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Abstract

In this thesis, experimentally relevant aspects and open questions of quantum information processing and mea-
surement in circuit quantum electrodynamics have been investigated theoretically. Circuit quantum electro-
dynamics is a relatively young field combining superconducting transmission line resonators on-chip with
superconducting quantum bits which serve as artificial atoms. Remarkable experiments have underlined the
prospects of circuit QED as a possible architecture for quantum information processing as well as a framework
within which quantum optics experiments can be performed. In contrast to their optical counterparts, these
experiments reach the ultra-strong coupling limit and allow e.g. the generation of Fock states, the study of
decoherence and the observation of quantum jumps.

We present the physics of superconducting circuits based on the Josephson junction as a non-linear circuit
element. We discuss the various types of quantum bits (qubits) before turning to an introduction on cavity QED
and conclude the introduction with a brief presentation of the most relevant experiments and a short introduction
to the principles and prospects of quantum information processing.

Building on the pioneering theoretical and experimental work in which up to three qubits have been in-
tegrated on a chip and successfully coupled via a cavity mode, we propose a scheme to overcome the natural
limits concerning scalability in these systems. Usually, scalability is severely limited by the resonance width of
the qubit transitions and the attainable frequency range for both qubit transition and cavity resonance frequen-
cies. This limits the present setups to at most ten qubits. As a possible solution, we propose and investigate a
cross-bar grid layout of cavities with qubits at the intersections. It turns out that this setup, allowing for up to
about 1000 qubits, offers significant advantages over e.g. nearest-neighbor coupling schemes. In addition, it
can serve as a building block for a truly scalable scheme for fault-tolerant quantum information processing with
superconducting circuits by combining 7x7 arrays in a staircase manner.

Furthermore, we discuss and simulate different possibilities to improve upon the suggested scheme by e.g.
using resonant gates and optimal control theory.

Another focus of the present thesis is measurement physics. In order to investigate e.g. the possibilities of
using a circuit QED system to dispersively detect single microwave photons or to generate multi-qubit entangled
states, we introduce in a pedagogical manner the basics of stochastic master equations which generate quantum
trajectories before turning to concrete applications. Quantum trajectories have proven to be a state-of-the-art
tool to analyze measurement situations in a very realistic manner by giving access to both the measurement
record as well as the internal quantum dynamics conditioned on this record.

Using the method of quantum trajectories as generated by stochastic master equations, we discuss a scheme
to efficiently generate multi-qubit entangled states in a very flexible way. The method is based on a collective,
dispersive qubit readout. By this measurement, a suitable product state of N qubits can be reliably converted
into e.g. a N -qubit Greenberger-Horne-Zeilinger or W state. We propose and discuss the scheme and investigate
the effects of decoherence and parameter spread as they would be encountered in experiment.

Last but not least, we propose and fully analyze a scheme to dispersively detect single itinerant microwave
photons. While experiments to generate single microwave photons have already been successfully performed,
their single-shot quantum non-demolition detection has not been possible so far. The scheme presented in this
thesis closes this gap in the circuit QED toolbox and reaches detection efficiencies of 30% only limited by
fundamental quantum mechanics in this case the Quantum Zeno effect. This detection scheme could be used in
quantum communication or quantum cryptography applications.

xi
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Chapter 1

Introduction

In this chapter we first introduce and review the field of cavity quantum electrodynamics
(cavity QED) based on superconducting circuits. To do so, we discuss the very basic, under-
lying physics, the Josephson effect and the derived circuit element, the Josephson junction.

Based on this non-linear circuit element and its quantum properties, three different classes
of systems emerged which, due to their non-linear spectrum, can be utilized as artificial atoms
or qubits. We will review the state of the art of those three types (Phase, flux and charge
qubit).

Physicists realized that these systems are ideally suited to couple them to resonator modes
of microwave cavities which can be fabricated on the same chip. The strong qubit-cavity
coupling due to the small mode volume of the resonators suddenly made those systems a
powerful superconducting, on-chip analogue to what is known in Quantum Optics as Cavity
Quantum Electrodynamics. Traditionally, beams of real atoms would be sent through a cav-
ity and interact with the quantized light field for some interaction time. Here the coupling
is much stronger, and the interaction time is (apart from decoherence effects) in principle
infinite.

To make the reader familiar with the essentials of cavity QED physics, the Jaynes Cum-
mings model is introduced, describing the interaction of a two-level system with a single,
bosonic mode of a resonator. To make the analogy clear, we will furthermore introduce
the reader to some select ground-breaking achievements in “traditional” cavity QED, before
turning to the details of the superconducting analogue. Finally, we present the state of the art
in cavity QED experiments paying attention to the quantum-optical as well as the quantum
information aspect of this relatively new area of solid-state physics.

1



2 CHAPTER 1. INTRODUCTION

1.1 Cavity QED as a tool to understand quantum mechanics

Before jumping right into the subject matter, it seems to be appropriate to motivate the study
of cavity QED systems with a bigger perspective. This short section deliberately tries not
to introduce concepts formally but from a physical, intuitive point of view. We will then
formally deepen the concepts when introducing basics of measurement theory in Sec. (4).

The concept of coherence of a quantum system is at the very core of quantum mechanics
and closely related to the comparably counter-intuitive concept of entanglement, often also
referred to as non-classical correlations. Both can be viewed as a manifestation of the su-
perposition principle. In a density matrix representation of a quantum state, the off-diagonal
terms between states are termed ’coherence’. This means is that if an off-diagonal element
in a density matrix is non-zero, a suitable experiment will show interference between the two
states.

When the coherence of a system decays and finally vanishes (this process is termed ’de-
coherence’) the remaining density operator describes a classical superposition which can
be identified with the classical uncertainty about the microscopic state of a system as known
from thermodynamics. Systems that show decoherence are usually modelled as open systems,
meaning that their dynamics due to the interaction with a bath exhibit decoherence, such as
dephasing and decay. These are irreversible processes and as we know from the Schrödinger
equation, quantum mechanical time evolution is unitary and thus always reversible. This can
be resolved if one traces out the bath degrees of freedom and only effectively takes the in-
teraction with the bath into account. The rates of decoherence are contained in the coupling
constants of the system with the bath which set the time-scale on which the coherence will
vanish. Any attempt to observe coherent effects consequently has to happen on time-scales
shorter than any dissipative rates of the system. This limit is usually called the strong cou-
pling limit. This limit has been reached in cavity QED systems, enabling experimentalists to
probe coherence e.g. by observing Rabi oscillations and Ramsey interference fringes.

Entanglement, however, is not as easy to detect or even to quantify. It is a consequence
of the fact that the basis of a composite quantum system made of two systems A and B is
given by e.g. the tensor product {|φA〉} ⊗ {|φB〉}, where

{∣∣φA/B

〉}
are the original bases

of systems A and B. If one is given a state |ΨA〉 ≡
∑

i αi |φi,A〉 of system A and a state
|ΨB〉 ≡

∑
i βi |φi,B〉 of system B, it is always possible to write down the compound system

state |ΨAB〉 ≡
∑

i,j αiβj (|φi,A〉 ⊗ |φi,B〉) . This resulting state is called a product (separable)
state. However, the converse does not hold. Generally, one cannot write any state of the
compound system as a product state. If the compound system is in such a state, then the
subsystems are called entangled and these states are called entangled (non-separable) states.
They contain (non-classical) correlations between the individual subsystems and thus more
information than a product state. Product states are the exception rather than the rule for a
compound quantum system. Thus, given a system in product state and an arbitrary interaction
Hamiltonian, the system will evolve into a non-separable state as long as the initial state is
not an eigenstate of the interaction Hamiltonian. Undisturbed (decoherence-free) quantum-
mechanical interaction of subsystems will thus naturally lead to entanglement.

Entanglement and coherence also are the key resources that make a quantum computer
conceptually more powerful than a classical computer. As the condition of strong coupling
makes it possible to observe coherent interactions between e.g. an atom and a cavity mode
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in a cavity QED setup, basic quantum computing gates and algorithms can be implemented.
While setups with real atoms somewhat suffer from the lack of scalability, their circuit QED
counterparts offer more flexibility here. Consequently, circuit QED experiments, apart from
reproducing and extending quantum optical results, have focussed on quantum computation
applications and have by now successfully implemented first few-qubit algorithms.

Apart from reaching the strong coupling limit, the field profits from the fact that the two
most basic and best-understood quantum mechanical systems, a qubit (two-level system) and
a harmonic oscillator, suffice to describe the physics extremely well. Not only can one per-
form a zoo of beautiful experiments, theory is able to keep up with the experiments without
making to many approximations - a rare case in modern physics.
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1.2 Basics of quantum information processing

In this section, we will try to give a very short introduction to the field of quantum information
processing1. We will review the key differences between quantum and classical information,
how it is stored, manipulated and transmitted, briefly discuss the most prominent algorithms.
We will present the famous di-Vincenzo criteria for a workable quantum computing archi-
tecture and some examples that have come more or less close to meeting those requirements.
Finally, we offer a short outlook combined with a motivation for the work done in the scope
of this thesis, mainly the proposal of the cavity grid (Sec. 2), the improvement of gates for
the cavity grid architecture (Sec. 3) and the examined scheme for the efficient generation of
multi-qubit entangled state in superconducting circuit QED (Sec. 5).

1.2.1 Quantum vs. classical information processing

The answer to the question what makes quantum information theory so much different from
classical information theory has different aspects. All of them are rooted in fundamental
principles of quantum mechanics such as the superposition principle, entanglement, unitary
evolution and the dimensionality of Hilbert spaces. The most straight-forward difference is
that the number of possible states for a string of N classical bits is 2N and only N boolean
parameters are needed to parametrise this state. In contrast, for a qubit (quantum bit) system
2N is just the number of basis states. With qubit systems any qubit can be in an arbitrary
“complex” continuous superposition of its ’0’ and ’1’ states such that the number of contin-
uous parameters to specify a multi-qubit state also exponentially grows as 2N . This is sort of
an analogy for the fact that in classical information processing the exact representation of an
arbitrary analog voltage needs generally an infinite number of classical bits while this could
be mapped to a single qubit angle (which is a continuous variable just as the analog voltage).

The second difference is that while classical information is always separable - meaning
that knowing the individual state of each bit amounts to the same information as knowing
the state of the complete string of bits - in quantum mechanics there exist a vast measure of
multi-qubit states which are non-separable, meaning that they cannot be written as (tensor)
products of the states of the individual qubits. This phenomenon is called entanglement. So-
called entangling two-qubit gates (such as the universal CNOT or

√
iSWAP gates) together

with single-qubit gates form the building blocks for all quantum computational algorithms.
In contrast to classical computing, quantum computing gates preserve and even create entan-
glement between qubits. Furthermore, the time evolution given by the Schrödinger equation
is unitary meaning that it can be viewed as a simple length-preserving rotation in the Hilbert
space the quantum system lives in. Thus, it is just a change of basis which preserves the
quantum computing resources such as superposition and entanglement.

1.2.2 Example algorithms

In a way all this can from an intuitive point of view be seen as a possibility to massively
parallelise a computation which suggests that there should be a significant speedup vs. doing

1More comprehensive introductions can be found e.g. in [3–5]
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the same calculation on a classical computer. For some problems for which all known clas-
sical algorithms take exponentially long time to solve it, it has been shown that there exist
quantum algorithms that can do the same in polynomial time.

The most prominent example is certainly Shor’s algorithm for the factoring of large num-
bers [6]. This is such an interesting task as all efficient encryption algorithms such as RSA
depend on the difficulty to factor large numbers into their prime factors. One just chooses
two large prime numbers such that their product will be so large that all the classical comput-
ing resources would need longer than the age of the universe to factor them by brute-force
attack. To be more precise, the fastest known classical algorithm, the general number field
sieve (e.g. found in [7]) needs O(N1/3log(N)2/3) computational steps to factor an integer N
while Shor’s quantum algorithm can do the same in O(log(N)3) computational steps. This
speedup is called exponential as the scaling is logarithmic while the classical algorithm is
still polynomial.

The user of a (sufficiently powerful) quantum computer could thus break almost all past
classical past World-War II and present-day classical encryption. Luckily a quantum com-
puter that can factorize more than a 2-digit number has not been constructed so far and quan-
tum information technology already offers so-called quantum encryption devices which do
not rely on ’hardness’ of computation but on the fundamental physics of quantum mechanics
(in essence measurement theory and entanglement) to make eavesdropping truly impossible.

The second prominent example is the so-called Grover database search algorithm [8, 9].
On a classical computer the fastest way to find a matching entry in an unsorted N -element
database takes O(N) computational steps. Grover’s algorithm can do the same on a quantum
computer in O(

√
N) computational steps thus providing a quadratic speedup. It has been

shown that Grover’s algorithm is optimal in the sense that there does not exist any other,
faster quantum algorithm.

Those two algorithms have been inspired by the purely academic Deutsch-Josza algo-
rithm which was already presented in 1992 [10] and represent the most revolutionary possible
applications for quantum computers at the present-day.

1.2.3 Present-day quantum computation architectures

For any quantum computational architecture there is the famous di-Vincenzo list of criteria
[11] which have to be satisfied such that the system can be actually made useful in practice.
These are

1. Scalability - the system should be extendable to a large number of qubits. Today, taking
error correction codes into account, this means a number of at least O(103) but better
O(106 − 109) qubits should be theoretically reachable.

2. Initialization - The system must be designed such that it can be reliably initialized e.g.
in the ground state.

3. Limited decoherence - The system must obey certain upper thresholds for the deco-
herence rates. Depending primarily on the topology and the resulting availability of
more or less efficient error-correction algorithms, these threshold range in between
O(10−2 − 10−6) measured in single gate errors/infidelities. Once these thresholds are
reached, adding levels of so-called fault-tolerant quantum computing can reduce the
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error added by each added gate and thus allow for arbitrarily long computations. For
more details, see Sec. 2.7.

4. Read-out - The system must be designed such that a qubit state can be efficiently read
out in a single-shot fashion.

5. Availability of a universal set of quantum gates - This means that at the very least one
needs a universal (entangling) two-qubit gates and the possibility to perform arbitrary
local rotations of the Bloch sphere for each individual qubit. This criterion is probably
the least restrictive at the present day. Examples for such entangling universal two-
qubit gates are the CNOT gate which flips the state of the target qubit if and only if the
control qubit has been in the excited state. It can be written as

ÛCNOT ≡





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





for the basis vectors ordered like this (|00〉 , |01〉 , |10〉 , |11〉). Another example which
is used in this thesis is the so-called

√
iSWAP gate. Based on the iSWAP gate which is

given by

ÛiSWAP ≡





1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1



 ,

the
√

iSWAP can be realized by aborting an iSWAP sequence at half the gate runtime.
As one can see from the matrix representation of the iSWAP gate, the iSWAP gate
is equivalent to a simple SWAP gate up to the phase factor i in some of the matrix
elements. Sec. (2) presents a way how to decompose the SWAP gate into iSWAP gates
and single-qubit gates [12].

Experimental quantum information processing was pioneered mostly by Nuclear Magnetic
Resonance (NMR) based experiments performed on molecules in solution [13]. In this ex-
periment, the number 15 was factored using Shor’s algorithm. However, no clear indication
of entanglement was measured. This was repeated using photonic qubits [14, 15] where en-
tanglement has been confirmed. Later-on Shor’s algorithm has been implemented in charge
qubits [16] and there are proposals how to implement it on linear qubit systems which rely
on nearest-neighbour coupling [17].

Another prominent example system consists of trapped ions where ions are cooled, elec-
tromagnetically trapped and manipulated using lasers. More recent proposals even suggest
moving the ions around [18] or accessing ions stored in a two-dimensional optical lattice
with a read/write head consisting of a flying trapped ion in order to ease the weakness of a
nearest neighbour coupling topology [19].

Another interesting class of systems are superconducting circuits such as the circuit QED
systems explored in this thesis. In the recent years they have made promising progress as
is shown in Sec. (1.5). The main problem here lies again in the lack of scalability although
in principle this problem seems easier to solve due to the integration of all experimental
components on microchip surfaces.
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1.2.4 Outlook

Building on the present-day experiments in superconducting circuit QED which are intro-
duced in Sec. (1.5) we concluded that probably the weakest point in terms of satisfying the
di-Vincenzo criteria for these systems is the lack of scalability. This problem is tackled with
the proposal of the cavity grid, an architecture which allows to overcome the restrictions of
having to place qubits in a single cavity which is used as a quantum bus as it is done in
present-day experiments. Similar proposals for other superconducting systems may be the
starting point for what is today referred to as quantum engineering, a scientific discipline that
makes use of the principle findings in example systems to take on and solve the engineering
and practical problems when scaling the systems and integrating them into a workable quan-
tum computer. The point when such as computer is available might still be decades away but
the prospects to succeed have probably never been better than today.
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1.3 The Josephson Effect and the Josephson Junction

1.3.1 The Josephson Effect

Based on the well-known Bardeen-Cooper-Schrieffer (BCS) theory of a superconductor [20],
electrons form pairs (so-called Cooper pairs) when they are condensed in the superconduct-
ing phase. The state of those electrons can be described by a single wave function, the
Ginzburg-Landau superconducting order parameter Ψ((x, t) = |Ψ((x, t)| eiϕ("x,t). The macro-
scopic quantum mechanical phase in a superconductor is of course never to be known abso-
lutely, but phase differences e.g. between different parts of the superconductor or across an
insulator are physical and have great implications.

Brian D. Josephson predicted in 1962 [21] that even at zero bias voltage, Cooper pairs
would tunnel between two superconductors that are separated by a thin layer of insulating
material (this layer is sometimes also called a ’weak link’) . He showed that the tunneling
supercurrent is given by the first Josephson equation

Is = Ic sin(∆ϕ), (1.1)

where ∆ϕ is the phase difference between the two superconductors and Ic is the critical
current, meaning that it is the maximum supercurrent that can flow across the insulating
layer. It can be calculated [22, 23] from basic material parameters such as the temperature
T , the superconducting energy gap ε(T ), and the normal resistance per unit area ρ of the
insulating material according to

Ic =
π

4

2ε(T )

ρe
tanh

[
ε(T )

2kBT

]
. (1.2)

This simple setup of an insulator sandwiched in between two superconductors is since known
as the Josephson Junction. The effect was first observed experimentally by Anderson and
Rowell in 1963 [24]. The voltage across a junction is found to be given by

U(t) =
!
2e

∂∆ϕ

∂t
=

Φ0

2π

∂∆ϕ

∂t
, (1.3)

Φ0 ≡ h/2e being the flux quantum [25, 26]. This equation is called the second Josephson
equation.

The convention is to use a cross as the circuit symbol for a Josephson junction see
Fig. (1.1).

Figure 1.1: Illustration of the commonly used circuit element symbol of a Josephson junction.

1.3.2 The Josephson Junction

Continuing the introduction of the Josephson effect and the Josephson junction as a nonlinear
circuit element, it proves very useful (when one wants to discuss the effects of magnetic
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a)

b)

IRCSJ

U

R

C

Figure 1.2: In the resistively and capacitively shunted Josephson Junction model the capacitance
across the junction is modeled by a capacitor C in parallel to the junction while all dissipative ef-
fects are summed into a normal resistor R (also in parallel) (part (a)). A common way to depict a
capacitively shunted Josephson junction in circuit diagrams in shown in part (b).

fields) to rewrite the superconducting phase difference by introducing the gauge invariant
phase difference γ. It is defined as

γ ≡ ∆ϕ− 2π

Φ0

∫
Aidxi, (1.4)

where (Ai) is the magnetic vector potential and the integration stretches from one supercon-
ductor across the weak link (the insulator) to the other superconductor [27]. In terms of γ,
Eqs. (1.1,1.3) simply read:

Is = Ic sin(γ) (1.5)

U(t) =
Φ0

2π

∂γ

∂t
(1.6)

and can be combined into the non-linear inductance L which is given by

L ≡ U(t)
∂Is
∂t

=
Φ0

2πIc cos(γ)
. (1.7)

In reality, the two superconductors also realize a capacitor across the junction and in
a reasonable circuit model, also the normal resistance across the junction (to include all
dissipative effects) should be taken into account as well. This leads to the commonly used
resistively and capacitively shunted Josephson Junction model (RCSJ model) [28, 29].

1.3.3 The RCSJ-model of a Josephson Junction

The equivalence circuit of a RCSJ is shown in Fig. (1.2). It accounts for Cooper pair tunnel-
ing, quasiparticle tunneling and the capacitance across the junction. The current across the
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RCSJ can be found by applying Kirchoffs laws to the circuit depicted in Fig. (1.2) and using
Eqs. (1.5,1.6) and reads

IRCSJ = Ic sin γ +
U(t)

R
+ C

∂U(t)

∂t

= Ic sin γ +
Φ0

R 2π

∂γ

∂t
+

Φ0C

2π

∂2γ

∂t2
. (1.8)

Eq. (1.8) admits to be interpreted as an equation of motion for a so-called phase-particle.
Using the mass of the phase particle given by

m ≡
(

!
2e

)2

C

allows to rewrite the equation of motion as

0 = m
∂2γ

∂t2
+

m

R C

∂γ

∂t
+ EJ

(
sin γ − IRCSJ

Ic

)
, (1.9)

where it should be noted that the mass m has units of kg ·m2 in this definition. Furthermore,
one can introduce a potential

V (γ) ≡ −EJ

(
cos γ +

IRCSJ

IC
γ

)
(1.10)

such that Eq. (1.9) describes the motion of a damped particle in this potential. For obvious
reasons this potential is called washboard potential (see Fig. (1.3)).

Depending on the slope of the washboard potential and the temperature of the system,
thermal excitations or quantum fluctuations can lead to the escape of the phase particle out
of a well, corresponding to a finite voltage drop across the junction. Moreover, the case of an
unbiased junction IRCSJ = 0 corresponds exactly to the sinusoidal potential of a mathemati-
cal pendulum, such that both modes of motion, oscillatory and perpetually revolving can be
studied in this system.

If the slope of the potential admits metastable wells (0 < IRCSJ/IC < 1) and thermal
excitations are negligible (kBT & EJ ) it has been experimentally shown that the energy
levels for the phase particle in such a metastable well are quantized and can be approximated
by an anharmonic oscillator (energy levels are indicated in Fig. (1.3)) [30]. This was done
by irradiating the system with microwaves of different frequencies and measuring the escape
rates from the metastable well. The escape rates showed an enhancement whenever the mi-
crowave drive passed an energy level (lifting the phase particle to the corresponding excited
state where the tunneling barrier would be smaller and hence making it easier to tunnel out).
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Figure 1.3: Washboard potential for the phase particle in a Josephson junction modeled by the RCSJ.
The red line corresponds to the situation with no bias current across the junction, whereas the other
curves show finite bias current (green IRCSJ/Ic = 0.5, blue IRCSJ/Ic = 1). The bound states
inside the wells (green curve and red curve) can be approximated by the spectrum of an anharmonic
oscillator (indicated by the blowup).

Looking at the energy levels in a metastable well, one finds that the level spacing is
unequal, in contrast to a harmonic oscillator. The anharmonicity allows then to individually
address one of the transitions and to use the system as an effective two-level system (qubit)
(see Fig. (1.3)). This is the key feature that makes the system interesting for use as a two-
level system, i.e. an artificial atom or qubit and stimulated the development of more intricate
circuits based on Josephson junctions to offer better control and tunability while retaining the
key feature of propagating quantum behaviour from the microscopic to mesoscopic scales.
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1.4 Qubit types

Building on the basic physics of Josephson junctions which we have just discussed, sev-
eral circuits have been developed for use as a qubit. In the following we will present their
principal features, their circuit and their Hamiltonian. Among other circuit details the cru-
cial parameter which determines the qubit type is the ratio of the Josephson energy EJ to
the charging energy EC . After presenting the three prevalent types (phase, flux, and charge
qubit), we will also give a short overview of the experimental milestones for each qubit type
(see e.g. [31] for a more detailed and more technical review).

1.4.1 Phase qubits

The simplest, most straightforward way to exploit the quantum physics of a Josephson junc-
tion (JJ) is a phase qubit. Here, e.g. a single junction is embedded in a superconducting ring
and connected to a current source. The system is typically designed to be dominated by the
Josephson energy EJ (EJ ' EC) such that the phase is well defined and the charge degree
of freedom suffers large quantum fluctuations. A typical circuit is schematically depicted in
Fig. (1.4).

bias current

Figure 1.4: Circuit diagram of an archetypical phase qubit (current biased JJ).

Typically, this qubit loop is inductively coupled to driving and readout circuits. Two
lowest lying levels of a metastable well of a washboard potential (see Fig. (1.3)) are used as
the qubit states. The single junction is often replaced by two junctions in parallel, enclosing
some finite area which can be threaded by an external, tunable magnetic flux. The system of
the two junctions in parallel effectively behaves like a single junction, the critical current of
which can be adjusted by tuning the external magnetic flux through the loop.

The Hamiltonian of a phase qubit can be easily found. One either reads off the Lan-
grangian from Eq. (1.9), calculates the Hamiltonian by a Legendre transform and performs
canonical quantization realizing that charge and flux are conjugate variables obeying [γ̂, Q̂] =
i! 2e. This straightforward procedure leads to the Hamiltonian

Ĥ ≡ 4EC n̂2 − EJ cos γ̂ − !IB

2e
γ̂, (1.11)

where n̂ ≡ Q̂/(2e) is the number of Cooper pairs. Another way to obtain the Hamiltonian
would e.g. be to write down the total free energy of the system.

Furthermore, there is a generally valid, systematic approach how to quantize supercon-
ducting circuits which can be found in [32, 33]. In the vicinity of IB ≤ Ic, one of the
metastable wells of the potential Eq. (1.10) can be well approximated by a cubic form
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V (γ̂) ≈ Φ0

(
γ̂ − π

2

)
(Ic − IB)− ICΦ0

6

(
γ̂ − π

2

)3

. (1.12)

If we restrict ourselves to a two-level basis inside the metastable well, we can re-express
this Hamiltonian in terms of Pauli spin operators.

Ĥqubit ≡
!ω01

2
σ̂z +

√
!

2ω01CJ
∆I(t) (σ̂x + χ σ̂z) ,

where ω01 is the transition frequency of the qubit, CJ is the capacitance across the junction,
∆I(t) = IB(t) − IC(t), and χ ≈ 1/4 is a constant determined by material properties and
the transition frequency [31]. Note that a low frequency drive ∆I(t) can be used to realize
σ̂z-rotations while a high frequency drive will cause predominantly σ̂x-rotations. 2

The junctions of phase qubits are typically big enough such that they can be fabricated
using optical lithography which makes fabrication in principle easier than for other types
that need smaller junctions. However, due to the large junction size, the number of defects
(typically two-level fluctuators) in the oxide-layer constituting the insulator of the junctions
is large. These defects couple to the qubit (which has been demonstrated by observing the
avoided crossings of the individual fluctuators and the qubit levels, see Fig. (1.5)) and cause
very high decoherence rates compared to e.g. charge qubits [34]. Only recently, improve-
ments in the material for the insulating layers of the junctions and the fabrication processes
made it possible to bring down the number of two-level fluctuators to O(1), making the sys-
tem a great qubit [35].

Phase qubits have an intrinsic advantage compared to their JJ-based competitors, namely
that the readout is built-in. To read out a phase qubit, one applies a microwave drive field
resonant to a transition frequency from the qubit excited state to some higher excited state
(e.g. 1 → 3) and observes whether the JJ switches to the voltage state. The higher the excited
state, the shallower the potential barrier that separates a metastable well from the down-hill
part of the potential and the higher the probability (in state |3〉 the tunneling rate is about 5002

enhanced) of tunneling and causing the JJ to switch to the voltage state. The switching will
only happen if the qubit has previously been in the excited state. This readout allows for a
remarkable fidelity of about 95% and is intrinsically single-shot - however it is a destructive
measurement. After the readout the qubit needs to be reinitialized.

After macroscopic tunneling and the anharmonic level structure inside a metastable well
were experimentally confirmed [30, 36], Rabi oscillations between the qubit levels were ob-
served [37] (see Fig (1.5)), reaching a remarkable visibility of about 90% in more recent
experiments using an evolved phase-qubit circuit [38]. Phase-qubits have been directly cou-
pled capacitively, yielding evidence for qubit entanglement [39, 40]. Moreover, phase qubits
have been successfully coupled via microwave on-chip cavities [41]. These experiments con-
stitute the most promising road in coupling more qubits efficiently and will be discussed in
more detail in Sec. 1.5.4.4.

1.4.2 Flux qubits

The second type of qubits we are discussing are the so-called flux qubits [42]. The two qubit
states correspond to supercurrent flowing clockwise and counter-clockwise through the loop.

2χ ≡
p

!ω01/(3∆V ), where ∆V is the barrier height of the potential given by ∆V = 2
√

2/3(ICΦ0)(1− IB/IC)3/2.
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Figure 1.5: Part (a) shows a scanning electron micrograph of a Josephson phase qubit. Part (b)
shows Rabi oscillations with a visibility of about 90%. Part (c): Avoided crossings of qubit transi-
tion and two-level fluctuators in a phase qubit. (Courtesy of Eva Weig)



1.4. QUBIT TYPES 15

Typically EJ/EC ' 1. The qubit loop, mostly containing one (rf-SQUID design [43]) or
three Josephson Junctions [44, 45] can be inductively coupled to a tank circuit [46] which is
used to adjust the flux through the qubit loop and to read out/drive the qubit.

a) b)

Figure 1.6: Part (a) shows an rf-SQUID design while part (b) shows a three JJ-SQUID design.

While for a charge qubit the gate voltage applied to one of the islands of the Josephson
junction is used to tune the Hamiltonian, for a flux qubit the two superconducting leads of
the JJ are connected to form a ring to couple to external flux. This external flux is then used
to tune the parameters of the Hamiltonian. For simplicity we will write down and motivate
the Hamiltonian of an rf-SQUID flux qubit. Here, the total flux through the loop Φ and the
gauge-invariant phase γ are equivalent. The total energy of the system is given by:

H ≡ Q2

2CJ
− EJ cos

(
2π

Φ

Φ0

)
+

1

2L
(Φ− Φx)

2 ,

where Q is the net charge on the two sides of the JJ and Φx is the externally applied flux
(Φ − Φx is the flux produced by the supercurrent in the loop), CJ is the capacitance across
the JJ and L describes the self-inductance of the loop. The first term is the charging energy
of the JJ, the second term is the JJ free energy (up to a constant) and the third term describes
the magnetic energy stored in the loop. The potential part of the Hamiltonian reads

V (Φ) ≡ V0

[
1

2

(
2π(Φ− Φx)

Φ0

)2

− EJ

V0
cos

(
2π

Φ

Φ0

)]
.

where V0 ≡ Φ2
0/(4π

2L).
Analogously to the discussion of the phase qubit (see Sec. 1.4.1), note that charge and

flux are canonically conjugate variables. After promoting the variables Q, Φ to operators, we
restrict ourselves to the two-level subspace which consists of the lowest-lying state in each
well of the double-well potential. Note that the barrier height of the double-well can be tuned
by choosing EJ , and the asymmetry by changing the external flux (see Fig. (1.7)).
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Figure 1.7: Potential energy of an rf-SQUID flux qubit. Part (a) shows the dependence of the barrier
height on the Josephson energy while part (b) depicts the dependence of the asymmetry of the potential
dependig on the external flux threading the loop. States which are localized in one of the two wells
(like e.g. the two lowest-lying states constituing the qubit) correspond to clockwise and counter-
clockwise supercurrent through the loop.

Truncating the basis yields an NMR-form of the Hamiltonian:

Ĥqubit ≡
1

2
!ω01σ̂z +

∆

2
σ̂x

The tunnel coupling ∆ between the two states can be calculated e.g. by the WKB-method
[45] or can be measured in an experiment [47]. Another possibility is the summation of all
possible tunneling paths [48]. The energy splitting of the qubit is given by

!ω01 ≡ 4π

√

6

(
EJ

V0
− 1

)
EJ

(
Φx

Φ0
− 1

2

)
.

The drawback of rf-SQUID design flux qubits is that in order to achieve a sufficiently
high barrier, one aims for the regime of EJ/V0 > 1, which requires a large product of critical
current and self-inductance. This requires a big loop-area in order to achieve a sufficiently
large self-inductance and makes the qubit very susceptible to flux noise. On the other hand,
a large critical current requires a large junction area which makes the qubit more susceptible
to dielectric losses in the junction oxide layer. Problems related to large junctions are also a
big issue for phase qubits (see Sec. 1.4.1). In practice, only a narrow parameter range proves
to be useful, which is the main reason why experimentalists soon turned to more elaborate
setups, e.g. the three Josephson junction design, to overcome those issues. These circuits
exhibit the same basic physics and are the base for almost all sucessful experiments in the
various groups around the world [44, 49–57].
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First experiments demonstrated the qubit-suitable level structure and the macroscopic su-
perposition of persistent current flowing clockwise- and counter-clockwise [58, 59]. Soon
thereafter Rabi oscillations could be observed [46, 51, 60, 61] and more recently two and
even more flux qubit have been coupled [62–65] and two-qubit quantum gates have been
demonstrated [65]. These experiments already revealed the four two-qubit states and showed
that coherent multi-qubit manipulations on flux qubits are possible. A more detailed discus-
sion of the different static and tunable coupling schemes can e.g. be found in [66, 67]. The
next step for flux qubits has been made by coupling them to on-chip microwave resonators
and realize cavity QED experiments [60, 68]. Even a four-qubit sample has been sucessfully
implemented [69].

1.4.3 Charge qubits

1.4.3.1 The Cooper pair box

The third and last archetypal superconducting qubit is the so-called charge-qubit. Also based
on Josephson junction physics, the crucial difference to the aforementioned phase and flux
qubits is that charge qubits are dominated by the charging energy, such that EC ' EJ

3.
As a consequence, these devices have energy levels defined by the number of Cooper pairs
on either side of the junction while the phase (the conjugate variable) suffers large quantum
fluctuations.

a)

Ug

Cg

Cg

Ug

b)

Φ

Figure 1.8: Part (a) shows a circuit diagram of a charge qubit. Part (b) shows the typical hard-
ware layout of a Cooper Pair Box constituting the charge qubit. Cooper pairs can tunnel across the
Josephson weak link(s) from one superconducting island to the other. This process is connected with
a charging energy which can be tuned by an external gate voltage Ug. The other tunable parameter in
the system is the flux through the loop enclosed by the two junctions and the islands which controls
the tunnel coupling between neighbouring charge states.

The Cooper pair box Hamiltonian can be easily derived from the total Gibb’s free energy
in the circuit. It reads:

Ĥ ≡ 4EC(N̂ − ng)
2 − EJ cos γ, (1.13)

which can, using the relation exp(±iγ) |n〉 = |n ± 1〉, be transformed to

Ĥ ≡ 4EC(N̂ − ng)
2 − EJ

2
(|n〉 〈n + 1| + h.c.) .

