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Zusammenfassung

Wir machen in dieser Arbeit Gebrauch von der AdS/CFT-Korrespondenz,
um diverse Aspekte ausgesuchter stark gekoppelter Quantenfeldtheorien zu
beleuchten. Die Motivation hierzu hat zweierlei Ursprung. Zum einen beteili-
gen wir uns damit an der Suche nach geeigneten Methoden zur Beschreibung
des Quark-Gluon-Plasmas, aus dem im Laufe der Evolution des Universums
die uns heute umgebende hadronische Materie hervorging. In Experimenten
an Schwerionenbeschleunigern werden heute für kurze Zeit Materiedichten
und Temperaturen erreicht, in denen sich Materie allem Anschein nach im
Aggregatzustand des Quark-Gluon-Plasmas (QGP) manifestiert. Da es sich
bei diesem Zustand um stark wechselwirkende Quarks und Gluonen handelt,
sollte die nicht-abelsche Quantenfeldtheorie der Quantenchromodynamik im
Prinzip eine Beschreibung aller Prozesse in diesem System ermöglichen. Die
Anwendung der etablierten analytischen Methode, der Störungstheorie, zur
Berechnung von Observablen setzt allerdings voraus, dass die Kopplungskon-
stante der starken Wechselwirkung klein ist. Diese Voraussetzung ist aber nach
heutigem Kenntnisstand insbesondere für das Quark-Gluon-Plasma kurz vor
der Hadronisierung nicht erfüllt.

Mit der Entdeckung der AdS/CFT-Korrespondenz durch Juan Maldacena
im Jahre 1997 ergaben sich mögliche alternative analytische Ansätze. Die
Korrespondenz bildet eine stark gekoppelte nicht-abelsche supersymmetrische
Quantenfeldtheorie (die sog. N = 4 supersymmetrische Yang-Mills-Theorie)
und eine dazu duale schwach gekoppelte klassische Gravitationstheorie (die
sog. Typ IIB Supergravitatonstheorie) aufeinander ab. Die Berechnung von
Observablen der stark gekoppelten Theorie kann dann mit Standardmethoden
in der dualen schwach gekoppelten Therorie durchgeführt werden. Die Gravi-
tationstheorie kann als ein Limes der Typ IIB Stringtheorie betrachtet werden.
Hier wird die zweite Motivation zur Untersuchung von Eichfeldtheorien mit
Hilfe der AdS/CFT-Korrespondenz deutlich: Eine Weiterentwicklung der Kor-
respondenz verspricht ein besseres Verständnis der Zusammenhänge zwischen
Stringtheorie und Eichfeldtheorien.

Die angesprochene Stringtheorie kann konsistent nur in 10 Raumzeit-
dimensionen formuliert werden, während die Quantenfeldtheorie unserer All-
tagserfahrung gemäß in einer vierdimensionalen Raumzeit definiert ist. In
Anlehnung an die Eigenschaft von Hologrammen, dreidimensionale räumliche
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Information auf einer niederdimensionalen Ebene zu speichern, werden daher
die korrespondierenden Theorien als ”holographisch dual“ bezeichnet.

Wenngleich die duale Gravitationsheorie zur Quantenchromodynamik
bisher nicht bekannt ist, können doch viele Aspekte durch Modifikationen der
N = 4 supersymmetrischen Yang-Mills-Theorie (SYM) nachgebildet werden.
In den vergangenen Jahren wurden bereits große Fortschritte in Richtung
Modellierung der Quantenchromodynamik gemacht.

In dieser Arbeit knüpfen wir an diese Ergebnisse an, indem wir die be-
kannten Modelle erweitern und/oder kombinieren, um modellhaft weitere
Eigenschaften von Materie im Zustand des Quark-Gluon-Plasmas zu untersu-
chen oder den bekannten Modellen realistischere Züge zu geben. Wir verfolgen
dabei den ”top-down-Ansatz“, der nur solche Modifikationen der AdS/CFT-
Korrespondenz erlaubt, welche wie die urprüngliche Formulierung auf der
Seite der Gravitationstheorie als Limes einer stringtheoretischen Betrachtung
aufgefasst werden können. Damit soll eine kohärente Beschreibung von Na-
turphänomenen gewährleistet werden, in der sich die bekannten Theorien
nicht widersprechen. Wir skizzieren im Folgenden die Fragestellungen und
Ergebnisse, welche im Vordergrund dieser Arbeit stehen.

Um letztendlich auch den Prozess der Hadronisierung, zunächst allerdings
lediglich die Eigenschaften der Hadronen selbst zu verstehen, beschäftigen wir
uns in Kapitel 3 mit gebundenen Zuständen von Quarks. Konkret berechnen
wir die Spektralfunktionen von Vektormesonen. Dazu betrachten wir eine
Gravitationstheorie, die holographisch dual zu einer Quantenfeldtheorie bei
endlicher Temperatur und endlicher Teilchendichte ist. Im Ergebnis erlaubt
uns dies die Einflüsse dieser Parameter auf die Lebensdauer und Massen der
Mesonen zu beschreiben. Wir können mit Hilfe der AdS/CFT-Korrespondenz
den Einfluss von Temperatur und Dichte auf das Mesonen-Spektrum qua-
litativ korrekt ableiten. Dazu berechnen wir Mesonenspektren, die sich als
Erweiterungen bekannter Spektren bei verschwindender Teilchendichte und
Temperatur nun auch bei endlicher Dichte und endlicher Temperatur beschrei-
ben lassen. Die Übereinstimmung mit bekannten Modellen im Limes ver-
schwindender Dichte und Temperatur ist dabei gewährleistet. Mit minimalem
Aufwand, gemessen an der Zahl der Eingangsparameter, sind wir damit in
der Lage Massenspektren von Vektormesonen zu berechnen. Wir beobach-
ten zum einen die zunehmende Destabilisierung der Bindungszustände von
Quarks bei steigender Temperatur. Weiterhin wird der Effekt der Dichte des
umgebenden Mediums (QGP) als Veränderung der Spektren in qualitativer
Übereinstimmung mit phänomenologischen Modellen und dem Experiment
wiedergegeben. Zusätzlich demonstrieren wir den Effekt der Aufspaltung der
Vektormesonspektren bei endlichem Isospin-Potential.

Zum besseren Verständnis von dynamischen Prozessen im QGP analy-
sieren wir in Kapitel 4 Transporteigenschaften von Quarks und Mesonen im
holographischen Modell-Plasma. Mit Hilfe unterschiedlicher mathematischer
und physikalischer Formulierungen beobachten wir den Einfluss von Dichte
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und Temperatur auf den Diffusionskoeffizienten sowohl von Teilchen mit ba-
ryonisher als auch von Teilchen mit Isospin-Ladung. Außerdem betrachten wir
die Diffusion von Mesonen im Plasma. Das dabei verwendete effektive quan-
tenfeldtheoretische Modell ist bei schwacher und starker Kopplung anwendbar.
Daher können wir hier das störungstheoretische Ergebnis für schwache Kopp-
lung mit dem Ergebnis des holographischen Modells für starke Kopplung
vergleichen. Dies erlaubt es uns, den Effekt der starken Kopplung im QGP
auf die Diffusion von Mesonen abzuschätzen. Wir erwarten bei Gültigkeit
der gemachten Annahmen eine Vergrößerung des Diffusionskoeffizienten bei
starker Kopplung. Experimentelle Ergebnisse zum Vergleich stehen noch aus.

In Kapitel 5 analysieren wir das Phasendiagramm fundamentaler Materie
im holographischen Modell des QGP. Wir beobachten einen Phasenübergang
im Baryon-Diffusionskoeffizienten und identifizieren eine kritische Teilchen-
dichte, bei welcher dieser Phasenübergang verschwindet. Der numerische Wert
deckt sich mit dem Wert kritischer Dichten, die in den Phasenübergängen
anderer Größen von anderen Arbeitsgruppen gefunden wurden. Vor allem
aber beobachten wir einen neuen Phasenübergang. Dieser tritt auf, wenn ein
kritischer, von der Temperatur abhängiger Wert des chemischen Potentials
für Teilchen mit Isospin-Ladung überschritten wird. Jenseits dieses kritischen
Wertes wird das von uns benutzte Modell instabil. Wir bestimmen mittels einer
Stabilitätsanalyse die Linie des entsprechenden Phasenüberganges im Phasen-
diagram der fundamentalen Materie im holographischen QGP. Eine detaillierte
Untersuchung der Natur dieses Phasenübergangs und dessen physikalische
Implikation ist Gegenstand jüngster Publikationen, welche im Rahmen dieser
Arbeit nicht eingehend besprochen werden.

Die in dieser Dissertation dargelegten neuen Erkenntnisse wurden zum
Teil im Rahmen meiner Forschungsarbeit in der Arbeitsgruppe von PD Dr. ha-
bil. J. K. Erdmenger am Max-Planck-Institut für Physik (Werner-Heisenberg-
Institut) in München in folgenden Publikationen veröffentlicht.
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Abstract

In this dissertation we use the gauge/gravity duality to investigate various
properties of strongly coupled gauge theories, which we interpret as models
for the quark-gluon plasma (QGP). In particular, we use variants of the D3/D7

setup as an implementation of the top-down approach of connecting string
theory with phenomenologically relevant gauge theories.

We focus on the effects of finite temperature and finite density on fun-
damental matter in the holographic quark-gluon plasma, which we model
as the N = 2 hypermultiplet in addition to the N = 4 gauge multiplet of
supersymmetric Yang-Mills theory.

As a key ingredient we develop a setup in which we can describe vector
meson spectra in the holographic plasma at finite temperature and either baryon
or isospin density. The resulting spectral functions are valid for all values
of quark mass and temperature. They show the expected features of meson
melting at high temperatures and are in agreement with the previously derived
spectra for the zero temperature and zero density limit. Moreover, we are
able to give a description of in-medium effects of finite particle density which
are in qualitative agreement with phenomenological models and experimental
observations. The description of vector meson excitations furthermore allows
for a demonstration of the splitting of their spectrum at finite isospin chemical
potential.

In the effort to better understand transport processes in the QGP, we then
study various diffusion coefficients in the quark-gluon plasma, including their
dependence on temperature and particle density. In particular, we perform a
simple calculation to obtain the diffusion coefficient of baryon charge and we
derive expressions to obtain the isospin diffusion coefficient. Furthermore,
we make use of an effective model to study the diffusion behavior of mesons
in the plasma by setting up a kinetic model. The setup we chose allows to
carry out computations at weak and strong coupling which we compare in
order to estimate the effects of the coupling strength on mesonic diffusion and
therewith equilibration processes in the QGP.

Finally, we observe the implications of finite temperature and finite baryon
or isospin density on the phase structure of fundamental matter in the holo-
graphic plasma. As one consequence we find a phase transition in the baryon
diffusion coefficient which vanishes at a critical value of the particle density.
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The critical density we quantify matches the values of the according critical
densities previously found in the phase transitions of other quantities. More
important, we observe a new phase transition occurring when the isospin chem-
ical potential excesses a critical bound, which depends on the temperature of
the medium. Beyond this point we observe an instability of the system under
consideration. In this way we trace out the border of a new phase in the phase
diagram of fundamental matter in the holographic plasma.

Some of the work we present here has been published as the result of the
author’s contribution to the work of the group of PD Dr. habil. J. K. Erdmenger
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C HAPTER 1

Introduction

The entire content of matter and radiation in the universe is a manifestation
of the energy unleashed in some unknown process which we commonly refer
to as the big bang. This event is thought of as the moment of the creation of
matter, space and time — the universe. From that moment on energy existed
in various manifestations. At an order of magnitude of 10−33 seconds after
the big bang, quarks formed. Today we experimentally detect these particles
together with leptons and the force mediating gauge bosons as the fundamental
constituents of all visible matter. The interaction of these particles is described
incredibly accurately within two different theories. Processes taking place at
energy levels below the TeV scale involving electromagnetic, weak and strong
interaction are described accurately by the standard model of particle physics,
although the strong force is hard to exploit theoretically at low energies for
mathematical reasons. The fourth of the known forces, gravity, is described
within the separate framework of general relativity.

While many aspects of the particles that make up our world are well
understood, others remain a mystery. Among the latter is the behavior of
matter under conditions that must have existed shortly after the big bang.
The earliest period of the universe that can either be described by theoretical
models and numerical simulations or probed by experiments is ranging from
about 10−33 seconds after the big bang when quarks and gluons emerged until
approximately 10−6 seconds after the big bang when hadronization of quarks
set in. During this early phase matter existed in conditions of extremely high
density and temperature. Under these conditions quarks are not confined and
do not form hadrons. Instead they are moving independently and interact with
each other predominantly via the exchange of gluons, which mediate the force
of strong interactions. As typical for plasmas, the freely moving quarks allow
for (color) charge screening. Matter in this phase is therefore referred to as the
quark-gluon plasma (QGP).

From the beginning on, the universe expanded and cooled down. After
10−6 seconds at a critical value of the temperature of approximately 160–
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190 MeV the energy dependent coupling constant of the strong force rose to a
value that let confinement set in. Eventually quarks combined to bound states
and formed the hadronic matter that is now composing the galaxies visible in
the universe. Only very particular regions of the present universe come into
consideration for providing conditions extreme enough to contain matter in the
phase of the quark-gluon plasma. Such barren places are the cores of neutron
stars. These are remnants of supernova explosions of stars of about 20–30
solar masses. Due to the extremely high gravitational pressure, the hadronic
matter existing on the planets surface in deeper layers is squeezed together
to such an extent that electrons and protons combine to neutrons (thereby
emitting neutrinos). From the surface towards the core of these objects the
pressure increases. In the inner layers even neutrons are not stable anymore.
Instead the quarks and gluons may interact individually to appear as the QGP.
Other temporary habitats of the quark-gluon plasma seem to exist on earth:
The experiments conducted at heavy ion colliders are dedicated to monitor
the processes occurring at collisions of heavy nuclei at energies high enough
to produce a fireball of extremely hot and dense matter. Such experiments
are hosted at the Super Proton Synchrotron (SPS), the Relativistic Heavy Ion
Collider (RHIC) accelerating gold nuclei, and in future also the Large Hadron
Collider (LHC) which can be used to accelerate lead nuclei, as well as future
SIS experiments at the Facility for Antiproton and Ion Research (FAIR). The
state of matter observed at RHIC is a strongly coupled system composed
of deconfined quarks and gluons, the strongly coupled quark-gluon plasma
(sQGP).

To get an impression of the processes occurring during the first moments
after the creation of the universe — including the interactions of quarks and
gluons which lead to the genesis of the hadronic matter that composes our
world — it is necessary to understand the properties of the quark-gluon plasma.
This will eventually allow for deeper insight into the process of hadronization
and the phase transition from the quark-gluon plasma to the hadronic phase.
Further knowledge about the nature of matter may also allow for progress
in finding the answer to questions about the nature of dark matter and dark
energy, the majority of the energy content of our universe — by far greater
than the contributions visible matter can account for.

Still a manageable theoretical description of the interaction of quarks
and gluons in the strongly coupled systems observed at experiments is not
straightforward, although the standard model contains a theory of quarks and
gluons, known as quantum chromodynamics (QCD). It is the strong coupling
that impedes the solution of the equations of motion of QCD at low energies.
Analytical answers from QCD are obtained from perturbation expansions in
the coupling constant, which do not converge at strong coupling. Therefore
today there is no analytic description of the formation of bound states of quarks
or the interaction of quarks and gluons in the sQGP from first principles. One
successful alternative to obtain results at strong coupling is lattice gauge theory,
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which tries to simulate the dynamics of QCD numerically on a number of
discrete points in spacetime. While this approach gave answers to numerous
questions, by nature it cannot produce analytical results which would lead to
conceptual insights. It moreover approximates spacetime as a coarse grid and
so far has to incorporate some simplifications of QCD.

A completely different approach to the quark-gluon plasma can be pursued
from a point of view that also motivates the work presented in this thesis. A
possible alternative to the description of strongly coupled quarks and gluons
may be given in terms of string theory. This theory assumes strings to be the
fundamental degrees of freedom, from which all matter is composed. The
different elementary particles we know are thought to arise as the different
oscillation modes of the strings. Initially, around 1970, it aimed to explain the
relation between spin J and massm of the resonances found in then performed
collision experiments, J = α0 + α′m2, with α′ known as the “Regge slope”.
The idea was to describe the force between quarks as if a string of tension 1/α′

holds the particles together. Despite modeling the Regge behavior, the theory
failed to describe the observed cross sections correctly and was successfully
displaced by QCD wherever applicable. Nevertheless, the understanding
and interpretation of string theory evolved to a great extent, especially the
possibility to describe quantized gravity attracted interest. Today it is the most
promising candidate for a unified description of all known forces of nature
within one single theory. In this sense it can be thought of as a generalization of
the successful standard model by including a description of gravity. The world
of strings appears as a stunning complex system that may give answers to such
fundamental questions as the origin of the number of spacetime dimensions
we live in, and allow for a formulation of quantum gravity. Still much of the
theory has to be understood and almost no predictions lie within the reach of
experimental verification.

However, during the past dozen years evidence mounted that indeed there
are connections between string theory and gauge theories, like QCD. In the
mid 1990s, during the so called second string theory revolution, it was dis-
covered that string theory not only features strings as degrees of freedom. In
addition, there are higher dimensional objects, called branes as an allusion to
membranes. Branes and strings interact with each other. In this way branes
influence the degrees of freedom introduced by the string oscillations. As the
understanding of string theory grew, it was discovered that certain limits of
string theory contain the degrees of freedom of particular non-Abelian gauge
theories. These insights heralded a new era of applications of string theory to
problems in gauge theory. It began in 1997 with Juan Maldacena’s discovery
of analogies between the classical limit of so called type IIB string theory,
including branes, and the N = 4 supersymmetric Yang-Mills quantum gauge
field theory. It is possible to establish a one to one mapping between the
degrees of freedom of both theories. Maldacena therefore speculated that both
of them are different descriptions of the same physical reality. The formulation
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of this conjecture is known as the AdS/CFT correspondence [6]. As we will
discuss later, this correspondence between type IIB string theory in Anti-de Sit-
ter space (AdS) and the N = 4 supersymmetric non-Abelian conformal field
theory (CFT) is especially suitable to describe the strongly coupled regime of
gauge theories. An astonishing feature of the AdS/CFT correspondence is that
it conjectures the equivalence of a classical theory of gravity and a quantum
field theory. In some aspects this field theory resembles the properties of QCD.
Moreover, it relates the strongly coupled regime of the quantum field theory
to the weakly coupled regime of the related gravity theory. One therefore
can obtain strong coupling results of field theory processes by means of well
established perturbative methods on the gravity side. Finally, the AdS/CFT
correspondence allows to interpret the quantum field theory to be the four
dimensional representation of processes in string theory, which is defined in
ten spacetime dimensions. Because of these properties the correspondence is
more generally also referred to as gauge/gravity duality and is said to realize
the holographic principle. So far there is no mathematically rigorous proof for
the correspondence to hold. Nevertheless, in all cases that allowed for a direct
comparison of results from both theories, perfect matching was found.

The AdS/CFT correspondence is considered as one of the most important
achievements in theoretical physics of the last decades. However, by now the
string theory limit which exactly corresponds to QCD is not known. Albeit the
direct way ahead towards a comprehensive analytical description of strongly
coupled QCD is not foreseeable, numerous cornerstones where already passed
and some junctions and connections to the related physical disciplines where
found. Examples are deeper insights into the connection of black hole physics
to thermodynamics, the relation to finite temperature physics, and the discovery
of quantities like the famous ratio η/s of shear viscosity to entropy density that
are universal for large classes of theories. The motivation to use the AdS/CFT
correspondence to explore the strongly coupled quark-gluon plasma therefore
is twofold. On the one hand side there is the attempt to provide a description of
strongly coupled quarks and gluons as a supplement to QCD. In this way string
theory might contribute to further understanding of gauge theories. On the
other hand a phenomenologically relevant application of string theory can be
used as a benchmark to evaluate the capabilities of string theory in describing
nature. In this way string theory might benefit from the exploration of new
regimes of QCD, so far described predominantly by quantum field and lattice
gauge theories. The ability to produce the sQGP in collision experiments for
the first time may allow to check predictions from string theory. There is
well-founded hope that the quark-gluon plasma can provide a link between
string theory and experiment.

In this thesis we will make use of the AdS/CFT correspondence to inves-
tigate strongly coupled systems. The models we use for this purpose will be
various modifications of the gauge/gravity duality that allow for the description
of quantum field theories that feature certain aspects known from QCD. Which
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aspects and which parameter regions we can cover with this approach will
be pointed out in the introductory chapter on AdS/CFT and in those sections
where we introduce the models. It is interesting in its own to see how far the
correspondence may be extended and which facets of quarks and gluons can
be modeled at all. However, it is even more fascinating to see that already
today some properties of phenomenological relevance can be captured by a so
called holographic description of the sQGP via the AdS/CFT correspondence.
Such results allow for comparison with lattice gauge theory and effective
field theories. A vast number of attempts to apply the correspondence to the
dynamics of quarks and gluons has been under investigation during the past
years. The questions pursued in this work are the following.

• Can quarks and gluons combine to form hadrons inside the quark-gluon
plasma? How does the spectrum of bound states of quarks, esp. of
mesons, look like inside the sQGP?

• How do these spectra and the lifetime of mesons depend on temperature
and quark density?

• How do quarks and their bound states move through the plasma?

• What effects has the strong coupling?

The answers we obtain are by part of qualitative nature, or can be expected to
receive corrections, which can be calculated as soon as progress in the field
allows to relax some limiting assumptions. Nevertheless, it is amazing to see
that the gauge/gravity duality can give answers to these questions in terms
of a minimal number of input parameters. We do not follow the so called
“bottom-up” approach, also known as AdS/QCD. There the goal would be
to find gravity duals to phenomenological gauge theories which incorporate
certain desired aspects of QCD. Instead we pursue the “top-down” approach.
This means that we are aware of the fact that the AdS/CFT correspondence is
a phenomenon discovered in string theory. We try to construct models which
are consistent solutions of string theory and observe the consequences on the
gauge theory side. From this point of view, the results obtained by means of
the AdS/CFT correspondence can be interpreted as a sign of the predictive
power of string theory.

This thesis is organized as follows. Chapter 2 gives a brief introduction
to the gauge/gravity duality, the extensions which are of relevance for the
derivation of our results, and a short discussion of the application to QCD
and the quark-gluon plasma. However, we will not try to give an introduction
neither to string theory nor to quantum field theory, supersymmetry or general
relativity. Nevertheless, these theories are the basis of this work. Especially
string theory is on the one hand the basis of this thesis, on the other hand
too rich to provide a broad background in detail here. Therefore, we will
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provide the necessary theoretical arguments and details wherever needed in
a hopefully adequate manner. The remaining chapters deal with the answers
of the questions mentioned above. Each of them contains a brief introductory
section and one or more technical sections which lead to results that will be
discussed at the end of each chapter. In particular, chapter 3 deals with meson
spectra at finite temperature and particle density, and discusses the influence of
these parameters on the spectra. In chapter 4 transport coefficients of quarks
and mesons in the plasma are calculated. Comparison with weak coupling
results enables us to estimate the effects of strong coupling. In Chapter 5 we
examine the lifetime and stability of mesons at different temperatures and
particle densities and in this way get new insights into the structure of the
phase diagram of the dual field theory. A summary and discussion of the
results is finally given in chapter 6. Appendices at the end of this work clarify
conventions and notational issues and present some calculations in a more
detailed form than the main text allows for.



C HAPTER 2

The AdS/CFT correspondence
and extensions

Conventional holograms are able to encode truly three-dimensional infor-
mation on a two-dimensional surface. Analogously, in particle physics and
quantum gravity, the equivalence of information contained in a theory defined
in some lower dimensional space and a different theory on a higher dimen-
sional domain, is referred to as the holographic principle. One of the first
observations of such kind of holography was the discovery that the information
captured inside the horizon radius of a black hole, i.e. the entropy given by
the number of possible microstates, can be described in terms of the horizon
surface area alone [7]. This observation suggests the existence of a holographic
realization of quantum gravity.

Another observation of a holographically realized connection between
gravitational physics and quantum mechanics was made by Juan Maldacena at
the end of the so-called second string theory revolution. He then conjectured
the equivalence of a supergravity theory in Anti-de Sitter spacetime (AdS) and
a certain type of conformal field theory (CFT) [6]. This discovery triggered an
enormous amount of efforts to establish the long sought connection between
quantum gauge field theories and gravity, which did not abate so far. The fact
that the theory on the AdS side of the correspondence can be expressed as a low
energy limit of string theory, which naturally incorporates gravity, is widely
interpreted as a support of the claim of string theory to offer a formalism which
allows for a unified description of all known fundamental forces of nature.

In this chapter we briefly review the Maldacena conjecture and some of
the extensions invented during the last decade. Instead of giving an exhaustive
review, we merely draw a hopefully concise and consistent sketch of the whole
picture. In doing so we emphasize those features of the correspondence that
are most important for the developments in the subsequent chapters. Classical
reviews which deal with the subject in depth are refs. 8, 9. For the sake of
clarity, we restrict explicit calculations to a minimum here.
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2.1 The original AdS/CFT correspondence

The AdS/CFT correspondence as it was formulated by Maldacena in 1997
relates two particular theories which we introduce in the next two subsections.
Afterwards we rephrase the conjecture of Maldacena, before we comment on
the relaxation of the underlying assumptions, other generalizations and the
applicability to QCD and the quark-gluon plasma in the following sections.

2.1.1 N = 4 Super-Yang-Mills theory

One of the two theories related by the AdS/CFT correspondence is N = 4
super-Yang-Mills theory in four spacetime dimensions of Minkowski topology.
It is a supersymmetric quantum field theory with SU(N = 4)R R-symmetry,
which rotates the four supercharges into each other. All fields are arranged in
one supersymmetry multiplet. The on-shell field content is given by six real
spacetime scalars Xi with i = 1, 2, . . . , 6, one spacetime vector field A and
four two component spin 1/2 left Weyl fermions λa with a = 1, 2, 3, 4. Under
R-symmetry transformations the six scalars transform as an antisymmetric 6
of rank two. The Weyl fermions represent a 4 and the vector field is a singlet.

With respect to gauge symmetries, all the fields constitute one single
multiplet, called the N = 4 gauge multiplet. They transform under the adjoint
representation of the gauge symmetry group SU(N), where the integer N is
left as a parameter for now. Later we will interpret it as the number of color
degrees of freedom.

The according gauge indices labeling the elements of the gauge symmetry
generators T k with k = 1, 2, . . . , N2 − 1 are suppressed in our notation,
e.g. the notation Xi for a spacetime scalar is the short form of X(i)k T k

where T k as a matrix has elements (T k)mn labeled by m,n = 1, 2, . . . , N .
One would write out the elements of Xi as Xim

n , where i labels the index
which transforms under the 6 of the R-symmetry and m,n are the indices
transforming under SU(N) gauge symmetries. We label spacetime directions
by µ and ν. With this convention and the field strength tensor F = dA+A∧A
the unique Lagrangian [9] reads as

L = Tr

[
− 1

2g2
YM

FµνF
µν +

θI
8π2

Fµν ?F
µν − iλ̄aσ̄µDµλa

−DµX
iDµXi + gYM C

ab
i λa

[
Xi , λb

]
+ gYM Ciabλ̄

a
[
Xi, λ̄b

]
+
g2

YM

2
[
Xi, Xj

]2]
,

(2.1)

where the trace is performed over the suppressed gauge indices and D is the
gauge covariant derivative. The symbol θI denotes the real valued instanton
angle, theCabi andCiab are related to the structure constants of the R-symmetry
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group, and there is one dimensionless coupling constant gYM in this Lagrangian.
The energy dimensions of the operators and constants are given by

[A] = [Xi] = 1, [λa] =
3
2
, [gYM] = [θI ] = 0, (2.2)

so the action S =
∫

d4x L is scale invariant. In fact N = 4 theory is
invariant under transformations generated by the conformal symmetry group
SO(4, 2) ∼= SU(2, 2) composed by Poincaré transformations, scaling and so-
called superconformal transformations as well as under the above mentioned R-
symmetry group SU(4)R. These transformations compose the global symmetry
group denoted by PSU(2, 2 | 4). Note that these symmetries are realized
also in the quantized theory and not broken by anomalies. Moreover, the
Lagrangian ofN = 4 super-Yang-Mills theory is unique. In contrast to other
supersymmetric theories, which allow for different choices of the potential for
the superfields, the form of the action is completely determined by the demand
for renormalizability.

There even is a further symmetry. With respect to the complex combination
of the coupling gYM and the instanton angle θI given by

τ =
θI
2π

+ i
4π
g2

YM

(2.3)

the action is invariant under τ 7→ τ + 1. Generalizing this symmetry, the
Montonen-Olive conjecture states that the theory is invariant under SL(2,Z)
transformations acting on the complex coupling τ , this symmetry is denoted
as S-duality. It includes a transformation τ 7→ −1/τ which indicates that the
theory describes a duality between strongly and weakly coupled regimes. We
will not make use of this duality, though.

The large N limit and the connection to string theory

The N = 4 super Yang-Mills theory introduced here is strongly related to
string theory, which becomes visible in the limit of asymptotically many colors,
N → ∞, while the effective coupling λ = g2

YMN is kept fix. This is the so-
called ’t Hooft limit [10]. The motivation to consider the large N limit is to
find a parameter which allows for perturbative calculations in strongly coupled
gauge theories, namely 1/N . To illustrate this in a simplified way for the theory
given by (2.1), we note that one can schematically write the interaction terms
of this Lagrangian as

L ∼ Tr
[
∂Φi ∂Φi + gYMc

ijkΦiΦjΦk + g2
YMd

ijklΦiΦjΦkΦl

]
, (2.4)

where Φi are any of the bosonic fields Xi or A (and the fermions are related to
them by supersymmetry). Note that the three-point vertices are proportional to
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gYM while the four-point vertices are proportional to g2
YM. After the introduction

of Φ̃i = gYMΦi the Lagrangian acquires the form

L ∼ 1
g2

YM

Tr
[
∂Φ̃i ∂Φ̃i + cijkΦ̃iΦ̃jΦ̃k + dijklΦ̃iΦ̃jΦ̃kΦ̃l

]
. (2.5)

Remember that all fields Φi of N = 4 SYM theory transform in the adjoint
representation of the gauge group SU(N). So Φi can be written in a ma-
trix notation, where the elements of the matrix are denoted by (Φi)ab, with
a, b = 1, 2, . . . , N transforming in the fundamental and antifundamental rep-
resentation, respectively. In a Feynman diagram a propagator for some particle
Φi then corresponds to a double line, with one line corresponding to the upper
and one to the lower index a, b of the gauge group, see figure 2.1.

In this double line notation we can now order diagrams in an expansion
parametrized by 1/N to see that the contributions to gauge invariant processes
may be ordered according to the Euler characteristic of the Feynman diagram,
i.e. they are ordered according to topology of the diagram. As an example
consider the diagrams in fig. 2.1. For the amplitude corresponding to some
Feynman diagram, a propagator introduces a factor of g2

YM = λ/N while the
above Lagrangian (2.5) shows that vertices pick up a factor of 1/g2YM

= N/λ.
From the double line notation it is clear that each closed line therein represents
a loop which introduces a factor N . Moreover, think of the diagrams as de-
scribing polyhedrons which are characterized by vertices, edges (propagators),
and faces which are the regions separated by the edges. We observe that the
factors of N for a diagram with V vertices, E edges and F faces (i.e. loops of
lines in the double line diagrams) appear in powers of

NV−E+FλE−V = NχλE−V = N2−2gλE−V . (2.6)

The number V −E+F = χ = 2−2g is the Euler character of the polyhedron
described by a Feynman diagram. The genus of the corresponding Riemann
surface is given by g. From this dependence on N we see that diagrams with
smallest g, i.e. planar diagrams with g = 0, contribute with highest order,
while diagrams with topologies of higher genus g are suppressed by factors
of N2g relative to the planar ones. In this way any process in the field theory
can be decomposed into diagrams ordered by their genus g in the double line
notation. The amplitudeM of a given process may then be obtained by a sum
of the contributions from all relevant Feynman diagrams,

M =
∞∑
g=0

N2−2g fg(λ). (2.7)

This type of expansion is exactly the same as the one obtained by performing
an expansion of diagrams describing the interaction of closed oriented strings,
the type II string theories, upon recognizing the parameter 1/N = g2YM/λ as
being proportional to gs, the string coupling constant [8]. The hope is, that
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FIGURE 2.1: Feynman diagrams (left) can be translated to double line diagrams (middle),
which in turn can be interpreted as Riemann surfaces of well defined topology (shaded). These
surfaces (deformed to the shape on the right) can be interpreted as stringy Feynman diagrams.

the topologies of Feynman diagrams reflect the contribution of the string
theory diagrams with the same topology. From the standard examples shown
in figure 2.1 we see that the genus g represents the number of loops in the
associated string theory diagram.

The large N limit corresponds to weakly coupled string theory, as gs ∝
λ/N . In this limit we only have to consider the leading diagrams with genus
g = 0. These are the gauge theory processes described by planar diagrams,
corresponding to tree level diagrams in string theory.

These arguments are of heuristic nature. For instance, there are effects like
instantons in a gauge theory, which can not be treated in a 1/N expansion. Such
effects therefore should match the according non-perturbative effects in string
theory.

2.1.2 Type IIB supergravity

The preceding section introduced the quantum field theory, which represents
one of the two theories connected by the AdS/CFT correspondence. The sec-
ond theory is type IIB supergravity. Supergravity theories are supersymmetric
gauge field theories containing a spin 2 field identified with the graviton, the
quantum field of gravitation. Supergravity thereby is an attempt to combine
supersymmetric field theory with general relativity.

Even though Supergravity is an interesting field to study on its own right, it
can be embedded in a larger and more general framework. In fact supergravity
is a certain limit of string theory. A brief comment on this perception will
follow below. As string theory revealed that a consistent description of the
forces and matter of nature requires ten spacetime dimensions, we will be
interested in a formulation of supergravity in ten-dimensional backgrounds.
There are different supergravity theories in ten spacetime dimensions, which
can be constructed from compactifications of a unique causal unitary 11-
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dimensional supergravity theory [9].
The one formulation we will make use of throughout this thesis, and which

is the one most intimately connected with the AdS/CFT correspondence is
the so-called type IIB supergravity in ten spacetime dimensions. This theory
is a N = 2 supersymmetric theory with a field content given by the bosonic
fields G (symmetric rank 2, the metric), C (scalar, axion), Φ (scalar, dilaton),
B (rank 2 antisymmetric, Kalb-Ramond field), A2 (rank 2 antisymmetric), A4

(self dual rank 4 antisymmetric). The fermions of the theory satisfy Majorana-
Weyl conditions and are given by two ψI (I = 1, 2, spin 3/2 gravitinos of
same chirality) and two fields λI (I = 1, 2, spin 1/2 dilatinos of same chirality,
which is opposite to the chirality of the gravitinos). This theory is chiral in the
sense that it is parity violating [9].

The action of type IIB supergravity may be written down in terms of the
field strengths

F1 = dC, H3 = dB, (2.8)

F3 = dA2, F̃3 = F3 − CH3, (2.9)

F5 = dA4, F̃5 = F5 −
1
2
A2 ∧H3 +

1
2
B ∧ F3, (2.10)

and then reads

SIIB = +
1

2κ2

∫
d10x

√
|detG|e−2Φ

(
2R+ 8∂µΦ ∂µΦ− |H3|2

)
− 1

2κ2

∫
d10x

√
|detG|

(
|F1|2 + |F̃3|2 + |F̃5|2

)
− 1

2κ2

∫
A4 ∧H3 ∧ F3

+ fermions,

(2.11)

where κ is the Newton constant andR is the Ricci scalar. Additionally, at the
level of the equations of motion one has to impose the self-duality constraint

?F̃5 = F̃5. (2.12)

Type IIB supergravity as a string theory limit

Starting from the Polyakov action to describe string world sheets, tachyonic
string modes were discovered in the derived spectrum. These tachyons indicate
an instability of the theory. To arrive at a stable and causal theory, one should
remove these tachyonic excitations from the spectrum. To do so, one may
modify the Polyakov action by introducing supersymmetry, and truncate the
spectrum of physical states in a consistent way, a procedure called GSO-
Projection (after the inventors Gliozzi, Scherk and Olive). This projection
exactly leaves a spacetime supersymmetric spectrum.
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This procedure not only removes the tachyonic ground state from the
closed string spectrum but additionally demands a number of 10 spacetime
dimensions to preserve causality. The lowest remaining modes after the GSO
projection represent the ground state of the remaining theory. For instance, in
the Neveu-Schwarz sector of the string excitations this ground state happens to
be described by massless excitations of strings. The so-called level matching
condition demands this state to be generated from a vacuum |0〉 by the action
of two creation operators, a left- and a right-moving one, αµ−1α̃

ν
−1 |0〉. These

excitations may be described by a tensor valued fieldM with componentsMµν .
This field in turn decomposes into a symmetric part with components Gµν

(describing the degrees of freedom of the graviton), antisymmetric components
Bµν (the B-field) and the scalar Φ (the dilaton) that determines the trace of
M .

Computing the masses of string excitations generated by more than two
creation operators acting on the vacuum, unveils that these excitations describe
fields which represent particles of finite positive mass proportional to 1/α′. In
a low energy theory compared to the energy scale of inverse string length,
or equivalently on length scales that do not resolve the stringy nature of the
fundamental theory one may approximate the strings by pointlike particles,
effectively described as α′ → 0. In this limit, however, all massive modes
gain infinite masses and will not effect the low energy dynamics. The low
energy theory may therefore only contain particles described by the massless
supersymmetry multiplet to which the fields B, G and Φ belong. The action
remaining for these fields exactly describes the supergravity action. We are
interested in the sector of closed string excitations with same chirality for the
left and right moving excitations, which is called type IIB string theory and
leads to type IIB supergravity in the low energy limit.

In the action (2.11) above, the fields G, B and Φ can be found in the
first line, they originate from the Neveu-Schwarz sector (NS-NS) of the string
theory fields, while the second and third lines contain the Ramond sector (R-R)
contributions.

Extremal p-brane solutions and D-branes

Solutions to the supergravity equations of motion with non-trivial charges of
(p + 1)-forms Ap+1 are called p-branes. These solutions exhibit Poincaré-
invariance in (p + 1) dimensions, their name thus stems from the number p
of spatial dimensions included in this symmetry group. In this sense these
solutions are higher dimensional generalizations of membranes, which one
would denote as 2-branes in this context.

Note that the flux f of the field strength Fp+2 = dAp+1 through some
surface Σ is conserved since df =

∫
Σ dFp+2 = 0, as Fp+2 is an exact and

thus closed form. Moreover, the electric coupling of the p-form to the p-brane
with worldvolume Σp+1 of spacetime dimension p + 1 can be described by
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the diffeomorphism invariant action

Sp = Tp

∫
Σp+1

Ap+1. (2.13)

The proportionality constant Tp denotes the tension of the p-brane. It has the
interpretation of the energy or mass per unit area of the worldvolume,

Tp =
2π

gs (2π`s)p+1
. (2.14)

In type IIB supergravity, there are 0-forms, 2-forms and 4-forms, allowing
for the following p-brane solutions. The 0-forms allow for (−1)-brane solu-
tions, so-called D(−1)-instantons. Then there are 1-branes, charged under and
thus coupling to the according solutions of the B-field. The two dimensional
1-branes are identified with the worldsheet of the fundamental strings of the
underlying string theory. They are called F1-strings. The 1-branes which cou-
ple to the A2 field are called D1-strings, and the 3-brane solutions according
to the A4 field are called D3-branes.

The magnetic analogon to the electric couplings are given by the Hodge
dual field strengths. The magnetic dual field strength to Fn in a ten-dimensional
background, is the (10− n)-form ?Fn, which has a (9− n)-form field as its
potential. This in turn couples to a (8−n)-brane. In this way the type IIB field
strengths F1 and F3 allow for magnetic couplings to D7-branes and D5-branes.

The naming of branes as Dp-branes we just saw, arises from string theory.
As we can see, the Dp-branes are coupling to fields in the Ramond sector. The
letter D is short for the Dirichlet boundary conditions such a brane imposes
on the dynamics of the endpoints of open strings. Namely, in string theory
D-branes are identified with the surfaces on which open strings end [11,12]. The
endpoints of these strings then have a well defined position in the direction per-
pendicular to the brane, namely the position of the brane. Such a specification
of a certain value for a actually dynamical quantity is known as the imposition
of Dirichlet boundary conditions. It is believed that the p-brane solutions in
the supergravity limit of string theory may be identified with Dp-branes in full
string theory.

The fact that p-branes are (p+ 1)-dimensional Poincaré invariant imposes
restrictions on the metric. For instance, some d-dimensional spacetime which
supports a p-brane will include a Poincaré invariant subspace with symmetry
groupRp+1×SO(1, p). Additionally, one can always find solutions which are
maximally rotationally invariant in the (d−p−1)-dimensional space transverse
to the brane. Thus, in particular a ten-dimensional spacetime supporting D3-
branes has an isometry group ofR4 × SO(1, 3)× SO(6).

