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Summary 

Gene transcription is the first step in the decoding of genetic information. RNA 

polymerase II is the eukaryotic enzyme catalyzing transcription of all protein-coding 

genes into a complementary chain of ribonucleotides, the messenger RNA (mRNA). 

High fidelity during this process is of essential importance for every cell as it is 

thought to prevent formation of erroneous mRNAs and mutant proteins with impaired 

function. This thesis describes recent advances of our understanding of RNA 

polymerase fidelity, which stem from structural and functional studies of RNA 

polymerase II. To study the molecular mechanisms underlying transcription fidelity, 

we reconstituted complete yeast RNA polymerase II ECs and carried out a 

systematic, quantitative analysis of the three reactions that determine fidelity: 

misincorporation, mismatch extension, and cleavage of mismatched RNA 3’ ends. 

The work of this thesis shows that RNA polymerase II prevents erroneous 

transcription in vitro with different strategies that depend on the type of DNA•RNA 

base mismatch. Certain mismatches are efficiently formed, but impair RNA 

extension. Other mismatches allow for RNA extension, but are inefficiently formed 

and efficiently proofread by RNA cleavage. Exemplary erroneous transcription events 

are rationalized with X-ray structures of T•U mismatch-containing ECs. These studies 

show accommodation of a T•U wobble base pair (bp) at the active center that 

dissociates the catalytic metal ion and misaligns the RNA 3’ end. Thereby, they 

explain mismatch-induced disruption of the catalytic site. The mismatch can also 

stabilize a paused state of RNA polymerase II with a frayed RNA 3’ nucleotide. The 

frayed nucleotide binds in the RNA polymerase II pore either parallel or perpendicular 

to the DNA-RNA hybrid axis (fraying sites I and II, respectively), and overlaps the 

nucleoside triphosphate (NTP) site, explaining how it halts transcription during 

proofreading, before backtracking and RNA cleavage. 
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1. INTRODUCTION 

1.1 The eukaryotic transcription machinery 

The process of DNA transcription into messenger RNA (mRNA) is catalyzed by DNA-

dependent RNA polymerases. The mRNA transcription cycle consists broadly of 

three stages: initiation, elongation and termination, where the initiation phase is 

subject to the most regulation. Appropriate modification of chromatin at the promoter 

region is essential to allow initation (Li et al, 2007). RNA polymerase has to be then 

recruited to the promoter. In eukaryotes, the core promoter is the basis for the 

assembly of the transcription preinitiation complex (PIC). Additionally, regulatory 

factors, namely activators and repressors, bind to enhancer and silencer elements on 

the DNA respectively, to allow transmission of regulatory signals via the coactivators. 

The PIC comprises the general transcription factors TFIIA, TFIIB, TFIID, TFIIE, 

TFIIF, TFIIH, and RNA polymerase II (Thomas & Chiang, 2006) (Table 1). These 

factors function collectively to initiate transcription at  the transcription start site (Fig. 

1). PIC formation begins with the binding of transcription factor TFIID to the TATA 

box, to the initiator and/or to the downstream promoter element (DPE). The entry of 

other general transcription factors follows by one of two possible pathways, which is 

either a sequential assembly pathway or a preassembled RNA polymerase II 

holoenzyme pathway. The promoter-bound complex is sufficient for a basal level of 

transcription. However, general cofactors are required to transmit regulatory signals 

between gene-specific activators and the general transcription machinery in the case 

of regulated, activator-dependent transcription (Thomas & Chiang, 2006). There exist 

three classes of general cofactors: the TBP-associated factors (TAFs), the Mediator, 

and the upstream stimulatory activity-derived positive cofactors and negative cofactor 

1. Promoter activity in a gene-specific or cell-type-specific manner is usually adjusted 

by the independent or combined function of the general cofactors.  
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Table 1. Components of the human general transcription machinery (Thomas & Chiang, 2006). 

Factor Function 

TFIIA Antirepressor. Stabilization of TBP-TATA complex.  
Coactivator. 

TFIIB Start site selection.  
Stabilization of TBP-TATA complex.  
Recruitment of RNA polymerase II/TFIIF. 

TFIID Core promoter-binding factor. 
Coactivator. 
Protein kinase. 
Ubiquitin-activating/conjugating activity. 
Histone acetyltransferase. 

TFIIE Recruits TFIIH. 
Facilitates formation of an initiation-competent RNA polymerase II. 
Involved in promoter clearance. 

TFIIF Binds RNA polymerase II and facilitates RNA polymerase II recruitment 
to the promoter. 
Recruits TFIIE and TFIIH. 
Functions with TFIIB and RNA polymerase II in start site selection. 
Facilitates RNA polymerase II promoter escape. 
Enhances the efficiency of RNA polymerase II elongation. 

TFIIH ATPase activity for transcription initiation and promoter clearance. 
Helicase activity for promoter opening. 
Transcription-coupled nucleotide excision repair. 
Kinase activity for phosphorylating RNA polymerase II CTD. 
E3 ubiquitin ligase activity. 

RNA polymerase II Transcription initiation, elongation, termination. 
Recruitment of mRNA capping enzymes. 
Transcription-coupled recruitment of splicing and 3’ end processing 
factors. 
CTD phosphorylation, glycosylation, and ubiquitination. 

 

Studies for over a decade led to the model of a sequential assembly pathway 

resulting in a productive PIC assembly at the promoter region (Buratowski et al, 

1989; Fire et al, 1984; Hawley & Roeder, 1985; Samuels & Sharp, 1986; Van Dyke et 

al, 1989). It includes binding of TFIID to the promoter region, followed by entry of 

TFIIA and TFIIB which help to stabilize promoter-bound TFIID. Recruitment of RNA 

polymerase II with TFIIF leads to formation of a stable TFIID-TFIIA-TFIIB-RNA 

polymerase II/TFIIF-promoter complex. After this, TFIIE is recruited, followed by entry 

of TFIIH. An alternative is the RNA polymerase II holoenzyme pathway which was 

revealed when several groups discovered that RNA polymerase II could be purified 

as a preassembled holoenzyme complex containing RNA polymerase II and SRBs 
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(suppressors of RNA polymerase B mutations (Kim et al, 1994; Koleske & Young, 

1994)), in combination or without several general transcription factors, and other 

proteins involved in chromatin remodeling, DNA repair, and mRNA processing 

(Cairns et al, 1996; Chao et al, 1996; Cho et al, 1998; Liu et al, 2001; Maldonado et 

al, 1996; McCracken et al, 1997; Nakajima et al, 1997; Ossipow et al, 1995; Wilson 

et al, 1996; Wu & Chiang, 1998; Wu & Hampsey, 1999; Yuryev et al, 1996). The 

RNA polymerase II holoenzyme complex was proposed to contain RNA polymerase 

II, TFIIB, TFIIE, TFIIF, TFIIH, GCN5 histone acetyltransferase, SWI/SNF chromatin 

remodeling factor, and SRBs, but to lack TFIID and TFIIA (Thomas & Chiang, 2006). 

The fact that in this RNA polymerase II holoenzyme complex TFIID is missing, 

suggests that TFIID may facilitate entry of RNA polymerase II holoenzyme to the 

promoter region. This would be analogous to the mechanism in the prokaryotic 

system where the dissociable σ factor recruits core RNA polymerase to the promoter 

region for PIC assembly. It was proposed that both assembly pathways exist in vivo, 

but that either pathway may be employed in response to different environmental cues 

(Thomas & Chiang, 2006). 

Figure 1. The eukaryotic transcription machinery. After formation of the PIC at one of the eukaryotic 

core promoters, coactivator complexes serve as an interface between the general RNA polymerase II 

machinery and transcriptional activators and repressors. 
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In the open complex a  transcription bubble has formed. After initiation, RNA 

polymerase II enters the elongation phase, leaving most initiation factors behind. The 

produced pre-mRNA is co-transcriptionally processed by capping and splicing. 

Elongation factors such as TFIIS are involved in modulation of the catalytic activity, 

pausing, and transcriptional arrest of RNA polymerase II (Sims et al, 2004). 

Transcription through chromatin requires additional factors (Armstrong, 2007; 

Kulaeva et al, 2007; Li et al, 2007). At the end of a gene, transcription is terminated 

(Gilmour & Fan, 2008) and upon a signal on the transcript, RNA is cleaved and 

polyadenylated. Thereupon RNA polymerase II can be removed from the DNA and 

recycled to start with another transcription cycle. The C-terminal domain of RNA 

polymerase II (CTD) integrates nuclear events by binding proteins involved in mRNA 

biogenesis (Buratowski, 2003; Hirose & Manley, 2000; Meinhart et al, 2005). The 

CTD is flexibly linked to the core enzyme and consists of heptapeptide repeats of the 

consensus sequence YSPTSPS. CTD-binding proteins recognize a specific CTD 

phosphorylation pattern, which changes during the transcription cycle. Structural and 

functional studies of CTD-binding and CTD-modifying proteins and their complexes 

with CTD peptides elucidated CTD structure and revealed some of the mechanisms 

underlying CTD function.  

1.2 DNA-dependent RNA polymerases 

There are generally two families of DNA-dependent RNA polymerases, comprising 

single-subunit  and multisubunit RNA polymerases (Cramer, 2002).  

Single-subunit RNA polymerases are those of bacteriophages and the 

mitochondrial RNA polymerase. Similar to DNA polymerases, these enzymes 

possess one protein subunit which resembles the shape of a right hand, including a 

palm, thumb, and a finger domain. 
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Multisubunit RNA polymerases comprise enzymes of all three domains of life, 

archaea, bacteria, and eukaryotes (Cramer, 2002). Archaea and bacteria possess 

only one type of RNA polymerase. In contrast, in eukaryotic cells, three different DNA 

dependent RNA polymerases – RNA polymerase I, RNA polymerase II, and RNA 

polymerase III – are responsible for gene transcription. Production of ribosomal RNA 

is carried out by RNA polymerase I, synthesis of messenger RNAs and small nuclear 

RNAs by RNA polymerase II, and production of transfer RNAs and other small RNAs 

by RNA polymerase III. Plants have two additional nuclear RNA polymerases that 

have been recently discovered, RNA polymerase IV (Herr et al, 2005; Kanno et al, 

2005; Onodera et al, 2005) and RNA polymerase V (Pontier et al, 2005; Wierzbicki et 

al, 2008). They play nonredundant roles in siRNA-directed DNA methylation and 

gene silencing (Ream et al, 2009). RNA polymerase I, II, and III comprise 14, 12, and 

17 subunits, respectively, and have a total molecular weight of 589, 514, and 693 

kDa, respectively (Cramer et al, 2008). RNA polymerase IV and V are composed of 

subunits that are paralogous or identical to the 12 subunits of RNA polymerase II and 

are thus thought to be RNA polymerase II-like enzymes that evolved specialized 

roles in the production of noncoding transcripts for RNA silencing and genome 

defense (Ream et al, 2009). Ten subunits form a structurally conserved core, and 

additional subunits are located on the periphery (Fig. 2).  
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Figure 2. Complete RNA polymerase II EC structure (Kettenberger et al, 2004). Side view and top 

view of a ribbon model of RNA polymerase II structure and a schematic respresentation of the 12 

subunits in the according color demonstrate the complexity of the structure. The catalytic metal ion A is 

shown as a pink sphere, the eight zinc ions as cyan spheres. 

1.3 Structure of RNA polymerase II   

RNA polymerase II consists of a 10-subunit core enzyme and a peripheral 

heterodimer of subunits Rpb4 and Rpb7 (Fig. 2). The core enzyme comprises 

subunits Rpb1, Rpb2, Rpb3, and Rpb11, which contain regions of sequence and 

structural similarity in RNA polymerase I, RNA polymerase III, bacterial RNA 

polymerases (Vassylyev et al, 2002; Zhang et al, 1999), and the archaeal RNA 

polymerase (Hirata et al, 2008; Korkhin et al, 2009; Kusser et al, 2008). The RNA 

polymerase II core also comprises subunits Rpb5, Rpb6, Rpb8, Rpb10, and Rpb12, 

which are shared between RNA polymerase I, II, and III (common subunits, Table 2). 

In the archaeal polymerase, counterparts of these common subunits exist, except 

Rpb8, but only a counterpart of Rpb6 exists in the bacterial enzyme (Minakhin et al, 

2001). Finally, homologues of the core subunit Rpb9 exist in RNA polymerase I and 

RNA polymerase III, but not in the archaeal or bacterial enzyme. Initial electron 
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microscopic studies of RNA polymerase II revealed the overall shape of the enzyme 

(Darst et al, 1991). The core RNA polymerase II could subsequently be crystallized 

and led to an electron density map at 6 ˚A resolution (Fu et al, 1999). A backbone 

model of the RNA polymerase II core resulted from crystal improvement by controlled 

shrinkage and phasing at 3 Å resolution (Cramer et al, 2000). This revealed that 

Rpb1 and Rpb2 form opposite sides of a positively charged active center cleft, 

whereas the smaller subunits are arrayed around the periphery. Refined atomic 

structures of the core RNA polymerase II were obtained in two different 

conformations and revealed domain-like regions within the subunits, as well as 

surface elements predicted to have functional roles (Cramer et al, 2001) (Fig. 3). The 

active site and the bridge helix, which spans the cleft, line a pore in the floor of the 

cleft. The Rpb1 side of the cleft forms a mobile clamp. 

The clamp was trapped in two different open states in the free core structures 

(Cramer et al, 2001) but was closed in the structure of a core complex that included 

DNA and RNA (Gnatt et al, 2001). The mobile clamp is connected to the body of the 

polymerase by five switch regions that show conformational variability. The Rpb2 

side of the cleft consists of the lobe and protrusion domains. Rpb2 also forms a 

protein wall that blocks the end of the cleft. The RNA polymerase II core structures 

lacked subunits Rpb4 and Rpb7, which can dissociate from the yeast enzyme 

(Edwards et al, 1991). A structure of the archaeal homologue of the Rpb4/7 

heterodimer showed that Rpb7 contains an N-terminal domain, later called the tip 

domain, and a C-terminal domain that includes an oligosaccharide-binding fold 

(Todone et al, 2001). The approximate location of Rpb4/7 on the core polymerase 

was first determined by electron microscopy (EM) of two-dimensional crystals 

(Jensen et al, 1998). 
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Table 2. RNA polymerase subunits  

RNA polymerase RNA polymerase I RNA polymerase II RNA polymerase III 

Ten-subunit 
core A190 Rpb1 C160 

A135 Rpb2 C128 

AC40 Rpb3 AC40 

AC19 Rpb11 AC19 

A12.2 Rpb9 C11 

Rpb5 (ABC27) Rpb5 Rpb5 

Rpb6 (ABC23) Rpb6 Rpb6 

Rpb8 (ABC14.5) Rpb8 Rpb8 

Rpb10 (ABC10β) Rpb10 Rpb10 

Rpb12 (ABC10α) Rpb12 Rpb12 

Stalk 
A14 Rpb4 C17 

A43 Rpb7 C25 

TFIIF-like 
subcomplexa A49 (Tfg1/Rap74) C37 

A34.5 (Tfg2/Rap30) C53 

Pol III-specific 
subcomplex - - C82 

- - C34 

- - C31 

Number of 
subunits 

14 12 17 

aThe two subunits in Pol I and Pol III are predicted to form heterodimers that resemble part of the pol II 
initiation/elongation factor TFIIF, which is composed of subunits Tf1, Tfg2, and Tfg3 in Saccharomyces 
cerevisiae, and of subunits Rap74 and Rap30 in human. 
 

