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Zusammenfassung

Methoden zur Berechnung bestimmter Korrekturen zu effektiven Wirkungen, die
die Niederenergie-Physik von Stringkompaktifizierungen mit offenen Strings er-
fassen, werden erklaert. Zunaechst wird die Form solcher Wirkungen beschrieben
und es werden einige Beispiele fuer Kompaktifizierungen vorgestellt, insbeson-
dere ein Typ I-Stringmodell zu dem ein duales Modell auf Basis des heterotischen
Strings bekannt ist.

Dann werden Korrekturen zur Eichkopplungskonstante und zur eichkinetischen
Funktion diskutiert. Allgemeingueltige Verfahren zu ihrer Berechnung werden
skizziert und auf einige Modelle angewandt. Die explizit bestimmten Korrek-
turen haengen nicht-holomorph von den Moduli der Kompaktifizierungsmannig-
faltigkeit ab. Es wird erklaert, dass dies nicht im Widerspruch zur Holomorphie
der eichkinetischen Funktion steht und wie man letztere aus den errechneten Re-
sultaten extrahieren kann.

Als naechstes werden D-Instantonen und ihr Einfluss auf die Niederenergie-
Wirkung detailliert analysiert, wobei die Nullmoden der Instantonen und globale
abelsche Symmetrien eine zentrale Rolle spielen. Eine Formel zur Berechnung von
Streumatrixelementen in Instanton-Sektoren wird angegeben. Es ist zu erwarten,
dass die betrachteten Instantonen zum Superpotential der Niederenergie-Wirkung
beitragen. Jedoch wird aus der Formel nicht sofort klar, inwiefern dies moeglich
ist. Die erwaehnte Formel scheint zu Ausdruecken zu fuehren, die im Wider-
spruch zur Holomorphie des Superpotentials stehen. Es wird gezeigt, dass sich
nicht-holomorphe Terme zum Teil kuerzen, zum Teil so zusammensetzen, dass das
Ergebnis im Einklang mit der Holomorphie des Superpotentials steht.

Der D-Instanton-Kalkuel wird dann benutzt, um das ADS Superpotential, das
aus der Feldtheorie bekannt ist, abzuleiten. Dass dies moeglich ist ist als erfolg-
reicher Test des Instanton-Kalkuels anzusehen.

D-Instanton-Korrekturen zur eichkinetischen Funktion werden betrachtet. S-
Dualitaet zwischen dem Typ I und dem heterotischen String wird benutzt, um zu
bestimmen, wie die Struktur der Nullmoden der relevanten Instantonen aussieht.
Explizite Rechnungen werden in dem zuvor erwaehnten Typ-I-Modell durchge-
fuehrt. Das aus S-Dualitaet erwartete Ergebnis kann reproduziert werden.

Zuletzt wird eine neue Klasse von D-Instanton-Korrekturen zu holomorphen
Groessen vorgeschlagen. Die Gleichheit zweier Ausdruecke laesst vermuten, dass
es Beitraege zu D-Instanton-Wirkungen von anderen D-Instantonen gibt. Diese
werden als so genannte Poly-Instanton-Korrekturen zu holomorphen Groessen
uminterpretiert. Es wird beschrieben, wie Poly-Instanton-Amplituden zu berech-
nen sind und einige Beispiele solcher Amplituden werden fuer das erwaehnte Typ-
I-Modell bestimmt.
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Chapter 1

Particle physics, quantum gravity

and string theory

1.1 The standard model of particle physics

The standard model of particle physics1 [1, 2] is a very successful theory. It was and
is able to predict the outcome of a vast number of experiments. The theoretical
framework on which it is based is that of local quantum field theory [3, 4, 5, 6, 7, 8].
More precisely, it is a gauge theory with gauge group SU(3) × SU(2) × U(1) and
it is renormalisable. In addition to the gauge bosons, it contains three generations
of quarks and leptons and one scalar SU(2) doublet, the Higgs field.

Despite its successes, there are some questions in the context of particle physics
which one might ask and which it cannot answer. The standard model does not
explain why the gauge group is SU(3)×SU(2)×U(1), why there are three genera-
tions of quarks and leptons and why its parameters, which are the gauge coupling
constants, the Yukawa couplings, the parameters of the Higgs potential and possi-
bly other parameters in the neutrino sector, have the values they have. One might
therefore want to search for a theory that can answer these questions.

There is another feature of the standard model one could consider as motivation
to look for a theory that is, in some sense, more fundamental. When computing
loop diagrams in the standard model one encounters divergences caused by virtual
particles with infinitely high momentum. Such divergences appear in many quan-
tum field theories and can be dealt with by the method of renormalisation. There
are two ways to think about renormalisation. One is to regard it as part of the
process of computing correlation functions in quantum field theory. This makes
sense for theories that are renormalisable and do not contain Landau poles. The

1The standard model of particle physics shall here denote an extension of what used to be
called the standard model. The extension is such that neutrino masses can be incorporated.
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standard model by itself does not fulfil these requirements, as the gauge coupling
constant associated with the U(1) factor in the gauge group becomes larger with
increasing energy. However, it can be embedded in an asymptotically free theory,
e.g. a supersymmetric grand unified theory based on the gauge group SO(10),
at higher energies. This means that it is necessary to go beyond the standard
model, but not beyond the framework of quantum field theory. The other point of
view on renormalisation is to regard the divergences as a hint that the standard
model, or an extension thereof in the framework of quantum field theory, is only
an effective theory which is not valid at arbitrarily high energies. The reason it
nevertheless works so well is that the physics at a certain energy scale decouples
from the physics at different energy scales [9]. Most details of the full theory, which
is valid also at high energies, are unimportant for phenomena at low energies and
can be encoded in a bunch of coupling constants. If one takes this point of view,
one would like to find the theory which is not only an effective one but valid at all
energy scales.

1.2 General relativity and quantum theory

Another very successful theory is the general theory of relativity [10, 11, 12]. It uses
the concept of curved spacetime to describe gravity. More precisely, mass/energy
cause spacetime to curve, i.e. determine the metric of spacetime, and objects move
along curves which are geodesics with respect to this metric. General relativity has
passed many experimental tests, but it seems to be an incomplete theory. There
are solutions [13] to its equations, namely black holes, which contain singularities
signalling the breakdown of the theory. It can be shown that such singularities
inevitably form in realistic spacetimes [14, 15, 16]. Therefore, the theory itself
leads to situations where it is not valid.

Furthermore, a black hole is characterised by a small number of parameters,
such as its mass, spin and charge, but there are many different initial configurations
from which it may have formed. Information seems to have got lost in the process.
In the classical, i.e. non-quantum, theory the information can be thought of as
being hidden behind the event horizon which surrounds the black hole and through
which nothing can escape.

Finally, there is another puzzle in connection with black holes in general rel-
ativity. By taking thermodynamics into account, one is led to believe that black
holes carry enormous amounts of entropy [17, 18]. Entropy usually is a measure of
the number of microstates admissible for a system in a given macrostate. General
relativity does not provide an explanation for a black hole’s entropy in terms of a
vast number of microscopic degrees of freedom. One might therefore want to seek
for either a theory that evades singularities such as black holes or one that can
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handle them. The latter means in particular that it should provide an explanation
for black hole entropy.

The real trouble starts when trying to take both general relativity and quantum
theory into account. One can imagine physical processes where the effects of both
have to be included even if it is possible that no experiment will ever be made for
which this is necessary. One might have hoped that quantum effects would cure
the singularity problem of general relativity but it turns out that they render it
worse. By doing quantum field theory on curved spacetimes - and given that both
quantum field theory and general relativity are experimentally well tested this
appears to be sensible - one finds that black holes emit particles with a thermal
spectrum [19] and thereby decrease their mass. The approximations made in
deriving this effect are valid as long as the mass of the black hole is large. This
implies that one does not know what happens after the black hole has shrunk
below a certain size. There are two possibilities what will eventually happen with
it. Either a remnant remains or it evaporates completely. In the second case,
the seeming fact that information gets lost in black hole formation becomes a real
problem as there no longer is an event horizon behind which the information may
be hidden. It seems bizarre that combining two unitary theories, namely general
relativity and quantum theory, results in a non-unitary evolution of states.

A further problem arises when trying to construct a quantum theory of gravity
by doing quantum field theory based on the action of general relativity. This is
possible but the resulting theory is not renormalisable and therefore only valid up
to a certain energy scale.

In view of all this it should be clear that a theory accounting for both quantum
effects and curvature of spacetime simultaneously is desirable. Such a theory
requires going beyond general relativity and quantum field theory. In order to
construct it one might try by giving up some of the principles of quantum theory
and/or general relativity or one might try to retain them within a new framework.

1.3 M-theory: a candidate

Before talking about string theory [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]
and M-theory, it is necessary to say what one means by them. In principle one
would like to give a full definition, but this is not possible at present. What one can
define is the perturbation series of scattering amplitudes of a weakly coupled string
theory. A (weakly coupled) string theory shall here denote a theory which can,
amongst other things, be used to compute scattering amplitudes. The latter should
be expandable in a power series whose perturbative part is the aforementioned
series. The hope is that there is just one such theory, possibly with two or more
dual descriptions. Saying what one means by a strongly coupled string theory is
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even harder and will not be attempted here.

Studying different string theories has led to the conjecture that there exists a
unique eleven-dimensional theory, dubbed M-theory, which contains in its solution
space various states that can be described by string theories. Many of the prop-
erties of M-theory are derived by studying string theories. M-theory turns out
to in principle have the potential to answer the aforementioned particle physics
questions the standard model cannot answer and to possibly provide a theory
of quantum gravity resolving the issues one encounters when trying to combine
quantum theory and general relativity.

Scattering amplitudes in string theory are ultraviolet-finite at one-loop level
and there are no indications for divergences at higher loop levels. Spacetime sin-
gularities can be dealt with and black hole entropy can be explained in terms of
numbers of microstates [33]. The question whether information is lost has so far
not been answered satisfactorily, but the AdS/CFT correspondence [34, 35], i.e.
the duality of certain string and field theories, suggests that string theory is uni-
tary. By “definition”, all these properties of string theory must also be properties
of M-theory.

Finally, M-theory is a theory that has no adjustable parameters and in this
sense is unique. This is not true for string theory as there are four superstring
theories (type IIA, type IIB, the E8 × E8 theory and the SO(32) theory; The
latter has two different descriptions which are dual to each other.) which means
that there is a discrete parameter. Getting rid of it is one of the advantages
of M-theory over string theory. The fact that M-theory has no free parameters
immediately implies that the question about the values of physical parameters
that is left unanswered by the standard model is absent in M-theory. However, it
is reformulated in string and M-theory as the question which state the universe
is in. At present, it is not clear how many stable or long-lived states the theory
contains and whether there is a dynamical principle to select amongst them. It
therefore seems fair to say that M-theory has the potential to explain the values of
the parameters of the standard model, but that it is unknown whether it actually
does so.

A theory must explain known experimental results and successfully predict the
outcomes of future experiments before it can be regarded as a physical theory. At
present, there is no (direct) experimental evidence for string and M-theory and it
is conceivable that this situation might not change for a long time. Nevertheless,
M-theory remains a candidate and one might want to investigate it further to gain
a better understanding of what it really is and what it implies.
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1.4 Outline and Motivation

There are several avenues one can pursue in order to obtain a better picture of the
nature of M-theory or to derive some of its consequences for the laws of physics.
A lot of research has focused on string compactifications from ten to four dimen-
sions, or, in other words, ten-dimensional string backgrounds, i.e. manifolds plus
field configurations solving the string equations of motion, that are a product
of a (non-compact) maximally symmetric four-dimensional space and a compact
six-dimensional space. The reason to consider such compactifications is that the
low energy limit of their physics can, if the background is appropriately chosen,
reproduce many of the features of the standard model. When studying such four-
dimensional string compactifications, one aims on the one hand at a better un-
derstanding of these models and their implications for low energy physics. On the
other hand one wants to develop methods that can help in constructing models
coming closer and closer to the standard model.

An important tool for such investigations is the low energy effective theory
which captures the physics of the light modes of a string compactification. It is a
four-dimensional quantum field theory coupled to gravity. Knowledge of its action
is of crucial importance in order to understand the vacuum structure of string
compactifications. Starting from the effective action one can check the equations
of motion only for the light modes which at first sight does not seem to be enough
to guarantee that one has found a true solution of the theory. It can however be
shown that having solved the equations of motion for the light modes means that
one has found an approximate solution to the full equations which can be extended
to an exact solution [36, 37].

This work is concerned with certain one-loop and D-instanton corrections to
the effective actions of orientifold compactifications of type IIA and type IIB string
theory with D-branes. After describing the general form of the relevant actions
and introducing several classes of such compactifications, one-loop corrections to
gauge coupling constants and gauge kinetic functions will be computed. These
corrections are interesting for the following reasons. In D-brane models whose low
energy gauge group is or contains the standard model group SU(3)×SU(2)×U(1),
the three gauge couplings associated with this group will in general not all be equal
at one single scale. The reason is that they depend on the volumes of the three
distinct cycles the D-branes wrap and are therefore in general different. This
can be an issue given that they unify in the minimal supersymmetric standard
model. Corrections to the couplings might help to resolve this potential problem.
Another motivation to consider gauge threshold corrections is that precisely the
same expressions which need to be evaluated in order to determine them appear in
D-instanton amplitudes. This fact will be elaborated on in great detail. Computing
gauge threshold corrections is therefore also important in order to understand D-
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instanton effects.

The latter are the subject of the later chapters of this work. They are examples
of non-perturbative effects. Such effects are notoriously difficult to determine in
string theory due to the aforementioned lack of a (non-perturbative) definition of
the theory, but also particularly interesting because they might lead to insights
into what string theory and M-theory really are. In order to make progress, one has
to resort to results and methods from field theory and/or exploit dualities. It is in
this spirit that the D-instanton calculus which will be described at length has been
set up. Apart from the rather general motivation to study non-perturbative effects
in string theory, which is that it might lead to a better understanding of string
and M-theory, they are also of interest for some more concrete reasons related to
the aforementioned string compactifications.

To begin with, they are important for the issue of moduli stabilisation. In four
dimensional string models there are usually many massless fields parameterising
the size and shape of the internal manifold. These fields are called moduli. Their
presence is a problem for standard model-like string compactifications. On the
one hand they can lead to an unobserved variation of coupling constants, on the
other hand they give rise to so called fifth forces modifying the predictions of
Einstein gravity. There are strong experimental bounds on such modifications.
Furthermore, massless fields can lead to difficulties with respect to cosmology.
The standard approach to the moduli problem is to try to make them massive.
Flux compactifications [38, 39, 40, 41] are the most common means to do so. The
best studied example of such constructions are type IIB orientifolds with three-
form flux, where the dilaton and all the complex structure moduli can be rendered
massive. In order to fix the Kaehler moduli, too, one has to resort to other means,
e.g. D-instantons [42].

Non-perturbative effects are also of interest because they can generate certain
couplings which vanish to all orders in perturbation theory. This happens for
example if there are symmetries which forbid these couplings and which are broken
by such effects. As will be explained more thoroughly, global U(1) symmetries
that are only broken by D-instantons frequently appear in D-brane models. For
example, in many such constructions containing a standard model sector, there
is an abelian symmetry forbidding masses for the right-handed neutrinos. Under
certain circumstances, they can however be generated by D-instantons [43, 44, 45,
46, 47, 48]. Other terms which are often only generated by such instantons are
certain Yukawa couplings [49, 50], e.g. the one responsible for the generation of
masses for the up-type quarks in grand unified theories based on the group SU(5)
[51]. Finally, D-instantons can be important in the context of supersymmetry
breaking or its mediation [52, 53, 54, 48, 55, 56, 57].

After having described the D-instanton calculus for corrections to the super-
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potential, it will be used to rederive the ADS superpotential of supersymmetric
quantum chromodynamics (SQCD). The fact that this is possible serves as an im-
portant test of the calculus. The latter will later on be extended to corrections
to the gauge kinetic function. This extension will be checked by applying it to
an open string model with a known heterotic dual. The relevant D-brane instan-
tons correspond to worldsheet instantons in the heterotic string, whose effects can
be computed by standard methods. Finally, it will be shown that the D-brane
instanton calculus leads to the conjecture that there is a new class of instanton
corrections.
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Chapter 2

Four-dimensional effective actions

As was already pointed out in the introduction, the low energy physics of a four-
dimensional string compactification can be described by an effective field theory.
This is true as long as the energies characteristic of the processes one is interested
in are small compared to the string scale and to the scale set by the size of the
compactification manifold. In order to determine the effective action, one needs
to identify all fields whose masses are below the scale up to which one wants the
field theory to be valid, write down the most general Lagrangian for these fields
which respects the relevant symmetries and determine its parameters by equating
S-matrix elements computed in string theory and in a quantum field theory based
on this Lagrangian.

There are two different objects which are frequently referred to as effective
actions [58, 59, 60], namely the one-particle-irreducible effective action Γ(µ), where
µ is the renormalisation scale, and the Wilsonian effective action SW (µ) [61], where
µ is the cutoff scale, below which the effective theory is defined. The Wilsonian
action is obtained by integrating out all fluctuations whose momenta p are bigger
than µ. This means in particular that all particles with masses greater than
µ are integrated out. The Wilsonian action is local. When one uses it as the
starting point to determine correlation functions one has to compute Feynman
diagrams including loops. The loop integrals have to be cut off at µ. By contrast,
correlation functions are obtained from the one-particle-irreducible effective action
just by functional derivation. All quantum effects, including virtual particles with
low momenta, have already been integrated out. The couplings in the one-particle-
irreducible effective action are thus physical quantities that can be measured e.g.
in scattering experiments. Due to infrared divergences the one-particle-irreducible
effective action is non-local.

It can be obtained from the Wilsonian action by computing correlation func-
tions, e.g. in a perturbative expansion using Feynman diagrams. Schematically,
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one can write [58]

exp (iΓ(µ)) = 〈exp (iSW (µ))〉. (2.1)

Ultimately, one is interested in the one-particle-irreducible effective action because
it directly contains the information needed to compare the predictions of the theory
with experiment. Especially when dealing with supersymmetric theories, it is
however often the Wilsonian action that is determined, in particular when deriving
the low energy field theory of a string compactification. This is because it is usually
easier to compute as there are non-renormalisation theorems implying that some
couplings in the Wilsonian action of a supersymmetric theory receive only certain
corrections. This will be elaborated on in the following. Note that in passing
from SW (µ) to Γ(µ) one only has to take low momentum modes into account, the
details of a possible high energy theory, e.g. a string theory, are unimportant. This
means that no information is lost in making the intermediate step of computing
the Wilsonian action rather than the one-particle-irreducible one directly.

The general form of the effective action capturing the low energy physics of a
four-dimensional string compactification will now be described. String theory com-
prises gravitational interactions, so the Lagrangian contains an Einstein-Hilbert
term and is generally covariant. If the compactification preserves supersymmetry,
or slightly breaks it dynamically, the low energy effective theory is a supergravity
theory with vector, chiral and linear multiplets in addition to the gravity multi-
plet. The linear multiplets can usually be dualised into chiral multiplets. Thus
the focus will here be on a locally supersymmetric field theory with a bunch of
vector and chiral superfields. The two-derivative Wilsonian action of such a theory
[62] is characterised by the Kaehler potential K(Φ,Φ∗), the superpotential W (Φ),
the gauge kinetic function fab(Φ) and, if there are abelian factors in the gauge
group, Fayet-Iliopoulos constants ξa. The Kaehler potential is a real gauge invari-
ant function of the chiral multiplets Φ and their complex conjugates Φ∗, whereas
the superpotential and the gauge kinetic function depend holomorphically on the
chiral superfields Φ.

The Lagrangian will now be written down in the limit of global supersymmetry,
i.e. gravity effects are neglected. The reason for this is that the full Lagrangian
is terribly lengthy and will not be needed in the following. The vector superfields
and their field strengths are denoted by V a and W αa. In superspace notation the
Lagrangian reads

L =

(∫
d2θfab(Φ)W αaW b

α + c.c.

)
+

∫
d4θξaV

a

+

∫
d4θK(Φ∗e2gV ,Φ) +

(∫
d2θW (Φ) + c.c.

)
. (2.2)
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The holomorphy of the gauge kinetic function and the superpotential has its reason
in the fact that the relevant terms in the Lagrangian are integrated only over chiral
superspace, as can be seen in (2.2). The bosonic part of (2.2) contains the kinetic
and topological terms

−
1

4
Im(fab(φ))F a

µνF
bµν −

1

8
Re(fab(φ))εµνσρF a

µνF
b
σρ (2.3)

for the gauge field, whose field strength is denoted by F a
µν . The prefactors Im(fab(φ))

and Re(fab(φ)) depend on the scalars φ of the chiral supermultiplets Φ. The kinetic
term

−Kij(φ,φ∗)Dµφ
∗iDµφj (2.4)

for these scalars is written in terms of the gauge covariant derivative Dµφj and
the Kaehler metric

Kij(φ,φ∗) =
∂2K(φ,φ∗)

∂φ∗i∂φj
. (2.5)

By comparing (2.3) with the standard kinetic term g−2F a
µνF

aµν of a renormalis-
able gauge theory, one sees that the (inverse squares of the) gauge couplings ga,
where a labels the different gauge group factors, are given by the imaginary parts
of holomorphic functions. Note that this is true only for the gauge couplings in
the Wilsonian effective action. The one-particle-irreducible effective action is in
general not of the form (2.2) and the running, loop-corrected, physical gauge cou-
plings ga(µ2) appearing in it are not imaginary parts of holomorphic functions.
The non-holomorphic parts of ga(µ2) come from infrared effects and therefore only
from massless modes. This means that they can be computed entirely in the low
energy theory.

One finds that the running, physical gauge couplings ga(µ2) do not only depend
on the the gauge kinetic function(s), but also on the Kaehler potential K and
the Kaehler metrics Kab

r (µ2) of the charged matter fields transforming in some
representation r of the gauge group. Focusing for simplicity on diagonal gauge
kinetic functions, i.e. fab = faδab, the formula relating ga(µ2) and fa is [58, 63, 64,
59, 65]

16π2g−2
a (µ2) = 16π2Im(fa) + ba ln

Λ2

µ2
+ caK + 2Ta(adj) ln g−2

a (µ2)

−2
∑

r

Ta(r) ln det Kab
r (µ2). (2.6)

The beta function coefficient ba of the gauge group factor Ga is given by ba =∑
r nrTa(r) − 3Ta(adj) and ca is defined as ca =

∑
r nrTa(r) − Ta(adj). The sums
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over r run over the representations of Ga, nr is the number of chiral multiplets
transforming in the representation r and Ta(r) = Trr(T 2

(a)), where T(a) are the
generators of Ga. The scale at which the gauge coupling is defined is denoted by
Λ.

The holomorphy of W and fab puts strong constraints on which fields these
quantities can depend on. The reason is that there are often symmetries in string
theory models under which the real parts of certain complex fields shift. Due to
holomorphy, W and fab cannot depend only on the imaginary parts of those fields
and due to the shift symmetry they cannot depend on the full complex fields.
This means that there are fields of which W and fab are independent as long as
the symmetries remain intact. They are usually only broken by instantons which
means that the only terms in W and fab which depend on the aforementioned fields
are generated non-perturbatively. As will be explicated in section 4.2, it is possible
to formulate so called non-renormalisation theorems. These theorems state which
kind of perturbative and non-perturbative corrections certain quantities can receive
and what these corrections look like.

It was already mentioned that the parameters of the effective field theory cap-
turing the low energy physics of a string compactification are determined by equat-
ing S-matrix elements computed in string and field theory. For the effective su-
pergravity action just described this amounts to determining the gauge kinetic
function, the superpotential and the Kaehler potential. In the next chapter, some
examples of string compactifications will be introduced. It will be described which
fields are contained in the low energy effective theories of these compactifications
and what the tree-level expressions for the gauge kinetic functions look like. In
the following chapter it will be discussed how to compute one-loop corrections to
gauge coupling constants and gauge kinetic functions. The subsequent chapters
are concerned with non-perturbative contributions to superpotentials and gauge
kinetic functions. In order to be able to compute them the holomorphy of W and
fab will be crucial.
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Chapter 3

Overview of some examples of

four-dimensional open string

compactifications

3.1 Intersecting D6-brane models on Calabi-Yau

manifolds

The starting point for models with intersecting D6-branes [66, 67, 68, 69, 70, 71, 72,
73]on Calabi-Yau manifolds [74] is the ten-dimensional type IIA theory. Massless
bosonic fields arise in the NSNS as well as in the RR sector. In the former there are
the graviton, the Kalb-Ramond two-form B2 with three-form field strength H3 and
the (ten-dimensional) dilaton φ10, whereas in the latter one finds p-form potentials
Cp with odd p. These have (p+1)-form field strengths which are subject to duality
relations. To get a four-dimensional model preserving eight supercharges, one
compactifies the theory on a three complex dimensional Calabi-Yau manifold CY3,
i.e. one makes the following ansatz for the ten-dimensional spacetime:

M10 = R
4 × CY3 (3.1)

The Calabi-Yau manifold comes equipped with a Kaehler form J and a holomor-
phic three-form Ω3. Its volume will be denoted by VCY3.

In order to have non-abelian gauge interactions in the low energy effective
theory and to break another half of the supersymmetries one can orientifold this
theory and introduce stacks of D6-branes filling out the external four-dimensional
space as well as a three-dimensional submanifold of the internal Calabi-Yau space.
Orientifolding means that one divides the theory by the symmetry

Ω(−1)FL σ̄. (3.2)
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Ω is the world-sheet parity operator, i.e. it inverts the orientation of the string.
FL is the spacetime fermion number in the left-moving sector and σ̄ is an antiholo-
morphic involution of the internal manifold. The fixed point set of this involution
is a three-cycle, whose homology class will be denoted πO6. The product of this
three-cycle and the four-dimensional external space is referred to as the orientifold
plane.