Analog to Reissner-Nordström black holes in general relativity, the possi-
ble solutions of supergravity backgrounds can be parametrized by the mass
M of the p-brane solution and its RR charge N , which are functions of two
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parameters r±, which can be interpreted as horizons of the solution. The case
r+ < r− exhibits a naked singularity and is therefore regarded as unphysical.
In the limit of r+ = r− the brane is said to be an extremal p-brane, while it is
a non-extremal black brane for r+ > r−, with an event horizon. For details
refer to ref. 8. We restrict our attention to the case of extremal p-branes.

The most general form of an extremal p-brane metric can be written in
terms of a function H as [9]

ds2 = H(⇀
y)−

1
2 ηµνdxµdxν +H(⇀

y)
1
2 d⇀
y2. (2.15)

Here, the coordinates of the vector ⇀
y parametrize the space transverse to the

brane, and η is the (p+ 1)-dimensional Minkowski metric.
Supported by the insight that D-branes are dynamical objects of the theory

[11], one can adopt the point of view that the above geometry is generated by a
stack of N ∈ N branes placed in an initially flat d-dimensional Minkowski
spacetime at a positions ⇀

yi, with i = 1, 2, . . . , N . Asymptotically far away
from the stack one can therefore expect the whole spacetime to become flat
again. String theory calculations then restrict the function H(⇀

y) to

H(⇀
y) = 1 +

N∑
i=1

gs (4π)(5−p)/2 Γ
(

7−p
2

)
α′(d−p−3)/2

|⇀y − ⇀
yi|d−p−3

, (2.16)

where gs is the string coupling constant and α′ parametrizes the string tension.
Of special interest for this thesis are D3-branes and D7-branes. For the

introduction of the AdS/CFT correspondence, it is useful to look at D3-branes
first. D7-branes will become an important ingredient for generalizations of the
correspondence.

D3-branes and Anti-de Sitter space

There are several aspects which make D3-branes especially interesting. First
of all, D3-branes by definition introduce four-dimensional Poincaré symmetry,
the resulting ten-dimensional geometry for p = 3 is regular. Moreover, the
solution for the axion and dilaton fields (C with F1 = dC and Φ in (2.11)) can
be shown to be constants. In addition, the field strength F5 is self-dual. For
our considerations the metric will be a central quantity. Especially the case of
N coincident D3-branes located at a position yD3 in a spacetime of dimension
d = 10 will be important. From (2.16) we see that the function H(~y) in this
case is given by

H(⇀
y) = 1 +

4πgsNα
′2

|⇀y − ⇀
yD3|4

. (2.17)

We introduce the quantity R simply as an abbreviation,

R4 = 4πgsNα
′2. (2.18)
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However, a few lines below we will see that this parameter has a crucial
geometric interpretation. With R we write H(⇀

y) as

H(⇀
y) = 1 +

R4

|⇀y − ⇀
yD3|4

. (2.19)

By a coordinate shift we may always denote the position ⇀
yD3 as the origin of the

y coordinates and set it to zero. The distance from the brane will be denoted
by r = |⇀y|. The metric (2.15) generated by a stack of D3-branes therefore may
be written as

ds2 =
(

1 +
R4

r4

)− 1
2

dxµdxµ +
(

1 +
R4

r4

) 1
2 (

dr2 + r2dΩ2
5

)
. (2.20)

Far away from the stack of branes, at large r � R, where the influence of
the branes on spacetime will not be sensible, the metric is asymptotically flat
ten-dimensional Minkowski spacetime. However, in the limit of r → 0 the
metric appears to be singular. This limit is therefore known as the near horizon
limit. In fact spacetime is not singular in this limit but develops constant
(negative) curvature. Because space is flat at large r, but has constant curvature
at r → 0 this limit is also referred to as the throat region. In the near horizon
limit at small r � R the metric asymptotically becomes

ds2 =
r2

R2
dxµdxµ +

R2

r2
dr2 +R2dΩ2

5. (2.21)

This is the product space AdS5 × S5, where the first two terms describe what
is known as five-dimensional Anti-de Sitter space, or AdS5 for short. The
parameter R is called the radius of AdS space. The last term represents
the familiar five-dimensional sphere, of radius R as well. The geometry of
Anti-de Sitter space is crucial for the gauge/gravity duality. To discuss some
properties we introduce the coordinate z = R2/r and write the metric as

ds2 =
R2

z2

(
dxµdxµ + dz2

)
+R2dΩ2

5. (2.22)

The metric (2.22) can be derived as the induced metric of a five-dimensional
hypersurface which is embedded into a six-dimensional spacetime with metric

ds26 = −dX2
0 +

4∑
i=1

dX2
i ± dX2

5 , (2.23)

where the Xi parametrize the six-dimensional space and the choice of the
ambiguous sign depends on whether we aim for a metric on AdS5 with Eu-
clidean or Minkowski signature. Originally, the AdS/CFT correspondence was
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conjectured for Euclidean signature. The hypersurface which defines AdS5

obeys

XµX
µ = −R2. (2.24)

We now parametrize this surface with so-called Poincaré coordinates z > 0 and
xµ ∈ R with µ = 0, 1, 2, 3, such that xµxµ = ±(x0)2+(x1)2+(x2)2+(x3)2

with the sign corresponding to the one in (2.23) and

X0 =
R2 + z2 + xµx

µ

2z
,

X4 =
R2 − z2 − xµxµ

2z
,

Xi = R
xi

z
, i = 1, 2, 3,

X5 = R
x0

z
.

(2.25)

The hypersurface parametrized by z and the xµ fulfills (2.24) and therefore
represents AdS5. It has the induced metric

ds2 =
R2

z2

(
dxµdxµ + dz2

)
(2.26)

which appears as the first factor of the product spacetime (2.22). Note that
for the Minkowski signature background the restriction z > 0 leaves only
one of the two separate hyperboloids described by (2.24). The other half is
parametrized by z 6 0 and is a clone of the part we use. The spacetime coor-
dinates parametrized by ~x suggest to be related to four dimensional Euclidean
or Minkowski spacetime, depending on the choice of sign in (2.23). The
coordinate z on the other hand is called the radial coordinate of AdS space.
When we establish the AdS/CFT dictionary we will pay special attention to
the behavior of fields near the so-called conformal boundary of AdS space. It
is defined as the projective boundary which lies at z → 0 in the coordinates
at hand. In the embedding space introduced above the boundary would be
infinitely far away from the origin of the coordinate system. The metric (2.26),
however, is diverging at the boundary, except we rescale it [13]. A scale factor
f(z) with a first order root of f at z = 0 will exactly cancel the divergence
after rescalings

ds2 7→ f2(z) ds2. (2.27)

As we are free to choose the function f(z) as long as we do not introduce new
roots in f(z) or change the order of the root at z = 0, we can choose between
a family of rescaling functions f , which are related by some arbitrary function
w(z) as

f(z) 7→ f(z) ew(z). (2.28)
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This freedom therefore expresses the fact that the boundary of Anti-de Sitter
space is only well defined up to conformal rescalings. Then the boundary at
z = 0 represents four-dimensional Euclidean or Minkowski spacetime, defined
up to conformal rescalings.

For later reference we point out the isometry group of AdS5×S5 here. The
Lorentzian version with negative sign in (2.23) clearly displays an SO(2, 4)
rotational invariance in the AdS5 subspace, while the isometry group of the
five sphere is SO(6).

We interpreted supergravity as a limit of string theory in the last paragraphs.
Moreover, we will work in the near horizon limit from now on. Consequently,
we will work in a background spacetime with the topology of AdS5 × S5. The
non-vanishing curvature of AdS5 spacetime can be characterized by the Ricci
scalar

R =
20
R2

. (2.29)

String theory, however, is not solved in curved backgrounds so far. To allow for
a good approximation of type IIB string theory by working in the supergravity
limit, one should therefore arrange spacetime curvature to be small. A large
AdS radius leads to small curvature. Note that by (2.18) the relation ofR to the
string scale `s =

√
α′ depends on two parameters of the theory. These are N

and the string coupling constant gs = eΦ, which can be tuned by specifying a
value of the arbitrary constant dilaton field Φ. We thus see that the supergravity
approximation seems to be valid only for gsN ≫ 1. This guaranties R� `s,
such that the radius of the string theory background is large compared to the
string length `s. In this way gsN ≫ 1 ensures that the strings do not resolve
the curved nature of the background, and type IIB string theory can be trusted
as a good approximation to string theory on AdS5 × S5.

2.1.3 The Maldacena conjecture

In a famous publication from the year 1997, Juan Maldacena pointed out that
there exists a connection between certain quantum field theories and classical
supergravity theories [6]. In particular, the degrees of freedom found in type IIB
supergravity on AdS5 × S5 contain the large coupling limit of the N = 4
SYM theory in four dimensions.

As a generalization, consider full string theory instead of the supergravity
limit, and relax the limit of large coupling on the quantum field theory side.
Maldacena then conjectured the equivalence of two theories, formulated as the
AdS/CFT correspondence. We summarize it as follows:

Computations of observables, states, correlation functions and
their dynamics yield the same result in the following two theories,
which may therefore be regarded as physically equivalent.
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On the one side (AdS) there is 10-dimensional type IIB string
theory on the spacetime AdS5 × S5. The 5-form flux through the
S5 given by the integer N , and the equal radii R of AdS5 and S5

are related to the string coupling constant gs by R4 = 4πgsNα
′2.

On the other side (conformal field theory, CFT) of the cor-
respondence there is a conformally symmetric four-dimensional
N = 4 super-Yang-Mills theory with gauge group SU(N) and
Yang-Mills coupling gYM, related to the string coupling by gYM =
2πg2

s .
This equivalence is conjectured to hold for any value of N

and gYM.

It is a remarkable feature of this correspondence that it relates a theory contain-
ing gravity to a quantum field theory, which otherwise lacks any description of
gravity. In the supergravity limit, a 10-dimensional classical theory of gravity
matches a four-dimensional quantum theory. In fact a dictionary between oper-
ators of the quantum field theory and the supergravity fields can be established.
We will comment on this below. However, the correspondence in its strong
form, given above, is very general and thus allows hardly any applications. For
instance, so far there is no formulation of string theory on curved spaces, such
as AdS5 × S5. Nevertheless, there are interesting non-trivial limits in which
explicit computations can be performed.

The ’t Hooft limit is defined as considering a fixed value of the ’t Hooft
coupling λ = g2

YMN while N →∞. This yields a simplification of Feynman
diagrams of the field theory. As we saw in section 2.1.1, in this limit only
planar diagrams contribute to physical processes. Note that a fixed value of
λ in the large N limit implies weak coupling on the string theory side as the
coupling constants are related by 2πgs = g2

YM. So on the string theory side this
results in the limit of a classical string theory (no string loops) on AdS5 × S5.

The Maldacena limit implements a further restriction. Starting from the
’t Hooft limit, we let λ→∞. This of course prohibits perturbative computa-
tions on the field theory side, since here λ is the effective coupling parameter.
On the string theory side, though, this limit results in α′/R2 → 0. So the
curvature of the string theory background becomes small compared to the
string length, which allows for consistent applications of the classical super-
gravity limit of string theory, which does not resolve the stringy nature of the
fundamental building blocks of matter.

Thus, working in the Maldacena limit not only allows to describe a quan-
tum field theory in terms of a classical theory of gravity. It also allows to
investigate the strongly coupled regime of the quantum field theory by per-
forming calculations in the weakly coupled regime of the dual theory, where
perturbative methods are applicable.

The conjecture is not an ad hoc statement, but rather results from string
theory arguments. Consider a stack of N coincident D3-branes which interact
with open strings. In the low energy limit α′ → 0 we have to consider infinitely
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short strings since `2s = α′. These strings may end on any of the N branes on
the stack. As all the branes are coincident we can not distinguish between them,
which implies an U(N) ∼= U(1)× SU(N) symmetry of the theory, where the
U(1) factor gives the position of the brane and does not play a role here. It
can be shown that the D3-branes’ solutions exhibit N = 4 supersymmetry.
Therefore in the low energy limit this theory describes precisely the conformal
N = 4 SU(N) gauge theory. Our special interest is the behavior of the
strongly coupled regime of this theory, which is not accessible by perturbation
theory. Instead of first taking the low energy limit and then the large coupling
limit, we look at what happens if we proceed in reverse order. Starting from
the stack of branes we are now interested in the strong coupling limit. From
section 2.1.2 we know that the near horizon geometry in this case will have
the topology of AdS5 × S5 with radius R4 = 4πgsNα

′2, so we are forced to
consider string theory on curved backgrounds. We also mentioned that the
low energy limit of string theory is captured by supergravity. If we adopt the
attitude that the physics of our system should be the same regardless of the
order in which we impose the limits, then in the Maldacena limit we have to
consider strongly coupled gauge theory and supergravity as two descriptions
of the same physical setup.

The quantum field theory may be interpreted as a description of the dynam-
ics of open strings ending on the D3-branes. In the low energy limit α′ → 0
the degrees of freedom (strings) are confined to the domain of the D3-branes.
In the AdS5×S5 geometry of the string theory background (2.22) this domain
is parametrized by the coordinates along the boundary of AdS5. So we can
say that the AdS/CFT correspondence describes how a four-dimensional field
theory defined on the boundary of five-dimensional AdS space encodes the
information of a higher dimensional theory. In analogy to conventional holo-
grams which encode three-dimensional information on a lower dimensional
hyperspace (namely a two-dimensional surface), the AdS/CFT correspondence
is said to realize the holographic principle.

2.1.4 An AdS/CFT dictionary

So far we recognized that the gauge/gravity duality allows for the reformulation
of some problem defined in a gauge theory in terms of a gravity theory. In order
to obtain quantitative answers, it is necessary to identify the corresponding
quantities in both theories. The supergravity theory is formulated in terms
of classical fields on a ten dimensional background, while the N = 4 SYM
theory describes the dynamics of operators acting on quantum states in four
spacetime dimensions. The relations between the parameters of the theories
were introduced with the correspondence on the preceding page. For the
coupling constants gYM, gs and λ, as well as the AdS radius R, the string
tension α′ and the number of colors N , they are

R4 = 4πgsNα
′2, 2πgs = g2

YM, λ = g2
YMN. (2.30)
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Observables, however, are expressed in terms of correlation functions
of gauge invariant operators of the quantum field theory. It is possible to
translate correlation functions of the field theory to expressions in terms of
supergravity fields. A precise prescription of how to accomplish this was given
in two seminal papers from 1998 by Edward Witten [13], and Gubser, Klebanov,
Polyakov [14]. As a result it is possible to establish a complete dictionary,
which translates quantities from on side of the correspondence to the other.

Since the domain on which the field theory is defined can be identified
with the boundary of AdS5 space, one can imagine supergravity fields φ in
AdS5 to interact with some conformally invariant operator O on the boundary.
We denote the boundary value of the supergravity field by φ0 = lim∂AdS5 φ.
A coupling would look like

Sint =
∫

∂AdS5

d4x φ0(~x)O(~x). (2.31)

In this sense the boundary value φ0 of the supergravity field acts as the source
of the operator O in the field theory. Such an interaction term appears in the
generating functional for correlation functions, which we write schematically
as 〈

exp
∫

∂AdS5

φ0O

〉
CFT

. (2.32)

Witten’s proposal was to identify the generating functional for correlation
functions of operators O with the partition function Zsugra of the supergravity
theory, which is given by

Zsugra[φ0] = exp
(
−Ssugra[φ]

) ∣∣∣
φ=φ0

, (2.33)

where Ssugra is the supergravity action. So the ansatz for the generating
functional of correlation functions of operators of the field theory can be
written as〈

exp
∫

∂AdS5

φ0O

〉
CFT

= exp
(
−Ssugra[φ]

) ∣∣∣
φ=φ0

. (2.34)

Correlation functions forO can then be obtained in the usual way by evaluating
the functional derivative of the generating functional with respect to the source
φ0 of the operator. Explicit calculations will be performed in later chapters.
As a general example, some two point function would be obtained by solving
the supergravity equations of motion, plugging these solutions into the action
Ssugra, then expressing the result in terms of solution φ0 on the boundary, and
eventually evaluating

〈O(x)O(y)〉 =
δ

δφ0(x)
δ

δφ0(y)
exp

(
−Ssugra[φ]

)∣∣∣∣
φ0=0

. (2.35)
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The remaining question is which operators are dual to which fields. The
fact that there exists such a dictionary relies heavily on the symmetries of the
two related theories. The symmetry of a theory reflects the transformation
behavior of the field content and by the Noether theorem accounts for the
conserved quantities (charges). We can expect that two equivalent theories
share the same amount of degrees of freedom, which must be reflected in their
symmetries.

To ensure a gauge invariant field theory action, including the source term
(2.31), we have to restrict our attention to operators O which are gauge invari-
ant. The local SU(N) gauge symmetry of the quantum field theory in fact has
no counterpart on the supergravity side in the Maldacena limit. The parameter
N is translated into the number of D3-branes on the string theory side of the
correspondence. The stack of D3-branes merely accounts for the emergence
of the AdS5 × S5 spacetime, see section 2.1.2 on page 15. Moreover, the
following arguments strictly only apply to BPS states.

Comparing the remaining symmetry groups of N = 4 SYM theory and
type IIB supergravity we indeed observe a matching of symmetries. In sec-
tion 2.1.1 we noted the symmetry group of the gauge theory to be PSU(2, 2 | 4).
The bosonic subgroup of this is SU(2, 2) × SU(4)R ∼= SO(2, 4) × SO(6).
These are precisely the isometry groups of AdS5 × S5, where SO(2, 4) is
the isometry group of the AdS5 part, while the five-sphere is invariant under
SO(6) transformations. The fermionic symmetries can be shown to coincide
as well, leading to the overall symmetry group PSU(2, 2 | 4).

In fact the isometries of AdS5 × S5 act as the conformal group on the
boundary [15]. Any gauge invariant field theory operator O does transform
under some representation of the conformal group. Since the boundary theory
is invariant under conformal transformations, the supergravity field φ in the
source term (2.31) has to transform in the dual (conjugate) representation.
Conformal invariance of the theory restricts the field φ further. For instance,
in the coordinates where the boundary is located at u = 0 the supergravity
equations of motion for a scalar φ have two linear independent solutions at
asymptotically small u = ε near the boundary,

φ(~x, ε) = φ0(~x) εd−∆ + φ1(~x) ε∆. (2.36)

Here d denotes the number of dimensions of the boundary, which in our case
is d = 4. Generically, the value of ∆ for a scalar supergravity field φ depends
on the mass mφ of the field [13] as

m2
φ = ∆(∆− d), (2.37)

with ∆ > 0. The second term of (2.36) vanishes at the boundary ε→ 0 while
the first term may diverge. The existence of a well defined boundary value
φ0(~x) tells us that this function has scaling dimension d −∆, i.e. φ0(~x) 7→
φ0(~x)/εd−∆ on rescalings. From the interaction term of the conformally
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invariant action (2.31) we thus see that the boundary value of φ(~x, u) acts as
the source to an operator O(~x) of scaling dimension ∆.

In summary, to identify the supergravity field φ dual to an operator O we
have to spot all supergravity fields transforming in the dual representation
to that of the operator under consideration. The conformal weight ∆ of
the operator determines the mass of the supergravity field by (2.37). The
mass spectrum of N = 2 supergravity compactified on AdS5 × S5 has been
computed [16], and therefore the field can be identified uniquely. Examples of
computations of dual field–operator pairs can be found e.g. in refs. 8, 9, 13, 14.

We also identified the boundary of AdS space with four-dimensional
Minkowski spacetime. This spacetime was only defined up to conformal
transformations, and we will identify it from now on with the domain of the
conformally invariantN = 4 SYM theory. Notice that near the boundary all
processes occurring in the field theory directions can be thought of as being
scaled in such a way that all lengths of the AdS theory, even long distance or
IR phenomena, are mapped to short scales, i.e. the UV limit on the conformal
field theory side. To see this, consider the metric (2.21) in the near horizon
limit. Then distances ds2CFT in the field theory, which are measured along ~x
appear with a warp factor relative to the distance ds2AdS in AdS space,

ds2CFT =
R2

r2
ds2AdS. (2.38)

At large r � 1 (IRAdS) close to the boundary, short scale phenomena of the
CFT (UVCFT) match the events in AdS space, while at small r � 1 (UVAdS),
far from the boundary, long scale phenomena in the CFT (IRCFT) match the
AdS distances. The radial coordinate in this way sets the renormalization
scale of the field theory which is holographically described by the supergravity
theory. This phenomenon is called the UV/IR duality.

In fact the behavior of correlation functions under renormalization group
flows can be computed holographically. The UV divergences known from
field theory translate into IR divergences on the gravity side. The procedure to
incorporate scale dependence and renormalize n-point correlation functions is
known as holographic renormalization. We will not review the procedure in
detail here, but rather give an idea of the procedure and state some results. A
nice overview which also addresses some subtleties can be found in ref. 17.

The correlation functions (2.35) in general suffer from IR divergences, i.e.
divergent terms at large values of the radial coordinate. Analogous to quantum
field theory renormalization, they can be cured by analyzing the behavior of
the field solutions near the boundary and adding appropriate counterterms
Sct to the action S which do not alter the equations of motion but render the
resulting correlators finite.

To analyze the field behavior near the boundary it is convenient to work
in coordinates u as in (2.26) where the boundary is located at u → 0. The
solution for the second order equation of motion of any field F can then be
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expanded in a series around u = 0. In general there are two independent
solutions scaling as um and um+n near the boundary. The general solution
can be written as

F(x, u) = um
(
f (0)(x) + u2 f (2)(x) + . . .+ un

(
f (2n) + f̃ (2n) lnu

)
+ . . .

)
(2.39)

in a well defined manner where the coefficients f (n)(x) carry the dependence
on the other coordinates. The values of m and n are determined by the
mass of the supergravity field and related to the conformal dimension of
the dual operator, as in the example above. The coefficient f (0) determines
the boundary behavior of the two independent solutions for the equation of
motion of F . Solving these equations order by order in u determines the
relevant coefficients f (k) for k < 2n as functions of f (0), which thereby can
be used as the initial value of the first of the two linearly independent solutions.
The second parameter needed to define the full solution of the second order
equation of motion to F is the coefficient f (2n), which in turn determines the
remaining higher order coefficients. It then is possible to extract the divergent
terms in the regularized action Sreg, which is given by the on shell action with
respect to the u dependence of the solution, evaluated at the cutoff ε� 1,

Sreg =
∫

d4x a(0) u−ν + a(1) u−(ν+1) + . . .
∣∣∣
u=ε

. (2.40)

The coefficients a(n) now are functions of the coefficient f (0), and the ν > 0
solely depend on the scale dimension of the operator in the conformal field
theory. Defining the counterterm action as

Sct = −divergent terms from Sreg (2.41)

The renormalized action is given by

Sren = lim
ε→0

(
Sreg + Sct

)
. (2.42)

Finding the renormalized action therefore involves a careful analysis of the
equations of motion. An extremely useful result of holographic renormalization
is the fact that the solutions to the equations of motion of a supergravity
field F can directly be related to the source and the vacuum expectation
value of the dual operator in the field theory [17,18]. In particular holographic
renormalization unveils that the mode f (0) is proportional to the source of the
dual operator, while the mode f (2n) is proportional to the vacuum expectation
value of the same operator. In general, the mode that is proportional to the
source scales in a non-normalizable way with u, while the mode proportional
to the vacuum expectation value is normalizable. An example is given in
(2.36) for the case of a scalar field. The integers m and n are determined in
terms of the supergravity field’s mass, which in turn translates to the conformal
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Supergravity on AdS5 × S5 4 dim. N = 4 CFT

boundary of AdS5 field theory domain
isometry of AdS5 conformal symmetry
isometry of S5 R-symmetry
weak coupling in gs strong coupling in λ
variations in radial coordinate renormalization group flow
field boundary value φ0 source for operator O
field mass m conformal weight ∆
IR normalizable mode 〈O〉 of dual operator
IR non normalizable mode source of dual operator
quantum corrections of O(gs) corrections in 1/N

stringy corrections of O(α′) corrections in 1/λ

TABLE 2.1: A few examples for entries of the AdS/CFT dictionary. Precise operator–field
pairings can be found e.g. in refs. 8, 9, 13, 14.

dimension of the dual operator. In (2.36) the value of φ0 is proportional to
the source and φ1 is proportional to the vacuum expectation value of the
dual operator. We will encounter an explicit example for the source and
vacuum expectation value when we introduce the prominent pair of a D-brane
embedding function and its field theory dual operator in section 2.2.2.

2.1.5 Tests and evidence

Although a rigorous mathematical proof of the correspondence is not derived
so far, there is increasing evidence for the Maldacena conjecture to hold.
Soon after the discovery of the correspondence correlation functions of field
theory operators where computed from gravity. A direct comparison to results
obtained from field theory calculations is not straightforward since the results
from gravity calculations are valid in the strongly coupled regime of the
gauge theory while the gauge field theory computations are performed in the
perturbatively accessible regime of weak coupling.

Nevertheless, it was early realized that the answers obtained by gravity
calculations gave the correct scaling behavior of n-point correlation functions,
which is dictated by conformal invariance [13]. Moreover, certain correlation
functions satisfy non-renormalization theorems, which state that the results
are independent of the coupling constant. Examples are the two- and three-
point functions of 1/2-BPS operators, which show a perfect matching of gauge
and gravity results [19, 20]. Also the conformal anomaly of N = 4 SYM
theory which is present in curved background spacetimes could be reproduced
exactly from AdS/CFT, which even provided methods to obtain the anomaly
in six-dimensional field theories for the first time [21].

Generalizations of the correspondence, which will be partly discussed
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below, relate different backgrounds to different gauge theories. Such mod-
ifications allowed for comparison of finite temperature N = 4 SYM with
calculations obtained from the gauge gravity theory. These calculations show
agreement of correlation functions in the hydrodynamic limit of low fre-
quency/long distance [22, 23]. The recently most enthusiastically discussed
hydrodynamic result from gauge/gravity calculations is the observation of one
universal value for the lower bound on the ratio η/s of shear viscosity η over
entropy density s for all known gauge theories with gravity duals [24–26]. In
the large N limit the result in SI units is

η

s
>

~
4πkB

. (2.43)

If it should turn out that QCD has a gravity dual and is in the same universality
class as the known generalizations of the correspondence, this result (including
large N corrections) could be the first prediction from string theory within
reach of experiment. Possibly the experiments at the RHIC and future collider
experiments will give answers on the value of η/s for QCD. So far the data
seems to be in agreement with the above bound, which means that the QGP
appears as the most perfect fluid ever observed.

2.2 Generalizations and extensions

Before we discuss the features of QCD and the sQGP which can be described
by holographic duals, we introduce those generalizations of the correspondence
which are most relevant for this work. These generalizations are necessary
to incorporate features which are missing in the N = 4 SYM field theory
described by supergravity on AdS5 × S5. Most important for a description
of the strongly coupled quark-gluon plasma are the inclusion of fundamental
degrees of freedom and a way to describe systems at finite temperature.

The introduction of finite temperature allows to model interesting quali-
tative features like the confinement/deconfinement phase transition at some
critical temperature. In holographic models the transition occurs at different
temperatures for the gauge fields and the fundamental degrees of freedom.
The realization of finite temperature is achieved by a modification of the
background geometry of the gravity theory. Moreover, we will make some
comments about the subtleties that are related to the computation of Green
functions at finite temperature. While correlation functions at zero temperature
can be obtained in Euclidean spacetimes and a subsequent Wick rotation, this
procedure generally cannot be applied at finite temperature.

The inclusion of fundamental degrees of freedom is a generalization in the
sense of additional fields we add to the gauge theory. All fields inN = 4 SYM
transform in the adjoint representation of the gauge group and therefore rather
account for the gauge degrees of freedom (gluons) than for the quarks. The
added quark degrees of freedom will be represented by additional D-branes on
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the supergravity side. The incorporation of quarks into the theory furthermore
allows to investigate the spectra of their bound states, which the subsequent
chapter is devoted to.

2.2.1 Finite temperature and AdS black holes

At finite temperature T any quantum mechanical system can be found in one of
the possible states of energy E with the probability distribution in equilibrium
described by the density matrix

ρ̂ =
e−βH

Tr e−βH
, (2.44)

where β = 1/T is the inverse of the temperature and H is the Hamiltonian of
the system. The statistical partition function of the ensemble of systems at
temperature T can then be defined as

Zstat = Tr e−βH =
∑
n

〈φn| e−βH |φn〉 , (2.45)

where the |φn〉 form a basis of the state space of the system. The statistical
partition function defines the weight of each state that contributes to ensemble
averages. Expectation values of some observable A in a thermal ensemble are
calculated with respect to Zstat by

〈A〉 = Tr (ρ̂A) =
Tr
(
Ae−βH

)
Zstat

. (2.46)

In the quantum mechanical formalism of path integrals, transition amplitudes
are given by

〈φf (tf )|φi(ti)〉 = 〈φf (tf )| e−i(tf−ti)H |φi(ti)〉 =

φ=φf∫
φ=φi

Dφ eiS[φ]. (2.47)

The idea is to sum up all possible paths φ(t) that evolve from the initial
configuration φi to the final φf . The complex phases give the weight for each
possible configuration that contributes to the evolution. If we would not only
consider one initial and one final state but sum over an ensemble of many
possible states, we should therefore recover the sum of all weights, the partition
sum. The action S[φ] above is defined as

S[φ] =

tf∫
ti

dt
∫

dd−1x L(t, x, φ). (2.48)

In quantum mechanics the standard method to obtain expectation values is
the evaluation of functional derivatives of generating functionals, which are
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commonly also referred to as partition functions. They are defined for some
functional SE [φ] by

Zgen =
∫

Dφ e−SE [φ], (2.49)

where we need to specify which functions φ we have to integrate over and what
the functional SE[φ] is. The imaginary time formalism gives a prescription
which exactly reproduces the thermal equilibrium probability weights with the
Boltzmann factor given in (2.44). The prescription is to analytically continue
the time coordinate into the complex plane, such that t in (2.48) integrates over
complex times. Additionally, we introduce a new time coordinate τ = it as a
Wick rotation of t. If we now restrict the system to such field configurations φ
that are periodic (in fact fermionic fields would have to satisfy anti-periodicity)
along the imaginary axis in complex time t with tf − ti = −iβ and β ∈ R
between the initial ti and the final tf , we can reproduce the Boltzmann weights
by setting

SE[φ] =

β∫
0

dτ
∫

dd−1x LE(τ, x, φ). (2.50)

The index E refers to the fact that we use the Euclidean, i.e. the Wick ro-
tated version, of the action. Then the integration from 0 to β translates into
integration over complex times ti to tf and therefore introduces the factor
tf − ti = −iβ in (2.47). As we restrict to periodic states on the integration in-
tervall, the final states 〈φf | match the initial states |φi〉. Thus the path integral
resembles a trace [27],

Zgen =
∫

all β-periodic
states

Dφ e−SE [φ] =
∑

all β-periodic
states

〈φβ| e−βH |φβ〉 = Zstat. (2.51)

Adding source terms to the action, which are set to zero after functional
derivation, yields the Boltzmann factors as weights from the Euclidean gen-
erating functional. The imaginary time formalism in this way trades time for
temperature and imposes boundary conditions. The result no longer depends
on a real valued time interval but only on the purely imaginary time inter-
val tf − ti = −iβ, which we interpret as the temperature T by identifying
T = 1

βkB
. Abandoning time dependence is in accordance with the fact that we

investigate a system in equilibrium, where expectation values do not change
with time. Another consequence of the periodic boundary conditions is that any
solution admits a discrete spectrum in its Fourier transformation. A propagator
G(τ) can be decomposed according to

G(τ) =
1
β

∑
n

e−iωnτ G(ωn). (2.52)
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The frequencies ωn are called Matsubara frequencies.
The link between field theory at finite temperature and gravity is known to

be related to black hole physics, which has many parallels to thermodynamics.
From the moment of the discovery of the AdS/CFT correspondence it was
expected that the finite temperature description of the field theory must be
given by gravity in the AdS black hole background [6]. We will now introduce
the AdS5 black hole background and give arguments for the relation between
the horizon radius and the temperature of the dual field theory along the lines
of arguments in refs. 28,29. The generalization of the AdS5×S5 metric (2.21)
to the black hole solution with a horizon at r = r◦ is given by,

ds2 =
r2

R2

(
−f(r) dt2 + dx2

)
+
R2

r2
1

f(r)
dr2 +R2dΩ2

5,

f(r) = 1− r4◦
r4
.

(2.53)

The signature of the metric again depends on our choice of working in either
Lorentzian or Euclidean AdS space. To draw the connection to finite tempera-
ture imaginary time formalism we again work in the Wick rotated coordinate
τ = it, where the metric has Euclidean signature. Euclidean signature however
is only given outside the horizon, inside we would introduce negative signs
from f(r) (in the Lorentzian case the signs of t and r would change). On the
other hand it is known that the spacetime can be continued beyond the horizon
and therefore the spacetime can be regularized at r◦.

The idea is to show that periodicity in the Euclidean time τ that leads to
thermal probability distributions in field theory corresponds to a regularization
of the Euclidean spacetime at the horizon. The period β = 1/T is then
identified with the inverse temperature as in field theory. We concentrate on
the τ and r coordinates in the above metric and observe how they behave near
the horizon at r ≈ r◦,

ds2 =
4r◦
R2

(r − r◦) dτ2 +
R2

4r◦
(r − r◦)−1dr2. (2.54)

We know that the Euclidean spacetime is well defined only on and outside the
horizon and therefore introduce a new coordinate %2 = r − r◦, which casts the
metric into the form

ds2 =
R2

r◦

(
d%2 + %2 4r2◦

R4
dτ2

)
. (2.55)

The factor in front is merely a constant. The metric in parentheses is the metric
of a plane in polar coordinates, ds2 = d%2 + %2dθ2. The angular variable in
our case is θ = τ2r◦/R2. The space in polar coordinates, however, is regular
only for an angular variable that is periodic with period 2π, otherwise a conical
singularity is located at % = 0, which is the horizon of the AdS black hole.
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Periodicity of θ with period 2π then translates into periodicity of τ with period
β by

2r◦
R2

τ + 2π ∼ 2r◦
R2

(τ + β). (2.56)

Where we used the symbol ∼ to denote the equivalence relation of identified
points. Regarding identified points as equal and using β = 1/T we obtain the
relation between the temperature of the field theory and the horizon radius on
the gravity side,

r◦ = TπR2. (2.57)

This result exactly reproduces the expression for the Hawking temperature of
the AdS Schwarzschild black hole described by the metric (2.53).

The AdS black hole background allows to investigate strongly coupled
gauge theories at finite temperature by performing calculations in the gravity
theory. Moreover, finite temperature defines an energy scale (or length scale r◦
on the gravity side) in the theory and therefore breaks global scale invariance,
which will have consequences for the property of (de)confinement of the field
theory, which we discuss in section 2.3. Despite the detour to a background of
Euclidean signature with time τ , the field theory we want to use as a model
for real world QCD is defined on a background of Minkowski signature with
time t, which we will use predominantly from now on. Some subtleties and
consequences regarding Minkowski signature AdS/CFT are discussed in the
following.

Thermal real time Green functions

The AdS/CFT correspondence was originally formulated and successfully
applied in backgrounds of Euclidean signature, i.e. in the imaginary time
formalism. Results in real time can be derived by subsequent Wick rotation.
However, many common situations require the formulation of a problem and
its solution in real time. One mathematical reason for the need of a real time
formulation arises from simplifications which are often introduced by deriving
solutions only for certain limits of the parameter space. In many cases for in-
stance, solutions are obtained in the hydrodynamic limit of low frequency/long
distance physics. In this case only the low Matsubara frequencies are known
and therefore analytic continuation of results to real time is somewhere be-
tween difficult and impossible. Physical arguments against the imaginary time
formalism arise whenever deviations or even far from equilibrium scenarios
are considered. We discussed that the imaginary time formalism mimics ther-
mal equilibrium probability distributions. For systems out of equilibrium the
restriction of the path integral to periodic paths is not justified. Moreover
the solutions considered in the imaginary time formalism are periodic, it is
doubtful whether such solutions can model long time evolutions. Summing up,
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FIGURE 2.2: Integration con-
tour in the complex time plane
for the imaginary time and the
Schwinger-Keldysh formalism
for finite temperature field the-
ory.

Re t

Im t

ti ti + β

tf−iβ

0

it is desirable to have a real time prescription for computations of correlation
functions in Minkowski space.

In field theory such a prescription is given by the Schwinger-Keldysh for-
malism [27]. The difference to the imaginary time formalism is a modification
of the time integration in the complex time plane. The time coordinate is still
defined on the complex plane. However, instead integrating from ti to ti − iβ
along the negative imaginary axis, this time a detour along the real axis is
taken. The path first proceeds along the real axis from ti to β, which marks the
end of the physical real valued time interval of interest. Then, the integration
contour enters the negative half plane arbitrarily far and leads back below the
real axis to Re t = Re ti to continue parallel to the imaginary axis and finally
end in tf = ti − iβ. Figure 2.2 shows the integration paths of the imaginary
time and Schwinger-Keldysh formalisms. We are interested in the analog of
the latter prescription in the gauge/gravity duality.

A recipe for the derivation of holographic Minkowski space Green func-
tions in real time was derived by Son and Starinets together with Herzog and
Policastro [22, 23, 30]. The resulting prescription is concise and amounts in only
small changes from the prescription given by (2.35). The difference is given
by the way we compute the on shell action Ssugra. The action is commonly
obtained by writing the solution of a field φ such that the “bulk contributions”
in radial direction r factorize from the “boundary contributions” along the field
theory directions x on the boundary rb. Usually we work in momentum space
with momentum k instead of position space with coordinate x and write

φ(r, k) = f(r, k)φbdy(k), with lim
r→rb

f(r, k) = 1. (2.58)

In the coordinates introduced so far the boundary was located at rb = ∞. The
on shell action can then be written as

Ssugra =
∫

d4k

(2π)4
φbdy′(−k)F(r, k)φbdy(k)

∣∣∣∣r=rb

r=r◦

. (2.59)

Here, we carried out the integration over radial coordinates from the black
hole horizon to the boundary. The two φ0 arise from the kinetic term and the
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function F(r, k) collects the remaining factors of f(r, k) and ∂rf(r, k) and
possibly other factors appearing in the action under consideration. A detailed
and explicit calculation can be found in chapter 3 where we apply the recipe,
and in refs. 22, 23. The two point Green function of the operator dual to φ
would then be given by the second functional derivative of the action,

G = −F(r, k)
∣∣∣rb

r◦
−F(r,−k)

∣∣∣rb

r◦
. (2.60)

So far we followed the method we already introduced for zero temperature.
The only difference is that now r◦ 6= 0. The evaluation of this expression is
mathematically possible, but gives physically wrong answers. For example,
the resulting Green functions would be real functions, opposed to physical
solutions, which are in general complex valued. This behaviour is due to the
boundary conditions that have to be imposed on the fields. In the Schwinger-
Keldysh formalism they arise from the periodicity of the fields and from the
orientation of the integration contour. This introduces a contour ordering
prescription, which translates to time ordering in physical processes. Loosely
speaking, a causal propagator in the AdS black hole background describes
propagation of a field configuration that has to obey the infalling wave bound-
ary condition at the black hole horizon. This boundary condition imposes the
physically given fact that at the horizon, positive energy modes can only travel
inwards, while negative energy modes only travel outwards. It can be shown
that upon imposing these boundary conditions, the time ordered retarded part
of the propagator in momentum space is determined by the boundary behaviour
of the fields alone [30]. The prescription of Son and Starinets for fields obeying
the infalling wave boundary condition then reads

GR = −2F(r, k)
∣∣∣
rb
. (2.61)

The contributions from the horizon are neglected. This method was used to
great extent in subsequent publications. At zero temperature it agrees with the
analytic continuation of Euclidean results [23].

2.2.2 Fundamental matter — adding flavor

We so far recognized that closed string excitations in the vicinity of the stack
of N D3-branes gives rise to fields transforming in the adjoint representation
of SU(N), which was identified with the color group. We could criticize a
lack of fundamental degrees of freedom, such as quarks in QCD. Karch and
Katz introduced a way to add fundamental fields to the theory [31]. The cure
can be obtained from modes of open string excitations with one end of the
string on the stack of N D3-branes and the other end on a different stack of
Nf Dp-branes. In this work we will restrict to stacks of coinciding branes. We
cannot distinguish between the branes of a stack on which a string ends. We
thus encounter a U(N) and a U(Nf ) symmetry which reflects the invariance
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of the theory under the exchanges of the branes [12, 32]. The modes of these
strings transform in the fundamental representation of SU(N) ⊂ U(N) and
SU(Nf ), respectively. We interpret these as the color and flavor groups. So
the fundamental fields (quarks) of our gauge theory correspond to strings that
have one end on the stack of N D3-branes, and the other on an additional stack
of Nf Dp-branes which may be separated from the color branes.

Throughout this work we will consider the so-called probe limit in which
Nf � N . This ensures that the backreaction of the additional branes on the
near horizon geometry of the D3-branes can consistently be neglected. In
this way we do not have to worry about how the new Dp-branes might alter
the background geometry but stick to AdS5 × S5. The Maldacena limit of
infinitely many colors N →∞ is then also called the probe limit, since we
add some neglectable amount of Nf probe branes.

