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1. Introduction 

1.1 Hematopoiesis 

  Hematopoiesis is the process by which mature blood cells of different lineages 

develop from pluripotent hematopoietic stem cells (HSCs) through a highly 

organized hierarchy of successive differentiation events (Figure 1).  

Hematopoiesis takes place in several distinct anatomical sites during mouse 

embryogenesis. Primitive blood cells are first identifiable in the blood islands of 

the embryonic yolk sac at embryonic day 7.5 of gestation.  The aorta gonad 

mesonephros (AGM) and fetal liver represent the principal intraembryonic fetal 

hematopoietic organs (Houssaint, 1981). From birth and throughout adult life, 

all mature blood cells are produced in the bone marrow.                   

  Hematopoietic stem cells (HSCs) constitute 0.05% of mouse bone marrow 

cells, and can be divided into three distinct populations: long-term self-renewing 

HSCs, short-term self-renewing HSCs, and multipotent progenitors without 

detectable self-renewable potential (Reya et al., 2001). The multipotent 

progenitors give rise to common lymphoid progenitors (CLPs; the precursors for 

lymphoid cells) and common myeloid progenitors (CMPs). The CMPs give rise 

to granulocyte/macrophage progenitors (GMPs) and megakaryocyte/erythroid 

progenitors (MEPs). The GMPs develop into granulocytes, monocytes and 

dendritic cells while MEPs develop into platelets and erythrocytes (Figure 1).  

1.2 Acute Myeloid Leukemia  

  The main focus in cancer research has been identification of oncogenes as well 

as tumor suppressors and identification of the pathways coordinated by 

oncogenes and tumor suppressors. It is proposed that a block in the 

differentiation programme from precursor to mature cells can cause cancer. 

Recent evidence suggests that disruption of myeloid transcription factors as 

being important step in acute myeloid leukemia. 
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Figure 1. Hematopoietic lineage diversification: Development of hematopoietic stem cell 
to various lineages  (Reya et al., 2001) 

  Leukemia is a common term used for a group of hematological malignancies 

characterized by accumulation of hematopoietic precursor cells, which fail to 

undergo terminal differentiation (Tenen, 2003). Leukemia is classified as acute 

and chronic based on how quickly it progresses. Acute leukemia is fast growing 

and can overrun the body within a few weeks or months, while chronic leukemia 

is slow growing and progresses in years. According to the type of lineage which 

is affected, leukemia is classified as myeloid and lymphoid. The four major 

types of leukemia are: 
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• Acute Myeloid Leukemia (AML) 

• Chronic Myeloid Leukemia (CML) 

• Acute Lymphocytic Leukemia (ALL) 

• Chronic Lymphocytic Leukemia (CLL) 

 According to French-American-British (FAB) classification, AML is divided 

into 9 subtypes based on the morphological appearance of the blasts and their 

reactivity with biochemical stains (Bennett et al., 1976; Lowenberg et al., 1999).  

The subtypes of the FAB classification of AML are represented in Table 1.   

Table 1. French-American-British (FAB) classification of AML 

FAB 
subtype

Description Associated 
translocations 
and rearrangements

M0 
Acute myeloblastic leukemia with 
minimal differentiation inv(3q26), t(3;3) 

M1 
Acute myeloblastic leukemia without 
maturation

M2 Acute myeloblastic leukemia with 
maturation

t(8;21), t(6;9) 

M3 Acute promyelocytic leukemia t(15;17), t(11;17), t(5;17)

M4 Acute myelomonocytic leukemia 11q23, inv(3q26), t(3;3), 
t(6;9) 

M4E0 Acute myelomonocytic leukemia 
with abnormal eosinophils 

inv(16), t(16;16) 

M5 Acute monocytic leukemia 11q23, t(8;16) 

M6 Erythroleukemia 

M7 Acute megakaryocytic  leukemia t(1;22) 

Adapted from Lowenberg B et al, New England Journal of Medicine 1999. 
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  Recent findings show that cell cycle control and the regulation of 

differentiation programme are two closely related events which can have crucial 

role in tumorigenesis. More recently, the concept of the existence of a leukemic 

stem cell (LSCs) has been proposed (Huntly and Gilliland, 2005). The formation 

of LSCs, which exhibit little differentiation capacity but fail to differentiate into 

mature cells, is thought to be a result of somatic mutations in HSCs or in 

committed progenitors.  The mutations vary from chromosomal translocations 

leading to fusion proteins (eg. AML1/ETO, PML/RAR�) to point mutations in 

critical transcription factors (Rosenbauer et al., 2005); (Passegue et al., 2003; 

Zhang and Rosen, 2006). Figure 2 compares the cellular hierarchy of normal and 

malignant hematopoiesis (leukemia).  

1.3 Transcription Factors in Hematopoiesis

   Transcription factors are specialized nuclear proteins that can bind specifically 

to their DNA binding site and activate transcription. A major factor which 

Figure 2.  Cellular hierarchy of normal and malignant hematopoiesis  (Huntly BJ and 
Gilliland DG, Nature Review Cancer, 2005) 

LSC
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determines the cell fate in hematopoiesis is the interplay between tissue specific 

transcription factors, which in turn, modulate a specific set of genes necessary 

for differentiation to a specific lineage (Cantor and Orkin, 2001; Tenen et al., 

1997); (Lutterbach and Hiebert, 2000). Transcription factors play an important 

role in regulating major steps of hematopoiesis, such as differentiation, 

proliferation and survival. Several of those transcription factors have narrow 

expression patterns in that they are limited to a few hematopoietic lineages. 

  The major transcription factors involved in granulopoiesis are runt-related 

transcription factors (RUNX1; also known as AML1) (Okuda et al., 1996), 

stem-cell leukemia factor (SCL, also known as Tal-1) (Shivdasani et al., 1995), 

PU.1 (Klemsz et al., 1990), CCAAT/enhancer-binding proteins (in particular 

C/EBP�, C/EBP�, C/EBP�) (Tanaka et al., 1995; Yamanaka et al., 1997; Zhang 

et al., 1997), interferon-regulatory factor 8 (IRF8) (Holtschke et al., 1996) and 

growth-factor independent 1 (GFI1) (Hock et al., 2003). The major transcription 

factors in granulopoiesis and the critical steps they regulate are depicted in 

figure 3. 

Figure 3.  Role of transcription factors in granulopoiesis (Rosenbauer F and Tenen DG, 
Nature Reviews Immunology, 2007)              
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  Transcription factors such as RUNX1 and SCL are the critical factors that 

orchestrate formation of hematopoietic stem cells from mesoderm during 

embryogenesis. Mice that are deficient for either RUNX1 or SCL die during 

embryogenesis and lack hematopoiesis (Okuda et al., 1996; Shivdasani et al., 

1995). The function of PU.1 in granulopoiesis is the development of CMPs from 

HSCs (Dakic et al., 2005; Iwasaki et al., 2005; Scott et al., 1997). Mice that lack 

PU.1 show complete absence of macrophages (McKercher et al., 1996; Scott et 

al., 1997). Studies show that high PU.1 levels support the production of 

macrophages, while low PU.1 level support granulocyte development (Dahl et 

al., 2003; Rosenbauer et al., 2004).  

    The role of C/EBP� in granulopoiesis was underlined by the finding that 

nonconditional targeted disruption of C/EBP� results in a selective early block 

in granulocytic maturation, without affecting other hematopoietic lineages 

(Zhang et al., 1997). C/EBP� conditional knock-out mice show a selective block 

in the transition from the CMP to GMP stage of granulopoiesis and an increase 

in HSC self renewal (Zhang et al., 2004). This study points out that C/EBP� is 

necessary for CMP to GMP transition as well as in regulating the self renewal of 

HSC compartment of bone marrow during granulopoiesis.  The concept of 

C/EBP� as granulocyte specific transcription factor is questioned by the finding 

that fetal liver from C/EBP�-/- mice also lack mature macrophages and 

macrophage progenitors, suggesting that C/EBP� can have crucial role in the 

development of macrophages (Heath et al., 2004). 

   The role of IRF8 (interferon-regulatory factor 8) in granulopoiesis is 

underlined by the finding that IRF8 knock-out mice had a reduced number of 

macrophages and increased number of granulocytes, suggesting that IRF8 favors 

macrophage development (Holtschke et al., 1996). After GMP development, 

transcription factors necessary for granulopoiesis are GFI1 and C/EBP�. Mice 

that lack GFI1 as well as C/EBP� exhibit abnormal granulopoiesis beyond the 

promyelocyte stage suggesting the importance of these factors during the final 
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stages of granulopoiesis (Yamanaka et al., 1997); (Hock et al., 2003). GFI1 has 

been shown to repress monocyte specific genes (Hock et al., 2003). The function 

of C/EBP� in the final stage of granulopoiesis is the regulation of genes 

necessary for the development of secondary and tertiary granule proteins such as 

lactoferrin and gelatinase (Yamanaka et al., 1997).

1.4 The C/EBP family 

  The CCAAT/enhancer-binding proteins (C/EBPs)  are a family of transcription 

factors that include six members C/EBP�, C/EBP�, C/EBP�, C/EBP�, C/EBP�

and C/EBP� (Ramji and Foka, 2002); (Akira et al., 1990); (Cao et al., 1991);  

(Roman et al., 1990). Except for C/EBP�, which lacks the basic region, each 

protein contains similar basic region and leucine zipper sequences at its C-

terminus, which mediate DNA binding and dimerization, respectively.  The 

C/EBP proteins form leucine zipper mediated homodimers as well as 

heterodimers with other C/EBP members (Ramji and Foka, 2002); (Akira et al., 

1990); (Cao et al., 1991);  (Roman et al., 1990);  (Ryden and Beemon, 1989). 

The dimer resembles an inverted Y shaped structure in which each arm of the Y 

is made of the basic region, which binds to palindromic DNA sequence in the 

DNA major groove.  The predicted structure of a C/EBP bZIP dimer bound to 

its cognate DNA site is depicted in figure 4 (Johnson, 2005; Miller et al., 2003).

  The N-terminal portion of each protein contains effector domains that mediate 

transcriptional activation, repression and autoregulatory functions. The 

expression pattern of each C/EBP varies in different tissues pointing out to the 

fact that each member could have specific roles in each cell type. In 

hematopoiesis, the C/EBP members shown to have specific function are 

C/EBP�, C/EBP� and C/EBP�. C/EBP� is necessary for early granulocytic 

differentiation i.e., from hematopoietic stem cell to promyelocyte and C/EBP� is 

necessary for terminal granulocyte differentiation i.e., from promyelocyte to 

mature neutrophil (Theilgaard-Monch et al., 2005). C/EBP� is necessary for 
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granulopoiesis in  emergency conditions such as fungal infection or cytokine 

stimulation (Hirai et al., 2006).  

1.5 C/EBP�  

  CCAAT/enhancer-binding protein alpha (C/EBP�) is the first leucine- zipper 

(bZIP) group of transcription factors discovered (Landschulz et al., 1988). 

C/EBP� was identified originally as a heat stable protein present in  rat liver 

nuclei and having sequence specific DNA binding activity (Graves et al., 1986; 

Johnson et al., 1987). The DNA sequences to which C/EBP� binds are the 

“CCAAT homology” common to many promoters of genes that encode mRNA, 

and the “enhancer core homology” common to many viral enhancers. These 

findings point out the role of C/EBP� as  a transcriptional regulatory protein 

(Johnson et al., 1987). 

  C/EBP� is highly expressed in a variety of tissues including liver, lung, 

placenta, adipose tissue, intestine, mammary gland, skin and peripheral blood 

mononuclear cells (Birkenmeier et al., 1989); (Antonson and Xanthopoulos, 

1995). Human C/EBP� is encoded by an intronless gene and is located at 

chromosome band 19q13.1 (Hendricks-Taylor et al., 1992). 

TTGCG  AA
A 
G

T
C

T
C

Figure 4. The predicted structure of a C/EBP bZIP dimer bound to its cognate DNA site 
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1.5.1. Domains of C/EBP�

  C/EBP� contains a transactivation domain, a DNA binding basic region and a 

leucine zipper dimerization domain. The leucine zipper is a heptad of leucine 

repeats that intercalate with repeats of the dimer partner, forming a coiled coil of 

alpha-helices in parallel orientation (Agre et al., 1989; Landschulz et al., 1988; 

Vinson et al., 1993). The basic region, which contacts the DNA, is a stretch of 

approximately 20 amino acids,  upstream of the leucine zipper (Johnson, 1993).

The N-terminal domain which is responsible for transcriptional activation and/or 

repression consists of three transactivation elements - TE-I, TE-II and TE-III.   

Figure 5. Different domains of C/EBP� and proteins regulated by C/EBP� (Claus 
Nerlov, Nature Reviews Cancer, 2004) 

  The C/EBP� mRNA gives rise to two different translational products by using 

two different AUGs within the same open reading frame (Lin F et al, 1993, 

Ossipow V et al, 1993): a full length 42 kD protein (p42) and a truncated 30 kD 

version (p30), which in contrast to p42 lacks transactivation elements TE-I and 

TE-II.  

1.5.2 Distribution of C/EBP� functions 

  C/EBP� directly activates transcription from lineage-specific promoters.   

C/EBP�  has been shown to regulate a number of genes mainly in 

BR-LZ
278-358

C 
358TE-I TE-II TE-III

N
1 

42 kD 
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TBP/TFIIB 
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SW1/SNF 
CDK2/CDK

4
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granulopoiesis, adipogenesis, and in tissues such as lung, liver, skin and  

mammary epithelial cells (Ramji and Foka, 2002). Beyond acting as a classical 

transcription factor, C/EBP� has been shown to interact with and/or regulate a 

number of proteins. The transactivation elements  TE-I and TE-II of C/EBP�

have been found to interact with the basal transcriptional apparatus, TBP/TFIIB 

(Nerlov and Ziff, 1995). It has been found that these elements are necessary for 

E2F repression during granulopoiesis and adipogenesis (Porse et al., 2001) as 

well as for interaction with histone acetyl transferases, CBP/p300 (Kovacs et al., 

2003); (Schwartz et al., 2003). The transactivation element TE-III is responsible 

for  recruitment of chromatin-remodelling complexes,  SW1/SNF (Pedersen et 

al., 2001). It is also found that TE-III is responsible for binding and inhibition of 

CDK2/4 (Wang et al., 2001). 

  The  bZip domain is shown to interact with E2F (Johansen et al., 2001) and  c-

Jun (Rangatia et al., 2002) as well as PU.1, ETS1, GATA1, RUNX1 (McNagny 

et al., 1998; Reddy et al., 2002);  (Zhang et al., 1996a); (Yamaguchi et al., 

1999).  

1.5.3 C/EBP� –mechanisms of action  

  One of the most important functions of C/EBP� is its role in cell cycle. 

C/EBP� induces cell cycle arrest in a variety of tissues (Johnson, 2005; 

McKnight, 2001). There are different mechanisms proposed for the C/EBP�

mediated cell cycle arrest. The initial studies  investigating the C/EBP�

mediated cell cycle arrest revealed that C/EBP� interacts with the cyclin 

dependent kinase (CDK) inhibitor p21 in developing liver by protein-protein 

interaction (Timchenko et al., 1996). It is observed that p21 levels increase 20 

fold during C/EBP� induction and p21 binds to and inhibits the kinase activity 

of CDK4, CDK6 and CDK2.  Another mechanism proposed for C/EBP�

mediated cell cycle arrest is its interaction with cyclin dependent kinase CDK2 

and CDK4 (Wang et al., 2001).   
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  The mechanism that has gained the most acceptance is the C/EBP� mediated 

repression of the E2F transcription factors. The E2F group of transcription 

factors regulates genes required for cell cycle progression.  Experiments in 

murine fibroblast cell lines showed that C/EBP� inhibits proliferation of 

fibroblast cells and  that C/EBP� is present in a complex that binds to E2F sites 

in genes such as dihydrofolate reductase (DHFR) and E2F-1 that are upregulated 

during the G1-S transition (Slomiany et al., 2000). C/EBP� also represses 

transcription from reporter constructs containing the DHFR or E2F1 promoters. 

Porse et al provided further proof for the E2F repression model, deciphering 

domains of C/EBP� required for repression of E2F driven transcription (Porse et 

al., 2001). They showed that transactivation element (TE-I) at the N-terminus as 

well as residues residing on the non-DNA binding face of C/EBP� basic region 

as the critical domains for the cell cycle inhibitory effect of C/EBP�. Later 

studies showed that the  bZip domain of C/EBP�  is able  to interact with   E2F 

(Johansen et al., 2001).  

  All the above studies show that the mechanism by which C/EBP� inhibits cell 

proliferation seems to differ from cell type to cell type. Findings from myeloid 

systems support the concept that C/EBP� mediated E2F repression is the major 

pathway that mediates cell cycle exit and differentiation in granulopoiesis (Porse 

et al., 2001); (D'Alo et al., 2003); (Porse et al., 2005); (Rosenbauer and Tenen, 

2007). 

1.5.4 C/EBP� in normal hematopoiesis. 

��Granulocytes play a major role in host defense, and patients with granulocyte 

deficiency are extremely vulnerable to bacterial infection. Unlike long-lived 

lymphocytes, granulocytes have a short lifespan, necessitating a tight 

relationship between supply and demand. After production and release by the 

bone marrow, the life span of neutrophils is only 8 hours. Mature neutrophils are 
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unable to undergo cell division. The factors that play critical role in 

granulopoiesis have been a major research focus in hematology. 

  Studies in the early 1990s focused on the role C/EBP� in the differentiation 

programmes in tissues such as adipocyte, liver, lung etc. Later, the role of 

C/EBP� in granulopoiesis was elucidated by the finding that a large number of 

myeloid genes contain C/EBP binding sites in their promoters (Tenen et al., 

1997).  The role of C/EBP� in granulopoiesis was underlined by the finding that  

targeted disruption of C/EBP� results in a selective early block in granulocytic 

maturation, without affecting other hematopoietic lineages (Zhang et al., 1997). 

Even though C/EBP� is expressed at low levels in hematopoietic stem cell 

(HSC), it is found that C/EBP� is specifically upregulated during granulocytic 

differentiation. The relative levels of C/EBP� during different stages of 

granulopoiesis are depicted in figure 6 (Akashi et al., 2000; Bjerregaard et al., 

2003).   

+
+    Denotes relative C/EBP� expression

CMP

GMP

LT-HSC ST-HSC

PromyelocyteMyeloblast Myelocyte Metamyelocyte

oöhlköik

+ 

+ +

+ + 

+ + + + + + + + +

Band cell

+ +

Neutrophil

+ +

+ + +

Figure 6. Relative levels of C/EBP� in different stages of granulopoiesis  

  Radomska et al., have shown that conditional expression of C/EBP� alone is 

sufficient to trigger neutrophilic differentiation (Radomska et al., 1998). Primary 
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CD34+ cells isolated from human bone marrow differentiate into granulocytes 

when transduced with a retroviral vector expressing C/EBP� (Iwama et al., 

2002). C/EBP� conditional knock-out mice show a selective block in the 

transition from the CMP to the GMP stage of granulopoiesis (Zhang et al., 

2004). Loss of C/EBP� leads to an increase in HSC self renewal compared to 

that of wild type HSC. 

   In the hematopoietic system, a number of  C/EBP� target genes have been 

found, including a number of primary granule protein genes (Oelgeschlager et 

al., 1996); (Iwama et al., 1998). C/EBP� was also described to regulate the 

genes encoding the receptors for the granulocytic growth factors- granulocyte 

colony-stimulating factor (G-CSF) and interleukin 6 (IL-6) (Smith et al., 1996; 

Zhang et al., 1997; Zhang et al., 1998). However, knock-out studies of these 

factors suggested that these were not the critical target genes, since disruption of 

one or more growth factors failed to show the complete granulocyte 

differentiation block observed in C/EBP� knock-out mice (Liu et al., 1996); (Liu 

et al., 1997). Recently it has been shown that C/EBP� regulates microRNA-223 

during granulopoiesis (Fazi et al., 2005). Induction of C/EBP� in myeloid 

differentiation models results in the displacement of NFI-A from the miR-223 

promoter by C/EBP� and concomitant upregulation of miR-223 and 

granulopoiesis. It was shown that downregulation of c-Jun expression by 

C/EBP� is important for granulocytic lineage commitment (Rangatia et al., 

2002).  

  Recent studies suggest that inhibition of E2F pathways by C/EBP� is the most 

critical step in granulopoiesis (D'Alo et al., 2003; Porse et al., 2005; Porse et al., 

2001; Rosenbauer and Tenen, 2007). Transactivation element-I (TE-I) at the N-

terminus as well as residues residing on the non-DNA binding face of C/EBP�

basic region are the critical domains for the E2F repression by C/EBP� (Porse et 

al., 2001). Mutation of either results in loss of C/EBP� inhibition of E2F, which 

results in block of granulocytic differentiation (D’Alo F et al, 2003). Another 
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study showed that inhibition of E2F leads to downregulation of E2F target gene 

c-Myc (Johansen et al., 2001). Knock-in mice with a targeted mutation in the 

C/EBP�-E2F interaction domain (the BRM2 mutation) displayed a block in 

granulocytic differentiation and expansion of myeloid progenitor population 

(Porse et al., 2005). All these studies suggest that C/EBP� mediated repression 

of E2F pathways is a major event in granulopoiesis.

1.6 C/EBP� and leukemia 

    Recent studies show that C/EBP� function is impaired by various 

mechanisms in leukemia. The first report of deregulation of C/EBP� was shown 

by AML1/ETO, the product of the t(8;21) translocation (Westendorf et al., 

1998).  C/EBP� mRNA was found suppressed by AML1/ETO fusion protein 

both in vitro and in vivo (Pabst et al., 2001a). AML-M2 patients with t(8;21) 

show up to six fold less C/EBP� mRNA than AML-M2 patients with normal 

karyotype (Pabst et al., 2001a). BCR-ABL, the product of the t(9;22) 

translocation in chronic myeloid leukemia (commonly known as Philadelphia 

chromosome) has been found to inhibit C/EBP� translation by interaction of the 

poly(rC)-binding protein hnRNP E2 with CEBPA mRNA (Perrotti et al., 2002). 

   

  Another fusion protein that was found to downregulate C/EBP� in AML was 

AML1-MDS-EVI1 (AME), the product of the t(3;21) translocation (Helbling et 

al., 2004). AME was shown to induce expression of the RNA binding protein, 

calreticulin. Calreticulin interacts with GCN repeats within the C/EBP�  mRNA 

and inhibits the translation of C/EBP�  protein (Helbling et al., 2004). Similarly, 

CBFB-SMMHC fusion protein found in AML patients with inv(16) has been 

shown to upregulate calreticulin expression and inhibit C/EBP� (Helbling et al., 

2005). 
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De-regulation of C/EBPC/EBP�� in leukaemia

AML1-MDS1-EVI1  t(3;21)  MDS, CML-BC

C/EBPC/EBP��

C/EBPC/EBP�� mutationsmutations

AML1-ETO   t(8;21)  AML M2

BCR-ABL  t(9;22)  CML

CBFB-SMMHC  inv(16) AML M4Eo

PML-RAR�� t(15;17)  AML M3

Flt3 activating mutation  AML

AML  M1, M2

Hypermethylation    AML

  Figure 7. Deregulation of C/EBP� in leukemia: C/EBP� as tumor suppressor 

  PMR-RAR�, the leukemic fusion protein observed in acute promyelocytic 

leukemia deregulates C/EBP� by repressing C/EBP� promoter activity (Guibal 

et al., 2005). C/EBP� mRNA is repressed by FLT3/ITD signaling in vitro in 

32D myeloid cells (Zheng et al., 2004). This repression can be overcome by 

treatment with CEP-701, a FLT3 inhibitor (Zheng et al., 2004). It is found that 

activation of FLT3 in AML inhibits C/EBP�  function by ERK1/2-mediated 

phosphorylation of C/EBP�  (Radomska et al., 2006). Also, hypermethylation 

was detected in the CEBPA promoter in AML patients (Chim et al., 2002). All 

these studies show that the myeloid master regulator C/EBP� is deregulated in 

acute myeloid leukemia in different ways.  

1.6.1 C/EBP� mutations in AML 

  The role of C/EBP�  as a tumor suppressor gene is underlined by the discovery 

that C/EBP�  is mutated in acute myeloid leukemia (Pabst et al., 2001b);  

(Gombart et al., 2002). C/EBP� is mutated in around 9 % of AML patients 

(Nerlov, 2004; Rosenbauer and Tenen, 2007).. The mutations reported in 
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C/EBP� are point mutations at basic region leucine zipper and frame shift 

mutation at N- terminus resulting in  a 30 kD form of C/EBP� initiated from the 

second AUG (Pabst et al., 2001b). The mutant forms of C/EBP� observed in 

AML are depicted in figure 8.  

Figure 8. Wild type and mutant forms of C/EBP� in AML
      

1.6.2 C/EBP�-p30  

  The C/EBP� mRNA gives rise to two different translation products based on 

two different AUGs in the same open reading frame. The 30 kD form of 

C/EBP�, C/EBP�-p30 lacks the N-terminal transactivation domain but retains 

the C-terminal DNA-binding domain. C/EBP�-p30 shows decreased DNA 

binding and is deficient in transactivation potential (Pabst et al., 2001b). It has 

been reported previously that C/EBP�-p30 lacks antimitotic activity (Lin et al., 

1993). Conditional expression of the C/EBP�-p30 in myeloid precursor cells 

fails to induce granulocytic differentiation (Pabst et al., 2001b).  Interestingly, 

C/EBP�-p30 inhibits DNA binding  and transactivation of the wild type  protein 

in a dominant negative manner (Pabst et al., 2001b). Expression of the dominant  

negative C/EBP�-p30 form  in human hematopoietic progenitor CD34+ cells 

inhibits granulocytic differentiation (Schwieger et al., 2004).  

