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Zusammenfassung

Diese Dissertation befasst sich mit den technischen Aspekten der Messung und Auswer-
tung von Leistungspektren von weit entfernten Galaxien um mit deren Hilfe kosmologische
Parameter einzugrenzen.

Wir untersuchen die Methode der Extraktion von baryonischen Akkustischen Oszilla-
tionen (BAOs) aus dem Leistungsspektrum von Lyman-alpha emittierenden Galaxien auf
seine Stabilität und Anfälligkeit für Fehler. Dazu schlagen wir ein parametrisches Verfahren
vor um BAOs ohne Wissen um den genauen Inhalt des Universums zu extrahieren. Wir
benutzen die Hubble Volume Simulationen um zu zeigen, dass auf diese Weise extrahierte
BAOs auch trotz vorhandener Rotverschiebungseffekte, nicht linearem Wachstum und ohne
Kenntnis des Bias einen zuverlässigen Datensatz darstellen. Wir zeigen, dass die Oszilla-
tionslänge der BAOs verwendet werden kann um in einem geometrischen Test robuste
Resultate über verschiedene kosmologische Modelle zu erhalten. Wir untersuchen den
Einfluss von grobmaschigen Abtastmethoden auf die Fähigkeit die Amplitude und Form
des Leistungsspektrums innerhalb der Parameter des HETDEX Versuchs zu extrahieren.
Dazu simulieren 400 Kuben mit einer Seitenlänge von 500h−1Mpc und zeigen, dass selbst
eine extrem inhomogene Fensterfunktion und der Einfluss von Kalibirierungsfehlern, den
Informationsgehalt des Datensatzes nur wenig veränden. Obwohl das Leistungsspektrum
durch beide Effekte schwer verzerrt wird, kann das wahre Leistungsspektrum daraus ex-
trahiert werden. Korrelationen die durch die Fensterfunktion und Kallibrierungsfehler
eingeführt werden verringern die Fhigkeit des resultierenden Leistungsspektrums kosmol-
ogische Parameter einzugrenzen nur wenig. Der Unterschied zwischen den Überdichten
der Galaxienverteilung und der zu Grunde liegenden Dichteverteilung der dunklen Ma-
terie, das so genannte Biasing, ist fr die Vorhersage von kosmologischen Tests mit Hilfe
des Leistungsspektrum extrem wichtig. Wir untersuchen die beste Methode um den Bi-
asing Faktor aus Beobachtungsdaten mit extrem länglicher Geometrie und sehr geringer
Punktdichte, wie er von VIRUS-P bereit gestellt werden wird, zu extrahieren. Wir zeigen,
wie das Biasing mit Hilfe von Fast Fourier Transformationen mit quaderförmigen Dimen-
sionen zuverlässig geschätzt werden kann, die mit den Korrelationsfunktionen desselben
Datensatzes auch gut übereinstimmen. Zuletzt beschreiben wir die Algorithmen und die
Genauigkeit des Reduktionsprogrammes CURE, welches in der Lage ist Daten, wie sie
vom im HETDEX Experiment genutzten VIRUS Spektrographen bereitgestellt werden, in
Echtzeit und vollständig automatisch zu reduzieren.
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Abstract

The equation of state of dark energy is currently one of the most discussed topics in as-
trophysics with a large number of ongoing or planned surveys. This thesis focuses on the
technical aspects of measuring and recovering the power spectra of distant galaxies to con-
strain cosmological parameters.

We investigate the robustness of the extraction of Baryonic Acoustic Oscillations (BAOs)
from the power spectrum of Lyman-alpha emitters at high redshifts. We propose a para-
metric method to recover the BAOs without any specific knowledge about the actual
composition of the universe. We use the Hubble Volume simulation to show that BAOs
extracted in this way represent a robust data set, even in the presence of redshift-space
effects, non-linear growth and without any knowledge of biasing. We show that BAOs are
able to robustly constrain cosmological models using the BAO scale as a standard ruler for
a geometric test. We explore the impact of proposed sparse sampling techniques on the
ability to recover the amplitude and shape of the power spectrum using the parameters
of the HETDEX survey. We simulate 400 with a length of 500h−1Mpc to show that the
highly inhomogeneous window function and zero-point effects do not decrease the infor-
mation content of the observed data set by a large factor. Although the power spectrum is
heavily distorted by both effects, the true power spectrum can be recovered. Correlations
introduced by the window function and zero-point errors are slightly decreasing the ability
of the resulting power spectrum to constrain cosmological paremeters. The difference in
overdensities between galaxies and the underlying dark matter field, the so-called biasing,
is crucial in predicting accuracy of a cosmological test using galaxies as tracer particles for
the underlying power spectrum. We investigate the best method to extract a bias estimate
out of pencil-beam like surveys like the VIRUS-P survey currently under way. VIRUS-P
will deliver a very low density data set with a highly elongated geometry. We show that the
biasing can be estimated robustly using Fast Fourier Transforms with non-equal dimensions
that are in good agreement with results obtained facilitating the correlation function. We
finally describe the algorithms and accuracy of the CURE pipeline that is able to reduce
the data provided by the VIRUS spectrograph used in HETDEX automatically and almost
in real time.
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Chapter 1

Introduction

1.1 Motivation

In the last ten years, cosmology has arrived in what a lot of scientists call “precision
cosmology”. The times when only orders of magnitude results could be given are over. At
least since the COBE (COsmic Microwave Background Explorer) mission, we are able to
measure cosmological parameters on the percent and sometimes sub-percent niveau.

Another exciting part of the universe was discovered only recently. Also about ten years
ago Riess et al. (1998); Perlmutter et al. (1998) discovered, using light curves of supernovae
as standard candles, the accelerated expansion of the universe. We have come a long way
since that, and various models that explain the accelerated expansion have been proposed.
Some invoke the infamous cosmological constant, others claim that gravity itself is not
Einsteinian at large scales, some argue that the Einsteinian description is enough and the
measured expansion is only an illusion created by local inhomogeneities. But by far the
most popular explanation is dark energy (see Sect. 1.4).

Whatever the explanation is, it will have a strong impact on the future evolution at
the universe. Using the dark energy description, about 75% of the energy content in the
universe are comprised of dark energy (see Komatsu et al., 2008). In this scenario, the
universe is no longer dominated by matter (be it dark or baryonic), but by something else
which we do not understand yet.

White (2007) argues, that it is not the task of astronomers to do the particle physicists
and theorists job and put a large amount of resources into experiments to measure the
nature of dark energy. Other organizations, like the Dark Energy Task Force (see Albrecht
et al., 2006), show that there is indeed strong interest in the astronomers community to
do exactly that.

Whatever the personal opinion is, the topic of the accelerated expansion of the universe
is at least controversial, and interesting. Cosmology and the evolution and fate of the
universe have always been one of the most interesting scientific topics that are able to gain
a wide audience even outside the community astronomers and even physicits. The work
done in this thesis tries to be just another small brick in the theoretical and experimental
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framework that will, hopefully, one day explain the nature of the cosmic expansion and
growth history, which is, maybe, some kind of dark energy.

1.2 Power Spectrum Cosmology

Since the 1980s (see e.g. Frenk et al., 1983; Bardeen et al., 1987; Bond & Efstathiou,
1987) power spectra have been extensively used and refined to discriminate between var-
ious cosmological parameters. The approach is quite simple: The structure we observe
in the universe today, was only able to form, because small initial quantum-fluctuations
(Bardeen et al., 1983). These fluctuations were blown up by inflation (see Guth, 1981)
to cosmological scales, and are the perturbations in the otherwise very homogeneous uni-
verse, that allowed galaxies and clusters of galaxies to form. These overdensities can be
described statistically using a power spectrum. We know the shape of the power spectrum
of the Cosmic Microwave Background (CMB) and the initial matter density distribution
depending on various cosmological parameters (see Eisenstein & Hu, 1998), like the total
matter content, Ωm, the dark energy content, ΩΛ, or the curvature of the universe, ΩK.
Both spectra can be calculated using simple plasma physics (see Sect. 2.2).

However, the shape and amplitude can be distorted. This is caused either by the space-
time geometry, through which we observe the power spectrum, or by to structure growth,
which, upon other effects, enhances the amplitude of the power spectrum. Both effects
can be calculated to a degree which enables us to derive cosmological parameters to good
accuracy by comparing the observed power spectra with theoretical predictions. The most
prominent experiments today is the Wilkinson Microwave Anisotropy Probe (WMAP),
that has brought us the most accurate estimates of cosmological parameters available (see
Komatsu et al., 2008).

Much of the work in this thesis will revolve around power spectra in various coordinate
systems. It is thus useful to give a short summary of the mathematical calculation and
main attributes of power spectra.

1.2.1 Power Spectrum

Throughout this work we use a Fourier transformation convention such that the inverse
transformation in real space r of a quantity in k space becomes:

δ(~r) =
1

(2π)3

∫
d3k δ(~k) e−i

~k·~r . (1.1)

When talking about power spectra, this work will always refer to the power spectra of
overdensities (in the case of the Cosmic Microwave Background temperature fluctuations),
δ(~r). They are readily calculated from the mean local density, ρ(~r):

δ(~r) =
ρ(~r) − ρ̄

ρ̄
. (1.2)
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The mean local density is dependent on redshift, distance to the observer and other
parameters, which are in turn dependent on the position ~r. The correlation function ξ(r)
describes the correlation of the density field with itself (autocorrelation) at a given distance
r:

ξ(r) = 〈δ(~r′ + ~r) δ(~r′)〉 . (1.3)

The power spectrum, P (k), is now the Fourier transform of the spatial two point
correlation function ξ(r), and vice versa,

P (k) =
∫
d3r ξ(~r) ei

~k·~r . (1.4)

With the definition of the Dirac delta distribution,

δD(~k) =
1

(2π)3

∫
d3r e±i

~k·~r , (1.5)

and the Fourier transformed overdensities,

δ(~k) =
∫
d3r δ(~r) ei

~k·~r . (1.6)

the relation between the power spectrum and the fluctuation can be expressed explicitly:

〈δ(~k) δ∗(~k′)〉 = (2π)3 P (k) δD(~k − ~k′) . (1.7)

Note that an asterisk denotes the complex conjugate. The power spectrum depending
on ~k is a direct measure of the power carried per fluctuation mode ~k.

1.2.2 Geometry

A geometrical test involves the transformation of a specific scale length, in this case the
scales provided by the theoretically predicted power spectrum, depending on space-time
geometry. A power spectrum survey measures angular positions, φ, on the sky, and red-
shifts, which are transformed into the co-moving coordinates, x, using a certain reference
cosmology. The co-moving coordinates are used to calculate a test power spectrum, which
can then compared to a theoretically predicted power spectrum that acts as a standard
ruler. The transformations for angular, x‖, and line of sight, x⊥, coordinates

x‖ =
∫ z2

z1

c

H(z)
dz , (1.8)

x⊥ = φ
∫ z2

0

c

H(z)
dz , (1.9)

depends mostly on the Hubble constant, H(z). In a flat universe, the evolution of the
constant can be expressed like:
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H(z) = H0

√
Ωm (1 + z)3 + ΩΛ e

3
∫ z
0
d ln(1+z′) [1+w(z′)] , (1.10)

with c being the speed of light and the Hubble constant today H0 ≈ 72 km

sMpc. The

measured transformed distances can than be compared to the predictions. However, it is
often easier to calculate the power spectrum only once and use a “stretching factor”, s
between two different cosmologies to stretch it. Because we have two angular dimensions
and one line of sight dimension, the stretch factor can be calculated from the ratio of scale
lengths between a reference cosmology, x and a test cosmology, x̂, like:

s (ΩΛ,Ωm, w) =
1

3

x̂‖
x‖

+
2

3

x̂⊥
x⊥

. (1.11)

The one dimensionally average power spectrum scales with this stretching factor as
follows,

P (k, s) = s−3 P (k s) . (1.12)

The biggest impact, the boost or reduction of amplitude is explained by the volume
independence of the power spectrum. If the same power is detected in a larger volume, the
amplitude of the power spectrum goes down and vice versa.