The topological data of the Calabi-Yau manifold allows one to determine the
massless (closed string) spectrum of the four-dimensional low energy effective the-
ory. The fields relevant in the following are the complex structure moduli U (i),
i ∈ {0, ..., h21}, and the Kaehler moduli T (i), i ∈ {1, ..., h−

11}. h21 is the num-
ber of harmonic (2, 1)-forms on the Calabi-Yau manifold and h−

11 is the num-
ber of two-cycles that are anti-invariant under the antiholomorphic involution σ̄.
In order to be able to properly define these moduli, one first introduces a basis
(Ai, Bi), i ∈ {0, ..., h21}, of three-cycles satisfying Ai ◦ Aj = 0, Bi ◦ Bj = 0 and
Ai ◦ Bj = δij as well as a basis (ai, bi), i ∈ {0, ..., h21}, of harmonic three-forms
obeying

∫
CY3

ai ∧ aj = 0 =
∫

CY3
bi ∧ bj and

∫
CY3

ai ∧ bj = δij . It is convenient to
choose theses bases dual to each other, i.e.

∫
Ai

aj = δij and
∫

Bi
bj = δij , and such

that the cycles Ai are invariant under the involution, and the Bi anti-invariant.
The complex structure moduli are then given by

U (i) =

∫

Ai

C3 + ie−φ4

∫

Ai

Re(Ω3) . (3.3)

The four-dimensional dilaton φ4 and the ten-dimensional one φ10 are related by
φ4 = φ10 − ln(VCY3)/2. Similarly, denoting a basis of anti-invariant two-cycles by
Ci, i ∈ {1, ..., h−

11}, the Kaehler moduli are

T (i) =

∫

Ci

B2 + i

∫

Ci

J . (3.4)

The next step is to introduce stacks of D6-branes wrapping three-dimensional
subspaces of the internal manifold. In order to be able to perform the orientifold
projection consistently, the model has to contain the orientifold images of the
branes, too. A brane stack labelled a consists of Na branes and wraps a three-
cycle in the homology class πa. Both the orientifold plane and the D-branes are
charged under the RR seven-form potential C7. These couplings are described by
the terms

SCS
O6 = −4µ6

∫

R4×πO6

C7 + ... (3.5)

and

SCS
D6a

= µ6Na

∫

R4×πa

C7 + ... (3.6)
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in the Chern-Simons actions. Using (3.5), (3.6) and the kinetic term

Skin ∝

∫

M10

dC7 ∧ )dC7 (3.7)

for the seven-form, which is part of the ten-dimensional action of the Type IIA
theory, one derives the equation of motion for the seven-form. Summing over all
stacks of branes and taking also their orientifold images into account, it becomes

d ) dC7 ∝

∑

a

Na (δ(πa) + δ(π′
a)) − 4δ(πO6). (3.8)

δ(πa) denotes the Poincare dual three-form of πa and π′
a is the orientifold image of

πa. Equation (3.8) determines the tadpole cancellation condition to be

∑

a

Na(πa + π′
a) = 4πO6. (3.9)

If a D6-brane is to preserve some supersymmetry, it has to wrap a special La-
grangian cycle [75, 76]. The latter is a submanifold fulfilling the following condi-
tions:

J |πa = 0 (3.10)

Im (exp(iφa)Ω3) |πa = 0 (3.11)

φa is a calibration phase. If the whole model is to be supersymmetric, all branes
have to be calibrated with the same phase. This phase is determined by the
antiholomorphic involution σ̄ that is part of the orientifold projection (3.2) via

σ̄(Ω3) = exp(iφ)Ω̄3. (3.12)

The supersymmetry condition is thus:

φ = φa ∀
a

(3.13)

The full gauge group of the model is a product of unitary, orthogonal and
unitary symplectic groups. A stack a of branes not invariant under the orientifold
projection yields a factor U(Na), whereas a stack that is mapped to itself by the
orientifold projection yields a factor SO(Na) or USp(Na). The chiral spectrum
is determined by the topological intersection numbers of the three-cycles the D-
branes wrap and is given in table 3.1.

The tadpole cancellation condition (3.9) ensures that all purely non-abelian
anomalies cancel, i.e. all triangle graphs with three non-abelian gauge bosons are
zero. However, this is not true for anomalies involving abelian gauge bosons. More
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Sym. rep. of U(Na) 1/2 (π′
a ◦ πa − πO6 ◦ πa)

Antisym. rep. of U(Na) 1/2 (π′
a ◦ πa + πO6 ◦ πa)

Antifund.×Fund. rep. of U(Na) × U(Nb) πa ◦ πb

Fund.×Fund. rep. of U(Na) × U(Nb) π′
a ◦ πb

Table 3.1: Intersecting D6-branes: Chiral spectrum

precisely, the mixed abelian/non-abelian anomaly, related to a triangle graph with
two non-abelian and one abelian gauge bosons, the mixed abelian/gravitational
anomaly, which comes from a triangle with two gravitons and an abelian gauge
boson, and the purely abelian anomaly, arising from a graph with three abelian
gauge bosons, only vanish upon taking the Green-Schwarz mechanism [77, 78, 79,
80, 67] into account.

To see how this happens, one first writes the homology classes of the submani-
folds which brane stack a, its orientifold image and the orientifold plane wrap in
terms of the basis of three-cycles introduced earlier:

πa = mi
aAi + ni

aBi, π′
a = mi

aAi − ni
aBi, πO6 = mi

OAi (3.14)

The RR three- and five-forms are expanded in the basis of three-forms as follows:

C3 = Re(U (i))ai, C5 = x(2)
i bi (3.15)

As C3 and C5 are Hodge dual in ten dimensions, Re(U (i)) and x(2)
i are dual in four

dimensions.
The Chern-Simons actions for the D-branes and the orientifold plane contain

the terms

SCS
D6a

=

∫

R4×πa

C5 ∧ tr(F ) + C3 ∧
(

tr(F ∧ F ) −
tr(1)

48
tr(R ∧ R)

)
+ ... (3.16)

SCS
O6 =

∫

R4×πO6

C3 ∧ tr(R ∧ R) + ... , (3.17)

where R is the spacetime curvature two-form and F the field strength of the U(N)
gauge field on the D-brane. Upon dimensional reduction (3.16) and (3.17) lead to
the following terms in the four-dimensional Lagrangian:

L =
1

24
tr(R ∧ R)

(
mi

ORe(U (i))
)

+

(
tr(F ∧ F ) −

tr(1)

48
tr(R ∧ R)

)(
2mi

aRe(U (i))
)

+tr(F ) ∧
(
2ni

ax
(2)
i

)
+ ... (3.18)
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It is possible to show that upon taking these terms into account all the afore-
mentioned anomalies cancel and the gauge bosons of the seemingly anomalous
symmetries become massive, the longitudinal degree of freedom being a linear
combination of RR sector fields. It is also possible that abelian gauge bosons
associated with non-anomalous symmetries become massive. Thus, in order to
determine the massless spectrum correctly, one has to take the couplings (3.18)
into account. Furthermore, the Green-Schwarz mechanism implies that under a
U(1)a, where U(1)a is the diagonal U(1) subgroup of the U(Na) gauge group on
brane stack a, gauge transformation

Aa
µ → Aa

µ + ∂µα
a (3.19)

the real parts of the complex structure moduli (3.3) transform by shifts:

U (i) → U (i) − 2Nan
i
aα

a (3.20)

The abelian symmetries, whose associated gauge bosons are massive, do not ap-
pear as local gauge symmetries in the low energy effective theory, but are global
symmetries to all orders in the string perturbation series. They are in general
broken by instantons as will be explained in chapter 5.

The gauge coupling on a stack a of D6-branes can be computed by dimension-
ally reducing the Dirac-Born-Infeld action

SDBI
D6a

∝

∫

R4×πa

d7x exp(−φ10)
√
−det(gµν + Fµν) (3.21)

of the D6-branes. Here, gµν is the pullback of the spacetime metric onto the
worldvolume of the brane and Fµν once more denotes the field strength of the
brane’s gauge field. Upon taking the Chern-Simons terms in (3.16) into account,
too, one finds that the gauge kinetic function becomes

fa =

∫

πa

C3 + ie−φ4

∫

πa

Re(exp(iφa)Ω3) =
h21∑

i=0

mi
aU

(i). (3.22)

3.2 Intersecting D6-brane models on toroidal or-

bifolds

Models on orbifolds [81, 82] can be defined as certain two-dimensional conformal
field theories [83, 84, 85, 86], which can be constructed explicitly. In such models,
D-branes can be described by boundary states. Equivalently, one considers open
strings whose endpoints are confined to a certain subspace of the full space, i.e.
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open strings with appropriate boundary conditions. In both descriptions, one is
dealing with boundary CFT.

Toroidal orbifolds are tori divided by a discrete group. To get four-dimensional
models one considers a six-torus T 6 and the orbifold group is ZN × ZM , where
N and M are integers. As these backgrounds are limiting cases of Calabi-Yau
manifolds, much of what was said in the previous section carries over to these
models.

To start with, one has to compute the torus amplitude, or, in other words, the
modular invariant partition function of closed strings on this background. It is
given by a trace over all states in all (twisted and untwisted; NS and R) sectors of
the CFT

T =

∫

F

d2τ

τ2
trT,U

NS,R

(
PGSOPorb exp(2πiτ(L0 −

c

24
)) exp(−2πiτ ∗(L̃0 −

c̃

24
))

)
, (3.23)

where

PGSO =

(
1 + (−1)F

)(
1 + (−1)

eF+eα
)

4
(3.24)

is an operator implementing the Gliozzi-Scherk-Olive projection. F and F̃ are the
left- and right-moving worldsheet fermion numbers and α̃ is 1 in the right-moving
R sector and 0 in the right-moving NS sector. The orbifold projector is given by

Porb =
1

NM

∑

h1∈ZN

∑

h2∈ZM

h1h2 . (3.25)

The next step is to define an orientifold projection, which allows one to compute
the Klein bottle amplitude

K =

∫
dt

t
trT,U

NS,R

(
Ω(−1)FLRPGSOPorb

exp(2πiτ(L0 −
c

24
)) exp(−2πiτ ∗(L̃0 −

c̃

24
))

)
, (3.26)

where R is an operator that inverts three coordinates of the six-torus. Alterna-
tively, the orientifolding of the theory can be accomplished by introducing so-called
crosscap states |C6〉. The Klein bottle amplitude can also be computed as an over-
lap of these crosscap states

K =

∫
dl〈C6| exp(−2πlH)|C6〉, (3.27)

with H the closed string worldsheet Hamiltonian. The orientifolding leads to
tadpole divergences which need to be cancelled by the introduction of D6-branes.
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They are described by boundary states |B6〉 and the annulus diagram can be
computed as the overlap of these boundary states

A =

∫
dl〈B6| exp(−2πlH)|B6〉. (3.28)

Again, there is an alternative way to determine the annulus amplitude which is by
computing a trace in the appropriate open string Hilbert space

A =

∫
dt

t
trT,U

NS,R

(
PGSOPorb exp(−2πt(L0 −

c

24
))

)
. (3.29)

Finally, the Moebius strip amplitude is either given by an overlap of a boundary
and a crosscap state or by the trace in the open string Hilbert space with the
orientifold projection operator inserted:

M =

∫
dl〈C6| exp(−2πlH)|B6〉

=

∫
dt

t
trT,U

NS,R

(
Ω(−1)FLRPGSOPorb exp(−2πt(L0 −

c

24
))

)
(3.30)

In these models, the gauge group is a product of unitary, orthogonal and unitary
symplectic groups, too. Its precise form as well as the spectrum can be obtained
from the open and closed string partition functions, i.e. the torus, the Klein bottle,
the annulus and the Moebius strip. As in the case of D6-brane models on Calabi-
Yau manifolds, the Green-Schwarz mechanism has to be taken into account in
order to obtain the exact spectrum. The supersymmetry condition in the orbifold
CFT models is just the vanishing of the partition functions. The gauge kinetic
functions are most easily obtained from (3.22) applied to the orbifold case.

3.2.1 An example with bulk branes

In this and the next subsections some more details about the orbifolds with orbifold
group Z2×Z2 are given [72, 87]. There are two variants of this orbifold, differing in
how the generators of the Z2 factors act on the fixed points of the other factor, and
therefore in their Hodge numbers. This subsection is concerned with the example
with Hodge number h21 = 3, the case with h21 = 51 is discussed in the next
subsection.

Due to the orbifolding the six-torus splits into a direct product of three two-
tori. The non-trivial orbifold group elements each invert two of the two-tori and
leave the third invariant. The fundamental one-cycles of these tori will be denoted
[ai] and [bi], i ∈ {1, 2, 3}, and their sizes are measured by the radii R(i)

1 and R(i)
2 .

There are also discrete degrees of freedom (βi ∈ {0, 1/2}) given by possible tilts
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of the tori. The complex structure and Kaehler moduli are again denoted by U (i)

and T (i) and their imaginary parts can be written in terms of the dilaton and the
radii. Each of the three two-tori contains four points that are fixed points of the
orbifold action. These properties of the tori are illustrated in figure 3.1. In the

β =0i
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y
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RR1 1
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Figure 3.1: Geometry of the two-tori, orbifold fixed points and one-cycles

following, only D6-branes wrapping a three-cycle that is a product of a one-cycle
on each of the three two-tori will be considered. These three one-cycles are written
ni[a′i] +mi[bi], where [a′i] = [ai] +βi[bi]. (ni, mi) are called the wrapping numbers
and encode the homological charge of the branes. Upon defining m̃i = mi + βini,
the one-cycles can also be written as ni[ai] + m̃i[bi]. The length of the one-cycle
wrapped by the brane on the i’th torus is given by

Li =

√
(niR(i)

1 )2 + (m̃iR(i)
2 )2 (3.31)

and the (tree level) gauge coupling on the brane becomes [88]

g−2
tree = e−φ10

∏

i

Li = e−φ4
∏

i

(Im(T (i)))−1/2Li

= (Im(U (0)))1/4
∏

i

(Im(U (i)))1/4(Im(T (i)))−1/2Li. (3.32)

The supersymmetry condition amounts to
∑3

i=1 θi = 0 mod 2π with tan θi =

m̃iR(i)
2 /niR(i)

1 . Taking it into account the gauge kinetic function on the brane is
given by [88]

ftree = U (0)n1n2n3 −
3∑

i&=j &=k=1

U (i)nim̃jm̃k. (3.33)
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The antiholomorphic involution, whose fixed point set defines the orientifold
plane(s), inverts the y-coordinate (see figure 3.1) on all three tori. The homol-
ogy class of the orientifold plane is

πO = 8[a1][a2][a3] −
∑

i&=j &=k &=i

23−2βj−2βk

[ai][bj ][bk] (3.34)

and can be encoded in the following set of wrapping numbers:

(n1
O0

, m̃1
O0

, n2
O0

, m̃2
O0

, n3
O0

, m̃3
O0

) = (2, 0, 2, 0, 2, 0) (3.35)

(n1
O1

, m̃1
O1

, n2
O1

, m̃2
O1

, n3
O1

, m̃3
O1

) = (2, 0, 0, 21−2β2
, 0,−21−2β3

) (3.36)

(n1
O2

, m̃1
O2

, n2
O2

, m̃2
O2

, n3
O2

, m̃3
O2

) = (0,−21−2β1
, 2, 0, 0, 21−2β3

) (3.37)

(n1
O3

, m̃1
O3

, n2
O3

, m̃2
O3

, n3
O3

, m̃3
O3

) = (0, 21−2β1
, 0,−21−2β2

, 2, 0) (3.38)

The wrapping numbers of the orientifold image of a brane are given by (ni,−m̃i).
With this information one can either determine the tadpole cancellation conditions
from (3.9) or from the partition functions that will be given later on. They read

∑

a

Nan
1
an

2
an

3
a = 16

∑

a

Nan
1
am̃

2
am̃

3
a = −24−2β2−2β3

∑

a

Nan
2
am̃

3
am̃

1
a = −24−2β3−2β1

∑

a

Nan
3
am̃

1
am̃

2
a = −24−2β1−2β2

, (3.39)

where the sums run over the different stacks of branes labelled a and Na is the
number of branes on stack a.

Using the notation introduced above, it is now possible to write down the
open string partition functions for this background. They can be determined by
constructing the boundary and crosscap states and computing overlaps [89, 90, 91,
92, 93, 94, 95]. For the annulus diagrams, three cases will be distinguished.

Case 1: Both boundaries of the annulus are on the same stack of branes. The
amplitude can be written as [66]

Aa = N2
a

∫ ∞

0

dl
ϑ4

3 − ϑ4
4 − ϑ4

2 + ϑ4
1

η12

∏

i

(Li
a)

2Z i
a(l)

R(i)
1 R(i)

2

, (3.40)

where ϑ = ϑ(0, 2il), η = η(2il) and the following lattice sum has been defined [96]:

Z i
a(l) =

∑

p,q

exp

(
−

πl(Li
a)

2

(Im(T (i)))2

∣∣p + T (i)q
∣∣2

)
(3.41)
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Here and in the following, several quantities carry a label (e.g. a in the above
formulas) denoting the brane stack to which they refer.

Case 2: The boundaries of the annuli are on branes that are parallel on one
torus and intersect at non-trivial angles on the other two. In the following it will be
assumed without loss of generality that they are parallel on the first torus(i = 1).
The amplitude is [66]:

Aab = NaNb

∫ ∞

0

dl
∑

α,β

(−1)2(α+β)
ϑ
[
α
β

]
(0)2

η6

(L1
a)

2Z1
a(l)

R(1)
1 R(1)

2

3∏

j=2

Ij
ab

ϑ
[
α
β

]
(θj

ab)

ϑ
[
1/2
1/2

]
(θj

ab)
(3.42)

The branes intersect at an angle θj
ab = θj

a − θj
b on the j’th torus. The intersection

number is given by Ij
ab = (m̃j

an
j
b − m̃j

bn
j
a).

Case 3: The annulus is stretched between two branes intersecting non-trivially
on all three tori [66]:

Aab = NaNb

∫ ∞

0

dl
∑

α,β

(−1)2(α+β)
ϑ
[
α
β

]
(0)

η3

3∏

i=1

I i
ab

ϑ
[
α
β

]
(θi

ab)

ϑ
[
1/2
1/2

]
(θi

ab)
(3.43)

From the partition functions (transformed into loop channel) one can read off
the open string spectrum. One finds the following massless states: In case 1
there are a vector multiplet and three chiral multiplets transforming in the adjoint
representation of U(Na), in case 2 one finds Iab =

∏3
j=2 Ij

ab hypermultiplets in the

bifundamental representation of U(Na) × U(Nb) and case 3 yields Iab =
∏3

i=1 I i
ab

chiral multiplets in the bifundamental representation of U(Na) × U(Nb). In order
to determine the full open string spectrum one needs to take all annuli stretching
between the different stacks of branes (as well as the Moebius strip diagrams to
be given in the sequel) into account.

When writing down the Moebius strip diagrams, it is also useful to distinguish
three cases.

Case 1: The brane and the orientifold plane are parallel on all three tori. The
amplitude can be written as

Ma = Na

∫ ∞

0

dl
ϑ4

3 − ϑ4
4 − ϑ4

2 + ϑ4
1

η12

∏

i

(Li
a)

2Z i
a(4l)

R(i)
1 R(i)

2

, (3.44)

where ϑ = ϑ(0, 2il + 1/2) and η = η(2il + 1/2).
Case 2: The brane and the orientifold plane are parallel on one torus and

intersect at non-trivial angles on the other two. In the following it will be assumed
without loss of generality that they are parallel on the first torus(i = 1). The

30



amplitude is:

MaOk
= Na

∫ ∞

0

dl
∑

α,β

(−1)2(α+β)
ϑ
[
α
β

]
(0)2

η6

(L1
a)

2Z1
a(4l)

R(1)
1 R(1)

2

3∏

j=2

Ij
aOk

ϑ
[
α
β

]
(θj

aOk
)

ϑ
[
1/2
1/2

]
(θj

aOk
)

(3.45)

The intersection numbers Ij
aOk

and angles θj
aOk

involving one stack of branes and
the orientifold planes are defined in analogy to the quantities involving two stacks
of branes using the wrapping numbers of the orientifold plane (3.38).

Case 3: The brane and the orientifold plane intersect non-trivially on all three
tori:

MaOk
= Na

∫ ∞

0

dl
∑

α,β

(−1)2(α+β)
ϑ
[
α
β

]
(0)

η3

3∏

i=1

I i
aOk

ϑ
[
α
β

]
(θi

Ok
)

ϑ
[
1/2
1/2

]
(θi

aOk
)

(3.46)

As was already mentioned, the Moebius strip diagrams need to be taken into
account when determining the open string spectrum. By doing so one finds that
the gauge symmetry is reduced from U(Na) to USp(Na) or O(Na) if the brane
is mapped to itself by the orientifold projection. The Moebius strip diagrams,
together with the annulus diagrams stretching between a brane and its orientifold
image, are also important in order to determine the number of multiplets in the
symmetric and antisymmetric representation of U(Na).

3.2.2 An example with fractionally charged branes

This subsection is concerned with a toroidal orbifold which is similar to that de-
scribed in the previous one. The orbifold group is again Z2 × Z2, but in this case
h21 = 51 which means that there are many more three-cycles the D6-branes can
wrap around. However, in the orbifold limit considered here, most of them are
collapsed to zero size. The moduli whose imaginary parts are the complex struc-
ture moduli describing the sizes of these collapsed three-cycles are twisted sector
fields denoted by Wikl and W̃ikl, i ∈ {1, 2, 3}, k, l ∈ {1, 2, 3, 4}. They arise at the
fixed point denoted kl in that twisted sector which comes from the orbifold group
element leaving the i’th torus invariant. The real parts of these fields are twisted
RR sector fields.

The boundary states describing the D-branes on the background under discus-
sion are a sum of two parts. One is identical to the boundary states of the previous
section (up to normalisation) and the other one consists of states in the twisted
sectors of the orbifold CFT [97, 89, 90, 91, 92, 93, 94, 95]. Some more data is
therefore needed to fully characterise a D-brane on this background [87]. More
precisely, in addition to the wrapping numbers one needs to specify the twisted
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RR charges εi ∈ {−1, 1}, subject to ε1 = ε2ε3, the positions δi ∈ {0, 1} and the
discrete Wilson lines λi ∈ {0, 1}. If the brane is charged under fixed point 1 (see
figure 3.1) on the i’th torus, δi=0, otherwise δi = 1. The values of εi, δi and λi can
be used to determine the charges εi

kl ∈ {−1, 0, 1}, i ∈ {1, 2, 3}, k, l ∈ {1, 2, 3, 4},
of the brane under the fixed point labelled kl in the i’th twisted sector. All the
symbols introduced above can carry a further index denoting the brane stack to
which they refer. The quantities σi

ab =
∑4

k,l=1 εi
a,klε

i
b,kl/4 and σab =

∑3
i=1 σi

ab will
be useful in the following.

Most formulas of the last subsection, notably (3.31) and (3.32), are still valid,
(3.33) however is replaced by

ftree = U (0)n1n2n3 −
∑

i&=j &=k

U (i)nim̃jm̃k (3.47)

+
∑

i

∑

k,l

ni(εi
kl + εi

R(k)R(l))Wikl + m̃i(εi
kl − εi

R(k)R(l))W̃ikl.

The function R (which should really carry an index i) is given by R(k) = k
for βi = 0 and R({1, 2, 3, 4}) = {1, 2, 4, 3} for βi = 1/2. The coupling to the
twisted sector fields can be determined by an anomaly analysis [98]. The tadpole
cancellation conditions are modified by some signs and completed by those arising
in the twisted sectors.

∑

a

Nan
1
an

2
an

3
a = −16

∑

a

Nan
1
am̃

2
am̃

3
a = −24−2β2−2β3

∑

a

Nan
2
am̃

3
am̃

1
a = −24−2β3−2β1

∑

a

Nan
3
am̃

1
am̃

2
a = −24−2β1−2β2

(3.48)

∑

a

Nan
i
a(ε

i
a,kl + εi

a,R(k)R(l)) = 0

∑

a

Nam̃
i
a(ε

i
a,kl − εi

a,R(k)R(l)) = 0 (3.49)

The open string partition functions for the background considered here will be
given in the following [99, 98]. Four cases will be distinguished.

Case 1: Both boundaries of the annulus are on the same stack of branes. The
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amplitude is

Aa = N2
a

∫ ∞

0

dl

[
ϑ4

3 − ϑ4
4 − ϑ4

2 + ϑ4
1
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1 R(i)

2

+16
3∑

i=1

σi
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2
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(Li
a)

2Z i
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R(i)
1 R(i)

2

]

, (3.50)

where the lattice sum [96]

Z i
ab =

∑

p,q

exp

(
−

πl(Li
a)

2

(Im(T (i)))2

∣∣p + T (i)q
∣∣ + iπp(δi

a − δi
b) + iπq(λi

a − λi
b)

)

has been used.
Case 2: The two branes lie on top of each other on the torus before orbifolding

and carry the same Wilson lines, i.e. θi
a = θi

b, Li
a = Li

b, δi
a = δi

b and λi
a = λi

b, but
differ in (some of) their twisted charges εi such that they define different brane
stacks. The equalities above imply σi

ab = ±1. The amplitude becomes

Aab = NaNb

∫ ∞

0

dl

[
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3 − ϑ4
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1
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2
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η6ϑ2
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2Z i
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1 R(i)

2

]

. (3.51)

Case 3: The annulus has its boundaries on branes that are in the same bulk
homology class of the torus, which implies θi

a = θi
b and Li

a = Li
b, but differ in (some

of) their positions and Wilson lines, i.e. δi
a *= δi

b and λi
a *= λi

b. The amplitude takes
the same form as that of case 2.

Case 4: The branes intersect at non-trivial angles on all three two-tori. The
amplitude can be written

Aab = NaNb

∫ ∞

0

dl

[

8
∑

α,β

(−1)2(α+β)
ϑ
[
α
β

]
(0)

η3

3∏
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I i
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ϑ
[
α
β

]
(θi

ab)
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]
(θi
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(3.52)

+32
3∑

i=1

I i
abσ

i
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∑

α,β

(−1)α+β
ϑ
[
α
β

]
(0)

η3
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(θi
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ϑ
[
1/2
1/2

]
(θi
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3∏

j=1, &=i

ϑ
[
|α−1/2|

β

]
(θj

ab)

ϑ
[

0
1/2

]
(θj

ab)

]

.