3The transmon circuit does not obey this condition, however due to its topology, shares the Hamiltonian and many
features of a charge qubit. The transmon is discussed at length in Sec. 1.4.3.2 and Sec. 3.2.
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EJ/EC

EJ/EC

Ei/EC

ng

Figure 1.9: First two energy levels of a charge qubit as function of gate charge ng and the ratio
EJ/EC . Note that the avoided crossings at half-integer values of ng are pronounced sweet spots for
small ratios EJ/EC , while for larger values of EJ/EC , the bands become more and more flat, a
fact exploited in the design of the transmon qubit (see Sec. 1.4.3.2). In this regime, the whole band
becomes a sweet spot and thus the qubit becomes insensitive to charge noise.

N̂ is the operator that counts Cooper pairs (Q̂ = 2eN̂ ), ng ≡ −VgCg/(2e) is the gate
charge (in units of Cooper pairs), EC = e2/(2(CJ + Cg)) is the charging energy correspond-
ing to one more excess Cooper pair on one island and EJ the Josephson tunneling energy
associated with either the single junction or, in case of a split-junction SQUID geometry
(Fig. (1.8), part (b)), a pair of junctions enclosing an external flux. In the latter case EJ can
be tuned by the external flux threading the SQUID loop.

The Cooper pair box can in many ways be seen as the dual to the current-biased junction
(the phase qubit). Here, two knobs are available to influence the spectrum of the qubit: It
is possible to tune the ratio EJ/EC e.g. by applying external magnetic flux, and to adjust
the level splitting by varying the gate voltage (and thus the gate charge ng). The spectrum
exhibits avoided crossings at half-integer gate charge, while the ratio EJ/EC influences the
anharmonicity of the spectrum (see Fig. (1.9)). Typically, charge qubits are operated at the
so-called sweet spot ng = 1/2 in order to make the qubit to first order insensitive to charge
noise, the most prominent source of decoherence. Unfortunately, in order to keep the qubit
at the sweet spot, one essentially loses a great deal of experimental flexibility as the in-situ
tunability of the Josephson energy by the application of external flux does not allow great
variations of the spectrum.

Near this sweet spot at half-integer gate charge, and if we restrict ourselves to the lowest
two eigenstates, we can truncate the basis of the Hamiltonian to two levels and cast it into
NMR-form. It then reads

Ĥ = −2 EC (1− 2ng) σ̂z −
EJ

2
σ̂x.
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It is noteworthy that although termed charge-qubit, it is not a distinct difference in charge
of the two islands that the qubit eigenstates are built from. On the contrary, at the sweet spot
ng = 1/2, the two levels correspond to |0〉±| 1〉, i.e. combinations of charge states.

Charge qubits proved to be very robust and to be ideally suited to strongly couple them to
on-chip microwave resonators. Already the first experiments exhibited a very strong coupling
that has by now been improved by another order of magnitude. The latest experiments rely
on an improved design of the Cooper pair box, the so-called transmon, which we will have a
closer look at in the following section.

Historically, a charge qubit was the first superconducting Josephson qubit ever to be re-
alized [70–74] which had been previously proposed by Büttiker [75] followed by further
theoretical investigations [76]. Quantum mechanical superpositions of charge states have
been experimentally observed [77]. Soon thereafter, the first cavity QED proposals [78] and
first encouraging experiments followed [79]. We will give a more detailed introduction to
circuit QED in Sec. 1.5.

1.4.3.2 The Transmon

After the Cooper pair box had proven suitable as a qubit, groups around the world worked on
design improvements. Among the goals for improvement was to reduce or even eliminate the
necessity to keep each qubit at the magic point ng = 1/2 in order to make it less susceptible
to charge noise. The key idea is to shunt the two islands with an additional capacitance in
order to operate the device in a regime of EJ/EC ' 1, where the charge dispersion in the
energy level structure becomes more and more flat. By making the whole band a sweet spot,
one eliminates the need of keeping the device tuned at half-integer gate charge. Thus, charge
noise as a major source of decoherence can be reduced drastically. This design improvement
was independently officially proposed by the Yale group [80] and Nori et. al. [81] at a point
in time where the Yale group had already performed detailed measurements on such a device.

Although the EJ/EC = O(102) regime hints that the qubit could in fact be a phase qubit,
there is a crucial difference. Phase qubits are based on current-biased junctions and by the
current, the washboard potential is tilted. The phase can thus take all values on the real
axis while for a transmon the phase only takes values between 0 and 2π. This topological
difference between a transmon and a phase qubit explains why it is possible to map a CPB
continuously into a transmon by changing EJ/EC , but not into a phase qubit.

As shown in recent experiments [82–90], the transmon qubit is the superconducting qubit
of choice at the moment and represents the state of the art. It has reached the dephasing limit
of T2 = 2T1 and resulting dephasing times of up to 3µs [90]. Simultaneously, an enormous
progress in the Jaynes-Cummings coupling strength to on-chip microwave resonators has
been realized. While early Cooper pair box circuit QED experiments reached coupling values
of about 2π · 17MHz [91], recent transmon experiments have boosted this to values of about
2π · 173MHz [2]. However, the increased coupling which allows faster gate operations also
requires a stronger anharmonicity in order to prevent leakage to higher qubit levels.
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Φ

Josephson
Junctions

Cg

Ug

Φ
CS

Figure 1.10: In addition to the usual Cooper pair box layout, the split Josephson junction between the
superconducting islands is shunted by an additional, large capacitance CS . This drastically reduces
the charging energy and thus the ratio EJ/EC . As a consequence, the energy levels are almost in-
dependent of the gate charge. This enhances coherence times while eliminating the need to tune the
qubit to a sweet spot. The price to pay is a more harmonic spectrum which makes the consideration
of higher qubit levels necessary.

In the following we will present a more detailed discussion of the trade-off between de-
creased sensitivity to charge-noise and increased coupling to the reasonator by operating in
the transmon regime and the price which one has to pay - decreased anharmonicity. This
will especially become important in Sec. 3.2, a proposal for the implementation of a reso-
nant CPhase gate between two qubits coupled by a microwave cavity, where the individual
addressing of different qubit transitions will be imperative.

Anharmonicity issues of the Transmon qubit In this section we discuss the energy level
structure of the transmon in more detail and the resulting implications for the use as a qubit.
As we have argued in the previous section, the transmon Hamiltonian is identical to the one
of a Cooper pair box (Eq. (1.13)), although the device is operated at a different regime of
EJ/EC . As we could already infer from Fig. (1.9), charge dispersion (the variation of the
energy levels with the gate charge ng) is strongly reduced when increasing the ratio EJ/EC ,
i.e. moving from the Cooper pair box to the transmon regime. At the same time, if we plot the
transition frequencies of the lowest two qubit transitions at ng = 1/2 as a function of EJ/EC

(see Fig. (1.11, part (a))), we realize that the anharmonicity (the difference in the transition
frequencies) decreases with increasing EJ/EC (see Fig. (1.11), part (b)). This makes a more
detailed analysis necessary.
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Figure 1.11: Transmon transition frequencies and anharmonicity as functions of EJ/EC . Part (a)
shows the two lowest transmon transitions while part (b) shows the relative anharmonicity αr ≡
(ω21 − ω10)/ω10. Note that around EJ/EC ≈ 8, the anharmonicity is zero, making this regime
unfavourable. In the transmon regime EJ/EC = O(102), the anharmonicity is significantly smaller
compared to the Cooper pair box charge qubit regime EJ/EC = O(1).

Following [80, 92], the CPB/transmon energy levels Em can be found by exactly solving
the Hamiltonian Eq. (1.13) and are expressed in terms of Mathieu functions:

Em(ng) = ECa2[ng+k(m,ng)]

(
− EJ

2EC

)
,

where aν(q) denotes Mathieu’s characteristic value and the function k is sorting the eigenval-
ues appropriately. These functions can, in the limit of large EJ/EC be well-approximated by
more elementary functions. From the band structure and its dependence on the variations in
the gate charge (see Figs. (1.9,1.12)) one can calculate the peak-to-peak value of the energy
bands by approximating the Mathieu functions [80, 92].

This yields

εm ≡ Em(ng = 1/2)− Em(ng = 0)

, (−1)mEC
24m+5

m!

√
2

π

(
EJ

2EC

)m
2 + 3

4

e−
√

8EJ/EC .

Remarkably, the charge dispersion is suppressed exponentially with increasing EJ/EC .
Now let us analyze how the absolute and relative anharmonicity scale with EJ/EC . They

are given simply by

α ≡ E21 − E10

αr ≡ α/E10.

From a perturbative treatment [80, 92] of a quartic expansion of the cosine potential one
obtains α , −EC and αr = −1/

√
8EJ/EC . This result agrees well with the numerical data

for EJ/EC ' 1. It is thus fair to conclude that while the decreased anharmonicity indeed
poses a problem when one attempts to do fast gate operations, as higher transitions will be
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addressed unwantedly, the gain in noise insensitivity outweighs this disadvantage by far. This
tradeoff has to be born in mind when considering the transmon as a quantum computation
resource.
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Figure 1.12: Cooper pair box/transmon energy bands for different val-
ues of EJ/EC . We plot the lowest three energy eigenvalues Ẽm(ng) ≡
(Em(ng)− E0(ng = 0)) / (E1(ng = 1/2)− E0(ng = 1/2)) as a function of gate voltage ng.
Note that with increasing EJ/EC , we continuously follow the mapping of a charge qubit (part (a))
into a transmon (part (d)). Here, the energy bands are completely flat which reduces the suceptibility
to charge fluctuations (charge noise) greatly. However, the spectrum also becomes more and more
harmonic (almost equal level spacing). In part (b) we have visualized the peak-to-peak height εm of
the m-th energy eigenvalue as a measure for the charge dispersion (see main text).
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1.5 From cavity QED to circuit QED

The following section concludes the introduction with a short overview about the young
field called ’circuit quantum electro-dynamics’ (circuit QED). We will review basic physics
(mostly the Jaynes-Cummings model and its extensions) as well as the experimental ances-
tors and closest relatives, namely cavity QED with real atoms, especially focusing on the
experiments that have been performed with Rydberg atoms.

In this section, we will derive the Jaynes-Cummings Hamiltonian [93] which describes
an atom (idealized as a two-level system) which is coupled to a single mode of the electro-
magnetic field (e.g. a cavity mode). A typical setup is sketched in Fig. (1.13). For most
experiments, this model suffices to describe the experimental findings to great precision. In
order to put the field of circuit QED - a promising and more recent physical implementa-
tion of a cavity QED setup - into physical and historical perspective, we will introduce the
reader to some select experiments that have been performed with real atoms, in particular
with Rydberg atoms and three-dimensional microwave resonators.

Circuit QED offers several advantages like e.g. even stronger coupling and unlimited
interaction times compared to real (Rydberg) atoms and cavities operated at frequencies of
visible light (microwaves). Here, the role of the atom is taken by some kind of superconduct-
ing qubit circuit as we have just discussed previously while the cavity can be realized by a
coplanar waveguide or stripline resonator fabricated onto the same chip’s surface.

Figure 1.13: Illustration of a typical optical cavity QED setup. An atom, depicted in yellow, interacts
with the electromagnetic field inside a cavity (red) that is formed by semi-transparent mirrors (blue)
that allow to couple light in and out of the cavity.
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1.5.1 Derivation of the Jaynes-Cummings Hamiltonian

The Jaynes Cummings model has been introduced by Jaynes and Cummings in 1963 [93]
and has proven to be extremely useful. In the physical situation of Fig. (1.13), we start with
writing a classical Hamiltonian for the electromagentic field inside the cavity.

Hem =
1

8π

∫
dV (E2((x, t) + (H2((x, t), (1.14)

into which we insert the field expansions for the magnetic and electric field

(E((x, t) ≡
√

4π
∑

a

pa(t) (Ea((x) (1.15)

(H((x, t) ≡
√

4π
∑

a

qa(t) (Ha((x), (1.16)

suitably normalized such that
∫

dV (Ea((x) (Eb((x) = δab and
∫

dV (Ha((x) (Hb((x) = δab. Upon
writing the Maxwell equations

∇× (E((x, t) = −1

c

∂ (H((x, t)

∂t
,

∇× (H((x, t) =
1

c

∂ (E((x, t)

∂t
,

we realize that they reduce to Hamiltonian equations of motion for the variables pa and qa

respectively for this field expansion. The Hamiltonian 1.14 in terms of the field expansions
Eqs. (1.15,1.16) reads

Hem =
1

2

∑

a

[
p2

a(t) + ω2
aq

2
a(t)

]
,

which can, imposing the usual canonical commutation relations [qa, qb] = [pa, pb] = 0,
[qb, pb] = i!δab, be immediately quantized to

Ĥem =
∑

a

!ωaĉ
†
aĉa,

where the annihilation operator

ĉa ≡
p̂a + iωaq̂a√

2!ωa

is defined in the usual way. In the following we restrict ourselves to one mode and drop
the index a. This quantized field couples to a two-level system (an atom or a qubit), the
Hamiltonian of which can be expressed in terms of Pauli spin operators and reads

Ĥatom =
ε

2
σ̂z.

It is assumed to couple to the EM-field via the interaction Hamiltonian

Hint ≡ !gσ̂x(ĉ + ĉ†),
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where the dipole moment is assumed to be along the electric field axis and ĉ + ĉ† is propor-
tional to the field amplitude. The atom dipole moment is given by µ̂ ≡ µσ̂x and we have
defined a coupling constant !g ≡ µ

√
!ω
V (V denotes the mode volume of the cavity). If we

look at the matrix elements of the interaction Hamiltonian, we find
〈
m, n

∣∣∣Ĥint

∣∣∣ m′, n′
〉

= !g
[√

nδn,n′+1 +
√

n + 1δn+1,n′

]
(1− δm,m′) ,

where n ∈ N0 is the photon number in the oscillator and m ∈ {0, 1} describes the atom
excitation. From this expression it is evident that any dynamics involves (a) a state change
of the atom and (b) only adjacent oscillator levels couple to each other via the atom. The
complete Hamiltonian reads

ĤJC = Ĥem + Ĥatom + Ĥint = !ωa

(
ĉ†ĉ

)
+

ε

2
σ̂z + !gσ̂x(ĉ + ĉ†)

and can be made more instructive by introducing the atomic rising and lowering operators
σ̂± ≡ 1

2 (σ̂x ± i σ̂y). It then reads

ĤJC = !ωaĉ
†ĉ +

ε

2
σ̂z +

!g

2

(
σ̂+ + σ̂−

)
(ĉ + ĉ†)

= !ωaĉ
†ĉ +

ε

2
σ̂z +

!g

2



σ̂+ĉ + σ̂−ĉ†︸ ︷︷ ︸
RWApart

+σ̂−ĉ + σ̂+ĉ†



 . (1.17)

One can immediately identify the excitation number conserving first two terms which lead
to a coherent exchange of excitations between the atom and the oscillator, while the last two
terms of the interaction correspond to generation of a photon while exciting the atom and
the destruction of a photon while at the same time de-exciting the atom. The last two terms
obviously do not conserve energy and thus they can often be neglected. This approximation is
called the Rotating Wave Approximation (RWA). It is acceptable as long as e.g. the system
is not very strongly driven. The term ’rotating wave’ stems from making the argument in
an interaction picture: Let us assume for the moment that the atom is in resonance with
the oscillator such that ω = ε. It is then straightforward to see that while the σ̂+ĉ + σ̂−ĉ†

part of the Hamiltonian stays time independent, while the σ̂−ĉ + σ̂+ĉ†- part starts aquiring
an oscillatory term, oscillating at twice the transition frequency and often much faster than
anything else. In these cases the fast non-RWA oscillations average out on timescales one is
interested in and thus can be neglected. The energy level scheme of the Jaynes-Cummings
Hamiltonian is visualized in Fig. (1.14).

Note that only after approximating the superconducting qubit with an ideal two level
system, the circuit QED systems conform to the Jaynes-Cummings Hamiltonian Eq. (1.17).
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ωa = ε

2g
√

n + 1

2g

|0〉
|0〉|1〉

|2〉
|3〉

...
...

... |1〉
|2〉

| ↑〉| ↓〉

Figure 1.14: Illustration of the energy level scheme of the Jaynes-Cummings Hamiltonian. Atom and
cavity mode are assumed to be in resonance (ωa = ε). The dressed states are split by 2g

√
n + 1, the

so-called vacuum Rabi frequency.
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1.5.2 Cavity QED with real atoms

This section is meant to give a short overview of cavity QED. It has been pioneered by
quantum optics on the experimental side and clearly constitutes the base on which supercon-
ducting circuit QED and photonic crystal cavity QED thrive4. Many of the ground-breaking
experiments in circuit QED have been already successfully performed in cavity QED with
real (Rydberg) atoms, others are genuinely new in the circuit QED community.

The basic idea of the field is to perform experiments where a two-level system (the atom)
is strongly coupled to an electromagnetic field mode [95]. Strong coupling in this sense
means that the coupling constant of the atom-field coupling corresponds to a time-scale that
is much shorter than any inverse decoherence rates (e.g. cavity loss rates, atom dephasing
and decay rates).

This strong coupling limit has been reached in optical systems using high-finesse cavities
and ordinary optical atomic transitions [96]. Interesting quantum effects such as e.g. the co-
herent interaction of the atom with the light-field in the cavity have been observed [97–99].
However, due to the extremely fast dynamics of optical systems in the 10−15s-range, entan-
glement could not be directly observed. Also the coherent control by suitable laser pulses
and electric/magnetic fields is challenging on these time-scales. This is one of the reasons
why a sibling called microwave cavity QED emerged. Here, a stream of Rydberg atoms is
sent through a microwave cavity, each of them interacting with the cavity field. Rydberg
atoms are atoms with a very high principal quantum number n = O(102). This has several
consequences such as very large electron orbits that are very close to a classical electron or-
bit which have diameters in the µm range and very long decay times. The transitions of the
valence electron in such a state can be addressed with microwaves rather than with light at
optical frequencies. Another advantage compared to trapped ions is that the quantum systems
are spatially separated by distances in the millimeter range easily allowing for individual ad-
dressing. In trapped ion systems the strong coupling limit can only be reached by placing the
ions very close to each other which makes individual addressing very difficult.

The strong coupling and the use of microwave technology suggest to focus on experi-
ments conducted with Rydberg atoms, to present the setup and the most important results.
This is done in the following.

4For a good introduction see [94] and references therein. This review article also covers more experimental details than
this fairly qualitative introduction.
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Experimental Setup

Rubidium atoms for microwave cavity QED are usually prepared in Rydberg states by first
effusing from an oven and then applying laser and radiofrequency pulses to them to prepare
the circular level [100]. Afterwards, the atoms are velocity-filtered in order to obtain control
over the interaction times and to guarantee repeatable conditions.

ionisation detector

atom source

microwave control field

microwave control field

microwave cavity

Figure 1.15: Schematic microwave cavity QED setup. Atoms (e.g. Rubidium) are effused from
an oven, prepared in Rydberg states and velocity-filtered before they leave the atom source. Then
they pass a first classical microwave control field which prepares the initial state of the atom. In the
Fabry-Perot cavity they interact with a quantized microwave field according to the Jaynes-Cummings
Hamiltonian before they leave the cavity, and, depending on the experiment, experience another con-
trol pulse. Finally, the atom state is determined using a field ionisation detector which can discriminate
between the Rydberg states used as the atomic two-level system.

The atoms’ initial state can then be controlled by applying a microwave pulse to them
before they enter the superconducting microwave cavity. In the cavity they interact with the
field mode according to the Jaynes-Cummings-Hamiltonian, both changing the atom and the
field state. This leaves atom and field generally entangled when the atom leaves the cavity.
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After it has left the cavity, the atom’s state can be detected with high efficiency and precision,
using a field ionisation detector.

The microwave cavity is a superconducting Fabry-Perot cavity with quality factors up to
Q = 3 · 108, corresponding to a photon lifetime of O(1ms). Although the whole apparatus
is cooled to ≈ 1K which corresponds to O(1) thermal photons in the cavity, a procedure is
needed in order to initialize the cavity in the ground state. Here, some atoms are sent through
the cavity to absorb any thermal photon. Evidently, this cooling is temporary and limits the
length of a single experimental sequence.

By suitably choosing microwave preparation pulses and interaction times with the cavity,
many highly relevant experiments can be and have been performed. We will present the most
promiment examples here without attempting to be complete.

Vacuum Rabi oscillations

Among the most prominent quantum effects are vacuum Rabi oscillations between an atom
and the cavity involving entanglement of atom and cavity [101–103]. Here, during the time
the atom is in the cavity, the initial excitation of the atom is swapped back and forth between
the atom and the cavity. This can be readily seen from the Jaynes-Cummings-Hamiltonian
Eq. (1.17) which after employing the rotating wave approximation, reads

Ĥ = !ω

(
ĉ†ĉ +

1

2

)
+

ε

2
σ̂z +

!g

2

(
σ̂+ĉ + σ̂−ĉ†

)
.

As noted before (Sec. 1.5.1), this Hamiltonian has block-diagonal form with blocks of size
2x2, allowing for immediate diagonalizaion. Let us look at the block spanned by the coupled
states |n, ↑〉 , |n + 1, ↓〉. Defining the detuning ∆ ≡ ω − ε, the eigenvalues read

λ1/2 ≡ !ω (n + 1) ± 1

2

√
∆2 + (n + 1) g2.

The corresponding eigenkets can be expressed as

|v1〉 ≡ sin θn |n, ↑〉+ cos θn |n + 1, ↓〉
|v2〉 ≡ cos θn |n, ↑〉 − sin θn |n + 1, ↓〉 ,

which conveniently assures normalization. The angle θn is defined as

tan 2θn ≡
2g
√

n + 1

∆
.

Let us now assume that we initialize the system in the state |Ψ(t = 0)〉 ≡ |n, ↑〉 and ask for
the probability |〈n, ↑|Ψ(t)〉|2 to return to this state after some interaction time t has elapsed.
In the resonant case ∆ = 0, this probability is found to be

|〈n, ↑|Ψ(t)〉|2 = cos2

(√
n + 1

2
g t

)

and the vacuum Rabi oscillations are plotted in Fig. (1.16).
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Figure 1.16: Vacuum Rabi oscillations between an atom and a cavity field mode. The plot shows the
probability to find the atom in its excited state, given that we started in the excited state at t = 0. The
frequency of oscillation is given by Ω ≡

√
n + 1 g.

Excitations are swapped at a rate given by the vacuum Rabi frequency Ω =
√

n + 1 g.
The interaction time t determines the state of the system when the atom leaves the cavity.
Except for interaction times corresponding to integer multiples of π/Ω, the resulting state will
be non-locally entangled, meaning that the entanglement between atom and cavity persists
even when the atom has left the cavity. It can then be used to confer quantum information e.g.
to a second cavity. Another possibility is to use this scheme to entangle subsequent atoms.

It is interesting to note that from the period of the vacuum Rabi oscillations, one can
infer the number states of the cavity taking part in the oscillation by virtue of the

√
n + 1

component in the frequency. A common method is thus to perform a spectral analysis (e.g.
by Fourier transform) of the vacuum Rabi signal as depicted in Fig. (1.16). If the frequency
components show a

√
n pattern, this is a clear signature that vacuum Rabi oscillations based

on Jaynes-Cummings dynamics are present in the system and that the electromagnetic field
in the cavity is really quantized.

Generation of non-classical field states

Non-classical field states, e.g. Fock states, can be constructed by tuning the interaction time
to e.g. tint = π/2Ω−1. This leads to the conversion of an excitation in the atom to a photon in
the cavity. Atom and cavity remain in a product state after the interaction. If done repeatedly,
higher Fock states can be generated easily with this method. A similar method has been most
recently used to construct arbitrary superpositions of photon Fock states using a phase qubit
coupled to a microwave resonator. We will comment on this experiment in section 1.5.4.4 in
more detail.
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Observation of quantum jumps

Assuming the cavity has a small, but finite temperature, temperature driven creation of a
photon competes with the usual cavity loss rate. Sending a stream of Rydberg atoms through
the cavity at a rate fast compared to the cavity loss rate, it is possible to observe the quantum
jumps of the photon field in the cavity in real-time [104]. When averaging the resulting
jumpy traces, one nicely recovers the thermal population of the field mode known from e.g.
an ensemble average master equation description.

The experiment is conducted as follows. The two zones before and after the cavity where
microwave fields can be applied to the atoms, are used as a Ramsey interferometer. The first
zone is used to apply a Hadamard gate (a π/2-pulse) to the atoms which leaves them in a
superposition of ground and excited state

|Ψ0〉 ≡
1√
2

(|↓〉+ |↑〉) .

Employing the intuitive view on the Bloch sphere (see Fig. (1.17)), the qubit state vector
is now precessing in the x-y plane. Unlike the vacuum Rabi experiment, the atom and the
cavity mode are now detuned which prohibits the exchange of population.

The interaction with the cavity field shifts the qubit energy splitting which leads to a
cavity-state dependent phase in the x-y plane that the qubit experiences. After the qubit has
left the cavity, another π/2-pulse is applied to the qubit which, depending on the position of
the qubit state vector in the x-y plane of the Bloch sphere, can lead to the atom being in any
superposition of excited and ground state. Generally, one observes sinusoidal interference
fringes for e.g. the excited state probability when the phase shift in between the two Ramsey
zones is varied continuously.

If the atom detector is sufficiently efficient, it is thus possible to infer whether the cavity
was in the state |1〉 or |0〉 when the atom passed. Such a detection event then marks a single
data point in a quantum jump trajectory as recorded in [104]5. In principle this experiment can
also be viewed as a Quantum-Non-Demolition (QND) [105, 106] detector for the presence
of a photon in the cavity [107]. In a QND measurement, repeated measurements give the
same results. This is the case here if we disregard the loss rate of the cavity. In order for the
measurement to be QND, the photon number state has to be fixed (the cavity field is projected
onto a number state) while the phase of the cavity field is completely randomized. For more
details on QND measurements and measurement theory as well as simulation please see
Sec. (4).

5Note that in the actual experiment the cavity state was determined by a majority vote among 8 consecutive atoms
impinging on the detector.
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Figure 1.17: This illustration shows Ramsey fringes of an atom due to a cavity state-dependent phase
shift. The atom state after passing the cavity and before the second π/2- Ramsey pulse is visualized
on the Bloch sphere while below the probability to detect the atom in the excited state after the second
Ramsey pulse is shown. The first Ramsey pulse has put the atom state vector into the x-y plane where
it precesses with a frequency given by the atom level splitting. This splitting (if the cavity and atom
are detuned from each other such that they do not exchange population) depends on the cavity state
(and the detuning). Both detuning and interaction time of the atom with the cavity can be tuned such
that e.g. the difference in phase between the cavity being in the |0〉 and in the |1〉 state leads to a phase
differnce Φ = π, yielding a maximum interference contrast. This makes it possible to QND-detect
the state of the cavity with a single atom and thus to record quantum jump trajectories.

Controlled Phase gate as example for a universal two-qubit gate

Furthermore, a controlled-phase universal quantum two-qubit gate [108] has been demon-
strated [109]. This gate can be implemented as follows: First the cavity is prepared in the
one photon state |1〉 in the way just described above. Then, an atom in state |Ψ0〉 is sent
through the cavity with the interaction time adjusted such that it performs a full 2π-Jaynes-
Cummings swap. Behind the cavity, another Ramsey pulse is applied and the atom detected.
The action of the gate is the following: If, and only if the cavity is in the |1〉 state, the
|↑〉−component of the atom state will suffer a phase shift of π, while if the cavity is in the
vacuum, no state change takes place.

In principle the setup is very similar to the Ramsey interferometric setup but with the
crucial difference that atom and cavity are in resonance while for the Ramsey experiment
they are detuned.
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Prospects for quantum information processing

In addition to a universal two-qubit gate, the full control over the atom state equivalent to the
ability to perform arbitrary local rotations, is another requirement for quantum computation.
This can be done with the Ramsey pulse zones adjacent to the cavity.

However, the prospects of these systems with respect to quantum information applications
seem to be fairly limited. The most prominent limitation is the missing concept to scale
the system to many qubits. While microwave cavity QED in principle allows to use the
photon field inside the cavity or the atom as a qubit, it is desirable to have qubits where one
can perform many operations on. This would either require many cavities or much longer
interaction times within one cavity6.

Taking the step from limited to infinite interaction times is the key improvement which
circuit QED offers compared to microwave ’Rydberg’ cavity QED or cavity QED at optical
frequencies. Therefore circuit QED seems to be more adequate as a candidate for quantum
computation applications.

6There are proposals about so-called ’sequential codes’ which might relax this contraint a bit.
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1.5.3 Cavity QED with quantum dots and photonic crystals

Compared to cavity QED experiments with superconducting circuitry, experiments with self-
assembled quantum dots and photonic crystal cavities [110–112] are still in their infancy.
However, given the remarkably long (spin)-relaxation times in the ms-range [113] measured
in these systems, they are promising candidates to perform quantum memory, computation
and communication operations. We will present the basic ingredients of experiments in this
field and the experimental state of the art as far as cavity QED is concerned.

Self-assembled quantum dots as artificial atoms/qubits

In contrast to the commonly known way to engineer quantum wells/dots from a GaAs/Al-
GaAs heterostructure by depleting the two-dimensional electron gas beneath some gate elec-
trodes, no gates are needed at all to form the dot.

The idea here is the following: By applying a very thin coating of e.g. InGaAs on top
of a e.g. GaAs substrate, the slight mismatch of lattice spacings between the two materials
induces a strain at the boundary which causes the thin, equally distributed upper layer to
spontaneously relax into little spatially separated and randomly distributed droplets on the
substrate, forming little ’hills’ (this process is termed ’self-assembly’, see Fig. (1.18)).

1µm

Figure 1.18: Micrograph image of self-assembled quantum dots. The white spots are the quantum dots
randomly distributed on the substrate by the process of self-assembly. (Courtesy of Dirk Englund)

These hills locally change the band structure of the combined material, acting as a quan-
tum well. As no gate electrodes are needed to trap e.g. excitons (bound electron-hole pairs)
in such a dot, the coherence times do not suffer from e.g. gate charge fluctuations. One
can then e.g. optically probe excitonic charge and spin degrees of freedom. The transition
frequencies of these excitons are in the frequency interval of visible light.
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Figure 1.19: Part (a) shows the electric field intensity distribution in a photonic cavity formed by the
interruption in the surface pattern. These cavities reach high Q factors as indicated by the resonance
curve (part (b)). When a self-assembled quantum dot is located inside the cavity, it can couple to a
cavity mode and the vacuum Rabi splitting can be observed (part (c)). (Courtesy of Dirk Englund)

Photonic bandgap cavities as on-chip resonators

In order to perform cavity QED experiments, one needs to engineer an on-chip cavity with a
resonance frequency in the visible light wavelength domain. This can be done by using what
is otherwise known as a ’meta-material’.

One uses e.g. lithography to pattern the surface of the heterostructure in such a way that
electromagnetic waves travelling along the surface are strongly suppressed (this is called a
photonic bandgap). If the pattern is interrupted at a certain site (see Fig. (1.19)), one has
created a localized ’exception’ to the rule that visible light waves cannot live on the surface
of the structure and thus formed a cavity. If the material already has self-assembled quantum
dots on it before applying the cavity pattern, chances are that a dot is right inside the cavity.
In this case, cavity QED experiments can be performed with the sample.

Strong coupling of quantum dots to photonic crystal cavities

In [111, 112, 114] the vacuum Rabi splitting of a self-assembled quantum dot’s excitonic
charge excitation with a photonic bandgap cavity has been measured and confirmed that
those system operate in the strong coupling limit (see Fig. (1.19)).

QND detection of the cavity photon population

A Kerr-type coupling gn̂1n̂2 between two cavity modes has been used to successfully detect
that one photon was present in the cavity (on average) [115]. Although not a photon de-
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tector or counter, this experiment nicely illustrates the general applicability of the schemes
investigated in this thesis. Based on the same type of coupling, I will show the possibility of
itinerant single photon detection in circuit QED in Sec. (6). Although there is still consider-
able experimental ground to cover until single-shot photodetection will be possible in these
systems, we will discuss the conditions and prerequisites in more detail in Sec. (6).
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1.5.4 Cavity QED using superconducting circuits

1.5.4.1 Superconducting on-chip microwave resonators

10 µm

L = λ = 1 cm

C
C

Figure 1.20: A transmission line resonator has the topology of a coaxial cable that has been cut in
the middle. It consists of a center strip which is coupled to a transmission line on one or both sides
by coupling capacitors C while being separated from ground-planes on either side by a gap which
is about 10µm wide. The length of the resonator is in the cm-range which corresponds to GHz
frequencies. Due to its extreme aspect ratio, it can be modeled by a one-dimensional network of
inductors which are capacitively coupled to ground. The electric field distribution for one mode of the
resonator is indicated in orange.

In order to perform cavity QED experiments with superconducting circuits which are inte-
grated on the surface of a chip, suitable resonators are needed. As the artificial atoms (qubits)
we have discussed have resonance frequencies in the GHz-range, resonator dimensions of
about 1cm are needed. The resonator type we are going to discuss is called a co-planar
waveguide (or transmission line) resonator and is the most commonly used in present-day
experiments. Fig. (1.20) illustrates its dimensions and the basic physics. It can be viewed as
a coaxial cable which has been cut such that there is a center conductor which is separated
by an insulator from ground planes at either side. The center conductor has been cut in two
places, forming an isolated strip about 1cm long. The resonator is then formed in between
the cuts (which are coupling capacitors to the rest of the transmission line through which the
cavity can be driven/read out).

Quantization of a one-dimensional transmission line resonator

The analogy to a coaxial cable extends even further, namely the lumped element network
used to describe a coaxial cable can also be used to model a transmission line resonator (see
Fig. (1.20)). This well-known derivation can e.g. be found in [78]. Let the transmission
line resonator be of length L with a capacitance to ground per unit length given by c. The
inductance per unit length be denoted by l. The Lagrangian density then reads

L ≡ l

2
j(x, t)2 − 1

2c
q(x, t)2, (1.18)
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where q(x, t) is the charge density along the center conductor and j(x, t) is the current den-
sity. The coupling to the rest of the transmission line has to be ignored at this stage, but could
be phenomenologically added either classically into the equations of motion or in a Lindblad
master equation in the quantum case to include losses or driving of the cavity. In order to
simplify the Lagrangian (1.18), we use the one-dimensional continuity equation which states
that

∂

∂x
j(x, t) = − ∂

∂t
q(x, t).

Thus, the current density can be expressed by the charge density via

j(x, t) = − ∂

∂t

∫ x

−L/2

dx′ q(x′, t) =: − ∂

∂t
θ(x, t).

For convenience, we have introduced the new variable θ(x, t) in terms of which the La-
grangian reads

L =
l

2
θ̇2(x, t)− 1

2c
(∂xθ(x, t))2.