The string modes stretching from the D3-branes to the probe Dp-branes
also transform under the fundamental representation of the probe branes’ gauge
group SU(Nf ). However in the Maldacena limit with N → ∞ the ’t Hooft
coupling λf = 2πgsNf of the stack of probe branes can be neglected with
respect to the color gauge group coupling λ = 2πgsN . The probe brane gauge
group in this way decouples from the color gauge group. We will identify
the probe gauge group as the flavor group and interpret strings stretching from
the stack of Nf Dp-branes to the stack of N D3-branes as fundamental matter
which comes in N varieties of color and Nf flavors. The additional Dp-branes
are therefore also called flavor branes. For finite Nf , the large N limit then is
the equivalent to the quenched limit of lattice QCD, which allows to neglect
fermion loops in all amplitudes relative to effects of the glue.

The global U(Nf ) flavor symmetry of the field theory translates into a
gauge symmetry on the supergravity side. The conserved currents of the field
theory are dual to the gauge fields on the supergravity side. We will elaborate
on this issue further when we introduce finite particle density. For now we
only stress that the introduction of Nf flavor brane accounts for a gauge field
on these branes which acquires values in a U(Nf ) Lie algebra. We denote
the field strength tensor of this gauge field by F . The components of this
tensor are labeled by F aµν , where the µ and ν denote spacetime indices while
a = 1, 2, . . . , N2

f is an index in the vectorspace of the U(Nf ) generators.

The remaining issues then are, what dimensions the flavor branes should
have and how they have to be positioned with respect to the D3-branes. Generi-
cally, D-branes couple to the field strengths of type IIB supergravity, cf. (2.64).
Karch and Randall showed that there are stable probe brane solutions which
span topologically trivial cycles and are determined by the DBI action alone
[33]. There are several such solutions which then give rise to fundamental
degrees of freedom in the dual field theory [31].
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Dirac-Born-Infeld action

The dynamics of Dp-branes is crucial for the calculations performed in this
thesis. Here, we introduce an action which allows to derive the equations of
motion for D-branes. Later we will deal with stacks of Dp-branes, for now we
consider the simpler case of a single brane.

The interpretation of a single D-brane as the surface on which the endpoints
of strings lie implies Dirichlet boundary conditions for the positions of these
points. It is the Polyakov action that describes the dynamics of the strings. In
the presence of background fields, a generalization of this action is given by a
non-linear sigma model [12]. The extremization of such an action respecting
the Dirichlet boundary conditions is equivalent to the extremization of the
Dirac-Born-Infeld action [34]. This action captures the low energy dynamics of
the string mode corresponding to the open string excitations of the Dp-brane.
For a single Dp-brane with a worldvolume M parametrized by worldsheet
coordinates ξi with i = 0, 1, . . . , p, the DBI action is given by

SDBI = −Tp
∫
M

dp+1ξ e−Φ
√
|det (P [g +B] + 2πα′F )| . (2.62)

Here g(ξ), B(ξ) and F (ξ) = dA(ξ) are the background metric, the Kalb-
Ramond B-field and the gauge field strength tensor on the brane. The operator
P [ · ] denotes the pullback on the brane worldvolume. The field Φ is the dilaton.
The brane tension Tp was given in (2.14). We will make extensive use of the
DBI action.

The DBI action is a low energy effective action that includes stringy
corrections in α′ up to arbitrary order. An expansion of the DBI action in
powers of α′ reproduces the Maxwell action in order F 2 and introduces higher
powers of F as corrections. However, this action does not include any powers
of the derivative of the field strength and therefore is strictly valid only for
constant field strengths. For a D0-brane the DBI action resembles the worldline
action of a pointlike particle.

In cases where the Ramond-Ramond sector contributes non-vanishing
n-forms Cn the full action for a Dp-brane is given by

S = SDBI + SWZ, (2.63)

where SWZ is the Wess-Zumino action

SWZ = Tp

∫
P

[∑
n

Cn e
B

]
e2πα

′F . (2.64)

However, all problems discussed in this work restrict to cases where there are
no contributions from the Wess-Zumino action, SWZ = 0. For the case of the
D0-brane, the WZ action resembles the coupling of a pointlike particle to an
electromagnetic field.
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The D3/D7 setup

Obviously, in the quark-gluon plasma the fundamental degrees of freedom
move freely throughout the directions which are interpreted as Minkowski
spacetime. Thus we will restrict our attention to probe branes which span at
least all the Minkowski directions, i.e. we consider spacetime filling Dp-branes
with p > 3. There are two heavily used models on the market, the D3/D7 setup
and the Sakai-Sugimoto model. Throughout this work we will use the D3/D7

setup, which we introduce here. The Sakai-Sugimoto model will be addressed
in a novercally short section afterwards.

In the D3/D7 configuration, the background is generated by a stack of N
D3-branes in the way introduced above, which is then probed by Nf flavor
D7-branes. The D3-branes account for the background geometry and in the
near horizon geometry give rise to the closed string excitations of type IIB
supergravity, accounting for the dual field theory N = 4 SYM. The additional
degrees of freedom introduced by open string oscillations of string stretching
between the D3-branes and the Nf probe D7-branes give rise to an N = 2
hypermultiplet in the fundamental representation of SU(N) [31]. The fermionic
fields in this multiplet, which we will denote by ψ, are interpreted as the
analogon to quarks in QCD. The dynamics of quarks and mesons will therefore
depend on the dynamics of D-branes in the holographic dual. An explicit
realization of D7-branes embedded into AdS5×S5 is given below. Applications
of such flavor branes to describe quarks and mesons, their spectra and stability
will be the subject of the following chapters.

Other D3/Dq setups

Type IIB string theory exhibits D3, D5, D7 and D9 branes. We will investigate
the D3/D7 model in this thesis. Constructions with other types of branes can
be interesting. However, with the quark-gluon plasma in mind, we do not
investigate other probes than D7-brane for the following reasons.

D9-brane can not be separated from the D3-branes since the former ones
span the entire background spacetime and therefore cannot be separated from
the D3-branes in order to generate massive quarks. D3-brane and D5-brane
branes do not have this caveat. On the other hand they still have to span
a certain cycles in the dimensions transverse to the D3-branes. Consider
for example the embedding scheme of the D3/D5 setup. Here, we split the
directions of the R6 = R × S5 transverse to the D3-branes, given by the
radial coordinate of AdS space and the directions along the S5, into a radial
coordinate % and a cycle S2 on the D5-brane, and ϕ, φ and L transverse to all
branes.

t x1 x2 x3 % S2 ϕ L φ
D3-brane
D5-brane
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FIGURE 2.3: Sketch of brane embeddings in the directions transverse to the D3-brane for
different values of the temperature (relative to quark mass). Left: zero temperature, center:
small temperature, right: high temperature, here the brane crosses the horizon.

In this setup the ends of the string cannot move freely in the x3 direction
of the Minkowski spacetime. Configurations like the D3/D5 and D3/D3 setup
therefore describe defect theories, in which the fundamental degrees of freedom
are confined to lower dimensional hyperplanes.

The Sakai-Sugimoto model

The Sakai-Sugimoto model, introduced in refs. 35, 36, describes the gravity
dual to a Yang-Mills field theory in 3 + 1 dimensions where the gauge fields
transform in the adjoint representation of the color group SU(N), supple-
mented by Nf additional chiral fermions and Nf antichiral fermions which
transform in the fundamental representation of the U(N) and in the funda-
mental representation of a U(Nf ) flavor group. Supersymmetry is completely
broken in this theory.

The geometric realization of this setup is given by a D4/D8/D8 construction.
A stack of N D4-branes in the near horizon limit gives rise to the background
geometry of the (type IIA) supergravity theory, analogous to the D3 setup. This
time however one of the directions along the D4-branes has to be compactified
in order to avoid a conical singularity in the resulting background. The matter
fields are introduced by a number of Nf � N probe D8-branes and anti-
D8-branes. These branes introduce the chiral symmetry groups U(Nf )R and
U(Nf )L which account for fermions of opposite chirality. A caveat of this
model is that the bare quark masses of these fields are vanishing.

Embedding D-branes

As a concrete realization of the D3/D7 setup we now consider the embedding
of a D7-brane into AdS5 × S5 and its thermal generalization, the AdS5 × S5

black hole background. We will perform the calculation in the black hole
background and can obtain pure AdS5 × S5 solutions as the limit of vanishing
horizon radius, r◦ → 0. Intuitive expectations would lead to embeddings
which are influenced by the attractive gravitational force of the black hole as
drawn in the cartoon of figure 2.3, which we will quantify now.

The action of a probe D7-brane is given by the DBI action (2.62). For now
we consider the case of vanishing field strengths 2πα′F = B = 0. Therefore
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we are left with

SDBI = −Tp
∫

d8ξ
√
|detG| . (2.65)

The constant prefactor Tp (cf. (2.14)) is not important for the following discus-
sion. The action is determined by the induced metric G(ξ) = P [g(x)] on the
worldsheet, where ξ are coordinates of the worldvolume of the D7-brane. The
elements of the induced metric are given by

Gµν(ξ) =
∂xa

∂ξµ
∂xb

∂ξν
gab. (2.66)

Here g is the metric of the AdS5× S5 black hole background with coordinates
xa(ξ) into which we embed the D7-brane. Two of these coordinates can be
interpreted as functions which determine the position of the eight-dimensional
worldvolume of the probe brane in the two directions transverse to the brane.
These functions have to be determined in order to minimize the action (2.65).

It is convenient for this purpose not to work in the coordinates of (2.53)
but to change to a new radial coordinate % given by

%2 = r2 +
√
r4 − r4◦ . (2.67)

The metric now is

ds2 =
%2

2R2

(
−f

2(%)
f̃(%)

dt2 + f̃(%) dx2

)
+
R2

%2

(
d%2 + %2dΩ2

5

)
f(%) = 1− r4◦

%4
, f̃(%) = 1 +

r4◦
%4
.

(2.68)

In this way we can identify the transverse part to the D3-branes as nothing else
thanR6 and we write it as

d%2 + %2dΩ2
5 =

6∑
i=1

d%2
i = dw2 + w2dΩ2

3︸ ︷︷ ︸
R4(%1,...,4)

+dL2 + L2dφ2︸ ︷︷ ︸
R2(%5,6)

. (2.69)

In these coordinates we parametrized the domain of the D3-branes by t and
the three spatial coordinates x. The part of the spacetime transverse to it is
parametrized by the six coordinates %i, with radial coordinate % = (

∑
%2
i )

1/2.
Equivalently, we wrote the transverse space as a product space of a four-
dimensional R4 in polar coordinates with radial coordinate w and a two-
dimensionalR2 with radial coordinate L, such that %2 = w2 + L2.

An embedding of the eight-dimensional worldvolume of the D7-brane into
AdS5 × S5 is then given by two functions which describe the positions in the
two dimensions transverse to the brane. Stability of the D7-brane solution
demands that the brane spans a trivial three-cycle in the transverse direction to
the D3-branes [31]. We thus embed the brane along the following directions.
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t x1 x2 x3 w S3 L φ
D3-brane
D7-brane

The worldvolume of the D7-brane is then parametrized by coordinates ξ,

ξ0 = t, ξ1,2,3 = x1,2,3, ξ4 = w, ξ5,6,7 along Ω3, (2.70)

they determine the position of the D7-brane by the embedding functions L(ξ)
and φ(ξ). However, to ensure Poincaré invariance the embedding functions
cannot depend on ξ0,...,3. Moreover, the rotational SO(4) symmetry along
the directions of the internal R4 of the worldvolume results in embedding
functions which only depend on ξ4 = w. The induced metric (2.66) on the
D7-brane then reads

ds2D7 =
w2 + L2

2R2

(
−f

2

f̃
dt2 + f̃ dx2

)
+

R2

w2 + L2

(
dw2 + w2dΩ2

3

)
,

f = 1− r4◦
(w2 + L2)2

, f̃ = 1 +
r4◦

(w2 + L2)2
.

(2.71)

This metric is AdS5 × S3 at asymptotically large w. Note that the embedding
function φ(w) does not appear. This reflects the rotational symmetry of the
setup in the space perpendicular to the brane. Further inserting the result into
(2.65) allows to derive the equation of motion for the embedding L(w),

0 = ∂w

[
W(w,L)√
1 + (∂wL)2

∂wL

]
−
√

1 + (∂wL)2
8r8◦w

3

(w2 + L2)5
L,

W(w,L) = w3

(
1− r8◦

(w2 + L2)4

)
.

(2.72)

From the asymptotic form of the equation of motion we see that the solution
near the boundary at large w behaves as

L = mL +
c

w2
+ . . . . (2.73)

The embedding profile L asymptotically tends to a constant value mL =
limw→∞ L, which we use as a free parameter of the setup. Together with
the demand for smooth embeddings the boundary conditions for the solutions
L(w) can be written as

lim
w→∞

L(w) = mL, ∂wL(0) = 0 (2.74)

for embeddings that reach w = 0 and

lim
w→∞

L(w) = mL, L(w)
∣∣∣
horizon

⊥ horizon (2.75)
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FIGURE 2.4: Solutions to
(2.72) yield Black hole and
Minkowski embeddings of
D7-branes in the AdS5 ×
S5 black hole background.
The jump between black hole
and Minkowski embedding at
mL = 1.3 induces a change
of the worldvolume topology,
reflected in a first order phase
transition of the dual field the-
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for embeddings which enter the horizon. Any other boundary condition than
orthogonality to the black hole horizon would lead to a transverse component
of the gravitational force on the brane, which would deform the embedding
until orthogonality is reached in the final equilibrium state.

The differential equation (2.72) generally has to be solved numerically
[37]. At zero temperature, however, where r◦ = 0, as well as in the limit of
large % the equation of motion is solved analytically by a constant embedding
function. Some brane profiles are shown in figure 2.4. The embeddings
which do not touch the horizon have a regular worldvolume metric. They
are called Minkowski embeddings. Note that these embeddings do not span
the whole range of the coordinate % in AdS5 × S5, since %2 = L2 + w2 and
min % = minL(%) > r◦. From the induced metric (2.71) we see that these
branes “end” at finite % before reaching the black hole horizon, since the
S3 wrapped by the D7-brane probe shrinks to zero size as in ref. 31. Those
embeddings that end on the horizon exhibit a black hole on their worldvolume
and are therefore called black hole embeddings.

Note that the supergravity scalar L is part of the radial coordinate r of AdS
space. At asymptotically large values of the radial coordinate, where L = mL,
the relation is 2r2 = L2 + w2. So at fixed w near the boundary L ∝ r. In
the inverse radial coordinate u it scales like u1 = ud−∆. According to the
AdS/CFT dictionary, the dual operator of the d = 4 dimensional field theory
therefore is of dimension ∆ = d − 1 = 3. This operator is the bilinear ψ̄ψ.
From holographic renormalization we learned that the mode of the solution L
scaling like ud−∆ is proportional to the source term of this operator. From the
field theory Lagrangian L = mqψ̄ψ + . . . we see that this source is the mass
mq of the “quark field” ψ. An exact calculation relates the parameter mL to
the quark mass mq by1

mq =
mL

23/2πα′
. (2.76)

1Equation (2.76) does not look like the formula for mq given in the original paper, ref. 31,
where the concept was introduced. The relative factor of

√
2 arises from the different coordinate

systems used here and in ref. 31. The transformation between them introduces that factor in the
embeddings and therefore also in the quark masses, cf. appendix B.
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The embedding function in this way determines the mass of the quarks in the
dual field theory [31].

Accordingly, the coefficient c in (2.73) that scales like u∆ = u3 is pro-
portional to the vacuum expectation value cc =

〈
ψ̄ψ
〉
, known as the chiral

condensate. We will not discuss this quantity in detail in this work.

2.3 Holographic quantum chromodynamics

In this section we want to point out some of the most important features of
QCD and whether they can be described by gravity duals or not. We will see
that the conditions at which the quark-gluon plasma exists, in particular finite
temperature, allow for an at least qualitative description of many aspects via
gravity duals.

The gauge/gravity correspondence is a remarkable tool for the investigation
of the strongly coupled regime of gauge theories. Depending on the choice of
parameters, the features of the gauge field theory will be more or less close to
what we expect from quantum chromodynamics.

There is hope that the AdS/CFT correspondence may provide some pre-
and postdictions even though the exact gravity dual to QCD is not known.
During the last years it turned out that there exist some quantities, like the
celebrated ratio η/s = 1/4π of shear viscosity to entropy density, that are
universal in the sense that they do not depend on a particular supergravity
background. Instead they are valid for all theories that have a gravity dual. If
QCD is within this universality class, the results from other gauge theories
than QCD may be applied to quantum chromodynamics as well.

Field content and supersymmetry

On the field theory side of the setup we stated that there is the gauge multiplet of
N = 4 super Yang-Mills theory supplemented by Nf N = 2 hypermultiplets.
The gauge degrees of freedom show up in a multiplet together with scalar and
fermionic superpartner particle fields. In the Maldacena limit these multiplet
exists in infinitely many colors, i.e. the rank of the gauge group is infinite.
The fundamental fermionic flavor degrees of freedom on the other hand exist
only in a finite number Nf of flavors, mostly we will restrict to Nf = 2. The
models studied in this thesis do not explicitly break supersymmetry further,
while other setups may allow to break supersymmetry completely [39].

Compared to QCD we deal with infinitely times more degrees of freedom.
However, as we saw the large N limit simplifies the theory drastically in the
way that it allows us to neglect string loops. In fact corrections of results
obtained from large N expansions with expansion parameter 1/N tend to be
small, as e.g. lattice calculations have shown.

Moreover, at all finite values of temperature T 6= 0 supersymmetry is
broken spontaneously. Unlike most other spontaneously broken symmetries
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it is not restored at high temperatures [40]. For a system at equilibrium this
can be seen from the fact that the fermionic degrees of freedom contained in
a supermultiplet obey antiperiodic boundary conditions along the imaginary
axis in the complex time plane, while bosons are periodic. Therefore the
Fourier decompositions and therewith the masses of these fields will differ.
Fields with different masses however are not related to each other by super-
symmetry transformations. This shows that supersymmetry is broken at finite
temperature.

To great extent we will be interested in the behavior of fundamental matter
and the bound states of the fundamental fields. As we have done above when
we identified the mass of the quarks with the mass of the fundamental fermions
in the hypermultiplet, we will think of these fields as the cousins of the quarks
in QCD — keeping in mind that gauge invariant operators receive contributions
from the scalar superpartners.

Conformal symmetry

By definition the AdS/CFT correspondence relates gravity to a conformal,
i.e. scale invariant, quantum theory. We introduced it as N = 4 SYM theory.
This is in vast contrast to QCD where we know several scales which break
conformal symmetry.

The masses of the quarks which have to be regarded as fundamental
parameters of QCD break scale invariance explicitly. The analogon to quark
mass is realized geometrically in terms of the brane embedding profile.

The dynamically determined momentum scale ΛQCD at which the coupling
constant diverges arises from quantization effects and therefore is a manifesta-
tion of scale anomalies. This scale has its dual in the background geometry of
the supergravity theory. Temperature is geometrically realized by introducing
a black hole into the spacetime of the gravity theory. The radius r◦ of the black
hole introduces the scale dual to the finite temperature in field theory. In the
way a finite temperature can be interpreted as a lower bound on the momentum
of particles, the black hole horizon radius introduces a cutoff. We interpreted
the radial coordinate in AdS as the scale of a renormalization group flow. The
horizon radius then works as a momentum cutoff. Geometrically, it introduces
a scale and thereby explicitly breaks global conformal invariance.

Bound states of quarks

One of the great successes of the gauge/gravity duality is the possibility to
derive spectra of bound states of fundamental matter from first principles. The
string tension α′ is a fundamental parameter of the theory and determines the
quark mass, which naturally appears as a parameter in the spectra of bound
states. Another parameter is the ’t Hooft coupling λ. Since we work in the
low energy limit where we expect not to resolve the string scale we cannot
explicitly assign any value to α′, and in the Maldacena limit we cannot assign
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a finite value to λ. We are thus unable to derive numerical values for meson
masses. Nevertheless, the ratio of meson masses we obtain from holographic
models can be compared to observations from experiment. Experimentally
observed ratios of meson masses are reproduced with an accuracy of about
10% [41]. With respect to the various limits in which the according calculations
are performed, this is an astonishing accuracy.

Baryons The possibilities to model baryons is very limited to this day. This
is partly due to the fact that we are restricted to the limit of infinitely many
colors. Since baryons are colorless composite particles made out of Nc quarks,
we would have to describe an object made of an infinite number of particles.

There are however Skyrmion like solutions in the Sakai-Sugimoto model
[36]. Recently, baryon like operators where considered in Chern-Simons-matter
field theory derived in an AdS4/CFT3 model [42].

Mesons As mesons are composed operators containing one quark and one
antiquark field, they transform in the adjoint representation of the flavor gauge
group SU(Nf ), which can also be expressed as a bifundamental representation
with one index in the fundamental representation

¯
Nf and the other in the

antifundamenal N̄f , as we did in section 2.1.1 for the color gauge group. This
transformation property on the string theory side is given by a string that has
both ends on the probe D7-brane. So the mesons of the field theory are dual
to the excitations of D7-D7 strings. The endpoints of these strings determine
position of the probe D7-brane. Consequently the excitations of the D7-D7

strings describe fluctuations of the probe branes. The meson masses can then
be obtained from the solutions to the linearized equations of motion of these
fluctuations of the probe branes around the embedding.

As a very short sketch of the procedure and for later reference we outline
the calculation of the spectrum of scalar mesons at zero temperature, first
published in ref. 43. Above, the embedding of the flavor D7-branes at zero
temperature was shown to be described by constant functions L(w) = mL and
constant φ(w). We now allow for small deviations from this embedding by
adding small fluctuations ϕ̃L,φ(ξ) to the embedding functions,

L 7→ L+ ϕ̃L(ξ), φ 7→ φ+ ϕ̃φ(ξ). (2.77)

We want to consider small deviations from the brane profile and therefore may
restrict our attention to the linearized equations of motion for the fluctuations
ϕL,φ. In the same way in which the embedding is determined by the equations
of motion obtained from the DBI action, we can derive the linearized equations
of motion for the fluctuations from the same action (2.65). Analogous to the
derivation of the equation of motion (2.72) for the embedding functions the
equations for the fluctuations around L in the zero temperature case of r◦ = 0
are obtained by plugging in the ansatz (2.77) into the action. The resulting
linearized equation of motion for the fluctuation ϕ̃ was calculated in ref. 43 for
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zero temperature. To make the connection to the computation of the derivation
of the embedding functions, we stick to the coordinates (2.68) with (2.69) in
which the fluctuation equation for fluctuations ϕ̃L are derived to be

0 =
2R4

(w2 + L2)2
∂i∂iϕ̃+

1
w3

∂w
(
w3∂wϕ̃

)
+

2
w2
∇a∇aϕ̃. (2.78)

Here i is summed over the Minkowski directions, ∇a are the covariant deriva-
tives along the directions of the S3 spanned by the probe D7-brane, and the
radial coordinate of AdS is given by %2 = w2 + L2. Use the ansatz

ϕ̃ = ϕ(w) e−i~k~x Y l(S3) (2.79)

with Y l(S3) as the spherical harmonics along the three sphere, such that
∇a∇aϕ̃ = −l(l+ 2)ϕ̃. Here l = 0, 1, 2, . . . is the angular momentum number
on the S3. However, in this work we only consider the solutions with l = 0.
The plane wave factor is responsible for ∂i∂iϕ̃ = −k2ϕ̃, with momentum vour
vector ~k which determines the meson mass M by M2 = −k2. Therefore the
above ansatz transforms (2.78) into an ordinary differential equation for the
radial part ϕ(w),

0 =
2R4

(w2 + L2)2
M2ϕ(w) +

1
w3

∂w
(
w3∂wϕ(w)

)
. (2.80)

It can be solved in terms of hypergeometric functions. However, normalizable
solutions only exist for

Mn = mq
4πα′

R2

√
(n+ 1)(n+ 2) , n = 0, 1, 2, . . . , (2.81)

where the quark mass mq enters through the embedding L by (2.74) and
(2.76), with constant L = mL. This is the mass spectrum of mesons at zero
temperature and vanishing particle density. In fact this is the form of the
spectrum for scalar, pseudo scalar and vector mesons [43]. We will compare
later results at finite temperature and finite density to this formula.

Various aspects of meson spectroscopy have been under investigation,
among these are the discrete meson spectra of stable quark-anti quark mesons
at zero temperature [43], the decreasing stability and melting of these states at
finite temperature and finite particle density [3, 4, 44], and the investigation of
the spectra of heavy-light mesons [45, 46].

In this thesis we will derive meson spectra for various purposes. On the one
hand side we are interested in the dependence of the spectra under variation of
temperature and particle density in order to understand the behavior of bound
states of quarks. On the other hand we will observe the influence of external
fields on the mass spectra to derive the polarizability of the mesons, which in
turn influence their diffusion behavior inside the quark-gluon plasma.

For mesons in the Sakai-Sugimoto model we again refer to refs. 35, 36.
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Confinement/deconfinement

The probably most prominent feature of QCD is the running coupling con-
stant, meaning the change in the value of the coupling constant of the strong
interaction under variations of the energy scale of the interactions. Processes in-
volving high momentum transfer are influenced less by the strong interactions
that those which occur at low momentum. Mathematically, the value of the
coupling constant even diverges at a momentum scale known as ΛQCD. Such a
running of the coupling constant with respect to the energy scale is obviously
only possible in the absence of conformal invariance, which would forbid the
existence of a characteristic scale. As a result, quarks at low energies, e.g. low
temperature, are confined to bound states which appear as colorless entities to
a far away located observer. At high energies/high temperatures, the quarks
may escape from these states and travel through spacetime independently.

Experiments show us that at energies above approximately 175 MeV quarks
and gluons start to enter the deconfined regime. The exact value depends on
various parameters. So far there is no analytic proof for these properties of
quarks and gluons. To great extent this is due to the fact that the confine-
ment/deconfinement transition occurs in the strongly coupled regime of the
gauge theory. Traditional perturbative methods may not be applied here.

In the framework of the gauge/gravity duality, however, one can hope to
see effects of the confinement/deconfinement transition, since we can work in
the strongly coupled regime of the gauge theory. The original correspondence
contained adjoint matter fields, given by the gauge multiplet of N = 4 SYM
theory. At finite temperature, the gauge fields undergo a first order phase tran-
sition at a temperature Tgauge. It coincides with the Hawking-Page temperature
and can be interpreted as the confinement/deconfinement transition [29, 47].

The fundamental matter existing in probe brane setups also exhibits a phase
transition at finite temperature, which though occurs at a different temperature
Tfund than the transition of the gauge fields. Various different models exist
where the fundamental degrees of freedom indeed undergo a phase transition
from stable bound states to dissociating ones [4, 37, 38, 44, 48]. We will come back
to this transition when we discuss the QCD phase diagram in chapter 5.

It is interesting to note a difference between holographic and lattice models.
The deconfinement temperature for fundamental matter associated with the
destabilization of mesons derived from holographic models is proportional to
the mass of the constituent quarks of the meson, Tfund ∝ mq. Lattice results
in the quenched approximation, in contrast, suggest a scaling of the transition
temperature of meson destabilization with the transition temperature for the
gauge fields Tfund ∝ Tgauge [49, 50]. This in principle allows for interesting
comparison of lattice and holographic models with experimental data.
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Chiral symmetry

Soon after the introduction of fundamental matter to the gauge/gravity duality
it was shown that various probe brane setups are capable of realizing chiral
symmetry breaking at finite temperature holographically [35, 37, 38, 51, 52]. The
order parameter for the transition between the chiral symmetric phase and
the phase of spontaneously broken chiral symmetry is given by the chiral
condensate cc for massless quarks, i.e. the vacuum expectation value of the
bifundamental cc =

〈
ψ̄ψ
〉
. In some models this transition coincides with the

confinement/deconfinement transition [53].
In the Sakai-Sugimoto model, chiral symmetry breaking is realized by

the merging of the embeddings of the D8 and D8 in the low temperature
phase. In this way the flavor groups U(Nf )L and U(Nf )R originating from
string excitations on the respective brane combine to a single vector subgroup
U(Nf )V .
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C HAPTER 3

Thermal vector meson spectra at
finite particle density

In this chapter we address the first two questions raised in the introduction.
We wondered whether bound states of quarks can be observed in holographic
models of the thermal quark-gluon plasma, and how they are influenced by the
medium. From experiment we know that temperature and particle density in-
fluence the interaction between particles, a prominent example is the transition
of quarks and gluons from the confined to the deconfined phase at increasing
interaction energy, or equivalently at high temperature.

Temperature and quark density are the most important parameters of the
model we make use of in this work. Together with the mass of the fundamental
fields they define the axes of the phase diagram of fundamental matter in
the holographic QGP. In the context of gauge/gravity duality, there has been
an intensive study of the phase diagram of N = 4 supersymmetric SU(N)
Yang-Mills theory in the large N limit, with fundamental degrees of freedom
added by considering the AdS-Schwarzschild black hole background with
D7-brane probes [37, 38, 44, 54–56]. Another approach was pursued by studying
string worldsheet instantons [57]. Subsequently, particular interest has arisen in
the more involved structure of the phase diagram when the baryon chemical
potential is present, taking finite density effects into account [58]. We con-
template the phase diagram and its parameters more detailed in chapter 5. In
this chapter we concentrate on the mesonic bound states of quarks and their
dependence on temperature and density.

The aim of this chapter is the combination of both, finite temperature and
finite density effects in the description of a thermal holographic plasma. In
N = 4 SYM theory with finite baryon density, we relate our work to the
phase diagram shown in figure 2 of ref. 59, reproduced below in figure 3.1.
We restrict to setups with non-vanishing particle density. Here, fundamental
matter is described solely by probe branes with the geometry of black hole
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embeddings [58, 60]. The holographic realization of finite particle density is
discussed below, where we introduce the setup.

The concept of mesonic bound states in N = 4 SYM theory in the Mal-
dacena limit at vanishing temperature and particle density, and an outline of
how to obtain their spectra was sketched in section 2.3. Here, we extend these
calculations to incorporate in-medium effects of finite temperature and particle
density, giving rise to non-vanishing baryon or isospin chemical potential.
The motivation to do so stems from the possibility to conduct experiments at
non-vanishing isospin density [61], as well as the better accessibility by lattice
methods of the finite isospin region in the phase diagram of QCD compared
to finite baryon chemical potential. The work presented here restricts to the
calculation of vector meson bound states with vanishing spatial momentum.
At finite momentum the vector mesons couple to scalar mesons. Extensions of
our work to finite momentum can be found in refs. 62, 63.

The meson spectra will be represented in terms of spectral functions.
These functions of an energy variable will exhibit resonance peaks of finite
width, corresponding to decay rates, at energies corresponding to the meson
masses. The necessary extensions of the setup to finite particle density and
the concept of spectral functions are introduced in the subsequent sections. In
order to determine the spectral function at finite temperature and finite baryon
density, we make use of the methods developed in the context of AdS/CFT
applied to hydrodynamics, cf. for instance refs. 23, 64, 65. For vanishing
chemical potential, a similar analysis of mesons has been performed in ref. 48.
There it was found that the mass spectrum is discrete for quarks with masses
significantly above the energy scale set by the temperature. At lower quark
mass, a quasiparticle structure is seen which displays the broadening decay
width of the mesons. As the mass decreases or temperature rises, the mesons
are rendered unstable, reflected in broad resonance peaks. These excitations
dissipate their binding energy into the plasma. Note that for this case, there
are also lattice gauge theory results [66].

The achievements of the work presented in this chapter are the successful
incorporation of either baryonic or isospin chemical potential at finite tem-
perature. Before the results of this chapter where published as refs. 3, 4 these
aspects where investigated separately in the literature. As we will see, the
simultaneous incorporation of both temperature and particle density leads to
spectra which can be compared to previous publications consistently in the
appropriate limits. In particular, we find that at low temperature to quark
mass ratio, i.e. close to the Minkowski phase, where the characteristic energy
scale of the system is given by the quark mass, the spectrum is asymptotically
discrete and coincides with the zero-temperature supersymmetric meson mass
formula found in ref. 43 and rephrased in equation (2.81). However, away
from this regime the dominant energy scale is either the finite temperature or
the chemical potential. Here the observed spectra differ qualitatively from
the above in some respects and resemble aspects of mesonic excitations in
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QCD. They also show interesting similarities to phenomenological models.
We elaborate on the physical characteristics of our results in the summary of
this chapter.

In the case of an isospin chemical potential, previous work in the holo-
graphic context has appeared in refs. 54, 67. In this case, two coincident
D7-brane probes are considered, which account for fundamental matter of
opposite isospin charge. We find that spectral functions quantitatively deviate
from the baryonic background case. A triplet splitting of quasi-particle reso-
nances in the spectral function is observed, which depends on the magnitude
of the chemical potential.

3.1 Spectral functions

The spectral function R(ω,q) of an operator J describes the probability
density in (ω,q)-space to detect the quantity encoded in the eigenvalues of the
operator J at given energy ω and spatial momentum q. In our case, we want to
describe quarkonium states and are interested in the mass/energy spectrum of
the stable bound states and their lifetimes. In other words, we want to compute
the spectral functions R(ω,q) of a quark-antiquark operator corresponding to
vector mesons. This operator appears in the field theory as the flavor current
~J(x) = ψ̄(x)~γψ(x) of fundamental fields ψ(x) (and their superpartners). For
simplicity, let us restrict to the case of vanishing momentum, q = 0, where the
remaining parameter is the energy ω alone. Peaks in the spectral function at
an energy ω indicate that there is a large probability to find a quark-antiquark
state, which is denoted as a quasiparticle if the width of the peak is small
compared to the height. The position ω of the peak gives the energy or mass
of the quasiparticle while the width of the peak translates into the lifetime of
this particle in position space. According to Fourier transformation, a broad
peak, which is a large object in momentum space, corresponds to an event of
short lifetime in position space, and vice versa a narrow peak in the spectral
function is a signal for a particle with a long lifetime.

We very briefly comment on how to derive the spectral function from two
point functions, and how to extract the relevant information from them. See
textbooks like ref. 68 for details. The formulation of spectral densities in terms
of two point Green functions is convenient because we can compute the latter
holographically.

We think of J being the operator that describes the free mesonic quasi-
particle as an excitation of one of the possible QGP many-particle states |n〉.
There are infinitely many different of such states in the thermal ensemble that
represents the QGP. The probability to occupy one of them is given by the
density matrix ρ̂, described in section 2.2.1. These states form a basis of the
Hamiltonian H of the ensemble, such that

∑
n |n〉 〈n| = 1.

The probability of propagation from an initial spacetime point xi, which
we define as xi = (0,0), to some final point xf = (t,x) is given by the time
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ordered Green function

Gn(t,x) = −i
〈
n
∣∣∣θ(t) J(xf )J†(0)

∣∣∣n〉 , (3.1)

where the step function θ(t) accounts for time ordering. The index n shall
remind us that this probability is not an ensemble average. It just gives the
probability for the event if the QGP is in the state |n〉. By switching to the
Schrödinger representation of the meson operators and denoting the momentum
operator by k̂,

J(t,x) = e−i(k̂x−Ht)Jei(k̂x−Ht), (3.2)

and insertion of a full set of eigenstates |n′〉 we arrive at

Gn(t,x) = −i
∑
n′

θ(t) ei(En−En′ )t−ik·x
〈
n
∣∣∣J ∣∣∣n′〉〈n′∣∣∣J†∣∣∣n〉 . (3.3)

We denote the energy difference of the excited system to the QGP ground state
as the energy ωnn′ of the mesonic excitation. This energy certainly depends
on the state of the plasma with the excited mesonic state |n′〉, and the state
|n〉 it was created from, ωnn′ = En −En′ . We write

〈
n
∣∣J ∣∣n′〉 〈n′∣∣J†∣∣n〉 =∣∣〈n′∣∣J†∣∣n〉∣∣2, and perform a Fourier transformation with respect to energy

and momentum (ω,q),

Gn(ω,q) =
∑
n′

δ(k− q)
ωnn′ − ω + iε

∣∣∣〈n∣∣∣J†∣∣∣n′〉∣∣∣2 , (3.4)

where the small ε ∈ R accounts for proper convergence. The delta function
reflects that the momentum is conserved in the multiparticle system. To get
the probability for the detection of a meson with energy ω and momentum q
in the QGP, we have to perform the ensemble average. This eventually leads
to the relation

G(ω,q) =
1
Z

∑
n,n′

1 + e−βωnn′

ωnn′ − ω + iε
δ(k− q)

∣∣∣〈n′∣∣∣J†∣∣∣n〉∣∣∣2 . (3.5)

It is convenient to write this Green function as

G(ω,q) =
∫

dω′
R(ω′,q)
ω′ − ω + iε

. (3.6)

Here, we defined a weight function R(ω′,k) for the propagation of the meson
state, which assigns different probabilities to the propagation according to the
Green function G(ω,q) = 1/(ω′ − ω). The probability density R is called
the spectral density or spectral function. From (3.5) and (3.6) we see that the
spectral function is given by

R(ω′,k) =
1
Z

∑
n,n′

δ
(
ω′ − ωnn′

)
δ (k− q)

∣∣∣〈n′∣∣∣J†∣∣∣n〉∣∣∣2 (1 + e−βω
′
)
.
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(3.7)

This notation reflects the physical interpretation we gave earlier. The probabil-
ity to observe the multiparticle system in a state |n′〉 with a mesonic excitation,
created by acting with J† on the initial QGP state |n〉, obeys energy and
momentum conservation, and depends on the temperature, given by β.

Most important for our purpose is the retarded Green function GR. We
where not explicit about the retarded and advanced contributions to the Green
function in the above discussion. Nevertheless, the Sokhatsky-Weierstrass
theorem in complex analysis allows to derive the following relation between
the spectral function and the retarded Green function that we will make use of,

R(ω,k) = −2 ImGR(ω,k). (3.8)

The large probability density for the propagation of a quark-antiquark pair
with the right energy content to form a bound state directly translates into an
excess of the spectral function at that particular value of ω. In the rest frame of
the particle, which we are restricting our attention to, the energy can directly
be translated into the mass M of the meson by ω = M . The calculation of the
Green functions of flavor currents J in this way yields information about the
quasiparticle spectrum of a given theory — the meson spectrum.

From the relation (3.8), we see that a convenient way to obtain the spectral
function is to compute the retarded Green function of the mesonic operator. A
way to achieve this was sketched in section 3.1. We see that all information
about the spectrum is contained in the correlation functionGR. The correlation
function in turn is determined by the residues of its poles in the complex plane.
From field theory we know that the poles of the correlation function in the
complex ω-plane can directly be translated to the energies of the states. We
will consider spectral functions at vanishing spatial momentum q, determined
by the energy ω alone.

The standard example in field theory is Klein-Gordon theory which amounts
to the equation of motion for a scalar field φ given by(

�−m2
)
φ = 0. (3.9)

In terms of the formalism of Green functions the evolution of a delta-shaped
initial perturbation of φ is given by the inverse of the differential operator(
�−m2

)
. The modes of this solutions are then obtained from the Fourier

transform (with � 7→ ω2 in our example of a particle at rest),

G(ω) ∝ 1
ω2 −m2

. (3.10)

The Green function exhibits poles at ω = ±m, corresponding to modes with
the energy ω of the stable particle at rest. These real valued poles are less
frequently referred to as normal modes. The solution to more complicated
systems than Klein-Gordon theory, where we have unstable excitations which
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dissipate energy, we encounter quasinormal modes Ω which are complex
valued. Quasinormal modes (QNM) where introduced in the context of metric
fluctuations in black hole background. The black hole geometry accounts
for the attenuation since any amount of energy that crosses the event horizon
irreversibly disappears from the system outside. This mechanism also works
in the case we will investigate. The difference to the simple example of Klein-
Gordon theory is that we consider correlators of gauge field fluctuations in an
AdS5 × S5 black hole background rather than a scalar field in flat space. The
fluctuations of the gauge field on the brane can transport energy into the black
hole, but no energy can escape from the horizon. This introduces dissipation,
which is then described by the imaginary part of the quasinormal modes.

For demonstration, presume the solution φ(t) of the equation of motion
for a mesonic excitation may be decomposed into quasinormal modes K(Ω)
for complex frequencies Ω. Suppose we only excite one mode for a single
complex Ω′, such thatK(Ω) = k δ(Ω−Ω′). This mode describes an attenuated
oscillation as long as the imaginary value of Ω is negative,

φ(t) =
∫

dΩ K(Ω) e−iΩt = k e−iRe(Ω′)t eIm(Ω′)t. (3.11)

For positive imaginary parts of the quasinormal modes, we encounter the un-
physical case of infinite amplification of any fluctuation of the field. Therefore,
in a physical setup one may find singularities of the retarded Green functions
GR(ω,q) only in the lower half of the complex ω-plane. Those with the lowest
absolute value of the imaginary part are referred to as the hydrodynamic poles
of the retarded real-time Green function since they determine the long time
behavior. Consider the made up example in which a Green function exhibits a
pole at Ω = ω0 − iΓ,

GR(ω) ∝ 1
ω − Ω

. (3.12)

The pole emerges as a peak in the spectral density of real valued energies ω,

R(ω) = −2 ImGR(ω) ∝ 2 Γ
(ω − ω0)2 + Γ2

, (3.13)

located at ω0 with a width given by Γ. These peaks are interpreted as quasi-
particles if their lifetime 1/Γ is considerably long, i.e. if Γ � ω0 and thus the
peaks in the spectral function are narrow.

