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Autotrophy in Groundwater Ecosystems 
 

Claudia Kellermann 

 

Abstract: The major role in global net CO2 fixation plays photosynthesis of green plants, 

algae and cyanobacteria, but other microorganisms are also important concerning autotrophy; 

i.e. autotrophic microorganisms can be found in most bacterial groups (Eubacteria) and there 

are even numerous representatives within the Archaea. CO2 fixation is not only one of the 

world’s most important biogeochemical processes and responsible for the buildup of organic 

compounds which are needed for biological functions (e.g. cell growth or nutrition of 

heterotrophic organisms); ultimately all ecosystems are based on inputs of carbon and energy 

provided by autotrophic organisms which can be found in almost all environments. While the 

importance of CO2 fixation on the surface is known, there is almost no information about 

autotrophic processes in the subsurface. The widespread opinion is that subsurface 

communities are dominated by heterotrophic microorganisms, but it is unlikely that all 

subsurface biomass depends on the limited amounts of organic carbon imported from the 

surface or on pollution dumping. Groundwater systems comply with all requirements for 

autotrophic growth processes (electron donors e.g. H2, S2O3
2- and electron acceptors e.g. NO3

-
, 

O2 are available as well as plenty of inorganic carbon), so autotrophic microorganisms could 

significantly contribute to the carbon flux in at least some of those systems. In summary, the 

existence and the role of chemolithoautotrophic CO2 fixation in the terrestrial subsurface is 

hardly known. 

To date, five CO2 fixation pathways are described, i.e. the Calvin-Benson-Bassham cycle 

(Calvin cycle), the reductive tricarboxylic acid cycle, the reductive acetyl CoA pathway, the 

3-hydroxypropionate cycle and the 3-hydroxypropionate/4-hydroxybutyrate CO2 fixation 

pathway, with the Calvin cycle being the most intensively studied and probably the most 

abundant one. A sixth fixation pathway was just recently discovered. 

Objective of this thesis was to prove the CO2 fixation potential within the microbial 

communities in different groundwater ecosystems by means of functional gene analysis 

(cbbL, cbbM and acl genes) and to link this potential with in situ autotrophic activities as 

evaluated by different isotope and fatty acid approaches (FISH-MAR and PLFA analysis). 

Furthermore enrichment cultures under obligate chemolithoautotrophic conditions were 

started to get an idea about the diversity of those communities.  



The detection of the cbb genes in a contaminated and a pristine aquifer proved the occurrence 

of CO2 fixation potential being present in the bacterial communities of those ecosystems. 

Concerning the tar-oil contaminated aquifer, the majority of all retrieved cbb sequences was 

closely related to the cbbL and cbbM sequences belonging to the genus Thiobacillus, 

indicating that this genus might be of importance in groundwater ecosystems. This hypothesis 

is further supported by the results retrieved in the investigation at the organically poor site, the 

Testfield Scheyern. Here, most cbbM sequences detected were also closely related to the cbb 

sequences of Thiobacillus ssp.. The successful labelling of bacterial cells deriving from the 

tar-oil contaminated aquifer via fluorescent in situ hybridization (FISH) indicated 

considerable bacterial activity in this aquifer, but the detection of radiolabeled cells failed. 
13C-labelled CaCO3 was exposed together with sterile sediment in the same aquifer. Cell 

counts suggested a successful colonization of the exposed sediments, but PFLA concentration 

was low. However, the incorporation of 13C-carbon into two of the detected fatty acids was a 

direct hint for bacterial CO2-uptake. Successful enrichment cultures out of both investigated 

aquifers proved the actual occurrence of autotrophs in those ecosystems. In total four new 

chemolithoautotrophic bacterial strains could be isolated, one of them, belonging to the genus 

Thiobacillus, was further characterized. It was an obligate chemolithoautotrophic strain, using 

the Calvin cycle for CO2 fixation. It was described as a new species, Thiobacillus thiophilus 

D24TN sp. nov..   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Autotrophie in Grundwasserökosystemen 
 

Claudia Kellermann 

 

Zusammenfassung: Den größten Anteil der globalen Netto-CO2-Fixierung macht die 

Photosynthese der grünen Pflanzen, Algen und Cyanobakterien aus, aber andere 

Mikroorganismen spielen in Bezug auf Autotrophie ebenfalls eine wichtige Rolle. Autotrophe 

Mikroorganismen können in fast allen Bakteriengruppen (Eubacteria) gefunden werden und 

auch innerhalb der Archaea sind einige autotrophe Vertreter bekannt. 

CO2-Fixierung ist nicht nur einer der der wichtigsten biogeochemischen Prozesse weltweit 

und verantwortlich für den Aufbau organischer Verbindungen, welche für biologische 

Funktionen benötigt werden (z.B. für Zellwachstum oder für die Ernährung heterotropher 

Organismen), letztendlich basieren alle Ökosysteme auf dem durch autotrophe Organismen 

geleisteten Eintrag organischer Kohlstoffverbindungen und Energie. Während die Wichtigkeit 

der CO2-Fixierung auf der Erdoberfläche anerkannt ist, ist über die Bedeutung autotropher 

Prozesse und ihre Rolle in Bezug auf Stoff- und Energieumsatz in unterirdischen Systemen 

fast nichts bekannt. Die weit verbreitete Meinung ist, dass unterirdische Gemeinschaften von 

heterotrophen Mikroorganismen dominiert werden, allerdings ist es unwahrscheinlich, dass 

die gesamte unterirdische Biomasse von den geringen Mengen organischen Kohlenstoffs, der 

von der Erdoberfläche eingetragen wird oder von Verschmutzungen stammt, abhängig ist. 

Grundwassersysteme bieten meist alle Voraussetzungen für autotrophes Wachstum 

(Elektronendonoren wie z.B. H2, S2O3
2- und auch Elektronenakzeptoren wie z.B. NO3

-, O2 

sind ebenso vorhanden wie ausreichend anorganischer Kohlenstoff), was bedeutet, dass 

Autotrophe zumindest in einigen solcher Systeme signifikant zum Kohlenstoffkreislauf 

beitragen könnten. Insgesamt ist aber über die Existenz und die Bedeutung 

chemolithoautotropher CO2-Fixierung in terrestrischen unterirdischen Systemen wenig 

bekannt. 

Bisher sind fünf verschiedene CO2-Fixierungswege bekannt, der Calvin-Zyklus, der reduktive 

Citrat-Zyklus, der reduktive Acetyl-CoA-Weg, der 3-Hydroxypropionat-Zyklus und der 3-

Hydroxypropionat/ 4-Hydroxybutyrat-Weg. Der Calvin-Zyklus ist nicht nur der von allen am 

besten untersuchte, sondern wahrscheinlich auch der am häufigsten vorkommende CO2-

Fixierungsweg.  Ein sechster CO2-Fixierungsweg wurde erst vor kurzem entdeckt. 

Ziel dieser Arbeit war es, das CO2-Fixierungspotential der mikrobiellen Gemeinschaften in 

verschiedenen Grundwasserökosystemen anhand funktioneller Genanalyse (cbbL, cbbM und 



acl Gene) nachzuweisen und dieses Potential mit tatsächlicher in situ autotropher Aktivität 

unter Verwendung verschiedener Methoden (FISH-MAR und PLFA-Analyse) zu verbinden. 

Anhand von Anreicherungskulturen unter obligat chemolithoautotrophen Bedingungen sollte 

ein Einblick in die Diversität dieser Gemeinschaften gewonnen werden. 

Durch den Nachweis der cbb Gene konnte das Vorhandensein des CO2-Fixierungspotentials 

sowohl in einem kontaminierten als auch in einem unkontaminierten Grundwasserleiter 

bewiesen werden. Die Mehrheit aller aus dem kontaminierten Aquifer erhaltenen cbb 

Sequenzen zeigte eine nahe Verwandtschaft zu cbbL und cbbM Sequenzen der Gattung 

Thiobacillus, was ein Hinweis darauf sein könnte, dass diese Gattung eine wichtige Rolle in 

Grundwasserökosystemen spielt. Diese These wird zusätzlich durch die 

Untersuchungsergebnisse des unkontaminierten Standorts unterstützt. Auch hier waren die 

meisten der erhaltenen cbbM Sequenzen nah verwandt zu den cbbM Sequenzen der Gattung 

Thiobacillus. 

Das erfolgreiche Markieren von Bakterienzellen aus dem kontaminierten Aquifer unter 

Verwendung von fluoreszierender in situ Hybridisierung (FISH) lässt auf eine hinreichende 

Aktivität der Mikroorganismen schließen, der Nachweis 14C-markierter Zellen war allerdings 

nicht möglich. 13C-markiertes Kalziumkarbonat wurde zusammen mit sterilem Sediment in 

dem gleichen Grundwasserleiter inkubiert. Zellzahlbestimmungen ließen darauf schließen, 

dass das Sediment erfolgreich von Bakterien besiedelt wurde, trotzdem konnten nur wenige 

Fettsäuren nachgewiesen werden. Allerdings war der Einbau von 13C-markiertem Kohlenstoff 

in zwei der gemessenen Fettsäuren ein direkter Hinweis auf bakterielle CO2-Fixierung. Das 

tatsächliche Vorkommen Autotropher in den untersuchten Grundwasserleitern konnte anhand 

erfolgreicher Anreicherungen bewiesen werden. Insgesamt konnten aus den Anreicherungen 

vier neue, bisher unbekannte chemolithoautotrophe Bakterienstämme isoliert werden, einer 

davon, zur Gattung der Thiobacillen gehörend, wurde genauer charakterisiert. Er wurde als 

neue Thiobacillus-Art beschrieben, Thiobacillus thiophilus D24TNT sp. nov., ein obligat 

chemolithoautotropher, über den Calvin-Zyklus CO2-fixierender Stamm.  
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1. General introduction 
 

1.1 Autotrophy 

CO2 fixation is without a doubt one of the most important biogeochemical processes 

worldwide. Ultimately all ecosystems depend directly or indirectly on organic carbon 

provided by autotrophic CO2 fixation. This way, every year about 120 billion tons of 

inorganic carbon are transferred into organic compounds (Kinkle and Kane, 2000; Hügler, 

2003; Thauer, 2007), most of it by oxygenic photosynthesis of green plants, algae and 

cyanobacteria. However, chemolithoautotrophic bacteria and Archaea also contribute to 

global CO2 fixation. Compared to eukaryotic phototrophs, which exhibit a relatively similar 

photosynthesis machinery, chemolithoautotrophs distribute across the archaeal and bacterial 

domains and show a high phylogenetic, metabolic and ecological diversity (Kinkle and Kane, 

2000). These microorganisms, including sulfide-, sulfur-, metal-, ammonium-, and nitrite-

oxidizing and aerobic hydrogen- and CO-oxidizing bacteria gain their energy for CO2 fixation 

from the oxidation of inorganic substances instead from light (Tolli and King, 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Autotrophic processes 

 

The chemolithoautotrophs may be divided into two groups, i.e. (i) the obligate 

chemolithoautotrophs, which can use only inorganic carbon and inorganic compounds as 

carbon and electron donors for growth, and (ii) the facultative chemolithoautotrophs, which 

can, besides inorganic carbon and inorganic compounds, use organic compounds as carbon 
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and/or energy sources (Kusian and Bowien, 1997; Shively et al., 1998; Badger and Bek, 

2008). For a long time, chemolithoautotrophic microorganisms have been considered 

relatively unimportant with respect to the global carbon cycle (Fredrickson et al., 1989; 

Kinkle and Kane, 2000). Nowadays it is known that chemolithotrophs may play a major role 

in elemental cycles (Fenchel and Finlay, 1995; McCollom and Amend, 2005). Bacterial 

chemolithoautotrophic communities have been investigated in various environments, e.g. 

Tolli and King (2005) found a high diversity among terrestrial facultative lithotrophs in pine 

forest and agroecosystem soils. Elsaied and Naganuma (2001) investigated the phylogenetic 

diversity concerning the cbbL genes at deep-sea seeps and hydrothermal vents, Selesi et al. 

(2005) dealt with the diversity of cbbL types in agricultural soil bacteria; in both studies the 

detected phylogenetic diversity of the RubisCO genes was quite high.   

 

1.2 CO2 fixation pathways  

There are six CO2 fixation pathways known so far, the sixth one was only recently discovered 

in the hyperthermophilic archaeum Ignicoccus hospitalis (Thauer, 2007; Huber et al., 2008). 

The distribution of the pathways within different groups of organisms is not only depending 

on the phylogeny of the individual autotrophic organisms, but also determined by different 

characteristics, e.g. the demand of energy, the availability of reducing compounds, the 

requirements for metals, usage of coenzymes and the oxygen sensitivity of enzymes (Berg et 

al., 2007). 

 

The reductive tricarboxylic acid cycle (Reductive TCA cycle) 

The reductive Tricarboxylic Acid cycle was already proposed in 1966 by Evans et al. (Evans 

et al., 1966), but it took until 1990 for the details of this cycle to be worked out (Thauer, 

2007). It basically is the citric acid cycle in reverse, a cycle which is used in heterotrophic 

metabolisms to assimilate acetyl-CoA. To enable the reversed cycle, three enzymes, 

catalyzing irreversible reactions in the citric acid cycle, have to be replaced. The ATP citrate 

lyase, which is one of the key enzymes of the reductive TCA cycle, catalyzing the ATP-

dependent cleavage of citrate in oxalacetate and acetyl-CoA, replaces the citrate synthase. 

Another key enzyme of the reductive TCA cycle, the 2-oxoglutarate: ferredoxin 

oxidoreductase, which catalyzes the reductive carboxylation of succinyl-Coa to α-

ketoglutarate, replaces the 2-oxoglutarate dehydrogenase. The third enzyme of the citric acid 

cycle which is replaced is the succinate dehydrogenase; instead the fumarate reductase can be 

found, which is reducing fumarate to succinate (Fig. 1.2). The presence of these enzymes 
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active in autotrophically grown bacteria and Archaea is indicative of a functioning reductive 

TCA cycle (Hügler et al., 2005). As this cycle involves enzymes that are sensitive to oxygen, 

it only occurs in anaerobes or microaerophiles. So far, it has been detected in 

Hydrogenobacter, Aquifex, some sulfate-reducers and several thermophilic archaeal strains 

(Thauer, 2007) and is the only confirmed autotrophic pathway in ε-proteobacteria (Hügler et 

al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Reductive tricarboxylic acid cycle (reductive TCA cycle). The three key enzymes are (1) 

ATP citrate lyase, (2) 2-oxoglutarate:ferredoxin oxidoreductase and (3) fumarate reductase. 
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The reductive acetyl CoA pathway 

This pathway was discovered at the beginning of the 1980s by Wood et al. (1986). In this 

pathway one CO2 molecule is reduced to CO and one to methanol, subsequently forming 

acetyl-CoA from those (Wood et al., 1986; Kinkle and Kane, 2000; Thauer, 2007). The CO2 

fixing key enzyme of this pathway is the CO dehydrogenase/acetyl-CoA synthase complex 

(Fig. 1.3). The reductive Acetyl CoA pathway is the only non-cyclic CO2 fixation pathway 

known so far. As the CO dehydrogenase/acetyl-CoA synthase is very oxygen-sensitive it can 

only be found in strict anaerobes (Thauer, 2007). In those strict anaerobic bacteria CO2 plays 

a dual role in metabolism, it can be used as an electron acceptor but it can also serve as the 

sole cell carbon source (Fuchs, 1986). The pathway can be found in most acetogenic and 

sulfate-reducing bacteria known so far, in autotrophic microorganisms that produce acetate 

and hydrogen sulfide respectively and in several archaeal autotrophs (Kinkle and Kane, 

2000). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Reductive acetyl-CoA pathway. The key enzyme is the (*) CO dehydrogenase 

(CODH)/acetyl-CoA synthase complex 
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The 3-hydroxypropionate cycle 

The 3-Hydroxypropionate cycle is an unidirectional pathway, reducing acetyl-CoA via 3-

hydroxypropionate and propionyl-CoA to succinyl-CoA (Hügler et al., 2003; Ishii et al., 

2004). The formation of 3-hydroxypropionate is characteristic for the cycle and this 

metabolite is excreted even when cell growth becomes limited (Holo, 1989; Alber and Fuchs, 

2002). The cycle was originally discovered in the phototrophic bacterium Chloroflexus 

aurantiacus by Holo and Sirevåg (1986) and later was additionally detected in some 

chemotrophic Archaea (Alber and Fuchs, 2002; Hügler et al., 2003; Berg et al., 2007). The 

key enzymes are malonyl-CoA reductase and propionyl-CoA synthase (Fig. 1.4) (Hügler et 

al., 2003). Interestingly, none of this cycle’s enzymes is inherently oxygen sensitive (Thauer, 

2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: 3-hydroxypropionate cycle. The two key enzymes are (1) malonyl-CoA reductase and (2) 

propionyl-CoA synthase. 
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The 3-hydroxypropionate/ 4-hydroxybutyrate pathway 

This CO2 fixation pathway was described by Berg et al. (2007). It was first found to be 

operative in Metallosphaera sedula, microorganisms growing on H2 and O2 as the energy 

source (Thauer, 2007). Since then, the key genes of the pathway were also found in 

Sulfolobus, Archaeoglobus and Cenarchaeum species. It has some intermediates in common 

with the 3-Hydroxypropionate cycle, also forming succinyl-CoA from acetate and two CO2 

molecules via 3-hydroxypropionate. From succinyl-CoA on, the two pathways show 

considerable differences (Thauer, 2007).  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

Figure 1.5: 3-hydroxypropionate/4-hydroxybutyrate pathway. The two enzymes responsible for CO2 

fixation are (1) acetyl-CoA carboxylase and (2) propionyl-CoA carboxylase. 
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The dicarboxylate/4-hydroxybutyrate cycle 

This novel CO2 fixation cycle was discovered in Ignicoccus hospitalis, an anaerobic, obligate 

autotrophic, hyperthermophilic archaeum and so far seems to be restricted to a small number 

of Crenarchaeota (Huber et al., 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Proposed dicarboxylate/4-hydroxybutyrate cycle. The two enzymes responsible for CO2 

fixation are (1) pyruvate synthase and (2) phosphoenolpyruvate carboxylase. 
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Calvin-Benson-Bassham cycle 

Of all CO2 fixation pathways, the Calvin cycle seems to be the most abundant and important 

one (Tabita, 1999; Tolli and King, 2005; Badger and Bek, 2008). The cycle is characterized 

by two unique enzymatic activities: phosphoribulokinase and ribulose 1,5-bisphosphate 

carboxylase/oxygenase (RubisCO), the most abundant enzyme in the world (Ellis, 1979). In 

the Calvin cycle RubisCO is the only enzyme responsible for the actual CO2 fixation. It 

incorporates a molecule of CO2 into ribulose 1,5-bisphosphate, forming two molecules of 3-

phosphoglycerate and leading eventually to fructose-6-phosphate, which can be assimilated 

into biomass. The other enzymes of the cycle serve ribulose 1,5-bisphosphate regeneration 

(Fig. 1.6) (Shively et al., 1998; Kinkle and Kane, 2000; Atomi, 2002).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: Calvin-Benson-Bassham cycle (Calvin cycle). The two key enzymes are (1) ribulose 1,5-

bisphosphate carboxylase/ oxygenase (RubisCO) and (2) phosphoribulokinase. 

  

It can be distinguished between four forms of RubisCO, which differ in structure, catalytic 

property and oxygen sensitivity (Tabita, 1988). Form I is the dominant type of RubisCO 

(cbbL), occurring in plants as well as in photo- and chemoautotrophic bacteria (Atomi, 2002; 

Selesi et al., 2007). It consists of eight large and eight small subunits, encoding the large 

subunit of form I RubisCO. With a size of 1400 bp it is large enough to be used for significant 

phylogenetic analyses, therefore being ideally qualified to be used as functional marker 

(Watson and Tabita, 1997). There is a discrepancy between phylogenies based on the cbbL 

gene and those based on other genes. According to Delwiche and Palmer (1996) it is very 
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likely that several events of lateral gene transfer and/or gene duplications and differential loss 

are responsible for this; a good example for lateral gene transfer is the presence of the green-

like RubisCO in Rhodobacter capsulatus, whereas R. sphaeroides has a red-like protein. In 

addition, both species contain a closely related form II RubisCO (Shively et al., 1998). 

Another explanation for this discrepancy is the possession of two RubisCO operons in 

ancestral proteobacteria and cyanobacteria (Delwiche and Palmer, 1996). Form I can be 

divided into two groups: green-like and red-like. The green-like group can be further 

subdivided into Type IA, present in α-, β- and γ-proteobacteria and cyanobacteria and into 

Type IB, found in cyanobacteria and in plastids of plants and green algae. According to 

Badger and Bek (2008), Type IA enzymes are even further divided into two distinct types, 

IAc and IAq, based on distinct types of small subunits and gene arrangements. Type IB 

enzymes can be subclassified into IB and IBc to indicate the Type IBc in cyanobacteria which 

is associated with carboxysomes. The red-like group can also be divided into two groups. One 

detected in various chemoautotrophic bacteria and some photoautotrophic proteobacteria 

(Type IC), the other one present in marine non-green algae (Type ID) (Shively et al., 1998; 

Horken and Tabita, 1999). Form II RubisCO has a comparable simple structure; it consists of 

only large subunits. It has poor catalytic characteristics, only functioning well at low oxygen 

and high CO2 concentrations, conditions that reflect the ancient earth atmosphere. Those 

characteristics suggest that the more complex form I derives from form II (Watson and Tabita, 

1997; Shively et al., 1998). Form II occurs in some chemolithotrophs and phototrophs (Tolli 

and King, 2005). Some bacteria possess form I as well as form II e.g. Thiobacillus 

denitrificans. Form III can be found in Archaea, containing catalytic active amino acid 

residue, that are necessary for carboxylation as well as oxygenation (Horken and Tabita, 

1999; Selesi et al., 2005). Form IV has been discovered in Bacillus subtilis, Chlorobium 

tepidum and Archaeoglobus fulgidus (Selesi et al., 2005). It is considered not to be involved 

in the Calvin cycle due to the lack of several of the required amino acid residues for the 

catalytic activity of RubisCO (Hanson and Tabita, 2001) and is therefore termed ‘RubisCO-

like’ (Badger and Bek, 2008). The Calvin cycle is energetically very expensive. In total, it 

expends nine molecules of ATP and six of NADH for the formation of one molecule of triose 

phosphate from three molecules of CO2.  
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1.3 Groundwater  

As the investigations introduced in this thesis mainly concentrates on microorganisms living 

in groundwater and aquifers, it may help the reader to get a brief definition of these two 

terms. What exactly is groundwater? Following the traditional definition of hydrologists and 

hydrogeologists, groundwater is the subsurface water contained in the zone of saturation that 

can move freely and can easily be extracted (Pfannkuch, 1969; Freeze and Cherry, 1979). 