The Euler-Lagrange equation

∂µ

(
∂L

∂ (∂µθ)

)
− ∂L

∂θ
= 0

in this case reduces to the wave equation

∂θ(x, t)

∂t2
= − 1

v2

∂θ(x, t)

∂x2

which can be solved e.g. by a separation of variables upon imposing the boundary conditions
θ(−L/2, t) = θ(L/2, t) = 0 for the spatial part. Teh velocity is given by v ≡

√
1/(lc).The

result shows the typical even and odd modes of a resonator of length L with resonance fre-
quency ωn ≡ nπv/L

θ(x, t) =

√
2

L

[
∑

nodd

Φn(t) cos
(nπ

L
x
)

+
∑

neven

Φn(t) sin
(nπ

L
x
)]

.

When inserting this mode expansion back into the Lagrangian density, we can explicitly
perform the spatial integration to obtain the Lagrangian (function)

L =
∑

n

l

2
Φ̇n(t)− 1

2c

(nπ

L

)2

Φ2
n(t)

which is the expected set of harmonic oscillators that can be immediately quantized to

Ĥ =
∑

n

!ωnâ
†
nân,

where Φ̂n(t) =
√

!ωnc/2 L/(kπ)
[
ân + â†n

]
and its conjugated momentum (πn ≡ lΦ̇n) reads

π̂n(t) = −i
√

!ωnl/2
[
ân − â†n

]
. The spatial mode distribution can then be used to calculate

the coupling qubits which can be inserted into the gap between the center conductor and the
ground-planes (see e.g. Figs. (5.1,1.23)).
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Coupling to charge qubits

The coupling to qubits placed inside the resonator is either capacitive (via the electric field, in
case of charge qubits) or inductive (via the magnetic field, in case of flux qubits). For charge
qubits, the Jaynes-Cummings coupling to the resonator is given by

!g ≡ Cg

CJ + Cg
e

√
!ωn

cL
,

where Cg is the capacitance between the charge qubit and the transmission line resonator
and CJ is the capacitance of the Josephson Junction of the qubit. The extreme aspect ratio
confines the mode to such a small volume that vacuum field strengths of O(1V/m) can be
achieved which results in a coupling orders of magnitude greater than e.g. realized in ex-
periments with Rydberg atoms. Most recently, the qubit-resonator coupling has been pushed
to values of 2π · 173.5 MHz exceeding all dissipative rates in the system by two orders of
magnitude[2].

Quality factors

Owing to the superconducting low-loss material and the freedom in the design of the coupling
capacitors at either end of the resonator, a large parameter range is accessible for the typical
decay rates of these resonators. They range from only a few kHz (high quality factor Q =
O(106), e.g. for many coherent operations between the cavity and the qubits) to a few MHz
(low quality factor, e.g. for fast readout of a qubit) and can be chosen suitably depending on
the experiment [116].

1.5.4.2 Charge qubits/transmon qubits

Soon after first theoretical proposals had been published [78, 117, 118], the Yale group started
an impressive series of experiments which from 2004-2008 set the pace in superconducting
circuit QED. More recently, the Wallraff group at ETH Zürich (a Yale spin-off) and the group
at Saclay have met the pace and performed interesting experiments as well. In the following
we will briefly present some of the most relevant experiments.

Strong coupling between a charge qubit and a microwave resonator

Strong coupling between a charge qubit and the coplanar waveguide resonator has been first
reported in [79], where a Jaynes-Cummings coupling of 2π · 17MHz between qubit and res-
onator was measured. More recently this value has been pushed to values of 2π ·173.5 MHz
[2]. Strong coupling here means that the coupling is much larger than any dissipative rates in
the system. This yields Vacuum Rabi peaks that are separated by much more than a linewidth
and thus are clearly visible.
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Single atom laser

In [119], the Nakamura group showed that a single atom (a Cooper pair box qubit) coupled
to a coplanar-waveguide resonator, can emit coherent, monochromatic microwave radiation.
Typical lasing characteristics such as amplification and purification (line-width of the emitted
radiation shrinks) have been observed. Only recently, comprehensive theory has been brought
forward [120] which nicely explains all features of lasing and cooling in this setup.

Dispersive resolution of resonator number states

While the analysis of the number state distribution in the resonator can be done via the reso-
nant qubit-cavity Jaynes-Cummings interaction (thus inevitably altering the resonator state),
the very same thing can also be done dispersively utilizing the AC-Stark effect.

Starting from a Jaynes-Cummings Hamiltonian Eq. (1.17) and assuming strong detuning
of qubit and cavity, one can transform the Hamiltonian using a unitary transformation U ≡
exp

[
g
∆

(
aσ+ + a†σ−

)]
and keeping terms up to second order in g to a version that makes the

effects of the ac-Stark shift/Lamb-shift clearly visible [78]:

H ≈ !ωa†a +
!
2

[
ε + 2

g2

∆
(a†a +

1

2
)

]
σz.

This result suggests that if the resonator is populated with a state consisting of more than
just one number state, the qubit resonance in spectroscopy should be split up into equally
spaced lines. To resolve those lines, the dispersive coupling g2

∆ ≈ 2π · 17MHz has to be
larger than the qubit linewidth (here ≈ 2π · 1.9MHz), a condition which has been fulfilled
in [121], where this dispersive number splitting has been first observed. There is also an
accompanying theory paper [122] interpreting the measurements in detail.

Single Photon generation

In this experiment [123], a cavity with asymmetric coupling to the transmission line has been
coupled to the qubit in the same way as in previous experiments. The modification is that the
input port for driving and spectroscopy tones has a much lower capacitance and hence decay
rate than the output port.

Driving the qubit (which is tuned almost into resonance with the cavity) with Rabi (π)-
pulses, the qubit, once excited, has a very large chance (enhanced by the Purcell effect) to
radiatively decay into the cavity mode, resulting in a single photon inside the cavity.

Then, due to the fact that the cavity’s output port has a very large decay rate, the chance
that the photon will leave the cavity through the output is very high once the qubit excitation
has been transferred to the cavity via spontaneous emission.

By carefully separating the signals of driving pulses and resulting single photons stem-
ming from the qubit’s spontaneous emission, an average efficiency of this single photon
source of 39% has been established. However, as a remark to this experiment it should be
noted that - strictly speaking - no evidence for a single photon has ever been presented. Due
to the lack of a single-shot readout of the qubit, it only has been possible that on an ensemble
average basis, a single photon has been generated with the reported efficiency. The missing
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ingredient is a single-shot photo-detection scheme which we have proposed and analyzed in
Sec. (6).

Fig. 3a) or equivalently an alternating current (a.c.) Stark shift of the
qubit frequencies23. The frequency shift x1,2 can be calculated from
the detuning D1,2 and the measured coupling strength g1,2 (ref. 21).
The last term describes the interaction between the qubits, which is a
transverse exchange interaction of strength J5 g1g2(1/D111/D2)/2
(see Fig. 1c). The qubit–qubit interaction is a result of virtual
exchange of photons with the cavity. When the qubits are degenerate
with each other, an excitation in one qubit can be transferred to the
other qubit by virtually becoming a photon in the cavity (see Fig. 3b).
However, when the qubits are non-degenerate jv12v2j? J, this
process does not conserve energy, and therefore the interaction is
effectively turned off. Thus, instead of modifying the actual coupling
constant7–9, we control the effective coupling strength by tuning the
qubit transition frequencies. This is possible because the qubit–qubit
coupling is transverse, which also distinguishes our experiment from
the situation in liquid-state nuclear magnetic resonance (NMR)
quantum computation, where an effective switching-off can only
be achieved by repeatedly applying decoupling pulses24.

We first observe the coherent interaction between the two qubits
via the cavity by performing spectroscopy of their transition frequen-
cies (see Fig. 2). This is done by monitoring the change in cavity
transmission when the qubits are probed by a second microwave
signal. By applying a magnetic flux the qubits can be tuned through
resonance with each other (see Fig. 2b), revealing an avoided cross-
ing. The magnitude of the splitting agrees well with the theoretical
value 2J5 2g1g2/D5 2p?26MHz when one takes into account that
g1,2 vary with frequency for a transmon qubit21. The splitting is well
resolved, with a magnitude Jmuch greater than the qubit linewidths,
indicating a coherent coupling and that the qubits are in the strong
dispersive limit25. We note that although the coupling strength J is
smaller than the cavity decay rate k/2p< 33MHz, the avoided cross-
ing is nearly unaffected by the cavity loss. This is possible in such a
large-k cavity, which is required for fast measurements, because only
virtual photons are exchanged; if real photons were used, the cavity-
induced relaxation of the qubits (Purcell effect20) would make coher-
ent state transfer unfeasible.

Another manifestation of the coherence of this interaction is
the observation of a dark state. One observes a disappearance of
the spectroscopic signal near the crossing point, which is due to
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Figure 1 | Sample and scheme used to couple two qubits to an on-chip
microwave cavity. Circuit (a) and optical micrograph (b) of the chip with two
transmon qubits coupled by a microwave cavity. The cavity is formed by a
coplanarwaveguide (light blue) interruptedby two coupling capacitors (purple
boxes and inset). The resonant frequency of the cavity is vr/2p5 5.19GHz
and its width is k/2p5 33MHz, determined by the coupling capacitors. The
cavity is operated as a half-wave resonator (L5 l/25 12.3mm) and the
electric field in the cavity is indicated by the grey line. The two transmon
qubits (optimized Cooper pair boxes, red and green boxes and inset) are
located at opposite ends of the cavity, where the electric field has an antinode.
Each transmon qubit consists of two superconducting islands connected by a
pair of Josephson junctions and an extra shunting capacitor (‘interdigitated
finger’ structure in the green inset). The left qubit (qubit 1) has a charging
energy of EC1/h5 424MHz and maximum Josephson energy of Emax

J1 /h5
14.9GHz. The right qubit (qubit 2) has a charging energy EC2/h5 442MHz
and maximum Josephson energy of Emax

J2 /h5 18.9GHz. The loop area
between the Josephson junctions for the two transmon qubits differs by a
factor of approximately 5/8, allowing a differential flux bias. The microwave
signals enter the chip from the left, and the response of the cavity is amplified
andmeasured on the right. c, Scheme of the dispersive qubit–qubit coupling.
When thequbits are detuned fromthe cavity ( |D1,2 | 5 |v1,22vr | ? g1,2) the
qubits both dispersively shift the cavity. The excited state in the left qubit
|#"0æ interacts with the excited state in the right qubit |"#0æ via the exchange
of a virtual photon |##1æ in the cavity.
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Figure 2 | Cavity transmission and spectroscopy of single and coupled
qubits. a, The transmission through the cavity as a function of applied
magnetic field is shown in the frequency range between 5 and 5.4GHz.When
either of the qubits is in resonance with the cavity, the cavity transmission
shows an avoided crossing due to the vacuum Rabi splitting. The maximal
vacuumRabi splitting for the two qubits is the samewithin themeasurement
uncertainty and is,105MHz. Above 5.5GHz, spectroscopic measurements
of the two qubit transitions are displayed. A secondmicrowave signal is used
to excite the qubit and the dispersive shift of the cavity frequency is
measured. The dashed lines show the resonance frequencies of the two
qubits, which are a function of the applied flux according to
v1,2~vmax

1,2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j cos (pW=W0)j

p
. The maximum transition frequency for the

first qubit is vmax
1 /2p5 7.8GHz and for the second qubit is vmax

1 /2p5
6.45GHz. For strong drive powers, additional resonances between higher
qubit levels are visible. The black box indicates the region shown in
b. b, Spectroscopy of the two-qubit crossing. The qubit levels show a clear
avoided crossing with a minimum distance of 2J/2p5 26MHz. At the
crossing the eigenstates of the system are symmetric and antisymmetric
superpositions of the two qubit states. The spectroscopic drive is
antisymmetric and therefore unable to drive any transitions to the
symmetric state, resulting in a dark state. c, Predicted spectroscopy at the
qubit–qubit crossing using a markovian master equation that takes into
account higher modes of the cavity. The parameters for this calculation are
obtained from the vacuum Rabi splitting and the single-qubit spectroscopy.
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Figure 1.21: Two-qubit spectroscopy data showing the cavity-mediated qubit-qubit coupling. Part
(a) shows the qubit transition frequencies as functions of the magnetic field, part (b) is a blow-up of
the avoided crossing of the two- qubit arches which nicely fits the theoretical prediction (part (c)).
(Courtesy of J. Majer et. al.)

Coupling two qubits via a cavity

Once the experiments using single qubits had advanced significantly, the next step towards a
quantum computing application has been made by coupling two qubits via the same cavity
using it as a bus [82]. As has been shown in [12], the Jaynes-Cummings interaction gen-
erates a flip-flop Hamiltonian between two qubits which are both detuned from the cavity,
but in mutual resonance. The two qubits will exchange their population at a rate given by
the dispersive coupling J ≡ g2

∆ (For more details see Sec. 2 and [82]). This interaction is
the natural generator of an iSWAP gate, which is, up to phases, equivalent to a SWAP gate.
Aborting this gate at half the time realizes the so-called

√
iSWAP gate which is a universal

entangling two-qubit gate equivalent to a CNOT gate from a quantum information process-
ing perspective. During the whole process, the cavity is never populated (except for virtual
excitations).
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Note that in this experiment no local flux or charge control lines (as suggested in [124]
and later realized in [1, 125]) have been used. Instead, the qubits’ transition frequencies
were tuned pseudo-independently using the following trick: By manufacturing one qubit’s
Josephson-loop area significantly larger than the others, one of the effects is that the period of
their transition frequency when ramping the magnetic field is different. This causes the arches
to intersect at some value of the magnetic field. Here, an avoided crossing was observed spec-
troscopically by the usual transmission measurements which confirmed the cavity-mediated
qubit-qubit coupling in excellent agreement with the theoretical predictions (see Fig. (1.21)).

Testing higher order Jaynes-Cummings transitions with high drive powers

The Jaynes-Cummings model, simple as it is, still holds for enourmously high driving pow-
ers as demonstrated in [2]. Here, many higher-order transitions between eigenstates of the
Jaynes-Cummings model (up to seven photons in the cavity) have been observed and ex-
actly matched to the theoretical predictions which have been obtained by solving a simple
Lindblad-master equation taking up to seven resonator states into acount (see Fig. (1.22)).

Implementation of two-qubit algorithms

Building on the work where a two-qubit iSWAP gate was first realized [82], the design has
been successfully completed by adding local flux control lines running past each qubit, al-
lowing to tune the qubits’ resonance frequencies independently and on a ns timescale [1].

Figure 1.23: SEM micrograph of transmon qubits with local flux control lines [1]. (Courtesy of
Leonardo di Carlo et al. )

Here, the Grover database search algorithm [8] as well as the Deutsch-Josza algorithm
[10, 126] have been implemented. However, the main achievement in this experiment [1] is
clearly the capability to perform single qubit gate sequences independently on the two qubits
(owed to the local flux control).

These algorithms applied to two qubits remain rather academical in terms of ’real’ appli-
cation (they do only consist of O(5) gates anyway) and so this experiment is to be viewed
rather as a proof-of-principle showing the possiblities offered by the newly introduced local
flux control. In order to really perfom any useful computation, systems scaled up to at least
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Figure 1.22: Higher-order Jaynes-Cummings transitions observed in [2]. Part (a) illustrates the mea-
sured transitions in the level diagram, part (b) shows the spectroscopy signal as a function of frequency
(horizontal axis) and drive power (vertical axis). (Courtesy of L. Bishop et al.)
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O(100) qubits are needed. In this thesis, I will present an architecture for such a scalable
system (see Sec. 2).

Three qubits coupled to a resonator

Combining three transmon qubits with local flux control at each qubit, the Wallraff group
managed to explore in detail the multi-atom extension of the Jaynes-Cummings-model, the
so-called Tavis-Cummings-Model [127]. One of the highlight features of this model is that
the collective qubit-cavity coupling scales with

√
N,where N is the number of atoms/qubits.

In this experiment [125], first one qubit, then two and at last all three qubits were tuned into
resonance with the cavity and the resulting avoided crossing with the cavity line analyzed
using transmission spectroscopy. The

√
N scaling was nicely observed, confirming yet again

how good a model the Jaynes-Cummings/Tavis-Cummings model is to describe the circuit
QED systems.

Observation of Lamb shift - corrections to the Jaynes-Cummings dynamics

In the dispersive limit, the qubit-resonator dynamics is usually well-approximated by a RWA
treatment of the Jaynes-Cummings interaction (see Sec. (1.5.1)). Similar to the ac-Stark shift
interpretation of the dispersive energy shifts, given that the resonator is in its vacuum state,
the very same effect can be interpreted as the Lamb-shift [128, 129] an atom experiences due
to the vacuum energy density of the electromagnetic field.

While a dispersive treatment suggests that this energy shift scales with ∝ g2

∆ , where g
is the qubit resonator coupling and ∆ is their mutual detuning, significant deviations from
this scaling have been observed in this experiment in the Wallraff group [130]. Remarkably,
when taking into account the counter-rotating terms dropped in the RWA, i.e. by numeri-
cally diagonalizing Eq. (1.17), the measurements and theoretical predictions are in excellent
agreement.

1.5.4.3 Flux qubits

Flux qubits as introduced in 1.4.2 have been successfully coupled to on-chip microwave
resonators only recently [60, 68, 131]. Here, the qubit was inductively coupled to an on-
chip LC-oscillator. Qubit spectroscopy showed a strong qubit-cavity coupling of the order of
0.2GHz while all loss rates in the system are of the order of 0.01GHz. Thus, vacuum Rabi
oscillations indicating coherent evolution of the coupled qubit-cavity system and a hallmark
of the so-called strong-coupling regime, could be observed.

In another experiment, the selection rules stemming from the symmetry/asymmetry of the
flux qubit potential have been extensively studied in a two photon probe experiment [132].
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1.5.4.4 Phase qubits

Experiments using phase qubits have suffered from their large and thus impure Josephson
junctions for a long time. As already explained at length in 1.4.1, this had limited coherence
times to a degree that experiments coupling them coherently to resonators were not reachable.
However, in 2007, breakthrough improvements to both fabrication as well as materials [133]
have jump-started circuit QED experiments with phase qubits. Here we are going to present
the most prominent examples.

Coherent coupling of two qubits

Building on the experience gathered with an experiment in 2006 which coupled two phase
qubits capacitively [134], simple capacitive coupling was replaced by a coplanar-waveguide
resonator with the qubits at either end [41]. It was demonstrated that an excitation can be
transferred back and forth between the qubits indirectly via their interaction with the cavity.
The protocol for the state transfer is the following: One starts with both qubits and the cavity
in the ground state and both qubits detuned from each other and the cavity. One qubit (qubit
A) is pulsed into the excited state, then brought into resonance with the cavity for a time
t = π/g, where g is the Jaynes Cummings coupling as introduced in Eq. (1.17). This will
transfer the excitation fully into the cavity, leaving qubit A again in the ground state. After
qubit A has been detuned again, qubit B is brought into resonance with the cavity for the
same time t = π/g, yielding a complete cavity-mediated state transfer between the qubits.
Similarly, by varying the interaction time and the sate of qubit A when starting the sequence,
the qubits can as well be entangled or two-qubit gates - such as a CPhase gate (see Sec. 3.2)
- performed.

High-fidelity single qubit gates

Single-qubit gates are one of the crucial ingredients for any quantum computing application.
Consequently, it is necessary to show that a given architecture allows for individual address-
ing and at the same time a high fidelity for arbitrary single qubit gates (local rotations). In
[135], the Martinis/Cleland group made the effort and managed to account for all gate and
measurement errors and improved the single-qubit gate fidelity to a level of 0.98 setting the
record for gate fidelities in solid state systems. The remaining infidelity can be fully ex-
plained by qubit relaxation and thus leaves room for further optimization (e.g. using optimal
control pulse shaping techniques).

Generation and measurement of arbitrary resonator states

With excellent control of single-qubit rotations and built-in fast qubit readout and strong cou-
pling to microwave resonators already demonstrated, the Martinis/Cleland group set a new
reference [136, 137] for the quality of non-classical state-engineering not only in supercon-
ducting circuits but also when comparing to quantum optics. The basic idea is to pulse the
qubit into its excited state and transfer the excitation to the resonator, thereby adding pho-
tons one-by-one and climbing the ladder of photon-number states in the resonator. This has
been demonstrated up to photon numbers of O(20). The presence of a number state was



46 CHAPTER 1. INTRODUCTION

directly confirmed by analyzing the period of the resulting vacuum Rabi oscillations between
the qubit and the resonator which scales with the

√
n of the photon number as shown in

Sec. (1.5.2). This scaling with the square root is shown in Fig. (1.24).
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Figure 1.24: Fourier transform of vacuum Rabi oscillation signal depending on the prepared resonator
state. The

√
n scaling can be clearly observed which makes this experiment proof for the creation

of non-classical field states using superconducting phase qubits and on-chip microwave resonators.
(courtesy of Max Hofheinz et al.)

a) b)

Figure 1.25: Wigner function and density matrix comparison of theory and experiment for different
non-trivial superpositions of resonator number states. Part (a) shows the state |0〉+ |5〉, part (b) shows
the state |0〉+ i |3〉+ |6〉. (courtesy of Max Hofheinz et al.)
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However, the possiblities to construct states go far beyond simple photon number states.
In this experiment7, an arbitrary resonator state can be constructed. The corresponding, pos-
sibly complex pulse sequence can be automatically determined by a straightforward state
decompilation protocol M. Hofheinz et al. have developed. To confirm the quality of the
state synthesis scheme, the complete Wigner function was reconstructed and excellent agree-
ment to the theoretical prediction was found (see Fig. (1.25)).

7unpublished results submitted to Nature Physics. Presented by Max Hofheinz/Andrew Cleland at the QDDJ Conference
at Lago di Garda, Italy (Oct. 2008), DPG march meeting (March 2009) and the CeNS Winterschool (March 2009, St.
Christoph, Austria).
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Chapter 2

The Cavity Grid - a scalable architecture
for quantum computation

Circuit QED experiments have aimed at offering a platform for quantum computational tasks
from the beginning [78]. Scalability is one of the di Vincenzo criteria (see Sec. 1.2) to be
met before being able to perform useful tasks such as the factorisation of large numbers or
efficient database search. In this chapter, we propose an architecture for quantum computing
based on superconducting circuits.

We were inspired by early-day crossbar geometries in classical computing like e.g. mag-
netic core memory, where the current through intersecting wires running through magnetic
loops allowed to individually address any bit on the grid to store and read out information
(see Fig. (2.1)). Later on, cross-bar geometries were e.g. revived in molecular electronics as
well as in addressing of pixels in early LCD displays.

Figure 2.1: Photograph of a magnetic core memory array. The current sent through a pair of crossing
wires can be used to induce a magnetic field at the crossing location which can be used to write or
read out the magnetization of the magnetic loop at the crossing point. Magnetic core memories were
widely used in the 1950s. It is the earliest form of so-called random access memory (RAM) in contrast
to other, e.g. tape-based sequential memory architectures. (Courtesy of H.J. Sommer III, Professor of
Mechanical Engineering, Penn State University)

As demonstrated e.g. in [82], transmission line resonators can be utilized as a quantum
bus which offers a selective, global coupling between all qubits in the resonator. However,

49
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as we will argue, the number of qubits which can be placed inside a single resonator, is very
limited and far from a number that satisfies the requirement of scalability. Consequently, we
exploit the topological advantages of a crossbar geometry compared to e.g. nearest neighbour
coupling schemes like in trapped ions and propose a scheme where on-chip planar microwave
resonators are arranged in a two-dimensional grid with a qubit at each intersection. This
allows any two qubits on the grid to be coupled at a swapping overhead independent of their
distance. As it turns out, all fault-tolerant quantum computation schemes rely on reaching
a certain error threshold per gate operation. Only once this criterion is met, adding layers
of error correction actually reduce the over-all errors in the computation to arbitrarily small
values. However, the value of this threshold depends strongly on the coupling topology. The
semi-global coupling scheme the cavity grid offers suffices to serve as a building block for a
truly scalable quantum computation architecture including error-correction.

We demonstrate no less than that this approach encompasses the fundamental elements
of a scalable fault-tolerant quantum computing architecture.

This chapter has been published, essentially in the form presented here, in [124] (F.
Helmer, M. Mariantoni, A.G. Fowler, J. von Delft, E. Solano, and F. Marquardt. Two-
dimensional cavity grid for scalable quantum computation with superconducting circuits.
Europhysics Letters, 85(5), 03 2009).

(i, j)

ω
cavity

(a) (b)
t

(i, j′)

δω

jj′

i NA

NB

Figure 2.2: Schematic cavity grid setup. (a) The 2D cavity grid, with qubits depicted as circles and
cavities shown as lines. Qubit (i, j) sits at the intersection of cavities i and j. Colors distinguish
the transition frequencies, which differ within any column or row (in the ‘idle state’). (b) A two-
qubit operation is induced by tuning two qubits into mutual resonance to exploit the cavity-assisted
dispersive coupling.
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2.1 Introduction

Superconducting circuits are promising candidates for scalable quantum information pro-
cessing [42, 58, 62, 71, 72, 134, 138–141]. This route was further strengthened with the
advent of circuit quantum electrodynamics. Starting with early proposals for implement-
ing the quantum-optical Jaynes-Cummings model in the context of superconducting circuits
[118, 142, 143], this research direction became a major topic after it was pointed out that
on-chip microwave transmission line resonators could be coupled to superconducting qubits
[78]. Since then, a series of ground-breaking experiments have demonstrated these concepts
[60, 68, 79], including achievements like dispersive qubit readout [144], photon number
splitting [121], single-photon generation [123], or lasing by a single artifical atom [119].

Recent experiments [41, 82] have advanced to coupling two qubits via the cavity, yielding
a flip-flop (XY) interaction permitting two-qubit gates. If multiple qubits share one cavity,
arbitrary qubit pairs could be selectively coupled [145], which outperforms nearest-neighbor
setups (no swapping overhead or disruption by single unusable qubits). However, moving
towards more qubits requires suitable novel architectures.

In this section, we present and analyze an architecture that builds on these elements and
extends them into the second dimension, by forming a crossbar-like geometry of orthogonal
microwave resonators, with qubits sitting at the intersections (Fig. 2.2). The global coupling
within each row and column makes this setup distinct from existing proposals for array-
like arrangements in ion traps [18, 19], optical lattices [146], semiconductor spins [147] or
superconductors [42, 148]. We show

1. how to couple any two qubits on the grid

2. with minimal swapping overhead using

3. an appropriately chosen (’Sudoku’-style) frequency distribution, and

4. suggest a scalable fault-tolerant quantum computing architecture.

Before we turn to a description of our proposal, we note that experiments right now are ob-
viously still struggling to improve the fidelity of single- and two-qubit operations for super-
conducting qubits, and this painstaking work is crucial for further progress in the whole field.
Nevertheless, the effort going into this endaveour is ultimately justified by the long-term goal
of implementing large-scale circuits able to perform nontrivial quantum computation tasks,
where the numbers of qubits may run into the thousands. While present-day experiments are
still very far from this goal, it is worthwile to develop architectures that couple more than
a handful of qubits in a nontrivial setup, and which represent a challenging medium term
goal for the experiments to strive for. We will demonstrate that parameters (dephasing times,
coupling strengths etc.) near those that are available nowadays would allow for a first proof-
of-principle experiment in our proposed architecture, and further progress in the perfection
of single qubits will enable truly useful larger scale versions. The basic ideas behind our
scheme are sufficiently general so as to permit replacing individual building blocks (partic-
ular qubit types, two-qubit gates etc.) by improved versions that might be developed within
the coming years.

In addition, we would like to emphasize that even though any working set of universal
one- and two-qubit operations permits to implement arbitrary computations in principle, it
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is by no means clear that the resulting generic implementation is efficient. Rather, in order
to make the most efficient use of resources, it is mandatory to come up with larger scale
schemes that exploit the particular features of a given physical realization. In this sense, our
proposal is similar in spirit to previous proposals for other physical systems that envisaged
how well-known elementary operations could be extended to an efficient two-dimensional
architecture [18, 19, 146].

2.2 Basic architecture

The cavity grid consists of cavity modes belonging to NA horizontal (A) and NB vertical (B)
cavities,

Ĥcav =
NA∑

j=1

!ωA
j â†j âj +

NB∑

j=1

!ωB
j b̂†j b̂j,

coupled to one qubit of frequency εij at each intersection (i, j), generalizing [78] to a 2D
architecture:

Ĥcav−qb =
∑

i,j

n̂ij[g
A
ij(âi + â†i ) + gB

ij (b̂j + b̂†j)]. (2.1)

For definiteness we consider charge (or transmon) qubits, unless noted otherwise. Then the
couplings gA(B)

ij between the horizontal (vertical) cavity mode i (j) and the dipole operator
n̂ij of qubit (i, j) depend on the detailed electric field distribution and geometry of the qubit.
Eq. (2.1) leads to the Jaynes-Cummings model and the cavity-mediated interaction between
qubits [78]. It can be realized in different ways: A capacitive coupling was demonstrated for
charge [79] (or ’transmon’ [82, 121]) and phase qubits [41], while for flux qubits [60] n̂ij is
the magnetic moment coupling to the magnetic field.

It is well-known [78, 82] that the Hamiltonian (2.1) induces an effective flip-flop interac-
tion of strength

Jαβ = gαgβ
∆α + ∆β

2∆α∆β

between each pair of qubits (α, β) in the same cavity (for couplings gα(β) and detunings from
the cavity ∆α(β), in the dispersive limit |g|&| ∆|):

Ĥflip−flop
αβ = Jαβ

(
σ̂+

α σ̂−β + h.c.
)
. (2.2)

In the computational ‘idle state’ these interactions have to be effectively turned off by de-
tuning all the qubits from each other. This requires a detuning δω ' J to avoid spurious
two-qubit operations. Thus, the number N of qubits in a linear array is strongly restricted
[145], since a frequency interval of order Nδω is required. In the present 2D architecture,
this constraint is considerably relaxed. The required frequency range is reduced from Nδω
to
√

Nδω (where N is the total number of qubits), while still ensuring a spacing of δω within
each cavity (the constraints being similar to the rules of the game “Sudoku”). This allows for
grids with more than 20× 20 = 400 = N qubits, for realistic parameters. Figure 2.2 shows
an acceptable frequency distribution. An extension to a fully scalable setup is discussed at
the end of this paper.
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2.3 One-qubit operations

We briefly review some ingredients that have already been implemented [60, 68, 79, 121,
144]. Operations on a selected qubit can be performed via Rabi oscillations [144] using a
microwave pulse resonant with the qubit at εij/!, but detuned from the cavity and all other
qubits in the same cavity. Rotations around the z-axis can be performed via AC Stark shift
[82], or by tuning the qubit frequency temporarily (see below). The cavities can be used for
fast dispersive QND readout [144] of single qubits tuned close to the readout frequency or
multiplexed readout of several qubits at once [78, 82].

2.4 Tunability

Additional charge and flux control lines (Fig. 2.4) reaching each qubit are needed for tunabil-
ity. For split-junction charge qubits [42, 71], locally changing the magnetic flux sweeps the
energy splitting εij = EJ(Φij) (see [41, 69]), while keeping the qubit at the charge degener-
acy point (to which it has been tuned via a separate charge gate line). This ensures maximum
coherence through weak coupling to 1/f noise, although this requirement is relaxed in the
new “transmon” design [89]. Individual addressability introduces some hardware overhead,
but is essential both for two-qubit gates and for compensating fabrication spread.

2.5 Two-qubit gates

We use the effective flip-flop interaction of Eq. (5.3) (see [78, 149–151]) to induce two-
qubit gates. In the ‘idle state’, the interaction is ineffective, since the qubits are out of res-
onance, |εα − εβ| ' J . During the gate, the two qubit frequencies are tuned into mutual
resonance near the cavity frequency to increase J , see Fig. 2.2 (b). After a waiting time
t = !π/(2|J |), this realizes the universal two-qubit iSWAP gate (demonstrated experimen-
tally in [82]), which can be used to construct CNOT and SWAP. Each SWAP(α, β) operation
in the protocol (Fig. 2.3) can be decomposed into three iSWAP gates between qubits α and
β [12]:

SWAP = iSWAP · Rβ · iSWAP · Rα · iSWAP · Rβ. (2.3)

Here Rα rotates qubit α by an angle −π/2 around the x-axis via a Rabi pulse. Arbitrary
gates between any two qubits (e.g., 1 and 3) in different cavities can be implemented via an
intermediate qubit 2 at the junction of two orthogonal cavities containing 1 and 3 (see Fig.
2.3). The sequence

SOPS(1, 3) ≡ SWAP(1, 2) OP(2, 3) SWAP(1, 2), (2.4)

leaves qubit 2 unchanged and performs the desired operation “OP” between 1 and 3.
We simulated such an operation (Fig. 2.3) for realistic parameters. Relaxation and pure

dephasing for each qubit α, with rates γ and γϕ, are modeled by a Lindblad master equation
(where P̂α = |eα〉 〈eα| projects onto the excited state of qubit α):
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Figure 2.3: Operations between arbitrary qubits on the grid (Iij denotes an iSWAP gate between qubits
i and j, and Ri an x rotation by −π/2). (a) Sequence of operations for a two-qubit gate between two
qubits (1 and 3), via an auxiliary qubit (2). (b) Corresponding quantum circuit, where each SWAP has
to be decomposed into three iSWAPs and local gates, Eq. (2.3). (c) Master equation simulation of the
full evolution for an operation according to (b), including relaxation and dephasing. The evolution of
all three-qubit probabilities is shown together with the fidelity (topmost curve), for presently available
experimental parameters. (d) For the important case OP = CNOT, a speed-up can be obtained by
noting that each SWAP/CNOT pair can be implemented using a single iSWAP and local gates (see
[12]).
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˙̂ρ = − i

! [Ĥ, ρ̂] +
∑

α

(Lϕ
α + Lrel

α )ρ̂ , (2.5)

Lϕ
αρ̂ = γϕ

[
2P̂αρ̂P̂α − P̂αρ̂− ρ̂P̂α

]
, (2.6)

Lrel
α ρ̂ = γ

[
σ̂−α ρ̂σ̂+

α −
1

2
σ̂+

α σ̂−α ρ̂− 1

2
ρ̂σ̂+

α σ̂−α

]
. (2.7)

We consider three qubits, where (1, 2) and (2, 3) are coupled via flip-flop terms [see Eq. (5.3)]
after adiabatic elimination of the cavities.

During two-qubit gates, the qubit energy is ramped and will cross other qubit energies
(Fig. 2.2), potentially leading to spurious population transfer to other qubits if the process is
too slow, while ramping too fast would excite higher qubit levels.

