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Zusammenfassung

In dieser Dissertation untersuchen wir die Dynamik sozialer Netzwerke und die Dy-
namik molekularer Monolagen mit Methoden aus der statistischen Physik. In bei-
den Fällen führt das Zusammenspiel einzelner, mikroskopischer Wechselwirkungen
zu kollektiven, makroskopischen Phänomenen, welche stark von der Netzwerk- bzw.
Gittertopologie abhängen.

Im ersten Teil untersuchen wir Konflikte in Gesellschaften, in welchen Minderhei-
ten mächtig genug sind, um die Regeln der Allgemeinheit zu diktieren. Unser Ziel ist
die relevanten Eigenschaften der sozialen Strukturen und der Beziehungen zwischen
den Individuen auszumachen, welche ein tieferes Verständnis der emergenten, kollek-
tiven Phänomene ermöglichen. Insbesondere wollen wir die minimale Größe sowie
den Schwellwert für die Stärke einer Minderheit bestimmen, damit sie eine Bevölke-
rung dominieren kann. Wir entwickeln ein Modell für ein soziales Netzwerk, welches
sowohl aus gesetzestreuen Bürgern als auch aus Mafiosi besteht. Die Individuen sind
konfrontiert mit der Frage, ob sie die Mafia unterstützen sollen oder nicht. Das Modell
berücksichtigt dabei nicht nur die Überzeugungskraft zwischen Bewölkerungsgrup-
pen, sondern auch den Zusammenhalt innerhalb einzelner Gruppen. Weiterhin werden
externe Faktoren wie Propaganda und polizeiliche Überwachung einbezogen, welche
als Katalysatoren für die Wechselwirkungen dienen. Die quantitative Beschreibung
des Modells durch nichtlineare Differentialgleichungen stellt einen neuen Ansatz für
die Untersuchung sozialer Konflikte dar. Denn in bisherigen Modellen wird der ab-
schwächende Effekt des Gegendrucks, der durch gleichgesinnte Individuen aufgebaut
wird entweder gar nicht berücksichtigt oder als additiver Term modelliert anstatt ei-
nes Faktor, der die Einflusskraft des Gegners schwächt. Im Mittelpunkt unserer Arbeit
steht die Frage, welchen Einfluss die Struktur des Netzwerkes auf die Dynamik des
Systems hat.

Wir zeigen, dass das Verhalten beider Gruppen und letztlich das Aussterben der
Mafia kritisch von der Heterogenität des Netzwerkes abhängt. Aus unserer Arbeit
folgt, dass die Mobilität der Individuen eine wichtige Rolle spielt. Erlaubt man Mit-
gliedern einer bestimmten Gruppe sichere Orte im Netzwerk aufzusuchen, so erhöht
sich der Anteil dieser Gruppe im stationären Zustand erheblich. Überraschenderweise
stellt ungerichtete Diffusion eine sehr wirksame offensive Strategie zur Stärkung einer
Bewolkerungsgruppe dar. Im Grenzfall hoher Mobilität ergibt sich ein gut durchmisch-
tes Netzwerk, das sich eigentlich durch eine Mean-Field-Theorie beschreiben lassen
sollte. Da die Entscheidungsfindung jedoch auf der Wechselwirkung zwischen nächs-
ten Nachbarn basiert, führt ein Mean-Field-Ansatz nicht zum Ziel. Es gibt nur eine
endliche Zahl an möglichen sozialen Umgebungen. Das Feld, welches die Übergangs-
wahrscheinlichkeiten bestimmt, ist daher diskret. Wir haben dies durch eine lokale

vii



viii Zusammenfassung

Mean-Field-Theorie berücksichtigt, welche die Systementwicklung korrekt nachvoll-
ziehen kann.

Der zweite Teil der Arbeit beschäftigt sich mit der Selbstorganisation molekula-
rer Monolagen. Die einzelnen Moleküle, die kurzreichweitig wechselwirken, bilden
auf strukturierten Substraten eindrucksvolle makroskopische Muster. Gelänge es diese
Prozesse zu kontrollieren, würden sich neue Wege zur Herstellung von Nanodevices
auftun. Vor diesem Hintergrund entwickeln wir ein Interaction-Site-Modell, um die
Selbstorganisation der Moleküle besser zu verstehen. Ausgehend von der Geometrie
der einzelnen molekularen Bausteine, der Symmetrie des zugrundeliegenden Substra-
tes, sowie der Stärke und Reichweite der Wechselwirkungen lassen sich die entste-
henden Muster vorhersagen, wie sie in der Gruppe von Bianca Hermann an der LMU
München experimentell beobachtet wurden. Weiterhin erlaubt es unser Modell, die
Stabilität der Muster und die Art des Schmelzüberganges zu bestimmen.



Abstract

In this thesis we study the dynamics of social systems and molecular monolayers em-
ploying tools of statistical physics. In both cases the topological structure underlying
the interactions turns out to be the key element in the emergence of collective macros-
copic phenomena from the synergy of the individual interactions.

In the first part, we are concerned with the conflicts arising in societies in which
minority groups exert enough pressure to impose the rules of the community. We aim
at identifying the inherent features of the social structures and individuals’ relations
which provide further understanding of the emergent collective phenomena. Speci-
fically, we would like to determine the minimal size and threshold strength for such
minorities to dominate the population. We develop a model which describes the be-
haviour of individuals in a society which is split up into two groups, one of lawful
citizens and another one of mafia members. Individuals are constantly confronted
with the dilemma of supporting the mafia or not. The persuasiveness across different
groups is counteracted by the support of peers proportionally to their fractions in a
neighbourhood. In addition, the mafia model includes the catalytic influence of ex-
ternal elements such as propaganda or control elements for both joining and leaving
the mafia. Expressing the probabilities for these actions proportionally to both popu-
lations and to the density of control elements, constitutes a novel approach to model
the dynamics of social conflicts. In previous approaches the attenuation of the con-
trary’s pressure due to alike individuals is either not taken into account or modelled
through an additive term rather than as a factor which effectively weakens the strength
of the adversary. We extensively explore the nonlinear dynamics resulting from this
approach, emphasizing the role of the specific structure of social networks.

We show how the coexistence of the two groups and the extinction of mafias cri-
tically depend on the heterogeneity of the social network. We find that mobility of
individuals among the network’s nodes plays a crucial role in the dynamics of the sys-
tem. Enabling agents in a group to rationally seek safer locations greatly enhances
their fraction in the stationary state. Surprisingly, undirected diffusion turns out to be
a brilliant offensive strategy which drastically affects the system’s evolution. If in-
dividuals of both groups diffuse much faster than they take decisions, the population
becomes well-mixed and one would expect a mean field approximation to reproduce
the system’s behaviour. However, since decisions are based on interactions with near-
est neighbours, we find that such a mean-field approach is always invalid. Since there
is only a finite set for the social composition of an individual’s neighbourhood, the
field entering the transition probabilities becomes discrete. We have accounted for this
by a local mean field theory which captures the system’s evolution adequately.
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x Abstract

An important direction for further work is the analysis of the role of preferen-
tial population distributions in extremely heterogeneous networks, the inclusion of the
concept of geometrical distance on top of the topological connections to regulate inter-
actions, and especially the issue of adaptive networks to better resemble the evolution
of societies.

In the second part of this work we deal with the self-assembly of monolayers consti-
tuted by molecular building blocks which interact at the nanoscale level. These blocks,
on top of atomic substrates, spontaneously organize into stable supralayers which dis-
play intriguing long-range order motifs. These patterning processes, if appropriately
controlled, represent a viable route to manufacture practical nanodevices. With this
goal in mind, we seek to capture the salient features of the self-assembly process by
means of an interaction-site model. The geometry of the building blocks, the symme-
try of the underlying substrate, and the strength and range of interactions encode the
self-assembly process. By means of Monte Carlo simulations, we have predicted an
ample variety of ordering motifs which nicely reproduce the experimental results ob-
tained at Bianca Hermann’s group at the LMU. We have explicitly explored the phase
behaviour of the system in terms of temperature and the lattice constant of the un-
derlying substrate. We have found that various patterns coexist in equilibrium, which
melt at temperatures much higher than the room temperature of the experiments. Our
method is thus suitable to investigate the stability of the emergent patterns as well as to
identify the nature of the melting transition monitoring appropriate order parameters.

The interaction-site model has only been used in the framework of Monte Carlo
simulations, needing the indirect input coming from experiments to guess the stable
molecular conformations to run Monte Carlo. The theoretical approach developed in
this work to predict stable patterns would be greatly improved if genetic algorithms
were to supply the stable conformation of the building blocks. This would constitute a
straightforward step in further work.

This thesis is structured as follows: The first chapter constitutes an introduction
to the theoretical framework of evolutionary sociodynamics. First, a mathematical
description of networks is provided. Then, we present an overview of the models
developed in the past years to quantitatively understand social problems with the tools
of statistical physics.

In the second chapter, we introduce the mafia model. We lay out a mathematical
framework from a few simple principles to explain the dynamics of social systems
where mafias are present. We investigate the model under a mean field approximation
and by means of numerical simulations. We explicitly analyse three possible scenar-
ios and examine the role of structures showing various degrees of heterogeneity. In
addition, we study the effect of mobility and provide a local mean field theory which
properly captures the essence of the mafia model in regular lattices.

In the third chapter, we address the problem of understanding self-assembly of
molecular constituents on top of patterned substrates. We revise the principles of self-
assembly and introduce an interaction-site model to theoretically describe it. We dis-
cuss the emergent phases for our model as well as their stability. We finally compare
our predictions with the experimental results to draw conclusions about the validity of
the model.



Chapter 1

Evolutionary social dynamics

I know who I was when I got up this
morning, but I think I must have been
changed several times since then.

Alice’s adventures in wonderland
LEWIS CARROLL

In this thesis we investigate a particular problem in the realm of social dynamical
systems where some actors interact with each other according to some specific rules.
Nature offers many examples of such systems: bees and ants’ societies, bacterial cul-
tures, or prey-predator relations to mention just some. But also a variety of problems
from economy and human sciences may be understood within the same framework.
Evolutionary social dynamics, built on the interactions of discrete agents, addresses
questions such as how fast opinions spread in a population, how cooperation emerges
in a community, which mechanisms lead an individual to identify himself with some
religion or political ideas, how groups follow a fashion trend, or under which circum-
stances infections spread in a society are examples of social problems whose dynamics
is very similar to that of biological systems.

Two features play a relevant role in all the systems above: the relations between
individuals1 and the adaptive capacity of agents. Every system has an underlying
structure of connections which determines the groups of interacting agents. In addi-
tion, agents are able to adapt their strategies as a result of the interaction with their
habitats. The habitat of a given agent contains the interactions with the surrounding
actors but also possible external factors, which do not depend on the population.

The adaption process observed in these systems resembles some features of the
Darwinian evolution of species. According to this theory, evolution is the set of pro-
cesses which drives the emergence, change, and extinction of species in biology. Re-
production, selection and mutation constitute the cornerstones of evolution. Over the
course of generations individuals reproduce at a given rate. In addition, new features
in the species genotype may appear because of the recombination and mutation of the
genetic material. When several species compete for the resources in a common habitat
only the strongest survive and reproduce. This is natural selection. Natural selection
drives species to extinction or adaptation.

1The terms individual, agent, and actor are used interchangeably in this work.

1



2 1. Evolutionary social dynamics

Evolutionary dynamics has turned out to be the proper framework in which to
investigate the interaction of populations in a large variety of systems. Several micros-
copic models have emerged to examine specific features of these complex problems.
In them individuals are modelled as adaptive agents. A variable accounts for the state
of agents and takes specific values for every agent which belong to a continuous or
discrete range. Depending on the problem considered states may, for instance, rep-
resent strategies, species, opinions, or specific qualities. This state evolves in time
according to some fixed, environment-dependent rules. The ability of agents to repro-
duce is quantified by a fitness function which is conditioned by the strategy and the
environment of the agent.

What is the range of interaction for a given agent? The simplest hypothesis con-
siders interactions are all-to-all. Topologically it corresponds to the case in which
individuals occupy the vertices of a complete graph, in which every node is connected
to all other nodes and interactions occur between all pairs of agents. This is an exam-
ple of a well-mixed population, a key concept in this work. In a well-mixed scenario
individuals experience the same influence they would have in a complete graph. The
fractions of the population they interact with belonging to each group are the same
as those of the whole society. In real structures this assumption may be made only
if individuals diffuse much faster than interactions take place. Mathematically this
simplification is equivalent to a global mean field approximation.

However, reality is much more complex and agents usually do not interact with the
whole population but only with a subset of it which shows some kind of affinity. To
account for the relations between actors one includes different possible topologies in
the model. These structures are specifically modelled by regular lattices or heteroge-
neous networks. In structured societies individuals group according to their interests,
opinions, or strategies. The tendency of agents to cluster with alike individuals leads
to the emergence of domains.

Sociodynamics is the emerging field devoted to the understanding and quantifi-
cation of behaviour in social systems. Agent-based models in different architectures
are investigated with methods adapted from mathematics and statistical physics, par-
ticularly those of nonlinear dynamics and the theory of stochastic processes. Unfor-
tunately, the systems investigated in sociodynamics are often not exactly solvable be-
cause of their complexity and the approximations required to solve them analytically
may neglect crucial features. Simulations offer a very good experimental setting to
investigate the dynamics of many complex systems.

Agent-based algorithms allow to recreate in silico the intriguing microscopic inter-
actions which lead to the emergence of macroscopic phenomena. These methods, the
so-called cellular automata, were pioneered by von Neumann and Ulam in the 1940s
[135]. A cellular automaton is an evolving model consisting of a regular lattice or
graph whose cells are in a given discrete state among a finite set. The lattice’s sites
in cellular automata represent interacting agents. Every cell is associated to a partic-
ular neighbourhood and interacts with it according to some well-defined, fixed rules.
As a result every cell updates its state successively in time until a macroscopic stable
equilibrium state is reached.

This chapter is organized as follows: first, in section 1.1 we introduce some notions
of graph theory relevant to describe social structures. We then formalize in section 1.2
some concepts of evolutionary dynamics and review some of the most popular models



1.1. Networks 3

which deal with social problems. In particular, we discuss the dynamics of social
systems in different topologies.

1.1 Networks

The underlying organizations of the systems we are interested in are referred to as so-
cial networks and are described by graph theory. The interacting agents occupy the
nodes of a graph whose edges define the possible interactions. Examples of systems
with similar architectures are as diverse as airport networks, sexual contacts, the net-
work infrastructure of the internet, the WWW, the metabolic reactions of bacteria, actor
or scientific collaborations.

In some networks all nodes have a comparable number of connections. How-
ever, many systems show large heterogeneity, meaning that the number of contacts
varies significantly from one node to another. Usually these networks contain a non-
negligible number of highly connected nodes, the so-called hubs. Despite the fact that
some of the real networks are very large, all of them exhibit small-world character, i.e.
the minimum number of nodes between two given nodes is very small compared to
the network size. Some examples of actual networks are illustrated in table (1.1) taken
from [2] and references therein.

network nodes edges N 〈k〉 γ ` C

movie actors actors common films 212250 28.78 2.3 4.54
WWW (D) internet sites href links 325729 4.51 2.45 11.2
sexual contacts persons sexual relations 2810 3.4
metabolic E. coli (D) substrates reactions 778 7.4 2.2 3.2
citations (D) papers cites 783339 8.57 3
neuroscience papers authors collaborations 209293 11.54 2.1 6 0.76
phone calls speakers calls 53× 106 3.16 2.1
synonyms words synonymy 22311 13.48 2.8 4.5 0.7

Table 1.1: Characteristics of some real networks. The nature of nodes and edges,
sample size N , average degree 〈k〉, exponent of scale free distributions γ, average
path length `, and cluster coefficientC are specified if available. (D) stands for directed
networks. The observables specified here are defined later in this section. The data are
taken from [2], a review which summarizes other works referenced therein.

In this section we define formally the characteristics of the most relevant networks
for our work. In particular, we are interested in the degree of heterogeneity of the
structures, the average number and variance of connections, the distance between two
random nodes, and the possible substructures emerging under a whole network, as for
instance clusters or trees.

Networks are represented as graphs, mathematical objects consisting of a set of
N nodes connected through n edges. The connections between two nodes may be
undirected or directed. In the first case the established relation between two nodes
works in both directions, like the collaboration between two actors; while in the second
case the relation is unidirectional, like the transformation from reactants to products
in a chemical reaction. The graph is described by a N × N adjacency matrix A,
whose entries Aij are 1 if the node i is connected to the node j and 0 otherwise.



4 1. Evolutionary social dynamics

Undirected graphs are represented by symmetric matrices. Diagonal elements vanish
if there are no self-connections. We define the concepts of average or maximal path
length between two random nodes, clustering coefficient and degree distribution and
compare them for several kinds of networks.

The degree ki of a particular node i is the number of connections pertaining to
it. The degree distribution of a network gives the probability P (k) for a randomly
selected node to be connected to k neighbours.

A cluster is a substructure present in a network in which there is a large number
of connections among a group of nodes. In particular, one speaks of a cluster around
a node i if its neighbours are highly connected among them. Thus, a good measure of
the clustering degree of a specific node is the ratio between the number of actual, Ei,
and possible connections among its neighbours:

Ci =
2Ei

ki(ki − 1)
. (1.1)

The clustering coefficient for the whole network are the clustering degrees of single
nodes averaged over the whole network:

C =
1
N

∑
i

Ci. (1.2)

The Hamming distance between two nodes is the minimum number of vertices
between them. This concept of distance is a topological instead a geometrical one.
The diameter of a graph is given by the largest distance between any pair of nodes.
An alternative measure is the average path length `, which is the average distance
between two nodes. Both measures characterize the spread of a graph.

In the remainder of this section we describe different network models, paying spe-
cial attention to the quantities defined above and to the small-world character observed
in real networks. First we discuss regular lattices, in particular the square grid. Then
we describe random graphs and introduce later the Watts-Strogatz model. Finally we
summarize the properties of scale free networks and examine two algorithms to con-
struct them.

1.1.1 Square lattices

A d-dimensional regular lattice is a graph whose nodes correspond to the points with
integer coordinates in a d-dimensional cartesian space and whose edges connect nodes
which are separated by one unit distance. In a regular lattice all nodes have the same
degree, namely k = 2d. In the topology of square lattices there are no connections
among the neighbours of a given node. Therefore there are no clusters in regular grids.
The characteristic average path length scales as N1/d for a d-dimensional lattice. As
we will see later this is much longer than the path length of random graphs or scale-free
networks. Given the lack of clusters and the long path lengths regular lattices do not
show the small-world signature observed in actual systems. They are thus not suitable
structures to model reality. However, they offer a simple way to study the behaviour
of some systems in spatial environments, as for instance bacterial cultures on a petry
dish.
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Figure 1.1: Topology of a regu-
lar square lattice of size N =
25.

1.1.2 Random graphs

A random graph is a topological structure in which N vertices are connected among
them in a random way. The study of random graphs was pioneered by Erdös and Rényi
in the late 1960’s [42, 43]. Two equivalent mechanisms were proposed to build these
networks. In the first one, n edges are randomly distributed between the N(N − 1)/2
possible pairs of nodes among the N nodes of a graph. This mechanism gives rise
to CnN(N−1)/2

2 equiprobable graphs with average degree 〈k〉 = n/N . In the second
one, all possible pairs of nodes in a configuration of N vertices are connected with
probability p. The expected number of edges is thus E(n) = pN(N − 1)/2 and the
average degree is 〈k〉 = p(N − 1)/2. An example of a random graph is displayed in
the left side of Fig. 1.2.

(a) random graph (b) complete graph

Figure 1.2: Left: Random graph of size N = 20 and 〈k〉 = 3. Right: complete graph
of size N = 10.

A complete graph is a special case of a random graph, in which the probability
for every pair of nodes to be connected is p = 1. As we mention above, this is the
underlying structure for a well-mixed population—Fig. 1.2 right.

2Cji is the number of possible combinations of size j among i elements.
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Several properties of random graphs have been investigated. Special interest has
been paid to compute the threshold probabilities pc for different events to take place
such as the emergence of substructures as trees and cycles or percolation phenomena—
see [2] for a detailed discussion.

In a random graph, where the probability to build a connection between two ran-
dom nodes is p, the probability for a node to have a degree ki follows a distribution
with binomial form:

P (ki = k) = CkN−1p
k(1− p)N−1−k, (1.3)

which approaches a Poisson distribution for large sizes N :

P (k) ∼ exp(−pN)
(pN)k

k!
= e−〈k〉

〈k〉k
k!

. (1.4)

Since the fluctuations of the degree are small, the number of nodes within a dis-
tance l is close to 〈k〉l. By equating the number of nodes at the maximal distance with
N , one obtains the network diameter, namely the maximal distance between any pair
of nodes ` ∼ logN/ log 〈k〉. The average path length scales thus logarithmically with
the graph size. Random graphs display small-world character.

The probability for the nearest neighbours of a random node to be connected
among themselves is proportional to p and the clustering coefficient is thus:

C = p =
〈k〉
N
. (1.5)

The average path lengths of the exemplary networks considered in table (1.1) be-
have in a similar way as those of random graphs, whereas their clustering coefficients
are far from those predicted by the Erdös-Rényi model. Although interesting per se
due to its simplicity, the random graph model is not suitable to describe the complexity
of real networks.

1.1.3 The Watts-Strogatz model

Watts and Strogatz introduced a model which better accounts for the properties ob-
served in real networks [143]. It should exhibit small-world properties together with
large clustering coefficients like real networks. They proposed a model which is an in-
terpolation between a regular lattice and a completely random graph. First, one builds
a one-dimensional ring configuration with N vertices connected to their 2m nearest
neighbours, m of them in the clockwise and m in the counterclockwise direction—left
part in Fig. 1.3. Every link in the clockwise direction is then rewired with probability
p to a random node and remains fixed with probability 1 − p—illustrated in the right
side of Fig. 1.3. The result is a graph with a degree distribution similar to that of a
random one3, but with very interesting properties. There is a broad region of the pa-
rameter p for which the rewired graph exhibits small path lengths and large clustering
coefficients. The latter is true for p� 1 [12], as the clustering coefficient is given by:

C(p) ' 3(m− 1)
2(2m− 1)

(1− p)3. (1.6)

3identical for the limit p→ 1, average degree 〈k〉 = 2m
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If p � 1/N the typical size of regions between shortcuts is small. Then the average
path length is rather small scaling as logN [16, 15]. Thus, for the parameter region
1/N � p� 1 the Watts-Strogatz model reproduces well the features observed in real
networks.

Figure 1.3: Example of a Watts-Strogatz network with N = 10 and m = 2. The left
figure shows the ring configuration before edges were rewired. In the right side the
Watts-Strogatz model resulting from rewiring with probability p = 0.3.

1.1.4 Scale free networks

In addition to the small-world character, many real networks show heterogeneous
connectivity. In particular their degree follows heavy-tailed distributions with a non-
negligible number of highly connected nodes or hubs. Such distributions have been
recognized, for instance, in air traffic, the WWW, or scientific citation networks. These
graphs are described by power law distributions P (k) ∼ k−γ for which fluctuations
around the average connectivity 〈k〉 are rather large.

A function is called scale free (SF) if after rescaling its argument x, the function
does not change further than a multiplicative factor, i.e. f(λx) = µf(x). Such restric-
tion is only fulfilled by power-law like functions f(x) ∼ xγ . The scale free property
is reflected in the self-similarity of the network: after a coarse-graining process the de-
gree distribution has the same form independently of the length scale. This is a typical
feature of fractals. Scale free networks manifest many properties of fractals such as
the fractal character of their dimension.

In scale free networks the moments of the degree distribution higher than γ − 1
systematically diverge for infinite networks. In particular, the second moment of scale
free networks with exponent γ < 3 diverges, which is the reason of many properties
of processes such as percolation in these networks.

Cohen and Havlin have shown that scale free networks have path lengths even
smaller than those of the Watts-Strogatz model [22, 33]. They were called ultra small
worlds. For 2 < γ < 3 the diameter of a SF network scales as log logN , being much
smaller than the diameter of random graphs and small-world models; while for γ > 3
the diameter scales as in the Watts-Strogatz model with logN . For the particular case
γ = 3 the network diameter scales as logN/ log logN .
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What are the mechanisms available to generate scale free networks? The first
attempt to solve this question was addressed by Barabási and Albert in the late 90’s
[10].

The Barabási-Albert model

Barabási and Albert proposed a dynamical process for growing networks which gives
rise to scale free graphs [10]. The mechanism is based on two crucial features: growth
and preferential attachment. Starting with a configuration of m0 nodes at every time
step ∆t a new node is introduced together with m ≤ m0 edges to connect the new
node with older ones. The main idea is that old nodes with a larger number of links
are more likely to be selected for connection than newer ones. Thus, the new node
attaches preferentially to vertices with large degree ki according to the probability

π(ki) =
ki∑
j kj

. (1.7)

After t time steps the network will haveN = m0 + t nodes andmt edges. Simulations
and analytical arguments show that evolving networks converge to a stationary state,
which displays a power-law degree distribution: P (k) ∼ 2m2k−γBA . The exponent
γBA = 3 of the power law is found to be independent of the only parameter of the
model m. See an example of a Barabási-Albert network in Fig. 1.4.

Figure 1.4: Barabási-Albert
network for N = 20 and
m = 2.

The average path length of the Barabási-Albert model shows a logarithmic be-
haviour ` ∼ logN/ log logN [21], which is smaller than the average path in random
graphs. This result matches that obtained independently by Cohen and Havlin for
general scale free graphs [33]. Although there is no analytical prediction for the clus-
tering coefficient in the Barabási-Albert model, it has been observed that it decreases
with the network size asC ∼ N−3/4. This is slower than in random graphs,C ∼ N−1,
but still it does not show the characteristic behaviour of small-world models.

A relevant property of Barabási-Albert graphs is the emergence of correlations
between the degrees of connected nodes [73]. Since new nodes mainly attach to old
ones with a large degree, the older a node is, the more connections it has. The emerging
graph contains thus a substructure of interconnected hubs.
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The configuration model and uncorrelated configuration model

The Barabási-Albert model is limited to generate scale free graphs with an exponent
γBA = 3. Other models have been hence proposed to construct graphs with scale free
distributions and arbitrary exponent γ. Molloy and Reed introduced the configuration
model [93]. Starting with a fixed number of N disconnected vertices ki stubs4 are
attached to every node i. The number of stubs per node ki is drawn from the scale
free distribution P (k) with the constraint m ≤ ki < N , where m is here the minimal
degree of a node. The total number of stubs

∑
i ki must be even to assure a fully

connected graph. Once each node has its corresponding set of free stubs two random
stubs are selected to form a permanent bond between the two nodes they are attached
to. The process is repeated until no stubs are available. This mechanism guarantees
networks free of degree-degree correlations, as the degree of nodes is fixed before
nodes are connected with each other. Fig. 1.5 shows an example of a scale free network
generated with the configuration model algorithm.

Figure 1.5: Scale free network
generated following the algo-
rithm of the configuration model
for N = 30 and γ = 2.2.

The configuration model works if the degree fluctuations
〈
k2
〉

are finite. But this
is not the case for γ ≤ 3. For such networks multiple and self-connections emerge.
One may explicitly forbid the construction of such connections, but then disassorta-
tive5 degree-degree correlations appear whose origin is due to the cutoff —maximum
degree—of the network. In order to avoid correlations in scale free networks with-
out multiple and self-connections, it has been shown that the cutoff must be at most
ks(N) ∼ N1/2—the so-called structural cutoff [20]. The configuration model con-
siders a cutoff that scales as kc(N) ∼ N1/(γ−1), larger than the structural one for
γ ≤ 3. Catanzaro et al. proposed a slight modification of the model to get an uncorre-
lated configuration imposing a stronger condition on the possible number of stubs for
graphs with γ ≤ 3, namely m ≤ ki ≤ N1/2. In this way, arbitrary scale free networks
are generated without degree-degree correlations, multiple and self-connections [28].

4Stub, meaning stumpy end, refers to the still unconnected segments which hang from the nodes ac-
cording to the given degree distribution, which will then match in pairs to form the definitive connections
between nodes.

5Highly connected nodes are preferentially connected to low connected ones and vice versa.
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1.2 Modelling social systems

In this section we illustrate how some social systems have been modelled in the frame-
work of evolutionary dynamics. We first define some basic notions of evolutionary
game theory and briefly discuss the case of finite systems. Then, we introduce the
prisoner dilemma as a paradigm of game theory, discussing the stable states for di-
fferent conditions, successful strategies, as well as the role of structures and mobility.
We then focus our attention on other important types of processes in social dynamics,
namely contact processes. In particular, we revisit the most popular opinion and infec-
tion models, comparing the results obtained for small variations in the dynamics and
constraints of the models and paying special attention to the behaviour of such systems
on spatial structures.

1.2.1 Evolutionary game theory

Game theory tackles the problem of getting the highest payoff when playing against
others. The players may choose one among many available strategies to try to get the
best payoff.

Let E(S, T ) be the payoff of an actor playing strategy S against an opponent play-
ing T . The simplest game involves two players and two strategies A and B with
four possible outcomes, namely E(A,A) = a, E(A,B) = b, E(B,A) = c, and
E(B,B) = d. The results of the encounters in symmetric6 games may be written as a
payoff matrix

A B
A a b
B c d

whose entries are the payoffs for the column player.
In classical game theory, introduced by von Neumann and Morgenstern in the 40’s,

individuals play in a rational way [140]. This means that they are aware of the game
rules and choose the strategy which maximizes their payoffs.