1.2.3 Growth

Growth measures the speed of structure growth (or growth suppression when looking back-
ward in time) due to gravitational forces. On first order dark energy is delaying structure
growth, as it leads to an acceleration of the expansion of the universe. This results in
structures being formed at a later time compared to a universe without dark energy.

Linear growth can be calculated by solving the growth equation:

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
= 4π Gρ δ , (1.13)

with G being the the gravitational constant, a the expansion factor of the universe and
the time t.

Assuming a flat universe the growth function of the growing mode can be approximated
(see Peebles, 1993):

δ(t) ∼ ȧ

a

∫ t

0

da

ȧ3
= H(z)

5 Ωm

2

∫ ∞
z

1 + z′

H3(z′)
dz′ = D(z) , (1.14)

with ˙ = d/dt, and the scale factor a ∝ (1 + z)−1. The power spectrum itself scales
with the growth ratio D only in amplitude

P (~k,D) = D2(z)P (~k) . (1.15)
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By measuring the amplitude of the power spectrum at different times, for example at
the epoch of recombination and at a redshift of z = 1, we can pinpoint a reference cosmol-
ogy, that can be compared to measurements at other redshifts to constrain cosmological
parameters.

1.3 Lyman Alpha Emitters

Lyman-alpha emitters (LAEs) (see Charlot & Fall, 1993) are young star-forming galaxies.
The mostly ultraviolet emission of young and hot stars is absorbed by neutral hydrogen
and re-emitted as Lyman-alpha emission at a wavelength of 121.6nm. This absorption
and re-emission process can occur a number of times, till the radiation finally escapes the
galaxy.

The main advantage of LAEs in surveys is the ability to detect the Lyman-alpha emis-
sion line of high-redshift galaxies in the visible spectrum. The emission line is much easier
to detect than the galaxies of continuum emission and thus enables us to observe galaxies
which are not accessible by any other means. After a long period of unsuccessful searches
for LAEs, the first emitters were found in the mid 1990 (see e.g. Steidel et al., 1996; Hu
et al., 1998) and have led to a run for finding the most distant emitters today (see e.g.
Taniguchi et al., 2005; Ota et al., 2008).

Because of their properties, LAEs are ideal tracers for the dark matter distribution at
high redshifts. However, some problems have to be solved to facilitate their full potential.

1.3.1 Biasing

The properties of Lyman-alpha emitters are still not very well understood. Although there
have been efforts to model the population and evolution of LAEs (see Delliou et al., 2006;
Orsi et al., 2008), statistical properties are still not well known. Their mostly irregular
shape, the fact they are young and maybe still in formation further complicates the process
of understanding LAEs.

Especially important for power spectrum cosmology is the so-called biasing. It describes
the fact that galaxies tend to form only in the highest overdensities of the underlying
dark matter distribution. The amplitude of the observed power spectrum, Pobs(k) is thus
boosted by the scale dependent biasing b(k), compared to the dark matter power spectrum,
PDM(k):

Pobs(k) = b2(k)PDM(k) . (1.16)

Although biasing does not affect cosmological tests looking only at the scale lengths of
the power spectrum, it seriously affects growth tests. The best biasing estimates for LAEs
at the moment are summarized by Orsi et al. (2008). The error of these measurements is
still in the range of 80-100%. Knowing the biasing of the observed galaxy population is also
important for the prediction of the expected observation accuracies. Some statistical errors
are not dependent on the amplitude of the power spectrum. If the amplitude of the power
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spectrum increases and these errors stay constant, the overall accuracy of the measurement
increases. As biasing enters the power spectrum as its square, a small difference in basing
can change the result by a large amount.

1.3.2 Contamination

Another problem in using the population of Lyman-alpha emitters as tracers for the under-
lying dark matter density field is the possibility of contamination. LAEs are not the only
line-emission galaxies in the targeted spectral range. OII emission lines (372.7nm) origi-
nating from much closer galaxies (at lower redshift) can be mistaken for highly redshifted
Lyman-alpha emission, if the spectral range is not brad enough to find the related OIII
line. Or an OIII line emission (496.1/500.7nm) could be mistaken for even higher redshift
LAEs, if the spectral resolution is not good enough to resolve the OII lines. The observed
power spectrum, Pobs(~k), is then a sum of the true LAE power spectrum, PLAE(~k) and

the OII power spectrum, POII(~ks):

Pobs(~k) = PLAE(~k) + f 2 POII(~ks). (1.17)

The OII power spectrum is stretched by a cosmology dependent stretching factor s, as
the redshift information is mistaken for LAE redshifts at the given wavelength. The sum
is weighted by the fraction of contaminating OIIs, f , from the whole sample.

1.4 Dark Energy

Observations show that the acceleration of the universe seems not to decrease, like one
would expect from a matter dominated universe, but to increase. These observations are
made using and combining various techniques, like the measurement of the angular power
spectrum of the cosmic microwave background (see Komatsu et al., 2008), the observation
of light curves of supernovae (see e.g. Riess et al., 2007), the distribution of galaxies on
the sky (see e.g. Cole et al., 2005; Percival et al., 2001b) or weak lensing signals of the
dark matter distribution (see e.g. Hoekstra et al., 2006). The expansion of the universe is
expressed by Einsteins field equation:

ä

a
= −4

3
πG (ρ + 3p) , (1.18)

w =
p

ρ
, (1.19)

with the density, ρ, and pressure, p, of the dominant constituent of the universe. The
parameter w is the equation-of-state parameter (see Turner & White, 1997). One can
easily see, that a w value, smaller than -1/3 leads to a positive acceleration ä

a
.

Various forms of solutions have been proposed for the problem that known today as
“dark energy” (see e.g. Peebles & Ratra, 2003).
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The first solution proposed was the Cosmological Constant (see e.g. Copeland et al.,
2006), introduced and later dismissed by Einstein himself. A Cosmological Constant has a
w-value of exactly -1. The biggest problem of a cosmological Constant is that it can not be
explained by any means in the modern theoretical framework (see Weinberg, 1989). The
best explanation, the zero-point energy of vacuum , is off by 120 order of magnitude.

Another explanation are various forms of scalar or vector fields, called dark energy,
quintessence, k-essence, or phantom energy (see e.g. Copeland et al., 2006). They vary,
upon other things, in their w-value both in absolute value and in time. Depending on the
model, they solve issues like the question why the dark energy density is comparable to the
dark matter density today, which means that it has to be extremely fine tuned at earlier
times in the universe. All scalar field solutions are similar to the scalar fields responsible
for the primordial inflation of the universe.

A further theory claims that Einsteinian gravity itself does not hold at the very large
scales of the universe. It is called Modified Gravity (see e.g. Nojiri & Odintsov, 2006)
and expands Einsteinian gravity at large scales, while maintaining the limits we get from
constraints in the solar system at small scales.

More exotic solutions can be found using string theory. The braneworld model (see e.g.
Shani & Shtanov, 2003) describes our universe as a 3-dimensional brane that is embedded
in a 4 or more dimensional bulk. All forces except gravity stay on our brane, while gravity is
leaking into the bulk and can thus generate phenomena like the ones observed and termed
“dark energy”.

Finally, some models claim that one does not need any new scalar fields, dimensions or
modified gravity it all. The so called backreaction models (see e.g. Kolb et al., 2006) claim,
thatlarge scale inhomogeneities make is believe that the close universe (both in space and
time) is expanding faster than the more distant (both in scape and time) universe.

At the moment only astronomical observations probing the geometry and growth rate
of the structure of the universe seem to have the power to discriminate between the various
proposed models.

1.5 HETDEX

The Hobby-Eberly-Telescope (see Fig. 1.1), located in West Texas, has one of the largest
constructed mirrors with a dimension of 11.1 times 9.8 meters. However, only about 9.2m
effective aperture is used at any given moment, as the telescope tracks elevation by moving
the tracker instead of the mirror. It is thus ideally suited to do surveys of certain fractions
of the sky.

HETDEX, the Hobby-Eberly-Telescope Dark Energy eXperiment, is designed to survey
0.8 million Lyman-alpaha emitters at a redshift range of 1.9 < z 3.5 to measure their power
spectrum and constrain the expansion and growth history of the universe. It was originally
designed to measure the constant and time dependent term of w, but has just started to
look at other ways to constrain cosmological parameters using the expected data set.
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Figure 1.1: The Hobby Eberly Telescope

1.5.1 VIRUS

To achieve this, HETDEX will build and facilitate the Visible Integral-Field Replicable
Unit Spectrograph (VIRUS).

The VIRUS consists of about 92 wide-field integral-field units (IFUs) consisting of
about 500 fibers each. The fibers are fed to 184 spectrographs with a resolution of R ≈
800 and a spectral range of 350 to 550 nm. Each fiber will have a diameter of ∼ 1.5
arsecs with a somewhat larger separation between each fiber, leading to a field of view of
about 1 arcmin for each fiberhead. Using three dither positions of 300 seconds each per
observation, to reach a fill-factor in each fiber head of 1, VIRUS will reach a flux limit of
3 × 10−17 ergs cm−2 s−1 at 5-σ.

The 90 fiber heads of the IFUs will be arranged in the focal plane of the telescope in
a regular grid. The new wide-field corrector developed for the instrument has a field of
view of 20 arcmin diameter, leading to a total fill-factor of ∼ 1/7th. This will help to
increase the volume of surveys taken with the VIRUS at the expense of sparser sampling
(see Chapt. 3). The instrument itself is stationary, because of its total weight of 30,000
kg. It is connected to the fiber heads by fibers with a length of 20m.

1.5.2 The Survey

HETDEX is going to survey an area of 420 deg2 for three years to obtain an expected 0.8
million Lyman-alpha emitters. With the expected redshift coverage of 1.9 < z < 3.5, the
survey will cover a co-moving volume of over 3h−3 Gpc. An expected 4000 fields will be
observed using a total of 1400 hours.

The survey region is shown in Fig. 1.3. It is located right on top of the big dipper.
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Figure 1.2: Proposed layout of the VIRUS fiberheads in one shot.

Besides the 0.8 million Lyman-alpha emitters, it is going to get spectroscopic data from
about 1 million OII emitting galaxies, about 0.4 million other galaxies, 0.25 million stars
and about 2000 Abell richness clusters.

HETDEX will mostlikely need a complementary imaging survey to separate detected
OII emission lines from LAEs. This is possible, as OII lines have a much higher equivalent
width, so that their continuum should be detectable in a modestly deep survey in the V
ad B band to about 25.5 AB magnitudes.

1.5.3 Cosmology

HETDEX, being a spectroscopic survey, is going to measure the power spectrum in all
three dimensions using spectroscopic information. This gives rise to various opportunities
on constraining cosmology:

First and foremost, the oscillating features created by baryons (Baryonic Acoustic Os-
cillations, or BAOs) can be used to get a bias free and very robust measurement of the
co-moving distance in angular direction and the co-moving distance in line of sight direc-
tion which is a direct measure for the expansion rate H(z) (see 1.8). The robustness and
performance of BAOs is investigated in Chapt. 2.

However, HETDEX will try and measure the whole shape of the power spectrum to
fully exploit the available information. Detecting the effect of dark energy in a measure
of the expansion rate H(z) would be the first direct detection of dark energy. Using the
whole information contained in the power spectrum, HETDEX would be able to detect
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Figure 1.3: HETDEX survey layout with reddening map.

dark energy directly at a 3σ level. Figure 1.4 shows the predicted accuracies in H(z)
compared to other experiments.

The measurement of the co-moving distance in angular dimensions, and thus the angular
diameter distance DA, can be used to directly constrain the curvature of the universe at the
observed redshift (see Knox, 2006). HETDEX would be able to reach an accuracy of about
0.2% in curvature, which is about a magnitude better than constraints available today.
This will help low-redshift experiments, by providing good priors to their calculations.

However, the biggest advantage of HETDEX, compared to other ground based surveys,
is the high redshift and high redshift-range. This does not only help with constraining
the expansion and growth history of the universe over a larger z-space, but also allows
to directly compare two different redshifts using the same data set. This is especially
important, as most models of dark energy require an evolution of the w parameter to avoid
the fine tuning problem mentioned above.