From the microbiologist’s point of view, the definition often includes all the subsurface water 

found in the unsaturated sediments below soil horizons and in the zone of saturation (Madsen 

and Ghiorse, 1993). Groundwater ecologists generally refer to water in the saturated zone, 

however, including e.g. water existing within the superficial riverbed sediments (Rouch and 

Danielopol, 1997). The geological unit (e.g. porous sediments, karstic or granitic rock) filled 

or partly filled with groundwater we call an aquifer. More important than those definitions is 

the fact that groundwater constitutes the largest reservoir of freshwater in the world, 

accounting for over 97% of all freshwater available on earth (excluding glaciers and ice caps) 

and is an important component of the global hydrological cycle (Gibert, 2001; Danielopol et 

al., 2003). With beginning of civilization humans started to exploit groundwater resources, 

but massive resource usage was mainly restricted to the last 50 years (Foster and Chilton, 

2003). For a long time groundwater was thought to be naturally protected from pollution and 

an inexhaustible resource. Due to this wrongful assumption many aquifers were depleted 

and/or polluted with toxic chemicals, impossible to regenerate their good status in the near 

future. For a long time, only little information was available on organisms and processes in 

groundwater ecosystems, but due to those soaring problems an increasing number of studies 

investigating the subsurface biological aspects was initiated (Ghiorse and Wilson, 1988; 

Ghiorse, 1997; Danielopol et al., 2003). However, compared to aquatic and near-surface 

terrestrial environments, our knowledge on the ecology of the subsurface is still a relatively 

recent development (Chandler et al., 1998).  

 

1.4 Microorganisms in groundwater ecosystems 

The very first general idea of the subsurface was that from a mainly sterile or only scarcely 

inhabited one (Fredrickson and Onstott, 1996). Early investigators observed low bacterial 

numbers in soils decreasing with depth, suggesting sparse microbial populations in subsurface 

environments and their activity being restricted to the uppermost layer of the earth’s crust 

(Phelps et al., 1989). Nowadays it is estimated that life can exist to a depth of at least 3.5 km. 

Colonization limits are temperature, water availability, extremely acidic or alkaline pH and to 
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some extent pore size of sediment and rock. Considering the huge volumes of subsurface 

sediment and rock that might be colonized, the extent of subsurface biomass could potentially 

approach or exceed levels observed on the surface (Krumholz, 2000; Kieft et al., 2005; 

Griebler and Lueders, 2008). Whitman et al. (1998) stated as a minimum estimate, that the 

biomass of groundwater dwelling prokaryotes in the unconsolidated subsurface domain 

accounts for about 6-40% of the earth’s total microbial biomass. Bacterial cell numbers vary 

in different groundwater ecosystems, from as low as 102 to 106 cells per cm3 in water and 

between 104 and 108 cells per cm3 of sediment (Griebler and Lueders, 2008). Subsurface 

microorganisms and their influence on geochemical transformations have mostly been 

neglected until it was shown that those organisms are active and relevant for biochemical 

processes (Fredrickson et al., 1989; Bachofen et al., 1998; Griebler and Lueders, 2008). They 

are involved in weathering and formation of minerals and store important quantities of 

carbon, nitrogen and phosphorus in their biomass, therefore influencing groundwater 

chemistry and being responsible for the major turnover of energy and matter in the subsurface 

(Chapelle et al., 1987; Fliermans and Balkwill, 1989; Phelps et al., 1989; Chapelle and 

Lovley, 1990; Phelps et al., 1994; Danielopol et al., 2003). 

 

1.5 Autotrophic microorganisms in groundwater ecosystems  

Coming back to autotrophy in subsurface ecosystems, for a long time, subsurface 

communities have thought to be exclusively heterotrophic, dependent on organic matter once 

deposited with the formation sediments or on organic matter that continuously is imported 

from the surface. Organisms were therefore suggested to exist mostly in a kind of starvation-

survival mode in these typically oligotrophic environments (Kinkle and Kane, 2000; 

Krumholz, 2000; Morita, 2000). But even though most pristine groundwater ecosystems are 

oligotrophic with no or only very little organic carbon available, they most often constitute all 

necessary conditions for chemolithoautotrophic growth, i.e. electron donors as well as 

electron acceptors are available, together with plenty of inorganic carbon (Labrenz et al., 

2005). By increasing the carbon content in those systems, they even can support heterotrophic 

bacteria with organic compounds (Fredrickson et al., 1989; McCollom and Amend, 2005). 

Over the last years interest in subsurface chemolithoautotrophic communities increased and to 

date there exist quite a few studies concerning autotrophic microorganisms in different types 

of groundwater ecosystems, highlighting the occurrence of autotrophic methanogens, 

acetogens, nitrifiers and sulfur-oxidizers among others (Fredrickson et al., 1989; Stevens and 

McKinley, 1995; Pedersen, 1997; Kotelnikova and Pedersen, 1998; Krumholz, 2000; 
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Chapelle et al., 2002). Also in organically contaminated aquifers autotrophic microorganisms 

may be suggested to play a significant role, having some advantages over chemotrophs. 

Organically polluted aquifers often are overloaded with complex mixtures of persistent 

organic compounds. Those compounds, if not toxic, are non degradable for most 

microorganisms, leaving them in the same nutrient-poor situation as microorganisms in 

pristine aquifers (Alfreider et al., 2003).   
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1.6 Aim of this thesis 

Most biogeochemical transformations in groundwater ecosystems are mediated by bacteria. 

The widespread opinion is that subsurface bacterial communities are dominated by 

heterotrophic microorganisms. Surveys of the abundance, activity and diversity of 

heterotrophs exist, but there is still only little knowledge about autotrophic processes in the 

subsurface. 

The aim of the present thesis is to gain new insights into the role of microbial primary 

production in different subsurface systems, focussing on the following questions: 

 

- Can CO2 fixation potential in pristine and contaminated aquifers be detected?  

- How diverse are those autotrophic communities? 

- Can CO2 fixation potential be connected with actual autotrophic activity? 

 

The detection of CO2 fixation potential in groundwater and aquifer sediment samples mainly 

concentrates on the analysis of functional marker genes encoding for key enzymes of the 

Calvin cycle and the reductive Tricarboxylic Acid cycle. Besides this, microorganisms have 

been enriched and isolated under chemolithoautotrophic conditions in artificial groundwater 

medium. A new chemolithoautotrophic nitrate-reducing and thiosulfate-oxidizing bacterium, 

Thiobacillus thiophilus D24TNT sp. nov., could be described. Bacterial CO2 uptake was 

measured by in situ 13C incubation and incorporation of 13C-label into the phospholipid fatty 

acids (PLFAs) and by fluorescence in situ hybridization combined with microautoradiography 

(FISH-MAR).  
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2. Thiobacillus thiophilus D24TNT sp. nov. , a chemolithoautotrophic, 

thiosulfate-oxidizing bacterium isolated from contaminated aquifer 

sediments 
 
2.1 Introduction 

CO2 fixation is one of the world’s most important biogeochemical processes. While the 

importance of CO2 fixation on the terrestrial surface is known, there is little information about 

autotrophic processes in the subsurface (Kinkle and Kane, 2000). Most biogeochemical 

transformations in groundwater ecosystems are mediated by bacteria and the subsurface does 

comply with all requirements for chemolithoautotrophic processes. At numerous sites electron 

donors (e.g. NH4
+, HS-, H2, S2O3

2-) and electron acceptors (e.g. Fe(III), Mn(IV), NO3
-, O2) are 

available in appropriate combination and sufficient amounts together with plenty of inorganic 

carbon (Madsen and Ghiorse, 1993; Labrenz et al., 2005). When looking at the organic 

carbon in groundwater ecosystems, two extremes are often met, either pristine systems are 

depleted in dissolved organic carbon (DOC) or polluted aquifers are overloaded with complex 

mixtures of  organic compounds sometimes toxic and degradable only by individual 

microorganisms (Alfreider et al., 2003). Both situations may support argumentation towards a 

significant role of chemolithoautotrophic members in the microbial community. It may be the 

limited availability of DOC in the first case, and the necessity to get rid of electrons in the 

latter case. 

In the course of field studies on the importance of autotrophic microorganisms in groundwater 

ecosystems a new thiosulfate-oxidizing strain was isolated under chemolithoautotrophic 

conditions from a tar oil contaminated aquifer. This strain belongs to the genus Thiobacillus 

within the β-Proteobacteria and is phylogenetically most closely related to Thiobacillus 

denitrificans (97.6% sequence similarity). 
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2.2 Material and Methods 

2.2.1 Sampling site and sediment sample collection 

The sediments from the quaternary homogenous sandy aquifer were collected during a well 

drilling campaign in June 2005. The aquifer is situated on a former gasworks site in the river 

Rhine valley in Duesseldorf-Flingern, Germany. Here, during the first half of the 20th century 

large amounts of tar oil phase have been released into the subsurface resulting in a 

contaminant plume with BTEX (Benzene, Toluene, Ethylbenzene, and Xylene isomers) 

concentrations >100 mg L-1 and PAH (polycyclic aromatic hydrocarbon) concentrations >10 

mg L-1. Since 1996 the major part of the oil phases in soil and groundwater has been removed 

due to several remediation activities. Residual BTEX concentrations are still at about 20-50 

mg L-1 in the plume centre, while the average PAH concentrations are still about 10 mg L-1. 

Further detail concerning the field site can be found with Anneser et al. (2008). Strain 

D24TNT was isolated from anoxic sediment originating 11.2 m below soil horizon and 4.9 m 

below groundwater table. To protect the samples from contact with oxygen, sediment liners 

were removed from the borehole under argon atmosphere and put into a box flushed with 

argon gas for further processing. Sediment subsamples were then taken with an autoclaved 

spoon, immediately transferred into sterile Schott flasks filled with anoxic groundwater from 

the aquifer and stored at 4°C in darkness.  

 

2.2.2 Enrichment conditions 

Enrichment cultures for chemolithoautotrophic growth were prepared using diluted Widdel 

freshwater medium (Widdel and Bak, 1992) (dilution 1:10; pH 7.3, anoxic), with sodium 

thiosulfate (10 mM) as electron donor and sodium nitrate (10 mM) as electron acceptor (both, 

nitrate (Anneser et al., 2008) as well as thiosulfate (Einsiedl, unpublished data) could be 

detected in sufficient amounts in the aquifer). The redox indicator resazurin (1 mg L-1) was 

used to confirm anoxic conditions during incubation. 10 g sediment (wet-weight) was filled 

into 120 mL serum bottles containing 50 mL enrichment medium. The headspace was 

replaced by N2/CO2 gas (80:20 v/v) and bottles were sealed with butyl stoppers (Ochs). 

Primary enrichment cultures were incubated at 16°C (in situ aquifer temperature) in the dark 

for 3-4 months and transferred to fresh medium when visibly turbid. For purification of the 

most abundant cell type in the enrichment culture two dilution series at appropriate dilutions 

(highest dilution 10-9; enrichment culture cell abundance was 1.4*108) under the same 

culturing conditions were performed.  
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2.2.3 Purity assessment 

To confirm its purity, strain D24TNT was checked by phase-contrast microscopy. Pure 

cultures were frequently transferred every 2-3 weeks; cell growth was controlled by 

measuring optical density at 580 nm (OD580; Varian), occasionally cell counts and microscopy 

(Zeiss). 

 

2.2.3.1 Cell morphology  

To determine cell size and shape D24TNT was observed at 1000-fold magnification and 

transmission electron micrographs were taken. For the electron micrographs 200 mL of a 

culture grown for a week were centrifuged. After transfer to a plastic capsule, the pellet was 

covered with 2.5% glutaraldehyde in cacodylat buffer (Science Services). After three washing 

steps with cacodylat buffer (each 20 minutes), the pellet was incubated in a chrome osmium 

acid mixture as a second fixation step. The mixture contained one part buffer solution (100 

mL 5% aqueous K2Cr207 solution set to pH 7.2 with 12 mL 2.5 n KOH), one part salt solution 

(3.4% NaCl) and two parts 2% OsO4 solution. After three times rinsing with double distilled 

water five dehydration steps (30%, 50%, 70%, 90% and 96% ethanol; each 15 to 20 minutes) 

followed. First a 1:1 mixture of EPON 812 solution (Shell Chemical Corp) and 

propylenoxyde and after incubation for 1 hour, pure Epon solution was added. After 12 hours 

the EPON was replaced by fresh EPON solution, followed by the polymerisation step (at 

60°C for 24-48 hours). The ultrathin sections (60-70 nm), cut in an ultramicrotome (Reichert-

Jung), were covered for contrastation with 0.5% uranylacetate and 3% leadcitrate and 

afterwards investigated by transmission electron microscopy (EM 10 CR; Zeiss). 

 
 
2.2.3.2 Growth characteristics 

Unless otherwise described, routine cultivation and growth tests were performed in 120 mL 

serum bottles containing 50-60 mL Widdel freshwater medium (dilution 1:2, pH 7.3, oxic) 

with sodium thiosulfate (10 mM) as electron donor and sodium nitrate (10 mM) or oxygen as 

electron acceptor in at least duplicate incubations. Strain D24TNT was isolated under anoxic 

conditions; additionally it was tested for the ability of aerobic growth. Therefore the same 

medium as described above but with oxygen as electron acceptor instead of nitrate was used. 

Growth tests on agar plates were performed, under oxic as well as under anoxic conditions. 

Agar plates containing different media were used: the usual D24TN medium, M832 

(Thiobacillus denitrificans medium; published by German Collection of Microorganisms and 

Cell Cultures GmbH) and a standard nutrient medium (meat extract and peptone). To test if 
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strain D24TNT was able to grow in a medium with higher salt concentrations, a 1:2 dilution 

instead of a 1:10 dilution of the Widdel freshwater medium was used. To check if the strain is 

an obligate or a facultative chemolithoautotroph, chemoorganoheterotrophic growth was 

tested in complex medium (nutrient broth) and Widdel freshwater medium (without 

thiosulfate as electron source) supplemented with either glucose (10 mM), fructose (10 mM), 

sodium acetate (10 mM) or formate (10 mM) under aerobic conditions. A similar test series 

was run to test for the capacity of chemolithoheterotrophic growth under aerobic conditions 

with thiosulfate (10 mM) as electron source. Here, growth was monitored via optical density 

measurements. Additionally in case of sodium acetate consumption growth was followed by 

means of ion chromatography (DX-100 Ion Chroamtograph; Dionex).  

Temperature range and optimum were determined via growth experiments at different 

temperatures ranging from -2°C to 37°C. The pH range and the optimal pH for growth were 

determined checking 13 different pH values ranging from 6.0 to 8.9. The initial medium pH 

was set using 1 M HCl or 0.5 M Na2CO3. Since D24TNT continuously lowered the pH during 

growth, pH in the medium had to be adjusted every second day. Growth rates at different pH 

values were determined by measuring optical density at 580 nm (OD580; Varian). The ability 

of D24TNT to utilize different electron donors was tested applying H2 (30 mL H2 in 

headspace of serum bottle), NH4
+ (5 mM), S2- (5 mM), FeS (3 mM), S4O6

2- (10 mM) and S0 

(0.5 g L-1) using oxygen and/ or nitrate (5 mM) as electron acceptor. The utilization of 

electron acceptors alternative to oxygen and nitrate, was investigated testing SO4
2- (5 mM) 

and Fe(III) (ferrihydrite 40 mM). D24TNT was further tested for its ability to grow with 

different salt concentrations (0.5%, 1%, 2%, 3%, 4%, 5% and 8% NaCl (w/v)). Gram staining 

was performed using a gram-staining Kit from Sigma-Aldrich according to the manufacturer’s 

instructions, with Bacillus subtilis and Pseudomonas putida strain F1 as positive and negative 

controls, respectively. Spore formation was tested applying pasteurization. Therefore cultures 

were heated 10 min at 80°C, transferred in fresh medium and incubated at 30°C for several 

weeks. Catalase activity was determined placing a 3% hydrogen peroxide solution on a cell 

pellet of a freshly grown culture. For testing oxidase activity the oxidase test of Fluka 

(Fluka/Sigma Aldrich) was performed according to the manufacturer’s instructions.   

 
2.2.3.3 G + C content determination 

Determination of the G + C content was performed at the German Collection of 

Microorganisms and Cell Cultures (DSMZ). It was calculated from the ratio of 

deoxyguanosine (Badger and Bek, 2008) and thymidine (dT) according to the method 

described by Mesbah et al. (1989) by means of HPLC analysis (Shimadzu).  
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2.2.3.4 DNA-DNA hybridization 

To determine the genomic relatedness between strain D24TNT and its closest relative 

Thiobacillus denitrificans, DNA-DNA hybridization was performed. Therefore from each of 

the two species 3 g cell material was produced, isolated by centrifugation and resuspended in 

isopropanol/ H2Odest 1:1 (v/v). All other steps were carried out by the DSMZ as described by 

Huß et al. (1983) and De Ley et al. (1970), with the modifications of Cashion et al. (1977).  

 
2.2.3.5 16S rDNA analysis 

Extraction of genomic DNA from liquid cultures (50 mL) was performed using a modified 

protocol from Lueders et al. (2004) and Gabor et al. (2003). PCR components (Fermentas) 

consisted of 5 µL 10x buffer, 3 µL 25 mM MgCl2, 0.5 µL each deoxynucleoside triphosphate 

at 10 mM, 0.5 µL bovine serum albumin (0.25 mg mL-1), 0.5 µL each primer at 50 µM 

(MWG), 1 µL template DNA, 0.2 µL (0.2 units) Taq Polymerase and 38.8 µL GIBCO™ 

Water (Invitrogen). PCR was performed in an Eppendorf Mastercycler (Eppendorf) in a total 

volume of 50 µL per reaction. For amplification of the 16S rRNA gene the universal 16S 

primer 27-F (5’-AGAGTTTGATCCTGGCTCAG-3’) and 1492-R (5’-CGGYTACCTTGTTA 

CGACTT-3’) (Weisburg et al., 1991) were used. Cycling parameters were as follows: an 

initial denaturation for 90 s at 94°C followed by 30 cycles of 30 s at 94°C, 30 s at 52°C and 

90 s at 70°C, and a terminal extension for 5 min at 70°C. Amplification products were 

analyzed electrophoretically on a 2% agarose gel to ensure correct size (16S rRNA 1.4 kb). 

PCR products were purified using the MinElute PCR Purification Kit (Qiagen) according to 

the manufacturer’s instructions. For sequencing the Big DyeTM Terminator labelling kit 

(Applera) with an ABI PRISMTM 3730 DNA analyser (Applied Biosystems) was used. 

Sequence data were analysed with the ARB software package (Ludwig et al., 2004). 

Phylogenetic trees were calculated by maximum-likelihood (Olsen et al., 1994) and 

neighbour-joining (Saitou and Nei, 1987) analysis.  

 

2.2.3.6 CO2 fixation via the Calvin-Benson-Bassham cycle (Calvin cycle) 

Since the Calvin cycle is the most prominent CO2 fixation pathway in aerobes and facultative 

anaerobes and due to its close relatedness to Thiobacillus denitrificans, D24TNT was tested 

for the corresponding marker genes, i.e. the cbb genes, encoding ribulose 1,5-bisphosphate 

carboxylase/oxygenase (RubisCO), the key enzyme of the Calvin cycle. The primer sets for 

form I RubisCO (cbbLG and cbbLR) cbbLG1-F (5’-GGCAACGTGTTCGGSTTCAA-3’) and 

cbbLG1-G (5’-TTGATCTCTTTCCACGTTTCC-3’), cbbLR1-F (5’-AAGGAYGACGAGAA 



2. Thiobacillus thiophilus D24TNT sp. nov.                                        Material and Methods 

24 

CATC-3’) and cbbLR1-R (5’-TCGGTCGGSGTGTAGTTGAA-3’)  (Selesi et al., 2005) and 

the primer set for form II RubisCO (cbbM) cbbM-f (5’-GGCACCATCATC AAGCCCAAG-

3’) and cbbM-r (5’-TCTTGCCGTAGCCCATGGTGC-3’) (Alfreider et al., 2003) were used 

to amplify the RubisCO genes, applying following cycling parameters: an initial denaturation 

for 4 min at 94°C followed by 32 cycles of 1 min at 94°C, 1 min at 62°C (cbbLG) or 57°C 

(cbbM) and 1 min at 70°C, concluding with a 10 min extension at 70°C. Amplification 

products were analyzed electrophoretically on a 2% agarose gel to ensure correct size (cbbLG 

1.1 kp, cbbLR 0.8 kb, cbbM 0.5 kb).  PCR products were processed for sequencing the same 

way as described before for the 16S PCR product. Sequence data were analysed with the ARB 

software package (Ludwig et al., 2004) as described before. Phylogenetic trees were also 

calculated by maximum-likelihood (Olsen et al., 1994) and neighbour-joining (Saitou and 

Nei, 1987) analysis. To investigate whether D24TNT is actually using the Calvin cycle for 

CO2 fixation, RT-PCR was used to detect transcription of the cbb genes. For total RNA 

isolation 50 mL densely aerobically and anaerobically grown culture was centrifuged (4.000 

rpm; 15 min). Preparation was performed as described by Schmitt et al. (1990). To obtain 

pure RNA without DNA, 25 µL DNA/RNA extract were digested with DNaseI (20 U; 

Fermentas) at 37°C for 45 min. AccessQuick™ RT-PCR System (Promega) was used to 

monitor the transcription of RubisCO form I and II genes using the same primers as described 

above. Reactions were carried out in 50 µL volumes according manufacturer’s instructions. 

RT-PCR parameters were 30 min at 45°C and 5 min at 95°C, followed by 30 cycles of 30 s at 

95°C, 30 s at 57 and 62°C (depending on the specific primer pair), and 1 min at 68°C, 

followed by one cycle of 5 min at 68°C. Amplification products were separated 

electrophoretically on 2% agarose gels in 1x TAE buffer (0.04 M Tris-acetate; 0.001 M 

EDTA), stained with ethidium bromide, and visualized under UV light. For each RT-PCR, a 

negative control PCR without AMV reverse transcriptase was performed to rule out DNA 

contamination. Additionally, enzyme activity tests were performed, measuring RubisCO 

activity in cell extracts of aerobically grown cells as well as in extracts of anaerobically grown 

cells of strain D24TNT. The enzyme assays were performed as described by Hügler et al. 

(2003).  
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2.3 Results and Discussion 

 

2.3.1 Isolation of Thiobacillus thiophilus D24TN 

Thiobacillus thiophilus D24TNT was isolated out of an enrichment culture deriving from 

sediments of a tar oil contaminated aquifer under thiosulfate-oxidizing, obligate 

chemolithoautotrophic conditions.  

 

2.3.2 Cell morphology 

The thiosulfate-oxidizing strain is rod shaped with an average cell size of 1.8-2.5 µm in length 

and 0.5-0.8 µm in diameter (Fig. 2.1a and 2.1b). Aggregate formation could not be observed 

in any form. Cells were gram-negative upon staining. 

