Aus der Neurologischen Klinik und Poliklinik der Ludwig-Maximilians-Universität München Direktorin: Prof. Dr. med. Marianne Dieterich

Rolle von CACNA1A, ATP1A2 und SCN1A für die sporadische hemiplegische Migräne

Dissertation zum Erwerb des Doktorgrades der Medizin an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München

> vorgelegt von Michael Hütter aus Bukarest

> > Jahr 2009

Mit Genehmigung der Medizinischen Fakultät der Universität München

Berichterstatter:	Prof. Dr. Martin Dichgans
Mitberichterstatter:	Prof. Dr. Ortrud Steinlein
Mitbetreuung durch den	
promovierten Mitarbeiter:	Dr. Tobias Freilinger
Dekan:	Prof. Dr. med. Dr. h.c. Reiser, FACR, FRCR
Tag der mündlichen Prüfung:	07.05.2009

"Labor omnia vincit!"

Vergil, Georgica, I 145

Meinen lieben Eltern

Teile dieser Dissertationsschrift wurden veröffentlicht in:

- 1. Freilinger T, <u>Popovici M</u>, Tavraz N, Friedrich T, Dichgans M. Sporadic hemiplegic migraine associated with a novel mutation in ATP1A2. *Akt Neurol* (2006); 33: S46.
- 2. Freilinger T, <u>Popovici M</u>, Tavraz N, Friedrich T, Dichgans M. Sporadic hemiplegic migraine associated with a novel mutation in ATP1A2. *Cephalalgia* 2006; 26: 1365

Inhaltsverzeichnis

1 EINLEITUNG	1
1.1 Allgemeine Fakten zur Migräne	1
1.1.1 Epidemiologie	1
1.1.2 Bedeutung genetischer Faktoren	1
1.2 Familiäre hemiplegische Migräne (FHM)	2
1.2.1 Phänotyp	2
1.2.2 Die FHM als Modellerkrankung für die häufigen Migräneformen	3
1.2.3 Genetik der FHM	3
1.3 Pathophysiologisches Modell der FHM	11
1.4 Sporadische hemiplegische Migräne	14
	16
1.5 Fragestellung	
1.5 Fragestellung 2 PATIENTEN, METHODEN UND MATERIAL	
1.5 Fragestellung 2 PATIENTEN, METHODEN UND MATERIAL 2.1 Patienten und Kontrollen	
1.5 Fragestellung 2 PATIENTEN, METHODEN UND MATERIAL 2.1 Patienten und Kontrollen	
 1.5 Fragestellung 2 PATIENTEN, METHODEN UND MATERIAL	
 1.5 Fragestellung	
 1.5 Fragestellung 2 PATIENTEN, METHODEN UND MATERIAL 2.1 Patienten und Kontrollen 2.2 Methoden 2.2.1 Allgemeine DNA-Techniken 2.2.2 Polymerase-Kettenreaktion (PCR) 2.3 Gelelektrophorese und Visualisierung der PCR-Produkte 2.2.4 Direkte Sequenzierung 2.2.5 Verwendete Software und Internetadressen 2.2.6 Funktionelle Untersuchung der Neumutation c.G2723A (p.R908Q) 	
 1.5 Fragestellung	
 1.5 Fragestellung. 2 PATIENTEN, METHODEN UND MATERIAL 2.1 Patienten und Kontrollen. 2.2 Methoden. 2.2.1 Allgemeine DNA-Techniken. 2.2.2 Polymerase-Kettenreaktion (PCR) 2.2.3 Gelelektrophorese und Visualisierung der PCR-Produkte 2.2.4 Direkte Sequenzierung 2.2.5 Verwendete Software und Internetadressen 2.2.6 Funktionelle Untersuchung der Neumutation c.G2723A (p.R908Q) 2.3 Material. 2.3.1 Chemikalien 	

3 ERGEBNISSE	43
3.1 Klinische Daten	
3.2 Genetische Daten	
3.2.1 Direkte Sequenzierung	
3.2.2 Restriktionsverdau mit dem Restriktionsenzym Acil	
3.2.3 Phylogenetische Analyse der Sequenzalteration p.R908Q	53
3.3 Funktionelle Analyse mittels <i>survival assay</i>	54
4 DISKUSSION	55
4.1 Genetische Befunde	
4.1.1 Neumutation p.R908Q	56
4.1.2 Pore forming loop	56
4.1.3 Bekannte Mutationen innerhalb der <i>p-loop</i>	58
4.1.4 Mögliche molekulare Mechanismen der Neumutation p.R908Q	59
4.2 Schlussfolgerung	
5 ZUSAMMENFASSUNG	61
6 ANHANG	62
7 ABBILDUNGSVERZEICHNIS	71
8 TABELLENVERZEICHNIS	73
9 ABKÜRZUNGSVERZEICHNIS	74
10 LITERATURVERZEICHNIS	77
11 DANKSAGUNG	87
12 LEBENSLAUF	88

1 Einleitung

1.1 Allgemeine Fakten zur Migräne

1.1.1 Epidemiologie

Die Migräne zählt mit einer Lebenszeitprävalenz von rund 33% für Frauen und 13% für Männer sowie mit einer Einjahresprävalenz von 25% bzw. 7% zu den häufigsten neurologischen Erkrankungen [56]. Aktuell belegt sie laut Weltgesundheitsorganisation WHO Platz 19 der weltweit häufigsten Erkrankungen, die eine Behinderung bedingen. Migräneattacken mit dem Leitsymptom Kopfschmerz gehören zu den häufigsten Ursachen für ambulante Arztbesuche [60] und haben neben dem Leidensdruck der Erkrankten laut WHO auch erhebliche sozioökonomische Folgen [65]; so wurden laut einer US-amerikanischen Studie in den USA im Jahre 2005 Kosten in Höhe von 17 Millionen Dollar durch direkte und indirekte Migränefolgen sowie verminderte Produktivität der Betroffenen verursacht [37].

Migräne wird nach der Klassifikation ICHD-2 der Internationalen Gesellschaft für Kopfschmerzerkrankungen (IHS) zu den primären Kopfschmerzerkrankungen gerechnet [1]. Die beiden häufigsten Migräneformen sind die Migräne ohne Aura (MO, ca. 80% der Fälle) und die Migräne mit Aura (MA, ca. 20% der Fälle). Innerhalb von sog. Migränefamilien können diese beide Migräneformen sowohl bei einem Individuum gemeinsam als auch getrennt bei verschiedenen Familienmitgliedern vorliegen [93]. Als Migräneaura werden transiente neurologische Reiz- und Ausfallserscheinungen (visuell, sensibel, motorisch, dysphasisch) bezeichnet.

1.1.2 Bedeutung genetischer Faktoren

Durch Segregationsanalysen konnte gezeigt werden, dass die häufigen Migräneformen (MA und MO) einen nicht-mendelschen, multifaktoriellen Erbgang aufweisen [80, 81]. Zur Manifestation tragen sowohl eine genetische Prädisposition als auch Umweltfaktoren bei. Für eine genetische Komponente spricht eine familäre Häufung der Migräne, die früher auch als diagnostisches Kriterium verwendet wurde. Zwillingsstudien wiesen eine erhöhte Konkordanzrate sowohl für die MO (28% vs. 18%, p<0,05) [35] als auch für die MA (34% vs. 12%, p<0,001) bei eineiigen verglichen zu zweieiigen Zwilligen auf [101-103]. Weiter besteht ein erhöhtes relatives Risiko (RR) von RR=3,79 (KI 3,21-4,38) für Verwandte ersten Grades von Patienten mit MA selbst an einer MA zu erkranken; das entsprechende RR eine MO zu entwickeln betrug RR=1,86 (KI 1,56-2,16) [80, 81].

Durch Kopplungsanalysen in großen Familien konnten die Suszeptibilitätsloci 4q21, 4q24, 6p12.2-p21.1, 11q24 und 14q21.2-q22.3 für die häufigen Migräneformen identifiziert werden [34]; ursächliche Gene wurden bisher nicht nachgewiesen.

Die einzige Migräneform, für die ursächliche Gene identifiziert werden konnte, ist die familiäre hemiplegische Migräne. Es handelt sich hierbei um eine autosomal-dominant vererbte, monogene Migräneform.

1.2 Familiäre hemiplegische Migräne (FHM)

1.2.1 Phänotyp

Die FHM ist nach der ICHD-2 eine Unterform der MA, deren Aura eine vollständig reversible motorische Schwäche sowie mindestens ein weiteres vollständig reversibles Aurasymptom (visuell, sensibel, dysphasisch) einschließt. Zu den typischen Aurasymptomen treten in etwa 70% aller Fälle Symptome der Migräne vom Basilaristyp (BM) auf. Definitionsgemäß muss wenigstens ein Verwandter ersten oder zweiten Grades ebenfalls Migräneauren mit einer motorischen Schwäche aufweisen [1, 95]. Die Ausprägung der Symptomatik ist inter- und intraindividuell hinsichtlich des Manifestationsalters, der Schwere und der Häufigkeit der Attacken sehr variabel [23]. Sowohl im Intervall zwischen den Attacken (interiktal), als auch während der Attacke (iktal) kann es zu verschiedenen Komplikationen (Übelkeit, Erbrechen, Phono- und Photophobie) kommen [97]. Etwa 20% der Betroffenen entwickeln interiktal ein progredientes zerebelläres Syndrom mit Nystagmus, Dysarthrie und Gang- und Standataxie. Hier spricht man im Gegensatz zur "reinen" FHM (pureFHM) von einer FHMplus. In diesen Fällen lässt sich in der Bildgebung oft eine wurmbetonte Kleinhirnatrophie nachweisen [95]. Zusätzlich treten bei FHM-Patienten iktal gelegentlich Epilepsie, Koma mit Fieber und steriler Liquorpleozytose, interiktal Schlaganfälle und mentale Retardierung auf [29, 95].

1.2.2 Die FHM als Modellerkrankung für die häufigen Migräneformen

Mit einer Prävalenz von 0,005% ist die FHM eine sehr seltene Erkrankung. Durch Erforschung dieser monogenen Erkrankung erhofft man sich Erkenntnisse über die Pathophysiologie der häufigen Migräneformen, da die Aura bei FHM-Attacken, abgesehen von der Hemiparese, derjenigen häufiger Migräneformen ähnelt. Außerdem leiden Patienten mit Mutationen in den FHM-Genen oft zusätzlich unter Attacken nicht hemiplegischer Migräneformen oder lediglich an einer MA oder MO.

1.2.3 Genetik der FHM

Die FHM stellt eine genetisch heterogene Erkrankung dar. Aktuell sind drei ursächliche Gene bekannt: *CACNA1A* (FHM1: Ophoff *et al.*, 1996), *ATP1A2* (FHM2: Ducros *et al.*, 1997) und *SCN1A* (FHM3: Dichgans, Freilinger *et al.*, 2005) [18, 25, 71]. In etwa 50% der FHM-Fälle lässt sich eine Mutation in *CACNA1A* nachweisen. In etwa 10-20% der Fälle findet sich eine Mutation in *ATP1A2*. Die Häufigkeit der Mutation in dem kürzlich entdeckten dritten FHM-Gen *SCN1A* ist noch nicht vollständig erfasst.

Alle bisher entdeckten Gene kodieren für Ionenkanalproteine oder für Proteine, die an der Translokation von Ionen über Zellmembranen beteiligt sind. Damit wird die FHM zur Gruppe der Kanalopathien gerechnet.

1.2.3.1 FHM1: CACNA1A

Genlocus

1996 konnte *CACNA1A* auf Chromosom 19 durch Ophoff *et al.* als erstes ursächliches Gen für die FHM identifiziert werden [71]. In 50% aller FHM-Fälle und nahezu 100% aller FHM*plus*-Fälle werden Mutationen in diesem Gen nachgewiesen [2, 23, 44, 72, 92].

Genstruktur und Funktion des Genprodukts

CACNA1A ist mit einer Länge von 300kb genomischer Sequenz und 47 Exons ein sehr großes Gen. Es kodiert für die α_{1A} -Untereinheit des spannungsgesteuerten Ca²⁺-Kanals vom P/Q-Typ (Ca_V2.1). Alle α_1 -Untereinheiten haben die gleiche Grundstruktur (es sind

neun α_1 -Untereinheiten bekannt): sie bestehen aus vier homolgen Domänen DI-DIV; jede Domäne besteht aus sechs transmembranalen Segmenten S1-S6 und einer sog. *ploop* zwischen S5 und S6. Die Segmente S5 und S6 aller vier Domänen bilden zusammen den Ionenkanal, die *p*-*loops* aller vier Domänen dabei den innersten Teil dieses Kanals. Die positiv geladenen Segmente S4 fungieren als Spannungssensor [10].

Ca_v2.1-Kanäle sind multimere. bildende Ionenkanal Membranproteine. Bei Depolarisation öffnet sich spannungsabhängig deren zentraler Porus und erlaubt selektiv den Fluss von Ca²⁺-Ionen entlang des Ca²⁺-Konzentrationsgradienten. Das Kanalprotein besteht aus einer spannungssensitiven und einer den Porus formenden α_{1A} -Untereinheit sowie mindestens zwei weiteren akzessorischen Untereinheiten (α_2 , β , γ , δ); diese sind für die Membranexpression bzw. für die Verankerung in der Zellmembran erforderlich und modulieren die spannungsabhängigen, kinetischen Eigenschaften [10]. Ca²⁺-Kanäle vom P/Q-Typ erzeugen P/Q-Ströme und zeichnen sich durch eine schnelle Aktivierung und eine langsame Inaktivierung aus [55]. CACNA1A wird in allen Migräne relevanten Strukturen exprimiert [109].

Mutationsspektrum und Phänotyp-Korrelation

Alle bisher identifizierten Mutationen (siehe Anhang, Tabelle 11) sind *missense* Mutationen hochkonservierter Aminosäuren in funktionell wichtigen Bereichen des Kanalproteins. Auffällig ist eine Häufung der Mutationen (*hot spots*) im Bereich der Kanal bildenden Segmente S5, S6 und der *p-loops* sowie im Bereich der spannungssensitiven, positiv geladenen Segmente S4 (siehe Abb.1).

Ducros *et al.* identifizierte in 21 FHM-Familien (117 Betroffene) acht Mutationen in *CACNA1A* [23]. Neben den FHM1-Familien mit ausschließlich iktaler Symptomatik (*pure*FHM) entwickeln in etwa 50% der Fälle Betroffene zudem interiktal eine chronisch progressive, zerebelläre Symptomatik und weisen oft eine schwere Erstmanifestation und atypische Attacken (prolongierte Aura, Bewusstseinsstörungen, schwere Hemiplegie, Epilepsie) auf [23, 24, 38]. Einige Mutationen konnten dieser sog. FHM*plus* zugeordnet werden (p.R583Q, p.T666M, p.D715E, p.Y1385C, p.W1684R), andere dagegen der *pure*FHM (p.R195K, p.V714A, p.K1336E, p.V1696I). Eine Mutation (p.R1668W) ist sowohl mit der *pure*FHM als auch mit der FHM*plus* assoziiert [23, 93].

Wenige Mutationen sind rekurrent; die häufigste davon ist p.T666M. Sie wurde bisher weltweit bei 21 nicht verwandten Familien und einem sporadischen Fall entdeckt [4, 8,

23, 24, 31, 32, 53, 71, 91, 93, 104]. Ebenfalls häufig sind p.R583Q und p.D715E. Die jeweiligen Träger entwickeln eine spezifische Symptomatik [23, 51]. Grundsätzlich besteht ein hohes Maß an klinischer Heterogenität. So ist Mutation p.S218L (FHM*plus*) mit einem besonders schweren Phänotyp assoziiert; hier kann es in Folge selbst eines leichten Schädelhirntraumas zur Entwicklung eines zerebralen Ödems mit Todesfolge kommen [15, 53]. Zwei Mutationen (p.R1668W, p.W1684R) sind mit der Epilepsie assoziiert; diese tritt sowohl als Bestandteil der Aurasymptomatik [23] als auch interiktal [52] auf. Möglicherweise deutet dies auf pathophysiologische Gemeinsamkeiten zwischen Epilepsie und FHM hin. Träger der Mutation p.I1811L entwickeln ein phänotypisches Spektrum reichend von der typischen hemiplegischen Migräne, über die MA bis hin zum Fehlen einer Migräne [93].

Gliederung des Kanalproteins in vier Domänen DI bis DIV mit je sechs Segmenten S1 bis S6 sowie einer *p-loop*. Eingezeichnet sind alle bisher identifizierten FHM und SHM assoziierten Mutationen; rote Markierung = *pure*FHM assoziierte Mutationen, blaue Markierung = FHM*plus* assoziierte Mutationen [26], braune Markierung = SHM assoziierte Mutationen; *hot spot* im Bereich des positiv geladenen Spannungssensors S4 (gelb), *p-loop* und der Kanal bildenden Segmente S5 und S6 (grün) [10]. Modell modifiziert nach Freilinger *et al.* [30].

Mutationsbedingte Auswirkungen auf die Kanalfunktion: gain of function

Die funktionellen Folgen der *CACNA1A*-Mutationen sind im einzelnen sehr komplex. Einige Mutationen wurden mittels *patch clamp* Technik elektrophysiologisch untersucht: nach Transfektion der cDNA (kodierende DNA) des Wildtyp- sowie des mutierten Kanalproteins in neuronale und nicht neuronale Zellen (z.B. HEK293) wurden die abgeleiteten Ca²⁺-Ströme sowie die Kanalkinetik miteinander verglichen [39, 54, 69, 99, 100]. Die Analysen zeigten beim mutierten Kanalprotein eine Absenkung des Schwellenpotentials zu negativeren Spannungen hin (*hyperpolarizing shift*), wodurch sich eine erhöhte Öffnungswahrscheinlichkeit der Kanäle (Öffnen bei geringerer Depolarisation) mit einer erhöhten Leitfähigkeit für Ca²⁺-Ionen ergab (erhöhter Ca²⁺-Einstrom über einen breiten Spannungsbereich). Dies mündet insgesamt in einer erhöhten neuronalen Exzitabilität (*gain of function*) [39]. Das sehr niedrige Schwellenpotential der Mutation p.S218L bestätigt diese Befunde durch einen sehr schweren Phänotyp [100]. Eine aktuelle Publikation eines FHM *knock in* Mausmodells, das eine der humanen *CACNA1A*-Mutation p.R192Q entsprechende murine *Cacna1a*-Mutation trug [105], zeigte ebenfalls einen erhöhten Ca²⁺-Einstrom und bestätigte den *gain of function* Effekt. Offenbar hat auch die jeweilige Isoform der exprimierten β-Untereinheit Einfluss auf die Kanalfunktion [69].

1.2.3.2 FHM2: ATP1A2

Genlocus

10-20% aller FHM-Fälle sind mit Mutationen in *ATP1A2* assoziiert [25]. 1997 kartierten die Arbeitsgruppen um Ducros und Gardner erstmalig einen zweiten Genlocus für die FHM auf dem kurzen Arm von Chromosom 1 [25, 33]. 2003 wurde die Kandidatenregion durch Feinkartierung auf Chromosom 1q23 eingeengt [63] und *ATP1A2* als ursächliches Gen identifiziert [16].

Genstruktur und Funktion

ATP1A2 hat eine genomische Länge von ca. 28kb und umfasst 23 Exons. Es kodiert für die α_2 -Untereinheit der Na⁺/K⁺-ATPase. Alle α -Untereinheiten (es sind vier α -Untereinheiten bekannt) besitzen zehn transmembranale Segmente S1-S10, die durch extra- und intrazelluläre Schleifen verbunden sind [41]. Die α -Untereinheit trägt das katalytische Zentrum, die Bindungsstelle für Kationen, ATP, den Inhibitor Ouabain und Ankyrin [43, 50, 75]. Für die katalytische Aktivität und die isomere Spezifität ist die große intrazelluläre Schleife zwischen den Segmenten S4 und S5 von Bedeutung; diese erfährt während des enzymatischen Zyklus Konformationsänderungen und trägt die Bindungsstellen (*binding site*) für ATP und zur Phosphorylierung [67, 85, 86].

Die katalytische α -Untereinheit dimerisiert mit einer stark glykosilierten, regulatorischen β -Untereinheit (fakultativ in der Niere: γ -Untereinheit) zum aktiven Enzymkomplex, zur Na⁺/K⁺-ATPase [7]. Sie ist integraler Bestandteil eukaryotischer Plasmamembranen und ermöglicht einen aktiven, transmembranalen Transport von Na⁺- und K⁺-Ionen; dabei werden drei intrazelluläre Na⁺-Ionen gegen zwei extrazelluläre K⁺-Ionen ausgetauscht. Der dadurch aufgebaute Ionengradient ist Grundlage vieler zellulärer Prozesse. Die für den aktiven Transport benötigte Energie wird durch die Übertragung des endständigen Phosphats von ATP auf das Enzym gewonnen [73].

Mutationsspektrum

Bisher wurden mehr als 20 mit der FHM assoziierte Mutationen in *ATP1A2* identifiziert [16, 45, 48, 74, 87-89, 107, 108]. Es handelt sich überwiegend um *missense* Mutationen; allerdings sind auch Mutationen des Stopkodons (p.X1021R, 28 zusätzliche Aminosäuren) [45] und Deletionen (p.935K_p.940SdelinsI, p.S966fs) beschrieben (siehe Anhang, Tabelle 12) [77].

Abbildung 2: Modell der α_2 -Untereinheit der Na⁺/K⁺-ATPase

Topologie der α_2 -Untereinheit bestehend aus zehn transmembranalen Segmenten und verbindenden intraund extrazellulären Schleifen [47]. Funktionell bedeutsame Schleife zwischen S4 und S5 als *hot spot* für Mutationen. Eingezeichnet sind alle bisher bekannten Mutationen und ihre Assoziation zu neurologischen Erkrankungen. Modell modifiziert nach Freilinger *et al.* [30]. Rote Markierung: familäre hemiplegische Migräne; blaue Markierung: kindliches Epilepsiesyndrom; grüne Markierung: spontane hemiplegische Migräne; gelbe Markierung: alternierende Hemiplegie im Kindesalter; graue Markierung: Migräne mit Aura, braune Markierung: basiläre Migräne Die ersten beiden identifizierten Mutationen waren p.L764P und p.W887R [16]. Rekurrent sind die Mutationen (p.R763H) [45] (zwei Familien, eine US-amerikanische Familie), p.T376M und p.A606T [77]. Alle Mutationen sind in funktionell wichtigen Domänen der Na⁺/K⁺-ATPase lokalisiert. Die große intrazelluläre Schleife zwischen S4 und S5 zeichnet sich als *hot spot* für Mutationen ab (siehe Abb. 2).

Genotyp-Phänotyp Korrelation

Aufgrund großer klinischer Heterogenität und weniger rekurrenter Mutationen ist eine Korrelation schwierig. Bei der FHM2 sind ebenfalls schwere Verläufe (p.D718N), Koma (p.P979L) mit reversiblem, MRT-morphologischem, unilateralem, meningealem Enhancement und kortikalem Ödem (p.E902K) [45] sowie einem postiktalen lebensbedrohlichen Hirnödem beschrieben [22]. Es wurde auch eine FHM2-Famile (p.G301R) mit zerebellären Zeichen beschrieben [89]. Eine Besonderheit innerhalb des klinischen Spektrums der FHM2 ist das interiktale Auftreten von epileptischen Anfällen [16, 45, 107]; so zeigte sich in einer Famile (p.R689Q) eine partielle Kosegregation des FHM-Phänotyps mit dem kindlichen Epilepsiesyndrom (BFIC, *benign familial infantile convulsions*) [107] sowie mentale Retardierung [16, 45].

