.7, 141.6, 136.5, 136.0, 135.7, 

133.6, 133.0, 132.1, 131.1, 129.5, 128.4, 124.6, 124.1, 116.6, 115.4, 114.2, 55.6, 55.5, 36.1. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3002 (w), 2932 (w), 2834 (w), 1592 (m), 1508 (m), 1492 

(s), 1462 (m), 1440 (m), 1284 (m), 1242 (vs), 1172 (s), 1104 (m), 1028 (s), 914 (m), 828 (s), 800 

(m), 766 (m), 742 (s), 656 (w), 626 (w). 

MS (EI, 70 eV): m/z (%) = 466 (M+, 6), 387 (100), 346 (39), 279 (1), 215 (2), 139 (2). 

HRMS (C25H23BrO2S): calc.: 466.0602; found: 466.0600. 

 

Ethyl 4-[(1Z)-4-(ethoxycarbonyl)-1-(4-methoxyphenyl)-2-(methylthio)penta-1,4-dien-1-yl]-

benzoate (120d) 

 

Into a flame dried and argon-flushed flask, ethyl 4-iodobenzoate (828 mg, 3.00 mmol) was added 

followed by i-PrMgCl·LiCl (1.96 mL, 2.95 mmol, 1.50 M in THF) at -20 °C. The reaction 

mixture was stirred for 60 min at -20 °C. Then, ZnCl2 (1.50 mL; 1.50 mmol, 1.00 M in THF) was 

added and the reaction mixture was stirred for 30 min. CuCN·2LiCl (1.50 mL, 1.50 mmol, 

1.00 M in THF) was added and the mixture was stirred for additional 30 min at -20 °C. Then, 1-

methoxy-4-[(methylthio)ethynyl]benzene (118c; 178 mg, 1.00 mmol) was added and the reaction 

mixture was stirred for 24 h at 25 °C. The reaction mixture was cooled to -40 °C and ethyl (2-

bromomethyl)acrylate (695 mg, 3.60 mmol) was added. Then, the mixture was stirred for 30 min 

at -40 °C followed by 30 min at 0 °C. Then, a mixture of sat. aq. NH4Cl / NH3 (25% in 

H2O) = 4:1 (100 mL) was added. The phases were separated and the aq. layer was extracted with 

Et2O (3 x 100 mL). The combined extracts were dried over MgSO4. Evaporation of the solvents 
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in vacuo and purification by flash chromatography (silica gel, pentane / Et2O = 9:1 + 2 vol-% 

NEt3) afforded the alkene 120d (301 mg, 68%, E/Z = 94:6) as a yellow oil.  
1H-NMR (400 MHz, acetone-d6): δ / ppm = 7.95-7.89 (m, 2H), 7.33-7.27 (m, 2H), 7.24-7.18 (m, 

2H), 6.92-6.85 (m, 2H), 6.36-6.30 (m, 1H), 5.95-5.91 (m, 1H), 4.31 (q, J = 7.0 Hz, 2H), 4.15 (q, 

J = 7.1 Hz, 2H), 3.77 (s, 3H), 3.39 (t, J = 1.7 Hz, 2H), 2.09 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H), 1.23 

(t, J = 7.1 Hz, 3H) .  
13C-NMR (100 MHz, acetone-d6): δ / ppm = 166.8, 166.4, 159.7, 148.2, 140.5, 138.9, 134.8, 

134.0, 131.6, 130.0, 129.8, 129.6, 125.8, 114.3, 61.3, 61.3, 55.4, 34.8, 15.0, 14.5, 14.4. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2982 (w), 1710 (vs), 1604 (m), 1508 (m), 1464 (w), 1444 

(w), 1402 (w), 1366 (w), 1268 (vs), 1244 (vs), 1172 (s), 1134 (s), 1098 (s), 1020 (s), 946 (w), 860 

(m), 832 (m), 784 (m), 750 (m), 704 (m), 658 (w). 

MS (EI, 70 eV): m/z (%) = 440 (M+, 100), 392 (46), 363 (94), 335 (15), 320 (12), 135 (15). 

HRMS (C25H28O5S): calc.: 440.1657; found: 440.1655. 

 

Ethyl (4Z)-5-(4-cyanophenyl)-5-(4-fluorophenyl)-4-[(4-methoxyphenyl)thio]-2-methylene-

pent-4-enoate (120e) 

 

Into a flame dried and argon-flushed flask, 4-iodobenzonitrile (481 mg, 2.10 mmol, in 1 mL 

THF) was added followed by i-PrMgCl·LiCl (1.42 mL, 2.10 mmol, 1.48 M in THF) at 0 °C. The 

reaction mixture was stirred for 40 min at 0 °C. Then, ZnCl2 (1.05 mL; 1.05 mmol, 1.00 M in 

THF) was added at -20 °C and the reaction mixture was stirred for 30 min. CuCN·2LiCl 

(1.05 mL, 1.05 mmol, 1.00 M in THF) was added at -20 °C and the mixture was stirred for 

additional 30 min at -20 °C. Then, 1-fluoro-4-{[(4-methoxyphenyl)thio]ethynyl}benzene (118d; 

181 mg, 0.70 mmol) was added and the reaction mixture was stirred for 16 h at 25 °C. The 

reaction mixture was cooled to -60 °C and ethyl (2-bromomethyl)acrylate (444 mg, 2.30 mmol) 

was added. Then, the mixture was stirred for 30 min at -60 °C followed by 90 min at -20 °C. 

Then, a mixture of sat. aq. NH4Cl / NH3 (25% in H2O) = 4:1 (100 mL) was added. The phases 

were separated and the aq. layer was extracted with Et2O (3 x 100 mL). The combined extracts 
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were dried over Na2SO4. Evaporation of the solvents in vacuo and purification by flash 

chromatography (silica gel, pentane / Et2O = 9:1 + 2 vol-% NEt3) afforded the alkene 120e 

(172 mg, 51%, E/Z = 68:32) as a yellow oil.  
1H-NMR (400 MHz, acetone-d6): δ / ppm = 7.75-7.70 (m, 2H), 7.50-7.46 (m, 2H), 7.43-7.37 (m, 

2H), 7.33-7.29 (m, 2H), 7.17-7.12 (m, 2H), 6.90-6.86 (m, 2H), 6.26-6.23 (m, 1H), 5.77-5.74 (m, 

1H), 4.42(q, J = 7.0 Hz, 2H), 3.78 (s, 3H), 3.16 (t, J = 1.6 Hz, 2H), 1.15 (t, J = 7.0 Hz, 3H).  
13C-NMR (100 MHz, acetone-d6): δ / ppm = 166.4, 162.9 (d, 1JC-F = 245.2 Hz), 161.0, 147.4, 

141.1, 138.5 (d, 4JC-F = 3.5 Hz), 138.3, 136.3, 135.9, 133.0, 132.5 (d, 3JC-F = 8.2Hz), 130.6, 126.7, 

123.7, 119.1, 115.9 (d, 2JC-F = 21.6Hz), 115.6, 111.7, 61.1, 55.7, 34.9, 14.4. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2980 (w), 2938 (w), 2906 (w), 2838 (w), 2228 (m), 1712 

(s), 1630 (w), 1592 (m), 1504 (s), 1492 (vs), 1464 (m), 1442 (w), 1402 (m), 1368 (w), 1286 (m), 

1246 (vs), 1222 (s), 1172 (s), 1136 (s), 1102 (m), 1028 (s), 944 (m), 828 (vs), 750 (m), 698 (w), 

640 (w). 

MS (EI, 70 eV): m/z (%) =473 (M+, 45), 334 (21), 306 (12), 260 (11), 140 (100), 108 (8). 

HRMS (C28H24FNO3S): calc.: 473.1461; found: 473.1461. 
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6. Transition Metal-Catalyzed Cross-Coupling Reactions of Functionalized 
Organozinc Reagents With Methylthio-Substituted N-Heterocycles 

6.1. Preparation of the starting materials 

3-Methoxy-6-(methylthio)pyridazine (124a) 

 

3-Chloro-6-methoxypyridazine (123; 1.86 g, 12.9 mmol) and sodium thiomethanolate (1.03 g, 

14.2 mmol) were dissolved in DMF (6 mL). After stirring for 24 h at 25 °C, the reaction mixture 

was quenched with sat. aq. Na2CO3 solution (30 mL) followed by extraction using EtOAc (3 x 

30 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 3:1) afforded the 

pyridazine 124a (1.38 g, 69%) as a white solid.  

M.p. (°C): 93-94. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 7.21 (d, J = 9.3 Hz, 1H), 6.81 (d, J = 9.3 Hz, 1H), 4.06 

(s, 3H), 2.67 (s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 163.3, 156.6, 129.1, 117.7, 54.7, 13.5. 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3059 (w), 2982 (w), 2949 (w), 2922 (w), 1596 (w), 1545 

(vw), 1456 (m), 1400 (s), 1300 (s), 1196 (m), 1175 (m), 1146 (m), 1006 (vs), 964 (m), 838 (s), 

812 (m), 723 (m), 672 (s), 622 (m). 

MS (EI, 70 eV): m/z (%) = 156 (M+, 100), 111 (6), 98 (9), 84 (20), 80 (8), 45 (6). 

HRMS (C6H8N2OS): calc.: 156.0357; found: 156.0345. 