 

 

Figure 2.1: Transmission electron micrographs of strain Thiobacillus thiophilus sp. nov. D24TNT. In 

(a) transverse ultrathin sections and longitudinal ultrathin sections of several single cells are shown. 

Bar represents 1 µm. In (b) the magnified transverse ultrathin section of a single cell is depicted. Bar 

represents 500 nm. 

 

 

 

 

 

 

 

 

 

 

 

a b 
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2.3.3 Physiological properties 

Growth occurred under oxic and anoxic conditions, exhibiting faster growth in aerobic 

medium (µmax = 0.069 h-1) than under anoxic conditions (µmax = 0.051 h-1) (Fig. 2.2). Strain 

D24TNT thus can be characterized as a facultative anaerobe. 

   

 
 
 
 
 
 
 
 
 
 

 
Figure 2.2: Growth rates of D24TNT under (a) oxic and (b) anoxic conditions 

 

It showed faster growth in the less diluted medium (µmax[WS 1:10] = 0.054 h-1; µmax[WS 1:2] = 

0.069 h-1). The ability of D24TNT to utilize different electron donors was tested applying H2 

(30 mL H2 in headspace of serum bottle), NH4
+ (5 mM), S2- (5 mM), FeS (3 mM), S4O6

2- (10 

mM) and S0 (0.5 g L-1) using oxygen and/or nitrate (5 mM) as electron acceptor. Growth only 

occured with thiosulfate, along with the production of sulfate and small amounts of elemental 

sulfur, and with tetrathionate as electron donors.  

The utilization of electron acceptors alternative to oxygen and nitrate was investigated testing 

SO4
2- (5 mM) and Fe(III) (ferrihydrite 40 mM). Strain D24TNT exhibited growth only in 

medium containing O2 or NO3
-. Aerobically grown cells completely converted thiosulfate to 

sulfate (electron balance 101-103%) with only small amounts of elemental sulfur precipitated, 

while in anaerobically grown cells only 60-75% of the thiosulfate was converted into sulfate 

(Fig. 2.3) with a visibly higher amount of S0 precipitation formed. At the same time, part of 

the nitrate which disappeared in the aerobic incubations showed up as nitrite (32-41%), while 

in anaerobically grown bottles 69-72% of the nitrate consumed went into nitrite (Fig. 2.3), 

which may suggested an intermediate total nitrate reduction.  
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Figure 2.3: Growth curves of aerobically (a) and anaerobically (b) grown cells of strain D24TNT 

showing consumption of the electron donor thiosulfate and the electron acceptor nitrate, as well as the 

reaction products sulfate and nitrite. Cells were grown in a 1:2 diluted WS medium (for expalantion 

see text). 
 

 

Growth occurred at -2 to 30°C (over 1-2 weeks, slower growth at -2, 0 and 4°C) with an 

optimum between 25-30°C (Fig. 2.4). Optimum pH was 7.5 to 8.3, no growth occurred at pH 

values lower than pH 6.3 or higher than pH 8.7 (Fig. 2.5).   
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Figure 2.4: Growth of the thiosulfate oxidizing strain D24TNT at various pH values. The electron 
acceptor was oxygen, and the electron donor was thiosulfate. 
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Figure 2.5: Growth of the thiosulfate-oxidizing strain D24TNT at various temperatures. The electron 
acceptor was oxygen.  
 
 
At salinities of 0.5%, 1% and 2% the isolate showed growth after two days incubation, no 

growth occurred at 3% NaCl or above. The strain tested positive for both, catalase and 

oxidase activity. Under the given conditions, strain D24TNT did not form spores. 

It did not grow on agar under oxic conditions, neither on its usual medium containing agar nor 

on nutrient agar plates (meat extract, peptone and agar) or on Thiobacillus denitrificans 

medium (M832; published by German Collection of Microorganisms and Cell Cultures 

GmbH). Growth on agar under anoxic conditions could only be observed on medium M832, 

not on agar plates of its usual medium or on nutrient agar plates. 

Under chemoorganoheterotrophic conditions no growth could be observed; also tests for 

chemolithoheterotrophic growth under oxic conditions with thiosulfate (10 mM) as electron 

source were negative; organic substrates could not be used as electron or carbon source.  

 

2.3.4 Phylogeny, G + C content and DNA-DNA hybridization  

The new isolate is a rod shaped gram negative bacterium with a G + C content of 61.5%. It is 

an obligate chemolithoautotrophic microorganism, growing under oxic and anoxic conditions. 

Based on phylogenetic analysis of the 16S rRNA gene sequence, strain D24TNT is closely 

affiliated with the genus Thiobacillus (Fig. 2.6) with the closest relatives being Thiobacillus 

denitrificans (97.6% sequence similarity) and Thiobacillus thioparus (97.5% sequence 

similarity) (Table 2.1). According to Wayne et al. (1987) strains with a greater DNA-DNA 
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relatedness than 70% belong to the same species. DNA-DNA hybridization analysis between 

the isolate and Thiobacillus denitrificans showed a relatedness value of 24.8 %, thus D24TNT 

is clearly distinct from Thiobacillus denitrificans. 

 

Table 2.1: Characters distinguishing Thiobacillus thiophilus D24TNT from its closest relatives 

Thiobacillus denitrificans and Thiobacillus thioparus; (a) data from Robertson and Kuenen (2006); (b) 

data from Kelly and Wood (2000); (c) data from Beller et al. (2006); (d) data from Vlasceanu et al. 

(1997); nd = no data available 
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Figure 2.6: Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showing the 

positions of strain Thiobacillus thiophilus D24TNT sp. nov. and some other related taxa. Bootstrap 

values (percentages of 1000 resamplings) are given at branching points. The bar indicates 10 % 

estimated sequence divergence. 

 

 

 

2.3.5 CO2 fixation potential and activity 

The strain proved positive for cbbL type green-like (EU746410) and cbbM (EU746411) genes 

(Fig. 2.7 and Fig. 2.8). Sequence similarity to cbbLG sequences of Thiobacillus thioparus 

(DQ390449) and Thiobacillus denitrificans (L42940) was 91.9% and 88.1% respectively, 

sequence similarity to cbbM sequences of Thiobacillus thioparus (EU746412) and 

Thiobacillus denitrificans (NC007404; L37437) was 88.4% with each. It tested negative for 

cbbL type red-like. To investigate whether D24TNT is actually using the Calvin cycle for CO2 

fixation, RT-PCR was used to detect transcription of the cbb genes. Both, aerobically as well 

as anaerobically grown cells showed to transcribe the cbbM and green-like cbbL gene. 

Additionally, enzyme activity tests were performed, measuring RubisCO activity in cell 

extracts. RubisCO activity could be measured in aerobically (11.2 nmol min-1 (mg cell 

protein)-1) as well as in anaerobically (2 nmol min-1 (mg cell protein)-1) grown cells of 

D24TNT. 
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Figure 2.7: Phylogenetic tree of green-like cbbL genes. A consensus tree was constructed by 
neighbour-joining, maximum parsimony and maximum likelihood methods. As outgroup for tree 
calculations the red-like cbbL sequence of Cupriavidus necator (U20584) was used. The cbbL 
sequence of the isolate Thiobacillus thiophilus sp. nov. D24TNT is shown in bold. Scale bar represents 
0.10 changes per nucleotide position. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.8:  Phylogenetic tree of cbbM genes. A consensus tree was constructed by neighbour-joining, 
maximum parsimony and maximum likelihood methods. As outgroup for tree calculations the green-
like cbbL sequence of Nitrobacter vulgaris T3 (22885) was used. The cbbM sequence of the isolate 
Thiobacillus thiophilus sp. nov. D24TNT is shown in bold. Scale bar represents 0.10 changes per 
nucleotide position. 
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2.3.6 Description of Thiobacillus thiophilus sp. nov. 

Thiobacillus thiophilus (thi.o’phi.lus. Gr. n. thion sulfur; Gr. adj. philos, loving; N.L. masc. 

adj. thiophilus sulfur-loving). 

 

The type strain, D24TNT (= DSM 19892T = JCM 15047T), was isolated from sediment 

deriving from a tar oil contaminated aquifer. D24TNT is an obligate chemolithoautotrophic 

strain, oxidizing thiosulfate. Cells are gram-negative, aerobically and anaerobically growing 

small rods (1.8-2.5 µm in length and 0.5-0.8 µm in diameter). Oxidase and catalase positive. 

No aerobic growth on agar plates, anaerobic grown colonies are circular, smooth, shiny, 

convex and yellow in colour with a lighter-coloured fringe after 14 days incubation. No spore 

formation and no formation of aggregates. D24TNT grows as a facultative anaerobic 

chemolithoautotroph on thiosulfate using nitrate as final electron acceptor. It furthermore 

grows as an aerobic chemolithoautotroph on thiosulfate. It shows no heterotrophic growth. 

Growth temperature lies between -2°C and 30°C, with an optimal temperature range between 

24°C and 30°C. PH range is from 6.3 to 8.7, optimum lies between 7.5 and 8.3. Growth was 

observed under saline conditions to an upper NaCl concentration of 2% (w/v). The G+C 

content is 61.5 mol% as determined by HPLC. Based on 16S rRNA gene sequence analysis, 

D24TNT belongs to the class β-Proteobacteria. It shows 97.6% 16S rRNA gene sequence 

similarity to its closest relative, Thiobacillus denitrificans, but the DNA–DNA hybridization 

value of 24.8% proves that the two species are clearly distinct from each other. 
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3. Chemolithoautotrophy in an organically polluted aquifer – Potential for 

CO2 fixation and in situ bacterial autotrophic activity  
 

3.1 Introduction 

All ecosystems are ultimately based on inputs of carbon and energy provided by autotrophic 

organisms which can be found in almost all environments (Kinkle and Kane, 2000). Thus, 

biological CO2 fixation is one of the world’s most important biochemical processes with the 

photosynthesis of green plants, algae and cyanobacteria (phototrophs) being responsible for 

the major part of global net CO2 fixation. However, other microorganisms 

(chemolithoautotrophs) also play an important role in autotrophic CO2 fixation. Autotrophic 

microorganisms are found within most bacterial groups and there are even numerous 

representatives within the Archaea (Hügler, 2003). To date, four CO2 fixation pathways are 

established, i.e. the Calvin-Benson-Bassham cycle (Calvin cycle) (Bassham and Calvin, 

1957), the reductive tricarboxylic acid cycle (reductive TCA cycle) (Evans et al., 1966), the 

reductive acetyl-CoA pathway (Wood et al., 1986) and the 3-hydroxypropionate cycle (Holo, 

1989), with the Calvin cycle being the most intensively studied and probably the most 

abundant one. The only enzyme responsible for the actual CO2 fixation in this cycle is 

ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Four different forms of 

RubisCO are known so far, all varying in structure, catalytic properties and O2 sensitivity 

(Tabita, 1988; Tabita et al., 2008). However, the existence of further CO2 fixation pathways is 

very likely. Only recently evidence was obtained for a fifth and a sixth pathway in Archaea 

(Berg et al., 2007; Huber et al., 2008).  

Since it was shown that the terrestrial subsurface is densely colonized by microorganisms 

(Ghiorse and Wilson, 1988), the energetic basis of its biomass and activity often has been 

questioned. Still, the prevailing opinion is that heterotrophic microorganisms dominate 

subsurface ecosystems. That for, many groundwater investigations concentrated on 

heterotrophs, especially in connection with natural attenuation and biodegradation (Kinkle 

and Kane, 2000). However, when looking at the amounts of organic carbon available to 

microorganisms, heterotrophic activity in pristine aquifers and especially in the deep 

subsurface is thought to be carbon limited, hinting at chemolithoautotrophic CO2 fixation as 

an alternative strategy. Extensive research has been conducted on microbial communities in 

deep, mostly fractured basalt biospheres, both ground water and marine, in the quest for 

surface-independent ecosystems based on hydrogen driven lithoautotrophic microbial 

communities (Stevens and McKinley, 1995; Stevens, 1997; Anderson et al., 1998; Pedersen, 
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2000; Chapelle et al., 2002; Nealson et al., 2005). However, the CO2 fixation potential as well 

as actual activities hardly have been shown. The other extreme constitute organically polluted 

aquifers with a high load of complex mixtures of toxic and persistent organic compounds. 

Faced with the organic overload, bacteria degrading contaminants must get rid of electrons, 

while others not able to degrade the pollutants are in the same situation then the ones in 

pristine systems (Kinkle and Kane, 2000; Alfreider et al., 2003). In summary, the existence 

and the role of chemolithoautotrophic CO2 fixation in the terrestrial subsurface is hardly 

known.  The subsurface complies with all requirements for autotrophic processes. Electron 

donors such as molecular hydrogen, reduced nitrogen (NO2
- and NH4

+), sulfur (e.g. S2O3
2- and 

H2S), metals (e.g. Fe2+ and Mn2+) or carbon compounds (e.g. CO and CH4) and electron 

acceptors such as oxygen, nitrate or sulfate are available in varying combinations always 

together with plenty of inorganic carbon (Shively et al., 1998; Labrenz et al., 2005). Thus, the 

oxidation of inorganic compounds may easily replace solar radiation as energy source. By 

now, not only the occurrence of numerous chemotrophic processes in the subsurface has been 

proven (e.g. nitrification, sulphide oxidation), but also the importance of 

chemolithoautotrophic bacteria in subsurface biogeochemical cycles has been indicated 

(Kinkle and Kane, 2000; Chapelle et al., 2002; Alfreider et al., 2003; Griebler and Lueders, 

2008).  

The aim of the study was to prove the CO2 fixation potential within the microbial 

communities in an anoxic tar oil contaminated aquifer by means of functional gene analysis 

(cbbL, cbbM and acl genes) and to link this potential with in situ autotrophic activities as 

evaluated by different isotope and fatty acid approaches. Furthermore a new 

chemolithoautotrophic bacterial strain was isolated and characterized and subsequently looked 

for its role and distribution in the aquifer. 
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3.2 Material and Methods 

3.2.1 Bacterial strains 

Bacterial strains used as positive or negative controls are listed in Table 3.1. They were 

cultured as recommended by the German Collection of Microorganisms and Cell Cultures 

GmbH type culture collection (Braunschweig, Germany).  

 

Table 3.1: Reference bacteria 

Species Straina acl b cbbMb cbbLb 

Thiobacillus denitrificans 

Thiobacillus thioparus 

Thiomicrospira  denitrificans 

Cupriavidus necator 

Xanthobacter autotrophicus 

DSM 12475 

DSM 505 

DSM 1251 

DSM 13513 

DSM 432 

- 

- 

+ 

- 

- 

+ 

+ 

- 

- 

- 

+ (green-like) 

+ (green-like) 

- 

+ (red-like) 

+ (red-like) 
aDSM, Deutsche Sammlung von Mikroorganismen 
b+ PCR product of expected size; - no amplification 

 

3.2.2 Site description, sediment and water sample collection 

The investigated aquifer is situated at a former gasworks site in the river Rhine valley in 

Düsseldorf-Flingern, Germany. Large amounts of tar oil phase released into the subsurface 

during operation and break-down of the plant caused a severe organic contamination of the 

aquifer. Today’s concentrations of monoaromatic hydrocarbons account for about 20-100 mg 

L-1 in the contaminant plume, while the concentration of individual polycyclic aromatic 

hydrocarbons, i.e. naphthalene, account for up to 10 mg L-1 (Eckert et al., 2005; Anneser et 

al., 2008).  Sediments from the quaternary homogenous sandy aquifer were collected during a 

well drilling campaign in June 2005, and water samples were taken in July 2007 from a multi-

level well located in the direct neighbourhood of the drilling spot. To protect the sediment 

samples from contact with oxygen, liners were removed from the borehole under argon 

atmosphere and further processed in a box continuously flushed with argon gas. Until further 

processing sediment samples for enrichment of bacteria were saturated with anoxic water 

from the same aquifer and stored in sterile glass bottles at 4°C in darkness. For extraction of 

genomic DNA, sediment samples were placed in sterile plastic tubes, shock frozen in dry ice 

and stored at -20°C till further processing. Water samples were filled in sterile 50 mL plastic 

tubes and stored at 4°C in darkness until further usage. The individual depths and sample 

codes of sediment and water samples can be retrieved from Figure 3.1.  
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Figure 3.1: Schematic sketch of the spatial distribution of main groups of contaminants (i.e. BTEX 

and PAHs) within the tar oil contaminated aquifer. Arrows indicate the depths where sediment was 

subsampled for enrichment cultures as well as diverse molecular analysis. On the right hand the 

positions of sediment exposure for colonization and subsequent PLFA and FISH-MAR analysis are 

depicted. 

 

3.2.3 Extraction of chromosomal DNA  

Extraction of genomic DNA from sediment samples was performed using a modified protocol 

from Lueders et al. (2004) and Gabor et al. (2003). Genomic DNA from pure cultures was 

extracted and purified applying the FastDNA spin kit for soil (MP Biomedicals) according to 

the manufacturer’s instructions. The integrity and yield of extracted nucleic acids was 

checked by standard agarose gel electrophoresis and ethidium bromide staining, as well as by 

UV quantification (NanoDrop ND-1000 Spectrophotometer). 

 

3.2.4 Marker genes for CO2 fixation - Amplification of cbbL, cbbM and acl genes 

The primer sets for form I RubisCO cbbLG1-F/cbbLG1-G, cbbLR1-F/cbbLR1-R (Selesi et al., 

2005) and form II RubisCO cbbM-f/cbbM-r (Alfreider et al., 2003) were used to amplify the 

RubisCO genes, applying following cycling parameters: an initial denaturation for 4 min at 

94°C followed by 32 cycles of 1 min at 94°C, 1 min at 62°C (cbbLG)  or 57°C (cbbM; 
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cbbLR) and 1 min at 70°C, concluding with a 10 min extension at 70°C. For amplification of 

the ATP citrate lyase (acl) genes we used different primer sets in a 32-cycle PCR at an 

annealing temperature of 54°C. Here, primers applied were F2/R5 (Hügler et al., 2005) for the 

acl α-subunit (aclA) and 892F/1204R (Campbell et al., 2003) and 275F/1204R (Campbell et 

al., 2003; Takai et al., 2005) for the acl β-subunit (aclB) with PCR conditions according to 

Campbell et al. (2003). For a survey of all used primers see Table 3.2. All amplification 

products were analyzed on 2% agarose gels (Biozym) by horizontal gel electrophoresis to 

ensure correct size (cbbLG 1.1 kb, cbbLR 0.8 kb, cbbM 0.5 kb, aclA 1.0 kb, aclB 0.4 kb and 

1.0 kb) and visualized by UV excitation after staining with ethidium bromide.  
 

Table 3.2: Primers used for amplification of cbbM, cbbL, aclA and aclB genes 

Primer Primer sequence (5’-3’) Reference 

cbbM-f 

cbbM-r 

cbbLR1F 

cbbLR1R 

cbbLG1F 

cbbLG1R 

aclA F2  

aclA R5 

aclB-F (892)  

aclB-F (275) 

aclB-R (1204) 

GGC AAC ATC ATC AAG CCC AAG 

TCT TGC CGT AGC CCA TGG TGC 

AAG GAY GAC GAG AAC ATC 

TCG GTC GGS GTG TAG TTG AA 

GGC AAC GTG TTC GGS TTC AA 

TTG ATC TCT TTC CAC GTT TCC 

TGC ATA GCA ATH GGN GGN GA 

CCG ATA GAN CCR TCN ACR TT 

TGG ACM ATG GTD GCY GGK GGT 

TAG AGG ATG CRG CTA AWT GGA TTG ATG A 

ATA GTT KGG SCC ACC TCT TC 

(Alfreider et al., 2003) 

(Alfreider et al., 2003) 

(Selesi et al., 2005) 

(Selesi et al., 2005) 

(Selesi et al., 2005) 

(Selesi et al., 2005) 

(Hügler et al., 2003) 

(Hügler et al., 2003) 

(Campbell et al., 2003) 

(Takai et al., 2005) 

(Campbell et al., 2003) 

 

 

3.2.5 Clone libraries - Cloning and screening of environmental RubisCO coding genes 

Amplicons of the expected sizes (1100 bp for green-like cbbL, 820 bp for red-like cbbL and 

505 bp for cbbM genes) from sediment samples were purified with the MinElute PCR 

Purification Kit (Qiagen) according to the manufacturer’s instructions. Purified PCR products 

were ligated into the vector pGEM®-T (Promega) and transformed into competent 

Escherichia coli cells of strain JM 109 (Promega). Colonies were picked and the plasmid 

DNA was purified heating the clones for 10 min at 99°C in H2Odest.  

To get a first overview over the diversity of the constructed clone libraries, restriction 

fragment length polymorphism (RFLP) was used for screening of the clones with correctly 

sized inserts. PCR products of clones harbouring cbbM or green-like cbbL inserts were 
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hydrolyzed with 2 U of the restriction endonucleases RsaI and MspI (Fermentas), and for 

PCR products of clones with red-like cbbL inserts, the restriction enzyme BsaI (Fermentas) 

was used. Restriction fragments were analyzed electrophoretically in 2% (w/v) agarose gels. 

 

3.2.6 Sequencing and phylogenetic analysis 

Plasmids containing cbbL or cbbM inserts from sediment DNA were used directly for 

sequencing. Sequencing was performed as previously described by Selesi et al. (2005). The 

newly gained cbbL and cbbM nucleotide sequences were imported into the cbbL database 

implemented in the ARB software package (Ludwig et al., 2004). Closest relatives to cbbL 

and cbbM nucleotide sequences were obtained using NCBI’s sequence similarity search tool 

BLASTN.  

 

3.2.7 13C-CaCO3 field experiment – Phospholipid fatty acid analysis  

Small cylindric cages consisting of stainless steel grids (pore size 0.2 mm) were filled with 

sterilized sand (grain size 0.20 - 2.24 mm). One gram of 13C labelled CaCO3 (99 atom.%; 

IsotecTM) or 1 g non-labelled CaCO3 (Sigma) (as control), respectively, were filled in a 

dialysis tubing embedded in the middle of the cage (flat width 10 mm, wall thickness 28 µm, 

MWCO 8,000 – 10,000). The cages were first pre-soaked in anoxic H2Odest water and then 

placed, as two pairs containing one labelled and a control, into a fully screened groundwater 

monitoring well at a depth of 6.5 m (= 0.2 m below groundwater level) and 11.2 m below soil 

horizon. Incubation lasted for two months. Afterwards the sediment was withdrawn and 

stored in sterile plastic tubes at -20 °C until further processing. The determination of the 

saturated (SATFA), monounsaturated (MUFA) and polyunsaturated (PUFA) phospholipid 

fatty acids was performed as described by Zelles et al. (1995). PLFA of labelled and non-

labelled samples were extracted in three replicates. An aliquot of the phospholipid fraction, 

equivalent to 10 g dry matter was used for fatty acid analysis. The fatty acids were measured 

as fatty acid methyl esters (FAME) using a gas chromatograph (equipped with a BPX-70 

column; SGE GmbH, 60 m x 0.25 mm x 0.25 µm, coated with 70 % of cyanopropyl 

polysilphenylene-siloxane) linked with a mass spectrometer (GC/MS, Agilent Technologies). 