For a 10 ns switching time (during which a sweep over δε/! = 2π · 10 GHz is accom-
plished), the probability of erroneous transfer during one crossing is estimated to be less than
10−2 from the Landau-Zener tunneling formula, and thus could be safely disregarded for the
present simulation, where energies were instead switched instantaneously. Although several
crossings may occur during one sweep, the scalable setup to be introduced further below
keeps this kind of error under control by having only eight qubits per cavity.

For the simulation we used the following parameters: Initially, the qubit transition fre-
quencies are at ε/! = 2π · 4, 5, 6 GHz. A resonant classical drive yields a Rabi frequency of
ΩR = 150 MHz. A qubit-cavity coupling g = 2π · 150 MHz and a detuning ∆ = 2π · 1 GHz
(from a cavity at 2π · 15 GHz) produce J/! = 2π · 21 MHz. The dephasing and decay rates
are γϕ = 0.16 MHz and γ = 0.6 MHz (i.e. T1 = 1.7 µs and Tϕ = 6.3µs), consistent with
recent experiments on transmon qubits [89]. Note that in the idle state the actual J is reduced
by a factor of 10 (due to larger detuning from the cavity). Employing a qubit spacing of
δω ∼ 500 MHz, this yields a residual coupling strength of J2/!2δω ∼ 0.4 MHz, which may
be reduced further by refocusing techniques. To check the accuracy of adiabatic elimination,
we performed an additional simulation of an iSWAP operation between two qubits taking the
cavity fully into account, observing an error below the level brought about by dissipation.

A measure of the fidelity of the operation is obtained [152] by computing

F (ρ̂real(t), ρ̂ideal(t)),

where
F (ρ̂1, ρ̂2) ≡ tr

∣∣∣
√

ρ̂1ρ̂2

√
ρ̂1

∣∣∣ ,

and ρ̂ideal denotes the time-evolution in the absence of dissipation. Fig. 2.3 shows a fidelity
of about 95%, confirming that presently achievable parameters suffice for a first proof-of-
principle experiment.

We emphasize that the swapping overhead does not grow with the distance between the
qubits. Furthermore, multiple operations may run in parallel, even if they involve the same
cavities, provided no qubit is affected simultaneously by two of the operations and the qubit
pairs are tuned to different frequencies.

Here we have chosen the dispersive two-qubit gate that relies on proven achievements.
Faster resonant gates (e.g. CPHASE [109, 145]) might be implemented, with a time scale on
the order of 1/g instead of ∆/g2.
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2.6 Hardware

For illustration, we discuss one out of many conceivable setups (Fig. 2.4). The cavities can
be coplanar wave guides or microstrip resonators. Available multi-layer technology allows
the fabrication of thin films stacked on top of each other.

For example, consider waveguide layers of Nb or Al, separated by 100 nm of dielectric,
which can be optimized for good decoherence properties (e.g. [35]). The inner grid area for
10×10 wave guides (each with 20µm inner conductor and 10µm gaps) would have a width of
about 1 mm, whereas the full resonator lengths are above 10mm, allowing all the qubits to be
placed near the cavity mode central field antinode, with comparable couplings (see Fig. 2.4).

The qubit-cavity coupling remains similar to single-layer designs, owing to the small
layer thickness of only 100 nm. Good isolation between two orthogonal cavities was esti-
mated in a previous theoretical work [153, 154], and unwanted cross-talk may be reduced
further by choosing different cavity frequencies. The qubits can be placed above all layers to
minimize fabrication problems.

Weak coupling between qubits and control lines (e.g. cross-capacitance ∼ 0.01fF) sup-
presses sufficiently unwanted Nyquist noise from these lines, which could lead to decoher-
ence. Indeed, for a Cooper pair box of total capacitance CΣ , this cross-capacitance yields
a relaxation rate ∼ (Cg/CΣ)2e2ωZ/! for radiation into a control line of impedance Z at the
qubit splitting frequency ω, leading to estimates that are small compared to the intrinsic qubit
relaxation rate for the present parameters (the same holds for dephasing).
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Figure 2.4: A possible multilayer architecture. The layers 2 and 3 with coplanar wave guides are
positioned above a ‘control line layer’ 1. The qubit positions are indicated as red dots within each
layer only for reference (they would be fabricated above layer 3).
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2.7 Scalable, fault-tolerant architecture1

The cavity grid is a building block for a truly scalable, fault-tolerant architecture. Scalability
means that, at a minimum, the physics of initialisation, readout, single- and two-qubit gates
does not depend on the total number of qubits. Fig. 2.5 shows a scalable architecture requir-
ing only eight different qubit frequencies. In each unit cell of 64 qubits (Fig. 2.5) we choose
two arrays of seven data qubits and use each array to store a single logical qubit, employing
the Steane quantum error correction code [155]. Clean logical states can be prepared in ad-
ditional ancilla qubits. Moreover, errors in the data qubits can be copied into the ancillae,
which are then measured, locating the errors and enabling correction [156]. All other qubits
are placeholders which are crucial: Swapping a pair of data qubits directly could corrupt
both if the SWAP gate fails, resulting in a pair of errors that may not be correctable by the
seven qubit Steane code. Using three SWAP gates with a placeholder qubit for temporary
data storage solves this problem. We ignore errors in placeholder qubits as they contain no
data.

A logical CNOT gate is illustrated in Fig. 2.5. The final arrangement of qubits differs
from the initial one and can be returned to it by swapping. However, if all logical qubits
undergo similar logical gates, explicitly swapping back may be unnecessary as subsequent
gates will do this automatically. A broad range of single logical qubit gates are possible.
Full details of our chosen set of logical gates and their associated circuits including error
correction can be found elsewhere [157, 158].

2.8 Conclusions

In this section, we have proposed a novel architecture for quantum computation using a
2D grid of superconducting qubits coupled to an array of on-chip microwave cavities. A
“Sudoku”-type arrangement of qubit frequencies permits global coupling of a large number
of qubits while suppressing spurious interactions. These basic ideas could be implemented
in a wide variety of hardware implementations. Elementary operations within this scheme
could be demonstrated in the near future on small grids, while the setup has the potential to
form the basis for truly scalable fault-tolerant architectures.

1The fault-tolerant scheme was contributed to this work by Austin Fowler.
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Figure 2.5: A possible fault-tolerant scalable architecture based on the cavity grid. Top: The unit
cell of a periodic arrangement, with two logical qubits, each made up of seven data qubits (grouping
indicated by dashed rectangles), together with ancilla and placeholder qubits. Bottom: The sequence
of SWAP and CNOT gates shown in (1) and (2) implements a transversal CNOT between the logical
qubits, producing the final arrangement (3); see main text.
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Chapter 3

Optimized gates for the Cavity Grid

3.1 Motivation - improving the Cavity Grid

Based on the idea of the cavity grid as an architecture for quantum information processing
which has been introduced in 2, schemes to improve upon a purely dispersive set of quantum
gates have been devised in [159]. Basically two approaches are possible:

1. Improving the gate run-times and thus the fidelity by moving from dispersive gates
(qubit strongly detuned from the cavity, only virtual excitations in the cavity) to purely
resonant gates (qubit in resonance with the cavity, real excitations in the cavity) and

2. improving upon simple gate sequences and the corresponding pulse schemes using op-
timal control theory techniques, i.e. the numerical optimization of e.g. qubit driving
and detuning pulse shapes (discussed in Sec. 3.3).

In this section we focus on the improvement that can be gained by performing all operations
resonantly to the cavity. In order to assess the fidelity gain that can be expected from moving
from the dispersive iSWAP to the proposed purely resonant CPhase gate as the basic two-
qubit unitary, a master equation simulation of an example system of two qubits and a cavity
has been performed.

3.2 A resonant CPhase gate - master equation simulation

3.2.1 The CPhase protocol

As introduced in [159], a CPhase gate between the two qubits can be realized by applying
the protocol presented in Tab. (3.1). It is assumed that in the beginning of the protocol, the
cavity which is solely used as a cache for the quantum information contained in the second
qubit, is in its ground state. Imagine this protocol acting on a general two-qubit state: |Ψ〉 ≡
α |00〉+β |01〉+γ |10〉+δ |11〉would be transformed to |Ψ〉 ≡ α |00〉+β |01〉+γ |10〉−δ |11〉,
where the only difference is the sign change before the |11〉− component of the state as can

61



62 CHAPTER 3. OPTIMIZED GATES FOR THE CAVITY GRID

be read off from looking at the matrix elements of the CPhase gate

UCPhase ≡





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



 .

The tuning required by the protocol can be done either by changing the resonator frequency
[145] or by changing the qubit transition frequencies. If one chooses to do the latter, there
are again two possibilities

1. changing the ratio EJ/EC by e.g. applying a magnetic or electric control field locally
to the qubit in question (see Fig. (3.1 ) or by

2. irradiating the cavity off-resonantly with a strong microwave field to change the qubit
level-positions via the ac-Stark effect [78].
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Figure 3.1: Cooper pair box/Transmon transition frequencies as function of the ratio EJ/EC at gate
charge ng = 1/2. Tuning both the two needed transitions into resonance if needed requires different
tuning schemes depending on the regime of EJ/EC . The cavity transition frequency remains fixed.
In the small EJ/EC regime tuning the qubit levels e.g. by ac-Stark shift is possible while tuning
EJ/EC will not work. For EJ/EC ' 1, both ac-Stark shifting and changing EJ/EC works. For
the intermediate regime of EJ/EC ≈ 10, the two transitions are almost degenerate, which makes it
impossible to individually address them.
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As one can see from Fig. (3.1), the first option only exists in the transmon regime and
thus suffers leakage due to the small anharmonicity of the transmon qubit type1.We therefore
chose to use the ac-Stark scheme and operate in the charge qubit regime where EJ/EC ≈
O(1).

Step tuning duration effect

(1) ω(2)
10 = ωcav π · g(2)

10 Perform Jaynes-Cummings SWAP
to map the quantum information
in qubit 2 into the (empty) cavity

(2) ω(1)
21 = ωcav 2π · g(1)

21 Change the phase of the∣∣∣1qubit 1
〉
⊗

∣∣∣1cavity
〉

state

(3) ω(2)
10 = ωcav π · g(2)

10 Map back from the cavity to the second qubit

Table 3.1: Resonant CPhase-gate protocol. When tuning certain frequencies into mutual resonance,
all other transitions have to be kept detuned. The couplings refer to the effective coupling of some
qubit transition to the cavity given by g(i)

nn′ ≡ g(i)
0

〈
n

∣∣∣N̂diag

∣∣∣ n′
〉

.

3.2.2 Model

The model we base our simulation of the resonant CPhase gate on is the following. It consists
of two charge qubits and a harmonic oscillator coupling to both qubits. Its Hamiltonian reads:

Ĥ ≡ 4
2∑

i=0

E(i)
J (N̂ (i) − n(i)

g )2 +
2∑

i=0

E(i)
C

2

(∣∣n(i)
〉 〈

n(i) + 1
∣∣ + h.c.

)

+!ωcav â†â +
2∑

i=0

g(i)
o N̂ (i) (â + â†)

+Ĥdrive+decay. (3.1)

Here, E(i)
J is the Josephson energy of the i-th qubit, E(i)

C is the capacitive energy between
the two qubit islands and N̂ (i) is its Cooper pair number operator that describes the number
of excess Cooper pairs on one of the islands.

In the actual simulation we will move to the eigenbasis of the system by diagonalizing
the qubit subspace (the cavity is already diagonal). This will enable us to mimic ac-Stark
shifting of energy levels by simply adiabatically changing the level posititions. One has to
be careful with this method as the number operator cannot be changed accordingly and thus
only small level shifts will yield sufficiently correct simulation results.

3.2.3 Expectations

From using only resonant gates, one can expect an improvement in gate runtimes compared
to dispersive gates as e.g. introduced in Sec. 2 roughly by a factor given by ∆/g, where ∆

1The leakage to unwanted transmon levels can be significantly reduced by applying simple additional pulses as examined
in [160].
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is the qubit-cavity detuning and g is the qubit-cavity coupling. This is the ratio of the typical
dispersive two-qubit gate runtime given by J−1 ≡ (g2/∆)−1 to the typical resonant two-
qubit gate runtime given by the time of a Jaynes-Cummings swap g−1. Recent experiments
[82, 84, 121] have demonstrated a qubit-cavity coupling of about 2π ·100MHz, while typical
cavity detunings are found to be in the GHz range. Therefore one can reasonably expect to
gain one order of magnitude in gate runtime. Translating this to the expected fidelity gain is
straightforward. As the fidelity (to a first approximation, see Sec. 2) decreases exponentially
as time advances, one can expect a fidelity gain by a factor of Fnew ≈ F 1/10

old ≈ 0.951/10 ≈
0.99. We will find these expectations confirmed by our master equation simulation for which
we considered two different parameter sets.

3.2.4 Lindblad master equation to include dissipation

To assess the fidelity of the protocol presented in Tab. (3.1), we extend the model represented
by Eq. (3.1) to include pure dephasing and decay. This can be done by writing down the
corresponding Lindblad master equation

˙̂ρ = − i

! [Ĥdiag, ρ̂] +
2∑

i=1

(Lϕ
i + Lrel

i )ρ̂ + κcav(âρ̂â† − 1

2
â†âρ̂− 1

2
ρ̂â†â),

Lϕ
i ρ̂ = γϕ

N∑

n=1

[
2P̂ (n)

i ρ̂P̂ (n)
i − P̂ (n)

i ρ̂− ρ̂P̂ (n)
i

]
,

Lrel
i ρ̂ = γ

N∑

ni=1

ni∑

mi=1

[
|ni −mi〉 〈ni| ρ̂ |ni〉 〈ni −mi|−

1

2
|ni〉 〈ni| ρ̂−

1

2
ρ̂ |ni〉 〈ni|

]
,

where the index i is the qubit index and the index n denotes its excited states. Note that we
have assumed equal dephasing and decay rates for the qubits and all their decay channels.
For the purpose of our simulation, we have restricted ourselves to N = 2, i.e. taking three
qubit levels into account.

3.2.5 Simulation

In between the three time intervals where the actual protocol is performed, we need to mimic
an ac-Stark shift on the qubit transition frequencies such that after the tuning, the right transi-
tion is in resonance with the cavity mode. This has to be done slowly (adiabatically) enough
such that the speed of tuning of some transition between levels n and n′, ∂(!ωnn′ )

∂t is small
compared to the square of any other transition frequency of the system. On the other hand it
needs to be fast compared to the Jaynes-Cummings interaction time given by the couplings
g(i)

nn′ ≡ g(i)
0

〈
n

∣∣∣N̂diag

∣∣∣ n′
〉

. The reason is that if one tunes too slowly, the Jaynes-Cummings
dynamics sets in before the tuning has ended, if one tunes too fast, one changes the state
of the system while an adiabatic transition was aimed for. Keeping this balance, we sim-
ply changed the qubit spectra linearly in time yielding the tuning pattern as can be see from
Fig. (3.2).
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Figure 3.2: Example ac-Stark level tuning scheme for the resonant CPhase-gate. In step 1 the state of
qubit 2 is mapped onto the cavity, in step 2 the CPhase gate is realized and step 3 realizes the back-
mapping of the quantum information stored in the cavity to the seond qubit, using another Jaynes-
Cumming swap.

The parameters for the simulation were taken from actual experiments [91] and are com-
piled in Tab. (3.2) .

quantity symbol value
Ratio of Josephson- vs. Charging Energy EJ/EC 2.53

Qubit decay rate γ 0.14 MHz
Qubit pure dephasing rate γϕ 1.93 MHz

Resonator frequency ωcav 2π · 5.5 GHz
Resonator intensity decay rate κcav 10kHz

bare coupling (medium) g0 2π · 43 MHz

Jaynes-Cummings coupling transition 1 → 0 (medium) g10 ≡ g0

〈
1

∣∣∣N̂
∣∣∣ 0

〉
2π · 17 MHz

Jaynes-Cummings coupling transition 2 → 1 (medium) g21 ≡ g0

〈
2

∣∣∣N̂
∣∣∣ 1

〉
2π · 6.6 MHz

bare coupling (strong) g0 2π · 191 MHz

Jaynes-Cummings coupling transition 1 → 0 (strong) g10 ≡ g0

〈
1

∣∣∣N̂
∣∣∣ 0

〉
2π · 100 MHz

Jaynes-Cummings coupling transition 2 → 1 (strong) g21 ≡ g0

〈
2

∣∣∣N̂
∣∣∣ 1

〉
2π · 38.8 MHz

Table 3.2: Parameters used in simulation of the resonant CPhase gate protocol.

3.2.6 Results

To verify that we have indeed performed a CPhase gate and assess the fidelity of the op-
eration, we compute the fidelity between the evolution without dissipation compared to the
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evolution with dissipation according to " ≡ tr
∣∣√ρ̂idealρ̂

√
ρ̂ideal

∣∣. Note that the evolution
without dissipation is not a priori equal to the action of the unitary CPhase gate. However,
we have checked the deviations from the ideal unitary to be orders of magnitude smaller
than the errors induced by dissipation. We start the simulations with the two qubits in the
Bell-state |Φ+〉 ≡ 1/

√
2(|00〉 + |11〉) and the cavity in the ground state. After the CPhase

operation this state will be converted into |Φ−〉 ≡ 1/
√

2(|00〉 − |11〉).

3.2.6.1 Medium coupling

Using the parameters as presented in Tab. (3.2), we find that a CPhase gate can be performed
with a fidelity of about 93% (see Figs. (3.4)). Note that the coupling g0 is not the usually
discussed coupling of the 1 → 0-transition to the resonator. This coupling is given by g10 ≡
g0

〈
1
∣∣∣N̂

∣∣∣ 0
〉

and amounts to g10 = 2π·17 MHz. In turn, the coupling of the 2 → 1-transition
is found to be g21 = 2π · 6.6 MHz. In Fig. (3.3) we see the time evolution of relevant state
occupation probabilities (selected diagonal elements of the density matrix) for this protocol.
The overall gate performance can be assessed from Fig. (3.4) where the full density matrix
(the real part, sufficient in this case) of the initial and final state are depicted.
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Figure 3.3: Evolution of the diagonal elements of the density matrix for the resonant CPhase gate at
medium coupling g0 = 2π · 33MHz. The overall fidelity of this operation is found to be 93%.
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3.2.6.2 Strong coupling

To make a fair comparison to the dispersive schemes discussed in 2, we repeat the simulation
with a larger qubit-resonator coupling of g0 = 2π · 191MHz which is even lower than
the latest achievements in circuit QED experiments [2], where a coupling of g10 = 2π ·
173.5 MHz has been reported. For this parameter set a fidelity of about 98.5% is found for
the CPhase gate sequence. The coupling of the 1 → 0-transition to the resonator is given
by g10 ≡ g0

〈
1
∣∣∣N̂

∣∣∣ 0
〉

and amounts to g10 = 2π · 100 MHz. The coupling of the 2 → 1-
transition is found to be g21 = 2π ·38.8 MHz. The results for this parameter set are compiled
in Fig. (3.5).
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Figure 3.5: Part (a): Evolution of the diagonal elements of the density matrix for the resonant
CPhase gate at strong coupling g0 = 2π · 191MHz. The overall fidelity of this operation is found to
be 98.5%. Part (b) displays the real part of the initial density matrix, part (c) the real part of the final
density matrix.
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3.3 Optimizing dispersive gates with optimal control theory

As already mentioned in the introduction to this chapter, apart from improving the toolbox
for the cavity grid architecture by moving from dispersive to purely resonant gate operations,
both of them rely on straightforward decompositions into the gates that are naturally available
in the system and/or need some fixed swapping overhead in order to be performed between an
arbitrary couple of qubits on the cavity grid. in this section, we have applied optimal control
theory to numerically find the optimal pulses and thus the optimal time one can perform
a certain target gate operation on the grid. We find that the use of optimal control theory
can greatly improve upon any simple decomposition (such as e.g. the decomposition of the
iSWAP gate presented in Sec. 2)

In particular, we have used a Gradient Ascent Pulse Engineering (GRAPE [161, 162]) al-
gorithm to analyze the possibilities of optimising upon the sequential decomposition schemes
of an iSWAP gate, a SWAP and CNOT combination and a SOPS operation implementing
an iSWAP ’around the corner’ between qubits belonging to different cavities on the grid.
We also look at the impact of sensible restrictions on the minimal times and pulse-shapes
found. The numerical optimization has been performed by Robert Fisher at the Department
of Chemistry at Technical University of Munich. The results presented in this chapter are
to be published in a manuscript currently in preparation [Robert Fisher, Ferdinand Helmer,
Florian Marquardt and Thomas Schulte-Herbrüggen, manuscript in preparation, 2009].

3.3.1 A short glance at the principle of optimal control theory

Let us first briefly motivate the problem one tries to solve with optimal control theory. Usu-
ally in an quantum computation experiment where one wants to manipulate a quantum reg-
ister (one or more qubits), one knows the initial and the target state of the system, i.e. one
knows the unitary operation that corresponds to this gate. Then one faces the problem that
the experimental knobs one can turn are very specific and usually limited. E.g. one can apply
microwave driving, but only collectively on all qubits, not individually. In addition one can
maybe shift the qubits’ frequencies individually. In addition to the goal and the knobs (the
controls) one has at hand, there might be additional restrictions such as the maximum drive
power, maximum speed that qubit energies can be reliably tuned, etc. .

Now let us formalize this a bit. The knobs on the one hand correspond to certain terms in
the Hamiltonian containing parameters which can be tuned in time (turning the knobs). These
controls are thus parametrized by a set of functions of time {fi(t)}. The gate as mentioned
before is given by a certain unitary action on our system specified by Utarget. We said that one
is looking for the minimal time the gate can be performed within a certain admissible error
range. Technically, one tries the optimization for a run-time tgate in which this gate operation
is to be realized, and the algorithm will find a set of control functions leading to an evolution
given by Uopt. The one computes the error (the distance between Utarget and Uopt) and sees
if one is still in the acceptable error range. If so, one might shorten the time tgate and repeat
the procedure.

One therefore starts from a Hamiltonian which is separated into a free part (called ’drift
term’, the system without the Hamiltonian terms corresponding to the knobs) and the parts
containing the control functions {fi(t)} (e.g. amplitudes of single qubit rotation driving
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fields or energy shifts, called ’control part’), which can be written as

Ĥ(t) ≡ Ĥdrift(t) + Ĥcontrol[{fi(t)}] = Ĥdrift(t) +
∑

i

fi(t)Ĥcontrol,i,

one divides the gate run-time tgate into N discrete slices indexed by m, such that the con-
tinuous Hamiltonian is approximated by a discrete, piecewise constant Hamiltonian [162].
Now the optimal control algorithm has to start from some arbitrary, user specified initial set
of control functions {fi(t)}. The goal is to optimize a certain performance function, usually
given by a measure for the overlap of the desired unitary operation with the synthesized uni-
tary at a certain step in the optimization process. Most generally and formally one can derive
a scalar Hamiltonian function used to compute gradients and introduces a Lagrange multi-
plier in order to enforce the equation of motion for the unitary operation iU̇opt(t) = ĤUopt(t)
while the performance functional is optimized. The concrete optimization equation can then
be calculated from the so-called Pontryagin’s maximum principle [163].

However, in the cases considered in this thesis, it is possible to simplify the argument
mainly because the performance function does only depend on the unitary at the final time
T . We use the performance function

Φ = |〈Utarget|U(T )〉|2 ,

where T is the final time of the pulse sequence and the inner product 〈X|Y 〉 is defined as
tr

[
X†Y

]
. By optimizing the squared magnitude of this inner product, it is guaranteed that a

global phase will be unimportant in the optimzation process.
We discretize the pulse sequence into N suitably small steps which allows to write the

performance function as

Φ = 〈Utarget|UN · · ·U1〉 〈U1 · · ·UN |Utarget〉 .
Rewriting the previous expression we can define operators Pj, Xj as

Φ = 〈U †
j+1 · · ·U

†
NUtarget︸ ︷︷ ︸

≡Pj

|Uj · · ·U1︸ ︷︷ ︸
≡Xj

〉 〈Xj|Pj〉 .

Now the corresponding gradients for the time-sliced control functions read to first order in
the time step ∆t ≡ T/N :

∂Φ

∂fk(j)
= −2Re {〈Pj| i∆tHcontrol,kXj〉 〈Xj|Pj〉} .

This equation supplies the gradients to iteratively update the initially guessed or randomly
chosen control functions. A more detailed introduction into the method, underlying deriva-
tions can be found e.g. in [161, 164].

It is intuitively clear that this optimization procedure is very non-trivial and cannot pos-
sibly guarantee to find a global optimum. If it converges, it rather flows to a local optimum
given the gate run-time tgate, the initial set of control functions and, most importantly, the
algebraic nature of the control and drift Hamiltonian. If those Hamiltonians do not allow
to produce the desired unitary operation, then it is clear that no optimization procedure can
help. However, given the huge success in Nuclear Magnetic Resonance (NMR) experiments,
the field that this method has come from, it seems to be a good tool from a pragmatic point
of view despite its principal shortcomings.
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3.3.2 Optimal control theory results for two qubits in the same cavity

As a first test of the method applied to the cavity grid, we consider the case of two qubits in
a cavity obeying the Hamiltonian

H1(t) =
πJ

2

(
σ1

xσ
2
x + σ1

yσ
2
y

)
+

2∑

i=1

1

2
∆i(t) σi

z +
1

2
Ω(t)

(
σ1

x + σ2
x

)
. (3.2)

Here, there are three control functions, the local energy splittings of the qubits ∆i(t) and a
(global) microwave drive that can be applied to the qubits via the cavity. This is the situation
e.g. found in the Yale group’s two-qubit iSWAP experiment [82]. As we have argued before
in Sec. (2), the iSWAP-gate is the natural two-qubit gate given the flip-flop interaction be-
tween the qubits specified by Eq. (3.2). So, we can expect that the optimal control approach
will coincide with the analytically known result [165], namely that the optimal time in which
the iSWAP

exp
{

i
π

4

(
σ1

xσ
2
x + σ1

yσ
2
y

)}
=





1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1





is realized is given by

tgate =
1

2J
,

if the qubits are in resonance (∆1 = ∆2) and no microwave drive is applied (Ω(t) = 0). This
was very nicely confirmed.

The next, non-trivial task for the optimal control approach was to optimize a CNOT and
SWAP gate which, in a straightforward and ’pedestrian’ way, can be decomposed [12] into

iSWAP= = iSWAP

[−π/2]z
iSWAP= =CNOT iSWAP

[π/2]x [π/2]z

[π/2]x

[π/2]z

SWAP iSWAP
[−π/2]x

[−π/2]x

[−π/2]x .

Figure 3.6: Quantum circuit for a CNOT and a SWAP gate. E.g. [−π/2]x denotes a −π/2 local
rotation about the x-axis of the Bloch sphere. The right direction in these diagrams symbols time.

Given the particular situation we consider and the decomposition into elementary gates ac-
cording to Fig. (3.6), one could realize the Hadamard gates by first detuning the qubits from
each other strongly to (i) effectively switch off the flip-flop interaction and (ii) address only
one qubit with the σ̂x-driving. The energy shifts and the iSWAP interaction can be directly
realized.

Employing the optimal control scheme we have introduced, we have analyzed two situa-
tions:
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1. No restrictions on the control functions.

2. Amplitudes of the control functions restricted:

|∆i(t)| ≤ 6 GHz ± 2π · 1GHz

|Ω(t)| ≤ 300 Mrad/s ≈ 2π · (48MHz)

The results are compiled in Fig. (3.7). The key finding is that all local rotations can be done
(almost) simultaneously to the iSWAP gate which in turn is fundamentally limited in time by
tgate = 1/(2J). In Fig. (3.8) we show examples of optimized pulse sequences for a CNOT

Figure 3.7: Maximum fidelity as a function of pulse duration, in both unrestricted case (i) (blue) and
restricted case (ii) (red), for (a) a CNOT gate, and (b) a SWAP gate.

gate in restricted and unrestricted cases.

3.3.3 Optimal control theory results for three qubits in crossing cavities

As a next step, we take the findings for two qubits to the grid and look at the basic and most
general two-qubit operation on a grid, namely the SOPS operation introduced in Sec. 2 which
implements an arbitrary two-qubit gate between arbitrary two qubits on the grid involving at
most one mediating qubit at the crossing of the cavities of the two qubit.

Simplified model without pulse restrictions

The Hamiltonian considered here reads:

H2(t) =
πJ

2

(
σ1

xσ
2
x + σ1

yσ
2
y + σ2

xσ
3
x + σ2

yσ
3
y

)
(3.3)
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Figure 3.8: Controls ∆1 (red), ∆2 (green), and Ω (blue) in (a) unrestricted, and (b) restricted cases.
Observe the visible restriction on the Rabi frequency (plateaus) in part (b). These pulses correspond
to the fidelity curves shown in Fig. (3.7), part (a)

+
3∑

i=1

1

2

(
Ωi

x(t) σi
x + Ωi

y(t) σi
y

)
.

Note that qubit 1 and qubit 3 cannot directly interact but instead have to use their interaction
with qubit 2. Here, the speedup is about a factor of 3.5, just considering the two-qubit
interactions. The 1-3 iSWAP-gate presented in Sec. 2 in a ’pedestrian’ way, can be realized
using the time of just two iSWAPs versus the 7 iSWAPs in the ’pedestrian’ scheme (see
Fig. (3.9)).

A summary of two- and three-qubit minimal times for the idealized model can be found
in Tab. (3.3).

Gate Tpedestrian(1/J) Topt(1/J)
CNOT12 1.0 0.5
SWAP12 1.5 0.75
iSWAP12 0.5 0.5
CNOT13 2.0 1.00
SWAP13 4.5 1.15
iSWAP13 3.5 1.00

Table 3.3: For the optimized 3-qubit cases, the time given is the shortest time in which our algorithm
can reach a fidelity of 1− 10−5, with time resolution 0.05/J .
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Figure 3.9: Fidelity as a function of gate run-time tgate for a 1,3 iSWAP.

More realistic model including pulse restrictions

In a real experimental setup using the cavity grid, the single qubit rotations would most
probably be done as follows: One qubit would be tuned to a certain frequency off-resonant
from the cavity and also detuned from all other qubits in the cavity. Then one would apply a
microwave tone to the cavity resonant to the qubit. Although this tone affects in principle all
qubits in the cavity, there is a strong frequency selection that allows to more or less perfect
individual addressing of a single qubit. This is the reason why we consider the following
Hamiltonian instead of (3.3):

H3(t) =
πJ

2

(
σ1

xσ
2
x + σ1

yσ
2
y + σ2

xσ
3
x + σ2

yσ
3
y

)

+
3∑

i=1

1

2
Ωi

z(t) σi
z

+
1

2
Ω12

x (t)
(
σ1

x + σ2
x

)
+

1

2
Ω23

x (t)
(
σ2

x + σ3
x

)
.

Again, the first term describes the flip-flop interaction between all qubits as found in
the 1-3 ’around-the-corner’ topology. The second term allows to tune the qubit transition
frequencies independently from each other while the last two terms represent the aforemen-
tioned ability to drive the qubits per-cavity.

In addition to this more realistic structure, we have also applied restrictions to the control
functions as follows:

|∆i(t)| ≤ 6 GHz ± 2π · 1GHz

|Ω(t)| ≤ 300 Mrad/s ≈ 2π · (48MHz).
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Figure 3.10: Maximum fidelity as a function of pulse duration, in both unrestricted case (i) (blue) and
restricted case (ii) (red), for (a) a 1,3-CNOT gate, and (b) a 1,3-iSWAP gate.

Figure 3.11: Restricted controls to implement a 1,3-iSWAP gate: (a) Ω12
x (green), Ω23

x (blue). (b) Ω1
z

(blue), Ω2
z (green), Ω3

z (red). Restrictions are hit in the single-qubit driving powers shown in part (a)
while the restrictions on the qubit transition frequencies are not actually limiting here.

As shown in Fig. (3.10) and comparing to the less restricted case examined before (see
Fig. (3.9)), one observes that the restrictions and especially the more realistic control paradigm
indeed play a role and reduces the speed-up from 3.5 to about 2.1 which is still considerable
if one is looking at example pulse shapes corresponding to part (b) of Fig. (3.10) as shown in
Fig. (3.11).
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3.3.4 Analysis in terms of entanglement measures

In order to understand the pulses generated by the optimal control algorithm to a certain
degree, it is a good idea to look at the entanglement between qubits during the sequence to
see when they are actually entangled. As the

√
iSWAP-gate (letting the flip-flop interaction

switched on for a time t = 1/(4J)) is a universal entangling gate we know that this has to
be the case in some part of the sequence. We therefore compute the entanglement using the
logarithmic negativity which is given by

EN(ρ) = log2

∣∣∣∣ρΓA
∣∣∣∣

1

where ΓA is the partial transpose, ||·||1 is the trace norm, and ρ is the reduced density matrix
of the two-qubit subsystem from the initial state |100〉. The fidelity is

F (U) =
∣∣∣tr

{
U †

T U
}∣∣∣

where UT is the target 1,3-iSWAP gate.
This short demonstration already strongly suggests that a lot of fidelity and gate run-

time can be gained by applying optimal control theory. However, a lot of care has to be
exercised in choosing the model and the restrictions realistically. Like any optimization
method, it tends to be slaved to a certain degree to the way those restrictions are implemented
(hard wall vs. penalty function, etc.). Another interesting application for this method is to
compensate e.g. for complicated distortions that happen to a signal when sending it through
all cryogenic stages down to a sample. Simply inserting the transfer functions into the control
Hamiltonians will take those effects into account naturally.

Figure 3.12: Logarithmic negativity between qubits 1-2 (blue line) and 2-3 (red line) for (a) pedestrian
and (b) optimized (F > 99.9%) implementations of a 1,3-iSWAP from the initial state |100〉. Note that
while the pedestrian scheme involves 7 iSWAPs, the optimized version needs roughly two iSWAPs.
These results are for the ideal, unrestricted control paradigm as presented in Eq. (3.3).



Chapter 4

Quantum trajectory approach to weak mea-
surement

In this chapter we will introduce the method of quantum trajectories as generated by stochas-
tic master equations. Before we start to derive formulas, we will give a small overview of the
aspects of a measurement that are vital for the understanding of the concept of a measure-
ment back-action. Especially we will focus on QND measurements and the class of so-called
weak measurements. It is important to realize that using this technique is not some purpose
on its own, but gives access to an extremely realistic and thus experimentally relevant de-
scription of measurement. When using this technique, the focus is not on the method, but on
the physics involved in the experiment that one is simulating.

This chapter is supposed to be a rather pedagogical introduction to the technique which is
later used in more complex setups, e.g. in the scheme for the measurement-based generation
of multi-qubit entangled states (Sec. 5) and in the scheme for the detection of single itinerant
microwave photons in Sec. 6.