 

2-(Methylthio)-5-(trifluoromethyl)pyridine (124d) 

 

5-(Trifluoromethyl)pyridine-2-thiol (2.69 g, 15.0 mmol) was dissolved in THF (13.5 mL) and 

CH3CN (1.5 mL) at 0 °C. DBU (2.51 g, 16.5 mmol) was added dropwise and the resulting 

reaction mixture was stirred for 20 min. Then, MeI (2.34 g, 16.5 mmol) was added, the ice-bath 

was removed and the reaction mixture was stirred for 12.5 h. Addition of H2O (50 mL) was 

followed by extraction using EtOAc (3 x 50 mL). Purification by flash chromatography (silica 

gel, pentane / Et2O = 3:1) afforded the pyridine 124d (1.59 g, 55%) as a pale yellow liquid.  
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.71-8.63 (m, 1H), 7.70-7.60 (m, 1H), 7.30-7.21 (m, 

1H), 2.58 (s, 3H). 
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13C-NMR (75 MHz, CDCl3): δ / ppm = 164.9 (q, 4JC-F = 1.5 Hz), 146.2 (q, 3JC-F = 4.4 Hz), 132.3 

(q, 3JC-F = 3.4 Hz), 123.8 (q, 1JC-F = 271.6 Hz), 122.0 (q, 2JC-F = 33.0 Hz), 121.0, 13.2.  

IR (Diamond-ATR, neat): ν~  / cm-1 = 2932 (vw), 1596 (m), 1556 (w), 1475 (w), 1377 (w), 1321 

(vs), 1251 (w), 1166 (m), 1113 (vs), 1073 (s), 1008 (m), 967 (w), 938 (w), 827 (m), 791 (w), 746 

(w). 

MS (EI, 70 eV): m/z (%) = 193 (M+, 100), 147 (44), 127 (19), 78 (8). 

HRMS (C7H6F3NS): calc.: 193.0173; found: 193.0176. 

 

3-(Methylthio)pyrazine-2-carbonitrile (124f) 

 

3-Chloropyrazine-2-carbonitrile (2.61 g, 18.7 mmol) and sodium thiomethanolate (2.10 g, 

30.0 mmol) were dissolved in DMF (10 mL). After stirring for 24 h at 25 °C, the reaction mixture 

was quenched with sat. aq. Na2CO3 solution (20 mL) followed by extraction using EtOAc (3 x 

20 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 7:2) afforded the 

pyrazine 124f (793 mg, 28%) as a yellow solid.  

M.p. (°C): 83-84. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.53 (d, J = 2.4 Hz, 1H), 8.30 (d, J = 2.4 Hz, 1H), 2.62 

(s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 161.8, 145.9, 139.1, 128.1, 114.3, 12.9. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 2230 (w), 1512 (m), 1424 (w), 1354 (s), 1339 (m), 1317 

(m), 1196 (m), 1161 (s), 1153 (s), 1142 (m), 1085 (vs), 1074 (s), 1060 (s), 964 (m), 854 (s), 835 

(m), 719 (m), 663 (m). 

MS (EI, 70 eV): m/z (%) = 151 (M+, 100), 137 (10), 122 (40), 112 (13), 93 (15), 84 (11), 77 

(24), 52 (35). 

HRMS (C6H5N3S): calc.: 151 .0204; found: 151.0190. 
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2-(Methylthio)nicotinonitrile (124i) 

 

2-Chloronicotinonitrile (2.77 g, 20.0 mmol) and sodium thiomethanolate (2.31 g, 33.0 mmol) 

were dissolved in DMF (10 mL). After stirring for 24 h at 25 °C, the reaction mixture was 

quenched with sat. aq. K2CO3 solution (50 mL) followed by extraction using EtOAc (3 x 

100 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 3:1) afforded the 

pyridine 124i (665 mg, 22%) as a yellow solid.  

M.p. (°C): 90-91. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.57 (dd, J = 5.0 Hz, J = 1.8 Hz, 1H), 7.77 (dd, J = 7.7 

Hz, J = 1.8 Hz, 1H), 7.05 (dd, J = 7.7 Hz, J = 5.0 Hz, 1H), 2.60 (s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 163.4, 152.0, 140.3, 118.2, 115.5, 107.2, 13.1. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 3046 (w), 2929 (w), 2224 (m), 1574 (m), 1546 (m), 1391 

(vs), 1316 (m), 1232 (m), 1184 (m), 1143 (m), 1078 (m), 959 (w), 801 (vs), 736 (m), 721 (m), 

667 (m). 

MS (EI, 70 eV): m/z (%) = 150 (M+, 100), 123 (27), 104 (40), 79 (30), 75 (11), 45 (10), 43 (16). 

HRMS (C7H6N3S): calc.: 150.0252; found: 150.0245. 

 

6.2. Prepartion of the title compounds via Pd-catalyzed cross-couplings 

2-(4-Methoxyphenyl)-5-(trifluoromethyl)pyridine (126a) 

 

According to TP14 2-(methylthio)-5-(trifluoromethyl)pyridine (124d; 193 mg, 1.00 mmol, in 

1 mL THF) was reacted with (4-methoxyphenyl)zinc iodide (5c; 1.61 mL, 1.50 mmol, 0.93 M in 

THF), Pd(OAc)2 (5.6 mg, 2.5 mol%) and S-Phos (20.5 mg, 5.0 mol%). After 1 h at 25 °C, the 

reaction mixture was quenched with sat. aq. Na2CO3 solution (25 mL) followed by extraction 

using EtOAc (3 x 25 mL). Purification by flash chromatography (silica gel, pentane / Et2O 

= 12:1) afforded the pyridine 126a (241 mg, 95%) as a white solid.  

M.p. (°C): 121-123. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.91-8.86 (m, 1H), 8.05-7.96 (m, 2H), 7.96-7.88 (m, 

1H), 7.76 (d, J = 8.4 Hz, 1H), 7.05-6.96 (m, 2H), 3.87 (s, 3H). 
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13C-NMR (75 MHz, CDCl3): δ / ppm = 161.4, 160.2, 146.4 (q, 3JC-F = 4.1 Hz), 133.8 (q, 3JC-F = 

3.4 Hz), 130.4, 128.7, 124.0 (q, 2JC-F = 32.9 Hz), 123.8 (q, 1JC-F = 271.9 Hz), 119.1, 114.3, 55.4. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 3031 (vw), 2970 (vw), 1599 (m), 1580 (m), 1563 (w), 

1520 (w), 1483 (w), 1318 (m), 1301 (m), 1282 (m), 1253 (m), 1176 (m), 1166 (m), 1133 (s), 

1114 (vs), 1084 (s), 1043 (s), 1024 (s), 1012 (s), 940 (m), 838 (s), 824 (vs), 774 (s), 712 (m). 

MS (EI, 70 eV): m/z (%) = 253 (M+, 100), 238 (25), 211 (73), 177 (61), 169 (28), 141 (24), 135 

(21), 95 (23), 69 (31), 55 (35), 41 (26). 

HRMS (C13H10F3NO): calc.: 253.0714; found: 253.0706. 

 

Ethyl 2-[4-(ethoxycarbonyl)phenyl]nicotinate (126b) 

 

According to TP14 ethyl 2-(methylthio)nicotinate (124e; 197 mg, 1.00 mmol, in 1 mL THF) was 

reacted with 4-(ethoxycarbonyl)phenylzinc iodide (5a; 2.14 mL, 1.50 mmol, 0.70 M in THF), 

Pd(OAc)2 (5.6 mg, 2.5 mol%) and S-Phos (20.5 mg, 5.0 mol%). After 6 h at 25 °C, the reaction 

mixture was quenched with sat. aq. Na2CO3 solution (25 mL) followed by extraction using 

EtOAc (3 x 25 mL). Purification by flash chromatography (silica gel, pentane / Et2O / CH2Cl2 

= 3:2:3) afforded the pyridine 126b (201 mg, 67%) as a yellow oil.  
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.80 (dd, J = 5.0 Hz, 1.6 Hz, 1H), 8.19 (dd, J = 7.9 Hz, 

1.9 Hz, 1H), 8.14-8.08 (m, 2H), 7.63-7.57 (m, 2H), 7.42 (dd, J = 7.8 Hz, 4.8 Hz, 1H), 4.39 (q, J = 

7.0 Hz, 2H), 4.15 (q, J = 6.9 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H), 1.06 (t, J = 7.3 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 167.2, 166.3, 157.6, 150.8, 143.7, 138.6, 130.7, 129.4, 

128.7, 127.7, 122.4, 61.8, 61.1, 14.3, 13.7. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 2982 (w), 1710 (vs), 1612 (w), 1582 (w), 1560 (w), 1432 

(m), 1404 (w), 1367 (m), 1268 (vs), 1209 (m), 1175 (m), 1128 (s), 1096 (s), 1054 (s), 1015 (s), 

863 (m), 792 (m), 761 (s), 704 (m). 

MS (EI, 70 eV): m/z (%) = 299 (M+, 12), 270 (100), 254 (33), 242 (26), 198 (12), 181 (11), 153 

(8), 127 (6). 

HRMS (C17H17NO4): calc.: 299.1158; found: 299.1153. 
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3-(4-Methoxyphenyl)pyrazine-2-carbonitrile (126c) 

 

According to TP14 3-(methylthio)pyrazine-2-carbonitrile (124f; 151 mg, 1.00 mmol, in 1 mL 

THF) was reacted with (4-methoxyphenyl)zinc iodide (5c; 1.61 mL, 1.50 mmol, 0.93 M in THF), 

Pd(OAc)2 (5.6 mg, 2.5 mol%) and S-Phos (20.5 mg, 5.0 mol%). After 5 h at 25 °C, the reaction 

mixture was quenched with sat. aq. Na2CO3 solution (25 mL) followed by extraction using 

EtOAc (3 x 25 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 1:2 + 

5 vol-% NEt3) afforded the pyrazine 126c (121 mg, 57%) as a yellow solid.  