We compute the spectral function for real and complex values of the energy
ω in this chapter. However, we focus on the meson spectra, i.e. the R(ω, 0)
for ω ∈ R, and postpone the discussion of the physical consequences and a
detailed analysis of the behavior and location of the quasi normal modes to
chapter 5. In-depth analytical and numerical investigations of the behavior of
quasinormal modes in gauge/gravity duality can be found in refs. 44, 69.
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3.2 Holographic setup

For an explicit calculation of the flavor current Green functions, we have to
find the solutions to the equations of motion for the supergravity field, which is
holographically dual to the flavor currents in the field theory. This field, which
we called φ in the general example (2.58), is the gauge field A on the probe
brane [43]. This means that we have to include the contributions of the gauge
field strength tensor F = dA in the DBI action.

Because of the non-linearity of the DBI action, the embedding functions
and gauge fields couple. We no longer can expect to determine the embedding
functions in terms of the quark mass alone. Instead, we first introduce a
suitable coordinate system to describe the background geometry, then derive
the equations of motion and solutions of the background fields, which are the
embedding and the gauge field on the D7-branes. In the subsequent section we
investigate the fluctuations of the gauge fields on this background to eventually
derive the meson spectra from them. To account for finite temperature, we
consider finite values r◦ 6= 0 in the AdS black hole metric.

We compute the functional dependence of the gauge field A(ρ,~k) and the
embedding functions numerically in the limit of vanishing spatial momentum
q→ 0 for the fluctuations. In this limit the momentum four vector simplifies,
~k = (ω,q) = (ω,0) and there are no couplings between the vector and scalar
mesons.

3.2.1 Background geometry and supergravity action

We work in the D3/D7 setup introduced above, i.e. we consider asymptotically
AdS5 × S5 space-time which arises as the near horizon limit of a stack of
N coincident D3-branes. More precisely, our background is the AdS black
hole geometry discussed in section 2.2.1, which is the geometry dual to a
field theory at finite temperature [22]. In this background, we encountered
D7-brane embeddings of Minkowski type as well as black hole embeddings.
The phase transition between both classes of embeddings is of first order [37,38].
The analysis of the meson spectrum shows that it corresponds to a transition
between a phase of stable bound states of the fundamental degrees of freedom
and a phase in which these mesons have finite lifetime. In physical parameters
from the field theory point of view, we are in the deconfined phase at high
temperatures at which mesons are unstable and said to be melting. For a
well defined notion of high versus low temperatures, we need to compare
the temperature to some energy scale. In our setup, the only available scale
for comparison is the quark mass. Whether we are in the stable or in the
melting phase, i.e. whether one or the other type of embedding is realized on
the gravity side, depends on the ratio of quark mass mq to temperature T , cf.
figure 2.4. This can be seen from the equation of motion for the embeddings
(2.72). It is invariant under scale transformations by a factor of a, resulting in
L 7→ aL, w 7→ aw and r◦ 7→ ar◦. Scaling L by a amounts to scaling the quark
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mass mq by the same factor a, while scaling of r◦ is equivalent to scaling the
temperature T by this factor. Because of the scale invariance of the equation
of motion the functional behavior of the embedding, and therewith the physics
of the D3/D7 setup, is identical for all setups with the same ratio of quark mass
and temperature. From (2.76) and (2.57) we infer

mq

T
=
mL

r◦

√
λ

2
. (3.14)

The free parameters of our setup appear on the right hand side as the asymptotic
value mL of the D7-brane embedding and the black hole horizon r◦. The ratio
of quark mass and temperature is defined by the ratio of these parameters,
which we will henceforth denote by the dimensionless quantity

m =
mL

r◦
=

2mq√
λT

. (3.15)

It was found that the transition to the melting meson phase occurs at a value of
approximately m = 1.3 [37]. At this value there is a change in the topology of
the probe brane, which changes between the black hole type with a singularity
and the regular Minkowski embedding. We demonstrated this in figure 2.4.

We use m as the parameter which defines whether we are in the regime
of high or low temperature. However, this will not affect the topology of the
embedding in our setup. Below, we follow an argumentation which reveals that
we may restrict to black hole embeddings, since this is the thermodynamically
favored configuration in setups with finite particle density. Black hole embed-
dings are conveniently described in the coordinate system (B.2a), derived in
appendix B and also used in ref. 58,

ds2 =
%2

2R2

(
−f

2(%)
f̃(%)

dt2 + f̃(%) dx2

)
+R2

(
d%2

%2
+
(
1− χ2

)
dΩ2

3 +
(
1− χ2

)−2 dχ2 + χ2dφ2

)
.

(3.16)

with

f(%) = 1− r4◦
%4
, f̃(%) = 1 +

r4◦
%4
. (3.17)

In the following, some equations may be written more conveniently in terms
of the dimensionless radial coordinate ρ = %/r◦, which covers a range from
ρH = 1 at the event horizon to ρ → ∞, representing the boundary of AdS5

space.
As in section 2.2.2, we embed Nf D7-branes in this spacetime, such that

they extend in all directions of AdS5 space and along the directions of the three-
sphere S3, which is part of the S5. Due to the symmetries of this background,
the embeddings depend only on the radial coordinate % and are parametrized
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by the functions χ(%). Due to our choice of the gauge field fluctuations in
the next subsection, the remaining three-sphere in this metric will not play a
prominent role. The induced metric on the D7-brane is given by

ds2D7 =
%2

2R2

(
−f

2

f̃
dt2 + f̃ dx2

)
+
R2

%2

1− χ2 + %2χ′2

1− χ2
d%2

+R2(1− χ2) dΩ2
3.

(3.18)

Here and in what follows we use a prime to denote a derivative with respect to
% (resp. to ρ in dimensionless equations). We write

√
−G to denote the square

root of the determinant of the induced metric on the D7-brane, which is given
by

√
−G = %3 ff̃

4
(
1− χ2

)√
1− χ2 + %2χ′2. (3.19)

Note that in general the branes are not necessarily coincident, and thus there
will be one embedding function χa per brane, i.e. a = 1, . . . , Nf . We will
make use of the DBI action to derive the embedding profiles χa(%). However,
we postpone this task to the following subsection because the action also
depends on the gauge field on the probe brane. We will see that the embedding
function couples to this field on the brane.

Each of the branes features a U(1) “flavor gauge field” Aa, with a =
1, . . . , Nf . This gauge field is arises from the fluctuation modes of an open
string with both ends attached to the probe brane. For branes at arbitrary
positions we therefore have an overall U(1)Nf symmetry which is promoted
to an U(Nf ) in the case of coinciding branes. This symmetry enhancement
comes from the fact that we then can no longer distinguish the branes and
therefore cannot tell on which brane a string ends. Each of the two ends
of a string can be assigned a label, also refered to as a Chan-Paton factor,
which identifies the brane on which the string ends. There are N2

f possible
configurations, matching the degrees of freedom of the non-Abelian symmetry
group U(Nf ). The correct action for such a configuration of coinciding branes
is given by the non-Abelian DBI action [70],

S = −Tp
∫

dpξ

sTr
[
det⊥Q det

(
P
[
E + E·i(Q−1 − 1)ijEj·

]
+ 2πα′F

)] 1
2 (3.20)

with · as a placeholder for a spacetime index, and

Eµν = gµν +Bµν , (3.21)

Qij = δij + i2πα′
[
Φi ,Φk

]
Ekj . (3.22)

The Greek indices label the background spacetime coordinates, while Latin
labels i, j, k denote the directions perpendicular to the brane. Note that Q
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is a matrix with labels denoting solely these directions, and the determinant
operator det⊥ acts with respect to them. The determinant det acts with respect
to the labels of the directions along the brane. Additionally to this Lorentz
structure, all the operators in the action above are elements of the U(Nf )
algebra on which the symmetrized trace sTr acts. The operators Φ are operator
valued analogon to the scalar embedding functions.

The non-Abelian nature of the embedding functions Φ introduces non-
commutativity of the spacetime coordinates. The physical consequences of
the non-Abelian DBI action are not entirely understood by now. However,
non-commutative spacetimes are candidates for the cure of UV divergences
of quantum field theories and are applied in M-theory to describe spherical
D-brane configurations [71]. The non-commutative contributions are manifest
in (3.22), and hidden in the gauge covariant pullback of g, which introduces
gauge covariant derivatives of the embedding,

P [g]ab = Gab = ∇a xµ ∇b xν gµν
= gab + gai∇bΦi + gbi∇aΦi + gij∇aΦi∇bΦj

(3.23)

with

∇aΦi = ∂aΦi + i 2πα′
[
Aa ,Φi

]
, (3.24)

where the indices i, j are transverse and a, b are along the worldvolume of the
probe brane. The non-Abelian DBI action features commutator terms [A ,Φ]
and [Φ ,Φ] of gauge fields and embedding functions. These commutator terms
can be thought of as corrections to the Abelian DBI action, which is reproduced
if the commutators in (3.22) and (3.24) are vanishing.

All setups we consider, feature a symmetry in the directions transverse to
the D7-branes which allows to set one of the two Φi to zero, i.e. the embedding
function in this direction is constantly zero. Thus, the commutators in (3.22)
vanish. Moreover, we restrict to background configurations, arising from fields
which are part of the Cartan subalgebra of U(Nf ). As a justification for this
restriction, we claim our freedom to define a basis in the vector space of the
U(Nf ) algebra and choose the non trivial embedding to define the direction
of the generator 1, which is the generator of U(1) ⊂ U(Nf ). The embedding
matrices Φ thereby are diagonal. A usual interpretation of the Eigenvalues
on the diagonal is that they give the embedding functions for each of the Nf

branes. The generators of the U(1) symmetry affect all flavor branes in an
identical manner. The U(1) is therefore interpreted as the symmetry associated
to baryon charge.

Recall that the embeddings determine the quark masses of the dual field
theory. The construction of coinciding branes in our setup therefore implies
that the flavor eigenstates coincide with the mass eigenstates of the particles in
the dual field theory. Generalizations to distinct bases in the flavor and mass
vector spaces should be possible.
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In the following, we are especially interested in two different setups, both
of which feature a vanishing Kalb-Ramond field B = 0 but different Nf . The
case of Nf = 1 allows investigation of the effects of baryon charge and the
corresponding baryonic chemical potential. The symmetrized trace in the
action is trivial in this case. The choice of Nf = 2 features the diagonal
generator proportional to diag(1,−1) which can be interpreted to charge the
two flavors oppositely and therefore models isospin symmetry. The non-
Abelian DBI action simplifies to

S = −Tp
∫

dpξ sTr
√
|det (G+ 2πα′F )| . (3.25)

According to the arguments above, the U(Nf ) matrix structure of G and F for
Nf = 2 is given by

G = Gσ0, (3.26)

F = FB σ0 + F Iσ3, (3.27)

where we use the Cartan subalgebra of the U(2), given by two Pauli matrices

σ0 =
(

1 0
0 1

)
, σ3 =

(
1 0
0 −1

)
. (3.28)

All operators in the action therefore are diagonal. The two probe branes are
coincident and the diagonal entries of the field strength tensor F determine the
net charges of the branes. We have

F =
(
FB + F I 0

0 FB − F I
)

=
(
F (1) 0
0 F (2)

)
. (3.29)

In any case, the restriction to the diagonal Cartan subalgebra of U(Nf )
simplifies the non-Abelian DBI action, e.g. symmetrization of the trace is
trivial in the sense that all commutators vanish and sTr = Tr. Expansion of
the square root and evaluation of the trace with subsequent restoration of the
square root eventually leads to the following action for two D7-branes in the
AdS5 × S5 black hole background with vanishing B field,

S = −T7

Nf∑
k=1

∫
d8ξ

√
det
(
G+ 2πα′F (k)

)
. (3.30)

We will concentrate on the cases of Nf = 1 and Nf = 2, and separately
switch on either the baryonic U(1), parametrized by field strengths FB , or the
isospin subgroup SU(2) along the direction of σ3, parametrized by the field
strengths F I . Thus, the action for each brane is the same as long as we do not
switch on both fields simultaneously.

To sum up, the background geometry described so far is dual to thermal
N = 4 supersymmetric SU(N) Yang-Mills theory with Nf additional N = 2
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hypermultiplets. These hypermultiplets arise from the lowest excitations of
the strings stretching between the D7-branes and the background-generating
D3-branes. The particles represented by the fundamental fields of the N = 2
hypermultiplets model the quarks in our system. Their mass mq is given by
the asymptotic value of the separation of the D3- and D7-branes. Since the
physics of the thermal D3/D7 setup is determined by the ratio of quark mass to
temperature, we use the parameter m, which is proportional to this ratio.

3.2.2 Background gauge fields — finite particle density

In addition to the parameter m, we aim for a description of the system at finite
baryon density nB, which in turn accounts for a finite chemical potential µ.
In the thermal SU(N) gauge theory, a baryon is composed of N quarks, such
that the baryon density nB can be directly translated into a quark density nq =
nB N . The thermodynamic dual quantity of the quark density is the quark
chemical potential µ, which is realized by a non-dynamical time component
of the gauge field. The chemical potential is the source of the charge density
operator J0, i.e. the time component of the current J , of the particles charged
with respect to the potential under consideration. The time component of the
current of fundamental spin 0 fields φ and the spin 1/2 fields ψ in the N = 2
hypermultiplet is given by

J0 = ψ̄γ0ψ + φ∂0φ. (3.31)

In the dual holographic formulation the source µ of this charge density then
corresponds to the non-renormalizable mode of the according holographically
dual field in the supergravity theory. This field is the time component of the
supergravity gauge field on the probe brane, which we denote by Ā0. The
normalizable mode will yield the expectation value of particle density. We
consider a constant chemical potential in space and time, i.e. there is no
spacetime dependence. Instead we work with a gauge field background Ā0(ρ)
which only depends on the radial AdS coordinate.

We do not rederive the dictionary entries here, but rather rephrase what is
important for the following developments. The holographic interpretation of
the embedding χ of the probe D7-branes was discussed (in a different coordi-
nate system) in section 2.2.2. The probe branes account for holographic duals
of fundamental quarks with mass mq, determined by the non-renormalizable
mode of the embedding function. The asymptotic form of the fields χ(ρ) and
Ā0(ρ) can be found from the equations of motion in the boundary limit ρ→∞.
The expansion coefficients in an expansion in powers of ρ are given by

Ā0 = µq −
1
ρ2
· r◦
2πα′

25/2 nq

NfNc

√
λT 3

+ · · · , (3.32)

χ =
m

ρ
+
cc
ρ3

+ · · · . (3.33)
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Here µq is the quark chemical potential, nq is the quark density, m is the
dimensionless quark mass parameter given in (3.15) and cc is the quark con-
densate mentioned earlier (but irrelevant in this work). We made use of the
dimensionless ρ-coordinate that runs from the horizon value ρ = 1 to the
boundary at ρ→∞. The chemical potential and density of baryons are simply

µB =
µq
Nc
, nB =

nq
Nc

. (3.34)

Once we have found the solutions Ā0 to the equations of motion for the
gauge field, the value µq of the chemical potential in the dual field theory can
be extracted as

µq = lim
ρ→∞

Ā0(ρ) =
r◦

2πα′
µ̃q, (3.35)

where we introduced the dimensionless quantity µ̃ for convenience. We apply
the same normalization to the gauge field and distinguish the dimensionful
quantity Ā from the dimensionless

Ã0 =
2πα′

r◦
Ā0 (3.36)

(we save the symbols without diacritics for later use). Analogously, the so-
lutions of the embedding functions carry information about the quark mass
parameter m,

m = lim
ρ→∞

ρχ(ρ). (3.37)

We mentioned that for non-vanishing baryon density, there are no embed-
dings of Minkowski type, and all embeddings reach the black hole horizon.
This is due to the fact that a finite baryon density in an infinite volume of
Minkowski spacetime requires an infinite number of strings in the dual super-
gravity picture. These strings have one end on the stack of D3-branes and the
other on the stack of Nf probe D7-branes. These strings pull the brane towards
the black hole [58]. Such spike configurations are common for configurations
in which branes of different dimensionality connect [33].

Very recently, however, it was found that for a vanishing baryon number
density, there may indeed be Minkowski embeddings if a constant vacuum
expectation value of Ã0 is present, which does not depend on the holographic
coordinate [59, 60, 72–74]. The phase diagram found there is reproduced in fig-
ure 3.1. In the shaded region, the baryon density vanishes (nB = 0) but
temperature, quark mass and chemical potential can be nonzero. This low tem-
perature region only supports Minkowski embeddings with the brane ending
before reaching the horizon. In contrast, the unshaded region supports black
hole embeddings with the branes ending on the black hole horizon. In this
regime the baryon density does not vanish (nB 6= 0). At the low-µ end of the
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FIGURE 3.1: The phase dia-
gram of fundamental matter in
the D3/D7 setup. Horizontal
axis: Chemical potential nor-
malized to the quark mass. Ver-
tical axis m−1 ∝ T/mq . In
this work we analyze the white
region of finite particle density
d̃, for which we show some
lines of constant values for d̃.
The relation between d̃ and nB
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line separating nB = 0 from nB 6= 0 in figure 3.1, there exists also a small
region of multivalued embeddings, which are thermodynamically unstable [59].
In the black hole phase there is a phase transition between different black hole
embeddings [58], resembling the meson melting phase transition for fundamen-
tal matter at vanishing density. This first order transition occurs in a region
of the phase diagram close to the separation line between the two regions
with vanishing (shaded) and non-vanishing (unshaded) baryon density. This
transition disappears above a critical value for the baryon density nB given by

nB =
Nf

√
λT 3

25/2
d̃, with critical d̃∗ = 0.00315 . (3.38)

In this work we exclusively explore the region in which nB > 0, i.e. we
examine thermal systems in the canonical ensemble. For a detailed discussion
of this aspect see refs. 59, 60.

To determine the solutions of the supergravity fields on the probe branes
we have to extremize the DBI action (3.30), we write shortly as

SDBI = −T7

Nf∑
k=1

∫
d8ξ

√
|det(G+ F̃ (k))|. (3.39)

The induced metric G(ξ) on the stack of Nf coincident branes is given by
(3.18), F̃ is the dimensionless field strength tensor of the gauge fields on the
brane.

For now we consider the simpler case of a baryonic chemical potential
modeled by the U(1) subgroup of U(Nf ). In this case, the sum amounts to
an overall factor of Nf . In ref. 58 the dynamics of such a system of branes
and gauge fields was analyzed in view of describing phase transitions at finite
baryon density. Here, we use these results as a starting point which gives
the background configuration of the probe branes’ embedding function and
the gauge field values at finite baryon density. To examine vector meson
spectra, we will then investigate the dynamics of fluctuations in this gauge
field background.
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In the coordinates introduced above, the action SDBI for the embedding
χ(%) and the field strength F is obtained by inserting the induced metric
and the field strength tensor into (3.39). From now on we make use of the
dimensionless coordinates and reproduce the action found in ref. 58. To do
so, we remember that the only non-vanishing component of the background
field is the ρ-dependent time component. Therefore, the only non-vanishing
components of the field strength tensor are F̃ (k)

40 = −F̃ (k)
04 . We evaluate the

determinant and arrive at

SDBI = −T7Nf

∫
d8ξ

√
−G

√
1 +G00G44

(
F̃40

)2 (3.40)

with components Gab of the inverse metric G−1. After inserting these compo-
nents we get

SDBI = −NfT7 r
3
◦

∫
d8ξ

ρ3

4
ff̃(1− χ2)

×

√
1− χ2 + ρ2χ′2 − 2

f̃

f2
(1− χ2)

(
F̃40

)2
,

(3.41)

where F̃40 = ∂ρÃ0 is the field strength on the brane. The background fields
χ and Ã0 depend solely on ρ. This action only depends on derivatives of the
gauge field. We therefore can identify the constant of motion d̃ satisfying
∂ρd̃ = 0,

d̃ =
∂SDBI

∂
(
∂ρÃ0

) . (3.42)

Evaluation of this formula and insertion of the asymptotic expansion of Ã
reveal that this dimensionless constant is related to the parameters of our setup
by [58]

d̃ =
25/2 nB

Nf

√
λT 3

. (3.43)

We can therefore think of the constant d̃ as parametrizing the baryon density
nB.

The equations of motion for the background fields are conveniently ob-
tained after Legendre transforming the action (3.41) to Ŝ = S − δS/δF40 in
order to eliminate dependence on the gauge field in favor of dependence on
the constant of motion d̃ [58]. Varying this Legendre transformed action with
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FIGURE 3.2: Examples for the embedding function χ(ρ) with χ = cos θ and the according
profile L(w). Matching colors indicate corresponding curves.

respect to the field χ gives the equation of motion for the embeddings χ(ρ),

∂ρ

[
ρ5ff̃(1− χ2)χ′√
1− χ2 + ρ2χ′2

√
1 +

8d̃2

ρ6f̃3(1− χ2)3

]

=− ρ3ff̃χ√
1− χ2 + ρ2χ′2

√
1 +

8d̃2

ρ6f̃3(1− χ2)3

×

[
3(1− χ2) + 2ρ2χ′

2 − 24d̃2 1− χ2 + ρ2χ′2

ρ6f̃3(1− χ2)3 + 8d̃2

]
.

(3.44)

This equation for χ(ρ) can be solved numerically for given d̃ and initial
value χ0. We impose boundary conditions such that the branes cross the
horizon perpendicularly

χ(ρ = 1) = χ0, ∂ρχ(ρ)
∣∣∣
ρ=1

= 0. (3.45)

Figure 3.2 shows some examples. The embeddings at finite density resemble
the large ρ asymptotics of the embeddings found at zero density. For small ρ
however, at finite particle density there always is the spike reaching down to
the event horizon. The initial value of χ0 determines the position on which the
brane reaches the horizon and in this way determines the quark mass parameter
m, cf. equation (3.37). It is zero for χ0 = 0 and tends to infinity for χ0 → 1.
Figure 3.3 shows this dependence ofm on χ0 for different values of the baryon
density d̃. In general, a small (large) χ0 is equivalent to a small (large) m. For
χ0 . 0.5, we nearly observe proportionality. For vanishing d̃ = 0, we only can
model quarks with m ≤ 1.3, heavier quarks at vanishing density are described
by embeddings of Minkowski type, which we do not discuss here. (The trained
eye can see that there is a maximum of m = 1.3 in figure 3.3 before m drops
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FIGURE 3.3: Dependence of
the quark mass parameter m
on the initial value χ0 of the
embedding.
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to smaller values towards χ0 = 1. This is reflecting the existence of a phase
transition to Minkowski embeddings at d̃ = 0).

The equation of motion for the background gauge field Ã is given by

∂ρÃ0 = 2d̃
f
√

1− χ2 + ρ2χ′2√
f̃(1− χ2)

[
ρ6f̃3(1− χ2)3 + 8d̃2

] . (3.46)

Integrating both sides of the equation of motion from ρH = 1 to some ρ, and
respecting the boundary condition Ã0(ρ = 1) = 0 [58], we obtain the full
background gauge field

Ã0(ρ) = 2d̃

ρ∫
1

dρ
f
√

1− χ2 + ρ2χ′2√
f̃(1− χ2)

[
ρ6f̃3(1− χ2)3 + 8d̃2

] . (3.47)

Examples for the functional behavior of Ã0(ρ) are shown in figure 3.4. While
there is a significant slope of Ã(ρ) near the horizon at ρ = 1, the gauge
field tends to a constant at large ρ. From (3.35) we recall that this value is
the chemical potential of the field theory. We will henceforth compute µ̃ by
evaluating the formula above for large ρ. Note that at any finite baryon density
d̃ ∝ nB 6= 0 there exists a minimal chemical potential which is reached in the
limit of massless quarks.

3.3 Meson spectra at finite baryon density

3.3.1 Equations of motion

We now compute the spectral functions of flavor currents at finite baryon
density d̃, and temperature T in the black hole phase. Compared to the limit of
vanishing density treated in [48], we discover a qualitatively different behavior
of the finite temperature excitations corresponding to vector meson resonances.
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FIGURE 3.4: Examples for the background gauge field time component Ã0 (left) and the re-
sulting chemical potential µ̃ (right). Note that the chemical potential is not zero at asymptotically
small but non-zero d̃ for m > 1.3, reproducing the phase transition line in figure 3.1.

To obtain the mesonic spectral functions, we compute the correlations of
flavor currents J by means of the holographically dual gauge field fluctuations
Aµ about the background given by (3.41). We denote the full gauge field by

Âµ(ρ, ~x) = δ0µÃ0(ρ) +Aµ(~x, ρ) . (3.48)

According to section 3.2, the background field has a non-vanishing time
component, which depends solely on ρ. The fluctuations in turn are gauged
to have non-vanishing components along the Minkowski coordinates ~x only,
and only depend on these coordinates and on ρ. Additionally, the fluctuations
are assumed to be small, such that it suffices to consider their linearized
equations of motion. At this point we simply neglect the fluctuation of the
scalar and pseudoscalar modes and their coupling to the vector fluctuations.
This procedure is justified by the restriction to fluctuations with vanishing
spatial momentum, which is imposed later. In this limit the vector mesons
do not couple to the other mesonic excitations. A generalization of this work
which includes these coupling and finite momentum spectra can be found in
ref. 63.

The equations of motion are obtained from the action (3.39), where we
introduce small fluctuations A by setting

Ã 7→ Ã+A, (3.49)

⇒ F̃ 7→ F̃ + F. (3.50)

The background gauge field Ã is given by (3.46). The fluctuations A now
propagate on a background G given by

G = G+ F̃, (3.51)
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and their dynamics is determined by the Lagrangian

L =
√
|det (G + F )|, (3.52)

with the fluctuation field strength Fµν = 2∂[µAν]. In contrast background field
Ã, the fluctuations A do depend on the Minkowski directions as well as on
the radial coordinate of AdS5. Since the fluctuations and their derivatives are
chosen to be small, we consider their equations of motion only up to linear
order, and derive these equations from the part of the Lagrangian L which is
quadratic in the fields and their derivatives. Denoting this part by L2, we get

L2 = −1
4

√
|detG|

(
GµαGβγFαβFγµ −

1
2
GµαGβγFµαFβγ

)
. (3.53)

Here and below we use upper indices on G to denote elements of G−1. The
equations of motion for the components of A are

0 = ∂ν

[√
|detG|

(
GµνGσγ − GµσGνγ − G[νσ]Gγµ

)
∂[γAµ]

]
. (3.54)

The terms of the corresponding on-shell action at the ρ-boundaries are (with ρ
as an index for the coordinate ρ, not summed)

Son-shell = r◦π
2R3NfT7

∫
d4x
√
|detG|

×
((
G04
)2
A0∂ρA0 − G44GikAi∂ρAk −A0G40tr(G−1F )

) ∣∣∣∣∣
ρB

ρH=1

.

(3.55)

From this form of the action we can derive the correlation functions by
means of the procedure outlined in section 2.2.1. First, we Fourier transform
the fields as

Aµ(ρ, ~x) =
∫

d4k

(2π)4
ei
~k~xAµ(ρ,~k) . (3.56)

As above, we are free to choose our coordinate system to give us a momentum
vector of the fluctuation with non-vanishing spatial momentum only in x-
direction, ~k = (ω, q, 0, 0).

To obtain the correlator GR
ik with indices i, k labeling Minkowski di-

rections, we have to consider the second term in the parentheses of (3.55),
including all its prefactors. Denote the resulting expression by A(ρ,~k). We
decompose the gauge field fluctuations into a boundary and a bulk contribu-
tion,A(ρ,~k) = f(ρ,~k)Abdy(~k), where limρ→∞ f(ρ,~k) = 1. The prescription
from section 2.2.1 tells us to divide out the boundary terms Abdy from A(ρ,~k)
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in order to get what was denoted by F in (2.61). Once we found the solutions
A(ρ,~k) we can obtain this expression by evaluating

Fik(ρ,~k)
∣∣∣
ρb

= lim
ρ→∞

A(ρ,~k)

Ai(ρ,~k)Ak(ρ,~k)
, (3.57)

where the indices i, k correspond to the Minkowski indices on GR
ik.

To evaluate this expression, we have to insert the solutions to the equations
of motion for A(ρ,~k) into this expression. Note that on the boundary ρB at
ρ → ∞, the background matrix G reduces to the induced D7-brane metric
G. Therefore, the analytic expression for boundary contributions to the on-
shell action is identical to the one found in ref. 48. In our case of finite
baryon density, new features arise through the modified embedding and gauge
field background, which enter the equations of motion (3.54) for the field
fluctuations.

We adopt the procedure of ref. 48, where the coordinates in Minkowski
directions where chosen such that the fluctuation four vector ~k exhibits only
one non vanishing spatial component, e.g. in x-direction as ~k = (ω, q, 0, 0).
In addition, the action was expressed in terms of the gauge invariant field
component combinations

Ex = ωAx + qA0, Ey,z = ωAy,z . (3.58)

In the case of vanishing spatial momentum q → 0, the Green functions for the
different components coincide and were computed as [48]

GR = GR
xx = GR

yy = GR
zz =

NfNcT
2

8
lim
ρ→∞

(
ρ3∂ρE(ρ)

E(ρ)

)
, (3.59)

where the E(ρ) in the denominator divides out the boundary value of the
field in the limit of large ρ. Again, the indices on the Green function denote
the components of the operators in the correlation function, all off-diagonal
correlations (as Gyz , for example) vanish.

In the limit of q → 0, the equations of motion for transverse fluctua-
tions Ey,z match those for longitudinal fluctuations Ex. For a more detailed
discussion see ref. 48. As an example, consider the equation of motion obtained
from (3.54) with σ = 2, determining Ey = ωA2,

0 =E′′ + ∂ρ ln
(√

|detG|G22G44
)
E′ − G

00

G44
r2◦ ω

2E

=E′′ + 8w2 f̃

f2

1− χ2 + ρ2χ′2

ρ4(1− χ2)
E

+ ∂ρ ln

 ρ3f
(
1− χ2

)2√
1− χ2 + ρ2χ′2 − 2f(1−χ2)

f̃2
(∂ρÃ0)2

E′.

(3.60)
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Here we introduced the dimensionless frequency

w =
ω

2πT
. (3.61)

In order to numerically integrate the equations of motion (3.60), we deter-
mine local solutions of that equation near the horizon at ρH = 1, which obey
the infalling wave boundary condition. This condition ensures causality by
demanding that the excitations can propagate in inward direction, but nothing
can exit the horizon. The local solutions can be used to compute initial values
in order to integrate (3.60) forward towards the boundary. The equation of
motion (3.60) has coefficients which are singular at the horizon. According
to mathematical standard methods, the local solution of this equation behaves
as (ρ − ρH)β , where β is a so-called ‘index’ of the differential equation [75].
We compute the possible indices to be

β = ±iw. (3.62)

Only the negative sign will be retained in the following, since it casts the
solutions into the physically relevant incoming waves at the horizon and
therefore satisfies the incoming wave boundary condition. The solution E
can be split into two factors, which are (ρ− 1)−iw and some function F (ρ),
which is regular at the horizon. The first coefficients of a series expansion of
F (ρ) can be found recursively as described in [64, 65]. At the horizon the local
solution then reads

E(ρ) = (ρ− 1)−iw F (ρ)

= (ρ− 1)−iw
[
1 +

iw

2
(ρ− 1) + · · ·

]
.

(3.63)

So, F (ρ) asymptotically assumes values

F (ρ = 1) = 1, ∂ρF (ρ)
∣∣∣
ρ=1

=
iw

2
. (3.64)

To calculate numeric values for E(ρ), we have to specify the baryon
density d̃ and the initial value χ0, which determines the mass parameter m.
These parameters determine the embeddings χ appearing in (3.60). We can
then obtain a solution E for a given frequency w by numerical integration of
the equation of motion (3.60), using the initial values (3.63) and (3.64).

Spectral functions are finally obtained by combining (3.59) and (3.8),

R(ω, 0) = −
NfNcT

2

4
Im lim

ρ→∞

(
ρ3∂ρE(ρ)

E(ρ)

)
. (3.65)

3.3.2 Spectra

We now discuss the resulting spectral functions at finite baryon density, and
observe crucial qualitative differences compared to the case of vanishing
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FIGURE 3.5: An example for
a spectral function at finite
baryon density, compared to
the zero temperature result.
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baryon density. In figure 3.5 an example for the spectral function at fixed
baryon density nB ∝ d̃ is shown. In the limit of large w, corresponding
to asymptotically small temperatures, the spectral function can be derived
analytically. This zero temperature result is given by

R0 = NfNcT
2 πw2. (3.66)

Figure 3.5 shows this function as well.
All graphs shown here are obtained for a value of d̃ above d̃∗, given by

(3.38), such that we investigate the regime in which there is no fundamental
phase transition of first order. Recall that the parameters of our theory are
given by d̃ ∝ nB/T

3 and m ∝ mq/T . Therefore variations in the quark
density at fixed temperature and quark mass are introduced by tuning d̃ only.
The effects of different quark masses can be seen by tuning m alone. The
effect of changes in temperature involves changes in both m and d̃.

It is interesting to compare the spectra we obtain at finite temperature
and density to the vector meson spectrum obtained at zero temperature and
vanishing quark density. It is given by the same relation as the mass spectrum
(2.81) which we encountered in the example of scalar mesons [43]. In our case,
where the mesons do not carry spatial momentum, we can translate the mass
Mn of the nth excitation into an energy ωn = Mn. At this energy we would
see a resonance in a supersymmetric setup. In terms of the dimensionless
quantities we use here, these resonance energies are given by

wn =
Mn

2πT
= m

√
(n+ 1)(n+ 2)

2
, n = 0, 1, 2, . . . , (3.67)

where n labels the Kaluza-Klein modes arising from the D7-brane wrapping
the S3.

Finite temperature effects

We analyze finite temperature effects by choosing two values ofm and d̃, which
correspond to a given values of quark mass, quark density and a temperature
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FIGURE 3.6: The effect
of variations in temperature
on the meson spectrum.
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T . A change in temperature amounts to

T 7→ αT (3.68)

and thereby leads to

d̃ 7→ d̃

α3
, m 7→ m

α
. (3.69)

An example is shown in figure 3.6. There we plot spectra for three different
temperatures, which we call low (m = 5, d̃ = 1), medium (m = 5/2, d̃ = 1/8)
and high (m = 5/3, ,d̃ = 1/27) temperature. We can see that at high temperature
there is hardly any structure visible in the spectral function. However, we
have chosen a temperature at which already a slight excitation is visible at low
energies w. Decreasing temperature leads to more and more pronounced peaks
in the spectral function. Moreover, at decreasing temperature these peaks move
closer to the resonance energies (3.67), corresponding to zero temperature and
density (drawn as the corresponding dashed lines in the figure).

The formation of sharp resonances at low temperature indicates the in-
tuitively expected behavior of long living mesons in a cold medium, which
melt, i.e. decay faster, at high temperatures. However, we did not perform
an analysis of the quality factor of the resonance peaks, i.e. we did not calcu-
late the lifetimes of the vector mesons. From figure 3.6 we can see that the
height-to-width ratio of the peaks seems not to improve to a great extent at low
temperatures.

Finite density effects

To investigate the effects of finite baryon density nB, we tune d̃ while keeping
m constant. This amounts to varying the quark density at constant temperature
and quark mass. The effect is shown in figure 3.7. We observe that the peak
width is considerably influenced by baryon density. At low baryon density the
resonances are close to line-like excitations, while they are broadened with
increasing particle density. Additionally, increasing the particle density also
causes a slight shift of the resonances to higher energies.
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FIGURE 3.7: The depen-
dence of the spectra on baryon
density. The dashed lines again
mark the supersymmetric
spectrum.
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These observations are interesting from a phenomenologically inclined
point of view. The in-medium effects on mesonic bound states are important
to interpret the results of heavy ion collision experiments. Estimations from
the early 1990s based on effective models predicted decreasing vector meson
masses at increasing densities [76], known as Brown-Rho scaling. Experimental
data from experiments at the SPS facility at CERN, however, is better described
by models like the one found in refs. 77, 78. There the in-medium effects also
are reflected in peak broadening and shifts to higher energies.

For information on the spectral functions at vanishing particle density we
refer the reader to ref. 48. Where the low temperature regime for d̃ = 0 was
investigated.

Dependence on quark mass

To observe the dependence on the mass of the quarks, we plotted spectra for
different m at constant values of d̃ in figure 3.8. We observe more and more
pronounced resonances as we increase the meson mass. These mesons eventu-
ally nearly resemble the line spectrum (3.67) known from the supersymmetric
case of zero temperature and vanishing quark density. This observation reflects
the decreasing effect of finite temperature and chemical potential with increas-
ing quark mass. In a regime where the scale of the quark mass outweighs
both additional scales T and d̃ their effects seem to be negligible. This is the
case when we observe a configuration which is located close to the Minkowski
phase in the phase diagram, cf. figure 3.1.

In ref. 4 we elaborate on the spectral functions behavior at low quark
masses. There we observed that the position of the vector meson excitations in
the regime of very low quark masses decreased with increasing quark mass.
Further increasing the quark mass lead to increasing quark masses as described
in this section. We omit this discussion here, but resume on the topic when we
discuss the pole structure of the spectral functions. The reason is that the peaks
referred to in ref. 4 are only visible after subtraction of the zero temperature
part R0 from the spectral function. To interpret the spectral function as a
probability density for the detection of a quasiparticle, we cannot subtract R0,
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FIGURE 3.8: The dependence of the spectra on quark mass. The dashed lines again mark the
supersymmetric spectrum.

as we would otherwise produce negative probability densities, which are not
well defined.

Our setup is a modification of the one used in ref. 48. There, the authors
considered vector meson spectra at vanishing baryon density. These spectra
only show peaks moving to smaller frequency as the quark mass is increased.
There is no contradiction to the results presented this work. Note that the
authors of ref. 48 by construction are restricted to the regime of high temper-
ature/small quark mass. Nevertheless, they continue to consider black hole
embeddings below the temperature of the fundamental phase transition where
these embeddings are only metastable, the Minkowski embeddings being ther-
modynamically favored. At small baryon density and small m our spectra are
virtually coincident with those of [48]. However, in our case, at finite baryon
density, black hole embeddings are favored for all values of the mass over
temperature ratio.

3.3.3 Pole structure

In this section we comment on the quasi normal modes (QNM) of the system
under investigation. As discussed above, these are the poles in the complex
frequency plane, i.e. the spectral function diverges at these locations. An im-
pression of the continuation of the spectral function into the complex frequency
plane is given in figure 3.9. The data to plot the graph was obtained in exactly
the same way as for the spectral functions shown in the preceding sections,
except the fact that we upgraded the numerics to process w ∈ C. Therefore
the spectral functions shown so far are given by the values along the real axis.

Our numerics turn out to be reliable for | Im w| . 1 and therefore cannot
determine poles in the plane of w ∈ C which lie beyond this limit. We
trust the values within the regions shown in the figures of this work, although
there possibly is room for improvement in accuracy. We checked our code for
stability against the initial conditions and parameters, and are mainly interested
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in the qualitative behavior of the results.
The spectra presented in preceding sections show that the first resonance

peaks, i.e. those for small n, are very narrow, while the following peaks show a
broadening accompanied by decreasing amplitude. The physical consequence
would be a longer lifetime of the lower n excitations. This is reflected in a
smaller imaginary part of the corresponding quasi normal mode in figure 3.9. It
is a known fact that the quasinormal modes develop larger real and imaginary
parts at higher n. So the sharp resonances at low w, which correspond to
quasiparticles of long lifetime, originate from poles with small imaginary part.
For higher excitations in n at larger w, the resonances broaden and get damped
due to larger imaginary parts of the corresponding quasi normal modes.

Above we observed variations in the positions and widths of the peaks in
the spectral function, depending on the changes in temperature, particle density
and meson mass. This behavior can be translated into a movement of the
quasinormal modes in the complex plane. Figure 3.10 shows the trajectory of
the quasi normal mode corresponding to the first peak in the spectral function,
parametrized by m. At small densities, we can see the turning behavior of the
mode which starts to move in the direction of decreasing real part at small m,
and then turns to asymptotically large real part while converging to the real
axis for further increasing m.

It would be interesting to compare our results to a direct calculation of
the quasinormal modes of vector fluctuations in analogy to ref. 44. There,
the quasinormal modes are considered for scalar fluctuations exclusively, at
vanishing baryon density. The authors observe that starting from the massless
case, the real part of the quasinormal frequencies increases with the quark
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mass first, and then turns around to decrease. This behavior agrees with the
peak movement for scalar spectral functions observed in ref. 48 (above the
fundamental phase transition at χ0 ≤ 0.94) where the scalar meson resonances
move to higher frequency first, turn around and move to smaller frequency
increasing the mass further. These results do not contradict the present work
since we consider vector modes exclusively.