1.5.4 VIRUS-P

To investigate the properties of Lyman-alpha emitters, especially their number density,
luminosity function, and biasing, the VIRUS Prototype (VIRUS-P) survey was started in
2007.

The VIRUS-P consists of a single VIRUS IFU with 246 fibers and a field of view of
∼ 4 arcmin2. Using 6 hour exposures on the 2.7m telescope, VIRUS-P has a 5-σ flux limit
of 6 × 10−17 ergs cm−2 s−1 at 430 nm.

Figure 1.5 shows the VIRUS-P instrument mounted on the 2.7m telescope conducting
the pilot survey. Up to now more than 20 fields have been observed with 6 hour exposures.
About 100 galaxies have been detected, half of which are securely confirmed as OII emitters
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Figure 1.4: Predicted detection accuracy for HETDEX on H. Figure provided by Karl Gebhardt.

and one third as Lyman-alpha emitters.

It is planned to survey two fields with an area of 50 − 100 arcmin2 each until start of
2011. Until then an expected number of 300 Lyman-alpha emitters will be found, together
with 500 OII emitters. The redshift range is the same as for the VIRUS, leading to a very
elongated survey volume with a length-to-width ratio of about 60. Chapter 4 investigates
how biasing can be estimated from pencil-beam shape surveys, like the VIRUS-P.

1.6 Overview

The first Chapter 2 will investigate the robustness of the Baryonic Acoustic Oscillations
as a cosmological probe. It will suggest a method to extract BAOs from real life power
spectra without any prior knowledge about the specific cosmological parameters. It will
show that this method is robust in a non-linear, redshift-space environment with biased
galaxies. Finally a cosmological test will be performed to show that the presented method
is able to robustly recover the equation of state of dark energy w from a set of observed
galaxies.

Chapter 4 will look at the ability to recover the three dimensional power spectrum
using data from a survey applying sparse sampling strategies. Both the window function
and zero-point effects have a strong impact on the shape, the errors and the correlations
of the resulting data set. We show, that all effects can either be corrected for or have a
small impact on the information content of the data set. We show this by performing a
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Figure 1.5: The VIRUS Prototype mounted on Harlan J. Smith Telescope

cosmological test probing for both the expansion and growth history of the universe.
Chapter 3 will explore the various possibilities to recover biasing from a pencil-beam

like survey. We show that standard power spectrum estimation carries the risk of being
biased towards higher amplitudes at samples with very low point densities. We compare
the ability of power spectra generated with two different algorithms and the correlation
function to constrain galaxy biasing in a pencil beam like survey using a cosmological test.

Chapter 5 describes the CURE reduction pipline for VIRUS. It gives an overview of
the basic reduction process and the modeling of observed data to achieve optimum sky
subtraction. The detection algorithm of emission line objects is also described. Finally,
the performance of CURE to detect emission line galaxies is tested using simulated emitters
in real data.



Chapter 2

Probing Dark Energy with Baryonic
Acoustic Oscillations at High
Redshifts

Note: This chapter was published as Koehler et al. (2007). It expands and heavily uses
results from Koehler (2005) (Master Thesis).

2.1 Introduction

Acoustic oscillations as observed in the temperature anisotropies of the cosmic microwave
background radiation (CMB) are traditionally used to constrain the values of certain cos-
mological parameters. The intrinsic amplitudes and locations of the oscillations are deter-
mined by the densities and pressures of the various energy components in the very early
and hot Universe. The oscillations are furthermore modified by their subsequent geometric
projection onto the present hypersphere, where they are observed. It turns out that both
intrinsic CMB oscillations and their geometric projection are mainly shaped by the phys-
ical properties at high redshifts. Excluding the very large scales where cosmic variance
makes analysis quite difficult, the observed oscillations in the CMB are highly degenerate
against certain changes of the energy density ρDE and the equation of state parameter,
w = pDE/ρDEc

2, of the dark energy, dominating at low redshifts (see Caldwell et al., 1998).

However, related so-called baryonic acoustic oscillations (BAOs) are expected to be
observable at lower redshifts in the matter power spectrum. Therefore, the phases of the
BAOs can be used as cosmic rulers in a similar manner as the CMB oscillations, but now
at much smaller redshifts (Eisenstein et al., 1998). Here, the observed phases are affected
by the late-time geometry and thus by the value of w, the prime cosmological parameter
of the present investigation.

The BAOs are classical Doppler peaks in the density distribution of matter (e.g. Hu &
Sugiyama, 1996). They are triggered in the hot Universe by oscillatory velocity patterns
of the baryons. These velocity oscillations are generated, in the same environment as the
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CMB density oscillations, by sound waves on scales where radiation pressure could stabilize
the fluid against gravitational collapse. At later times, this oscillatory velocity pattern of
the baryon field produces kinematically a new field of matter density fluctuations in form
of quasi-regular matter oscillations. The amplitudes of these BAOs are determined by
the ratio of baryonic matter to the overall matter density. The BAOs thus constitute a
quasi-regular pattern of oscillating substructures superposed with small amplitudes onto a
general density field which fluctuates irregularly with several 100 times higher amplitudes.

The imprints of the BAOs on galaxy and clusters distributions, gravitational shear
maps etc. can provide at least in principle a clean cosmic ruler for precise tests of the
w parameter. The characteristic scale, s, of these imprints is the comoving distance,
sound waves can travel during the epoch where baryons and photons are strongly coupled
through Compton and Thomson scattering (Compton drag). Cosmological tests based
on the resulting sound horizon, s, as a metric ruler are expected to have only very small
systematic errors because the phases of the BAOs located at scales small compared to s are
solely determined by well-understood physical processes. A practical problem is, however,
to separate the oscillatory BAO modes from the irregular fluctuation field with sufficient
accuracy.

One might object that the small amplitudes of the BAOs can easily be washed out
especially by structure growth which can mix perturbation modes with adjacent wavenum-
bers k. This is certainly true for oscillations in the non-linear regime (Meiksin, White &
Peacock 1999). On larger scales, however, recent observations of 2dF galaxies at redshifts
z < 0.3 clearly show several BAOs in the galaxy power spectrum (Cole et al., 2005). In
addition, the sequence of BAOs in k-space is projected into a single wiggle in the space
domain. The corresponding excess galaxy correlation was in fact observed in the two-point
spatial correlation function of the luminous red SDSS galaxies at z < 0.5 (Eisenstein et al.,
2005). In addition to these observational indications, results from recent numerical simu-
lations suggest that within certain redshift and scale ranges, stable BAOs could exist as
useful probes for cosmological investigations (e.g. Seo & Eisenstein, 2003; Springel et al.,
2005; Jeong & Komatsu, 2006). However, several critical issues like the exact behavior of
baryons during structure growth on BAO-scales can only be discussed with much larger
simulations and a better understanding of galaxy formation.

Applications of BAOs for cosmological tests of w are confronted with the following
situation. Present observational constraints of w using different combinations of CMB,
galaxy clusters, galaxies, and gravitational lensing data are all found to be consistent with
w = −1, i.e., the value for the cosmological constant. The 1σ error of the w values, derived
from partially dependent observations, is around 10-20% (for a recent review see, e.g.,
Schuecker, 2005). To improve current estimates, we thus have to extract the BAOs and
to measure their phases quite accurately in the presence of non-linear and scale-dependent
effects. Therefore, even tiny systematic errors in the analysis on percent levels can have
severe consequences for the observational accuracy of w.

The basic aim of the present paper is to describe a new, simple, and robust method to
extract BAOs from (non)linear, scale and redshift-dependent biased, redshift-space galaxy
power spectra under realistic lightcone survey conditions. For brevity, we call the method
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‘fit and extract’ (FITEX). The method has the potential to reduce many of the above-
mentioned sources of systematic errors. Our starting point is to use as few assumptions as
possible for the extraction of the BAOs from a complex power spectrum. For reasons which
will become clear later, we do the separation by fitting a flexible non-oscillating function
to an observable which is directly related to the transfer function and not to the power
spectrum itself. The crucial point is to show that BAOs extracted in this simple manner
are still governed by simple physical processes, and that FITEX stays robust even under
complex survey conditions. We believe that such model-independent approaches are quite
important, especially in light of the fact that at least in the near future we cannot expect
to model the abovementioned non-linear and scale-dependent effects with accuracies on
the sub-percent level.

Our computations are in several cases optimized to galaxy surveys covering typically
several 100 square degrees on the sky in the redshift range between z = 2− 4. This choice
is motivated by the Hobby Eberly Dark Energy Experiment (HETDEX), which is planned
to measure the w parameter with several million Ly-α emitting galaxies at these redshifts
(see Hill et al., 2008). We see the results of the present paper as a useful contribution to
a realistic error forecast for this important project.

We organized the paper as follows. In Sect. 2.2 we motivate the basic idea of the
FITEX algorithm. In the following sections we test its performance to separate BAOs
from a complex power spectrum under linear conditions (Sect. 2.3), under quasi-non-linear
conditions (Sect. 2.4), in redshift space (Sect. 2.5), and from biased samples (Sect. 2.6).
Finally, we illustrate the performance of FITEX including all effects and use a cosmological
test of w as a benchmark to investigate the quality of the BAO extraction together with
the theoretical template (Sect. 2.7). Our results are mainly based on a deep data wedge
extracted by the Virgo Consortium from the Hubble Volume Simulation. The paper thus
presents for the first time constraints on the application of BAOs for cosmological tests
under realistic lightcone survey conditions.

If not mentioned explicitly, we assume a spatially flat Friedmann-Lemâıtre Robertson-
Walker world model with the Hubble constant in units of h = H0/(100 km s−1 Mpc−1), the
present values of the total matter density Ωmh

2 = 0.147 and baryon density Ωbh
2 = 0.0196,

the density of relativistic matter (e.g. neutrinos) Ων = 0, and the mean CMB temperature
TCMB = 2.728 K (concordance cosmology).

2.2 Baryonic Acoustic Oscillations (BAOs)

In this section, we discuss the ‘theoretical wiggle function’, that is, a reference function
(see Eq. 2.1 below) we use in our cosmological tests of w to match the BAOs extracted in
a certain manner from the complex galaxy power spectrum. The power spectrum may be
written in the form P (k, z) = A(k, z, b) kn T 2(k). The amplitude A(k, z, b) includes the
primordial amplitude, redshift and scale-dependent effects of redshift space distortions,
linear and non-linear structure growth, and galaxy biasing which will be discussed in the
course of the paper. The exponent n is the slope of the primordial power spectrum, and
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T (k) the transfer function. Our further treatment of the formation of BAOs is based on
Hu & Sugiyama (1996) where a detailed description of the relevant physical processes can
be found, and on the fitting equations derived by Hu et al. (1998).

Between the epoch of matter-radiation equality at redshift zeq ≈ 3526 (concordance
cosmology) and the end of the Compton drag epoch at zd ≈ 1026, the baryons follow a
regular velocity pattern which can generate new density fluctuations kinematically. On
small scales and at zd, this effect (velocity overshoot) overrides the intrinsic density fluc-
tuations of the baryons. As adiabatic modes dominate the isocurvature modes, the baryon
density oscillates as sin(ks). The phase of the BAOs is frozen out at zd at the value ks,
with s ≈ 152 Mpc being the comoving sound horizon at zd and k the comoving wavenum-
ber of the oscillation. The BAOs are thus π/2 out of phase with the corresponding CMB
fluctuations. The sound horizon s at zd is the standard ruler we are looking for. Its
value calibrates the phases of the theoretical wiggle function and can be measured quite
easily with CMB experiments on the sub-percent level. This includes the contribution of
unknown relativistic energy components (see Eisenstein & White, 2004). For consistency
with the Hubble Volume Simulations (see Sect. 2.4) we use Ων = 0.