M.p. (°C): 126-127. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.78 (d, J = 2.4 Hz, 1H), 8.57 (d, J = 2.4 Hz, 1H), 8.04-

7.94 (m, 2H), 7.10-7.02 (m, 2H), 3.89 (s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 162.1, 156.5, 146.3, 142.2, 130.6, 127.1, 126.6, 116.7, 

114.5, 55.5. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 2925 (w), 2846 (w), 2232 (w), 1606 (s), 1576 (m), 1525 

(w), 1515 (m), 1444 (w), 1435 (m), 1418 (m), 1398 (m), 1386 (m), 1313 (m), 1289 (w), 1254 

(vs), 1183 (s), 1170 (s), 1118 (w), 1065 (w), 1033 (m), 1016 (s), 1005 (m), 966 (w), 874 (m), 842 

(vs), 822 (m), 798 (m), 792 (m), 667 (w). 

MS (EI, 70 eV): m/z (%) = 211 (M+, 100), 196 (16), 168 (10), 158 (11), 133 (14), 114 (6), 90 

(6). 

HRMS (C12H9N3O): calc.: 211.0746; found: 211.0736. 

 

Ethyl 3-(4,6-dimethoxy-1,3,5-triazin-2-yl)benzoate (126d) 

 

According to TP14 2,4-dimethoxy-6-(methylthio)-1,3,5-triazine (124g; 187 mg, 1.00 mmol, in 

1 mL THF) was reacted with 3-(ethoxycarbonyl)phenylzinc iodide (5d; 2.21 mL, 1.50 mmol, 

0.68 M in THF), Pd(OAc)2 (5.6 mg, 2.5 mol%) and S-Phos (20.5 mg, 5.0 mol%). After 21 h at 

25 °C, the reaction mixture was quenched with sat. aq. Na2CO3 solution (25 mL) followed by 
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extraction using EtOAc (3 x 25 mL). Purification by flash chromatography (silica gel, 

pentane / Et2O / EtOAc = 8:1:1) afforded the triazine 126d (242 mg, 84%) as a yellow solid. 

M.p. (°C): 103-105. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 9.12-9.07 (m, 1H), 8.69-8.60 (m, 1H), 8.25-8-18 (m, 

1H), 7.55 (t, J = 7.8 Hz, 1H), 4.40 (q, J = 7.0 Hz, 2H), 4.12 (s, 6H), 1.40 (t, J = 7.1 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 174.1, 172.9, 166.0, 135.5, 133.6, 133.1, 131.1, 130.0, 

128.6, 61.2, 55.3, 14.3. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 3310 (vw), 3232 (vw), 1720 (s), 1592 (m), 1566 (s), 1549 

(s), 1536 (s), 1504 (s), 1488 (m), 1458 (m), 1368 (s), 1356 (vs), 1298 (s), 1267 (vs), 1191 (m), 

1177 (m), 1164 (m), 1118 (m), 1108 (m), 1074 (m), 1039 (s), 1022 (m), 922 (w), 873 (w), 830 

(w), 818 (m), 768 (m), 714 (s), 672 (w). 

MS (EI, 70 eV): m/z (%) = 289 (M+, 100), 259 (27), 244 (91), 217 (90), 186 (11), 176 (11), 159 

(18), 72 (10). 

HRMS (C14H15N3O4): calc.: 289.1063; found: 289.1064. 

 

4-(1-Methyl-1H-pyrazol-5-yl)benzonitrile (126e) 

 

According to TP14 1-methyl-5-(methylthio)-1H-pyrazole (124h; 128 mg, 1.00 mmol, in 1 mL 

THF) was reacted with (4-cyanophenyl)zinc iodide (5e; 2.31 mL, 1.50 mmol, 0.65 м in THF), 

Pd(OAc)2 (5.6 mg, 2.5 mol%) and S-Phos (20.5 mg, 5.0 mol%). After 1.5 h at 50 °C, the reaction 

mixture was quenched with sat. aq. Na2CO3 solution (25 mL) followed by extraction using 

EtOAc (3 x 25 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 1:4) 

afforded the pyrazole 126e (96 mg, 52%) as a pale yellow oil. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 7.79-7.69 (m, 2H), 7.58-7.49 (m, 3H), 6.37 (d, J = 

2.1 Hz, 1H), 3.91 (s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 141.7, 138.7, 135.0, 132.5, 129.1, 118.3, 112.2, 107.0, 

37.7. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 2921 (w), 2224 (m), 1608 (m), 1489 (m), 1468 (w), 1425 

(w), 1381 (m), 1279 (m), 1224 (w), 1182 (w), 1113 (w), 1067 (w), 1035 (w), 980 (m), 928 (m), 

853 (s), 838 (s), 793 (m), 777 (vs), 708 (m), 664 (w), 649 (m). 
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MS (EI, 70 eV): m/z (%) = 183 (M+, 100), 155 (14), 140 (7), 128 (10), 102 (5). 

HRMS (C11H9N3): calc.: 183.0796; found: 183.0792. 

 

2-(2-Thienyl)nicotinonitrile (126f) 

 

According to TP14 2-(methylthio)nicotinonitrile (124i; 150 mg, 1.00 mmol, in 1 mL THF) was 

reacted with 2-thienylzinc iodide (5f; 1.95 mL, 1.50 mmol, 0.77 M in THF), Pd(OAc)2 (5.6 mg, 

2.5 mol%) and S-Phos (20.5 mg, 5.0 mol%). After 18 h at 25 °C, the reaction mixture was 

quenched with sat. aq. Na2CO3 solution (25 mL) followed by extraction using EtOAc (3 x 

25 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 4:1) afforded the 

pyridine 126f (173 mg, 93%) as a yellow solid. 

M.p. (°C): 74-75. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.72 (dd, J = 4.8 Hz, J = 1.8 Hz, 1H), 8.26 (dd, J = 

4.0 Hz, J = 1.1 Hz, 1H), 8.00 (dd, J = 7.9 Hz, J = 1.8 Hz, 1H), 7.54 (dd, J = 5.1 Hz, J = 0.9 Hz, 

1H), 7.23 (dd, J = 7.9 Hz, J = 4.8 Hz, 1H), 7.17 (dd, J = 5.2 Hz, J = 3.9 Hz, 1H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 153.5, 152.5, 142.1, 141.6, 130.7, 128.9, 128.7, 120.8, 

117.8, 103.8. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 3066 (vw), 2921 (w), 2850 (vw), 2225 (w), 1574 (w), 

1552 (w), 1528 (w), 1472 (vw), 1439 (s), 1414 (m), 1394 (w), 1358 (w), 1229 (w), 1109 (w), 

1067 (w), 976 (w), 860 (w), 844 (w), 806 (w), 798 (w), 762 (s), 716 (vs), 676 (m), 619 (w). 

MS (EI, 70 eV): m/z (%) = 186 (M+, 100), 175 (7), 159 (12), 142 (15), 69 (9), 57 (18), 55 (12), 

44 (13). 

HRMS (C10H6N2S): calc.: 186.0252; found: 186.0239. 

 

3-Methoxy-6-(2-thienyl)pyridazine (126g) 

 

According to TP14 3-methoxy-6-(methylthio)pyridazine (124a; 156 mg, 1.00 mmol, in 1 mL 

THF) was reacted with 2-thienylzinc iodide (5f; 1.94 mL, 1.50 mmol, 0.77 M in THF), Pd(OAc)2 

(5.6 mg, 2.5 mol%) and S-Phos (20.5 mg, 5.0 mol%). After 5 h at 50 °C, the reaction mixture 
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was quenched with sat. aq. Na2CO3 solution (25 mL) followed by extraction using EtOAc (3 x 

25 mL). Purification by flash chromatography (silica gel, EtOAc pure) afforded the pyridazine 

126g (175 mg, 91%) as a white solid.  

M.p. (°C): 79-80. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 7.68 (d, J = 9.2 Hz, 1H), 7.49 (dd, J = 3.6 Hz, 1.21 Hz, 

1H), 7.40-7.37 (m, 1H), 7.89 (dd, J = 5.1 Hz, 3.6 Hz, 1H), 6.96 (d, J = 9.2 Hz, 1H), 4.13 (s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 163.9, 151.2, 140.7, 128.1, 127.7, 125.8, 125.0, 117.7, 

54.8. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 3104 (w), 3068 (w), 3001 (w), 2958 (w), 1600 (w), 1550 

(w), 1528 (w), 1462 (s), 1437 (m), 1409 (m), 1334 (m), 1301 (m), 1279 (m), 1228 (m), 1110 (m), 

1025 (s), 852 (m), 830 (s), 812 (m), 707 (vs), 685 (m). 

MS (EI, 70 eV): m/z (%) = 192 (M+, 100), 163 (23), 121 (60), 108 (19), 77 (8), 69 (7), 45 (8). 

HRMS (C9H8N2OS): calc.: 192.0357; found: 192.0352. 

 

6,7-Dimethoxy-4-(2-thienyl)quinazoline (126h) 

 

According to TP14 6,7-dimethoxy-4-(methylthio)quinazoline (124j; 236 mg, 1.00 mmol, in 1 mL 

THF) was reacted with 2-thienylzinc iodide (5f; 1.95 mL, 1.50 mmol, 0.77 M in THF), Pd(OAc)2 

(5.6 mg, 2.5 mol%) and S-Phos (20.5 mg, 5.0 mol%). After 10 h at 25 °C, the reaction mixture 

was quenched with sat. aq. Na2CO3 solution (25 mL) followed by extraction using EtOAc (3 x 

25 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 1:4 + 2-Vol% NEt3) 

afforded the quinazoline 126h (259 mg, 95%) as a yellow solid. 