77
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4.1 Ideal and realistic measurement

4.1.1 Ideal measurements

Measurement in a reasonably realistic description is usually quite a bit more complicated than
depicted in an introductory quantum mechanics textbook. The notion there is the following:
If a measurement of some system observable is performed, one applies a projector P̂ onto the
system state which changes the state of the system instantly to the eigenstate that corresponds
to the reported real number (the measurement result which is the corresponding eigenvalue
of the measured observable1). This measurement is called ’projective’ or a ’von-Neumann’
measurement. The sudden change of state involved is usually referred to as ’collapse of
the wavefunction’. One of the consequences of this sudden state-change is that if we were
to repeat the same measurement, we would get exactly the same result. This is due to the
fact that P̂ 2 = P̂ . A von-Neumann measurement shares this property with another very
important class of measurements, the so-called ’Quantum Non-Demolition Measurements’
(QND) [105, 106, 166].

It is noteworthy that this aspect of a quantum mechanical measurement poses a litmus
test to the different philosophical interpretations of quantum mechanics. While the so-called
’collapse of the wavefunction’-theory ascribes ontological reality to this inherently random
(stochastic) process and thus makes the universe a place ontologically dominated by ran-
domness, there also exists the so-called ’multiverse’ theory which claims that all possible
measurement outcomes are realized - just in different universes which split/branch every
time a measurement is performed.

Without trying to side with one of the interpretations, it remains unclear what the benefit
of the multiverse theory is (we only live through one randomly selected path of universes
and essentially could never experience the difference to a single random universe). It seems
to face two major problems: a) The principle of economics of a theory seems to be heavily
violated by the multiverse theory and its exponential “multiplication of universes”. b) It
seems to be unclear in what basis the branching occurs, leaving it yet again ontologically
indefinite and thus not evidently ontologically preferable to the collapse of wavefunction
theory. In the end it seems to be a) irrelevant to concrete research and b) a pure matter of
personal taste which intepretation one prefers.

The act of measurement is a singular process which is not described by the Hamilto-
nian evolution according to the Schrödinger equation because this could never introduce any
irreversible element (e.g. projection) into the theory.

While the fact that Hamiltonian dynamics is not sufficient to describe measurements well
is certainly true, this picture is far too simplistic to be of use in describing most realistic
situations as found in experiments. It merely constitutes a building block from which a
realistic measurement process can be constructed.

4.1.2 More realistic description of a measurement

Now imagine a general measurement situation where the system in question cannot be di-
rectly projectively measured, but instead one has to couple a measurement apparatus (most

1That is the reason why only Hermitian operators can be reasonably called observables, otherwise the real-valuedness
of the eigenvalues is not guaranteed.
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often meso- or macroscopic) to the system. Only this apparatus can then be projectively
measured.

Assuming that the apparatus and the coupling to the system are indeed suitable to extract
information about a certain system observable via a projective measurement on an apparatus
observable, the following will happen during such a measurement:

We let system and apparatus, initially assumed to be in a product state, evolve accord-
ing to the coupling Hamiltonian for some time interval ∆t. Afterwards, the state will have
changed, generally into an entangled state between system and measurement apparatus. It is
by this entanglement that information about the system state is transferred into the measure-
ment apparatus and reflected in the state of the measurement apparatus.

Then we imagine to projectively measure some apparatus observable. This has several
consequences:

1. The measurement apparatus experiences a projection onto one of the (usually smoothly
distributed) eigenstates of the apparatus observable.

2. The system and the measurement apparatus are now again in a product state.

3. This has evidently also changed the system state (this process is called measurement
back-action), however not necessarily into an eigenstate of the system observable. It is
important to realize that this change is also in so far random, as it is conditional on the
measurement result we obtained when projectively measuring the apparatus observable.
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4.2 Weak measurement

Very often and especially in situations considered in this thesis, the coupling between sys-
tem and measurement apparatus is weak, meaning that during one measurement as we just
described, the system state only changes very little. This is then referred to as a ’weak’
measurement. If we take the continuum limit ∆t → 0, it is intuitively clear that the infinites-
imally small kicks the system experiences should lead to stochastic dynamics adding to the
Hamiltonian dynamics. We can therefore expect

1. Having a stochastic term enter the Schrödinger/master equation which leads to

2. diffusion- and/or jump-like behaviour of the system state and

3. eventually to the system being in an eigenstate of the system observable we have indi-
rectly measured.

The timescale on which this indirect projection happens corresponds exactly to the timescale
on which we can extract enough information from the measurement signal (the sequence of
results from projectively measuring the apparatus) to infer the value of the system observable
with certainty. On this timescale, we have indirectly performed a QND measurement of
the system. No matter how much longer we keep on measuring, the result of subsequent
measurements will always give the same result because the system has been projected.

In addition to the back-action modifying the quantum dynamics in a meaningful way, we
also obtain the classical measurement signal (the sequence of measurement results). It is
again intuitively clear that this signal should be noisy (it is a sequence of random projections
of the measurement apparatus) and should contain the same realization of the noise as the
internal back-action-modified dynamics.

To summarize, this framework of analyzing weak measurements gives us access to con-
crete realizations of the classical noisy signal while we simultaneously obtain the system-
internal, measurement back-action-modified quantum dynamics for each of those realiza-
tions. This allows to design and validate detection schemes in a quite powerful way and
makes this the method of choice for the topics examined in the present thesis. In the follow-
ing section we will derive a stochastic master equation for a simple example system before
turning to realistic applications.
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4.3 Stochastic master equations

In this section we are going to introduce the concept of a stochastic master equation using a
simple example2 as illustrated in Fig. (4.1). The equation which we will derive will be of the
same structure as the equations encountered in more difficult measurement setups, such as
the ones which will be discussed in the following chapters.

U

detectorenvironment

system

Figure 4.1: We imagine the following situation: A system qubit repeatedly interacts with identically
prepared environment qubits. Each of them interacts with the system qubit according to the unitary
transformation U . After system and environment qubits have interacted, the environment qubit’s state
is detected in e.g. a Stern-Gerlach detector.

Basic measurement theory for weak measurements

Depending on the strength of the interaction of environment qubit and system qubit, the
environment qubits’ initial state and measurement axis, different measurement situations
can be realized. We will particularly focus on an implementation of a weak measurement
which leads to state diffusion described by a stochastic master equation for the system qubit.
First, we briefly need to introduce the concept of a Positive Operator Valued Measurement
(POVM). Here, unlike with projective measurements, the measurement is not specified by a
complete set of projectors which sum up to the identity operator, but instead by specifying
some set of positive operators {Ên} such that

∑

n

Ên = 1̂.

2The main steps of this introduction can also be found in [167], although the over-all focus of the paper is on stochastic
Schrödinger equations rather than stochastic master equations.
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The probability of a certain measurement outcome with subscript n is given by pn ≡
〈
Ψ

∣∣∣Ên

∣∣∣ Ψ
〉

or, in terms of the density operator ρ̂, by pn ≡ trÊnρ̂. In order to assess the system state after
a POVM, we need to additionally specify a set of operators {Ânk}, from which the operators
{Ên} are constructed according to

Ên =
∑

k

Â†
nkÂnk.

The system state ρ̂′ after the measurement is then given by

ρ̂′ =
1

pn

∑

k

Ânkρ̂Â†
nk.

Note that this measurement does not preserve the purity of the system state unless Ên =
Â†

nÂn.
A weak measurement as introduced conceptually in the previous chapter can be described

by a POVM in which each individual measurement result reveals only very little information
about the system state. An example for such a POVM would be the following set of operators

Ê0 ≡ |0〉 〈0| + (1− ε) |1〉 〈1| ≡ Â2
0

Ê1 ≡ ε |1〉 〈1| ≡ Â2
1

where ε & 1, such that the measurement outcomes for an initial state |Ψ〉 ≡ α |0〉+ β |1〉are
found with probabilities

p0 = 1− ε|β|2

p1 = ε|β|2.

and the corresponding states of the system (conditional on the measurement outcome)

|Ψ0〉 =
Â0 |Ψ〉√

p0
=

α |0〉+ β
√

1− ε |1〉
√

p0

|Ψ1〉 = |1〉 .

We can conclude that if one were to repeat this measurement, most of the time the system
state would be almost unchanged corresponding to the ’1’ result, whereas the system will
very rarely collapse into the |1〉 state which can be associated with a quantum ’jump’.

If one were to choose a POVM with a more symmetric set of operators, jumps would not
occur at all. Instead, averaging over many successive measurements is needed here to extract
information about the system. Such a set of operators would e.g. be

Ê0 ≡
(

1 + ε

2

)
|0〉 〈0| +

(
1− ε

2

)
|1〉 〈1| ≡ Â2

10

Ê1 ≡
(

1− ε

2

)
|0〉 〈0| +

(
1 + ε

2

)
|1〉 〈1| ≡ Â2

1,
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and the conditional system states

|Ψ0〉 =
1√

1 + ε(|α|2 − |β|2)
(α
√

1 + ε |0〉+β
√

1− ε |1〉 ≈ α(1+ε|β|2) |0〉+β(1−ε|α|2) |1〉

|Ψ1〉 =
1√

1− ε(|α|2 − |β|2)
(α
√

1− ε |0〉+β
√

1 + ε |1〉 ≈ α(1−ε|β|2) |0〉+β(1+ε|α|2) |1〉 .

From these results we can already read off that a result ’1’ makes the system drift towards
the |1〉 state and vice versa. The overall probability to end up in |0〉 or |1〉 is given by |α|2
and |β|2, as we would expect for any quantum measurement.

Ensemble average description with the master equation

Although a general introduction to the concept of a weak measurement is certainly very
useful, in practice it proves valuable to analyze a given measurement situation from an open
systems perspective rather than just postulating a set of measurement operators. Instead, one
divides the world into the system and the environment. Here, the environment consists of
the qubits flying by the system qubit (see Fig. (4.1)). The interaction between system and
environment is then specified by an interaction Hamiltonian Ĥint which generically entangles
system and environment qubit. This entanglement is the resource that transfers information
about the system state onto the environment qubit such that we can learn about the system
state by analyzing the state of the environment qubits.

Let us assume that, initially, system and environment are in a product state
∣∣∣Ψ̃

〉
≡ |Ψ〉 ⊗ |E〉 ,

which corresponds to a pure state density operator given by

ρ̂ =
∣∣∣Ψ̃

〉 〈
Ψ̃

∣∣∣ .

Now we have to specify the way the unitary transformation U acts on the density operator,
according to which system and environment interact. It can be written as

U ≡
∑

j

Âj ⊗ B̂j.

where Âj are system operators and B̂j are environment operators. The density matrix after
U has acted is then given by

ρ̂′s ≡ trE

{
Û

∣∣∣Ψ̃
〉 〈

Ψ̃
∣∣∣ Û

}
(4.1)

=
∑

j,j′

trE

{(
Âj |Ψ〉 〈Ψ| Â†

j′

)
⊗

(
B̂j |E〉 〈E| B̂†

j′

)}

=
∑

j,j′

Âj |Ψ〉 〈Ψ| Â†
j′

〈
E

∣∣∣B̂†
j′B̂j

∣∣∣ E
〉

︸ ︷︷ ︸
defines self-adjoint matrix Mjj′

. (4.2)
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The matrix Mjj′ is self-adjoint which means that it can be spectrally decomposed into real
eigenvalues {λk} and eigenvectors {(µk} such that

Mjj′ =
∑

k

λkµkjµ
∗
kj′ .

The residue of the environment entering the system dynamics can this way be included into
the system operators by defining a new set of operators

Ôk ≡
√

λk

∑

j

µkjÂj,

such that Eq. (4.2) simply becomes

ρ̂′s =
∑

k

Ôk |Ψ〉 〈Ψ| Ô†
k. (4.3)

Now we consider the very important special case when the unitary transformation only
perturbs the system state weakly, i.e. it is close to the identity. It is then convenient to
reintroduce the Hermitian operators Âj, B̂j as

Û ≡ exp

{
−iθ

∑

j

Âj ⊗ B̂j

}
,

with θ & 1, one can expand Eq. (4.1) to second order in θ:

ρ̂′s = |Ψ〉 〈Ψ|+ θ2

2

∑

jj′

〈
E

∣∣∣B̂jB̂
†
j

∣∣∣ E
〉 [

2Âj |Ψ〉 〈Ψ| Âj′ − Âj′Âj |Ψ〉 〈Ψ|−| Ψ〉 〈Ψ| Âj′Âj

]
,

(4.4)
where we have without loss of generality assumed

∑
j Âj

〈
E

∣∣∣B̂j

∣∣∣ E
〉

= 0, such that the first
order term vanishes3. Using the same reasoning as before, we define a new set of (Lindblad)
operators

L̂k ≡
√

θ2λk

δt

∑

j

µkjÂj (4.5)

in order to re-express Eq. (4.4) in terms of a Lindblad master equation

ρ̂− ρ

δt
=

∑

k

[
L̂kρ̂L̂†

k −
1

2
L̂†

kL̂kρ̂−
1

2
ρ̂L̂†

kL̂k

]
, (4.6)

assuming that the duration of the interaction of a single environment qubit with the system
qubit is δt. This master equation describes the evolution from a pure state density matrix
into the mixed state describing the statistical mixture of measurement outcomes. In order
to ’unravel’ this master equation w.r.t. the measurement, some additional considerations
are needed. This will be done in the next paragraph. Unraveling in this context means

3This is always possible by considering local rotations in addition to the unitary U .
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to write down an equation that does not describe the ensemble average outcome of many
measurements but instead a single, random realisation of the measurement process. The
random variable introduced by such a process has exactly the properties that guarantee that
averaging aver many of these single random realisations gives the same result as the original
description before the unraveling. This is especially interesting if one aims at evaluating the
measurement outcomes of single measurements with non-linear filters as it is done in e.g.
Sec. 5 and Sec. 6.

Unraveling of the master equation

Unraveling the master equation with respect to the measurement means that instead of the
ensemble average over many measurements which is described by Eq. (4.6), we go back a
step and realize that the change in the density operator conditioned on a certain measurement
result is given by

ρ̂c,k(t + δt) =
Ôkρ̂Ô†

k

trÔkρ̂Ô†
k

.

As in the first example, for simplicity we consider a system qubit that repeatedly and weakly
interacts with environment qubits which are prepared in a definite input state. We imagine to
measure the environment qubit after the interaction in some basis with corresponding results
’0’ and ’1’. As mentioned before, for this case there are two operators Â1 and Â2 which for
this simple case of qubits are equivalent to the operators Ôk. To specify these operators, it is
necessary to know (a) the interaction of system and bath (b) the initial state of the bath qubits
and (c) the basis the measurement on the bath qubits is performed.

Before turning to a concrete example, we want to sketch the line of the calculation that
follows. First, we write the system state after one environment qubit has passed in terms of
the conditional states, introducing a random variable δN ∈ {0, 1} which is a point process
(and thus non-Gaussian). The system state then reads

ρ̂(t + δt) =
Â1ρ̂(t)Â†

1

trÂ1ρ̂(t)Â†
1

δN +
Â2ρ̂(t)Â†

2

trÂ2ρ̂(t)Â†
2

(1− δN). (4.7)

In principle one could now rewrite the terms on the right hand side by introducing a new
random variable which has zero mean and variance δt. To do so, our knowledge is sufficient
as the statistics of δN is completely known. Note that δN is also the measurement record
(our ’signal’). It takes the value 1 with probability p1 and 0 with probability p0. Thus all
moments of δN can be calculated. The new stochastic variable is then defined as

δZ ≡
√

δt (δN − E[δN ]) /
√

V ar(δtδN) . (4.8)

The next step is to imagine that we look at the system change after many of those random
steps have occurred, each of which takes time δt. If it is ensured that this larger time dt = nδt
is still small compared to all system timescales while n ' 1, then we can appeal to the central
limit theorem and replace δZ by a Wiener increment dW (a Gaussian random variable with
zero mean and variance dt). It has been rigorously shown in [168] that the form of Eq. (4.7)
is preserved in this procedure and the only changes are δZ → dW and δt → dt. The
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measurement signal X ∝ δN/δt can in general expressed using Eq. (4.8). With the same
argument as before this can be written as a continuous function X → X(t) which contains
white noise dW/dt rather than a point process.

In order to give live to the very abstract concept we will now derive the stochastic master
equation in w this way for a concrete, simple example. We assume the environment qubits
to be initialized in the state |y−〉 ≡ 1√

2
(|0〉 − i |1〉) . After interacting with the system qubit

(general state |Ψ〉 = α |0〉 + β |1〉) according to the unitary Û = R̂z(θ)ÛCNOT(θ), the envi-
ronment qubit is measured in the σ̂x- basis. R̂z(θ) denotes a rotation about the z-axis with an
angle θ while ÛCNOT(θ) is the usual CNOT gate parametrized by the angle θ & 1. It can be
written as

ÛCNOT(θ) ≡ exp
{
−iθÛCNOT

}
= 1̂ cos θ − iÛCNOT sin θ,

where

ÛCNOT ≡





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





for the basis vectors ordered like this (|00〉 , |01〉 , |10〉 , |11〉). The measurement operators
are given by

Â0 =
1√
2

(|0〉 〈0| + (cos θ − sin θ) |1〉 〈1|)

Â1 =
1√
2

(|0〉 〈0| + (cos θ + sin θ) |1〉 〈1|) .

The key computational tool is that we will consider everything up to order O(θ2) which
reduces the operators to

Â0 =
1√
2

(
1̂ + θ |1〉 〈1|− θ2(|1〉 〈1|)2

)

Â1 =
1√
2

(
1̂− θ |1〉 〈1|− θ2(|1〉 〈1|)2

)
.

The probabilities to obtain the results are given by

p0 ≡ 1

2
− θ|β|2

p1 ≡ 1

2
+ θ|β|2.

Now we write Eq. (4.7) explicitly in orders of θ. In order to make it more readable, we
introduce an operator L̂ = L̂† ≡

√
θ2

δt |1〉 〈1|, following Eq. (4.5). The result reads

ρ̂(t + δt) =
1

2p1

[
ρ̂ +

√
δt

(
L̂†ρ̂ + ρ̂L̂

)
+ δt

(
L̂†ρ̂L̂− 1

2
ρ̂L̂†L̂− 1

2
L̂†L̂ρ̂

)
+ O(θ3)

]
δN (4.9)

+
1

2p0

[
ρ̂−

√
δt

(
L̂†ρ̂ + ρ̂L̂

)
+ δt

(
L̂†ρ̂L̂− 1

2
ρ̂L̂†L̂− 1

2
L̂†L̂ρ̂

)
+ O(θ3)

]
(1− δN).
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Now the normalization factors have to be taken into account as well to order O(θ2).
Eq. (4.9) becomes

ρ̂(t + δt) =
[(

1− 2|β|2θ + 4|β|4θ2
)
ρ̂ +

√
δt

(
1− 2|β|2θ

) (
L̂†ρ̂ + ρ̂L̂

)
+ O(θ3)

]
δN

+
[(

1 + 2|β|2θ + 4|β|4θ2
)
ρ̂−

√
δt

(
1 + 2|β|2θ

) (
L̂†ρ̂ + ρ̂L̂

)
+ O(θ3)

]
(1− δN)

+δt

(
L̂†ρ̂L̂− 1

2
ρ̂L̂†L̂− 1

2
L̂†L̂ρ̂

)
+ O(θ3)

By inspection we conclude that there is a measurement induced dephasing term L̂†ρ̂L̂ −
1
2 ρ̂L̂†L̂− 1

2 L̂
†L̂ρ̂ which is of Lindblad (L̂ is indeed a Lindblad operator) form and has the cor-

rect order in the time step O(δt). Moreover, it does not depend on the stochastic variable and
represents what would remain if we would average over the realisations of the measurement
outcome. Sorting the stochastic terms simplifies the equation a lot:

ρ̂(t + δt)− ρ̂(t) =

[
L̂†ρ̂ + ρ̂L̂− 2|β|2 θ√

δt
ρ̂

] [
2δN − 1− 2|β|2θ

]√
δt (4.10)

+ δt

(
L̂†ρ̂L̂− 1

2
ρ̂L̂†L̂− 1

2
L̂†L̂ρ̂

)
+ O(θ3).

Now we define a new stochastic variable (still a point process) as

δZ ≡
(
2δN − 1− 2|β|2θ

)√
δt. (4.11)

One can easily verify that this variable has the following properties

E[δZ] = 0

Var[δZ] = E[δZ2] = δt + O(θ2).

One might wonder why we have not taken the term of order θ2 in the variance into account
and redefined the variable accordingly to absorb it. The reason is that upon inserting it into
Eq. (4.10), all terms stemming from the O(θ2)-term in the variance will multiply terms that
are already of order O(θ) and can thus be disregarded.

As mentioned before, one can now make the step from one detection event to many and
replace δZ by dW , which is a Gaussian random variable. Upon taking the continuum limit,
the resulting equation contains a white noise variable ξ(t) ≡ dW/dt and is of Ito-Form.
Dephasing as well as the stochastic dynamics take place on a timescale given by Γ ≡ θ2/dt
which we call ’measurement rate’. To make this apparent, we redefine the Lindblad operators
as L̂ →

√
ΓL̂ such that L̂ = |1〉 〈1|. This complete stochastic master equation, the main result

of this section reads

ρ̂(t + dt)− ρ̂(t)

dt
=

√
Γ

[
L̂†ρ̂ + ρ̂L̂− 2tr (|1〉 〈1| ρ̂) ρ̂

]
ξ(t) (4.12)

+ Γ

(
L̂†ρ̂L̂− 1

2
ρ̂L̂†L̂− 1

2
L̂†L̂ρ̂

)
.
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Remembering that the sequence of measurement results is encoded in the realisation of the
stochastic variable δN , we can define the measurement signal conveniently as

X =
2δN − 1

2δt
.

From the derivation of the stochastic master equation (esp. Eq. (4.11)) we know that 2X =
−2|β|2

√
Γ + δZ/δt. Making the same argument of taking δt → dt which takes δZ/δt →

dW/dt = ξ(t), the signal (which can now be validly interpreted as a continuous function)
reads

X(t) =
√

Γ
〈σ̂z〉(t) + 1

2
+

1

2
ξ(t).

It is conveniently scaled such that the deterministic part takes values in the interval [0, 1]. The
stochastic master equation (4.12) describes a diffusive behaviour for the system state whith
the energy eigenstates |0〉 and |1〉 as attractors. Thus, the stochastic term vanishes for the
system being in the |0〉 〈0| state or the |1〉 〈1| state or a statistical mixture of them.

We simulate Eq. (4.12) and find exactly this behaviour. In the simulation, we start with the
system in an initial state |Ψ〉 ≡ 1√

2
(|0〉+ |1〉) and observe that, depending on the realization

of the noise, the system behaves diffusively on a timescale given by Γ−1 before it is either
projected onto the |0〉 or the |1〉-state (see example trajectories in Fig. (4.2)). This can also be
seen from a density plot where we averaged over 104 realisations of the actually measured,
integrated signal which is given by

Xint(τ) ≡ 1

τ

∫ τ

0

X(τ ′)dτ ′ ,

(see Fig. (4.3)). One can nicely see that only after accumulating the signal longer than the
timescale set by the measurement rate, we have gained enough signal-to-noise ratio to dis-
tinguish the two states. In addition we have also plotted the density of |β|2 which shows that
after the initial phase of diffusion, all the weight is contained in the eigenstates indicating
that the system has on average evolved into a statistical mixture of |0〉 and |1〉.

With this very simple example, we have attempted to give a feeling about how a weak
measurement results in gradual information increase on the observer side while gradually
projecting the system onto an eigenstate. The beauty of the method clearly lies in the fact
that it allows simultaneous and self-consistent simulation of a measurement record and the
quantum dynamics of the systems conditioned on this record. We will now apply this method
to more complex and realistic problems.
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Figure 4.2: We plot the solution to Eq. (4.12) for the excited state probability |β|2 = ρ̂11 for two
different realisations of the noise (corresponding to two different measurement records) for an initial
value of ρ̂11 = 1/2. One can observe the timescale of projection set by the measurement rate Γ and
that the states |0〉 and |1〉 are attractors.

Although the example here was very simplistic as it involved only two-level systems,
the structure of the stochastic master equation and the measurement induced dephasing term
is the same as found in the more complex setups discussed in the following chapters. They
involve harmonic oscillators (the cavity modes) and the concept of homodyne/heterodyne de-
tection in order to measure field quadratures. In particular, in Sec. 5 we exploit the structure
of this stochastic master equation in so far as the projection always happens on a subspace
which is specified by the observable eigenbasis. By carefully choosing this observable as
a combination of single-qubit excitation numbers, we can use the measurement as a tool to
generate entanglement from an initial product state and even stabilize it with the measure-
ment. This should serve as an interesting tool for quantum information processing/quantum
cryptography.

Then, in Sec. 6 we focus on the QND aspect of weak measurements. We propose and
extensively analyze a scheme how to dispersively detect single itinerant microwave photons,
essentially building on the measurement physics in form of a stochastic master equation as
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presented in this section.
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Figure 4.3: Densities of excited state probability and integrated measurement signal. Part (a) illus-
trates that all the probability density weight is concentrated near the states |0〉 and |1〉 on a timescale set
by the measurement rate Γ. Part (b) shows the density of the integrated measurement signal Xint(t).
Again, we can directly observe that, on average, it is only possible to decide which state the system
qubit is in after the measurement time Γ−1 has elapsed. For these plots, 104 realisations of the solution
to Eq. (4.12) have been used.



Chapter 5

Measurement-based synthesis of multi-qubit
entangled states

Entanglement is a key resource in quantum information processing. Instead of complicated
pulse sequences on the individual qubit in a cavity, almost arbitrary states can be generated
and stabilized in a much simpler manner. Among those states are the famous maximally
entangled Greenberger-Horne-Zeilinger and W states. Building on the dispersive readout
scheme of circuit QED, we analyze how those states may be generated through a dispersive
collective QND measurement of superconducting qubits coupled to a microwave transmis-
sion line resonator.

The target state is determined by choosing sign and magnitude of the qubit detuning with
respect to the cavity as well as the product state the qubits are initalised in. The scheme under
evaluation here is directly applicable to an arbitrary number of qubits connected through a
cavity quantum bus.

Using the quantum trajectory approach, we analyze the stochastic measurement traces
that would be observed in experiments. We illustrate the synthesis of three-qubit W- and
GHZ states, and we analyze how the fidelity and the entanglement evolve in time during the
measurement. We discuss the influence of decoherence and relaxation, as well as of imperfect
control over experimental parameters. We show that the desired states can be generated on
timescales much faster than the qubit decoherence rates.

The contents of this chapter have been published in essentially the form presented here
in [Ferdinand Helmer and Florian Marquardt, Measurement-based synthesis of multiqubit
entangled states in superconducting cavity QED, Physical Review A, 79(5) , (2009), [169]].
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κcavity/2
κcavity/2

qubits

Figure 5.1: Schematic setup: Three superconducting qubits (red) are coupled to a mode of a coplanar
microwave resonator (blue). The measurement of the phase shift of a transmitted microwave beam can
be utilized to rapidly synthesize e.g. maximally entangled multi-qubit states like GHZ and W-states.

5.1 Introduction

The realization of quantum-optical concepts in condensed matter systems has led to remark-
able progress during the past few years. One of the prime examples is the study of quantum
electrodynamics (QED) in superconducting circuits. Earlier suggestions to implement the
Jaynes-Cummings model in the solid state [118, 142, 143] were followed by a proposal [78]
to employ on-chip microwave resonators and couple them to artificial atoms in the form of
superconducting qubits.

This seminal idea was, soon thereafter, realized experimentally [79], creating a solid-state
analogue of conventional optical cavity QED [170]. The tight confinement of the field mode
and the large electric dipole moment of the “atom” yield extraordinary coupling strengths.
As a result, these highly tunable systems have been employed to demonstrate experimentally
a variety of achievements, including: The Jaynes-Cummings model in the strong-coupling
regime [60, 68, 79], Rabi and Ramsey oscillations and dispersive qubit readout [144, 171],
generation of single photons [123] and Fock states [136, 137], cavity-mediated coupling of
two qubits [41, 82], setups with three qubits [125], Berry’s phase [172], and the measurement
of the photon number distribution [121].

The strong coupling makes dispersive quantum non-demolition (QND) readout possible,
both for qubit states and for detecting single photons [173]. QND measurements are ideal
projective measurements that reproduce their outcome when repeated [106, 166]. Any QND
measurement may be applied to (probabilistically) generate states. In particular, having sev-
eral qubits inside a common cavity (as realized in recent circuit QED experiments [41, 82],
for a schematic setup see Fig. (5.1))), one may produce entangled multi-qubit states, even
without employing directly any qubit-qubit coupling. In the context of circuit QED, this op-
tion has been investigated previously in a series of remarkable studies [174–176]. However,
these consider primarily two qubits, with a recent work [175] discussing the extension to
more qubits in general terms. The present work aims to go beyond these studies in several
aspects. First, we present necessary conditions for being able to generate arbitrary multi-
qubit states out of a given subspace of the total multi-qubit Hilbert space, using only sin-
gle qubit operations and subsequent collective measurement. Second, we carry out detailed
quantum jump trajectory simulations also for the case of three qubits, where W and GHZ
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states may be produced. We show how entanglement is generated in the course of the mea-
surement process, paying attention to the effects of relaxation and decoherence. Moreover,
we analyze how imprecise fine-tuning of experimental parameters would lead to a loss of
entanglement after its initial, transient generation. Finally, we comment on possible exper-
imental realizations. Such a measurement-based scheme complements other approaches for
entanglement-generation in circuit QED [78, 126, 145, 148, 177–181] , based on unitary dy-
namics, and may prove advantageous for some purposes, since generation and measurement
are combined into one step. It might also be used to generate entanglement between qubits
in spatially separated cavities, without any direct interaction.

5.2 Model

We investigate a QND scheme utilizing the coupling of superconducting qubits to a bosonic
field mode of a microwave resonator as examined in [78, 79]. The presence of excitations
in the qubits inside the cavity gives rise to a frequency shift of the cavity mode, which can
be observed dispersively via its phase shift. In turn, the measurement back-action leads to a
projection of the qubits on a state that depends fully a) on the chosen set of couplings and b)
the initial (product) state the qubits are prepared in.

We proceed as follows: (i) We derive a stochastic master equation for the situation of N
qubits coupled to a cavity subject to phase shift measurement and give an analytical approach
to the success rates and state lifetime, given the imperfections due to parameter spread and
qubit decoherence. (ii) We give examples of interesting states which can be synthesized in
this way and comment on the lifetimes and success rates for those particularly interesting
states. (iii) Finally, we comment on possible experimental realizations.

We consider a system of a driven cavity mode coupled to N qubits

Ĥ = !ω

(
â†â +

1

2

)
+

N∑

i=1

εi

2
(σ̂z

i + 1)

+
N∑

i=1

g0
i (σ

+
i a + σ−i a†) +

κcavity

2

(
εâ† + âε∗

)

+ Ĥdecay , (5.1)

a model commonly known as the Tavis-Cummings model which has been recently experi-
mentally realized for N = 2 [41, 82] and N = 3 [125]. The first term of this Hamiltonian
describes the cavity mode with a frequency ω, the second all qubit energies, the third term
realizes the Jaynes-Cummings coupling for each qubit to the cavity with bare coupling con-
stants g0

i , while the last term describes the driving of the cavity with the readout microwave
tone which will yield |ε|2 photons in the resonator on average (κcavity is the intensity decay
rate for the cavity).

In the limit where all the qubits are strongly detuned from the cavity, it is well-known
[78] that the qubits impart a state-dependent phase shift on the cavity mode and the effective
Hamiltonian can be written as:
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Ĥ = !ω

(
n̂ +

1

2

)
+
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∆i
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] (
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+
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i=1

εi

2
(σ̂z

i + 1)

+
κcavity

2

(
εâ† + âε∗

)
+ Ĥdecay . (5.2)

Here, n̂ = â†â denotes the number operator of the cavity mode. Hamiltonian (6.1) also
induces an effective flip-flop interaction [78, 82] of strength Jαβ = gαgβ(∆α+∆β)/(2∆α∆β)
between each pair of qubits (α, β) in the same cavity (for couplings gα(β) and detunings from
the cavity ∆α(β), in the dispersive limit |g|&| ∆|):

Ĥflip−flop
αβ = Jαβ

(
σ̂+

α σ̂−β + h.c.
)
. (5.3)

When simulating the master equation (8.14) to be derived from the Hamiltonian (5.2), we
neglect this interaction for several reasons. (i) In a concrete experiment the qubit energies
could always be chosen very different, such that this unwanted interaction does not play
a role, since the qubits are non-resonant. (ii) As we will argue later in more detail, the
measurement rate Γ̄ is usually much larger than Jαβ , thus making the effects of the interaction
negligibly small even when the qubits are in resonance with each other. (iii) We note that
all the states we consider as examples are eigenstates of the flip-flop interaction, Eq. (5.3).
Therefore, even if the qubits are chosen to be in resonance (as is ultimately assumed in
our simulations), the interaction will not have any important effect on the dynamics besides
trivial phases between subspaces that are rendered mutually incoherent by the measurement
anyway. Thus, we will neglect the flip-flop interaction.

5.3 Necessary conditions for the generation of given target states

The protocol we are envisaging is to first produce a product state, using local operations
on the individual qubits, and then to project on an entangled state by measurement. This
scheme will be successful with a certain probability. Our aim in the present section is to
briefly discuss the necessary conditions that must be met to be able to generate a given class
of entangled states. It goes without saying that once an entangled state has been reached,
one may then apply further local operations to reach a corresponding subspace of the full
multi-qubit Hilbert space.

Let us first fix notation. The coupling strengths gi determine the phase shifts induced by
the individual qubits,

gi ≡
(g0

i )
2

∆i
, (5.4)
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and for convenience we will collect them into the coupling vector

−→
G ≡

(
gi

ḡ

)
, i = 1...N , (5.5)

where the overall strength ḡ just determines the measurement time-scale, but does not affect
the reachable states.

Using qubit excitation operators n̂i ≡
(σ̂z

i +1)
2 , we define the measurement operator N̂ as

N̂ ≡
N∑

i=1

gi

ḡ
n̂i . (5.6)

Note that even in current experiments, the gi are tunable in magnitude and sign simply by
choosing the detuning ∆ appropriately. The phase shift on the microwave cavity will then be

Φ̂ =
N∑

i=0

φ̂i = ḡN̂ =
N∑

i=1

gin̂i (5.7)

where ni is the excitation number of the i-th qubit.
The desired entangled state |Ψ〉 ≡

∑2N

j=1 αj |ϕj〉 has complex amplitudes

−→α ≡ (αj) , j = 1...2N (5.8)

in the energy eigenbasis of the qubits (a product basis that diagonalizes n̂i).
In the following we derive necessary conditions for being able to produce arbitrarily

chosen states out of some M -dimensional Hilbert space that is spanned by a subset of M
basis states |ϕj〉. In order to generate a certain target state given by arbitrary −→α , we need to
adjust the couplings such that all base kets with non-vanishing αj yield the same phase shift.
Assume the amplitude vector of the target state has

M ∈ {1, ..., 2N}

non-zero entries αj, j ∈ {1, .., 2N}, where the corresponding indices can be written as a
family Fα with dim(Fα) = M . Then the goal is to use the measurement to project the
system onto the subspace given by

span ({|ϕj〉 |j ∈ Fα}).