BR-LZ C 
35TE-I TE-II TE-III

N 
1 

C/EBP�
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  The mechanism by which C/EBP�-p30 exerts its dominant negative function is 

not understood. It was suggested initially that C/EBP�-p30 could be forming 

heterodimers with wild type C/EBP�. A recent report shows that C/EBP�-p30 

modified at the leucine zipper, which is unable to form heterodimers with 

C/EBP�-p42, still exhibits dominant negative properties over the wild type 

protein (Cammenga et al., 2005). The first study that identified C/EBP�

mutations failed to detect C/EBP�-p42/C/EBP�-p30 heterodimers (Pabst et al., 

2001b). One recent study showed that C/EBP�-p30 plays transcriptional 

regulatory roles distinct from C/EBP�-p42 in a hepatocyte cell line (Wang et al., 

2007). This study suggests that C/EBP�-p30 could regulate a unique set of genes 

distinct from wild type C/EBP�.  All these findings suggest that the mechanism 

with which C/EBP�-p30 modulates its functions could be by upregulating a 

unique set of genes that are different from C/EBP�-p42 and not by forming 

heterodimers with C/EBP�-p42. 

  In order to identify the role of C/EBP�-p30 in leukemogenesis, a mouse line 

carrying a germline Cebpa mutation  resulting in the specific ablation of the p42 

isoform of C/EBP� was generated (Kirstetter et al., 2008). This was 

accomplished by introducing a nonsense codon between the two ATG codons 

functioning as tranlational start sites for the p42 and p30 forms. Mice 

heterozygous for C/EBP�-p30 developed normally and didn‘t display any 

hematopoietic abnormalities. Mice homozygous for C/EBP�-p30 survived until 

adulthood. These animals showed defects in differentiation of myeloid 

progenitors in the bone marrow at weaning.  These animals developed AML in 

12 months with massive invasion of liver and spleen. All these findings, the 

patient data and the genetic loss of function studies in mice show that loss of 

C/EBP� expression or function in leukemic blasts leads to a block in myeloid 

cell differentiation. This supports the concept that C/EBP�  disruption is one of 

the central events in acute myeloid leukemia (Rosenbauer and Tenen, 2007). 
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1.7 Regulation of C/EBP�  

1.7.1 C/EBP� and dimerization 

    The C/EBP� protein can form a homodimer with another C/EBP� protein as 

well as heterodimer with other members of the CEBP family (Ramji and Foka, 

2002); (Akira et al., 1990); (Cao et al., 1991);  (Roman et al., 1990);  (Ryden 

and Beemon, 1989). It has been observed that heterodimerization could 

potentially alter several functional activities of C/EBP� protein, including DNA 

binding, transactivation potential, responsiveness to signaling pathways, and the 

ability to cooperate with other transcription factors. Heterodimers between 

C/EBP members possess regulatory activities that are distinct from homodimers. 

C/EBP�-C/EBP� heterodimers have been observed in liver nuclear extracts and 

monocytic cells (Ossipow et al., 1993; Pan et al., 1999). Heterodimerization of 

C/EBP� with ATF-2 results in decreased activation of transcription driven from 

consensus C/EBP-binding sites (Shuman et al., 1997). One study shows that 

heterodimerization of C/EBP� with c-Jun blocks C/EBP� DNA binding 

(Rangatia et al., 2003). These studies show that dimerization of C/EBP� with 

different proteins can modulate its functions. 

1.7.2 C/EBP� and post translational modifications 

    C/EBP� has been shown to be phosphorylated at serine 21 by extracellular 

signal-regulated kinases 1 or 2 (ERK1/2)(Ross et al., 2004). This 

phosphorylation has been shown to block granulopoiesis. It is shown that ras 

signaling enhances the activity of C/EBP� to induce granulocytic differentiation 

in mouse by phosphorylation of C/EBP� at serine 248 (Behre et al., 2002). 

PP2A mediated dephosphorylation at serine 193 mediated by PI3K/Akt pathway 

has been shown to block the growth inhibitory effect of C/EBP� (Wang et al., 

2004). Also,  glycogen synthase kinase 3 (GSK3), has been found to 

phosphorylate C/EBP� on T222, T226, and S230 in vivo (Ross et al., 1999). 
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Another post translational modification reported for C/EBP� is sumoylation 

(Subramanian et al., 2003).  

1.7.3 Auto regulation of C/EBP� mRNA 

    C/EBP� mRNA is autoregulated in mouse as well as human via different 

mechanisms. Activation of the murine promoter by direct binding of C/EBP�

was shown to increase the transactivation up to 3 fold (Christy et al., 1991; 

Legraverend et al., 1993). It is shown that USF (upstream regulatory factor) is 

also critical for the murine C/EBP� promoter activity (Legraverend et al., 1993). 

Human C/EBP� protein can activate its own promoter without direct binding, 

but by stimulating USF to bind to the consensus USF binding site in the C/EBP�

promoter (Timchenko et al., 1995). 

1.7.4 C/EBP� and protein-protein interaction 

    An important level of transcription factor regulation is through protein-protein 

interaction. Such interactions have been shown to be important in hematopoiesis 

(Stopka et al., 2005). C/EBP� has been shown to physically interact with E2F1 

(Johansen et al., 2001). Knock-in mice with a targeted mutation in the C/EBP�-

E2F interaction (the BRM2 mutation) displayed block in granulocytic 

differentiation and expansion of myeloid progenitor population (Porse et al., 

2005). Direct physical interaction of C/EBP� with PU.1 is important for PU.1 

inactivation by C/EBP� to drive granulocytic differentiation (Reddy et al., 

2002). Protein-protein interaction of C/EBP�  and c-Jun have been shown to be 

essential in granulopoiesis (Rangatia et al., 2002). C/EBP�  has been also shown 

to interact with several other proteins including  ETS1, GATA1, RUNX1 

(McNagny et al., 1998; Yamaguchi et al., 1999; Zhang et al., 1996b). The 

importance of protein-protein interaction for C/EBP� mediated functions is 

underlined by the finding that C/EBP� interacts with different protein partners in 
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the liver of young versus old mice  to execute its function (Iakova et al., 2003; 

Timchenko, 2003).

1.8 Max 

  Max is a basic region helix loop helix leucine zipper protein (Amati et al., 

1993; Amati et al., 1992; Amati and Land, 1994; Blackwood and Eisenman, 

1991).  Max belongs to Myc-Max-Mad network of proteins which has been 

shown to have critical role in regulating transcription. Max can form 

homodimers as well as heterodimers with Myc, Mad and several members of the 

Myc-Max-Mad family including Mnt and Mga.  These homodimers as well as 

heterodimers can bind specifically to E box DNA sequences with consensus 

CACGTG elements (Amati et al., 1993; Amati et al., 1992; Amati and Land, 

1994; Blackwood and Eisenman, 1991). 

  The Myc-Max-Mad network proposed by Eisenman postulates a central role of 

Max (Ayer et al., 1993). According to this model, Max forms transactivating 

complexes when associated with Myc but repressive complexes when bound to 

Mad proteins (Luscher, 2001). The binding of Myc-Max to promoters results in 

binding of the SW1/SNF complex which mediates chromatin remodeling. Also, 

Myc interacts with the TRAAP complex which has histone acetyl transferase 

activity.  So binding of Myc-Max to promoters results in chromatin remodeling 

and histone acetylation, which in turn, makes binding sites for transcription 

factors accessible, and results in transcriptional activation. Binding of the Mad-

Max complex to promoters results in the recruitment of the mSin3 repressor 

complex, which has histon deacetylase activity and chromatin compaction. This 

results in decreased accessibility of transcription factors to their binding sites 

and finally transcriptional repression. The shift in equilibrium from Myc-Max 

complexes to Mad-Max complexes results in shift from proliferation to 

differentiation (Luscher, 2001).  The model for transcriptional regulation by 

Myc-Max-Mad network of proteins is depicted in figure 9. 
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Figure 9. Transcriptional regulation by Myc-Max-Mad network of proteins (Luscher B, 
Gene, 2001) 
                            

  Studies of a Max knock-out mouse model show that Max is essential during 

growth and development (Shen-Li et al., 2000). Max -/- mice die  at days E5.5 to 

6.5. Switching from Myc-Max to Mad-Max heterocomplexes accompanies 

monocyte/macrophage differentiation (Ayer and Eisenman, 1993). One 

important study which suggests Max could have profound significance in 

granulopoiesis is that a mouse line that carries transgene encoding Max, exhibits 

a 50 to 60 fold elevation of blood neutrophils (Metcalf et al., 1995). 

Overexpression of Max has been shown to attenuate Myc-induced 

lymphoproliferation and lymphomagenesis in transgenic mice. (Lindeman et al., 

1995). This finding is very interesting since it is reported that downregulation of 

c-Myc by C/EBP� is critical for granulopoiesis (Johansen et al., 2001)  and c-
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Myc is found to inhibit C/EBP� dependent gene activation (Mink et al., 1996).

These findings suggest that Max can have important functions in granulopoiesis. 

  It has become increasingly clear that like most proteins, C/EBP� might not 

work alone, but in association with other factors regulates gene transcription. 

However, studies involving protein–protein interactions of C/EBP� at the global 

proteomic level are lacking. We therefore took advantage of high-throughput 

proteomics by mass spectrometry (LC-MS/MS) to identify proteins that 

specifically associate with C/EBP� in vivo. In our screen, Max was identified as 

a novel interacting partner of C/EBP� in addition to other new and known 

partners of C/EBP�. Our data reveal Max as a novel co-activator of C/EBP�, 

thereby suggesting a possible link between C/EBP� and the Myc–Max–Mad 

network. 

1.9 The Peptidyl-prolyl cis/trans isomerase, PIN1  

  Phosphorylation of proteins at serine or threonine has been shown to play an 

essential role in signal transduction and cell cycle progression. It has been 

shown recently that phosphorylation of proteins on serine or threonine residues 

that immediately precede a proline (pSer/Thr-Pro), known as Pro-directed 

phosphorylation, is a central signaling mechanism controlling normal cell 

proliferation and malignant transformation (Blume-Jensen and Hunter, 2001; Lu 

et al., 2002). Interestingly, many oncogenes as well as tumor suppressors are 

strictly regulated by Pro-directed phosphorylation. The identification and 

characterization of the peptidyl-prolyl cis/trans isomerase, PIN1, which 

regulates the conformation of specific Pro-directed phosphorylation sites in 

certain proteins, has led to the discovery of a new post phosphorylation 

regulatory mechanism (Lu et al., 1996; Ranganathan et al., 1997; Yaffe et al., 

1997). 

     PIN1 belongs to the evolutionarily conserved peptidyl-prolyl isomerase 

(PPIase) family of proteins (Lu, 2003). PIN1 contains two functional domains- 
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an amino-terminal WW domain and a carboxy-terminal PPIase domain (Lu et 

al., 1999). The WW domain of PIN1 binds only to specific pSer/Thr-Pro motifs 

via protein-protein interaction and the PPIase domain catalyses a cis-trans

isomerization of the pSer/Thr-Pro motifs.  

             
Figure 10. Model for phosphorylation specific prolyl isomerization (Lu KP et al, Trends 
in Cell Biology, 2002) 

1.9.1 PIN1 as a molecular timer  

   PIN1 was originally discovered as a cell cycle protein essential for the 

regulation of mitosis (Lu et al., 1996). Later studies showed that overexpression 

of PIN1  prevents entry into mitosis (Shen et al., 1998). Pin1 depletion results in 

tumor cell survival and entry into mitosis. (Rippmann et al., 2000). Studies from 

Pin1-/- mouse embryo fibroblast cells display slower asynchronus growth than 

wild type cells (Fujimori et al., 1999). Pin1- null mice  had a marked increase in 

cell cycle duration in the primordial germ cells due to prolonged G1-S transition 

(Atchison et al., 2003). Also, Pin1 has been shown to be positively regulated by 
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E2F and PIN1 expression is increased as cells progress from G0 to S phase of 

the cell cycle (Ryo et al., 2002).  Collectively, all these data suggest that PIN1 

can have an important role in different phases of cell cycle  by functioning as a 

molecular timer (Yeh and Means, 2007).

1.9.2 Targets of PIN1 

  Recent works show that PIN1 mediated conformational changes following 

phosphorylation can have profound effects on catalytic activity, phosphorylation 

status, protein-protein interaction, subcellular localization, and/or protein 

stability of its substrates (Lu, 2003; Lu et al., 1999; Yeh and Means, 2007).  

PIN1 regulates the stability of many proteins including p53, Cyclin D1, ß-

catenin etc.  PIN1 increases the protein half life of p53 by inhibiting its binding 

to the Mdm2 ubiquitin  ligase, which  regulates the degradation of p53 (Wulf et 

al., 2002).  PIN1 binds and isomerizes cyclin D1 and thereby prevents its 

nuclear export and ubiquitin-mediated degradation, resulting in cyclin D1 

stabilization (Liou et al., 2002). 

   PIN1 has been shown to control cell cycle progression through regulating 

some key proteins such as c-Myc, c-Jun, Fos, Cyclin E and Cyclin D1. PIN1 

binds to c-Myc which is phosphorylated on Ser62 and Thr58. The binding of 

PIN1 has been shown to be necessary for the ubiquitination and degradation of 

c-Myc. Depletion of PIN1 results in stabilization of c-Myc (Yeh et al., 2004).  

Another important function PIN1 has is to regulate RNA polymerase II. PIN1 

increases C-terminal domain (CTD) phosphorylation of human RNA 

polymerase II by inhibiting the CTD phosphatase FCP1 and stimulating CTD 

phosphorylation by cdc2 / cyclin B (Xu et al., 2003).  It was shown that PIN1 

binds to c-Jun and increases the transcriptional activity of c-Jun in breast cancer 

development (Wulf et al., 2001). Some of the targets of PIN1 are depicted in 

figure 11.     
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Figure 11. Functional targets of PIN1 (Yeh ES and Means AR, Nature Reviews Cancer, 
2007) 

1.9.3 PIN1 and tumorigenesis  

         A role of PIN1 in tumorigenesis is suggested by the fact that it is  

overexpressed in many cancers including prostate, lung, ovary, cervical, breast, 

brain and skin (Bao et al., 2004; Wulf et al., 2001). Initial reports show that Pin1 

knock-out mice develop normally (Fujimori et al., 1999). Even though the Pin1

null animals display age dependent defects such as retinal atrophy, decreased 

body weight and testicular atrophy, no other phenotypic characteristics related to 

cancer were detected (Liou et al., 2002). Mice lacking Pin1 are resistant to 

tumorigenesis induced by oncogenic Neu or Ras (Wulf et al., 2004).  Inhibition 

of PIN1 in cancer cells via multiple approaches triggers apoptosis or suppresses 

the transformed phenotype (Lu et al., 1996; Rippmann et al., 2000). These 

studies show that PIN1 is essential for tumorigenesis. PIN1 is overexpressed in 

breast cancer and has been found to cooperate with Ras signaling in increasing 
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c-Jun transcriptional activity towards cyclin D1 (Wulf et al., 2001). 

Overexpression of cyclin D1 has been reported in many cancers (Hunter and 

Pines, 1994), including around 50% human breast tumors (Bartkova et al., 

1994).  These results indicate that PIN1 overexpression could be a prevalent  

event in human cancers (Lu, 2003). 

  It is suggested that PIN1 overexpression can function as a critical catalyst that 

amplifies multiple oncogenic signaling pathways during oncogenesis (Ryo et al., 

2003). Even though PIN1 is known to have important role in the development of 

many cancers, no data are published so far about any possible role of PIN1 in 

any type of leukemia. 

A recent study proposes that C/EBP�  could be a PIN1 target (Miller, 2006). 

This study points out that S/T-P motifs in C/EBP� could be regulated by PIN1 

mediated isomerization. PIN1 has been shown to be positively regulated by E2F 

and PIN1 expression is increased as cells progress from G0 to S phase of cell 

cycle (Ryo et al., 2002). It is important to note that C/EBP�-p30 doesn’t repress 

E2F. E2F repression by C/EBP� is required for granulopoiesis (Porse et al., 

2001). This demonstrates that lack of E2F repression by the C/EBP�-p30 may 

leads to upregulation of PIN1. Rangatia et al has shown that  downregulation of 

the proto-oncogene c-Jun by C/EBP� is critical for granulocytic lineage 

commitment (Rangatia et al., 2002). Overexpression of c-Jun blocks 

granulopoiesis and  c-Jun expression is high in AML patients with C/EBP�

mutations (Rangatia et al., 2003). Moreover, PIN1 increases the transcriptional 

activity of c-Jun (Wulf et al., 2001) and PIN1 is upregulated in response to  c-

Jun overexpression (Rinehart-Kim et al., 2000). It is proposed that PIN1 can 

increase the stability of c-Jun (Wulf et al., 2005). Taken together, these studies 

suggest that PIN1 may have profound effects in AML patients in which C/EBP�

is mutated. 

  In this study we show that C/EBP�-p30 induces PIN1 mRNA levels and it is 

upregulated in   patients with acute myeloid leukemia. Inhibition of Pin1 leads to 
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myeloid differentiation suggesting that inhibition of Pin1 as a novel strategy in 

treating AML patients with C/EBP� mutation.  

1.10 Aims of the study 

  Recent findings show protein-protein interactions coordinated by transcription 

factors have profound effect in hematopoiesis. Protein-protein interactions of 

C/EBP� have been shown to be essential in granulopoiesis.  In the present study 

we aimed to identify the interacting proteins of C/EBP�. Here we demonstrate 

the role of Max as an interacting partner of C/EBP� and how this interaction is 

essential for the myeloid differentiation programme. These findings give new 

insights to the molecular mechanisms in granulopoiesis orchestrated by C/EBP�.

  Experimental data from animal models as well as AML patient samples 

suggest that loss of function or expression of C/EBP� is critical in AML 

development. C/EBP� is mutated in around 9% of acute myeloid leukemia. The 

mutant form of C/EBP� i.e., C/EBP�-p30 exhibits dominant negative function 

over the wild type protein and blocks myeloid differentiation. The mechanism 

with which C/EBP�-p30 mediates this differentiation block is poorly 

understood. An increasing number of studies suggest that the regulatory network 

around C/EBP�-p30 could have a critical role in the development of AML. In 

the present study we also sought to demonstrate the role of PIN1 in AML with 

C/EBP� mutation and how the regulatory network coordinated by PIN1 can 

have an important role in the dominant negative function of C/EBP�-p30. These 

findings might lead to novel strategies for treating AML with C/EBP� mutation.
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2. Materials and Methods 

2.1 Materials 

2.1.1 Chemicals  

Acetonitrile      Sigma, Germany 

Acetic Acid      Merck, Germany 

Acrylamide-Bisacrylamide   Biorad, Germany 

Agar       Life Technologies, Scotland 

Agarose      Life Technologies, Scotland 

APS       Fluka, Switzerland 

Bromphenolblue     Sigma, Germany 

CHCA      Sigma, Germany

DAPI       Sigma, Germany

DTT       Sigma, Germany 

Dimethyl Sulfoxide    Sigma, Germany 

Dithioerythritol     Merck, Germany 

Deoxycholate     Merck, Germany 

�-Estradiol      Sigma, Germany 

Ethanol      Merck, Germany 

Ethidium bromide     Sigma, Germany 

Ethylenediamine Tetra-Acetic Acid  Merck, Germany 

Formaldehyde      Sigma, Germany 

Formamide      Sigma, Germany 

Glycine      Sigma, Germany 

Glycerol      Merck, Germany 

Isopropanol      Merck, Germany 

Methanol      Merck, Germany 

PiB       Calbiochem, USA 

Puromycin      Sigma, Germany

Silver Nitrate     Merck, Germany 
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Sodium Carbonate     Merck, Germany 

Sodium Chloride     Sigma, Germany 

Sodium Thiosulfate    Merck, Germany 

Sodium Dodecyl Sulphate (SDS)  Sigma, Germany 

Trifluoroacetic Acid (TFA)   Merck, Germany 

Triton X-100     Sigma, Germany 

Trizol       Invitrogen, Germany 

Tween-20      Sigma, Germany 

Urea Plus      Merck, Germany 

2.1.2 Cell culture reagents 

Charcoal treated FBS    Hyclone, Germany 

DMEM      PAN, Germany 

Foetal bovine serum    GIBCO, Germany 

IMDM      Cambrex, United States 

Lymphocyte Separation Medium  PAA, Austria 

PBS       PAN, Germany 

Penicillin/Streptomycin    GIBCO, Germany 

RPMI 1640      PAA, Austria 

RPMI 1640       ATCC, Germany 

Trypsin EDTA     GIBCO, Germany 

2.1.3 Cell lines, AML blast cells, Primary Cells 

293T cells (human embyronic kidney fibroblast cells) 

U937 (human myeloid cell line, monoblastic) 

K562-C/EBP�-p42-ER and K562-C/EBP�-p30-ER (Erythroleukemic cells 

K562 cells stably transfected with C/EBP�-p42-ER and C/EBP�-p30-ER 

resepectively) (D'Alo et al., 2003). 
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Kasumi-6 (Myeloid leukemia cell line eastablished from the bone marrow cells 

of a patient with C/EBP� mutation (Asou et al., 2003).

Blast cells from different AML patients were kind gift from the laboratory for 

leukemia diagnostic, Med III, Klinikum Großhadern, University of Munich, 

Germany. 

Human cord blood samples were collected after full term delivery with informed 

consent of the mothers from Klinikum Kröllwitz, Halle, Germany. 

Hematopoietic CD34+ cells were isolated from cord blood samples using 

CD34+ selection kit (Miltenyi Biotech, Germany). 

2.1.4 Plasmids 

Max expression plasmid (kind gift from Dr. Dirk Eick) 

In vitro translatable Max (kind gift from Dr. Robert Eisenman) 

BR3/C/EBP� (basic region mutant) and LZ/C/EBP� (leucine zipper domain 

mutant) (kind gift from Dr. Alan Friedman)

Wild type C/EBP� and mutant C/EBP� (C/EBP�-p30) (Pabst et al., 2001b) 

Reporter construct p(C/EBP)2TK having two consensus C/EBP� binding sites 

PIN1 promoter luciferase construct  (Ryo et al., 2002) 

PIN1 pcDNA (Zacchi et al., 2002) 

E2F1 expression vector (Johansen et al., 2001) 

c-Jun expression vector (Rangatia et al., 2002) 

2.1.5 shRNA / siRNA  

Max shRNA          Cat. No. RHS1764-9690535; Open Biosystems, Germany 

Control shRNA     Cat. No. RHS1707; Open Biosystems, Germany 

PIN1 siRNA          Cat. No. SI02662128; Qiagen, Germany 

Control siRNA      Cat. No 10277280; Qiagen, Germany
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2.1.6 Antibody 

Anti-C/EBP�    Cat. No.  sc-61, sc-9315,  Santa Cruz Biotechnology, Germany 

Anti-Max          Cat. No.  sc-765, Santa Cruz Biotechnology, Germany 

Anti-c-Myc       Cat. No. sc-42, Santa Cruz Biotechnology, Germany 

Anti-PIN1          Cat. No. sc-15340, Santa Cruz Biotechnology, Germany 

Anti-�-Tubulin  Cat. No. sc-9104, Santa Cruz Biotechnology, Germany 

CD15                 Cat. No. 555401, BD Pharmingen, Germany 

CD11b               Cat. No. 555388, BD Pharmingen, Germany  

Anti-HA            Cat. No. 1867423, Roche Applied Science, Germany 

2.1.7 Reagent Kits 

Biorad-protein estimation kit                         Biorad, Germany 

CD34+ selection kit                                        Miltenyi Biotech, Germany 

Dual Luciferase assay kit                               Promega,  Germany 

ECL detection kit                                           Amersham Biosciences, Germany 

ImProm-II Reverse Transcription system      Promega, Germany 

LipofectAMINE plus                                     Invitrogen, Germany 

Nucleofector kit                                             AMAXA, Cologne, Germany 

Plasmid DNA Isolation kit                            Qiagen, Germany 

SYBR Green kit                                             Qiagen, Germany 

TNT-Reticulocyte lysate system                    Promega, Germany 

TRizol reagent                                                Invitrogen, Germany 

2.1.8 Mass Spectrometry: 

Reflex III MALDI-TOF                                 Bruker Daltonics, Germany 

AB4700 MALDI-TOF/TOF                          Applied Biosystems, Germany 

Nano LC                                                        LC Packing, Dionex, United States 

Mascot database search software                  Matrix Science 

AnchorChip plate                                          Bruker Daltonics, Germany 
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2.1.9 Miscellaneous  

ECL hyperfilm                               Amersham Biosciences, Germany 

Immobiline dry strip (pH 3-10)     Amersham Biosciences, Germany 

Protein agarose beads                    Roche Molecular Diagnostics, Germany 

Phosphatase inhibitor Cocktail      Sigma, Germany 

Protease inhibitors                         Sigma, Germany 

PVDF membrane                           Schleicher and  Schüll, Germany 

RNA quiashredder columns          Quiagen, Germany 

2.2 Methods 

2.2.1 Cell culture 

U937 cells were cultured in RPMI 1640 supplemented with 10% heat 

inactivated foetal bovine serum and 1% Penicillin-Streptomycin; human 

embryonic kidney 293T cells were maintained in Dulbecco´s modified Eagle 

medium supplemented with 10% foetal bovine serum, 1% glutamine and 1% 

Penicillin-Streptomycin; K562-C/EBP�-p42-ER and K562-C/EBP�-p30-ER 

cells were maintained in RPMI 1640 without phenol red supplemented with 

10% charcoal treated foetal bovine serum, 1% Penicillin-Streptomycin and 2 

�g/ml Puromycin; Kasumi-6 cells were cultured in RPMI 1640 supplemented 

with 20% foetal bovine serum, 1% Penicillin-Streptomycin and 2 ng/ml GM-

CSF; human CD34+ cells were cultured in Iscove’s modified Dulbecco’s 

medium with 20% heat-inactivated fetal calf serum, 100 ng/ml Flt3-ligand, 100 

ng/ml of stem cell factor, 100 ng/ml thrombopoietin, 100 ng/ml of interleukin-6 

(IL-6), 50 ng/ml of interleukin-3 (IL-3) and 100 U/ml  penicillin/streptomycin. 