M.p. (°C): 149-150. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 9.10 (s, 1H), 7.83 (dd, J = 3.7 Hz, 1.2 Hz, 1H), 7.74 (s, 

1H), 7.64 (dd, J = 5.1 Hz, 1.1 Hz, 1H), 7.38 (s, 1H), 7.27 (dd, J = 3.7 Hz, 1.5 Hz, 1H), 4.08 (s, 

3H), 4.03 (s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 157.4, 155.8, 153.1, 150.9, 149.2, 141.3, 130.0, 130.0, 

128.1, 117.5, 107.0, 103.4, 56.4, 56.2. 
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IR (Diamond-ATR, neat): ν~ / cm-1 = 3102 (w), 2961 (w), 2920 (w), 2829 (vw), 1615 (w), 1572 

(w), 1535 (w), 1499 (s), 1466 (s), 1450 (m), 1427 (s), 1367 (m), 1352 (m), 1296 (m), 1271 (w), 

1236 (s), 1217 (s), 1194 (m), 1131 (m), 1101 (m), 1084 (w), 1021 (m), 996 (s), 960 (m), 942 (m), 

867 (m), 838 (s), 778 (m), 739 (vs), 702 (m), 662 (m), 642 (m), 618 (m). 

MS (EI, 70 eV): m/z (%) = 272 (M+, 100), 257 (24), 242 (18), 202 (6), 159 (6), 86 (25). 

HRMS (C14H12N2O2S): calc.: 272.0619; found: 272.0615. 

 

Ethyl 4-[2-(4-methoxybenzyl)pyrimidin-4-yl]benzoate (126i) 

 

According to TP14 ethyl 4-[2-(methylthio)pyrimidin-4-yl]benzoate (124k; 261 mg, 0.95 mmol, 

in 1 mL THF) was reacted with 3,4,5-trimethoxybenzylzinc chloride (54h; 1.67 mL, 1.50 mmol, 

0.90 M in THF), Pd(OAc)2 (5.3 mg, 2.5 mol%) and S-Phos (19.5 mg, 5.0 mol%). After 1.5 h at 

25 °C, the reaction mixture was quenched with sat. aq. Na2CO3 solution (25 mL) followed by 

extraction using EtOAc (3 x 25 mL). Purification by flash chromatography (silica gel, EtOAc) 

afforded the pyrimidine 126i (343 mg, 88%) as a yellow solid.  

M.p. (°C): 121-122. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.75 (d, J = 5.5 Hz, 1H), 8.16 (s, 4H), 7.59 (d, J = 

5.2 Hz, 1H), 6.69 (s, 2H), 4.41 (q, J = 7.1 Hz, 2H), 4.29 (s, 2H), 3.84 (s, 6H), 3.80 (s, 3H), 1.41 

(t, J = 7.1 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 169.8, 166.0, 163.3, 157.8, 153.1, 140.6, 136.7, 133.7, 

132.6, 130.1, 127.1, 114.7, 106.3, 61.3, 60.8, 56.1, 46.2, 14.3. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 2939 (w), 2838 (vw), 2826 (vw), 1712 (m), 1591 (m), 

1570 (m), 1542 (w), 1506 (m), 1462 (m), 1444 (m), 1422 (m), 1408 (m), 1381 (w), 1369 (w), 

1336 (m), 1280 (s), 1246 (m), 1124 (vs), 1009 (m), 845 (m), 829 (m), 784 (w), 754 (m), 700 (m), 

658 (w), 650 (w), 636 (w), 619 (m). 

MS (EI, 70 eV): m/z (%) = 408 (M+, 100), 393 (58), 363 (5), 307 (4), 279 (3), 175 (4), 181 (3). 

HRMS (C23H24N2O5): calc.: 408.1685; found: 408.1677. 
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Ethyl 3-[(4-methylpyrimidin-2-yl)methyl]benzoate (126j) 

 

According to TP14 4-methyl-2-(methylthio)pyrimidine (124c; 140 mg, 1.00 mmol, in 1 mL 

THF) was reacted with 3-(ethoxycarbonyl)benzylzinc chloride (54m; 1.19 mL, 1.50 mmol, 

1.26 M in THF), Pd(OAc)2 (5.6 mg, 2.5 mol%) and S-Phos (20.5 mg, 5.0 mol%). After 24 h at 

25 °C, the reaction mixture was quenched with sat. aq. Na2CO3 solution (25 mL) followed by 

extraction using EtOAc (3 x 25 mL). Purification by flash chromatography (silica, pentane / Et2O 

= 1:3) afforded the pyrimidine 126j (188 mg, 73%) as a yellow oil.  
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.49 (d, J = 5.2 Hz, 1H), 8.03 (s, 1H), 7.94-7.81 (m 

1H), 7.54 (d, J = 7.7 Hz, 1H), 7.34 (t, J = 7.8 Hz, 1H), 6.98 (d, J = 5.2 Hz, 1H), 4.33 (q, J = 

7.2 Hz, 2H), 4.28 (s, 2H), 2.48 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 168.8, 167.4, 166.5, 156.8, 138.5, 133.6, 130.6, 130.2, 

128.4, 127.7, 118.3, 60.8, 45.5, 24.1, 14.3. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 2981 (w), 1714 (vs), 1578 (s), 1555 (m), 1439 (s), 1387 

(m), 1368 (m), 1279 (vs), 1190 (vs), 1105 (s), 1081 (m), 1023 (m), 929 (w), 839 (w), 754 (s), 740 

(s), 697 (s), 672 (m), 651 (m). 

MS (EI, 70 eV): m/z (%) = 256 (M+, 97), 255 (100), 227 (54), 182 (62), 168 (21), 116 (13), 89 

(19), 43 (39). 

HRMS (C15H16N2O2): calc.: 256.1212; found: 256.1189. 

 

3-[(6-Methoxypyridazin-3-yl)methyl]benzonitrile (126k) 

 

According to TP14 3-methoxy-6-(methylthio)pyridazine (124a; 156 mg, 1.00 mmol, in 1 mL 

THF) was reacted with 3-cyanobenzylzinc chloride (54o; 1.05 mL, 1.50 mmol, 1.43 M in THF), 

Pd(OAc)2 (5.6 mg, 2.5 mol%) and S-Phos (20.5 mg, 5.0 mol%). After 14 h at 50 °C, the reaction 

mixture was quenched with sat. aq. Na2CO3 solution (25 mL) followed by extraction using 

EtOAc (3 x 25 mL). Purification by flash chromatography (silica gel, EtOAc) afforded the 

pyridazine 126k (160 mg, 71%) as a yellow solid.  

M.p. (°C): 76-78. 
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1H-NMR  (400 MHz, CDCl3): δ / ppm = 7.57-7.49 (m, 3H), 7.43-7.39 (m, 1H), 7.18 (d, J = 9.2 

Hz, 1H), 6.91 (d, J = 9.0 Hz, 1H), 4.26 (s, 2H), 4.10 (s, 3H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 164.2, 156.5, 139.9, 133.5, 132.4, 130.5, 129.5, 129.5, 

118.6, 118.2, 112.7, 54.8, 41.1. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 3065 (vw), 2961 (w), 2923 (w), 2854 (w), 2227 (w), 1595 

(w), 1458 (s), 1438 (m), 1412 (m), 1306 (s), 1260 (m), 1234 (w), 1091 (m), 1010 (vs), 900 (m), 

858 (m), 784 (s), 718 (m), 688 (s). 

MS (EI, 70 eV): m/z (%) = 225 (M+, 30), 224 (100), 153 (4), 127 (5), 89 (3). 

HRMS (C13H11N3O): calc.: 225.0902; found: 225.0900. 

 

Ethyl 3-[(6,7-dimethoxyquinazolin-4-yl)methyl]benzoate (126l) 

 

According to TP14 6,7-dimethoxy-4-(methylthio)quinazoline (124j; 236 mg, 1.00 mmol, in 1 mL 

THF) was reacted with (3-ethoxycarbonyl)benzylzinc chloride (54m; 1.74 mL, 1.50 mmol, 

0.86 M in THF), Pd(OAc)2 (5.6 mg, 2.5 mol%) and S-Phos (20.5 mg, 5.0 mol%). After 12 h at 

50 °C, the reaction mixture was quenched with sat. aq. Na2CO3 solution (25 mL) followed by 

extraction using EtOAc (3 x 25 mL). Purification by flash chromatography (silica gel, pentane / 

EtOAc = 1:6) afforded the quinazoline 126l (275 mg, 78%) as a pale yellow solid. 

M.p. (°C): 119-121. 
1H-NMR  (400 MHz, CDCl3): δ / ppm = 9.06 (s, 1H), 8.03-7.98 (m, 1H), 7.89-7.83 (m, 1H), 

7.46-7.40 (m, 1H), 7.31 (t, J = 7.7 Hz, 1H), 7.27 (s, 1H), 7.21 (s, 1H), 4.54 (s, 2H), 4.31 (q, J = 

7.2 Hz, 2H), 3.99 (s, 3H), 3.91 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.3, 165.3, 155.9, 153.1, 150.4, 148.3, 138.0, 133.2, 

130.9, 129.9, 128.8, 128.0, 119.4, 107.1, 102.1, 61.0, 56.4, 56.1, 41.3, 14.3. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 2982 (vw), 1709 (m), 1615 (w), 1552 (w), 1505 (s), 1425 

(s), 1365 (s), 1288 (vs), 1270 (s), 1234 (vs), 1193 (s), 1123 (m), 1027 (m), 985 (m), 850 (s), 753 

(s), 728 (m), 700 (m). 