In the simplest case this is directly possible by choosing (i) an appropriate initial product
state of the three qubits (to fix the amplitudes) and (ii) a suitable coupling vector (to project
onto the correct subspace).

Choosing an arbitrary initial product state allows for the choice of 2N complex ampli-
tudes. Due to normalization of the N single qubit states and an arbitrary global phase for
each of those states, we essentially have 2N real parameters to choose.

The amplitude vector of the target state will - up to a constant common factor due to the
renormalization after projection - be determined by the amplitudes of this initial state. This
suggests that, in general (i.e. for arbitrary target states), we can only aim at reaching states
that satisfy

2M − 2 ≤ 2N. (5.9)
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Again, we had to subtract 2 to account for the irrelevant global phase and normalization.
Note that for the maximal value of M = 2N , the last inequality does not hold for any

N > 1 and we recover the fact that arbitrary states are in general not product states. Note
that we have just found a necessary condition for constructing arbitrary states out of an M -
dimensional subspace. When choosing particular states, e.g. trivially separable states, one
may still be able to construct those even if they formally violate Eq. (5.9)).

We now turn to the question when it is possible to choose the couplings such that the
measurement cannot distinguish the components of the target state from each other. This
requirement of equal phase-shifts formally corresponds to a set of M − 1 equations

〈ϕi| N̂ |ϕi〉 = 〈ϕj| N̂ |ϕj〉 (5.10)

where i,j denote successive indices out of Fα.
As tunable parameters to our disposal we effectively have N − 1 couplings (discounting

the overall strength ḡ), so this set of equations will in general be solvable as long as M ≤ N
is fulfilled.

As we will demonstrate below by constructive proof, the most interesting entangled states,
such as W and GHZ states, can always be synthesized in a single step. Indeed, they have
M = N for the W- and M = 2 for the GHZ states and thus satisfy the necessary conditions
discussed in this section.

5.4 Stochastic master equation

In this section we present a stochastic master equation for the system presented above. This
enables us to model the back-action of the phase shift measurement as well as the measured
homodyne signal.

In the case of a cavity mode that decays much faster both than the qubit decoherence rates
(κcavity ' γ1, γφ) and the couplings to the cavity mode κcavity ' gi∀i ∈ {0, 1, .., N}, it is
possible to adiabatically eliminate the cavity mode from the system and find for the stochastic
master equation (in the interaction picture) for the qubits alone

˙̂ρ =
N∑

i=0

γ1

(
σ̂i
−ρ̂σ̂i

+ − 1

2
σ̂i

+σ̂i
−ρ̂− 1

2
ρ̂σ̂i

+σ̂i
−
)

+
N∑

i=0

γϕ
[
2P̂iρ̂P̂i − P̂iρ̂− ρ̂P̂i

]

− 2Γ̄
[
N̂ ,

[
N̂ , ρ̂

]]

−
√

4Γ̄
(
N̂ ρ̂ + ρ̂N̂ − 2ρ̂

〈
N̂

〉
(t)

)
ξ(t). (5.11)

Here Γ̄ ≡ ḡ2|ε|2
κcavity

is the measurement rate, and |ε|2 is the average photon number circulating
inside the cavity mode. See [182, 183] for a detailed derivation. The stochastic master
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equation is conditioned on the measured signal

X(t) ≡ 〈N̂〉(t) +
1

4

√
1

Γ̄
ξ(t), (5.12)

where ξ represents the fundamental, unavoidable vacuum noise (with 〈ξ(t)ξ(t′)〉 = δ(t −
t′)). Physically, X(t) is the appropriate (suitably normalized) quadrature component of the
electric field transmitted through the cavity, which is proportional to the phase shift that
indicates the multi-qubit state. Experimentally, this signal would be measured in a homodyne
detection scheme, Note that, for a two-sided cavity, information is contained both in the
transmitted and the reflected signal, and we have assumed that both parts of the signals are
superimposed symmetrically to extract the maximum possible information content [173].

5.5 Examples of measurement-generated entangled states

In this section we discuss the most relevant examples for the case of two and three qubits in
the cavity. More precisely we will show that it is possible to generate Bell states, W states,
and Greenberger-Horne-Zeilinger states (GHZ-states) as well as other maximally entangled
states.

We will be able to observe that the measurement indeed first drives the system to one
of its attractor solutions (among them the desired state) which are then stabilized by the
measurement. The attractor nature of the subspaces selected by the coupling vector −→G can
be immediately understood from the structure of the stochastic master equation (8.14), by
realizing that the stochastic term and the measurement induced dephasing term both vanish if
the density matrix is in the desired state. Only relaxation and dephasing can take the system
out of this final state, and we will discuss their influence later.

5.5.1 Quantitative characterization

In order to characterize the time-evolution during the measurement process, we have plotted
several quantities. We plot the phase shift signal X(t) and the excitation number ni in each
qubit as functions of time. To verify that we have indeed obtained the desired state, we will
compute the state fidelity " between the density matrix from the simulation, ρsim, and the
ideal state density matrix σ, according to " ≡ tr

∣∣√ρsimσ
√

ρsim

∣∣. Finally, the two-qubit
entanglement between two qubits A and B will be measured by the log-negativity. Given the
density matrix ρ of the two qubits (after tracing out other qubits, if needed), this is defined
as EN(ρ) = log2

∥∥ρTA
∥∥. Here ρTA is the partial transpose with respect to qubit A, and

‖µ‖ = tr[
√

µ†µ] is the trace norm.
Before discussing the individual examples, we briefly point out the general features.

Looking at the results [e.g. in Fig. (5.2)], we find that in those cases where we end up in
the right state the fidelity as well as the log-negativity are 1. Furthermore, the state is stabi-
lized by the measurement, meaning that, due to the absence of any non-vanishing terms in
the master equation’s right hand side, it is frozen. We observe that the state is generated on a
timescale given by the measurement rate Γ̄−1.



98CHAPTER 5. MEASUREMENT-BASED SYNTHESIS OF MULTI-QUBIT ENTANGLED STATES

While discussing the examples we will also analyze plots that show the probability den-
sity of various quantities evolving over time. This point merits a brief discussion. The time-
evolution of the distribution for any simple quantum-mechanical observable can be immedi-
ately obtained from the time-evolution of the average density-matrix, i.e. from the standard,
non-stochastic master equation. In that case, simulating a large number of stochastic trajecto-
ries and then averaging over the results would be unnecessarily cumbersome. However, that
argument becomes void as soon as one considers signals that depend on the entire pre-history
of the trajectory. An important example is the time-averaged phase-shift signal,

X̄(t) ≡ 1

t

∫ t

0

X(t′)dt′ . (5.13)

This quantity has the advantage of tending towards a well-defined limit in the course of a
QND measurement, with the fluctuations around that limiting value decreasing like 1/

√
t. It

is not possible to obtain the distribution of X̄ from the average density-matrix ρ, and quantum
jump trajectory simulations are needed.

Another example is represented by quantities that depend non-linearly on the density
matrix. In those cases, the average density matrix is irrelevant since obviously 〈f(ρ)〉 6=
f(〈ρ〉) for a nonlinear function f . An important case is the entanglement measure EN . In
fact, the average density matrix is never entangled (EN(〈ρ〉) ≡ 0) for our examples. Thus,
it is indeed necessary to obtain EN for a large number of trajectories in order to discuss its
statistical behaviour and plot the probability density.

5.5.2 Bell states for two qubits - no decoherence

In the case of two qubits and vanishing decoherence rates γ, γφ = 0, the generation of Bell
states is straightforward [175]. We imagine starting the experiment with all qubits in the
ground state |00〉 applying a Hadamard gate (π/2 - σx rotation) at some time t0, leaving the
system in the product state |Ψ0〉 ≡

∏
⊗

1√
2
(|0〉+ |1〉) = 1

2 (|00〉+ |01〉+ |10〉+ |11〉). We
want to generate the Bell state

∣∣Ψ+
〉
≡ 1√

2
(|01〉+ |10〉) , (5.14)

which is the two-qubit version of a W-state. Clearly the amplitude vector for this state is
simply

√
2−→α = (0, 1, 1, 0)T , and the resulting Eq. (5.10) for the couplings is given by

g1 = g2, thus−→G = (1, 1)T . The desired state will be generated with a success rate η given by

η ≡
∣∣〈Ψ+

∣∣ Ψ0〉
∣∣2 =

1

2
, (5.15)

meaning that the experiment will in 50% of all runs end up in the correct state (as confirmed
by observation of the correct phase shift).

Likewise, for the Bell state vector |Φ+〉 ≡ 1√
2
(|00〉+ |11〉), we find for the amplitude

vector
√

2−→α = (1, 0, 0, 1)T , and for the characteristic equation for the couplings g1 = −g2,
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which is fulfilled by the choice of coupling vector−→G = (1,−1)T . Note that in principle |Φ+〉
could also be generated by first producing |Ψ+〉 and then applying local unitary operations,
and the same is true for the two other Bell states, |Ψ−〉 and |Φ−〉.
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Figure 5.2: Generation of the Bell state |Ψ+〉 = (|10〉 + |01〉)/
√

2 (the two-qubit W-state): (a)
Quantum trajectories illustrating the different phase shift signal traces X(t). Three traces have been
selected, corresponding to the possible outcomes of the measurement given the same input state |Ψ0〉.
At time Γ̄t0 = 3, Hadamard gates are applied to both qubits, starting from the ground state. As in every
real measurement of field quadratures, the signal X(t) is smoothed by doing a windowed average over
a suitable time-span, Γ̄τavg = 1.0. Part (b) displays the excitation numbers, state synthesis fidelity
and the entanglement (log-negativity) for the one trajectory of plot (a) that ended up in the desired
state.
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Figure 5.3: Generation of two-qubit Bell state |Φ+〉 = (|00〉 + |11〉)/
√

2: (a) Probability density
of the average phase shift signal X̄(t) = t−1

∫ t
0 X(t′)dt′ from 6000 runs of the simulation. At

time t0 Hadamard gates are applied to both qubits. Part (b) displays the probability density of the
entanglement measure EN , the log-negativity. Note that neither of these plots can be obtained from
the standard, non-stochastic master equation (see main text), i.e. quantum jump trajectory simulations
are essential.
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5.5.3 Three qubits - no decoherence

5.5.3.1 Generation of W-states

Similarly, for three qubits, the generation of W-states is straightforward as well. We imagine
starting the experiment with all qubits in the ground state |0〉, applying a Hadamard gate (π/2
- σx rotation) at some time t0, leaving the system in the state

|Ψ0〉 ≡
∏

⊗

1√
2

(|0〉+ |1〉)

=
1√
8

[|000〉+ |001〉+ |010〉+ |011〉

+ |100〉+ |101〉+ |110〉+ |111〉] .

We aim to generate a W-state which for three qubits is given by

|W 〉 ≡ 1√
3

(|001〉+ |010〉+ |100〉) .

We find the corresponding amplitude vector
√

3−→α = (0, 1, 1, 0, 1, 0, 0, 0)T , and the resulting
equations for the couplings, g1 = g2 = g3, solved by equal couplings to all qubits, −→G =(

1, 1, 1
)T . The W state will be generated with a success rate η given by

η ≡ |〈W |Ψ0〉|2 =
3

8
.

Note that with the same success rate the dual W state is generated (see Fig. (5.4)) which is
given by

∣∣W̄
〉
≡ 1√

3
(|011〉+ |110〉+ |101〉) .

5.5.3.2 Generation of GHZ-states

Extending the two-qubit scheme to three qubits, we find for the amplitude vector
√

3−→α =
(1, 0, 0, 0, 0, 0, 0, 1)T , and for the characteristic equation for the couplings in case of a desired
GHZ state as the target state |GHZ〉 ≡ 1√

2
(|000〉+ |111〉): 0 = g1 + g2 + g3, which is

fulfilled, for example, by the choice of coupling vector −→G = (1,−1/2,−1/2)T . The success
rate is η = 1

4 . Again we plot phase shift signal, excitation numbers, log-negativity and fidelity
to illustrate the correctness of our considerations (see Fig. (5.5)). Note that due to the unequal
couplings, the qubit excitations and pairwise entanglement do depend on the qubit index, in
contrast to all our previous examples, where the couplings had been equal in magnitude.

It is noteworthy that this three-qubit GHZ scheme yields a 75% chance of obtaining a
Bell-state between qubits 2 and 3 as a by-product. So this might in fact be also considered
an even more efficient scheme to generate two-qubit Bell-states than just with two qubits in
the cavity.
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Figure 5.4: Generation of three-qubit W-states: (a) Quantum trajectories for the different states that
can arise from the given input state |Ψ0〉. At time Γ̄t0 = 3, Hadamard gates are applied to all
qubits. Windowed averaging is performed as in Fig. (5.2). Part (b) displays the excitation numbers,
state synthesis fidelity and the log-negativity for the one trajectory of plot (a) that ended up in the
desired W-state. Here triρ denotes the partial trace over qubit number i, and the resulting pairwise
entanglement happens to be the same for all choices of qubit pairs in this example. Note that in the
target state all pairs of qubits are mutually entangled which is characteristic for the W-state and the
reason for the robustness of its entanglement compared to the GHZ state.
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Figure 5.5: Generation of three-qubit GHZ states: (a) Quantum trajectories corresponding to the
different states that can arise from the given input state. At time t0, Hadamard gates are applied to
both qubits. Note that among the unwanted outcomes there are two-qubit |Ψ+〉 Bell-states. These
are actually generated with a success rate of η = 3/4, which is higher than in the original two-qubit
scheme. Part (b) displays the excitation numbers, state synthesis fidelity and the log-negativity for
all pairs of qubits for the trace of part (a) that ended up in the desired GHZ-state. Note that once
the GHZ-state is reached, all pairwise entanglement is lost. This is a typical feature of GHZ states,
which contain only genuine three-particle entanglement. Part (c) shows the evolution for the particular
trajectory that reaches the Bell-state between qubits 2 and 3, which can be generated very efficiently
as a by-product using this 3-qubit GHZ scheme.
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5.6 Effects of decoherence

We include decoherence into our model by considering the stochastic master equation Eq. (8.14)
with the Lindblad decay and dephasing rates now different from zero. Assuming equal rates
for all the qubits, evidently entanglement will be on average destroyed on a timescale set by
T2 = (γ1/2 + γφ)−1. When considering experimentally reachable parameters, which we will
do further below, we will find that indeed the time needed to synthesize states is orders of
magnitude shorter compared to T2. It is thus clear that the simulation of the examples will
look like above with a weak decay of coherence superimposed on the trajectories.

In contrast to the decay due to decoherence, the decay due to relaxation (at a rate γ1) is
stochastic, in the sense that it leads to sudden quantum jumps. This can be understood by
considering that the phase shift measurement stabilizes a certain subspace. Doing so, certain
configurations of diagonal elements in the density matrix constitute attractors that compete
with the exponential decay due to γ1. More formally speaking, the master equation is un-
ravelled with respect to the γ1-process, but still an ensemble average description of the pure
dephasing physics. The result is that the decay is stochastic when looking at single trajecto-
ries and the usual exponential γ1-decay is recovered when averaging over many trajectories.
Conversely, in a single trajectory the off-diagonal elements decay on a timescale set by T2,
showing the following behavior: As long as the relaxation jump process has not happened,
one observes a decay solely due to pure dephasing (see Fig. (5.6)). Once the relaxation pro-
cess has happened, coherence and thus entanglement are also lost completely.

5.6.1 Examples - two-qubit Bell-states including dissipation

To demonstrate the influence of decoherence and relaxation, we repeat the example for a two-
qubit Bell-state, |Ψ+〉 ≡ 1√

2
(|01〉+ |10〉), assuming comparatively low values of Γ̄/γ1 = 10

and Γ̄/γφ = 20 to illustrate the effects and make all the dynamics visible. Experimental
ratios would be at least about a factor 100 higher and thus the fidelity and lifetime are higher
in experiment than they appear from the following simulations.

We have plotted the time-evolution for the choice of couplings that leads to the creation
of a two qubit Bell-state |Ψ+〉 ≡ 1√

2
(|10〉+ |01〉). The results are shown in Fig. (5.6),

which should be compared against Fig. (5.2). Likewise, we have considered the probability
density for the time-averaged phase shift signal and the entanglement measure, for the Bell
state |Φ+〉, see Fig. 5.7. There, the strict upper envelope for the entanglement is particularly
noteworthy, corresponding to the decay of coherence within the subspace selected by the
measurement.
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Figure 5.6: Effects of adding decoherence to the dynamics. The situation is identical to the simulation
of Fig. (5.2), with the target state |Ψ+〉, except for the added relaxation rate γ1 = 0.01 · Γ̄ and
pure dephasing rate γφ = 0.02 · Γ. We can observe that the subspace of choice is stabilized before
the eventual decay due to relaxation. However, even before the sudden jump due to relaxation, one
observes a slow decay of the fidelity and entanglement between the qubits, due to the pure dephasing
rate γφ (dashed lines).
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Figure 5.7: Effects of adding decoherence and relaxation to the creation of the Bell state |Φ+〉 ≡
1√
2
(|00〉+ |11〉). The situation is identical to the simulation of Fig. (5.3), except for the added re-

laxation rate γ1 = 0.1 · Γ̄ and pure dephasing rate γφ = 0.05 · Γ. Part (a) shows the probability
density of the time-averaged phase shift signal X̄(t) with an example trajectory shown in red. Note
the build-up of finite probability at finite signal values, before relaxation back to zero phase shift,
which represents the vacuum state |00〉 at long times. Part (b) shows the probability density of the
entanglement (log-negativity). We can observe that the entanglement is lost on a timescale given by
T2 = (γ1/2 + γ2)−1. Note in particular the sharply defined, exponentially decaying envelope that
defines a strict upper bound for the entanglement at any given time. This is due to the pure dephasing.

5.7 Effect of imperfections due to parameter spread

In order to prepare states in this way experimentally, one faces the problem that it might not
always be possible to fix important parameters perfectly. If the scheme one has in mind in
turn relies on exact matching of parameters too much, one quickly ends up with a proposal
that may be interesting but not very realistic. We therefore examine the effects on the fidelity
and entanglement properties of this state synthesis scheme in the presence of small deviations
in the couplings of the qubits to the cavity

−→
G =

−→
G0 +

(
δgi

ḡ

)
, (5.16)

where−→G0 is the ideal coupling vector from solving the characteristic equations Eq. (5.10) for
the target state. δgi/ḡ are the deviations from that ideal coupling for each qubit. Without loss
of generality we first look at the case where all couplings are equal to their ideal value, except
one which differs by δg/ḡ. We focus on the stochastic term in the master equation Eq. (8.14)
which is responsible for the projection onto a set of states, one of which is our target state.
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Let us rewrite this term a bit by inserting the definitions of Γ̄ and N̂ :

˙̂ρst = −
√

4Γ̄
(
N̂ ρ̂ + ρ̂N̂ − 2ρ̂

〈
N̂

〉
(t)

)
ξ(t)

= −

√

4
ḡ2|α|2
κcavity

N∑

i=1

gi

ḡ
(n̂iρ̂ + ρ̂n̂i − 2ρ̂ 〈n̂i〉 (t)) ξ(t). (5.17)

From this form of Eq. (5.17), it is evident that due to the linearity in the couplings gi, we
can pull out all deviating couplings into separate terms which have the same form. This reads

˙̂ρ = −
√

4Γ̄
N∑

i=1

g(0)
i

ḡ
(n̂iρ̂ + ρ̂n̂i − 2ρ̂ 〈n̂i〉 (t)) ξ(t)

−
√

4Γ̄
N∑

i=1

δgi

ḡ
(n̂iρ̂ + ρ̂n̂i − 2ρ̂ 〈n̂i〉 (t)) ξ(t)

= −
√

4Γ̄
(
N̂ ρ̂ + ρ̂N̂ − 2ρ̂

〈
N̂

〉
(t)

)
ξ(t)

−
N∑

i=1

√
4δΓi (n̂iρ̂ + ρ̂n̂i − 2ρ̂ 〈n̂i〉 (t)) ξ(t),

which means that in addition to the ideal behaviour captured by the first term, each individual
qubit with deviating coupling will be projected on its ground or excited state on a timescale
given by the inverse of the individual measurement rate δΓi ≡ |ε|2δg2

i
κcavity

(we have assumed
positive δgi for simplicity; otherwise the signs in the last line would change for those qubits
with δgi < 0). This has two consequences: The first consequence concerns the measured
phase shift: Instead of being equal for all the base kets that form our target state, there will
be deviations in the phase shift from base ket to base ket. This means that we will be able
to observe the breakdown of the target state. Therefore, second, the lifetime of the desired
entangled state will now also be limited by the inverse of the maximum of the individual
measurement rates, in addition to the effects of decoherence.

In other words: As soon as we have gained enough signal to noise ratio to discriminate
the different base kets from each other (i.e. resolve the different corresponding phase shifts),
our target state will be destroyed.

To illustrate this effect in a fairly drastic way, we choose an example of three qubits with
a W-state as a target state and the coupling vector −→G = (1, 1, 1)T + (

√
2/10, 0,−

√
2/10)T .

This yields an individual measurement rate for the second qubit of δΓ2/Γ̄ =1 /50. Therefore,
we expect the target state and especially its entanglement properties to be destroyed on a
timescale of 50 times the preparation time Γ̄−1. As we will argue in the following section,
present experiments allow a ratio Γ̄/γdecoh = O(104), which justifies to ignore decoherence
for the moment. The resulting simulation beautifully confirms the expectations, see Fig. 5.8.
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Figure 5.8: Probability density of the time-averaged phase shift signal X̄ as an illustration of the effect
of parameter spread in the couplings. Apart from the deviation in couplings from the ideal values, the
setup is identical to the example in which we aimed for a three-qubit W-state, as seen in Fig. 5.4.
Hadamard gates are applied to all qubits at time t0 = 3 · Γ̄−1. During the following time interval
of length Γ̄−1 all trajectories are projected onto the W-state,

∣∣W̄
〉

,|000〉, or |111〉. Meanwhile the
competing projection on the individual number states of the qubits becomes more pronounced and
dominates the dynamics on a time scale δΓ−1

2 = 50Γ̄−1. This is exactly the timescale on which we
can be sure to identify all the product base states by their phase shift values individually.

We conclude that in order to observe the full dynamics of the system one should strive
for a regime where the condition

Γ̄ ' δΓi > γ1, γφ∀i ∈ 1, ..., N (5.18)

is met. In the next section we will show that this is indeed possible with present day experi-
mental parameters.

As a side remark we state that the situation of one coupling deviating from the others is
in principle already found when synthesizing GHZ states for an odd number of qubits (e.g.
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3) as examined in the previous sections (see Fig. (5.5, a))). We had chosen a coupling vector−→
G = (1,−1/2,−1/2)T . Here the larger magnitude of the coupling for the first qubit is
responsible for the generation of two-qubit W-states. As a consequence, we can learn about
the state of the first qubit while we can still not distinguish qubits 2 and 3 from each other.
Following our previous reasoning in this section, we find that the state of qubit 2 should
be discerned on a timescale set by

(
δΓ2/Γ̄

)−1
= 4 (in units of Γ̄−1), which matches the

simulation results shown in the previous section (see Fig. (5.5, a))).

5.8 Possibilities for experimental realization

Cavity QED setups in superconducting circuits [68, 79, 123, 184] have been used to im-
plement ideas of quantum optics on the chip, and are considered a promising candidate for
scalable, fault tolerant quantum computing (e.g. [124]). Proposals for generating and detect-
ing non-classical photon states exist or have been implemented [121, 123, 173, 185, 186].

These experiments realize a Jaynes-Cummings coupling between qubit and resonator of
up to 2π · 100 MHz, resonators with frequencies of about 2π · 5GHz, and a large range
of resonator decay rates κ between 10 kHz and 100 MHz. Given this parameter space and
assuming a bare qubit coupling of g0 ≈ 2π·100 MHz, detunings in the GHz range, |ε|2 ≈ 10
photons in the readout cavity, and a qubit decay rate γ1 ≈ 0.6 MHz, it is easily possible to
reach values of Γ̄/κ ≈ 104. This gives ample time for the state synthesis before decoherence
starts playing a role.

Furthermore, couplings can be adjusted with enough accuracy such that the state gener-
ation is also not limited by this factor. We can examine the sensitivity of the ratio δΓ/Γ̄ to
small deviations in the parameters. From δΓ ∝ δg2 and δg = δ(g2

0/∆), we find δΓ/Γ̄ =
[2δg0/g0 − δ∆/∆]2. Assuming an uncertainty about the bare value of the coupling of the
qubits to the cavity and an uncertainty about the qubit detuning of about 5% each, we find
that δΓ ∼ 0.052Γ̄. Note that this value is obtained without even considering the possibility
of actively compensating for the spread in the couplings by suitably adjusting the detuning.
This hints that under presently available optimal experimental conditions, the infidelity due
to parameter spread becomes visible only long after the system has been severely decohered
anyway. However, one can always intentionally choose parameters such that Eq. (5.18) is
fulfilled and the full dynamics discussed here can be experimentally observed, including the
ultimate measurement-induced decay of the temporarily produced entangled state.

The main challenging step to be taken experimentally before realizing this scheme in
the lab is to operate in the single-shot qubit readout limit. This has been demontrated very
recently by the Saclay group using a Josephson bifurcation amplifier setup [187].

5.9 Conclusions

We have analyzed a very general, experimentally directly relevant way to generate entangled
multi-qubit states using a dispersive phase shift measurement of the collective state of sev-
eral qubits inside a cavity. We have given criteria for the possibility to synthesize a given
target state and studied the most relevant examples of Bell-states as well as W- and GHZ-
states for two and three qubits. We have also discussed, and analyzed by extensive numerical
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simulations, the two major sources of imperfections in this setup, namely decoherence and
parameter spread. Finally, we have compared with presently reachable experimental param-
eters and conclude that this scheme could soon be tested in the laboratory.

This chapter also represents the first non-trivial application of stochastic master equations
and the quantum trajectory method in this thesis. In the following chapter, we will present
a slightly more involved measurement scheme which we analyze using the same method. In
addition to the model components of this section, a non-linear filter will be used to quanti-
tatively analyze the measured signal. The goal of the next chapter is to present a workable
single itinerant microwave photon detection scheme based on the available experimental tools
in circuit QED.
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Chapter 6

Detection of single itinerant photons and
the Quantum Zeno effect

Circuit QED provides a rich toolbox to perform experiments known from quantum optics
on-chip as argued in the introduction. Special attention has been drawn to the possibility
to generate single microwave photons on-demand. However, up to now there is no detector
which could detect those generated single photons on a single-shot basis. Thus, strictly
speaking the claim to have generated a single photon can not be proven on an ensemble
average basis. Be this as it may, single photons have great application e.g. when it comes to
quantum cryptography where entangled single photon pairs are used to communicate making
eavesdropping impossible. In order to perform such experiments, a single photon detection
scheme is highly desirable. In this work, we extend and transfer ideas which have been
around in optics for a long time, namely to use a dispersive cross-Kerr coupling (in optics via
some non-linear medium) to detect the photon number in one beam (the signal) by the phase
shift imparted on a reference beam.

In order to provide this missing tool in circuit QED, we analyze the detection of itinerant
photons using a quantum non-demolition (QND) measurement. Here, the dispersive detec-
tion can be realized via the nonlinear interaction between photons inside a superconducting
transmission line resonator.

Using quantum trajectory simulations, we show that the back-action due to the continuous
measurement imposes a limit on the detector efficiency in such a scheme. We find that
the restrictions on the fidelity of detection are a consequence of the Quantum Zeno effect
caused by photon reflection, and we discuss both analytical results and quantum trajectory
simulations of the measurement process.

One particularly important and feasible implementation would be in superconducting cir-
cuit QED, where this scheme would enable the on-chip detection of single microwave pho-
tons. We have shown how the Quantum Zeno effect enters the detection efficiency, a result
that will be relevant to many other situations, such as the detection of electrons tunneling
through a quantum dot by current passing through a nearby quantum point contact [188], the
detection of itinerant phonons entering a micromechanical cantilever or membrane (e.g. in
an optomechanical setup [189]), and other similar settings in mesoscopic physics, quantum
optics, and atomic physics. Another possible application migh be in photonic crystal cavity
QED with self-assembled quantum dots.
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This work, essentially in the form presented here, has been published in [Ferdinand
Helmer, Matteo Mariantoni, Enrique Solano and Florian Marquardt, Physical Review A,
79(5), (2009), [173]].

coupling

signal mode

detector mode

Figure 6.1: Schematic sketch of the model. Two cavity modes are coupled anharmonically. The
detector mode is irradiated with a strong coherent field that suffers a phase shift whenever a photon is
present in the signal mode.

6.1 Introduction

Quantum non-demolition (QND) measurements are ideal projective measurements that re-
produce their outcome when repeated [106, 166]. Using them, it is possible to measure
the state of a system with the minimal disruption required by quantum mechanics. Recent
successful experimental demonstrations of QND detection for superconducting qubits and
microwave photons [121, 144, 190, 191] are both of fundamental interest and crucial to the
development of quantum communication and information processing. When QND detection
is applied continuously to a system that would otherwise undergo some intrinsic dynamics,
quantum jumps are observed, tracing the quantum evolution in real-time [104, 192–195]. As
a consequence, the dynamics tends to be frozen, a result now known as the Quantum Zeno
effect [184, 196–200].

In the present section, we show that the interplay of these phenomena may put interesting
constraints on the detection of itinerant quanta. The specific minimal example we will dis-
cuss concerns the continuous dispersive QND detection of single photons passing through a
cavity.

The crucial distinction to be recognized is the following: For localized quanta (e.g. a
photon already created inside a cavity [104, 183]), the Quantum Zeno effect could presum-
ably only enhance the detection by suppressing the decay. However, this no longer holds
for the detection of itinerant quanta, if we require that our detector is always working and
can detect the quantum without knowing the arrival time in advance. As we will show, in
this case the unavoidable back-action of the measurement device produces a Quantum Zeno
effect, suppressing the fidelity of measurements.

Such dispersive photon detection schemes could have a particularly important application
in the field of quantum electrodynamics (QED) in superconducting circuits. Circuit QED
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setups [68, 79, 123, 184] offer the possibility to implement ideas of quantum optics using
microwave photons propagating in transmission lines, and they could also form the basis of
novel architectures capable of scalable, fault tolerant quantum computing [124]. Proposals
for generating nonclassical photon states exist or have been implemented [121, 123, 185,
186]. However, the on-chip single-shot detection of itinerant photons is still missing.

Recent experiments have demonstrated dispersive qubit detection [144] and measure-
ments of photon statistics [121]. Based on the dispersive coupling strengths demonstrated
there, one could employ a superconducting qubit inside a microwave transmission line res-
onator to induce a nonlinear coupling between two modes of the resonator (or alternatively
couple two cavities), thus creating a dispersive photon detector of the type discussed here.
Even though we find a limit for the photon detection fidelity of about 30% for the simplest
scheme considered here, this would still be a considerable improvement on the present state
of the art.

In the following we present a simple model and analyze it analytically and numerically.

6.2 Model

We investigate a QND scheme utilizing the non-linear, Kerr-type coupling [201–203] of two
discrete localized modes of a bosonic field. The presence of a quantum inside the signal mode
gives rise to a frequency shift of the detection mode, which can be observed dispersively via
the phase shift of a beam transmitted through that mode (see Fig. 6.1). In turn, the signal
mode frequency fluctuates due to the detection beam’s shot noise. As a consequence, the
incoming signal photon will be reflected with a probability that rises with coupling strength
and detection beam intensity.

This incarnation of the Quantum Zeno effect generates a trade-off that yields the highest
detection efficiency at intermediate coupling strengths. In that way, such dispersive schemes
for itinerant quanta turn out to be similar to weak measurements using general linear detectors
and amplifiers [106].

We proceed as follows:

1. We numerically evaluate quantum jump trajectories for the phase-shift signal in a min-
imal model of a QND photon detector and analyze the fraction of detected photons,
observing the trade-off described above.

2. We interpret these findings using an analytical approximation.

3. Finally, we briefly comment on possible experimental realizations.

We consider a system of two cavity modes with a Kerr-type coupling of strength g:

Ĥ = !ω

(
n̂ +

1

2

)
+ !ωdet

(
n̂det +

1

2

)
+

!g n̂ n̂det + Ĥdrive+decay . (6.1)

These modes might represent two different electromagnetic field modes inside an optical or
microwave cavity, the modes of two adjacent cavities, or even two anharmonically coupled
modes of a nanomechanical resonator. Photons in the signal mode (frequency ω, number
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operator n̂) and the detector mode (ωdet, n̂det) decay by leaking out of the cavity. The anhar-
monic Kerr-type coupling arises generically when introducing any nonlinear medium, such
as an atom, a qubit or a quantum dot, into a cavity and has been studied for the purpose
of QND measurements in quantum optics [201–203]. It induces a phase shift in the strong
detection beam (〈n̂det〉 ' 1) upon presence of a signal photon.

We are interested in analyzing individual realizations of the phase shift signal as a func-
tion of time. The phase shift can be observed by continuously measuring an appropriate field
quadrature of the detection beam (e.g. in a homodyne setup). As the beam passes through the
cavity, the beam becomes entangled weakly with the cavity’s state. Thus, the stochastic mea-
surement outcomes reveal information about that state, feeding back into the time-evolution
of the cavity’s density matrix. This physics is described by a stochastic master equation
[106, 183, 204–206] for the density matrix ρ̂ conditioned on the output signal (see [183]).

In order to assess the performance of this detection scheme, we need to gain access to the
individual measurement records for each run of the experiment. By construction, a usual mas-
ter equation, which is an ensemble average description, is able to capture e.g. measurement
dephasing but does not give access to individual measurement records and the corrspodning
conditional state evolution. This is especially true if one aims at applying a non-linear fil-
ter to this record because non-linear functions and averaging cannot be interchanged. The
threshold detection we are going to introuce is such a non-linear function. Thus, we have to
use the concept introduced in Sec. 4.3 to unravel the master equation into a stochastic master
equation which generates so-called quantum trajectories.

