Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München

Genexpressions- und Protein-DNA-Interaktions-Studien des Aminosäure-Metabolismus und metallabhängiger Prozesse in *Halobacterium salinarum* R1

Rita Schwaiger aus Salzburg

Erklärung

Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 von Herrn Prof. Dr. Dieter Oesterhelt betreut.

Ehrenwörtliche Versicherung

Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet.

München, am 2. April 2009

Rita Schwaiger

Dissertation eingereicht am: 2. April 20091. Gutachter: Prof. Dr. Dieter Oesterhelt2. Gutachter: Prof. Dr. Klaus Förstemann

Mündliche Prüfung am: 19. Juni 2009

Für meine Eltern und meine Großmutter

Kunst heißt, nicht wissen, daß eine Welt schon ist, und eine machen...

(Rainer Maria Rilke)

Inhaltsverzeichnis

INHALTSVERZEICHNIS	<u>I</u>
ABBILDUNGSVERZEICHNIS	V
TABELLENVERZEICHNIS	VII
ZUSAMMENFASSUNGV	III
<u>1</u> <u>EINLEITUNG</u>	<u> 1</u>
1.1 EINTEILUNG DER ARCHAEA 1.2 HALOPHILIE 1.3 TRANSKRIPTION 1.3.1 TRANSKRIPTIONSINITIATION IN ARCHAEA, EUKARYA UND IN BACTERIA 1.3.1.1 Assemblierung des archaealen Prä-Initationskomplexes 1.3.1.2 Assemblierung des eukaryotischen Prä-Initationskomplexes 1.3.1.3 Assemblierung des bakteriellen Prä-Initationskomplexes 1.3.2 ARCHAEALE PROMOTOREN 1.3.3 Termination der Transkription in Bakterien 1.3.3.1 Termination der Transkription in Bakterien 1.3.3.2 Termination der Transkription in Eukaryoten 1.3.3.3 Termination der Transkription in Archaea 1.3.4 ARCHAEALE TRANSKRIPTE UND TRANSLATIONSINITIATION 1.4 REGULATION DER TRANSKRIPTION 1.4.1 LRP-FAMILIE VON REGULATOREN 1.4.2 METALLABHÄNGIGE REGULATOREN DER TRANSKRIPTION 1.5 ZIELSETZUNG DER ARBEIT <th> 1 2 4 4 5 5 6 7 7 8 8 8 8 8 10 11 13 15</th>	1 2 4 4 5 5 6 7 7 8 8 8 8 8 10 11 13 15
TEIL I MIKROARRAY-TECHNOLOGIE 2 FRGEBNISSE UND DISKUSSION	<u>. 16</u> 17
 2.1 MIKROARRAY-TECHNOLOGIE	17 20 22 23 24 26 27 28 31 34 37 39 41 42

2.1.6 MÖGLICHE DIREKTE ODER INDIREKTE EFFEKTE VON REGULATORPROTEINEN	44
2.1.6.1.1 Arginin-Metabolismus, Carbamoylphosphat und Nukleotid-Synthese	44
2.1.6.1.2 Aminosäure-Metabolismus	47
2.1.6.1.3 Bacteriorhodopsin-Synthese	48
2.1.6.1.4 Gluconeogenese und zentraler Intermediärmetabolismus	49
2.1.6.1.5 Transportprozesse	50
2.1.6.1.6 Transkription und Regulatoren der Transkription	51
2.1.6.1.7 Zellulåre Stressantwort	53
2.1.6.1.8 Siderophorsynthese	54
2.1.6.1.9 Zusammentassung der beobachteten Ettekte	54
2.1.7 MOGLICHE DIREKTE ZIELGENE LRP-AHNLICHER REGULATOREN	57
2.1.7.1 Mogliche direkte Zielgene von Lrp	57
2.1.7.1.2 A min age was Match alignering	58
2.1.7.1.2 Aminosaure-Metabolismus	59
2.1.7.1.4 Transfrintiongroupletor	39
2.1.7.1.4 Iranskriptionsregulator	01
2.1.7.2 Wogliche direkte Zieigene von LipA1	01
2.1.7.5 Zusammentassung der Regulation Lip-nomologer Regulatoren	02
2.1.8 VERIFIZIERUNG DER MIKKOARRAY DATEN ANHAND KT-QFCK	05
TEIL II PROTEIN-DNA-INTERAKTIONEN	66
	<u> 00</u>
2.2 PROTEIN-DNA-INTERAKTIONEN	67
2.2 TROTEIN-DIVISIONER S'- LIND 3'-ENDEN VON TRANSKRIPTEN	07
2.2.1 Destimming der 5'- und 3'-Enden des <i>Irn41</i> -Transkrints	07
2.2.1.1 Destimining der 9 - und 9 -Enden des <i>uprit</i> -Transkripts	07
2.2.1.1.1 Filloration of the second s	68
2.2.1.1.2 5' of Real and 5' of Real	60
2 2 1 2 1 aspB3-Transkript	69
2 2 1 2 2 sirR-Transkript	0)
2 2 1 2 3 Transkript des ABC-Transporteroperons	71
2.2.2 BIOINFORMATISCHE CHARAKTERISIERUNG VON DNA-BINDEPROTEINEN	
2.2.2.1 Sequenzvergleich von archaealen und bakteriellen Lrp-Proteinen	72
2.2.2.2 Strukturmodell von LrpA1	74
2.2.2.3 Sequenzvergleich von metallabhängigen Regulatoren	75
2.2.3 HETEROLOGE EXPRESSION VON LRPA1 UND TROR IN E. COLI	77
2.2.4 GELFILTRATION ZUR BESTIMMUNG DES OLIGOMERISIERUNGSGRADES VON LRPA1 UNE)
TROR 78	
2.2.4.1 Suche nach einem möglichen Ligand von LrpA1	79
2.2.5 SEKUNDÄRSTRUKTUR VON LRPA1 UND TROR	80
2.2.5.1 Sekundärstruktur von LrpA1	81
2.2.5.2 Sekundärstruktur von TroR	82
2.2.5.3 Thermale Denaturierungskurven von LrpA1	83
2.2.6 KRISTALLISATIONSANSÄTZE VON LRPA1	85
2.2.7 BINDUNGSSTUDIEN VON LRPA1 AN DEN LRPA1- UND AN DEN ASPB3- PROMOTOR	86
2.2.7.1 Regulation der <i>aspB3</i> -Genexpression durch LrpA1	86
2.2.7.2 <i>lrpA1</i> -Genexpression zu verschiedenen Zeitpunkten	90
2.2.7.3 <i>lrpA1</i> und <i>aspB3</i> sind direkte Zielgene des Regulators LrpA1	90
2.2.8 IN VITRO CHARAKTERISIERUNG DER BINDUNGSAKTIVITÄT VON TROR	96
<u>3</u> MATERIAL UND METHODEN	<u>98</u>
3.1 MATERIAL	98
3.1.1 OLIGONUKLEOTIDE	98

3.1.2	STÄMME	. 100
3.1.3	PLASMIDE	. 100
3.1.4	CHEMIKALIEN	. 101
3.1.5	KOMMERZIELL ERHÄLTLICHE KITS	. 102
3.1.6	ENZYME	. 102
3.1.7	GRÖßENSTANDARDS	. 102
3.1.8	SONSTIGE MATERIALIEN	. 102
3.1.9	MEDIEN UND PLATTEN ZUR ZELLZUCHT UND TRANSFORMATION VON E. COLI UND H.	
SALINA	RUM	. 103
3.1.9.1	Medium und Platten zur Zellzucht von E. coli	. 103
3.1.9.2	Medium zur Transformation von E. coli Zellen	. 103
3.1.9.3	Medium und Platten zur Zellzucht von H. salinarum	. 103
3.1.9.4	Medium zur Transformation von H. salinarum Zellen	. 105
3.1.10	Antibiotika	. 105
3.1.11	ANTIKÖRPER	. 105
3.1.12	Geräte	. 105
3.1.13	COMPUTERPROGRAMME	. 106
3.2 N	Aikrobiologische Methoden	. 106
3.2.1	ZELLZUCHT VON H. SALINARUM R1	. 106
3.2.2	ZELLZUCHT VON ESCHERICHIA COLI	. 107
3.3 N	IOLEKULARBIOLOGISCHE METHODEN	. 107
3.3.1	ISOLIERUNG GENOMISCHER DNA AUS H. SALINARUM	. 107
3.3.2	PLASMID-DNA ISOLIERUNG AUS E. COLI	. 108
3.3.3	BESTIMMUNG DER DNA-KONZENTRATION	. 108
3.3.4	TRANSFORMATION VON E. COLI ZELLEN	. 108
3.3.5	TRANSFORMATION VON H. SALINARUM ZELLEN	. 108
3.3.6	POLYMERASEKETTENREAKTION	. 109
3.3.7	AUFTRENNUNG VON DNA IN AGAROSEGELEN	. 110
3.3.8	EXTRAKTION VON DNA AUS AGAROSEGELEN	. 111
3.3.9	SEQUENZIERUNG VON DNA	. 111
3.3.10	KLONIERUNG VON LRPA1 UND TROR	. 112
3.3.11	HERSTELLUNG DER DELETIONSMUTANTEN ΔLRP , $\Delta LRPA1$, $\Delta SIRR$ und $\Delta TROR$. 114
3.3.12	SOUTHERNBLOT-ANALYSE	. 116
3.3.12.	1 DNA-Transfer auf eine Membran	. 116
3.3.12.	2 Detektionsreaktion	. 118
3.3.13	ÜBEREXPRESSION DER GENE <i>LRP</i> und <i>LRPA1</i>	. 119
3.3.14	GESAMT-RNA-ISOLIERUNG AUS H. SALINARUM	. 119
3.3.14.	1 DNase-Behandlung und Bestimmung der RNA-Konzentration und Oualität	. 120
3.3.15	MIKROARRAY-TECHNOLOGIE	. 121
3.3.15.	1 Fluoreszenzmarkierte cDNA-Synthese	. 121
3.3.15.	2 Herstellung der Mikroarrays	. 122
3.3.15.	3 Vorbehandlung der Objektträger	. 122
3.3.15.	4 Prähybridisierung und Hybridisierung der Mikroarrays	. 122
3.3.15.	5 Waschen der Objektträger	. 123
3.3.15.	6 Datenanalyse nach erfolgter Mikroarray-Technologie	. 123
3.3.16	REVERSE TRANSKRIPTION-QUANTITATIVE PCR	. 124
3.3.16.	1 cDNA-Synthese	. 124
3.3.16.	2 Amplifizierung der cDNA	. 125
3.3.16	3 Relative Quantifizierung der RT-aPCR-Daten mit Hilfe der 2 ^{-AACT} - Methode	126
3.3.17	Northernblot-Analyse	126
3.3.18	BESTIMMUNG DER 5'-UND 3'-UTR'S VON TRANSKRIPTEN	. 127
3.3.18	1 Phenol/Chloroform Extraction	128
3.4 F	BIOCHEMISCHE METHODEN	. 128
3.4.1	HETEROLOGE EXPRESSION VON HIS6-LRPA1 UND HIS6-TROR IN E. COLI	. 128
3.4.2	ZELLAUFSCHLUSS	. 129

3.4.3 AUFREINIGUNG VON HIS6-TAG-MARKIERTEN PROTEINER	NMIT HILFE VON NI-NTA-METALL-
CHELAT-AFFINITÄTSCHROMATOGRAPHIE	
3.4.4 RENATURIERUNG VON LRPA1 UND TROR	
3.4.5 BESTIMMUNG DER PROTEINKONZENTRATION VON LRPA	1 UND TROR 130
3.4.6 GELFILTRATION VON LRPA1 UND TROR	
3.4.7 CD-Spektroskopie	
3.4.8 SDS-PAGE (POLYACRYLAMID-GELELEKTROPHORESE)	
3.4.9 COOMASSIE-FÄRBUNG	
3.4.10 SILBERFÄRBUNG	
3.4.11 WESTERNBLOT-ANALYSE	
3.4.11.1 Proteintransfer	
3.4.11.2 Immundetektion	
3.4.12 KRISTALLISATIONSANSÄTZE VON LRPA1	
3.4.13 ANALYTISCHE DNA-AFFINITÄTSCHROMATOGRAPHIE.	
3.5 BIOINFORMATISCHE METHODEN	
3.5.1 PROTEINSEQUENZ ANALYSE	
4 PUBLIKATIONSLISTE	
<u>5</u> <u>ABKURZUNGSVERZEICHNIS</u>	
6 LITERATURVERZEICHNIS	
<u>7</u> ANHANG	
<u>8</u> DANKSAGUNG	
9 LEBENSLAUF	

Abbildungsverzeichnis

Abb. Abb. Abb.	1 VORKOMMEN VON HALOPHILEN ORGANISMEN	1 6 7
ABB.	4 REGULATION DER TRANSKRIPTION	. 10
ABB.	5 AUFBAU UND VERLAUF EINES MIKROARRAY-EXPERIMENTES	. 18
ABB.	6 HERSTELLUNG VON DELETIONSPLASMIDEN (A) UND SOUTHERNBLOT-ANALYSE (B)	. 21
ABB.	7 SOUTHERNBLOT FÜR DIE PCR-POSITIVEN DELETIONSSTÄMME ΔLRP	. 23
ABB.	8 SOUTHERNBLOT FÜR DIE PCR-POSITIVEN DELETIONSSTÄMME <i>ALRPA1</i>	. 23
ABB.	9 SOUTHERNBLOT FÜR DIE PCR-POSITIVEN DELETIONSSTÄMME <i>∆SIRR</i>	. 24
Abb.	10 Southernblot für die PCR-positiven Deletionsstämme $\Delta troR$. 25
Abb.	11 WESTERNBLOT ZUR ÜBERPRÜFUNG DER ÜBEREXPRESSION VON <i>\LRP</i> (A) UND <i>\LRPA1</i> (B) AUF PROTEINEBENE	. 26
Abb.	12 WACHSTUMSKURVEN VON H. SALINARUM R1 UNTER EISENMANGELBEDINGUNGEN	. 28
Abb.	13 WACHSTUMSKURVEN DER DELETIONSMUTANTEN ΔLRP , $\Delta LRPA1$, $\Delta SIRR$ und $\Delta TROR$. 28
Abb.	14 WACHSTUMSKURVEN VON <i>H. SALINARUM</i> PARENTALSTAMM, ΔLRP und $\Delta LRPA1$ in synthetischem	
	MEDIUM	. 29
Abb.	15 WACHSTUMSKURVEN DER ÜBEREXPRESSIONSSTÄMME $\uparrow LRP, \uparrow LRPA1$. 30
Abb.	16 VOLCANO-PLOT'S ALLER MIKROARRAY-EXPERIMENTE	. 33
Abb.	17 DIFFERENTIELL EXPRIMIERTE UND SCHWACH DIFFERENTIELL EXPRIMIERTE GENE UNTER EISENMANG	EL 34
ABB	18 DIFFERENTIELL EXPRIMIENTE LIND SCHWACH DIFFERENTIELL EXPRIMIENTE GENE IN A <i>LRP</i>	37
ABB.	19 DIFFERENTIEL EXPRIMIENTE UND SCHWACH DIFFERENTIEL EXPRIMIENTE GENE IN ALRPA1	40
ABB.	20 DIFFERENTIEL LEXPRIMIENTE UND SCHWACH DIFFERENTIEL EXPRIMIENTE GENE IN ASIR	41
ABB	21 DIFFERENTIELL EXPRIMIENTE UND SCHWACH DIFFERENTIELL EXPRIMIENTE GENE IN ATROP	42
ABB.	22 Arginin-Metabolismus. Pyrimidin-Synthese und zentral er Intermediärmetabolismus	46
ABB	23 Synthesewege der Amnosäuren Histidin Tryptophan und Glutamat	48
ABB.	24 SYNTHESE DES BACTERIORHODOPSIN-GENCLUSTERS	. 49
ABB.	25 ÜBERSICHT DIFFERENTIELL EXPRIMIERTER GENE VON TRANSPORTERN UNTER EISENMANGEL UND IN	
	DEN DELETIONSMUTANTEN ΔLRP , $\Delta LRPA1$, $\Delta SIRR$ und $\Delta TROR$. ROTE PFEILE BEDEUTEN INDUKTION UND)
	GRÜNE PFEILE REPRESSION DER GENEXPRESSION	. 51
ABB.	26 REGULIERTE GENE VON TRANSKRIPTIONSREGULATOREN UNTER EISENMANGEL UND IN DEN	
	DELETIONSMUTANTEN. EINE ROTE MARKIERUNG BEDEUTET INDUKTION, EINE TRANSPARENT ROTE	
	MARKIERUNG BEDEUTETE SCHWACHE INDUKTION, GRÜN STEHT FÜR REPRESSION UND TRANSPARENT	
	GRÜN FÜR SCHWACHE REPRESSION. DAS X BEDEUTET, DASS IN DER DELETIONSMUTANTE Δ SIRR KEINE	
	DIFFERENTIELL EXPRIMIERTEN TRANSKRIPTIONSREGULATOREN IDENTIFIZIERT WURDEN.	. 53
Abb.	27 ZELLULÄRE STRESSANTWORT UNTER EISENMANGEL UND IN DEN DELETIONSMUTANTEN	. 53
ABB.	28 ÜBERSICHT DER METALLABHÄNGIGEN REGULATION IN H. SALINARUM	. 56
ABB.	29 ÜBERSICHT DER REGULATIONSPROZESSE VON LRP UND LRPA1	. 63
ABB.	30 ANORDNUNG DER GENE LRPA1 UND ASPB3	. 68
ABB.	31 PROMOTORBEREICHE VON LRPA1, LRP, ASPB3, SIRR UND DES ABC-TRANSPORTOPERONS (ABC-TP)	. 70
Abb.	32 3'UTRS VON LRPA1, ASPB3, SIRR UND DES ABC-TRANSPORTOPERONS (ABC-TP)	. 70
ABB.	33 AMINOSÄURE-SEQUENZVERGLEICH VON ARCHAEALEN UND BAKTERIELLEN LRP-PROTEINEN	. 73
Abb.	34 Strukturmodell von LrpA1	. 75
Abb.	35 SEQUENZVERGLEICH VON H. SALINARUM TROR UND SIRR AUS VERSCHIEDENEN ARCHAEEN UND	
	BAKTERIEN	. 76
ABB.	36 EXPRESSION UND AUFREINIGUNG VON LRPA1 (A) UND TROR (B)	. 78
ABB.	37 GELFILTRATION VON RENATURIERTEM LRPA1 (A) UND TROR (B)	. 79
Abb.	38 GELFILTRATION VON LRPA1 NACH INKUBATION MIT AMINOSÄUREN	. 80
Abb.	39 CD-Spektren der Standard-Sekundärstrukturen	. 81
Abb.	40 CD-Spektren von LrpA1	. 82
Abb.	41 CD-Spektren von TroR	. 82
Abb.	42 SCHMELZKURVEN VON LRPA1	. 84
Abb.	43 SPEKTRUM VON LRPA1	. 85
Abb.	44 KRISTALLISATIONSANSATZ VON LRPA1	. 86
Abb.	45 SEQUENZVERGLEICH VON ASPARTAT-TRANSAMINASEN	. 87
Abb.	46 Northernblot zur Bestimmung der ASPB3-Transkriptmenge in H. Salinarum R1 vs $\Delta LRPA1$.	. 88
ABB.	47 MÖGLICHER MECHANISMUS DER REGULATION DER GENEXPRESSION VON ASPB3 DURCH LRPA1	. 89
Abb.	48 NORTHERNBLOT ZUR BESTIMMUNG DER LRPA1-TRANSKRIPTMENGE IN H. SALINARUM R1	. 90

ABB. 49 PROMOTORBEREICH VON LRPA1 (A) UND ASPB3 (B)	92
ABB. 50 SEQUENZVERGLEICH ZWISCHEN DEM LRPA1- UND DEM ASPB3-PROMOTOR	92
ABB. 51 BINDUNG VON LRPA1 AN DNA-FRAGMENTE (LRPA1-PINCL, ASPB3-PINCL UND KONTROLL-DNA (K))	93
ABB. 52 REZIPROKE REGULATION DER GENEXPRESSION VON LRPA1 UND ASPB3 DURCH LRPA1	95
ABB. 53 DNA-FRAGMENT TROR-PINCL	96
ABB. 54 BINDUNG DES HALOPHILEN PROTEINS TROR AN DIE TROR-PINCI-SEQUENZ	97
ABB. 55 PLASMIDKARTE VON PET-26B (HTTP://WWW.MERCKBIOSCIENCES.COM/DOCS/DOCS/PROT/TB071.pl	DF)
	.113
ABB. 56 MULTIPLE KLONIERUNGSSTELLE (MULTIPLE CLONING SITE=MCS) DES PLASMIDS PET-26B	
(HTTP://WWW.MERCKBIOSCIENCES.COM/DOCS/DOCS/PROT/TB071.PDF)	.113
ABB. 57 VEKTORKARTEN DER DELETIONSKONSTRUKTE LRP, LRPA1, SIRR UND TROR	.116
ABB. 58 SCHEMA DES BLOTAUFBAUS ZUR DURCHFÜHRUNG DES VAKUUMBLOTS	.117
ABB. 59 DISSOZIATIONSKURVE NACH ERFOLGTER RT-QPCR	.125
ABB. 60 RACE ZUR BESTIMMUNG DER 5'-UND 3'-UTR REGION VON TRANSKRIPTEN	.127
ABB. 61 GERADENGLEICHUNG ERMITTELT ANHAND VON PROTEINEN BEKANNTEN MOLEKULARGEWICHTS	.131
ABB. 62 AUFBAU EINER BLOTTING-APPARATUR	.137
ABB. 63 PROTEIN-DNA-BINDUNGSASSAY	.140

Tabellenverzeichnis

TAB. 1 ARCHAEALE LRP-PROTEINE.	12
TAB. 2 DELETIONSKONSTRUKTE	22
TAB. 3 ÜBERSICHT DER DURCHGEFÜHRTEN MIKROARRAY-EXPERIMENTE	31
TAB. 4 ANZAHL DER REGULIERTEN GENE DER EINZELNEN EXPERIMENTE	33
TAB. 5 DIFFERENTIELL EXPRIMIERTE GENE UNTER EISENMANGEL	35
TAB. 6 DIFFERENTIELL EXPRIMIERTE GENE IN ΔLRP	38
TAB. 7 DIFFERENTIELL EXPRIMIERTE GENE IN $\Delta LRPA1$	40
TAB. 8 DIFFERENTIELL EXPRIMIERTE GENE IN $\Delta SIRR$	41
TAB. 9 DIFFERENTIELL EXPRIMIENTE GENE IN $\Delta TROR$	42
TAB. 10 GEGENÜBERSTELLUNG DER DIFFERENTIELL EXPRIMIERTEN GENE EINER ALRP-DELETIONSMUTANTE	E UND
EINES <i>\LRP-</i> ÜBEREXPRESSIONSSTAMMES	58
TAB. 11 GEGENÜBERSTELLUNG DER DIFFERENTIELL EXPRIMIERTEN GENE EINER $\Delta LRPA1$ -Deletionsmutan	NTE
UND EINES <i>\LRPA1</i> -ÜBEREXPRESSIONSSTAMMES	62
TAB. 12 GEGENÜBERSTELLUNG DER RT-QPCR-DATEN UND DER MIKROARRAY-DATEN	64
TAB. 13 TM, ΔH und ΔS von LrpA1	84
TAB. 14 Relative Bindungseffizienzen von LRPA1 an Sepharose-gebundene DNA Fragmente (P_{IN}	CL)
UND KONTROLL-DNA (K)	93
TAB. 15 EINSTELLUNG DER MESSPARAMETER DES CD-SPEKTROMETERS JASCO-J-810	132
TAB. 16 EINSTELLUNG DER MESSPARAMETER DES CD-SPEKTROMETERS JASCO-J-810 ZUR MESSUNG DER	
SCHMELZKURVEN VON LRPA1	133
TAB. 17 EINSTELLUNG DER MESSPARAMETER DES CD-SPEKTROMETERS JASCO-J-810 ZUR MESSUNG DER	
SPEKTREN VON LRPA1	133
TAB. 18 ZUSAMMENSETZUNG DER TRENN- UND SAMMELGELE FÜR EINE SDS-PAGE	134

Zusammenfassung

Die Regulation zellulärer Prozesse stellt in Archaea eine Kombination eukaryotischer als auch bakterieller Eigenschaften dar. Während die Initiation der Transkription dem eukaryotischen RNA-Polymerase II System ähnelt, ist die Transkriptions-Regulation vorwiegend bakteriellen Ursprungs.

Im Rahmen dieser Arbeit wurden Untersuchungen über die Genexpression im Zusammenhang mit dem Aminosäure-Metabolismus wie auch mit metallabhängigen Prozessen in *Halobacterium salinarum* R1 durchgeführt.

Um Einblicke in regulatorische Prozesse zu erlangen, diente als globaler Ansatz auf Transkriptionsebene die Mikroarray-Technologie. Die Gene von bestimmten DNA-Bindeproteinen wurden deletiert und/oder überexprimiert, um anschließend das Expressionsmuster der Deletions- bzw. Überexpressionsstämme mit dem Parentalstamm R1 zu vergleichen. Um zu einem besseren Verständnis der metallabhängigen Prozesse zu gelangen, wurde zusätzlich das Wachstum von *H. salinarum* unter Eisenmangel und unter normalen Wachstumsbedingungen verglichen.

Zur Untersuchung metallabhängiger Prozesse wurden die DNA-Bindeproteine SirR ("staphylococcal iron regulator repressor") und TroR ("transport related operon") gewählt. Anhand eines Vergleichs der Deletionsmutanten $\Delta sirR$ bzw. $\Delta troR$ mit dem Parentalstamm R1 wurden Rückschlüsse auf die Funktion des jeweiligen Proteins getroffen. Dabei wurde festgestellt, dass SirR zusammen mit Eisen die Expression eines Fe(II)/Mn(II)-abhängigen ABC-Transporters reprimiert. In Übereinstimmung damit wurde unter Eisenmangel das Transportoperon induziert. Für TroR konnte ebenfalls die Repression eines Mn(II)-abhängigen Transportoperons beobachtet werden. Außerdem induziert TroR die Genexpression des metallabhängigen Regulatorgens *idr2*, welches in Anwesenheit von Eisen die Siderophorsynthese reprimiert.

Als Transkriptionsregulatoren des Aminosäure-Metabolismus wurden so genannte Lrp ("leucine-responsive regulatory protein")-Homologe in *H. salinarum* ausgewählt, denn sowohl in Archaea als auch in Bakterien wird das Protein Lrp in Zusammenhang mit der Koordination des Aminosäure-Metabolismus gebracht. Zur näheren Analyse wurden die beiden Gene *lrp* und *lrpA1* herangezogen, da sich diese in direkter Nachbarschaft von Genen befinden, welche für Proteine kodieren, die eine Rolle im Aminosäure-Metabolismus spielen. Mögliche Zielgene von Lrp wurden dabei mit Hilfe von zwei unterschiedlichen Ansätzen identifiziert. Zum einen wurden Deletionsmutanten von *lrp* bzw. *lrpA1* hergestellt, zum anderen wurden die beiden Gene überexprimiert.

Im Zuge der Transkriptom-Analyse konnte dem DNA-Bindeprotein Lrp eine Funktion als globaler Regulator zugewiesen werden, da dieses neben der Aktivierung der Genexpression des Glutamin-Synthetase-Gens *glnA*, an der Regulation des Peptid– und Phosphattransports, des zentralen Intermediärmetabolismus, wie auch an der Aktivierung der Genexpression des Regulatorgens *sirR* beteiligt ist. Über die Kontrolle der Genexpression von *sirR* durch Lrp besteht außerdem ein unmittelbarer Zusammenhang zwischen dem Aminosäure-Metabolismus und der metallabhängigen Regulation.

Im Gegensatz zu Lrp reguliert LrpA1 die Genexpression nur weniger Gene, wobei eines davon für eine Aspartat-Transaminase (*aspB3*) kodiert. In weiteren Untersuchungen wurde der Fokus auf die Genregulation von *aspB3* gelegt.

Im zweiten Teil dieser Arbeit wurden spezifische Studien zu Protein-DNA Interaktionen vorgenommen, wobei zuerst mit Hilfe einer RACE (,,<u>r</u>apid <u>a</u>mplification of <u>cDNA ends</u>")-Analyse das 5'Ende und das 3'Ende von Transkripten bestimmt wurde. Um anschließend DNA-Bindungsstudien durchzuführen, erfolgte eine rekombinante Expression der beiden DNA-Bindeproteine LrpA1 und TroR in *Escherichia coli*. Mit Hilfe eines an halophile Bedingungen angepassten analytischen DNA-affinitätschromatographischen Bindungsassays konnte für TroR eine Mangan-abhängige Bindung im Bereich der eigenen Promotorsequenz gezeigt werden. Für LrpA1 wurde eine Bindung im Bereich des *lrpA1*-Promotors gezeigt, wie auch eine L-Aspartat abhängige Binding im Bereich des *aspB3*-Promotors.

Eine Interaktion von L-Aspartat mit LrpA1 konnte über eine stabilisierende Wirkung der Aminosäure auf die Sekundärstruktur von LrpA1 mittels CD-Spektroskopie gezeigt werden. Um genaue Einblicke in die LrpA1 und L-Aspartat abhängige Genexpression von *aspB3* zu bekommen, wurde anhand von Northernblot-Analysen gezeigt, dass die *aspB3*-Transkription in Abwesenheit von L-Aspartat induziert wurde. Dies erfolgte, wenn das Medium entweder kein Aspartat enthielt oder dieses in der stationären Phase metabolisiert wurde. Zugleich konnte eine Induktion der Genexpression von *lrpA1* während der stationären Phase beobachtet werden, was sich in einem Modell veranschaulichen lässt, in dem die Genexpression von *lrpA1* und *aspB3* reziprok durch LrpA1 reguliert wird.

1 Einleitung

1.1 Einteilung der Archaea

Die phylogenetische Verwandtschaft von Organismen geht auf das Drei-Domänen System von Carl Woese (1977) zurück und basiert auf der vergleichenden Sequenzanalyse der kleinen ribosomalen Untereinheit (16S rRNA). Dabei wurde den Archaeabakterien phylogenetisch eine eigene Domäne zugeordnet, welche von da an als Archaea bezeichnet wird und neben den Bacteria und Eukarya die dritte Domäne des Lebens darstellt (Abb. 1). Archaea leitet sich aus dem Griechischen von dem Wort *archaios* ($\alpha p \chi \alpha i o \varsigma$) ab und bedeutet "ursprünglich". Archaeen ähneln in zentralen molekularen Prozessen, wie der Replikation, Transkription und Translation, den Eukaryoten. Außerdem besitzen sie typische Eigenschaften von Bakterien, wie z.B. das Fehlen des Zellkerns, ein zirkuläres DNA Molekül und die Fortbewegung mit Hilfe von Geißeln.

Abb. 1 Vorkommen von halophilen Organismen

Universeller phylogenetischer Stammbaum der drei Domänen des Lebens. Diese wurden anhand von 16SrRNA und 18S-rRNA Analysen in Bakterien, Archaea und Eukaryoten eingeteilt (modifiziert nach (Allers und Mevarech, 2005). Innerhalb der Archaea sind die Stämme Euryarchaeota (1.), die Crenarchaeota (2.), die Nanoarchaeota (3.) und die Korarchaeota (4.) dargestellt. Die Euryarchaeota werden in weitere Klassen unterteilt, darunter die *Halobacteria*. Diese enthalten das Genus *Halobacterium* mit der Spezies *Halobacterium salinarum* (Elektronenmikroskopische Aufnahme (www.biochem.mpg.de/oesterhelt/)) (A). Salzgewinnungsanlage als natürlicher Lebensraum halophiler pigmentierter Organismen. Die deutliche Rotfärbung wird durch Lycopin und Bacterioruberine hervorgerufen (Utah, USA) (B).

Archaea werden weiter in die vorwiegend thermophilen Crenarchaeota und die Euryarchaeota (Woese *et al.*, 1990), welche sich aus den Methanogenen, den Thermophilen und den Halophilen zusammensetzen, eingeteilt. Aufgrund der Sequenzierung der 16S-rRNA wurde noch ein weiterer Stamm, jener der Korarchaeota, identifiziert (Barns *et al.*, 1996). Diese leben in hochtemperaten, hydrothermalen Lebensräumen. Bis jetzt ist es

noch nicht gelungen, eines der Isolate zu kultivieren. Die jüngste Entdeckung war jene der Nanoarchaeota, deren Zuordnung noch nicht eindeutig geklärt ist (Allers und Mevarech, 2005). Ihr bisher einziger Vertreter *Nanoarchaeum equitans* wächst symbiotisch auf der Oberfläche von *Ignicoccus* (Huber *et al.*, 2002).

Viele Archaea werden aufgrund ihrer Fähigkeit, extreme Lebensräume zu besiedeln, als extremophil bezeichnet. Beispiele für solche extremen Bedingungen sind hohe Salzkonzentrationen (Halophile), hohe Drücke (Barophile), niedrige bzw. hohe pH-Werte (Azidophile bzw. Alkaliphile) und niedrige bzw. hohe Temperaturen (Psychrophile bzw. Hyperthermophile).

1.2 Halophilie

Halophile bzw. Salz liebende Organismen sind in allen drei Domänen des Lebens vertreten. Sie kommen in Umgebungen vor, deren Salzkonzentration sich nahe der Sättigung befindet, wie z.B. in thalossohalinen (griechisch: *thalassa* ($\Theta \alpha \lambda \alpha \sigma \sigma \alpha$) = Meer) Gewässern, terrestrischen Salzseen oder anderen hypersalinen Lebensräumen. Diese sind meist durch die Verdunstung von Meerwasser entstanden. Die typische Rotfärbung zeigt das Vorhandensein pigmentierter Mikroorganismen, wie Halobakterien, die ihre rote Farbe durch langkettige Carotinoide (Lycopin) und Bacterioruberine erhalten, und der ß-karotinreichen Grünalge Dunaliella (Javor, 1989; Oren, 1994) (Abb. 1B). Zusätzlich kommen halophile oder halotolerante Mikroorganismen in salzhaltigen Lebensmitteln vor. Eukaryotische Vertreter der Halophilen gehören ausschließlich zu der photosynthetisch aktiven Grünalgengattung Dunaliella. Bei den Prokaryoten kommen sie in verschiedenen Untergruppen gemeinsam mit nicht halophilen Vertretern vor (Oren, 2002). Innerhalb der Archaea sind die halophilen Vertreter in der Familie der Halobacteriaceae anzutreffen, darunter die Spezies Halobacterium salinarum. Zwei unabhängige Halobacterium Genome, nämlich die der Stämme H. salinarum NRC-1 (Ng et al., 2000) und H. salinarum R1 (Pfeiffer et al., 2008b) liegen vollständig sequenziert vor. Genom-, Transkriptom- und Proteomdaten für H. salinarum R1 sind aus der Datenbank Halolex abrufbar (Pfeiffer et al., 2008a). Das Genom von H. salinarum R1 besteht aus einem Chromosom (2 Mbp) und vier Megaplasmiden. Der Organismus weist einen hohen GC-Gehalt von 68 % auf und kodiert entsprechend der aktuellen Annotation 2754 Proteine.

H. salinarum wächst bei einer minimalen Salzkonzentration von 1.5 M und besitzt ein Wachstumsoptimum zwischen 3.5 und 4.5 M NaCl. Darüber hinaus können die Zellen in einer gesättigten Salzlösung bis zu 5.2 M wachsen (Grant, 1989). *H. salinarum* ist bekannt für seine Retinal-Pigmente, wie Bacteriorhodopsin, Halorhodopsin und sensorische Rhodopsine.

Ein markantes Merkmal zur Einteilung der halophilen Archaea sind der Aufbau der Zellwand, wie auch die Lipidzusammensetzung der Cytoplasmamembran. Es ist auffällig, dass Polyisoprenoidketten archaealer Lipide mit Glycerin verethert und nicht wie bei Bakterien oder Eukaryonten verestert sind (Sehgal *et al.*, 1962).

Proteom Analysen von *H. salinarum* NRC-1 zeigten, dass halophile cytoplasmatische Proteine extrem sauer sind. Dabei sind die sauren Aminosäuren hauptsächlich an der Oberfläche exponiert (Kennedy *et al.*, 2001), was zu einer stark negativen Ladung der Proteine führt. Saure Aminosäuren bilden eine stärkere Hydrathülle aus als andere Aminosäuren. Dadurch können sie die Anordnung hydratisierter Salzionen auf der Proteinoberfläche koordinieren (Dennis und Shimmin, 1997). Dies stimmt damit überein, dass die meisten halophilen Proteine unterhalb einer Salzkonzentration von 1-2 M denaturieren (Eisenberg *et al.*, 1992).

Unterschiede der Salzkonzentration von Umgebung und Zellinneren, zwingen halophile Organismen zu einer Anpassung an die hohe Salzkonzentration innerhalb der Zelle. Dabei gibt es zwei mögliche Strategien, den osmotischen Stress zu bewältigen. Vertreter der Halobakterien (Archaea) und eine Gruppe anaerober halophiler Bakterien überwinden eine hohe extrazelluläre Salzkonzentration mit Hilfe der "salt-in" Strategie (Dennis und Shimmin, 1997). Dabei werden große Mengen an K⁺- und Cl⁻-Ionen in das Cytoplasma gepumpt, so dass die intrazelluläre Kaliumchlorid-Konzentration ansteigt. Im Gegenzug werden Na⁺-Ionen aus der Zelle ausgeschleust. In Halobakterien entsteht durch einen Na⁺/H⁺-Antiporter ein Na⁺-Konzentrationsgradient über die Cytoplasmamembran. Die erforderliche Energie, um Na⁺ aus der Zelle zu pumpen wird durch einen elektrochemischen Protonengradienten ("proton motive force") über die Cytoplasmamembran ermöglicht. Der elektrochemische Protonengradient wird entweder durch den Elektronentransport während der Atmungskette oder durch die lichtabhängige Protonenpumpe Bacteriorhodopsin aufgebaut (Oesterhelt und Stoeckenius, 1973). K⁺-Ionen strömen als Antwort auf das Membranpotential mit Hilfe eines Uniporters passiv in die Zelle (Wagner *et al.*, 1978). Cl⁻- Ionen werden im Zellinneren entweder über einen Na⁺/Cl⁻-Symport (Rao und Argos, 1981) oder durch den lichtabhängigen Cl-Transporter Halorhodopsin akkumuliert.

Eine weitere Möglichkeit von Mikroorganismen, sich an hohe Salzkonzentrationen anzupassen, ist die Aufnahme kleiner organischer Verbindungen, wie Kohlenhydraten, Aminosäuren, Polyolen, Betainen, Ectoinen, so genannten kompatiblen Soluten im Cytoplasma ("compatible-solute" Strategie). Die Bezeichnung kompatible Solute beschreibt ihre Eigenschaft, dass sie auch bei hohen Konzentrationen nicht mit dem Zellstoffwechsel interferieren (Brown, 1990). Sie sind unter physiologischen Bedingungen polare, stark wasserlösliche ungeladene oder zwitterionische Moleküle. Bei Bedarf können sie von der Umgebung aufgenommen werden, oder sie werden neu synthetisiert, wobei die Synthese unter hohem Energieaufwand geschieht (Oren, 1999).

1.3 Transkription

1.3.1 Transkriptionsinitiation in Archaea, Eukarya und in Bacteria

Die basale Transkription in Archaea zeigt Homologie zum eukaryotischen RNA-Polymerase II Apparat (Langer *et al.*, 1995; Thomm, 1996; Soppa, 1999; Bell *et al.*, 2001b). Archaeale Promotorsequenzen, wie auch die RNA-Polymerase (RNAP), das TATA-Bindeprotein (TBP), und der Transkriptionsfaktor IIB (TFB) sind strukturelle wie auch funktionelle Homologe eukaryotischer Proteine (Thomm, 1996; Reeve *et al.*, 1997). Der erste Schritt der Transkriptionsinitiation ist die Ausbildung eines Prä-Initiationskomplexes (PIC).

1.3.1.1 Assemblierung des archaealen Prä-Initationskomplexes

Initiation archaealen Transkription RNAP Zur der sind und die beiden Transkriptionsfaktoren TBP und TFB erforderlich. Dabei bindet TBP an eine T/A-reiche, TATA-ähnliche Promotorsequenz, welche sich an der Position -25 bis -30 relativ zum Transkriptionsstart (+1) befindet. Anschließend stabilisiert TFB durch Interaktion mit TBP den TBP-DNA Komplex und geht sequenzspezifischen Kontakt mit einer purinreichen Sequenz, dem BRE-Element ("TFB-responsive element") ein, welches sich bei -34 stromaufwärts befindet. Zusätzlich interagiert TFB mit der RNA-Polymerase, um einen Prä-Initiationskomplex zu formen (Bell und Jackson, 2000b; Magill et al., 2001) (Abb. 2). Zwei weitere Transkriptionsfaktoren sind der Transkriptionsfaktor E (TFE), ein Homolog der aUntereinheit des eukaryotischen Transkriptionsfaktors E (TFIIE α) und der Transkriptionsfaktor S (TFS) ein Homolog des eukaryotischen TFIIS. Während der archaeale TFE die Transkription bestimmter Promotoren stimuliert und somit die Bindung von TFB an die TATA-Box zusätzlich fördert (Bell *et al.*, 2001a; Hanzelka *et al.*, 2001), spielt TFS bei der Elongation der Transkription eine Rolle (Hausner *et al.*, 2000).

1.3.1.2 Assemblierung des eukaryotischen Prä-Initationskomplexes

Der eukaryotische Prä-Initiationskomplex (PIC) hat eine komplexere Struktur, als jener der Archaea (Abb. 2). Die eukaryotische RNA-Polymerase II katalysiert die Bildung der prämRNA, snoRNAs ("small nucleolar RNAs") und die von einigen snRNAs ("small nuclear RNAs"). Die Bildung des eukaryotischen PIC erfolgt durch die Interaktion einiger allgemeinen Transkriptionsfaktoren beginnend mit dem Transkriptionsfaktor IID (TFIID), bestehend aus dem TATA Bindeprotein (TBP) und den TBP assoziierten Faktoren, den so genannten TAFs. Die Bindung von TBP bewirkt eine Krümmung der DNA und eine anschließende Anlagerung des kompletten TFIID Komplexes, welcher den DNA Abschnitt von -45 bis -10 schützt. TFIIA und TFIIB stabilisieren die Bindung von TFIID. TFIIF bewirkt die Rekrutierung der RNA-Polymerase II zum Promotor. Weitere Transkriptionsfaktoren sind TFIIE und TFIIH, welcher als DNA Helikase die DNA entwindet und in seiner Kinasefunktion die RNA-Polymerase II phosphoryliert, um somit die Elongation einzuleiten. Die RNA-Polymerase ist in ihrer elongierten Form von Transkriptionsfaktoren gelöst. Zusätzlich haben Eukaryoten "Enhancer" und UAS ("upstream activating sequence") Elemente, die eine Verstärkung der Transkriptionsrate an bestimmten Promotoren bewirken.

1.3.1.3 Assemblierung des bakteriellen Prä-Initationskomplexes

In Bakterien besteht das RNA-Polymerase Core-Enzym aus 5 Untereinheiten ($\alpha_2\beta\beta'\omega$). Die Transkriptionsinitiation hingegen erfolgt durch das Holoenzym, welches einen zusätzlichen Sigma (σ)-Faktor enthält ($\alpha_2\beta\beta'\omega\sigma$). Der σ -Faktor gewährleistet, dass die bakterielle RNA-Polymerase nur an Promotoren und nicht an andere Stellen der DNA stabil bindet. Bakterielle Promotorsequenzen befinden sich an der Position -35 und -10 stromaufwärts vom Transkriptionsstart (Abb. 2). Die Core-RNA-Polymerase kann mit verschiedenen σ -Faktoren interagieren und gewährleistet somit die Transkription an unterschiedlichen Promotoren. Nach einer RNA-Synthese von ca. 8 Basen erfolgt die Freisetzung des σ -Faktors und das Core-Enzym setzt die Elongation der Transkription fort.

Abb. 2 Der Prä-Initiationskomplex (PIC) in Archaea, Eukaryoten und Bakterien Der Promotor besteht in Archaea aus dem Initiator-Element (INR), der TATA-Box und dem BRE ("TFBresponsive element") Element. In Eukaryoten kommt zusätzlich das DPE ("downstream promoter element") Element hinzu. In Bakterien tragen die Konsensussequenzen an Position -10 und -35 zur Promotorerkennung bei. Details siehe Text.

1.3.2 Archaeale Promotoren

Wie bereits erwähnt, stellt der archaeale Prä-Initiationskomplex (PIC) eine vereinfachte Version des eukaryotischen PIC dar. Anhand zahlreicher Mutationsanalysen konnte für archaeale Promotor Core Elemente ebenfalls eine Ähnlichkeit zu den Eukaryoten gezeigt werden. Die Region -30 stromaufwärts relativ zum Transkriptionsstart (+1), die so genannte TATA-Box, wie auch das Initiator-Element (INR), welches sich im Bereich des Transkriptionsstart befindet, erwiesen sich als essentielle Elemente der archaealen Transkriptionsinitiation (Reiter *et al.*, 1990). Die TATA-Box weist eine Länge von 4 bis 5 Nukleotiden auf (Brenneis *et al.*, 2007) und zentriert sich um die Position -26/-27, mit einer Flexibilität von ± 1 bis 2 Nukleotiden (Soppa, 1999). Zusätzlich wurde ein weiterer essentieller Faktor, das "TFB-responsive element" (BRE)-Element, welches aus einer 6 bp

langen purinreichen Sequenz um die Position -34 besteht, bestimmt (Lagrange *et al.*, 1998; Bell *et al.*, 1999). Das BRE-Element ist verantwortlich für die Stärke eines Promotors, und garantiert außerdem, dass die Transkription unidirektional verläuft (Bell *et al.*, 1999; Littlefield *et al.*, 1999). Ein weiteres Promotormotiv ist entweder ein A oder T an der Position -10 und -11 relativ zum Transkriptionsstart. Mögliche Proteine, die an dieser Stelle binden, könnten TFB und die RNA-Polymerase sein (Brenneis *et al.*, 2007). Die Existenz eines archaealen DPE Elements konnte nicht nachgewiesen werden (Abb. 2). Innerhalb der Archaea zeigte sich eine Abweichung der Konsensussequenzen von TATA-Box, BRE- und INR-Elementen (Soppa, 1999), was wiederum eine Variabilität der Interaktionen der an sich konservierten archaealen TBPs bedeutet. In einigen Fällen konnte keine eindeutige TATA-Box identifiziert werden. Hierbei handelt es sich meist um Promotoren, die einer starken Transkriptionsregulation unterliegen. Dabei sei der Bacteriorhodopsin (*bop*) Promotor als Beispiel erwähnt (Abb. 3) (Dunn *et al.*, 1981). Eine mögliche Rekrutierung der RNA-Polymerase könnte an dem als neu identifizierten Motiv an der der Position -11/-10 erfolgen (Brenneis *et al.*, 2007).

Abb. 3 bop-Promotor

An der Position -11/-10 befindet sich das Core-Promotorelement. Der Transkriptionsstart ist durch einen Pfeil gekennzeichnet, das Startcodon ist unterstrichen.

1.3.3 Transkriptionstermination in Archaea, Eukaryoten und in Bakterien

1.3.3.1 Termination der Transkription in Bakterien

In Bakterien werden zwei verschiedene Arten der Termination unterschieden. Die Rhounabhängige und die Rho-abhängige Termination. Die Rho-unabhängige Termination wird durch das Ende von Transkriptionsabschnitten im Bakteriengenom bestimmt. Dabei folgt einer GC-reichen Sequenz ein Block von Adenin-Resten, was im Zuge der Transkription zu einer Ausbildung von Haarnadelstrukturen in der neu synthetisierten mRNA führt. Dies könnte eine Konformationsänderung der RNA-Polymerase bewirken, sodass der ternäre Komplex aus RNA-Polymerase, DNA und RNA auseinander fällt. Bei der Rho-abhängigen Termination in Bakterien bindet das Rho-Protein an die gebildete RNA im Bereich des Terminators. Dabei fungiert das Rho-Protein als Helikase und sorgt für eine Ablösung der RNA aus dem ternären Komplex. In *Escherichia coli* konnten so genannte Nus ("N utilization substance") -Faktoren identifiziert werden, die eine Rho-abhängige Termination verstärken (Greenblatt *et al.*, 1981).

1.3.3.2 Termination der Transkription in Eukaryoten

Die eukaryotische RNA-Polymerase benötigt zur Termination der Transkription weitere Proteinkomplexe, die mit der Polymerase in Wechselwirkung treten. Nachdem Proteinkomplexe die konservierte Polyadenylierungsstelle 5'-AAUAAA-3' erkannt haben, erfolgt 10-30 Basenpaare stromabwärts die endonukleolytische Abspaltung des primären Transkripts. Anschließend werden durch die Poly(A)Polymerase ca. 200 Adenine an das 3' Ende angefügt. Die Addition eines so genannten Poly-A-Schwanzes wird als Polyadenylierung bezeichnet. Poly-A-Schwänze bewirken eine Erhöhung der mRNA Stabilität und unterstützen den Kernexport der mRNA.

1.3.3.3 Termination der Transkription in Archaea

Im Gegensatz zur Assemblierung des archaealen Prä-Initiationskomplexes (PIC) sind die Mechanismen der archaealen Transkriptionstermination noch weitgehend ungeklärt. Computer-Analysen zeigten, dass im Bereich archaealer Stop-Codons keine Sequenz zur potentiellen Ausbildung von Haarnadelstrukturen identifiziert werden konnte. Folglich ist eine Rho-unabhängige Transkriptionstermination bei Archaea eher unwahrscheinlich (Washio *et al.*, 1998). Es konnten auch keine archaealen Homologe, welche einen Rho-Faktor kodieren identifiziert werden. Archaea besitzen jedoch Homologe der bakteriellen Terminationsfaktoren NusA und NusG, deren Funktion in Bezug auf die Termination noch ungeklärt ist. Eine Bestimmung der 3' Enden archaealer mRNAs zeigte, dass die Transkriptlänge variiert. Ursachen hierfür könnten eine Termination zu verschiedenen Zeitpunkten sein oder aus einer unterschiedlichen Degradierung der Transkripte vom 3' Ende her resultieren (Brenneis *et al.*, 2007). Eine Transkriptionstermination an nur 1 oder 2 Nukleotiden nach dem Stopcodon kommt selten vor.

1.3.4 Archaeale Transkripte und Translationsinitiation

In Bakterien erfordert die Initiation der Translation eine Basenpaarung des 3' Endes der 16SrRNA mit einer purinreichen Sequenz am 5' Ende der mRNA, der so genannten Shine-Dalgarno (SD) Sequenz. Die eukaryotische Translationsinitiation erfolgt mit Hilfe der "scanning"-Methode. Dabei wandert das Ribosom vom 5' Cap ausgehend entlang der mRNA bis es beim AUG Startcodon einrastet. Bakterielle wie auch eukaryotische Transkripte ohne 5'UTR ("untranslated region") "leader"-Sequenz binden zur Transkriptionsinitiation undissoziierte Ribosomen und die tRNA (Andreev *et al.*, 2006); (O'Donnell und Janssen, 2002).

In Haloarchaea konnten 3 Klassen von Transkripten identifiziert werden, an denen die Initiation der Translation stattfindet ("leaderless"-Transkripte (1), "leader"-Transkripte mit SD-Sequenz (2), "leader"-Transkripte ohne SD-Sequenz (3)) (Brenneis et al., 2007). Die meisten haloarchaealen mRNAs besitzen keine zusätzliche 5'-"leader"-Sequenz (Dunn et al., 1981). Daher nimmt man an, dass an diesen Transkripten die Translation bevorzugt initiiert wird. Als "leaderless" werden jene Transkripte bezeichnet, die entweder keine oder weniger als 10 Nukleotide in ihrem 5'UTR besitzen. Nur wenige Transkripte mit mehr als 10 Nukleotiden enthalten eine SD-Sequenz (Brenneis et al., 2007). Für Transkripte mit einer SD-Sequenz konnte gezeigt werden, dass Mutationen in diesem Bereich eine Verringerung der Translationseffizienz bewirken. Wird jedoch der gesamte 5'UTR Bereich entfernt, konnte eine Steigerung der Translationsrate beobachtet werden (Condo et al., 1999; Sartorius-Neef und Pfeifer, 2004). Möglicherweise unterliegen Transkripte mit einer 5'-"leader"-Sequenz einer stärkeren Translationskontrolle. In E. coli befindet sich das 3'Ende der SD-Sequenz in einem Abstand von 5 Nukleotiden zum Translationsstart. In H. salinarum konnte jedoch nur eine schwache Überlappung mit dem SD-Motiv GAGGUGA beobachtet werden (Brenneis et al., 2007). Dies lässt vermuten, dass es einen weiteren von der SD-Sequenz unabhängigen Weg der Translationsinitiation gibt.

Haloarchaeale Transkripte weisen grundsätzlich einen 3'UTR auf, deren Länge zwischen 13 und 154 Nukleotiden variieren kann. Wobei die durchschnittliche Länge von 3'UTRs 57 Nukleotiden beträgt (Brenneis *et al.*, 2007). Archaeale 3'UTRs sind kürzer als in Eukaryoten, die eine Länge von 200-500 Nukleotiden besitzen (Mazumder *et al.*, 2003). Im Bereich der 3'UTRs vieler Transkripte konnte ein penta-Uridin Motiv identifiziert werden, welches zum Teil in eine mögliche Haarnadelbildung involviert ist (Brenneis *et al.*, 2007). Hierbei handelt es sich jedoch weder um eine konservierte Sequenz, noch um eine konservierte Struktur. Es sei darauf hingewiesen, dass anhand von Computer-Analysen archaealer Genome keine Sequenzen identifiziert wurden, die auf die Ausbildung von Haarnadelstrukturen hinweisen. Die biologische Funktion archaealer 3'UTRs wird noch nicht verstanden. In *H. salinarum* hat der 3'UTR Bereich keinen besonderen Einfluss auf Transkriptstabilität (Brenneis *et al.*, 2007).

1.4 Regulation der Transkription

Während der basale Transkriptionsapparat aus eukaryotischen Elementen besteht, ist die Regulation der Transkription vorwiegend bakteriellen Ursprungs, mit Ausnahme des halobakteriellen Aktivators GvpE ("gas vesicle protein") (Kruger *et al.*, 1998). Die Transkription wird entweder durch positive oder negative Regulatoren gesteuert (Abb. 4). Negative Regulatoren üben ihre Funktion ähnlich bakterieller Repressoren aus. Sie binden an DNA Bereiche, die mit dem Promotor überlappen und verdecken somit die TATA-Box oder das BRE-Element, was eine Transkriptionsinitiation verhindert (Abb. 4A), oder blockieren durch ihre Bindung um den Bereich des Transkriptionsstarts die Rekrutierung der RNA-Polymerase (Abb. 4B). Positive Regulatoren der Transkription erleichtern eine Bildung des PIC, indem sie eine Bindung von TBP oder der RNA-Polymerase ermöglichen (Abb. 4C). Die Regulation der Transkription sei anhand zweier Gruppen von Regulatoren beschrieben. Zum einen handelt es sich um die Lrp-Familie von Regulatoren und zum anderen werden die metallabhängigen Regulatoren der Transkription beschrieben.

Abb. 4 Regulation der Transkription

Negative Regulatoren der archaealen Transkription binden im Promotorbereich, was eine Assemblierung des Prä-Initiationskomplexes (PIC) unmöglich macht (A). Alternativ können sie im Bereich des Transkriptionsstarts binden und verhindern somit eine erfolgreiche Rekrutierung der RNA-Polymerase (B). Positive Regulatoren der Transkription: Bindung eines Aktivators im Bereich des Promotors (C).

1.4.1 Lrp-Familie von Regulatoren

Eine Gruppe bakterieller Regulatoren, welche in fast allen archaealen Genomen vorkommen gehört zur Lrp ("leucine-responsive regulatory protein")/AsnC ("asparagine synthase C") Familie von Regulatoren. Lrp in Escherichia coli ist das am meisten untersuchte Mitglied der Lrp-Familie in gram-positiven und gram-negativen Bakterien (Calvo und Matthews, 1994; Newman und Lin, 1995) und kontrolliert die Expression von bis zu 75 Zielgenen. Als Antwort auf Umwelteinflüsse oder auf Änderungen des Nährstoffgehalts ist Lrp als globaler Transkriptionsregulator in der Lage den zellulären Metabolismus zu koordinieren (Tani et al., 2002). Dabei wird die Transkription der Zielgene entweder reprimiert oder aktiviert, wobei diese Effekte zusätzlich durch Leucin moduliert werden können. Viele Gene, welche durch Lrp reguliert werden, sind am Aminosäure-Metabolismus beteiligt. Lrp reguliert auch seine eigene Genexpression, wobei es einer negativen Autoregulation unterliegt, welche unabhängig von Leucin stattfindet (Wang et al., 1994). E. coli Lrp übt seine DNA-Bindungsfähigkeit als Homodimer aus und besteht aus zwei 18 kDa Untereinheiten. Da Lrp in einer E. coli Zelle reichlich vorhanden ist (3000 Lrp Dimere pro Zelle), ist es möglicherweise auch an der Nucleoid Organisation und der Packung von Chromosomen beteiligt (D'Ari et al., 1993). Diese Annahme wird durch die Fähigkeit von Lrp unterstützt, unspezifische DNA in Abhängigkeit von der Wachstumsphase und dem an Ernährungszustand zu binden (Chen et al., 2001; Peterson et al., 2007). Die unspezifische DNA-Bindungsaktivität geschieht unabhängig von einem Effektormolekül (Peterson et al., 2007). In bestimmten Fällen konkurriert Lrp mit der Deoxyadenosin Methylierung (DAM) von Promotorregionen, indem es einen Einfluss auf die Aktivität der Transkription ausübt (van der Woude und Low, 1994; Weyand und Low, 2000; Hernday et al., 2004).

Untersuchungen über putative Lrp/AsnC-Homologa in Archaea sind in einem Übersichtsartikel von (Brinkman *et al.*, 2003) zusammengefasst und beinhalten die Organismen *Methanococcus jannaschii* (Bult *et al.*, 1996; Ouhammouch und Geiduschek, 2001; Ouhammouch *et al.*, 2003), *Sulfolobus* Spezies (Charlier *et al.*, 1997; Bell und Jackson, 2000a; Peeters *et al.*, 2007) und *Pyrococcus* Spezies (Kyrpides *et al.*, 1996; Brinkman *et al.*, 2000). Es gibt jedoch wenig Information über mögliche Zielgene oder Effektormoleküle archaealer Lrp-Homologa. Die meisten Untersuchungen zeigen eine Bindung von Lrp an den eigenen Promotor (Tab. 1). Dadurch wird die Bindung basaler Transkriptionsfaktoren, wie TBP und TFB bzw. die Rekrutierung der RNAP verhindert und folglich findet keine Transkription statt. Beispiele hierfür sind die Lrp/AsnC-Homologa aus

Sulfolobus solfataricus SsLrp und Lrs14 welche an die eigene Promotorregion binden (Napoli et al., 1999; Bell und Jackson, 2000a; Enoru-Eta et al., 2002). Ein weiteres Lrp-Homolog LysM aus S. solfataricus reguliert die Expression des lysWXJK Operons, welches für Enzyme der Lysin Biosynthese kodiert. Eine Bindung von LysM an den *lysW*-Promotor konnte in Abwesenheit von Lysin gezeigt werden (Brinkman et al., 2002). "Footprint"-Analysen von Sa-Lrp aus Sulfolobus acidocaldarius zeigen multiple Bindestellen im Bereich der Promotorregion von Sa-Lrp (Enoru-Eta et al., 2000). Solch eine Promotoranordnung konnte bereits für bakterielle Proteine beschrieben werden (Wang et al., 1993). Unter bestimmten physiologischen Bedingungen stellt Leucin einen möglichen Kofaktor für Sa-Lrp dar (Enoru-Eta et al., 2000). Die beiden Lrp-Homologa Ptr1 und Ptr2 aus M. jannaschii regulieren ebenfalls ihre eigene Transkription. Zusätzlich aktiviert das intensiver untersuchte Ptr2 die Transkription an Ferredoxin fdx- und Rubredoxin rb2-Promotoren, indem es die Bindung von TBP ermöglicht (Ouhammouch et al., 2003). In einem zellfreien Pyrococcus furiosus Transkriptionssystem konnte gezeigt werden, dass LrpA seine eigene Transkription negativ autoreguliert (Brinkman et al., 2000). Dabei verhindert es die Rekrutierung der RNA-Polymerase (Dahlke und Thomm, 2002).

Tab. 1 Archaeale Lrp-Proteine.

Bisweilen konnten folgende Lrp Proteine in Archaea identifiziert werden. Bei einigen von ihnen konnte auch eine mögliche Autoregulation festgestellt werden. x steht für noch nicht bestimmt.

Lrp-Homolog	Organismus	Promotor [Gen]	Autoregulation
FL11	Pyrococcus sp.	fl11	nachgewiesen
LrpA	Pyrococcus furiosus	IrpA	nachgewiesen
Lrs14	Sulfolobus solfataricus	lrs14	nachgewiesen
LysM	Sulfolobus solfataricus	Lys Operon	x
Sa-Lrp	Sulfolobus acidocaldarius	sa-Irp	nachgewiesen
Ss-Lrp	Sulfolobus solfataricus	ss-Irp	nachgewiesen
Ss-LrpB	Sulfolobus solfataricus	ss-IrpB	nachgewiesen
Ptr1	Methanococcus jannaschii	х	x
Ptr2	Methanococcus jannaschii	ptr2, fdxA, rb2	nachgewiesen

Für einige bakterielle wie auch archaeale Lrp-ähnliche Proteine konnte die Kristallstruktur gelöst werden (Kudo *et al.*, 2001; Leonard *et al.*, 2001; Koike *et al.*, 2004; Thaw *et al.*, 2006; Reddy *et al.*, 2008). Im N-terminalen Bereich befindet sich die DNA-bindende "helix turn helix" (HTH) Domäne. Der mittlere Bereich des Proteins vermittelt die Aktivierung der Transkription und der C-terminale Bereich ist an der Dimerisierung bzw. an der Bildung höherer oligomerer Formen beteiligt (Platko und Calvo, 1993; Chen *et al.*, 2001; Leonard *et al.*, 2001). Letztere bilden eine so genannte RAM Domäne ("regulation of amino acid

metabolism domain") (Ettema *et al.*, 2002) aus, welche an der Grenzfläche zwischen beiden Dimeren in der Lage ist, ein Effektormolekül zu binden.

1.4.2 Metallabhängige Regulatoren der Transkription

Archaea und Bakterien reagieren auf Umwelteinflüsse mit einer Änderung der Expression essentieller Gene. Viele pathogene Bakterien antworten direkt auf eine Eisenlimitation in Wirtszellen mit der Expression von Virulenzfaktoren. Zwei der am besten charakterisierten metallabhängigen regulatorischen Proteine sind das Fur-("ferric uptake regulation") Protein aus *Escherichia coli* (Bagg und Neilands, 1987) und das DtxR-Protein ("diphteria toxin regulatory protein") aus *Corynebacterium diphteriae* (De Zoysa *et al.*, 2005). Eine Bindung von Fe²⁺ an das metallabhängige Regulatorprotein bewirkt die Bindung des Proteins an die Palindromsequenz im Promotorbereich und reprimiert somit die Transkription der zu regulierenden Gene. Sinkt die Eisenkonzentration in der Zelle resultiert dies in einer Inaktivierung der Regulatorproteine und führt in der Folge zu einer Expression der Virulenzgene (z.B.: Toxine, Adhäsine, Eisentransportsysteme u. a.).

Das DtxR-Homolog TroR aus *Treponema pallidum*, dem Erreger von Syphilis, wird in der Literatur als metallabhängiges Repressorprotein beschrieben, das Teil des *tro*-Operons ("transport related operon") ist, welches insgesamt aus sechs Genen besteht (Posey *et al.*, 1999). Die ersten vier Gene kodieren für einen putativen ABC-Transporter (*troA-D*). Das fünfte Gen des Operons kodiert den Repressor (*troR*) und das sechste die Phosphoglycerat Mutase (*gpm*). Experimentelle Daten belegen, dass TroR aus *T. pallidum* ausschließlich mit Mn²⁺ als Kofaktor die Transkription des *tro*-Operons reprimiert (Posey *et al.*, 1999). Dabei bindet TroR als Dimer an eine 22 bp lange Palindromsequenz im Promotorbereich des *tro*-Operons. Ein weiteres DtxR-Homlog ist SirR ("staphylococcal iron regulator repressor"), welches in *Staphylococcus epidermidis* identifiziert wurde. In Abhängigkeit von Metallen reguliert SirR dabei die Expression des *sitABC*-Operons, welches für einen ABC-Transporter kodiert (Hill *et al.*, 1998).

Ein sehr gut untersuchtes DtxR Homolog in Archaea ist der Metall-abhängige Repressor MDR1 ("metal-dependent repressor") in *Archaeoglobus fulgidus*. Studien zu MDR1 erfolgten in einem zellfreien *Sulfolobus* Transkriptionssystem, wie auch in *Archaeoglobus* Zellen (Bell *et al.*, 1999). *Mdr1* befindet sich stromaufwärts von 3 Genen, welche einen für den Eisenimport verantwortlichen ABC-Transporter kodieren. Alle 4 Gene werden als polycistronische Transkriptionseinheit kotranskribiert. Zudem wurde eine Metallabhängigkeit der *in vivo* Expression von MDR1 gezeigt. In *A. fulgidus* konnte für MDR1 eine kooperative Bindung in Anwesenheit von Metallen an 3 DNA-Operator Sequenzen zwischen den Positionen -18 und +67 relativ zum Transkriptionsstart gezeigt werden. In Anwesenheit divalenter Kationen reprimiert MDR1 die Transkription an seinem eigenen Promotor, indem die Rekrutierung der RNA-Polymerase verhindert wird. MDR1 war der erste archaeale Repressor, dessen Induktor abhängige Bindung an Operator Sequenzen sowohl *in vitro* als auch *in vivo* demonstriert werden konnte.

1.5 Zielsetzung der Arbeit

Das Ziel der vorliegenden Arbeit war sowohl eine Untersuchung des Aminosäure-Metabolismus als auch eine Untersuchung metallabhängiger Prozesse in dem halophilen Organismus *H. salinarum* R1. Die Überlegung war, den Einfluss spezieller DNA-Bindeproteine auf die jeweiligen Prozesse zu analysieren und im Zuge dessen mögliche Zielgene der Regulatorproteine zu identifizieren.

Zur Untersuchung des Aminosäure-Metabolismus wurden *lrp* und *lrpA1* ausgewählt, da deren Nachbar-Gene für Proteine kodieren, welche im Aminosäure-Metabolismus eine zentrale Rolle spielen. Um ein besseres Verständnis für metallabhängige Regulationsprozesse zu bekommen, wurde das Wachstum von *H. salinarum* unter Eisenmangelbedingungen beobachtet. Außerdem wurden Homologe der metallabhängigen Regulatorproteine SirR und TroR zur Analyse miteinbezogen.

Die Arbeit gliedert sich in zwei Abschnitte:

1) Im ersten Abschnitt wurde ein globaler Ansatz gewählt. Mit Hilfe der Mikroarray-Technologie sollten Änderungen des Expressionsmusters auf mRNA Ebene Rückschlüsse auf einen Effekt, verursacht durch genetische Manipulation der entsprechenden Regulatorgene geben. Zur Analyse metallabhängiger Prozesse wurde die in *H. salinarum* erzeugte Eisenmangelsituation ebenfalls auf Transkriptomebene untersucht.

2) im zweiten Abschnitt wurden Protein-DNA Interaktionen untersucht, wobei hier detailliert auf die Interaktionen von LrpA1 bzw. TroR mit möglichen Zielsequenzen eingegangen wurde.

TEIL I Mikroarray-Technologie

2 Ergebnisse und Diskussion

2.1 Mikroarray-Technologie

Die Mikroarray-Technologie ist ein Hochdurchsatzverfahren, mit dessen Hilfe sich viele Fragestellungen zur Genexpression in einem Organismus untersuchen lassen. Dabei kann entweder mit Protein- oder Nukleinsäure-Mikroarrays gearbeitet werden, letztere wurden im Rahmen dieser Arbeit verwendet. Unter Nukleinsäure-Mikroarrays versteht man im allgemeinen Mikroarrays, auf denen DNA immobilisiert ist. Die DNA dient als Ziel für Hybridisierungspartner und ermöglicht Aussagen über bestimmte Aspekte der Nukleinsäureprobe, mit welcher hybridisiert wird.

Nukleinsäure-Mikroarrays lassen sich in zwei große Untergruppen aufteilen, die sich in der Beschaffenheit der gebundenen Nukleinsäure unterscheiden. Während auf den Oligonukleotid-Mikroarrays kurze einzelsträngige DNA-Fragmente gebunden sind, sind es bei den "klassischen" DNA- oder PCR-Mikroarrays Fragmente die zwischen 100-1000 Nukleotide (nt) lang sind.

Im vorliegenden experimentellen Ansatz wurden DNA-oder PCR-Mikroarrays verwendet, die 98 % der kodierenden Sequenz des Genoms von *H. salinarum* R1 abdecken (Belegung des Arrays siehe Abb. 5A). Die über PCR amplifizierten 2709 DNA-Sonden mit einer Länge von ca. 300 bp wurden in jeweils fünffachen Replikaten in einem automatisierten Prozess auf einen beschichteten Objektträger aufgetragen (hergestellt am Max Planck Institut für Psychiatrie; Details siehe (Twellmeyer *et al.*, 2007)). Durch die multiple Aufbringung der DNA-Sonden auf dem Objektträger ist es möglich, statistische Verfahren zur Auswertung der Hybridisierungsexperimente anzuwenden. Die fünf DNA-Sonden, die ein und dasselbe Gen repräsentieren, sind in direkter lokaler Nachbarschaft zueinander auf dem Chip aufgebracht. Das kann insofern einen Nachteil darstellen, da bei lokalen Hybridisierungsproblemen keine Aussage über die Expression eines Gens gemacht werden kann. Die technisch höher entwickelte Methode wäre, die Replikate über den ganzen Chip zu verteilen.

Abb. 5 Aufbau und Verlauf eines Mikroarray-Experimentes

Belegung eines DNA-Mikroarrays mit den DNA-Sonden und Kontrollen (A). Praktische Durchführung eines Mikroarray-Experiments: nach der Ernte der Zellen bei einer optischen Dichte (OD_{600}) von 0.4 wurde RNA isoliert und mit Hilfe der reversen Transkriptase in cDNA (5µg RNA/Ansatz) umgeschrieben. Im Zuge der reversen Transkription (RT) wurden die cDNAs der beiden Kulturen mit jeweils unterschiedlichen Farbstoffen markiert (Cy-5 (rot) und Cy-3 (grün)). Anschließend erfolgte die Hybridisierungsreaktion der Proben mit dem Nukleinsäure-Mikroarray, was zu einer kompetitiven Bindung der markierten cDNAs auf dem Chip führte. Die Auswertung der Fluoreszenzdaten erfolgte mit verschiedenen Computerprogrammen (B).

Im Zuge eines Mikroarray-Experiments lässt sich das Expressionsmuster von Genen, z.B. in einer Deletionsmutante mit dem Parentalstamm vergleichen, oder das Expressionsmuster von zwei verschiedenen Bedingungen (z.B. Standardbedingung vs. Eisenmangelbedingung) (Abb. 5B). Aus zwei sich unterscheidenden Zellpopulationen (2 Konditionen: z.B. Deletionsmutante vs. Parentalstamm; Standardbedingung vs. Eisenmangelbedingungen) wurde RNA isoliert und anschließend mit Hilfe des retroviralen Enzyms reverse Transkriptase (RT) in die stabile cDNA ("complementary"DNA) umgeschrieben. Zur Einleitung der reversen Transkription (RT) wurde die Gesamt-RNA mit einem Random-Nonamer Primer markiert. Um einen Unterschied im Hybridisierungsmuster der jeweiligen mRNA bzw. cDNA beobachten zu können, wurden die beiden Fluoreszenzfarbstoffe Cy5 (rot) und Cy3 (grün) eingesetzt. Im Zuge der RT wurde Cy3 in die 1. und Cy5 in die 2. Kondition eingebaut (Experiment I, Abb. 5B). Um die Verlässlichkeit der Daten zu steigern, wurden die gleichen RNA-Proben genau umgekehrt markiert, d.h. die 2. Kondition mit Cy3 und die 1. Kondition mit Cy5, was als so genanntes Farbwechsel-Experiment ("dye swap") bezeichnet wird (Experiment II, Abb. 5B). Das Farbwechsel-Experiment ermöglicht, Unterschiede in der Einbaueffizienz der Fluoreszenzfarbstoffe auszugleichen (Wu und Dewey, 2006). Zur Steigerung der Vertrauenswürdigkeit der Daten wurde eine weitere unabhängige RNA-Probe als biologisches Replikat verwendet. Insgesamt sollte ein Mikroarray-Experiment mindestens dreimal wiederholt werden, um so einen zuverlässigeren Datensatz zu erhalten (Bowtell, 2002).

In der folgenden Hybridisierungsreaktion konkurrieren die beiden markierten cDNAs nun um eine Bindung auf dem Nukleinsäure-Chip. Unterschiede in den mRNAs aus beiden Konditionen werden in einem unterschiedlichen Hybrididsierungsmuster der markierten cDNAs wieder gefunden, erkennbar durch ein verändertes Verhältnis der Rot-Grün-Fluoreszenzen für die entsprechenden Gen-Sonden. Rote Fluoreszenz bedeutet Induktion eines Gens in der 1. Kondition, grün Repression (Experiment I, Abb. 5B). Ist eine mRNA für beide Konditionen in gleichen Mengen vorhanden, wird gelbe Fluoreszenz beobachtet. Der Ansatz eines Mikroarray-Experiments ist in Abb. 5B schematisch dargestellt.

Die Auswertung der Fluoreszenzdaten der einzelnen Mikroarrays erforderte verschiedene Computerprogramme. Nach erfolgter Hybridisierung der einzelnen Proben mit den DNA-Sonden wurden die Fluoreszenzintensitäten mit einem Genepix Pro V4 gesteuerten Laserscanner gemessen. Die einzelnen "Spot"-Intensitäten wurden mit Genepix Pro V6 extrahiert, wobei ein "Spot" den Pixelwert einer Gen-Sonde repräsentiert. Aus den Rohdaten wurden mit MS-Excel die relevanten Datenkolonnen selektiert, sodass eine solche Datei neben der Gen-Identifikation die genauen Koordinaten der DNA-Sonden enthielt. Dazu gehören die Reihe bzw. Spalte innerhalb der Blöcke und die Reihe bzw. Spalte des Blocks selbst. Außerdem enthielt die Datei die "Spot"-Intensitäten jedes einzelnen Gens. Hierzu gehören die DNA-Sonden- und Hintergrundwerte beider Anregungswellenlängen (532 nm und 635 nm). Diese Datensammlung wurde mit Rechenroutinen von Dr. G. Welzl (GSF, Neuherberg) bearbeitet. (Hintergrundsubstraktion, log₂-Transformation und Normalisierung der Daten) (Twellmeyer *et al.*, 2007). Am Ende der Bearbeitungsschritte stehen die normierten Rohwerte mit bereinigtem Hintergrund.

Abschließend mussten die Daten zunächst in MS- Excel neu arrangiert werden, um mit Hilfe des "MultipleExperimentViewer" von TIGR (Saeed *et al.*, 2003) den Student's t-Test durchführen zu können. Gene mit mindestens drei von fünf auswertbaren DNA-Sonden

Replikaten wurden zur weiteren Analyse herangezogen. Die fehlenden zwei Werte wurden durch den Median ersetzt.

Eine Archivierung der Mikroarray-Daten erfolgte auf der MIAME (="minimum information about a microarray experiment") Plattform, einem allgemeinen Standard zur Mikroarray-Datenerhebung.

2.1.1 Deletionsmutanten $\triangle lrp$, $\triangle lrpA1$, $\triangle sirR$ und $\triangle troR$

Im Rahmen dieser Arbeit wurden zwei Gruppen von Transkriptionsregulatoren behandelt; zum einen die Gruppe Lrp-homologer Regulatoren und zum anderen metallabhängige Regulatoren der Transkription.

Das Genom von *H. salinarum* R1 kodiert acht Lrp-Homologe. Sowohl *lrpA1*, als auch *lrp* befinden sich direkt neben Gene, welche für Proteine kodieren, die eine Rolle im Aminosäure-Metabolismus spielen. Diese wurden daher zur weiteren Charakterisierung herangezogen.

Um den Einfluss von DNA-Bindeproteinen auf die metallabängige Genexpression zu untersuchen, wurden repräsentativ *sirR*- und *troR*-Homologe in *H. salinarum* ausgewählt. In der Literatur wurde sowohl für SirR (Hill *et al.*, 1998), als auch für TroR (Posey *et al.*, 1999) gezeigt, dass sie in Abhängigkeit von Metallen die Genexpression von ABC-Transportern regulieren.

In einem ersten Schritt zur Untersuchung möglicher Funktionen von DNA-Bindeproteinen erfolgte die Deletion der entsprechenden Gene *lrp*, *lrpA1*, *sirR* und *troR*, wobei ein so genanntes Deletionskonstrukt erfolgreich in das Genom des Parentalstammes *H. salinarum* R1 integriert wurde (Abb. 6A). Die Deletionsstämme konnten durch eine Kontroll-PCR vorselektioniert werden, um anschließend den korrekten Genotyp der Deletionsmutanten Δlrp , $\Delta lrpA1$, $\Delta sirR$ und $\Delta troR$ mittels Southernblot zu bestätigen (Abb. 6B).

Abb. 6 Herstellung von Deletionsplasmiden (A) und Southernblot-Analyse (B)

Bei der Herstellung eines Deletionsplasmids wurden die flankierenden Bereiche, welche an das zu deletierende Gen angrenzen, mittels PCR amplifiziert ("upstream"-Fragment und "downstream"-Fragment), sowie die Schnittstellen *BamHI*, *PstI* und *XbaI* eingeführt. Nach einer Ligation der beiden Fragmente wurde das Konstrukt reamplifiziert und in den Integrationsvektor pMKK100 kloniert, welcher durch das erste "cross-over" in das Zielgen und durch das zweite "cross-over" in das Genom integriert wurde (A). Um den korrekten Genotyp einer Deletionsmutante zu identifizieren, wurde ein Southernblot durchgeführt. Genomische DNA des Deletionsstammes, wie auch des Parentalstammes *H. salinarum* R1 wurden mit dem Restriktionsenzyms *Bgl1* geschnitten und auf einem 1%igen Agarosegel elektrophoretisch getrennt. Der Southernblot wurde mit zwei Digoxigenin-markierten Sonden durchgeführt - einer Deletionssonde, bestehend aus den flankierenden Bereichen des deletierten Gens (**Deletionssonde**) und einer Sonde, welche die Gensequenz (**Gensonde**) enthielt. Mit der Deletionssonde erhält man für den Parentalstamm ein Fragment, dessen Größe anhand der Restriktionsschnittstellen von *Bgl1* bestimmt wird (Wt-Fragment). Für den Deletionsstamm erhält man ein Fragment, welches um die Größe des deletierten Gens kleiner ist (Δ -Fragment). Die Gensonde lieferte Δ im Parentalstamm ein Signal analog der Deletionssonde (Wt-Fragment). Im Fall einer Deletionsmutante wurde kein Signal detektiert (**B**).

Dazu wurde genomische DNA aus dem Parentalstamm *H. salinarum* R1 und PCR-positive Deletionsstämme von Δlrp , $\Delta lrpA1$, $\Delta sirR$ und $\Delta troR$ mit dem Restriktionsenzym *BglI* geschnitten und gelelektrophoretisch aufgetrennt (Abb. 6B, Tab. 2). Das Restriktionsenzym wurde so gewählt, dass es weder in der Gensequenz noch in den flankierenden Bereichen schneidet. Zur Verifizierung des korrekten Genotyps erfolgte eine Southernblot-Analyse mit zwei Digoxygenin-markierten Sonden (Abb. 6B). Einerseits wurde eine Gensonde verwendet, welche die kodierende Sequenz des zu deletierenden Gens enthielt. Da der Parentalstamm R1 das Wildtypgen (Wt-Gen) enthält, erwartete man eine Hybridisierung der Gensonde mit der DNA des Parentalstammes (Abb. 6B). Das hier detektierte Fragment wurde als Wt-Fragment bezeichnet (Tab. 2). In einer Deletionsmutante hingegen lieferte die Gensonde kein Signal, da hier das entsprechende Gen fehlte (Abb. 6B). Wird dennoch ein Signal detektiert, wurde das Deletionsplasmid nicht in das *H. salinarum* Genom integriert. Folglich handelte es sich hier nicht um den Genotyp einer Deletionsmutante. Andererseits wurde eine Sonde mit den flankierenden Bereichen des deletierten Gens verwendet (Abb. 6B). Mit dieser so genannten Deletionssonde sollte ein entsprechend kürzeres Fragment in der Deletionsmutante identifiziert werden, welches als Deletionsfragment (Tab. 2) bezeichnet wird (Abb. 6B). Im Parentalstamm wird auch hier das Wt-Fragment detektiert (Abb. 6B, Tab. 2).

Die nachfolgenden Southernblots bestätigten mindestens eine positive Gendeletion (Δlrp , $\Delta lrpA1$, $\Delta sirR$ und Δtro), welche in den Mikroarray-Experimenten weiter analysiert wurde.

Tab. 2 Deletionskonstrukte

Angeführt sind die zu deletierenden Gene und die daraus resultierenden Fragmentgrößen. Genomische DNA der Deletionsstämme, wie auch des Parentalstammes wurden mit dem Restriktionsenzym *Bgl1* geschnitten. Das Wt-Fragment wird sowohl mit der Deletionssonde, als auch mit der Gensonde im Parentalstamm, welcher das Wildtypgen enthält, detektiert. Das Deletionsfragment erhält man nach Hybridisierung mit der Deletionssonde bei dem Genotyp einer Deletionsmutante. Das Deletionsfragment ist um die Größe des deletierten Gens kleiner.

	Gen	Größe [bp]	Wt- Fragment [bp]	Deletionsmutanten	Deletionssfragment [bp]
Irp	(OE3932F)	462	1006	∆Irp	544
IrpA1	(OE2621R)	426	2857	∆lrpA1	2431
sirR	(OE1797R)	699	2431	∆sirR	1732
troR	(OE1787F)	432	845	∆troR	413

2.1.1.1 Die Deletionsmutante *∆lrp*

Für den PCR-positiven Δlrp -Deletionsstamm (Abb. 7A, B, Spur 2) konnte der Genotyp Δlrp verifiziert werden, da dieser mit der Deletionssonde ein Signal in der Größe des Deletionsfragments lieferte und mit der Gensonde kein Signal detektierbar war (Abb. 7A, B; Tab. 2). Bei den PCR-positiven Klonen in Spur eins und drei handelte es sich nicht um Deletionsmutanten, da mit beiden Sonden ein Wt-Fragment nachgewiesen wurde (Abb. 7A, B; Tab. 2). Für die Positivkontrolle, dem Parentalstamm (Spur 10), erfolgte mit der Deletions- wie auch mit der Gensonde die Detektion eines Wt-Fragments (Abb. 7A, B; Tab. 2).

Abb. 7 Southernblot für die PCR-positiven Deletionsstämme *Alrp*

Unter der Verwendung einer Deletions- (A) wie auch einer Gensonde (B) wurden mittels Southernblot (Verfahren siehe Abb. 6B) die PCR-positiven Δlrp -Deletionsstämme (Spur 1-3) auf ihren Δlrp Genotyp hin überprüft. Der Parentalstamm R1 (Spur 4, 5) diente als Kontrolle (A, B). Zur Abschätzung der Fragmentgrößen befindet sich in Spur M ein Größenstandard (A, B). Die entsprechenden Fragmentgrößen sind aus der Tab. 2 zu entnehmen und durch einen Pfeil gekennzeichnet.

2.1.1.2 Die Deletionsmutante *AlrpA1*

Alle neun $\Delta lrpA1$ -Deletionsstämme (Abb. 8A, Spur 1-9) hatten den Genotyp $\Delta lrpA1$, da sie nur mit der Deletionssonde (Abb. 8A, Tab. 2), nicht aber mit der Gensonde hybridisierten (Abb. 8B, Tab. 2). Im Parentalstamm (Spur 10) wurde mit beiden Sonden ein Fragment detektiert, welches das Wt-Gen enthielt (Abb. 8A, B Tab. 2).

Abb. 8 Southernblot für die PCR-positiven Deletionsstämme *AlrpA1*

Zum Nachweis des $\Delta lrpAl$ -Genotyps erfolgte eine Southernblot-Analyse mit einer Deletions- (A) und einer Gensonde (B) wie in Abb. 6B beschrieben wird. Dabei wurden die PCR-positiven $\Delta lrpAl$ - Deletionsstämme (1-9), wie auch der Parentalstamm als Kontrolle (A, B) analysiert. Der Größenstandard befindet sich in Spur M (A, B). Der Tab. 2 sind die Größen der entsprechenden Fragmente (gekennzeichnet durch einen Pfeil) zu entnehmen.
2.1.1.3 Die Deletionsmutante *AsirR*

Der $\Delta sirR$ Genotyp wurde sowohl durch den Nachweis des Deletionsfragments, als auch durch das fehlende Signal mit der Gensonde für die PCR-positiven $\Delta sirR$ -Deletionsstämme gezeigt (Abb. 9A, B Spur 1, 2; Tab. 2). Bei den restlichen PCR-positiven Klonen (Spur 3, 4) konnte aufgrund der Hybridisierung mit beiden Sonden die Deletion nicht verifiziert werden. Mit der Deletions- und der Gensonde wurde im Parentalstamm (Spur 5, 6) eine Bande nachgewiesen, welche das Wt-Gen enthält (Abb. 9A, B; Tab. 2). Die zusätzlichen Banden stellen unspezifische Bindungen der jeweiligen Sonden dar.

Abb. 9 Southernblot für die PCR-positiven Deletionsstämme *AsirR*

PCR-positive $\Delta sirR$ -Deletionsstämme (Spur 1-4) wurden mit Hilfe eines Southernblots auf das Vorliegen einer $\Delta sirR$ Deletion hin überprüft. Dabei wurden eine Deletions- (A) wie auch eine Gensonde (B) verwendet. Eine detaillierte Beschreibung des Verfahrens siehe Abb. 6B. Als Kontrolle wurde der Parentalstamm (Spur 5,6) mit aufgetragen. In Spur M befindet sich der Größenstandard (A, B). Die detektierten Fragmente (Tab. 2) sind durch einen Pfeil gekennzeichnet.

2.1.1.4 Die Deletionsmutante *∆troR*

Aufgrund eines Signals mit der Deletionssonde, nicht aber mit der Gensonde wurde für zwei PCR-positive $\Delta troR$ -Deletionsstämme (Spur 1, 2) der $\Delta troR$ Genotyp bestätigt (Abb. 10A, B; Tab. 2). Der PCR-positive Klon in Spur drei stellte eine Mischform dar, da man nach der Hybridisierung mit der Deletionssonde sowohl ein Deletionsfragment als auch eine Wt-Fragment erhielt. Dies deutet darauf hin, dass das Deletionsplasmid im ersten "cross-over" zwar ins Zielgen integriert hat, aber kein zweites "cross-over" zur Eliminierung der Plasmidsequenz stattgefunden hat. Letzteres wurde auch mit der Gensonde detektiert. Im Parentalstamm (Spur 4, 5) wurde wie zu erwarten, mit beiden Sonden ein Fragment detektiert, welches das Wt-Gen enthielt (Abb. 10A, B; Tab. 2).

Abb. 10 Southernblot für die PCR-positiven Deletionsstämme AtroR

Um den $\Delta troR$ -Genotyp zu bestimmen wurden die PCR-positiven $\Delta troR$ -Deletionsstämme (Spur 1-3) mittels Southernblot unter der Verwendung einer Deletions- (A) wie auch einer Gensonde (B) analysiert (Beschreibung des Verfahrens siehe Abb. 6B). Als Kontrolle wurde der Parentalstamm (Spur 4,5) mit aufgetragen. In Spur M befindet sich der Größenstandard (A, B). Die detektierten Fragmente (Tab. 2) sind durch einen Pfeil gekennzeichnet.

2.1.2 Überexpression von *lrp* bzw. *lrpA1*

Zusätzlich zu den Deletionsmutanten Δlrp und $\Delta lrpA1$ wurden die Gene lrp bzw. lrpA1 in *H. salinarum* R1 überexprimiert. Dabei wurden die Gene unter den Einfluss des *bop*-(Bacteriorhopdsin) Promotors gestellt, welcher unter Lichtexposition und Sauerstoffmangel bei einer optischen Dichte (OD₆₀₀) von ca. 0.8 maximal induziert wird. Aus diesem Grund erfolgte das Wachstum der Überexpressionsstämme anaerob unter Lichtexposition (2.1.3). Eine erfolgreiche Überexpression der Gene lrp bzw. lrpA1 wurde auf Proteinebene mit spezifischen Antikörpern gegen Lrp und LrpA1 mittels einer Westernblot-Analyse überprüft. Eine deutliche Überexpression konnte für Lrp im $\uparrow lrp$ -Überexpressionsstamm (Abb. 11A, Spur 2) im Vergleich zum Parentalstamm (Abb. 11A, Spur 1) detektiert werden. Außerdem wurde die Deletionsmutante Δlrp auf Proteinebene überprüft. Es fand wie zu erwarten keine Hybridisierung mit dem Antikörper gegen Lrp statt (Abb. 11A, Spur 3).