MS (EI, 70 eV): m/z (%) = 352 (M+, 32), 323 (18), 321 (100), 307 (14), 291 (19), 277 (5), 263 

(6). 
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HRMS (C20H20N2O4): calc.: 352.1423; found: 352.1414. 

 

2-(3,4,5-Trimethoxybenzyl)-1,3-benzothiazole (126m) 

 

According to TP14 2-(methylthio)-1,3-benzothiazole (124l; 181 mg, 1.00 mmol, in 1 mL THF) 

was reacted with 3,4,5-trimethoxybenzylzinc chloride (54h; 1.56 mL, 1.50 mmol, 0.95 M in 

THF),  Pd(OAc)2 (5.6 mg, 2.5 mol%), S-Phos (20.5 mg, 5.0 mol%) and Zn(OAc)2 

(183 mg, 1.00 mmol). After 16 h at 25 °C, the reaction mixture was quenched with sat. aq. 

Na2CO3 solution (25 mL) followed by extraction using EtOAc (3 x 25 mL). Purification by flash 

chromatography (silica gel, pentane / Et2O = 1:1) afforded the benzothiazole 126m (222 mg, 

70%) as a white solid.  

M.p. (°C): 105-107. 
1H-NMR  (400 MHz, CDCl3): δ / ppm = 8.01-7.96 (m, 1H), 7.82-7.76 (m, 1H), 7.47-7.41 (m, 

1H), 7.36-7.29 (m, 1H), 6.57 (s, 2H), 4.35 (s, 2H), 3.83 (s, 6H), 3.82 (s, 3H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 171.0, 153.4, 153.0, 137.1, 135.5, 132.6, 125.9, 124.8, 

122.7, 121.5, 106.0, 60.8, 56.1, 40.9. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 3051 (vw), 2936 (w), 2839 (w), 2361 (vw), 1590 (m), 

1501 (m), 1422 (m), 1334 (m), 1238 (s), 1203 (w), 1154 (w), 1119 (vs), 1063 (m), 996 (s), 977 

(m), 856 (m), 834 (m), 764 (vs), 732 (m), 722 (s), 663 (m), 642 (m). 

MS (EI, 70 eV): m/z (%) = 315 (M+, 100), 300 (53), 268 (5), 257 (5), 186 (10). 

HRMS (C17H17NO3S): calc.: 315.0929; found: 315.0925. 

 

4-[5-(Trifluoromethyl)pyridin-2-yl]butanenitrile (1 26n) 

 

According to TP14 2-(methylthio)-5-(trifluoromethyl)pyridine (124d; 193 mg, 1.0 mmol, in 

1 mL THF) was reacted with (3-cyanopropyl)zinc bromide (127a; 3.66 mL, 1.5 mmol, 0.41 M in 

THF), Pd(OAc)2 (5.6 mg, 2.5 mol%) and S-Phos (20.5 mg, 5.0 mol%). After 16 h at 25 °C, the 

reaction mixture was quenched with sat. Na2CO3 solution (25 mL) followed by extraction using 
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EtOAc (3 x 25 mL). Purification by flash chromatography (pentane / Et2O = 1:1 + 2 vol-% NEt3) 

furnished the pyridine 126n (180 mg, 0.84 mmol, 84%) as a yellow oil. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.83-8.76 (m, 1H), 7.85 (dd, J = 8.1 Hz, 2.4 Hz, 1H), 

7.31 (d, J = 8.1 Hz, 1H), 3.02 (t, J = 7.3 Hz, 2H), 2.43 (t, J = 7.0 Hz, 2H), 2.23-2.09 (m, 2H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 163.5 (q, 4JC-F = 1.4 Hz), 146.4 (q, 3JC-F = 4.0 Hz), 133.7 

(q, 3JC-F = 3.5 Hz), 124.8 (q, 2JC-F = 33.1 Hz), 123.5 (q, 1JC-F = 272.3 Hz), 122.9, 119.2, 36.2, 

24.4, 16.6. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 2941 (vw), 2248 (vw), 1609 (m), 1574 (w), 1496 (vw), 

1430 (w), 1396 (w), 1325 (vs), 1166 (m), 1121 (vs), 1079 (s), 1017 (s), 940 (w), 854 (w), 738 

(w), 654 (w). 

MS (EI, 70 eV): m/z (%) = 214 (M+, <1), 195 (5), 174 (47), 161 (100), 147 (6), 86 (11), . 

HRMS (C10H9F3N2): calc.: 214.0718; found: 214. 0697. 

 

Ethyl 4-[2-(4-methoxybenzyl)pyrimidin-4-yl]benzoate (126o) 

 

To a solution of 2-bromo-4-(methylthio)pyrimidine (124b; 205 mg, 1.00 mmol), Pd(dba)2 

(14.4 mg, 2.5 mol%) and tfp (11.6 mg, 5.0 mol%) in THF (1 mL) was added dropwise 4-

methoxybenzylzinc chloride (54i; 0.82 mL, 1.02 mmol, 1.24 M in THF). After stirring for 3 h at 

25 °C  Pd(OAc)2 (5.6 mg, 2.5 mol%) and S-Phos (20.5 mg, 5.0 mol%) were added followed by 4-

(ethoxycarbonyl)phenylzinc iodide (5a; 2.14 mL, 1.50 mmol, 0.70 M in THF) and the reaction 

mixture was stirred for additional 24 h. Then, the reaction mixture was quenched with sat. aq. 

Na2CO3 solution (25 mL) followed by extraction using EtOAc (3 x 25 mL). Purification by flash 

chromatography (silica gel, CH2Cl2 / Et2O = 1:1) afforded the pyrimidine 126o (236 mg, 68%) as 

a yellow solid. 

M.p. (°C): 70-71. 
1H-NMR  (600 MHz, C6D6): δ / ppm = 8.28 (d, J = 5.3 Hz, 1H), 8.23-8.20 (m, 2H), 8.00-7.92 (m, 

2H), 7.48-7.41 (m, 2H), 6.83-6.77 (m, 2H), 6.68 (d, J = 5.3 Hz, 1H), 4. 38 (s, 2H), 4.14 (q, J = 

7.1 Hz, 2H), 3.27 (s, 3H), 1.03 (t, J = 7.2 Hz, 3H). 
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13C-NMR (150 MHz, C6D6): δ / ppm = 171.0, 165.8, 162.6, 159.0, 158.1, 141.2, 132.9, 131.1, 

130.7, 130.2, 127.4, 114.3, 114.2, 61.1, 54.7, 45.7, 14.2. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 2980 (w), 2934 (w), 2835 (vw), 1712 (s), 1611 (w), 1569 

(s), 1547 (m), 1510 (s), 1438 (m), 1409 (m), 1383 (m), 1270 (vs), 1242 (vs), 1176 (s), 1105 (s), 

1018 (s), 818 (m), 776 (s), 740 (s), 700 (s). 

MS (EI, 70 eV): m/z (%) = 348 (M+, 100), 333 (26), 305 (15), 160 (4), 121 (10). 

HRMS (C23H24N2O5): calc.: 348.1474; found: 348.1467. 

 

Ethyl 4-[4-(4-methoxybenzyl)pyrimidin-2-yl]benzoate (126p) 

 

To a solution of 4-iodo-2-(methylthio)pyrimidine (124m; 252 mg, 1.00 mmol), Pd(dba)2 

(14.4 mg, 2.5 mol%) and tfp (11.6 mg, 5.0 mol%) in THF (1 mL) was added dropwise 4-

methoxybenzylzinc chloride (54i; 1.31 mL, 1.02 mmol, 0.78 M in THF). After stirring for 10 min 

at 25 °C Pd(OAc)2 (5.6 mg, 2.5 mol%), S-Phos (20.5 mg, 5.0 mol%) and THF (0.5 mL) were 

added followed by 4-(ethoxycarbonyl)phenylzinc iodide (5a; 2.14 mL, 1.50 mmol, 0.70 M in 

THF) and the reaction mixture was stirred for additional 20 h. Then, the reaction mixture was 

quenched with sat. aq. Na2CO3 solution (25 mL) followed by extraction using EtOAc 

(3 x 25 mL). Purification by flash chromatography (silica gel, pentane / CH2Cl2 / Et2O = 12:4:1) 

afforded the pyrimidine 126p (280 mg, 80%) as a yellow solid. 

M.p. (°C): 71-73. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.67 (d, J = 5.2 Hz, 1H), 8.59-8.50 (m, 2H), 8.20-8.11 

(m, 2H), 7.28-7.18 (m, 2H), 6.99 (d, J = 5.1 Hz, 1H), 6.93-6.81 (m, 2H), 4.40 (q, J = 7.1 Hz, 2H), 

4.12 (s, 2H), 3.79 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 170.4, 166.4, 163.2, 158.6, 157.1, 141.5, 132.2, 130.3, 

129.7, 129.5, 128.1, 118.5, 114.2, 61.1, 55.2, 43.5, 14.3. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 2992 (w), 2980 (w), 2898 (w), 2836 (w), 1709 (vs), 1611 

(w), 1583 (m), 1552 (s), 1512 (s), 1456 (w), 1438 (m), 1401 (s), 1386 (m), 1274 (vs), 1245 (vs), 
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1178 (s), 1110 (s), 1099 (s), 1018 (s), 921 (w), 884 (w), 875 (w), 845 (m), 820 (m), 763 (m), 755 

(s), 699 (m), 614 (w). 

MS (EI, 70 eV): m/z (%) = 348 (M+, 100), 333 (24), 303 (8), 151 (5), 121 (15). 

HRMS (C23H24N2O5): calc.: 348.1474; found: 348.1462. 