The isotopic composition of the FAME was detected in a DeltaPlusAdvantage Isotope Ratio 

Mass Spectrometer (IRMS, Thermo Electron Cooperation) after combustion (GC Combustion 

III, Thermo Electron Cooperation). Identification of fatty acids was carried out by comparing 

the obtained mass spectra with established fatty acid libraries (Solvit) using MSD 

Chemstation (Version D.02.00.237). Standard nomenclature was used for PLFA (Frostegard 
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et al., 1993). 13C results are expressed in δ13C compared to the international carbon standard 

Vienna – Pee Dee Belemnite (V-PDB) as described in Werner and Brand (2001). n19:0 was 

used as an internal standard to calculate fatty acid contents as well as to correct the δ13C-

values of the individual fatty acids.  

 

3.2.8 Bacterial cell counts 

Total counts of bacteria in water and sediment samples were conducted via epifluorescence 

microscopy and flow cytometry, respectively. Samples were fixed in paraformaldehyde (4%) 

for at least 2 h at 4°C. Cell counts of water samples were performed as described by Anneser 

et al. (2008). Attached bacteria were released from sediment in a swing mill (Retsch, MM 

200) shaking the samples for 3 min at a frequency of 20 L*s-1. 1.5 mL of the supernatant were 

subsequently pipetted on top of a cold 5 mL Nykodenz™ (Nykomed) solution (1.3 g mL-1 

final density, pH 8) and centrifuged for density gradient separation (Centrikon T-2190) for 60 

min at 4°C and 11.000 rpm to separate bacterial cells from debris and remaining sediment 

particles. The second and the third millilitre from the top were collected for subsequent flow 

cytometric analysis. Samples were stained with 10 μL of SYBR green I (30 µL*mL-1) for 10 

min at 4°C in the dark. Fluorescently labelled beads (TruCount beads, BD Biosciences) were 

used as internal standard. Cell numbers were determined in triplicates in a LSR II flow 

cytometer (Becton Dickinson) and corrected for cell release efficiency and loss during density 

gradient centrifugation. 

 

3.2.9 FISH-MAR  

Incubation with radiolabelled bicarbonate 
14C-labelled sodium bicarbonate (specific activity 1.813 GBq/mmol = 49 mCi/mmol, 

PerkinElmer) was used as substrate. Water and sediment samples from two different depths, 

i.e. 6.5 m and 11.2 m below soil horizon, were analysed. Sediment samples derived from the 
13C-PLFA experiment, while water samples were freshly taken from the same well after the 

exposed sediments have been removed. 1.4-1.6 g sediment (wet weight) were transferred to 2 

mL tubes filled with 500 µL aquifer water from the same depth. Water samples (14 mL) were 

transferred into sterile 15 mL plastic tubes. 40 mCi [14C] sodium bicarbonate solution was 

added and samples carefully mixed (final [14C] sodium bicarbonate concentration: 7.4*108 

Bq/µL in sediment and 1.04*108 Bq/µL in water samples). The samples were incubated for 14 

days at 16°C (in situ temperature) in the dark. All experiments were performed in duplicates. 
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To account for possible adsorption phenomena, formaldehyde fixed sediment and water 

samples amended with radioactive substrate served as controls.  

After the incubation, samples were fixed with 4% paraformaldehyde over night at 4°C. Since 

sediment particles are highly autofluorescent and therefore interfere with FISH analysis, it 

was necessary to dislodge the bacterial cells from sediment particles. Therefore, the samples 

were vortexed 45 seconds at full speed. After settlement of particles, the supernatant was 

collected. Subsequently, water and sediment samples were washed two times with phosphate 

buffered saline (PBS) (10 mM sodium phosphate buffer, 130 mM sodium chloride; pH 7.2) in 

order to remove the excess soluble radioactive substrate and fixative. All washing steps 

consisted of: centrifugation of the samples at 14.000 rpm for 3 min, removal of the 

supernatant, addition of further washing buffer and resuspension of the pellet. Finally, pellets 

were resuspended in a 1x PBS/Ethanolabsolute-solution and stored at -20°C. 

 

Oligonucleotide probes and probe design 

All rRNA-targeting oligonucleotide probes used for FISH in this study are listed in Table 3.4. 

All probes were purchased from MWG Biotech AG. 

To design probes specific for isolate Thiobacillus thiophilus D24TNT (= DSM 19892T = JCM 

15047T) and its closest relatives, all 16S sequences of the next relatives which were available 

from the National Center for Biotechnology Information sequence database (NCBI) were 

used to establish a 16S database of D24TN relatives by the use of the ARB software package 

(Ludwig et al., 2004). For probe design the function “probe match” implemented in the ARB 

software package was used. Two probes, i.e. D24TN_443, a species specific probe for the 

isolate Thiobacillus sp. D24TN and D24TN_825, a probe specific for the genus Thiobacillus 

(Table 3.3) were designed.  

 

Fluorescent in situ hybridization and microautoradiographic procedure 

To prevent loss of sample material, all slides and coverslips were precoated with Poly-L-

Lysine (Sigma Aldrich) according to the manufacturer’s instructions. In situ hybridization 

was performed as described previously (Manz et al., 1992). After in situ hybridization an 

microautoradiographic procedure with autoradiographic emulsion LM-1 (Amersham 

International) was performed as described by Andreasen and Nielsen (1997). Exposure time 

for the samples was 14 days. A model LSM 510 scanning confocal microscope (Zeiss) was 

used to record optical sections. The formation of silver grains in the autoradiographic film 

covering a sample was observed in the transmission mode. 



3. Chemolithoautotrophy in an organically polluted aquifer           Material and Methods 

44 

Table 3.3: FISH probes applied targeting rRNA  

Probe Target organisms 
target group 

Binding 
position1 Target sequence 5’-3’ % 

FA2 Reference

EUB338 I Bacteria without Planctomyce-tales, 
without Verrucomicrobiales 

16S 
338 - 355 GCT GCC TCC CGT AGG AGT Var. (Amann et 

al., 1990) 

HGC69a Bacteria with high G + C content  23S 
1901-1918 TAT AGT TAC CAC CGC CGT 20 (Roller et 

al., 1994) 

Alf968 α- Proteobacteria, 
without Rickettsiales 

16S 
19 - 35 GGT AAG GTT CTG CGC GTT 20 (Neef et al., 

1998) 

Alf1B α-Proteobacteria 16S 
19 - 35 CCT TCG YTC TGA GCC AG 20 (Manz et 

al., 1992) 

Bet42a β- Proteobacteria 23S 
1027-1043 GCC TTC CCA CTT CGT TT 35 (Manz et 

al., 1992) 

Gam42a γ- Proteobacteria 23S 
1027-1043 GCC TTC CCA CAT CGT TT 35 (Manz et 

al., 1992) 

D24TN_443 Thiobacillus thiophilus D24TNT and 
species closely related to  Thiobacillus 

16S 
443 - 458 GCG TAC CGT TTC GTT CCG Var. this study 

D24TN_825 Thiobacillus sp. and species closely 
related to  Thiobacillus 

16S 
825 - 843 CAC TCC CCC AAC AAC CAG Var. this study 

1 Position in rRNA of E. coli  
2 % FA: used formamide concentration (%, v/v) in hybridization buffer  

 

3.2.10 Enrichment cultures - Isolation and cultivation of new bacterial strains  

For isolation of chemolithoautotrophic aquifer bacteria enrichment cultures were started under 

various autotrophic conditions. Growth medium was a tenfold diluted anoxic Widdel 

freshwater medium (Widdel and Bak, 1992) supplemented with different combinations of 

electron donors (S0, S2O3
2-, NH4

+, S2-, Fe2+, H2) and electron acceptors (NO3
-, O2, S0, CO2, 

SO4
2-) (table 3.4).  

The redox indicator Resazurin (1 mg L-1; Sigma-Aldrich) was added to guarantee anoxic 

conditions throughout the incubations. Initially, the medium (50 mL in 120 mL serum bottles) 

was inoculated with 10 g of fresh sediment. The headspace was replaced by N2/CO2 (80:20 

v/v) and bottles were sealed with butyl stoppers (Ochs). Electron acceptors and electron 

donors deriving from sterile aqueous stock solutions were amended via syringes injected 

through the butyl stoppers. The first series of enrichment cultures were incubated at 16°C (in 

situ temperature) in the dark for 3-4 months and before transferred to fresh medium when 

visibly turbid. For purification of growing cells two dilution series were performed under the 

same culturing conditions. After purification, the cultures were transferred every 2-3 weeks 

and cell growth was monitored by measuring optical density at 580 nm (OD580; Varian) and 

microscopic observations (Zeiss).  
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Table 3.4: Experimental conditions for enrichment cultures. Each given electron donor/acceptor 

combination was applied on sediment from 6.30 m, 7.60 m and 11.20 m below soil horizon 

Microbial process Electron 
donor  

Electron 
acceptor 

Carbon 
source Temperature

Sulfur oxidation 

Thiosulfate oxidation 

Nitrification 

Anaerobic sulfide oxidation 

Anaerobic iron oxidation 

Denitrification 

Sulfur reduction 

Sulfate reduction 

Methanogenesis 

Acetogenesis 

Anaerobic thiosulfate oxidation 

S0 

S2O3
2- 

NH4
+ 

S2- 

Fe2+ 

H2 

H2 

H2 

H2 

H2 

S2O3
2- 

O2 

O2 

O2 

NO3
- 

NO3
- 

NO3
- 

S0 

SO4
2- 

CO2 

CO2 

NO3
- 

CO2 

CO2 

CO2 

CO2 

CO2 

CO2 

CO2 

CO2 

CO2 

CO2 

CO2 

16°C 

16°C 

16°C 

16°C 

16°C 

16°C 

16°C 

16°C 

16°C 

16°C 

16°C 

 

3.2.11 Isolate D24TNT - Marker genes for CO2 fixation and RNA isolation / RT-PCR 

For amplification of the RubisCO and the ATP citrate lyase genes the same primer sets and 

the same cycling conditions were used as described above. PCR products with the correct size 

amplified from D24TNT DNA extracts were used for direct sequencing. The gained cbbL and 

cbbM nucleotide sequences were brought in to the cbbL database implemented in the ARB 

software package (Ludwig et al., 2004).  

For total RNA isolation 50 mL densely aerobically and anaerobically grown cultures were 

centrifuged (4,000 rpm; 15 min). Preparation was performed as described by Schmitt et al. 

(1990). To obtain pure RNA without DNA, 25 µL DNA/RNA extract were digested with 

DNaseI (20 U; Fermentas). AccessQuick™ RT-PCR System (Promega) was used to monitor 

the transcription of RubisCO form I and II genes using the primers as described in the method 

section “marker genes for CO2 fixation”. Reactions were carried out according to the 

manufacturer’s instructions. RT-PCR parameters were 30 min at 45°C and 5 min at 95°C, 

followed by 30 cycles of 30 s at 95°C, 30 s at 57 and 62°C (depending on the specific primer 

pair), and 1 min at 68 °C, followed by 1 cycle of 5 min at 68 °C. Amplification products were 

separated by electrophoresis on 2% agarose gels in 1x TAE buffer (0.04 M Tris-acetate; 0.001 

M EDTA), stained with ethidium bromide, and visualized under UV light. For each RT-PCR, 

a negative control PCR without AMV reverse transcriptase was performed to rule out DNA 

contamination.  
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3.2.12 Isolate D24TNT - Enzyme assays 

Photometric enzyme assays were carried out in 0.5 mL glass cuvettes, other assays in 1 mL 

glass vials. Anaerobic enzyme assays were performed with N2 gas as headspace in rubber-

stoppered glass-cuvettes or stoppered vials. All assays and extraction buffers were evacuated 

and gassed with nitrogen gas to remove oxygen. Compounds of the assay were added with 

gas-tight syringes. All assays were performed at 25°C, which lies in the range of the optimal 

growth temperature of D24TNT. All assay mixtures had a total volume of 500 µL. 

Cell extracts were prepared using a mixer-mill (type MM2, Retsch). Per 0.2 g of wet cells 800 

µL buffer (100 mM Tris/HCl, pH 7.8, 3 mM 1,4-dithioerythritol and 1 mg DNaseI per 10 mL 

of buffer) were added.  

After addition of 0.8 g beads (diameter 0.1-0.25 mm) the solution was treated for 8 min at 30 

Hz in the mixer-mill, followed by a centrifugation step (10 min, 14.000 rpm, 4°C).  The 

supernatant was used for enzyme tests. For the anoxic preparation of cell extracts anoxic 

buffer and stoppered glass-vials were used. Glass beads were added in an anaerobic chamber. 

Protein concentration in cell extracts was determined by the method of Bradford (1976) using 

bovine serum albumin as standard. 

 

Photometric Assays  

Reactions involving pyridine nucleotides were followed spectrophotometrically at 365 nm 

(ε365nm (NADH = 3.4 x 103 M-1 cm-1).  

 

Isocitrate dehydrogenase 

The isocitrate-dependent oxidation of NADP+ was monitored. The assay mixture contained 

100 mM Tris/HCl, pH 7.8, 5 mM MgCl2, 1 mM NADP+, 5 mM β-mercaptoethanol and 10 

mM D/L-isocitrate. The addition of isocitrate started the reaction. 

 

Malate dehydrogenase 

The oxaloacetate-dependent oxidation of NADH was monitored. The assay mixture contained 

100 mM Tris/HCl, pH 7.8, 0.3 mM NADH and 1 mM oxaloacetate. The addition of 

oxaloacetate started the reaction. 

 

ATP citrate lyase 

ATP citrate lyase activity was determined by coupling the reaction to endogenous L-malate 

dehydrogenase activity, which oxidizes NADH. The citrate-, CoA- and MgATP-dependent 
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oxidation of NADH was monitored. The assay mixture contained 100 mM Tris/HCl, pH 7.8, 

5 mM MgCl2, 3 mM ATP, 0.5 mM CoA, 0.4 mM NADH and 3 mM D-citrate. The reaction 

was started by the addition of citrate. To ensure that L-malate dehydrogenase activity in this 

coupled assay was not limiting, this enzyme activity was measured under the same conditions 

by adding 1 mM oxaloacetate. 

 

Radioactive assay 

Carboxylation reactions with 14CO2 were followed by measuring the substrate-dependent 

incorporation of 14C from 14C-bicarbonate into acid-stable products. The samples were 

incubated for 1, 2 and 5 min. The addition of 20 µL of 6 M HCl stopped the reaction. Shaking 

the samples in open scintillation vials for 5 h removed volatile 14CO2. The amount of 14C in 

liquid samples was determined by scintillation counting (5 min per sample) using 5 mL 

scintillation cocktail. As blank and control served two experiments in which substrate and 

extract, respectively, were omitted. The molar amount of product formed was calculated from 

the amount of radioactivity fixed into acid-stable labelled products taking into account the 

final specific radioactivity of added 14C-bicarbonate. 

 

Ribulose 1,5-bisphosphate carboxylase/ oxygenase 

The assay was performed under aerobic and strictly anaerobic (with N2 gas in the headspace) 

conditions. The assay mixture contained 100 mM Tris/HCl, pH 8.0, 10 mM MgCl2, 5 mM 

dithioerythritol, 10 mM NaHCO3, 2 kBq [14C] Na2CO3 (Sigma) and 1 mM ribulose 1,5-

bisphosphate. The reaction was started by addition of ribulose 1,5-bisphosphate. 
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3.3 Results 

3.3.1 Marker genes for CO2 Fixation 

Amplification of cbbL, cbbM and acl genes from aquifer sediment samples 

DNA was extracted from sediments freshly collected from various depths (Fig. 3.1) in a tar 

oil-contaminated aquifer. To evaluate the potential for bacterial CO2 fixation, the presence of 

marker genes from the Calvin cycle, i.e. the RubisCO genes (cbbL and cbbM), and the 

reductive TCA cycle, i.e. ATP citrate lyase genes (acl), has been investigated using PCR 

amplification of the cbbL, cbbM and acl genes. Form I RubisCO green-like cbbL genes were 

detected in 9 out of 11 depths examined (no presence detected in sampling sites D8 and D17). 

Red-like cbbL genes were only found in DNA extracts from the BTEX-contaminated area, 

(sampling sites D10 and D12). Form II RubisCO cbbM genes were not detectable in D8, D17 

and D26, but present in all other samples. The ATP citrate lyase (acl) genes could not be 

detected in any of the investigated sediment samples. 

 

Green-like cbbL clone libraries and sequences 

Clone libraries were constructed of right-sized (about 1034 bp) PCR products amplified from 

sediment samples from selected depths (D10, D12, D15, D24 and D27). To gain insight into 

the diversity of the 134 retrieved clones, RFLP analysis using the restriction enzymes RsaI 

and MspI was performed. The sequences revealed 15 different RFLP patterns in total with 

only one pattern occurring in all green-like cbbL clone libraries. D10 showed highest RFLP 

pattern diversity with 6 different patterns. Lowest was found in D12 with only one pattern. Of 

each RFLP pattern at least one clone was sequenced, 2-3 clones of cbbL sequences with 

RFLP patterns of high abundance. Concerning the green-like cbbL clone library D24 all 13 

clones were sequenced, independent of their RFLP pattern. A total of 53 green-like cbbL 

clones from the different samples were sequenced. Clones showing the same RFLP pattern 

proved to be identical concerning their cbbL sequences. The sequences were named with a 

“D” for Düsseldorf, followed by the depth designation, with an added “gl” for sequences of 

the green-like cbbL library and the clone number. The sequence similarities of all sequenced 

clones ranged between 79.5% and 100%. The phylogenetic tree for green-like cbbL 

nucleotide sequences (Fig. 3.2) shows that most of the sediment clone sequences build a large 

cluster (cluster I), with the highest degree of relatedness to the sequence of an uncultivated 

aquifer clone (AY099392; 89.5-99.0%).  
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Fig. 3.2: Phylogenetic tree of green-like cbbL genes. A consensus tree was constructed by neighbour-

joining, maximum parsimony and maximum likelihood methods. As outgroup for tree calculations the 

red-like cbbL sequence of Cupriavidus necator H16 (U20584) was used. All environmental clone 

sequences are shown in bold; the cbbL sequences of the isolates D24HN and Thiobacillus thiophilus 

D24TNT are shown in bold and are shaded in grey. Scale bar represents 0.10 changes per nucleotide 

position. 

 

 

uncultured aquifer clone D15gl09 (EU932686) 
uncultured aquifer clone D15gl13 (EU926545) 

uncultured aquifer clone D24gl29 (EU926563) 
uncultured aquifer clone D27gl11 (EU926555) 

uncultured aquifer clone D15gl03 (EU926542) 
uncultured aquifer clone D27gl12 (EU926556) 

uncultured aquifer clone D24gl14 (EU926561) 
aquifer clone 9BSEDC3 (AY099392) 

Thiobacillus thiophilus D24TN( EU746410) 
uncultured aquifer clone D12gl19 (EU926524)
uncultured aquifer clone D15gl14 (EU926546)
uncultured aquifer clone D10gl42 (EU926501)
uncultured aquifer clone D15gl05 (EU926544)
uncultured aquifer clone D10gl01 (EU926497)
uncultured aquifer clone D10gl60 (EU926503)

uncultured aquifer clone D10gl19 (EU926499) 
uncultured aquifer clone D10gl56 (EU926502) 

uncultured aquifer clone D10gl31 (EU926500)
Thiobacillus thioparus DSM 505 (DQ390449) 

Thiobacillus denitrificans (L42940)
groundwater isolate D24HN (EU926572)

Cupriavidus metallidurans CH34 (CP000352)
Hydrogenophaga pseudoflava DSM 1083(U55037) 

uncultured groundwater bacterium V4C19 (EU362755)
uncultured groundwater bacterium L4C6 (EU362741)

uncultured aquifer clone D24gl08 (EU926560) 
uncultured aquifer clone RA13C (AY099374)

Allochromatium minutissimum DSM 1376 (EU622786) 
Allochromatium vinosum (M26396)

pot. Thiobacillus sp.  (M34536)
gamma proteobacterium AB-2006-IM (AM228900) 

uncultured aquifer clone D10gl91 (EU926504) 
uncultured aquifer clone D10gl95 (EU926505) 
uncultured aquifer clone D24gl02 (EU926559) 

uncultured aquifer clone D24gl19 (EU926562) 
Nitrosomonas sp. EN11 (AB061373) 

Nitrosomonas eutropha C91 (CP000450) 
unculturedg(roundwater bacterium P3C1 (EU362798)

uncultured groundwater bacterium P3C1 (EU362788)
aquifer clone RA13C1 (AY099371)

aquifer clone ZZ17C14 (AY099390) 
Halothiobacillus sp. RA13 (AY099400) 

Nitrosospira sp. TCH716 (AF459718) 
Nitrobacter winogradskyi ATCC 14123 (AF109914) 

Nitrobacter winogradskyi IFO 14297 (AF109915) 
Nitrobacter winogradskyi Nb?25 (CP000115)

Nitrobacter vulgaris T3 (L22885)
Nitrobacter hamburgensis X14 (CP000320)

Thiomonas intermedia K12 (AF046933)
Thiomonas sp. 3As (AM774405)

Thiobacillus sajanensis 4HG (DQ390447)
Methylococcus capsulatus Bath (AE017282)

Bradyrhizobium sp. BTAi1 (CP000494)
uncultured aquifer clone D10gl104 (EU926498) 

uncultured groundwater bacterium (EU362740) 
uncultured bacterium clone ng5L616 (AY773068) 

Thiocapsa roseopersicina DSM217 (EU622785) 
Thioalkalivibrio denitrificans ALJD (AY914807)

red-like cbbL Cupria- 
vidus necator H16 (U20584) 

0.10 

cluster I

cluster II
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A second, smaller cluster (cluster II) comprises only four sequences, which are most closely 

related to the sequence of Thiobacillus sp. (M34536, 85.3-86.3%). Only two sequences 

appear somewhere else in the tree, one having a cbbL sequence closely related to a sequence 

of an uncultured groundwater bacterium (AY09937; 87.0%), the other one closely related to 

the cbbL sequence of Thioalkalivibrio denitrificans ALJD (AY914807; 80.4%). 

