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1. Introduction 
 

The cytoskeleton is a cellular key component that ensures cell stability and intracellular 

organization. It helps to maintain the cell shape and to generate physical robustness, 

especially in cells lacking a cell wall. Within the cell, the cytoskeleton is required to place 

organelles at certain positions, to enable directed transport of molecules, or to generate force. 

Many of these functions require the activity of motor proteins, which travel along the filaments 

like on railways. Thereby, they are able to transport or position all different kinds of cargoes, 

even against concentration gradients. The work presented here, aims at a deeper 

understanding of how such motor proteins specifically recognize their cargoes towards the 

assembly of transport-complexes.  

 
1.1 The cytoskeleton 
 
In eukaryotic cells, microtubules and actin filaments (also called microfilaments) are the 

components of the cytoskeleton that serve as tracks for motor proteins. Microtubules are 

involved in mitotic spindle orientation, in cellular motility, and in intracellular transport 

processes. In contrast, the majority of actin filaments are accumulated below the plasma 

membrane, fulfilling mainly stabilizing functions. Furthermore, actin filaments form the 

contractile ring during cell division, and also participate in intracellular transport (Moseley and 

Goode 2006).  

The architectures of microtubules and actin filaments share some basic properties. Both are 

formed by a linear array of globular proteins. Heterodimers of alpha- and beta-tubulin form the 

microtubule protofilaments, while microfilaments are composed of repeating actin units. The 

filament assembly by a repetition of small subunits guarantees both, a high stability and flexible 

filament architecture. Spatial flexibility is achieved because the individual subunits can diffuse 

rapidly throughout the cell, thereby enabling filament formation or elongation at every 

intracellular region. 

It is of great importance for functionality that the microtubules and actin filaments provide an 

intrinsic asymmetry. Consequently, the protofilaments have distinguishable end points, which 

are referred to as plus and minus ends. Motor proteins that bind to these filaments recognize 

the polarity and are able to move specifically towards one of both end points (for details see 

chapter 1.3 and 1.4) (Alberts et al. 2003).  
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1.2 The actin cytoskeleton in yeast 
 

To understand the special functions and properties of microfilaments in Saccharomyces 

cerevisiae (S. cerevisiae), essential information about the specific features of cell growth and 

division in budding yeast will be summarized below. Budding yeast undergoes an asymmetric 

cell division, with a smaller daughter cell (the bud) growing out of the mother cell at a distinct 

region. The bud emerges in late G1 cell-cycle stage, followed by a phase, where cell growth is 

restricted to the bud tip. Later, in stage G2, the bud starts to grow isotropically along the whole 

surface, until it reaches the mother-cell size. At this point, the daughter is separated from the 

mother cell by a septum formed at the bud neck.  

In S. cerevisiae, microfilaments are enriched in three distinct structures: i) in cortical spots or 

patches, ii) in a collar-like structure at the bud neck axis (the contractile ring) and iii) in long 

fibers or cables spanning along the cell axis (figure 1.1) (Moseley and Goode 2006).  

 

 

Figure 1.1  
Organization of the actin cytoskeleton in S. cerevisiae 

Three actin structures are visible in yeast cells, when analyzing different cell 

cycle stages: cortical actin patches, polarized actin cables, and the cytokinetic 

actin ring. Patches and cables are stable throughout the cell cycle, whereas 

the ring is only visible during cytokinesis. The figure is taken from (Moseley 

and Goode (Moseley and Goode 2006) and shows fixed yeast cells, stained 

with rhodamine phalloidin. 
 

Patches are multi-protein complexes that are involved in endocytosis and accumulate at sites 

of polarized growth (Ayscough 2005). In endocytosis, actin patches play an active role in 

vesicle budding. This process requires the actin nucleation complex formed by Arp2/3p 

(Huckaba et al. 2004), but is independent of myosin-motor proteins (Smith et al. 2001, Waddle 

et al. 1996). It is likely that the filament motility directly helps to separate vesicles from the 

plasma membrane (Kaksonen et al. 2003). Subsequently, the vesicles are transported towards 

endosomal sorting compartments. This transport is also linked to actin filaments but seems to 

be independent of motor-protein activity (Huckaba et al. 2004, Kaksonen et al. 2003, Pelham 

and Chang 2001). 

The second actin structure found in budding yeast is the contractile ring that spans around the 

bud-neck axis. Contractile rings are conserved throughout all animals and fungi and help to 

separate mother and daughter cells during cytokinesis (Moseley and Goode 2006). In yeast the 

contractile-ring formation depends on the accumulation of a septin scaffold (Lippincott and Li 

1998), which recruits most of the factors required for cytokinesis, including actin (Longtine and 

Bi 2003). During cytokinesis the contractile ring seems to contract actively in a motor-protein 

(Myo1p) dependent manner (Lippincott and Li 1998), which narrows the bud neck border and 
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supports cytokinesis. However, contracting the ring does not seem to be essential to complete 

cytokinesis (Bi et al. 1998).  

Finally, the third microfilaments-containing structure present in budding yeast is actin cables. 

The actin cables reach from the bud deep into the mother cell. Each cable is composed of 

multiple actin filaments, organized into bundles of uniform polarity. To maintain this structure, 

the cables are covered with bundling proteins (Asakura et al. 1998, Drubin et al. 1988). Actin 

cables serve as tracks for myosin-motor proteins. During budding, they travel towards the 

filaments plus ends at the bud tip. Among their several cargoes, these motors transport 

vesicles, mRNAs and organelles from the mother cell into the bud (Moseley and Goode 2006). 

Later in cell cycle, the cables appear to be rearranged, so that their ends are pointing towards 

the bud neck. This supports cell-wall formation to divide both mother and daughter cell to 

complete cytokinesis.  

Actin cables are generated when polarity factors assemble at the future bud site and form the 

cable-generating complex (Moseley and Goode 2006). Once the complex is formed, it locates 

at the bud tip and neck. Essential components of the complex are formins (Sagot et al. 2002), 

and profilin (Evangelista et al. 2002, Sagot et al. 2002). These proteins bind to the fast growing 

ends of actin filaments and support their polymerization. However, cable elongation seems to 

be independent of the Arp2/3p complex (Evangelista et al. 2002).  

 

1.3 Dynein and kinesin motor proteins 
 
In total there are three different classes of motor proteins: dynein, kinesins and myosins. In 

terms of the molecular weight, cytoplasmatic dynein is the largest among all motor proteins. 

Dynein forms homodimers and travels towards the minus end of microtubules (Hirokawa 1998, 

Hook and Vallee 2006, Vale 2003). The core of the dynein-motor protein is formed by the 

dynein-heavy chain (DHC), which includes the entire motor domain (figure 1.2). This motor 

domain contains four ATP-binding domains, whose ATPase activities are coupled. 

Consequently, there are several possibilities to regulate the motor activity (Kon et al. 2004, 

Mallik and Gross 2004). Furthermore, the DHC binds to additional regulatory light chains 

(Hirokawa 1998, Kini and Collins 2001, Vallee et al. 2004, Vaughan et al. 2001). Cytoplasmatic 

dynein is not only the largest among all motor proteins, but also the most complex one. There 

are numberless possibilities for regulation, making the identification of general principles, how 

this motor protein binds to its cargo molecules, very difficult.  
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Figure 1.2  
Selection of cargo-transporting motor proteins 
The picture is taken from Vale 2003 (Vale 2003). Generally, catalytic motor domains are shown in blue, 

mechanical amplifiers such as light chains in light blue, coiled-coil regions in beige and tail domains that are 

implicated in cargo attachment are shown in purple. The kinesin motor Unc014/KIF1 can exist as a monomer 

and dimer. 
 
Kinesin motor proteins represent the second class of microtubule-dependent motor proteins. 

Over the time, many different kinesin genes have evolved, which are classified into 14 

subclasses (Lawrence et al. 2004). Kinesins contain a motor domain, a filamentous stalk region 

and a globular tail. In general, the motor represents the domain with the highest conservation. 

Most kinesin subclasses form homodimers, but there are also exceptions, which act as 

monomers or heterodimers with other kinesin subclasses (figure 1.2) (Miki et al. 2005).  

The motor domain can be located at different positions in the polypeptide chain and the 

position of the motor domain defines the directionality of the motor protein. However, the 

majority of the kinesin subclasses have their motor at the N-terminus and travel towards the 
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microtubules plus-end (Miki et al. 2005). Kinesins bind their respective cargo mainly with the 

help of their globular-tail domain or rather indirectly by additional light chains (Hirokawa et al. 

1989, Miki et al. 2005). 

 
1.4 Myosin motor proteins  
 
Myosin-motor proteins are highly conserved within eukaryotic cells and fulfill a vast number of 

different functions. The first myosin proteins had been isolated from muscle tissue (Warrick and 

Spudich 1987). This filament-forming myosin subclass is referred to as conventional myosin. 

The later identified, non-muscular and non-filamentous myosins are called unconventional 

myosins (Warrick and Spudich 1987). Since the present work analyzes myosin-mediated 

transport, it focuses on unconventional myosins only. 

Myosins consist of three distinct regions: an N-terminal motor domain mediating the interaction 

with actin filaments and catalyzing ATP hydrolysis, a regulatory neck region, and a C-terminal 

tail that is responsible for cargo recognition and/or motor dimerization (figure 1.2). In contrast to 

the motor domain, which is conserved throughout all myosin classes, the tail domains are 

highly divergent in their sequence and domain composition (Krendel and Mooseker 2005). The 

myosin superfamily is divided into approximately 20 classes, mainly dependent on differences 

and similarities in their tail organization. The majority of these classes can be found within 

almost all eukaryotic cells and just a few exceptions with a specialized occurrence are known. 

For example the myosin classes III and VI are exclusively found in metazoans, and the classes 

X and XVI are restricted to vertebrates. Myosin VIII, XI, and XIII are solely expressed in plants 

(Berg et al. 2001, Krendel and Mooseker 2005). 

In terms of directionality it was shown that almost all myosins, except those from class VI (Myo-

VI), "walk" towards the plus ends of actin filaments. The reason why Myo-VI travels to the 

filaments minus end is not depending upon its motor domain but on a short insertion in the 

lever arm (Park et al. 2007, Wells et al. 1999). Furthermore, also for the myosin class IX an 

anomalous directionality was observed. This myosin subclass is capable to travel towards both 

ends of the actin filament (Inoue et al. 2002, O'Connell and Mooseker 2003). 

The myosin tail is generally formed by a coiled-coil dimerization- and a globular part at the very 

C-terminus. The potential of the coiled-coil region to dimerize the myosin (heavy) chains varies 

between the different subclasses. Some classes like Myo-V are described to form stable 

dimers by their coiled-coil domains, while members of classes -I, -VI or -IX were shown to be 

single headed, although they also contain regions predicted to form coiled-coils (Krendel and 

Mooseker 2005, Reck-Peterson et al. 2000, Warrick and Spudich 1987). In contrast, Myo-VII 

forms homodimers, but this interaction is independent from the coiled-coil region (Inoue and 

Ikebe 2003). Some of the myosin subclasses, which were identified to be monomeric, can 

dimerize with the help of additional factors. In the case of Myo-VI it was shown that the motor 
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dimerizes as a consequence of cargo binding. Although monomeric Myo-VI is not processive, 

this cargo-dependent dimerization results in processive movement of Myo-VI motors along 

actin filaments, (Iwaki et al. 2006, Park et al. 2006). Nevertheless, some other myosins do not 

require dimerization for processivity. Myo-IX for example is a strictly single-headed motor that 

catalyzes processive movement along actin filaments (Inoue et al. 2002, Post et al. 2002). 

The C-terminal tails of the various myosin subclasses differ not only in regard to their coiled-

coil region, but also with respect to their globular domains, which also evolved individual 

functions and properties. The globular-tail domains generally mediate protein-protein 

interactions (Krendel and Mooseker 2005). Within the myosin superfamily, additional functions 

have emerged for the globular tail. For example, the globular tail of the Drosophila Myo-III has 

an intrinsic kinase activity (Komaba et al. 2003), and may fulfill a direct role in signal 

transduction. Similarly, Myo-IX was shown to contain a GTPase-activating domain for Rho 

coupled G-proteins (Post et al. 1998, Reinhard et al. 1995, Vreugde et al. 2006). Myo-VI is 

involved in a large number of different functions. This myosin motor is active in the nucleus, 

where it enhances polymerase-lI transcription (Vreugde et al. 2006). Furthermore it interacts 

directly with membranes, as a peripheral membrane protein. The binding to membranes is 

mediated by specific interactions of the globular tail with Phosphatidylinositol-4, 5-bisphosphate 

(PtdIns(4,5)P2 )(Spudich et al. 2007). 

 

1.5 Type-V myosins 
 
Type-V myosins are conserved from yeast to human. Different organisms carry a varying 

number of Myo-V genes. While the S. cerevisiae genome contains two homologs (MYO2 and 

MYO4), vertebrates have even up to three distinct genes (MYOVa, MYOVb, and MYOVc) 

(Reck-Peterson et al. 2000). The respective expression pattern of these three distinct 

vertebrate genes is different, albeit with some overlap (Bement et al. 1994). Besides the 

myosin classes -I and -II, type-V myosin is the best characterized class of myosin proteins and 

was the first example for processive actin-based motors (Mehta et al. 1999). In the cell, type-V 

myosins catalyze the continuous transport of organelles, membranous cargoes, secretory 

vesicles, mRNA, and lipids (Reck-Peterson et al. 2000). All type-V myosins share a common 

architecture, containing an N-terminal motor domain, a regulatory lever arm and a C-terminal 

cargo interaction domain. Beside these unifying features, they also show considerable 

differences, for example regarding their cargo binding and processivity (Mehta et al. 1999, 

Reck-Peterson et al. 2001). 
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1.5.1 The motor domain and lever arm 

 

Type-V myosins have an N-terminal motor domain, with one ATP- and one actin- binding site 

(Cope et al. 1996), and the motor domain includes variable loop regions, which may define the 

processivity of the motor protein (Reck-Peterson et al. 2000). Linked to the motor is a 

regulatory neck region with six IQ-motifs that serve mainly as binding sites for calmodulin 

(CaM) (Espreafico et al. 1992, Mercer et al. 1991). CaM binding regulates the stiffness of the 

neck region, which has a direct influence on the motors step length along the actin filament 

(Uyeda et al. 1996). Furthermore, CaM binding is necessary for catalytic activity (Krementsov 

et al. 2004). CaM binds to the neck domain at low Ca2+ levels or even in absence of Ca2+. 

However, in a Ca2+ free situation the tail domain of chicken MyoVa binds to the motor domain 

and thereby generates an inactive, compact conformation (figure 1.3) (Krementsov et al. 2004, 

Liu et al. 2006, Wang et al. 2004). This inhibition becomes released at Ca2+ concentrations in 

the lower micromolar (µM) range, leading to an activation of the motor. On the other hand, 

exceeding Ca2+ concentrations in the millimolar (mM) range lead to a dissociation of CaM from 

the motor, which in turn acts as a break to stop the motor activity (Krementsov et al. 2004, Lu 

et al. 2006). Equally important is an activation mechanism where the motor inhibition by the tail 

domain is released upon cargo binding (Thirumurugan et al. 2006).  

 
Figure 1.3 
Low-resolution structure of the 
inhibited state of MyoVa 
A) Averaged electron micrographs of 

MyoVa in the inhibited state. The 

picture is taken from Liu et al. (Liu et al. 

2006). The lower part represents the 

MyoVa atomic model rendered in 

space filling. The color scheme is the 

following: motor domains red and 

magenta, light chains green, heavy chain component of the lever arm blue, the coiled-coil domain cyan and 

density envelopes for the cargo-binding domain yellow. Adjacent molecules are shown in gray. B) The 

interaction surface of the motor domain and the tail domain are shown with higher magnification. The resolution 

of the shown structure was calculated to be 24 Å. 
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1.5.2 The tail domain - the coiled-coil rich region 

 

Most cargo molecules bind type-V myosins at the C-terminal tail domain. Structurally, the tail 

domain consists of a coiled-coil region of varying length, followed by a globular domain. It is 

generally assumed that the coiled-coil region is responsible for the formation of myosin dimers. 

Consistently, Myo-V dimerization was directly observed by electron microscopy (Cheney et al. 

1993).  

In higher eukaryotes, the coiled-coil region of type-V myosins is alternatively spliced. The tail 

domain of mice MyoVa is composed of the exons A to G (Au and Huang 2002). From these 

exons, the exons B, D and F are tissue dependently spliced (Seperack et al. 1995). The 

resulting splice forms have different cargo specificities. For example, the presence of exon B is 

a prerequisite for dynein light chain (DLC) binding to mouse MyoVa. DLC association stabilizes 

MyoVa dimers (Hodi et al. 2006) and generates additional interaction sites for regulatory 

proteins, like the pro-apoptotic protein Bmf (bcl-2-modifying factor) and the postsynaptic 

scaffolding protein GKAP (guanylate kinase associated protein) (Naisbitt et al. 2000, 

Puthalakath et al. 2001). Additionally, exon F forms one out of two binding sites for 

melanophilin, which links the motor protein to melanosomes (Fukuda and Kuroda 2004, Wu et 

al. 2002). The binding of melanophilin to MyoVa is further described in the next chapter 

(chapter 1.5.3).  

 

1.5.3 The tail domain - cargo complexes on type-V myosins 

 

Over the years, several cargoes of type-V myosins have been identified and great progress 

has been made in the understanding of how these cargoes are connected to the motor protein. 

First insights, which described the role of the myosin-tail domains in cargo binding, came from 

dilute mutant mice. These mice show a pale, or "dilute", hair color and neurological defects 

(Mercer et al. 1991). The observed color phenotype could be backtracked to failures in 

melanosome transport, leading to melanosomes clustering around the nucleus (Provance et al. 

1996, Wei et al. 1997). Several lines of evidence confirmed a direct role of the globular-tail 

domain in melanosome transport. Overexpression of the MyoVa-tail domain results in the dilute 

phenotype, as do some specific mutations within this domain (Huang et al. 1998, Wu et al. 

1998). Furthermore, individually expressed tail domains were observed to localize together 

with melanosomes (Wu et al. 1998). Today, the architecture of the melanosome translocation 

complex is well characterized. MyoVa binds directly to the adapter protein melanophilin. For 

this interaction melanophilin binds to two distinct regions in the MyoVa tail. One of these 

regions is located in the coiled-coil region and the other within the globular-tail domain (Fukuda 

and Kuroda 2004). Melanophilin itself links the motor protein to melanosomes by the 

interaction with Rab27a (Kukimoto-Niino et al. 2008), a peripheral membrane protein, which is 
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anchored at melanosomes via a di-geranylgeranyl modification (Gomes et al. 2003). The 

interaction of Rab27a with melanophilin depends on the binding of GTP to Rab27a, which 

regulates the whole transport event (Wu et al. 2002). The basic translocation complex of 

MyoVa, melanophilin, and Rab27a could be reconstituted in vitro and was shown to move 

processively along actin filaments (Wu et al. 2006).  

Another Rab protein, which is involved in Myo-V dependent transport, is Rab11a. Rab11a was 

shown to associate with both mice MyoVa and -Vb, and with all their splice variants (Roland et 

al. 2009). The association of Rab11a to MyoVa is necessary for the transport of AMPA 

receptors into dendritic spines (Correia et al. 2008). Furthermore Rab11a is linked to the 

recycling of endosomes, one cargo of MyoVb. In this complex, the linkage of MyoVb with 

Rab11a is mediated via the adapter protein Rab11-FIP2 (Hales et al. 2002, Lapierre et al. 

2001). Recently, a homologue of the Rab11 class of proteins, termed Ypt32p, was found to 

interact directly with Myo2p in budding yeast. The interaction of Ypt32p with the motor is a 

requirement for the transport of secretory vesicles into the bud. Ypt32p binds to the globular tail 

of Myo2p at a region, which was earlier identified as the secretory vesicles binding region 

(Casavola et al. 2008, Lipatova et al. 2008, Pashkova et al. 2006). This region is conserved 

from yeast Myo2p to mammalian MyoVa, and it is tempting to speculate that also Rab11a 

binds to MyoVa at this region. 

In S. cerevisiae, Myo2p also transports the vacuole into the emerging bud. For vacuole 

inheritance, Myo2p binds with its globular-tail domain to the adapter protein Vac17p, which 

links the myosin motor to Vac8p, a peripheral membrane protein in the vacuole membrane 

(Ishikawa et al. 2003, Tang et al. 2003). Furthermore, Myo2p is involved in the transport of 

peroxisomes, a mechanism that requires the adapter protein Inp2p (Fagarasanu et al. 2006). 

Myo2p also helps to position the mitotic spindle. For this function, the Myo2p globular tail binds 

to Kar9p. Kar9p in turn interacts with Bim1p that links the myosin complex to microtubules 

(Beach et al. 2000). Other cargoes moved by Myo2p are mitochondria (Altmann et al. 2008) 

and large ribonucleic acid-protein complexes (Chang et al. 2008). However, the exact 

mechanism of how all these proteins are associated to Myo2p is still poorly understood.  

Besides Myo2p, an additional type-V myosin is present in yeast, Myo4p. Myo4p translocates 

several mRNAs into the bud. This leads among other effects to the establishment of different 

mating types between daughter and mother in haploid yeast cells. Furthermore, Myo4p is 

responsible for the inheritance of the cortical endoplasmic reticulum (ER) (Estrada et al. 2003, 

Jansen et al. 1996). Both functions will be described in more detail in chapter 1.7. 
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1.6 Regulation of myosin-adapter interactions 
 

So far, two regulatory mechanisms were described for the interaction of type-V myosins with 

their adapters, phosphorylation and protein turnover. In budding yeast, the transport of almost 

all Myo2p cargoes depends on the protein phosphatase Ptc1p, which seems to have a 

stabilizing effect on the Myo2p adapter proteins (Jin et al. 2008). Furthermore, for the Myo2p-

dependent vacuole transport it was shown that a phosphorylation of the adapter stabilizes the 

vacuole-motor association (Peng and Weisman 2008). The Myo2p tail domain is also a direct 

target for phosphorylation. However, phosphorylation of Myo2p does not seem to have a direct 

influence on its catalytic activity (Legesse-Miller et al. 2006). In addition, Ptc1p has a regulatory 

effect on Myo4p-dependent transport. However, the detailed mechanism underlying the 

regulation of Ptc1p on mRNA and cortical-ER transport remains elusive.  

A phosphorylation-dependent regulation could also be observed for MyoVa from Xenopus 

oocytes. In these oocytes, phosphorylated MyoVa dissociates from melanosomes, while a 

significantly reduced phosphorylation level enables efficient binding (Rogers et al. 1999). 