 

Ethyl 3-(4-methylpyrimidin-2-yl)benzoate (126q)  

 

According to TP14 4-methyl-2-(methylthio)pyrimidine (124c; 1.40  g, 10.0 mmol, in 5 mL THF) 

was reacted with 4-(ethoxycarbonyl)phenylzinc iodide (5a; 20.0 mL, 15.0 mmol, 0.75 M in THF),  

Pd(OAc)2 (56 mg, 2.5 mol%) and S-Phos (205 mg, 5.0 mol%). After 18 h at 25 °C, the reaction 

mixture was quenched with sat. aq. Na2CO3 solution (250 mL) followed by extraction using 

EtOAc (3 x 250 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 4:1) 

afforded the pyrimidine 126o (2.20 g, 91%) as a yellow solid. 

M.p. (°C): 46-48. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.66 (d, J = 5.1 Hz, 1H), 8.54-8.48 (m, 2H), 8.18-8.08 

(m, 2H), 7.08 (dd, J = 5.1 Hz, 0.5 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 2.59 (s, 3H), 1.41 (t, J = 

7.1 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 167.6, 166.4, 163.3, 156.7, 141.6, 132.1, 129.7, 128.1, 

119.1, 61.1, 24.4, 14.3. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 2986 (w), 2904 (w), 1706 (s), 1586 (m), 1568 (m), 1550 

(m), 1510 (w), 1480 (w), 1430 (w), 1400 (m), 1364 (m), 1304 (w), 1266 (vs), 1126 (m), 1106 (s), 

1090 (m), 1026 (m), 1018 (m), 880 (m), 850 (m), 838 (m), 760 (s), 698 (m), 610 (w). 

MS (EI, 70 eV): m/z (%) = 242 (M+, 45), 214 (38), 197 (100), 169 (25), 129 (3), 102 (4). 

HRMS (C14H14N2O2): calc.: 242.1055; found: 242.1051. 
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6.3. Prepartion of the title compounds via Ni-catalyzed cross-couplings 

Ethyl 2-[3-(ethoxycarbonyl)phenyl]nicotinate (128a)  

 

According to TP15 ethyl 2-(methylthio)nicotinate (124e; 197 mg, 1.00 mmol, in 1 mL THF) was 

reacted with 3-(ethoxycarbonyl)phenylzinc iodide (5d; 2.24 mL, 1.50 mmol, 0.67 M in THF), 

Ni(acac)2 (6.4 mg, 2.5 mol%) and DPE-Phos (26.8 mg, 5.0 mol%). After 14 h at 25 °C, the 

reaction mixture was quenched with sat. aq. Na2CO3 solution (25 mL) followed by extraction 

using EtOAc (3 x 25 mL). Purification by flash chromatography (silica gel, pentane / EtOAc = 

4:1) afforded the pyridine 128a (273 mg, 91%) as colourless liquid. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.78 (dd, J = 4.7 Hz, 1.7 Hz, 1H), 8.22-8.19 (m, 1H), 

8.17 (dd, J = 7.9 Hz, 1.7 Hz, 1H), 8.13-8.08 (m, 1H), 7.77-7.71 (m, 1H), 7.55-7.47 (m, 1H), 7.38 

(dd, J = 7.9 Hz, 4.7 Hz, 1H), 4.37 (q, J = 7.0 Hz, 2H), 4.16 (q, J = 7.2 Hz, 2H), 1.37 (t, J = 

7.2 Hz, 3H), 1.06 (t, J = 7.2 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 167.4, 166.2, 157.9, 151.1, 140.2, 138.3, 132.9, 130.4, 

129.8, 129.8, 128.2, 127.3, 122.0, 61.6, 61.0, 14.3, 13.7. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 2982 (w), 1713 (vs), 1582 (w), 1562 (m), 1439 (m), 1420 

(m), 1391 (w), 1367 (m), 1283 (s), 1245 (vs), 1207 (s), 1170 (m), 1111 (s), 1097 (s), 1056 (s), 

1015 (m), 855 (w), 822 (w), 787 (m), 753 (vs), 694 (s). 

MS (EI, 70 eV): m/z (%) = 299 (M+, 16), 270 (100), 254 (37), 242 (27), 227 (28), 208 (12), 198 

(14), 182 (14), 155 (18), 127 (8), 91 (5). 

HRMS (C17H17NO4): calc.: 299.1158; found: 299.1155. 

 

Ethyl 4-(3-cyanopyridin-2-yl)benzoate (128b)  

 

According to TP15 2-(methylthio)nicotinonitrile (124i; 150 mg, 1.00 mmol, in 1 mL THF) was 

reacted with 4-(ethoxycarbonyl)phenylzinc iodide (5a; 2.14 mL, 1.50 mmol, 0.70 M in THF), 

Ni(acac)2 (6.4 mg, 2.5 mol%) and DPE-Phos (26.8 mg, 5.0 mol%). After 18 h at 25 °C, the 

reaction mixture was quenched with sat. aq. Na2CO3 solution (25 mL) followed by extraction 
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using EtOAc (3 x 25 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 1:1 

+ 2 vol-% NEt3) afforded the pyridine 128b (173 mg, 69%) as white solid. 

M.p. (°C): 98-100. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.89 (dd, J = 4.9 Hz, 1.7 Hz, 1H), 8.22-8.16 (m, 2H), 

8.09 (dd, J = 8.0 Hz, 1.9 Hz, 1H), 8.03-7.96 (m, 2H), 7.42 (dd, J = 7.8 Hz, 4.9 Hz, 1H), 4.41 (q, 

J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.0, 160.0, 152.7, 141.8, 141.0, 131.9, 129.8, 128.9, 

122.1, 117.2, 107.9, 61.2, 14.3. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 2977 (vw), 2225 (w), 1714 (m), 1581 (w), 1551 (w), 1432 

(m), 1405 (w), 1368 (w), 1319 (vw), 1271 (vs), 1226 (w), 1184 (w), 1175 (w), 1102 (s), 1016 

(m), 966 (w), 862 (m), 806 (m), 787 (w), 750 (vs), 719 (w), 698 (m). 

MS (EI, 70 eV): m/z (%) = 252 (M+, 43), 224 (36), 207 (100), 179 (36), 152 (15), 90 (4). 

HRMS (C15H12N2O2): calc.: 252.0899; found: 252.0902. 

 

Ethyl 3-(4-methylpyrimidin-2-yl)benzoate (128c)  

 

According to TP15 4-methyl-2-(methylthio)pyrimidine (124c; 140 mg, 1.00 mmol, in 1 mL 

THF) was reacted with 3-(ethoxycarbonyl)phenylzinc iodide (5d; 2.21 mL, 1.50 mmol, 0.68 M in 

THF),  Ni(acac)2 (6.4 mg, 2.5 mol%) and DPE-Phos (26.8 mg, 5.0 mol%). After 12 h at 25 °C, 

the reaction mixture was quenched with sat. aq. Na2CO3 solution (25 mL) followed by extraction 

using EtOAc (3 x 25 mL). Purification by flash chromatography (silica gel, pentane / Et2O 

= 20:1) afforded the pyrimidine 128c (230 mg, 95%) as a yellow oil. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 9.10-9.06 (m, 1H), 8.68-8.60 (m, 2H), 8.17-8.11 (m, 

1H), 7.58-7.51 (m, 1H), 7.07 (d, J = 5.1 Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 2.59 (s, 3H), 1.41 (t, 

J = 7.2 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 167.6, 166.4, 163.4, 156.7, 138.0, 132.4, 131.5, 131.0, 

129.3, 128.6, 119.0, 61.0, 24.4, 14.4. 
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IR (Diamond-ATR, neat): ν~ / cm-1 = 2976 (w), 2928 (vw), 1712 (s), 1572 (s), 1552 (m), 1422 

(m), 1386 (m), 1365 (m), 1280 (s), 1255 (s), 1237 (vs), 1164 (m), 1126 (s), 1103 (s), 1078 (m), 

1021 (s), 916 (m), 849 (m), 822 (m), 746 (vs), 685 (s). 

MS (EI, 70 eV): m/z (%) = 242 (M+, 53), 214 (11), 197 (80), 170 (100), 129 (6), 102 (9). 

HRMS (C14H14N2O2): calc.: 242.1055; found: 242.1052. 

 

4-(4-Methylpyrimidin-2-yl)benzonitrile (128d)  

 

According to TP15 4-methyl-2-(methylthio)pyrimidine (124c; 140 mg, 1.00 mmol, in 1 mL 

THF) was reacted with 3-cyanophenylzinc iodide (5e; 2.31 mL, 1.50 mmol, 0.65 M in THF),  

Ni(acac)2 (6.4 mg, 2.5 mol%) and DPE-Phos (26.8 mg, 5.0 mol%). After 18 h at 25 °C, the 

reaction mixture was quenched with sat. aq. Na2CO3 solution (25 mL) followed by extraction 

using EtOAc (3 x 25 mL). Purification by flash chromatography (silica gel, pentane / Et2O / 

EtOAc = 2:6:1) afforded the pyrimidine 129d (143 mg, 73%) as a white solid. 

M.p. (°C): 191-193. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.66 (d, J = 5.2 Hz, 1H), 8.60-8.52 (m, 2H), 7.78-7.71 

(m, 2H), 7.11 (d, J = 5.6 Hz, 1H), 2.59 (s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 167.7, 162.4, 156.9, 141.8, 132.3, 128.6, 119.5, 118.8, 

113.8, 24.3. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 3047 (w), 2224 (w), 1678 (w), 1606 (w), 1583 (s), 1550 

(s), 1378 (s), 1288 (m), 1254 (w), 1197 (w), 1108 (w), 1018 (w), 994 (w), 949 (w), 868 (m), 860 

(m), 836 (vs), 789 (vs), 706 (w). 