6.3 Stochastic master equation

In this derivation we follow [182, 183, 207, 208], adapted to the case of zero temperature
and a two-sided cavity. As a starting point we write down a master equation to model the
quantum dynamics of the system introduced in Fig. (6.1) and Eq. (6.1):

˙̂ρ = −i[
κ1

2
(αâ†1 + α∗â1) + gâ†1â1â

†
0â0, ρ̂]

+ κ(â0ρ̂â†0 −
1

2
â†0â0ρ̂−

1

2
ρ̂â†0â0)

+ κ1(â1ρ̂â†1 −
1

2
â†1â1ρ̂−

1

2
ρ̂â†1â1)

− i
√

Ṅin/2κ[â0 + â†0, ρ̂]. (6.2)

The first Hamiltonian term describes driving of the detector mode (annihilation operator
â1, decay rate κ1) as well as the Kerr-type nonlinear coupling between the modes. The driving
amplitude α results in a coherent state in the signal mode with an average photon number
|α|2. The signal mode annihilation operator is denoted â0 and its decay rate is labelled κ.
The second and third terms are the Lindblad-decay terms for both modes reflecting the finite
Q-factor of the cavity. The fourth term is a weak driving of the signal mode to model the
itinerant photons impinging onto the cavity. Here, Ṅin describes the rate of itinerant photons
impinging onto the cavity from the outside. Although the drive is coherent, after a suitable
unravelling of the master equation it will become apparent that the Poissonian nature of the
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coherent drive will indeed model the situation we have in mind correctly - namely that once
a while a photon comes along the transmission line, hits the cavity and can then be detected
or not. Note that we have chosen to work in an interaction picture and in a rotating frame to
eliminate the explicit time-dependece of the drives.

It is convenient to follow the steps of [182, 183, 207–209] to (i) derive the unravelled
version of Eq. (8.1) and to (ii) adiabatically eliminate the detector mode from this equation
assuming κdet ' κ. This is done in Appendix 8.1. Finally, we obtain a stochastic master
equation for the signal mode alone, greatly facilitating the numerical study of the detection
efficiency. Its stochastic term accounts for the back-action of the measurements performed
on the field quadrature leaking out of the detector mode correctly and reads

˙̂ρs = −i

√
Ṅinκ

2

[
â + â†, ρ̂

]
+ κ

(
âρ̂â† − 1

2
n̂ρ̂− 1

2
ρ̂n̂

)

−2Γ [n̂, [n̂, ρ̂]]−
√

4Γ (n̂ρ̂ + ρ̂n̂− 2ρ̂ 〈n̂〉 (t)) ξ(t), (6.3)

while the classical noisy measurement signal that corresponds to this internal dynamics
is given by

X(t) ≡ 〈n̂〉(t) +
1

4

√
1

Γ
ξ(t). (6.4)

6.4 Analysis of detection efficiency

We analyze a situation with a continuous weak coherent beam of photons entering at a rate
Ṅin into the signal mode, whose intensity decay-rate is κ (first line of Eq. (8.14)). We have
chosen to work in the limit of a large detector mode decay rate, κdet ' κ, which is favorable
for the detection process and makes it possible to adiabatically eliminate that mode [183],
keeping only the signal mode n̂ = â†â and drastically reducing the numerical effort. After
adiabatic elimination, the coupling strength g and the detection beam intensity are combined
into the measurement rate [183]

Γ ≡ g2 〈n̂det〉 /(4κdet), (6.5)

where 1/Γ is the time-scale needed to resolve different photon numbers. The last, stochastic
term in Eq. (8.14), describes the measurement back action.

It contains a systematic term depending on the average number of signal photons, as
well as a stochastic term representing the unavoidable vacuum noise, where 〈ξ〉 = 0 and
〈ξ(t)ξ(t′)〉 = δ(t− t′). In deriving Eqs. (8.14,6.4), we have assumed that the transmitted and
reflected signals are superimposed symmetrically to extract the maximum information.

As in any measurement of field quadratures, temporal filtering is required to suppress
the noise. We average over a timespan τavg, which should be as large as possible while still
remaining smaller than the expected temporal extent of the phase shift signal due to a single
photon, i.e. τavg not much bigger than κ−1. We denote the averaged signal as X̄(t). We have
made sure that this moving average (a necessary but technical step to cope with white noise)
does not interfere with the physics involved (see Fig. (6.6)). From another point of view,
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this averaging is inherent in any experimental device and merely represents the UV-cutoff in
the bandwith of the devices used. As in a real experiment one needs to make sure that the
interesting phsyics does not happen too near or outside the bandwith of e.g. the amplifiers
used.

6.4.1 Numerical results

In order to obtain results, we numerically solve the master equation, and use it to compute
the signal X̄(t) and the occupation of the signal mode 〈n̂〉 (t) as a function of time. We
then implement the minimal model of a threshold detector: Time-points when the quantum
jump trajectory X̄(t) first exceeds the threshold Xthr are counted as detection events, and
the detector is then set insensitive for a dark-time τdark, suitably chosen to avoid multiple
detection, i.e. Ṅ−1

in ' τdark ' κ−1.
Our discussion will focus on small values of Ṅin, making the results independent of τdark,

while we will analyze the dependence on Xthr in some detail. In figure 6.2 we show two
example trajectories. Whereas the expected number of signal photons is the same for both
cases, the increase in the measurement rate Γ/κ decreases the number of photons actually
detected, while at the same time enhancing the signal to noise ratio in the trajectory. This is
an indication of the Quantum Zeno effect in the detection of itinerant quanta, which we now
want to study in more quantitative detail.

We plot the rate of photon detection events Ṅdet versus the rate of incoming photons Ṅin

(see Fig. 6.3). The detection efficiency η is naturally defined as the ratio of detected vs.
incoming photons, obtained at small input rates Ṅin:

η ≡ dṄdet

dṄin

∣∣∣∣∣
Ṅin=0

. (6.6)

Fig. 6.4 displays the efficiency η as a function of Γ/κ and Xthr. The statistics for this
figure were obtained from extensive numerical simulations by generating O(104) trajectories
of length 102/κ for seven different rates Ṅin at each value of Γ/κ. Apparently, the detector
efficiency η is strongly suppressed both for Γ/κ & 1 (low signal to noise ratio) and Γ/κ ' 1.

The pronounced peak is shown enlarged in a lin-log plot in Fig. (6.5).
Now we have discussed at length the dependence of the detector efficiency in terms of

all inherent physical parameters, such as the threshold and the measurement rate. However,
when performing the analysis, we have used an averaged signal, such that there could be a
dependence on this averaging time as well. In order to exclude this, we have examined the
dependence of the efficiency η along a line of constant measurement rate Γ/κ. This line
is depicted as the yellow cut in the 3D-inset of Fig. (6.4). As can be seen from Fig. (6.6),
changing the averaging time just shifts the value of the threshold where we get maximum
efficiency whereas the height of the maximum only changes negligibly.

6.4.2 Analytical results

Now, in order to corroborate and interpret these results, we calculate the total transmission
probability through the signal mode, whose frequency fluctuates due to the shot noise in the
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Figure 6.2: Quantum jump trajectories illustrating dispersive photon detection: The observable ho-
modyne signal X̄(t) (red lines) and the corresponding signal mode occupation 〈n̂〉 (t) (blue lines), for
two different values of the measurement rate Γ/κ at a fixed input rate Ṅin. Photon detection events
are indicated as filled circles. The relative noise strength∝ (Γτavg)−1/2 is suppressed with increasing
Γ/κ, but the number of photons actually detected also decreases, due to the Quantum Zeno effect (see
main text). The size of the noise floor, the detector threshold Xthr (green dashed line), and the dark
time are indicated. Here and in the following plots κτavg = 2.



120 CHAPTER 6. DETECTION OF SINGLE ITINERANT PHOTONS

 0
.0

2

0
.0

4

0
.0

6

0
.0

8

 0

0.02

0.04

0.06

0.08

0.1

Figure 6.3: Observe the dark count rate (offset at Ṅin = 0), the detector efficiency η defined from the
slope at Ṅin = 0, and the saturation for large Ṅin ∼ τ−1

dark.

detection mode, which is treated as classical noise. We start from the semiclassical equation
of motion for the complex field amplitude α(t) in the signal mode,

α̇(t) =
(
−i δω(t)− κ

2

)
α(t) +

√
κ

2
αin

L . (6.7)

Here αin
L is the amplitude of the signal photon field entering the cavity from the left side, and

δω(t) ≡ gndet(t) is the fluctuating frequency shift (ndet ' 1). The correlator of the noise is
given by

〈δω(t)δω(0)〉 − 〈δω〉2 = g2n̄dete
−κdet|t|/2 . (6.8)

To obtain an expression for the transmission probability, we write down the formal solution
for α(t),

α(t)
√

κLαin
L

=

∫ t

−∞
dt′ exp

[
−i

∫ t

t′
δω(t′′)dt′′ − κ

2
(t− t′)

]
. (6.9)

Note that the fluctuations δω(t) themselves are non-Gaussian. Still, the integral in the ex-
ponent is approximately Gaussian for time-intervals that fulfill κdet|t − t′| ' 1, due to the
central limit theorem. These times yield the main contribution under our assumption of a
“fast detector”, κdet ' κ. Thus, we can evaluate 〈|α|2〉 using the formula 〈exp[−iY ]〉 =
exp[−i〈Y 〉 − 1

2VarY ] for a Gaussian random variable Y , and inserting Eq. (6.8). From this,



6.4. ANALYSIS OF DETECTION EFFICIENCY 121

0 5 10 15
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 6.4: Detector efficiency η, obtained from quantum trajectory simulations, as a function of Γ
and Xthr (3D-inset), and comparison with the analytical results (main plot). The blue data points
display η for fixed Xthr = 0.5 (blue cut in 3D-inset). When maximizing the η over Xthr for any given
Γ/κ, the red data points are obtained (labeled “max(η)”), agreeing well with the analytical asymptote
(green thin line) at higher values of Γ/κ.
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Figure 6.5: Lin-log enlargement of the region of the maximum efficiency of the numerical results
(Fig. (6.4)). Shown are data and statistical errors from the averaging over many quantum trajectories
and the fitting procedure.
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Figure 6.6: Dependence of the detector efficiency on the averaging time τavg. Shown are curves for
different values of κτavg and thresholds Xthr while the measurement rate Γ/κ = 3.0 is kept fixed
(corresponds to yellow cut in 3D-inset of Fig. (6.4)). The green line represents the analytical result
from the transmission calculation (which does not depend on any thresholds or averaging).
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Figure 6.7: Suppression of the signal photon number n̄ inside the cavity as a function of measurement
rate Γ/κ compared to perfect transmission (n̄ideal)

we obtain the average transmitted intensity

〈|aout
R |2〉 =

κ

2
〈|α|2〉 = 〈T 〉 |αin

L |2, (6.10)

and the average transmission probability (see Fig. (6.7))

〈T 〉 =

(
1 + 4

Γ

κ

)−1

. (6.11)

Before we can correlate the suppression of the transmission with the reduction of the detector
efficiency η in the limit of Γ/κ ' 1, one more consideration is necessary. In this limit,
any photon that has entered the cavity will almost certainly be detected. Once detected, the
photon loses the coherence with the incoming beam, which is needed for perfect transmission
on resonance in the ideal, coherent case. As a consequence, it acquires an equal probability
to leave the cavity through the left or the right port. This means that, on average, the number
of detected photons is twice the number of transmitted photons. The expected relation is
thus η = 2〈T 〉, which is indeed observed nicely when comparing with the numerical data
(Fig. 6.4).

The reduction of detector efficiency at Γ/κ ' 1 thus has found its explanation in the
Quantum Zeno effect: Many photons remain undetected, because they are reflected due to
detector back-action. As low values of Γ/κ are also unfavorable, due to a bad signal-to-noise
ratio, the maximum efficiency is found near the intermediate value Γ/κ = 1/4 (see Fig. 6.4).
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6.4.3 Possible realization in superconducting circuit quantum electrodynamics setups

Having seen that the scheme is indeed workable with reasonable detection efficienies if oper-
ated in the right regime, we want to investigate the possibilities to reach this regime in actual
experiments.

Cavity QED setups in superconducting circuits [68, 79, 123, 184] have been used to
implement ideas of quantum optics on the chip, and are considered a promising candidate
for scalable, fault tolerant quantum computing [124]. While proposals for generating non-
classical photon states exist or have been implemented [121, 123, 185, 186], the on-chip
single-shot detection of itinerant photons is still missing.

Building on recent experiments that demonstrated dispersive qubit detection [144] and
measurements of photon statistics [121], one could employ the superconducting qubit to
induce a nonlinear coupling between two modes of the microwave transmission line resonator
(or coupling two cavities 1), thus creating a dispersive photon detector of the type discussed
here.

These experiments realize a Jaynes-Cummings coupling between qubit and resonator of
up to 2π · 100MHz, resonators with frequencies of about 2π · 5GHz, and a large spread of
resonator decay rates κ between 1MHz and 100MHz.

To make the example more concrete we suggest to employ the qubit as a non-linear cou-
pler between two modes of a transmission line cavity.

Imagine the qubit being tuned into resonance with the signal mode, such that their res-
onances hybridize, as described by the Jaynes-Cummings model. The detector mode is as-
sumed to be far detuned from the qubit and the signal mode, i.e. we consider the case of
dispersive coupling. The unperturbed Hamiltonian Ĥ0 (redefined to absorb the vacuum en-
ergy of the harmonic oscillators and using RWA) thus reads

Ĥ0 ≡ !ωq

2
σ̂z + !ωαâ†αâα + !ωβâ†βâβ + g0,α(σ̂+âα + â†ασ̂−).

This contains the resonant coupling of the qubit to the signal mode (mode index α),
while the coupling to the detection mode (index β) will be considered perturbatively. Now
imagine the incoming signal photon being on resonance with one of the states of the coupled
system (qubit/signal mode), e.g. |α−〉 ≡ 1/

√
2(|0, ↑〉 + |1, ↓〉) ⊗ |nβ〉 . This state is an

eigenstate of the qubit-signal mode system which is only weakly (dispersively) coupled to
the detector mode. Provided we only consider situations with at most one signal photon
inside the signal mode (α) and nβ photons in the detection (β) mode (as was the case in the
preceding discussion), we can restrict ourselves to the subspace {|0, ↓〉 ⊗ |nβ〉 , |α−〉}. This
set of states will effectively represent the two lowest states of the signal mode in our detection
scheme (photon absent/present).

The state |α−〉 has energy ω|α−〉 = ωα + g0,α + nβωβ . Resonantly irradiating with ω|α−〉
will populate the corresponding state |α−〉 only and, being an eigenstate, will not induce any
internal dynamics.

Now we consider populating the β-mode with nβ photons to dispersively detect the dif-
ference between the states |vac, nβ〉 ≡ |nα = 0, ↓, nβ〉 and |α−〉 and thus the fact whether an
α-mode photon has entered the cavity or not. So, we consider the coupling to the β-mode via
the perturbation Hamiltonian

1A. Blais, J. Gambetta, C. Cheung, R. Schoelkopf, and S. M. Girvin, manuscript in preparation (priv. communication)
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Ĥint = g0,β(σ̂+âβ + â†βσ̂−). (6.12)

The idea is that the second-order energy shift of the transition frequency between states
|vac, nβ〉 and |α−〉 will contain a term ∝ nβ which can be used to read off the effective
coupling g between the hybrid system of α-mode/qubit and the β-mode. The idea is that
the second-order energy shift of the state |α−〉 will contain a term ∝ nβ which can be used
to read off the effective coupling between the hybrid system of α-mode and qubit and the
β-mode. As usual, the energy shift is given by

E(2)

|α−〉 =
∑

|Ψ〉)=|α−〉

|〈α−|Ĥint|Ψ〉|2

E|α−〉 − E|Ψ〉
. (6.13)

Substituting Eq. (6.12) and the definition of the state |α−〉 into Eq. (6.13), we find

E(2)

|α−〉 =
∑

|Ψ〉)=|α−〉

1

2
|g0,β|2

|〈0,↑,nβ|σ̂+âβ |Ψ〉−〈1,↓,nβ|σ̂−â†β |Ψ〉|
2

ωα + g0,α + nβωβ − E|Ψ〉

=
∑

|Ψ〉)=|α−〉

1

2
|g0,β|2

|
√

nβ+1〈0,↓,nβ+1|Ψ〉−√nβ〈1,↑,nβ−1|Ψ〉|2

ωα + g0,α + nβωβ − E|Ψ〉
,

where the two terms in the numerator contain disjunct Kronecker-deltas and thus the
magnitude squared can be evaluated per term and the expression reads:

E(2)

|α−〉 =
1

2
|g0,β|2

[
nβ + 1

ωα + g0,α + nβωβ − (nβ + 1)ωβ
+

nβ

ωα + g0,α + nβωβ − (2ωα + (nβ − 1)ωβ)

]

=
1

2
|g0,β|2

[
nβ + 1

ωα + g0,α − ωβ
− nβ

ωα − g0,α − ωβ)

]
, (6.14)

where the last expression can be simplified if we explicitly use again that the coupling is
weak g0,α & ω0,α. We introduce a small parameter ε ≡ g0,α/ωα and realize that Eq. (6.14)
becomes

E(2)

|α−〉 =
|g0,β|2

ωα
nβ

[
−ε

(
β
α − 1

)2

]
+

|g0,β|2

2ωα

(
1− β

α

) + O(ε2). (6.15)

Similarly, one finds

E(2)

|0, ↓, nβ〉
=

|g0,β|2

ωβ − ωα
nβ

Thus the new transition frequency ω̃ of the hybrid system of qubit and mode α in the presence
of the perturbation will be to second order in the coupling g0,β:

ω̃hybrid ≡ ωα + g0,α + E(2)

|α−〉 − E(2)

|0, ↓, nβ〉
,
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and we define the transition frequency for the hybrid system as

ωs ≡ ωα + g0,α −
|g0,β|2

2 (ωβ − ωα)

and the effective coupling

g ≡ − |g0,β|2

(ωβ − ωα)

[
1 +

g0,α

(ωβ − ωα)

]

≈ − |g0,β|2

(ωβ − ωα)
. (6.16)

Analogous to Eq. (5.2), the corresponding effective Hamiltonian reads

Heff = !ωsâ
†
sâs + !ωβâ†βâβ + g â†sâs â†βâβ, (6.17)

where the new system with index s is our hybrid system with only one excitation possible
such that |ns = 1〉 ≡ |α−〉 . In order to evaluate the result numerically for different modes, it
is appropriate to assume the following scaling relations

g0,j =
√

jg0

ωj = j · ω0

κj = j · κ0,

which lead to the following expression for the coupling and for the dimensionless mea-
surement rate:

g = − |g0|2

ω0
· β

β − α
.

Γ

κα
=

|g|2 〈n̂β〉
4κακβ

= 〈n̂β〉
|g0|4

4ω2
0κ

2
0

· 1

αβ

(
β

β − α

)2

.

Assuming g0 = 2π · 50MHz, κ0 = 10 MHz, ω0 = 2π · 6GHz, and (α, β) = (3, 5) we
observe that the optimal measurement rate of Γ/κ = 1/4 is reached at a measurement mode
photon number of 〈n̂β〉 ≈ 35, well below the critical photon number, where the dispersive
approximation starts to break down as discussed e.g. in [122]. Note that the dropped term in
Eq. (6.16) amounts to a correction of only about 2% in the needed photon number.

Simply adjusting the decay rate of the cavity or the qubit resonator coupling will enable
the experimentalist to observe all the features discussed in this section as the full range of
measurement rates are available, starting from the ideal detection limit Γ/κ = 1/4 to the
Quantum Zeno limit Γ/κ ' 1.

The detector efficiency, although limited by the Quantum Zeno effect as shown before,
can then reach values of about 30% even without considering more elaborate detector and
signal analysis schemes.

We note that in an alternative scheme, both the signal and the detection mode can be
dispersively coupled to the qubit, although generically this would lead to a weaker overall
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coupling g. Finally, we remark that having control over the individual mode frequencies
involved (e.g. in a setup with two cavities instead of one) would be advantageous for two
reasons: First, it could avoid spurious higher-order processes in which the signal mode is
contaminated by the decay of photons from the detection mode, by making those processes
strongly off-resonant. Second, it would allow to tune the signal and detection modes rela-
tively close to each other, thereby enhancing the coupling.

Another experiment in which essentially the same physics could be observed is the de-
tection of single photons in a microwave cavity by employing the dispersive interaction with
a stream of Rydberg atoms [104].
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Chapter 7

Conclusions

In this thesis, experimentally relevant aspects and open questions of quantum information processing and mea-
surement in circuit quantum electrodynamics have been investigated theoretically.

Building on the pioneering theoretical and experimental work in which up to three qubits have been in-
tegrated on a chip and successfully coupled via a cavity mode, we propose a scheme to overcome the natural
limits concerning scalability in these systems. As a possible solution, we have proposed and investigated a
cross-bar grid layout of cavities with qubits at the intersections. In addition, it can serve as a building block for
a truly scalable scheme for quantum information processing with superconducting circuits by combining 7x7
arrays in a staircase manner. Hand in hand with current experiments that have succeeded in eliminating charge
noise as a source of decoherence and combined with the methods to improve upon simple dispersive gates by
e.g. using resonant gates and optimal control theory the cavity grid can be implemented in experiments in the
very near future. Sample layouts combining two cavities and multiple qubits have already been designed by the
leading groups.

Quantum trajectories have proven to be a state-of-the-art tool to analyze measurement situations in a very
realistic manner by giving access to both the measurement record as well as the internal quantum dynamics
conditioned on this record.

In order to extend the toolbox available for quantum information processing in circuit QED we have pro-
posed and investigated in detail a scheme how a suitable product state of N qubits can be reliably converted
into e.g. a N -qubit Greenberger-Horne-Zeilinger or W state by performing a collective dispersive readout of
the qubits.

Access to the ultra-strong coupling regime has made it possible to perform quantum optics experiments
on-the-chip. In this thesis we have presented the first workable scheme to dispersively detect single itinerant
microwave photons. Presenting a way how to close this gap in the experimental toolbox will prove valuable
to strengthen experimental claims about e.g. the deterministic generation of single photons. The scheme pre-
sented reaches detection efficiencies about 30% only limited by fundamental quantum mechanics in this case
the Quantum Zeno effect. This detector could e.g. be used in quantum communication or cryptography appli-
cations.

Finally it should be mentioned that a comprehensive software package has been developed which will make
future simulation of master equations easier. It provides the needed performance to investigate stochastic master
equations while keeping the programming for the user at a comfortably high level otherwise only known from
commercial software packages.
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8.1 Derivation of the adiabatically eliminated stochastic master equa-
tion

8.1.1 Unravelling the master equation

Motivation

The goal of this procedure is to obtain a stochastic master equation which models the system
including the measurement back-action and the corresponding noisy measurement signal in
a consistent way starting from Eq. (6.2) which reads:

˙̂ρ = −i[
κ1

2
(αâ†1 + α∗â1) + gâ†1â1â

†
0â0, ρ̂]

+ κ(â0ρ̂â†0 −
1

2
â†0â0ρ̂−

1

2
ρ̂â†0â0)

+ κ1(â1ρ̂â†1 −
1

2
â†1â1ρ̂−

1

2
ρ̂â†1â1)

− i
√

Ṅin/2κ[â0 + â†0, ρ̂]. (8.1)

This way, we will gain insights beyond the ensemble average description of the usual
master equation which is crucial for the analysis the detection efficiency.

Remark on Stochastic Master Equations

The master equation in general is an ensemble average description of a quantum system. It
can be thought of as arising from averaging a stochastic, ’unravelled’ master equation.

Note that there is, without a physical concept of the processes involved, no unique way
of obtaining a stochastic master equation from the averaged master equation [182, 207, 210],
a process which is known as “unravelling”. However, once we consider the physical details
of the measurement, quantum mechanics allows us to unravel the master equation Eq. (8.10)
in such a way that we obtain (i) a classical measurement signal as produced by homodyne
detection of the light-field leaking out the detector mode and (ii) simultaneously a master
equation conditioned on this measurement signal. This enables us to self-consistently simu-
late the measured signal and the quantum dynamics of our system which gave rise to exactly
this signal.

Outline of Calculation
We will observe that pure number states of the signal mode are attractor-solutions. As

a result of the measurement, the signal mode’s state is stochastically forced towards a pure
number state on a timescale that corresponds to the time that we need to extract the informa-
tion about this number state from the measured signal. The attractor nature of the number
states also becomes apparent from the fact that the stochastic term in the master equation
becomes strictly zero as can be seen from Eq. (8.14).

In the following derivation, we follow Refs. [182, 183, 207–209]. Note that the choice of
unravelling formally corresponds to projecting the field leaking out of the detector mode into
the free space field modes (which we also call the measurement bath) onto the correct basis
states. In this case we project onto the eigenstates of the field quadrature we are interested
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in to extract the phase shift imposed by a signal photon in the cavity. We start by writing the
measurement bath as an infinite set of harmonic oscillators (e.g. the modes of a transmission
line),

Ĥbath =
∑

n

ωd,nb̂
†
d,nb̂d,n, (8.2)

interacting with the detector mode by the Hamiltonian

Ĥint = i
∑

n

gd(ωn)
(
b̂†d,nâ1 − b̂d,nâ

†
1

)
. (8.3)

We employ the usual continuum and Markovian limit and define the detector mode decay rate
κdet ≡ πD(ω1)|gd(ω1)|2 where D is the density of states. [Note that this assumption cannot
be easily relaxed for the purpose of deriving a stochastic master equation. It guarantees that
the projective measurement of the bath will always disentangle system and bath which is not
true for general non-Markovian baths. Details have been recently discussed in [210].] The
operator of the measured signal is then

X̂(t) =
∑

n

(
b̂†d,n(t) + b̂d,n(t)

)

=
√

κdet

[
â1(t) + â†1(t)

]

+
∑

n

(
b̂†d,n(t0)e

iωn(t−t0) + b̂d,n(t0)e
−iωn(t−t0)

)
,

where the last two lines represent the inhomogeneous and homogeneous parts of the solution
of the equations of motion for the Heisenberg operators b̂d,n, respectively. Using 〈b̂n(t0)〉 =
〈b̂†n(t0)〉 = 0, the average signal can be expressed as

〈X̂(t)〉 =
√

κdet

〈
â(t) + â†1(t)

〉
.

Now the idea is to let this interaction Hamiltonian (8.3) act for a small time ∆t before pro-
jecting the bath onto an eigenstate. Every time the bath is projected, the previously generated
entanglement between bath and system ensures that this will also have a (slight) effect on the
system state. By this mechanism it becomes clear that the random choice of an eigenvalue
of the bath will in the continuum limit give rise to a stochastic term in the measured signal
(noise) as well as in the system dynamics (back-action). This random choice of eigenval-
ue/eigenstate of X̂ happens according to the probability distribution given by

P (X) = 〈X| ρ̂(t + ∆t) |X〉

and projects the density matrix onto the eigenstate such that

ρ̂ 7→ |X〉 〈X| ρ̂(t + ∆t) |X〉 〈X|
〈X| ρ̂(t + ∆t) |X〉 (8.4)

In order to simplify the notation, we introduce global bath operators defined as B̂(t) ≡
1√

2πD(ω1)
e+iω1t

∑
n b̂d,n(t) . We are interested in the evolution of the operator B̂(t) over the
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time-scale ∆t which is much shorter than the internal time-scale of the intrinsic dynamics of
B̂(t). Thus we can define an operator dB̂(t) as

dB̂(t) ≡ 1√
∆t

∫ t+∆t

t

B̂(τ)dτ .

. To leading order in ∆t, the evolution of the density matrix will then have the following
form:

ρ̂(t + ∆t) = ρ̂(t)⊗ ρbath(t)

+
√

κdet∆t
[
dB̂â†1 + â1dB̂†, ρ̂(t)⊗ ρ̂bath(t)

]

+ O(∆t).

Note that we have already worked out all O(∆t) terms which constitute the deterministic
evolution so we can focus on the O(

√
∆t) terms. If one does so, and keeps all the terms up

to order O(
√

∆t), one realizes that the state after measurement and projection will have the
form

∆ρ̂(t + ∆t) =
|X〉 〈X| ρ̂(t + ∆t) |X〉 〈X|

〈X| ρ̂(t + ∆t) |X〉 − ρ̂(t)

=
√

∆tX
(
â1ρ̂(t) + ρ̂(t)â†1 − 〈â1 + â†1〉(t)ρ̂(t)

)

+O(∆t). (8.5)

Similarly we find for the signal X , assuming zero temperature, that the bath state at time t
is a Gaussian centered at X = 0 and with width 1. At time t + ∆t, after interaction and
projection, the bath will still be in a Gaussian state, but centered around

√
κdet〈â1 + â†1〉∆t.

Thus we can identify the functional form of the noisy signal. It reads in differential form

X(t) =
√

κdet〈a1 + a†1〉(t) + ξ(t), (8.6)

where ξ(t) is white noise, with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t − t′). Writing Eq. (8.5) in
differential form and inserting Eq. (8.6) and again keeping terms up to O(∆t), we find the
stochastic contribution ˙̂ρst(t) of the master equation that describes the measurement back-
action given we have measured a certain signal trajectory X(t) as

˙̂ρst(t) =
√

κdet

(
â1ρ̂(t) + ρ̂(t)â†1 − 〈â1 + â†1〉(t)ρ̂(t)

)
ξ(t).

Together with the deterministic evolution of Eq. (8.1), the unravelled master equation
reads:

˙̂ρ = −ig[â†1â1â
†
0â0, ρ̂]

− ig[(α∗â†1 + αâ1)â
†
0â0, ρ̂]
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+ κ(â0ρ̂â†0 −
1

2
â†0â0ρ̂−

1

2
ρ̂â†0â0)

+ κ1(â1ρ̂â†1 −
1

2
â†1â1ρ̂−

1

2
ρ̂â†1â1)

− i
√

Ṅin/2κ[â0 + â†0, ρ̂]

+
√

κ
(
â1ρ̂(t) + ρ̂(t)â†1 − 〈â1 + â†1〉(t)ρ̂(t)

)
ξ(t). (8.7)

The last steps of this procedure can be found in more detail in [182]. Note that the stochas-
tic term is not of Lindblad form but has nonlinear superoperator form [182].

8.1.2 Adiabatic elimination of the detector mode

The key assumption for the adiabatic elimination procedure to be correct and appropriate is
that the dynamics of the ancilla system, in our case the detector mode, is much faster than
the dynamics of the system, in our case the signal mode. In this limit κdet/κ ' 1, the
detector mode will relax to its displaced, driven state on a timescale that is much faster than
the intrinsic timescales in the signal mode.

The first step to be taken is to transform the master equation such that the phase space
origin for the detector mode is centered at its steady state under the coherent drive. This can
be done by applying the displacement operator D̂(−α) = exp[−αâ†1 + α0â1] to Eq. (8.1).
As a result, we have eliminated the driving term for the detector mode and obtain as the new
master equation:

˙̂ρ = −ig[â†1â1â
†
0â0, ρ̂]

− ig[(αâ†1 + α∗â1)â
†
0â0, ρ̂]

+ κ(â0ρ̂â†0 −
1

2
â†0â0ρ̂−

1

2
ρ̂â†0â0)

+ κ1(â1ρ̂â†1 −
1

2
â†1â1ρ̂−

1

2
ρ̂â†1â1)

− i
√

Ṅin/2κ[â0 + â†0, ρ̂]. (8.8)

Note that the new vacuum state that the detector mode relaxes to is actually the coherent
state |α〉. The first two terms capture the fluctuations in the ancilla excitation while we
have eliminated the frequency renormalization term −i|α|2g[â†0â0, ρ̂] by absorbing it into the
interaction picture.

The adiabatic elimination [182, 183, 207, 208] is a well-controlled approximation and
can be expressed as an expansion of the density matrix in a small parameter. Introducing this
small parameter ε & 1 such that κ/κdet = O(ε) and g|α|/κdet = O(ε) are satisfied, we can
formally expand the density matrix in orders of ε as follows:

ρ̂ = ρ̂(00)
s ⊗ σ̂ + ρ̂(10)

s ⊗ â†1σ̂

+ ρ̂(01)
s ⊗ σ̂â1 + ρ̂(11)

s ⊗ â†1σ̂â1

+ ρ̂(20)
s ⊗ â†21 σ̂ + ρ̂(02)

s ⊗ σ̂â2
1 + O(ε3). (8.9)
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Up to now, we have just rewritten the density matrix in a form that makes the different
orders of ε as well as off-diagonal terms and diagonal terms apparent. σ̂ ≡ |vac〉 〈vac|
denotes the displaced coherent state of the detector mode which is a vacuum state. Using this
decomposition, one can straightforwardly realize that taking the trace over the detector mode
results in the following form for the signal mode density matrix:

ρ̂s = ρ̂(00)
s + ρ̂(11)

s .

We now evaluate Eq. (8.8) term by term using Eq. (8.9), [â1, â
†
1] = 1 and the fact that the

coherent state σ̂ is a vacuum state. After lengthy, but simple manipulation of the expressions
we can eliminate all detector mode operators from the master equation. Key steps in this
calculation are (a) replacing the off-diagonal terms in the signal mode density matrix by their
steady state solution, i.e. setting ˙̂ρ

(10)

s = ˙̂ρ
(01)

s = ˙̂ρ
(02)

s = ˙̂ρ
(20)

s = 0 and (b) disregarding off-
diagonal terms in the detector mode density matrix like e.g. â†1â

†
1â

†
1
cohρ̂det which are further

away from the diagonal than the expansion range of the ancilla state. The result (see [183])
reads:

˙̂ρ = −i

√
Ṅinκ

2

[
â + â†, ρ̂

]
+ κ

(
âρ̂â† − 1

2
n̂ρ̂− 1

2
ρ̂n̂

)

− 2
g2 |α|2

κdet
[n̂, [n̂, ρ̂]] . (8.10)

From now on we will introduce the measurement rate Γ ≡ g2 |α|2 /κdet which is the
coefficient of the measurement induced diffusion term. This simplified master equation
(Eq. (8.10)) for the signal mode alone later enables us to perform detailed numerical studies
due to the more manageable size of the density matrix. Furthermore, only in the adiabat-
ically eliminated version of the master equation we will be able to explicitly see that the
chosen limit of κdet ' κ exactly corresponds to measuring the photon number of the signal
mode by looking at the phase shift on the detection mode.