Besides phosphorylation, type-V myosin-dependent transport is also regulated by protein 

turnover. Several adapter proteins contain so-called PEST sequences. These are regions with 

an enriched occurrence of the residues proline, glutamate, serine, threonine and to a lower 

extend aspartate. PEST sequences represent signals for rapid protein degradation (Rogers et 

al. 1986). The vacuole adapter protein Vac17p contains PEST sequences and degradation of 

Vac17p is necessary to remove the motor from the vacuole (Tang et al. 2003). Melanophilin 

also contains multiple PEST sequences in the MyoVa binding domain. Mutations of these 

sequences lead to an increased protein stability (Fukuda and Itoh 2004). Furthermore, PEST 

sequences are present in the tail domain of almost all vertebrate Myo-V genes. In chicken 

MyoVa it could be shown that this site is sensitive to proteolysis (Espindola et al. 1992, 

Nascimento et al. 1997). For Myo4p from yeast, a PEST site is even found in the motor domain 

(Haarer et al. 1994). 

 

1.7 The yeast type-V myosin Myo4p 
 

The yeast type-V myosin Myo4p represents an excellent model to investigate the molecular 

mechanisms underlying motor-adapter protein interactions. Myo4p directly binds to the adapter 

protein She3p and their interaction is fundamental for all functions of the motor protein, 

especially since other adapter proteins have not been identified for Myo4p. The following 

chapters give a short introduction into the biological importance of Myo4p and She3p. 
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1.7.1 mRNA transport in yeast 

 

Today, one of the best characterized examples for motor-protein dependent mRNA 

translocation is the transport of the ASH1 mRNA in budding yeast. ASH1 codes for Ash1p, a 

transcription inhibitor that specifically suppresses the expression of the HO endonuclease. This 

nuclease catalyzes the recombination of genomic DNA at the MAT locus, thereby promoting 

the mating-type switch in haploid yeast cells (Cosma 2004). ASH1 mRNA is transcribed in the 

mother nucleus. From there it is actively transported into the bud. During the transport, the 

mRNA is translationally silenced and becomes activated just after the anchoring at the bud tip 

(Deng et al. 2008, Paquin et al. 2007). As a consequence, Ash1p is exclusively present in the 

bud repressing the HO endonuclease (Bobola et al. 1996, Jansen et al. 1996, Sil and 

Herskowitz 1996). Thus, although ASH1 mRNA is synthesized in the mother nucleus, mating-

type switching only occurs in the mother cell. 

Mutational experiments and studies disrupting the actin cytoskeleton revealed that ASH1-

mRNA transport requires actin cables and the activity of the type-V myosin Myo4p (Jansen et 

al. 1996, Long et al. 1997, Takizawa et al. 1997). The mRNA translocation machinery mainly 

depends on three core components: the motor protein Myo4p, providing the motile activity, 

She2p, a specific RNA-binding protein, and She3p, the adapter protein linking Myo4p with 

She2p (figure 1.4) (Böhl et al. 2000, Jansen et al. 1996, Long et al. 2000, Munchow et al. 1999, 

Takizawa and Vale 2000). These three proteins form the basis of the transport complex, which 

transports besides ASH1 mRNA up to 30 additional transcripts into the bud. Several of these 

transcripts encode for trans-membrane proteins (Shepard et al. 2003). Selectivity for 

transported mRNAs is achieved by She2p, which recognizes distinct stem-loop structures on 

its RNA targets (Böhl et al. 2000, Chartrand et al. 2002, Olivier et al. 2005). These stem-loop 

structures are termed localization or zip-code elements. 

Besides the composition of the translocation particle, no detailed information is available on 

how the ASH1-mRNA-translocation particles are assembled. Recently, it was found that the 

RNA binding protein She2p shuttles through the nucleolus of the mother cell, and that this 

shuttling is necessary to guarantee translational silencing of the mRNA transcript during the 

transport (Du et al. 2008, Shen et al. 2009). It is thought that She2p recognizes its target 

mRNA within the mother cell nucleus. After the complex is exported from the nucleus, the 

adapter protein She3p binds She2p. The binding region for She2p is located in the C-terminal 

half of She3p, while the N-terminal part of the adapter interacts with the tail domain of Myo4p 

(Böhl et al. 2000). Finally, the assembled complex translocates into the bud and is 

subsequently anchored at the bud tip. The binding of She3p to Myo4p is a prerequisite for the 

transport. Cells lacking She3p show a random distribution of all components of the 

translocation complex, including Myo4p (Jansen et al. 1996). 
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Furthermore, the nucleolar protein Loc1p was identified to bind to ASH1 mRNA and to be 

involved in ribosome biogenesis (Long et al. 2001, Urbinati et al. 2006). Cells lacking Loc1p 

show failures in translational repression of ASH1 mRNA in the mother cell (Komili et al. 2007). 

The exact mechanism how Loc1p controls translation remains unknown. But it was 

hypothesized that Loc1 helps to generate a certain ribosome subtype, which may be necessary 

for translation regulation (Komili et al. 2007). Other factors, found to be involved in the 

translational control of ASH1 mRNA are the cytoplasmic RNA-binding proteins Khd1p and 

Puf6p (Deng et al. 2008, Gu et al. 2004, Hasegawa et al. 2008, Irie et al. 2002). These proteins 

directly interfere with ribosomal initiation factors and their function in translational control is 

regulated via phosphorylation (Deng et al. 2008, Paquin et al. 2007). These findings represent 

the first concrete example of how Ash1p synthesis is regulated by intracellular signaling.  

 

 
Figure 1.4 
Functions of Myo4p  
Shown is a dividing yeast cell with the outgrowing bud at the right side. The motor protein Myo4p (in blue) 

travels along actin filaments towards the bud tip. Within the cytoplasm, Myo4p is attached to the adapter protein 

She3p (in yellow). For mRNA transport, She3p binds to the RNA binding protein She2p (in green). The complex 

of all three proteins together with the mRNA is transported towards the bud. After reaching the bud tip, the 

complex becomes anchored and translationally activated (Böhl et al. 2000, Deng et al. 2008, Gonzalez et al. 

1999, Jansen et al. 1996, Long et al. 2000, Munchow et al. 1999, Paquin et al. 2007, Takizawa and Vale 2000). 

Furthermore, Myo4p is involved in cortical-ER inheritance. For this transport, Myo4p also interacts with She3p, 

but it is unknown in which way the motor complex is attached to the cortical ER. However, She2p is not 

necessary for the ER inheritance although it directly associates with the ER membranes (Aronov et al. 2007, 

Estrada et al. 2003, Schmid et al. 2006).  
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Besides their function in mRNA transport, Myo4p and She3p are also responsible for the 

inheritance of the endoplasmic reticulum. This transport is independent of She2p but functions 

in parallel to mRNA transport (Estrada et al. 2003).  

 

1.7.2 Inheritance of the cortical endoplasmic reticulum in yeast 
 

The ER in budding yeast is distributed in two different structures: the perinuclear and the 

cortical ER (Estrada de Martin et al. 2005). As the name suggests, perinuclear ER is located 

around the nucleus and it is continuous with the nuclear envelope. In contrast, the cortical ER 

is localized at the cell periphery, just below the plasma membrane. It forms an interconnected 

tubular network, which shares structural similarity to the ER in higher eukaryotes. Both ER 

subtypes are connected by large tubules that span through the cytoplasm, forming a single 

intraluminal space (Koning et al. 1993). In contrast to higher eukaryotes, the ER dynamics in 

yeast depend mainly on the actin cytoskeleton (Prinz et al. 2000) and Myo4p catalyzes the 

inheritance of the cortical ER (Estrada et al. 2003). This transport takes place shortly after the 

bud appears during the early S-phase. The ER migrates towards the bud in elongated tubules 

that are referred to as “ER segregation structures” (Schmid et al. 2006). These structures align 

along the mother-bud axis before they are actively transported into the daughter cell. After 

reaching the bud tip, the cortical ER becomes anchored at the plasma membrane, from where 

it extends throughout the bud and forms a polygonal cortical ER network (Estrada de Martin et 

al. 2005). 

In yeast, several proteins were described to be required for the inheritance of the cortical ER 

and the mechanisms of how these proteins influence the whole process are manifold. It was 

shown that a knock-out of ICE2, coding for an integral membrane protein, strongly affects the 

overall ER structure and leads to a defective cortical-ER inheritance (Estrada de Martin et al. 

2005). It seems likely that the observed ER-inheritance defects are rather indirect, due to 

failures in the ER organization. Similar effects are observed for mutations in SEC27 that is 

involved in the membrane exchange between ER and golgi, and for SRP101 and SRP102, 

both factors targeting proteins into the ER-lumen (Prinz et al. 2000). For these three mutants, a 

defective ER structure was described, accompanied with failures in ER inheritance.  

In cells with a deficiency in vesicle anchoring, cortical-ER inheritance is also disturbed 

(Wiederkehr et al. 2003). The exocyst is a complex that was shown to be necessary for 

tethering secretory vesicles to the plasma membrane (TerBush et al. 1996). As a 

consequence, factors of the exocyst like Sec3p, Sec5p, Sec8p and Exo70p are associated with 

defects in vesicle anchoring as well as in the cortical-ER inheritance (Wiederkehr et al. 2004, 

Wiederkehr et al. 2003). Furthermore, in screens searching for disturbances in ER inheritance, 

AUX1 was identified. Since C-terminal deletions in Aux1p lead to vacuole fragmentation and 

membrane accumulation, this protein seems to have several functions in the structural 
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maintenance of organelles. A loss of Aux1p does not impair the overall ER structure, but 

disrupts cortical ER inheritance. The mechanism of how aux1 mutations are connected to ER 

inheritance is still unclear (Du et al. 2004).  

MYO4 knock-out strains as well as strains carrying Myo4p mutants with an inactive motor 

domain showed defects in ER inheritance and resulted in reduced bud ER levels (Estrada et al. 

2003). In addition, the transport of cortical ER by Myo4p depends on the presence of the 

adapter protein She3p (figure 1.4). So far it is unclear, how Myo4p is linked to the ER, but both 

Myo4p and She3p co-fractionate with the ER membrane, indicating a close association 

(Estrada et al. 2003). In contrast to mRNA transport (see section 1.7.1), neither the RNA-

binding protein She2p nor the C-terminus of She3p (the She2p-binding region) are required for 

cortical ER transport (Estrada et al. 2003). However, She2p and its associated mRNAs bind 

independently from Myo4p and She3p to ER membranes, and the transport of ER and She2p 

is catalyzed simultaneously (Aronov et al. 2007, Schmid et al. 2006). 

 

1.8 Structure of the Myo2p globular-tail domain 
 

While this thesis was performed, the laboratory of Lois Weisman published the crystal structure 

of the Myo2p globular tail (Pashkova et al. 2006). This represents the only high-resolution 

structure of a globular tail from type-V myosins. The structure led to interesting insights into 

how Myo2p mediates specific cargo interactions. The Myo2p globular tail (figure 1.5) consists 

of the subdomains I and II, which are connected by a long linker helix. Furthermore, the two 

subdomains are enclosed by a prominent loop, forming a bracket around the entire globular-tail 

domain.  

Previous mutational analyses identified individual cargo-binding regions within the Myo2p 

globular tail. The adapter protein for the vacuole transport binds to residues located in 

subdomain I (Catlett et al. 2000), while secretory vesicles are associated with subdomain II 

(figure 1.5) (Lipatova et al. 2008, Pashkova et al. 2005, Schott et al. 1999). It is interesting to 

note that the areas for vacuole and secretory-vesicle binding are located at opposite sides of 

the globular-tail domain. This arrangement allows in principle a simultaneous cargo binding to 

both binding sites (figure 1.5).  

Interference experiments with the Myo2p globular tail revealed interesting insights into the 

mechanism underlying cargo binding by this domain. In these experiments, the entire globular 

tail or the respective subdomains were overexpressed in yeast cells. If these overexpressed 

domains bind efficiently to selected cargo molecules, these cargoes should no longer be 

available for the binding to endogenous, full-length Myo2p motor and should subsequently not 

be incorporated in functional transport complexes.  
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Figure 1.5 
Crystal structure of the Myo2p globular-tail domain  

Cylinder representation of the globular-tail domain of Myo2p (PDB code 2F6H, Pashkova et al. 2006). The 

structure is mainly formed by alpha-helical regions. Two subdomains can be distinguished. Subdomain I is 

highlighted in blue and subdomain II in red, each forming a compact five-helical bundle. Both subdomains are 

connected by a long linker helix (highlighted in yellow) and a long loop (in gray) that clamps both subdomains 

together. Residues that were identified to be involved in vacuole binding (arrow 1) and secretory vesicle 

binding (arrow 2) are highlighted in green (Catlett et al. 2000, Lipatova et al. 2008, Pashkova et al. 2005, 

Schott et al. 1999). The picture was generated using the program Pymol (DeLano 2002). 
 

The overexpression of the entire globular-tail domain resulted in cell lethality. This is most likely 

due to failures in the transport of secretory vesicles (Reck-Peterson et al. 1999). More 

interesting were results from experiments, in which both subdomains I and II were 

overexpressed simultaneously. In contrast to the overexpression of the entire globular-tail 

domain these cells are viable, indicating a different cargo-binding pattern of the entire globular 

tail compared with the individual subdomains. This result was rather surprising since the two 

subdomains were shown to interact closely in vitro (Pashkova et al. 2005). However, these 

cells were defective in the transport of the vacuole but not of secretory vesicles. Surprisingly, 

the vacuole transport was not affected by an exclusive overexpression of subdomain I, 

although this domain contains all vacuole binding sites identified so far (Pashkova et al. 2005). 

Together, these experiments suggest that the connection of the two subdomains, forming the 

Myo2p globular tail is important for the binding to the vacuole and the secretory vesicles. 

However, it is still not possible to comprehend the exact mechanisms of cargo binding by the 

globular-tail domain of type-V myosins.  
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1.9 Objectives 
 
Motor protein dependent transport represents a conserved mechanism that is important to 

establish cell polarity, the generation and maintenance of cell morphology and motility (Lopez 

de Heredia and Jansen 2004, Vale 2003). The interaction of motor proteins with the 

cytoskeleton filaments and their force generation towards the catalysis of movement is well 

understood. However, only little is known about the mechanisms that guarantee specific cargo 

recognition by these motor proteins. In higher eukaryotes, transport complexes are composed 

of dozens to hundred different components (mainly mRNAs and proteins) and thus have a 

rather complex architecture (Angenstein et al. 2005, Kanai et al. 2004, Villace et al. 2004). This 

high complexity makes the identification of general mechanisms concerning the complex 

formation very complicated. The present study investigates general principles underlying the 

generation of specific cargo complexes with the help of a comparabe simple and well-defined 

model system from yeast.  

Today, the Myo4p-dependent transport in budding yeast represents one of the best-

characterized translocation events. Within this complex Myo4p and its adapter She3p are the 

essential components for the transport of cortical-endoplasmic reticulum and mRNAs during 

asymmetric cell division (chapter 1.7 and figure 1.4). Here, the binding of Myo4p to She3p 

represents a crucial step towards the formation of specific translocation particles. Thus, 

studying the interaction of Myo4p and She3p might help to obtain detailed insights into general 

processes of type-V myosin-cargo recognition.  

The main focus of this work was the characterization of molecular principles underlying Myo4p-

mediated complex assembly with the adapter protein She3p. This study involved biochemical, 

biophysical, and structural experiments as well as functional studies in living cells. The choice 

of such a multidisciplinary approach was designed to generate a detailed understanding of the 

motor-adapter interaction and to provide cross-validation of mechanistic insights from different 

experimental angles.  
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2. Results 
 
2.1 Expression and purification of the Myo4p-tail and She3p-N 
 

This study aims to understand the assembly of the intracellular transport complex formed by 

Myo4p and She3p in budding yeast. Previous studies identified the domains, which mediate the 

motor-adapter interaction, as the C-terminal tail domain of Myo4p (Myo4p-tail; aa 978-1471) and 

the N-terminal domain of She3p (She3p-N; aa 1-243) (Böhl et al. 2000). In order to characterize 

their interaction in detail, these fragments were studied with biochemical and biophysical 

approaches. Recombinant protein fragments of the Myo4p-tail and the N-terminus of She3p were 

expressed in Escherichia coli (E. coli) and purified to 95 % purity using standard 

chromatographic techniques. All details on the purification and the protein constructs used in this 

study are summarized in the chapters 4.2.2, 4.2.3 and 4.9.  

 
2.2 Myo4p and She3p form stable complexes 
 

For a quantitative assessment of complex formation, the Myo4p-She3p interaction was 

characterized using Surface Plasmon Resonance. For an SPR experiment, one interaction 

partner is immobilized to a chip surface (the ligand), and a second protein is floated over the 

prepared surface (the analyte). Binding of the analyte to the immobilized ligand results in an 

increase of the response signal that can be traced online. When the equilibrium between 

complex formation and dissociation is reached, the response signal stops increasing and 

stabilizes at a certain level. After injection stops, the surface is washed with buffer, resulting in 

dissociation of the complexes. The dissociation reaction can be traced by the reduction of the 

response signal over time. Under good experimental conditions, on-rates (Kon) and off-rates (Koff) 

can be deduced from these binding experiments. Equilibrium-dissociation constants (Kd) of 

binding reactions can either be calculated directly from these on- and off-rates (Kd = Koff/Kon) or 

be deduced from steady state response signals after repeated injections with increasing analyte 

concentrations and the plot of the equilibrium response signals versus protein concentration 

(figure 2.1-B and C). 

The interaction of the Myo4p-tail fragment (figure 2.1-A) and She3p-N was studied using SPR 

experiments with She3p-N immobilized to the chip surface and Myo4p-tail as the analyte. 

Experiments were performed in three replicates and revealed an average Kd of 58 ±16 nM, 

indicating a strong interaction (figure 2.1-B and C).  

The stability of Myo4p-tail-She3p-N complexes was also assessed. From the dissociation 

reaction no Koff could be calculated, most probably because the complex formation represents a 

multi step process. Instead, the half-life of the complex was deduced directly from the time point 

at which the response level dropped to the half-maximal value. For the Myo4p-tail-She3p-N 
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complex an average half-life time (Rmax1/2) of 52 ± 26 s was measured (figure 2.1-D). It has to be 

mentioned that in these experiments the measured half-life was dependent on the analyte 

concentration. In order to determine a representative value for the complex stability, dissociation 

curves from varying concentrations were analyzed, resulting in a relatively large standard 

deviation. 

 

 
Figure 2.1 
SPR analysis of the Myo4p-tail-She3p-N interactions 
A) Cartoon representation of the Myo4p-tail fragment used in the experiment. B) Representation of a typical SPR 

response curve of She3p-N and Myo4p-tail interaction from a multi-injection experiment. RU indicates the 

measured SPR signal in response units. C) Plot of the response units at equilibrium against the respective 

Myo4p-tail concentrations. The curve was fitted using the langmuir isotherm (red curve) to obtain the equilibrium-

dissociation constant of the interaction. The depicted dissociation constant (Kd = 58 ± 16 nM) indicates the mean 

value of three independent experiments. D) The response signal over time during complex dissociation is shown. 

Response units were normalized and used to determine the time point, at which half the complexes were 

disassembled (Rmax1/2). The complex-half-life time of 51.7± 25.6 s represents the mean value from three 

independent experiments. ± is indicating the standard deviation.  

  

2.3 The Myo4p-tail can be divided into three parts 
 
Previous studies identified the globular, C-terminal tail domain of Myo2p as the main binding site 

for several adapter proteins (see chapter 1.5.3, 1.6 and 1.8). Since a similar behavior is also 

assumed for Myo4p, the corresponding globular domain of the Myo4p-tail was identified. 

For this, purpose a limited proteolysis experiment was performed with 50 µg of the Myo4p-tail 

and 0.5 µg of the enodproteinase Glu-C (figure 2.2-A). The reaction revealed a stable, protease 

resistant fragment of approximately 45 kDa. EDMAN sequencing identified the N-terminus of this 

cleavage product as residue 1091 of the Myo4p sequence. Combining this result with secondary-

structure predictions revealed that the Myo4p-tail can be subdivided into three parts, a potential 

N-terminal coiled-coil domain, the C-terminal cleavage product (the globular tail) and a rather 

unstructured region (the rod domain), linking the coiled-coil with the globular tail (figure 2.2-B). 
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Figure 2.2 
Limited proteolysis of the Myo4p-tail  
A) After proteolysis with the protease Glu-C, a stable cleavage product of approximately 45 kDa was observed by 

SDS-PAGE. B) Subsequent EDMAN sequencing revealed the N-terminus of the cleavage product as residue 

1091 of the Myo4p sequence. Given that the coiled-coil region is predicted to range from residues 978-1042, the 

Myo4p-tail can be subdivided into the three domains: the coiled-coil, a protease sensitive rod region, and the 

protease resistant cleavage product, indicated as the globular tail. 
 

2.4 The Myo4p-tail contains two distinct binding sites for She3p  
 

To locate the She3p binding region within the Myo4p-tail, different Myo4p constructs were 

generated and tested for their ability to interact with She3p-N. Constructs consisting of the 

isolated coiled-coil domain (Myo4p-CC; aa 978-1042), the globular-tail domain (Myo4p-GT; aa 

1091-1471), or the globular tail and rod region (Myo4p-RGT; aa 1042-1471) were generated. To 

test if any of these fragments are able to bind to She3p, they were used in SPR experiments with 

immobilized She3p-N (figure 2.3-A).  

In a first set of experiments, the interaction of the Myo4p-GT to She3p-N was analyzed. 

Surprisingly, even at Myo4p-GT concentrations exceeding 5 µM no interaction was detected.  

In contrast, efficient binding to She3p-N was observed for the Myo4p-CC and the Myo4p-RGT 

with respective binding constants of Kd = 423 ± 26 nM and Kd = 605 ± 115 nM (figure 2.3-B). 

Because both fragments do not overlap in their sequence, it can be concluded that She3p binds 

to Myo4p at two non-overlapping regions. Since the globular tail alone does not bind to She3p, 

one of these regions may be localized within the rod region. The other region is situated in the 

coiled-coil domain of Myo4p. Furthermore, both interaction sites have a reduced affinity to She3p 

compared to the entire Myo4p-tail (figure 2.1-B and C).  

In summary, two non-overlapping She3p binding regions could be identified within the Myo4p-

tail. Both have a lower affinity to She3p than the entire tail domain. Therefore, it is likely that the 

simultaneous She3p binding to both regions is necessary to achieve full binding efficiency. The 

finding that the Myo4p-GT is not involved in cargo binding was rather unexpected and contrasts 

observations for Myo2p and type-V myosins from higher eukaryotes, where the globular-tail 

domain is the main cargo interaction site. 
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Figure 2.3 
SPR analysis of the interaction between She3p-N and different Myo4p fragments 
A) The cartoon represents the Myo4p fragments used in the SPR experiments. The experiments revealed no 

binding between the Myo4p-GT and She3p-N. In contrast, both the Myo4p-RGT and the Myo4p-CC showed 

considerable binding to She3p-N. B) and C) Representative plots of the response signals at equilibrium against 

the concentration are shown for Myo4p-RGT and Myo4p-CC. RU indicates response unit. The red line indicates 

the fit curve when applying the langmuir isotherm. The highlighted equilibrium dissociation constants (Kd) 

represent the average from three independent experiments, with ± indicating the standard deviation. 
 