MS (EI, 70 eV): m/z (%) = 195 (M+, 100), 180 (13), 128 (29), 101 (5), 67 (5). 

HRMS (C12H9N3): calc.: 195.0796; found: 195.0796. 
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Ethyl 3-pyrazin-2-ylbenzoate (128e)  

 

According to TP15 2-(methylthio)pyrazine (124n; 26 mg, 1.00 mmol, in 1 mL THF) was reacted 

with 3-(ethoxycarbonyl)phenylzinc iodide (5d; 2.31 mL, 1.50 mmol, 0.65 M in THF), Ni(acac)2 

(6.4 mg, 2.5 mol%) and DPE-Phos (26.8 mg, 5.0 mol%). After 14 h at 25 °C, the reaction 

mixture was quenched with sat. aq. Na2CO3 solution (25 mL) followed by extraction using 

EtOAc (3 x 25 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 1:1) 

afforded the pyrazine 128e (170 mg, 74%) as a white solid.  

M.p. (°C): 121-123. 
1H-NMR  (400 MHz, C6D6): δ / ppm = 8.95 (t, J = 1.6 Hz, 1H), 8.76 (d, J = 1.6 Hz, 1H), 8.18-

8.13 (m, 1H), 8.08-8.06 (m, 1H), 8.03 (d, J = 2.5 Hz, 1H), 7.95-7.91 (m, 1H), 7.73 (t, J = 7.7 Hz, 

1H), 4.14 (q, J = 7.0 Hz, 2H), 1.03 (t, J = 7.1 Hz, 3H). 
13C-NMR (100 MHz, C6D6): δ / ppm = 165.9, 151.6, 144.2, 143.6, 142.2, 137.1, 131.9, 131.0, 

130.9, 129.1, 128.4, 61.0, 14.2 

IR (Diamond-ATR, neat): ν~ / cm-1 = 3090 (vw), 3053 (w), 2983 (w), 2939 (w), 1705 (s), 1606 

(w), 1465 (m), 1392 (m), 1367 (m), 1278 (s), 1247 (vs), 1176 (m), 1147 (m), 1123 (m), 1109 (s), 

1081 (m), 1024 (s), 1014 (s), 936 (m), 896 (m), 856 (s), 820 (m), 765 (s), 745 (s), 689 (s), 

652 (m). 

MS (EI, 70 eV): m/z (%) = 228 (M+, 61), 200 (31), 183 (100), 155 (49), 102 (10), 77 (6). 

HRMS (C13H12N2O2): calc.: 228.0899; found: 228.0883. 

 

Ethyl 3-(6,7-dimethoxyquinazolin-4-yl)benzoate (128f)  

 

According to TP15 6,7-dimethoxy-4-(methylthio)quinazoline (124j; 236 mg, 1.00 mmol, in 1 mL 

THF) was reacted with 3-(ethoxycarbonyl)phenylzinc iodide (5d; 2.31 mL, 1.50 mmol, 0.65 M in 

THF), Ni(acac)2 (6.4 mg, 2.5 mol%) and DPE-Phos (26.8 mg, 5.0 mol%). After 18 h at 25 °C, the 

reaction mixture was quenched with sat. aq. Na2CO3 solution (25 mL) followed by extraction 
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using EtOAc (3 x 25 mL). Purification by flash chromatography (silica gel, pentane / EtOAc / 

CH2Cl2 = 1:1:2) afforded the quinazoline 128f (270 mg, 80%) as a white solid. 

M.p. (°C): 174-175. 
1H-NMR  (600 MHz, CDCl3): δ / ppm = 9.20 (s, 1H), 8.46 (t, J = 1.8 Hz, 1H), 8.24-8.21 (m, 

1H), 7.99-7.97 (m, 1H), 7.65 (t, J = 7.8 Hz, 1H), 7.43 (s, 1H), 7.27 (s, 1H), 4.40 (q, J = 7.0 Hz, 

2H), 4.08 (s, 3H), 3.89 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 165.9, 164.0, 156.1, 153.2, 150.7, 148.9, 137.8, 133.7, 

131.1, 130.8, 130.6, 129.0, 118.6, 106.8, 103.5, 61.3, 56.5, 56.1, 14.3.  

IR (Diamond-ATR, neat): ν~ / cm-1 = 2920 (w), 2851 (w), 1730 (s), 1617 (w), 1569 (w), 1540 

(m), 1501 (vs), 1464 (m), 1427 (s), 1371 (m), 1321 (m), 1302 (m), 1261 (s), 1230 (vs), 1214 (s), 

1143 (m), 1122 (m), 1080 (m), 1030 (m), 1011 (m), 974 (w), 850 (m), 753 (m), 694 (m). 

MS (EI, 70 eV): m/z (%) = 338 (M+, 100), 323 (22), 309 (22), 277 (24), 265 (20), 249 (8), 221 

(13), 192 (6), 147 (5), 84 (8). 

HRMS (C19H18N2O4): calc.: 338.1267; found: 338.1265. 

 

2,4-Di-2-thienyl-6-(trifluoromethyl)pyrimidine (128 g)  

 

According to TP15 2-(methylthio)-4-(2-thienyl)-6-(trifluoromethyl)pyrimidine (124o; 276 mg, 

1.00 mmol, in 1.5 mL THF) was reacted with 2-thienylzinc iodide (5f; 1.95 mL, 1.50 mmol, 

0.77 M in THF), Ni(acac)2 (6.4 mg, 2.5 mol%) and DPE-Phos (26.8 mg, 5.0 mol%). After 16 h at 

25 °C, the reaction mixture was quenched with sat. aq. Na2CO3 solution (25 mL) followed by 

extraction using EtOAc (3 x 25 mL). Purification by flash chromatography (silica gel, 

pentane / Et2O = 500:1) afforded the pyrimidine 128g (294 mg, 94%) as a yellow solid.  

M.p. (°C): 102-104. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.14 (dd, J = 3.7 Hz, 1.3 Hz, 1H), 7.87 (dd, J = 3.7 Hz, 

1.1 Hz, 1H), 7.60 (dd, J = 5.0 Hz, 1.2 Hz, 1H), 7.58 (s, 1H), 7.54 (dd, J = 5.0 Hz, 1.2 Hz, 1H), 

7.21-7.15 (m, 2H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 162.1, 161.2, 156.4 (q, 2JC-F = 35.8 Hz), 141.9, 141.3, 

131.6, 131.2, 130.6, 128.9, 128.6, 128.3, 120.6 (q, 1JC-F = 275.4 Hz), 107.7 (q, 3JC-F = 2.8 Hz). 
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IR (Diamond-ATR, neat): ν~ / cm-1 = 3101 (vw), 1739 (w), 1586 (m), 1542 (m), 1526 (m), 1427 

(s), 1410 (m), 1379 (s), 1334 (w), 1263 (s), 1215 (m), 1182 (s), 1137 (vs), 1102 (m), 1034 (m), 

998 (m), 860 (m), 724 (m), 712 (s), 697 (vs). 

MS (EI, 70 eV): m/z (%) = 312 (M+, 100), 134 (47), 109 (18), 90 (6), 45 (10). 

HRMS (C13H7F3N2S2): calc.: 312.0003; found: 311.9985. 

 

2,4-Dimethoxy-6-(2-thienyl)-1,3,5-triazine (128h)  

 

According to TP15 dimethoxy-6-(methylthio)-1,3,5-triazine (124p; 187 mg, 1.00 mmol, in 1 mL 

THF) was reacted with 2-thienylzinc iodide (5f; 1.95 mL, 1.50 mmol, 0.77 M in THF), Ni(acac)2 

(6.4 mg, 2.5 mol%) and DPE-Phos (26.8 mg, 5.0 mol%). After 16 h at 25 °C, the reaction 

mixture was quenched with sat. aq. Na2CO3 solution (25 mL) followed by extraction using 

EtOAc (3 x 25 mL). Purification by flash chromatography (silica gel, pentane / Et2O / CH2Cl2 

= 8:1:1) afforded the pyrimidine 128h (194 mg, 87%) as a pale yellow solid.  

M.p. (°C): 93-95. 
1H-NMR  (600 MHz, CDCl3): δ / ppm = 8.14 (dd, J = 3.8 Hz, 1.3 Hz, 1H), 7.57 (dd, J = 5.0 Hz, 

1.2 Hz, 1H), 7.14 (dd, J = 4.9 Hz, 3.7 Hz, 1H), 4.07 (s, 6H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 172.5, 170.6, 140.6, 132.5, 131.9, 128.3, 55.2. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 3079 (w), 2953 (w), 1563 (s), 1544 (s), 1531 (s), 1490 (s), 

1452 (s), 1428 (s), 1378 (s), 1350 (vs), 1335 (s), 1231 (m), 1194 (m), 1096 (s), 1085 (m), 1041 

(s), 1011 (m), 931 (m), 813 (s), 738 (s), 722 (s). 

MS (EI, 70 eV): m/z (%) = 223 (M+, 100), 193 (33), 178 (21), 152 (31), 110 (30), 109 (19), 69 

(18). 

HRMS (C9H9N3O2S): calc.: 223.0415; found: 223.0399.  