The massless open string spectrum can be read off from the partition functions
above after transforming them into loop channel. In case 1 one finds a vector mul-
tiplet in the adjoint representation of U(Na). Case 2 yields a hypermultiplet in the
bifundamental representation of U(Na)×U(Nb), whereas there is no massless mat-
ter from case 3. Finally, in case 4, there are |Υab|, Υab = (

∏3
i=1 I i

ab)/4+
∑3

i=1 I i
abσ

i
ab,

chiral multiplets in the bifundamental representation of U(Na) × U(Nb).
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3.3 An orbifold compactification of the type I

string

Constructions of orbifold models based on the type I string are rather similar to
those based on orientifolds of type IIA strings, which were discussed in the previous
section. The underlying closed string theory is however the type IIB theory and
the orientifold projection acts only on the worldsheet and not in spacetime. The
projector is the worldsheet parity operator Ω. In the case of orbifold compactifi-
cations one nevertheless has to deal with operators acting both on the worldsheet
and in spacetime when combining the orientifold projector with elements of the
orbifold group.

The orbifold discussed in this section [100] is again an orbifold of a six-torus
that splits into a direct product of three two-tori. The orbifold group is once more
Z2 × Z2, but in this case its elements not only invert two tori but also shift some
coordinates by half a lattice vector. More precisely, the three non-trivial elements
Θ, Θ′ and Θ′′ of Z2 × Z2 act on the coordinates xa, a ∈ {1, ..., 6}, of the torus as
follows:

(x1, x2, x3, x4, x5, x6)
Θ→ (x1 + 1/2, x2,−x3,−x4,−x5 + 1/2,−x6)

(x1, x2, x3, x4, x5, x6)
Θ′

→ (−x1 + 1/2,−x2, x3 + 1/2, x4,−x5,−x6)

(x1, x2, x3, x4, x5, x6)
Θ′′

→ (−x1,−x2,−x3 + 1/2,−x4, x5 + 1/2, x6) (3.53)

The massless spectrum of this model will contain Kaehler and complex structure
moduli parameterising the size and shape of the tori, too. In this case, the tilts
of the two-tori are continuous parameters such that both the real and imaginary
parts of the complex structure moduli U (i) are NSNS sector fields and describe the
shape of the torus. The sizes of the tori are again given by the imaginary parts
of the Kaehler moduli T (i). Their real parts are the RR two-form, which is part
of the massless spectrum of the ten-dimensional Type I theory, integrated over
the two-tori. There is another modulus, denoted S, that will be important in the
following. Its imaginary and real parts are the dilaton and the universal axion,
the latter being the Hodge dual of the four-dimensional RR 2-form.

The torus partition function can be determined to be [101, 100]
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(3.54)

where the lattice sums are given by

Λi

[
α

β

]
=

Im(T (i))

τ2

∑

w1,w2,l1,l2

exp

[

2πiT (i)det(A)

−
πIm(T (i))

τ2Im(U (i))
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(
1, U (i)

)
A

(
τ
−1

)∣∣∣∣
2
]

, (3.55)

with the matrix of winding and (Poisson resummed) momentum modes

A =

(
w1 + α l1 + β

w2 l2

)
. (3.56)

The Klein bottle amplitude is

K =

∫ ∞
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8t3
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with the momentum respectively winding sums given by

ΛM
i [α, β, γ] =

∑

m1,m2

exp

[

2πiα(m1 + β)

−
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(3.58)

ΛW
i [α] =
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exp

[
−

πtIm(T (i))

Im(U (i))
|(w1 + α) + U (i)w2|2

]
. (3.59)

Finally, the annulus and Moebius strip diagrams are:
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(3.61)

In the Klein bottle amplitude the argument of the ϑ/η-functions is 2it, in the
annulus amplitude it is it and in the Moebius strip it + 1/2.

The partition functions given above allow one to extract the string spectrum.
At the massless level one finds the gravity multiplet, vector multiplets transforming
in the adjoint representation of SO(32) and the aforementioned moduli chiral
multiplets. The low energy effective theory is therefore a pure SO(32) gauge theory
coupled to supergravity and contains in addition seven neutral chiral multiplets.

As the model described in this section is based on a freely acting orbifold, one
expects, according to the adiabatic argument [102], that it should have an S-dual
heterotic description. It is indeed possible to find this dual model, but there is
a subtlety [100]. In order to preserve the full SO(32) gauge group, the orbifold
generators must act trivially on the left-moving fermions of the heterotic string.
Choosing the same action of the orbifold group on the six torus coordinates as in
the Type I case would not lead to a modular invariant partition function. The
way out is to replace the purely geometric orbifold action of the Type I case with
a non-geometric one [100]. More precisely, instead of the shift

X → X + πR (3.62)

one takes the asymmetric shift [100]

XL → XL +
πR

2
+

πα′

2R
XR → XR +

πR

2
−

πα′

2R
. (3.63)

The modular invariant torus partition function of the dual heterotic model can
then be determined to be [100]
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where the lattice sum for the asymmetric shift orbifold is
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with the matrix of winding and (Poisson resummed) momentum modes

A =

(
w1 + α l1 + β

w2 l2

)
. (3.66)

The massless spectrum of the heterotic model can be extracted from the partition
function (3.64). As it must be, it is identical to the one found in the Type I
description.

3.4 On models based on abstract CFTs

A string compactification to four dimensions can be defined by a tensor product of
three CFTs. One of them is a CFT describing the propagation of a superstring in
four-dimensional Minkowski spacetime (It is clearly also possible to consider other
backgrounds, but will not be done here.), i.e. four free bosons Xµ plus four free
fermions ψµ, µ ∈ {0, 1, 2, 3}. Another one is the CFT of the reparameterisation
ghosts and superghosts. Finally, one needs a CFT of appropriate central charge
to cancel the Weyl anomaly in the Polyakov path integral. This latter CFT will
henceforth be called ”internal”.

In the following, only models preserving spacetime supersymmetry will be con-
sidered. This amounts to requiring the internal CFT to have extended (worldsheet)
supersymmetry. The extended superconformal algebra in two dimensions has two
Cartan generators. This implies that the states in the CFT are not only labelled
by their conformal weights h, but also by their U(1)R charge q. The corresponding
operators will be denoted Oh

q . Selection rules follow from U(1)R charge conserva-
tion. The most prominent examples of such models are the Gepner models [103],
which are based on the discrete series of minimal models of the minimally extended
superconformal algebra.

In order to have open strings, one has to introduce boundary states in these
models. If one wants a globally consistent one, one also has to perform an orien-
tifold projection to achieve tadpole cancellation. There are a number of further
consistency conditions to be satisfied.
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The annulus partition functions are a sum over the spin structures of the world-
sheet fermions. For each spin structure one has to multiply the amplitudes of the
different CFTs. The free boson/fermion and ghost CFTs together yield the uni-
versal factor ϑ

[
α
β

]
(0)/η3. The amplitude in the internal CFT depends on the form

of the boundary states representing the brane stacks a and b and will be denoted
Aint

ab

[
α
β

]
such that the full amplitude is

Aab =

∫ ∞

0

dl
∑
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(−1)2(α+β)
ϑ
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α
β

]
(0, 2il)

η3(2il)
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ab

[
α

β

]
(2il). (3.67)

Similarly, the Moebius strip amplitude can be written

Ma =

∫ ∞

0

dl
∑

α,β

(−1)2(α+β)
ϑ
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]
(0, 2il + 1

2)

η3(2il + 1
2)

M int
a

[
α

β

]
(2il +

1

2
). (3.68)

The vertex operators for a number of massless open string states relevant in the
following will now be described. Firstly, there are gauge bosons. They arise uni-
versally with every boundary state, or, in other words, D-brane. This universality
is reflected in the fact that the vertex operator

Vgauge boson = e−φ(z)ψµ(z)eikµXµ(z) (3.69)

acts trivially in the internal CFT. φ(z) is a field arising upon bosonisation of the
superghosts and kµ is the four-dimensional momentum of the gauge boson. In a
supersymmetric theory, the gauge boson will have a gaugino as its superpartner,
whose vertex operators (one for each helicity) are

Vgaugino+ = e−φ(z)/2Sα̇(z)eikµXµ(z)O3/8
3/2(z)

Vgaugino− = e−φ(z)/2Sα(z)eikµXµ(z)O3/8
−3/2(z), (3.70)

where Sα̇ and Sα are spin fields in the free fermion CFT of the ψµ’s. The operators
O3/8

±3/2(z) are the spectral flow operators of the internal CFT, which must exist if
some supersymmetry in four dimensions is to be preserved. The gauge bosons and
gauginos transform in the adjoint representation of the gauge group. Depending on
the internal CFT, there can also be chiral superfields transforming in the adjoint
representation of the gauge group. In terms of D-branes these fields are moduli
related to the brane position or Wilson line moduli. The vertex operators for these
fields and their fermionic superpartners, called modulini, are

Vmodulus = e−φ(z)eikµXµ(z)O1/2
±1 (z)

Vmodulino+ = e−φ(z)/2Sα̇(z)eikµXµ(z)O3/8
1/2(z)

Vmodulino− = e−φ(z)/2Sα(z)eikµXµ(z)O3/8
−1/2(z). (3.71)
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In order to determine the number of massless chiral supermultiplets transforming
in the bifundamental representation of the gauge group U(Na) × U(Nb), one has
to compute the overlap of two distinct boundary states and modularly transform
it such that the resulting expression can be interpreted as an open string partition
function. The vertex operators for these fields are boundary changing operators.
They ”change” the boundary conditions for the world-sheet fields from those de-
scribing one brane to those describing the other brane and take the form (3.71).
Finally, there can be massless states transforming in the symmetric or antisymmet-
ric representation of U(Na). Their number can be obtained from the overlaps of a
boundary state and its orientifold image, or the crosscap state, respectively. They
are chiral multiplets and their vertex operators are boundary changing operators
and look like (3.71).

Of course, the form of the annulus partition functions and vertex operators
given here is correct for all the models described in this chapter. For the toroidal
models, the operators Oh

q can be written down explicitly [104, 105, 106, 88, 107].
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Chapter 4

The gauge coupling at one loop

The formulas for the gauge kinetic function/gauge coupling given in the previ-
ous chapter are tree-level expressions. This chapter is concerned with one-loop
corrections to these quantities [108, 109, 110, 111, 112, 113, 114].

4.1 Computing gauge threshold corrections

There are (at least) two ways to compute one-loop corrections to the gauge coupling
on a stack of D-branes. One method consists in computing correlation functions
of two gauge boson vertex operators on annulus and Moebius strip diagrams. The
other one, which is used here, is the background field method [115, 116, 117]. It
amounts to determining the one-loop partition function in the background of a
magnetic field B in the four-dimensional spacetime, expanding it in a series in B
and extracting the quadratic term. In order to compute corrections to the gauge
coupling, which is associated with a CP -even term in the Lagrangian, one has
to take only the even spin structures into account. Clearly, when computing the
corrections to the gauge coupling on some brane stack a, one has to sum over all
annulus diagrams with one boundary on stack a and the other on any brane and
take the Moebius strip diagram with the boundary on stack a into account, too.

The one-loop partition functions in the background of a magnetic field can be
determined from the (usual) partition functions. To do so, one has to replace the
universal factors in (3.67) and (3.68) as follows [117]:
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Here, qa is the charge of the open string ending on brane a and πεa = arctan(πqaB).
Expanding the above expressions in powers of B, one finds that the quadratic terms
are multiplied by

−iπq2
a

ϑ′
1(0, 2il)

(
ϑ′′

[
α

β

]
(0, 2il) + ϑ

[
α

β

]
(0, 2il)(

2π2

3
−

ϑ′′′
1

3ϑ′
1

)

)
, (4.3)

−iπq2
a

2ϑ′
1(0, 2il + 1

2)

(
ϑ′′

[
α

β

]
(0, 2il +

1

2
) + ϑ

[
α

β

]
(0, 2il +

1

2
)(

4π2

3
−

ϑ′′′
1

6ϑ′
1

)

)
.

One now has to put this together with the rest of the partition functions (3.67),
(3.68) and use that the (usual) partition functions vanish in the supersymmetric
case. (Other cases will not be discussed here.) One is then left with the following
rather general formula for the one-loop correction to the gauge coupling on brane
stack a induced by brane stack b:

(
g1−loop

ab

)−2
=

∫ ∞

0

dl
∑

α,β

(−1)2(α+β)
ϑ′′

[
α
β

]
(0, 2il)

η3(2il)
Aint

ab

[
α

β

]
(2il) (4.4)

Analogously, the general form of the Moebius strip diagram is

(
g1−loop

aO

)−2
=

∫ ∞

0

dl
∑

α,β

(−1)2(α+β)
ϑ′′

[
α
β

]
(0, 2il + 1

2)

η3(2il + 1
2)

M int
a

[
α

β

]
(2il +

1

2
). (4.5)

In these expressions it is understood that the sums run only over the even spin
structures, i.e. α, β ∈ {0, 1/2}, (α, β) *= (1/2, 1/2). The integrals in (4.4) and
(4.5) are in general divergent both for small and large l. The divergence at large l
cancels in a globally consistent model when summing over all branes b, taking the
Moebius strip diagram into account and using the tadpole cancellation condition.
The divergence for small l is due to massless open string modes. As they appear
in the low energy effective action their effects should not be included in the gauge
threshold corrections and should therefore be removed from (4.4) and (4.5). These
massless modes lead to the running of the gauge coupling ga, i.e. its dependence
on the renormalisation scale µ, in the low energy effective field theory. One might
therefore just as well replace the divergence for small l in the formula for the
one-loop corrected running gauge coupling ga(µ) by the term ba ln M2

s /µ2, which
determines the scale dependence. Here, ba is the beta-function coefficient of the
gauge theory on brane stack a and Ms is the string scale, the scale below which the
low energy theory is defined. It is however important to stress that the divergence
for small l is an infrared divergence that also appears in the low energy field
theory and that the ultraviolet divergence, which leads to the running of the gauge
coupling, is absent in string theory. Note that the concept of a gauge coupling
only exists in the low energy field theory.
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In a more careful treatment, one would compute a correlation function of two,
three or four gauge bosons at one loop both in string theory and in the low energy
field theory. The field theory correlator would be both infrared and ultraviolet
divergent, the string theory correlator only infrared divergent. One would then
absorb the ultraviolet divergence in the field theory expression into a renormalised,
scale-dependent gauge coupling. Finally, one would equate the field and string
theory results and drop the infrared divergence, that must be the same on both
sides. The resulting equation would define the renormalised gauge coupling at the
string scale, which must be used in the low energy effective field theory that is to
reproduce the full string theory at low energies.

4.1.1 An orbifold model with bulk D6-branes

The aforementioned formulas will now be applied to intersecting D6-brane models
on the Z2×Z2 toroidal orbifold with h21 = 3, which was discussed in section 3.2.1.
By comparing the general formula (3.67) with the partition functions (3.40), (3.42)
and (3.43) one can extract the internal partition function Aint

ab

[
α
β

]
, which can then

be used in (4.4) to find the following expressions for the gauge threshold corrections
[117, 118].

Case 1:

(
g(1)

aa

)−2
= N2

a

∫ ∞

0

dl
∑

α,β

(−1)2(α+β)
ϑ′′
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α
β

]
(0, 2il)

η3(2il)

ϑ3
[
α
β

]
(0, 2il)

η9(2il)

∏

i

(Li
a)

2Z i
a

R(i)
1 R(i)

2

= 0 (4.6)

A theta function identity implies that the gauge threshold corrections in such a
sector vanish. This was to be expected as the sector preserves sixteen supercharges.

Case 2:

(
g(2)

ab

)−2
= NaNbIab

∫ ∞

0

dl
∑

α,β

(−1)2(α+β)
ϑ′′

[
α
β

]
(0, 2il)

η3(2il)

ϑ
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β
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(0)

η3

(L1
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1 R(1)

2

3∏

j=2

ϑ
[
α
β

]
(θj

ab)

ϑ
[
1/2
1/2

]
(θj

ab)
= (2π)2NaNbIab

∫ ∞

0

dl
(L1

a)
2Z1

R(1)
1 R(1)

2

= (2π)2NaNbIab

[ ∫ ∞

0

dl
(L1

a)
2

R(1)
1 R(1)

2

+ ln
M2

s

µ2
− ln

(
(L1

a)
2
)

−4Im(i ln η(T (1))) − ln(4π)

]

(4.7)
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In the first step a theta function identity has been used and in the second one the
divergence for l → 0 has been replaced by lnM2

s /µ2, as explained previously. This
replacement will be made in various expressions in the following.

Case 3:

(
g(3)

ab

)−2

= NaNbIab

∫ ∞

0

dl
∑

α,β

(−1)2(α+β)
ϑ′′

[
α
β

]
(0)
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3∏
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(θi
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]
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= 4π2NaNbIab

∫ ∞

0

dl
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i=1

ϑ′
1(θ

i
ab)

ϑ1(θi
ab)

= 4π3NaNbIab

3∑

i=1

cot(πθi
ab)

∫ ∞

0

dl (4.8)

−2π3NaNbIab

[

ln
M2

s

µ2

3∑

i=1

sign(θi
ab)

− ln
3∏

i=1

(
Γ(|θi

ab|)
Γ(1 − |θi

ab|)

)sign(θi
ab)

−
3∑

i=1

sign(θi
ab)(ln 2 − γ)

]

Again, a theta function identity has been used in the first step.
Computing the Moebius strip diagrams yields results rather similar to those

just obtained from the annulus diagrams. For case 1 of the Moebius strip diagrams
of section 3.2.1 one finds that the gauge threshold corrections vanish, for case 2
one finds a result similar to (4.7). Finally, case 3 yields

(
g(3)

aOk

)−2

= NaIaOk

∫ ∞

0

dl
∑
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(−1)2(α+β)
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)
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)
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)sign(θi
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)

−
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sign(θi
aOk

)(3 ln 2 − γ)

]

. (4.9)

Note that here the argument of the theta and eta functions is 2il+1/2 and that the
final expression is only valid for a restricted range of the angles. The expression
for other values of the angles [118] will not be needed in the following.
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It remains to show that the prefactors of the divergent terms, i.e. those multi-
plied by

∫ ∞

0 dl, in the final expressions of (4.7), (4.8) and (4.9) sum to zero [117].
Using the formulas for the one-cycle volumes Li

a, the intersection number Iab and
the intersection angles θi

ab given in section 3.2 as well as trigonometric identities,
one can rewrite

NaNbIab(L
1
a)

2/(R(1)
1 R(1)

2 ) and NaNbIab

∑

i

cot(πθi
ab), (4.10)

which appear in (4.7), and (4.8), respectively, as
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Similarly, the prefactor of the divergent term in (4.9) can be cast into

Na

∑

i&=j &=k &=i

R(i)
1

R(i)
2

(
8ni

am̃
j
am̃

k
a + 23−2βj−2βk
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k
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am̃

j
an

k
a

)
, (4.12)

where a sum over all four orientifold planes has already been performed. By
adding the contribution (4.11) of all brane stacks b, their orientifold images as well
as the orientifold image of stack a, one finds that, using the tadpole cancellation
conditions (3.39), the divergences from the annulus diagrams (4.7), (4.8) cancel
those from the Moebius strip diagrams (4.9).

In order to determine the full one-loop threshold corrections to the gauge cou-
pling on some brane stack a one has to sum the finite parts of (4.7), or (4.8),
respectively, over all brane stacks and take the contribution (4.9) from the Moe-
bius strip diagrams into account as well.

4.1.2 An orbifold model with fractionally charged D6-branes

The gauge threshold corrections in models on the orbifold described in section
3.2.2 can be computed rather similarly to those discussed in the previous section
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[98]. The results for the annulus diagrams are given in appendix A. The Moebius
strip diagrams are equal (up to some signs) to those of the previous section. In
contradistinction to the annulus diagrams there are no new contributions, as the
orientifold planes do not carry fractional charges.

One important difference to the case discussed in the previous section is that
there are tadpole cancellation conditions in the twisted sectors in addition to those
in the untwisted sectors. The expressions for the divergences arising in the un-
twisted sectors are nearly identical to those of the previous section, some signs are
different. The prefactor of the divergent integral in (A.15) is proportional to that
in the final expression of (4.8) and can be rewritten as in (4.11). Therefore, the
divergences arising in the untwisted sectors can be shown to cancel analogously
to those discussed in the previous section. It remains to be shown that the diver-
gences (A.2), (A.7), (A.12) and (A.16) cancel when summing over all branes [98].
With the help of the formulas for the one-cycle volumes Li

a and the intersection
angles θi

ab these four terms can all be cast into

8πNaNb

∫ ∞

0

dl
3∑

i=1

4∑

k,l=1

εi
a,klε

i
b,kl

ni
an

i
b(R

(i)
1 )2 + m̃i

am̃
i
b(R

(i)
2 )2

R(i)
1 R(i)

2

. (4.13)

Summing (4.13) over all branes b, their orientifold images and the orientifold image
of brane a yields an expression that vanishes when taking the twisted sector tadpole
cancellation conditions (3.49) into account.

As before, the full one-loop correction to the gauge coupling is given by sum-
ming the finite parts of the expressions given in appendix A over all branes.

4.1.3 A type I model and its heterotic dual

This section is concerned with the one-loop (in the string perturbation expansion)
corrections to the gauge coupling in the type I model and its heterotic dual which
were discussed in section 3.3. The computation in the type I model is rather similar
to the computations performed in the preceding sections. It therefore suffices to
just state the result [100]:

(
g1−loop

I

)−2
∝

∫ ∞

0

dl
3∑

i=1

Λ̃M
i [1/2] (4.14)

∝

3∑

i=1

ln
M2

s

µ2
− ln

(
Im(U (i))Im(T (i))

)
+ 2 ln

∣∣∣∣
ϑ4

η3
(2U (i))

∣∣∣∣ ,

where

Λ̃M
i [α] = Im(T (i))

∑

m1,m2

exp

[
−

2πlIm(T (i))

Im(U (i))
|m1 + α + U (i)m2|2

]
(4.15)
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is the Poisson resummed form of the momentum sum ΛM
i given in (3.58).

The computation of the gauge threshold corrections in the heterotic model
requires some new techniques [108, 110] that will not be explained here. Similar
to the case of open string models, one can write down a rather general formula for
the threshold corrections to the gauge coupling associated with some gauge group
factor G. It requires one to compute a trace in the Hilbert state of the internal
CFT describing the compactification space of a heterotic string model. With H
and H̃ the left- and right-moving worldsheet Hamiltonians, F̃ the right-moving
worldsheet fermion number and Q the charge of a string state under the group G
the formula is [108, 110]

(
g1−loop

G

)−2

=
i

4π

∫

F

d2τ

τ2|η|2
∑

α,β

∂τ∗

(
ϑ∗

[
α
β

]

η∗

)

×

Trα

[(
Q2 −

1

4πτ2

)
(−1)β

eF qHq∗
eH
]

, (4.16)

where, as before, the sum only runs over the even spin structures.
This formula now has to be applied to the heterotic string model described

in section 3.3, whose partition function is given in (3.64). One first notes that
applying the charge operator Q2 to the partition function

∑
a ϑ16

a /η16 of the left-
moving current algebra yields

∑
a ϑ16

a /η16 × ϑ′′
a/ϑa. Using some theta function

identities the gauge threshold corrections for the model under consideration can
then be written as [100, 119]

(
g1−loop

h

)−2

=

∫
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d2τ
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η2ϑ2
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−

1

η2ϑ2
4
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]

−
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3
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[
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×
4∑

a=1

ϑ16
a

η16

(
ϑ′′

a

ϑa
+

π

τ2

)
. (4.17)

The next step is to evaluate (4.17), which can be done as follows. One first notices
that when all three summands in the first bracket of (4.17) are taken into account,
one effectively sums over all matrices (3.66) with half integer or integer, but not
both integer at the same time, entries in the first row and integer entries in the
second row. The prefactors (theta/eta functions) of the lattice sums (3.65) in (4.17)
are different, but are transformed into one another by modular transformations.
The idea [109] is to split the two by two matrices A into A = BM , M ∈ SL(2, Z),
and to sum only over a restricted set of matrices B, but to therefor integrate over
the image of the fundamental domain F under the action of M on the modular
parameter τ . The set of matrices B has to be chosen such that every matrix A is
taken into account precisely once when unfolding the integral by the action of M
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on τ as described. It turns out that two cases differing in whether the determinant
of A (or B; They are equal.) is zero or not have to be distinguished.

For the matrices with detA = det B = 0 one can choose the matrices B to take
the form [100]

B =

(
0 j + 1/2
0 p

)
j, p ∈ Z , (4.18)

with the identification (j, p) ∼ (−j − 1, p). In order to determine the domain

of integration one notes that matrices of the form M0 =

(
1 m
0 1

)
, which are

contained in SL(2, Z), do not change the form of the matrix B in (4.18), i.e.
BM0 = B. Taking this into account, it turns out that one has to integrate over
the double cover of the strip {τ ∈ C; τ2 > 0, |τ1| < 1/2}. To take care of the double
covering and the aforementioned identification one can sum over all j and p and
just integrate once over the strip. The integral to be evaluated becomes

Im(T )

∫ 1/2

−1/2

dτ1

∫ ∞
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)
. (4.19)

The combination of theta/eta functions in the last line of (4.19) can be written
in a double series expansion in powers of q = exp(2πiτ) and inverse powers of τ2.
The integration over the strip is only non-vanishing for the terms of order q0 [120].

Next, the contributions from terms involving matrices of non-vanishing deter-
minant have to be evaluated. The matrices B can be chosen to be of the form
[119]

B =

(
k j
0 p

)
(4.20)

with 2j, 2k, p ∈ Z, 0 ≤ j < k, but not both j and k integer. In this case there are
no matrices M0 ∈ SL(2, Z) that leave the matrices (4.20) invariant. The domain
of integration therefore has to be the image of the fundamental domain F under
the full group SL(2, Z), which is the double cover of the upper half complex plane.
The integrals to be evaluated are

∫ ∞

−∞

dτ1

∫ ∞

0
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τ2
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i
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β

]
X(q) (4.21)

with
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ϑ16
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)
, (4.22)
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where the values of α, β and γ depend on whether j and k are integer or half
integer. As before, the integral in (4.21) can be performed after writing X(q) as a
series in powers of q and inverse powers of τ2.