Abb. 11 Westernblot zur Überprüfung der Überexpression von $\uparrow lrp$ (A) und $\uparrow lrpA1$ (B) auf Proteinebene Aus folgenden Kulturen wurden die Proteine auf einem Bis-Tris Gradientengel (4-12%) aufgetrennt, auf eine Nitrocellulosemembran geblottet und eine Immundetektion mit einem Antikörper gegen Lrp (A) bzw. LrpA1 (B) durchgeführt. Für eine Immunreaktion mit einem Antikörper gegen Lrp erfolgte das Wachstum des Parentalstammes (Spur 1) wie auch des $\uparrow lrp$ -Überexpressionsstammes anaerob im Licht (Spur 2). In Spur 3 befindet sich der Deletionsstamm Δlrp , dessen Wachstum aerob im Dunklen erfolgte (A). Die Immundetektion mit einem Antikörper gegen LrpA1 erfolgte für das in *E. coli* heterolog exprimierte und gereinigte LrpA1 (Spur 1), für den anaerob im Licht gewachsenen Parentalstamm (Spur 2) und den $\uparrow lrpA1$ -Überexpressionsstamm (Spur 3), wie auch für den $\Delta lrpA1$ -Deletionsstamm (Spur 4), welcher aerob im Dunklen gewachsen war (B).

In *H. salinarum* lieferte der Antikörper gegen LrpA1 kein Signal (Abb. 11B, Spur 2-4). Nur für das in *E. coli* rekombinant exprimierte und über Affinitätschromatographie gereinigte LrpA1 (2.2.3) wurde ein Signal in der erwarteten Größe detektiert (Abb. 11B, Spur 1). Auf Transkriptionsebene konnte sowohl für die $\uparrow lrp$ - als auch für die $\uparrow lrpA1$ -Überexpressionsstämme eine erhöhte Transkriptmenge detektiert werden (2.1.7).

2.1.3 Wachstumskurven von H. salinarum

Um zu überprüfen, inwieweit sich das Wachstum von *H. salinarum* R1 unter Zugabe des Eisenchelators DIP verändert, oder ob Gendeletionen bzw. die Überexpression von Transkriptionsregulatoren eine Auswirkung auf den Phänotyp hatten, wurde anhand von Wachstumskurven festgestellt.

Н. Kulturen des Parentalstammes salinarum R1. Standardbzw. unter Eisenmangelbedingungen, der Deletionsstämme Δlrp , $\Delta lrpA1$, $\Delta sirR$, $\Delta troR$, wie auch der Überexpressionsstämme $\uparrow lrp$, $\uparrow lrpA1$ wurden in Komplexmedium bzw. synthetischem Medium angeimpft und weitere zweimal bei einer optischen Dichte (= OD_{600}) von 0.4 überimpft. Das Wachstum wurde bis zur stationären Phase verfolgt ($OD_{600} > 1.0$). Die Messungen wurden jeweils dreimal wiederholt und der Mittelwert davon bestimmt. Die Inkubation der Kulturen unter Eisenmangel und jene der Deletionsstämme erfolgte aerob im Dunklen, die Überexpressionsstämme hingegen wuchsen anaerob unter Lichtexposition (2.1.2).

2.1.3.1 Wachstum von H. salinarum R1 unter Eisenmangelbedingungen

Den Zellen wurden bei einer OD₆₀₀ von 0.4 jeweils drei unterschiedliche Konzentrationen (0.025 mM, 0.1 mM, 0.2 mM) des Eisenchelators Dp44mT; 2,2'-Dipyridyl-N,N-dimethylsemicarbazone (= DIP) zugegeben, wobei eine deutliche Reduktion des Wachstums beobachtet wurde (Abb. 12). Für die Mikroarray-Analyse wurde repräsentativ für die Eisenmangelbedingung die Kultur mit einer Konzentration von 0.1 mM DIP 6 h nach Zugabe des Eisenchelators geerntet, um diese anschließend mit der Standardbedingung zu vergleichen.

Abb. 12 Wachstumskurven von *H. salinarum* R1 unter Eisenmangelbedingungen

Wachstumskurven von *H. salinarum* R1 unter Standard-, wie auch Eisenmangelbedingungen. Den Zellen wurde bei einer OD_{600} von 0.4 der Eisenchelator DIP in den Konzentrationen 0.025 mM, 0.1 mM und 0.2 mM zugegeben. Das Wachstum erfolgte aerob im Dunklen. Die dargestellten Werte repräsentieren arithmetische Mittelwerte aus drei Messungen.

2.1.3.2 Wachstum der Deletionsstämme und der Überexpressionsstämme

Zum Vergleich des Expressionsmusters des jeweiligen Deletionsstammes Δlrp , $\Delta lrpA1$, $\Delta sirR$ und $\Delta troR$ mit dem Parentalstamm R1 wurde eine Mikroarray-Analyse durchgeführt. Dabei erfolgte die Ernte der entsprechenden Zellen bei einer OD₆₀₀ von 0.4.

Abb. 13 Wachstumskurven der Deletionsmutanten Δlrp , $\Delta lrpA1$, $\Delta sirR$ und $\Delta troR$ Wachstumskurven von *H. salinarum* R1 im Vergleich zu den Deletionsmutanten *lrp*-homologer Regulatorgene (Δlrp , $\Delta lrpA1$) (A) und metallabhängiger Regulatorgene ($\Delta sirR$, $\Delta troR$) (B) in Komplexmedium. Das Wachstum erfolgte aerob im Dunklen. Die optische Dichte der Kulturen wurde bei einer OD₆₀₀ ermittelt. Die dargestellten Werte repräsentieren Mittelwerte aus drei unabhängigen Messreihen.

Für *E. coli* ist gezeigt, dass *lrp*-negative Stämme in Glucose/MOPS-Medium ein ähnliches Wachstumsverhalten aufweisen wie der *E. coli* Parentalstamm. Da *E. coli* Lrp eine wichtige Rolle im Aminosäure-Metabolismus spielt und der Phänotyp eines *lrp*-negativen Stammes erst in Minimalmedium bemerkbar ist (Tani *et al.*, 2002), wurde das Wachstum der Deletionsstämme Δlrp bzw. $\Delta lrpA1$ in *H. salinarum* wie auch des Parentalstammes in synthetischem Medium verfolgt. Hier wurde während der exponentiellen Wachstumsphase ein verzögertes Wachstum von Δlrp beobachtet, aber in der frühen stationären Phase ein gesteigertes Wachstum (Abb. 14A). Die Wachstumskurven von $\Delta lrpA1$ zeigten im Vergleich zum Parentalstamm keinen Unterschied (Abb. 14B).

Abb. 14 Wachstumskurven von *H. salinarum* Parentalstamm, Δlrp und $\Delta lrpA1$ in synthetischem Medium Wachstumskurven von *H. salinarum* R1 im Vergleich zu Δlrp (A) und $\Delta lrpA1$ (B) in synthetischem Medium. Das Wachstum erfolgte aerob im Dunkeln. Die optische Dichte der Kulturen wurde bei einer OD₆₀₀ ermittelt. Die dargestellten Werte repräsentieren Mittelwerte aus drei unabhängigen Messreihen.

Für die Mikroarray–Analyse wurden die Überexpressionsstämme $\uparrow lrp$, $\uparrow lrpA1$ bei einer OD₆₀₀ von 0.8 geerntet, da hier die Induktion des *bop*-Promotors maximal ist und somit eine Überexpression der Gene *lrp* bzw. *lrpA1* optimal ist (siehe Westernblot Abb. 11).

Abb. 15 Wachstumskurven der Überexpressionsstämme ↑*lrp*, ↑*lrpA1*

Wachstumskurven von *H. salinarum* R1 im Vergleich zu den Überexpressionsstämmen in Komplexmedium. Das Wachstum erfolgte anaerob unter Lichtexposition. Die optische Dichte der Kulturen wurde bei einer OD_{600} ermittelt. Die dargestellten Werte repräsentieren Mittelwerte aus drei unabhängigen Messreihen.

Die Deletionsstämme wie auch die Überexpressionsstämme zeigten nur ein vom Parentalstamm minimal abweichendes Wachstumsverhalten (Abb. 13, Abb. 15). Unter den gewählten Wachstumsbedingungen im Labor handelt es sich bei den Transkriptionsregulatoren nicht um essentielle Gene. Möglicherweise gibt es jedoch einen Selektionsvorteil in der Natur.

Ein verringertes Wachstum des Δlrp -Stammes in synthetischem Medium während der exponentiellen Phase könnte auf das Fehlen einer Aktivierung der Aminosäurebiosynthese-Gene durch Lrp zurückzuführen (Abb. 14). In *E. coli* aktiviert Lrp unter Mangelbedingungen solche Gene und reprimiert Gene des Aminosäure Katabolismus. In Vollmedium hat Lrp hingegen eine entgegengesetzte Funktion (Calvo and Matthews, 1994).

2.1.4 Analyseergebnisse der Mikroarrays

Die statistische Auswertung der Daten erfolgte mittels t-Statistik (Student's t-Test). In Abb. 16 sind die Volcano-Plot's der Mikroarray-Experimente gezeigt. Dargestellt sind alle detektierten Gene, wobei die statistische Signifikanz (p-Wert; y-Achse) gegen den Regulationsfaktor (x-Achse) aufgetragen ist. Jene Regulationsfaktoren, welche einen p-Wert $\leq 5x10^{-5}$ aufweisen, werden als signifikant angesehen (rote Punkte in Abb. 16). Dies entspricht einer stringenten Interpretation der Daten, da bei einer 10fach geringeren Signifikanz (p-Wert $\leq 10^{-4}$) eine falsch positiven Rate von 8.6 % gefunden wurde (Hung *et al.*, 2002). Die hier gewählte Stringenz beinhaltet weniger falsch-Positive und bedeutet eine höhere Zuverlässigkeit der Dateninterpretation.

In Tab. 3 ist eine Übersicht aller durchgeführten Mikroarray-Experimente im Rahmen dieser Arbeit.

Tab. 3 Übersicht der durchgeführten Mikroarray-Experimente

Bei einem paarweisen Vergleich der Eisenmangelbedingung, der Deletionsmutanten und der Überexpressionsstämme, mit *H. salinarum* R1 wurden einmal die Kultur unter Fe-Mangel, die Deletionsmutante (Δ) bzw. der überexprimierende Stamm (gekennzeichnet durch einen Pfeil \uparrow) mit Cy5 markiert und der Parentalstamm mit Cy3. In einem Farbwechsel bzw. "dye swap"-Experiment erfolgte die Markierung der jeweiligen cDNA genau umgekehrt. Ein biologisches Replikat stellt eine weitere unabhängige RNA-Probe dar.

Gene, welche Regulationswerte von ±1.7 aufweisen, werden als differentiell exprimiert bezeichnet (siehe Volcano-Plot rote bzw. grüne Flächen Abb. 16). Die Bezeichnung

"differentiell exprimiert" beinhaltet die Induktion bzw. Repression eines spezifischen Gens. Eine weitere Einteilung erfolgte in schwach differentiell exprimierte Gene mit Regulationsfaktoren zwischen ± 1.7 und ± 1.3 (helle rote bzw. helle grüne Flächen in Abb. 16). Solche Gene werden nur dann erwähnt, wenn sie in einem Zusammenhang mit den regulierten Genen stehen (z.B.: sie werden im selben Operon kodiert oder kodieren Enzyme des gleichen Stoffwechselweges). Gene mit Werten unterhalb ± 1.3 werden als nicht differentiell exprimiert angesehen. Die Anzahl der regulierten bzw. schwach regulierten Gene der einzelnen Mikroarray-Experimente sind der Tab. 4 zu entnehmen.

Im Volcano-Plot sind die Regulationsfaktoren aller detektierten Gene enthalten, wobei die Regulationsfaktoren (x-Achse) gegen die entsprechenden p-Werte (y-Achse) aufgetragen sind. Signifikant (rote Punkte) sind jene Gene, die einen p-Wert $\leq 5.10^{-5}$ aufweisen, jene mit einem größeren p-Wert werden als nicht signifikant angesehen (schwarze Punkte). Gene, mit Regulationsfaktoren über bzw. unter ± 1.7 sind reguliert (rote bzw. grüne Flächen), jene zwischen ± 1.7 und ± 1.3 (helle rote bzw. grüne Flächen) sind schwach reguliert und jene die unter ± 1.3 liegen sind nicht reguliert.

Mikroarray-Experiment	regulierte Gene	schwach regulierte Gene
Fe-Mangel/ Nicht-Mangel	292	336
<i>∆lrp</i> / R1	261	342
∆ <i>lrpA1</i> / R1	26	46
<i>↑lrp</i> / R1	154	199
<i>↑IrpA1</i> / R1	96	124
∆ <i>sirR</i> / R1	13	59
∆ <i>troR</i> / R1	185	214

Tab. 4 Anzahl der regulierten Gene der einzelnen Experimente

2.1.5 Differentiell exprimierte Gene unter Eisenmangel und in Deletionsmutanten

2.1.5.1 Eisenmangel

Unter Eisenmangel wurden 292 Gene als reguliert und 336 Gene als schwach reguliert identifiziert (Tab. 4). 386 Gene konnten folgenden funktionellen Superklassen zugeordnet werden: Die größte Anzahl der differentiell exprimierten Gene befand sich mit einer Anzahl von 111 in der Klasse Metabolismus (MET), 75 Gene gehörten der Klasse genetische Prozesse (GIP) an, weitere 50 Gene zählten zur Klasse der Transport- und zellulären Prozesse (TP_CP), und die wenigsten differentiell exprimierten Gene befanden sich mit einer Anzahl von 16 in der Klasse umweltbezogene Prozesse (ENV) (Abb. 17A). 134 der regulierten Gene wurden der funktionellen Superklasse Sonstige (MIS) zugeordnet. Für 242 Gene konnte bis jetzt noch keine Funktion zugewiesen werden. Diese wurden daher als funktionelle Superklasse "unassigned" (UNASS) zusammengefasst (Abb. 17A). Gene der einzelnen Superklassen wurden weiter in Funktionsklassen eingeteilt (Abb. 17B) und jene die weiter diskutiert wurden sind in Tab. 5 aufgelistet.

Abb. 17 Differentiell exprimierte und schwach differentiell exprimierte Gene unter Eisenmangel Einteilung in die funktionellen Superklassen (A) und anschließende Feingliederung der Gene mit zugeordneter Funktion in deren Funktionsklassen (B).

Funktionelle Superklassen (A) und dazugehörige Funktionsklassen (B): MET = metabolism (AA = amino acid metabolism, CHM = carbohydrate metabolism, CIM = central intermediary metabolism, COM = coenzyme metabolism, EM = energy metabolism, LIP = lipid metabolism, NUM = nucleotide metabolism); ENV = environmental processing (REG = gene regulation, SIG = signal transduction); GIP = genetic information processing (CHP = chaperones, RMT = RNA maturation, RRR = replication, repair, recombination, TC = transcription, TL = translation); TP_CP = transport and cellular processes (CP = cellular processes, MOT = motility, SEC = protein secretion, TP = small molecule transport); MIS = miscellaneous (GEN = general function, ISH = ISH-encoded transposases, MIS = miscellaneous); UNASS = unassigned

 Tab. 5 Differentiell exprimierte Gene unter Eisenmangel

 (rot markiert bedeutet Induktion unter Eisenmangel und grün markiert Repression unter Eisenmangel)

			Funktions-	
ID	xfach	Gen	klasse	Genname
Arginin-Metabolismus, Car	rbamoy	Iphospha	at	
OE5204R	21	arcD	TP	Arginin/ Ornithin-Antiporter
OE5205R	-14	arcB		Ornithin-CarbamovItransferase
OES200R	2.1	arcC		Carbomat Kinaga
OE9200R	2.1	arco		
OE2945F	1.7	oca2	AA	Ornitnin-Cyclodeaminase
0E3556R	-2.7	carA	AA	Carbamoyiphosphat-Synthase kleine UE
Nukleotid-Metabolismus				
OE1952F	1.5	purE	NUM	Phosphoribosylaminoimidazol-carboxylase katal. UE
OE2472F	1.9	gch31	NUM	GTP cyclohydrolase III
OE1840R	-2.0	apt1	NUM	Adenin-Phosphoribosyltransferase
OE2458R	-1.3	guaB	NUM	IMP-Dehydrogenase
OE3328R	-1.6	nrdA2	NUM	ribonucleoside-diphosphate reductase alpha subunit
OE3425F	-2.0	adk	NUM	Adenvlat-Kinase
OF3572R	-1.8	pyrG	NUM	CTP-Synthase
OE3823E	-17	nvrH	NUM	Uridylat-Kinase
OE3051P	-1.6	ant?	NILIM	Adenin-Phosphoribosyltransferase
OE3053D	2.1	nyrE2		Orotat Phoenhoribosylitansforaço
000000	-2.1	pyrLz		Assortet Cerhamoultransferees ketalutische LIC
OE5201F	-4.2	ругь		
OE5202F	-5.1	pyri	NUM	Aspartat-Carbamoyitransterase regulatorsiche UE
Aminosaure-Metabolismus	i i			
I. Aromatische Aminosäur	e			
0E1477R	1.4	aroD	AA	3-Denydroquinat-Denydratase
OE1469F	1.7	trpC	AA	Indole-3-Glycerolphosphat-Synthase
OE2779F	-2.2	pheP	TP	Aminosäure-Transport Protein (Penylalanin)
OE3691F	-1.5	trpD2	MIS	Anthranilate-Phosphoribosyltransferase
OE2784R	-1.3	pheA1	AA	Chorismat-Mutase
OE4331R	1.5	tnaA	AA	Tryptophanase
OE1944R	-1.3	aspB2	AA	Aspartate-Aminotransferase
II. Glutamat-Synthese				
OE1943F	-4.1	gdhA1	AA	Glutamat-Dehydrogenase
OE2728R	-2.1	gdhA2	AA	Glutamat-Dehydrogenase
III. "Glycin cleavage syster	n" Glyc	in Metab	olismus	
OE3277R	-1.6	gcvH	AA	Protein H
0522200	47	and T		Aminomothyltranoforage (Protein T)
UE32/OK	-1.7	gcvi	AA	Animometrytransierase (Frotein T)
IV. verzweigtkettige Amino	säuren	gcvi	AA	
IV. verzweigtkettige Amino OE3959R	-1.7 säuren -3.2	ilvE2	AA	Aminotransferase
IV. verzweigtkettige Amino OE3959R OE4113F	-1.7 säuren -3.2 -2.1	ilvE2 oxdhA1	AA AA AA	Aminometryltransferase Dehydrogenase α-UE
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe	-1.7 säuren -3.2 -2.1 se	ilvE2 oxdhA1	AA AA AA	Aminometryltransferase Dehydrogenase α-UE
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R	-1.7 säuren -3.2 -2.1 se -1.5	ilvE2 oxdhA1 blh	AA AA AA GEN	Aminometryitansierase Aminotransferase Dehydrogenase α-UE brp-ähn liches Protein
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent	säuren -3.2 -2.1 se -1.5 raler In	ilvE2 oxdhA1 blh termediä	AA AA AA GEN rmetabolism	Aminometryitansierase Aminotransferase Dehydrogenase α-UE brp-ähn liches Protein
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F	-1.7 säuren -3.2 -2.1 se -1.5 raler In -1.5	ilvE2 oxdhA1 blh termediä	AA AA GEN rmetabolism	Aminometryitransierase (Frotein T) Aminotransferase Dehydrogenase α-UE brp-ähn liches Protein us Fructose-Bisphosphatase
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R	-1.7 säuren -3.2 -2.1 se -1.5 raler In -1.5 1.4	ilvE2 oxdhA1 blh termediän fbp pykA	AA AA GEN rmetabolism CIM CIM	Aminometryitransierase (Protein T) Aminometryitransierase Dehydrogenase α-UE brp-ähn liches Protein us Fructose-Bisphosphatase Pyruvat-Kinase
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R	-1.7 -3.2 -2.1 se -1.5 raler Int -1.5 1.4 -3.7	ilvE2 oxdhA1 blh termediä fbp pykA ppsA	AA AA GEN rmetabolism CIM CIM	Aminometryitransierase Aminotransferase Dehydrogenase α-UE brp-ähn liches Protein us Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Wasserdikinase
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE1500R OE2623R	-1.7 -3.2 -2.1 se -1.5 raler Int -1.5 1.4 -3.7 -1.3	ilvE2 oxdhA1 blh termediä fbp pykA ppsA porA	AA AA GEN metabolism CIM CIM CIM CIM	Aminometryitransierase Aminotransferase Dehydrogenase α-UE brp-ähn liches Protein us Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Wasserdikinase Pyruvat-Ferredoxin Oxidoreductase α UE
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2623R	-1.7 säuren -3.2 -2.1 se -1.5 raler In -1.5 1.4 -3.7 -1.3 -1.6	ilvE2 oxdhA1 blh termediä fbp pykA ppsA porA sdhD	AA AA GEN rmetabolism CIM CIM CIM CIM	Aminometryitransierase Aminotransferase Dehydrogenase α-UE brp-ähn liches Protein us Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Wasserdikinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE D
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2867R OE2867R OE2868R	-1.7 säuren -3.2 -2.1 se -1.5 raler In -1.5 1.4 -3.7 -1.3 -1.6 -1.4	ilvE2 oxdhA1 blh termediä fbp pykA porA sdhD sdhD	AA AA GEN rmetabolism CIM CIM CIM CIM CIM CIM	Aminometryltransferase Dehydrogenase α-UE brp-ähn liches Protein brs Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Wasserdikinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE C
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2867R OE2868R OE2935R	-1.7 säuren -3.2 -2.1 se -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.6	ilvE2 oxdhA1 blh termediäi fbp pykA ppsA porA sdhD sdhC fumC	AA AA GEN metabolism CIM CIM CIM CIM CIM CIM CIM	Aminometryitransierase Aminotransferase Dehydrogenase α-UE brp-ähn liches Protein us Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Wasserdikinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE D Succinat-Dehydrogenase UE C Fumarat-Hydratase
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2623R OE2867R OE2868R OE2935R OE3196F	-1.7 säuren -3.2 -2.1 se -1.5 1.4 -1.5 -1.4 -3.7 -1.3 -1.4 -1.6 -1.4 -1.6 -1.4	ilvE2 oxdhA1 blh termediän fbp pykA ppsA porA sdhD sdhC fumC sucA	AA AA GEN rmetabolism CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminometrylitansierase Aminotransferase Dehydrogenase α-UE brp-ähn liches Protein us Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Wasserdikinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE D Succinat-Dehydrogenase UE C Fumarat-Hydratase Succinat-CoA Linase α UE
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2623R OE2867R OE2868R OE2935R OE3196F OE3195E	-1.7 säuren -3.2 -2.1 se -1.5 raler Im -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -2.4	ilvE2 oxdhA1 blh termediän fbp pykA ppsA porA sdhD sdhC fumC sucA	AA AA GEN rmetabolism CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminometrylitansierase Aminotransferase Dehydrogenase α-UE brp-ähn liches Protein us Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Wasserdikinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE D Succinat-Dehydrogenase UE C Fumarat-Hydratase Succinat-CoA Ligase α UE Succinat-CoA Ligase α UE
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2867R OE2868R OE2935R OE3196F OE3195F OE395F	-1.7 säuren -3.2 -2.1 se -1.5 raler In -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.6 -1.4 -1.4 -1.6 -1.4 -1.4	gcv1 ilvE2 oxdhA1 blh termediän fbp pykA ppsA porA sdhD sdhC fumC sucA sucA sucB icd	AA AA GEN rmetabolism CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminotneutylitatisterase (Protein T) Aminotransferase Dehydrogenase α-UE brp-ähn liches Protein us Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Wasserdikinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE D Succinat-Dehydrogenase UE C Fumarat-Hydratase Succinat-CoA Ligase β UE Jesoritat-Dehydrogenase
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2867R OE2868R OE2935R OE3196F OE3196F OE3195F OE3634F OE3634F	-1.7 säuren -3.2 -2.1 se -1.5 raler In -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -2.4 -2.4 -2.4 -2.4	gcv1 ilvE2 oxdhA1 blh termediän fbp pykA ppsA porA sdhD sdhC fumC sucA sucB icd korA	AA AA GEN rmetabolism CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminotneutylitatisterase (Protein T) Aminotransferase Dehydrogenase α-UE brp-ähn liches Protein us Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Wasserdikinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE D Succinat-Dehydrogenase UE C Fumarat-Hydratase Succinat-CoA Ligase α UE Succinat-CoA Ligase β UE Isocitrat-Dehydrogenase Oxegutatrat
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2623R OE2867R OE2868R OE2935R OE3196F OE3195F OE3634F OE1711R	-1.7 säuren -3.2 -2.1 se -1.5 raler In -1.5 -1.4 -3.7 -1.3 -1.6 -1.4 -1.6 -1.4 -1.4 -2.4 -2.4 -2.7	ilvE2 oxdhA1 blh termediät fbp pykA ppsA porA sdhD sdhC fumC sucA sucA sucB icd korA	AA AA GEN metabolism CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminomethylitansierase (Protein T) Aminotransferase Dehydrogenase α -UE brp-ähn liches Protein US Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Wasserdikinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE D Succinat-Dehydrogenase UE C Fumarat-Hydratase Succinat-CoA Ligase α UE Succinat-CoA Ligase β UE Isocitrat-Dehydrogenase Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase α UE
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2623R OE2867R OE2868R OE2935R OE3196F OE3195F OE3634F OE1711R OE1711R OE1710R	-1.7 säuren -3.2 -2.1 se -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -2.4 -2.4 -2.7 -2.3 -2.1	ilvE2 oxdhA1 blh termediäi fbp pykA ppsA porA sdhD sdhD sdhD sdhC fumC sucA sucB icd korA korB oit7	AA AA GEN metabolism CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminofine (Figure 1) Aminofine (Figure 1) Aminofine (Figure 1) Aminofine (Figure 1) Aminofine (Figure 1) brp-ähn liches Protein bry: bry: Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Kinase Pyruvat-Kinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE C Fumarat-Hydratase Succinat-CoA Ligase α UE Succinat-CoA Ligase α UE Succinat-CoA Ligase β UE Isocitrat-Dehydrogenase Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase β UE Oxoglutarat-Ferredoxin Oxidoreductase β UE
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2623R OE2867R OE2868R OE2935R OE3196F OE3195F OE3634F OE1711R OE1710R OE3934R	-1.7 säuren -3.2 -2.1 se -1.5 raler Im -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -1.4 -2.4 -2.7 -2.3 -2.1	ilvE2 oxdhA1 blh termediä fbp pykA porA sdhD sdhC fumC sucA sucB icd korA korB citZ creft	AA AA GEN metabolism CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminofine (Friterin Steries C) (Friterin T) Aminotransferase Dehydrogenase α -UE brp-ähn liches Protein bry -ähn liches Protein bry -bry bry -bry br
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2867R OE2867R OE2868R OE2935R OE3196F OE3195F OE3195F OE3634F OE1711R OE1710R OE3934R OE4323F	-1.7 säuren -3.2 -2.1 se -1.5 raler Im -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -1.5 2.2 -2.1 -3.2 -2.1 -3.2 -2.1 -3.2 -2.1 -3.2 -2.1 -3.2 -2.1 -3.2 -2.1 -3.2 -1.5	ilvE2 oxdhA1 blh termediän fbp pykA porA sdhD sdhC fumC sucA sucB icd korA korB citZ mdhA	AA AA AA CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminotransferase Dehydrogenase α -UE brp-ähn liches Protein brp -ähn liches Protein brp -ähn liches Protein bry -an liches Protein bry -bry-bry-bry-bry-bry-bry-bry-bry-bry-bry
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2623R OE2867R OE2867R OE2868R OE2935R OE3196F OE3196F OE3195F OE3634F OE1711R OE1710R OE3934R OE4323F OE3762R	-1.7 säuren -3.2 -2.1 se -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.4 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -2.7 -2.3 -2.1 -3.1 -2.0	ilvE2 oxdhA1 blh termediän fbp pykA ppsA porA sdhD sdhC fumC sucA sucB icd korA korB citZ mdhA glpK	AA AA AA CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminotneutylitatisterase (Protein 1) Aminotransferase Dehydrogenase α -UE brp-ähn liches Protein us Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Kinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE D Succinat-Dehydrogenase UE C Fumarat-Hydratase Succinat-CoA Ligase α UE Succinat-CoA Ligase β UE Isocitrat-Dehydrogenase Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase β UE Citrat-Synthase Malat-Dehydrogenase Glycerolkinase
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2623R OE2868R OE2935R OE3196F OE3196F OE3195F OE3634F OE1711R OE1710R OE3762R Transportprozesse	-1.7 säuren -3.2 -2.1 se -1.5 raler Im -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -2.4 -2.7 -2.3 -2.1 -3.1 -3.2	ilvE2 oxdhA1 blh termediän fbp pykA ppsA porA sdhD sdhC fumC sucA sucB icd korA korB citZ mdhA glpK	AA AA AA CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminotneutylitatisterase (Protein 1) Aminotransferase Dehydrogenase α -UE brp-ähn liches Protein us Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Kinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE D Succinat-Dehydrogenase UE C Fumarat-Hydratase Succinat-CoA Ligase α UE Isocitrat-Dehydrogenase Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase β UE Citrat-Synthase Malat-Dehydrogenase Glycerolkinase
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2623R OE2867R OE2868R OE2935R OE3196F OE3196F OE3195F OE3634F OE1711R OE1711R OE1710R OE3934R OE4323F OE3762R Transportprozesse I. Phosphattransport	-1.7 säuren -3.2 -2.1 se -1.5 raler Im -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.4 -1.6 -1.4 -1.4 -2.7 -2.3 -2.1 -2.1 -3.1 -2.0	IVE2 oxdhA1 blh termediän fbp pykA ppsA porA sdhD sdhC fumC sucA sucB icd korA korB citZ mdhA glpK	AA AA AA CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminotneutylitatisterase (Protein T) Aminotransferase Dehydrogenase α -UE brp-ähn liches Protein us Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Wasserdikinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE D Succinat-Dehydrogenase UE C Fumarat-Hydratase Succinat-CoA Ligase α UE Succinat-CoA Ligase α UE Succinat-CoA Ligase β UE Isocitrat-Dehydrogenase Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase β UE Citrat-Synthase Malat-Dehydrogenase Glycerolkinase
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2623R OE2867R OE2868R OE2935R OE3196F OE3196F OE3195F OE3634F OE1711R OE1711R OE1710R OE3934R OE4323F OE3762R Transportprozesse I. Phosphattransport	-1.7 säuren -3.2 -2.1 se -1.5 raler Im -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.4 -1.6 -1.4 -1.4 -1.6 -1.4 -2.7 -2.3 -2.1 -2.1 -2.1 -3.7 -1.3 -1.5 -2.7 -2.3 -2.1 -2.0	IVE2 oxdhA1 blh termediän fbp pykA ppsA porA sdhD sdhC fumC sucA sucB icd korA korB citZ mdhA glpK	AA AA AA CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminotneutylitatisterase (Protein T) Aminotransferase Dehydrogenase α -UE brp-ähn liches Protein us Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Wasserdikinase Pyruvat-Vasserdikinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE D Succinat-Dehydrogenase UE C Fumarat-Hydratase Succinat-CoA Ligase α UE Succinat-CoA Ligase α UE Succinat-CoA Ligase β UE Isocitrat-Dehydrogenase Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase β UE Citrat-Synthase Malat-Dehydrogenase Glycerolkinase
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2667R OE2867R OE2867R OE2868R OE2935R OE3196F OE3195F OE3195F OE3195F OE3634F OE1711R OE1710R OE3934R OE4323F OE3762R Transportprozesse I. Phosphattransport OE5166F OE5132F	-1.7 säuren -3.2 -2.1 se -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -2.4 -4.0 -2.7 -2.3 -2.1 -2.1 -3.2 -1.5 -1.6 -1.4 -2.4 -2.1 -2.1 -2.1 -2.1 -1.6 -1.4 -2.7 -2.3 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.5 -1.5 -1.4 -1.5 -1.4 -1.6 -1.4 -2.4 -2.5 -2.1 -	ilvE2 oxdhA1 blh termediä fbp pykA ppsA porA sdhD sdhD sdhD sdhC fumC sucA sucB icd korA korA korB citZ mdhA glpK	AA AA AA GEN rmetabolism CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminotheuryitransienase (Protein T) Aminotransferase Dehydrogenase α -UE brp-ähn liches Protein bry -ähn liches Protein bry -bry bry -bry
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2623R OE2867R OE2867R OE2868R OE2935R OE3196F OE3195F OE3195F OE3634F OE1711R OE1710R OE3934R OE4323F OE3762R Transportprozesse I. Phosphattransport OE5166F OE5132F OE5078F	-1.7 säuren -3.2 -2.1 se -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -2.4 -4.0 -2.7 -2.3 -2.1 -3.1 -2.0 2.2 1.3 1.9	ilvE2 oxdhA1 blh termediän fbp pykA ppsA porA sdhD sdhD sdhD sdhC fumC sucA sucB icd korA korB citZ mdhA glpK	AA AA AA GEN metabolism CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminofine unyitransienase (Protein T) Aminotransferase Dehydrogenase α -UE brp-ähn liches Protein Dehydrogenase α -UE pructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Kinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE D Succinat-Dehydrogenase UE C Fumarat-Hydratase Succinat-CoA Ligase α UE Succinat-CoA Ligase α UE Succinat-CoA Ligase β UE Isocitrat-Dehydrogenase Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase β UE Citrat-Synthase Malat-Dehydrogenase Glycerolkinase ABC-Transporter Substrat-Bindeprotein (glycerol-3P) Phosphat-Transportprotein Na-abhängiger Phosphattransporter
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2623R OE2867R OE2867R OE2868R OE2935R OE3196F OE3196F OE3195F OE3634F OE1711R OE1710R OE3934R OE4323F OE3762R Transportprozesse I. Phosphattransport OE5166F OE5132F OE5078F OE5078F OE4479R	-1.7 sauren -3.2 -2.1 se -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -2.7 -2.3 -2.1 -2.1 -2.1 -1.5 1.4 -3.7 -1.3 -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -2.4 -2.1 -2.1 -1.5 -2.7 -2.0 -2.0 -2.0 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.4 -2.5 -2.1 -2.0 -2.0 -1.5 -1.	IVE2 oxdhA1 blh termediä fbp pykA ppsA porA sdhD sdhC fumC sucA sucB icd korA korB citZ mdhA glpK	AA AA AA GEN metabolism CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminomethylitansierase (Protein T) Aminotransferase Dehydrogenase α -UE brp-ähn liches Protein bry -ähn liches Protein bry -bishat-Transporter Substrat-Bindeprotein (glycerol-3P) Phosphat-Transporter ATP-Bindeprotein
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2623R OE2867R OE2867R OE2868R OE2935R OE3196F OE3195F OE3195F OE3634F OE1711R OE1710R OE3934R OE4323F OE3762R Transportprozesse I. Phosphattransport OE5166F OE5132F OE5078F OE4479R OE1676R	-1.7 ssäuren -3.2 -2.1 se -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -2.4 -4.0 -2.7 -2.3 -2.1 -3.1 -2.0 2.2 1.3 1.9 1.4 1.5	IVE2 oxdhA1 blh termediä fbp pykA ppsA porA sdhD sdhC fumC sucA sucB icd korA korB citZ mdhA glpK	AA AA AA CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminotransferase Dehydrogenase α -UE brp-ähn liches Protein bry -ähn liches Protein bry -transporter Substrat-Bindeprotein (glycerol-3P) Phosphat-Transportprotein bry -transporter Permease
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2623R OE2867R OE2868R OE2935R OE3196F OE3196F OE3195F OE3195F OE3634F OE1711R OE1710R OE3934R OE4323F OE3762R Transportprozesse I. Phosphattransport OE5166F OE5132F OE5078F OE4479R OE1676R OE1675R	-1.7 sauren -3.2 -2.1 se -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.4 -1.6 -1.4 -1.4 -1.6 -1.4 -2.7 -2.3 -2.1 -2.1 -2.1 -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.4 -2.4 -2.1 -2.1 -1.5 1.4 -1.5 1.4 -1.5 1.4 -1.5 1.4 -1.5 1.4 -1.5 1.4 -1.5 1.4 -1.5 1.4 -1.5 1.4 -1.5 1.4 -1.5 1.4 -1.5 1.4 -1.5 1.4 -1.5 -2.7 -2.0 -2.7 -2.0 -2.5 -2.	IVE2 oxdhA1 blh termediän fbp pykA ppsA porA sdhD sdhC fumC sucA sucB icd korA korB citZ mdhA glpK UgpB phoT3 phoT2 pstB1 pstA2 pstB2	AA AA AA CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminotneutylitatisterase (Protein T) Aminotransferase Dehydrogenase α -UE brp-ähn liches Protein us Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Kinase Pyruvat-Kinase Pyruvat-Serredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE D Succinat-Dehydrogenase UE C Fumarat-Hydratase Succinat-CoA Ligase α UE Isocitrat-Dehydrogenase Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase β UE Citrat-Synthase Malat-Dehydrogenase Glycerolkinase Malat-Dehydrogenase Glycerolkinase Malat-Dehydrogenase Glycerolkinase Malat-Dehydrogenase Glycerolkinase Malat-Dehydrogenase Glycerolkinase Malat-Dehydrogenase ABC-Transporter Substrat-Bindeprotein (glycerol-3P) Phosphat-Transporter ATP-Bindeprotein ABC-Transporter ATP-Bindeprotein ABC-Transporter ATP-Bindeprotein
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2623R OE2867R OE2868R OE2935R OE3196F OE3196F OE3195F OE3634F OE1711R OE1710R OE3762R Transportprozesse I. Phosphattransport OE5166F OE5132F OE5078F OE5078F OE4479R OE1676R OE1675R OE4485R	-1.7 säuren -3.2 -2.1 se -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.4 -1.6 -1.4 -1.4 -1.6 -1.4 -2.4 -2.7 -2.3 -2.1 -2.1 -2.1 -1.5 1.4 -1.5 -1.5 1.4 -1.5 -1.	IVE2 oxdhA1 blh termediän fbp pykA ppsA porA sdhD sdhC fumC sucA sucB icd korA korB citZ mdhA glpK UgpB phoT3 phoT3 phoT2 pstB1 pstA2 pstB2 pstB2 pstS1	AA AA AA CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminotneutylitatisterase (Protein T) Aminotransferase Dehydrogenase α -UE brp-ähn liches Protein us Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Kinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE D Succinat-Dehydrogenase UE C Fumarat-Hydratase Succinat-CoA Ligase α UE Succinat-CoA Ligase β UE Isocitrat-Dehydrogenase Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase β UE Citrat-Synthase Malat-Dehydrogenase Glycerolkinase ABC-Transporter Substrat-Bindeprotein (glycerol-3P) Phosphat-Transportprotein Na-abhängiger Phosphattransporter ABC-Transporter ATP-Bindeprotein ABC-Transporter ATP-Bindeprotein ABC-Transporter ATP-Bindeprotein ABC-Transporter Substrat-Bindeprotein ABC-Transporter ATP-Bindeprotein ABC-Transporter ATP-Bindeprotein ABC-Transporter Substrat-Bindeprotein ABC-Transporter Substrat-Bindeprotein ABC-Transporter ATP-Bindeprotein ABC-Transporter Substrat-Bindeprotein ABC-Transporter Substrat-Bindeprotein ABC-Transporter Substrat-Bindeprotein ABC-Transporter Substrat-Bindeprotein (Phosphat)
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2868R OE2935R OE3196F OE3195F OE3634F OE1711R OE17110R OE3934R OE3934R OE3934F OE3762R Transportprozesse I. Phosphattransport OE5166F OE5172F OE4479R OE1676R OE1675R OE4485R OE3910R	-1.7 säuren -3.2 -2.1 se -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -2.7 -2.3 -2.1 -2.1 -2.1 -2.1 -3.7 -1.3 -1.6 -1.4 -1.5 1.6 -1.4 -2.4 -2.1 -2.1 -1.5 1.6 -1.5 -1.5 -1.6 -1.4 -1.5 -1.6 -1.4 -2.7 -2.3 -2.1 -2.1 -2.1 -2.1 -1.5 -2.7 -2.0 -2.7 -2.5 -2.	ilvE2 oxdhA1 blh termediä fbp pykA ppsA porA sdhD sdhC fumC sucA sucB icd korA sucB icd korA korB citZ mdhA glpK ugpB phoT3 phoT2 pstB1 pstA2 pstS1 phnD	AA AA AA GEN rmetabolism CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminotneutylitatisterase (Protein T) Aminotransferase Dehydrogenase α-UE brp-ähn liches Protein bus Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Wasserdikinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE D Succinat-Dehydrogenase UE C Fumata-Hydratase Succinat-CoA Ligase α UE Succinat-CoA Ligase β UE Isocitrat-Dehydrogenase Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase β UE Citrat-Synthase Malat-Dehydrogenase Glycerolkinase Malat-Dehydrogenase Glycerolkinase Malat-Dehydrogenase Glycerolkinase Malat-Dehydrogenase Glycerolkinase Malat-Dehydrogenase Glycerolkinase ABC-Transporter Substrat-Bindeprotein (glycerol-3P) Phosphat-Transportprotein Na-abhängiger Phosphattransporter ABC-Transporter ATP-Bindeprotein ABC-Transporter ATP-Bindeprotein ABC-Transporter Substrat-Bindeprotein ABC-Transporter S
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2868R OE2935R OE3196F OE3934F OE1711R OE1711R OE3934F OE3934F OE3934F OE3934F OE3934F OE3934F OE3762R Transportprozesse I. Phosphattransport OE5166F OE5132F OE5078F OE4479R OE1675R OE3910R OE3910R OE3910R	-1.7 säuren -3.2 -2.1 se -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -2.4 -4.0 -2.7 -2.3 -2.1 -3.1 -2.0 2.2 1.3 1.9 1.4 1.5 1.6 -2.4 -2.4 -2.4 -2.0	IVE2 oxdhA1 blh termediä fbp pykA ppsA porA sdhD sdhD sdhC fumC sucA sucB icd korA korB citZ mdhA glpK UgpB phoT3 phoT2 pstB1 pstA2 pstB2 pstS1 phnC	AA AA AA GEN metabolism CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminotneutylitatisterase (Protein T) Aminotransferase Dehydrogenase α-UE brp-ähn liches Protein bus Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Wasserdikinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE D Succinat-Dehydrogenase UE C Furarat-Hydratase Succinat-CoA Ligase α UE Succinat-CoA Ligase β UE Isocitrat-Dehydrogenase Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase β UE Citrat-Synthase Malat-Dehydrogenase Glycerolkinase Malat-Dehydrogenase Glycerolkinase ABC-Transporter Substrat-Bindeprotein (glycerol-3P) Phosphat-Transportprotein Na-abhängiger Phosphattransporter ABC-Transporter ATP-Bindeprotein ABC-Transporter ATP-Bindeprotein ABC-Transporter Substrat-Bindeprotein ABC-Transporter Substrat-Bindeprotein ABC-Transporter ATP-Bindeprotein ABC-Transporter Substrat-Bindeprotein (Phosphat) ABC-Transporter Substrat-B
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2623R OE2867R OE2867R OE2868R OE2935R OE3196F OE3195F OE3634F OE3195F OE3634F OE1711R OE1710R OE3934R OE4323F OE3762R Transportprozesse I. Phosphattransport OE5166F OE5132F OE5078F OE5078F OE5078F OE4479R OE1675R OE4485R OE3910R OE3908R II. Peptidtransporter	-1.7 säuren -3.2 -2.1 se -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -2.4 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -1.5 1.6 -1.4 -1.5 1.6 -1.5 1.6 -1.4 -1.5 1.6 -1.4 -1.5 1.6 -1.4 -1.5 1.6 -1.4 -1.5 1.6 -1.4 -1.5 1.5 1.6 -1.5 1.6 -1.4 -1.5 1.6 -1.4 -1.5 1.6 -1.4 -1.5 1.6 -1.4 -1.6 -1.4 -2.7 -2.3 -2.1 -2.1 -2.1 -2.1 -2.1 -1.5 1.6 -1.4 -1.6 -1.4 -1.4 -2.4 -2.7 -2.3 -2.1 -3.1 -2.0 -2.1 -3.1 -2.0 -2.2 -2.2 -2.1 -3.1 -2.0 -2.2 -2.2 -2.2 -2.2 -2.3 -2.1 -3.1 -2.0 -2.2 -2.3 -2.1 -2.0 -2.2 -2.3 -2.1 -2.0 -2.4 -2.5 -2.	IVE2 oxdhA1 blh termediän fbp pykA ppsA porA sdhD sdhC fumC sucA sucB icd korA korB citZ mdhA glpK UgpB phoT3 phoT2 pstB1 pstB1 pstB2 pstB2 pstS1 phnC	AA AA AA GEN metabolism CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminotneutryitransienase (Protein T) Aminotransferase Dehydrogenase α-UE brp-ähn liches Protein bus Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE D Succinat-Dehydrogenase UE C Furat-Hydratase Succinat-CoA Ligase α UE Succinat-CoA Ligase β UE Isocitrat-Dehydrogenase Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase β UE Citrat-Synthase Malat-Dehydrogenase Glycerolkinase Malat-Dehydrogenase Glycerolkinase ABC-Transporter Substrat-Bindeprotein (glycerol-3P) Phosphat-Transportprotein Na-abhängiger Phosphattransporter ABC-Transporter ATP-Bindeprotein ABC-Transporter ATP-Bindeprotein ABC-Transporter ATP-Bindeprotein ABC-Transporter Substrat-Bindeprotein (Phosphat) ABC-Transporter ATP-Bindeprotein (Phosphat) ABC-Transporter ATP-Bindeprotein (Phosphat)
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2867R OE2867R OE2935R OE3196F OE3195F OE3034F OE1711R OE1710R OE3934R OE4323F OE3034F OE3762R Transportprozesse I. Phosphattransport OE5166F OE5132F OE5078F OE4479R OE1675R OE4479R OE1675R OE4485R OE3910R OE3908R II. Peptidtransporter OE4301R	-1.7 säuren -3.2 -2.1 se -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -2.4 -2.0 -2.3 -2.1 -2.0 -2.1 -2.0 -2.2 1.3 1.9 1.4 -2.0 -2.2 -2.1 -2.1 -2.1 -2.1 -3.7 -1.5 -1.6 -1.4 -2.7 -2.3 -2.1 -3.1 -2.0 -2.2 -2.1 -2.0 -2.2 -2.3 -2.1 -2.0 -2.2 -2.3 -2.1 -2.0 -2.5	IVE2 oxdhA1 blh termediä fbp pykA porA sdhD sdhD sdhC fumC sucA sucB icd korA korB citZ mdhA glpK UgpB phoT3 phoT2 pstB1 pstA2 pstB1 pstA2 pstB1 phnC	AA AA AA GEN metabolism CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminotneutryitransienase (Protein T) Aminotransferase Dehydrogenase α-UE brp-ähn liches Protein us Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE D Succinat-Dehydrogenase UE C Fumarat-Hydratase Succinat-CoA Ligase α UE Succinat-CoA Ligase β UE Isocitrat-Dehydrogenase Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase β UE Citrat-Synthase Malat-Dehydrogenase Glycerolkinase Malat-Dehydrogenase Glycerolkinase ABC-Transporter Substrat-Bindeprotein (glycerol-3P) Phosphat-Transportprotein Na-abhängiger Phosphattransporter ABC-Transporter ATP-Bindeprotein ABC-Transporter ATP-Bindeprotein ABC-Transporter Substrat-Bindeprotein (Phosphat) ABC-Transporter ATP-Bindeprotein (Phosphat) ABC-Transporter ATP-Bindeprotein (Phosphat) ABC-Transporter ATP-Bindeprotein (Phosphat) ABC-Transporter ATP-Bindeprotein (Phosphat)
IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2867R OE2867R OE3980F OE1500R OE2623R OE2867R OE2867R OE3935R OE3196F OE3195F OE3034F OE1711R OE1710R OE3934R OE3934R OE3934R OE3762R Transportprozesse I. Phosphattransport OE5166F OE5132F OE5078F OE4479R OE1676R OE3910R OE3908R II. Peptidtransporter OE4301R OE4302R	-1.7 säuren -3.2 -2.1 se -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -2.7 -2.3 -2.1 -2.1 -2.1 -2.1 -1.5 1.6 -1.4 -1.5 1.6 -1.4 -1.5 1.6 -1.4 -2.4 -2.1 -2.1 -2.1 -2.1 -1.5 1.5 1.6 -1.4 -1.5 1.6 -1.4 -1.5 1.6 -1.4 -2.7 -2.3 -2.1 -2.1 -2.1 -2.1 -2.1 -1.5 1.6 -1.4 -1.6 -1.4 -1.4 -2.7 -2.3 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -1.5 -1.5 -1.6 -1.4 -1.4 -2.4 -2.7 -2.3 -2.1 -3.1 -2.0 -2.4 -2.4 -2.0 -2.4 -2.5 -2.4 -2.4 -2.5 -2.4 -2.5 -2.4 -2.5 -2.4 -2.5 -2.4 -2.5 -2.4 -2.5 -2.4 -2.5 -2.4 -2.5 -2.5 -2.5 -2.4 -2.5 -2.5 -2.5 -2.4 -2.5 -2.4 -2.5 -2.4 -2.5 -2.7 -2.5 -2.5 -2.7 -2.5 -2.5 -2.7 -2.5 -2.5 -2.7 -2.5 -2.5 -2.7 -2.5 -2.5 -2.7 -2.5 -2.5 -2.7 -2.5 -2.5 -2.7 -2.5 -2.5 -2.7 -2.5 -2.5 -2.7 -2.5 -2.5 -2.5 -2.7 -2.5 -2.5 -2.5 -2.7 -2.5 -2.5 -2.7 -2.5 -2.5 -2.7 -2.5 -2.5 -2.7 -2.5 -2.7 -2.5 -2.7 -2.7 -2.5 -2.5 -2.7 -2.5 -2.7 -2.5 -2.	IVE2 oxdhA1 blh termediä fbp pykA porA sdhD sdhC fumC sucA sucB icd korA korB citZ mdhA glpK UgpB phoT3 phoT2 pstB1 pstA2 pstB2 pstB1 pstA2 pstB2 pstB1 phnD phnC	AA AA AA GEN metabolism CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminotneutryitransienase (Protein 1) Aminotransferase Dehydrogenase α-UE brp-ähn liches Protein Jus Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE D Succinat-Dehydrogenase UE C Fumarat-Hydratase Succinat-CoA Ligase α UE Succinat-CoA Ligase β UE Isocitrat-Dehydrogenase Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase β UE Citrat-Synthase Malat-Dehydrogenase Glycerolkinase Malat-Dehydrogenase Glycerolkinase ABC-Transporter Substrat-Bindeprotein (glycerol-3P) Phosphat-Transportprotein Na-abhängiger Phosphattransporter ABC-Transporter ATP-Bindeprotein ABC-Transporter ATP-Bindeprotein ABC-Transporter Substrat-Bindeprotein (Phosphat) ABC-Transporter Substrat-Bindeprotein (Phosphat) ABC-Transporter ATP-Bindeprotein (Phosphat) ABC-Transporter ATP-Bindeprotein (Phosphat) ABC-Transporter ATP-Bindeprotein (Phosphat) </td
IV. verzweigtkettige Amino OE3276R IV. verzweigtkettige Amino OE3959R OE4113F Bacteriorhodopsin-Synthe OE3980R Gluconeogenese und zent OE2020F OE1495R OE1500R OE2623R OE2623R OE2867R OE2868R OE2935R OE3196F OE3196F OE3195F OE3634F OE1711R OE1710R OE3934R OE4323F OE3762R Transportprozesse I. Phosphattransport OE5166F OE5132F OE5078F OE4479R OE1676R OE1675R OE4479R OE1675R OE4479R OE1675R OE3910R OE3910R OE3910R OE3910R OE3908R II. Peptidtransporter	-1.7 säuren -3.2 -2.1 se -1.5 raler Im -1.5 1.4 -3.7 -1.3 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -1.6 -1.4 -2.4 -2.0 2.2 1.3 1.9 1.4 1.5 1.5 1.6 -2.4 -2.0 -2.3 -2.5 -2.4	IVE2 oxdhA1 blh termediä fbp pykA ppsA porA sdhD sdhC fumC sucA sucB icd korA korB citZ mdhA glpK UgpB phoT3 phoT2 pstB1 pstA2 pstB1 pstA2 pstB1 pstA2 pstB1 phnD phnC dppF1 dppD1 dppC1	AA AA AA GEN metabolism CIM CIM CIM CIM CIM CIM CIM CIM CIM CIM	Aminotneutylitatisterase (Protein 1) Aminotransferase Dehydrogenase α-UE brp-ähn liches Protein us Fructose-Bisphosphatase Pyruvat-Kinase Pyruvat-Ferredoxin Oxidoreductase α UE Succinat-Dehydrogenase UE D Succinat-Dehydrogenase UE C Fumarat-Hydratase Succinat-CoA Ligase α UE Succinat-CoA Ligase β UE Isocitrat-Dehydrogenase Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase α UE Oxoglutarat-Ferredoxin Oxidoreductase β UE Citrat-Synthase Malat-Dehydrogenase Glycerolkinase Malat-Dehydrogenase Glycerolkinase ABC-Transporter Substrat-Bindeprotein (glycerol-3P) Phosphat-Transportprotein Na-abhängiger Phosphattransporter ABC-Transporter ATP-Bindeprotein ABC-Transporter Substrat-Bindeprotein (Phosphat) ABC-Transporter Substrat-Bindeprotein (Phosphat) ABC-Transporter ATP-Bindeprotein (Phosphat) ABC-Transporter ATP-Bindeprotein (Phosphat) ABC-Transporter ATP-Bindeprotein (Phosphat) AB

OE4551F	-1.3	dppA2	TP	ABC-Transporter Substrat-Bindeprotein
UE4313F	1.7	иррьз	IP	ABC-Transporter Permease
OF2042F	16.0	νναΧ	TP	Kupfer-transportierende ATPase
IV. Fe(II)/Mn(II)-Transport	10.0	Jugit		
OE5144R	1.5	-	TP	ABC-Transporter Permease
OE5146R	1.4	-	TP	ABC-Transporter ATP-Bindeprotein
OE5147R	1.7	-	TP	ABC-Transporter Substrat-Bindeprotein
V. Co(II)-Transport				
OE3318R	-2.5	cbiN	TP	ABC-Transporter Transportprotein cbiN (Cobalt)
OE3319R	-1.9	cbiM	COM	CbiM Protein
OE3221F	-2.0	cbiX	COM	Cobalt-Chelatase
SUF-Transporter		r		
OE1781F	-2.6	-	GEN	ATP-bindendes SufC-annliches Protein
OE1782F	-1.4		GEN	SufB-Domanen Protein
UE 1703F	-1.4	- rogulator	GEN	Suid-Domanen Protein
	1 4	rpoP		RNA Belymerese Untersinheit B
	-1.4	rpoP	TC	mögliche RNA-Polymerase Untereinheit M1
OE 1037 K	-3.1	rpolvin	TC	RNA-Polymerase Untereinheit I
OE2678R	-1.4	rpoE	TC	RNA-Polymerase Untereinheit F
0E20701	-1.6	rpoA1	TC	RNA-Polymerase Untereinheit A'
0F4741R	-1.5	rpoB1	TC	RNA-Polymerase Untereinheit B'
0E4742R	-1.4	rpoB2	TC	RNA-Polymerase Untereinheit B"
0E4743R	-1.5	rpoH	TC	RNA-Polymerase Untereinheit H
OE2281R	2.5	tfbD	TC	Transkriptionsinititiationsfaktor TFB
OE1399R	-1.5	tfbG	TC	Transkriptionsinititiationsfaktor TFB
OE3708R	1.8	trh5	REG	möglicher Transkriptionsregulator
OE1787F	1.9	troR	REG	Transkriptionsregulator
OE2621R	1.5	IrpA1	REG	Transkriptionsregulator
OE4187R	-3.8	-	GEN	mögliches DNA-Bindeprotein
OE3136F	-3.6	-	CHY	mögliches DNA-Bindeprotein
zelluläre Stressantwort				
OE1162R	-1.7	cspD1	GEN	mögliches Kälteschockprotein
OE4122R	-1.7	CCTA	CHP	Thermosom α-UE
0E3925R	-1.5	CCTB	CHP	Litzaashaakmatain
	1.4	hop20C		Hitzeschockprotein
OE3003K	1.4	hsp20E	CHP	Hitzeschockprotein
OE2708R	-4.3	sod1	MIS	Superoxid-Dismutase (Mn)
OE2906R	-3.9	sod2	MIS	Superoxid-Dismutase
Siderophor-Synthese	0.0			
OE5094F	1.5	dat	MIS	Diaminobutyrat-Pyruvat Aminotransferase
OE5097F	1.4	iucB	MIS	Malonyl-CoA Decarboxylase Homolog
Coenzym-Metabolismus				
OE4683F	2.1	ribC	COM	Riboflavin-Synthase α-UE
OE3964R	3.4	-	CHY	mögliches DNA-Bindeprotein
OE3963R	3.5	ribB	COM	Dihydroxy-Butanonphosphat-Synthase
OE1946R	-1.3	ribE	COM	Riboflavin-Synthase β-UE
OE3207F	-2.3	cbiT	COM	Precorrin-8W Decarboxylase
OE3213F	-1.7	cbiG	COM	Cobalamin Biosynthesis protein cbiG
OE3216F	-3.4	cbiH2	COM	Precorrin-3B C17-Methyltransferase
Energie-Metabolismus				
0E/084F	1.9	trxA1a	EM	I hioredoxin
	2.5	trxA3	EM	
0E4217R	-5.7	lax henD		Ferredoxin (2Fe-25)
	-1.0	ПСРД	GEN	Clutaredovin-Homolog
Sonstige	2.1		GLIN	Sidialedoxin-Homolog
OF1794R	2.8		CHY	konserviertes hypothetisches Protein

2.1.5.2 △*lrp* Deletionsmutante

Als Folge einer Deletion von *lrp* konnten 261 Gene als reguliert und 342 als schwach reguliert identifiziert werden (Tab. 4), wobei 336 Gene in funktionelle Superklassen eingeteilt wurden: Auch hier zählte eine Mehrheit von 103 Genen zur Klasse Metabolismus (MET), 45 Gene wurden der Klasse Transport und zelluläre Prozesse zugeordnet (TP_CP), weitere 48 der Klasse genetische Prozesse (GIP) und wiederum der geringste Anteil regulierter Gene gehörte mit 19 Genen zur Klasse umweltbezogene Prozesse (ENV) (Abb. 18A). 121 Gene gehörten zur Klasse Sonstige (MIS) und für 267 Gene konnte bis jetzt noch keine entsprechende Funktion identifiziert werden (UNASS) (Abb. 18A). Anschließend erfolgte eine Feingliederung der regulierten bzw. schwach regulierten Gene in deren Funktionsklassen (Abb. 18B). Einzelne Gene, welche detaillierter diskutiert wurden, sind in Tab. 6 angeführt.

Abb. 18 Differentiell exprimierte und schwach differentiell exprimierte Gene in Δlrp

Einteilung in die funktionellen Superklassen (A) und anschließende Feingliederung der Gene mit zugeordneter Funktion in deren Funktionsklassen (B).

Funktionelle Superklassen (A) und dazugehörige Funktionsklassen (B): MET = metabolism (AA = amino acid metabolism, CHM = carbohydrate metabolism, CIM = central intermediary metabolism, COM = coenzyme metabolism, EM = energy metabolism, LIP = lipid metabolism, NUM = nucleotide metabolism); ENV = environmental processing (SIG = signal transduction, REG = gene regulation); GIP = genetic information processing (CHP = chaperones, RMT = RNA maturation, RRR = replication, repair, recombination, TC = transcription, TL = translation); TP_CP = transport and cellular processes (CE = cell envelope, CP = cellular processes, MOT = motility, SEC = protein secretion, TP = small molecule transport); MIS = miscellaneous (GEN = general function, MIS = miscellaneous, ISH = ISH-encoded transposases); UNASS = unassigned

Tab. 6 Differentiell exprimierte Gene in Δlrp (rot markiert bedeutet Induktion in Δlrp und grün markiert Repression in Δlrp)

חו	vfaab	Con	Funktions.	Connomo
Arginin-Metabolish		rhamovin	hosphat un	d Nukleotid-Metabolismus
	23	arcB		Ornithin-Carbamovltransferase
OE5203R	2.0	arcD	TP	Arginin/Ornithin-Antiporter
OE4419R	1.4	argH	AA	Argininosuccinat-Lyase
OE4420R	2.3	argG	AA	Argininosuccinat-Synthase
OE1944R	1.4	aspB2	AA	Aspartat-Aminotransferase
OE3556R	-2.8	carA	AA	Carbamoylphosphat-Synthase kleine UE
OE3554F	-1.9	carB	AA	Carbamoylphosphat-Synthase große UE
OE5201F	-1.9	pyrB	NUM	Aspartat-Carbamoyltransferase katalytische UE
OE5202F	-2	pyrl	NUM	Aspartat-Carbamoyltransferase regulatorische UE
0E3572R	-2.6	pyrG	NUM	CTP-Synthase
OE3429F	-1.5	cmk	NUM	Cytidylat-Kinase
OF3922R	-15	alnA	ΔΔ	Glutamin-Synthetase
OE1165R	2	serA3	AA	Phosphoglycerat-Dehydrogenase
OE1164R	2	_	GEN	Phosphatase-Homolog
Aromatische Amin	osäure	n		
I.Tryptophan				
0E2762R	1.6	aroA	AA	Phosphoshikimat-Carboxyvinyltransferase
0E2332F	1.9	nakA troD1		Kynureninase Anthranilat Phosphoribosyltransforaso
OE3681R	1.5	trpD?	MIS	Anthranilat-Phosphoribosyltransferase
0E4331R	1.4	tnaA	AA	Tryptophanase
II.Histidin				
OE4152R	1.3	hisG	AA	ATP-Phosphoribosyltransferase
OE4218F	2.2	hisA	AA	PRFPR-Imidazol-Carboxamid-Isomerase
OE2734F	1.5	hutU	AA	Urucanat-Hydratase
Bacteriorhodopsin	-Synth	ese		Destaciante de sein
OE3100F	2	_bop		Bacterioopoin Aktiveter
OE3101R	 _ 1 8	brn	GEN	bon Genevoressions-Regulator
OE3093R	2	crtB1		Phytoen-Synthase
Gluconeogenese u	nd zen	traler Inte	rmediärmet	abolismus
OE2020F	-1.5	fbp	CIM	Fructose-Bisphosphatase
OE2745R	-1.4	pgk	CIM	Phosphoglycerat-Kinase
OE2640F	-1.7	eno	CIM	Enolase
OE2622R	1.4	porB	CIM	Pyruvat-Ferredoxin-Oxidoreductase β-UE
OE2623R	1.4	porA	CIM	Pyruvat-Ferredoxin-Oxidoreductase α-UE
OE1710R	-1.9	korB	CIM	Oxoglutarat-Ferredoxin Oxidoreductase β-UE
OE1711R	-2.9	korA	CIM	Oxoglutarat-Ferredoxin Oxidoreductase α-UE
OE2865R	-1.5	sdhA	CIM	Succinat-Dehydrogenase UE A
Transportprozesse	2.0	giuA i	Clivi	Giyceroi-Deliydrogenase
OF1678R	-1.8	nstC2	TP	ABC-Phosphat-Transporter Permease
0E1675R	-14	pstB2	TP	ABC-Transporter ATP-Bindeprotein
0E3907R	-1.7	phnE	TP	ABC-Transporter Permease
OE3908R	-1.8	phnC	TP	ABC-Transporter ATP-Bindeprotein
OE4301R	-2.2	dppF1	TP	ABC-Transporter ATP-Bindeprotein
OE4302R	-2.4	oppD1	TP	ABC-Transporter ATP-Bindeprotein
OE4303R	-1.9	dppC1	TP	ABC-Transporter Permease
OE4304R	-1.9	dppB1	TP	ABC-Transporter Permease
OE4552F	-2.3	dppB2	TP	ABC-Transporter Permease
OE1806R	2.1	-	TP	TRAP-Transporter Substrat-Bindeprotein
Transkription	-			
0E1372R	-1.5	rpoP	TC	RNA-Polymerase Untereinheit P
0E2631F	-2.3	rpoD	TC	RNA-Polymerase Untereinheit D
0E2637F	-3.2	rpoN	TC	RNA-Polymerase Untereinheit N
0E4740R	-1.4	rpoA1		RNA-Polymerase Untereinheit A'
0E4741R 0E4146E	-1.4	rpoB1	TC	KIVA-POlymerase Untereinheit B
0F1478P	-1.6	tfbF	TC	Transkrintionsinitiationsfaktor TER
0E7186F	-2.1	tbpC1	тс	mögliches TATA-Bindeprotein
0E7045F	-1.5	tbpA	GEN	TATA-Bindeprotein
OF4056R	1.3	tfbA	TC	Transkriptionsinitiationsfaktor TEB

OE1797R OE3558F OE4187R	-1.8 -1.6 -1.6	sirR trh3 -	REG REG GEN	Transkriptionsregulator sirR möglicher Transkriptionsregulator mögliches DNA-Bindeprotein
OE3136F	13.9	-	CHY	mögliches DNA-Bindeprotein
Allgemeine Funktion	on			
OE3073R	3.4	-	MIS	Dodecin
Coenzym-Metaboli	smus			
OE4683F	-7.6	ribC	COM	Riboflavin-Synthase α-UE
OE3963R	-6.1	ribB	COM	Dihydroxy-Butanonphosphat-Synthase
OE3964R	-7.5	-	CHY	mögliches DNA-Bindeprotein
zelluläre Stressant	wort			
OE1162R	-1.6	cspD1	GEN	mögliches Kälteschockprotein
OE3582F	-1.7	cspD2	GEN	mögliches Kälteschockprotein
OE4122R	1.9	cctA	CHP	Thermosom α-UE
OE3925R	1.4	cctB	CHP	Thermosom β-UE
OE2708R	2.1	sod1	MIS	Superoxid-Dismutase (Mn)
OE2906R	2.7	sod2	MIS	Superoxid-Dismutase
OE3541R	3.3	hsp20F	CHP	mögliches Hitzeschockprotein

2.1.5.3 △*lrpA1* Deletionsmutante

In der $\Delta lrpA1$ Deletionsmutante waren 26 Gene reguliert und 46 schwach reguliert (Tab. 4). Im Vergleich zur Δlrp Deletionsmutante ist hier eine deutlich geringere Anzahl von Genen reguliert, was eine größere Spezifität des Transkriptionsregulators LrpA1 vermuten lässt. Eine weitere Einteilung der Gene mit zuordenbarer Funktion erfolgte in deren funktionellen Superklassen: 11 Gene Metabolismus (MET), 7 Gene Transport und zellulären Prozesse (TP_CP), 6 Gene genetischen Prozesse (GIP), 3 Gene umweltbezogenen Prozesse (ENV) und 17 Gene Sonstige (MIS) (Abb. 19A). Nach einer erneuten Gliederung der regulierten bzw. schwach regulierten Gene in Funktionsklassen (Abb. 19B) wurden einzelne regulierte Gene zur weiteren Diskussion ausgewählt. Diese sind in Tab. 7 aufgelistet.

Abb. 19 Differentiell exprimierte und schwach differentiell exprimierte Gene in *\(\Delta\)lrpA1*

Einteilung in die funktionellen Superklassen (A) und anschließende Feingliederung der Gene mit zugeordneter Funktion in deren Funktionsklassen (B).

Funktionelle Superklassen (A) und dazugehörige Funktionsklassen (B): MET = metabolism (AA = amino acid metabolism, CIM = central intermediary metabolism, COM = coenzyme metabolism, EM = energy metabolism, LIP = lipid metabolism, NUM = nucleotide metabolism); ENV = environmental processing (SIG = signal transduction, REG = gene regulation); GIP = genetic information processing (CHP = chaperones, RRR = replication, repair, recombination, TC = transcription,); TP_CP = transport and cellular processes (CP = cellular processes, MOT = motility, TP = small molecule transport); MIS = miscellaneous (GEN = general function, MIS = miscellaneous, ISH = ISH-encoded transposases); UNASS = unassigned

Tab. 7 Differentiell exprimierte Gene in △*lrpA1*

(rot markiert bedeutet Induktion in $\Delta lrpAl$ und grün markiert Repression in $\Delta lrpAl$)

		_	Funktions							
ID	fach	Gen	Klasse	Genname						
Arginin-Metabolis	nus un	d Nukleo	tidmetabolis	mus						
OE5204R	-1.5	arcD	TP	Arginin/Ornithin-Antiporter						
OE3572R	-1.5	pyrG	NUM	CTP-Synthase						
OE2579F	-1.3	purA	NUM	Adenylosuccinat-Synthase						
Aminosäure-Metak	Aminosäure-Metabolismus									
OE2619F	5.1	aspB3	AA	Aspartat-Aminotransferase						
OE2618R	2	-	CHY	konserviertes hypothetisches Protein						
Bacteriorhodopsin	-Synth	ese								
OE3106F	-1.7	bop	EM	Bacteriorhodopsin						
Zentraler Intermed	iärmeta	abolismu	S							
OE4613F	1.9	acn	CIM	Aconitat-Hydratase						
Transportprozesse)		_							
SUF-Transporter										
OE1781F	2.1	-	GEN	ATP-bindendes sufC-ähnliches Protein						
OE1782F	1.6	-	GEN	sufB-Domänen Protein						
OE1783F	1.8	-	GEN	sufB-Domänen Protein						
Transkription und	Transk	riptionse	gulatoren							
OE2084R	1.4	tfbB	тс	Transkriptionsinitiationsfaktor TFB						
OE2281R	1.4	tfbD	тс	Transkriptionsinitiationsfaktor TFB						
OE1279R	1.4	rpoeps	тс	RNA-Polymerase Untereinheit ε						
OE1797R	2.5	sirR	REG	Transkriptionsregulatir sirR						
OE1794R	1.8	-	CHY	konserviertes hypothetisches Protein						
OE3136F	2.4	-	CHY	mögliches DNA-Bindeprotein						
zelluläre Stressant	wort									
OE5186R	2.4	perA	MIS	Katalase (incl. Peroxidase)						
OE1782F	1.6	L	GEN	sufB-Domänen Protein						
OE1783F	1.8	-	GEN	sufB-Domänen Protein						
OE1781F	2.1	-	GEN	ATP-bindendes SufC-ähnliches Protein						
OE2906R	1.4	sod2	MIS	Superoxid-Dismutase						
OE1156F	1.3	hsp20	CHP	Hitzeschockprotein						
OE5083R	1.6	hsp5	CHP	Hitzeschockprotein						
Sonstige Gene										
OE6130F	6.7	-	CHY	konserviertes hypothetisches Protein						

2.1.5.4 *\(\Delta\)sirR* Deletionsmutante

Nur 13 regulierte und 59 schwach regulierte Gene in $\Delta sirR$ lassen auch für den Transkriptionsregulator SirR eine spezifische Rolle in regulatorischen Prozessen vermuten (Tab. 4). Für 31 Gene erfolgte eine Zuweisung in funktionelle Superklassen, wobei 3 Gene in der Klasse Metabolismus (MET) zu finden waren, 4 in der Klasse Transport und zelluläre Prozesse (TP_CP), ebenso 4 konnten für die Klasse umweltbezogene Prozesse (ENV) identifiziert werden. 2 der differentiell exprimierten Gene gehörten zur Klasse der genetischen Prozesse (GIP) und 18 der funktionellen Superklasse Sonstige (MIS) an (Abb. 20A). Eine weitere Einteilung der Gene erfolgte in deren Funktionsklassen (Abb. 20B). Jene Gene, die für eine detaillierte Datenanalyse herangezogen wurden, sind in Tab. 8 aufgelistet.

Abb. 20 Differentiell exprimierte und schwach differentiell exprimierte Gene in $\Delta sirR$

Einteilung in die funktionellen Superklassen (A) und anschließende Feingliederung der Gene mit zugeordneter Funktion in deren Funktionsklassen (B).

Funktionelle Superklassen (A) und dazugehörige Funktionsklassen (B): MET = metabolism (EM = energy metabolism, NUM = nucleotide metabolism); ENV = environmental processing (SIG = signal transduction, REG = gene regulation); GIP = genetic information processing (CHP = chaperones, TC = transcription); TP_CP = transport and cellular processes (TP = small molecule transport); MIS = miscellaneous (GEN = general function, ISH = ISH-encoded transposases, MIS = miscellaneous); UNASS = unassigned

Tab. 8 Differentiell exprimierte Gene in $\Delta sirR$ (rot markiert bedeutet Induktion in $\Delta sirR$ und grün markiert Repression in $\Delta sirR$)

				1 /				
			Funktions-					
ID	xfach	Gen	klasse	Genname				
Nukleotid-Metak	oolismu	S						
OE3572R	-2.0	pyrG	NUM	CTP-Synthase				
Fe(II)/Mn(II)-Tran	nsport							
OE5147R	3.2	-	TP	ABC-Transporter Substrat-Bindeprotein				
OE5144R	3.2	-	TP	ABC-Transporter Permease				
zelluläre Stressantwort								
OE2708R	1.7	sod1	MIS	Superoxid-Dismutase (Mn)				
OE2906R	2.2	sod2	MIS	Superoxid-Dismutase				

2.1.5.5 *∆troR* Deletionsmutante

In $\Delta troR$ waren 185 Gene reguliert und 214 schwach reguliert, wobei für 157 Gene keine Funktion zugeordnet werden konnte (UNASS) (Tab. 4). Die verbleibenden 242 Gene mit bekannter Funktion wurden in die folgenden funktionellen Superklassen eingeteilt: 78 Gene Metabolismus (MET), 27 Gene Transport und zelluläre Prozesse (TP CP), 44 Gene genetischen Prozesse (GIP), 15 Gene umweltbezogenen Prozesse (ENV) und 78 Gene Sonstige (MIS) (Abb. 21A). Eine erneute Gliederung der Gene in Funktionsklassen (Abb. 21B) und eine anschließende Selektion einzelner relevanter Gene ist in Tab. 9 zu finden.

Abb. 21 Differentiell exprimierte und schwach differentiell exprimierte Gene in $\Delta troR$

Einteilung in die funktionellen Superklassen (A) und anschließende Feingliederung der Gene mit zugeordneter Funktion in deren Funktionsklassen (B).

Funktionelle Superklassen (A) und dazugehörige Funktionsklassen (B): MET = metabolism (AA = amino acid metabolism, CHM = carbohydrate metabolism, CIM = central intermediary metabolism, COM = coenzyme metabolism, EM = energy metabolism, LIP = lipid metabolism, NUM = nucleotide metabolism); ENV = environmental processing (SIG = signal transduction, REG = gene regulation); GIP = genetic information processing (CHP = chaperones, RMT = RNA maturation, RRR = replication, repair, recombination, TC = transcription, TL = translation); TP_CP = transport and cellular processes (CE = cell envelope, CP = cellular processes, MOT = motility, TP = small molecule transport); MIS = miscellaneous (GEN = general function, ISH = ISH-encoded transposases, MIS = miscellaneous); UNASS = unassigned

t 1	t markiert bedeutet Induktion in $\Delta troR$ und grün markiert Repression in $\Delta troR$)								
				Funktions					
	ID	xfach	Gen	-klasse	Genname				
	Arginin-Metabolisn	nus, Ca	arbamoylp	hosphat					
	OE5208R	2.7	arcA	AA	Arginin-Deiminase				
	OE5205R	2.5	arcB	AA	Ornithine-Carbamoyltransferase				
	OE5204R	2.3	arcD	TP	Arginin/ Ornithin-Antiporter				
	OE5206R	1.3	arcC	AA	Carbamat-Kinase				
	OE4420R	2.5	argG	AA	Argininosuccinat-Synthase				
	OE3556R	-4.4	carA	AA	Carbamoylphosphat-Synthase kleine UE				
	Nukleotid-Metaboli	ismus							
	OE4621F	1.7	nudF1	NUM	ADP-Ribose Pyrophosphatase				
	OE3571R	-1.4	guaAb	NUM	GMP-Synthase UE B				
	OE1620R	-1.4	purNH	NUM	Phosphoribosylglycinamide-Formyltransferase				
	OE2458R	-1.5	guaB	NUM	IMP-Dehydrogenase				
	OE1951F	-1.6	purK	NUM	Phosphoribosylaminoimidazol-Carboxylase				
	OE1840R	-1.6	apt1	NUM	Purin-Phosphoribosyltransferase				
	OE2274R	-1.7	purL	NUM	Phosphoribosylformylglycinamidin-Synthase				

Tab. 9 Differentiell exprimierte Gene in $\Delta troR$

(ro

OE2579F	-1.7	purA	NUM	Adenylosuccinat-Synthase
OE1623F	-2.0	purB	NUM	Adenylosuccinat-Lyase
OE3732R	-2.4	purS	NUM	Phosphoribosylformylglycinamidin-Synthase
OE3/31R	-2.6	purQ	NUM	Phosphoribosylformylglycinamidin-Synthase
0E3139R	-2.4	pur r pvrG		Amidophosphoridosyltransferase
OE3017R	-2.5	ush	NUM	UDP-Zucker Hydrolase
OF2472F	-2.0	ach31	NUM	GTP Cyclohydrolase III
Aminosäure-Metab	olismu	IS		
Histidin-Metabolis	mus			
OE4218F	2.0	hisA	AA	HisA-Isomerase
OE4152R	1.3	hisG	AA	ATP-Phosphoribosyltransferase
OE2736F	-1.8	hutG	AA	Formiminoglutamase
Serin-Metabolismu	IS			
OE1165R	1.7	serA3	AA	Phosphoglycerat-Dehydrogenase
		hokA	^	Kynyroningso
Glutamat-Metaboli	smus	Пакл	~~	rynuchinase
OE1943F	-1.9	adhA1	AA	Glutamat-Dehvdrogenase
OE2728R	-1.6	gdhA2	AA	Glutamat-Dehydrogenase
OE1270F	-1.4	gdhA3	AA	Glutamat-Dehydrogenase
OE3922R	-1.9	gInA	AA	Glutamin-Synthetase
			Bacterio	rhodopsin-Synthese
OE3102R	1.7	brp	GEN	Bacteriorhodopsin-ähnliches Protein
Gluconeogenese u	ind zen	traler Inte	rmediärmeta	abolismus
OE2020F	-1.4	fbp	CIM	Fructose-Bisphosphatase
0E2/45R	-1.6	pgk	CIM	Phosphoglycerat-Kinase
OE 1495R	1.5	рука		Pyruvat-Kinase
OE 1500R	-1.0	ppsA	CIM	Pyruvate-Ferredoxin-Oxidoreductase 6-LIF
OE4613E	1.0	acn	CIM	Aconitat-Hydratase
OE3195F	-1.3	sucB	CIM	Succinat-CoA Ligase β-UE
OE1710R	-1.4	korB	CIM	Oxoglutarat-Ferredoxin Oxidoreductase β-UE
OE1711R	-1.5	korA	CIM	Oxoglutarat-Ferredoxin Oxidoreductase α-UE
OE5160F	2.4	gldA1	CIM	Glycerol-Dehydrogenase
Transportprozesse)			
OE4593R	9.9		TP	ABC-Transporter Substrat-Bindeprotein (Substrat Fe /Co)
0E4591R	4.1	-		ABC-Transporter AER Bindepretein (Substrat Fe /Co)
OE4576E	2.2			möglicher ABC-Transporter Substrat-Bindeprotein
OF1675R	-1.4	pstB2	TP	ABC-Transporter ATP-Bindeprotein (Substrat Phosphat)
OE1678R	-1.7	pstC2	TP	ABC-Transporter Permease (Substrat Phosphat)
OE4301R	-2.0	dppF1	TP	ABC-Transporter ATP-Bindeprotein (Substrat Oligopeptid/Ni)
OE4302R	-2.3	dppD1	TP	ABC-Transporter ATP-Bindeprotein (Substrat Oligopeptid/Ni)
OE4303R	-1.7	dppC1	TP	ABC-Transporter Permease (Substrat Oligopeptid/Ni)
OE4304R	-2.1	dppB1	TP	ABC-Transporter Permease (Substrat Oligopeptid/Ni)
OE4552F	-1.8	appB2		ABC-Transporter Permease (Substrat Oligopeptid/Ni)
UE4000F Transkription und	-1./	toron dor	Transkrintig	ABC-Transporter Permease (Substrat Oligopeptid/NI)
		rnok		
OE1372R	-1.7	rpoR	TC	RNA-Polymerase UF P
0E2631F	-2.3	rpoD	TC	RNA-Polymerase UE D
OE2637F	-2.0	rpoN	TC	RNA-Polymerase UE N
OE1279R	1.4	rpoeps	TC	RNA-Polymerase UE ε
OE4146F	1.9	tbpE	TC	TATA-Bindeprotein
OE3923F	1.4	Irp	REG	Transkriptionsregulator
0E2231R	-2.2	idr2	REG	möglicher Transkriptionsregulator
	14.9	-	CHY	wogliches DNA-Bindeprotein
		conD1	GEN	mögliches Kälteschockprotein
0E1102K	-1.9	cspD1	GEN	mögliches Kälteschockprotein
OF4122R	3.9	cctA	CHP	Thermosom q-UE
OE3925R	2.9	cctB	CHP	Thermosom β-UE
OE3541R	2.1	hsp20F	CHP	Hitzeschockprotein
OE5083R	1.8	hsp20E	CHP	Hitzeschockprotein
OE3491R	1.3	hsp20C	CHP	Hitzeschockprotein
0E2708R	2.3	sod1	MIS	Superoxiddismutase (Mn)
OE2906R	2.8	sod2	MIS	Superoxiddismutase
Siderophor-Synthe	Se	-1-4	MIC	Diaminals street Dummat Aminatan from a
0E5094F	1.7	dat	MIS	Diaminobutyrat-Pyruvat Aminotransferase
Allgemeine Funktig	1.5	IUCD	IVII S	Malonyi-CoA Decarboxylase-nomolog
	17	hrp	GEN	Bacteriorhodonsin-ähnliches Protein
OE3073R	21	-	MIS	Dodecin

Coenzym-Metabolismus

OE4683F	-4.1	ribC	COM	Riboflavin-Synthase α-UE
0E3963R 0E3964R	-4.1 -4.9	ribB -	COM	Dinydroxy-Butanonphosphat-Synthase mögliches DNA-Bindeprotein
OE4496R	2.0	fer4	EM	Ferredoxin (3Fe-4S)(4Fe-4S)

2.1.6 Mögliche direkte oder indirekte Effekte von Regulatorproteinen

Ein Vergleich der Genregulation zwischen einer Eisenmangelsituation und den Deletionsmutanten Δlrp , $\Delta lrpA1$, $\Delta sirR$ und $\Delta troR$ sollte Aufschluss über mögliche direkte oder indirekte Regulationseffekte der DNA-Bindeproteine Lrp, LrpA1, SirR und TroR liefern.

Dabei wurden sowohl gemeinsame, als auch unterschiedliche Effekte beobachtet, wobei letztere auf die Deletion eines Gens zurückgeführt werden. In der Analyse wurden jene Gene berücksichtigt, die Enzyme kodieren, welche in der Energiegewinnung, im zentralen Intermediärmetabolismus und im Aminosäure-Metabolismus eine Rolle spielen. Zusätzlich wurde analysiert, ob Gene für basale Transkriptionsfaktoren, wie auch weitere Gene für Regulatorproteine differentiell exprimiert wurden. Außerdem wurden Gene, die für Transportproteine kodieren und Gene, die für Proteine der zellulären Stressantwort kodieren, zur genauen Analyse der Daten herangezogen.

2.1.6.1.1 Arginin-Metabolismus, Carbamoylphosphat und Nukleotid-Synthese

In den Deletionsmutanten wie auch unter Eisenmangel konnte eine entgegengesetzte Regulation von Nukleotid-Synthese und Arginin-Metabolismus gezeigt werden (Tab. 5, Tab. 6, Tab. 7, Tab. 8, Tab. 9). Dabei waren Gene induziert, die an der Arginin-Regeneration beteiligt sind. Zusätzlich konnte in Δlrp die Induktion von *aspB2* (Tab. 6, Abb. 22 II) und in $\Delta lrpA1$ die Induktion von *aspB3* (Tab. 7), welche für je eine der drei Aspartat-Transaminasen (*aspB1, aspB2, aspB3*) kodieren, beobachtet werden. Hingegen wurden einzelne Gene der Pyrimidin-Synthese wie auch der Purin-Synthese reprimiert (Anhang und Abb. 22 I-II).

Arginin ist in *H. salinarum* nicht nur eine proteinogene Aminosäure, sondern auch eine wichtige Komponente des Energie-Metabolismus. Über den Arginin-Deiminaseweg kommt es zur raschen Degradation von Arginin über Citrullin zu Ornithin, wobei durch die Spaltung des dabei entstandenen Carbamoylphosphats ein ATP gewonnen wird. Das *arcRACB* Operon kodiert für die Enzyme des Arginin-Deiminasewegs (Hartmann *et al.*, 1980; Ruepp *et al.*, 1995; Ruepp und Soppa, 1996). Hat die Zelle jedoch eine hohe Energieladung (hohe ATP-Konzentration), kann Arginin aus Ornithin regeneriert werden, um als Langzeit-

Stickstoffspeicher zu fungieren. Das benötigte Carbamoylphosphat wird mit Hilfe der Carbamoylphosphat-Synthase (CarAB) unter ATP-Aufwand gebildet. Lange Zeit wurde angenommen, dass *Halobacterium* unter Standardwachstumsbedingungen nicht in der Lage ist, Ornithin selbst zu synthetisieren (Gonzalez *et al.*, 2007) und Arginin (eigentlich Ornithin) eine essentielle Aminosäure darstellt. Neuesten Kenntnissen zufolge gibt es jedoch Hinweise über mögliche Biosynthesewege zum Ornithin, wobei nach einer extrem langen lag-Phase Zellen erhalten werden, die weder Arginin noch Ornithin benötigen. Unter Eisenmangel konnte eine Induktion des Gens *ocd2* für das Enzym Ornithin-Cyclodeaminase, welches die reversible Reaktion von Prolin zu Ornithin katalysiert, beobachtet werden (Tab. 5, Abb. 22 I).

Eine gegenseitige Umwandlung von Arginin und Ornithin wird durch den zellulären Metabolismus auf mehrfache Weise kontrolliert: Carbamoylphosphat, welches nach der Metabolisierung von Arginin zu Ornithin freigesetzt wird, kann nicht nur unter ATP-Bildung gespalten werden, sondern stellt auch einen Grundbaustein der Pyrimidin-Synthese dar. Da unter Eisenmangel, in Δlrp und in $\Delta troR$ die Gene für Untereinheiten der Carbamoylphosphat-Synthase reprimiert wurden, kann man von einer reduzierten Menge an Carbamoylphosphat ausgehen, das unter diesen Bedingungen bevorzugt für die Synthese von Arginin verwendet wird (Tab. 5, Tab. 6, Tab. 9). Zusätzlich erfordert die Regeneration von Arginin aus Ornithin eine weitere Aminogruppe, die von Aspartat als Donor stammt, wobei Aspartat seine Aminogruppe durch eine Transaminierungsreaktion von Glutamat erhält. AspB2 könnte möglicherweise für die Bereitstellung des dritten Stickstoffatoms der Guanidinium-Gruppe des Arginins verantwortlich sein (Abb. 22 II).

Abb. 22 Arginin-Metabolismus, Pyrimidin-Synthese und zentraler Intermediärmetabolismus

Differentiell exprimierte Gene unter Eisenmangel und in den Deletionsmutanten $\Delta sirR$ und $\Delta troR$ (I.) und in den Deletionsmutanten Δlrp und $\Delta lrpA1$ (II.). Dargestellt sind Gene, welche Enzyme des Arginin-Metabolismus (A), des Pyrimidin-Metabolismus (B), der Gluconeogenese (C) und des TCA-Zyklus (D) kodieren. Induzierte Gene sind in rot dargestellt, reprimierte Gene in grün.

2.1.6.1.2 Aminosäure-Metabolismus

In den Deletionsmutanten Δlrp und $\Delta troR$ wurde beobachtet, dass Gene, welche Enzyme der Histidin- oder Tryptophan-Synthese kodieren, stärker exprimiert wurden (Tab. 6, Tab. 9, Abb. 23 I-II). Eine schwächere Expression konnte hingegen für Gene des Glutamat-Metabolismus gezeigt werden, wobei in Δlrp und $\Delta troR$ das für die Glutamin-Synthetase kodierende Gen *glnA* reprimiert wurde (Tab. 6, Tab. 9, Abb. 23 I-II). In der Eisenmangelsituation und in $\Delta troR$ wurden Gene, die für Glutamat-Dehydrogenasen kodieren als reprimiert identifiziert (Tab. 9, Abb. 23 I). Außerdem wurde durch Eisenmangel und in Δlrp *serA3*, das Gen für eine Glycerat-Dehydrogenase, welches die Schrittmacherreaktion der Serin-Synthese katalysiert, induziert (Tab. 5, Tab. 6, Abb. 22 I-II). Zusätzlich war in Δlrp auch das Nachbar-Gen von *serA3*, OE1164R, welches für ein Phosphatase-Homolog kodiert, induziert (Tab. 6, Abb. 22 II). Obwohl für OE1164R noch keine eindeutige Funktion bekannt ist, könnte dieses Phosphatase-Homolog einen vorausgehenden Schritt in der Serin-Synthese katalysieren, die Dephosphorylierung von Phosphoglycerat. Eine Induktion der Serin-Synthese könnte eine mögliche Repression des Fluss in Richtung Gluconeogenese bedeuten (Abb. 22 I-II).