2.2.2 Transfection 

2.2.2.1 Transient transfection by LipofectAMINE 

The day before transfection, 293T cells were trypsinized, counted and plated so 

that they were 50-80% confluent the day of transfection. Antibiotics were 

avoided during plating to help cell growth and increased transfection efficiency. 
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DNA was diluted in serum free medium and precomplexed with PLUS reagent 

(Invitorgen, Germany). The complete mixture was incubated at room 

temperature for 15 min. LipofectAMINE reagent was diluted and mixed in a 

serum free medium in a second tube. Pre-complexed DNA and diluted 

LipofectAMINE reagent (Invitorgen, Germany) were mixed and incubated for 

15 min at room temperature. During this incubation period, cells were rinsed 

with serum free medium to enable higher transfection activity. DNA-PLUS 

LipofectAMINE reagent complexes were added to each well containing fresh 

medium. The complexes were gently mixed with the medium; incubated at 37C 

at 5% CO2 for 3 hrs. After 3 hrs of incubation medium volume was increased to 

normal volume by adding medium containing 20% fetal bovine serum.  

2.2.2.1 Transient transfection by AMAXA 

 The Nucleofector kit (AMAXA, Cologne, Germany) was used essentially as 

described by the manufacturer.  2 �g portion of plasmid DNA constructs were 

used for each transfection and the transfection efficiency was analyzed using a 

plasmid with eGFP marker. CD34+ cells, U937 and Kasumi-6 cells were 

transfected with nucleofection programmes U-08, V-01 and T-03, respectively.

2.2.3 Immunoprecipitation 

The immunoprecipitation (IP) was performed from 500–1000 �g nuclear 

extracts  of U937 cells, 50 �l slurry of protein A agarose beads and 2 �g of 

respective antibodies and the corresponding IgGs as controls in an IP buffer (50 

mM Tris pH 7.5, 150 mM NaCl, 0.5% NP-40, 0.25% sodium deoxycholate). 

Immunoprecipitated proteins were heated at 56°C for 30 minutes in 2X SDS 

loading buffer and then boiled at 95°C for 5 minutes. Denatured proteins were 

subsequently separated on 8% SDS PAGE and immunoblotted against 

respective antibodies. 



44

2.2.4 Western blotting 

For Western blotting, 50 �g total protein was denatured in the SDS sample 

loading buffer, separated on 8-10% SDS-polyacrylamide gels and transferred to 

an immobilon-P membrane (Millipore, USA). The membrane was incubated 

with respective primary antibody overnight and with horseradish peroxidase 

conjugated secondary antibodies for one hour. Signals were detected with the 

ECL Western blotting detection reagents. In all immunoblotting experiments a 

1:1000 dilution for primary and 1:2000 dilutions for secondary antibody was 

used. 

2.2.5 Proteomics 

  Nuclear extracts of U937 cells were used for immunoprecipitation with 

C/EBP� antibody using protein A Agarose beads. After immunoprecipitation, 

beads with their associated proteins were lysed in urea lysis buffer for 1hr at RT 

on a rotating shaker. Lysed beads were passed through RNA quiashredder 

columns, and resulting supernatant containing dissolved proteins was 

ultracentrifuged for 50 minutes at 50,000 rpm at 22°C. In the first dimension, 

350 �l of dissolved proteins after ultracentrifugation were separated on an 

immobiline dry strip pH 3-10 by isoelectric focussing (IEF) where proteins are 

separated on the basis of their isoelectric point (pI). The reduction and alkylation 

of separated proteins was carried out in urea buffer containing 2% DTE and 

2.5% iodoacetamide, respectively. Proteins were then separated in the second 

dimension using 12% SDS PAGE on the basis of their size (relative molecular 

weight). 2D gels were silver stained to visualise the protein spots.

  The protein spots were excised from gels, destained, and in gel digestion was 

performed with 200 ng trypsin in ammonium bicarbonate solution for 16 hours. 

The digested peptides were eluted in 70% acetonitrile, lyophilised and 

resuspended in 5 �l of 0.1% TFA in 10% acetonitrile. The dissolved peptides 

were mixed in 1:1 ratio with DHB (2, 5-dihydroxybenzoic acid) matrix solution 

and loaded on an anchorChip target plate (Bruker Daltonics, Germany). Peptide 
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mass fingerprint (PMF) was generated by Matrix Assisted Laser Deionization-

Time of Flight (MALDI TOF; REFLEX III, Bruker Daltonics) mass 

spectrometry and corresponding proteins were identified by MASCOT database 

searches. 

  For LC-MS/MS analysis of interacting proteins of C/EBP�, the beads after 

immunoprecipitation were denatured with SDS sample loading buffer, separated 

on 10% SDS-polyacrylamide gel and silver stained. The individual bands were 

excised and processed for trypsin digestion. The digested protein samples were 

fractionated by Nano LC (LC Packing, Dionex) using 500 µm i.d. x 5mm, C18 

reverse phase column with a flow rate of 200 nl/min and loaded on an 4700 

sample plate. Peptide mass fingerprint (PMF) was generated by Matrix Assisted 

Laser Deionization-Time of Flight (MALDI TOF/TOF, Applied Biosystem) 

mass spectrometry and corresponding proteins were identified by MASCOT 

database searches. 

2.2.6 Immunofluorescence 

U937 cells (3 X 105), under uninduced condition or induced with RA, were 

cytocentrifuged on glass slides with coverslips, fixed using 1:1 

methanol/acetone and permeabilized using 0.3% Triton X. After blocking in 

PBG (0.5% BSA, 0.045% Fish–gelatin in phosphate-buffered saline) containing 

5% FBS, the fixed cells were incubated with anti-C/EBPa, anti-Max and anti-

Myc antibodies, followed by incubation with corresponding Alexa Fluor 488 

chicken anti-goat, Alexa Fluor 594 chicken anti-rabbit and anti-mouse IgG 

secondary antibodies (Molecular Probes) and DAPI (1 mg/ml) for 15 min. The 

cells were mounted in aqueous mounting medium and the images were acquired 

and analyzed using Leica fluorescence microscope (X100, X60). 

2.2.7 Promoter assay 

293T cells were transiently transfected using LipofectAMINE (Invitorgen, 

Germany) as described by the manufacturer. Firefly luciferase activities from 
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the constructs pTK, p(C/EBP)2TK and Renilla luciferase activity from the 

internal control plasmid pRL-null were determined 24 h after transfection using 

the Dual-Luciferase Reporter Assay System (Promega,  Germany). Firefly 

luciferase activities were normalized to the Renilla luciferase values of pRL-

null. Results are given as means and standard errors of the means of three 

independent experiments. The following DNA concentrations of the reporter 

constructs and expression plasmids were used for LipofectAMINE Plus 

transfections: 0.1 �g of pCDNA3-human C/EBP� (wild type), 0.1 �g of 

C/EBP�-p30, 0.1 �g of Max, 0.1 �g of pTK, 0.1 �g of pCDNA3 PIN1, 0.1 �g of 

c-Jun, 0.05 �g of E2F1, 0.1 �g of p(C/EBP) 2TK and 0.01 �g of the internal 

control plasmid pRL-null. 

2.2.8 FACS analysis 

For flow cytometry analysis, 106cells were washed twice with PBS and 

resuspended in 50 �l of PBS with 2 �l of the respective antibody. Incubation 

was performed for 20 minutes in ice. After the incubation, cells were washed 

with PBS, resuspended in PBS and analyzed by flow cytometry in FACScan

(Becton Dickinson). 

2.2.9 Chromatin immunoprecipitation assay 

Crosslinking of proteins to DNA was done by the direct addition of 

formaldehyde (final concentration 1% (v/v) to cultured cells for 10 min at 370C. 

Glycine was added to a final concentration of 0.125M to stop cross-linking. 

Fixed cells were pelleted by centrifugation and equentially washed and 

sonicated (five times for 20 s each) to make soluble chromatin. Samples of total 

chromatin were taken at this point to use as a positive control in the PCRs (input 

chromatin). Antibodies against C/EBPa, Max and c-Myc were used overnight at 

40C. After serial elution, washing and reverse cross linking, the samples were 

extracted twice with phenol/chloroform and precipitated with ethanol overnight 

in the presence of 20 mg glycogen as a carrier. DNA fragments were recovered 
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by centrifugation, resuspended in distilled water, and used for PCR 

amplification. For detection of immunoprecipitated C/EBP� promoter region, 

two primers, forward 5´-CCGCTACCGACCACGTGGGCG-3´(which 

corresponds to -280 to -260 bases) and reverse 5´-

GCACCTCCGGGTCGCGAATGG-3´(which corresponds to -2 to +19 bases), 

were used for Q-RT-PCR amplification. The amplified product (299 bases) 

encompasses the CACGTG site in the C/EBP� promoter.  

2.2.10 mRNA expression analysis 

Total RNA was isolated from leukemic patient samples, processed and analyzed 

on the Affymetrix HG-U133A and HG-U133B chips as described before 

(Schoch et al., 2002). The data from Affymetrix analysis were normalised 

together according to the procedure described before (Huber et al., 2002). 

Normalized expression data were then analyzed with the R software package 

and the “boxplot” function (www.r-project.org). Expression signal intensities 

are expressed on a logarithmic scale.  

2.2.11 Quantitative Real-Time PCR 

Total RNA was isolated from cells with Trizol reagent (Invitorgen, Germany).  

750 �g of RNA was used to synthesize cDNA by Reverse Transcription.  Equal 

amounts of cDNA were taken for a subsequent quantitative real-time PCR (Q-

RT-PCR) using the SYBR Green PCR kit (Qiagen, Germany) in a Rotor-Gene 

RG-3000 (Corbett Research, Australia). The delta delta CT value (		CT) was 

then calculated from the given CT value by the formula 		CT = [CT (gene of 

interest)–CT (GAPDH)] Test – [CT (gene of interest)–CT (GAPDH)] Control. The 

fold change was calculated as fold  change = 2–		C
T (Livak and Schmittgen, 

2001). 

The primers used in the analysis are shown in table 2:  
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Table 2. 
Gene Acc. No.     Sequence Amplicon 

(bp) 
Position at 
the cDNA 
sequence 

PIN1 NM_006221 For. 5´AAG ATG GCG GAC GAG GAG 3´ 
Rev. 5´CAC TCA GTG CGG AGG ATG AT  3´

494 1-491 

c-Jun NM_002228 For.5´GCA TGA GGA AAC GCA TCG CTG 
CCT CCA AGT 3´ 
Rev. 5´GCG ACC AAG TCC TTC CCA CTC 
GTG CAC ACT 3´ 

400 776-1175 

G-CSFR BC053585 For. 5´AAG AGC CCC CTT ACC CAC TAC 
ACC ATC TT 3´ 
Rev. 5´TGC TGT GAG CTG GGT CTG GGA 
CAC TT 3´ 

340 1666-2005 

GAPDH NM_002046 For. 5´ACC ACA GTC CAT GCC ATC AC 3´ 
Rev. 5´TCC ACC ACC CTG TTG CTG TA 3´ 

452 526-977 

2.2.12 Ubiquitination Assay 

293T cells were transiently transfected with different constructs as described 

(Figure 27), 24 hours after transfection cells were lysed in RIPA buffer followed 

by c-Jun immunoprecipitation from 500�g total protein.  The protein samples 

after immunoprecipitation were analysed in a 10% SDS-PAGE gel and probed 

for HA antibody.  
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3. Results 

3.1 Max as a novel co-activator of myeloid transcription factor 

C/EBP�

3.1.1 Identification of Max, a heterodimeric partner of Myc, as a novel 

interacting protein of C/EBP�

  To identify interacting proteins of C/EBP� in vivo under physiological 

conditions on a cellular level, we applied proteomics technique coupled with 

mass spectrometry using the immunoprecipitation conditions of endogenous 

C/EBP� from myeloid U937 cells as a model system. 

  Under our experimental conditions, we could specifically immunoprecipitate 

endogenous C/EBP� from the nuclear extracts of U937 cells (Figure 12A) and 

co-immunoprecipitate other endogenous proteins (as positive controls) such as 

c-Jun (Figure 12B) which was not present in the isotype IgG control. 

Immunocomplexes were further processed for proteomic analysis. The protein 

spots excised from the 2D gels (Figure 12C, spots are numbered) were identified 

by MALDI-TOF MS. Additionally, the individual bands were excised from 

Coomassie/Silver-stained SDS-PAGE gels (Figure 12D) and processed for LC-

MS/MS. From both screens, we were able to identify 10 proteins by MS, which 

potentially interact with C/EBP� (Table 3). Among these proteins, was Max. 

C/EBP� was also identified by MS analysis of the corresponding band (Figure 

12D), thereby serving as a control for our experimental setup. The discovery of 

Max as a novel C/EBP� partner is intriguing because of the role Max plays in 

switching from Myc-Max to Mad-Max heterocomplexes during myeloid 

differentiation (Ayer and Eisenman, 1993). We therefore selected Max for 

further functional and biological characterization.
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Figure 12. Mass spectrometry based proteomics identification of C/EBP� interacting 
proteins. A) C/EBP� IP from nuclear extracts of U937 cells and a corresponding 
immunoblotting (IB) with anti-C/EBP� antibody to confirm the presence of C/EBP� protein 
in the IP complex. In vitro-translated C/EBP� (ivt, lane 1) was used as a positive control in 
the Western blot. B) C/EBP� IP and corresponding IB with anti-c-Jun antibody to show 
endogenous proteins co-precipitated with C/EBP�. In vitro translated c-Jun was used as a 
positive control for c-Jun. C) Silver-stained 2D gels showing proteins specifically interacting 
with C/EBP�. C/EBP� was immunoprecipitated from nuclear extracts using anti-C/EBP�
antibody and the immunocomplex separated in the first dimension by pH 4–7 IPGphor strips 
followed by their separation in the second dimension using 12% SDS-PAGE. As a specificity 
control, we used immunoprecipitation with IgG under similar conditions. D) Silver-stained 
SDS-PAGE gels after IP with anti-C/EBP� and anti-IgG. The bands were excised and peptide 
mixture after trypsin digestion was run on a reverse-phase liquid chromatography and the 
peptides identified by MALDI-TOF-TOF 
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Table 3. Mass spectrometry based identification of interacting proteins of 
C/EBP�

Spot 
no. 

Acc.no. Protein name Mol.wt. 

  1 A42611 Max 21.029 
  2 Q9UP93 Macrophin1 fragment 620.00 
  3 M2OM_Hum Mitochondrial 2-oxoglutarate/malate carrier 

protein 
34.08 

  8 A47213 Beta fodrin 146.55 
 12 Q96QA8 RPGR interacting protein 1 147.33 
 13 Q9P1U9 ZNF45 80.44 
 15 FAHUAA Actinin 1 103.48 
 16 Q9UKD2 60 S ribosomal protein 127.60 
  * NMD3A N-methyl-D-aspartate receptor 3A 126.67 
  * SMADIP1 Smad interacting protein 1 137.84 
 * represents proteins identified by liquid chromatography coupled tandem mass spectrometry 

3.1.2 C/EBP� and Max interact in a cellular setting: confirmation of 

proteomics data 

To confirm the observed interaction of Max with C/EBP�, we performed 

reciprocal immunoprecipitation. Our results demonstrate that C/EBP� interacts 

with Max and vice versa (Figure 13) in vivo, and thereby confirm the results 

from the interaction screen. It is important to note that for the same amounts of 

nuclear extracts used (5 and 10 mg) as input controls, the levels of the two 

transcription factors are dramatically different, which is likely due to Max being 

more stable than C/EBP�. 
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Figure 13. Confirmation of C/EBP�-MAX interaction. Reciprocal IPs: C/EBP�   and Max 
were immunoprecipitated (IP C/EBP�, IP Max) from nuclear extracts of U937 cells by 
incubation with anti-C/EBP�   and anti-Max, respectively, and respective IgG as controls. The 
blot was first probed with anti-C/EBP�   antibody, stripped and reprobed with anti-Max 
antibody. 

3.1.3 The BR3 domain of C/EBP� is involved in its interaction with Max 

To investigate the protein domains that might be involved in the C/EBP�–Max 

interaction, we performed co-immunoprecipitation studies using different 

mutants of C/EBP�. The different C/EBP� mutants used in this study were 

BR3/C/EBP� (arginine 297, lysine 298, aginine 300 and lysine 302 in the basic 

region mutated), GZ/LZ (the leucine zipper of C/EBP� is replaced with GCN4 

leucine zipper) and L1-2V (leucine 1 and 2 in the leucine zipper mutated to 

valine) (Liu et al., 2003). C/EBP� and its various mutants were transiently 

transfected into 293T cells, and cotransfected with an expression plasmid for 

Max containing a carboxy-terminal HA tag. Max was then immunoprecipitated 

from nuclear extracts using Max antibody. The associated complexes were 

assayed by immunoblotting for C/EBP� using C/EBP� antibody. Our results 

demonstrate that C/EBP� could be co-immunoprecipitated when IP was 

performed using Max antibody in samples in which wild-type C/EBP�: wild-

type Max, GZ/LZ C/EBP�: wild-type Max and L1-2V C/EBP�: wild-type Max 

were co-expressed (Figure 15B, lanes 4, 3, 1, respectively). However, C/EBP�

could not be co-immunoprecipitated in immunoprecipitated samples in which 

basic region mutant BR3-C/EBP�: wild-type Max was co-expressed (Figure 
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14B, lane 2). We also show that Max could be specifically immunoprecipitated 

(as controls) with immunoblot for Max using HA antibody (Figure 14B, lower 

panel). These data show that the basic region of C/EBP� is involved in its 

interaction with Max in a cellular setting. 

  
Figure 14. Interaction of C/EBP� with Max involves the DNA-binding domain of 
C/EBP�: A) The basic region of C/EBP� is involved in its interaction with Max. Schematic 
representation of wild-type hC/EBP� and different mutants used in this study. TAD, 
transactivation domains 1 and 2; BR, basic region; LZ, leucine zipper domain; HLH, helix–
loop–helix. B) hC/EBP�  wild type and its mutants were transfected in 293T cells and co-
transfected with wild-type Max expression plasmid. At 24 h post-transfection, the nuclear 
extracts were prepared and IP of Max performed for the samples followed by immunoblot for 
C/EBP�   or Max using anti-C/EBP�   and HA antibodies, respectively. 
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3.1.4 C/EBP�–Max but not Myc–Max colocalize during granulocytic 

differentiation of myeloid U937 cells 

  Given the fact that C/EBP� and Max are nuclear transcription factors and the 

observation that they interact in vivo, we next investigated the localization of 

these proteins by indirect immunofluorescence in myeloid U937 cells. We 

observed both endogenous C/EBP�  and Max to be localized in intranuclear 

structures (Figure 15A) and the overlay of the two images shows that both 

proteins colocalize in these intranuclear structures (Figure 15A, panel 4; yellow 

signal). 

  We next investigated the effect on C/EBP�–Max colocalization when the cells 

were triggered for granulocytic differentiation by RA for 24 hr. We observed 

intranuclear staining with C/EBP� and Max antibodies, and the overlay of the 

two images shows that both proteins remain colocalized even after RA treatment 

of the cells (Figure 15B, panel 4; yellow signal). As Max is associated with 

Myc, we also analyzed their localization in U937 cells. We observed that 

endogenous Myc–Max colocalize in the nucleus under uninduced condition 

(Figure 15A, lower panels). On the other hand, no intranuclear c-Myc signal 

could be detected after RA treatment (Figure 15C, lower right panel 4; only 

green signal from Max). We next investigated the expression of c-Myc, Max and 

C/EBP� before and after RA treatment from various fractions (nuclear fraction 

(NF) and cytoplasmic fraction (CF) by Western blotting, using specific 

antibodies (Figure 16D). Our results revealed that the c-Myc protein level was 

drastically decreased in both fractions (Figure 15D) by RA. However, C/EBP�

was undetectable in the CF and slightly increased in the NF by RA when 

analyzed by immunoblotting. Max, on the other hand, was relatively unchanged 

under induced and uninduced conditions. These data suggest that 

retention/colocalization of C/EBP�–Max, and not Myc–Max heterocomplexes, 

in the nucleus might be important events during granulocytic differentiation of 

U937 cells. 
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Figure 15. Endogenous C/EBP�-Max but not Myc–Max remains colocalized during 
granulocytic differentiation of U937 cells. A) Indirect immunofluorescence staining for 
C/EBP�   (anti-goat; Santa Cruz), Max (anti-rabbit; Santa Cruz) and Myc (anti-mouse, Santa 
Cruz) using respective conjugated secondary antibodies (Molecular Probes). Indirect 
immunofluorescence staining for B) C/EBP�-Max and C) Myc–Max using conjugated 
antibodies (Molecular Pobes) in U937 cells after RA treatment. D) Immunoblot analysis 
showing expression of c-Myc, Max and C/EBP�   under RA-induced and uninduced 
conditions from nuclear and cytoplasmic fractions. Blots were stripped and reprobed with 
specific antibody.  NF: nuclear fraction; CF: cytoplasmic fraction. 
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3.1.5 Max enhances the ability of C/EBP� to transactivate a minimal 

thymidine kinase promoter 

       To investigate the functional importance of the C/EBP� –Max interaction 

and the colocalization of these proteins, we performed transient transfection 

assays in the human embryonal kidney cell line 293T and the myeloid cell line 

U937 using as a reporter a minimal TK promoter containing two CCAAT 

binding sites cloned upstream of the luciferase reporter gene. Transfection of a 

Max expression construct significantly enhanced the ability of C/EBP� to 

transactivate a minimal TK promoter containing two CCAAT binding site in a 

dose dependent manner (Figure 16A). In control experiments, no effect of Max 

on C/EBP� activity was observed when promoter with no CCAAT binding sites 

was used. Similar results were obtained with myeloid U937 cells (Figure 16B). 

Interestingly, co-transfection studies with the human 2200 bp C/EBP� promoter  

construct having bases -1 to -2200 with respect to the transcription start site 

(which has an intact E-box site and no CCAAT site) revealed that C/EBP� alone 

was unable to transactivate the promoter, whereas, co-transfection of Max led to 

a weak but significant increase in the promoter activity (Figure 16C). It is 

important to point out that Max itself does show some activation.  
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Figure 16. Max enhances the transactivation capacity of C/EBP� in transient 
transfection assays. A, B) Transient transfection in 293T and U937 cells with a reporter 
construct of a minimal TK promoter with CEBP binding sites only p(CEBP)2TK and 
expression plasmids for hC/EBP�   and Max. pTK (without CEBP sites) was used as control. 
Luciferase activities were measured 24 h after transfection and the values normalized by using 
Renilla luciferase PRL0. C) Transient transfection in 293T cells with a 2200 bp hC/EBP�   
promoter showing increased promoter activation when Max is coexpressed. 
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3.1.6 C/EBP� and Max associate in vivo: a Myc–Max–Mad link 

  To further elucidate the mechanism by which Max augments the transcriptional 

activity of C/EBP�, we hypothesized that Max might associate with the 

hC/EBP� promoter in vivo because similar to C/EBP�, Max also possesses a 

DNA binding basic region. To test this possibility, we performed quantitative 

radioactive and non-radioactive chromatin immunoprecipitation (ChIP) in U937 

cells (Figure 17). Chromatin was subjected to IP by using antibodies directed 

against C/EBP�, c-Myc and Max. The presence of Max in the C/EBP� promoter 

was detected by amplifying a promoter region using primers specific for a 280 

bp region of the C/EBP� promoter that encompasses the CACGTG site 

(commonly referred to as E-box; Figure 17A). The E-box is conserved in the 

human and mouse C/EBP� promoter (Figure 17A). We observed that under 

normal physiological conditions (uninduced), endogenous c-Myc and Max were 

present on the C/EBP� promoter and there was undetectable endogenous 

C/EBP� occupancy on the hC/EBP� promoter (Figure 17B). IP using an 

isotype-matched IgG served as a negative control. 

We next investigated the effect on heterocomplex formation of Max and 

C/EBP� at the hC/EBP� promoter upon differentiation by RA. We observed that 

both Max and C/EBP� appeared on C/EBP� promoter and in fact, more C/EBP�

was associated with the promoter in the context of chromatin upon 

differentiation induction (Figure 17C, lane 4). The amount of Max bound to the 

promoter was fairly constant. DNA recovery was quantified as a percentage of 

the total input chromatin (lanes 5–7). A promoter without the CACGTG site, 

such as GAPDH promoter (Figure 17D), was used as a negative control for 

C/EBP� and Max occupancy and hTERT promoter (Figure 17E) as a positive 

control for Myc and Max interaction on the CACGTG site (E-box). Thus, 

C/EBP� and Max associate in vivo in the context of chromatin and are 

associated together more strongly on the hC/EBP� promoter when the cells are 

induced towards granulocytic differentiation.  
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Figure 17. Max is associated at the hC/EBP�   promoter in vivo and Max–C/EBP�  
associate strongly during granulocytic differentiation. ChIP assay was performed with 
untreated and RA-treated U937 cells, and the precipitated chromatin was PCR-amplified 
using specific primers.A) Comparison of the human and mouse C/EBP promoters 
encompassing a consensus CACGTG sequence, commonly referred to as E-box and known to 
be occupied by Myc-Max heterodimers. B) In vivo occupancy by Myc and Max at the 
hC/EBP�   promoter in logarithmically growing and C) by Max-C/EBP�   in RA treated U937 
cells. D, E) ChIP assay using GAPDH promoter (negative control) and human TERT 
promoter (positive control with a non-radioactive RT-PCR. 
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3.1.7 Overexpression of Max and C/EBP� promotes differentiation along 

the granulocytic pathway in human hematopoietic CD34+ cells 

 We next asked whether the interaction of Max with C/EBP� is biologically 

important for C/EBP� functions. For this, we performed overexpression studies 

using human hematopoietic CD34+ cells. Our results revealed that 

overexpression of Max or C/EBP�  alone in CD34+ cells leads to a significant 

increase in the proportion of CD11b+ (Figure 18, upper panel) and CD15+ 

(Figure 18, lower panel) cells compared to the mock-transfected control, 

respectively.  

Figure 18. Overexpression of Max induces gramulocyte differentiation.  The expression 
plasmids for human C/EBP�   and Max were transfected into human hematopoietic CD34+ 
cells by using AMAXA. The surface expression of CD11b and CD15 was analyzed by flow 
cytometry at day 4. The histograms represent data from three different experiments.  