The sinusoidal fluctuations in the baryon density are dampened by expansion drag,
gravitational forcing, and Silk damping. In addition, cosmic expansion forces the velocity
contributions to fall off at large scales, and amplitudes decline when dark matter dominates
the energy density. While these effects only reduce the amplitude of the fluctuations and
do not affect the phase, the damping may be summarized by the pseudo transfer function
Tw(k) ∼ j0(k s)e−(k/kSilk)ms/[1 + (βb / k s)

3], with j0 the spherical Bessel function of order
zero, the exponent ms ≈ 1.4 which is basically independent from cosmology, kSilk =

1.6(Ωbh
2)0.52(Ωmh

2)0.73[1+(10.4Ωmh
2)−0.95], and βb = 0.5+fb +(3−2fb)

√
(17.2Ωmh2)2 + 1

with fb = Ωb/Ωm. However, velocity overshoot dominates only on scales small compared
to s. On larger scales, the original sound horizon, s, appears to be reduced by (s̃/s)3 =
1 + (β/ks)3, with β = 8.41(Ωmh

2)0.435. This correction of s is about 0.2% at 60h−1 Mpc
and 1.3% at 120h −1 Mpc. Though relatively small, the corrections are important as they
change the length of the standard ruler s depending on k. Collecting all scale-dependent
terms we get the oscillatory solution (theoretical wiggle function)

Tw(k) ∼ e−(k/kSilk)ms

1 + (βb / k s)3
j0(k s̃) . (2.1)

A way to extract BAOs from a complex power spectrum can be found when we specify
the relation between the wiggle function, Tw(k), and the total transfer function T (k), which
we discuss now. Each particle species, in the present case CDM and baryonic matter with
the corresponding densities Ωc and Ωb, should have separate effective transfer functions,
Tc and Tb. Though, after the drag epoch at zd, baryons appear basically pressureless and
will fall into the potential wells of CDM. This results in a transfer function valid for both
species of matter,

T (k) =
Ωc

Ωm

Tc(k) +
Ωb

Ωm

Tb(k) , (2.2)
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with Tc(k) = fT̃0(k, 1, βc)+(1−f)T̃0(k, αc, βc), written in terms of the generalized transfer
function T̃0(k, αc, βc) as defined in Eisenstein & Hu (1998). Here, f = 1/[1 + (ks/5.4)4]
smooths the combination of the almost baryon-free and baryon-loaded solutions near s,
and

Tb(k) = T̃b(k) + Tw(k) , (2.3)

where T̃b(k) = j0(ks̃)T̃0(k,1,1)
1+(ks/5.2)2

. These approximations are better than 2% for Ωb /Ωm < 0.5.

Note that Ωb/Ωm → 0 corresponds to αc, βc → 1. If Ωc >> Ωb, the effects of dark matter
dominate over velocity overshoot of the BAOs. Written in this way, we immediately see
that the oscillatory part (2.1) is added on top of a non-oscillatory part and can be computed
by subtracting off a smooth continuum from the complete transfer function. This process
establishes the basic methodology of FITEX.

The different terms of the transfer function are shown in Fig. 2.1. The upper panel shows
the components which determine the global shape of the transfer function. Note that an
additional oscillating component, the first term in Eq. (2.3), is necessary to describe the
transition from large to small scales with sufficient accuracy. This is a direct consequence
of the fact that the main effect of the baryons on the transfer function is a damping of the
overall growth of dark matter between zeq and zd which significantly reduces the fluctuation
power at scales smaller than s. The resulting break is the imprint of the baryons on the
power spectrum which is easiest to observe. The term T̃b thus contributes mainly to the
shape as it is rapidly declining on scales smaller than s to model the damping effect of the
baryons.

In the lower panel of Fig. 2.1, the two parts of the baryon transfer function are shown.
One can clearly see the first to fifth oscillations. Note that T̃b declines very fast and is almost
zero after the second oscillation. It is compared to the second term of the baryonic transfer
function, Tw(k), and a reference function, T

w,ref, which is formally constructed to contain
all oscillations. Thus, the reference function includes both the small-scale oscillations from
Tw(k) and the large-scale oscillations from T̃b(k). The latter is, however, also determined by
the dark matter function T0(k, 1, 1) (see below Eq. 2.3). Therefore, excluding or including
knowledge of the shape of the dark matter function for the extraction of BAOs corresponds
to working either with Tw(k) or with T

w,ref. Both Tw(k) and T
w,ref agree reasonably well

beyond k ≥ 0.05hMpc−1, especially when one keeps in mind that only the phases of the
oscillations are relevant as the amplitudes are subject to distortions anyway (see below).

The good agreement between the phases of Tw(k) and T
w,ref means, that quite simple

physics as described by Tw (mainly velocity overshoot and Silk damping) dominate the
oscillations expected to be seen in the overall power spectrum. However, on larger scales,
the physics get more complex due to the growing influence of CDM and the backreaction of
the baryons on structure growth. Thus Tw and T

w,ref differ accordingly. Nevertheless, on
small scales, Tw is a good theoretical wiggle function for BAOs phases which can be used
as a standard ruler for cosmological tests, with a minimum of theoretical assumptions.
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Figure 2.1: Comparison of different terms of the transfer function computed with Ωb h
2 =

0.0196, Ωm h
2 = 0.147 and TCMB = 2.728 K. Upper panel: Non-oscillatory parts. The function

Tshape is the sum of the other three. Lower panel: Oscillating parts. The residuals of the
subtraction between the transfer function and its corresponding non-oscillatory fit is shown as
long-dashed line. Note the different scaling of the y-axes. See main text for more details.
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2.3 Extracting BAOs under Linear Conditions

The main advantages of constraining cosmological parameters with BAOs are its small
systematic errors, the ability to discriminate between geometrical effects (homogeneous
universe) and structure growth effects (inhomogeneous universe) of cosmological parame-
ters, and the potential to constrain dark energy without assuming a certain dark matter
model. The observed phase of the BAOs is only affected by the geometry of the universe,
while the observed amplitude of the oscillations is mainly affected by structure growth
and other amplitude effects (see Sects. 2.4 to 2.6). It is thus very important to extract
the BAOs from the power spectrum in a way that does not mix these two benchmarks.
As suggested by the previous discussion, BAOs, described by simple physical processes,
should be extracted by subtracting the shape of the non-oscillatory part of the transfer
function. This method is able to disentangle phase effects from amplitude effects in an
effective manner.

In contrast to this method, previous studies (Blake & Glazebrook, 2003; Angulo et al.,
2005; Seo & Eisenstein, 2003; Hütsi, 2006; White, 2005) used the CDM-based theoretical
non-oscillatory power spectrum, Pref(k, z), given in Eisenstein & Hu (1998) to analyze the
BAOs. This is done by dividing the measured power spectrum, Pobs(k, z), by this reference
power spectrum. Assuming that the transfer function can be split into a shape part,
Tshape, and an oscillatory part, Twiggle, where Tshape > Twiggle (Sect. 2.2), the result of such
a division is

Pobs(k, z)

Pref(k, z)
=

Aobs(k,z) [Tshape(k) +Twiggle(k)]2 kn

Aref(k,z)T
2
shape

(k) kn
(2.4)

≈ 2
Aobs(k,z)Twiggle(k)

Aref(k,z)Tshape(k)
+ Aobs(k,z)

Aref(k,z)
. (2.5)

Eq.(2.4) gives a spectral ratio, which strongly deviates from the simple functional form of
Eq. (2.1) expected from basic physical principles, and thus unnecessarily complicates any
further analysis of the resulting “BAOs”. A possible result of such a division is given in
(Fig. 6 Springel et al., 2005). It can easily be seen that phase information and amplitude
information is mixed.

In addition, the use of a theoretical non-oscillatoy reference power spectrum, Pref(k, z),

or the related theoretical “boosted” transfer function, Aref(k, z)Tref(k, z) =
√
Pref(k, z)/kn,

has a number of drawbacks:
(1) The shape of the transfer function and thus the power spectrum vary with the

cosmological parameters. To compute a reference power spectrum one has to know the
exact values of several cosmological parameters. Furthermore one has to assume a CDM
model as a prior. (2) The reference power spectrum has to be flexible to compensate for
various distortions: structure growth, redshift space distortions, biasing etc. distort the
transfer function and thus its shape. Most of the effects vary with redshift as well as with
k. (3) The reference power spectrum has to be exact on the sub-percent level. The BAOs
make up only ∼ 2% of the transfer function depending on the ratio Ωb/Ωm. An analytical
function has to be more accurate to extract the oscillations from the transfer function. (4)
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It is non-trivial to provide an assumption-free template for the resulting power ratio to
perform a cosmological test. Instead, very accurate knowledge of the cosmology as well as
amplitude effects is needed.

Most of these issues are well-known and useful corrections are already available from
the simulations. However, these calibrations have certainly not reached the sub-percent
accuracy level which is necessary for the cosmological tests, and one can doubt whether
this is achievable at all. Furthermore, one of the main advantages of the BAO method, the
ability not to assume a certain dark matter model, is negated.

The Eqs. (2.1-2.3) instead suggest that the computation of the difference of transfer
functions to extract BAOs is the most direct approach. Therefore, FITEX does not divide
the observed power spectrum by a theoretical non-oscillating reference power spectrum but
subtracts a phenomenological non-oscillating fitting function from the observed boosted
transfer function, to extract the BAOs. Formally FITDEX can be described as follows:√

P (k, z, b, )

k
− F (k, b, z) =

√
A(k, z, b)

Ωb

Ωm

Tw(k) . (2.6)

We found that the formula

F (k) =
A

1 + B kδ
e(k / k1)α (2.7)

is able to fit all non-oscillating distortions to a satisfactory degree and leaves enough free
parameters to allow for a wide range of transfer functions. Eq. (2.7) has no oscillatory
components and can thus only trace the shape of a transfer function. Most of the drawbacks
of the reference power spectrum division can be avoided:

(1) No cosmology or dark matter model has to be assumed to extract the BAOs. (2)
The formula is flexible enough to compensate for various non-oscillating distortions without
having to care about the source or physics of the distortions (see Sect. 2.4 - 2.6). (3) The
formula is able to fit power spectra reliably on the sub percent level (see Sect. 2.4). (4) It
is possible to provide a theoretical template function that can be used without assuming
knowledge about dark matter and various amplitude effects by leaving the amplitude as
a free parameter, as phase information and amplitude information is disentangled. The
amplitude could be used for a further cosmological test.

To test FITEX, i.e., the combination of both the fitting function F (k) and the wiggle
function Tw(k) under linear conditions, we first computed normalized transfer functions
with CMBfast with the parameter values w = −1 (the transfer functions are affected by
w only on scales above several Gpc, Ma et al. (1999)), Ωm = 0.3, Ωb = 0.04, h = 0.70,
the primordial slope n = 1, the average CMB temperature TCMB = 2.728 K, the He mass
fraction after primordial nucleosynthesis YHe = 0.24, and the number of neutrino families
Nν = 3.04. In the second step, the phenomenological continuum function (Eq. 2.7) was
fitted to the multi-component transfer functions in the range 0.01 < k < 0.3h Mpc−1. The
results were subtracted from the original transfer functions to extract the BAOs. One
example with Ωm = 0.3 is shown in Fig. 2.2. In the first panel, the multi-component
transfer function is plotted (solid line) as well as the phenomenological fitting function
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(dashed line). In the second and third panels, the differences between the transfer function
and the continuum fit are plotted (solid lines), together with the theoretical wiggle functions
(dashed lines) computed with Eq. (2.1).