Mutationsbedingte Auswirkungen auf die Na⁺/K⁺-ATPase: *loss of function*

Die bisher vorliegenden Daten zu den funktionellen Folgen FHM assoziierter *ATP1A2*-Mutationen weisen einheitlich auf einen Funktionsverlust der Na⁺/K⁺-ATPase (*loss of function*) hin. Der Pathomechanismus besteht entweder in einer Haploinsuffizienz [16] der Na⁺/K⁺-ATPase oder in einer reduzierten Affinität zu Kalium bei ansonsten ungestörter Funktion [88]. Andere Mechanismen sind nicht auszuschließen.

1.2.3.3 FHM3: SCN1A

Genlocus

Dichgans *et al.* identifizierte 2005 durch genomweite Kopplungsanalysen und Feinkartierung einen dritten Genlocus für die FHM auf Chromosom 2q24. Die Sequenzierung von Kandidatengenen in dieser Region ergab eine heterozygote

missense Mutation in *SCN1A*; Mutationen in diesem Gen waren bis zu diesem Zeitpunkt nur im Zusammenhang mit der Epilepsie bekannt [18].

Genstruktur und Funktion

SCN1A hat eine genomische Länge von ca. 85kb, enthält 26 Exons und kodiert für die α_1 -Untereinheit des neuronalen, spannungsgesteuerten Na⁺-Kanals Na_V1.1. Dieser besteht aus der ca. 260kDa großen α_1 -Untereinheit und mindestens einer modulierenden β -Untereinheit (β_{1-3}) der Größe 33-36kDa [9].

Die α_1 -Untereinheit hat vier homologe Domänen DI-DIV; jede enthält sechs α -helikale, transmembranale Segmente S1-S6. Extra- und intrazelluläre Schleifen verbinden die Segmente S1-S6 und die vier homologen Domänen untereinander (siehe Abb. 3). Analog zu spannungsgesteuerten K⁺-Kanälen sind die Segmente S5 und S6 jeder Domäne symmetrisch um den Ionenkanal angeordnet; der Ionenkanal selbst wird von den Segmenten S6 und von in die Membran wiedereintretenden Schleifen zwischen S5 und S6 gemeinsam ausgekleidet [21]; diese Schleifen bilden an der extrazellulären Offnung des Ionenkanals einen für die Ionenselektivität verantwortlichen Spalt. Die Segmente S6 formen die intrazelluläre Öffnung. Der negativ geladene äußere und innere Porus bildet eine Rezeptorstelle und den Filter für die Ionenselektivität [110]. Segment S4 jeder Domäne fungiert als Spannungssensor zur Aktivierung; S4 stellt eine α-Helix da und enthält repetitive AS-Motive bestehend aus einem positiv geladenen AS-Rest gefolgt von zwei hydrophoben AS-Resten [110]. Die auf der intrazellulären Schleife zwischen Domäne DIII und DIV lokalisierte, α-helikale inactivation gate trägt das wichtige, hydrophobe IFM-Motiv (Nav1.1-Kanals: p.I1488-p.F1489-p.M1490), das als "Riegel" fungiert und die Öffnung des inneren Kanalporus mittels hinged lid Mechanismus steuert [78]. Mutationen der Schlüssel-AS p.F1489 beeinträchtigen die schnelle Inaktivierung. Der Rezeptor für das inactivating gate wird von mehreren zwischen den Segmenten S4-S5 der Domänen DIII und DIV sowie an den intrazellulären Enden der Segmente S6 lokalisierten hydrophoben AS gebildet [9].

Abbildung 3: Topologie der α-Untereinheit des Na_v1.1

Gliederung in vier Domänen DI bis DIV, jeweils bestehend aus sechs transmembranalen Segmenten S1 bis S6; Verbindung der Segmente durch extra- und intrazelluläre Schleifen. S4 jeder Domäne fungiert als Spannungssensor (positive Ladung, gelb), S5 und S6 sowie die "wiedereintretenden" Schleifen zwischen S5 und S6 bilden den Ionenkanal (grün); intrazelluläre Lage des *inactivation gate* (h) und seines Rezeptors (hellblaue Kreisflächen). Ebenfalls eingezeichnet sind die für die α_1 -Untereinheit des Na_V1.1-Kanals bekannten Mutationen (dunkelblaue Kreisflächen) mit ihrer Lokalisation in funktionell wichtigen Domänen (Ionenkanal, Spannungssensor, *inactivation gate*). Modell modifiziert nach Yu und Caterall [110].

Mutationsspektrum

Bisher sind drei FHM assoziierte *SCN1A*-Mutationen bekannt. Die erste Mutation (p.Q1489K) identifizierten Dichgans und Freilinger *et al.* 2005 [18]. Eine zweite (p.L1649Q) wurde kürzlich von Valmolkot *et al.* identifiziert [106]. Aktuell wurde eine dritte (p.L263V) mit FHM und generalisierter Epilepsie assoziierte Mutation von Kahlig *et al.* identifiziert [46]. Die Mutationen befinden sich stets in funktionell wichtigen Bereichen des Kanalproteins.

Genoty-Phänotyp Korrelation

Da bisher erst drei FHM assoziierte Mutationen im *SCN1A* beschrieben wurden, ist momentan eine Genotyp-Phänotyp Korrelation nicht möglich. Dieses Gen wurde ursprünglich im Zusammenhang mit der Epilepsie identifiziert; so sind Mutationen im Kanal Na_V1.1 mit der GEFS+2 (generalisierte Epilepsie mit Fieberkrämpfen plus) [27, 61] und der SMEI (*severe myoclonic epilepsy of infancy*) [12] assoziiert.

Mutationsbedingte Auswirkungen auf die Kanalfunktion: gain of function

Die bisher identifizierten Mutationen zeigten bei elektrophysiologischen Untersuchungen Unterschiede zum Wildtyp. Bei Dichgans *et al.* fand sich für die Mutation p.Q1489K eine zwei- bis vierfach schnellere Erholungszeit von der schnellen Inaktivierung [19]. Die Erholung von der Inaktivierung besteht aus zwei Phasen, die durch die Membranzeitkonstanten $\tau_{schnell}$ und $\tau_{langsam}$ beschrieben werden kann. Mutierte Kanäle haben eine signifikant kleineres $\tau_{schnell}$; hinsichtlich der langsamen Komponente $\tau_{langsam}$ gab es keinen signifikanten Unterschied.

Die Mutation p.L1649Q zeigte bei Vanmolkot *et al.* eine deutlich kürzere Inaktivierungsdauer [106]. Quantitative Analysen zeigten, dass im Falle der Mutation meist beide Zeitkonstanten (T_{schnell}, T_{langsam}) zwei bis vierfach größer waren. Beide Effekte führen zu einer insgesamt verlangsamten schnellen Inaktivierung mutierter Kanäle. Hingegen war die langsame Inaktivierung nicht betroffen. Das Schwellenpotential war um ca. 10mV zu positiveren Spannungen hin verschoben und die "Erholungsdauer" von der schnellen Inaktivierung war beim mutierten Kanal etwa 150% kürzer.

Kahlig *et al.* fand für die kürzlich identifizierte Mutation p.L263V einen dauerhaft erhöhten Ionenfluss, eine verminderte schnelle und lansame Inaktivierung, eine beschleunigte Erholung von der schnellen Inaktivierung und eine erhöhte Rekrutierbarkeit der Kanäle bei repetitiver Stimulation [46].

Insgesamt zeigen diese funktionellen Analysen, dass Mutationen in *SCN1A* eine Änderung der Kanalkinetik im Sinne einer elektrophysiologischen Übererregbarkeit bedingen (*gain of function*).

1.3 Pathophysiologisches Modell der FHM

Migräneaura

Das neurophysiologische Korrelat der Migräneaura ist die erstmals von Leao 1951 beobachtete sog. *cortical spreading depression* (CSD) [58]; dies ist die Beschreibung für eine okzipital beginnende Erregungsfront, die mit ca. 3 mm/min. über den Kortex wandert und in eine lang anhaltende Phase supprimierter neuronaler Aktivität übergeht. Die initiale Erregung entspricht dabei positiven Auraphänomenen, die Suppression negativen [57]. Für die Auslösung der CSD spielt die exzitatorische Aminosäure Glutamat eine wichtige Rolle. Nach Eintreffen eines Aktionspotentials und Ca²⁺-Einstrom über Ca_V-Kanäle wird diese aus Vesikeln präsynaptischer Terminalen in den

synaptischen Spalt freigesetzt und wirkt über NMDA-Rezeptoren an der postsynaptischen Membran. Die Entfernung von Glutamat aus dem synaptischen Spalt erfolgt haupsächlich über die beiden astrozytären, natriumabhängigen Glutamat-Transporter GLAST (EAAT1) und GLT-1 (EAAT2) [79]. Neben Glutamat ist extrazelluläres Kalium als Auslöser für eine CSD bekannt. Für die Pufferung extrazellulären Kaliums kommt der Na⁺/K⁺-ATPase auf den Astrozyten eine Schlüsselrolle zu. Interessanterweise ist im okzipitalen Kortex das Verhältnis von Astrozyten zu Neuronen besonders niedrig, so dass hier eine besonders geringe Kalium-Pufferungkapazität vorliegt [57]. Dies könnte das sehr häufige Auftreten einer visuellen Aura erklären.

Nach derzeitiger Auffassung begünstigen Mutationen in den bisher identifizierten FHM-Genen auf unterschiedlichem Wege die Entstehung und die Fortleitung einer CSD [68]. Der zu dieser gesteigerten neuronalen Erregbarkeit führende Pathomechanismus ist jeweils vom betroffenen Gen abhängig.

Aufgrund veränderter Kinetik der Ca_V-Kanäle kommt es bei der FHM1 zu einem erhöhten Kalziumeinstrom an den Nervenendigungen. Dieser führt zu einer gesteigerten Glutamatfreisetzung und einer erhöhten Suszeptibilität für eine CSD. Kürzlich wurde eine erste *CACNA1A knock in* Maus publiziert (humane p.R192Q-Mutation); diese wies eine erniedrigte Schwelle für die Auslösung einer CSD auf, zusätzlich waren Ausbreitungsgeschwindigkeit und Dauer der CSD im Vergleich zum Wildtyp erhöht [105]. Es zeigte sich also dementsprechend ein *gain of function.*

Bei der FHM2 ist der vermutete Pathomechanismus eine verminderte clearance von Glutamat aus dem synaptischen Spalt. Die Wiederaufnahme (reuptake) von Glutamat erfolgt über astrozytäre Na⁺/Glutamat-Kotransporter entlang eines elektrochemischen Natriumgradienten, der durch die Na^{+}/K^{+} -ATPase aufrechterhalten wird. Ein Funktionsverlust (loss of function) der Na⁺/K⁺-ATPase bedingt ein Versagen des reuptake Mechanismus, was analog zur FHM1 in einer erhöhten synaptischen Glutamatkonzentration mit subsequent gesteigerter Suszeptibilität für eine CSD mündet. Ein loss of function der Na⁺/K⁺-ATPase vermindert daneben auch die astrozytäre Pufferkapazität für extrazelluläres Kalium und senkt damit ebenfalls die Schwelle zur Der reduzierte Natriumgradient hat auch eine Auslösung einer CSD [68]. Aktivitätsminderung eines neuronal lokalisierten Na⁺/Ca²⁺-Antiports zur Folge, der Kalzium im Austausch mit extrazellulärem Natrium aus der Zelle entfernt. Der Überschuss intrazellulären Kalziums ist ebenfalls analog zur FHM1 zu bewerten. Auf Hirnschnitte topisch aufgebrachte Inhibitoren der Na⁺/K⁺-ATPase (provozierter *loss of function*) lösten ebenfalls eine CSD aus.

Die bei der FHM3 mutierten Na⁺-Kanäle werden axonal exprimiert und sind für die Entstehung und Fortleitung von Aktionspotentialen entscheidend. Die identifizierten Mutationen führen durch Alterationen bestimmter Kanaldomänen zu einer geänderten Kanalkinetik (Senkung des Schwellenpotentials, Verkürzung der Refraktärzeit, Erhöhung der Leitfähigkeit für Na⁺-Ionen) [18, 106]. Insgesamt erlauben die Alterationen eine erhöhte Aktionspotentialfrequenz. Dies könnte die Entstehung und die Fortleitung einer CSD über verstärkte Glutamatsekretion und erhöhte extrazelluläre Kaliumkonzentration begünstigen.

Abbildung 4: Pathophysiologische Zusammenhänge zwischen FHM und CSD

Glutamat nimmt hinsichtlich der Suszeptibilität für eine CSD/Aura eine Schlüsselposition ein. Abgebildet ist eine glutamaterge Synapse, ein angrenzender Astrozyt und die beteiligten Kanäle/Rezeptoren. Durch ein die axonale Membran depolarisierendes Aktionspotential (AP), das über spannungsabhängige Na⁺-Kanäle (Na_V1.1) fortgeleitet wird, werden spannungsabhängige Ca²⁺-Kanäle (Ca_V2.1) geöffnet, was einen Einstrom von Kalzium (Ca²⁺) und eine Freisetzung von Glutamat (Glu) in den synaptischen Spalt bewirkt. Die Glutamatwirkung wird durch die Wiederaufnahme (*reuptake*) mittels spezieller natriumabhängiger Glutamat-Natrium-Symporter (GLAST) in die Astrozyten limitiert. Dieser Symport wird durch einen elektrochemischen Natriumgradienten ermöglicht, der durch die Aktivität der Na⁺/K⁺-ATPase aufgebaut und aufrechterhalten wird. Somit besteht eine erhöhte Suszeptibilität für eine(n) CSD/Aura bei einer erhöhten Aktivität von Ca_V2.1 (Mutation in *CACNA1A*; FHM1), einer verminderten Aktivität der Na⁺/K⁺-ATPase (Mutation in *ATP1A2*; FHM2) sowie einer erhöhten Aktivität von Na_V1.1 (Mutation in *SCN1A*; FHM3). Durch diese drei Mechanismen kommt es entweder zu einer erhöhten Konzentration von Glutamat im synaptischen Spalt, zu einer erhöhten Kaliumkonzentration im synaptischen Spalt, zu einer erhöhten intrazellulären Kalziumkonzentration oder zu einer erhöhten Wahrscheinlichkeit für eine Fortleitung eines Aktionspotenzials. Modell modifiziert nach Magistretti *et al.* [62]. In Ruhe befindet sich das System im Gleichgewicht (Abb. 4); unter ungünstigen Bedingungen (pH-Änderung, Elektrolytstörung, SHT, Kontrastmittelgabe, Fieber, Infektion) kommt es zur Dekompensation mit verstärkter Glutamatsekretion und verminderter Pufferung extrazellulären Kaliums und Auslösung einer CSD. Dies würde das paroxysmale Auftreten von FHM-Attacken erklären [68]. Abb. 4 impliziert ebenfalls eine Bedeutung des GLAST. Obwohl dieser hinsichtlich der FHM nicht untersucht ist, berichteten Jen *et al.* kürzlich über eine heterozygote *de novo* Mutation im GLAST kodierenden Gen bei einem Patienten mit einem komplexen neurologischen Phänotyp einschließlich hemiplegischer Migräne. Funktionsanalysen dieser Mutation zeigten eine reduzierte Transportkapazität für Glutamat [42].

Migränekopfschmerz

Mutationen der FHM-Gene und ihre funktionellen Folgen lassen sich in ein Modell der FHM-Aura (bzw. der CSD als ihr Korrelat) einbinden. Ihre Bedeutung für den Migränekopfschmerz ist derzeit unklar. Es gibt jedoch in der Literatur Hinweise dafür, dass die CSD eine Rolle bei den Kopfschmerzphasen spielen kann [5] oder, dass es sich um zwei voneinander unabhängige, parallel auftretende Phänomene handelt [90].

1.4 Sporadische hemiplegische Migräne

Phänotyp

Neben der FHM als hereditäre Form einer hemiplegischen Migräne mit autosomal dominantem Erbgang wurden Patienten mit gleicher klinischer Symptomatik, jedoch fehlenden betroffenen Verwandten ersten oder zweiten Grades beobachtet [3, 6, 8, 11, 20, 23, 24, 36, 40, 64, 70, 76]. Für diese wurde der Begriff der sporadischen hemiplegischen Migräne (SHM) geprägt [6, 8, 20, 24, 76].

Die SHM tritt, vergleichbar mit der FHM, mit einer Prävalenz von ca. 0,005% auf [96]. Folgende Befunde populationsbasierter Studien [97] führten zur Definition der SHM als eigenständigen Subtyp der Migräne mit Aura innerhalb der Klassifizierung der IHS:

Ein Vergleich der Aurasymptome beider Migräneformen zeigte sehr ähnliche klinische Charakteristika hinsichtlich der Frequenz, der Kombination, der Abfolge, der zeitlichen Entwicklung und der Gesamtdauer jedes einzelnen Aurasymptoms [96, 97]. Wie bei der FHM wiesen die Betroffenen meistens alle vier Aurasymptome (visuell, sensorisch,

aphasisch, motorisch) auf, mindestens jedoch zwei davon, wobei die motorische Komponente definitionsgemäß obligat war [97]. Zudem folgte bei beiden Migräneformen auf die Aura stets der charakteristische Migränekopfschmerz [97].

Es erfüllten etwa 72% aller SHM-Patienten [97] sowie 69% aller FHM-Patienten [95] während einer Migräneattacke die IHS-Kriterien für eine Basilarismigräne (BM) wie simultane bilaterale Parese und/oder Anästhesie, simultane visuelle Symptome in den temporalen sowie nasalen Gesichtsfeldern beider Augen, Dysarthrie, Schwindel, Diplopie, Tinnitus, Hörminderung, Bewusstseinsstörungen, Gleichgewichtsstörungen, plötzliches Stürzen, gekreuzte Symptomatik und von einer Körperhälfte auf die andere springende Symptome [97].

Zusätzlich waren FHM [95] und SHM [97] mit spezifischen begleitenden neurologischen Störungen assoziiert; diese umfassten die chronisch progrediente Ataxie (ataktische Sprache, breitbasiger ataktischer Gang), Epilepsie, Schlaganfall und Koma (mit lymphozytärer Pleozytose, Fieber und vollständiger Remission).

Neben der genannten typischen Symptomatik ist auch das relative Risiko für die Entwicklung häufiger Migräneformen bei beiden hemiplegischen Migräneformen ähnlich hoch (siehe Anhang, Tabelle 14).

Molekulargenetische Vorarbeiten zur SHM

Zum Zeitpunkt des Entstehens dieser Dissertationsschrift gab es kaum Arbeiten, in denen SHM-Patienten systematisch auf Mutationen in den FHM-Genen untersucht worden waren; vorrangig waren Mutationen im Gen *CACNA1A* untersucht. Es wurden Mutationen in diesem Gen sowohl für die SHM mit (SHM*plus*) als auch ohne zerebellären Zeichen (*pure*SHM) identifiziert.

Zwischenzeitlich wurden in zwei Arbeiten SHM-Patienten in den FHM-Genen sytematisch untersucht. De Vries und Freilinger *et al.* zeigten, dass zumindest bei einem Teil der *pure*SHM-Patienten die FHM-Gene von Bedeutung sind. Bei diesem Kollektiv bestand eine erhöhte Wahrscheinlichkeit v.a. für eine Mutation im FHM-Gen *ATP1A2* [17]. Thomsen *et al.* untersuchte in einer populationsbasierten Arbeit SHM-Patienten in den Genen *CACNA1A* und *ATP1A2*. Es ließen sich in den meisten SHM-Fällen keine Mutationen in diesen FHM-Genen nachweisen [94].

1.5 Fragestellung

Die Genetik der SHM ist nach aktueller Datenlage weitgehend unklar. Jedoch weisen SHM-Patienten und FHM-Patienten einen identischen Phänotyp auf. Unter der Annahme gleicher neurobiologischer Pathomechanismen beider Erkrankungen wurden in dieser Dissertationsschrift die für die FHM ursächlichen Gene bei SHM-Patienten untersucht. Es sollte ermittelt werden, inwieweit diese Gene für die Entstehung der SHM von Bedeutung sind. Im Falle einer Erstmanifestation hat die Hemiplegie als obligates Symptom einer SHM-Attacke im klinischen Alltag wichtige Differentialdiagnosen. So gehen auch transiente ischämische Attacken (TIA), Schlaganfälle und Epilepsie mit einer Hemiplegie einher [97]. Ein Mutationsscreening in den FHM-Genen als diagnostisches Instrument könnte die Diagnosefindung der SHM erleichtern und dem Patienten unnötige Diagnostik und Therapieversuche ersparen.

2 Patienten, Methoden und Material

2.1 Patienten und Kontrollen

In dieser Arbeit wurden 13 SHM-Patienten auf Mutationen in den Genen *CACNA1A*, *ATP1A2* und *SCN1A* untersucht. Zwei dieser Patienten wurden lediglich in *ATP1A2* und *CACNA1A*, ein zusätzlicher 14. Proband wurde nur in Exon 20 von *ATP1A2* untersucht. Als Kontrollgruppe diente ein Kollektiv von 100 gesunden Probanden. Die Einverständniserklärung aller Patienten zur Verwendung ihrer DNA zu Forschungszwecken lag vor.

Die Rekrutierung der Patienten erfolgte aus der Kopfschmerzambulanz der Neurologischen Klinik und Poliklinik des Universitätsklinikums Großhadern der Universität München (LMU) und weiteren Neurologischen Kliniken und Praxen. Die Migränephänotypisierung der rekrutierten Patienten fand anhand eines Telefoninterviews und validierten Fragebogens statt. Die erhobenen klinischen Charakteristika der einzelnen Patienten werden in Kap. 3.1 tabellarisch aufgeführt.

2.2 Methoden

2.2.1 Allgemeine DNA-Techniken

2.2.1.1 Isolierung genomischer DNA aus EDTA-Vollblut

Prinzip

Zur Isolierung genomischer DNA aus EDTA-Vollblut wurde die Aussalz-Methode verwendet [66]. Diese beruht auf folgendem Prinzip: In einem ersten Schritt werden die Erythrozyten chemisch lysiert und die Plasmamembranen entfernt, in einem zweiten Schritt werden Proteine enzymatisch gespalten, Leukozyten ebenfalls chemisch lysiert und die DNA freigesetzt. Schliesslich wird in einem dritten Schritt die DNA alkoholisch präzipitiert und in frischem Medium gelöst.

Lyse der Erythrozyten

In einem 50ml-Falcon-Tube wurden 10ml EDTA-Vollblut mit Erythrozytenlysepuffer auf ein Volumen von 50ml aufgefüllt und für 10min bei -20°C gelagert. Anschließend wurde das Falcon-Tube bei 1700U/min und 4°C für 10min zentrifugiert. Der Überstand wurde verworfen und das sedimentierte Pellet mit weiteren 30ml Erythrozytenlysepuffer gewaschen; das Falcon-Tube wurde gevortext (Vortex-Rührer) bis sich der Bodensatz gelöst hatte und für 10min bei -20°C gelagert.

Inkubation der Zelllysate mit Proteinase K

Das Falcon-Tube wurde mit 5ml SE-Puffer, 0,5ml 10%-iger SDS-Lsg. (SDS: 0,35M) und 10µl Proteinase K (10mg/ml) versetzt, gevortext und über Nacht bei 37°C inkubiert. Durch die Proteinase K wurden die verbliebenen Proteine gespalten, während SDS als Detergenz die Leukozyten lysierte.