Abb. 23 Synthesewege der Aminosäuren Histidin, Tryptophan und Glutamat Differentiell exprimierte Gene unter Eisenmangel und in den Deletionsmutanten $\Delta sirR$ und $\Delta troR$ (I.) und in den Deletionsmutanten Δlrp und $\Delta lrpA1$ (II.). Induzierte Gene sind in rot dargestellt, reprimierte Gene in grün.

2.1.6.1.3 Bacteriorhodopsin-Synthese

Neben dem Arginin-Metabolismus wurde in Δlrp die Bacteriorhodopsin-Synthese induziert (Tab. 6, Abb. 24). Dabei wurde nicht nur die Genexpression des *bop* (Bacteriorhodopsin) Gens induziert, sondern auch die der trans-aktivierenden Faktoren *bat* ("bacterioopsin activator") (Baliga *et al.*, 2001) und *brp* ("bop gene expressions regulator") (Tab. 6). Zusätzlich konnte in Δlrp die Induktion des Phytoene-Synthase-Gens *crtB1*, das eine wesentliche Rolle in der Carotinoid-Synthese und folglich auch in der Retinal-Synthese spielt, gezeigt werden (Tab. 6). In $\Delta lrpA1$ hingegen wurde eine Repression des *bop* Gens beobachtet (Tab. 7). Für das Bop-Regulatorgen *brp* wurde in der Deletionsmutante $\Delta troR$ eine Induktion festgestellt (Tab. 9). Unter Eisenmangel konnte eine Repression von *blh*, das Gen für ein Brp-ähnliches Protein, beobachtet werden (Tab. 5). Im Parentalstamm wird die Synthese von Bop und Retinal, welche gemeinsam die lichtgetriebene Protonenpumpe bilden, bei geringem Sauerstoffgehalt und Licht durch Bat vermittelt (Gropp und Betlach, 1994; Baliga *et al.*, 2001).

ΔIrp ΔIrpA1	∆Irp	ΔIrp ΔtroR ↓
bop	bat	brp
∆Irp ↓	Fe(-) ↓	
crtB1)	blh)	

Abb. 24 Synthese des Bacteriorhodopsin-Genclusters Rote Pfeile stehen für Induktion, grüne Pfeile für Repression der Genexpression

2.1.6.1.4 Gluconeogenese und zentraler Intermediärmetabolismus

Gene, welche an der Synthese von Glucose aus Pyruvat (Gluconeogenese) beteiligt sind, waren unter Eisenmangel, in Δlrp und in $\Delta troR$ reprimiert (Tab. 5, Tab. 6, Tab. 9, Abb. 22 I-II). Zusätzlich konnte unter Eisenmangel eine Repression des Glycerolkinase-Gens *glpK* gezeigt werden (Abb. 22). Außerdem wurde unter Eisenmangel und in $\Delta troR$ eine reziproke Regulation des Pyruvatkinase-Gens *pykA* und des Pyruvatwasserdikinase-Gens *ppsA* beobachtet, wobei *pykA* induziert und *ppsA* reprimiert wurde (Tab. 5, Tab. 9). Unter Eisenmangel und in den Deletionsmutanten Δlrp und $\Delta troR$ entsteht offensichlich weniger Phosphoenolpyruvat, was eine Neusynthese von Zucker verhindert (Abb. 22 I-II).

Unter Eisenmangel, in Δlrp wie auch in $\Delta troR$, wurden Gene für Enzyme des TCA-Zyklus reprimiert vorgefunden (Tab. 6, Tab. 9, Abb. 22 I-II). Eine Ausnahme stellte das in $\Delta lrpA1$ und $\Delta troR$ induzierte Gen *acn* dar (Tab. 7, Tab. 9). Dieses kodiert eine Aconitase, ein Enzym des TCA-Zyklus, das zugleich als Translationsrepressor im Eisenstoffwechsel eine Funktion hat (Walden *et al.*, 2006). Dabei bindet das Enzym in Abwesenheit von Eisen an so genannte "iron responsive elements" (IRE) in mehreren RNAs und reguliert somit die Translation.

Eine Induktion der Ferredoxin-abhängigen Oxidoreduktase (*porA*, *porB*) (Kerscher und Oesterhelt, 1981), welche Pyruvat zu Acetyl-CoA decarboxyliert, konnte in Δlrp wie auch in $\Delta troR$ als induziert gezeigt werden (Tab. 6, Tab. 9, Abb. 22 I-II). Diese wird entgegengesetzt zu der Ferredoxin-abhängigen Oxidoreduktase *korAB* des TCA-Zyklus reguliert (Tab. 6, Tab. 9, Abb. 22 I-II). Eine reziproke Regulation der Gene *porAB* und *korAB* ist nicht klar, da man sich durch einen Fluss in Richtung Acetyl-CoA eine vermehrte TCA-Zyklus Aktivität

erwarten würde. Jedoch sind sowohl in Δlrp als auch $\Delta troR$ Gene des TCA-Zyklus reprimiert (Abb. 22 I-II). Unter Eisenmangel wurde das Gen für die Untereinheit *porA* reprimiert, was mit einem verminderten TCA-Zyklus übereinstimmt (Abb. 22 I).

Das Gen *gldA1*, welches für die Glycerol-Dehydrogenase kodiert, wurde in Δlrp und in $\Delta troR$ induziert (Tab. 6, Tab. 9, Abb. 22). Unter Eisenmangel wurde das Glycerolkinase-Gen *glpK* reprimiert (Tab. 5, Abb. 22 I). Glycerol wird entweder durch GldA1 in Dihydroxyaceton umgewandelt (Rawal *et al.*, 1988) oder durch die Glycerolkinase zu Glycerol-3-Phosphat phosphoryliert. Letzteres wird als Dihydroxyacetonphosphat (DHAP) in die Glykolyse eingespeist oder dient als Substrat für die Produktion archaealer Lipide (Abb. 22 I-II). Das Schicksal von DHA ist jedoch unklar: In *H. salinarum* konnte bis jetzt noch kein Enzym identifiziert werden, welches Dihydroxyaceton phosphoryliert (Falb *et al.*, 2008).

2.1.6.1.5 Transportprozesse

Gene für Untereinheiten von Phosphattransportern wurden unter Eisenmangel induziert, hingegen in den Deletionsmutanten Δlrp und $\Delta troR$ reprimiert (Tab. 5, Tab. 6, Tab. 9, Abb. 25). Repression konnte auch für Gene eines potentiellen Peptidtransporters unter Eisenmangel, in Δlrp und $\Delta troR$ beobachtet werden (Tab. 5, Tab. 6, Tab. 9). Einzige Ausnahme stellte das Gen *dppB3* dar, welches in einer Eisenmangelsituation induziert wurde (Tab. 5).

Eine entgegengesetzte Regulation zwischen Eisenmangel und Δlrp wurde für OE1806R, das für eine Untereinheit eines ATP-unabhängigen Transporters kodiert, identifiziert. OE1806R wurde unter Eisenmangel reprimiert und in Δlrp induziert (Tab. 5, Tab. 6).

Gene, die Untereinheiten eines potentiellen SUF ("sulphur assimilation")-Transporters kodieren, wurden in einer Eisenmangelsituation und in $\Delta lrpA1$ reziprok reguliert. Eisenmangel bewirkte die Repression der entsprechenden Gene, in $\Delta lrpA1$ hingegen konnte eine Induktion festgestellt werden (Tab. 5, Tab. 7). SUF-Transporter spielen eine Rolle in der Assemblierung von Eisen-Schwefel-Clustern (Fontecave *et al.*, 2005).

Das Gen für eine Cu(II)-transportierende ATPase YvgX wurde unter Eisenmangel 16fach induziert, jene des Co(II)-Transport hingegen waren reprimiert (Tab. 5, Abb. 25). In $\Delta sirR$ wie auch unter Eisenmangel wurden Gene für den metallabhängigen Fe(II)/Mn(II)-ABC-Transporter induziert (Tab. 8, Abb. 25). Eine Aktivierung der Genexpression entsprechender Gene zu OE5144R, OE5146R, OE5147R wird auch in einer $\Delta sirR$ -Deletionsmutante in *H. salinarum* NRC-1 beschrieben (Kaur *et al.*, 2006). In der gleichen Studie wird eine Repression desselben Operons in NRC-1 durch Mn(II) und Fe(II), sowie eine Induktion durch Co(II) und Ni(II) dargestellt (Kaur *et al.*, 2006). Eine Repression des Operons durch Fe(II) steht in Übereinstimmung mit einer Induktion unter Fe(II)-Mangelbedingungen. Ausschließlich in $\Delta troR$ wurde für einen putativen Mn(II)-abhängigen ABC-Transporter eine Induktion beobachtet (Tab. 9, Abb. 25).

Abb. 25 Übersicht differentiell exprimierter Gene von Transportern unter Eisenmangel und in den Deletionsmutanten Δlrp , $\Delta lrpA1$, $\Delta sirR$ und $\Delta troR$. Rote Pfeile bedeuten Induktion und grüne Pfeile Repression der Genexpression

2.1.6.1.6 Transkription und Regulatoren der Transkription

Sowohl unter Eisenmangel, wie auch in den Deletionsmutanten Δlrp , $\Delta lrpA1$ und $\Delta troR$ wurden Gene, welche für Untereinheiten der RNA-Polymerase und für ribosomale Proteine kodieren, reprimiert (Anhang Tab. 6, Tab. 7, Tab. 9). Außerdem wurden Gene für TATA-Bindeproteine (TBP), Transkriptionsfaktor IIB (TFB)-Homologe, wie auch weitere Regulatorproteine reguliert. Eine Übersicht ist in (Abb. 26) dargestellt. Im Gegensatz zu den

meisten Archaea, welche nur ein TBP und TFB besitzen, kodiert *H. salinarum* R1 für vier funktionelle TBP und acht TFB Homologe (Pfeiffer *et al.*, 2007). Somit könnte eine Kombination verschiedener TBPs und TFBs eine analoge Funktion zu bakteriellen Sigma-Faktoren übernehmen und dadurch die globale Genexpression kontrollieren (Baliga *et al.*, 2000; Coker und DasSarma, 2007).

Reziproke Regulation konnte für das Regulator-Gen *sirR* beobachtet werden, wobei *sirR* in Δlrp reprimiert, in $\Delta lrpA1$ hingegen induziert wurde (Tab. 6, Tab. 7). Zusätzlich wurde in Δlrp trh3, ein weiteres Gen für ein Lrp-Homolog reprimiert (Tab. 6). Unter Eisenmangel konnte eine Induktion von trh5 und lrpA1, welche ebenfalls für Lrp-Homologe kodieren, detektiert werden (Tab. 5). Ferner wurde in $\Delta troR$ eine schwache Induktion des Transkriptionsregulator-Gens lrp beobachtet (Tab. 9). In *H. salinarum* NRC-1 wird Lrp-Homologen eine allgemeine Funktion in biologischen Prozessen vorausgesagt (Bonneau *et al.*, 2006).

troR, Unter Eisenmangel war das Gen das für einen metallabhängigen Transkriptionsregulator kodiert, induziert (Tab. 5). In $\Delta troR$ wurde die Expression für *idr2* ("iron dependent regulator"), welches für einen Eisen-abhängigen Transkriptionsregulator kodiert, reprimiert (Tab. 9). Idr2 inhibiert vermutlich zusammen mit Eisen seine eigene Transkription. Eine ähnliche Funktion wird für IdeR ("iron dependent regulator") in Mycobacterium tuberculosis gezeigt (Gold et al., 2001). Da TroR möglicherweise an der Repression eines putativen Mn(II)-Transporters beteiligt ist, könnte in $\Delta troR$ ein erhöhter Einstrom von Mn(II) die Repression von idr2 bewirken (Abb. 25). Mn(II) und Fe(II) besitzen einen ähnlichen Ionenradius und sind daher an Metallbindestellen von Proteinen leicht austauschbar (Jakubovics und Jenkinson, 2001).

Auffallend ist die Induktion von OE3136F in Δlrp , $\Delta lrpA1$ und $\Delta troR$, wie auch eine Repression unter Eisenmangel (Tab. 5, Tab. 6, Tab. 7, Tab. 9). OE3136F zählt zur Funktionsklasse der konservierten hypothetischen Proteine und hat im N-terminalen Bereich eine HTH-Domäne. Möglicherweise handelt es sich bei diesem Protein um einen Transkriptionsregulator. Ein weiteres Gen für ein mögliches DNA-Bindeprotein ist OE4187R, welches in einer Eisenmangelsituation wie auch in Δlrp induziert vorliegt (Tab. 5, Tab. 6).

Abb. 26 Regulierte Gene von Transkriptionsregulatoren unter Eisenmangel und in den Deletionsmutanten. Eine rote Markierung bedeutet Induktion, eine transparent rote Markierung bedeutete schwache Induktion, grün steht für Repression und transparent grün für schwache Repression. Das X bedeutet, dass in der Deletionsmutante $\Delta sirR$ keine differentiell exprimierten Transkriptionsregulatoren identifiziert wurden.

2.1.6.1.7 Zelluläre Stressantwort

Gene der zellulären Stressantwort waren entweder reprimiert, z.B. wie Kälteschockprotein-Gene, oder induziert, wie z.B. Hitzeschockprotein-Gene (Tab. 5, Tab. 6, Tab. 7, Tab. 9, Abb. 27). Für die Superoxiddismutase-Gene, wie auch für Gene, welche den Thermosomkomplex kodieren, konnte unter Eisenmangel eine Repression und in den Deletionsmutanten eine Induktion gezeigt werden (Tab. 5, Tab. 6, Tab. 7, Tab. 9, Abb. 27). Für die Superoxiddismutase-Gene ist die Anwesenheit von Eisen offensichtlich eine notwendige Voraussetzung zur Expression.

Abb. 27 Zelluläre Stressantwort unter Eisenmangel und in den Deletionsmutanten Rote Pfeile stehen für Induktion, grüne Pfeile für Repression der Genexpression

2.1.6.1.8 Siderophorsynthese

Die Induktion zweier Gene für die Siderophorbiosynthese (*dat, iucB*) konnte unter Eisenmangel und in der Deletionsmutante $\Delta troR$ beobachtet werden (Tab. 5, Tab. 9). Die Produktion von Siderophoren wird durch Eisenmangel induziert. In *E. coli* reprimiert das Fur-Protein in Anwesenheit von Fe(II) die Synthese von Genen des Eisenaufnahmesystems. Ist in der Zelle nicht mehr ausreichend Fe(II) vorhanden, so wird die Siderophorproduktion angeregt und die zellulären Transportkanäle werden für Eisen wieder geöffnet (Bagg und Neilands, 1987). Da mit Hilfe des Eisenchelators DIP eine starke Aktivierung der Siderophorsynthese und des Fe-Aufnahmesystems ausblieb, geht man von einer unzureichenden Eisenmangelsituation aus. Dies wurde bereits für *B. subtilis* (Baichoo *et al.*, 2002) und *H. salinarum* NRC-1 (Kaur *et al.*, 2006) gezeigt.

In *H. salinarum* konnte kein Fur-Homolog identifiziert werden. Da die Expression von *idr2* in $\Delta troR$ reduziert war, könnte Idr2 wahrscheinlich eine Rolle bei der Genexpression des Siderophorclusters spielen (Tab. 9). Unter Eisenmangel war *idr2* tendenziell induziert, jedoch nicht signifikant. Aber Idr2 ist ohne Eisen nicht in der Lage die Siderophorsynthese zu reprimieren, daher kam es zu einer Induktion der Siderophorgene. In *Mycobacterium smegmatis* wird IdeR ("iron dependent regulator") erstmalig als verantwortlicher Repressor der Eisen-abhängigen Siderophorsynthese identifiziert (Dussurget *et al.*, 1996).

2.1.6.1.9 Zusammenfassung der beobachteten Effekte

In der folgenden Übersicht wird vorwiegend auf die metallabhängige Regulation in *H. salinarum* eingegangen. Basierend auf der Annahme, dass die Deletion eines Gens und die Überexpression desselben Gens entgegengesetzte Effekte hervorrufen, wurden die in den Deletionsmutanten Δlrp , $\Delta sirR$ und $\Delta troR$ regulierten Gene als Effekte von Lrp, SirR bzw. TroR diskutiert (schwarze Pfeile in Abb. 28). Diese Annahme wurde für die Lrp-ähnlichen Regulatoren Lrp und LrpA1 experimentell überprüft. Hier wurden neben den Deletionsmutanten Δlrp und $\Delta lrpA1$ auch Überexpressionsstämme dieser Gene hergestellt und anschließend analysiert (2.1.7).

Eine Verbindung zwischen Lrp-ähnlichen Regulatoren und der metallabhängigen Transkription besteht über Lrp. Aus den Mikroarray-Daten kann man schließen, dass Lrp die Expression des metallabhängigen Regulators *sirR* aktiviert (Abb. 28). SirR wiederum reprimiert die Expression eines Fe(II)/Mn(II)-abhängigen ABC-Transporters (Abb. 28). Derselbe Transporter ist unter Eisenmangel induziert (Abb. 28). Eine Regulation von SirR selbst konnte unter Eisenmangel jedoch nicht festgestellt werden. Folgender

Regulationsmechanismus könnte dabei stattfinden: Unter Eisenmangel ist der Transkriptionsregulator SirR nicht mehr in der Lage an den Promotor zu binden. Als Konsequenz wird die Repression aufgehoben und die Gene des Operons werden transkribiert. Bereits in *S. epidermidis* wird eine metallabhängige Expression des *sitABC*-Operons durch SirR beschrieben (Hill *et al.*, 1998).

Der metallabhängige Regulator TroR reprimiert die Expression eines putativen Mn(II)abhängigen ABC-Transporters (Abb. 28). Dieser Effekt findet vermutlich zusammen mit Mn(II) statt. Sinkt nun der Mn(II)-Spiegel in der Zelle, ist TroR nicht mehr in der Lage an den Promotor zu binden und dissoziiert ab, was eine Expression des ABC-Transporters zur Folge hat. Die Genexpression von *troR* wird unter Eisenmangel induziert (Abb. 28), was wiederum die Repression des Mangan-abhängigen Transporters zur Folge hat (Abb. 28). Außerdem induziert TroR die Expression des Eisen-abhängigen Regulators *idr2*. Eine Repression der Siderophorgene zusammen mit Eisen wird bereits für den Eisen-abhängigen Regulator IdeR in *M. smegmatis* gezeigt (Dussurget *et al.*, 1996). Jedoch kann Idr2 ohne Eisen die Synthese des Siderophorclusters nicht reprimieren, was sich in einer Induktion der entsprechenden Gene äußert (Abb. 28). Warum es dennoch zu einer Induktion von *idr2* kommt ist nicht klar. Eine Möglichkeit wäre, dass Idr2 neben seiner Repression des Siderophorclusters noch eine weitere Funktion hat.

Unter Eisenmangel ist eine Regulation von Transport-Genen auffällig. Dabei werden der Cu(II)- wie auch der Fe(II)-Transport gegenläufig zum Mn(II)- und Co(II)-Transport reguliert (Abb. 28). Die Expression von Genen, die beim Eisentransport eine Rolle spielen, wurde aktiviert. Dieses sind Gene für einen Fe(II)/Mn(II)-ABC-Transporter und für Gene des Siderophorclusters. Zugleich konnte die Repression von nicht Eisen-abhängigen Transportern, wie des Mn(II)-Transporters und des Co(II)-Transporters, beobachtet werden. Eine starke Induktion konnte für den potentiellen Cu(II)-Transporter unter Eisenmangel beobachtet werden. Man würde annehmen, dass der Kupfer-Transport für die Halocyanine wichtig ist. Unter Eisenmangel findet eine reduzierte Atmung statt, was sich in einer Reduktion der Genexpression von NADH-Dehydrogenase Gene (Anhang) und von *hcpD* äußerte. *HcpD* ist eines von acht Genen, die für Halocyanin kodieren. In Halobacterien erfolgt die Übertragung von Elektronen auf die terminale Oxidase nicht über Cytochrom C, sondern über so genannte Halocyanine (Mattar *et al.*, 1994).

BLAST-Analysen mit dem potentiellen Cu(II)-Transporter YvgX ergaben eine hohe Sequenzhomologie mit weiteren Cu(II)-Transportern aus anderen Organismen. Möglicherweise findet eine Koregulation des Eisen- und Kupfer-Transports statt, oder das als Cu(II)-Transporter annotierte Gen ist in Wirklichkeit ein Eisen-Transporter. Gene, die für Phosphat-Transporter kodieren werden unter Eisenmangel induziert und stellen notwendiges Phosphat für den ATP-Kreislauf bereit.

Für den Metabolismus konnte gezeigt werden, dass unter Eisenmangel, wie auch in den Deletionsmutanten $\Delta troR$ und Δlrp ein vermindertes Wachstum stattfindet. Dies äußert sich in einer Reduktion der Pyrimidin-Synthese (Abb. 22). Im Gegensatz dazu konnte eine vermehrte Produktion von Speicherstoffen, wie z.B. Arginin beobachtet werden (Abb. 22).

Abb. 28 Übersicht der metallabhängigen Regulation in H. salinarum

Rote (Induktion) bzw. grüne (Repression) Pfeile, die von Fe(-) ausgehen, zeigen einen direkten Effekt der Eisenmangelsituation. Schwarze Pfeile bedeuten, dass hier aufgrund eines Effekts in der Deletionsmutante Rückschlüsse auf eine direkte Funktion des Proteins gezogen werden.

2.1.7 Mögliche direkte Zielgene Lrp-ähnlicher Regulatoren

Um eine Aussage über potentielle Zielgene von Lrp und LrpA1 treffen zu können, wurden die Deletionsmutanten Δlrp (2.1.1.1) bzw. $\Delta lrpA1$ (2.1.2) wie auch die $\uparrow lrp$ (2.1.2) bzw. $\uparrow lrpA1$ (2.1.2) überexprimierenden Stämme im Zuge eines DNA-Mikroarray-Experiments paarweise mit dem Parentalstamm *H. salinarum* R1 verglichen.

Das Wachstum der Deletionsstämme erfolgte aerob im Dunklen und jenes der Überexpressionsstämme anaerob im Licht (Abb. 13, Abb. 15).

Direkte Regulationseffekte äußern sich darin, dass bei einer Deletion von *lrp* bzw. *lrpA1* im Vergleich zu einer Überexpression von *lrp* bzw. *lrpA1* das Zielgen reziprok reguliert wird. Durch die Wahl unterschiedlicher Wachstumsbedingungen der Deletions- und der Überexpressionsstämme werden zusätzlich mögliche Sekundäreffekte, die aufgrund des Wachstums unter den entsprechenden Bedingungen auftreten, ausgeschlossen.

2.1.7.1 Mögliche direkte Zielgene von Lrp

Eine erfolgreiche Überexpression von *lrp* konnte auf Proteinebene mit Hilfe eines spezifischen Antikörpers gegen Lrp anhand einer Westernblot-Analyse gezeigt werden (Abb. 11). Die Induktion der *lrp*-Genexpression wurde auch auf Transkriptionsebene mit Hilfe des \uparrow *lrp*/R1-Mikroarray Datensatzes bestätigt, wobei *lrp* 46fach induziert vorlag. Im Zuge einer *lrp*-Überexpression wurden 154 Gene als reguliert und 199 Gene als schwach reguliert identifiziert. Sämtliche identifizierten Gene sind im entsprechenden Volcano-Plot in Abb. 16 dargestellt.

Zur anschließenden Analyse der $\uparrow lrp/$ R1-Mikroarray Daten wurden nur jene regulierten Gene des *lrp*-Überexpressionsstammes herangezogen, die reziprok zur Δlrp -Deletionsmutante reguliert waren. In Tab. 10 befindet sich eine Gegenüberstellung der differentiell exprimierten Gene eines Δlrp -Deletionsstammes im Vergleich zu einem $\uparrow lrp$ -Überexpressionsstamm.

	∆Irp	<i></i> ↑ <i>Irp</i>							
ID	xfach	xfach	Gen	Funktions- klasse	Genname				
Transportprozesse (TP)									
OE1678R	-1.8	1.6	pstC2	TP	ABC-Phosphat-Transporter Permease				
OE3908R	-1.8	1.8	phnC	TP	ABC-Phosphat-Transporter ATP-Bindeprotein				
OE4301R	-2.2	1.8	dppF1	TP	ABC-Transporter ATP-Bindeprotein				
OE4302R	-2.4	1.9	dppD1	TP	ABC-Transporter ATP-Bindeprotein				
OE4303R	-1.9	1.8	dppC1	TP	ABC-Transporter Permease				
OE4552F	-2.3	2	dppB2	TP	ABC-Transporter Permease				
OE1806R	2.1	-1.6	-	TP	TRAP-Transporter Substratebindeprotein				
Aminosäure-Metabo	lismus	(AA)							
OE3922R	-1.5	2.1	gInA	AA	Glutamin-Synthetase				
Zentral Intermediäre	prozes	se (CIM)							
OE1710R	-1.9	2	korB	CIM	Oxoglutarat-Ferredoxin Oxidoreductase β-UE				
0E1711R	-2.9	2.3	korA	CIM	Oxoglutarat-Ferredoxin Oxidoreductase α-UE				
OE5160F	2.5	-1.9	gldA1	CIM	Glycerol-Dehydrogenase				
Transkription (TC) u	nd Tran	skriptior	nsregulate	oren (REG)					
OE2631F	-2.3	1.7	rpoD	TC	RNA-Polymerase Untereinheit D				
OE2637F	-3.2	2.7	rpoN	TC	RNA-Polymerase Untereinheit N				
OE4740R	-1.4	2.2	rpoA1	TC	RNA-Polymerase Untereinheit A'				
OE1478R	-1.6	1.7	tfbF	TC	Transkriptionsinitiationsfaktor TFB				
OE1797R	-1.8	1.5	sirR	REG	Transkriptions regulator sirR				
OE1794R	-	1.8	-	CHY	konserviertes hypothetisches Protein				
Signaltransduktion	(SIG)								
OE5243F	1.7	-2.7	car	SIG	"Transducer"-Protein				
Sonstige (MIS)		-							
OE4612F	2.2	-2.4	hly	MIS	Serinprotease Halolysin R4				

Tab. 10 Gegenüberstellung der differentiell exprimierten Gene einer Δlrp -Deletionsmutante und eines $\uparrow lrp$ -Überexpressionsstammes

2.1.7.1.1 Transportprozesse

Bei einer *lrp*-Überexpression bzw. einer *lrp*-Deletion wurden entgegengesetzte Effekte für einzelne Phosphattransport-Gene, für Gene eines Peptidtransporters und für OE1806R, welches für eine Untereinheit eines ATP-unabhängigen Transporters kodiert, beobachtet (Tab. 10).

Für die Phosphattransport-Gene konnte eine Aktivierung durch Lrp gezeigt werden (Tab. 10, Abb. 29). Lrp ist möglicherweise zusammen mit dem metallabhängigen Regulator SirR an der Kontrolle des Phosphattransports beteiligt. Hinweise auf eine Aktivierung der *sirR*-Genexpression durch Lrp werden unter 2.1.7.1.4 diskutiert. Eine mögliche Beteiligung von SirR an Phosphattransportprozessen wird auch für *H. salinarum* NRC-1 angenommen (Kaur *et al.*, 2006). Unter Eisenmangel waren Phosphattransport-Gene induziert, während in $\Delta troR$ eine Repression entsprechender Gene stattfand (2.1.6.1.6). Zusätzlich wurde in $\Delta troR$ eine schwache Induktion des Regulatorgens *lrp* identifiziert (1.4fach) (2.1.6.1.6). Somit würde man in der $\Delta troR$ -Deletionsmutante tendenziell eine Induktion des Phosphattransports erwarten. Da dies jedoch nicht der Fall ist, kann man daraus schließen, dass es einer stärkeren Aktivierung der *lrp*-Genexpression bedarf, um auch in $\Delta troR$ eine Induktion der Transportergene zu zeigen. Möglicherweise zeigt sich der Einfluss von Lrp auf die

Genexpression bestimmter Zielgene erst ab einer stärkeren Induktion von *lrp*, wie dies im *lrp*-Überexpressionsstamm der Fall ist.

Weitere Transportgene, welche in der Mutante und im Überexpressionsstamm entgegengesetzt reguliert waren, sind Gene, die für Untereinheiten eines potentiellen Peptidtransporters kodieren (*dppF1*, *dppD1*, *dppC1*, *dppB2*) (Tab. 10, Abb. 29). Einzelne Gene des Peptidtransporters konnten ebenfalls unter Eisenmangel und in $\Delta troR$ als reguliert detektiert werden, wobei entsprechende Gene reprimiert wurden (2.1.6.1.5). Ähnlich wie bei den Phosphattransport-Genen ist die Induktion der *lrp*-Expression unter Eisenmangel und in $\Delta troR$ zu schwach, um eine Induktion der Peptidtransport-Gene beobachten zu können. Bereits in *E. coli* wird der Einfluss von Lrp auf die Genexpression von Transportproteinen gezeigt, wobei hier Lrp die Gene des Oligopeptidtransportoperons *oppABCDF* reprimiert (Calvo und Matthews, 1994).

OE1806R, welches für eine Untereinheit eines ATP-unabhängigen, so genannten TRAP Transporters kodiert, wurde in Δlrp induziert und in einem *lrp*-Überexpressionsstamm reprimiert. Eine Repression von OE1806R konnte auch unter einer Eisenmangelsituation hervorgerufen werden (2.1.6.1.5). Interessant war hier eine entgegengesetzte Regulation zwischen OE1806R und OE1794R, welches sich zusammen mit *sirR* in einem Operon befindet (2.1.7.1.4). Bei einer Repression von OE1794R wird folglich eine Induktion von OE1806R beobachtet und umgekehrt.

2.1.7.1.2 Aminosäure-Metabolismus

Das für die Glutamin-Synthetase kodierende Gen *glnA*, ist das direkte Nachbar-Gen von *lrp*. *GlnA* wurde in Δlrp reprimiert und als Folge einer *lrp*-Überexpression induziert (Tab. 10, Abb. 29). Die Regulation der Expression des Glutamin-Synthetase-Gens, weist Lrp eine zentrale Rolle in der Stickstoff-Assimilation zu, wobei über die beiden Stickstoff-Donoren Glutamat und Glutamin Stickstoff in metabolische Prozesse eingeschleust wird (Merrick und Edwards, 1995). Der Einfluss von Lrp auf den Stickstoff-Metabolismus konnte durch die Induktion der *glnA* Expression bereits in *H. salinarum* NRC-1 (Bonneau *et al.*, 2007), wie auch in *E. coli* bestätigt werden (Calvo und Matthews, 1994).

2.1.7.1.3 Zentraler Intermediärmetabolismus

Weitere reziproke Effekte einer *lrp*-Überexpression und einer *lrp*-Deletion wurden für die Gene *korA* und *korB*, welche für den Oxoglutarat-Oxidoreduktase Komplex, ein Enzym des TCA-Zyklus, kodieren, wie auch für das Glycerol-Dehydrogenase-Gen *gldA1* gezeigt
(Tab. 10, Abb. 29). Außerdem wurde im Zuge einer *lrp*-Überexpression eine schwache Induktion des Glutamat-Dehydrogenase-Gens *gdhA2* (OE2728R; Anhang) gefunden.

GdhA2 katalysiert die reversible Desaminierung von L-Glutamat zu Oxoglutarat und KorAB die oxidative Decarboxylierung von Oxoglutarat und dessen anschließende Umsetzung mit CoA zum Succinyl-CoA.

Die Tatsache, dass *korAB* durch Lrp induziert wird, lässt darauf schließen, dass es sich hierbei um einen geschwindigkeitsbestimmenden Schritt des TCA-Zyklus handelt. Das hat möglicherweise einen Einfluss auf das Oxoglutarat/Glutamat-Gleichgewicht und würde damit den Auf- bzw. Abbau von Glutamat beeinflussen. Im Zuge der Mikroarray-Analyse konnte eine Induktion des Glutamat-Metabolismus durch Lrp gezeigt werden. Glutamat kann über die Glutamat-Dehydrogenase GdhA2 in den TCA Zyklus eingespeist werden und anschließend über KorAB verstoffwechselt werden, um entweder weitere Metabolite zu generieren oder Reduktionsäquivalente bereit zu stellen. Außerdem wird die Synthese von Glutamin aus Glutamat über eine Induktion des Glutamat in *H. salinarum* in einer hohen intrazellulären Konzentration von 50-100 mM als kompatibler Osmolyt vorliegt (Desmarais *et al.*, 1997; Kokoeva *et al.*, 2002). Die hohe Glutamat Konzentration stellt somit auch ein Kohlenstoff-Reservoir dar, welches bei Bedarf in andere Metaboliten, z.B. Aminosäuren umgewandelt werden kann.

In $\Delta troR$ wie auch unter Eisenmangel wurden die Gene *korAB* reprimiert. Da jedoch in $\Delta troR$ das Regulatorgen *lrp* schwach induziert war, würde man in $\Delta troR$ eine Induktion der *korAB* Gene erwarten. Das Expressionsniveau von Lrp in $\Delta troR$ reicht offensichtlich nicht aus, um den gleichen Effekt wie in einem *lrp*-Überexpressionsstamm hervorzurufen. In $\Delta troR$ und unter Eisenmangel wird der TCA-Zyklus reprimiert, was einen verringerten Energieumsatz zur Folge hat. Gleichzeitig wird die Synthese von Glutamat/Glutamin reduziert (2.1.6.1.2).

Eine Repression des Glycerol-Dehydrogenase-Gens *gldA1* durch Lrp bedeutet, dass weniger Glycerol zu Dihydroxyaceton (DHA) umgewandelt wird. Glycerol kann entweder in Dihydroxyacetonphosphat (DHAP) umgewandelt, oder direkt zu DHA oxidiert werden. Eine anschließende Umwandlung von DHA in DHAP scheint nicht möglich zu sein, da noch keine entsprechende Kinase zugewiesen wurde (Falb *et al.*, 2008). Wie DHA weiter verwendet wird, ist derzeit noch nicht geklärt.

2.1.7.1.4 Transkriptionsregulator

Für sirR, welches einen metallabhängigen Transkriptionsregulator kodiert, konnte in der Δlrp -Deletionsmutante Induktion und bei einer Lrp-Überexpression Repression nachgewiesen werden (Tab. 10, Abb. 29). Diese Daten zeigen, dass Lrp über die Regulation von SirR Einfluss auf die metallabhängige Transkription hat. Da sich sirR gemeinsam mit OE1794R in einem Operon befindet, wurde auf eine mögliche Koregulation der beiden Gene geachtet. Bei einer Überexpression von Lrp konnte ein solcher Effekt beobachtet werden. In Δlrp wurde hingegen kein Signal für OE1794R detektiert, das auf eine gemeinsame Regulation der beiden Gene hingewiesen hätte. Eine Koregulation von sirR und OE1794R Deletionsmutante $\Delta lrpA1$, wie auch in war sowohl in der einem LrpA1-Überexpressionsstamm zu beobachtet. Hier erfolgte für sirR und OE1794R in beiden Stämmen eine Induktion. Unter Eisenmangel wurde nur OE1794R induziert vorgefunden (2.1.5.1). SirR gehörte hier nicht zu den signifikant regulierten Genen. Vermutlich spielt OE1794R neben dem Regulatorprotein SirR in metallabhängigen Prozessen eine Rolle. In H. salinarum zählt OE1794R zu den konservierten, hypothetischen Proteinen. Nach einer BLAST-Analyse konnte OE1794R einer noch nicht charakterisierten Proteinfamilie UPF0016 zugeordnet werden. Diese Familie enthält integrale Membranproteine von noch unbekannter Funktion. Die meisten Mitglieder dieser Familie enthalten 2 Kopien einer Region mit einem EXGD-Motiv, die jeweils 3 Transmembranregionen enthält. Für OE1794R wurde ein EXGD-Motiv identifiziert.

Das Gen für den basalen Transkriptionsfaktor *tfbF* wurde als Folge einer Lrp-Überexpression induziert und in der Δlrp -Deletionsmutante reprimiert (Tab. 10, Abb. 29). In *H. salinarum* NRC-1 wird beschrieben, dass TfbF entweder direkt oder indirekt die Transkription von 181 Genen kontrolliert (Bonneau *et al.*, 2007).

Weitere entgegengesetzt regulierte Gene kodieren für Untereinheiten der RNA-Polymerase, für das "transducer"-Protein Car, wie auch für eine Serinprotease (Tab. 10, Abb. 29).

2.1.7.2 Mögliche direkte Zielgene von LrpA1

Die *lrpA1*-Überexpression wurde durch den Datensatz des $\uparrow lrpA1$ / R1-Mikroarray Experiments bestätigt. Für *lrpA1* konnte eine 24fache Induktion auf Transkriptionsebene nachgewiesen werden. 96 Gene wurden als reguliert und weitere 124 Gene als schwach reguliert identifiziert. Im Volcano-Plot sind alle anhand des $\uparrow lrpA1$ / R1-MikroarrayExperiments detektierten Gene dargestellt (Abb. 16). Nur Gene, welche in der $\Delta lrpA1$ -Deletionsmutante und im *lrpA1*-Überexpressionsstamm reziprok reguliert waren, wurden zur Analyse möglicher LrpA1-Zielgene herangezogen (Tab. 11).

Tab. 11 Gegenüberstellung der differentiell exprimierten Gene einer $\Delta lrpA1$ -Deletionsmutante und eines $\uparrow lrpA1$ -Überexpressionsstammes

∆IrpA1	↑IrpA1			
xfach	xfach	Gen	Funktions- klasse	Genname
etabolism	us (AA)			
5.1	-1.2	aspB3	AA	Aspartat-Transaminase
TC)				
1.4	-2.4	tfbB	TC	Transkriptionsinitiationsfaktor TFB
(MIS)				
6.7	-6.3	-	MIS	konserviertes hypothetisches Protein
	∆ <i>IrpA1</i> xfach etabolism 5.1 TC) 1.4 (MIS) 6.7	△ <i>IrpA1</i> ↑ <i>IrpA1</i> xfach xfach etabolismus (AA) 5.1 -1.2 TC) 1.4 -2.4 (MIS) 6.7 -6.3	△IrpA1 ↑IrpA1 xfach xfach Gen etabolismus (AA) 5.1 -1.2 aspB3 TC) 1.4 -2.4 tfbB (MIS) 6.7 -6.3 -	∆IrpA1 ↑IrpA1 xfach xfach Gen Funktions-klasse etabolismus (AA) 5.1 -1.2 aspB3 AA TC) 1.4 -2.4 tfbB TC (MIS) 6.7 -6.3 - MIS

LrpA1 fungiert als Repressor folgender Zielgene: Das am stärksten reprimierte Gen OE6130F kodiert für ein konserviertes hypothetisches Protein. Für das direkte Nachbar-Gen von *lrpA1, aspB3*, welches für eine Aspartat-Transaminase kodiert, konnte eine sehr schwache Repression der Genexpression durch LrpA1 gezeigt werden. Dieses Gen wird jedoch in der Auswertung berücksichtigt, da *aspB3* in der $\Delta lrpA1$ -Deletionsmutante als stark induziert vorlag. Dies könnte einen möglichen Hinweis auf eine Transkriptionskontrolle der *aspB3*-Genexpression durch LrpA1 darstellen. Zusätzlich wurde das basale Transkriptionsregulator-Gen *tfbB* als reprimiert beobachtet.

2.1.7.3 Zusammenfassung der Regulation Lrp-homologer Regulatoren

Eine Übersicht der möglichen Funktionen Lrp-ähnlicher Regulatoren in H. salinarum R1 ist in Abb. 29 dargestellt. Lrp fungiert sowohl als Aktivator, als auch als Repressor der Transkription. Neben Regulation Transportprozessen, der von des zentralen Intermediärmetabolismus und des Aminosäure-Metabolismus ist Lrp auch an der Aktivierung von Transkriptionsregulatoren beteiligt. LrpA1 hingegen scheint die Repression spezifischer Gene zu bewirken. Beide Proteine sind an der Regulation des Aminosäure-Metabolismus beteiligt, wobei Lrp die Expression des Glutamin-Synthetase-Gens glnA induziert, welche aus Glutamat Glutamin synthetisiert. LrpA1 hingegen reprimiert die Genexpression von aspB3, welches für eine Aspartat-Transaminase kodiert. In H. salinarum gehört Aspartat zu jenen Aminosäuren die in der frühen stationären Phase bereits metabolisiert sind (Gonzalez et al., 2007). Als Folge wird die Aspartat-Transaminase (aspB3) Expression durch LrpA1 induziert, um durch eine Transaminierungsreaktion Aspartat aus Glutamat zu gewinnen.

Abb. 29 Übersicht der Regulationsprozesse von Lrp und LrpA1 Rote Pfeile stehen für Induktion und grüne Pfeile für Repression des entsprechenden Zielgens. Die grauen Pfeile bedeuten, dass es sich hier vermutlich um direkte Effekte des entsprechenden Lrp-Homologs handelt.

2.1.8 Verifizierung der Mikroarray Daten anhand RT-qPCR

Die Mikroarray-Analyse lieferte eine Übersicht über sämtliche differentiell exprimierten Gene. Um diese mRNA Proben zu quantifizieren, erfolgte eine Reverse Transkription mit einer anschließenden quantitativen PCR (RT-qPCR =,,reverse transcription-quantitative PCR"). Dabei wurden einzelne Gene der Mikroarray-Datensätze $\Delta lrpA1 / R1$, $\Delta sirR / R1$ wie auch von $\Delta troR / R1$ ausgewählt, die von biologischer Relevanz waren. Sowohl für die Mikroarray-Experimente, als auch für die RT-qPCR wurden die gleichen RNA-Proben eingesetzt. Dabei verglich man die Deletionsmutanten mit dem Parentalstamm. Für jedes biologische Replikat erfolgte mindestens ein RT-qPCR Experiment. Die in cDNA umgeschriebene RNA wurde mittels qPCR amplifiziert, wobei ein fluoreszierender Farbstoff ("SYBR[®]Green") in die DNA eingelagert wurde. Um einen zuverlässigeren C_T-Wert (,,cycle threshold") für die entsprechende cDNA zu bekommen, wurde aus einem dreifachen Ansatz gemittelt. Eine differentielle Expression des Gens A in der Deletionsmutante im Vergleich zu Gen A im Parentalstamm wurde als xfache Expression mit Hilfe des $\Delta\Delta C_{T}$ -Wertes angegeben. Die 2^{- $\Delta\Delta CT$}-Methode macht eine relative Quantifizierung der erhaltenen Daten möglich, wobei ein konstant exprimiertes Gen ("Haushaltsgen") als interner Standard notwendig ist (Livak und Schmittgen, 2001). In *H. salinarum* wird häufig das Ferredoxin-Gen *fdx*, als so genanntes Haushaltsgen verwendet (Aregger, 2003). Im Zusammenhang mit der Analyse metallabhängiger Regulationsprozesse erweist sich jedoch das *fdx* Gen als ungeeignet, da dieses selbst in metallabhängigen Prozessen reguliert wird. Deshalb wurde als interner Standard das Glykoprotein OE4759R verwendet, da dieses konstant exprimiert wird.

12 Orgenwersteinung wei ihr 41 ein zwein und wei istin owrite, zwein							
ID	Gen	Genname	xfach	xfach			
ΔIrpA1 /R1			RT-qPCR	Mikroarray			
OE2619F	aspB3	Aspartat-Transaminase	19	5.1			
OE6130F	-	konserviertes hypothetisches Protein	28	6.7			
<i>∆sirR</i> /R1			RT-qPCR	Mikroarray			
OE2906R	sod2	Superoxiddismutase	3.3	2.1			
OE5144R	-	ABC-Transporter Permease	130.7	3.2			
OE5146R	-	ABC-Transporter ATP-Bindeprotein	45.0	2.1			
OE5147R	-	ABC-Transporter Substrat-Bindeprotein	145.4	3.2			
ΔtroR /R1			RT-qPCR	Mikroarray			
OE4593R	-	ABC-Transporter Substrat-Bindeprotein	26.9	9.8			
OE2906R	sod2	Superoxiddismutase	4.3	2.8			
OE3556R	carA	Carbamylphosphat-Synthase UE-A	-8.7	-4.3			
Kontrollen (Dele	RT-qPCR	Mikroarray					
OE3923F	Irp	Transkriptionsregulator	-7181.3	-8.8			
OE2621R	IrpA1	Transkriptionsregulator	-1168.1	-3.2			
OE1797R	sirR	Transkriptionsregulator	- 15073.9	-3.0			
OE1787F	troR	Transkriptionsregulator	-81.6	-2.0			

Tab. 12 Gegenüberstellung der RT-qPCR-Daten und der Mikroarray-Daten

Für beide Methoden konnte der gleiche Trend in Richtung Induktion bzw. Repression eines Gens beobachtet werden, jedoch konnte keine Aussage über die tatsächliche Transkriptmenge getroffen werden. Zu Kontrollzwecken wurde die RT-qPCR auch für die deletierten Gene durchgeführt (Tab. 12, Kontrollen). In den Deletionsmutanten lieferten mögliche DNA-Kontaminationen oder Kreuzhybridisierungen ein Hintergrundsignal und erklären die extrem negativen Werte für das deletierte Gen, obwohl man theoretisch einen Wert von 0 erwarten würde. Im Fall von *troR* liegt der Faktor -81.6 jedoch im Bereich regulierter Gene (Tab. 12, Kontrollen). Hier könnte aufgrund einer sehr schwachen Expression des Gens *troR* im Parentalstamm der relativ niedrige Wert bei einem Vergleich zur $\Delta troR$ -Deletionsmutante erklärt werden.

Auffällig sind die extrem starken Schwankungen der $\Delta\Delta C_T$ -Werte der RT-qPCR im Vergleich zu den Regulationsfaktoren der Mikroarrays (Tab. 12). In beiden Fällen wurde in einem ersten Schritt mit Hilfe von Random Primern die reverse Transkription gestartet,

welche eine homogene cDNA mit einer ungefähren Größe von 300bp lieferte (Daten nicht dargestellt). Im weiteren Verlauf unterscheiden sich die beiden Methoden technisch voneinander und lieferten wahrscheinlich aus diesem Grund die stark unterschiedlichen Werte. Außerdem wurde beobachtet, dass in Abhängigkeit von der Wahl der Primer für ein bestimmtes Gen ein unterschiedlich starkes Signal in der RT-qPCR erhalten wurde. Die Position der Primer muss so ausgewählt werden, dass aufgrund einer möglichen mRNA Degradation das Signal nicht verloren geht. Ein typisches Beispiel war das ABC-Transportergen OE5147F.

Eine weitere Erklärung für die Differenz der Regulationsfaktoren der $\Delta\Delta C_T$ -Werte der RTqPCR im Vergleich zu den Regulationsfaktoren der Mikroarrays könnte DNA in den mRNA Proben sein, die das Signal auf den DNA-Mikroarrays abschwächen. Zusätzlich ist eine Kreuzhybridisierung zwischen Genen, die einer gemeinsamen Proteinfamilie angehören oder allgemein Ähnlichkeiten in ihrer Sequenz haben ein weiteres Problem bei DNA-Mikroarrays. Die Verwendung von so genannten Oligonukleotid-Sonden mit einer Länge von ca. 60 Nukleotiden minimiert das Problem von Kreuzhybridisierungen. Die Sonden werden so ausgewählt, dass sie einzigartige Regionen von Genen beinhalten und die Kreuzhybridisierung zwischen Genen möglichst gering gehalten wird.

Bei den Mikroarrays wurden im Zuge der cDNA-Synthese die Fluoreszenzfarbstoffe (Cy5 bzw. Cy3) eingebaut, wobei ausschließlich fluoreszenzmarkierte dUTPs und keine nicht markierten dUTPs in die cDNA eingebaut wurden. Da jedoch Cy5 im Zuge der reversen Transkription schlechter in die cDNA inkooperiert wird als Cy3 wurde ein Farbwechsel oder "dye-swap" durchgeführt um Schwankungen in den Fluoreszenzintensitäten zu eliminieren (Wu und Dewey, 2006) (2.1).

Während bei den Mikroarrays anschließend eine Hybridisierungsreaktion der markierten cDNA mit den gesamten Gensonden auf einem Chip stattfand, wurde bei der RT-qPCR die relative Transkriptmenge für ein spezifisches Gen untersucht.

TEIL II Protein-DNA-Interaktionen

2.2 Protein-DNA-Interaktionen

In der Genregulation spielen Protein-DNA-Interaktionen eine entscheidende Rolle. Das Regulatorprotein bindet an so genannte DNA-Bindemotive in der jeweiligen Promotorsequenz des zu regulierenden Gens. Zur Durchführung von Protein-DNA-Wechselwirkungsstudien sind einerseits genaue Kenntnisse über den Transkriptionsstart erforderlich und eine Identifizierung möglicher DNA-Bindemotive. Andererseits muss das Regulatorprotein in seiner nativen Form vorliegen, um an DNA zu binden. Detaillierte Studien zu Protein-DNA-Interaktionen wurden mit den beiden Transkriptionsregulatoren LrpA1 und TroR durchgeführt.

2.2.1 Bestimmung der 5'- und 3'-Enden von Transkripten

Mit Hilfe von RACE (,,<u>rapid a</u>mplification of <u>c</u>DNA <u>e</u>nds"), basierend auf der Zirkularisierung von RNA (3.3.18), konnten jeweils die 5′- und 3′-Enden der Transkripte *lrpA1*, *aspB3*, *sirR* und eines ABC-Transporters bestimmt werden.

2.2.1.1 Bestimmung der 5'-und 3'-Enden des *lrpA1*-Transkripts

2.2.1.1.1 Anordnung der Gene lrpA1 und aspB3 im Genom von H. salinarum

In *H. salinarum* sind die Gene *lrpA1* und *aspB3* antiparallel orientiert und überlappen sich in einer Sequenz von 7 bp (Abb. 30). Die Anordnung eines *lrp*-Gens überlappend mit einem *asp*-Gen konnte ebenfalls für die halophilen Organismen *Natronomonas pharaonis*, *Haloquadratum walsbyi* und *Haloarcula marismortui* beobachtet werden (Abb. 30). Die beiden Gene sind in diesen Fällen parallel zueinander orientiert und besitzen einen gemeinsamen Promotor. In *H. salinarum* hingegen existieren durch die antiparallele Orientierung zwei getrennte Promotoren für die Gene *lrpA1* und *aspB3*.

Es kommt nicht selten vor, dass eines von zwei Genen, die sich in direkter Nachbarschaft befinden, für ein Regulatorprotein kodiert (Jacob und Monod, 1961). Das Genprodukt kann entweder als Repressor oder Aktivator des Nachbar-Gens fungieren. Zumal es sich bei Lrp-Homologen um DNA-bindende Regulatorproteine handelt (Calvo und Matthews, 1994), ist anzunehmen, dass LrpA1 aufgrund seiner räumlichen Nähe zu *aspB3* einen Einfluss auf die Transkription des Asparat-Transaminase-Gens *aspB3* hat. Als Beispiel für

Transkriptionskontrollen räumlich benachbarter Gene sei hier das Lysin-Biosyntheseoperon aus *S. solfataricus* erwähnt. Dabei reguliert das Lrp-Homolog LysM, das selbst in einem Operon *lysYZM* kodiert wird, die Expression des parallel dazu orientierten Nachbaroperons *lysWXJK* (Brinkman *et al.*, 2002).

Abb. 30 Anordnung der Gene lrpA1 und aspB3

Überlappung der offenen Leserahmen von *lrpA1* und *aspB3* in *H. salinarum*. Genanordnung von *lrp* und *asp* in den halophilen Organismen *N. pharaonis, H. marismortui* und *H. walsbyi*. Promotorbereiche von *lrpA1* und *aspB3* in *H. salinarum* sind hervorgehoben und schwarz umrahmt.

2.2.1.1.2 5'UTR und 3'UTR des *lrpA1*-Transkripts

LrpA1 wird als mRNA ohne "leader"-Sequenz transkribiert, wobei das Transkript am ersten G des Startcodons GUG beginnt (Abb. 31). Archaeen und Bakterien verwenden neben AUG, GUG und UUG als Startcodon, wenn auch seltener. Ein Übereinstimmen des Transkriptionsstarts mit dem Translationsstart kommt in halophilen Archaeen häufig vor (Brenneis *et al.*, 2007) und konnte ebenfalls für *H. salinarum lrp* gezeigt werden (Schwarz, 2009); Abb. 31). Die Position der TATA-Box (-27 bp) und des BRE-Elements sind in Abb.

31 eingezeichnet, wie auch eine mögliche Bindestellen für Regulatorproteine (Abb. 31; violett unterstrichen). Außerdem befinden sich an der Position -11/-10 zwei Adenine (-11/-10-Motiv Abb. 31), welche ein weiteres Element des basalen-Promotors darstellen (Brenneis *et al.*, 2007). Die 3'UTR-Region von *lrpA1* ist in einem Sequenzabschnitt von 25 bp komplementär zu *aspB3*. Dies war anzunehmen, da die Gene *lrpA1* und *aspB3* in einer Sequenz von 7 bp überlappen (Abb. 30). Es konnte jedoch keine uridinreiche Terminatorsequenz im 3'UTR von *lrpA1* identifiziert werden (Abb. 32).

2.2.1.2 5'-und 3'-Enden weiterer Transkripte

2.2.1.2.1 aspB3-Transkript

Für das Aspartat-Transaminase (*aspB3*) Transkript konnte eine 5'-,,leader"-Sequenz von 31 bp bestimmt werden (Abb. 31). Jedoch befindet sich an der Position -25 bis -30 keine TATA-ähnliche Sequenz. Ein bereits bekanntes Beispiel für einen funktionsfähigen Promotor ohne TATA-ähnliche Sequenz ist der Bacteriorhodopsin Promotor (Dunn *et al.*, 1981). An den Positionen -11/-10 wurde im *aspB3*-Promotor ein AT Motiv identifiziert, was nach neuesten Kenntnissen zum basalen-Promotor gehört und für die Bindung von TFB und der Rekrutierung der RNA-Polymerase verantwortlich sein könnte. Im 5' UTR von *aspB3* konnte keine Homologie zu einer Shine-Dalgarno Sequenz festgestellt werden (Abb. 31). In halophilen Organismen wird die Möglichkeit einer Translationsinitiation mittels eines Weges postuliert, der unabhängig von einer Shine-Dalgarno Sequenz ist (Brenneis *et al.*, 2007). Das 3'-Ende des *aspB3*-Transkripts enthält eine 126 bp lange Terminationssequenz, welche komplementär zum 3'-Ende des *lrpA1* Gens ist (Abb. 32; siehe auch 3'UTR von lrpA1 (2.2.1.1)). Es wurde keine Sequenz identifiziert, welche als mögliches Terminationssignal dienen kann.

Abb. 31 Promotorbereiche von lrpA1, lrp, aspB3, sirR und des ABC-Transportoperons (ABC-TP)

Der Transkriptionsstart ist durch einen Pfeil gekennzeichnet, das Startcodon ist unterstrichen. TATA-Box, BRE-Element und -11/-10 Motiv sind umrahmt. 5'UTRs sind kursiv dargestellt und grau unterlegt. Mögliche DNA-Bindemotive sind violett unterstrichen.

3´ UTR

lrpA1	<u>UGA</u> GCGUCGUGGCGCGAGCACAGC
aspB3	UGA $GGCGUUCCUGGAGGAACGAGGGGGGGGGGGGGCGGCCGUGACGCCGUCGAUAGCCAAAACCUCGCGC$ $UGAUCACGUCACCGAGCGCAUCCCCGUCGGCGGCCCGUACCUCCGCCAUCAGCAUGUGAUCGCC$
sirR	<u>UGA</u> GCGCGUUCACGGAAGUCCUGACGCUCGCGUUCGUCACGCAACUCGCAGCGCUCCCGGGCGAA AAGGUCCAGUUCAUCAUCGCCAGCCUCAGCACC
ABC-TP	<mark>UGA</mark> GCCACUGCUACUCGCCGGCGACGAGACAGUCUCCGUCACGCUGUUCGCGUGACGGCAGUGCG GCACGCGACCGCCACGCCA

Abb. 32 3 UTRs von *lrpA1*, aspB3, sirR und des ABC-Transportoperons (ABC-TP)

Die Stopcodons sind unterstrichen. Die Terminatorsequenzen sind kursiv dargestellt und grau unterlegt.

2.2.1.2.2 sirR-Transkript

SirR wird als "leaderless"-mRNA transkribiert. Der Transkriptionsstart beginnt 6 Nukleotide stromaufwärts vom ATG (Abb. 31). Erst ab einer Länge von mehr als 10 Nukleotiden im 5' UTR einer mRNA wird von einer so genannten "leader"-Sequenz gesprochen (Brenneis *et al.*, 2007). Die TATA-Box zentriert sich im Bereich -27/-26 mit einem daran angrenzenden BRE-Element. Zusätzlich wurde das -10/-11 Motiv identifiziert (Abb. 31). Der 3' UTR-Bereich hat eine Länge von 95 bp und enthält kein uridinreiches Motiv, welches auf ein Terminationssignal schließen lässt (Abb. 32). Auffällig war im Bereich des *sirR*-Promotors eine Palindromsequenz von 16 nt (5'-TTTAGATGCATCTAAA-3'; violett unterstrichen in Abb. 31). Eine derartige Sequenz im Promotorbereich stellt mit großer Wahrscheinlichkeit ein DNA-Bindemotiv dar. Auch für das Operon *sitABC* in *S. epidermis* wird eine Palindromsequenz im Promotorbereich als Bindestelle für das Regulatorproteine SirR gezeigt (Hill *et al.*, 1998).

2.2.1.2.3 Transkript des ABC-Transporteroperons

Mit Hilfe der Mikroarray-Analyse wie auch mit RT-qPCR konnte bei einem Vergleich von $\Delta sirR$ mit dem Parentalstamm für das ABC-Transportoperon (OE5146R, OE5147R, OE5144R) die stärkste Induktion in einem $\Delta sirR$ - Deletionsstamm gezeigt werden (Tab. 8, Tab. 12). Diese Daten korrelierten mit jenen von *H. salinarum* NRC-1, wo dem Regulatorprotein SirR bereits die Funktion eines Repressors des ABC-Transportoperons zugewiesen wird (Kaur *et al.*, 2006). Daher lag es nahe, anzunehmen, dass SirR in R1 unter Standardbedingungen als Repressor des ABC-Transportoperons fungieren könnte (siehe auch metallabhängiges Regulationsmodell in Abb. 28).

Das ABC-Transportoperon wird als "leaderless"-mRNA transkribiert (Abb. 31). Im 5' UTR befinden sich 4 Nukleotide vor dem Startcodon ATG (Abb. 31). Die TATA-Box ist im Bereich -27/-26 lokalisiert. Das daran angrenzende BRE-Element, wie auch ein -10/-11 Motiv konnten nicht eindeutig identifiziert werden. Weiter stromaufwärts befindet sich eine Palindromsequenz (Abb. 31), welches eine mögliche Bindestelle für SirR sein könnte.

Die Terminatorsequenz des 2822 bp langen ABC-Transportoperons hat eine Länge von 114 bp (Abb. 32). Auffällig ist auch hier das Fehlen eines Terminationssignals. Als Kontrolle, ob die Gene des ABC-Transporters tatsächlich in einem Operon kodiert werden, wurde ein Primer so gewählt, dass dieser sich bereits im 5' UTR der kodierenden Sequenz des nächsten Gens befindet. Es konnte bestätigt werden, dass der 3' UTR-Bereich des einen

Gens bereits mit dem 5' UTR des nächsten Gens überlappt und dass sich zwischen beiden Genen keine Promotorsequenz befindet.

Mit Ausnahme des *aspB3*-Transkripts, handelt es sich hier um Transkripte ohne einer 5'-"leader"-Sequenz. Für Haloarchaea konnte mittels Reporterstudien die regulatorische Funktion des 5' UTR-Bereichs bereits gezeigt werden (Brenneis und Soppa, 2009). Hier bewirkte die Fusion eines 5'Endes an ein Reporter-Transkript eine verminderte Translationseffizienz (Brenneis und Soppa, 2009). Für das *aspB3*-Transkript könnte das bedeuten, das aufgrund der 5'-"leader"-Sequenz die mRNA mit einer geringeren Effizienz translatiert wird bzw. *aspB3* einer strengeren Translationskontrolle unterliegt.

Die 3'Enden der Transkripte variierten zwischen 25 und 126 bp (Abb. 32). Ähnliche Transkriptlängen wurden in Haloarchaea bereits gefunden (Brenneis *et al.*, 2007). Eine uridinreiche Terminatorsequenz konnte für kein 3'Ende gezeigt werden. Allgemein wird die Transkriptionstermination bzw. die Rolle der 3' UTRs in Haloarchaea noch wenig verstanden. Eine mögliche Rolle der 3' UTRs im Zusammenhang mit der Translationseffizienz wurde kürzlich postuliert (Brenneis und Soppa, 2009).

2.2.2 Bioinformatische Charakterisierung von DNA-Bindeproteinen

2.2.2.1 Sequenzvergleich von archaealen und bakteriellen Lrp-Proteinen

Das Genom von *H. salinarum* R1 kodiert acht Lrp-Homologe. Im Rahmen dieser Arbeit wurden Untersuchungen an Lrp (OE3923F), einem 16.7 kDa Protein und LrpA1 (OE2621R), einem 15.2 kDa Protein vorgenommen. Sowohl *lrp*, als auch *lrpA1* befinden sich direkt neben Genen, welche für Proteine kodieren, die eine Rolle im Aminosäure-Metabolismus spielen. Diese wurden daher zur weiteren Charakterisierung ausgewählt.

Abb. 33 zeigt einen Aminosäure-Sequenzvergleich von LrpA1 mit archaealen und bakteriellen Lrp-Homologen. Basierend auf der Struktur von Lrp/AsnC-Homologen wurden mögliche α -Helices und β -Faltblätter von Lrp und LrpA1 aus *H. salinarum* vorhergesagt (Abb. 33).

			helix-	RAM		
	An		αB	ΩD	ß1	B2
				AAAAAA		P2
		20	7-7 - 7	40	60	201
0E2621R	MSTESTEERIL	ALEEDAQAS	YAAIAERADV	SKPTVRKYIDQLESDG	VIVGYSADVDPKKLSC	GSIAMVGIDV
PF1601	MIDERDKIILE	EILEKDARTP	FTEIAKKLGI	SETAVRKRVKALEEKG	IIEGYTIKINPKKLGY	SLVTITGVDT
MJ0723	MDEKDLKII	EILMRDGRKS	YTDIARELGT	SESSIRKRVKKLEEEG	VIKGYTAIIDPSKIGY	NVVALTGFDT
HQ3354A	MEVTSTEGRILI	OVLEDDAQAS	YAEIAKRADV	SKPTVRKYIRKMEEEG	VIVGYSADVDPKKLSE	TSIAVVGLDV
0E3923F	MTYENLDVKLVM	NELLGDGRAS	LRSLADDLDV	SVTTVSNHLQTLEDEG	AVNGYTPVVDYERLGY	DVTAILQLKV
SS00157	MGNANIDESDLKILE	ILKKNARTP	YTLIAKELKV	SEAAIRKRIEKLIRQG	IIKRFTIEYELENEI-	RAIVMVQS
BSU04250	MKLDQIDLNII	ELKKDSRLS	MRELGRKIKL	SPPSVTERVRQLESFG	IIKQYTLEVDQKKLGL	PVSCIVEATV
b0889	MVDSKKRPGKDLDRIDRNILM	NELQKDGRIS	NVELSKRVGL	SPTPCLERVRRLERQG	FIQGYTALLNPHYLDA	SLLVFVEITLNR
APEC01_2720	MENYLIDNLDRGILL	ALIMGNARIA	YAELAKQFGV	BPGTIHVRVEKMKQAG	LITGARIDVSPKQLGY	UVGCFIGIIL
	۵D	63	R4	٩F	R5 R6	
	uD	po	PT		po po	
	80	* **	**	120	* 140	
0E2621R	-ASE-OYVEATRTLOELDSV	DAL YSSSCOH	MI MAEVRAAD	GDAL GDVTSDEVLATD	GVTAAHPSELOERLK-	
PF1601	-KPE-KLFEVAEKLKEYDEV	KELYLSSCOH	MIMAVIWAKD	GEDLAEIISNKIGKIE	GVTKVOPATILEKLK-	
MJ0723	-EPD-KFLNVAKELCKFPEV	KVFTSTCDH	MIMTEIWAKD	GKEFSDLIFNKIGKIE	GIKKICPAIILEOMK-	
HQ3354A	-ASE-RYVEVTRTLRNLESI	ESLYTSSCDH	MLIAEVRAPD	GDALGDVISESVLDVD	GVTAAHPSFLQERLK-	
0E3923F	-DGT-ALPEITGTLRGHKQM	/SVYEITGDY	DVLAIGKFTD	TDDMNTLIKE-LLADA	DINESSTSVVLNAAAE	NEQFELDLDGDA
SS00157	-TPQIPTPEISKKIAKIPGV	EVVYETTCDY	DILVIVRGTN	ITSINRTI-DEIRSIQ	GVVGTNSTILLRTWF-	
BSU04250	-KNA-DYERFKSYIQTLPNI	EFCYRIAGAA	CYMLKINAES	LEAVEDFINKTSPYAQ	TVTHVIFSEIDTKNGR	(G
b0889	QAPD-VFEQFNTAVQKLEEI	DECHLVSCDF	DYLLKTRVPD	MSAYRKLLGETLLRLP	GVNDTRTYVVMEEVKC	SNRLVIKTR
APEC01_2720	-KSAKDYPSALAKLESLDEV	reayytt g hy	SIFIKVMCRS	IDALQHVLINKIQTID	DEIQSTETLIVLQNPIN	IRTIKP

Abb. 33 Aminosäure-Sequenzvergleich von archaealen und bakteriellen Lrp-Proteinen

Die Aminosäure-Sequenzen folgender Proteine wurden miteinander verglichen. Sekundärstrukturelemente sind als rote α -Helices und grüne β -Faltblätter angegeben. Die Abbildung wurde mit Hilfe des INDONESIA-Programms erstellt (D. Madsen, P. Johansson and G.J. Kleywegt Manuskript in Präparation). *H. salinarum* LrpA1 (OE2621R), *P. furiosus* LrpA (PF1601), *M. jannaschii* Ptr2 (MJ0723), ein Lrp-Homolog (HQ3354A) aus *H. walsbyi*, *H. salinarum* Lrp (OE3923F), *S. solfataricus* LysM (SSO0157), *B. subtilis* LrpC (BSU04250), *E. coli* AsnC (APECO1_2720) und *E. coli* Lrp (b0889). Bei den jeweiligen Proteinen ist in Klammer der zugehörige "locus tag" angegeben. Das HTH ("helix turn helix") DNA-Bindemotiv (α B- α C) und die RAM ("regulation of amino acid metabolism")-Domäne ($\beta 2\alpha D\beta 3\beta 4\alpha E\beta 5$) sind umrahmt. Aminosäuren sind entsprechend ihrer Sequenzkonservierung grau unterlegt. Konservierte Methionin (102)/Prolin (P134) Reste sind blau unterlegt. Reste von LrpA1 welche im LrpA1-Strukturmodell (Abb. 34) gezeigt werden sind durch einen Stern gekennzeichnet. Der AsnC-Effektor Komplex (APECO1_2720; rot umrahmt) ist in Abb. 34 als Strukturmodell dargestellt und beinhaltet die Aminosäuren Y100 bis I107, wie auch Q128, welche der Position Y96, I103 und Q124 in dieser Abbildung entsprechen.

LrpA1 hat die höchste Sequenzidentität (76%) mit dem Lrp-ähnlichen Regulator (HQ3354A) aus *Haloquadratum walsbyi*. Außerdem lieferte ein Vergleich zwischen LrpA1 und LrpA (PF1601) von *P. furiosus* eine Sequenzidentität von 38%, zu Ptr2 (MJ0723) von *M. jannaschii* 30%, zu LysM (SSO0157) aus *S. solfataricus* 21% und zu LrpC (BSU04250) aus *Bacillus subtilis* konnte eine Sequenzidentität von 24% gezeigt werden. *E. coli* Lrp (b0889) zeigte 23% und *E. coli* AsnC (APECO1_2720) zeigte 26% Sequenzidentität zu LrpA1.

Die geringe Sequenzidentität zwischen *H. salinarum* Lrp und LrpA1 lässt eine unterschiedliche regulatorische Funktion vermuten. Für Lrp und LrpA1 konnten im N-Terminus ein α B α C HTH-DNA-Bindemotiv und im C-Terminus eine konservierte $\beta\alpha\beta\beta\alpha\beta$ RAM–Domäne vorhergesagt werden (Abb. 33). Letztere ist in die allosterische Modulation von DNA-Bindungsaktivitäten involviert (Ettema *et al.*, 2002). Dass die Region zwischen β 3 und β 4 für eine Ligand Bindung verantwortlich ist, konnte bereits für *E. coli*

Lrp (Platko und Calvo, 1993) und *E. coli* AsnC (Thaw *et al.*, 2006) experimentell gezeigt werden.

Außerdem besitzen die RAM-Domänen der beiden Lrp-Homologe aus *H. salinarum* unterschiedliche konservierte Aminosäurereste, was einen Hinweis auf einen Unterschied in der Spezifität der Liganden liefert, wobei die RAM-Domäne zwischen LrpA1 und LrpA in *P. furiosus* stark konserviert ist. Für LrpA kann gezeigt werden, dass sich ein Oktamer aus einem Tetramer von Dimeren zusammensetzt. Dies geschieht jedoch unabhängig von einem Effektormolekül (Leonard *et al.*, 2001). Eine Oktamer-Formation ohne Einfluss der Effektor-Aminosäure Asparagin wird ebenfalls für *E. coli* AsnC beobachtet (Thaw *et al.*, 2006). Konservierte Aminosäurereste der Lrp-RAM hingegen weisen Sequenzhomologien zu LysM, einem Lrp-Homolog aus *S. solfataricus* auf. LysM ist an der Regulation der Lysin-Biosynthese beteiligt (Brinkman *et al.*, 2002).

2.2.2.2 Strukturmodell von LrpA1

Mitglieder der Lrp/AsnC-Familie interagieren mit DNA in Form eines Dimers oder Oligomers (Yokoyama *et al.*, 2005). Der jeweilige Oligomerisierungszustand kann durch die An- oder Abwesenheit eines Effektormoleküls beeinflusst werden. Dies konnte anhand von Studien über *E. coli* Lrp (Chen und Calvo, 2002) und *E. coli* AsnC (Thaw *et al.*, 2006) gezeigt werden. Außerdem können Aminosäuren auch eine Veränderung der Sekundärstruktur bewirken. Dies wurde für BkdR in *Pseudomonas putida* demonstriert. Dabei induzierte L-Valin eine Veränderung der Konformation und bewirkt anschließend eine Aktivierung der Expression des *bkd*-Operons (Madhusudhan *et al.*, 1997).

Im Fall von AsnC sind acht Asparagine in einem Oktamer gebunden, wobei sich das Oktamer aus einem Tetramer von Dimeren zusammensetzt. Die Bindestelle für Asparagin befindet sich an der AsnC–Dimer–Dimer Grenzfläche, welche sich jeweils aus den β -Faltblättern 3 und 4 des einen Monomers und β 5 eines weiteren Monomers zusammensetzt (Abb. 34; (Thaw *et al.*, 2006). Die Ausbildung eines stabilen Oktamers kann auch unabhängig von der Effektor-Aminosäure Asparagin stattfinden (Thaw *et al.*, 2006).

Einige konservierte Aminosäurereste von LrpA1 kolokalisieren mit der Asparagin-Bindestelle von AsnC. Anhand eines LrpA1-Homologiemodells konnten Unterschiede der putativen Effektor-Bindestelle im Vergleich zum *E. coli* AsnC festgestellt werden (Abb. 34). Zwei konservierte Seitenketten, M102 und P134 (Abb. 34, Abb. 33), blockieren vermutlich die AsnC-Bindungstasche in LrpA1. Dies ist ein Hinweis, dass eine potentielle LrpA1– Aspartat Bindung sich von der in AsnC unterscheiden muss.

Abb. 34 Strukturmodell von LrpA1

Superposition der putativen LrpA1 Aspartat-Bindestelle S96-L103 (blau) auf dem AsnC-Effektor Komplex weiß) Y100-I107. Die putative Aminosäure-Bindestelle befindet sich in der so genannten β 3 und β 4-Helix der RAM-Domäne (Abb. 33).

2.2.2.3 Sequenzvergleich von metallabhängigen Regulatoren

In *H. salinarum* wurden zwei putative Transkriptionsregulatoren SirR und TroR identifiziert, welche Homologie zu dem metallabhängigen Repressorprotein DtxR ("diphteria toxin repressor") aus *Corynebacterium diphteria* aufweisen. Die beiden Gene *sirR* und *troR* kodieren ein 24.9 kDa bzw. 15.6 kDa großes Protein.

Die Kristallstruktur des metallabhängigen Regulators DtxR aus *C. diphtheriae* ist bereits gelöst (Pohl *et al.*, 1998) und dessen DNA-Bindedomäne wie auch die Metallkoordinationsund Metallbindestellen sind identifiziert (Pohl *et al.*, 1998). Um mögliche konservierte Metallbindestellen in den Regulatorproteinen SirR und TroR zu identifizieren, wurde ein Aminosäure-Sequenzvergleich mit weiteren archaealen und bakteriellen metallabhängigen Regulatoren basierend auf der Struktur von DtxR durchgeführt (Abb. 35). Homologe wurden durch BLAST-Analyse identifiziert, wobei einmal SirR und einmal TroR als Referenz-Sequenz gewählt wurde. Die in DtxR identifizierten Metallkoordinations- und Metallbindestellen sind in Abb. 35 hervorgehoben.

Bei der Bestimmung der Prozentzahl an Sequenzidentitäten wurde sowohl SirR als auch TroR mit allen Sequenzen verglichen (Abb. 35). SirR wies zu dem DtxR-Homolog aus *Roseiflexus castenholzii* (Rcas_3322) mit 43 % Sequenzidentität die höchste Homologie auf (Abb. 35). Bei einem Vergleich von SirR mit anderen halophilen Vertreten konnte für ein SirR-Homolog aus *H. walsby* (HQ1563A) die stärkste Übereinstimmung der beiden Aminosäuresequenzen beobachtet werden (Abb. 35).

TroR hatte mit 61 % die stärkste Homologie zu einem SirR-Homolog aus *H. walsby* (HQ1710A) und mit nur 25 % Sequenzidentiät zu dem bakteriellen DtxR aus *C. diphteriae*.

Die beiden Proteine SirR und TroR hatten untereinander eine 31 %ige Sequenzidentität.

In allen untersuchten metallabhängigen Transkriptionsregulatorsequenzen sind die Aminosäuren im Bereich der Metallkoordinations- und Metallbindestellen hoch konserviert (Abb. 35). Außerdem ist ein Sequenzabschnitt im Bereich der N-Termini, für die ein DNAbindendes HTH-Motiv vorhergesagt werden kann, stark konserviert (Abb. 35).

Metallbindestelle

Abb. 35 Sequenzvergleich von H. salinarum TroR und SirR aus verschiedenen Archaeen und Bakterien Der auf der Struktur basierende Aminosäuresequenz-Vergleich wurde mit Hilfe des INDONESIA-Programms erstellt (D. Madsen, P. Johansson and G.J. Kleywegt Manuskript in Präparation). wobei Sekundärstrukturelemente als rote α -Helix und grünes β -Faltblatt dargestellt sind; DtxR aus Corynebacterium diphtheriae (DIP1414), SirR aus H. salinarum (OE1797R), SirR-Homolog aus H. walsby (HQ1710A), metallabhängiger Regulator aus Chloroflexus aggregans (CaggDRAFT 0622), DtxR-Homolog aus Roseiflexus castenholzii (Rcas_3322), TroR aus H. salinarum (OE1787F), SirR-Homolog aus H. marismortui (rrnAC1825), metallabhängiger Regulator aus Halobacterium sp. NRC-1 (VNG0835G), metallabhängiger Regulator aus Methanococcus maripalidus (MmarcC7 1655), metallabhängiger Regulator aus Rubrobacter xylanophilus (Rxyl 0653), SirR-Homolog aus H. walsby (HQ1563A), metallabhängiger Regulator aus Archaeoglobus fulgidus (AF1984). Die jeweiligen Proteine sind mit ihrem "locus tag" (in Klammer) angegeben. Basierend auf der Kristallstruktur von DtxR (DIP1414) wurde die DNA-bindende HTH-Domäne im Bereich der Helices αB und αC eingerahmt, wie auch die Metallkoordinations- bzw. Metallbindestellen (αE) durch Pfeile gekennzeichnet.

Für DtxR setzten sich die Metallkoordinations- und Metallbindestellen ausschließlich aus den geladenen Aminosäuren Cystein, Glutamat und aus zwei Histidinen zusammen (Pohl *et al.*, 1998). An dieser Position wurden für SirR ebenfalls geladene Aminosäuren identifiziert (Aspartat, Glutamat, 2 Histidine) (Abb. 35). TroR hatte hingegen anstelle der beiden Histidine ein Arginin und ein Prolin (Abb. 35).

Die Metallkoordinations- und Metallbindestellen zwischen SirR und DtxR sind konservierter als zwischen TroR und DtxR, oder SirR und TroR. Dies könnte ein möglicher Hinweis auf zwei verschiedene Liganden bedeuten, wobei spekuliert wird, dass SirR Eisen und TroR Mangan bindet.

2.2.3 Heterologe Expression von LrpA1 und TroR in E. coli

Um LrpA1 und TroR in vitro zu charakterisieren, wurden die entsprechenden Gene als C-terminale Hexahistidin-Fusionsproteine heterolog in E. coli exprimiert. Da die beiden His₆-markierten Proteine in Einschlusskörperchen akkumulierten, erfolgte die Aufreinigung der Proteine unter denaturierenden Bedingungen mit Hilfe der Ni-NTA-Affinitätschromatographie. LrpA1 hat ein berechnetes Molekulargewicht von 15.2 kDa und TroR eines von 15.6 kDa. Beide Proteine migrierten aber in der SDS-PAGE bei einem höheren Molekulargewicht von 25 kDa. Dies wurde bereits für andere halophile Proteine beobachtet (Tokunaga et al., 2004). Rekombinant hergestelltes LrpA1 und TroR wurden als solche mit Hilfe von MALDI-TOF-MS identifiziert.

In Abb. 36 ist der typische Verlauf der Expression und anschließenden Aufreinigung von LrpA1 (A) und TroR (B) auf einem SDS-Gel dargestellt. Dabei wurde jeweils eine Probe von nicht-induzierten Zellen aufgetragen (Abb. 36AB Spur 1). Bereits nach 30 Minuten war eine deutliche Überexpression von LrpA1 (A) bzw. TroR (B) zu erkennen (Spur 2). Da sich die Überexpression nach zwei Stunden (AB Spur 3) im Vergleich zu 30 Minuten nicht steigern ließ, wurden die *E. coli* Kulturen, welche LrpA1 bzw. TroR heterolog exprimierten nach zwei Stunden geerntet. Durch die Ni-NTA-Affinitätschromatographie wurde LrpA1 in guten Mengen und ausgezeichneter Reinheit isoliert (Abb. 36A 3 Eluate Spur 4, 5, 6). TroR wurde ebenfalls mit Hilfe der Ni-NTA-Affinitätschromatographie aufgereinigt, wobei schwächere Banden bei einem höheren Molekulargewicht identifiziert wurden, die mögliche Oligomere darstellen könnten (Abb. 36B 2 Eluate Spur 4, 5)

Die Proteinkonzentration wurde photometrisch bei 280 nm bestimmt. Die Ausbeute von LrpA1 betrug 2.2 mg/L und von TroR 0.8 mg/L Kultur.

Abb. 36 Expression und Aufreinigung von LrpA1 (A) und TroR (B)

Auf dem 14% igem SDS-Gel sind die einzelnen Schritte der heterologen Expression von LrpA1 (A) bzw. TroR (B) in *E. coli* BL21-DE3 und der anschließenden Aufreinigung der Proteine mit Hilfe von Ni-NTA-Affinitätschromatographie dargestellt. Spur 1 zeigt jeweils *E. coli* Extrakt vor der Induktion der Expression mit IPTG. Bei einer optischen Dichte (OD_{600}) von 0.8 wurde die Expression von LrpA1 (A) und TroR (B) mit 0.6 mM IPTG induziert. Spur 2 und 3 zeigen *E. coli* Extrakt nach 30 Minuten und zwei Stunden Überexpression. In Spur 4, 5 und 6 ist das mit Hilfe von Ni-NTA aufgereinigte Protein LrpA1 dargestellt, wobei dreimal mit 150 mM Imidazol eluiert wurde (A). LrpA1 hat ein Molekulargewicht von 15.2 kDa. Die beiden Eluate des 15.6 kDa schweren Proteins TroR wurden in Spur vier und fünf aufgetragen (B). Ein Proteinstandard (M) zur Größenabschätzung befindet sich in Spur M. Die Molekulargewichte der Standardbanden sind am rechten Rand des Bildes angegegben.

2.2.4 Gelfiltration zur Bestimmung des Oligomerisierungsgrades von LrpA1 und TroR

Die Gelfiltration oder Größenausschlusschromatographie (GC) beruht auf der unterschiedlichen Verteilung von Molekülen zwischen einer Matrix (Säule) und dem umgebendem Medium. Durch die Verwendung geeigneter Standards kann das Molekulargewicht eines Proteins bestimmt werden.

Dass eine erfolgreiche Bindung von Transkriptionsregulatoren an DNA stattfinden kann, erfordert, dass die Proteine LrpA1 und TroR in ihrem nativen Zustand vorliegen. Nur so sind sie in der Lage Dimere oder höhere Oligomere zu bilden, um erfolgreich an spezifische DNA-Bereiche zu binden.

Die Renaturierung der in Harnstoff unter denaturierenden Bedingungen aufgereinigten Proteine LrpA1 und TroR erfolgte durch Dialyse in einem 4 M Salzpuffer (3.4.4). Mit Hilfe einer analytischen Gelfiltration wurde anschließend die erfolgreiche Rückfaltung und eine mögliche Multimerisierung anhand des Molekulargewichts (MW) überprüft. Die entsprechende Gelfiltrationssäule S75 wurde mit mesophilen Proteinen kalibriert (Abb. 61).

Die Retentionsvolumina betrugen für LrpA1 1.32 ml (Abb. 37A) und für TroR 1.31 ml (Abb. 37B), woraus für LrpA1 ein Molekulargewicht von 31.1 kDa und für TroR 29.6 kDa ermittelt wurden. In beiden Fällen konnte die Bildung eines Dimers gezeigt werden, da das theoretische Molekulargewicht für ein Monomer für LrpA1 15.2 kDa und für TroR 15.6 kDa beträgt.

Abb. 37 Gelfiltration von renaturiertem LrpA1 (A) und TroR (B)

Nach der Dialyse von LrpA1 bzw. TroR gegen einen 4 M Salzpuffer erfolgte eine Gelfiltration. LrpA1 eluierte bei einem Volumen von 1.32 ml, was einem Molekulargewicht von 31.1 kDa und daher einem Dimer entspricht (theoretisches Molekulargewicht eines Monomers: 15.2 kDa). Das Elutionsvolumen von TroR war 1.31 ml, woraus ein Molekulargewicht von 29.6 kDa berechnet wurde. Das ergibt bei einem theoretischen Molekulargewicht eines Monomers von 15.6 kDa ein Dimer.

Die Dimerisierung von nativen LrpA1 und TroR nach der Renaturierung ist konsistent mit der Eigenschaft von DNA-Bindeproteinen, welche DNA als Dimere bzw. in einer höher oligomeren Form binden.

2.2.4.1 Suche nach einem möglichen Ligand von LrpA1

Archaeale Lrp-Homologe bilden bekanntlich in Anwesenheit von Aminosäuren oligomere Formen aus (Yokoyama *et al.*, 2005). In Abschnitt 2.1.7.2 wurde eine mögliche Regulation der Expression des Aspartat-Transaminase-Gens *aspB3* durch LrpA1 im Zusammenhang mit einer regulatorischen Funktion von Aspartat diskutiert. Möglicherweise bindet Aspartat LrpA1 und kontrolliert die Expression von *aspB3*. Darauf basierend wurde LrpA1 zusammen mit Aspartat inkubiert und anschließend eine Gelfiltrationsanalyse durchgeführt, um die Ausbildung höherer Oligomerisierungszustände zu beobachten. Als Kontrolle wurde LrpA1 zusammen mit Arginin inkubiert. Dabei konnte für LrpA1, welches mit Aspartat oder Arginin inkubiert wurde, nur die dimere Form des Proteins beobachtet werden. Weder mit Aspartat noch mit Arginin konnte ein höherer Oligomerisierungszustand von LrpA1 gezeigt werden (Abb. 38). Möglicherweise bindet Aspartat bereits das Dimer und begünstigt nicht die Bildung von Oligomeren.

Abb. 38 Gelfiltration von LrpA1 nach Inkubation mit Aminosäuren LrpA1 wurde entweder mit 5 mM Aspartat, oder mit 5 mM Arginin inkubiert. Anschließend erfolgte der Gelfiltrationslauf bei einer Flussrate von 40 μ l/min in einem 4 M Salzpuffer. Das Retentionsvolumen von LrpA1 inkubiert mit Aspartat betrug 1.34 ml (A), mit Glutamat 1.22 ml (B) und mit Arginin 1.29 ml (C), und mit Molekulargewichten von 29.0 kDa, 43.3 kDa und 34.4 kDa.

2.2.5 Sekundärstruktur von LrpA1 und TroR

Zur Sekundärstrukturanalyse von Proteinen und Peptiden wird üblicherweise die Circulardichroismus (CD)-Spektroskopie verwendet. Ein optisch aktives Molekül absorbiert rechts und links zirkular polarisiertes Licht unterschiedlich stark. Die daraus resultierende elliptische Polarisation des Lichtes wird als Elliptizität (Θ) bezeichnet und stellt ein Maß für die Absorptionsdifferenz dar.

Die Sekundärstruktur eines Proteins lässt sich anhand der CD-Spektroskopie im fernen-UV bestimmen. α -Helix, β -Faltblatt und ungeordnete Strukturen weisen unterschiedliche Elliptizitäten auf und liefern charakteristische CD-Spektren (Abb. 39). α -Helices zeigen ein

Doppelminimum bei 208-210 nm und 222 nm und ein Maximum bei 191-193 nm. Bei β -Faltblattstrukturen wird ein Minimum bei 215±5 nm und ein Maximum bei 195-200 nm beobachtet. Ungeordnete Strukturen besitzen ein Minimum bei 195 nm und ein schwaches Maximum bei 220 nm.

Für ein beliebiges Protein lässt sich der Anteil der jeweiligen Sekundärstruktur anhand des Kurvenverlaufs ermitteln.

Abb. 39 CD-Spektren der Standard-Sekundärstrukturen Standardkurven von 100 % α-Helix, 100 % β-Faltblatt und 100 % ungeordneter Struktur.

2.2.5.1 Sekundärstruktur von LrpA1

Das CD-Spektrum von LrpA1 zeigte ein Doppelminimum bei bei 209 nm und 222 nm (Abb. 40). Die Berechnung der Anteile der Sekundärstrukturelemente wurde mit Hilfe des CDNN Programms durchgeführt (Bohm *et al.*, 1992). Für LrpA1 wurden 56 % α -Helices, 11 % β -Faltblatt (= paralleles- und antiparalleles β -Faltblatt), 14 % β -Turn und 24 % ungeordnete Struktur ermittelt (Abb. 40). Parallel dazu wurde mit Hilfe des "Scratch Protein Predictor"-Programms eine Strukturvorhersage getroffen. Die theoretischen Werte für LrpA1 betrugen 42 % α -Helices, 27 % β -Faltblatt und 31 % ungeordnete Struktur.

Abb. 40 CD-Spektren von LrpA1

Anteile der Sekundärstrukturen α -Helix, β -Faltblatt und ungeordnete Struktur im fernen-UV. Das Protein hatte eine Konzentration von 1.2 mg/ml und befand sich in einem 4 M Salzpuffer. Die Spektren wurden bei 21°C aufgenommen.

2.2.5.2 Sekundärstruktur von TroR

Das CD-Spektrum von TroR zeigte ebenfalls ein Doppelminimum bei 209 nm und 222 nm (Abb. 41). Die mittels des Programms CDNN berechneten Sekundärstrukturanteile von TroR betrugen 42 % α -Helices, 13 % β -Faltblatt (= paralleles-und antiparalleles β -Faltblatt), 17 % β -Turn und 28 % ungeordnete Struktur (Abb. 41). Die Strukturvorhersage ergab 55 % Helix, 6 % β -Faltblatt und 40 % ungeordnete Struktur.

Abb. 41 CD-Spektren von TroR.

Anteile der Sekundärstrukturen α -Helix, β -Faltblatt und ungeordnete Struktur im fernen-UV. Das Protein hatte eine Konzentration von 0.3 mg/ml und befand sich in einem 4 M Salzpuffer. Die Spektren wurden bei 21°C aufgenommen.