2.5 The coiled-coil region stabilizes Myo4p-She3p complexes 
 

For a detailed characterization of the Myo4p-She3p complex, their interaction was further 

analyzed by pull down experiments (figure 2.4). For this purpose, His-tagged She3p-N was 

immobilized on Ni-sepharose beads and incubated with the Myo4p-tail fragment (figure 2.4-A). 

Afterwards, the beads were extensively washed and She3p-N was eluted from the beads by an 

excess of imidazole. SDS-PAGE was used to analyze a potential co-elution of Myo4p-tail 

fragments with She3p-N. Using this experimental setup, an interaction between She3p-N and the 

Myo4p-tail could be detected (figure 2.4-B). In contrast, no interaction was detected between 

She3p-N and the Myo4p-RGT using the same experimental setup. Since this fragment interacted 

with She3p-N in the SPR experiments (compare figure 2.3-B with figure 2.4-B), this result was 

rather surprising. 

Because of extensive washing steps in pull-down experiments, transient protein interactions may 

not be detectable. To test if a potential difference in complex half-life could explain the observed 

discrepancy between the pull-down and SPR experiments, the Rmax1/2 values from She3p-N 

complexes with the two Myo4p fragments (Myo4p-tail and Myo4p-RGT) was investigated. This 

comparison revealed that complexes with the Myo4p-RGT had an approximately 10-fold shorter 
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half-life of Rmax1/2 = 5.0 ± 1.2 s compared to complexes with the Myo4p-tail (Rmax1/2 = 51.7 ± 25.6 

s, figure 2.4-C). The different complex stabilities might explain why no interaction of the Myo4p-

RGT and She3p-N could be observed in the pull down reactions. It is likely that a significant 

proportion of Myo4p-RGT simply gets lost during the individual washing steps.  

 

 

Figure 2.4 
Complexes of the She3p-N with the Myo4p-tail 
and the Myo4p-RGT have different stabilities 
A) Cartoon representation of the Myo4p fragments 

used in the experiment. B) Ni-sepharose pull-down 

reactions of His-tagged She3p-N and Myo4p 

fragments. The label input indicates the proteins 

added to the reaction, wash represents the final 

wash step and elution indicates the elution fraction 

after incubating the beads with imidazole. The 

analysis revealed an elution of the Myo4p-tail 

together with She3p-N (indicated by the arrow). In 

contrast, the Myo4p-RGT failed to co-elute with 

She3p-N. The right half of the PAGE shows control 

reactions without She3p-N. C) Normalized SPR 

response signals during complex dissociation of 

She3p-N with the Myo4p-tail (blue) and the Myo4p-

RGT (red). The table quotes the time-point at which 

50 % of the complexes have dissociated (Rmax1/2). 

 

The observed higher stability of the She3p-Myo4p-tail complex might be explained by a 

synergistic binding of She3p-N to both regions, the coiled-coil and the rod. Consequently, the 

coiled-coil lacking Myo4p-RGT does not form stable complexes with She3p. However, the 

increased complex stability might also be a result of Myo4p-tail dimerization by the coiled-coil 

region within the complex. If She3p binds to two Myo4p-tail molecules simultaneously, the 

dissociation from one of them will not necessarily result in complex disassembly. In contrast, the 

Myo4p-RGT contains no coiled-coil domain and would therefore be unable to form dimers. This 

aspect will be investigated in more detail in the chapters 2.7 and 2.9. 

 

2.6 The residues 1056 and 1057 of Myo4p are required for She3p binding 
 

Chapter 2.5 showed that the interaction between the Myo4p-tail and She3p-N is detectable in 

pull-down reactions. This approach offers the possibility to characterize potential effects of 

varying buffer conditions on the Myo4p-She3p complex formation. Performing the pull-down 

reaction in the presence of 0.1 % Triton X-100 revealed that the Myo4p-tail (figure 2.5-A) did not 
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co-elute with She3p-N in detergent-containing buffer (compare figure 2.5-B and C). This result 

suggests a hydrophobic character of the interaction. If the Myo4p-She3p complex is indeed 

formed by hydrophobic interactions, repeating the pull down assay under high salt conditions 

should not disrupt complex formation. Although reduced, an interaction of the Myo4p-tail and 

She3p-N could still be detected when the pull-down reaction was performed with 1 M NaCl 

present in the reaction buffer (figure 2.5-D), indicating a hydrophobic contribution for the 

interaction. 

Subsequently, the Myo4p coiled-coil and rod region was analyzed for hydrophobic regions using 

the program “ProtScale” from the ExPASy Proteomics Server (Kyte and Doolittle 1982). This 

investigation revealed an accumulation of hydrophobic residues around residue 1060 of the 

Myo4p sequence (figure 2.5-F). If this region participates in She3p binding, the mutation of one 

or more hydrophobic residues should have a detectable effect upon complex formation. 

Therefore, two mutations were introduced into the Myo4p-tail (F1056R and I1057R), both 

replacing hydrophobic against charged residues (figure 2.5-A). In the pull down reaction, the 

mutated fragment (Myo4p-tailF1056R,I1057R) failed to interact with She3p-N under standard 

conditions (figure 2.5-E).  

In summary, these results indicate a hydrophobic contribution for the protein interaction, involving 

a distinct region of the rod. Furthermore, the experiments with the mutated fragment Myo4p-

tailF1056R, I1057R revealed that the coiled-coil domain alone is not sufficient to form stable 

complexes in the pull-down reactions. 

 

 
Figure 2.5 
She3p binds to a hydrophobic region of the rod  
A) Cartoon representation of the Myo4p fragments used in the experiment. B-E) Pull-down reactions between 

immobilized She3p-N and Myo4p-tail fragments at varying buffer conditions. While the Myo4p-tail bound 

efficiently to She3p-N at standard conditions (B), no binding of the Myo4p-tail was detected in detergent 

containing buffer (0.1 % Triton-X 100; C). Under high salt conditions (1 M NaCl) an interaction between the She3-

N and the Myo4p-tail was observed (D). In contrast, the reactions with the Myo4p-tailF1056R,I1057R and She3p-N 

under standard conditions did not reveal binding (E). F) A hydrophobicity blot according to Kyte and Doolittle 

(Kyte and Doolittle 1982) indicates a hydrophobic region around position 1060 in the Myo4p sequence.  
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2.7 The Myo4p-tail is strictly monomeric 
 

Analytical ultracentrifugation experiments (AUC) were performed in collaboration with Dr. Klaus 

Richter from the department of Chemistry of the Technical University of Munich, who also 

performed the data analysis. AUC results are described here because they are important for the 

understanding of this study. 

The Myo4p coiled-coil domain contains one binding site for She3p and is important for the 

Myo4p-She3p complex stability. On the other hand, pull-down experiments with the mutant 

Myo4p-tailF1056R,I1057R fragment revealed that the coiled-coil domain alone is not sufficient to form 

stable complexes with She3p-N. Besides the obvious possibility that both interaction regions 

have to bind synergistically, a second, more indirect scenario is imaginable, in which the coiled-

coil domain might affect She3p binding by promoting dimerization of the motor protein. If the 

presence of dimeric Myo4p is important for stable complexes with She3p, a deletion of the 

coiled-coil dimerization domain might not only affect direct She3p binding. It would also destroy 

the correct oligomeric state required for complex formation. 

Type-V myosins were described to form constitutive, dimeric motor proteins. Therefore, most of 

the type-V myosin sequences contain a theoretical coiled-coil region, which include several 

hundred residues. However, a prediction of coiled-coil regions in the Myo4p sequence with the 

“Coils” algorithm from the ExPASy Proteomics Server (Lupas et al. 1991) revealed an unusually 

short coiled-coil region, especially when compared to the predicted coiled-coil regions of other 

type-V myosins like Myo2p or MyoVa (figure 2.6-A). This short predicted coiled-coil domain in 

Myo4p of only 31 amino acids length raised the question whether Myo4p is indeed able to form 

stable dimers (as generally expected for type-V myosins). To characterize the oligomeric state of 

Myo4p, AUC experiments were performed with the Myo4p-tail, using concentrations from 5 to 50 

µM.  

In sedimentation velocity experiments with the Myo4p-tail (figure 2.6-B), one single oligomeric 

species was detected (figure 2.6-C). The sedimentation profiles from three different 

concentrations, in which the protein distribution is blotted against the radius of the measuring cell 

at different time points, revealed just one single reversal point. This indicates that for all 

measured concentrations only one oligomeric species of the Myo4p-tail was present (figure 2.6-

C). Subsequently, the sedimentation profiles were used to determine the sedimentation 

coefficients for the Myo4p-tail. This calculation revealed one common sedimentation coefficient 

of 3.7 Svedberg (S) for all three concentrations, indicating that the Myo4p-tail forms one stable, 

oligomeric species at all concentrations.  
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Figure 2.6 
Determination of the oligomerization state 
of the Myo4p-tail 
A) Coiled-coil prediction for the type-V 

myosins Myo4p, Myo2p and MyoVa. The plot 

indicates the coiled-coil probability against the 

protein sequence (Lupas et al. 1991). B) 

Cartoon representation of the Myo4p-tail 

fragment used in the AUC experiment. C) 

Protein distribution during sedimentation 

velocity experiments with three different 

concentrations. The absorption is plotted 

against the radius of the measuring cell. The 

curves from left to right represent the protein 

distribution at increasing time points. The 

arrows highlight the reversal point within the 

curves. The Svedberg coefficient calculated 

from the curves was 3.7 S for all 

concentrations D) The sedimentation profile 

after sedimentation equilibrium experiments. 

The graphs indicate the absorption against 

the radius of the measuring cell at 

equilibrium. The different concentrations are 

highlighted by different symbols and colors. 

The profiles from all three concentrations 

represent an exponential distribution and 

could be fitted to molecular weights between 

51.9 and 57.7 kDa.  
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In sedimentation equilibrium experiments the molecular weight of the Myo4p-tail was determined 

(figure 2.6-D). The experiments were performed at a low centrifugal speed, so that the 

sedimentation is balanced by diffusion throughout the entire column, resulting in a protein 

distribution that fits an exponential distribution (Golemis and Adams 2005). Since the 

sedimentation velocity experiments revealed one single oligomeric species, the sedimentation 

profiles at equilibrium could be used to fit the molecular weight of the Myo4p-tail directly. This 

analysis revealed a molecular weight of approximately 55 kDa, which is almost identical to the 

calculated mass of the monomeric Myo4p-tail of 56.3 kDa. From these experiments it can be 

concluded that the Myo4p-tail is strictly monomeric in solution. 

 
2.8 The Myo4p-tail forms homodimers when linked to artificial dimerization domains 
 

Except Myo4p, all type-V myosins studied by now form stable dimers via their coiled-coil regions. 

A stable myosin dimerization is required to catalyze processive movement as shown for mouse 

and chicken type-V myosins (Sellers and Veigel 2006). Generally, dimeric myosins travel along 

the actin filament by a hand-over-hand mechanism, ensuring a permanent attachment to the 

filament by at least one motor domain. Therefore, Myo4p dimerization may take place after 

binding to She3p. Such a mechanism would be consistent with the prolonged complex stability of 

the Myo4p-tail compared to the Myo4p-RGT (figure 2.4). However, if this hypothesis is false, and 

She3p does not mediate a dimerization of Myo4p, an artificial dimerization of Myo4p would be 

likely to result in sterical hindrance and thus would interfere with complex formation. To test 

whether Myo4p dimerization is compatible with complex formation, heterologous dimerization 

domains were used to replace the coiled-coil region of the Myo4p-tail. Subsequently, it was 

tested if these dimeric Myo4p fragments are able to interact with She3p. The dimerization 

domains used in this study were the leucine zipper region of Gcn4p (Myo4p-GCN4) and the 

Glutathion-S-Transferase (Myo4p-GST, figure 2.7-A). Both domains have been described to 

mediate stable homodimerization.  

To test, whether the introduced domains are capable to dimerize the RGT domain of Myo4p, size 

exclusion chromatography was performed (figure 2.7-B). The Myo4p-tail and the Myo4p-RGT 

elute from size-exclusion chromatography at the expected volumes for monomeric proteins 

(figure 2.7-B), suggesting that the Myo4p-RGT is present in a monomeric state like the Myo4p-

tail (chapter 2.7). A comparison of the elution volumes of the Myo4p-GCN4 and the Myo4p-tail 

revealed that the Myo4p-GCN4 eluted at a considerably lower volume, indicating a higher 

molecular weight (figure 2.7-B). Since both fragments share an almost identical calculated 

molecular weight (56.3 kDa and 55.2 kDa respectively, figure 2.7-A), this shift most likely 

indicates efficient dimerization of the Myo4p-GCN4. The Myo4p-GST possesses a higher 

molecular weight compared to the other fragments used in the assay. Monomeric Myo4p-GST 

has a molecular weight of 75 kDa and the monomeric protein should elute at a volume between 

the dimeric Myo4p-GCN4 dimer and the monomeric Myo4p-tail. However, in size-exclusion 
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chromatography Myo4p-GST elutes at the lowest volume of all Myo4p-fragments tested, 

indicating a stable dimeric state of Myo4p-GST.  

 

 

Figure 2.7 
Heterologous dimerization domains 
force the Myo4p-tail into a dimeric 
state 
A) A cartoon representation of the 

engineered Myo4p fragments, including 

their calculated molecular weight. B) The 

comparison of the elution profiles from 

size-exclusion chromatography of the 

Myo4p-GCN4 and the Myo4p-GST with 

the monomeric Myo4-tail and Myo4p-

RGT revealed a dimeric state for both 

engineered Myo4p-hybrid fragments. 

 

2.9 Artificially dimerized Myo4p fragments bind to She3p and form stable complexes 
 

To test if the artificially dimerized Myo4p fragments can be incorporated into complexes with 

She3p, the potential interaction of the Myo4p-GCN4 and the Myo4p-GST with She3p-N was 

analyzed by SPR. Therefore, She3p-N was immobilized as ligand as described in chapter 2.2. In 

these experiments, both artificially dimerized constructs efficiently bound to She3p-N with a Kd of 

approximately 300 nM (Myo4-GCN4: Kd = 281 ± 66 nM and Myo4p-GST: Kd = 330 ± 31 nM; 

figure 2.8). Surprisingly, these Kd values were slightly lower than the value measured for Myo4p-

RGT (Kd = 602 nM, figure 2.3-B), which contains the same She3p interaction site. Thus, artificial 

dimerization of Myo4p is not only compatible with the formation of complexes with She3p but 

even increases their affinity.  

In addition, complexes formed by She3p-N and artificially dimerized fragments revealed complex 

half lives that were longer (Rmax1/2= 133 ± 31 s for Myo4p-GCN4 and 57 ± 26 s for Myo4p-GST; 

figure 2.8-A) than for the complex of She3p-N and the Myo4p-tail (Rmax1/2= 52 s; figure 2.4-C). In 

summary, dimeric Myo4p fragments are incorporated into complexes with She3p-N. 

Furthermore, these complexes turned out to be even more stable than complexes formed by 

She3p-N and the Myo4p-tail (compare figure 2.1-D). This finding is rather surprising, since these 

Myo4p fragments lack the second She3p binding site within the coiled-coil region. It furthermore 

demonstrates that homo-dimerization of Myo4p might play an important role for the formation of 

stable complexes. 
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Figure 2.8 
SPR analysis for the interaction of She3p-N with artificially dimerized Myo4p fragments 
A) Indicated are the fragments used for steady-state binding experiments with artificially dimerized Myo4p-

fragments and immobilized She3p-N. Both fragments interact with She3p-N and the resulting complexes have 

half-life times in the range of one to two minutes (for details, see text). B) and C) Representative plots of the 

response signals at equilibrium against the concentration are shown for Myo4p-GST and Myo4p-GCN4. RU 

indicates response unit. The red line indicates the fit curve when applying the langmuir isotherm. The highlighted 

equilibrium dissociation constants (Kd) represent the average from three independent experiments, with ± 

indicating the standard deviation. 
 

2.10 Disruption of Myo4p dimerization results in disassembly of complexes with She3p  
 

AUC experiments revealed that Myo4p alone is strictly monomeric in solution (figure 2.6). 

However, artificially dimerized Myo4p-fragments are capable to form stable complexes with 

She3p-N, having half-life times that are comparable to observations for the native Myo4p-tail 

(compare figure 2.1-C and figure 2.8-A). This complex-stabilizing effect is likely due to Myo4p 

dimerization within the complexes. To confirm this assumption, pull-down experiments with the 

Myo4p-GST were performed (figure 2.9). The experiments revealed a stable interaction of 

Myo4p-GST with the She3p-N (figure 2.9-A). Since the Myo4p-RGT fragment did not show an 

interaction with the She3p-N in pull down reactions (figure 2.4-B), the binding observed for the 

Myo4p-GST is likely to depend on the dimerization mediated by GST.  

Subsequently, the experiment was repeated, but with a site-specific protease added to the 

reaction, 30 minutes after mixing the samples. The protease specifically cleaves between GST 

and the Myo4p-RGT fragment, thereby generating monomeric Myo4p-RGT and free GST. If 

Myo4p dimerization is required within the complex, the generation of monomeric Myo4p-RGT 

after complex formation should result in a disassembly of already formed complexes. But if 

dimerization is instead needed to form complexes and is dispensable afterwards, stable 

complexes should still be observed. After elution of this protease-treated reaction, no interaction 

of She3p-N with the Myo4p fragment was observed (figure 2.9-B).  
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In summary, the protease cleavage experiment suggests that dimerization of Myo4p via GST is 

necessary to form stable complexes with She3p. This result further indicates a requirement of 

dimeric Myo4p within the Myo4p-She3p complex. 

 

 

Figure 2.9 
Myo4p is dimeric in complexes with She3p 
A) Cartoon showing the Myo4p-GST fragment used in the 

pull down experiment. The red asterik indicates a protease-

cleavage site. In pull down experiments, the Myo4p-GST 

fragment binds efficiently to She3p-N. B) The cartoon 

highlights the situation when the same reaction as shown in 

A) is repeated, but a site-specific protease is added after 

pre-incubation. Protease cleavage generates free GST and 

the Myo4p-RGT. Here, the Myo4p-RGT is not visible in the 

elution fraction after PAGE. Therefore, the already 

assembled complexes may fall apart after cleavage of 

GST. Furthermore, the lack of GST in the elution fraction 

ensures that free GST does not interact with She3p-N in 

the pull down reaction.  

 

2.11 The globular-tail domain of Myo4p is not required for ER inheritance 
 
Type-V myosins are thought to interact with their adapter proteins mainly through binding to the 

globular-tail domain. However, She3p binds to Myo4p at two individual regions, both outside of 

the globular tail (figure 2.3). Since no further adapter proteins for Myo4p are known, the role of 

the globular tail for the two Myo4p functions, namely ER inheritance and mating type switch, 

remains unclear.  

To test the role of the globular-tail domain in ER inheritance, yeast cells carrying a Myc-tagged-

Myo4p fragment with a globular-tail deletion were generated (Myo4pΔGT, figure 2.10-A) and 

analyzed to what extend these cells are capable to mediate ER inheritance in vivo.  

For the analysis, yeast cells expressing the Myo4pΔGT were compared with cells expressing 

Myc-tagged-full-length Myo4p (Myo4p-WT, figure 2.10-A). The expression of the Myo4p 

fragments was confirmed by western-blot analysis (figure 2.10-B). To visualize the ER 

inheritance directly, the yeast strains additionally expressed a GFP fusion of the ER marker 

protein Hmg1p, which allowed for the analysis of the ER distribution by fluorescence microscopy.  

To assess ER inheritance, the amount of cells carrying defined, strong bud-localized 

fluorescence signals was determined (figure 2.10-C). For this purpose, only dividing, pre-



RESULTS 

 29 

anaphase yeast cells were investigated, since in later stages the ER migrates into the bud by a 

Myo4p-independent mechanism. Surprisingly, cells carrying full length Myo4p and those lacking 

the globular tail showed no difference in ER-bud localization (figure 2.10-D, Myo4p-WT: 81.1 ± 1 

% and Myo4pΔGT: 81.7 ± 1 %, n = 3 x ≥80 cells each). In both cases, strong ER-localized GFP 

signals were detected in approximately 80 % of all cells, indicating efficient ER inheritance within 

both cell types. In summary, no difference between cells carrying Myo4p-WT or Myo4pΔGT could 

be observed, excluding a potential role of the globular tail in the inheritance of cortical ER. In 

contrast, cells with a knock-out for MYO4 show no ER-bud localization at all (Schmid et al. 2006). 

Finally, the results show that a Myo4p fragment lacking the globular tail represents a motor with 

full motile activity.  

 

 
Figure 2.10 
The globular tail of Myo4p has no function in ER inheritance 
A) The cartoon shows the Myc-tagged Myo4p constructs expressed in yeast cells. B) The expression of the 

Myo4p fragments was verified by western blot analysis against the Myc-tag. C) Representative images taken with 

transmission light- and fluorescence-microscopy showing dividing yeast cells. Here, examples for bud localized 

and not localized ER signals are shown. Scale bars indicate a length of 2 µm. D) The amount of cells with bud-

localized ER is identical in cells expressing Myo4p-WT and Myo4pΔGT. Error bars represent the standard 

deviation after analyzing n = 3 x ≥ 80 cells for each experiment.  
 

2.13 The Myo4p globular-tail domain is required for localized ASH1-mRNA translation 
 

To test if the transport of localized mRNAs depends on the presence of the globular-tail domain, 

the localized translation of ASH1 mRNA was investigated in cells expressing the Myo4pΔGT 

fragment (figure 2.10-A). Translation of the ASH1-mRNA leads to the accumulation of Ash1p, a 

specific transcription repressor for the HO-promoter. During budding, the ASH1 mRNA is 

transported towards the bud tip, and this transport results in an exclusive expression of Ash1p 

within the daughter cell. As a consequence, the HO-promoter is active in the mother but not the 

daughter nucleus. Here, a yeast strain was used in which the ADE2 gene was controlled by the 

HO-promoter and thereby by Ash1p (Jansen et al. 1996). The ADE2 gene was chosen, because 
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yeast cells lacking ADE2 accumulate a red colored pigment (P-ribosylamino imidazole) when 

they grow under adenine-deficient conditions.  

If ASH1 mRNA is transported properly, no Ash1p is expressed within the mother cell. 

Consequently, the HO-promoter is active and the ADE2 gene is expressed in these cells, leading 

to a complete destruction of the red pigment and the formation of white colored colonies. In 

contrast, cells that are deficient in ASH1-mRNA transport express Ash1p in the mother and the 

daughter cell. These cells are unable to express the ADE2 gene and colonies appear red.  