3.4 Meson spectra at finite isospin density

3.4.1 Equations of motion

In order to examine the case of two flavors, Nf = 2, with opposite isospin
chemical potential in the strongly coupled plasma, we extend our previous
analysis of vector meson spectral functions to a chemical potential with SU(2)-
flavor, i.e. isospin, structure. Starting from the general action (3.25) we now
consider the non-Abelian field strength tensors

F̂µν = σa
(

2∂[µÂ
a
ν] +

r2◦
2πα′

fabcÂbµÂ
c
ν

)
, (3.70)

with the Pauli matrices σa and Â given by equation (3.48). The upper index
on the gauge field labels the component in the vector space of the SU(2)
generators. The factor r2◦ /(2πα

′) is due to the introduction of dimensionless
fields as described below (3.35). The totally antisymmetric fabc = εabc with
ε123 = 1 arise from the structure constants of SU(2).

In the non-Abelian field strength tensor, the term quadratic in the gauge
field describes a self interaction of the gauge field. The coupling constant for
this interaction may be determined by a redefinition of the gauge field, such
that the kinetic term of the effective four-dimensional theory has the canonical
form. In appendix D (taken from ref. 3) we show that the redefinition is given
by

Â 7→ cA√
λ
Â , (3.71)

where the dimensionless constant cA depends on the geometry of the D7 world-
volume directions along ρ and the S3, which are transverse to the directions
of the D3-brane. In particular, cA is independent of the ’t Hooft coupling λ.
Determining the exact value of cA is left to further work in terms of the ideas
presented in appendix D. In the following we chose a convenient cA = 4π√

2
.

The field strength tensor in the redefined fields is given by

F aµν = 2∂[µÂ
a
ν] +

cA√
λ
fabcÂbµÂ

c
ν (3.72)

In order to obtain a finite isospin-charge density nI and its conjugate
chemical potential µI , we introduce a ρ-dependent time component of the
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SU(2) valued background gauge field Ã [5]. This background field is defining
a direction in the vector space of the SU(2) generators. We choose coordinates
such that the direction of the background field aligns with the σ3 direction
while the other SU(2) components are vanishing,

Ã0 = Ã3
0σ

3 = Ã3
0(ρ)

(
1 0
0 −1

)
, Ã1

0 = Ã2
0 = 0. (3.73)

This specific choice of the 3-direction in flavor space as well as spacetime
dependence simplifies the isospin background field strength, such that we get
two copies of the baryonic background F̃ρ0 on the diagonal of the flavor matrix,

F̃40 =
(
∂ρÃ0 0

0 −∂ρÃ0

)
. (3.74)

The derivation of the background field configuration leads to the same explicit
form of the action as (3.41). We can therefore make use of the background field
solutions χ(ρ) and Ã0(ρ) found in the baryonic case. As before, we collect
the induced metric G and the background field strength F̃ in the background
tensor G = G+ F̃ .

For the fluctuations, however, we encounter an additional structure. The
SU(2) valued fluctuations in general have components along all the directions
of this vector space. We make use of Tr(σiσj) = 2δij and apply the back-
ground field method in analogy to the baryonic case examined in section 3.3.
As before, we obtain the quadratic action for the fluctuations Aaµ by expanding
the determinant and square root in powers of Aaµ. The term linear in fluctua-
tions again vanishes by the equation of motion for the background field. This
leaves the quadratic action

S
(2)
iso = 2π2R3 r◦ TRT7

∞∫
1

dρd4x
√
|detG|

×

[
GµαGνβ

(
∂[µA

a
ν] ∂[αA

a
β] +

r4◦
(2πα′)2

(Ã3
0)

2fab3fac3Ab[µδν]0A
c
[αδβ]0

)

+
(
GµαGνβ − GαµGβν

) r2◦
2πα′

Ã3
0f

ab3 ∂[αA
a
β]A

b
[µδν]0

]
.

(3.75)

The factor TR arises from the trace over the generators of SU(2). If we use
the Pauli matrices as generators we get TR = 2. Another common choice for
the generators is σi/2, which amounts to TR = 1/2. We leave the explicit
choice open, since it merely introduces an unimportant finite proportionality
constant to the action. Note that besides the familiar Maxwell term, two other
terms appear due to the non-Abelian structure. One of the new terms depends
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linearly, the other quadratically on the background gauge field Ã and both
contribute non-trivially to the dynamics. The equation of motion for gauge
field fluctuations on the D7-brane is

0 = ∂κ

[√
|detG| (GνκGσµ − GνσGκµ) F̌ aµν

]
(3.76)

−
√
|detG| r2◦

2πα′
Ã3

0f
ab3
(
Gν0Gσµ − GνσG0µ

)
F̌ bµν ,

with the modified field strength linear in fluctuations F̌ aµν = 2∂[µA
a
ν] +

cA/
√
λfab3Ã3

0

(
δ0µA

b
ν + δ0νA

b
µ

)
r2◦ /(2πα

′).
Integration by parts of (3.75) and application of (3.76) yields the on-shell

action

Son-shell
iso = r◦TRT7 π

2R3

∫
d4x

√
|detG|

×
(
Gν4Gβµ −GνβG4µ

)
AaβF̌

a
µν

∣∣∣ρB

ρH

.
(3.77)

The three field equations of motion (flavor index a = 1, 2, 3) for fluctuations
in transverse Lorentz-directions µ = 2, 3 can again be written in terms of the
combination EaT = qAa0 + ωAaα. At vanishing spatial momentum q = 0 we
get

0 = E1
T
′′ + ∂ρ ln

(√
|detG|G44G22

)
E1
T
′ − G00(r◦ω)2

G44
E1
T (3.78)

− G00

G44

[(
r2◦

2πα′
Ã3

0

)2

E1
T + 2ir◦ω

r2◦
2πα′

Ã3
0E

2
T

]
,

0 = E2
T
′′ + ∂ρ ln

(√
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Ã3

0

)2

E2
T − 2ir◦ω

r2◦
2πα′

Ã3
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0 = E3
T
′′ + ∂ρ ln

(√
|detG|G44G22

)
E3
T
′ − G00(r◦ω)2

G44
E3
T . (3.80)

Note that we use the dimensionless background gauge field Ã3
0 = Ā3

0(2πα
′)/r◦

with r◦ = TπR2. Despite the presence of the new non-Abelian terms, at van-
ishing spatial momentum the equations of motion for longitudinal fluctuations
EaL acquire the same form as the transverse equations (3.78), to (3.80).

Two of the above ordinary second order differential equations are coupled
through their flavor structure. Decoupling can be achieved as1 in ref. 5 by

1At this point there is an essential difference which distinguishes this setup from the
approach with a constant potential Ā3

0 at vanishing mass followed e.g. in ref. 5. While the
metric coefficients for massless quarks are identical in both cases, there is a ρ-dependence of
the background gauge field in the present setup.
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transformation to the flavor combinations

X = E1 + iE2, Y = E1 − iE2 . (3.81)

The equations of motion for these fields are given by

0 = X ′′+ ∂ρ ln
(√

|detG|G44G22
)
X ′− 4

r4◦
R4

G00

G44
(w−m)2X, (3.82)

0 = Y ′′+ ∂ρ ln
(√

|detG|G44G22
)
Y ′− 4

r4◦
R4

G00

G44
(w + m)2 Y, (3.83)

0 = E3′′+ ∂ρ ln
(√

|detG|G44G22
)
E3′− 4

r4◦
R4

G00

G44
w2E3 , (3.84)

with w = ω/(2πT ) and dimensionless but ρ-dependent m = Ā3
0/(2πT ).

Proceeding as described in section 3.3, we determine the local solution of these
equations at the horizon. The indices turn out to be

β = ±i
(

w∓ Ā3
0(ρ = 1)
2πT

)
. (3.85)

Since Ā3
0(ρ = 1) = 0 we are left with the same index as in (3.62) for the

baryon case, i.e. the chemical potential does not influence the singular behavior
of the fluctuations at the horizon. The local solution coincides to linear order
with the baryonic solution given in (3.63).

For the special case of zero temperature the background geometry is
AdS5 × S5. For finite chemical potential in the zero temperature case we can
obtain the gauge field correlators in analogy to ref. 19. The zero temperature
result R0,iso analog to (3.66) is given by

R0,iso = TRNT
2 π (w±m∞)2 , (3.86)

with the dimensionless chemical potential m∞ = limρ→∞m.

3.4.2 Spectra

Application of the recipe analog to the case of baryonic chemical potential
yields the spectral functions of flavor current correlators in a medium with
finite isospin density. Note that after transforming to flavor combinations X
and Y , given in (3.81), the diagonal elements of the propagation submatrix
in flavor-transverse X,Y directions vanish, GXX = GY Y = 0. Now the off-
diagonal elements give non vanishing contributions. However, the component
E3, longitudinal in flavor space, is not influenced by the isospin chemical
potential, such that GE3E3 is nonzero, while other combinations with E3

vanish [5].
In figure 3.11 we compare spectral functions for the isospin case, where

we emphasize the first peak of each of the three components. Note that the E3
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FIGURE 3.11: The vector
meson spectral functions of the
three isospin components. For
a concise image we emphasize
the first peak of each compo-
nent by stronger color satura-
tion.
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spectrum coincides with the baryonic case, as the equation of motion (3.84)
coincides with (3.60).

While the qualitative behavior of the isospin spectral functions agrees with
the one of the baryonic spectral functions, there nevertheless is a quantitative
difference for the flavor-transverse components X,Y . We find that the prop-
agator for flavor combinations GY X exhibits a spectral function for which
the peaks are shifted to higher frequencies, compared to the Abelian case
curve. For the spectral function computed from GXY , the opposite is true,
its peaks appear at lower frequencies. The quasiparticle resonance peak in
the spectral function RY X appears at higher frequencies than expected from
the vector meson mass formula (3.67). The other flavor-transverse spectral
function RXY displays a resonance at lower frequency than observed in the
baryonic case.

This may be interpreted as a splitting of the resonance peak into three
distinct peaks. This is due to the fact that we explicitly break the symmetry
in flavor space by our choice of the background field Ã3

0. Decreasing the
chemical potential reduces the distance of the two outer resonance peaks from
the one in the middle and therefore the splitting is reduced.

The described behavior resembles the mass splitting of mesons in presence
of a isospin chemical potential expected to occur in QCD [79, 80]. A linear
dependence of the separation of the peaks on the chemical potential is expected.
Our observations confirm this behavior. Since the vector mesons are isospin
triplets and we break isospin symmetry explicitly, we see that in this respect
our model is in qualitative agreement with effective QCD models. Note also
the complementary discussion of this point in ref. 81.

3.5 Summary

Two distinct setups were examined at non-zero charge density in the black
hole phase. First, switching on a baryon chemical potential through non-zero
baryon density, we find that nearly stable vector mesons exist close to the
transition line to the Minkowski phase. Far from this regime, at small quark
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masses or high density, the spectral functions do not show distinct resonance
peaks.

Moreover, at small quark masses and particle densities we observe that the
quasi normal modes move to positions with smaller real part in the complex ω
plane, in accordance with the observations in the case of vanishing chemical
potential [48]. Increasing the quark mass over temperature ratio beyond a
distinct value, the plasma adopts the behavior known from the case of zero
temperature. In the spectral functions we computed, this zero-temperature-like
behavior is found in form of line-like resonances, at low particle densities
exactly reproducing the zero-temperature supersymmetric vector meson mass
spectrum.

Besides finite temperature effects it is especially interesting to observe the
in-medium effects caused by finite particle density. We observe a broadening
width of the resonance peaks in the spectrum as a function of increasing parti-
cle density. At the same time, a slight shift of the resonance position to higher
energies occurs. This result contradicts the expectations from the effective
QCD models investigated by Brown and Rho [76]. However, experimental
data from collision experiments at SPS do not support Brown-Rho scaling
either. Instead more recent effective models, which are in good agreement
with experimental data, also show a broadening of the ρ-meson resonance
peaks accompanied by a small positive mass shift [77, 78]. It would be inter-
esting to investigate the mechanisms, that lead to the qualitative agreement
of effective QCD models and the D3/D7 setup that we observed here. Other
in-medium effects will be studied in section 4.3. There we determine the mass
shift of mesons due to polarization of mesons by the presence of the gluonic
background field in the plasma.

Second, we switched on a nonzero isospin density, and equivalently an
isospin chemical potential arises. The spectral functions in this case show
a qualitatively similar behavior as those for baryonic potential. However,
we additionally observe a splitting of the single resonance peak at vanishing
isospin potential into three distinct resonances. This suggests that by explicitly
breaking the flavor symmetry by a chemical potential, the isospin triplet states,
vector mesons in our case, show a mass splitting similar to that observed for
QCD [79]. It is an interesting task to explore the features of this isospin theory
in greater detail in order to compare with available lattice data and effective
QCD models [82–90]. In most of these approaches, baryon and isospin chemical
potential are considered at the same time, which suggests another promising
extension of this work. Moreover, in the context of gravity duals, it will be
interesting to compare our results for the isospin chemical potential to the
work presented in ref. 81.

Alternatively, instead of giving the gauge field time component a non-
vanishing vacuum expectation value, one may also switch on B-field compo-
nents and combine the framework developed in [91–93] with the calculation of
spectral functions for the dual gauge theory.
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Our spectra also show that for given quark mass and temperature, lower n
meson excitations can be nearly stable in the plasma, while higher n excitations
remain unstable. At vanishing baryon density, the formation of resonance peaks
for higher excitations has also been observed in [94].
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C HAPTER 4

Diffusion in the holographic
plasma

Based on the observation that the many particle system observed at RHIC is
well described by hydrodynamics with very low viscosity, the quark-gluon
plasma is widely regarded as an almost perfect liquid [95–97]. In principle,
the theory of hydrodynamics should be capable of modeling the collective
dynamics of the plasma. This requires knowledge of initial conditions and the
equations of state of the system. The hydrodynamic description then yields
the dynamics of the system in terms of collective quantities such as currents,
densities and entropy. For a comprehensive understanding of the quark-gluon
plasma and related systems it would be pleasing to be able to derive the
thermodynamic and kinetic properties of the system from first principles. In
this chapter we present work which was conducted with the motivation to
advance towards this goal. Adopting different points of view, we contemplate
one particular attribute characteristic for fluids: diffusion.

The diffusion coefficient is a transport coefficient which parametrizes the
ability of a fluid to reach an equilibrium state by transport of some initially
unevenly distributed quantity through currents. In the quark-gluon plasma,
these currents are the color and flavor currents, which account for the transport
of quarks and gluons through the plasma. A particle of high diffusivity (high
mobility) looses only a small part of its energy while traversing a given distance
the medium and will transport its associated charge much faster than a particle
which looses much momentum by interaction with the medium.

Close to thermodynamic equilibrium, transport coefficients such as that
for diffusion can be derived from first principles by so called Kubo-formulae,
which describe the coefficients in terms of correlation functions of the current
which accounts for equilibration of the system. This approach has been used
successfully in the past to derive transport coefficients and conductivities from
holographic models [24, 48, 98–107].
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In this chapter, once more the adjoint and fundamental matter described by
the gauge multiplet of N = 4 and the N = 2 hypermultiplet of thermal SYM
theory in the limit of a large number of gauge degrees of freedom serves as a
model for the quark-gluon plasma.

The energy loss of heavy quarks and mesons in media has been a subject
of intense experimental interest [108–114]. The suppression of charm and bottom
quarks observed at RHIC motivated several groups to utilize the gauge-gravity
duality [6,8,13,14] to compute the drag of fundamental heavy quarks in N = 4
super Yang-Mills theory at strong coupling [99, 101, 102]. In this approach, the
heavy quark is given by a classical string attached to the D7-brane probe. A
first study of flavors in thermal AdS/CFT beyond the quenched approximation,
i.e. with non-zero Nf/N , was performed in [115].

We pick up the previous efforts and generalize them by including the effects
of finite density, respectively chemical potential, on diffusion properties. The
first section of this chapter very shortly addresses consequences of finite baryon
density on a certain holographic method to derive the diffusion coefficient of
baryons in a holographic plasma. Subsequently, in section 4.2, we study the
gauge/gravity dual of a finite temperature field theory at finite isospin chemical
potential. The isospin chemical potential is obtained by giving a finite vacuum
expectation value to the time component of the non-Abelian gauge field on
the brane, as in the previous chapters. In order to obtain analytical results, we
restrict our attention to the limit of massless quarks.

The consideration of an isospin chemical potential is an interesting field
to study since it is still easier accessible by lattice calculations than setups at
baryonic chemical potential. Hopefully holographic models one day allow for
comparison to e.g. large N lattice calculations. Moreover, isospin diffusion
has been measured in heavy ion reactions [61, 116].

Eventually in section 4.3 we adopt a different point of view on diffusion
in the holographic quark-gluon plasma. From the technical point of view, we
do not pursue the approach of Kubo to obtain the diffusion coefficient directly
from current correlation functions. Instead, we make use of a stochastic
Langevin model, which determines the momentum broadening of particles due
to random kicks from interactions with the medium.

Moreover, conceptually we extend the area of research on diffusion pro-
cesses in the holographic QGP to mesons traversing the plasma. This effort
bears two interesting aspects. One is the aim for a description of the kinetics
of heavy mesons in the QGP, since observation show that heavy mesons like
the J/ψ survive the deconfinement transition. The other is the estimation of
the effects of strong coupling on the plasma. The particular effective model
we use does not rely on any weak or strong coupling limit for the interaction
of the mesons with the medium. This allows for comparison of perturbative
results for momentum broadening at weak coupling with holographic results
for the strong coupling regime. In this way we present a method that may
allow to estimate the effect of strong coupling on dynamic effects in the QGP.
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4.1 Baryon diffusion

In this section, we calculate the baryon diffusion coefficient D and its de-
pendence on the baryon density in the thermal holographic plasma. The
coordinates and parameters we use are the same as in chapter 3, they are
discussed in detail in section 3.2.

In the context of holography, the idea is to describe the conserved current
J of the gauge field theory in terms of the dual gauge field in the supergravity
theory, as we did in chapter 3. This current in our case is the current J which
transports baryon charge and therefore is non-zero when baryon diffusion
occurs. The dual supergravity field was identified as the gauge field fluctuation
A on the probe brane. Any gauge field configuration of A that satisfies the
equations of motion also generates a conserved current in terms of the field
strength F = dA, as dF = 0. As in electrodynamics one can identify the
columns of the field strength tensor with vector currents. Fick’s law of diffusion
J = D∇J0 can be shown to be satisfied in the long distance limit for the
on-shell field strength tensor of a supergravity gauge field. The constant D is
then identified with the diffusion constant [24]. This constant describes how
strong the currents J are which drive a hydrodynamic system into equilibrium,
as a reaction on gradients in the charge distribution J0.

To solve for D, one therefore has to find the solutions of the gauge field
fluctuations which are holographically dual to the relevant current. As soon
as a solution is found and gauge/gravity duality is invoked to compute the
current J, one may solve Fick’s law for D. At vanishing particle density, the
gauge field solution can determined from the DBI action in terms of metric
coefficients alone [24]. Because we use the same coordinate system as the
authors of ref. 48, we arrive at the same explicit form of the induced metric
(3.18) on the probe D7-brane in our setup. We therefore reuse the result for
the diffusion coefficient derived there.

A very concise formula for the diffusion coefficient D of R-charges was
derived in reference to the membrane paradigm in ref. 24. It was later directly
translated to the diffusion of flavor currents in the D3/D7 setup in ref. 48. The
name “membrane paradigm” does not refer to D-branes but instead alludes to
the fact that the analogies between black hole physics and thermodynamics
very often can be expressed in terms of events taking place at the event horizon
(or slightly outside the horizon, then referred to as the “stretched horizon”),
which has no materialistic manifestation but still appears as a significant
surface, a membrane, to an observer or in the relevant formulae.

We extend previous efforts by introducing finite baryon density. This
quantity explicitly enters the solution to the gauge field (3.47) which in turn
explicitly enters the equation of motion (3.60) for the fluctuations. Therefore,
one should expect a modified result for the diffusion coefficient including the
explicit occurrence of the baryon density d̃. We rely on the fact that these
terms vanish for d̃ → 0, restrict to the small density regime and stick to the
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FIGURE 4.1: Approximate
baryon diffusion coefficient D
as a function of the quark mass
to temperature ratio m. The
curve for d̃ = 0 reproduces the
result from ref. 48. The exact
results derived in ref. 117 show
deviations most notably in the
limit of large m.
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expression found in ref. 48. Nevertheless we still cover finite density effects in
this way, since the probe brane embeddings χ are different for vanishing and
finite density, as we see from their equation of motion (3.44). This difference
should therefore translate into a dependence of the diffusion constant on the
parameter d̃, which is proportional to the baryon density by (3.43). We know
that in the case of finite baryon density, black hole embeddings describe the
entire parameter range of temperature and quark mass [58, 60].

Finally, the formula for the diffusion coefficient D found in ref. 48 is given
by

D =
√
−G

G11

√
−G00G44

∣∣∣∣
ρ=1

×
∞∫
1

dρ
−G00G44√

−G
, (4.1)

where the metric coefficients Gµν can be obtained from (3.18) with the square
root of the absolute value of the metric determinant

√
−G given by (3.19).

Insertion of these coefficients and r◦ = TπR2 yields

D =
2(1− χ2

0)
3/2

Tπ

∞∫
1

dρ
ρ(ρ4 − 1)

√
1− χ2(ρ) + ρ2χ′2(ρ)

(ρ4 + 1)2 (1− χ2(ρ))2
. (4.2)

The embeddings χ are determined as in chapter 3 by solving equation (3.44)
in terms of the parameters d̃ for baryon density and initial value χ(1) = χ0,
which determines the quark mass normalized to temperature, cf. figure 3.3.

The results for D are shown in figure 4.1, where we compare to the result
at vanishing baryon density found in in ref. 48. There is a phase transition, at
approximately m = 1.3 which we briefly address in section 5.1.

The diffusion coefficient never vanishes in the medium with non-zero
density. Both in the limit of T/mq → 0 and T/mq → ∞, D converges to
1/(2πT ) for all densities, i.e. to the same value as for vanishing baryon density,
as given for instance in [24] for R-charge diffusion. In the regime of moderate
to low temperatures the diffusion constant develops a nonzero minimum.

In order to give a physical explanation for this behavior, we focus on the
case without baryons first. We see that the diffusion coefficient vanishes at the
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temperature of the fundamental deconfinement transition. This is simply due
to the fact that at and below this temperature, all charge carriers are bound into
mesons not carrying any baryon number.

For non-zero baryon density however, there is a fixed number of charge
carriers (free quarks) present at any temperature. This implies that the diffusion
coefficient never vanishes. Switching on a very small baryon density, even
below the temperature of the phase transition, where most of the quarks are
bound into mesons, by demanding d̃ 6= 0 there will still be a finite amount of
free quarks. By increasing the baryon density, we increase the amount of free
quarks, which at some point outnumber the quarks bound in mesons. In the
large density limit the diffusion coefficient approaches D0 = 1/(2πT ) for all
values of T/mq, because only a negligible fraction of the quarks is still bound
in this limit.

As a final comment, we point out that after the publication of these results
in refs. 3,4 a more careful analysis of the calculation of the diffusion coefficient
was performed in ref. 117. Here the diffusion coefficient was identified with the
proportionality coefficient D in the dispersion relation for the hydrodynamic
quasi normal mode ω (the so called diffusion pole or hydrodynamic pole, cf.
section 3.1) of the gauge field fluctuations at finite spatial momentum k, given
by

ω = −iDk2 +O
(
k3
)
. (4.3)

The inclusion of finite spatial momentum introduces several new aspects we
circumvented in the limit of k → 0. In accordance with the results obtained
from this analysis, the results for D in the low quark mass/high temperature
regime agree well with our naı̈ve approach [117].

4.2 Isospin diffusion

We study the diffusion coefficient of particles charged under isospin chemical
potential. The results where originally published as ref. 5. Physically, the
isospin chemical potential corresponds to the energy necessary to invert the
isospin of a given particle. Within nuclear physics, such a chemical potential
is of relevance e.g. for the description of neutron stars. In two-flavor QCD,
effects of a finite isospin chemical potential have been discussed for instance
in refs. 85, 118, 119.

In the following paragraphs we outline the procedure and comment on
the restrictions we imposed. Recent work revealed that some of these can
actually be considered as shortcomings. In particular the consideration of a
constant background gauge field on the brane can be justified only for very
small chemical potentials. Due to the assumed smallness of the chemical
potential we neglected second order terms in the background gauge field on the
brane. Both limitations however can be cured, based on the insights published
in refs. 58, 60. A reviewed version of our results can be found in ref. 120.
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As in chapter 3, we introduce an isospin chemical potential µ by defining
the vacuum expectation value of the SU(2) gauge field on the coinciding probe
D7-branes to be

A0 =
(
µ 0
0 −µ

)
, (4.4)

For simplicity, we work with a constant background field configuration. The
above A0 is a solution to the D7-brane equations of motion and is present
even for the D7-brane embedding corresponding to massless quarks. However,
We consider µ to be small, such that the Bose-Einstein instability observed in
ref. 54, which is of order O

(
µ2
)
, does not affect our discussion here.

Even though, this constant gauge field given by (4.4) is a solution to the
equation of motion, it does not represent the thermodynamically preferred
configuration [60]. Instead we should rather make use of the solution presented
in (3.47) with constant embedding function χ = 0, for which the authors of
ref. 60 present an analytical solution. Nevertheless, for simplicity we stick
with (4.4) in this section, which may be justified in the case of very small
densities, where the derivative of A0(u) is very small, cf. figure 3.4.

Again, we work in the D3/D7 setup. For simplicity, we consider only the
D7 probe embedding for vanishing mass m = 0. This embedding is constant
and terminates at the horizon. This simplification allows us to derive our
results purely analytically. We establish the SU(2) non-Abelian action for
a probe of two coincident D7-branes and obtain the equations of motion for
fluctuations about the background (4.4). These fluctuations are dual to the
SU(2) flavor current Jµa. We find an ansatz for decoupling the equations of
motion for the different Lorentz and flavor components, and solve them by
adapting the method developed in refs. 22, 23. This involves Fourier trans-
forming to momentum space, and using a power expansion ansatz for the
equations of motion. We discuss the approximation necessary for an analytical
solution, which amounts to considering frequencies with ω < µ < T . With
this approach we obtain the complete current-current correlator. The key point
is that the constant chemical potential effectively replaces a time derivative
in the action and in the equations of motion. In the Fourier transformed pic-
ture, this leads to a dependence of physical observables on the square root√
ω of the frequency. This non-linear behavior goes beyond linear response

theory. We discuss the physical properties of the Green functions contribut-
ing to the current-current correlator. In particular, for small frequencies we
find a frequency-dependent diffusion coefficient D(ω) ∝ 1

T

√
ω/µ. Whereas

frequency-dependent diffusion has — to our knowledge — not yet been dis-
cussed in the context of the quark-gluon plasma, it is well-known in the theory
of quantum liquids and therefore may possibly also apply to the quark gluon
plasma. For instance, for small frequencies the square-root behavior we find
agrees qualitatively with the results of refs. 121, 122 for liquid para-hydrogen.
Generally, frequency-dependent diffusion leads to a non-exponential decay of
time-dependent fluctuations [123].
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The approach used in this section is related but different from the proce-
dure we implemented to obtain the spectral functions at finite isospin density
in chapter 3. The non-analytical behavior we derive is due to the limits we
consider. Coming from equation (3.85), the difference between a constant non-
vanishing background gauge field and the varying one becomes clear. Here,
the field is chosen to be small and constant in ρ, such that terms quadratic in
the background gauge field Ã3

0 � 1 can be neglected. This implies that the
square (w∓m)2 in (3.82) and (3.83) is replaced by w2 ∓ 2wm, such that we

obtain the indices β = ±w

√
1∓ Ā3

0(ρ=1)
(2πT )w instead of (3.85). If we additionally

assume w � Ã3
0, then the 1 under the square root can be neglected. In this

case the spectral function develops a non-analytic structure coming from the√
ω factor in the index.

This section is organized as follows. We start with a comment on frequency-
dependent diffusion within hydrodynamics and the method we use to compute
the diffusion constant holographically. Thereafter, we establish the D7 probe
action in presence of the isospin chemical potential, derive the corresponding
equations of motion and solve them. Finally, we obtain the associated Green
functions in the hydrodynamical approximation. From their pole structure we
can read off the frequency-dependent diffusion coefficient. We comment on our
results briefly where it is appropriate in this section and leave a summarizing
discussion for section 4.4, including an interpretation of our results.

4.2.1 Diffusion coefficients from Green functions

Thermal Green functions have proven to be a useful tool not only to derive
spectra, as above, but also for analyzing the structure of hydrodynamic theories
and for calculating hydrodynamic quantities such as transport coefficients. In
this section we once more use the gauge/gravity dual prescription of ref. 23 for
calculating Green functions in Minkowski spacetime. These correlators can be
thought of as being determined by their pole structure, in the way discussed
in connection with the spectral functions, cf. section 3.1. From these poles at
complex frequencies we derive the diffusion coefficient D of isospin charge
with charge density J0 and conserved current four vector ~J = (J0,J).

Considering systems governed by hydrodynamics, such as the quark-gluon
plasma, we are eager for solutions to the hydrodynamic equations of motion.
Regarding diffusion, we pay special interest to the Green function for the
diffusion equation

∂0J
0(t,x) = D∇2J0(t,x), (4.5)

with J0 the density, given by the time component of a diffusive current four
vector ~J , and D is the diffusion constant we are interested in. In Fourier space
this equation reads

iωJ0(ω,k) = Dk2J0(ω,k). (4.6)
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This determines the dispersion relation ω = −iDk2 of the mode with energy
ω. In the language of Green functions we will observe solutions of the form

G(ω,k) ∝ 1
iω −Dk2 . (4.7)

Here, the dispersion relation determines the poles of the Green function. Find-
ing the correct dependence of the poles of the correlator on ω and k therefore
allows to determine the diffusion constant D.

The diffusive quantity we are interested in the isospin charge with density
J0 as part of the four vector ~J = (J0,J). These currents are holographically
dual to the gauge field on the brane. We therefore have to solve the equations
of motion for the gauge fields to obtain the relevant field theory Green function
G of isospin diffusion of J0 by following the recipe for retarded correlation
functions [23]. We are interested in the hydrodynamic properties and therefore
restrict to the hydrodynamic long wavelength/low energy limit such that we
restrict to the lowest order in k.

For the non-Abelian case with an isospin chemical potential, in section
4.2.4 we will obtain retarded Green functions of the form

G(ω,k) ∝ 1
iω −D(ω)k2 +O

(
k3
) . (4.8)

Retarded Green functions of this type have been discussed for instance in
ref. 123. Equation (4.8) describes frequency-dependent diffusion with coeffi-
cient D(ω), such that (4.6) becomes

iωJ0(ω,k) = D(ω)k2J0(ω,k) . (4.9)

In our case, J0 is the isospin density at a given point in the liquid.
This is a non-linear behavior which goes beyond linear response theory. In

particular, when Fourier-transforming back to position space, we have to use
the convolution for the product D · J0 and obtain

∂0J
0(t,x) +∇2

t∫
−∞

ds J0(s,x)D(t− s) = 0 (4.10)

for the retarded Green function. This implies together with the continuity
equation ∂0J

0 + ∇ · J = 0, with J the three-vector current associated to J0,
that

J = −∇(D ∗ J0), (4.11)

where ∗ denotes the convolution. This replaces the linear response theory
constitutive equation J = −D∇J0. Note that for D(t− s) = Dδ(t− s) with
D constant, (4.10) reduces to (4.5).
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4.2.2 Holographic setup

In this subsection we use the AdS black hole coordinates given in appendix B,
equation (B.4),

ds2 =
r2◦
R2u

(
−f(u)dt2 + dx2

)
+

R2

4u2 f(u)
du2 +R2dΩ2

5,

f = 1− u2, r◦ = TπR2,

0 6 u 6 1, xi ∈ R

(4.12)

with the metric dΩ2
5 of the unit 5-sphere. This geometry is asymptotically

AdS5×S5 with the boundary of the AdS part at u = 0, the black hole horizon
is located at u = 1.

Into this ten-dimensional spacetime we embed Nf = 2 coinciding D7-
branes, hosting the flavor gauge fields A. We choose the same embedding
as in the previous calculations, which extends the D7-branes in all directions
of AdS5 space and wraps an S3 on the S5. Here, we restrict ourselves to
the most straightforward case, that is the trivial constant embedding of the
branes through the origin along the AdS radial coordinate u. This corresponds
to massless quarks in the dual field theory. On the brane, the metric simply
reduces to

ds2 =
r2◦
R2u

(
−f(u) dt2 + dx2

1 + dx2
2 + dx2

3

)
+

R2

4u2 f(u)
du2 +R2dΩ2

3.

(4.13)

Due to the choice of our gauge field in the next subsection, the remaining three-
sphere in this metric will not play a prominent role. We use labels µ, ν, . . . to
denote any direction, i, j, . . . to refer to Minkowski directions, u is used as a
label for the radial coordinate, and α will be used to refer to the x1,2 directions.

Introducing a non-Abelian chemical potential

A gravity dual description of a chemical potential amounts to a non-dynamical
time component A0 of the gauge field in the action for the D7-brane probe
embedded into the background given above. There are essentially two different
ways to realize a non-vanishing contribution from a chemical potential to the
field strength tensor F = 2∂[µAν] + fabcAbµA

c
ν . The first is to consider a

u-dependent baryon chemical potential, as we did in the preceding chapter.
We work with a constant chemical potential of the form

A0 = Aa0 T
a, (4.14)

where we sum over indices which occur twice in a term and denote the gauge
group generators by T a. The brane configuration described above leads to
an SU(Nf ) gauge group with Nf = 2 on the brane, which corresponds to a
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global SU(Nf ) in the dual field theory. For Nf = 2, the generators of the
gauge group on the brane are given by T a = σa

2 , with Pauli matrices σa. We
will see that (4.14) indeed produces non-trivial new contributions to the action.

Using the standard background field method of quantum field theory, we
consider the chemical potential as a fixed background and study gauge field
fluctuations around it. We single out a particular direction in flavor space by
taking A3

0 = µ as the only non-vanishing component of the background field.
From now on we use the symbol Aaν to refer to gauge field fluctuations around
the fixed background,

Aaν 7→ µδν0δ
a3 +Aaν . (4.15)

We gauge the component along the radial coordinate to Au = 0 and
assume that Aµ = 0 for µ = 5, 6, 7. Due to the symmetries of the background,
we effectively examine gauge field fluctuations Aµ depending on the five-
dimensional subspace on the brane spanned by the coordinates x0,1,2,3 and by
the radial AdS coordinate u. The magnitude of all components of A and the
background chemical potential µ are considered to be small. This allows us to
simplify certain expressions by dropping terms of higher order in A and in the
chemical potential µ.

4.2.3 Equations of motion and their solutions

The action describing the dynamics of the flavor gauge fields in the D3/D7 setup
is the Dirac-Born-Infeld action. Since we work with vanishing gauge field
components in all of the directions perpendicular to the D3-branes, there are no
contributions from the Chern-Simons action. As mentioned, we consider the
constant D7 probe embedding corresponding to vanishing quark mass, m = 0.
The metric on the brane is then given by (4.13). Since we are interested in
two-point correlators only, it is sufficient to consider the DBI action to second
order in α′,

SD7 = −T7TR (2π2α′)2R3

u=1∫
u=0

du d4x
√
−GGµσ Gνβ F aµν F aσβ , (4.16)

where we use the D7-brane tension T7 as in (2.14), performed the integration
over the 5, 6, 7-directions, which are the directions along the S3, and the factor
TR arising from the trace over the representation matrices T a,

Tr(T a T b) = TR δ
ab. (4.17)

In our case we have TR = 1/2.
Evaluating the DBI action given in (4.16) with the substitution rule (4.15),
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we arrive at

SD7 = − T7TR (2π2α′)2R3

u=1∫
u=0

du d4x
√
−GGµσGνβ

×
(
4∂[µA

a
ν] ∂[σA

a
β] − 8δ0νδ0βfabc∂[0A

a
µ]A

b
σ µ

c
)
,

(4.18)

where we use the short-hand notation µc = µδ3c and neglect terms of higher
than linear order in µ, and higher than quadratic order in A since both are
small in our approach.

Up to the sum over flavor indices a, the first term in the bracket in (4.18)
is reminiscent of the Abelian super-Maxwell action in five dimensions, consid-
ered already for the R-charge current correlators in ref. 22. The new second
term in our action arises from the non-Abelian nature of the gauge group,
giving terms proportional to the gauge group’s structure constants fabc in the
field strength tensor F aµν = 2∂[µA

a
ν] + fabcAbµA

c
ν .

We proceed by calculating the retarded Green functions for the action
(4.18), following the prescription of ref. 23 as outlined in section 2.2.1. Ac-
cording to this prescription, as a first step we consider the equations of motion
obtained from the action (4.18), which are given by

0 = 2∂µ
(√
−GGµσGνβ ∂[σA

a
β]

)
+ fabc

[√
−GG00Gνβ µc

(
∂βA

b
0 − 2∂0A

b
β

)
+ δ0 ν∂µ

(√
−GG00GµσAbσµ

c
) ]
.

(4.19)

It is useful to work in momentum space from now on. We therefore expand
the bulk gauge fields in Fourier modes in the xi directions,

Aµ(u, ~x) =
∫

d4k

(2π)4
e−iωx0+ik·xAµ(u,~k). (4.20)

As we work in the gauge where Au = 0, we only have to take care of the
components Ai with i = 0, 1, 2, 3.

For the sake of simplicity, we choose the momentum of the fluctuations to
be along the x3 direction, so their momentum four-vector is ~k = (ω, 0, 0, q).
With this choice we have specified to gauge fields which only depend on the
radial coordinate u, the time coordinate x0 and the spatial x3 direction.

Equations for Aa1- and Aa2-components

Choosing the free Lorentz index in the equations of motion (4.19) to be
ν = α = 1, 2 gives two identical differential equations for A1 and A2,

0 = Aaα
′′ +

f ′

f
Aaα

′ +
w2 − fq2

uf2
Aaα + 2i

w

uf2
fabc

µb

2πT
Acα, (4.21)
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where we indicated the derivative with respect to u with a prime and have
introduced the dimensionless quantities

w =
ω

2πT
, q =

q

2πT
, m =

µ

2πT
. (4.22)

We now make use of the structure constants of SU(2), which are fabc = εabc,
where εabc is the totally antisymmetric epsilon symbol with ε123 = 1. Writing
out (4.21) for the three different choices of a = 1, 2, 3 results in

0 = A1
α
′′ +

f ′

f
A1
α
′ +

w2 − fq2

uf2
A1
α − 2i

mw

uf2
A2
α , (4.23)

0 = A2
α
′′ +

f ′

f
A2
α
′ +

w2 − fq2

uf2
A2
α + 2i

mw

uf2
A1
α , (4.24)

0 = A3
α
′′ +

f ′

f
A3
α
′ +

w2 − fq2

uf2
A3
α . (4.25)

The first two of these equations for the gauge field directions transverse to the
background field are coupled, the third longitudinal one is the same equation
that was solved in the Abelian Super-Maxwell case [22]. Note that these
equations are influenced by one of the addressed oversimplifications in a way
that will turn out to be crucial at the end. We neglect terms quadratic in m. If
we would allow for these quadratic terms we could complete the square and
avoid the non-analytical behavior we observe later [120].

Equations for Aa0- and Aa3-components

The remaining choices for the free Lorentz index ν = 0, 3, u in (4.19) result in
three equations which are also not independent. The choices ν = 0 and ν = u
give

0 = Aa0
′′ − q2

uf
Aa0 −

qw

uf
Aa3 − i

q

uf
fabc

µb

2πT
Ac3 , (4.26)

0 = wAa0
′ + qfAa3

′ + ifabc
µb

2πT
Ac0

′ . (4.27)

Solving (4.27) forAa0
′, differentiating it once with respect to u and using (4.26)

results in equation (4.19) for ν = 3,

0 = Aa3
′′ +

f ′

f
Aa3

′ +
w2

uf2
Aa3 (4.28)

+
qw

uf2
Aa0 + i

q

uf2
fabc

µb

2πT
Ac0 + 2i

w

uf2
fabc

µb

2πT
Ac3 . (4.29)

We will make use of the equations (4.26) and (4.27) which look more concise.
These equations of motion for Aa0 and Aa3 are coupled in Lorentz and flavor
indices. To decouple them with respect to the Lorentz structure, we solve
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(4.27) for Aa3
′ and insert the result into the differentiated version of (4.26).

This gives

0 = Aa0
′′′ +

(uf)′

uf
Aa0

′′ +
w2 − fq2

uf2
Aa0

′ + 2i
w

uf2
fabc

µb

2πT
Ac0

′. (4.30)

The equations for a = 1, 2 are still coupled with respect to their gauge
structure. The case a = 3 was solved in ref. 22. We will solve (4.30) for Aa0

′

and can obtain Aa3
′ from (4.27). Note that it is sufficient for our purpose to

obtain solutions for the derivatives of the fields. These contribute to equations
(2.58) to (2.61) that give the retarded thermal Green functions, while the func-
tions A = f(u,~k)Abdy(~k) themselves simply contribute a factor of f(u,−~k)
which merely gives a factor of unity at the boundary.