Later, EM analysis of single particles revealed a closed clamp and showed that the 

Rpb4/7 subcomplex protrudes from outside the core enzyme below the clamp 

(Craighead et al, 2002). A different open-closed transition that involved the 

polymerase jaws was observed by EM of two-dimensional crystals (Asturias et al, 

1997). Crystallographic backbone models of the complete RNA polymerase II then 

revealed the exact position and orientation of Rpb4/7 and showed that it formed a 

wedge between the clamp and the linker to the unique tail-like C-terminal repeat 
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domain (CTD) of the polymerase (Armache et al, 2003; Bushnell & Kornberg, 2003). 

Refinement of a complete atomic model of RNA polymerase II was finally possible 

with the crystal structure of free Rpb4/7, together with an improved resolution of the 

complete RNA polymerase II crystals (Armache et al, 2005).  

 

Figure 3. Structure of the RNA polymerase II EC (Kettenberger et al, 2004; Wang et al, 2006; 

Westover et al, 2004a) (A) Overview of the EC structure. (B) superposition of NTP-binding sites 

(red, insertion site; violet, entry site; pink, inactive pre-insertion-like state. (C) Functional RNA 

polymerase II surface elements in the EC. 

1.4 The elongation complex and the nucleotide addition cycle 

During the process of gene transcription, RNA polymerase II is moving along a DNA 

template and synthesizes a complementary mRNA chain. This is achieved by 

repetitive cycles of adding a substrate nucleotide. The EC is characterized by the 

transcription bubble, an unwound DNA region. The transcription bubble contains a 

short hybrid duplex formed between the DNA template strand and the RNA product 
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emerging from the active site. The mechanism of RNA elongation was elucidated by 

structural studies of RNA polymerase II – nucleic acid complexes (Fig. 3).  

The point of DNA entry to the RNA polymerase II cleft was first revealed by 

EM (Poglitsch et al, 1999). The core RNA polymerase II transcribing a tailed template 

DNA, which allows for promoter-independent transcription initiation, was the first 

crystal structure of an RNA polymerase II – nucleic acid complex (Gnatt et al, 2001). 

This structure revealed downstream DNA entering the cleft and an 8 to 9 base pair 

DNA-RNA hybrid in the active center. Protein surface elements predicted to play 

functional roles were revealed by comparison with the high-resolution core RNA 

polymerase II structure (Cramer et al, 2001). Later, polymerase EC structures utilized 

synthetic DNA-RNA scaffolds (Kettenberger et al, 2004; Westover et al, 2004b) and 

could thereby show the exact location of the downstream DNA and several 

nucleotides upstream of the hybrid (Figure 2). It was suggested how RNA 

polymerase II unwinds downstream DNA and how it separates the RNA product from 

the DNA template at the end of the hybrid. Usually RNA polymerase II uses DNA as 

a template, but there is also evidence that the enzyme can use RNA templates. 

Structures of an RNA template-product duplex showed that this RNA-RNA hybrid can 

bind to the site normally occupied by the DNA-RNA hybrid and provided the 

structural basis for the phenomenon of RNA dependent RNA synthesis by RNA 

polymerase II (Lehmann et al, 2007). Additional structures of RNA polymerase II ECs 

included the NTP substrate (Kettenberger et al, 2004; Wang et al, 2006; Westover et 

al, 2004a). Mechanisms for correct NTP selection and nucleotide incorporation into 

RNA were suggested.  

A conserved nucleotide addition cycle mechanism for all three kingdoms of 

life has been recently proposed (Brueckner & Cramer, 2008) (Fig. 4) and has also 

been visualized as a movie (Brueckner et al, 2009). It is based on a brownian ratchet 

model which assumes that the ground state of the EC is an equilibrium between 

inter-converting pre-translocation and post-translocation states (Bar-Nahum et al, 



INTRODUCTION 

 
11

2005). This oscillation is temporarily stopped by substrate binding and resumes 

around the next template position after nucleotide addition.  The cycle begins 

with the binding of an NTP substrate to the EC. The growing 3’ end of the RNA chain 

becomes elongated by catalytic addition of the nucleotide which results in formation 

of a pyrophosphate ion. The release of pyrophosphate leads to the pre-translocation 

state whereas the incorporated 3’ terminal nucleotide remains in the substrate site. 

After translocation of DNA and RNA, the EC is in a post-translocation state, with a 

free substrate site for binding of the next incoming NTP. The nucleotide addition 

cycle can then be repeated. 

 In eukaryotic RNA polymerase II, an NTP substrate has been 

crystallographically trapped in the insertion site (Wang et al, 2006; Westover et al, 

2004a) (Fig. 3B) which is formed by closure of the active site. Insertion site substrate 

binding results in a complete folding of the trigger loop (Wang et al, 2006), a mobile 

part of the active center first observed in free bacterial RNA polymerase (Vassylyev 

et al, 2002), and in the RNA polymerase II-TFIIS complex (Kettenberger et al, 2003). 

The NTP has also been trapped in an overlapping site (Kettenberger et al, 2004), 

termed the pre-insertion site. NTPs bound to either site form Watson-Crick 

interactions with a base in the DNA template strand although only the insertion site 

NTP base is co-planar with the templating base. Recent studies of functional 

complexes of the bacterial RNA polymerase revealed the close conservation of the 

EC structure (Vassylyev et al, 2007a). 

 Structural studies are consistent with a two-metal ion mechanism for all 

polymerases (Steitz, 1998). The NTP binds two catalytic metal ions (Cramer et al, 

2001; Westover et al, 2004a) named metal A and B.  Whereas metal A is persistently 

bound to the active site, the second mobile metal B enters with the NTP, bound to its 

triphosphate moiety (Westover et al, 2004a). Metal A is held by three invariant 

aspartate side chains and binds the RNA 3’ end (Cramer et al, 2001). Catalysis is not 

permitted in the pre-insertion state, as the NTP triphosphate and metal B are too far 
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from metal A (Brueckner et al, 2009). A working model of the RNA polymerase active 

center is based on the prerequisite that the polymerase and the nuclease reactions 

are performed by the same active site, that both reactions are based on the 

substitution nucleophilic bimolecular (SN2) mechanism operating in opposite 

directions, and that the reactions’ geometry requires the two Mg2+ ions to be situated 

at equal distances from the non-bridging oxygen of the scissile phosphate collinearly 

to the axis of the attack by an activated water molecule (Sosunov et al, 2003). 

Recent studies have proposed a two-step mechanism of translocation via a trigger 

loop-stabilized EC intermediate with an altered structure of the central bridge helix 

(Brueckner & Cramer, 2008). Translocation includes a first step, during which the 

hybrid moves from the pre- to the post-translocation position (Fig. 4, boxed region). 

Downstream DNA translocates until the next DNA template base reaches the pre-

templating position above the bridge helix. The template base twists by 90°, to reach 

its templating position in the active center during the second step. A flipping of the 

phosphate backbone group between DNA template bases +1 and +2 and sliding of 

downstream DNA to the post-translocation position accompanies the template base 

twisting. 



INTRODUCTION 

 
13

 

Figure 4. Schematic representation of the nucleotide addition cycle (Brueckner & Cramer, 2008; 

Brueckner et al, 2009). The seven states of the nucleotide addition cycle are indicated on the left. The 

vertical dashed line indicates register +1. 

1.5 Fidelity mechanisms of DNA polymerases 

The general mechanism of replication and transcription is the same, as both RNA 

and DNA polymerases translocate along a DNA template to produce a duplex of 
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nucleic acids. High fidelity of replication by DNA polymerases is crucial for 

maintaining the genetic integrity. Transcription fidelity is thought to prevent formation 

of erroneous mRNAs and mutant proteins with impaired function (Saxowsky & 

Doetsch, 2006). Because of the similarity of the catalyzed processes of replication 

and transcription and of the existence of numerous extensive studies on the fidelity of 

DNA polymerases, the known replicative fidelity mechanisms will be described here. 

DNA polymerase fidelity can vary between low and high levels, dependent on 

their biological function and on the organism (reviewed in (Bebenek & Kunkel, 1995; 

Echols & Goodman, 1991; Kunkel & Bebenek, 2000). Whereas viral enzymes (as 

well as some bacterial ones) have the selection pressure for low fidelity to increase 

mutation rates in the virus, eukaryotic enzymes have to ensure low mutation rates 

and thus possess replicative enzymes with very high fidelity. However, eukaryotic 

cells need several different DNA polymerases and some have very low fidelity. Thus, 

DNA polymerase nucleotide insertion fidelities range from 10-2 to 10-5 (meaning one 

error in 102 to 105 insertions is made) in viral systems to 10-3 to 10-5 in most bacterial 

and high-fidelity eukaryotic systems to 100 to 10-2 in low-fidelity eukaryotic enzymes 

(summarized in (Kool, 2002)).  

The major contribution to high replication fidelity is the high selectivity against 

incorporation of a wrong nucleotide, which is achieved partly by enthalpy-entropy 

compensation and partly by the exquisite shape complementarity of the four 

canonical Watson-Crick base pairs in the binding pockets (McCulloch & Kunkel, 

2008) and the selection of the correct sugar. To accomplish the correct selection, 

there is evidence for other important influences other than base-pair hydrogen 

bonding such as active site geometry, the size and shape of the base pairs and 

minor groove interactions (Kool, 2002). After misincorporation, the efficiency of 

extension, proofreading and DNA repair mechanisms contribute to the overall fidelity.  

In the Bacillus stearothermophilus DNA polymerase I fragment, five sites on 

the enzyme are important for fidelity, the (i) insertion site, in which the cognate 
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nucleotide pairs with the template base, (ii) the catalytic site directly adjacent to the 

insertion site in which the 3’ hydroxyl of the primer strand and the coordination 

sphere for two Mg2+ ions are located, forming the catalytic center, (iii) the pre-

insertion site, which houses the template base in a step prior to incorporation, (iv) the 

post-insertion site in which the growing 3’ end of the duplex DNA is located and (v) 

the DNA duplex binding-region in which a four bp duplex DNA segment is bound 

(Johnson & Beese, 2004). 

 Extensive structural studies on mismatch-containing DNA polymerase - DNA 

structures have proposed four broad categories of mismatch-induced disruptions of 

the active site, followed by the assumption that a consequence of each of these 

mechanisms is disruption of the insertion site: (i) displacement of the template strand 

and disruption of the pre-insertion site; (ii) disruption of the primer strand and the 

assembly of the catalytic site; (iii) disruption of both the template and primer strands; 

and (iv) fraying of the DNA at the insertion site (Johnson & Beese, 2004) DNA 

polymerases select against rNTPs by forming a “steric gate” between two amino acid 

side chains (Glu and Phe) which sandwich the substrate sugar moiety and exclude 

the 2’ OH (Astatke et al, 1998; Boyer et al, 2000; Gao et al, 1997; Joyce, 1997; Yang 

et al, 2002). Thereby, the substrate is in the insertion site in an active, closed 

conformation.  

Results of extensive analysis of each of the 12 possible misincorporation 

events and their extension in E. coli DNA polymerase I (Klenow fragment) 

demonstrated that the polymerase discriminates between mismatches mainly on the 

basis of the mismatch identity with the surrounding sequence context playing a 

significant, but secondary role (Joyce et al, 1992). It was possible to summarize 

observations with the following simple rules; (i) at template pyrimidine positions, 

misinsertion of the non-complementary purine is favored over pyrimidine insertion, (ii) 

at template A positions, dATP insertion is preferred over dCTP and dGTP, (iii) at 

template G, misinsertion rates of the three dNTPs are more similar than at the other 



INTRODUCTION 

 
16

template bases, (iv) in the insertion reaction, dGTP incorporation opposite T and 

dATP incorporation opposite A are the most rapid reactions. For the extension 

reactions, they reasoned that (i) purine-pyrimidine (or pyrimidine-purine) and 

pyrimidine-pyrimidine mispairs are much more readily extended than purine-purine 

mispairs, (ii) of the latter, G•G and A•A tend to be preferred over G•A and A•G, (iii) in 

the extension reactions T•G and T•C are the preferred mispairs, (iv) for pyrimidine-

pyrimidine mispairs, the exact nature of the bases has a strong influence, with T•G 

much more readily formed and extended than C•A. Further studies on DNA 

polymerase fidelity generally agree with the described results (Bebenek et al, 1990; 

Joyce et al, 1992; Kwok et al, 1990; Lai & Beattie, 1988; Mendelman et al, 1989; 

Mendelman et al, 1990; Perrino & Loeb, 1989; Perrino et al, 1989). 