 

Red-like cbbL clone libraries and sequences 

PCR products about 820 bp long indicated the presence of red-like cbbL genes in DNA 

extracts of sediment samples of D10 and D12. The two red-like cbbL clone libraries (D10rl 

and D12rl) contained a total of 163 clones having right sized insert. For RFLP analysis the 

enzyme BsaI (Fermentas) was used, resulting in 19 different RFLP patterns. Only four of 

them could be found in both depths. Of each RFLP pattern at least one clone was sequenced, 

2-3 clones of cbbL sequences with RFLP patterns of high abundance, in total 52 clones of the 

two clone libraries. The sequence similarities ranged from being identical to 74.5% sequence 

similarity. The sequences formed two clusters; seven sequences appeared somewhere else in 

the phylogenetic tree (Fig. 3.3). Sequences of cluster I were most closely related to the red-

like cbbL sequence of the nitrogen fixing α-Proteobacterium Rhizobium radiobacter 

(AY572468; 82.1-88.4%). Sequences of cluster II exhibited the closest relation to the red-like 

cbbL sequence of an uncultivated forest soil proteobacterium (AY422906; 80.3-86.2%). 

Depth-specific clustering could not be observed (Fig. 3.3). 
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Fig. 3.3: Phylogenetic tree of red-like cbbL genes. A consensus tree was constructed by neighbour-

joining, maximum parsimony and maximum likelihood methods. As outgroup for tree calculations the 

green-like cbbL sequence of Nitrobacter vulgaris T3 (L22885) was used. All environmental clone 

sequences are shown in bold. Scale bar represents 0.10 changes per nucleotide position. 

 

 

Rhizobium radiobacter DSM 30147 (AY572468)
Ensifer fredii ATCC 35423 (AY572469) 
Alcaligenes sp. DSM 30128 (AY572465) 

Ochrobactrum anthropi DSM 6882 (AY572473)
Ensifer terangae DSM 11282 (AY572470)

Ensifer medicae WSM419 (AF211846)
uncultured aquifer clone D10rl44 (EU926513)

uncultured aquifer clone D10rl05 (EU926508)
Rhodobacter azotoformans IFO 16436 (AB062779)

Rhodobacter sphaeroides (M64624) 
uncultured aquifer clone D12rl14 (EU926526)

uncultured aquifer clone D12rl53 (EU926531)
uncultured aquifer clone D12rl32 (EU926528)

Mesorhizobium sp. NMB1 (AY422051) 
Stappia sp. CV812 530 (AY422056) 

Labrenzia aggregata (AY422055) 
Stappia stellulata (AY422054) 
Burkholderia sp. JS150 (AY422049) 

Xanthobacter flavus H4-14 (X17252) 
Xanthobacter autotrophicus DSM 432 (AY572472) 

Xanthobacter agilis DSM 3770 (AY572471) 
Xanthobacter sp. COX (AY422057)

Cupriavidus necator megaplasmid pHG1 (U20585)
Cupriavidus necator H16 (U20584) 

Cupriavidus necator (M17744) 
Pelomonas puraquae MG63 (AM501469)

Pelomonas saccharophila (AM501465)
Alcaligenes faecalis DSM 13644 (AY572464)

uncultured soil bacterium R47c (AY572168)
uncultured aquifer clone D10rl35 (EU926512)

uncultured groundwater bacterium V4C23 (EU362752)
uncultured groundwater bacterium S6C38 (EU362762)

uncultured aquifer clone D10rl54 (EU926515)
uncultured aquifer clone D12rl40 (EU926529)

uncultured aquifer clone D10rl01 (EU926506)
uncultured aquifer clone D12rl13 (EU926525)

uncultured aquifer clone D10rl18 (EU926510) 
uncultured aquifer clone D12rl52 (EU926530) 
uncultured aquifer clone D12rl83 (EU926532) 

uncultured aquifer clone D10rl60 (EU926516) 
uncultured aquifer clone D10rl21 (EU926511) 

uncultured aquifer clone D10rl04 (EU926507) 
uncultured aquifer clone D12rl23 (EU926527) 

uncultured soil proteobacterium F34 (AY422906) 
Nitrosospira sp. O13 (AF426422) 

Nitrosospira sp. 40KI (AF426428) 
uncultured groundwater bacterium S6C37 (EU362763)

uncultured deep-sea prokaryote (AB181167)
Burkholderia sp. LUP (AY422050) 

Rhizobium leguminosarum ATCC 53912 (AY572467)
Bradyrhizobium sp. CPP (AY422047) 

Bradyrhizobium japonicum (AF041820)
Oligotropha carboxidovorans OM5 (AY422052)

uncultured aquifer clone D10rl07 (EU926509)
uncultured groundwater bacterium L4C16 (EU362814)
uncultured aquifer clone D10rl48 (EU926514)

marine manganese oxidizing bacterium (L32182)
Azospirillum lipoferum B2 (DQ787336) 
Methylocapsa acidiphila B2 (AY450590) 

Aminobacter sp. COX (AY422046)
Rhodopseudomonas palustris DCP3 (AF355196) 

Mycobacterium sp. DSM 3803 (cbbL-2) (EU026272) 
Mycobacterium sp. DSM 3803 (cbbL-1) (EU026270)

uncultured proteobacterium CR32 (AY422928) green-like cbbL Nitro- 
bacter vulgaris T3 (L22885) 

0.10 

cluster I

cluster II
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CbbM clone libraries and sequences 

PCR products of correct size (about 505 bp) obtained using the cbbM specific primers were 

selected to build clone libraries from D10, D12, D15, D24 and D27 samples (D10M, D12M, 

D15M, D24M and D27M). For RFLP analysis 244 clones with the right-sized inserts were 

digested with the restriction enzymes RsaI and MspI. 32 different RFLP patterns were found 

in all libraries, only two patterns could be found in every clone library. The highest RFLP 

pattern diversity could be found in D15 (15 patterns), the lowest in D27 (8 patterns). Of each 

RFLP pattern at least one clone was sequenced, but 2-3 clones of RFLP patterns with high 

abundance. As in the green- and red-like cbbL clones libraries, sequence analysis proved that 

sequences showing the same RFLP pattern were identical. All 35 clones of the cbbM library 

of D24 were sequenced. In total, 109 cbbM clones from the different samples were analysed. 

The sequence similarities ranged between 51%-100%. A phylogenetic tree for cbbM 

nucleotide sequences (Fig. 3.4) shows that the sediment clone sequences are distributed all 

over the tree without clustering and without any depth related distribution.  
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Fig. 3.4:  Phylogenetic tree of cbbM genes. A consensus tree was constructed by neighbour-joining, 

maximum parsimony and maximum likelihood methods. As outgroup for tree calculations the green-

like cbbL sequence of Nitrobacter vulgaris T3 (L22885) was used. All environmental clone sequences 

are shown in bold; the cbbM sequence of the isolates D15HSO, D24HN and Thiobacillus thiophilus 

D24TNT are shown in bold and shaded in grey. Scale bar represents 0.10 changes per nucleotide 

position. 

uncultured deep-sea bacterium ORII-6 (AB040524)
uncultured aquifer clone D12M33 (EU926538)

uncultured aquifer clone D24M03 (EU926564) 
uncultured aquifer clone D24M20 (EU926568) 

uncultured aquifer clone D24M15 (EU926566) 
uncultured aquifer clone D15M20 (EU926550)

uncultured groundwater bacterium S6C2 (EU362816)
uncultured aquifer clone D10M33 (EU926523) 

uncultured aquifer clone D12M30 (EU932685) 
uncultured aquifer clone D15M21 (EU926551) 

Halothiobacillus sp. RA13 (AY099399) 
Halothiobacillus neapolitanus (AF046932) 

uncultured aquifer clone D10M01 (EU926517)
uncultured aquifer clone D27M55 (EU926557)

uncultured aquifer clone D12M11 (EU926534) 
Ancylobacter sp. (EU683625)
Thiobacillus sp. (EU683626)

uncultured aquifer clone D10M28 (EU926554) 
uncultured aquifer clone D12M02 (EU926533) 

uncultured aquifer clone D12M47 (EU926539) 
uncultured aquifer clone D12M12 (EU926535) 
Thiobacillus thiophilus D24TNT (EU746411) 
uncultured aquifer clone D10M22 (EU926521) 
uncultured aquifer clone D15M16 (EU926548) 

uncultured aquifer clone D24M29 (EU926569) 
uncultured aquifer clone D10M08 (EU926520) 

uncultured aquifer clone D24M16 (EU926567) 
uncultured aquifer clone D15M35 (EU926553) 
Rhodoferax ferrireducens T118 (CP000267) 

uncultured aquifer clone D27M59 (EU926558) 
uncultured groundwater bacterium L4C5 (EU362830) 

uncultured aquifer clone D12M64 (EU926541) 
uncultured groundwater bacterium ZZ15C8II (AY099398) 

uncultured aquifer clone D10M06 (EU926519) 
uncultured aquifer clone D12M60 (EU926540) 

uncultured aquifer clone D15M18 (EU926549) 

 
  uncultured groundwater bacterium P3C13 (EU362844) 

uncultured groundwater bacterium RA13C6II (AY099395) 
uncultured aquifer clone D15M28 (EU926552) 

uncultured groundwater bacterium RA13C10II (AY099396) 
uncultured groundwater bacterium L4C14 (EU362835) 

Thiobacillus denitrificans (L37437)
Thiobacillus denitrificans ATCC 25259 (NC 007404) 

uncultured aquifer clone D10M05 (EU926518) 
uncultured aquifer clone D12M15 (EU926536) 

Thiomonas intermedia K12 (AF012127) 
uncultured aquifer clone D15M14 (EU926547) 

uncultured groundwater bacterium ZZ15C5II (AY099397) 
uncultured prokaryote FII_C3 (AY431001) 

groundwater isolate D15HSO (EU926571)
uncultured deep-sea autotrophic bacterium JTII-6 (AB040518)

groundwater isolate D24HN (EU926496)
uncultured groundwater bacterium V4C1 (EU362821)  uncultured aquifer clone D24M34 (EU926570)

Polaromonas naphthalenivorans CJ2 (CP000529)
Leptothrix cholodnii SP-6 (CP001013)

uncultured aquifer clone D10M29 (EU926522)
Hydrogenovibrio marinus MH-110 (AB122071)

uncultured deep-sea prokaryote Fryer(II)-6 (AB206049) 
uncultured aquifer clone D24M14 (EU926565) 

uncultured aquifer clone D12M29 (EU926537)
uncultured groundwater bacterium S6C10 (EU362820) 

Rhodopseudomonas palustris BIS 6 (AF416666)
Magnetospirillum magnetotactic (AY450592)

Rhodospirillum rubrum 1R (AY450591)
uncultured deep-sea autotrophic bacterium ORII-1 (AB040519)

uncultured deep-sea autotrophic bacterium JTII-4 (AB040516)
green-like cbbL 
Nitrobacter vulgaris 
T3 (L22885) 0.10 
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3.3.2 13C –PLFA 

From the two sediment cages containing 13C-labelled bicarbonate dedicated for microbial 

colonization, which were incubated at 6.5 m (highly contaminated zone) and 11 m (zone with 

minor contamination) in a fully screened monitoring well, the tube exposed at 11 m could 

unfortunately not be retrieved from the aquifer. Thus PLFA analysis for the detection of in 

situ CO2 fixation could only be performed on sediment incubated close to the groundwater 

table (Fig. 3.1). Even though total bacterial counts in groundwater and attached to the 

sediment accounted for 1.2*106 cells cm-3 and about 2.4*107 cells cm-3, respectively, the 

amount of detectable PLFA in the colonized sediment was rather low with about 5 nmol*g-1 

dry weight. Seven saturated fatty acids and three monounsaturated fatty acids could be found 

(Table 3.6), whereas no polyunsaturated fatty acids could be detected. Distinct 13C-labelling 

was only found in branched 16:0 and monounsaturated 16:1ω7, both 16 chained fatty acids 

which are indicative for gram-positive bacteria as well as for sulfate-reducing gram-negative 

bacteria (O'Leary and Wilkinson, 1988; Zelles, 1999a). These fatty acids were found enriched 

by approx. 2 ‰δ13C compared to non-spiked control samples. 

 

Table 3.6: PLFA analysis 

PLFA1 Microbial groups 13C label Reference 

SATFA2 
br13:0 
 
i15:0  
 
a15:0 
 
br16:0 
 
 
cy17:0 
 
br18:0 
 
 
cy19:0 

 
bacterial origin, gram +, - 
 
bacterial origin, gram - 
 
bacterial origin, gram +  
 
bacterial origin, gram +, 
sulphate-reducing gram - 
 
bacterial origin, gram - 
 
bacterial origin, gram +, 
sulphate-reducing gram -  
 
bacterial origin, gram - 

 
- 
 
- 
 
- 
 

+ 
 
 
- 
 
- 
 
 
- 

 
Zelles (1999b; 1999a) 
 
Frostegard & Baath (1996)  
 
Frostegard & Baath (1996) 
 
Zelles (1999b; 1999a); O’Leary & 
Wilkinson (1988) 
 
Zelles (1999b); Frostegard & Baath (1996)  
 
Zelles (1999b; 1999a)  
 
 
Zelles (1999b); Frostegard & Baath (1996) 

MUFA 3  
16:1ω7 
  
18:1ω7 & 18:1ω9 
(mixpeak) 

 
bacterial origin, gram - 
 
bacterial origin, gram - 

 
+ 
 

(-) 
 

 
Kaur et al. (2005); Zelles (1999a) 
 
Lu et al. (2007) 

1 phospholipid fatty acids 
2 saturated fatty acids 
3 monounsaturated fatty acids 
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3.3.3 FISH-MAR 

Analysis of water samples from 6.5 m and 11 m depth, corresponding to the depths of 

sediment exposure, exhibited good fluorescence signals with group specific probes selected. 

Both depths showed about 40% of the EUBI labelled cells to be Gam42a labelled, a hint for γ-

Proteobacteria possibly being important in this aquifer. However, total cell counts were found 

considerably low with 1.2 * 106 and 4.4 * 105 cells mL-1 in 6.5m and 11m, respectively. In 

sediment samples, low cell numbers along with the fluorescence of non-bacterial particles 

residual after detachment strongly interfered with fluorescent signals of the probes, 

anticipating its reliable analysis. Incubation of samples with 14C bicarbonate and 

microautoradiographic analysis did not show the appearance of silver grains doubtless 

associated with individual cells hinting at 14CO2 fixation. Preceding tests showed that the two 

probes designed for the detection of strain D24TN cells, worked well resulting in bright 

fluorescence if hybridisation buffers with up to 60% formamide were used. However, probe 

D24TN_443 was not selectively targeting strain D24TN but also tagged closely related 

species (Thiobacillus denitrificans), independent from the used formamide concentration, as 

tests using Thiobacillus denitrificans, Pseudomonas putida and D24TNT showed. 

Unfortunately, our FISH analysis revealed only a few cells weakly fluorescing in water 

samples from 6.5 m, but no signal at all for the 11m samples.  

 

3.3.4 Chemolithoautotrophic Isolates 

Bacteria were enriched from different depths (D10, D15, and D24) under various 

chemolithoautotrophic conditions (Table 3.3). During enrichment and isolation it became 

evident that some cultures grew much better in medium with increased ionic strength. Apart 

from this, the growth of most enrichment cultures stopped after several transfers or during 

dilution series for purification with few exceptions. From D15 one culture could be enriched 

and sustained under acetogenic/methanogenic conditions. Additionally, a sulphate-reducing 

strain (D15HSO) was isolated and purified. The latter, after direct sequencing of the 16S 

rRNA sequence, showed a close relation to Thiobacillus sp. strain Q (99.6%; AJ289884). It 

also proved positive for RubisCO form II (cbbM) with 87.9% relation to the cbbM sequence 

of an uncultured groundwater bacterium (EU362821). Furthermore, we were able to isolate 

and purify two more strains from D24. Strain D24HN was obtained under denitrifying 

conditions, a facultative chemolithoautotroph exhibiting faster growth under heterotrophic 

than under autotrophic conditions. Direct sequencing revealed a close relatedness to the 16S 

of an uncultured β-Proteobacterium (98.9%; EF562548) and Ferribacterium limneticum strain 
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cda-1 (98.9%; Y17060). It proved positive for RubisCO form I green-like (cbbLG) and 

RubisCO form II (cbbM). Strain D24TNT is a thiosulfate-oxidizer which belongs to the genus 

Thiobacillus, being closely related to T. denitrificans (97.6%) and T. thioparus (97.5%) (for 

further details see Chapter 2).  

 

3.3.5 Marker genes and enzymes of isolate D24TNT – CO2 fixation potential and activity 

Strain D24TNT, isolated under thiosulfate oxidizing conditions, was further analyzed. It 

proved to be a facultative anaerobic, obligate chemolithoautotrophic organism. Oxygen and 

nitrate were used as electron acceptor; from all tested electron donors only thiosulfate and 

tetrathionate could be utilized. When the culture was transferred in medium containing 

organic carbon but no thiosulfate, the cells could use organic carbon neither as carbon nor as 

electron source. The strain was described as a new species with the scientific name 

Thiobacillus thiophilus D24TNT (DSM19892 = JCM 15047) (for a detailed description of 

D24TNTsee Chapter 2). When testing D24TNT for CO2 fixation potential via the Calvin cycle 

and the reductive TCA cycle, it proved positive for the functional marker genes RubisCO 

form I (green-like cbbL; 91.9% sequence similarity to the green-like cbbL sequence of 

Thiobacillus thioparus DSM 505; DQ390449) and RubisCO form II (cbbM; 88.4% sequence 

similarity to the cbbM sequence of Halothiobacillus sp. RA13; AY099399); the ATP citrate 

lyase genes could not be detected. 

To find out if the isolate actually uses the Calvin cycle for CO2 fixation RT-PCR was applied 

to detect transcription of the cbb genes. Both, aerobically as well as anaerobically grown cells 

showed to transcribe the cbbM and green-like cbbL genes. Furthermore, cell extracts of 

D24TNT grown anaerobically and aerobically were tested for the occurrence of autotrophic 

CO2 fixation via the Calvin cycle by enzyme activity measurements of RubisCO, the 

carboxylating enzyme of this cycle. Additionally, cell extracts were also tested for the activity 

of ATP citrate lyase, the citrate cleaving enzyme of the reductive TCA cycle. Malate 

dehydrogenase and isocitrate dehydrogenase activity was also tested. These enzymes are not 

only important enzymes in the reductive TCA cycle but also occur in the oxidative citric acid 

cycle or in a horseshoe-type citric acid cycle for biosynthetic purposes. The activity of both 

enzymes could be measured in cell extracts of aerobically and anaerobically grown cells, with 

isocitrate dehydrogenase clearly NADP+ dependent (specific activity: 102 and 50 nmol min-1 

(mg cell protein)-1, respectively). The specific activity of NADH dependent malate 

dehydrogenase was 17.3 and 22.0 nmol min-1 (mg cell protein)-1 for aerobically and 

anaerobically grown cells. ATP citrate lyase activity could not be detected, neither with nor 



3. Chemolithoautotrophy in an organically polluted aquifer                                     Results 

57 

without addition of exogenous malate dehydrogenase. RubisCO activity was detected in cell 

extracts from both aerobically and anaerobically grown cells. The specific activity of 

RubisCO was 11.2 nmol min-1 (mg cell protein)-1 in the aerobically cultured cells and 2.0 

nmol min-1 (mg cell protein)-1 in anaerobically grown cells of D24TNT (Table 3.5).  

 

Table 3.5: Specific activities [nmol min-1 (mg cell protein)-1] of key enzymes of autotrophic CO2 

fixation pathways in D24TNT 

Enzyme activity 
D24TNT 

aerobically 
grown 

D24TNT 
anaerobically 

grown 

Assay temperature (°C) 

Calvin cycle 
Ribulose 1,5-bisphosphate 
carboxylase 
 
Reductive TCA cycle 
ATP citrate lyase 
 
Reductive/oxidative TCA cycle 
Isocitrate dehydrogenase 
   NAD+ 
   NADP+ 
Malate dehydrogenase 
   NADH 
   NADPH 

25 

 
11.2 

 
 
 
- 
 
 
 
- 

102.2 
 

17.3 
- 

25 

 
2.0 

 
 
 
- 
 
 
 
- 

50.0 
 

22.0 
- 

-, no activity detected; nd, not determined 
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3.4 Discussion 

Aquifers are regarded as heterotrophic systems dependent on organic input from the surface. 

In terms of CO2 this means the saturated subsurface is regarded as a source rather than a sink. 

Heterotrophic microbial communities in oligotrophic groundwater ecosystems often seem to 

be limited by organic carbon. At several spots investigated the DOC concentration in water is 

found constant with depth from several meters below the groundwater table to several 

hundreds of meters further down. Hence one may speculate on a significant role of 

chemolithoautotrophy to support growth of indigenous communities and maintenance of 

microbial biomass. Besides the very oligotrophic systems, aquifers impacted by high loads of 

organics such as petroleum hydrocarbons are another extreme. In such cases, organic carbon 

is present in surplus but rather persistent to biodegradation. These environments, however, 

also contain the reduced ingredients (e.g. H2, NH4
+, NO2

-, S2O3
2-, H2S, S0, Fe2+, Mn2+, CO, 

CH4, CH3OH) for a number of chemotrophic processes to gain energy for growth of 

microorganisms on CO2 as carbon source (Alfreider et al., 2003). Thus autotrophic CO2 

fixation may substantially contribute to the overall carbon flow in subsurface environments.  

Apart from that, it was shown that to a certain extent CO2 is required for heterotrophic 

growth, it is estimated that CO2 fixation by anaplerotic reactions during heterotrophic growth 

accounts for up to 10% of cell carbon (Krebs, 1941; Perez and Matin, 1982; Sonntag et al., 

1995). Thiobacillus sp., for example, was shown to incorporate more than 10% of the cell 

carbon from CO2 during mixotrophic as well as heterotrophic growth (Perez and Matin, 

1982). Moreover, during carboxylation reactions, recently shown to be performed also by 

aerobic Rhodococcus and Xanthobacter species (Ensign et al., 1998; Clark and Ensign, 1999), 

CO2 substantially contribute to biomass formation. In soils, CO2 fixation was shown to be of 

relevance accounting for 2-5% of the net respiration (Miltner et al., 2005), mainly attributed  

to heterotrophic microbes, as was indicated by a linear correlation between respiration and 

CO2 fixation. In organically polluted aquifers CO2 fixation thus may be suggested one 

additional way for mixotrophic and heterotrophic bacteria to get rid of electrons. So far, 

information on the role of autotrophic, mixotrophic and heterotrophic CO2 fixation in 

subsurface ecosystems is scarce (Alfreider et al., 2003; Miltner et al., 2005; Selesi et al., 

2005).  
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3.4.1 CO2 fixation potential - Calvin cycle and reductive TCA cycle 

The occurrence and high diversity of the RubisCO genes was already demonstrated in 

different systems: in agricultural soils (Selesi et al., 2005; Tolli and King, 2005; Selesi et al., 

2007), in pine forest soil (Tolli and King, 2005), in a hypersaline anoxic basin (van der 

Wielen, 2006), in deep-sea habitats (Elsaied and Naganuma, 2001) and in intertidal marine 

and littoral lake sediments (Nigro and King, 2007), to list only a few. To our knowledge only 

one study exists so far for aquifers which tackled the occurrence a CO2 fixation potential 

indicated by the presence of RubisCO genes (Alfreider et al., 2003). In those contaminated, 

mostly anoxic aquifers a high diversity of cbbL sequences was found, some of them closely 

related to cbbL sequences of Halothiobacillus, Thiobacillus, Acidithiobacillus, 

Hydrogenophaga and Nitrosomonas, but also numerous only slightly related to already 

known RubisCO sequences, making the assessment of the physiology and ecological role of 

the potential autotrophs more complicated (Alfreider et al., 2003). Retrieved cbbM clone 

sequences showed less diversity and were mostly closely related to sequences of the genera 

Halothiobacillus and Thiobacillus. Our study in a tar oil contaminated aquifer revealed the 

large subunit of RubisCO form I and form II being detectable close to the contaminant plume 

core as well as in areas less contaminated. The diversity of the obtained green-like cbbL 

sequences was quite low with most sequences closely related to the cbbL sequences of 

Thiobacillus thioparus (DQ390449) and Thiobacillus sp. (M34536). The retrieved red-like 

cbbL clone sequences showed a similar low diversity, with most clone sequences being 

similar to cbbLR sequences of the genus Nitrosospira (AF426428) and Rhizobium 

radiobacter (AY572468).  