Solutions

Generally, we follow the methods developed in ref. 22, and our differential
equations are very similar to the ones considered there. Additionally, we
need to respect the flavor structure of the gauge fields, only the equations for
flavor index a = 3 resemble those analyzed in ref. 22. Those for a = 1, 2
involve extra terms, which couple the equations. Coupling occurs not only
via their Lorentz indices, but also with respect to the flavor indices. We
already decoupled the Lorentz structure in the previous section. As typical for
an explicitly broken SU(2), the equations of motion which involve different
gauge components will decouple if we transform to the variables

Xi = A1
i + iA2

i ,

X̃i = A1
i − iA2

i .
(4.31)

Here, the A1
i , A2

i are the generally complex gauge field components in momen-
tum space. Note that up to SU(2) transformations, the combinations (3.81)
are the only ones which decouple the equations of motion for a = 1, 2. These
combinations are reminiscent of the non-Abelian SU(2) gauge field in position
space,

Ai = Aai
σa

2
=

1
2

(
A3
i A1

i − iA2
i

A1
i + iA2

i −A3
i

)
. (4.32)

The equations of motion for the flavor index a = 3 were solved in ref. 22. To
solve the equations of motion for the fields Aai with a = 1, 2, we rewrite them
in terms of Xi and X̃i. Applying the transformation (3.81) to the equations of
motion (4.23) and (4.24) and the a = 1, 2 versions of (4.30) and (4.27) leads
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to

0 = X ′′
α +

f ′

f
X ′
α +

w2 − fq2 ∓ 2mw

uf2
Xα, (4.33)

0 = X ′′′
0 +

(uf)′

uf
X ′′

0 +
w2 − fq2 ∓ 2mw

uf2
X ′

0, (4.34)

0 = (w∓m)X ′
0 + qfX ′

3, (4.35)

where again α = 1, 2, and the upper signs correspond to X and the lower ones
to X̃ .

As in the chapter on spectral functions, we observe that some coefficients
of these functions are divergent at the horizon u = 1. We hark back to the
ansatz

Xi = (1− u)β F (u), X̃i = (1− u)eβ F̃ (u), (4.36)

with regular functions F (u) and F̃ (u). To cancel the singular behavior of the
coefficients, we have to find the adequate β and β̃, the so-called indices, given
by equations known as the indicial equations for β and β̃. We eventually get
for all Xi and X̃i

β = ± iw
2

√
1− 2m

w
, β̃ = ± iw

2

√
1 +

2m

w
. (4.37)

Note that these exponents differ from those of the Abelian Super-Maxwell
theory [22] by a dependence on

√
w in the limit of small frequencies (w < m).

In the limit of vanishing chemical potential m → 0, the indices given in ref. 22
are reproduced from (3.62). Again, however, if we include the quadratic order
in m it is possible to complete the square to get β = ∓i/2(w∓m) [120].

In order to solve (4.33), (4.34) and (4.35) analytically, we introduce a
series expansion ansatz for the function F in the momentum variables w

and q. In section 3.3.1 we solved the resulting equations up to first order in the
radial coordinate in order to get initial conditions for the subsequent numerical
integration. Here we are not interested in the dependence along u, but in the
dependence on the lowest order in w and q in order to extract the dispersion
relation that determines the poles in the according correlators. In fact, the
physical motivation behind this expansion is that we aim for thermodynamical
quantities which are known from statistical mechanics in the hydrodynamic
limit of small four-momentum ~k. So the standard choice would be

F (u) = F0 + wF1 + q2G1 + . . . . (4.38)

On the other hand, we realize that our indices will appear linearly (and
quadratically) in the differential equations’ coefficients after inserting (4.36)
into (4.33), (4.34) and (4.35). The square root in β and β̃ mixes different or-
ders of w. In order to sort coefficients in our series ansatz, we assume w < m
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and keep only the leading w contributions to β and β̃, such that

β ≈ ∓
√

wm

2
, β̃ ≈ ±i

√
wm

2
. (4.39)

This introduces an additional order O
(
w1/2

)
, which we include in our ansatz

(4.38), giving

F (u) = F0 + w1/2F1/2 + wF1 + q2G1 + . . . , (4.40)

and analogously for the tilded quantities. If we had not included O
(
w1/2

)
the

resulting system would be overdetermined. On the other hand this procedure of
including non-analytical square root terms would be superseded by including
the second order terms in m from the beginning. The results we obtain by
using the approximations (4.39) and (4.40) have been checked against the
numerical solution for exact β with exact F (u). These approximations are
useful for fluctuations with q,w < 1. Note that by dropping the 1 in (3.62)
we also drop the Abelian limit.

Consider the indices (4.37) for positive frequency first. In order to meet the
incoming wave boundary condition, we restrict the solution β̃ to the negative
sign only. For the approximate β̃ in (4.39) we therefore choose the lower
(negative) sign. This exponent describes a mode that travels into the horizon
of the black hole. In case of β, we demand the mode to decay towards the
horizon, choosing the lower (positive) sign in (4.39) consistently. Note that for
negative frequencies ω < 0 the indices β and β̃ exchange their roles.

Using (4.39) in (4.36) and inserting the ansatz into the equations of motion,
we find equations for each order in q2 and w separately. After solving the
equations of motion for the coefficient functions F0, F1/2, F1 and G1, we
eventually can assemble the solutions to the equations of motion for X as
defined in (4.31),

X(u) = (1− u)β F (u)

= (1− u)β
(
F0 +

√
wF1/2 + wF1 + q2G1 + . . .

)
.

(4.41)

and a corresponding formula for X̃(u) from the ansatz (4.36).

Illustrating the method, we now write down the equations of motion order
by order for the function Xα. To do so, we use (4.41) with (4.39) in (4.33)
with the upper sign for Xα. Then we examine the result order by order in w
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and q2,

O(const) : 0 = F ′′0 +
f ′

f
F ′0 , (4.42)

O
(√

w
)

: 0 = F ′′1/2 +
f ′

f
F ′1/2 −

√
2m

1− u
F ′0 −

√
m

2
1
f
F0 , (4.43)

O(w) : 0 = F ′′1 +
f ′

f
F ′1 −

√
2m

1− u
F ′1/2 −

√
m

2
1
f
F1/2 (4.44)

−m
4− u(1 + u)2

2uf2
F0 ,

O
(
q2
)

: 0 = G′′1 +
f ′

f
G′1 −

1
uf
F0 . (4.45)

At this point we observe that the differential equations we have to solve
for each order are shifted with respect to the solutions found in ref. 22. The
contributions of order wn in ref. 22 now show up in order wn/2. Their solutions
will exhibit factors of order µn/2. Again, we emphasize that inclusion of
O
(
m2
)

terms would just result in a shift of w 7→ w±m.
Solving the system (4.42) to (4.45) of coupled differential equations is

straightforward in the way that they can be reduced to several uncoupled first
order ordinary differential equations in the following way. Note that there
obviously is a constant solution F0 = C for the first equation. Inserting it into
(4.43) and (4.45) leaves us with ordinary differential equations for F ′1/2 and
G′1 respectively. Using the solutions of F0 and F1/2 in (4.44) gives one more
such equation for F ′1.

To fix the boundary values of the solutions just mentioned, we demand
the value of F (u = 1) to be given by the constant F0 and therefore choose
the other component functions’ solutions such that limu→1 F1/2 = 0, and the
same for F1 and G1. The remaining integration constant C is determined by
taking the boundary limit u→ 0 of the explicit solution (4.41), making use of
the second boundary condition

lim
u→0

X(u) = Xbdy, (4.46)

see appendix C.1. Eventually, we end up with all the ingredients needed to
construct the gauge field’s fluctuations X(u) as in (4.41).

We solve the equations (4.33) with lower sign for X̃α and (4.34) for X ′
0

and its tilded partner in exactly the same way as just outlined, only some
coefficients of these differential equations differ. The solution for X ′

3 is then
obtained from (4.35).

All solutions are given explicitly in Appendix C.1 together with all other
information needed to construct the functions Xα, X̃α, X ′

0, X̃ ′
0, X ′

3 and X̃ ′
3.
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4.2.4 Current correlators

In this section we obtain the momentum space correlation functions for the
isospin currents by means of the holographically dual gauge field component
combinations X and X̃ defined in equation (4.31). Recall that the imaginary
part of the retarded correlators essentially gives the thermal spectral functions
(cf. chapter 3). The following discussion of the correlators’ properties can
therefore be related to the discussion of the corresponding spectral functions.

First note that the on-shell action gets contributions from the non-Abelian
structure,

SD7 = − T7TR (2π2α′)2R3

× 2
∫

d4q

(2π)4

[
√
−GGuuGjk Aaj

′(~q)Aak(−~q)
∣∣∣u=1

u=0

− 4iq fabcµc
1∫

0

du
√
−GG00G33Aa[3A

b
0]

]
,

(4.47)

where j, k = 0, 1, 2, 3, and the index u denotes the radial AdS-direction.
Up to the sum over flavor indices, the first term in the bracket is similar
to the Abelian Super-Maxwell action of ref. 22. The second term is a new
contribution depending on the isospin chemical potential. It is a contact term
which we will neglect. The correlation functions however get a structure that is
different from the Abelian case. This is due to the appearance of the chemical
potential in the equations of motion and their solutions. Writing (4.47) as a
function of X and X̃ results in

SD7 = − T7TR (2π2α′)2R32
∫

d4q

(2π)4

×

[
√
−GGuuGjk

[
1
2

(
Xj

′X̃k + X̃ ′
jXk

)
+A3

j
′
A3
k

]∣∣∣∣u=1

u=0

− 4qµ

1∫
0

du
√
−GG00G33 2X[0X̃3]

]
.

(4.48)

In order to find the current correlators, we apply the method outlined in
section 2.2.1 to (4.48), with the solutions for the fields given in appendix C.1.
As an example, we derive the correlators G0e0 =

〈
J0(~q)J̃0(−~q)

〉
and Ge00 =〈

J̃0(~q) J0(−~q)
〉

of the flavor current time components J0 and J̃0, coupling

to the bulk fields X0 and X̃0, respectively. Correlation functions of all other
components are derived analogously.
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Green functions: Calculation

First, we extract the prefactor of (∂A0)2 from the action (4.16) and call it
B(u),

B(u) = −T7TR (2π2α′)2R3
√
−GGuuG00. (4.49)

We need this factor below to calculate the Green function,

GR = lim
u→0

B(u)f(u,−~k)∂uf(u,~k). (4.50)

The second step, finding the solutions to the mode equations of motion,
has already been performed in section 4.2.3. In the example at hand we need
the solutions X0 and X̃0. From (4.41) and from appendix C we obtain

X0
′ =− (1− u)

√
wm
2

q2X̃
bdy
0 + wqX̃

bdy
3√

2mw + wm ln 2 + q2
(4.51)

×

[
1−w1/2

√
m

2
ln
(

2u2

u+ 1

)

−w
m

12

(
π2 + 3 ln2 2 + 3 ln2(1 + u) + 6 ln 2 ln

(
u2

1 + u

)

+ 12Li2(1− u) + 12Li2(−u)− 12Li2

(
1− u

2

))

+ q2 ln
(
u+ 1
2u

)]
,

X̃0
′ = (1− u)−i

√
wm
2

q2X
bdy
0 + wqX

bdy
3

i
√

2mw + wm ln 2− q2
(4.52)

×

[
1 + w1/2 i

√
m

2
ln
(

2u2

u+ 1

)

+ w
m

12

(
π2 + 3 ln2 2 + 3 ln2(1 + u) + 6 ln 2 ln

(
u2

1 + u

)

+ 12Li2(1− u) + 12Li2(−u)− 12Li2

(
1− u

2

))

+ q2 ln
(
u+ 1
2u

)]
.

Note that we need the derivatives to apply (2.59) and (2.60).
Now we perform the third step and insert (4.49), (4.51) and (4.52) into

(4.50). Our solutions X0 and X̃0 replace the solution f(u,~k) and f(u,−~k)
in (2.60). The resulting expression is evaluated at ub = 0, which comes
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from the lower limit of the u-integral in the on-shell action (4.48). At small
u = ε� 1, (4.51) and (4.52) give

lim
u→0

X0
′ =− q2X̃

bdy
0 + wqX̃

bdy
3√

2mw + wm ln 2 + q2
− lim
ε→0

(
q2X̃

bdy
0 + wqX̃

bdy
3

)
ln ε ,

(4.53)

lim
u→0

X̃0
′ =

q2X
bdy
0 + wqX

bdy
3

i
√

2mw + wm ln 2− q2
+ lim
ε→0

(
q2X

bdy
0 + wqX

bdy
3

)
ln ε .

(4.54)

In the next to leading order of (4.53) and (4.54) there appear singularities, just
like in the Abelian Super-Maxwell calculation [22,equation (5.15)]. However, in
the hydrodynamic limit, we consider only the finite leading order.

Green functions: Results

Putting everything together, for the two Green functions for the field compo-
nents X0, X̃0 given in (4.31) by

X0 = A1
0 + iA2

0, X̃0 = A1
0 − iA2

0,

we obtain

Ge00 =
NcT

8π
2πT q2

i
√

2mw− q2 + wm ln 2
, (4.55)

G0e0 =
NcT

8π
2πT q2

−
√

2mw− q2 −wm ln 2
. (4.56)

These are the Green functions for the time components in Minkowski space,
perpendicular to the chemical potential in flavor space. All Green functions
are obtained considering hydrodynamic approximations in O

(
w1/2,w, q2

)
,

neglecting mixed and higher orders O
(
w3/2,w1/2q2, q4

)
.

The prefactor in (4.55), (4.56) is obtained using T7 as in (2.14), TR from
(4.17), and carefully inserting all metric factors, together with the standard
AdS/CFT relation R4 = 4πgsNα′

2. As in other settings with flavor [107],
we concordantly get an overall factor of N , and not N2, for all correlators.
Contrary to those approaches, we do not get a factor of Nf when summing
over the different flavors. This is due to the fact that in our setup, the individual
flavors yield distinct contributions. Most striking is the non-trivial dependence
on the (dimensionless) chemical potential m in both correlators. Note also the
distinct structures in the denominators. The first one, (4.55), has an explicit
relative factor of i between the terms in the denominator. In the second
correlator, (4.56), there is no explicit factor of i. The correlator (4.55) has a
complex pole structure for ω > 0, but is entirely real for ω < 0. On the other
hand, (4.56) is real for ω > 0 but develops a diffusion structure for ω < 0. So
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the correlators G0e0 and Ge00 essentially exchange their roles as ω changes sign.
We find a similar behavior for all correlators G

jel and Gejl with j, l = 0, 1, 2, 3.

Once more, this behavior is a consequence of the insertion of O
(
w1/2

)
and

neglecting of terms of order O
(
m2
)

in the hydrodynamic expansion (4.40).
We assume m to be small enough in order to neglect the denominator term

of order O(wm) � O
(√

wm, q2
)
. Moreover, using the definitions of w, q

and m from (4.22) we may write (4.55) and (4.56) as

G0e0 = − NT

8π
√

2µ
q2
√
ω

ω + q2D(ω)
, (4.57)

Ge00 =
NT

8π
√

2µ
q2
√
ω

iω − q2D(ω)
, (4.58)

where the frequency-dependent diffusion coefficient D(ω) is given by

D(ω) =
√

ω

2µ
1

2πT
. (4.59)

We observe that this coefficient also depends on the inverse square root of
the chemical potential µ. Its physical interpretation is discussed below in
section 4.2.5.

In the same way we derive the other correlation functions

G3e3 =− NT

8π
√

2µ
ω3/2 (ω − µ)

Q̃(ω, q)
, Ge33 =

NT

8π
√

2µ
ω3/2 (ω + µ)
Q(ω, q)

,

(4.60)

G0e3 =− NT

8π
√

2µ

√
ω q(ω − µ)

Q̃(ω, q)
, Ge03 =

NT

8π
√

2µ

√
ω q(ω + µ)
Q(ω, q)

,

(4.61)

G3e0 =− NT

8π
√

2µ
ω3/2 q

Q̃(ω, q)
, Ge30 =

NT

8π
√

2µ
ω3/2 q

Q(ω, q)
. (4.62)

with the short-hand notation

Q(ω, q) = iω − q2D(ω), Q̃(ω, q) = ω + q2D(ω) . (4.63)

Note that most of these functions are proportional to powers of q and there-
fore vanish in the limit of vanishing spatial momentum q → 0. Only the
33-combinations from (4.60) survive this limit. In contrast to the Abelian
Super-Maxwell correlators from ref. 22 given in appendix C.2, it stands out
that our results (4.57), (4.58) and (4.60) and (4.62) have a new zero at ω = ±µ.
Nevertheless, bear in mind that we took the limit ω < µ in order to obtain
our solutions. Therefore the apparent zeros at ±µ lie outside of the range
considered. Compared to the Abelian case there is an additional factor of

√
ω.

The dependence on temperature remains linear.
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In the remaining X-correlators we do not find any pole structure to order√
ω, subtracting an O

(
q2
)

contribution as in ref. 22,

G1e1 =G2e2 =
√

2NcT

8π
√
µω , (4.64)

Ge11 =Ge22 = − i
√

2NcT

8π
√
µω . (4.65)

We can see that the Gαeα (with α = 1, 2) are purely imaginary for negative ω
and real for positive ω. The opposite is true for Geαα, as is obvious from the
relative factor of i.

The correlators of components, pointing along the isospin potential in
flavor space (a = 3), are found to be

GA3
0A

3
0

=
NcT

4π
q2

iω −D0q2
,

GA3
0A

3
3

= GA3
3A

3
0

=
NcT

4π
ωq

iω −D0q2
,

(4.66)

GA3
1A

3
1

= GA3
2A

3
2

= −NcT iω

4π
,

GA3
3A

3
3

=
NcT

4π
ω2

iω −D0q2
,

(4.67)

with the diffusion constantD0 = 1/(2πT ). Note that these correlators have the
same structure but differ by a factor 4/N from those found in the Abelian super-
Maxwell case [22] (see also (C.36) and (C.38)). In particular the correlators in
equation (4.66) do not depend on the chemical potential.

To analyze the novel structures appearing in the other correlators, we
explore their real and imaginary parts as well as the interrelations among them,

ReG0e0(ω ≥ 0) =

ReGe00(ω < 0) = −NcT

8π
q2√

2µ |ω|+ q2/(2πT )
, (4.68)

ReG0e0(ω < 0) =

ReGe00(ω ≥ 0) = −NcT

16π2

q4

2µ |ω|+ q4/(2πT )2
, (4.69)

ImG0e0(ω < 0) =

− ImGe00(ω ≥ 0) =
NcT

8π
q2
√

2µ |ω|
2µ |ω|+ q4/(2πT )2

, (4.70)

ImG0e0(ω ≥ 0) =
ImGe00(ω < 0) = 0. (4.71)
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Now we see why, as discussed below (4.58), G0e0 and Ge00 exchange their roles
when crossing the origin at ω = 0. This is due to the fact that the real parts of
all G

jel and Gejl are mirror images of each other by reflection about the vertical
axis at ω = 0. In contrast, the imaginary parts are inverted into each other at
the origin. The real part shows a deformed resonance behavior. The imaginary
part has a deformed interference shape with vanishing value for negative
frequencies. All curves are continuous and finite at ω = 0. However, due to
the square root dependence, they are not differentiable at the origin. Parts of
the correlator which are real for positive ω are shifted into the imaginary part
by the change of sign when crossing ω = 0, and vice versa.

To obtain physically meaningful correlators, we follow a procedure which
generalizes the Abelian approach of ref. 124. In the Abelian case, gauge-
invariant components of the field strength tensor, such as Eα = ωAα, are
considered as physical variables. This procedure cannot be transferred directly
to the non-Abelian case. Instead, we consider the non-local part of the gauge
invariant TrF 2 which contributes to the on-shell action (4.47). In this action,
the contribution involving the non-Abelian structure constant — as well as
µ— is a local contact term. The non-local contribution however generates the
Green function combination

GA1
iA

1
j
+GA2

iA
2
j
+GA3

iA
3
j
. (4.72)

We take this sum as our physical Green function. This choice is supported
further by the fact that it may be written in terms of the linear combinations
(3.81) which decouple the equations of motion. For example, for the time
component, written in the variables X0, X̃0 given by (3.81), the combination
(4.72) reads (compare to (4.48))

G0e0 +Ge00 +GA3
0A

3
0
. (4.73)

The contribution from GA3
0A

3
0

is of order O
(
µ0
)
, while the combination for

the first two flavor directions, G0e0 +Ge00, is of order O(µ).
We proceed by discussing the physical behavior of the Green function

combinations introduced above. Their frequency dependence is of the same
form as in the Abelian correlator obtained in ref. 22, as can be seen from
(C.36). Since we are interested in effects of order O(µ), we drop the third
flavor direction a = 3 from the sum (4.73) in the following. It is reassuring
to observe that the flavor directions a = 1, 2, which are orthogonal to the
chemical potential, combine to give a correlator spectrum qualitatively similar
to the one found in ref. 22 for the Abelian Super-Maxwell action. However,
we discover intriguing new effects such as the highly increased steepness of
the curves near the origin due to the square root dependence and a kink at
the origin — which have to be seen with skepticism because they vanish upon
reinstating terms of order O

(
m2
)
.

We observe a narrowing of the inverse resonance peak compared to the
form found for the Abelian Super-Maxwell action (and also compared to
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the form of our GA3
0A

3
0
. At the origin, the real and imaginary part are finite

and continuous, but they are not continuously differentiable. However, the
imaginary part of GA3

0A
3
0

has finite slope at the origin. The real part though
has vanishing derivative at ω = 0.

The correlators G3e3, Ge33, G0e3 and Ge03 have the same interrelations be-
tween their respective real and imaginary parts as G0e0 and Ge00. Nevertheless,
their dependence on the frequency and momentum is different, as can be seen
from (4.60) to (4.62). A list of the 33-direction Green functions split into real
and imaginary parts can be found in appendix C.3.

4.2.5 Isospin diffusion coefficient

The attenuated poles in hydrodynamic correlation functions have specific
meanings (for exemplary discussions of this in the context of AdS/CFT see e.g.
refs. 65,125). In our case we observe an attenuated pole in the sum G0e0 +Ge00
at ω = 0. The pole lies at Reω = 0. This structure appears in hydrodynamics
as the signature of a diffusion pole located at purely imaginary ω. Its location
on the imaginary ω-axis is given by the zeros of the denominators of our
correlators as (neglecting O

(
ω, q4

)
)

√
ω = −i q2

2πT
√

2µ
. (4.74)

Squaring both sides of (4.74) we see that this effect is of order O
(
q4
)
. On

the other hand, looking for poles in the correlator involving the third flavor
directionGA3

0A
3
0
, we obtain dominant contributions of orderO

(
q2
)

andO
(
µ0
)

(neglecting O
(
ω2, q2

)
)

ω = −i q
2

2πT
. (4.75)

This diffusion pole is reminiscent of the result of the Abelian result of ref. 22
given in appendix C.2. As discussed in section 4.2.4, we consider gauge
invariant combinations G0e0 + Ge00 + GA3

0A
3
0
. In order to inspect the non-

Abelian effects of order O(µ) showing up in the first two correlators in this
sum, we again drop the third flavor direction which is of order O

(
µ0
)
.

Motivated by the diffusion pole behavior of our correlators in flavor-
directions a = 1, 2 corresponding to the combinations X, X̃ (see (4.74)),
we wish to regain the structure of the diffusion equation given in (4.9), which
in our coordinates (k = (ω, 0, 0, q)) reads

iω J0 = D(ω) q2J0. (4.76)

Our goal is to rewrite (4.74) such that a term of O(ω) and one term of order
O
(
q2
)

appears. Furthermore there should be a relative factor of −i between
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these two terms. The obvious manipulation to meet these requirements is to
multiply (4.74) by

√
ω in order to get

ω = −iq2
√
ω

2πT
√

2µ
. (4.77)

Comparing the gravity result (4.77) with the hydrodynamic equation (4.76),
we obtain the frequency-dependent diffusion coefficient

D(ω) =
√

ω

2µ
1

2πT
. (4.78)

Our argument is thus summarized as follows: Given the isospin chemical
potential as in (4.4), (4.15), J0 from (4.9) is the isospin charge density in (4.76).
According to (4.76), the coefficient (4.78) describes the diffusive response of
the quark-gluon plasma to a gradient in the isospin charge distribution. For
this reason we interpret D(ω) as the isospin diffusion coefficient.

Near the pole, the strongly coupled plasma behaves analogously to a
diffractive medium with anomalous dispersion in optics. In the presence of
the isospin chemical potential, the propagation of non-Abelian gauge fields
in the black hole background depends on the square root of the frequency. In
the dual gauge theory, this corresponds to a non-exponential decay of isospin
fluctuations with time.

The square root dependence of our diffusion coefficient is valid for small
frequencies. As long as ω/T < 1/4, the square root is larger than its argument
and at ω/T = 1/4, the difference to a linear dependence on frequency is
maximal. Therefore in the regime of small frequencies ω/T < 1/4, which is
accessible to our approximation, diffusion of modes close to 1/4 is enhanced
compared to modes with frequencies close to zero.

4.3 Meson diffusion at strong and weak coupling

In this section, we consider heavy mesons moving slowly through high tem-
perature non-Abelian plasmas. In the context of transport properties of the
holographic quark-gluon plasma we are mainly interested in the diffusion
behavior of mesons. The central quantity we discuss here will however not be
the diffusion coefficient, but its inverse, the momentum broadening coefficient
κ, which determines the square of the momentum transfer per unit time, as we
will see below.

The motivation for considering meson diffusion is twofold. First, future
experiments at RHIC promise to measure the elliptic flow of J/ψ mesons, and
it is important to support this experimental program with theoretical work. To
this end, various groups have studied the thermal properties of heavy mesons
within the context of the AdS/CFT correspondence [100, 126–128]. However, in
spite of this progress, the transport properties of these mesonic excitations are
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not well understood. Although the kinetics derived in this work are not directly
applicable to the heavy ion experiments, we believe that the results do hold
some important information for phenomenology.

The second motivation for this work is theoretical. After the quark drag
was computed using the correspondence, it was realized that the drag of quarko-
nium is zero in a large Nc limit [126–128]. Since within a thermal environment
the drag and diffusion of these mesonic states is certainly not zero, it remained
as a theoretical challenge to compute the kinetics of these states using the
AdS/CFT setup.

As a central result, we compare the diffusion of mesons at weak and strong
coupling. Using a simple dipole effective Lagrangian which does not rely
on the value of the coupling, we calculate the in-medium mass shift and the
drag coefficient of the meson in N = 4 Super Yang Mills theory. At weak
coupling we use perturbative methods, at strong coupling holographic models
are employed. In the large N limit the mass shift is finite while the drag is
suppressed by 1/N2. We reach the conclusion that relative to weak coupling
expectations the effect of strong coupling is to reduce the momentum diffusion
rate and thereby increase the relaxation time, which measures the time until
the mesons in the plasma equilibrate their momentum spectrum to that of the
thermal medium.

We also briefly pick up the discussion of in-medium effects on meson
spectra, subject of chapter 3. There, the width of mesons in hot dense media
was holographically determined by extending the analysis of meson melting
to finite baryon density. In general the meson lifetime determined in this way
is suppressed by the density of heavy quarks. However, we do not address
the effects of finite density in this section. We are concerned with the thermal
effects which capture the rescattering between the meson and the surrounding
N = 4 medium.

We focus on heavy mesons where the binding energy is much greater than
the temperature. In this tight binding regime, mesons survive well above the
critical temperature Tc for deconfinement and the meson width is sufficiently
narrow to speak sensibly about drag and momentum diffusion. This behavior
was observed for holographic models in chapter 3.

For real charmonium, the binding energy can be estimated from the mass
splitting ∆MJ/ψ

2s−1s ≈ 589 MeV between the 2s and 1s states, and for bottomo-
nium from the 3s and 1s states with ∆MΥ

3s−1s ≈ 895 MeV respectively [129].
Therefore it is not really clear that real quarkonia above Tc ≈ 170–190 MeV
[130, 131] can be modeled as a simple dipole which lives long enough to be
considered a quasi-particle. Indeed weak coupling hot QCD calculations of
the spectral function show that over the temperature range g2

YMM–gYMM , the
concept of a meson quasi-particle slowly transforms from being well defined to
being increasingly vague [132–136]. There is lattice evidence based on the maxi-
mal entropy method (which is not without uncertainty) that J/ψ and Υ survive
to 1.6Tc and approximately 3Tc respectively [49,50,137–140]. However, model
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potential calculations which fit all the Euclidean lattice correlators indicate
that the J/ψ and Υ survive only up to at most 1.2Tc and 2.0Tc respectively
[141, 142]. Clearly, the word “survive” in this context is qualitative and means
that there is a discernible peak in the spectral function. Given these facts, our
assessment is that the dipole approximation might be reasonable for Υ1s but
poor for charmonium states and other bottomonium states.

An overview of this section is as follows. First, in section 4.3.1 we review
the computation of drag and diffusion of heavy quark-antiquark bound states
within the setup of perturbative QCD. This will outline a two step procedure
to determine the drag coefficient at strong coupling.

The first step is to determine the in-medium mass shift δM (it is finite at
large N in the quantum field theory), which determines the polarizabilities
of the meson. As expected from the dipole effective theory, the mass shift
scales as T 4/Λ3

B , with T the temperature and ΛB the inverse size of the meson.
In the perturbative calculation, ΛB is the inverse Bohr radius, while in the
AdS/CFT computation the meson mass plays this role. In the N = 4 field
theory the dipole effective Lagrangian couples the heavy meson to the stress
tensor and the square of the field strength, which we denote by the operator
OF 2 . In AdS/CFT we obtain the mass shifts from the linear response of the
meson mass by switching on the dual operators. This amounts to consider
a black hole background or a non-trivial dilaton flow, respectively. For the
dilaton flow we consider the D3-D(−1) gravity background of Liu and Tseytlin
[143]. This background and the AdS-Schwarzschild background allow for an
analytic calculation of the meson polarizabilities.

The second step is to compute the force-force correlator on the meson
using the previously computed polarizabilities. This determines the drag
coefficient ηD and the momentum broadening κ as reviewed in section 4.3.3.
This step requires the calculation of two-point functions involving gradients of
the stress tensor and the field strength squared. Within gauge/gravity duality,
these are obtained by considering graviton and dilaton propagation through
the AdS-Schwarzschild black hole background.

Finally, we compare our results to perturbation theory and reach some
conclusions for the heavy ion collision experiments in section 4.4.

A few passages of this chapter are adopted from ref. 2 as they stand. The
phenomenological input and perturbative calculations as well as the numerical
calculation of the Green functions by holographic methods where performed
by D. Teaney, K. Dusling and C. Young during our collaboration on ref. 2. The
main contribution of the author of this work was the AdS/CFT calculation in
section 4.3.3, which is described in detail.

4.3.1 Effective model for heavy meson diffusion

We make use of a model for heavy mesons and their interaction with the
quark-gluon plasma, which was introduced in ref. 144. This effective model
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describes the interaction with the medium by a dipole approximation. It relies
on the large mass of the meson relative to the external momenta of the gauge
fields, i.e. the momentum scale given by the temperature of the medium, but
does not rely on the smallness of the coupling constant. It was used previously
to make a good estimate for the binding of J/ψ to nuclei [144].

Because the model does not rely on the weakness of the coupling constant,
we can make use of it in both the strong and weak coupling regime. At weak
coupling we will refer to results from perturbation theory, while the results
at strong coupling can be calculated from holographic duals. Since the exact
dual to QCD is not known, we once more have to be satisfied with results for
N = 4 SYM theory. Therefore, we have to rephrase the model in terms of
supersymmetric fields.

Diffusion in large N QCD

The heavy meson field φ describes a scalar meson which has a fixed four-
velocity uµ = (γ, γv). Then the effective Lagrangian for this meson field
interacting with the gauge fields is [144]

Leff = −φ†iu · ∂φ+
cE
N2

φ†OEφ+
cB
N2

φ†OBφ, (4.79)

where we refer to the last two terms as the interaction Lagrangian Lint, and

OE = −1
2
FµσaF νa

σ uµuν , (4.80)

OB = −1
2
FµσaF νa

σ uµuν +
1
4
F σβaF a

σβ . (4.81)

Here, F is the non-Abelian field strength of QCD, with Greek letters µ, ν, . . .
as Lorentz indices and gauge index a, The cE and cB are matching coefficients
(polarizabilities) to be determined from the QCD dynamics of the heavy quark-
antiquark pair. In inserting a factor of 1/N2 into the effective Lagrangian we
have anticipated that the couplings of the heavy meson to the field strengths
are suppressed by N2 in the large N limit.

In the rest frame of a heavy quark bound state with u = (1,0) the operators
OE and OB simplify to

OE =
1
2

Ea ·Ea , (4.82)

OB =
1
2

Ba ·Ba , (4.83)

where Ea and Ba are the color electric and magnetic fields. If the constituents
of the dipole are non-relativistic it is expected that the magnetic polarizability
cB is of order O(v2) relative to the electric polarizability. For heavy quarks,
where cB is neglected, and large N these matching coefficients were computed
by Peskin [145, 146],

cE =
28π
3Λ3

B

, cB = 0 . (4.84)
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Here ΛB := 1/a0 = (mq/2)CFαs is the inverse Bohr radius of the mesonic
bound state. It is finite at large N since with CF ' N/2 and finite λ we have
ΛB = mqλ/(16π).

The effective Lagrangian can be used to calculate the in-medium mass shift.
We will do so in the subsequent by simply consulting first order perturbation
theory which says that

δM = 〈Hint〉 = −〈Lint〉 . (4.85)

Translating the model to N = 4 Super Yang-Mills theory

Our aim is to calculate the heavy meson diffusion coefficient from gauge/gravity
duality. Subsequent to this subsection we explain the Langevin dynamics we
use to describe this process, it requires the calculation of the two-point corre-
lators as well as of the associated polarizabilities cE and cB. Because we do
not now the gravity dual to QCD we translate the effective meson model to
N = 4 Super Yang-Mills theory, our standard toy model.

The formalism in N = 4 SU(N) Super Yang-Mills theory is not different
from the one we introduced in the preceding section. In general all operators in
N = 4 SYM which are scalars under under Lorentz transformations and SU(4)
R-charge rotations will couple to the meson at some order. The contribution
of higher dimensional operators is suppressed by powers of the temperature
to the inverse size of the meson. The lowest dimension operator which could
couple to the heavy meson field is OX2 = TrXiXi, where Xi denotes the
scalar fields of the theory. However, the anomalous dimension of this operator
is not protected, and the prediction of the supergravity description ofN = 4
SYM is that these operators decouple in a strong coupling limit [8]. The lowest
dimension gauge invariant local operators which are singlets under SU(4) and
which have protected anomalous dimension are the stress tensor Tµν which
couples to the graviton, and minus the Lagrangian OF 2 = −LN=4, which
couples to the dilaton. (Since we can add a total derivative to the Lagrangian,
the operator −L is ambiguous. The precise form of the operator coupling to
the dilaton is given in ref. 147. We neglect this ambiguity here.) There also
is the operator OF?F = TrFµν?Fµν + . . ., which couples to the axion. An
interaction involvingOF?F breaks CP -symmetry, which is a symmetry of the
Lagrangian of the N = 2 hypermultiplet of the N = 4 SYM gauge theory.
Thus interactions involving OF?F can be neglected.

Summarizing the preceding discussion, we find that the effective La-
grangian describing the interactions of a heavy meson coupling to the operators
in the field theory is

Leff = − φ†(t,x)iu · ∂φ(t,x)

+
cT

N2
φ†(t,x)OT φ(t,x) +

cF
N2

φ†(t,x)OF 2 φ(t,x) ,
(4.86)

which is a linear perturbation of N = 4 Super Yang-Mills theory. The two
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composite operators in the interaction Lagrangian Lint are

OT = T µν uµuν
v=0

↓
= T 00, (4.87)

OF 2 = FµνFνµ. (4.88)

They account for the interaction of the mesons with the background. In
gauge/gravity duality the modification of the Lagrangian described by OT is
achieved by considering the AdS-Schwarzschild black hole background where
〈OF 2〉 = 0. On the other hand, a finite 〈OF 2〉 6= 0 is dual to a non-trivial
dilaton flow described by Liu and Tseytlin in ref. 143. Details follow below.

The polarization coefficients cT and cF will be determined below from
meson mass shifts in gauge/gravity duality. This requires breaking some of
the supersymmetry. We work in the linearized limit of small contributions
from OT and OF 2 . This allows to investigate the effects of finite temperature
and background gauge fields separately. Additionally, this justifies the use
of first order perturbation theory to compute the meson mass shifts in the
medium as above by setting δM = −〈Lint〉. For the contribution of the
energy-momentum tensor, this is achieved by switching on the temperature.
Then, the mass shift of the meson is given by expectation value of the stress
tensor. Again we consider the rest frame of the mesons,

δM = − cT

N2

〈
T 00

〉
, (4.89)

In contrast, for the meson response to 〈OF 2〉 the mass shift of a heavy meson
is given by

δM = − cF
N2

〈OF 2〉 . (4.90)

Langevin dynamics

We now turn to the kinetics of the slow moving heavy meson with mass M in
the medium. The kinetic energy Ekin = pv/2 of the meson can be assumed
to be of order of the temperature T of the medium, such that pv ≈ T . With
p = Mv we can estimate the velocity and momentum to be

p ≈
√
MT, v ≈

√
T

M
. (4.91)

For time scales which are long compared to medium correlations, we
expect that the kinetics of the meson can be modeled as Brownian motion and
can be described by Langevin equations. These are valid for times which are
long compared to the inverse temperature but short compared to the lifetime of
the quasi-particle state. We model viscous force and random kicks in spatial
directions xi by

dpi
dt

= ξi(t)− ηDpi ,
〈
ξi(t) ξj(t′)

〉
= κ δij δ(t− t′) . (4.92)



110 Chapter 4. Diffusion in the holographic plasma

Here, ξi is a component of the random force ξ with second moment κ and ηD

is the drag coefficient. The solution for pi(t) is given by

pi(t) =

t∫
−∞

dt′ eηD(t−t′) ξi(t′), (4.93)

supposed that ηDt� 1 [148]. This allows to relate the drag and fluctuation by

3MT =
〈
p2
〉

=

0∫
−∞

dt1dt2 eηD(t1+t2) 〈ξi(t2) ξi(t2)〉 =
3κ
2ηD

. (4.94)

This leads to the Einstein relation

ηD =
κ

2MT
. (4.95)

One of the aims of this section is the calculation of the diffusion coefficients
ηD or κ, equivalently. From (4.92) we can obtain these coefficients once we
know the microscopical phenomenological force

Fi(t) =
dpi
dt

(4.96)

acting on the quasiparticle state. We can then compare the response of the
Langevin process (4.92) to the microscopic theory (4.96). Over a time interval
∆t which is long compared to medium correlations but short compared to the
time scale of equilibration we can neglect the drag, which is small for the heavy
meson with ηD ∝ 1/M . Since the considered time interval is long compared
to medium correlations we can however equate the stochastic process, the
random kicks ξ, to the microscopic theory. We average (4.92)∫

∆t

dt
∫

dt′
〈
ξi(t) ξj(t′)

〉
= ∆t κ δij

=
∫
∆t

dt
∫

dt′
〈
Fi(t)Fj(t′)

〉
.

(4.97)

In a rotationally invariant medium we have for i = j

κ =
1
3

∫
dt 〈Fj(t)Fj(0)〉 . (4.98)

We now identify the force with the negative of the gradient of the potential
V that we read off from the Lagrangian or our theory, i.e. the interaction
Lagrangian V = −Lint. For the case of QCD with only OE switched on we
get

F(t) =
∫

d3x φ†(t,x)
cE

N2
∇OE(t,x) φ(t,x), (4.99)
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which is the usual form of a dipole force averaged over the wave function of
the meson.

In our case κ is a constant in space and time, i.e. we consider situations
with constant diffusion parameters in a homogeneous medium, for instance
slight deviations from equilibrium. From the point of view of a more general
description in Fourier space with κ(ω) we therefore are only interested in the
hydrodynamic limit of ω → 0. The fluctuation dissipation theorem relates the
spectrum of (4.98) (with the specified time order of operators) to the imaginary
part of the retarded force-force correlation function GR ∝ 〈Fj(t)Fj(0)〉 on
the right hand side. In the hydrodynamic limit we get

κ = −1
3

lim
ω→0

2T
ω

ImGR(ω), (4.100)

where the full form of the retarded correlator is

GR = −i
∫

dt e+iωt θ(t) 〈[Fj(t) ,Fj(0)]〉 . (4.101)

Integrating out the heavy meson field as discussed in detail in ref. 99, which
treated the heavy quark case, we obtain a formula for the momentum diffusion
coefficient

κ =
1
3
c2E
N4

∫
d3q

(2π)3
q2

(
−2T
ω

ImGR(ω,q)
)
, (4.102)

with the retarded OEOE correlator given by

GR(ω,q) = −i
∫

d4x e+iωt−iq·x θ(t) 〈[OE(t,0) ,OE(0,0)]〉 . (4.103)

We can understand this result with simple kinetic theory. Examining the
Langevin dynamics we see that 3κ is the mean squared momentum transfer to
the meson per unit time. The factor of three arises from the number of spatial
dimensions. In perturbation theory this momentum transfer is easily computed
by weighting the square of the transferred momentum of each scattering with
the transition rate for any gluon in the bath to scatter with the heavy quark,

3κ =
∫

d3p

(2π)32Ep
d3p′

(2π)32Ep′
|M|2 np(1+np′)q2 (2π)3δ3(q−p+p′) .