Sowohl für LrpA1, als auch für TroR konnte gezeigt werden, dass beide Proteine in einem 4 M Salzpuffer gefaltet vorliegen und eine überwiegend α -helicale Struktur besitzen. Die Abweichung zwischen dem gemessenen und dem theoretischen Wert betrug ca. 10 %. Dies konnte bereits in anderen Arbeiten gezeigt werden (Eckhoff, 2003). Eine mögliche Erklärung ist die Fehleranfälligkeit der CD-Spektroskopie (Surewicz *et al.*, 1993), wie auch eine allgemeine Hervorhebung α -helicaler Bereiche.

2.2.5.3 Thermale Denaturierungskurven von LrpA1

Um zu überprüfen, ob spezifische Liganden eine stabilisierende oder destabilisierende Wirkung auf die Sekundärstruktur von LrpA1 haben, wurde der Protein-Entfaltungsprozess sowohl mit als auch ohne Ligand über einen Temperaturgradienten von 4°C bis 95°C mittels CD-Spektroskopie verfolgt (Abb. 42). Dabei konnte anhand der erhalten Daten über die Änderung der Enthalpie (Δ H) und Entropie (Δ S) die damit verbundene Faltung und Entfaltung von LrpA1 gezeigt werden.

Parallel dazu wurde jeweils ein Spektrum von LrpA1 im nativen Zustand, bei 95°C und nach der Abkühlung auf 4°C aufgenommen (Abb. 43). Es konnte beobachtet werden, dass LrpA1 mit und ohne Ligand zu 100 % reversibel rückfaltbar ist, wobei die aufgenommenen Spektren identisch sind. In Abb. 43 ist LrpA1 ohne Ligand dargestellt ist.

Die thermalen Denaturierungskurven von LrpA1 zeigten, dass die Schmelztemperatur (Tm-Wert) von LrpA1 ohne Ligand 59°C betrug (Tab. 13, Abb. 42). Durch Inkubation mit 50 mM L-Aspartat wurde der Tm-Wert auf 64°C erhöht, was einen stabilisierenden Effekt der Aminosäure auf LrpA1 bedeutet (Tab. 13). Eine Temperatur Änderung von 1°C wird in der Literatur bereits als stabilisierender Effekt bezeichnet (Cornish *et al.*, 1994).

Zur Überprüfung der Spezifität des Liganden wurden die Schmelzkurven nach Inkubation von LrpA1 mit den Aminosäuren L-Glutamat und D-Aspartat aufgenommen. Mit L-Glutamat wurde keine Veränderung der Schmelztemperatur beobachtet (Tab. 13). D-Aspartat hat sogar eine destabilisierende Wirkung auf LrpA1, da die Schmelztemperatur um 2°C geringer war als LrpA1 ohne Aminosäure (Tab. 13).

Abb. 42 Schmelzkurven von LrpA1

Die Schmelzkurven wurden bei einer Wellenlänge von 222 nm über einen Temperaturverlauf von 4°C-95°C in einem 2M CFE Puffer aufgenommen. Die Konzentration von LrpA1 betrug 0.1 mg/ml. Es wurden jeweils Kurven von LrpA1 ohne Ligand (schwarze Kurve), mit 50 mM L-Aspartat (rote Kurve), mit 50 mM D-Aspartat (grüne Kurve) und mit 50 mM L-Glutamat (blaue Kurve) aufgenommen.

Protein	Ligand	Tm [C°]	∆H [J/mol]	∆S [J/mol/K]	
LrpA1	х	59.32 ± 0.13	-64182.1 ± 1991.88	-193.049 ± 5.99125	
LrpA1	L-Aspartat	64.08 ± 0.36	-86492.8 ± 6411.59	-256.483 ± 19.0127	
LrpA1	D-Aspartat	57.08 ± 0.20	-50461.5 ± 2545.51	-152.808 ± 7.70834	
LrpA1	L-Glutamat	59.00 ± 0.21	-53516.9 ± 2596.38	-161.125 ± 7.81699	

Tab. 13 Tm, ΔH und ΔS von LrpA1

Beim Ablesen der Tm-Werte gab es Abweichungen zwischen den vom Computerprogramm berechneten Werten und den graphisch dargestellten Werten. Bei exakt sigmoidal verlaufenden Kurven würde man sich einen Tm-Wert im Wendepunkt erwarten. Aufgrund der nicht exakt sigmoidal verlaufenden Kurven scheint es bei der Berechnung des Tm-Wertes zu einer leichten Verschiebung dieser in Richtung einer höheren Temperatur zu kommen.

Abb. 43 Spektrum von LrpA1 Die Aufnahme der Spektren von LrpA1 erfolgten im nativen Zustand (schwarze Kurve) bei 4°C, nach der Entfaltung bei 95°C (blaue Kurve) und nach Abkühlung auf 4°C (rote Kurve).

Für das Lrp-Homolog BkdR in *P. putida* konnte durch Zugabe von L-Valin eine Veränderung der Sekundärstruktur gezeigt werden (Madhusudan et al., 1997).

Die Analyse der thermalen Denaturierungskurven von LrpA1 mit oder ohne Ligand zeigte eine Stabilisierung der Sekundärstruktur von LrpA1 durch L-Aspartat um 4°C (Abb. 42). Dies lässt die Vermutung zu, dass L-Aspartat ein möglicher Ligand von LrpA1 ist.

2.2.6 Kristallisationsansätze von LrpA1

Bei der Kristallisation unter den Bedingungen 20 % (w/v) PEG 3350 und 150 mM NaCl bildeten sich nadelförmige Kristallstrukturen aus (Abb. 44). Um das Diffraktionsmuster von LrpA1 bestimmen zu können, bedarf es einer Optimierung der Kristallisationsbedingungen.

Mit großer Wahrscheinlichkeit handelt es sich bei den erhaltenen Strukturen um Protein und nicht um Artefakte, wie Salzkristalle. Die Kristallisationsversuche von LrpA1 sind erfolgreich und werden weiter verfolgt.

Abb. 44 Kristallisationsansatz von LrpA1 Kristallisation von LrpA1 mit 20 % (w/v) PEG 3350 und 150 mM NaCl.

2.2.7 Bindungsstudien von LrpA1 an den *lrpA1-* und an den *aspB3-*Promotor

2.2.7.1 Regulation der aspB3-Genexpression durch LrpA1

Aspartat-Transaminasen stellen Schlüsselenzyme des Aminosäure-Metabolismus dar und spielen im zentral-intermediären Stoffwechsel eine Rolle. Sie katalysieren die reversible Umwandlung von Aspartat und Oxoglutarat in Glutamat und Oxalacetat und sorgen außerdem für die Metabolite des TCA-Zyklus. *H. salinarum* R1 kodiert für drei unterschiedliche Aspartat-Transaminasen (AspB1, AspB2, AspB3; Abb. 45). Diese sind der Untergruppe 1b der Aspartat-Transaminasen zuzuordnen (Okamoto *et al.*, 1994). Sie haben eine Sequenzidentität von 35, 37 bzw. 32 % zur Aspartat-Transaminase aus *Thermus thermophilus* (Nakai *et al.*, 1999). Die Sequenzidentitäten zur Untergruppe 1a der Aspartat-Transaminasen oder zu anderen Transaminase-Familien ist signifikant geringer (Abb. 45). Obwohl AspB1-3 gut konservierte Aspartat-Transaminase Reste aufwiesen, besitzt nur AspB2 ein konserviertes K99, um eine elektrostatische Interaktion mit der distalen Carboxylatgruppe von Aspartat einzugehen (gekennzeichnet durch ein x in Abb. 45).

Abb. 45 Sequenzvergleich von Aspartat-Transaminasen

Die drei Aspartat-Transaminasen AspB1, AspB2 und AspB3 aus *H. salinarum* wurden mit Aspartat-Transaminasen der Untergruppe 1a (Asp 1a) (1ARG, *Escherichia coli*), welche ein konserviertes R besitzen (gekennzeichnet durch einen rote Umrahmung und ein D) und mit Aspartat-Transaminasen der Untergruppe 1b (1BKG, *Thermus thermophilus*; 1J32 *Phormidium lapideum*; 1O4S *Thermotoga maritima*), welche ein konserviertes K besitzen, (gekennzeichnet durch eine rote Umrahmung und ein X) verglichen.

Die Daten der Mikroarray-Analyse legen die Vermutung nahe, dass das Aspartat-Transaminase-Gen *aspB3*, welches ein benachbartes Gen von *lrpA1* ist, von LrpA1 reprimiert wird (2.1.7.2).

Um bessere Kenntnis über die Regulation der *aspB3*-Genexpression zu gewinnen, wurde eine Northernblot-Analyse durchgeführt. *H. salinarum* R1 und $\Delta lrpA1$ wurden entweder in komplexem oder synthetischem Medium bis zu den in Abb. 46 angegebenen Zelldichten (OD₆₀₀) kultiviert. Abb. 46D zeigt Wachstumskurven von *H. salinarum* in synthetischem Medium mit jeweils der in Abb. 46 angegebenen Aminosäuren Zusammensetzung. Da Aspartat-Transaminasen eine Umwandlung von Aspartat und Glutamat katalysieren, wurden die beiden Aminosäuren dem synthetischen Medium beigefügt oder weggelassen, um einen möglichen Einfluss auf die *aspB3*-Expression beobachten zu können. In allen Northernblot-Analysen erfolgte eine Hybridisierung der *aspB3*-spezifischen Sonde mit einem Transkript in der Größe von *aspB3* (1107 bp).

In komplexem Medium war die Menge an *aspB3*-Transkript am Beginn der exponentiellen Wachstumsphase leicht induziert ($OD_{600} = 0.3$) (Abb. 46A). In synthetischem Medium mit zusätzlichem Aspartat und Glutamat hingegen konnte eine Induktion von *aspB3* in der frühen stationären Phase ($OD_{600} = 0.8$; Abb. 46B-1) beobachtet werden.

Eine leichte Induktion von *aspB3* bei $OD_{600} = 0.8$ war auch in synthetischem Medium mit Aspartat, aber ohne Glutamat zu beobachten Abb. 46B-2. Hingegen zeigten die Zellen des Parentalstammes in synthetischem Medium ohne Aspartat, aber mit Glutamat bereits eine Induktion von *aspB3* in der frühen exponentiellen Phase (Abb. 46B-3). Beim Weglassen beider Aminosäuren war *aspB3* in der frühen exponentiellen Phase, wie auch leicht in der frühen stationären Phase induziert (Abb. 46B-4).

Das obere Bild zeigt jeweils die 16S- und 23S-rRNA auf einem 1% igem Agarosegel nach Ethidiumbromid-Färbung zur Kontrolle der aufgetragenen Mengen an Gesamt-RNA. Die unteren Bilder zeigen *aspB3*-Transkripte nach Hybridisierung einer Sonde gegen *aspB3*. *H. salinarum* R1 Zellen wurden entweder in komplexem (A) oder synthetischem (B) Medium bis zu einer optischen Dichte (OD_{600}) gezogen, welche der Abbildung zu entnehmen ist. Das Wachstum des Deletionsstammes $\Delta lrpA1$ erfolgte in synthetischem Medium (Abb. 14B) bis zu einer optischen Dichte entsprechend der Abbildung (C). Das synthetische Medium (B1-4; C) enthielt entweder Aspartat oder Glutamat oder beide Aminosäuren als Zusatz; gekennzeichnet durch +/-. Wachstumskurve von *H. salinarum* R1 in synthetischem Medium mit der in der Abbildung angegebenen Aminosäurezusammensetzung (D). Aus den in Abb. 46 gezeigten Resultaten geht hervor, dass in Anwesenheit von Aspartat die *aspB3*-Genexpression reprimiert wird. Wenn kein Aspartat im Medium ist (Abb. 46B3, B4), bzw. das gesamte Aspartat in der frühen stationären Phase bei annähernd 10^9 Zellen/ml (OD₆₀₀=1.0) verstoffwechselt wurde (Abb. 46B1), ist die Repression von *aspB3* aufgehoben, um Aspartat aus Glutamat herzustellen. Eine rasche Metabolisierung von Aspartat bei einer OD₆₀₀ =1.0 und eine relativ konstante Konzentration an Glutamat im Medium ist für *H. salinarum* R1 bereits gezeigt (Gonzalez *et al.*, 2007). In diesem Zusammenhang sei die Funktion von Glutamat als C- und N- Speicher zusätzlich zu seiner Funktion als kompatibler Osmolyt, welcher intrazelluläre Konzentrationen von 50 und 100 mM erreichen kann, erwähnt (Desmarais *et al.*, 1997; Kokoeva *et al.*, 2002).

Um nun einen regulatorischen Effekt von LrpA1 auf die *aspB3*-Genexpression zu demonstrieren, wurde das Wachstum des Deletionsstammes $\Delta lrpA1$ mit oder ohne Aspartat bzw. Glutamat verfolgt, um anschließend die *aspB3*-Transkriptmenge zu ermitteln (Abb. 46C). Es konnte eine stark induzierte und konstitutive *aspB3*-Expression, unabhängig von den beiden Aminosäuren gezeigt werden.

Ein möglicher Reaktionsmechanismus der Aspartat-abhängigen Regulation der *aspB3*-Genexpression ist in Abb. 47 dargestellt. Dabei könnte LrpA1 als Dimer zusammen mit Aspartat die *aspB3*-Genexpression durch Bindung an den Promotor inhibieren (A). Ist Aspartat im Medium verstoffwechselt, dissoziiert LrpA1 vom Promotor ab und die RNA-Polymerase hat einen ungehinderten Zugang um mit der Transkription von *aspB3* zu beginnen (B).

Abb. 47 Möglicher Mechanismus der Regulation der Genexpression von aspB3 durch LrpA1

Die Repression der *aspB3*-Transkription durch LrpA1 in seiner dimeren Form erfolgt gemeinsam mit Aspartat (A). Ist kein Aspartat vorhanden, bindet LrpA1 nicht mehr an den *aspB3*-Promotor. Somit kommt es zu einer Aufhebung der Repression und folglich zu einer Transkription von *aspB3* (B).

2.2.7.2 *lrpA1*-Genexpression zu verschiedenen Zeitpunkten

Durch Verwendung einer Sonde gegen *lrpA1* konnte mittels Northernblot-Analyse die *lrpA1*-Transkriptmenge (429 bp) bestimmt werden. Dabei wurden Zellen des Parentalstamm *H. salinarum* in komplexem Medium mit verschiedenen OD₆₀₀-Werten verwendet (Abb. 48). Die *lrpA1*-Transkriptmenge war bei OD₆₀₀-Werten von 0.2, 0.5, 0.3 und 0.8 relativ konstant und nahm erst ab einem Wert von 0.9 ab.

Für Irs14, ein Lrp-Homolog in S. solfataricus wurde der genau umgekehrte Effekt beobachtet. Hier akkumulierte die Menge an Irs14-Transkrpt in der Phase des späten Wachstums (Napoli et al., 1999).

Abb. 48 Northernblot zur Bestimmung der IrpA1-Transkriptmenge in H. salinarum R1

Das obere Bild zeigt jeweils die 16S- und 23S-rRNA auf einem 1 %igem Agarosegel nach Ethidiumbromid-Färbung zur Kontrolle der aufgetragenen Mengen an Gesamt-RNA. Die unteren Bilder zeigen lrpAl-Transkripte nach Hybridisierung einer Sonde gegen IrpA1. H. salinarum R1 Zellen wurden in komplexem Medium bis zu einer optischen Dichte (OD_{600}) gezogen, welche der Abbildung zu entnehmen ist.

2.2.7.3 *lrpA1* und *aspB3* sind direkte Zielgene des Regulators LrpA1

Da die meisten bakteriellen und archaealen Lrp Homologen an ihren eigenen Promotor binden (Wang et al., 1994; Brinkman et al., 2003; Geiduschek und Ouhammouch, 2005), wurde die Bindung von LrpA1 an den *lrpA1*-Promotor in *H. salinarum* R1 untersucht. Aus den Mikroarray-Daten ging hervor, dass LrpA1 an der Repression der aspB3-Genexpression beteiligt sein könnte (2.1.7.2). Northernblot-Analysen unterstützten diese Annahme und lieferten einen Hinweis auf einen möglichen regulatorischen Effekt von Aspartat auf die aspB3-Genexpression (2.2.7.1). Daher wurde auch ein Bindungsexperiment mit LrpA1 an den aspB3-Promotor in Abhängigkeit von Aspartat durchgeführt.

Um die DNA-Bindungsaktivität von LrpA1 in vitro zu charakterisieren, wurde eine analytische DNA-Affinitätschromatographie an halophile Bedingungen angepasst. Als mögliches DNA-Bindemotiv im *lrpA1*-Promotor wurde eine "inverted repeat"-Sequenz mit einer Lücke von 11 Nukleotiden vermutet wobei die linke Seite des "inverted repeats" mit

der TATA-Box überlappt (Abb. 49A). "Inverted repeats" stellen mögliche DNA-Bindemotive für Lrp-ähnliche Transkriptionsregulatoren dar (Ouhammouch und Geiduschek, 2001). Für den *aspB3*-Promotor konnte kein offensichtliches DNA-Bindemotiv identifiziert werden (Abb. 49B). Eine mögliche Bindestelle von LrpA1 könnte das in Abb. 50 eingezeichnete Motiv sein, da dieses in den markierten Bereichen eine hohe Ähnlichkeit mit der *lrpA1*-Promotorsequenz hat.

Da das Bindemotiv im *lrpA1*-Promotor nur vermutet wurde, bzw. im Bereich des *aspB3*-Promotor keines identifiziert werden konnte, wurde jeweils der komplette nicht kodierende Bereich zwischen zwei Genen amplifiziert und im weiteren Verlauf dieses Experiments als *lrpA1*-P_{incl} (=DNA; <u>P</u>romotorsequenz <u>incl</u>usive) bzw. *aspB3*-P_{incl} bezeichnet (Abb. 49). Im Bereich der "inverted repeat"-Sequenz im *lrpA1*-Promotor wurden die in Abb. 49A durch rote Sterne gekennzeichneten Mutationen eingeführt.

Zur Durchführung des LrpA1-DNA-Bindungsexperiments wurde für den *lrpA1*-P_{incl} ein 234 bp großes DNA-Fragment und für den *aspB3*-P_{incl} ein 208 bp großes Fragment gewählt. Zur Demonstration einer unspezifischen Bindung diente als Kontroll-DNA das Flagellin-Gen *flgB1*.

Die DNA-Fragmente *lrpA1*-P_{incl} und *aspB3*-P_{incl}, wie auch die Kontroll-DNA wurde mit einem Biotin markierten Oligonukleotid mittels PCR amplifiziert und an eine Streptavidin-Sepharose Matrix gekoppelt. Anschließend wurde heterolog exprimiertes und aufgereinigtes LrpA1 (Abb. 36) mit der *lrpA1*-P_{incl} bzw. der *aspB3*-P_{incl} DNA und der Kontroll-DNA inkubiert und anhand einer SDS-PAGE analysiert (Abb. 51). Nur bei einer erfolgreichen Bindung kann LrpA1 auf dem Gel detektiert werden. Heterolog exprimiertes LrpA1 zeigte Bindung an *lrpA1*-P_{incl} (Abb. 51A, Spur 2), aber nicht an die Kontroll-DNA (Abb. 51A, Spur 1). Eine Mutation der möglichen LrpA1 Bindestellen im *lrpA1*-P_{incl} hingegen (Abb. 51A, Spur 3; gekennzeichnet durch Sterne Abb. 49A), verhindert dessen Bindung (Abb. 51A). Die Protein-DNA-Bindungsexperimente lassen die Schlussfolgerung zu, dass LrpA1 an seine eigene Promotorsequenz bindet. In Übereinstimmung mit anderen archaealen Lrp-Homologen, wird angenommen, dass LrpA1 seine eigene Transkription negativ reguliert (Brinkman *et al.*, 2003).

Abb. 49 Promotorbereich von *lrpA1* (A) und *aspB3* (B)

LrpA1-P_{incl} bzw. aspB3-P_{incl} ist der DNA-Bereich, welcher im LrpA1-DNA-Bindungsexperiment verwendet wurde. Dieser Bereich beinhaltet die komplette Promotorsequenz (**A**+**B**). Der Transkriptionsstart von lrpA1 ist unterstrichen. Der "inverted repeat" stellt eine mögliche Bindestelle von LrpA1 dar und ist grau umrahmt. Mutationen im Bereich dieser "inverted repeats" sind mit einem roten Stern gekennzeichnet. Die TATA-Box, wie auch das -11/-10 Motiv sind grau unterlegt. Weitere Details zum lrpA1-Promotor siehe unter 2.2.1.1 wie auch Abb. 31 (**A**). Der Transkriptionsstart von aspB3 ist unterstrichen. Das -11/-10 Element ist grau unterlegt. Details siehe unter 2.2.1.1 und Abb. 31 (**B**).

Abb. 50 Sequenzvergleich zwischen dem *lrpA1*- und dem *aspB3*-Promotor

In Grau sind jene Basen markiert, die in beiden Promotoren vorkommen. Der Pfeil kennzeichnet den Transkriptionsstart.

Eine schwächere Bindung von LrpA1 erfolgte an *aspB3*-P_{incl} (Abb. 51B, Spur 2). Da die Northernblot-Analysen in 2.2.7.1 eine Induktion der *aspB3*-Genexpression in einem Medium ohne Aspartat zeigten, ging man von einer möglichen regulatorischen Funktion der Aminosäure aus. Aus diesem Grund wurde dem DNA-Bindungsansatz Aspartat beigefügt. Dadurch konnte eine deutliche Verstärkung der Bindung von LrpA1 an *aspB3*-P_{incl} beobachtet werden (Abb. 51B, Spur 3). Kontrollexperimente mit Arginin zeigten hingegen

keinen Einfluss auf die Bindungseffizienz von LrpA1 an den *aspB3-P*_{incl}, was wiederum die Spezifität von Aspartat belegt (Abb. 51C, Spur 3).

In Tab. 14 sind die relativen Bindungseffizienzen von LrpA1 an Sepharose gebundene DNA-Fragmente dargestellt. Die Berechnung der Bindungseffizienz erfolgte aus jeweils drei unabhängigen Experimenten. Dabei wurde nur die Bindungsintensität der kleineren Bande berücksichtigt (Abb. 51). Die größere Bande stellt das LrpA1-Dimer dar, welches in die Berechnung nicht miteinbezogen wurde. Offensichtlich konnten die Dimere in Proben für eine SDS-PAGE durch Erhitzen nicht in Monomere dissoziiert werden (Abb. 51).

Abb. 51 Bindung von LrpA1 an DNA-Fragmente (*lrpA1*-P_{incl}, *aspB3*-P_{incl} und Kontroll-DNA (K))

Die untere Bande ist das LrpA1 Monomer. Die obere Bande stellt das LrpA1-Dimer dar. Bindung von LrpA1 an nicht-spezifische Kontroll-DNA (K) (Spur 1), an lrpA1-P_{incl} (Spur 2), und an den mutierten lrpA1-P_{incl} (Spur 3) (**A**). LrpA1 Bindung an nicht-spezifische Kontroll-DNA (K) in Anwesenheit von 5 mM L-Aspartat (Spur 1), an aspB3-P_{incl} (Spur 2) und an aspB3-P_{incl} mit zusätzlichem Aspartat (Spur 3) (**B**). Bindung von LrpA1 an nicht-spezifische Kontroll-DNA (K) in Anwesenheit von 5 mM L-Aspartat (Spur 1), an aspB3-P_{incl} (Spur 2) und an aspB3-P_{incl} mit zusätzlichem Aspartat (Spur 3) (**B**). Bindung von LrpA1 an nicht-spezifische Kontroll-DNA (K) in Anwesenheit von 5 mM L-Arginin (Spur 1) und an aspB3-P_{incl} mit (Spur 3) oder ohne (Spur 2) 5 mM L-Arginin (**C**). Das Molekulargewicht der Standardbanden ist in Spur M in Bild **A** angegeben.

Tab. 14 Relative	Bindungseffizienzen	von LrpA1	an Sepha	arose-gebunden	e DNA	Fragmente	(P _{incl})	und
Kontroll-DNA (K)							
					-			

Bandendichte	%°
846±28	100%
201±33	24%
313±70	37%
1404±228	100%
473±220	34%
92±33	7%
175±94	100%
135±69	77%
52±22	30%
	Bandendichte 846±28 201±33 313±70 1404±228 473±220 92±33 175±94 135±69 52±22

^a Durchschnitt und Standardabweichung basieren auf drei separaten Experimenten

Da LrpA1 in der Lage ist, an zwei Promotoren zu binden, wurden mögliche Sequenzähnlichkeiten zwischen dem *lrpA1*- und dem *aspB3*-Promotor untersucht. Dabei wurden die grau unterlegten Sequenzen als ähnliche Sequenz identifiziert und könnten mögliche Bindestellen für LrpA1 sein (Abb. 50). Um jedoch eindeutige LrpA1-Bindestellen in beiden Promotoren zu identifizieren, müssten "DNA-Footprinting"-Analysen durchgeführt werden, die in halophilen Organismen leider nicht etabliert sind.

Konsensussequenzen für bakterielle und archaeale Lrp-Bindestellen sind in (Brinkman *et al.*, 2003) und (Yokoyama *et al.*, 2005) angeführt.

Anhand der LrpA1-DNA-Bindungsstudien wurde gezeigt, dass LrpA1 an seinen eigenen Promotor und in Abhängigkeit von Aspartat an den *aspB3*-Promotor bindet. Ersteres ist ein Hinweis, dass LrpA1 seine eigene Transkription reprimieren könnte, wie es bereits für viele untersuchte archaeale Lrp-Homologa bekannt ist (Brinkman *et al.*, 2003). Eine negative Autoregulation von *lrp* erfolgt in *E. coli* unabhängig von der Effektor-Aminosäure Leucin (Calvo und Matthews, 1994), wohingegen Aminosäure-abhängige regulatorische Effekte bei Lrp Zielgenen in *E. coli* und anderen bakteriellen Lrp-Homologen gezeigt wurden (Calvo und Matthews, 1994). In archaealen Organismen ist neben der Autoregulation wenig über mögliche Zielgene und den regulatorischen Einfluss von Aminosäuren bekannt (Brinkman *et al.*, 2003). Eine Ausnahme ist das Lysin Biosynthese Operon in *S. solfataricus*, für das hier die Genexpression in Abwesenheit von Lysin maximal ist (Brinkman *et al.*, 2003).

In dieser Arbeit lieferten Mikroarray-Analysen einen Hinweis auf eine mögliche Repression der Genexpression des Aspartat-Transaminase Gens *aspB3* durch LrpA1 (2.1.7.2). Zusätzlich konnte der regulatorische Einfluss der Effektor Aminosäure Aspartat auf die *aspB3*-Expression gezeigt werden. Dabei findet die *aspB3*-Genexpression in Abwesenheit von Aspartat statt (2.2.7.1).

LrpA1 liegt als Dimer vor (Abb. 37). Es konnte keine höhere Oligomerisierung durch Zugabe der Aminosäuren Aspartat oder Glutamat beobachtet werden. Da jedoch eine Abhängigkeit der Bindung von LrpA1 an ein DNA-Fragment, welches die Promotorregion von *aspB3* beinhaltet, gezeigt wurde, nimmt man an, dass eine Anlagerung von Aspartat an das Dimer stattfinden könnte. Eine Stabilisierung von LrpA1 durch L-Aspartat konnte mittels CD-Spektroskopie gezeigt werden (Abb. 42). LrpA1 bindet an zwei verschiedene Promotoren, was eine Spezifität für zwei unterschiedliche Promotorsequenzen bedeutet. Man geht davon aus, dass LrpA1 mit angelagertem Aspartat den *aspB3*-Promotor bindet und ohne Aspartat möglicherweise seine Konformation ändert, um an den *lrpA1*-Promotor zu binden.

Die reziproke Regulation von *lrpA1* und *aspB3* ist in Abb. 52 dargestellt. Ist Aspartat im Medium vorhanden, reprimiert LrpA1 zusammen mit der Aminosäure die *aspB3*-Expression. Zu diesem Zeitpunkt ist die die *lrpA1*-Expression maximal (2.2.7.2). Wird jedoch Aspartat im Laufe des Wachstums metabolisiert, dissoziiert LrpA1 vom *aspB3*-Promotor ab und bindet den *lrpA1*-Promotor, um möglicherweise dessen Transkription zu reprimieren. Durch Aufhebung der Repression wird *aspB3* exprimiert, um anschließend aus Glutamat Aspartat zu synthetisieren. Anhand dieser Hypothese könnte der direkte Einfluss von LrpA1 auf die Genexpression des Nachbar-Gens *aspB3* erklärt werden.

Abb. 52 Reziproke Regulation der Genexpression von *lrpA1* und *aspB3* durch LrpA1

Bindung von LrpA1 zusammen mit Aspartat an den *aspB3*-Promotor und Repression der *aspB3*-Genexpression (A). Ohne Aspartat erfolgt eine Bindung von LrpA1 an den *lrpA1*-Promotor zur Repression der *lrpA1* Transkription (B).
2.2.8 In vitro Charakterisierung der Bindungsaktivität von TroR

In *Treponema pallidum* ist TroR ("transport related operon repressor") Teil des *tro*-Operons ("transport related operon"), welches insgesamt aus sechs Genen besteht. TroR reprimiert in Anwesenheit von Mn²⁺ die Transkription des *tro*-Operons (Posey *et al.*, 1999). Dabei bindet TroR als Dimer an eine 22 bp lange Palindromsequenz im Promotorbereich des *tro*-Operons.

Um festzustellen, ob TroR in *H. salinarum* ebenfalls an seine eigene Promotorsequenz bindet, wurde ein DNA-Bindungsexperiment durchgeführt. (Eine Beschreibung des DNA-Bindungsassays siehe unter 2.2.7.3). Dabei wurde ein 182 bp langes DNA-Fragment (*troR*-P_{incl}) Biotin markiert, welches einen Teil der kodierenden Sequenz von *troR*, den nicht kodierenden Bereich zwischen *troR* und OE1785F, wie auch das Ende der kodierenden Region von OE1785F umfasst (Abb. 53).

Abb. 53 DNA-Fragment troR-Pincl

Als Kontroll-DNA wurde das Flagellin-Gen (*flgB1*) eingesetzt. Heterolog exprimiertes und aufgereinigtes TroR (Abb. 36) wurde zusammen mit *troR*-P_{incl} inkubiert. Nur bei einer erfolgreichen Bindung wurde TroR auf dem Gel detektiert (Abb. 54).

TroR zeigte spezifische Bindung an die *troR*-P_{incl} -Sequenz (Abb. 54, Spur 1). Um den Einfluss von Mangan auf die TroR-Bindung zu testen, wurden dem DNA-Bindungs-Experiment 10 mM Mangan zugegeben, wobei eine etwas stärkere Bindung des TroR Proteins an seine Promotorsequenz gezeigt werden konnte (Abb. 54, Spur 2). Die schwache Bande in Spur 3 zeigt die unspezifische Bindung von TroR an die Kontroll-DNA (Abb. 54).

Abb. 54 Bindung des halophilen Proteins TroR an die troR-Pincl-Sequenz

Die von der Streptavidin-Sepharose Matrix eluierten TroR Fraktionen des DNA-Bindungsassays wurden auf ein 14%iges SDS-Gel aufgetragen. In Spur eins ist TroR nach erfolgter Bindungsreaktion *troR*-P_{incl} (182bp) zu sehen. Spur zwei zeigte TroR nach der DNA-Bindungsreaktion an *troR*-P_{incl} in Anwesenheit von Mangan (10mM). Spur drei zeigt die unspezifische Bindung von TroR an Kontroll-DNA. In Spur vier wurde der Proteinstandard aufgetragen. Das Molekulargewicht der Standardbanden ist in Spur Mangeben.

Mit Hilfe des DNA-Bindungsassays konnte in *H. salinarum* eine Bindung von TroR an ein DNA-Fragment, welches vermutlich die *troR*-Promotorsequenz enthält, wie auch eine etwas stärkere Bindung durch Mangan gezeigt werden. Diese Resultate führen zu der Vermutung, dass TroR in *H. salinarum* seine eigene Transkription reguliert.

Material und Methoden 3

Material 3.1

Oligonukleotide 3.1.1

Die Oligonukleotide wurden jeweils in vorwärts-Richtung (fwd =,,forward") und in rückwärts-Richtung (rev=,,reverse") zur Amplifizierung der gewünschten DNA-Sequenz eingesetzt. Die Sequenz wird in 5' \rightarrow 3'-Richtung angegeben.

Klonierung von *lrpA1* und *troR* in den pET-26b(+)-Vektor

ExpLrpA1	fwd TTTTTTCATATGAGCACTGAATCGACAGAAGA rev TTTTTCTCGAGCTTGAGGCGTTCCTGGAGGA
ExpTroR	fwd TTTTTTCATATGAACACTGCTGATCAGTACTT rev TTTTTTCTCGAGGTCGTCGGCCTCGACGGAC
Northernblot-Analyse: He	rstellung der DNA-Fragmente zur Generierung von RNA-Sonden gegen die Aspartat-
Transaminase (<i>aspB3</i> ; OE	2619F) und gegen <i>lrpA1</i> (OE2621R)
Die T7-Promotorsequenz ist	in fetter Schrift gekennzeichnet.
NbOE2619F	fwd ATGAGGGATGGCCGCGATCC rev TAATACGACTCACTATAGGGAGA GTCGGTGCGGTCGGCGAGG
NbOE2621R	fwd TCACTTGAGGCGTTCCTGGAG rev TAATACGACTCACTATAGGGAGAGTGAGCACTGAATCGACAGAAG
Konstruktion von Deletion	smutanten

ΔΟΕ2621R	fwd upstream-TTTTTT GGATCC AGACATCGCCGACGAGCC
	fwd donwstream- TTTTTT CTGCAG ITCGCTCTCTGTCGATTCAGI
	rev downstream TTTTTTTCTAGAGATCGGCGATGACACCGCC
ΔOE3923F	fwd upstream TTTTTTGGATCCTTCGGTGCGAGATCGAAG
	rev upstream TTTTTTCTGCAGAAGTTTACGAACGTCCAATTCTG
	fwd downstream TTTTTTCTGCAGCCGGGAACGCGACCGGACAC
	rev downstream TTTTTTTCTAGACCGACCACGTCGTCGACG
∆OE1797R	fwd upstream TTTTTTGGATCCTGTATTTCGGCGTC
	rev upstream TTTTTTCTGCAGGCGATGCGGGTACCTTCGT
	fwd downstream TTTTTTCTGCAGCACGGAAGTCCTGACGCTC
	rev downstream TTTTTTTCTAGAGCAGCTGGCTGGCGAGCG
$\Delta OE1787F$	fwd upstream TTTTTTGGATCCACTGTATCCATGCGCACCGTA
	rev upstream TTTTTTCTGCAGTCCAATCACCTCGAACGGCG
	fwd downstream TTTTTTCTGCAGTGCGGTTCGAAAAGCAATCTCT
	rev downstream TTTTTTTCTAGAGTCGGTCCCGAGGATCACG

Southernblot-Analyse: Herstellung der DNA-Sonden

ΔlrpA1	fwd CGTTTTGATTGTCGGCTACGTG rey CGGTGCGAACGCAACCGAGT
lrpA1	fwd TTTTTTCATATGAGCACTGAATCGACAGAAGA
Δlrp	fwd CTGCATGGATAAATGAGTATCGC
1	rev ACGTTCTTTGCGCGCGATCTC
lrp	twd ATGACCTACGAGAACCTCGACG rev CGCGTCGCCGTCGAGGTCGA

∆sirR	fwd GTGGTGGTGCGTTTTTTGCCTG
sirR	rev TTCGGTGCTGAGGCTGGCGA fwd ATGCATCTAAACGACGGTGTTG
	rev CGCGTCGGTCACCTCGTCG
∆troR	
troR	fwd TTTTTTCATATGAACACTGCTGATCAGTACTT
	rev TTTTTTCTCGAGGTCGTCGGCCTCGACGGAC
Konstruktion der Überexp	ressionsstämme ↑lrp und ↑lrpA1
Lrp	for GTAGCC <u>CTGCAG</u> ATGACCTACGAGAACCTC
LrpA1	for AATAT <i>CTGCAG</i> GTGAGCACTGAATCGACAG
	rev GCGTT <u>GGATCC</u> GGAACGAGGTCACCGAGCG
DNA-binding-assay	
Pro lrpA1	fwd ACGACACCGGGTCGTTTTGAT
Pro lrpA1bio	rev TGGAGACGTCCGCACGCTC
Promut_lrpA1	fwd AAGATACCCTTTCACACGAACC
Promut_lrpA1	rev GGATAGGGGGTTCGTGTGAAA
Pro_aspB3	fwd ATCGCGCTTGAACGTCTGCAT
Pro_aspB3bio	rev GTCGGCGGCGCGTTCGAG
flaA	fwd TCGGCACGCTCATCGTGTTCATCG
flaA2bio	rev GCGCTCGTCTTCGTCAGTGATGAACTCG
Pro_troR	fwd TGATGGAGGCACACAGATGAG
Pro_troRbio	rev CIGACGCCGAGGCGGTCG
Reverse transcription-qua	ntitative PCR
OE6130F	fwd GACGTGAGCGAAAATGGAGAC
aspB3	
Irp A 1	fwd CGACCGTCCGCAAATACAT
прат	rev TTTGCCCGGACAGCTTCTT
lrn	fwd CCTGAAATCACTGGGACGCT
np	rev TCGGTGTCGGTGAACTTC
sirR	fwd CCATCTGGACTACGACTGGGA
	rev GAGTTTCTCCGCGAGTCGG
troR	fwd CGAGCGTCAACGAGATGGT
	rev GGACGCCCCTTGTACTTCT
OE2906R	fwd GACGCACTCGAACCACACAT
	rev ACGTAGCTCTGGTGGTGGGGT
OE3556R	fwd GAGAAAATGGACTTCGGCCA
	rev GTATAGCCGTGGTTCTGTGTGG
N2_5147R	fwd AGACCCTCACTTCTGGCTCG
	rev TTCGTTCGGAGTGTGTGTTTTCG
N3_514/R	twd CGGATTTTCAACCCTGGGTT
NA 5147D	
N4_514/R	
N1 5146R	fwd GTACACAGCCACCCCGGTC
N1_5146K	
N2 5146R	fwd GTCGTCGAAGACATCTCCCTTG
	rev ATGAGCTTCATGAGCGTGGACT
N2_5144R	fwd GACCGACGCGTACAACGAC
	rev TTGATGCTGATGAGCGTGGT
N3_5144R	fwd ACGACGTCTCGATGGCGA
	rev AGGAACTGATTGACGCCGAC
N4_5144R	fwd GGGCTGTCCGTGAACTGGTA
	rev GGATGACGCCCATGATCTG
N1_OE4593R	twd AGCGACTCCGAATCCGG
NO OF4502D	
IN2_UE4393K	
N3 OF4503P	fwd ATTCGTACACGCTGACAGTCGA
OE4759F	fwd ACACCTCGATCTCGGACGTC
	rev GCGCTGGAGTCATCGAGGTA

<u>5'-3'-RACE</u>

a.) cDNA-Synthese	
P1cDNALrpA1-(I)	GACGATGACGCCGTCCGATTCG
P2cDNALrpA1-(II)	CTTTGCCCGGACAGCTTCTTGG
P1cDNAasp-(I)	GGCTGGGGGGTGCGAAGTCGG
P2cDNAasp-(II)	CGCGTCGACTGCTGCCTCGG
P1cDNA(SirR)-(I)	GCGGGATTCGAGCTTCTCGGC
P1cDNA(SirR)-(II)	TGAGCTCGACGCCCGCGTACT
P1cDNA(5147R)-(I)	ATAGAAGCTGAAAAACGACGCGAC
P1cDNA(5147R)-(II)	ACGGTGATCGGCGTGTCGGCG
b.) 1. PCR und 2. "nes	sted"-PCR
PCRLrpA1:	fwd CACATGCTGATGGCGGAGGT
*	rev TCGATGTATTTGCGGACGGTC
NESPCRLrpA1:	fwd CTCGGTGACGTGATCAGCGAC
-	rev ACGCTCCGCGATGGCCGCAT
PCRasp:	fwd CGGATTTCGGTGCGAACGCA
	rev CCACTTCCATGTGGATCACGT
NESPCRasp	fwdCGGGCGTCGTTTGCGGTGAG
	rev GTTCGAGGACATCCATCGCGG
PCRSirR	fwd TCACCGAGCACGCGCCCATC
	rev ATGCTGGTGACCGTGGGCGG
NESPCRSirR	fwd GCCGTCCACCTCCCCGA GC
	rev GTACTCCGCGATGGTGGACGT
PCRABC_T	fwd GCAGGGCTGG GGCTACGAGG
	rev ACGGTCGGTCCCGATTCCGG
NESPCRABC-T	fwd GCCCACGTTCAAGCTCCTGCT
	rev TTATGCAACCGGCGAGGCCAG
PCRbABC_T	fwd GCCGTTGGAGTCTACGTGCTC
—	rev ATTCCGGGTCTCCGTCGGTGT
NES2ABC_T	fwd ACAGACCGCCCTCACCGGCA
—	rev GCGAGGCCAGCGCTGAGAAC

3.1.2 Stämme

<i>E. coli</i> DH5α	Invitrogen
E. coli BL21-DE3	Stratagene
E. coli BL21-Gold-DE3	Stratagene
H. salinarum R1 Parentalstamm	
<i>H. salinarum</i> R1 ΔOE3923F	
<i>H. salinarum</i> R1 \triangle OE2621R	
<i>H. salinarum</i> R1 ∆OE1797R	
<i>H. salinarum</i> R1 ΔΟΕ1787F	
<i>H. salinarum</i> R1 ↑OE3923F	
<i>H. salinarum</i> R1 ↑OE2621R	

3.1.3 Plasmide

Die Herstellung der Deletionsplasmide, Überexpressionsplasmide und Expressionsplasmide ist aus den angeführten Abschnitten zu entnehmen.

Vektoren:

pMKK100	
pET-26b(+)	

Koch und Oesterhelt, 2005 Novagen

Deletionsplasmide (3.3.11):

ΔΟΕ3923F in pMKK100 ΔΟΕ2621R in pMKK100 ΔΟΕ1797R in pMKK100 ΔΟΕ1787F in pMKK100 **Überexpressionsplasmide (3.3.10):** [↑]OE3923F in pKF10 [↑]OE2621R in pKF10 **Expressionsplasmide (3.3.13):** OE2621R in pET-26b(+) OE1787F in pET-26b(+)

3.1.4 Chemikalien

Acrylamid Bacto Agar BactoTM Tryptone Bacto Yeast Extract Biozym LE Agarose Bäckerhefe t-RNA Blockin Reagent Bromphenolblau BSA Fraction V Coomassie R-250 Cy5-dUTP und Cy3-dUTP Diethylpyrocarbonat Desoxynukleosidtriphosphate Dig-11-dUTP Dichlorethan Dig Easy Hyb Guanidiniumthiocyanat Ethidiumbromid IPTG 1-Methylimidazol MES SDS Running Buffer (20x) peqGOLD RNA Pure Phenol/Chloroform RNaseZap Silbernitrat-Lösung Triton-X-100 TEMED 1:1 Verdünnung der Stammlösung (40 mg/ml gelöst in DMF) X-Gal

Biorad Becton, Dickinson & Company Becton, Dickinson & Company Becton, Dickinson & Company Biozym **Roche Diagnostics Roche Diagnostics** Serva Serva Serva **GE-Healthcare** Roth Peqlab **Roche Diagnostics** Roth **Roche Diagnostics** Merck Boeringer Mannheim Gerbu Fluka Invitrogen Peqlab Roth Ambion Riedel DeHäen Roth Biorad

Roth

Chemikalien, welche nicht in dieser Liste enthalten sind, wurden von den Firmen Merck, Roth und Fluka bezogen.

3.1.5 Kommerziell erhältliche Kits

ABI PRISM[®] BigDye Terminator Cycle Sequencing Ready Reaction Crystal Screen I CSPD-Lösung CyScribe First-strand cDNA labelling kit Dig Wash and Block Buffer Set DIG RNA labelling kit (SP6/T7) DNase RQ1 ECL Plus Western Blotting Reagents Kit JSCG Screen PACT Screen PEG/Ion 1 Screen QIAprep Spin Miniprep Kit RNA 6000 Nano LabChip Kit SYBR Green PCR Master Mix Kit Wizard[®]SV Gel and PCR Clean-Up System-Kit Applied Biosystems Hampton Roche Diagnostics GE-Healthcare Roche Applied Science Roche Applied Science Promega GE-Healthcare Qiagen Qiagen Qiagen Agilent Applied Biosystems Promega

3.1.6 Enzyme

DNA-Polymerasen:

Reverse Transkriptase: Restriktionsenzyme: T4 RNA-Ligase T4-DNA-Ligase RNase Inhibitor Hot-Star Taq TaKaRa LaTaq VentR Superscript III *BglI, XhoI, NdeI, BamHI, XbaI, PstI* Qiagen BioWhittacker New England Biolabs Invitrogen New England Biolabs New England Biolabs Invitrogen Promega

3.1.7 Größenstandards

DNA Molecular-Weight Marker VII, DIG-labeled RNA 6000 Stanard Protein-Marker Broad Range (6-175 kDa) Roche Diagnostics Ambion New England Biolabs

3.1.8 Sonstige Materialien

Amicon Ultra-4 (10.000 MWCO) Bis-Tris-Gradienten-Gele (4-12%) CMT-GAPS II Coated Slides Film: CURIX-ULTRA UV-G medical X-Ray Film Filmkassette: X-Omatic cassette Filterpapiere: 3MM Cellulose Chromatography Papier Hybond N+ Hybridisierungsofen: OV 5 Hybridisierungsflasche (100 ml) Microcon YM 30 MicroAmpTM8-Tube Strip MicroAmpTM8-Cap Strip Mikroarray-Hybridisierungskammern

Invitrogen Corning AGFA Kodak Whatman GE-Healthcare Biometra Boekel Glas Millipore Applied Biosystems Applied Biosystems Corning

Millipore

Ni-NTA Superflow Agarose PVDF-Membran Streptavidin SepharoseTM High Performance Superdex 75 Qiagen Roche Diagnostics GE-Healthcar Pharmacia Biotech

3.1.9 Medien und Platten zur Zellzucht und Transformation von *E. coli* und *H. salinarum*

3.1.9.1 Medium und Platten zur Zellzucht von E. coli

Luria-Bertani (LB)-Medium: 1 % (w/v) Bacto Trypton 0.5 % (w/v) Bacto Hefeextrakt 1 % (w/v) NaCl ad 1 L H_2O_{bidest} pH 7.0; Medium autoklavieren

LB-Agarplatten: Zugabe von 2 % (w/v) BactoTMAgar zum LB-Medium

3.1.9.2 Medium zur Transformation von E. coli Zellen

SOC-Medium:

2 % (w/v) Bacto trypton; 0.5 % (w/v) Bacto Hefeextrakt 10 mM NaCl 2.5 mM KCl 10 mM MgCl₂ 10 mM MgSO₄ pH 6.7-7.0

3.1.9.3 Medium und Platten zur Zellzucht von H. salinarum

Komplex-Medium: 4.3 M NaCl 27 mM KCl 80 mM MgSO₄·7H₂O 10 mM Na₃Citrat·2H₂O 1 % (w/v) Bacto Pepton ad 1 L H₂O_{bidest} pH 7.2; autoklavieren

Haloplatten: Zugabe von 1.5 % (w/v) Bacto Agar zu 1 L Komplex-Medium

Synthetisches Medium:

Lösung 1:	NaCl	235 g					
	MgSO ₄ ·7H ₂ O	20 g					
	KCl	2 g					
	KNO ₃	0.1 g					
	Na ₃ Citrat·2H ₂ O	0.5 g					
	in 800 ml H2Obidest	gelöst,	Zugabe	von	20	ml	50 %igem
	Glycerol (w/v)						

Lösung 2:	KH2PO4 KH2PO4·3H2O	2.86 g 6.62 g
	in 100 ml H ₂ O _{bidest} lo	ösen und autoklavieren (pH~7)
Lösung 3:	CuSO ₄ ·7H ₂ O	0.005 g
	FeCl ₂ ·4H ₂ O	0.23 g
	MnSO ₄ ·H ₂ O	0.03 g
	ZnSO ₄ ·7H ₂ O	0.044 g
	Na ₂ Mo ₄ ·2H ₂ O	0.024 g
	CoCl ₂ ·6H ₂ O	0.024 g
	in 100 ml H ₂ O _{bidest}	mit wenigen Tropfen konzentrierter HCl
	lösen, steril filtrierer	und bei Raumtemperatur lagern
Lösung 4:	L-Arginin	2 g
	L-Isoleucin	2.2 g
	L-Leucin	4 g
	L-Lysin·HCl	1.25 g
	L-Methionin	1 g
	L-Threonin	2.5 g
	L-Serin	3.05 g
	L-Phenylalanin	0.5 g
	L-Alanin	1.11 g
	L-Glycin	0.38 g
	L-Prolin	0.52 g
	L-Aspartat	2 g
	L-Glutamat	6.62 g
	in 750 ml H ₂ O _{bidest} lo	ösen
	pH 7.0; steril filtrier	en.
	Die Lagerung von L	ösung 4 erfolgte bei -20°C.
Lösung 5:	L-Tvrosin	0.2 g
0	in 6 ml 1M HCl löse	n, mit H ₂ O _{bidest} auf 40 ml verdünnen
	Die Lagerung von L	ösung 5 erfolgte bei -20°C.
Lösung 6:	Thiamin	0.1 g
-	Folsäure	0.1 g
	Biotin	0.001 g
	in 10 ml H ₂ O _{bidest} 1 ml Aliquots aufbev	verdünnen, steril filtrieren und in jeweils wahrt und bei -20°C lagern.
Lösung 7:	L-Valin	2.93 g
2	in 100 ml H ₂ O _{bidest} g	elöst
sche Medium	zur Zellzucht setzt si	ch aus folgenden Anteilen der jeweiligen

Das synthetische Medium zur Zellzucht setzt sich aus folgenden Anteilen der jeweiligen Lösungen zusammen:

Lösung 1: 800 ml Lösung 2: 2 ml Lösung 3: 1 ml Lösung 4: 150 ml Lösung 5 40 ml Lösung 7: 10 ml Lösung 6: 1 ml pH 7.0; steril filtrieren

3.1.9.4 Medium zur Transformation von H. salinarum Zellen

Komplex-Medium + 15 % (w/v) Saccharaose

Spheroblasting-Lösung:	2 M NaCl 27 mM KCl 50 mM Tris/HCl + 15 % (w/v) Saccharaose pH 8.75
PEG600-Lösung:	60 % PEG600 (Sigma) 40 % Spheroblasting-Lösung

3.1.10 Antibiotika

E. coli	Kanamycin (Sigma): 50 µg/ml (Stammlösung 50 mg/ml)
H. salinarum	Mevinolin (Sigma): 25 µM (Stammlösung 25 mM)
H. salinarum	Novobiocin (Roth): 0.15 µg/ml (Stammlösung 150 µg/ml)

3.1.11 Antikörper

Southernblot und Northernblot: Anti-Digoxygenin–AP, Fab-Fragmente (Roche Diagnostics)
 Westernblot: primärer Antikörper [c=500 μg/ml] gegen Peptide von Lrp
 Peptid 1: ELLGDGRASLRSLADDLD Peptid 2: LNAAAENEQFELDLDGDA primärer Antikörper [c=500 μg/ml] gegen Peptide LrpA1
 Peptid 1: LEEDAQASYAAIAERAD Peptid 2: DGVTAAHPSFLQERLK sekundärer Antikörper: Rabbit-Anti Chicken HRP Konjugat IgY (Upstate Biotech.)

3.1.12 Geräte

Gelsysteme:	Agarosegel-Elektrophoresekammer Agilent Bioanalyzer 2100 Xcell SureLock MightySmall SE250 Gelkammer	Werkstatt, MPIB Agilent Invitrogen Hoefer
Photometer:	NanoDrop [®] ND-100 Ultrospec 3000 UV/Visible Spectrophotometer Klett-Summerson Photoelectric Colorimeter	peqLab GE-Healthcare Klett Manufactoring
Thermocycler:	T300 thermocycler GeneAmp 5700 Sequence Detection System	Biometra Applied Biosystems

FPLC:	SMART System	Pharmacia Biotech
Mikroarray:	Scanner GenePix 4000B ChipWriter Pro	Axon Virtek
Zentrifugen:	Tischzentrifuge Centrifuge 5415D Sorvall RC 5C Centrifuge (SS34) Optima LE-80K Ultracentrifuge (Ti45) Rotixa 120R	Eppendorf Thermo Beckmann Hettich
Zellaufschluß:	Sonifier 450	Branson
Entwicklermaschine: UV-Durchlichtlampe:	X-OMAT Geldokumentationssys. TFPM/WL VilberLourmat	Kodak LTF Labortechnik

3.1.13 Computerprogramme

Bioedit 7.0.1	http://www.mbio.ncsu.edu/bioedit/bioedit.html
Brenda	http://www.brenda-enzymes.info/
CDNN	http://bioinformatik.biochemtech.uni-halle.de/cdnn/
Clonemanager 7	Sci Ed Central
ClustalX	ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalX
Corel Graphics Suite 11	Corel
DNA-Binding Assay Kalkulationen	http://www.molbiol.ru/ger/scripts/index.html
DNA-tools	http://biology.semo.edu/cgi-bin/dnatools.pl
GeneAmp 5700 Manager	Perkin-Elmer
GenePix Pro 6	Axon Instruments
Halolex	interne Version: https://edman.rzg.mpg.de
Halolex	externe Version: http://www.halolex.mpg.de
INDONESIA	http://xray.bmc.uu.se/dennis/ (Madsen, in Präparation)
NCBI	http://www.ncbi.nlm.nih.gov/
Oligonucleotide properties calculator	http://www.basic.northwestern.edu/biotools/oligocalc.html
Origin 6.1G	Origin Lab
Primer Express 2.0	Applied Biosystems
ProtParam	http://www.expasy.ch/tools/protparam.html
R-Programme von Dr. Welzl	Twellmeyer et al., 2007
R-Umgebung (Statistik)	http://www.r-project.org/
"Scratch Protein Predictor"	http://scratch.proteomics.ics.uci.edu/
TIGR Mev	http://www.tm4.org/mev.html (Quelle)
TotalLab v1.11	http://www.totallab.com/

3.2 Mikrobiologische Methoden

3.2.1 Zellzucht von H. salinarum R1

Die Zellzucht des *H. salinarum* R1 Parentalstamms und der Deletionsmutanten (Δlrp , $\Delta lrpA1$, $\Delta sirR$, $\Delta troR$) erfolgte entweder in Komplex-Medium oder in synthetischem Medium aerob im Dunklen (Oesterhelt und Krippahl, 1983; Cline und Doolittle, 1987). Das

Wachstum der Überexpressionsstämme ($\uparrow lrp$, $\uparrow lrpAl$) fand in Komplex-Medium anaerob unter Lichtexposition statt.

35 ml Medium wurden mit 1 ml der entsprechenden Kultur angeimpft und bei 40°C und 100 rpm auf einem Schüttler inkubiert. Bei Erreichen einer OD_{600} von ca. 0.4 wurde 1 ml dieser Kultur in weiteren 35 ml Medium überimpft und unter gleichen Bedingungen inkubiert. Dieser Schritt wurde insgesamt dreimal wiederholt. Bei den Überexpressionsstämmen wurde in den beiden ersten Inokulationsschritten Mevinolin (1:100) beigefügt und im letzten Schritt weggelassen.

3.2.2 Zellzucht von Escherichia coli

Die *E. coli* Stämme DH5 α , BL21-DE3 und BL21-Gold-DE3, welche zur Klonierung und Proteinexpression verwendet wurden, wurden in LB–Medium inokuliert. Falls notwendig, wurde das LB-Medium mit den entsprechenden Antibiotika supplimiert (Sambrook *et al.*, 1989).

Für die Übernachtkultur wurden 5 ml LB-Medium bzw. 5 ml LB-Selektivmedium mit gepickten *E. coli* Klone angeimpft und über Nacht bei 37°C und 250 rpm auf einem Schüttler inkubiert. Das LB-Selektivmedium enthielt eine Endkonzentration von 50 μ g/ml Kanamycin.

3.3 Molekularbiologische Methoden

3.3.1 Isolierung genomischer DNA aus H. salinarum

1 ml einer *H. salinarum* Kultur, welche eine OD_{600} von ca. 0.4 hatte, wurde für 3 min bei 13000 rpm in einer Tischzentrifuge zentrifugiert. Der Niederschlag wurde anschließend in 400 µl H₂O_{bidest} resuspendiert, um die Zellen zu lysieren. Zur Denaturierung der Proteine wurde das Lysat für 15 min bei 70°C inkubiert. Die Lagerung erfolgte bei 4°C über einige Monate. Das Lysat wurde vor der Verwendung für PCR-Reaktionen oder für Southernblot-Analysen erneut für 10 min bei 60°C erhitzt (Dyall-Smith, 2006).

3.3.2 Plasmid-DNA Isolierung aus E. coli

Die Isolierung von Plasmid-DNA aus *E. coli* erfolgte mit Hilfe des QIAprep® Spin Miniprep Kit, wobei 5 ml der *E. coli* Übernachtkultur in einem LB-Selektivmedium mit zusätzlichem Antibiotikum verwendet wurden. Der Zellaufschluss erfolgte nach dem Prinzip der alkalischen Lyse und die Trennung der Plasmid-DNA erfolgte durch deren Adsorption an Silicagel-Membranen. Alle Arbeitsschritte wurden nach den Angaben des Herstellers durchgeführt (QIAprep[®]Miniprep Handbuch).

3.3.3 Bestimmung der DNA-Konzentration

1 μ l der unverdünnten DNA-Lösung wurde mittels Photometer (NanoDrop[®]ND-100, peqLab) bei den Wellenlängen 260 und 280 nm gemessen. Eine DNA-Lösung mit geringer Proteinverunreinigung sollte einen A₂₆₀/A₂₈₀-Quotienten von ca. 2 haben.

3.3.4 Transformation von E. coli Zellen

Zur Transformation von *E.coli* Zellen wurden kompetente Zellen BL21-DE3 (Stratagene) BL21-Gold-DE3 (Stratagene) und DH5 α (Invitrogen) auf Eis aufgetaut. 50 µl Aliquots der kompetenten *E. coli* Zellen wurden mit 2 µl der zu transformierenden Plasmid-DNA für 20 min auf Eis inkubiert. Danach erfolgte ein Hitzeschock bei 42°C für 40 sec. Anschließend wurden die Proben für 2 min auf Eis gekühlt und mit 250 µl SOC-Medium supplementiert. Die Inkubation erfolgte für 1 h bei 250 rpm auf einem Schüttler bei 37°C. Im Anschluss daran wurden Aliquots von 150 µl der Zellsuspension auf LB-Selektivagarplatten ausplattiert und über Nacht in einem 37°C Brutschrank inkubiert.

3.3.5 Transformation von H. salinarum Zellen

Für die Transformation von *H. salinarum* wurden 40 ml einer mehrmals überimpften Kultur in einem 100 ml Erlenmeyer-Kolben bis zu einem OD_{600} von 0.5-0.7 kultiviert. Anschließend wurden 1.5 ml Aliquots dieser Kultur hergestellt und für 1 min bei 10000 x g zentrifugiert, der Überstand verworfen und der Niederschlag in 150 µl Spheroblasting-Lösung resuspendiert. Nun erfolgte eine Inkubation von 10 min bei Raumtemperatur in 15 µl 0.5 M EDTA (pH 8.0) und 15 µl Spheroblasting-Lösung. Im nächsten Schritt folgte die 108 Zugabe von 10 µl eines 1:1 Gemisches aus der entsprechend zu transformierenden DNA und Spheroblasting-Lösung, sowie eine weitere Inkubation von 5 min bei Raumtemperatur. Anschließend wurde das gleiche Volumen (190 µl) an 60 % PEG600 zugegeben und mit der Zelllösung unmittelbar durch Invertieren des Reaktionsgefäßes gemischt. Nach einer Inkubationszeit von 20 bis 30 min bei Raumtemperatur wurde 1 ml Komplex-Medium + 15 % (w/v) Saccharose beigemischt und die Zellen für 2 min bei 10000 x g zentrifugiert. Der Überstand wurde verworfen und der Niederschlag in 1 ml Komplex-Medium + 15 % (w/v) Saccharose durch Pipettieren resuspendiert. Die Zellen wurden über Nacht bei 37°C geschüttelt. Danach erfolgte eine Zentrifugation für 2 min bei 10000 x g, der Überstand wurde verworfen und der Niederschlag in 150 µl Komplex-Medium mit 15 % (w/v) Saccharose resuspendiert. Die Zellen wurden auf Haloplatten mit 0.15 µg/ml Novobiocin und 50 µl/Platte X-Gal (4 % in DMF) ausplattiert. Die Inkubation erfolgte bei 40°C für 10 bis 14 Tage.

3.3.6 Polymerasekettenreaktion

Die Polymerasekettenreaktion (PCR) dient der Vervielfältigung einer spezifischen DNA-Sequenz (Saiki *et al.*, 1988). Dabei werden eine hitzestabile DNA-Polymerase und spezifische Oligonukleotide, so genannte Primer, benötigt. Eine Standard-PCR basiert auf drei aufeinander folgenden Reaktionen. Zuerst findet eine Schmelzreaktion statt, wo die beiden Doppelstränge voneinander getrennt werden. Anschließend heften sich spezifische Oligonukleotide an die komplementäre Sequenz der DNA-Vorlage ("Template") an ("annealing"-Reaktion), damit die DNA-Polymerase die Synthese eines neuen DNA-Stranges initiieren kann ("extension").

Im Temperaturprofil werden die Größe der DNA-Vorlage und die Effizienz der jeweiligen DNA-Polymerase berücksichtigt. Die "Annealing"-Temperatur der Primer lag ca. 5°C unter der mit der "2+4"-Regel (T_M =[(G+C)x4°C + (A+T)x2°C]) berechneten Schmelztemperatur (T_M -Wert).

Zur Amplifizierung von DNA-Fragmenten wurden folgende DNA-Polymerasen verwendet: Hot Star TaqTM (Qiagen), TaKaRa LA TaqTM (BioWhittacker), VentR (New England Biolabs). Die Durchführung der PCR-Reaktionen erfolgte nach Angaben des Herstellers, wobei jeder Reaktionsansatz Reaktionspuffer, je 1.25 mM dATP, dCTP, dGTP sowie dTTP, eine DNA-Vorlage, die empfohlenen Menge an DNA-Polymerase und 50 pmol Primer enthielt. Um die Ausbildung von Sekundärstrukturen zu vermeiden wurde den Reaktionsansätzen wahlweise 3-4 % (v/v) DMSO beigefügt. Eine Standard-PCR Reaktion enthielt folgendes Reaktionsgemisch und folgte dem angeführten Temperaturprofil.

<u>Standard-PCR-Ansatz:</u>	
DNA-Template	x μl
Oligonukleotid forwärts (10 pmol/µl)	5 µl
Oligonukleotid rückwärts (10 pmol/µl) 5 µl
10x PCR-Puffer	5 µl
dNTP-Mix (je 10mM)	8 µl
DMSO	1.5µl
DNA-Polymerase	xμl
H ₂ O _{bidest.}	add. 50µl

<u>Temperaturpr</u>	<u>rofil:</u>		
95° C	5 min		
94° C	15 sec (Denaturierung der DNA)	רו	
50-68° C	1 min ("annealing")	$\left \right\rangle$	30-40 Zyklen
72° C	1 min/ 1 kb ("elongation")		
72° C	10 min	2	
4° C	∞		

3.3.7 Auftrennung von DNA in Agarosegelen

Die elektrophoretische Auftrennung von DNA-Fragmenten erfolgte mit Hilfe von Agarosegelen (0.8-2 % Agarose) in einem 1x TAE-Puffer bei 80 V. Den DNA-Proben wurde zuvor ein 5x Auftragspuffer zugegeben. Zur Abschätzung der DNA-Größe und Menge wurde ein DNA-Standard (500-10000 bp Invitrogen) mit aufgetragen. Nach abgeschlossener Elektrophorese wurde das Agarosegel für 10-20 min in einer Ethidiumbromid-Lösung (0.1 mg/l) gefärbt und anschließend für 10-20 min in H₂O_{bidest} gewaschen. Da Ethidiumbromid in DNA interkaliert konnte diese mittels einer UV-Lampe bei 366 nm detektiert werden (Geldokumentationssystem TFPM/WL VilberLourmat (LTF Labortechnik).

50xTAE-Puffer: 2 M Tris 57.1 ml Eisessig 50 mM EDTA ad 1 l H₂O_{bidest.} mit Essigsäure auf pH 8.5 einstellen

3.3.8 Extraktion von DNA aus Agarosegelen

Nach erfolgter Elektrophorese wurde das gewünschte DNA-Fragment unter UV-Licht aus dem Agarosegel ausgeschnitten und in ein Reaktionsgefäß gegeben. Anschließend konnte die DNA mit Hilfe des Wizard[®]SV Gel and PCR Clean-Up System-Kit aus dem Agarosegel nach Angaben des Herstellers extrahiert werden.

3.3.9 Sequenzierung von DNA

Die DNA-Sequenzierung wurde nach dem Prinzip des Kettenabbruchverfahrens von Sanger (Sanger *et al.*, 1977) unter der Verwendung von fluoreszenzmarkierten Didesoxynukleotiden durchgeführt. Dabei wurde der ABI PRISM[®] BigDyeTM Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems), welcher die nötigen Puffer, dNTPs, fluoreszenzmarkierte Didesoxynukleotide wie auch eine thermostabile DNA-Polymerase enthielt, verwendet. Zur Durchführung der Sequenzierreaktion wurden zwischen 0.5-1.0 µg Vektor-DNA bzw. 0.2-0.5 µg eines PCR-Produkts eingesetzt.

Beim Ablauf der Sequenzierreaktion wurden nun Polynukleotide verschiedener Länge erzeugt, da der Einbau eines markierten dNTPs zum Abbruch der Synthese führte. Durch das bei der Elektrophorese entstandene Bandenmuster konnte so die Sequenz des zu bestimmenden DNA-Abschnitts bestimmt werden. Sequenzierreaktionen wurden mit folgendem Ansatz und Temperaturprofil durchgeführt:

<u>Ansatz:</u>	
DNA	1 µl
Oligonukleotide [10 µM]	1 µl
BidDye TM Reaktionsmix	2 µl
BigDye Puffer	1 µl
5 M Betain	2 µl
H ₂ O	3 µl

 $\underline{\text{Temperaturprofil:}}_{94^{\circ}\text{C}} 30 \text{ sec}_{30\text{ sec}} 30x \\
 4^{\circ}\text{C} \infty
 30x$

3.3.10 Klonierung von *lrpA1* und *troR*

Das entsprechende Gen (*lrpA1* bzw. *troR*) wurde mittels PCR mit spezifischen Primern (3.1.1), welche die Schnittstellen *Nde1* und *XhoI* enthielten, amplifiziert. Den Oligonukleotiden wurden jeweils am 5'-Ende vor der Schnittstelle, sechs Thymidinreste angefügt, um so die Effektivität des Restriktionsenzyms zu erhöhen. Als DNA-Matrize wurde genomische *H. salinarum* DNA verwendet (3.3.1). Die PCR-Produkte wurden anschließend mit den entsprechenden Restriktionsenzymen geschnitten und über ein Agarosegel aufgereinigt. Darauf folgte die Ligation mittels T4-DNA-Ligase (Invitrogen) des DNA-Fragmentes innerhalb der "multiple cloning site" (MCS) (Abb. 56) des Expressionsvektors (pET-26b (Novagen) (Abb. 55)). Sowohl das DNA-Fragment, als auch der Expressionsvektor wurden mit den entsprechenden Restriktionsenzymen *NdeI* und *XhoI* geschnitten. Für den Ligationsansatz wurde jeweils ca. 100 ng DNA in einem 3:1 Verhältnis von linearisiertem Vektor zu klonierendem Fragment über Nacht bei 12°C inkubiert. Das entstandene rekombinante Plasmid wurde in den *E. coli* Stamm DH5 α transformiert und in diesem vermehrt (3.3.4). Die Richtigkeit des klonierten Fragments wurde mittels DNA-Sequenzierung überprüft (3.3.9).

Zur Expression der Gene *lrpA1* und *troR* in *E. coli* eignet sich das T7-RNA-Polymerase-Promotor-System (Tabor und Richardson, 1992). Im Expressionsvektor pET-26b wird das zu exprimierende Gen unter die Kontrolle des T7-Promotors gestellt. Die Genexpression erfolgt im *E. coli*-Stamm BL21-DE3, der das Gen für die T7-RNA-Polymerase unter der Kontrolle des induzierbaren *lac*-Promotors trägt. Dabei wird die Expression der T7-RNA-Polymerase und folglich auch des rekombinanten Gens durch die Zugabe von IPTG (Isopropyl-beta-D-thiogalactopyranosid) induziert (Studier und Moffatt, 1986; Studier *et al.*, 1990).

Abb. 55 Plasmidkarte von pET-26b (http://www.merckbiosciences.com/docs/docs/PROT/TB071.pdf)

Abb. 56 Multiple Klonierungsstelle (multiple cloning site=MCS) des Plasmids pET-26b (http://www.merckbiosciences.com/docs/docs/PROT/TB071.pdf)

Das Expressionsplasmid enthält zusätzlich eine Kanamycin-Resistenz. Dadurch können bei der Transformation nur Zellen wachsen, die das zirkuläre Plasmid aufgenommen haben. Innerhalb der MCS ist die Sequenz für einen His₆-tag enthalten. Die Gensequenz der Zielproteine wird zwischen die Erkennungssequenzen von *NdeI* und *XhoI* ligiert. Durch die T7 RNA Polymerase wird der His₆-tag an das Zielprotein angefügt. Diese Markierung ist für die Proteinaufreinigung von Bedeutung (3.4.3).

3.3.11 Herstellung der Deletionsmutanten Δlrp , $\Delta lrpA1$, $\Delta sirR$ und $\Delta troR$

Im Wesentlichen ist die Herstellung der Deletionsplasmide dem Manuskript (Koch und Oesterhelt, 2005) zu entnehmen. Zunächst wurden so genannte Deletionsplasmide hergestellt, wobei jeweils die stromauf- und stromabwärts angrenzenden Bereiche an das zu deletierende Gen durch die Verwendung spezifischer Primer (3.1.1) amplifiziert wurden (Abb. 6). Die Primer enthalten dabei jeweils die Sequenzen für die Schnittstellen der entsprechenden Restriktionsenzyme. Das erhaltene PCR-Produkt wurde mit *PstI* verdaut, ligiert und reamplifiziert. Anschließend erfolgte die Klonierung der Fusionsprodukte der stromauf- und stromabwärts liegenden Sequenzen unter Verwendung der *BamHI* und *XbaI* Schnittstellen in den Vektor pMKK100 (Koch und Oesterhelt, 2005). Nun wurden die Deletionsplasmide mittels PEG-vermittelter Transformation in *H. salinarum* transformiert (3.3.5) (Cline und Doolittle, 1987).

Die Deletionsmutanten wurden in einem zweistufigen Prozess hergestellt, wobei einzelne "single cross-over" Ereignisse anhand der Rot-Blau Selektion identifiziert wurden (Koch und Oesterhelt, 2005). Die Rot-Blau Selektion beruht darauf, dass das Reportergen β -Galactosidase aus *H. alicantei* auch in anderen halophilen Organismen funktionell ist. Der Integrationsvektor pMKK100 enthält das Fusionsprodukt der flankierenden Sequenzen des zu deletierenden Gens. Nach erfolgreicher Transformation des Vektors in *H. salinarum* selektiert man Klone mittels "single cross-over". Dies bedeutet, dass eine dieser flankierenden Sequenzen des Vektors mit seinem chromosomalen Gegenstück rekombiniert und somit das gesamte Plasmid inklusive Mevinolinresistenzgen und β -Galactosidasegen ins Genom integriert wird. Die Transformanten sind daher in der Lage, auf mevinolinhaltigen Platten zu wachsen und werden durch die β -Galactosidase-Aktivität auf X-Gal-Medium blau.

Die Regionen stromauf- und stromabwärts des Gens sind nach der Transformation in sehr kurzem Abstand jeweils zweimal im Genom vorhanden. Deshalb kann zwischen diesen Regionen vergleichsweise leicht ein zweiter single cross-over stattfinden. Um einen zweiten cross-over zu ermöglichen, lässt man die Transformanten einige Generationen ohne den Selektionsmarker Mevinolin wachsen. Dadurch können auch Klone wachsen, die den Vektor und damit die Mevinolinresistenz durch einen zweiten cross-over verloren haben.

Findet der zweite cross-over zwischen den gleichen Regionen statt, wie der erste (z.B. beide Male mit den Regionen stromaufwärts des Gens), dann wird das Plasmid auf demselben Weg aus dem Genom entfernt, auf dem es integriert wurde. In diesem Fall sind die Klone nicht mehr gegen Mevinolin resistent und werden auf Platten mit X-Gal-Medium nicht mehr blau. Diese Mutanten entsprechen genetisch wieder dem Wildtyp, welcher aufgrund der Produktion von Bacteriorhodopsin und Carotinoiden eine rote Farbe aufweist. Findet das zweite cross-over zwischen dem zweiten flankierenden, noch nicht rekombinierten Bereich und seinem Gegenstück statt, so wird nicht nur das Plasmid entfernt, sondern auch das Gen. Anstelle des Gens befindet sich nun die Deletionskassette im Genom. Wenn die Regionen stromauf- und stromabwärts des Gens im Plasmid gleich groß sind, dann finden die beiden Möglichkeiten des zweiten cross-overs mit gleicher Wahrscheinlichkeit statt, so dass nur 50 % der Klone, bei denen ein zweiter cross-over stattgefunden hat, die gewünschte Deletion enthalten. Die anderen 50 % der Klone entsprechen dem Wildtyp.

Plattiert man die Kulturen nun auf Platten ohne Mevinolin aus, so wachsen darauf alle Klone, auch diejenigen, bei denen kein zweites cross-over stattgefunden hat. Diese Klone sind ohne die Methode der Blau-Rot Selektion zunächst nicht von den maximal 10% der gewünschten Klone zu unterscheiden. Da sie aber nach wie vor das β -Galactosidase-Gen besitzen, können sie auf Platten mit X-Gal-Medium visuell über ihre blaue Farbe erkannt werden. Sie scheiden für eine weitere Untersuchung auf die Deletion aus. Die verbleibenden roten Klone enthalten im Idealfall den Genotyp einer Deletionsmutante, welcher zuerst mit Hilfe einer PCR überprüft wurde. Anschließend wurden PCR-positive Klone mittels Southernblot-Analyse verifiziert (3.3.12).

Abb. 57 Vektorkarten der Deletionskonstrukte lrp, lrpA1, sirR und troR

3.3.12 Southernblot-Analyse

Zur Überprüfung des korrekten Genotyps einer Deletionsmutante wurde eine Southernblot-Analyse der PCR-positiven Klone durchgeführt. Dabei wurde genomische DNA aus der jeweiligen Mutante mit dem Restriktionsenzym *Bgl1* für 5 h inkubiert. Als Kontrolle wurde genomische DNA aus dem Parentalstamm *H. salinarum* ebenfalls mit *Bgl1* geschnitten. Für den 60 μ l Restriktionsverdau wurden 30 μ l genomische DNA, 6 μ l des 10x Puffer und entsprechend H₂O_{bidest} pipettiert.

Die Detektionsreaktion erfolgte mit zwei verschiedenen DIG-markierten DNA-Sonden, einer Gen- und einer Deletionssonde, welche mit spezifischen Primern (3.1.1) mittels PCR hergestellt wurden, wobei eine Standard-PCR mit 1µl DIG markiertem dUTP (Dig-11- dUTP, Roche Diagnostics) stattfand. Die DNA-Sonde wurde schließlich durch eine Agarosegelelektrophorese und anschließenden Gelextraktion gewonnen.

3.3.12.1 DNA-Transfer auf eine Membran

Nach dem Restriktionsverdau wurden die Proben auf ein 1% iges Agarosegel aufgetragen und für ca. 4 h bei 70mA aufgetrennt. Anschließend wurde das Gel mit 0.5 μ g/ml Ethidiumbromid für 15 min gefärbt und ca. die gleiche Zeit mit Wasser entfärbt. Zur Größenbestimmung der DNA-Fragmente wurde der DIG-markierte Längenstandard "dig Marker VII" (Roche Diagnostics) verwendet.

Um die DNA auf eine Nylonmembran zu transferieren wurde das Agarosegel wie folgt vorbehandelt: Das Gel wurde zuerst für 5 min in der HCl-Waschlösung inkubiert, anschließend erfolgte eine Inkubation für 30 min in der NaOH-Waschlösung. Danach wurde das Gel für 30 min in einer bei 4°C vorgekühlten Tris-Waschlösung inkubiert. Die Blotting-Apparatur wurde wie in Abb. 58 gezeigt, aufgebaut. Dabei wurde zuerst eine Maske in der Größe des zu blottenden Gels aufgelegt. Danach wurden zwei in 10x SSC getränkte Whatmanpapiere und eine Nylonmembran (Hybond N+, GE-Healthcare) aufgelegt. Die Membran wurde vorher für 2 min in Wasser und anschließend für 2 min in 10x SSC vorbehandelt. Der Transfer wurde bei 25-30 mbar für ca. 2 h mittels einer Wasservakuumpumpe durchgeführt. Im Anschluss daran erfolgte die UV-Fixierung der DNA auf die Membran.

Abb. 58 Schema des Blotaufbaus zur Durchführung des Vakuumblots

Dabei wurden in der Reihenfolge von unten nach oben zwei Whatman Papiere, eine Nylonmembran (Hybond N), eine Maske in der entsprechenden Gelgröße, das 1%ige Agarosegel und abschließend noch ein Whatmanpapier in die Vakuumblotapparatur gelegt, um den Probentransfer vom Gel auf die Nylonmembran durchzuführen.

HCl-Waschlösung:	0.25 M HCl ad 1 L H ₂ O _{bidest}
NaOH-Waschlösung:	0.5 M NaOH 1M NaCl ad 1 L H ₂ O _{bidest}
Tris-Waschlösung:	3 M NaCl 0.5 M Tris/HCl ad 1 L H ₂ O _{bidest} pH 7.5; Lösung bei 4°C vorgekühlt
20xSSC-Puffer:	3 M NaCl 0.3 M Na ₃ Citrat·2 H ₂ O _{bidest} ad 1 L H ₂ O _{bidest} pH 7.0; autoklavieren

3.3.12.2 Detektionsreaktion

Um die Detektionsreaktion durchzuführen, wurde die Membran bei 42°C im vorgewärmten Hvbridisierungspuffer "DIG Easy Hyb" (Roche Diagnostics) für 1 h inkubiert. Dabei wurden 20 ml/ 100 cm² Hybridisierungspuffer verwendet. 8 µl der entsprechenden Gensonden wurden in 3 ml Hybridisierungspuffer "DIG Easy Hyb" für 15 min bei 100°C erhitzt und anschließend für 10 min in Eiswasser abgekühlt. Die Hybridisierungsreaktion mit den DNA-Sonden erfolgte über Nacht bei 42°C. Anschließend wurde die Membran zweimal mit der Lösung "Hyb wash 1" für 5 min bei Raumtemperatur gewaschen. Danach wurde die Membran zweimal mit der vorgewärmten Lösung "Hyb wash 2" für 15 min bei 68°C gewaschen. Im Anschluss daran erfolgte ein Waschschritt mit dem Waschpuffer für 3 min bei Raumtemperatur. Danach wurde die Membran mit Puffer 2 für 30 min bei Raumtemperatur inkubiert und für weitere 30 min in Puffer 2 inklusive der Fab-Fragmente (1: 10000 verdünnt). Im Anschluss daran wurde zweimal für 15 min mit dem Waschpuffer gewaschen und danach wurde für 5 min mit Puffer 3 gewaschen. Zur Detektion wurde 1 ml CSPD-Lösung vorbereitet. Die Membran wurde zusammen mit der aufgetropften CSPD-Lösung in einer Plastiktüte eingeschweißt. Nun wurde ein Film auf die eingeschweißte Membran aufgelegt und in einer Filmkassette bei 37°C für ca. 45-60 Minuten inkubiert. Der Film wurde mit einer Entwicklermaschine (X-OMAT, Kodak) fertig gestellt.

Puffer 1:	0.1 M Maleinsäure 0.15 M NaCl; pH 7.5 ad 1000 ml H ₂ O _{bidest} ; autoklavieren
Puffer 2:	1 % (v/v) Blockierungslösung 10 % ad 100 ml Puffer1; autoklavieren
Puffer 3:	0.1 M NaCl 50 mM MgCl ₂ ·6 H ₂ O 0.1 M Tris/HCl pH 9.5 ad 1000 ml H ₂ O _{bidest}
Blockierungslösung:	10 % (w/v) Blockierungslösung ad 250 ml Puffer1; autoklavieren; bei 4°C lagern
10% SDS:	10 % (w/v) SDS (Natriumlaurylsulfat) ad 400 ml H_2O_{bidest}
Hyb wash 1:	2xSSC 20x 0.1% (v/v) SDS 10 % ad 1000 ml H ₂ O _{bidest}

Hyb wash 2:	0.1xSSC 20x 0.1 % (v/v) SDS 10 % ad 1000 ml H ₂ O _{bidest}
Waschpuffer:	0.3 % (v/v) Tween 20 (Polyoxyethylen-sorbitan-monolaurat) ad 1000 ml Puffer1
CSPD-Lösung:	0,25 mM CSPD ad 1000 μl Puffer3

3.3.13 Überexpression der Gene *lrp* und *lrpA1*

Die Konstruktion der Überexpressionsplasmide von *lrp* und *lrpA1* ist der Dissertation Furtwängler 2009 zu entnehmen. Dabei wurden die Gene *lrp* bzw. *lrpA1* unter die Kontrolle des Bacteriorhodopsin (*bop*)-Promotors gestellt. Da die *bop*-Genexpression bei einer OD_{600} von 0.8 maximal ist, wurde auch das Wachstum der Überexpressionsplasmide bis zu einer OD_{600} von 0.8 verfolgt bzw. die Zellen wurden zu diesem Zeitpunkt geerntet. Mittels Westernblot-Analyse wurde anschließend eine erfolgreiche Überexpression auf Proteinebene überprüft.

3.3.14 Gesamt-RNA-Isolierung aus H. salinarum

10 ml *H. salinarum* Zellen wurden für 5 min bei 12000 x g im SS34-Rotor und bei 4°C zentrifugiert. Anschließend wurde der Niederschlag in 6 ml einer Phenol-Guanidiniumthiocyanat-Lösung (peq GOLD RNA-Pure, peqLab) resuspendiert. Bei Bedarf konnten die Proben bei -70° C aufbewahrt werden. Als nächstes wurden die Proben bei Raumtemperatur für 5 min inkubiert. Danach wurde 20 % (v/v) Chloroform zugegeben, für 15 sec geschüttelt und weitere 10 min bei Raumtemperatur inkubiert. Im Anschluss daran wurden die Proben bei 15000 x g und Raumtemperatur für 5 min zentrifugiert. Danach wurde die wässrige Phase abgenommen und 50 % (v/v) Isopropanol zugegeben und geschüttelt. Die Proben wurden nun für 15 min bei -20° C inkubiert. Anschließend erfolgte ein Zentrifugationsschritt bei 15000 x g und Raumtemperatur zentrifugiert. Schließlich wurde der Niederschlag für ca. 10 min an der Luft getrocknet und danach in 100 µl H₂O_{DEPC} aufgenommen. Bis zur weiteren Verwendung wurden die RNA-Proben bei -70° C gelagert.

3.3.14.1 DNase-Behandlung und Bestimmung der RNA-Konzentration und Qualität

Der DNase-Verdau wurde mit Hilfe des Promega-Kit RQ1 durchgeführt. Zu 50 μ l RNA-Lösung wurden 5 μ l DNase-Puffer, sowie 5 μ l DNaseI hinzugefügt. Es folgte eine Inkubation bei 37°C für 40 min. Danach wurden 5 μ l Stop-Lösung hinzugegeben. Der Ansatz wurde für zehn Minuten bei 65°C inkubiert.

Die Qualität der RNA wurde mit Hilfe des 2100 Bioanalyzers incl. des RNA6000-Nano-LabChip-Kit überprüft (Agilent Technologies). Alternativ konnte die RNA-Qualität mittels eines denaturierenden 1 % igem TBE(Tris-Borat-EDTA)-Agarosegel, welches 20 mM Guanidiniumthiocyanat beinhaltet, kontrolliert werden. Die RNA-Proben wurden in einem Verhältnis 1:10 verdünnt und mit einem 1/5 Volumen Auftragspuffer versetzt. Zur Denaturierung der RNA wurde der Ansatz für 5 min auf 70°C erhitzt und anschließend sofort auf Eis gestellt. Danach wurden die Proben auf das TBE-Agarosegel aufgetragen. Die elektrophoretische Auftrennung erfolgte in 1xTBE bei 70 V. Nach erfolgter Elektrophorese wurde das Gel in einer Ethidiumbromidlösung gefärbt (3.3.7) und im UV-Licht betrachtet.

Zur Sicherstellung eines vollständigen DNase-Verdaus, wurde eine Kontroll-PCR unter Verwendung des Enzyms Hot Star Taq[™]-Polymerase und Oligonukleotide für das Gen *idr2* durchgeführt.

Um die RNA-Konzentration zu bestimmen, wurde die optische Dichte (OD) mit Hilfe eines Photometers (Ultrospec 3000 UV/Visible Spectrophotometer) bestimmt. Dabei wurde die Probe bei einer Wellenlänge von 260 nm und 280 nm gemessen. Anschließend wurde der Quotient der beiden Messungen OD260/280 ermittelt, um somit die RNA-Konzentration zu bestimmen.

10x TBE-Puffer:	89 mM Tris-HCl pH 8.0 89 mM Borsäure 2 mM EDTA ad 1 L H ₂ O _{bidest}
6x Auftragspuffer:	 0.25 % Bromphenolblau 0.25 % Xylencyanol 30 % Glycerol 1.2 % SDS 60 mM Na-Phosphatpuffer pH 6.8

3.3.15 Mikroarray-Technologie

3.3.15.1 Fluoreszenzmarkierte cDNA-Synthese

Zum Umschreiben der mRNA in die stabile fluoreszenzmarkierte-cDNA wurde der CyScribe First-Strand cDNA Labeling Kit (GE-Healthcare), sowie die beiden Farbstoffe Cy3 (grün) und Cy5 (rot) (GE-Healthcare) verwendet.

In einem ersten Schritt wurde folgender Reaktionsansatz für 5 min bei 70°C inkubiert und anschließend bei Raumtemperatur ca. 10 min abgekühlt; 1-5 μ g RNA, 1 μ l des Random Nonamer-Primer Gemisches, ad 11 μ l H₂O bidest.

Da die fluoreszenzmarkierten Farbstoffe Cy5 bzw. Cy3 lichtsensitiv sind, erfolgten alle weiteren Arbeitsschritte im Dunkelraum. Dem Reaktionsansatz wurden 4 µl 5x CyScript-Puffer, 2 µl DTT (konz.), 1 µl eines dUTP (Desoxyuridintriphosphat)-Gemisches, 1 µl des Fluoreszenzfarbstoffes Cy3 (grün) bzw. Cy5 (rot), sowie 1 µl des Enzyms Cy-Script-Reverse Transkriptase zugegeben. Nun wurde der Ansatz für 90 min bei 42°C inkubiert. Die Reaktion wurde durch die Zugabe von 2.5 µl 0.5 M EDTA (Ethylendiamintetraessigsäure) pH 8 gestoppt. Eine RNA-Hydrolyse erfolgte durch 5 µl 1 M NaOH für 30 min bei 65°C. Der Ansatz wurde bei Raumtemperatur abgekühlt. Durch Zugabe von 12.5 µl 1 M Tris/HCl pH 7.5 wurde die Hydrolyse beendet. Vor der Hybridisierung wurde aus den cDNA-Ansätzen nicht eingebaute Farbstoffe, überschüssige Oligonukleotide, wie auch RNA-Bruchstücke entfernt. Dazu erfolgte die Vereinigung des Cy3- und des Cy5 markierten cDNA-Ansatzes. Nun wurde 1 µl der Bierhefe-tRNA-Lösung (4 mg/ml, Roche) beigefügt und auf 500 µl mit TE-Puffer aufgefüllt. Abschließend wurde die cDNA mit Hilfe von Microcon YM 30-Säulchen (Millpore) ultrafiltriert, wobei das Endvolumen der cDNA maximal 17 µl beträgt. Die cDNA-Konzentration wurde anschließend mit Hilfe des NanoDrops bestimmt. Es wurde jeweils die Absorption der Farbstoffe Cy5 und Cy3 gemessen.

TE-Puffer: 10 mM Tris-HCl 1 mM EDTA ad 1000 ml H₂O_{bidest}. pH 8.0; autoklavieren

3.3.15.2 Herstellung der Mikroarrays

Die mittels PCR amplifizierten *H. salinarum* DNA-Gensonden wurden mit Hilfe des Array-Druckers ChipWriter Pro (Virtek) auf γ -Aminopropylsilan beschichtete Objektträger (CMT-GAPS II Coated Slides (Corning)) aufgebracht (Zusammenarbeit mit Dr. Markus Panhuysen, MPI für Psychiatrie). Dabei wurden insgesamt 2709 gereinigte DNA-Gensonden mit einer Länge von ca. 300 bp in jeweils fünffachen Replikaten auf den Objektträger gedruckt. Dies erfolgte nach einer Methode von Diehl (Diehl, et al. 2001). Danach wurden die Objektträger für ca. 10 sec auf einen 80°C heißen Heizblock gelegt und anschließend erfolgte die kovalente Bindung der DNA an die Objektträger durch UV-Quervernetzung (3000x100 μ J). Details zur Herstellung der DNA-Gensonden, wie auch zur Herstellung der Objektträger sind in der Doktorarbeit von Twellmeyer 2007 zu finden.