Interestingly, the red-like cbbL genes could only be detected in sediment samples deriving 

from the plume core (D10 and D12). This might be a hint that organisms harbouring those 

genes are less sensitive to the contaminants present in the aquifer or are even able to use those 

organic carbon compounds as carbon and/or energy sources. Some of the retrieved red-like 

cbbL sequences were relatively close related (82.3-88.7% sequence similarity) to the cbbLR 

sequences of Ochrobactrum anthropi (AY572473), Burkholderia sp. (AY422049; 

AY422050) (Fig. 3.3), the 16S rRNA gene sequences of bacteria belonging to those genera 

have already been detected in petroleum oil in stockpiles (Yoshida et al., 2005). 

In contrast, cbbM sequences were quite diverse without forming cluster but being dispersed 

over the phylogenetic tree (Fig. 3.2), showing relatedness to cbbM sequences of various 

bacterial genera, e.g. Halothiobacillus, Thiobacillus, Polaromonas and Leptothrix. The large 

subunit gene of RubisCO is suited to phylogenetic analysis (Watson and Tabita, 1997), but 
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since there is a discrepancy between phylogenies based on cbb genes and based on the 16S 

rRNA gene, probably due to horizontal gene transfer of cbbL, sequences showing a very close 

relatedness or even identical sequences not necessarily have to derive from the same genera or 

organisms (Delwiche and Palmer, 1996; Alfreider et al., 2003; Selesi et al., 2005). 

Consequently, the low diversity of the retrieved green- and red-like cbbL sequences does not 

automatically mean a low diversity of the bacterial community in total. We may also have to 

consider the contribution of PCR biases by unequal accessibilities of target sequences, 

unequal efficiencies during amplification of related sequences or interferences due to 

contaminants to the low diversity observed (Wawrik et al., 2002). Since only cbb sequences 

available in the databases could be used for the construction of cbbL and cbbM primers, 

distantly related cbbL and cbbM sequences might not be detected by those primers.  

The abundance and diversity of the detected cbb genes hint at a significant potential for CO2 

fixation via the Calvin cycle within the aquifers microbial communities. However DNA-

diversity data only is not proving the actual carbon fixation activity. Even though CO2 

fixation is this cycle’s main function, it is also used as an important electron sink during 

photoheterotrophic growth of phototrophs (Wang et al., 1993; Kusian and Bowien, 1997), 

making it possible, that under certain conditions some of the chemotrophs harbouring cbb 

genes might similarly use the cycle for electron-dissipating (Kusian and Bowien, 1997). 

Moreover, some or even all of the microorganisms might just still harbour the cbb genes as 

evolutionary relicts, without taking use of it.  

The access to functional genes involved in CO2 fixation via the reductive TCA cycle allow to 

test an alternative pathway, so far only found in anaerobic and microaerobic microorganisms, 

i.e. members of the Chlorobiaceae (Evans et al., 1966), ε-Proteobacteria (Hügler et al., 2005), 

Aquificales (Beh et al., 1993; Hügler et al., 2007) or the δ-Proteobacterium Desulfobacter 

hydrogenophilus (Schauder et al., 1987). The acl genes, encoding ATP citrate lyase, one of 

the key enzymes of this cycle, have already been detected in microorganisms inhabiting deep-

sea hydrothermal vent environments (Campbell and Cary, 2004; Voordeckers et al., 2008). 

Since the investigated aquifer was anoxic, we tried to detect microorganisms with the 

potential to use this cycle. However, with the primer sets applied in this study, detection of 

the functional genes was not successful in any of the investigated samples. Besides the 

possibility that there were no organisms present harbouring those genes, the result might also 

be caused by the restricted specificity of the primer sets. 
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3.4.2 CO2 fixation activity in situ 

To further prove or disprove the occurrence and importance of autotrophic CO2 fixation in 

this aquifer, measurements of actual autotrophic activity in water and sediment samples are 

needed. This is not an easy task, as in the subsurface one is confronted with relative low cell 

numbers, low metabolic activities, and the difficult accessibility of the system (Griebler and 

Lueders, 2008). This point was subsequently addressed by enrichment of several bacterial 

strains, the exposure of 13C-bicarbonate and phospholipid fatty acid (PLFA) analysis and 

fluorescence in situ hybridization combined with microautoradiography (FISH-MAR).  
13C-labelled CaCO3 was exposed together with sterile sediment to prove CO2-fixation activity 

in situ. After two months of incubation in groundwater, phospholipid fatty acids were 

extracted from the microbial biomass of the colonized sediments. The PLFA approach is well 

suitable for estimating the amount of active microbial biomass and analyzing the composition 

of microbial communities in environmental samples (Ben-David et al., 2004). This approach 

is based on its great structural diversity, coupled with high biological specificity (Zelles, 

1999b). Lipid profiles can thus provide insight into the microbial community structure based 

on the relative abundance of certain PLFAs which considerably differ among specific groups. 
13C-labelled bacterial PLFAs thus not only confirm the presence of an active microbial 

community, but enables to distinguish the active members of the microbial community 

(Evershed et al., 2006). Even though cell counts suggested a successful colonization of the 

exposed sediments, PFLA concentration was low. In total seven saturated fatty acids and 

three monounsaturated fatty acids could be detected in our samples. Both detected 16-C fatty 

acids showed an incorporation of 13C-carbon derived from 13C-CaCO3. Those PLFAs are 

indicative for gram-positive bacteria as well as for sulfate-reducing gram-negative bacteria. 

Chemolithoautotrophs are distributed in both of these groups (Aggag and Schlegel, 1973; 

Moussard et al., 2004; Zavarzina et al., 2007). Interestingly, sulfate reduction is not only most 

prominent in the plume core (Anneser et al., 2008), additionally, 16S rRNA gene sequences 

of sulfate-reducers have also been detected in the aquifer (Winderl et al., 2007). CO2 fixation 

in some gram-positive autotrophic bacteria is performed via the reductive Acetyl-CoA 

pathway (Thauer, 2007), therefore the detection of 13C-labelled bacterial PLFAs indicative for 

gram-positive bacteria might be a hint for the occurrence of the reductive Acetyl-CoA 

pathway in this aquifer. The incorporation of 13C-label into the PFLAs is a direct hint for 

bacterial CO2-uptake activity in the aquifer.  

While FISH, based on small subunit rRNA sequence analysis, allows the phylogenetic 

identification and in situ detection of individual microbial cells (Amann et al., 1995), the 
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microautoradiography potentially reveals an idea of growth and function of microorganisms 

directly in nature (Brock and Brock, 1966). Attempts to detect actual autotrophic activity 

applying fluorescence in situ hybridization combined with microautoradiography failed 

(FISH-MAR; Lee et al. (1999)). The good results from the FISH analysis indicate that 

bacteria in this aquifer were considerably active, but a detection of radiolabelled cells was not 

possible. There are several reasons possible to be responsible, including insufficient 

concentration of 14C-labelled bicarbonate, unfavourable conditions during incubation of 

samples in the lab and an overall low CO2 fixation activity. 

 

3.4.3 Chemolithoautotrophic isolates and isolate Thiobacillus thiophilus D24TNT 

New chemolithoautotrophic organisms were successfully enriched from the freshly collected 

sediment samples, with three pure cultures isolated so far. Although the enrichments were 

obtained using media with low ionic strength (to mimic groundwater), some of the cultures 

regained activity after having stopped growing (i.e. D15HCO) or subsequently grew faster 

than before (D24TN, D15HSO) when transferred to medium with higher salt concentrations. 

Two of the three isolates belong to the genus Thiobacillus. Moreover, most of the retrieved 

cbbLG clone sequences also showed a high relatedness to the cbbLG sequences of Thiobacilli. 

This is in accordance with the results of Winderl et al. (2008) who found Thiobacillus related 

clones to be prominent, i.e. 6 % clone frequency in bacterial 16S rRNA gene clone libraries, 

in two depths of the investigated aquifer (6.3 m bls = capillary fringe and 11.20 m = less 

contaminated zone), including the depth from which the isolates were obtained. Two species 

of Thiobacillus, T. denitrificans (Baker et al., 1998; Beller et al., 2006) and T. thiophilus 

D24TNT (Chapter 2), were shown to be able to fix CO2 via the Calvin cycle under anoxic 

conditions, using nitrate as electron acceptor and sulfide and/or thiosulfate as electron donor. 

Transcription of the cbbM and green-like cbbL genes, as well as the synthesis of RubisCO via 

enzyme tests could be proved for the later strain (Chapter 2). In the aquifer investigated, 

nitrate was repeatedly detected at low concentration, while sulphide was prominent (Anneser 

et al., 2008) and indication for the presence of thiosulfate was gained (F. Einsiedl, pers. 

comm.). In summary, these lines of evidence may be quoted a hint that Thiobacillus is 

abundant in certain areas of the aquifer and may there contribute to CO2 fixation. In a 

pioneering study, Alfreider et al. (2003) detected and isolated Thiobacilli related bacteria in a 

BTEX (Benzene, Toluene, Ethylbenzene and Xylene isomers) contaminated aquifer. 

Furthermore, numerous cbb sequences related to cbb sequences of Thiobacilli could be found 

(Alfreider et al., 2003).   
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Besides the potential for autotrophic CO2 fixation first evidence for the importance of this 

process in situ could be collected. Lines of evidence include, (i) the isolation of a new strain, 

i.e. T. thiophilus D24TNT, carrying cbbM and green-like cbbL genes which both were 

transcribed, (ii) presence of Thiobacilli in the aquifer, (iii) incorporation of 13C-label from 

carbonate into PLFAs of bacteria indigenous to the aquifer.  
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4. Detection of autotrophic potential and enrichment of new 

chemolithoautotrophic microorganisms at the Test Field Scheyern 
 

4.1 Introduction  

At first the subsurface was believed to be a mainly abiotic system, where living organisms are 

not present. It seemed unlikely that microorganisms were able to inhabit such seemingly 

barren environment. For a long period, microorganisms found in subsurface samples were 

thought to be surface contaminants deriving from drilling and sampling processes or being 

transported along with water flow. However, many studies proved most subsurface 

ecosystems being full of life, a fact well accepted nowadays (Beloin et al., 1988; Fliermans 

and Balkwill, 1989; Chapelle and Lovley, 1990; Phelps et al., 1994; Fredrickson and Onstott, 

1996). Investigations further showed that microorganisms are not just inhabiting those 

environments but are actively shaping environmental conditions such as mineralogy and 

groundwater composition by conducting and mediating a wide range of redox reactions 

(Phelps et al., 1994; Lovley and Chapelle, 1995; Pedersen, 1997; Ehrlich, 1998) and therefore 

play the most important role in biogeochemical cycles of those habitats (Labrenz et al., 2005). 

Aquatic and near-surface terrestrial environments have already been well investigated for 

quite some time. In contrast to this, our understanding of the ecology of deeper subsurface 

microorganisms is a relatively recent development (Jones et al., 1989; Chandler et al., 1998) 

and there still exists comparatively little knowledge about subsurface organisms in general 

and the ecosystems they live in (Alfreider et al., 1997). However, due to intensifying usage of 

groundwater and an increasing number of sites significantly contaminated, it became more 

important over the years to gain new and more detailed information about groundwater 

ecosystems, processes and the organisms living within (Ghiorse, 1997). Thus, during the last 

years several studies dealt with investigations of microbial communities in pristine and 

contaminated subsurface environments (Chandler et al., 1998; Fredrickson et al., 2004; 

Nazina et al., 2004; North et al., 2004; Tiago et al., 2004; Fields et al., 2005; Nedelkova, 

2005).  

Subsurface systems are usually oligotrophic environments. Normally, there is no direct plant 

and animal input from the surface (Brockman and Murray, 1997) and most dissolved organic 

carbon (DOC) and organic materials are in general already reduced significantly within the 

soil and unsaturated zone before reaching the primary aquifer. Additionally the total absence 

of light leaves all subsurface systems entirely dependent on chemical energy sources 

(Goldscheider et al., 2006). On one hand, those conditions may pose major limitations for 
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heterotrophic microorganisms. On the other hand, groundwater ecosystems are often offering 

all necessary components for chemolithoautotrophic bacterial communities, i.e. electron 

donors like molecular hydrogen, reduced nitrogen (NO2
- and NH4

+), sulfur (e.g. S2O3
2- and 

H2S), metals (e.g. Fe2+ and Mn2+) or carbon compounds (e.g. CO and CH4) and electron 

acceptors like oxygen, nitrate or sulfate are available as well as plenty of inorganic carbon due 

to biological and geological processes (Shively et al., 1998; Labrenz et al., 2005).  

In recent years an increasing interest in autotrophic microorganisms in the subsurface was 

developed (Alfreider et al., 2003) and the occurrence of a number of autotrophic processes 

(iron reduction, sulphide oxidation) in the subsurface was proven (Pedersen, 1997; Stevens, 

1997). Even the existence of surface independent biospheres based on chemolithoautotrophy 

has been considered (Pedersen, 1997; Stevens, 1997; Takai et al., 2004).  

The basis for chemolithoautotrophy is energy and inorganic carbon. The energy is gained in 

redox reactions as already mentioned above. For the fixation of inorganic carbon it takes 

special pathways. So far there are five CO2 fixation pathways known: The Calvin-Benson-

Bassham cycle (Calvin cycle) (Bassham and Calvin, 1957), the reductive tricarboxylic acid 

cycle (Evans et al., 1966), the reductive Acetyl CoA pathway (Wood et al., 1986),  the 3-

hydroxypropionate cycle (Holo, 1989) and the 3-hydroxypropionate/4-hydroxybutyrate 

pathway (Berg et al., 2007). And only recently evidence was obtained for a new, sixth 

pathway (Huber et al., 2008). The Calvin cycle seems to be the most abundant and important 

cycle (Fuchs et al., 1987; Selesi, 2003), which means at the same time that most information 

is available for this cycle. In this cycle, ribulose-1,5 bisphosphate carboxylase/oxygenase 

(RubisCO) is the only enzyme responsible for the CO2 fixation. All genes exclusively 

encoding Calvin cycle enzymes are named cbb genes (Tabita et al., 1992), cbbL standing for 

the gene encoding the large subunit of form I RubisCO and cbbM for the gene encoding the 

large subunit of form II RubisCO (Alfreider et al., 2003). There are four natural forms of 

RubisCO known which differ in structure, catalytic property and O2 sensitivity (Tabita, 1988; 

Selesi et al., 2005). Form I RubisCO is the most abundant one. It is composed of eight large 

and eight small subunits (L8S8), occurring in photo- and chemoautotrophic organisms. It is 

further divided in two major forms: green-like and red-like cbbL (Watson and Tabita, 1997). 

The green-like group is containing sequences deriving from cyanobacteria, plants, green algae 

and representatives of the α-, β- and γ-Proteobacteria, the red-like group contains sequences 

deriving from non-green algae and representatives of the α- and β-Proteobacteria (Shively et 

al., 1998). Form II consists only of large subunits (Lx) (Watson and Tabita, 1997), its amino 

acid sequence showing 25-30% identity to the large subunit of form I (Kellog and Juliano, 
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1997) and can also be found in photo- and chemoautotrophs. One important biochemical 

feature of the form II enzyme is its poor affinity to CO2, implying that the form II enzyme 

operates exclusively at high CO2 and low O2 concentrations (Alfreider et al., 2003). The 

RubisCO large subunit gene is a highly conserved gene, with extended sequence data base 

available. Therefore, it seems to be ideally suited for the phylogenetic analysis of autotrophic 

bacteria in the environment without prior cultivation (Watson and Tabita, 1997; Alfreider et 

al., 2003). Only recently the widespread potential of CO2 fixation in microbial communities 

via the presence of RubisCO large subunit genes was shown in investigations in an 

organically contaminated aquifer and in agricultural soil (Watson and Tabita, 1997; Alfreider 

et al., 2003; Selesi et al., 2005).  

The aim of this study was to investigate the diversity of the cbb form I and form II genes in 

different depths of an aquifer situated in an area influenced by agriculture to obtain first 

information about the CO2 fixation potential based on RubisCO. Additionally new 

chemolithoautotrophic bacteria were enriched and isolated from freshly drilled sediments and 

subsequently tested for the occurrence of the RubisCO genes. 
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4.2 Material and Methods 

4.2.1 Sampling site and sampling procedure 

Sediment samples derive from the aquifer below the agriculturally managed “Testfield 

Scheyern” (TFS), situated in Southern Germany, near Munich (Fig. 4.1).  

Drilling of sediments took place down to a depth of 30 m below soil horizon in fall 2006, 

approximately 5 m upgradient of an already exiting multi-level well, ML II (Fig. 4.1).  

 

N

sediment coring

 
Figure 4.1: Map of the Test Field Scheyern located in southern Germany (taken from Schwientek, 

2008) 

 

To minimize oxidation of the partly reduced sediments the drill core PVC liners (1 m length, 

100 mm diameter) were cut longitudinal within a box continuously flushed with argon gas. To 

avoid sample contamination the outer sediment of the core was removed. Samples dedicated 

for enrichment cultures were transferred directly into sterile glass bottles. Sediments were 

overlaid with oxygen free distilled water and stored at 4°C in darkness. Samples for DNA 

extraction and clone libraries were collected in sterile plastic tubes and kept at -20°C until 

further processing. For detection of CO2 fixation potential sediment samples from 18 depths 

below soil surface were analysed in total (Table 4.1).  

For the start up of enrichment cultures, sediments from the following depths below soil 

surface were used: 5.0 m, 12.3 m, 17.6 m, 22.6 m and 29.6 m, respectively (Table 4.1; Fig. 

4.2). The depths were selected on the basis of the concentrations of selected anions and DOC 

concentrations at ML II (Fig. 4.2). Nitrate concentrations showed the most pronounced 

variability. A NO3
- rich section with concentrations of up to 20.8 mg L-1 was found between 

16 and 26 m depth, above and below this section NO3
- concentrations were partly below the 

detection limit of 0.5 mg L-1. 
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5 m

12 m

22 m

29 m

17 m

Table 4.1: Sediment samples taken for detection of CO2 fixation potential 

Name Depth* Material 

Sy3 
Sy5 

Sy5.9 
Sy7 
Sy9 

Sy10 
Sy12 
Sy13 
Sy15 
Sy17 
Sy19 
Sy20 
Sy21 
Sy24 
Sy25 
Sy27 
Sy28 
Sy29 

3.0 
5.0 
5.9 
7.0 
9.7 

10.6 
12.3 
13.6 
15.6 
17.6 
19.6 
20.6 
21.6 
24.6 
25.6 
27.6 
28.6 
29.6 

sand (moderately silty) 
sand (moderately silty) 
sand (moderately silty) 
sand (moderately silty) 
sand (moderately silty) 
sand (moderately silty) 
sand (moderately silty) 
clay (silty, sandy) 
clay (silty, sandy) 
sand (fine to medium) 
sand (fine to medium) 
sand (fine to medium) 
sand (fine to medium) 
clay (silty, sandy) 
clay (silty, sandy) 
sand (fine to medium) 
sand (fine to medium)  
sand (fine to medium) 

* m below soil surface 

 

Sulfate concentrations in groundwater varied between 34.4 and 19.2 mg L-1, chloride 

concentrations were between 10.6 and 2.3 mg L-1. Dissolved organic carbon (DOC) 

concentrations were very low (≤ 1 mg L-1), only between 4 and 8 m depth the concentrations 

reached up to 3.9 mg L-1 (Fig. 4.2) (Schwientek, 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Vertical concentration profiles of selected anions and DOC concentrations at ML II, about 

5 m downgradient from the sediment drilling point. Arrows indicate the depths where sediment was   

sampled for enrichment cultures (modified from Schwientek, 2008). 
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4.2.2 Bacterial strains 

All bacterial strains used as positive or negative control in all conducted experiments are 

listed in Table 4.2. They were cultured as recommended by the German Collection of 

Microorganisms and Cell Cultures GmbH (Braunschweig, Germany).  

 

Table 4.2: Bacterial strains 

Species Straina cbbMb cbbLb 

Thiobacillus denitrificans 
Cupriavidus necator 
Xanthobacter autotrophicus 

DSM 12475 
DSM 13513 
DSM 432 

+ 
- 
- 

+ (green-like) 
+ (red-like) 
+ (red-like) 

 
aDSM, Deutsche Sammlung von Mikroorganismen 
b+ PCR product of expected size; - no amplification 

 

4.2.3 DNA extraction, PCR, cloning 

Extraction of chromosomal DNA  

Extraction of genomic DNA from sediment samples (7-8 g sediment per sample) was 

performed using a modified protocol from Lueders et al. (2004) and Gabor et al. (2003). 

Genomic DNA from pure cultures was extracted and purified applying the FastDNA spin kit 

for soil (MP Biomedicals) according to the manufacturer’s instructions. The integrity and 

yield of extracted nucleic acids was checked by standard agarose gel electrophoresis and 

ethidium bromide staining, and by UV quantification (NanoDrop ND-1000 

Spectrophotometer). 

 

Marker genes for CO2 Fixation - Amplification of cbbL and cbbM genes 

The primer sets for form I RubisCO cbbLG1-F/cbbLG1-G, cbbLR1-F/cbbLR1-R (Selesi et al., 

2005) and the primer set for form II RubisCO cbbM-f/cbbM-r (Alfreider et al., 2003) were 

used to amplify the RubisCO genes, cycling parameters were applied as described in Chapter 

3. All amplification products were analyzed electrophoretically on 2% agarose gels (Biozym) 

by horizontal gel electrophoresis to ensure correct size (cbbLG 1.1 kb, cbbLR 0.8 kb, cbbM 

0.5 kb) and were visualized by UV excitation after staining with ethidium bromide.  