C/EBP�

  Max 

+
+

+
+

Mock +

0

5

10

15

20

25

30

35

40

45

CD
11

b 
ex

pr
es

si
on

   Max + +
Mock +

0

5

10

15

20

25

30

35

C
D

15
 e

xp
re

ss
io

n

   C/EBP� + +



61

3.1.8 Stable silencing of Max by short hairpin RNA reduces the 

differentiation-inducing capacity of C/EBP� in human hematopoietic 

CD34+ cells 

 If Max is a biologically important co-activator of C/EBP�, silencing of Max 

should inhibit differentiation induction by C/EBP�. To address this, we 

performed RNA interference experiments in human hematopoietic CD34+ cells 

by using short hairpin RNA (shRNA) against Max and control shRNA. Cells 

were transfected with expression plasmids for C/EBP� alone and/or co-

expressed with shRNA against Max, control shRNA, and the cells cultured in 

media containing puromycine for two days. After selection, the cells were 

analyzed for granulocytic differentiation, using CD15 expression as a marker. 

Our results revealed that C/EBP� alone induces granulocytic differentiation 

(CD15+) as compared with the mock-transfected CD34+ (Figure 19A). 

Coexpression of Max shRNA led to a significant decrease in CD15+ population 

(about two fold), whereas control shRNA did not lead to any significant 

reduction in CD15+ population (Figure 19A, compare histograms). The 

reduction of Max protein level with shRNA was confirmed by Western blotting 

and Max shRNA did not affect the expression of C/EBP� (Figure 19B). Thus, 

Max is important for C/EBP�-mediated effects on granulocytic differentiation 

and might have an important role in stem cell development. 
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Figure 19. Stable silencing of Max by shRNA inhibits C/EBP�  induced differentiation in 
human hematopoietic CD34+ cells. A) The expression plasmid for human C/EBP�   and/or 
expression Arrest shRNA Max plasmid (Open Biosystems, Cat. No. RHS1764-9690535) 
were transfected into human hematopoietic CD34+ cells by AMAXA transfection method. 
After their selection in puromycine, the cells were analyzed for the surface expression of 
CD15 by flow cytometry. Control shRNA was also used in all the experiments and is shown. 
The histograms represent the data from three different experiments. B) A Western blot for 
Max using anti-Max antibody showing silencing of Max at the protein level by ShRNA 
MAX. The blot was stripped and reprobed with C/EBP�   antibody. 
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3.2 The critical role of PIN1 upregulation in Acute Myeloid 
Leukemia with C/EBP� mutation 

3.2.1 C/EBP�-p30 induces PIN1 mRNA expression in myeloid cells 

It has been shown that mutant C/EBP� (C/EBP�-p30) blocks the wild type 

C/EBP� in a dominant negative manner and has been shown to block the 

differentiation of myeloid precursor cells (Pabst et al., 2001b). Recent findings 

suggest that  C/EBP� mediated E2F repression as critical step in myeloid 

differentiation programme and lack of this repression provides a platform on 

which AML like syndrome evolve (Schuster and Porse, 2006). Based on this, we 

asked how E2F target genes could have a role in the differentiation block 

observed in AML with C/EBP� mutation. Growing number of studies support 

the oncogenic potential of PIN1, which is an E2F1 target gene. We investigated 

how C/EBP�-p30 regulates PIN1 levels. We chose K562-ER cell lines (D'Alo et 

al., 2003) as well as Kasumi-6 cells (Asou et al., 2003) for the initial 

experiments. K562-ER cells are an early multipotential line derived from the 

K562 cell line, which was obtained from a patient with chronic myeloid

leukemia. Kasumi-6 is a myeloid leukemia cell line established from the bone 

marrow cells of an individual with acute myeloid leukemia, subtype M2 having 

C/EBP� mutation and expressing both the p42 and p30 isoforms of the C/EBP�

protein endogenously. We induced C/EBP�-p30 by ß-Estradiol treatment in the 

K562-C/EBP�-p30-ER cell line. We observed that C/EBP�-p30 induces PIN1 

mRNA expression (Figure 20A). Next we overexpressed C/EBP�-p30 by 

AMAXA transfection in Kasumi-6 cells. Similar results were obtained with 

myeloid Kasumi-6 cells also (Figure 20B).  



64

A. B. 

Figure 20. C/EBP�-p30 induces PIN1 mRNA expression. A) K562- C/EBP�-p30-ER cells
were induced with ß Estradiol for respective time points to induce C/EBP�-p30 and total 
RNA was isolated at respective time points, proceeded for reverse transcription followed by 
quantitative real time PCR for PIN1 B) Kasumi-6 cells were transfected with mock vector or 
C/EBP�-p30 vector by AMAXA and isolated total RNA after 24 hr and proceeded for Real 
time PCR for PIN1. Values were normalized with GAPDH mRNA. The results are the means 
from three independent experiments, and error bars represent the standard errors of mean.   

3.2.2 PIN1 is upregulated in different AML subypes including AML with 

C/EBP� mutations.  

  It is suggested that PIN1 overexpression can function as a critical catalyst that 

amplifies multiple oncogenic signaling pathways during oncogenesis (Ryo et al., 

2003). Recent studies show that PIN1 is overexpressed in many cancers 

including prostate, breast, lung, ovary and colon cancer (Bao et al., 2004). PIN1 

is transcriptionally regulated by E2F  (Ryo et al., 2002). Given the fact that 

C/EBP� mediated E2F repression is a critical step in granulopoiesis (Porse et al., 

2001) and that C/EBP� is inactivated by various mechanisms in AML including 

mutations of C/EBP� itself, we hypothesized that PIN1 expression in AML 

patient samples could be high in comparison to normal control samples. mRNA 

expression analysis and Western blot analysis show that PIN1 mRNA and 

protein are upregulated in various AML subtypes including AML with C/EBP�

mutation (Figure 21).  

0

0.5

1

1.5

2

Mock C/EBP�-p30

PI
N

1 
/ G

A
PD

H

K562- C/EBP�-p30-ER Kasumi-6

0

0.4

0.8

1.2

1.6

2

 0 hr 6 hr 12 hr  24 hr

Time after ß-estradiol induction (5µM)

PI
N

1 
/ G

A
PD

H



65

Figure 21. PIN1 mRNA and protein expression is high in different subtypes of leukemia. 
A) Affymetrix analysis was done with AML blast cells using total RNA isolated from 
leukemic patient samples, processed and analyzed on the Affymetrix HG-U133A and HG-
U133B chips. Expression signal intensities are expressed in logarithmic scale. B) Western 
blot analyis for Pin1 using lysates prepared from AML blast cells.  nBM: normal bone 
marrow, CML: chronic myeloid leukemia, AML NK: Normal karyotype, AML Comp (CK):  
Complex karyotype, AML M4: AML with the CBF/MYH11 fusion gene, AML M3: AML 
with PML/RARA fusion gene, AML M2: AML with AML1/ETO fusion gene, AML FLT3: 
AML with FLT3 activating mutation and CEBPA Mut :  AML with CEBPA mutation.

3.2.3 Silencing PIN1 overcomes the dominant negative action of the mutant 

C/EBP� over the wild type protein in a promoter assay 

  To investigate the functional importance of PIN1 upregulation by C/EBP�-p30 

and how this can be important for the dominant negative function of C/EBP�-

p30, we performed reporter gene assays in 293T cells. Cells were transfected 

with a minimal TK promoter containing two CCAAT binding sites cloned 

upstream of the luciferase reporter gene (pTK CEBPA). Transfection of wild 

type C/EBP� enhanced the promoter activity and C/EBP�-p30 was able to block 

the promoter activity of the wild type protein (Figure 22). Transfection of PIN1 

siRNA (Cat. No. SI02662128; Qiagen, Germany) was shown to overcome the 

dominant negative effect of C/EBP�-p30, while control siRNA (Cat. No 

10277280; Qiagen, Germany) didn’t make any effect. No effect was observed 

when cells were transfected with PIN1 siRNA / control siRNA alone. 
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Figure 22. Silencing of PIN1 overcomes the dominant negative action of C/EBP�-p30 over the 
wild type protein in promoter assay. Transient transfection in 293T cells with a reporter construct 
having minimal TK promoter with CEBP binding sites and expression plasmids for C/EBPα−p42, 
C/EBPα−p30, PIN1 siRNA and control siRNA. Luciferase activities were measured 24 h after 
transfection and the values were normalized by using Renilla luciferase PRL0. The results are the 
means from three independent experiments, and error bars represent the standard errors of mean.  

3.2.4 PIN1 inhibition by PiB can overcome the differentiation block 

observed in human myeloid cells.  

To further understand how silencing of PIN1 activity is biologically significant 
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been shown to inhibit PIN1 activity by binding to the PPIase domain of PIN1. 

Myeloid cell differentiation was assessed by CD11b and CD15 expression by 

FACS analysis as well as G-CSFR expression by Real Time RT-PCR. As shown 

in figure 23, treatment of cells with PiB was able to induce the differentiation. 
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Figure 23. PIN1 inhibition using the PiB can overcome the differentiation block 
observed in human myeloid cells.  AML blast cells with C/EBP� mutation and Kasumi-6 
cells were treated with PiB (5�M) for 6 days and myeloid cell differentiation was assessed by 
FACS analysis using CD11b and CD15 expression as well G-CSFRexpression by Real Time 
RT-PCR analysis. The results are the means from three independent experiments, and error 
bars represent the standard errors of mean.   

 3.2.5 PIN1 inhibition can upregulate C/EBP�-p42 protein level. 

C/EBP� mutations are characterized by low C/EBP� wild type protein level 

(Pabst et al., 2001b). We have shown that inhibition of PIN1 can induce 

differentiation in myeloid cells (Figure 23). We hypothesized that inhibition of 

PIN1 could upregulate the C/EBP� wild type protein level. We induced Kasumi-

6 cells with PIN1 inhibitor, PiB for different time points followed by RIPA lysis 

and Western blot with C/EBP� specific antibody. As shown in figure 24, 

C/EBP� protein level increased during inhibition of PIN1.
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Figure 24. PIN1 inhibition by PiB can upregulate C/EBP�-p42 protein level. Kasumi-6 
cells were treated PiB or ethanol for different time points. Cells were lysed and subjected to 
Western blot analysis using C/EBP� antibody. Values below the gel image indicate the 
upregulation (fold) of C/EBP� wild type protein level normalised to ß-Tubulin. 

3.2.6 C/EBP�-p30 induces PIN1 promoter activity in association with E2F1 

and C/EBP�-p42 interferes with the transactivation of the PIN1 promoter 

  Since we could observe C/EBP�-p30 induces PIN1 expression, we next 

investigated how C/EBP� proteins regulate PIN1 mRNA level.  PIN1 is 

transcriptionally regulated by E2F (Ryo et al., 2002). E2F repression by C/EBP�
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shown to be sufficient to initiate AML like transformation of the granulocytic 
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p42. We observed that C/EBP�-p30 could increase the transactivation of PIN1 

promoter activity in association with E2F1 (Figure 25). However C/EBP�-p30 

alone did not increase PIN1 promoter activity. C/EBP�-p42 was able to interfere 

with endogeneous as well as E2F1 mediated transactivation of PIN1 promoter 

activity. 

Figure 25. C/EBP�-p42 interferes with transactivation of the PIN1 promoter; C/EBP�-
p30 induces PIN1 promoter activity in association with E2F1.  Transient transfection in 
293T cells with a reporter construct of 2.3 kb of the human PIN1 promoter cloned in pGL3 
basic vector and expression plasmids for C/EBPα−p42, C/EBPα−p30 and E2F1. Luciferase 
activities were measured 24 h after transfection and values were normalized by using Renilla 
luciferase PRL0. The results are the means from three independent experiments, and error 
bars represent the standard errors of mean.  

3.2.7 C/EBP�-p42 downregulates PIN1 expression  

  Based on our finding that C/EBP�-p42 interferes with transactivation of the 

PIN1 promoter (Figure 25), we next asked how C/EBP�-p42 regulates PIN1 

mRNA level. We induced the C/EBP�-p42 by ß-Estradiol treatment in K562-

C/EBP�-p42-ER cell lines for various time intervals. As shown in figure 26, 

wild type C/EBP� is able to down regulate PIN1 expression which is opposite to 

the upregulation of PIN1 expression by the p30 form of C/EBP�, as shown in 
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figure 20. This demonstrates that C/EBP� wild type and its mutant p30 form can 

regulate genes differently.  A recent study has  shown that C/EBP�-p30 displays 

transcriptional regulatory roles distinct from the wild type C/EBP� protein 

(Wang et al., 2007). This study shows that C/EBP�-p30 binds to a unique set of 

genes more strongly than C/EBP�-p42. Our finding that PIN1 is regulated 

differently by p42 and p30 reflects the strikingly different biological properties 

of the two protein isoforms. 

Figure 26.  C/EBP�-p42 downregulates PIN1 mRNA expression. K562- C/EBP�-p42-ER 
cells were induced with ß-Estradiol for respective time points to induce C/EBP�-p42 and total 
RNA was isolated at respective time points, proceeded for reverse transcription followed by 
quantitative real time PCR for PIN1. Values were normalized with GAPDH mRNA. The 
results are the means from three independent experiments, and error bars represent the 
standard errors of mean.   

3.2.8 PIN1 protects c-Jun from ubiquitination mediated protein 

degradation 

  PIN1 has shown to regulate the protein degradation of many targets with which 

it interacts (Wulf et al., 2005). Upon JNK activation, PIN1 binds c-Jun that is 

phosphorylated on ser63/73-Pro motifs (Wulf et al., 2001). c-Jun has been 

shown to be be subjected to ubiquitin mediated degradation in a JNK dependent 
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plays a central role in c-Jun degradation (Fang and Kerppola, 2004). Hence, we 
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hypothesized that PIN1 could play a role in regulating degradation of c-Jun. We 

perfirmed ubiquitination assay in 293T cells by overexpressing c-Jun, PIN1 and 

HA-Ubiquitin constructs. When c-Jun was co-transfected with HA.tagged 

ubiquitin, higher molecular weight ladders were detected in the 

immunoprecipitation with HA antibody that reflects c-Jun ubiqutination (Figure 

27, lane 4). Overexpression of PIN1 prevents the ubiquitination of c-Jun (lane 

5).

Figure 27.  PIN1 protects c-Jun from ubiquitination mediated protein degradation. 
Ubiquitination assay was performed by transfecting 293T cells with the expression plasmids 
for HA-biquitin, c-Jun and PIN1 as indicated, 24 post transfection cells were lysed and c-Jun 
was immunoprecipitated and immunoblot against HA antibody 8upper panel). Membrane was 
stripped and reprobed for c-Jun (lower panel) as control for c-Jun immunoprecipitation
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al., 2001). Interestingly,  PIN1 is upregulated in  response to  c-Jun 

overexpression (Rinehart-Kim et al., 2000). c-Jun has been shown to bind to its 

own promoter at AP-1 sites and this has been  shown to regulate c-Jun mRNA 

level in a positive manner (Angel et al., 1988). Our data suggests that PIN1 
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prevents the degradation of c-Jun (Figure 27). Based on these findings, we 

hypothesized that PIN1 could have a major role in regulating c-Jun mRNA 

level. We overexpressed PIN1 in Kasumi-6 cells and analysed the c-Jun mRNA 

level by quantitative Real Time PCR. We observed that overexpression of PIN1 

leads to an increase in c-Jun mRNA level (Figure 28A). We next investigated 

the effect of silencing PIN1 on c-Jun mRNA level. We found that silencing 

PIN1 with the inhibitor PiB could downregulate c-Jun levels as observed by 

quantitative Real Time PCR (Figure 28B). 

A.                                                             B. 

Figure 28. Overexpression of PIN1 upregulates c-Jun mRNA, while inhibition of PIN1 
downregulates c-Jun. A) Kasumi-6 cells were transfected with PIN1 expression vector. Total 
RNA was isolated after 24 hr with TRIzol reagent and proceeded for reverse transcription 
followed by quantitative real time PCR for c-Jun. Values were normalized with GAPDH 
mRNA. B) Kasumi-6 cells were treated with PIN1 inhibitor, PiB for various time points and 
proceeded for quantitative real time PCR for c-Jun as described. The results are the means 
from three independent experiments, and error bars represent the standard errors of mean.   

3.2.10 c-Jun blocks the transactivation capacity of C/EBP�-p42. 

  It was observed that livers from neonatal C/EBP�  knock-out  mice contain 

increased levels of Jun transcripts (Flodby et al., 1996). Another study showed 

that C/EBP� could prevent c-Jun from binding to AP-1 site through leucine 

zipper domain interaction (Rangatia et al., 2002). Overexpression of c-Jun was 

shown to block granulopoiesis (Rangatia et al., 2002). These observations show 

how C/EBP� and c-Jun are negatively regulating each other. Given the fact that 

c-Jun expression is high in different subtypes of AML including C/EBP�
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mutation and c-Jun is able to block DNA binding of C/EBP� (Rangatia et al., 

2003), we hypothesised that c-Jun is able to block the transactivation capacity of 

C/EBP�. As shown in figure 28, c-Jun is able to inhibit the transactivation 

capacity of C/EBP�. This finding shows how overexpressed c-Jun could block 

C/EBP� functions.  

Figure 29. c-Jun can block C/EBP�-p42 transactivation capacity. Transient Transfections 
were carried out in 293T cells with a reporter construct having minimal TK promoter with 
C/EBP� binding sites and expression plasmids for C/EBPα−p42, and c-Jun. Luciferase 
activities were measured 24 hr after transfection and the values were normalized by using 
Renilla luciferase PRL0. The results are the means from three independent experiments, and 
error bars represent the standard errors of mean.  

3.2.11 Overexpression of c-Jun blocks C/EBP�-p42 induced granulocytic 
differentiation. 

  It was  shown that downregulation of the proto-oncogene c-Jun by C/EBP� is 

critical for granulocytic lineage commitment (Rangatia et al., 2002). Based  on 

our findings that c-Jun is able to block transactivation capacity of C/EBP�

(Figure 29) and DNA binding of C/EBP� (Rangatia et al., 2003), we 

hypothesized that c-Jun is able to block differentiation induced by C/EBP�. We 
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overexpressed C/EBP� and c-Jun in U937 cells by AMAXA transfection 

method. Four days after transfection, granulocyte differentiation was assessed 

by FACS analysis for CD15 expression.  The increase in CD15 expression by 

C/EBP� was blocked in the presence of c-Jun (Figure 30). c-Jun transfected 

cells were also investigated for CD15 expression; however, no increase in its 

expression was observed (data not shown). 

  

Figure 30. Overexpression of c-Jun blocks C/EBP�-p42 induced granulocytic 
differentiation. U937 cells were transfected with c-Jun and C/EBP� as indicated and 
granulocytic differentiation was investigated by FACS analysis for CD15 expression. Error 
bars indicate the standard errors of means from three independent experiments.   
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4. Discussion 

4.1 Max as a novel co-activator of myeloid transcription factor C/EBP�

  It has become increasingly clear that the interaction of C/EBP� with other 

nuclear proteins plays an important role not only in lineage commitment and 

differentiation in the hematopoietic system but also in the pathogenesis of AML. 

Although the lineage commitment decision by C/EBP� was proposed by our 

laboratory to involve the functional inactivation of the myeloid master regulator 

PU.1 and/or its co-activator c-Jun through protein–protein interactions (Rangatia 

et al., 2002; Reddy et al., 2002) relatively little is known about how C/EBP�  

interacts with other nuclear proteins to regulate gene transcription. The results 

presented in this work provide evidence that Max, a heterodimerization partner 

of Myc, is a novel, functionally and biologically important co-activator of 

C/EBP�. C/EBP� and Max not only colocalize but also the heterocomplex of 

C/EBP� and Max is preferentially formed on the hC/EBP� promoter during 

granulocytic differentiation, thereby contributing to increased transactivation 

and differentiation capacity of C/EBP�.  

  We used mass spectrometry based proteomic analysis as a means of identifying 

the interacting partners of C/EBP�, utilizing immunoprecipitation of C/EBP�

from myeloid U937 cells. U937 cells are a good model system for studying 

myeloid differentiation in general, as they are bipotential and can be 

differentiated into the granulocytic lineage by RA. In particular, a threefold 

increase in  C/EBP�  protein (above the level of endogenous C/EBP� ) in U937 

cells is sufficient for their granulocytic differentiation (Radomska et al., 1998).  

In addition to nine other proteins (see Table 2), we identified Max, an essential 

heterodimerization partner of Myc (Blackwood et al., 1991), as a novel 

interacting partner of C/EBP�  in our screen (Figure 12). The discovery of Max 

as a novel C/EBP� partner is intriguing because of the role Max plays in 

switching from Myc-Max to Mad-Max heterocomplexes during myeloid 
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differentiation (Ayer and Eisenman, 1993). Of particular importance is the fact 

that transgenic mice carrying an inserted transgene encoding Max have been 

shown to exhibit a 50- to 60-fold elevation of blood neutrophils (Metcalf et al., 

1995). Additionally, Max is an essential heterodimerization partner of Myc 

family members to regulate transcription (Grandori et al., 2000) and c-Myc is an 

important target of C/EBP� (Johansen et al., 2001). We confirmed the in vivo

interaction of C/EBP�  with Max by immunoprecipitation and showed that the 

basic DNA-binding region of C/EBP�  is involved in this interaction, as the 

mutant of C/EBP�  (C/EBP�  BR3), which lacks the DNA-binding region, could 

not be co-precipitated with Max (Figures 13, 14). C/EBP� BR3 carries 

mutations in four amino acids, residues Arg297, Lys298, Arg300 and Lys302 

(Liu et al., 2003). Of these, only Arg300 is expected to contact DNA. Neither 

the BR3 nor the Leu12Val variants bind DNA, suggesting that interaction with 

Max is likely via Arg297, Lys298 and/or Lys302. Arg297 is known to 

participate in the interaction between C/EBP�  and E2F (Porse et al., 2001).

Further study is required to pin point the exact amino acids involved in the 

C/EBP� and Max interaction. 

  The endogenous C/EBP� and Max proteins are not distributed evenly 

throughout the nucleoplasm (Figure 15), but are localized in intranuclear 

structures within the nucleus. In other cell systems, such as pituitary progenitor 

GHFT1-5 cells, C/EBP�  has been shown to concentrate at chromatin 

surrounding the centromeres (Schaufele et al., 2001). The observation that 

C/EBP�–Max but not Myc–Max remain colocalized during granulocytic 

differentiation (Figure 15) indicates that these intranuclear structures are 

selectively targeted by C/EBP�–Max during granulocytic differentiation. We 

observed the occupancy of the hC/EBP� promoter by Max in vivo under 

physiological conditions, and recruitment of more C/EBP� whereas Max is 

retained on the promoter during granulocytic differentiation. To our knowledge, 
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this is a first report showing occupancy of the hC/EBP� promoter by Max in 

vivo. 

  The occupancy of the hC/EBP� promoter by Max raises a possibility that Myc 

could also form a part of the complex under physiological conditions, as Max 

requires dimerization with Myc for efficient DNA binding. In fact, it was shown 

that purified Myc-Max heterodimers form stable complexes on the mouse 

C/EBP�  promoter that includes the USF binding site (Legraverend et al., 1993).

The USF DNA recognition site CACGTG (which is the same as the E-box, 

occupied by Myc–Max) is found in both the human and the mouse C/EBP�  

promoter, and the USF binding site (for HLH-bZIP) is crucial for activation of 

the hC/EBP�  promoter by C/EBP� (Timchenko et al., 1995). Our colocalization 

and ChIP data (Figures 15 and 17) and the data that C/EBP�  is co-precipitated 

with Myc (unpublished observation) support this Myc–Max link. Thus, it is 

tempting to speculate that C/EBP� exists in association with the Myc–Max–Mad 

network to regulate differentiation. Given that the C/EBP�–Max heterocomplex 

is formed on the hC/EBP� promoter, specifically during granulocytic 

differentiation, this would mean that the balance between such complexes, under 

the influence of growth and differentiation signals, could be an important part of 

a molecular switch that is regulating genes important for growth and 

differentiation. By using overexpression studies, we have demonstrated that 

enforced expression of C/EBP� and Max in human hematopoietic CD34+ cells 

induce granulocytic differentiation (Figure 18). The role of C/EBP�  in the 

transition from CMPs to GMPs in myeloid progenitors has been recently 

characterized (Zhang et al., 2004). The role of Max in inducing granulocytic 

differentiation indicates that Max can activate the myeloid differentiation 

programme either independent of C/EBP� or in association with it. In vivo

interaction and retention of C/EBP�–Max heterocomplex in myeloid cells 

(Figures 13, 14 and 15) and inhibition of differentiation-inducing capacity of 

C/EBP� by silencing of Max using shRNA against MAX in CD34+  cells 



78

(Figure 19) suggest that the C/EBP�–Max association likely plays an important 

role in this process of myeloid progenitor differentiation. A very recent study 

has shown the role of C/EBP� in monopoiesis (Wang et al., 2006). This means 

that the commitment decisions do not necessarily depend upon a single 

transcription factor but, in fact, on a number of cooperating factors. 

  In summary, we conclude that Max is a biologically and functionally important 

and relevant interacting partner of C/EBP� and has important co-activator 

functions for C/EBP� induced granulocytic differentiation in myeloid 

progenitors. 

Figure 31. Model summarizing the importance of Max as a co-activator of C/EBP� in 
the differentiation of myeloid progenitors. During granulocyte differentiation Max-C/EBP�
complex occupies human C/EBP� promoter. Max acts as a co-activator for C/EBP� and 
induces differentiation along the granulocytic pathway. Meanwhile, silencing of Max inhibits 
C/EBP� induced differentiation. 
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4.2 The critical role of PIN1 in AML with C/EBP� mutation 

  It is widely accepted that C/EBP� functions as a tumor suppressor in multiple 

tissues (Schuster and Porse, 2006). Experimental data from animal models as 

well as AML patient samples suggest that the loss of function or expression of 

C/EBP� provides a platform on which AML develops. Even though a number of 

different laboratories have pointed out that C/EBP� is mutated in around 9% of 

AML, the mechanism with which the mutated dominant negative form of 

C/EBP� i.e., C/EBP�-p30 mediates a differentiation block is poorly understood.  