Nash was the first who introduced evolutionary ideas in game theory in his the-
sis, although they stayed unpublished. The biologist John Maynard Smith and the
geneticist Price [87] developed some essential elements of population dynamics in the
framework of game theory. The crucial factors they brought into classical game the-
ory are the frequency dependent fitness and the lack of rationality. In this framework,
individuals take the role of players and species that of strategies. Individuals play a
fixed strategy and cannot hence decide which strategy gives the best payoff. Often in
social systems individual’s actions and rewards depend strongly on others’ decisions.
The success of a species depends on the composition of the whole population. Actors
in large populations play their fixed strategies against all other players. The sum of
the payoffs in the encounters is the individual fitness, which depends on the population
fractions or frequencies, i.e. their own and others’ strategies. Individuals’ reproduction
is proportional to their fitness where the fittest player reproduces faster. In this way,
natural selection favours the consolidation of the strongest strategy in game theory.
This was the beginning of evolutionary game theory.

6Symmetric games are those in which all players have the same set of strategies available.
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A strategy is said to be an evolutionary stable strategy (ESS) if natural selection
prevents it from being invaded by other strategies. In other words, if S is an ESS
a population of S players cannot be invaded by introducing a few individuals with
strategy T , ∀T 6= S. In mathematical terms one strategy is evolutionary stable if
E(S, S) > E(T, S) or E(S, S) = E(T, S) and E(S, T ) > E(T, T ), where E(S, T )
is the payoff of strategy S against T for the player holding S. Evolutionary stability is
a concept which was introduced by Maynard and Price in 1973 [87], although it was
preceded by Hamilton’s unbeatable strategy concept in his sex ratios work [55]. The
concept of ESS is the natural evolutionary counterpart to the Nash equilibrium strategy
[96] in classical game theory. A Nash equilibrium is a strategy such that if every player
chooses it, no one can score better with any other alternative strategy. In terms of the
payoffs the previous condition reads E(S, S) ≥ E(T, S), ∀T 6= S. ESS accounts for
the selection present in evolutionary games. In fact, every ESS is a Nash equilibrium
strategy, whereas the contrary is not always true.

The replicator equation [62] describes the selection dynamics as proportional to
the individual fitness fi and frequency xi of the species i in infinitely large populations.
The reproduction of each population i is proportional to the difference between the own
and the average fitness φ =

∑
i xifi and to the fraction of individuals xi of species i,

ẋi = xi(fi(x)− φ). (1.8)

For two strategies A and B, because the total population is fixed, i.e. xA + xB = 1 for
all times, the former set of equations reduces to one:

ẋA = xA(1− xA)(fA(xA)− fB(xA)). (1.9)

This equation has three possible solutions: xA = 1, xA = 0, or xA = x∗ such that
fA(x∗) = fB(x∗). The first corresponds to dominance of strategy A, which is stable
if fA(1) > fB(1). B dominates in the second case, being stable if fA(0) < fB(0).
The third solution corresponds to coexistence, i.e. 0 < x∗ < 1, which is stable if
f ′A(x∗) < f ′B(x∗) and unstable otherwise.

Consider a game with two strategies whose payoffs are given by the matrix

A B
A a b
B c d

in a large population with a fraction xA of A players and a fraction xB of B players.
In the framework of evolutionary game theory the fitness functions are equated to the
frequency-dependent payoffs, which for the A and B players are:

fA = axA + bxB, (1.10)

fB = cxA + dxB. (1.11)

For these particular fitnesses the solutions of the replicator equation may be domi-
nance or coexistence as discussed before, but the system might also show bistability
or neutrality. The system is bistable if both strategies may dominate the population
depending on the initial conditions. For the example considered this occurs if a > c
and b < d. If the system is neutral the time evolution vanishes for all values of x, as
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fA(x) = fB(x), so that the system remains at the initial state: all states are stable. The
condition for neutrality is a = c, b = d. The possible regimes in the parameter space
are displayed below:

-

6

a− c

b− d

A

B

coexistence

bistability

neutralityt �
���

The methods and concepts described up to here tackle the limit of infinite pop-
ulations but are insufficient to deal with finite populations. In finite populations the
stochasticity must be taken into account. In addition, the intensity of selection, i.e. the
contribution of the payoffs to the general fitness of individuals, plays a specific role
which is not present in infinite populations. Thus, when studying finite populations a
new concept is required to characterize the system, namely the fixation probability. It
accounts for the probability that a single player of strategy A does not become extinct
and overtakes a whole population of (N − 1) B players. If the fixation probability is
larger than 1/N then selection favours the mutant agent A to take over the population.
The condition for the fixation probability to be larger than 1/N depends strongly on
the system’s size N . The concept of evolutionary stable strategies is redefined for fi-
nite systems. A strategyB is evolutionary stable if selection opposes a mutant strategy
A invading B, i.e. A has a lower fitness, and if selection opposes A replacing B, i.e.
the fixation probability of A is smaller than 1/N .

The prisoner dilemma as a paradigm of game theory

The prisoner dilemma is a representative example in game theory. Players may hold
one of two strategies: cooperation (C) and defection (D). The outcomes of the encoun-
ters between two players are defined by the following payoff matrix

C D
C R S
D T P

where T > R > P > S: temptation T is a better payoff than the reward R of coope-
rating, which is larger than the punishment P of defecting and this still better than the
sucker’s payoff S. Clearly, defection is a Nash equilibrium and also an evolutionary
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stable strategy, E(D,D) > E(C,D). Thus, in games where players only meet once
and play a fixed strategy defectors dominate cooperators.

However, in games with repetition, where two players meet more than once, some
mechanisms enhance the dominance of cooperation. This is what came out in the
contest organized by Axelrod [9]. Many participants submitted new strategies some
of which turned out to be able to dominate defection. Direct reciprocity refers to
mutual cooperation based on the belief that if we meet again you might cooperate
later if I cooperate now. It was observed that direct reciprocity yields some dominant
strategies. The first winning strategy found under this premise was the popular tit-for-
tat where players cooperate in the first encounter and then do whatever the opponent
did in the previous round. This strategy accumulates better payoffs than the defecting
one, and is very successful if players do not make errors. However, if mistakes are
considered, then the tit-for-tat players can indefinitely choose defection. In this case
the tit-for-tat cannot invade defectors in the thermodynamic limit, but still outperform
them in intermediate finite populations [102]. Another strategy, the generous tit-for-
tat, which randomly cooperates sometimes even if the contrary defects, is a better
choice to correct mistakes. But they both are outperformed by the win-stay, lose-shift
strategy [98], for which the players cooperate if the previous round was successful
in terms of payoff (CC or DD) and defects otherwise. This strategy is also able
to undergo mistakes and pretty well resembles human behaviour. Cooperation may
become an ESS in the case of direct reciprocity if the probability of another encounter
exceeds the benefit to cost ratio b/c7.

There are other mechanisms available to promote cooperation such as indirect reci-
procity, group, or kin selection. Indirect reciprocity refers to the reputation that indi-
viduals build by cooperating independently of meeting the same player later. Group
selection alludes to mechanisms in which there are two levels of competition: between
individuals in a group and between groups. The abundance of cooperators favours the
groups to sum a larger fitness and outperform other groups. Kin selection names a dy-
namics in which some grade of relatedness exits between players establishing altruistic
cooperation [54]. For a short review on these strategies see Nowak in [99].

Spatial games and games on networks

Games as the prisoner dilemma inevitably lead to extinction of cooperators in unstruc-
tured populations. Only refined strategies as the tit-for-tat, win-stay-lose-shift, kin
selection, or indirect reciprocity are able to promote cooperation. However, nature
shows numerous examples where cooperation is established without any special stra-
tegy. Interactions in real systems take place in organized structures. This fact attracted
the attention of game theorists to study the behaviour of games on spatial structures.

The frequencies of the species with which individuals interact are no longer the
result of averaging over the whole population, but those of the specific composition of
their neighbourhoods. Because of this local character of the interactions spatial games
are not expected to show the same behaviour as games in well-mixed populations.
Structures favour the formation of new mechanisms not present in the cases which
operate under the well-mixed assumption. In particular, spatial structures allow the

7If individuals benefit b from a cooperator and cooperators pay a cost c for cooperating, one may
rewrite the previous payoffs as R = b− c, S = −c, T = b, and P = 0.
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formation of domains according to the agents’ interests and the rules of the game.
Equilibrium states not observed for unstructured systems may now emerge as a result
of the dynamics taking place at interfaces. The strategy with the highest payoff is not
necessarily the one invading the whole population if other mechanisms favour faster
replication due to the spatial constraints. This is possible because of the locality of
decisions. Individuals are not influenced by the whole population, but by their nearest
neighbours. The local conformation determining individual decisions may turn out to
be different than the global one.

Following Axelrod’s ideas on the role of structures in cooperative games [8], Nowak
and May pioneered the study of games on regular lattices. In their first work they
investigated the behaviour of fixed cooperators and defectors on a square grid [86].
Individuals play against every agent in a Moore neighbourhood8 and accumulate the
payoffs of all interactions, i.e. the agents’ fitness is the sum of the payoffs of all en-
counters. All agents update their states simultaneously, following the strategy of the
individual with the highest fitness in his vicinity. This simple dynamics shows many
regimes in which coexistence or majority of cooperators are stable outcomes, contrary
to the defection unavoidably found in well-mixed populations. The equilibrium state
reached may be either a static or a dynamic configuration.

However, it was later found that defection invades the population if one takes a
more realistic approach like asynchronous update [65]. Spatial games thus do not
suffice to explain the outcome of cooperation. Further researches of Nowak et al.
included stochasticity in their model in two main ways: asynchronous updating and
probabilistic strategy change [100, 101]. Probabilistic strategy change means that one
individual adopts the strategy of his fittest neighbour only with a given probability
depending on the fitness. Surprisingly, they found that cooperators do not get extinct
if the strategy change is probabilistic even when considering asynchronous update.

In spatial games the dynamics taking place at interfaces between domains plays the
main role in the system’s evolution. Counter-intuitive results have been observed due
to this fact. Later investigations showed, for instance, that cooperators with a higher
global payoff than defectors may get extinct because they are worse off at interfaces
[100]. In a related sense, the specification of the update process plays a determinant
role in the evolution. In addition, if individuals’ payoffs are considered as a mortality
rate rather than a reproductive one defectors dominate the game. In this case individ-
uals are selected to die with probability inversely proportional to their fitness. When
an agent dies the vacant place left is invaded by a randomly selected neighbour. In the
sites where species may expand—at interfaces—cooperators are more likely to be se-
lected to die, because their payoffs there are smaller than those of defectors [95]. This
particular updating rule hinders cooperation at interfaces leading defectors to dominate
the population.

In games with three strategies the local character of spatial games also changes the
stationary state of the system. In the rock-paper-scissors game three species show a
cyclic dominance: A dominates B, B outperforms C, and C wins over A. In well-
mixed populations—as experiments in a flask—only one species survives when equi-
librium is reached. But the theoretical [104] and experimental [71] works on the spa-

8A Moore neighbourhood consists of the eight nearest neighbours, i.e. the cells available to the king’s
movements in a chess board.
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tial game found that the three species coexist on a regular lattice—or Petry dish in the
laboratory. They form beautiful spirals in equilibrium states.

Further findings on the evolution of games on grids are summarized in a short
review from Nowak and Sigmund [103].

Although much closer to reality than the assumption of a well-mixed population,
the regular lattice does not reflect the whole complexity of actual systems. The next
step is thus to study games in more heterogeneous structures such as complex net-
works. The most important consequence of the heterogeneity introduced by networks
is that players with more connections participate more often in games and are therefore
more influential.

Enhancement of cooperation has been recently observed in networks. Santos et
al. explored the outcomes of different games in various graphs: complete, random,
Barabási-Albert, and general scale free networks [117, 118]. They performed simu-
lations in which every agent plays with all his neighbours accumulating the obtained
payoffs in its fitness. After the rounds are finished, one randomly selected agent com-
pares his payoff with that of a random neighbour and imitates him with a given pro-
bability if he were better off9. The simulations show that the more heterogeneous a
structure is, the better it promotes cooperation. Moreover, the Barabási-Albert network
especially promotes cooperation compared with other scale free networks. Due to the
preferential attachment growth mechanism, which enhances connectivity between the
oldest and most connected nodes, these most influential nodes are interconnected. If
cooperator access these nodes, their influence is enhanced and they dominate the pop-
ulation easily.

In particular, one finds that cooperators dominate in the classical prisoner dilemma
in regular, random, and scale free graphs when the benefit to cost ratio is larger than
the average graph degree 〈k〉 [105]. This generalization, which is based on pair-pair
approximations and was also confirmed with numerical simulations, is indeed true for
a death-birth update. In death-birth updates a random individual dies and his vacancy
is occupied with the offspring of the fittest neighbour. But again different update rules
yield very different scenarios. A birth-death update promotes defection. Individuals,
which are selected for reproduction proportionally to their fitness, leave their offspring
at a random neighbouring site. The relevant changes take place when individuals in-
vade sites that had a different strategy, i.e. at interfaces. But at interfaces cooperators
are worse off and therefore seldom selected to reproduce, which brings about the inva-
sion of defectors.

According to the results discussed in this section, one could conclude that struc-
tures promote cooperation in the prisoner dilemma game. However, this is not a robust
result. For we have seen that the stationary state strongly depends on the updating
mechanism and is very sensitive to the presence of noise in the system.

Mobility

When studying collective behaviour of structured populations one is interested in
the role of individual displacements in the system dynamics. The local organization

9Note that the process of imitating others’ strategies is different to the general one, in which one agent
compares his payoff with those of all his neighbours. However, as the authors also simulated the complete
graph with this mechanism their results are consistent.
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present in spatial games, which favours the emergence of cooperation, is lost when the
population randomly diffuses. Indeed, high mobilities produce well-mixed populations
for which one expects to recover mean field behaviour for the well-mixed assumption,
i.e. the complete graph. Although mobility is an interesting feature in spatial games,
very few results have been reported on it.

A work of Dugatkin and Wilson investigates the role of mobility in a patch dis-
tributed population of individuals playing tit-for-tat and defection [40]. A patch or-
ganization is a rather crude spatial distribution in which the population is arranged in
groups of M + 1 individuals. The tit-for-tat strategy dominates defectors in such a
conformation. But if individuals are allowed to randomly diffuse from patch to patch,
the system then recovers the mean field behaviour, in which defectors dominate.

Recently Vainstein et al. have investigated the effect of random diffusion for the
prisoner dilemma on a grid [136]. They consider a model with empty places and
a population density ρ. Individuals are allowed to randomly move to empty sites.
The imitation process in this model is deterministic, i.e. individuals invariably adopt
the strategy of the fittest. They explore two different mechanisms: combat-offspring-
diffusion (COD) and combat-diffusion-offspring (CDO). In the former, after playing
with all its neighbours, an individual imitates the fittest one and then diffuses, while in
the latter the agent diffuses after playing and then imitates the individual with the high-
est payoff in the new vicinity. For the COD mechanism it turns out that cooperators get
extinct for low densities. Above a threshold density coexistence appears. Cooperators
are found to be better off for lower mobilities, though for intermediate densities mode-
rate mobilities yielded a larger fraction of cooperators than the immobile scenario. For
the CDO dynamics more drastic effects have been observed. Below a critical density
cooperators get extinct by diffusion, for intermediate densities defectors die out for
any mobility rate, and for large densities coexistence is observed.

Does this imply that the mean field behaviour is not recovered? The rate at which
individuals move is effectively lowered for high densities, since individuals may only
move to empty places. The loss of cooperation for low densities and cooperation en-
hancement by low mobilities suggest that mobility destructs cooperation. Mechanisms
in which agents may swap their positions increasing the effective mobility rate might
drive to the extinction of cooperators recovering the mean field limit. However, to
our knowledge this case has not yet been investigated and the results reported here do
not suffice to draw conclusions. In our view, the problem of random diffusion in the
prisoner dilemma remains unclear.

A recent work of Reichenbach et al. analyzes the role of diffusion in the rock-
paper-scissors game including several levels of stochasticity [111]. They found that
the spiral patterns where species coexist are lost above a critical mobility rate. The
characteristic wave length of the spirals grows with increasing mobilities up to a point
where they burst and only one species survives. In this case the mean field limit has
been proved to be recovered for well-mixed populations on regular lattices.

Helbing and Yu recently reported a different problem [60, 59]. They were interested
in the possible promotion of cooperation through success-driven mobility. In a regu-
lar lattice with probabilistic imitation individuals may emigrate to the empty places
in their neighbourhoods in which they get the highest possible payoff. The dynamics
consists of emigration, game encounters, and imitation. Their simulations showed that
a combination of emigration and imitation in fact enhances cooperation. Within this
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mechanism cooperation is even resistant to the stochastic effects of including noise in
the system, be it in form of mutation probability or random displacements. The suc-
cess of the mechanism to enhance cooperation is due to the promotion of grouping.
Domains make cooperators stronger against defectors’ invasion. Moreover, the mutual
attraction between cooperators is stronger than the defector-cooperator attraction10.
Thus, the movements bringing cooperators closer are more likely to happen than any
other directed displacement.

1.2.2 Opinion models

Opinion models, which are examples of contact processes, deal with the spread of opi-
nions and beliefs in a population due to the interaction between neighbouring actors.
In contact processes the state of an agent changes if it contacts individuals in diffe-
rent states according to specific rules. Several variations of opinion models have been
investigated introducing, for instance, modifications in the interaction rules or num-
ber of possible opinions. We review the results of the most popular model, the voter
model, and discuss some relevant variations of it. We finally stress the modifications
observed when considering different structures in which the interacting agents might
be arranged.

The voter model

The voter model was first investigated by Clifford and Sudbury in 1973 [32] and named
by Holley and Liggett in 1975 [64]. It has become one of the most popular models on
opinion dynamics. Despite its simplicity, it is of great theoretical interest because it is
exactly solvable in many dimensions [110].

In its most elementary variation, agents located at the vertices of a square grid may
hold two different opinions encoded in a binary variable si = ±1. The updating rule
simply states that a randomly selected agent i will adapt the opinion of a randomly
chosen neighbour j. In the voter model the second agent adopts the state of the first
one. This updating step is repeated until an equilibrium is reached. The main ques-
tions addressed in the voter model are whether consensus is achieved, under which
conditions, and on which time scales.

The change in the state of an agent due to the neighbours’ influence is analogue
to a spin flip in the zero-temperature Ising model due to ferromagnetic interaction.
This beautiful analogy allows understanding the dynamics as the trend to minimize
the energy cost of the interfaces between domains of different opinions. However, the
coarsening process is not exactly the same. In the ferromagnetic Ising model the neigh-
bourhood directly influences the energy of every agent and therefore rough interfaces
have a high energy cost. In contrast, in the voter model the influence of the neighbour-
hood composition is probabilistic—the larger the fraction of neighbours with another
opinion, the higher the probability for a given agent to change his opinion—but the
whole neighbourhood does not conform one agent’s decision simultaneously.

10Attraction between cooperators is proportional to 2R in terms of the payoff matrix used before,
while cooperator-defector interaction is proportional to T +S. Note that in the prisoner dilemma is often
established that 2R > T + S.



18 1. Evolutionary social dynamics

For a given system configuration S on a d-dimensional regular lattice the transition
rate for an individual i to change his state from si to −si is [46]:

wi(S) = w(si → −si) =
d

2

1− 1
2d
si
∑
j

sj

 . (1.12)

An agent has a rate d to change his opinion if surrounded by neighbours with another
opinion and a rate 0 if its neighbours have the same opinion. Because this transition
rate yields solvable equations for the correlation functions, it represents a good choice
for the transition rates.

Frachebourg and Krapivksy have shown that in the thermodynamic limit the sys-
tem converges to consensus as a power law in time for d < 2 and logarithmically for
d = 2 [46]. But for larger dimensions the voter model exhibits a constant density of
domains and thus coexistence of different opinions. Finite systems invariably reach
consensus in a time which scales as N2 for d = 1, as N logN for d = 2, and as N
for d > 2 [72, 82]. Although consensus is achieved for all dimensions, differences are
observed in the dynamics. While in small dimensions, d ≤ 2, consensus is the result of
a coarsening process, in larger ones consensus emerges due to big random fluctuations
[35].

An essential feature of the voter model is that the ensemble average magnetiza-
tion is conserved. This is a consequence of the up-down symmetry of the model. It
explicitly means that the magnetization, i.e. the average value of the individual spins
m =

∑N
i=1 si/N , vanishes when averaging over many realizations of the system. In

the voter model, it implies that both opinions have the same likelihood to be the con-
sensus opinion.

Generalization and variations

Oliveira and coworkers introduced a generalization of the voter model in two dimen-
sions [38]. They redefine the transition rate wi(S) for a given configuration S in terms
of an odd function fi(s), which depends only on the sum over the states of the neigh-
bouring agents s =

∑
j∈nn sj :

wi(S) =
1
2

(1− sifi(s)) . (1.13)

The function fi(s) preserves the up-down and spatial symmetries. For the exemplary
case of a square lattice fi(s) has three values: fi(2) = −fi(−2) = a, fi(4) =
−fi(−4) = b, and fi(0) = 0. The spins sum is 0 or ±2 at interfaces and ±4 inside
domains. Therefore the parameter a accounts for the probability to change the state
at interfaces and b in domains. The values a = 1/2 and b = 1 correspond to the de-
terministic case. For these particular values, an agent surrounded by three neighbours
with different opinion has a transition rate 1/2(1 + a) = 3/4 for changing his, while
one surrounded by three neighbours sharing his opinion has a rate 1/2(1 − a) = 1/4
to change his state. The case a = 1/2 and b = 1 correspond thus to the voter model
defined by equation (1.12). Here opinion changes are deterministic after every contact
process between a pair of agents and the probability of holding one or the other opin-
ion is proportional to their relative abundance. On the other hand, the case in which
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a = b = 1 describes the majority-vote model discussed later, in which the decision-
maker adopts the opinion of the majority. The general case b = 2a < 1 accounts for
the noisy voter model, in which individuals have a certain probability to change their
mind even if they are fully surrounded by actors with their opinion. The further a and
b deviate from 1/2 and 1, respectively, the more noise is introduced in the system.
Consensus is never achieved for this case.

Modifications of the voter model are numerous in the literature. The first natural
extension included many opinions [125]. A special case of this model was introduced
by Vázquez et al. [138]. In their model actors may hold three different opinions A,
B, and C, but interactions may only occur through the central one, B—interactions
between two agents with opinions A and C are forbidden. Both consensus and coexis-
tence of opinions may be reached in this model as a function of the initial conditions.

Lambiotte and Redner investigated the dynamics of vacillating voters [75]. The
non-confident decision-maker tests the opinion of a second neighbour if the first one
shares his opinion. This process favours the growth of minorities, because the pro-
bability for minority opinions to be imitated is increased with respect to the direct
probability proportional to the frequencies of opinions. It thus results in a bias to a
zero magnetization state almost for all initial conditions. Hence, although consensus
is also achieved the time needed to reach the stationary state is significantly longer
scaling exponentially with N .

Dall’Asta and Castellano substituted the immediate opinion change when meeting
a different one with a mechanism which depends on scoring in a positive or negative
counter [36]. More concretely, the agent’s opinion is modified when one of the coun-
ters reaches a threshold value. This is no longer a one-to-one contact process, but
indirectly depends on the local field. Therefore, using the terminology of fluid dynam-
ics, surface tension induces a curvature-driven coarsening process in the system.

Curvature-driven coarsening was also found by Castelló et al. in his model for
the coexistence of two languages A and B [27]. A central state AB represents bilin-
gualism. Although direct transitions from A to B are forbidden, the transition prob-
abilities from one of the monolingual states i = A,B to bilingualism AB do de-
pend on the densities of the other language in the vicinity, σi: PA→AB = 1/2σB and
PB→AB = 1/2σA. The system evolves towards monolingualism fast destroying the
bilingual domains, which are reduced to the interfaces between A and B clusters.

Interesting as well, the studies of Mobilia and coworkers on the effects that a
zealot—a fanatic one with a fixed opinion—induces in the voter-model [89, 90, 91].
For small dimensions, d ≤ 2, the zealot imposes consensus around his opinion,
whereas for higher dimensions different opinions coexist. In the coexistence state a
domain of zealot’s opinion is observed around him.

The majority rule model

In which a population of N agents in the nodes of a complete graph hold one of two
possible opinions si = ±1 [49]. The key of this model resides on the decision process:
opinion changes take place in groups. In a group of g randomly selected agents, all
individuals adopt the opinion of the majority. When ties occur in groups of even sizes
the system may bias one of both opinions. The average magnetization in this model is
not conserved, unlike in the voter model, because of the many-body interactions. For
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the majority rule model consensus is always reached, but what is the generalized opin-
ion in equilibrium? The opinion si whose initial frequency ni0 is larger than a critical
fraction nc, 1/2 for unbiased systems, will be the consensus opinion in equilibrium.
The time to reach consensus has been observed to scale with logN [74, 29].

Consensus is also achieved for the majority rule model in regular lattices. Here
interacting groups are built by selecting one random site and its vicinity. In one
dimensional lattices the behaviour is rather complex. Minorities may overtake the
population, but consensus time is rather long—proportional to the square of the sys-
tem’s size N2 [30]. In two and larger dimensions, homogeneous initial conditions
n+

0 = n−0 = 1/2 may lead to metastable states which significantly slow down the
dynamics. The time to reach consensus scales as a power of N which depends on the
dimension.

In the similar rumour spreading model several group encounters take place simul-
taneously [51, 49]. The particularity of the model is that groups may have different
sizes. For this system, the critical fraction nc and the consensus time depend on the
groups’ size distribution, as well as on the largest size allowed.

Other variations of the model as multi-state opinions [29], variable group sizes
[133], inclusion of zealots [51], or individuals and groups favouring one opinion [50]
have been explored.

Other models

Close variations to the majority rule model are the majority-minority model [92] and
the majority-vote model [82]. In the former a group of individuals adopts the majority
opinion with probability p and the minority one with probability 1 − p. There is a
critical probability pc such that for p < pc the system reaches a zero magnetization,
while it evolves to consensus for probabilities above the critical one. In the latter
model a single agent adopts the opinion of the majority in his neighbourhood with
probability 1 − n, where n is a noise parameter. For this model a phase transition
between consensus and coexistence of opinions takes place for a critical value of the
noise parameter. Consensus is achieved in the absence of noise [37].

In a slight modification of the majority-vote model the opinion of the updating
agent is also taken into account for the establishment of the majority [122]. Simu-
lations for different topologies show that both opinions may coexist in all of them.
The composition of the coexistence state depends on the initial configuration. Both
opinions may coexist either in a fully disordered state or arranged in domains.

The Sznajd model aimed to introduce a new information flux in the spreading of
opinions. Whereas in the previous models the flux is directed from the neighbourhood
to an individual, in the new model there is a flux from a pair of central individuals to
the vicinity. In the first variation of the Sznajd model, if two neighbours in a one di-
mensional lattice have a common opinion they impose it to their neighbours or impose
it to the other’s neighbour if the opinions are different. The complicated process failed
in introducing new features as it was proved to be equivalent to the voter model [131].
In a new version of the Sznajd model two neighbouring agents impose their opinion
to their whole neighbourhood if they share it. But in this case the system remains
unchanged if the agents do not have the same opinion. This model reaches consensus
at m = ±1 for initial magnetizations larger, respectively smaller than zero. A sharp
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transition between both possible consensus states at the critical initial magnetization
m0 = 0 is found in many extensions of the model and for several topologies [126].

Among all the models developed in this field, perhaps that which address the
questions closer to our interests is the social impact theory. It was brought in by
Latené in 1981 [78] and extended later [79, 81]. Individuals with two possible opi-
nions si = ±1 update their states as the result of the interplay between the so-
cial impact Ii(t) of their vicinity and a local field hi accounting for external factors
like mass media influence, for instance. The updating rule for a single individual
is si(t + 1) = sgn(si(t)Ii(t) + hi). The impact factor depends on the difference
between the sum of the supportiveness of neighbours with the same opinion as the
updating agent and the sum of the persuasiveness of neighbours with the contrary
one, all weighted with the distance to the updating individual. Both, supportiveness
and persuasiveness are random for each actor. The distance between two agents may
be geometrical or topological, the latter based on any kind of relatedness. Consen-
sus never emerges for this model. If the local field vanishes, many stable states with
domains of both opinions may be observed. The majority opinion in the stationary
state depends on the initial magnetization. In the presence of the local field metastable
states are found in which the minority domains shrink after long times to fall in another
metastable configuration.

The voter model in networks

The behaviour of the voter model in networks has received much attention during
the past years. In highly heterogeneous structures as scale free graphs, for instance,
the average magnetization11 is not conserved. This supposes an essential difference
with respect to the model in homogeneous lattices. In fact, individuals with a large
number of connections are more likely to be picked out when another agent randomly
selects a neighbour to imitate. Instead the average magnetization a degree-weighted
magnetization Σ(t) =

∑
i kisi(t)/

∑
i ki is conserved [129].

Vázquez and Eguíluz investigated the behaviour of the model in uncorrelated ran-
dom graphs [137]. They found that consensus is achieved exponentially fast for net-
works with average degree 〈k〉 < 2, while for 〈k〉 ≥ 2 the system undergoes a
metastable active coexistence state which finally relaxes into consensus within a time
proportional to the system size.

Castellano et al. found that the voter model in small-world networks behaves very
similarly as in one-dimensional regular lattices [26]. The system reaches metastable
states in which it spends a time proportional to its size. Thus, consensus is not achieved
in the thermodynamic limit. However, in finite systems consensus might be reached
faster as in the one dimensional regular lattice.