After evaluating the integrals [120, 119] and putting everything together, the
one-loop gauge threshold corrections for the heterotic orbifold model with gauge
group SO(32) become

(
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)−2
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)
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∣∣∣∣
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Im(T (i))
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2
, 0, U (i)) (4.23)

+
3∑

i=1

∑

p,k,j

c2e2πikpT (i)
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f(j, k)

η2ϑ2
g(j,k)

∑
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ϑ16
a

η16

ϑ′′
a

ϑa

(
j + pU (i)

k

)
,

where c1 and c2 are numerical constants and the sum runs over the ranges of
p, k, j given above. The functions

(
f(j, k), g(j, k)

)
take the values

(
(−1)k, 2

)
for

k integer, j half integer, (−(−1)j , 4) for k half integer, j integer and
(
i(−1)k+j, 3

)

for k, j both half integer. The double series

E(s, a, b, τ) =
∑

m,n

τ s
2

|m + a + (n + b)τ |2s
(4.24)

can be considered as a generalisation of the non-holomorphic Eisenstein series. In
(4.23) only the terms holomorphic in U (i) and T (i) of the contributions coming
from the summands in (4.17) with matrices of non-zero determinant are displayed.

The terms in the first line of (4.23) precisely match the one-loop gauge threshold
corrections in the dual type I model (4.14) and those in the second line correspond
to contributions of higher order in the perturbative expansion in the type I model.
The terms in the third line are contributions of world-sheet instantons of area
kpT (i), hence the factor e2πikpT (i)

, and correspond to D-instanton corrections in
the type I model, which will be discussed in chapter 7.

4.2 Holomorphy of the gauge kinetic function

It was discussed in chapter 2 that the holomorphy of the superpotential and the
gauge kinetic function puts strong constraints on which fields these quantities can
depend on and that it is possible to formulate non-renormalisation theorems. Such
theorems will now be explicated for the D6-brane models described in sections
3.1 and 3.2 [121]. (Similar theorems hold for orientifolds of the type IIB theory
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featuring Dp-branes with p odd.) The gauge symmetries associated with the two-
and three-form fields B2 and C3 in ten dimensions lead to symmetries of the low
energy effective theory under which the real parts of the complex structure moduli
U (i) (3.3) and Kaehler moduli T (i) (3.4) transform by shifts. These symmetries are
only broken by instantons. More precisely, worldsheet instantons, whose action
can be written as a linear combination of the Kaehler moduli, break the symmetry
under which the latter shift. The action of (the relevant) spacetime instantons
scales as the inverse of the string coupling and thus depends linearly on the complex
structure moduli, in whose definition the dilaton, and thus the string coupling,
enters.

The string perturbation expansion is a double series in powers of the string
coupling and the inverse of the string tension. For the present case, this translates
into an expansion in inverse powers of the Kaehler and complex structure moduli.
Given that the tree-level superpotential is non-zero and independent of the moduli,
it cannot acquire perturbative corrections, which would be terms with negative
powers of the moduli. The latter are forbidden by the combination of holomorphy
and the shift symmetry. Including instanton corrections, which always contain
the factor exp(−Sinst), where Sinst is the instanton action, the full superpotential
takes the form

W = W tree + W np
(
exp(2πiU (i)), exp(2πiT (i))

)
. (4.25)

The gauge kinetic functions (3.22) are linear in the complex structure moduli.
One-loop (in the string coupling) corrections, which contain an inverse power of
U (i) compared to the tree level contribution, are therefore allowed, but, in analogy
to the case of the superpotential, further perturbative corrections are forbidden.
Considering for simplicity only diagonal gauge kinetic functions, i.e. fab = faδab,
they thus look like

fa =
h21∑

i=0

mi
aU

(i) + f 1−loop
a

(
exp(2πiT (i))

)
+ fnp

a

(
exp(2πiU (i)), exp(2πiT (i))

)
.

(4.26)

The shift symmetry would allow the superpotential and gauge kinetic functions
to depend on the imaginary parts of the moduli without depending on the real
parts, but this is not allowed due to the holomorphy of W and fa. The tree level
expression for the gauge kinetic functions does break the shift symmetry, but the
real parts of the gauge kinetic functions only couple to the topological term in
the Yang-Mills action and therefore to instantons which do indeed break the shift
symmetry.

Recall from chapter 2 the relation (2.6) between the running, loop-corrected,
physical gauge couplings ga(µ2) depending on the renormalisation scale µ and the
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holomorphic Wilsonian gauge kinetic functions fa, in which the Kaehler potential
K and the charged matter Kaehler metrics Kab

r (µ2) enter.

16π2g−2
a (µ2) = 16π2Im(fa) + ba ln

Λ2

µ2
+ caK + 2Ta(adj) ln g−2

a (µ2)

−2
∑

r

Ta(r) ln det Kab
r (µ2) (4.27)

ba =
∑

r

nrTa(r) − 3Ta(adj) (4.28)

ca =
∑

r

nrTa(r) − Ta(adj) (4.29)

The sums over r run over the representations of the gauge group factor under
consideration, nr counts the number of chiral multiplets transforming in the rep-
resentation r and Ta(r) = Trr(T 2

(a)), where T(a) are the group generators. The
natural cutoff scale for a field theory supposed to capture the infrared physics of
a string compactification is the Planck scale, i.e. Λ2 = M2

P l. The formula (4.27) is
to be understood recursively, so if one is interested in the n-loop corrected gauge
coupling and/or gauge kinetic function, one has to use the (n − 1)-loop corrected
values for K, Kab

r (µ2) and the gauge coupling itself on the RHS of (4.27). As will
be detailed later on, there can also be corrections to the RHS of (4.27) arising
through a redefinition at loop level of the complex structure moduli that enter the
tree level expression of fa.

In string theory, one usually computes physical, on-shell quantities. The gauge
threshold corrections computed in the previous sections are one-loop corrections
to such physical quantities and should be viewed as corrections to the LHS of
(4.27). A non-trivial consistency check arises through the requirement that the
non-holomorphic terms in these expressions must equal the non-holomorphic terms
involving the Kaehler potential and the Kaehler metrics on the RHS of (4.27). If
one knows K and Kab

r (µ2) (in addition to the gauge threshold corrections) one
can determine the one-loop corrections to the holomorphic gauge kinetic function.
On the other hand, having computed the gauge threshold corrections, one can use
(4.27) to strongly restrict the form of the Kaehler metrics.

In the following the gauge threshold corrections computed in sections 4.1.1 and
4.1.2 will be analysed with the help of (4.27) [121, 119]. The threshold corrections
were computed at one-loop, so one has to use the tree-level values for K, Kab

r (µ2)
and g−2

a (µ2) on the RHS of (4.27). It will be shown that the non-holomorphic
terms are indeed equal on both sides and the one-loop corrections to the gauge
kinetic functions will be determined.
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4.2.1 An orbifold model with bulk D6-branes

The relevant formulas for the gauge threshold corrections on the Z2 × Z2 orbifold
with h21 = 3 are (4.7), (4.8) and (4.9). The first thing to notice is that the cutoff
scale appearing in these expressions is the string scale, whereas the Planck scale
appears in (4.27). These two scales are related by

M2
s

M2
P l

∝ exp(φ4) ∝

(
3∏

i=0

Im(U (i))

)− 1
2

. (4.30)

Next, one observes that all terms but the first on the RHS of (4.27) are sums over
the representations of the gauge group factor. It is therefore useful to consider the
terms according to which representation they are related to.

Noting that on the orbifold under consideration there are three chiral multiplets
in the adjoint representation of each gauge group factor, one finds that the terms
in (4.27) multiplied by 2T (adj) are

K + ln(gtree
a )−2 − ln det Ki

adj . (4.31)

Using

K = −
3∑

i=0

ln Im(U (i)) −
3∑

i=1

ln Im(T (i)), (4.32)

the Kaehler metrics for the three (i ∈ {1, 2, 3}) chiral multiplets

Ki
adj =

1

Im(T (i))Im(U (i))

∣∣∣∣
(nj

a + iujm̃j
a)(n

k
a + iukm̃k

a)

(ni
a + iuim̃i

a)

∣∣∣∣ i *= j *= k *= i,

where

(ui)2 =
Im(U (j))Im(U (k))

Im(U (i))Im(U (0))
, (4.33)

the expression (3.33) for the tree level gauge kinetic function, and the supersym-
metry condition, one finds that the expression (4.31) vanishes. This was to be
expected as states transforming in the adjoint representation are strings with both
ends on the same stack of branes. Terms proportional to T (adj) on the LHS of
(4.27) should therefore come from an annulus diagram with both boundaries on
the same stack of branes. But such diagrams were shown not to contribute to the
gauge threshold corrections (4.6).

The next case to be discussed are contributions from states transforming in the
fundamental representation of Ga. Such states arise at the intersection of brane
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stack a with another stack b. The intersection is characterised by the intersection
angles θi

ab and the number of such states is counted by the product of the intersec-
tion number Iab and the number of branes on stack b, Nb. As for the computation
of the gauge threshold corrections in 4.1.1, two cases have to be distinguished.

The first one is characterised by all three intersection angles being non-trivial.
Certain scattering amplitudes can be used to determine the Kaehler metric of the
chiral fields transforming in the fundamental representation of Ga to be [122, 88,
107, 73, 123, 124]

Kab
f =

(
Im(U (0))

)−α 3∏

i=1

(
Im(U (i))

)−(β+ξθi
ab)

(
Im(T (i))

)−(γ+ζθi
ab) ×

[
3∏

i=1

(
Γ(1 − |θi

ab|)
Γ(|θi

ab|)

)sign(θi
ab)

]−1/[2
P

j sign(θj
ab)]

, (4.34)

where α, β, γ, ξ and ζ are undetermined constants. Using nf = |Iab|Nb and some
of the formulas given above, the terms proportional to Ta(f) on the RHS of (4.27)
can be seen to reproduce the second and third term1 of the last expression in (4.8)
if

α = β =
1

4
, γ =

1

2
(4.35)

and ξ = ζ = 0. To get all signs right one has to distinguish several cases accord-
ing to the signs of the intersection angles and intersection numbers. It will be
shown in section 4.3 that ξ and ζ can actually be non-zero. This is related to the
aforementioned redefinition of the moduli at loop level.

The second case differs from the first in that one of the intersection angles
is zero. One hypermultiplet or, equivalently, two chiral multiplets arise at each
intersection of the brane stacks. The relevant formula for the gauge threshold
corrections is (4.7). It contains the term Im(i ln η(T (1))), which manifestly is the
imaginary part of a holomorphic function. One therefore concludes that the gauge
kinetic function receives the one-loop correction

f 1−loop
a ∝ iIabNb ln η(T (1)) , (4.36)

whose dependence on the moduli is in agreement with the form (4.26) predicted
by the non-renormalisation theorem. Using the Kaehler metric [88, 73]

Kab,1
f =

|n1
a + iu1m̃1

a|
(
Im(U (2))Im(U (3))Im(T (2))Im(T (3))

) 1
2

(4.37)

1The first term cancels upon summing over all branes and using the tadpole cancellation
condition. The last term is a moduli-independent constant and can be absorbed into Ms or be
viewed as a correction to the gauge kinetic function.
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for the fundamental matter in the sector under discussion and proceeding as before,
one finds that the terms arising on the RHS of (4.27) from this sector reproduce
the second and third term in the last expression of (4.7).

The conclusion is that also in the sectors that give rise to fields in the fun-
damental representation of the gauge group, the non-holomorphic terms on both
sides of equation (4.27) are equal, as required by consistency.

Finally, if the gauge group factor is Ga = SU(Na), there can be fields trans-
forming in the symmetric and/or antisymmetric representations. These are strings
stretching between brane stack a and its orientifold image a′. Therefore, one has
to take the annulus diagram with boundaries on brane a and its orientifold image
as well as the Moebius strip diagram into account. They are given by (4.7) and
(4.8) with θi

ab and IabNb replaced by θi
aa′ = 2θi

a and Iaa′ as well as (4.9). The
Kaehler metric for the relevant chiral multiplets is given by (4.34) with the same
replacements. One again finds that the non-holomorphic terms on both sides of
(4.27) are equal.

4.2.2 An orbifold model with fractionally charged D6-branes

The analysis of the gauge threshold corrections of models on the Z2 × Z2 orbifold
[98] with h21 = 51 is similar to that of the previous section. When writing down
the partition functions in section 3.2.2 and when computing the gauge threshold
corrections in section 4.1.2 and appendix A, four cases were distinguished. This
distinction will be made here, too.

Case 1: Both boundaries of the annulus are on the same stack of branes.
Therefore, the open string modes in this sector transform in the adjoint represen-
tation of the gauge group. In contradistinction to the orbifold with h21 = 3, there
are no chiral multiplets in this representation. So the terms proportional to T (adj)
on the RHS of (4.27) do not cancel amongst each other, but yield a contribution
that matches (A.3). There is a further term, (A.4), which is the imaginary part of
a holomorphic function, so one concludes that the gauge kinetic function receives
a loop-correction

δaf
1−loop
a ∝ iNa

3∑

i=1

ln η(T (i)). (4.38)

Case 2: This sector yields nf = 2Nb chiral multiplets in the fundamental
representation of Ga. The vertex operators for these fields are identical to those
for the chiral multiplets in the adjoint representation on the orbifold with h21. One
concludes that the Kaehler metrics for these fields are identical. Upon changing
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variables, they can be written as

Kab,2
f =

(
3∏

i=0

Im(U (i))

)− 1
4
(

3∏

i=1

Im(T (i))

)− 1
2
(

3∏

i=1

(Li
a)
σi

ab

) 1
σab

. (4.39)

Proceeding as in the previous section, one finds that the terms on the RHS of
(4.27) reproduce the terms (A.8). The term (A.9) yields a correction to the gauge
kinetic function

δb(2)f
1−loop
a ∝ i

∑

b

Nbσab

3∑

i=1

σi
ab ln η(T (i)). (4.40)

Case 3: There are no massless open string modes in this sector and there-
fore no contributions to the RHS of (4.27). As required by consistency, no non-
holomorphic terms appear in the gauge threshold corrections. But there is a holo-
morphic term and therefore a correction to the gauge kinetic function

δb(3)f
1−loop
a ∝ i

∑

b

Nb

σab

3∑

i=1

σi
ab ln

ϑ
[ (1−|δi

a−δ
i
b|)/2

(1−|λi
a−λ

i
b|)/2

]
(0, T (i))

η(T (i))
. (4.41)

Case 4: This is the sector yielding chiral bifundamentals. The Kaehler metrics
are identical to those on the orbifold with h21 = 3 and given in (4.34) with (4.35).
As before, up to terms related to a redefinition of the moduli at loop level, the
non-holomorphic terms on both sides of (4.27) are equal. Those appearing on the
LHS given by (A.17).

4.3 Redefinition of the moduli

Loop corrections to the low energy effective action of a string compactification can
modify the proper definition of the chiral superfields [125, 126, 65], on which the
superpotential and gauge kinetic function depend holomorphically. For example,
this is possible if the low energy fields should really be linear instead of chiral
multiplets, because the duality transformation relating the two may be corrected
at loop-level. The possibility/necessity of a one-loop redefinition of the closed
string moduli in D6-brane models on the Z2 × Z2 orbifolds is the subject of this
section [121, 98].

4.3.1 A model with bulk D6-branes

It was mentioned after (4.35) that a naive application of (4.27) would imply that
the constants ξ and ζ appearing in (4.34) must vanish. It will now be shown that
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this does not have to be the case if one takes the possibility of a redefinition of the
complex structure moduli at one loop into account.

If ξ and ζ are non-zero, one gets an extra contribution from the term depending
on the Kaehler metric to the RHS of (4.27), which does not have a counterpart on
the LHS. It is non-holomorphic, so it cannot be interpreted in terms of a correction
to the gauge kinetic function. The contribution can however cancel against terms
from the holomorphic tree-level gauge kinetic function if the complex structure
moduli appearing there are redefined at one loop. In order for this to be true, the
ξ- and ζ-dependent terms in (4.34) must actually be [121, 98]

f(Iab, θ
i
ab) =

3∏

i=1

(
Im(U (i))

)−ξθi
absign(Iab) (

Im(T (i))
)−ζθi

absign(Iab)
, (4.42)

where ξ and ζ have to be equal for all brane stacks/brane intersections in the model.
As before, one has to replace θab and Iab by θaa′ and Iaa′ −IaO, or Iaa′ +IaO, respec-
tively, for fields transforming in the symmetric or antisymmetric representation of
SU(Na). Summing over all relevant representations one finds the following extra
contribution due to the factor (4.42) to the RHS of (4.27)

∑

r=f,a,s

Ta(r) ln det K ′r =
|Iab|Nb

2
ln f(Iab, θ

i
ab) +

|Iab′ |Nb

2
ln f(Iab′ , θ

i
ab′) +

Na + 2

2

|Iaa′ − IaO|
2

ln f(Iaa′ − IaO, 2θi
a) +

Na − 2

2

|Iaa′ + IaO|
2

ln f(Iaa′ + IaO, 2θi
a). (4.43)

Using the tadpole cancellation conditions, this can be written as

−n1
an

2
an

3
a

[
∑

b

Nbm̃
1
bm̃

2
bm̃

3
b

3∑

i=1

θi
b

(
ξ ln Im(U (i)) + ζ ln Im(T (i))

)
]

(4.44)

−
3∑

j &=k &=l &=j

nj
am̃

k
am̃

l
a

[
∑

b

Nbm̃
j
bn

k
bn

l
b

3∑

i=1

θi
b

(
ξ ln Im(U (i)) + ζ ln Im(T (i))

)
]

.

By comparing with (3.33) it can be seen that this contribution to the RHS of (4.27)
is cancelled if the imaginary parts of the complex structure moduli are redefined
as follows:

Im(U (0)) → Im(U (0)) −
1

8π2

∑

b

Nbm̃
1
bm̃

2
bm̃

3
b × (4.45)

3∑

i=1

θi
b

(
ξ ln Im(U (i)) + ζ ln Im(T (i))

)
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Im(U (j)) → Im(U (j)) +
1

8π2

∑

b

Nbm̃
j
bn

k
bn

l
b ×

3∑

i=1

θi
b

(
ξ ln Im(U (i)) + ζ ln Im(T (i))

)
j *= k *= l *= j

In conclusion, knowledge of the gauge threshold corrections for the model under
consideration is not enough to completely fix the Kaehler metrics for the chiral
bifundamental matter fields using (4.27). Also, it is not possible to determine
whether the complex structure moduli are redefined at one-loop. The two constants
ξ and ζ are still free parameters, which have to be determined by other means. If
they are zero there is no one-loop redefinition of the complex structure moduli.

4.3.2 A model with fractionally charged D6-branes

The analysis for the case of the orbifold with h21 = 51 is similar to that of the
previous section, important differences arise as the gauge kinetic functions in this
case depend on the complex structure moduli in the twisted sectors (3.47).

The form of the vertex operators for the chiral bifundamental fields arising at
the intersection of two branes does not depend on whether the underlying orbifold
is the one with h21 = 3 or the one with h21 = 51. The extra factor (4.42) in the
Kaehler metric therefore has to be the same on both backgrounds. It turns out
that it is more convenient for the following analysis to rewrite it as2

g(Υab, θ
i
ab) =

3∏

i=1

(
Im(U (i))

)−ξθi
absign(Υab) (

Im(T (i))
)−ζθi

absign(Υab)
. (4.46)

The two expressions (4.42) and (4.46) differ in whether sign(Iab) or sign(Υab)
appears. A physical argument shows that these two signs must be equal. The
orbifold projection removes some string states, but cannot change their spacetime
chirality. As the latter is determined by the aforementioned signs they must be
equal.

Proceeding as in the previous section, one finds two contributions to the RHS
of (4.27) due to the extra factor (4.46) in the Kaehler metric. One is identical to
(4.45) and is cancelled by a redefinition of the imaginary parts of the U (i) as in

2Note that the quantity Υab is only defined for models on the orbifold with h21 = 51, so this
rewriting can only be done for such models.
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(4.45), but with 1/8π2 replaced by 1/32π2. The other can be written as
∑

i;k,l

ni
aε

i
a,kl

∑

b

Nbm̃
i
b(ε

i
b,kl + εi

b,R(k)R(l))
∑

j

θj
b

(
ξ ln Im(U (j)) + ζ ln Im(T (j))

)

−
∑

i;k,l

m̃i
aε

i
a,kl

∑

b

Nbn
i
b(ε

i
b,kl − εi

b,R(k)R(l))
∑

j

θj
b

(
ξ ln Im(U (j)) + ζ ln Im(T (j))

)

(4.47)

and cancels if the twisted sector complex structure moduli Wikl and W̃ikl are rede-
fined. There is another term (A.18) that gives contributions to this redefinition.
It is part of the gauge threshold corrections and therefore appears on the LHS of
(4.27). Summing over all branes including the orientifold images and using the
tadpole cancellation conditions (3.49), it can be cast into the form

∑

i;k,l

ni
aε

i
a,kl

∑

b

Nbm̃
i
bθ

i
b(ε

i
b,kl + εi

b,R(k)R(l))

−
∑

i;k,l

m̃i
aε

i
a,kl

∑

b

Nbn
i
bθ

i
b(ε

i
b,kl − εi

b,R(k)R(l)). (4.48)

Taking the contributions (4.47) and (4.48) to the RHS, respectively LHS, of (4.27)
into account and using the form (3.47) of fa as well as the identity

∑

k,l

εi
a,kl(ε

i
b,kl ± εi

b,R(k)R(l)) =
∑

k,l

εi
b,kl(ε

i
a,kl ± εi

a,R(k)R(l)) (4.49)

one finds that the imaginary parts of the twisted sector complex structure moduli
should be redefined as

Im(Wikl) → Im(Wikl) −
1

64π2

∑

b

Nbm̃
i
bε

i
b,kl

∑

j

θj
b

(
ξ ln Im(U (j)) + ζ ln Im(T (j)) + ln 4δij

)
(4.50)

Im(W̃ikl) → Im(W̃ikl) +
1

64π2

∑

b

Nbn
i
bε

i
b,kl

∑

j

θj
b

(
ξ ln Im(U (j)) + ζ ln Im(T (j)) + ln 4δij

)
. (4.51)

Note that even if ξ and ζ vanish, Wikl and W̃ikl acquire a one-loop redefinition.
The conclusion of this section is that also on the Z2 × Z2 orbifold with h21 =

51, the non-holomorphic terms on both sides of (4.27) are equal, as required by
consistency.
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Chapter 5

D-instantons in four-dimensional

brane models

The only definition of string theory that exists today is that of the perturbative
expansion of scattering amplitudes. The latter is an expansion in powers of the
string coupling gs. At each order of the perturbation series the contribution to
a scattering amplitude is given by an integral over an amplitude of a conformal
field theory defined on a Riemann surface. The Euler characteristic of the surface
determines with which power of gs the term contributes to the full amplitude.

Various arguments can be given [24] in support of the claim that this perturba-
tion series does not give the full result, but that there should exist non-perturbative
contributions whose dependence on the string coupling is given e.g. by exp(−g−1

s ).
Given that the action of a D-brane depends on the string coupling as g−1

s and
that instanton amplitudes always contain a factor exp(−Sinst), where Sinst is the
instanton action, it is natural to suppose that there are corrections to various
observables in string theory induced by instantons that are D-branes localised in
time. Such instantons are called D-instantons [127, 128, 129] and the subject of
this chapter.

5.1 D2-instantons in D6-brane models

Given that, as just mentioned, only a definition of the string perturbation series
as an expansion in gs exists, D-instantons yielding effects non-perturbative in gs

at first sight seem to be very hard to describe. The situation luckily is somewhat
better, as D-instantons are D-branes and as such described by open string theories
[130]. This description will be the guiding principle in the following discussion of
how to compute D-instanton effects [43, 131, 132, 44, 133, 134]. For concreteness,
D-instantons in orientifold models of type IIA string theory will be considered in
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this section, but things are very similar in type I models or other orientifolds of
the type IIB theory. The focus will be on type IIA orientifolds of Calabi-Yau
manifolds, which were described in section 3.1. In order that their action is finite,
the instantons have to be localised not only in time, but also in the three non-
compact space directions. Type IIA string theory contains Dp-branes with even p,
such that the candidates for D-instantons are D0-, D2- and D4-branes wrapping
one-, three- and five-cycles of the internal manifold. As Calabi-Yau manifolds
do not contain topologically non-trivial one- and five-cycles, only D2-instantons
are relevant. The instantons must be (local) minima of the action, which for
D-instantons implies that they are BPS-states. D2-instantons thus wrap special
Lagrangian three-cycles and are calibrated with the same phase as the orientifold
plane, just as the spacefilling D-branes (3.13). The BPS property implies that the
instantons contribute to F-terms, i.e. the superpotential and the gauge kinetic
function, rather than D-terms in the low energy effective action.

The D2-instanton action SD2 is the sum of the Dirac-Born-Infeld and Chern-
Simons actions integrated over the three-cycle

πD2 = mi
D2Ai + ni

D2Bi (5.1)

the instanton wraps. The characteristic exponential factor exp(−Sinst) becomes

exp(−SD2) = exp

(
−2πe−φ4

∫

πD2

Re(Ω3) + 2πi

∫

πD2

C3

)

= exp

(

2πi
h21∑

i=0

mi
D2U

(i)

)

, (5.2)

where the orientifold image has already been taken into account.

5.2 Zero modes

As in every instanton computation [135, 136, 137], the zero modes, which in the
case of D-instantons are massless open strings with at least one end on the instan-
tonic brane, are of crucial importance. In the case at hand it is useful to distinguish
two types of zero modes [43]. Neutral zero modes are given by open strings with
both ends on the instanton or strings stretched between the instanton and its ori-
entifold image. Strings with one end on the instanton and the other one on some
spacefilling D-brane [138] can also give rise to zero modes. These zero modes are
called charged zero modes because they transform non-trivially under the gauge
group of the four dimensional theory. All the zero modes have analogues in terms
of ordinary particle states which would arise from strings ending on a fictitious
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space-filling D-brane wrapping the cycle of the internal space the instanton wraps,
or, in more abstract CFT terms, that is described by the same boundary state in
the internal CFT. The vertex operators of the instanton zero modes are similar to
those of these fictitious particle states. For neutral zero modes they differ in that
the zero modes have no momentum in the four non-compact directions as they
are confined to the instanton worldvolume and cannot move in the external space.
For charged zero modes only that part of the vertex operator which acts in the
internal CFT is identical.