This assay was used to analyze three different yeast strains for their ability to localize ASH1 

mRNA correctly: i) a Myo4p knock out strain (myo4Δ), ii) a wild-type strain expressing full-length 

Myo4p (MYO4), and iii) a strain expressing the Myo4pΔGT (myo4ΔGT). As expected, colonies 

from the myo4Δ strain appeared red, whereas wild type cells showed a white color when grown 

under adenine deficient conditions. Cells expressing the Myo4pΔGT show a red color (figure 

2.11). Thus, MYO4 mutants lacking the globular tail showed defects in the localized translation of 

the ASH1-mRNA. This effect is unlikely to result from a reduced motor activity, since no transport 

defects were observed for the cortical ER (chapter 2.12).  

 

 

Figure 2.11 
The globular-tail domain of Myo4p is important for localized translation of ASH1 mRNA  
A white/red assay was used to assess localized ASH1-mRNA translation. A white color 

indicates correct localized translation, whereas a red color indicates defects in this process. 

Myo4p knock-out cells show a red color while wild-type cells are white. Cells expressing the 

Myo4pΔGT appear red, suggesting the requirement of the globular-tail domain for mRNA 

localization or localized translation. 
 

2.14 The globular tail is required to localize Myo4p at the bud tip 
 

In myo4ΔGT cells, the localized translation of ASH1 mRNA is impaired (chapter 2.13). This effect 

could either be explained by i) a reduced mRNA-transport efficiency, ii) insufficient translational 

control or iii) a defective anchoring of the transport complex, caused by the lack of the globular-

tail domain. The wild-type like ER inheritance observed for myo4ΔGT cells (figure 2.10-D) clearly 

argues against decreased mRNA-transport efficiencies (i) through impaired motor activity. Since 

the globular tail of Myo4p is not involved in She3p binding, the transport efficiency is also unlikely 

to be impaired at the level of a reduced She3p binding and complex assembly. Also, a potential 

role of the globular-tail domain in translational control (ii) is rather unlikely, since none of the 

proteins that are involved in translational silencing of the ASH1-mRNP (Khd1p, Puf6p) were 

shown to interact with the globular tail directly. Thus, impaired mRNP anchoring (iii) might be the 

most likely reason for the observed defects in Ash1p distribution. 

Myo4p localizes at the bud tip in dividing yeast cells (Jansen et al. 1996). To analyze whether the 

Myo4p fragment lacking the globular tail shows the same localization as wild-type Myo4p, 
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genomically Myc-tagged Myo4p constructs were generated (figure 2.12-A) and their localization 

was investigated in dividing, pre-anaphase cells by immunofluorescense. For a better 

interpretation, the intracellular Myo4p localization was subdivided into three classes: i) bud tip 

localization, ii) bud enrichment and iii) random distribution (figure 2.12-B). In wild-type cells, 

Myo4p localized at the bud tip in 30.7 ± 12.0 % of all cells, while it was enriched within the bud in 

39.1 ± 6.8 % (figure 2.12-C, n = 3 x ≥ 250 cells each). In total, Myo4p accumulated within the bud 

in 70 % of all cells. In contrast, total accumulation of the motor in the bud or at the bud tip 

dropped to 40 % for cells carrying the Myo4pΔGT (bud-tip localization 8.8 ± 3.8 % and bud 

enrichment 28.3 ± 3.8 %; figure 2.12-C).  

 

 
Figure 2.12 
Efficient bud-tip localization of Myo4p depends on the globular-tail domain 
A) The cartoon shows the Myo4p constructs used in the in vivo study. B) Images for the localization of Myc-

tagged Myo4p fragments are depicted, showing the nucleus by DAPI staining and the Myo4p localization by 

immunofluorescense with anti-Myc antibodies. The intracellular Myo4p distribution was distinguished between 

bud tip, bud enriched and not in bud localized. Scale bars indicate distances of 2 µm. C) Graphical representation 

of the Myo4p distribution. Error bars represent the standard deviation of three independent experiments with n = 3 

x ≥ 250 cells each. 
 

The laboratory of Prof. Jansen (Eberhard-Karls University, Tübingen) previously found a 

consistent result in a related experiment. They detected a bud localization of wild-type Myo4p in 

approximately 80 % of all cells, compared to 20 % in cells lacking a C-terminal region that 

includes the globular tail (C. Kruse & R.-P. Jansen: personal communication). However, the 

Myo4p fragment used in this experiment contained a stop codon after residue 1073 (compared to 

1091 in the present study) and the exact statistics are unknown. In the present study, the 

recombinant expression of this Myo4p construct, carrying a stop codon at position 1073 resulted 

in unstable protein. Therefore, it is not possible to determine how She3p interacts with such a 

fragment compared to the Myo4pΔGT.  
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In summary, these experiments confirm that the globular-tail domain of Myo4p plays an important 

role in accumulating the motor protein within the bud. Furthermore, a similar amount of cells with 

a bud enriched motor localization (Myo4p-WT and Myo4pΔGT) indicates that the Myo4pΔGT 

motor is indeed active in terms of transport. 

 

2.15 Crystallization of the Myo4p globular tail 
 

The only previously published crystal structure of a globular tail from a type V myosin is the 

Myo2p-GT. The structure revealed new insights into how type-V myosins mediate specific 

interactions with different adapter proteins (Pashkova et al. 2006). Since for Myo4p no binding 

protein could be identified, which is associated with the globular-tail domain, this domain seems 

to fulfill a different function. Therefore, it is interesting to compare the structure of both globular-

tail domains and to identify differences that may explain their specificity. The globular-tail 

domains of Myo2p and Myo4p share a sequence identity of 28 %. Since this is not sufficient to 

generate a trustable three-dimensional model of the Myo4p globular-tail domain, crystallization 

experiments were performed to solve the structure of the Myo4p-GT. 

Initial crystallization trials were set up using a crystallization robot with commercially available 

crystallization screens in the 96-well sitting drop format. Crystal growth in 500 nl drops was 

observed after 24 hours in various conditions, mainly containing 15-30 % PEG (2000-8000), pH 

3.5-8.5 and 200 mM of a variety of salts (figure 2.13-A). Several of these conditions were refined, 

by varying the pH, the concentrations of PEG and salts, or by changing their respective type. The 

best crystallization condition could be achieved on the basis of Hampton PEG suite #41 with a 

final composition of 100 mM Hepes pH 8.5, 20 % PEG 3350, 150 mM Sodium-Formate and 10 

mM Potassium-tetracyanoplatinate-II (K2Pt(CN)4). With this condition, plate shaped crystals with 

a maximum size of 200 µm x 100 µm x 10 µm were obtained (figure 2.13-B). Cryo-protection was 

achieved by the addition of 20 % ethylene glycol to the refinement solution. The crystals 

belonged to space group P212121 with unit cell constants: a=43.46 Å, b=120.99 Å, c=157.68 Å. 

From the unit cell a Matthews’s coefficient of 2.38 Å3/dalton of protein was calculated 

(Kantardjieff and Rupp 2003, Matthews 1968) with a solvent content of 48.99 % and two 

molecules per asymmetric unit. The crystals showed high-quality diffraction up to 2.3 Å at the 

beamline ID14-1 (ESRF, Grenoble, France) and were used for data set recording. 

Selenomethionine (SeMet) containing crystals grew under the same condition as the native, but 

lacking the Pt-derivate. Diffraction data of SeMet crystals were collected at beamline X12 (DESY, 

Hamburg, Germany) with a resolution of 3.0 Å, and significant anomalous signals to 4 Å. 
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Figure 2.13 
A) Representative images of Myo4p-GT crystals that were grown in Hampton PEG suite # 41: 0.2 M Lithium 

Chloride, 20 % w/v/ PEG 3350. B) Refined crystals grew in a condition containing: 100 mM Hepes pH 8.5, 20 % 

PEG 3350 and 150 mM Sodium-Formate 10 mM Potassium-tetracyanoplatinate-II. 
 

2.16 Structure determination and refinement of the Myo4p globular tail 
 

For phase angle determination, molecular replacement approaches with the Myo2p-GT structure 

as template were tried. Unfortunately, these attempts failed to produce a reasonable solution. 

Therefore single anomalous diffraction (SAD) experiments were performed.  

The data from the derivatized crystal were processed, indexed and scaled with XDS and 

XSCALE to space group P212121 (Kabsch 1993). The Myo4p-GT contains 9 methionines and 

using SHELXD (Collaborative Computational Project 1994, Schneider and Sheldrick 2002) 14 

out of 18 selenomethionine positions could be located within the asymmetric unit. Phases were 

calculated with SHARP (Bricogne et al. 2003) and extended to 2.3 Å using the native data set. 

The resulting electron density allowed partial automated model building with ARPwarp (Perrakis 

et al. 1999) for approximately 60 % of the sequence. Subsequent manual model building was 

performed with COOT. Refinement was mainly performed using restrained refinement, including 

TLS (Twin-Lattice Symmetry) and NCS (Non-Crystallographic Symmetry), with the program 

Refmac (Murshudov et al. 1997, Terwilliger 2002). Solvent molecules were introduced using 

COOT and verified manually. The final model of the Myo4p-GT includes 343 out of 380 amino 

acids and 200 solvent molecules. It has an R-factor of 23.3 (Rfree= 26.0), and the Ramachandran 

plot shows 99.9 % of the residues in the allowed or additional allowed regions (figure 2.14). 

Crystallographic statistics are listed in table 2.1. 
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Data collection   Refinement  

Data set Native SeMet K Peak   
X-ray source  ID 14 

(ESRF) 
X12 
(DESY) 

  

Wavelength (Å) 0.933 0.978 Data range (Å) 96.0-2.3 
Data range (Å) 96-2.3 20-3.2 Reflections F>0 36093 
Observations 
 (unique) 

286493 
(37418) 

202888 
(26406) 

Rwork  
(Rfree) 

0.233 
(0.26) 

I/σI 
 (last shell) 

23.16 
(4.88) 

18.37 
(6.85) 

RMS bond length (Å)  
RMS bond angles (deg) 

0.022 
(2.016) 

Completeness ( %) 
 (last shell) 

98.1 
(94.7) 

98.5 
(95.7) 

  

Rsym  
 (last shell) 

0.06  
(0.46) 

0.11  
(0.29) 

  

 

Table 2.1 
Data collection and refinement statistics 
cell symmetry: (P212121) cell constants (Å): a=43.46, b=120.99, c=157.68 

Rsym is the un-weighted R-value on I between symmetry mates. 

Rwork = ∑hkl II Fobs(hkl)I -IFcalc (hkl) II / ∑hkl I Fobs (hkl)I for reflections in the working data set.  

Rfree = cross validation R-factor for 5 % of reflections against which the model was not refined.  

 
Figure 2.14 
Structure determination of the Myo4p globular tail 
A) Caption from the 1σ contoured SAD map of the Myo4p-GT at 2.3 Å after phase extension (blue mesh), 

together with the superimposed anomalous difference fourier map from SeMet phasing at 3σ (red mesh). B) 

Ramachandran plot derived from the Myo4p-GT structure. 
 
2.17 Crystal structure of the Myo4p globular tail 
 

The structure of the Myo4p-GT includes amino acids 1101 to 1468, lacking disordered loop 

regions in the positions 1208-1213, 1400-1402, and 1446-1457. Furthermore, no structural 

information was obtained for the very N-terminal 10 and C-terminal 3 residues. The non-resolved 

residues are most likely located within flexible loop regions.  

The overall structural arrangement of the Myo4p-GT is similar to the structure of the Myo2p-GT 

and is mainly composed of alpha helices, which are organized in two globular domains (figure 

2.15-A, B and C). Subdomain I reaches from helix H1 to the first half of helix H6. The helices H2 

to H6 form a compact five-helix bundle, which represents the globular core of subdomain I. 
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Helix H6 connects subdomain I with II, and is part of a second five-helical bundle, formed by the 

residues from the distal part of helix H6 to helix H10. In addition to this bundle, subdomain II 

comprises a three-helical extension consisting of helices H11 to H13. From helix H13 an 

extended loop region emerges, which clamps both subdomains I and II together. This loop 

connects the helices H13 with H14 and is only partially resolved in the electron density. Helix 

H14 interacts with the helices H1 and H2 and generates a discrete three-helical region at the tip 

of subdomain I. However, helix H14 is not an integral part of subdomain I.  

 

 
 

 

Figure 2.15 
Crystal structure of the Myo4p globular tail  
A) Cartoon representation of the Myo4p-GT structure, 

colored in rainbow representation with the N-terminal end 

highlighted in dark blue and the C-terminus in dark red. It is 

interesting to note that the N- and C-termini are located 

next to each other. B) The Myo4p-GT, 180 ° rotated around 

the x-axis. Here, subdomain I is highlighted in blue and 

subdomain II in red. C) Topogram of the Myo4p-GT 

structure. The colors are the same as in B. The loop 

connecting the helices H13 and H14 is represented in gray. 

D) Surface charge representation of the Myo4p-GT, with 

positively (blue) and negatively (red) charged areas. 

Figures A) and B) were generated with the program Pymol 

(DeLano 2002), surface charges representations in figure 

D) were calculated with CCP4MG (Potterton et al. 2002). 
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Assessment of the electrostatic surface potential of the Myo4p-GT reveals a rather uncharged 

overall surface (figure 2.15-D). Often patches with a defined, non-random surface charge 

distribution correlate with a special function or a protein-interaction region (Ma et al. 2003). 

Therefore, the random-like surface charge distribution observed for the Myo4p-GT is consistent 

with the observation that this domain it not involved in She3p binding. 
 
2.18 Structural comparison of the Myo4p and Myo2p globular-tail domain 
 

The crystal structures of the globular-tail domains from Myo4p and Myo2p show a similar overall 

fold, with almost identical domain architectures. The most obvious difference in both structures is 

the orientation of the subdomains I and II relative to each other (figure 2.16-A to C). This 

difference is responsible for the relatively large root-mean-square deviation (RMSD) of 8.4 Å 

(figure 2.16-A), calculated only for the helical regions. The different subdomain orientation also 

explains why molecular replacement approaches with Myo2p-GT failed to determine phase 

angels for the Myo4p-GT. A closer look at the interface of both subdomains explains the 

structural basis for this difference. The long linker helix H6 represents the connection between 

subdomain I and II (figure 2.15-C). While helix H6 is just slightly curved in Myo2p, it is bent by an 

angle of almost 90 ° in Myo4p (figure 2.16-D). The different geometry of helix H6 is then 

translated into distinguishable orientations of both subdomains and might explain the difference 

in the overall shape of the Myo2p and Myo4p globular-tail domain. In Myo4p, this 90 ° kink in the 

helix H6 allows for a shorter length of the loop, connecting helices H6 and H7. In Myo2p this loop 

is significantly prolonged compared to the one in Myo4p and had to be cleaved for crystal growth 

(Pashkova et al. 2006). Besides their relative orientation, the individual subdomains I and II are 

structurally highly conserved, resulting in an almost identical geometry and RMSD values of 1.5 

Å and 3 Å, respectively (figure 2.16-B and C).  

To visualize, which areas are conserved within the globular tails of type-V myosins, a sequence 

alignment of Myo4p, Myo2p, and human MYOVa was performed and blotted on the surface of 

the Myo4p structure (figure 2.16-E and figure 2.17). The surface-conservation plot reveals that 

just a few of the conserved residues are exposed to the surface. Quantification revealed that 

11.3 % of all residues buried within the core of the structure are highly conserved between all 

three type-V myosins (table 2.2). These conserved residues contribute most likely to the similar 

structural fold. In contrast, only 3.5 % of the surface exposed residues are highly conserved 

among all three sequences. This low surface conservation is consistent with the different cargo 

specificities of Myo2p and Myo4p. It is tempting to speculate that the low amount of surface 

conservation is a prerequisite for the observed large differences in cargo specificity for type-V 

myosins. 

Both globular-tail domains from Myo4p and Myo2p show a long loop at their C-terminus, 

spanning around the entire globular-tail domain and connecting subdomain I and II. In Myo2p, 
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this loop is eventually involved in Vac17p binding (Pashkova et al. 2005) but its potential role for 

Myo4p function remains unclear. However, this loop is important for protein stability. C-terminally 

shortened Myo4p-tail fragments with a deletion of helix H14 are severely degraded (data not 

shown). Therefore, this bracket loop might be a general feature to guarantee stability of type-V 

myosin tail domains.  

 

 
Figure 2.16 
Structural comparison of the Myo4p and Myo2p globular-tail domains 
A) Overlay of the globular-tail domains form Myo4p (in red) and Myo2p (in gray). The structure of the Myo4p-GT 

is aligned as in figure 2.15-A. and the RMSD value is indicated above. B) and C) Overlay of the subdomains (SD) 

II and I, respectively. Both structures are also shown rotated by 90 ° around the x-axis. D) A close up of the 

intersection of subdomain I and II. Myo4p is shown in red and Myo2p in gray. Dark red and gray colors indicate 

for both structures the C-terminal part of helix H6 and the first residues of the loop connecting helix H6 with H7. In 

Myo4p, helix H6 is kinked by approximately 90 °. E) Surface-conservation plot of the globular-tail domain between 

Myo4p, Myo2p, and human MYOVa. Colors are used as follows: non-conserved residues in gray, highly 

conserved residues in dark green. Figures A-D) were generated with the program Pymol (DeLano 2002), the 

representation of the surface conservation in E) was generated with the program CHIMERA (Pettersen et al. 

2004). 



RESULTS 

 38 

 
Figure 2.17 
Sequence alignment of the type-V myosins Myo4p, Myo2p, and human MYOVa  
The protein sequences start from the residue 1000 of the Myo4p and Myo2p sequence and 1400 in case of 

MYOVa. The color code indicates non-conserved residues in red and highly conserved residues in dark blue. The 

alignment was generated with the program JPred (Cole et al. 2008) and the graphic was generated with the 

program CLC-free-workbench (CLCbio). The red box highlights the sequence alignment for the rod domain of 

Myo4p.  
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 Residues Number (percentage) of highly conserved  
residues (Myo4p, Myo2, Myo5a) 

total 343 25 (8.3 %) 
surface exposed 175 6 (3.5 %) 

buried 168 19 (11.3 %) 
 

Table 2.2 
Conservation of the Myo4p globular tail divided into surface-exposed and buried amino acids  
In the table, the amounts of highly conserved residues that are exposed to the surface and that are buried in the 

core of the structure are compared. 
 
2.19 The globular-tail domain of Myo4p interacts directly with membranes  
 

Investigations of the intracellular localization of Myo4p (see chapter 2.14) suggest a role of the 

globular-tail domain in anchoring of the transport complex. One potential mechanism how the 

Myo4p-GT helps associating the transport complex at the bud tip is a direct membrane binding 

by the globular-tail domain. To test whether the globular-tail domain of Myo4p has a membrane 

binding capability, floatation assays with synthetic, protein free liposomes containing a yeast-

membrane-like composition were performed (for details see materials and methods chapter 

4.10.3). The proteins were incubated with the liposomes, mixed with a buffer containing 70 % 

sucrose, overlaid with a sucrose gradient and centrifuged for 16 hours to equilibrium (figure 2.18-

A). During centrifugation, vesicles float up the gradient and accumulate at the interphase 

between 0 and 40 % sucrose. If proteins bind to the membranes, they will co-migrate with the 

vesicles, otherwise they remain at the bottom. Following centrifugation, the gradients were 

fractionated from top to bottom and the individual fractions were precipitated using TCA and 

analyzed by SDS-PAGE. The second fraction from top generally contained the floated 

membranes (figure 2.18-A).  

For Myo4p-GT a protein signal is visible in fraction 2, indicating a co-migration with the vesicles 

and therefore a direct membrane association. In contrast, neither for She3p-N nor for the Myo2p-

GT (aa 1084-1575) membrane binding could be observed (figure 2.18-B). If the Myo4p-GT 

indeed helps to anchor the motor complex at the bud tip, Myo4p would need to bind 

simultaneously to membranes and to She3p. Therefore, the She3p binding sites-containing 

Myo4p-tail should in principle bind simultaneously to vesicles and She3p-N and tether She3p-N 

to vesicles. In floatation experiments, a considerable fraction of She3p-N indeed co-migrated 

Myo4p-tail-dependently with vesicles (figure 2.18-C).  
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Figure 2.18 
Floatation assay to test for direct membrane associations 
A) Schematic representation of the floatation assay: The protein of interest (red circles) and synthetic vesicles 

(green) are mixed in 70 % sucrose and covered by a sucrose gradient. After centrifugation to equilibrium, vesicles 

float up the gradient. Vesicle-bound proteins co-migrate to the upper layers of the gradient, while proteins that do 

not bind to membranes remain at the bottom. After centrifugation, the gradients were fractionated from top to 

bottom and the individual fractions were prepared for SDS-PAGE. Fraction 2 generally contains the floated 

membranes. B) Subsequent SDS-PAGE with coomassie staining after the floatation assay for Myo4p-GT, She3p-

N, and Myo2p-(1084-1572). Only for the Myo4p-GT a protein signal is detectable in the floated fractions (red box). 

In contrast, neither She3p-N nor the Myo2p-(1084-1572) bound to vesicles. C) When the Myo4p-tail and She3p-N 

were used in the floatation assay simultaneously, both proteins can be detected in the floated fractions. 

 

2.20 Identification of a membrane interacting region within the Myo4p globular tail 
 

For a molecular characterization of the membrane binding by the Myo4p-GT domain, its structure 

was analyzed to identify potential membrane-associated regions. Often, peripheral membrane 

binding regions are characterized by a local enrichment of hydrophobic or positively charged 

residues. Such regions were identified and analyzed for their involvement in membrane 

association. The strategy was to exchange surface-exposed positive or uncharged residues with 

aspartic acids. The negatively charged aspartic acid should mediate an electrostatic repulsion 

with the negatively charged lipid surface and therefore actively interfere with membrane binding.  

For instance the Myo4p-GTF1379D,Y1381D, in which the hydrophobic residues F1379 and Y1381 

were exchanged, was analyzed for membrane binding (figure 2.19-A). Although this mutant 

fragment was only weakly expressed and therefore less protein was used in the reactions, a 

considerable amount of protein associated with membranes. This result shows that the 

introduction of negatively charged residues does not generally interfere with membrane binding. 

In contrast, the mutant protein Myo4p-GTW1325D,Y1329D showed no association with membranes 
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(figure 2.19-A). Thus, the two hydrophobic residues W1325 and Y1329, located within helix H9 in 

subdomain II (figure 2.19-B), potentially mediate direct lipid interactions that are disrupted upon 

mutation.  