The last step of the calculation follows the lines of the elimination of the detector mode
operators from the deterministic terms in the master equation. However, to adiabatically
eliminate the detector mode operators from the stochastic term, one more consideration is
necessary. Simply replacing the off-diagonal terms by their stationary solution will not be
enough as the stochastic term averages to zero. Instead we have to compute the variance of
the stochastic term and integrate it over the timescale of the diagonal terms ∆t = κ−1

det. Doing
so, we find that the resulting master equation Eq. (8.14) reads

˙̂ρs = −i

√
Ṅinκ

2

[
â + â†, ρ̂

]
+ κ

(
âρ̂â† − 1

2
n̂ρ̂− 1

2
ρ̂n̂

)

−2Γ [n̂, [n̂, ρ̂]]−
√

4Γ (n̂ρ̂ + ρ̂n̂− 2ρ̂ 〈n̂〉 (t)) ξ(t). (8.11)

For the rest of the derivation, we will drop the subscript s which denotes the signal mode.
In the course of the adiabatic elimination calculation we also find the very useful identity

√
κdet〈â1 + â†1〉(t) = 2

√
2Γ〈â†0â0〉(t), (8.12)
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which allows us to write the measurement signal (rescaled) Eq. (6.4) as

X(t) ≡ 〈n̂〉(t) +
1

4

√
1

Γ
ξ(t). (8.13)

Having obtained the final form of the adiabatically eliminated stochastic master equation,
we can turn to the detector logic and the evaluation of the photon detection efficiency. This
will be done by numerically integrating Eqs. (8.14, 8.13) and applying a suitable non-linear
filter to the signal followed by a statistical analysis of the dependence of the photon count
rate on the physical parameters in the system, especially Γ/κ, as explained in the main text.
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8.2 How to efficiently simulate master equations

8.2.1 Get a first fast idea about your system

The fast track to define your Hamiltonian/master equation without writing more code
than the operator equation itself

Inspired by the Quantum Optics toolbox [211] package for Matlab, I started to build in the
same kind of flexibility into my C++ library [212]. The goal was to allow rapid development
while enabling the user to seamlessly go to an optimized version of his code without having
to cross a system barrier. Usually, when writing something quick-and-dirty in e.g. Matlab,
Mathematica or Maple it works until it gets numerically involved in terms of performance
needed/CPU time which at a certain point often requires people to start all over again with
their problem in C/C++ in order to finally get the performance they need to produce e.g.
publication quality data.

Using my library, one only needs to optimize the way, the equation is composed of op-
erators if needed. All the pre/post-processing code and the simulation steering can be kept
the same and does not need to be touched. In essence one spends his time doing what one
is supposed to do - getting the job done and spend as little time as possible dealing with
technology. An extensive technical reference documentation can be found in [212].

Product Hilbert-spaces made up by combining subsystems of arbitrary dimensions

The key concept here is to exploit the object-oriented structure of C++. An instance of the
class CComplexMat, for instance, can represent any (quantum mechanical) operator. Usually
one starts to define such a matrix by supplying an STL std::vector<int> containing the dimen-
sions of the subsystems. E.g. for a two qubits coupled to cavity with three resonator levels
taken into account, one would pass a vector [2,2,3] to the constructor of CComplexMat.

Note that, no matter the ’real’ composition of the matrix in terms of tensor-products of
subsystem Hilbert spaces, everything is always stored internally in a linear array of type
std::vector<std::complex<double> >. The individual matrix elements can be accessed by the
single index, called masterindex, the pair of indices living in the product Hilbert space and the
2n-tupel of indices, where n is the number of subsystems. This becomes especially useful
when defining the terms on the right-hand side of the master equation in terms of matrix
elements.

Obtaining creation and annihilation operators for the subsystems

Using the built-in method to retrieve an annihilation operator for a given subsystem given
any initialized instance of CDensMat or CComplexMat, one obtains the following:
vector<int> dims;

dims.push_back(2); //one qubit
dims.push_back(2); //second qubit
dims.push_back(3); //resonator

CComplexMat H(dims); //construct (empty) Hamiltonian

//contruct a and a_dagger for each subsys
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//annihilation operator for first qubit
CComplexMat a0 = H.m_Annihilation_operator(0);

a0 is an instance of CComplexMat itself and would physically mean

â0

⊗∏
1̂,

where the tensor product is over all other subsystems. However, in rare cases it might be
preferable to construct operators from tensor products by hand. Here, we have provided the
tensor product operator &&.

Applying arbitrary functions to operators

In order to realize complicated nonlinear Hamiltonians, e.g. cos(â + â†), one can apply
arbitrary functions directly to arbitrary operators having defined your function:
double f(double in)
{

return 4.0*cos(2.0*in);
};

Now the function can be used like this:
CComplexMat term_cosa0 = a0+a0_dagger; term_cosa0.m_Apply_function(f);

Note that this function evidently involves diagonalizing the operator which can be numeri-
cally costly.

Calculating arbitrary expectation values

Assuming we are working with a density matrix representation, e.g. when solving a master
equation, arbitrary expectation values can be computed, e.g. for an operator Ô, 〈Ô〉 ≡ trρ̂Ô
will be computed straightforwardly coding (assuming that everything is defined and initial-
ized properly before):
std::complex<double> expvalO = rho.m_expval(O);

Test the basic physics

Here is a code sniplet showing how to define a Tavis-Cummings Hamiltonian (two qubits
coupled to a cavity). Here is a short example:
vector<int> dims;

dims.push_back(2); //one qubit
dims.push_back(2); //second qubit
dims.push_back(3); //resonator

CComplexMat H(dims); //construct (empty) Hamiltonian

//contruct a and a_dagger for each subsys

//annihilation operator for first qubit
CComplexMat a0 = H.m_Annihilation_operator(0);
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CComplexMat a0_dag(dims);
a0_dag = a0;
a0_dag.m_Hermitian_Conjugate();

//annihilation operator for second qubit
CComplexMat a1 = H.m_Annihilation_operator(1);
CComplexMat a1_dag(dims);
a1_dag = a1;
a1_dag.m_Hermitian_Conjugate();

//annihilation operator for resonator
CComplexMat a2 = H.m_Annihilation_operator(2);
CComplexMat a2_dag(dims);
a2_dag = a2;
a2_dag.m_Hermitian_Conjugate();

//define the couplings
double g0 = 2.0;
double g1 = 3.0;

//define the transition frequencies
double w_0 = 10.0;
double w_1 = 30.0;
double w_r = 20.0;

//piece it together
H = w_0 * a0_dag*a0

+ w_1 * a1_dag*a1
+ w_r * (a2_dag*a2 + 0.5)
+ g0*(a0*a2_dag + a0_dag*a2)
+ g1*(a1*a2_dag + a1_dag*a2);

//now we can do spectroscopy or whetever...

CEigensystem eigsH = H.m_GetEigensystem();

cout << "eigenvalues ordered (smallest first)" << endl;
print_vector(eigsH.m_sort(true).m_eigenvalues);

8.2.2 Solve a deterministic master equation

Using the C++ libraries that have been developed in the course of this thesis, we can sim-
ply extend the example of the previous section to solve a master equation with the Tavis-
Cummings-Hamiltonian. Details concerning the C++ class libraries can be found in the
extensive documentation [212].

Implement a function container

The key concept of all solver classes in the libDESFrameWork library is that all the solver
routines have been implemented in solving for a container class as the variable. It is now
up to the user to put whatever he likes into this solver class , e.g. a density matrix for a
simple master equation, two density matrices with different master equations to solve for
simultaneously to e.g. check the accuracy of an approximation or to compare the ideal to a
lossy evolution (see e.g. simulation for the Cavity Grid in Sec. 2). This keeps the solver itself
readable and the user from touching solver routines. A sample function container (a class
called CFuncCont) is already defined in libDESFrameWork so one just needs to implement
it e.g. like this:
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#include "CFuncCont.h"
#include "tools.h"
using namespace std;
CFuncCont::CFuncCont() { }
CFuncCont::CFuncCont(const vector<int>& dims)
{
m_DensMat = CDensMat(dims);
m_idealDensMat=CDensMat(dims);
m_phases=vector<double>(dims.size());
m_I_filtered = 0.0;

}
CFuncCont::~CFuncCont() { }

//... some other stuff ...
//..here is en example operator
CFuncCont CFuncCont::operator+(const CFuncCont& right) const
{

CFuncCont retval(right.m_DensMat.m_dims);
retval.m_DensMat=m_DensMat+right.m_DensMat;
retval.m_idealDensMat=m_idealDensMat+right.m_idealDensMat;
retval.m_I_filtered=m_I_filtered+right.m_I_filtered;
for(int i=0;i<m_phases.size();++i)
{

retval.m_phases[i] = m_phases[i] + right.m_phases[i];
}
return retval;

}

As one can see, it is merely a task of passing all operations on to all elements of the container
which is simple enough.

Implement the physical system container

The second necessary step is to define the system class which is supposed to inherit from
CQuantumSystem. CQuantumSystem already defines some member variables. If we need
more, we need to define them here. A sample definition could look like this:
class CCavity_Grid : public CQuantumSystem
{

public:
virtual ~CCavity_Grid();
CCavity_Grid();
//A function to reset the added members
void Reset(void);
//for adding decoherence
vector<double> m_kappa;
vector<double> m_gamma_phi;
//for adding a protocol
CProtocol m_protocol;
//to store the Hamiltonian
CComplexMat m_H;

};

Combine system and solver

Now as we have defined the quantum system, we need to ’marry’ it to a solver in order to get
something to work with. This can be simply done e.g. by defining a class that inherits both
from CCavityGrid and a solver class like CRungeKutta5. Its definition would look like this
class CCavityGridRungeKutta5 : virtual public CRungeKutta5, public CCavity_Grid
{
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public:
CCavityGridRungeKutta5();
virtual ~CCavityGridRungeKutta5();
//a function that sets the internal member variables from
//parameters from an ini-file stored in m_Parameters (explained later)
void Set_Parameters(void);
void m_Reset(void)
{
CDESBase::ResetBase();
CCavity_Grid::Reset();

};

//most importantly: the right hand side and the processing of results

virtual void m_rhs(const CFuncCont* FV /*Function Values to be used*/,CFuncCont* vTarget,
const vector<double>& xi, double t);

virtual void m_ProcessResultEachTimeStep(const double& t, CFuncCont* Y, const vector<
double>& v_xi);

};

Define the differential equation (master equation) and the way results are processed

CCavityGridRungeKutta5::CCavityGridRungeKutta5() { }
CCavityGridRungeKutta5::~CCavityGridRungeKutta5() { }

void CCavityGridRungeKutta5::m_rhs(const CFuncCont* FV /*Function Values to be used*/,
CFuncCont* vTarget, const vector<double>& xi, double t)

{
complex i = complex(0.,1.);
vTarget->m_idealDensMat.m_set_to_zero();
vTarget->m_idealDensMat += CDensMat(-i*m_H.m_Commutator(CComplexMat(FV->m_idealDensMat))

,0.0000001);
}

Say, we want to compute the entanglement between the two qubits at each time-step and
write it to the screen, we use the function
void CCavityGridRungeKutta5::m_ProcessResultEachTimeStep(const double& t, CFuncCont* Y,

const vector<double>& xi)
{

//compute reduced density matrix, entanglement and output to screen
cout << "entanglement at time" << "\t"
<< t << "\t"
<< Y->m_idealDensMat.m_Trace_out_System(2).m_GetLogNegativity(1)
<<endl;

}

This is about it. Now we just need to steer this code from the main.
Start the simulation

Here, building on top of the example of the previous section, we instantiate CCavityGridRungeKutta5,
set the Hamiltonian and initial values, time-steps and hit ’go’.
//initialize the system in the state |100>
vector<double> up_qb;
up_qb.push_back(0);
CParameterState MyInitialState("","Qubits_in_State_UP",up_qb);
double t_start=0.0;
double t_end=100.0;

CCavityGridRungeKutta5 MyRK;
MyRK.m_Initial_Values.m_idealDensMat.m_SetInitialState(MyInitialState);
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MyRK.m_dims=dims;
MyRK.m_t.push_back(t_start);
MyRK.m_t_end=t_end;
MyRK.m_delta_t = 0.001;
//set the Hamiltonian
MyRk.m_H=H;

MyRK.m_kzRWA = false;
MyRK.m_eps=pow(10.0,double(-8));
MyRK.m_SetRK5Coefficients();

//solve the master equation
MyRK.m_evolve(true);

8.2.3 Introduce decoherence

Extend the function container and the right-hand side

If we had not already done this, we would need to extend the function container class CFunc-
Cont to accommodate a second density matrix, which represents the lossy evolution such that
we can simultaneously solve for both, the ideal and lossy evolution and compute fidelities at
each time-step. Then, the only thing left to to is to extend the right-hand side to include the
lossy evolution on the second density matrix. We assume that we have stored the loss rates
in the member variables (vectors) m_kappa (for the decay rates) and m_gamma_phi (for the
pure dephasing rates). We use built-in, optimized right-hand side terms for the decoherence
and should do so also for the Hamiltonian part of the evolution once performance becomes
important. Of course, also the initial state of the second density matrix has to be specified
(e.g. in main, see previous section).
void CCavityGridRungeKutta5::m_rhs(const CFuncCont* FV /*Function Values to be used*/,

CFuncCont* vTarget, const vector<double>& xi, double t)
{

complex i = complex(0.,1.);
complex one = complex(1.0,0.0);

vTarget->m_idealDensMat.m_set_to_zero();
vTarget->m_idealDensMat += CDensMat(-i*m_H.m_Commutator(CComplexMat(FV->m_idealDensMat))

,0.0000001);

vTarget->m_DensMat.m_set_to_zero();
vTarget->m_DensMat += CDensMat(-i*m_H.m_Commutator(CComplexMat(FV->m_DensMat)),0.0000001);
vTarget->m_DensMat.m_add_term_decay(0,m_kappa[0],one,&FV->m_DensMat);
vTarget->m_DensMat.m_add_term_pure_dephasing(0,m_gamma_phi[0],one,&FV->m_DensMat);
vTarget->m_DensMat.m_add_term_decay(1,m_kappa[1],one,&FV->m_DensMat);
vTarget->m_DensMat.m_add_term_pure_dephasing(1,m_gamma_phi[1],one,&FV->m_DensMat);
vTarget->m_DensMat.m_add_term_cavity_decay(2,m_kappa[2],one,&FV->m_DensMat);

}

Now that we solve for both density matrices, let us compute the fidelity and write it to
stdout at every time step.

As one can see, it is merely a task of passing all operations on to all elements of the
container which is simple enough.
void CCavityGridRungeKutta5::m_ProcessResultEachTimeStep(const double& t, CFuncCont* Y,

const vector<double>& xi)
{

//compute reduced density matrix, entanglement, and fidelity; then output to screen
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cout << "t=" << t << "\t" << logneg=
<< Y->m_idealDensMat.m_Trace_out_System(2).m_GetLogNegativity(1)
<< \t << fidelity=
<< fidelity(Y->m_DensMat,Y->m_idealDensMat)
<<endl;

}

For completeness, we give the appropriately adapted part of main:
//initialize the system in the state |100>
vector<double> up_qb;
up_qb.push_back(0);
CParameterState MyInitialState("","Qubits_in_State_UP",up_qb);
double t_start=0.0;
double t_end=100.0;

CRungeKutta5_2qubitsCavitySwitchEnergies MyRK;
MyRK.m_Initial_Values.m_idealDensMat.m_SetInitialState(MyInitialState);
MyRK.m_Initial_Values.m_DensMat.m_SetInitialState(MyInitialState);

vector<double> decay_rates = vector<double>(3);
decay_rates[0]=1.0;
decay_rates[1]=1.0;
decay_rates[2]=1.0;

vector<double> dephasing_rates = vector<double>(3);
dephasing_rates[0]=1.0;
dephasing_rates[1]=1.0;
dephasing_rates[2]=1.0;

MyRK.m_kappa = decay_rates;
MyRK.m_gamma_phi = dephasing_rates;
MyRK.m_dims=dims;
MyRK.m_t.push_back(t_start);
MyRK.m_t_end=t_end;
MyRK.m_delta_t = 0.001;
//set the Hamiltonian
MyRk.m_H=H;

MyRK.m_kzRWA = false;
MyRK.m_eps=pow(10.0,double(-8));
MyRK.m_SetRK5Coefficients();

//solve the master equation
MyRK.m_evolve(true);

8.2.4 Solve a stochastic master equation

Change the example system

In order to give an illustrative example, we use the system introduced in Sec. 5 for the case of
N qubits. We imagine to work in a rotating frame with respect to the qubit eigenfrequencies.
Thus we do not need any Hamiltonian here which simplifies the main a lot. The system reads:

˙̂ρ =
N∑

i=0

γ1

(
σ̂i
−ρ̂σ̂i

+ − 1

2
σ̂i

+σ̂i
−ρ̂− 1

2
ρ̂σ̂i

+σ̂i
−
)

+
N∑

i=0

γϕ
[
2P̂iρ̂P̂i − P̂iρ̂− ρ̂P̂i

]
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− 2Γ̄
[
N̂ ,

[
N̂ , ρ̂

]]

−
√

4Γ̄
(
N̂ ρ̂ + ρ̂N̂ − 2ρ̂

〈
N̂

〉
(t)

)
ξ(t). (8.14)

Here Γ̄ ≡ ḡ2|ε|2
κcavity

is the measurement rate, and |ε|2 is the average photon number circulating
inside the cavity mode. The stochastic master equation is conditioned on the measured signal

X(t) ≡ 〈N̂〉(t) +
1

4

√
1

Γ̄
ξ(t). (8.15)

ξ(t) is white noise which is built-in and ready to use.

Extend the function container, change the solver and the right-hand side

Yet again, we would need to extend the function container class CFuncCont to hold an addi-
tional scalar function, which represents the classical integrated measurement signal X̄(t) ≡
1
t

∫ t

0 X(t′)dt′. We assume that we have changed our system to inherit from CEuler instead of
CRungeKutta5 to solve a stochastic equation and to contain a vector of coupling m_v_g and
the measurement rate m_Gamma.
class CCavityGridEuler : virtual public CEuler, public CCavity_Grid
{
public:
CCavityGridEuler();
virtual ~CCavityGridEuler();
//a function that sets the internal member variables from
//parameters from an ini-file stored in m_Parameters (explained later)
void Set_Parameters(void);
void m_Reset(void)
{

CDESBase::ResetBase();
CCavity_Grid::Reset();

};

//most importantly: the right hand side and the processing of results

virtual void m_rhs(const CFuncCont* FV /*Function Values to be used*/,CFuncCont* vTarget,
const vector<double>& xi, double t);

virtual void m_ProcessResultEachTimeStep(const double& t, CFuncCont* Y, const vector<
double>& v_xi);

};

In addition, we only solve for one density matrix but with a switch m_b_dodecoherence, that
tells the system to include decoherence or not.
void CCavityGridEuler::m_rhs(const CFuncCont* FV /*Function Values to be used*/,CFuncCont*

vTarget, const vector<double>& xi, double t)
{

complex i = complex(0.,1.);
complex one = complex(1.0,0.0);

//contruct the operator N for arbitrary number of qubits
//depending on the individual couplings contained in m_v_g

vector<CComplexMat> a;
vector<CComplexMat> a_dag;

vector<CComplexMat> n;
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CComplexMat N(m_dims);
CComplexMat N_squared(m_dims);

for(size_t it=0;it<m_dims.size();++it)
{
a.push_back(CComplexMat(m_dims));
a.back().m_Annihilation_operator(it);
a_dag.push_back(CComplexMat(m_dims));
a_dag.back() = a.back();
a_dag.back().m_Hermitian_Conjugate();
n.push_back(a_dag.back()*a.back());
N+=m_v_g[it]*n.back();

}

vTarget->m_DensMat.set_to_zero();
double Gamma=m_Gamma;
double expvalN = FV->m_DensMat.m_expval(N);

(vTarget->m_DensMat) += CDensMat(-2.0 * Gamma * ( N.m_Commutator( N.m_Commutator(rho) ) )
,0.00001);

(vTarget->m_DensMat) += CDensMat(-sqrt(4.0*Gamma)*( N*rho + rho*N - 2.0* expvalN * rho)*xi
[0] ,0.00001);

for(size_t it=0;it<m_dims.size() && m_bdodecoherence==true;it++)
{

vTarget->m_DensMat.m_add_term_decay(it,m_kappa[it],one,&(FV->m_DensMat));
vTarget->m_DensMat.m_add_term_pure_dephasing(it,m_gamma_phi[it],one,&(FV->m_DensMat));

}
vTarget->m_I_filtered = expvalN + 1.0/4.0*(1.0/sqrt(Gamma))*xi[0] ;

}

Now say we want to print the integrated current as well as the entanglement between the
two qubits (assuming we have N = 2). In addition, we want to apply Hadamard gates at
the qubits at a certain time, which have been in the ground state previously. The member
variable m_once, which is initialized in the constructor to be false, ensures that this only
happens once.
void CCavityGridEuler::m_ProcessResultEachTimeStep(const double& t, CFuncCont* Y, const

vector<double>& xi)
{

if(t>3.0 && m_once==false) //apply Hadamards
{

for(size_t it=0;it<m_dims.size();++it)
{

CComplexMat H(m_dims);
H = H.m_Hadamard(it);
Y->m_DensMat=CDensMat(H*CComplexMat(Y->m_DensMat)*H,0.0001);

}
cout << "t: " << t << " inserted Hadamards" << endl;
m_once=true;

}

//compute entanglement and output to screen
cout << "t=" << t << "\t" << Entanglement=
<< Y->m_idealDensMat.m_GetLogNegativity(1)
<< \t << X_bar=
<< Y->m_I_filtered)
<<endl;

}
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Appropriately adapt the main

CCavityGridEuler MyRK;

//we want to look at a two qubit experiment so
vector<int> dims;

dims.push_back(2); //one qubit
dims.push_back(2); //second qubit

//initialize the system in the state |00>
MyRK.m_Initial_Values.m_DensMat.m_mat[0]=1.0;

double t_start=0.0;
double t_end=100.0;

vector<double> decay_rates = vector<double>(2);
decay_rates[0]=1.0;
decay_rates[1]=1.0;

vector<double> dephasing_rates = vector<double>(2);
dephasing_rates[0]=1.0;
dephasing_rates[1]=1.0;

vector<double> couplings = vector<double>(2);
couplings[0]=1.0;
coupling[1]=1.0;

MyRK.m_Gamma = 1.0;
MyRK.m_v_g = couplings;
MyRK.m_kappa = decay_rates;
MyRK.m_gamma_phi = dephasing_rates;

MyRK.m_t.push_back(t_start);
MyRK.m_t_end=t_end;
MyRK.m_delta_t = 0.001;
MyRk.m_bdodecoherence=true;
MyRK.m_dims=dims;

//solve the stochastic master equation
MyRK.m_evolve(true);

8.2.5 Initialization-file handling

The example has already grown to a size that makes it desirable to organize parameters for
a simulation not by hard-coding them into the main or into wherever, but instead write them
to a human-readable initialization file. These files has to obey a certain syntax, e.g. XML.
While XML is due to its hierarchical structure and validation possibilities certainly a good
way to go if one were to improve the package I provide, I went for a simple text-based ini-
file at the price of writing a parser myself. First, let us look at an appropriate example for an
ini-file (following the stochastic master equation example).
# two-qubits
dims=2,2;
#same coupling -> Bell state |Phi+>
v_g=1.0,1.0;
#decay rates
kappa=0.0,0.0;
#dephasing rates
gamma_phi=0.0,0.0;
#time interval and step
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t_start=0.0;
t_end=100.0;
delta_t=0.001;

This file is passed to the main by calling the program with (“-i <inifile.>”).
int main(int argc, char **argv)
{

try
{
string IniFilename;
CIniFileBase MyIniFile;

if(argc == 3)
{

if(!(string(argv[1])=="-i")
throw string("First argument has to be -i");

IniFilename = string(argv[2]);
}
else throw string("-i inifilename missing");

MyIniFile.m_ReadIniFile(IniFilename);
CCavityGridEuler MyRK;
MyRK.m_kappa = MyIniFile.m_GetdvecParameter("kappa");
MyRK.m_gamma_phi = MyIniFile.m_GetdvecParameter("gamma_phi");

MyRK.m_t.push_back(MyIniFile.m_GetParameter("t_start");
MyRK.m_t_end=MyIniFile.m_GetParameter("t_end");
MyRK.m_delta_t = MyIniFile.m_GetParameter("delta_t");
MyRK.m_v_g = MyIniFile.m_GetdvecParameter("v_g");
MyRK.m_Gamma = MyIniFile.m_GetParameter("Gamma");
MyRk.m_bdodecoherence = bool(MyIniFile.m_GetParameter("dodecoherence"));
MyRK.m_dims=dims;

//solve the stochastic master equation
MyRK.m_evolve(true);

}
catch(string &e)
{
cout << "Error: " << e << endl;

}
catch(...)
{
cout << "Unknown error" << endl;

}
return 0;

}

The class CIniFileBase (see [212]) already provides the possibilities to pass vectors of
values, scalar values, strings, initial states for density matrices and gate protocols to the
program. Some of them are used here. Note that by specifying another array of dimensions
in the ini-file, even the number of qubits or - in other cases - the number of levels for a special
subsystem can be changed.

8.2.6 How to run more complicated gate sequences

Ini-file syntax for a protocol

In order to give an illustrative example, we use the system introduced in Sec. 5 for the case of
N qubits. We will extend this system to include a flip-flop interaction (for the Hamiltonian
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see e.g. Sec. 2) between the qubits and realize an iSWAP around the corner using a SOPS
protocol (see Sec. (2)). This needs the quantum gate library libQuantumGates which I have
also documented in [212].

The syntax for the protocol in the ini-file is very simple. Here is the example for the
adapted ini-file containing the protocol:
# two-qubits dims=2,2;
#same coupling -> Bell state |Phi+>
v_g=1.0,1.0;
#decay rates
kappa=0.0,0.0;
#dephasing rates
gamma_phi=0.0,0.0;
#time interval and step
t_start=0.0;
t_end=100.0;
delta_t=0.001;
#the protocol
Protocol="SWAP(0,1,-1.5,1.35)|ISWAPutp(1,2,1.35)|SWAP(0,1,-1.5,1.35)";
#reference frequency to tune qubits to when iSWAP is active
ref_freq_dispersive=100.0;
#qubit energies in the idle state
e=30.0,50.0,70.0;
#strength of flipflop-interaction
J=1.35,1.35;

As one can see, the single gates are like functions separated by a pipe symbol. Arbitrary
gates can be concatenated. A separate protocol parser class is needed to decompose the
string into a vector of gates. This is done e.g. by this definition and sample implementation
of the class CParser which is itself not part of the quantum gate library. From the function
CParser::m_Atom2Gate one can understand the syntax of the single gates in the ini-file and
also extend it if one were to add new gates to the gate-library (the following code just shows
how one particular gate is parsed. Others work analogously and can be obtained ifrom the
author in an example project).
class CParser
{
public:

CParser();
virtual ~CParser();

void m_ParseExpression(const string& expression);
CProtocol* m_ProtocolPtr

public:
vector<string> m_GetAtoms(const string& expression);
void m_Atom2Gate(const string& atom);

};

CParser::CParser()
{
m_ProtocolPtr = NULL;
m_IniFilePtr = NULL;

}

CParser::~CParser()
{
}

void CParser::m_ParseExpression(const string& expression)
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{
//check for "’s

if(expression.find_first_of("\"",0)!=string::npos)
throw string("\" must not be part of an expression");

vector<string> atoms = m_GetAtoms(expression);

int i=0;

for(i=0;i<atoms.size();++i)
{
m_Atom2Gate(atoms[i]);

}
}

vector<string> CParser::m_GetAtoms(const string& expression)
{

//.separates the single operations

string operationbuffer=expression;

vector<string> retval;

if(operationbuffer.find_first_of("|",0)==string::npos)
{ //only one atom
retval.push_back(operationbuffer);

}
else
{
while(operationbuffer.find_first_of("|",0)!=string::npos)
{

int endpos = operationbuffer.find_first_of("|",0);
retval.push_back(operationbuffer.substr(0,endpos));
operationbuffer.erase(0,endpos+1);

}
if(operationbuffer.length()>0)

retval.push_back(operationbuffer);

}

return retval;

}

void CParser::m_Atom2Gate(const string& atom)
{
string myatom=atom;
string namebuffer;
string arguments;

int startpos=myatom.find("(",0);

if(startpos==string::npos)
{
throw string("Atomic expression must contain (");

}

int endpos=myatom.find(")");

if(endpos==string::npos)
{
throw string("Atomic expression must contain )");

}
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namebuffer=myatom.substr(0,startpos);

//myatom.erase(0,startpos);

arguments=myatom.substr(startpos+1,endpos-startpos-1);

//Komma-separiert

vector<string> v_arguments;

startpos=arguments.find_first_of(",",0);

while(startpos!=string::npos)
{

v_arguments.push_back(arguments.substr(0,startpos));
cout << v_arguments.back() << endl;
arguments.erase(0,startpos+1);
startpos=arguments.find_first_of(",",0);

}
if(arguments.size()>0)
{
v_arguments.push_back(arguments);

}

cout << v_arguments.back() << endl;
//get time_offset

double time_offset=0.0;

int i=0;

for(i=0;i<m_ProtocolPtr->m_protocol.size();++i)
{
time_offset+=m_ProtocolPtr->m_protocol[i]->m_Getduration();

}

string strtime_offset;

convert(time_offset,strtime_offset);

cout << "time_offset" << strtime_offset << endl;

if(namebuffer=="R")
{
if(v_arguments.size()==4)//numb_of qubit,rotation axis,frequency,time = pi/frequency* x,
{

v_arguments.push_back("-1"); //no cavities explicitly in simulation
v_arguments.push_back(strtime_offset);

m_ProtocolPtr->m_protocol.push_back(new CGateZeroRiseTimeSingleQubitRotation(v_arguments
));

}
else if(v_arguments.size()==5)
{

//m_ProtocolPtr->m_protocol.push_back(new CGateFiniteRiseTimeSingleQubitRotation(
v_arguments));

v_arguments.push_back(strtime_offset);
m_ProtocolPtr->m_protocol.push_back(new CGateZeroRiseTimeSingleQubitRotation(

v_arguments));
}
else throw string("Function R must have 5 arguments");

}
else if(namebuffer=="rISWAPutp")
{
if(v_arguments.size()==3)//numb_of qubit1, numb_of_qubit2,frequency,
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{
v_arguments.push_back("-1"); //no cavities explicitly in simulation
v_arguments.push_back(strtime_offset);
m_ProtocolPtr->m_protocol.push_back(new CGateZeroRiseTimerISWAPutp(v_arguments));

}
else if(v_arguments.size()==4)//numb_of qubit1, numb_of_qubit2,frequency,
{

v_arguments.push_back(strtime_offset);
m_ProtocolPtr->m_protocol.push_back(new CGateZeroRiseTimerISWAPutp(v_arguments));

}
else throw string("Function rISWAPutp must have 3 or 4 arguments");

}
else {
// other gates
}
else throw string(string("Function")+namebuffer+string(" not known to Parser."));

m_ProtocolPtr->m_protocol.back()->m_pProtocol=m_ProtocolPtr;

}

Extend the right-hand side

Now we need to adapt the right-hand side of the previous example in the sense that we do not
look at measurement, so we can use the Runge-Kutta solver and include the protocol. This is
straightforward:
CCavityGridRungeKutta5::CCavityGridRungeKutta5() { }
CCavityGridRungeKutta5::~CCavityGridRungeKutta5() { }

void CCavityGridRungeKutta5::m_rhs(const CFuncCont* FV /*Function Values to be used*/,
CFuncCont* vTarget, const vector<double>& xi, double t)

{
complex i = complex(0.,1.);
complex one = complex(1.0,0.0);

vTarget->m_DensMat.set_to_zero();
vTarget->m_DensMat.m_add_term_qubit_energy(0,m_e[0],-i,&FV->m_DensMat);
vTarget->m_DensMat.m_add_term_qubit_energy(1,m_e[1],-i,&FV->m_DensMat);
vTarget->m_DensMat.m_add_term_qubit_energy(2,m_e[2],-i,&FV->m_DensMat);

vTarget->m_DensMat.m_add_term_flipflop(0,1,m_J[0],-i,&FV->m_DensMat);
vTarget->m_DensMat.m_add_term_flipflop(1,2,m_J[1],-i,&FV->m_DensMat);
vTarget->m_DensMat += ( (-i)*(m_protocol.m_act(FV->m_DensMat, FV->m_phases,t) ));

vTarget->m_phases[0] = m_e[m_switch_phases[0]];
vTarget->m_phases[1] = m_e[m_switch_phases[1]];
vTarget->m_phases[2] = m_e[m_switch_phases[2]];

for(size_t it=0;it<m_dims.size() && m_bdodecoherence==true;it++)
{
vTarget->m_DensMat.m_add_term_decay(it,m_kappa[it],one,&(FV->m_DensMat));
vTarget->m_DensMat.m_add_term_pure_dephasing(it,m_gamma_phi[it],one,&(FV->m_DensMat));

}

}
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Appropriately adapt the main

Here, among some other parameters, we need to parse the protocol and pass it to the system
class.
int main(int argc, char **argv)
{

try
{

string IniFilename;
CIniFileBase MyIniFile;

if(argc == 3)
{

if(!(string(argv[1])=="-i")
throw string("First argument has to be -i");

IniFilename = string(argv[2]);
}
else throw string("-i inifilename missing");

MyIniFile.m_ReadIniFile(IniFilename);
CCavityGridRungeKutta5 MyRK;
MyRK.m_kappa = MyIniFile.m_GetdvecParameter("kappa");
MyRK.m_gamma_phi = MyIniFile.m_GetdvecParameter("gamma_phi");

MyRK.m_t.push_back(MyIniFile.m_GetParameter("t_start");
MyRK.m_t_end=MyIniFile.m_GetParameter("t_end");
MyRK.m_delta_t = MyIniFile.m_GetParameter("delta_t");
MyRK.m_v_g = MyIniFile.m_GetdvecParameter("v_g");
MyRK.m_Gamma = MyIniFile.m_GetParameter("Gamma");
MyRk.m_bdodecoherence = bool(MyIniFile.m_GetParameter("dodecoherence"));
MyRK.m_dims=dims;

//get the protocol from the ini-file
string strproto = MyIniFile.m_GetStrParameter(Protocol);
CProtocol MyProtocol;
CParser MyParser;
MyParser.m_pProtocol=&MyProtocol;
MyParser.m_ParseExpression(strproto);

//solve the master equation
MyRK.m_eps=pow(10.0,double(-8));
MyRK.m_SetRK5Coefficients();
MyRK.m_evolve(true);

}
catch(string &e)
{

cout << "Error: " << e << endl;
}
catch(...)
{

cout << "Unknown error" << endl;
}
return 0;

}

8.2.7 How to optimize/profile the code

Optimization is nice and, of course, a goal of its own but most of the time optimization is
the death of re-usability of the code. So, after getting the problems physically right, and if
one realizes that the performance is too poor to produce publication quality data, one should
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never start optimizing without using a profiler. For this purpose, one can either use gprof,
which unfortunately requires compiler options to be set, or if one is working on a Mac,
one can use the great built-in profiler from the task manager (the option is called process
analysis). It gives you a very convenient and fast overview where your code spends most CPU
cycles. This way one can sort out the biggest problems first and most efficiently optimize the
code. For the simulations used in this thesis, I have gained over a factor of 100, mainly by
eliminating memory allocation for the built-in right-hand side terms of the master equation,
which now use a lot of caching.
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