 

Clone libraries - Cloning of environmental clones 

PCR products of the expected sizes (1100 bp for green-like cbbL, 820 bp for red-like cbbL 

and 505 bp for cbbM genes) from sediment samples were purified with the MinElute PCR 

Purification Kit (Quiagen) according to the manufacturer’s instructions. Purified PCR 
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products were ligated in the vector pGEM®-T (Promega) and transformed into competent 

Escherichia coli cells Strain JM 109 (Promega). Colonies were picked and the plasmid DNA 

was purified heating the clones for 10 min at 99°C in H2Odest. 

 

Screening of environmental clones 

Restriction fragment length polymorphism (RFLP) was used for screening of the clones with 

correctly sized inserts. PCR products of clones harbouring cbbM or green-like cbbL inserts 

were hydrolyzed with 2 U of the restriction endonucleases RsaI and MspI (Fermentas), and 

for PCR products of clones with red-like cbbL inserts, the restriction enzyme BsaI 

(Fermentas) was used. Restriction fragments were analyzed electrophoretically in 2% (w/v) 

agarose gels. 

 

4.2.4 Sequencing and phylogenetic analysis 

Plasmids containing cbbL or cbbM inserts from sediment DNA were used directly for 

sequencing. Vector specific primers (M13 reverse and T7 promotor) were applied to sequence 

both strands. The plasmids were sequenced in an ABI Prism 377 automated sequencer 

(Applied Biosystems) by use of a Big Dye Terminator sequencing kit (Applied Biosystems). 

The newly gained cbbL and cbbM nucleotide sequences were analysed using the ARB 

software package (Ludwig et al., 2004). Closest relatives to cbbL and cbbM nucleotide 

sequences were obtained using NCBI’s sequence similarity search tool BLASTN. 

Phylogenetic analyses based on nucleotide sequences were performed by applying maximum 

likelihood, neighbour joining and maximum parsimony methods by use of the respective tools 

in the ARB software. Alignments were checked visually. 16S rRNA gene sequence 

phylogenetic analyses were performed as described above. 

 

4.2.5 Enrichment cultures - Isolation and cultivation of new bacterial strains  

For the enrichment and isolation of chemolithoautotrophic bacteria from various depths of the 

aquifer, enrichment cultures were started under different autotrophic conditions. 10 g of wet 

sediment was filled into 120 mL serum bottles containing about 50 mL diluted Widdel 

freshwater medium (containing 2.52 g L-1 sodium-hydrocarbonate, 100 mg L-1 NaCl, 50 mg 

L-1 potassium chloride, 40 mg L-1 magnesium-dichloride hexahydrate, 25 mg L-1 ammonium 

chloride, 20 mg L-1 potassium-dihydrophosphate, 15 mg L-1 calcium-dichloride dihydrate, 

trace elements, and vitamins) (dilution 1:10; pH 7.3, anoxic; Table 4.3) (Widdel and Bak, 

1992). The gasphase was replaced by N2/CO2 (80:20 v/v) and bottles were sealed with butyl 

stoppers (Ochs). The redox indicator Resazurin (1 mg L-1; Sigma-Aldrich) was added to 
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confirm anoxic conditions. Different combinations of electron donors (S2-, H2) and electron 

acceptors (NO3
-, Ferrihydrate, SO4

2-) were set up (Table 4.4). The individual solutions 

deriving from sterile aqueous stocks were directly injected with a syringe through the butyl 

stopper. Primary enrichment cultures were incubated at 16°C in the dark for 3-4 months and 

transferred to fresh medium when visibly turbid. For purification of the most abundant cell 

types in enrichment cultures two dilution series (dilutions up to 10-11) were performed under 

the same culturing conditions. After purification the cultures were transferred every 2-3 

weeks. Cell growth was monitored measuring optical density at 580 nm (OD580; Varian) and 

regular microscopic observations. 

 

Table 4.3: Composition of the Widdel freshwater medium (Widdel and Bak, 1992) 

Concentrations (mg L-1) 
Components dilution 1:10 dilution 1:2 

NaCl 

MgCl2 * 6 H2O 

KH2PO4 

NH4Cl 

KCl 

CaCl2 * 2H2O 

100 

40 

20 

25 

50 

15 

500 

200 

100 

125 

250 

75 

 

Table 4.4: Conditions setup for the enrichment of chemolithoautotrophic bacteria from the Scheyern 

aquifer 

Microbial process Electron donor Electron acceptor Carbon source Temperature 

Anaerobic sulfide oxidation 
Anaerobic iron reduction 
Denitrification 
Sulfate reduction 

S2- 
H2 
H2 
H2 

   5 mM 
~ 0.5 bar 
~ 0.5 bar 
~ 0.5 bar 

NO3
- 

FH* 
NO3

- 
SO4

2- 

10 mM 
40 mM 
10 mM 
10 mM 

CO2 
CO2 
CO2 
CO2 

16°C 
16°C 
16°C 
16°C 

* FH = Ferrihydrate
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4.3 Results  

4.3.1 Amplification of cbbL and cbbM genes from aquifer sediment samples 

CbbM genes were detectable in 10 out of 18 investigated depths, mostly showing a strong 

PCR signal (Table 4.5). 

 

 Table 4.5: Detection of the cbbL and cbbM genes 

Depth*       cbbM cbbLG cbbLR 

3.0 
5.0 
5.9 
7.0 
9.7 
10.6 
12.3 
13.6 
15.6 
17.6 
19.6 
20.6 
21.6 
24.6 
25.6 
27.6 
28.6 
29.6 

(+) 
+ 
+ 
+ 
+ 
- 
- 

(+) 
- 
- 

(+) 
+ 
- 
+ 
- 
- 
- 
+ 

- 
- 

(+) 
(+) 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 
(+) 
(+) 
+ 
- 

(+) 
- 
- 
- 
- 
- 
- 
- 
+ 
- 
- 
- 
- 

 
* m below soil surface; + PCR product; (+) very weak PCR product, not confirmed by cloning and 
sequencing; - no PCR product 
 

Green-like cbbL genes on the other hand could only be detected at 5.9 and 7.0 m, and here the 

PCR products revealed a weak signal. Red-like cbbL genes were detectable at 5.0, 5.9, 7.0, 

10.6 and 24.6 m, whereas a strong PCR product could only be retrieved with DNA extracts 

from samples of 7.0 and 24.6 m below soil horizon (bsh). Changes in the PCR conditions for 

optimization did not prove successful.  

 

4.3.2 CbbM clone libraries and sequences 

The cbbM clone libraries constructed from three different depths i.e. Sy5, Sy7 and Sy24 

revealed 88 out of 136 clones had inserted a right sized fragment (64.7%). In total 47 cbbM 

clones from the different samples were analysed. The sequences were named with “Sy” for 

Scheyern, followed by the depth designation, with an added “M” for sequences of the cbbM 
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library and the clone number; sequence similarities of all sequenced clones ranged between 

82.6-100%. 

In clone library Sy5M only 10 clones had inserted correctly sized fragments. In this case all 

clones were sequenced. Eight of the sequences built a cluster with similarities between 99.4-

100%, being closely related to Thiobacillus thiophilus D24TN (sequence relatedness 99.4-

99.8%) (Fig. 4.3). Two of the sequences exhibited a different relatedness. Sy5M02 showed a 

sequence similarity of 86.5% to the cbbM sequence of Thiobacillus thioparus DSM 505 and 

Sy5M10 had an only 88.9% sequence relatedness to the cbbM sequence of Thiobacillus 

thiophilus D24TN. The second cbbM clone library (Sy7M) consisted of 45 clones, with 20 

clones having right sized inserts. All clones were sequenced. The sequences showed a 

relatedness of 98.8-100%, all belonging to the same cluster as the clone sequences of Sy24M 

and Sy5M (Fig. 4.3). 

Clone library Sy24M comprised of 74 clones, 60 clones proved to have inserted a right sized 

fragment. For RFLP analysis the inserts were restricted with the restriction enzymes RsaI 

(Fermentas) and MspI (Fermentas). Six different RFLP patterns were found. Of each RFLP 

pattern at least one clone was sequenced, 2-3 clones of cbbL sequences with RFLP patterns of 

high abundance In total, 19 clones were sequenced and the sequences showed a very high 

sequence similarity (99.4-100%). All sequences belonged to the same cluster as the sequences 

of the library Sy5M (Fig. 4.3). 

 

4.3.3 Red-like cbbL clone libraries and sequences 

All 28 clones of the clone library Sy7rl having right sized (about 820 bp) inserts were 

sequenced. Sequence similarities ranged between 74.6-100%. The sequences formed two 

distinct clusters, one sequence was located somewhere else in the phylogenetic tree, with 

81.2% sequence relatedness to Xanthobacter sp. COX (AY422057) (Fig. 4.4). Sequences of 

cluster I showed sequence similarity between 83.5-85.0% to the red-like cbbL sequence of 

Nitrosospira sp. (AF426419), while sequences of cluster II appeared to be quite isolated, 

containing only cbbLR sequences of the investigated aquifer sediment samples. The 

sequences of cluster II were most closely related (81.1-84.7%) to the red-like cbbL sequence 

of Rhodopseudomonas palustris (AF355196) (Fig. 4.3). 

In case of the green-like cbbL clones, the obtained PCR products were in comparison with the 

primer dimers too weak to use them for the building of clone libraries. 
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Figure 4.3: Phylogenetic tree of cbbM genes. A consensus tree was constructed by neighbour-joining, 

maximum parsimony and maximum likelihood methods. As outgroup for tree calculations the red-like 

cbbL sequence of an uncultured aquifer clone (FJ007893) was used. All environmental clone 

sequences are shown in bold. Scale bar represents 0.10 changes per nucleotide position. 

 

 

Thiobacillus thiophilus D24TN (EU746411) 
uncultured aquifer clone Sy24M55 (FJ007895) 
uncultured aquifer clone Sy7M13 (FJ007899) 
uncultured aquifer clone Sy24M38 (FJ007894) 
uncultured aquifer clone Sy7M01 (FJ007898) 
uncultured aquifer clone Sy24M63 (FJ007896) 
uncultured aquifer clone Sy7M28 (FJ007900) 
uncultured aquifer clone Sy5M03 (FJ007912) 
uncultured aquifer clone Sy5M17 (FJ007916) 
uncultured aquifer clone Sy24M65 (FJ007897) 

uncultured aquifer clone Sy7M39 (FJ007905) 
Thiobacillus denitrificans ATCC 25259 (NC 007404) 

uncultured aquifer clone D12M02 (EU926533) 
uncultured aquifer clone Sy5M10 (FJ007915) 

uncultured groundwater bacterium (EU362832) 
Halothiobacillus sp. RA13 (AY099399) 

Halothiobacillus neapolitanus ATCC 23641 (AF046932)
uncultured aquifer clone D10M33 (EU926523) 

uncultured groundwater bacterium (EU362816) 
uncultured aquifer clone D15M35 (U926553) 

Rhodoferax ferrireducens T118 (CP000267) 
uncultured aquifer clone D12M64 (EU926541)

uncultured groundwater bacterium (EU362838) 
uncultured groundwater bacterium (EU362815) 

Thiobacillus thioparus DSM505 (EU746412)
uncultured aquifer clone D27M55 (EU926557) 
uncultured aquifer clone Sy5M02 (FJ007911) 

uncultured groundwater bacterium (EU362834) 
uncultured bacterium (AJ785282)

uncultured groundwater bacterium (EU362842) 
uncultured groundwater bacterium (AY099397) 

Dechloromonas aromatica RCB (CP000089) 
uncultured aquifer clone D12M15 (EU926536) 

Thiomonas intermedia K12 (AF012127) 
uncultured groundwater bacterium (AY099395) 
uncultured aquifer clone D15M28 (EU926552) 

Thiobacillus sp. ’Lamellibrachia symbiont-1' (AB032829)
uncultured bacterium (DQ149114) 

uncultured deep-sea autotrophic bacterium (AB040504)
Thiobacillus sp. ’Lamellibrachia symbiont-2' (AB040509)
uncultured bacterium (DQ149110) 

Thiovibrio halophilus (DQ390453) 
uncultured deep-sea autotrophic bacterium (AB040524)

uncultured aquifer clone D12M33 (EU926538) 
Magnetite-containing magnetic vibrio (AF442518) 

uncultured deep-sea autotrophic bacterium (AB040505) 
aquifer isolate D15HSO (EU926571)
aquigfer isolate D24HN (EU926496)

uncultured groundwater bacterium (EU362822) 
Leptothrix cholodnii SP6 (CP001013)
Polaromonas naphthalenivorans CJ2 (CP000529) 

uncultured prokaryote (AY430994)
uncultured deep-sea prokaryote (AB206056)

Riftia pachyptila endosymbiont (AF047688)
uncultured bacterium (DQ149111)

Magnetospirillum magnetotacticum (AY450592) 
uncultured groundwater bacterium (EU362820) 

uncultured aquifer clone D10M29 (EU926522)
Hydrogenovibrio marinus MH110 (AB122071)

uncultured deepsea prokaryote (AB206049) 
Rhodopseudomonas palustris BIS11 (AF416668) 

uncultured deepsea prokaryote (AB206048)
Rhodobacter capsulatus (U23145)

Rhodospirillum rubrum 1R (AY450591)
uncultured deep-sea autotrophic bacterium (AB040526) red-like cbbL 

uncultured aquifer clone 
D10rl03 (FJ007893) 0.10 

cluster
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Figure 4.4: Phylogenetic tree of red-like cbbL genes. A consensus tree was constructed by neighbour-

joining, maximum parsimony and maximum likelihood methods. As outgroup for tree calculations the 

green-like cbbL sequence of Nitrobacter vulgaris (L22885) was used. All environmental clone 

sequences are shown in bold; the sequence of isolate Sy22HNO is shown in bold and shaded in gray. 

Scale bar represents 0.10 changes per nucleotide position. 

Burkholderia sp. JS150 (AY422049)
Stappia sp. CV812-530 (AY422056)

Labrenzia aggregata (AY422055)
Mesorhizobium sp. NMB1 (AY422051)
Stappia stellulata (AY422054)

Xanthobacter flavus (X17252) 
Xanthobacter autrophicus (AY572472) 

Xanthobacter agilis (AY572471) 
Xanthobacter sp. COX (AY422057) 

Pelomonas puraquae (AM501467)
aquifer isolate S22HNOrl (FJ007910)

Pelomonas saccharophila (AM501463)
Cupriavidus necator megaplasmid (U20585)
Cupriavidus necator H16 (U20584)

Alcaligenes faecalis (AY572464)
uncultured soil bacterium (AY572168)

uncultured soil proteobacterium (AY422906)
uncultured aquifer clone D12rl32 (EU926528)

Rhizobium radiobacter (AY572468)
Alcaligenes sp. 30128 (AY572465) 

Ochrobactrum anthropi DSM 6882 (AY572473)
Ensifer fredii (AY572469) 
Ensifer terangae (AY572470) 

Ensifer medicae (AF211846) 
uncultured aquifer clone D10rl44 (EU926513)

uncultured groundwater bacterium (EU362750)
uncultured groundwater bacterium (EU362753)

Rhodobacter azotoformans (AB062779)
Rhodobacter sphaeroides (M64624)
uncultured aquifer clone D10rl54 (EU926515)
uncultured aquifer clone D10rl35 (EU926512)

uncultured groundwater bacterium (EU362810)
uncultured groundwater bacterium (EU362760)

Burkholderia sp. LUP (AY422050)
uncultured proteobacterium F26 (AY422899)

uncultured aquifer clone Sy7rl26 (FJ007904)
uncultured proteobacterium (AY422901) 

Rhizobium leguminosarum (AY572467)
uncultured aquifer clone D10rl07 (EU926509)
uncultured groundwater bacterium (EU362814)

uncultured proteobacterium F42 (AY422912) 
uncultured aquifer clone D10rl48 (EU926514)

Methylocapsa acidiphila (AY450590) 
Bradyrhizobium sp. CPP (AY422047) 

Bradyrhizobium japonicum (AF041820) 
Oligotropha carboxidovorans (AY422052)

uncultured proteobacterium F24 (AY422897)
Azospirillum lipoferum B2 (DQ787336) 
marine manganese oxidizing bacterium (L32182)

Rhodopseudomonas palustris (AF355196) 
Aminobacter sp. COX (AY422046)

Nitrosospira sp. O13 (AF426422) 
uncultured groundwater bacterium (EU362800)

Nitrosospira sp. 40KI (AF426428) 
Nitrosospira sp. A4 (AF426419) 

uncultured groundwater bacteri, EU362765 
uncultured deep-sea prokaryote (AB181167)

uncultured groundwater bacterium (EU362764)
uncultured aquifer clone D12rl13 (EU926525) 

uncultured aquifer clone Sy7rl10 (FJ007901) 
uncultured aquifer clone Sy7rl60 (FJ007907) 
uncultured aquifer clone Sy7rl72 (FJ007908) 

uncultured proteobacterium F30 (AY422903) 
uncultured aquifer clone Sy7rl15 (FJ007902)

uncultured aquifer clone Sy7rl25 (FJ007903)
uncultured aquifer clone Sy7rl80 (FJ007909)
uncultured aquifer clone Sy7rl32 (FJ007906)

uncultured aquifer clone Sy7rl06 (FJ007914)
uncultured aquifer clone Sy7rl08 (FJ007913)

Mycobacterium sp. (EU026272)
uncultured proteobacterium (AY422917)

uncultured proteobacterium CR2 (AY422941) 
uncultured groundwater bacterium (EU362772) 

uncultured groundwater bacterium (EU362774)
uncultured proteobacterium (AY422874)

green-like cbbL 
Nitrobacter vul- 
garis T3 (L22885) 0.10 

cluster I

cluster II
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Acidovorax defluvii  (Y18616)
Acidovorax sp.  (AJ012070)

Sy22HNO (FJ007892)
uncultured soil (AY699590)

denitrifying Fe-oxidizing bacteria (U51101)
Acidovorax delafieldii DSM 50263 (AJ420323)

uncultured bacterium (AY050592)
Acidovorax sp.  (Y18617)

Acidovorax facilis  (AF078765)
Acidovorax sp.  (AF235010)

Acidovorax temperans  (AF078766)
bromate-reducing bacterium (AF442523)

Acidovorax avenae subsp. avenae  (AB021421)
Acidovorax konjaci  (AF137507)
Acidovorax sp. (AF078763)

Acidovorax anthurii  (AJ007013)
Comamonas sp. (AB008429)

Acidovorax sp.  (AF229859)
Comamonas sp.  (AJ002810)

Giesbergeria sinuosa  (AF078754)
Xylophilus ampelinus (AJ420330)

Rhodoferax antarcticus  (AF084947)
Rhodoferax fermentans  (D16212)

Variovorax sp.  (AB051689)
Curvibacter delicatus  (AF078756)

Curvibacter lanceolatus  (AB021390)
Ramlibacter tataouinensis  (AF144383)

Hylemonella gracilis  (AF078753)
Xenophilus azovorans  (AF285414)

Outgroups

0.10

4.3.4 Enrichment cultures 

The first enrichment culture obtained originated from 22.6 m depth and successfully grew 

under denitrifying conditions with hydrogen as electron donor (Table 4.4). It became visibly 

turbid already after 10 days. After three dilution series with dilutions up to 10-11 the most 

abundant cell type was isolated (Sy22HNO). Cells were small rods, 1.7-2.0 µm in length and 

1.0–1.3 µm in diameter. The isolate Sy22HNO proved to be a facultative anaerobic and 

facultative chemolithoautotrophic organism. 16S rRNA sequence of the strain was most 

closely related to the genus Acidovorax with 99.2% sequence similarity to Acidovorax defluvii 

(Fig. 4.5). The isolate also proved positive for the red-like cbbL gene with 85.3% sequence 

similarity to the sequence of Pelomonas puraquae (AM501467) (Fig. 4.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showing the 

positions of strain Sy22HNO and some other related taxa. The bar indicates 10% estimated sequence 

divergence. 
 

Eight other enrichment cultures showed visible growth after four months of incubation. 

Enrichments were obtained under all tested chemolithoautotrophic conditions with one 

exception. Under anaerobic sulfide oxidizing conditions no growth in any of the incubations 

(Table 4.5) occurred.  
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Table 4.5: Results enrichment cultures 

Depth* Anaerobic sulfide 
oxidation 

Anaerobic iron 
reduction Denitrification Sulfate reduction 

5 
12 
17 
22 
29 

- 
- 
- 
- 
- 

+ 
- 
+ 
- 
- 

- 
+ 
+ 
+ 
+ 

- 
+ 
- 
+ 
+ 

 
* m below soil surface; + growth; - no growth 
 
Although the experience from the past showed that bacteria from the subsurface are more 

successfully enriched in low ionic strength medium, it became evident during the incubations 

that several cultures initially growing well slowed down or even stopped growing with 

increased number of transfers. An increase in the mineral concentration (Widdel freshwater 

medium dilution 1:2 instead of 1:10; same electron donor and electron acceptor 

concentrations; Table 4.3) could re-induce growth in some of these enrichments.
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4.4 Discussion 

Although subsurface systems for a long time have been considered sterile and later 

exclusively heterotrophic, there is growing evidence for the presence and importance of 

individual chemolithoautotrophic processes in aquifers. The potential of CO2 fixation in 

natural microbial communities was investigated at an agriculturally influenced site – the Test 

Field Scheyern. Several bacterial cultures under different chemolithoautotrophic conditions 

were enriched and evidence for autotrophic metabolism was obtained through specific PCR-

amplification of the marker genes and sequence analysis.  

 

4.4.1 Clone libraries and phylogenetic analysis 

With respect to cultivable relatives, the cbbM sequences of all retrieved clones were most 

closely related to the cbbM sequences of two Thiobacillus species: Thiobacillus thioparus 

DSM 505 (EU746412) and Thiobacillus thiophilus D24TN (EU746411) (sequence similarity 

86.5-99.8%). Closest related environmental sequences belonged to clones of a tar oil 

contaminated aquifer with sequence relatedness between 88.9-100%. To our knowledge this 

is the first study looking for CO2 fixation potential via the Calvin cycle not in an organically 

polluted but in an aquifer influenced by agriculture and increased nitrate concentrations. 