Our findings suggest that C/EBP�-p30 might induce PIN1 expression and 

increase the stability of c-Jun, which in turn inhibits the function of wild type 

C/EBP�.  

  Initially, it was suggested that the dominant negative effect of C/EBP�-p30 is 

the result of heterodimer formation with wild type C/EBP�. A recent report 

shows that a C/EBP�-p30 with modification in the leucine zipper, which can not 

form heterodimers with C/EBP�-p42, still exhibits dominant negative properties 

over the wild type protein (Cammenga et al., 2005). This suggests that rather 

than heterodimerization, regulatory networks activated by C/EBP�-p30 could 

play a critical role in its dominant negative function over the wild type protein. 

One recent study showed that C/EBP�-p30 has quite distinct functional 

properties compared to the wild type protein (Wang et al., 2007). This study 

showed that C/EBP�-p30 binds to a unique set of genes more strongly than 

C/EBP�-p42. Mice with targeted disruption of C/EBP�-p42 while expressing 

C/EBP�-p30 develop leukemia (Kirstetter et al., 2008). This study is of 

particular interest since C/EBP� knock-out mice did not develop leukemia even 

though they exhibited a block of granulocytic differentiation (Zhang et al., 

2004). These findings suggest that disruption of wild type C/EBP� alone is not 

sufficient to initiate leukemogenesis, but that pathways modulated by C/EBP�-

p30 might be critical role in the development of AML.   
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  Our finding that PIN1 is upregulated upon C/EBP�-p30 induction is intriguing 

since PIN1 overexpression was shown to act as a critical catalyst that amplifies 

multiple signaling pathways during oncogenesis (Ryo et al., 2003). Also, lack of 

E2F inhibition by C/EBP� has been shown to be a key event in AML (Porse et 

al., 2005) and PIN1 has been shown to be regulated by E2F (Ryo et al., 2002).  

Microarray analysis and Western blot analysis identified elevated PIN1 

expression in different subtypes of AML (Figure 21). One possible explanation 

for the upregulation of PIN1 in different AML subtypes could be the fact that 

C/EBP� is shown to be downregulated by diverse mechanisms in different 

subtypes of leukemia (Schuster and Porse, 2006) and wild type C/EBP�

downregulates PIN1 expression (Figures 25, 26). Also, loss of cell cycle 

regulatory mechanisms in leukemic basts could amplify oncogenic signaling 

pathways and could result in positive regulation of PIN1. Ours is the first report 

showing PIN1 upregulation in human AML. 

  Previous studies showed that PIN1 knock-out mice develop normally and do 

not exhibit any significant phenotype at a young age although they display age 

dependant defects such as retinal atrophy, decreased body weight and testicular 

atrophy (Fujimori et al., 1999; Liou et al., 2002). However, there is no report 

about any phenotypic characters related to hematopoiesis in the PIN1 null 

animals.  The important role of PIN1 in tumorigenesis is underlined by the 

finding that mice lacking PIN1 are resistant to tumorigenesis induced by 

oncogenic Neu or Ras (Wulf et al., 2004).  This study showed that these 

oncogenes need certain pathways in which PIN1 has a key regulatory role. All 

these findings point out that PIN1 is important for oncogenesis in AML as well. 

  The transcriptional activation function of C/EBP� is required for the induction 

of granulocytic differentiation (Keeshan et al., 2003). C/EBP�-p30 blocks the 

transactivation ability of the wild type C/EBP� in a dominant negative manner.  

Our finding that silencing of PIN1 could overcome C/EBP�-p30 mediated 

inhibition of C/EBP� transactivation (Figure 22) suggests that PIN1 might have 



81

an important role in regulating the transcriptional activity of C/EBP�. It has 

been previously shown that PIN1 can regulate the transcriptional activity of 

transcription factors such as p53 and p73 (Mantovani et al., 2004; Zheng et al., 

2002). A recent study proposes that C/EBP�  could be a PIN1 target (Miller, 

2006). This study point out that several S/T-P motifs in wild type C/EBP� could 

be regulated by PIN1 mediated isomerization. Most of the S/T-P motifs in wild 

type C/EBP� are present in C/EBP�-p30 also.  Even though C/EBP� has been 

shown to be phosphorylated, there is no report about PIN1 mediated post 

phosphorylation mechanisms regulating C/EBP� function. Further studies are 

needed to explain how PIN1 regulates C/EBP� mediated transactivation.  

  It is known that C/EBP�-p30 not only fails to induce differentiation but also 

blocks the C/EBP� mediated granulocytic differentiation. Based on our findings 

that PIN1 is upregulated in AML (Figure 21) and silencing PIN1 could 

overcome the dominant negative action of C/EBP�-p30 over the wild type 

protein in promoter assay (Figure 22), we assessed how silencing of PIN1 

affects myeloid differentiation. Differentiation experiments show that silencing 

PIN1 can overcome the differentiation block of AML blast cells with C/EBP�

mutation and Kasumi-6 cells during granulopoiesis (Figure 23). 

  Human AML with C/EBP� mutation have a decreased levels of wild type 

C/EBP�-p42 and increased levels of C/EBP�-p30 (Leroy et al., 2005). Another 

study has shown that C/EBP�-p30 dominantly inhibits the wild type protein 

function when the C/EBP�-p42 to C/EBP�-p30 ratio is less than one (Calkhoven 

et al., 2000). The concentration of certain transcription factors is critical in 

hematopoiesis (Rosenbauer et al., 2004). For example, knocking down PU.1 

below a threshold level has been shown to lead to a preleukemic phase which is 

susceptible to progress to leukemia when additional mutations are present. Even 

though such studies have not been carried out for C/EBP�, it seems that a 

similar mechanism might be relevant for C/EBP�. In AML with C/EBP�

mutation, the wild type C/EBP� protein is expressed at lower levels than 
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normal. However, at this level, C/EBP� fails to promote differentiation. 

Whether this accounts for haploinsufficency awaits further studies. Our findings 

that silencing PIN1 can upregulate C/EBP�-p42 protein levels (Figure 24) and 

lead to myeloid differentiation (Figure 23) suggest that PIN1 might have a major 

role in contributing the differentiation block observed during C/EBP� mutation.

  The mechanisms by which C/EBP� inhibits cell proliferation seem to differ 

from cell type to cell type. In granulopoiesis, inhibition of E2F activity has been 

proved as the unique mechanism for the anti-mitotic activity of C/EBP� (Porse 

et al., 2005; Porse et al., 2001).  E2F1 activates transcription of the c-Myc 

oncogene, which had been shown to block granulopoeisis. C/EBP� inhibition of 

E2F1 has been shown to result in the downregulation of c-Myc, leading to 

granulopoeisis (Johansen et al., 2001). Even though the exact mechanism 

through which C/EBP� mediates E2F1 repression is not well understood, an 

increasing number of studies suggest that inhibition of E2F1 activity is one of 

the key events orchestrated by C/EBP� during the myeloid differentiation 

programme (Rosenbauer and Tenen, 2007). This raises the possibility that other 

E2F1 targets could be also regulated by C/EBP� in a similar mechanism as 

observed for c-Myc. Our observation that C/EBP� negatively regulates the PIN1 

promoter (Figure 25) as well as PIN1 mRNA (Figure 26) suggests that PIN1 

downregulation by C/EBP� is an important event in granulopoiesis. Loss or 

disruption of domains of C/EBP� necessary for E2F1 inhibition has been shown 

to result in block of granulocyte differentiation (D'Alo et al., 2003). Mice 

homozygous for a C/EBP� knock-in mutation that impairs E2F repression 

develop AML like transformation of the granulocytic lineage (Porse et al., 

2005). At the same time, C/EBP�-p30 has been shown to be unable to inhibit 

E2F1 (Porse et al., 2001). Our observation that C/EBP�-p30 fails to inhibit 

PIN1, an E2F1 target gene, suggests intrinsic differences between C/EBP� wild 

type and C/EBP�-p30 in regulating PIN1 expression. Our finding that C/EBP�-

p30 can increase the PIN1 promoter activity in association with E2F1 (Figure 
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25) suggests how regulatory networks coordinated by C/EBP�-p30 and E2F1 

could play an important role in AML with C/EBP� mutation. 

  Previously it has been reported that PIN1 is overexpressed in breast cancer and 

increases the transcriptional activity of c-Jun (Wulf et al., 2001). PIN1 has been 

shown to bind to c-Jun and has been proposed to increase protein stability of c-

Jun (Wulf et al., 2005). Rinehart-Kim et al  has shown that c-Jun overexpression 

can result in increased expression of PIN1 (Rinehart-Kim et al., 2000). These 

studies demonstrate how PIN1 and c-Jun act in a positive feed back loop to 

control each others expression. PIN1 has shown to regulate the protein 

degradation of many targets with which it interacts (Wulf et al., 2005). Our 

finding that PIN1 could prevent c-Jun protein degradation (Figure 27) suggests 

that PIN1 might have a critical role in regulating c-Jun protein turn over. The 

stabilized c-Jun might bind to its own promoter and increase its expression in a 

positive feed back loop.   c-Jun has been shown to be located at the end of signal 

cascades and to have crucial function in diverse mechanisms of oncogenesis 

(Vogt, 2001). The oncogenic role of c-Jun in AML is verified by the finding that 

c-Jun is overexpressed in different subtypes of AML  (Elsasser et al., 2003; 

Rangatia et al., 2003). Leukemic fusion proteins such as BCR-ABL and AML1-

ETO have been shown to induce c-Jun expression through JNK signaling 

pathway (Burgess et al., 1998; Elsasser et al., 2003).  Neonatal livers of  

C/EBP�-/-  mice contain increased levels of c-Jun transcript (Flodby et al., 1996). 

Rangatia et al demonstrated that downregulation of c-Jun expression by C/EBP�

is critical for granulopoiesis (Rangatia et al., 2002). Their study showed that 

C/EBP� inactivates c-Jun via leucine zipper domain interaction. Interestingly, c-

Jun expression is high in AML patient samples with C/EBP� mutation (Rangatia 

et al., 2003).  One mechanism for the upregulation of c-Jun expression in AML 

might be the downregulation of C/EBP� by different mechanisms.  The ability 

of c-Jun  to block DNA binding of C/EBP� (Rangatia et al., 2003) as well as our 

finding that c-Jun is able to inhibit the transactivation capacity and 
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differentiation induced by C/EBP� (Figure 29,30) suggests a model in which c-

Jun promotes proliferation and leads to differentiation block by inactivating 

C/EBP�. In other words, how c-Jun as well as C/EBP� regulate granulopoiesis 

depends upon their relative protein concentration - more C/EBP� favors 

differentiation while more c-Jun favors proliferation. 

  In summary, our study identifies PIN1 as an important player that might 

contribute to AML development through the inhibition of C/EBP� function. 

Here we demonstrate that PIN1 is upregulated by C/EBP�-p30 and that 

silencing of PIN1 was able to overcome the differentiation block mediated by 

C/EBP�-p30. Our observations suggest that C/EBP�-p30 exerts its dominant 

negative function through regulating PIN1 and c-Jun (Figure 32). Inhibiting 

PIN1 function could provide a novel strategy in the treatment of AML patients.  

Figure  32.  Model depicting the PIN1 mediated dominant negative role of C/EBP�-p30
in AML with C/EBP� mutation.  C/EBP�–p30 cooperates with E2F1 and increase the PIN1 
mRNA levels. PIN1 prevents the protein degradation of c-Jun, which in turn blocks C/EBP�
functions and leads to differentiation block. 
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5. Summary 

     Transcription factor CCAAT enhancer binding protein � (C/EBP�) is crucial 

for the differentiation of granulocytes. In the present study, we sought to identify 

novel C/EBP� interacting proteins in vivo through immunoprecipitation and 

subsequent mass spectrometry based identification. We identified Max, a 

heterodimeric partner of Myc, as one of the interacting proteins of C/EBP� in 

our screen. We demonstrate that endogenous C/EBP� and Max, but not Myc and 

Max, colocalize in intranuclear structures during granulocytic differentiation of 

myeloid U937 cells. Max enhanced the transactivation capacity of C/EBP� as 

shown by promoter assay. Chromatin immunoprecipitation assays reveal 

occupancy of the human C/EBP� promoter by C/EBP� and Max under retinoic 

acid induced granulocytic differentiation. FACS analyis using granulocytic 

markers shows that enforced expression of Max and C/EBP� result in 

granulocytic differentiation of human hematopoietic CD34+ cells. Silencing of 

Max reduced the differentiation inducing potential of C/EBP�, indicating the 

importance of the C/EBP�–Max interaction in myeloid progenitor 

differentiation. Taken together, our findings demonstrate that Max as a novel co-

activator of C/EBP�. 

  Loss of C/EBP� expression or function in leukemic blasts contributes to a 

block in myeloid cell differentiation. C/EBP� is mutated in acute myeloid 

leukemia (AML). The mutant form of C/EBP�, C/EBP�-p30 exhibits dominant 

negative properties over the wild type protein. The Peptidyl-prolyl cis/trans 

isomerase, PIN1 is overexpressed in many cancers and has been shown to be 

critical in multiple oncogenic signaling pathways. Here we report that C/EBP�-

p30 induces PIN1 mRNA expression as assessed by Real Time RT-PCR in 

K562-C/EBP�-p30ER cells. Affymetrix mRNA expression analysis and 

Western blot analysis show that PIN1 is upregulated in patients with AML. 

Silencing of PIN1 by PIN1 inhibitor (PiB) could overcome the dominant 

negative action of the C/EBP�-p30 over the C/EBP�-p42 transactivation 
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capacity as revealed by promoter assay in 293T cells. C/EBP�-p30 induces 

PIN1 promoter activity in association with E2F1. At the same time, wild type 

C/EBP� interferes with transactivation of the PIN1 promoter. Also, C/EBP�-p42 

downregulates PIN1 mRNA expression as assessed by Real Time RT-PCR in 

K562-C/EBP�-p42ER cells. Furthermore, PIN1 inhibition was found to 

upregulate wild type C/EBP� protein level and lead to granulocytic 

differentiation in AML blast cells with C/EBP� mutation and Kasumi-6 cells. 

PIN1 increases the stability of c-Jun protein via inhibiting its ubiquitination. We 

further demonstrate that overexpression of PIN1 induces c-Jun mRNA 

expression, while inhibition of PIN1 downregulates c-Jun mRNA expression in 

Kasumi-6 cells as analysed by Real Time RT-PCR. Overexpression of c-Jun 

blocks the transactivation and differentiation induced by C/EBP� protein as 

shown by promoter assay and FACS anaylsis resepectively.  In conclusion, 

inhibition of PIN1 leads to granulocytic differentiation and suggest PIN1 as a 

novel target in treating AML patients with C/EBP� mutation.  
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6. Zusammenfassung 
  Der Transkriptionsfaktor  CCAAT Enhancer Binding Protein  � (C/EBP�) 

spielt eine entscheidende Rolle bei der Differenzierung neutrophiler 

Granulozyten. In der vorliegenden Arbeit versuchten wir, durch in vivo

Immunopräzipitation mittels auf  Massenspektrometrie basierenden 

Proteomforschungs Techniken neue, mit  C/EBP� interagierende Proteine zu 

identifizieren. In unseren Untersuchungen konnten wir Max, ein mit Myc  

Hetero-Dimere bildendes Protein, als eines dieser mit C/EBP� interagierenden 

Proteine identifizieren. Hierbei konnten wir zeigen, dass während der 

granulozytären Differenzierung  myeloischer Zellen der U937 Zelllinie 

endogenes C/EBP� und Max, jedoch nicht Myc und Max, in intranukleären 

Strukturen co-lokalisiert vorzufinden sind. Max verstärkt dabei die 

Transaktivierungskapazität  von C/EBP� wie  durch einen Promoterassay 

gezeigt werden konnte. Der  Chromatin Immunopräzipitations Assay  zeigte 

eine Besetzung des C/EBP� Promoters durch C/EBP� und Max während der 

All-trans-Retinsäure  induzierten granulozytären Differenzierung. FACS 

Analysen für granulozytische Marker zeigen, das eine verstärkte Expression von 

Max und C/EBP� in der granulozytären Differenzierung CD34-positiver 

humaner hämatopoetischer Stammzellen resultieren. Hingegen führt eine 

verminderte Expression von Max zu einer Reduktion des Potentials von C/EBP�

eine Differenzierung zu induzieren und deutet damit  auf eine wichtige Rolle der 

Interaktion von C/EBP� und Max während der Differenzierung myeloischer 

Vorläuferzellen hin. Zusammenfassend konnten wir Max, infolge unsere 

Ergebnisse, als einen neuen Co-Aktivator des Transkriptionsfaktors C/EBP�

identifizieren.   

  Ein Verlust der C/EBP� Expression oder seiner Funktion in leukämischen 

Blasten führt zu einer Blockade in der myeloischen Differenzierung. C/EBP�

liegt in Akut Myeloischen Leukämien (AML) in mutierter Form vor. Diese 

Mutation, C/EBP�-p30, zeigt eine dominant- negative Aktivität  gegenüber dem 
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wild typ Protein auf.  Die Peptidyl-prolyl cis/trans Isomerase, PIN1, ist in vielen 

verschiedenen Tumoren überexprimiert und ist als ein kritischer Faktor in 

multiplen onkogenen Prozessen bekannt.  In der vorliegenden Arbeit zeigen wir 

durch Real Time RT-PCR in K562-C/EBP�-p30ER Zellen, dass C/EBP�-p30 

die PIN1 mRNA Expression induziert. Affymetrix mRNA Expressions 

Analysen und Western Blot Analysen zeigten, dass bei Patienten mit AML eine 

verstärkte PIN1 Expression vorliegt. Durch einen Promoterassay in 293T Zellen 

konnte gezeigt werden, dass es bei der Inhibierung von PIN1 durch PIN1-

Inhibitor (PiB) eine Überwindung der besagten dominant-negativen Wirkung 

von  C/EBP�-p30 auf die Transaktivierungskapazität des C/EBP�-p42 Proteins 

erreicht wird. C/EBP�-p30 induziert gemeinsam mit E2F1 die PIN1 

Promoteraktivität. Wohingegen das C/EBP�-p42 wild typ Protein die 

Promotertransaktivierung beeinträchtigt. Weiterhin reduziert C/EBP�-p42 die 

PIN1 mRNA Expression wie durch RT-PCR in K562-C/EBP�-p42ER Zellen 

gezeigt werden konnte. Desweiteren konnte gezeigt werden, dass eine Inhibition 

von PIN1 zu einer verstärkten C/EBP� Expression und zu granulozytärer 

Differenzierung in AML Blasten mit C/EBP� Mutationen und in Kasumi-6 

Zellen führt. PIN1 erhöht die Stabilität des c-Jun Proteins durch Inhibierung 

seiner Ubiquitinierung.  Außerdem  konnten wir in Kasumi-6 Zellen durch Real 

Time RT-PCR zeigen, dass eine Überexprimierung von PIN1 die mRNA 

Expression von c-Jun hochreguliert, wohingegen die c-Jun mRNA Expression 

durch eine Inhibition von PIN1 vermindert wird. In einem Promoterassay und 

durch FACS Analysen konnte gezeigt werden, dass die Überexprimierung  von 

c-Jun  die, durch das C/EBP� Protein induzierte, Transaktivierung und 

Differenzierung, blockiert. Zusammenfassend kann gesagt werden, dass die 

Inhibition von PIN1 zur Differenzierung von Granulozyten führt und deutet 

daher  auf eine mögliche Rolle von PIN1 als neues Zielprotein in der Therapie 

von AML Patienten mit C/EBP� Mutationen hin.  



89

7. References 

Agre, P., Johnson, P. F., and McKnight, S. L. (1989). Cognate DNA binding specificity 
retained after leucine zipper exchange between GCN4 and C/EBP. Science 246, 922-926. 

Akashi, K., Traver, D., Miyamoto, T., and Weissman, I. L. (2000). A clonogenic common 
myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193-197. 

Akira, S., Isshiki, H., Sugita, T., Tanabe, O., Kinoshita, S., Nishio, Y., Nakajima, T., Hirano, 
T., and Kishimoto, T. (1990). A nuclear factor for IL-6 expression (NF-IL6) is a member of a 
C/EBP family. Embo J 9, 1897-1906. 

Amati, B., Brooks, M. W., Levy, N., Littlewood, T. D., Evan, G. I., and Land, H. (1993). 
Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72, 233-245. 

Amati, B., Dalton, S., Brooks, M. W., Littlewood, T. D., Evan, G. I., and Land, H. (1992). 
Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with 
Max. Nature 359, 423-426. 

Amati, B., and Land, H. (1994). Myc-Max-Mad: a transcription factor network controlling 
cell cycle progression, differentiation and death. Curr Opin Genet Dev 4, 102-108. 

Angel, P., Hattori, K., Smeal, T., and Karin, M. (1988). The jun proto-oncogene is positively 
autoregulated by its product, Jun/AP-1. Cell 55, 875-885. 

Antonson, P., and Xanthopoulos, K. G. (1995). Molecular cloning, sequence, and expression 
patterns of the human gene encoding CCAAT/enhancer binding protein alpha (C/EBP alpha). 
Biochem Biophys Res Commun 215, 106-113. 

Asou, H., Gombart, A. F., Takeuchi, S., Tanaka, H., Tanioka, M., Matsui, H., Kimura, A., 
Inaba, T., and Koeffler, H. P. (2003). Establishment of the acute myeloid leukemia cell line 
Kasumi-6 from a patient with a dominant-negative mutation in the DNA-binding region of the 
C/EBPalpha gene. Genes Chromosomes Cancer 36, 167-174. 

Atchison, F. W., Capel, B., and Means, A. R. (2003). Pin1 regulates the timing of mammalian 
primordial germ cell proliferation. Development 130, 3579-3586. 

Ayer, D. E., and Eisenman, R. N. (1993). A switch from Myc:Max to Mad:Max 
heterocomplexes accompanies monocyte/macrophage differentiation. Genes Dev 7, 2110-
2119. 

Ayer, D. E., Kretzner, L., and Eisenman, R. N. (1993). Mad: a heterodimeric partner for Max 
that antagonizes Myc transcriptional activity. Cell 72, 211-222. 

Bao, L., Kimzey, A., Sauter, G., Sowadski, J. M., Lu, K. P., and Wang, D. G. (2004). 
Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Am J Pathol 164, 1727-
1737. 

Bartkova, J., Lukas, J., Muller, H., Lutzhoft, D., Strauss, M., and Bartek, J. (1994). Cyclin D1 
protein expression and function in human breast cancer. Int J Cancer 57, 353-361. 



90

Behre, G., Singh, S. M., Liu, H., Bortolin, L. T., Christopeit, M., Radomska, H. S., Rangatia, 
J., Hiddemann, W., Friedman, A. D., and Tenen, D. G. (2002). Ras signaling enhances the 
activity of C/EBP alpha to induce granulocytic differentiation by phosphorylation of serine 
248. J Biol Chem 277, 26293-26299. 

Bennett, J. M., Catovsky, D., Daniel, M. T., Flandrin, G., Galton, D. A., Gralnick, H. R., and 
Sultan, C. (1976). Proposals for the classification of the acute leukaemias. French-American-
British (FAB) co-operative group. Br J Haematol 33, 451-458. 

Birkenmeier, E. H., Gwynn, B., Howard, S., Jerry, J., Gordon, J. I., Landschulz, W. H., and 
McKnight, S. L. (1989). Tissue-specific expression, developmental regulation, and genetic 
mapping of the gene encoding CCAAT/enhancer binding protein. Genes Dev 3, 1146-1156. 

Bjerregaard, M. D., Jurlander, J., Klausen, P., Borregaard, N., and Cowland, J. B. (2003). The 
in vivo profile of transcription factors during neutrophil differentiation in human bone 
marrow. Blood 101, 4322-4332. 

Blackwood, E. M., and Eisenman, R. N. (1991). Max: a helix-loop-helix zipper protein that 
forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211-1217. 

Blackwood, E. M., Luscher, B., Kretzner, L., and Eisenman, R. N. (1991). The Myc:Max 
protein complex and cell growth regulation. Cold Spring Harb Symp Quant Biol 56, 109-117. 

Blume-Jensen, P., and Hunter, T. (2001). Oncogenic kinase signalling. Nature 411, 355-365. 

Burgess, G. S., Williamson, E. A., Cripe, L. D., Litz-Jackson, S., Bhatt, J. A., Stanley, K., 
Stewart, M. J., Kraft, A. S., Nakshatri, H., and Boswell, H. S. (1998). Regulation of the c-jun 
gene in p210 BCR-ABL transformed cells corresponds with activity of JNK, the c-jun N-
terminal kinase. Blood 92, 2450-2460. 

Calkhoven, C. F., Muller, C., and Leutz, A. (2000). Translational control of C/EBPalpha and 
C/EBPbeta isoform expression. Genes Dev 14, 1920-1932. 

Cammenga, J., Niebuhr, B., Horn, S., Delwel, R., and Stocking, C. (2005). Dissecting the 
molecular mechaniss of mutant C/EBPalphap30 in normal and malignant human 
hematopoiesis. Blood 106, ASH Abstract 2995. 

Cantor, A. B., and Orkin, S. H. (2001). Hematopoietic development: a balancing act. Curr 
Opin Genet Dev 11, 513-519. 

Cao, Z., Umek, R. M., and McKnight, S. L. (1991). Regulated expression of three C/EBP 
isoforms during adipose conversion of 3T3-L1 cells. Genes Dev 5, 1538-1552. 

Chim, C. S., Wong, A. S., and Kwong, Y. L. (2002). Infrequent hypermethylation of CEBPA 
promotor in acute myeloid leukaemia. Br J Haematol 119, 988-990. 

Christy, R. J., Kaestner, K. H., Geiman, D. E., and Lane, M. D. (1991). CCAAT/enhancer 
binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-L1 
preadipocytes. Proc Natl Acad Sci U S A 88, 2593-2597. 



91

Dahl, R., Walsh, J. C., Lancki, D., Laslo, P., Iyer, S. R., Singh, H., and Simon, M. C. (2003). 
Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and 
granulocyte colony-stimulating factor. Nat Immunol 4, 1029-1036. 