In scale free networks12 consensus is found for the voter model in finite graphs,
but not for the thermodynamic limit [128]. The consensus time scales as N for γ > 3,
as N (2γ−4)/(γ−1) for 2 < γ < 3, as (logN)2 for γ = 2, and as O(1) for γ < 2. Initial
distributions favouring one opinion to occupy the highest connected nodes have been
observed to bias the final consensus towards this opinion [129, 130].

11Remember that the conserved quantity is the ensemble average magnetization.
12Scale free networks follow a power law distribution p(k) ∼ k−γ .
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A mechanism which conserves the average magnetization is the link-update algo-
rithm. In randomly chosen links one of the nodes in the extremes adopts the opinion
of the other. For this model consensus times are proportional to the system size inde-
pendently of the degree of heterogeneity of the scale free network [129].

Castellano [25] and Sood [127] have investigated the reverse voter, in which the
first selected agent imposes his opinion to one of his neighbours. They found the
consensus time to scale linearly with the system size for γ > 2.

Benczik et al. explored a simple-majority like dynamics in an adaptive network
with a fluctuating number of links [17]. Equal states are connected with a probabi-
lity p, while different are linked with probability q. The state of every agent and the
connections are updated at every time step. An intriguing phase diagram arises. For
the thermodynamic limit consensus, majority of one opinion or a tie may arise as a
function of the probabilities p and q and depending on the initial configuration. In fi-
nite systems consensus is always reached, but the system undergoes metastable states
during long times.

1.2.3 Infection models

Infection models are another type of contact processes which deal with the spread-
ing of diseases in human populations. They were first introduced in the late 70’s by
May and Anderson [5, 84, 6, 7] and Diekman, Heesterbeek and Metz [39]. Healthy
individuals are susceptible (S) of being infected if they get in touch with infected indi-
viduals (I). The evolution of this process has been discussed in several models, includ-
ing small variations, e.g. birth-death processes, age or social grouping, or seasonality.
They all aim to provide a strong prediction power with the smallest possible number
of parameters. Here we will briefly overview two of these models: the susceptible-
infected-susceptible (SIS) and the susceptible-infected-recovered (SIR) models. In
both variations susceptible individuals are infected at a rate β, if they are in contact
with infected agents and heal at a rate µ independently of their environments. The
difference between the models resides in the healed individuals. They either could
be infected again and are therefore susceptible (SIS model) or are resistant to further
infections joining a recovered population (SIR model).

Let s, i, and r be the frequencies of susceptible, infected, and recovered individuals
in the population and n the average number of individuals with whom one agent is in
contact. The time evolution of the fraction of infected individuals in a mean field
approximation for the SIS model is given by:

ı̇(t) = βni(t) (1− i(t))− µi(t). (1.14)

Given that the infected and susceptible individuals sum the whole population, s = 1−i.
The mean field behaviour for the SIR model is described by the set of equations:

ṡ(t) = −βns(t)i(t) (1.15)

ı̇(t) = βni(t)s(t)− µi(t) (1.16)

ṙ(t) = µi(t). (1.17)

Considering a small initial fraction of infected individuals i0 � 1, there is an
epidemic threshold for the infection to spread. Infection leads to epidemic outbreak if
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the average number of secondary infections R = βn/µ—the “offspring” of infected
individuals in every generation in colloquial terms—is larger than one. In other words
the infection rate β should be larger than the epidemic threshold βc = µ/n for the
epidemic to affect a significant population fraction. Under this assumption the growth
of infected individuals in the early stages of the contact process is exponential i(t) ∼
i0 exp(t/τ), with τ−1 = βn− µ.

If β > βc the infection spreads and the system reaches a point where the number
of infected individuals is no longer small enough for the approximation i0 � 1 to
be valid. The dynamics taking place in later stages depends on the specific model
considered.

It was only in the 90’s that Rhodes and Anderson investigated the role of a regular
grid in infection models [115]. They investigated how the disease transmission in a
SIR process depends on the population density and mobility. They found that high
densities and large mobilities favoured the propagation of diseases. In particular they
were able to find threshold densities for several mobilities below which the population
does not get infected.

The topology of networks accounting for the population structure has a great im-
pact on the behaviour of epidemic spreading [69, 41, 68, 70]. Recent reviews on the
role of topology are found in [11] and in Pastor-Satorras and Vespignani in [22].

Pastor-Satorras and Vespignani have studied the behaviour of the SIS model in
Barabási-Albert scale free graphs [106]. The SIS model is suitable to describe the
spreading of viruses in the WWW network, for example. Remember that the degree
distribution of a scale free graph is of the form p(k) ∼ k−γ with γ = 3 for the
Barabási-Albert network. Simulations and analytical calculations showed that there
is no epidemic threshold in Barabási-Albert networks. The virus propagates for all
transmission rates. They also found that in the early stages the spread of the epidemic
is algebraic in Barabási-Albert graphs. The algebraic spreading is in better agreement
with the actual data of diseases contagion than the exponential behaviour found for
unstructured populations. Their studies predict a stationary infected population in the
long time limit which exponentially decreases with small ratios of the transmission
and recover rates λ = β/µ: i ∼ exp(−2/ 〈k〉λ).

Similar findings were made by May and Lloyd for the SIR model [85]. In the
thermodynamic limit there is no epidemic threshold in Barabási-Albert graphs. They
observed the same type of stationary infected population for infinite large Barabási-
Albert graphs. This result was also found by Moreno et al. who state that the epidemic
threshold is inversely proportional to degree fluctuations λc ∼ 1/

〈
k2
〉

in Barabási-
Albert graphs [94]. Therefore, for finite systems the threshold is recovered, since〈
k2
〉 ∼ logN . For general scale free networks in the thermodynamic limit their cal-

culations yield that for γ < 2 no epidemic threshold exists and the long time behaviour
of the recovered individuals goes as r∞ = λ1/(3−γ), while for 3 < γ < 4 a threshold
for the spreading of the epidemic is observed and the fraction of recovered individuals
at large times goes as r∞ ∼ (λ−λc)1/(γ−3). For γ > 4 the general behaviour in well-
mixed populations is recovered, r∞ ∼ (λ − λc). Nevertheless, in finite populations
an epidemic threshold is observed in all cases. In their work they also numerically
investigate the role of specific distributions of infected individuals in the network. It
turns out that the maximal fraction of infected population considerably increases when
the epidemic starts in individuals located at highly connected nodes.





Chapter 2

The evolution of mafias

Life is nothing but a competition to
be the criminal rather than the victim.

BERTRAND RUSSELL

This project was inspired by the film “Gomorra” by Matteo Garrone, based on
the homonym book by Roberto Saviano, which describes how mafias rule the south
of Italy. Inevitably, after watching the film, I asked myself whether there were any
means by which the expansion of mafias could be somehow hindered. Indeed, mafias
permeate all levels of society in such a way that to escape their influence seems rather
difficult, if not impossible. These thoughts led me to conceive a model aiming at
understanding the evolution of mafias in societies.

Modern societies strongly depend on the apparently irrational but certain power
exerted by some minority groups, which in occasions can destabilize their smooth run-
ning. Fanaticism, extremist political groups, terrorists, or mafias are various examples.
Despite their tiny fraction compared to the whole population, such groups can exert a
strong enough pressure to dictate the rules of the commons instead of diluting in the
seemingly dominant mass. Motivated by this paradox, we develop a model to ana-
lyse which features of societies, groups, and individual relations can provide further
understanding of these collective phenomena.

The mafia model is born in the context of evolutionary social dynamics. We pursue
modelling the dynamics of such systems as simply as possible by capturing the generic
features of the subtle relations of pressure, support, and protection taking place among
individuals and social groups. There are many interesting questions to be addressed in
the endeavor to characterize such social systems. We here specifically seek to under-
stand the mechanism which pushes individuals to join or leave mafias. For example,
we would like to find out how large and strong a minority group must be to survive,
grow, or even dominate a society; or whether it matters, and to what extent, if members
of different groups arrange in clusters or, in contrast, are dispersed in a mixed society.
We also aim at identifying and understanding the dynamics which gives rise to the
emergence of cliques as well as their subsequent evolution in time. In this sense, we
are particularly interested in determining the role of the network of contacts between
individuals in the establishment of mafias. Another set of questions concern the effec-
tiveness of the means that societies provide to regulate their conflicts—what we will
signify as control elements—in protecting the society against the damage of mafias.
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Finally, we want to find out whether allowing individuals to rationally escape from
the adversary’s influence modifies the evolution of the system, and if so, with which
frequency individuals are forced to run away.

In this chapter we first develop a mathematical framework to quantitatively char-
acterize the society. To this end, we begin by determining the essential variables and
parameters in the model which serve to describe the interactions between mafia and
citizens. We then explicitly derive and solve a set of non-linear differential equations
for the deterministic evolution of the system in a well-mixed population. Later, we
investigate the mafia model in spatial and social structures. In particular we pay atten-
tion to the impact of different distributions of external control elements, like a police
body, in heterogeneous social structures. Finally, we study the role of mobility. Here
we focus on random diffusion of individuals as well as on mobility directed to improve
the success of both strategies.

2.1 Towards a mathematical description

The evolution of the mafia model is determined by the interactions among individuals
in topological structures which account for the society. We distinguish two populations
or strategies: citizens not belonging to the mafia and mafiosi.

In the course of evolution every individual is confronted with the decision of join-
ing or leaving the mafia as the result of the interactions with his environment. The
social pressure of the society conditions its decision, in particular it depends on the
fraction of neighbours belonging to each population and the persuasiveness of the ad-
versary. Mafiosi and citizens have different persuasiveness accounted for by strength
parameters. Furthermore, the model also includes the reproduction and death of indi-
viduals. New born individuals are supposed to be neutral and therefore join the group
of citizens.

In many actual systems external controlling agents1 fight mafias’ growth. They
prevent citizens from joining mafias by weakening their strength and persuade mafiosi
to leave their gangs. Consequently the decision of individuals about their strategy also
depends on the presence of control elements. They are accounted for by their fraction
and strength, which are the same for the whole society as they are homogeneously
distributed in the system.

A society may have a maximal number N of individuals, carrying capacity. The
population density ρ is the sum of the citizen and mafia populations divided by the
carrying capacity, i.e. the sum of the frequencies of citizens c and mafiosi m: ρ =
c+m. The fraction of empty places is thus φ = 1− ρ, so that

c+m+ φ = 1. (2.1)

A random initial configuration {c0,m0, φ0} evolves in time through individual,
asynchronous actions. Individuals die at a rate d and are born in empty places at
a rate b. Citizens join the mafia and mafiosi leave it with reaction rates wc→m =
wcm, respectively wm→c = wmc. All actions are stochastic, i.e. they take place with
probabilities proportional to their respective rates.

1Throughout the chapter we speak of control elements, control agents, police elements, and police as
all referring to the same concept.
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The per capita reaction rates to adapt the opposite strategy depend strongly on the
composition of the social neighbourhood. The decision of a given agent depends on
the fraction of citizens and mafiosi in his neighbourhood and on the strength (persua-
siveness) attributed to the strategy of the opponent, sc or sm. If control elements were
present, the reaction rates also depend on their fraction p and strength sp.

In a well-mixed population the probabilities for a mafioso to become a citizen and
vice versa are proportional to the following per capita reaction rates:

wc→m = wcm = smm (1− p)(1− c), (2.2)

wm→c = wmc = (sc c+ sp p)(1−m). (2.3)

The terms sc c and smm account for the social pressure of those neighbours with a
different strategy. They depend on both the fraction of neighbours and their strength.
The strengths sc and sm are parameters of the model, identical for all individuals
holding the same strategy. The support provided by individuals with the same strategy
is accounted for by the factors (1−c) and (1−m). Alike individuals basically attenuate
the pressure exerted by the adversary, proportionally to their fraction. These terms
introduce non-linear dynamics in the model. Finally, the control elements play a two
fold role: protecting citizens and persecuting mafiosi. They inhibit the reaction c→ m
through the factor (1 − p) and activate the reaction m → c proportionally to their
abundance and strength sp p.

In the mafia model the strategy adopted by an individual may be other than the ma-
jority strategy in his neighbourhood. This is the case either if the strategy in minority
is stronger or if the protection provided by the neighbourhood or control elements is
sufficient to overcome the pressure of the majority. The way the model captures the
self protection and the catalytic role of external elements, giving rise to a nonlinear dy-
namics, constitutes a novel approach to the description of social conflicts with respect
to the models developed up to now [24]. In the voter model and its variants individuals
simply adopt the strategy of a random neighbour or that of the majority or minority
population [64, 49]. In the social impact theory, the support of individuals belonging
to the same group is accounted for by an additional term, unlike the multiplicative
factors which lessen the influence of the opponent in our model. This theory also con-
siders external factors, but they are represented by a site-dependent field [81, 78]. In
our view the mafia model improves the understanding of social conflicts in terms of a
reduced set of parameters.

One particular case of the mafia model is when citizens have no strength to influ-
ence the mafia’s behaviour, sc = 0. In this case only the control elements influence
the mafia’s decision. This might be a more realistic scenario for cases where mafias
are extraordinary strong and the population cannot resist their strike. In general, mo-
dels which aim to describe the competition between two different opinions do need to
associate relative strengths to both parties.

With these elements in place, we are ready to formulate a mathematical description
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for the deterministic dynamics in a well-mixed environment, namely

dc
dt

= b φ+ wmcm− wcm c− dc, (2.4)

dm
dt

= −wmcm+ wcm c− dm, (2.5)

dφ
dt

= −b φ+ d (1− φ). (2.6)

It is instructive to rewrite these equations in a dimensionless form, where time is mea-
sured in units of the typical death time 1/d: τ = td, ẋ = dx/dτ , β = b/d, σi = si/d
and ωij = wij/d. One is left with the set of differential equations:

ċ = φβ +mωmc − c ωcm − c, (2.7)

ṁ = −mωmc + c ωcm −m, (2.8)

φ̇ = −φβ + (1− φ), (2.9)

where the dimensionless reaction rates (2.2) and (2.3) are rewritten as

ωc→m = ωcm = mσm(1− p)(1− c), (2.10)

ωm→c = ωmc = (cσc + pσp)(1−m). (2.11)

The carrying capacity is taken into account by explicitly modelling the empty sites
c+m+φ = 1 and thus φ̇ = −(ċ+ ṁ). This allows the computation of the fraction of
empty places in equilibrium—obtained by equating (2.9) to zero—which is completely
independent of the dynamics encode by ωcm and ωmc:

φ̇ = −(1 + β)φ+ 1 = 0, (2.12)

φ =
1

1 + β
. (2.13)

The birth rate controls the number of empty places in the stationary state. Introducing
φ in equations (2.7) and (2.8) one gets that citizen and mafia populations are related in
equilibrium as follows:

c+m =
β

1 + β
. (2.14)

It follows that the population density in equilibrium, effective carrying capacity, only
depends on the dimensionless birth rate β:

ρ = m+ c = β/(1 + β) = b/(b+ d). (2.15)

Taking into account the solution for the fraction of empty places φ and (2.14) the
set of equations (2.7), (2.8), and (2.9) reduce to one single equation for the mafia
evolution. The stationary states or fixed points (FP) of the system are the solutions of
the following implicit equation:

−mωmc(c,m, p) + (ρ−m)ωcm(c,m, p)−m = 0, (2.16)

for which the explicit form of ωmc and ωcm depends on the specific model considered.
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2.2 Deterministic mean field approximation

In this section we analyze the mafia model within a mean field approximation for well-
mixed populations. One assumes that the population is well-mixed if the mobility of
individuals is much higher than the frequency of interactions. Under this assumption
the local field—fraction of different species (strategies) in the vicinity of an agent—
which every agent experiences is the same as the global field. The latter is given by
the average of frequencies over the whole population. A well-mixed population is
equivalent to a population on a complete graph, where every agent is connected and
interacts with all other agents. This simplification allows analytical calculations which
shed some light on the problem’s characterization. In particular, we identify the fixed
points (FP) and their stability for three particular instances of the mafia model. We
also classify possible bifurcations and compute the stability diagram as a function of
the parameters of the model.

2.2.1 Symmetric model (SM)

In the symmetric model both species have the same strength σc = σm = σ in a society
without control elements. This particular case models, for instance, the membership
to groups such as religions, assuming the dynamics to be biased, so that new born
individuals belong to a given group depending on the culture. Another example is the
competition between two beliefs or opinions where new individuals hold an a-priori
opinion. The dynamics of such systems is outlined in the diagram below, where C,
M , and Φ denote the total number of citizens, mafiosi, and empty places:
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Mafiosi may become citizens and vice versa with reaction rates ωmc and ωcm respec-
tively, both populations die at rate 1, and only citizens are born in empty places at rate
β. The reaction rates to change strategy now read:

ωc→m = ωcm = σm(1− c), (2.17)

ωm→c = ωmc = σc(1−m), (2.18)

leading to the nonlinear differential equations for citizens and mafiosi:

ṁ = −mσc(1−m) + cσm(1− c)−m, (2.19)

ċ = φβ +mσc(1−m)− cσm(1− c)− c , (2.20)

where φ = 1− c−m. Evolution is described by two parameters: the birth rate β and
the interaction strength σ.

Since in the stationary state ρ = c+m = β/(1 + β) the fixed points are given by

m0 = 0, m± =
3ρ±

√
ρ2 − 8Σ
4

, (2.21)
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where Σ := σ−1. The fixed pointm0 is an absorbing state, at which the mafia becomes
extinct, while the points m± are coexistence states. In the limit of infinite strength, i.e.
σ → ∞, m− → ρ/2, which constitutes an activation barrier. If the initial fraction of
mafiosi is smaller than this barrier, they invariably die out.

At the critical interaction strength

σ∗sn =
8
ρ2

= 8
(β + 1)2

β2
(2.22)

a saddle-node bifurcation separates a regime with three fixed points for σ > σ∗sn, from
another regime with only a single stable point, the absorbing one, for σ < σ∗sn. For the
critical strength a saddle-node fixed point exists at m = 3ρ/4—see Fig. 2.1.
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Figure 2.1: SM: Bifurcation diagram for the symmetric model as a function of the
strength parameter σ. The solid lines represent the stable FP m+ and m0 and the
dashed line stands for the unstable nodem−. At the point σsn a saddle-node bifurcation
takes place. For values σ < σsn the node m0 = 0 (mafia’s extinction) is the only
solution.

The linear stability analysis reveals that the absorbing node is stable for the whole
parameter region. The coexistence solutions are a stable and unstable node—see the
graphical representation in Fig. 2.1. The coexistence points have physically mean-
ingful values, i.e. 0 ≤ m± ≤ 1, for the whole parameter region where they are real
because ρ < 1.

Fig. 2.2 (left) displays the stability diagram in terms of the birth rate β and the
strategy strength σ. Two different regimes are observed. In the first one only the
extinction of mafiosi represents a stable solution for the problem. The second regime
exhibits bistability; here coexistence of both species and mafia’s extinction are possible
stable solutions, depending on the initial conditions. In the plot the line separating both
regimes represents the saddle-node bifurcation.

We have found that there is a critical strength σ∗sn = 8/ρ2 below which mafia get
extinct. In the limit of small birth rates, and consequently small population densities
ρ→ 0, the strength required to achieve coexistence is asymptotically large σ∗sn →∞.
For very small birth rates, the population density is so low, that interactions with other
individuals are very seldom and the rates to change strategy result thus very weak.
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Instead, the dynamics is governed by the birth-death process. As only citizens are
born, the mafia unavoidably dies out.

The separatrix of the system, i.e. the values of the parameters (β, σ) for which
the unstable fixed point m− takes a specific value, are plotted in the right panel of
Fig. 2.2. For given initial condition m0 larger or smaller than the value of the un-
stable fixed point m−, the system evolves towards coexistence or extinction. This is
graphically displayed in the diagram, where coexistence or extinction are achieved for
the parameter region above or below, respectively, the corresponding separatrix with
m− = m0.

σ∗
sn

extinction

bistability

β

σ

302520151050

30

25

20

15

10

5

0

3/4
2/3
1/2

m0

m+

β

σ

302520151050

30

25

20

15

10

5

0

Figure 2.2: SM: Stability [left] and separatrix [right] diagrams as a function of the
birth rate β and strength σ. The system is bistable above the line, and monostable—
extinction is the only stable state—below it. Along the line separating both regimes a
saddle-node bifurcation takes place. In the right part the separatrix for various initial
conditions are plotted in the right figure.

2.2.2 Fully asymmetric model (FAM)

We address now the asymmetric case in which citizens do not influence the decision
of the mafia, i.e. σc = 0. As long as there are no control elements either, no direct
strategy conversion from mafioso to citizen is possible. However, mafiosi become
citizens indirectly via death-birth processes. The reaction scheme is illustrated below:
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The reaction rates for this case

ωcm = σm(1− c), (2.23)

ωmc = 0, (2.24)

yield the following differential nonlinear equations for the evolution of the system:

ṁ = σm(1− c)c−m, (2.25)

ċ = βφ− σm(1− c)c− c. (2.26)
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They have three fixed points

m0 = 0, m± =
1
2

(
2ρ− 1±√1− 4Σ

)
, (2.27)

with Σ = σ−1.

m0

m−

m+
β = 10

σ

m
afi

a
fr

ac
ti
on

302520151050

1

0.8

0.6

0.4

0.2

0
m0

m+
σ = 10

β
m

afi
a

fr
ac

ti
on

302520151050

1

0.8

0.6

0.4

0.2

0

Figure 2.3: FAM: Bifurcations are shown as a function of the strength σ for a fixed
birth rate [left] and as a function of the birth rate β for a fixed strength σ = 10 [right].
The solid and dashed lines represent the stable and unstable fixed points, respectively.
The full points represent saddle-nodes.

The stability analysis indicates that the absorbing FP m0, where mafiosi die out, is
a stable node for

β = 0, ∀σ or (2.28)

β 6= 0 and σ < (1 + β)2/β, (2.29)

and unstable otherwise. As for the coexistence fixed points, m+ is a physically mean-
ingful stable node for the parameter regions

0 < β ≤ 1 and σ > (1 + β)2/β or (2.30)

β > 1 and σ ≥ 4, (2.31)

whereas m− is unstable for the interesting parameter intervals—see bifurcation dia-
gram in Fig. 2.3.

At the critical value σ∗sn = 4 a saddle-node bifurcation separates the bistable re-
gion from the monostable one where extinction is the only stable node: the coexistence
solutions m± become complex. In addition, at the curve σ∗tc = (1 + β2)/β a trans-
critical bifurcation occurs, where the fixed point m0 changes its stability. The stability
diagram in Fig. 2.4 illustrates both bifurcations. The right panel shows the separatrix
for three different values of the unstable node m− in the bistable regime. The model
evolves to coexistence or extinction in the regions above or below the separatrix line
with m− corresponding to the initial conditions, i.e. m0 = m−.

We have learned that the mafia needs a minimal strength σ = 4 to survive. Below
this threshold mafiosi die out independently of the birth rate. Above this value coexis-
tence of both species may be achieved, although the required strength for the mafia to
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Figure 2.4: FAM: Stability [left] and separatrix [right] diagrams as a function of the
birth rate β and strength σ. One can distinguish two regions where the system achieves
coexistence m+ or mafia’s extinction m0, as well as one region which shows bistabi-
lity. In the right figure the separatrix for various initial conditions are plotted.

survive increases in this regime with the birth rate. The stationary fraction of mafiosi
grows also with the strength of the mafia for a fixed birth rate up to the asymptotic
value m+ = ρ for infinite strength σ → ∞. For a given strength, the mafia fraction
in the stationary state is also enhanced with the birth rate, as a consequence of the in-
crement of the whole population, until the saturation value m+ → 1/2(1 +

√
1− 4Σ)

for infinite birth rates and population density ρ→ 1.

2.2.3 Fully asymmetric policed model (FAPM)

There are many social situations and personal decisions which are influenced by exter-
nal factors unrelated with the interactions between individuals: mass media, personal
beliefs, economical factors, coercion, or police control to mention only some. These
external influences differ from agent to agent. We model all these factors as control
elements which modify the local field enhancing or inhibiting decisions in certain di-
rections. In a mean field scenario all individuals in a group are equally subject to these
external factors, even though they exert different influences on members of mafia and
citizens.

In the mafia terminology, a fixed fraction p of control elements enters the asym-
metric model with a double function: protecting citizens from the mafia’s strike and
persuading mafiosi to leave the mafia with strength σp.

To keep the problem feasible we reduce the number of parameters equating the
police and mafia’s strengths with the birth rate2: σm = σp = β = σ and σc = 0. The
direct transition from mafioso to citizen is now possible thanks to the mediation by the
control elements (police). The reaction scheme below represents the possible reactions
in this scenario:

2This corresponds to a particular line, i.e. the diagonal line, in the stability diagram for the fully
asymmetric model without police—Fig. 2.4. Hence for p = 0 there is a transition from extinction to
bistability as in the FAP model. If one were to a different line, one could even observe two transitions.
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The distinguishing feature of this instance of the model is that the transition rates
between both species do depend on the police fraction p:

ωc→m = ωcm = σm(1− p)(1− c), (2.32)

ωm→c = ωmc = σp(1−m), (2.33)

yielding the corresponding differential equations for the population:

ṁ = −σp(1−m)m+ σm(1− p)(1− c)c−m, (2.34)

ċ = βφ+ σp(1−m)m− σm(1− p)(1− c)c− c. (2.35)

The stationary state is characterized by three fixed points:

m0 = 0, (2.36)

m± =
(1− 2p− σ)

√
σ

2(p− 1)
√
σ(1 + σ)

(2.37)

∓
√

1 + σ
√−4− 3σ + σ2 + 4p2σ(2 + σ)− 4p(−1 + σ + σ2)

2(p− 1)
√
σ(1 + σ)

.

The absorbing state m0 is a stable node for the whole parameter region. The coexis-
tence fixed pointsm± are stable, respectively unstable nodes with values in the interval
0 ≤ m ≤ 1 for

σ = 4 and p = 0 or (2.38)

σ > 4 and 0 ≤ p ≤ p∗sn, (2.39)

where

p∗sn =
1

2σ(2 + σ)

(
−1 + σ + σ2 −

√
1 + 6σ + 9σ2 + 3σ3

)
. (2.40)

In Fig. 2.5 a bifurcation diagram for a fixed police fraction p = 0.1 displays the
stability of the three critical points as well as that for the saddle-node bifurcation.

In particular, as illustrated in the stability diagram in figure 2.6, a saddle-node
bifurcation takes place for p = p∗sn where the number of solutions reduces from three
to one.

At this line the system’s stability changes from bistable to monostable. The more
control elements p there are, the larger the interaction strength σ must be to achieve
coexistence of both species. The separatrix for m0 = 1/2 is plotted in the right panel.

Summarizing, the presence of control elements increases the strength needed by
the mafia to survive with respect to the unpoliced case. This threshold strength grows
with the fraction of control elements p. Above a critical fraction of control elements
p∗sn, however, mafiosi unavoidably die out independently of their strength. If the police
fraction is below this value and mafiosi survive, their stationary fraction grows with
their strength as we have seen in the bifurcation diagram of Fig. 2.5.
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Figure 2.5: FAPM: Bifurca-
tion for a fixed police fraction
p = 0.1. Two stable nodes
[solid lines], m+ and m0, and
the unstable m− [dashed line]
are shown as a function of the
strength σ. Note that at the
saddle-node point [filled point]
a saddle-node bifurcation takes
place below which extinction
m0 is the only stable fixed point.
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Figure 2.6: FAPM: Stability [left] and separatrix [right] diagrams as a function of
the fraction of control elements p and the strength σ. In the stability diagram two
regimes are recognized: bistability and extinction of mafiosi. The black line represent
the saddle-node bifurcation taking place along the transition from the bistable to the
monostable regime. In the right figure the separatrix for m0 = 1/2 is plotted. Note
that σm = σp = β = σ.

2.3 The role of social structures

The focus of our work is to investigate the role of social structures in conflicts such as
the problem of mafias. We are interested in the evolution of the three cases described
above for individuals interacting in spatial and social structures. Does the system
modify its behaviour with respect to the well-mixed population? We want to identify
the features which characterize and dominate the dynamics of societies in structures.
In particular, we wonder whether specific social structures may hinder or strengthen
the power of mafias. We also investigate the role of specific distributions of the control
elements in heterogeneous systems.

We study the dynamics of the mafia model for two kinds of structures: two di-
mensional regular lattices and scale free networks. Square regular lattices are homo-
geneous structures where all agents have the same number of neighbours. We consider
von Neumann neighbourhoods including the north, south, east, and west neighbours.
On the other hand, scale free networks exhibit large heterogeneity. Their degree dis-
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tribution, i.e. the fraction of nodes with k neighbours, is proportional to a power law
p(k) ∝ k−γ . The degree of heterogeneity is related to the exponent γ of the power
law. In scale free graphs a relevant phenomenon takes place which is not present in
homogeneous structures as random graphs and lattices: Because of the network’s he-
terogeneity agents located in highly connected nodes exert a stronger influence in the
society to which they belong. They take part in a larger number of interactions per-
suading a larger number of individuals.

What are the restrictions introduced by structures? Agents interact with their near-
est neighbours. While birth and death rates are the same for all individuals independent
of the structure considered and their location, the reaction rates ωcm and ωmc do de-
pend on the composition of the neighbourhood.