(4.104)

Here, p is the spatial momentum of the incoming gluon, p′ is the momentum
of the outgoing gluon and q is the momentum transfer q = p−p′, and |M|2 is
the gluon meson scattering amplitude computed with the effective Lagrangian
in (4.79) and weighted by the appropriate momentum distributions n of the
incoming and outgoing gluons,

|M|2 =
c2E
N2

ω4
(
1 + cos2(θpp′)

)
. (4.105)
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Alternatively (as detailed in appendix A of ref. 2), we can simply evaluate the
imaginary part of the retarded amplitude written in (4.102) to obtain the same
result.

In N = 4 theory the generalized force is given by

F(t) = −
∫

d3x φ†(t,x)∇
( cT

N2
OT (t,x) +

cF

N2
OF 2(t,x)+

)
φ(t,x)

(4.106)

which results in a momentum broadening

κ = −1
3

lim
ω→0

∫
d3q

(2π)3
q2 2T

ω

(
c2T
N4

ImGR
T (ω,q) +

c2F
N4

ImGR
F (ω,q)

)
,

(4.107)

where the retarded correlators at vanishing velocity are

GRT T = −i
∫

d4x e+iωt−iq·x θ(t)
〈[
T 00(t,x) , T 00(0,0)

]〉
, (4.108)

GRFF = −i
∫

d4x e+iωt−iq·x θ(t) 〈[OF 2(t,x) ,OF 2(0,0)]〉 . (4.109)

In writing (4.107) we have implicitly assumed that there is no cross term
between OF 2 and OT . In the gauge/gravity duality this is reflected in the fact
that at tree level in supergravity δ2Ssugra

δg00(x) δΦ(y)
= 0.

4.3.2 Weak coupling — perturbative results

We begin with the results for perturbative QCD (pQCD). The mass shift is
obtained from first order perturbation theory as δM = 〈Hint〉 = −〈Lint〉,
yielding

δMpQCD = − cE
N2

〈OE〉T

= −T
(
πT

ΛB

)3 14
45
.

(4.110)

In the second line we have calculated the thermal expectation value 〈OE〉T =
π2

30N
2T 4 in a free gluon gas and used (4.84).

The importance of this result is that it is finite at large N and that it is
in general suppressed by (T/ΛB)3, i.e. by powers of the hadron scale to
the temperature. If higher dimension operators were added to the effective
Lagrangian their contributions would be suppressed by additional powers of
T/ΛB .
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For QCD the integrals written in (4.104) are straightforward and yield the
following result for the rate of momentum broadening

κpQCD =
1
N2

c2E
64π5

135
T 9

=
T 3

N2

(
πT

ΛB

)6 50176π
1215

.

(4.111)

The high power of temperature T 9 arises since the dipole cross section rises
as ω4. The matching coefficient cE is directly related to the mass shift of
the dipole and the inverse Bohr radius by (4.84) and (4.110). It encodes the
coupling of the long distance gluon fields to the dipole. By taking the ratio
between the momentum broadening and the mass shift squared, we find a
physical quantity which is independent of this coupling

κ

(δM)2

∣∣∣∣
pQCD

=
πT

N2

1280
3

. (4.112)

The large numerical factor 1280/3 originates from the cross section which
grows as ω4. A similarly large factor appears in N = 4 SYM below.

For comparison with the AdS/CFT result we list the results for N = 4
super Yang-Mills theory in the limit of small ’t Hooft coupling λ, again
computed in ref. 2,

δMλ→0 = cT

π2T 4

2
, (4.113)

κλ→0 = c2T
6232π5

675
T 9

N2
, (4.114)

κ

(δM)2

∣∣∣∣
λ→0

=
πT

N2
36.9 . (4.115)

4.3.3 Strong coupling — holographic calculation

We first determine the polarizabilities cF and cT from the mass shifts of the
meson in two different backgrounds using (4.89) and (4.90). To accomplish
this, we will switch on the perturbations of the N = 4 Lagrangian which
correspond to finiteOT and finiteOF 2 . Again we consider the linear limit such
that we can investigate the effects of finite temperature and finite background
field strengths separately.

Subsequently we will compute the correlators in (4.108) and (4.109) for
strongly coupled N = 4 theory at finite temperature. The results we obtain in
this section will be put together in the next subsection using (4.107) to deduce
the rate of momentum broadening and compare it to the weak coupling result.
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Backgrounds dual to finite temperature and field strength

The gravity background dual to N = 4 SYM theory at finite temperature is
given by the AdS-Schwarzschild black hole with Lorentzian signature. This
background is needed below both for calculating the necessary two-point
correlators 〈OTOT 〉 and 〈OF 2OF 2〉, as well as for obtaining the meson polar-
izability cT , which accounts for meson mass shifts due to finite temperature.

We make use of the coordinates derived in appendix B as (B.3) to write
the AdS-Schwarzschild background in Lorentzian signature as

ds2 =
v2

R2

(
−f

2(v)
f̃(v)

dt2 + f̃(v) dx2

)
+
R2

v2

(
dv2 + v2dΩ2

5

)
f(v) = 1− r4◦

4v4
, f̃(v) = 1 +

r4◦
4v4

.

(4.116)

In this way we can identify the transverse part to Minkowski space as nothing
else thanR6 and we write it as

dv2 + v2dΩ2
5 =

6∑
i=1

dv2
i = dy2 + y2dΩ2

3︸ ︷︷ ︸
R4(v1,...,4)

+dv2
5 + dv2

6︸ ︷︷ ︸
R2(v5,6)

. (4.117)

with the metric dΩ2
3 of the unit 3-sphere, and v2 = y2 + v2

5 + v2
6 . The

boundary is reached at asymptotically large y while the horizon is located at
r◦/
√

2. Notice that the black hole radius r◦ is related to the expectation value〈
T 00

〉
by [149]

〈
T 00

〉
=

3
8
π2N2T 4 , r◦ = TπR2. (4.118)

The field configuration dual to 〈OF 2〉 6= 0 and 〈Tµν〉 = 0 is a non-trivial
dilaton background with has been given by Liu and Tseytlin and consists of a
configuration of D3-branes with homogeneously distributed D(−1) instantons
[143]. The type IIB action in the Einstein frame for the dilaton Φ, the axion C,
and the self-dual gauge field strength F5 = ?F5 reads

SIIB =
1

2κ2
10

∫
d10ξ

×
√
−g

[
R− 1

2
(∂Φ)2 − 1

2
e2Φ(∂C)2 − 1

4 · 5!
(F5)2 + . . .

]
.

(4.119)

The ten-dimensional Newton constant is given by

1
2κ2

10

=
2π

(2π`s)8gs
=

N2

4π5R8
. (4.120)
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As can be seen from the supersymmetry transformations of the N = 4
fermions, such a background breaks the supersymmetry to N = 2. Solv-
ing the equations of motion derived from (4.119), Liu and Tseytlin obtain the
metric [143]

ds2string = eΦ/2 ds2Einstein

= eΦ/2

[( r
R

)2
ηµνdxµdxν +

(
R

r

)2 (
dr2 + r2dΩ2

5

)]
.

(4.121)

and axion-dilaton solution1

eΦ = 1 +
q

r4
, C = −i

(
e−Φ − 1

)
. (4.122)

The expectation value 〈OF 2〉 is given by

〈OF 2〉 = lim
r→∞

δSIIB

δΦ(r, ~x)
=

N2

2π2R8
q. (4.123)

Computing the polarization coefficients from meson mass shifts

We again identify mesons with fluctuations ϕ̃ of a D7-brane embedded into the
background dual to the field theory under consideration. Stable embeddings are
obtained if the D7-brane spans all Minkowski directions as well as the radial
AdS coordinate and a 3-sphere in the remaining angular directions. Consider
the metric (4.116) with (4.117) as an example. Here, the D7-brane shall be
embedded such that it spans all directions except v5 and v6. The meson mass
M is then obtained by solving the equation of motion for the fluctuations ϕ̃
[43], as outlined in section 2.3. Read as an eigenvalue equation, the equation
of motion for the fluctuation gives the meson mass as the eigenvalues M to
the corresponding eigenfunctions ϕ̃. The discrete values of M describe the
Kaluza-Klein mass spectrum of mesons for any given quark mass.

To see this explicitly and generalize to the backgrounds of interest below,
we rephrase this procedure for the vacuum case

〈
T 00

〉
= 〈OF 2〉 = 0 in a

notation suitable for the subsequent generalization. Subsequently we will
introduce a non-zero 〈OF 2〉 and

〈
T 00

〉
, respectively.

In the case of a D7-brane embedded in a ten-dimensional background, the
brane embedding is described by the locations v5 and v6 in the two directions
transverse to the brane. This setup was introduced in section 2.2.2. In general
these locations depend on all eight coordinates ξi of the eight-dimensional
D7-brane worldvolume and are determined by extremizing the DBI-action
(2.65). We rephrase it here including the dilaton which we where free to set to
unity in (2.65),

SDBI = −T7

∫
d8ξ e−Φ

√
−detG , Gab =

∂Xµ

∂ξa
∂Xν

∂ξb
gst
µν , (4.124)

1Regarding conventions, note that in our notation q = R8

λ
qLT, where qLT is used in the paper

of Liu and Tseytlin [143].
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with T7 the D7-brane tension and gst is the string frame metric of the ten-
dimensional background with coordinates Xµ. It is related to the Einstein
metric as in (4.121). The distinction between the Einstein and string frame
is ultimately important below to account for the effects of the non-trivial
dilaton flow. The pullback G contains the functions v5(ξ) and v6(ξ), which
are determined by solving their equations of motion, derived from SDBI.

The background AdS5 × S5 dual to
〈
T 00

〉
= 〈OF 2〉 = 0 is obtained e.g.

from (4.116) with r◦ = 0. It is well known that for this background a probe
brane embedding is given by the functions

v5 = 0, (4.125)

v6 = mv = const, (4.126)

and the constant mv determines the quark mass mq = mv/(2πα′). In terms
of the example in section 2.2.2 this is instantly derived from the equation of
motion (2.72) for the embedding L in the zero temperature limit r◦ → 0. Note
however that there is a factor

√
2 differing in the definition of the quark mass

due to the choice of coordinates.
We are interested in the meson spectrum, which can be obtained from

the brane fluctuations as in the previous chapters, cf. for instance page 42
in section 2.3. We thus allow for small fluctuations ϕ̃ around this solution.
Here we consider the fluctuation of the radial part v6, dual to the scalar meson
excitations,

v6 7→ v6 + 2πα′ ϕ̃(~x,w). (4.127)

By the symmetries of the setup, the fluctuations only depend on the Minkowski
directions ~x and on the coordinate y, denoting the radial coordinate on the part
of the D7-brane which is transverse to the Minkowski directions. The resulting
equation of motion is analog to formula (2.78) (modulo the mentioned factors
of
√

2). The solutions were found by plugging in the ansatz

ϕ̃ = ϕ(y) ei~k~x Y l(S3) , (4.128)

where Y l(S3) are the scalar spherical harmonics on the S3 wrapped by the
probe D7-brane and ~k denotes a four vector. The resulting equation of motion
for the function ϕ(y) for l = 0 reads

−∂ρρ3∂ρϕ(ρ) =
ρ3

(ρ2 + 1)2
M̄2ϕ(ρ). (4.129)

Here we introduced the following dimensionless quantities

ρ =
y

mv
, M̄ =

R2

mv
M, (4.130)

where the dimensionless ρ is not to be mistaken with the same symbol of
different meaning defined in chapter 3. We moreover identified the meson
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mass squared M2 with the square of the momentum four-vector ~k of the
fluctuations,

M2 = −~k2. (4.131)

The eigenfunctions ϕn solving the Sturm-Liouville equation (4.129) are
given in terms of the standard hypergeometric function 2F1,

ϕn(ρ) =
cn

(ρ2 + 1)n+1 2F1

(
−(n+ 1);−n; 2;−ρ2

)
, (4.132)

where n = 0, 1, 2, . . . and cn is a normalization constant such that

∞∫
0

dρ
ρ3

(ρ2 + 1)2
ϕn(ρ)ϕm(ρ) = δnm. (4.133)

The lowest mode ϕ0 is given by

ϕ0(ρ) =
√

12
ρ2 + 1

. (4.134)

The corresponding eigenvalues Mn to the functions ϕn are given by

M̄n = 2
√

(n+ 1)(n+ 2). (4.135)

We note that the mass of the lowest state with n = 0 is

M0 =
mv

R2
2
√

2 = mq
4πα′

R2

√
2 =

4πmq√
λ

, (4.136)

which will appear frequently below. For a more detailed derivation of these
results the reader is referred to ref. 43.

Mass shift in the dilaton background Let us now calculate the polarizabil-
ity cF which determines the change δM of the meson mass at a given value of
the gauge condensate 〈OF 2〉 with respect to the meson mass at 〈OF 2〉 = 0,

δM = − cF

N2
〈OF 2〉 . (4.137)

To find cF we will determine the mass shift δM and identify cF with the
proportionality constant in front of 〈OF 2〉.

We are interested in the eigenvalues of fluctuations in the case of q ∝
〈OF 2〉 6= 0. The ten-dimensional background geometry dual to this scenario is
given in (4.121) and the equation of motion for D7-brane fluctuations analog
to (4.129) was derived in ref. 150 to be

−∂ρρ3∂ρϕ(ρ) = M̄2 ρ3

(ρ2 + 1)2
ϕ(ρ)−4q̄

ρ4

(ρ2 + 1)(q̄ + (ρ2 + 1)2)
∂ρϕ(ρ),
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(4.138)

with the dimensionless

q̄ =
q

L4
. (4.139)

To obtain analytical results, we consider the case of small q̄ and linearize in
this parameter. Therefore the equation of motion to solve is

−∂ρρ3∂ρϕ(ρ) = M̄2 ρ3

(ρ2 + 1)2
ϕ(ρ) + ∆(ρ)ϕ(ρ), (4.140)

where the operator ∆(ρ) is given by

∆(ρ) = −4q̄
ρ4

(ρ2 + 1)3
∂ρ. (4.141)

It is this term that describes the difference between the equation of motion at
non vanishing background perturbation to (4.129), which is reproduced for
q = 0.

To find the solution ϕ0(ρ) corresponding to the lightest meson with n = 0
we set up a perturbative expansion. Any deviation δϕ0 from the solution ϕ0

of the case q = 0 may be written as a linear combination of the functions ϕn,
which are a basis of the function space of all solutions,

φ(ρ) = φ0(ρ) +
∞∑
n=0

anφn(ρ), an � 1, (4.142)

M̄2 = M̄2
0 + δM̄2

0 , δM̄2
0 � 1. (4.143)

Plug this ansatz into the equation of motion (4.138), make use of (4.129) and
keep terms up to linear order in the small parameters an, q̄ and δM2

0 to get

ρ3

(ρ2 + 1)2

∞∑
n=0

anM̄
2
nϕn(ρ)

= δM̄2
0

ρ3

(ρ2 + 1)2
ϕ0(ρ) + M̄2

0

ρ3

(ρ2 + 1)2

∞∑
n=0

an ϕn(ρ) + ∆(ρ)ϕ0(ρ).

(4.144)

We now multiply this equation by ϕ0(ρ), integrate over ρ ∈ [0,∞] and make
use of (4.133) and (4.134) to see that

δM̄2
0 = −

∞∫
0

dρ ϕ0(ρ) ∆(ρ)ϕ0(ρ) = −8
5
q̄. (4.145)
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From δM̄2
0 = 2M̄0δM̄0 we obtain

δM0 =
L

2R2

δM̄2
0

M̄0
= − 8

5π

(
2π
M0

)3 1
N2

〈OF 2〉 , (4.146)

where in the last step we used (4.136) for the mass and (4.123) and (4.139) to
relate q̄ and OF 2 . By comparison with (4.137) we identify the polarizability

cF =
8
5π

(
2π
M0

)3

. (4.147)

Mass shift in the finite temperature background The calculation of the
polarizability cT is completely analogous. We are now looking for the propor-
tionality constant of meson mass shifts with respect to deviations from zero
temperature, which we noticed to be given by

δM = − cT

N2

〈
T 00

〉
. (4.148)

The background dual to the finite temperature field theory is the AdS black
hole background given in (4.116) with (4.117).

Again we calculate the meson mass spectrum to identify the polarizability
by comparison with (4.148). The embedding functions v5 and v6 in this
background are given by

v5 = 0, (4.149)

v6 = v6(y), (4.150)

where the quark mass is determined by mq = limy→∞ v6/(2πα′). The func-
tion v6(y) has to be computed numerically [37]. Some examples of such
embeddings are shown in figure 2.4.

We introduce small fluctuations ϕ(ρ)ei~k~x in the v5 direction,

v5 7→ v5(y, ~x) + ϕ(y)ei~k~x . (4.151)

The linearized equation of motion for the fluctuations ϕ(y) in the limit of
vanishing spatial momentum and M2 = −~k2 can be derived from the DBI
action (4.124) to be

0 = ∂y

[
G
√

1
1 + (∂yv6)

2 ∂yϕ(y)

]
−
√

1 + (∂yv6)
2 y3

2(y2 + v2
6)5

r8◦ ϕ(y)

+ G
√

1 + (∂yv6)
2 4

(
y2 + v2

6

)2 + r4◦(
(y2 + v2

6)2 − r4◦
)2 4R4M2ϕ(y) ,

(4.152)
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where we abbreviated

G = %3

(
1− r8◦

16
(
y2 + v2

6

)4
)
. (4.153)

In the regime of small temperatures, we may linearize in r4◦ which is the
leading order in r◦. Furthermore, as may be seen from figure 2.4, in the regime
of a small temperature T compared to the quark massmq, or respectively small
ratios of r◦/ limy→∞ v6(y), the embeddings become more and more constant.
So for constant embeddings v6 = mv and up to order T 4 ∝ r4◦ the equation of
motion simplifies to

−∂ρρ3∂ρϕ(ρ) = M̄2 ρ3

(ρ+ 1)2
ϕ(ρ) + ∆(ρ)ϕ(ρ), (4.154)

where we made use of the dimensionless quantities (4.139) and identify

∆(ρ) =
3
4
r4◦
m4
v

ρ3

(ρ2 + 1)4
M̄2. (4.155)

For the lightest meson, the ansatz (4.142) this time leads to

δM̄2
0 = −

∞∫
0

dρϕ0(ρ) ∆(ρ)ϕ0(ρ)

= − 9
40
r4◦ M̄

2
0

m4
v

.

(4.156)

Reinstating units and solving for δM0 leads to

δM0 = − 12
5π

(
2π
M0

)3 1
N2

〈
T 00

〉
. (4.157)

From this we can read off the polarizability cT as

cT =
12
5π

(
2π
M0

)3

. (4.158)

Computing finite temperature correlators

According to (4.107) we need to compute the correlators (4.108) and (4.109)
at finite temperature. We do so by once more performing the calculation along
the lines of refs. 22,23, sketched in section 2.2.1. The dual supergravity field
to the energy momentum tensor T is the graviton h, and the corresponding
field to the operator OF 2 is the dilaton Φ. Therefore, correlators of T 00 are
associated with graviton propagation and obtained from the supergravity field
solution to h. Respectively, correlators of OF 2 are associated with dilaton
propagation and obtained from the supergravity solution to the dilaton Φ. The
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calculational procedure for these two correlators is standard and has been
discussed in refs. 23,124, and first applied in ref. 22, in order to find two-point
Minkowski correlators as discussed in section 2.2.1.

On the gravity side, both field correlators are computed in the black hole
background to account for finite temperature correlation functions of the dual
gauge theory operators. In this subsection it is convenient to work in the
coordinates derived as (B.4), with radial AdS coordinate u. For an explicit
calculation we are more specific here as in (2.61) by writing

GR(ω,q) = −i
∫

d4x e−i
~k·~xθ(t) 〈[OF 2 ,OF 2 ]〉

AdS/CFT= lim
u→0

A(u) f(u,−~k) ∂uf(u,~k).
(4.159)

Here once more the function f(u,~k) relates the boundary and bulk values of
a gravity field to each other. For example the dilaton field Φ is related to its
value at the boundary φbdy by

Φ(u,~k) = f(u,~k)φbdy(~k), (4.160)

and f is normalized to one at the boundary, i.e. f(0,~k) = 1. For fluctuations
h00 of the metric component g00, Φ(u,~k) is replaced by h00(u,~k) and the
field theory operators OF 2 in (4.159) are replaced by T 00. The factor A(u)
can be read off from the classical supergravity action

Scl =
1
2

∫
du d4xA(u) (∂uΦ)2 + . . . . (4.161)

The classical five-dimensional gravity action for the graviton and dilaton is
obtained from (4.119) as

Scl =
1

2κ2
5

∫
du d4x

√
−g5

(
(R− 2Λ)− 1

2
(∂Φ)2 + . . .

)
, (4.162)

where

1
κ2

5

=
R5Ω5

κ2
10

=
N2

4π2R3
. (4.163)

So comparing to (4.161) we get

A = −
√
−g5
2κ2

5

guu. (4.164)

The equation of motion derived from (4.162) in momentum space reads

Φ′′ − 1 + u2

u(1− u2)
Φ′ +

w2 − q2(1− u2)
u(1− u2)2

Φ = 0, (4.165)
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with dimensionless frequency w = ω/(2πT ) and spatial momentum com-
ponent q = q/(2πT ). The prime denotes the derivative with respect to the
radial coordinate u. Note that in momentum space the function Φ(u) is akin
to the radial part we denoted by f(u) above. The equation of motion (4.165)
has to be solved numerically with incoming wave boundary condition at the
black hole horizon. Computing the indices and expansion coefficients near the
boundary u = 0, as done in refs. 64, 65, we obtain the asymptotic behavior as
a linear combination of two solutions Φ1,2 with asymptotic behavior for small
u as

Φ1 = (1 + . . .) , (4.166)

Φ2 = (u2 + . . .) . (4.167)

The general solution to the equation of motion therefore is given by the linear
combination

Φ(u) = Φ1 + BΦ2 , (4.168)

where we normalized the functions Φ such that the coefficient for Φ1 is 1,
which we are free to do since (4.165) is a homogeneous equation. In this way
we achieve that the correct normalization for the radial part limu→0 Φ(u) = 1
is implemented.

At the horizon the asymptotic solution satisfying the incoming wave bound-
ary condition is

Φ(u) = (1− u)−
iw
2 (1 + . . .). (4.169)

As discussed in refs. 64, 65 we find the coefficient B by integrating the two
boundary solutions from (4.168) forward towards the horizon and by matching
the linear combination of the numerical solutions Φ(u) = Φnum

1 + BΦnum
2 to

the solution (4.169) at the horizon. We recognized that the solution of the
radial part Φ(u) found in this way is equivalent to the radial part of the total
solution Φ and can therefore be plugged in for f in (4.159).

The imaginary part of the retarded correlator then is given by

−2T
ω

ImGR
FF =

N2(πT )4

4π2

2
π

ImB
w

. (4.170)

Solving (4.165) and matching the asymptotic solutions as described above,
thus enables us to obtain

lim
ω→0

∫
d3q

(2π)3
q2

3

(
−2T
ω

ImGR
FF (ω, q)

)
= N2T 9 67.258 . (4.171)

The corresponding result for the energy-momentum tensor correlator is ob-
tained in an analogous way but the analysis is significantly more complicated.
Fortunately it has been extensively and carefully analyzed in ref. 124. The
final result is

lim
ω→0

∫
d3q

(2π)3
q2

3

(
−2T
ω

ImGR
T T (ω, q)

)
= N2T 9 355.169 . (4.172)



4.3. Meson diffusion at strong and weak coupling 123

4.3.4 Comparing weak and strong coupling

We now have the results to compare momentum broadening of the heavy
meson in a hot medium at weak and strong coupling. Over the duration of
the lifetime of the heavy meson state it will loose momentum on average and
simultaneously receive random kicks as codified by the Langevin equations of
motion (4.92). The drag and momentum broadening rates are related by the
Einstein relation

ηD =
κ

2TM0
, (4.173)

with M0 the meson mass.
For strongly coupledN = 4 SYM theory we obtain our principle result by

collecting the results for polarizabilities (4.147), (4.158) and force correlators
(4.171), (4.172), and use (4.107),

κλ→∞ =
T 3

N2

(
2πT
M0

)6
((

8
5π

)2

67.258 +
(

12
5π

)2

355.169

)

=
T 3

N2

(
2πT
M0

)6

224.726 .

(4.174)

The mass shift in strongly coupled N = 4 SYM is given by the sum of the
mass shift due to dilaton and graviton contributions, respectively. However,
the exact value of the dilatonic mass shift (4.137) is determined by (4.123) in
terms of q, which we do not want to speculate about here. Nevertheless, from
the definition of q in ref. 143 we know that it is positive for positive instanton
numbers. In this case the dilatonic mass shift contributes with the same sign as
the graviton mass shift (4.148) and we write

δM0

∣∣∣
λ→∞

6 − cT

N2

〈
T 00

〉
= −T

(
2πT
M0

)3 9π
10

.
(4.175)

Here we made use of relations (4.158) and (4.118). Comparing these for-
mulas with the analogous formulas in weak coupling large N QCD given in
equations (4.111) and (4.110),

κpQCD =
T 3

N2

(
πT

ΛB

)6 50176
1215

π , (4.176)

and

δMpQCD = −T
(
πT

ΛB

)3 14
45
, (4.177)

we see that the meson mass M0 plays the role of the inverse Bohr radius
ΛB = (mq/2)αsCF in the strong coupling dipole effective Lagrangian. This
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is as expected for relativistic bound states. Since these prefactors are different
we do not compare the numerical values. Below we will compare the values of
the ratio κ/(δM2) at strong and weak coupling. We moreover observe that the
drag coefficient for heavy mesons is suppressed by N2 in the large N limit.

The phenomenological model we used modeled the interaction of the
mesons with the medium as dipole interaction terms, which capture short
distance phenomena. From the field theory side one may wonder if these
dipole interactions indeed are the dominant interaction mechanism of the
medium and the mesons. Considering AdS/CFT, we admit that a dipole
picture of a meson is a short distance description an we can not guarantee to
describe such UV effects of the field theory well by holographic models. On
the other hand, even if we cannot describe the interaction from first principle,
the diffusion of the mesons and the scattering of gluons which then propagate
with modified momentum into the medium is a long distance effect, which
we can hope do describe by our approach. We therefore consider a quantity
that is independent of short scale dipole interpretation of the medium, which is
parametrized by the connection coefficients c. To construct such a quantity,
we remember from (4.107) that (for the simple case of cF = 0)

κ =
( cT

N2

)2
lim
ω→0

∫
d3q

(2π)3
q2

3

(
−2T
ω

ImGR
T T (ω,q)

)
. (4.178)

Together with (4.89) we can then construct a quantity that does not depend on
the connection coefficient cT ,

κ

(δM)2
=

1
〈T 00〉2

lim
ω→0

∫
d3q

(2π)3
q2

3

(
−2T
ω

ImGR
T T (ω,q)

)
. (4.179)

It is independent from the connection coefficient cT . All quantities in this
expression have been calculated previously for weak coupling as well as for
strong coupling. The strong coupling result is obtained from inserting the
relations (4.118) and (4.172) and yields

κ

(δM)2

∣∣∣∣
T ,λ→∞

=
πT

N2
8.3 . (4.180)

To include the dilaton contribution, we make use of the above results (4.174)
and (4.175) to get

κ

(δM)2

∣∣∣∣
λ→∞

6
πT

N2
8.9 . (4.181)

It is then reasonable to use AdS/CFT to estimate to what degree strong coupling
physics modifies this ratio in QCD. In the free finite temperatureN = 4 theory,
the result was computed in appendix A of ref. 2 and cited in (4.113) to be

κ

(δM)2

∣∣∣∣
λ→0

≈ πT

N2
36.9 . (4.182)
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Thus, comparing the strong coupling result (4.181) with the weak-coupling
result (4.182), we conclude that strong coupling effects actually reduce the
momentum transfer rate relative to the mass shift.

4.4 Summary

We studied transport properties of baryon charge, isospin charge and heavy
mesons with three different methods. For the charge diffusion we derived
the diffusion coefficient in dependence on temperature and particle density
(or chemical potential, equivalently). In the case of meson diffusion in the
quark-gluon plasma we observed how strong coupling effects the equilibration.

Baryon diffusion We made use of the most naı̈ve formulation of the mem-
brane paradigm and derived a dependence of the diffusion coefficient for
baryons that was qualitatively confirmed by recent and more comprehensive
studies [117]. The results, shown in figure 4.1, indicate that for very large values
of the baryon density, the diffusion constant asymptotes to its maximal value
D = 1/(2πT ). This reflects the fact that in this case, the free quarks outnum-
ber the quarks bound in mesons. For finite densities the diffusion coefficient is
reduced and we observe a minimum at values of the quark mass to temperature
ratio m, which lie above the fundamental phase transition at zero density. We
will draw a connection between the phase transition and the behavior of the
diffusion in chapter 5.

Isospin diffusion To obtain the isospin diffusion constant we analyzed the
dispersion relation of the lowest lying quasi normal mode of the isospin current.
We have considered a relatively simple gauge/gravity dual model for a finite
temperature field theory, consisting of a constant isospin chemical potential
µ obtained from a time component vacuum expectation value for the SU(2)
gauge field on two coincident brane probes. We have considered the constant
D7-brane embedding corresponding to vanishing quark mass.

Within the strong restrictions of our analytic derivation, the main result
is that this model, despite its simplicity, leads to a hydrodynamical behavior
of the dual field theory which goes beyond linear response theory. We find in
particular a frequency-dependent diffusion coefficient with a non-analytical
behavior. Frequency-dependent diffusion is a well-known phenomenon in
condensed matter physics. Here it originates simply from the fact that due to
the non-Abelian structure of the gauge field on the brane probe, the chemical
potential replaces a time derivative in the action and in the equations of motion
from which the Green functions are obtained. For a more comprehensive study
one should include terms of quadratic order in the chemical potential m, which
then would cancel the non-analytic behavior.
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Quarkonium diffusion In the last section of this chapter we studied the
diffusion of heavy mesons in the holographic plasma, by setting up a Langevin
model. The forces on the meson where deduced from an effective dipole model
for mesons that allowed to carry out our computations at strong and weak
coupling. We therefore where able to estimate the effects of strong coupling
on meson diffusion.

On the field theory side, we deduced the meson couplings to the stress
tensor T and the operator OF 2 at strong coupling, which are the only relevant
operators coupling to the heavy dipole. The couplings where deduced from
mass shifts, which can be computed on the gravity side of the correspondence
as a change in the normal vibrational modes of the D7-brane in the presence of
an external gravitational, or respectively dilatonic, field.

Because the gravitational and dilatonic fields shift the spectrum of the D7-
brane excitations, gradients such as those from fluctuations of these fields give
rise to a net force on the mesonic modes. We used the fluctuation dissipation
theorem to relate the spectrum of these fluctuations in the plasma to the
momentum broadening of the meson.

The result for κ/(δM)2, the momentum broadening relative to the square
of the in medium mass shift, for strongly coupled N = 4 SYM theory is
roughly four to five times smaller than the result in the weakly coupled limit.
We therefore conclude that in this model the effect of strong coupling is to
reduce the momentum broadening and increase diffusion of mesons relative to
weak coupling.

From a phenomenological perspective the current calculation was limited
to very heavy mesons, which survive above Tc, where dipole interactions
between the meson and the medium are dominant. It is certainly unclear if
this is the relevant interaction mechanism above Tc even for bottomonium.
Furthermore, the dipole coupling between a heavy meson and the medium is
dominated by short distance physics which is not well modeled by AdS/CFT.

From the supergravity perspective, a better understanding of how grav-
itational and dilatonic fields fluctuate in bulk would give a straightforward
procedure to calculate the drag of a finite mass meson. Specifically, fluctua-
tions in the bulk would force motion of meson wave functions which extend
into the holographic fifth dimension.
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Exploring the phase diagram

While the theory of quantum chromodynamics is concise in its mathemat-
ical formulation, it exhibits a rich phenomenological structure, including
several phase transitions. For instance, we frequently referred to the confine-
ment/deconfinement transition quark matter is supposed to undergo when it is
heated up and/or exposed to high chemical potential.

Since the development of QCD it was discovered that quark matter can ex-
hibit numerous qualitatively different behaviors. The most prominent example
in QCD is the change in the coupling constant gYM of the strong interaction
with respect to the momentum scale at which the theory is probed [151, 152].
It eventually accounts for the transition from the zero temperature regime
(ground state with minimum momentum), where quarks are confined to the
hadronic color singlets that make up the nuclei of atoms, to a deconfined state
of matter at asymptotically high temperatures (and high thermal momenta)
where quarks and gluons roam freely throughout spacetime. The value of the
momentum interchange between quarks and gluons determines their interac-
tion potential, which may change qualitatively, e.g. by increasing temperature,
from a confining shape of infinite depth to a potential with finite binding
energy.

Another example is the discovery of the so called color-flavor-locked
phase of QCD with three color and three flavor degrees of freedom at high
chemical potential, equivalent to high particle densities. It was observed
that the thermodynamically favored ground state of QCD changes with the
chemical potential. While we observe color and flavor symmetry separately
for QCD at low chemical potential, there is some critical value of the chemical
potential at which symmetry breaking occurs and a relation between color and
flavor degrees of bound states of quarks is established [153, 154].

The motivations to explore the properties of QCD at high temperature and
large chemical potentials include the struggle for a deeper understanding of the
features of QCD itself, the formation of hadronic matter during the evolution
of the universe and the description of matter inside dense astrophysical objects
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FIGURE 5.1: The conjec-
tured QCD phase diagram in
the plane of temperature T
and baryon chemical poten-
tial µ. The black lines in-
dicate first order phase tran-
sitions. The first order con-
finement/deconfinement transi-
tion ends in a critical point
at unknown (µc, Tc). Here
the transition becomes sec-
ond order. Lattice simulations
suggest 170 MeV . Tc .
190 MeV, nuclear matter has
µ ≈ 1GeV [156]. CFL is the
color-flavor-locked phase.
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such as neutron stars.
We may wonder which parameters determine if we observe confinement

and/or color flavor locking, which other symmetries and observables undergo
qualitative changes and whether these changes occur abruptly or smoothly in
the parameter space. This raises the question about the structure of the phase
diagram of the theory. It describes the regions in the parameter space of the
state variables in which the thermodynamic potentials and their derivatives
behave analytically. The change from one phase to another is often accom-
panied by symmetry breaking and can be described by an order parameter
which assumes finite values in one phase and vanishes in the other. For QCD,
the quark condensate

〈
ψ̄ψ
〉

is frequently used as an order parameter. Non
vanishing values break chiral symmetry. We can distinguish the hadronic
phase, where

〈
ψ̄ψ
〉
6= 0, from the quark-gluon plasma with a higher amount

of symmetry, here
〈
ψ̄ψ
〉

= 0. However, strictly speaking the chiral condensate
is non-zero in both phases for finite quark masses and should only be used as
an order parameter in models with vanishing masses for the light quarks.

The exact overall structure of the phase diagram is not known yet. Espe-
cially at low temperature and chemical potential where the coupling is strong,
theoretical treatments rely on lattice gauge theory, which on the other hand
has its problems with modeling the QCD dynamics at finite temperature and
finite baryon density. Figure 5.1 shows a sketch of the most basic features of
the theoretically conjectured phase diagram of QCD based on combinations of
analytical and numerical predictions [155, 156].

In huge volumes that exist for long periods of time, such as the cubic
kilometer volumes of quark matter in neutron stars, one can expect the ther-
modynamic limit to be an appropriate approximation to describe matter, i.e.
thermodynamics is applicable. As hydrodynamic models have successfully
been applied to describe the collective motion of the fireball produced in heavy
ion collisions, it is reasonable to assume that even the quark-gluon plasma
observed in experiments reaches thermal equilibrium. The equilibration time
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is estimated to approximately 1fm/c, the plasma state then exists for about
another 4fm/c [157]. Though in equilibrium, the multiparticle system in a
collision experiment certainly does evolve along some trajectory in the phase
diagram, which leads from some point in the QGP phase to a system of hadrons,
which can eventually be detected.

For a thermodynamic description, the state variables can be chosen to be
for instance the temperature T , the pressure P , and the chemical potentials
µj for the different species of particles, labeled by the index j. The chemical
potential µj is the conjugate variable to the particle number Nj . It is therefore
only well defined if the number of particles of the species j is well defined.

There are only a few charges that are conserved by all standard model
processes. They allow for the definition of particle numbers and thereby
determine the parameters of the phase diagram. These are quark number
(which can be translated into baryon number), lepton number, electric charge,
and color charge. Each of them has a chemical potential associated to it.
In the processes we discuss in heavy ion collisions, there are no leptons
(and in neutron stars they are radiated off by neutrino emission), i.e. the
lepton chemical potential can be set to zero. The system furthermore is
color-neutral, i.e. the chemical potentials associated to color charge can also
be set to zero. The Gell-Mann-Nishijima-relation allows to rephrase the
remaining parameters, quark number and electric charge, in terms of isospin
and hypercharge. Hypercharge in turn is determined by the number of particles
of the various quark species.

One may argue that in an equilibrium state weak interactions could account
for flavor changing processes, and therefore there would be no well defined
particle number associated to each quark flavor. As a result, the notion of a
chemical potential would not be well defined. In heavy ion collisions however,
the system in equilibrium state has not enough time to undergo weak interac-
tions and therefore the flavor numbers are conserved, and the different quark
flavors have to be assigned individual chemical potentials.

Thus, the remaining degrees of freedom in the phase diagram are tempera-
ture and the chemical potentials of the interacting quark species. In two-flavor
setups, which we elaborate on in this work, we are free to express these po-
tentials in terms of the baryon and isospin chemical potential. This is why
we used and continue to use these charges as the parameters throughout this
work. In principle we therefore consider a three-dimensional phase diagram
in (T, µB, µI). For sake of simplicity, however, we restrict to cases of either
non-vanishing baryonic or isospin chemical potential.

In the holographic context, several publications where dedicated to the
investigation of the structure of the phase diagram of theories with gravity
duals. For instance, the meson melting transition at finite temperature for the
fundamental matter introduced by D7-branes in a background generated by D3-
branes, was considered at zero as well at finite particle density. Studies of the
behavior of D7-brane probes in the AdS Schwarzschild black hole background
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revealed a phase transition, which occurs when the D7-brane reaches the black
hole horizon. This transition was shown to be of first order in ref. 38, see
ref. 52 for a similar transition in the D4/D6 system, further details can be
found in refs. 55, 56. Related phase transitions appear in refs. 47, 158, 159.
Subsequently this phase transition was investigated at finite particle density
[37, 58, 59]. The transition is characterized by a stable quasiparticle spectrum
in one of the phases and melting mesons at finite density in the deconfined
phase. Figure 3.1 illustrates the two phases. A way to derive the values of the
transition line was mentioned in the same section, see the caption of figure 3.4
and ref. 59 for details. For the phase diagram in the model given by D8-D8

probes in a near horizon limit of D4-branes with non vanishing chemical and
isospin potential see ref. 67.

In this chapter we contribute to these studies by different means. In the
subsequent section we observe a phase transition in the baryon diffusion
coefficient and determine the critical baryon density at which this transition
vanishes. The observations we make can be related to the results from refs. 48,
59 and confirm the observations described therein.

In section 5.2 we describe the occurrence of a new phase transition at finite
isospin density, which we published in ref. 3.

5.1 Phase transition of the baryon diffusion coefficient

In this section we pick up the discussion from section 4.1, where we introduced
a simple yet incomplete derivation of the baryon diffusion coefficient. As we
mentioned there, the qualitative behavior of the result captures the physics
correctly and the quantitative evaluation bears only little error in the regime
of masses up to the temperature scale [117]. On the other hand, the evaluation
of the simple formula (4.2) is a considerable simplification, compared to
the exact treatment, described in ref. 117. We will therefore stick with our
approximation.

We focus on the temperature regime near the phase transition of fundamen-
tal matter. In the zero density limit, a phase transition of fundamental matter
was observed to take place simultaneously to the geometric transition from
Minkowski embeddings at small temperature to black hole embeddings at high
temperatures. In the low temperature phase the mesonic spectral functions
exhibit discrete delta peaks, and thereby describe stable mesons, while the
spectrum becomes continuous with finite width peaks in the high temperature
phase. The value of the quark mass to temperature ratio at which the phase
transition can be observed was found to be near m = 1.3, cf. figure 2.4. The
transition can be seen as a first order phase transition in the quark condensate
[37]. In the zero density limit the authors of ref. 48 observed another manifesta-
tion of the fundamental phase transition at m = 1.3 as a phase transition in the
baryon diffusion coefficient D. We are interested in the finite density effect on
this transition.
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FIGURE 5.2: The normal-
ized baryon diffusion coeffi-
cient as a function of normal-
ized inverse temperature. At
densities below d̃ = 0.00315
we observe a multivalued de-
pendence on m, signaling a
phase transition. For the behav-
ior of the coefficient in a larger
range of m see figure 4.1.
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At finite density, we know that black hole embeddings capture the physics
at all temperatures, i.e. the entire parameter regime of m. The fundamental
phase transition in this case is a transition between two different black hole
embeddings [58]. As discussed in ref. 59, the baryon density affects the location
and the presence of the fundamental phase transition. The transition is of
first order only very close to the separation line between the regions of zero
and non-zero baryon density shown in figure 3.1. Note that as discussed in
refs. 58–60 there exists a region in the (d̃, T ) phase diagram at small d̃ and T
where the embeddings are unstable. This instability disappears for large d̃.