 Additional contribution to the overall replicative fidelity is provided after 

nucleotide selection, such as control of extension after erroneous incorporation and 

proofreading as well as various DNA repair mechanisms. Also additional subunits of 

multi-component enzymes, like the sliding clamp, lead to increased fidelity (Kool, 

2002). To proofread replicative errors, the 3’-5’ exonuclease activity of DNA 

polymerases comes into play. Biochemical, structural and genetic experiments have 

demonstrated that the polymerase and 3’-5’ exonuclease activities of E. coli DNA 

polymerase I reside on different domains of its large proteolytic fragment (Klenow 

fragment) (Beese & Steitz, 1989; Derbyshire et al, 1988; Freemont et al, 1986; Joyce 

& Steitz, 1987; Ollis et al, 1985). Klenow fragment can bind a second DNA substrate 

and carry out exonucleolytic cleavage, even under conditions where the polymerase 

active site is occupied by a duplex of DNA strands (Catalano & Benkovic, 1989). In 

DNA polymerase III holoenzyme from E. coli, the DNA polymerase and 3’-5’ 

exonuclease activities are also located in different active sites, residing on separate 

subunits rather than on two domains of the same subunit (Maki & Kornberg, 1985; 

Scheuermann & Echols, 1984).  
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1.6 Fidelity mechanisms of RNA polymerases 

In comparison to DNA polymerases, the investigation of RNA polymerase fidelity has 

been less well studied, but several biochemical and structural results are available 

(Alic et al, 2007; Holmes et al, 2006; Kireeva et al, 2008; Svetlov et al, 2004; Thomas 

et al, 1998; Wang et al, 2006). These studies showed that misincorporation leads to 

slow addition of the next nucleotide, and that a mismatched RNA 3’ end can be 

removed with factors that stimulate the polymerase cleavage activity. In a bacterial 

EC, a mismatched RNA 3’ nucleotide induces an unactivated state, and is removed 

by cleavage-stimulatory Gre factors (Erie et al, 1993). In human RNA polymerase II, 

a mismatched RNA 3’ nucleotide causes slow addition of the next nucleotide, and 

RNA cleavage is stimulated by TFIIS (Thomas et al, 1998). The accuracy of 

transcription is relatively high, with an estimated error rate of less than 10-5 for 

bacterial and eukaryotic RNA polymerases (Blank et al, 1986; de Mercoyrol et al, 

1992; Rosenberger & Hilton, 1983). As well as in DNA polymerases, it is generally 

achieved by two main fidelity-determining mechanisms, the discrimination against the 

wrong nucleotide, and recognition and removal of a mismatched nucleotide 

(proofreading). ECs of transcribing RNA polymerases exist in four translocation 

states: a post-translocation state, a pre-translocation state, a translocation 

intermediate between pre- and post-translocation states (Brueckner & Cramer, 

2008), and a backtracked state. The pre-translocated state can exist in a paused 

conformation, for instance after a misincorporation event, interrupting the process of 

catalytic nucleotide addition. 

 

1.6.1 Error prevention: substrate loading and selection of rNTPs over 

dNTPs 

Although concentrations of 2’-deoxy NTPs are at least 10-fold lower than those of 

rNTPs in vivo (Albert & Gudas, 1985; Kornberg & Baker, 1992; Reichard, 1985), RNA 
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polymerases must have evolved mechanisms to positively select only nucleotides 

with the correct sugar. 

In single-subunit T7 RNA polymerase, the selection process starts in the pre-

insertion site, where the substrate is located (Temiakov et al, 2004). Positioning of 

the substrate in a pre-insertion site in the T7 enzyme represents part of a two-step 

mechanism of substrate loading, including a template base dependent binding of the 

substrate NTP to an inactive pre-insertion conformation as a first step, followed by 

the second step of isomerization of the EC into an active insertion state by closure of 

the active site (Temiakov et al, 2004; Yin & Steitz, 2004). In single-subunit T7 RNA 

polymerase, it has been shown that the hydroxyl group of Tyr639 forms a hydrogen 

bond with the 2’ OH of an incoming rNTP (Brieba & Sousa, 2000; Huang et al, 1997; 

Sousa & Padilla, 1995).  

In multisubunit RNA polymerases, studies showed that two different 

conformations of bound NTP existed (Erie et al, 1993). After later structural studies, 

the mechanism of substrate selectivity became highly debated. Apart from the 

postulation of other sites to which substrate can bind simultaneously with the 

insertion site based on kinetic analyses (Foster et al, 2001; Gong et al, 2005), 

structural findings proposed binding of the NTP to a template dependent pre-insertion 

site in the eukaryotic RNA polymerase II (Kettenberger et al, 2004). These findings 

were complicated by the detection of a template-independent site of entry (Westover 

et al, 2004a). The template-dependent model of NTP binding in multisubunit RNA 

polymerases (Kettenberger et al, 2004) was later confirmed by high-resolution 

structural work on a bacterial enzyme in the presence of the antibiotic streptolydigin, 

which supports a two-step mechanism of substrate loading, similar to the T7 system 

(Vassylyev et al, 2007b). First, the NTP substrate adopts an inactive pre-insertion 

intermediate state and binds to an open active center conformation, whereas the 

NTP works as a ratchet to stabilize the post-translocated EC. The pre-insertion 

intermediate may serve as a first sieve for substrate selection, passing into a 
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catalytically active insertion intermediate. This active intermediate is stabilized by two 

trigger helices emerging of refolding of the trigger loop and represents a second, finer 

sieve for substrate selection. Second, folding of the trigger loop and thus closure of 

the active center leads to all contacts required for catalysis (Vassylyev et al, 2007b; 

Wang et al, 2006). After delivery of the correct NTP to the insertion site, subsequent 

catalysis results in RNA extension and pyrophosphate formation. The resulting 

release of pyrophosphate is thought to destabilize the closed conformation of the 

active center and to lead to trigger loop unfolding. The alternative model for 

nucleotide addition, which involves binding of the NTP to a putative entry site in the 

pore and in which the nucleotide base is oriented away from the DNA template 

(Westover et al, 2004a) was proposed as an additional substrate intermediate en 

route to the pre-insertion state (Vassylyev et al, 2007b). The pre-insertion site of 

eukaryotic RNA polymerase differs from the one in the T7 system. In the T7 EC, the 

substrate gets anchored by the folded O/O’ helices in the pre-insertion state, 

positioning it far from the active site whereas the trigger helices in the pre-insertion 

bacterial EC are probably unfolded and bind the substrate only after their folding in 

the insertion complex (Temiakov et al, 2004). 

In the T. thermophilus RNA polymerase, residue Asn β’737 permits 

discrimination against non-cognate dNTPs (Svetlov et al, 2004; Vassylyev et al, 

2007b) by forming hydrogen bonds with the O3’ and O2’ of the substrate ribose. This 

differs from the eukaryotic analogous residue, which is interacting only with the O3’ 

atom of the substrate NTP (Wang et al, 2006). However, the role of Arg446 or 

Argβ’704 in discrimination between rNTP and dNTP is the same in eukaryotic RNA 

polymerase II (Wang et al, 2006) and the bacterial system (Vassylyev et al, 2007b), 

respectively. A dramatic increase of dNTP incorporation was demonstrated for 

mutation of β’Asn458 of the E. coli enzyme (Svetlov et al, 2004). Nevertheless, 

mutation of the corresponding residue in the RNA polymerase II system did not have 

any effect on transcription fidelity (Wang et al, 2006). It could rather be shown, that 
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mutation of Rpb1 residue Glu1103 decreases selectivity against dNTPs in RNA 

polymerase II (Kireeva et al, 2008). Structural data proposed His1085 of the RNA 

polymerase II trigger loop to interact amongst others with the NTP sugar, explaining 

the basis for incorporation of an NTP into RNA several 100-fold more rapidly than a 

dNTP (Wang et al, 2006).  

 

1.6.2 Error prevention: selection of the correct complementary NTP 

Biochemical studies on the single-subunit wild-type T7 RNA polymerase and of 

several T7 RNA polymerase point mutants demonstrated that the wild-type enzyme 

selects strongly against incorporation of an incorrect nucleotide and that RNAs 

bearing 3’ mismatches are extended more slowly than correctly paired 3’ termini 

(Huang et al, 2000). The point mutant His784 resulted in increased misincorporation 

and mismatch extension whereas point mutation of Gly640, Phe644, and Gly645 

lead only to an increase of misincorporation, but not of mismatch extension. In 

comparison to other RNA polymerases, a post-misincorporation proofreading 

mechanism could not be detected. Thus, T7 RNA polymerase fidelity depends 

entirely on discrimination against misincorporation events. 

In the multisubunit enzyme of E. coli, mutation of βAsp675 leads to a 

dramatically increased incorporation of incorrect nucleotides and was thus proposed 

to affect the transfer from the proposed E to the A site (Holmes et al, 2006). In RNA 

polymerase II, recognition of a correct NTP was suggested to be coupled with 

catalysis, ensuring the fidelity of transcription (Wang et al, 2006). The trigger loop 

was shown to swing beneath a correct NTP in the proposed A site, positioning its 

residue His1085 to form an interaction network with the NTP base, sugar, 

phosphates, and additional RNA polymerase II residues (Wang et al, 2006). Thus, 

the trigger loop was suggested to detect the topology of a correct RNA-DNA hybrid 

base pair and to exclude not only a dNTP, but also purine-purine and pyrimidine-
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pyrimidine mismatches. This was accounted for by different helix parameters 

between downstream DNA-DNA (B form) and upstream RNA-DNA (A form) helices. 

On the basis of the effects of two mutations in the trigger loop of the E. coli RNA 

polymerase on misincorporation and pausing, the two-pawl ratchet mechanism of 

transcription elongation suggested that the trigger loop to play a role in transcription 

fidelity (Bar-Nahum et al, 2005). Indirect involvement of Rpb1 residue Glu1103 in 

trigger loop closure was suggested by the promotion of transition-type and 

transversion-type misincorporation, when mutated (Kireeva et al, 2008).  

 Misincorporation can also be the result of transcription of DNA lesions 

(Brueckner et al, 2007; Damsma et al, 2007). Biochemical studies illustrated that 

template misalignment can be another reason for nucleotide misincorporation 

(Kashkina et al, 2006; Pomerantz et al, 2006). 

1.7 Scope of this work 

Prior to this work, a systematic, quantitative analysis of the fidelity determining 

mechanisms of RNA polymerase II was still missing. It was unknown which 

misincorporation events were efficient, how RNA polymerase II would handle the 

situation of an existing mismatch in the active center by means of its elongation or 

cleavage, and how these mechanisms were combined to lead to the known high 

transcriptional fidelity. To further elucidate these issues, the scope of this work was to 

reconstitute complete yeast RNA polymerase II ECs and to investigate the three 

reactions that determine fidelity: misincorporation, mismatch extension, and cleavage 

of mismatched RNA 3’ ends. 

Moreover, the structural basis for effects of DNA●RNA mismatches on the 

conformation of the RNA polymerase II active center was unknown. To rationalize 

exemplary erroneous transcription events, we introduced mismatches in the nucleic 

acid scaffolds at several positions in the polymerase active site. The co-crystallized 
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ECs were structurally studied to obtain explanations for mismatch accommodation, 

impaired mismatch extension and possibly RNA cleavage. 
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2. MISMATCH SPECIFICITY OF RNA POLYMERASE II 

2.1 Misincorporation efficiency is mismatch-specific 

To determine the efficiency of misincorporation by RNA polymerase II, we performed 

RNA extension assays with reconstituted ECs (Brueckner et al, 2007; Kireeva et al, 

2003). The nucleic acid scaffolds contained fully complementary DNA strands, 18 

bps of downstream DNA, 15 bps of upstream DNA, an eight bp DNA-RNA hybrid, 

and eight nucleotides of exiting RNA labeled with 6-carboxyfluoresceine (FAM) at its 

5’-end (Fig. 5). The scaffolds T, G, C and A differed in the +1 nucleotide opposite the 

NTP site (Fig. 5).  

Figure 5. Nucleic acid scaffolds for reconstitution of RNA polymerase II ECs. Scaffold T and 

related scaffolds G, C and A were used in incorporation assays. 

 

The +1 and +2 nucleotides were identical, to prevent misincorporation by template 

misalignment (Kashkina et al, 2006). To compare the efficiency of all 16 incorporation 

events (four correct incorporations and 12 misincorporations), the four scaffolds were 

assembled with RNA polymerase II into ECs that were incubated with 0.1 mM of 

each NTP. Reactions were stopped at 0.5, 1, or 5 minutes, and product RNAs were 

separated by gel electrophoresis and quantified with a fluorimager (Fig. 6, 

Experimental procedures).  
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Figure 6. Systematic quantitative analysis of misincorporation, RNA extension, and RNA 

cleavage Representative gel electrophoresis separation of RNA products obtained in incorporation 

assays. Lanes 1, 19, 37 and 55 show the fluorescently labeled reactant RNA. ECs of samples shown in 

lanes 2, 20, 38 and 56 were incubated for 5 min in transcription buffer without addition of NTPs 

(Experimental procedures). Run-off controls after incubation with 100 µM NTPs for 5 min are shown in 

lanes 3, 21, 39 and 57. In the other lanes, the scaffolds were incubated with the indicated NTPs for 0.5, 

1, and 5 min (left to right).  

 

The relative amounts of misincorporation with respect to correct incorporation are 

provided in figure 7. 

Figure 7. Systematic quantitative analysis of match and mismatch incorporation. Summary of 

incorporation efficiencies determined by addition of 100 µM of the indicated NTP to the EC. Light grey, 

grey, and dark grey bars represent the 0.5 min, 1 min and 5 min time points, respectively. Average 

values are shown for two independent experiments that generally resulted in very similar values, 

indicating the high reproducibility. 

 

DNA•RNA mismatches are indicated with a dot throughout. Misincorporations 

generating a purine•purine mismatch occurred with low efficiency, whereas those 

generating a pyrimidine•pyrimidine mismatch were more efficient, except for the C•C 

mismatch (Fig 7). No general rule could be derived for misincorporations resulting in 
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purine•pyrimidine and pyrimidine•purine mismatches. Misincorporations resulting in 

T•G or G•U mismatches were inefficient, but those resulting in C•A or A•C 

mismatches were efficient. To determine first order rate constants, we performed 

time course experiments for three types of misincorporations that were 

representative for low (G•A), medium (T•U), and high (A•C) efficiencies (Fig. 8B), and 

for their corresponding correct incorporations (Fig. 8A). Compared to correct 

incorporations, the misincorporations leading to G•A, T•U, and A•C mismatches was 

4300-, 3400-, and 2000-fold slower, respectively (Experimental procedures). Thus, 

RNA polymerase II misincorporation efficiencies depend on the type of the resulting 

mismatch. 

 

Figure 8. Time course experiments for selected incorporation reactions. For correct incorporations, 

0.05 µM NTPs were used (A). For misincorporations, 100 µM NTPs were used (B). The pre-exponential 

factor A and the rate constant k were calculated with the program OriginPro 8 (ADDITIVE GmbH) using 

the equation c(t) =A*(1-exp (-k*t)). For comparison of rate constants of correct incorporation and 

misincorporation, a dilution factor of 2000 was applied, assuming that reduction of NTP concentration 

(from 100 to 0.05 µM) leads to equivalent reduction of the rate constant, as described (Alic et al, 2007). 

2.2 Transcript extension efficiency is mismatch-specific 

To investigate the efficiency of RNA extension after misincorporation, ECs were 

reconstituted that contained the 12 different mismatches at position -1 (scaffold Z, 

Fig. 9).  
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Figure 9. Nucleic acid scaffold for reconstitution of RNA polymerase II Ecs. Scaffold Z is variable 

and was used for extension and cleavage assays. The variable bp (black arrow) was one of the sixteen 

different matched or mismatched bps, to mimick the result of all 16 possible (mis)incorporation events 

obtained with scaffolds T, G, C and A (Fig. 5).  