Studies in organically contaminated groundwater ecosystems already retrieved many 

Thiobacillus related sequences (Alfreider et al., 2003; Chapter 3). Those results might be a 

hint that representatives of  the genus Thiobacillus are important in those systems, especially 

since not only sequences closely related to Thiobacillus were detected, but also Thiobacillus 

species were isolated out of those and other aquifers (Vlasceanu et al., 1997; Alfreider et al., 

2003; Chapter 3). In all three studies the same primer combination was used. The primers 

have been constructed using cbbM sequences of Thiobacillus denitrificans, Thiobacillus 

intermedius, Halothiobacillus intermedius and several closely related cbbM gene sequences 

more (Alfreider et al., 2003). This may lead to the conclusion that those primers might be 

selective for Thiobacillus sequences and fail to detect more distant related cbbM sequences. 

All retrieved red-like cbbL sequences build two clusters with one exception; sequence 

Sy07rl26 was located somewhere else in the phylogenetic tree (Figure 4.3). The 

environmental red-like cbbL sequence (AY422903) most closely related to all Sy7rl clone 

sequences originated from a 300 year old forest soil volcanic deposit. Looking at cultured 

organisms, the Scheyern clone sequences showed the highest relatedness to the sequences of 

Xanthobacter sp. COX (AY422057), Rhodopseudomonas palustris (AF355196) and 

Bradyrhizobium sp. (AY422047). Interestingly, in another study conducted in the same area 

dealing with the molecular diversity of the cbbL genes in soil, also red-like cbbL sequences 
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related to the cbbL sequences of Xanthobacter and Bradyrhizobium species have been found 

(Pattis, 2002). Species of those genera have been isolated from waste-water, soil, sludge and 

plant roots. Xanthobacter and Bradyrhizobium species have also been detected in 

contaminated groundwater (Connon et al., 2005). However, due to the incongruity of the 

cbbL phylogeny with the phylogeny based on 16S rRNA genes (Delwiche and Palmer, 1996), 

those sequences may belong to those organisms and their relatives, but it is also possible, that 

they belong to microorganisms of completely different genera (Selesi et al., 2005). 

Interestingly, none of the detected red-like cbbL sequences showed any close phylogenetic 

relatedness to the sequence of the isolate Sy22HNO or its relatives. A possible explanation 

could be that Sy22HNO and its relatives are, compared to other microorganisms carrying the 

cbb genes, only present in low numbers and therefore not represented in the clone library. 

Alternatively, their cbb sequences are not at all or only to a little extent amplified during PCR, 

possibly due to biases of the PCR-based techniques as already illustrated earlier (Chapter 3).  

 

4.4.2 Enrichment cultures 

Nine bacterial cultures could successfully be enriched. With an exception in the uppermost 

sediment depth, denitrifying cultures were obtained from the Scheyern aquifer. The successful 

enrichment of cultures under denitrifying conditions is in agreement with results of 

Schwientek (2008) who found denitrification to be an important redox process in this aquifer, 

which he proved by chemical and isotopic data (Fig. 4.2 and Fig. 4.6). 

 The local depletion of nitrate in the depths between 9 m to 14 m, around 19 m and below 27 

m was characterized by elevated δ15N values of NO3
-, indicating denitrification in the 

groundwater at those depths (Schwientek, 2008). However, also sediments from zones with 

less isotopic evidence and plenty of nitrate harboured denitrifiers which could be enriched. 

According to phylogenetic analysis of the 16S rRNA gene the closest relative of the isolate 

Sy22HNO was Acidovorax defluvii, a denitrifyer isolated from wastewater treatment plant 

sludge; several other species of this genus have been detected already in contaminated 

groundwater ecosystems and wastewater (Connon et al., 2005; Fan et al., 2008; Heylen et al., 

2008). Interestingly, sulfate reducers could be obtained from the same depths as the 

denitrifiers with an exception with 17 m sediment (Table 4.5), although here isotopic sign for 

sulfate reduction was obtained (Fig. 4.6).  Eleven out of 20 enrichment cultures did not show 

any growth or stopped growing after several inoculations. Even though special enrichment 

media adjusted to environmental conditions (Widdel and Bak, 1992; Bartscht et al., 1999) 

have been used. It is well known that most viable bacteria are still not cultivable (Boivin-

Jahns et al., 1996). 
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Figure 4.6: Vertical profiles of δ15N and δ18O of nitrate and δ34S and δ18O of sulfate in groundwater at 

ML II. Arrows indicate the depths where sediment was sampled for enrichment cultures The shaded 

bars represent lenses of silt and clay (modified from Schwientek, 2008) 

 

Estimations reveal that so far less than 10% of the microorganisms in pristine groundwater 

can be cultivated under laboratory conditions (Goldscheider et al., 2006). Some of the 

cultures which stopped growth could be reanimated by increasing the mediums ionic strength 

(Widdel freshwater medium dilution 1:2 instead of 1:10; Table 4.3). While the low salt 

concentration at the beginning is complemented by the presence of the sediment inoculum, 

this is lost during repeated transfers. Another possible explanation for cultures stopping 

growth could be syntrophic interactions in groundwater communities, leaving the single 

bacterial strains unable to survive due to the lack of syntrophic partners. 

 

4.4.3 Chemolithotrophy and CO2 fixation in the Scheyern aquifer 

Dissolved organic carbon (DOC) is a typical electron donor and carbon source for 

heterotrophic microorganisms. In contrast, chemolithoautotrophic microorganisms depend on 

sufficient amounts of inorganic carbon and electron donors in form of reduced inorganic 

compounds. Most uncontaminated groundwater ecosystems are oligotrophic, most organic 

carbon compounds have already been oxidized in the unsaturated zone or along the 

groundwater flow path. The mean DOC concentration in such oligotrophic ecosystems lies 

between 0.2 and 2.0 mg L-1 (Griebler and Mösslacher, 2003). The investigated aquifer at TFS 

is also oligotrophic with DOC concentrations generally below 1 mg L-1. Only between 4 and 8 
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m depth DOC-concentrations are reaching up to 3.9 mg L-1 (Fig. 4.2). The aquifer is rich in 

carbonate and cation concentrations are fairly constant ranging around 150 mg L-1 for 

calcium, 50 mg L-1 for magnesium, 7.5 mg L-1 for sodium, and 1.5 mg L-1 for potassium. 

Electron acceptors such as oxygen, nitrate or sulfate attain to the system from the surface 

either naturally or by anthropogenic application. Organic and inorganic electron donors are 

available in the aquifer in form of TOC (total organic carbon), pyrite and ferrous iron, 

respectively, relatively enriched within the lenses of clay and silt (Schwientek, 2008). 

Altogether all requirements for autotrophic processes are given and according to chemical and 

isotopic analysis performed by Schwientek (2008), denitrification occurs at three separate 

sections (between 9 m and 14 m, around 19 m and between 27 m and 30 m) in the aquifer 

with pyrite as electron donor, producing sulfate. Those findings fit quite well to the results of 

this study concerning the detection of CO2 fixation potential via the Calvin cycle. CbbM 

genes have not only been detected in the unsaturated zone but also at 9.7 m, 13.6 m, 19.6 m, 

20.6 m, 24.6 m and 29.6 m depth, almost exactly the depths in which the occurrence of 

denitrification was proven (Schwientek, 2008). Most obtained cbbM sequences were closely 

related to the cbbM sequences found in representatives of the genus Thiobacillus. Some 

known representatives of this genus are obligate chemolithoautotrophic denitrifiers using 

various inorganic compounds as electron donors e.g. hydrogen sulfide, thiosulfate or pyrite. 

The detection of red-like cbbL sequences in at least some sediment samples is a hint that 

besides chemolithoautotrophic denitrification other autotrophic processes might go on in the 

aquifer. The successful enrichment cultures under various chemolithoautotrophic conditions 

are a further indication for the presence of autotrophs in this aquifer. Interestingly, all 

enrichment cultures under denitrifying conditions were successful, with the enrichment 

culture deriving from sediment from 5.0 m being the only exception. Enrichments under 

sulfate-reducing conditions were successful with sediment deriving from 12.0 m, 22.0 m and 

29.0 m depth. In those depths sulfate is produced due to the denitrification using pyrite as 

electron donor.  

In summary, the data presented by Schwientek (2008) in combination with the detection of 

CO2 fixation potential via the Calvin cycle and the successful chemolithoautotrophic 

enrichment cultures in this study are a strong hint that autotrophic processes might be 

abundant and important in this oligotrophic aquifer. An important future task will be the proof 

of chemolithoautotrophic activities in situ. 
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5. General conclusions and outlook 

Chemolithoautotrophic bacteria were first described more than 100 years ago by 

Winogradsky (1890). However, for quite some time they were regarded as unimportant and 

thus neglected. Nowadays it is well known that autotrophic processes are important in 

ecosystem ecology and elemental cycles (Labrenz et al., 2005), with the Calvin cycle being 

the most abundant one of all six known CO2 fixation pathways so far (Tabita, 1999; Badger 

and Bek, 2008).  

One objective of this thesis was to elucidate if CO2 fixation potential via the Calvin cycle can 

be detected in different groundwater ecosystems either organically depleted (Testfield 

Scheyern, agricultural area) or organically contaminated (Tar oil field Düsseldorf-Flingern, 

former gasworks site), and whether site- or depth-specific differences can be identified 

regarding the diversity of this autotrophic potential. Therefore primers specific for the cbb 

genes - genes encoding RubisCO, the key enzyme of the Calvin cycle (Alfreider et al., 2003; 

Selesi et al., 2005) - were applied. Today only a few studies exist investigating autotrophy in 

different ecosystem, some of them dealing with the presence of the cbb genes (Pedersen, 

1997; Stevens, 1997; Alfreider et al., 2003; Selesi et al., 2005; Tolli and King, 2005). To our 

knowledge, so far only one study exists that deals with the detection of the RubisCO genes in 

groundwater (Alfreider et al., 2003). In the contaminated aquifer at Testfield Düsseldorf-

Flingern the cbb genes were found in areas close to the contaminant plume centre as well as 

in areas with low contaminant concentrations. The diversity of the obtained green-like and 

red-like cbbL sequences was low, whereas the diversity of the cbbM sequences was clearly 

higher. However, the predominant majority of all retrieved cbb sequences was closely related 

to the cbbL and cbbM sequences belonging to the genus Thiobacillus. Additionally, the 

occurrence of CO2 fixation potential via the reductive Tricarboxylic Acid cycle (reductive 

TCA cycle) was investigated at this site. Therefore primers specific for the acl genes (genes 

encoding the ATP citrate lyase, one of the key enzymes of the reductive TCA cycle) were 

applied (Campbell and Cary, 2004; Hügler et al., 2005; Takai et al., 2005). The detection of 

those genes was not possible in any of the investigated samples. Even though it might be 

possible that there are no organisms using the reductive TCA cycle present in the investigated 

aquifer, it seems more likely that the used primers are too selective, not detecting all different 

acl genes. 

At the organically poor site, the Testfield Scheyern, most cbbM sequences detected were also 

closely related to the cbb sequences of Thiobacillus ssp., hinting that this genus might be of 

importance in groundwater ecosystems. This hypothesis is further supported by the study of 
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Alfreider et al. (2003), who detected also Thiobacillus-related cbb sequences in a 

contaminated aquifer. Green-like cbbL genes could hardly be detected at all. The red-like 

cbbL sequences were most closely related to a sequence originating forest soil volcanic 

deposit and to sequences belonging to genera of which some species already have been 

detected in waste-water, soil, sludge, groundwater and plant roots (Connon et al., 2005).  

Cbb sequence clustering related to sediment depth could not be observed in the contaminated, 

or in the pristine aquifer. Interestingly, even though the cbbM sequences of the two 

investigated aquifers were quite similar, only few identical sequences could be found in both, 

indicating diverse and differing autotrophic communities. 

Of course detection of CO2 fixation potential is not a direct hint to autotrophic activity in situ. 

In groundwater ecosystems the main problems concerning activity measurements are the 

relatively low cell numbers and slow metabolic rates. However, to prove that actual 

autotrophic activity is taking place in those systems a selected set of methods was applied to 

certain subsets of the samples. Fluorescence in situ hybridization combined with 

microautoradiography (FISH-MAR) was applied on water and sediment samples deriving 

from the contaminated aquifer. Even though good fluorescent signals were retrieved, 

indicating that the groundwater bacteria were active, radiolabelled cells were not detected. 

Besides the possible reason that no CO2 fixing bacteria were present in the samples, other 

possible reasons could be the insufficient concentration of 14C-labelled bicarbonate applied, 

unfavourable conditions during incubation of samples in the lab or an overall low CO2 

fixation activity. Another approach tested to detect CO2 fixation was the analysis of 

phospholipids fatty acids (PLFAs) after the incubation of sediment together with 13C-labelled 

CaCO3 in the contaminated aquifer. The PLFA approach is generally well suited for 

estimating the amount of active microbial biomass and analyzing the composition of 

microbial communities in environmental samples (Ben-David et al., 2004). In the samples 

seven saturated fatty acids and three monounsaturated fatty acids could be detected. Those 

PLFAs are indicative for gram-positive bacteria as well as for sulfate-reducing gram-negative 

bacteria. Chemolithoautotrophs are distributed in both of these groups (Aggag and Schlegel, 

1973; Moussard et al., 2004; Zavarzina et al., 2007). 13C-carbon incorporation from 13C-

CaCO3 was measured in both detected 16-C fatty acids, which is a possible hint for bacterial 

CO2-uptake in the aquifer. Of course, it has to be kept in mind that also heterotrophic 

microorganisms are performing CO2 fixation to some extent which may not easily be 

distinguished from autotrophic CO2 fixation.  

Besides the cultivation-independent approach by molecular methods the enrichment of 

microbes is a useful tool to get an idea about the presence of autotrophic organisms. 
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Enrichment attempts with sediment material from both investigated sites started under 

obligate chemolithoautotrophic conditions were partly successful. Some of the cultures 

obtained showed good and fast growth, in some cases cultures started growing again after 

being transferred to a medium with higher salt concentrations, others never showed any 

growth or stopped growing after some time. This might be due to insufficient media, but it has 

to be considered, that only little information about the living of environmental communities is 

available so far. Interestingly, two pure cultures isolated from the contaminated aquifer 

proved to belong to the genus Thiobacillus, a result further supporting the theory that 

Thiobacilli might be important in groundwater ecosystems. This hypothesis is further 

supported by the fact that Thiobacilli are widely distributed microorganisms, also being 

represented in groundwater ecosystems. The best known representative of this genus is T. 

denitrificans, obligate chemolithoautotrophic and able to couple the oxidation of inorganic 

sulfur compounds and the anaerobic oxidation of Fe(II) to denitrification. For example from 

an environmental perspective, this means that this microorganism can be useful for 

bioremediation of the major groundwater contaminant nitrate. Nitrate contamination of 

groundwater is a pervasive and high-priority concern in rural and urban areas throughout the 

industrialised world (Beller et al., 2006). One of the isolates was further characterized, it was 

described as new Thiobacillus species, Thiobacillus thiophilus D24TNT sp. nov., an obligate 

chemolithoautotrophic strain, able to grow under oxic and anoxic conditions.  

One aim of this thesis was to detect CO2 fixation potential in pristine and contaminated 

aquifers. The presented data prove that the potential for CO2 fixation via the Calvin cycle can 

be detected in contaminated as well as in pristine aquifers. Potential for CO2 fixation via the 

reductive TCA cycle could not be found, but primer modifications or new primer design 

might make it possible to detect a higher diversity of acl sequences. Even though the Calvin 

cycle might be the most abundant CO2 fixation pathway worldwide, the occurrence and 

distribution of the other pathways should not be neglected. Unfortunately, only limited 

information about these pathways and the organisms using them is available and so far no 

primer sets exist to detect the functional genes encoding their key enzymes.  

The second aim was to connect CO2 fixation potential with actual autotrophic activity in situ. 

To build this connection proved complicated, autotrophic activity measurements are difficult 

due to low cell abundance and activity. PLFA analysis gave a hint about possible CO2 

incorporation, via FISH-MAR the general activity of groundwater microorganisms could be 

shown to a certain extent, detection of CO2 fixation was not possible. Successful enrichment 

cultures under various chemolithoautotrophic conditions proved the occurrence of autotrophic 
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microorganisms in the investigated aquifers, giving a first hint about the possible diversity of 

the autotrophic bacterial communities in the investigated aquifers.  

To gain further insights into the role of autotrophic microorganisms in groundwater 

ecosystems, more groundwater ecosystems have to be analysed. For future studies not only 

the occurrence of the other CO2 fixation pathways should be investigated, also new and more 

sensitive methods for in situ autotrophic activity measurements in those systems are needed to 

be developed.  
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II 

Table A.1: Growth rates of D24TNT under a. oxic and b. anoxic conditions as shown in Fig. 
2.2; Changes in optical density measured at wave length 580 nm. Cells counts performed via 
microscopy  
a. 
 

Time [h] OD580nm Cells ml-1 log cells ml-1 
0 0.101 1.1*107 7.06 
24 0.118 4.0*107 7.60 
29 0.123 5.6*107 7.75 
53 0.142 1.0*108 8.01 
77 0.156 1.3*108 8.10 
96 0.165 1.5*108 8.16 
168 0.191 1.9*108 8.27 
194 0.206 2.3*108 8.35 

 
b.  
 

Time [h] OD580nm Cells ml-1 log cells ml-1 
0 0.077 2.2*106 6.35 
24 0.085 3.2*106 6.51 
48 0.090 1.1*107 7.05 
67 0.099 2.9*107 7.46 
90 0.107 3.9*107 7.59 
116 0.116 5.0*107 7.70 
145 0.123 6.5*107 7.81 
169 0.124 7.2*107 7.86 
188 0.129 7.4*107 7.87 
232 0.145 1.0*108 8.01 
256 0.145 1.0*108 8.01 
328 0.145 1.0*108 8.01 

 
 
Table A.2: Growth curves of aerobically a. and anaerobically b. grown cells of strain 
D24TNT showing consumption of the electron donor thiosulfate and the electron acceptor 
nitrate, as well as the reaction products sulfate and nitrite. Cells were grown in a 1:2 diluted 
WS medium as shown in Fig. 2.3 
 
a. 
 

Time [h] S2O3
2- [mM] SO4

2- [mM] NO3
- [mM] NO2

- [mM] log cells ml-1 
0 8.06 0.72 3.52 0 6.31 
53 5.70 3.44 3.28 0 7.64 
192 2.61 11.55 1.33 0.89 8.08 

 
b. 
 

Time [h] S2O3
2- [mM] SO4

2- [mM] NO3
- [mM] NO2

- [mM] log cells ml-1 
0 8.18 0.78 3.66 0 6.32 
53 6.20 1.33 2.50 0.46 6.63 
192 4.23 6.00 0.54 2.17 7.34 
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Table A.3: Growth of the thiosulfate oxidizing strain D24TNT at various pH values. The 
electron acceptor was oxygen, and the electron donor was thiosulfate as shown in Fig. 2.4 
Changes in optical density, measured at different pH values at wave length 580 nm. 
 

OD580nm at different pH values Time [days] 6.0 6.3 6.5 7.0 7.5 8.0 8.3 8.72 8.94 
0 0.088 0.088 0.085 0.086 0.087 0.088 0.085 0.082 0.087 
2 0.088 0.099 0.103 0.097 0.096 0.095 0.093 0.090 0.086 
4 0.094 0.110 0.102 0.114 0.121 0.129 0.135 0.117 0.085 
7 0.096 0.112 0.115 0.135 0.159 0.204 0.222 0.145 0.086 
9 0.093 0.112 0.121 nd* nd 0.236 nd 0.169 0.083 
11 0.086 0.114 0.126 nd nd nd nd 0.190 0.083 
14 0.091 0.114 0.130 0.209 0.251 nd 0.295 0.217 0.082 
16 0.092 0.116 0.135 0.220 0.272 0.290 0.306 0.244 0.086 
18 0.087 0.114 0.137 0.241 0.282 0.302 0.309 0.258 0.086 
21 0.086 0.114 0.136 0.254 0.295 0.311 0.310 0.262 0.085 

*no data 
 
 
Table A.4: Growth of the thiosulfate oxidizing strain D24TNT at various temperatures. The 
electron acceptor was oxygen, and the electron donor was thiosulfate as shown in Fig. 2.5 
Changes in optical density, measured duplicate incubations at different temperatures at wave 
length 580 nm. 
 

OD580nm at different points in time [days] Temp. 
[°C] 0 2 4 5 7 9 10 13 14 

-2 0.102 
0.102 

0.106 
0.104 

0.108 
0.106 

nd* 
nd 

0.114 
0.112 

0.116 
0.118 

nd 
nd 

nd 
nd 

0.120 
0.150 

mean 0.102 0.105 0.107 nd 0.113 0.117 nd nd 0.135 

0 0.090 
0.088 

0.092 
0.094 

nd 
nd 

0.096 
0.093 

0.102 
0.096 

0.107 
0.102 

nd 
nd 

nd 
nd 

0.133 
0.128 

mean 0.089 0.093 nd 0.095 0.099 0.105 nd nd 0.131 

4 0.089 
0.095 

0.096 
0.102 

0.104 
0.111 

nd 
nd 

0.112 
0.116 

0.117 
0.128 

nd 
nd 

nd 
nd 

0.134 
0.147 

mean 0.092 0.099 0.108 nd 0.114 0.123 nd nd 0.141 

16 0.092 
0.090 

0.107 
0.105 

0.130 
0.129 

nd 
nd 

0.163 
0.165 

0.196 
0.203 

nd 
nd 

nd 
nd 

0.236 
0.248 

mean 0.091 0.106 0.130 nd 0.164 0.200 nd nd 0.242 

24 0.092 
0.092 

0.124 
0.116 

0.169 
0.152 

nd 
nd 

0.238 
0.218 

0.260 
0.256 

nd 
nd 

nd 
nd 

0.306 
0.311 

mean 0.092 0.120 0.161 nd 0.228 0.258 nd nd 0.309 

30 0.097 
0.097 

0.154 
0.136 

0.213 
0.205 

nd 
nd 

0.249 
0.247 

0.276 
0.278 

nd 
nd 

nd 
nd 

0.308 
0.314 

mean 0.097 0.145 0.209 nd 0.248 0.277 nd nd 0.311 

33 0.094 
0.096 

0.096 
0.098 

nd 
nd 

0.097 
0.101 

0.097 
0.096 

nd 
nd 

0.095 
0.096 

0.095 
0.096 

0.095 
0.096 

mean 0.095 0.097 nd 0.099 0.097 nd 0.096 0.096 0.096 

35 0.096 
0.095 

0.098 
0.096 

0.098 
0.099 

nd 
nd 

0.096 
0.094 

nd 
nd 

0.096 
0.094 

0.095 
0.094 

0.095 
0.094 

mean 0.096 0.097 0.099 nd 0.095 nd 0.095 0.095 0.095 

37 0.095 
0.091 

0.100 
0.093 

0.096 
0.092 

nd 
nd 

0.093 
0.092 

0.090 
0.092 

nd 
nd 

nd 
nd 

0.088 
0.091 

mean 0.093 0.097 0.094 nd 0.093 0.091 nd nd 0.090 
*no data
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