We study the baryon diffusion coefficient at different baryon densities.
Figure 5.2 shows the Diffusion coefficient D as a function of the ratio of quark
mass to temperature m. By fixing the quark mass we may think of m as the
inverse of the temperature.

We find that the phase transition is slightly shifted towards smaller temper-
atures when we increase the density. At a critical density of d̃∗ = 0.00315 the
phase transition temperature is given by m = 1.31. Beyond the critical density
the transition vanishes, in agreement with the critical density d̃∗ for the phase
transition in the quark condensate, discussed in ref. 58.

5.2 A new phase transition at finite isospin potential

In this section we have a different look at the mesonic spectral functions,
introduced in chapter 3. There we where interested in the behavior of the
quasiparticle resonances and the modification of the particle spectrum when
we leave the limit of zero temperature and vanishing particle density. Here, we
focus on a new phenomenon occurring at high densities.

We recall that the three solutions X , Y and E3 to the fluctuation equations
of motion (3.82) to (3.84) constitute the isospin triplet of mesons which may
be constructed out of the isospin 1/2 quarks of the field theory. This is analog
to the ρ-meson in QCD. We discovered that the mode E3 coincides with the
solution in case of a pure baryonic chemical potential, while the other two
solutions have peaks in the spectral function at lower and higher values of w, cf.
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FIGURE 5.3: Spectral functions for various baryon densities (left) and isospin densities (right),
again normalized to NfNcT

2/4. At increasing densities d̃ the peaks are smeared out, as we saw
in the discussion of the spectral functions in chapter 3. At very high densities a new structure
forms at small w.

figure 3.11. The magnitude of this splitting of the spectral lines is determined
by the chemical potential and the undetermined coupling cA.

In the limit of zero frequency w → 0, equations (3.82) and (3.83) coincide
and will result in identical solutions X and Y . In this limit the solution
E3, though, differs from X and Y , by means of the last term. So for small
frequencies w, we expect differences between the solutions E3 and X , Y .
All three equations of motion depend on the particle density d̃ parametrically,
since the density has influence on the background fields.

Spectral functions and quasi normal modes at high densities

We work in the canonical ensemble and will now investigate the effects of
variations in d̃. Spectral functions for various finite baryonic and isospin
densities d̃ are shown in figure 5.3. As in section 3.3, the peaks in these spectral
functions indicate that quarks form bound states. At low baryon densities we
recognized the positions of the peaks to agree with the supersymmetric result
(3.67). Increasing the quark density leads to a broadening of the peaks, which
indicates decreasing stability of mesons at increasing baryon density [81,160]. At
the same time the positions of the peaks change, which indicates a dependence
of the meson mass on the baryon density. Now, further increasing the quark
density leads to the formation of a new structure at w < 1. We will discuss
this structure below together with the results at finite isospin density.

We now turn to the effects of finite isospin density on the spectrum. The
peaks in the spectral functions again correspond to mesons. An interesting
feature at finite isospin chemical potential is the formation of a new peak in
the spectral function in the regime of small w at high density/high chemical
potential, see figure 5.3. Notice that compared to the baryonic case, the density
at which the new peak forms is about two orders of magnitude smaller. As



5.2. A new phase transition at finite isospin potential 133

-0.02 -0.01 0.00 0.01 0.02

-4000

-2000

0

2000

4000R Y

Rew
m = 3

d̃I = 15.00

d̃I = 15.35

d̃I = 15.70
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in the baryonic case, the excitations related to the supersymmetric spectrum
broaden, the corresponding mesons become unstable.

We pointed out that the structure of the spectral function is determined
by the pole structure of the retarded correlator, see section 3.1. The poles of
this function are located in the complex ω-plane at positions Ωn ∈ C. The
spectral functions show the imaginary part of the correlator at real valued ω.
Any pole in the vicinity of the real axis will therefore introduce narrow peaks
in the spectral function, while poles far from the real axis have less influence
and merely introduce small and broad structures.

In section 3.1 we outlined how the imaginary part of the quasinormal
modes describes damping, as long as Im Ωn < 0. The short note on the pole
structure demonstrated the dependence of the position of the quasinormal
modes on the chemical potential/particle density. From figure 5.3 we deduce
that at higher densities than studied so far, a quasinormal mode approaches the
origin of the complex ω plane as the particle density is increased. We observe
a pole at w = 0 for a certain particle density d̃crit, the value depends on m. An
impression of the variation in the spectral function is given in figure 5.4.

In figure 5.5 we qualitatively sketch the result from the investigation of
the behavior of the quasinormal modes closest to the origin of the complex
w-plane. These modes do not produce the peaks corresponding to the spectrum
(3.67). At low densities all quasinormal modes are located in the lower half
plane. When increasing the isospin density, the lowest frequency modes of
the solutions X and Y to (3.82) and (3.83) move towards the origin of the
frequency plane. At the same time two quasinormal modes ofE3 move towards
each other and merge on the negative imaginary axis, then travel along the
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FIGURE 5.6: Contour plots of the spectral function for the mode Y around w = 0 in the
complex w-plane. The density increases from the left plot at sub-critical density to the right
one at super-critical density. Here, the pole in the upper half plane introduces an instability.

axis towards the origin as one single pole. At the critical value of d̃ = d̃crit the
modes from X and Y meet at the origin, the quasinormal modes from E3 still
reside in the lower half plane. This observation matches the discussion at the
beginning of this section, where we expected X and Y to behave similarly at
small w, while E3 should differ from this behavior. Upon further increasing
the isospin density, the modes Ω from X and Y enter the upper half plane,
maintaining their distinct directions. The sign change in Im Ω from Im Ω < 0
to Im Ω > 0 indicates that a damped resonance changes into a self-enhancing
one, and thus introduces an instability to the system. Figure 5.6 illustrates the
transition of a quasinormal mode of Y from the lower half plane to the upper
half plane. The E3-mode does not enter the upper half plane at any value of
d̃ we considered. Compare this to the values of d̃ in figure 5.3 at which the
pole induces visible structures at small w. A comparable movement of poles
in a different but related setup was found in ref. 161. There the quasinormal
modes of correlation functions of electromagnetic currents were investigated
as a function of temperature.

In the following we interpret the observation of decaying mesons and
the emergence of a new peak in the spectral function in terms of field theory
quantities. In particular we speculate on a new phase in the phase diagram for
fundamental matter in the D3/D7 setup.

In the far UV, the field theory dual to our setup is supersymmetric, thus
containing scalars as well as fermions, both of which contribute to the bound
states we identified with mesons, even when supersymmetry is eventually
broken. The meson decay at non-vanishing particle densities may be explained
by the change of the shape of the potential for the scalars in the field theory
upon the introduction of a non-vanishing density. As outlined in appendix E, a
chemical potential may lead to an instability of the theory, since it induces a
runaway potential for the scalar fields at small field values [162]. Nevertheless,
interactions of φ4-type lead to a Mexican hat style potential for larger field
values. In this way the theory is stabilized at finite density d̃ while the scalar
fields condensate. This squark condensate presumably contributes to the vev
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FIGURE 5.7: the (µI , T )-
plane. In the blue shaded re-
gion D7-branes have the topol-
ogy of Minkowski embeddings,
the white and brown regions
are modeled by black hole em-
beddings. These become unsta-
ble in the brown region. The
boundary of the unstable re-
gion asymptotically seems to
agree with the thin gray line of
constant density d̃I = 20.5. 0.0 0.5 1.0 1.5 2.0 2.5
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of the scalar flavor current,

d̃ ∝
〈
J0
〉
∝
〈
ψ̄ γ0 ψ

〉
+
〈
φ ∂0φ

〉
. (5.1)

In the AdS/CFT context, the presence of an upside-down potential for the
squark vev has been shown in ref. 54 using an instanton configuration in the
dual supergravity background.

The occurrence of a pole in the upper half plane of complex frequencies at
finite d̃crit indicates an instability of the theory. A comparable observation was
made in ref. 81, where in fact the vector meson becomes unstable by means
of negative values for its mass beyond some critical chemical potential. The
difference between this work and ref. 81 is that our model includes scalar
modes in addition to the fundamental fermions. Nevertheless, in both models
an instability occurs at a critical value of the chemical potential. The theory
may still be stabilized dynamically by vector condensation [163]. In this case the
system would enter a new phase of condensed vectors at densities larger than
d̃crit, in accordance with the expectation from QCD calculations [88, 164, 165].

We perform the analysis of the pole structure at w = 0 for various m, and
interpret the phenomenon of the transition of poles into the upper half plane at
finite critical particle density as a sign of the transition to an unstable phase.
We relate the critical particle density d̃crit to the according chemical potential
µ̃I by µI = limρ→∞A3

0(ρ) and use the pairs of m and critical dimensionful
µI to trace the line of the phase transition in the phase diagram of fundamental
matter in the D3/D7 setup. The result is drawn in figure 5.7. The picture shows
the (µI , T )-plane of the phase diagram and contains three regions, drawn as
blue shaded, white, and brown shaded, as well as solid lines, separating the
different regions.

The blue shaded region marks the range of parameters, in which fundamen-
tal matter is described by D7-branes with Minkowski embeddings. The line,
delimiting the blue region, marks the line of phase transitions to the black hole
phase, where fundamental matter is described by D7-branes which have black
hole embeddings. Using the symmetry of the DBI action, this phase transition
line can be mapped to the line of phase transitions between Minkowski and
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black hole embeddings, present at finite baryon chemical potential [41, 59, 60].
The brown shaded region in the phase diagram in figure 5.7 marks the

observation made in this section. The line delimiting the brown region marks
the values of d̃crit at which the pole in the spectral function appears at w = 0.
Beyond this line we enter the brown shaded unstable region.

We observe that the separation line of the unstable phase asymptotes to
a straight line at high temperatures. Within the values computed by us, this
line agrees with the asymptotic behavior of the contour of particle density
with d̃ ≈ 20.5, drawn as a thin gray line in the phase diagram. We thus
speculate on a finite critical particle density beyond which the black hole
phase is unstable. This interpretation is supported by analogous studies of the
phase diagram of N = 4 super-Yang-Mills theory with R-symmetry chemical
potentials, where a similar line in the phase diagram was discovered [166, 167].
The remaining question is whether the brown shaded phase in figure 5.7 indeed
is unstable in the sense that it inaccessible for any physical setup, or if there
is a way to stabilize the system in the parameter range of question. Recent
publications revealed that the introduction of a further vev for a different gauge
field component on the stack of probe branes leads to a stabilization of the
system [168, 169]. The resulting setup exhibits a second order phase transition
to the new phase, which bears analogies to the theories of superfluidity and
superconductivity [168–171].

Note that the location of the transition line to the unstable phase in fig-
ure 5.7 as well as the results shown in figure 5.6 and figure 5.5 are obtained
from the analysis of poles in the spectral functions. These functions in turn
are obtained as solutions to equations (3.82) to (3.84), which do depend on
the so far unknown factor cA in determining the self coupling of the gauge
field on the brane. The computation of this factor is left to future work. It
will determine the exact position of the boundary of the brown shaded region
in figure 3.1. This will answer the question whether there is a triple point in
the phase diagram and if the color shaded regions meet at a common border.
Moreover, other poles than the ones investigated here may have influence on
the stability of this system.

5.3 Summary

We made two observations concerning the thermodynamic behavior of funda-
mental matter in the D3/D7 setup.

First, in our simple approximation of the baryon diffusion coefficient, we
observe the fundamental phase transition and its dependence on the baryon
density. We find that increasing the density from zero, where the transition
temperature is given by m = 1.3, the transition temperature is lowered slightly
until the transition vanishes at a critical value of d̃∗ = 0.00315, where the
transition occurs at m = 1.31. This confirms the results of ref. 58, where the
transition was observed in the quark condensate.
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Second, we observe a new phase transition which renders the D3/D7 setup
unstable at values above a critical isospin density. This becomes manifest by
quasinormal modes of the fluctuations which develop positive imaginary parts
in this region of the phase diagram. The exact position of the phase transition
line cannot be determined yet. However, we speculate that the instability is
due to a modification of the potential for the scalar fields in the field theory.
This instability can be cured by vector meson condensation.

It is tempting to compare figures 5.7 and 5.1. However, we point out that
we cannot interpret the brown shaded region in fig. 5.7 as a direct analogon
of the color-flavor-locked phase (CFL) in fig. 5.1, since the parameter range
scanned by us only allows to observe the phase transition to the new phase
only at finite isospin chemical potential and not at finite baryon potential.
Also the critical point at finite (T c, µc) is not reproduced so far from the
thermodynamics of the D3/D7 model. Nevertheless, the sheer appearance of
the phase diagram in figure 5.7 may serve as a motivation for further efforts in
exploring the phase diagrams of holographic models.
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C HAPTER 6

Conclusion

We considered different generalizations of the AdS/CFT correspondence in
order to shed light on in-medium effects on the fundamental matter in holo-
graphic models for the quark-gluon plasma. The influence of the medium was
parametrized by the values of the temperature and particle density.

The first aspect we considered in chapter 3 was the influence of the medium
on bound states of quarks, in particular vector mesons. The description of
mesons from first principles is interesting in its own right, because the strong
coupling parameter forbids to apply well established perturbative methods
in QCD. In the holographic setups, mesonic excitations arise more or less
naturally as vibrational modes of open strings on D-branes. In the low energy
limit, they account for fluctuations of supergravity fields. We presented the
capabilities of a certain realization of a D3/D7 brane configuration by deriving
the spectral functions for vector mesons from it. In the limit of vanishing
temperature and density the derived spectra agree with the previously known
results. The main achievement of our efforts, however, was the extension of the
spectral description of vector mesons into the finite density and temperature
regime for all values of quark masses and temperature. We observe the melting
of mesons at high temperature and at the same time studied the effects of finite
particle density. Technically, we related the characteristics of the spectra to
the behavior of the quasi normal modes of the excitations that holographically
account for mesonic bound states of quarks.

The main contribution to a better understanding of in-medium effects
from this project is the derivation of in-medium effects on the spectra. We
observe a destabilization of mesonic bound states with increasing particle
density in the quark-gluon plasma, which is simultaneously accompanied by
a slight shift of the meson masses to higher energies. Due to the fact that
the holographic models are too complex to be solved by analytical methods
alone, the precise mechanisms that account for this behavior are difficult to
reveal. A probable physical explanation for the destabilization certainly can
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be seen in the fact that in the strongly coupled medium the surrounding free
quarks alter the binding interquark potential of the mesonic bound state. The
closer a quark of the medium comes to a constituent quark of the meson under
consideration, and the higher the amount of such perturbing spectator quarks is,
the more influence can be expected from the medium on the mesons. Therefore
increasing the baryon density (which can be seen as a measure for the amount
of free quarks in the medium which are not bound into mesons) accounts for
accumulating perturbation of the binding quark-antiquark potential, eventually
leading to a dissociation of the meson. The shift in the meson mass may also
be a consequence of the modification of the interquark potential, which in turn
shifts the binding energies and therewith the energy content of a meson.

Without speculating further on the mechanisms that lead to the observation
we made, we note that our results are in qualitative agreement with phenomeno-
logical models and observation from experiment. The fact that our result is
a non-trivial consequence derived from the D3/D7 setup can be seen as an
affirmative answer to the question whether string theory motivated models can
capture phenomenologically relevant physics.

Another such example was also derived in the context of meson spec-
tra. Namely, we have shown that the introduction of finite isospin chemical
potential indeed leads to a mass splitting of the different components of the
isospin triplet, constituted by the three possible isospin one combinations
of quark-antiquark pairs. While this is a success on the one hand side, the
quantitative evaluation of the mass difference remains as a task for future
investigation, as the magnitude of the mass splitting heavily relies on meson
coupling constants which are not determined yet and where chosen arbitrarily
in our setup. The qualitative observation of the mass splitting, however, can
be explained entirely analytically. We notice that the degenerate spectrum at
vanishing isospin density stems from the fact that we have an SU(2) isospin
symmetry in our system. By introducing a finite vacuum expectation value for
one single generator, we break this symmetry and thereby suspend the degener-
acy. From the equations of motion we can read off that the vev does not affect
the longitudinal component in flavor space but shifts the energy eigenvalues of
the transverse modes by identical absolute amount with opposite sign.

The second observable we studied was the diffusion coefficient of both
baryon and isospin charge as well as the diffusion coefficient of mesons.
The motivation to consider baryon and isospin diffusion apparently is to
understand the transport processes of quarks and antiquarks in the QGP and
quark matter as e.g. expected to exist in neutron stars. The interest in mesons
stems from the fact that there is experimental evidence for mesons to survive
the deconfinement transition to the QGP. We capture this effect in our setup,
as we have shown by observing discernible peaks in the mesonic spectral
functions at finite temperature, discussed above.

The results for the baryon diffusion coefficient where derived in an ex-
tremely simplified manner by plugging in the results for the embedding func-
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tions of the D7-brane in our background into the formula for the diffusion
coefficient derived from the membrane paradigm. The main purpose of this
task was to show that the D3/D7 setup at finite density is able to yield baryonic
diffusion parameters for the plasma for ratios of the quark mass to temperature
in both regimes, below and above the phase transition for fundamental mat-
ter. At vanishing density, the diffusivity of quarks normalized to the inverse
temperature was known to be almost independent from the mass in the regime
of light mesons (compared to the deconfinement temperature) and to be re-
duced monotonically with increasing quark mass. In our simple extension,
we have shown that the effect of finite density on the normalized diffusion
of baryon charge is leading to a dependence on the diffusion coefficient that
exhibits a minimum for quarks with masses mq slightly heavier than the scale
determined by the critical melting temperature Tc as mcrit

q = 1.3
√
λ

2 Tc. We
identify the origin of this behavior as the fact that neither asymptotically heavy
nor massless quarks will be influenced from the thermal momentum scale. A
particle, however, with intermediate mass is certainly sensitive to momentum
transfer by e.g. collisions with particles in the medium.

Moreover, we observe that with increasing density, the mass dependence
of the diffusivity becomes smaller. We address this to the fact that an extremely
high density, accompanied by a likewise high chemical potential, outweighs
the energy scale set by the finite temperature and in this way suppresses the
intermediate mass scale dependence.

Although we knew that our simple ansatz could not capture all effects of
finite density in this way, our results where proven to be qualitatively correct
in later publications. These, by the way, support the above comment on the
rivaling scales of quark mass and chemical potential. The results of ref. 117
show that at large quark masses (which then outweigh the energy scale of the
chemical potential) the diffusion constant indeed depends on the quark mass
but is almost independent of the particle density.

The situation at non-vanishing isospin chemical potential was analyzed by
means of the dispersion relation for particles carrying isospin charge. Here,
we restricted to massless quarks and small chemical potential. Within the tight
restriction of our setup we where able to derive a frequency dependence of the
diffusion coefficient, which can be interpreted as a dependence of the diffusion
coefficient on the energy of the diffusion massless particles.

The most extensively investigated transport coefficient however is the
diffusion coefficient for heavy scalar mesons in the quark-gluon plasma. We set
up a kinetic model that allowed for a derivation of the (inverse of the) diffusion
coefficient at both strong and weak coupling. This enabled us to compare
the perturbatively obtained weak coupling result to the holographic strong
coupling result. Moreover, we where able to derive the polarizability of mesons
from holographic duals. The latter results for the polarizabilities have to be
read with care, as they rely heavily on the short-distance dipole approximation
of the underlying effective model. As the short distance dipole interaction with
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the medium most likely rely heavily on large momentum transfer and thereby
on weak coupling contributions, the validity of the AdS/CFT contributions
may be vulnerable to serious criticism. Nevertheless, the long range effects
on the momentum distribution of the scattered medium particles should be
captured by our gauge/gravity model. We therefore divide out the effects
due to polarizability, and parametrized by (δM)2 and compare the quotient of
momentum broadening (inverse diffusion coefficient) κ and (δM)2. As a result,
within the limits of the validity of our assumptions, we observe a reduction of
the momentum transfer from the mesons to medium particles at strong coupling
compared to weak coupling. This has consequences on the equilibration of the
meson momentum distributions into thermal equilibrium, which we expect to
be slowed down at strong coupling. Hopefully, measurements of the heavy
meson momentum distributions in heavy ion collisions at RHIC and LHC will
allow for a comparison of experimental data with our theoretical expectations.

Finally, we devoted one chapter to the analysis of the phase structure of
fundamental matter in the holographic description of quark matter.

One result was the observation of a phase transition in the baryon diffusion
constant, which shows parallels to a previously observed phase transition in
the the quark condensate, which vanishes at a critical baryon density d∗. We
observe a dependence of the value of the quark mass to temperature ration at
which this phase transition occurs on the density. And we identify a critical
density at which the phase transition vanishes. This density matches the value
d∗ mentioned above, which makes us believe that we observe the same physical
transition in just an other parameter.

More important is the observation of a new phase transition at finite isospin
density. Above we described the observation that the mass eigenvalues of two
of the three components of the isospin triplet vector mesons experience shifts
due to finite chemical potential. Increasing the isospin chemical potential µI ,
we observe an instability of our setup at a critical value µI(T ) of the chemical
potential. This value depends on the temperature of the medium. By numerical
evaluation of µI(T ) we are able to trace out the boundary of the stable phase
in the (µI , T )-plane of the phase diagram. Recent publications indicate that
the theory can be stabilized even beyond this line if additional gauge field
components on the flavor branes acquire finite vacuum expectation values.
This indicates that the boundary we traced out in the pase diagram marks the
border between two different phases. The exact position, however, is subject
to the same open questions we addressed when we discussed the splitting of
the vector meson spectrum.

As a general conclusion, we ascertain that the D3/D7 setup for holographic
duals to strongly coupled gauge theories, provides the capability to describe
a rich amount of phenomenology of the dual field theory. In this disserta-
tion we highlighted a small part of it. Alluding to the general motivation
behind applications of AdS/CFT to bridge the gap between string theory and
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phenomenologically relevant field theories, we finally end with a satisfactory
statement. The analyses and observations described in this work show that the
gauge/gravity duality is not a one-way street. In one direction we where able
to confirm many observations in holographic models by known results and
expectations from established field theories such as QCD, and even experiment.
In this way our confidence in the applicability of the correspondence to real
world phenomena was strengthened. In the other direction, using the example
of meson diffusion, we discovered ways to derive results in regimes of field
theories, which so far where inaccessible, and hopefully bear at least qualitative
truth when compared to field theory results or experiments in future.
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APPENDIX A

Notation and conventions

The notational conventions and abbreviations used in this work are common
in present-day theoretical high energy physics. However, there are occasions
where one is free to follow some specific convention (as for instance to choose
the signature of the metric). If nothing contrary is written in the text, we used
the following.

Units and dimensions Throughout this work we used units in which the
(vacuum) speed of light c, and Planck’s constant ~ are set to unity, ~ = c = 1.
We also set the Boltzmann konstant kB to one. Moreover, unless otherwise
noted, we work with a “east coast metric” which is of mostly plus signature
(−,+,+, . . .).

Referring to the dimension of an operator in these units is meant to denote
the power of mass or equivalently energy units, e.g. the integral measure d4x
has dimension −4, or [d4x] = −4. The behaviour of some quantity under
coordinate rescalings is referred to as scaling dimension.

Summation conventions In expressions that involve repeated indices we
imply summation over these. Whenever a metric is defined with these indices,
this metric is used to raise and lower labels according to Einstein’s sum
convention, e.g. the square of a vector x defined in a space with metric g one
would write as xµxµ = gµνx

µxν . In cases where no such metric is defined we
imply the Kronecker symbol as the metric and one may interchange upper and
lower indices, e.g. some gauge transformation matrix A is a sum of products
of scalar components Aa and the matrix valued generators T a of the gauge
group, A = AaT a.
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Mathematical and physical symbols The symbols used in the formulae of
this work are standard and should not give any reason for confusion. Nev-
ertheless, since some symbols are a matter of convention and others might
possibly look ambiguous, the following lists explaines some glyphs. Some
mathematical symbols are

× group direct product, also multiplication after line breaks
a := b a is defined as b
a ≈ b a is approximately equal to b, i.e. the difference is negligible
a ∝ b a is proportional to b
a · b scalar product of a and b
∂µ derivative ∂

∂xµ with respect to coordinate with index µ
∂[µAν] antisymmetrization, ∂[µAν] := 1

2 (∂µAν − ∂νAµ)
~x four-vector in Minkowski space, |~x| = x, components xµ

q three-vector in spatial directions, |q| = q, components qi

/D Feynman slash notation,
where /D := γµDµ with Dirac gamma matrices γµ

?F the Hodge dual of F
O
(
x2
)

terms of order x2 and higher order
∂M denotes the boundary of the manifoldM
c.c. complex conjugate
e Euler’s constant, e = exp 1
h.c. hermitian conjugate
i the imaginary unit with i2 = −1

We tried to adhere as strictly as possible to the following assignment of symbols
to physical quantities.

α′ sets the string length `s by `2s = α′

and the string tension Ts by Ts = 1
2πα′

c speed of light in vacuum, we mostly use units with c = 1
gs string coupling constant
gYM Yang-Mills coupling constant
g background metric for usually 10 spacetime dimensions
G induced metric on one or more Dp-branes
GR retarded Green function
L Lagrange density
`s string length, `2s = α′

N number of color degrees of freedom
Nf number of flavor degrees of freedom
N number of supersymmetry generators
R radius of AdS space
R Ricci scalar
T temperature
Tp tension of a Dp-brane
T energy-momentum tensor



149

Abbreviations Some very common abbreviations may not have been defined
explicitely in the text. Others possibly where introduced in a passage you did
not read. If in doubt, you hopefully find the translation here:

AdS Anti-de Sitter space
BEC Bose-Einstein condensate
c.c. complex conjugate
CFT conformal field theory
FAIR Facility for Antiproton and Ion Research

at GSI Darmstadt, from approx. 2013
GSI Gesellschaft für Schwerionenforschung
h.c. hermitian conjugate
pQCD perturbative quantum chromodynamics
QCD quantum chromodynamics
QFT quantum field theory
QGP quark-gluon plasma
QNM quasi normal mode
RHIC Relativistic Heavy Ion Collider

at the Brookhaven National Laboratory
SIS SchwerIonen Synchrotron at GSI/FAIR, Darmstadt
SPS Super Proton Synchrotron at CERN
sQGP strongly coupled quark-gluon plasma
SYM super(symmetric) Yang-Mills
vev vacuum expectation value
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APPENDIX B

Coordinates for the AdS black
hole background

Numerous local coordinate systems are used to parameterize the AdS5 × S5

Schwarzschild black hole background. The problem at hand determines which
of them is most useful. Here we list some of the common coordinates and the
transformations between them. For all of the following coordinate systems we
use the same symbols

R4 = 4πgsNα
′2, r◦ = TπR2.

Coordinate system 1

ds2 =
r2

R2

(
−f(r) dt2 + dx2

)
+
R2

r2
1

f(r)
dr2 +R2dΩ2

5 (B.1)

with

f(r) = 1− r4◦
r4

and

t, x1, x2, x3 ∈ R, r > 0, dΩ2
5 = metric of the unit 5-sphere

horizon at r = r◦
boundary at r →∞

Coordinate system 2

Introduction of a new radial coordinate

%2 = r2 +
√
r2 − r2◦
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transforms (B.1) into

ds2 =
%2

2R2

(
−f

2(%)
f̃(%)

dt2 + f̃(%) dx2

)
+
R2

%2

(
d%2 + %2dΩ2

5

)
(B.2)

with

f(%) = 1− r4◦
%4
, f̃(%) = 1 +

r4◦
%4

horizon at % = r◦
boundary at %→∞

Parametrization of the radial part

We can identify the part in the last pair of parenthesis of (B.2) as nothing else
thanR6 and we write it as

d%2 + %2dΩ2
5 =

6∑
i=1

d%2
i = dw2 + w2dΩ2

3︸ ︷︷ ︸
R4(%1,...,4)

+ dL2 + L2dφ2︸ ︷︷ ︸
R2(%5,6)

with radial coordinate % =
(∑

i %
2
i

)1/2. We write this space as a product
space of a four-dimensional R4 in polar coordinates with radial coordinate
w > 0 and a two-dimensional R2 with radial coordinate L > 0, such that
%2 = w2 + L2. The subspace parametrized by (w,L) is the first quadrant of a
Cartesian coordinate system and can also be parametrized by its radial part %
and an angle 0 6 θ 6 π/2,

L = % cos θ,
w = % sin θ

such that

dL2 + dw2 = d%2 + %2dθ2.

Finally, we introduce χ = cos θ and thus can write (B.2) as

ds2 =
%2

2R2

(
−f

2(%)
f̃(%)

dt2 + f̃(%) dx2

)
+R2

(
d%2

%2
+
(
1− χ2

)
dΩ2

3 +
(
1− χ2

)−2 dχ2 + χ2dφ2

)
.

(B.2a)

Coordinate system 3

Introduction of a new radial coordinate

v2 =
1
2

(
r2 +

√
r2 − r2◦

)
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transforms (B.1) into

ds2 =
v2

R2

(
−f

2(v)
f̃(v)

dt2 + f̃(v) dx2

)
+
R2

v2

(
dv2 + v2dΩ2

5

)
(B.3)

with

f(v) = 1− r4◦
4v4

, f̃(v) = 1 +
r4◦
4v4

horizon at v = r◦√
2

boundary at v →∞

Coordinate system 4

Introduction of a new dimensionless radial coordinate

u =
r2◦
r2

transforms (B.1) into

ds2 =
r2◦
R2u

(
−f(u) dt2 + dx2

)
+

R2

4f(u)u2
du2 +R2dΩ2

5, (B.4)

where

f(u) = 1− u2,

horizon at u = 1,
boundary at u = 0.

Coordinate system 5

Introduction of a new radial coordinate

z =
R2

r

transforms (B.1) into

ds2 =
R2

z2

(
−f(z) dt2 + dx2 +

1
f(z)

dz2

)
+R2dΩ2

5 (B.5)

with

f(z) = 1− z4

z4
◦

horizon at z = z◦ = R2

r◦
boundary at z = 0
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APPENDIX C

Isospin diffusion related
equations

C.1 Solutions to equations of motion

Here we explicitly write down the component functions used to construct the
solutions to the equations of motion for the gauge field fluctuations up to order
w and q2. The functions themselves are then composed as in (4.41).

The solutions for the components with flavor index a = 3 where obtained
in ref. 22.

C.1.1 Solutions for Xα, X̃α and A3
α

The function Xα(u) solves (4.33) with the upper sign and is constructed as in
(4.41) from the following component functions,

β =
√

wm

2
+O(ω) , (C.1)

F0 = C, (C.2)

F1/2 = − C
√

m

2
ln

1 + u

2
, (C.3)

F1 = − C m

12

[
π2 − 9 ln2 2 + 3 ln(1− u) (ln 16− 4 ln(1 + u))

+ 3 ln(1 + u) (ln(4(1 + u))− 4 lnu) (C.4)

− 12
(

Li2(1− u) + Li2(−u) + Li2

(
1 + u

2

))]
,

G1 =
C

2

[
π2

12
+ lnu ln(1 + u) + Li2(1− u) + Li2(−u)

]
, (C.5)
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(C.6)

where the constant C can be expressed it in terms of the field’s boundary value
Xbdy = limu→0X(u, k),

C = Xbdy

×
(

1+
√

mw

2
ln 2+mw

(
π2

6
+

ln2 2
4

)
+
π2

8
q2+O

(
w3/2, q4

))−1

.

(C.7)

The solutions of the equations of motion (4.33) with lower sign for the
functions X̃α(u) are given by

β̃ = − i
√

wm

2
+O(ω) , (C.8)

F̃0 = C̃, (C.9)

F̃1/2 = iC̃

√
m

2
ln

1 + u

2
, (C.10)

F̃1 = C̃
m

12

[
π2 − 9 ln2 2 + 3 ln(1− u) (ln 16− 4 ln(1 + u))

+ 3 ln(1 + u) (ln(4(1 + u))− 4 lnu) (C.11)

− 12
(

Li2(1− u) + Li2(−u) + Li2

(
1 + u

2

))]
,

G̃1 =
C̃

2

[
π2

12
+ lnu ln(1 + u) + Li2(1− u) + Li2(−u)

]
, (C.12)

(C.13)

with C̃ given by

C̃ = X̃bdy

×
(

1−i
√

mw

2
ln 2−mw

(
π2

6
+

ln2 2
4

)
+
π2

8
q2+O

(
w3/2, q4

))−1

,

(C.14)

so that limu→0 X̃(u, k) = X̃bdy.
The solution for A3

α solves (4.25) up to order w and q2 with boundary
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value
(
A3
α

)bdy. It is

A3
α =

8
(
A3
α

)bdy (1− u)−
iw
2

8− 4iw ln 2 + π2q2

×

[
1 + i

w

2
ln

1 + u

2

+
q2

2

(
π2

12
+ lnu ln(1 + u) + Li2(1− u) + Li2(−u)

)]
.

(C.15)

C.1.2 Solutions for X ′
0, X̃ ′

0 and A3
0
′

Here we state the solutions to (4.30). This formula describes three equations,
differing in the choice of a = 1, 2, 3. The cases a = 1, 2 give coupled
equations which are decoupled by transformation from A1,2

0 to X0 and X̃0.
The choice a = 3 gives a single equation.

The function X ′
0 is solution to (4.34) with upper sign. We specify the

component functions as

β =
√

wm

2
+O(ω) , (C.16)

F0 = C, (C.17)

F1/2 = − C
√

m

2
ln

2u2

1 + u
, (C.18)

F1 = − C m

12

[
π2 + 3 ln2 2 + 3 ln2(1 + u) + 6 ln 2 ln

u2

1 + u

(C.19)

+ 12
(

Li2(1− u) + Li2(−u)− Li2

(
1− u

2

))]
, (C.20)

G1 = C ln
1 + u

2u
, (C.21)

(C.22)

where the constant C can be expressed in terms of the field’s boundary value
Xbdy = limu→0X(u, k),

C = − q2X
bdy
0 + wqX

bdy
3√

2mw + mw ln 2 + q2
. (C.23)

To get the function X̃ ′
0, we solve (4.34) with the lower sign and obtain

β̃ = −i
√

wm

2
+O(ω) , (C.24)
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F̃0 = C̃, (C.25)

F̃1/2 = iC̃

√
m

2
ln

2u2

1 + u
, (C.26)

F̃1 = C̃
m

12

[
π2 + 3 ln2 2 + 3 ln2(1 + u) + 6 ln 2 ln

u2

1 + u
(C.27)

+ 12
(

Li2(1− u) + Li2(−u)− Li2

(
1− u

2

))]
,

(C.28)

G̃1 = C̃ ln
1 + u

2u
, (C.29)

(C.30)

where the constant C̃ can be expressed it in terms of the field’s boundary value
X̃bdy = limu→0 X̃(u, k),

C̃ =
q2X̃

bdy
0 + wqX̃

bdy
3

i
√

2mw + mw ln 2− q2
. (C.31)

The solution for (4.30) with a = 3 is the function A3
0
′, given by

A3
0
′ = (1−u)−

iw
2

q2A
bdy
0 + wqA

bdy
3

iw− q2

(
1 +

iw

2
ln

2u2

1 + u
+ q2 ln

1 + u

2u

)
.

(C.32)

C.1.3 Solutions for X ′
3, X̃ ′

3 and A3
3
′

We give the derivatives of X3 and X̃3 as

X ′
3 = −w−m

qf
X ′

0 (C.33)

X̃ ′
3 = −w + m

qf
X̃ ′

0. (C.34)

The solution for A3
3
′ is

A3
3
′ = −w

q
A3

0
′
. (C.35)

C.2 Abelian Correlators

For reference we quote here the correlation functions of the Abelian super-
Maxwell theory found in ref. 22. The authors start from a 5-dimensional
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supergravity action and not from a Dirac-Born-Infeld action as we do. There-
fore there is generally a difference by a factor N/4. Note also that here all Nf

flavors contribute equally. In our notation

Gab11 = Gab22 = − iN
2Tω δab

16π
+ . . . , (C.36)

Gab00 =
N2Tq2 δab

16π(iω −Dq2)
+ . . . , (C.37)

Gab03 = Gab30 = − N2Tωq δab

16π(iω −Dq2)
+ · · · , (C.38)

Gab33 =
N2Tω2 δab

16π(iω −Dq2)
+ . . . , (C.39)

where D = 1/(2πT ) .

C.3 Correlation functions

In this section we list the real and imaginary parts of the flavor currents in the
first two flavor-directions a = 1, 2 and in the third Lorentz-direction coupling
to the supergravity-fields X3 and X̃3 (as defined in (3.81)).

ReG3e3(ω ≥ 0) =

ReGe33(ω < 0) = − N q2 (ω2 + µ |ω|)
16π2 [2µ |ω|+ q4/(2πT )2]

, (C.40)

ImG3e3(ω ≥ 0) =

− ImGe33(ω < 0) = −
NT

√
2µ |ω| (ω2 + µ |ω|)

8π [2µ |ω|+ q4/(2πT )2]
, (C.41)

ReG3e3(ω < 0) =

ReGe33(ω ≥ 0) = − NT (ω2 − µ |ω|)

8π
[√

2µ |ω|+ q2/(2πT )
] , (C.42)

ImG3e3(ω < 0) = 0,
ImGe33(ω ≥ 0) = 0. (C.43)
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APPENDIX D

Coupling constant for vector
meson interaction

In this section we show how the coupling constant for the interaction of vector
mesons can be computed, extending the ideas presented in [43]. This coupling
constant in the effective four-dimensional meson theory can be determined by
redefinition of the gauge fields such that the kinetic term has canonical form.
This coupling constant depends on the geometry of the extra dimensions.

First we consider the eight-dimensional theory determined by the DBI
action S(2)

DBI expanded to second order in the fluctuations A,

S
(2)
DBI =

T7(2πα′)2

4

∫
d8ξ
√
−G GµαGνβF̂ανF̂βµ , (D.1)

where G contains the background fields and we simplify the analysis by con-
sidering only Abelian gauge fields. Defining the dimensionless coordinate
ρ̄ = %/R and integrating out the contribution of the S3, we obtain

S
(2)
DBI =

T7(2πα′)2vol(S3)R4

4

∫
d4x

∫
dρ̄
√
−G GµαGµβF̂ανF̂βµ . (D.2)

To obtain a four-dimensional effective theory we have to integrate over the
coordinate ρ̄. This contribution depends on the geometry induced by the ρ̄
dependence of the metric factors. However, we expect that it is independent of
the ’t Hooft coupling λ. We parametrize this contribution by c′A. The kinetic
term of the effective theory is then given by

S
(2)
DBI =

T7(2πα′)2vol(S3)R4c′A
4

∫
d4x F̂µνF̂

µν , (D.3)

where the prefactor may be written as

T7(2πα′)2vol(S3)R4c′A
4

=
λ

g2
YMc

2
A

, (D.4)
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where the numerical values independent of the ’t Hooft coupling are grouped
into the coefficient cA. From this we can read off that a rescaling of the form

Â 7→ cA√
λ
Â (D.5)

casts the Lagrangian into canonical form with a prefactor of 1/g2
YM.



APPENDIX E

Chemical potentials in field
theories: Runaway potential and

Bose-Einstein condensation

In our setup we consider a field theory which is supersymmetric in the far UV.
Its fundamental matter consists of complex scalars (squarks) and fermionic
fields (quarks). In this section we describe the effect of the chemical potential
on the field theory Lagrangian and on the vacuum as e.g. in ref. 162. We
consider a theory with one complex scalar φ and one fermionic field ψ with
the same mass mq coupled to an U(1) gauge field Aν . The time component of
the U(1) gauge field has a non-zero vev which induces the chemical potential
µ,

Aν = µδν0. (E.1)

The Lagrangian is given by

L = − (Dµφ)∗Dµφ−m2
qφ
∗φ− ψ̄( /D +mq)ψ −

1
4
FµνF

µν , (E.2)

where Dµ = ∂µ − iAµ is the covariant derivative and Fµν = ∂µAν − ∂νAµ
the field strength tensor. Expanding the Lagrangian around the non-zero vev
of the gauge field, it becomes

L = −∂µφ∗∂µφ− (m2
q − µ2)φ∗φ+ µJS0 − ψ̄(/∂ +mq)ψ+ µJF0 (E.3)

where JSµ = i ((∂µφ∗)φ− φ∗(∂µφ)), and (Jµ)F = −iψ̄γµψ are conserved
currents. These conserved currents are the population densities NS for the
scalar field and NF for the fermionic field, such that the linear terms in the
Lagrangian are µNS and µNF .

The mass term −(m2
q − µ2)φ2 of the Lagrangian (E.3) introduces an

instability if µ > mq since the corresponding potential V = (m2
q−µ2)φ2+· · ·
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is not bounded from below. In some systems this runaway potential is stabilized
by higher interactions and becomes a Mexican hat potential such that the scalar
condenses and the scalar density becomes non-zero. This condensation is
known as Bose-Einstein condensation (BEC).
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