Both population and police frequencies are needed to compute the transition rates
ωcm and ωmc. For the mean field approximation these fractions are those of the total
population. In structured societies, lattice and networks, the population fractions are
those of the neighbourhood. Since the number of connections of a given node to its
neighbours is finite, the possible values for c and m entering the reaction rates are
discretized. There is a finite number of possible neighbourhoods. The smaller the
node degree is, the less neighbourhoods are available. This scenario is qualitatively
different from the mean field approximation, which averages over the total population
and supposes that all individuals interact with the same neighbourhood. In the well-
mixed assumption all population frequencies in the continuous range between zero
and one are available. Instead, in structures individuals interact with their nearest
neighbours, varying for each site or node. The composition of the neighbourhood
does not include the strategy of the agent for whom the neighbourhood is computed.
Deviations from the behaviour predicted by the mean field approximation are thus
expected for populations on lattices and networks.

Not only the frequencies of species, but also the fraction of control elements are
specific for every agent. The control elements are located at the edges connecting two
nodes—see Fig.2.7. Every edge attached to a given site can thus be occupied or not by
a control element, under the constraint that the total number of edges allocating control
elements is pNE , where NE is the total number of edges. Therefore the fraction of
control elements in an agent’s neighbourhood is the number of policed edges over the
total number of edges. This fraction is different for every node.

We explore the mafia model in some structures beyond the mean field approxi-
mation by means of stochastic simulations. In particular, we investigate the system’s
evolution on regular lattices and scale free networks (SFN) for different initial frequen-
cies (c0, m0) and values of the parameters: reaction strength σ, birth rate β, and police
fraction p.

The initial configuration is a random distribution of the population according to the
initial conditions: c0N citizens, m0N mafiosi, and (1 − c0 −m0)N empty places.
The society evolves in time until it reaches a state which is quasistationary. In fact,
after a given time τ , the system enters a regime in which the population fractions do
not change any longer. Since there exists an absorbing state, i.e. mafia’s extinction, if
one would wait a time long enough the state of the system would unavoidably evolve
towards it. However, we have found that there is a large enough window of time for
which the system’s state is quasistationary. All the investigations we address in this
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Figure 2.7: Neighbourhoods on structures: regular square lattice and scale free graph.
The green nodes are occupied with citizens, the red with mafiosi, the vacant sites in
the lattice or uncoloured nodes in the network are empty places. Blue squares account
for the control elements. For illustration, one can calculate that the composition of the
neighbourhoods (von Neumann for the lattice) of the nodes in black are: (c,m, φ) =
(1/4, 1/2, 1/4) and p = 1/4 in the lattice and (c,m, φ) = (1/4, 1/2, 1/4) and p = 0
in the graph.

chapter are therefore carried out for this quasistationary state, that we will refer to as
stationary for the sake of simplicity.

In the course of time individuals change their strategies. The sites, where they are
allocated, are randomly chosen for updating. Every site updates on average once at
each time step ∆τ . Therefore, a time step consists of N asynchronous single updates.
If the site is empty, a citizen is born with probability β∆τ . If an individual occupies
the site he can either die with probability ∆τ or change his strategy with probabilities
ωmc∆τ or ωcm∆τ .

As we discussed above the reaction rates are site and time-dependent, encoding
the features of the structure considered, i.e. accounting for the local conformations at
every node of the lattice or graph. The corresponding reaction rates ωmc and ωcm are
thus computed at every time step and for each updating agent as given in equations
(2.10) and (2.11)3. In particular the fractions c, m, and p entering the reaction rates
for a given individual are those of his vicinity, i.e. the number of citizens, mafiosi, and
control elements divided by the total number of neighbours or node’s degree k.

We measure for various observables both their time evolution and stationary value,
to quantify the questions we are interested in. All the observables discussed in this
chapter are averages over the results of thousand of simulations with different initial
configurations. We will define specific observables for different purposes, but popula-
tions frequencies and extinction probabilities will be relevant throughout this section.

We define the extinction probability as the probability that mafia has gone extinct
after a waiting time τ [111]. This probability is measured through many simulations
starting with the same initial conditions. The time for which we measure extinction
probabilities is within the quasistationary window that the system undergoes defined

3See appendix A for a detailed description of the algorithm.
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above.

The extinction probability is also a good quantity to measure the effect of stochas-
ticity. For some initial conditions, the average fractions of mafiosi observed in the
stationary state are very small, without necessarily meaning that this is the stationary
state, but just an effect of averaging over samples in which extinction takes place due
to stochastic fluctuations.
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Figure 2.8: Degree distribution for scale free networks. Number of nodes Nk with k
neighbours for networks with exponents γ ranging from 2 to 4.

The section outline is the following: we first simulate the complete graph, i.e. the
well-mixed mean field approximation, to investigate the effect of stochastic fluctua-
tions due to finite populations. Then, we introduce spatial structure through a square
regular lattice with a constant number of neighbours. Finally, we investigate the role
of more complex topological structures as scale free graphs4. They better account for
the heterogeneity of actual social networks. In a SFN the number of neighbours differs
from one node to another. In Fig. 2.8 the degree distribution for the different networks
used are compared. We will often refer to networks by their exponent γ of their degree
distribution, p(k) ∝ k−γ . Networks with small γ exhibit a larger heterogeneity as well
as larger average degree, i.e. number of neighbours. They also have a non-negligible
tail in their distribution, meaning that there is a finite number of nodes with a high
number of connections, the so-called hubs. In addition, the average path lengths of
very heterogeneous networks are rather small. For a more detailed discussion on the
properties of scale free networks see section 1.1.4. The table below shows the average
degree 〈k〉 of these networks for several sizes and exponents γ.

4The network is generated according to the algorithm implemented by Heiko Hotz following the
uncorrelated configuration model described in appendix B.
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γ 2 2.5 3 3.5 4

N = 10000 7.63 4.31 3.16 2.69 2.45
N = 8000 7.45 4.29 3.16 2.69 2.45
N = 6000 7.23 4.26 3.15 2.68 2.45
N = 4000 6.97 4.21 3.11 2.68 2.45

In what follows, we investigate the three cases of the mafia model described in
section 2.2: the symmetric model (SM), the fully asymmetric model (FAM), and the
fully asymmetric policed model (FAPM). We will pay special attention to possible
stochastic effects and explore in detail the role of different distributions of the control
elements in the network.

2.3.1 Symmetric model

The stability analysis for the mean field approximation predicts a bistable and a monos-
table region in the parameter space. In the former, coexistence and mafia extinction
are both stable solutions, whereas extinction is the only stable fixed point in the latter.
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Figure 2.9: SM: Stable [filled]
and unstable [empty] nodes for
two points (β, σ) in parame-
ter space where coexistence was
predicted by the deterministic
MF theory. Since the initial con-
ditions are very close to the un-
stable point, fluctuations easily
drive the system to extinction.

We first test the effect of stochasticity due to the finite size of the system in the
well-mixed assumption. The simulations show that for initial conditions close to the
unstable fixed pointm− fluctuations drastically modify the deterministic scenario. Re-
member that the unstable point separates the regions leading to one or the other fixed
point for given initial conditions larger or smaller than it respectively—see Fig. 2.9. In
the parameter region above the separatrix corresponding to m− = 1/2—solid black
line in Fig. 2.10—coexistence is achieved for the deterministic mean field approxima-
tion. However, the extinction probability observed in the simulations shows a quite
different landscape: mafia dies out for almost all parameters in the same region. The
reason for this difference is the proximity of the unstable fixed point m− to the given
initial conditions m0 = 1/2. Small fluctuations may thus drastically change the evo-
lution of the system. Fig. 2.9 illustrates the relative position of the fixed points with
respect to the initial conditions for two parameters sets.

Stochasticity does not modify however the deterministic prediction for initial con-
ditions far from the unstable node. This is the case for initial conditions m0 = 3/4,
as shown in Fig. 2.11. For comparison purposes, the predicted separatrix by the mean
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Figure 2.10: SM: Extinction probability
[blue pext = 0, red pext = 1] after a time
τ = 0.01N for stochastic mean field si-
mulations with m0 = 1/2 compared to
the corresponding m− = 1/2 separa-
trix predicted for the deterministic ther-
modynamic limit [solid line]. Note that
stochasticity plays a crucial role. Simu-
lations for a system of size N = 10000.

σ

30

25

20

15

10

5

0

β

302520151050

σ

30

25

20

15

10

5

0

β

302520151050

field approximation is plotted on top of the extinction probability as obtained by the
simulations.

Interestingly, introducing structure in the system qualitatively changes the nature
of the stable node in the bistable region. For homogeneous structures, e.g. lattice and
networks with large γ, the system reaches the absorbing state, i.e. extinction of the
mafia, in regions where coexistence is found under the homogeneous mixing assump-
tion.

The stationary mafia fraction and extinction probability are plotted in Fig. 2.12 for
three different structures. In the left side the birth parameter is fixed and the system’s
behaviour is shown for increasing strength σ. In the right plot the strength is the fixed
parameter and the effect of increasing birth rate is investigated. The results for the
three structures, regular lattice, γ = 3, and γ = 2.5 scale free networks, are compared
with the stochastic and deterministic homogeneous mixing cases. The frequency of
mafiosi in equilibrium is in good agreement for the deterministic and stochastic mean
field approximation. The separatrix delimiting extinction and coexistence are shifted
in the different architectures with respect to the homogeneous mixing hypothesis.

We explicitly want to find out whether mafiosi also die out for societies initially
populated by the mafia. We want to determine whether the state m0 = 1 is evolu-
tionary stable in homogeneous structures of different sizes. Simulations show that a
population of mafiosi is not an evolutionary stable state in those topologies. A few
citizens invade the mafiosi population, leading them to extinction.

More heterogeneous networks—smaller γ for scale free graphs—do exhibit co-
existence regimes for some areas in the parameters space. Fig. 2.13 shows a phase
transition from coexistence to extinction as a function of the network heterogeneity.
For the parameter point σ = β = 30 and initial conditions c0 = 1/4, m0 = 3/4
the transition takes place at the critical exponent γc ∼ 2.7. These results stress that
heterogeneous structures promote coexistence.

How does the coarsening dynamics look like? Starting in the state m0 = 1 the
death of mafiosi is the only possible process. Since the characteristic time for mafiosi
to death is τd ∼ 1/N , after a time n/N the first n mafiosi have died leaving empty
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(a) MF, m0 = 3/4, N = 10000
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(b) lattice, m0 = 3/4, N = 4900
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(c) γ = 2.5 SFN, m0 = 3/4,N = 8000
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(d) γ = 3 SFN, m0 = 3/4, N = 8000

Figure 2.11: SM: Mafia’s extinction probability [blue: pext = 0, coexistence; red:
pext = 1, extinction] in terms of the strength σ and birth rate β. The solid black line
represents the corresponding deterministic separatrix. The probabilities are measured
after a time τ = λN with λ = 0.01. Structures lead the system systematically to
extinction, even for an initial population of mafiosi m0 = 1 (not shown).

places5. Citizens might be born in those vacant locations with a rate β. After a charac-
teristic time τb ∼ 1/β there are some isolated citizens in the system. They may either
resit the mafia attack or change their strategy. Very rarely citizens induce mafiosi to
leave the mafia in these early stages of the dynamics. Despite their minority, citi-
zens survive over a generation often enough to build small clusters of two or three
individuals—see Fig. 2.14.

5Remember that the death rate was used to define the dimensionless time unit τ = td.
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Figure 2.12: SM: Stationary fraction of mafiosi [top] and extinction probability [bot-
tom] for different structures: lattice, γ = 3, and γ = 2.5 scale free networks. The
deterministic and stochastic mean field results are also displayed. The results for a
fixed birth rate β = 15 and fixed strength parameter σ = 15 are shown in the left and
right side of the figure, respectively. The initial conditions are m0 = 3/4, c0 = 1/4.
System sizes: NMF = 10000, Nlatt = 4900, NSFN = 8000. The extinction probability
is measured after a time τ = λN , with λ = 0.01.

Figure 2.13: SM: Extinction
probability after waiting a time
τ = 0.01N as a function of he-
terogeneity of scale free graphs.
Different system sizes are plot-
ted for the parameter point β =
σ = 30 and initial conditions
c0 = 1/4, m0 = 3/4.
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Once small clusters are formed the dominating dynamics takes place at the domain
interfaces. In homogeneous structures with small number of neighbours the reaction
rates for both species are very similar6. In fact, as the population fractions marginally
deviate from the values m ∼ c ∼ 1/2 at interfaces, the reaction rates read ωcm =

6This holds only in structures for which one may assume a similar fraction of neighbours of every
species for all sites at interfaces. And indeed it is in those structures where extinction takes place.
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σm(1− c) ∼ ωmc = σc(1−m) ∼ σ/4. Consequently, there is a back and forth fight
at domain interfaces. Why do mafiosi finally die out? The dynamics is still asymmetric
because of the birth of citizens. This process shifts the balance to mafiosi extinction.
This dynamics may be visualized for a regular, two dimensional lattice in the Movie
1 of the supplementary CD. The wall growth of an initially small citizen population is
displayed in the Movie 2.

(a) τ = 0 (b) τd ∼ 1/N (c) τb ∼ 1/β (d) τ & 1/β

Figure 2.14: SM: First stages of the nucleation process in which small citizens’ clus-
ters arise. For an initial population of mafiosi [red] (τ = 0), some empty places [white]
appear via death process after a characteristic time τd ∼ 1/N . In these vacancies ci-
tizens [green] are born after a time of the order of τb ∼ 1/β. In the last stage shown,
converted mafiosi and adjacent born citizens give rise to the emergence of small ci-
tizens’ clusters. Thereafter, the death-birth process drives the expansion of citizens’
clusters.

Why is extinction not achieved in heterogeneous structures? Extinction is the re-
sult of a dynamics driven by the birth-death processes, which become relevant when
the reaction rates to change strategy are very similar for both species. The latter hap-
pens if the population fractions at interfaces do not show large fluctuations from the
average value c ∼ m ∼ 1/2. But fluctuations in the population fractions are negligible
only for a very reduced number of possible neighbourhoods, i.e. for a small number of
connections. For larger connectivities first the probability to have the particular neigh-
bourhood with species fractions m ∼ c ∼ 1/2 is smaller than for small connectivities
and second the population is much more mixed and the system closer to the global
mean field description. These might be the reasons why extinction does not emerge
for heterogeneous graphs with larger average degrees 〈k〉—see Fig. 2.13.

Summarizing, the system behaves very differently on homogeneous structures as
in the case of well-mixed populations. The global mean field average performed before
is far from capturing the dynamics taking place in small vicinities. A local mean field
provides a much better description of the dynamics in structures, as we will see later
in this work.

In well-mixed populations the system may reach intermediate, arbitrary popula-
tion fractions (c∗,m∗) for which the rate at which citizens become mafiosi is large
enough to overcome the death-birth effect favouring the formers (ωcm � ωmc). For
these states the system enters a stationary regime of coexistence. These global states
are however easily undergone in structured architectures because not all population
fractions are locally reproducible in a neighbourhood. In homogeneously structured
societies, the global composition of the population do not play any role in the dynamics
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of single individuals.

How much stronger should mafiosi be to survive?

We have so far simplified the general case to one in which both the citizens and mafia
have the same strength. But both strengths, σc and σm, might be chosen in such a way
that stronger mafiosi could overcome the advantage citizens have because of their birth
process. A rough calculation suggests that in fact this is possible.

For mafiosi not to die out the number of mafiosi gained at every time step mg

should at least equal that of gained citizens7 cg. The fraction of mafiosi increases via
citizen conversion at interfaces, while the fraction of citizens grows via conversion as
well as thanks to the birth process. The new born individuals are only safe if they
are born close to clusters8. Considering the population to be arranged in clusters this
balance is achieved if

mg ≥ cg (2.41)

lint c ωcm ≥ lint mωmc + lint φβ (2.42)

c σmm (1− c) ≥ mσc c (1−m) + φβ, (2.43)

where lint is the length at the cluster’s interface. In homogeneous structures with small
vicinities one may assume m ∼ c ∼ 1/2 at interfaces. For this regime there is a
threshold value for the mafia strength at which mafiosi do not die out: σm ≥ σc +
8βφ = σc + 8β/(1 + β). For σm > σc + 8 a transition between extinction and
coexistence should be observed in homogeneous structures. Simulations in regular
lattices support this heuristic prediction: for σc = 10 the mafia extinction probability
reduces already to pext = 0.68 for a mafia strength σm = σc + 8 = 18 and coexistence
is systematically achieved for larger σm—see Fig. 2.15.

Figure 2.15: Transition from
mafia’s extinction to coexis-
tence for σm > σc + 8 as
heuristically predicted for socie-
ties in homogeneous structures
without policing elements—see
main text. The stationary
mafia’s fraction and extinction
probability are shown for a lat-
tice with size N = 6400. In the
example σc = β = 10.
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2.3.2 Fully asymmetric model

The deterministic mean field analysis for the fully asymmetric model predicts three
different regimes dependent on the strength and birth rate parameters: coexistence,

7We omit the lost individuals since the death rate is the same for both species.
8In fact this assumption underestimates the actual number of surviving new born citizens which might

also join isolated citizens by chance. But these are very few compared to those joining clusters.
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(a) MF, m0 = 0.1, N = 6000
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(b) MF, m0 = 0.0005, N = 6000
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(c) lattice, m0 = 0.0005, N = 4900
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(d) γ = 3 SFN, m0 = 0.0005, N = 8000

Figure 2.16: FAM: Mafia’s extinction probability [blue: pext = 0, coexistence; red:
pext = 1, extinction] in terms of the strength σ and birth rate β. The solid black
lines represent the corresponding deterministic separatrix. The probabilities pext(τ)
are measured after a time τ = λN , for λ = 0.01 for the mean field and the lattice,
and λ = 0.015 for the network. The structures enhance coexistence even for vanishing
initial fractions of mafiosi if σ & 4—see discussion in the main text.



46 2. The evolution of mafias

extinction, and bistability. In Fig. 2.16 (top) the extinction probability for the stochas-
tic mean field is compared with the corresponding deterministic separatrix for two
different sets of initial conditions. The stationary state resulting from the stochastic si-
mulations is the same as the one predicted by the deterministic calculation. For initial
conditions far from the unstable node the specific population fractions in equilibrium
are in very good agreement with the solutions of the deterministic mean field equations
(not shown).

However, the nature of the stationary state changes qualitatively in structured en-
vironments. Topological and spatial arrangements enhance coexistence in the bistable
region, as coexistence is found for parameters for which extinction is the stationary
state for well-mixed populations. In contrast with the results for the symmetric mo-
del, now the absorbing extinction state is the one which is lost in favour of diversity.
This phenomenon is shown in the lower part of Fig. 2.16 for the lattice and a γ = 3
scale free graph, for initial conditionsm = 0.0005 for which the corresponding results
obtained for the well-mixed assumption is displayed in the upper right panel.

Up to which extent is diversity promoted in structured populations? We want to
determine whether the absorbing state m = 0 is evolutionary stable. In other words,
we investigate whether a few mafiosi may invade a population of citizens. For this
purpose we simulate the evolution of populations with a few mafiosi on a square lattice
and scale free graphs. The results indicate that the absorbing state m0 = 0 is not
evolutionary stable, as coexistence is found for σ > 4.

What is the underlying dynamics which promotes coexistence? To invade the pop-
ulation, the few disperse mafiosi introduced in the society must first survive the drift
of the death process. Then they must be able to invade some neighbouring cells and
form small clusters able to expand at the expense of citizens. After small clusters are
consolidated the dominant dynamics driving the system to coexistence takes place at
the domain interfaces until a stationary state is reached. We first discuss under which
conditions small mafia clusters emerge and then examine the clusters dynamics leading
to the stationary state.

A neighbourhood with an isolated mafioso may evolve in two different directions:
either the mafioso dies or he invades some neighbouring site. We are specifically
interested in the probability for the isolated mafioso to invade any neighbouring cell
instead of dying after one generation9. This is required for the successively formation
of small clusters. Fig. 2.17 shows a cartoon illustrating this situation.

The probability for an isolated mafioso at site i to die is pext = pdeath = ∆τ ,
while his probability to invade a neighbouring node is the sum of the probabilities
pjcm for his ki citizen neighbours at site j to become mafiosi: pinv =

∑ki
j=1 p

j
cm =

kip
j
cm = ki ωcm ∆τ = ki σm (1 − c) ∆τ = ki σ∆τ/k2

j . In homogeneous structures
ki ' kj and thus pexp ' σ∆τ/ki. Hence the expansion probability is larger than the
extinction if the mafia’s strength is larger than the number of neighbours σ > ki. As
in the asymmetric model a transition from mafioso to citizen is not possible, but only
indirectly through the death-birth process, this reaction is not considered here.

The larger the interaction strength σ, the larger the likelihood for an isolated
mafioso to invade any of his neighbouring cells. The extinction probability decreases
thus with the mafia’s strength. For small strengths and very few mafiosi stochasticity

9We refer to a generation as the configuration for every time step.
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(a) initial state (b) final state: invasion (c) final state: extinction

Figure 2.17: FAM: Possible evolutions for an isolated mafioso [red] immersed in a
citizen [green] sea [left]. The probability for the mafioso to invade a neighbouring
site [middle] is pinv = (σ/ki) ∆τ and to go extinct is pext = ∆τ . Here the lattice
neighbourhood consists of four nearest neighbours: north, south, west, and east.

easily drives the system into extinction. This tendency can be observed in Fig. 2.18:
the extinction probability is reduced as the mafia strength σ increases. The plots in
Fig. 2.18 support these heuristic arguments. As the probability to invade neighbour-
ing cells for the disperse mafiosi increases, the measured extinction probability de-
creases. The former, proportional to the ratio σ/ 〈k〉, increases with the strength σ
and decreases with the average degree of the network 〈k〉. Consequently the extinc-
tion probability shows the opposite behaviour. It decreases with the strength and in-
creases with the average degree of the network. In addition, the extinction probability
is smaller for a γ = 3 SFN with 〈k〉 = 3.16 than for a square regular lattice with de-
gree 4. The effect of very large extinction probabilities because of stochasticity, leads
in these plots erroneously to smaller population fractions than the actual ones in the
stationary state, almost vanishing for some parameters, due to the average process over
samples in which mafia has got extinct. However, the interest of these figures resides
specifically on the behaviour of the extinction probability for various structures and
increasing strengths.

If some mafiosi arrangements arise in the early stages of evolution, what are the
conditions for them to grow? In other words, under which conditions do both species
coexist in equilibrium? Citizens’ clusters shrink due to mafia’s attack at their borders
and grow thanks to the safely born citizens at their interfaces10. Therefore, if the
number of citizens gained per generation cg is larger than the number of lost ones cl,
citizens’ clusters will grow. This scenario thus would lead to the mafia’s extinction.
Consequently the absorbing state m = 0 would be an evolutionary stable state (ESS).
If on the contrary, the number of lost citizens is larger than the number of safely born
ones, i.e. cg < cl, the citizens’ clusters will shrink. Fig. 2.19 outlines two possible
process taking place within a time step.

To reach a stationary state where species coexist the small arrangements of mafiosi
must thus grow, not indefinitely but until a point at which a dynamic stationary state
is reached, where the number of lost and gained citizens per unit time are the same.
Under these conditions coexistence is the stationary state and extinction turns out to
be an evolutionary unstable state.

10Isolated born citizens die because they cannot fight against the mafia as σc = 0
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Figure 2.18: FAM: Stationary fraction of mafiosi [top] and extinction probability [bot-
tom] for a square lattice and a γ = 3 scale free graph. The deterministic and stochastic
mean field results are also included for comparison. The initial conditions are close to
the absorbing state m0 = 0, with a very small initial mafiosi fraction m0 = 0.0005. In
the left plot the birth rate β = 15 is fixed and the observables are shown as a function
of the strength σ. The right figure shows the dependence on the birth rate of popu-
lation fractions and extinction probability for a fixed strength σ = 10. System sizes:
NMF = 6000, Nlatt = 4900, NSFN = 8000. The extinction probability is measured
after a time τ = λN , λ = 0.01 for the MF and lattice and λ = 0.015 for the SFN.

What is the fraction of gained and lost citizens per generation? If one omits the
drift of the death process, which is homogeneous for the whole structure and the same
for both species, the net number of lost citizens at the clusters’ interfaces is cl =
lint c ωcm, where lint is the interface length. Similarly, the net number of gained citizens
is cg = lint φβ. For large enough birth rates, β � 1, the fraction of empty places is
small enough so that one may consider the fraction of citizens at the interface to be
one, c ∼ 1 and thus cl ∼ lintωcm. The citizens’ clusters will thus shrink if cl > cg,
i.e. if ωcm > φβ. The fraction of both species in the neighbourhood of one site at
the interface between domains of different populations are expected to be similar in
homogeneous structures: c ∼ m ∼ 1/2. Introducing these values in the previous
inequality ωcm = σm(1 − c) > φβ yields that species coexist if the mafia’s strength
is larger than the threshold value σt > 4φβ = 4β/(1 + β). Since β/(1 + β) . 1,
σt > 4 is a sufficient but not necessary condition for the emergence of coexistence, in
nice agreement with the simulations results (Fig. 2.18). Note that the initial conditions
do not matter for the spatial dynamics given that the process is reproducible for an
initial vanishing mafia fraction.

If σ > σt and mafiosi start expanding they do it up to the point at which the number
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(a) initial state (b) final state

Figure 2.19: FAM: Two possible processes at the interface of a citizens’ cluster—
the selected cells to undergo a process are marked with a thicker frame. In an empty
place [white] a citizen is born with probability pbirth = β∆τ . A citizen [green] at the
border becomes a mafioso [red] with probability pcm = σm(1 − c)∆τ = σ 1

2
1
2∆τ—

interactions take place with the four nearest neighbours. If the number of citizens
becoming mafiosi at every time step is larger than the number of the new born citizens
at the interface, the society evolves towards a coexistence state.

of lost and gained citizens in the clusters are the same. Looking at the simulations for
a regular lattice one observes that at this point citizens are either isolated or in small
clusters, many of them consisting of two or three individuals. Thus, the approximation
c ∼ m ∼ 1/2 for the neighbours fractions of citizens at interfaces is not valid any
longer. Rather, the majority or all citizens’ neighbours are mafiosi. If one makes a
rough approximation for the square lattice and assumes citizens to have on average
population fractions of mnn ∼ 3/4 and cnn ∼ 1/4 in their vicinities, one finds that
the fraction of the number of lost cl = cωcm = c lint σmnn (1 − cnn) and gained
citizens cg = φ lint β are equal for c ' φβ / σmnn(1 − cnn) ∼ 16φβ / 9σ. The
corresponding fraction of mafiosi in equilibrium ism = ρ−c ∼ 1−φ−16φβ / 9σ =
1 − φ(1 + 16β / 9σ). This heuristically derived stationary population fraction is in
very good agreement with the results of simulations for a constant strength σ = 10 as
a function of the birth rate for a square lattice as displayed in Fig. 2.20.

The equilibrium reached is dynamic. There is a stationary cycle in the popula-
tion because of the birth-death process: empty places are occupied by citizens, which
become mafiosi, some of which die leaving empty places again. The corresponding
dynamics for a small number of mafiosi, as well as their wall growth is visualized for
a regular lattice in the Movies 3 and 4 of the supplementary material.

In addition, we have found that the fraction of citizens in equilibrium increases in
scale free graphs for decreasing heterogeneity, i.e. growing γ, as shown in Fig. 2.21.
This is a consequence of the reduction in the average degree. For small connectivities,
the ratio of individuals at interfaces and individuals in the core of clusters is smaller
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Figure 2.20: Stationary mafia population on a regular lattice as a function of the birth
rate β for a constant reaction strength σ = 10. The results of simulations are displayed
together with the heuristic predictionm ∼ 1−(1+β/c(1−m)σ)/(1+β) [solid line].
c and m are here the fraction of citizens and mafiosi in the neighbourhoods of citizens
at interfaces, which we assume to be m ∼ 3/4, c ∼ 1/4, and thus m(1 − c) ∼ 9/16
for the square lattice.

than for large ones. Consequently clusters are more resistant against invasions. Given
that mafiosi cannot be invaded, because ωmc = 0, only citizens can profit from more
defensive structures, thus achieving a better performance in equilibrium.

Figure 2.21: FAM: Stationary
population’s fractions as a func-
tion of heterogeneity γ for scale
free networks. The smaller the
neighbourhood, larger γ, the
better performance of the citi-
zens. Parameters: σm = β =
10. System size N = 10000.
Initial conditions m0 = c0 =
1/2.
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Summarizing, we have seen that spatial and topological structures introduce drastic
differences with respect to unstructured populations. The few mafiosi immersed in a
citizen sea which would have unavoidably died out in a well-mixed scenario are able
to invade citizens bringing the system into a coexistence state in networks and lattices.
This deviation from the global mean field is a consequence of the local character of
the decision process and, ultimately, of the finite number of possible conformations
for the neighbourhood of a given node. As we will later see in this work, the system’s
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behaviour in structures is better captured by a local mean field approximation.
Back to the real society, the lack of global information in spatial structures—the

non-validity of the mean field approach in mathematical language—is precisely the
reason why mafias succeed. Individuals are not concerned about global situations
and act therefore locally under the social pressure of their small universe. No global
resistance is offered by societies thus making it very difficult to eradicate mafias.

2.3.3 Fully asymmetric policed model

The mean field analysis of the asymmetric model with control elements provides a sta-
bility diagram consisting of a bistable regime for small police fractions and extinction
of mafiosi for larger fractions of the control elements. The stochastic simulations for
well-mixed populations yield very similar results to those of the deterministic predic-
tion, as illustrated in the top left plot of Fig. 2.22.