The different neutral zero modes shall be discussed first. The instanton breaks
four-dimensional translational invariance. There will thus be four universal bosonic
zero modes xµ, µ ∈ {0, 1, 2, 3}, whose vertex operators

Vxµ = e−φ(z)ψµ(z) (5.3)

are quite similar to the gauge boson vertex operators given in section 3.4.
The instanton also breaks some supersymmetries. The number of broken su-

percharges and associated zero modes depends on whether the cycle wrapped by
the instanton is mapped to itself by the antiholomorphic involution that is part of
the orientifold projection or not [139, 140, 141, 142]. If it is not mapped to itself,
the instanton breaks four of the eight supersymmetries which are preserved by a
compactification of type IIA string theory on a Calabi-Yau manifold and which are
therefore present in the bulk of the orientifolded theory, away from the orientifold
plane. There are thus four fermionic zero modes θα and τ̄ α̇, α, α̇ ∈ {1, 2}, with
vertex operators [43]

Vτ̄ α̇ = e−φ(z)/2Sα̇(z)O3/8
3/2(z)

Vθα = e−φ(z)/2Sα(z)O3/8
−3/2(z), (5.4)

similar to the gaugino vertex operators (3.70) of section 3.4. Indeed, O3/8
±3/2(z) are

once more the spectral flow operators of the internal CFT. The instanton, being a
D-brane, carries a gauge theory on its worldvolume. The gauge group in the case
under discussion, i.e. where the instanton is not invariant under the orientifold
projection, is U(1). There can also be multi-instantons. The gauge group is
U(k) for a k-instanton realised by a stack of k D-brane instantons wrapping the
same cycle of the compactification manifold. In this case, a k × k Chan-Paton
matrix must be included in the vertex operators and the aforementioned zero
modes transform in the adjoint representation of U(k).

If the cycle wrapped by the instanton is invariant under the involution, some
of the zero modes are removed by the orientifold projection. Two cases have to be
distinguished. If the vertex operators of the zero modes xµ and θα are left invariant
by the projection and those of τ̄ α̇ are anti-invariant, the Chan-Paton matrices of
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the former are symmetric k × k matrices, those of the latter anti-symmetric ones
and the gauge group is O(k). If xµ and θα are anti-invariant and τ̄ α̇ invariant,
they have anti-symmetric respectively symmetric Chan-Paton matrices. This is
only possible if k is even and the gauge group is USp(k). The most relevant case
are instantons with gauge group O(1) as they have four bosonic (xµ) and two
fermionic (θα) zero modes, which make up precisely the integration over chiral
superspace that is required for an F-term contribution to the effective action.

Further neutral zero modes arise if the three-cycle πD2 wrapped by the D2-
instanton is not rigid. The number of additional zero modes is counted by the
first Betti number b1(πD2) of the three-cycle. More precisely, there are 4b1(πD2)
fermionic and 2b1(πD2) bosonic zero modes in the case of a unitary gauge group
on the instanton worldvolume. The analogue of such zero modes for space-filling
D6-branes are chiral multiplets transforming in the adjoint representation of the
gauge group. In the case of orthogonal or symplectic gauge group on the instanton
worldvolume there are 2b1(πD2) fermionic zero modes in the symmetric as well as
2b1(πD2) fermionic and 2b1(πD2) bosonic zero modes in the antisymmetric repre-
sentation or vice versa. The precise structure depends on how the antiholomorphic
involution acts on the cycle wrapped by the instanton. The vertex operators of
these zero modes are, in analogy to (3.71), given by

Vinstanton modulus = e−φ(z)O1/2
±1 (z)

Vinstanton modulino+ = e−φ(z)/2Sα̇(z)O3/8
1/2(z)

Vinstanton modulino− = e−φ(z)/2Sα(z)O3/8
−1/2(z). (5.5)

In the case of instantons with gauge group U(k), there can also be zero modes
arising at the intersection of the instanton with its orientifold image. The ana-
logue for D6-branes are states transforming in the symmetric or antisymmetric
representation of a unitary gauge group (on a space-filling D-brane in this case).
The vertex operators look as those in (5.5), but they are operators changing the
boundary conditions from those describing the instanton to those describing its
orientifold image. The number of such zero modes is counted by the physical
(not topological) intersection numbers of the cycles wrapped by the instanton, its
orientifold image and the orientifold plane.

Some of the non-universal neutral zero modes can under certain circumstances
be lifted in flux backgrounds [143, 144, 145, 146, 147, 148, 149, 150].

A class of neutral zero modes that will not be relevant in the following are
modes arising at the intersection of two branes in a multi-instanton configuration,
where the different branes wrap different cycles [151, 152, 153].

Finally, there can be so-called charged zero modes. These zero modes are
strings with one end on the instanton and the other one on one of the space-filling
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D-branes so that they are charged under the gauge group of the four-dimensional
theory. They transform in the fundamental or anti-fundamental representation
of the gauge group on the brane and in the fundamental or anti-fundamental
representation of the gauge group on the instanton. As one of their ends, the one
which can move along the space-filling brane, is subject to Neumann boundary
conditions in the four external dimensions and the other one, which is confined to
the instanton, to Dirichlet boundary conditions (in the external space), their vertex
operators contain the operators TXµ , µ ∈ {0, 1, 2, 3}, which change the boundary
conditions from Neumann to Dirichlet or vice versa in the four free boson CFTs.

The number of charged zero modes depends on whether or not the instanton
and the brane wrap the same cycle in the internal manifold. If they do, the
instanton can be viewed as the string theory realisation of a gauge instanton. In
such a configuration, there will always be four bosonic and two fermionic zero
modes with vertex operators [154]

Vwα̇ = e−φ(z)Sα̇(z)
3∏

µ=0

TXµ(z) Vw̄α̇ = e−φ(z)Sα̇(z)
3∏

µ=0

TXµ(z) (5.6)

Vµ = e−φ(z)/2
3∏

µ=0

TXµ(z)O3/8
3/2(z) Vµ̄ = e−φ(z)/2

3∏

µ=0

TXµ(z)O3/8
−3/2(z). (5.7)

The operators O3/8
±3/2(z) are once more the spectral flow operators. The zero modes

wα̇ and w̄α̇ as well as µ and µ̄ have opposite orientation. If the first Betti number of
the cycle the brane and the instanton wrap is not zero, there are 2b1(πD2) further
fermionic zero modes with vertex operators

Vλadj
= e−φ(z)/2

3∏

µ=0

TXµ(z)O3/8
1/2(z) (5.8)

Vλ̄adj
= e−φ(z)/2

3∏

µ=0

TXµ(z)O3/8
−1/2(z). (5.9)

λadj and λ̄adj have opposite orientation. The label adj has its origin in the fact
that these modes can be viewed as the zero modes of fermions in chiral multiplets
transforming in the adjoint representation of the gauge theory instanton that this
D-instanton realises. There can be further zero modes if the instanton intersects
the orientifold image of the brane. Such modes could be viewed as gauge instanton
zero modes of fields transforming in the symmetric or antisymmetric representation
of the gauge group.

The zero mode structure is different if the cycle πD2 wrapped by k instan-
tonic branes is different from the cycle πa wrapped by a stack of Na spacefilling
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zero mode number representation of Ga × GD2

λa πa ∩ πD2 fundamental×anti-fundamental
λ̄a πD2 ∩ πa anti-fundamental×fundamental
λa′ π′

a ∩ πD2 anti-fundamental×anti-fundamental
λ̄a′ πD2 ∩ π′

a fundamental×fundamental

Table 5.1: Charged instanton zero modes

D6-branes. Let πa ∩ πD2 and πD2 ∩ πa be the number of positive and negative
intersections of the two cycles and denote the orientifold image of πa by π′

a. There
are only fermionic zero modes in such sectors and their number is given in table
5.1 together with the representation of the product Ga × GD2 of the D-brane and
instanton gauge groups in which they transform. The vertex operators for these
states are [43]

Vcharged zero mode = e−φ(z)/2
3∏

µ=0

TXµ(z)O3/8
±1/2(z), (5.10)

where the sign in O3/8
±1/2(z) depends on the precise structure of the internal CFT.

5.3 Global abelian symmetries

Important selection rules determining which instantons can generate which terms
in the low energy effective action come from global abelian symmetries [43]. These
symmetries are remnants of gauge symmetries whose associated gauge bosons have
become massive due to the Green-Schwarz mechanism discussed in section 3.1.
(3.20) implies that the exponential instanton factor (5.2) transforms under gauge
transformations of these massive U(1) symmetries as

exp(−SD2) → exp(−SD2) exp

(

−4πi
h21∑

i=0

∑

a

Nam
i
D2n

i
aα

a

)

. (5.11)

Gauge invariance implies that the instanton-induced superpotential will have the
form

W =
∏

i

Φi exp(−SD2), (5.12)

where the product of charged matter fields
∏

i Φi has to transform under the U(1)
symmetries such as to cancel the transformation of the exponential factor. The
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superpotential (5.12) does however lead to correlators violating U(1) charge conser-
vation. It is in this sense that the instanton breaks the massive U(1) symmetries.

These abelian symmetries are the diagonal U(1) subgroups of U(Na) gauge
groups. From table 5.1 one can read off the total charge of the D2-instanton under
a (possibly massive) U(1) factor. The charge is

Na[(πa ∩ πD2 − πD2 ∩ πa) − (π′
a ∩ πD2 − πD2 ∩ π′

a)]

= Na(πa ◦ πD2 − π′
a ◦ πD2) = −2

h21∑

i=0

Nam
i
D2n

i
a, (5.13)

i.e. it is given by the topological intersection numbers of the cycles the instan-
ton and the brane stack a (and its orientifold image) wrap. This quantity also
determines the transformation property (5.11) of the exponential instanton factor.

In conclusion, the charges of the exponential under the massive U(1) factors
are encoded in the instanton zero modes. Integration over all zero modes, which
will be discussed shortly, ensures that the instanton-generated superpotential is
invariant under the global abelian symmetries.

5.4 Corrections to the superpotential

As was mentioned earlier on, the idea [43] in setting up a D-instanton calculus
is to use the fact that D-instantons are D-branes and as such described by an
open string theory, or, in other words, boundary CFT. In order to determine a
spacetime correlator in a D-instanton background, one has to compute several
CFT amplitudes and put them together appropriately. For concreteness, consider
the spacetime correlator

〈
N∏

i=1

Φi(xi)〉, (5.14)

where Φi(xi) are charged matter fields. The question is now how to compute this
correlator in the instanton background. As in every instanton computation, one
has to integrate over all zero modes. The fermionic zero modes are of special
importance, as they have to be soaked up in order that a non-vanishing result
comes out. The idea is to absorb them by inserting each of their vertex operators
precisely once on the boundary of a worldsheet in a CFT amplitude. The bosonic
zero modes can be inserted an arbitrary number of times on worldsheet boundaries.
When computing the correlator (5.14), one also has to include the vertex operators
for the fields Φi(xi) in CFT correlators. Clearly, the amplitude has to be connected
from the spacetime point of view, so only worldsheets with at least one boundary
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on the instanton are allowed. In the spirit of the path integral as a sum over
histories, the correlator (5.14) is given by a sum over all possibilities of distributing
the vertex operators for the fermionic zero modes and those for the fields Φi(xi)
on boundaries of any number of worldsheets. Each summand is then a product
of the CFT correlators for these worldsheets multiplied by any number of CFT
amplitudes involving any number of bosonic zero mode vertex operators. The
resulting expression will depend on the bosonic zero modes and has to be integrated
over them.

The procedure just described implies that determining a correlator exactly is
terribly complicated. When computing corrections to holomorphic quantities, i.e.
the superpotential and the gauge kinetic function, the string coupling dependence
of the individual CFT amplitudes puts strong constraints on which amplitudes can
contribute [43]. In section 4.2 the interplay of holomorphy and shift symmetries
was used to formulate non-renormalisation theorems for the superpotential and
the gauge kinetic function. The same ideas can be employed to determine which
individual CFT amplitudes are relevant when computing instanton corrections to
the superpotential and the gauge kinetic function.

As explained in section 4.2, there are shift symmetries associated with the chi-
ral superfields in whose definition the dilaton, and therefore the string coupling
gs, enters. Due to these shift symmetries, the string coupling can appear in the
superpotential only in the exponential instanton factor (5.2), which was argued
[155] to arise in the CFT description as the combination of an arbitrary number
of vacuum disc diagrams. In order to see how this puts constraints on which CFT
amplitudes are relevant when computing corrections to holomorphic quantities,
the first thing to notice is that an amplitude on a surface of Euler characteristic χ
depends on the string coupling gs as g−χ

s . This means that amplitudes of vanish-
ing Euler characteristic, i.e. annulus and Moebius strip diagrams, can contribute.
Furthermore, it has been argued [43] that the charged zero modes should carry

a factor g1/2
s in their vertex operators so that a disc diagram with two of them

inserted on the boundary can also contribute, because the string coupling depen-
dence cancels. A positive power of the string coupling in these vertex operators
is in agreement with the fact that the instanton should decouple at small string
coupling. Furthermore, due to boundary combinatorics, there has to be an even
number of charged zero modes on each disc, so two is the minimal number and if
such discs are to contribute, one has to include the factor g1/2

s . This conjecture is
supported by analysing D-instantons that reproduce gauge instantons and com-
paring with the ADHM [156] construction [154]. Another argument will be given
at the end of the following section.

Being interested in the superpotential, one focuses on a special case of the
correlator (5.14), namely one where two of the charged matter fields are fermions,
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Φi(xi) = ψi(xi), i ∈ {1, 2}, and the other fields are bosons Φi(xi) = φi(xi), i ∈
{3, ..., N}. Concentrating on the (most relevant) case in which there are only
charged fermionic zero modes in addition to the universal four bosonic (xµ) and two
fermionic (θα) ones, the formula for that part of the correlator under consideration
which is relevant for the superpotential involves the vacuum disc and Moebius
strip diagrams with the boundary on the instanton, Dvac

D2 and M ′vac
D2 , the annulus

diagrams A′vac
D2,D6a

with one boundary on the instanton and the other one on a
stack, labelled a, of space-filling D-branes. In addition one needs to compute disc
diagrams D(λ,λ,Φi) with two charged zero mode vertex operators Vcharged zero mode

and an arbitrary positive number of charged matter field vertex operators VΦi

inserted. On two discs one also has to insert the neutral zero mode vertex operators
Vθα. As the zero modes are taken care of explicitly by inserting their vertex
operators on disc diagrams, they are not to be included in the one-loop diagrams
[43]. This is indicated by the prime in M ′vac

D2 and A′vac
D2,D6a

. The formula for the
(relevant part of the) correlator is then given by [43]

〈ψ1(x1)ψ2(x2)
N∏

i=3

φi(xi)〉 =
∑

conf

(∏
D(λ,λ,φi)

)(
2∏

α=1

D(θα,λ,λ,ψα,φi)

)

exp

(

Dvac
D2 + M ′vac

D2 +
∑

a

A′vac
D2,D6a

)

. (5.15)

One has to sum over all possible configurations of distributing two charged fer-
mionic zero modes and one or more matter fields Φi on a number of discs. This
number clearly is one half of the number of charged fermionic zero modes. It is
in principle also possible to attach charged matter fields to annulus diagrams, but
this possibility will for simplicity not be considered here.

It is interesting to compare (5.15) to the formula [129] (adapted to the case of
D2-instantons)

W = exp

(
−VD2 + 2πi

∫

πD2

C3

)
Pfaff ′(DF)√

det′(DB)
(5.16)

for the D-instanton induced superpotential derived via a physical gauge approach.
The exponential factor in (5.16) is clearly equal to (5.2) and, as was already men-
tioned, is represented by exp(Dvac

D2 ) in the CFT approach. The second factor in
(5.16) is a quotient of a one-loop Pfaffian and the square root of a one-loop determi-
nant and captures the one-loop fluctuations of massive modes around the instanton
solution. In the CFT approach, these one-loop fluctuations are clearly encoded
in the annulus and Moebius diagrams, so the factor exp(Mvac

D2 +
∑

a Avac
D2,D6a

) in
(5.15) corresponds to the Pfaffian/determinant factor in (5.16). Note that also

67



here, the zero modes are not included in the one-loop contribution, supporting
the aforementioned idea that they should not appear in the annulus and Moebius
strip diagrams. When computing the latter, it turns out [157, 98, 158, 159] that
they can only reproduce the absolute value of the Pfaffian/determinant factor, but
not the phase. This is presumably related to the ill-definedness of the one-loop
CFT amplitude in the Ramond sector with a (−1)F insertion [160], where F is
the world-sheet fermion number. The reason for this ill-definedness is a bosonic
superghost zero mode.

As the partition functions described in section 3.4, the annulus and Moebius
strip diagrams appearing in (5.15) are a product of three individual CFT ampli-
tudes. The three CFTs are again the ghost/superghost CFT, the CFT of four
free bosons and fermions describing the propagation of a superstring in flat four-
dimensional space and the internal CFT. The amplitudes in the ghost and free
boson/fermion CFTs are universal for the annulus and Moebius strip diagrams.
So one can write the full amplitudes in terms of the amplitude Aint

D2,a

[
α
β

]
in the

internal CFT as

Avac
D2,D6a

=

∫ ∞

0

dl
∑

α,β

(−1)α+β
ϑ
[

α
β+1/2

]
(0)2

ϑ
[
1/2
0

]
(0)2

η3

ϑ
[
α
β

]
(0)

Aint
D2,a

[
α

β

]
(5.17)

=

∫ ∞

0

dl
∑

α,β

(−1)α+β
ϑ′′

[
α
β

]
(0)

η3
Aint

D2,a

[
α

β

]
. (5.18)

In deriving the second line from the first, theta function identities as well as the
fact that the instanton and the brane are mutually BPS have been used. The
latter implies

∑

α,β

(−1)α+βϑ

[
α

β

]
Aint

D2,a

[
α

β

]
= 0. (5.19)

Analogously, the Moebius strip diagrams can be written

Mvac
D2 =

∫ ∞

0

dl
∑

α,β

(−1)α+β
ϑ
[

α
β+1/2

]
(0)2

ϑ
[
1/2
0

]
(0)2

η3

ϑ
[
α
β

]
(0)

M int
D2

[
α

β

]
(5.20)

=

∫ ∞

0

dl
∑

α,β

(−1)α+β
ϑ′′

[
α
β

]
(0)

η3
M int

D2

[
α

β

]
(5.21)

with M int
D2

[
α
β

]
the amplitude in the internal CFT. Note that the above expressions

still contain the massless modes which have to be removed before the former can
be inserted in (5.15). The aforementioned ill-definedness of certain terms in the

68



one-loop diagrams can be seen in (5.17) and (5.20). In the summand with the
odd spin structure (α, β) = (1/2, 1/2) one formally divides by ϑ

[
1/2
1/2

]
= 0. The

procedure that will be adopted in the following is not to include this summand.
The phase of the superpotential can later be determined by requiring holomorphy
and analytically continuing the resulting expressions.

5.5 Holomorphy of the superpotential

There is an interesting relation between the exponent in (5.15) and the gauge
coupling on a fictitious D6-brane that would wrap the cycle the instanton wraps or
that, in more abstract CFT terms, would be described by the same boundary state
in the internal CFT. By comparing (5.2) and (3.22) one sees that the complexified
tree level gauge coupling on this fictitious D6-brane is proportional to the instanton
action SD2 = −Dvac

D2 . If one interprets the annulus and Moebius strip diagrams in
the exponent of (5.15) as the one-loop correction to the instanton action, i.e.

4π2S1−loop
D2 = −M ′vac

D2 −
∑

a

A′vac
D2,D6a

, (5.22)

then (5.18), (5.21), (4.4) and (4.5) imply that the latter is equal to the one-loop
correction to the gauge coupling on the fictitious D6-brane [49, 157].

This equality directly leads to the following observation. The quantity S1−loop
D2

just defined appears in a correlation function (5.15) that is supposed to be en-
coded in a superpotential in the low energy effective theory. It was just argued to
be equal to one-loop corrections to gauge coupling constants, which, as was ob-
served in chapter 4, depend non-holomorphically on the moduli. So a priori it does
not seem possible to encode the correlator (5.15), in which the non-holomorphic
quantity S1−loop

D2 appears, in a superpotential, which by definition is holomorphic.
The solution to this puzzle [121, 161] turns out to be that the non-holomorphic
terms cancel against other non-holomorphic terms in (5.15). The way this cancel-
lation occurs is quite similar to the relation between the one-loop gauge threshold
corrections and the holomorphic gauge kinetic function discussed in section 4.2.

The crucial formula that allows one to disentangle the holomorphic and non-
holomorphic terms in the gauge threshold corrections is (4.27). The equality of
the latter and the one-loop corrections to the instanton action suggests writing
down a similar formula for S1−loop

D2 . (4.27) is to be understood recursively, so the
one-loop gauge threshold corrections can be written

16π2
(
g1−loop

a

)−2
(µ2) = 16π2Im(f 1−loop

a ) + ba ln
Λ2

µ2
+ caK

tree

+2Ta(adj) ln
(
gtree

a

)−2 − 2
∑

r

Ta(r) ln det Kab,tree
r (µ2). (5.23)
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Some of the terms in (5.23) need to be reinterpreted in the case of the instanton
action. f 1−loop

a will be replaced by a quantity which one could call the holomorphic
one-loop correction to the instanton action and which can appear in the superpo-
tential. The beta function coefficient ba as well as the constant ca depend on how
many chiral superfields are charged under the gauge group whose associated gauge
coupling one computes corrections to and which representations they transform
in. They therefore have to be replaced by quantities that are determined by the
number and type of instanton zero modes. The quantity (gtree

a )−2 in (5.23) clearly
corresponds to the tree-level instanton action. Finally, instead of the charged mat-
ter field Kaehler metric Kab,tree

r something like a Kaehler metric for instanton zero
modes has to appear in the formula for S1−loop

D2 . Of course, it is not clear a priori
what this could be. As one is interested in the moduli dependence of this quantity
and this dependence comes solely from the internal CFT, in which the instanton
enters just as any ordinary space-filling D-brane, one can define this instanton zero
mode Kaehler metric KD2

λ to be the Kaehler metric of fictitious charged matter
that would arise from open strings between the space-filling D-branes that actually
exist in the model and a fictitious space-filling D-brane that would be identical to
the instanton in the internal CFT.

It was mentioned in section 4 that there is in general a divergence in the string
theory expressions (4.4) and (4.5) due to massless open string modes. As explained,
the divergence should be replaced by a term that encodes the running of the gauge
coupling, i.e. ba lnΛ2/µ2 on the RHS of (5.23). The same divergence also appears
in (5.18) and (5.21), but in this case it is due to instanton zero modes. It was
argued above that these zero modes should not be included when computing the
one-loop diagrams in the exponent in (5.15). A term corresponding to the one
with prefactor ba will therefore not appear in the formula for S1−loop

D2 .
Focusing as before on the case of an instanton with only charged zero modes,

which transform in the fundamental representation of the gauge group on the
instanton worldvolume, in addition to the universal four bosonic and two fermionic
ones, the formula relating the one-loop correction of the instanton action to its
holomorphic part is

16π2S1−loop
D2 = 16π2Im(Sholo,1−loop

D2 ) + cD2K
tree

−4 ln Re(Stree
D2 ) − 2 ln det KD2,tree

λ , (5.24)

where cD2 = Nf −x with Nf the number of fermionic zero modes and x a number
that can be determined by explicitly computing the Moebius strip diagram.

To proceed further, one notices that a physical, on-shell correlation function

〈
∏

i

χi(xi)〉 (5.25)
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of a certain number of charged matter fields χi(xi) computed in a supergravity
theory is not just given by the prefactor of the product of these fields in the
superpotential, even if the coupling in principle arises from the latter. The reason
is that the fields in a supergravity action are usually not canonically normalised.
The correlation function depends on the Kaehler potential K, the Kaehler metrics
Kχi

of the charged matter fields and the superpotential coefficient WQ
i χi

, which
encodes the coupling of the fields χi, as follows [162, 104, 106, 163]:

〈
∏

i

χi(xi)〉 =
exp(K/2)WQ

i χi√∏
i Kχi

(5.26)

The correlation functions one computes in string theory using CFT are physical
quantities, so that in order to extract the superpotential from such a correlator one
must know the Kaehler potential and Kaehler metrics and use (5.26). Note that
this is true for any correlation function, not just those discussed in this chapter,
which arise in an instanton background.

Not only the full spacetime correlator on the LHS of (5.15) is of the form (5.26),
but also the individual CFT disc amplitudes on the RHS, which are responsible
for the absorption of zero modes. This is because they are CFT correlators that
in the internal CFT are identical to correlators which involve just charged matter
fields and which are encoded in the tree-level superpotential (and, in this context,
the Kaehler potential and Kaehler metric) of the low energy effective action. They
therefore have the same moduli dependence and are to be disentangled accord-
ing to (5.26) into holomorphic superpotential parts and non-holomorphic Kaehler
potential/Kaehler metric parts.

So the disc correlators D(λ,λ,φi) in (5.15) can be written in the form (5.26)
using the aforementioned Kaehler metric for charged zero modes as

D(λ,λ,φi) =
exp(K/2)Wλλ

Q
i φi√

KλKλ

∏
i Kφi

(5.27)

with Wλλ
Q

i φi
a holomorphic function of the moduli.

In order to determine the form of D(θα,λ,λ,ψα,φi) one has to note that the
zero modes θα correspond to gauginos in terms of fields on ordinary D-branes.
In contradistinction to charged matter fields, which are rescaled by a square root
of their Kaehler metric, gauginos have to be rescaled by the square root of the
imaginary part of the gauge kinetic function in order to render them canonically
normalised. As the gauge kinetic function corresponds to the instanton action,√

Re(Stree
D2 ) should appear in a formula for D(θα,λ,λ,ψα,φi) that is analogous to

(5.26) or (5.27). Other than that, this disc diagram does not really correspond
to a superpotential coupling due to the appearance of a gaugino-like mode, but is
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related by supersymmetry to the disc diagram in (5.27) so one expects that

D(θα,λ,λ,ψα,φi) =
exp(K/2)Wθαλλψα

Q
i φi√

Re(Stree
D2 )KλKλKψα

∏
i Kφi

, (5.28)

where Wθαλλψα
Q

i φi
is holomorphic.