3.3.15.3 Vorbehandlung der Objektträger

In 250 ml 1.2-Dichlorethan wurden 1.25 g Succinanhydrid gelöst. Danach erfolgte die Zugabe von 3.1 ml 1-Methylimidazol. Die Objektträger wurden für 1 h in die Lösung getaucht und danach mit 250 ml neuem 1.2-Dichlorethan gewaschen. Als nächstes wurden die Objektträger zweimal für 2 min in 95°C heißes H₂O, danach für 1 min in 95 %igem Ethanol getaucht. Schließlich wurden die Objektträger zum Trocknen für 5 min bei 1500 rpm in einem 50 ml-Greinerröhrchen mittels einer Hettich-Zentrifuge (ROTIXA 120R) zentrifugiert.

3.3.15.4 Prähybridisierung und Hybridisierung der Mikroarrays

Die Prähybridisierungslösung wurde in einem Tauchbecken bei 50°C für 1 h inkubiert. Die Objektträger wurden anschließend in dieser Lösung bei 50°C für 25 min inkubiert, danach erst für 30 sec in bidest. H₂O und für weitere 30 sec in Isopropanol getaucht. Abschließend folgte eine 5 minütige Zentrifugation bei 1500 rpm (ROTIXA 120R) in einem 50 ml-Greinerröhrchen zur Trocknung der Objektträger.

Der Hybridisierungsansatz, bestehend aus cDNA, SSC und Denhardts-Reagenz wurde für 2 min bei 98°C inkubiert und auf Raumtemperatur abgekühlt. Zur Reduktion von Hintergrundsignalen wurde der Hybridisierungsansatz mit 2 µl einer 1 %igen SDS-Lösung versetzt und in die Mitte eines Deckgläschens pipettiert. Nun wurde der prähybridisierte Mikroarray mit der mit den DNA-Sonden bedruckten Seite auf das Deckgläschen gelegt, sodass sich der Hybridisierungsansatz über den gesamten bedruckten Bereich des Mikroarrays verteilt. Die einzelnen Mikroarrays wurden in eine Hybridisierungskammer

(Corning) gepackt, welche zusätzlich mit Aluminiumfolie umwickelt wurden, um diese vor Austrocknung zu schützen und über Nacht bei 64°C inkubiert.

Prähybridisierungslösung:	 2.5 g BSA Fraktion V 43.75 ml 20xSSC 2.5 ml 10 % SDS ad 250 ml H₂O_{bidest}
Hybridisierungsansatz:	ca.17 μl cDNA-Ansatz 3.75 μl 20xSSC 1.25 μl 50x Denhardts-Reagenz ad 30 μl H ₂ O _{bidest}
50x Denhardts-Reagenz:	2 % (w/v) Ficoll 400 2 % (w/v) Polyvinylpyrrolidon 2 % (w/v) BSA Fraktion V ad 500 ml H ₂ O _{bidest} ; pH 7.0; autoklavieren Aliquots bei –20°C lagern

3.3.15.5 Waschen der Objektträger

Nach erfolgter Hybridisierung wurde zur Verringerung der Signalintensität in den nicht mit DNA-Sonden bedruckten Bereichen, nicht gebundene oder unspezifisch gebundene cDNA durch die Verwendung von Waschlösungen entfernt. Dabei wurden die Mikroarrays jeweils zweimal 5 min in Waschlösung I und anschließend in Waschlösung II gewaschen. Zum abschließenden Trocknen der Objektträger wurde für 5 min bei 1500 rpm (ROTIXA 120R) in einem 50 ml Reaktionsgefäß zentrifugiert. Die Detektion erfolgte nach ca. einer einstündigen Lagerung der Objektträger bei Raumtemperatur und im Dunklen.

Waschlösung I:	12.5 ml 20xSSC 500 μl 10 % SDS ad 500 ml H ₂ O _{bidest}
Waschlösung II:	1.5 ml 20xSSC 500 μl 10 % SDS ad 500 ml H ₂ O _{bidest}

3.3.15.6 Datenanalyse nach erfolgter Mikroarray-Technologie

Die Fluoreszenz-Intensitäten eines einzelnen Spots auf einem Mikroarray wurden mit Hilfe des Laserscscanners GenePix 4000B (Biozym Scientific GmbH) eingelesen und mit der neueren Version Genepix Pro V6 (Biozym Scientific GmbH) extrahiert. Die erhaltenen

Rohdaten wurden in MS-Excel neu angeordnet und als Textdatei gespeichert, so dass diese anschließend in der R-Umgebung prozessiert werden konnten. Dabei enthielten die Rohdaten jeweils die Identifizierungsnummer, wie auch die Koordinaten der Gen-Sonden auf einem Mikroarray (2.1). Zusätzlich wurden die Werte für die Fluoreszenzintensitäten der Farbstoffe Cy5 und Cy3, was je nach Markierung der Proben das eigentliche Signal der Probe und das Hintergrundsignal darstellten, angeführt. Anschließend wurden die Werte innerhalb der R-Umgebung mit speziellen Programmen von G. Welzl (GSF) prozessiert, wobei neben der lokalen Hintergrundsubstraktion, die log2-Transformation und die Normalisierung der Daten durchgeführt wurde. In einem abschließenden Schritt erfolgte eine erneute Bearbeitung der normierten Daten in MS-Excel. Dabei wurden nur jene Gene weiter ausgewertet, wo mindestens 3 der 5 Spots ein Signal lieferten. Die beiden fehlenden Werte wurden durch den Median ersetzt. Signifikant regulierte Werte innerhalb der normalisierten Daten wurden mit Hilfe der t-Statistik, welche Bestandteil des TIGR Multiexperiment "Viewer"-Programms (Saeed et al., 2003) ist, ermittelt. Als signifikant wurden Gene betrachtet, die einen p-Wert $\leq 5 \times 10^{-5}$ hatten. Zur weiteren Dateninterpretation wurde jene Gene mit einem Regulationsfaktor von ± 1.7 als reguliert bezeichnet und Gene mit Faktoren zwischen ± 1.7 und ± 1.3 als schwach reguliert. Gene mit Werten unter ± 1.3 wurden als nicht reguliert angesehen und bei der Interpretation der Daten nicht berücksichtigt.

3.3.16 Reverse Transkription-quantitative PCR

Mit Hilfe der RT-qPCR ("reverse transcription quantitative polymerase chain reaction") ist eine relative Quantifizierung von RNA-Proben möglich. Die Methode setzt sich aus zwei Reaktionen zusammen. Zuerst wird die mRNA durch das retrovirale Enzym Reverse Transkriptase unter Verwendung eines random Hexamer-Oligonukleotids in cDNA umgeschrieben. Anschließend findet eine Amplifizierung der DNA-Fragmente durch die thermostabile Taq-Polymerase statt.

3.3.16.1 cDNA-Synthese

Durch die Verwendung der Reversen Transcriptase SuperScript III (Invitrogen) erfolgte die Synthese der cDNA, wobei 5 μ g von DNase verdauter Gesamt-RNA mit Hilfe von 500 ng Random Hexamer-Oligonukleotiden (Promega) in cDNA umgeschrieben wurde. Der Reaktionsansatz, bestehend aus 2.25 μ l Random Hexamer-Primer, 5 μ g RNA, 2.25 μ l 10 mM dNTP-Mix wurde auf 29.25 μ l H₂O bidest aufgefüllt, für 5 min auf 65°C erhitzt und für 1 min auf Eis gestellt. Danach wurden 9 μ l 5xPuffer, 2.25 μ l 0,1 M DTT, 2.25 μ l H₂O_{bidest} und 2.25 μ l Superscript II hinzugefügt. Als nächstes wurde der Ansatz für 10 min bei Raumtemperatur inkubiert und die cDNA-Synthese erfolgte für 50 min bei 42°C. Die Reaktion wurde durch Erhitzen des Ansatzes für 15 min bei 70°C beendet. Die cDNA wurde bei –20°C gelagert.

3.3.16.2 Amplifizierung der cDNA

Die Amplifizierung der cDNA wurde mittels SYBR Green PCR Master Mix Kit (Applied Biosystems) und spezifischen Primern für die gewünschten Gene in einem GeneAmp 5700 Sequence Detection System (Applied Biosystems) durchgeführt. Das Temperaturprofil ist den Angaben des Herstellers zu entnehmen. Es wurden jeweils 3 parallele Wiederholungen der einzelnen Amplifizierungsreaktionen der cDNA durchgeführt, wobei ein Reaktionsansatz mit einem Endvolumen von 25 μ l eine Primerendkonzentration von 0.2 μ M, 1 μ l der cDNA und des 12.5 μ l SYBR Green PCR Master Mix enthielt.

Die Auswahl der spezifischen qPCR Primer wurden mit dem Programm Primer Express 2.0 (Applied Biosystems) getroffen. Eine Ausbildung möglicher Sekundärstrukturen konnte mit dem Programm "Oligonucleotide Properties Calculator" überprüft werden. Die gewünschte Entstehung von nur einem PCR-Produkt äußert sich in einer charakteristischen Schmelzkurve nach erfolgter RT-qPCR und bestätigt die Spezifität der einzelnen Primer (Abb. 59).

Abb. 59 Dissoziationskurve nach erfolgter RT-qPCR

3.3.16.3 Relative Quantifizierung der RT-qPCR-Daten mit Hilfe der 2^{-ΔΔCT}-Methode

Die relative Quantifizierung der Daten erfolgte mit Hilfe der $2^{-\Delta\Delta CT}$ -Methode (Livak und Schmittgen, 2001). Eine differentielle Expression der Probe A im Vergleich zur Probe B wird als xfache Expression mit Hilfe des $\Delta\Delta C_T$ -Wertes angegeben. Der C_T-Wert ("cyclethreshold") oder auch Schwellenwert-Zyklus bezeichnet jenen Zyklus, dessen Fluoreszenz erstmalig signifikant über einer Hintergrundfluoreszenz liegt. Bei diesem Verfahren ist die gleiche Effizienz der PCR-Reaktionen wichtig ist. Außerdem muss gegen einen internen Standard verrechnet werden, welcher das konstant exprimierte Glykoprotein (OE4759R) war. Nun wird der C_T-Wert der Probe A vom C_T-Wert des Standardgens abgezogen (ΔC_T). Will man einen Unterschied in der relativen Transkriptmenge von Probe A und Probe B berechnen, werden anschließend diese beiden ΔC_T -Werte voneinander abgezogen und man erhält den $\Delta\Delta C_T$ -Wert, der in die Gleichung $2^{-\Delta\Delta CT}$ eingesetzt wird.

3.3.17 Northernblot-Analyse

15 µg unverdauter Gesamt-RNA wurden auf einem 1 % igem TBE-Agarosegel, welches 20 mM Guanidiniumthiocyant enthielt, elektrophoretisch aufgetrennt. Das Agarosegel wurde anschließend in einem alkalischen Puffer (Chomczynski und Mackey, 1994) äquilibriert und mit Hilfe des Vacuumblots für 3 h auf eine Hybond N⁺-Membran transferiert (GE-Healthcare). Aufbau der Blotting-Apparatur siehe Abb. 58. Ein mittels PCR generiertes DNA-Fragment (Oligonukleotide siehe 3.1.1), welches die T7-Promotorsequenz (TAATACGACTCACTATAGGGAGA) enthielt, diente als Vorlage zur Herstellung von DIG-dUTP-markierten RNA-Sonden mit Hilfe des T7-RNA-Polymerase in vitro Transkription-Systems (DIG RNA labelling kit (SP6/T7), Roche Applied Science). Die RNA-Sonden wurden vor Verwendung 5 min bei 75°C denaturiert. Die Hybrdisierungsreaktion, wie auch die chemiluminiszente Detektion wurden mit dem "DIG Wash and Block Buffer Set" (Roche Applied Science) entsprechend der Angaben des Herstellers "DIG system user's guide for filter hybridization" (Roche Applied Science) durchgeführt.

Transferpuffer:

8 mM NaOH 3 M NaCl

3.3.18 Bestimmung der 5'-und 3'-UTR's von Transkripten

Mittels RACE ("rapid amplification of cDNA ends") basierend auf der Zirkularisierung von RNA, der reversen Transkription, wie auch die Amplifizierung der cDNA (Brenneis *et al.*, 2007), konnten die 5'-und 3'-UTR's von Transkripten bestimmt werden.

Gesamt-RNA wurde bei 65°C für 10 min denaturiert und anschließend mit 40 U T4 RNA-Ligase (New England BioLabs), 5-10 µg der Gesamt–RNA, 10 U RNase Inhibitor (Promega) und 1×T4-Ligase-Puffer in einem Reaktionsvolumen von 25 µl bei 37°C für 1 h zirkularisiert (Abb. 60A). Nachdem der Reaktionsansatz auf 300 µl aufgefüllt wurde, erfolgte das Entfernen der Proteine mittels Phenol-Chloroform Extraktion (3.3.18.1). Zirkularisierte RNA wurde denaturiert und mit 0.5 pmol eines spezifischen Primers (3.1.1) zur Durchführung der cDNA-Synthese bei 65°C für 10 min hybridisiert. Mit 5-10 µg der zirkularisierten RNA erfolgte die cDNA Synthese mit der RNase H Minus Superscript III Reversen Transkriptase (Invitrogen) entsprechend den Angaben des Herstellers (Abb. 60B). Die cDNA wurde unter Verwendung spezifischer Primer (3.1.1) in einer 1. PCR amplifiziert (Abb. 60C). Um falsch positive Fragmente auszuschließen erfolgte eine 2. PCR mit so genannten "nested"-Primern (3.1.1) (Abb. 60C). Die aus der "nested"-PCR erhaltenen DNA-Fragmente wurden anschließend sequenziert (3.1.1) (Abb. 60D).

Abb. 60 RACE zur Bestimmung der 5'-und 3'-UTR Region von Transkripten

Gesamt RNA wird zirkularisiert (A) und mit spezifischen Primern in cDNA umgeschrieben (B). Durch zwei aufeinander folgende PCR-Reaktionen wird ein definierter Bereich der cDNA amplifiziert (C) und anschließend sequenziert (D).

3.3.18.1 Phenol/Chloroform Extraktion

Zu 25 μ l zirkulärer Gesamt-RNA wurden 300 μ l TE-Puffer sowie 300 μ l Phenol/Chloroform (Roth) zugegeben. Anschließend wurde für 5 min bei 14000 rpm in einer Tischzentrifuge zentrifugiert. Der Überstand wurde in ein neues Eppendorfgefäß überführt. Nun wurde 1 Volumeneinheit Chloroform (v/v) zugegeben, erneut zentrifugiert und der Überstand in eine Eppendorfgefäß überführt Die Fällung der DNA erfolgte durch Zugabe von 2.5 Volumeneinheiten EtOH (99%), welcher bei -20°C gekühlt wurde, sowie 1/10 Volumeneinheit 3 M NaAc (pH-Wert=5.2). Dabei wurde das Reaktionsgemisch für 2 h bei - 20°C oder alternativ für 20 min bei -70°C inkubiert. Danach wurde für 20 min bei 14000 rpm in einer Tischzentrifuge bei 4°C zentrifugiert. In einem weiteren Schritt wurden 500 μ l EtOH (80%) zugegeben und erneut bei 14000 rpm in einer Tischzentrifuge bei 4°C zentrifugiert. Nun wurden die Niederschläge für 10 min luftgetrocknet, damit der restliche EtOH verdampfen konnte. Abschließend wurden die Niederschläge in 10 μ l H₂O_{bidest} resuspendiert und für die cDNA-Synthese in 3.3.18 eingesetzt.

3.4 Biochemische Methoden

3.4.1 Heterologe Expression von His₆-lrpA1 und His₆-troR in *E.coli*

Zur Proteinexpression wurden Klone der über Nacht-Transformation gepickt und in einen Erlenmeyerkolben mit 30 ml LB-Medium, welches als Zusatz 30 µl Antibiotika enthielt, gegeben. Zur Expression LrpA1 und TroR wurde Kanamycin von (Arbeitslösungskonzentration: 50 mg/ml; Endkonzentration: 50 µg/ml) verwendet. Anschließend wurden die Kulturen über Nacht bei 37°C auf einem Schüttler (250 rpm) inkubiert. Danach wurden die gesamten 30 ml in 1 L LB-Medium, welches das entsprechende Antibiotikum enthielt, gegeben und die Kulturen wurden solange geschüttelt (37°C und 200 rpm), bis sie einen OD₆₀₀-Wert zwischen 0.6 und 0.8 erreichten. Anschließend erfolgte die Induktion der Proteinexpression durch Zugabe von 0.6 mM IPTG (Isopropyl-beta-D-thiogalactopyranosid). Zum Zeitpunkt 0, also bei noch nicht erfolgter Induktion wurde 1 ml der Kultur entnommen und in einer Tischzentrifuge bei 10000 rpm für 2 min zentrifugiert. Der Niederschlag wurde in 150 µl 2 x Solubilisierungpuffer resuspendiert. Nach 30 min und 2 h wurden ebenfalls 1 ml der Kultur entnommen und in einer Tischzentrifuge bei 10000 rpm für 2 min zentrifugiert. Die Niederschläge wurden in

150 μl 2 x Solubilisierungpuffer resuspendiert. Diese Probennahmen dienten der Kontrolle der Expression mittels SDS-PAGE. Nach ca. 2 h erfolgte die Ernte der Kulturen durch Zentrifugation für 10 min bei 4500 rpm (Sorvall-Zentrifuge, GS3-Rotor) und 4°C. Der Überstand wurde verworfen und der Niederschlag in 20 ml LB-Medium resuspendiert und in ein 50 ml Falcon-Röhrchen überführt und anschließend 10 min bei 4200 rpm (ROTIXA 120R, 10 min) und 4°C zentrifugiert. Der Überstand wurde verworfen. Der Niederschlag wurde bis zum Zellaufschluß in flüssigem Stickstoff schockgefroren und bei -70°C gelagert.

Solubilisierungspuffer:

20 mM Tris pH 7.5
0.5 mM Triton X-100
2 mM EDTA
1 mM β-Mercaptoethanol

3.4.2 Zellaufschluss

Der *E. coli* Niederschlag wurde nach erfolgter Ernte der Kulturen mit Lysepuffer (3.4.3) auf 30 ml aufgefüllt und vollständig resuspendiert. Danach erfolgte der Zellaufschluss mit Hilfe von Ultraschall. Für den Aufschluss durch Ultraschall wurde ein Ultraschall-Desintegrator Sonifier II W-450 Classic (Branson) verwendet. Dazu wurde die Zelllösung in ein geeignetes Gefäß gegeben und die Spitze der Ultraschallsonde in die Mitte des Gefäßes eingetaucht. Die Beschallung erfolgte in Intervallen von 10 sec, bis sich eine klare und leicht viskose Lösung gebildet hatte. Um die Erwärmung des Lysats während der Sonifizierung zu kompensieren, wurde der Vorgang auf Eis durchgeführt. Bei nachfolgender Weiterverarbeitung des Lysats zur Proteinreinigung wurde dieses mit Protease-Inhibitor (Roche) versetzt.

3.4.3 Aufreinigung von His₆-tag-markierten Proteinen mit Hilfe von Ni-NTA-Metall-Chelat-Affinitätschromatographie

Durch Ultrazentrifugation des Lysats (3.4.2) für 80 min bei 40000 rpm (Optima LE-80K, Rotor: Ti 45) wurde die unlösliche Fraktion inklusive störender Zellbestandteile, wie z.B. Membranteile beseitigt. Mit dem Überstand wurde weitergearbeitet.

Als Säulenmaterial wurde Ni-NTA-Qiagen-Superflow verwendet, wobei für 1 L Kultur 1.5 ml des Säulenmaterials eingesetzt wurden, welches zuerst in Lysepuffer äquilibriert wurde. Die lösliche Cytosolfraktionslösung wurde anschließend mit dem Säulenmaterial für 2 h unter Rotation inkubiert und danach auf eine Spritze transferiert. Im Anschluss daran erfolgten die Waschschritte, dabei wurde dreimal mit dem sechsfachen Säulenvolumen gewaschen. Das Protein wurde in zwei Schritten mit je 1.5 ml des Elutionspuffers eluiert. Die Lagerung des Proteins erfolgte bei -20° C.

Puffer A:	8 M Harnstoffmonohydrat 100 mM NaH2PO4 10 mM Tris-HCl	
Lysepuffer:	Puffer A 10 mM Imidazol	pH 8.0
Waschpuffer:	Puffer A 20 mM Imidazol	pH 8.0
Elutionspuffer:	Puffer A 150 mM Imidazol	pH 8.0

3.4.4 Renaturierung von LrpA1 und TroR

Zur Renaturierung mussten die unter denaturierenden Bedingungen aufgereinigten Proteine rückgefaltet werden. Dies erfolgte durch Dialyse des Harnstoffpuffers gegen den CFE ("cell free extract")-Puffer. Die Proteinlösung befand sich dabei in einer Dialysekammer (D-TubeTM Dialyzer Maxi, Novagen). 1 ml Protein wurde gegen 1 L 4 M CFE-Puffer zuerst für 4 h und anschließend über Nacht bei Raumtemperatur dialysiert. Zum Aufkonzentrieren der Proben wurde für ca. 20 min bei 3000 g mit Säulchen (Amicon Ultra-4) zentrifugiert.

4 M CFE-Puffer:	3 M KCl
	1 M NaCl
	10 mM HEPES
	5 mM MgCl ₂
	pH 7.1

3.4.5 Bestimmung der Proteinkonzentration von LrpA1 und TroR

Die Konzentration der reinen Proteine LrpA1 und TroR konnte photometrisch über deren Extinktion bei 280 nm bestimmt werden (NanoDrop[®]ND-100, peqLab). Dabei absorbieren die aromatischen Aminosäuren bei einer Wellenlänge von 280 nm. Mit dem Programm

ProtParam wurde der Extinktionskoeffizient von LrpA1 mit 7450 M⁻¹ cm⁻¹ und von TroR von 4720 M⁻¹ cm⁻¹ ermittelt.

3.4.6 Gelfiltration von LrpA1 und TroR

Zur Größenbestimmung bzw. zur Bestimmung des Oligomerisierungszustandes von LrpA1 und TroR wurde nach der Renaturierung eine analytische Gelfiltration durchgeführt. Dabei wurde für den Gelfiltrationslauf die Sephadex 75-Säule (GE-Helthcare), welche ein Säulenvolumen von 2.4 ml hatte in ein SMART-System eingebaut und mit dem 4 M CFE-Puffer äquilibriert. Die Auftrennung der Proteine erfolgte bei einer Flussrate von 40 µl pro Minute und die Detektion bei einer Wellenlänge von 280 nm. 50 µl des Proteins wurden in die Sammelschleife, welche ein Volumen von 100 µl hatte, eingespritzt und vom SMART-System auf die Säule geladen. Zusätzlich wurde LrpA1 mit 5 mM der Aminosäuren Aspartat und Arginin für 20 min inkubiert und ebenfalls in die Sammelschleife eingespritzt. Zur Bestimmung des Molekulargewichts bzw. des Oligomerisierungszustandes von LrpA1 und TroR wurden zuerst Eichläufe mit Proteinen bekannten Molekulargewichts durchgeführt und eine Geradengleichung erstellt (Abb. 61). Das Retentionsvolumen der Proteine LrpA1 und TroR wurden anschließend in die Gleichung eingesetzt.

Abb. 61 Geradengleichung ermittelt anhand von Proteinen bekannten Molekulargewichts
3.4.7 CD-Spektroskopie

Die Sekundärstruktur von Proteinen kann anhand der CD-Spektroskopie im fernen-UV (190-250 nm) bestimmt werden. Dabei liefern α -Helices, β -Faltblätter und ungeordnete Strukturen das jeweilige CD-Spektrum (Abb. 39).

Zur Bestimmung eines CD-Spektrums im fernen UV werden ca. 20-200 µl der Proteinlösung mit einer Konzentration von ca. 1 mg/ml benötigt. Zusätzlich ist auf die Wahl des geeigneten Puffers, indem sich das Protein befindet, zu achten. Puffer, welche eine hohe Konzentration an DTT, Histidin oder Imidazol beinhalten, sind nicht geeignet.

Die CD-Spektren wurden auf einem JASCO-J-810 Spektrometer aufgenommen. Dabei wurde die Proteinlösungen LrpA1 mit einer Konzentration von 1.2 mg/ml und TroR mit einer Konzentration von 0.3 mg/ml in einer 0.01 mm Küvette gemessen. Beide Proteine befanden sich im 4 M CFE-Puffer (3.4.4). Die Temperatur betrug 21°C. Um zufällige Messfehler zu minimieren wurde jedes Spektrum aus einem Durchschnitt von 12 Wiederholungen berechnet, wobei jede Proteinprobe zweimal in voneinander unabhängigen Ansätzen gemessen wurde. Beide Spektren wurden danach gemittelt. Zusätzlich wurde ein Spektrum mit dem Puffer alleine aufgenommen und anschließend von den jeweiligen CD-Spektren für LrpA1 und TroR abgezogen. Folgende Parameter wurden bei den Messungen verwendet:

Parameter	Wert
Wellenlänge	190-260 nm
Antwortzeit	2 sec
Scan-Geschwindigkeit	20 nm/min
Schrittweite	1.0 nm
Empfindlichkeit	5 mdeg
Auflösung	0.1 nm
Anzahl der Scans	12

Tab. 15 Einstellung der Messparameter des CD-Spektrometers Jasco-J-810

Anschließend wurde von den gemessenen Daten der Anteil an dem jeweiligen Sekundärstrukturelement (α -Helix, β -Faltblatt und ungeordnete Strukturen) mit Hilfe des CDNN-Programms berechnet (Bohm *et al.*, 1992). Strukturvorhersagen wurden mit dem "Scratch Protein Predictor"-Programms (Expasy) durchgeführt.

Die Aufnahme der Schmelzkurven erfolgte mit einem JASCO-J-715 Spektrometer. Dabei wurde LrpA1 in einer Konzentration von 0.1 mg/ml eingesetzt, wobei sich das Protein in

einem 2M CFE-Puffer befand. Die Entfaltung von LrpA1 wurde ohne Ligand und mit jeweils 50 mM L-Aspartat, D-Aspartat und L-Glutamat über einen Temperaturverlauf von 4°C-95°C verfolgt. Es wurden jeweils vor der Entfaltung bei 4°C, nach der Entfaltung bei 95°C und nach der anschließenden Abkühlung bei 4°C Spektren bei den Wellenlängen von 260 nm bis 200 nm aufgenommen. Die Parameter für die Schmelzkurven sind der Tab. 16, jene für die CD-Spektren der Tab. 17 zu entnehmen

Parameter	Wert
Wellenlänge	222 nm
Antwortzeit	16 sec
Scan-Geschwindigkeit	20 nm/min
Schrittweite	1.0 nm
Temperaturverlauf	4-95°C
Auflösung	0.1°C

Tab. 16 Einstellung der Messparameter des CD-Spektrometers Jasco-J-810 zur Messung der Schmelzkurven von LrpA1

Tab. 17 Einstellung de	er Messparameter	des CD-Spektrometers	Jasco-J-810 zur	• Messung der	Spektren
von LrpA1					

Parameter	Wert
Wellenlänge	200-260 nm
Antwortzeit	1 sec
Scan-Geschwindigkeit	20 nm/min
Schrittweite	1.0 nm
Auflösung	0.1 nm
Anzahl der Scans	2

2M CFE-Puffer:	1.5 M KCl
	0.5 M NaCl
	5 mM HEPES
	2.5 mM MgCl ₂
	pH 7.1

3.4.8 SDS-PAGE (Polyacrylamid-Gelelektrophorese)

Die Auftrennung von Proteinen nach ihrem Molekulargewicht erfolgte durch eine denaturierende SDS-Polyacrylamid-Gelelektrophorese nach Lämmli (Lämmli, 1970). Um Proteine nach ihrer Größe im elektrischen Feld zu trennen, werden sie mit dem Detergenz Natriumdodecylsulfat (SDS) denaturiert, wobei ein negativ geladener Protein-SDS-Komplex entsteht. Als Matrix für die Größentrennung dient Acrylamid, welches bei der Auspolymerisation mit dem quervernetzenden Reagenz Methylenbisacrylamid ein Gel ausbildet.

Acrylamid-Lösung:	30 % (w/v) Acrylamid
	0.9 % (w/v) N,N-Methylenbisacrylamid

Trenngelpuffer: 1.5 M Tris/HCl pH 8.8

Sammelgelpuffer: 0.5 M Tris/HCl pH 6.8

SDS-Lösung: 10 % (w/v) SDS

APS-Lösung: 10 % (w/v) APS

- SDS-Probenpuffer: 50 mM Tris/HCl 100 mM DTT 2 % (w/v) SDS 10 % (w/v) Glycerin 0.002 % (w/v) Bromphenolblau pH 6.8
- Laufpuffer: 25 mM Tris 1.44 % (w/v) Glycin 0.1 % (w/v) SDS

Tab. 18 Zusammensetzung der Trenn- und Sammelgele für eine SDS-PAGE

Trenngel (14 %; 30 ml)	V (ml)	Sammelgel (5 %; 15 ml)	V (ml)
Trenngelpuffer	7.8	Sammelgelpuffer	3.69
SDS-Lösung	0.3	SDS-Lösung	0.15
Acrylamid-Lösung	13.7	Acrylamid-Lösung	2.49
H ₂ O _{bidest}	7.3	H ₂ O _{bidest}	8.4
TEMED	0.011	TEMED	0.0048
APS	0.1	APS	0.3

Eine Gießkammer, bestehend aus zwei Glasplatten (160x140x1.6 mm) wurde mit Abstandshaltern (1.5 mm) zusammengesetzt. Um eine verbesserte Auftrennung des Proteingemisches zu erreichen wurde über das Trenngel ein Sammelgel geschichtet. Zuerst wurde das Trenngel mit einer Acrylamidkonzentration von 14 % gegossen (Tab. 18). Im Anschluss daran wurde die Oberfläche der Gellösung mit Isopropanol überschichtet. Nach Polymerisation des Trenngels wurde das Sammelgel mit einer Acrylamidkonzentration von 5% gegossen. Nachdem auch dieses auspolymerisiert war, wurde das Gel in die Elektrophoreseapparatur eingesetzt und diese mit Laufpuffer aufgefüllt. Zur Probenvorbereitung wurden je 20 µl Protein mit 20 µl Probenpuffer versetzt und für zehn Minuten bei 95°C inkubiert. Anschließend wurden sie 7 min in einer Tischzentrifuge bei 14000 rpm zentrifugiert. Die Überstände wurden auf das Gel aufgetragen. Bei jedem Lauf wurde ein Proteinstandard (Broad Range (6-175 kDa) (New England Biolabs)) aus einem Gemisch von Proteinen mit bekannter Molekularmasse aufgetragen. Die Elektrophorese erfolgte in einem 1x SDS-Laufpuffer bei einer Spannung von ca. 160-200 V, bis die Bromphenolblaufront den unteren Rand der Glasplatte erreichte.

Alternativ wurden kommerziell erhältliche Bis-Tris-Gradienten-Gele (4-12 %) (Invitrogen) verwendet. Zu 20 μ l Protein wurden 20 μ l SDS-Probenpuffer zugegeben und für 10 min bei 95°C erhitzt und anschließend 7 min bei 14000 rpm in einer Tischzentrifuge zentrifugiert. Als Längenstandard wurde der Protein Marker Broad Range (6-175 kDa) (New England Biolabs) zusammen mit den Proben auf das Gel aufgetragen. Die Elektrophorese erfolgte in einem 1x MES-Puffer bei einer konstanten Spannung von ca. 200V.

3.4.9 Coomassie-Färbung

Die Coomassie-Färbung wird zur Anfärbung von Proteinen in Polyacrylamidgelen verwendet. Dabei wurde das anzufärbende Gel ca. 20 min in der Coomassie-Färbelösung geschwenkt. Danach wurde das Gel 30 min in Entfärbelösung 1 und anschließend 1 h in Entfärbelösung 2 inkubiert, sodass die Proteinbanden sichtbar werden.

Färbelösung:	40 % (v/v) Ethanol 10 % (v/v) Essigsäure 0.1 % (w/v) Coomassie Brilliant Blau R-250
Entfärbelösung 1:	40 % (v/v) Ethanol; 10 % (v/v) Essigsäure
Entfärbelösung 2:	10 % (v/v) Essigsäure
Aufbewahrungslösung:	1 % (v/v) Essigsäure

3.4.10 Silberfärbung

Nach beendeter Elektrophorese wurde das Gel zweimal 30 min in einer Fixierlösung geschwenkt. Anschließend wurde das Gel dreimal je 20 min in der Waschlösung gewaschen. Danach erfolgte die Inkuabtion für 1 min in einer Natriumthiosulfatlösung, zwei kurze Waschschritte in H_2O_{bidest} und eine Färbereaktion für 20 min in einer Silbernitratlösung. Nach einem kurzen Waschschritt in H_2O_{bidest} wird das Gel mit der Entwicklerlösung je nach Bedarf inkubiert. Beim Erscheinen der Banden wird die Reaktion durch Zugabe der Stoplösung angehalten. Die Aufbewahrung der Gele erfolgte in 1 %iger (v/v) Essigsäure.

Fixierlösung:	50 % (v/v) Methanol 12 % (v/v) Essigsäure
Waschlösung:	50 % (v/v) Ethanol
Natriumthiosulfalösung:	200 mg/l Na ₂ S ₂ O ₃
Silbernitratlösung:	2 g/l AgNO3 1 ml/l Formaldehyd (≥37 %)
Entwicklerlösung:	60 g/l Na2CO3 5 mg/l Na₂S₂O₃ 0.75 ml/l Formaldehyd (≥37 %)
Stoplösung:	12 % (v/v) Essigsäure
Aufbewahrungslösung:	1 % (v/v) Essigsäure

3.4.11 Westernblot-Analyse

Mit Hilfe der Westernblot-Analyse ist es möglich spezifische Proteine in einem Proteingemisch zu detektieren. Dabei wird das Proteingemisch in einem ersten Schritt mittels SDS-PAGE elektrophoretisch aufgetrennt. Anschließend erfolgt der Proteintransfer auf eine Membran, wo das Zielprotein mit einem spezifischen Antikörper detektiert werden kann.

3.4.11.1 Proteintransfer

Die Proteine wurden unter "Semi-Dry"- Bedingungen in einem XCell IITM Blot-Modul (Invitrogen) entsprechend den Vorschriften des Herstellers auf eine Polyvinylidendifluorid-(PVDF) Membran (Roche Diagnostics) transferiert. Vor dem Start des Proteintransfers 136 wurden so genannte "Blotting-Pads" und 2 Stück Whatmanpapier in den Transferpuffer eingetaucht. Die PVDF-Membran wurde für ca. 1 min in Methanol und anschließend 1 min in Transferpuffer geschwenkt. Der Aufbau der Blotting-Apparatur erfolgte wie beschrieben in Abb. 62. Abschließend wurde die Blotting-Apparatur mit dem Transfer-Puffer gefüllt, bis der Gel-Membran-Sandwichkomplex komplett mit Transfer-Puffer bedeckt war (Abb. 62). Um die beim Transfer entstehende Hitze abzuleiten, wurde in die äußeren Kammern der Blotting-Apparatur H₂0_{bidest} gefüllt (Abb. 62).

Abb. 62 Aufbau einer Blotting-Apparatur

Dabei wurden in der Reihenfolge von unten nach oben ein Whatmanpapier, das Proteingel, die PVDF-Membran und abschließend noch ein Whatmanpapier in die Blotting-Apparatur gelegt, um den Proteintransfer vom Gel auf die PVDF-Membran zu starten.

3.4.11.2 Immundetektion

Die Detektionsreaktion diente als Kontrolle der Überexpression der Gene *lrp* bzw. *lrpA1* auf Proteinebene. Um dies durchzuführen wurden spezifische Antikörper, welche gegen bestimmte Peptidepitope von Lrp bzw. LrpA1 gerichtet waren, als primäre Antikörper eingesetzt. Beide Antikörper wurden in einer 1:1000 Verdünnung für die Detektionsreaktion eingesetzt.

Um freie Proteinbindestellen auf der Membran abzusättigen, wurde diese nach erfolgtem Proteintransfer über Nacht in 1xTBST-Puffer mit 5 % BSA bei 4°C geschwenkt. Anschließend erfolgte die Inkubation mit dem jeweiligen primären Antikörper für 1 h bei Raumtemperatur. Nun wurde kurz dreimal in 1x TBST und für weitere dreimal 10 min in 1x TBST mit 5 % BSA geschwenkt. Als sekundäre Antikörper wurde Rabbit-Anti Chicken HRP Konjugat (Upstate Biotech.) eingesetzt, wobei dieser an den Fc-Teil des primären Antikörpers bindet und mit dem Enzym Meerrettichperoxidase HRP ("Horseradish peroxidase") gekoppelt ist. HRP wird zur Detektion von Chemilumineszenzreaktionen

eingesetzt, wobei das Enzym die Umsetzung von Luminol in seine oxidierte Form katalysiert und dessen Chemilumineszenz anschließend detektiert wird.

Der sekundäre Antikörper wurde in einer 1:25000 Verdünnung eingesetzt und für 1 h zusammen mit der Membran inkubiert. Die Membran wurde erneut kurz dreimal in 1x TBST und für weitere dreimal 10 min in 1x TBST geschwenkt.

Die anschließende Chemilumineszenz-Detektionsreaktion wurde mit dem ECL ("electrogenerated chemiluminescence") Plus Western Blotting Detection Reagents Kit (GE Healthcare) entsprechend der Angaben des Herstellers durchgeführt. Die Membran wurde danach eingeschweißt und mit einem Röntgenfilm in einer lichtgeschützten Kassette für 1-45 min inkubiert und abschließend in einer Entwicklermaschine entwickelt.

3.4.12 Kristallisationsansätze von LrpA1

Kristallisationsansätze wurden mit gereinigtem LrpA1, welches eine Konzentration von 8.4 mg/ml hatte, mit Hilfe der Dampfdiffusions-"hanging drop"-Methode bei 18°C durchgeführt. Wobei sich LrpA1 in einem 2 M CFE-Puffer (3.4.7) befand.

Vor Zugabe der Reservoirlösung wurden 250 µl 4M NaCl vorgelegt und verdampft. Danach wurden 500 µl der "Screen"-Lösung zugegeben, um anschließend eine 2 M NaCl Endkonzentration zu erhalten. Folgende "Screen"-Lösungen wurden zur Proteinkristallisation verwendet: Crystal Screen I, JCSG Screen, PACT Screen und PEG/Ion 1 Screen, wie auch die Bedingungen von 20 % (w/v) PEG 3350 und 150 mM NaCl; 20 % (w/v) PEG 6000 und 50 mM Natriumphosphat; 20 % (w/v) PEG 3350 und 0.2 M di-Ammoniumphosphat; 20 % PEG 6000 200 mM Lithiumsulfat.

3.4.13 Analytische DNA-Affinitätschromatographie

Um eine Bindung des Proteins LrpA1 und TroR an seine eigene Promotorsequenz zu zeigen, wurde eine analytische DNA-Affinitätschromatographie durchgeführt. Dabei wurden DNA-Fragmente, welche die jeweilige Promotorregion von *lrpA1* (234 bp), *aspB3* (208 bp) und *troR* (182 bp) beinhalten mittels PCR amplifiziert und als *lrpA1*-P_{incb}, *aspB3*-P_{inc1} und *troR*-P_{inc1} bezeichnet. Als unspezifisches DNA-Fragment wurde das Flagellin-Gen *flgB1* (582 bp) eingesetzt. Zur DNA-Amplifizierung wurde die TaKaRa LA TaqTM-Polymerase verwendet und folgendes Standard-Programm gewählt. Die beiden Programme unterschieden sich nur

in der Wahl der Extensions-Zeit (Kettenverlängerung). Dabei wurde für *lrpA1*-P_{incl}, *aspB3*-P_{incl} und *troR*-P_{incl} eine Extensionszeit von 40 sec und für das Kontrollfragment *flgB1* eine Extensionszeit von 15 sec gewählt. Mit Hilfe eines durch Biotin modifizierten Oligonukleotids in rückwärts Richtung (reverse Primer) wurden die DNA-Fragmente *lrpA1*-P_{incl}, *aspB3*-P_{incl}, *troR*-P_{incl} wie auch die Kontrollsequenz *flgB1* mit Biotin markiert (Abb. 63A).

 $\begin{array}{c}
\underline{\text{Temperaturprofil:}}\\
94^{\circ}\text{C} & 2 \min \\
94^{\circ}\text{C} & 31 \sec \\
60^{\circ}\text{C} & 31 \sec \\
72^{\circ}\text{C} & 40 \sec (lrpA1, troR) / 15 \sec (flgB1)
\end{array} \\
\begin{array}{c}
35 \text{ Zyklen} \\
72^{\circ}\text{C} & 7 \min \\
4^{\circ}\text{C} & \text{Pause}
\end{array}$

Anschließend erfolgte die DNA-Extraktion der erhaltenen Biotin-markierten DNA-Fragmente aus einem 2 %igem Agarosegel. Nach einem Aufkonzentrieren der DNA für ca. 15 min in der Speed-Vac wurden 100 µl Bindungspuffer zugegeben. Um die DNA-Menge für die Bindungsreaktion zwischen den DNA-Fragmenten und aufgereinigtem LrpA1 bzw. TroR zu bestimmen, wurde mit Hilfe des Programms molbiol (www.molbiol.ru) eine Molarität von 61 pmol ermittelt. Dies entspricht 10 µg der DNA-Fragmente *lrpA1*-P_{incl}, *aspB3*-P_{incl}, *troR*-P_{incl} und ca. 20 µg des 582 bp langen Kontrollfragments *flgB1* pro Bindungsansatz.

Nun wurden die jeweiligen biotinylierten DNA-Fragmente an die Streptavidin-Sepharose gekoppelt, wobei das Säulenmaterial zuerst in dem DNA-Bindungspuffer äquilibriert wurde (Abb. 63B). Die Inkubation der DNA-Fragmente mit der Streptavidin-Sepharose erfolgte für mindestens 2 h bei Raumtemperatur. Ungebundene DNA wurde durch Zentrifugation bei 1.5 1800 rpm in einer Tischzentrifuge für min entfernt. Durch DNA-Konzentrationsbestimmung der ungebundenen DNA-Fragmente konnte die DNA-Menge ermittelt werden die an das Säulenmaterial gebunden hat.

Die an Streptavidin-Sepharose gebundene DNA wurde dreimal durch Zentrifugation bei 1800 rpm in einer Tischzentrifuge für 1.5 in 4 M CFE-Puffer (3.4.4) äqulibriert. Die anschließende Inkubation von ca. 1 µg Protein (LrpA1 bzw. TroR) mit den entsprechenden biotinylierten DNA-Fragmenten erfolgte für 4 h bei Raumtemperatur.

Im Falle der Bindung von LrpA1 an das DNA-Fragment *aspB3*-P_{incl} wurde LrpA1 entweder mit 5 mM L-Aspartat oder mit 5 mM L-Arginin für 20 min bei Raumtemperatur inkubiert.

Entsprechendes erfolgte auch für das DNA-Kontrollfragment (Abb. 63C). Die Bindung von TroR an das DNA-Fragment *troR*-P_{incl} wurde zusätzlich zusammen mit 5 mM MnCl₂, nach vorangehender Inkubation für 20 min bei Raumtemperatur durchgeführt. Danach wurde zweimal mit 200 μ l 4 M CFE-Puffer gewaschen. Bei einer erfolgreichen Bindung an ein DNA-Fragment wurde das Protein mit einer 1 %igen SDS-Lösung eluiert und anschließend auf einem Silber-gefärbten SDS-Gel analysiert (Abb. 63D).

Die Berechnung der Bandenintensitäten der LrpA1-Bindungsexperimente erfolgte mit dem Programm TotalLab v1.11.

Abb. 63 Protein-DNA-Bindungsassay

In einem ersten Schritt werden die jeweiligen DNA-Fragmente mittels PCR Biotin markiert (A). Die erhaltenen Biotin-markierten DNA-Fragmente werden danach an eine Streptavidin-Sepharose Matrix gekoppelt (B) und anschließend mit dem Protein inkubiert (C). An DNA gebundendes Protein wird abschließend von einem DNA-Fragment eluiert und auf einer SDS-PAGE analysiert (D).

DNA-Bindungspuffer:	20 mM Na ₂ PO ₄
	150 mM NaCl
	рН 7.5

3.5 Bioinformatische Methoden

3.5.1 Proteinsequenz Analyse

LrpA1, SirR und TroR-Homologe wurden anhand des Protein BLAST (blastp) von NCBI identifiziert. Sequenzen mit einem relativ hohen Homologiegrad zu *H. salinarum* LrpA1, SirR bzw. TroR wurden mit den Programmen ClustalW und ClustalX "aligned". Die Abbildungen der Aminosäure-Sequenzvergleiche wurden mit Hilfe des INDONESIA-Programms erstellt (D. Madsen, P. Johansson and G.J. Kleywegt Manuskript in Vorbereitung). Das LrpA1-Homologie Modell wurde mit Hilfe eines Swiss-Models konstruiert (Schwede *et al.*, 2003).

4 Publikationsliste

Teile dieser Arbeit wurden veröffentlicht in:

<u>Schwaiger R</u>, Schwarz C, Furtwängler K, Tarasov VY, Wende A, Johansson P, Oesterhelt D. (2009) Thr regulatory effects of Lrp and LrpA1 Proteins in *Halobacterium salinarum* R1. *wird demnächst eingereicht*

Sonstige Publikationen:

Tarasov VY, Besir H, <u>Schwaiger R</u>, Klee K, Furtwängler K, Pfeiffer F, Oesterhelt D. (2008) A small protein from the bop-brp intergenic region of *Halobacterium salinarum* contains a zinc finger motif and regulates bop and crtB1 transcription. Mol Microbiol. Feb;67(4):772-80.

Tarasov VY, Furtwängler K, <u>Schwaiger R</u>, Oesterhelt D. (2009) The Expression of A and B flagellin genes from *Halobacterium salinarum* depends on DNA topology and is attuned by 5'UTRs. *in Vorbereitung*

5 Abkürzungsverzeichnis

ADI-Weg	Arginin-Deiminaseweg
ABC	ATP binding cassette
APS	Ammoiumpersulfat
AS	Aminosäuren
AsnC	asparagine synthase C
Asp	Aspartat-Transaminase
bat	Bacterioopsin activator
BLAST	Basic Local Alignment Search Tool
bop	Bacteriorhodopsin
brp	Bop gene expressions Regulator
BRE	TFB-responsive element
CD	<u>C</u> ircular <u>d</u> ichroismus
cDNA	complementary DNA
Ct	Cycle threshold
dNTP Mischung aus den 4 D	esoxynukleotiden dATP, dTTP, dCTP, dGTP
	dATP Desoxyadenosintriphosphat
	dTTP Desoxythymidintriphosphat
	dCTP Desoxycytosintriphosphat
	dGTP Desoxyguanosintriphosphat
DPI	2,2'-Dipyridyl-N,N-dimethylsemicarbazone
DEPC	Diethylpyrocarbonat
DIG	Digoxigenin
DMSO	Dimethylsulfoxid
DPE	downstream promoter element
ds	Doppelstrang
DtxR	Diphtheria toxin regulatory protein
EDTA	Ethylendiammintetraessigsäure
Fdx	Ferredoxin
Fur Protein	ferric-uptake-regulation Protein
GC	Größenausschlusschromatographie
HTH	helix turn helix
IdeR	iron dependent regulator
idr2	iron dependent regulator 2
INR	Initiator-Element

IRE	iron responsive element
Lrp	Leucine responsive regulatory protein
PIC	Prä-Initiationskomplex
kbp	Kilobasenpaare
kDa	Kilodalton
LB	Luria-Bertani
Lrp	leucine-responsive regulatory protein
MDR1	metal-dependent repressor
MIAME	Minimum Information about a Microarray Experiment
MW	molecular weight
Ni-NTA	Ni-Nitriloacetic acid
Nus	N utilization substance
OD	optische Dichte
ORF	open reading frame
PAGE	Polyacrylamid-Gelelektrophorese
PCR	Polymerase Kettenreaktion
Pincl	Promotorsequenz inclusive
RACE	rapid amplification of cDNA ends
RAM	Regulation of amino acid metabolism domain
RNAP	RNA-Polymerase
rpm	rounds per minute
RT-qPCR	Reverse Transkriptase- quantitative PCR
SD	Shine-Dalgarno
SDS	Sodiumdodecylsulfat
ТВР	TATA-Bindeprotein
TF	Transkriptionsfaktor
Tro	transport related operon
SirR	staphylococcal iron regulator repressor
SMART	Simple Modular Architecture Research Tool
snoRNA	small nucleolar ribonucleic acid
snRNA	small nuclear RNA
TEMED	N,N,N`,N`- <u>Te</u> tra <u>me</u> thyl <u>e</u> thylendiamin
TIGR	The Institute for Genomic Research
UAS	upstream activating sequence
UTR	untranslated region
Wt	Wildtyp
144	

5-Bromo-4-chloro-3-indolyl- β -D-galactopyranosid

X-Gal

6 Literaturverzeichnis

- Allers, T., und Mevarech, M. (2005) Archaeal genetics the third way. *Nat Rev Genet* **6**: 58-73.
- Andreev, D.E., Terenin, I.M., Dunaevsky, Y.E., Dmitriev, S.E., und Shatsky, I.N. (2006) A leaderless mRNA can bind to mammalian 80S ribosomes and direct polypeptide synthesis in the absence of translation initiation factors. *Mol Cell Biol* **26**: 3164-3169.
- Aregger, M. (2003) Charakterisierung von cheW-Deletionsmutanten in Halobacterium salinarum (Dissertation). *LMU-München*.
- Bagg, A., und Neilands, J.B. (1987) Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. *Biochemistry* 26: 5471-5477.
- Baichoo, N., Wang, T., Ye, R., und Helmann, J.D. (2002) Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. *Mol Microbiol* **45**: 1613-1629.
- Baliga, N.S., Goo, Y.A., Ng, W.V., Hood, L., Daniels, C.J., und DasSarma, S. (2000) Is gene expression in Halobacterium NRC-1 regulated by multiple TBP and TFB transcription factors? *Mol Microbiol* 36: 1184-1185.
- Baliga, N.S., Kennedy, S.P., Ng, W.V., Hood, L., und DasSarma, S. (2001) Genomic and genetic dissection of an archaeal regulon. *Proc Natl Acad Sci U S A* **98**: 2521-2525.
- Barns, S.M., Delwiche, C.F., Palmer, J.D., und Pace, N.R. (1996) Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. *Proc Natl Acad Sci U S A* **93**: 9188-9193.
- Bell, S.D., Kosa, P.L., Sigler, P.B., und Jackson, S.P. (1999) Orientation of the transcription preinitiation complex in archaea. *Proc Natl Acad Sci U S A* **96**: 13662-13667.
- Bell, S.D., und Jackson, S.P. (2000a) Mechanism of autoregulation by an archaeal transcriptional repressor. *J Biol Chem* **275**: 31624-31629.
- Bell, S.D., und Jackson, S.P. (2000b) The role of transcription factor B in transcription initiation and promoter clearance in the archaeon Sulfolobus acidocaldarius. *J Biol Chem* 275: 12934-12940.
- Bell, S.D., Brinkman, A.B., van der Oost, J., und Jackson, S.P. (2001a) The archaeal TFIIEalpha homologue facilitates transcription initiation by enhancing TATA-box recognition. *EMBO Rep* 2: 133-138.
- Bell, S.D., Magill, C.P., und Jackson, S.P. (2001b) Basal and regulated transcription in Archaea. *Biochem Soc Trans* **29**: 392-395.
- Bohm, G., Muhr, R., und Jaenicke, R. (1992) Quantitative analysis of protein far UV circular dichroism spectra by neural networks. *Protein Eng* **5**: 191-195.
- Bonneau, R., Reiss, D.J., Shannon, P., Facciotti, M., Hood, L., Baliga, N.S., und Thorsson, V. (2006) The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. *Genome Biol* 7: R36.
- Bonneau, R., Facciotti, M.T., Reiss, D.J., Schmid, A.K., Pan, M., Kaur, A., Thorsson, V., Shannon, P., Johnson, M.H., Bare, J.C., Longabaugh, W., Vuthoori, M., Whitehead, K., Madar, A., Suzuki, L., Mori, T., Chang, D.E., Diruggiero, J., Johnson, C.H., Hood, L., und Baliga, N.S. (2007) A predictive model for transcriptional control of physiology in a free living cell. *Cell* 131: 1354-1365.
- Bowtell, D., and Sambrook, J. (2002) DNA Microarrays: A Molecular Cloning Manual. *Cold Spring Harbor Laboratory Press*.
- Brenneis, M., Hering, O., Lange, C., und Soppa, J. (2007) Experimental Characterization of Cis-Acting Elements Important for Translation and Transcription in Halophilic Archaea. *PLoS Genet* 3: e229.

- Brenneis, M., und Soppa, J. (2009) Regulation of translation in haloarchaea: 5'- and 3'-UTRs are essential and have to functionally interact in vivo. *PLoS ONE* 4: e4484.
- Brinkman, A.B., Dahlke, I., Tuininga, J.E., Lammers, T., Dumay, V., de Heus, E., Lebbink, J.H., Thomm, M., de Vos, W.M., und van Der Oost, J. (2000) An Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus is negatively autoregulated. *J Biol Chem* 275: 38160-38169.
- Brinkman, A.B., Bell, S.D., Lebbink, R.J., de Vos, W.M., und van der Oost, J. (2002) The Sulfolobus solfataricus Lrp-like protein LysM regulates lysine biosynthesis in response to lysine availability. *J Biol Chem* **277**: 29537-29549.
- Brinkman, A.B., Ettema, T.J., de Vos, W.M., und van der Oost, J. (2003) The Lrp family of transcriptional regulators. *Mol Microbiol* **48**: 287-294.
- Brown, A.D. (1990) Microbial Water Stress Physiology: Principles and Perspectives. John Wiley & Sons
- Bult, C.J., White, O., Olsen, G.J., Zhou, L., Fleischmann, R.D., Sutton, G.G., Blake, J.A.,
 FitzGerald, L.M., Clayton, R.A., Gocayne, J.D., Kerlavage, A.R., Dougherty, B.A.,
 Tomb, J.F., Adams, M.D., Reich, C.I., Overbeek, R., Kirkness, E.F., Weinstock,
 K.G., Merrick, J.M., Glodek, A., Scott, J.L., Geoghagen, N.S., und Venter, J.C.
 (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. *Science* 273: 1058-1073.
- Calvo, J.M., und Matthews, R.G. (1994) The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. *Microbiol Rev* **58**: 466-490.
- Charlier, D., Roovers, M., Thia-Toong, T.L., Durbecq, V., und Glansdorff, N. (1997) Cloning and identification of the Sulfolobus solfataricus lrp gene encoding an archaeal homologue of the eubacterial leucine-responsive global transcriptional regulator Lrp. *Gene* 201: 63-68.
- Chen, S., Rosner, M.H., und Calvo, J.M. (2001) Leucine-regulated self-association of leucine-responsive regulatory protein (Lrp) from Escherichia coli. *J Mol Biol* 312: 625-635.
- Chen, S., und Calvo, J.M. (2002) Leucine-induced dissociation of Escherichia coli Lrp hexadecamers to octamers. *J Mol Biol* **318**: 1031-1042.
- Chomczynski, P., und Mackey, K. (1994) One-hour downward capillary blotting of RNA at neutral pH. *Analytical Biochemistry* **221**: 303-305.
- Cline, S.W., und Doolittle, W.F. (1987) Efficient transfection of the archaebacterium Halobacterium halobium. *J Bacteriol* 169: 1341-1344.
- Coker, J.A., und DasSarma, S. (2007) Genetic and transcriptomic analysis of transcription factor genes in the model halophilic Archaeon: coordinate action of TbpD and TfbA. *BMC Genet* **8**: 61.
- Condo, I., Ciammaruconi, A., Benelli, D., Ruggero, D., und Londei, P. (1999) Cis-acting signals controlling translational initiation in the thermophilic archaeon Sulfolobus solfataricus. *Mol Microbiol* **34**: 377-384.
- Cornish, V.W., Kaplan, M.I., Veenstra, D.L., Kollman, P.A., und Schultz, P.G. (1994) Stabilizing and destabilizing effects of placing beta-branched amino acids in protein alpha-helices. *Biochemistry* 33: 12022-12031.
- D'Ari, R., Lin, R.T., und Newman, E.B. (1993) The leucine-responsive regulatory protein: more than a regulator? *Trends in Biochemical Sciences* **18**: 260-263.
- Dahlke, I., und Thomm, M. (2002) A Pyrococcus homolog of the leucine-responsive regulatory protein, LrpA, inhibits transcription by abrogating RNA polymerase recruitment. *Nucleic Acids Res* 30: 701-710.
- De Zoysa, A., Efstratiou, A., und Hawkey, P.M. (2005) Molecular characterization of diphtheria toxin repressor (dtxR) genes present in nontoxigenic Corynebacterium diphtheriae strains isolated in the United Kingdom. *J Clin Microbiol* **43**: 223-228.

- Dennis, P.P., und Shimmin, L.C. (1997) Evolutionary divergence and salinity-mediated selection in halophilic archaea. *Microbiol Mol Biol Rev* **61**: 90-104.
- Desmarais, D., Jablonski, P.E., Fedarko, N.S., und Roberts, M.F. (1997) 2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic archaea. *J Bacteriol* **179**: 3146-3153.
- Dunn, R., McCoy, J., Simsek, M., Majumdar, A., Chang, S.H., Rajbhandary, U.L., und Khorana, H.G. (1981) The bacteriorhodopsin gene. *Proc Natl Acad Sci U S A* 78: 6744-6748.
- Dussurget, O., Rodriguez, M., und Smith, I. (1996) An ideR mutant of Mycobacterium smegmatis has derepressed siderophore production and an altered oxidative-stress response. *Mol Microbiol* **22**: 535-544.
- Dyall-Smith, M. (2006) The Halohandbook. *Department of Microbiology and Immunology*
- Eckhoff, A. (2003) Kristallisation und NMR-spektroskopische Untersuchungen an dem Twisted Dwarf Protein aus Arabidopsis thaliana.
- Eisenberg, H., Mevarech, M., und Zaccai, G. (1992) Biochemical, structural, and molecular genetic aspects of halophilism. *Adv Protein Chem* **43**: 1-62.
- Enoru-Eta, J., Gigot, D., Thia-Toong, T.L., Glansdorff, N., und Charlier, D. (2000) Purification and characterization of Sa-lrp, a DNA-binding protein from the extreme thermoacidophilic archaeon Sulfolobus acidocaldarius homologous to the bacterial global transcriptional regulator Lrp. *J Bacteriol* 182: 3661-3672.
- Enoru-Eta, J., Gigot, D., Glansdorff, N., und Charlier, D. (2002) High resolution contact probing of the Lrp-like DNA-binding protein Ss-Lrp from the hyperthermoacidophilic crenarchaeote Sulfolobus solfataricus P2. *Mol Microbiol* **45**: 1541-1555.
- Ettema, T.J., Brinkman, A.B., Tani, T.H., Rafferty, J.B., und Van Der Oost, J. (2002) A novel ligand-binding domain involved in regulation of amino acid metabolism in prokaryotes. *J Biol Chem* **277**: 37464-37468.
- Falb, M., Muller, K., Konigsmaier, L., Oberwinkler, T., Horn, P., von Gronau, S., Gonzalez, O., Pfeiffer, F., Bornberg-Bauer, E., und Oesterhelt, D. (2008) Metabolism of halophilic archaea. *Extremophiles* 12: 177-196.
- Fontecave, M., Choudens, S.O., Py, B., und Barras, F. (2005) Mechanisms of iron-sulfur cluster assembly: the SUF machinery. *J Biol Inorg Chem* **10**: 713-721.
- Geiduschek, E.P., und Ouhammouch, M. (2005) Archaeal transcription and its regulators. *Mol Microbiol* **56**: 1397-1407.
- Gold, B., Rodriguez, G.M., Marras, S.A., Pentecost, M., und Smith, I. (2001) The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. *Mol Microbiol* 42: 851-865.
- Gonzalez, O., Gronau, S., Falb, M., Pfeiffer, F., Mendoza, E., Zimmer, R., und and Oesterhelt, D. (2007) Reconstruction, Modeling & Analysis of Halobacterium salinarum R-1 metabolism,. *Molecular Biosystems* **3**: 1-13.
- Grant, W.D. (1989) Halophiles and Their Milieu: Hypersaline Environments. *Science* 246: 1645-1646.
- Greenblatt, J., McLimont, M., und Hanly, S. (1981) Termination of transcription by nusA gene protein of Escherichia coli. *Nature* **292**: 215-220.
- Gropp, F., und Betlach, M.C. (1994) The bat gene of Halobacterium halobium encodes a trans-acting oxygen inducibility factor. *Proc Natl Acad Sci U S A* **91**: 5475-5479.
- Hanzelka, B.L., Darcy, T.J., und Reeve, J.N. (2001) TFE, an archaeal transcription factor in Methanobacterium thermoautotrophicum related to eucaryal transcription factor TFIIEalpha. J Bacteriol 183: 1813-1818.
- Hartmann, R., Sickinger, H.D., und Oesterhelt, D. (1980) Anaerobic growth of halobacteria. *Proc Natl Acad Sci U S A* 77: 3821-3825.

- Hausner, W., Lange, U., und Musfeldt, M. (2000) Transcription factor S, a cleavage induction factor of the archaeal RNA polymerase. *J Biol Chem* **275**: 12393-12399.
- Hernday, A.D., Braaten, B.A., Broitman-Maduro, G., Engelberts, P., und Low, D.A. (2004) Regulation of the pap epigenetic switch by CpxAR: phosphorylated CpxR inhibits transition to the phase ON state by competition with Lrp. *Mol Cell* **16**: 537-547.
- Hill, P.J., Cockayne, A., Landers, P., Morrissey, J.A., Sims, C.M., und Williams, P. (1998) SirR, a novel iron-dependent repressor in Staphylococcus epidermidis. *Infect Immun* 66: 4123-4129.
- Huber, H., Hohn, M.J., Rachel, R., Fuchs, T., Wimmer, V.C., und Stetter, K.O. (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. *Nature* **417**: 63-67.
- Hung, S.P., Baldi, P., und Hatfield, G.W. (2002) Global gene expression profiling in Escherichia coli K12. The effects of leucine-responsive regulatory protein. *J Biol Chem* 277: 40309-40323.
- Jacob, F., und Monod, J. (1961) Genetic regulatory mechanisms in the synthesis of proteins. *J Mol Biol* **3**: 318-356.
- Jakubovics, N.S., und Jenkinson, H.F. (2001) Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria. *Microbiology* **147**: 1709-1718.
- Javor, B. (1989) Hypersaline environments. Microbiology and biogeochemistry.
- Kaur, A., Pan, M., Meislin, M., Facciotti, M.T., El-Gewely, R., und Baliga, N.S. (2006) A systems view of haloarchaeal strategies to withstand stress from transition metals. *Genome Res* 16: 841-854.
- Kennedy, S.P., Ng, W.V., Salzberg, S.L., Hood, L., und DasSarma, S. (2001) Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. *Genome Res* 11: 1641-1650.
- Kerscher, L., und Oesterhelt, D. (1981) Purification and properties of two 2oxoacid:ferredoxin oxidoreductases from Halobacterium halobium. *Eur J Biochem* 116: 587-594.
- Koch, M.K., und Oesterhelt, D. (2005) MpcT is the transducer for membrane potential changes in Halobacterium salinarum. *Molecular Microbiology* **55**: 1681-1694.
- Koike, H., Ishijima, S.A., Clowney, L., und Suzuki, M. (2004) The archaeal feast/famine regulatory protein: potential roles of its assembly forms for regulating transcription. *Proc Natl Acad Sci U S A* 101: 2840-2845.
- Kokoeva, M.V., Storch, K.F., Klein, C., und Oesterhelt, D. (2002) A novel mode of sensory transduction in archaea: binding protein-mediated chemotaxis towards osmoprotectants and amino acids. *Embo J* **21**: 2312-2322.
- Kruger, K., Hermann, T., Armbruster, V., und Pfeifer, F. (1998) The transcriptional activator GvpE for the halobacterial gas vesicle genes resembles a basic region leucine-zipper regulatory protein. J Mol Biol 279: 761-771.
- Kudo, N., Allen, M.D., Koike, H., Katsuya, Y., und Suzuki, M. (2001) Crystallization and secondary-structure determination of a protein of the Lrp/AsnC family from a hyperthermophilic archaeon. Acta Crystallogr D Biol Crystallogr 57: 469-471.
- Kyrpides, N.C., Olsen, G.J., Klenk, H.P., White, O., und Woese, C.R. (1996) Methanococcus jannaschii genome: revisited. *Microb Comp Genomics* 1: 329-338.
- Lagrange, T., Kapanidis, A.N., Tang, H., Reinberg, D., und Ebright, R.H. (1998) New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. *Genes Dev* 12: 34-44.
- Langer, D., Hain, J., Thuriaux, P., und Zillig, W. (1995) Transcription in archaea: similarity to that in eucarya. *Proc Natl Acad Sci U S A* **92**: 5768-5772.
- Leonard, P.M., Smits, S.H., Sedelnikova, S.E., Brinkman, A.B., de Vos, W.M., van der Oost, J., Rice, D.W., und Rafferty, J.B. (2001) Crystal structure of the Lrp-like

transcriptional regulator from the archaeon Pyrococcus furiosus. *Embo J* 20: 990-997.

- Littlefield, O., Korkhin, Y., und Sigler, P.B. (1999) The structural basis for the oriented assembly of a TBP/TFB/promoter complex. *Proc Natl Acad Sci U S A* **96**: 13668-13673.
- Livak, K.J., und Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* **25**: 402-408.
- Madhusudhan, K.T., Huang, N., Braswell, E.H., und Sokatch, J.R. (1997) Binding of Lbranched-chain amino acids causes a conformational change in BkdR. *J Bacteriol* **179**: 276-279.
- Magill, C.P., Jackson, S.P., und Bell, S.D. (2001) Identification of a conserved archaeal RNA polymerase subunit contacted by the basal transcription factor TFB. *J Biol Chem* **276**: 46693-46696.
- Mattar, S., Scharf, B., Kent, S.B., Rodewald, K., Oesterhelt, D., und Engelhard, M. (1994) The primary structure of halocyanin, an archaeal blue copper protein, predicts a lipid anchor for membrane fixation. *J Biol Chem* **269**: 14939-14945.
- Mazumder, B., Seshadri, V., und Fox, P.L. (2003) Translational control by the 3'-UTR: the ends specify the means. *Trends Biochem Sci* 28: 91-98.
- Merrick, M.J., und Edwards, R.A. (1995) Nitrogen control in bacteria. *Microbiol Rev* **59**: 604-622.
- Nakai, T., Okada, K., Akutsu, S., Miyahara, I., Kawaguchi, S., Kato, R., Kuramitsu, S., und Hirotsu, K. (1999) Structure of Thermus thermophilus HB8 aspartate aminotransferase and its complex with maleate. *Biochemistry* **38**: 2413-2424.
- Napoli, A., van der Oost, J., Sensen, C.W., Charlebois, R.L., Rossi, M., und Ciaramella, M. (1999) An Lrp-like protein of the hyperthermophilic archaeon Sulfolobus solfataricus which binds to its own promoter. *J Bacteriol* **181**: 1474-1480.
- Newman, E.B., und Lin, R. (1995) Leucine-responsive regulatory protein: a global regulator of gene expression in E. coli. *Annu Rev Microbiol* **49**: 747-775.
- Ng, W.V., Kennedy, S.P., Mahairas, G.G., Berquist, B., Pan, M., Shukla, H.D., Lasky, S.R., Baliga, N.S., Thorsson, V., Sbrogna, J., Swartzell, S., Weir, D., Hall, J., Dahl, T.A., Welti, R., Goo, Y.A., Leithauser, B., Keller, K., Cruz, R., Danson, M.J., Hough, D.W., Maddocks, D.G., Jablonski, P.E., Krebs, M.P., Angevine, C.M., Dale, H., Isenbarger, T.A., Peck, R.F., Pohlschroder, M., Spudich, J.L., Jung, K.W., Alam, M., Freitas, T., Hou, S., Daniels, C.J., Dennis, P.P., Omer, A.D., Ebhardt, H., Lowe, T.M., Liang, P., Riley, M., Hood, L., und DasSarma, S. (2000) Genome sequence of Halobacterium species NRC-1. *Proc Natl Acad Sci U S A* 97: 12176-12181.
- O'Donnell, S.M., und Janssen, G.R. (2002) Leaderless mRNAs bind 70S ribosomes more strongly than 30S ribosomal subunits in Escherichia coli. *J Bacteriol* **184**: 6730-6733.
- Oesterhelt, D., und Stoeckenius, W. (1973) Functions of a new photoreceptor membrane. *Proc Natl Acad Sci U S A* **70**: 2853-2857.
- Oesterhelt, D., und Krippahl, G. (1983) Phototrophic growth of halobacteria and its use for isolation of photosynthetically-deficient mutants. *Ann Microbiol (Paris)* **134B**: 137-150.
- Okamoto, A., Higuchi, T., Hirotsu, K., Kuramitsu, S., und Kagamiyama, H. (1994) X-ray crystallographic study of pyridoxal 5'-phosphate-type aspartate aminotransferases from Escherichia coli in open and closed form. *J Biochem* **116**: 95-107.
- Oren, A. (1994) Enzyme diversity in halophilic archaea. Microbiologia 10: 217-228.
- Oren, A. (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63: 334-348.

- Oren, A. (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. *J Ind Microbiol Biotechnol* **28**: 56-63.
- Ouhammouch, M., und Geiduschek, E.P. (2001) A thermostable platform for transcriptional regulation: the DNA-binding properties of two Lrp homologs from the hyperthermophilic archaeon Methanococcus jannaschii. *EMBO Journal* **20**: 146-156.
- Ouhammouch, M., Dewhurst, R.E., Hausner, W., Thomm, M., und Geiduschek, E.P. (2003) Activation of archaeal transcription by recruitment of the TATA-binding protein. *Proc Natl Acad Sci U S A* **100**: 5097-5102.
- Peeters, E., Wartel, C., Maes, D., und Charlier, D. (2007) Analysis of the DNA-binding sequence specificity of the archaeal transcriptional regulator Ss-LrpB from Sulfolobus solfataricus by systematic mutagenesis and high resolution contact probing. *Nucleic Acids Res* 35: 623-633.
- Peterson, S.N., Dahlquist, F.W., und Reich, N.O. (2007) The role of high affinity nonspecific DNA binding by Lrp in transcriptional regulation and DNA organization. *Journal of Molecular Biology* **369**: 1307-1317.
- Pfeiffer, F., Schuster, S.C., Broicher, A., Falb, M., Palm, P., Rodewald, K., Ruepp, A., Soppa, J., Tittor, J., und and Oesterhelt, D. (2007) Evolution in the laboratory: the genome of *Halobacterium salinarum* strain R1 compared to strain NRC-1 *Genomics*.
- Pfeiffer, F., Broicher, A., Gillich, T., Klee, K., Mejia, J., Rampp, M., und Oesterhelt, D. (2008a) Genome information management and integrated data analysis with HaloLex. *Arch Microbiol* **190**: 281-299.
- Pfeiffer, F., Schuster, S.C., Broicher, A., Falb, M., Palm, P., Rodewald, K., Ruepp, A., Soppa, J., Tittor, J., und Oesterhelt, D. (2008b) Evolution in the laboratory: the genome of Halobacterium salinarum strain R1 compared to that of strain NRC-1. *Genomics* 91: 335-346.
- Platko, J.V., und Calvo, J.M. (1993) Mutations affecting the ability of Escherichia coli Lrp to bind DNA, activate transcription, or respond to leucine. *J Bacteriol* 175: 1110-1117.
- Pohl, E., Holmes, R.K., und Hol, W.G. (1998) Motion of the DNA-binding domain with respect to the core of the diphtheria toxin repressor (DtxR) revealed in the crystal structures of apo- and holo-DtxR. *J Biol Chem* **273**: 22420-22427.
- Posey, J.E., Hardham, J.M., Norris, S.J., und Gherardini, F.C. (1999) Characterization of a manganese-dependent regulatory protein, TroR, from Treponema pallidum. *Proc Natl Acad Sci U S A* 96: 10887-10892.
- Rao, J.K., und Argos, P. (1981) Structural stability of halophilic proteins. *Biochemistry* **20**: 6536-6543.
- Rawal, N., Kelkar, S.M., und Altekar, W. (1988) Alternative routes of carbohydrate metabolism in halophilic archaebacteria. *Indian J Biochem Biophys* **25**: 674-686.
- Reddy, M.C., Gokulan, K., Jacobs, W.R., Jr., Ioerger, T.R., und Sacchettini, J.C. (2008) Crystal structure of Mycobacterium tuberculosis LrpA, a leucine-responsive global regulator associated with starvation response. *Protein Sci* 17: 159-170.
- Reeve, J.N., Sandman, K., und Daniels, C.J. (1997) Archaeal histones, nucleosomes, and transcription initiation. *Cell* **89**: 999-1002.
- Reiter, W.D., Hudepohl, U., und Zillig, W. (1990) Mutational analysis of an archaebacterial promoter: essential role of a TATA box for transcription efficiency and start-site selection in vitro. *Proc Natl Acad Sci U S A* **87**: 9509-9513.
- Ruepp, A., Muller, H.N., Lottspeich, F., und Soppa, J. (1995) Catabolic ornithine transcarbamylase of Halobacterium halobium (salinarium): purification, characterization, sequence determination, and evolution. *J Bacteriol* 177: 1129-1136.

- Ruepp, A., und Soppa, J. (1996) Fermentative arginine degradation in Halobacterium salinarium (formerly Halobacterium halobium): genes, gene products, and transcripts of the arcRACB gene cluster. *J Bacteriol* **178**: 4942-4947.
- Saeed, A.I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., Braisted, J., Klapa, M., Currier, T., Thiagarajan, M., Sturn, A., Snuffin, M., Rezantsev, A., Popov, D., Ryltsov, A., Kostukovich, E., Borisovsky, I., Liu, Z., Vinsavich, A., Trush, V., und Quackenbush, J. (2003) TM4: a free, open-source system for microarray data management and analysis. *Biotechniques* 34: 374-378.
- Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., und Erlich, H.A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. *Science* **239**: 487-491.
- Sambrook, J., Fritsch, E., und Maniatis, T. (1989) *Molecular Cloning. A Laboratory Manual Cold Spring Harbor* **2nd edn. NY: Cold Spring Harbor Laboratory Press**.
- Sanger, F., Nicklen, S., und Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. *Proc Natl Acad Sci U S A* **74**: 5463-5467.
- Sartorius-Neef, S., und Pfeifer, F. (2004) In vivo studies on putative Shine-Dalgarno sequences of the halophilic archaeon Halobacterium salinarum. *Mol Microbiol* **51**: 579-588.
- Schwarz, C. (2009) Dissertation. LMU-München.
- Schwede, T., Kopp, J., Guex, N., und Peitsch, M.C. (2003) SWISS-MODEL: An automated protein homology-modeling server. *Nucleic Acids Res* **31**: 3381-3385.
- Sehgal, S.N., Kates, M., und Gibbons, N.E. (1962) Lipids of Halobacterium cutirubrum. *Can J Biochem Physiol* **40**: 69-81.
- Soppa, J. (1999) Transcription initiation in Archaea: facts, factors and future aspects. *Mol Microbiol* **31**: 1295-1305.
- Studier, F.W., und Moffatt, B.A. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. *J Mol Biol* **189**: 113-130.
- Studier, F.W., Rosenberg, A.H., Dunn, J.J., und Dubendorff, J.W. (1990) Use of T7 RNA polymerase to direct expression of cloned genes. *Methods Enzymol* **185**: 60-89.
- Surewicz, W.K., Mantsch, H.H., und Chapman, D. (1993) Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. *Biochemistry* **32**: 389-394.
- Tabor, S., und Richardson, C.C. (1992) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. 1985. *Biotechnology* 24: 280-284.
- Tani, T.H., Khodursky, A., Blumenthal, R.M., Brown, P.O., und Matthews, R.G. (2002) Adaptation to famine: a family of stationary-phase genes revealed by microarray analysis. *Proc Natl Acad Sci U S A* **99**: 13471-13476.
- Thaw, P., Sedelnikova, S.E., Muranova, T., Wiese, S., Ayora, S., Alonso, J.C., Brinkman, A.B., Akerboom, J., van der Oost, J., und Rafferty, J.B. (2006) Structural insight into gene transcriptional regulation and effector binding by the Lrp/AsnC family. *Nucleic Acids Res* 34: 1439-1449.
- Thomm, M. (1996) Archaeal transcription factors and their role in transcription initiation. *FEMS Microbiol Rev* 18: 159-171.
- Tokunaga, H., Mitsuo, K., Ichinose, S., Omori, A., Ventosa, A., Nakae, T., und Tokunaga, M. (2004) Salt-inducible multidrug efflux pump protein in the moderately halophilic bacterium Chromohalobacter sp. *Appl Environ Microbiol* **70**: 4424-4431.
- Twellmeyer, J., Wende, A., Wolfertz, J., Pfeiffer, F., Panhuysen, M., Zaigler, A., Soppa, J., Welzl, G., und Oesterhelt, D. (2007) Microarray Analysis in the Archaeon Halobacterium salinarum Strain R1. *PLoS ONE* 2: e1064.

- van der Woude, M.W., und Low, D.A. (1994) Leucine-responsive regulatory protein and deoxyadenosine methylase control the phase variation and expression of the sfa and daa pili operons in Escherichia coli. *Mol Microbiol* **11**: 605-618.
- Wagner, G., Hartmann, R., und Oesterhelt, D. (1978) Potassium uniport and ATP synthesis in Halobacterium halobium. *Eur J Biochem* **89**: 169-179.
- Walden, W.E., Selezneva, A.I., Dupuy, J., Volbeda, A., Fontecilla-Camps, J.C., Theil, E.C., und Volz, K. (2006) Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. *Science* 314: 1903-1908.
- Wang, Q., Sacco, M., Ricca, E., Lago, C.T., De Felice, M., und Calvo, J.M. (1993) Organization of Lrp-binding sites upstream of ilvIH in Salmonella typhimurium. *Mol Microbiol* 7: 883-891.
- Wang, Q., Wu, J., Friedberg, D., Plakto, J., und Calvo, J.M. (1994) Regulation of the Escherichia coli lrp gene. *J Bacteriol* **176**: 1831-1839.
- Washio, T., Sasayama, J., und Tomita, M. (1998) Analysis of complete genomes suggests that many prokaryotes do not rely on hairpin formation in transcription termination. *Nucleic Acids Res* 26: 5456-5463.
- Weyand, N.J., und Low, D.A. (2000) Regulation of pap phase variation Lrp is sufficient for the establishment of the phase off pap DNA methylation pattern and repression of pap transcription in vitro. *Journal of Biological Chemistry* **275**: 3192-3200.
- Woese, C.R., Kandler, O., und Wheelis, M.L. (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. *Proc Natl Acad Sci U S A* 87: 4576-4579.
- Wu, X., und Dewey, T.G. (2006) From microarray to biological networks: Analysis of gene expression profiles. *Methods Mol Biol* 316: 35-48.
- Yokoyama, K., Ishijima, S.A., Clowney, L., Koike, H., Aramaki, H., Tanaka, C., Makino, K., und Suzuki, M. (2005) Feast/famine regulatory proteins (FFRPs): *Escherichia coli* Lrp, AsnC and related archaeal transcription factors *FEMS Microbiol Rev* 30: 89-108.

Übersicht aller signifikanten Gene die im Zuge der Mikroarray Analysen reguliert (±1.7) bzw. schwach reguliert (von ±1.7 bis ±1.3) waren. Die Mikroarray-Daten umfassen die Vergleiche von Eisenmangel, der Deletionsmutanten (Δlrp , $\Delta lrpA1$, $\Delta sirR$, $\Delta troR$), der Überexpressionsstämme ($\uparrow lrp$, $\uparrow lrpA1$) mit dem Parentalstamm *H. salinarum* R1.