The introduction of control elements makes the system behave anomalously: co-
existence is found to be stable even for parameter regions where extinction is the only
stable fixed point according to the deterministic mean field analysis, shown in the top
right part of Fig. 2.22. The reason for this anomalous behaviour resides in the fixation
of the control elements. Fixing the control elements to the edges of the lattice and
networks is analogous to introducing defects in ordered structures such as crystals.
Defects drastically modify the dynamics leading to strong deviations from the mean
field behaviour. Whereas citizens and mafiosi are dynamic elements, who are born,
die, and change their strategies, the control elements are static, non-interacting objects
which destroy the well-mixed assumption. In fact, if the control elements randomly
diffuse into neighbouring edges the mean field scenario is recovered: coexistence is
only found in regions where the system is bistable under the mean field approach—as
shown for the lattice in Fig. 2.23.

We find (Fig. 2.22) that the more homogeneous a structure is, the larger the area in
the parameter space displaying coexistence. Why do spatial and topological arrange-
ments strengthen coexistence? By fixing the control elements in a lattice or network
the corresponding architecture splits up into many disconnected components, each of
which may show a different dynamics. Areas without police presence display a sce-
nario whose dynamics is that of the fully asymmetric model, in which species coexist
for mafias’ strength σ > 4. The remaining subregions have an effective police frac-
tion higher than p. Unpoliced areas constitute harmless, friendly habitats for mafiosi,
whereas citizens’ clusters arise preferentially in policed regions. If the average num-
ber of connections of a given structure is small, paths are easily blocked favouring the
formations of disconnected islands and enhancing thus the emergence of two different
dynamics. Fig. 2.24 shows a typical snapshot of the system on a regular lattice. Its
evolution may be visualized in the Movies 5 and 6 of the supplementary material.

In Fig. 2.25 the stationary fraction of mafiosi (left) and extinction probabilities
(right) are compared for two police fractions (two upper rows) and for a constant
strength (bottom). We observe mafia’s fractions very close to null, even there where the
extinction probability is no longer one, as in the case of the γ = 2 SFN for p = 0.3.
Attending to the extinction probabilities, we observe that for a fixed police fraction
(upper an middle plots), the strength needed for mafiosi to survive increases with the
heterogeneity of the structure. While a given fraction of control elements suffice to
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(b) lattice, N = 4900
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(d) γ = 4 SFN, N = 8000

Figure 2.22: FAPM: Mafia’s extinction probability as a function of the police fraction
p and the strength σ [red: pext = 1, extinction; blue: pext = 0, coexistence]. Diversity
in a regular lattice, γ = 2, and γ = 4 scale free networks and the unstructured mean
field approximation are compared. The m− = 1/2 separatrix is plotted on top of
the MF results [top left] and the saddle-node bifurcation curve separating the bistable
and monostable regimes predicted by the deterministic mean field is plotted on top
of the lattice results [top right]. The initial population is homogeneously distributed,
m0 = c0 = 1/2.
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Figure 2.23: FAPM: Extinction proba-
bility for a lattice where the control ele-
ments randomly diffuse among edges.
The mean field prediction for the sta-
bility is recovered. Coexistence does
not take place—as in a lattice includ-
ing defects—over the bifurcation [black
line] predicted by the deterministic MF
which separates the bistable region and
the monostable region where extinction
is the only stable state.

Figure 2.24: FAPM: Snapshot of the population structure after a time τ = 10 for
strength and birth rate σ = β = 25 and police fraction p = 0.3. Note that citizens
and mafiosi clusters arrange mostly in policed, respectively unpoliced areas creating
substructures with different regimes. Lattice size N = 4900. [Green stands for citi-
zens, red for mafiosi, and white for empty places. The black segments between cells
represent control elements].

end with the mafia in a well-mixed population, a homogeneous structure allow mafiosi
to find protection in areas with a low density of control elements. Therefore, the more
homogeneous a structure is, the better it promotes coexistence. Similarly, for a fixed
strength the fraction of control elements required to finish with the mafia increases in
regular structures with smaller connectivity.

However, the promotion of coexistence does not necessarily imply that the mafia
fraction in equilibrium is systematically increased. Indeed, homogeneous structures
as the lattice and γ = 4 scale free graph lessen the fraction of mafiosi with respect
to the well-mixed case for parameters where the coexistence regime emerges both in
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Figure 2.25: FAPM: Stationary mafiosi fraction [left] and extinction probability
[right] for the mean field approximation and different structures [same legend code].
In the two upper rows the mafiosi population is plotted as a function of σ for different
constant fractions of police, p = 0.1, 0.3; whereas in the bottom row the stationary
population and extinction probability are plotted against the police fraction for a fixed
value of the strength parameter σ = 10.

unstructured societies and in organized ones—as is the case for p = 0.1 in Fig. 2.25.
This is also a consequence of the fixed attachment of the control elements. Whichever
population is in minority is strengthened due to the subregimes dynamics induced
in the structure. The most clear evidence for it is the transition from extinction to
coexistence, but not the only one, as one also observes that the fraction of citizens in
equilibrium grows with respect to that in unstructured societies when citizens represent
a minority. In disconnected networks, both citizens and mafiosi may find subregimes
which benefit their interests.
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Figure 2.26: FAPM: Ex-
tinction probability as a
function of heterogeneity in
scale free graphs. A transi-
tion from extinction to co-
existence takes place for
some γ between 3 and 3.5
for different system sizes.
The parameter point reads
β = σm = σp = 10,
p = 0.3 and initial condi-
tions are c0 = m0 = 1/2.

In addition, one finds a transition from extinction to coexistence in scale free
graphs with increasing homogeneity. In fact, for fixed parameters coexistence emerges
for some value between γ = 3 and γ = 3.5 depending on the network size—Fig. 2.26
illustrates the transition. This result confirms the thesis that homogeneity promotes
coexistence.

To summarize, in asymmetric policed systems the more homogeneous an archi-
tecture is, the better it promotes diversity, either avoiding extinction—Figs. 2.25 and
2.26—or bringing stationary population fractions closer to each other—Fig. 2.27.
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Figure 2.27: FAPM: De-
pendence of the stationary
population fractions on the
heterogeneity, γ, of scale
free networks for two diffe-
rent police fractions p =
0.1, p = 0.2. Network size
N = 10000. Initial condi-
tions m0 = c0 = 1/2. Pa-
rameters: β = σm = σp =
10, σc = 0.

Targeted police distribution

In the same way that vaccination in infection processes is more effective if targeted
to highly connected nodes or hubs [107], the distribution of control elements might
matter in the eradication of mafias. We study the effect of preferential attachment of
the control elements in scale free networks. In particular, we investigate two specific



56 2. The evolution of mafias

distributions of control elements:

p1(eij) =
didj∑
ij didj

, (2.44)

p2(eij) =
(didj)−1∑
ij(didj)−1

. (2.45)

The probability for a control element to sit on an edge eij for the distribution p1 (p2)
is directly (inversely) proportional to the product of the degrees of the nodes connec-
ted by the edge, i.e. didj . The first distribution, p1, favours the police attachment
around highly connected nodes, whereas the second, p2, promotes control elements to
surround sparsely connected nodes.

One expects the network topology to be the key in understanding the relevance
of a specific police distribution. The relation between the fraction of edges accom-
modating control elements and the fraction of nodes which are connected with those
plays a substantial role in the analysis of the problem. Indeed, a fraction p of control
elements protects a larger or smaller effective fraction p′ of nodes depending on the
police distribution. The number of edges connected to the n nodes with the lowest
degree k is much smaller than those connected to the same number of nodes with the
highest degree. Consequently a given fraction of policed edges p protects a larger
(smaller) fraction p′ of nodes if they are lowly (highly) connected. The normalized de-
greeNk/N and cumulated degree

∑
kNk/N distributions together with the fraction of

total edges required to connect the nodes up to a given degree ki,
∑ki

k=0 kNk/(N 〈k〉)
illustrates this topological feature—Fig. 2.28. The cumulated fraction of edges grows
more slowly than the cumulated fraction of nodes.

Figure 2.28: Degree and cumu-
lated degree distributions for a
γ = 2.5 scale free network with
size N = 8000. The fraction
of bonds connecting nodes up to
degree k is also plotted.
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One can introduce an effective police fraction p′ which is the fraction of protected
nodes—sites with the majority of their edges policed. If the control elements were
randomly distributed, the effective fraction should be the same as the actual fraction
of control elements p, which is certainly not the case for preferential attachment. If
control elements attach around hubs (p1 distribution), p′ < p and vice versa p′ > p if
small nodes are preferentially policed (p2 distribution).

In addition, for both distributions the more homogeneous a structure is, i.e. larger
γ, the larger the effective police fraction p′. Scale free networks with large exponent γ
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have large fractions of lowly connected nodes and small fractions of highly connected
nodes, as well as a smaller maximal degree. Hence, for a given fraction p if hubs are
the favourite targets a larger fraction is protected because they have less connections.
As for the small nodes counterpart, also a larger fraction of them are protected as more
nodes show small connectivities.
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Figure 2.29: Extinction probability [left] and stationary mafia’s fraction [right] for
a γ = 2.5 network with size N = 10000 for the random police attachment and the
targeted distributions p1 and p2. [Same legend code]. Parameters: σ = σm = 10.
Initial conditions: m0 = c0 = 1/2.

Simulations reveal that locating the police around large hubs benefits mafiosi per-
formance. Although counter intuitive at first glance, this is an understandable be-
haviour. The police distribution originates two subregimes in the system. First, citi-
zens establish in a policed fraction p′ < p corresponding to the largest nodes, which
stay in a stationary state from the very first stages of the dynamics. The remaining
1 − p′ network fraction is a more homogeneous unpoliced architecture with effective
γ′ > γ. The dynamics taking place here is the same as that of a fully asymmetric
model without policing elements in homogeneous structures. Coexistence is found
even for almost vanishing mafiosi fractions for this case. The interplay between both
subregimes, extinction in hubs and coexistence elsewhere, yields the stationary confi-
guration of the system. To reach extinction the unpoliced subregime must be so small,
that the control elements at its border succeed in fighting the mafia. To conclude, a
larger fraction of control elements is required to extinguish the mafia when they target
hubs than when they are randomly distributed. The results of simulations in figure
2.29 illustrate this statement. While a fraction of control elements p = 0.3 suffices to
achieve the mafia’s extinction for a random distribution, a fraction close to p = 0.7 is
required for the preferential distribution p1.

The results displayed in Fig. 2.30 for the exemplary parameters set p = 0.2,
γ = 2.5, σ = 10 support the previous analysis. Despite the decrease of citizens in
the early stages, the average degree of nodes occupied by citizens 〈kc〉 increases in
these initial times. It indicates that citizens overtake policed regions very fast. These
nodes are blocked and may only influence decisions on neighbouring sites. Subsequent
variations in the population fractions only take place in unpoliced areas as can be ob-
served in the bottom left figure: policed neighbourhoods show an almost constant pop-
ulation. A rearrangement of the population in the unpoliced regions slightly decreases
the average degrees of nodes allocating citizens 〈kc〉 and mafiosi 〈km〉, as those are
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nodes with small degree (top right figure). The degree distribution of nodes allocat-
ing citizens and mafiosi in equilibrium are shifted with respect to the network degree
distribution. If they would follow the same distribution as the network, the fractions
Ck/Nk andMk/Nk (displayed in the bottom right part of Fig. 2.30) should be those of
the populations in equilibrium for all degrees k, i.e. c and m, respectively. However,
Ck/Nk is significantly greater than c for hubs, while Mk/Nk is much smaller than m
there. This result substantiates the hypothesis of the network’s division in subregimes.

citizens
mafia

τ

po
pu

la
ti
on

fr
ac

ti
on

50403020100

1

0.8

0.6

0.4

0.2

0

〈kc〉
〈km〉

τ

m
ea

n
de

gr
ee

50403020100

5.4
5.2

5
4.8
4.6
4.4
4.2

4
3.8
3.6
3.4
3.2

mafia pol.
citizens pol.

citizens unpol.
mafia unpol.

τ

ci
t.

ne
ig

hb
ou

rh
oo

d
fr

ac
ti
on

s

50403020100

1

0.8

0.6

0.4

0.2

0

Mk/Nk

Ck/Nk

k

st
at

io
na

ry
po

pu
la

ti
on

fr
ac

ti
on

s

4035302520151050

1

0.8

0.6

0.4

0.2

0

Figure 2.30: Police in hubs: population’s fraction [top left], average degree of nodes
wit both species 〈kc〉 and 〈km〉 [top right], citizen neighbourhood—(un)policed refer
to the number of citizens’ neighbours of a given type with (un)policed bonds—[bottom
left], and fraction of citizens and mafia in nodes with degree k [bottom right]. Para-
meters σ = 10, p = 0.2, γ = 2.5, N = 8000.

Targeting the control elements to small nodes also yields very interesting results.
The preferential attachment of a fraction p of control elements to lowly connected
nodes effectively protects a fraction p′ > p of nodes. These lowly connected nodes are
fast populated with citizens. The region is almost inactive with no other reactions than
those of the birth-death process. This dynamics may be understood as if the extremi-
ties of the initial network were blocked. The remaining structure, the skeleton of the
network, has highly connected, unprotected nodes. The dynamics taking place there is
close to that of the well-mixed population for the unpoliced fully asymmetric model.
For this case, the stationary state depends on the parameters and initial conditions, but
shows large regions of coexistence even for small initial fractions of mafiosi. In par-
ticular, for the parameters used here σ = β = 10 coexistence was already achieved for
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an initial mafia’s fraction11 m0 = 0.1.
The resulting stationary population is thus a combination of a fraction p′ > p of

citizens and a fraction 1 − p′ of a coexistence state as in the mean field case. For a
certain threshold police fraction the size of the region showing mean field behaviour
is no longer large enough to compensate the effect of citizens at its border. In par-
ticular, for a police fraction p = 0.3—for which a fraction larger than p′ = 0.5 of
nodes are protected and hence populated by citizens—the extinction probability be-
comes abruptly one in a step-wise function. Furthermore, in Fig. 2.31 one observes
that this transition between coexistence and extinction does not depend on the system’s
size, unlike to the transitions for the other distributions. The fact that, for the p2 distri-
bution, slightly larger fractions p generate drastic increments in the effective fraction
of protected nodes p′ could be the origin of the sharpness in the transition from coexis-
tence to extinction. Additionally, one could explain the independence of the system’s
size as the result of the effective block of extremities of the network, which could
switch off possible size effects.

Fig. 2.32 displays the stationary population’s fractions as a function of heteroge-
neity in scale free graphs for both police’s distributions compared to the random case.
It shows that strategies favouring police attachment to highly and lowly connected
nodes have a larger impact in networks with larger degree fluctuations, i.e. heteroge-
neous scale free networks with small γ.

For the distribution p1, the citizen’s fractions slowly increase12 with homogene-
ity, very similarly as they do in the unpoliced asymmetric model—see Fig. 2.21 for
comparison. For the distribution p2, the population’s fractions of stationary coexis-
tence states are almost constant in heterogeneous structures (small γ) as a result of the
mean field like behaviour. For homogeneous structures (large γ) the unpoliced fraction
of the network is rather homogeneous for both distributions, as the network itself is.
Therefore the results of both strategies are not far from each other.

2.4 Individuals may move

Individuals in societies, bacteria in cultures, animals in ecological systems are all mo-
bile agents which do not stay in fixed positions. The role of mobility, be it directly
aimed at achieving a goal or undirected, is an important feature when modelling social
dynamics. Despite its importance, there is not much research done on the role of mo-
bility in the most common models describing evolutionary systems. Nevertheless, the
few works dealing with this topic reveal very interesting results.

This is the case of the work of Reichenbach et al. [111] which proves that mobility
jeopardizes coexistence in the spatial rock-paper-scissors game. Helbing et al. [60, 59]
examined how success-driven migration promotes cooperation and makes it robust
against different types of noise in the spatial prisoner dilemma game. Other authors
have analysed the role of random mobility in the prisoner dilemma and, even though
their results are not conclusive, they have observed modifications with respect to the
immobile case [40, 136]—see section 1.2.1 for a more extensive discussion.

11In the subregime dynamics we are considering the initial mafia fraction is understood as the resulting
mafia in the highly connected region once the influence of the neighbouring citizens has been taken into
account.

12If coexistence is a starting point.



60 2. The evolution of mafias

N = 12000
N = 10000
N = 8000
N = 6000

random

p

ex
ti
nc

ti
on

pr
ob

ab
ili

ty
0.70.60.50.40.30.20.10

1

0.8

0.6

0.4

0.2

0

(a) random

N = 12000
N = 10000
N = 8000
N = 6000

p1

p

ex
ti
nc

ti
on

pr
ob

ab
ili

ty

0.70.60.50.40.30.20.10

1

0.8

0.6

0.4

0.2

0

(b) hubs

N = 12000
N = 10000
N = 8000
N = 6000

p2

p

ex
ti
nc

ti
on

pr
ob

ab
ili

ty

0.70.60.50.40.30.20.10

1

0.8

0.6

0.4

0.2

0

(c) small nodes

Figure 2.31: Extinction probability as a function of the police fraction for several
system sizes in a γ = 2.5 scale free network. Police distributions p1 and p2 are
compared to random attachment. Parameters: σ = σm = 10. Initial conditions:
m0 = c0 = 1/2.

We now investigate the role of mobility for the mafia model. That is, we analyse
whether allowing individuals to displace into neighbouring nodes modifies the sys-
tem’s behaviour and to what extent this is so. We distinguish between two types of
mobility or migration: In the first one individuals may only migrate to empty places in
their neighbourhood, whereas in the second type they can also swap their position with
other actors. We also compare two strategies: directed (or intelligent) and undirected
(or random) mobilities. If agents move intelligently they rationally select the neigh-
bouring site where they have the largest probability to keep their strategy unchanged,
whereas if individuals move in an undirected way they simply move to a random site in
their neighbourhood, without making any further considerations. Since the undirected
migration with possible interchanges of sites among individuals is nothing but random
diffusion, we will refer to diffusion—extending its usual meaning—when speaking of
mobility in which individuals are allowed to change their locations, even if they do it
in a directed way, in contrast with migration to empty places. We restrict the sites they
can access within one displacement to their nearest neighbours for any type of mobi-
lity considered. We investigate the scenario in which only one species may migrate,
citizens or mafiosi, as well as that in which both species are able to move.
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Figure 2.32: Comparison of the stationary population’s fraction between random, p1,
and p2, police distributions as a function of heterogeneity (γ) in scale free networks.
Full and empty symbols represent the mafia and citizens populations respectively. Po-
lice fractions: p = 0.1 [left] and p = 0.2 [right, same legend]. System size N = 8000.
Parameters: σc = σp = β = 10.

Directed mobility works as follows: a randomly chosen individual explores the
fictitious probability that he would have in all of his nearest neighbouring sites so as to
keep his strategy unchanged and moves there where this probability is the largest, i.e.
where the corresponding reaction rate ωcm or ωmc is the smallest. However, if the pro-
bability to not change strategy is not improved by moving, then he stays at his original
site. Otherwise he swaps his location with the empty place or individual allocated in
the chosen destination. Individuals follow paths with a negative gradient: the gradient
of the reaction rate to change their strategy must be negative in all displacements, i.e.
∇ω < 0. Directed mobility represents mainly a defensive strategy. The individual who
moves looks for safer locations but does not search positions where he could induce
changes in the strategy of the opponents.

When both species move (randomly) fast enough, so that the rate of displacements
is much larger than the rate to change strategy, the population is well-mixed and one
would expect to recover the dynamics of well-mixed populations. However, as we
will see in this section, the mean field behaviour for well-mixed populations is not
recovered suggesting that a local mean field approximation might much better describe
the behaviour on spatial and social structures.

To have a richer spectrum of outcoming events we choose points in the parame-
ter space for which the stationary equilibrium on lattices or graphs differs from that
predicted by the mean field theory.

Active versus passive diffusion

The concepts of active and passive diffusion are crucial to understand the system’s
dynamics analyzed in the following sections. Within the migration mechanism agents
cannot be passively displaced, as the target locations for the migrating agents are empty
places. Every time an agent changes its location, be it rationally or randomly, a second
agent is involved in this displacement, namely the one located at the selected final
destination. This one will move to the location the first agent came from. The latter
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displacement is what we refer to as a passive displacement, whereas the former one is
an active displacement.

Figure 2.33: Active and passive diffusion at cluster interfaces. In these cartoons
mafiosi [red] actively diffuse, while citizens [green] diffuse passively. The steps rep-
resented here are only examples to illustrate the concept of passive diffusion; they are
not real time steps in the evolution of the system. In the first step the three selected
mafiosi diffuse to the left. In the second step the selected mafioso at (5, 7) diffuses
to the left and the other at (7, 2) upwards—coordinates are given with respect to the
bottom left corner. In all these movements citizens have been passively displaced as
shown in the cartoons.

Passive mobility plays a very important role, especially when only one species is
allowed to move. Passively displaced agents cannot choose their final location and
are often displaced to sites which are less favourable for them than their initial posi-
tions. This is often the case for agents at interfaces. Since these passively displaced
individuals have no mobility themselves, they cannot move further seeking safer posi-
tions, but have to stay where they were displaced until they die or are forced to change
strategy. These individuals immersed in the opponent field are mostly forced to finally
change their strategies, which represents an indirect growth mechanism for the actively
diffusing species. Fig.2.33 shows an example of active and passive diffusion.

2.4.1 Symmetric model

The symmetric model yields extinction of mafiosi in structures that are sufficiently
homogeneous for immobile agents. The process which dominates the dynamics in the
immobile case, i.e. the change of strategy at clusters interfaces, is symmetric for both
species. The symmetry is only broken by the birth process—see discussion in section
2.3.1. Is this result stable if agents move? To gain some understanding of how the
different mobility strategies alter the system’s dynamics, we carry out an inspection
of the exemplary parameter point σc = σm = β = 15. For this parameter point,
which lies in the bistable region, species coexist within the mean field approximation,
but extinction is stable in homogeneous architectures for initial conditions c0 = 1/4,
m0 = 3/4. We investigate mobility in a γ = 3 scale free graph for which extinction is
observed in the case of immobile agents.

Table 2.1 displays the results of different mobility strategies13. The four strategies
13ddiff and udiff standing for directed and undirected diffusion and dmig and umig for directed and

undirected migration.
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studied are arranged in different columns, while the rows correspond to the moving
agents. The results for the immobile scenario for the same network are shown in the
top of the table. We specify the extinction probability pext and the stationary population
fractions (c,m). The displayed data correspond to a mobility rate µ = 100, i.e. the
rate at which displacements to neighbouring nodes are tried or performed in the case
of directed, respectively undirected mobility.

SM for a γ = 3 SFN
µ = 0 pext = 1, (c,m) = (0.94, 0)

µ = 100 ddiff udiff dmig umig

citizens
pext = 1 pext = 1 pext = 1 pext = 1
(0.94, 0) (0.94, 0) (0.94, 0) (0.94, 0)

mafia
pext = 0 pext = 0 pext = 1 pext = 1

(0.87, 0.07) (0.15, 0.78) (0.94, 0) (0.94, 0)

both
pext = 0.08 pext = 1 pext = 1 pext = 1
(0.92, 0.02) (0.94, 0) (0.94, 0) (0.94, 0)

Table 2.1: SM: Results of applying different mobility strategies to a symmetric model
system in a γ = 3 scale free network,N = 8000. The mean field approximation yields
pext = 0, (c,m) = (0.09, 0.85). Parameters: σc = σm = β = 15 for initial conditions
c0 = 0.25, m0 = 0.75.

One realizes that migration for µ = 100 does not change the steady state of the
system with respect to the case µ = 0. The fraction of places available to move in
φ = 1/(1 + β) ∼ 0.05 is too small to induce qualitative changes in the dynamics.

In the rest of the section, we discuss in detail the characteristics of directed and
undirected diffusion for the symmetric model.

Directed diffusion

Rational or directed diffusion is a defensive strategy in which individuals move to
less risky sites. Within the cluster dynamics in the symmetric model a species may
profit from directed diffusion either if isolated individuals reach clusters or building
smoother cluster borders weaken the opponent’s attack. Species are stronger against
invasions if their clusters have smooth interfaces, as the fraction of adjacent cells oc-
cupied by the opponent is lowered for smooth interfaces. The directed mobility effec-
tively acts as a surface tension to create smooth interfaces by reallocating individuals.
The smoother the interfaces, the better the protection for the cluster. If only one species
is rationally moving its performance is improved through this mechanism with respect
to the other. The cartoon in Fig. 2.34 and the corresponding caption illustrate this
strategy.

When both species are moving the extinction probability is significantly reduced,
though the mafiosi fraction in equilibrium is very small. Why should mafiosi get an
advantage through the mechanism if the defensive strategy is available to both species?
The citizens’ advantage against mafiosi, if agents are immobile, relies on the asymmet-
ric birth of citizens joining clusters. However, if clusters interfaces are very smooth,



64 2. The evolution of mafias

(a) initial state (b) final state (c) after a while

Figure 2.34: SM: Directed citizen diffusion in a symmetric model. Three kind of
processes are represented in the transition from the initial state [left] to the final one
[middle] after a time step. Coordinates (x, y) have their origin at the bottom left corner.
First, three citizens at sites (3, 7), (7, 2), and (7, 7) [displayed with thicker frames]
lessen their probability to become mafiosi by diffusing to neighbouring sites. For
example, the one at (7, 7) reduces his transition rate from ω0

cm = σ to ωfcm = σ/8. The
mafioso at (4, 5), who dies, leaves and empty place where a potential born citizen will
survive. And last, a citizen born in (9, 4), who would become mafioso with reaction
rate ωcm = σ at this site, is very likely to survive fleeing to the neighbouring site (8, 4).
After a while the cluster has adopted a more compact shape with a smoother interface;
hence directed mobility acts as an effective surface tension [right cartoon]. Interfaces
become more stable, as the reaction rates are smaller. Citizens in corners, e.g. (4, 3),
have a transition rate ωcm = σ/4 and in edges, e.g. (8, 4), ωcm = σ/16. Mafiosi may
become citizens with a rate ωmc = σ/4 in inner corners, e.g. (7, 6) and ωmc = σ/16
at edges, e.g. (7, 2).

the new born citizens outside the clusters do not find the same protection at the domain
borders as they found for rougher interfaces without mobility.

The stationary mafia’s fraction and extinction probability for diffusion of mafiosi
and both species as a function of the mobility rate µ are plotted in figure 2.35.

Undirected diffusion

Surprisingly, the performance’s improvement of the mafia thanks to undirected diffu-
sion is much better than the improvement resulting from directed, rational mobility.
Directed mobility only allows displacements along a path with negative gradient of
the reaction rate of the diffusing species, i.e.∇ω < 0. Therefore, movements in which
a mafioso enters a citizen’s cluster are strictly forbidden. Directed mobility provides
a better defensive position, but does not care about striking the contrary. But interest-
ingly, positions which, for instance, represent a slight disadvantage for the mafia, i.e.
∇ωmc > 0, may yet introduce a much larger damage for passively displaced citizens:
∇ωcm � ∇ωmc. When a randomly diffusing individual, independent of his identity,
hops a cluster interface he actively enters an adversary’s domain. But in addition an
individual of the opponent species passively diffuses into the enemy’s field as well.
Both displaced agents are in danger. The difference between them is that the active
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Figure 2.35: SM: Directed diffusion of mafia [left] and of both species [right] in the
symmetric model for a γ = 3 SFN with size N = 8000. Stationary mafia’s fraction
and extinction probability after a time τ = λN with λ = 0.01 are plotted. Parameters:
σ = β = 15, initial conditions c0 = 1/4, m0 = 3/4.

agent continues his random walk, whereas the passive one must stay in the enemy
field. The next time they update their strategies the first has a large probability to be
far away, whereas the second is with almost absolute certainty where he was passively
displaced. Moreover, the larger the mobility rate is, the higher the probability for the
actively diffusing individual to have fled and avoid a strategy change. See the mafia’s
fraction and extinction probability as a function of the mobility rate µ in Fig. 2.36 for
the case in which mafiosi diffuse.

If only mafiosi diffuse, they continuously weaken citizens resistance by breaking
their clusters. As a result, they improve their performance and coexistence is found
in equilibrium. The stationary state is thus qualitatively changed with respect to that
of immobile agents. If both species randomly diffuse, both have the same opportunity
to escape before having to take a decision. Mobility does not induce differentiating
advantages for any species and extinction is reached as in the case without mobility.
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Figure 2.36: SM: undirected diffusion of
mafia. Random diffusion of mafiosi in
the symmetric model for a γ = 3 SFN
with size N = 8000. Stationary mafia’s
fraction and extinction probability after a
time τ = λN , λ = 0.01, are plotted. Pa-
rameters: σ = β = 15, initial conditions
c0 = 1/4, m0 = 3/4.
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2.4.2 Fully asymmetric model

We focus now our attention on the role of mobility in the fully asymmetric model.
We choose a parameter point in the bistable regime β = 20, σ = 7. For initial
conditions c0 = 0.8, m0 = 0.1, the mean field approximation predicts extinction but
homogeneous structures, in particular the γ = 3 network which we take as an example,
promote coexistence.

Table 2.2 displays the mafia’s extinction probability and the stationary popula-
tion’s fractions for diffusion and migration. As before we compare the directed and
undirected strategies for a mobility rate µ = 100 in a γ = 3 scale free network with
size N = 8000.

FAM for a γ = 3 SFN
µ = 0 pext = 0, (c,m) = (0.26, 0.69)

µ = 100 ddiff udiff dmig umig

citizens
pext = 0 pext = 0 pext = 0 pext = 0

(0.92, 0.04) (0.20, 0.75) (0.28, 0.67) (0.24, 0.7)

mafia
pext = 0 pext = 0 pext = 0 pext = 0

(0.26, 0.69) (0.15, 0.80) (0.26, 0.69) (0.20, 0.75)

both
pext = 0.001 pext = 0 pext = 0 pext = 0
(0.92, 0.03) (0.16, 0.79) (0.28, 0.67) (0.21, 0.74)

Table 2.2: FAM: Results of different mobility strategies for µ = 100 and σc = 0,
σm = 7, β = 20, p = 0 in a γ = 3 scale free network whose size is N = 8000.
The mean field yields pext = 1, (c,m) = (0.95, 0). Initial conditions are c0 = 0.8,
m0 = 0.1.