 

These ECs mimic the situation after misincorporation, and allow monitoring the 

addition of the next nucleotide. For RNA extension, we added the next 

complementary NTP, and stopped reactions at 1 or 5 minutes (Fig. 10, Experimental 

procedures).  

Figure 10. Representative electrophoretic separation of RNA products resulting from RNA 

extension and cleavage. Six examples are shown for which the bp at position -1 of scaffold Z (Fig. 9) is 

given. Lane 1 shows the fluorescently labeled reactant RNA. Each block of four lanes shows from left to 

right the cleavage experiment, the run-off control, and extension experiments stopped after 1 and 5 min 

of incubation. For RNA extension, ECs were incubated with 100 µM of the corresponding next correct 

NTP.  

 

To prevent extension after RNA dinucleotide cleavage as a side reaction, the 

nucleotides at -2 and +1 were different. Incorporation of the next nucleotide was 
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always less efficient when a mismatch was present at -1 instead of a match (Fig. 10, 

11). Purine•purine mismatches were more efficiently extended than 

pyrimidine•pyrimidine mismatches (Fig. 11). Extensions with a mismatched guanine 

in the RNA were all efficient, generally consistent with results for a bacterial RNA 

polymerase (Zenkin et al, 2006). Amongst the pyrimidine•purine and 

purine•pyrimidine mismatches, extension was more efficient for T•G and G•U, and 

less efficient for C•A and A•C. Extensions with a guanine at template position -1 were 

all efficient. Control experiments showed that the efficiency of incorporating a 

nucleotide following a matched bp was very similar for the different bps (Fig. 11). 

Thus, the efficiency of RNA extension is always lower in the presence of a mismatch, 

but varies with the type of mismatch. 

 

Figure 11. Summary of RNA extension efficiencies. Grey and dark grey bars represent 1 min and 5 

min time points, respectively. Average values for two independent experiments are shown. 
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3. STRUCTURAL BASIS OF MISMATCH SPECIFICITY 

3.1 RNA polymerase II accommodates a T•U wobble pair 

To unravel the molecular basis of fidelity mechanisms for one type of mismatch, we 

determined structures of complete RNA polymerase II ECs containing a T•U 

mismatch. Complete RNA polymerase II was co-crystallized with a scaffold 

containing the mismatch at position –1 (scaffold I, Fig. 12).  

 

Figure 12. Nucleic acid scaffold I for reconstitution of an RNA polymerase II EC. Scaffold I 

contains a T•U mismatch at position -1 (orange) and was used for structural analysis. Filled circles 

denote nucleotides with interpretable electron density. 

 

For the resulting EC I, diffraction data of very high quality were obtained, and the 

register of nucleic acids was defined by bromine labeling (Table 3, Fig. 13, 

Experimental procedures). With the use of zonal scaling (Vassylyev et al, 2007a), the 

structure was refined to a free R-factor of 25.2% at 3.2 Å resolution, the highest 

resolution for a complete RNA polymerase II structure (Fig. 13A-C, Table 3). 

 The structure showed that EC I adopts the post-translocation state and 

accommodates the T•U mismatch at the active center at position -1 (Fig. 13A, C and 

Fig. 14). The mismatch adopts a wobble bp that is stabilized by two hydrogen bonds 

formed between the N3 and the O2 atoms of the uracil and the O4 and N3 atoms, 

respectively, of the template thymine (Fig. 14). The accommodation of a wobble pair 

may explain why uridine misincorporation opposite a template thymine is efficient 
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(Fig. 7), and supports our previous proposal that uridine misincorporation opposite a 

thymine within a DNA photolesion results from wobble formation (Brueckner et al, 

2007). 

Table 3. Diffraction data and refinement statistics 

 EC I EC II EC III EC IV EC V EC VI 

Data collection    

Space group C2 C2221 C2221 C2221 C2221 C2221 
Unit cell axes (Å) 394.3, 

221.6, 
283.4 

222.3, 
393.4, 
283.1 

222.7, 
396.0, 
283.5 

221.4, 
393.8, 
281.8 

221.6, 
393.7, 
282.6 

222.1, 
392.7, 
282.4 

Unit cell β angle (°) 90.9 90 90 90 90 90 
Wavelength (Å) 0.9189 0.9190 0.9188 0.9188 0.9188 0.9177 
Resolution range 
(Å) 

40-3.20 50-3.50 50-3.60 50-3.65 50-3.65 50-3.40 

Unique reflections 372,1661 
(32,852)2 

155,150 
(21,507) 

144,009 
(19,441) 

135,977 
(18,105) 

136,470 
(18,185) 

168,339 
(24,019) 

Completeness (%) 95.6 
(84.7) 

99.9 (100) 99.9 
(99.9) 

99.9 (100) 99.9 (100) 
99.9 (100) 

Redundancy 3.0 (2.2) 7.3 (7.2) 7.3 (7.3) 7.6 (7.8) 7.5 (7.4) 7.5 (7.9) 
Mosaicity (°) 0.38-0.723 0.11 0.14 0.12 0.09 0.08 
Rsym (%) 7.5 (37.5) 9.5 (52.9) 9.2 (75.0) 7.7 (63.6) 6.6 (52.0) 6.4 (50.4) 
I/σ(I) 20.7 (2.6) 15.8 (4.7) 17.6 (3.2) 22.0 (3.7) 22.9 (4.3) 24.1 (5.0) 

Refinement    

Nonhydrogen 
atoms 

63,666 31,778 31,877 31,962 31935 31,804 

RMSD bonds 0.010 0.010 0.011 0.010 0.011 0.010 
RMSD angles 1.60 1.59 1.65 1.61 1.65 1.61 
Rcryst (%) 23.3 21.0 21.4 21.0 21.2 21.6 
Rfree (%) 25.2 22.6 25.4 25.3 25.0 25.4 
Br peak in anom. 
Fourier (σ) 

8.6 8.6 10.9 8.1 8.7 9.6 

Ramachandran statistics 

Core (%)  71.84/ 

72.05  

71.1 72.7 72.6 70.6 74.0 

Allowed (%) 23.4/23.3 24.1 22.6 22.9 24.6 21.7 
Generally allowed 
(%) 

3.1/3.0 3.2 3.2 2.6 3.2 3.1 

Disallowed (%) 1.7/1.7 1.6 1.5 1.9 1.6 1.2 

1 Friedel pairs are merged 
2 Values in parentheses are for highest resolution shell 
3 Refined for batches of images 
4 Molecule 1 of the asymmetric unit 
5 Molecule 2 of the asymmetric unit 
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Figure 13. Structure of EC I reveals a 

T•U wobble pair at 3.2 Å resolution (A) 

Structure of the T•U mismatch-

containing RNA polymerase II EC I. 

RNA polymerase II is shown from the 

side as a ribbon model in silver, with 

the bridge helix highlighted in green, 

and a portion omitted for clarity. The 

nucleic acids are shown as stick 

models using the same color code as 

in Fig. 12. The T•U mismatch is shown 

in orange throughout. (B) 

Representative protein electron 

density. The final 2Fo-Fc density is 

shown as a blue mesh, contoured at 

1.1σ. Depicted is the clamp coiled-coil, 

an exposed part of subunit Rpb1. (C) 

Electron density of part of the DNA-

RNA hybrid (2Fo-Fc map contoured at 

1.8σ). A peak in the anomalous 

difference Fourier map (magenta, 

contoured at 4.3σ) reveals the location 

of the bromine atom at position -5 of 

the template strand, defining the post-

translocated state.  
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Figure 14. T•U wobble base pair in the RNA polymerase II active center. The final 2Fo-Fc electron 

density map is shown in blue, contoured at 1.0σ. Hydrogen bonds are indicated by red dashed lines. 

3.2 Active site disruption explains impaired RNA extension 

To detect the structural changes in EC I that result from the T•U mismatch, we solved 

a reference structure that contained a matched T-A bp at position -1 (scaffold II, EC 

II, Fig. 15, Table 3).  

 

Figure 15. Nucleic acid scaffold II for reconstitution of an RNA polymerase II EC. Scaffold II 

contains a T-A match at position -1. Filled circles denote nucleotides with interpretable electron density. 

 

The overall structures of ECs I and II did not deviate, but in the mismatched EC I the 

3’ terminal RNA nucleotide at position -1 and its 5’-flanking phosphate were shifted 

away from the active site by over 2 Å (Fig. 16A). Thus, the T•U wobble triggers 

misalignment of the nucleophilic RNA 3’ end with the catalytic site and NTP, and a 

deviation from the optimum geometry for catalysis, a collinear in-line attack during an 

SN2 reaction (Fig. 16A).  
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Figure 16. Active site disruption by 

accomodation of a T•U mismatch. (A) 

Superposition of the mismatched EC I with the 

matched EC II (at 3.5 Å resolution, Table 3) 

reveals a 2 Å shift of the RNA 3’ hydroxyl 

(horizontal arrow, the mismatched terminal RNA 

U residue is shown in orange). As a 

consequence, the nucleophilic RNA 3’ end is no 

longer in a position suited for an in-line 

nucleophilic attack (vertical arrow) of the 

phosphodiester bond between the α and β 

phosphates of the incoming NTP substrate 

(green cyan, taken from PDB-code 2O5J 

(Vassylyev et al, 2007b)). The structures EC I 

and 2O5J were superimposed by least squares 

fitting of Rpb1 residues A478-A487 to β’ 

residues D745-D736 and RNA residues in 

positions -1, -2 and -3. Metal ion A is from EC II 

and metal ion B is from 2O5J. For NTP 

modeling, we used the bacterial NTP complex 

structure rather than the yeast core RNA 

polymerase II NTP complex since it contains an 

intact RNA 3’hydroxyl group. (B) Loss of metal 

ion A in the active site of EC I. The final 2Fo-Fc 

electron density map is contoured at 1.0σ. (C) 

Comparison of the RNA 3’ nucleotide and the 

catalytic aspartate loop in EC I (orange) and EC 

II (grey). Metal A (pink sphere) is only present in 

EC II. 
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In addition, the active site aspartate loop lost the catalytic metal ion A (Fig. 16B). The 

three metal-binding aspartate side chains in Rpb1 changed conformation (Fig. 16C). 

The D481 carboxylate is mobile and the side chains of D483 and D485 could both 

form a hydrogen bond with the RNA 3’ hydroxyl (Fig. 16B). Metal A is apparently lost 

due to the disruption of the active site by the wobble bp since it is observed in EC II 

and in a published EC structure obtained under the same conditions (Brueckner & 

Cramer, 2008). Thus, the low efficiency of RNA extension after a T•U mismatch can 

be explained by disruption of the catalytic site that involves loss of the catalytic metal 

A and a shift of the RNA 3’ end. 
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4. RNA POLYMERASE PAUSING 

4.1 Mismatch extension and RNA 3’ fraying 

To investigate RNA extension past the mismatch, we prepared a scaffold with the 

T•U mismatch at position -2 and an A-U bp at position -1 (scaffold III, Fig. 17).  

Figure 17. Nucleic acid scaffold III for reconstitution of an RNA polymerase II EC. Scaffold III as 

designed (top), containing a T•U mismatch at position -2 (orange) and an A-U match at position -1, and 

as observed in the crystal (bottom) with a frayed 3’ uridine. Filled circles denote nucleotides with 

interpretable electron density. 

 

In the resulting EC III structure (Table 3), the hybrid was similar to that in EC 

I, including the T•U wobble bp at position -1, and downstream DNA was slightly 

shifted as previously observed (Brueckner et al, 2007). The 3’ terminal RNA uridine 

however did not form a bp with the template adenine as designed, but was flipped 

away from the template, creating a frayed RNA end (Fig. 18A, B). The frayed uracil 

was oriented parallel to the axis of the DNA-RNA hybrid, and occupied a site in the 

pore (“fraying site I”, Fig. 18C). 

A frayed RNA 3’ nucleotide was shown biochemically to be the hallmark of a 

common elongation intermediate, the elemental pause, that occurs during 

polymerase pausing, and before transcription arrest and termination (Artsimovitch & 

Landick, 2000; Chan et al, 1997; Toulokhonov et al, 2007). The frayed nucleotide 
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overlaps the tip of the closed trigger loop and the NTP in the insertion site (Figs. 18C 

and 19), and contacts Rpb2 residues R766 and R1020, which also bind the NTP 

triphosphate (Table 4). This explains how the frayed RNA end interferes with 

nucleotide binding and incorporation. 

 

Figure 18. Structure of RNA polymerase II EC III reveals a frayed 3’ terminal RNA uridine at 3.6 Å 

resolution. (A) The final 2Fo-Fc electron density of the nucleic acids is shown as a blue mesh, 

contoured at 1.2σ. The location of the bromine atom at position -5 defines the register (the anomalous 

difference Fourier map is shown in magenta, contoured at 4.2σ). (B) Detailed view of the electron 

density map in (A) near the active center. (C) Fraying site I. Depicted are RNA polymerase II residues 

contacting the frayed 3’ terminal RNA uridine. The final 2Fo-Fc density is shown for the frayed 

nucleotide, contoured at 0.9σ. 
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Figure 19. Frayed nucleotides overlap the NTP and the closed trigger loop. (A) Frayed nucleotides 

(ECs III and IV) overlap the NTP bound to the insertion site (green cyan, taken from bacterial RNA 

polymerase EC, PDB-code 2O5J (Vassylyev et al, 2007b)). Van der Waals radii are represented by 

colored dots. All structures were superimposed with their active site regions. (B-C) Frayed nucleotides 

overlap the closed trigger loop (cyan) at residue F1084 (B, taken from the RNA polymerase II EC, PDB-

code 2E2H (Wang et al, 2006)) and/or at residue H1242 (C, bacterial RNA polymerase EC, PDB-code 

2O5J (Vassylyev et al, 2007b)). 

  

In EC III, fork loop 2 adopts a new conformation (Fig. 20). Fork loop 2 residues have 

moved by up to 6 Å towards the DNA nontemplate strand at the downstream edge of 

the transcription bubble (Fig. 20A). The guanidinium head group of Rpb2 residue 

R504 forms two hydrogen bonds to N7 and O6 of the template guanine at +4 (Fig. 

20B). R504 is invariant among RNA polymerase II enzymes and bacterial and 
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archaeal RNA polymerases, but not conserved in RNA polymerase I and III (Fig. 

20D) (Jasiak et al, 2006; Kuhn et al, 2007; Naji et al, 2007). This arginine is important 

for promoter-dependent transcription and normal elongation (Naji et al, 2007). It is 

possible that the observed fork loop 2-downstream DNA interaction, or alternative 

contacts of the flexible arginine (Fig. 20C) with other nearby bases in DNA, contribute 

to the stability of the paused state as suggested (Toulokhonov et al, 2007). 