Aussalzen der Proteine

Nach der Inkubation wurden die Proteinfragmente mit 2,5ml NaCl (5M) je Falcon präzipitiert und bei 2700U/min und 4°C für 10min abzentrifugiert. Die DNA im Überstand wurde in ein frisches Falcon übergeführt und weiterverwendet. Diesem Überstand wurden 15ml Ethanol (100%-ig) beigemengt, die präzipitierte DNA entfernt und in Ethanol (70%-ig) gewaschen. Anschließend wurde die DNA in ein Schraubverschlussröhrchen übergeführt, im Wärmeschrank getrocknet, in 210µl 1xTE-Puffer, im Überkopfschüttler gelöst und bei 4°C dauerhaft gelagert.

2.2.1.2 Photometrische Konzentrationsbestimmung der dsDNA

Prinzip der Konzentrationsbestimmung

Die photometrische Konzentrationsbestimmung von DNA-Lösungen erfolgte anhand der Exstinktionsmessung eingestrahlten Lichtes der Wellenlänge λ =260nm (E₂₆₀). Die Intensität I₀ eingestrahlten Lichtes nimmt exponentiell längs des Weges d durch ein Medium ab. Nach dem Lambert-Beer'schen Gesetz gilt: Log I₀/I = E = ϵ c d, wobei I₀ die Intensität des eingestrahlten Lichtes, I die Intensität des gemessenen Lichtes, E die Exstinktion, ϵ der Molare Absorptionskoeffizient in cm² mol⁻¹, d die Länge der

Messstrecke (Küvette) in cm und c die Konzentration der absorbierenden Moleküle in mol⁻¹ ist. E wird auch als optische Absorption (A) oder Optische Dichte (OD) bezeichnet.

Basierend auf der Exstinktionsmessung wird die DNA-Konzentration nach Cryer errechnet. Demnach entsprechen einer Exstinktion von 1,0 50µg/ml doppelsträngige DNA [14]. Zur Abschätzung der Konzentration verunreinigender Proteinein wurde die Exstinktion zusätzlich bei der Wellenlänge λ =280nm gemessen (E₂₈₀). Bei dieser Wellenlänge absorbieren die aromatischen Aminosäuren Tyrosin, Phenylalanin und Tryptophan. Anhand des Quotienten E₂₆₀/E₂₈₀ konnte die Reinheit der DNA-Präparation errechnet werden und sollte zwischen 1,8 und 2,0 betragen.

Durchführung der Konzentrationsbestimmung

Die Bestimmung der DNA-Konzentration und ihrer Reinheit erfolgte in Einmalküvetten (Kantenlänge: 1cm) bei einer Wellenlänge von λ =260nm und λ =280nm. Zur Messung wurden 5µl DNA unverdünnter Stock-Lösung in 495µl Aqua_{dest.} gelöst.

2.2.1.3 Restriktionsverdau mit Acil

Prinzip des Restriktionsverdaus

Bakterien enthalten Restriktionsenzyme zum Selbstschutz vor fremder DNA. Jedes Enzym hat seine spezifische Basenerkennungssequenz, an der die DNA zerschnitten wird. Zur Analyse von Restriktionsfragmentlängenpolymorphismen (RFLP) werden ebenfalls Restriktionsenzyme verwendet; Alterationen der DNA-Sequenz im Bereich dieser spezifischen Schnittstellen führen zu Veränderungen im DNA-Schnittmuster.

Restriktionsverdau mit Acil

In dieser Arbeit wurde der Restriktionsverdau angewendet, da eine Sequenzalteration in Exon 20 des Gens *ATP1A2* entdeckt wurde, welche die Erkennungssequenz für das Restriktionsenzym Acil (5'-CCGC-3', 3'-GGCG-5') dahingehend veränderte, dass eine Schnittstelle in der DNA-Kette wegfiel und sich damit ein verändertes DNA-Schnittmuster für das mutierte Exon 20 ergab.

In Vorbereitung auf den Restriktionsverdau wurde dieses Exon 20 des Indexpatienten, der Mutter des Indexpatienten sowie des Kontrollkollektivs (100 Probanden) mittels PCR amplifiziert. Zur Amplifizierung des Exons 20 im Bereich der Sequenzalteration wurden spezielle PCR-Primer entworfen, die nicht das gesamte Exon 20 amplifizierten, sondern lediglich denjenigen DNA-Abschnitt, der sowohl die Sequenzalteration, als auch die definierten Basenerkennungssequenzen für Acil enthielt. Damit würde im Falle des mutierten Exons 20 bei einem Restriktionsverdau mit Acil ein verändertes DNA-Schnittmuster erzeugt werden. Nach Gelelektrophorese und Vergleich der beiden DNA-Schnittmuster ließe sich eindeutig das Exon 20 des Wildtyps von dem die Sequenzalteration enthaltenden Exon 20 unterscheiden.

Zur Bereitstellung ausreichend großer Mengen DNA für den Restriktionsverdau wurden hier zwei gleiche PCR-Ansätze zu einem Gesamtvolumen von 50µl ge-*poolt* und gemeinsam aufgereinigt; dadurch erhielt man ein PCR-Produkt-Eluat mit doppelter DNA-Konzentration.

Für den Restriktionsverdau wurde der aus Tabelle 1 ersichtliche Reaktionsansatz in 0,5ml Eppendorf-Cups bei 37°C für 24h inkubiert und mit jeweils 3µl DNA-SLM gestoppt:

Substanz	Volumen
NEB 10xEnzympuffer Nr.4	1,0 µl
PCR-Produkt-Eluat	8,0 µl
BSA (100μg/ml)	0,5 µl
Acil (3,0U/ml)	0,5 µl

Tabelle 1: Eingesetzte Volumina beim Restriktionsverdau

2.2.2 Polymerase-Kettenreaktion (PCR)

Durch direkte Sequenzierung (*direct sequencing*) der Gene *CACNA1A*, *ATP1A2* und *SCN1A* sollten Sequenzalterationen identifiziert werden. Dazu mussten alle Exons und Intron-Exon-Grenzen dieser Gene aller Patienten und Probanden mittels PCR amplifiziert werden.

2.2.2.1 Design der Primer

Alle in dieser Arbeit verwendeten Oligonukleotide (Primer) wurden entweder mit dem Primer-Programm Primer3 (www.frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) entworfen oder Publikationen entnommen. Als Parameter für die Primer wurden die Standardeinstellungen im Programm beibehalten. Die zur Sequenzierung bestimmten

Primer unterschieden sich nicht von den zur PCR verwendeten Primer. Einzig die in Vorbereitung für den Restriktionsverdau verwendeten Primer für Exon 20 des Gens *ATP1A2* unterschieden sich in ihrer Sequenz von den zur Sequenzierung des Exons 20 bestimmten Primern.

Grundsätzlich sollten Primer eine Mindestlänge von 18bp haben, ca. 40bp von der Intron-Exon-Grenze entfernt im Intron liegen, einen GC-Anteil von 50% und eine Schmelztemperatur von ca. 60°C haben. Für jedes Exon eines jeden Gens wurde je ein Primerpaar (*forward* "F" und *reverse* "R") für die jeweils beiden komplementären DNA-Stränge der *template*-DNA verwendet. In einigen Fällen war das Intron zwischen zwei Exons sehr kurz, sodass hier zwei Exons mittels eines Primerpaares amplifiziert werden konnten (Primersequenzen im Anhang).

2.2.2.2 Durchführung der PCR

Grundprinzip der PCR

Die Polymerase-Kettenreaktion (PCR) ist die Standardmethode zur Amplifizierung von sequenzspezifischen DNA-Fragmenten [82]. Hierbei werden zyklisch drei Schritte durchlaufen (siehe Abb.5): In einem ersten Schritt wird die Doppelstrang-DNA (dsDNA) durch Hitzedenaturierung zu zwei Einzelsträngen (ssDNA) aufgeschmolzen. In einem zweiten Schritt hybridisieren die künstlich synthetisierten DNA-Oligonukleotide (Primer) an die jeweils komplementäre ssDNA (*annealing*). In einem dritten Schritt werden durch eine thermostabile DNA-Polymerase (meist Polymerase des Thermophilus aquarius; Taq) Desoxyribonukleotide (dNTPs) an das 3'-Ende der Primer angebaut (Extension). Erst durch zusätzlichen Einsatz eines gegenläufigen *reverse* Primers und zyklischer Wiederholung dieser drei Schritte im Thermocycler entstehen Fragmente mit definiertem 3'-Ende und wird ein bestimmtes Segment der *template*-DNA exponentiell amplifiziert.

Abbildung 5: Reaktionsschritte einer PCR

Basisprotokoll der PCR

Als *template* zur DNA-Amplifikation diente die jeweilige genomische DNA der untersuchten Patienten (Arbeitsverdünnung: 50ng/µl). Für einen 25µl-Reaktionsansatz wurden 2,5µl DNA, jeweils 1µl Primer F und R (Arbeitsverdünnung: 10pmol/µl), 1µl dNTPs (Arbeitsverdünnung: 2mM) und 0,5µl Taq (5U/µl) eingesetzt. Die MgCl₂-Konzentration variierte in Abhängigkeit der etablierten Primer-Bedingungen. Insgesamt ergab sich ein Gesamtvolumen für jeden Reaktionsansatz von 25µl.

Eine Übersicht über die eingesetzten Volumina und die Konzentrationen gibt folgende Tabelle:

Komponente (Arbeitsverdünnung)	Volumen [µl]	Konzentration im Ansatz [mM]
Primer <i>forward</i> (10pmol/µl)	1,0	0,004
Primer <i>reverse</i> (10pmol/µl)	1,0	0,004
10 x PCR-Puffer	2,5	***
MgCl ₂ (25mM)	0 - 2,5	1,5 - 4,0
DNA (50ng/µl)	2,5	***
dNTPs (2mM)	1,0	0,2
Taq (5U/μΙ)	0,5	***
ddH ₂ O	10,0 - 12,5	***
Σ	25	***

Tabelle 2: PCR-Grundansatz

Thermocycler

Die PCR und S-PCR (Sequenzier-PCR) wurden stets mit demselben Cycling-Programm durchgeführt. Es wurde nur primerabhängig die *annealing*-Temperatur variiert.

Schritt	Temperatur [°C]	Dauer [s]
1	95	300
2	95	30
3	variabel	45

4	72	30
5	72	600
6	4	×

Tabelle 3: Cycler-Programm für die PCR

Etablierung der PCR

Die PCR sollte ein möglichst spezifisches Produkt, d.h. ein Produkt bestimmter Basenlänge liefern, erkennbar daran, dass sich in der Agarose-Gelelektrophorese nur eine Bande bestimmter Größe zeigte. Um dies zu erreichen, musste die Konzentration für MgCl₂ und die *annealing*-Temperatur des jeweiligen Primers ermittelt werden, da dies die beiden wichtigsten Faktoren für eine möglichst spezifische PCR sind.

Die optimale *annealing*-Temperatur der Primer liegt 3-5°C unter der Schmelztemperatur T_m der Primer. Diese lässt sich mit der Formel $T_m = 2°C$ (A + T) + 4°C (C + G) berechnen, wobei A, T, C und G für die Anzahl der jeweiligen Basen im Primer steht. T_m gibt an, bei welcher Temperatur theoretisch 50% der Primer an der *template*-DNA hybridisieren. Zweckmäßiger war es jedoch, die *annealing*-Temperatur empirisch mittels eines Temperatur- und MgCl₂-Gradienten im Gradient-Cycler zu ermitteln. Abbildung 6 zeigt den Einfluss der *annealing*-Temperatur und der MgCl₂-Konzentration auf die Spezifität eines PCR-Produkts:

Abbildung 6: Annealing-Temperatur und MgCl₂-Konzentration bei Exon 6, ATP1A2 A: MgCl₂-Konzentration pro PCR-Ansatz: 1,5mM; B: MgCl₂-Konzentration pro PCR-Ansatz: 2,5mM; C: MgCl₂-Konzentration pro PCR-Ansatz: 3,5mM; 1-5: steigende *annealing*-Temperatur: 1. 56,0°C, 2. 57,0°C, 3. 58,6°C, 4. 59,6°C, 5. 61,1°C; M: Größenmarker pBR322 DNA-Mspl Digest. Spezifische Produkte sind nur im Bereich A zu erkennen (\rightarrow), in Spalte 4 ist ein einziges Produkt der Größe 243bp erkennbar.

2.2.2.3 Reinigung von PCR-Produkten

Allgemeine Informationen

Das PCR-Produkt, welches nun für die S-PCR verwendet werden sollte, enthielt noch einige verunreinigende Substanzen (überschüssige Primer, Polymerase, Salze, 10xPuffer, u.a.). Somit musste das PCR-Produkt vor der S-PCR aufgereinigt werden. Dies geschah mit Hilfe des kommerziell erhältlichen "QIAquick PCR Purification Kit". Damit lassen sich DNA-Fragmente mit einer Länge von 100bp bis 10kbp aus Lösungen herausfiltern. Die in der Säule befindliche Silikamembran bindet unter einer bestimmten Salzkonzentration und einem bestimmten pH-Wert (PB-Puffer, pH < 7,5) die DNA, diese kann unter einem anderen pH-Wert (EB-Puffer, pH 7,0-8,5) wieder von der Membran gelöst werden. Die verunreinigenden Substanzen werden zusammen mit dem PB-und PE-Puffer verworfen.

Vorgehen

Es wurden 22µl des PCR-Produkts mit 110µl (fünffaches Volumen) PB-Puffer (im Kit enthalten) vermischt und auf die Säule gegeben (Ausnahme: Für den Restriktionsverdau wurden jeweils zwei gleiche PCR-Produkte über eine Säule gemeinsam aufgereingt: 44µl PCR-Produkt, 220µl PB-Puffer). Nach einminütiger Zentrifugation bei 13200U/min wurde auf die Säulen 750µl PE-Puffer (im Kit enthalten) gegeben. Die Säulen wurden für weitere zwei Minuten bei 13200U/min zentrifugiert. Schließlich wurde die membrangebundene DNA in 30µl EB-Puffer (im Kit enthalten) eluiert. Diese Eluate konnten nun für die S-PCR eingesetzt werden.

2.2.3 Gelelektrophorese und Visualisierung der PCR-Produkte

Das PCR-Produkt und das aufgereinigte PCR-Produkt-Eluat wurden auf ein Agarose-Gel aufgetragen. Dies diente der Kontrolle der vorangegangenen PCR und Säulenaufreinigung. Zeichen einer spezifischen und erfolgreichen PCR waren das Vorhandensein einer einzigen Bande entsprechender Fragmentlänge auf dem Agarose-Gel. Zum Anfärben der DNA wurde Ethidiumbromid (EtBr₂) verwendet. Es interkaliert mit der DNA und wird durch die UV-Lampe des Transluminators zur Lumineszens angeregt. Die Gele wurden digital photographiert, archiviert und dokumentiert.

2.2.3.1 Agarose-Gel

Unterschiede bei Agarose-Gelen

Zur Visualisierung von DNA eignet sich eine einfache Agarose-Gelelektrophorese. Agarose, eine mit D-Galaktose glykosidisch verbundene 3,6-Anhydrogalaktose, wird aus Rotalgengattungen gewonnen und polymerisiert nach Aufkochen in Puffer (TAE-Puffer, TBE-Puffer) aus. Es bildet sich eine Matrix mit bestimmter konzentrationsabhängiger Porengröße und damit verbundenen Trennungseigenschaften aus. Wird nun an das im Puffer schwimmende und mit Puffer bedeckte Agarose-Gel eine Spannung angelegt, können DNA, RNA und Proteine ihrer Größe nach aufgetrennt werden. Die Spannung sollte möglichst klein gewählt werden, um eine Hitzedenaturierung der DNA zu vermeiden und um die räumliche Auflösung zu verbessern.

Bei der Auswahl der Konzentration des Agarose-Gels muss die Länge des erwarteten DNA-Fragments beachtet werden. Agarose-Gele lassen sich in unterschiedlichen Konzentration (0,4-2%ig) und mit unterschiedlichen Puffern (TAE-Puffer, TBE-Puffer) herstellen. Die Laufeigenschaften und die räumliche Auflösung der DNA-Fragmente werden durch die Konzentration des Gels bestimmt. Einen Überblick über die Abhängigkeit des Auflösungsvermögens von der Konzentration gibt Tabelle 4:

Agarose-Gel-Konzentration [mg/100ml]	Trennbereiche der DNA-Fragmenten [kb]
0,40	2 - 30
0,75	1 - 15
1,00	0,5 - 10
1,25	0,3 - 5
1,50	0,2 - 4
2,00	0,1 - 2,5

Tabelle 4: Trennbereiche von Agarose-Gelen

Verwendete Agarose-Gele

Zur Kontrolle des PCR-Erfolges wurde ein 1,5%-iges Agarose-Gel (1xTBE-Puffer, 1µl 5xDNA-Ladepuffer, 3µl PCR-Produkt, 3µl pBR322-Größenmarker), zur Schnittmusteranalyse nach dem Restriktionsverdau ein 2,5%-iges Agarose-Gel (1xTAE-Puffer, 13µl Verdau-Produkt incl. 3µl SLM, 8µl pUC8-Größenmarker) verwendet.

Herstellung der Agarose-Gele

Es wurden 1,5mg bzw. 2,5 mg Agarose mit 1xTBE-Puffer bzw. 1xTAE-Puffer auf ein Volumen von 100ml aufgefüllt. Diese Suspensionen wurden für ca. 3min in der Mikrowelle bei 800Watt aufgekocht bis sich eine klare Lösung bildete, unter Rühren abgekühlt, mit 6µl EtBr₂ versetzt und zum Aushärten in Gelschalen gegossen. Die Taschen des mit 1xTBE-Puffer bedeckten Gels wurde jeweils mit 3µl DNA des PCR-Produkts und 1µl 5xDNA-Ladepuffer beladen. Als Größenmarker diente pBR322 Mspl-Digest. Die Taschen des mit 1xTAE-Puffer bedeckten Gels wurden jeweils mit 13µl Verdau-Produkt (incl. 3µl SLM) beladen. Als Größenmarker diente pUC8. Die Spannung betrug jeweils ca. 68Volt, die Laufzeit bei dem PCR-Gel ca. 45min, bei dem Verdau-Gel ca. 90min.

2.2.3.2 Polyacrylamid-Gel

Polyacrylamid-Gele (PA-Gele) haben im Gegensatz zu Agarose-Gelen den Vorteil, dass höherkonzentrierte Gele hergestellt werden können, die durch eine kleinere Porengröße eine bessere räumliche Auflösung der DNA-Fragmente auf dem Gel erzielen. Das versuchsweise verwendete 15%-ige PA-Gel bestand aus 3,75ml 4xTrenngel-Puffer, 3,63ml H₂O, 7,5ml Acryamid 29:1, 12,5µl Temed und 125µl APS. Der Gel-Laufpuffer bestand aus 3,0285g Tris-Base (25mM) und 14,4134g Glycin (0,192M) ad 1000ml. Trotz PA-Gel konnten die erwarteten DNA-Fragmente der Länge 3bp und 18bp nach dem Restriktionsverdau auf dem Gel nicht identifiziert werden. Da der Nachweis dieser kurzen Fragmente nicht relevant war, wurde eine Analyse mittels PA-Gel verworfen.

2.2.4 Direkte Sequenzierung

Zur Analyse auf Sequenzalterationen mussten die Basensequenzen aller Exons und Intro-Exon-Grenzen aquiriert werden. Generell gibt es zwei Methoden der DNA-Sequenzierung, die nach ihren jeweiligen Grundprinzipien "Dideoxy-Methode" und "Endgruppentechnik" genannt werden. Prinzipiell erhält man bei beiden Methoden die Basensequenz des untersuchten DNA-Fragments. In dieser Arbeit wurde die "Dideoxy-Methode" verwendet.

2.2.4.1 Sequenzreaktion (S-PCR)

Das Ausgangsmaterial für die "Dideoxy-Methode" nach Sanger ist ssDNA [83]; an diese Einzelstrang-DNA hybridisieren Primer und werden mit dNTPs vom 3'-Ende extendiert. Zusätzlich sind dem Ansatz zu einem sehr geringen Anteil (ca.10%) fluoreszensmarkierte Didesoxytriphosphate (ddNTPs) beigemengt, die durch das Fehlen ihrer 3'-OH-Gruppe mit einer bestimmten Wahrscheinlichkeit zu einem Kettenabbruch (Terminatoren) der wachsenden Polynukleotidkette führen. Somit erhält man DNA-Ketten unterschiedlicher Länge, deren letzte zum Kettenabbruch führende Base fluoreszensmarkiert ist. Jede der vier möglichen Basen ist mit einem anderen Fluoreszensfarbstoff markiert, so dass sich mittels einer anschließend durchgeführten Gelelektrophorese die unterschiedlich langen Fragmente mit unterschiedlich markierter letzter Base auftrennen lassen und sich die DNA-Sequenz ablesen läßt (siehe Abb. 7).

Anschließend Elektrophorese und Trennung entsprechend der Fragmentlänge Abbildung 7: Dideoxy-Methode nach Sanger et al.

Für die S-PCR werden neben dem aufgereinigten PCR-Produkt die jeweiligen Primer für das jeweilige Exon und ein spezielles Gemisch aus DNA-Polymerase, dNTPs, fluoreszensmarkierten ddNTPS und Salzen benötigt. Hier wurde der "ABI PRISM Big Dye Terminator v1.1 Cycle Sequencing Kit" verwendet. Im Gegensatz zur PCR, bei der für jeden Reaktionsansatz *forward*- und *reverse*-Primer zur Amplifizierung eines DNA-Segments eingesetzt wurden, wurde bei der S-PCR pro Reaktionsansatz entweder 1µl *forward*- oder *reverse*-Primer, 2µl Big Dye und 7µl aufgereinigtes PCR-Produkt-Eluat eingesetzt (siehe Tab. 5).

Substanz	Volumina [µl]
Big Dye Terminator V.1.1	2
PCR-Produkt-Eluat	7
Primer F oder R	1

 Tabelle 5: Eingesetzte Substanzen und Volumina zur S-PCR

Die S-PCR lief ebenfalls in denselben Thermocyclern wie die PCR ab. Es wurde jedoch folgendes S-PCR-Programm verwendet (siehe Tab. 6):

Schritt	Temperatur [°C]	Dauer [s]
1	96	60
2	96	5
3	60	90
4	50	90
5	4	×

Tabelle 6: Cycler-Programm für die S-PCR

Das S-PCR-Programm ist auf die jeweilige "Big Dye" Generation abgestimmt und beinhaltet die gleichen Schritte wie die PCR, nämlich das Aufschmelzen der dsDNA in ssDNA, das *annealing* der Primer und die Extension der Primer. Schritt zwei bis vier wurde 24 mal wiederholt.

2.2.4.2 Alkoholische Präzipitation von DNA

Prinzip

Dieser Schritt folgt nach der S-PCR und dient der Aufreinigung des S-PCR-Produkts. Nach der S-PCR befinden noch überschüssige dNTPs, ddNTPs, Primer, Polymerase und andere Substanzen im Ansatz, die zu schlechten, d.h. unleserlichen Elektropherogrammen führen. Das Prinzip ist dasselbe wie bei der DNA-Isolierung aus Leukozyten: DNA wird aus einer wässrigen Lösung präziptiert. In einem ersten Schritt wird die DNA alkoholisch präzipitiert. In einem zweiten Schritt werden die verunreinigenden Substanzen herausgewaschen und verworfen. In einem dritten Schritt wird die DNA in einem geeigneten Lösungsmittel gelöst.

DNA-Fällung

Zur eigentlichen DNA-Fällung wurden 10µl S-PCR-Produkt mit 40µl 80%-igen Ethanol gemischt und 10min stehengelassen. Die 80Vol.% Alkohol bewirken eine Präzipitation der DNA, in den 20Vol.% ddH₂O lösen sich die Verunreinigungen. Danach wurde das Gemisch 30min bei 13200 U/min zentrifugiert. Der Überstand wurde durch Absaugen von den Pellets getrennt.