The dynamics of the asymmetric case in structures is also dominated by the growth
of clusters which emerge in the first stages of evolution. Citizens become mafiosi
through strategy updating with reaction rate ωcm 6= 0, while mafiosi become citizens
via the death-birth process as ωmc = 0. Mafia’s clusters grow at the expense of citizens
at the rough interfaces between domains. Citizens’ clusters only grow via birth process
at a rate β in empty places. In the asymmetric model, new citizens only survive if they
are born in a citizen cluster or at its border. Otherwise the mafia environment forces
them to become mafiosi.

The results of the simulations including mobility reveal the same tendencies for
diffusion and migration, although much stronger for the diffusive case due to the larger
number of possible displacements.

Directed mobility

Directed mobility is a defensive strategy from which mafia do not benefit as mafiosi
cannot be beaten by citizens, ωmc = 0. All sites are equally safe for mafiosi because
the death process, which is the only action affecting them, is homogeneous in space and
therefore independent of the site. Directed mobility is thus not an option for mafiosi to
improve their performance.
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On the contrary, citizens largely profit from directed mobility thanks to two me-
chanisms: the surface tension shaping the domains’ interfaces and the migration of the
citizens born at isolated sites.

This improvement in citizens’ performance is not particularly significant when
they migrate. In the migration scenario citizens may only move to empty places. Al-
though they lessen their probability to change strategy, they also passively displace po-
tential future citizens—empty places—to the unsafer position they come from. Effec-
tively the system remains unchanged. If citizens may also swap their positions with
mafiosi, i.e. if they diffuse, they first have a larger number of available destinations,
but more important, the global final configuration benefits them as empty places are
not systematically displaced into unsafer locations.

Fig. 2.37 shows the stationary population’s fraction and the fraction of both species
in citizens’ neighbourhoods when the latter diffuse in a directed way14. The fraction
of neighbours of type b in the vicinity of an a agent, nab , with the constraint

∑
b n

a
b = 1

for b = c,m, φ, is defined as follows:

nab =
1
Na

∑
xi ∈ a

1
ki

ki∑
j=0

δxjb, (2.46)

where Na is the number of individuals of species a, ki the degree of site i, and xi is
the strategy of the individual located at site i. The citizens neighbourhood shown in
the figure confirms that the search of stable positions translates into a net growth of the
citizens clusters, ncc fraction, in the stationary state. The equilibrium configuration is
independent of the initial conditions (not shown).
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Figure 2.37: FAM: directed
diffusion of citizens. Statio-
nary fraction of species and citi-
zens’ neighbourhood as a func-
tion of mobility for citizens in-
telligently diffusing in a γ = 3
SFN. ncc and ncm stand for the
citizen, respectively mafia frac-
tions in the citizen vicinity—
defined in the main text. Net-
work size N = 8000. Parame-
ters: σm = 7, β = 20, σc =
0. Initial conditions m0 = 0.1,
c0 = 0.8.

The stationary citizens’ fraction grows monotonically with the mobility rate. How-
ever, the most significant variation takes place for mobility rates similar to the strength
µ ∼ σ = 7. Mobility allows born citizens to move along a path with ∇ωcm < 0.
As intelligent displacement is a ballistic or directed movement, the number of newly

14The results for both species diffusing in a rational way are the same, as mafiosi do not perform any
displacement since ωmc = 0 in all sites.
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born citizens in isolated areas who finally reach a citizens’ cluster per unit time is di-
rectly proportional to the mobility rate and inversely proportional to the distance d they
have to travel. Provided they find a path of decreasing gradient the number of citizens
joining the clusters per unit time is:

# born citizens
µ

d
= β φN ∆τ

µ

d
. (2.47)

The faster they move, the more of them survive and therefore the better the global
performance of the species. However, as the number of born citizens per unit time is
limited by those born in a time step, β φN ∆τ , a structural limit in the citizen’s growth
is achieved when they all have joined the clusters of citizens. This saturation should
occur for mobility rates similar to the maximal path length dm. For larger mobilities
the improvement in citizens’ performance is only due to the surface tension effect that
make clusters more stable against mafia invasion.

In Fig. 2.38 we analyse the interdependence between the heterogeneity of struc-
tures and the directed mobility strategy in the fully asymmetric model when both
species can diffuse. It turns out that the more heterogeneous a structure is, the smaller
the critical mobility rate required to reach a crossing point of the population fractions.

This is indeed an expected result. As we have argued above, the number of citizens
reaching safe positions per unit time should be proportional to the ratio of the mobility
rate to the distance which must be covered to reach safer locations µ/d. We have
learned in section 1.1.4 that scale free networks show small-world behaviour, with an
average path length depending on their exponent γ. It scales as the double logarithm
of the network size for 2 < γ < 3, as logN/ log logN for γ = 3, and as the simple
logarithm for γ > 3. Thus the average path length for a network with N = 10000
nodes becomes `γ<3 ∼ 2.2, `γ=3 ∼ 4.2, `γ>3 ∼ 9.2. For a square lattice, the average
path length scales as

√
N giving `l ∼ 80 for N = 6400. We expect thus, that the

larger the average path length of a structure is, the higher the mobility rate needed to
observe a crossover in the stationary fractions of both species. The critical mobility in
which all isolated citizens have reached safe locations is expected to be proportional to
the average path length µc ∝ `. The mobility rates at which the crossover takes place
in the simulated results seem to agree with these heuristic arguments.

The difference observed in the mobility rate at the crossover point for the γ = 2
and γ = 2.5 networks could arise from the large difference in their average degrees,
〈k〉γ=2 = 7.45 and 〈k〉γ=2.5 = 4.29. A network with a larger number of connections
NE = 〈k〉N offers more paths for mobile agents to find safer locations. Therefore,
the mobility rate needed for the γ = 2 scale free graph to reach the crossover point
between population’s fractions is smaller than for γ = 2.5.

Undirected mobility

Undirected or random mobility favours the mafia’s performance independent of who
is moving. Both, migration and diffusion show similar tendencies although diffusion
effects are more prominent. Again mobility plays a determinant role at the border
between clusters of different species.

A diffusing mafioso hops over domain interfaces entering citizens’ clusters. Ac-
cordingly, a citizen passively performs the opposite displacement. The mafioso in a
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Figure 2.38: FAM: directed diffusion of both species. Stationary fraction of species
as a function of mobility in different structures with increasing homogeneity: SFN
with γ < 3 and γ > 3 in the top row, and the regular lattice in the bottom. The data
confirm that citizens profit largely from mobility in more heterogeneous architectures
and that mobility effects are identical in scale free networks with γ > 3. Full and
empty symbols represent the mafia and citizen population respectively. Systems size:
NSFN = 10000, Nlatt = 6400. The parameter point considered is σm = β = 10,
σc = 0.

citizen cluster may induce strategy changes in citizens during his erratic random walk
there. But the mafioso himself cannot change his strategy independent of his location.
At the other side of the interface, the displaced citizen, now in a mafia sea, is very
likely to become a mafioso because he cannot run away.

If a citizen diffuses he may enter a mafia’s cluster. He has a good chance to avoid
conversion by further diffusing. But with the diffusion process a mafioso is also pas-
sively introduced in the citizen cluster. This individual may invade the cluster before
he dies. The asymmetric character of the model, in which mafiosi do not change stra-
tegy ωmc = 0, is the reason why mafiosi also profit from citizens’ mobility. Actually
citizens do not get any advantage from random diffusion.

Of course, if both species diffuse in an erratic way simultaneously mafiosi are again
better off. The crucial process favouring mafiosi is the invasion of citizens’ clusters
by passively or actively diffusing mafiosi. More generally, undirected diffusion makes
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interfaces rougher and allows individuals entering adversary’s clusters. Rougher inter-
faces imply larger perimeters and thus a larger fraction of citizens exposed to mafia’s
strikes, while the invasion of clusters damages the defensive strategy of citizens to
avoid the mafia attack.

2.4.3 Local mean field approximation in square lattices

In the limit of large diffusion µ → ∞ when both species randomly diffuse, the popu-
lation of the structured systems is well-mixed. One would expect that the mean field
approximation for the well-mixed assumption discussed in section 2.2 properly cap-
tures the dynamics of this regime. Surprisingly, this is not the case for the mafia model.
The reason lies in the local character of the interactions and in particular in the discrete-
ness of the available neighbourhoods in homogeneous structures. The frequencies c,
m, and φ for a lattice or network’s node may only take some values among a discrete
set. The mean field behaviour we described at the beginning of the chapter may only
emerge in models where the possible local conformations are not restricted.

For simplicity we illustrate the nature of this local dynamics on square regular
lattices. In the mafia model, a given actor interacts with its four nearest neighbours
simultaneously. The reaction rates ωcm and ωmc, which are functions of the pop-
ulation frequencies, cannot assume any value for structured populations. The rea-
son is that the fractions m, c, and φ cannot take arbitrary values in the neighbour-
hood of a cell for square lattices. The available fraction of agents of every species—
citizens, mafiosi, and empty places—in a cell neighbourhood are 0, 1/4, 2/4, 3/4, 1,
with the constraint c + m + φ = 1. Every site has thus fifteen possible neighbour-
hoods, nnα = (Cα,Mα,Φα) = (4, 0, 0), (3, 1, 0), · · · , (0, 0, 4), with Cα, Mα, and
Φα the total number of individuals of each species, between 0 and 4, which fulfill
Cα +Mα + Φα = 4—see two possible neighbourhoods in Fig. 2.39.

Figure 2.39: Two possible neighbourhood conformations on a square lattice of the
black cell in the middle. Only the four neighbours in colour form the von Neu-
mann neighbourhood. The specific conformations shown in these cartoons give rise
to the population fractions (c,m, φ) = (1/2, 1/4, 1/4) for the left and (c,m, φ) =
(1/4, 3/4, 0) for the right cartoon. These are the population fractions entering the re-
action rates ωcm and ωmc. The colour code is: green for citizens, red for mafiosi, and
white for empty places.

The interaction mechanisms of some evolutionary models as the voter or the rock-
paper-scissors models effectively preserve the global fractions c, m, and φ. The agents
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do not feel the effect of the restricted neighbourhoods in their interactions, because
interactions are one-to-one. In this case the average fractions of the randomly drawn
interacting pairs in a square lattice with high mobility are the same as for a well-mixed
unstructured population. But since in the mafia model one agent evolves according
to all its neighbours—interactions are one-to-four in the square lattice—the discrete
population fractions in the neighbourhood play a crucial role.

To include the limitation imposed by the finite number of possible vicinities one
substitutes the expressions for the reaction rates ωcm and ωmc in the differential equa-
tion (2.25). In particular, one replaces the well-mixed mean field value by a weighted
expression which accounts for the fact that in a lattice one has to average over a finite
set of possible local neighbourhoods:

ωcm = σm(1− c) −→
∑
α

pα σ
Mα

4

(
1− Cα

4

)
, (2.48)

ωmc = σc(1−m) −→
∑
α

pα σ
Cα
4

(
1− Mα

4

)
. (2.49)

The summation runs over all possible neighbourhoods α, where the probability of ev-
ery neighbourhood (Cα,Mα,Φα) is given by pα. As the population is well-mixed,
one may assume that there are no site correlations. Therefore, the probability to have
Cα citizens, Mα mafiosi, and Φα empty places is that of drawing the specific combi-
nation out of a mixed sample of different objects—typically coloured balls in the urn
model without return. However, as the system size is much larger than the vicinity,
N � 4, one may assume a constant probability for a selected individual to be of type
i—the frequencies c, m, and φ—as if the process were with return. The corresponding
probability for a given neighbourhood is given by the multinomial distribution:

pα = p(Cα,Mα,Φα) =
(Cα +Mα + Φα)!

Cα!Mα!Φα!
cCαmMαφΦα . (2.50)

Note that in the lattice Cα +Mα + Φα is identically 4.
For simplicity, from here on we will restrict ourselves to the fully asymmetric

model to analyze in detail the lattice approximation. Introducing the neighbourhood
probability in the discretized expression for the reaction rates (2.48) and this in the
evolution equation for mafiosi, ṁ = −m+ c ωcm, one gets a differential equation for
the system dynamics on a well-mixed lattice:

ṁ = −m+ c ωcm = −m+ cσ

15∑
α=1

pα
Mα

4
(1− Cα

4
) (2.51)

= −m+ cσ

(
1
4
c3m+

3
2
c2m2 +

9
4
cm3 +m4

+
3
2
c2mφ+

9
2
cm2φ+ 3m3φ+

9
4
cmφ2 + 3m2φ2 +mφ3

)
. (2.52)

We have used the constraint c + m + φ = 1 and the solution for empty places in a
stationary state φ = 1/(1 + β). The previous equation has three solutions:

m0 = 0, (2.53)

m± =
(−2− β − β2)σ ±√(1 + β)4σ(σ − 3)

3σ(1 + β)2
, ∈ R ifσ ≥ 3. (2.54)
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At the parameter point σ∗sn = 3 a saddle-node bifurcation occurs, where the number of
solutions is reduced from three to one. Furthermore, a transcritical bifurcation, occurs
for σ∗tc = 4(1 + β)2/(4β + β2), where m0 becomes unstable.

The extinction fixed point m0 is stable for β = 0 or β > 0 and 0 ≤ σ < σtc, while
the coexistence node m+ is stable for 0 < β ≤ 2 and σ > σtc or β > 2 and σ > 3.
The third solution, the coexistence node m− is unstable for the physically meaningful
values m− > 0.

σ∗
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Figure 2.40: FAM: Stability diagram for the fully asymmetric model within a local
mean field approximation in regular lattices. Three regimes are observed—extinction,
coexistence, and bistability—as in the well-mixed mean field approach. However, the
bistability region is drastically reduced with respect to the well-mixed case.

The stability diagram in Fig. 2.40 shows the stable states for a well-mixed lattice.
It reveals that the bistable region is drastically reduced in favour of the coexistence
regime compared to the output of the well-mixed mean field approach—see diagram
2.4. In particular, the investigated parameter point σ = 7, β = 20, within the bistable
region in the global mean field approach, lies now in a region where coexistence is the
only stable outcome. This modification of the stability landscape perfectly explains
the simulated results for the lattice15 and large random diffusion (µ = 100). The fixed
point predicted by the lattice approximation (2.54) (c+,m+) = (0.163, 0.790) and the
one obtained with the stochastic simulations (c,m) = (0.165, 0.787) are in excellent
agreement.

The general solutions for the symmetric model are much complexer than those of
the asymmetric model. However, the specific solutions analogous to (2.52) for the
investigated parameter point σ = β = 15 reveal that the only stable fixed point is the
extinction one m0 = 0, c0 = ρ as confirmed by the simulations—both in a lattice and
a γ = 3 network. Note that within the mean field approach this parameter point lies in
a bistable region—see the stability diagram in Fig. 2.2.

15The result was also reached for a γ = 3 scale free network.
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2.4.4 Fully asymmetric policed model

Finally we investigate the role of mobility in the fully asymmetric policed model.
A fraction p of control elements both fight mafia and protect citizens by effectively
lessening the mafia’s strength σ → σ(1− p). Citizens cannot strike the mafia back as
their strength vanishes, σc = 0. To gain some insight in the dynamics of the policed
model with mobile agents, we examine the exemplary parameter point σ = β = 20,
p = 0.3. For a homogeneous initial population, c0 = m0 = 1/2, the mean field
approximation predicts mafia’s extinction, while the system evolves into coexistence
for a γ = 3 scale free network with immobile agents.

The essential element characterizing the dynamics of the policed model on lat-
tices and graphs is the police’s attachment to the edges. It splits up the network in
subregimes with two genuinely different dynamics—see discussion in section 2.3.3.
Unpoliced regions exhibit the dynamics of the unpoliced asymmetric model, ruled by
the growth of mafia’s clusters via ωcm = σm(1− c), where citizens resist only via the
asymmetric birth process. In policed areas mafiosi do have a finite probability to leave
the mafia proportional to the reaction rate ωmc = σp(1−m) while citizens experience
a smaller strength from the mafia. As a result mafiosi and citizens phase separate into
unpoliced and policed areas, respectively.

In addition, the presence of control elements is innocuous for mafiosi arranged in
clusters due to their self-protection, since ωmc vanishes if the mafia fraction in the
vicinity is m = 1. However, mafia’s clusters in policed regions were not observed for
immobile populations, because for this structures to emerge the system must undergo
intermediate states with isolated mafiosi in policed areas which are rather adverse for
mafiosi. Therefore, mafia has not been observed to establish in policed areas when
agents are immobile.

Table 2.3 shows the characteristics of the stationary state when agents diffuse ac-
cordingly to different strategies at a rate µ = 100 in a scale free graph with γ = 3. In
the rest of the section we extensively discuss the mechanisms leading to these results.

FAPM for a γ = 3 SFN
µ = 0 pext = 0, (c,m) = (0.61, 0.34)

µ = 100 ddiff udiff dmig umig

citizens
pext = 0 pext = 0 pext = 0 pext = 0

(0.82, 0.14) (0.85, 0.11) (0.57, 0.38) (0.73, 0.22)

mafia
pext = 0 pext = 0 pext = 0 pext = 0

(0.47, 0.49) (0.22, 0.74) (0.48, 0.47) (0.53, 0.42)

both
pext = 0 pext = 0 pext = 0 pext = 0

(0.73, 0.23) (0.25, 0.71) (0.50, 0.45) (0.57, 0.38)

Table 2.3: FAPM: Results of applying different mobility strategies to a policed asym-
metric model system in a γ = 3 scale free network, N = 8000. The mean field
approximation yields extinction: pext = 1, (c,m) = (0.95, 0). Parameters: σc = 0,
σm = σp = β = 20, p = 0.3 for initial conditions c0 = 0.5, m0 = 0.5.
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Directed mobility

Individuals profit from directed mobility in several ways: building smoother interfaces
at their domains to be less susceptible to the external influence, migrating towards areas
with a higher or smaller police density according to their interests, and joining clusters
in unpoliced areas in the case of isolated citizens. The shape of interfaces matters
for the mafia dynamics only in policed areas since otherwise ωmc = 0. Although
both species are expected to improve their performance thanks to intelligent mobility,
citizens should do in a more significant way because they profit from it in policed and
unpoliced regions and unlike mafiosi by protecting born isolated citizens.

The simulations performed for systems including mobility in a scale free network
support the intuition outlined above. If only one population is moving its fraction in
equilibrium increases, independent of its strategy. In this case migration and diffusion
yield similar results, though enhanced for the latter due to the larger number of target
locations available. As expected, the profit of intelligent mobility is larger for citizens.
As citizens already governed policed regions in systems with immobile agents the net
consequence of mobility is that their clusters grow in unpoliced areas. Mafiosi moving
intelligently cluster in policed areas to protect themselves from the police presence.
On the contrary, clustering in unpoliced regions does not benefit their strategy, in spite
of which, mafia’s clusters also grow indirectly there due to the mafiosi fleeing from
policed regimes. This turns out to be the most prominent and intriguing effect of
intelligent mobility for mafiosi because the mafiosi escaping from police strike citizens
in the unpoliced regions where they arrive, even though this was not the pursued goal.

These features are quantified in the top (citizens’ diffusion) and middle (mafia’s
diffusion) graphs of Fig. 2.41 for the diffusive strategy. The left column shows the
total fraction of both species and the right one some relevant neighbouring fractions
for both policed and unpoliced neighbourhoods. Somebody’s neighbour belongs to the
first or the second fraction, respectively, depending on whether the connection between
neighbours allocates or not a control element.

If both species diffuse in a directed manner, citizens often achieve a net better per-
formance compared to the reference case without mobility16, although the stationary
state subtly depends on the interplay between the parameters: strength, birth rate, and
police fraction. Nevertheless, citizens are in general better off because first they profit
from directed diffusion through more mechanisms and second they do both in policed
and unpoliced areas—mafiosi only get advantage of intelligent diffusion actively in po-
liced areas. Since the asymmetry of the benefit takes place in unpoliced areas, the net
effect observed when both species displace intelligently is the enlargement of citizens’
clusters in unpoliced regions as shown in the bottom plots of Fig. 2.41.

This scenario might be slightly altered when dealing with migration. Citizens only
may access empty places, i.e. potential future citizens, and therefore migrating there
leaves the global configuration unchanged. Consequently, the net benefit of migration
for citizens is considerably smaller than that of diffusion.

16Other parameter points, not shown, have been checked. Although a citizen improvement is observed
in the majority of the cases, some exceptions were found.
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Figure 2.41: FAPM: Directed diffusion for a γ = 3 scale free network with citizens
[top], mafia [middle], and both species [bottom] moving. The stationary population
fractions of both species are shown in the left. The plot in the right side shows the
interesting fractions nij in the neighbourhood of a species i as a function of increasing
mobility rates µ. These fractions are separated for the cases in which the link between
two neighbours contains a control element (policed) or not (unpoliced). The investi-
gated parameter point is σ = 20, p = 0.3. Initial conditions m0 = c0 = 1/2 and
system size N = 8000.
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Undirected mobility

Undirected diffusion turns out to be an unexpected brilliant offensive strategy for the
mafia when they freely diffuse. The crucial scenario to modify the game lies again
at clusters interfaces. Active and passive diffusion play an important role in the per-
formance of both species as in the previous models. Remember that the principal
difference between both displacements relies on the fact that passively displaced in-
dividuals must stay at new locations, where they are usually forced to change their
strategy. A mafioso actively entering unpoliced clusters of citizens may invade them
before he diffuses further. But even more, the passively displaced citizen will not sur-
vive in the mafia environment. When mafiosi enter policed areas they do not induce
strategy changes but do not change theirs either because they very likely move further
before having to take any decision about their strategy. However, still the net effect of
the displaced citizens into the mafia domains makes mafia profit from the strategy.

All in all, the most surprising achievement of undirected diffusing mafiosi is that
they do settle in policed areas. If they diffuse faster than they take decisions, they
can hop over police walls and access citizens domains with a low concentration of
control elements, but which were nevertheless inaccessible for immobile agents due
to the police barrier they have to go through. Even more, if the fraction of mafiosi
entering policed regions simultaneously is high enough to protect themselves from
the control elements influence, they can invade policed areas which were completely
forbidden for them. This behaviour has been observed in the simulations whose results
are displayed in Fig. 2.42. For mobile mafiosi one observes how in unpoliced regions
(central column, middle row) citizen clusters are broken, smaller ncc fraction, while
mafia population increases as reflected by the fraction of mafiosi in citizens’ vicinities,
ncm. In policed areas (central column, bottom row) citizens’ clusters also shrink, but
here both mafiosi in citizens’ neighbourhood ncm and mafia’s clusters themselves nmm
grow due to the dynamics exposed.

Unlike to the dynamics in the unpoliced asymmetric model, citizens do profit now
from undirected diffusion if they are the only species diffusing. Whereas in the un-
policed model, the passively displaced mafiosi fell in innocuous unpoliced citizen do-
mains invading them, in the policed case the displaced mafiosi may enter policed areas,
where they have a big probability to change their strategy. Therefore, mafia’s fraction
(nmm) reduces in unpoliced regions while citizens’ frequency increases (ncc, n

m
c ). The

active and passive random displacement of both species explicitly results in a rather
mixed population in policed areas which is adverse for mafia. Consequently the frac-
tion of citizens increases, although their clusters (ncc) shrink. This reduction is greatly
compensated with a larger fraction of citizens around mafiosi nmc .

When both species diffuse in an undirected way mafia gets a larger advantage as
it benefits from active and passive diffusion both in policed and unpoliced regions.
As in the case of mafia’s diffusion the result is a highly mixed population in unpoliced
regions, which benefits invulnerable mafiosi, and the enhancement of mafia settlements
in policed regions. The evolution with the mobility rate for both populations, as well
as the interesting neighbouring fractions are plotted in the right column of Fig. 2.42.
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Figure 2.43: FAPM: stationary fraction of species as a function of the mobility rate
for directed [top] and undirected [bottom] diffusion on a regular lattice, γ = 2 and
γ = 4 scale free graphs. The more heterogeneous the structure, the larger its influence
on the directed diffusion. Simulations were performed for a lattice with N = 6400
and networks with N = 8000. Two parameter points are shown p = 0.1 [left] and
p = 0.2 [right] for σ = β = 10. Full and empty symbols represent the mafia and
citizen population respectively. Initial conditions m0 = c0 = 1/2.

Finally, Fig. 2.43 displays the stationary population fractions for directed (top) and
undirected (bottom) diffusion of both species in different structures. Two parameter
points p = 0.1 and p = 0.2 for σ = 10 are investigated. The results of both strategies
match the general highlights discussed above: citizens profit mostly from directed and
mafia from undirected diffusion. Again, heterogeneous structures stress the effects of
mobility. In particular, for the directed strategy, as this is a targeting displacement,
the enormous difference in the average path lengths of the three structures considered
demands very different mobility rates to invert the behaviour of the system.

Surprisingly, the strategy pursuing safer locations, rational, directed mobility, leads
to a global worse performance for the species diffusing than undirected mobility, which
turns out to be a very efficient offensive strategy.
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2.5 Conclusion and outlook

In this chapter we have presented a social model for mafias ruled by a set of non-linear
equations which, in spite of its apparent simplicity, gives rise to a rich phase diagram
and adequately describes a great variety of plausible situations in social dilemmas. We
have identified the attenuation of the persuasiveness of the adversary as the key element
in providing the model with a simple regulating mechanism. Such attenuation is due to
the support offered by alike individuals and the external control elements proportional
to their fractions. In addition, we have shown that coexistence of both social groups
or extinction of the mafia critically depends on the parameters’ regime (birth rate and
strength of the groups). In particular, we have investigated three instances of the mo-
del: the symmetric model, in which mafiosi and citizens have the same strength; the
asymmetric model, in which citizens have no strength to persuade mafiosi to leave the
mafia; and the policed asymmetric model, in which control elements persuade mafiosi
to become citizens and protect simultaneously citizens from the mafia pressure. We
have explicitly identified threshold strengths and critical initial conditions leading to
both extinction of the mafia and coexistence of species for the three cases.

The dynamics of the model in spatially and topologically structured societies dras-
tically differs from that predicted by a well-mixed assumption, in which individuals
interact all-to-all. This is a consequence of the local character of interactions. In-
deed, we have shown how the emergent phase diagrams in structured societies present
a radically different picture. In general terms, the more homogeneous the underlying
structure is—the extreme case being the regular lattice—the larger is the deviation with
respect to the well-mixed mean field approximation. Special mechanisms emerge in
lattices and networks since each individual’s behaviour is determined by the composi-
tion of the population in its immediate vicinity. This is made up of the von Neumann
neighbourhood in square lattices and of the k sites connected to each node in networks.
This locality of interactions allows even small fractions of a given species to survive
in structured societies by clustering. In addition, the presence of control elements may
split up the social structure in unconnected subnetworks ruled by different dynamics.
We have presented explicit cases of transitions from coexistence to extinction as a
function of the heterogeneity of the underlying scale free network.

Our investigation on the role of mobility fills an important gap in the literature on
social modelling by enabling a clearer interpretation of its influence in the description
of social conflicts. We have found that while simple migration to empty places has an
almost negligible influence, diffusion—which also takes into account interchanges of
locations among individuals—may strongly affect the system’s behaviour. If only one
species diffuses, directed diffusion allows mobile agents to seek safer positions and
increases their population’s fraction in equilibrium. This enhancement strongly de-
pends on the heterogeneity of the underlying network, in particular on its average path
length, which in turn is determined by the structure’s topology. The most surprising
implications of mobility, however, arise in the case of undirected diffusion. Undirected
diffusion enables individuals to enter areas of the network which would be otherwise
forbidden in rational scenarios. It turns out to be an excellent strategy in the quest
for domination. If only one species is actively diffusing, the role of passive diffusion
is decisive: defenseless immobile agents passively swap their locations with actively
diffusing individuals. Since the immobile species enter domains which are usually
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adverse to them and from which they cannot escape, the mobile agents dominate the
local environment thanks to this indirect mechanism.

To the best of our knowledge the social models reported in the literature have dealt
with well-mixed populations in topological and spatial structures under the mean field
assumption of agents interacting all-to-all. However, such an approach is unsuited to
capture crucial aspects of the dynamics of social systems. In our work, we have learned
that even for high mobilities in which the resulting population is well mixed, the equi-
librium state differs from the mean field prediction. The discreteness of the possible
neighbourhoods forces population fractions to take discrete values among a finite set of
available configurations. This constraint invalidates the all-to-all interaction assump-
tion. To overcome this limitation in the case of square lattices, we introduce a local
mean field theory which accounts for the discrete set of available neighbourhoods and
their corresponding probabilities. The characterization of the system resulting from
this local approach is in excellent agreement with the agent-based simulations per-
formed in two-dimensional lattices. This success does not depend on particular pro-
perties of the mafia model explored here but portrays a fundamental understanding
of the constraints which spatial and topological structures impose on the dynamics of
evolutionary systems where interactions of many agents are present. Our approach has
a broad range of applications. For example, it may lead to a better understanding of
paradigmatic models in game theory such as the prisoner dilemma.