One can now put everything together, i.e. insert (5.22), (5.24), (5.27) and

(5.28) into (5.15). Using
∏Nf

i=1

√
Kλi =

√
det(Kλ) and reinstating the imaginary

part of the holomorphic one-loop correction to the instanton action one finds

〈ψ1(x1)ψ2(x2)
N∏

i=3

φi(xi)〉

=
∑

conf

exp(xK/4)
(∏

Wλλ
Q

i φi

) (∏2
α=1 Wθαλλψα

Q
i φi

)
√∏

i Kφi

∏2
α=1 Kψα

×

exp
(
−SD2 − 4π2Sholo,1−loop

D2

)
, (5.29)

which is of the form (5.26) if x = 2. This is thus a consistency condition.
In summary, although the various CFT amplitudes that appear in (5.15) de-

pend non-holomorphically on the moduli, the non-holomorphic terms partly cancel,
partly rearrange so as to yield a result that is in agreement with the holomorphy
of the superpotential. Note that this only happens if precisely two fermionic zero
modes are absorbed with one disc diagram.
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Chapter 6

Applying the D-instanton

calculus: The ADS superpotential

The instanton calculus described in the previous chapter cannot be derived from
first principles. Quite a bit of guesswork went into setting it up, so it is crucial
to test it, e.g. by using it to rederive known results. Therefore, it will now
be applied to a certain D-instanton, one which realises a gauge instanton, in a
D-brane realisation of an SQCD theory with gauge group SU(Nc) and Nc − 1
flavours. It can be shown that that gauge instanton generates the so-called ADS-
superpotential [164, 165].

In field theory, it can be computed in a semiclassical approximation to the
path integral. The fields are expanded around a particular instanton solution,
i.e. a topologically non-trivial field configuration solving the Euclidean Yang-Mills
equations, and the path integral is evaluated in a one-loop approximation. As
string theory can be approximated by field theory at low energies and the ADS
superpotential has implications for the low-energy physics, one expects that it can
also be obtained from string theory. The first thing to observe when trying to
show this is that a (zero size) gauge instanton is realised in string theory by a
D(p-4)-brane inside a stack of Dp-branes [166, 167, 168, 169, 137]. The position of
the D(p-4)-brane coincides with the core of the gauge instanton in the field theory
on the Dp-branes. The effect of such a D-brane instanton cannot be computed
as straightforwardly as that of a gauge instanton, as there is no such thing as a
(spacetime) path integral for string theory. But the D-instanton calculus presented
in the previous chapter is applicable to D-brane instantons realising gauge theory
instantons and can thus be used to rederive the ADS-superpotential [157, 140, 141,
170].
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6.1 Engineering SQCD

The first step in reproducing the ADS superpotential by a D-instanton computa-
tion is to engineer the SQCD gauge theory in a D-brane setup [171, 172]. This
shall here be done in the framework of intersecting D6-brane models on Calabi-
Yau manifolds, which were discussed in section 3.1. One considers a stack c of Nc

D6-branes wrapping a special Lagrangian three-cycle in some Calabi-Yau mani-
fold. This setup leads to a U(Nc) gauge theory, but the diagonal U(1) factor of
this gauge group decouples at low energies, such that one ends up with the re-
quired group SU(Nc). In order to decouple the gravitational modes, one needs to
take a limit in which the volume of the Calabi-Yau manifold becomes infinitely
large. One must ensure that, when taking this limit, the volume Vc of the three-
cycle wrapped by the stack c remains finite such that the gauge coupling does not
vanish. Furthermore, reproducing SQCD requires taking the field theory limit,
i.e. α′ → 0. In addition, one has to make sure that the matter content of the
theory is that of SQCD. This means that chiral multiplets in the adjoint represen-
tation of the gauge group are absent which implies that the three-cycle wrapped
by the stack c must be rigid. As was already mentioned, the ADS superpoten-
tial is generated by a gauge instanton iff there are Nc − 1 flavours, i.e. Nc − 1
chiral multiplets Φcf , c ∈ {1, ..., Nc}, f ∈ {1, ..., Nc − 1}, transforming in the

fundamental representation of the gauge group and Nc − 1 chiral multiplets Φ̃ca,
c ∈ {1, ..., Nc}, a ∈ {1, ..., Nc − 1}, transforming in the antifundamental represen-
tation of the gauge group. Such fields arise in intersecting D-brane models from
strings stretching between the stack c and a different stack of branes. This means
that one has to introduce two further stacks of branes, denoted f and a in the
following and consisting of Nc−1 branes each. The intersections of f and a with c
have to be oriented differently such that the strings between f and c transform in
the fundamental representation and those between a and c in the antifundamental
representation of SU(Nc). There are also gauge theories on the stacks a and f .
Reproducing just SQCD means that they have to decouple. To achieve this one
has to take the infinite volume limit of the Calabi-Yau manifold in such a way that
the volumes Va and Vf of the cycles wrapped by a and f tend to infinity.

Summarising, an SQCD theory with gauge group SU(Nc) and Nc − 1 flavours
can be obtained from an intersecting D6-brane model on a Calabi-Yau manifold
with three stacks of branes, c, f and a, by taking the limit

α′ → 0

VCY → ∞
Vf → ∞
Va → ∞
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Vc finite . (6.1)

The quiver diagram for the SQCD theory with the three stacks of branes and the
charged matter fields is given in figure 6.1.

6.2 The relevant instanton

As was already mentioned in the previous chapter, a D2-instanton wrapping the
same three-cycle as a space-filling brane is the string theory realisation of a gauge
theory instanton. This means that the D-instanton that is expected to reproduce
the ADS superpotential is the D2-instanton wrapping the three-cycle that is also
wrapped by the stack c. According to the analysis of the previous chapter this
instanton will have the following zero modes: There are eight neutral zero modes,
four bosonic ones related to broken translational invariance and four fermionic
ones related to broken supersymmetries.

In addition, there are 4Nc bosonic and 2Nc fermionic zero modes from strings
stretching between the instanton and the stack c. As in the previous section they
will be denoted wα̇, w̄α̇, µ and µ̄, but carry an extra label c which runs from 1 to
Nc. Finally there are Nc−1 fermionic zero modes λf , f ∈ {1, ..., Nc−1} and Nc−1

fermionic zero modes λ̃a, a ∈ {1, ..., Nc − 1}. These zero modes are strings with
one end on the instanton and one on the stack f, or a, respectively. The instanton
and its charged zero modes are shown in the SQCD quiver depicted in figure 6.1.
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Figure 6.1: SQCD quiver including instanton
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The formula (5.15) for a spacetime correlator in a D-instanton background
needs to be slightly extended for the case at hand as there are additional zero
modes, namely the neutral zero modes τ̄ α̇ as well as the bosonic charged zero
modes wα̇ and w̄α̇. Also, it is convenient to rewrite it as an explicit integral over
all zero modes. This requires that instead of computing a sum over products of disc
diagrams one exponentiates the sum of all possible disc diagrams. The Grassmann
integration over the fermionic zero modes ensures that each one of them effectively
appears precisely once. The integral to be evaluated is

∫
d4xd2θd2τ̄

Nc∏

c=1

d4wcd
2µc

Nc−1∏

i=1

dλidλ̃i ×

exp
(
Dvac

D2 + A′vac
D2 + M ′vac

D2 + LD2−c + LD2−c−f + LD2−c−a

)
. (6.2)

Some comments on (6.2) are in order. LD2−c denotes the sum of all disc diagrams
with boundary segments on the instanton and the brane stack c, LD2−c−f and
LD2−c−a stand for those with boundary segments on the instanton, brane stack
c and brane stack f or a. Note that disc diagrams with boundaries only on the
instanton and brane stack f or a are not possible due to combinatorics. As was
explained in the previous chapter, the massless modes are not to be included when
computing A′vac

D2 and M ′vac
D2 . In the present case one has to take the limit (6.1)

which means that massive modes are not be taken into account, too. Therefore
one must set A′vac

D2 = M ′vac
D2 = 0 in (6.2). The limit (6.1) also implies that only a

subset of all possible disc diagrams contributes to the exponential in (6.2).
It was argued in the previous section that the vacuum disc diagram Dvac

D2 is
equal to (minus) the instanton action SD2. The latter is equal to the volume of
the three-cycle wrapped by the instanton and the brane stack c and therefore to
(the inverse square of) the gauge coupling g−2

SU(Nc)
of the SU(Nc) gauge theory on

brane stack c. The factor exp (Dvac
D2 ) thus reproduces the factor exp

(
−g−2

SU(Nc)

)

that appears in the gauge instanton computation.
The first step in evaluating (6.2) is to compute LD2−c, LD2−c−f and LD2−c−a.

They consist of disc diagrams involving the charged matter fields Φ, Φ̃ and the
instanton zero modes. The vertex operators for the charged matter fields in the
(-1)-ghost picture take the form (3.71)

VΦcf
= e−φ(z)eikµXµ(z)O1/2

cf,+1(z) VΦ∗

cf
= e−φ(z)eikµXµ(z)O1/2

cf,−1(z) (6.3)

VeΦca
= e−φ(z)eikµXµ(z)O1/2

ca,−1(z) VeΦ∗
ca

= e−φ(z)eikµXµ(z)O1/2
ca,+1(z). (6.4)

The worldsheet-U(1)-charge of the vertex operators for Φ and Φ̃ is different as
these fields transform in conjugate representations of the gauge group. The vertex
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operators in the (0)-ghost picture read:

VΦcf
= eikµXµ(z)

(
ikµψ

µ(z)O1/2
cf,+1(z) + O1

cf (z)
)

(6.5)

VΦ∗

cf
= eikµXµ(z)

(
ikµψ

µ(z)O1/2
cf,−1(z) + O′1

cf(z)
)

(6.6)

VeΦca
= eikµXµ(z)

(
ikµψ

µ(z)O1/2
ca,−1(z) + O1

ca(z)
)

(6.7)

VeΦ∗
ca

= eikµXµ(z)
(
ikµψ

µ(z)O1/2
ca,+1(z) + O′1

ca(z)
)

(6.8)

The vertex operators for the neutral zero modes x, θ, τ̄ were given in (5.3) and
(5.4), those for the charged zero modes wα̇ and µ in (5.6) and (5.7). The vertex
operators for the zero modes λf and λ̃a are

Vλf
= e−φ(z)/2

3∏

µ=0

TXµ(z)O3/8
cf,−1/2(z) (6.9)

Veλa
= e−φ(z)/2

3∏

µ=0

TXµ(z)O3/8
ca,+1/2(z). (6.10)

As the instanton and the brane stack c are described by the same boundary state
in the internal CFT, the operators O3/8

cf,−1/2(z) and O3/8
ca,+1/2(z) also appear in the

vertex operators of the chiral fermions that are the superpartners of Φ and Φ̃,
hence the label c.

6.3 Computing the disc diagrams

The relevant disc diagrams will now be computed. From the quiver diagram 6.1
one can read off which correlators of instanton zero modes and/or charged matter
fields are allowed by boundary combinatorics. Further important selection rules
come from U(1)-worldsheet charge conservation.

One starts by considering the disc diagrams involving only instanton zero
modes. These are the diagrams relevant for LD2−c. It turns out [154] that they
reproduce the ADHM constraints [173, 137, 174], which appear in the gauge in-
stanton computation. In order for this to happen, one has to rescale the zero
modes in a particular way [154] and take the limit (6.1). Finally, LD2−c becomes

LD2−c = τ̄α̇
(
wα̇

c µ̄c + w̄α̇
c µc

)
+ iDiw̄α̇

c wβ̇
c (τ i)α̇β̇, (6.11)

where the τ i are the Pauli matrices, Di are auxiliary fields that need to be inte-
grated over and summation over repeated indices is understood. Exponentiating
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LD2−c and integrating over Di and τ̄α̇ yields
∫

d3Dd2τ̄ exp (LD2−c) =
3∏

i=1

δ
(
w̄α̇

c wβ̇
c (τ i)α̇β̇

) 2∏

α̇=1

δ
(
wα̇

c µ̄c + w̄α̇
c µc

)
, (6.12)

i.e. delta-functions incorporating the bosonic and fermionic ADHM constraints.
The bosonic ones can be interpreted as the D- and F-term constraints ensuring
supersymmetry on the worldvolume of the instanton.

Next, the disc diagrams involving charged matter fields and charged fermionic
instanton zero modes will be determined [46]. One such diagram is the three-point
function

〈Φ∗
cfλfµc〉 (6.13)

which can be computed using the correlators (zij = zi − zj)

〈
3∏

µ=0

TXµ(z1)TXµ(z2)〉 = z−1/2
12 (6.14)

〈e−φ(z1)e−φ(z2)/2e−φ(z3)/2〉 = z−1/2
12 z−1/2

13 z−1/4
23 (6.15)

〈O1/2
cf,−1(z1)O3/8

cf,−1/2(z2)O3/8
3/2(z3)〉 = z−1/2

12 z−1/2
13 z−1/4

23 . (6.16)

Taking also the diagram

〈Φ̃∗
caµ̄cλ̃a〉, (6.17)

which can be computed similarly, into account one obtains

LD2−c−f + LD2−c−a = Φ∗
cfλfµc + Φ̃∗

caµ̄cλ̃a + ... . (6.18)

Finally, also the disc diagrams with insertions of charged bosonic zero modes and
matter fields have to be computed. One such diagram is the four-point amplitude

〈w̄β̇
c Φ

∗
cfΦc′fw

α̇
c′〉. (6.19)

If one chooses the vertex operators for the charged matter fields in the (0)-ghost
picture and those for the zero modes in the (-1)-ghost picture, one needs the
following correlators [175]:

〈O1/2
cf,−1(z2)O1/2

cf,+1(z3)〉 = z−1
23 (6.20)

〈O′1
cf(z2)O1

cf(z3)〉 = z−2
23 (6.21)

〈e−φ(z1)e−φ(z4)〉 = z−1
14 (6.22)

〈S β̇(z1)S
α̇(z4)〉 = −εβ̇α̇z−1/2

14 (6.23)

−2〈S β̇(z1)ψ
µ(z2)ψ

ν(z3)S
α̇(z4)〉 = (σ̄µν)β̇α̇z1/2

14 z−1/2
13 z−1/2

24 z−1/2
12 z−1/2

34

+δµνεβ̇α̇(z12z34 + z13z24)z
−1
23 z−1/2

14 z−1/2
13 z−1/2

24 z−1/2
12 z−1/2

34 (6.24)

〈
(
Π3

µ=0TXµ(z1)
)
eikΦ∗

µ Xµ(z2)eikΦ
µ Xµ(z3)

(
Π3

µ=0TXµ(z4)
)
〉 (6.25)
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The last correlator can be determined from the two point function [84]

〈Xµ(z2)X
ν(z3)〉T = −δµν ln

z2 − z3

(
√

z2 +
√

z3)2
(6.26)

in the Z2-twisted sector of the free boson and the result is:

〈
(
Π3

µ=0TXµ(z1)
)
eikΦ∗

µ Xµ(z2)eikΦ
µ Xµ(z3)

(
Π3

µ=0TXµ(z4)
)
〉 (6.27)

= z−1/2
1

(
z2 − z3

(
√

z2 +
√

z3)2

)−(kΦ)2

δ(kΦ + kΦ∗

) (6.28)

Putting everything together, letting z1 → ∞, z2 = 1, z4 = 0 and substituting
x2 = z3 one finds

〈w̄β̇
c Φ

∗
cfΦc′fw

α̇
c′〉 = εβ̇α̇

∫ 1

0

dx
(1 + x)(kΦ)2−2

(1 − x)(kΦ)2+2
(2x + (kΦ)2(x2 + 1)). (6.29)

The integral converges for (kΦ)2 < −1 and is defined by analytic continuation for
other values of kΦ [24]. This means that

〈w̄β̇
c Φ

∗
cfΦc′fw

α̇
c′〉 = −

εβ̇α̇

2
. (6.30)

The four-point amplitude 〈w̄β̇
c Φ̃caΦ̃∗

c′aw
α̇
c′〉 can be computed analogously and one

concludes that

LD2−c−f + LD2−c−a = −w̄α̇
c Φ

∗
cfΦc′fwα̇c′ − w̄α̇

c Φ̃caΦ̃
∗
c′awα̇c′ + ... . (6.31)

There can in principle be non-vanishing disc diagrams with more insertions of
matter fields but they vanish in the limit (6.1). Furthermore, as argued in the
previous chapter, precisely two fermionic zero modes should appear on each disc
diagram. The same is true for bosonic zero modes. Therefore one must use

LD2−c−f + LD2−c−a = Φ∗
cfλfµc + Φ̃∗

caλ̃aµ̄c

−w̄α̇
c Φ

∗
cfΦc′fwα̇c′ − w̄α̇

c Φ̃caΦ̃
∗
c′awα̇c′ (6.32)

in (6.2).

6.4 Zero mode integration

The integral to be evaluated becomes

∫
d4xd2θd2τ̄d3D

Nc∏

c=1

d4wcd
2µc

Nc−1∏

i=1

dλidλ̃i ×

exp (Dvac
D2 + LD2−c + LD2−c−f + LD2−c−a) (6.33)
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with LD2−c given in (6.11) and LD2−c−f + LD2−c−a in (6.32). The charged mat-
ter fields appearing in these expressions should be thought of as their vacuum
expectation values.

The first step in evaluating (6.33) is to perform the fermionic integral. One
finds:

∫
d2τ̄

Nc∏

c=1

d2µc

Nc−1∏

i=1

dλidλ̃i exp
(
τ̄α̇

(
wα̇

c µ̄c + w̄α̇
c µc

)
+ Φ∗

cfλfµc + Φ̃∗
caµ̄cλ̃a

)

=
Nc∑

c,c′=1

(−1)c+c′w̄α̇
c wα̇c′ det

[(
Φ∗

df Φ̃
∗
d′f

)′

cc′

]
(6.34)

In this expression Φ∗
df Φ̃

∗
d′f is an Nc×Nc matrix and (Φ∗

df Φ̃
∗
d′f)

′
cc′ an (Nc−1)×(Nc−1)

matrix obtained from Φ∗
df Φ̃

∗
d′f by deleting the c’th row and c′’th column. Note here

that the fermionic integral leads to the fact that a superpotential is only generated
if there are precisely Nc − 1 flavours. It otherwise gives zero.

The next step is to evaluate the integral over the bosonic zero modes. After
regularising it by adding the term εw̄α̇

c wα̇c in the exponent it becomes

∫ Nc∏

c=1

d4wcw̄
α̇
c wα̇c′ exp

(
iDiw̄α̇

c wβ̇
c (τ i)α̇β̇ − w̄α̇

c wα̇c′Mcc′

)
(6.35)

=
M ′

cd ((M2 + D2)−1)′dc′

det(M2 + D2)
, (6.36)

where Mcc′ = Φ∗
cfΦc′f + Φ̃caΦ̃∗

c′a + εδcc′ and D2 =
∑

i(D
i)2. The final integral over

Di can be performed after using the D-flatness condition Φcf = Φ̃∗
cf [176]. This

is justified as the instanton calculus is only valid for BPS-instantons in supersym-
metric configurations. Letting ε → 0, one recovers the ADS superpotential

∫
d4xd2θ

exp
(
−g−2

SU(Nc)

)

detfa Φcf Φ̃ca

. (6.37)

Note that no non-holomorphic terms stemming from non-canonical Kaehler poten-
tials have to be dealt with as the field theory limit had been taken. In conclusion,
the ADS superpotential can be obtained using the D-instanton calculus described
in the previous chapter. However, the limit (6.1) had to be taken which means that
there will be corrections to the field theory result if an ADS-like superpotential is
generated by a D-instanton in a full globally consistent string theory model.

Interestingly, it turns out that in string theory, a D-instanton wrapping a cycle
that is wrapped by only one brane (i.e. N = 1 in the setup considered above) can
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generate a superpotential [54, 151, 177], although there is no gauge theory inter-
pretation of this D-instanton, as a U(1) gauge theory does not admit topologically
non-trivial solutions.

6.5 Other gauge groups

Gauge instantons generate superpotentials in theories with gauge groups other
than SU(Nc), too. Examples are USp(2Nc) and O(Nc). It shall be sketched in
the following that these superpotentials can also be recovered in a D-instanton
computation.

In order to engineer a theory with unitary symplectic or orthogonal gauge group
one wraps a stack c of Nc D6-branes on a three-cycle of a Calabi-Yau manifold
which is invariant under the antiholomorphic involution that is part of the ori-
entifold projection. The precise form of the latter determines whether the gauge
group on the worldvolume of the brane is unitary symplectic or orthogonal. Ab-
sence of chiral multiplets transforming in the adjoint representation again requires
the three-cycle to be rigid. The relevant D-instanton is once more one that wraps
the same cycle as the stack c of D-branes.

If the gauge group on the D-branes is USp(2Nc), a superpotential is generated
if there are 2Nc flavours Φcf , c, f ∈ {1, ..., 2Nc} transforming in the fundamental
representation of USp(2Nc). So one introduces a second stack f of 2Nc branes
which intersects the first one such that the required chiral multiplets arise as
strings stretching between the two stacks of branes. The gauge theory on the
second stack of branes must again decouple, so the volume of the cycle it wraps
must become infinitely large when taking a limit like (6.1).

The gauge group on the instanton in this case is O(1), so, as discussed in the
previous chapter, there are four bosonic and two fermionic neutral zero modes. The
fermionic zero modes τ̄ α̇ as well as some of the charged zero modes are removed
by the orientifold projection. It turns out that 2Nc fermionic zero modes µc and
4Nc bosonic zero modes wα̇

c , c ∈ {1, ..., 2Nc}, survive in the sector of open strings
between stack c and the instanton. Furthermore, there are 2Nc fermionic zero
modes λf , f ∈ {1, ..., 2Nc} from strings stretching between the instanton and brane
stack f . As the zero modes τ̄ α̇ are projected out, there are no fermionic ADHM
constraints [178]. There are also no bosonic ADHM constraints [178]. This can
be understood from the fact that the gauge theory on the instanton worldvolume
is trivial which implies that no D- or F-term constraints arise. The integral to be
evaluated is

∫
d4xd2θ

2Nc∏

c=1

d2wcdµcdλc exp
(
Dvac

D2 + µcΦ
∗
cfλf − wα̇

c ΦcfΦ
∗
c′fwα̇c′

)
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=

∫
d4xd2θ

exp
(
−g−2

USp(2Nc)

)

detcf Φcf
, (6.38)

and one recovers the form of the superpotential found in field theory [179].
In the case of an O(Nc) gauge theory on the worldvolume of the branes, Nc−3

flavours Φcf , c ∈ {1, ..., Nc}, f ∈ {1, ..., Nc − 3}, are required for a superpotential
to be generated by an instanton. Thus one introduces a second stack f of Nc − 3
branes. In this case, the gauge group on the instanton worldvolume is USp(2).
The zero modes xµ and θα transform in the antisymmetric, one-dimensional rep-
resentation of this group, the zero modes τ̄ α̇i , i ∈ {1, 2, 3} in the symmetric, three-
dimensional representation. This implies that the 3 × 2 = 6 fermionic ADHM
constraints are reproduced in string theory. There are also 3 × 3 = 9 bosonic
ADHM constraints, which can again be understood from the D- and F-term su-
persymmetry conditions on the instanton worldvolume. The charged zero modes
transform in the fundamental, two-dimensional representation of USp(2). There
are 4Nc bosonic zero modes wα̇

ac and 2Nc fermionic zero modes µac, a ∈ {1, 2},
c ∈ {1, ..., Nc}, from strings stretching between the instanton and brane stack c as
well as 2(Nc − 3) fermionic zero modes λaf , a ∈ {1, 2}, f ∈ {1, ..., Nc − 3}, from
those stretching between the instanton and stack f .

The fermionic integral can be evaluated and can be seen to lead to the re-
quirement of having Nc − 3 flavours. The bosonic integral is rather difficult due
to the large number of ADHM constraints. Eventually one should recover the
superpotential

∫
d4xd2θ

exp
(
−g−2

O(Nc)

)

detff ′ ΦcfΦcf ′

(6.39)

found in field theory [180].
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Chapter 7

D-instanton corrections to the

gauge kinetic function

The last two chapters have mainly been concerned with D-instanton corrections to
the superpotential. Other quantities in the low energy effective action will however
receive such corrections, too. This chapter deals with instanton-induced contribu-
tions to the gauge kinetic function [121, 119], which, just as the superpotential, is
holomorphic. Its dependence on the modulus chiral superfields is therefore quite
restricted which allows setting up an instanton calculus that can actually be used
to perform explicit calculations.

7.1 General considerations

Many of the considerations made in the context of the superpotential carry over
to the case of the gauge kinetic function. This is true in particular for those about
charges under global abelian symmetries and those about the dependence on the
string coupling. Furthermore, it is clear that the instanton zero modes are once
more of crucial importance. So in order to determine which instantons correct the
gauge kinetic function one starts by thinking about what the zero mode structure
of such instantons should look like. Only corrections to the gauge kinetic function
not depending on charged matter fields will be considered here, as corrections that
do depend on these fields are normally uninteresting in the most common case
where the charged matter fields have vanishing vacuum expectation values. This
implies that the relevant instantons will not have charged zero modes because, as
was argued in chapter 5, these are absorbed by disc diagrams with charged matter
fields inserted. The structure of neutral zero modes is most easily determined by
mapping heterotic worldsheet instantons to the D2-instantons discussed here. The
map consists of S- and T-dualities. Of course, one needs to consider heterotic
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worldsheet instantons which correct the gauge kinetic function [181].

Before doing this, it is worth pausing for a moment to discuss in some detail
what zero modes of heterotic worldsheet instantons the different kinds of D2-
instanton zero modes mentioned in chapter 5 correspond to. Worldsheet instantons
of the heterotic string with gauge group SO(32) are mapped to D1-instantons of
the type I string under S-duality. The latter become D2-instantons in type IIA
orientifolds under mirror symmetry or T-duality. For compactifications on smooth
spaces, all D1-instantons in the type I string have an orthogonal gauge group on
their worldvolume. As the gauge group on a D-brane is preserved under the mirror
map, one immediately sees that, focusing on the easiest and most relevant case
of a single instanton, only D2-instantons with gauge group O(1) can be mapped
directly to heterotic worldsheet instantons.

The distinction between neutral and charged zero modes in the D2-instanton
case has a clear analogue in the heterotic string: Neutral fermionic zero modes,
arising as strings with both ends on the D-instanton, correspond to zero modes
of the fermions of the right moving superstring, and neutral bosonic zero modes
to zero modes of the ten free bosons which are the embedding coordinates of the
string in spacetime. Charged fermionic zero modes, which are strings with one
end on the instanton and the other one on one of the space-filling D-branes, are
mapped to zero modes of the left-moving fermions of the heterotic string that
are responsible for the gauge degrees of freedom. Given this distinction, one can
ask the question what charged bosonic zero modes correspond to. In order to see
what happens, one recalls that such modes arise iff the instanton wraps a cycle
that is also wrapped by a space-filling D-brane and therefore represents a gauge
instanton. Gauge instantons in the heterotic string are not worldsheet instantons.
A zero-size gauge instanton in the heterotic SO(32) theory is a heterotic five-brane
[182]. Therefore, charged bosonic zero modes do not have an analogue in terms of
heterotic worldsheet instanton zero modes.