Waschschritt

Um die verunreinigenden Stoffe herauszuwaschen wurde nach dem Absaugen des Überstandes 100µl 70%-iger Ethanol dazugegeben; in den darin enthaltenen 30Vol% ddH₂O lösen sich verbleibende Verunreinigungen noch etwas besser, ohne dass die präzipitierte DNA in Lösung geht. Nach 10min wurde die Lösung für 20min bei 13200 U/min zentrifugiert und der Überstand erneut abgesaugt.

Trocknung

Nach Trocknung der mit dem Auge nicht sichtbaren DNA-Pellets (37°C-Wärmeschrank, 45min) zur Verflüchtigung des restlichen Alkohols wurden diese anschließend in 20µl ddH₂O für 1h gelöst, in spezielle Sequencer-Tubes übergeführt und bei 4°C gelagert.

2.2.4.3 Automatisches DNA-Sequenziergerät (Sequencer)

Gerät und Prinzip

Sequencer-Tubes Sequenzier-Automat Diese wurden dem (Sequencer) zur Sequenzierung angeboten. Verwendet wurde der Einkapillar-Sequencer "ABI Prism® 310 Genetic Analyzer". In diesen Tubes befinden sich die beschriebenen DNAderen Fragmente unterschiedlicher Länge, letzte Base basenspezifisch floureszensmarkiert ist. Die Anteile der kurzen und längeren DNA-Fragmente in dem DNA-Fragment-Gemisch ließen sich durch Variieren des Volumens des eingesetzten PCR-Produkts bzw. BigDyes verändern. Beispielsweise entstehen in der S-PCR durch Einsetzen eines größeren Menge an PCR-Produkt verhältnismäßig mehr kurze Fragmente, weil dadurch die S-PCR an verhältnismäßig mehr Stellen der *template*-DNA beginnt und es dadurch auch zu verhältnismäßig mehr Strangbrüchen in den ersten Zyklen kommt und dadurch wiederum verhältnismäßig mehr kurze Fragmente entstehen.

Injektionszeit

Ein durch die Injektionszeit empirisch ermitteltes Volumen des DNA-Fragment-Gemisches wurde über eine transparente Kapillare von dem Gerät selbsttätig aus den Sequencer-Tubes angesaugt und mittels eines nicht polymerisierenden Polyacrylamid-Gels innerhalb der Kapillare elektrophoretisch längenspezifisch aufgetrennt. Die Injektionszeit betrug stets 4s.

Elektropherogramm

Die Kapillare führt an einem Detektionsfenster vorbei, über welches die floureszensmarkierten Basen durch einen LASER zur Fluoreszenz angeregt und registriert werden. Letztendlich wird eine grafisch aufgearbeitete Basenabfolge (Elektropherogramm, Sequenzkurve) ausgegeben. Nachfolgend ein typisches vom Sequencer erzeugtes Elektropherogramm (siehe Abb. 8):

GG G A G C А G Α. G C

Abbildung 8: Beispiel eines Elektropherogramms

In diesem Beispiel würde die Sequenz, die mit einer Referenzsequenz verglichen werden müsste, CCA TGC TGG GAG AGC TGT CC lauten.
2.2.5 Verwendete Software und Internetadressen

Sequenzanalyse

Die vom Sequencer erzeugten Elektropherogramme können prinzipiell ohne weitere Verarbeitung betrachtet werden. Dennoch mussten sie zur genaueren Untersuchung mit einem geeigneten Programm aufbereitet werden. In Vorbereitung auf das eigentliche im verfügbare 4" Internet frei Analyseprogramm "Gap (Staden Package, www.sanger.ac.uk/Software/production/staden) wurde eine Sequenzdatenbank, in die alle Elektropherogramme aufgenommen wurden, mit dem Programm "Pre Gap" (Staden Package) erzeugt, auf die "Gap 4" zugriff. "Gap 4" ordnete alle in ihrer Sequenz ähnlichen Sequenzen in einem "Contig" und alle Contigs in einem "Contig Selector" an. Jedes "Contig" konnte einzeln aufgerufen und die enthaltenen ähnlichen Seguenzen bzw. Elektropherogramme betrachtet werden. In dem jeweiligen Contig Editor konnten Sequenzen mit der PC-Maus angeklickt und deren Elektropherogramme in einem "Trace Display" betrachtet und editiert werden. Dies ermöglichte es, Anfang und Ende des Exons innerhalb der zu analysierenden Sequenz anhand einer Referenz-Sequenz zu suchen und zu markieren, mehrere Sequenzen gleichzeitig zu analysieren, untereinander zu vergleichen und bei Bedarf die Sequenzen zu editieren.

Im Folgenden die einzelnen Schritte der Analyse:

That of these to provide a		
	1	Dutput Benome peefix pre-gap Dutput Benotop peelix (n/Hs.chs./Desixt.o Add Bes Add Bes Add Bel MS Bes Add Be of Benaties
		Clear current list

Abbildung 9: PreGap4 Ver. 1.5

Abgebildet ist die Eingabematrix des Programms "Pre Gap". Dieses ist Teil des Programm-Pakets "Staden Package". Dieser Matrix werden über den Button "Add files" die .ab1-Dateien hinzugefügt, die analysiert werden sollen. Anschliessend werden noch Einstellungen für die Art der Analyse auf der Registerkarte "Configure Modules" eingestellt; hier sollte "shotgun 4" aktiviert werden. Nach Auswahl eines Ausgabe-Ordners wird die Analyse über den Button "Run" gestartet. Es wird nun eine Datenbank erstellt, die alle ausgewählten Sequenzen enthält.

Abbildung 10: Gap4 Ver. 4.10

Die mit "Pre Gap" erzeugten Datenbanken werden mit dem zweiten Programm des Staden-Pakets "Gap 4" über den Button "File" geöffnet. Es erscheint der "Contig Selector".

74 Contig Selector		
File View Results Help		
Next +10% +50%	zoom out 🔽 crosshairs	
1	I I I	
5		×
Contig: ATP_11941_9R (-#	 Length: 268 Num readings: 1 	

Abbildung 11: "Contig Selector"

Dieser enthält mehrere Contigs aller in der gewählten Datenbank vorhandenen Sequenzen. Ein Contig besteht aus untereinander aufgelisteten Sequenzen, die sich zu einem gewissen Teil gleichen. Idealerweise wären alle Sequenzen identisch; dann gäbe es für jede datenbakn nur ein Contig. Meistens aber werden die Sequenzen vom Programm nie vollständig korrekt gelesen. Nach Auswahl eines Contigs erscheint der "Contig Editor".

76 Contig I	ditor	: 2	ATP_1	0106_9R								
Cons 2	-	Qual 0	=	☐ Insert	Edit Modes >>	Cutoffs Und	do Next Search	Commands >>	Settings >>		Quit	Help >>
<<	<	>	>>	<)))))) ()))))	Ĵ						Σ
<			>	30	40	50	60	70	80	90	100	~
-2	ATP	10106	9R	стестет	TTCTCTACCAG	G*TGT*GCC	TGA*CCCT*GI	ACAG*CCAAGO	CGCATGGC*A	CGG*AAG*AA	CTGCCTGGTG	*AA
+3	ATP	9918	9F		TAACCAG	GT-GT*GCC	T*G-CCCTGGI	ACAG*CCAAGO	CGCATGGC*A	CGGCAAG*AA	CTGCCTGGTG	*AA
+1	ATP	10106	9F		AACCAG	GTGTGGCC'	TGGACCCTG-1	ACAGCCCAAGO	CGCATGGCCA	CGGCAAGCAA	CTGCCTGGTG	*AA
+8	ATP	11566	9F		AACCAG	G*TGT*GCC	TG-ACCCTGGA	ACAG*CCAAGO	CGCATGGC*A	CGGCAAG*AA	*TGCCTGGTG	CAA
+10	ATP	11941	9F		ACCAG	G*TGT*GCC	TGAACCCTGGA	ACAG*CCAAGO	GCATGGC*A	CGGCAAGCAA	CTGCCTGGTG	*AA
+5	exor	n9.txt				G*TGT*GCC	TGA*CCCT*GI	ACAG*CCAAGO	GCATGGC*A	CGG*AAG*AA	CTGCCTGGTG	*AA
+6	ATP	11565	9F			GTGT*GCC	TGGACCCTGGA	ACAG*CCAAGO	CGCATGGC*A	CGGCAAG*AA	*TGCCTGGTG	*AA
10	CONS	SENSUS		стестет	TTCTCTACCAG	<mark>G*</mark> TGT*GCC	TGAACCCTGGA	ACAG*CCAAGO	CGCATGG <mark>C</mark> *A	CGGCAAG*AA	CTGCCTGGTG	*AA 🔍
Base confide	nce:27	(Probabi	lity 0.998	005) Positi	on 45							

Abbildung 12: "Contig Editor"

In diesem Editor sind alle in gewissen Teilen übereinstimmenden Sequenzen aufgeführt. Idealerweise ist auch die Referenzsequenz für das betrachtete Exon vorhanden. In diesem Beispiel wäre dies die Sequenz "exon9.txt". In dem "Contig" ist auch manuelles Editieren der Sequenz und Markieren von Exon-Anfang und Exon-Ende möglich.

Dieses Fenster öffnet sich durch Anklicken der einzelnen Sequenzen. Das "Trace Display" enthält die einzelnen Elektropherogramme der analysierten Proben. Die einzelnen Elektropherogramme werden manuell auf ihre Verwertbarkeit (Qualität, Lesbarkeit, störender Hintergrund) geprüft und ebenfalls manuell mit der Referenzseguenz verglichen.

Alignement mittels "Clustal W"

Nach Identifizierung einer Sequenzalteration musste geklärt werden, ob diese bei isoformen humanen α-Untereinheiten der Na⁺/K⁺-ATPase oder bei α-Untereinheiten anderer Spezies ebenfalls vorhanden ist, also inwieweit diese Aminosäure konserviert ist. Die Aminosäuresequenzen sind über verschiedene Proteindatenbanken erhältlich (z.B. http://www.expasy.org/). Das Programm "Clustal W" (http://www.ebi.ac.uk/clustalw/) ordnet beliebig viele Aminosäuresequenzen so an, dass sich weitestgehend identische Sequenzen untereinander befinden (*Alignement*). Betrachtet man nun eine bestimmte Aminosäure, wird auf einen Blick sichtbar, bei wie vielen Sequenzen diese oder eine andere Aminosäure vorhanden ist. Damit lassen sich Aussagen über den Grad der Konservierung der Aminosäure innerhalb der betrachteten Proteine treffen.

DNA-Datenbanken "Genbank" und "Ensembl"

Als Bezugsquellen für die Referenzsequenzen der jeweiligen Exons dienten die Datenbanken Genbank (www.genbank.com) und Ensembl (www.ensembl.org). Anhand dieser Referenzen wurden die Sequenzen auf Veränderungen untersucht. Die in den Datenbanken aufgeführten Sequenzen der untersuchten Gene wurden auch zum Primerdesign verwendet. Zur sicheren Identifizierung von Basenänderungen war es am günstigsten, die sog. "Transcript View" zu wählen. Auf diese Weise erhielt man von dem betrachteten Gen die kodierende Basensequenz beginnend mit ATG, die entsprechende Aminosäuresequenz und eine durchgehende Numerierung der Basen und Aminosäuren. Somit konnten Veränderungen der Sequenz eindeutig beschrieben werden.

Abbildung 15: Legende für die "Transcript View"

Primerprogramm "Primer 3"

Zum Design neuer Oligonukleotide wurde ausschließlich das Programm "Primer 3" (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) verwendet. In diesem können diverse Einstellungen vorgenommen werden, die sich auf die Primersequenzen auswirken. Es erwies sich aber als ausreichend, die Standardeinstellungen beizubehalten. Einzig die Basensequenz, beginnend ca. 40bp von der jeweiligen Intron-Exon-Grenze innerhalb des Introns liegend, mussten eingegeben werden.

Abbildung 16: Design der Primer mit "Primer 3"

2.2.6 Funktionelle Untersuchung der Neumutation c.G2723A (p.R908Q)

Überblick: Plasmidsynthese, Transformation, Transfektion, Survival Assay

Die Auswirkungen des neu entdeckten, nicht vorbekannten nicht synonymen Polymorphismus c.G2723A wurden auf zellulärer Ebene untersucht. Die cDNA der α_2 -UE der humanen Na⁺/K⁺-ATPase war in einen modifizierten pcDNA3.1x-Vektor subkloniert worden (Konstrukt: [pcDNA-ATP-wt]). In dieses Konstrukt bzw. in die α_2 -UE führten wir die zu untersuchende Mutation c.G2723A ein (Konstrukt: [pcDNA-ATP-mut]). Um bei den späteren Transfektionsexperimenten eine Unterscheidung zwischen der transfizierten Na⁺/K⁺-ATPase und der endogenen (zelleigenen) Na⁺/K⁺-ATPase zu ermöglichen, wurden in die α_2 -UE zusätzlich die zwei zu einer Ouabain-Resistenz der Na⁺/K⁺-ATPase führenden Mutationen p.Q116R und p.N127D eingeführt. Zusatz von Ouabain konnte nun die endogene Na⁺/K⁺-ATPase inhibieren [16]. Alle Konstrukte wurden sequenzverifiziert. Die Mutationen wurden mittels in vitro Mutagenese nach der Methode der site directed mutagenesis erzeugt. Verwendung fand das "Quick Change site-directed mutagenesis kit". Es folgte eine Hitzeschocktransformierung von "E. coli Top10" Bakterien mit den beiden Konstrukten [pcDNA-ATP-wt] und [pcDNA-ATP-mut], Plasmidpräparation mit dem "Hi-Speed Kultivierung sowie Plasmid-Maxi-Kit". Anschließend wurden Zellen einer humanen Cervix-Ca-Zelllinie (HeLa) mittels Lipofectamin 2000 entweder mit dem Konstrukt [pcDNA-ATP-wt], [pcDNA-ATP-mut] oder mit dem kommerziell erhältlichen, floureszensmarkierten Plasmid "GFP" als Transfektionskontrolle transient transfiziert. Diese Zellen wurden fünf Tage unter dem ATPase-Inhibitor Ouabain kultiviert und auf ihre Überlebensfähigkeit hin bewertet.

Details: in vitro-Mutagenese

Die gewünschten Mutationen wurden in das Konstrukt [pcDNA-ATP-wt] durch zirkuläre, gerichtete *in vitro*-Mutagenese eingeführt. Abbildung 17 zeigt schematisch die Mutagenese:

Abbildung 17: Zirkuläre, gerichtete in vitro-Mutagenese

Schritte: 1. DNA-Konstrukt (schwarzer Kreis) mit Zielort für die einzuführende Mutation (blaues Oval), 2. Mutagenese-Primer (grüner Bogen) mit eingeführter Mutation (rotes Oval) binden an das Konstrukt, 3. Elongation der Mutagenese-Primer, 4. Verdau der methylierten Mutter-DNA, DNA mit gewünschter Mutation (rotes Oval) kann nun in Bakterien transformiert werden

Nach Identifizierung der zu mutierenden Ziel-Basen in dem Ausgangs-Konstrukt [pcDNA-ATP-wt] wurden spezielle Mutageneseprimer synthetisiert. Zielbasen waren c.G2723A (Mutation p.R980Q), c.A347G (Ouabain-Resistenz: p.Q116R) und c.A379G (Ouabain-Resistenz: p.N127D).

Mit die gewünschten Mutationen tragenden Mutageneseprimern, einer high fidelity DNA-Polymerase und dem zu mutierenden Konstrukt wurde eine PCR nach Hestellerangaben durchgeführt. Das PCR-Produkt waren Plasmide, die sich in genau der gewünschten Base von dem Ausgangs-Konstrukt unterschieden. Da in der folgenden Bakterientransformation von "E. coli Top10" (abweichend von den Hestellerangaben wurden keine mitgelieferten "XL Gold ultrakompetenten Zellen" verwendet) nur die mutierten Konstrukte/Plasmide transformiert werden sollten, die durch die Mutagenese-PCR erzeugten Tochtersträngen aber keine Methylierung aufwiesen, konnten die mutagenisierten Plasmide mittels der methylierungssensitiven Restriktionsendonuklease Dpnl selektiert werden. Nach Selektion der mutagenisierten Plasmide mittels Inkubation mit dem Restriktionenzym DpnI folgte die Bakterientransformation von "E. coli Top10".

Details: Bakterientransformation und -kultur, Plasmidpräparation

Zur Amplifizierung der Plasmide wurden "E. coli Top10" mit den Plasmiden transformiert. Es wurden 1µl Plasmid-Lösung (entsprechen ca. 300ng Plasmid) auf 1 Vial (60µl) E.coli Top10 OneShot-Zellen gegeben, 30min auf Eis zur Anlagerung der DNA inkubiert, dann über Hitzeschock (30s, 42°C) in die Zellen transformiert und auf Eis gekühlt. Anschließend wurde den Reaktionsgefäßchen S.O.C.-Medium (*save our cells*) hinzugegeben, die Zellen 1h zur Ausbildung der Antibiotikaresistenz bei 37°C unter Schütteln inkubiert und von diesen Lösungen 200µl, 20µl und 2µl unter Ampicillin auf Agar ausplattiert.

Nachdem Einzelkolonien gewachsen waren, wurde eine Kolonie gepickt und in 150ml autoklaviertes LB-Medium in Erlenmayerkolben gegeben. Die Erlenmayerkolben wurden über Nacht bei 37°C in den Schüttler gestellt.

Die Plasmide wurden mit dem "Hi-Speed-Plasmid-Maxi-Kit" nach Herstellerangaben isoliert. Die Isolierung lief wie folgt ab: Die über Nacht inkubierten Erlenmayerkolben mit der ertrübten Bakterienlösung wurden bei 4-10.000U/min zentrifugiert, der Überstand verworfen und das präzipitierte Zell-Pellet mit GTE-Medium (Glucose-Tris-EDTA, RNAse) resuspendiert. Durch die im GTE-Medium enthaltene RNAse wurde nach der Lyse der Bakterien die vorhandene RNA abgebaut und es blieb lediglich die DNA erhalten. Im nächsten Schritt wurden die Bakterien mit Lysis-Puffer (NaOH-SDS) aufgeschlossen. Durch Absenken des pH-Werts auf einen pH-Wert von ca. 4,8 mit einem im Kit enthaltenem Puffer wurde die bakterielle genomische DNA präzipitiert. Diese und andere Substanzen (Zelldetritus, SDS, Salze, Proteine) schwammen auf, während die Plasmide in Lösung blieben. Anschließend wurden die Plasmide mittels einer Membran, die DNA von einer Länge über 70bp bindet, aus der Lösung isoliert und nach 2-3 Waschvorgängen in TE-Puffer eluiert.

Es lag nun eine Plasmid-Lösung mit einem Volumen von 800µl vor. Die Konzentration dieser Lösung wurde photometrisch bestimmt und auf eine Konzentration von 100ng/µl mit Aqua_{dest.} verdünnt. 5µl dieser verdünnten Lösung wurden gelelektrophoretisch aufgetrennt und mit Hilfe des Größen- und Mengenmarkers *smart ladder* visuell abgeschätzt, ob die Plasmid-Menge tatsächlich 500ng betrug. Der so visuell abgeschätzte Wert erwies sich genauer als der photometrisch bestimmte Wert.

Details: Transfektion, Survival Assays

Zuerst wurden die kultivierten HeLa-Zellen mit 10ml PBS-Puffer gewaschen. Anschliessend wurde zu den Zellen 1,5ml Trypsin gegeben und 5min inkubiert, in 5ml D-MEM (inkl. 10% FKS; fetales Kälberserum) gelöst, in ein 15ml Tube aufgenommen und für 4min bei 13600U/min zentrifugiert. Das Zellpellet wurde in 10ml D-MEM (inkl. FKS) resuspendiert; 1ml dieser Suspension wurde für eine dauerhafte Zellkultur verwendet. Nach Bestimmung der Zellkonzentration mit einem Hämatozytometer nach Bürker wurde die Suspension auf eine Zellkonzentration von 5x10⁵ Zellen/ml eingestellt. Anschließend wurde je 1ml dieser Suspension in jedes Well einer 12-Loch-Platte (4cm² pro Well) gegeben und 24h bei 37°C inkubiert.

Währenddessen wurden 1,6µg der jeweiligen Plasmid-Lösung (entspr. 16µl der verdünnten Plasmid-Lösung) in 100µl Opti-MEM gelöst und vorsichtig gemischt. 4µl Lipofectamin 2000 wurden in 100µl Opti-MEM gelöst und vorsichtig gemischt. Nach 5min wurden beide Lösungen gemischt und 30min bei Raumtemperatur inkubiert. Die Lösung wurde vollständig auf die Zellen in dem jeweiligen Loch gegeben. Ein Tag nach der Transfektion wurden die mit der GFP-Kontrolle transfizierten Zellen unter dem Floureszensmikroskop auf erfolgreiche Transfektion hin untersucht. Zwei Tage nach der Transfektion wurden die Zellen mit 1ml PBS-Puffer gewaschen, mit drei Tropfen Trypsin gelöst, in ein 15ml Tube überführt und 4min bei 13600U/min zentrifugiert. Das Zellpellet wurde in Vollmedium (ohne Streptomycin) resuspendiert.

Ein Drittel der jeweiligen Zellsuspension wurde auf 10cm Petrischalen ausgesät, die jeweils Kulturmedium und Ouabain in einer Konzentration von 1µM enthielten. Nach 5 Tagen wurden die Kolonien mit Methylenblau (1Vol% Methylenblau in 70%-igem Methanol) fixiert und ausgezählt. Alle Experimente wurden einige Male wiederholt und waren reproduzierbar.

Alle überlebensfähigen Zellen hatten sich an dem Boden der Petrischale anheften können, alle toten Zellen schwammen im Überstand und hatten keine Zell-Füßchen gebildet.

2.3 Material

2.3.1 Chemikalien

Kits

Hi-Speed Plasmid-Maxi-Kit (Quiagen, Hilden, Deutschland)

QIA quick PCR Purification Kit (Quiage, Hilden, Deutschland)

Quick Change site-directed mutagenesis kit (Stratagene, La Jolla, CA USA)

Puffer und Lösungen

Bakterien-Lysis-Puffer (NaOH-SDS)

DNA-Ladepuffer

DNA-SLM (100mM Na-EDTA, 40% Saccharose, je 1 Spatelspitze Xylencyanol und Bromphenolblau)

Erythrozyten-Lysis-Puffer (Ammoniumchlorid: 0,155M, Kaliumhydrogencarbonat: 0,01M,

EDTA: 0,0001M)

Gel-Laufpuffer: Tris-Base (25mM), Glycin (0,192M)

NEB-Puffer Nr. 4 (10x; New England BioLabs Inc.)