 

Figure 20. Fork loop 2-downstream DNA contact. (A) Comparison of the conformation of fork loop 2 

in EC III with that in previous RNA polymerase II EC structures (PDB-codes 1Y1W (Kettenberger et al, 

2004) and 2E2I (Wang et al, 2006)). (B) Interaction of the side chain of fork loop 2 Rpb2 residue R504 

with the guanine base at position +4 of downstream DNA. The final 2Fo-Fc electron density is shown in 

blue, contoured at 0.7σ. (C) Interaction of regions in EC III that may be involved in pausing, including the 

frayed nucleotide, βDloopII, the bridge helix, fork loop 2, and downstream DNA. (D) Multiple sequence 

alignment of fork loop 2 and surrounding Rpb2 residues from S. cerevisiae, H. sapiens, P. furiosus, E. 

coli and T. thermophilus (CLUSTAL W). The conserved R504 from S. cerevisiae is highlighted in blue. 
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4.2 Two RNA fraying sites 

To test whether the fraying was dependent on the stability of the bp at the end of the 

hybrid, we replaced the A-U bp in scaffold III with a C-G bp (scaffold IV, Fig. 21). 

 

Figure 21. Nucleic acid scaffold IV for reconstitution of an RNA polymerase II EC. Scaffold IV as 

designed (top), containing a T•U mismatch at position -2 (orange) and a G-C match at position -1, and 

as observed in the crystal (bottom) with a frayed 3’ guanine. Filled circles denote nucleotides with 

interpretable electron density. 

 

The resulting EC IV structure was very similar to that of EC III, including the T•U 

wobble bp (Fig. 22A, B). The RNA 3’ nucleotide was again frayed, but was oriented 

perpendicular to the hybrid axis, occupying a different site in the pore (“fraying site II,” 

Fig. 22C). Fraying sites I and II are both lined by Rpb1 residues K987 and D483, but 

are separated by Rpb2 residue Y769, which stacks against the frayed guanine (Fig. 

22D). The frayed guanine contacts Rpb2 residue E529 in a region called βDloopII in 

bacterial RNA polymerase (Table 4). Thus, the RNA 3’ nucleotide can occupy at least 

three alternative sites, the pre-translocated position, which preserves base pairing 

with the template, and two alternative fraying sites in the pore, in which this base 

pairing is disrupted. The frayed nucleotide is either oriented along the hybrid axis and 

approaches the NTP triphosphate-binding site (fraying site I), or it is oriented 

perpendicular to the hybrid axis and approaches βDloopII (fraying site II) (Fig. 22D). 
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Figure 22. Two frayed states of the RNA 3’ nucleotide (D) Nucleic acids structure of EC IV reveals a 

frayed 3’ terminal RNA guanine at 3.65 Å resolution. The final 2Fo-Fc is shown as a blue mesh, 

contoured at 1.0σ. The bromine peak at position -5 defines the register (anomalous difference Fourier, 

magenta, contoured at 4.5σ). (E) Detailed view of the electron density map in (D) near the active center. 

(F) Fraying site II. Depicted are RNA polymerase II residues contacting the frayed 3’ terminal RNA 

guanine. The final 2Fo-Fc density is shown for the frayed nucleotide, contoured at 1.0σ. Stacking 

interactions are indicated by two-headed arrows. (D) Superposition of the structures of ECs III and IV 

allows for comparison of the two frayed RNA 3’ nucleotides that are either oriented parallel (U, fraying 

site I) or perpendicular (G, fraying site II) to the axis of the DNA-RNA hybrid (vertical in this view). 
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Table 4. Amino acid residues contacting the frayed nucleotides in fraying site I (EC III) and 

fraying site II (EC IV) and their conserved counterparts in human RNA polymerase II (Pol II) and 

bacterial RNA polymerase 

Fraying site I     

Pol II atom RNA atom Distance (Å) H. sapiens T. thermophilus 

RPB2 R766 NH1 Frayed U C4 3.0 R721 R557 

RPB1 D483 OD2 Frayed U O4’ 2.4 D497 D741 

RPB2 R1020 CZ Frayed U C4 3.8 R975 R879 

RPB1 D483 CG Frayed U C1’ 3.5 D497 D741 

RPB2 K987 CE Frayed U C2’ 3.5 K942 K846 

RPB2 K987 CD Frayed U C2’ 3.8 K942 K846 

RPB1 D483 CG Frayed U C4’ 3.7 D497 D741 

RPB1 D481 CG Frayed U C5’ 3.8 D495 D743 

Fraying site II     

Pol II atom RNA atom Distance (Å) H. sapiens T. thermophilus 

RPB1 R446 NH2 Frayed G O1P 3.2 R460 R704 

RPB2 E529 OE1 Frayed G N1 2.8 E516 E445 

Penultimate RNA 

base U C5’ 

Frayed G C2’ 3.8 - - 

Penultimate RNA 

base U C5’ 

Frayed G C3’ 3.1 - - 

RPB2 K987 CE Frayed G C1’ 3.4 K942 K846 

RPB2 K987 CE Frayed G C2’ 3.4 K942 K846 

RPB2 Y769 CZ Frayed G C6 3.8 Y724 M560 

RPB2 Y769 CZ Frayed G C5 3.8 Y724 M560 

RPB2 Y769 CE2 Frayed G C6 3.2 Y724 M560 

RPB2 Y769 CE2 Frayed G C5 3.7 Y724 M560 

RPB2 Y769 CD2 Frayed G C6 3.4 Y724 M560 

RPB2 Y769 CD2 Frayed G C2 3.5 Y724 M560 

RPB2 Y769 CG Frayed G C2 3.4 Y724 M560 

RPB2 Y769 CB Frayed G C2 3.6 Y724 M560 

RPB2 Y769 CA Frayed G C2 3.8 Y724 M560 

RPB2 E529 CB Frayed G C6 3.9 E516 E445 

RPB1 D483 CG Frayed G C4’ 3.7 D497 D741 

 

To test whether fraying was due to the T•U mismatch, we replaced the mismatch in 

scaffold III by a correct A-U bp (Fig. 23A). The resulting EC V structure (Table 3, Fig. 

23B) revealed electron density for the RNA -1 uridine and for the phosphate of the 
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RNA nucleotide at position +1 (Fig. 23C), but not for the terminal uracile base and 

ribose at register +1, which are mobile. These observations suggest that two uridine 

residues at the RNA 3’ terminus, which are present at canonical pause sites, 

destabilize the bp at +1 and favor a frayed state, which can be stabilized at specific 

locations by a T•U mismatch at position -1 and can then be observed 

crystallographically. 

 

Figure 23. Structure of EC V at 3.65 Å resolution. (A) Nucleic acid scaffold V for reconstitution of an 

RNA polymerase II EC. Scaffold V as designed (top), containing A-U matches at positions -2 and -1, 

and as observed in the crystal (bottom). Filled circles denote nucleotides with interpretable electron 

density. (B) Structure of EC V reveals a mobile 3’ terminal nucleotide. The final 2Fo-Fc electron density 

is contoured at 1.0σ (blue) and shows only the phosphate group of the 3’ nucleotide. The location of the 

bromine atom at position -5 defines the register (anomalous difference Fourier, magenta, contoured at 

4.3σ). (C) Detailed view of the electron density map in (B). 
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5. RNA POLYMERASE II PROOFREADING 

5.1 Nucleotide-specific cleavage of mismatched RNA ends 

The above results rationalize slow mismatch extension, which is a prerequisite for 

RNA cleavage during proofreading (Erie et al, 1993; Thomas et al, 1998). To 

investigate RNA polymerase II cleavage efficiency for different mismatches, we 

incubated the ECs used for extension assays with standard transcription buffer 

containing 8 mM magnesium ions (Fig. 10 and 24). Cleavage of dinucleotides was 

generally observed (Fig. 10), and confirmed by MALDI mass spectrometry of the 

RNA products (Fig. 25). Most efficient cleavage was observed for G•G, A•A, G•U, 

T•G, A•G, A•C, and G•A mismatches. RNA in the mismatched ECs was always more 

efficiently cleaved than in the matched ECs, and cleavage was very efficient for those 

mismatches that support extension (Fig. 11 and 24). 

 

Figure 24. Summary of RNA cleavage efficiencies. For these experiments, ECs were incubated in 

transcription buffer for 5 min. Average values for two independent experiments are shown. 
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Figure 25. Dinucleotide cleavage by RNA polymerase II. Two signals observed on a gel 

electrophoresis separation correspond to the original RNA and to the product obtained in a cleavage 

experiment. Cleavage in a dinucleotide step was verified by MALDI-TOF analysis (Experimental 

procedures) whereas the original RNA (5901 Da) and the dinucleotide cleavage product (5289 Da) 

could be identified. 

5.2 Impaired mismatch accommodation 

To further investigate efficient cleavage of a mismatch that is efficiently extended, we 

included a G•A mismatch at the end of the hybrid and solved the structure of the 

resulting EC VI (scaffold VI, Fig. 26, Table 3). The overall structure was similar to the 

RNA polymerase II EC that contains the same nucleic acid scaffold except a 

matched G-C bp at position -1 (Kettenberger et al, 2004). However, a bromine label 

revealed that RNA polymerase II had apparently backtracked by two steps, although 

this required accommodation of A•A mismatches at positions -7 and +4 (Fig. 26C and 

D). Backtracking moved the templating G of the G•A mismatch from the designed 

position -1 to the downstream position +2. There was only fragmented electron 

density for the two backtracked terminal RNA nucleotides, indicating that dinucleotide 

cleavage had occurred prior to crystal analysis. Thus, impaired accommodation of 

the purine•purine mismatch in the active center apparently favors backtracking and 
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creates the state of the EC that is prone to dinucleotide RNA cleavage, which is 

observed in functional assays (Fig. 10 and 24). 

 

Figure 26. Structure of EC VI at 3.4 Å resolution (A) Scaffold VI containing a G•A mismatch at the 

designed position -1 (top) and as observed in the crystal after backtracking by two steps (bottom). (B) 

Structure of nucleic acids. The final 2Fo-Fc electron density map is shown as a blue mesh, contoured at 

1.0σ. A peak in the anomalous difference Fourier map (magenta, contoured at 4.4σ) reveals the location 

of the bromine atom at position -2 of the template strand, indicating that RNA polymerase II had 

backtracked by two steps. (C) Detailed view of the 2Fo-Fc map in (A) around the A•A anti-syn bps at 

position +4 in the downstream DNA duplex. A putative hydrogen bond is indicated by a dashed line. (D) 

Detailed view of the 2Fo-Fc map in (A) contoured at 1.2σ around the A•A anti-syn bp at position -7 in the 

RNA-DNA hybrid. A putative hydrogen bond is indicated by a dashed line.  
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6. DISCUSSION 

6.1 Mismatch-specific transcription fidelity mechanisms 

In this thesis, we analyzed the ability of RNA polymerase II to select the correct 

nucleotide for incorporation, to impair RNA extension beyond a mismatch, and to 

cleave a mismatched RNA 3’ end in a systematic and quantitative way. We show that 

RNA polymerase II evolved mismatch-specific fidelity mechanisms. Mismatches that 

are efficiently formed, impair RNA elongation, and mismatches that do not strongly 

impair RNA elongation are not formed efficiently (Fig. 27A). Mismatches that are 

efficiently extended are also cleaved efficiently (Fig. 27B), and this can be followed 

by efficient re-extension (Fig. 27C), providing the basis for proofreading. Our 

misincorporation efficiencies are consistent with those reported recently (Kireeva et 

al, 2008) and with misincorporation opposite a template cytosine by RNA polymerase 

III (Alic et al, 2007). The efficiencies of misincorporation, mismatch extension, and 

cleavage are apparently dominated by the type of mismatch, and sequence context 

has a minor influence, as seen for a DNA polymerase (Joyce et al, 1992).  
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Figure 27. Correlations between fidelity reaction efficiencies (A) Correlation between 

misincorporation and mismatch extension efficiencies. Mean values of 1 min time points shown in Figs. 

7 and 24 are plotted. (B) Correlation between efficiencies of mismatch extension (1 min time point mean 

values, Fig. 11) and RNA cleavage (Fig. 24). (C) Correlation between efficiencies of RNA cleavage and 

run-off product formation. For run-off experiments, mismatch-containing ECs with scaffolds Z (Fig. 9) 

were incubated for 5 min with 100 µM of a mixture of all NTPs and the bands corresponding to run-off 

products were quantified (see Experimental procedures). 

6.2 Mechanistic insights into pausing 

Once detected, misincorporation of nucleotides may induce the transition of the still 

pre-translocated EC to an off-line state when RNA elongation is temporarily stalled 

(Fig. 29). It was suggested that misincorporation might directly result in 

transcriptional pausing (Toulokhonov et al, 2007). Additionally, downstream DNA 

sequences affect pausing (Artsimovitch & Landick, 2000; Chan et al, 1997; Holmes & 
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Erie, 2003; Landick, 1997; Lee et al, 1990; Palangat et al, 2004; Palangat & Landick, 

2001; Wang et al, 1995), where the specific contact of residue R504 of ECIII fork 

loop 2 with downstream DNA suggests an explanation of this influence on a 

structural level (Fig. 20).  

Transcriptional pausing is a frequent event, occurring on average every 100 

bases of DNA (Neuman et al, 2003), mediating the regulation of RNA chain 

elongation. It is known to be involved in regulation of gene expression (Artsimovitch 

& Landick, 2002; Bailey et al, 1997; Donahue & Turnbough, 1994; Landick, 2006; 

Palangat et al, 1998; Ring et al, 1996; Tang et al, 2000; Winkler & Yanofsky, 1981), 

to be essential for RNA folding, synchronization of transcription and translation (Pan 

et al, 1999; Yakhnin et al, 2006) to allow splicing and polyadenylation in eukaryotes 

(de la Mata et al, 2003; Yonaha & Proudfoot, 1999), and to be the first step in 

backtracking, proofreading, and termination (Artsimovitch & Landick, 2000; Gusarov 

& Nudler, 1999; Komissarova & Kashlev, 1997a; Landick, 2006; Nudler et al, 1997; 

Palangat et al, 1998; Park et al, 2004).  

Single-molecule studies classified pauses dependent on their life-time 

(Herbert et al, 2006). Only a small fraction of pauses have a life-time more than 20 

seconds, defined as long-lived pauses, such as those stabilized by hairpins and 

backtracking. The vast majority of pauses, which have been termed ubiquitous 

pauses (related to the elemental pause), are short-lived pauses, occurring about 1 

time per 100 base pairs. Results of those single-molecule studies have proposed a 

two-tiered mechanism, according to which a long-lived regulatory pause would be 

comprised of two components acting in succession. First, a common sequence 

element that triggers a temporary (elemental) pause state, followed by additional 

sequence elements that convert the elemental pause into a long-lived pause (Herbert 

et al, 2006). 