Induzierten Gene unter Eisenmangel

ID	log2	xfach	stabw	p-Wert	Gen	Funktions- klasse	Genname
OE1037F	0.47	1.4	0.4	1.80E-06	-	HY	hypothetical protein
OE1038R	0.43	1.3	0.2	5.71E-10	-	CHY	conserved hypothetical protein
OE1083R	0.66	1.6	0.4	9.17E-08	-	ISH	transposase (ISH3)
OE1143R	0.49	1.4	0.2	4.44E-12	moeA2	СОМ	molybdenum cofactor biosynthesis protein moeA2
OE1158R	0.71	1.6	0.6	4.70E-06	rimK	GEN	rimK family protein
OE1184R	1.22	2.3	0.7	2.24E-08	-	CHY	conserved hypothetical protein
OE1190F	0.56	1.5	0.5	7.15E-06	rdh2	GEN	probable oxidoreductase (EC 1.1.1)
OE1215R	0.64	1.6	0.3	1.30E-10	-	CHY	conserved hypothetical protein
OE1225F	0.55	1.5	0.3	1.86E-09	-	CHY	conserved hypothetical protein (nonfunctional
OE1241R	0.41	1.3	0.3	2.18E-07	-	CHY	conserved hypothetical protein
OE1252R	0.41	1.3	0.3	2.81E-08	trxA4	EM	thioredoxin
OE1260R	0.61	1.5	0.3	3.08E-10	merA	MIS	probable oxidoreductase
OE1277F	1.3	2.5	1.0	1.01E-06	trxA3	EM	thioredoxin
OE1283R	2.09	4.3	1.8	7.00E-06	-	GEN	dsbA domain protein
OE1285F	0.66	1.6	0.4	2.39E-08	-	CHY	conserved hypothetical protein
OE1291R	0.47	1.4	0.2	2.08E-10	-	CHY	conserved hypothetical protein
OE1306F	0.65	1.6	0.2	8.28E-14	-	CHY	conserved hypothetical protein
OE1324R	0.71	1.6	0.5	8.66E-07	-	HY	hypothetical protein
OE1361F	1.21	2.3	0.4	4.13E-13	degP	MIS	probable periplasmic serine proteinase (EC 3.4.21)
OE1410F	0.58	1.5	0.2	4.71E-14	-	CHY	conserved hypothetical protein
OE1424F	0.45	1.4	0.3	8.15E-09	-	CHY	conserved hypothetical protein
OE1428F	0.81	1.7	0.4	1.30E-10	-	CHY	conserved hypothetical protein

OE1445R	1.57	3	0.8	4.07E-10	-	CHY	conserved hypothetical protein
OE1447R	1.92	3.8	0.4	0	-	GEN	probable metallo-beta-lactamase family hydrolase
OE1448R	1.01	2	0.4	9.49E-13	-	CHY	conserved hypothetical protein
OE1469F	0.81	1.7	0.4	1.76E-10	trpC	AA	indole-3-glycerol-phosphate synthase (EC 4.1.1.48)
OE1477R	0.53	1.4	0.3	4.62E-08	aroD	AA	3-dehydroquinate dehydratase (EC 4.2.1.10)
OE1488F	0.81	1.8	0.4	6.81E-10	-	CHY	conserved hypothetical protein
OE1489R	0.56	1.5	0.3	1.72E-10	-	CHY	conserved hypothetical protein
OE1495R	0.45	1.4	0.3	4.12E-07	pykA	CIM	pyruvate kinase (EC 2.7.1.40)
OE1510F	1.06	2.1	0.4	2.07E-13	-	CHY	conserved hypothetical protein
OE1536R	0.43	1.4	0.3	1.78E-08	трсТ	SIG	transducer protein mpcT
OE1576F	0.71	1.6	0.3	5.25E-12	-	CHY	conserved hypothetical protein
OE1577R	0.93	1.9	0.3	7.33E-15	-	CHY	conserved hypothetical protein
OE1579R	1.07	2.1	0.8	5.91E-07	-	CHY	conserved hypothetical protein
OE1582R	1.12	2.2	1.0	4.68E-06	-	CHY	conserved hypothetical protein
OE1584R	0.82	1.8	0.7	5.77E-06	-	CHY	conserved hypothetical protein
OE1587F	0.56	1.5	0.4	4.98E-07	-	CHY	conserved hypothetical protein
OE1589F	1.07	2.1	1.0	9.21E-06	nthA1	RRR	DNA-(apurinic or apyrimidinic site) lyase (EC 4.2.99.18) endonuclease III
OE1592R	1	2	0.6	3.63E-09	epf2	GEN	mRNA 3'-end processing factor homolog
OE1606R	0.41	1.3	0.1	6.66E-16	-	CHY	conserved hypothetical protein
OE1646R	0.56	1.5	0.2	4.43E-11	-	CHY	conserved hypothetical protein
OE1661F	0.51	1.4	0.2	4.14E-11	-	CHY	conserved hypothetical protein ABC-type transport system ATP-binding protein (probable substrate
OE1675R	0.63	1.5	0.4	1.91E-08	pstB2	ТР	phosphate)
OE1676R	0.62	1.5	0.4	3.48E-07	pstA2	ТР	ABC-type transport system permease protein (probable substrate phosphate)
OE1691R	1.24	2.4	0.6	9.33E-10	-	CHY	conserved hypothetical protein
OE1693R	1.76	3.4	0.9	1.38E-09	-	TP	probable ABC-type transport system ATP-binding protein
OE1695R	1.04	2.1	0.9	3.33E-06	-	ТР	ABC-type transport system permease protein
OE1704R	0.4	1.3	0.2	1.97E-09	-	ТР	ABC-type transport system ATP-binding protein
OE1761R	0.41	1.3	0.2	5.38E-10	-	CHY	conserved hypothetical protein
OE1772F	0.99	2	0.5	1.01E-09	-	HY	hypothetical protein
OE1774R	1.96	3.9	0.3	0	-	CHY	conserved hypothetical protein
OE1775R	1.94	3.8	0.3	0	-	CHY	conserved hypothetical protein
OE1785F	0.42	1.3	0.2	5.63E-09	-	CHY	conserved hypothetical protein
OE1787F	0.96	1.9	0.6	1.27E-08	-	REG	probable transcription regulator
OE1794R	1.47	2.8	0.7	2.96E-10	-	CHY	conserved hypothetical protein

			1	1	1	
1.21	2.3	0.9	3.36E-07	-	CHY	conserved hypothetical protein
0.98	2	0.2	0	gth2	GEN	probable glycosyltransferase
0.6	1.5	0.2	2.22E-15	purE	NUM	phosphoribosylaminoimidazole carboxylase (EC 4.1.1.21) catalytic subunit
0.47	1.4	0.2	7.18E-10	mcmA1	LIP	methylmalonyl-CoA mutase (EC 5.4.99.2) subunit A
0.51	1.4	0.4	4.32E-07	birA2	СОМ	biotin[acetyl-CoA-carboxylase] ligase (EC 6.3.4.15) 2
0.45	1.4	0.3	1.29E-06	-	CHY	conserved hypothetical protein
4	16	0.9	0	yvgX	TP	probable copper-transporting ATPase (EC 3.6.1)
2.09	4.3	1.2	5.73E-09	-	CHY	conserved hypothetical protein
2.7	6.5	1.9	3.62E-07	-	CHY	conserved hypothetical protein
1.33	2.5	1.0	5.59E-07	-	CHY	conserved hypothetical protein
0.84	1.8	0.6	1.00E-07	-	GEN	probable metallo-beta-lactamase family hydrolase
0.43	1.3	0.4	3.70E-06	-	CHY	conserved hypothetical protein
0.7	1.6	0.3	9.78E-11	-	CHY	conserved hypothetical protein
1.5	2.8	1.3	6.47E-06	-	CHY	conserved hypothetical protein
0.93	1.9	0.7	3.10E-07	apbA	СОМ	2-dehydropantoate 2-reductase (EC 1.1.1.169)
1.77	3.4	1.1	3.35E-08	-	CHY	conserved hypothetical protein
0.59	1.5	0.3	1.89E-09	hlx2	SIG	probable response regulator
0.41	1.3	0.2	3.96E-12	kinA2	SIG	probable signal-transducing histidine kinase
0.5	1.4	0.1	2.22E-16	-	CHY	conserved hypothetical protein
0.57	1.5	0.4	4.21E-07	spoVR	GEN	homolog to spoVR protein
0.49	1.4	0.3	2.30E-09	prkA1	MIS	probable prkA-type protein kinase (EC 2.7.1)
0.49	1.4	0.2	1.65E-11	-	CHY	conserved hypothetical protein
0.49	1.4	0.2	5.04E-10	-	GEN	PAP2 family protein
0.51	1.4	0.3	1.54E-08	-	LIP	phospholipase D
0.68	1.6	0.2	8.70E-14	-	TP	ABC-type transport system ATP-binding protein
0.62	1.5	0.4	9.10E-08	-	TP	ABC-type transport system permease protein
0.79	1.7	0.3	2.08E-13	htr18	SIG	transducer protein htr18
0.58	1.5	0.1	0	potD	MIS	periplasmic substrate-binding protein
1.47	2.8	1.0	2.76E-07	chiA1	MIS	chitinase (EC 3.2.1.14)
1.67	3.2	1.2	6.44E-07	chiA2	MIS	chitinase (EC 3.2.1.14)
0.65	1.6	0.3	2.45E-11	chiA3	MIS	chitinase (EC 3.2.1.14)
0.5	1.4	0.4	1.64E-06	-	HY	hypothetical protein
0.41	1.3	0.2	4.87E-12	-	GEN	PHP domain protein
1.3	2.5	0.9	3.91E-07	tfbD	TC	transcription initiation factor TFB
0.65	1.6	0.4	8.36E-08	pho2	CHM	probable sugar phosphatase (EC 3.1.3)
	1.21 0.98 0.6 0.47 0.51 0.45 4 2.09 2.7 1.33 0.84 0.43 0.7 1.5 0.93 1.77 0.59 0.41 0.5 0.57 0.49 0.49 0.51 0.68 0.62 0.79 0.58 1.47 1.67 0.65 0.5 0.5 0.41 1.3 0.65	1.21 2.3 0.98 2 0.6 1.5 0.47 1.4 0.51 1.4 0.45 1.4 4 16 2.09 4.3 2.7 6.5 1.33 2.5 0.84 1.8 0.43 1.3 0.7 1.6 1.5 2.8 0.93 1.9 1.77 3.4 0.59 1.5 0.41 1.3 0.5 1.4 0.57 1.5 0.49 1.4 0.49 1.4 0.49 1.4 0.51 1.4 0.62 1.5 0.79 1.7 0.58 1.5 1.47 2.8 1.67 3.2 0.65 1.6 0.5 1.4 0.41 1.3 1.3 2.5 0.65 1.6	1.21 2.3 0.9 0.98 2 0.2 0.6 1.5 0.2 0.47 1.4 0.2 0.51 1.4 0.4 0.45 1.4 0.3 4 16 0.9 2.09 4.3 1.2 2.7 6.5 1.9 1.33 2.5 1.0 0.84 1.8 0.6 0.43 1.3 0.4 0.7 1.6 0.3 1.5 2.8 1.3 0.93 1.9 0.7 1.77 3.4 1.1 0.59 1.5 0.3 0.41 1.3 0.2 0.5 1.4 0.1 0.57 1.5 0.4 0.49 1.4 0.2 0.49 1.4 0.2 0.62 1.5 0.4 0.79 1.7 0.3 0.68 1.6 0.2 0.65 1.6 0.3 0.58 1.5 0.1 1.47 2.8 1.0 1.67 3.2 1.2 0.65 1.6 0.3 0.5 1.4 0.4 0.41 1.3 0.2 1.3 2.5 0.9 0.65 1.6 0.4	1.21 2.3 0.9 3.36E-07 0.98 2 0.2 0 0.6 1.5 0.2 2.22E-15 0.47 1.4 0.2 7.18E-10 0.51 1.4 0.4 4.32E-07 0.45 1.4 0.3 1.29E-06 4 16 0.9 0 2.09 4.3 1.2 5.73E-09 2.7 6.5 1.9 3.62E-07 1.33 2.5 1.0 5.59E-07 0.84 1.8 0.6 1.00E-07 0.43 1.3 0.4 3.70E-06 0.7 1.6 0.3 9.78E-11 1.5 2.8 1.3 6.47E-06 0.93 1.9 0.7 3.10E-07 1.77 3.4 1.1 3.35E-08 0.59 1.5 0.3 1.89E-09 0.41 1.3 0.2 3.96E-12 0.5 1.4 0.1 2.22E-16 0.57 1.5 0.4 4.21E-07 0.49	1.21 2.3 0.9 3.36E-07 - 0.98 2 0.2 0 gth2 0.6 1.5 0.2 2.22E-15 purE 0.47 1.4 0.2 7.18E-10 mcmA1 0.51 1.4 0.4 4.32E-07 birA2 0.45 1.4 0.3 1.29E-06 - 4 16 0.9 0 yvgX 2.09 4.3 1.2 5.73E-09 - 1.33 2.5 1.0 5.59E-07 - 0.84 1.8 0.6 1.00E-07 - 0.43 1.3 0.4 3.70E-06 - 0.7 1.6 0.3 9.78E-11 - 1.5 2.8 1.3 6.47E-06 - 0.93 1.9 0.7 3.10E-07 apbA 1.77 3.4 1.1 3.35E-08 - 0.59 1.5 0.3 1.89E-09 hlx2 0.41 1.3 0.2 3.96E-12 kinA2 0.57<	1.21 2.3 0.9 3.36E-07 - CHY 0.98 2 0.2 0 gth2 GEN 0.6 1.5 0.2 2.22E-15 purE NUM 0.47 1.4 0.2 7.18E-10 mcmA1 LIP 0.51 1.4 0.4 4.32E-07 birA2 COM 0.45 1.4 0.3 1.29E-06 - CHY 4 16 0.9 0 yrgX TP 2.09 4.3 1.2 5.73E-09 - CHY 1.33 2.5 1.0 5.59E-07 - CHY 0.84 1.8 0.6 1.00E-07 - GEN 0.43 1.3 0.4 3.70E-06 - CHY 1.5 2.8 1.3 6.47E-06 - CHY 0.57 1.6 0.3 9.78E-11 - CHY 0.59 1.5 0.3 1.89E-09 hlx2 SIG 0.41 1.3 0.2 3.96E-12 kinA2 <

	1					1	
OE2350R	0.83	1.8	0.4	1.37E-09	-	CHY	conserved hypothetical protein
0E2354R	0.48	1.4	0.2	1.57E-10	-	GEN	homolog to protein kinase
OE2359F	0.57	1.5	0.4	5.46E-08	-	CHY	conserved hypothetical protein
OE2379R	0.84	1.8	0.3	1.12E-12	flaJ	SEC	flagella biogenesis protein flaJ (probable flagellin secretion system protein flaJ)
0E2383R	1.04	2.1	0.9	3.84E-06	flaG	мот	fla cluster protein flaG
0E2404R	1.08	2.1	0.2	0	-	CHY	conserved hypothetical protein
OE2414R	0.45	1.4	0.2	1.81E-12	cheC1	SIG	taxis protein cheC1
OE2432F	0.49	1.4	0.3	8.12E-09	-	ISH	transposase (ISH3)
OE2433A1F	0.72	1.7	0.4	1.08E-08	-	ISH	transposase (ISH3)
OE2464F	0.41	1.3	0.3	6.12E-08	-	CHY	conserved hypothetical protein
OE2465R	0.74	1.7	0.7	7.61E-06	-	HY	hypothetical protein
OE2467R	0.99	2	0.8	3.75E-06	-	CHY	conserved hypothetical protein
OE2472F	0.92	1.9	0.5	3.71E-10	gch31	NUM	GTP cyclohydrolase III (EC 3.5.4.29)
OE2473F	1.1	2.1	0.9	1.26E-06	-	GEN	homolog to glutaredoxin
OE2529F	0.6	1.5	0.5	5.60E-06	-	GEN	polysaccharide biosynthesis protein homolog
OE2551F	0.5	1.4	0.4	2.58E-07	-	CHY	conserved hypothetical protein
OE2573F	0.72	1.7	0.3	8.16E-13	-	CHY	conserved hypothetical protein
OE2616F	0.8	1.7	0.2	0	-	CHY	conserved hypothetical protein
OE2621R	0.54	1.5	0.1	0	lrpA1	REG	transcription regulator
OE2642R	0.66	1.6	0.4	2.95E-09	-	HY	hypothetical protein
OE2651F	0.53	1.4	0.3	3.50E-09	-	HY	hypothetical protein
OE2653R	0.49	1.4	0.4	2.79E-06	-	CHY	conserved hypothetical protein
OE2676R	0.4	1.3	0.4	6.23E-06	-	CHY	conserved hypothetical protein
OE2712R	0.49	1.4	0.3	7.26E-09	-	SIG	probable signal-transducing histidine kinase
OE2741F	2.67	6.4	2.3	4.95E-06	-	GEN	phage integrase homolog (nonfunctional
0E2747R	0.8	1.7	0.6	3.33E-07	-	CHY	conserved hypothetical protein
OE2764R	0.71	1.6	0.4	8.04E-09	-	SIG	probable signal-transducing histidine kinase
OE2805R	0.41	1.3	0.3	7.36E-07	trxB2	MIS	thioredoxin-disulfide reductase (EC 1.8.1.9)
0E2844R	0.47	1.4	0.2	2.69E-10	trh2	REG	probable Irp-type transcriptional regulator / trkA-domain protein
0E2854R	1.13	2.2	0.5	3.20E-11	-	HY	hypothetical protein
OE2863R	0.42	1.3	0.4	7.62E-06	-	CHY	conserved hypothetical protein
OE2878F	1.88	3.7	1.1	6.95E-09	-	HY	hypothetical protein
OE2891F	0.43	1.3	0.3	1.69E-06	-	HY	hypothetical protein
OE2903R	0.6	1.5	0.4	1.27E-07	-	CHY	conserved hypothetical protein
OE2905F	0.59	1.5	0.5	7.11E-06	-	HY	hypothetical protein

	1	1		1	1	1	
OE2916F	0.71	1.6	0.5	5.09E-07	-	GEN	probable oxidoreductase (EC 1.1.1) (short-chain dehydrogenase family)
OE2918F	0.86	1.8	0.5	4.13E-08	-	GEN	monooxygenase (EC 1.14.14) (homolog to alkanesulfonate monooxygenase)
OE2919R	1.47	2.8	0.8	6.02E-09	-	CHY	conserved hypothetical protein
OE2945F	0.73	1.7	0.6	9.76E-07	ocd2	AA	ornithine cyclodeaminase (EC 4.3.1.12)
OE2956F	0.98	2	0.3	2.11E-13	-	CHY	conserved hypothetical protein
OE2979F	0.44	1.4	0.3	7.44E-08	-	CHY	conserved hypothetical protein
OE2988R	0.52	1.4	0.3	4.91E-10	-	CHY	conserved hypothetical protein
OE2989R	0.55	1.5	0.2	6.66E-15	-	CHY	conserved hypothetical protein
OE3010F	0.54	1.5	0.2	1.09E-14	rhl	RRR	probable DNA repair helicase
OE3022R	0.95	1.9	0.7	4.72E-07	-	CHY	conserved hypothetical protein
OE3028R	1.03	2	0.3	1.11E-15	-	CHY	conserved hypothetical protein
OE3039F	1	2	0.7	7.32E-08	-	CHY	conserved hypothetical protein
OE3040R	1.93	3.8	1.0	9.97E-10	-	CHY	conserved hypothetical protein
OE3049R	1.47	2.8	1.2	2.57E-06	-	CHY	conserved hypothetical protein
OE3054R	1.1	2.1	0.9	2.63E-06	-	CHY	conserved hypothetical protein
OE3058F	0.42	1.3	0.4	8.99E-06	-	CHY	conserved hypothetical protein
OE3065R	0.43	1.3	0.3	6.55E-07	serA2	AA	phosphoglycerate dehydrogenase (EC 1.1.1.95)
OE3069R	1.63	3.1	1.2	4.23E-07	-	CHY	conserved hypothetical protein
OE3071F	0.48	1.4	0.4	1.18E-06	hisD	AA	histidinol dehydrogenase (EC 1.1.1.23)
OE3107F	0.54	1.5	0.4	1.50E-06	-	CHY	conserved hypothetical protein
OE3112R	1.35	2.5	0.8	1.08E-08	aaa3	MIS	AAA-type ATPase (transitional ATPase homolog)
OE3114R	1.9	3.7	0.5	2.22E-15	-	CHY	conserved hypothetical protein
OE3118F	0.78	1.7	0.6	4.01E-07	-	CHY	conserved hypothetical protein
OE3153R	0.59	1.5	0.2	9.58E-13	-	CHY	conserved hypothetical protein
OE3200R	0.86	1.8	0.5	2.22E-08	clc	ТР	chloride channel
OE3264F	1.12	2.2	0.6	6.25E-09	-	HY	hypothetical protein
OE3312R	1.14	2.2	0.9	7.04E-07	-	MIS	probable oxidoreductase (aldo-keto reductase family protein)
OE3347F	0.75	1.7	0.4	7.65E-09	htrl	SIG	transducer protein htrl
OE3356F	0.47	1.4	0.4	1.37E-06	aaa5	MIS	AAA-type ATPase (transitional ATPase homolog)
OE3372F	0.6	1.5	0.2	5.11E-15	-	HY	hypothetical protein
OE3376F	0.63	1.6	0.4	1.18E-08	crtB2	LIP	geranylgeranyl-diphosphate geranylgeranyltransferase (EC 2.5.1.32) (phytoene synthase)
OE3377R	1.04	2.1	0.3	4.80E-14	-	CHY	conserved hypothetical protein prenultransferase (probable 4-bydroxybenzoate octaprenultransferase (EC
OE3380R	0.86	1.8	0.3	7.70E-14	ubiA1	GEN	2.5.1)
OE3381R	0.43	1.3	0.2	2.12E-09	crtl1	LIP	phytoene dehydrogenase (EC 1.14.99) (phytoene desaturase)

i	i		1	i	i i	i i	
OE3384R	1.37	2.6	0.9	3.44E-08	-	CHY	conserved hypothetical protein
OE3453R	0.53	1.4	0.3	4.11E-09	-	CHY	conserved hypothetical protein chemotactic signal transduction system periplasmic substrate-binding protein
OE3476R	0.54	1.5	0.4	5.20E-07	cosB	SIG	cosB
OE3488R	0.9	1.9	0.7	5.42E-07	cre	AA	creatininase (EC 3.5.2.10)
OE3491R	0.5	1.4	0.3	1.90E-09	hsp20C	CHP	hsp20-type molecular chaperone probable phosphatase (EC 3.1.3) (homolog to phosphoglycolate
OE3492R	0.8	1.7	0.5	7.54E-08	pgp	GEN	phosphatase)
OE3495R	0.67	1.6	0.4	5.07E-09	cad	СОМ	probable 4a-hydroxytetrahydrobiopterin dehydratase (EC 4.2.1.96)
OE3513R	0.42	1.3	0.2	5.80E-10	-	CHY	conserved hypothetical protein
OE3526R	0.48	1.4	0.4	7.22E-07	-	GEN	nuclease homolog
OE3541R	0.57	1.5	0.2	2.16E-11	hsp20F	CHP	hsp20-type molecular chaperone
OE3542R	0.91	1.9	0.7	7.83E-07	-	GEN	glutamine-rich alkaline protein
OE3545F	1	2	0.8	3.44E-06	-	HY	hypothetical protein
OE3549F	0.61	1.5	0.3	4.37E-09	-	CHY	conserved hypothetical protein
OE3584R	1.49	2.8	1.2	1.88E-06	catB	GEN	homolog to mandelate racemase / homolog to muconate lactonizing enzyme
OE3585A1F	0.6	1.5	0.4	1.03E-08	-	НҮ	hypothetical protein
OE3586R	1.26	2.4	0.5	1.66E-12	-	CHY	conserved hypothetical protein chemotactic signal transduction system periplasmic substrate-binding protein
OE3612R	1.55	2.9	0.4	4.00E-15	basB	SIG	basB
OE3621F	0.52	1.4	0.2	1.83E-11	-	CHY	conserved hypothetical protein ABC-type transport system permease protein (probable substrate
OE3627R	0.7	1.6	0.4	1.10E-08	potB	TP	spermidine/putrescine)
OE3629R	0.77	1.7	0.3	1.45E-11	potS	ТР	substrate spermidine/putrescine)
OE3644F	0.55	1.5	0.4	1.15E-06	nadA	COM	quinolinate synthase (EC 4.1.99) A
OE3648F	0.41	1.3	0.2	6.63E-10	nadC	СОМ	nicotinate-nucleotide pyrophosphorylase (carboxylating) (EC 2.4.2.19)
OE3676R	1.01	2	0.8	6.11E-07	-	HY	hypothetical protein
OE3686F	1.49	2.8	0.5	9.10E-13	-	HY	hypothetical protein
OE3695F	0.59	1.5	0.4	2.17E-08	-	CHY	conserved hypothetical protein
OE3704R	0.62	1.5	0.4	1.81E-08	crcB2	GEN	crcB protein homolog
OE3706F	1.08	2.1	0.5	2.78E-11	-	CHY	conserved hypothetical protein
OE3708R	0.89	1.8	0.6	1.75E-07	trh5	REG	probable transcription regulator
OE3717F	0.57	1.5	0.4	3.12E-07	nolA	GEN	homolog to NADH dehydrogenase 32K subunit
OE3722F	0.46	1.4	0.2	1.69E-09	thiH1	СОМ	thiamine biosynthesis enzyme thiH
OE3766R	0.72	1.6	0.2	0	-	HY	hypothetical protein
OE3794F	0.5	1.4	0.1	0	-	CHY	conserved hypothetical protein
OE3808F	0.48	1.4	0.4	4.59E-06	-	MIS	probable aminopeptidase (EC 3.4.11)

				1	1	1	
OE3820R	1.17	2.2	0.8	1.06E-07	-	CHY	conserved hypothetical protein
OE3838F	0.52	1.4	0.3	3.66E-09	-	НҮ	hypothetical protein
OE3859F	0.46	1.4	0.2	1.42E-12	-	CHY	conserved hypothetical protein
OE3888F	0.49	1.4	0.3	4.57E-08	-	CHY	conserved hypothetical protein
OE3931R	0.59	1.5	0.4	2.43E-07	ilvA	AA	threonine ammonia-lyase (EC 4.3.1.19)
OE3946F	0.64	1.6	0.2	1.99E-12	-	СНҮ	conserved hypothetical protein
OE3947R	1.19	2.3	1.0	4.73E-06	-	CHY	conserved hypothetical protein
OE3960F	0.83	1.8	0.5	8.10E-08	nhaC2	ТР	antiporter (homolog to Na+/H+ antiporter)
OE3963R	1.82	3.5	0.5	2.22E-16	ribB	СОМ	3
OE3964R	1.77	3.4	0.5	1.55E-15	-	CHY	conserved hypothetical protein probable multifunctional long-chain (E)-prenyl diphosphate synthase (EC
OE4010F	0.49	1.4	0.3	3.47E-08	idsA2	LIP	2.5.1)
OE4030F	0.5	1.4	0.3	5.36E-10	-	HY	hypothetical protein
OE4118R	0.81	1.7	0.3	3.23E-13	leuS	TL	leucinetRNA ligase (EC 6.1.1.4)
OE4245R	0.46	1.4	0.4	1.02E-06	-	CHY	conserved hypothetical protein ABC-type transport system permease protein (probable substrate
OE4313F	0.74	1.7	0.4	1.60E-08	dppB3	ТР	dipeptide/oligopeptide/nickel)
OE4320R	0.51	1.4	0.4	2.34E-07	-	CHY	conserved hypothetical protein
OE4331R	0.62	1.5	0.5	4.95E-07	tnaA	AA	tryptophanase (EC 4.1.99.1)
OE4353R	0.43	1.4	0.3	2.00E-07	uvrB	RRR	excinuclease ABC subunit B
OE4398F	0.49	1.4	0.2	3.12E-11	metY	AA	synthase)
OE4399F	0.48	1.4	0.3	1.41E-07	-	GEN	probable oxidoreductase (EC 1.1.1) (4Fe-4S iron-sulfur cluster containing)
OE4412R	0.45	1.4	0.2	1.34E-11	thrC1	AA	threonine synthase (EC 4.2.3.1)
OE4414R	0.64	1.6	0.5	2.09E-06	-	CHY	conserved hypothetical protein
OE4424R	0.46	1.4	0.3	7.21E-08	rad3b	GEN	DNA repair helicase homolog
OE4429F	0.42	1.3	0.1	1.55E-15	-	CHY	conserved hypothetical protein
OE4479R	0.53	1.4	0.4	2.27E-06	pstB1	ТР	ABC-type transport system ATP-binding protein (probable substrate phosphate) ABC-type transport system periplasmic substrate-binding protein (probable
OE4485R	0.7	1.6	0.5	3.07E-07	pstS1	ТР	substrate phosphate)
OE4488F	0.94	1.9	0.4	2.75E-11	-	CHY	conserved hypothetical protein
OE4505F	0.64	1.6	0.2	3.60E-13	pheS	TL	phenylalaninetRNA ligase (EC 6.1.1.20) alpha subunit
OE4507F	0.47	1.4	0.3	4.92E-07	pheY	TL	phenylalaninetRNA ligase (EC 6.1.1.20) beta subunit
OE4524F	1.31	2.5	0.3	0	-	HY	hypothetical protein
OE4527R	0.57	1.5	0.2	1.61E-13	epf1	GEN	mRNA 3'-end processing factor homolog
OE4622F	2.63	6.2	0.6	0	-	GEN	rhodanese domain protein
OE4623F	4.11	17.3	0.6	0	-	CHY	conserved hypothetical protein

				1	1	1	
OE4630R	0.77	1.7	0.5	4.89E-08	-	GEN	probable GTP-binding protein
OE4633F	0.77	1.7	0.2	0	-	CHY	conserved hypothetical protein
OE4637R	0.45	1.4	0.3	4.50E-07	gbp4	GEN	probable GTP-binding protein
OE4644R	0.48	1.4	0.4	5.15E-07	pdxT	СОМ	pyridoxine biosynthesis protein glutaminase component
OE4649F	1.32	2.5	1.2	7.03E-06	arsB	TP	probable transport protein
OE4683F	1.08	2.1	0.5	4.15E-11	ribC	СОМ	riboflavin synthase (EC 2.5.1.9) alpha subunit
OE4685R	1.35	2.5	1.0	6.99E-07	-	CHY	conserved hypothetical protein
OE4689R	0.64	1.6	0.3	2.60E-10	-	CHY	conserved hypothetical protein
OE4693R	0.45	1.4	0.3	4.63E-08	-	CHY	conserved hypothetical protein
0E4722R	0.51	1.4	0.3	2.67E-09	hom	AA	homoserine dehydrogenase (EC 1.1.1.3)
OE4724R	0.49	1.4	0.3	1.47E-07	-	CHY	conserved hypothetical protein
OE4732F	0.56	1.5	0.5	1.81E-06	-	CHY	conserved hypothetical protein
OE4752R	0.58	1.5	0.4	3.53E-07	-	CHY	conserved hypothetical protein
OE4753R	0.4	1.3	0.2	2.23E-10	-	GEN	transcription regulator homolog
OE5027R	0.86	1.8	0.4	1.66E-10	-	ISH	transposase (ISH3)
OE5029R	1.27	2.4	0.7	3.59E-09	-	HY	hypothetical protein
OE5030R	0.68	1.6	0.6	3.21E-06	-	HY	hypothetical protein
OE5037R	1.11	2.2	1.0	6.58E-06	orc2	GEN	cell division control protein cdc6 homolog (nonfunctional
OE5049F	0.47	1.4	0.2	1.29E-09	sph2	СР	SMC-like protein sph2
OE5067R	0.55	1.5	0.1	6.66E-16	-	HY	hypothetical protein
OE5072R	1.23	2.3	1.1	9.55E-06	-	HY	hypothetical protein
OE5078F	0.95	1.9	0.6	3.13E-08	phoT2	GEN	sodium-dependent phosphate transport protein homolog
OE5081F	0.62	1.5	0.5	1.01E-06	-	CHY	conserved hypothetical protein
OE5082R	1.5	2.8	1.2	1.42E-06	aaa8	MIS	AAA-type ATPase (transitional ATPase homolog)
OE5083R	0.52	1.4	0.4	1.58E-06	hsp20E	CHP	hsp20-type molecular chaperone
OE5094F	0.57	1.5	0.4	2.33E-07	dat	MIS	biosynthesis protein)
OE5097F	0.46	1.4	0.3	2.20E-07	iucB	MIS	siderophore biosynthesis protein (malonyl-CoA decarboxylase homolog)
OE5124R	0.56	1.5	0.4	3.14E-07	gvpD2	REG	regulatory protein gvpD
OE5132F	0.42	1.3	0.3	2.01E-08	phoT3	TP	probable phosphate transport protein
OE5144R	0.54	1.5	0.4	3.55E-07	-	TP	ABC-type transport system permease protein
OE5146R	0.5	1.4	0.4	2.02E-06	-	TP	ABC-type transport system ATP-binding protein
OE5147R	0.8	1.7	0.3	6.32E-13	-	ТР	ABC-type transport system periplasmic substrate-binding protein
OE5166F	1.16	2.2	0.9	6.03E-07	ugpB	ТР	substrate glycerol-3-phosphate)
OE5204R	1.04	2.1	0.5	1.63E-10	arcD	TP	arginine/ornithine antiporter

OE5206R	1.1	2.1	0.5	6.56E-11	arcC	AA	carbamate l
OE5225R	0.49	1.4	0.3	1.15E-08	-	ISH	transposase
OE5359R	0.67	1.6	0.5	2.28E-07	-	ISH	transposase
OE5391F	0.46	1.4	0.3	7.77E-07	-	CHY	conserved h
OE5431B1R	0.56	1.5	0.2	1.82E-12	-	CHY	conserved h
OE5433F	0.64	1.6	0.4	2.61E-08	-	ISH	transposase
OE6037R	1.12	2.2	0.9	8.87E-07	orc4	GEN	cell division
OE6165R	0.71	1.6	0.4	6.12E-09	-	ISH	transposase
OE6298B1F	0.98	2	0.9	9.10E-06	-	HY	hypothetica
OE6345R	0.52	1.4	0.3	5.63E-10	-	HY	hypothetica
OE7006R	0.99	2	0.5	2.67E-10	-	ISH	transposase
OE7010R	0.4	1.3	0.2	6.92E-09	parA10	GEN	parA domai
OE7017R	0.64	1.6	0.4	6.71E-09	-	ISH	transposase
OE7033A1F	0.55	1.5	0.4	6.40E-07	-	ISH	transposase
OE7036F	0.74	1.7	0.5	1.60E-07	gvpC1	CP	gas-vesicle
OE7048F	0.52	1.4	0.2	5.18E-11	-	ISH	transposase
OE7049R	0.46	1.4	0.1	5.00E-14	-	CHY	conserved h
OE7050A1R	1.04	2.1	0.2	0	-	CHY	conserved h
OE7076R	0.67	1.6	0.5	1.84E-06	-	GEN	transcription
OE7077F	0.61	1.5	0.4	6.12E-08	-	GEN	rhodanese
OE7084F	0.95	1.9	0.6	7.42E-08	trxA1a	EM	thioredoxin
OE7085F	0.67	1.6	0.4	7.49E-08	trxB1aa	MIS	thioredoxin-
OE7136R	0.47	1.4	0.3	2.76E-09	-	HY	hypothetica
OE7159R	0.97	2	0.5	1.14E-09	-	ISH	transposase
OE7174R	1	2	0.8	4.37E-06	-	CHY	conserved h
OE7176R	1.3	2.5	1.0	1.17E-06	rad25a	RRR	RAD25-type
OE7190R	2.26	4.8	0.8	1.44E-12	-	HY	hypothetica
OE8009R	1.27	2.4	1.1	8.48E-06	-	CHY	conserved h
OE8010R	0.67	1.6	0.5	2.20E-06	rad25b	RRR	RAD25-type

arbamate kinase (EC 2.7.2.2)
ansposase (ISH3)
ansposase (ISH3)
onserved hypothetical protein
onserved hypothetical protein
ansposase (ISH3)
ell division control protein cdc6 homolog
ansposase (ISH3)
ypothetical protein (nonfunctional
ypothetical protein
ansposase (ISH7)
arA domain protein (nonfunctional
ansposase (ISH3)
ansposase (ISH3)
as-vesicle protein gvpC1
ansposase (ISH3)
onserved hypothetical protein (nonfunctional
onserved hypothetical protein (nonfunctional
anscription regulator homolog
nodanese domain protein / probable metallo-beta-lactamase family hydrolase
ioredoxin
ioredoxin-disulfide reductase (EC 1.8.1.9) (nonfunctional
ypothetical protein
ansposase (ISH7)
onserved hypothetical protein
AD25-type DNA repair helicase
ypothetical protein
onserved hypothetical protein
AD25-type DNA repair helicase

Reprimierten Gene unter Eisenmangel

ID	log2	xfach	stabw	p-Wert	Gen	Funktions- klasse	Genname
OE1019R	-2.2	-4.6	1.1	2.92E-10	-	ISH	IS1341-type transposase (TCE32)
OE1039R	-1.1	-2.2	0.5	2.15E-11	-	CHY	conserved hypothetical protein
OE1060F	-0.4	-1.4	0.3	1.30E-07	-	CHY	conserved hypothetical protein
OE1067R	-0.7	-1.6	0.5	6.70E-08	-	CHY	conserved hypothetical protein
OE1073F	-1.3	-2.5	0.5	3.30E-12	-	ISH	IS200-type transposase (ISH12)
OE1078F	-0.9	-1.9	0.5	1.87E-09	graD6	CHM	sugar nucleotidyltransferase (EC 2.7.7)
OE1081R	-0.8	-1.8	0.2	2.22E-16	gth6	GEN	probable glycosyltransferase
OE1087R	-0.6	-1.5	0.2	1.33E-15	-	ISH	transposase (ISH8)
OE1102R	-0.5	-1.4	0.2	7.55E-15	-	ISH	transposase (ISH8)
OE1110F	-0.7	-1.6	0.4	2.79E-08	-	GEN	sulfatase homolog
OE1112R	-0.5	-1.4	0.3	1.04E-08	gth5	GEN	probable glycosyltransferase
OE1113R	-0.4	-1.4	0.3	1.02E-07	galE2	CHM	nucleoside-diphosphate-sugar epimerase
OE1128F	-0.4	-1.3	0.2	1.86E-12	-	CHY	conserved hypothetical protein (nonfunctional
OE1151R	-0.7	-1.7	0.2	4.17E-14	-	CP	aminopeptidase (similar to leucyl aminopeptidase
OE1160R	-1.5	-2.8	0.6	1.14E-11	rpl10R	TL	ribosomal protein L10.eR
OE1162R	-0.8	-1.7	0.4	1.44E-09	cspD1	GEN	probable cold shock protein
OE1221F	-0.4	-1.3	0.3	1.00E-06	aup	CP	histone deacetylase
OE1236F	-0.7	-1.6	0.3	1.98E-12	-	CHY	conserved hypothetical protein
OE1294R	-1.0	-2	0.8	1.20E-06	-	TL	ribosomal protein L15.eR
OE1304F	-0.5	-1.4	0.3	3.16E-08	xthA	RRR	DNA-(apurinic or apyrimidinic site) lyase (EC 4.2.99.18)
OE1319R	-2.0	-4.1	0.7	4.12E-13	ftsZ2	MIS	cell division protein ftsZ
OE1321R	-1.9	-3.8	0.9	6.24E-11	-	CHY	conserved hypothetical protein
OE1323R	-0.7	-1.7	0.3	2.56E-12	-	CHY	conserved hypothetical protein
OE1352F	-0.5	-1.4	0.2	2.45E-10	-	HY	hypothetical protein
OE1353F	-0.5	-1.4	0.4	1.12E-06	-	HY	hypothetical protein
OE1356F	-0.5	-1.4	0.4	1.30E-07	-	CHY	conserved hypothetical protein
OE1368R	-0.7	-1.7	0.6	3.32E-06	-	CHY	conserved hypothetical protein
OE1371R	-2.4	-5.3	0.4	0	pfdB	CP	prefoldin beta subunit
OE1372R	-0.5	-1.4	0.1	4.22E-15	rpoP	TC	DNA-directed RNA polymerase (EC 2.7.7.6) subunit P
OE1373R	-1.4	-2.6	0.8	1.31E-08	rpl37aR	TL	ribosomal protein L37a.eR
OE1399R	-0.5	-1.5	0.4	2.07E-07	tfbG	тс	transcription initiation factor TFB

						1	
OE1405R	-2.4	-5.3	0.8	1.03E-13	-	CHY	conserved hypothetical protein
OE1412F	-0.4	-1.3	0.2	7.97E-10	-	CHY	conserved hypothetical protein
OE1439F	-1.0	-1.9	0.4	1.52E-12	-	ISH	IS200-type transposase (TCE31)
OE1451F	-0.7	-1.6	0.5	1.72E-06	-	GEN	homolog to S-adenosylmethionine-dependent methyltransferase
OE1475F	-0.5	-1.4	0.2	1.95E-12	-	AA	3-dehydroquinate synthase (EC 4.2.3.4) type II
OE1490R	-0.6	-1.5	0.3	1.27E-09	-	CHY	conserved hypothetical protein
OE1494R	-0.4	-1.3	0.3	1.53E-07	-	HY	hypothetical protein
OE1500R	-1.9	-3.7	1.1	1.56E-08	ppsA	CIM	pyruvate
OE1506R	-0.5	-1.4	0.2	8.83E-12	-	ISH	transposase (ISH8)
OE1537B1R	-0.5	-1.4	0.2	1.15E-09	-	CHY	conserved hypothetical protein
OE1554R	-0.5	-1.4	0.2	9.08E-11	-	CHY	conserved hypothetical protein
OE1557R	-0.5	-1.4	0.3	3.57E-07	nusG	GEN	transcription antitermination protein homolog
OE1613R	-0.9	-1.9	0.3	5.22E-14	-	MIS	probable acylaminoacyl-peptidase (EC 3.4.19.1)
OE1614F	-0.7	-1.7	0.3	7.13E-11	gth3	GEN	probable glycosyltransferase
OE1633F	-0.8	-1.7	0.2	0	-	CHY	conserved hypothetical protein
OE1637R	-1.6	-3.1	0.4	6.66E-16	rpoM1	TC	probable DNA-directed RNA polymerase (EC 2.7.7.6) subunit M1
OE1651F	-0.6	-1.5	0.2	6.72E-12	-	GEN	ribosomal protein S10 homolog
OE1657R	-0.7	-1.6	0.2	2.00E-15	-	GEN	geranylgeranyl hydrogenase homolog
OE1684F	-1.1	-2.2	0.5	8.30E-11	cysD	AA	sulfate adenylyltransferase (EC 2.7.7.4) small subunit
OE1699R	-0.6	-1.5	0.5	7.22E-06	-	GEN	oxidoreductase (geranylgeranyl hydrogenase homolog)
OE1710R	-1.2	-2.3	1.1	8.39E-06	korB	CIM	oxoglutarateferredoxin oxidoreductase (EC 1.2.7.3) beta subunit
OE1711R	-1.4	-2.7	1.2	3.19E-06	korA	CIM	oxoglutarateferredoxin oxidoreductase (EC 1.2.7.3) alpha subunit
OE1726F	-0.4	-1.4	0.3	2.11E-08	acs1	LIP	acyl-CoA synthetase (EC 6.2.1)
OE1742R	-0.9	-1.8	0.4	1.86E-10	grpE	CHP	dnaJ/dnaK ATPase stimulator grpE
OE1781F	-1.4	-2.6	0.2	0	-	GEN	ATP-binding sufC-like protein
OE1782F	-0.5	-1.4	0.4	2.70E-07	-	GEN	sufB domain protein
OE1783F	-0.5	-1.4	0.3	3.49E-10	-	GEN	sufB domain protein
OE1792F	-0.4	-1.3	0.2	1.17E-09	-	CHY	conserved hypothetical protein
OE1806R	-0.6	-1.6	0.1	0	-	TP	TRAP-type transport system periplasmic substrate-binding protein
OE1817R	-0.8	-1.8	0.4	2.35E-09	nop10	RMT	RNA modification ribonucleoprotein complex protein nop10
OE1818R	-0.7	-1.6	0.4	2.67E-08	aif2a	TL	translation initiation factor aIF-2 alpha subunit
OE1821R	-1.8	-3.4	0.2	0	rpl36aR	TL	ribosomal protein L36a.eR (HLA)
OE1840R	-1.0	-2	0.2	0	apt1	NUM	purine phosphoribosyltransferase (adenine phosphoribosyltransferase (EC 2.4.2.7)
OE1866F	-1.5	-2.8	0.4	1.11E-15	-	CHY	conserved hypothetical protein
OE1867R	-0.7	-1.6	0.6	2.47E-06	-	CHY	conserved hypothetical protein

1	1	1	1	1	1	1	1
OE1876R	-0.6	-1.5	0.2	1.10E-11	petA	EM	cytochrome bc1 complex (EC 1.10.2) Rieske iron-sulfur protein
OE1890R	-0.9	-1.9	0.3	6.82E-14	nthA2	RRR	DNA-(apurinic or apyrimidinic site) lyase (EC 4.2.99.18) endonuclease III
OE1893F	-0.6	-1.6	0.3	1.80E-11	mvd	LIP	diphosphomevalonate decarboxylase (EC 4.1.1.33)
OE1903F	-0.6	-1.5	0.3	1.07E-09	-	GEN	glycine-rich protein
OE1943F	-2.0	-4.1	0.5	2.22E-16	gdhA1	AA	glutamate dehydrogenase (NADP+) (EC 1.4.1.4)
OE1944R	-0.4	-1.3	0.2	7.78E-09	aspB2	AA	aminotransferase (EC 2.6.1.1))
OE1946R	-0.4	-1.3	0.1	8.26E-14	ribE	COM	riboflavin synthase (EC 2.5.1.9) beta subunit (6
OE1954F	-0.5	-1.5	0.4	7.34E-07	nuoB	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit B
OE1956F	-0.7	-1.6	0.5	4.03E-07	nuoCD	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit CD
OE1958F	-1.0	-1.9	0.3	6.66E-16	nuol	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit I
OE1959F	-0.5	-1.4	0.4	9.38E-07	nuoJ1	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit J1
OE1960F	-0.7	-1.6	0.3	1.33E-10	nuoJ2	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit J2
OE1964F	-0.5	-1.5	0.3	2.21E-09	nuoL	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit L
OE1981R	-1.3	-2.5	0.3	0	-	CHY	conserved hypothetical protein
OE1982R	-0.6	-1.5	0.2	1.12E-12	-	CHY	conserved hypothetical protein
OE2015R	-0.6	-1.6	0.4	1.47E-07	hbd1	LIP	3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35)
OE2020F	-0.6	-1.5	0.3	1.06E-08	fbp	CIM	fructose-bisphosphatase (EC 3.1.3.11)
OE2041R	-0.4	-1.3	0.3	2.40E-07	-	CHY	conserved hypothetical protein
OE2071R	-0.5	-1.4	0.2	4.78E-12	-	GEN	transcription regulator homolog
OE2094F	-0.6	-1.5	0.1	0	-	HY	hypothetical protein
OE2097F	-0.7	-1.6	0.3	1.43E-10	-	GEN	upsA domain protein
OE2130F	-0.6	-1.5	0.2	2.55E-12	-	CHY	conserved hypothetical protein
OE2133R	-1.4	-2.6	1.0	1.80E-07	aldH2	GEN	aldehyde dehydrogenase (EC 1.2.1)
OE2149R	-0.5	-1.4	0.3	1.54E-08	-	CHY	conserved hypothetical protein
OE2159R	-1.3	-2.5	1.0	1.33E-06	rps3aR	TL	ribosomal protein S3a.eR
OE2165R	-1.2	-2.3	1.0	5.11E-06	rps15	TL	ribosomal protein S15
OE2194R	-0.5	-1.4	0.4	3.76E-06	-	HY	hypothetical protein
OE2267F	-0.9	-1.9	0.4	1.99E-11	rpoL	TC	DNA-directed RNA polymerase (EC 2.7.7.6) subunit L
OE2273F	-0.4	-1.3	0.3	2.41E-08	-	CHY	conserved hypothetical protein
OE2294R	-0.9	-1.9	0.4	1.29E-10	-	CHY	conserved hypothetical protein
OE2296F	-0.7	-1.7	0.4	1.50E-09	psmB	CP	proteasome (EC 3.4.25.1) beta subunit
OE2306F	-0.8	-1.7	0.3	1.62E-12	-	CHY	conserved hypothetical protein
OE2421R	-0.9	-1.8	0.3	2.16E-13	-	CHY	conserved hypothetical protein
OE2444F	-1.1	-2.1	0.5	1.02E-10	-	HY	hypothetical protein

OE2458R	-0.4	-1.3	0.2	7.36E-10	guaB	NUM	IMP dehydrogenase (EC 1.1.1.205)
OE2512R	-0.6	-1.5	0.4	3.26E-08	hpcE	MIS	probable 2-hydroxyhepta-2
OE2547R	-0.7	-1.6	0.3	1.28E-11	gtl2	GEN	probable glycosyltransferase
OE2548F	-0.4	-1.3	0.3	9.65E-09	stt3	MIS	oligosaccharyl transferase
OE2554R	-0.5	-1.4	0.3	1.86E-07	-	CHY	conserved hypothetical protein
OE2569R	-0.6	-1.6	0.2	2.59E-13	-	GEN	1.8.2.1))
OE2594F	-1.0	-2.1	0.4	8.02E-13	cysS	TL	cysteinetRNA ligase (EC 6.1.1.16)
OE2595F	-0.4	-1.4	0.1	6.66E-16	-	CHY	conserved hypothetical protein
OE2600R	-1.4	-2.6	0.7	6.45E-10	rpl12	TL	ribosomal protein L12
OE2603R	-1.6	-3.1	0.3	0	rpl11	TL	ribosomal protein L11
OE2605R	-0.7	-1.6	0.2	6.73E-14	-	CHY	conserved hypothetical protein
OE2623R	-0.4	-1.3	0.3	2.49E-06	porA	CIM	pyruvateferredoxin oxidoreductase (EC 1.2.7.1) alpha subunit
OE2662F	-1.7	-3.2	0.9	1.54E-09	rpl7aR	TL	ribosomal protein L7a.eR/HS6
OE2664F	-1.4	-2.6	1.1	3.78E-06	rps28R	TL	ribosomal protein S28.eR
OE2678R	-0.5	-1.4	0.3	1.42E-08	rpoF	тс	DNA-directed RNA polymerase (EC 2.7.7.6) subunit F
OE2679R	-0.8	-1.8	0.4	2.63E-11	rpl21R	TL	ribosomal protein L21.eR
OE2683R	-0.6	-1.5	0.2	3.70E-12	aef1b	TL	translation elongation factor aEF-1 beta subunit
OE2704F	-0.7	-1.6	0.5	2.41E-07	hcpD	EM	halocyanin hcpD
OE2706R	-0.4	-1.4	0.2	2.99E-10	-	HY	hypothetical protein
OE2708R	-2.1	-4.3	0.6	4.00E-15	sod1	MIS	superoxide dismutase (EC 1.15.1.1) 1 (Mn containing)
OE2716R	-0.6	-1.6	0.3	4.71E-10	-	HY	hypothetical protein
OE2728R	-1.1	-2.1	0.8	1.20E-06	gdhA2	AA	glutamate dehydrogenase (EC 1.4.1)
OE2779F	-1.1	-2.2	0.9	7.34E-07	pheP	TP	amino acid transport protein (probable phenylalanine transport protein)
OE2780F	-1.2	-2.2	0.8	2.43E-07	-	HY	hypothetical protein
OE2784R	-0.4	-1.3	0.3	3.31E-07	pheA1	AA	chorismate mutase (EC 5.4.99.5)
OE2808F	-1.2	-2.3	0.8	4.08E-08	-	CHY	conserved hypothetical protein
OE2809R	-0.7	-1.6	0.4	1.07E-07	aif2b	TL	translation initiation factor aIF-2 beta subunit
OE2811F	-2.6	-6.2	0.5	0	-	CHY	conserved hypothetical protein
OE2847R	-1.6	-3	0.6	6.01E-12	-	CHY	conserved hypothetical protein
OE2853R	-1.3	-2.5	1.0	1.55E-06	mtfK2	MIS	FKBP-type peptidylprolyl isomerase (EC 5.2.1.8)
OE2867R	-0.7	-1.6	0.2	1.29E-13	sdhD	CIM	succinate dehydrogenase (EC 1.3.99.1) subunit D (membrane anchor protein)
OE2868R	-0.5	-1.4	0.4	4.17E-07	sdhC	CIM	succinate dehydrogenase (EC 1.3.99.1) subunit C (cytochrome b-556)
OE2871F	-0.6	-1.5	0.5	6.76E-06	hbd2	LIP	4.2.1.17)
OE2906R	-2.0	-3.9	0.5	2.22E-16	sod2	MIS	superoxide dismutase (EC 1.15.1.1) 2

OE2908R	-0.4	-1.3	0.3	1.42E-06	-	CHY	conserved hypothetical protein
OE2935R	-0.7	-1.6	0.4	1.41E-08	fumC	CIM	fumarate hydratase (EC 4.2.1.2)
OE3030R	-0.9	-1.9	0.3	1.63E-13	-	CHY	conserved hypothetical protein
OE3062F	-1.4	-2.6	0.3	0	rps17R	TL	ribosomal protein S17.eR
OE3125R	-0.6	-1.5	0.4	3.74E-08	-	CHY	conserved hypothetical protein
OE3136F	-1.8	-3.6	0.5	2.22E-16	-	CHY	conserved hypothetical protein
OE3141R	-1.1	-2.1	0.2	0	rpl37R	TL	ribosomal protein L37.eR
OE3142R	-1.7	-3.3	0.3	0	snp	GEN	small nuclear ribonucleoprotein homolog
OE3155R	-0.6	-1.5	0.1	0	-	CHY	conserved hypothetical protein
OE3177F	-0.6	-1.5	0.2	3.77E-15	pccA2	LIP	propionyl-CoA carboxylase (EC 6.4.1.3) biotin carboxylase component
OE3195F	-1.2	-2.4	0.5	7.70E-13	sucB	CIM	succinateCoA ligase (ADP-forming) (EC 6.2.1.5) beta subunit
OE3196F	-0.4	-1.4	0.2	2.25E-11	sucA	CIM	succinateCoA ligase (ADP-forming) (EC 6.2.1.5) alpha subunit
OE3207F	-1.2	-2.3	0.9	2.85E-07	cbiT	COM	precorrin-8W decarboxylase (EC 1)
OE3213F	-0.7	-1.7	0.7	7.21E-06	cbiG	COM	cobalamin biosynthesis protein cbiG
OE3216F	-1.8	-3.4	0.4	0	cbiH2	COM	precorrin-3B C17-methyltransferase (EC 2.1.1.131) 2
OE3221F	-1.0	-2	0.7	4.73E-08	cbiX	COM	cobalt chelatase (EC 4.99.1)
OE3224F	-1.5	-2.8	0.7	1.57E-10	-	GEN	conserved cobalamin operon protein
OE3227F	-0.5	-1.4	0.1	0	cobT2	GEN	phosphoribosyltransferase
OE3262R	-0.7	-1.6	0.2	3.19E-13	-	CHY	conserved hypothetical protein
OE3268F	-1.4	-2.6	0.2	0	-	CHY	conserved hypothetical protein
OE3277R	-0.7	-1.6	0.3	8.43E-13	gcvH	AA	glycine cleavage system protein H
OE3278R	-0.8	-1.7	0.2	0	gcvT	AA	aminomethyltransferase (EC 2.1.2.10) (glycine cleavage system protein T)
OE3284R	-0.5	-1.5	0.4	2.60E-07	-	CHY	conserved hypothetical protein
OE3292F	-0.6	-1.5	0.4	3.24E-07	-	CHY	conserved hypothetical protein
OE3304R	-0.6	-1.5	0.3	1.78E-09	-	CHY	conserved hypothetical protein
OE3305F	-0.4	-1.3	0.3	1.55E-06	rfcB	RRR	replication factor C large subunit
OE3318R	-1.3	-2.5	0.4	9.28E-14	cbiN	TP	ABC-type transport system protein cbiN (probable substrate cobalt)
OE3319R	-0.9	-1.9	0.4	8.96E-12	cbiM	COM	cbiM protein
OE3322F	-0.5	-1.4	0.2	8.17E-14	-	CHY	conserved hypothetical protein
OE3328R	-0.6	-1.6	0.3	1.63E-09	nrdA2	NUM	ribonucleoside-diphosphate reductase (EC 1.17.4.1) alpha subunit
OE3357R	-1.6	-3	0.3	0	rps8R	TL	ribosomal protein S8.eR
OE3386F	-1.2	-2.3	0.7	3.01E-09	-	CHY	conserved hypothetical protein
OE3407F	-2.2	-4.7	1.7	7.71E-07	rpl5	TL	ribosomal protein L5
OE3408F	-1.3	-2.4	1.0	8.82E-07	rps14	TL	ribosomal protein S14
OE3412F	-1.0	-2	0.7	5.89E-07	rpl32R	TL	ribosomal protein L32.eR
---------	------	------	-----	----------	--------	-----	---
OE3413F	-1.4	-2.7	1.0	5.09E-07	rpl19R	TL	ribosomal protein L19.eR
OE3414F	-1.1	-2.1	0.8	3.57E-07	rpl18	TL	ribosomal protein L18
OE3416F	-1.5	-2.8	1.3	6.61E-06	rpl30	TL	ribosomal protein L30
OE3425F	-1.0	-2	0.4	3.37E-12	adk	NUM	adenylate kinase (EC 2.7.4.3)
OE3427F	-0.6	-1.5	0.5	2.15E-06	-	CHY	conserved hypothetical protein
OE3470F	-0.6	-1.6	0.1	0	aif1a2	TL	translation initiation factor aIF-1A
OE3486R	-0.7	-1.6	0.4	4.02E-10	speB	AA	agmatinase (EC 3.5.3.11)
OE3487R	-1.4	-2.6	0.4	1.24E-14	aif5a	TL	translation initiation factor aIF-5A
OE3524F	-1.0	-2	0.4	1.24E-11	pdxS	COM	pyridoxine biosynthesis protein pyridoxal 5'-phosphate synthesis component
OE3544F	-1.1	-2.1	0.9	1.86E-06	-	MIS	probable ferredoxin-NAD+ reductase (EC 1.18.1.3)
OE3556R	-1.4	-2.7	0.9	1.58E-08	carA	AA	carbamoyl-phosphate synthase (glutamine-hydrolyzing) (EC 6.3.5.5) small subunit
OE3560F	-0.6	-1.5	0.6	9.12E-06	idiA	LIP	isopentenyl-diphosphate delta-isomerase (EC 5.3.3.2)
OE3562R	-0.7	-1.7	0.3	9.40E-11	-	CHY	conserved hypothetical protein
OE3572R	-0.9	-1.8	0.2	4.44E-16	pyrG	NUM	CTP synthase (EC 6.3.4.2)
OE3623R	-0.6	-1.5	0.3	7.27E-11	map	MIS	methionyl aminopeptidase (EC 3.4.11.18)
OE3634F	-2.0	-4	0.4	0	icd	CIM	isocitrate dehydrogenase (NADP+) (EC 1.1.1.42)
OE3668F	-0.7	-1.7	0.4	1.34E-09	-	GEN	upsA domain protein
OE3691F	-0.6	-1.5	0.2	3.13E-13	trpD2	MIS	probable anthranilate phosphoribosyltransferase (EC 2.4.2.18)
OE3714F	-0.9	-1.8	0.7	2.27E-06	-	CHY	conserved hypothetical protein
OE3719F	-0.5	-1.4	0.3	2.09E-08	-	CHY	conserved hypothetical protein
OE3728R	-0.5	-1.4	0.2	2.86E-14	-	CHY	conserved hypothetical protein
OE3740R	-0.6	-1.6	0.3	2.83E-09	sub	MIS	subtilisin-like serine proteinase (EC 3.4.21)
OE3746R	-0.4	-1.4	0.3	1.65E-08	-	GEN	phage PhiH1 repressor protein homolog
OE3747F	-0.8	-1.8	0.5	7.30E-09	-	HY	hypothetical protein
OE3752R	-0.4	-1.3	0.3	2.20E-07	nudF2	GEN	nudix family protein
OE3759R	-0.5	-1.4	0.5	8.17E-06	-	CHY	conserved hypothetical protein
OE3762R	-1.0	-2	0.7	2.11E-07	glpK	CIM	glycerol kinase (EC 2.7.1.30)
OE3787R	-0.8	-1.7	0.5	1.82E-08	secF	SEC	preprotein translocase subunit secF
OE3796R	-1.1	-2.1	0.6	3.69E-09	-	CHY	conserved hypothetical protein
OE3798R	-1.4	-2.7	0.7	7.64E-10	-	CHY	conserved hypothetical protein
OE3817R	-1.3	-2.4	0.2	0	rps19R	TL	ribosomal protein S19.eR
OE3823F	-0.7	-1.7	0.6	1.20E-06	pyrH	NUM	uridylate kinase (EC 2.7.4)
OE3832F	-0.5	-1.5	0.5	3.61E-06	-	CHY	conserved hypothetical protein
OE3864R	-1.0	-2	0.2	0	-	CHY	conserved hypothetical protein

OE3868R	-0.7	-1 7	0.3	1 94F-10	rns27aR	ті	ribosomal protein S27a eB
OE3869R	-0.7	-1 7	0.3	3.39E-11	rns24R	TI	ribosomal protein S24 eR
OE3876R	-1.4	-27	0.7	5.20E-10	aif?c	TI	translation initiation factor aIE-2 gamma subunit
OE3893F	-0.4	-1.3	0.3	4.36F-07	serS	TI	serinetRNA ligase (FC 6 1 1 11)
OE3898E	-0.6	-1.5	0.0	0	rpl40R	TI	ribosomal protein I 40 eR
	0.0						ABC-type transport system ATP-binding protein (probable substrate
OE3908R	-1.0	-2	0.6	4.56E-08	phnC	TP	phosphate/phosphonate) ABC-type transport system periplasmic substrate-binding protein (probable
OE3910R	-1.3	-2.4	0.6	7.11E-11	phnD	TP	substrate phosphate/phosphonate)
OE3925R	-0.5	-1.5	0.4	2.05E-06	ths2	CHP	thermosome subunit 2
OE3930R	-0.7	-1.7	0.1	0	-	MIS	ribonuclease
OE3934R	-1.0	-2.1	0.3	9.33E-15	citZ	CIM	citrate (si)-synthase (EC 2.3.3.1)
OE3937R	-0.5	-1.4	0.3	1.35E-07	-	HY	hypothetical protein
OE3951R	-0.7	-1.6	0.3	1.04E-12	apt2	NUM	purine phosphoribosyltransferase (adenine phosphoribosyltransferase (EC 2.4.2.7)
OE3953R	-1.1	-2.1	0.5	9.11E-11	pyrE2	NUM	orotate phosphoribosyltransferase (EC 2.4.2.10)
OE3959R	-1.7	-3.2	0.4	2.22E-16	ilvE2	AA	branched-chain-amino-acid aminotransferase (EC 2.6.1.42)
OE3978R	-0.9	-1.9	0.2	2.22E-16	atpD	EM	A-type ATP synthase (EC 3.6.3.14) subunit D
OE3980R	-0.5	-1.5	0.4	7.05E-07	blh	GEN	brp-like protein
OE3984R	-1.4	-2.6	0.6	9.70E-12	atpB	EM	A-type ATP synthase (EC 3.6.3.14) subunit B
OE3985R	-1.7	-3.2	0.7	2.64E-11	atpA	EM	A-type ATP synthase (EC 3.6.3.14) subunit A
OE3986R	-2.1	-4.4	0.8	2.91E-12	atpF	EM	A-type ATP synthase (EC 3.6.3.14) subunit F
OE3987R	-1.5	-2.8	0.6	7.44E-12	atpC	EM	A-type ATP synthase (EC 3.6.3.14) subunit C
OE3989R	-3.0	-8.1	1.0	1.16E-13	atpK	EM	A-type ATP synthase (EC 3.6.3.14) subunit K
OE3991R	-1.1	-2.1	0.8	1.18E-06	atpl	EM	A-type ATP synthase (EC 3.6.3.14) subunit I
OE3992R	-2.2	-4.6	0.9	1.86E-11	atpH	EM	A-type ATP synthase (EC 3.6.3.14) subunit H
OE3994F	-1.0	-2	0.1	0	-	GEN	S-adenosylmethionine-dependent methyltransferase (EC 2.1.1)
OE4002F	-0.4	-1.3	0.4	6.03E-06	-	CHY	conserved hypothetical protein
OE4018F	-0.7	-1.6	0.1	0	-	CHY	conserved hypothetical protein
OE4023F	-1.0	-2	0.9	6.24E-06	-	CHY	conserved hypothetical protein
OE4039F	-0.4	-1.3	0.2	2.34E-12	-	CHY	conserved hypothetical protein
OE4047R	-0.4	-1.3	0.3	3.60E-08	-	GEN	phage PhiH1 repressor protein homolog
OE4068F	-0.6	-1.6	0.5	2.89E-07	ileS	TL	isoleucinetRNA ligase (EC 6.1.1.5)
OE4085R	-0.6	-1.5	0.4	8.05E-07	prsA	CIM	ribose-phosphate pyrophosphokinase (EC 2.7.6.1)
OE4101R	-0.8	-1.7	0.3	8.93E-13	trpS1	TL	tryptophantRNA ligase (EC 6.1.1.2)
OE4111F	-0.9	-1.9	0.4	2.59E-11	lip	COM	lipoic acid synthase (EC 2.8.1)
OE4113F	-1.0	-2.1	0.5	5.27E-11	oxdhA1	AA	probable branched-chain amino acid dehydrogenase (EC 1.2.4) E1 component alpha subunit

OE4122R	-0.7	-1.7	0.5	2 73E-07	that		
				2.750-07	unsi	CHP	thermosome subunit 1
OE4165R	-1.1	-2.2	0.7	7.28E-09	pcn	RRR	DNA-directed DNA polymerase sliding clamp
OE4181R	-0.4	-1.3	0.2	7.84E-10	tatC2	SEC	sec-independent protein translocase component tatC2
OE4182F	-0.9	-1.9	0.5	6.45E-10	tatC1	SEC	sec-independent protein translocase component tatC1
OE4187R	-1.9	-3.8	0.4	0	-	GEN	probable DNA-binding protein
OE4195F	-0.6	-1.5	0.3	7.14E-10	rfcA	RRR	replication factor C small subunit
OE4197F	-1.1	-2.2	0.6	4.31E-09	-	CHY	conserved hypothetical protein
OE4198F	-0.5	-1.4	0.4	1.32E-06	alaS	TL	alaninetRNA ligase (EC 6.1.1.7)
OE4201R	-1.1	-2.2	0.4	2.46E-13	flaK	MOT	preflagellin peptidase
OE4217R	-2.5	-5.7	0.4	0	fdx	EM	ferredoxin (2Fe-2S)
OE4223R	-0.7	-1.6	0.3	2.33E-11	-	CHY	conserved hypothetical protein
OE4230F	-0.6	-1.5	0.5	3.06E-06	yuxL	MIS	probable acylaminoacyl-peptidase (EC 3.4.19.1)
OE4231R	-0.5	-1.4	0.3	1.29E-07	-	HY	hypothetical protein
OE4260R	-0.8	-1.8	0.2	0	-	MIS	probable N-acetyltransferase (EC 2.3.1)
OE4292F	-0.9	-1.8	0.2	1.11E-15	-	CHY	conserved hypothetical protein
OE4296F	-0.9	-1.8	0.2	2.22E-16	-	HY	hypothetical protein
OE4300R	-0.6	-1.5	0.4	2.99E-07	-	CHY	conserved hypothetical protein
OE4301R	-1.2	-2.3	0.4	3.07E-13	dppF1	TP	dipeptide/oligopeptide/nickel)
OE4302D	1 3	25	0.5	3 60E 13	dopD1	тр	ABC-type transport system ATP-binding protein (probable substrate
0L4302K	-1.5	-2.5	0.5	5.00L-15	иррыт	IF	ABC-type transport system permease protein (probable substrate
OE4303R	-1.3	-2.4	0.3	2.22E-16	dppC1	TP	dipeptide/oligopeptide/nickel) ABC-type transport system permease protein (probable substrate
OE4304R	-1.2	-2.2	0.7	1.03E-08	dppB1	TP	dipeptide/oligopeptide/nickel)
OE4323F	-1.6	-3.1	0.6	4.49E-13	mdhA	CIM	malate dehydrogenase (EC 1.1.1.37)
OE4336R	-0.6	-1.5	0.2	9.52E-12	nosY	TP	ABC-type transport system permease protein (probable substrate copper)
OE4341R	-0.6	-1.5	0.3	1.03E-09	-	CHY	conserved hypothetical protein
OE4347F	-0.6	-1.6	0.2	6.66E-16	-	HY	hypothetical protein
OE4357F	-1.0	-2	0.5	8.06E-11	-	TP	substrate thiamine)
OE4365F	-1.5	-2.8	0.4	0	-	CHY	conserved hypothetical protein
OE4367R	-0.7	-1.6	0.3	9.43E-11	-	CHY	conserved hypothetical protein
OE4369R	-1.3	-2.4	0.3	0	-	HY	hypothetical protein
OE4388R	-0.5	-1.5	0.2	1.04E-11	sec11	SEC	probable signal peptidase (EC 3.4.99)
0E4454R	-0.5	-1.5	0.4	7.09E-08	ftsY	SEC	signal recognition particle receptor SRalpha
OE4458R	-0.6	-1.6	0.3	4.54E-11	aif6	TL	ribosome anti-association protein (initiation factor aIF6)
OE4459R	-2.2	-4.7	0.9	3.59E-12	rpl31R	TL	ribosomal protein L31.eR

1			1	1	1	1	
OE4460R	-1.1	-2.1	0.3	7.62E-14	rpl39R	TL	ribosomal protein L39.eR
OE4496R	-0.6	-1.6	0.4	1.11E-08	fer4	EM	ferredoxin (3Fe-4S)(4Fe-4S)
OE4500R	-1.1	-2.2	0.3	0	acd6	LIP	acyl-CoA dehydrogenase (EC 1.3.99.3)
OE4509F	-1.1	-2.1	0.4	1.41E-11	-	MIS	nonhistone chromosomal protein
OE4532F	-1.0	-2 1 3	0.7	3.28E-07	rps6R	TL TP	ribosomal protein S6.eR ABC-type transport system periplasmic substrate-binding protein (probable
0E4562P	-0.4	-1.5	0.5	3.01E.00	optR	COM	subsitiate dipeptide/digopeptide/lickel)
OE4562E	-0.9	-1.5	0.0	3.01L-03	entb		economical hypothetical protain
	-2.2	-4.7	0.0	3.30E-13	-		
	-1.2	-2.3	0.0	2.44E-10	-		
OE4583F	-0.7	-1.6	0.6	4.89E-06	ter5	EM	rerredoxin (2Fe-2S)
OE4610R	-0.5	-1.5	0.1	2.22E-16	dcd2	NUM	probable dCTP deaminase (EC 3.5.4.13)
OE4646R	-1.9	-3.6	0.4	0	secG	SEC	preprotein translocase subunit secG
OE4663F	-0.5	-1.4	0.3	1.64E-10	-	CHY	conserved hypothetical protein
OE4667R	-0.7	-1.6	0.3	9.84E-11	-	TP	ABC-type transport system ATP-binding protein
OE4670F	-1.4	-2.7	0.8	1.12E-08	-	CHY	conserved hypothetical protein
OE4707R	-0.4	-1.3	0.2	4.71E-11	-	CHY	conserved hypothetical protein
OE4712F	-0.6	-1.6	0.5	1.82E-06	-	CHY	conserved hypothetical protein
OE4720R	-1.9	-3.7	0.8	1.91E-11	rps10	TL	ribosomal protein S10
OE4721R	-2.6	-6.2	0.3	0	aef1a	TL	translation elongation factor aEF-1 alpha subunit
OE4729R	-1.6	-2.9	0.8	6.80E-10	aef2	TL	translation elongation factor aEF-2
OE4735R	-0.9	-1.9	0.7	7.46E-07	rps7	TL	ribosomal protein S7
OE4736R	-1.3	-2.4	0.4	1.38E-14	rps12	TL	ribosomal protein S12
OE4740R	-0.7	-1.6	0.1	0	rpoA1	тс	DNA-directed RNA polymerase (EC 2.7.7.6) subunit A' (subunit A)
0E4741R	-0.6	-1.5	0.3	1.28E-09	rpoB1	тс	DNA-directed RNA polymerase (EC 2.7.7.6) subunit B'
0E4742R	-0.5	-1.4	0.4	5.07E-06	rpoB2	тс	DNA-directed RNA polymerase (EC 2.7.7.6) subunit B"
OE4743R	-0.6	-1.5	0.3	2.92E-10	rpoH	тс	DNA-directed RNA polymerase (EC 2.7.7.6) subunit H
OE4748F	-0.5	-1.5	0.3	4.49E-09	-	CHY	conserved hypothetical protein
OE5015F	-0.8	-1.8	0.3	5.24E-14	-	ISH	transposase (ISH8)
OE5062R	-1.1	-2.1	0.6	6.29E-10	-	ISH	IS1341-type transposase (TCE31)
OE5063R	-1.1	-2.1	0.2	0	-	ISH	IS200-type transposase (TCE31)
OE5104R	-0.6	-1.5	0.3	6.16E-11	-	ISH	IS200-type transposase (ISH12) (nonfunctional
OE5106F	-0.7	-1.6	0.3	2.36E-12	trkA7	GEN	trkA domain protein
OE5162D1F	-2.0	-3.9	0.3	0	-	CHY	conserved hypothetical protein
OE5186R	-0.6	-1.5	0.1	0	perA	MIS	catalase (EC 1.11.1.6) (including: peroxidase (EC 1.11.1.7))

OE5201F	-2.1	-4.2	0.7	1.98E-13	pyrB	NUM	aspartate carbamoyltransferase (EC 2.1.3.2) catalytic subunit
OE5202F	-2.4	-5.1	0.7	9.77E-15	pyrl	NUM	aspartate carbamoyltransferase (EC 2.1.3.2) regulatory subunit
OE5203F	-0.4	-1.4	0.2	1.69E-09	argS	TL	argininetRNA ligase (EC 6.1.1.19)
OE5205R	-0.4	-1.4	0.3	2.43E-08	arcB	AA	ornithine carbamoyltransferase (EC 2.1.3.3)
OE5211F	-0.5	-1.4	0.3	5.91E-08	-	CHY	conserved hypothetical protein
OE5276F	-0.5	-1.5	0.2	1.60E-14	-	CHY	conserved hypothetical protein
OE5291F	-0.8	-1.7	0.3	4.35E-13	-	HY	hypothetical protein
OE5340R	-0.7	-1.6	0.2	0	-	ISH	transposase (ISH8) (nonfunctional
OE5407F	-0.6	-1.5	0.3	7.63E-11	-	ISH	transposase (ISH8)
OE5408A1F	-0.7	-1.7	0.6	9.78E-07	-	CHY	conserved hypothetical protein
OE5448F	-0.7	-1.7	0.2	1.11E-15	-	ISH	IS1341-type transposase (TCE32) (nonfunctional, C-terminal part)
OE6001R	-0.6	-1.5	0.2	1.78E-15	-	ISH	transposase (ISH8)
OE6021F	-0.4	-1.3	0.2	7.61E-11	-	HY	hypothetical protein
OE6034F	-0.5	-1.5	0.1	0	-	ISH	IS1341-type transposase (TCE32)
OE6074R	-0.7	-1.6	0.5	3.19E-07	-	HY	hypothetical protein
OE6075R	-0.4	-1.3	0.3	9.78E-08	-	ISH	transposase (ISH8)
OE6099F	-0.4	-1.4	0.2	5.61E-12	-	HY	hypothetical protein
OE6156F	-0.4	-1.3	0.3	2.96E-07	-	CHY	conserved hypothetical protein
OE6296R	-0.6	-1.5	0.2	1.20E-13	-	ISH	transposase (ISH8)
OE7014F	-0.5	-1.4	0.3	4.37E-08	repH	RRR	plasmid replication protein repH
OE7019F	-0.7	-1.6	0.2	2.10E-13	-	ISH	transposase (ISH8)
OE7042R	-0.4	-1.3	0.2	3.50E-10	-	SIG	probable signal-transducing histidine kinase / response regulator
OE7046R	-0.7	-1.6	0.2	0	-	ISH	transposase (ISH8)
OE7056A1R	-2.7	-6.6	0.2	0	-	CHY	conserved hypothetical protein
OE7057F	-0.6	-1.6	0.4	1.11E-07	-	CHY	conserved hypothetical protein
OE7093R	-0.5	-1.4	0.2	6.95E-12	idiB1	LIP	isopentenyl-diphosphate delta-isomerase (EC 5.3.3.2)
OE7100R	-0.5	-1.4	0.3	8.22E-09	parA6a	GEN	parA domain protein
OE7101R	-0.4	-1.4	0.1	6.66E-16	-	CHY	conserved hypothetical protein
OE7104R	-0.6	-1.6	0.2	2.10E-13	-	CHY	conserved hypothetical protein
OE7110R	-1.2	-2.2	0.2	0	-	CHY	conserved hypothetical protein (nonfunctional
OE7116B1R	-0.6	-1.5	0.4	2.32E-08	-	CHY	conserved hypothetical protein
0E7131R	-0.4	-1.3	0.2	2.45E-09	-	CHY	conserved hypothetical protein
OE7147F	-1.0	-2	0.1	0	-	ISH	transposase (ISH8)
OE7162R	-0.5	-1.4	0.2	2.12E-10	parA8	GEN	parA domain protein
OE7198F	-1.0	-2	0.3	1.78E-15	-	ISH	transposase (ISH8)

Induzierten Gene in Δlrp

ID	log2	xfach	stabw	p-Wert	Gen	Funktionsklasse	Genname
OE1014R	0.9	1.9	0.1	9.61E-14	graD5	CHM	sugar nucleotidyltransferase (EC 2.7.7)
OE1059R	1.3	2.5	0.2	3.42E-14	-	CHY	conserved hypothetical protein (nonfunctional)
OE1060F	0.4	1.3	0.3	1.76E-05	-	CHY	conserved hypothetical protein
OE1116F	0.5	1.4	0.2	1.32E-08	-	CHY	conserved hypothetical protein
OE1151R	0.5	1.4	0.2	1.30E-08	-	CP	aminopeptidase (similar to leucyl aminopeptidase
OE1164R	1	2	0.3	1.71E-09	-	GEN	phosphatase homolog
OE1165R	1	2	0.2	1.06E-10	serA3	AA	phosphoglycerate dehydrogenase (EC 1.1.1.95)
OE1188F	0.8	1.7	0.1	9.46E-13	-	CHY	conserved hypothetical protein
OE1205R	0.6	1.5	0.1	5.59E-12	-	CHY	conserved hypothetical protein
OE1211F	0.6	1.5	0.3	2.72E-06	htpX	GEN	ste24-type metalloprotease (EC 3.4.24)
OE1254R	0.9	1.9	0.1	1.65E-13	-	CHY	conserved hypothetical protein
OE1259R	0.8	1.7	0.1	8.24E-14	-	CHY	conserved hypothetical protein
OE1260R	0.9	1.8	0.1	2.46E-12	merA	MIS	dihydrolipoamide dehydrogenase homolog)
OE1299R	0.5	1.4	0.1	1.28E-10	hop	TP	halorhodopsin
OE1362R	0.7	1.6	0.3	1.68E-07	-	CHY	conserved hypothetical protein
OE1368R	0.7	1.7	0.1	1.57E-11	-	CHY	conserved hypothetical protein
OE1371R	0.7	1.6	0.1	7.58E-13	pfdB	CP	prefoldin beta subunit
OE1405R	1	2	0.3	4.66E-10	-	CHY	conserved hypothetical protein
OE1410F	0.9	1.8	0.3	2.01E-08	-	CHY	conserved hypothetical protein
OE1414R	1	2	0.2	4.60E-12	ftsZ4	MIS	cell division protein ftsZ
OE1425F	0.7	1.6	0.1	1.77E-12	-	GEN	nudix family protein
OE1435R	0.7	1.7	0.3	2.38E-08	-	CHY	conserved hypothetical protein
OE1461R	0.6	1.5	0.2	6.39E-09	-	CHY	conserved hypothetical protein
OE1480F	0.7	1.6	0.2	2.29E-08	-	TP	(probable substrate iron/cobalamin)
OE1490R	0.6	1.5	0.2	5.21E-08	-	CHY	conserved hypothetical protein
OE1510F	0.6	1.5	0.4	1.93E-05	-	CHY	conserved hypothetical protein
OE1520R	0.7	1.7	0.4	3.08E-06	-	CHY	conserved hypothetical protein
OE1536R	0.8	1.7	0.4	1.20E-06	трсТ	SIG	transducer protein mpcT
OE1539F	1.3	2.5	0.1	2.22E-16	-	CHY	conserved hypothetical protein
OE1540R	0.9	1.8	0.3	1.33E-08	-	CHY	conserved hypothetical protein
OE1541F	0.6	1.5	0.2	3.71E-10	-	GEN	rhomboid family protein

					1		
OE1547R	0.4	1.4	0.2	6.34E-08	arsA1	TP	probable anion-transporting ATPase (EC 3.6.1)
OE1550F	0.5	1.4	0.2	1.00E-07	-	GEN	cinA C-terminal domain protein
OE1566F	1.1	2.1	0.3	2.40E-09	-	HY	hypothetical protein
OE1613R	0.5	1.5	0.2	4.07E-09	-	MIS	probable acylaminoacyl-peptidase (EC 3.4.19.1)
OE1632R	0.7	1.7	0.2	9.31E-10	сус	MIS	unspecific monooxygenase (EC 1.14.14.1) (cytochrome P450)
OE1641R	0.8	1.8	0.1	6.28E-14	fadA2	LIP	enoyl-CoA hydratase (EC 4.2.1.17)
OE1668R	0.4	1.4	0.1	2.53E-10	-	CHY	conserved hypothetical protein
OE1669F	0.4	1.4	0.2	2.87E-08	gdh	СНМ	glucose 1-dehydrogenase (EC 1.1.1.47)
OE1698R	1.4	2.7	0.3	1.25E-11	-	GEN	probable oxidoreductase (aldo-keto reductase family protein)
OE1722R	1	2	0.2	1.00E-10	-	GEN	homolog to N-acetyltransferase
OE1726F	0.6	1.5	0.2	5.15E-09	acs1	LIP	acyl-CoA synthetase (EC 6.2.1)
OE1748R	0.5	1.4	0.2	1.11E-08	cna	RMT	probable rRNA methylase
OE1752F	0.5	1.4	0.2	2.73E-09	-	CHY	conserved hypothetical protein
OE1761R	0.9	1.8	0.3	1.15E-07	-	CHY	conserved hypothetical protein
OE1763F	1.1	2.1	0.2	7.58E-13	-	CHY	conserved hypothetical protein
OE1765R	1	2	0.2	1.79E-11	pan2	CP	proteasome-activating nucleotidase
OE1778R	0.9	1.8	0.2	1.46E-09	-	GEN	probable oxidoreductase (EC 1.1.1) (short-chain dehydrogenase family)
OE1792F	0.9	1.9	0.4	6.62E-07	-	CHY	conserved hypothetical protein
OE1793F	0.6	1.5	0.2	1.08E-09	-	CHY	conserved hypothetical protein
OE1806R	1.1	2.1	0.2	5.17E-11	-	TP	TRAP-type transport system periplasmic substrate-binding protein
OE1823F	0.7	1.6	0.2	1.15E-08	-	HY	hypothetical protein
OE1858F	0.6	1.5	0.1	4.35E-11	-	CHY	conserved hypothetical protein
OE1888R	0.4	1.4	0.2	4.17E-08	-	CHY	conserved hypothetical protein
OE1898A1F	0.6	1.5	0.1	1.06E-10	-	HY	hypothetical protein
OE1899R	1.3	2.4	0.6	4.38E-07	glo2	GEN	homolog to lactoylglutathione lyase / aromatic compounds dioxygenase
OE1900F	0.7	1.7	0.1	7.77E-13	-	CHY	conserved hypothetical protein
OE1903F	0.8	1.7	0.2	3.02E-10	-	GEN	glycine-rich protein
OE1934R	1	1.9	0.2	1.31E-11	edp	MIS	proteinase IV (EC 3.4)
OE1936R	1.1	2.1	0.2	7.31E-13	-	CHY	conserved hypothetical protein
OE1944R	0.5	1.4	0.1	5.71E-10	aspB2	AA	aminotransferase (EC 2.6.1.1))
OE1947F	1.1	2.1	0.3	2.54E-09	-	CHY	conserved hypothetical protein
OE1969F	1.2	2.3	0.2	3.40E-12	-	GEN	CBS/parB domain protein
OE1978R	0.6	1.5	0.1	6.88E-15	-	CHY	conserved hypothetical protein
OE2006F	0.4	1.4	0.3	1.80E-05	-	TP	argK-type transport ATPase

1		1	1	1	1	1	
OE2007F	0.7	1.6	0.2	2.83E-10	-	GEN	probable hydrolase
OE2010R	0.5	1.4	0.1	3.84E-14	-	CHY	conserved hypothetical protein
OE2024F	0.6	1.5	0.3	1.55E-06	-	CHY	conserved hypothetical protein
OE2041R	0.6	1.5	0.1	1.38E-11	-	CHY	conserved hypothetical protein
OE2047R	0.6	1.5	0.2	1.00E-09	-	CHY	conserved hypothetical protein
OE2054F	0.7	1.6	0.2	5.63E-09	-	GEN	probable metallo-beta-lactamase family hydrolase
OE2055F	0.6	1.5	0.1	5.33E-12	-	CHY	conserved hypothetical protein
OE2058R	0.8	1.8	0.1	7.64E-14	afsQ2	SIG	probable signal-transducing histidine kinase
OE2097F	0.5	1.4	0.2	6.34E-07	-	GEN	upsA domain protein
OE2118F	0.4	1.3	0.1	1.73E-09	tfeA	TC	transcription initiation factor E
OE2128F	0.9	1.9	0.2	1.82E-12	phoU4	REG	transcription regulator (homolog to phosphate uptake regulator)
OE2133R	0.5	1.4	0.2	3.19E-06	aldH2	GEN	aldehyde dehydrogenase (EC 1.2.1)
OE2170R	0.6	1.5	0.1	1.68E-10	tmpC	MIS	tmpC homolog)
OE2186R	0.8	1.7	0.4	1.11E-06	tatA	SEC	sec-independent protein translocase component tatA
OE2187F	0.5	1.4	0.1	3.63E-11	-	CHY	conserved hypothetical protein
OE2199F	0.8	1.8	0.1	8.88E-16	-	GEN	dehydrogenase family)
OE2217R	0.6	1.6	0.4	3.55E-05	mobA	COM	molybdopterin-guanine dinucleotide biosynthesis protein A
OE2225F	0.7	1.6	0.2	5.37E-09	dmsB	EM	dimethylsulfoxide reductase (EC 1.8) subunit B (electron transfer protein)
OE2243R	0.5	1.4	0.3	7.60E-06	cynT	MIS	probable carbonate dehydratase (EC 4.2.1.1)
OE2249R	0.6	1.5	0.2	3.59E-07	-	CHY	conserved hypothetical protein
OE2254R	0.6	1.5	0.3	4.37E-06	-	CHY	conserved hypothetical protein
OE2259F	0.5	1.4	0.3	6.30E-06	-	CHY	conserved hypothetical protein
OE2306F	0.5	1.4	0.3	2.93E-06	-	CHY	conserved hypothetical protein
OE2311R	0.5	1.4	0.2	2.26E-08	udp2	NUM	uridine phosphorylase (EC 2.4.2.3)
OE2319R	0.7	1.6	0.2	5.39E-10	-	CHY	conserved hypothetical protein
OE2332F	0.9	1.9	0.4	4.94E-07	hakA	AA	kynureninase (EC 3.7.1.3)
OE2343R	0.4	1.4	0.1	1.41E-08	sfuC	TP	ABC-type transport system ATP-binding protein (probable substrate iron)
OE2358F	0.5	1.4	0.1	3.61E-11	acaB2	TP	probable nonspecific lipid-transfer protein (sterol carrier protein)
OE2367F	1.7	3.2	0.2	2.58E-14	aldH3	GEN	aldehyde dehydrogenase (EC 1.2.1)
OE2378R	0.4	1.3	0.1	1.53E-08	parA1	MIS	parA domain protein (fla operon protein parA1)
OE2427F	0.6	1.5	0.1	1.39E-10	-	CHY	conserved hypothetical protein
OE2450F	1.3	2.5	0.3	9.25E-12	acs2	LIP	acyl-CoA synthetase (EC 6.2.1)
OE2451R	0.9	1.8	0.2	5.90E-12	-	GEN	probable oxidoreductase (aldo-keto reductase family protein)
OE2453R	0.5	1.4	0.1	3.38E-11	-	CHY	conserved hypothetical protein

OF2513F FOR FOR THE FOR THE CHY CONSErved hypothetical protein	
OE2521R 0.5 1.4 0.2 2.83E-06 - CHY conserved hypothetical protein	
OE2524R 0.9 1.9 0.2 4.37E-10 ugd1 CHM UDP-glucose 6-dehydrogenase (EC 1.1.1.22)	
OE2527F 1 2 0.3 7.79E-10 - CHY conserved hypothetical protein	
OE2538R 0.4 1.3 0.2 1.55E-06 - CHY conserved hypothetical protein	
OE2573F 0.4 1.3 0.3 3.87E-05 - CHY conserved hypothetical protein	
OE2585R 0.8 1.8 0.4 1.39E-06 - CHY conserved hypothetical protein	
OE2612F 0.5 1.4 0.1 6.35E-09 - CHY conserved hypothetical protein	
OE2618R 0.8 1.7 0.1 8.32E-12 - CHY conserved hypothetical protein	
OE2622R 0.5 1.4 0.2 8.62E-08 porB CIM pyruvateferredoxin oxidoreductase (EC 1.2.7.1) beta	subunit
OE2623R 0.5 1.4 0.1 1.02E-09 porA CIM pyruvateferredoxin oxidoreductase (EC 1.2.7.1) alph	a subunit
OE2642R 0.4 1.4 0.1 4.11E-12 - HY hypothetical protein	
OE2648F 0.9 1.9 0.1 6.99E-14 - CHY conserved hypothetical protein	
OE2674R 0.5 1.4 0.1 1.53E-09 ksgA RMT rRNA (adenine-N6	
OE2676R 1.1 2.2 0.3 9.76E-11 - CHY conserved hypothetical protein	
OE2695F 0.8 1.7 0.2 2.02E-10 <i>flgX</i> MOT flagellin flgX	
OE2696F 1.2 2.3 0.3 3.70E-11 - CHY conserved hypothetical protein	
OE2697R 1.5 2.8 0.2 3.77E-15 <i>cmo2</i> GEN homolog to coenzyme PQQ synthesis protein E	
OE2698R 1.6 3.1 0.1 2.22E-16 - CHY conserved hypothetical protein	
OE2700F 1.8 3.6 0.1 0 <i>cmo1</i> GEN homolog to coenzyme PQQ synthesis protein E	
OE2703F 2.8 6.9 0.6 4.16E-11 - MIS probable copper-containing oxidoreductase	
OE2708R 1.1 2.1 0.4 3.41E-08 sod1 MIS superoxide dismutase (EC 1.15.1.1) 1 (Mn containing)	
OE2710F 0.7 1.6 0.2 6.42E-09 acd3 LIP acyl-CoA dehydrogenase (EC 1.3.99.3)	
OE2712R 0.4 1.3 0.2 1.90E-06 - SIG probable signal-transducing histidine kinase	
OE2734F 0.6 1.5 0.1 7.34E-12 <i>hutU</i> AA urocanate hydratase (EC 4.2.1.49)	
OE2762R 0.7 1.6 0.2 9.36E-10 aroA AA 3-phosphoshikimate 1-carboxyvinyltransferase (EC 2.4	5.1.19)
OE2808F 1.3 2.5 0.5 1.09E-07 - CHY conserved hypothetical protein	·
OE2809R 0.7 1.7 0.3 1.93E-08 aif2b TL translation initiation factor aIF-2 beta subunit	
OE2813R 0.4 1.3 0.2 4.94E-06 - CHY conserved hypothetical protein	
OE2821F 1.3 2.4 0.2 9.60E-12 - CHM probable vieF family carbohydrate kinase (EC 2.7.1)	
OE2825F 0.4 1.4 0.1 1.93E-09 moaC COM molybdenum cofactor biosynthesis protein moaC	
OE2827R 1.1 2.2 0.2 3.34E-12 <i>hflX2</i> GEN GTP-binding protein	

050000	4.0		0.0	4.075.00		OUN	
OE2828R	1.2	2.2	0.3	1.87E-09	-	CHY	
0E2856F	0.4	1.4	0.1	9.05E-09	суаВ	MIS	adenylate cyclase (EC 4.6.1.1)
0E2863R	0.6	1.5	0.1	4.43E-11	-	CHY	conserved hypothetical protein
OE2872F	1.4	2.7	0.4	3.93E-09	-	CHY	conserved hypothetical protein
OE2874F	0.7	1.6	0.1	1.34E-11	-	CHY	conserved hypothetical protein
OE2900F	0.8	1.7	0.4	2.88E-06	-	CHY	conserved hypothetical protein
OE2906R	1.4	2.7	0.4	2.11E-09	sod2	MIS	superoxide dismutase (EC 1.15.1.1) 2
OE2909F	0.7	1.7	0.2	8.80E-10	-	CHY	conserved hypothetical protein
OE2922F	0.8	1.7	0.2	3.59E-09	-	CHY	conserved hypothetical protein
OE2961F	0.6	1.5	0.1	3.05E-11	kinA1	SIG	probable signal-transducing histidine kinase
OE2973F	1.8	3.5	0.3	6.11E-13	-	CHY	conserved hypothetical protein
OE2988R	0.6	1.5	0.1	1.01E-11	-	CHY	conserved hypothetical protein
OE2989R	1.1	2.1	0.2	3.04E-11	-	CHY	conserved hypothetical protein
OE2991F	1.2	2.3	0.2	2.60E-13	tfbK	GEN	homolog to TFB C-terminal domain
OE3008F	1	1.9	0.3	7.74E-09	msrB	MIS	peptide methionine sulfoxide reductase (R-form specific)
OE3030R	0.7	1.6	0.2	3.04E-10	-	CHY	conserved hypothetical protein
OE3065R	0.6	1.5	0.1	1.12E-10	serA2	AA	phosphoglycerate dehydrogenase (EC 1.1.1.95)
OE3073R	1.8	3.4	0.4	3.52E-11	-	MIS	dodecin
OE3093R	1	2	0.3	6.22E-10	crtB1	LIP	geranylgeranyl-diphosphate geranylgeranyltransferase (EC 2.5.1.32) (phytoene synthase)
OE3095R	1.5	2.9	0.3	1.68E-11	-	CHY	conserved hypothetical protein
OE3101R	1	2	0.4	3.43E-07	bat	REG	bacterioopsin activator
OE3102R	0.8	1.8	0.3	7.86E-09	brp	GEN	bacteriorhodopsin-related protein
OE3106F	1.6	2.9	0.2	8.88E-16	bop	EM	bacteriorhodopsin
OE3107F	0.5	1.4	0.1	2.21E-10	-	CHY	conserved hypothetical protein
OE3136F	3.8	13.9	0.6	6.17E-13	-	CHY	conserved hypothetical protein
OE3152R	0.5	1.4	0.1	1.96E-10	pelA	TL	probable peptide chain release factor pelota
OE3153R	0.5	1.4	0.1	2.59E-10	-	CHY	conserved hypothetical protein
OE3187R	0.9	1.9	0.3	7.53E-08	-	GEN	upsA domain protein
OE3203R	1.3	2.4	0.3	1.50E-10	-	CHY	conserved hypothetical protein
OE3204R	1.6	3	0.3	3.88E-12	grx3	MIS	probable glutaredoxin
OE3207F	0.5	1.4	0.1	8.29E-12	cbiT	COM	precorrin-8W decarboxylase (EC 1)
OE3229R	0.5	1.4	0.1	5.37E-12	hmcA	СОМ	magnesium chelatase (EC 6.6.1.1) (protoporphyrin IX magnesium- chelatase)
OE3278R	0.5	1.4	0.1	1.48E-13	gcvT	AA	aminomethyltransferase (EC 2.1.2.10) (glycine cleavage system protein T)
OE3284R	0.9	1.9	0.1	8.54E-13	-	CHY	conserved hypothetical protein