Dakic, A., Metcalf, D., Di Rago, L., Mifsud, S., Wu, L., and Nutt, S. L. (2005). PU.1 
regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J 
Exp Med 201, 1487-1502. 

D'Alo, F., Johansen, L. M., Nelson, E. A., Radomska, H. S., Evans, E. K., Zhang, P., Nerlov, 
C., and Tenen, D. G. (2003). The amino terminal and E2F interaction domains are critical for 
C/EBP alpha-mediated induction of granulopoietic development of hematopoietic cells. Blood
102, 3163-3171. 

Elsasser, A., Franzen, M., Kohlmann, A., Weisser, M., Schnittger, S., Schoch, C., Reddy, V. 
A., Burel, S., Zhang, D. E., Ueffing, M., et al. (2003). The fusion protein AML1-ETO in 
acute myeloid leukemia with translocation t(8;21) induces c-jun protein expression via the 
proximal AP-1 site of the c-jun promoter in an indirect, JNK-dependent manner. Oncogene
22, 5646-5657. 

Fang, D., and Kerppola, T. K. (2004). Ubiquitin-mediated fluorescence complementation 
reveals that Jun ubiquitinated by Itch/AIP4 is localized to lysosomes. Proc Natl Acad Sci U S 
A 101, 14782-14787. 

Fazi, F., Rosa, A., Fatica, A., Gelmetti, V., De Marchis, M. L., Nervi, C., and Bozzoni, I. 
(2005). A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and 
C/EBPalpha regulates human granulopoiesis. Cell 123, 819-831. 

Flodby, P., Barlow, C., Kylefjord, H., Ahrlund-Richter, L., and Xanthopoulos, K. G. (1996). 
Increased hepatic cell proliferation and lung abnormalities in mice deficient in 
CCAAT/enhancer binding protein alpha. J Biol Chem 271, 24753-24760. 

Fujimori, F., Takahashi, K., Uchida, C., and Uchida, T. (1999). Mice lacking Pin1 develop 
normally, but are defective in entering cell cycle from G(0) arrest. Biochem Biophys Res 
Commun 265, 658-663. 

Gao, M., Labuda, T., Xia, Y., Gallagher, E., Fang, D., Liu, Y. C., and Karin, M. (2004). Jun 
turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. Science
306, 271-275. 

Gombart, A. F., Hofmann, W. K., Kawano, S., Takeuchi, S., Krug, U., Kwok, S. H., Larsen, 
R. J., Asou, H., Miller, C. W., Hoelzer, D., and Koeffler, H. P. (2002). Mutations in the gene 
encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic 
syndromes and acute myeloid leukemias. Blood 99, 1332-1340. 

Grandori, C., Cowley, S. M., James, L. P., and Eisenman, R. N. (2000). The Myc/Max/Mad 
network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16, 653-699. 

Graves, B. J., Johnson, P. F., and McKnight, S. L. (1986). Homologous recognition of a 
promoter domain common to the MSV LTR and the HSV tk gene. Cell 44, 565-576. 



92

Guibal, F., Radomska, H. S., Johansen, L. M., and D.G., T. (2005). C/EBP is deregulated by 
PML-RAR in Acute Promyelocytic Leukemia. Blood 106, ASH Abstract 3015. 

Heath, V., Suh, H. C., Holman, M., Renn, K., Gooya, J. M., Parkin, S., Klarmann, K. D., 
Ortiz, M., Johnson, P., and Keller, J. (2004). C/EBPalpha deficiency results in 
hyperproliferation of hematopoietic progenitor cells and disrupts macrophage development in 
vitro and in vivo. Blood 104, 1639-1647. 

Helbling, D., Mueller, B. U., Timchenko, N. A., Hagemeijer, A., Jotterand, M., Meyer-
Monard, S., Lister, A., Rowley, J. D., Huegli, B., Fey, M. F., and Pabst, T. (2004). The 
leukemic fusion gene AML1-MDS1-EVI1 suppresses CEBPA in acute myeloid leukemia by 
activation of Calreticulin. Proc Natl Acad Sci U S A 101, 13312-13317. 

Helbling, D., Mueller, B. U., Timchenko, N. A., Schardt, J., Eyer, M., Betts, D. R., Jotterand, 
M., Meyer-Monard, S., Fey, M. F., and Pabst, T. (2005). CBFB-SMMHC is correlated with 
increased calreticulin expression and suppresses the granulocytic differentiation factor 
CEBPA in AML with inv(16). Blood 106, 1369-1375. 

Hendricks-Taylor, L. R., Bachinski, L. L., Siciliano, M. J., Fertitta, A., Trask, B., de Jong, P. 
J., Ledbetter, D. H., and Darlington, G. J. (1992). The CCAAT/enhancer binding protein 
(C/EBP alpha) gene (CEBPA) maps to human chromosome 19q13.1 and the related nuclear 
factor NF-IL6 (C/EBP beta) gene (CEBPB) maps to human chromosome 20q13.1. Genomics
14, 12-17. 

Hirai, H., Zhang, P., Dayaram, T., Hetherington, C. J., Mizuno, S., Imanishi, J., Akashi, K., 
and Tenen, D. G. (2006). C/EBPbeta is required for 'emergency' granulopoiesis. Nat Immunol
7, 732-739. 

Hock, H., Hamblen, M. J., Rooke, H. M., Traver, D., Bronson, R. T., Cameron, S., and Orkin, 
S. H. (2003). Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil 
differentiation. Immunity 18, 109-120. 

Holtschke, T., Lohler, J., Kanno, Y., Fehr, T., Giese, N., Rosenbauer, F., Lou, J., Knobeloch, 
K. P., Gabriele, L., Waring, J. F., et al. (1996). Immunodeficiency and chronic myelogenous 
leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87, 307-
317. 

Houssaint, E. (1981). Differentiation of the mouse hepatic primordium. II. Extrinsic origin of 
the haemopoietic cell line. Cell Differ 10, 243-252. 

Huber, W., von Heydebreck, A., Sultmann, H., Poustka, A., and Vingron, M. (2002). 
Variance stabilization applied to microarray data calibration and to the quantification of 
differential expression. Bioinformatics 18 Suppl 1, S96-104. 

Hunter, T., and Pines, J. (1994). Cyclins and cancer. II: Cyclin D and CDK inhibitors come of 
age. Cell 79, 573-582. 

Huntly, B. J., and Gilliland, D. G. (2005). Leukaemia stem cells and the evolution of cancer-
stem-cell research. Nat Rev Cancer 5, 311-321. 



93

Iakova, P., Awad, S. S., and Timchenko, N. A. (2003). Aging reduces proliferative capacities 
of liver by switching pathways of C/EBPalpha growth arrest. Cell 113, 495-506. 

Iwama, A., Osawa, M., Hirasawa, R., Uchiyama, N., Kaneko, S., Onodera, M., Shibuya, K., 
Shibuya, A., Vinson, C., Tenen, D. G., and Nakauchi, H. (2002). Reciprocal roles for 
CCAAT/enhancer binding protein (C/EBP) and PU.1 transcription factors in Langerhans cell 
commitment. J Exp Med 195, 547-558. 

Iwama, A., Zhang, P., Darlington, G. J., McKercher, S. R., Maki, R., and Tenen, D. G. 
(1998). Use of RDA analysis of knockout mice to identify myeloid genes regulated in vivo by 
PU.1 and C/EBPalpha. Nucleic Acids Res 26, 3034-3043. 

Iwasaki, H., Somoza, C., Shigematsu, H., Duprez, E. A., Iwasaki-Arai, J., Mizuno, S., 
Arinobu, Y., Geary, K., Zhang, P., Dayaram, T., et al. (2005). Distinctive and indispensable 
roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106, 
1590-1600. 

Johansen, L. M., Iwama, A., Lodie, T. A., Sasaki, K., Felsher, D. W., Golub, T. R., and 
Tenen, D. G. (2001). c-Myc is a critical target for c/EBPalpha in granulopoiesis. Mol Cell 
Biol 21, 3789-3806. 

Johnson, P. F. (1993). Identification of C/EBP basic region residues involved in DNA 
sequence recognition and half-site spacing preference. Mol Cell Biol 13, 6919-6930. 

Johnson, P. F. (2005). Molecular stop signs: regulation of cell-cycle arrest by C/EBP 
transcription factors. J Cell Sci 118, 2545-2555. 

Johnson, P. F., Landschulz, W. H., Graves, B. J., and McKnight, S. L. (1987). Identification 
of a rat liver nuclear protein that binds to the enhancer core element of three animal viruses. 
Genes Dev 1, 133-146. 

Keeshan, K., Santilli, G., Corradini, F., Perrotti, D., and Calabretta, B. (2003). Transcription 
activation function of C/EBPalpha is required for induction of granulocytic differentiation. 
Blood 102, 1267-1275. 

Kirstetter, P., Schuster, M. B., Bereshchenko, O., Moore, S., Dvinge, H., Kurz, E., 
Theilgaard-Monch, K., Mansson, R., Pedersen, T. A., Pabst, T., et al. (2008). Modeling of 
C/EBPalpha mutant acute myeloid leukemia reveals a common expression signature of 
committed myeloid leukemia-initiating cells. Cancer Cell 13, 299-310. 

Klemsz, M. J., McKercher, S. R., Celada, A., Van Beveren, C., and Maki, R. A. (1990). The 
macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell
61, 113-124. 

Kovacs, K. A., Steinmann, M., Magistretti, P. J., Halfon, O., and Cardinaux, J. R. (2003). 
CCAAT/enhancer-binding protein family members recruit the coactivator CREB-binding 
protein and trigger its phosphorylation. J Biol Chem 278, 36959-36965. 

Landschulz, W. H., Johnson, P. F., and McKnight, S. L. (1988). The leucine zipper: a 
hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759-
1764. 



94

Legraverend, C., Antonson, P., Flodby, P., and Xanthopoulos, K. G. (1993). High level 
activity of the mouse CCAAT/enhancer binding protein (C/EBP alpha) gene promoter 
involves autoregulation and several ubiquitous transcription factors. Nucleic Acids Res 21, 
1735-1742. 

Leroy, H., Roumier, C., Huyghe, P., Biggio, V., Fenaux, P., and Preudhomme, C. (2005). 
CEBPA point mutations in hematological malignancies. Leukemia 19, 329-334. 

Lin, F. T., MacDougald, O. A., Diehl, A. M., and Lane, M. D. (1993). A 30-kDa alternative 
translation product of the CCAAT/enhancer binding protein alpha message: transcriptional 
activator lacking antimitotic activity. Proc Natl Acad Sci U S A 90, 9606-9610. 

Lindeman, G. J., Harris, A. W., Bath, M. L., Eisenman, R. N., and Adams, J. M. (1995). 
Overexpressed max is not oncogenic and attenuates myc-induced lymphoproliferation and 
lymphomagenesis in transgenic mice. Oncogene 10, 1013-1017. 

Liou, Y. C., Ryo, A., Huang, H. K., Lu, P. J., Bronson, R., Fujimori, F., Uchida, T., Hunter, 
T., and Lu, K. P. (2002). Loss of Pin1 function in the mouse causes phenotypes resembling 
cyclin D1-null phenotypes. Proc Natl Acad Sci U S A 99, 1335-1340. 

Liu, F., Poursine-Laurent, J., Wu, H. Y., and Link, D. C. (1997). Interleukin-6 and the 
granulocyte colony-stimulating factor receptor are major independent regulators of 
granulopoiesis in vivo but are not required for lineage commitment or terminal differentiation. 
Blood 90, 2583-2590. 

Liu, F., Wu, H. Y., Wesselschmidt, R., Kornaga, T., and Link, D. C. (1996). Impaired 
production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor 
receptor-deficient mice. Immunity 5, 491-501. 

Liu, H., Keefer, J. R., Wang, Q. F., and Friedman, A. D. (2003). Reciprocal effects of 
C/EBPalpha and PKCdelta on JunB expression and monocytic differentiation depend upon 
the C/EBPalpha basic region. Blood 101, 3885-3892. 

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using 
real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408. 

Lowenberg, B., Downing, J. R., and Burnett, A. (1999). Acute myeloid leukemia. N Engl J 
Med 341, 1051-1062. 

Lu, K. P. (2003). Prolyl isomerase Pin1 as a molecular target for cancer diagnostics and 
therapeutics. Cancer Cell 4, 175-180. 

Lu, K. P., Hanes, S. D., and Hunter, T. (1996). A human peptidyl-prolyl isomerase essential 
for regulation of mitosis. Nature 380, 544-547. 

Lu, K. P., Liou, Y. C., and Zhou, X. Z. (2002). Pinning down proline-directed 
phosphorylation signaling. Trends Cell Biol 12, 164-172. 

Lu, P. J., Zhou, X. Z., Shen, M., and Lu, K. P. (1999). Function of WW domains as 
phosphoserine- or phosphothreonine-binding modules. Science 283, 1325-1328. 



95

Luscher, B. (2001). Function and regulation of the transcription factors of the Myc/Max/Mad 
network. Gene 277, 1-14. 

Lutterbach, B., and Hiebert, S. W. (2000). Role of the transcription factor AML-1 in acute 
leukemia and hematopoietic differentiation. Gene 245, 223-235. 

Mantovani, F., Piazza, S., Gostissa, M., Strano, S., Zacchi, P., Mantovani, R., Blandino, G., 
and Del Sal, G. (2004). Pin1 links the activities of c-Abl and p300 in regulating p73 function. 
Mol Cell 14, 625-636. 

McKercher, S. R., Torbett, B. E., Anderson, K. L., Henkel, G. W., Vestal, D. J., Baribault, H., 
Klemsz, M., Feeney, A. J., Wu, G. E., Paige, C. J., and Maki, R. A. (1996). Targeted 
disruption of the PU.1 gene results in multiple hematopoietic abnormalities. Embo J 15, 5647-
5658. 

McKnight, S. L. (2001). McBindall--a better name for CCAAT/enhancer binding proteins? 
Cell 107, 259-261. 

McNagny, K. M., Sieweke, M. H., Doderlein, G., Graf, T., and Nerlov, C. (1998). Regulation 
of eosinophil-specific gene expression by a C/EBP-Ets complex and GATA-1. Embo J 17, 
3669-3680. 

Metcalf, D., Lindeman, G. J., and Nicola, N. A. (1995). Analysis of hematopoiesis in max 41 
transgenic mice that exhibit sustained elevations of blood granulocytes and monocytes. Blood
85, 2364-2370. 

Miller, M. (2006). Phospho-Dependent Protein Recognition Motifs Contained in C/EBP 
Family of Transcription Factors: in Silico Studies. Cell Cycle 5. 

Miller, M., Shuman, J. D., Sebastian, T., Dauter, Z., and Johnson, P. F. (2003). Structural 
basis for DNA recognition by the basic region leucine zipper transcription factor 
CCAAT/enhancer-binding protein alpha. J Biol Chem 278, 15178-15184. 

Mink, S., Mutschler, B., Weiskirchen, R., Bister, K., and Klempnauer, K. H. (1996). A novel 
function for Myc: inhibition of C/EBP-dependent gene activation. Proc Natl Acad Sci U S A
93, 6635-6640. 

Nerlov, C. (2004). C/EBPalpha mutations in acute myeloid leukaemias. Nat Rev Cancer 4, 
394-400. 

Nerlov, C., and Ziff, E. B. (1995). CCAAT/enhancer binding protein-alpha amino acid motifs 
with dual TBP and TFIIB binding ability co-operate to activate transcription in both yeast and 
mammalian cells. Embo J 14, 4318-4328. 

Oelgeschlager, M., Nuchprayoon, I., Luscher, B., and Friedman, A. D. (1996). C/EBP, c-
Myb, and PU.1 cooperate to regulate the neutrophil elastase promoter. Mol Cell Biol 16, 
4717-4725. 

Okuda, T., van Deursen, J., Hiebert, S. W., Grosveld, G., and Downing, J. R. (1996). AML1, 
the target of multiple chromosomal translocations in human leukemia, is essential for normal 
fetal liver hematopoiesis. Cell 84, 321-330. 



96

Ossipow, V., Descombes, P., and Schibler, U. (1993). CCAAT/enhancer-binding protein 
mRNA is translated into multiple proteins with different transcription activation potentials. 
Proc Natl Acad Sci U S A 90, 8219-8223. 

Pabst, T., Mueller, B. U., Harakawa, N., Schoch, C., Haferlach, T., Behre, G., Hiddemann, 
W., Zhang, D. E., and Tenen, D. G. (2001a). AML1-ETO downregulates the granulocytic 
differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med 7, 444-451. 

Pabst, T., Mueller, B. U., Zhang, P., Radomska, H. S., Narravula, S., Schnittger, S., Behre, G., 
Hiddemann, W., and Tenen, D. G. (2001b). Dominant-negative mutations of CEBPA, 
encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. 
Nat Genet 27, 263-270. 

Pan, Z., Hetherington, C. J., and Zhang, D. E. (1999). CCAAT/enhancer-binding protein 
activates the CD14 promoter and mediates transforming growth factor beta signaling in 
monocyte development. J Biol Chem 274, 23242-23248. 

Passegue, E., Jamieson, C. H., Ailles, L. E., and Weissman, I. L. (2003). Normal and 
leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell 
characteristics? Proc Natl Acad Sci U S A 100 Suppl 1, 11842-11849. 

Pedersen, T. A., Kowenz-Leutz, E., Leutz, A., and Nerlov, C. (2001). Cooperation between 
C/EBPalpha TBP/TFIIB and SWI/SNF recruiting domains is required for adipocyte 
differentiation. Genes Dev 15, 3208-3216. 

Perrotti, D., Cesi, V., Trotta, R., Guerzoni, C., Santilli, G., Campbell, K., Iervolino, A., 
Condorelli, F., Gambacorti-Passerini, C., Caligiuri, M. A., and Calabretta, B. (2002). BCR-
ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2. Nat Genet
30, 48-58. 

Porse, B. T., Bryder, D., Theilgaard-Monch, K., Hasemann, M. S., Anderson, K., Damgaard, 
I., Jacobsen, S. E., and Nerlov, C. (2005). Loss of C/EBP alpha cell cycle control increases 
myeloid progenitor proliferation and transforms the neutrophil granulocyte lineage. J Exp 
Med 202, 85-96. 

Porse, B. T., Pedersen, T. A., Xu, X., Lindberg, B., Wewer, U. M., Friis-Hansen, L., and 
Nerlov, C. (2001). E2F repression by C/EBPalpha is required for adipogenesis and 
granulopoiesis in vivo. Cell 107, 247-258. 

Radomska, H. S., Basseres, D. S., Zheng, R., Zhang, P., Dayaram, T., Yamamoto, Y., 
Sternberg, D. W., Lokker, N., Giese, N. A., Bohlander, S. K., et al. (2006). Block of C/EBP 
alpha function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. 
J Exp Med 203, 371-381. 

Radomska, H. S., Huettner, C. S., Zhang, P., Cheng, T., Scadden, D. T., and Tenen, D. G. 
(1998). CCAAT/enhancer binding protein alpha is a regulatory switch sufficient for induction 
of granulocytic development from bipotential myeloid progenitors. Mol Cell Biol 18, 4301-
4314. 

Ramji, D. P., and Foka, P. (2002). CCAAT/enhancer-binding proteins: structure, function and 
regulation. Biochem J 365, 561-575. 



97

Ranganathan, R., Lu, K. P., Hunter, T., and Noel, J. P. (1997). Structural and functional 
analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation 
dependent. Cell 89, 875-886. 

Rangatia, J., Vangala, R. K., Singh, S. M., Peer Zada, A. A., Elsasser, A., Kohlmann, A., 
Haferlach, T., Tenen, D. G., Hiddemann, W., and Behre, G. (2003). Elevated c-Jun expression 
in acute myeloid leukemias inhibits C/EBPalpha DNA binding via leucine zipper domain 
interaction. Oncogene 22, 4760-4764. 

Rangatia, J., Vangala, R. K., Treiber, N., Zhang, P., Radomska, H., Tenen, D. G., Hiddemann, 
W., and Behre, G. (2002). Downregulation of c-Jun expression by transcription factor 
C/EBPalpha is critical for granulocytic lineage commitment. Mol Cell Biol 22, 8681-8694. 

Reddy, V. A., Iwama, A., Iotzova, G., Schulz, M., Elsasser, A., Vangala, R. K., Tenen, D. G., 
Hiddemann, W., and Behre, G. (2002). Granulocyte inducer C/EBPalpha inactivates the 
myeloid master regulator PU.1: possible role in lineage commitment decisions. Blood 100, 
483-490. 

Reya, T., Morrison, S. J., Clarke, M. F., and Weissman, I. L. (2001). Stem cells, cancer, and 
cancer stem cells. Nature 414, 105-111. 

Rinehart-Kim, J., Johnston, M., Birrer, M., and Bos, T. (2000). Alterations in the gene 
expression profile of MCF-7 breast tumor cells in response to c-Jun. Int J Cancer 88, 180-190. 

Rippmann, J. F., Hobbie, S., Daiber, C., Guilliard, B., Bauer, M., Birk, J., Nar, H., Garin-
Chesa, P., Rettig, W. J., and Schnapp, A. (2000). Phosphorylation-dependent proline 
isomerization catalyzed by Pin1 is essential for tumor cell survival and entry into mitosis. Cell 
Growth Differ 11, 409-416. 

Roman, C., Platero, J. S., Shuman, J., and Calame, K. (1990). Ig/EBP-1: a ubiquitously 
expressed immunoglobulin enhancer binding protein that is similar to C/EBP and 
heterodimerizes with C/EBP. Genes Dev 4, 1404-1415. 

Rosenbauer, F., Koschmieder, S., Steidl, U., and Tenen, D. G. (2005). Effect of transcription-
factor concentrations on leukemic stem cells. Blood 106, 1519-1524. 

Rosenbauer, F., and Tenen, D. G. (2007). Transcription factors in myeloid development: 
balancing differentiation with transformation. Nat Rev Immunol 7, 105-117. 

Rosenbauer, F., Wagner, K., Kutok, J. L., Iwasaki, H., Le Beau, M. M., Okuno, Y., Akashi, 
K., Fiering, S., and Tenen, D. G. (2004). Acute myeloid leukemia induced by graded 
reduction of a lineage-specific transcription factor, PU.1. Nat Genet 36, 624-630. 

Ross, S. E., Erickson, R. L., Hemati, N., and MacDougald, O. A. (1999). Glycogen synthase 
kinase 3 is an insulin-regulated C/EBPalpha kinase. Mol Cell Biol 19, 8433-8441. 

Ross, S. E., Radomska, H. S., Wu, B., Zhang, P., Winnay, J. N., Bajnok, L., Wright, W. S., 
Schaufele, F., Tenen, D. G., and MacDougald, O. A. (2004). Phosphorylation of C/EBPalpha 
inhibits granulopoiesis. Mol Cell Biol 24, 675-686. 



98

Ryden, T. A., and Beemon, K. (1989). Avian retroviral long terminal repeats bind 
CCAAT/enhancer-binding protein. Mol Cell Biol 9, 1155-1164. 

Ryo, A., Liou, Y. C., Lu, K. P., and Wulf, G. (2003). Prolyl isomerase Pin1: a catalyst for 
oncogenesis and a potential therapeutic target in cancer. J Cell Sci 116, 773-783. 

Ryo, A., Liou, Y. C., Wulf, G., Nakamura, M., Lee, S. W., and Lu, K. P. (2002). PIN1 is an 
E2F target gene essential for Neu/Ras-induced transformation of mammary epithelial cells. 
Mol Cell Biol 22, 5281-5295. 

Schaufele, F., Enwright, J. F., 3rd, Wang, X., Teoh, C., Srihari, R., Erickson, R., 
MacDougald, O. A., and Day, R. N. (2001). CCAAT/enhancer binding protein alpha 
assembles essential cooperating factors in common subnuclear domains. Mol Endocrinol 15, 
1665-1676. 

Schoch, C., Kohlmann, A., Schnittger, S., Brors, B., Dugas, M., Mergenthaler, S., Kern, W., 
Hiddemann, W., Eils, R., and Haferlach, T. (2002). Acute myeloid leukemias with reciprocal 
rearrangements can be distinguished by specific gene expression profiles. Proc Natl Acad Sci 
U S A 99, 10008-10013. 

Schuster, M. B., and Porse, B. T. (2006). C/EBPalpha: a tumour suppressor in multiple 
tissues? Biochim Biophys Acta 1766, 88-103. 

Schwartz, C., Beck, K., Mink, S., Schmolke, M., Budde, B., Wenning, D., and Klempnauer, 
K. H. (2003). Recruitment of p300 by C/EBPbeta triggers phosphorylation of p300 and 
modulates coactivator activity. Embo J 22, 882-892. 

Schwieger, M., Lohler, J., Fischer, M., Herwig, U., Tenen, D. G., and Stocking, C. (2004). A 
dominant-negative mutant of C/EBPalpha, associated with acute myeloid leukemias, inhibits 
differentiation of myeloid and erythroid progenitors of man but not mouse. Blood 103, 2744-
2752. 

Scott, E. W., Fisher, R. C., Olson, M. C., Kehrli, E. W., Simon, M. C., and Singh, H. (1997). 
PU.1 functions in a cell-autonomous manner to control the differentiation of multipotential 
lymphoid-myeloid progenitors. Immunity 6, 437-447. 

Shen, M., Stukenberg, P. T., Kirschner, M. W., and Lu, K. P. (1998). The essential mitotic 
peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes 
Dev 12, 706-720. 

Shen-Li, H., O'Hagan, R. C., Hou, H., Jr., Horner, J. W., 2nd, Lee, H. W., and DePinho, R. A. 
(2000). Essential role for Max in early embryonic growth and development. Genes Dev 14, 
17-22. 

Shivdasani, R. A., Mayer, E. L., and Orkin, S. H. (1995). Absence of blood formation in mice 
lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373, 432-434. 

Shuman, J. D., Cheong, J., and Coligan, J. E. (1997). ATF-2 and C/EBPalpha can form a 
heterodimeric DNA binding complex in vitro. Functional implications for transcriptional 
regulation. J Biol Chem 272, 12793-12800. 