By means of the underlying mechanism, pausing can be divided broadly into 

2 classes: backtrack pausing, in which rearward movement of RNA polymerase leads 
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to displacement of the RNA 3’ end and thus blocks RNA elongation, and non-

backtrack pausing, in which nucleotide addition is inhibited by active site 

rearrangements (Landick, 2009). Non-backtracked pauses can also be stabilized by 

a hairpin which is formed by the nascent RNA transcript (Herbert et al, 2006). It is 

involved in attenuation control (Artsimovitch & Landick, 2000; Henkin & Yanofsky, 

2002). The other class of defined pauses is stabilized by backtracking of RNA 

polymerase (Artsimovitch & Landick, 2000; Komissarova & Kashlev, 1997b; Palangat 

& Landick, 2001). Backtracking has been observed at several pause sites 

(Artsimovitch & Landick, 2000; Palangat & Landick, 2001; Samkurashvili & Luse, 

1996) and was thought previously to be the main source of transcriptional pausing 

(Epshtein & Nudler, 2003; Komissarova & Kashlev, 1997b; Landick, 1997; Nudler, 

1999; Nudler et al, 1997). Subsequent applied force studies on E. coli ECs proposed 

that ubiquitous pausing is independent of backtracking (Neuman et al, 2003) and is 

rather related to a conformational change within the enzyme, representing the earlier 

described unactivated intermediate (Erie et al, 1993). Also recent biochemical 

characterization of previously-reported pauses of E. coli RNA polymerase showed 

that these pauses were not associated with backtracking but contained the 3’ end of 

the transcript in the active center, being capable of binding the next NTP, 

characterized by much slower bond formation (Kireeva & Kashlev, 2009). In addition, 

it was shown that sequence-specific pausing is not conserved between prokaryotic 

RNA polymerases and yeast RNA polymerase II. It became clear that ubiquitous 

pausing by bacterial RNA polymerase must include non-backtrack pause sites. 

Structures of the paused ECs III and IV (Fig. 18 and 22) represented in this work, 

confirm a non-backtracked translocation state in the eukaryotic elemental pause. 

Active-site rearrangement in the elemental pause was postulated to include a 

trigger loop conformation located close to the RNA 3’ nucleotide and a conformation 

of βDloopII that allows fraying of the 3’ nucleotide away from the DNA template 

(Toulokhonov et al, 2007). Such a frayed RNA 3’ OH away from the catalytic center 
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was suggested earlier as a common feature of all pause, arrest, and termination 

signals (Artsimovitch & Landick, 2000). The existence of a frayed RNA 3’ terminal 

nucleotide in the elemental pause state was revealed by site-directed crosslinking 

and mutagenesis (Artsimovitch & Landick, 2000; Chan et al, 1997; Toulokhonov et al, 

2007). Compared to the previously proposed “two-pawl ratchet” model which 

suggests bending of the bridge helix into the A site, leading to inhibition of substrate 

loading or translocation due to fraying of the template DNA base (Bar-Nahum et al, 

2005), the “trigger loop based” pausing model can explain coupling of NTP loading 

and translocation without unfolding of the bridge helix and is accompanied by the 

RNA 3’ nucleotide fraying into the E site (Toulokhonov et al, 2007).  

Structural insights into the elemental pause state are obtained from ECs III 

and IV. A frayed RNA 3’ nucleotide binds in two different sites in the pore that are 

lined by conserved residues (Table 4). Both sites overlap the NTP site, and the tip of 

the closed trigger loop (Fig. 19), explaining how pausing prevents NTP-coupled 

translocation and nucleotide addition. The EC V structure further suggests that two 

A-U bps at the end of the hybrid, which are obtained by transcription of a canonical 

pause sequence, result in a non-translocated, non-backtracked paused state. All 

structures reveal a mobile trigger loop and do not elucidate the proposed paused 

conformation of the trigger loop (Toulokhonov et al, 2007).  

6.3 Error recognition: mismatches induce off-line states 

Once an error has occurred, RNA polymerases have to recognize it and react 

appropriately. In this work, we report structures of mismatch-containing RNA 

polymerase II ECs, which suggest three mechanisms of how misincorporation 

impairs RNA extension. First, a mismatch may stably bind to RNA polymerase II and 

disrupt the catalytically competent active site conformation. For example, a T•U 

mismatch can bind to the -1 position and cause loss of the catalytic metal ion A and 
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misalignment of the RNA 3’ end. Second, a mismatch may facilitate backtracking and 

RNA cleavage. For example, a G•A mismatch results in a backtracked state in a 

crystal, and in RNA dinucleotide cleavage in vitro. Third, misincorporation may result 

in an off-line state of the EC with a frayed RNA 3’ end. 

6.4 Error removal: RNA cleavage 

Mismatch removal by RNA cleavage is the third mechanism contributing to 

transcription fidelity, besides selection of the correct nucleotide and impairment of 

mismatch extension. Internal hydrolytic cleavage leads to a new 3’ OH at the end of 

the RNA chain, permitting renewed RNA synthesis (Borukhov et al, 1993; Izban & 

Luse, 1992; Surratt et al, 1991). The general phenomenon of RNA cleavage 

preferentially in dinucleotide units was observed in bacterial, eukaryotic and archaeal 

RNA Polymerases (Guo & Price, 1993; Izban & Luse, 1992; Izban & Luse, 1993; 

Lange & Hausner, 2004; Thomas et al, 1998; Whitehall et al, 1994). The cleavage 

mechanism including the exonuclease and endonuclease activity was explained by a 

unified two metal ion mechanism of RNA synthesis and degradation (Sosunov et al, 

2003). In a bacterial RNA polymerase, the 3’ terminal nucleotide of the mismatched 

transcript itself stimulates hydrolysis of the penultimate phosphodiester bond and 

thus its own removal (Zenkin et al, 2006). This represents a “product-assisted 

catalysis”, in contrast to the previously proposed “substrate-assisted catalysis” 

describing transcript cleavage stimulation by non-complementary NTP (Sosunov et 

al, 2003). RNA polymerase I and RNA polymerase III both possess a strong intrinsic 

RNA cleavage activity (Chedin et al, 1998; Kuhn et al, 2007). In RNA polymerase III, 

it is indeed so strong that misincorporation studies could only be performed with a 

cleavage-deficient isoform of the enzyme (Alic et al, 2007). In contrast, T7 RNA 

polymerase does not possess any detectable endogenous RNase activity in ECs 
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(Huang et al, 2000). Only pyrophosphorolysis was detected but does not appear to 

contribute to proofreading.  

Escape from transcriptional arrest, characterized by extensive backtracking, 

requires RNA cleavage by the elongation factor TFIIS in the RNA polymerase II 

system (reviewed in (Fish & Kane, 2002; Wind & Reines, 2000)). Also efficient 

release from promoter-proximal stall sites requires TFIIS (Adelman et al, 2005), a 

factor which strongly stimulates the weak intrinsic RNA polymerase II nuclease 

activity (Izban & Luse, 1992; Reines, 1992; Wang & Hawley, 1993). Addition of TFIIS 

to paused and arrested ECs releases RNA dinucleotides and 7-8-mers, respectively 

(Gu & Reines, 1995). In vitro studies showed higher transcriptional fidelity in the 

presence of TFIIS (Thomas et al, 1998). Transcription fidelity in vivo does not depend 

on TFIIS though (Nesser et al, 2006; Shaw et al, 2002), but needs the RNA 

polymerase II subunit Rpb9 (Nesser et al, 2006). In this work, we show that cleavage 

rates of mismatch-containing ECs are higher than for those with matched complexes 

in the absence of TFIIS. These results are consistent with previous studies on RNA 

cleavage (Zenkin et al, 2006). The same effect was observed in the presence of 

TFIIS (Jeon & Agarwal, 1996; Wang, 2009). Such preferential removal of 

misincorporated RNA residues has also been shown in eukaryotic RNA polymerase 

III (Alic et al, 2007), for GreA stimulated cleavage in E. coli (Erie et al, 1993) and TFS 

stimulated cleavage in the archaeal system (Hausner et al, 2000; Lange & Hausner, 

2004). Structural data helped to understand the mechanism of mRNA cleavage and 

supported the idea of one single tunable RNA polymerase II active site that can 

switch between RNA synthesis and cleavage modes (Kettenberger et al, 2003). A 

recent RNA polymerase II TFIIS EC in a backtracked state proposed a regional 

rearrangement to allow accommodation of TFIIS and backtracked RNA in the interior 

of the enzyme (Wang, 2009). Superimposition of our structures of EC III and IV with 

the TFIIS-RNA polymerase complex reveals an overlap of the TFIIS acidic hairpin 

with the frayed nucleotides (Fig. 28). We therefore postulate TFIIS to trigger the 
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release of a frayed nucleotide. It may also suppress fraying, and thus prevent 

pausing by keeping the EC in the pre-translocated on-line state. Also in the bacterial 

system, additional factors for removal of terminal RNA nucleotides are not essential 

as the enzymes possess intrinsic cleavage activity, although transcript cleavage in E. 

coli is facilitated by the transcription factors GreA and GreB (Borukhov et al, 1992; 

Borukhov et al, 1993) which merely enhance the intrinsic transcript cleavage activity 

of a bacterial RNA polymerase (Orlova et al, 1995). Despite having similar function 

as eukaryotic TFIIS, bacterial GreA and GreB proteins lack sequence or structural 

similarity. GreA and GreB stimulate cleavage in different ways. Cleavage of 3’ RNA 

fragments of two to three nucleotides in length are induced by GreA and are only 

able to prevent arrested complex formation, whereas GreB can rescue preexisting 

arrested complexes by inducing cleavage of fragments up to 18 nucleotides in length 

(Opalka et al, 2003). 
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Figure 28. Frayed nucleotides overlap the TFIIS hairpin (A) Frayed nucleotides overlap the tip of the 

hairpin of the cleavage-stimulatory factor TFIIS. The structures of EC III, EC IV, and the RNA 

polymerase II-TFIIS complex (PDB-code 1PQV, (Kettenberger et al, 2003)) were superimposed with 

their active center regions. TFIIS is shown in orange. The canonical side view is used. (B) Detailed view 

of the superposition in (D) around the active site, revealing a potential clash of the TFIIS acidic hairpin 

with the frayed nucleotides. 
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6.5 A model for RNA proofreading 

In a DNA polymerase, the 3’ cleavage rate is governed by the rate of fraying 

(Morales & Kool, 2000), suggesting that RNA fraying occurs during transcriptional 

proofreading. Since RNA cleavage generally occurs in dinucleotide steps (Izban and 

Luse, 1993), the polymerase must backtrack by one step after fraying. Backtracking 

allows the terminal nucleotide to contribute catalytic groups to the active site for 

cleavage stimulation (Zenkin et al, 2006). The structural studies of our work and of 

backtracked RNA polymerase II ECs (Wang, 2009) together with published 

biochemical work (Alic et al, 2007; Thomas et al, 1998; Zenkin et al, 2006) converge 

on the following proposed mechanism for RNA proofreading. After misincorporation 

(Fig. 29B), polymerase recognizes the resulting mismatch, such that further RNA 

extension is slowed down or prevented. The mismatch may lead to distortion of the 

on-line pre-translocated state. This active site distortion might cause a stabilization of 

a paused off-line state with a frayed nucleotide (Fig. 29C). Polymerase then 

backtracks by one position (back-stepping) and places the RNA end into a 

proofreading site that is identical or very similar to a possible fraying site (Fig. 29D). 

This forms the basis for dinucleotide cleavage, resulting in an empty NTP binding site 

(Fig. 29E). By doing so, the EC re-accesses the online-state that allows for 

continuation of transcription (Fig. 29 A). Cleavage stimulatory factors may help recruit 

the water molecule required for catalysis and/or position the substrates and may 

remobilize backtracked RNA bound to certain non-productive sites. 
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Figure 29. Possible model of the RNA polymerase II proofreading cycle. The vertical dashed line 

indicates register +1. (A) RNA polymerase II in the post-translocation state (PDB code 1Y1W), (B) in the 

pre-translocation state (PDB code 1I6H, the DNA nontemplate strand was modeled from 1Y1W 

(Brueckner et al, 2009), (C) in a paused conformation with a frayed 3’ terminal guanine (ECIII), (D) in a 

backstepped state (PDB code 3GTJ), (E) and after dinucleotide cleavage (EC VI, PDB code 3HOY).  
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The model presented here can correspond either to a misincorporation event that 

results in mismatch accommodation directly in the active center at position -1, not 

leading to translocation, or to mismatch incorporation with subsequent translocation, 

leading to its positioning at register -2. In both cases, RNA 3’ fraying could occur, 

which results in either a mismatched or a matched nucleotide in the fraying site, 

respectively, and after subsequent backstepping in the proofreading site. In both 

cases, the mismatch that is either at the terminal or the penultimate position relative 

to the RNA 3’ end, respectively, can be removed as cleavage occurs in dinucleotide 

steps. 
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7. EXPERIMENTAL PROCEDURES 

7.1 Measurement of protein concentration 

For the determination of protein concentrations the Bradford protein assay was used 

(Bradford, 1976). Dye reagent was purchased from Biorad and the assay was 

performed according to the manufacturer's instructions. For each new batch of dye 

reagent a calibration curve was generated using Bovine serum albumin (Fraktion V, 

Roth). 