PBS-Puffer (Na2HPO4: 6,5mM, KH2PO4: 1,5mM, KCI: 2,5mM, NaCI: 140mM, pH 7.2)

PCR-Puffer (10x; Quiage, Hilden, Deutschland)

SE-Puffer (NaCI: 0,075M, EDTA: 25mM)

TAE-Puffer (1x; Tris: 40mM, Essigsäure: 20mM, EDTA:1mM)

TBE-Puffer (1x; Tris-HCI: 89mM, Borsäure: 89mM, EDTA: 2mM; pH 8,0-8,2)

4xTrenngel-Puffer (1,5M Tris-HCL, pH 8,8)

Tris-HCL-Puffer, pH 8

Vollblut

Einzelsubstanzen

Acil 3,0U/ml (New England Biolabs, MA, USA)

Acryamid Mix 29:1

Ampicillin

APS 10%ige Lösung

Aqua_{dest.}

Big Dye Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA)

Bromphenolblau, Pulver

BSA (100mg/ml)

ddH₂O: doppelt destilliertes Wasser

Ethanol (100%ig)

Ethanol (70%ig)

Ethidiumbromid; Arbeitslösung 0,5 µg/ml

Lipofectamin 2000 Transfektion Reagent (Invitrogen GmbH, Karlsruhe, Germany)

Methylenblau (1Vol% Methylenblau in 70%igem Methanol)

 $MgCl_2(25mM)$

Ouabain, (9-anthroyl ouabain, Invitrogen GmbH, Karlsruhe, Germany)

pBR322 (Fermentas International Inc., Burlington, Ontario, Canada)

pUC8 (Fermentas International Inc., Burlington, Ontario, Canada)

Smart-Ladder

Taq (5U/µl)

Trypsin, div. Lösungen

Xylencyanol, Pulver

Zellen

E.coli Top10 One Shot Cells

HeLa-Zellen

Gele und Medien

Agarose-Gel, diverse Konzentrationen D-MEM inkl. 10% FKS (Invitrogen GmbH, Karlsruhe, Germany) GTE-Medium (Quiage, Hilden, Deutschland) Kulturmedium: Agar Kulturmedium: LB-Medium Kulturmedium: Vollmedium Opti-MEM (Quiage, Hilden, Deutschland) Polyacrylamid-Gel 15%ig (3,75ml 4xTrenngel-Puffer (1,5M Tris-HCL, pH 8,8), 3,63ml H2O, 7,5ml Acryamid 29:1, 12,5µl Temed und 125µl APS

Nukleinsäuren, Konstrukte

DNA (50ng/µl) dNTPs (2mM; Quiage, Hilden, Deutschland) Plasmid: GFP-Plamid Plasmid: Konstrukt [pcDNA-ATP-mut] Plasmid: Konstrukt [pcDNA-ATP-wt] Plasmid: pcDNA3.1x-Vektor (Invitrogen GmbH, Karlsruhe, Germany) Primer *forward* (10pmol/µl) Primer *reverse* (10pmol/µl)

2.3.2 Gerätschaften

Verbrauchmaterialien

12-Loch-Platte, 4cm² pro Well

Einmalküvetten, 1cm Kantenlänge

Eppendorf-Cups, 0,5ml

Falcon-Tube, 50ml

Petrischalen, 10cm

Pipettenspitze, div. Größen

Sequencer-Tubes

Geräte

Eisfach -80°C und -20°C

Elektrophoreseschalen

Erlenmayerkolben, div. Volumina

Floureszensmikroskop

Hämatozytometer nach Bürker

Kühlschrak 4°C

Mikrowelle

Photometer, Filter λ =260nm und λ =280nm

Schüttler

Sequencer: Einkapillar-Sequencer ABI Prism 310 Genetic Analyzer (Applied Biosystems,

Foster City, CA, USA)

Thermocycler

Transluminator

Vortex-Rührer

Wärmeschrank

Zentrifuge

3 Ergebnisse

3.1 Klinische Daten

Für diese Arbeit wurden Patienten anhand eines Telefoninterviews und Fragebogens bzgl. ihrer SHM phänotypisiert. Folgende Tabelle gibt die relevanten klinischen Charakteristika der rekrutierten Patienten wieder:

Pat.	а	Geschl.	AaO	Hemi. ¹	Seite	Lat. ²	Verlauf des motor. Defizits	S.	v.	d.	t	h
А	44	Ŷ	42	A+B	R	n.a.	A>B	?	-	+	30min.	2x/LZ
В	19	Ŷ	11	A+B	L>R	n.a.	Beginn A	+	-	+	bis zu h	bis zu 2x/Monat
С	35	Ŷ	17	A+B	R>L	n.d.	n.d.	+	+	+	>1h	bis zu 2x/Monat
D	34	Ŷ	22	A+B	R/L	n.a.	Beginn A oder B	+	+	+	>1h	bis wöchtl.
Е	25	Ŷ	15	A+B	R>L	n.d.	Beginn A distal	+	+	+	15–30min	1x/2 Monate
F	23	°0	5	A+B	L>R	ipsi.	F>B>H>A	+	+	+	30– 45min.	2x/Jahr
G	34	°	28	A+B	R	n.a.	H>A>B	+	+	+	bis zu 6h	5x/LZ
Н	28	Ŷ	16	А	R/L	contra.	n.d.	+	+	+	ca. 1h	4x/Jahr
I	20	8	4	+	R	ipsi.	n.d.	+	+	+	24-72h	1x/3Monate
J	24	8	8	+	R	ipsi.	n.d.	+	+	+	15-60min.	1x/1-6 Monate
к	39	Ŷ	4	A+B	L	n.a.	A>B	+	+	?	bis zu h	n.d.
L	59	Ŷ	15	A+B	R	n.a.	A>B	+	+	-	10min3h	5x/Jahr
М	12	3	11	A+B	R	n.d.	n.d.	+	+	+	h	insg.4-5x

Tabelle 7: Klinische Charakteristika der SHM-Patienten A-M

a: Alter; AaO: Manifestationsalter der hemiplegischen Migräne; Hemi: Ausprägung der Hemiplegie; L: links; R: rechts; Lat.: Lateralisation der Attacken; ipsi.: ipsilateral; contra.: contralateral; A: Arm; B: Bein; F: Fuss; H: Hand; s./v./d.: sensibles/visuelles/dysphasisches Defizit; LZ: Lebenszeit; n.a.: nicht anwendbar; n.d.: nicht determiniert

1: Vorhandensein motorischer, sensibler, visueller oder dysphasischer Symptome

2: Anatomischer Seitenbezug der Hemiplegie bzgl. des Kopfschmerzes

Das Durchschnittsalter der rekrutierten Patienten betrug etwa 30 Jahre. Das Manifestationsalter der hemiplegischen Migräne lag bei etwa 15 Jahren. Mit einem Verhältnis Frauen zu Männern von acht zu fünf lässt sich keine eindeutige Präferenz hinsichtlich eines Geschlechtes ermitteln. Etwa 77% der Rekrutierten gaben eine hemiplegische Symptomatik an der oberen und unteren Extremitäten an, etwa 8%

lediglich an der oberen Extremität und etwa 15% machten dazu keine Angaben. Ausschließlich die rechte oder die linke Körperseite war bei etwa 47% bzw. 8% der Befragten betroffen, in jeweils etwa 15% der Fälle war entweder die linke Seite stärker betroffen als die rechte, die rechte Seite stärker betroffen als die linke oder beide Körperseiten in gleichem Maße betroffen. Etwa 23% der Rekrutierten hatten eine ipsilaterale hemiplegischen Symptomatik bezüglich des Kopfschmerzes, etwa 8% eine kontralaterale, etwa 23% machten dazu keine Angaben ("nicht determiniert"). In etwa 47% der Fälle war die Angabe einer Lateralisation nicht sinnvoll ("nicht anwendbar"), da der Kopfschmerz holozephal auftrat. Bei mehr als der Hälfte der Fälle begann die Symptomatik an der oberen Extremität und breitete sich Richtung unterer Extremität aus. In nur etwa 8% der Fällen begann die Symptomatik an der unteren Extremität. Etwa 40% konnten dazu keine Angaben machen. Etwa 92% der Fälle hatten während der Auraphase sensible Defizite, etwa 85% visuelle Defizite und mind. 85% dysphasische Symptome. Die Dauer der hemiplegischen Attacke betrug zwischen 10 Minuten und 72 Stunden. Die Häufigkeit der Attacken variierte zwischen zweimal im Leben und wöchentlichen Attacken.

3.2 Genetische Daten

3.2.1 Direkte Sequenzierung

3.2.1.1 13 SHM-Patienten

Insgesamt wurden 13 SHM-Patienten mittels *direct sequencing* auf Sequenzalterationen in den Genen *CACNA1A*, *ATP1A2* und *SCN1A* untersucht. Es wurde die gesamte genomische Sequenz einschließlich der Intron-Exon-Grenzen sequenziert, im Gen *CACNA1A* jedoch nur die Exons mit bekannten Mutationen.

CACNA1A

In Exon 16 des Gens *CACNA1A* fand sich bei drei der 13 untersuchten Patienten der bekannte synonyme Polymorphismus c.G2088A in heterozygoter Ausprägung (Abb. 18).

Abbildung 18: Polymorphismus c.G2088A in Exon 16, CACNA1A

Stellvertretend für alle drei Patienten sind hier die Elektropherogramme des Plus- und Minusstrangs eines Patienten im Bereich des Polymorphismus abgebildet. Man erkennt jeweils zwei *peaks* niedriger Amplitude (Basen: G, A); in diesem Fall zeigen die Elektropherogramme den bekannten Polymorphismus c.G2088A in heterozygoter Ausprägung.

ATP1A2

In Exon 9 des Gens *ATP1A2* fand sich bei sechs der 13 Patienten der bekannte synonyme Polymorphismus c.G1119A; in vier Fällen hatte dieser eine heterozygote (Abb. 19), in zwei Fällen eine homozygote Ausprägung (Abb. 20).

Abbildung 19: Polymorphismus c.G1119A in Exon 9, ATP1A2

Stellvertretend für alle vier Patienten sind hier die Elektropherogramme des Plus- und Minusstrangs eines Patienten im Bereich des Polymorphismus abgebildet. Man erkennt jeweils zwei *peaks* niedriger Amplitude (Basen: G, A); in diesem Fall zeigen die Elektropherogramme den bekannten Polymorphismus c.G1119A in heterozygoter Ausprägung.

Abbildung 20: Polymorphismus c.G1119A in Exon 9, ATP1A2

Stellvertretend für beide Patienten sind hier die Elektropherogramme des Plus- und Minusstrangs eines Patienten im Bereich des Polymorphismus abgebildet. Man erkennt jeweils nur einen *peak* normaler Amplitude (Base: A); in diesem Fall zeigen die Elektropherogramme den bekannten Polymorphismus c.G1119A in homozygoter Ausprägung.

In Exon 11 des Gens *ATP1A2* fand sich bei einem der 13 Patienten der nicht vorbekannte, synonyme Polymorphismus c.C1445G in heterozygoter Ausprägung (Abb. 21):

Abbildung 21: Polymorphismus c.C1445G in Exon 11, ATP1A2

Hier sind die Elektropherogramme des Plus- und Minusstrangs eines Patienten im Bereich des Polymorphismus abgebildet. Man erkennt jeweils zwei Peaks niedriger Amplitude (Basen: G, C); in diesem Fall zeigen die Elektropherogramme den unbekannten Polymorphismus c.C1445G in heterozygoter Ausprägung.

In Exon 13 des Gens *ATP1A2* fand sich bei einem der 13 Patienten der bekannte, synonyme Polymorphismus c.C1704T in heterozygoter Ausprägung (Abb. 22):

Abbildung 22: Polymorphismus c.C1704T in Exon 13, ATP1A2

Hier ist das Elektropherogramme des Plusstrangs eines Patienten im Bereich des Polymorphismus abgebildet. Man erkennt jeweils zwei *peaks* niedriger Amplitude (Basen: T, C); in diesem Fall zeigt das Elektropherogramm den bekannten Polymorphismus c.C1704T in heterozygoter Ausprägung.

In Exon 16 des Gens *ATP1A2* fand sich bei drei der 13 Patienten der bekannte, synonyme Polymorphismus c.C2258T in heterozygoter Ausprägung (Abb. 23):

Abbildung 23: Polymorphismus c.C2258T in Exon 16, *ATP1A2*; stellvertretend für alle drei Patienten sind hier die Elektropherogramme des Plus- und Minusstrangs eines Patienten im Bereich um den Polymorphismus abgebildet. Man erkennt jeweils zwei *peak* niedriger Amplitude (Basen: C, T); in diesem Fall zeigen die Elektropherogramme den bekannten Polymorphismus c.C2258T in heterozygoter Ausprägung.

Bei einem Patienten fand sich eine bisher nicht beschriebene, nicht synonyme Sequenzalteration in heterozygoter Ausprägung. Durch den Basenaustausch von Guanin (G) zu Adenin (A) in dem Basentriplett C-G-G zu C-A-G kommt es in einem Allel an der Position c.G2723A es zu dem Aminosäureaustausch von Arginin (Arg; R) zu Glutamin (Gln; Q): p.R908Q (siehe Abb. 25). Diese AS ist auf einer luminalen Schleife des Membranproteins zwischen den transmembranalen Domänen S7 und S8 lokalisiert (siehe Abb. 24); alle Aminosäuren zwischen p.864 und p.915 des Genprodukts des Gens *ATP1A2* liegen in dieser luminalen Schleife; Quelle: Swiss-Prot P50993). In dieser Region sind zwei weitere mit anderen Migräneformen assoziierte Sequenzalterationen bekannt: p.R887W [16] und p.E902K [45].

Abbildung 24: Modell der α₂-Untereinheit der Na⁺/K⁺-ATPase

Topologie der α_2 -Untereinheit bestehend aus zehn transmembranalen Segmenten und verbindenden intraund extrazellulären Schleifen [47]. Funktionell bedeutsame Schleife zwischen S4 und S5 als *hot spot* für Mutationen. Eingezeichnet sind alle bisher bekannten Mutationen und ihre Assoziation zu anderen neurologischen Erkrankungen. Modell modifiziert nach Freilinger *et al.* [30]. Rote Markierung: familäre hemiplegische Migräne; blaue Markierung: kindliches Epilepsiesyndrom; grüne Markierung: spontane hemiplegische Migräne; gelbe Markierung: alternierende Hemiplegie im Kindesalter; graue Markierung: Migräne mit Aura; braune Markierung: basiläre Migräne; Stern: Neumutation p.R908Q.

Abbildung 25: Nicht vorbekannte Sequenzalteration p.R908Q in Exon 20, ATP1A2

Im Elektropherogramm des Plusstrangs des Exons 20 erkennt man die Sequenzalteration in heterozygoter Ausprägung; an betreffender Position finden sich zwei *peaks* niedriger Amplitude entsprechend zweier Fragmente gleicher Länge aber verschiedener Abbruchbase im Sequenzierungsverfahren nach Sanger *et al.*. Auf einem Allel kam es zu einem Basenaustausch in dem Basentriplett CGG nach CAG (Basenebene: c.G2723A). Der Basenaustausch bewirkt den Aminosäureaustausch von Arginin nach Glutamin (Aminosäureebene: p.R908Q).

Exon	Base	Aminosäure	Patienten	SNP Genotyp	bekannt
9	c.C1119A	p.S373	n = 4	heterozygot	ја
9	c.C1119A	p.S373	n = 2	homozygot	ја
11	c.C1445G	p.S482	n = 1	heterozygot	nein
13	c.C1704T	p.F568	n = 1	heterozygot	ја
16	c.C2258T	p.A753	n = 3	heterozygot	ја
20	c.G2723A	Arg > GIn p.R908Q	n = 1	heterozygot	nein

Tabelle 8 gibt alle im Rahmen der Dissertationschrift in *ATP1A2* identifizierten Sequenzalterationen wieder:

 Tabelle 8: Übersichtstabelle identifizierter Sequenzalterationen in ATP1A2

SCN1A

Im Gen SCN1A fanden sich keine Sequenzalterationen.

3.2.1.2 Kosegregation

Um die identifizierte Sequenzalteration p.R908Q in Exon 20 von *ATP1A2* als ein spontanes und nicht hereditäres Ereignis zu bestätigen, wurde die Mutter des Indexpatienten ausschließlich auf diese hin untersucht. Es konnte nach Sequenzierung reproduzierbar und eindeutig gezeigt werden, dass diese Sequenzalteration bei der Mutter nicht besteht (Abb. 26).

Zudem erfolgte eine Stammbaumanalyse des Indexpatienten (Abb. 27). Fremdanamnestisch waren phänotypisch keine weiteren Verwandten von einer hemiplegischen Migräne betroffen; die Sequenzanalyse war jedoch nur bei der Mutter möglich, weil alle weiteren Verwandten entweder verstorben sind oder sich, wie im Falle der Schwester des Vaters, keine Blutprobe zur DNA-Analyse akquirieren ließ. Trotz mehrerer Versuche, die Familie zu erweitern, konnten keine weiteren Angehörigen ermittelt werden.

Abbildung 26: Mutter des Indexpatienten; Exon 20, ATP1A2

Wildtyp beim Verwandten ersten Grades; das Elektropherogramm des Plusstrangs der Mutter des Indexpatienten zeigte an betreffender Basenposition den Wildtyp (Basentriplett: C-G-G) in Exon 20 von *ATP1A2*.

Abbildung 27: Stammbaum des Indexpatienten

Außer des Indexpatienten war keines der übrigen Familienmitgliedern von einer hemiplegische Migräne betroffen. Mutter und Schwester des Vaters des Indexpatienten sind die einizigen noch lebenden Familienmitglieder. Kreis: weiblich; Quadrat: männlich; schwarz: SHM; weiss: klinisch keine SHM; diagonaler Strich: verstorben.

3.2.1.3 Kontrollen

Direct sequencing des Exons 20 des Gens *ATP1A2* war bei 50 gesunden Personen (entspr. 100 Chromosomensätzen) hinsichtlich der Sequenzalteration c.G2723A (p.R908Q) negativ; es fand sich stets das Wildtypkodon C-G-G.

3.2.2 Restriktionsverdau mit dem Restriktionsenzym Acil

3.2.2.1 Virtueller Verdau bei Wildtyp und Mutante

Nach Amplifikation von Exon 20 mit den modifizierten Primer würde sich nach dem Restriktionsverdau mit Acil im Falle der Mutante durch Alteration der Basenerkennungssequenz bedingt für Acil ein verändertes DNA-Schnittmuster ergeben. Nachfolgende Abbildungen und Tabellen zeigen virtuell die Auswirkungen der Sequenzalteration auf die Fragmentlängen und die Anzahl der Fragmente des verdauten PCR-Produkts:

Abbildung 28: Erkennungssequenz von Acil und Schnittstellen beim Wildtyp-Exon 20 Die horizontale Linie stellt das PCR-Produkt der speziellen, eigens für den Restriktionsverdau entworfenen PCR-Primer dar; die rot markierte Basensequenz hebt die Basenerkennungssequenz für Acil hervor; die vertikalen Linien zeigen den exakten Ort der Restriktion im PCR-Produkt; die Ziffern 1 links im Bild und 280 rechts im Bild geben die Orientierung und die Länge in bp des PCR-Produkts an. Durch Restriktionsverdau mit Acil ergeben sich im PCR-Produkt des Wildtyps von Exon 20 von *ATP1A2* drei Schnittstellen und vier DNA-Fragmente.

Abbildung 29: Erkennungssequenz von Acil und Schnittstellen im mutierten Exon 20

Das klein geschriebene "a" innerhalb der Basenerkennungssequenz symbolisiert die Mutation und markiert die veränderte Schnittstelle für Acil. Im PCR-Produkt des mutierten Exons 20 ergeben sich zwei Schnittstellen und drei DNA-Fragmente.

#	Koordinaten der Fragmente	Länge der Fragmente [bp]
1	1-172	172
2	173-259	87
3	260-262	3
4	263-280	18

Tabelle 9: DNA-Fragmentlängen des Exons 20 des Wildtyps

#	Koordinaten der Fragmente	Länge der Fragmente [bp]
1	1-259	259 (= 172 + 87)
2	260-262	3
3	263-280	18

Tabelle 10: DNA-Fragmentlängen des mutierten Exons 20

3.2.2.2 Index und Wildtyp im Bereich der Sequenzalteration p.R908Q

Zur Etablierung einer Positivkontrolle für die Mutation p.R908Q wurde die DNA des Index verdaut. Der Restriktionsverdau mit der Restriktionsendonuklease Acil ergab ein spezielles, als Positivkontrolle geltendes Schnittmuster (Abb. 30).

Abbildung 30: DNA-Schnittmuster des Restriktionsverdaus bei Wildtyp und Mutante

In Spur 1 und 2 wurde die verdaute, amplifizierte DNA des die Sequenzalteration tragenden Indexpatienten, in Spur 3 und 4 einer das Wildtyp-Basentriplett tragenden Kontrolle aufgetragen. Spur 5 blieb frei. In Spur 6 – 9 wurden unverdaute Negativkontrollen, in Spur 10 der Größenmarker pUC8 aufgetragen. Die Zahlen am linken und rechten Bildrand geben jeweils die Fragmentlängen in Basenpaaren an. Bei Vorliegen der Sequenzalteration zeigt sich das DNA-Schnittmuster aus Spur 1 bzw. 2 (Positivkontrolle), beim Wildtyp das Muster aus Spur 3 bzw. 4.

Im Falle des bzgl. der Sequenzalteration heterozygoten Indexpatienten ergab sich ein DNA-Schnittmuster bestehend aus drei Banden der Größen 87, 172 und 259 Basenpaaren. Dieses kommt dadurch zustande, dass sich die DNA-Schnittmuster aus dem mutierten Exon 20 des einen Allels und dem Wildtyp-Exon 20 des zweiten Allels überlagern. Dieses DNA-Schnittmuster entsprach dem erwarteten DNA-Schnittmuster.

Im Falle des Wildtyps ergab sich ebenfalls erwartungsgemäß ein DNA-Schnittmuster bestehend aus zwei Banden der Größen 87bp und 172bp. Die beiden sehr kurzen Fragmente der Länge 18bp und 3bp ließen sich weder auf Agarose-Gelen noch auf Polyacryamid-Gelen nachweisen.

3.2.2.3 Mutter des Index, Kontrollkollektiv und Negativkontrollen im Bereich der Sequenzalteration p.R908Q

Es wurde sowohl die DNA der Mutter des Index, als auch 100 Kontrollen mittels Restriktionsverdau auf die Sequenzalteration p.R908Q hin untersucht. Der Restriktionsverdau zeigte folgendes DNA-Schnittmuster:

Abbildung 31: Synopsis des DNA-Schnittmusters beim Restriktionsverdau

Auf das vorliegende Agarose-Gel (2,5%-ig) wurden zur besseren Übersicht sowohl die verdaute DNA des Indexpatienten, der Mutter des Index und verschiedener Kontrollen aufgetragen. Die Kontrollen liefen in Spur 1-10 und 16-23, die Negativkontrollen in Spur 12 und 25, der Indexpatient in Spur 11 und 24, die Mutter des Index in der Spur 14 und 15. Der DNA-Grössenmarker pUC8 lief in Spur 13 und 26. Bei weiteren 88, hier nicht abgebildeten Kontrollen wurde dieser Restriktionsverdau durchgeführt. Man erkennt, dass das DNA-Schnittmuster der Kontrollen und der Mutter dem der Negativkontrollen entspricht und somit die gesuchte Sequenzalteration weder bei der Mutter, noch bei den Kontrollen vorhanden ist. Dieses DNA-Schnittmuster der Negativkontrollen war auch bei den hier nicht abgebildeten weiteren 88 Kontrollen vorhanden. Im Falle einer Sequenzalteration zeigte sich das veränderte Muster des Indexpatienten.

Zusammenfassung der genetischen Analyse

Die Mutter des Indexpatienten und alle 100 mittels Restriktionsverdau untersuchten Kontrollen waren bzgl. der Sequenzalteration p.R908Q negativ und hatten beide Wildtyp-Allele des Exons 20 des Gens *ATP1A2*.