With typical baryon fractions, fb ∼ 0.15, baryonic oscillations are hardly visible as they
make up only ∼ 2% of the multi-component transfer function. This illustrates the main ob-
servational challenge in using wiggles as a metric ruler for cosmological investigations. On
small scales, k > 0.15hMpc−1, Fig. 2.2 shows that the theoretical wiggle function describes
the baryonic oscillations to a satisfactory degree. This is expected, as the transfer function
is dominated by the effects of velocity overshoot and Silk damping on these scales and the
wiggle function was designed to model these effects. On large scales, k < 0.05hMpc−1, the
BAOs have to cope with competing CDM effects that dominate in these k-ranges. As the
influence of CDM increases, the transfer function can not be described by baryonic physics
alone and further corrections and assumptions have to be applied. Two related effects are:

(1) Turnover-effect: The turnover in the matter power spectrum occurs on the scale keq

of the particle horizon at zeq, which coincides with the approximate location of the first
wiggle. No observation has hitherto clearly revealed this turnover in spectral power. The
main problem in identifying the turnover is mostly due to the fact, that it is located at
large scales where precise measurements of spectral power are difficult: the surveys cover
too small volumes with slice-like shapes leading to strong smoothing (up to factors of two
for the 2dF survey, Percival et al. (2001a)) and significant leakage in the derived power
spectra. Under such conditions it appears quite difficult if not impossible to discriminate
the first wiggle from the turnover when even the position of the turnover could not yet
been determined to some accuracy. To do this, an excellent signal to noise ratio would be
needed as well as precise knowledge of the underlying linear theory matter power spectrum.
This includes information of distortions of the power spectrum to the sub-percent level. As
a consequence, a model-independent approach like separating the BAOs from the multi-
component transfer function with a phenomenological fitting function will only be able to
detect the first wiggle when the baryon fraction is about as high as 40 percent or more, as
we found with CMBfast simulations. However, we will show that our cosmological test is
most sensitive to changes of w on scales around k = 0.1hMpc−1. Therefore, the inability
of a model-independent approach to detect the first BAO does not matter much as this
first wiggle barely contributes any information to the cosmological test, even more as the
amplitude of the first wiggle is comparatively low as it is dampened by CDM effects (see
Sect. 2.7).

(2) Phase-shift effects: As mentioned in Sect. 2.2, the increasing effect of dark matter
on large scales introduces a k-dependent phase-shift of the BAOs. The theoretical wiggle
function (Eq. 2.1) already includes a phenomenological correction for this effect (replacing
s by s̃). A similar effect on the phases, but in the opposite direction, is introduced by the
damping of baryons on structure growth. In fact, the main effect of baryons on the multi-
component power spectrum is, assuming a standard cosmology, a sharp break in power
starting on scales smaller than the turnover. Formally, this break is caused by the rapid
decay of the T̃b component of the transfer function (see Fig. 2.1). As the break occurs
right after the turnover, it is very hard to distinguish shape components from oscillations.
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Figure 2.2: Performance of the phenomenological fitting function under linear conditions. The
upper panel shows the CMB fast transfer function (solid line) and the best non-oscillating fit
(dashed line). In the lower panels, the residuals of the subtraction are plotted (solid line) as well
as the theoretical transfer function (dashed line). The original model gives the performance of
the original theoretical function (Eq. 2.1) while the corrected model uses the modified function
(Eq. 2.8)
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For the extraction of BAOs in that scale range we have found that this spectral break
must be modeled in detail (with an accuracy on the sub-percent level) or artificial phase-
shifts with sizes of the order of interesting w effects are introduced when naive fitting
functions ignoring this baryonic backreaction are subtracted from the multi-component
power spectrum. Thus the model independent fitting function presented in this work
(Eq. 2.7), but also traditional wiggle-free dark matter transfer functions with a slightly
different functional approach like those given in Bardeen et al. (1986) or Efstathiou et al.
(1992), introduce artificial phase-shifts of the generic form(

ŝ

s̃

)3/2

= 0.98 +

[
5.1 (Ωm h

2)0.47

k s

]3/2

, (2.8)

which gives a useful summary of the phase-shifts (about 0.7% at 60h−1Mpc and 4% at
120h−1Mpc) even for very different baryon fractions. This equation was derived phe-
nomenologically from fits to CMBfast simulations. The second panel in Fig. 2.2 shows an
example for the concordance cosmology. It is seen that the phase-shifts are most prominent
at intermediate scales, k < 0.15hMpc−1, and counteracts the phase-shifts introduced by
large-scale CDM potentials. The dashed line in the fourth panel shows the corrected the-
oretical wiggle function, replacing s̃ in Eq. (2.1) by ŝ from Eq. (2.8). It is clearly seen that
the extracted wiggle function follows the predicted theoretical, and phenomenologically
corrected, wiggle function on the 0.5%-level in the range 0.05 < k < 0.3hMpc−1 which is
relevant for a cosmological test of the parameter w. In the following, Eqs. (2.1) and (2.8)
constitute our final theoretical wiggle function which we use in FITEX to match the BAOs
extracted from the simulated data.

2.4 Extracting BAOs under Quasi-Nonlinear Condi-

tions

The simulated data used to test FITEX for BAO extraction under more realistic conditions
are provided by the ΛCDM version of the Hubble Volume Simulations conducted by the
Virgo Consortium (Evrard et al., 2002). One billion dark matter particles were simulated
with h = 0.7, Ωm = 0.3, ΩΛ = 0.7, Ωb = 0.04, Ων = 0, and the normalization of the matter
power spectrum, σ8 = 0.9, in a cube with a comoving length of L = 3000 h−1 Mpc and
a mass of 2.25 · 1012 h−1M� per particle. The simulations were started with a ‘glass-like’
load (see Baugh et al., 1995). During the simulation itself, long range gravitational forces
were computed on a 10243 grid yielding a Nyquist critical frequency of kc = 1.07 hMpc−1.
The short range gravitational forces were computed via direct summation and softened
on a scale of 0.1 h−1 Mpc. We used the 10 × 10 deg2 fraction of the XW extended deep
wedge which uses periodic boundary conditions from a redshift of z = 4.4 to provide a
survey lightcone up to the redshift zmax = 6.8. The lightcone output comprises of data
that includes cluster evolution and thus mimics real life observations. Larger distance from
the observer correspond to higher redshifts where structures are less pronounced due to
linear and non-linear growth.
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Figure 2.3: Upper panel: Power spectra of the matter distribution from the cubes 7 (upper
spectrum) to 10 (lower spectrum) of the XW deep wedge N-body simulation with superposed
linear theory predictions. The linear matter power spectrum was taken from Eisenstein & Hu
(1998). Amplitude corrections for linear structure growth were implemented in the standard
manner. For better illustration, the 2nd, 3rd and 4th spectrum is shifted downwards by the
factors dex(0.1), dex(0.2), dex(0.3), respectively. The extraction of BAOs described in the main
text is restricted to the k-range bordered by the two vertical dashed lines. Lower panel: Same
as upper panel for the corresponding boosted transfer functions with superposed fits of the phe-
nomenological fitting functions. The fit at z = 2.3 uses the following parameters: A = 540.0,
B = 35.45, k1 = −0.32354, α = 2.493, δ = 1.420.
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Table 2.1: Parameters of the cubes for the power spectrum estimation. Col. 1: Cube
number. Col. 2: Comoving length of the cube (concordance cosmology). Col. 3: Redshift
range covered by the cube. Col. 4: Fundamental mode of the discrete Fourier transforma-
tion which corresponds to the sample bin size of the power spectrum in k space. Col. 5:
Nyquist critical wavenumber of the Fast Fourier Transformation.

Sample length z-range ∆k kc
[h−1 Mpc] [hMpc−1] [hMpc−1]

cube1 200 0.58 – 0.68 0.031 4.0
cube2 226 0.68 – 0.79 0.028 3.6
cube3 256 0.79 – 0.92 0.025 3.1
cube4 291 0.92 – 1.1 0.022 2.8
cube5 329 1.1 – 1.3 0.019 2.4
cube6 373 1.3 – 1.6 0.017 2.2
cube7 423 1.6 – 2.0 0.015 1.9
cube8 479 2.0 – 2.5 0.013 1.7
cube9 500 2.5 – 3.2 0.013 1.6
cube10 500 3.2 – 4.1 0.013 1.6
cube11 500 4.1 – 5.4 0.013 1.6

Power spectra, Pobs(k, z, b), were estimated at different redshifts and for different galaxy
biasing schemes b (see below) with the Fast Fourier Transform using the variance-optimized
method of Feldman et al. (1994) for cubes along the line-of-sight (LOS) of the XW wedge.
All the cubes were selected to fully fit into the lightcone in order to not introduce a
non-trivial window function. The parameters of the cubes are given in Tab. 2.1. Note
that the spectroscopic SDSS survey of normal galaxies covers an effective volume which
is comparable to cubes with L ≈ 500h−1 Mpc. The errors of the power spectral densities
at wavenumber k were estimated with standard mode counting arguments by σP/P (k) =√

2π{1 + 1/[P (k)n̄]}/kL to provide a first estimate. Here, n̄ is the mean comoving particle
number density in the box, and L the length of the box. We found that the initial glass
load reduces the shotnoise level significantly below the standard Poisson case at redshifts
z > 2 (see Smith et al., 2003). Instead of correcting our spectral estimator for this artifact
(see, e.g. Smith et al., 2003), we could in the end neglect its impact on the cosmological
test, because our phenomenological fitting function was flexible enough to compensate for
the small residuals of this artifact seen in our standard scale range k < 0.3hMpc−1.

In order to extract the BAOs from the power spectra Pobs(k, z, b), we computed the cor-

responding boosted transfer functions first,
√
A(k, z, b)T (k) =

√
Pobs(k, z, b)/k, assuming

a primordial spectrum with n = 1 (see below). Fig. 2.3 shows the estimated power spec-
tra and the corresponding boosted transfer functions for an unbiased dark matter particle
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distribution in configuration space. Error bars include shot noise and sample variance.
In most spectra the 2nd and 3rd BAOs are clearly visible. For k ≥ 0.05hMpc−1, the
phenomenological fitting function (Eq. 2.7) can be computed very accurately as it is con-
strained by a large number of spectral data with relatively small errors, that can be traced
reasonably well by a power law. Sample variance is negligible, as in this k-range, each
spectral point represents the average over a large number of modes. For k < 0.05hMpc−1,
only a very small number of spectral densities, each estimated with a small number of inde-
pendent modes, exists and the phenomenological function has to fit a wiggle that coincides
with the turnover. Therefore, the results in the range 0 < k < 0.05hMpc−1 vary quite
a bit. However, we already excluded this range from the cosmological test (see vertical
dashed lines in Fig. 2.3 and the discussion at the end of Sect. 2.3).

The extracted BAOs for the four cubes 7-10 of the XW deep wedge simulation cor-
responding to the redshifts z = 1.8-3.7 are shown in Fig. 2.4. Spectral densities in the
range 0.05 < k < 0.3hMpc−1 which is relevant for unbiased cosmological tests are plot-
ted (dots) together with the theoretical wiggle function (Eqs. 2.1,2.8) multiplied by an
appropriate amplitude

√
A (solid line). We see that even for very large galaxy samples

filling a box-like survey volume with a length of L = 500h−1 Mpc error bars are mainly
determined by sample variance and are of the same order as the amplitudes of the BAOs.
Therefore, only surveys with significantly larger survey volumes can show the BAOs with
higher significance.

We further see that the amplitudes of the wiggle functions in Fig. 2.4 decrease with
increasing redshift, due to growth suppression (we verified the amplitude change with z
according to standard linear structure growth). This is a direct consequence of the fact,
that distortions of the power spectrum are directly translated into the boosted transfer
function and thus into distortions of the amplitude of the BAOs. To see how this works
and how deviations from the assumed primordial spectrum with n = 1 affect the wiggle
function, we rewrite the primordial spectrum in the form k1+2ε with |ε| small compared to
unity. For the assumed power spectrum, P (k, z, b) = A(k, z, b)knT 2(k), this choice gives√

P (k, z, b)

k
− F (k, b, z) =

√
A(k, z, b)kε

Ωb

Ωm

Tw(k) , (2.9)

where the phenomenological function (Eq. 2.7) effectively fits the amplitude and shape-
dependencies (see Eqs. 2.2, 2.3)

F (k, z, b) =
√
A(k, b, z)kε

[
Ωc

Ωm

Tc(k) +
Ωb

Ωm

T̃b(k)
]
. (2.10)

It is seen that the phases of the wiggle functions remain unchanged by the FITEX proce-
dure. This result is shown in Fig. 2.5 where the extracted oscillations from power spectra
with different spectral index models in the primordial power spectra are plotted. The
oscillations were retrieved by calculating a power spectrum with a spectral index n = 1
(solid line), an index of n = 0.9 (long dashed line) and a simple running spectral index
model k1−0.1 ln k (short dashed line) and applying the FITDEX method. The parameters
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Figure 2.4: Extracted baryonic oscillations of dark matter particles (dots) with error bars in-
cluding shot noise and sample variance at different redshifts ranging from z = 1.8 (upper left
panel) to z = 3.8 (lower right panel). Superimposed is the theoretical wiggle function (Eq. 2.1)
with an appropriate amplitude.
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are chosen to conservatively cover the range of primordial power spectra not excluded by
WMAP 3rd year data (see Bridges et al., 2006).