7.2 Isolation of 10-subunit core RNA polymerase II from yeast 

7.2.1 Yeast fermentation 

Isolation of core RNA polymerase II was carried out from the Saccharomyces 

cerevisiae strain CB010∆Rpb4 (MATa pep4::HIS3/prb1::LEU2, prc1::HISG, can1, 

ade2, trp1) (Edwards et al, 1990; Fu et al, 1999). The strain is characterized by 

knockouts of several cellular proteases and of RPB4. Homogeneous 10-subunit core 

RNA polymerase II could be obtained in the absence of Rpb4, as Rpb7 dissociates 

from core RNA polymerase II during purification. For production of up to 1.5 kg of 

yeast pellet per batch, two types of fermentors were available. The small fermentor 

(ISF200, Infors) has a nominal volume of 20 l and should be run with up to 15 l of 

media. The large fermentor (ABEC, Infors) has a larger capacity, with a nominal 

volume of 200 l and can be filled with up to 160 l of media. The media composition 

and the culture parameters of both fermentors were as follows: 
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Small fermentor (20 l)  

YPD media  

300 g peptone  

300 g glucose  

222 g yeast extract  

15 l desalted water  

 

Antibiotics  

0.75 g ampicillin  

0.15 g tetracycline⋅HCl  

 

Typical inoculate volume  

0.3 l @ OD600 ≈ 2  

 

Air flow 

8 l/min  

 

Stirrer speed 

800 rpm  

 

Typical growth time  

12 – 15 hours  

 

 

 

 

 

Large fermentor (200 l) 

YPD media  

3200 g peptone 

3200 g glucose 

2370 g yeast extract 

160 l desalted water 

 

Antibiotics 

8.0 g ampicillin 

1.6 g tetracycline⋅HCl 

 

Typical inoculate volume  

4-5 l @ OD600 ≈ 2 

 

Air flow 

20 l/min 

 

Stirrer speed 

200 rpm 

 

Typical growth time 

12 – 15 hours
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7.2.2 Purification of 10-subunit core RNA polymerase II 

7.2.2.1. Buffers 

100 x protease inhibitor mix 

1.42 mg Leupeptin 

6.85 mg Pepstatin A 

850 mg PMSF 

1650 mg benzamidine 

dry ethanol to 50 ml 

stored at –20 °C; added immediately before use 

 

3x freezing buffer 

150 mM Tris-Cl, pH 7.9 @ 4 °C 

3 mM EDTA 

30 % glycerol 

30 μM ZnCl2 

3 % DMSO 

30 mM DTT 

3 x protease inhibitor mix 

 

1 x HSB150 buffer 

50 mM Tris-Cl, pH 7.9 @ 4 °C 

150 mM KCl 

1 mM EDTA 

10 % glycerol 

10 μM ZnCl2 

10 mM DTT 

1 x protease inhibitor mix 
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1 x HSB600 buffer 

50 mM Tris-Cl, pH 7.9 @ 4 °C 

600 mM KCl 

1 mM EDTA 

10 % glycerol 

10 μM ZnCl2 

10 mM DTT 

1 x protease inhibitor mix 

 

TEZ buffer 

50 mM Tris-Cl, pH 7.5 @ 20 °C 

1 mM EDTA 

10 μM ZnCl2 

1 mM DTT 

1 x protease inhibitor mix 

 

UnoQ buffer 

50 mM Tris-Cl, pH 7.5 @ 20 °C 

1 mM EDTA 

10 μM ZnCl2 

10 % (v/v) glycerol 

10 mM DTT 

no protease inhibitors 

 

1 x RNA polymerase II buffer 

5 mM Hepes pH 7.25 @ 20 °C 

40 mM ammonium sulfate 

10 μM ZnCl2 
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10 mM DTT 

 

Acetate buffer 

100 mM sodium acetate pH 4.0 

500 mM sodium chloride 

 

PBS 

4.3 mM Na2HPO4 

1.4 mM KH2PO4 

137 mM sodium chloride 

2.7 mM potassium chloride 

pH 7.4 

 

Coupling buffer 

100 mM sodium bicarbonate pH 8.3 

500 mM sodium chloride 

 

7.2.2.2. Harvesting and storage of yeast  

The yeast cells were harvested at late logarithmic/early stationary phase, monitored 

by OD600 measurement. Cells were pelleted by centrifugation for 20 min at 5000 

rpm in a SLC6000 rotor (small fermentor) or by a continuous flow centrifuge 

(Padberg Z4IG, 20000 rpm) in case of the large fermentor. Subsequently, the cell 

pellet was resuspended in 330 ml of 3x freezing buffer per kg cells and stirred at 4 °C 

for 30 min, before shock-freezing in liquid nitrogen and stored at -80 °C.   
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7.2.2.3. Purification - day 1 (lysis and heparin column)  

Up to 600 ml of cell suspension were thawed in warm water for three bead-beaters 

(BioSpec). 200 ml of borosilicate glass beads (0.45-0.50 mm diameter), 1 ml of 

protease inhibitor mix and 200 ml of the cell suspension were filled in each bead-

beater. The bead-beater was filled completely with HSB150, whilst avoiding any 

remaining air bubbles. The cell lysis was achieved within 60-75 min of bead-beating 

(30 s on/90 s off) while the beater chambers were submersed in a salt/ice mixture. 

Removal of glass beads was achieved by filtration through a mesh funnel. 

Subsequently, the beads were washed with HSB150 until the flowthrough was clear. 

Two rounds of centrifugation cleared the lysate (45 min at 9000 rpm in a GS3 rotor or 

30 min at 12000 rpm in a SLA1500 rotor). Filtration of the supernatant through two 

layers of paper filter discs underneath a dressing cloth led to removal of lipids. The 

cleared lysate was loaded onto a column packed with 250 ml of Heparin Sepharose 6 

FF (GE Healthcare) (flow rate: 6-8 ml/min) and pre-equilibrated with 750 ml of 

HSB150. Proteins were eluted with 500 ml of HSB600 (flow rate: 6-8 ml/min) and 

then precipitated by adding 291 g of fine-ground ammonium sulfate per litre of eluate 

(= 50 % saturation), followed by 60 min of stirring at 4 °C, over-night incubation at 4 

°C and finally centrifugation (45 min. at 12000 rpm in a SLA1500 rotor). Washing with 

1 l of 6 M urea and water was applied to restore the heparin column. For storage, 5 

mM potassium acetate and 20 % (v/v) ethanol were applied. Every five runs, the 

heparin column was regenerated by a brief wash with 500 ml of 0.1 M NaOH, 

followed by water and 5 mM potassium acetate in 20 % (v/v) ethanol.   

 

7.2.2.4. Purification - day 2 (immunoaffinity column)  

On the second day, the ammonium sulfate pellet of day 1 was dissolved in 50 ml of 

TEZ buffer. The conductivity was adjusted below the conductivity of TEZ containing 

additionally 400 mM ammonium sulfate (TEZ400) by addition of more TEZ buffer. 
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Centrifugation of the sample (15 min at 14000 rpm in a SLA1500 rotor) was done to 

remove undissolved constituents. Afterwards, it was loaded by gravity flow onto the 

immunoaffinity column at 4 °C which was pre-equilibrated before with 20 ml of TEZ 

containing 250 mM ammonium sulfate (TEZ250). To increase the yield of RNA 

polymerase II, the flowthrough was loaded onto a second column. The columns were 

mounted at room temperature, washed with 25 ml of TEZ500 at room temperature 

and RNA polymerase II was eluted in 1 ml fractions with TEZ500 containing 

additionally 50 % (v/v) glycerol (ca. 15 ml). 9 mM DTT was added to the elution 

fractions containing RNA polymerase II (monitored with the Bradford assay) directly 

afterwards, and they were stored at 4 °C over night. Columns were washed with 5 ml 

of TEZ500 containing 70 % (v/v) ethylene glycol but no DTT, and re-equilibrated with 

25 ml of TEZ250 containing 0.02 % sodium azide. Generally, the recovery of RNA 

polymerase II decreased with each use of the column starting already from the first 

use. One reason is probably the sensitivity of the antibody towards DTT. 

 

7.2.2.5. Purification - day 3 (anion exchange chromatography or buffer 

exchange)  

After six-fold dilution, peak fractions from day 2 were loaded onto a UnoQ column 

(BioRad, column volume 1.35 ml) and pre-equilibrated with buffer UnoQ containing 

60 mM ammonium sulfate (UnoQ-A). This buffer was used to wash the the column 

with 3 column volumes, and RNA polymerase II was eluted with a linear gradient 

over 10 column volumes from 0-50 % buffer UnoQ containing 1 M ammonium sulfate 

(UnoQ-B). RNA polymerase II eluted at about 25 % buffer UnoQ-B. Washing with 5 

column volumes of UnoQ-B was used to restore the column. An increase of the final 

yield of RNA polymerase II could be achieved by replacement of the anion exchange 

step by a simple buffer exchange procedure, which didn't affect the suitability of the 

purified RNA polymerase II for structural or functional experiments. Centrifugal 

ultrafiltration devices (MWCO 100,000 Da, Millipore Amicon Ultra-15) served for 
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buffer exchange from the buffer in the antibody column elution fractions to 1x RNA 

polymerase II buffer. By measuring the conductivity of the flowthrough, the 

completeness of the buffer exchange was monitored. Subsequently, RNA 

polymerase II was concentrated to 1-2 mg/ml. After anion exchange chromatography 

or after buffer exchange, the RNA polymerase II sample was split into aliquots of 

100-500 μg protein. The aliquots after anion exchange chromatography were mixed 

with an equal volume of ammonium sulfate solution saturated at room-temperature, 

the aliquots in 1 x RNA polymerase II buffer with 1.13 times the volume. The mixture 

was incubated for at least 1 hour at 4 °C and centrifuged for 45 min at 4 °C in a table-

top centrifuge at 13000 rpm. Most of the supernatant was decanted so that the pellet 

was still covered with supernatant. Finally, it was shock-frozen in liquid nitrogen and 

stored at -80 °C. RNA polymerase II stored this way is stable for about 3 months. A 

yield of 0.5-4 mg of highly purified RNA polymerase II was achieved from 600 g yeast 

pellet. 

 

7.2.2.6. Preparation of RNA polymerase II immunoaffinity resin  

A monoclonal antibody, 8WG16 (NeoClone, Madison/USA) (described in (Thompson 

& Burgess, 1996)) is specific for the unphosphorylated CTD of RNA polymerase II 

and optimized to release RNA polymerase II upon treatment with glycerol or ethylene 

glycol at room temperature (“polyol responsive antibody“). These antibodies were 

purified from mouse ascites. They were immobilized on activated chromatography 

media according to the following procedure:  

PBS was used to dissolve the lyophilized ascites to their original volume 

which were then filtered through 0.2 µm membrane filters. The solution was passed 

more than 3 times through a protein-A sepharose column (5 ml column volume, 

Sigma), pre-equilibrated in PBS. The column was washed with 50 ml PBS and 

antibodies were eluted with 20 ml of 0.75 M acetic acid. 1 ml fractions were collected 
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into tubes containing 200 µl of 2 M Hepes (pH 7.9) to neutralize the acid. The peak 

fractions were pooled and the protein-A sepharose column was regenerated by 

washing for 5 min with 1 M acetic acid, followed by PBS with 0.02 % sodium azide. 

Immunoaffinity columns had a cyanogen bromide (CNBr)-activated sepharose 

4 B (Sigma) matrix, which reacts with free amines, e.g. accessible -NH2 groups on 

proteins. Other sources of free amines (e.g. Tris) were avoided and a sealed bottle of 

activated sepharose was used. 5 ml of gel were prepared for each immunoaffinity 

column by suspending 1.43 g of CNBr-sepharose in several ml of 1 mM HCl in a 

disposable gravity-flow column. The suspended CNBr-sepharose was first washed 

with 100 ml of 1 mM HCl, then with 20 ml of coupling buffer. 10 mg of purified 

antibodies per column were coupled for 2 hours at 20 °C or over night at 4 °C. No 

protein was detectable in the supernatant when the coupling reaction was completed. 

The column was then washed with 25 ml of 1 M Tris, pH 8 and incubated for 2 hours 

at room temperature or over night at 4 °C. Subsequently, the column was washed 

with 20 ml of coupling buffer, followed by acetate buffer and coupling buffer. The 

columns were stored at 4 °C in TEZ60 with 0.02 % sodium azide. It was possible to 

use the columns several times if DTT exposure was reduced to a minimum, but in 

general a decrease in RNA polymerase II yield was observed already after the first 

and even further after subsequent uses. 

7.3 Purification of the subcomplex Rpb4/7 

Buffer 1 

150 mM NaCl 

5 % (v/v) glycerol 

50 mM Tris pH 7.5 

10 mM β-mercaptoethanol 

protease inhibitors (see chapter 4.5) 
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Buffer 2 

50 mM Tris pH 7.5 

5 mM DTT 

1 mM EDTA 

 

E. coli BL21(DE3) RIL (Stratagene) with a bicistronic vector was used to express 

recombinant yeast Rpb4/7. 2 x 2 L cultures of cells were grown in auto-induction 

medium (Studier, 2005). After about 4 h at an OD600 ≈ 0.6, the temperature was 

shifted from 30 °C to 20 °C. After 11 h cell growth, cells were harvested by 

centrifugation (15 min at 5000 rpm in a SLC6000 rotor), resuspended in buffer 1 and 

lysed using a French Press. Before application to a NiNTA column (Quiagen; 1 ml 

column volume), the lysate was cleared by centrifugation (30 min at 15000 rpm in a 

SS34 rotor). Subsequently, the column was washed with 3 ml of buffer 1, 3 ml buffer 

1 containing additionally 10 mM imidazole and 3 ml of buffer 1 containing additionally 

20 mM imidazole. Proteins were eluted with 3 ml of buffer 1 containing additionally 50 

mM imidazole and 3 ml of buffer 1 containing additionally 200 mM imidazole. Peak 

fractions were pooled, diluted 1:3 with buffer 2 and applied on a ResourceQ column 

(GE Healthcare, 6 ml column volume) which was pre-equilibrated in buffer 2. A linear 

gradient from 0-1000 mM NaCl in buffer 2 was applied to elute Rpb4/7. The peak 

fractions were concentrated and applied on a Superose12 10/300 GL gel filtration 

column (GE Healthcare) which were pre-equilibrated in Pol II buffer. The resulting 

purified Rpb4/7 heterodimer was concentrated to 10 mg/ml and was stored in 

aliquots at -80 °C.  
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7.4 Purification of His-tagged RNA polymerase II 

Ni buffer  

20 mM Tris-HCl pH 7.9  

150 mM KCl 

10 µM ZnCl2 

10% v/v glycerol 

10 mM DTT 

1x protease inhibitors 

 

High salt buffer  

20 mM Tris-HCl pH 7.9  

1000 mM KCl  

7 mM imidazole 

10 µM ZnCl2 

10% v/v glycerol 

10 mM DTT 

1x protease inhibitors 

 

Ni7 buffer  

20 mM Tris-HCl pH 7.9 

150 mM KCl 

7 mM imidazole 

10 µM ZnCl2 

10 mM DTT 

1x protease inhibitors) 
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MonoQ buffer 

20 mM Tris-acetate pH 7.9 

0.5 mM EDTA 

10 µM ZnCl2 

10% v/v glycerol 

10 mM DTT 

 

S. cerevisiae RNA polymerase II containing a hexahistidine-tagged Rpb3 subunit 

(strain kindly provided by the laboratory of M. Kashlev) was purified as described 

(Kireeva et al, 2003), but with several significant modifications. Briefly, 150 gram of 

cell pellet were resuspended in freezing buffer and were lyzed by bead beating for 80 

min using intervals of 30 seconds followed by 90 second pauses. The lysate was 

cleared by centrifugation and ultracentrifugation. RNA polymerase II was precipitated 

by the addition of 50% saturated ammonium sulphate solution. The pellet was 

dissolved in Ni buffer and subjected to Ni-NTA affinity chromatography (2 x 8 ml fresh 

Ni-NTA) using gravity flow. After washing with high salt buffer and with Ni7 buffer, the 

protein was eluted with Ni7 buffer containing 100 mM imidazole and no protease 

inhibitors. The eluted protein was diluted with MonoQ buffer and subjected to anion 

exchange chromatography (MonoQ, GE healthcare) using a gradient from 150 mM to 

1500 mM KOAc. The last elution peak (at a conductivity of 50 mS/cm) was collected 

and concentrated. The concentrated RNA polymerase II was precipitated by the 

addition of 50% ammonium sulfate, and the pellets were stored at -80 °C. 
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7.5 EC assembly 

Transcription buffer (TB) 

20 mM HEPES pH 7.6 

60 mM (NH4)2SO4 

8 mM MgSO4 

10 μM ZnCl2 

10% v/v glycerol 

10 mM DTT 

 

For the bead-based assays, the ECs containing complete complementary scaffolds 

were assembled essentially as described (Kireeva et al, 2003). Briefly, the DNA non-

template was 5’-end-labeled with Biotin with the use of a TTTTT linker. The RNA was 

5’end-labeled with 6-carboxyfluoresceine (FAM). For EC assembly, RNA polymerase 

II was incubated with a hybrid of the DNA template strand annealed to the RNA (2-

fold excess) in TB for 15 min at 20 C, subsequently with the biotinylated non-

template DNA strand (4-fold excess) for 10 min at 25 C, and then with recombinant 

Rpb4/7 (5-fold excess) for 10 min at 25 C.  