OE3304R	0.6	1.5	0.2	3.10E-08	-	CHY	conserved hypothetical protein
OE3305F	0.6	1.5	0.1	1.51E-12	rfcB	RRR	replication factor C large subunit
OE3334R	0.9	1.9	0.1	0	trpD1	AA	anthranilate phosphoribosyltransferase (EC 2.4.2.18)
OE3347F	0.8	1.8	0.2	1.11E-09	htrl	SIG	transducer protein htrl
OE3349F	1.2	2.3	0.2	1.67E-12	-	GEN	CBS domain protein
OE3381R	0.4	1.4	0.2	8.13E-08	crtl1	LIP	phytoene dehydrogenase (EC 1.14.99) (phytoene desaturase)
OE3424R	0.9	1.9	0.3	8.00E-09	-	CHY	conserved hypothetical protein
OE3447F	0.6	1.6	0.1	2.06E-12	-	CHY	conserved hypothetical protein
OE3451A1F	0.7	1.6	0.1	1.16E-12	-	CHY	conserved hypothetical protein
OE3458R	0.5	1.4	0.1	2.77E-10	-	GEN	probable oxidoreductase (EC 1.1.1) (short-chain dehydrogenase family)
OE3462R	0.7	1.6	0.2	3.12E-09	-	HY	hypothetical protein
OE3491R	0.7	1.6	0.1	1.32E-11	hsp20C	CHP	hsp20-type molecular chaperone
OE3500R	0.4	1.3	0.1	1.24E-08	nirGH	COM	heme biosynthesis protein nirGH
OE3513R	0.7	1.7	0.3	9.88E-08	-	CHY	conserved hypothetical protein
OE3541R	1.7	3.3	0.3	1.86E-12	hsp20F	CHP	hsp20-type molecular chaperone
OE3542R	1.9	3.8	0.6	1.94E-09	-	GEN	glutamine-rich alkaline protein
OE3562R	0.5	1.4	0.1	1.49E-09	-	CHY	conserved hypothetical protein
OE3565F	0.8	1.8	0.2	2.91E-11	moaB	COM	molybdenum cofactor biosynthesis protein moaB
OE3566F	0.4	1.3	0.1	1.67E-11	-	COM	5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2)
OE3595R	0.6	1.5	0.2	3.57E-10	moaD	COM	molybdopterin converting factor small subunit
OE3612R	0.8	1.8	0.1	3.39E-13	basB	SIG	protein basB
OE3659F	0.4	1.4	0.1	7.95E-11	-	CHY	conserved hypothetical protein
OE3661F	0.4	1.3	0.1	2.28E-10	-	TP	ABC-type transport system ATP-binding protein
OE3668F	1.5	2.8	0.2	1.32E-12	-	GEN	upsA domain protein
OE3681R	0.6	1.5	0.3	4.40E-07	-	CHY	conserved hypothetical protein
OE3691F	0.9	1.8	0.4	5.07E-07	trpD2	MIS	probable anthranilate phosphoribosyltransferase (EC 2.4.2.18)
OE3714F	1.4	2.6	0.1	2.22E-16	-	CHY	conserved hypothetical protein
OE3717F	0.9	1.8	0.1	2.44E-15	nolA	GEN	homolog to NADH dehydrogenase 32K subunit
OE3718F	0.7	1.6	0.1	5.11E-15	ftsZ3	MIS	cell division protein ftsZ
OE3728R	0.8	1.7	0.2	1.44E-09	-	CHY	conserved hypothetical protein
OE3752R	0.7	1.6	0.2	1.94E-10	nudF2	GEN	nudix family protein
OE3766R	0.8	1.7	0.2	2.57E-09	-	HY	hypothetical protein
OE3798R	0.6	1.5	0.3	3.08E-06	-	CHY	conserved hypothetical protein
OE3807R	0.4	1.3	0.2	4.96E-07	pepF	CP	oligoendopeptidase

OE3814R	0.6	1.5	0.4	2.31E-05	-	CHY	conserved hypothetical protein
OE3815R	1.8	3.4	0.2	2.66E-15	-	CHY	conserved hypothetical protein O-acetyltransferase (EC 2.3.1) (homolog to galactoside O-
OE3836F	0.8	1.7	0.2	5.66E-10	-	GEN	acetyltransferase)
OE3843F	0.8	1.7	0.2	1.28E-09	nadE	COM	NAD(+) synthase (glutamine-hydrolyzing) (EC 6.3.5.1)
OE3846R	0.5	1.4	0.1	1.87E-11	fadA1	LIP	enoyl-CoA hydratase (EC 4.2.1.17)
OE3864R	1	2	0.3	3.71E-10	-	CHY	conserved hypothetical protein
OE3892R	0.4	1.4	0.1	2.02E-09	-	GEN	probable metallo-beta-lactamase family hydrolase
OE3903F	0.8	1.8	0.5	2.00E-05	-	CHY	conserved hypothetical protein
OE3925R	0.4	1.4	0.3	2.35E-05	ths2	CHP	thermosome subunit 2
OE3942R	2.2	4.5	0.3	3.89E-14	-	CHY	conserved hypothetical protein
OE3946F	1	1.9	0.2	1.66E-10	-	CHY	conserved hypothetical protein
OE3947R	0.5	1.4	0.1	3.98E-11	-	CHY	conserved hypothetical protein
OE3998R	0.5	1.4	0.1	4.66E-10	-	CHY	conserved hypothetical protein
OE4011R	0.5	1.4	0.2	1.61E-07	-	CHY	conserved hypothetical protein
OE4018F	0.5	1.4	0.2	5.28E-07	-	CHY	conserved hypothetical protein
OE4032R	0.6	1.5	0.2	4.94E-09	-	CHY	conserved hypothetical protein
OE4033R	0.7	1.6	0.1	1.01E-13	dbp	MIS	probable DNA helicase (enhancer-binding protein homolog)
OE4039F	0.6	1.5	0.1	1.13E-14	-	CHY	conserved hypothetical protein
OE4052F	0.5	1.4	0.1	4.66E-10	тст	MIS	DNA helicase (EC 3.6.1) mcm (intein-containing)
OE4056R	0.4	1.3	0.1	1.77E-10	tfbA	TC	transcription initiation factor TFB
OE4065R	0.8	1.7	0.3	1.86E-07	hit1	MIS	histidine triad family protein
OE4073R	0.9	1.8	0.3	8.41E-08	hcpB	EM	halocyanin hcpB
OE4077F	1.9	3.9	0.2	5.77E-15	-	HY	hypothetical protein
OE4080F	0.5	1.4	0.3	1.69E-05	-	CHY	conserved hypothetical protein
OE4099R	0.5	1.4	0.2	4.60E-08	-	CHY	conserved hypothetical protein
OE4113F	0.5	1.4	0.2	2.72E-08	oxdhA1	AA	component alpha subunit
OE4122R	0.9	1.9	0.3	4.21E-09	ths1	CHP	thermosome subunit 1
OE4127R	0.5	1.4	0.1	4.44E-12	-	CHY	conserved hypothetical protein
OE4146F	1.2	2.3	0.2	1.26E-11	tbpE	TC	TATA-binding transcription initiation factor
OE4152R	0.4	1.3	0.1	4.54E-10	hisG	AA	ATP phosphoribosyltransferase (EC 2.4.2.17)
OE4159F	1.3	2.5	0.1	0	achY	AA	adenosylhomocysteinase (EC 3.3.1.1)
OE4184F	0.8	1.8	0.1	6.45E-13	orc6	GEN	homolog to cell division control protein cdc6 homolog
OE4190F	0.9	1.8	0.2	3.65E-12	pmm2	СНМ	phosphohexomutase (phosphoglucomutase (EC 5.4.2.2)
OE4196R	1	1.9	0.3	1.21E-09	-	CHY	conserved hypothetical protein

OE4218F	1.2	2.2	0.2	3.10E-13	hisA	AA	1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase (EC 5.3.1.16)
OE4240F	0.6	1.5	0.1	1.55E-10	-	CHY	conserved hypothetical protein
OE4244F	0.4	1.3	0.1	5.95E-11	-	CHY	conserved hypothetical protein
OE4276F	0.4	1.4	0.1	1.65E-12	hemC	COM	hydroxymethylbilane synthase (EC 2.5.1.61) (porphobilinogen deaminase)
OE4283R	0.8	1.7	0.2	4.72E-10	-	SIG	probable signal-transducing histidine kinase / response regulator
OE4296F	0.6	1.5	0.3	4.37E-06	-	HY	hypothetical protein
OE4320R	1	2	0.4	2.93E-08	-	CHY	conserved hypothetical protein
OE4325F	0.7	1.6	0.2	7.87E-10	rad24b	MIS	probable DNA helicase
OE4331R	0.5	1.4	0.1	2.89E-09	tnaA	AA	tryptophanase (EC 4.1.99.1)
OE4365F	0.7	1.6	0.2	2.45E-08	-	CHY	conserved hypothetical protein
OE4384R	1.6	3	0.4	6.59E-11	-	CHY	conserved hypothetical protein
OE4399F	0.5	1.5	0.1	9.10E-15	-	GEN	probable oxidoreductase (EC 1.1.1) (4Fe-4S iron-sultur cluster containing)
OE4414R	0.7	1.6	0.3	3.04E-07	-	CHY	conserved hypothetical protein
OE4418R	0.4	1.3	0.1	1.46E-10	-	HY	hypothetical protein
OE4419R	0.4	1.4	0.1	1.73E-08	argH	AA	argininosuccinate lyase (EC 4.3.2.1)
OE4420R	1.2	2.3	0.2	2.05E-11	argG	AA	argininosuccinate synthase (EC 6.3.4.5)
OE4436R	0.4	1.3	0.1	1.39E-10	lta	AA	threonine aldolase (EC 4.1.2.5)
OE4449R	0.5	1.4	0.1	3.51E-12	mgtE2	TP	mgtE family transporter (probable substrate magnesium)
OE4456R	0.5	1.4	0.2	8.73E-08	pfdA	CP	prefoldin alpha subunit
OE4459R	0.6	1.5	0.1	1.80E-10	rpl31R	TL	ribosomal protein L31.eR
OE4461F	0.5	1.4	0.2	7.48E-09	-	CHY	conserved hypothetical protein
OE4492F	0.4	1.4	0.1	2.45E-12	-	CHY	conserved hypothetical protein
OE4496R	0.6	1.5	0.2	8.52E-08	fer4	EM	ferredoxin (3Fe-4S)(4Fe-4S)
OE4500R	0.6	1.6	0.2	1.79E-09	acd6	LIP	acyl-CoA dehydrogenase (EC 1.3.99.3)
OE4509F	1.6	3	0.5	2.06E-08	-	MIS	nonhistone chromosomal protein
OE4529F	0.4	1.3	0.2	3.29E-06	aldH1	GEN	aldehyde dehydrogenase (EC 1.2.1)
OE4543R	0.5	1.5	0.2	1.06E-07	riml1	CP	probable N-terminal acetyltransferase
OE4544R	0.8	1.7	0.1	3.79E-13	-	GEN	upsA domain protein
OE4562R	0.7	1.6	0.1	4.54E-13	entB	COM	probable isochorismatase (EC 3.3.2.1)
OE4563F	0.5	1.4	0.3	2.82E-05	-	CHY	conserved hypothetical protein
OE4565F	0.6	1.5	0.3	1.55E-07	-	CHY	conserved hypothetical protein
OE4612F	1.2	2.2	0.2	3.63E-13	hly	MIS	serine protease halolysin R4 (EC 3.4.21)
OE4621F	0.6	1.5	0.3	2.65E-07	nudF1	NUM	probable ADP-ribose pyrophosphatase (EC 3.6.1.13)
OE4633F	0.6	1.5	0.1	1.15E-10	-	CHY	conserved hypothetical protein

OE4637R	0.6	1.5	0.3	8.04E-06	gbp4	GEN	probable GTP-binding protein
OE4638F	0.6	1.5	0.2	3.04E-07	-	HY	hypothetical protein
OE4648F	0.6	1.5	0.2	6.62E-10	trxA2	EM	thioredoxin
OE4650R	0.8	1.7	0.3	2.45E-08	-	HY	hypothetical protein
OE4651F	0.4	1.3	0.2	2.26E-07	-	CIM	probable ribose-1
OE4654F	0.4	1.3	0.1	6.71E-10	thiDN	СОМ	phosphomethylpyrimidine kinase (EC 2.7.4.7) / thiamin biosynthesis protein thiN
OE4665R	0.4	1.4	0.1	2.40E-14	hflX1	GEN	GTP-binding protein
OE4671R	0.4	1.4	0.2	6.00E-08	-	CHY	conserved hypothetical protein
OE4707R	1.4	2.7	0.2	5.68E-13	-	CHY	conserved hypothetical protein
OE4759F	0.5	1.5	0.4	4.49E-05	csg	CE	major cell surface glycoprotein
OE5106F	0.5	1.4	0.3	7.82E-06	trkA7	GEN	trkA domain protein
OE5136R	0.9	1.9	0.2	1.58E-11	-	CHY	conserved hypothetical protein
OE5142F	0.4	1.3	0.1	1.48E-10	ftsZ5	MIS	cell division protein ftsZ
OE5160F	1.3	2.5	0.1	0	gldA1	CIM	glycerol dehydrogenase (EC 1.1.1.6)
OE5162D1F	2.5	5.7	0.6	2.72E-10	-	CHY	conserved hypothetical protein
OE5178F	0.5	1.4	0.1	9.27E-09	-	CHY	conserved hypothetical protein
OE5186R	0.4	1.4	0.1	3.13E-13	perA	MIS	catalase (EC 1.11.1.6) (including: peroxidase (EC 1.11.1.7))
OE5187R	0.7	1.6	0.1	3.44E-11	-	GEN	probable hydrolase
OE5204R	1	2	0.2	1.09E-12	arcD	TP	arginine/ornithine antiporter
OE5205R	1.2	2.3	0.2	1.86E-12	arcB	AA	ornithine carbamoyltransferase (EC 2.1.3.3)
OE5243F	0.8	1.7	0.2	6.58E-10	car	SIG	transducer protein car
OE5276F	0.4	1.3	0.2	2.53E-07	-	CHY	conserved hypothetical protein
OE5322R	0.5	1.4	0.2	1.19E-06	-	CHY	conserved hypothetical protein
OE5378R	0.5	1.4	0.2	7.15E-07	-	HY	hypothetical protein
OE6308F	1.6	3	0.2	2.02E-14	-	HY	hypothetical protein
OE6345R	0.6	1.5	0.3	6.66E-06	-	HY	hypothetical protein
OE7065F	0.7	1.7	0.2	1.18E-10	cydA1	EM	cytochrome d ubiquinol oxidase (EC 1.10.3) subunit I
OE7129F	0.5	1.4	0.3	2.13E-05	-	CHY	conserved hypothetical protein
OE7187F	0.9	1.9	0.4	2.03E-07	-	CHY	conserved hypothetical protein

Reprimierten Gene in Δlrp

ID	log2	xfach	stabw	p-Wert	Gen	Funktionsklasse	Genname
OE1004F	-0.4	-1.4	0.1	1.36E-10	-	TP	ABC-type transport system ATP-binding protein

OE1018F	-0.7	-1.6	0.1	2.15E-11	-	MIS	sugar transferase
OE1031F	-1.4	-2.6	0.4	5.31E-10	-	ISH	transposase (ISH10)
OE1047R	-0.7	-1.7	0.2	7.61E-09	-	HY	hypothetical protein
OE1054F	-0.7	-1.6	0.3	3.00E-07	-	HY	hypothetical protein
OE1055R	-0.5	-1.4	0.1	5.66E-12	-	CHY	conserved hypothetical protein
OE1076F	-1	-2	0.2	3.30E-11	-	GEN	homolog to cell division control protein cdc6
OE1078F	-0.5	-1.4	0.2	1.03E-07	graD6	CHM	sugar nucleotidyltransferase (EC 2.7.7)
OE1080F	-0.6	-1.5	0.3	4.08E-06	-	TP	probable polysaccharide export protein
OE1094R	-1.9	-3.7	0.2	7.11E-15	-	ISH	transposase (ISH10)
OE1100F	-0.7	-1.7	0.2	3.74E-09	-	HY	hypothetical protein
OE1101R	-0.4	-1.4	0.2	2.20E-07	-	HY	hypothetical protein
OE1107R	-0.4	-1.4	0.2	1.69E-07	-	CHY	conserved hypothetical protein
OE1112R	-0.6	-1.5	0.2	2.57E-08	gth5	GEN	probable glycosyltransferase
OE1121F	-1.3	-2.5	0.4	6.66E-09	-	CHY	conserved hypothetical protein
OE1134F	-0.5	-1.4	0.2	1.51E-08	-	CHY	conserved hypothetical protein
OE1162R	-0.7	-1.6	0.3	1.88E-06	cspD1	GEN	probable cold shock protein
OE1171F	-0.6	-1.5	0.1	6.25E-12	rmeMa rmeMb	MIS	(nonfunctional)
OE1183F	-0.5	-1.4	0.1	1.82E-12	-	HY	hypothetical protein
OE1197R	-0.6	-1.5	0.2	5.66E-08	-	HY	hypothetical protein
OE1226F	-0.5	-1.4	0.2	6.14E-07	-	CHY	conserved hypothetical protein
OE1239F	-1.2	-2.3	0.1	4.44E-16	-	HY	hypothetical protein
OE1294R	-0.7	-1.6	0.2	3.37E-10	rpl15R	TL	ribosomal protein L15.eR
OE1372R	-0.6	-1.5	0.2	1.24E-09	rpoP	тс	DNA-directed RNA polymerase (EC 2.7.7.6) subunit P
OE1439F	-0.7	-1.7	0.3	1.25E-07	-	ISH	IS200-type transposase (TCE31)
OE1462R	-0.5	-1.4	0.2	1.44E-07	-	COM	nicotinamide-nucleotide adenylyltransferase (EC 2.7.7.1)
OE1478R	-0.6	-1.6	0.2	1.95E-09	tfbF	TC	transcription initiation factor TFB
OE1505F	-0.8	-1.8	0.1	2.26E-12	-	MIS	probable 5'-methylthioadenosine phosphorylase (nonfunctional)
OE1506R	-0.5	-1.4	0.2	2.11E-07	-	ISH	transposase (ISH8)
OE1553F	-0.6	-1.5	0.2	1.95E-07	-	CHY	conserved hypothetical protein
OE1560R	-0.4	-1.4	0.1	6.84E-09	-	CHY	conserved hypothetical protein
OE1584R	-1.3	-2.5	0.2	3.45E-13	-	CHY	conserved hypothetical protein
OE1620R	-0.9	-1.8	0.1	5.94E-13	purNH	NUM	phosphoribosylgiycinamide formyltransferase (EC 2.1.2.2) / phosphoribosylaminoimidazolecarboxamide formyltransferase (EC 2.1.2.3)
OE1623F	-1	-2	0.2	4.26E-11	purB	NUM	adenylosuccinate lyase (EC 4.3.2.2)

OE1675R	-0.5	-1.4	0.2	1.59E-08	pstB2	TP	ABC-type transport system ATP-binding protein (probable substrate phosphate)
OE1678R	-0.9	-1.8	0.2	2.02E-09	pstC2	TP	ABC-type transport system permease protein (probable substrate phosphate)
OE1684F	-0.9	-1.9	0.2	2.00E-12	cysD	AA	sulfate adenylyltransferase (EC 2.7.7.4) small subunit
OE1687F	-0.8	-1.8	0.1	1.55E-13	aspS	TL	aspartatetRNA ligase (EC 6.1.1.12)
OE1707R	-0.5	-1.5	0.1	3.51E-10	-	REG	probable transcription regulator
OE1710R	-0.9	-1.9	0.2	1.58E-11	korB	CIM	oxoglutarateferredoxin oxidoreductase (EC 1.2.7.3) beta subunit
OE1711R	-1.5	-2.9	0.4	5.56E-10	korA	CIM	oxoglutarateferredoxin oxidoreductase (EC 1.2.7.3) alpha subunit
OE1797R	-0.8	-1.8	0.2	8.68E-10	sirR	REG	transcription regulator sirR
OE1817R	-0.6	-1.5	0.2	8.60E-09	nop10	RMT	RNA modification ribonucleoprotein complex protein nop10 purine phosphoribosyltransferase (adenine phosphoribosyltransferase (EC
OE1840R	-0.4	-1.3	0.2	2.81E-08	apt1	NUM	2.4.2.7)
OE1867R	-0.6	-1.5	0.3	3.01E-06	-	CHY	conserved hypothetical protein
OE1872R	-0.5	-1.4	0.1	9.13E-11	petD	EM	cytochrome bc1 complex (EC 1.10.2) cytochrome b/c subunit
OE1919R	-0.6	-1.5	0.1	1.97E-13	-	CHY	conserved hypothetical protein phosphoribosylaminoimidazole carboxylase (EC 4.1.1.21) carbon dioxide-
OE1951F	-0.8	-1.7	0.2	1.75E-10	purK	NUM	fixation subunit
OE1956F	-0.4	-1.4	0.2	3.39E-07	nuoCD	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit CD
OE1959F	-0.7	-1.7	0.4	5.02E-06	nuoJ1	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit J1
OE1964F	-0.6	-1.5	0.4	1.71E-05	nuoL	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit L
OE1981R	-0.6	-1.5	0.1	5.68E-11	-	CHY	conserved hypothetical protein
OE2020F	-0.5	-1.5	0.1	1.28E-11	fbp	CIM	fructose-bisphosphatase (EC 3.1.3.11)
OE2044F	-0.6	-1.5	0.2	4.60E-09	-	GEN	probable heavy metal binding protein
OE2046F	-0.8	-1.8	0.2	2.15E-10	-	CHY	conserved hypothetical protein
OE2130F	-0.6	-1.5	0.1	6.49E-11	-	CHY	conserved hypothetical protein
OE2142R	-0.6	-1.5	0.2	3.57E-08	-	LIP	phospholipase D
OE2165R	-0.7	-1.7	0.1	1.17E-12	rps15	TL	ribosomal protein S15
OE2230F	-0.8	-1.7	0.1	3.50E-13	-	CHY	conserved hypothetical protein
OE2267F	-0.4	-1.3	0.2	2.61E-08	rpoL	тс	DNA-directed RNA polymerase (EC 2.7.7.6) subunit L
OE2268R	-0.4	-1.3	0.2	7.43E-07	hisF	AA	imidazoleglycerol-phosphate synthase (EC 2.4.2) subunit hisF
OE2269F	-0.6	-1.5	0.1	6.06E-14	-	HY	hypothetical protein
0E2274R	-1	-2	0.1	2.48E-13	purL	NUM	phosphoribosylformylglycinamidine synthase (EC 6.3.5.3) component II
OE2307F	-0.7	-1.6	0.2	2.25E-08	ndh	EM	probable NADH dehydrogenase (EC 1.6.99.3)
OE2309F	-0.5	-1.5	0.2	3.76E-08	-	HY	hypothetical protein
OE2310F	-0.5	-1.4	0.1	2.81E-10	-	CHY	conserved hypothetical protein
OE2348R	-0.8	-1.7	0.1	6.09E-13	sfuA	TP	(probable substrate iron)

OE2374R	-0.5	-1.4	0.1	3.81E-10	cheW2	SIG	purine-binding chemotaxis protein cheW2
OE2406R	-1	-2	0.1	0	cheR	SIG	protein-glutamate O-methyltransferase (EC 2.1.1.80) cheR
OE2432C1F	-0.8	-1.7	0.3	1.12E-07	-	HY	hypothetical protein
OE2458R	-0.5	-1.4	0.2	9.16E-09	guaB	NUM	IMP dehydrogenase (EC 1.1.1.205)
OE2460F	-0.5	-1.4	0.1	4.04E-13	-	CHY	conserved hypothetical protein
OE2465R	-0.5	-1.4	0.1	2.09E-12	-	HY	hypothetical protein
OE2473F	-0.5	-1.4	0.3	1.08E-05	-	GEN	homolog to glutaredoxin
OE2530F	-0.5	-1.5	0.1	1.74E-11	graD4	СНМ	sugar nucleotidyltransferase (EC 2.7.7)
OE2531F	-0.8	-1.7	0.1	1.59E-13	-	CHY	conserved hypothetical protein
OE2533F	-1.7	-3.3	0.1	0	-	HY	hypothetical protein
OE2536F	-0.4	-1.3	0.2	2.31E-07	-	HY	hypothetical protein
OE2537F	-0.5	-1.4	0.1	5.66E-09	rfbQ	GEN	sugar transferase homolog
OE2540R	-0.5	-1.5	0.2	4.38E-08	-	ISH	transposase (ISH6)
OE2547R	-0.6	-1.5	0.2	2.50E-09	gt/2	GEN	probable glycosyltransferase
OE2569R	-0.4	-1.3	0.2	7.60E-08	-	GEN	dehydrogenase (EC 1.8.2.1))
OE2572F	-0.7	-1.6	0.2	1.90E-09	-	CHY	conserved hypothetical protein
OE2579F	-0.5	-1.5	0.1	1.16E-09	purA	NUM	adenylosuccinate synthase (EC 6.3.4.4)
OE2603R	-0.7	-1.6	0.2	1.33E-08	rpl11	TL	ribosomal protein L11
OE2605R	-0.6	-1.5	0.1	2.28E-10	-	CHY	conserved hypothetical protein
OE2627F	-0.7	-1.6	0.2	5.19E-09	rps13	TL	ribosomal protein S13
OE2629F	-0.9	-1.8	0.5	3.54E-06	rps11	TL	ribosomal protein S11
OE2631F	-1.2	-2.3	0.1	4.44E-16	rpoD	TC	DNA-directed RNA polymerase (EC 2.7.7.6) subunit D
OE2632F	-1.3	-2.5	0.1	2.22E-16	rpl18R	TL	ribosomal protein L18.eR
OE2633F	-1.2	-2.4	0.3	3.75E-11	rpl13	TL	ribosomal protein L13
OE2635F	-0.8	-1.8	0.4	2.98E-06	rps9	TL	ribosomal protein S9
OE2637F	-1.7	-3.2	0.2	4.44E-16	rpoN	TC	DNA-directed RNA polymerase (EC 2.7.7.6) subunit N
OE2640F	-0.7	-1.7	0.3	4.10E-08	eno	CIM	phosphopyruvate hydratase (EC 4.2.1.11) (enolase)
OE2641F	-1.4	-2.6	0.2	1.09E-14	rps2	TL	ribosomal protein S2
OE2683R	-0.7	-1.6	0.2	2.54E-08	aef1b	TL	translation elongation factor aEF-1 beta subunit
OE2715R	-0.5	-1.4	0.1	3.19E-10	-	HY	hypothetical protein
OE2716R	-0.4	-1.3	0.3	2.33E-05	-	HY	hypothetical protein
OE2727R	-0.5	-1.4	0.2	9.45E-07	-	CHY	conserved hypothetical protein
OE2740F	-1	-2	0.3	1.59E-09	-	CHY	conserved hypothetical protein
0E2744R	-0.4	-1.3	0.2	1.23E-06	-	CHY	conserved hypothetical protein

OE2745R	-0.5	-1.4	0.3	5.24E-06	pgk	CIM	phosphoglycerate kinase (EC 2.7.2.3)
OE2750R	-0.6	-1.5	0.2	4.18E-10	-	CHY	conserved hypothetical protein
OE2753F	-0.8	-1.8	0.1	2.37E-12	orc8	GEN	homolog to cell division control protein cdc6
OE2779F	-0.6	-1.6	0.3	2.02E-06	pheP	TP	amino acid transport protein (probable phenylalanine transport protein)
OE2780F	-0.8	-1.8	0.2	2.81E-09	-	HY	hypothetical protein
OE2782F	-1.1	-2.1	0.3	7.28E-09	surE	MIS	probable stationary-phase survival protein
OE2847R	-0.8	-1.7	0.2	8.91E-10	-	CHY	conserved hypothetical protein
OE2853R	-0.6	-1.5	0.3	6.04E-06	mtfK2	MIS	FKBP-type peptidylprolyl isomerase (EC 5.2.1.8)
OE2865R	-0.6	-1.5	0.3	1.59E-06	sdhA	CIM	succinate dehydrogenase (EC 1.3.99.1) subunit A (flavoprotein)
OE2903R	-0.5	-1.4	0.2	9.18E-09	-	CHY	conserved hypothetical protein
OE2946R	-0.6	-1.5	0.3	6.03E-07	-	CHY	conserved hypothetical protein
OE3017R	-1.1	-2.2	0.1	5.33E-15	ush	NUM	UDP-sugar hydrolase (EC 3.6.1.45) / 5'-nucleotidase (EC 3.1.3.5)
OE3062F	-0.5	-1.4	0.3	8.96E-06	rps17R	TL	ribosomal protein S17.eR
OE3063F	-0.5	-1.4	0.1	8.32E-11	asd	AA	aspartate-semialdehyde dehydrogenase (EC 1.2.1.11)
OE3069R	-0.7	-1.6	0.2	1.53E-09	-	CHY	conserved hypothetical protein
OE3116F	-0.9	-1.8	0.3	2.76E-09	-	CHY	conserved hypothetical protein
OE3118F	-0.6	-1.5	0.3	7.97E-07	-	CHY	conserved hypothetical protein
OE3132F	-0.6	-1.5	0.2	8.05E-08	-	CHY	conserved hypothetical protein
OE3139R	-1.6	-2.9	0.3	7.69E-12	purF	NUM	amidophosphoribosyltransferase (EC 2.4.2.14)
OE3141R	-1.1	-2.2	0.1	1.13E-14	rpl37R	TL	ribosomal protein L37.eR
OE3142R	-0.9	-1.9	0.2	1.53E-11	snp	GEN	small nuclear ribonucleoprotein homolog
OE3155R	-0.8	-1.8	0.2	6.81E-10	-	CHY	conserved hypothetical protein
OE3262R	-0.9	-1.9	0.1	7.25E-13	-	CHY	conserved hypothetical protein
OE3317R	-0.6	-1.5	0.1	7.15E-10	cbiQ	TP	ABC-type transport system permease protein (probable substrate cobalt)
OE3319R	-0.5	-1.4	0.1	1.53E-10	cbiM	COM	cbiM protein
OE3337F	-0.8	-1.8	0.2	1.37E-11	-	ISH	insertion element protein (ISH2)
OE3384R	-0.6	-1.5	0.2	4.13E-08	-	CHY	conserved hypothetical protein
OE3390F	-0.8	-1.7	0.2	3.01E-11	rpl23	TL	ribosomal protein L23
OE3394F	-0.8	-1.8	0.2	4.22E-11	rpl22	TL	ribosomal protein L22
OE3395F	-0.5	-1.4	0.1	3.37E-10	rps3	TL	ribosomal protein S3
OE3396F	-0.5	-1.4	0.2	8.14E-08	rpl29	TL	ribosomal protein L29
OE3404F	-0.5	-1.4	0.2	3.44E-07	rpl24	TL	ribosomal protein L24
OE3405F	-0.6	-1.5	0.3	2.18E-06	rps4R	TL	ribosomal protein S4.eR
OE3407F	-0.5	-1.4	0.2	7.10E-07	rpI5	TL	ribosomal protein L5
OE3429F	-0.6	-1.5	0.3	9.32E-07	cmk	NUM	cytidylate kinase (EC 2.7.4.14)

OE3481R	-0.6	-1.5	0.2	5.07E-08	htrll	SIG	transducer protein htrll
OE3486R	-0.5	-1.4	0.2	6.35E-08	speB	AA	agmatinase (EC 3.5.3.11)
OE3487R	-0.6	-1.5	0.3	1.31E-06	aif5a	TL	translation initiation factor aIF-5A
OE3547F	-0.6	-1.5	0.3	3.47E-06	-	CHY	conserved hypothetical protein
OE3554F	-0.9	-1.9	0.5	1.92E-06	carB	AA	carbamoyi-phosphate synthase (glutarnine-hydrolyzing) (EC 6.3.5.5) large subunit carbamoyi phosphate synthase (glutarnine hydrolyzing) (EC 6.3.5.5) small
OE3556R	-1.5	-2.8	0.1	1.11E-15	carA	AA	subunit
OE3558F	-0.7	-1.6	0.1	1.64E-12	trh3	REG	probable transcription regulator
OE3560F	-0.5	-1.4	0.2	3.99E-08	idiA	LIP	isopentenyl-diphosphate delta-isomerase (EC 5.3.3.2)
OE3571R	-0.5	-1.4	0.2	2.76E-08	guaAb	NUM	GMP synthase (glutamine-hydrolyzing) (EC 6.3.5.2) subunit B
OE3572R	-1.4	-2.6	0.3	4.69E-11	pyrG	NUM	CTP synthase (EC 6.3.4.2)
OE3582F	-0.7	-1.7	0.3	5.43E-07	cspD2	GEN	probable cold shock protein
OE3639F	-0.4	-1.4	0.3	1.12E-05	-	CHY	conserved hypothetical protein
OE3652F	-0.5	-1.4	0.1	5.99E-13	-	TP	small multidrug export protein
OE3654R	-0.8	-1.8	0.1	6.37E-14	-	HY	hypothetical protein
OE3655R	-0.4	-1.3	0.1	3.01E-08	-	HY	hypothetical protein
OE3688F	-0.4	-1.3	0.1	9.02E-10	-	CHY	conserved hypothetical protein
OE3712R	-0.6	-1.5	0.2	1.98E-09	oxdhA2	AA	probable branched-chain amino acid dehydrogenase (EC 1.2.4) E1 component alpha subunit
OE3724F	-0.8	-1.7	0.4	4.16E-06	purC	NUM	phosphoribosylaminoimidazolesuccinocarboxamide synthase (EC 6.3.2.6)
OE3731R	-1.6	-2.9	0.3	3.02E-11	purQ	NUM	phosphoribosylformylglycinamidine synthase (EC 6.3.5.3) component I phosphoribosylformylglycinamidine synthase (EC 6.3.5.3) component
OE3732R	-1.3	-2.4	0.3	1.04E-09	purS	NUM	purS
OE3749R	-0.5	-1.4	0.3	3.30E-05	tgtA1	RMT	queuine tRNA-ribosyltransferase (EC 2.4.2.29)
OE3784R	-0.5	-1.5	0.2	2.20E-09	secD	SEC	preprotein translocase subunit secD
OE3787R	-0.5	-1.4	0.3	1.94E-05	secF	SEC	preprotein translocase subunit secF
OE3822R	-0.7	-1.7	0.3	1.71E-07	-	CHY	conserved hypothetical protein
OE3829R	-0.4	-1.4	0.1	3.92E-12	-	CHY	conserved hypothetical protein
OE3866R	-0.4	-1.4	0.1	1.78E-14	gcp	CP	probable O-sialoglycoprotein endopeptidase (EC 3.4.24.57) ABC-type transport system permease protein (probable substrate
OE3907R	-0.8	-1.7	0.1	1.83E-12	phnE	TP	hosphate/phosphonate) ABC-type transport system ATP-binding protein (probable substrate
OE3908R	-0.8	-1.8	0.2	1.44E-10	phnC	TP	phosphate/phosphonate)
OE3922R	-0.6	-1.5	0.3	1.85E-05	gInA	AA	glutamateammonia ligase (EC 6.3.1.2)
OE3923F	-3.1	-8.8	1.1	3.99E-08	Irp	REG	global transcription regulator
OE3950R	-1.9	-3.8	0.4	4.62E-11	-	CHY	conserved hypothetical protein
OE3963R	-2.6	-6.1	0.4	7.05E-13	ribB	СОМ	3,4-dihydroxy-2-butanone 4-phosphate synthase
OE3964R	-2.9	-7.5	0.2	0	-	CHY	conserved hypothetical protein

	1	l i	1	1	1		
OE3984R	-0.5	-1.4	0.1	1.11E-10	atpB	EM	A-type ATP synthase (EC 3.6.3.14) subunit B
OE3985R	-0.6	-1.6	0.2	1.62E-09	atpA	EM	A-type ATP synthase (EC 3.6.3.14) subunit A
OE3986R	-0.9	-1.9	0.1	5.57E-13	atpF	EM	A-type ATP synthase (EC 3.6.3.14) subunit F
OE3987R	-0.4	-1.4	0.2	2.31E-06	atpC	EM	A-type ATP synthase (EC 3.6.3.14) subunit C
OE4012F	-0.4	-1.3	0.1	1.14E-08	-	CHY	conserved hypothetical protein
OE4047R	-0.6	-1.5	0.1	4.72E-12	-	GEN	phage PhiH1 repressor protein homolog
OE4049R	-0.5	-1.5	0.2	2.45E-09	-	HY	hypothetical protein
OE4187R	-0.7	-1.6	0.4	9.90E-06	-	GEN	probable DNA-binding protein
OE4201R	-0.5	-1.4	0.2	1.48E-06	flaK	MOT	preflagellin peptidase
OE4223R	-0.6	-1.5	0.2	1.18E-08	-	CHY	conserved hypothetical protein
OE4300R	-0.9	-1.8	0.1	3.75E-14	-	CHY	conserved hypothetical protein
OE4301R	-1.1	-2.2	0.1	2.22E-16	dppF1	TP	ABC-type transport system ATP-binding protein (probable substrate dipeptide/oligopeptide/nickel)
0542020	1.2	2.4	0.1	0.005 16	dan D1	тр	ABC-type transport system ATP-binding protein (probable substrate
0E4302R	-1.5	-2.4	0.1	0.00E-10	арры г	IP	ABC-type transport system permease protein (probable substrate
OE4303R	-0.9	-1.9	0.2	5.07E-12	dppC1	TP	dipeptide/oligopeptide/nickel)
OE4304R	-0.9	-1.9	0.3	1.43E-08	dppB1	TP	dipeptide/oligopeptide/nickel)
OE4367R	-0.4	-1.3	0.1	2.28E-08	-	CHY	conserved hypothetical protein
OE4380F	-0.6	-1.5	0.2	1.09E-08	orc7	CP	cdc6-type chromosome replication protein
OE4385F	-0.5	-1.4	0.1	5.98E-11	-	CHY	conserved hypothetical protein
OE4387F	-0.5	-1.4	0.3	1.00E-05	-	HY	hypothetical protein
OE4435F	-0.9	-1.9	0.2	2.23E-10	-	CHY	conserved hypothetical protein
OE4523F	-0.4	-1.3	0.3	4.95E-05	-	CHY	conserved hypothetical protein
OE4524F	-0.5	-1.4	0.1	3.81E-09	-	HY	hypothetical protein
OE4552F	-1.2	-2.3	0.4	1.97E-08	dppB2	TP	ABC-type transport system permease protein (probable substrate dipeptide/oligopeptide/nickel)
OE4572R	-0.9	-1.9	0.1	2.51E-13	valS	TL	valinetRNA ligase (EC 6.1.1.9)
OE4585R	-0.4	-1.3	0.2	3.80E-07	-	HY	hypothetical protein
OE4610R	-0.7	-1.6	0.1	9.10E-15	dcd2	NUM	probable dCTP deaminase (EC 3.5.4.13)
OE4628R	-0.7	-1.6	0.2	2.79E-10	-	CHY	conserved hypothetical protein
OE4683F	-2.9	-7.6	0.1	0	ribC	COM	riboflavin synthase (EC 2.5.1.9) alpha subunit
OE4720R	-1	-2	0.2	1.63E-10	rps10	TL	ribosomal protein S10
OE4721R	-0.8	-1.7	0.2	1.50E-10	aef1a	TL	translation elongation factor aEF-1 alpha subunit
OE4735R	-0.6	-1.5	0.2	1.82E-09	rps7	TL	ribosomal protein S7
OE4740R	-0.5	-1.4	0.1	1.48E-12	rpoA1	тс	DNA-directed RNA polymerase (EC 2.7.7.6) subunit A' (subunit A)
OE4741R	-0.5	-1.4	0.3	3.70E-06	rpoB1	тс	DNA-directed RNA polymerase (EC 2.7.7.6) subunit B'

OE5015F	-0.7	-1.6	0.3	3.92E-08	-	ISH	transposase (ISH8)
OE5022F	-0.8	-1.7	0.3	2.90E-08	-	CHY	conserved hypothetical protein
OE5031R	-0.8	-1.8	0.1	1.57E-12	-	CHY	conserved hypothetical protein
OE5062R	-0.6	-1.5	0.2	1.05E-08	-	ISH	IS1341-type transposase (TCE31)
OE5065R	-0.6	-1.5	0.1	3.80E-11	-	CHY	conserved hypothetical protein
OE5143F	-0.5	-1.4	0.3	9.41E-06	-	TP	sodium-dependent transporter
OE5162R	-0.7	-1.6	0.1	1.91E-14	orc5	GEN	homolog to cell division control protein cdc6
OE5201F	-0.9	-1.9	0.2	1.35E-10	pyrB	NUM	aspartate carbamoyltransferase (EC 2.1.3.2) catalytic subunit
OE5202F	-1	-2	0.3	1.50E-08	pyrl	NUM	aspartate carbamoyltransferase (EC 2.1.3.2) regulatory subunit
OE5211F	-0.7	-1.6	0.1	7.23E-13	-	CHY	conserved hypothetical protein
OE5234R	-0.6	-1.5	0.2	3.13E-07	-	CHY	conserved hypothetical protein (nonfunctional)
OE5260F	-1.2	-2.3	0.2	2.49E-14	-	ISH	transposase (ISH10)
OE5268R	-0.5	-1.4	0.1	7.43E-11	-	TP	ABC-type transport system ATP-binding protein
OE5279R	-1.1	-2.2	0.3	1.14E-09	-	CHY	conserved hypothetical protein
OE5307F	-0.4	-1.3	0.1	1.58E-11	-	TP	ABC-type transport system ATP-binding protein
OE5325F	-0.4	-1.4	0.2	3.13E-07	-	CHY	conserved hypothetical protein
OE5340R	-0.6	-1.5	0.3	9.37E-07	-	ISH	transposase (ISH8) (nonfunctional)
OE5363R	-0.9	-1.9	0.2	5.96E-11	-	ISH	insertion element protein (ISH2)
OE5370R	-1.1	-2.2	0.3	7.41E-10	-	HY	hypothetical protein
OE5393F	-1.1	-2.2	0.2	3.70E-11	-	ISH	insertion element protein (ISH2)
OE5400F	-0.6	-1.5	0.2	1.12E-08	-	CHY	conserved hypothetical protein
OE5407F	-0.6	-1.5	0.1	4.77E-11	-	ISH	transposase (ISH8)
OE6005R	-0.5	-1.4	0.2	7.45E-08	-	CHY	conserved hypothetical protein
OE6006R	-0.7	-1.7	0.1	3.64E-14	-	CHY	conserved hypothetical protein
OE6012F	-1.1	-2.2	0.3	9.99E-11	-	ISH	transposase (ISH6)
OE6027R	-0.5	-1.4	0.1	3.08E-13	-	CHY	conserved hypothetical protein
OE6032F	-0.4	-1.3	0.1	1.52E-09	-	CHY	conserved hypothetical protein
OE6034F	-0.8	-1.7	0.2	2.76E-10	-	ISH	IS1341-type transposase (TCE32)
OE6046F	-0.9	-1.9	0.2	2.02E-11	-	CHY	conserved hypothetical protein
OE6052R	-0.5	-1.4	0.3	8.81E-06	-	HY	hypothetical protein
OE6074R	-1.5	-2.9	0.1	0	-	HY	hypothetical protein
OE6075R	-0.6	-1.5	0.3	4.95E-06	-	ISH	transposase (ISH8)
OE6079F	-0.5	-1.4	0.1	3.60E-09	-	CHY	conserved hypothetical protein
OE6096A1R	-0.8	-1.7	0.4	8.06E-07	-	CHY	conserved hypothetical protein
OE6099F	-0.7	-1.6	0.1	1.71E-12	-	HY	hypothetical protein

			l I	I	I	I	1
OE6111A1F	-0.6	-1.5	0	0	-	CHY	conserved hypothetical protein
OE6113F	-0.9	-1.8	0.3	5.91E-09	-	CHY	conserved hypothetical protein
OE6128R	-0.4	-1.3	0.1	2.00E-09	-	CHY	conserved hypothetical protein
OE6130F	-1.8	-3.5	0.2	2.55E-14	-	CHY	conserved hypothetical protein
OE6133R	-1.2	-2.3	0.4	5.03E-09	-	ISH	transposase (ISH10)
OE6138F	-0.4	-1.4	0.1	6.50E-09	-	CHY	conserved hypothetical protein
OE6145R	-1	-2	0.2	1.49E-12	-	SIG	probable signal-transducing histidine kinase
OE6154F	-0.7	-1.6	0.1	7.11E-12	-	HY	hypothetical protein
OE6156F	-1.1	-2.1	0.3	1.25E-09	-	CHY	conserved hypothetical protein
OE6166R	-0.8	-1.7	0.2	4.22E-10	-	CHY	conserved hypothetical protein (nonfunctional)
OE6285F	-0.6	-1.5	0.2	1.08E-09	-	ISH	IS1341-type transposase (TCE31)
OE6292R	-0.8	-1.7	0.3	9.45E-08	-	ISH	transposase (ISH6)
OE6296R	-0.6	-1.5	0.2	1.37E-07	-	ISH	transposase (ISH8)
OE6298A1R	-1.5	-2.7	0.2	6.41E-13	-	ISH	insertion element protein (ISH2)
0E7001R	-0.4	-1.4	0.2	7.24E-07	-	CHY	conserved hypothetical protein
OE7008F	-0.7	-1.6	0.2	2.22E-10	-	HY	hypothetical protein (encoded by ISH7/ISH24 subtype 1)
OE7011R	-0.4	-1.3	0.1	2.10E-08	-	HY	hypothetical protein
OE7015F	-0.5	-1.4	0.3	4.51E-05	-	CHY	conserved hypothetical protein (nonfunctional)
0E7023R	-0.7	-1.6	0.3	4.84E-07	gvpL1	GEN	gas-vesicle operon protein gvpL1
0E7024R	-0.7	-1.7	0.2	3.02E-11	gvpK1	GEN	gas-vesicle operon protein gvpK1
OE7026R	-0.6	-1.6	0.2	4.97E-09	gvpJ1	GEN	gas-vesicle operon protein gvpJ1
0E7027R	-0.5	-1.4	0.3	3.79E-05	gvpl1	GEN	gas-vesicle operon protein gvpl1
OE7034F	-2	-4	0.7	4.02E-08	gvpA1	CP	gas-vesicle protein gvpA1
OE7034F	-1	-2	0.3	6.10E-09	gvpA1	CP	gas-vesicle protein gvpA1
OE7036F	-1.5	-2.8	0.5	5.29E-09	gvpC1	CP	gas-vesicle protein gvpC1
OE7037F	-1.5	-2.8	0.2	6.44E-15	gvpN1	GEN	gas-vesicle operon protein gvpN
OE7038F	-1.6	-3	0.5	1.70E-08	gvpO1	GEN	gas-vesicle operon protein gvpO1
OE7039F	-3.5	-11.6	0.3	0	parA7	GEN	parA domain protein
0E7042R	-3.2	-9.1	0.8	6.08E-10	-	SIG	probable signal-transducing histidine kinase / response regulator
OE7043A1F	-3.1	-8.3	0.4	2.11E-14	-	CHY	conserved hypothetical protein
OE7045F	-0.5	-1.5	0.1	5.85E-10	tbpA	GEN	homolog to TATA-binding transcription initiation factor
OE7049R	-0.6	-1.5	0.4	1.60E-05	-	CHY	conserved hypothetical protein (nonfunctional)
OE7052F	-0.5	-1.4	0.2	5.87E-07	-	ISH	transposase (ISH5)
0E7054R	-0.4	-1.4	0.3	1.36E-05	-	CHY	conserved hypothetical protein
OE7056A1R	-0.8	-1.8	0.3	2.38E-08	-	CHY	conserved hypothetical protein

OE7057F	-0.8	-1.7	0.2	1.32E-10	-	CHY	conserved hypothetical protein
OE7064R	-0.5	-1.4	0.2	5.62E-07	-	HY	hypothetical protein
OE7089R	-0.7	-1.7	0.1	1.69E-14	-	CHY	conserved hypothetical protein
OE7092F	-0.6	-1.6	0.2	1.96E-09	-	HY	hypothetical protein
OE7095F	-0.4	-1.3	0.1	9.70E-14	-	CHY	conserved hypothetical protein
OE7097F	-1.8	-3.5	0.1	0	-	ISH	transposase (ISH10)
0E7100R	-0.7	-1.7	0.2	1.68E-10	parA6a	GEN	parA domain protein
0E7101R	-1.3	-2.5	0.6	5.01E-07	-	CHY	conserved hypothetical protein
0E7102R	-0.8	-1.8	0.1	9.33E-15	-	CHY	conserved hypothetical protein
0E7104R	-0.5	-1.4	0.3	1.56E-05	-	CHY	conserved hypothetical protein
OE7106F	-0.4	-1.4	0.1	6.41E-09	-	HY	hypothetical protein
OE7116B1R	-0.4	-1.3	0.1	1.82E-08	-	CHY	conserved hypothetical protein
0E7141R	-1	-2	0.2	2.86E-12	-	GEN	multidrug resistance transport protein homolog
0E7144R	-0.5	-1.5	0.2	5.06E-08	-	CHY	conserved hypothetical protein
OE7149F	-0.6	-1.5	0.2	6.30E-09	-	HY	hypothetical protein
0E7174R	-0.7	-1.6	0.2	2.80E-08	-	CHY	conserved hypothetical protein
OE7180F	-0.8	-1.7	0.2	5.51E-09	-	HY	hypothetical protein
OE7182F	-1.1	-2.2	0.2	2.73E-11	-	MIS	probable restriction/modification enzyme
OE7186F	-1.1	-2.1	0.2	9.25E-13	tbpC1	TC	probable TATA-binding transcription initiation factor
OE7189F	-0.4	-1.3	0.2	4.20E-06	-	CHY	conserved hypothetical protein
OE7190R	-0.9	-1.9	0.3	7.62E-09	-	HY	hypothetical protein
OE7192F	-0.5	-1.4	0.1	1.24E-09	-	CHY	conserved hypothetical protein
OE7196F	-0.5	-1.4	0.2	4.58E-07	-	GEN	phage integrase homolog
OE7198F	-0.9	-1.8	0.3	4.41E-08	-	ISH	transposase (ISH8)
OE7201R	-0.5	-1.4	0.1	5.85E-10	-	ISH	transposase (ISH4)
OE7210R	-0.5	-1.4	0.3	1.33E-06	-	CHY	conserved hypothetical protein
OE7212B1F	-1	-2	0.1	1.40E-14	-	CHY	conserved hypothetical protein
OE7215F	-1.2	-2.4	0.2	9.65E-12	-	CHY	conserved hypothetical protein
OE8005F	-0.4	-1.3	0.2	1.07E-07	-	CHY	conserved hypothetical protein
OE8009R	-0.6	-1.5	0.3	8.12E-07	-	CHY	conserved hypothetical protein
OE8047F	-1.3	-2.5	0.3	8.84E-11	-	CHY	conserved hypothetical protein
OE8050F	-0.6	-1.5	0.2	4.18E-08	-	CHY	conserved hypothetical protein

Induzierten Gene in $\uparrow lrp$

ID	log2	xfach	stabw	p-Wert	Gen	Funktionsklasse	Genname
OE1001F	0.6	1.5	0.1	8.84E-13	-	CHY	conserved hypothetical protein
OE1004F	0.6	1.5	0.2	4.13E-09	-	TP	ABC-type transport system ATP-binding protein
OE1005F	0.6	1.5	0.3	3.43E-06	-	TP	ABC-type transport system permease protein
OE1154F	1.0	2.0	0.4	2.97E-07	gapB	CIM	glyceraldehyde-3-phosphate dehydrogenase (NAD(P)) (phosphorylating) (EC 1.2.1.59)
OE1164R	0.5	1.4	0.2	2.11E-08	-	GEN	phosphatase homolog
OE1178F	0.4	1.3	0.1	1.88E-08	rmeR	MIS	type I site-specific deoxyribonuclease (EC 3.1.21.3) subunit rmeR
OE1309F	0.5	1.4	0.3	1.83E-05	pepB1	MIS	aminopeptidase (EC 3.4.11)
OE1353F	0.7	1.6	0.2	2.45E-08	-	HY	hypothetical protein
OE1356F	0.7	1.7	0.5	3.61E-05	-	CHY	conserved hypothetical protein
OE1372R	0.5	1.4	0.2	2.04E-07	rpoP	тс	DNA-directed RNA polymerase (EC 2.7.7.6) subunit P
OE1447R	0.8	1.7	0.3	5.13E-07	-	GEN	probable metallo-beta-lactamase family hydrolase
OE1448R	0.4	1.4	0.2	7.74E-06	-	CHY	conserved hypothetical protein
OE1475F	0.5	1.4	0.3	1.04E-05	-	AA	3-dehydroquinate synthase (EC 4.2.3.4) type II
OE1478R	0.8	1.7	0.1	7.58E-12	tfbF	TC	transcription initiation factor TFB
OE1515R	0.4	1.3	0.2	7.02E-07	smc	CP	chromosome segregation protein
OE1553F	0.4	1.3	0.2	6.21E-07	-	CHY	conserved hypothetical protein
OE1554R	0.5	1.4	0.3	3.00E-05	-	CHY	conserved hypothetical protein ABC-type transport system permease protein (probable substrate
OE1678R	0.7	1.6	0.2	2.78E-10	pstC2	TP	phosphate)
OE1684F	1.0	2.0	0.5	2.02E-06	cysD	AA	sulfate adenylyltransferase (EC 2.7.7.4) small subunit
OE1687F	0.7	1.6	0.3	2.47E-06	aspS	TL	aspartatetRNA ligase (EC 6.1.1.12)
OE1710R	1.0	2.0	0.5	1.31E-06	korB	CIM	oxoglutarateferredoxin oxidoreductase (EC 1.2.7.3) beta subunit
0E1711R	1.2	2.3	0.3	2.39E-09	korA	CIM	oxoglutarateferredoxin oxidoreductase (EC 1.2.7.3) alpha subunit
OE1748R	0.5	1.4	0.2	1.33E-08	cna	RMT	probable rRNA methylase
OE1782F	0.4	1.3	0.2	5.11E-06	-	GEN	sufB domain protein
OE1789R	0.5	1.4	0.1	5.88E-09	-	CHY	conserved hypothetical protein
OE1794R	0.8	1.8	0.5	2.46E-05	-	CHY	conserved hypothetical protein
OE1797R	0.6	1.5	0.2	1.05E-07	sirR	REG	transcription regulator sirR
OE1807R	0.4	1.4	0.2	6.45E-07	thrC2	AA	threonine synthase (EC 4.2.3.1)
OE1858F	0.5	1.4	0.2	1.43E-07	-	CHY	conserved hypothetical protein
OE1862F	0.6	1.5	0.2	4.19E-07	ywaD	MIS	probable peptidase (EC 3.4.11)
OE1876R	0.7	1.6	0.4	2.19E-05	petA	EM	cytochrome bc1 complex (EC 1.10.2) Rieske iron-sulfur protein

	1	1		1	1	1	
OE1878R	0.6	1.5	0.2	1.34E-08	-	CHY	conserved hypothetical protein
OE1915F	0.5	1.4	0.1	3.43E-11	-	CHY	conserved hypothetical protein
OE1934R	0.9	1.9	0.2	1.62E-12	edp	MIS	proteinase IV (EC 3.4)
OE1954F	0.7	1.6	0.4	5.40E-06	nuoB	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit B
OE1960F	1.1	2.1	0.2	3.68E-11	nuoJ2	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit J2
OE1964F	0.9	1.8	0.3	9.95E-08	nuoL	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit L
OE1965F	0.6	1.5	0.2	1.82E-08	nuoM	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit M
OE1967F	0.5	1.4	0.2	1.42E-06	nuoN	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit N
OE1972F	0.4	1.3	0.2	6.16E-07	mcmA1	LIP	methylmalonyl-CoA mutase (EC 5.4.99.2) subunit A
OE2014F	0.4	1.3	0.2	5.01E-08	fdfT	LIP	famesyl-diphosphate famesyltransferase (EC 2.5.1.21) (squalene synthase)
OE2159R	0.7	1.6	0.3	1.37E-06	rps3aR	TL	ribosomal protein S3a.eR
OE2165R	0.5	1.4	0.2	2.95E-08	rps15	TL	ribosomal protein S15
OE2201F	0.7	1.6	0.3	1.46E-07	chiA1	MIS	chitinase (EC 3.2.1.14)
OE2205F	1.0	2.0	0.3	4.30E-10	chiA2	MIS	chitinase (EC 3.2.1.14)
OE2222F	1.4	2.7	0.3	4.58E-11	-	HY	hypothetical protein dimethylsulfoxide reductase (EC 1.8) subunit B (electron transfer
OE2225F	1.6	2.9	0.1	0	dmsB	EM	protein)
OE2284F	0.5	1.4	0.2	5.35E-09	aatA	TL	aspartyl-tRNA(Asn) amidotransferase (EC 6.3.5) subunit A
OE2373F	0.6	1.5	0.1	5.80E-11	pta	MIS	probable phosphate acetyltransferase (EC 2.3.1.8)
OE2383R	0.4	1.3	0.2	7.73E-06	flaG	MOT	fla cluster protein flaG
OE2402F	0.4	1.3	0.1	1.24E-13	-	CHY	conserved hypothetical protein
OE2495F	0.6	1.5	0.2	6.94E-09	-	COM	6-pyruvoyltetrahydropterin synthase (EC 4.2.3.12)
OE2532R	0.5	1.4	0.1	5.40E-11	-	CHY	conserved hypothetical protein
OE2554R	0.5	1.5	0.1	2.55E-10	-	CHY	conserved hypothetical protein
OE2572F	0.8	1.7	0.4	8.43E-06	-	CHY	conserved hypothetical protein
OE2622R	0.6	1.5	0.1	2.96E-12	porB	CIM	pyruvateferredoxin oxidoreductase (EC 1.2.7.1) beta subunit
OE2623R	1.0	2.0	0.2	1.69E-11	porA	CIM	pyruvateferredoxin oxidoreductase (EC 1.2.7.1) alpha subunit
OE2627F	0.7	1.6	0.3	2.48E-07	rps13	TL	ribosomal protein S13
OE2631F	0.8	1.7	0.2	1.48E-09	rpoD	TC	DNA-directed RNA polymerase (EC 2.7.7.6) subunit D
OE2632F	0.7	1.6	0.2	5.65E-09	rpl18R	TL	ribosomal protein L18.eR
OE2635F	0.8	1.8	0.4	1.09E-06	rps9	TL	ribosomal protein S9
OE2637F	1.4	2.7	0.4	2.13E-09	rpoN	тс	DNA-directed RNA polymerase (EC 2.7.7.6) subunit N
OE2638F	1.7	3.3	0.2	8.88E-16	rpoK	TC	DNA-directed RNA polymerase (EC 2.7.7.6) subunit K
OE2641F	1.3	2.4	0.1	0	rps2	TL	ribosomal protein S2
OE2648F	0.5	1.4	0.2	4.84E-08	-	CHY	conserved hypothetical protein

				1	1	1	
OE2662F	0.8	1.7	0.2	5.03E-11	rpl7aR	TL	ribosomal protein L7a.eR/HS6
OE2664F	1.0	2.0	0.2	3.15E-10	rps28R	TL	ribosomal protein S28.eR
OE2667F	0.9	1.9	0.1	5.88E-14	ndk	NUM	nucleoside-diphosphate kinase (EC 2.7.4.6)
OE2679R	0.5	1.4	0.1	2.16E-10	rpl21R	TL	ribosomal protein L21.eR
OE2698R	0.5	1.4	0.2	4.77E-08	-	CHY	conserved hypothetical protein
OE2712R	0.6	1.5	0.3	1.12E-06	-	SIG	probable signal-transducing histidine kinase
OE2728R	0.5	1.4	0.3	5.16E-06	gdhA2	AA	glutamate dehydrogenase (EC 1.4.1)
OE2776F	0.4	1.3	0.1	4.03E-09	lrpA2	REG	probable transcription regulator
OE2853R	0.5	1.4	0.2	6.19E-07	mtfK2	MIS	FKBP-type peptidylprolyl isomerase (EC 5.2.1.8)
OE2857F	0.5	1.4	0.1	1.83E-09	mat	MIS	methionine adenosyltransferase (EC 2.5.1.6)
OE3036F	0.6	1.5	0.2	1.14E-07	glyA	AA	glycine hydroxymethyltransferase (EC 2.1.2.1)
OE3063F	0.4	1.3	0.3	4.60E-05	asd	AA	aspartate-semialdehyde dehydrogenase (EC 1.2.1.11)
OE3106F	0.5	1.4	0.2	1.82E-08	bop	EM	bacteriorhodopsin
OE3107F	0.7	1.6	0.1	5.85E-12	-	CHY	conserved hypothetical protein
OE3114R	1.0	2.0	0.1	3.33E-15	-	CHY	conserved hypothetical protein
OE3154R	0.7	1.6	0.1	2.61E-11	-	MIS	probable protein acetyltransferase
OE3168R	0.9	1.9	0.2	3.13E-11	-	GEN	pyridoxal phosphate-dependent aminotransferase (homolog to acetylornithine aminotransferase)
OE3246F	0.4	1.3	0.2	1.99E-07	cbiP	COM	cobyric acid synthase (EC 6.3.1)
OE3322F	0.4	1.3	0.2	4.12E-06	-	CHY	conserved hypothetical protein
OE3388F	1.0	2.0	0.3	7.05E-10	rpl3	TL	ribosomal protein L3
OE3389F	1.1	2.2	0.3	2.89E-10	rpl4R	TL	ribosomal protein L4.eR
OE3390F	1.5	2.8	0.2	4.63E-13	rpl23	TL	ribosomal protein L23
OE3392F	0.7	1.6	0.1	1.74E-11	rpl2	TL	ribosomal protein L2
OE3393F	1.2	2.2	0.4	6.88E-09	rps19	TL	ribosomal protein S19
OE3395F	1.5	2.8	0.1	0	rps3	TL	ribosomal protein S3
OE3398F	1.4	2.7	0.2	9.99E-15	-	CHY	conserved hypothetical protein
OE3402F	1.2	2.2	0.1	3.46E-14	rpl14	TL	ribosomal protein L14
OE3404F	0.7	1.6	0.1	1.47E-12	rpl24	TL	ribosomal protein L24
OE3405F	1.6	3.0	0.1	0	rps4R	TL	ribosomal protein S4.eR
OE3407F	1.5	2.9	0.3	2.04E-11	rpl5	TL	ribosomal protein L5
OE3410F	1.4	2.6	0.4	1.43E-09	rps8	TL	ribosomal protein S8
OE3411F	1.6	3.0	0.4	1.06E-10	rpl6	TL	ribosomal protein L6
OE3414F	1.5	2.9	0.1	0	rpl18	TL	ribosomal protein L18
OE3416F	1.8	3.4	0.2	1.49E-14	rpl30	TL	ribosomal protein L30

OE3462R	0.5	1.4	0.2	2.43E-06	-	HY	hypothetical protein
OE3541R	1.5	2.8	0.4	9.42E-10	hsp20F	CHP	hsp20-type molecular chaperone
OE3542R	1.7	3.2	0.3	5.63E-13	-	GEN	glutamine-rich alkaline protein
OE3544F	1.1	2.1	0.2	4.60E-12	-	MIS	probable ferredoxin-NAD+ reductase (EC 1.18.1.3)
OE3560F	0.5	1.4	0.2	4.63E-08	idiA	LIP	isopentenyl-diphosphate delta-isomerase (EC 5.3.3.2)
OE3580R	0.8	1.7	0.2	8.08E-09	thrS	TL	threoninetRNA ligase (EC 6.1.1.3)
OE3616F	0.5	1.4	0.3	3.00E-05	deoC	CIM	deoxyribose-phosphate aldolase (EC 4.1.2.4)
OE3706F	0.5	1.4	0.2	1.08E-08	-	CHY	conserved hypothetical protein
OE3708R	0.8	1.7	0.4	2.67E-06	trh5	REG	probable transcription regulator
OE3710R	0.4	1.3	0.3	3.26E-05	trkA6	GEN	trkA domain protein
OE3718F	0.6	1.5	0.4	2.51E-05	ftsZ3	MIS	cell division protein ftsZ
OE3744R	0.6	1.5	0.2	7.32E-10	-	CE	probable cell surface glycoprotein
OE3762R	0.4	1.3	0.2	1.13E-05	glpK	CIM	glycerol kinase (EC 2.7.1.30)
OE3798R	0.4	1.3	0.1	1.71E-08	-	CHY	conserved hypothetical protein
OE3899R	1.0	2.0	0.5	8.58E-07	mutT	MIS	probable ADP-ribose pyrophosphatase (EC 3.6.1.13)
OE3901R	1.2	2.3	0.2	1.27E-12	hat2	MIS	probable N-acetyltransferase (EC 2.3.1)
OE3908R	0.8	1.8	0.3	4.11E-08	phnC	TP	phosphate/phosphonate)
OE3922R	1.1	2.1	0.1	1.79 E-10	gInA	AA	glutamate—ammonia ligase (EC 6.3.1.2)
OE3923F	5.5	45.9	0.2	0	Irp	REG	global transcription regulator
OE3946F	0.8	1.8	0.4	5.30E-07	-	CHY	conserved hypothetical protein
OE3951R	04	13	0.3	4 80E-05	ant2	NUM	purine phosphoribosyltransferase (adenine phosphoribosyltransferase (EC
OE4012F	0.4	1.3	0.3	1.52E-05	-	CHY	conserved hypothetical protein
OE4069R	0.5	1.4	0.2	8.39E-07	-	HY	hypothetical protein
OE4073R	0.9	1.9	0.1	3.49E-14	hcpB	EM	halocvanin hcpB
OE4197F	0.6	1.5	0.3	5.50E-07	-	СНҮ	conserved hypothetical protein
OE4258F	0.5	1.4	0.2	3.79E-07	hdrD	GEN	iron-sulfur protein (4Fe-4S)
OE4300R	0.5	1.5	0.3	2.28E-06	-	CHY	conserved hypothetical protein
OE4301P	0.0	1.9	0.1	1 675 13	donE1	тр	ABC-type transport system ATP-binding protein (probable substrate
0L4301K	0.9	1.0	0.1	1.07 E-15	аррі і	IF	ABC-type transport system ATP-binding protein (probable substrate
OE4302R	0.9	1.9	0.3	3.57E-09	dppD1	TP	dipeptide/oligopeptide/nickel) ABC-type transport system permease protein (probable substrate
OE4303R	0.9	1.8	0.3	5.23E-09	dppC1	TP	dipeptide/oligopeptide/nickel)
OE4307F	0.6	1.5	0.2	1.06E-09	glyS	TL	glycinetRNA ligase (EC 6.1.1.14)
OE4311F	1.7	3.3	0.5	8.45E-10	dppA3	TP	ABC-type transport system periplasmic substrate-binding protein (probable substrate dipeptide/oligopeptide/nickel)
OE4316F	1.3	2.5	0.4	9.92E-10	dppC3	TP	ABC-type transport system permease protein

	1	1	1	1	1		
OE4320R	0.8	1.7	0.4	1.68E-06	-	CHY	conserved hypothetical protein
OE4336R	0.7	1.7	0.3	4.89E-07	nosY	TP	ABC-type transport system permease protein (probable substrate copper) ABC-type transport system ATP-binding protein (probable substrate
OE4339R	1.0	2.0	0.3	2.41E-09	nosF	TP	copper)
OE4365F	0.4	1.3	0.2	2.52E-07	-	CHY	conserved hypothetical protein
OE4374R	0.5	1.4	0.1	4.85E-10	-	CHY	conserved hypothetical protein
OE4376R	0.8	1.7	0.3	8.03E-07	-	CHY	conserved hypothetical protein
OE4380F	0.6	1.5	0.1	4.30E-11	orc7	CP	cdc6-type chromosome replication protein
OE4418R	0.7	1.6	0.4	1.39E-05	-	HY	hypothetical protein
OE4419R	0.6	1.5	0.2	4.15E-10	argH	AA	argininosuccinate lyase (EC 4.3.2.1)
OE4424R	1.7	3.3	0.3	6.29E-13	rad3b	GEN	DNA repair helicase homolog
OE4450R	0.7	1.6	0.1	6.04E-14	srp54	SEC	signal recognition particle 54K protein
OE4492F	0.6	1.5	0.3	1.52E-06	-	CHY	conserved hypothetical protein
OE4551F	0.7	1.7	0.2	7.50E-11	dppA2	TP	ABC-type transport system periplasmic substrate-binding protein (probable substrate dipeptide/oligopeptide/nickel) ABC-type transport system permease protein (probable substrate
OE4552F	1.0	2.0	0.2	1.42E-11	dppB2	TP	dipeptide/oligopeptide/nickel)
OE4601F	0.7	1.6	0.3	8.88E-07	-	CHY	conserved hypothetical protein
OE4636F	0.4	1.3	0.3	3.02E-05	-	CHY	conserved hypothetical protein
OE4650R	0.5	1.4	0.3	1.07E-05	-	HY	hypothetical protein
OE4651F	1.2	2.4	0.3	5.25E-10	-	CIM	probable ribose-1
OE4654F	1.4	2.7	0.3	8.08E-11	thiDN	COM	phosphomethylpyrimidine kinase (EC 2.7.4.7) / thiamin biosynthesis protein thiN
OE4667R	0.6	1.5	0.4	4.06E-05	-	TP	ABC-type transport system ATP-binding protein
OE4718F	0.6	1.5	0.4	1.10E-05	vacB	GEN	ribonuclease R homolog
OE4735R	0.7	1.6	0.4	1.93E-05	rps7	TL	ribosomal protein S7
OE4738R	0.8	1.7	0.1	3.15E-14	nusA	TC	probable transcription termination factor nusA
OE4739R	0.8	1.7	0.1	6.51E-14	rpoA2	тс	DNA-directed RNA polymerase (EC 2.7.7.6) subunit A" (subunit C)
OE4740R	1.2	2.2	0.3	1.39E-10	rpoA1	тс	DNA-directed RNA polymerase (EC 2.7.7.6) subunit A' (subunit A)
OE4742R	0.5	1.4	0.2	4.97E-07	rpoB2	тс	DNA-directed RNA polymerase (EC 2.7.7.6) subunit B"
OE4748F	0.9	1.8	0.5	5.45E-06	-	CHY	conserved hypothetical protein
OE4759F	0.6	1.5	0.3	8.06E-07	csg	CE	major cell surface glycoprotein
OE5090F	0.4	1.3	0.2	6.35E-08	-	HY	hypothetical protein
OE5116R	0.5	1.4	0.2	5.33E-08	gvpJ2	GEN	gas-vesicle operon protein gvpJ2
OE5119R	0.4	1.3	0.2	1.51E-07	gvpH2	GEN	gas-vesicle operon protein gvpH2
OE5186R	0.5	1.4	0.1	1.56E-09	perA	MIS	catalase (EC 1.11.1.6) (including: peroxidase (EC 1.11.1.7))
OE5200R	0.5	1.4	0.2	3.61E-08	gltP	TP	glutamate/aspartate transport protein
OE5204R	0.8	1.7	0.3	1.82E-07	arcD	TP	arginine/ornithine antiporter

	-		-				
OE5294R	0.6	1.5	0.2	1.23E-07	-	HY	hypothetical protein
OE7022R	0.5	1.4	0.2	4.68E-09	gvpM1	GEN	gas-vesicle operon protein gvpM1
OE7024R	0.5	1.4	0.1	3.08E-10	gvpK1	GEN	gas-vesicle operon protein gvpK1
OE7033R	0.7	1.6	0.4	1.24E-05	gvpD1	REG	regulatory protein gvpD
OE7159R	0.6	1.5	0.2	1.07E-08	-	ISH	transposase (ISH7)

Reprimierten Gene in *†lrp*

Reprimierter	Reprimierten Gene in $\uparrow lrp$											
ID	log2	xfach	stabw	p-Wert	Gen	Funktionsklasse	Genname					
OE1029R	-0.5	-1.4	0.2	1.95E-07	-	HY	hypothetical protein					
OE1031F	-0.6	-1.5	0.1	1.15E-10	-	ISH	transposase (ISH10)					
OE1036F	-0.5	-1.4	0.3	1.03E-05	-	HY	hypothetical protein					
OE1059R	-0.4	-1.4	0.1	5.28E-11	-	CHY	conserved hypothetical protein (nonfunctional)					
OE1070R	-0.7	-1.6	0.4	3.72E-06	-	ISH	IS1341-type transposase (TCE32)					
OE1071F	-0.5	-1.4	0.2	1.29E-08	-	ISH	transposase (ISH4)					
OE1081R	-1.6	-3.0	0.2	2.95E-14	gth6	GEN	probable glycosyltransferase					
OE1083R	-1.3	-2.4	0.7	4.57E-06	-	ISH	transposase (ISH3)					
OE1162R	-0.8	-1.7	0.3	1.63E-08	cspD1	GEN	probable cold shock protein					
0E1231R	-0.6	-1.5	0.3	2.74E-07	-	ISH	insertion element protein (ISH2)					
OE1236F	-0.6	-1.5	0.2	1.86E-07	-	CHY	conserved hypothetical protein					
OE1277F	-0.4	-1.3	0.1	4.16E-10	trxA3	EM	thioredoxin					
0E1442R	-0.7	-1.7	0.3	7.47E-07	-	CHY	conserved hypothetical protein					
OE1506R	-0.5	-1.5	0.2	2.83E-07	-	ISH	transposase (ISH8)					
OE1538F	-0.5	-1.4	0.2	2.77E-07	-	-	[del] spurious ORF					
OE1620R	-0.9	-1.9	0.1	2.83E-13	purNH	NUM	phosphoribosylglycinamide formyltransferase (EC 2.1.2.2)					
OE1651F	-0.6	-1.5	0.3	1.14E-06	-	GEN	ribosomal protein S10 homolog					
OE1806R	-0.7	-1.6	0.3	1.40E-07	-	TP	TRAP-type transport system periplasmic substrate-binding protein					
OE1821R	-0.4	-1.3	0.2	7.04E-06	rpl36aR	TL	ribosomal protein L36a.eR (HLA)					
OE1887F	-0.6	-1.5	0.3	9.48E-06	-	CHY	conserved hypothetical protein					
OE1978R	-0.5	-1.4	0.3	1.80E-05	-	CHY	conserved hypothetical protein					
OE2012R	-0.7	-1.6	0.3	3.27E-06	-	CHY	conserved hypothetical protein					
OE2044F	-0.5	-1.4	0.2	4.56E-07	-	GEN	probable heavy metal binding protein					
OE2084R	-0.8	-1.7	0.5	2.97E-05	tfbB	TC	transcription initiation factor TFB					
OE2126F	-0.5	-1.4	0.2	4.77E-09	-	GEN	homolog to NAD kinase					
OE2199F	-1.0	-2.0	0.4	2.65E-07	-	GEN	family)					
OE2273F	-0.4	-1.3	0.1	7.75E-10	-	CHY	conserved hypothetical protein					
OE2289F	-0.6	-1.5	0.2	1.62E-09	-	CHY	conserved hypothetical protein					

196

i				l .	1	i i	
OE2466F	-0.6	-1.5	0.3	1.87E-06	-	HY	hypothetical protein
OE2515F	-1.0	-2.0	0.6	6.96E-06	-	CHY	conserved hypothetical protein
OE2521R	-0.7	-1.6	0.1	3.28E-13	-	CHY	conserved hypothetical protein
OE2580F	-0.5	-1.4	0.1	8.30E-10	-	CHY	conserved hypothetical protein
OE2740F	-1.1	-2.2	0.6	4.02E-06	-	CHY	conserved hypothetical protein
OE2808F	-0.7	-1.6	0.3	1.85E-06	-	CHY	conserved hypothetical protein
OE2813R	-0.4	-1.3	0.2	2.68E-07	-	CHY	conserved hypothetical protein
OE2872F	-0.8	-1.7	0.2	6.31E-09	-	CHY	conserved hypothetical protein
OE2874F	-0.6	-1.5	0.1	3.95E-11	-	CHY	conserved hypothetical protein
OE2875R	-0.7	-1.6	0.3	7.83E-07	-	HY	hypothetical protein
OE2900F	-0.7	-1.6	0.1	2.97E-11	-	CHY	conserved hypothetical protein
OE2924R	-0.9	-1.8	0.4	2.73E-06	maoC3	GEN	maoC family protein
OE2945F	-0.6	-1.5	0.1	6.95E-12	ocd2	AA	ornithine cyclodeaminase (EC 4.3.1.12)
OE3008F	-1.0	-2.0	0.4	1.06E-07	msrB	MIS	peptide methionine sulfoxide reductase (R-form specific)
OE3028R	-1.2	-2.3	0.2	9.81E-12	-	CHY	conserved hypothetical protein
OE3067F	-0.5	-1.4	0.2	7.43E-07	-	HY	hypothetical protein
OE3084F	-0.5	-1.4	0.1	5.45E-10	-	CHY	conserved hypothetical protein
OE3097R	-0.7	-1.6	0.4	2.94E-06	-	HY	hypothetical protein
OE3100F	-1.2	-2.3	0.6	2.59E-06	blp	GEN	bacterioopsin-linked protein blp
OE3139R	-0.5	-1.4	0.1	5.91E-10	purF	NUM	amidophosphoribosyltransferase (EC 2.4.2.14)
OE3187R	-0.5	-1.4	0.2	3.66E-08	-	GEN	upsA domain protein
OE3229R	-0.6	-1.5	0.1	1.27E-10	hmcA	COM	magnesium chelatase (EC 6.6.1.1) (protoporphyrin IX magnesium-chelatase)
OE3249F	-0.5	-1.4	0.2	1.19E-07	-	GEN	conserved cobalamin operon protein
OE3268F	-0.7	-1.6	0.2	1.88E-09	-	CHY	conserved hypothetical protein
OE3312R	-0.8	-1.7	0.3	2.98E-08	-	MIS	probable oxidoreductase (aldo-keto reductase family protein)
OE3319R	-0.6	-1.5	0.2	1.30E-09	cbiM	COM	cbiM protein
OE3582F	-0.6	-1.5	0.2	4.44E-09	cspD2	GEN	probable cold shock protein
OE3728R	-0.8	-1.8	0.4	4.21E-07	-	CHY	conserved hypothetical protein
OE3730R	-0.8	-1.7	0.4	4.20E-06	-	CHY	conserved hypothetical protein
OE3731R	-0.9	-1.8	0.3	2.70E-08	purQ	NUM	phosphoribosylformylglycinamidine synthase (EC 6.3.5.3) component I
OE3732R	-1.1	-2.1	0.3	5.33E-09	purS	NUM	phosphoribosylformylglycinamidine synthase (EC 6.3.5.3) component purS
OE3822R	-0.5	-1.4	0.3	1.33E-05	-	CHY	conserved hypothetical protein
OE3930R	-0.6	-1.6	0.3	8.90E-07	-	MIS	ribonuclease
OE3942R	-0.5	-1.4	0.2	9.67E-08	-	CHY	conserved hypothetical protein
OE3949R	-0.6	-1.5	0.2	1.00E-08	grx1	MIS	probable glutaredoxin
OE3983R	-0.5	-1.4	0.1	1.00E-11	crtY	LIP	lycopene cyclase (EC 1.14)
OE3989R	-0.6	-1.5	0.4	2.05E-05	atpK	EM	A-type ATP synthase (EC 3.6.3.14) subunit K
OE4043R	-0.7	-1.6	0.1	1.55E-15	-	HY	hypothetical protein
OE4187R	-0.7	-1.7	0.1	1.49E-14	-	GEN	probable DNA-binding protein

OE4230F	-0.8	-1.8	0.1	5.79E-13	yuxL	MIS	probable acylaminoacyl-peptidase (EC 3.4.19.1)
OE4494R	-0.4	-1.3	0.2	2.03E-07	-	-	[del] spurious ORF
OE4561F	-1.2	-2.3	0.3	3.53E-10	-	CHY	conserved hypothetical protein
OE4562R	-0.6	-1.5	0.2	1.97E-08	entB	COM	probable isochorismatase (EC 3.3.2.1)
OE4571R	-0.7	-1.6	0.3	1.34E-07	рерВ3	CP	probable leucyl aminopeptidase (EC 3.4.11.1)
OE4607R	-0.4	-1.4	0.2	3.89E-06	flaG2	MOT	flaG2 protein (homolog to fla cluster protein flaG)
OE4612F	-1.3	-2.4	0.4	8.41E-09	hly	MIS	serine protease halolysin R4 (EC 3.4.21)
OE4648F	-0.5	-1.4	0.3	6.65E-06	trxA2	EM	thioredoxin
OE4670F	-1.1	-2.2	0.6	3.62E-06	-	CHY	conserved hypothetical protein
OE4707R	-0.4	-1.3	0.2	3.87E-06	-	CHY	conserved hypothetical protein
OE5025F	-0.6	-1.5	0.1	2.47E-11	-	CHY	conserved hypothetical protein (nonfunctional)
OE5048F	-0.6	-1.5	0.2	4.21E-07	-	CHY	conserved hypothetical protein
OE5071F	-0.5	-1.4	0.3	5.83E-06	-	GEN	PQQ repeat protein
OE5125F	-1.0	-2.0	0.3	7.49E-09	gvpA2	CP	gas-vesicle protein gvpA2
OE5147R	-0.5	-1.4	0.1	3.61E-09	-	TP	ABC-type transport system periplasmic substrate-binding protein
OE5160F	-1.0	-1.9	0.2	5.97E-13	gldA1	CIM	glycerol dehydrogenase (EC 1.1.1.6)
OE5174R	-0.8	-1.7	0.2	2.12E-09	-	CHY	conserved hypothetical protein
OE5234R	-0.7	-1.7	0.2	6.41E-09	-	CHY	conserved hypothetical protein (nonfunctional)
OE5243F	-1.4	-2.7	0.6	2.91E-07	car	SIG	transducer protein car
OE5246R	-1.4	-2.6	0.3	8.58E-12	-	TP	ABC-type transport system permease protein
OE5248F	-0.6	-1.5	0.1	3.83E-11	-	CHY	conserved hypothetical protein
OE5260F	-0.8	-1.8	0.1	1.55E-15	-	ISH	transposase (ISH10)
OE5340R	-0.7	-1.6	0.3	7.04E-07	-	ISH	transposase (ISH8) (nonfunctional)
OE5359R	-1.4	-2.7	0.8	8.51E-06	-	ISH	transposase (ISH3)
OE5363R	-1.1	-2.1	0.5	1.60E-06	-	ISH	insertion element protein (ISH2)
OE5393F	-1.1	-2.1	0.5	1.60E-06	-	ISH	insertion element protein (ISH2)
OE5407F	-0.8	-1.8	0.1	1.10E-12	-	ISH	transposase (ISH8)
OE5418F	-1.2	-2.2	0.7	1.04E-05	-	ISH	insertion element protein (ISH2)
OE5433F	-1.3	-2.4	0.7	1.06E-05	-	ISH	transposase (ISH3)
OE5447R	-0.7	-1.6	0.4	1.58E-05	-	-	[del] spurious ORF
OE6040R	-1.4	-2.5	0.2	6.48E-13	-	CHY	conserved hypothetical protein
OE6049R	-0.8	-1.8	0.3	4.09E-08	-	CHY	conserved hypothetical protein
OE6058F	-0.8	-1.7	0.4	8.28E-07	-	-	[del] spurious ORF
OE6063F	-0.5	-1.4	0.3	2.22E-06	IctP	TP	probable L-lactate permease
OE6070R	-0.5	-1.4	0.2	3.89E-07	-	CHY	conserved hypothetical protein
OE6071R	-0.8	-1.8	0.3	5.70E-08	tfbE	TC	transcription initiation factor TFB
OE6075R	-0.7	-1.6	0.3	1.67E-06	-	ISH	transposase (ISH8)
OE6085R	-0.6	-1.5	0.1	4.91E-13	-	CHY	conserved hypothetical protein
OE6087R	-0.7	-1.6	0.4	4.24E-06	-	CHY	conserved hypothetical protein

OE6088R	-0.6	-1.5	0.3	7.52E-07	-	-	[del] spurious ORF
OE6089R	-1.2	-2.3	0.4	1.79E-08	-	ISH	IS1341-type transposase (TCE32)
OE6093F	-0.5	-1.4	0.1	2.67E-09	phzF	MIS	probable phenazine biosynthesis protein
OE6099F	-1.4	-2.7	0.2	9.33E-15	-	HY	hypothetical protein
OE6107R	-0.5	-1.4	0.2	4.62E-07	-	ISH	transposase (ISH11)
OE6110R	-0.7	-1.7	0.3	1.30E-07	-	-	[del] spurious ORF
OE6111R	-0.7	-1.6	0.2	1.14E-08	-	-	[del] spurious ORF
OE6114R	-0.7	-1.6	0.1	5.41E-12	-	CHY	conserved hypothetical protein
OE6118F	-2.3	-4.9	0.4	1.71E-12	-	HY	hypothetical protein
OE6120F	-1.3	-2.4	0.4	2.27E-09	-	HY	hypothetical protein
OE6126R	-1.1	-2.2	0.6	2.46E-06	-	ISH	insertion element protein (ISH2)
OE6130F	-2.4	-5.4	0.4	2.61E-12	-	CHY	conserved hypothetical protein
OE6133R	-0.9	-1.9	0.1	2.44E-14	-	ISH	transposase (ISH10)
OE6165R	-1.3	-2.4	0.7	7.13E-06	-	ISH	transposase (ISH3)
OE6353F	-1.2	-2.2	0.6	3.73E-06	-	ISH	insertion element protein (ISH2)
OE7001R	-0.4	-1.3	0.3	4.58E-05	-	CHY	conserved hypothetical protein
OE7008F	-0.7	-1.6	0.4	5.87E-06	-	HY	hypothetical protein (encoded by ISH7/ISH24 subtype 1)
OE7014F	-1.0	-2.0	0.7	4.03E-05	repH	RRR	plasmid replication protein repH
OE7019F	-0.8	-1.7	0.1	9.89E-12	-	ISH	transposase (ISH8)
OE7020F	-0.4	-1.3	0.2	7.38E-06	-	HY	hypothetical protein
OE7052F	-1.3	-2.4	0.3	2.16E-10	-	ISH	transposase (ISH5)
OE7054R	-0.6	-1.5	0.1	1.29E-12	-	CHY	conserved hypothetical protein
OE7056F	-1.3	-2.4	0.4	1.37E-08	-	-	[del] spurious ORF
OE7060R	-0.8	-1.8	0.5	9.89E-06	-	ISH	insertion element protein (ISH2)
OE7063R	-0.6	-1.6	0.3	1.92E-06	-	-	[del] spurious ORF
OE7064R	-0.8	-1.7	0.2	4.11E-10	-	HY	hypothetical protein
OE7071F	-0.8	-1.8	0.1	3.77E-15	-	GEN	rhodanese domain protein / probable metallo-beta-lactamase family hydrolase
OE7077F	-0.4	-1.4	0.3	3.78E-05	-	GEN	rhodanese domain protein / probable metallo-beta-lactamase family hydrolase
OE7082F	-0.4	-1.4	0.2	3.27E-07	-	CHY	conserved hypothetical protein
OE7089R	-0.8	-1.7	0.1	2.22E-16	-	CHY	conserved hypothetical protein
OE7092F	-0.7	-1.6	0.3	1.92E-06	-	HY	hypothetical protein
OE7093R	-1.0	-2.0	0.3	1.67E-09	idiB1	LIP	isopentenyl-diphosphate delta-isomerase (EC 5.3.3.2)
OE7094F	-0.8	-1.8	0.1	3.02E-12	-	CHY	conserved hypothetical protein
OE7099R	-0.5	-1.4	0.1	4.06E-12	-	CHY	conserved hypothetical protein
OE7105F	-1.0	-2.0	0.3	1.10E-09	-	GEN	homolog to cell division control protein cdc6
OE7106F	-0.9	-1.9	0.5	2.93E-06	-	HY	hypothetical protein
OE7109R	-0.8	-1.8	0.4	2.58E-06	-	ISH	insertion element protein (ISH2)
OE7111F	-1.0	-2.0	0.1	5.77E-15	-	CHY	conserved hypothetical protein
OE7118R	-0.9	-1.9	0.3	1.04E-08	-	CHY	conserved hypothetical protein

0E7131R	-0.7	-1.6	0.2	6.95E-09	-	CHY	conserved hypothetical protein
OE7133F	-1.0	-2.0	0.2	7.01E-13	-	CHY	conserved hypothetical protein
0E7134R	-0.7	-1.7	0.3	4.11E-08	-	CHY	conserved hypothetical protein
OE7135R	-0.6	-1.5	0.2	2.86E-08	-	CHY	conserved hypothetical protein
OE7136R	-0.8	-1.8	0.3	1.32E-08	-	HY	hypothetical protein
OE7139R	-0.6	-1.5	0.2	3.66E-08	-	HY	hypothetical protein
OE7141R	-0.5	-1.4	0.3	4.80E-05	-	GEN	multidrug resistance transport protein homolog
OE7143R	-0.6	-1.5	0.2	1.93E-07	-	CHY	conserved hypothetical protein
0E7144R	-0.9	-1.9	0.3	4.76E-09	-	CHY	conserved hypothetical protein
OE7146R	-0.6	-1.5	0.1	1.78E-10	tfbl1b	TC	transcription initiation factor TFB (nonfunctional)
OE7147F	-1.0	-2.0	0.4	2.85E-07	-	ISH	transposase (ISH8)
OE7155R	-0.6	-1.5	0.2	1.77E-09	-	CHY	conserved hypothetical protein
OE7161R	-0.8	-1.7	0.4	3.68E-06	-	CHY	conserved hypothetical protein
OE7166F	-0.5	-1.4	0.2	4.03E-07	-	CHY	conserved hypothetical protein
OE7169F	-0.5	-1.4	0.3	4.49E-05	-	ISH	transposase (ISH3) (nonfunctional)
OE7170R	-0.8	-1.7	0.2	2.11E-09	-	ISH	transposase (ISH4)
OE7171F	-0.6	-1.5	0.3	6.78E-06	-	HY	hypothetical protein
0E7174R	-0.6	-1.5	0.3	2.25E-06	-	CHY	conserved hypothetical protein
OE7177F	-0.8	-1.7	0.2	1.10E-10	-	CHY	conserved hypothetical protein
OE7178F	-0.6	-1.5	0.2	5.22E-09	repl1	RRR	plasmid replication protein repl
OE7180F	-0.6	-1.5	0.2	3.96E-10	-	HY	hypothetical protein
OE7185F	-1.0	-2.1	0.4	7.96E-08	-	MIS	ATP-dependent helicase (EC 3.6.1)
OE7186F	-1.0	-2.0	0.5	7.59E-07	tbpC1	TC	probable TATA-binding transcription initiation factor
OE7189F	-0.7	-1.6	0.4	4.46E-06	-	CHY	conserved hypothetical protein
OE7190R	-1.6	-3.0	0.1	2.22E-16	-	HY	hypothetical protein
OE7191F	-1.0	-1.9	0.1	1.46E-13	-	-	[del] spurious ORF
OE7193R	-0.9	-1.9	0.6	4.94E-05	-	-	[del] spurious ORF
OE7194F	-1.1	-2.2	0.4	1.94E-08	repJ1	RRR	plasmid replication protein repJ
OE7198F	-0.8	-1.7	0.5	4.30E-05	-	ISH	transposase (ISH8)
OE7206F	-0.7	-1.7	0.4	2.90E-06	-	HY	hypothetical protein
OE7207F	-0.6	-1.5	0.3	2.60E-07	-	HY	hypothetical protein
OE7212R	-0.5	-1.5	0.2	7.86E-08	-	-	[del] spurious ORF
OE7215F	-0.7	-1.6	0.1	1.27E-14	-	CHY	conserved hypothetical protein
OE7216F	-0.5	-1.4	0.3	4.54E-06	-	CHY	conserved hypothetical protein
OE7220F	-0.8	-1.7	0.2	2.68E-10	-	HY	hypothetical protein
0E7224R	-0.9	-1.8	0.5	3.72E-06	-	ISH	insertion element protein (ISH2)
OE8047F	-0.8	-1.7	0.1	2.22E-15	-	CHY	conserved hypothetical protein