Figure 2.5: Wiggle extraction from power spectra with different primordial k dependencies. The
resulting oscillations using FITDEX on primordial models with a spectral index n = 1 (solid line)
is compared to a model with different spectral index n = 0.9 (long dashed line) and a running
spectral index with α = 0.1 (short dashed line).

Only the amplitudes of the wiggle functions are modulated by possibly scale-dependent
factors. Although a lot of interesting information about galaxy formation and cosmology
is contained in the amplitude factors of the wiggle function, we skip this detail here and

perform an amplitude rescaling,
√
A(k, z, b)kεΩb/Ωm →

√
A(k, b, z), with A(k, z, b) being a

basically arbitrary function after rescaling, summarizing distortions like structure growth,
galaxy biasing, redshift space effects, deviations from the Harrison-Zel’dovich case etc.
Thus, with FITEX we are not deriving a pure undistorted wiggle function, but a spectrum
which is subject to all the distortions that work on the power spectrum.

While the oscillations extracted from the Hubble Volume Simulations are consistent
with the theoretical template, the error bars prevent a precise evaluation of the accuracy
of FITEX (all 4 cubes will be combined later, see Fig. 2.15). To get a better estimate of
non-linearities that might wash out wiggles at higher k values, we use a non-linear analytic
form of the power spectrum. This was computed by Jeong & Komatsu (2006) using 3rd-
order perturbation theory, which is able to model non-linear N-body matter power spectra
to better than 1% at z > 2 and k < 0.3hMpc−1.
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Figure 2.6: BAO extracted from an analytic power spectrum of Jeong & Komatsu (2006) that
includes non-linear growth at z = 2.3 (dots). The continuous line is the theoretical wiggle
function derived in Sect. 2.2, multiplied by an appropriate amplitude. See the main text for a
more detailed discussion of the treatment of the amplitudes of the wiggle function and the analytic
power spectrum.

Figure 2.6 shows the results of the FITEX extraction applied to the analytic non-linear
power spectrum using Hubble Volume parameters. As expected, the amplitude deviates
from the theoretical prediction at small k-values, where the shape contribution of the
baryons dominates (see. Fig. 2.1), but the phase of the oscillations in the analytical non-
linear function is recovered to better than 1% accuracy. This clearly shows, that, at least
in theory, FITEX is able to model non-linear effects and recover the oscillations with high
accuracy.

As an additional test, the power spectrum of the Hubble Volume Simulation (OCTANT
data), a wedge covering on eighth of the sky from z = 0 − 1.3 including redshift-space
effects, was computed with about 60 million particles in a fast Fourier box with a legnth of
1600h−1 Mpc and the FITDEX algorithm used to extract the oscillations (Fig. 2.7). The
oscillations can be seen, although non-linear growth is heavily washing out the wiggles at
k > 0.22hMpc−1.

Furthermore, we see a very good correspondence between a FITEX-extracted wiggle
function obtained from N-body simulations as well as the analytic non-linear power spec-
trum and the theoretical wiggle function of FITEX (Eq. 2.1) in the HETDEX redshift



30 2. Probing Dark Energy with Baryonic Acoustic Oscillations

Figure 2.7: Extracted BAOs using the Hubble Volume Simulation covering one eighth of the
sky from redshift 0 to 1.3. Error bars include sample variance and shotnoise but do not cover
washing out effects introduced by the correlation of modes through non-linear growth and distant
observer approximation.

range. Both linear and non-linear structure growth change the power spectrum and thus
the BAOs, but FITEX still gives quite stable and easy to analyze results for the 2nd to
5th BAO. The presence of the BAOs is consistent with the results of recent simulations of
e.g. Springel et al. (2005) and (Seo & Eisenstein, 2005). However, no specific method to
extract the BAOs was applied and their simulations did not include lightcone effects. In
the following we concentrate on the effects of redshift space and scale-dependent galaxy
biasing on the results obtained with FITEX.

2.5 Extracting BAOs in Redshift Space

The main problem in relating redshift space coordinates with comoving coordinates is the
differentiation between red-shifting due to the expansion of the Universe and red-shifting
due to peculiar velocities of the measured particles. Two effects might be important.

(1) In the linear regime and in combination with the distant observer approximation,
peculiar velocities introduce a boosting factor β along the LOS. Only the k-modes parallel
to the LOS, k‖, are boosted by the square of the factor 1 + β(z, b)k2

‖/(k
2
‖ + k2

⊥) with
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β(z, b) = −d lnD(z)/[d ln(1 + z)b(k, z)], D(z) the linear structure growth, and b(k, z) the
biasing parameter (Kaiser 1987).

(2) In the non-linear regime, velocity dispersion of galaxies in (partially) virialized
structures cause the well-known ‘fingers of God’ effect in redshift space. We assume that
the effect is mainly restricted to small scales and is describable by a simple exponential
damping of the power spectrum by the factor exp(−αk2

‖). Here, the redshift-dependent
parameter α gives a measure of the average pairwise velocity dispersion in the given redshift
shell.

Figure 2.8: Redshift space spectra divided by their corresponding real space spectra at different
redshifts (filled areas). Overplotted lines represent the best fit of the kernel of Eq. (2.11).

The combination of (1) and (2) constitute one version of the standard dispersion model
of peculiar velocities which relates the one-dimensional redshift and real space power spec-
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tra by

Ps(k, z, b) = P (k, z, b)
∫ 1

0
dµ
[
1 + β(z, b)µ2

]2
e−α(kµ)2 , (2.11)

where µ is the cosine between the direction of the actual wavevector and the LOS, i.e.,
µk = k‖, and k2 = k2

‖ + k2
⊥ (for more detailed models see Scoccimarro 2004). On large

scales, the real space power and thus the wiggle function is boosted in a k-independent
manner (Kaiser factor). On small scales, the power spectrum is dampened in a k-dependent
manner by the factor 0.5

√
π erf(αk)/αk, with erf the standard error function of statistics.

In Schuecker et al. (1996) it is shown that Gaussian redshift errors can be described with
the same model (for β = 0). Eq. (2.11) suggests that only the amplitudes but not the
phases of the BAOs can be changed by this type of redshift space distortion.

Figure 2.9: Ratios of boosted redshift and real-space transfer functions for different redshifts.
As expected, the redshift space effects increase with decreasing redshift in a smooth manner.
Increasing ratios at high redshifts are an artifact caused by the glass-like initial load of the N-
body simulations. To illustrate the relation between redshift space effects and amplitudes of
BAOs, the ratio between BAOs and the transfer function is plotted in the upper panel.

Figure 2.8 illustrates the combined effect in more detail. Two redshift space power spec-
tra, as obtained from the Hubble Volume Simulation, were divided by their corresponding
real space spectra at different redshifts and plotted as filled areas. The kernel of Eq. (2.11)
was fitted to this ratio and the best fit results superposed (black solid lines). We found
that the model is accurate on the 5%-level over the complete redshift range. For z > 2,
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Figure 2.10: Comparison of wiggle functions at z = 1.2 (upper panel) and z = 2.3 (lower panel)
obtained from real space (filled circles and continuous lines) and redshift space (open circles and
dashed lines). Note the overall boost of the wiggle functions by redshift space effects which,
however, leaves the phases of the BAOs invariant. The non-linear growth effects, start to wash
out the wiggles at k > 0.2hMpc−1 in the upper panel.
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the parameter α is virtually zero because no virialization had time to take place on the
scales shown. As redshift decreases, galaxy clusters start to form and virialize and the
α parameter starts to distort not the amplitude in the two dimensional power spectrum
depending on the angular component, like β does, but changes the amplitude depending on
the modulus of the k vector. This means that the shape of the wiggles could be influenced
by this effect as the amplitude of the power spectrum and thus the amplitude of the wiggles
is dampened at high k-values.

Fortunately, this anisotropy only gradually changes the amplitude of each consecutive
mode over which is averaged in a k-shell from perpendicular to parallel modes. This is
illustrated in Fig. 2.9 where the ratios of boosted transfer functions are plotted. A rough
idea about the relation between redshift space effects and the amplitudes of BAOs is
provided by the ratio between BAO and the transfer function plotted in the upper part of
Fig. 2.9.

Two examples of wiggle functions boosted by redshift-space effects and extracted with
FITEX are plotted in Fig. 2.10. The result of the anisotropic redshift space is that modes
with a more parallel component get more weight than those with a more perpendicular
component, which are not boosted. Whereas the overall shape of the wiggle function
appears to be slightly changed, the phases of the wiggles are not distorted at all. Instead,
the whole wiggle function receives a boost of the monopole component of the Kaiser factor.

The fitting function is obviously able to model the redshift space distortions on the
sub-percent level and oscillations can be derived. If the wiggles were not extracted with
FITEX-like methods but by dividing the observed power spectrum by a standard non-
oscillatory linear theory power spectrum, as was done by in Springel et al. (2005) and Cole
et al. (2005), the baseline of the oscillations would start to depart from zero at smaller
scales. Such an oscillation spectrum could not easily be used in a cosmological test as it
fit only nontrivial theoretical model spectra.

2.6 Extracting BAOs from Biased Samples

In the Hubble Volume, CDM particles are simulated. What is actually observed are galaxies
made out of dark matter and baryonic matter, especially in the case of the proposed
HETDEX survey, where Lyman-α emitting galaxies are used as tracers of the underlying
matter distribution. Because of the different properties of dark matter and baryonic matter
(Benson et al., 2000; Delliou et al., 2006), both need not necessarily follow exactly the same
density distribution.

To test the stability of FITEX under such conditions, we introduce some sort of biasing
into the N-body simulations. Formally, biasing is described by the mean biasing function
(Dekel & Lahav, 1999),

b(δd) δd = 〈δg | δd〉 =
∫
dδg P (δg | δd) δg , (2.12)

that relates the dark matter distribution δd to the galaxy distribution δg (Somerville et al.,
2001). Here, P (δg| δd) is the local conditional biasing distribution, i.e. the probability that
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a certain matter density contrast δd with a variance σ2
d is converted into a galaxy contrast

δg with a variance σ2
g . The biasing function can also be expanded into the moments,

b̂ = 〈b(δd) δ2
d〉/σ2

d, and b̃2 = 〈b2(δd)δ
2
d〉/σ2

d, with the biasing scatter σ2
b = 〈(δd−〈δg|δd〉)2〉/σ2

d.
Any local, non-linear and stochastic biasing relation can be described by these moments to
second order. While b̃/b̂ is a measure for the non-linearity and σb/b̂ a measure of the scatter,
the parameter b̂ characterizes the linear biasing such, that if b̂ = b̃, then δg(~x) = b̂δd(~x)
(Wild et al. 2005).

Figure 2.11: Ratios of biased and unbiased boosted transfer functions for two samples with
different scale-dependent biasing at z = 2.3. A factor of 2 was subtracted from the strong bias
(dashed line) for enhanced visibility, while the weak biasing (solid line) remains unchanged. The
theoretical wiggle function is plotted on top of the figure to illustrate the scale of the biasing
effects.