 
C. Experimental Section  265 

Ethyl 3-{[5-(trifluoromethyl)pyridin-2-yl]methyl}be nzoate (128i)  

 

According to TP15 2-(methylthio)-5-(trifluoromethyl)pyridine (124i; 193 mg, 1.00 mmol, in 

1 mL THF) was reacted with 3-(ethoxycarbonyl)benzylzinc chloride (54m; 1.19 mL, 1.50 mmol, 

1.26 M in THF), Ni(acac)2 (6.4 mg, 2.5 mol%) and DPE-Phos (26.8 mg, 5.0 mol%). After 24 h at 

25 °C, the reaction mixture was quenched with sat. aq. Na2CO3 solution (25 mL) followed by 

extraction using EtOAc (3 x 25 mL). Purification by flash chromatography (silica gel, 

pentane / Et2O = 9:1) afforded the pyridine 128i (230 mg, 74%) as colourless liquid.  
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.82-8.79 (m, 1H), 7.97-7.89 (m, 2H), 7.81 (dd, J = 

8.1 Hz, 2.4 Hz, 1H), 7.48-7.42 (m, 1H), 7.38 (t, J = 7.6 Hz, 1H), 7.24 (d, J = 9.0 Hz, 1H), 4.35 (q, 

J = 7.2 Hz, 2H), 4.26 (s, 2H), 1.37 (t, J = 7.2 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.4, 164.3 (q, 4JC-F = 1.4 Hz), 146.3 (q, 3JC-F = 

4.0 Hz), 138.6, 133.8 (q, 3JC-F = 3.4 Hz), 133.6, 131.0, 130.2, 128.8, 128.1, 124.6 (q, 2JC-F = 33.0 

Hz), 123.6 (q, 1JC-F = 272.1 Hz), 122.8, 61.0, 44.3, 14.3. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 2984 (vw), 1715 (s), 1605 (m), 1574 (w), 1490 (w), 1445 

(w), 1392 (w), 1368 (w), 1326 (vs), 1277 (s), 1192 (s), 1164 (m), 1123 (vs), 1105 (s), 1077 (vs), 

1016 (s), 944 (w), 860 (w), 836 (w), 742 (s), 695 (m), 673 (w), 650 (w). 

MS (EI, 70 eV): m/z (%) = 309 (M+, 41), 308 (100), 290 (11), 280 (93), 264 (44), 235 (86), 208 

(16), 167 (32), 132 (13), 118 (11), 44 (21). 

HRMS (C16H14F3NO2): calc.: 309.0977; found: 309.0957. 

 

2-(2-Chlorobenzyl)nicotinonitrile (128j)  

 

According to TP15 2-(methylthio)nicotinonitrile (124i; 150 mg, 1.00 mmol in 1 mL THF) was 

reacted with 2-chlorobenzylzinc chloride (54b; 2.14 mL, 1.50 mmol, 0.70 M in THF), Ni(acac)2 

(6.4 mg, 2.5 mol%) and DPE-Phos (26.8 mg, 5.0 mol%). After 24 h at 25 °C, the reaction 

mixture was quenched with sat. aq. Na2CO3 solution (25 mL) followed by extraction using 

EtOAc (3 x 25 mL). Purification by flash chromatography (silica gel, pentane / Et2O / CH2Cl2 

= 5:1:1 + 2 vol-% NEt3) afforded the pyridine 128j (258 mg, 69%) as white solid.  
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M.p. (°C): 74-76. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.71 (dd, J = 5.0 Hz, 1.8 Hz, 1H), 7.96 (dd, J = 7.9 Hz, 

1.7 Hz, 1H), 7.41-7.34 (m, 1H), 7.29 (dd, J = 7.9 Hz, 4.7 Hz, 1H), 7.26-7.18 (m, 3H), 4.53 (s, 

2H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 162.1, 152.3, 140.7, 135.2, 134.4, 131.4, 129.6, 128.5, 

126.9, 121.4, 116.4, 109.8, 40.3. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 3057 (vw), 2923 (vw), 2228 (w), 1579 (m), 1562 (m), 

1474 (m), 1434 (s), 1164 (w), 1127 (w), 1090 (m), 1050 (m), 1038 (m), 987 (w), 949 (w), 910 

(w), 805 (m), 752 (vs), 717 (m), 704 (m), 678 (m), 623 (m). 

MS (EI, 70 eV): m/z (%) = 228 (M+, <1), 193 (100), 164 (4), 96 (4), 82 (2), 63 (2). 

HRMS (C13H9ClN2): calc.: 227.0376 ([M-H]+); found: 227.0377 ([M-H]+). 

 

3-[(4-Methylpyrimidin-2-yl)methyl]benzonitrile (128 k) 

 

According to TP15 4-methyl-2-(methylthio)pyrimidine (124c; 140 mg, 1.00 mmol, in 1 mL 

THF) was reacted with 3-cyanobenzylzinc chloride (54o; 1.05 mL, 1.50 mmol, 1.43 M in THF), 

Ni(acac)2 (6.4 mg, 2.5 mol%) and DPE-Phos (26.8 mg, 5.0 mol%). After 7 h at 25 °C, the 

reaction mixture was quenched with sat. aq. Na2CO3 solution (25 mL) followed by extraction 

using EtOAc (3 x 25 mL). Purification by flash chromatography (silica gel, 

pentane / Et2O / EtOAc = 2:6:1) afforded the pyrimidine 128k (197 mg, 94%) as a white solid.  

M.p. (°C): 67-68. 
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.50 (d, J = 5.2 Hz, 1H), 7.65-7.62 (m, 1H), 7.62-7.56 

(m, 1H), 7.51-7.46 (m, 1H), 7.37 (t, J = 7.8 Hz, 1H), 7.01 (d, J = 5.2 Hz, 1H), 4.25 (s, 2H), 2.50 

(s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 168.1, 167.6, 156.9, 139.7, 133.7, 132.7, 130.2, 129.1, 

118.9, 118.6, 112.4, 45.2, 24.2. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 3078 (w), 3057 (w), 2978 (w), 2926 (w), 2230 (m), 1719 

(w), 1579 (vs), 1554 (s), 1481 (m), 1431 (s), 1386 (s), 1375 (s), 1315 (m), 1104 (m), 1040 (m), 

836 (s), 795 (s), 746 (m), 718 (s), 691 (vs), 662 (m). 

MS (EI, 70 eV): m/z (%) = 209 (M+; 46), 208 (100), 193 (5), 116 (8), 104 (4), 89 (7), 44 (8). 
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HRMS (C13H11N3): calc.: 209.0953; found: 209.0936. 

 

2-(4-Methoxybenzyl)pyrazine (128l)  

 

According to TP15 2-(methylthio)pyrazine (126n; 1.26 g, 10.0 mmol, in 5 mL THF) was reacted 

with 4-methoxybenzylzinc chloride (54i; 20.8 mL, 15.0 mmol, 0.72 M in THF), Ni(acac)2 (64 mg, 

2.5 mol%) and DPE-Phos (268 mg, 5.0 mol%). After 15 h at 25 °C, the reaction mixture was 

quenched with sat. aq. Na2CO3 solution (250 mL) followed by extraction using EtOAc (3 x 

250 mL). Purification by flash chromatography (silica gel, pentane / Et2O = 1:4) afforded the 

pyrazine 128l (1.69 g, 84%) as a yellow liquid.  
1H-NMR  (300 MHz, CDCl3): δ / ppm = 8.48 (dd, J = 2.5 Hz, 1.6 Hz, 1H), 8.44 (d, J = 1.7 Hz, 

1H), 8.38 (d, J = 2.6 Hz, 1H), 7.21-7.14 (m, 2H), 6.87-6.81 (m, 2H), 4.10 (s, 2H), 3.76 (s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 158.4, 156.8, 144.6, 144.0, 142.2, 130.1, 130.0, 114.2, 

55.2, 41.1. 

IR (Diamond-ATR, neat): ν~ / cm-1 = 3004 (w), 2956 (w), 2932 (w), 2908 (w), 2836 (w), 1610 

(m), 1584 (w), 1510 (vs), 1472 (m), 1440 (w), 1400 (m), 1300 (m), 1246 (vs), 1176 (s), 1126 (m), 

1104 (w), 1056 (m), 1032 (s), 1018 (s), 808 (s), 772 (m), 648 (w). 

MS (EI, 70 eV): m/z (%) = 200 (M+; 100), 185 (31), 157 (7), 121 (42), 77 (5). 

HRMS (C12H12N2O): calc.: 200.0950; found: 200.0940. 
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1. Data of the X-ray Analysis 

3,5-Dimethyl-4-methylene-4,5-dihydroisoxazol-5-yl)(phenyl)methanol (92e)  

 

   

 

 Crystal Data  

Formula  C13H13Cl2NO2 

Formula weight  286.14 

Crystal system  monoclinic 

Space group  P21/c 

[a/b/c] (Å)  [10.5555(8), 10.6222(8),11.8958(18)] 

[α/β/γ] (deg)  [90.000(9), 92.856(9), 90.000(6)] 

V/Å3  1332.1(2) 

Z  4 

Dcalc/(g/cm3)  1.427 

µ (Moκα)/mm-1  0.480 

Crystal size/mm  0.41 × 0.38 × 0.15 

   

 Data Collection  

Temperature/K  173(2) 

Radiation (Moκα) (Å)  0.71073 

θmin, θmax (deg)  4.29–26.24 

Tot., Uniq. Data, Rint  5543, 2700, 0.246 

Observed data [I < 2σ(I)]  1741 

   

 Refinement  

Nref, Npar  2337, 165 

R, wR2, S  0.0348, 0.0833, 0.893 

Max. and av. shift/error  0.001, 0.001 

Min. max. resd. dens. (e Å-3)  -0.357, 0.389 

 

CCDC 778844 contains the supplementary crystallographic data for this compound. This data has 

been deposit in the Cambridge Crystallographic Data Centre and can be obtained free of charge 

via the internet: www.ccdc.cam.ac.uk/data_request/cif  
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