3.2.3 Phylogenetische Analyse der Sequenzalteration p.R908Q

Um Aussagen über den Konservierungsgrad der Aminosäure p.R908 innerhalb und ausserhalb der Spezies *Homo sapiens* zu treffen, wurde ein sog. *alignement* erstellt. Hierbei wurde die Aminosäuresequenz des Exons 20 des Gens *ATP1A2*, beim Indexpatienten in der Position p.R908Q mutiert, mit der Sequenz humaner, isoformer α -Untereinheiten sowie speziesfremder, homologer Untereinheiten der Na⁺/K⁺-ATPase verglichen (siehe Abb. 32).

Q64392 ATHL	(C.porcellus)	YQRKYLEWTGYTAFFVGIMV	937
P54707 ATHL	(H.sapiens)	YQREYLEWTGYTAFFVGILV	946
Q9TV52 ATHL	(O.cuniculus)	YQRQYLEWTGYTAFFVGIMV	998
P54708 ATHL	(R.norvegicus)	YQRKYLEWTGSTAFFVAIMI	940
Q92036 ATHL	(B.marinus)	SQRQFLEWTGYTAFFVSIVV	946
P28774 ATP1B	(A.francisc.)	DARKQLESSCHTAYFVSIVI	909
P13607 ATPATNA	(D.melano.)	RØRKTLEYTCHTAFFISIVV	946
P35317 AT1A	(H.vulgaris)	FQRKEIELTCQTAFFTTIVV	936
Q64541 ATP1A4	(R.norvegicus)	EQRKVVEFTCQTAFFISIVI	918
Q9WV27 ATP1A4	(M.musculus)	EQRKVVEFTCQTAFFISIVI	937
Q13733 ATP1A4	(H.sapiens)	EQRKVVEFTCQTAFFVTIVV	934
P13637 ATP1A3	(H.sapiens)	EQRKVVEFTCHTAFFVSIVV	918
P06687 ATP1A3	(R.norvegicus)	EQRKVVEFTCHTAFFVSIVV	918
P24798 ATP1A3	(G.gallus)	EQRKVVEFTCHTAFFVSIVV	915
P58312 ATP1A3	(O.mossamb.)	EQRKIVEFTCHTAFFVSIVV	915
P50993 ATP1A2	(H.sapiens)	EQRKVVEFTCHTAFFASIVV	925
P06686 ATP1A2	(R.norvegicus)	EQRKVVEFTCHTAFFASIVV	925
P24797 ATP1A2	(G.gallus)	EQRKVVEFTCHTAFFASIVV	922
P18907 ATP1A1	(E.caballus)	EQRKIVEFTCHTAFFVSIVV	926
P50997 ATP1A1	(C.familiaris)	EQRKIVEFTCHTAFFVSIVV	926
P05023 ATP1A1	(H.sapiens)	EQRKIVEFTCHTAFFVSIVV	928
P05024 ATP1A1	(S.scrofa)	EQRKIVEFTCHTPFFVTIVV	926
P04074 ATP1A1	(O.aries)	EQRKIVEFTCHTAFFVSIVV	926
P06685 ATP1A1	(R.norvegicus)	EQRKIVEFTCHTAFFVSIVV	928
P09572 ATP1A1	(G.gallus)	EQRKIVEFTCHTAFFVSIVV	926
P30714 ATP1A1	(B.marinus)	EQRKIVEFTCHTAFFVSIVV	928
Q92123 ATP1A1	(X.laevis)	EQRKIVEFTCHTSFFISIVV	930
Q92030 ATP1A1	(A.anguilla)	EQRKIVEYTCHTSFFASIVI	927
Q9YH26 ATP1A1	(O.mossamb.)	ERRKIVEYSCHTAFFASIVI	928
P25489 ATP1A1	(C.commersoni)	EQRKIVEFTCHTAFFTSIVI	932
P05025 ATP1A	(T.california)	EQRKIVEYTCHTSFFVSIVI	927
Q64436 ATHA	(M.musculus)	GQRLYQQYTCYTVFFISIEM	936
P09626 ATHA	(R.norvegicus)	GQRLYQQYTCYTVFFISIEM	936
P50996 ATHA	(C.familiaris)	GQRLYQQYTCYTVFFISIEM	937
P19156 ATHA	(S.scrofa)	GQRLYQQYTCYTVFFISIEM	937
P27112 ATHA	(O.cuniculus)	GQRLYQQYTCYTVFFISIEM	938
P20648 ATHA	(H.sapiens)	GQRLYQQYTCYTVFFISIEV	938
Q92126 ATHA	(X.laevis)	SQRLYQQYTCYTVFFISYEI	934

Abbildung 32: Sequenz-alignement

Abgebildet ist der bzgl. der Sequenzalteration p.R908Q relevante Bereich der Aminosäurensequenzen; untereinander aufgetragen sind die Sequenzen verschiedener humaner und speziesfremder α - und α_2 -Untereinheiten der Na⁺/K⁺-ATPasen. Legende: Der Buchstaben- und Zifferncode am Zeilenanfang gibt den Protein-Code der Protein-Datenbank SWISS-Prot (www.expasy.org) wieder; es folgt die Bezeichnung des Gens und der biologische Terminus der Spezies, daran anschließend partiell die Aminosäuresequenz. Die Zahl am Zeilenende gibt die numerische Position der letzten angezeigten Aminosäuren an.

An Position 908 und homologen Positionen ist in allen untersuchten Untereinheiten eindeutig ein Arginin (R) vertreten (siehe Abb. 32, grauer Bereich). Damit kann ein sehr hoher Konservierungsgrad dieser Aminosäure angenommen werden.

3.3 Funktionelle Analyse mittels *survival assay*

Zur Beurteilung der funktionellen Auswirkungen auf das relative Überleben von Zellen mit mutierter Na⁺/K⁺-ATPase (p.R908Q) wurde ein *survival assay* durchgeführt. Die Na⁺/K⁺-ATPase ist ein lebensnotwendiges Membranprotein. Ein Funktionsverlust dieses Proteins wirkt sich unmittelbar auf das Überleben aus.

Die in einem gemeinsamen Arbeitsschritt mit zwei verschiedenen Konstrukten transfizierten (HeLa-Zellgruppe 1: Transfektion mit [pcDNA-ATP-mut]; HeLa-Zellgruppe 2: Transfektion mit [pcDNA-ATP-wt]) und GFP-transfektionskontrollierten HeLa-Zellen wiesen nach fünftägigem Wachstum in Petrischalen unter Ouabain-Hemmung der endogenen ATPase und anschließender Methylenblaufärbung ein sehr unterschiedliches Überleben auf (siehe Abb. 33 und Abb. 34). Die Sequenzalteration p.R908Q führte zu einem letalen Funktionsverlust der Na⁺/K⁺-ATPase.

Abbildung 33: Survival assay der HeLa-Zellen mit mutierter Na⁺/K⁺-ATPase

Mikroskopisch lassen sich in der Petrischale keine vitalen Zellen erkennen. Die Ouabain-Hemmung der endogenen Na⁺/K⁺-ATPase und das offensichtliche funktionelle Defizit der transfizierten mutierten Na⁺/K⁺-ATPase (*loss of function*) führten zu einem deutlich verringerten Überleben der Zellen.

Abbildung 34: Survival assay der HeLa-Zellen mit der Wildtyp der Na⁺/K⁺-ATPase

In der zweiten Petrischale fanden sich Cluster vitaler HeLa-Zellen (blaue Kolonien). Erwartungsgemäss kam es zu einer hohen Überlebensrate der Zellen durch Kompensation der inhibierten ouabainsensitiven endogenen Na⁺/K⁺-ATPase durch die transfizierte ouabainresistente Na⁺/K⁺-ATPase.

4 Diskussion

Vor dem Hintergrund aktueller Literatur erscheint das in dieser Arbeit selektierte Patientenkollektiv repräsentativ [96, 97]. Das durchschnittliche Manifestationsalter der Frauen betrug 18 Jahre, das Rekrutierungsalter 43 Jahre, bei den Männern 11 Jahre und 23 Jahre. Die Literatur gibt für Frauen ein Manifestationsalter von 21 Jahren und ein Rekrutierungsalter von 31 Jahren, bei Männern von 16 Jahren und 24 Jahren an. Übereinstimmend mit aktueller Literatur zeigte sich keine signifikante Geschlechtsspezifität. Mindestens 77% der Patienten entwickelte eine komplette Hemiplegie; in der Literatur wird dieser Anteil mit etwa 50% angegeben. Genaue topographische Untersuchungen existieren derzeit nicht. Jedoch trat in mind. 54% der Fälle das motorische Defizit initial an der oberen Extremität auf. Dies könnte auf ein bevorzugtes Voranschreiten der CSD von der präzentralen parieto-temporalen Region zur Fissura longitudinalis cerebri über die Mantelkante hinweg zu den motorischen Arealen der unteren Extremität hindeuten. Die beobachtete Seitenpräferenz für rechts (62% der Fälle) deckt sich mit Angaben aus aktueller Literatur (64% der Fälle); ebenso wurde ein Seitenwechsel bei 36% der Fälle beschrieben und hier bei 15% der Fälle beobachtet. Die Häufigkeit sensibler, visueller und dysphasischer Symptome entspricht derer aktueller Literatur. Dies zeigt die regelmäßige Beteiligung sowohl des Gyrus des visuellen Kortex und sprachrelevanter postcentralis, primär Areale. Übereinstimmend mit aktueller Literatur bestand eine große inter- und intraindividuell Variation hinsichtlich Dauer und Häufigkeit der Attacken.

Der nicht eindeutige anatomische Seitenbezug des Kopfschmerzes hinsichtlich der Hemiplegie (Lateralisation) könnte darauf hindeuten, dass der Kopfschmerz und die Hemiplegie zwei verschiedene, CSD getriggerte Migränephänomene sind und würde somit die Befunde von Spierings *et al.* wiedergeben [90]. Bezüglich der Lateralisation wird in der Literatur keine Aussage getroffen.

4.1 Genetische Befunde

4.1.1 Neumutation p.R908Q

Durch direkte Sequenzierung der drei FHM-Gene konnte in *ATP1A2* die bisher nicht vorbekannte Sequenzalteration c.G2723A identifiziert werden; sie führt zum Aminosäureaustausch p.R908Q. Diese trat bei einem der 13 untersuchten SHM-Patienten auf; bei diesem konnten in keinem weiteren FHM-Gen zusätzliche Sequenzalterationen identifiziert werden. Aus folgenden Gründen wird diese Alteration als eine für die SHM kausative Neumutation angesehen:

- ii) Es bestand keine Kosegregation für diese Sequenzalteration.
- iii) Es ist eine hoch konservierte Aminosäure in der α_2 -UE der Na⁺/K⁺-ATPase betroffen.
- iv) Im durchgeführten *survival assay* wurde ein letaler Funktionsverlust des veränderten Proteins nachgewiesen, entsprechend dem Konzept des *loss of function*.

Obwohl der *survival assay* keine exakte elektrophysiologische Untersuchung darstellt, ist er dennoch in der Literatur etabliert und dient zum Screening auf vorhandene funktionelle Alterationen [16, 49].

4.1.2 Pore forming loop

Die neu identifizierte Mutation liegt in einem funktionell äußerst wichtigen Bereich der Na⁺/K⁺-ATPase: der extrazellulären Schleife S7-S8. Diese ist für die Dimerisation mit der β-UE, für die Ionenleitfähigkeit und für die Ionenselektivität sehr von Bedeutung. In diesem Bereich stehen jedoch noch einige Untersuchungen für die Na⁺/K⁺-ATPase aus; deshalb müssen Erkenntnisse ähnlicher, bereits untersuchter Membranproteine auf die ATPase übertragen werden, um die genauen Folgen von Proteinalterationen zu verstehen. In unserem Fall bieten sich Na⁺- und K⁺-Kanäle an. Denn die AS-Sequenz v.a. eines entscheidenden Abschnitts der Schleife S7-S8 ist bei Na⁺- und K⁺-Kanälen und bei der Na⁺/K⁺-ATPase zu mind. 60% homolog [84]. Dieser entscheidende Abschnitt

der Schleife S7-S8 ragt in die hydrophobe Plasmamembran und bildet durch seinen hydrophilen Charakter die sog. *pore forming loop (p-loop)*. Diese *p-loop* ermöglicht durch ihren amphiphile Charakter zumindest bei Na⁺- und K⁺-Kanälen einen transmembranalen lonentransport und ist bei der Na⁺/K⁺-ATPase für die lonentranslokation, also der Hauptfunktion, von Bedeutung [28, 84]. Für Na⁺- und K⁺-Kanäle ist zudem bekannt, dass Änderungen der AS-Sequenz extrazellulärer Schleifen dieser Kanalproteine die lonenleitfähigkeit beeinflussen kann. Dies läßt sich ebenfalls auf die ATPase übertragen.

Die p-loop beinhaltet eine Sequenz von 26 hydrophilen Aminosäuren. Diese 26 AS sind für die Interaktion mit der β-UE von Bedeutung [59]. Insbesondere gilt dies für die kurze, hochkonservierte AS-Sequenz⁸⁹⁴SYGQ⁸⁹⁸, die direkt an der Interaktion zwischen der αund β -UE beteiligt ist [13]. Auch die β -UE ist für die Ionenselektivität und den Ionentransport von Bedeutung [84]. Ebenfalls innerhalb des zu Na⁺- und K⁺-Kanälen homologen Bereiches befindet sich bei der Na⁺/K⁺-ATPase das sog. ⁸⁸⁴DDRW⁸⁸⁷-Motiv. Homolog dazu findet sich bei den Na⁺-Kanälen des Skelettmuskels das Motiv ³⁹⁹ODYW⁴⁰² und bei den Na⁺-Kanälen des Herzmuskels das Motiv ³⁹⁹QDCW⁴⁰². diese drei Motive scheinen jeweils für die Ionenerkennung und Besonders Ionenleitfähigkeit (gating) von großer Bedeutung zu sein (Abb. 35) [84]. Ein AS-Austausch durch AS mit positiv geladenen Nebengruppen könnte die Enzymkinetik verändern. Möglicherweise erzeugen diese zusätzlichen positiven Ladungen eine elektrostatische Abstoßung von Kationen und verringern somit die Leitfähigkeit für Na⁺lonen [84].

Abbildung 35: Modell der *p-loop*

Dargestellt sind die transmembranalen Segmente S7 und S8 der Na⁺/K⁺-ATPase, die extrazelluläre Schleife S7-S8 und die angelagerte β -UE; aus der Zeichnung wird die Konformationsänderung der *p-loop* während des *gatings* von Na⁺-Ionen ersichtlich. Zudem ist das für den Ionentransport wichtige ⁸⁸⁴DDRW⁸⁸⁷-Motiv eingezeichnet. Modell modifiziert nach Schneider *et al.* [84].

4.1.3 Bekannte Mutationen innerhalb der *p-loop*

In der extrazellulären Schleife S7-S8 sind bisher zwei mit der FHM assoziierte Mutationen bekannt: p.E902K und p.W887R.

Die von Jurkat-Rott und Freilinger *et al.* [45] erstmals beschriebene Mutation p.E902K wurde in einer kleinen FHM-Familie identifiziert. Diese Mutation liegt nahe des funktionell wichtigen Motivs ⁸⁹⁴SYGQ⁸⁹⁸ (siehe 4.1.2). Träger dieser Mutation, die nur sechs AS weiter N-terminal der in dieser Dissertationsschrift identifizierten Mutation p.R908Q liegt, zeigten folgende(n) schweren Phänotyp bzw. Befunde: Manifestation im Säuglingsalter bei niedriger Attackenhäufigkeit (< 1x/Jahr), Hitze und körperliche Belastung als Triggerfaktoren, lange Attackendauer von bis zu 480h, Komadauer bis zu 20 Tagen, MRT-morphologisch reversibles, unilaterales meningeales Enhancement mit kortikalem Ödem.

Die von De Fusco *et al.* [16] in einer kleinen FHM-Familie beschriebene Mutation p.W887R war eine der beiden ersten identifizierten für die FHM kausative *ATP1A2*-Mutationen. Zellbiologische Untersuchungen zeigten ein schnelles Versterben aller die Mutation p.W887R tragender Zellen binnen 60h. Simulation eines Heterozygotenstatus führte hinsichtlich des Überlebens zu einem intermediären Verhalten zwischen Wildtyp und Mutante. Weiterführende Untersuchungen bestätigten aber eine korrekte Dimerisation mit der β -UE und schlossen eine fehlerhafte membranale Expression oder membranale Positionierung der Proteine aus. Diese Ergebnisse sind mit einem *loss of function* der Na⁺/K⁺-ATPase durch Verlust der katalyischen Aktivität vereinbar.

Koenderink *et al.* [49] bestätige die Ergebnisse von De Fusco *et al.* [16]. So zeigte sich auch hier trotz regelrechter Expression und Membranpositionierung des Genprodukts sowie intakter Dimerisation mit der β-UE ein Aktivitätsverlust der Na⁺/K⁺-ATPase. Eine Ursache für den Funktionsverlust könnte jedoch die Lage im eingangs beschriebenen Motiv ⁸⁸⁴DDRW⁸⁸⁷ sein. Experimentelle Mutationen dieses Motivs führten zu starken Alterationen der Enzymkinetik.

Mutationen in diesem Bereich des Kanalproteins sind also mit starken Funktionsverlusten der Na⁺/K⁺-ATPase assoziiert.

4.1.4 Mögliche molekulare Mechanismen der Neumutation p.R908Q

Die in dieser Dissertationsschrift erstmalig beschriebene Mutation p.R908Q befindet sich in der extrazellulären Schleife der Segmente S7-S8 der α_1 -UE der Na⁺/K⁺-ATPase, nahe der bekannten Mutationen p.W887R und p.E902K. In unmittelbarer Nachbarschaft befindet sich das Motiv ⁸⁸⁴DDRW⁸⁸⁷, das für die Translokation von Na⁺-Ionen und das Motiv ⁸⁹⁴SYGQ⁸⁹⁸, das für die Dimerisation mit der β-UE von Bedeutung ist. Die Neumutation p.R908Q könnte somit

- i) ein mangelhaftes *gating* von Na⁺-Ionen durch Beeinflussung des Motivs ⁸⁸⁴DDRW⁸⁸⁷ verursachen.
- eine inkorrekte Dimerisation mit der β-UE durch Beeinflussung des Motivs
 ⁸⁹⁴SYGQ⁸⁹⁸ verursachen und zum Funktionsverlust des Enzyms führen, obwohl die katalytische Aktivität der ATPase davon nicht betroffen wäre.
- iii) durch den Austausch der hydrophilen Aminosäure L-Arginin durch die ungeladene Aminosäure L-Glutamin zu einer Störung hydrophiler Wechselwirkung in der *p-loop* führen und damit die Ionentranslokation stören.
- iv) indirekt die Membranexpression behindern.

Zum Entstehungszeitpunkt der Arbeit standen Untersuchungen zur Dimerisation mit der β-UE, zur korrekten Membranexpression des Enzyms sowie elektrophysiologische Untersuchungen noch aus. Jedoch wurden in dieser Arbeit analog zu den Untersuchungen von De Fusco *et al.*[16] funktionelle, zellbiologische Untersuchungen in Form von *survival assays* durchgeführt. Es wurde deutlich, dass diese Mutation für transfizierte Zellen letal ist. Der genaue Pathomechanismus ist zwar unbekannt; es ist aber von einem totalen *loss of function* der Na⁺/K⁺-ATPase auszugehen, der möglicherweise durch o.g. Mechanismen zu Stande kommt.

4.2 Schlussfolgerung

In Übereinstimmung mit der Literatur scheinen die bisher identifizierten FHM-Gene *CACNA1A, ATP1A2 und SCN1A* für SHM-Patienten offenbar nur von untergeordneter Bedeutung zu sein [94]. So konnte in dem hier untersuchten Kollektiv nur bei einem Patienten eine *de novo* Mutation in einem FHM-Gen identifiziert werden. Bei Patienten mit SHM ist ein Mutationsscreening in diesen Genen zu diagnostischen Zwecken

deshalb nur begrenzt sinnvoll und sollte nur im Rahmen wissenschaftlicher Fragestellungen erfolgen.

Auf Basis der bislang vorliegenden Daten aus diesem Kollektiv und der Literatur muss man annehmen, dass für die SHM möglicherweise Mutationen in anderen, nicht FHM-Genen verantwortlich sind. Daneben kommt eine komplex-genetische Genese in Frage, d.h. ein Zusammenwirken mehrerer genetischer Faktoren und Umwelteinflüssen. Eine weitere Entschlüsselung dürfte sich jedoch als sehr schwierig erweisen, weil

- es sich um eine sporadische Erkrankung handelt, so dass Techniken, die zur Identifizierung der FHM-Gene geführt hatten (Kopplungsanalysen), nicht anwendbar sind.
- es sich andererseits um eine sehr seltene Erkrankung handelt, so dass die für genomweite Assoziationsstudien- wie sie bei den häufigen, genetisch komplexen Erkrankungen durchgeführt werden- erforderlichen großen Fallzahlen kaum erreicht werden können.

Die Situation wird weiter dadurch erschwert, dass unter bestimmten Umständen FHM-Patienten fälschlicherweise als SHM-Patienten diagnostiziert werden können. Dies ist der Fall, wenn

- i) betroffene Verwandte ersten Grades aus verschiedenen Gründen (z.B. lückenhafte Anamnese, falsche Vaterschaften) nicht detektiert werden.
- ii) FHM-Mutationen eine reduzierte Penetranz aufweisen, sodass die Familienanamnese falsch negativ zu sein scheint.

Zu berücksichtigen ist ferner, dass die Untersuchung eines SHM-Falles jeweils nur eine Momentaufnahme darstellt und bei späterer Manifestation einer hemiplegischen Migräne bei einem Verwandten ersten Grades ein Übergang zur FHM stattfindet (*age of onset*-Effekt).

5 Zusammenfassung

Mit einer Prävalenz von 0,005% ist die sporadische hemiplegische Migräne (SHM) eine sehr seltene, monogene, sporadische Form der Migräne. Es wurde bereits gezeigt, dass ihre klinische Ausprägung nahezu identisch mit der familiären Form (FHM) ist.

In dieser Dissertationsschrift wurde eine Beteiligung der drei bekannten FHM-Gene (*CACNA1A, ATP1A2 und SCN1A*) an der Genese der SHM molekulargenetisch überprüft. Zudem wurde eine Anwendbarkeit diagnostischer Tests im Rahmen einer SHM-Diagnostik eingeschätzt.

Im untersuchten SHM-Patientenkollektiv fand sich jedoch nur eine Mutation in einem für die FHM bekannten Gen (*ATP1A2*). Damit scheinen die FHM-Gene für die Genese der SHM von untergeordneter Bedeutung zu sein. Ein Mutationsscreening in den bekannten FHM-Genen im Rahmen einer SHM-Diagnostik ist daher nur begrenzt sinnvoll. Eine weitere Entschlüsselung der Genese der SHM gestaltet sich aufgrund ihrer Ätioepidemiologie sehr schwierig.