 

 
Figure 2.19 
Tryptophane 1325 and tyrosine 1329 of the Myo4p-tail are required for membrane binding  
A) SDS-PAGE with subsequent coomassie staining after the floatation assay for the Myo4p-GTF1379D,Y1381D, 

Myo4p-GTW1325D,Y1329D and Myo4p-GTK1326D,R1333D,K1366D,K1400D. Membrane association was only observed for 

Myo4p-GTF1379D,Y1381D (indicated by the protein signal in fraction two, red box). B) The area, which is important for 

membrane association is highlighted within the Myo4p-GT structure (red box) and resolved residues are 

displayed with side chains. The two aromatic residues W1325 and Y1329 are highlighted in red, the positively 

charged residues K1326D, R1333D, K1366D, surrounding the hydrophobic core, are highlighted in blue. For a 

better understanding where the membrane-binding region is localized in the globular-tail domain, the N-terminal 

helix H1 is highlighted. C) Close-up of the membrane-binding region. The aromatic residues W1325 and Y1329 

are located on top of helix H9 encircled by positively charged residues. 

 
The positively charged residues K1326, R1333 and K1366 surround the described hydrophobic 

residues. These basic residues potentially mediate ionic interactions with the negatively charged 

vesicle surface. In addition, residue K1400 is located within the loop region connecting helix H12 

with H13, and is therefore in close proximity to the two aromatic residues required for membrane 

binding. However, the loop region is not visible in the electron density. If residues W1325 and 

Y1329 indeed participate in membrane binding, inverting the charge of the residues K1326, 

R1333, K1366 and K1400 should in principle also affect lipid binding. Indeed, floatation 
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experiments with the mutant protein Myo4p-GTK1326D,R1333D,K1366D,K1400D showed almost no 

membrane association, confirming a role of the identified region in membrane binding. 

It is important to note that these results do not exclude the existence of additional residues or 

regions, which might be involved in lipid interaction. Furthermore, the final proof whether the 

identified membrane-binding region of Myo4p influences localization of mRNAs in vivo, remains 

open.  

 
2.22 Quantification of the Myo4p globular-tail-vesicle interaction 
 

Quantitative biophysical analyses were used to characterize the interaction between the lipid 

vesicles and the Myo4p-GT. Therefore, SPR analyses were performed, in which vesicles were 

immobilized on a L1-chip (Biacore™), which carries carboxymethylated dextran fibers with 

covalently attached lipophilic groups. The lipophilic surface allows for a direct binding of lipid 

vesicles, which maintain an intact structure. Unfortunately, injection of the analyte (Myo4p-GT) 

did not result in a stable steady-state situation. Although single injections of the Myo4p-GT 

resulted in a saturation of the response signal, repeated injection of constant analyte 

concentrations led to continuously increasing response levels. Thus, the interaction failed to 

reach a steady-state level. Furthermore, the Myo4p-GT did not dissociate completely during the 

washing steps. In summary, the experimental setup was not suitable to quantify the interaction of 

the Myo4p-GT and the lipid vesicles.  

In a second approach, binding of Myo4p-GT to an enclosed lipid bilayer surface was analyzed 

using RIfS (Reflectometric Interference Spectroscopy, in collaboration with the laboratory of Prof. 

Piehler at the University of Frankfurt). In these experiments, the vesicles were attached to a 

clean glass surface, resulting in the formation of a continuous phospholipid surface. In RIfS, 

complex formation between two molecules is detected from an increase of the surface thickness 

by measuring the interference of reflected light from interfaces with different refractive indices. In 

short, any change of the optical thickness leads to linear changes in the interference spectrum, 

which can be detected by the intensity of the reflected light.  

Although the lipid composition was the same as in the previous described floatation assay 

(chapter 2.19 and 4.10.3), no binding of the Myo4p-GT to the lipid surface could be detected by 

RlfS. One potential reason for the failure to detect Myo4p-GT binding to the lipid surface might be 

the lack of surface curvature (in contrast to the vesicles used in floatation experiments). Another 

possible explanation is that the affinity of the Myo4p-GT to the membrane mixtures might be 

weak, resulting in signals below the detection limit of this assay. A third possibility is that the 

kinetics of this membrane binding is too slow to allow for a detectable interaction during the 30 s 

when Myo4p-GT is floated over the lipid surface.  

In summary, it was not possible to quantify the interaction of the Myo4p-GT with the phospholipid 

vesicles.  
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2.23 Crystallization of the Myo4p-She3p complex 
 

In order to analyze the Myo4p-She3p complex in more detail, crystallization experiments were 

performed. For co-crystallization of Myo4p and She3p, the She3p-Myo4p co-complexes were 

purified by size-exclusion chromatography (figure 2.20-A). Initial crystallization screens for the 

Myo4p-She3p complex were performed essentially as described for the Myo4p-GT (chapter 

2.15), using an automated 96-well sitting drop format and commercially available crystallization 

screens. Crystal growth could be observed after 24 – 48 hours at 20°C only. Two-dimensional, 

needle shaped crystals could be observed in up to 15 different conditions, all forming hedgehog 

like structures. Refinements to improve the crystal quality included: streak seeding, reducing the 

speed of crystal growth by adding glycerol to the crystal setup or reducing the protein 

concentration, screens for optimized refinement conditions and the generation of cysteine-free 

protein fragments, respectively. Furthermore, attempts were made to generate stable dimeric 

forms of Myo4p either by introducing heterologous dimerization domains (the coiled-coil region 

from the yeast proteins Gcn4p and Myo2p) or via cysteine specific cross linking at the rod or 

coiled-coil region, using artificially introduced cysteine residues. In addition, great effort was 

made to optimize the N- and C-termini of protein constructs for crystallization (table 2.3). 

However, Myo4p fragments could not be shortened at their C-terminus, because deletion of helix 

14 results in unstable protein. Since the She3p binding regions within the coiled-coil and the rod 

domain are located at the N-terminus of the Myo4p-tail, this domain could only be shortened to a 

point, where the She3p-binding is not affected. For She3p, attempts to optimize the N- and C-

termini identified the residues 33-202 to be essential for stable complex formation with Myo4p.  

Finally, the most promising crystals were obtained with the fragments Myo4p1006-1471 and She3p6-

221, using the following crystallization condition: 100 mM Hepes pH 7.5, 5 % (w/v) PEG 2000, 200 

mM proline, 350 mM urea (figure 2.20-B). Using this setup, isolated crystals with a size of 300 

µm x 20 µm x 20 µm could be obtained. The crystals were tested at beamline ID14-1 (ESRF, 

Grenoble, France) and showed anisotropic diffraction up to 5 Å in the best orientation (figure 

2.20-C). However, all attempts to obtain high quality crystals were unsuccessful. Future steps to 

improve the crystal quality may include the use of eukaryotic expression systems and/or the 

investigation of homologous proteins from other species.  
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Figure 2.20 
Crystallization of the Myo4p-She3p complex 
A) The complex of Myo4p1006-1471 and She3p6-221 could be purified in high protein amounts. Shown is a coomassie 

stained PAGE after size exclusion chromatography, indicating pure proteins for crystallization. B) Crystals of the 

protein fragments Myo4p1006-1471 and She3p6-221 mainly have a long, needle-like structure. Crystals were grown in: 

100 mM Hepes pH 7.5, 5 % (w/v) PEG 2000, 200 mM proline, 350 mM urea. C) Diffraction of crystals from 

Myo4p1006-1471 and She3p6-221 co-complex was anisotropic and had a maximum resolution of 5 Å in the best 

orientation.  
 

Myo4p fragments She3p fragments 
Gcn4p242-271-Myo4p1029-S 
Myo2p1008-1088-Myo4p1042-1471 
* Myo4p1006-1471 
Myo4p1006-1471(C1113S) 
Myo4p1006-1471(C1113S,C1288S) 
Myo4p1006-1471(C1113S,C1288S,C1320S) 
Myo4p1009-1471 
Myo4p1012-1471 
Myo4p1042-1471 
Myo4p978-1471 
Myo4p978-1471(C1113S,C1288S,C1320S) 
Myo4p996-1072 
Myo4p996-1420 
Myo4p996-1463 
Myo4p996-1467 
Myo4p996-1471 
Myo4pC1042-1471(C1113S,C1288S,C1320S) 
Myo4pCA1042-1471(C1113S,C1288S,C1320S) 
Myo4pCC1042-1471(C1113S,C1288S,C1320S) 

 

She3p1-221 
She3p1-228 
She3p1-231 
She3p1-234 
She3p16-202 
She3p16-221 
She3p3-228 
She3p3-231 
She3p33-202 
She3p33-221 
She3p40-194(C147S) 
She3p40-221 
She3p6-140 
She3p6-165 
She3p6-194 
She3p6-194(C147S) 
She3p6-202 
She3p6-211(C147S) 
* She3p6-221 
She3p6-228 
She3p6-231 
She3p6-234 
She3p88-194 
She3p9-194 
She3p9-194(C147S) 
She3p9-221 

 

Table 2.3 
Protein fragments used in the co-crystallization of Myo4p and She3p 
An asterik highlights the protein fragments forming the most promising crystals so far. 
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3. Discussion  
 

3.1 The oligomerization state of Myo4p  
 

Cryo-EM studies on type-V myosins from vertebrates (Liu et al. 2006, Lu et al. 2006, 

Thirumurugan et al. 2006) showed that the coiled-coil region mediates efficient dimerization of 

the myosin. Based on this assumption, a model was designed how type-V myosins move along 

actin filaments using two motor domains in a coordinated manner (Veigel et al. 2005, Yildiz et al. 

2003). Initial concerns regarding the multimerization state of Myo4p came up from the 

observation that its predicted coiled-coil region is surprisingly short compared to other type-V 

myosins (figure 2.6). Using analytical ultracentrifugation, the present study demonstrated that the 

Myo4p-tail alone is strictly monomeric in solution (figure 2.6). Since this fragment includes the 

entire predicted coiled-coil region, it can be assumed that the full-length motor protein is 

monomeric, too. In parallel to this work, two other groups also described the monomeric state of 

Myo4p, using either AUC or biochemical analyses (Dunn et al. 2007, Hodges et al. 2008). 

Altogether, the finding that Myo4p is not capable to form stable dimers was rather surprising. 

Before, it was assumed that one general characteristic, defining type-V myosins is their 

constitutive dimeric state.  

 

The monomeric form of Myo4p is in agreement with results from previous in vitro-motility assays, 

which demonstrated that Myo4p is a non-processive motor (Dunn et al. 2007, Reck-Peterson et 

al. 2001). However, studies analyzing the in vivo-motility of Myo4p revealed a rather processive 

movement (Bertrand et al. 1998, Lange et al. 2008). Since the current model proposes that type-

V myosins have to be dimeric for a processive movement, the question arises how to explain the 

discrepancy that monomeric Myo4p is catalyzing a processive movement within the cell? In 

principle, there are three different possibilities: i) monomeric Myo4p might be able to catalyze 

processive movements in vivo by an unknown mechanism, ii) several monomeric Myo4p 

molecules might be accumulated in the cargo complex, warranting a permanent actin binding 

and allowing for a processive movement even if individual Myo4p molecules drop down from the 

filament, or iii) the motor might oligomerize due to cargo binding. Below is a brief assessment of 

these three possibilities for Myo4p function. 

i) One important surface loop (loop 2) was identified within the motor domain of type-V 

myosins, which helps to keep the motor attached to the actin filaments. This loop 2 exhibits a 

positively net charge and is localized adjacent to the ATP binding region (Coureux et al. 

2003). Previous experiments revealed that loop 2 has no influence on ATP binding or the 

catalytic activity, but supports the attachment of the motor to the negatively charged actin 

filament, especially during the weak binding-state. Therefore, the function of loop 2 is most 

likely to prevent a dissociation of the motor from the filament, especially at increased salt 
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concentrations (Yengo and Sweeney 2004). In contrast, within the motor domain of Myo4p 

this conserved loop 2 has no net charge, leading to a reduced affinity of the motor to the 

filament (Krementsova et al. 2006). Since Myo4p is rather weekly bound to the actin filament, 

a processive movement of individual Myo4p monomers along the actin filament is rather 

unlikely. In summary, the lack of positively charged residues at loop 2 in combination with the 

observed lack of processivity in vitro seems to exclude the possibility that monomeric Myo4p 

molecules catalyze a processive movement (Krementsova et al. 2006). 

ii) A cargo-mediated accumulation of several monomeric Myo4p molecules is supported by 

recent data for the RNA-binding protein She2p. From the crystal structure and in vitro-binding 

experiments it was suggested that She2p forms a stable homodimer and interacts with 

individual mRNA localization elements in a molar ratio of 1:1 or 1:2 (Gonsalvez et al. 2003, 

Niessing et al. 2004). Recently, Marisa Müller from our laboratory revealed that She2p is 

present as a tetramer with a head to head orientation of two dimers in solution (Müller et al. 

Submitted). In case such a She2p tetramer is the functional species during the transport, it is 

possible that this tetramer might bind to several She3p molecules simultaneously.  

This assumption is further supported by recently published live cell imaging experiments. 

Here, the Jansen group revealed that at least two different mRNAs are transported within the 

same translocation complex. Since only two mRNAs were analyzed at a certain time, it is very 

likely that the amount of in parallel transported mRNAs within one translocation complex is 

even higher (Lange et al. 2008). Both, the She2p tetramer and the increased number of RNAs 

per transport complex indicate that there might be several motor proteins incorporated within 

individual transport complexes. Chartrand et al. also suggested that four Myo4p molecules 

might be involved in the translocation of ASH1 mRNA since all four localization elements are 

sufficient to mediate mRNA transport (Chartrand et al. 2002). 

Furthermore, Myo4p mediates the inheritance of cortical ER by transporting large ER tubules 

into the bud (Estrada et al. 2003, Schmid et al. 2006). So far it is still unclear how Myo4p is 

linked to the ER surface (see also chapter 3.7.1). However, it is likely that the ER tubules 

contain several binding sites for the motor complex and therefore it is tempting to speculate 

that multiple Myo4p molecules participate in the transport of the individual tubules. The 

attachment of multiple motor proteins might ensure a permanent connection of the transport 

complex to the actin filament, even if single Myo4p molecules fall off. Class-VI myosins were 

also shown to be present in a monomeric state. For this myosin subclass, it was shown using 

cross-linking experiments that Myo-VI undergoes cargo-mediated dimerization, and this 

dimerization was necessary for the catalytic activity (Spudich et al. 2007). Whether this is also 

true for the monomeric Myo4p remains elusive.  

iii) Although the possibility that multiple monomeric Myo4p molecules in the cargo complex 

enable processive movement can not be ruled out (ii), the data from the present work rather 

indicate a cargo-induced dimerization of the motor protein. The artificially dimerized Myo4p 
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constructs (Myo4p-GST and Myo4p-GCN4) were shown to interact efficiently with She3p in 

pull-down and SPR experiments (figures 2.8 and 2.9). Furthermore, complexes of these 

proteins with She3p showed an approximately 10 fold increased complex stability compared 

to Myo4p fragments lacking the coiled-coil domain (compare figures 2.4 and 2.8). With the 

help of the laboratory of Prof. Jansen it could also be shown that an overexpressed Myo4p-

GST fragment interferes with She3p binding to endogenous Myo4p. This interference was 

indirectly observed by impaired bud localization of She3p (Heuck et al. 2007). Therefore, an 

interaction of dimeric Myo4p-tail fragments with She3p is also compatible with results from in 

vivo studies.  

For Myo2p it was shown that the coiled-coil region is capable to efficiently dimerize the motor 

protein (Dunn et al. 2007). A hybrid of Myo2p and Myo4p, in which the rod and the globular 

tail of Myo4p is linked to the coiled-coil region of Myo2p (Myo2p-4p, figure 3.1), should 

consequently form dimeric motor proteins. In a myo4Δ strain, this hybrid protein was able to 

translocate She3p towards the bud tip (Heuck et al. 2007). This experiment shows that a 

dimerization of Myo4p is also compatible with cargo translocation.  

In addition to the arguments resulting from the in vitro- and in vivo-interaction studies with 

She3p, a dimerization of Myo4p is also in agreement with the catalytic activity of the Myo4p-

motor domain. Using in vitro processivity assays, the laboratory of Kathleen Trybus 

(University of Vermont) showed that a hybrid motor, containing the Myo4p motor domain 

fused to the lever arm and the coiled-coil domain of murine MyoVa (Myo4p-Va, figure 3.1), is 

able to move processively along actin filaments at low salt concentrations (Krementsova et al. 

2006).  

 

Although the results discussed above using heterologous-dimerization domains suggest a dimer 

formation of Myo4p within the transport complex, it should be mentioned that Myo4p might form 

oligomers higher than dimers within the co-complexes. However, no oligomeric state higher than 

a dimer was described for type-V myosins so far (Vale 2003). Regardless whether Myo4p is 

present as a dimer or a higher oligomer in the complexes with She3p, no oligomerization of 

Myo4p occurs prior complex formation. In the yeast cell, Myo4p is present at concentrations of 

about 120 nM, when an average yeast cell volume of 30 µm3 is assumed (Ghaemmaghami et al. 

2003, Tyson et al. 1979) and therefore in a range at which Myo4p is strictly monomeric (figure 

2.6). However, within the co-complex, Myo4p oligomerization has a stabilizing effect. This 

conclusion is based on the observation that a proteolytic cleavage of the Myo4p-GST fragment 

after complex formation results in the disassembly of the complexes during pull-down reactions 

(figure 2.9). 

 

Arguments against a She3p-mediated dimerization of Myo4p came from recent studies with a 

Myo4p hybrid construct, in which the Myo4p-tail domain was linked to the MyoVa motor (MyoVa-
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4p, figure 3.1). This hybrid protein is monomeric in solution as revealed by analytical 

ultracentrifugation experiments (Hodges et al. 2008). The monomeric state of this hybrid protein 

is in agreement with the results presented here, indicating that the coiled-coil region of Myo4p is 

not capable to dimerize the motor protein (figure 2.6). In AUC experiments with full-length She3p 

and the MyoVa-4p hybrid, a complex of one molecule She3p and one molecule of the MyoVa-4p 

hybrid was determined (Hodges et al. 2008). However, to approve these results it is 

indispensable to compare the sedimentation profiles of the complex with the respective profiles 

of the individual proteins. Unfortunately, the study from Hodges et al. did not include analyses to 

characterize the sedimentation properties of She3p. However, preliminary AUC experiments in 

collaboration with Dr. Klaus Richter from the department of Chemistry of the Technical University 

of Munich revealed that the sedimentation profile of isolated She3p-N is consistent with a dimeric 

form but seems to exclude the existence of monomeric She3p-N (data not shown). If these 

preliminary results are true and She3p is indeed present in a dimeric state, the existence of 

complexes formed by one molecule She3p and one molecule Myo4p seem to be rather unlikely. 

It is still possible that the She3p-N and the full-length She3p behave differently in complexes with 

Myo4p. But since the N-terminus of She3p was shown to be sufficient to catalyze the inheritance 

of cortical ER in vivo (Estrada et al. 2003) this interpretation is also rather unlikely. The 

differences in the mentioned studies might be partially explained by the protein fragments used in 

both studies and suggest a different behavior of the C-terminal Myo4p fragments and the MyoVa-

4p hybrid-protein or the She3p-N and the full-length She3p.  

 

 
Figure 3.1 
Cartoon representation of the Myo4p-hybrid proteins  
Myo4p-hybrid proteins were described in the following publications: Myo4p-2p (Heuck et al. 2007), MyoVa-4p 

(Krementsova et al. 2006), and Myo4p-Va (Hodges et al. 2008). 
 

In summary, the oligomeric state of Myo4p in the complexes with She3p is still under debate. 

While the results presented in this thesis strongly suggest that stable complexes between Myo4p 

and She3p require Myo4p dimerization, no direct data is available showing that Myo4p 

dimerization is required for transport activity of the motor-protein complex. To tackle this problem, 

in vitro processivity assays with full-length Myo4p and stoichiometric amounts of She3p will be 

necessary. Unfortunately, attempts to prepare full-length Myo4p with recombinant expression 

systems were not successful so far. In E. coli no expression of the full-length Myo4p was 
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observed, while experiments with the baculovirus-expression system ended up with a weak 

production of unstable/degrading Myo4p. 

 

3.2 Structure of theMyo4p-She3p complex – an experimental outlook 
 

Attempts to generate diffraction-quality crystals of the Myo4p-She3p complex were not 

successful so far. However, high resolution structural information on the Myo4p-She3p complex 

would help to clarify the questions concerning the oligomeric state of Myo4p within the complex 

(chapter 3.1).  

During this thesis work, co-complex crystals were generated with a maximal resolution of 5 Å. 

This indicates that the proteins generally tend to crystallize and represents therefore a promising 

starting point. One of the bottlenecks for crystallization is the identification of optimal protein 

fragments. For Myo4p, two binding sites to She3p could be identified. Unfortunately, both She3p 

binding sites are not located within the highly ordered, globular part of the Myo4p-tail, but at the 

rather non-conserved, partially unstructured rod-region and the coiled-coil (figure 2.3 and 2.17). 

For She3p, a N- and C-terminal truncation of the constructs led to the identification of a minimal 

Myo4p binding region, including the residues 33-202 of the She3p sequence. However, the use 

of this fragment in crystallization experiments did not improve crystal quality. In total, various 

combinations of about 45 different protein fragments were tested in the crystallization 

experiments (table 2.3). It is rather unlikely that further variations of the protein fragments will 

improve crystal quality. Potential future strategies should consequently have their focus on the 

crystallization of homologous proteins from related species or the expression of the protein 

fragments in eukaryotic cells (yeast- or insect-expression systems). An additional possibility is 

the use of a Myo4p-tail fragment that lacks the globular tail in the crystallization experiments. 

 

3.3 Two binding regions of Myo4p interact with She3p  
 

By characterizing the interaction of She3p and Myo4p it was determined that She3p binds to two 

different regions of Myo4p. One binding region is located within the coiled-coil and the second 

within the rod region. Both regions bind to She3p individually and with comparable affinities of 

approximately Kd = 500 nM (figure 2.3). However, for efficient complex formation She3p has to 

interact with both regions of Myo4p, since the entire Myo4p-tail fragment binds to the adapter 

protein with a considerably higher affinity of Kd = 50 nM (figure 2.1). This conclusion is further 

supported by in vivo-interference studies. Here, the overexpression of the Myo4p-tail fragment 

had a strong negative effect on the Myo4p-driven localization of She3p. However, the effect was 

only moderate for the Myo4p-RGT and the Myo4p-GST, respectively (Heuck et al. 2007).  
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The phenomenon that type-V myosins bind to their adapter proteins via multiple binding sites 

was already observed for the interaction of Melanophilin to MyoVa. Melanophilin binds in parallel 

to two binding sites of MyoVa, one located within the coiled-coil region and the other at the 

globular-tail domain (Au and Huang 2002, Fukuda and Kuroda 2004, Wu et al. 2002). The 

parallel binding to two regions is likely to increase the strength and the specificity for a given 

interaction.  