Induzierten Gene in $\Delta lrpA1$

	1		1	I	1	1	
ID	log2	xfach	stabw	p-Wert	Gen	Funktionsklasse	Genname
OE1156F	0.4	1.3	0.2	1.11E-08	hsp20A	CHP	hsp20-type molecular chaperone
OE1279R	0.5	1.4	0.3	9.22E-08	rpoeps	тс	DNA-directed RNA polymerase (EC 2.7.7.6) epsilon subunit
OE1405R	0.7	1.6	0.2	4.04E-11	-	CHY	conserved hypothetical protein
OE1765R	0.5	1.4	0.1	4.66E-15	pan2	CP	proteasome-activating nucleotidase
OE1781F	1	2.1	0.1	0	-	GEN	ATP-binding sufC-like protein
OE1782F	0.7	1.6	0.2	9.70E-12	-	GEN	sufB domain protein
OE1783F	0.9	1.8	0.1	0	-	GEN	sufB domain protein
OE1794R	0.9	1.8	0.2	9.10E-15	-	CHY	conserved hypothetical protein
OE1797R	1.3	2.5	0.3	4.11E-14	sirR	REG	transcription regulator sirR
OE2084R	0.5	1.4	0.2	7.58E-09	tfbB	TC	transcription initiation factor TFB
OE2281R	0.5	1.4	0.2	2.13E-10	tfbD	TC	transcription initiation factor TFB
OE2370R	0.5	1.4	0.2	8.45E-12	gufA	TP	transport protein (probable substrate zinc)
OE2618R	1	2	0.2	4.44E-16	-	CHY	conserved hypothetical protein
OE2619F	2.4	5.1	0.2	0	aspB3	AA	aminotransferase (EC 2.6.1.1))
OE2886R	0.4	1.3	0.2	2.57E-07	-	ISH	transposase (ISH1)
OE2906R	0.4	1.4	0.4	3.74E-05	sod2	MIS	superoxide dismutase (EC 1.15.1.1) 2
OE3008F	0.4	1.4	0.3	6.46E-07	msrB	MIS	peptide methionine sulfoxide reductase (R-form specific)
OE3136F	1.2	2.4	0.3	4.24E-13	-	CHY	conserved hypothetical protein
OE3500R	0.4	1.4	0.1	7.09E-12	nirGH	СОМ	heme biosynthesis protein nirGH
OE3659F	0.5	1.4	0.3	1.55E-07	-	CHY	conserved hypothetical protein
OE3815R	0.6	1.5	0.4	1.67E-06	-	CHY	conserved hypothetical protein
OE3901R	0.4	1.3	0.2	1.45E-08	hat2	MIS	probable N-acetyltransferase (EC 2.3.1)
OE4077F	0.5	1.4	0.2	3.00E-08	-	HY	hypothetical protein
OE4189F	1.1	2.2	0.4	4.13E-11	-	CHY	conserved hypothetical protein
OE4196R	0.4	1.3	0.3	7.94E-07	-	CHY	conserved hypothetical protein
OE4217R	0.5	1.4	0.3	6.99E-07	fdx	EM	ferredoxin (2Fe-2S)
OE4311F	0.7	1.7	0.2	2.88E-11	dppA3	TP	ABC-type transport system periplasmic substrate-binding protein (probable substrate dipeptide/oligopeptide/nickel)
OE4427R	1.3	2.5	0.9	3.84E-06	dpsA	MIS	ferritin
OE4563F	0.6	1.5	0.3	1.70E-08	-	CHY	conserved hypothetical protein
OE4613F	0.9	1.9	0.5	4.53E-08	acn	CIM	aconitate hydratase (EC 4.2.1.3)
OE4622F	0.5	1.4	0.3	3.11E-06	-	GEN	rhodanese domain protein

					1	1	1
OE4648F	0.4	1.4	0.2	1.47E-07	trxA2	EM	thioredoxin
OE4727R	0.8	1.7	0.4	8.77E-08	-	ISH	IS1341-type transposase (TCE31)
OE5048F	0.5	1.5	0.3	2.95E-08	-	CHY	conserved hypothetical protein
OE5083R	0.7	1.6	0.4	2.33E-06	hsp20E	CHP	hsp20-type molecular chaperone
OE5162D1F	0.6	1.5	0.4	2.00E-06	-	CHY	conserved hypothetical protein
OE5186R	1.3	2.4	0.2	0	perA	MIS	catalase (EC 1.11.1.6) (including: peroxidase (EC 1.11.1.7))
OE5268R	0.4	1.4	0.1	1.14E-13	-	TP	ABC-type transport system ATP-binding protein
OE6074R	0.6	1.5	0.1	9.01E-13	-	HY	hypothetical protein
OE6093F	0.4	1.3	0.2	2.34E-08	phzF	MIS	probable phenazine biosynthesis protein
OE6130F	2.7	6.7	0.7	2.71E-13	-	CHY	conserved hypothetical protein
OE6156F	0.9	1.9	0.3	2.04E-11	-	CHY	conserved hypothetical protein
OE6166R	0.5	1.4	0.3	2.19E-06	-	CHY	conserved hypothetical protein (nonfunctional)
OE7063A1R	0.4	1.4	0.3	2.17E-06	-	HY	hypothetical protein
OE7068R	0.7	1.6	0.5	5.49E-06	-	CHY	conserved hypothetical protein
OE7190R	0.6	1.5	0.3	2.19E-08	-	HY	hypothetical protein
OE7194F	0.5	1.4	0.2	2.17E-09	repJ1	RRR	plasmid replication protein repJ

Reprimierten Gene in $\Delta lrpA1$

ID	log2	xfach	stabw	p-Wert	Gen	Funktionsklasse	Genname
OE7043A1F	-2.4	-5.4	0.4	2.22E-16	-	CHY	conserved hypothetical protein
OE2621R	-1.7	-3.2	0.6	1.52E-10	lrpA1	REG	transcription regulator
OE7039F	-1.3	-2.5	0.7	6.86E-08	parA7	GEN	parA domain protein
OE5071F	-1.3	-2.4	0.7	6.68E-08	-	GEN	PQQ repeat protein
OE7042R	-1.2	-2.3	0.4	4.70E-11	-	SIG	probable signal-transducing histidine kinase / response regulator
OE6308F	-1	-2	0.5	2.73E-08	-	HY	hypothetical protein
OE7212B1F	-0.9	-1.9	0.3	3.98E-12	-	CHY	conserved hypothetical protein
OE7093R	-0.8	-1.8	0.2	1.62E-12	idiB1	LIP	isopentenyl-diphosphate delta-isomerase (EC 5.3.3.2)
OE3042F	-0.8	-1.7	0.7	4.04E-05	-	HY	hypothetical protein
OE3106F	-0.8	-1.7	0.3	5.64E-11	bop	EM	bacteriorhodopsin
OE7089R	-0.7	-1.7	0.3	6.17E-10	-	CHY	conserved hypothetical protein
OE7180F	-0.7	-1.6	0.3	3.37E-08	-	HY	hypothetical protein
OE1183F	-0.7	-1.6	0.1	6.00E-15	-	HY	hypothetical protein
OE3116F	-0.6	-1.5	0.2	5.90E-11	-	CHY	conserved hypothetical protein

			1		1	1	
OE3572R	-0.6	-1.5	0.2	9.52E-10	pyrG	NUM	CTP synthase (EC 6.3.4.2)
OE7038F	-0.6	-1.5	0.4	1.22E-05	gvpO1	GEN	gas-vesicle operon protein gvpO1
OE5204R	-0.6	-1.5	0.2	2.66E-12	arcD	TP	arginine/ornithine antiporter
OE3318R	-0.6	-1.5	0.3	1.74E-08	cbiN	TP	ABC-type transport system protein cbiN (probable substrate cobalt)
OE2385R	-0.5	-1.4	0.2	1.12E-10	flaF	MOT	fla cluster protein flaF
OE1919R	-0.5	-1.4	0.1	5.94E-13	-	CHY	conserved hypothetical protein
OE7141R	-0.5	-1.4	0.2	1.63E-08	-	GEN	multidrug resistance transport protein homolog
OE7037F	-0.5	-1.4	0.2	1.39E-08	gvpN1	GEN	gas-vesicle operon protein gvpN
OE2579F	-0.4	-1.3	0.1	9.40E-11	purA	NUM	adenylosuccinate synthase (EC 6.3.4.4)
OE3277R	-0.4	-1.3	0.1	2.58E-14	gcvH	AA	glycine cleavage system protein H
OE4114F	-0.4	-1.3	0.1	7.36E-13	oxdhB	AA	probable branched-chain amino acid dehydrogenase (EC 1.2.4) E1 component beta subunit

Induzierte Gene in *↑lrpA1*

	I	I	1		1	Eunktions	1
ID	log2	xfach	stabw	p-wert	Gen	klasse	Genname
OE1136F	0.5	1.4	0.1	7.26E-10	-	CHY	conserved hypothetical protein glyceraldehyde-3-phosphate dehydrogenase (NAD(P)) (phosphorylating)
OE1154F	0.7	1.6	0.2	8.41E-10	gapB	CIM	(EC 1.2.1.59)
OE1178F	0.5	1.5	0.3	2.48E-05	rmeR	MIS	type I site-specific deoxyribonuclease (EC 3.1.21.3) subunit rmeR
OE1221F	0.5	1.4	0.3	5.95E-06	aup	CP	histone deacetylase
OE1270F	0.6	1.5	0.2	5.64E-09	gdhA3	AA	glutamate dehydrogenase (NAD+) (EC 1.4.1.2)
OE1357F	1.3	2.5	0.4	2.85E-09	-	HY	hypothetical protein
OE1453F	0.5	1.4	0.2	3.10E-07	gtl4	GEN	probable glycosyltransferase
OE1462R	0.6	1.5	0.2	2.04E-07	-	COM	nicotinamide-nucleotide adenylyltransferase (EC 2.7.7.1)
OE1469F	0.5	1.4	0.2	7.58E-07	trpC	AA	indole-3-glycerol-phosphate synthase (EC 4.1.1.48)
OE1475F	0.5	1.5	0.3	1.34E-06	-	AA	3-dehydroquinate synthase (EC 4.2.3.4) type II
OE1496R	0.6	1.6	0.4	6.27E-06	metS	TL	methioninetRNA ligase (EC 6.1.1.10)
OE1515R	0.6	1.6	0.3	1.89E-06	smc	CP	chromosome segregation protein
OE1539F	0.4	1.4	0.2	3.81E-08	-	CHY	conserved hypothetical protein
OE1557R	0.4	1.4	0.2	2.08E-06	nusG	GEN	transcription antitermination protein homolog
OE1742R	0.4	1.4	0.1	7.29E-09	grpE	CHP	dnaJ/dnaK ATPase stimulator grpE
OE1782F	1.5	2.7	0.4	3.10E-09	-	GEN	sufB domain protein
OE1783F	1.0	2.0	0.4	3.84E-08	-	GEN	sufB domain protein
OE1785F	0.4	1.4	0.2	1.24E-06	-	CHY	conserved hypothetical protein
OE1794R	0.7	1.6	0.4	1.14E-05	-	CHY	conserved hypothetical protein
OE1797R	0.7	1.6	0.4	4.12E-06	sirR	REG	transcription regulator sirR
OE1799R	0.8	1.7	0.3	1.45E-08	-	TP	TRAP-type transport system permease protein
---------	-----	------	-----	----------	---------	-----	--
OE1807R	0.5	1.4	0.3	1.55E-05	thrC2	AA	threonine synthase (EC 4.2.3.1)
OE1862F	0.7	1.6	0.2	1.29E-09	ywaD	MIS	probable peptidase (EC 3.4.11)
OE1872R	0.5	1.4	0.2	1.27E-06	petD	EM	cytochrome bc1 complex (EC 1.10.2) cytochrome b/c subunit
OE1876R	1.0	2.0	0.2	3.38E-10	petA	EM	cytochrome bc1 complex (EC 1.10.2) Rieske iron-sulfur protein
OE1878R	0.6	1.6	0.4	7.23E-06	-	CHY	conserved hypothetical protein
OE1939F	0.4	1.3	0.1	3.67E-09	pccB1	LIP	propionyl-CoA carboxylase (EC 6.4.1.3) carboxyltransferase component
OE1954F	0.7	1.7	0.2	9.45E-09	nuoB	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit B
OE1957F	1.5	2.9	0.9	1.87E-05	nuoH	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit H
OE1958F	0.6	1.6	0.2	3.13E-09	nuol	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit I
OE1964F	1.1	2.2	0.5	1.22E-07	nuoL	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit L
OE1979R	0.6	1.5	0.1	5.25E-12	cox1A	EM	cox-type terminal oxidase (EC 1.9.3) subunit I
OE1984F	0.6	1.5	0.4	2.02E-05	cox3A	EM	cox-type terminal oxidase (EC 1.9.3) subunit III
OE2173F	0.4	1.4	0.1	3.43E-12	metB2	AA	cystathionine synthase/lyase (cystathionine gamma-synthase (EC 2.5.1.48)
OE2225F	1.1	2.2	0.4	3.78E-08	dmsB	EM	dimethylsulfoxide reductase (EC 1.8) subunit B (electron transfer protein)
OE2230F	1.0	2.0	0.7	3.92E-05	-	CHY	conserved hypothetical protein
OE2284F	0.5	1.4	0.2	5.31E-07	aatA	TL	aspartyl-tRNA(Asn) amidotransferase (EC 6.3.5) subunit A
OE2307F	0.5	1.4	0.3	4.11E-05	ndh	EM	probable NADH dehydrogenase (EC 1.6.99.3)
OE2370R	1.3	2.5	0.4	1.58E-08	gufA	TP	transport protein (probable substrate zinc)
OE2392R	0.5	1.4	0.2	8.96E-08	htr15	SIG	transducer protein htr15
OE2458R	1.0	1.9	0.4	1.65E-07	guaB	NUM	IMP dehydrogenase (EC 1.1.1.205)
OE2474R	0.4	1.3	0.2	1.61E-06	htrXIII	SIG	transducer protein htrXIII
OE2532R	0.5	1.4	0.2	1.71E-06	-	CHY	conserved hypothetical protein
OE2533F	0.9	1.9	0.6	3.36E-05	-	HY	hypothetical protein
OE2554R	0.6	1.5	0.3	7.24E-07	-	CHY	conserved hypothetical protein
OE2573F	0.6	1.5	0.3	2.70E-06	-	CHY	conserved hypothetical protein
OE2621R	4.6	24.4	1.0	3.17E-11	IrpA1	REG	transcription regulator
OE2627F	0.5	1.4	0.1	5.65E-11	rps13	TL	ribosomal protein S13
OE2631F	0.5	1.4	0.1	2.05E-13	rpoD	TC	DNA-directed RNA polymerase (EC 2.7.7.6) subunit D
OE2633F	1.0	2.0	0.4	6.46E-08	rpl13	TL	ribosomal protein L13
OE2635F	0.9	1.9	0.6	4.32E-05	rps9	TL	ribosomal protein S9
OE2637F	1.1	2.1	0.3	1.50E-09	rpoN	TC	DNA-directed RNA polymerase (EC 2.7.7.6) subunit N
OE2641F	0.5	1.5	0.2	1.87E-07	rps2	TL	ribosomal protein S2
OE2648F	0.5	1.4	0.2	1.36E-08	-	CHY	conserved hypothetical protein
OE2662F	0.6	1.5	0.3	5.16E-06	rpl7aR	TL	ribosomal protein L7a.eR/HS6
OE2664F	0.9	1.9	0.5	1.53E-06	rps28R	TL	ribosomal protein S28.eR
OE2697R	0.4	1.4	0.2	3.37E-08	cmo2	GEN	homolog to coenzyme PQQ synthesis protein E

		•			1	1	
OE2720R	0.7	1.6	0.3	1.28E-06	-	GEN	geranylgeranyl hydrogenase homolog
OE2728R	0.4	1.3	0.1	2.09E-09	gdhA2	AA	glutamate dehydrogenase (EC 1.4.1)
OE2818R	1.7	3.3	0.5	2.28E-09	-	HY	hypothetical protein
OE2850R	0.5	1.4	0.3	9.85E-06	-	CHY	conserved hypothetical protein
OE2857F	0.6	1.5	0.2	2.34E-08	mat	MIS	methionine adenosyltransferase (EC 2.5.1.6)
OE3018F	0.8	1.8	0.3	5.56E-08	-	CHY	conserved hypothetical protein
OE3036F	0.6	1.5	0.4	1.37E-05	glyA	AA	glycine hydroxymethyltransferase (EC 2.1.2.1)
OE3107F	0.6	1.5	0.1	1.74E-10	-	CHY	conserved hypothetical protein
OE3336R	1.2	2.3	0.6	3.27E-06	-	-	[del] spurious ORF
OE3343R	0.5	1.4	0.1	5.20E-11	-	HY	hypothetical protein
OE3389F	1.1	2.1	0.6	1.03E-05	rpl4R	TL	ribosomal protein L4.eR
OE3393F	0.7	1.6	0.4	4.20E-05	rps19	TL	ribosomal protein S19
OE3394F	1.2	2.4	0.7	1.27E-05	rpl22	TL	ribosomal protein L22
OE3395F	0.8	1.8	0.2	6.10E-11	rps3	TL	ribosomal protein S3
OE3398F	1.0	1.9	0.5	5.57E-06	-	CHY	conserved hypothetical protein
OE3402F	0.9	1.9	0.3	7.77E-09	rpl14	TL	ribosomal protein L14
OE3404F	0.6	1.5	0.1	1.49E-10	rpl24	TL	ribosomal protein L24
OE3405F	1.1	2.2	0.5	3.91E-07	rps4R	TL	ribosomal protein S4.eR
OE3407F	1.2	2.4	0.4	6.97E-09	rpl5	TL	ribosomal protein L5
OE3410F	0.8	1.7	0.2	2.42E-11	rps8	TL	ribosomal protein S8
OE3411F	1.3	2.4	0.6	1.12E-06	rpl6	TL	ribosomal protein L6
OE3413F	1.2	2.2	0.5	8.12E-07	rpl19R	TL	ribosomal protein L19.eR
OE3416F	1.1	2.2	0.7	1.45E-05	rpl30	TL	ribosomal protein L30
OE3417F	0.8	1.8	0.4	1.78E-06	rpl15	TL	ribosomal protein L15
OE3541R	0.5	1.4	0.3	7.08E-06	hsp20F	CHP	hsp20-type molecular chaperone
OE3706F	0.4	1.4	0.2	4.47E-07	-	CHY	conserved hypothetical protein
OE3787R	0.7	1.6	0.3	9.17E-07	secF	SEC	preprotein translocase subunit secF
OE3789R	0.5	1.4	0.1	2.74E-12	-	CHY	conserved hypothetical protein
OE3798R	0.6	1.5	0.3	1.28E-05	-	CHY	conserved hypothetical protein
OE3883R	0.5	1.4	0.1	1.46E-09	-	CHY	conserved hypothetical protein
OE3901R	0.8	1.7	0.5	1.48E-05	hat2	MIS	probable N-acetyltransferase (EC 2.3.1)
OE3908R	1.2	2.3	0.5	3.09E-07	phnC	TP	ABC-type transport system ATP-binding protein (probable substrate phosphate/phosphonate)
OE3951R	0.5	1.4	0.1	3.85E-12	apt2	NUM	purine phosphoribosyltransferase (adenine phosphoribosyltransferase (EC 2.4.2.7)
OE3973F	0.4	1.3	0.3	4.59E-05	arf1	TL	peptide chain release factor aRF-1
OE3984R	0.7	1.6	0.2	6.23E-10	atpB	EM	A-type ATP synthase (EC 3.6.3.14) subunit B
OE3985R	0.6	1.5	0.1	7.70E-13	atpA	EM	A-type ATP synthase (EC 3.6.3.14) subunit A

	1		1	1		1	
OE3986R	0.7	1.6	0.3	6.88E-07	atpF	EM	A-type ATP synthase (EC 3.6.3.14) subunit F
OE3987R	0.4	1.3	0.2	1.30E-05	atpC	EM	A-type ATP synthase (EC 3.6.3.14) subunit C probable multifunctional long-chain (E)-prenyl diphosphate synthase (EC
OE4010F	0.4	1.3	0.2	4.64E-06	idsA2	LIP	2.5.1)
OE4012F	0.6	1.6	0.3	3.00E-07	-	CHY	conserved hypothetical protein
OE4051R	0.5	1.4	0.3	6.86E-06	-	SIG	probable signal-transducing histidine kinase
OE4069R	0.6	1.5	0.2	1.06E-08	-	HY	hypothetical protein
OE4073R	0.5	1.4	0.2	3.92E-07	hcpB	EM	halocyanin hcpB probable branched-chain amino acid dehydrogenase (EC 1.2.4) alpha
OE4113F	0.4	1.3	0.3	3.53E-05	oxdhA1	AA	subunit
OE4144R	1.2	2.2	0.5	3.34E-07	-	CHY	conserved hypothetical protein
OE4157F	0.4	1.3	0.2	1.22E-05	trzA	MIS	probable chlorohydrolase
OE4204F	0.5	1.5	0.3	6.45E-06	mamA	AA	methylaspartate mutase (EC 5.4.99.1) small subunit
OE4258F	0.8	1.8	0.4	1.79E-06	hdrD	GEN	iron-sulfur protein (4Fe-4S)
OE4300R	0.5	1.5	0.2	2.74E-09	-	CHY	conserved hypothetical protein ABC-type transport system ATP-binding protein (probable substrate
OE4301R	0.8	1.7	0.3	2.81E-07	dppF1	TP	dipeptide/oligopeptide/nickel)
OE4302R	0.8	1.8	0.1	3.46E-13	dppD1	TP	dipeptide/oligopeptide/nickel) ABC-type transport system permease protein (probable substrate
OE4303R	0.9	1.9	0.3	3.60E-08	dppC1	TP	dipeptide/oligopeptide/nickel)
OE4316F	0.9	1.9	0.5	8.91E-06	dppC3	TP	ABC-type transport system permease protein
OE4320R	0.5	1.4	0.3	3.66E-06	-	CHY	conserved hypothetical protein
OE4380F	0.6	1.5	0.2	2.63E-09	orc7	CP	cdc6-type chromosome replication protein
OE4384R	0.5	1.4	0.2	2.27E-07	-	CHY	conserved hypothetical protein
OE4385F	0.6	1.5	0.3	1.61E-06	-	CHY	conserved hypothetical protein
OE4492F	0.5	1.4	0.3	3.58E-06	-	CHY	conserved hypothetical protein
OE4551F	0.8	1.8	0.1	2.81E-13	dppA2	TP	ABC-type transport system periplasmic substrate-binding protein (probable substrate dipeptide/oligopeptide/nickel)
OE4552F	0.8	1.8	0.3	6.44E-09	dppB2	TP	dipeptide/oligopeptide/nickel)
OE4572R	0.6	1.5	0.4	3.09E-05	valS	TL	valinetRNA ligase (EC 6.1.1.9)
OE4601F	0.5	1.4	0.3	3.19E-05	-	CHY	conserved hypothetical protein
OE4644R	0.4	1.3	0.2	9.59E-07	pdxT	COM	pyridoxine biosynthesis protein glutaminase component
OE4651F	0.9	1.9	0.4	6.80E-07	-	CIM	probable ribose-1 phosphomethylpyrimidine kinase (EC 2.7.4.7) / thiamin biosynthesis protein
OE4654F	1.3	2.4	0.8	2.12E-05	thiDN	COM	thiN
OE4667R	0.5	1.4	0.3	1.52E-05	-	TP	ABC-type transport system ATP-binding protein
OE4729R	0.9	1.9	0.2	5.81E-10	aef2	TL	translation elongation factor aEF-2
OE4739R	0.4	1.4	0.2	1.42E-06	rpoA2	TC	DNA-directed RNA polymerase (EC 2.7.7.6) subunit A" (subunit C)
OE4740R	0.7	1.7	0.3	6.15E-08	rpoA1	тс	DNA-directed RNA polymerase (EC 2.7.7.6) subunit A' (subunit A)
OE4742R	0.5	1.4	0.2	1.41E-07	rpoB2	тс	DNA-directed RNA polymerase (EC 2.7.7.6) subunit B"

OE4748F	1.0	2.0	0.2	3.35E-11	-	CHY
OE4753R	0.5	1.4	0.2	1.55E-07	-	GEN
OE5186R	1.3	2.5	0.2	1.71E-14	perA	MIS
OE6030R	0.8	1.8	0.3	1.13E-08	-	CHY
OE6062R	0.5	1.4	0.2	1.79E-06	-	CHY
OE7031R	0.6	1.5	0.3	1.77E-05	gvpF1	GEN
OE7065F	1.2	2.2	0.3	1.54E-10	cydA1	EM
OE7066F	0.9	1.9	0.2	5.23E-10	cydB1	EM
OE7110R	0.8	1.8	0.5	6.51E-06	-	CHY
OE7182F	0.6	1.6	0.4	9.53E-06	-	MIS

CHY	conserved hypothetical protein
BEN	transcription regulator homolog
MIS	catalase (EC 1.11.1.6) (including: peroxidase (EC 1.11.1.7))
CHY	conserved hypothetical protein
CHY	conserved hypothetical protein
BEN	gas-vesicle operon protein gvpF1
EM	cytochrome d ubiquinol oxidase (EC 1.10.3) subunit I
EM	cytochrome d ubiquinol oxidase (EC 1.10.3) subunit II
CHY	conserved hypothetical protein (nonfunctional)
MIS	probable restriction/modification enzyme

Reprimierten Gene in *\lrpA1*

	1		1		I	1	
ID	log2	xfach	stabw	p-Wert	Gen	Funktionsklasse	Genname
OE1063R	-0.5	-1.4	0.2	1.84E-07	-	HY	hypothetical protein
OE1067R	-0.7	-1.6	0.2	5.95E-09	-	CHY	conserved hypothetical protein
OE1073F	-1.1	-2.2	0.2	3.12E-11	-	ISH	IS200-type transposase (ISH12)
OE1083R	-0.5	-1.4	0.3	1.86E-06	-	ISH	transposase (ISH3)
OE1116F	-0.6	-1.5	0.3	5.32E-07	-	CHY	conserved hypothetical protein
OE1121F	-0.5	-1.5	0.4	3.42E-05	-	CHY	conserved hypothetical protein
OE1162R	-0.8	-1.7	0.4	1.69E-06	cspD1	GEN	probable cold shock protein
OE1187R	-0.9	-1.8	0.2	2.08E-09	-	-	[del] spurious ORF
OE1236F	-1.3	-2.4	0.4	1.06E-08	-	CHY	conserved hypothetical protein
OE1277F	-0.4	-1.4	0.2	5.34E-07	trxA3	EM	thioredoxin
OE1293F	-0.6	-1.5	0.2	7.57E-10	-	-	[del] spurious ORF
OE1448R	-0.8	-1.7	0.2	1.82E-09	-	CHY	conserved hypothetical protein
OE1582R	-0.8	-1.7	0.1	3.78E-12	-	CHY	conserved hypothetical protein
OE1651F	-0.6	-1.5	0.4	3.03E-05	-	GEN	ribosomal protein S10 homolog
OE1698R	-1.4	-2.6	0.9	4.42E-05	-	GEN	probable oxidoreductase (aldo-keto reductase family protein)
OE1775R	-1.1	-2.2	0.5	6.12E-07	-	CHY	conserved hypothetical protein
OE2081R	-0.5	-1.4	0.2	1.26E-06	tpc	MIS	RNA 3'-terminal phosphate cyclase (EC 6.5.1.4)
OE2084R	-1.3	-2.4	0.8	2.25E-05	tfbB	тс	transcription initiation factor TFB
OE2116R	-0.4	-1.3	0.1	1.73E-09	-	GEN	glutamate/valine-rich protein
OE2273F	-0.5	-1.4	0.2	3.94E-07	-	CHY	conserved hypothetical protein
OE2580F	-0.7	-1.6	0.4	7.93E-06	-	CHY	conserved hypothetical protein
OE2813R	-0.6	-1.5	0.4	1.14E-05	-	CHY	conserved hypothetical protein

					1		
OE2872F	-0.8	-1.7	0.5	1.35E-05	-	CHY	conserved hypothetical protein
OE2874F	-0.9	-1.9	0.3	8.48E-09	-	CHY	conserved hypothetical protein
OE2875R	-0.8	-1.7	0.2	8.94E-10	-	HY	hypothetical protein
OE2896R	-0.4	-1.3	0.2	1.58E-06	-	CHY	conserved hypothetical protein
OE2900F	-0.9	-1.9	0.3	6.90E-09	-	CHY	conserved hypothetical protein
OE2919R	-0.7	-1.6	0.3	8.83E-07	-	CHY	conserved hypothetical protein
OE3008F	-1.2	-2.2	0.7	1.54E-05	msrB	MIS	peptide methionine sulfoxide reductase (R-form specific)
OE3038F	-0.7	-1.6	0.2	5.14E-10	folD	COM	methenyltetrahydrofolate cyclohydrolase
OE3073R	-1.0	-2.1	0.6	1.05E-05	-	MIS	dodecin
OE3100F	-1.4	-2.7	0.6	4.97E-07	blp	GEN	bacterioopsin-linked protein blp
OE3207F	-1.3	-2.4	0.7	3.57E-06	cbiT	COM	precorrin-8W decarboxylase (EC 1)
OE3209F	-1.1	-2.1	0.7	2.66E-05	cbiL	COM	precorrin-2 C20-methyltransferase (EC 2.1.1.130)
OE3216F	-1.0	-2.0	0.4	1.41E-07	cbiH2	COM	precorrin-3B C17-methyltransferase (EC 2.1.1.131) 2
OE3237F	-0.5	-1.4	0.2	4.37E-07	cbiC	COM	precorrin-8X methylmutase (EC 5.4.1.2)
OE3268F	-0.6	-1.5	0.3	4.96E-06	-	CHY	conserved hypothetical protein
OE3585A1F	-0.4	-1.3	0.1	1.17E-08	-	HY	hypothetical protein
OE3688F	-0.5	-1.4	0.2	3.70E-08	-	CHY	conserved hypothetical protein
OE3731R	-1.5	-2.9	0.5	1.65E-08	purQ	NUM	phosphoribosylformylglycinamidine synthase (EC 6.3.5.3) component I
OE3732R	-1.5	-2.8	0.8	7.27E-06	purS	NUM	phosphoribosylformylglycinamidine synthase (EC 6.3.5.3) component purS
OE3766R	-1.3	-2.4	0.8	1.78E-05	-	HY	hypothetical protein
OE3815R	-1.0	-2.0	0.2	5.90E-12	-	CHY	conserved hypothetical protein
OE3879F	-0.6	-1.5	0.3	5.12E-06	-	CHY	conserved hypothetical protein
OE3949R	-0.7	-1.7	0.4	1.96E-05	grx1	MIS	probable glutaredoxin
OE3983R	-0.5	-1.4	0.2	2.50E-06	crtY	LIP	lycopene cyclase (EC 1.14)
OE4190F	-1.2	-2.3	0.6	1.04E-06	pmm2	CHM	phosphohexomutase (phosphoglucomutase (EC 5.4.2.2)
OE4292F	-0.4	-1.3	0.2	3.65E-06	-	CHY	conserved hypothetical protein
OE4561F	-1.4	-2.6	0.7	3.32E-06	-	CHY	conserved hypothetical protein
OE4562R	-0.7	-1.7	0.3	2.94E-07	entB	COM	probable isochorismatase (EC 3.3.2.1)
OE4571R	-0.6	-1.5	0.4	1.62E-05	рерВ3	CP	probable leucyl aminopeptidase (EC 3.4.11.1)
OE4612F	-1.2	-2.3	0.5	2.07E-07	hly	MIS	serine protease halolysin R4 (EC 3.4.21)
OE4619R	-0.8	-1.7	0.3	6.90E-08	idr1	GEN	iron-dependent transcription repressor homolog
OE4648F	-0.6	-1.5	0.3	1.12E-05	trxA2	EM	thioredoxin
OE4707R	-0.5	-1.4	0.2	4.90E-07	-	CHY	conserved hypothetical protein
OE5025F	-0.5	-1.4	0.1	9.00E-10	-	CHY	conserved hypothetical protein (nonfunctional)

			1				
OE5058F	-0.4	-1.4	0.1	4.39E-09	-	HY	hypothetical protein
OE5074R	-0.5	-1.4	0.3	6.91E-06	-	CHY	conserved hypothetical protein
OE5125F	-1.2	-2.3	0.8	3.40E-05	gvpA2	CP	gas-vesicle protein gvpA2
OE5178F	-0.7	-1.7	0.2	1.02E-10	-	CHY	conserved hypothetical protein
OE5233F	-0.4	-1.3	0.2	4.35E-07	-	ISH	transposase (ISH5)
OE5234R	-0.5	-1.4	0.4	4.33E-05	-	CHY	conserved hypothetical protein (nonfunctional)
OE5431R	-0.4	-1.3	0.2	5.97E-06	-	CHY	conserved hypothetical protein
OE5447R	-0.8	-1.7	0.2	9.86E-12	-	-	[del] spurious ORF
OE6020R	-0.6	-1.6	0.4	6.81E-06	-	HY	hypothetical protein
OE6033R	-0.8	-1.7	0.5	3.39E-05	-	HY	hypothetical protein
OE6049R	-0.7	-1.6	0.2	4.01E-08	-	CHY	conserved hypothetical protein
OE6089R	-0.8	-1.8	0.5	2.89E-05	-	ISH	IS1341-type transposase (TCE32)
OE6111R	-0.6	-1.5	0.2	5.20E-10	-	-	[del] spurious ORF
OE6114R	-1.4	-2.6	0.9	4.22E-05	-	CHY	conserved hypothetical protein
OE6118F	-2.2	-4.5	0.4	2.21E-11	-	HY	hypothetical protein
OE6120F	-1.0	-2.0	0.2	1.89E-10	-	HY	hypothetical protein
OE6130F	-2.7	-6.3	0.3	2.49E-14	-	CHY	conserved hypothetical protein
OE7014F	-0.7	-1.6	0.4	4.55E-06	repH	RRR	plasmid replication protein repH
OE7052F	-1.1	-2.2	0.4	1.26E-08	-	ISH	transposase (ISH5)
OE7056F	-2.0	-3.9	0.9	4.78E-07	-	-	[del] spurious ORF
OE7126R	-0.5	-1.5	0.2	7.37E-07	-	HY	hypothetical protein
OE7147F	-0.4	-1.3	0.1	2.74E-08	-	ISH	transposase (ISH8)
OE7155R	-0.7	-1.7	0.4	1.25E-06	-	CHY	conserved hypothetical protein
OE7190R	-0.8	-1.8	0.4	4.03E-07	-	HY	hypothetical protein
OE7191F	-1.0	-2.0	0.6	1.79E-05	-	-	[del] spurious ORF
OE7212R	-0.6	-1.5	0.3	1.96E-06	-	-	[del] spurious ORF
OE7219R	-0.4	-1.4	0.1	1.92E-10	-	CHY	conserved hypothetical protein

Induzierten Gene in $\Delta sirR$

ID	log2	xfach	stabw	p-Wert	Gen	Funtktionsnklasse	Genname
OE1205R	0.4	1.3	4.0	0.1	-	СНҮ	conserved hypothetical protein
OE1761R	0.6	1.5	6.2	0.1	-	СНҮ	conserved hypothetical protein
OE1792F	0.5	1.5	3.9	0.1	-	CHY	conserved hypothetical protein

			i			1	
OE2171F	0.9	1.8	6.5	0.1	hcpC	EM	halocyanin hcpC
OE2513F	0.7	1.6	7.2	0.1	-	CHY	conserved hypothetical protein
OE2515F	0.6	1.6	4.0	0.2	-	CHY	conserved hypothetical protein
OE2708R	0.8	1.7	4.7	0.2	sod1	MIS	superoxide dismutase (EC 1.15.1.1) 1 (Mn containing)
OE2906R	1.1	2.2	6.7	0.2	sod2	MIS	superoxide dismutase (EC 1.15.1.1) 2
OE3205A1R	0.5	1.4	7.6	0.1	-	НҮ	hypothetical protein chemotactic signal transduction system periplasmic substrate-binding
OE3612R	0.6	1.5	4.9	0.1	basB	SIG	protein basB
OE3718F	0.6	1.5	7.7	0.1	ftsZ3	MIS	cell division protein ftsZ
OE3798R	0.5	1.4	5.7	0.1	-	CHY	conserved hypothetical protein
OE4122R	0.7	1.6	3.9	0.2	ths1	CHP	thermosome subunit 1
OE4146F	0.6	1.5	4.2	0.1	tbpE	тс	TATA-binding transcription initiation factor
OE4365F	0.4	1.4	4.4	0.1	-	CHY	conserved hypothetical protein
OE4414R	0.4	1.3	4.6	0.1	-	CHY	conserved hypothetical protein
OE4509F	0.8	1.7	6.7	0.1	-	MIS	nonhistone chromosomal protein
OE4563F	0.4	1.4	6.0	0.1	-	CHY	conserved hypothetical protein
OE5106F	0.4	1.3	3.9	0.1	trkA7	GEN	trkA domain protein
OE5144R	1.7	3.2	7.7	0.2	-	TP	ABC-type transport system permease protein
OE5146R	1.1	2.1	5.5	0.2	-	ТР	ABC-type transport system ATP-binding protein
OE5147R	1.7	3.2	7.4	0.2	-	ТР	ABC-type transport system periplasmic substrate-binding protein
OE5162D1F	1.3	2.4	4.8	0.3	-	CHY	conserved hypothetical protein
OE5276F	0.8	1.8	5.8	0.1	-	CHY	conserved hypothetical protein
OE6308F	0.9	1.8	8.5	0.1	-	HY	hypothetical protein
OE6345R	0.5	1.4	4.4	0.1	-	HY	hypothetical protein

Reprimierten Gene in $\Delta sirR$

			1	I	1	I.	1
ID	log2	xfach	stabw	p-Wert	Gen	Funtktionsnklasse	Genname
OE1031F	-1.0	-1.9	-4.9	0.2	-	ISH	transposase (ISH10)
OE1073F	-0.4	-1.3	-3.7	0.1	-	ISH	IS200-type transposase (ISH12)
OE1094R	-1.2	-2.2	-5.7	0.2	-	ISH	transposase (ISH10)
OE1100F	-0.5	-1.4	-4.8	0.1	-	HY	hypothetical protein
OE1183F	-0.8	-1.8	-8.9	0.1	-	HY	hypothetical protein
OE1295R	-0.5	-1.4	-8.8	0.1	-	НҮ	hypothetical protein
OE1767F	-0.5	-1.4	-4.0	0.1	-	CHY	conserved hypothetical protein

	1					1	
OE1794R	-1.2	-2.3	-5.9	0.2	-	CHY	conserved hypothetical protein
OE1797R	-1.6	-3.0	-7.2	0.2	sirR	REG	transcription regulator sirR purine phosphoribosyltransferase (adenine phosphoribosyltransferase
OE1840R	-0.4	-1.3	-4.7	0.1	apt1	NUM	(EC 2.4.2.7)
OE1867R	-0.4	-1.3	-4.6	0.1	-	CHY	conserved hypothetical protein
OE1870R	-0.5	-1.4	-9.1	0.1	-	CHY	conserved hypothetical protein
OE2533F	-0.9	-1.9	-4.1	0.2	-	HY	hypothetical protein
OE2569R	-0.6	-1.5	-11.2	0.1	-	GEN	dehydrogenase (EC 1.8.2.1))
OE2740F	-1.8	-3.6	-13.8	0.1	-	CHY	conserved hypothetical protein
OE3042F	-0.8	-1.8	-6.0	0.1	-	HY	hypothetical protein
OE3069R	-0.8	-1.8	-8.7	0.1	-	CHY	conserved hypothetical protein
OE3116F	-0.7	-1.7	-6.6	0.1	-	CHY	conserved hypothetical protein
OE3572R	-1.0	-2.0	-9.0	0.1	pyrG	NUM	CTP synthase (EC 6.3.4.2)
OE3655R	-0.6	-1.6	-7.6	0.1	-	HY	hypothetical protein
OE3822R	-0.4	-1.4	-4.2	0.1	-	CHY	Conserved hypothetical protein
OE3907R	-0.5	-1.4	-3.8	0.1	phnE	TP	phosphate/phosphonate)
OE4189F	-0.5	-1.4	-4.0	0.1	-	CHY	conserved hypothetical protein
OE5031R	-0.5	-1.4	-4.0	0.1	-	CHY	conserved hypothetical protein
OE5065R	-0.5	-1.4	-6.6	0.1	-	CHY	conserved hypothetical protein
OE5071F	-0.7	-1.6	-4.7	0.1	-	GEN	PQQ repeat protein
OE5260F	-0.7	-1.6	-4.6	0.2	-	ISH	transposase (ISH10)
OE5279R	-0.7	-1.6	-6.1	0.1	-	CHY	conserved hypothetical protein
OE5446F	-0.9	-1.9	-8.4	0.1	-	ISH	IS1341-type transposase (TCE32) (nonfunctional)
OE6074R	-1.2	-2.2	-7.2	0.2	-	HY	hypothetical protein
OE6130F	-1.1	-2.2	-4.9	0.2	-	CHY	conserved hypothetical protein
OE6133R	-0.8	-1.7	-4.2	0.2	-	ISH	transposase (ISH10)
OE6145R	-0.7	-1.7	-4.3	0.2	-	SIG	probable signal-transducing histidine kinase
OE6156F	-0.6	-1.6	-4.1	0.2	-	CHY	conserved hypothetical protein
OE6166R	-0.7	-1.6	-4.3	0.2	-	CHY	conserved hypothetical protein (nonfunctional)
OE7037F	-1.0	-2.0	-6.3	0.2	gvpN1	GEN	gas-vesicle operon protein gvpN
OE7038F	-1.6	-2.9	-6.2	0.3	gvpO1	GEN	gas-vesicle operon protein gvpO1
OE7039F	-2.4	-5.3	-9.6	0.3	parA7	GEN	parA domain protein
OE7042R	-2.6	-6.2	-8.7	0.3	-	SIG	probable signal-transducing histidine kinase / response regulator
OE7043A1F	-2.9	-7.6	-11.6	0.3	-	CHY	conserved hypothetical protein
OE7052F	-0.5	-1.5	-4.0	0.1	-	ISH	transposase (ISH5)

0E7064R	-0.4	-1.3	-4.5	0.1	-	HY	hypothetical protein
OE7089R	-0.9	-1.9	-6.3	0.2	-	СНҮ	conserved hypothetical protein
OE7092F	-0.5	-1.4	-4.5	0.1	-	HY	hypothetical protein
OE7097F	-0.8	-1.8	-3.8	0.2	-	ISH	transposase (ISH10)
OE7180F	-0.8	-1.8	-8.1	0.1	-	HY	hypothetical protein

Induzierten Gene in $\Delta troR$

ID	log2	xfach	Score [d]	Gen	Funktions- klasse	Genname
OE1014R	0.6	1.5	8.3	graD5	CHM	sugar nucleotidyltransferase (EC 2.7.7)
OE1059R	1.1	2.1	8.3	-	CHY	conserved hypothetical protein (nonfunctional
OE1148R	1.1	2.1	14.8	-	HY	hypothetical protein
OE1165R	0.8	1.7	11.9	serA3	AA	phosphoglycerate dehydrogenase (EC 1.1.1.95)
OE1188F	1	1.9	10	-	CHY	conserved hypothetical protein
OE1260R	0.5	1.4	7.9	merA	MIS	probable oxidoreductase (mercury(II) reductase homolog / dihydrolipoamide dehydrogenase homolog)
OE1279R	0.5	1.4	11.3	rpoeps	тс	DNA-directed RNA polymerase (EC 2.7.7.6) epsilon subunit
OE1410F	0.7	1.6	9.5	-	CHY	conserved hypothetical protein
OE1414R	0.4	1.3	6.7	ftsZ4	MIS	cell division protein ftsZ
OE1461R	0.7	1.6	11.8	-	CHY	conserved hypothetical protein
OE1495R	0.6	1.5	7.6	pykA	CIM	pyruvate kinase (EC 2.7.1.40)
OE1539F	0.9	1.9	12.1	-	CHY	conserved hypothetical protein
OE1566F	0.8	1.8	8	-	HY	hypothetical protein
OE1661F	0.5	1.5	10.4	-	CHY	conserved hypothetical protein
OE1698R	1	2	15.7	-	GEN	probable oxidoreductase (aldo-keto reductase family protein)
OE1726F	0.5	1.4	9.2	acs1	LIP	acyl-CoA synthetase (EC 6.2.1)
OE1761R	0.6	1.5	6.9	-	CHY	conserved hypothetical protein
OE1765R	0.8	1.8	7.2	pan2	CP	proteasome-activating nucleotidase
OE1778R	0.5	1.4	10.5	-	GEN	probable oxidoreductase (EC 1.1.1) (short-chain dehydrogenase family)
OE1792F	0.8	1.8	17.9	-	CHY	conserved hypothetical protein
OE1823F	0.5	1.4	8.4	-	HY	hypothetical protein
OE1865F	0.4	1.3	8.4	-	CHY	conserved hypothetical protein
OE1882R	0.7	1.6	7.9	-	CHY	conserved hypothetical protein
OE1903F	0.9	1.8	12.1	-	GEN	glycine-rich protein
OE1934R	0.6	1.6	9.6	edp	MIS	proteinase IV (EC 3.4)
OE1947F	1.3	2.5	12.6	-	CHY	conserved hypothetical protein

OE1978R	0.7	1.6	16.5	-	CHY	conserved hypothetical protein
OE2058R	0.5	1.4	7.3	afsQ2	SIG	probable signal-transducing histidine kinase
OE2175F	0.5	1.4	6.1	-	CHY	conserved hypothetical protein
OE2187F	0.4	1.3	9.6	-	CHY	conserved hypothetical protein
OE2199F	0.6	1.5	9	-	GEN	probable oxidoreductase (EC 1.1.1) (zinc-containing alcohol dehydrogenase family)
OE2222F	1.8	3.6	17.9	-	HY	hypothetical protein
OE2252R	0.6	1.5	6.8	-	CHY	conserved hypothetical protein
OE2332F	1	2	20.3	hakA	AA	kynureninase (EC 3.7.1.3)
OE2343R	0.5	1.4	9.6	sfuC	TP	ABC-type transport system ATP-binding protein (probable substrate iron)
OE2350R	0.5	1.5	10.7	-	CHY	conserved hypothetical protein
OE2367F	1.8	3.5	22.3	aldH3	GEN	aldehyde dehydrogenase (EC 1.2.1)
OE2423F	0.4	1.3	7	-	CHY	conserved hypothetical protein
OE2450F	1.2	2.3	14.3	acs2	LIP	acyl-CoA synthetase (EC 6.2.1)
OE2451R	0.8	1.8	12	-	GEN	probable oxidoreductase (aldo-keto reductase family protein)
OE2506R	0.4	1.3	7.3	-	CHY	conserved hypothetical protein
OE2513F	0.8	1.8	7.3	-	CHY	conserved hypothetical protein
OE2515F	1.5	2.8	9.5	-	CHY	conserved hypothetical protein
OE2524R	0.6	1.5	6.3	ugd1	CHM	UDP-glucose 6-dehydrogenase (EC 1.1.1.22)
OE2525R	0.6	1.5	10.1	-	CHY	conserved hypothetical protein
OE2558R	0.5	1.4	7	menC	COM	O-succinylbenzoate synthase (EC 4.2.1)
OE2585R	0.7	1.6	7.7	-	CHY	conserved hypothetical protein
OE2618R	0.4	1.4	6.9	-	CHY	conserved hypothetical protein
OE2622R	0.4	1.3	6.7	porB	CIM	pyruvateferredoxin oxidoreductase (EC 1.2.7.1) beta subunit
OE2642R	0.4	1.4	6.1	-	HY	hypothetical protein
OE2676R	0.8	1.7	6.5	-	CHY	conserved hypothetical protein
OE2685F	0.4	1.3	8.8	nop5	RMT	RNA modification ribonucleoprotein complex protein nop5
OE2695F	0.4	1.3	6.8	flgX	MOT	flagellin flgX
OE2697R	1.2	2.4	14.7	cmo2	GEN	homolog to coenzyme PQQ synthesis protein E
OE2698R	1.1	2.2	16.6	-	CHY	conserved hypothetical protein
OE2700F	1.2	2.3	11.8	cmo1	GEN	homolog to coenzyme PQQ synthesis protein E
OE2703F	2.1	4.4	7.8	-	MIS	probable copper-containing oxidoreductase
OE2708R	1.2	2.3	12.2	sod1	MIS	superoxide dismutase (EC 1.15.1.1) 1 (Mn containing)
OE2762R	0.5	1.4	10.8	aroA	AA	3-phosphoshikimate 1-carboxyvinyltransferase (EC 2.5.1.19)
OE2809R	0.9	1.8	9.6	aif2b	TL	translation initiation factor aIF-2 beta subunit
OE2821F	0.9	1.8	11.6	-	CHM	probable yjeF family carbohydrate kinase (EC 2.7.1)

OE2828R	0.8	1.7	6.2	-	CHY	conserved hypothetical protein
OE2834R	0.4	1.3	6.1	-	CHY	conserved hypothetical protein
OE2872F	0.9	1.8	10.1	-	CHY	conserved hypothetical protein
OE2906R	1.5	2.8	13.4	sod2	MIS	superoxide dismutase (EC 1.15.1.1) 2
OE2922F	0.7	1.6	8.6	-	CHY	conserved hypothetical protein
OE2961F	0.5	1.4	9.6	kinA1	SIG	probable signal-transducing histidine kinase
OE2973F	1	2	13.3	-	CHY	conserved hypothetical protein
OE2988R	0.5	1.5	7	-	CHY	conserved hypothetical protein
OE2989R	0.9	1.8	17.7	-	CHY	conserved hypothetical protein
OE3008F	0.9	1.9	11.7	-	MIS	conserved hypothetical protein
OE3065R	0.5	1.4	7.5	serA2	AA	phosphoglycerate dehydrogenase (EC 1.1.1.95)
OE3073R	1.1	2.1	13.9	-	MIS	dodecin
OE3084F	0.5	1.4	10.8	-	CHY	conserved hypothetical protein
OE3095R	0.6	1.5	7.3	-	CHY	conserved hypothetical protein
OE3102R	0.8	1.7	8	brp	GEN	bacteriorhodopsin-related protein
OE3114R	0.6	1.6	13.3	-	CHY	conserved hypothetical protein
OE3115F	0.4	1.3	7.7	-	GEN	probable hydrolase
OE3136F	3.9	14.9	51.2	-	CHY	conserved hypothetical protein
OE3203R	0.7	1.7	8.7	-	CHY	conserved hypothetical protein
OE3204R	1.3	2.4	19.4	grx3	MIS	probable glutaredoxin
OE3207F	0.7	1.6	8.9	cbiT	COM	precorrin-8W decarboxylase (EC 1)
OE3221F	0.5	1.4	8.6	cbiX	COM	cobalt chelatase (EC 4.99.1)
OE3229R	0.7	1.6	12.2	hmcA	COM	magnesium chelatase (EC 6.6.1.1) (protoporphyrin IX magnesium-chelatase)
OE3304R	0.5	1.4	6.4	-	CHY	conserved hypothetical protein
OE3347F	0.9	1.9	8.9	htrl	SIG	transducer protein htrl
OE3349F	1.1	2.1	25.8	-	GEN	CBS domain protein
OE3424R	0.9	1.8	15.7	-	CHY	conserved hypothetical protein
OE3458R	0.4	1.4	6.3	-	GEN	probable oxidoreductase (EC 1.1.1) (short-chain dehydrogenase family)
OE3462R	0.5	1.4	7.7	-	HY	hypothetical protein
OE3513R	0.5	1.4	7	-	CHY	conserved hypothetical protein
OE3524F	0.6	1.5	6.2	pdxS	COM	pyridoxine biosynthesis protein pyridoxal 5'-phosphate synthesis component
OE3541R	1.1	2.1	10.7	hsp20F	CHP	hsp20-type molecular chaperone
OE3542R	1.3	2.4	16.5	-	GEN	glutamine-rich alkaline protein
OE3566F	0.5	1.4	8.3	-	COM	5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2)
OE3586R	0.5	1.4	7.4	-	CHY	conserved hypothetical protein

OE3595R	0.4	1.4	7.2	moaD	COM	molybdopterin converting factor small subunit
OE3612R	1	2	11.6	basB	SIG	chemotactic signal transduction system periplasmic substrate-binding protein basB
OE3637R	0.4	1.3	8.3	hmgR	LIP	hydroxymethylglutaryl-CoA reductase (NADPH) (EC 1.1.1.34)
OE3668F	1.6	3	22.7	-	GEN	upsA domain protein
OE3673F	0.6	1.5	11.3	mptA	COM	GTP cyclohydrolase I (EC 3.5.4.16)
OE3681R	0.6	1.5	6.3	-	CHY	conserved hypothetical protein
OE3689R	0.7	1.6	9.4	nirDL	COM	heme biosynthesis protein nirDL
OE3714F	1	2.1	9.3	-	CHY	conserved hypothetical protein
OE3718F	0.7	1.6	10.4	ftsZ3	MIS	cell division protein ftsZ
OE3752R	0.5	1.4	8.2	nudF2	GEN	nudix family protein
OE3789R	0.4	1.3	7.5	-	CHY	conserved hypothetical protein
OE3796R	0.6	1.5	9.9	-	CHY	conserved hypothetical protein
OE3798R	0.6	1.5	11.3	-	CHY	conserved hypothetical protein
OE3802R	0.5	1.4	11.7	-	CHY	conserved hypothetical protein
OE3805R	0.5	1.4	9.8	pan1	CP	proteasome-activating nucleotidase
OE3815R	1.5	2.9	14.2	-	CHY	conserved hypothetical protein
OE3836F	0.8	1.7	11.9	-	GEN	O-acetyltransferase (EC 2.3.1) (homolog to galactoside O-acetyltransferase)
OE3842R	0.6	1.5	6.2	-	HY	hypothetical protein
OE3843F	0.7	1.7	7.1	nadE	COM	NAD(+) synthase (glutamine-hydrolyzing) (EC 6.3.5.1)
OE3864R	0.9	1.9	16.9	-	CHY	conserved hypothetical protein
OE3879F	0.4	1.3	7	-	CHY	conserved hypothetical protein
OE3903F	0.9	1.9	11.4	-	CHY	conserved hypothetical protein
OE3923F	0.5	1.4	6.4	Irp	REG	global transcription regulator
OE3925R	1.6	2.9	23.5	ths2	CHP	thermosome subunit 2
OE3942R	2	4.1	10.9	-	CHY	conserved hypothetical protein
OE3946F	0.6	1.5	9.4	-	CHY	conserved hypothetical protein
OE3947R	0.4	1.3	6.4	-	CHY	conserved hypothetical protein
OE3955F	0.5	1.4	7.2	putA	AA	proline dehydrogenase (EC 1.5.99.8)
OE4032R	0.7	1.6	12.3	-	CHY	conserved hypothetical protein
OE4065R	1.5	2.8	21.4	hit1	MIS	histidine triad family protein
OE4069R	0.5	1.4	10.9	-	HY	hypothetical protein
OE4073R	1.1	2.1	11.6	hcpB	EM	halocyanin hcpB
OE4077F	2.2	4.5	20.9	-	HY	hypothetical protein
OE4122R	2	3.9	18.2	ths1	CHP	thermosome subunit 1
OE4127R	0.5	1.5	8.2	-	CHY	conserved hypothetical protein

OE4146F	0.9	1.9	9.3	tbpE	тс	TATA-binding transcription initiation factor
OE4152R	0.4	1.3	8.1	hisG	AA	ATP phosphoribosyltransferase (EC 2.4.2.17)
OE4159F	1.2	2.3	21	achY	AA	adenosylhomocysteinase (EC 3.3.1.1)
OE4184F	0.7	1.6	13.6	orc6	GEN	cell division control protein cdc6 homolog
OE4196R	1.2	2.3	15.6	-	CHY	conserved hypothetical protein
OE4206F	0.4	1.3	7	mamB	AA	methylaspartate mutase (EC 5.4.99.1) large subunit
OE4218F	1	2	20.5	hisA	AA	1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase (EC 5.3.1.16)
OE4225F	1.4	2.6	16.5	-	HY	hypothetical protein
OE4260R	0.4	1.3	6.3	-	MIS	probable N-acetyltransferase (EC 2.3.1)
OE4283R	0.6	1.6	12.7	-	SIG	probable signal-transducing histidine kinase / response regulator
OE4289F	0.6	1.5	6.2	-	CHY	conserved hypothetical protein
OE4320R	1	2.1	8.4	-	CHY	conserved hypothetical protein
OE4325F	0.7	1.6	10.1	rad24b	MIS	probable DNA helicase
OE4339R	0.4	1.3	7.8	nosF	TP	ABC-type transport system ATP-binding protein (probable substrate copper)
OE4344F	0.5	1.4	9.7	uvrC	RRR	excinuclease ABC subunit C
OE4353R	0.7	1.6	16.6	uvrB	RRR	excinuclease ABC subunit B
OE4355R	0.5	1.4	8	cysA	MIS	thiosulfate sulfurtransferase (EC 2.8.1.1)
OE4365F	0.6	1.5	8.5	-	CHY	conserved hypothetical protein
OE4376R	0.4	1.4	7.9	-	CHY	conserved hypothetical protein
OE4384R	1.6	3.1	18	-	CHY	conserved hypothetical protein
OE4418R	0.6	1.5	8.4	-	HY	hypothetical protein
OE4420R	1.3	2.5	20.3	argG	AA	argininosuccinate synthase (EC 6.3.4.5)
OE4426F	1.4	2.6	11.7	-	CHY	conserved hypothetical protein
OE4436R	0.4	1.3	8.7	lta	AA	threonine aldolase (EC 4.1.2.5)
OE4465F	0.4	1.3	6.7	iscU	MIS	iron-sulfur cluster assembly protein
OE4496R	1	2	9.2	fer4	EM	ferredoxin (3Fe-4S)(4Fe-4S)
OE4509F	1.7	3.2	16.9	-	MIS	nonhistone chromosomal protein
OE4529F	0.5	1.4	10.1	aldH1	GEN	aldehyde dehydrogenase (EC 1.2.1)
OE4544R	0.5	1.4	7.1	-	GEN	upsA domain protein
OE4562R	0.9	1.8	10.6	entB	COM	probable isochorismatase (EC 3.3.2.1)
OE4563F	0.7	1.6	12.7	-	CHY	conserved hypothetical protein
OE4565F	0.7	1.6	7.3	-	CHY	conserved hypothetical protein
OE4576F	1.1	2.2	22.2	-	TP	iron/cobalamin)
OE4587R	0.6	1.5	13.4	-	TP	ABC-type transport system ATP-binding protein (probable substrate iron/cobalamin)

				1		
OE4591R	2	4.1	28.6	-	TP	ABC-type transport system permease protein (probable substrate iron/cobalamin)
OE4593R	3.3	9.9	12.8	-	TP	iron/cobalamin)
OE4613F	0.9	1.8	9.2	acn	CIM	aconitate hydratase (EC 4.2.1.3)
OE4621F	0.8	1.7	13.2	nudF1	NUM	probable ADP-ribose pyrophosphatase (EC 3.6.1.13)
OE4623F	0.6	1.6	11.5	-	CHY	conserved hypothetical protein
OE4648F	0.5	1.4	11.9	trxA2	EM	thioredoxin
OE4668R	0.5	1.4	6.6	-	CHY	conserved hypothetical protein
OE4759F	0.6	1.6	9.7	csg	CE	major cell surface glycoprotein
OE5083R	0.9	1.8	6.6	hsp20E	CHP	hsp20-type molecular chaperone
OE5094F	0.8	1.7	7	dat	MIS	diaminobutyratepyruvate aminotransferase (EC 2.6.1.76) (siderophore biosynthesis protein)
OE5097F	0.6	1.5	6.7	iucB	MIS	siderophore biosynthesis protein (malonyl-CoA decarboxylase homolog)
OE5106F	0.8	1.7	9.7	trkA7	GEN	trkA domain protein
OE5136R	0.9	1.9	10.8	-	CHY	conserved hypothetical protein
OE5160F	1.2	2.4	17.8	gldA1	CIM	glycerol dehydrogenase (EC 1.1.1.6)
OE5163R	1.1	2.1	10	-	-	[del] spurious ORF
OE5186R	0.7	1.6	10.7	perA	MIS	catalase (EC 1.11.1.6) (including: peroxidase (EC 1.11.1.7))
OE5187R	0.7	1.6	7	-	GEN	probable hydrolase
OE5203F	0.6	1.5	10.6	argS	TL	argininetRNA ligase (EC 6.1.1.19)
OE5204R	1.2	2.3	22.1	arcD	TP	arginine/ornithine antiporter
OE5205R	1.3	2.5	8.1	arcB	AA	ornithine carbamoyltransferase (EC 2.1.3.3)
OE5206R	0.4	1.3	6.3	arcC	AA	carbamate kinase (EC 2.7.2.2)
OE5208R	1.4	2.7	21.8	arcA	AA	arginine deiminase (EC 3.5.3.6)
OE5243F	0.8	1.8	10.4	car	SIG	transducer protein car
OE6130F	0.7	1.7	15.8	-	CHY	conserved hypothetical protein
OE7017R	0.4	1.4	6.4	-	ISH	transposase (ISH3)
OE7033R	0.8	1.8	10.8	gvpD1	REG	regulatory protein gvpD
OE7050A1R	0.6	1.5	8.7	-	CHY	conserved hypothetical protein (nonfunctional
OE7065F	0.5	1.4	7.6	cydA1	EM	cytochrome d ubiquinol oxidase (EC 1.10.3) subunit I
OE7187F	1.2	2.3	13.9	-	CHY	conserved hypothetical protein
OE8007F	0.5	1.4	11	-	CHY	conserved hypothetical protein

reprimierten Gene in $\Delta troR$

ID	log2	xfach	Score [d]	Gen	Funktions- klasse	Genname
OE1004F	-0.5	-1.4	-8.8	-	TP	ABC-type transport system ATP-binding protein
OE1031F	-1.3	-2.5	-13.4	-	ISH	transposase (ISH10)
OE1044F	-0.5	-1.4	-11.2	-	HY	hypothetical protein
OE1071F	-0.4	-1.3	-7.9	-	ISH	transposase (ISH4)
OE1076F	-1.2	-2.3	-18.9	-	GEN	cell division control protein cdc6 homolog
OE1087R	-0.6	-1.5	-10.6	-	ISH	transposase (ISH8)
OE1094R	-2.0	-4.0	-14.1	-	ISH	transposase (ISH10)
OE1100F	-0.7	-1.6	-9.8	-	HY	hypothetical protein
OE1107R	-0.5	-1.4	-9.9	-	CHY	conserved hypothetical protein
0E1112R	-0.6	-1.5	-10.1	gth5	GEN	probable glycosyltransferase
OE1121F	-1.2	-2.4	-9.2	-	CHY	conserved hypothetical protein
OE1162R	-0.9	-1.9	-7.6	cspD1	GEN	probable cold shock protein
OE1171F	-0.5	-1.4	-8.3	rmeMa	MIS	type I restriction-modification system DNA-methyltransferase rmeM (nonfunctional
OE1183F	-0.9	-1.9	-14.7	-	HY	hypothetical protein
OE1202F	-0.9	-1.9	-12.9	-	TP	ABC-type transport system ATP-binding/permease protein
OE1221F	-0.5	-1.4	-8.5	aup	CP	histone deacetylase
OE1239F	-1.1	-2.1	-11.2	-	HY	hypothetical protein
OE1270F	-0.4	-1.4	-7.4	gdhA3	AA	glutamate dehydrogenase (NAD+) (EC 1.4.1.2)
OE1293F	-0.6	-1.6	-12.5	-	-	[del] spurious ORF
OE1294R	-0.7	-1.6	-9.9	rpl15R	TL	ribosomal protein L15.eR
OE1372R	-0.8	-1.7	-18.1	rpoP	TC	DNA-directed RNA polymerase (EC 2.7.7.6) subunit P
OE1373R	-0.7	-1.6	-12.8	rpl37aR	TL	ribosomal protein L37a.eR
OE1448R	-1.1	-2.2	-10.1	-	CHY	conserved hypothetical protein
OE1532F	-0.4	-1.4	-7.0	-	HY	hypothetical protein
OE1553F	-0.7	-1.6	-10.6	-	CHY	conserved hypothetical protein
OE1578F	-0.4	-1.3	-9.3	graD1	CHM	sugar nucleotidyltransferase (EC 2.7.7)
OE1582R	-0.5	-1.5	-9.8	-	CHY	conserved hypothetical protein
OE1623F	-1.0	-2.0	-12.4	purB	NUM	adenylosuccinate lyase (EC 4.3.2.2)
OE1657R	-0.5	-1.4	-6.9	-	GEN	geranylgeranyl hydrogenase homolog
OE1658F	-0.4	-1.3	-9.9	fer3	EM	ferredoxin (2Fe-2S)
OE1675R	-0.4	-1.4	-6.6	pstB2	TP	ABC-type transport system ATP-binding protein (probable substrate phosphate)

OE1678R	-0.8	-1.7	-9.9	pstC2	TP	ABC-type transport system permease protein (probable substrate phosphate)
OE1684F	-0.9	-1.8	-8.1	cysD	AA	sulfate adenylyltransferase (EC 2.7.7.4) small subunit
OE1687F	-1.0	-2.0	-11.0	aspS	TL	aspartatetRNA ligase (EC 6.1.1.12)
0E1711R	-0.6	-1.5	-11.5	korA	CIM	oxoglutarateferredoxin oxidoreductase (EC 1.2.7.3) alpha subunit
OE1713F	-1.3	-2.4	-18.3	-	GEN	electron transfer protein homolog
OE1767F	-0.6	-1.5	-7.5	-	CHY	conserved hypothetical protein
0E1774R	-0.6	-1.5	-6.9	-	CHY	conserved hypothetical protein
OE1775R	-0.6	-1.5	-7.4	-	CHY	conserved hypothetical protein
OE1787F	-1.0	-1.9	-9.3	-	REG	probable transcription regulator
OE1816R	-0.6	-1.5	-9.6	-	CHY	conserved hypothetical protein
OE1840R	-0.7	-1.6	-13.1	apt1	NUM	purine phosphoribosyltransferase (adenine phosphoribosyltransferase (EC 2.4.2.7)
OE1866F	-1.2	-2.4	-11.4	-	CHY	conserved hypothetical protein
OE1895B1F	-0.6	-1.5	-9.6	-	HY	hypothetical protein
OE1919R	-0.6	-1.5	-10.3	-	CHY	conserved hypothetical protein
OE1943F	-0.9	-1.9	-6.2	gdhA1	AA	glutamate dehydrogenase (NADP+) (EC 1.4.1.4)
OE1951F	-0.7	-1.6	-6.5	purK	NUM	phosphoribosylaminoimidazole carboxylase (EC 4.1.1.21) carbon dioxide-fixation subunit
OE1956F	-0.6	-1.5	-10.1	nuoCD	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit CD
OE1959F	-0.7	-1.6	-11.2	nuoJ1	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit J1
OE1963F	-0.6	-1.5	-7.6	nuoK	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit K
OE1964F	-0.6	-1.5	-8.0	nuoL	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit L
OE1965F	-0.7	-1.6	-10.4	nuoM	EM	NADH dehydrogenase-like complex (EC 1.6.5) subunit M
OE1981R	-0.9	-1.9	-14.7	-	CHY	conserved hypothetical protein
OE2015R	-0.5	-1.4	-7.3	hbd1	LIP	3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35)
OE2020F	-0.5	-1.4	-7.3	fbp	CIM	fructose-bisphosphatase (EC 3.1.3.11)
OE2044F	-0.6	-1.5	-9.9	-	GEN	probable heavy metal binding protein
OE2046F	-0.6	-1.5	-6.5	-	CHY	conserved hypothetical protein
OE2130F	-0.6	-1.5	-7.0	-	CHY	conserved hypothetical protein
OE2165R	-0.8	-1.7	-8.9	rps15	TL	ribosomal protein S15
OE2230F	-0.8	-1.7	-13.3	-	CHY	conserved hypothetical protein
0E2231R	-1.1	-2.2	-7.0	idr2	REG	probable transcription regulator
OE2269F	-0.7	-1.7	-14.7	-	HY	hypothetical protein
0E2274R	-0.7	-1.7	-8.8	purL	NUM	phosphoribosylformylglycinamidine synthase (EC 6.3.5.3) component II
OE2307F	-0.8	-1.8	-12.4	ndh	EM	probable NADH dehydrogenase (EC 1.6.99.3)
OE2374R	-0.6	-1.6	-13.0	cheW2	SIG	purine-binding chemotaxis protein cheW2
OE2383R	-0.4	-1.3	-6.2	flaG	МОТ	fla cluster protein flaG

OE2406R	-0.9	-1.8	-11.4	cheR	SIG	protein-glutamate O-methyltransferase (EC 2.1.1.80) cheR
OE2458R	-0.6	-1.5	-8.4	guaB	NUM	IMP dehydrogenase (EC 1.1.1.205)
OE2472F	-2.0	-4.1	-26.1	gch31	NUM	GTP cyclohydrolase III (EC 3.5.4.29)
OE2533F	-1.4	-2.7	-8.6	-	HY	hypothetical protein
OE2547R	-0.6	-1.5	-11.0	gt/2	GEN	probable glycosyltransferase
OE2569R	-0.5	-1.4	-6.6	-	GEN	reductase (probable nitrate reductase (EC 1.7.99.4) / sulfite dehydrogenase (EC 1.8.2.1))
OE2572F	-0.7	-1.6	-10.8	-	CHY	conserved hypothetical protein
OE2579F	-0.8	-1.7	-11.3	purA	NUM	adenylosuccinate synthase (EC 6.3.4.4)
OE2601R	-0.6	-1.5	-7.7	rpl10	TL	ribosomal protein L10
OE2603R	-0.9	-1.9	-14.0	rpl11	TL	ribosomal protein L11
OE2627F	-0.8	-1.7	-12.8	rps13	TL	ribosomal protein S13
OE2628F	-0.9	-1.8	-20.3	rps4	TL	ribosomal protein S4
OE2629F	-1.2	-2.2	-16.4	rps11	TL	ribosomal protein S11
OE2631F	-1.2	-2.3	-12.5	rpoD	тс	DNA-directed RNA polymerase (EC 2.7.7.6) subunit D
OE2632F	-1.3	-2.5	-13.9	rpl18R	TL	ribosomal protein L18.eR
OE2635F	-0.4	-1.3	-6.8	rps9	TL	ribosomal protein S9
OE2637F	-1.0	-2.0	-11.6	rpoN	тс	DNA-directed RNA polymerase (EC 2.7.7.6) subunit N
OE2638F	-1.6	-3.1	-19.6	rpoK	тс	DNA-directed RNA polymerase (EC 2.7.7.6) subunit K
OE2641F	-1.2	-2.4	-17.4	rps2	TL	ribosomal protein S2
OE2664F	-0.4	-1.3	-6.4	rps28R	TL	ribosomal protein S28.eR
OE2706R	-0.5	-1.5	-7.3	-	HY	hypothetical protein
OE2716R	-0.6	-1.5	-10.6	-	HY	hypothetical protein
OE2728R	-0.7	-1.6	-9.2	gdhA2	AA	glutamate dehydrogenase (EC 1.4.1)
OE2736F	-0.8	-1.8	-13.5	hutG	AA	formiminoglutamase (EC 3.5.3.8)
OE2740F	-1.6	-3.1	-14.3	-	CHY	conserved hypothetical protein
OE2745R	-0.7	-1.6	-10.4	pgk	CIM	phosphoglycerate kinase (EC 2.7.2.3)
OE2750R	-0.7	-1.6	-11.6	-	CHY	conserved hypothetical protein
OE2782F	-0.9	-1.8	-12.2	surE	MIS	probable stationary-phase survival protein
OE2847R	-1.1	-2.1	-19.0	-	CHY	conserved hypothetical protein
OE3017R	-1.4	-2.6	-9.6	ush	NUM	UDP-sugar hydrolase (EC 3.6.1.45) / 5'-nucleotidase (EC 3.1.3.5)
OE3062F	-0.7	-1.6	-11.5	rps17R	TL	ribosomal protein S17.eR
OE3116F	-0.8	-1.7	-9.0	-	CHY	conserved hypothetical protein
OE3118F	-0.5	-1.5	-7.9	-	CHY	conserved hypothetical protein
OE3132F	-0.5	-1.4	-7.3	-	CHY	conserved hypothetical protein
OE3139R	-1.3	-2.4	-18.8	purF	NUM	amidophosphoribosyltransferase (EC 2.4.2.14)

OE3141R	-1.1	-2.2	-21.8	rpl37R	TL	ribosomal protein L37.eR
OE3142R	-1.1	-2.2	-9.0	snp	GEN	small nuclear ribonucleoprotein homolog
OE3155R	-0.8	-1.7	-7.8	-	CHY	conserved hypothetical protein
OE3195F	-0.4	-1.3	-10.0	sucB	CIM	succinateCoA ligase (ADP-forming) (EC 6.2.1.5) beta subunit
OE3262R	-1.0	-2.0	-18.2	-	CHY	conserved hypothetical protein
OE3342R	-0.5	-1.4	-9.7	-	HY	hypothetical protein
OE3388F	-0.4	-1.4	-6.1	rpl3	TL	ribosomal protein L3
OE3389F	-0.7	-1.7	-15.5	rpl4R	TL	ribosomal protein L4.eR
OE3390F	-1.0	-2.0	-19.2	rpl23	TL	ribosomal protein L23
OE3393F	-0.7	-1.6	-10.7	rps19	TL	ribosomal protein S19
OE3394F	-0.9	-1.9	-12.4	rpl22	TL	ribosomal protein L22
OE3395F	-0.6	-1.6	-8.3	rps3	TL	ribosomal protein S3
OE3396F	-0.5	-1.5	-9.7	rpl29	TL	ribosomal protein L29
OE3404F	-0.7	-1.6	-8.2	rpl24	TL	ribosomal protein L24
OE3405F	-0.9	-1.9	-15.8	rps4R	TL	ribosomal protein S4.eR
OE3407F	-0.7	-1.6	-6.5	rpl5	TL	ribosomal protein L5
OE3481R	-0.5	-1.4	-7.4	htrll	SIG	transducer protein htrll
OE3487R	-0.7	-1.6	-9.0	aif5a	TL	translation initiation factor aIF-5A
OE3556R	-2.1	-4.4	-17.8	carA	AA	carbamoyl-phosphate synthase (glutamine-hydrolyzing) (EC 6.3.5.5) small subunit
0E3572R	-1.3	-2.5	-14.1	pyrG	NUM	CTP synthase (EC 6.3.4.2)
OE3654R	-0.8	-1.7	-6.1	-	HY	hypothetical protein
0E3712R	-0.7	-1.6	-7.2	oxdhA2	AA	probable branched-chain amino acid dehydrogenase (EC 1.2.4) E1 component alpha subunit
OE3731R	-1.4	-2.6	-21.4	purQ	NUM	phosphoribosylformylglycinamidine synthase (EC 6.3.5.3) component I
0E3732R	-1.3	-2.4	-9.9	purS	NUM	phosphoribosylformylglycinamidine synthase (EC 6.3.5.3) component purS
OE3755R	-0.5	-1.4	-8.8	-	CHY	conserved hypothetical protein
OE3866R	-0.7	-1.6	-7.6	gcp	CP	probable O-sialoglycoprotein endopeptidase (EC 3.4.24.57)
OE3908R	-0.5	-1.4	-8.0	phnC	TP	ABC-type transport system ATP-binding protein (probable substrate phosphate/phosphonate)
0E3922R	-0.9	-1.9	-9.0	gInA	AA	glutamateammonia ligase (EC 6.3.1.2)
OE3963R	-2.0	-4.1	-24.4	ribB	COM	3
OE3964R	-2.3	-4.9	-51.1	-	CHY	conserved hypothetical protein
OE3985R	-0.8	-1.7	-11.5	atpA	EM	A-type ATP synthase (EC 3.6.3.14) subunit A
OE3986R	-1.0	-2.0	-8.5	atpF	EM	A-type ATP synthase (EC 3.6.3.14) subunit F
OE3987R	-0.5	-1.5	-7.2	atpC	EM	A-type ATP synthase (EC 3.6.3.14) subunit C
OE4300R	-0.8	-1.8	-11.7	-	CHY	conserved hypothetical protein
OE4301R	-1.0	-2.0	-10.7	dppF1	TP	ABC-type transport system ATP-binding protein (probable substrate

						dipeptide/oligopeptide/nickel)
OE4302R	-1.2	-2.3	-18.8	dppD1	TP	ABC-type transport system ATP-binding protein (probable substrate dipeptide/oligopeptide/nickel)
OE4303R	-0.8	-1.7	-16.5	dppC1	TP	ABC-type transport system permease protein (probable substrate dipeptide/oligopeptide/nickel)
OE4304R	-1.1	-2.1	-11.7	dppB1	TP	ABC-type transport system permease protein (probable substrate dipeptide/oligopeptide/nickel)
OE4367R	-0.6	-1.5	-9.6	-	CHY	conserved hypothetical protein
OE4369R	-0.4	-1.4	-6.8	-	HY	hypothetical protein
OE4552F	-0.8	-1.8	-14.6	dppB2	TP	ABC-type transport system permease protein (probable substrate dipeptide/oligopeptide/nickel)
OE4555F	-0.7	-1.7	-18.2	dppC2	TP	ABC-type transport system permease protein (probable substrate dipeptide/oligopeptide/nickel)
OE4572R	-0.5	-1.4	-7.0	valS	TL	valinetRNA ligase (EC 6.1.1.9)
OE4626R	-0.5	-1.4	-8.9	sui1	TL	probable translation initiation factor SUI1
OE4628R	-0.9	-1.8	-8.9	-	CHY	conserved hypothetical protein
OE4683F	-2.0	-4.1	-15.9	ribC	COM	riboflavin synthase (EC 2.5.1.9) alpha subunit
OE4720R	-0.9	-1.9	-9.8	rps10	TL	ribosomal protein S10
OE5015F	-0.5	-1.4	-6.9	-	ISH	transposase (ISH8)
OE5031R	-0.7	-1.6	-12.7	-	CHY	conserved hypothetical protein
OE5162R	-0.6	-1.5	-8.7	orc5	GEN	cell division control protein cdc6 homolog
OE5234R	-0.6	-1.5	-8.8	-	CHY	conserved hypothetical protein (nonfunctional
OE5260F	-1.1	-2.1	-16.9	-	ISH	transposase (ISH10)
OE5279R	-1.2	-2.3	-9.1	-	CHY	conserved hypothetical protein
OE5291F	-1.3	-2.5	-12.0	-	HY	hypothetical protein
OE5295F	-0.9	-1.8	-11.9	-	HY	hypothetical protein
OE5307F	-0.7	-1.7	-6.3	-	TP	ABC-type transport system ATP-binding protein
OE5311R	-0.7	-1.6	-8.6	-	HY	hypothetical protein
OE5322R	-1.3	-2.4	-8.4	-	CHY	conserved hypothetical protein
OE5325F	-0.4	-1.3	-7.8	-	CHY	conserved hypothetical protein
OE5363R	-0.8	-1.8	-13.8	-	ISH	insertion element protein (ISH2)
OE5393F	-1.0	-2.0	-17.2	-	ISH	insertion element protein (ISH2)
OE5407F	-0.6	-1.5	-12.0	-	ISH	transposase (ISH8)
OE6005R	-0.6	-1.5	-9.2	-	CHY	conserved hypothetical protein
OE6006R	-1.1	-2.1	-12.3	-	CHY	conserved hypothetical protein
OE6074R	-0.7	-1.6	-12.1	-	HY	hypothetical protein
OE6133R	-1.1	-2.2	-13.9	-	ISH	transposase (ISH10)
OE6145R	-1.0	-2.0	-7.6	-	SIG	probable signal-transducing histidine kinase
OE6154F	-0.7	-1.7	-6.6	-	HY	hypothetical protein

		(1	
OE6156F	-0.9	-1.9	-11.9	-	CHY	conserved hypothetical protein
OE6281R	-0.4	-1.3	-9.4	-	HY	hypothetical protein
OE6288R	-0.6	-1.5	-6.6	-	GEN	cell division control protein cdc6 homolog
OE6292R	-0.9	-1.8	-10.2	-	ISH	transposase (ISH6)
OE6296R	-0.5	-1.4	-7.1	-	ISH	transposase (ISH8)
OE6298A1R	-1.0	-2.0	-13.8	-	ISH	insertion element protein (ISH2)
OE7019F	-0.6	-1.6	-10.2	-	ISH	transposase (ISH8)
OE7024R	-0.6	-1.5	-6.8	gvpK1	GEN	gas-vesicle operon protein gvpK1
OE7026R	-0.4	-1.3	-9.0	gvpJ1	GEN	gas-vesicle operon protein gvpJ1
OE7036F	-0.7	-1.6	-11.6	gvpC1	CP	gas-vesicle protein gvpC1
OE7037F	-1.2	-2.3	-19.9	gvpN1	GEN	gas-vesicle operon protein gvpN
OE7038F	-1.3	-2.5	-16.8	gvpO1	GEN	gas-vesicle operon protein gvpO1
OE7039F	-2.3	-4.8	-11.4	parA7	GEN	parA domain protein
OE7042R	-2.5	-5.6	-9.0	-	SIG	probable signal-transducing histidine kinase / response regulator
OE7043A1F	-2.9	-7.2	-37.7	-	CHY	
OE7046R	-0.6	-1.5	-6.4	-	ISH	transposase (ISH8)
OE7052F	-0.5	-1.5	-12.9	-	ISH	transposase (ISH5)
OE7054R	-0.4	-1.3	-7.5	-	CHY	conserved hypothetical protein
OE7056A1R	-0.4	-1.3	-8.1	-	CHY	
OE7057F	-0.5	-1.4	-7.2	-	CHY	conserved hypothetical protein
OE7089R	-0.6	-1.5	-6.2	-	CHY	conserved hypothetical protein
OE7097F	-1.2	-2.2	-11.6	-	ISH	transposase (ISH10)
OE7101R	-0.9	-1.8	-13.6	-	CHY	conserved hypothetical protein
OE7106F	-0.4	-1.4	-6.1	-	HY	hypothetical protein
OE7124R	-0.5	-1.4	-8.4	-	HY	hypothetical protein
OE7131R	-0.7	-1.6	-7.5	-	CHY	conserved hypothetical protein
OE7141R	-0.9	-1.9	-10.2	-	GEN	multidrug resistance transport protein homolog
OE7144R	-0.5	-1.4	-10.7	-	CHY	conserved hypothetical protein
OE7149F	-0.5	-1.4	-9.0	-	HY	hypothetical protein
OE7180F	-0.7	-1.6	-7.9	-	HY	hypothetical protein
OE7198F	-0.6	-1.5	-6.5	-	ISH	transposase (ISH8)
OE7210R	-0.5	-1.4	-6.8	-	CHY	conserved hypothetical protein
OE7212B1F	-1.1	-2.1	-17.0	-	CHY	
OE7215F	-0.9	-1.8	-10.5	-	CHY	conserved hypothetical protein
OE8047F	-1.2	-2.2	-13.6	-	CHY	conserved hypothetical protein

8 Danksagung

An erster Stelle möchte ich mich bei meinem Doktorvater Prof. Dr. Dieter Oesterhelt für die Möglichkeit meine Doktorarbeit unter seiner Betreuung anzufertigen bedanken, wie auch für seine Diskussionen und seinen wissenschaftlichen Rat, die für das Entstehen dieser Arbeit sehr hilfreich waren.

Ein großes Dankeschön gilt dem gesamten OE-Labor: Mirit Kolog-Gulko, Susanne von Gronau, Bettina Wimmer, Florian Wimmer, und Locedie Mansueto. Vor allem Andy Wende und Jens Twellmeyer, die mir die Mikroarray-Technologie näher gebracht haben. Bei Mike Dyall-Smith und Matthias Schlesner möchte ich mich für die vielen wissenschaftlichen Diskussionen bedanken.

Außerdem möchte ich mich bei Christoph Schwarz bedanken der neben seinem wissenschaftlichen Beitrag zu dieser Arbeit auch zu einem guten Freund geworden ist.

Ein sehr großer Dank geht auch an Birgit Wiltschi und Arthur Miller für das aufmerksame Lesen meiner Doktorarbeit. Danke auch an Kosta Konstantinidis der Teile der Arbeit gelesen hat. Bei Friedhelm Pfeiffer bedanke ich mich für seine vielen Diskussionen in Bezug auf das Halobacterium, das manchmal doch etwas schwierig zu verstehen ist.

Bei Kati Furtwängler und Valery Tarasov möchte ich mich für eine tolle Zusammenarbeit bedanken. Vor allem bei Kati für die vielen lustigen Momente während unserer Arbeit und für die lebensnotwendigen Kaffeepausen gemeinsam mit Thurli.

Ich bedanke mich bei Lizzy Weiher Stingl aus der Core Facility die mir die Messungen der CD-Spektren gezeigt hat und bei der Auswertung geholfen hat. Bei Sigi Bauer aus der "Massen"-Gruppe möchte ich mich für die Unterstützung bedanken.

Bei Tanja Oberwinkler bedanke ich mich für die netten Gespräche über Wissenschaft und den restlichen Dingen des Lebens.

Ein Dankeschön auch an Kathrin Klee und Alexander Broicher die mir bei anfallenden Computerproblemen jederzeit behilflich waren.

Beim Kristallisationsteam von Martin Grininger bedanke ich mich für dessen Antworten auf Fragen im Bereich zur Proteinanalytik, bei Patrik Johansson für die Strukturmodellierung von LrpA1 und bei Ronald Vollrath für die Durchführung der ersten Kristallisationsansätze. Außerdem möchte ich mich bei Christian Benda bedanken, der ebenfalls an den Kristallisationsversuchen von LrpA1 beteiligt waren.

Ein Dank gilt auch Jörg Soppa, der mir einen methodischen Tipp zur Bestimmung der Transkriptionsstarts gab.

Einen Dank möchte ich auch in Sachen Organisation an Frau Haack aussprechen, in technischen Angelegenheiten an Walter Erhard und an Frau Sylvia Haselbeck, ohne die ein Laboralltag nicht auszzudenken gewesen wäre.

Das größte Dankeschön gilt meiner gesamten Familie, besonders meinen Eltern, die mich nicht nur während meiner gesamten Ausbildung finanziell unterstützt hatten, sondern auch immer für mich da waren und zu jedem Zeitpunkt versuchten mich zu motivierten. Bei meiner Oma möchte ich mich dafür bedanken, dich sie mich immer wieder daran erinnert hat, mit einer positiven Einstellung durchs Leben zu gehen.

Ein besonders großes Dankeschön gilt Iris Eidenberger, die mich zu Freizeitaktivitäten neben harter Forschungsarbeit ermuntert hat und mir eine sehr gute Freundin ist. Ein grosses Dankeschön gilt auch meinen beiden langjährigen Freundinnen Barbara Schaffer und Michaela Meidl und dass diese Freundschaften trotz meiner Ortswechsel bestehen geblieben sind. Allgemein möchte ich noch erwähnen, dass ich eine sehr nette Zeit in der Abteilung Oesterhelt verbracht habe, die ich nicht missen will.

9 Lebenslauf

Persönliche Daten

Name:	Rita Schwaiger
Geburtsdatum:	23. Juni 1976
Geburtsort:	Salzburg (Österreich)
Nationalität:	Österreich
Familienstand:	ledig

Schulbildung

09/1982-07/1986:	Volksschule, Salzburg
09/1986-07/1990:	wirtschaftskundlichen Bundesrealgymnasium, Salzburg
09/1990-06/1994:	Bundesoberstufenrealgymnasium für Musik, Salzburg

Studium

09/1994-07/1997 :	7: Studium der Psychologie, der Mathematik und der			
	Rechtswissenschaften an der Universität Wien und Salzburg			
10/1997-09/2000:	Grundstudium der Biologie an der Universität Salzburg			
10/2000-11/2003:	Hauptstudium der Biologie an der Universität Freiburg im Breisgau			
11/2003-11/2004:	Diplomarbeit in der Abteilung für Biochemie an der Universität			
	Freiburg unter der Betreuung von PD. Dr. Anja Liszkay.			
	Thema: "Charakterisierung von NAD(P)H-Oxidasen in der			
	Plasmamembran von Glycine max"			
seit 04/2005:	Promotion am Max-Planck-Institut für Biochemie in Martinsried (bei			
	München) unter der Betreuung von Prof. Dr. Dieter Oesterhelt.			
	Thema: "Genexpressions- und Protein-DNA-Interaktions-Studien des			
	Aminosäure-Metabolismus und metallabhängiger Prozesse in			
	Halobacterium salinarum R1"			