One possible direction for further work is to ask whether locating one of the species
at hubs, be it via an initial distribution or target mobility, qualitatively modifies the sta-
tionary state of the system. As another interesting feature of actual social systems
one could think of studying the effect of a tunable interaction, e.g. in a (geometrical)
distance-dependent manner. In our view, however, the most compelling extension con-
sists in considering adaptive networks. In fact, in real societies the network of contacts
of every individual updates in the course of time. One could consider several possible
mechanisms to account for this fact: networks with a fixed number of nodes and edges,
where edges may be rewired; graphs with a fixed number of nodes, but a variable num-
ber of edges which may additionally be rewired; or even networks which may grow by
attaching new nodes.



Chapter 3

Pattern diversity in self-assembled
monolayers

La perfection est atteinte, non pas
lorsqu’il n’y a plus rien à ajouter,
mais lorsqu’il n’y a plus rien à retirer.

ANTOINE DE SAINT-EXUPÉRY

Molecular building blocks have been observed to self-assemble in supralayers1 dis-
playing intriguing patterns which may be engineered to pursue specific functionalities.
In particular, these systems open promising routes in the manufacture of patterned
nano-devices. However, the principles leading to self-assembly which enable better
control of these systems have not been yet fully understood. Motivated by this fact, we
investigate in this chapter the mechanism of self-assembly from a theoretical point of
view. The goal of this work is to provide generalized means to model self-organization
of supramolecular constituents based on very few universal principles. By designing
suitable models one should gain sufficient predictive power which facilitates the engi-
neering of experimental systems.

The chapter is structured as follows: First, we summarize the well-known fea-
tures which give rise to the emergence of monolayers from the perspective of supra-
molecular chemistry and describe the specific characteristics of Fréchet dendrons as
constituents. We then review the theoretical studies with the focus on understanding
order in two dimensional systems. After that, we describe the experiments carried out
by Bianca Hermann’s group at the LMU München for a model system with Fréchet
dendrons as building blocks. Then, we introduce a simplified interaction-site model
which aims to condense the salient features to understand the self-assembly process
for this particular experimental setup. We discuss in detail the predictions obtained by
Monte Carlo simulations within our theoretical approach and compare them with the
experimental findings.

1Throughout this chapter we speak interchangeably of monolayers or supralayers, as they assembled
following the principles of supramolecular chemistry, referring both terms to the films obtained by the
organization of single building blocks.
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3.1 Self-assembly and order in two dimensional systems

3.1.1 The principles of self-assembly of monolayers

The constant improvement in techniques to produce smaller and smaller functional
nanodevices is reaching fundamental limits [14]. Most of them used a so-called top-
down approach, where very precise external techniques are used to shape and pattern
materials mostly within the framework of photolithography. In the past years, how-
ever, much cheaper bottom-up methods arise as a very good alternative to manufacture
nanotechnology. They are based on built-up assemblies from individual constituents,
be they atoms or molecules, which arrange on top of atomic substrates.

In particular, the fabrication of artificial nanosystems mimicking the principles
of self-organization in biology such as the assembly of virus capsules [145] or DNA
[3, 121] is a promising route to go beyond lithography. Self-organization and assembly
of molecules or atoms offer a powerful mechanism to get an ample diversity of ordered
systems in the nanoscale regime [14]. They provide not only access to smaller length
scales than other methods, but also facilitate the fabrication.

Supramolecular chemistry is the field which describes the chemistry of the non-
covalent bond. It includes the assembly of supramolecular structures thanks to the
recognition of molecular building blocks via weak interactions. The most common
interactions involved in supramolecular processes are hydrogen bonding, metal coor-
dination, hydrophobic and van der Waals forces, π and electrostatic interactions. They
operate in the nanometer scale suitable to engineer nanotechnology. This field, which
emerged in the last years of the 19th century, is essential to understand the origin of
life as it describes the assembly of proteins, DNA, or viruses among others. But it also
greatly contributed in the last decades to the development of functional nano systems.

Self-organization of macromolecules might thus represent the future of nanoelec-
tronic devices production because it offers important advantages with respect to other
methods. First, patterns with very small length scales may be accomplished. Second,
it does not demand the use of expensive techniques and instruments in the manufac-
turing process, since it is based on self-organization growth phenomena which take
place spontaneously at room temperature. Last and even more important, the power
of chemical synthesis ensures access to a vast functional and structural diversity of
building blocks which may be steered to forge any desired suprastructure.

Many organic molecules on top of well-defined atomic structures—more generally
decorated substrates—have been observed to self-organize or self-assemble in two-
dimensional supralayers which display regular ordered patterns. The gain in internal
energy after the ordering process must compensate the loss of entropy in the ordered
phases. By self-assembly one understands the spontaneous formation of perfectly or-
dered patterns with a fixed attachment to the substrate, which are stable in equilibrium.
The emergent supralayers may also be self-organized. In this case ordered structures
emerge temporally, far from thermodynamic equilibrium, as the result of the interplay
between molecular interactions and diffusion processes. The monolayers then exhibit
dynamic patterns that change in time into one another [13].

The self-assembly of supramolecular monolayers is based on the adsorption, mo-
bility, and lateral interactions of the macromolecular units [13]. First, the building
blocks couple to the atomic decorated surface of the underlying substrate. They can
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then diffuse to adjacent sites, rarely even hop, and rotate to search favourable config-
urations. Finally, the lateral interactions, be they direct through molecular recognition
among groups or indirect via substrate-mediated interactions, guarantee the final con-
formation of the ordered supralayer.

In order to let the molecules have enough time to explore the potential energy of
the adsorbing surface and achieve a growth close to equilibrium conditions the ratio
between the diffusion and deposition rates of molecules must be rather large. Slow
deposition leads mostly to stable structures because the system reaches configurations
which are minima of the free energy. On the contrary, a fast deposition does not leave
molecules enough time to explore all possibilities. The growth is mainly kinetically
driven yielding metastable structures [80].

The building blocks used in the assembly are rather malleable structures whose
cores, predominantly made of aromatic elements, display regular polygonal shapes.
Chains or functional groups are attached to the cores giving the molecule a highly
ramified structure. The branched character promotes interdigitation of the blocks to
enhance the stability of the emerging structures. Additionally, the shape of the mole-
cular core must fit the decoration of the underlying substrate, which strongly conditions
the packing fraction and the ordering motifs. Planar molecules exhibiting extended π-
systems are specially suitable to build up functional monolayers, because they bond to
the atomic surface in a flat-lying structure and let their periphery free to interact with
each other.

The molecular units should exhibit good solubility and synthetic versatility. They
preferably have well-differentiated regions responsible for the interactions and func-
tions involved in the assembly. Functional groups and even external molecules can
be attached to many organic macromolecules or included in the cavities they form.
Blocks showing this adaptability are suitable units to address functionalization issues.

When molecules in solution are casted on top of substrates such as gold, copper,
or graphite, which exhibit regular lattice arrangements, they organize in peculiar long-
range ordered patterns. Four interactions are involved in the dynamical self-assembly:
molecule-molecule, molecule-substrate, molecule-solvent, and solvent-substrate. The
intermolecular interactions are mainly due to hydrogen bonds [120], van der Waals
interactions [116], or metal coordination [77, 108]. The stronger bonds built by metal
coordination give rise to more robust patterns at the same time as tailoring the metallic
groups might increase the scope of possible applications of the assembled supralayer.

Van der Waals interactions with the chains of the building units or π-interactions
with their cores are the key factors for the molecule-substrate interaction. Lengthen-
ing the molecular chains strengthens these interactions [116]. The molecular con-
formations, the mobility of the building blocks, and the supramolecular coordina-
tion are restricted due to the coupling with the substrate [77]. In some experiments
the substrate-molecule interaction is even thought to induce a long-range repulsion
between molecules—though not fully understood yet—which gives rise to unusual
large voids or pores in the ordered patterns, much larger than the length scales of the
molecule [108]. A brief overview over the energy and length scales for the various
interactions is shown in table 3.1.

Solvents could play an important role in self-organizing systems. First, they may
directly interact with the molecules or partially screen some of the other interactions.
Strong interactions of the solvent with the substrate or the formation of layers are in
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interaction energy scale [eV] interaction range

adsorption 0.5-10 1.5-3 Å
substrate mediated 0.001-0.1 nm
hydrogen bonds 0.05 -0.7 1.5-3.5 Å
van der Waals 0.02-0.1 < 1 nm
electrostatic ionic 0.05-2.5 long range
metal ligands 0.5-2 1.5-2.5Å

Table 3.1: Energy scale and interaction range for some interactions involved in the
assembly of monolayers [13].

general excluded. However, it could be coadsorbated in the voids of some patterns and
restrict the mobility of the supramolecules during their dynamical organization.

Transitions between different patterns have been observed in many experimental
settings. Several arguments might explain this phenomenon depending on the spe-
cific nature of model system investigated. First, as the emerging supralayers are often
local minima of the internal energy, transitions between metastable states are easily
driven with thermal activation energy. The heat due to the interaction with the mea-
surement devices might be enough to overcome small potential barriers. Second, in
systems which self-organize—as opposed to self-assembled systems—initial patterns
are thought to be kinetically favourable, while the final phases are supposed to be ther-
modynamically stable [116]. Last but not least, the evaporation or readsorption of the
solvent is thought to play a role in possible reorganizations of the system as it might
vary the local interactions.

3.1.2 Fréchet dendrons as building blocks

Fréchet dendrons or dendrimers belong to a group of dendritic molecules whose name
comes from the greek δενδρoν which means tree, as they are very ramified and highly
symmetric molecules. Dendrons were first synthesized by Tomalia [134] and Newkome
[97] in the 1980’s. Molecules were built via divergent synthesis in these first attempts,
i.e. starting at the core and radially adding monomers to the exterior. Fréchet in 1990
was the first who synthesized dendrons via convergent synthesis [57, 58], i.e. from
the external layers into the core, which is supposed to be more efficient. Dendrons
have since attracted much interest because of their special properties to produce many
functional structures [47].

Dendrimers are globular, monodisperse molecules—the constituent monomers are
a collection of objects with similar masses—in which branches made of repeated
units stemming from a central point conform regular patterns. They are very versa-
tile molecules with a high degree of adaptability: variable volume in solution, multiva-
lent periphery, controlled size, or tailored intramolecular dynamics—and consequently
conformation—among others. Dendrons may be prepared in energetically stable con-
formations which exhibit the required features to accomplish specific goals.

Fréchet dendrons constitute suitable building blocks to assemble supralayers as
they show all the aspects desired to supply appealing model systems. Their branched
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and regular shape promotes the formation of many different ordered motifs. In ad-
dition, as they are easily adaptable they offer promising perspectives to look for new
and specific patterns. Their symmetric cores made of aromatic rings, polygonal ob-
jects which are responsible for the basic unit of the ordered motif, firmly attach to
the substrate via π-interactions. This guarantees planar conformations of the molecule
which favours the formation of stable monolayers. It is thought that dendrons which
optimize self-organization are rich in aromatic rings [61]. Arbitrary long carbonated
chains strengthen the interaction with the substrate and account for the intermolecular
interactions. Furthermore, as they are very flexible, an ample landscape of interdi-
gitated patterns is available. Functional groups are easily attachable to the rings of
dendrons. Supralayers may thus be prepared to serve specific goals at the same time as
interactions between functional groups guarantee more stable structures. Since specific
parts of the dendrons are responsible for various tasks, the building units are especially
suitable for the target they are designed for.

Because they are very flexible, floppy objects dendrons may form cavities in so-
lution. Possible solvent particles may then easily penetrate them, though dendrimers
usually rearrange and lose their volume when the solvent evaporates.

3.1.3 Understanding order in two dimensional systems

Not much theoretical work has been reported to model self-assembly in macromolec-
ular systems. Heuristic arguments have been given in terms of the shape of the build-
ing blocks [83] or the energy of the adsorbed molecules. Many studies have suc-
cessfully computed energies and conformations of the assembled structures with the
help of molecular mechanics (MM) and density functional theory (DFT) software
[144, 109, 119, 67, 52, 123]. The minimization methods used for this purpose require
the experimental observations as inputs. Given that these methods take into account all
chemical and physical details involved in the investigated systems, one cannot identify
the salient features in the assembly process. Some recent studies have combined Monte
Carlo methods with input coming from MM or DFT simulations to explain concrete
aspects of assembly processes such as the multilayer growth of molecules with a fixed
conformation [56] or the formation of ordered domains in monolayers [132, 124].

However, order in two dimensions has been thoroughly investigated for systems
of different nature. These studies focus on the characterization of melting transitions
taking place in colloidal suspensions subject to external fields—see [1] for a review.
These model systems resemble particularly good atomic systems on top of decorated
substrates such as graphite layers, for instance. The patterns of atomic layers are well
reproduced among other mechanisms with laser beams, a method which was pioneered
by Chowdhury et al. in 1985 [31]. Ordering processes are the result of the interplay
between the interactions amongst the colloids and those with the external field.

In colloidal systems one can modify the potential by changing the angle, inten-
sity, or number of lasers. The interactions among colloids may be easily screened by
tuning the salt concentration of the solvent. The filling factor may also be adjusted
controlling the number of colloidal particles in the sample. In this way one can ar-
tificially build more complex objects, as dimers or trimers, which show a collective
dynamics in laser fields [19, 23]. Many experiments have been performed to investi-
gate the ordering transitions taking place in two dimensional systems [112, 113, 114].
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Semi phenomenological models have been developed to gain some understanding in
these phenomena. They consider colloids as single particles or composite objects, in
the case of dimers and trimers, which interact amongst them in a potential accounting
for the external laser field. Composites are located at the sites of lattices with different
geometries and the colloidal interactions are accounted for by suitable hamiltonians.
Monte Carlo simulations and analytical solutions yield a full characterization of the
ordered phases and their melting transitions [142, 141].

Another approach to predict the ordered phases observed in colloidal systems has
been addressed by Kahl et al. in which genetic algorithms explore the ground states of
colloidal systems [53, 44]. This algorithm computes the most energetically favourable
configuration for unit cells with various numbers of colloids which interact with each
other under the influence of an external potential. Although the method successfully
predicts an ample variety of ground states, it is not able to provide any analysis of the
stability of the phases nor to identify possible transitions and their nature.

Our goal is thus to lay out a theoretical model which provides some insight in
understanding the crucial features of self-assembly. The model must be able to predict
emergent ordered structures independently of the experimental observations and to
identify the stability regimes as well as the corresponding transitions.

3.2 Experimental observations

Bianca Hermann and her coworkers at the LMU München have imaged a model sys-
tem by scanning tunneling microscopy (STM) in which Fréchet dendrons on top of
graphite substrates self-assemble in complex supralayers which exhibit various ordered
patterns [61, 34]. The second generation Fréchet dendrons used in this experiment are
flexible building blocks, which consist of three phenyl-rings symmetrically disposed
in the vertices of a triangle with two alcoxychains attached at the lateral rings. The
alcoxychains are made of carbon units exhibiting van der Waals and hydrogen bonds.
The length of these chains is easily adjustable and has been systematically varied at
one side of the molecule from four, to eight, to twelve carbon atoms, while the other
side remains with chains of eight carbon units—see the structural formula in Fig. 3.1.

Monolayers have been prepared by casting small droplets of a dilute solution of
dendrons in various solvents—ethanol, hexane, or heptadecane—on top of decorated
substrates, namely highly oriented pyrolytic graphite surfaces at room temperature.
The monolayers are assembled in a dry environment after a quickly evaporation of the
solvent2. The graphite substrate shows a honey-comb like decoration which displays
a six-fold rotational symmetry.

Hermann and collaborators have observed up to eight general ordering motifs for
the three molecules investigated. The sawtooth, honeycomb, jigsaw, and tiretrack mo-
tifs displayed in Fig. 3.2 dominate the emerging monolayers for the 8/8 and 8/12
molecules. In particular for 8/12 dendrons in the hexane solution, the honeycomb
pattern emerges minutes after casting the sample. Half an hour later the four main mo-
tifs coexist with ratios 1%:15%:25%:20% for sawtooth:honeycomb:jigsaw:tiretrack in

2The sample is slightly cooled down because of the evaporation and then heated up due to the STM
measurements. These differences in the temperature are thought to be responsible for the observed dy-
namic reconfiguration between the patterns.
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Figure 3.1: Chemical configuration
of the Fréchet dendrons used in Her-
mann’s experiment. Three possible
radicals have been systematically at-
tached to the right side with four
(R = C4H9), eight (R = C8H17),
and twelve (R = C12H25) carbon
units which represent what we call
the 4/8, 8/8, and 8/12 molecules.
The chains of the other side have
eight carbon atoms in all cases. Im-
age courtesy of Hermann.

domains of typically 20 nm × 20 nm, leaving 39% of the surface covered with other
patterns and domain boundaries. Finally, after some hours the system evolves to a con-
figuration in which 60% of the graphite surface is covered with the tiretrack pattern,
which has been identified to be thermodynamically stable by slowly heating.

(a) sawtooth (b) honeycomb (c) jigsaw (d) tiretrack

Figure 3.2: Four main experimental patterns observed in the assembled monolayers
for the 8/8 and 8/12 Fréchet dendrons. STM images on the top, MM energy-minimized
configurations in the middle, and schematic main motif in the bottom. Courtesy of
Hermann.

Both chiralities of the molecule have been found to coexist giving rise to domains
with different orientations.

Because of the weak character of the interactions involved in the self organization,
be they intermolecular or substrate-molecule π-interactions, the ordered motifs repre-
sent local minima with similar values of the internal energy. Low activation energies—
believed to be of thermal origin—suffice to overcome the potential barriers between
the rather similar minima of the energy. This explains the dynamic reconfiguration of
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the pattern in the assembled monolayers as have been observed in the experiments.
The aromatic rings of the dendrons used in this experiment are able to follow

the graphite structure exceptionally well providing robust, energetically favourable
substrate-molecule π-interactions. They determine the long-range order and the ba-
sic motif of the pattern. The coupling to the substrate is enhanced by van der Waals
interactions of the carbonated chains with the graphite surface. In addition, the inter-
molecular interactions of the lateral arms of adjacent molecules are responsible for the
formation of interdigitated patterns which stabilize the emergent structures. The inter-
play between the commensurability of the molecular rings with the graphite substrate
and the chain interdigitation determines, ultimately, the optimal regular motif for the
assembled supralayer.

A detailed analysis of the STM images provides suitable initial configurations for
the molecular mechanics (MM) simulations carried out by Hermann’s group. These
simulations reveal the exact positions of the individual molecules and their conforma-
tions, as well as the interaction energies involved via energy minimization of the initial
patterns on a double layer of graphite substrate—for the atomistic picture see Fig. 3.3.
We will use the molecular conformations yielded by this minimization to construct the
inputs for our theoretical interaction-site model. In addition, the energy-minimized
geometries also serve as input for density functional theory (DFT) computations to
derive the local density of states of free single molecules.

Figure 3.3: Molecular conforma-
tion in an atomistic picture of a 8/12
Fréchet dendron given by the en-
ergy minimization of the molecular
mechanics simulation. Two chains
of eight and twelve carbons are at-
tached to the left and right aromatic
ring respectively. Functional groups
are represented in red. Image cour-
tesy of Hermann.

The MM minimization provides information about the dominant parts of the inter-
nal energy due to van der Waals interactions. It allows the computation of the adsorp-
tion energy per unit cell or area by evaluating the energies of a monolayer on top of the
graphite substrate isup, of a gas phase net3 ign with n molecules per unit cell, and of
an isolated molecule iiso. The subtraction Ic−n−c = ign/n − iiso gives the energy be-
tween neighbouring chains per molecule while Im−s = (ign− isup)/n is the molecule-
substrate interaction per molecule. The pattern which emerges at the early stages of
the experiment, the honeycomb motif, minimizes the van der Waals part of the energy
per molecule in a phase where the building blocks are mainly found isolated. In the

3A gas phase net is a monolayer showing long-range order but without any underlying structure.
The intermolecular interactions are essentially the same, while the molecular-substrate interactions are
switched off.
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course of time, the system evolves according to the Kitaigrorodskii principle [66] of
avoiding free space to the tiretrack pattern which minimizes the energy per area. In this
later stage the majority of the surface is covered with ordered domains. The tiretrack
pattern is also the phase which has been found to be thermodynamically stable.

pattern molecules/unit cell Im−s/molecule Ic−n−c/molecule

sawtooth 6 -674 - 147
honeycomb 6 -691 -163
jigsaw 2 -653 - 117
tiretrack 2 -528 - 222

pattern unit cell size [nm2] Im−s/nm2 Ic−n−c/nm2

sawtooth 24.5 -167 -38
honeycomb 26.5 -155 -38
jigsaw 8.4 -151 -25
tiretrack 6.1 - 172 -75

Table 3.2: Van der Waals part of the molecule-substrate and interchain energies given
by the MM minimization per molecule and per area. Energies are given in kJ/mol.

3.3 Theoretical model

In this section we introduce an interaction-site model to investigate the pattern forma-
tion in self-organized monolayers. The model is based on very few universal principles
of self-assembly. We study the system’s behaviour with Monte Carlo simulated anneal-
ing and investigate the stability of the phases found. In particular, we outline a stability
diagram for the various ordering motifs as a function of the density of the sample and
the temperature and study the zero temperature energy of the stable phases. Finally,
we compare the results of our model with the experimental observations carried out by
Hermann and coworkers and discuss the validity of our model.

3.3.1 The interaction-site model

Interaction-site models are simplified abstractions of real physical processes. They
aim to isolate the minimal number of salient features needed to understand and repro-
duce the physics behind specific phenomena. The numerous microscopic forces are
drastically reduced to the interactions between some selected interaction points. The
complexity to conceive an interaction-site model lies precisely in the recognition of
appropriate points where the interactions take place and the identification of the forces
relevant for the dynamics and those which are negligible.

In this section we outline the design of a suitable interaction-site model to describe
the assembly of Fréchet dendrons monolayers. Fréchet dendrons are very flexible
structures with many degrees of freedom. The number of possible conformations be-
tween pairs of interacting atoms is hence so large that an atomistic description is almost
impossible. This limitation explains the lack of theoretical models to understand such
macromolecular processes.
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According to the experimental observations the crucial features leading the self-
assembly are the steric repulsion between the molecular rings, the weak interactions
of the carbonated chains, and the coupling of the building blocks with the substrate.

The symmetric molecular core in our model consists of three hard spheres located
at the vertices of a flattened isosceles triangle—red spheres in the cartoon of Fig. 3.4.
At the center of the longer, unequal side of the triangle resides what we refer to as the
molecular centre—though it is not the centre of mass due to the arm’s asymmetry—
around which the molecule is allowed to rotate. The centers of the three spheres are
at a distance l = 6.1 Å from the molecular centre. The spheres of radius rr = 2.6 Å
represent the aromatic rings of the Fréchet dendrons. They interact as hard spheres
with the rings of other molecules.

The carbonated chains of the real molecules are modelled as a reduced number
of inter-penetrable beads. Every four CH2 units of the actual alcoxychain are coarse-
grained as one bead with diameter σ = 6 Å—small, blue spheres4 in Fig. 3.4. Al-
though this simplification does not allow to model chains of arbitrary lengths, still
enough tuning is possible for the purposes of this work. Every bead in a molecu-
lar chain interacts with all other beads in the chains of other molecules. The spheres
are disposed in straight, rigid arms where their centers are separated a distance σ—
contiguous beads are adjacent. They do not have any degree of freedom other than the
orientation of the straight segment with respect to the molecular core.

Figure 3.4: Interaction-site
model—the cartoon represents
a 8/12 Fréchet dendron. Red
spheres account for aromatic
rings and blue beats represent
subunits in the carbonated
chains. Every sphere stands for
four CH2 units in the arms of
the dendrons.

All the geometrical features of the coarse-grained molecule are extracted from
the conformations yielded by the molecular mechanics simulations performed in Her-
mann’s group, Fig. 3.3. The relevant length scales of the Fréchet dendrons range ap-
proximately from 15 Å of the skeleton to 50 Å for the spanned molecule. The tunable
parameters of the molecule, i.e. the radii of the hard spheres and beads, the relative
positions of the hard spheres, and the lengths (number of beads) and orientations of
the arms take fixed values in our simulations. We will explore various conformations
of the molecules, varying the lengths of the arms and their orientations.

To account for the actual non-covalent microscopic forces leading to self-assembly
the model considers a subset of essential interactions between the key points defined

4 A particularity affects the representation of the beads in the arms in the cartoon of Fig. 3.4: to better
identify global patterns they are displayed smaller as they actually are. But of course the size of the beads
entering the interactions in our simulations is that coming from the molecular mechanics simulations.
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above, lying in the centers of hard spheres and beads. The strength and shape of these
coarse-grained interactions are accordingly modified.

We encode the strong steric repulsion between the aromatic rings as hard spheres
repulsion between the three central spheres of different molecules. This prevents the
cores of the molecules from overlapping. The steric repulsion is also the major res-
ponsible for the long range order in the structure, as it determines together with the
lattice constant the local motif, i.e. the repeated basic subunit. Finally, the weak, short-
ranged van der Waals attraction of the lateral chains is described by a Lennard–Jones
potential: V (r) = 4 ε

(
(σ/r)12 − (σ/r)6

)
. The diameter of the beads in the chains σ

is the relevant length scale of the interaction. When the distance between two beads in
different molecules r is smaller than σ the potential becomes repulsive. Only chains
in different molecules interact with each other.

The atomically flat graphite surface with its six-fold rotational symmetry consti-
tutes a template for the pattern formation. It enables six energetically equivalent ori-
entations of the molecule on its surface. The molecule-substrate attraction is mainly
mediated by π-interactions between the phenyl-rings and the graphite surface. This
interaction is about ten times larger than the intermolecular one, so that considering
the molecules to be attached to the lattice sites is a reasonable assumption. In addi-
tion, the size of the spanned molecule of around 45 Å is up to six times larger than the
lattice constant of a few Å. Therefore, only the symmetry of the underlying substrate
plays a role in the monolayer assembly. We consider then molecules whose centres are
attached to the the vertices of a coarse-grained, fully occupied triangular lattice whose
lattice constant a is comparable to the size of the building blocks and which shows the
same symmetry as the original graphite honey-comb structure.

Molecules may discretely rotate as rigid bodies around their centers and adopt
one of the six preferred orientations given by the six-fold symmetry of the underlying
graphite.

To summarize, the interaction-site model accomplishes a significant reduction of
degrees of freedom setting the flexibility of the molecule aside. While the molecular
mechanics model contains about hundreds of atoms per molecule able to independently
displace and rotate, the coarse-grained interaction-site model consists of a rigid object
with no others degrees of freedom than the rotation around its center.

We investigate the system from a starting point in which one considers individual
molecules as rigid entities and focus on the intermolecular interactions, relevant for
the assembly of stable supralayers. We are not interested in the intramolecular forces
which determine the configuration of individual molecules. Instead we assume the
molecular conformations entering our model to already be energetically favourable.
We can proceed in this way because we are considering conformations resulting from
the energy minimization carried out in the molecular mechanics simulations.

3.3.2 Theoretically predicted ordered motifs

The final purpose of our investigation is to gain predictive power for the regular pat-
terns emerging in the spontaneously assembled supralayers. In particular, we want to
determine the stability of the long-range ordered assemblies, as well as the temperature
regime at which they melt into a disordered phase.
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To address this issue we use the simplified interaction-site model introduced above.
Dendrons with fixed molecular conformations, i.e. rings’ positions, arms’ lengths, and
arms’ orientations αi (see Fig. 3.5) are disposed in the vertices of a triangular lat-
tice whose lattice constant a adopts values similar to the typical length scales of the
molecules—the dimensionless lattice constant a/σ ranges from 2.8 to 4.2. Given
that there are two molecules per triangular cell of side a the density of the sample
in terms of the lattice constant reads ρ = 2/

√
3a2. The systems we study contain from

some hundreds to a few thousands molecules, sizes similar to those investigated in the
experiments—a molecule covers a surface of approximately 4 nm2 and the samples
observed occupy some hundred nm2.

(a) α1 (b) α2 (c) α3 (d) α4 (e) α5

Figure 3.5: Molecular conformations showing different orientations of the late-
ral straight arms. The angles of the arms with respect to the positive x-axis
are given clockwise from the left to the right: α1 = (−5π/6, π/2, π/2,−π/6),
α2 = (−5π/6, π/2, π/2, π/6), α3 = (−5π/6, π/6, π/6,−π/6), α4 =
(−5π/6, 5π/6, 5π/6,−π/6), α5 = (−5π/6, π/6, π/2, π/6).

The molecular blocks in our model interact via Lennard-Jones potentials through
which their carbonated chains are attracted to each other while their centers are fixed
to the lattice sites to emulate the strong substrate-molecule interaction.

To investigate the system behaviour we carry out Monte Carlo simulations [48,
76, 18]. Monte Carlo is a well-known method which consists of approaching equi-
librium by means which do not correspond to the actual temporal evolution of the
system. Instead, Monte Carlo methods effectively sample the important points of the
configuration space so that the system successively evolves through a set of states by
accepting or rejecting new configurations. From a given state the system may access
neighbouring configurations, meaning, that they can be obtained by introducing some
allowed changes in the old configuration. The power of Monte Carlo resides in the fact
that all configuration changes are possible, as it does not care for the dynamics in the
system’s evolution through the configuration space. New configurations which lower
the internal energy of the system are systematically accepted, but also those with a
larger energy may be accepted with a probability given by the Boltzmann factor—see
App. C for more details. This algorithm has been proved to be efficient to reproduce
equilibrium states for systems of very different natures.