We use the simple stochastic and slightly non-linear Eulerian biasing scheme (e.g. Cole
et al., 1998; Yoshida et al., 2001). First, local overdensities for each dark matter particle
are computed by smoothing the distribution with a Gaussian, exp(−r2/2r2

0) and r0 =
3h−1 Mpc. The overdensities δd are then transformed into normalized overdensities, ν =
δd/σd, with σd being the root mean square of the δd-values. Finally, a function is introduced
that describes the probability of a dark matter particle with overdensity δd to be tagged
as a ‘galaxy’, P (ν) ∼ (ν − νc)α, with νc being a threshold at which the probability is set
to zero. This simulates the lower probability of galaxies forming in low density regions
like voids. The parameter α controls the stochastic spread of the biasing function as well
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Figure 2.12: Boosted wiggle functions extracted with FITEX and theoretical wiggle functions for
the unbiased sample (filled circles and continuous line), for the strongly biased sample (triangles
and shot-dashed line) and for the less biased sample (open circles and long-dashed line). The
theoretical wiggle functions are multiplied by the b̂-moment of the biasing function.

as its non-linearity. A value of α = 0.2 is a good compromise between reasonable non-
linearity and a comparably tight spread. Two samples with νc = −0.2 and 0.6 were
generated. Both parameters, α and νc, were adjusted to model the biasing parameters and
number densities found by observation. SUBARU data (Hamana et al., 2004) suggests a
comoving LAE density of n̄ = 0.00301 ± 0.00194h3 Mpc−3 and a biasing parameter of
b̂ = 4-5 at a redshift z = 5, which should decrease slightly with redshift. As discussed
in Sect. 2.4 the biasing function b(δd) should translate into a boost of the power spectrum
b2(k, z). Because the average slope of the biasing function is b̂, to first order we expect
Pbias(k) = P (k)b2(k, z) ∼ P (k)b̂2(z).

The two prescriptions lead to a biasing that either decreases or increases with k (see
Fig. 2.11). Both values are consistent with the calculated b̂ parameter. The comparatively
strong scale dependence of the biasing becomes evident when the ratios of the boosted
transfer functions are compared with the ratio of the wiggle amplitude to the transfer
function plotted on top of Fig. 2.11.

Figure 2.12 illustrates, that FITEX extracts BAOs even from biased galaxy distribu-
tions. Plotted are the wiggle functions of the less strongly biased sample (open circles),
the more strongly biased sample (open triangles) and the unbiased sample (filled circles)
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at z = 2.3. The unbiased and biased oscillations vary because of shot noise, as the biased
samples have a 2 and 10 times lower point density, respectively. Superimposed are the
theoretical wiggle functions (Eq. 2.1), normalized to the unbiased wiggle function (contin-
uous line) and multiplied by the first moment of the biasing, b̂ (dashed lines). The boost
of the power spectrum obviously translates into an amplitude boost of the BAOs. As in
redshift space, only the phenomenological fitting function as used in FITEX extracts the
BAOs with a zero baseline, unlike when using a linear theory power spectrum.

However, not only the overall boost of the power spectrum, but also the k-dependency
of the biasing function should directly affect the amplitude of the BAOs. We tried to verify
this by fitting the Tw(k) function supplemented by a ‘linear biasing model’ to describe the
extracted wiggle function Tex(k) = (a0 + a1 k)Tw(k). We notice that both parameters
a0 and a1 are highly degenerate, mainly due to the fact that only data points at the
extrema of the wiggle function significantly contribute to the fit. Data points at or near
the nodes of the wiggle function are very insensitive to changes of the amplitude. Due
to the degeneracy, any amplitude a0 can easily be compensated by an appropriate value
of the parameter a1. Though the full fits had the expected slopes, the effects were very
small and of no significance for the cosmological test. We may thus conclude that in a
cosmological test, which is mostly about detecting phase-shifts, it seems to be enough to
fit the theoretical wiggle function with only an amplitude parameter, when the k-dependent
biasing is as weak as simulated here. However, more realistic simulations are needed to
analyze higher order effects.

2.7 Cosmological Tests with BAOs

The cosmological test compares the phases of the extracted BAOs with the theoretical wig-
gle function, projected onto the hypersphere of the observer. As the theoretical template
does not model the amplitude of the oscillations with high accuracy, we are not able to
include amplitude effects in the cosmological test and marginalize over the wiggle ampli-
tude. Future tests should include this parameter, which is sensitive to w by e.g. structure
growth.

A general feature of the test is that one first has to assume a certain reference cos-
mology to get the metric scale of the wiggle function from the data, and to perform in
a second step the comparison of the metric scale of the theoretical wiggle function rela-
tive to the chosen reference cosmology (Glazebrook & Blake, 2005). In the present paper,
we are interested in the performance of the BAOs extracted with FITEX in constraining
the redshift-independent part of the w parameter of the dark energy. The amplitude of
the theoretical function is also fitted but later marginalized. The remaining cosmological
parameters are fixed to their values given at the end of Sect. 2.1.

As metric scales, comoving distances of the BAOs parallel and perpendicular to the LOS
are used. Recall that in the plane-parallel or distant observer approximation, comoving
distances between two points with the same angular positions but different redshifts are
x‖ =

∫ z2
z1

dx
dz
dz = c

H0

∫ z2
z1

dz
E(z)

, where H(z) = H0E(z) is the Hubble parameter at redshift z
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and E(z) the w-dependent transformation of the Hubble constant, H0, from redshift zero
to z (e.g. Peebles, 1993). To compute not distances between two points in space with
different redshifts, but parallel scaling factors between the two sets of cosmologies denoted
by primed and unprimed symbols, one has to take the limit ∆z = z2−z1 → 0, which yields

x′‖ = x‖
dx′

dx
. (2.13)

Comoving perpendicular separations represent distances two points with the same redshift
but different angular positions are separated, x⊥ = θ

∫ z2
0

dx
dz
dz, where θ is the angle be-

tween the two points. The scaling relation for the perpendicular component between two
cosmologies thus becomes

x′⊥ = x⊥
x′

x
. (2.14)

In Fig. 2.13 the transformation ratio of the wiggle function is plotted at different red-
shifts for two cosmologies that differ from the reference model only in w0 (the redshift-
independent part of w). The reference model is the concordance cosmology. Fig. 2.13
shows that the largest deviations from the reference model appear at redshifts in the range
0.5 < z < 1.5. Differences in parallel and perpendicular scaling introduce anisotropies that
could be measured, too (see below).

Figure 2.13: Transformation of perpendicular (solid) and parallel (dashed) distances in compar-
ison to the concordance model with w0 = −0.7 (upper part) and w0 = −1.3 (lower part).

Figure 2.14 shows the scaled wiggle function at redshift z = 2.5 for w0 = −0.7. The
reference and the distorted wiggle function are plotted. Note that an elongation of the
coordinates in real space leads to a compression of the coordinates in k-space and vice
versa. In the upper panel, it can be seen that the wiggle function gets more and more
out of phase as k increases. Thus the sensitivity of a cosmological test should increase at
high values of k. However, the amplitudes of the oscillations decrease exponentially with
k (e.g., Silk damping). This can be seen in the lower panel of Fig. 2.14 where the scaled
wiggle function is subtracted from the reference (w0 = −1) wiggle function: Though the
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Figure 2.14: Scaled wiggle functions at z = 2.5 for w0 = −0.7 (dashed line) compared to the
w0 = −1 cosmology (solid line, top panel). The normalized modulus of the difference between
the reference cosmology and the scaled cosmology is shown in the bottom panel. The dashed
vertical lines mark the region relevant for the cosmological test.

difference in phase is increasing, the amplitude decreases so fast that the difference between
the projected oscillations increases at small values of k and decreases at high values of k.

The present version of the cosmological test comprises the following steps: (1) Angular
and redshift coordinates of the ‘observed’ (simulated) data are transformed into comov-
ing coordinates using a concordance model as the reference cosmology. (2) The comoving
data sample is Fourier-transformed to estimate the boosted transfer functions. (3) BAOs
are extracted with FITEX. (4) The theoretical wiggle function is computed for the corre-
sponding cosmological model. (5) The parallel and perpendicular scaling factors between
the test cosmology and the reference cosmology are computed at the redshift of the data
sample. (6) The theoretical wiggle function is scaled by constructing a three-dimensional
wiggle function, scaling each mode and collapsing it to one dimension. (7) The observed
wiggle function is compared to the re-scaled theoretical wiggle function assuming Gaussian
statistical errors (χ2 test). Only the steps (4-7) have to be repeated to test a different
cosmology, allowing a fast test of various parameters.

Note that the three-dimensional wiggle function is only constructed to simulate the
effects of different parallel and perpendicular scaling factors. It does not address the
anisotropy introduced by redshift space effects, because we found that this only boosts
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the various modes but not change the phases of the theoretical wiggle function (see Sect
2.5). The boost effect of the redshift space distortions, along with other boosting effects
like biasing and growth suppression, will force us to add an additional parameter to the
cosmological test.

Figure 2.15 shows in the upper left panel the combined wiggle function of the four XW
wedge cubes of the Hubble Volume Simulation. The combination is performed by averaging
over k-bins of discrete size. The errors represent the standard deviation of all wiggle points
in the corresponding k-bins. After averaging, the 2nd to 5th BAOs are now clearly visible.
We thus conclude that a volume at least 4 times larger than SDSS has to be sampled
in order to see the BAOs with FITEX with high significance. One has to keep in mind,
though, that our cubes are located at much higher redshifts, where the smoothing effect
of non-linear structure growth is obviously much smaller. We also neglected the fact, that
larger sky coverages reduce the sizes of the fundamental modes, leading to higher (better)
sampling rates of BAOs.

With the 100 square degree sample, the possibility of data points appearing at positions
which severely inhibit the accuracy of the cosmological test is relatively high, due to the
high sample variance. Especially as only a few data points, which are far away from
positions where theoretical wiggle functions of different cosmological models intersect, have
great statistical weight in the cosmological test. This fact is shown in Fig. 2.14, where
the modulus of the difference between the theoretical transfer functions for two models
depending on position in k-space is plotted.

Figure 2.16 shows the results of the cosmological test obtained with BAOs extracted
with FITEX under different survey conditions. For surveys covering 100 square degrees we
would expect errors of σw0 = 0.25. The asymmetry of the error distributions directly reflects
the increased sensitivity of metric scales on w for w0 > −1 compared to w0 < −1. At these
w0 values, the theoretical wiggle function gets quite compressed, so that at large k values
the amplitude decreases rapidly due to Silk damping. When w0 → −∞, the theoretical
wiggle function formally mimics the case of zero amplitude, so that low values of w0 are
excluded with about the same significance as the “no-wiggle” case of zero amplitude. The
minima of all error distributions plotted in Fig. 2.16 are slightly off-set from the input
w0 = −1 value, but well within all formal 1σ ranges.

Note that the constraints given above are based solely on the phases of the oscillations
in the one-dimensional power spectrum, assuming perfect knowledge of the sound horizon
at drag epoch. The w-constraints are expected to further improve when the full two
dimensional redshift space effects as well as the amplitudes of the BAOs are used.

Perhaps the most important result of the present investigation is the comparatively
small decrease of only 8% of σw0 when comparing the w test with unbiased matter distri-
butions in configuration space, (dashed line in Fig. 2.16) i.e., the simplest survey condition,
with the test that includes all aforementioned effects (solid line). The robustness of the
FITEX method to extract BAOs from boosted transfer functions with phenomenological
fitting functions is mainly related to the fact that only the amplitudes of the wiggle func-
tions are boosted by redshift-space and biasing effects, but the phases are not affected.
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Figure 2.15: Combined wiggle functions from the four Hubble Volume cubes. The upper left
panel shows the combined data point (dots) with self-consistent error bars for the 100 square
degree field. The upper right panel shows expected error bars for 200 square degrees and the
lower row with error bars for 300 and 600 square degrees, respectively. The continuous lines are
the theoretical wiggle functions for the reference (concordance) cosmology.
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Figure 2.16: χ2 distributions for the w0 parameter obtained after marginalization over the
amplitude parameter and for different conditions of BAO extraction. Short-dashed line: dark
matter distribution in configuration space over 100 sq. deg obtained from the simulation of dark
matter particles in configuration space. Continuous line: biased particle distribution in redshift
space over 100 sq. deg. Dotted line: biased particle distribution in redshift space over 300 sq. deg
(extrapolation). Dashed-dotted line: biased particle distribution in redshift space over 600 sq. deg
(extrapolation). The horizontal dashed line marks the 1σ error level.