99

Slomiany, B. A., D'Arigo, K. L., Kelly, M. M., and Kurtz, D. T. (2000). C/EBPalpha inhibits 
cell growth via direct repression of E2F-DP-mediated transcription. Mol Cell Biol 20, 5986-
5997. 

Smith, L. T., Hohaus, S., Gonzalez, D. A., Dziennis, S. E., and Tenen, D. G. (1996). PU.1 
(Spi-1) and C/EBP alpha regulate the granulocyte colony-stimulating factor receptor promoter 
in myeloid cells. Blood 88, 1234-1247. 

Stopka, T., Amanatullah, D. F., Papetti, M., and Skoultchi, A. I. (2005). PU.1 inhibits the 
erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin 
structure. Embo J 24, 3712-3723. 

Subramanian, L., Benson, M. D., and Iniguez-Lluhi, J. A. (2003). A synergy control motif 
within the attenuator domain of CCAAT/enhancer-binding protein alpha inhibits 
transcriptional synergy through its PIASy-enhanced modification by SUMO-1 or SUMO-3. J 
Biol Chem 278, 9134-9141. 

Tanaka, T., Akira, S., Yoshida, K., Umemoto, M., Yoneda, Y., Shirafuji, N., Fujiwara, H., 
Suematsu, S., Yoshida, N., and Kishimoto, T. (1995). Targeted disruption of the NF-IL6 gene 
discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 80, 
353-361. 

Tenen, D. G. (2003). Disruption of differentiation in human cancer: AML shows the way. Nat 
Rev Cancer 3, 89-101. 

Tenen, D. G., Hromas, R., Licht, J. D., and Zhang, D. E. (1997). Transcription factors, normal 
myeloid development, and leukemia. Blood 90, 489-519. 

Theilgaard-Monch, K., Jacobsen, L. C., Borup, R., Rasmussen, T., Bjerregaard, M. D., 
Nielsen, F. C., Cowland, J. B., and Borregaard, N. (2005). The transcriptional program of 
terminal granulocytic differentiation. Blood 105, 1785-1796. 

Timchenko, N., Wilson, D. R., Taylor, L. R., Abdelsayed, S., Wilde, M., Sawadogo, M., and 
Darlington, G. J. (1995). Autoregulation of the human C/EBP alpha gene by stimulation of 
upstream stimulatory factor binding. Mol Cell Biol 15, 1192-1202. 

Timchenko, N. A. (2003). Old livers--C/EBPalpha meets new partners. Cell Cycle 2, 445-446. 
Timchenko, N. A., Wilde, M., Nakanishi, M., Smith, J. R., and Darlington, G. J. (1996). 
CCAAT/enhancer-binding protein alpha (C/EBP alpha) inhibits cell proliferation through the 
p21 (WAF-1/CIP-1/SDI-1) protein. Genes Dev 10, 804-815. 

Uchida, T., Takamiya, M., Takahashi, M., Miyashita, H., Ikeda, H., Terada, T., Matsuo, Y., 
Shirouzu, M., Yokoyama, S., Fujimori, F., and Hunter, T. (2003). Pin1 and Par14 peptidyl 
prolyl isomerase inhibitors block cell proliferation. Chem Biol 10, 15-24. 

Vinson, C. R., Hai, T., and Boyd, S. M. (1993). Dimerization specificity of the leucine zipper-
containing bZIP motif on DNA binding: prediction and rational design. Genes Dev 7, 1047-
1058. 

Vogt, P. K. (2001). Jun, the oncoprotein. Oncogene 20, 2365-2377. 



100

Wang, C., Chen, X., Wang, Y., Gong, J., and Hu, G. (2007). C/EBPalphap30 plays 
transcriptional regulatory roles distinct from C/EBPalphap42. Cell Res. 

Wang, D., D'Costa, J., Civin, C. I., and Friedman, A. D. (2006). C/EBPalpha directs 
monocytic commitment of primary myeloid progenitors. Blood 108, 1223-1229. 

Wang, G. L., Iakova, P., Wilde, M., Awad, S., and Timchenko, N. A. (2004). Liver tumors 
escape negative control of proliferation via PI3K/Akt-mediated block of C/EBP alpha growth 
inhibitory activity. Genes Dev 18, 912-925. 

Wang, H., Iakova, P., Wilde, M., Welm, A., Goode, T., Roesler, W. J., and Timchenko, N. A. 
(2001). C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol 
Cell 8, 817-828. 

Westendorf, J. J., Yamamoto, C. M., Lenny, N., Downing, J. R., Selsted, M. E., and Hiebert, 
S. W. (1998). The t(8;21) fusion product, AML-1-ETO, associates with C/EBP-alpha, inhibits 
C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Mol Cell Biol
18, 322-333. 

Wulf, G., Finn, G., Suizu, F., and Lu, K. P. (2005). Phosphorylation-specific prolyl 
isomerization: is there an underlying theme? Nat Cell Biol 7, 435-441. 

Wulf, G., Garg, P., Liou, Y. C., Iglehart, D., and Lu, K. P. (2004). Modeling breast cancer in 
vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. Embo J 23, 3397-3407. 

Wulf, G. M., Liou, Y. C., Ryo, A., Lee, S. W., and Lu, K. P. (2002). Role of Pin1 in the 
regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to 
DNA damage. J Biol Chem 277, 47976-47979. 

Wulf, G. M., Ryo, A., Wulf, G. G., Lee, S. W., Niu, T., Petkova, V., and Lu, K. P. (2001). 
Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the 
transcriptional activity of c-Jun towards cyclin D1. Embo J 20, 3459-3472. 

Xu, Y. X., Hirose, Y., Zhou, X. Z., Lu, K. P., and Manley, J. L. (2003). Pin1 modulates the 
structure and function of human RNA polymerase II. Genes Dev 17, 2765-2776. 

Yaffe, M. B., Schutkowski, M., Shen, M., Zhou, X. Z., Stukenberg, P. T., Rahfeld, J. U., Xu, 
J., Kuang, J., Kirschner, M. W., Fischer, G., et al. (1997). Sequence-specific and 
phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. 
Science 278, 1957-1960. 

Yamaguchi, Y., Nishio, H., Kishi, K., Ackerman, S. J., and Suda, T. (1999). C/EBPbeta and 
GATA-1 synergistically regulate activity of the eosinophil granule major basic protein 
promoter: implication for C/EBPbeta activity in eosinophil gene expression. Blood 94, 1429-
1439. 

Yamanaka, R., Barlow, C., Lekstrom-Himes, J., Castilla, L. H., Liu, P. P., Eckhaus, M., 
Decker, T., Wynshaw-Boris, A., and Xanthopoulos, K. G. (1997). Impaired granulopoiesis, 
myelodysplasia, and early lethality in CCAAT/enhancer binding protein epsilon-deficient 
mice. Proc Natl Acad Sci U S A 94, 13187-13192. 



101

Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G., Hahn, W. C., 
Stukenberg, P. T., Shenolikar, S., Uchida, T., et al. (2004). A signalling pathway controlling 
c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 6, 
308-318. 

Yeh, E. S., and Means, A. R. (2007). PIN1, the cell cycle and cancer. Nat Rev Cancer. 
Zacchi, P., Gostissa, M., Uchida, T., Salvagno, C., Avolio, F., Volinia, S., Ronai, Z., 
Blandino, G., Schneider, C., and Del Sal, G. (2002). The prolyl isomerase Pin1 reveals a 
mechanism to control p53 functions after genotoxic insults. Nature 419, 853-857. 

Zhang, D. E., Hetherington, C. J., Meyers, S., Rhoades, K. L., Larson, C. J., Chen, H. M., 
Hiebert, S. W., and Tenen, D. G. (1996a). CCAAT enhancer-binding protein (C/EBP) and 
AML1 (CBF alpha2) synergistically activate the macrophage colony-stimulating factor 
receptor promoter. Mol Cell Biol 16, 1231-1240. 

Zhang, D. E., Hohaus, S., Voso, M. T., Chen, H. M., Smith, L. T., Hetherington, C. J., and 
Tenen, D. G. (1996b). Function of PU.1 (Spi-1), C/EBP, and AML1 in early myelopoiesis: 
regulation of multiple myeloid CSF receptor promoters. Curr Top Microbiol Immunol 211, 
137-147. 

Zhang, D. E., Zhang, P., Wang, N. D., Hetherington, C. J., Darlington, G. J., and Tenen, D. G. 
(1997). Absence of granulocyte colony-stimulating factor signaling and neutrophil 
development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci U 
S A 94, 569-574. 

Zhang, M., and Rosen, J. M. (2006). Stem cells in the etiology and treatment of cancer. Curr 
Opin Genet Dev 16, 60-64. 

Zhang, P., Iwama, A., Datta, M. W., Darlington, G. J., Link, D. C., and Tenen, D. G. (1998). 
Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by 
transcription factor CCAAT enhancer binding protein alpha (C/EBP alpha) is critical for 
granulopoiesis. J Exp Med 188, 1173-1184. 

Zhang, P., Iwasaki-Arai, J., Iwasaki, H., Fenyus, M. L., Dayaram, T., Owens, B. M., 
Shigematsu, H., Levantini, E., Huettner, C. S., Lekstrom-Himes, J. A., et al. (2004). 
Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the 
absence of the transcription factor C/EBP alpha. Immunity 21, 853-863. 

Zheng, H., You, H., Zhou, X. Z., Murray, S. A., Uchida, T., Wulf, G., Gu, L., Tang, X., Lu, 
K. P., and Xiao, Z. X. (2002). The prolyl isomerase Pin1 is a regulator of p53 in genotoxic 
response. Nature 419, 849-853. 

Zheng, R., Friedman, A. D., Levis, M., Li, L., Weir, E. G., and Small, D. (2004). Internal 
tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of 
C/EBPalpha expression. Blood 103, 1883-1890. 



102

Acknowledgements: 
  At the end of my study at Ludwig Maximilians University, Munich, it is my 

joy to thank sincerely all those who contributed to the completion of this 

doctoral work.  With immense pleasure, I wish to extend my deepest gratitude to 

my supervisor Prof. Dr. Wolfgang Hiddemann for his valuable guidance and 

insightful directions, which was a great asset in the successful completion of this 

research work.  

  I thank PD Dr. Gerhard Behre for providing me the opportunity to work in his 

group and for his valuable support. I am highly grateful to the Deutsche José 

Carreras Leukämie Stiftung for providing me with the financial support for this 

research work.  

  In the course of my research, I enjoyed the hospitality of many people in the 

GSF Hämatologikum in Munich.  I am grateful to Prof. Dr. Stefan Bohlander 

and Prof. Dr. George Bornkam for their constructive criticism and motivating 

discussions. I take the opportunity to thank Dr. Abdul Peerzada for his valuable 

discussions and insightful comments. 

  I will never forget the fruitful company that I had from my fellow research 

scholars. In particular, I am thankful to Viola Dengler, Mulu Gelutu, Thomas 

Knöfel, Roman Kashirin, Arun Trivedi, Katrin Reichelt, Deepak Bararia, 

Mumtaz Yaseen, Alex Miesel and Max Christopeit for their useful observations 

and comments. My thanks are also due to my friends Dr. Sabu Abraham, Dr. 

Rajesh Arsada, Dr. Tom Li Stephan and Dr. Madhu Sukumar for valuable 

suggestions and critical remarks drawn from their own rich experiences. I wish 

to extend my thanks to my friends Jijo Parookaran, Alvin Antony and Anoop 

Aythala for their support. 

  Finally, I am deeply indebted to my parents Antony and Treesa, my wife Sona, 

brothers Paul, Joseph, Francis and my sisters Reena and Isabel for their constant 

support, inspiration and encouragement. I wish to extend my heartiest thanks to 

them.  



103

Curriculum Vitae 

Personal Details: 

Name                : John Anto Pulikkan 

Date of Birth    : 29.04.1976 

Place of Birth   : Trichur, India 

Nationality       :  Indian 

Education: 

1981-1991    Primary and High School at St. Xaviers High school, Trichur, India 

1991-1993    Higher Secondary studies at University of Calicut, Trichur, India 

1993-1996    Bachelor of Science in Chemistry at University of Calicut, Calicut,                      
                     India     

1997-2000    Master of Science in Biochemistry at Mahatma Gandhi University,  
                     Kottayam, India     
                     Thesis Title: Anticancer activity of Thuja occidentalis 

                     Summer training at All India Institute of Medical Sciences, New                     
                     Delhi, India 

2001             Research student at Rajiv Gandhi Centre for Biotechnology,  
                     Trivandrum, India 

2002              Research training at Institute of Biochemistry, University of               
                      Cologne, Cologne, Germany 

2003-2007     PhD at Dept. of Med III, Ludwig Maximilaians University of   
                      Munich and GSF National Research Centre, Munich, Germany 



104

Fellowships: 
  
2006              Deutsche José Carreras Leukemie Stiftung, Munich, Germany 

2002              Gottlieb Daimler and Karl Benz Foundation, Ladenburg,                        
                      Germany 

Presentations: 

2008              Poster presentation at American Society of Haematology (ASH) 
                      Annual Meeting, San Francisco, California, United states 
                      Titel- A molecular network comprising microRNA-223, E2F1 and       
                      C/EBP� in granulopoiesis and in Acute Myeloid Leukemia

2008              Oral presentation at European Hematology Association (EHA) 
                      Annual Meeting, Copenhagen, Denmark 
                      Titel- microRNA-223 inhibits E2F1 during granulopoiesis and is      
                      downregulated in Acute Myeloid Leukemia 

2007              Oral presentation at American Society of Haematology (ASH) 
                      Annual Meeting, Atlanta, Georgia, United states 
                      Titel- The significance of peptidyl-prolyl cis/trans isomerase, PIN1  
                      in Acute  Myeloid Leukemia with C/EBP� mutation. 

2007              Poster presentation at Deutsche Gesellschaft für Hämatologie und   
                      Onkologie (DGHO), Basel, Switzerland                 
                      Titel- The significance of peptidyl-prolyl cis/trans isomerase, PIN1  
                      in Acute  Myeloid Leukemia with C/EBP� mutation. 

2006              Poster presentation at American Society of Haematology (ASH) 
                      Annual Meeting, Orlando, Florida, United states 
                      Titel- The critical role of peptidyl-prolyl cis/trans isomerase, PIN1  
                      in Acute  Myeloid Leukemia with C/EBP� mutation. 
  

Publications: 

Pulikkan JA, Dengler V, Peramangalam PS, Peer Zada AA, Müller-Tidow C, 
Bohlander SK, Tenen DG, Behre G. “A molecular network comprising C/EBP�, 
microRNA-223 and E2F1 controls granulopoiesis and is deregulated in acute 
myeloid leukemia”. Manuscript under review 



105

Pulikkan JA, Dengler V, Peer Zada AA, Kawasaki A, Geletu MH, Pasalic Z, 
Bohlander SK, Ryo A, Tenen DG, Behre G. “Elevated PIN1 expression by 
C/EBP�-p30 blocks C/EBP� induced granulocytic differentiation via c-Jun in 
AML”. Manuscript under review 

Geletu MH, Balkhi MY, Peer Zada AA, Christopeit M, Pulikkan JA, Trivedi 
AK, , Tenen DG, Behre G. “Target proteins od C/EBPalphap30 in AML: 
C/EBPalphap30 enhances sumoylation of C/EBPalphap42 via up-regulation of 
Ubc9”. Blood 2007, Nov 1; 110(9):3301-9 

Zada AA, Pulikkan JA, Bararia D, Geletu M, Trivedi AK,  Balkhi MY,     
Hiddemann  WD, Tenen  DG, Behre HM,  Behre G. “Proteomic discovery of 
Max as a novel interacting partner of  C/EBPalpha: a  Myc/Max/Mad link”. 
Leukemia 2006, 20(12):  2137-2146. 

Peer Zada AA*, Geletu MH*, Pulikkan JA*, Müller-Tidow CT, Reddy VA, 
Christopeit M, Hiddemann WD, Behre HM, Tenen DG, Behre G. “Proteomic  
Analysis of Acute Promyelocytic Leukemia:  PML-RARalpha Leads to 
Decreased phosphorylation of OP18 at Serine 63”. Proteomics 2006, 6(21) 
5705-5719 (* authors contributed equally). 



ORIGINAL ARTICLE

Proteomic discovery of Max as a novel interacting partner of C/EBPa: a Myc/Max/Mad
link

AA Zada1, JA Pulikkan1, D Bararia1, M Geletu1, AK Trivedi1, MY Balkhi1, WD Hiddemann2, DG Tenen3, HM Behre4 and
G Behre1

1Bone Marrow Transplantation Unit, State Center for Cell and Gene Therapy, Clinic Internal Medicine IV, Martin-Luther-
University, Halle, Germany; 2Department of Internal Medicine III, University Hospital Grosshadern, Munich, Germany;
3Division of Hematology/Oncology, Harvard Institutes of Medicine, Boston, MA, USA and 4Andrology Section,
Clinic Krollwitz, Martin-Luther-University, Halle, Germany

The transcription factor CCAAT/enhancer binding protein a
(C/EBPa) is important in the regulation of granulopoiesis and is
disrupted in human acute myeloid leukemia. In the present
study, we sought to identify novel C/EBPa interacting proteins
in vivo through immunoprecipitation using mass spectrometry-
based proteomic techniques. We identified Max, a heterodi-
meric partner of Myc, as one of the interacting proteins of
C/EBPa in our screen. We confirmed the in vivo interaction of
C/EBPa with Max and showed that this interaction involves the
basic region of C/EBPa. Endogenous C/EBPa and Max, but not
Myc and Max, colocalize in intranuclear structures during
granulocytic differentiation of myeloid U937 cells. Max en-
hanced the transactivation capacity of C/EBPa on a minimal
promoter. A chromatin immunoprecipitation assay revealed
occupancy of the human C/EBPa promoter in vivo by Max and
Myc under cellular settings and by C/EBPa and Max under
retinoic acid induced granulocytic differentiation. Interestingly,
enforced expression of Max and C/EBPa results in granulocytic
differentiation of the human hematopoietic CD34þ cells, as
evidenced by CD11b, CD15 and granulocyte colony-stimulating
factor receptor expression. Silencing of Max by short hairpin
RNA in CD34þ and U937 cells strongly reduced the differentia-
tion-inducing potential of C/EBPa, indicating the importance of
C/EBPa–Max in myeloid progenitor differentiation. Taken to-
gether, our data reveal Max as a novel co-activator of C/EBPa
functions, thereby suggesting a possible link between C/EBPa
and Myc–Max–Mad network.
Leukemia (2006) 20, 2137–2146. doi:10.1038/sj.leu.2404438;
published online 2 November 2006
Keywords: C/EBPa; proteomics; Myc–Max–Mad network; mass
spectrometry; differentiation

Introduction

Hematopoietic differentiation proceeds in a largely irreversible
fashion and the role of transcription factors in regulating
hematopoiesis has been well documented. This is particularly
true for CCAAT/enhancer binding protein a (C/EBPa), one of the
lineage-specific transcription factors that is essential for commit-
ment to and development of the granulocytic lineage.1,2 Recent
data have indicated that C/EBPa may also regulate hematopoie-
tic stem cell activity3 and act as a tumor suppressor gene in
acute myeloid leukemias (AMLs), indicating an important role

for C/EBPa in the control of cellular proliferation in vivo.4

Inactivation of C/EBPa is an important event in AML, and
ectopic overexpression of C/EBPa leads to differentiation and
growth arrest in AML.5 It is therefore suggested that C/EBPa has a
crucial role in regulating the balance between cell proliferation
and differentiation, which is crucial for lineage commitment of
any cell type. These findings and data from our laboratory
indicate that for AML to develop, the activity of C/EBPa must be
curbed by either mutations or antagonistic protein–protein
interactions.

C/EBPa can form protein–protein interactions with other bZIP
and non-bZIP factors. Among them, c-Jun and PU.1,6,7 E2F,
p21, and cyclin-dependent kinases CDK2 and CDK4 have been
well characterized.8–10 Thus, it has become increasingly clear
that like most proteins, C/EBPa might not work alone, but in
association with other factors regulates gene transcription.
However, studies involving protein–protein interactions of
C/EBPa at the global proteomic level are lacking. We therefore
took advantage of high-throughput proteomics by mass spectro-
metry (LC-MS/MS) to identify proteins that specifically associate
with C/EBPa in vivo. In our screen, Max was identified as a
novel interacting partner of C/EBPa in addition to other new and
known partners of C/EBPa.

Max is a member of the basic region-helix–loop–helix-leucine
zipper protein that belongs to a network of transcription factors,
which includes the Myc and Mad families of protein (commonly
referred to as a Myc–Max–Mad network).11 The Myc–Max–Mad
proteins can affect different aspects of cell behavior, including
cell cycle, proliferation and differentiation, by modulating
distinct target genes.12–15 Max can form a homo- or a
heterodimer and bind specifically to E-box DNA elements in
target promoters (consensus CACGTG).16,17 To function as
transcriptional regulators, the members of the Myc and Mad
families must heterodimerize with Max. Whereas Myc–Max
activates transcription, Mad–Max and Mnt–Max repress tran-
scription.18–20 Indirect evidences to the fact that C/EBPa could
be a part of the Myc–Max–Mad network do exist in the
literature.21,22 However, no direct evidence has been reported
so far.

In this study, we have characterized the role of Max as an
interacting partner of C/EBPa. We show that Max is an important
co-activator of C/EBPa and the stable silencing of Max inhibits
the differentiation-inducing potential of C/EBPa. C/EBPa and
Max not only colocalize but also the heterocomplex is
preferentially formed on the human C/EBPa (hC/EBPa) promoter
in vivo during granulocytic differentiation, thereby contributing
to increased transactivation and differentiation capacity of
C/EBPa.
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Materials and methods

Transfection of human hematopoietic CD34þ
progenitors
Human CD34þ hematopoietic cells were selected, using a
magnetic CD34 selection kit system (Milteny Biotec, Bergisch,
Gladbach, Germany), from small aliquots of leukapheresis
products collected from either healthy donor or a patient
undergoing stem/progenitor cell collection after granulocyte-
colony stimulating factor treatment for non-hematologic malig-
nancy at Klinikum Krollwitz Hospital Halle, Germany, following
their informed consent. After magnetic selection, more than
85% of the cells expressed the CD34 antigen. An aliquot
containing 5� 105 CD34þ cells was cultured in Iscove’s
modified Dulbecco’s medium with 20% heat-inactivated fetal
calf serum, 100 ng/ml Flt3-ligand, 100 ng/ml of stem cell factor,
100 ng/ml thrombopoietin, 100 ng/ml of interleukin-6 (IL-6) and
50ng/ml of IL-3, 100U/ml penicillin/streptomycin and 2mM

L-glutamine. The cells were transfected with various expression
constructs using AMAXA nucleofection technology essentially
as described by the manufacturer and analyzed for CD11b and
CD15 expression by flow cytometry.

Cell lines, antibodies and treatments
Human myeloid cell lines U937 and K562-ER-C/EBPa were
cultured under standard conditions. b-Estradiol and retinoic acid
(RA) (Sigma-Aldrich, Munich, Germany) were used at a
concentration of 1–5mM and 10�6

M, respectively. The anti-
bodies used in this study were purchased from Santa Cruz
(Heidelberg, Germany); for C/EBPa, SC-61 (14AA), SC-9315
(N-19) Max, SC-765 (C-124) and c-Myc, SC-42 (C-33) and
Molecular Probes, Gmbh, Karlsruhe, Germany).

Immunoprecipitation and immunoblotting
The immunoprecipitation (IP) was performed from 500–1000 mg
nuclear extracts of U937 cells in an IP buffer (50mM Tris pH 7.5,
150mM NaCl, 0.5% NP-40, 0.25% sodium deoxycholate),
followed by washing in the buffer (50mM Tris pH 7.5, 0.1%
NP-40, 0.05% sodium deoxycholate) with respective antibodies
(Santa Cruz) and the corresponding IgGs as controls. A Western
blot analysis was used to confirm the identity of immuno-
precipitated and/or co-precipitated proteins as described pre-
viously.23 Alternatively, the immunocomplexes were incubated
with urea lysis buffer for further proteomic analysis.

Proteomic analysis: two-dimensional gel
electrophoresis and protein identification by mass
spectrometry
The proteomics methodology was used essentially as described
recently by our group.34

Transient transfections using AMAXA and effectene
Effectene transfection reagent (Qiagen, Gmbh, Hilden, Ger-
many) and lipofectamine (Invitrogen, Gmbh, Karlsruhe, Ger-
many) were used for transient transfections according to the
manufacturer’s instructions. Transient transfections were carried
out with minimal promoter/luciferase construct, which has been
derived from an oligo 50-GATCCAGATTGCGCAATCG-30 by
self-annealing, followed by ligation into a BamHI site of the
thymidine kinase (TK) promoter and co-transfected with expres-
sion plasmids for hC/EBPa, Renilla Luciferase-null and/or Max as

described.23 The Nucleofector kit (AMAXA, Gmbh, Cologne,
Germany) was used essentially as described by the manufac-
turer. A 5mg portion of plasmid DNA constructs was used for
each transfection and the transfection efficiency was analyzed
using a plasmid with eGFP marker (2 mg). For CD34þ and U937
cells, nucleofector solution kits used were VPA-1003 and VCA-
1003 with nucleofection programs U-08 and V-01, respectively.
The voltages are automatically adjusted according to the
program and are essentially 110V AC with a frequency of
50–60Hz and a power consumption of 16VA/fuse.

Immunofluorescence and flow cytometry
U937 cells (3� 105), under uninduced condition or induced
with RA (Sigma-Aldrich), were cytocentrifuged on glass slides
with coverslips, fixed using 1:1 methanol/acetone and permea-
bilized using 0.3% Triton X. After blocking in PBG (0.5% BSA,
0.045% Fish–gelatin in phosphate-buffered saline) containing
5% FBS, the fixed cells were incubated with anti-C/EBPa (anti-
goat; Santa Cruz), anti-Max (anti-rabbit; Santa Cruz) and anti-
Myc (anti-mouse; Santa Cruz) antibodies, followed by incuba-
tion with corresponding Alexa Fluor 488 chicken anti-goat,
Alexa Fluor 594 chicken anti-rabbit and anti-mouse IgG
secondary antibodies (Molecular Probes) and 40,60-diamidino-
2-phenylindole dihydrochloride (DAPI, 1 mg/ml) for 15min. The
cells were mounted in aqueous mounting medium and the
images were acquired and analyzed using a fluorescence
microscope (� 100, � 60). Flow cytometry was performed for
CD11b, CD14 and CD15 expression on Bectin Dikinson flow
cytometer, using the supplied analysis software.