 

No type-V myosins are present in plants, but the homologous class-XI myosins are closely 

related (Richards and Cavalier-Smith 2005, Vale 2003). Similar to the interference effects 

observed for the Myo4p-tail, two recent studies on Myo-XI revealed that overexpressed C-

terminal fragments are only localized correctly, if they contain the coiled-coil region (Li and 

Nebenfuhr 2007, Reisen and Hanson 2007). These results suggest that Myo-XI-dependent 

complex assembly uses a similar mechanism as observed for Myo4p and She3p. Also for mouse 

MyoVa, interference experiments suggest a scenario comparable to the complex formation by 

Myo4p-tail (Yoshimura et al. 2006). In hippocampal neurons the overexpression of various 

MyoVa-tail fragments suppressed translocation of specific mRNA transcripts only in the case that 

these fragments contained the coiled-coil region.  

 

The mouse MyoVa gene contains seven exons (A to G), from which three (B, D and F) are 

alternatively spliced. This results in a tissue-specific target pattern of MyoVa and increases the 

flexibility for cargo transport (Seperack et al. 1995). None of the alternatively spliced exons within 

the MyoVa gene are part of the globular-tail domain. Instead, they are located in the coiled-coil 

region. Therefore, cargo-binding regions at the coiled-coil seem to represent a general property 

of type-V myosins and may help to stabilize the dimeric state. One example for specific exon 

usage within the coiled-coil domain is the role of exon B for the interaction with the dynein light 

chain (DLC) and mRNA (Hodi et al. 2006, Salerno et al. 2008). DLC binds directly to exon B and 

thereby increases the coiled-coil formation efficiency of MyoVa (Hodi et al. 2006). This might 

suggest a similar function for DLC and She3p to strengthen the dimeric state of the motor 

protein. It should be remembered that complexes of She3p with the Myo4p-tail and with Myo4p 

fragments that contain an artificial dimerization domain showed similar stabilities in the range of 

minutes, whereas complexes formed with the coiled-coil lacking Myo4p-RGT revealed a stability 

of only 5 s (compare results figure 2.1, 2.4 and 2.8).  

 

The She3p-binding site within the rod region was located to an area around the residues 1056 

and 1057 of the Myo4p sequence (figure 2.5). Secondary structure predictions and sequence 

alignments indicate that the rod region is rather unstructured and only weakly conserved, 

compared to other regions of the protein (figure 2.17). Since protein-interaction surfaces are 
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often highly conserved (Ma et al. 2003), it is likely that the mode of interaction between the rod 

region of Myo4p and She3p follows a rather unique, unusual mechanism.  

 

3.4 Importance of complex stability for directional transport 
 

Time-lapse microscopy revealed that the Myo4p-driven transport of the ASH1 mRNA towards the 

bud tip is completed after approximately 2 minutes (Bertrand et al. 1998, Lange et al. 2008). In 

the present study, a complex half-life for the interaction of Myo4p with She3p of about 50 

seconds was measured (figure 2.1). Of course this value represents only an approximation for 

the in vivo situation, since the experiments were performed in vitro with recombinant proteins. 

When considering that multiple Myo4p motors have been suggested to participate in the 

transport of cargo complexes (see chapter 3.1), the measured complex half-life of 50 s is likely to 

be sufficient to complete the cargo translocation in vivo. On one hand, transport complexes are 

only transiently assembled to allow for an efficient de-masking of the mRNAs, making them 

available for translation. On the other hand, their stability needs to be sufficient to guarantee 

efficient transport. Consequently, a balance between stability and flexibility has to exist.  

 

ASH1 mRNA contains four localization elements (Gonsalvez et al. 2005). Each of these 

elements is sufficient for bud localization, but with increasing element numbers, the transport 

becomes more efficient (Chartrand et al. 2002). It is tempting to speculate that multiple 

localization elements recruit multiple motors, resulting in increased translocation efficiency. IST2 

mRNA, which is also translocated by Myo4p, contains only one localization element (Olivier et al. 

2005). In case mRNAs with one localization element are linked to only one motor protein 

complex, they are more likely to dissociate from the actin filament. Therefore, it is not surprising 

that IST2 mRNA is less efficiently transported (Juschke et al. 2005).  

 
3.5 The Myo4p globular-tail domain is conserved in terms of fold but not function 
 

The functions of the globular-tail domains of Myo4p and Myo2p are rather distinct. In Myo2p, the 

globular-tail domain represents a general landing platform for a number of different adapter 

proteins (Beach et al. 2000, Casavola et al. 2008, Fagarasanu et al. 2006, Ishikawa et al. 2003, 

Lipatova et al. 2008, Pashkova et al. 2006, Schott et al. 1999, Tang et al. 2003), while the 

globular-tail domain of Myo4p seems to be required for the anchoring of the transport complex at 

the bud tip (figure 2.12). Therefore, it is remarkable that both domains form very similar 

structures. The RMSD value for the whole globular-tail domains between Myo4p and Myo2p is 

8.4 Å, while the individual subdomains are almost identical with RMSD values of 1.5 Å and 3.0 Å, 

respectively (figure 2.16). The overall folds of the globular-tail domains of Myo4p and Myo2p 

seem to be stabilized by conserved, buried residues (table 2.2). Therefore, it is likely that this 



DISCUSSION 

 52 

conserved architecture is also present in other type-V myosins, suggesting a high conservation 

of the globular-tail fold. Indeed, comparing the sequences of the globular-tail domains from 

Myo4p and Myo2p reveals that both domains share 28 % identical residues while 50 % have 

conservative amino acid exchanges. These values are very similar when comparing the Myo4p 

globular-tail sequence with different type-V myosins from higher eukaryotes. 
 

Sequence alignments between Myo4p, Myo2p, and human MYOVa revealed differences 

between their globular-tail domains (figure 2.16 and 2.17). A surface plot of this alignment onto 

the Myo4p-GT structure shows that only a minority of the highly conserved residues is exposed 

to the surface (table 2.2). It is widely accepted that residues, which mediate protein-protein 

contacts are conserved between different species (Ma et al. 2003). Since most of the conserved 

residues in the Myo4p globular-tail are not surface exposed, they are likely to mediate intra-

molecular contacts. Thereby, they might stabilize the compact fold of the globular-tail domain, 

rather than mediating cargo recognition. It is tempting to speculate that the globular domain of 

the type-V myosins evolved towards a general landing platform for a number of different cargo 

adapters. If true, an increased surface variability should provide the potential to establish diverse 

cargo interaction sites. 

 

The main difference between the structural arrangements of the globular tails of Myo4p and 

Myo2p is the orientation of the subdomains I and II relative to each other (figure 2.16). 

Interference experiments with the Myo2p globular tail revealed interesting insights in the 

interdependency of both domains (chapter 1.8). In these experiments, Myo2p-tail fragments were 

overexpressed in yeast cells. If these overexpressed domains bind efficiently to selected cargo 

molecules, these cargoes should no longer be available for the binding to endogenous, full-

length Myo2p motor and should subsequently not be incorporated into functional transport 

complexes. The overexpression of the entire globular-tail domain resulted in cell lethality. This is 

most likely due to failures in the transport of secretory vesicles (Reck-Peterson et al. 1999). More 

interesting were results from experiments, in which both subdomains I and II are overexpressed 

simultaneously. In contrast to the overexpression of the entire globular-tail domain these cells are 

viable, indicating a different cargo-binding pattern of the entire globular tail compared with the 

individual subdomains. This result was rather surprising since the two subdomains were shown 

to interact closely in vitro (Pashkova et al. 2005). These cells were defective in the transport of 

the vacuole but not of secretory vesicles. Surprisingly, the vacuole transport was not affected by 

an exclusive overexpression of subdomain I, although this domain contains all vacuole binding 

sites (Pashkova et al. 2005). These experiments suggest that the binding of some adapter 

proteins might require both subdomains.  
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Li et al. suggested for type-XI myosins that two alternative orientations of both subdomains might 

explain these distinguishable phenotypes. They propose that adapter proteins prefer certain 

orientations for their binding to the globular-tail domain (Li and Nebenfuhr 2007). However, this is 

a rather unlikely situation for Myo4p. Both subdomains I and II include parts of helix H6 as an 

integral structural element (figure 2.15 and 2.16). Since this helix forms a continuous intersection, 

it prevents the formation of alternative arrangements. By analyzing the Myo4p-GT structure, one 

notices that the loop region connecting the helices H6 and H7 is rather short. Therefore, it is 

unlikely that this loop can form a flexible hinge that allows switching between two alternative 

conformations. Furthermore, the interface between subdomain I and II of the Myo4p-GT is quite 

large (1190 Å2 if the bracket loop is included in the calculation and 1095 Å2 without) and mainly 

hydrophobic. This large contact area also argues against alternative orientations. Consistently, 

recombinant expression of the individual Myo4p subdomains in E. coli resulted in insoluble, 

degrading proteins (data not shown). It is interesting to speculate that instability of the individually 

expressed subdomains might be the simple reason for the results observed in the interference 

assay with Myo2p.  

In summary, the existence of two alternative conformations between subdomain I and II is 

unlikely for Myo4p. Since the structural geometry between the globular-tail domains of Myo2p 

and Myo4p is very similar, this assumption might be extended to all type-V myosins.  

 

Vertebrate type-V myosins are auto-inhibited in a cargo-free situation, (figure 1.3) (Li et al. 2006, 

Liu et al. 2006, Thirumurugan et al. 2006). If autoinhibited, the myosins are in a folded 

conformation, in which the globular-tail domain mediates direct contacts to the motor domain. In 

vitro studies demonstrated that binding of the globular-tail domain to the motor region regulates 

the catalytic ATPase activity of the myosin (Li et al. 2006). Upon cargo binding the folded 

conformation is released and the catalytic activity is restored. Since Myo4p alone is monomeric 

and thus non-processive under physiological conditions, this type of autoinhibition is most 

probably not required. The region that mediates the interaction between the motor and the tail 

domain was mapped for the mouse MyoVa globular tail to the residues K1706 and K1779 of the 

MyoVa sequence (Li et al. 2008). These positively charged residues are highly conserved 

throughout various species, but not in the Myo4p globular-tail sequence (the corresponding 

residues are C1320 and A1390). Again, the missing conservation of these regulatory residues 

highlights the special situation for the Myo4p globular tail and furthermore indicates that Myo4p is 

not regulated via autoinhibiton. 

 
3.6 The globular-tail domain as a peripheral membrane-binding domain 
 

Peripheral membrane proteins interact with the lipid bilayer mainly via three different 

mechanisms: i) by a specific recognition of certain phospholipid head groups, ii) by electrostatic 
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interactions with the negatively charged membrane surface or iii) via the penetration of the lipid 

bilayer (Lemmon 2008). In this context it is important to mention that the participation of any of 

these association types might vary dramatically between different membrane binding proteins.  

 

Within the present work, it was shown that the globular-tail domain of Myo4p binds directly to 

lipid vesicles in floatation experiments (figure 2.18). Furthermore, with the help of the Myo4p-GT 

crystal structure, the region of Myo4p that mediates the vesicle contact was mapped to the 

residues W1325 and Y1329 (figure 2.19). Three lysine residues and one arginine surround the 

residues W1325 and Y1329. Thus, one potential mechanism by which the globular-tail domain 

achieves its peripheral membrane association is that the positively charged residues mediate 

electrostatic interactions with the lipid surface, bringing the aromatic residues in proximity to the 

hydrophobic part of the membrane. Subsequently, the aromatic residues might penetrate the lipid 

bilayer. A direct vesicle association of Myo4p was previously described in a large scale 

interaction study. This interaction was strengthen if the vesicles contain phosphatidylinositol-3,5-

bisphosphate (Zhu et al. 2001). Potentially, the globular-tail domain mediates the lipid binding 

observed in these previous experiments.  

 

The residues W1325 and Y1329 are located on top of helix H9. A helical localization represents 

a rather unusual geometry for a peripheral membrane-binding domain. Most of the so far defined 

peripheral membrane interaction motives like the C1 domain (Colon-Gonzalez and Kazanietz 

2006), the PH domain (Lemmon and Ferguson 2000) or the FYVE domain (Kutateladze 2006) 

recognize specific membrane components via defined structural elements (Lemmon 2008). 

Furthermore, they penetrate the membrane with residues that are located within flexible loop 

regions (figure 3.2) (Dumas et al. 2001, Macedo-Ribeiro et al. 1999, Zhang et al. 1995). 

Nevertheless, the Epsin-N-terminal homology (ENTH) domain represents an example for 

proteins, in which helical regions are directly involved in membrane association (figure 3.2). 

Similar to Myo4p, these protein domains were described to bind specifically to certain 

phosphatidylinositol derivatives (Ford et al. 2002, Ford et al. 2001, Legesse-Miller et al. 2006, 

Stahelin et al. 2003, Zhu et al. 2001). 

In Myo4p, the region identified to be membrane associated includes only two residues that might 

penetrate the lipid bilayer directly and keep the protein attached to the membrane. An 

assessment of the examples listed in figure 3.2 indicates that also within these domains only few 

residues directly penetrate the membrane.  
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Figure 3.2 
Representation of four different peripheral associated membrane domains  
Positively charged residues, which mediate electrostatic interactions with the negatively charged membrane 

surface are highlighted in stick representation. Yellow colored residues directly penetrate the lipid bilayer. Shown 

are: A) The protein kinase Cδ (PKCδ) C1 domain (PDB code 1PTR, Zhang et al. 1995), B) the C-terminal region 

of the early endosome autoantigen (EEA) bound to inositol 1,3-bisphosphate (PDB code 1JOC, Dumas et al. 

2001), C) the membrane-binding C2 domain of human coagulationfactor V (PDB code 1CZS Macedo-Ribeiro et 

al. 1999) and D) Epsin N-terminal homology (ENTH ) domain of epsin bound to Ins(1,4,5)P3. (PDB code 1H0A, 

Ford et al. 2002). Picture was taken from Lemmon 2008 (Lemmon 2008). 

 

Despite the results from the floatation experiments, attempts to quantify the Myo4p-membrane 

interaction with either SPR or RIfS spectrometry were not successful (chapter 2.22). SPR 

experiments with an L1 chip and immobilized vesicles as ligand might have failed due to 

problems with the experimental setup. But if the Myo4p-GT membrane association observed in 

the floatation experiments is real, why could no lipid interaction be observed for the globular tail 

in the RIfS experiments? First of all, the experimental setups are quite different between the 

floatation assay and the RIfS experiment. Before the proteins were centrifuged for floatation, they 

were incubated with the membranes for approximately 30 min. In case such a long incubation 

time is necessary to generate stable membrane contacts, the rather dynamic situation in the RIfS 

experiment would not allow for binding events. Here, the Myo4p globular-tail domain was floated 
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over the surface, allowing every molecule an approximately 30 s contact time with the 

membrane. In vivo, the translocation particles that are transported towards the bud tip seem to 

have a considerable longer membrane contact time. Experiments tracking individual Myo4p 

translocation particles in vivo revealed that Myo4p driven mRNP transport follows a straight bud 

directed movement in the mother cell. Later in the bud, translocation speed decreases and the 

movement is restricted to the cortex. Generally, at the bud tip the movements resembled a 

diffusion-like search for an anchoring point, indicating that the attachment to membranes might 

require a longer contact time (Lange et al. 2008).  

 

One general problem towards the identification of peripheral membrane proteins is that most of 

the already characterized domains bind to membranes with a quite low affinity, while some are 

not even able to mediated membrane association on their own (Lemmon 2008). Therefore, these 

proteins require additional factors to mediate stable membrane binding, like dimerization or the 

recruitment of additional membrane binding domains (Klein et al. 1998, Seaman and Williams 

2002). The potential dimerization of Myo4p in the complex with She3p (as discussed in chapter 

3.1) might play a role in the membrane association. In case the binding of individual, monomeric 

Myo4p-GT molecules to membranes is not sufficient to mediate stable membrane binding, the 

dimerization of the motor could increase its affinity for membranes as observed for other 

peripheral membrane proteins (Klein et al. 1998).  

 

Within the globular-tail domain, the dilute (DIL) region was identified as a conserved sequence 

that defines the class of type-V myosins. DIL regions are also found in proteins like Unc-104 and 

AF-6, a putative target for Ras proteins (Kuriyama et al. 1996, Ponting 1995). In Myo4p, the DIL 

region includes the residues 1300 to 1400. The identified membrane-binding region of Myo4p is 

formed by the aromatic residues W1325 and Y1329 and is part of the DIL domain (figure 2.19). 

Since neither the Myo2p globular tail nor the MyoVa globular tail (data not shown) showed a 

stable membrane association during floatation experiments, it remains to be shown whether 

membrane binding constitutes a more general feature of DIL domain-containing proteins. 

Furthermore, Unc-104 was shown to bind directly to lipid vesicles, however this binding is mainly 

mediated via a PH domain rather than the DIL region (Klopfenstein et al. 2002). 

As it will be discussed in the following chapter, one potential function for the membrane 

association of Myo4p might be the anchoring of its cargo at the bud tip. If this is the case, the 

Myo4p membrane interaction requires a slow off rate, rather than a fast on rate. In the floatation 

assay, in which equilibrium is observed after 16 hours of centrifugation, the membrane 

association has to be stable for this entire period of time (figure 2.18). So, membrane association 

by the Myo4p-GT seems to represent a rather static event. Overexpression of the Myo4p-GT 

domain in vivo results in a random localization of that domain throughout the whole cytoplasm 

(Reck-Peterson et al. 1999). This indicates that Myo4p seem to require a long and static 
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membrane contact in order to mediate direct binding, as achieved by Myo4p accumulation at the 

bud tip. 

 

3.7 The function of the globular-tail domain 
 

Most type-V myosins like yeast Myo2p and vertebrate MyoVa interact with their cargoes mainly 

through binding sites located within the globular-tail domain. The globular tail of Myo2p for 

example binds to several different adapter proteins, linking the motor to a variety of different 

cargoes (chapter 1.5.3). In contrast, the only identified cargo-adapter protein for Myo4p is She3p 

(see chapter 1.7.1 and 1.7.2). The present work reveals that the interaction between both 

proteins does not require the globular-tail domain (figure 2.3). The first indication that the 

globular-tail domains of Myo2p and Myo4p fulfill different functions came from in vivo-localization 

studies for both domains, performed by Reck-Peterson and colleagues (Reck-Peterson et al. 

1999). An overexpression of the Myo4p globular tail leads to a random distribution throughout the 

entire cytoplasm. In contrast, the Myo2p globular-tail domain localizes to the bud tip after 

overexpression. This bud-tip localization is most likely due to an interaction of the Myo2p globular 

tail with already localized adapter proteins. This result further suggests that the Myo4p globular 

tail is not binding to additionally localized adapter proteins that have not been identified to date 

(Reck-Peterson et al. 1999). 

 
3.7.1 On cortical ER inheritance 

 

What is the function of the Myo4p globular tail if not the binding to adapter proteins? To answer 

this question, the role of this domain for both Myo4p functions, i.e. the cortical ER inheritance 

and mRNA transport, was investigated. Surprisingly, cells expressing the Myo4pΔGT in a Δmyo4 

background showed no difference in the inheritance of the cortical ER compared to wild-type 

cells (figure 2.10). This result reveals insights into the mechanisms of ER transport by Myo4p. 

First, the globular-tail domain itself is not binding to a jet unidentified further ER-adapter protein. 

Second, the previously identified membrane binding of Myo4p (Zhu et al. 2001), which is most 

probably mediated by the residues W1325 and Y1329 of the globular-tail domain (chapter 2.20), 

has no effect on ER transport.  

It is already known that the RNA binding protein She2p is not required for ER inheritance 

(Estrada et al. 2003), although it associates with the ER independently of Myo4p and She3p 

(Schmid et al. 2006). Recent data from the laboratory of Prof. Jansen strongly suggest a direct 

association of She2p with ER membranes (M. Schmid & R.-P. Jansen: personal communication). 

Consequently, an interaction of She2p and She3p could potentially form an alternative 

connection of the motor complex to the ER. This linkage might explain why a lack of the globular-

tail domain had no influence on ER inheritance. However, in control experiments with myo4ΔGT 
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cells, in which the She2p binding domain of She3p (Böhl et al. 2000) was removed, effective ER 

transport was also observed (Estrada et al. 2003, and own observation). This result makes a 

potential “cross linking” of the motor complex via She2p unlikely. However, the possibility that 

both types of ER tethering are redundant and only one of them is sufficient for ER inheritance 

cannot be excluded. 

 

The N-terminus of She3p is the only identified adapter that is required for the cortical ER 

transport (Estrada et al. 2003). Therefore it was interesting to see that the She3p-N fragment 

showed no direct membrane association in floatation experiments (figure 2.18). This result may 

suggest the existence of a jet unidentified component within the ER membrane, which mediates 

the linkage of the organelle to the motor complex.  

 
Myosin-dependent ER transport is mainly restricted to yeast and plant cells, while microtubules 

represent the major ER tracks in animal cells (Du et al. 2004). However, MyoVa-lacking mice 

have no smooth ER in the dendritic spines of Purkinje cells, suggesting also a role of this motor 

in ER transport (Bridgman 1999, Takagishi et al. 1996). Furthermore, it was described that in 

Xenopus-egg extracts the ER-network formation depends on microtubules. However, myosin-V 

dependent transport can compensate the network formation if the microtubules are blocked in 

these cells (Wollert et al. 2002). These examples indicate that a type-V myosin-dependent ER 

transport takes place in vertebrate cells and is eventually driven by similar molecular 

mechanisms as the inheritance of cortical ER in yeast.  

 
3.7.2 On mRNA transport 

 

Although myo4ΔGT cells showed a normal cortical ER inheritance (figure 2.10), the localized 

translation of ASH1 mRNA was clearly affected in these cells (figure 2.11). The yeast strains 

used in the experiments carried the adenine synthetase ADE2 gene behind the HO-promoter 

region. Consequently, the ADE2 gene is not expressed in the presence of Ash1p and therefore 

depends on the correct distribution of ASH1 mRNA (chapter 2.13). Obviously, this experiment is 

unsuitable to distinguish between potential defects occurring either during the transport, in the 

translational control or by the anchoring of the mRNP at the bud tip. The previous chapter 

described that a Myo4p fragment lacking the globular-tail domain efficiently catalyzes the cortical 

ER inheritance. Therefore it is unlikely that impaired catalytic activity of the motor protein 

fragment is the reason for the defective localized mRNA translation. Furthermore, the efficient 

ER transport indicates that also in vivo the globular tail is not required for the binding of Myo4p to 

She3p (compare figure 2.3 and 2.10). Because She3p seems to bind efficiently to Myo4pΔGT, it 

is most likely that also She3p-bound She2p and its target mRNAs are efficiently captured by 

Myo4p, lacking the globular-tail domain. Furthermore, a hybrid protein that links She2p and 
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She3p covalently with each other (in this construct She2p is connected to the C-terminus of 

She3p-N) is still able to mediate essentially the same function as both proteins individually (Du et 

al. 2008). Since the interaction between She3p and She2p itself tolerates such significant 

alterations, a deletion of the Myo4p globular-tail domain is unlikely to impair the She3p-She2p 

interaction. 