6 Anhang

Übersichtstabellen

Aminosäure	Domäne	Segment
p.R192Q	I	S 4
p.R195K	I	S 4
p.S218L	I	S4-5, intrazellulär
p.R583Q	II	S 4
p.T666M	II	P-loop
p.V714A	II	S 6
p.D715E	II	S 6
p.P897R	II	S 4
p.K1336E	III	S 3-4, extrazellulär
p.R1347Q	111	S4
p.C1369Y	111	S 5
p.Y1385C	111	S 5
p.V1457L	111	P-loop
p.R1668W	IV	S 4
p.L1682P	IV	S 4
p.W1684R	IV	S 4-5, intrazellulär
p.V1696I	IV	S 5
p.I1811L	IV	S 6
p.E2080K	IV	c-terminal
p.P2479R	IV	c-terminal
p.H2481Q	IV	c-terminal

Tabelle 11: FHM/SHM-assoziierte Mutationen in CACNA1A

Identifizierte Mutationen in *CACNA1A*; erste Spalte: betroffene Aminosäuren in Ein-Buchstaben-Code-Schreibweise; zweite Spalte: betroffene Domäne I bis IV; dritte Spalte: betroffenes Segment

Aminosäure	Segment		
p.Y9N	n-terminal		
p.R65W	n-terminal		
p.E120A	S1-S2		
p.V138A	S2		
p.E174K	S2-S3		
p.R202Q	S2-S3		
p.T263M	S2-S3		
p.I286T	S2-S3		
p.G301R	S3		
p.T345A	S4-S5		
p.V362E	S4-S5		
p.T376M	S4-S5		
p.T378N	S4-S5		
p.R383H	S4-S5		
p.T415M	S4-S5		
p.E492K	S4-S5		
p.C515Y	S4-S5		
p.R548C	S4-S5		
p.R548H	S4-S5		
p.R593W	S4-S5		
p.A606T	S4-S5		
p.G615R	S4-S5		
p.V628M	S4-S5		
p.R689Q	S4-S5		
p.E700K	S4-S5		

p.N717K	S4-S5
p.D718N	S4-S5
p.M731T	S4-S5
p.M745I	S4-S5
p.R763H	S4-S5
p.R763C	S4-S5
p.L764P	S4-S5
p.P786T	S5
p.P796R	S5-S6
p.P796S	S5-S6
p.M829R	S6-S7
p.M834Q	S6-S7
p.R834X	S6-S7
p.R879Q	S7-S8
p.R879W	S7-S8
p.W887R	S7-S8
p.G900R	S7-S8
p.E902K	S7-S8
del 5AA (=p.935K_p.940SdelinsI)	S8-S9
p.R937P	S8-S9
delCT (=p.S966fs)	S9
p.P979L	S10
p.D999H	S10
p.R1002Q	S10
p.X1021R	c-terminal

Tabelle 12: Identifizierte Mutationen in ATP1A2

Erste Spalte: betroffene Aminosäuren in Ein-Buchstaben-Code-Schreibweise; zweite Spalte: betroffenes Segment

Aminosäure	Domäne	Segment
p.L263V	I	S 5
p.Q1489K	III - IV	S 6- S1
p.L1649Q	IV	S 4

Tabelle 13: FHM-assoziierte Mutationen in SCN1A

Identifizierte Mutationen in *SCN1A*; erste Spalte: betroffene Aminosäuren in Ein-Buchstaben-Code-Schreibweise; zweite Spalte: betroffene Domäne I bis IV; dritte Spalte: betroffenes Segment

	FHM	SHM
RR (MO)	1,6 (nicht signifikant)	1,7 (nicht signifikant)
RR (MA)	7,0 (signifikant)	7,7 (hoch signifikant)
h (MO)	11%	29%
h (MA)	39%	59%
h (MO+MA)	15%	-

Tabelle 14: Häufigkeit und relatives Risiko häufiger Migräneformen bei FHM/SHM [95, 98]

h: Häufigkeit; RR: relatives Risiko

ATP1A2 Exon-Nr.	Primersequenzen forward und reverse 5'-3'	Produktlänge [bp]
1	GGAGAGGGGGGAGAAGGACC CTTCATCCTTCCTCAGCAGC	231
2	CAGCCCCTCTCTTCCCTG TCTGAGTGCAATGGGCTG	225
3	GCATCTTAGATACCTCCTCCCC CTTGATGCTGCATGGTTTTC	168
4	ATGGTGACTGGCTGGGTTG CAGGGTTGGAGGACAGTCAC	316
5	CTGCCCCTTTAGGGTTGG CTTGCCAAAACCTTACAGCC	220
6	AAGAAGGCAGGGGCAGAG TGCACACAGCCTTCTCCTTAG	243

7	GTGCATACAAGTGGCTCTGC GCCCTTCATCCTGACTATGG	238
8	GCTCAGGAAATAGGATGGGAC GTAGTGAGACCCTCCCCTGG	388
9	CTCGGGCTTCAGCCTTAAC ACCACTCACCCACCACG	319
10	CTCTAAAGGGAGCCACGC GCAAGAGGCTTTGGAGACAC	212
11	TTCACCTGATCCTCCACTCC CCCTCACCCATTTATATCCC	252
12	CCAAGACAAGTATGGCCCTC AGGCTTGGGAATCCCCTTC	281
13	AAGCCACTCTGCGGATCTC CTCCTTGAACTCTGGCATGG	278
14	GGAACAGGAGGGGGATAAAC CTTCTGTGCAAGAGGACGTG	256
15	GTACAGGTGCCAGGGGTC ATGCTTGTCTTGGCCCTG	268
16	CTTGGGAAGGGGTTTCGTC AAAGGGACAGGGAACAGAGG	284
17	AAGAGTCCCTCTGACCTCCC AGTGCACCTCTCCCTG	274
18	CGTCCCTTCAAATGCCCTC CTGGGAAAAGAACCCTGTTG	222
19	TTCTGCTTCCTGCTCTGACC TCAGCTTCCCGTACCTTCAC	249
20	CTGGTCCTACCCTTTCCTCC GTGAGTGTGCCCAGAGCC	239
21	CCATGATCCCCCTTCACC AGAACTTGGATCCTGGAGGG	217
22	GCCAACCTCTGATGCTGC	212
	GAGTCTGCGTGTGGTCCTG	
----	----------------------	-----
22	AAGCTCATGCTGCAATCTCC	457
23	CCCGTTATTTCCATCCCTCT	107

Tabelle 15: ATP1A PCR-Primer

<i>ATP1A2</i> Exon-Nr.	Primersequenzen forward und reverse 5'-3'	Produktlänge [bp]
20	GCACATGTGTGAAGGTACGG GATGATGAGGTCAGCCCACT	280

Tabelle 16: ATP1A2 PCR-Primer für den Restriktionsverdau

ATP1A2 Mutagenese-Primersequenzen	CCTATGAGCAGCAGAAGGTGGTGGAG
forward und reverse 5'-3'	CTCCACCACCTTCTGCTGCTCATAGG

Tabelle 17: ATP1A2 Mutagenese-Primer

CACNA1A Exon-Nr.	Primersequenzen forward und reverse 5'-3'	Produktlänge [bp]
2	CCTCCAACACCCTTCTTTC ATGTCCTGCTAAAGCCAAGG	208
4	CTGTCTGACCCCCAAAACC AAACTGAGGGCTCCTGGG	207
5	CTTGGTGGCGGGGTTT CTGCCTAATCCTCCCAAGAG	345
13/14	GTTCTGGAGCCCAGACAC GGGACTGTGTGTTCCCTGAG	735
16/17	CAGCTGCATCTCCAAGGG CCCCGTCCTGATCTGCC	742
21	TGGGAAATTGTGGAGGGAGC TGACTTCCGCCACCCTGGTG	247
22	AGCCTGTGGTCTGAGTGGAC TAGGAAGGGGTGTGCTCTGTG	206
23	ATCCACTGCTCTTGCTTT	121

	GTGGTTCTCACTTATAATCTGC	
	CTACCCAACCTGACCTCTGC	001
25	ACATGATAACCCTGACAGTC	221
26	CTCATGCTCTCTGTCAACTC	320
20	TGGTTCCAATGGGAATGTGC	229
07	AGCCCCTCTTTCCCATTTAC	050
27	AGCTCTCAGGCCCTTTATCC	253
22	GACAGCTCTGAGCCTTTTGG	004
32	GTCACCTGTCTTCTCAGCCC	224
22/24	AGGGACCCCCAGCACTC	000
33/34	TGGGAACAGAAGGATGAAGG	800
20	ATTCATTCCCTCGGTCTCTG	040
36	CAGTTCCAGGGAGAGGTGAG	242

Tabelle 18: CACNA1A PCR-Primer

SCN1A	Primersequenzen	Produktlänge
Exon-Nr.	forward und reverse 5'-3'	[bp]
1	CTTTAAATCCTCTAGCTCATGTTTC	466
	GTCCAAGGAATGCAGTAGGC	
2	ACAGTTTGTTTTCATGGGGC	501
2	TATAAAGATGGTAGAGGTAAACATGG	591
2	GGCTTTTCAATGTTAGCTTTTTG	220
3	TTAAGACACAGTTTCAAAATCCC	230
4	TGGAGTGATAAGAAATTGGTATGC	265
4	GCATAAGCACTGATGGAAAACC	205
	TTTTCTTTGTGTCCTGTTTTTG	200
5	GCAGAGAAGGATGCTGAATCAC	200
	TTGCTTCTCCACTAGCGTTG	504
Ö	GCCTGCAATGTGTGCTAATC	524
7	CTGACCTTCCTGTTCTCATTTG	244
/	AAAATTAGTTGGCTGTTATCTTCAG	244

8	AGGCAGCAGAACGACTTG TCAAGTCTCGTTTCAAGTTCTG	308
9	TTGAAAGTTGAAGCCACCAC CACCTGCTCTTAGGTACTCACTTTC	362
10	CCATGCAAATACTTCAGCCC TAATTCTCCCCCTCTCTCCC	432
11	CATAATCTTGCAAAATGAAATCAC GTGCAGCAATAGTGAGCCAG	509
12	GTCACCATTTGGTTGTTTGC GAATGCACTATTCCCAACTCAC	302
13	GAAATATCCTTGGGAGGTTTAGAG ATAATTGCGATTTTGCAGGG	544
14	AGAATCATTGTGGGAAAATAGC GCTATGCAAGAACCCTGATTG	344
15	ATGAGCCTGAGACGGTTAGG TCCAAGGTAATGGACTTTTAAACC	688
16	CTGCTCTTCCCTACATTGGTG GTCGAGGATCATCTGTATGTGTG	612
17	TTGGCAGGCAACTTATTACC AACAAGCTGCACTCCAAATG	233
18	CAAGACAAGGACATTGCTAAAGG TGCATTGGATACTAAGACAATGAAAC	332
19	TTTCTCTGCCCTCCTATTCC AAATAAGACAAGCTACCTTGAACAG	338
20	AAAGGTTTACTGAAAATGTCTGAAC GAATTTGCCATTCCTTTTGC	361
21	TTTTGAACCTTGCTTTTACATATCC CCATCTGGGCTCATAAACTTG	580
22	CAGGTCTAAATTATTTTTACTCCAAAG TGCTTTATTCGATTAATTTTACCAC	176
23	ATTTCCAGCACTAAAATGTATGG	258

	GCAGAGAAAACACTCCAAGG	
24	TTTTAGCCATCCATTTTCTATTTTAAC TCTTGAAGTCAAGGGTGTATCTTC	417
25	AGGGCCAATGACTACTTTGC TGATTGCTGGGATGATCTTG	475
26 A	TTACCTTGGAGCTTTAGAAGAAAC AAATTCCAACAGATGGGTTCC	522
26 B	TCTCAACAGTAAGCCACCCG ACCTTGGAAGGATTGGAAGC	504
26 C	CTCATTGCCATGGATTTGC TCAGTTTGGCATTGACCTCC	588

Tabelle 19: SCN1A PCR-Primer

7 Abbildungsverzeichnis

Abbildung 1: Topologie der α_{1A} -Untereinheit des Ca _V 2.1	5
Abbildung 2: Modell der α_2 -Untereinheit der Na ⁺ /K ⁺ -ATPase	7
Abbildung 3: Topologie der α -Untereinheit des Na $_V$ 1.1	10
Abbildung 4: Pathophysiologische Zusammenhänge zwischen FHM und CSD	13
Abbildung 5: Reaktionsschritte einer PCR	21
Abbildung 6: Annealing-Temperatur und MgCl ₂ -Konzentration bei Exon 6, ATP1A2	23
Abbildung 7: Dideoxy-Methode nach Sanger <i>et al.</i>	27
Abbildung 8: Beispiel eines Elektropherogramms	30
Abbildung 9: PreGap4 Ver. 1.5	31
Abbildung 10: Gap4 Ver. 4.10	32
Abbildung 11: "Contig Selector"	32
Abbildung 12: "Contig Editor"	32
Abbildung 13: "Trace Display"	33
Abbildung 14: "Transcript View" eines Gens	34
Abbildung 15: Legende für die "Transcript View"	34
Abbildung 16: Design der Primer mit "Primer 3"	35
Abbildung 17: Zirkuläre, gerichtete in vitro-Mutagenese	36
Abbildung 18: Polymorphismus c.G2088A in Exon 16, CACNA1A	45
Abbildung 19: Polymorphismus c.G1119A in Exon 9, ATP1A2	45
Abbildung 20: Polymorphismus c.G1119A in Exon 9, ATP1A2	45
Abbildung 21: Polymorphismus c.C1445G in Exon 11, ATP1A2	46
Abbildung 22: Polymorphismus c.C1704T in Exon 13, ATP1A2	46
Abbildung 23: Polymorphismus c.C2258T in Exon 16, ATP1A2.	46

Abbildung 24: Modell der α_2 -Untereinheit der Na ⁺ /K ⁺ -ATPase47
Abbildung 25: Nicht vorbekannte Sequenzalteration p.R908Q in Exon 20, ATP1A247
Abbildung 26: Mutter des Indexpatienten; Exon 20, ATP1A249
Abbildung 27: Stammbaum des Indexpatienten49
Abbildung 28: Erkennungssequenz von Acil und Schnittstellen beim Wildtyp-Exon 2050
Abbildung 29: Erkennungssequenz von Acil und Schnittstellen im mutierten Exon 2050
Abbildung 30: DNA-Schnittmuster des Restriktionsverdaus bei Wildtyp und Mutante51
Abbildung 31: Synopsis des DNA-Schnittmusters beim Restriktionsverdau52
Abbildung 32: Sequenz-alignement53
Abbildung 33: Survival assay der HeLa-Zellen mit mutierter Na ⁺ /K ⁺ -ATPase54
Abbildung 34: Survival assay der HeLa-Zellen mit der Wildtyp der Na ⁺ /K ⁺ -ATPase54
Abbildung 35: Modell der <i>p-loop</i>

8 Tabellenverzeichnis

Tabelle 1: Eingesetzte Volumina beim Restriktionsverdau	20
Tabelle 2: PCR-Grundansatz	22
Tabelle 3: Cycler-Programm für die PCR	23
Tabelle 4: Trennbereiche von Agarose-Gelen	25
Tabelle 5: Eingesetzte Substanzen und Volumina zur S-PCR	28
Tabelle 6: Cycler-Programm für die S-PCR	28
Tabelle 7: Klinische Charakteristika der SHM-Patienten A-M	43
Tabelle 8: Übersichtstabelle identifizierter Sequenzalterationen in ATP1A2	48
Tabelle 9: DNA-Fragmentlängen des Exons 20 des Wildtyps	50
Tabelle 10: DNA-Fragmentlängen des mutierten Exons 20	51
Tabelle 11: FHM/SHM-assoziierte Mutationen in CACNA1A	62
Tabelle 12: Identifizierte Mutationen in ATP1A2	64
Tabelle 13: FHM-assoziierte Mutationen in SCN1A	65
Tabelle 14: Häufigkeit und relatives Risiko häufiger Migräneformen bei FHM/SHM	65
Tabelle 15: ATP1A PCR-Primer	67
Tabelle 16: ATP1A2 PCR-Primer für den Restriktionsverdau	67
Tabelle 17: ATP1A2 Mutagenese-Primer	67
Tabelle 18: CACNA1A PCR-Primer	68
Tabelle 19: SCN1A PCR-Primer	70

9 Abkürzungsverzeichnis

Fachspezifische Abkürzungen:

AP	Aktionspotential
Aqua _{dest.}	destilliertes Wasser
AS	Aminosäure
ATP	Adenosintriphosphat
BFIC	Benign Familial Infantile Convulsions
BM	Basilarismigräne
bp	Basenpaare
c.G2723A	Basenposition in Schreibweise auf Basenebene
Ca ²⁺	Kalzium
Ca ²⁺ v	Voltage Gated Calcium Channel
CADASIL	Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts And Leukoencephalopathy
cDNA	kodierende DNA
cDNA CSD	kodierende DNA Cortical Spreading Depression
cDNA CSD ddH₂O	kodierende DNA Cortical Spreading Depression doppelt destilliertes Wasser
cDNA CSD ddH₂O DNA	kodierende DNA Cortical Spreading Depression doppelt destilliertes Wasser Desoxyribonukleinsäure
cDNA CSD ddH₂O DNA dNTPs	kodierende DNA Cortical Spreading Depression doppelt destilliertes Wasser Desoxyribonukleinsäure Desoxyribonukleotide
cDNA CSD ddH ₂ O DNA dNTPs dsDNA	kodierende DNA Cortical Spreading Depression doppelt destilliertes Wasser Desoxyribonukleinsäure Desoxyribonukleotide Doppelstrang-DNA
cDNA CSD ddH2O DNA dNTPs dsDNA EA2	kodierende DNA Cortical Spreading Depression doppelt destilliertes Wasser Desoxyribonukleinsäure Desoxyribonukleotide Doppelstrang-DNA Episodische Ataxie Typ 2
cDNA CSD ddH2O DNA dNTPs dsDNA EA2 EDTA	kodierende DNA Cortical Spreading Depression doppelt destilliertes Wasser Desoxyribonukleinsäure Desoxyribonukleotide Doppelstrang-DNA Episodische Ataxie Typ 2 Ethylendiamintetraessigsäure
cDNA CSD ddH ₂ O DNA dNTPs dsDNA EA2 EDTA FHM	kodierende DNA Cortical Spreading Depression doppelt destilliertes Wasser Desoxyribonukleinsäure Desoxyribonukleotide Doppelstrang-DNA Episodische Ataxie Typ 2 Ethylendiamintetraessigsäure familiäre hemiplegische Migräne
cDNA CSD ddH2O DNA dNTPs dsDNA EA2 EDTA FHM FHM1	kodierende DNA Cortical Spreading Depression doppelt destilliertes Wasser Desoxyribonukleinsäure Desoxyribonukleotide Doppelstrang-DNA Episodische Ataxie Typ 2 Ethylendiamintetraessigsäure familiäre hemiplegische Migräne
cDNA CSD ddH ₂ O DNA dNTPs dsDNA EA2 EDTA FHM FHM1 FHM2	kodierende DNA Cortical Spreading Depression doppelt destilliertes Wasser Desoxyribonukleinsäure Desoxyribonukleotide Doppelstrang-DNA Episodische Ataxie Typ 2 Ethylendiamintetraessigsäure familiäre hemiplegische Migräne FHM Typ 1 FHM Typ 2

FHM <i>plus/pure</i>	FHM mit/ohne interiktaler zerebellärer Symptomatik
FKS	fetales Kälberserum
GEFS+1	generalisierte Epilepsie mit Fieberkrämpfen plus Typ 1
GEFS+2	generalisierte Epilepsie mit Fieberkrämpfen plus Typ 2
GFP	grün fluoreszierendes Protein
GLAST	Glutamat/Aspartat-Transporter
GLT-1	Glutamat-Transporter Typ 1
Glu	Glutamat
GTE-Medium	Glucose-Tris-EDTA-Medium
HCI	Salzsäure
HEK293	Humane Embryonic Kidney Cells
ICHD-2	International Classification Of Headache Disorders 2 nd Edition
IFM-Motiv	Ile-Phe-Met-Motiv
IHS	International Headache Society
K ⁺	Kaliumionen
kb	Kilobasen
KI	Konfidenzintervall
LB-Medium	Luria-Bertani medium
М	molar, Mol pro Liter
МА	Migräne mit Aura
MgCl ₂	Magnesiumchlorid
mM	Milimolar
МО	Migräne ohne Aura
MRT	Magnetresonanztomogramm
Na⁺	Natriumion
NaCl	Natriumchlorid
Na _v	Voltage Gated Sodium Channel

OD	optische Dichte
p.X1234Y	Lokalisation der Aminosäure auf Proteinebene
PA-Gele	Polyacrylamidgele
PCR	Polymerase Chain Reaction
PNS	peripheres Nervensystem
Rb⁺	Rubidium
RFLP	Restriktionsfragmentlängenpolymorphismen
RR	relatives Risiko
SDS	Sodium Dadecyl Sulfat
SE-Puffer	Sodiumchlorid-EDTA-Puffer
SHM	Sporadische Hemiplegische Migräne
SHT	Schädel-Hirn-Trauma
SLM	Stop-Lade-Mix
SNP	Single Nucleotide Polymorphism
ssDNA	Einzelstrang-DNA
TAE	Tris-Acetat-EDTA-Puffer
Таq	Thermophilus aquarius
TBE	Tris-Borat-EDTA-Puffer
TE	Tris-EDTA-Puffer
T _m	annealing-Temperatur
UE	Untereinheit
WHO	World Health Organization
ZNS	zentrales Nervensystem
3	molarer Absorptionskoeffizient
λ	Lambda, Bezeichnung für die Wellenlänge
T _{langsam}	Membranzeitkonstante langsame Komponente
T _{schnell}	Membranzeitkonstante schnelle Komponente

10 Literaturverzeichnis

- (2004) The International Classification of Headache Disorders: 2nd edition. Cephalalgia 24 Suppl 1:9-160
- Ahmed MA, Reid E, Cooke A, Arngrimsson R, Tolmie JL, Stephenson JB (1996) Familial hemiplegic migraine in the west of Scotland: a clinical and genetic study of seven families. J Neurol Neurosurg Psychiatry 61:616-620
- Barbour PJ, Castaldo JE, Shoemaker EI (2001) Hemiplegic migraine during pregnancy: unusual magnetic resonance appearance with SPECT scan correlation. Headache 41:310-316
- Battistini S, Stenirri S, Piatti M, Gelfi C, Righetti PG, Rocchi R, Giannini F, Battistini N, Guazzi GC, Ferrari M, Carrera P (1999) A new CACNA1A gene mutation in acetazolamide-responsive familial hemiplegic migraine and ataxia. Neurology 53:38-43
- Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8:136-142
- Bradshaw P, Parsons M (1965) Hemiplegic Migraine, A Clinical Study. Q J Med 34:65-85
- Cantley LC (1981) Structure and mechanism of the (Na,K)ATPase. Curr Top Bioenerg 11:201-237
- Carrera P, Piatti M, Stenirri S, Grimaldi LM, Marchioni E, Curcio M, Righetti PG, Ferrari M, Gelfi C (1999) Genetic heterogeneity in Italian families with familial hemiplegic migraine. Neurology 53:26-33
- 9. Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13-25
- Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels.
 Annu Rev Cell Dev Biol 16:521-555
- Centonze V, Brucoli C, Macinagrossa G, Attolini E, Campanozzi F, Albano O (1983) Non-familial hemiplegic migraine responsive to naloxone. Cephalalgia 3:125-127

- Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P (2001) De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 68:1327-1332
- Colonna TE, Huynh L, Fambrough DM (1997) Subunit interactions in the Na,K-ATPase explored with the yeast two-hybrid system. J Biol Chem 272:12366-12372
- Cryer DR, Eccleshall R, Marmur J (1975) Isolation of yeast DNA. Methods Cell Biol 12:39-44
- 15. Curtain RP, Smith RL, Ovcaric M, Griffiths LR (2006) Minor head trauma-induced sporadic hemiplegic migraine coma. Pediatr Neurol 34:329-332
- De Fusco M, Marconi R, Silvestri L, Atorino L, Rampoldi L, Morgante L, Ballabio A, Aridon P, Casari G (2003) Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet 33:192-196
- 17. de Vries B, Freilinger T, Vanmolkot KR, Koenderink JB, Stam AH, Terwindt GM, Babini E, van den Boogerd EH, van den Heuvel JJ, Frants RR, Haan J, Pusch M, van den Maagdenberg AM, Ferrari MD, Dichgans M (2007) Systematic analysis of three FHM genes in 39 sporadic patients with hemiplegic migraine. Neurology 69:2170-2176
- Dichgans M, Freilinger T, Eckstein G, Babini E, Lorenz-Depiereux B, Biskup S, Ferrari MD, Herzog J, van den Maagdenberg AM, Pusch M, Strom TM (2005) Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 366:371-377
- Dichgans M, Herzog J, Freilinger T, Wilke M, Auer DP (2005) 1H-MRS alterations in the cerebellum of patients with familial hemiplegic migraine type 1. Neurology 64:608-613
- 20. Dora B, Balkan S (2001) Sporadic hemiplegic migraine and Sturge-Weber syndrome. Headache 41:209-210
- Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69-77
- 22. Dreier JP, Jurkat-Rott K, Petzold GC, Tomkins O, Klingebiel R, Kopp UA, Lehmann-Horn F, Friedman A, Dichgans M (2005) Opening of the blood-brain barrier preceding cortical edema in a severe attack of FHM type II. Neurology 64:2145-2147

- 23. Ducros A, Denier C, Joutel A, Cecillon M, Lescoat C, Vahedi K, Darcel F, Vicaut E, Bousser MG, Tournier-Lasserve E (2001) The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. N Engl J Med 345:17-24
- 24. Ducros A, Denier C, Joutel A, Vahedi K, Michel A, Darcel F, Madigand M, Guerouaou D, Tison F, Julien J, Hirsch E, Chedru F, Bisgard C, Lucotte G, Despres P, Billard C, Barthez MA, Ponsot G, Bousser MG, Tournier-Lasserve E (1999) Recurrence of the T666M calcium channel CACNA1A gene mutation in familial hemiplegic migraine with progressive cerebellar ataxia. Am J Hum Genet 64:89-98
- 25. Ducros A, Joutel A, Vahedi K, Cecillon M, Ferreira A, Bernard E, Verier A, Echenne B, Lopez de Munain A, Bousser MG, Tournier-Lasserve E (1997) Mapping of a second locus for familial hemiplegic migraine to 1q21-q23 and evidence of further heterogeneity. Ann Neurol 42:885-890
- 26. Ducros A, Tournier-Lasserve E, Bousser MG (2002) The genetics of migraine.Lancet Neurol 1:285-293
- Escayg A, MacDonald BT, Meisler MH, Baulac S, Huberfeld G, An-Gourfinkel I, Brice A, LeGuern E, Moulard B, Chaigne D, Buresi C, Malafosse A (2000) Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet 24:343-345
- Fiedler B, Scheiner-Bobis G (1996) Transmembrane topology of alpha- and betasubunits of Na+,K+-ATPase derived from beta-galactosidase fusion proteins expressed in yeast. J Biol Chem 271:29312-29320
- Freilinger T, Bohe M, Wegener B, Muller-Myhsok B, Dichgans M, Knoblauch H (2008) Expansion of the phenotypic spectrum of the CACNA1A T666M mutation: a family with familial hemiplegic migraine type 1, cerebellar atrophy and mental retardation. Cephalalgia 28:403-407
- 30. Freilinger T, Dichgans M (2006) [Genetics of migraine]. Nervenarzt 77:1186, 1188-1195
- 31. Friend KL, Crimmins D, Phan TG, Sue CM, Colley A, Fung VS, Morris JG, Sutherland GR, Richards RI (1999) Detection of a novel missense mutation and second recurrent mutation in the CACNA1A gene in individuals with EA-2 and FHM. Hum Genet 105:261-265
- Gardner K (1999) The genetic basis of migraine: how much do we know? Can J Neurol Sci 26 Suppl 3:S37-43

- Gardner K, Barmada MM, Ptacek LJ, Hoffman EP (1997) A new locus for hemiplegic migraine maps to chromosome 1q31. Neurology 49:1231-1238
- 34. Gardner KL (2006) Genetics of migraine: an update. Headache 46 Suppl 1:S19-24
- 35. Gervil M, Ulrich V, Kyvik KO, Olesen J, Russell MB (1999) Migraine without aura: a population-based twin study. Ann Neurol 46:606-611
- 36. Gilbert GJ, Rappaport A, Trump R (1974) Retinal degeneration in hemiplegic migraine. Headache 14:77-80
- Goldberg LD (2005) The cost of migraine and its treatment. Am J Manag Care 11:S62-67
- Haan J, Kors EE, Vanmolkot KR, van den Maagdenberg AM, Frants RR, Ferrari
 MD (2005) Migraine genetics: an update. Curr Pain Headache Rep 9:213-220
- 39. Hans M, Luvisetto S, Williams ME, Spagnolo M, Urrutia A, Tottene A, Brust PF, Johnson EC, Harpold MM, Stauderman KA, Pietrobon D (1999) Functional consequences of mutations in the human alpha1A calcium channel subunit linked to familial hemiplegic migraine. J Neurosci 19:1610-1619
- 40. Heyck H (1973) Varieties of hemiplegic migraine. Headache 12:135-142
- 41. Hu YK, Kaplan JH (2000) Site-directed chemical labeling of extracellular loops in a membrane protein. The topology of the Na,K-ATPase alpha-subunit. J Biol Chem 275:19185-19191
- 42. Jen JC, Wan J, Palos TP, Howard BD, Baloh RW (2005) Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology 65:529-534
- Jordan C, Puschel B, Koob R, Drenckhahn D (1995) Identification of a binding motif for ankyrin on the alpha-subunit of Na+,K(+)-ATPase. J Biol Chem 270:29971-29975
- Joutel A, Ducros A, Vahedi K, Labauge P, Delrieu O, Pinsard N, Mancini J,
 Ponsot G, Gouttiere F, Gastaut JL, et al. (1994) Genetic heterogeneity of familial hemiplegic migraine. Am J Hum Genet 55:1166-1172
- 45. Jurkat-Rott K, Freilinger T, Dreier JP, Herzog J, Gobel H, Petzold GC, Montagna P, Gasser T, Lehmann-Horn F, Dichgans M (2004) Variability of familial hemiplegic migraine with novel A1A2 Na+/K+-ATPase variants. Neurology 62:1857-1861
- 46. Kahlig KM, Rhodes TH, Pusch M, Freilinger T, Pereira-Monteiro JM, Ferrari MD, van den Maagdenberg AM, Dichgans M, George AL, Jr. (2008) Divergent sodium

channel defects in familial hemiplegic migraine. Proc Natl Acad Sci U S A 105:9799-9804

- 47. Kaplan JH (2002) Biochemistry of Na,K-ATPase. Annu Rev Biochem 71:511-535
- 48. Kaunisto MA, Harno H, Vanmolkot KR, Gargus JJ, Sun G, Hamalainen E, Liukkonen E, Kallela M, van den Maagdenberg AM, Frants RR, Farkkila M, Palotie A, Wessman M (2004) A novel missense ATP1A2 mutation in a Finnish family with familial hemiplegic migraine type 2. Neurogenetics 5:141-146
- Koenderink JB, Zifarelli G, Qiu LY, Schwarz W, De Pont JJ, Bamberg E, Friedrich T (2005) Na,K-ATPase mutations in familial hemiplegic migraine lead to functional inactivation. Biochim Biophys Acta 1669:61-68
- Koob R, Zimmermann M, Schoner W, Drenckhahn D (1988) Colocalization and coprecipitation of ankyrin and Na+,K+-ATPase in kidney epithelial cells. Eur J Cell Biol 45:230-237
- 51. Kors EE, Haan J, Giffin NJ, Pazdera L, Schnittger C, Lennox GG, Terwindt GM, Vermeulen FL, Van den Maagdenberg AM, Frants RR, Ferrari MD (2003) Expanding the phenotypic spectrum of the CACNA1A gene T666M mutation: a description of 5 families with familial hemiplegic migraine. Arch Neurol 60:684-688
- 52. Kors EE, Melberg A, Vanmolkot KR, Kumlien E, Haan J, Raininko R, Flink R, Ginjaar HB, Frants RR, Ferrari MD, van den Maagdenberg AM (2004) Childhood epilepsy, familial hemiplegic migraine, cerebellar ataxia, and a new CACNA1A mutation. Neurology 63:1136-1137
- 53. Kors EE, Terwindt GM, Vermeulen FL, Fitzsimons RB, Jardine PE, Heywood P, Love S, van den Maagdenberg AM, Haan J, Frants RR, Ferrari MD (2001) Delayed cerebral edema and fatal coma after minor head trauma: role of the CACNA1A calcium channel subunit gene and relationship with familial hemiplegic migraine. Ann Neurol 49:753-760
- 54. Kraus RL, Sinnegger MJ, Koschak A, Glossmann H, Stenirri S, Carrera P, Striessnig J (2000) Three new familial hemiplegic migraine mutants affect P/Qtype Ca(2+) channel kinetics. J Biol Chem 275:9239-9243
- 55. Kullmann DM (2002) The neuronal channelopathies. Brain 125:1177-1195
- 56. Launer LJ, Terwindt GM, Ferrari MD (1999) The prevalence and characteristics of migraine in a population-based cohort: the GEM study. Neurology 53:537-542
- 57. Lauritzen M (1994) Pathophysiology of the migraine aura. The spreading depression theory. Brain 117 (Pt 1):199-210

- Leao AA (1951) The slow voltage variation of cortical spreading depression of activity. Electroencephalogr Clin Neurophysiol 3:315-321
- 59. Lemas MV, Hamrick M, Takeyasu K, Fambrough DM (1994) 26 amino acids of an extracellular domain of the Na,K-ATPase alpha-subunit are sufficient for assembly with the Na,K-ATPase beta-subunit. J Biol Chem 269:8255-8259
- 60. Linet MS, Celentano DD, Stewart WF (1991) Headache characteristics associated with physician consultation: a population-based survey. Am J Prev Med 7:40-46
- Lossin C, Rhodes TH, Desai RR, Vanoye CG, Wang D, Carniciu S, Devinsky O, George AL, Jr. (2003) Epilepsy-associated dysfunction in the voltage-gated neuronal sodium channel SCN1A. J Neurosci 23:11289-11295
- 62. Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283:496-497
- Marconi R, De Fusco M, Aridon P, Plewnia K, Rossi M, Carapelli S, Ballabio A, Morgante L, Musolino R, Epifanio A, Micieli G, De Michele G, Casari G (2003) Familial hemiplegic migraine type 2 is linked to 0.9Mb region on chromosome 1q23. Ann Neurol 53:376-381
- Meaney JF, Williams CE, Humphrey PR (1996) Case report: transient unilateral cerebral oedema in hemiplegic migraine: MR imaging and angiography. Clin Radiol 51:72-76
- 65. Menken M, Munsat TL, Toole JF (2000) The global burden of disease study: implications for neurology. Arch Neurol 57:418-420
- 66. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215
- 67. Moller JV, Juul B, le Maire M (1996) Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1286:1-51
- 68. Moskowitz MA, Bolay H, Dalkara T (2004) Deciphering migraine mechanisms: clues from familial hemiplegic migraine genotypes. Ann Neurol 55:276-280
- 69. Muellner C, Broos LA, Van Den Maagdenberg AM, Striessnig J (2004) Familial hemiplegic migraine type 1 mutations K1336E, W1684R and V1696I alter Cav2.1 calcium channel gating: Evidence for beta-subunit isoform-specific effects. J Biol Chem
- 70. Ng TM, Kohli A, Fagan SC, Mohamed AE, Geiszt G (2000) The effect of intravenous verapamil on cerebral hemodynamics in a migraine patient with hemiplegia. Ann Pharmacother 34:39-43

- 71. Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, Lamerdin JE, Mohrenweiser HW, Bulman DE, Ferrari M, Haan J, Lindhout D, van Ommen GJ, Hofker MH, Ferrari MD, Frants RR (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87:543-552
- Ophoff RA, van Eijk R, Sandkuijl LA, Terwindt GM, Grubben CP, Haan J, Lindhout D, Ferrari MD, Frants RR (1994) Genetic heterogeneity of familial hemiplegic migraine. Genomics 22:21-26
- 73. Pedersen P, Carafoli E (1987) Ion-motive ATPases. 1. Ubiquity, properties and significance to cell function. Trends in biochemical sciences 12:146-150
- Pierelli F, Grieco G, Pauri F, Pirro C, Fiermonte G, Ambrosini A, Costa A, Buzzi M, Valoppi M, Caltagirone C, Nappi G, Santorelli F (2006) A novel ATP1A2 mutation in a family with FHM type II. Cephalalgia 26:324-328
- 75. Rakowski RF, Sagar S (2003) Found: Na(+) and K(+) binding sites of the sodium pump. News Physiol Sci 18:164-168
- 76. Razavi M, Razavi B, Fattal D, Afifi A, Adams HP, Jr. (2000) Hemiplegic migraine induced by exertion. Arch Neurol 57:1363-1365
- Riant F, De Fusco M, Aridon P, Ducros A, Ploton C, Marchelli F, Maciazek J, Bousser MG, Casari G, Tournier-Lasserve E (2005) ATP1A2 mutations in 11 families with familial hemiplegic migraine. Hum Mutat 26:281
- Rohl CA, Boeckman FA, Baker C, Scheuer T, Catterall WA, Klevit RE (1999)
 Solution structure of the sodium channel inactivation gate. Biochemistry 38:855-861
- 79. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675-686
- 80. Russell MB, Iselius L, Olesen J (1995) Inheritance of migraine investigated by complex segregation analysis. Hum Genet 96:726-730
- 81. Russell MB, Olesen J (1995) Increased familial risk and evidence of genetic factor in migraine. Bmj 311:541-544
- Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487-491

- Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463-5467
- 84. Schneider H, Scheiner-Bobis G (1997) Involvement of the M7/M8 extracellular loop of the sodium pump alpha subunit in ion transport. Structural and functional homology to P-loops of ion channels. J Biol Chem 272:16158-16165
- Segall L, Javaid ZZ, Carl SL, Lane LK, Blostein R (2003) Structural basis for alpha1 versus alpha2 isoform-distinct behavior of the Na,K-ATPase. J Biol Chem 278:9027-9034
- 86. Segall L, Lane LK, Blostein R (2003) Insights into the structural basis for modulation of E1<-->E2 transitions by cytoplasmic domains of the Na,K-ATPase alpha subunit. Ann N Y Acad Sci 986:58-62
- 87. Segall L, Mezzetti A, Scanzano R, Gargus JJ, Purisima E, Blostein R (2005)
 Alterations in the alpha2 isoform of Na,K-ATPase associated with familial
 hemiplegic migraine type 2. Proc Natl Acad Sci U S A 102:11106-11111
- 88. Segall L, Scanzano R, Kaunisto MA, Wessman M, Palotie A, Gargus JJ, Blostein R (2004) Kinetic alterations due to a missense mutation in the Na,K-ATPase alpha 2 subunit cause familial hemiplegic migraine type 2. J Biol Chem
- 89. Spadaro M, Ursu S, Lehmann-Horn F, Liana V, Giovanni A, Paola G, Frontali M, Jurkat-Rott K (2004) A G301R Na(+)/K(+)-ATPase mutation causes familial hemiplegic migraine type 2 with cerebellar signs. Neurogenetics
- 90. Spierings EL (2002) Parallel concept of migraine pathogenesis. Ann Neurol 51:139-140
- 91. Takahashi T, Igarashi S, Kimura T, Hozumi I, Kawachi I, Onodera O, Takano H, Saito M, Tsuji S (2002) Japanese cases of familial hemiplegic migraine with cerebellar ataxia carrying a T666M mutation in the CACNA1A gene. J Neurol Neurosurg Psychiatry 72:676-677
- 92. Terwindt GM, Ophoff RA, Haan J, Frants RR, Ferrari MD (1996) Familial hemiplegic migraine: a clinical comparison of families linked and unlinked to chromosome 19.DMG RG. Cephalalgia 16:153-155
- 93. Terwindt GM, Ophoff RA, Haan J, Vergouwe MN, van Eijk R, Frants RR, Ferrari MD (1998) Variable clinical expression of mutations in the P/Q-type calcium channel gene in familial hemiplegic migraine. Dutch Migraine Genetics Research Group. Neurology 50:1105-1110

- 94. Thomsen L, Oestergaard E, Bjornsson A, Stefansson H, Fasquel A, Gulcher J, Stefansson K, Olesen J (2008) Screen for CACNA1A and ATP1A2 mutations in sporadic hemiplegic migraine patients. Cephalalgia
- Thomsen LL, Eriksen MK, Roemer SF, Andersen I, Olesen J, Russell MB (2002) A population-based study of familial hemiplegic migraine suggests revised diagnostic criteria. Brain 125:1379-1391
- 96. Thomsen LL, Olesen J (2004) Sporadic hemiplegic migraine. Cephalalgia 24:1016-1023
- 97. Thomsen LL, Ostergaard E, Olesen J, Russell MB (2003) Evidence for a separate type of migraine with aura: sporadic hemiplegic migraine. Neurology 60:595-601
- 98. Thomsen LL, Ostergaard E, Romer SF, Andersen I, Eriksen MK, Olesen J, Russell MB (2003) Sporadic hemiplegic migraine is an aetiologically heterogeneous disorder. Cephalalgia 23:921-928
- 99. Tottene A, Fellin T, Pagnutti S, Luvisetto S, Striessnig J, Fletcher C, Pietrobon D (2002) Familial hemiplegic migraine mutations increase Ca(2+) influx through single human CaV2.1 channels and decrease maximal CaV2.1 current density in neurons. Proc Natl Acad Sci U S A 99:13284-13289
- 100. Tottene A, Pivotto F, Fellin T, Cesetti T, van den Maagdenberg AM, Pietrobon D (2005) Specific kinetic alterations of human CaV2.1 calcium channels produced by mutation S218L causing familial hemiplegic migrane and delayed cerebral edema and coma after minor head trauma. J Biol Chem
- Ulrich V, Gervil M, Fenger K, Olesen J, Russell MB (1999) The prevalence and characteristics of migraine in twins from the general population. Headache 39:173-180
- 102. Ulrich V, Gervil M, Kyvik KO, Olesen J, Russell MB (1999) Evidence of a genetic factor in migraine with aura: a population-based Danish twin study. Ann Neurol 45:242-246
- 103. Ulrich V, Gervil M, Kyvik KO, Olesen J, Russell MB (1999) The inheritance of migraine with aura estimated by means of structural equation modelling. J Med Genet 36:225-227
- 104. Vahedi K, Denier C, Ducros A, Bousson V, Levy C, Chabriat H, Haguenau M, Tournier-Lasserve E, Bousser MG (2000) CACNA1A gene de novo mutation causing hemiplegic migraine, coma, and cerebellar atrophy. Neurology 55:1040-1042

- 105. van den Maagdenberg AM, Pietrobon D, Pizzorusso T, Kaja S, Broos LA, Cesetti T, van de Ven RC, Tottene A, van der Kaa J, Plomp JJ, Frants RR, Ferrari MD (2004) A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 41:701-710
- 106. Vanmolkot KR, Babini E, de Vries B, Stam AH, Freilinger T, Terwindt GM, Norris L, Haan J, Frants RR, Ramadan NM, Ferrari MD, Pusch M, van den Maagdenberg AM, Dichgans M (2007) The novel p.L1649Q mutation in the SCN1A epilepsy gene is associated with familial hemiplegic migraine: genetic and functional studies. Hum Mutat 28:522
- 107. Vanmolkot KR, Kors EE, Hottenga JJ, Terwindt GM, Haan J, Hoefnagels WA, Black DF, Sandkuijl LA, Frants RR, Ferrari MD, van den Maagdenberg AM (2003) Novel mutations in the Na+, K+-ATPase pump gene ATP1A2 associated with familial hemiplegic migraine and benign familial infantile convulsions. Ann Neurol 54:360-366
- 108. Vanmolkot KR, Kors EE, Turk U, Turkdogan D, Keyser A, Broos LA, Kia SK, van den Heuvel JJ, Black DF, Haan J, Frants RR, Barone V, Ferrari MD, Casari G, Koenderink JB, van den Maagdenberg AM (2006) Two de novo mutations in the Na,K-ATPase gene ATP1A2 associated with pure familial hemiplegic migraine. Eur J Hum Genet 14:555-560
- 109. Westenbroek RE, Sakurai T, Elliott EM, Hell JW, Starr TV, Snutch TP, Catterall WA (1995) Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci 15:6403-6418
- Yu FH, Catterall WA (2003) Overview of the voltage-gated sodium channel family. Genome Biol 4:207

11 Danksagung

Sehr großer Dank gilt Herrn Prof. Dr. med. Martin Dichgans für die freundliche Überlassung des Themas sowie die Ermöglichung und Förderung dieser Arbeit.

Herrn Dr. med. Tobias Freilinger gebührt mein größter Dank für die hervorragende, langjährige Betreuung und die wertvollen Anregungen, die zum Entstehen dieser Arbeit beigetragen haben.

Herrn Dr. med. Marco Düring danke ich für die Unterstützung insbesondere bei technischen Problemen und molekulargenetischen Fragen.

Herrn Dipl.-Biol. Marc Meidlinger möchte ich meinen Dank für die unermüdliche Unterstützung bei allen labortechnischen und molekularbiologischen Fragen aussprechen.

Bei Frau Johanna Sailer bedanke ich mich sehr für die äußerst kollegiale und hilfsbereite Zusammenarbeit.

Frau Nina Kühn danke ich für die geduldige Einführung ins Labor und die kollegiale Zusammenarbeit.

Dank auch an alle Mitarbeiterinnen und Mitarbeiter des Forschungspavillons, die am Entstehen dieser Arbeit beteiligt waren.

Nicht zuletzt möchte ich von ganzem Herzen besonders meiner Familie sowie Freundinnen und Freunden für stete Inspiration, Motivation und Unterstützung danken.

12 Lebenslauf

Persönliche Daten

Name, Vorname	Hütter, Michael
Geburtsdatum	21. November 1979
Geburtsort	Bukarest/Rumänien
Staatsangehörigkeit	deutsch

Schul- und Hochschulausbildung

1986 - 1990	Grundschule Neubiberg und Unterhaching, LK München
1990 - 1999	Gymnasium Unterhaching, LK München
06/1999	Allgemeine Hochschulreife
2001 - 2008	Studium der Humanmedizin an der
	Ludwig-Maximilians-Universität München (LMU)

Ärztliche Staatsprüfungen

04/2003	Physikum
05/2008	Zweiter Abschnitt der Ärztlichen Prüfung und Approbation

Promotion

2005 - 2006 Labortätigkeit im Rahmen meiner Dissertation über die "Rolle von CACNA1A, ATP1A2 und SCN1A für die sporadische hemiplegische Migräne" an der Neurologischen Klinik und Poliklinik München-Großhadern, AG Neurogenetik (AG-Leiter: Prof. Dr. med. M. Dichgans)

Berufserfahrung, Praktika, Ersatzdienst

seit 07/2008	Assistenzarzt in der Unfallchirurgie und Orthopädie am Klinikum München-Schwabing
06/2006 - 06/2007	Praktisches Jahr Chirurgie: Kantonspital Winterthur der Universität Zürich Orthopädie: Orthopädische Klinik und Poliklinik des Universitätsklinikums Großhadern der Universität München Innere Medizin: 1. und 2. Medizinische Klinik des Universitätsklinikums Großhadern der Universität München
08/2004 - 10/2004	Tätigkeit als Co-Assistent an der Anatomischen Anstalt der Ludwig-Maximilians-Universität München
07/2000 - 04/2001	Tätigkeit als Pflegehelfer am Klinikum München-Harlaching
07/1999 - 07/2000	Zivildienst am Klinikum München-Harlaching