Summarising the discussion in chapter 5, the neutral zero mode structure of a
D2-instanton with gauge group O(1) is given as follows: There are always the uni-
versal four bosonic and two fermionic zero modes which are Goldstone modes asso-
ciated with broken translation symmetries and supersymmetries. If the three-cycle
πD2 wrapped by the instanton is not rigid, there will in addition be 2(b1(πD2)−x)
fermionic as well as 2x bosonic and 2x fermionic zero modes, where the value of x
depends on how the anti-holomorphic involution, which is part of the orientifold
projection, acts on the three-cycle πD2. The structure of bosonic and right-moving
fermionic zero modes of heterotic worldsheet instantons is rather similar [181]. In
addition to the universal zero modes, there are 2p bosonic and 2p fermionic as
well as 2g fermionic ones, where p counts the number of holomorphic sections of
the normal bundle of the worldsheet in the compactification manifold and g is the
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genus of the worldsheet. So when mapping D2-instantons to heterotic world-sheet
instantons, p corresponds to x and g corresponds to (b1(πD2) − x).

Corrections to the gauge kinetic function in the heterotic string come from
worldsheet instantons which wrap an isolated, i.e. p = 0 in the notation used
above, curve of genus g = 1 [181]. In view of the above discussion, this means that
a D2-instanton can contribute to the gauge kinetic function if it wraps a three-cycle
whose first Betti number is one [121], or, in other words, whose moduli space of
deformations is one dimensional. Locally, one can introduce a coordinate y on this
moduli space on which the antiholomorphic involution acts as y → y or y → −y.
When the three-cycle is wrapped by a D-brane, the moduli space is complexified
due to a Wilson line into a one complex dimensional open string moduli space.
Before orientifolding, the instanton has two bosonic and four fermionic neutral
zero modes yi, µα and µ̄α̇, i,α, α̇ ∈ {1, 2}, with vertex operators (5.5), in addition
to the universal ones. Some of these zero modes are removed by the orientifold
projection. If the anti-holomorphic involution maps y to y, it acts on it as on the
coordinates in the four-dimensional external space and, just as the zero modes xµ

and θα, the zero modes yi and µ̄α̇ survive. If y is mapped to −y, the zero modes µα

survive. Note that the spacetime chirality of the surviving fermionic zero modes
that come with yi is different from that of those coming with xµ. The reason is that
the orientifold projection acts differently on the relevant operators of the internal
CFT. According to the above discussion about the relation of heterotic worldsheet
instantons and D2-instantons, the relevant D2-instantons are those with one pair
of zero modes µα.

Summarising, D2-instantons wrapping a cycle with one deformation which is
anti-invariant under the anti-holomorphic involution can correct the gauge kinetic
function [121]. Furthermore, in order to ensure the absence of charged zero modes,
the cycle should not intersect any cycle wrapped by space-filling branes.

According to the previous discussion, D2-instantons that can correct the gauge
kinetic function have four fermionic zero modes. They have to be absorbed by in-
serting their vertex operators in CFT correlators. Furthermore, two gauge boson
vertex operators have to be inserted because one is interested in the gauge kinetic
function. As the latter is holomorphic, only tree and one-loop diagrams can con-
tribute, in analogy to what happens in the case of the superpotential. A correlator
of neutral instanton zero modes and gauge bosons is needed, so the relevant dia-
gram must have boundary segments both on the instanton and on the space-filling
D-brane whose gauge kinetic function one is interested in. If the correlator were a
disc diagram, vertex operators changing the boundary from the instanton to the
space-filling D-brane would be needed. Such vertex operators would be associated
to charged zero modes, which are absent. Note here that massive charged instan-
ton modes, which always exist, cannot be inserted as, having no four-dimensional
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momentum, they cannot be on-shell and there is thus no vertex operator of the
appropriate conformal weight for them. In conclusion, the diagram needed is an
annulus diagram [121]

〈
2∏

α=1

Vθα

2∏

α=1

Vµα|
2∏

i=1

Vgauge boson〉 =
D2 D6

(7.1)

with one boundary on the instanton and the fermionic zero modes inserted, and the
other boundary on the D-brane with the gauge boson vertex operators inserted.

There is another argument one can give to support the claim that it should
be an annulus diagram on which the gauge bosons are inserted and via which the
zero modes are absorbed. As the relevant diagram in the heterotic string appears
at genus one, i.e. at one loop in the topological expansion, it is reasonable to
assume that the relevant diagram in the open string case should also be a one-loop
diagram, i.e. an annulus.

Just as the superpotential, the gauge kinetic function has to respect the global
abelian symmetries. The absence of charged zero modes implies that the instanton
action must be invariant by itself or, in other words, complex structure moduli
whose real parts shift under U(1)-symmetries must not appear in it.

At this point, one can write down a formula for the correlator of two gauge
bosons in the instanton background, from which one can extract the corrections to
the gauge kinetic function. In analogy to formula (5.15) for contributions to the
superpotential, it involves various vacuum diagrams and the zero mode absorption
diagram (7.1):

〈FF 〉 =
D2 D6

exp

(

Dvac
D2 + M ′vac

D2 +
∑

a

A′vac
D2,D6a

)

(7.2)

Similar to what happens in the case of the superpotential, non-holomorphic
terms in the different amplitudes in (7.2) rearrange so as to give a result that is in
agreement with the holomorphy of the gauge kinetic function. Using that in this
case there are Nf = 2 fermionic zero modes (in addition to the universal ones),
the µα’s, and the previous result x = 2 derived in section 5.5, (5.24) becomes

16π2S1−loop
D2 = 16π2Im(Sholo,1−loop

D2 )

−4 ln Re(Stree
D2 ) − 2 ln det KD2,tree

µ . (7.3)

What is also needed is a formula similar to (5.26) that allows one to disentan-
gle holomorphic and non-holomorphic terms of the diagram in (7.1). Given that
the θα’s are gaugino-like modes, (7.1) is a gauge-kinetic-function- rather than
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superpotential-like term. Therefore, the factor exp(K/2) of (5.26) will not ap-
pear. The formula is

〈
2∏

α=1

Vθα

2∏

α=1

Vµα |
2∏

i=1

Vgauge boson〉 =
f̃

Re(Stree
D2 )Ktree

µ

, (7.4)

with f̃ holomorphic. The two non-holomorphic terms in the second line of (7.3)
cancel against the denominator of (7.4), which accounts for the non-canonical
normalisation of fields in a supergravity Lagrangian.

The final formula for the D2-instanton induced correction to the gauge kinetic
function is:

fnp = f̃ × exp
(
−SD2 − 4π2Sholo,1−loop

D2

)
(7.5)

7.2 Computation in a concrete model

The next step is to apply the general formulas of the last section to a concrete
model [119]. They were derived for type IIA orientifolds with intersecting D6-
branes, but very similar formulas hold for type I compactifications. The model
that will be used here is the type I orbifold model discussed in section 3.3. The
advantage of computing the D-instanton corrections to the gauge kinetic function
in this model is that an S-dual heterotic model is known for which the gauge
threshold corrections including all worldsheet instanton contributions have been
computed in section 4.1.3. So one can compare the results and thereby test the
D-instanton calculus.

7.2.1 The relevant D-instantons

Recall that the compactification space of the type I model of section 3.3 is a shift
orbifold of a six-torus with orbifold group Z2×Z2. Due to the orbifolding, it splits
into a product of three two-tori. The relevant D-instantons are D1-instantons
wrapping one of the three two-tori, which without loss of generality can be taken
to be the third torus. In order to get the result for instantons wrapping another
torus one only has to exchange some indices in the following formulas. A D1-
instanton wrapping the third torus can either be a bulk brane or it can be charged
under the twisted sector associated with the orbifold group element Θ′′ . Before
orientifolding, a bulk brane has six bosonic open string moduli (not counting the
moduli associated with the position of the instanton in the four-dimensional space),
four of which describe the position of the instanton on the first two two-tori. The
other two are Wilson lines along the two fundamental one-cycles of the third
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two-torus. A fractionally charged brane only has the two Wilson line moduli. Its
position is fixed. According to the discussion in the previous section, it is therefore
clear that the relevant instantons are the fractionally charged branes. As they are
only charged under one of the three twisted sectors, they are given by a doublet of
two branes, which, due to the shift in the orbifold action, are at different points on
the first two two-tori. These two points are mapped to each other by the orbifold
group elements Θ and Θ′. Figure 7.1 illustrates this.

Θ,Θ′ Θ,Θ′

x6x4x2

x5x3x1

Figure 7.1: Position of a single O(1) instanton: This E1 wraps the third two-
torus and is localised on the fixed points (x1, x2) = (0, 0), (1/2, 0), (x3, x4) =
(1/4, 0), (3/4, 0) of Θ′′.

The neutral zero mode structure of D2-instantons wrapping non-rigid cycles
was discussed in section 5.2. Analogously, one finds that there are four fermionic
zero modes that come with the Wilson line moduli of the D1-instantons under
consideration. The orientifold projection removes two of the fermionic zero modes
and truncates the moduli space of Wilson lines to a discrete space that will be
parameterised by β and γ. Usually, the discrete Wilson line moduli space that
survives the orientifold projection is given by β, γ ∈ {0, 1/2}. In this case, due to
the shift included in the orbifold action, it looks a little bit different. The winding
numbers in the twisted (closed string) sector associated with Θ′′ are of the form
(half integer,integer). To see what this implies for the Wilson lines on branes
wrapping this torus, one considers the winding mode part

∑

w1∈Z+ 1
2

∑

w2∈Z

exp (2πi(βw1 + γw2)) |w1, w2〉 (7.6)

of the twisted sector boundary state describing a brane with Wilson lines β and
γ. There are two things to notice from (7.6). First, a state with β = 1/2 is not
invariant under the orientifold projection and therefore not allowed. To see this
one has to take into account that the worldsheet parity operator (which is the full
orientifold projection operator in this case) maps |w1, w2〉 to |−w1,−w2〉. Second,
a state with β = 1 is not equivalent to a state with β = 0. In conclusion, the
Wilson line moduli space in this case is β, 2γ ∈ {0, 1} [119].
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It was already mentioned that the position on the first two two-tori of the
D-instantons under discussion is fixed. There is however a discrete moduli space
of possible locations. In terms of the coordinates used in figure 7.1 it is given by
x2, x4 ∈ {0, 1/2}. The contribution of the instantons to the gauge kinetic function
does not depend on their position, so in order to account for this moduli space,
one just has to multiply the final expression by four.

The annulus and Moebius strip partition functions of the D1-instanton with
(discrete) Wilson lines parameterised by β and γ are [100]

AD1−D1 =
1

8

∫ ∞

0

dt

t

[
ϑ4

3 − ϑ4
4 − ϑ4

2 − ϑ4
1

η12
ΛM

3 [0, 0, 0] ×
(
ΛW

1 [0]ΛW
2 [0] + ΛW

1 [1/2]ΛW
2 [1/2]

)

+4
ϑ2

3ϑ
2
4 − ϑ2

4ϑ
2
3 + ϑ2

2ϑ
2
1 + ϑ2

1ϑ
2
2

η6ϑ2
2

ΛM
3 [1/2, 0, 0]

]

(7.7)

MD1 = −
1

8

∫ ∞

0

dt

t

[

4
ϑ2

3ϑ
2
4 − ϑ2

4ϑ
2
3 + ϑ2

2ϑ
2
1 + ϑ2

1ϑ
2
2

η6ϑ2
2

ΛM
3 [1/2, 0, 0] ×

ΛW
1 [0]ΛW

2 [0] + 16
ϑ4

4 − ϑ4
3 − ϑ4

1 − ϑ4
2

ϑ4
2

ΛM
3 [0, 0, 0]

]

(7.8)

AD1−D9 =
2 × 32

8

∫ ∞

0

dt

t

[
ϑ4

2 − ϑ4
1 − ϑ4

3 − ϑ4
4

ϑ4
4

ΛM
3 [0, β, γ]

+
ϑ2

2ϑ
2
1 − ϑ2

1ϑ
2
2 + ϑ2

3ϑ
2
4 − ϑ2

4ϑ
2
3

ϑ2
3ϑ

2
4

ΛM
3 [1/2, β, γ]

]

(7.9)

with the momentum and winding sums given in (3.58) and (3.59). If β = γ = 0,
there are massless open strings with one end on the D1-instanton and one end
on the D9-branes, i.e. charged zero modes. Integration over them makes the
amplitude vanish as they cannot be absorbed via disc diagrams due to the lack of
charged matter fields. For other values of β and γ, there are no charged zero modes,
so there are three different instantons which correct the gauge kinetic function.

7.2.2 The one instanton contribution

Their contributions will now be computed explicitly. According to (7.2) applied
to this type I model one has to compute the diagram

D1 D9
and one has to evaluate

the expressions (7.8) and (7.9) for the Moebius strip and annulus diagrams. Note
that (7.7) vanishes. As was explained in section 5.4, the Ramond sector amplitude
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with a (−1)F insertion is not to be included when evaluating (7.8) and (7.9).
Furthermore, the contribution of the open string zero modes should be removed
from (7.8). This is in principle also true for (7.9), but there are no such modes.
For the two diagrams one finds:

M ′
D1 = 4Im(T (3))

∫ ∞

0

dl − 4Im(i ln η(U (3)))

− ln
(
Im(T (3))Im(U (3))

)
(7.10)

AD1−D9 = −4Im(T (3))

∫ ∞

0

dl + 16Im(i ln
ϑ
[
(1−β)/2
1/2−γ

]

η
(2U (3))) (7.11)

The next step is to evaluate the diagram
D1 D9

, where the four insertions on the
D1 boundary are the Goldstinos θα and the Wilson line modulinos µα and the two
insertions on the D9 boundary are gauge bosons. This six point diagram on an
annulus is quite hard to compute in CFT. The strategy that will be adopted here
[119] is to relate

D1 D9
to a diagram that can be computed more easily. The first

step in doing so is to replace the boundary on the D9-brane with the two gauge
boson vertex operators inserted by a boundary on a fictitious D5-brane instanton
that is identical to the D9-brane in the internal space, but pointlike in the four-
dimensional external space. By comparing (5.18) with (4.4) one finds that this
replacement would be allowed if the other boundary was on a space-filling brane
with no insertions, i.e.

D9′ D9
=

D9′ D5
. It was argued [158, 159] that such a relation

should hold more generally, e.g.
D1 D9

=
D1 D5

. The next step is to use “T-duality”
along the non-compact directions to replace the boundaries on the instantons by
boundaries on space-filling D-branes. Of course, T-duality only makes sense for
compact directions, but there should nevertheless exist a relation between the CFT
amplitudes, i.e.

D1(θ,θ,µ,µ)D5
=

D5(λ,λ,ω,ω)D9
. The four insertions on the boundary of the

D1-instanton are Goldstinos and Wilson line modulinos, so the insertions on the
boundary of the D5-brane must be gauginos λ and fermions ω of Wilson line chiral
supermultiplets. The correlator

D5 D9
would come from the term L1 = ∂2f

∂w2ωωλλ

contained in the supersymmetric Lagrangian L =
∫

d2θf(w + θω + ...)W 2, where
W = −iλ − (σµνθ)Fµν + ... is the gauge field strength superfield. L also contains

the term L2 = ∂2f
∂w2 wwF µνFµν . Given that, due to supersymmetry, the prefactor

∂2f
∂w2 in L1 and L2 is equal, one concludes that one can replace the gauginos λ and
Wilson line modulinos µ in

D5 D9
by gauge boson field strengths F µν and Wilson

line moduli w, i.e.
D5(λ,λ,ω,ω)D9

=
D5(F,F,w,w)D9

. The final step is to use the fact that

instead of computing the four point function
D5(F,F,w,w)D9

one can compute the two

point function
D5(F,F ) D9

as a function of the Wilson line w and take the second
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derivative with respect to it. In conclusion, one finds the relation [119]

D1(θ,θ,µµ) D9

=
∂2

∂w2
D5(F,F ) D9

. (7.12)

The diagram
D5(F,F ) D9

is a diagram that also appears when computing gauge
threshold corrections, so can be computed using the techniques of chapter 4. One
finds [119]

D5(F,F ) D9

∝ Im(i ln
ϑ
[
(1−β)/2
1/2−γ

]
(w, 2U (3))

η(2U (3))
). (7.13)

Before using this result in (7.12), recall from section 5.4 that the instantonic one-
loop vacuum diagrams are partially ill-defined. The procedure proposed there
was to take only the well-defined parts into account when computing them and
to promote the resulting imaginary parts of holomorphic functions to the full
holomorphic functions. A similar procedure should be applied to

D1(θ,θ,µ µ)D9
. So

finally one obtains [119]

D1(θ,θ,µ µ) D9

∝

ϑ′′
[
(1−β)/2
1/2−γ

]

ϑ
[
(1−β)/2
1/2−γ

] (2U (3)). (7.14)

This expression is a holomorphic function of the moduli and not of the form (7.4).
In fact, this was in some sense to be expected. When relating

D1(θ,θ,µ µ)D9
to

D5(F,F ) D9

the equality of two terms in a supersymmetric Lagrangian was used. It holds for
the Lagrangian in the Wilsonian sense, that is a Lagrangian where massless modes
have not been integrated out. As the non-holomorphic terms in (7.4) come from
massless modes, their effect on the two terms can be different. To correct for this,
one recalls that it was shown in the last section that these non-holomorphic terms
cancel those appearing in the vacuum Moebius strip diagram. So, what one has
to do, is to neglect the term ln

(
Im(T (3))Im(U (3))

)
in (7.10).

Using (7.10), (7.11) and (7.14) in (7.2) and taking into account that the in-
stanton action SD1 = −Dvac

D1 is proportional to the complexified worldvolume of
the instanton, and therefore to T (3), one finally finds that

〈FF 〉 = exp
(
πiT (3)

) ϑ′′
[
(1−β)/2
1/2−γ

]

ϑ
[
(1−β)/2
1/2−γ

]
ϑ16

[
(1−β)/2
1/2−γ

]

η16
(2U (3))

1

η4(U (3))
. (7.15)

Note that the divergences in (7.10) and (7.11) cancel as expected and that the
imaginary parts of holomorphic functions in these formulas have been promoted
to full holomorphic functions.
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Using η2(U) = ϑ4(2U)η(2U), summing over the three possibilities for the Wil-
son lines β and γ and taking the instantons wrapping the first and the second torus
into account as well, the one D-instanton correction to the gauge kinetic function
becomes [119]

δ1−instfI =
3∑

i=1

exp
(
πiT (i)

) 4∑

a=2

ϑ′′
a

ϑa

ϑ16
a

η16

1

ϑ2
4η

2
(2U (i)). (7.16)

This result precisely matches the leading worldsheet instanton correction to the
gauge coupling in the dual heterotic model, i.e. the summand with p = 2k = 1,
j = 0 in (4.23). This agreement should be taken as evidence that the D-instanton
calculus for corrections to the gauge kinetic function and in particular (7.12) are
correct.

It is worth pointing out that the sum over the spin structures of the left-
moving fermions in (4.23) corresponds to the sum over the instantons differing in
their discrete Wilson lines in (7.16) [183].

7.2.3 Multiply wrapped instantons

It remains to be shown that also the higher order terms in (4.23) can be reproduced
by a D-instanton calculation in the type I model. It was argued in similar cases
[184, 185] that such terms come from corrections induced by multiply wrapped D-
instantons or, equivalently, bound states of several instantons [120, 186, 187]. In
the latter description, only certain twisted sectors of the symmetric product orb-
ifold CFT describing the bound state in the infrared contribute and these twisted
sectors are essentially equivalent to multiply wrapped instantons. The analysis is
easiest in terms of these multiply wrapped instantons so this is the point of view
adopted here.

The objects to be considered are thus D1-instantons whose worldvolume is a
multiple cover of one of the three two-tori which constitute the compactification
space [119]. In other words, the lattice which defines the worldvolume of one of
these instantons is a sublattice of the lattice that defines the spacetime two-torus.
This is illustrated in figure 7.2.

The way the instanton multiply wraps the spacetime torus can be encoded in
three numbers that correspond to p, k and j in the heterotic worldsheet instanton
sum in (4.23) and that will therefore be denoted by the same letters. From figure
7.2 one can infer that the instanton worldvolume should be describable by effective
Kaehler and complex structure moduli T eff and Ueff that are functions of the
two-torus moduli Im(T ) and U as well as p, k and j. A Comparison of the higher
order terms in (4.23) with the expression (7.16) suggests T eff = pkIm(T ) and
Ueff = (j + pU)/2k. By analysing which p, k and j yield inequivalent wrappings,
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p

j 2k

Figure 7.2: Multiply wrapped D1-instanton.

one finds that their range is just what is needed to reproduce all the terms in
(4.23).

Using T eff = pkIm(T ) and Ueff = (j + pU)/2k in (7.16) to find the con-
tributions of the multiply wrapped instantons does not correctly reproduce the
functional form of the heterotic result. What one has to do is the following [119].
First, one notes that (3.65) suggests that the effective complex structure modulus
is encoded in

(1, U)A = (A11 + A21U, A12 + A22U), (7.17)

where the matrix A will be (a modularly transformed version) of the form (4.20).
It turns out that Ueff = (A12 +A22U)/2(A11 +A21) and that one has to modularly
transform A such that A11 is half-integer and A12 integer before one can apply
(7.16) to the multiply wrapped branes whose worldvolume is described by T eff

and Ueff .
So if k is half-integer and j is integer, one can directly use (7.16) to reproduce

the corresponding terms in (4.23). If both k and j are half integer, one finds after a
modular T−1 transformation Ueff = (j−k + pU)/k. Inserting this into (7.16) and
performing a modular T transformation yields the required result. Finally, if k is
integer and j half-integer one has to perform a modular S transformation which
results in Ueff = −k/2(j + pU). In analogy to the previous case, one reproduces
the corresponding terms in (4.23).

To summarise, the higher order terms in the heterotic worldsheet instanton
sum in (4.23) are reproduced in the type I description by multiply wrapped D1-
brane instantons. So all the holomorphic parts of the heterotic expression (4.23)
can also be computed in the S-dual type I model.
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Chapter 8

Poly-instantons

In this chapter, arguments for a new class of instanton corrections [119] in four-
dimensional string compactifications will be presented. The observation of an
equality of certain terms in gauge kinetic functions and instanton amplitudes will
lead to the conjecture that D-instanton actions can receive corrections from other
D-instantons. These corrections will be reinterpreted as new contributions to the
superpotential and the gauge kinetic function arising through multiple instantons.
As these configurations of multiple instantons are different from multi-instantons
they will be called poly-instantons [119].

After outlining arguments for poly-instantons, some poly-instanton corrections
will be computed for the type I orbifold model described in section 3.3. The general
discussion will therefore focus on type I compactifications, but the ideas and results
carry over to other orientifold compactifications of type II string theories.

8.1 Arguments for poly-instantons

So consider a supersymmetry preserving compactification of the type I string on
some Calabi-Yau manifold or on an orbifold. The model will contain D9-branes
with orthogonal and D5-branes with unitary symplectic gauge groups [188]. The
instantons of interest here are D1-brane instantons with an orthogonal gauge group
on their worldvolume.

Recall from section 5.5 that there is a relation between the action of a D2-
instanton and the gauge coupling/gauge kinetic function on a fictitious D6-brane.
A brane which does not exist in the model(s) under consideration, but which is
useful to establish relations between certain expressions will be referred to as a
fictitious brane in the following. In analogy, there is a relation between the action
SD1 of a D1-instanton and the gauge coupling gD5 on a fictitious D5-brane that
wraps the same cycle in the internal space as the instanton or that is described by
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the same boundary state.
More precisely, the tree-level instanton action and the tree-level gauge cou-

pling/gauge kinetic function are both given by dimensionally reducing the Dirac-
Born-Infeld and Chern-Simons actions on the same cycle, so one finds:

(
gtree

D5

)−2
= Im(f tree

D5 ) = Im(Stree
D1 ) (8.1)

f tree
D5 = Stree

D1 (8.2)

In exact analogy to the case of D2-instantons and D6-branes discussed in sec-
tion 5.5, the equality of certain CFT amplitudes implies that the one-loop gauge

threshold corrections
(
g1−loop

D5

)−2
and the one-loop correction to the instanton ac-

tion S1−loop
D1 , defined in analogy to (5.22), are equal.

(
g1−loop

D5

)−2

= S1−loop
D1 (8.3)

The threshold corrections depend non-holomorphically on the moduli, but one can
use (4.27) to determine the one-loop correction to the holomorphic gauge kinetic
function. (8.3) implies that S1−loop

D1 is also non-holomorphic. It was argued in
section 5.5 that a precisely analogous formula, (5.24), can be used to disentan-
gle holomorphic and non-holomorphic pieces in S1−loop

D1 and to thereby define the
holomorphic quantity Sholo,1−loop

D1 . Consequently,

Im(f 1−loop
D5 ) = Im(Sholo,1−loop

D1 ). (8.4)

It is plausible to assume

f 1−loop
D5 = Sholo,1−loop

D1 . (8.5)

The type I version of the non-renormalisation theorem of section 4.2 implies that
the gauge kinetic function fD5 does not receive perturbative corrections beyond one
loop. On the other hand, the holomorphic part Sholo

D1 of the instanton action is to be
considered as the exponent that appears in the instanton induced superpotential
and gauge kinetic function. It was argued in chapters 5 and 7 that in order to
compute them no (perturbative) amplitudes beyond one-loop in the open string
coupling have to be taken into account. This implies that also Sholo

D1 does not receive
higher order perturbative corrections. Keeping this in mind and denoting the full
perturbative gauge kinetic function by f pert

D5 and the full perturbative holomorphic
part of the instanton action by Sholo,pert

D1 , (8.2) and (8.5) imply [119]

f tree
D5 + f 1−loop

D5 = f pert
D5 = Sholo,pert

D1 = Stree
D1 + Sholo,1−loop

D1 . (8.6)
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It was shown in chapter 7 that fD5 can receive corrections fD1′
D5 from D1’-instantons.