Quantitative real-time PCR
RNA isolation from CD34þ and U937 cells, transfected with
different expression constructs, by TRIZOL (Invitrogen, Ger-
many) was followed by cDNA synthesis using standard
conditions. Equal amount of cDNA was taken for a subsequent
quantitative real-time PCR (Q-RT-PCR) using the Quantitech
SyBR Green PCR kit (Qiagen, Germany) in a Rotor-Gene RG-
3000 (Corbett Research, Sydney, Australia). The delta ct value
(Dct) was then calculated from the given ct value by the formula
Dct¼ ctsample�ctcontrol). The fold change was calculated as fold
change¼ 2�Dct. The following primer sequences were used:
myeloperoxidase (MPO), 50-TCG GTA CCC AGT TCA GGA
AG-30 (forward) and 50-CCA GGT TCA ATG CAG GAA GT-30

(reverse); neutrophilelastase (NE), 50-TGC TCA ACG ACA TCG
TGA TT-30 (forward) and 50-CTC ACG AGA GTG CAG ACG
TT-30 (reverse); GCSFR, 50-AAG AGC CCC CTT ACC CAC TAC
ACC ATC TT-30 (forward) and 50-TGC TGT GAG CTG GGT CTG
GGA CAC TT-30 (reverse); CD14, 50-CAA CTT CTC CGA ACC
TCA GC-30 (forward) and 50-CCA GTA GCT GAG CAG GAA
CC-30 (reverse).

Chromatin immunoprecipitation assay
Logarithmically growing and differentiating U937 cells
(B1� 108 cells) were fixed with formaldehyde (final concentra-
tion 1% (v/v)) in serum free RPMI-1640 medium, at 41C for 1 h.
Glycine was added to a final concentration of 0.125M to stop
cross-linking. Fixed cells were pelleted by centrifugation and
sequentially washed and sonicated (five times for 20 s each) to
make soluble chromatin. Samples of total chromatin were taken
at this point to use as a positive control in the PCRs (input
chromatin). Antibodies against C/EBPa, Max and c-Myc were
used overnight at 41C. After serial elution, washing and cross-
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link reverse, the samples were extracted twice with phenol/
chloroform and precipitated with ethanol overnight in the
presence of 20mg glycogen as a carrier. DNA fragments were
recovered by centrifugation, resuspended in ddH2O, and used
for PCR amplification. For detection of immunoprecipitated
C/EBPa promoter region, two primers, forward (50-ACCGC
TACCGACCACGTGGGCG-30) and reverse (50-AGCACCTC
CGGGTCGCGAATGG-30), specific for a 280 bp region in the
cellular C/EBPa promoter that encompasses the C/EBP site were
used for Q-RT-PCR amplification.

Results

Identification of Max, a heterodimeric partner of Myc,
as a novel interacting protein of C/EBPa
To identify interacting proteins of C/EBPa in vivo under
physiological conditions on a global level, we applied
proteomics technique coupled with mass spectrometry using
the IP conditions of endogenous C/EBPa from myeloid U937
cells as a model system.

Under our experimental conditions, we could specifically
immunoprecipitate endogenous C/EBPa from the nuclear
extracts of U937 cells (Figure 1a) and co-immunoprecipitate
other endogenous proteins (as positive controls) such as c-Jun
and CDK4 (Figure 1b and data not shown) that were not present
in the isotype IgG control. Immunocomplexes were further
processed for proteomic analysis. The protein spots excised from
the 2D gels (Figure 1c, spots are numbered) were identified by
MALDI-TOF MS. Additionally, the individual bands were
excised from Coomassie/silver-stained sodium dodecyl sulfate-
polyacrylamide gel electrophoresis gels (Figure 1d) and pro-
cessed for LC-MS/MS. From both screens, we were able to reveal
the identity of 10 proteins by MS, which specifically interact
with C/EBPa (Table 1). Among these proteins, we identified Max
as one interacting partner of C/EBPa. C/EBPa was also identified
by MS analysis of the corresponding band (Figure 1d), thereby
serving as a control for our experimental setup. Proteins in other
bands could not be determined because of the poor quality of
the spectrum. The discovery of Max as a novel C/EBPa partner is
intriguing because of the role Max plays in switching of the
complexes during myeloid differentiation.24 We therefore
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Figure 1 MS-based proteomics identifies proteins specifically interacting with C/EBPa in vivo after its immunoprecipitation from myeloid U937
cells. (a) C/EBPa IP from nuclear extracts of U937 cells and a corresponding immunoblotting (IB) with anti-C/EBPa antibody to confirm the
presence of C/EBPa protein in the IP complex. In vitro-translated C/EBPa (ivt, lane 1) was used as a positive control in the Western blot. (b) C/EBPa
IP and corresponding IB with anti-c-Jun antibody to show endogenous proteins co-precipitated with C/EBPa. ivt c-Jun was used as a positive
control for c-Jun. (c) Silver-stained 2D gels showing proteins specifically interacting with C/EBPa. C/EBPa was immunoprecipitated from nuclear
extracts using anti-C/EBPa antibody (anti-rabbit; Santa Cruz) and the immunocomplex separated in the first dimension by pH 4–7 IPGphor strips
followed by their separation in the second dimension using 12% SDS-PAGE. As a specificity control, we used immunoprecipitation with IgG under
similar conditions. (d) Silver-stained SDS-PAGE gels after IP with anti-C/EBPa and anti-IgG. The bands were excised and peptide mixture after
trypsin digestion was run on a reverse-phase high-pressure liquid chromatography and the peptides identified by MALDI-TOF-TOF (Applied
Biosystems, Darmstadt, Germany).
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selected Max for further functional and biological characteriza-
tion.

C/EBPa and Max interact in a cellular setting:
confirmation of proteomics data
To confirm the observed interaction of Max with CEBPa by an
alternative technique, we performed reciprocal immunoprecipi-
tation. Our results demonstrate that C/EBPa interacts with Max
and vice versa (Figure 2a) in vivo, and thereby confirm proteomic
results. It is important to note that for the same amounts of nuclear
extracts used (5 and 10mg) as input controls, the levels of the two
transcription factors are dramatically different, which is likely due
to Max being more stable than C/EBPa.

BR3 region of C/EBPa is involved in its interaction with
Max
To investigate the protein domains that might be involved in
C/EBPa–Max interaction, we performed co-immunoprecipita-
tion studies using different mutants of C/EBPa as shown. C/EBPa
and its various mutants (kind gift from Dr Alan Friedman;
Figure 2b) were transiently transfected into 293 cells, and co-
transfected with an expression plasmid for Max (a kind gift from
Dr Dirk Eick) containing a carboxy-terminal HA tag.25 Max was
then immunoprecipitated from nuclear extracts using anti-Max
antibody. The associated complexes were assayed by immuno-
blotting for C/EBPa using anti-C/EBPa antibody. Our results
demonstrate that C/EBPa could be co-immunoprecipitated when
IP was performed using anti-Max antibody in samples in which
wild-type C/EBPa: wild-type Max, GZ/LZ C/EBPa: wild-type
Max and L1-2V C/EBPa: wild-type Max were coexpressed
(Figure 2c, lanes 4, 3, 1, respectively). However, C/EBPa could
not be co-immunoprecipitated in immunoprecipitated samples
in which basic region mutant BR3-C/EBPa: wild-type Max was
co-expressed (Figure 2c, lane 2). We also show that Max could
be specifically immunoprecipitated (as controls) with immuno-
blot for Max using anti-HA antibody (Figure 2c, lower panel).
The relative expression of C/EBPa mutants was the same (data
not shown). These data show that the basic region of C/EBPa is
involved in its interaction with Max in a cellular setting.
Furthermore, we observed that wild-type Max and its basic
region mutants have the same ability to interact with C/EBPa
(Supplementary Figure S1a and b).

C/EBPa and Max colocalize
Given the fact that C/EBPa and Max are nuclear transcription
factors and the observation that they interact in vivo, we next

investigated the localization of these proteins by indirect
immunofluorescence in myeloid U937 cells. We observed both
endogenous C/EBPa and Max to be localized in intranuclear
structures (Figure 3a) and the overlay of the two images shows

Table 1 MS results of the proteins interacting with C/EBPa: MALDI-TOF Reflex III (Bruker Daltonics) and LC-MS/MS

Spot no. Acc. no. Protein name Score Mol. wt. pI Sequence coverage

1 A42611 Max 85 21.029 5.64 53
2 Q9UP93 Macrophin1 fragment 95 620 (full) 5.27 35
3 M2OM_Hum Mitochondrial2-oxoglutarate/malate carrier protein 65 34.08 9.92 37
8 A47213 Beta fodrin 68 146.55 5.18 14
12 Q96QA8 RPGR interacting protein 1 88 147.33 5.47 14
13 Q9P1U9 ZNF45 71 80.44 9.0 16
15 FAHUAA Actinin 1 238 103.48 5.22 31
16 Q9UKD2 60 S ribosomal protein 74 127.60 7.68 29
* NMD3A N-methyl-D-aspartate receptor 3A * 126.67 * *
* SMADIP1 Smad interacting protein 1 * 137.84 * *

Abbreviations: C/EBPa, CCAAT/enhancer binding protein a; LC-MS/MS, liquid chromatography-coupled tandem mass spectrometry.
Proteins identified by MALDI-TOF mass spectrometry and LC-MS/MS from 2D gels and normal SDS-PAGE gels (represented as *), respectively.
Acc. no: SwissProt. protein accession numbers; Mol. wt: apparent molecular weight; pI: isoelectric point of the protein.
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that both proteins colocalize in these intranuclear structures
(Figure 3a,panel 4; yellow signal).

C/EBPa–Max but not Myc–Max remains colocalized
during granulocytic differentiation of myeloid U937
cells
We next investigated the effect on C/EBPa–Max colocalization
when the cells were triggered for granulocytic differentiation by RA
for 24h. We observed intranuclear staining with C/EBPa and Max
antibodies, and the overlay of the two images shows that both
proteins remain colocalized even after RA treatment of the cells
(Figure 3b, panel 4; yellow signal). As Max is associated with Myc,
we also analyzed their localization in U937 cells. We observed
that endogenous Myc–Max colocalize in the nucleus under
uninduced condition (Figure 3a, panels 5 and 6). On the other
hand, no intranuclear c-Myc signal could be detected after RA
treatment (Figure 3c, panel 4; only green signal from Max). We
next investigated the expression of c-Myc, Max and C/EBPa before
and after RA treatment from various fractions (whole-cell lysates,
nuclear fraction (NF) and cytoplasmic fraction (CF)) by Western
blotting, using specific antibodies (Figure 3d). Our results revealed

that the c-Myc protein level was drastically decreased in all the
three fractions (Figure 3d, upper and lower panels) by RA.
However, C/EBPa was undetectable in the CF and slightly
increased in the NF by RA when analyzed by immunoblotting.
Dot blot analysis revealed the presence of CEBPa in the CF as well.
This indicates that the concentration of C/EBPa in the CF is quite
low, so as not to be detected by immunoblotting (data not shown).
Max, on the other hand, was relatively unchanged under induced
and uninduced conditions. These data demonstrate that retention/
colocalization of C/EBPa–Max, and not Myc–Max heterocom-
plexes, in the nucleus might be important events during
granulocytic differentiation of U937 cells.

Max enhances the ability of C/EBPa to transactivate a
minimal thymidine kinase promoter
To investigate the functional importance of C/EBPa–Max
interaction and their colocalization, we performed transient
transfection assays in the fibroblast 293T and the myeloid U937
cells using a minimal TK promoter containing two CCAAT
binding sites cloned upstream of the luciferase reporter gene.
Transfection of a Max expression construct significantly en-
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hanced the ability of C/EBPa to transactivate a minimal TK
promoter containing two CCAAT binding site in a dose-
dependent manner (Figure 4a). In control experiments, no effect
of Max on C/EBPa activity was observed when promoter with no
CCAAT binding sites was used, whereas C/EBPa alone was able
to transactivate the minimal promoter construct ninefold. Similar
results were obtained with myeloid U937 cells (Figure 4b).
Interestingly, co-transfection studies with the human B2200bp
C/EBPa promoter (which has intact E-box site and no CCAAT
site) revealed that C/EBPa alone was unable to transactivate the
promoter, whereas, co-transfection of Max led to a significant
increase in the promoter activity (Figure 4c). It is important to
point out that Max itself does show some activation.

C/EBPa and Max associate in vivo: a Myc–Max–Mad
link
To further elucidate the mechanism by which Max augments the
transcriptional activity of C/EBPa, we hypothesized that Max

might associate with the hC/EBPa promoter in vivo because
similar to C/EBPa, Max also possesses a DNA binding basic
region. To test this possibility, we performed quantitative
radioactive and non-radioactive chromatin immunoprecipita-
tion (ChIP) in U937 cells (Figure 5). Chromatin was subjected to
IP by using antibodies directed against C/EBPa, c-Myc and Max.
The presence of C/EBPa promoter was detected by amplifying a
promoter region using primers specific for a 280 bp region in the
C/EBPa promoter that encompasses the CACGTG site (com-
monly referred to as E-box; Figure 5a). The E-box is conserved in
the human and mouse C/EBPa promoter (Figure 5a). We
observed that under normal physiological conditions (unin-
duced), endogenous c-Myc and Max appeared on C/EBPa
promoter and there was undetectable endogenous C/EBPa
occupancy on the hC/EBPa promoter (Figure 5b). IP using an
isotype-matched IgG served as a negative control.

We next investigated the affect on heterocomplex formation
at the hC/EBPa promoter upon differentiation by RA. We
observed that both Max and C/EBPa appeared on C/EBPa
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Figure 4 Max enhances the transactivation capacity of C/EBPa in transient transfection assays. (a, b) Transient transfection in 293T and U937 cells
with a reporter construct of a minimal TK promoter with CEBP binding sites only p(CEBP)2TK and expression plasmids for hC/EBPa and Max. pTK
(without CEBP sites) was used as control. Luciferase activities were measured 24h after transfection and the values normalized by using Renilla
luciferase PRL0. (c) Transient transfection in 293T cells with a 2200bp hC/EBPa promoter showing increased promoter activation when Max is co-
expressed. Histogram on the right shows promoter activation by hC/EBPa on a minimal promoter, used as a positive control in this experiment.
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promoter and in fact, more C/EBPa was associated with the
promoter in the context of chromatin upon differentiation
induction (Figure 5c, lane 4). The amount of Max bound to
the promoter was fairly constant. DNA recovery was quantified
as a percentage of the total input chromatin (lanes 5–7). Q-RT-
PCR confirmed this observation and the histograms shown
represent the average values from two independent experiments
(Figure 5c, lower panel). A promoter without the CACGTG site,

such as GAPDH promoter (Figure 5d), was used as a negative
control for C/EBPa and Max occupancy and hTERT promoter
(Figure 5e) as a positive control for Myc and Max interaction on
the CACGTG site (E-box). The size of the DNA fragments before
and after sonication is also shown (Figure 5f). Thus, C/EBPa and
Max associate in vivo in the context of chromatin and are
associated together more strongly on the hC/EBPa promoter
when the cells are induced towards granulocytic differentiation.

Overexpression of Max and C/EBPa promotes
differentiation along the granulocytic pathway
in human hematopoietic CD34þ cells
We next asked whether interaction of Max with C/EBPa is
biologically important for C/EBPa functions. Hence, we
performed overexpression studies using three different experi-
mental systems: human hematopoietic CD34þ cells, estradiol-
inducible K562-C/EBPa-ER cells and U937 cells. Our results
revealed that overexpression of Max or C/EBPa alone in CD34þ
cells leads to a significant increase in the proportion of
CD11bþ (Figure 6a, dot plot 44 vs 20%) and CD15þ
(Figure 6a, dot plot 29 vs 13%) cells compared with the
mock-transfected control, respectively. The histograms represent
the average values from three different experiments, and the
viable cell count data (Trypan blue staining) under different
conditions are also shown for days 1 and 4 (Figure 6b). Q-RT-
PCR in these cells revealed increased GCSF receptor expression
(Figure 6c). Similar results were observed with U937 and K562-
C/EBPa-ER cells (Supplementary Figure S2a and data not
shown). The morphology of the cells was observed to correlate
with the surface marker expression (Supplementary Figure S2b).
Q-RT-PCR in U937 cells for various granulocytic/ monocytic
markers was also performed to complement the fluorescence-
activated cell sorting results (Supplementary Figure S2c).

Stable silencing of Max by short hairpin RNA reduces
the differentiation-inducing capacity of C/EBPa in
human hematopoietic CD34þ cells
If Max is a biologically important co-activator of C/EBPa,
silencing of Max should inhibit differentiation induction by
C/EBPa. To address this, we performed RNA interference
experiments in human hematopoietic CD34þ cells and
myeloid U937 cells (Supplementary Figure S2d) by using short
hairpin RNA (shRNA) against Max (cat. no. RHS1764-9690535;
Open Biosystems, Heidelberg, Germany) and control shRNA
(cat. no. RHS1707; Open Biosystems). Cells were transfected
with expression plasmids for C/EBPa alone and/or co-expressed
with shRNA against Max, control shRNA, and the cells cultured
in media containing puromycine. After selection, the cells were
analyzed for granulocytic differentiation, using CD15 expres-
sion as a marker. Our results revealed that C/EBPa alone induces
granulocytic differentiation (CD15þ ) five- to six-fold as
compared with the mock-transfected CD34þ (Figure 6d).
Coexpression of Max shRNA led to a significant decrease in
CD15þ population (about twofold), whereas control shRNA
did not lead to any significant reduction in CD15þ population
(Figure 6d, compare histograms). The reduction of Max protein
level with shRNA was confirmed by Western blotting and Max
shRNA did not affect the expression of C/EBPa (Figure 6e). In
conclusion, we propose a model shown as Figure 6f. Thus, Max
is important for C/EBPa-mediated effects on granulocytic
differentiation and might have an important role in stem cell
development.
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Discussion

It has become increasingly clear that interaction of C/EBPa with
other nuclear proteins plays an important role not only in
lineage commitment and differentiation in the hematopoietic
system but also in the pathogenesis of AML. Although the
lineage commitment decision by C/EBPa was proposed by our

laboratory to involve the functional inactivation of the myeloid
master regulator PU.1 and/or its co-activator c-Jun through
protein–protein interactions,6,7 relatively little is known about
how C/EBPa interacts with other nuclear proteins to activate
gene transcription. The results presented in this article provide
evidence that Max, a heterodimerization partner of Myc, is a
novel, functionally and biologically important co-activator of
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CEBPa. C/EBPa and Max not only colocalize but also the
heterocomplex is preferentially formed on the hC/EBPa promo-
ter during granulocytic differentiation, thereby contributing to
increased transactivation and differentiation capacity of C/EBPa.
We used MS-based proteomic analysis as a means of

identifying the interacting partners of C/EBPa, utilizing IP of
C/EBPa from myeloid U937 cells as a model system. U937 cells
are a good model system for studying myeloid differentiation in
general, as they are bipotential and can be differentiated into
granulocytic lineage by RA and in particular, with respect to the
functions of C/EBPa, as a threefold level of C/EBPa protein
(above the level of endogenous C/EBPa) in U937 cells is
sufficient for their granulocytic differentiation.26 In addition to
nine other proteins (see Table), we identified Max, an essential
heterodimerization partner of Myc,16 as a novel interacting
partner of C/EBPa in our screen (Figure 1). The discovery of Max
as a novel C/EBPa partner is intriguing because of the role Max
plays in switching of the complexes during myeloid differentia-
tion.24 Of particular importance is the fact that transgenic mice
carrying an inserted transgene encoding Max have been shown
to exhibit a 50- to 60-fold elevation of blood neutrophils.27

Additionally, Max is an essential heterodimerization partner of
Myc family members to regulate transcription11 and c-Myc is an
important target of C/EBPa.26 We confirmed the in vivo
interaction of C/EBPa with Max by IP technique and showed
that the basic DNA-binding region of C/EBPa is involved in this
interaction, as the mutant of CEBPa (C/EBPa BR3), which lacks
DNA-binding region, could not be co-precipitated with Max
(Figure 2). C/EBPa BR3 carries mutations in four amino acids,
residues Arg297, Lys298, Arg300 and Lys302.28 Of these, only
Arg300 is expected to contact DNA. Neither the BR3 nor the
Leu12Val variants bind DNA, suggesting that interaction with
Max is likely via Arg297, Lys298 and/or Lys302. Arg297 is
known to participate in the interaction between C/EBPa and
E2F.8 Further study is required to pin point the exact amino acid
involved in the C/EBPa and Max interaction.
The endogenous C/EBPa and Max proteins are not distributed

evenly throughout the nucleoplasm (Figure 3), but are localized
in intranuclear structures within the nucleus. These structures
represent, presumably, centromeres, which are chromosomal
structures associated with intranuclear chromosome positioning
and cell cycle regulation. Interestingly, C/EBPa is associated
with cell cycle regulation.29,30 In other cell systems, such as
pituitary progenitor GHFT1-5 cells, C/EBPa has been shown to
concentrate at chromatin surrounding the centromeres.31 The
observation that C/EBPa–Max but not Myc–Max remain
colocalized during granulocytic differentiation (Figure 3) in-
dicates that these intranuclear structures (centromeres) are
selectively targeted by C/EBPa–Max during granulocytic differ-
entiation. We observed the occupancy of the hC/EBPa promoter
by Max in vivo under physiological conditions, and recruitment
of more C/EBPa whereas Max is retained on the promoter during

granulocytic differentiation. It is possible that the C/EBPa�Max
heterocomplex regulates the balance of acetylated histones to
modify chromatin structure at the hC/EBPa promoter and lead to
transcriptional activation, as was shown by our results. In fact,
TIP60, a histone acetyl transferase, was identified as an
interacting partner of C/EBP to regulate histone acetylation at
the hC/EBPa promoter a in an alternative approach (Bararia
et al., manuscript submitted for publication). To our knowledge,
this is a first report showing occupancy of the hC/EBPa promoter
by Max in vivo.

The occupancy by Max of the hC/EBPa promoter raises a
possibility that Myc could also form a part of the complex
under physiological conditions, as Max requires dimerization
with Myc for efficient DNA binding. In fact, it was shown that
purified MycþMax heterodimers form stable complexes on
the mouse C/EBPa promoter that includes the USF binding
site.21 The USF DNA recognition site CACGTG (which is the
same as the E-box, occupied by Myc–Max) is found in both
the human and the mouse C/EBPa promoter, and the USF
binding site (for HLH-bZIP) is crucial for activation of the hC/
EBPa promoter by C/EBPa.32 Our colocalization and ChIP
data (Figures 4 and 5) and the data that C/EBPa is co-precipitated
with Myc IP (unpublished observation) support this Myc–Max
link. Thus, it is tempting to speculate that C/EBPa exists in
association with the Myc–Max–Mad network to regulate differ-
entiation under cellular settings. Given that the C/EBPa–Max
heterocomplex is formed on hC/EBPa promoter, specifically
during granulocytic differentiation, this would mean that the
balance between such complexes, under the influence of
growth and differentiation signals, could be an important part
of a molecular switch that is regulating genes important for
growth and differentiation.

By using overexpression studies, we have demonstrated that
enforced expression of C/EBPa and Max in human hematopoie-
tic CD34þ cells induces granulocytic differentiation. The role
of C/EBPa in the transition from CMPs to GMPs in myeloid
progenitors has been recently characterized.3 The role of Max in
inducing granulocytic differentiation indicates that Max can
activate myeloid differentiation program either independent of
C/EBPa or in association with it. In vivo interaction and retention
of C/EBPa–Max heterocomplex in myeloid cells (Figures 2, 4
and 5) and inhibition of differentiation-inducing capacity of
C/EBPa by stable silencing of Max using shRNA against MAX in
CD34þ cells (Figure 6) suggest CEBPa–Max association likely
plays an important role in this process of myeloid progenitor
differentiation. A very recent data from Alan Friedman’s group
has shown the role of C/EBPa in monopoiesis.33 This means that
the commitment decisions do not necessarily depend upon a
single transcription factor but, in fact, on a number of
cooperating factors.

In summary, we conclude that Max is a biologically
and functionally important and relevant interacting partner of

Figure 6 Overexpression of Max induces differentiation along granulocytic pathway in human hematopoietic CD34þ cells. (a) The expression
plasmids for human C/EBPa and Max were transfected into human hematopoietic CD34þ cells by using AMAXA technology. The surface
expression of CD11b and CD15 was analyzed by flow cytometry at day 4. The histograms underneath represent data from three different
experiments. (b) Trypan blue staining, showing the number of viable cells under different conditions. (c) Q-RT-PCR for GCSF receptor expression
under the conditions shown from two experiments. (d) Stable silencing of Max by shRNA inhibits C/EBPa-induced differentiation in human
hematopoietic CD34þ cells. The expression plasmid for human C/EBPa and/or expression Arrest shRNA_Max plasmid (Open Biosystems) were
transfected into human hematopoietic CD34þ cells or U937 cells by using the AMAXA technology. After their selection in puromycine, the cells
were analyzed for the surface expression of CD15 by flow cytometry and the data shown as dot plot with percentage of positive cells representative
of one experiment. shRNA control was also used in all the experiments and is shown. The histograms represent the data from three different
experiments. (e) A Western blot for Max using anti-Max antibody showing silencing of Max at the protein level by shRNA_MAX. The blot was
stripped and reprobed with C/EBPa antibody. (f) Model, a summary of our data showing the importance of Max as a co-activator of C/EBPa in the
differentiation of myeloid progenitors. Enforced expression of Max and CEBPa induces differentiation along the granulocytic pathway, and stable
silencing of Max inhibits CEBPa-induced differentiation.
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C/EBPa and has important co-activator functions for C/EBPa-
induced granulocytic differentiation in myeloid progenitors.
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