In our problem, neighbouring configurations are generated by modifying the orien-
tations of single molecules. More concretely, a Monte Carlo trial consists of a ±π/3
rotation for a randomly selected dendron. Beyond Monte Carlo we perform simulated
annealing to search the possible ground states of the system. We prepare a disordered
initial configuration for a given density, where molecules with identical conformations
take a random orientation among the six possible directions. Starting at a given temper-
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ature the system evolves through Monte Carlo trials until the equilibrium is reached5.
Then the temperature is lowered and the process repeated. The system is cooled down
to temperatures around 170 K. They are enough for our investigation, as the experi-
ments were performed at room temperature. For some molecular conformations and
densities long range ordered patterns are observed in the stationary state.

We have investigated five molecular conformations αi of the 8/8 and 8/12 Fréchet
dendrons shown in Fig. 3.5. They differ from each other in the orientations of the arms.
The molecular configurations used as input in our simulations are the outputs of the
molecular mechanics energy minimizations performed by Hermann and coworkers.

(a) tiretrack (b) jigsaw (c) sawtooth

(d) honeycomb (e) hexagons (f) inverted hexagons

(g) zipper (h) rhomboids (i) 4in1

Figure 3.6: Ordered motifs found for the supralayers assembled from 8/8 and
8/12 Fréchet dendrons with different conformations within the interaction-site model.
Molecules are represented as boomerangs matching their three aromatic rings to better
identify the long range order. The carbonated arms are not shown in these cartoons.

An ample variety of ordered patterns arises by cooling samples of the 8/8 and
8/12 molecules in all conformations, which are displayed in Fig. 3.6. The emerging

5In every Monte Carlo (MC) step each molecule updates on average once. After running 500 MC
steps to equilibrate the sample, the energy and order parameters have been sampled during other 1000
Monte Carlo steps before lowering or raising the temperature.
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motifs have two, three or six-fold symmetry, matching the possible symmetries of the
honeycomb lattice of the graphite substrate. In all the patterns, except for the sawtooth
and the 4in1, opposite orientations of molecules appear in pairs. In the tiretrack and
jigsaw patterns only two possible orientations of the molecules are present, three in the
sawtooth, four in the zipper, rhomboids6, and 4in1 phases, and six in the honeycomb,
hexagons7, and inverted hexagons.

Figure 3.7: Zig-zag pattern.

Some basic units as the
tetramer found in the 4in1 phase
may arrange in several domains,
giving rise to slightly different
long range configurations as the
zigzag pattern found for the
8/8 molecule and displayed in
Fig. 3.7.

Changing the chirality of the
asymmetric molecule 8/12, i.e.
interchanging the length of the
lateral chains, modifies the rela-
tive orientation of the main sub-
units in patterns as the sawtooth
or zipper.

Table 3.3 specifies the pat-
terns found in the cooling pro-
cess for every building-block and conformation, together with the reduced8 lattice
constant a/σ at which they have been observed. Symmetric configurations, i.e. the
8/8 molecule in general and the α1 conformation in particular, assemble into a larger
variety of ordered patterns.

To what extent are the emergent motifs stable? To address this question we carry
out the reverse process. We prepare perfectly ordered configurations of the system at
low temperatures with the phases yielded by the cooling process and then we slowly
heat them up. We monitor the energy and suitable order parameters for each pattern to
characterize the melting transition and identify the critical temperatures at which the
entropic forces induce disorder in the sample.

The order parameters are defined to take values which range from one when the
pattern is perfectly ordered to zero in the disordered phase. Every pattern displays
various sublattices, defined as the set of lattice’s sites at which the molecules points
in the same direction—for instance alternative rows in the tiretrack pattern represent
two different sublattices. The order parameter measures the fraction of molecules in
a sublattice orientated in the preferred direction of the sublattice they belong to. The
order parameter for a sublattice A with NA molecules and preferred orientation σA is

6The rhomboid pattern has been observed for a configuration of the 8/8 molecule which is not included
in the αi conformations shown here.

7The same order has been found for colloids in a laser field in the so-called 6in1 phase [141].
8Both energies and lengths are dimensionless magnitudes: lengths are reduced with the characteristic

length scale of the chains σ and energies with the corresponding energy scale ε of the van der Waals
potential.
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8/8 8/12

α1 tiretrack (2.8, 3.6, 4, 4.2) tiretrack (3.8, 4, 4.2)
inverted hexagons (3.4) inverted hexagons (3,4)

hexagons (3, 3.2)

α2 jigsaw (4.2) jigsaw (4.1, 4.2)
hexagons (3) honeycomb (2.8, 2.9)
zigzag (3.4) stripes (3.2)

α3 jigsaw (4.2) tiretrack (4.2)
zipper (4.2) zipper (4.1)

α4 zipper (4.1) tiretrack (4.1, 4.2)
sawtooth (2.8, 3.4, 3.6, 3.8) sawtooth (3.6, 3.8, 4)
jigsaw (4.2)

α5 honeycomb (2.8, 3) honeycomb (2.8, 3)
stripes (3.2)
hexagons (3.6)

Table 3.3: Emerging ordered phases by cooling down samples with N = 576 Fréchet
dendrons—for different chains’ lengths and orientations αi. In parenthesis the dimen-
sionless constant lattice a/σ for which they were observed and in bold font the stable
phases under heating.

defined as:

mA =
NσA
A

NA
− 1

5

∑
σi 6=σA

Nσi
A

NA
. (3.1)

The factor 1/5 is introduced to assure that mA = 0 in a disorder phase where all
orientations are equiprobable. The order parameter we monitor is just the average of
the order parameters of all sublattices i:

m =
ns∑
i=1

mi

ns
. (3.2)

Fig. 3.8 shows the stability diagram, i.e. the temperature regimes for which diffe-
rent monolayers are stable before melting into the disordered phase as a function of
density for the 8/12 Fréchet dendron9. For some regimes, specially at low densities,
i.e. large lattice constant a, many phases are stable and might be thus theoretically
observed or even coexist in equilibrium. To build this diagram a phase has been con-
sidered to be ordered if 90% of the molecules follow the preferred direction of their
sublattices, i.e. m > 0.9.

The dependence of the energy and order parameter as well as their variances, i.e.
specific heat

cN =
N

kBT 2

(〈
u2
〉− 〈u〉2) (3.3)

9The stable phases are also marked in a bold font in table 3.3 for the 8/8 and 8/12 molecules.
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Figure 3.8: Stability dia-
gram for the 8/12 molecule.
Points represent the highest
reduced temperature kBT/ε
for a given dimensionless
lattice constant a/σ at
which the corresponding
patterns are stable—αi
refers to the molecular
conformation [colour code]
in the order motifs.
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χm =
1

kBT

(〈
m2
〉− 〈m〉2) , (3.4)

with the increasing temperature allows one to identify the nature of the melting transi-
tion.

Exemplary, Fig. 3.9 shows the energy per molecule u/ε and the order parameterm
as a function of the reduced temperature kBT/ε for the melting transition of the saw-
tooth phase for the 8/12 dendron. The data suggest the transition to be discontinuous
because of the jump in the order parameter.

What are the internal energies of the emergent patterns? Can one draw conclusions
about the dominant phases comparing their energies? Fig. 3.10 displays the energy of
all the stable patterns as a function of the reduced lattice constant a/σ for the 8/12
molecule. For small distances between molecules the honeycomb pattern shows the
lowest energy, the sawtooth is the most favourable motif at intermediates densities,
and the tiretrack phase minimizes the energy for lower densities. All the phases which
minimize the energy for a given regime of the density are stable under heating in
greater or lessen extent, so that no pattern should be excluded of being observed in
equilibrium.

3.3.3 Theory versus experiment

The interaction-site model succeeds in reproducing many of the general features ob-
served in supramolecular systems, such as the ample diversity of patterns, the role of
chirality, the local ordering, the global symmetries, as well as the specific motifs of the
patterns.

All the patterns observed in the experiment for the 8/8 and 8/12 dendrons have
also been found by the interaction-site model, namely the tiretrack, jigsaw, honey-
comb, and sawtooth pattern. Although the latter shows the same long range order in
the theoretical and experimental results, it only contains one type of trimers in the the-
oretical predictions with molecules pointing in three of the six orientations available.
In the experiments, however, two kinds of trimers are present, one rotated π/3 with
respect to the other, showing thus the whole pattern all possible orientations. The con-
formations of the molecules giving rise to a specific pattern agree to a great extent with
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Figure 3.9: Melting transition for the sawtooth phase. Energy per molecule [top left]
and order parameter [top right] are shown as a function of the dimensionless tem-
perature. The corresponding susceptibilities are shown in the bottom. The jump in the
order parameterm suggests a discontinuous transition. This simulation was performed
for N = 576 8/12 Fréchet dendrons in the α4 conformation on a lattice with constant
a/σ = 3.8.

those observed in the experiments. In addition five new phases were predicted by the
simulated cooling process: hexagons, inverted hexagons, zipper, rhomboids, and 4in1.

Both in the experiment and the simulations a change in the chirality of the molecule
results in a variation of the relative orientations in the local ordering motif, although
the long range order remains unchanged.

According to the Monte Carlo simulations the long-range ordered patterns are sta-
ble up to dimensionless temperatures kBT/ε ranging from half to three approximately.
A rough computation with the energies provided by the molecular mechanics simula-
tion allows to estimate the order of the energy scale ε in the Lennard-Jones poten-
tial. From the MM minimization we learned, that the weak interaction between the
alkylchains contribute around 18kJ/mol in fully interdigitated chains for every four
CH2 units. If one assumes that the full overlap corresponds to the minimum of the
Lennard-Jones potential, rmin = 21/6σ, one gets ε ∼ 1.5 · 10−20 J yielding a ratio
ε/kB ∼ 103K. For the experimental model system we are interested in, the melting
temperatures predicted by our theoretical model range from 500 K to 3000 K. One
may hence consider the experimental patterns assembled at room temperature as the
ground states of the system.

The densities observed in the experimental findings, from 0.328 molecules/nm2 in
the tiretrack pattern to 0.226 molecules/nm2 in the honeycomb, correspond to lattice
constants from a ∼ 3.2σ to a ∼ 3.8σ respectively.

In the interaction-site model the phase with the lowest energy sensitively depends
on the lattice constant. Because the character of the main interactions is rather weak,
the fully interdigitation of the carbonated chains plays a crucial role to get low en-



98 3. Pattern diversity in self-assembled monolayers

zipper
sawtooth
honeycomb
jigsaw
tiretrack

α5

α4

α3

α2

α1

a/σ

u
/
ǫ

4.243.83.63.43.232.8

-5

-10

-15

-20

-25

-30

Figure 3.10: Zero temperature energies for several patterns and molecular configura-
tions αi [colour code] of the Fréchet dendron 8/12 as a function of the lattice constant.
Energies and lengths are given in dimensionless units, i.e. reduced by the characteristic
energy scale ε and length scale σ of the Lennard-Jones potential respectively.

ergy configurations. The fraction of the arms which overlap depends on the molecular
conformation, the distance between the molecular centres, i.e. lattice constant, and the
relative order of molecules in the local motif.

According to the theoretical results the honeycomb, the sawtooth, and the tiretrack
patterns represent the ground state of the system for different regimes of the lattice
constant. So is the honeycomb the preferred phase for high densities or small lattice
constants, the sawtooth for intermediates, and the tiretrack for low densities. Since all
of them are stable in the regimes where they minimize the energy, one would expect to
find them interchangeably or coexisting when the system reaches the thermodynamical
equilibrium in the laboratory. However, although all of them coexist at the very early
stages of the experiment, only the tiretrack pattern is stable in hexane solvent after
waiting enough time. What could be the reasons for this discrepancy?

i. First of all, the continuous arbitrary value of the lattice constant in the theoretical
predictions is an artificial resort of the interaction-site model. In the experiments
the molecules must couple to the underlying lattice and the distances between
their centers are restricted to some multiples of the actual lattice constant of the
graphite.

ii. The interaction-site model does not prevent the aromatic rings and the carbona-
ted chains of different molecules from possible overlapping. In the experiments,
however, such overlapping does not take place. The honeycomb phase, ground
state for large densities according to the simulations, cannot be observed in the
experiment. In the model, the distance between molecules is a ∼ 3σ, while the
length of the arms is either 2σ or 3σ, so that centers and chains might overlap
and the phase cannot be considered to be stable. Such high densities are not
observed in the experiment because of the lack of space to accommodate the
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molecules.

iii. The theoretical model does not account for the effect of the solvent. It is thought
that some solvents tend to interact via hydrogen-bonds with the OH groups of
Fréchet dendrons—the red coloured part in the atomistic model of Fig. 3.3. The
configuration of the tiretrack pattern is believed to favour the formation of such
bonds, while the conformation of the sawtooth and honeycomb phases could
hinder such interaction. This might be the main reason why the tiretrack pattern
is the only stable phase in some solutions, in spite of the theoretical prediction
which foresees a larger diversity of stable patterns. In particular in the case of
the hexane solvent, which is supposed to completely evaporate, the molecules
interacting with the remaining water might tend to form numerous H-bonds.
This not yet proved hypothesis might even explain the transition from the coex-
istence observed when hexane is still present at the beginning of the experiment
to the dominance of the tiretrack pattern after evaporation.

iv. The substrate-molecule energy differs for different phases. A non-negligible
contribution comes from the van der Waals interactions of the substrate with the
carbonated chains. For some patterns the chains do not adopt a totally flat confi-
guration reducing thus the energy of the interaction. This effect is not accounted
for in the theoretical model and would slightly vary the energetic results of the
ground states. However, we believe that the supremacy of the tiretrack pattern
is explained because it enhances the interaction with the solvent.

3.4 Conclusion and outlook

In this chapter, we have developed an interaction-site model which correctly predicts
the ordered motifs of assembled monolayers. By reducing the degrees of freedom and
considering the building-blocks as rigid bodies with a reduced set of interacting points,
we have demonstrated that the self-assembly relies on very general features of the
system considered. In particular, we have identified the essential aspects which encode
self-assembly, namely the coupling with the substrate, the geometry of the building
blocks, and their weak interactions. These are universal principles in self-organizing
systems which do not depend on the special nature of the building blocks and the
underlying substrate. The predictive power provided by our model may guide the
synthesis of suitable building blocks to engineer arbitrary patterns for specific goals.
The versatility offered to construct the building blocks makes our model especially
suitable to explore a wide range of geometries. The molecular units are indeed made
up of a set of smaller pieces represented by beads, which contain the interacting points
and add up to originate the complete molecule.

Beyond those more applied aspects one may also study the phase behaviour of
mesoscopic building blocks like Fréchet dendrons on patterned substrates. Here, we
have employed Monte Carlo methods to explore the phase diagram as a function of the
lattice constant of the underlying substrate and the temperature. In particular we have
determined the stability of the emergent phases and the nature and critical temperature
of the melting transition. We have found that a broad variety of long-range ordered
phases are stable for various conformations of the building blocks and density regimes
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which may indeed coexist, as it has been observed in the experiments. The melting
temperatures of the ordered motifs range from approximately 500 K to 1500 K, much
higher than the room temperature in which experiments were addressed. Therefore,
one may consider the experimental emergent phases as the ground states of the system.
We have identified the transition into a disordered phase to be discontinuous, attending
to the jump in the order parameter.

There are several ways to extend these studies. Here we have considered the build-
ing blocks as rigid bodies. A natural generalization would be to make the building
blocks flexible and explore the interplay between intra and inter-molecular ordering.
This extension implies including at least four new degrees of freedom per molecule,
the orientations of the arms, which makes the Monte Carlo simulations computation-
ally very expensive. An interesting alternative to speed up simulations would be ge-
netic algorithms [45, 63]. They are suitable methods to compute the ground states of
two dimensional systems by minimizing the energy of single unit cells [44, 53]. The
conformations and motifs resulting from this minimization can serve as input con-
figurations for the Monte Carlo simulations to assess their stability. In this way, the
interaction-site model becomes independent of external input to a larger extent. In
addition, when employing genetic algorithms one can relax the constraint of the sub-
strate. Instead considering the building blocks to be attached to the sites of a lattice,
one can mimic the role of the substrate through a more realistic potential. This opens
a way to investigate systems whose substrates display more complex symmetries.
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Agent based stochastic simulations

The mafia model is carefully investigated with extensive agent-based stochastic si-
mulations. Stochasticity is involved in two ways: update is asynchronous and agent
actions are probabilistic.

We are interested in the evolution of two species, citizens and mafiosi, in a society
with a fixed carrying capacity N . The density population ρ = c + m ≤ 1, which is
the sum of the number of mafiosi and citizens, is not necessarily as large as the system
size C +M ≤ N , i.e. some locations might be empty.

The initial population is randomly distributed in the N nodes available: c0N citi-
zens, m0N mafiosi, and N(1− c0−m0) empty nodes. The system evolves for a total
time τ = gN . The factor g ranges from 0.01 to 0.015, which has been proved to be
enough for the system to reach a quasistationary state. At each time step ∆τ N site
updates are carried out, so that every agent updates on average once every time step.

The update process is as follows. First, a site is randomly selected among the N
nodes. The possible actions are birth process for empty places and death or strategy
change for citizens and mafiosi. All sites may also remain as they were. If the mobility
rate does not vanish, citizens and mafiosi may also change their locations.

The probability with which one action takes place is proportional to the rates of
each action—β for the birth process, 1 for the death one, ωmc and ωcm for the strategy
change, and µ for the diffusion process. So is, for example, the probability for a
citizen to be born in an empty place β∆τ at every time step. The size of the time step
is taken in such a way that the sum of the probabilities for all the events is smaller
than one:

∑
events pevent =

∑
events revent∆τ ≤ 1, where revent is the event’s rate. ∆τ

ranges between 0.025 for simulations without mobility and 0.005 in simulations which
include mobility, fulfilling the previous condition for the processes rates considered in
this thesis.

While the death, birth, and mobility rates are constant, the reaction rates ωij are
time and site dependent. Therefore, they must be actualized for each individual up-
date. In a synchronous update the reaction rates would be computed simultaneously
for all agents. But in the asynchronous update every updating agent computes the
corresponding reaction rate when he’s selected to update. In this way the agent takes
into account the current strategies of his neighbours, even if they already updated in
the current time step ∆τ + 1. This update seems to better resemble social actions, in
which the information process is faster than the decision-making one.
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A random number r, 0 ≤ r ≤ 1, is generated to determine the event taking place
at each step. Is the site an empty place, a citizen is born with probability β∆τ , i.e.
if β∆τ ≤ r, and remains empty otherwise. If the site is occupied with an agent,
this dies if ∆τ ≤ r, change his strategy if ∆τ < r ≤ (1 + ωij)∆τ , or move if
(1 +ωij)∆τ < r ≤ (1 +ωij + µ)∆τ . If r > (1 +ωij + µ)∆τ the individual remains
with the same strategy at his initial place.

The main focus of our work relies on the different behaviours of the system in se-
veral structures. The underlying topology plays a role in the evolution process through
the computation of the reaction rates ωij .

In the homogeneous mixing hypothesis all agents are connected to the rest of the
population. Here the frequencies of citizens, mafiosi, and police entering the reaction
rates are those of the whole population. Thus in our simulations it is only needed
to keep both populations actualized, mafiosi and citizens frequencies, as well as the
constant police fraction.

For simulating structured populations every site has a list with its nearest neigh-
bours, as well as with the edges responsible for these connections. If the fraction of
controlling elements is not zero a fraction p of the edges contains a policing element.
NE p police agents are randomly distributed in the NE edges. The nodes and edges
themselves contain the information about whether they are empty or not and who is
occupying the site in the case of nodes, whether it is a citizen or a mafioso. The compu-
tation of the reaction rates ωij is carried out with the fractions of citizens, mafiosi, and
policing elements relative to the updating agent, i.e. those registered on his neighbours
list.

If the structure is a regular lattice the nodes occupy the vertices of a grid with a
constant number of nearest neighbours, 4. For the lattice, periodic boundary conditions
are considered.

For the study of the dynamics in scale free networks, first the networks are gene-
rated following the algorithm implemented by Heiko Hotz described in appendix B.
The connected network consists for our purpose of a list with all nodes, each of them
containing sub-lists of the neighbouring nodes and the edges responsible for the links.

All the observables measured in this work are the result of averaging over 1000
simulations, which include the network construction. More than 95% of the trials to
get fully connected networks were successful, so that statistical averages are at least
performed over 950 measures.

In structures, individuals may have the opportunity to change their location. If an
individual has been selected to displace and he moves randomly, a neighbouring site is
randomly chosen and the occupants of both nodes change their locations. If migration
is considered instead diffusion, this displacement only takes place if the selected site
is empty.

As for intelligent mobility, the individual diffusing or migrating computes his fic-
titious reaction rates to change his strategy for all the neighbouring sites (or the empty
ones if migration is considered) and swaps his position with the individual at the site
for which his reaction rate is minimal. If the reaction rate were larger in all the neigh-
bouring sites than in the current one, the agent remain at his place.
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Building uncorrelated scale free
networks

Although very often real networks show degree-degree correlations, it is desirable to
build uncorrelated networks to study the behaviour of dynamical systems on them.
One important reason for it is that whenever a system is analytically solvable it is
usually only possible under the assumption that the network is uncorrelated.

As discussed in section 1.1.4 the uncorrelated configuration model allows the con-
struction of scale free networks with arbitrary exponent, without multiple and self-
connections and avoiding degree-degree correlations. The latters are related with the
election of the maximal number of links per node to generate the network, the cutoff
km.

The natural cutoff kc is computed arguing that at most one node might have degree
larger than the maximal [20]:

N

∫ ∞
kc

P (k)dk ∼ 1, (B.1)

so that kc(N) ∼ N1/(γ−1). But this cutoff leads to multiple and self-connections for
γ < 3 or to uncorrelated networks if those are explicitly forbidden.

To include topological considerations, i.e. to avoid the presence of multiple and
self-connections, the ratio between the edges connecting vertices of degrees k and k′,
Ekk, and the total possible number of connections, mkk′ , between them should be
smaller than one

rkk′ =
Ekk′

mkk′
≤ 1 (B.2)

for all kind of networks. The structural cutoff is defined as the maximal degree which
fulfills this condition. The number of possible connections are given by mkk′ =
min{kNk, k

′Nk′ , NkNk′}. In the two first cases, kNk and k′Nk′ , the condition is
directly guaranteed as rkk′ = Ekk′/kNk = Ekk′/

∑
k′ Ekk′ < 1.

Making use of
∑

kk′ Ekk′ =
∑

k(
∑

k′ Ekk′) =
∑

k kNk = 〈k〉N the joint pro-
bability for two random nodes with degrees k and k′ to be connected is P (k, k′) =
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Ekk′/N 〈k〉. In addition, the joint probability for uncorrelated networks is of the form

Pnc(k, k′) = Pnc((k|k′) ∩ (k′|k)) (B.3)

= Pnc(k|k′) ·Pnc(k′|k) (B.4)

=
kNk

〈k〉N
k′Nk′

〈k〉N (B.5)

=
kk′P (k)P (k′)

〈k〉2 . (B.6)

One may thus derive the required condition rkk′ ≤ 1 in the case mkk′ = NkNk′ :

rkk′ =
P (k, k′) 〈k〉N

NkNk′
(B.7)

rkk′ =
kk′

〈k〉N , (B.8)

yielding a structural cutoff ks(N) ∼ √〈k〉N , which is independent of the degree
distribution and the exponent γ [20].

The choice between the structural and natural cutoff is determined by the behaviour
in the thermodynamic limit. So the former diverges more slowly for γ < 3, but faster
for γ > 3. Therefore, the structural cutoff must be used in the first case and the natural
in the second.

Heiko Hotz implemented an algorithm to build scale free networks following the
scheme outlined by Catanzaro et al. [28], which has been used throughout this work.

A fixed number of N vertices are assigned a degree drawn from the scale free

distribution P (k) = Ak−γ , where the normalization factor reads A =
(∑kc

k0
k−γ

)−1

and the limits for the degree are given by k0 ≤ k ≤ kc. Every node gets as many stubs
to be connected as its degree indicates.

Once all the nodes have the corresponding number of stubs the linking process
starts. Two stubs are randomly selected. If they belong to different vertices which are
not connected yet a permanent edge between the nodes is created and both stubs are
removed. Every node adds the new neighbouring node and the edge connecting them
to its neighbours list. The edge with its extremes occupants is listed in a corresponding
structure.

It might happen that some stubs remain unconnected because the only possible
links available are multiple or self-connections. The election of the minimal number
of stubs per node m0 = 2 considerably reduces the probability for this to happen. But
in case the situation arises, how many trials should be performed to be sure that the
networks cannot be fully connected? Hotz observed that successful networks didn’t
report more than ten vain attempts. Thus he imposed an upper limit of fifty failed
trials, after which the network is considered not able to be fully connected.

The impossibility of creating uncorrelated connected networks with the natural
cutoff for γ < 3, the correlation of the created networks, and the degree distribution
were all extensively tested and found to work properly by Hotz in his diploma thesis.



Appendix C

Monte Carlo simulations

Monte Carlo (MC) methods [18, 48] are a very useful tool to investigate complex sys-
tems, for which it is not possible to evaluate the partition functionZ =

∫
drN exp

(−βU(rN )
)

in the canonical (NVT) ensemble. The ratio

N (rN ) =
exp

(−βU(rN )
)

Z
(C.1)

represents the probability density to find the system in a configuration rN . The number
of points ni per unit volume in the configuration space around rNi are proportional
to the fraction between N (rNi ) and the total number of points L—they are in last
term proportional to the Boltzmann factor exp

(−βU(rNi )
)
. This allows to compute

averages of an observable A as

〈A〉 ≈ 1
L

∑
niA

(
ri
N
)
. (C.2)

To generate points in the configuration space with probabilities proportional to the
Boltzmann factor one first starts with a random configuration. A new trial configura-
tion is produced following some specific rules. Should this configuration be accepted?
The most important feature the Monte Carlo method must accomplish is that when-
ever equilibrium is reached the system stays there. This demands that the number of
accepted trials leaving equilibrium equates those accepted trials coming from neigh-
bouring configurations and reaching equilibrium. This condition is known as detailed
balance:

N (o)π(o→ n) = N (n)π(n→ o). (C.3)

The transition probability π(o → n) from the old to the new configuration is the
product of the probability to generate this specific trial configuration α(o → n) times
its probability to be accepted acc(o → n). If the first is symmetric, i.e. α(n → o) =
α(o→ n), which is an usual choice, the detailed balance reads:

acc(o→ n)
acc(n→ o)

=
N (n)
N (o)

= exp (−β (U(n)− U(o))) . (C.4)

There are various possibilities to fulfil this requirement. The choice of Metropolis
[88] which we follow in our simulations, is:

acc(o→ n) =

{N (n)
N (o) if N (n) < N (o)

1 if N (n) ≥ N (o).
(C.5)
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The initial configuration in our simulations is a system with Fréchet dendrons at the
vertices of a triangular lattice with a random orientation. Dendrons are represented by
the interaction-site model, i.e. as a set of spheres whose centers are interacting points.
The lattice constant a and the molecular conformation of the building blocks are fixed
parameters of the model. The former accounts for the density of the sample ρ =
2/
√

3 a2. The Fréchet dendrons are in a given molecular configuration which comes
from the molecular mechanics minimization. It is defined by several parameters: the
distance between the molecular centre and the centers of the rings, the diameters of
the rings and beads in the chains, the length of the lateral arms, and their orientations
with respect to the molecular axis joining two of the rings which crosses through the
molecular centre.

Systems with N ranging from some hundreds to a few thousands molecules are
prepared. The molecular centers are attached to the lattice vertices and the rigid build-
ing blocks take a random orientation among the six equivalent possibilities in the six
fold symmetric lattice.

The simulation starts at a given dimensionless temperature kBT/ε and are slowly
cooled down. At every temperature 500 Monte Carlo steps are performed to equilibrate
the sample after which measurements are taken for 1500 MC steps in which the system
has been found to be stationary. Then the temperature is lowered and the process
repeated.

In a MC step all molecules update their state on average once. Trials configurations
are generated with the attempt of a randomly selected molecule to perform a rotation of
±π/3. The new configuration is accepted following the Metropolis schema described
above. Within this algorithm the temperature is gradually reduced until the system
reaches a stable configuration at low temperatures.

Often several arbitrary coarsening processes emerge simultaneously at different
points in the ordering dynamics. The lack of a preferred direction for the ordered pat-
terns difficult the measurement of order parameters along the cooling process. There-
fore, perfect instances of the stable patterns found are specifically prepared at low
temperatures and heated. Monte Carlo steps are carried out while heating the sys-
tem to account for order parameters. The energy of the system is also tracked in all
simulations.

To improve the efficiency of the algorithm a so-called Verlet list [139], associa-
ted to every site, keeps track of the neighbouring molecules every molecule interact
with. To make the computation of the Lennard-Jones potential feasible the potential
is truncated at a cutoff distance rc = 2.5σ at which the interactions are negligible.
Therefore the Verlet list contains the molecules within a distance smaller than rc from
every lattice site.

To better mimic infinite bulk phases and avoid finite size effects, periodic boundary
conditions are used. The system interacts with copies of itself in all directions as long
as they are within the interaction range. Every particle interacts first with the first
image of all other particles, i.e. with the closest copy of other particles even if they
are not in the same box—see the cartoon in Fig. C.1. If more distant copies, second,
third images, etc. of one molecule were still within the interaction range of a second
molecule, interactions with more than one copy of every particle would be possible.
The length scales of the systems we investigate compared with the interaction range
do not require more interactions than with the first image of molecules. Further details
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Figure C.1: Illustration of the first image algorithm. Nine copies of a system box con-
taining four particles are shown. The coloured particle interacts with the first images
of all other particles—if closer than rc—regardless of the box they are located. The
pair interactions with the first images of all particles are marked with arrows.

of the Monte Carlo technique and improvements in its implementation for molecular
systems may be found in [48, 4].
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