The prime on D1’ indicates that these instantons are different from the D1-
instantons whose action is equal to fD5. If the equality (8.6) between the holomor-
phic part of the D1-instanton action and the gauge kinetic function on the fictitious
D5-brane, which holds to all orders in perturbation theory, is true exactly, also the
instanton action must receive corrections SD1′

D1 from D1’-instantons.

SD1′

D1

?

*= 0 Sholo,D1′

D1
?
= fD1′

D5 (8.7)

It shall now be discussed what instanton corrections to instanton actions imply.
One starts by considering a formula for a D1-instanton correction to some quantity.
Obviously, the instanton action will appear in such an expression. Given (7.2) and
(7.5) one can schematically write the D1-instanton correction to the gauge kinetic
function on some stack of branes labelled a as

fD1
a =

a D1

exp
(
−Sholo,pert

D1

)
. (8.8)

This formula together with the conjectured equality (8.7) between the D1’-instan-
ton corrections to the D1-instanton action and the gauge kinetic function on the
fictitious D5-brane imply

Sholo,D1′

D1 =
D1 D1′

exp
(
−Sholo,pert

D1′

)
. (8.9)

The next step is to add Sholo,D1′

D1 to Sholo,pert
D1 in (8.8) and to expand the exponential.

fD1
a =

a D1

exp
(
−Sholo,pert

D1 − Sholo,D1′

D1

)

=
a D1

exp

(
−Sholo,pert

D1 −
D1 D1′

e−Sholo,pert

D1′

)

=
a D1

exp
(
−Sholo,pert

D1

)

−
a D1 D1 D1′

exp
(
−Sholo,pert

D1 − Sholo,pert
D1′

)
+ ... (8.10)

The last line in (8.10) should be interpreted as a two-instanton correction to the
gauge kinetic function [119]. Generalising this observation means that instanton
corrections to instanton actions can be rephrased as corrections from multiple in-
stantons to more physical quantities such as the gauge kinetic function or the super-
potential. It is important to stress that these corrections come from the interplay
of distinct instantons and are therefore different from the usual multi-instantons
which appear in gauge or string theory. In string theory multi-instantons are mul-
tiply wrapped worldsheets or stacks of D-instantons. So, in order to distinguish
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this new type of multiple instantons they will be referred to as poly-instantons
[119].

It is clear that, although the equality (8.6) of the perturbative part of the
D1-instanton action and that of the gauge kinetic function on the fictitious D5-
brane makes it plausible that this equality holds exactly (8.7), this does not have
to be the case. In the following another argument [119] in favour of D-instanton
corrections to D-instanton actions, or, equivalently, poly-instantons, will be given.

Consider a string compactification with an SU(N) factor in the low energy
gauge group, which arises from a stack of N D-branes. Assume that the only
massless states charged under this SU(N) group are the vector supermultiplets
transforming in the adjoint representation, N −1 chiral multiplets transforming in
the fundamental representation and N−1 chiral multiplets in the antifundamental
representation. Assume furthermore that the gauge coupling associated to the
SU(N) gauge group factor receives non-perturbative D-instanton corrections such
that the full gauge coupling can be written

1

g2
full

=
1

g2
tree

+
1

g2
1−loop

+
1

g2
np

. (8.11)

If one is now interested in the low energy physics of this string compactification,
one can use an effective field theory. In the case described, the latter will contain
an SQCD sector, more precisely a supersymmetric SU(N) gauge theory with N−1
flavours. A gauge instanton in this theory will generate an ADS superpotential
[164]

WADS =
1

detΦΦ̃
exp

(

−
1

g2
full

)

=
1

detΦΦ̃
exp

(

−
1

g2
tree

−
1

g2
1−loop

−
1

g2
np

)

.

(8.12)

This superpotential must also be derivable in the full string theory. There it is
generated, as was shown in section 6, by a D-brane instanton and takes the form

W string theory
ADS =

1

det ΦΦ̃
exp (−SD−inst.) (8.13)

It is clear that if (8.13) is to reproduce (8.12), the D-instanton action SD−inst. must
receive instanton corrections, as 1/g2

np is instanton induced.

8.2 Computing poly-instanton corrections

In order to determine which poly-instantons can contribute to which quantities
one needs to carefully analyse their zero modes. This shall now be done for the

98



example of the poly-two-instanton correction in the last line of (8.10) [119]. The
instanton D1 corrects the gauge kinetic function fa, so it has four bosonic zero
modes xµ and four fermionic ones θα and µα. The instanton D1’ corrects the
D1-instanton action or the gauge kinetic function on the fictitious D5-brane. This
means that it also has four bosonic zero modes x′µ and four fermionic ones θ′α

and µ′α and that there are no charged zero modes in the D1-D5 sector. The
latter fact implies that there are no zero modes from strings stretching between
the D1- and the D1’-instanton. In total, there are thus eight fermionic zero modes
in this poly-two-instanton sector. They are absorbed via the diagrams

a D1
and

D1D1′
. In order to see how the eight bosonic zero modes are absorbed, one notes

that the linear combination (x + x′)µ/2 describes the position of the center of
mass of the two-instanton configuration and the integral over it is just the integral
over the four-dimensional space that is not performed explicitly when computing
corrections to the gauge kinetic function. But the orthogonal linear combination
(x−x′)µ needs to be integrated over. It will be shown later on in this section how
this is done.

When performing the expansion in (8.10) to higher orders, the zero mode ab-
sorption diagram

D1D1′
will appear several times, say n times. This means that the

instanton D1’ shows up n times in the corresponding poly-instanton sector. This
implies on the one hand that a combinatorial factor 1/n! has to be included in the
amplitude and on the other hand that there will be more zero modes at those loci
in instanton moduli space where two or more instantons of type D1’ are at the
same point in the four-dimensional space. The strategy that will be pursued here is
to evaluate such poly-instanton amplitudes at a point in moduli space where these
zero modes are absent. If no singularities appear when performing the integral
over moduli space, the result should be trustworthy.

It is clear that in order to find the full correction due to a given poly-instanton
sector, one has to sum over all possibilities of distributing the fermionic zero modes
amongst annuli ending on two of the instantons that are part of the poly-instanton.
One has to ensure that the combination of all diagrams in each summand is con-
nected from the spacetime perspective.

The next thing to discuss is how to compute [119] the zero mode absorption
diagrams

D1D1′
. This four fermion amplitude on an annulus cannot be straightfor-

wardly computed using CFT techniques, but in close analogy to what was done
for the six-point amplitude

D1 D9
in section 7.2.2, it can be related to other dia-

grams that are computable [119]. Applying T-duality, employing supersymmetry
to replace the four fermions by four bosons and using the fact that the four point
diagram

D5 D5′(F,F,w,w)
is equal to the second derivative of the two point diagram

99



D5 D5′(F,F )
with respect to w one finds a relation of the form

D1 D1′(θ,θ,µ,µ)

∼
∂2

(∂w)2
D5 D5′(F,F )

. (8.14)

There are two things to note before such an identification can be made. First, as
was already mentioned, in a poly-two-instanton sector one has to integrate over
the relative position (x − x′)µ of the two instantons. As the open strings between
the instantons D1 and D1’ receive a mass contribution proportional to (x − x′)2,
the annulus amplitude

D1D1′
contains a factor exp(−πt(x − x′)2), where t is the

modular parameter of the annulus, so one effectively has the integral
∫

d4(x − x′) exp(−πt(x − x′)2) = t−2. (8.15)

Second, the open strings between two space-filling D5-branes have momenta along
the four non-compact directions in contrast to the open strings between two D1-
instantons. Integration over these momenta gives a factor t2 in the annulus am-
plitude. When applying “T-duality” to relate

D1D1′
to

D5D5′
one should take this

factor into account. It cancels the factor (8.15), such that one can equate [119]

∫
d4(x − x′)

D1 D1′(θ,θ,µ,µ)

=
∂2

(∂w)2
D5 D5′(F,F )

. (8.16)

A look at (8.10) shows that, in order to determine poly-instanton corrections,
one needs to compute the amplitudes

a D1
,

D1D1′
and, in order to determine

Sholo,pert
D1 ,

b D1
and

D1
.

a D1
and

D1D1′
are related to gauge threshold correc-

tion diagrams via (7.12) and (8.16). This means that all CFT amplitudes one
has to compute are gauge threshold correction diagrams and instantonic vacuum
diagrams. Once this is done, determining poly-instanton corrections becomes a
combinatorial exercise.

8.3 Computation in a concrete model

The next step is to apply [119] the general formulas of the previous sections. As
poly-instanton corrections are closely related to D-instanton corrections to gauge
kinetic functions, it is natural to consider the type I orbifold of section 3.3, for
which the D-instanton corrections to the gauge kinetic function were computed in
section 7.2.

The building blocks for the poly-instantons are the three single instantons
described in section 7.2, which correct the gauge kinetic function and which differ
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in their discrete Wilson lines. To shorten the notation, they shall be denoted D1i,
i ∈ {2, 3, 4} in the following. D12 is characterised by β = 0, γ = 1/2, D13 by β = 1,
γ = 1/2 and D14 by β = 1, γ = 0. The labelling should be clear from (8.17). As in
section 7.2, the explicit computation will be performed for D1-instantons wrapping
the third torus.

To start with, the necessary one-loop amplitudes will be determined. Suppress-
ing the divergences due to tadpoles that cancel in the final results and promoting
the computed expressions to holomorphic functions as discussed in chapters 5 and
7, the relevant vacuum diagrams are (7.10), (7.11)

D9 D1i

= −16 ln
ϑi

η
(2U (3)) (8.17)

O9 D1i

= 4 ln η(U (3)). (8.18)

The six-point diagrams read (7.14)

D9 D1i

=
ϑ′′

i

ϑi
(2U (3)). (8.19)

Finally one has to compute the annulus diagrams D1i
D1j

with the boundaries on
two different instantons and four fermionic zero modes inserted on one of the
boundaries. This can be done by determining

D5i
D5j

and using (8.16). One finds
[119]

D53 D54

=
D54 D53

= ln
ϑ2

ϑ3
(w, 2U (3)) (8.20)

D52 D54

=
D54 D52

= ln
ϑ3

ϑ2
(w, 2U (3)), (8.21)

which gives
∫

d4(x3 − x4)
D13 D14

=

∫
d4(x3 − x4)

D14 D13

=
ϑ′′

2

ϑ2
−

ϑ′′
3

ϑ3
= −π2ϑ4

4(2U
(3))

∫
d4(x2 − x4)

D12 D14

=

∫
d4(x2 − x4)

D14 D12

=
ϑ′′

3

ϑ3
−

ϑ′′
2

ϑ2
= π2ϑ4

4(2U
(3)),

(8.22)

where xi is the position of the instanton D1i in the external space.
Note that, due to extra charged zero modes, D12 would not correct the gauge

kinetic function on D53 and D13 would not correct that of D52. D12 and D13

are therefore expected not to mutually correct their instanton actions. Indeed,
there are extra zero modes from strings between D12 and D13. This leads to a
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divergence in
D12D13

=
D13D12

. These diagrams can therefore not appear in poly-

instanton amplitudes [119].
Having collected all the relevant one-loop CFT amplitudes, one can now com-

pute poly-instanton corrections. One starts with sectors consisting of two instan-
tons. Out of the three possibilities D12-D13, D12-D14 and D13-D14, D12-D13 does
not contribute due to the aforementioned zero modes. Taking all combinatorial
possibilities into account, the amplitude in the D13-D14 sector yields the following
correction to the gauge kinetic function [119]:

∫
d4(x3 − x4)

(

D9 D13 D13 D14

+
D9 D14 D14 D13

)
×

exp

(
2πiT (3) −

D9 D13

−
O9 D13

−
D9 D14

−
O9 D14

)
, (8.23)

which, using (8.17), (8.18), (8.19) and (8.22) can be evaluated to

−π2e2πiT (3) ϑ4
4(2U

(3))

η8(U (3))

ϑ16
3 ϑ16

4

η32
(2U (3))

(
ϑ′′

3

ϑ3
+

ϑ′′
4

ϑ4

)
(2U (3)) (8.24)

= −4π2 e2πiT (3)

η2ϑ2
4(4U

(3))

ϑ16
4

η16
(4U (3))

ϑ′′
4

ϑ4
(4U (3)), (8.25)

where in the last step some theta/eta-function identities have been used. Com-
pletely analogously one finds for the poly-instanton D12-D14 [119]

∫
d4(x2 − x4)

(

D9 D12 D12 D14

+
D9 D14 D14 D12

)
×

exp

(
2πiT (3) −

D9 D12

−
O9 D12

−
D9 D14

−
O9 D14

)
(8.26)

= π2e2πiT (3) ϑ4
4(2U

(3))

η8(U (3))

ϑ16
2 ϑ16

4

η32
(2U (3))

(
ϑ′′

2

ϑ2
+

ϑ′′
4

ϑ4

)
(2U (3)) (8.27)

= −4π2 e2πiT (3)

η2ϑ2
2(

1
2 + U (3))

ϑ16
2

η16
(
1

2
+ U (3))

ϑ′′
2

ϑ2
(
1

2
+ U (3)). (8.28)

By comparing these results with the expression for the contributions of worldsheet
instantons to the gauge threshold corrections in the dual heterotic model, one finds
that (8.25) is equal to the summand with p = 2, k = 1/2, j = 0 and a = 4 in
(4.23), and (8.28) to that with p = 1, k = 1, j = 1/2 and a = 2. This also
means, given that, as shown in section 7.2.3, all terms in (4.23) with kp > 1/2 are
reproduced in the type I description by multiply wrapped instantons, that (8.25)
and (8.28) are equal to corrections to the gauge kinetic function that come from
these multiply wrapped instantons.
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This equality can have two reasons. Either, poly-instantons are just a com-
plicated way of reproducing contributions from multiply wrapped instantons and
are already included in the heterotic result. Or, this equality is just a coincidence
having its reason in the fact that a D-brane doubly wrapped along some cycle has
the same partition function as two singly wrapped branes with relative Wilson line
1/2 along this cycle. One can show that the poly-instanton sectors D13-D14 and
D12-D14 are related to the doubly wrapped instantons D14 and D12, whose con-
tribution they reproduce, in precisely this way. In conclusion, this means that at
the poly-two-instanton order one cannot conclusively see whether poly-instantons
give new contributions.

In order to do so, one has to compute a poly-three-instanton amplitude. There
are various possibilities what the three instantons can be. In order to see that poly-
instantons really give new contributions, it suffices to consider the poly-instanton
consisting of D12, D13 and D14. Taking all possibilities to absorb the zero modes
on different annuli into account, the amplitude reads:

∫
d4(x2 − x3)d

4(x2 + x3 − 2x4)

(

D9 D12 D12 D14 D14 D13

+
D9 D13 D13 D14 D14 D12

+
D9 D14 D14 D12 D14 D13

)

× exp

(

3πiT (3)

−
D12 D9

−
D12 O9

−
D13 D9

−
D13 O9

−
D14 D9

−
D14 O9

)

(8.29)

Using the one-loop amplitudes given in (8.17), (8.18), (8.19) and (8.22), one finds
the following expression for this poly-three-instanton amplitude:

−π4 exp
(
3πiT (3)

) ϑ8
4(2U

(3))

η12(U (3))

ϑ16
2 ϑ16

3 ϑ16
4

η48
(2U (3))

4∑

a=2

ϑ′′
a

ϑa
(2U (3)) (8.30)

The expression (4.23) for the gauge threshold corrections in the heterotic model
does not contain such a term. This means that poly-instantons give new corrections
which are not visible in the standard approach to gauge threshold corrections in
heterotic string compactifications.

The poly-two-instanton corrections were shown to be equal to corrections from
doubly wrapped instantons. It was argued that this could have its reason in
the fact that a doubly wrapped D-brane has the same partition function as two
singly wrapped branes with relative Wilson line one-half. A poly-three-instanton
correction could have been expected to be equal to a contribution from a triply
wrapped brane. In order to reproduce the partition function of a triply wrapped
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brane, one needs singly wrapped branes with relative Wilson lines one-third. Such
Wilson lines are not allowed in the model under consideration due to the orientifold
projection. It is thus clear why the poly-three-instanton amplitude (8.30) does not
reproduce a correction from a triply wrapped brane, but gives a new correction.

The argument in favour of poly-instantons started from the observation that
D-instanton actions should receive instanton corrections. For the model under
consideration, D12 and D14 mutually correct their instanton actions as well as D13

and D14. If one includes these corrections in the expression

δf =
D9 D12

e−S2 +
D9 D13

e−S3 +
D9 D14

e−S4 (8.31)

for the one D-instanton corrections to the gauge kinetic function one finds

δf =
D9 D12

exp

(
−S2 +

D12 D14

e
−S4+

D14D12
e−S2+...+

D14D13
e−S3+...

)

+
D9 D13

exp

(
−S3 +

D13 D14

e
−S4+

D14D13
e−S3+...+

D14D12
e−S2+...

)

+
D9 D14

exp

(
−S4 +

D14 D13

e
−S3+

D13D14
e−S4+...

D14 D12

e
−S2+

D12D14
e−S4+...

)
.

(8.32)

By expanding all the exponentials in (8.32) to sufficiently high order, one repro-
duces the expressions (8.23), (8.26) and (8.29).

In order to obtain all D-instanton corrections to the gauge kinetic function, one
has to include the corrections from multiply wrapped instantons in (8.32), both to
the gauge kinetic function itself and to the instanton actions.

In conclusion, poly-instantons give new corrections to holomorphic couplings in
four-dimensional string compactifications, which should be computable whenever
D-instanton corrections to gauge kinetic functions can be computed. Note that,
although only poly-instanton corrections to the gauge kinetic function have been
computed explicitly, there can also be such corrections to the superpotential. This
should be clear both from the general arguments and the explicit computation.

8.4 Poly-instantons and the heterotic string

After having demonstrated that poly-instantons yield new corrections, one can
ask the question what they correspond to in the heterotic string [119]. A naive
application of the S-duality map from the type I to the heterotic string leads one
to believe that poly-instanton corrections should arise in the heterotic string from
instanton sectors consisting of several worldsheets which must interact in some
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way in order for the resulting amplitude not to be factorisable. These interactions
cannot be the usual splitting and joining processes of strings, but might come from
terms in the effective action of several heterotic worldsheets which are not present
if there is just one of them. It is then clear that the usual Polyakov path-integral
approach does not take poly-instantons into account because it deals with only
one worldsheet.

Heterotic worldsheet instantons that correct instanton actions would have to
wrap curves of genus one, just as those that can correct gauge kinetic functions.
According to a non-renormalisation theorem, worldsheet instantons correcting the
superpotential wrap curves of genus zero. A poly-instanton correcting the super-
potential would have to consist of one worldsheet of genus zero and several world-
sheets of genus one. The conjecture that genus one worldsheets contribute to the
superpotential at first sight seems to contradict the non-renormalisation theorem.
However, a genus one worldsheet does not induce a dilaton dependence in addition
to that coming from the genus zero worldsheet, so there is no contradiction.

It is also possible that there are no poly-instantons in the heterotic string. If
this is true, there are two possibilities how to reconcile the two different results
of the type I and heterotic models. Either, S-duality does no longer hold after
including poly-instanton corrections, or the S-duality map receives corrections in
the sense that the moduli of the two models are mapped to each other in such a way
that the exponentials of exponentials, which are characteristic for poly-instantons,
disappear when mapping the type I result to the heterotic string.

At present, it is not clear which of the three possibilities sketched is realised.
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Chapter 9

Summary

It was outlined how to determine certain corrections to effective actions of four-
dimensional quantum field theories capturing the low energy physics of string
compactifications with open strings. To set the stage, the general form of such
actions was described and some examples of open string compactifications were
introduced. Orientifolds of type IIA string theory on Calabi-Yau manifolds with
intersecting D6-branes were described. D6-brane models on toroidal orbifolds, for
which a CFT description exists, were discussed and the partition functions for
two orbifolds were presented. A particular orbifold model of the type I string,
for which a dual heterotic description is known, was introduced. Finally, some
aspects of models based on abstract CFTs were outlined and the general forms
of open string partition functions and vertex operators for supersymmetric string
compactifications with D-branes were given.

Corrections to the gauge coupling constant and the holomorphic gauge kinetic
function were discussed. After having shown how to determine one-loop gauge
threshold corrections in four-dimensional D-brane models they were determined
for intersecting D6-brane models on two different toroidal orbifolds as well as the
aforementioned type I model and its heterotic dual. It turned out that these gauge
threshold corrections do generically depend non-holomorphically on the moduli of
the compactification space. It is one of the main results of this work to have
shown that this is not in contradiction with the holomorphy of the gauge kinetic
function and how the one-loop corrections to the latter can be extracted from the
aforementioned results. A complete cancellation of non-holomorphic terms only
takes place if some of the closed string moduli are redefined at one loop. This
redefinition can also be extracted from the gauge threshold corrections.

Next, D-brane instantons and their effects on the low energy effective action
were considered in great detail. After describing the relevant instantons, their zero
modes including the vertex operators were discussed at length. It was shown how
zero mode counting and global abelian symmetries can be exploited in order to
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find out which instantons can contribute to which quantities. A formula for the
computation of spacetime correlators in the D-instanton background was given.
Although it is expected that these correlators can be encoded in a superpotential
in the effective action, it was, given how they are computed, not clear a priori
how this should work because the superpotential is holomorphic. It was shown
that non-holomorphic terms partly cancel and partly rearrange such that a result
in agreement with the holomorphy of the superpotential comes out. This is an
important result of the present work.

The D-instanton calculus was then used to rederive the ADS superpotential
known from field theory in a string theory model of SQCD. After engineering
SQCD in a local intersecting D-brane model, the D-instanton responsible for the
generation of the superpotential was identified and its zero mode structure was
analysed. The relevant CFT disc diagrams were computed and the integration
over zero modes was performed. The expected result was found. The analysis was
redone for theories with other gauge groups. The fact that one is able to rederive
results known from field theory is another outcome of this work and should be
interpreted as a successful test of the D-instanton calculus.

A further important part of the present work is the extension of the latter to
corrections to the gauge kinetic function. S-duality between the heterotic and type
I string was used to infer what the zero mode structure of the relevant instantons
looks like. It was explained how the fermionic zero modes are absorbed and how
the instanton calculus yields a holomorphic gauge kinetic function. The calculus
was then applied to the aforementioned type I model. The relevant instantons were
described and the one-loop diagram through which the zero modes are absorbed
was determined. The expected result, namely the corrections to the gauge kinetic
function due to worldsheet instantons in the dual heterotic description, could be
reproduced. The D-instanton calculus for corrections to the gauge kinetic function
has thus passed an important test.

Finally, a new class of D-instanton corrections to holomorphic quantities was
conjectured. The equality of the D-instanton action and the gauge kinetic function
on a stack of (fictitious) D-branes suggested that the D-instanton action should
receive instanton corrections, because the gauge kinetic function does. Instanton
corrections to instanton actions were rephrased in terms of new so-called poly-
instanton corrections to holomorphic quantities. It was outlined how to determine
them, and some poly-instanton amplitudes were computed in the aforementioned
type I orbifold model. Their contribution to the gauge kinetic function has no
counterpart in the dual heterotic model and it is not clear what this discrepancy
means. It is possible that there are new corrections also in the heterotic string
which arise as the effect of several mutually interacting worldsheet instantons.

The results presented here will hopefully be a useful piece of information in the
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search for a better picture of non-perturbative string and M-theory. In particular,
the question what can be learned from poly-instantons about non-perturbative
heterotic string theory or S-duality is intriguing. Also, one would like to solve
the problem of the ill-definedness of parts of the one-loop diagrams and answer
the related question about the phase of the instanton contribution to the superpo-
tential and gauge kinetic function. Furthermore, it would be interesting to apply
some of the methods presented in this work to concrete models and to derive their
implications for some of the issues mentioned in the introduction, e.g. moduli
stabilisation, generation of perturbatively forbidden couplings or supersymmetry
breaking.

109



110



Appendix A

Gauge threshold corrections for

fractionally charged D6-branes

In this appendix, formulas for the gauge threshold corrections in intersecting D6-
brane models on the Z2 ×Z2 orbifold with h21 = 51 of the six-torus are displayed.
Four cases, those described in section 3.2.2 when writing down the partition func-
tions, will be distinguished.
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The abbreviation si
ab = sign(θi

ab) was used.
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[80] L. E. Ibáñez, R. Rabadán, and A. M. Uranga, “Sigma-model anomalies in
compact D = 4, N = 1 type IIB orientifolds and Fayet-Iliopoulos terms,”
Nucl. Phys. B576 (2000) 285–312, hep-th/9905098.

[81] L. J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, “Strings on Orbifolds,”
Nucl. Phys. B261 (1985) 678–686.

[82] L. J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, “Strings on Orbifolds.
2,” Nucl. Phys. B274 (1986) 285–314.

[83] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, “Infinite
conformal symmetry in two-dimensional quantum field theory,” Nucl.
Phys. B241 (1984) 333–380.

[84] P. H. Ginsparg, “APPLIED CONFORMAL FIELD THEORY,”
hep-th/9108028.

[85] S. V. Ketov, “Conformal field theory,”. Singapore, Singapore: World
Scientific (1995) 486 p.

[86] P. Di Francesco, P. Mathieu, and D. Sénéchal, “Conformal field theory,”.
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[88] D. Lüst, P. Mayr, R. Richter, and S. Stieberger, “Scattering of gauge,
matter, and moduli fields from intersecting branes,” Nucl. Phys. B696

(2004) 205–250, hep-th/0404134.
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[153] I. Garćıa-Etxebarria, F. Marchesano, and A. M. Uranga, “Non-perturbative
F-terms across lines of BPS stability,” JHEP 07 (2008) 028, 0805.0713.

[154] M. Billó, M. Frau, I. Pesando, F. F. Fucito, A. Lerda, and A. Liccardo,
“Classical gauge instantons from open strings,” JHEP 02 (2003) 045,
hep-th/0211250.

[155] J. Polchinski, “Combinatorics of boundaries in string theory,” Phys. Rev.
D50 (1994) 6041–6045, hep-th/9407031.

[156] M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld, and Y. I. Manin,
“Construction of instantons,” Phys. Lett. A65 (1978) 185–187.

[157] N. Akerblom, R. Blumenhagen, D. Lüst, E. Plauschinn, and
M. Schmidt-Sommerfeld, “Non-perturbative SQCD Superpotentials from
String Instantons,” JHEP 04 (2007) 076, hep-th/0612132.
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