 

Is translational control affected in Myo4p complexes lacking the globular-tail domain? The 

proteins Puf6p and Khd1p are described to prevent ASH1-mRNA translation during the transport 

event and bind directly to the mRNA and furthermore to ribosomal initiation factors (Deng et al. 

2008, Gu et al. 2004, Irie et al. 2002, Paquin et al. 2007). However, none of these proteins was 

shown to interact with the globular-tail domain of Myo4p or the Myo4p-interaction partner She3p. 

In summary, it can be assumed that translational control is unlikely to be regulated by Myo4p or 

the globular-tail domain. 

 

Phosphorylation was shown to be important for the regulation of transport events mediated by 

Myo2p and Myo4p. For instance, the protein phosphatase Ptc1p is involved in the localization of 

almost all Myo2p dependent cargoes (Jin et al. 2008). However, the effects mediated by Ptc1p 

seem to be indirect, since the adapter proteins of Myo2p are destabilized in Δptc1 cells. In 

addition, the Myo2p tail domain itself contains phosphorylation sites in the amino acid region 

1132-1135 (Legesse-Miller et al. 2006) that potentially regulate the binding of adapter proteins to 

the globular tail.  

Δptc1 cells showed also a slight translocation defect for the cortical ER and ASH1 mRNA (Jin et 

al. 2008). Since the ER transport in myo4ΔGT cells is not affected, a role of the globular tail in 

this signaling pathway is rather unlikely. Furthermore, the amino acid residues 1132-1135 of the 

Myo2p sequence (the phosphorylation site) are not conserved between Myo2p and Myo4p. All 

these arguments suggest that the defective mRNA transport in myo4ΔGT cells is unlikely due to 

a deficiency of phosphorylation. In contrast, phosphorylation was shown for Khd1p and Puf6p to 

occur at the bud tip, leading to an onset of translation of the transported mRNA (Deng et al. 

2008, Paquin et al. 2007). Therefore, phosphorylation seems to be required for the regulation of 

translational control rather than for the motor activity in mRNA transport.  

 

3.7.3 Anchoring at the bud tip 

 

In enterochromaffin cells, MyoVa was described to have a role in the exocytosis of secretory 

vesicles (Desnos et al. 2007). Overexpression of the MyoVa globular tail in these cells resulted in 

a reduced number of secretory vesicles, which are attached to the plasma membrane and 

MyoVa silencing decreased exocytosis in these cells. The attachment of MyoVa at exoctotic sites 

seems to involve binding of the motor to integrated-membrane proteins like Syntaxin-1, which 
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binds to the neck region of MyoVa (Toonen et al. 2006, Watanabe et al. 2005). Since the 

anchoring of Myo4p at the bud tip depends at least partially on the globular-tail domain, this 

attachment is likely to follow a different mechanism. 

 

ASH1 mRNA that is artificially tethered to She2p is efficiently transported into the daughter cell 

but fails to be properly anchored at the bud tip (Gonsalvez et al. 2004). Furthermore, anchoring 

at the bud tip is a quite complex process that requires additional mRNA binding proteins 

(Trautwein et al. 2004), active translation of the mRNA transcripts (Gonzalez et al. 1999) and 

eventually a molecular remodelling of the Myo4p-She3p-She2p heterotrimeric complex 

(Gonsalvez et al. 2004). Mutations affecting cortical-ER inheritance to the bud (sec3Δ, and 

srp101Δ) also affect asymmetric mRNA localization (Aronov et al. 2007). In addition to all these 

aspects does the globular-tail domain of Myo4p also have a function in retaining the motor 

protein at the bud tip. Cells, which express Myo4pΔGT, have a considerably reduced amount of 

the motor protein localized at the bud tip and show impaired ASH1-mRNA translation in the bud 

(figures 2.11 and 2.12). In summary, several mechanisms seem to work in parallel to mediate 

efficient anchoring of the transport complex at the bud tip. 
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3.8 Summary 
 
To date, only little is known about the mechanisms by which motor proteins achieve specific 

cargo interactions. In particular, few information are available on the structural basis of myosin-

cargo interactions and quantitative aspects of complex formation. This work aimed at the 

multidisciplinary characterization of molecular principles underlying motor-cargo recognition. In 

order to reach this goal, the complex formation between the type-V myosin Myo4p from budding 

yeast and its adapter She3p was analyzed. Since this interaction belongs to one of the best-

characterized transport events, it is a well-suited model to tackle structural and mechanistic 

questions.  

In this study, the interaction of the Myo4p-She3p complex was quantified by Surface-Plasmon 

Resonance revealing an equilibrium-dissociation constant of approximately 50 nM and a half-live 

time of approximately 52 s. In vivo, individual transport complexes of Myo4p and She3p require 

up to 2 minutes to reach their site of destination (Bertrand et al. 1998, Lange et al. 2008). Since 

multiple Myo4p-She3p complexes have been suggested to be present in transport particles, this 

complex stability might be sufficient to allow for efficient cargo translocation. Nevertheless, it also 

indicates that the assembly of transport complexes represents a balance between stability of the 

complexes and the release of the individual components. The present work also revealed that 

Myo4p alone is strictly monomeric. Since this is a rather unusual characteristic for type-V 

myosins, this finding leads to the question how the monomeric motor catalyzes processive 

movement in vivo. Experiments using fusion proteins of the Myo4p-tail to heterologous 

dimerization domains suggest that Myo4p is transferred into the dimeric state upon binding to 

She3p. This dimerization might trigger motor activation. 

It has been suggested that the globular-tail domain of type-V myosins generally functions as a 

cargo-binding domain. In contrast, the present results show that She3p does not bind to the 

globular tail but to the rather unstructured rod region and the coiled-coil domain of Myo4p. In vivo 

experiments revealed that the globular tail is dispensable for the inheritance of the cortical ER. It 

is however required for the localized translation of ASH1 mRNA, most likely by helping to anchor 

the motor complex at the bud tip. Consistently, floatation experiments with the globular tail and 

membrane vesicles revealed a direct lipid association, suggesting bud anchoring through direct 

membrane association. The crystal structure of the globular-tail domain was solved at 2.3 Å 

resolution and used to identify the region, which mediates lipid association. Structure-based 

mutational analyses resulted in the identification of a membrane-binding surface. Comparison of 

the structure with the recently published structure of the Myo2p globular tail revealed high 

similarities of the overall fold but a low sequence conservation of surface-exposed residues. This 

low surface conservation of the globular-tail domain might indicate the evolutionary adaption of 

type-V myosins towards the binding of a large number of different cargoes, including proteins or 

membranes.  
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4. Materials and Methods 
 
4.1 Consumables  
 

All common chemicals were obtained from Merck (Darmstadt, Germany), Roth (Karlsruhe, 

Germany) and Sigma (Deisenhofen, Germany), unless stated otherwise. Enzymes and 

nucleotides for molecular biology as well as markers and loading dyes for electrophoresis were 

ordered by MBI Fermentas (St. Leon-Rot, Germany) or New England Biolabs (Frankfurt, 

Germany). Components to prepare media for bacteria and yeast growth were obtained from BD 

(Heidelberg, Germany) and Sigma. Chromatographic materials and columns as well as materials 

for western blots were purchased from GE Healthcare (Freiburg, Germany). Lipids were obtained 

from Avanti-Polar-Lipids (Alabaster, USA), Roth and Sigma. Crystallization screens and 

crystallization tools were obtained from Hampton Research (Aliso Viejo, USA) and Qiagen 

(Hilden, Germany). Finally, oligonucleotides for cloning were ordered by Thermo Scientific 

Electron Corporation (Ulm, Germany). 

 

4.2 Plasmid DNA 
 
4.2.1 Purchased plasmids 

 
Name Appication Source 

pGEX-6P-1 Bacterial expression GE Healthcare 
pET28a Bacterial expression Novagen (Schwalbach,Germany) 
pYM17 Genomic yeast tagging (Janke et al. 2004) 
pYM19 Genomic yeast tagging (Janke et al. 2004) 
 

4.2.2 Plasmids for E. coli expression (biochemical characterization) 

 
 Insert Vector Template Primer  Mut. Primer Enzyme 

P002 She3p-N pET 28a  genomic DNA    
P007 Myo4p-tail pGEX-6P-1 genomic DNA O002/O004  BamHI/XhoI 
P129 Myo4p-CC pGEX-6P-1 genomic DNA O001/O124  BamHI/XhoI 
P022 Myo4p-GT pGEX-6P-1 genomic DNA O013/O004  BamHI/XhoI 
P010 Myo4p-RGT pGEX-6P-1 genomic DNA O005/O004  BamHI/XhoI 
P131 Myo4p-GCN4 pGEX-6P-1 genomic DNA O125/O004 O126/O127 BamHI/XhoI 
P050 Myo2p-GT(1084-1575)  pGEX-6P-1 genomic DNA O027/O086  BamHI/XhoI 
P134 Myo4p-tailF1056R, I1057R pGEX-6P-1 genomic DNA O002/O004 O98/O99 NdeI/SpeI 
P161 Myo4p-GTF1379D, Y1381D  pGEX-6P-1 genomic DNA O013/O004 O158/O157 NsiI/XhoI 
P170 Myo4p-GTW1325D, Y1329D  pGEX-6P-1 genomic DNA O013/O004 O165/O166 BamHI/XhoI 
P173 Myo4p-GTR1333D  pGEX-6P-1 genomic DNA O013/O004 O169/O170 BamHI/XhoI 
P175 Myo4p-GT R1333D, K1366D  pGEX-6P-1 P173 O013/O004 O171/O172 BamHI/XhoI 
P176 Myo4p-GTK1326D, R1333D, K1366D pGEX-6P-1 P175 O013/O004 O173/O174 BamHI/XhoI 
P177 Myo4p-GTK1326D, R1333D, K1366D, K1400D  pGEX-6P-1 P176 O013/O004 O175/O176 BamHI/XhoI 
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4.2.3 Plasmids for E. coli expression (crystallization) 
 

 Insert Vector Template Primer  Mut. Primer Enzyme 

P131 Gcn4p242-271-Myo4p1029-1471 pGEX-6P-1 genomic DNA O125/O004 O126/O127 BamHI/XhoI 
P038 Myo2p1008-1088-Myo4p1042-1471 pET 28a  genomic DNA O015/O004  SacI/XhoI 
P048 Myo4p1006-1471 pGEX-6P-1 genomic DNA O037/O004  BamHI/XhoI 
P077 Myo4p1006-1471(C1113S) pGEX-6P-1 genomic DNA O037/O004 O054/O055 BamHI/XhoI 
P079 Myo4p1006-1471(C1113S,C1288S) pGEX-6P-1 P077 O037/O004 O056/O057 BamHI/XhoI 
P081 Myo4p1006-1471(C1113S,C1288S,C1320S) pGEX-6P-1 P079 O037/O004 O058/O059 BamHI/XhoI 
P064 Myo4p1009-1471 pGEX-6P-1 genomic DNA O046/O004  BamHI/XhoI 
P065 Myo4p1012-1471 pGEX-6P-1 genomic DNA O047/O004  BamHI/XhoI 
P010 Myo4p1042-1471 pGEX-6P-1 genomic DNA O005/O004  BamHI/XhoI 
P007 Myo4p978-1471 pGEX-6P-1 genomic DNA O002/O004  BamHI/XhoI 
P133 Myo4p978-1471(C1113S,C1288S,C1320S) pGEX-6P-1 P081   NdeI/SpeI 
P030 Myo4p996-1072 pGEX-6P-1 genomic DNA O003/O018  BamHI/XhoI 
P033 Myo4p996-1420 pGEX-6P-1 genomic DNA O003/O021  BamHI/XhoI 
P035 Myo4p996-1463 pGEX-6P-1 genomic DNA O003/O020  BamHI/XhoI 
P037 Myo4p996-1467 pGEX-6P-1 genomic DNA O003/O019  BamHI/XhoI 
P008 Myo4p996-1471 pGEX-6P-1 genomic DNA O003/O004  BamHI/XhoI 
P117 Myo4pC1042-1471(C1113S,C1288S,C1320S) pGEX-6P-1 P081 O115/O004  BamHI/XhoI 
P118 Myo4pCA1042-1471(C1113S,C1288S,C1320S) pGEX-6P-1 P081 O116/O004  BamHI/XhoI 
P116 Myo4pCC1042-1471(C1113S,C1288S,C1320S) pGEX-6P-1 P081 O114/O004  BamHI/XhoI 
P023 She3p1-221  pGEX-6P-1 genomic DNA O006/O012  BamHI/XhoI 
P018 She3p1-228  pGEX-6P-1 genomic DNA O006/O011  BamHI/XhoI 
P015 She3p1-231  pGEX-6P-1 genomic DNA O006/O010  BamHI/XhoI 
P012 She3p1-234  pGEX-6P-1 genomic DNA O006/O007  BamHI/XhoI 
P043 She3p16-202  pGEX-6P-1 genomic DNA O022/O024  BamHI/XhoI 
P039 She3p16-221  pGEX-6P-1 genomic DNA O22/O012  BamHI/XhoI 
P019 She3p3-228  pGEX-6P-1 genomic DNA O008/O011  BamHI/XhoI 
P016 She3p3-231  pGEX-6P-1 genomic DNA O008/O010  BamHI/XhoI 
P066 She3p33-202  pGEX-6P-1 genomic DNA O023/O024  BamHI/XhoI 
P040 She3p33-221  pGEX-6P-1 genomic DNA O023/O012  BamHI/XhoI 
P076 She3p40-194(C147S)  pGEX-6P-1 P072 O050/O051  BamHI/XhoI 
P068 She3p40-221  pGEX-6P-1 genomic DNA O050/O012  BamHI/XhoI 
P084 She3p6-140  pGEX-6P-1 genomic DNA O009/O068  BamHI/XhoI 
P083 She3p6-165  pGEX-6P-1 genomic DNA O009/O067  BamHI/XhoI 
P070 She3p6-194  pGEX-6P-1 genomic DNA O009/O051  BamHI/XhoI 
P074 She3p6-194(C147S)  pGEX-6P-1 P072 O009/O051  BamHI/XhoI 
P041 She3p6-202  pGEX-6P-1 genomic DNA O009/O024  BamHI/XhoI 
P072 She3p6-211(C147S)  pGEX-6P-1 genomic DNA O009/O012 O052/O053 BamHI/XhoI 
P024 She3p6-221  pGEX-6P-1 genomic DNA O009/O012  BamHI/XhoI 
P020 She3p6-228  pGEX-6P-1 genomic DNA O009/O011  BamHI/XhoI 
P017 She3p6-231  pGEX-6P-1 genomic DNA O009/O010  BamHI/XhoI 
P014 She3p6-234  pGEX-6P-1 genomic DNA O009/O007  BamHI/XhoI 
P088 She3p88-194  pGEX-6P-1 genomic DNA O070/O051  BamHI/XhoI 
P071 She3p9-194  pGEX-6P-1 genomic DNA O049/O051  BamHI/XhoI 
P075 She3p9-194(C147S)  pGEX-6P-1 P072 O009/O051  BamHI/XhoI 
P067 She3p9-221  pGEX-6P-1 genomic DNA O049/O012  BamHI/XhoI 
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4.3 E. coli strains 
 

Strain Essential genotype Source 

XL-1 
blue 

recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F´ pro AB lacIqZΔ M15 Tn10 
(Tetr)] 

Stratagene; La Jolla, 
USA 

BL21 
(DE3) 

B F- ompT hsdS(rB
-mB

-) dcm+ Tetr galλ (DE3) EndA Hte [argU ileY leuW Camr]  Stratagene; La Jolla, 
USA 

B834 
(DE3) 

F− ompT gal met rBmB 
 

Novagen; Schwalbach, 
Germany 

 

4.4 S. cerevisiae strains 
 
Strain Essential genotype Source 

Y18 MAT a; URA3::HMG1-GFP;  (Schmid et 
al. 2006) 

Y21 MAT a; URA3::HMG1-GFP; HIS3::MYO4-9Myc this study 
Y22 MAT a: URA3::HMG1-GFP; HIS3::MYO4-1090stop-9Myc this study 
Y28 MAT a; trp1-1; leu2-3; his3-11; ura3; ade2-1; HO-ADE2, HO-CAN1 (Jansen et 

al. 1996) 
Y29 MAT a; trp1-1; leu2-3; his3-11; ura3; ade2-1; HO-ADE2, HO-CAN1, HIS3::MYO4-9Myc this study 
Y30 MAT a; trp1-1; leu2-3; his3-11; ura3; ade2-1; HO-ADE2, HO-CAN1; HIS3::MYO4-1090stop-

9Myc 
this study 

Y32 MAT a; trp1-1; leu2-3; his3-11; leu; ura3; ade2-1; HO-ADE2, HO-CAN1; MYO4::URA3 (Jansen et 
al. 1996) 

Y42 MAT a; trp1-1; leu2-3; his3-11; ura3; ade2-1; HO-ADE2, HO-CAN1; HIS3::MYO4-9Myc; 
CloNat::SHE2-6HA 

this study 

Y43 MAT a; trp1-1; leu2-3; his3-11; ura3; ade2-1; HO-ADE2, HO-CAN1; HIS3::MYO4-1090stop-
9Myc: CloNat::SHE2-6HA 

this study 

 
4.5 Oligonucleotides  
 

Primer for biochemical characterization Primer for complex crystallization  

O001 5’ aaaggatcccaaaaagaagttgaagaacggaatattagg 3’  O002 5' aaaggatccaagcaaaggcaagagtacg 3' 
O002 5’ aaaggatccaagcaaaggcaagagtacg 3’ O003 5' aaaggatccaagctgaagacgttacaagttg 3' 
O004 5’ aaactcgagttattttctgtctaattttataat 3’ O004 5' aaactcgagttattttctgtctaattttataat 3' 
O005 5’ aaaggatccagattaagtgatgaagtcaaa 3’ O005 5' aaaggatccagattaagtgatgaagtcaaa 3' 
O013 5’ aaaggatccctagtcaatgtaattcgtaga 3’ O006 5' aaaggatccatgtcggaccaggataatacc 3' 
O027 5’ gggggatccatgtcgctgggcaccgttact 3’ O007 5' ggactcgagttacttgcttaattttga 3'  
O086 5’ gcactcgagttagtggccgtcttgaacgac 3’ O008 5' aaaggatcccaggataatacccagacttct 3' 
O124 5’ aaactcgagttatcttgaaggtttgttacc 3’ O009 5' aaaggatccacccagacttcttcaagcaag 3' 
O125 5’ aaaggatcccgtgcgagaaagttgcaaaga 3’ O010 5' ggactcgagttattttgaatccttttctgtttc 3' 
O126 5’ agaaattagttggcgaacgcatgcaaagtttggctgctat 3’ O011 5' ggactcgagttacttttctgtttccagagattt 3' 
O127 5’ atagcagccaaactttgcatgcgttcgccaactaatttct 3’ O012 5' ggactcgagttacaaatctttcacagagtcatt 3' 
O157 5’ aagttactattcgatgattgggatgccttgaatccagcc 3’ O015 5' ggagagctcagattaagtgatgaagtcaaa 3' 
O158 5’ ggctggattcaaggcatcccaatcatcgaatagtaactt 3’ O018 5' gaactcgagttaattagcagaatatgtggtggtgaa 3' 
O165 5’ tgtcccgcgttaaatgataagtatggggatgaagtggatagaaat 3’ O019 5' aaactcgagttattttataattttactgacagt 3' 
O166 5’ atttctatccacttcatccccatacttatcatttaacgcgggaca 3’ O020 5' gaactcgagttaactgacagtagctaagccctc 3' 
O171 5’ aagatattacagttggacataagcaacttgaac 3’ O021 5' gaactcgagttattctcttttgatcacgttagc 3' 
O172 5’ gttcaagttgcttatgtccaactgtaatatctt 3’ O022 5' aaaggatcccctcaccataatatttttatggca 3' 
O173 5’ cccgcgttaaattgggattatgggtacgaagtg 3’ O023 5' aaaggatccagaaatacctccagccaaaat 3' 
O174 5’ cacttcgtacccataatcccaatttaacgcggg 3’ O024 5' ggactcgagttatgaactagtatctgaaccata 3' 
O175 5’ tacaagcctgctaacgatggcgaagctggagta 3’ O037 5' aaaggatccaatactttaaacaagaagaatgcc 3' 
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Primer for biochemical characterization Primer for complex crystallization  

O176 5’ tactccagcttcgccatcgttagcaggcttgta 3’ O046 5' aaaggatccaacaagaagaatgccttgaag 3' 

   O047 5' aaaggatccaatgccttgaaggagagaaaa 3' 

   O049 5' aaaggatccacttcttcaagcaagttggca 3' 

   O050 5' aaaggatccgcctcatcttcgagagtcatt 3' 

   O051 5' ggactcgagttaattttgattacttaactctaa 3' 

   O052 5' gccattgaacaatcttcctctgaaaaattgcaa 3' 

   O053 5' ttgcaatttttcagaggaagattgttcaatggc 3' 

   O054 5' atggacctgaattcttacacattagaa 3'  

   O055 5' ttctaatgtgtaagaattcaggtccat 3'  

   O056 5' gatgctgtcttgtctaaatttcaagtt 3'  

   O057 5' aacttgaaatttagacaagacagcatc 3'  

   O058 5' ctaataaccaaatctcccgcgttaaat 3'  

   O059 5' atttaacgcgggagatttggttattag 3'  

   O067 5' ggactcgagttattgtgactccaataatgaatt 3' 

   O068 5' ggactcgagttaagaatttttcgccaatttact 3' 

   O070 5' aaaggatccttaaatctgctgaagaacgag 3' 

   O114 5' aaaggatcctgttgtagattaagtgatgaagtcaaa 3' 

   O115 5' aaaggatcctgtagattaagtgatgaagtcaaa 3' 

   O116 5' aaaggatcctgtgcaagattaagtgatgaagtcaaa 3' 

   O125 5' aaaggatcccgtgcgagaaagttgcaaaga 3' 

   O126 5' agaaattagttggcgaacgcatgcaaagtttggctgctat 3' 

   O127 5' atagcagccaaactttgcatgcgttcgccaactaatttct 3' 
 

Primer used for homologous recombination in yeast 

O195 5’ atgataaagtgaaaggtttgggaatcgcaggacaacaagtaaaaccgaagcgtacgctgcaggtcgac 3’ 
O196 5’ atacagagggcttagctactgtcagtaaaattataaaattagacagaaaacgtacgctgcaggtcgac 3’ 
O197 5’ tatatgtatatatacatatatacatatatgggcgtatatttactttgttcatcgatgaattcgagctcg 3’ 
O208 5’ ttgatgttgtcgctactaaatggcatgacaaatttggtaaattgaaaaaccgtacgctgcaggtcgac3’ 
O209 5’ tattaactagtggtacttatttgctctttttgagctaaaaactgaaggccatcgatgaattcgagctcg 3’ 

 
4.6 Antibodies 
 

Name Source Dilution Supplier 

Alexa®488 anti-mouse-IgG goat 1:250 (IF) MoBiTec (Göttingen, Germany) 
anti-HA (16B12) mouse 1:1000 (IF) HISS Diagnostics GmbH  
anti-HA (3F10)  rat  1:1000 (Western)  Roche (Mannheim, Germany) 
anti-myc (9E10) mouse  1:50(IF,Western) E. Kremmer (Helmholtz-Center Munich) 
anti-mouse-IgG-HRP goat 1:3000 (Western) BioRad (Munich, Germany) 
anti-rat-IgG-HRP rabbit 1:10000 (Western) Abcam (Cambridge, USA) 
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4.7 Molecular biology  
 
4.7.1 Standard cloning methods 

 

Standard methods for molecular biology like PCR, restriction digestion, ligation and the 

separation of DNA fragments were generally performed as indicated in Sambrook et al. 