7.6 Bead-based RNA extension and cleavage assays 

Bead-based assays were carried out as described with some modifications (Dengl & 

Cramer, 2009). Briefly, beads (Dynabeads MyOneTM Streptavidin T1 from Invitrogen) 

were added to ECs for assembly and incubated for 30 min at 25 °C. Beads were 

subsequently washed with TB containing 0.1% Triton-X, TB containing 0.2 M 

(NH4)2SO4, and with TB. Beads were re-suspended in TB. For RNA extension assays 

including time course experiments, different amounts of NTPs (Jena Bioscience) 

were added, the mixture was incubated at 28 °C and reactions were stopped at 
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different time points by addition of an equal volume of 100 mM EDTA, essentially as 

described (Brueckner et al, 2007). For cleavage assays, the bead-coupled ECs were 

incubated at 28 °C in TB for 5 min and stopped as described for extension assays. 

The beads were transferred into urea loading buffer, samples were heated to 95 °C 

and loaded on a 20% polyacrylamid gel containing 7 M Urea. The FAM 5’-labeled 

RNA products were visualized with a Typhoon 9400 scanner (GE Healthcare). Gel 

bands were quantified using ImageQuant (GE healthcare). In case more than one 

product was observed (A), the amounts of different RNA products were added up. 

For MALDI-TOF analysis, the reaction was incubated, stopped and analyzed as 

described (Brueckner et al, 2007). NTP samples were analyzed by reverse phase 

HPLC analysis and no cross-contamination with other NTPs was detected. We also 

requested analytic data from the supplier, which showed that the NTPs are 99.8% 

pure and the remaining impurities are NDPs and NMP of the same kind, but not other 

types of NTPs. Since the NTPs are synthesized de novo, and are not derived from 

fractionation of an NTP pool, cross-contamination cannot occur. We are therefore 

certain that misincorporation took place. 

7.7 Crystal structure determinations 

The match and mismatch-containing scaffolds were cocrystallized and the structures 

were determined essentially as described (Brueckner et al, 2007), with minor 

changes. The crystallization solution lacked magnesium ions (200 mM ammonium 

acetate, 300 mM sodium acetate, 50 mM Hepes pH 7.0, 4-6 % w/v PEG 6000, 5 mM 

TCEP). Diffraction data of EC I were collected at the beamline X06A of the Swiss 

Light Source using a mar225 CCD detector, whereas data of ECs II-VI were collected 

using a PILATUS 6M pixel detector (Broennimann et al, 2006) (Table 3). Raw data of 

EC I were processed with HKL2000, data of ECs II-VI with XDS (Kabsch, 1993). The 

structure of EC I and VI were solved by molecular replacement with the program 
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PHASER (McCoy et al, 2005), using the structure of the complete 12-subunit RNA 

polymerase II without nucleic acids as a search model (PDB 1Y1W) (Kettenberger et 

al, 2004). The higher resolution of the EC I crystal produced a superior model of the 

protein compared with 1Y1W, as judged by the quality of the Ramachandran plot and 

Rcryst/Rfree values. When used as a search model for molecular replacement, EC I 

resulted in better quality models in the determination of the EC II, III, IV and V 

structures. The molecular-replacement solution was subjected to rigid-body 

refinement with CNS version 1.2 (Brünger et al, 1998). Model-building was done with 

Coot (Emsley & Cowtan, 2004) and Moloc (Gerber Molecular Design, Switzerland, 

http://www.moloc.ch). The nucleic acids were built stepwise into unbiased Fo-Fc 

electron density. The register of the nucleic acids was unambiguously defined by 

bromine labeling as described (Brueckner et al, 2007). Refinement of ECs II-VI was 

monitored with the free R-factor calculated from the same set of excluded reflections 

as in the refinement of the complete RNA polymerase II complex (Armache et al, 

2005), and the complete RNA polymerase II EC (Brueckner et al, 2007; Damsma et 

al, 2007; Kettenberger et al, 2004). Due to the different space group and higher 

resolution of EC I, a new test set of reflections was generated. 
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8. CONCLUSIONS AND OUTLOOK 

The studies of this thesis have led to a more detailed understanding of RNA 

polymerase fidelity mechanisms. They revealed similarity and differences to DNA 

polymerase fidelity mechanisms. Taken together, NTP selectivity is likely governed 

by similar mechanisms in DNA and RNA polymerases, involving an induced-fit 

mechanism and a conformational change in the enzyme active center induced by an 

accurate base pairing of the NTP to the template base. We show that RNA 

polymerase II prevents erroneous transcription in vitro by combination of pre- and 

post-incorporation fidelity mechanisms (Fig. 27). Efficient mismatch formation is 

combined with impaired RNA extension, or efficient mismatch extension with 

inefficient mismatch formation beforehand and/or efficient mismatch removal by RNA 

cleavage afterwards during proofreading. The different strategies depend on the type 

of DNA●RNA mismatch. Furthermore, our reported mismatch-containing structures 

suggest three mechanisms of how misincorporation impairs RNA extension; (i) by 

disruption of a catalytically competent active site conformation by stable mismatch 

binding; (ii) by induction of an offline-state of the EC with frayed RNA 3’ nucleotides, 

which also gave unexpected insights into pausing; (iii) by facilitated backtracking and 

RNA cleavage. These results together with other biochemical and structural studies 

propose a model for RNA proofreading. First, a misincorporation event leads to 

distortion of the on-line pre-translocated state. Second, this distortion might lead to 

stabilization of a paused off-line state with a frayed nucleotide. Third, the polymerase 

might then backtrack by one step, positioning the RNA 3’ end into a proofreading 

site. Fourth, this forms the basis for dinucleotide cleavage. The resulting empty NTP 

binding site leads to re-accession of the online-state and to resumption of 

transcription. 
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In the future, the molecular basis of nucleotide selectivity may be analyzed with 

EC structures containing mismatched NTP substrates, although such structures are 

very difficult to obtain for RNA polymerase II (Brueckner et al, 2007), and also for 

single-subunit DNA polymerases (Batra et al, 2008). The closed RNA polymerase II 

active center may accommodate small template-NTP pyrimidine•pyrimidine 

mismatches, explaining the facilitated formation of T•U, T•C, and C•U mismatches 

(Fig. 7). Other misincorporations may however occur via an EC intermediate that 

lacks a DNA base in the templating site, as suggested by recent structures of a DNA 

polymerase with a mismatched NTP (Batra et al, 2008). Indeed, an empty templating 

site was observed in a recent RNA polymerase II EC intermediate structure 

(Brueckner & Cramer, 2008), and RNA polymerase II can misincorporate opposite an 

abasic template site (Damsma et al, 2007), and likely also opposite an empty 

templating site that results from a failure to translocate a bulky DNA lesion into the 

active site (Brueckner et al, 2007; Damsma et al, 2007). 

 Further questions concerning RNA polymerase fidelity remain unanswered. 

How much influence does TFIIS have on the fidelity-determining mechanisms 

observed in this work? How much would DNA●RNA mismatches influence RNA 

chain elongation at a position further upstream in the DNA-RNA hybrid, i.e. at 

positions -2, -3 or -4, and when would they stop to affect RNA elongation 

efficiencies? Can the model for RNA proofreading be confirmed in vitro? Would the 

reconstituted RNA polymerase II ECs with frayed nucleotides be subject to 

dinucleotide cleavage? Would other types of mismatches in the polymerase active 

center (position +1) directly lead to RNA fraying, instead of inducing fraying only after 

extension by one nucleotide (ECs III and IV)? We could gain further insides in 

mismatch-induced active site disruption and/or impaired RNA extension by trapping 

ECs with other types of mismatches in the active center and at different positions. 
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9. APPENDIX 

9.1 Unpublished RNA polymerase II EC structures 

Complete 12-subunit RNA polymerase II was co-crystallized with each of the 

following nucleic acid scaffolds. 

Scaffold FB-4-TA-x 

FB-3RNA+A:        5’-            UG CAU UUC 
                                           GAC CAG GCA    -3’ 
FB-4tem:          3’-                  TTA CTG GBC CGT ATT GAT GAA CTC GA  -5' 
FB-3ntem:         5’-                                   AA CTA CTT GAG CT  -3' 

Scaffold JS9-MM-GA-1-x 

JS-RNA9-MM-1-GA-x:5’-       UG CAU UUC 
                                      GAC CAG GCA     -3' 
JS-temG:          3’-             TTA CTG GBC CGG GCG CCT GTC CTC GA  -5' 
JS-12ntem:        5’-                               C GGA CAG GAG CT  -3' 

Scaffold JS9-GC-x 

JS-RNA9+C-x:      5’-       UG CAU UUC 
                                      GAC CAG GCC     -3' 
JS-temG:          3’-             TTA CTG GBC CGG GCG CCT GTC CTC GA  -5' 
JS-12ntem:        5’-                               C GGA CAG GAG CT  -3' 

Scaffold JS8-MM-GA-1-x 

JS-RNA8-MM1-GA-x:5’-           UG CAU UUC A 
                                           AC CAG GCA    -3' 
JS-temG:         3’-                  TTA CTG GBC CGG GCG CCT GTC CTC GA  -5'  
JS-12ntem:       5’-                                    C GGA CAG GAG CT  -3' 

Scaffold JS9-MM-TC-1-x 

JS-RNA9+C-x:     5’-            UG CAU UUC  
                                          GAC CAG GCC    -3’ 
FB-4tem:         3’-                  TTA CTG GBC CGT ATT GAT GAA CTC GA  -5' 
FB-3ntem:        5’-                                   AA CTA CTT GAG CT  -3' 

Scaffold JS8-AC-x 

JS-RNA8+C-x:     5’-           UG CAU UUC A 
                                           AC CAG GCC    -3' 
JS-temA:         3’-                  TTA CTG GBC CGA ACG CCT GTC CTC GA  -5' 
JS-12ntem:       5’-                                    C GGA CAG GAG CT  -3' 
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JS-AC mismatch bubble 

JS-RNA8+C-x:     5’-            UG CAU UUC A 
                                            AC CAG GCC    -3' 
JS-temAn-MMB:    3’-   CCG TCA TGA TCA TTA CTG GBC CGA ACG CCT GTC CTC GAA CC -5' 
JS-ntem-MMB:     5’-CC GGC AGT ACT AGT AAA CTA GTA TTG ATC GGA CAG GAG CTT -3' 

JS-AU mismatch bubble 

JS-RNA8+U-x:     5’-            UG CAU UUC A 
                                            AC CAG GCU    -3' 
JS-temAn-MMB:    3’-   CCG TCA TGA TCA TTA CTG GBC CGA ACG CCT GTC CTC GAA CC -5' 
JS-ntemN-MMB:    5’-CC GGC AGT ACT AGT AAT CTA GTA TTG ATC GGA CAG GAG CTT -3' 

Scaffold JS9-TA-2-x  

JS-RNA9-TA-2-x:  5’-            UG CAU UUC A  
                                            AC CAG GCA G    -3’ 
JS-2tem:         3’-                   TTA CTG GBC CGT CTT GAT GAA CTC GA  -5' 
JS-2ntem:        5’-                                     A CTA CTT GAG CT  -3' 

 

Despite high diffraction data quality, all RNA polymerase II EC structures crystallized 

with the above listed nucleic scaffolds were in mixed translocation states, defined by 

multiple bromine peaks in the anomalous maps and could therefore not be refined.  
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10. ABBREVIATIONS 

bp  Base pair 

CTD   C-terminal domain of Rpb1 of Pol II 

DNA   Deoxyribonucleic acid 

dNTP   2’ Deoxyribonucleoside triphosphate 

DPE   Downstream promoter element 

DTT   Dithiothreitol 

E. coli   Escherichia coli 

EC   Elongation complex 

EDTA   Ethylene diamine tetraacetic acid 

EM   Electron microscopy 

GTF   General transcription factor 

GTP   Guanosine triphosphate 

Hepes   4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

Inr   Initiator element 

IPTG   Isopropyl β-D-1-thiogalactopyranoside 

MALDI-TOF  Matrix-assisted laser desorption ionization with time-of-flight analysator 

mass spectrometry 

min  Minutes 

mRNA  Messenger RNA 

MWCO  Molecular weight cutoff 

NTP   Nucleotide triphosphate 

PDB   Protein data bank 

PEG Polyethylene glycol (number indicates average molecular weight in 

Da) 

PIC   Preinitiation complex 

RMSD  Root mean square deviation 
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RNA    Ribonucleic acid 

rNTP   Ribonucleoside triphosphate 

Rpb    Subunit of Pol II (=RNA polymerase B) 

S. cerevisiae   Saccharomyces cerevisiae 

TAF    TBP-associated factor 

TBP    TATA binding protein 

TCEP    Tris (2-carboxyethyl) phosphine 

TFII    Transcription factor of Pol II transcription 

Tris    Trishydroxymethylaminomethane 

T. thermophilus  Thermus thermophilus 
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