(Sambrook and Russel 2000). Enzymes and buffers were used as recommended by the 

manufacturer. Purification of DNA products was performed using the NucleoSpin Extract II Kit 

(Macherey and Nagel, Dueren, Germany). Cleaved vector DNA was additionally treated with calf 

intestinal alkaline phosphatase (CIAP). Point mutations were introduced by PCR-based 

mutagenesis (Ho et al. 1989).  

 

4.7.2 Transformation of E. coli and isolation of plasmid DNA  

 

Preparation of chemically competent bacteria was performed according to Hanahan et al. 

(Hanahan 1983). The cells were aliquoted, flash frozen in liquid nitrogen and stored at -80°C. 

Transformation of plasmid DNA was essentially performed as described in Sambrook et al. 

(Sambrook and Russel 2000). Plasmid DNA was isolated from 5 ml overnight cultures using the 

NucleoSpin-Plasmid Kit (Macherey-Nagel). DNA sequencing to confirm the correctness of the 

plasmid DNA was performed by Medigenomix (Medigenomix , Martinsried, Germany).  

 
4.7.3 Transformation of yeast cells  

 

The protocol to transform PCR products for homologous recombination was adapted from Knop 

et al. (Knop et al. 1999). For ClonNAT (Werner BioAgents, Jena, Germany) selection, 

transformed cells were incubated at 30°C over night in YPD medium (chapter 4.11.1) before 

plating. Colonies were streaked out to single colonies on selection plates. Correct integration was 

analysed by western blot after alkaline yeast-cell lysis (Knop et al. 1999) and PCR.  

 

4.7.4 Isolation of yeast genomic DNA  

 

10 ml of a stationary yeast culture were sedimented, washed with 0.5 ml water and resuspended 

in 200 µl breaking buffer. Subsequently, 200 µl phenol/chloroform/isoamyl alcohol (24:24:1) and 

glass beads were added. The reaction was vortexed for 5 minutes, mixed with 200 µl TE buffer 

and centrifuged for 5 minutes at 16000 g at RT. The DNA containing aqueous phase was 

isolated and ethanol precipitated.  
Breaking buffer: 2 % (v/v) Triton X-100, 1 % (v/v) SDS, 100 mM NaCl, 10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0 

TE buffer: 10 mM Tris pH 7.5, 1 mM EDTA 
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4.8 Protein analysis  
 
4.8.1 Protein separation by SDS-PAGE  

 

Protein samples were analyzed by SDS-PAGE on 15 % polyacrylamide gels as described by 

Laemmli et al. (Laemmli 1970) using the vertical Mini-PROTEAN 3 System (Bio-Rad, Munich, 

Germany). Samples were mixed with loading dye and boiled for 2 minutes. After seperation, gels 

were either stained with Coomassie-staining solution and discolored with water or applied to 

western blot analysis.  
Coomassie staining solution: 50 % (v/v) ethanol, 7 % (v/v) acetic acid, 0.2 % Coomassie Brilliant blue R-250  

 
4.8.2 Western blot 

 

After SDS-PAGE, proteins were transferred onto a PVDF membrane (Millipore, Billerica, MA, 

USA), using the wet-blot method. The blotting procedure was performed at 4°C for 2 hours at 60 

V. After transfer, the membrane was blocked with TBS-T containing 10 % milk powder, before 

the primary antibody (dissolved in TBS-T containing 2 % milk powder) was added and incubated 

overnight at 4°C. The membrane was washed 3 times for 5 minutes with TBS-T at RT and 

afterwards incubated with secondary antibody dissolved in TBS-T containing 2 % milk powder for 

1h at RT. Visualization was performed using an ECL-Kit (Thermo-Scientific), followed by 

exposure of the membrane to light-sensitive films (GE Healthcare). The films were developed 

using a Kodak Xomat M35 developing machine. 
Blot buffer: 10 mM NaHCO3, 3 mM NaCO3  

TBS-T: 10 mM Tris HCl pH 8.0, 150 mM NaCl, 0,05 % Tween 

 
4.9 Protein expression, purification and crystallization 
 
4.9.1 Recombinant protein expression in E. coli 

 

To overexpress recombinant proteins, competent E. coli BL21 (DE3) cells were transformed with 

plasmid DNA carrying the gene of interest. Cells were grown at 37°C in LB medium with the 

appropriate antibiotics to an OD600 of 0.6-0.8. Cells were cooled down to 18°C and expression 

was induced by the addition of 0.2 mM IPTG. After growing for 12-16 hours at 18°C, cells were 

harvested by centrifugation at 4°C. Pellets were dissolved in lysis buffer, frozen in liquid N2, and 

stored at -80°C. 
LB medium: 1 % (w/v) tryptone, 0.5 % (w/v) yeast extract, 0.5 % (w/v) NaCl  

Lysis buffer: 20 mM Tris, pH 7.5, 500 mM NaCl, 1 mM EDTA and 1 mM DTT 
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4.9.2 Selenomethionine labeling  

 

To generate selenomethionine labeled protein, overexpression was performed with the E. coli 

strain B834 (DE3). Cells were grown in minimal medium, containing SeMet and the appropriate 

antibiotic. The overall procedure was identical to point 4.9.1.  
Minimal media: 7,5 mM (NH4)2SO4, 8,5 mM NaCl, 55 mM KH2PO4, 100 mM K2HPO4, 1 mM MgSO4, 20 mM glucose, 1 mg/l 

CaCl2, 1 mg/l FeCl2, 1 µg/l of the following trace element: Cu2+; Mn2+; Zn2+; MoO4
2+, 1 mg/l Thiamine, 1 mg/l Biotin, 100 mg/l of 

the following amino acids (L-alanine, L-arginine, L-aspartic acid, L-cysteine, L-glutamate, L-glycine, L-histidine, L- isoleucine, L-

leucine, L-lysine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tyrosine, L-valine, SeMet) 

 

4.9.3 Purification of Myo4p fragments  

 

Myo4p fragments were expressed as GST-fusion proteins. Cells were resuspended in Lysis 

buffer and disrupted by sonification. Cell debris was removed by centrifugation. For purification, 

the respective supernatant was loaded onto a 5 ml HiTrap-GST column, equilibrated with the 

corresponding lysis buffer. After extensive washing with buffer-AM4, the column was floated with 

6 ml buffer-AM4 containing 15 mg/ml Precission protease (GE Healthcare) and stored for 8 hours 

at 4°C. Cleaved protein was eluted with buffer-AM4 and directly applied to a MonoSP-HiTrap 

column for all Myo4p fragments containing the rod region and otherwise to a MonoQ-HiTrap 

column. Ion-exchange chromatography was performed using the Äkta System (GE Healthcare). 

Prior to protein loading, the ion exchange columns were equilibrated with the respective buffer-

AM4 and protein was eluted with a gradient of 20 column volumes ranging from buffer-AM4 to 

buffer-BM4. The pooled peak fractions (the flow-through for the rod lacking Myo4p fragments) 

were concentrated using centrifugal filter devices (Millipore) and loaded onto a Superdex S200 

16/60 size exclusion chromatography column, equilibrated with the buffer-AM4. SeMet-

containing Myo4p-GT protein was purified as the wild-type protein, but all buffers were 

additionally degassed before use and contained 2 mM DTT. 
Buffer-AM4: 10 mM Tris, pH 8.25, 200 mM NaCl and 1 mM DTT 

Buffer-BM4: 10 mM Tris, pH 8.25, 1 M NaCl and 1 mM DTT 

Lysis buffer: 20 mM Tris, pH 7.5, 500 mM NaCl, 1 mM EDTA and 1 mM DTT 
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4.9.4 Purification of She3p fragments  

 

She3p fragments used for crystallization were expressed as GST-fusion proteins and essentially 

purified as the Myo4p fragments, using the buffer conditions mentioned below. After affinity 

purification, She3p fragments were loaded onto a MonoQ-HiTrap column.  

For affinity chromatography of His-tagged She3p-N the protein was loaded onto a HisTrap 

column, equilibrated with Ni-lysis buffer. After extensive washing, protein was eluted with Ni-

elution buffer. Subsequently, the protein was dialysed against 1.5 l of buffer-AS3. Cation-

exchange chromatography was performed as described for She3p-GST fusion proteins. 
Buffer-AS3: 10 mM Tris, pH 6.5, 100 mM NaCl and 1 mM DTT 

Buffer-BS3: 10 mM Tris, pH 6.5, 1 M NaCl and 1 mM DTT 

Lysis buffer: 20 mM Tris, pH 7.5, 500 mM NaCl, 1 mM EDTA and 1 mM DTT 

Ni-elution buffer: 20 mM Tris, pH 7.5, 500 mM NaCl, 1 mM EDTA and 250 mM Imidazole 

Ni-lysis buffer: 20 mM Tris, pH 7.5, 500 mM NaCl, 1 mM EDTA and 15 mM Imidazole 

 

4.9.5 Crystallization and structure determination of the Myo4p-GT 

 

After size exclusion chromatography, the protein solution was concentrated to 20 mg/ml using 

centrifugal filter devices (Millipore). The protein was crystallized by hanging drop vapour diffusion 

technique by mixing 1 µl protein (20 - 12 mg/ml) and 1 µl of reservoir solution at 20°C. Prior data 

collection, crystals were incubated for 2 minutes in cryoprotectant, mounted in nylon loops, and 

flash frozen in liquid nitrogen. Single wavelength anomalous dispersion (SAD) experiments were 

recorded at beamline X12 (DESY, Hamburg, detector type MAR CCD 225mm) with SeMet-

containing crystals at the K absorption edge to 0.97776 Å. Data from 240 images (1 ° rotation) 

was integrated and scaled with XDS and XSCALE (Kabsch 1993). The Atomic positions for 14 

Selenium atoms were located with SHELXD (Schneider and Sheldrick 2002). Native data were 

recorded at ID14-1 (ESRF, Grenoble France, detector type ADSC Q210 CCD) with a wavelength 

of 0.933 Å to a resolution of 2.3 Å. Data from 190 images (1 ° rotation) were integrated and 

scaled with Mosflm and SCALA (Collaborative Computational Project 1994, Leslie 1992). Phases 

to 2.3 Å were obtained with SHARP (Bricogne et al. 2003), using the anomalous and the native 

data set and phase extension. Resulting phases were used for automated building with ArpWarp 

(Perrakis et al. 1999). The model was manually completed using COOT. Refinement of the 

native data was performed with Refmac (Murshudov et al. 1997, Terwilliger 2002), using Twin-

Lattice Symmetry (TLS, dividing each monomer in 2 domains) and Non-Crystallographic 

Symmetry (NCS). The final model was analyzed using SFCHECK (Vaguine et al. 1999)  
Cryoprotectant: reservoir solution containing 20 % Ethylenglycol 

Reservoir solution: 100 mM Hepes pH 8.5, 20 % PEG 3350, 150 mM HCO2Na and 10 mM K2Pt(CN)4 
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4.9.6 Crystallization of the Myo4p-She3p complex 

 

After proteins were purified individually, they were mixed with an excess of Myo4p and applied to 

a Superdex S200 16/60 size exclusion column. The complex was analyzed by SDS-PAGE, 

concentrated to 4 mg/ml using centrifugal filter devices (Millipore) and used in crystallization 

experiments. Initial screens were performed as sitting drop vapour diffusion experiments using 

the Hydra-II-robot system (Thermo Scientific) and commercially available crystallization screen in 

a 96 well format. The total reservoir volume was 80 µl and 0.5 µl of protein solution were mixed 

with 0.5 µl of reservoir solution. Crystallization plates were incubated at 4°C and 20°C. Hanging 

drop vapour diffusion experiments were used to refine individual conditions. Here, 1 µl protein 

was mixed with 1 µl of the respective reservoir solution.  

 

4.10 In vitro characterization of the Myo4p-tail function 
 
4.10.1 Ni-pull down 

 

50 µg of each analyzed protein were incubated with 50 µl of Ni-Sepharose for 1 hour in reaction 

buffer. Afterwards, the sepharose was washed five times with 200 µl reaction buffer, followed by 

a final wash step with 50 µl. Proteins were eluted with 50 µl of elution buffer. For visualization: 

1/10 of the input, 1/5 of the final wash, and 1/5 of the elution fraction was analyzed by SDS-

PAGE and Coomassie staining.  
Elution buffer: 20 mM Tris-HCl (pH 7.5), 200 mM NaCl, and 750 mM Imidazole 

Reaction buffer: 20 mM Tris-HCl (pH 7.5), 200 mM NaCl, and 15 mM Imidazol 

 

4.10.2 Surface Plasmon-Resonance 

 
4.10.2.1 Myo4p-She3p-N interaction 

 

All SRP experiments were performed using a Biacore 3000 system (GE Healthcare). She3p-N 

was attached to a CM5 chip surface (GE Healthcare) to signal levels below 200 RU by standard 

amine coupling. Myo4p fragments were applied in running buffer with the following concentration 

ranges: Myo4p-tail, 11 nM to 700 nM; Myo4p-GT, 1 µM to 5 µM, Myo4p-RGT, 170 nM to 5.5 µM; 

Myo4p-CC, 88 nM to 5.6 µM; Myo4p-GCN4, 27 nM to 860 nM; Myo4p-GST, 36 nM to 1.2 µM. 

Equilibrium dissociation constants were derived from steady-state measurements, applying the 

Langmuir isotherm (Req=KAcRmax/(1+cKA)), with Req: steady state binding level, KA: association 

constant, c: analyte concentration, Rmax: maximal binding level). Rmax1/2 values were determined 

by using three independent measurements. 
Running buffer: 10 mM Hepes, pH 7.5, 200 mM NaCl, and 50 mM EDTA 
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4.10.2.2 Myo4p-GT vesicle interaction 

 

Vesicles were attached to a L1 chip surface (GE Healthcare) to signal levels below 300 RU by 

floating over the surface. Myo4p-GT was applied in running buffer with a concentration range 

from 100 nM to 3 µM. 

 

4.10.3 Floatation assay with ER-like protein-free liposomes  

 
4.10.3.1. Preparation of protein free Liposomes 

 

Liposomes containing the following lipid composition were prepared according to Qbadou et al. 

(Qbadou et al. 2003): Ergosterol 16 %, Phosphatidylcholine PC 40 %, Phosphatidylethanolamine 

PE 24 %, Phosphatidylserine PS 10 %, Phosphatidylinositol PI 10 %. Lipids were solved in 

chloroform/methanol and mixed in a darkened, evacuated round bottom flask. The mixture was 

dried by rotary evaporation and the lipid film was dissolved to a final total concentration of 10 

mg/ml in degassed liposome buffer. To create unilamellar liposomes, the lipids were passed 20 

times through a 400 nm pore polycarbonate filter membrane mounted in an extruder (Avestin, 

Mannheim, Germany). Liposomes were aliquoted, shock frozen in liquid N2 and stored at – 80°C.  
Liposome buffer: 20 mM HEPES pH 7.4, 100 mM NaCl 

 

4.10.3.2 In vitro binding and floatation of liposomes  

 

100 µg of proteins were mixed with 1 mg of liposomes and filled up to 250 µl with binding buffer. 

The mixture was incubated for 15 minutes at RT followed by 10 minutes on ice. Afterwards, the 

reaction was mixed with 3 ml binding buffer containing 70 % sucrose and transferred to the 

bottom of a SW40 ultraclear polycarbonate tube (Beckman, Krefeld, Germany). The sample-

containing fraction was covered with 3 ml of binding buffer, each containing 50 %, 40 % and 0 % 

sucrose, respectively. After centrifugation to equilibrium (22000 rpm, 16.5 h, 4°C, SW40 rotor 

(Beckman)) the gradient was harvested from top to bottom in 1 ml fractions. Fractions were TCA 

precipitated, dissolved in 50 µl HU-buffer and 1/5 of each fraction was analyzed by SDS-PAGE 

and coomassie staining.  
Binding buffer: 50 mM Hepes/KOH pH 7.5, 150 mM KOAc, 1 mM MgOAc2, 1mM EDTA, 1mM DTT 

HU-buffer: 8 M Urea, 5 % (w/v) SDS, 200 mM Tris pH 6.8, 1 mM EDTA, 0,1 % (w/v) Bromphenolblue, 1,5 % (w/v) DTT 

 

4.10.4 Reflectometric Interference Spectroscopy 

 

The lipid composition and preparation was identical to chapter 4.10.3.1. To generate vesicles, 

the lipid mixture was sonified until the solution became clear. Subsequently the lipids were 

applied to a RIfS setup (AG Piehler) and floated over a clean glass surface. The formation of a 
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unilaminar surface was observed via the RIfS signal. The Myo4p-GT fragment was applied in 

liposome buffer with concentrations ranging from 500 nM to 3 µM.  
Liposome buffer: 20 mM HEPES pH 7.4, 100 mM NaCl 

 

4.11. Fluorescence microscopy 
 
4.11.1 Preparation of cells for Immunofluorescense microscopy 

 

YPD or SDC media with the appropriate amino-acid mix were inoculated with a single yeast 

colony and incubated at 30°C. For Immunofluorescense, cells of a logarithmically growing 

cultures were fixed by adding 3.7 % formaldehyde to the growing culture and further incubation 

for 1 hour at 30°C while shaking. Cells were sedimented and washed three times with 

spheroplasting buffer. Spheroblasts were made by adding 500 µl spheroplasting buffer 

containing 100 µg/ml Zymolyase T100 (USBioLogical, Swampscott, USA) and 0.2 % β-

Mercaptoethanol and incubation for 45 minutes at 30°C. Spheroplasts were washed and finally 

resuspended in 200 µl spheroplasting buffer. The cell suspension was stored in aliquots at -80°C 

or used directly.  
SCD: 0.67 % (w/v) yeast nitrogen base, 2 % glucose, amino acid supplement mixture  

Spheroplasting buffer: 1.2 M Sorbitol, 0.1 M K3PO4 (pH 7.4), and 0.5 mM MgCl2 

YPD: 1 % yeast extract, 2 % peptone, 2 % glucose  

 

4.11.2 Preparation of cells for fluorescence microscopy 

 

To visualize GFP signals, cells were grown as described earlier (chapter 4.11.1). After reaching 

logarithmic phase, one ml of the culture was incubated with 500 µl paraformadehyd solution, 

mixed gently and incubated at RT for 10 minutes. Afterwards the cells were sedimented and the 

pellet was dissolved in 1x PBS and either directly used in fluorescence microscopy or stored at 

4°C. 
Paraformaldehyde solution: 10 % (w/v) Paraformaldehyde, 15 mM NaOH, 150 mM K3PO4 

 

4.11.3 Fluorescence microscopy  

 

Multi-well slides (Neolab) used for immunofluorescence microscopy were coated with 0.02 % 

Poly-L-Lysine (Sigma) for 5 minutes and washed with distilled water. A drop of the cell 

suspension was applied onto each well and incubated for 5 minutes. Cells were blocked for 5 

minutes with block buffer. A dilute solution of the primary antibody in block buffer was put onto 

each well and incubated for 2 hours in a wet chamber. Afterwards, the wells were washed three 

times with washing buffer and subsequently incubated with diluted secondary antibodies in a 

darkened wet chamber for 1 hour. After another three rounds of washing, nuclei were stained 

with DAPI-Stain Solution (SIGMA) and cells were mounted in mounting buffer. Cells were 
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inspected with an Olympus BX60 fluorescence microscope (Olympus) and a 100x NA 1.3 DIC oil 

objective. Images were acquired using an ORCA ER CCD camera (Hamamatsu Photonics) 

controlled by Openlab 4.01 software (Improvision). 
Block buffer: 1x PBS, 1 % BSA 

Mounting solution 1x PBS, 80 % glycerol 

PBS: 150 mM NaCl, 3 mM KCl, 12 mM Na3PO4 (pH 7.4) 

Washing buffer 1x PBS, 1 % BSA, 0.1 % Triton X-100 

 

4.12. Bioinformatics 
 
4.12.1 Homology searches and alignments  

 

DNA and protein sequences were found using the NCBI database (http://www.ncbi.nlm.nih.gov). 

Homology searches were performed using the NCBI Basic Local Alignment Search Tool 

(BLAST) server (http://www.ncbi.nlm.nih.gov/BLAST). Multiple sequence alignments were 

performed with JPred (Cole et al. 2008, http://www.compbio.dundee.ac.uk/~www-jpred/) and 

visualized with the program CLC-free-workbench (CLCbio, Alfortville, France). 

 
4.12.2 Protein parameters 

 

Physical and chemical parameters of the recombinant proteins were calculated with the program 

ProtParam (Wilkins et al. 1999, www.expasy.org/tools/protparam.html), the coiled-coil-formation 

propability was determined by the program COILS (Lupas et al. 1991, 

http://www.ch.embnet.org/software/COILS_form.html) and the hydrophobicity prediction by the 

program ProtScale (Wilkins et al. 1999) http://ca.expasy.org/tools/protscale.html) using the amino 

acid scale by Kyte & Doolittle (Kyte and Doolittle 1982). All programs are available via the 

ExPASy Proteomics Server (http://ca.expasy.org/sitemap.html). 

 
 



MATERIALS AND METHODS 

 74 

4.12.3 Structure visualization and analysis  

 

Calculations of buried surface areas of the molecule were performed with Surface (Collaborative 

Computational Project 1994). Superposition of two homologous structures and RMSD calculation 

was performed with LSQMAN (Uppsala software factory, http://xray.bmc.uu.se/usf/). Calculation 

and representation of the electrostatic surface was done with CCP4mg (Potterton et al. 2002). 

Images of the crystal structures were prepared with PyMol (DELano, Palo Alto, USA) and 

Chimera (Pettersen et al. 2004).  
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