To give an idea of the performance of FITEX based on surveys of larger size, we
extrapolated the results from the 100 square degree data. The upper right panel of Fig. 2.15
shows wiggle functions extracted from the 100 square degree data but with error bars
expected for 200 - 600 square degrees. The error bars were extrapolated by scaling them
according to the expected number of additional k-modes. The different survey fields are
thus assumed to be not adjacent.

Figure 2.15 shows that increasing the survey volume to 200 square degrees does not
reduce the error bars significantly, still allowing for crucial data points at peaks of the
oscillating wiggle function to be reduced to zero amplitude. Error bars are still of the same
order of magnitude as the oscillations. Only at 300 square degrees (lower left panel), the
probability for smoothing out the oscillations due to statistical errors gets considerably low.
Following our extrapolations, for a survey of 600 square degrees, the errors are expected
to get much smaller than the amplitude of the oscillations and the chance of statistical
deviations from the predicted function is of an order of magnitude that allows for very
accurate cosmological probing.

The accuracies of the w0 parameter (Fig.2.16) range from σw0 = 0.25 for 100 sq. deg
which corresponds to 3 SDSS volumes, to σw0 = 0.09 for 600 sq. deg, corresponding to 21
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SDSS volumes. These results are obtained for biased samples in redshift space, i.e., the
most complex survey condition. The improvement is directly related to the larger number
of independent k-modes in larger survey volumes and is consistent with results obtained
with Monte-Carlo simulations (Blake & Glazebrook, 2003).

Future studies should also investigate the various parameters of the cosmological test
to get constraints under less strong priors.

2.8 Discussion and Conclusions

We have seen that it is critical for the extraction of BAOs to either fit a phenomenological
function to the continuum of the boosted transfer function (FITEX), or to calculate the
shape of the boosted transfer function, including all distortions down to the sub-percent
level. The latter approach has been carried out recently. Glazebrook & Blake (2005),
Hütsi (2006), and Springel et al. (2005) used a linear theory power spectrum and divided
the ‘observed’ data by this reference. Almost the same approach, but with the addition
of linearizing the observational data before the division, to correct for non-linear structure
growth was used in Angulo et al. (2005). There are two drawbacks of this method:

First, the ratio of a complex power spectrum and a reference power spectrum does not
resemble a wiggle function as defined in the text, but something more complicated (see
Eq. 2.4). The simple form of the theoretical wiggle function (Eq. 2.1) is strongly deformed
by both the chosen transfer function of the reference spectrum and the distortions intro-
duced by redshift space and galaxy biasing. These distortions make the comparison with
theoretically expected model spectra unnecessarily complicated. FITEX transforms the
observed power spectrum into a boosted transfer function where the subtraction of a non-
oscillating phenomenological continuum function is directly related to Tw(k), multiplied by
an amplitude factor.

The second drawback is the linear theory power spectrum itself. By computing a
correct shape of the power spectrum, one has to rely strongly on assumptions about the
nature of the dark matter and various other physical processes. The method is no more
the ‘assumption free’ approach that was intended. Furthermore, the calculation of the
amplitude factor that includes all the distortions ranging from linear structure growth,
non-linear structure growth to redshift space distortions and biasing is a problem. This
calculation has to be accurate to the sub-percent level, as the oscillations themselves make
up only ∼ 2% of the transfer function.

A more phenomenological approach was conducted by White (2005). He assumed
that redshift space distortions as well as linear and non-linear structure growth could be
calculated with reasonable accuracy. Leaving only the ratio between dark matter power
spectra and ‘galaxy’ power spectra, he found that one can fit this ratio with about 2%
accuracy using a cubic polynomial. This adds further evidence that a phenomenological
approach can model power spectrum distortions without assuming much about the physics
of the distortions themselves.

With the FITEX method, we have shown that one is able to extract the BAOs without
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any strong priors on the nature of dark matter or the shape of the power spectrum from the
complex multi-component transfer function. All the aforementioned effects are modeled by
the continuum function and need not be known very accurately, as long as the phases of the
oscillations are not distorted or washed out. This extraction is accurate on the sub-percent
level within k-ranges relevant for the cosmological test. Furthermore, FITDEX is able to
disentangle phase information from amplitude information which could in the future be
used to test the geometry of the Universe on the one hand and the growth history on the
other hand. This type of cosmological test could be used to discriminate Dark Energy from
Modified Gravity theories.

We thank Ralf Bender for initiating this work on baryonic acoustic oscillations, the
HETDEX team, the Virgo Consortium for the provision of the data of the Hubble Vol-
ume Simulation, Urs Seljak and Mathias Zaldarriga for the CMBfast software, and Daniel
Eisenstein and Wayne Hu for the software to compute transfer functions for high baryon
fractions.



Chapter 3

The Impact of Sparse Sampling on
Power Spectrum Cosmology

Note: this chapter will be submitted as Koehler et al. 2009. The work was performed under
the supervision of Niv Drory and with comments and suggestions by Eiichiro Komatsu.

3.1 Introduction

In the past, Blake et al. (2006) investigated the effect of sparse sampling on the ability to
recover Baryonic Acoustic Oscillations (BAOs) in the galaxy power spectrum. They also
simulated its impact on a cosmological test to constrain cosmological parameters like the
equation of state of dark energy w. Sparse sampling introduces correlations between the
different Fourier modes (see Blake et al., 2006) and washes out the oscillations reducing
their amplitude and thus their detectability. By using the full shape of the of the power
spectrum, one is less prone to effects of correlations, but has to model the spectrum very
accurately including non-linear growth and scale dependent biasing to the percent level.
Recently, Jeong & Komatsu (2006) and Jeong & Komatsu (2008) have shown that it is pos-
sible to calculate these effects accurately at higher redshifts, using third order perturbation
theory and exploiting information from the bi-spectrum.

Cosmic variance describes the error of a sub sample representing the statistical proper-
ties of the related super sample. The bigger the volume of a survey, the bigger the fraction
of the universe covered and the smaller the cosmic variance. Cosmic variance affects mostly
smaller k modes, as increasingly more k modes of larger value fit into a given volume. Shot
noise describes the error of a sample with a finite point density representing the properties
of an underlying continuous density field. The higher the point density the smaller the
fluctuations in the density can be that can be accurately modeled. Shot noise affects mostly
larger k modes, as a higher point density is needed to model smaller scales correctly.

To increase survey volume and thus minimize error from cosmic variance, sparse sam-
pling surveys do not sample the sky continuously, but leave large gaps between measure-
ments, to trade volume for point density. The related window functions heavily distort the
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resulting power spectrum and introduce correlations both in the power itself and its error.

The upcoming Hobby-Eberly-Telescope Dark Energy eXperiment (HETDEX) (Hill
et al., 2008) survey is utilizing Integral Field Spectroscopy Units (IFUs) and applies sparse
sampling techniques (see Kaiser, 1986; Colombi et al., 1998) to search for Lyman Alpha
Emitters (LAEs) as tracers for the underlying matter density field of the universe. The
power spectra derived from this matter field can be used to test cosmological models, ex-
ploiting the impact of cosmological parameters like the equation of state of dark energy
w on the shape of the power spectrum. The ability to constrain cosmological parameters
depends on the relative accuracy of the measurement σ(k), which is dominated by the two
sources of errors: Cosmic variance and shot noise. The shot noise depends on the power
in the sample P (k) and the average point density n̄, while cosmic variance depends on the
size of the survey L:

σ(k) =

√
2π

k L

[
1 +

1

n̄ P (k)

]
. (3.1)

In the present work, we will investigate the impact of such a window function on the
results of a cosmological test utilizing the full shape of the power spectrum. We will use
a set of simulations described in Sect. 3.2 to directly test the impact of the proposed
HETDEX IFU selection functions as well as additional zero-point effects (Sect. 3.3) on the
power spectrum. Section 3.4 will investigate the effect on the errors of the power spectrum,
the error correlation matrix, and show how and to what extent one is able to correct for
the distortions. Finally we will show how the introduced additional errors and correlations
are affecting the accuracy of a cosmological test exploiting both geometrical and growth
effects of cosmological parameters in Sect. 3.5.

3.2 The Simulations

To test the various effects of different selection functions on the power spectrum and its er-
rors we simulate 400 cubes with a baseline of 500h−1 Mpc and a total volume of 50h−1 Gpc
using the Pinocchio (PINpointing Orbit-Crossing Collapsed Hierarchical Objects) semi an-
alytical method (see Monaco et al., 2002). The Pinocchio algorithm uses a numerical
representation of a linear density field to emulate non-linear structure growth by grouping
particles into halos, simulating the effects of accretion and mergers during the procedure.
It calculates positions, velocities, merger history, and angular momentum of dark matter
halos, where positions are accurate to 2 Mpc and velocities to about 100 km s−1. We use
the power spectrum generated with the fitting function of Eisenstein & Hu (1998) as initial
condition.

Table 3.1 gives additional parameters of the simulations. The maximum and minimum
k-values accessible to the simulation are given by the scale length of 500h−1 Mpc, and
the Nyquist frequency k = 1.61hMpc−1 of the simulations which equals 3.9h−1 Mpc,
respectively. However, surveys with a baseline of smaller than 2h−1 Gpc or which are
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Table 3.1: Pinocchio Parameters
Par Value Description
Lgrid 256 grid size in 1 dimension

n 1.3e6 initial particles
ΩΛ 0.75 dark energy density
Ωm 0.25 matter density
Ωb 0.045 baryon density
H100 0.72 normalized Hubble constant
L 500 cube length in h−1 Mpc
z 2.00 final redshift
σ8 0.8 power normalization

highly elongated do not gain a relevant amount of information from scales larger than
500h−1 Mpc, and are thus also covered by the scale of the simulations used in this work.

Further testing suggest that the simulations should only be trusted to about 0.5hMpc−1

which equals a scale length of 12.6h−1 Mpc. This is mostly because of rapid power loss
at larger k values due to the initial conditions of the simulations, where the particles are
arranged on a regular grid. Similar effects can be found in other numerical simulations like
the Hubble Volume Simulation (see Koehler et al., 2007), where an initial glass distribution
distorts low k modes at high redshift.

The final redshift-space power spectrum averaged over all the 400 cubes is illustrated
in Fig. 3.1. One can clearly see the power decay at higher values of k, where it deviates
from the linear prediction. The given error bars are calculated from the variance of the
full set of simulations and represent the errors of only one cube and agree very well with
predictions (see Subsect. 3.4.2). The errors of the mean power spectrum itself are smaller
by a factor of

√
400.

3.3 Selection Functions

Various selection functions work on the power spectrum to produce the final power ob-
served.

The proposed HETDEX survey will utilize 96 IFUs, arrayed on a regular grid. The
IFUs themselves have a fill factor of only 1/3rd, but a dithering pattern will ensure a
complete sampling on the area of one IFU. This setup introduces, along with the radial
selection function of a luminosity limited survey, a unique angular selection function.

We start looking at the radial selection function, which is dominated by the luminosity
function of the LAEs and the thoughput of the telescope and instrument. Then, we will
investigate the angular window function, dominated by the field of view of the IFUs and
their fill factor of about 1/6th. And finally we will look at, zero-point offsets in the
luminosity calibration that introduce correlations between nights, weeks and months, by
systematically over or under estimating the true matter density in one night, week, or
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Figure 3.1: Mean power spectrum of 400 cubes with error bars of one cube calculated from the
variance within the whole sample.

month.

3.3.1 Radial Window Function

As HETDEX is a flux limited survey, the luminosity function and the distance to the object
dominate the radial selection function. However, because HETDEX utilizes IFUs to take
spectra of every position on the sampled sky, the instruments throughput depending on
wavelength and the sky spectrum also introduce selection effects in the radial direction.
While the luminosity distance and instrument throughput are smooth functions of the
distance to, and thus wavelength of, the LAE, the sky spectrum is not smooth at all and
could potentially introduce strong correlations in the resulting power spectrum.

Figure 3.2 shows the radial selection function. It is calculated by multiplying the
throughput with the object density depending on distance and dividing by the sky spec-
trum, as sky lines decrease the probability of finding a LAE at the related wavelength.

As the Pinocchio simulations only model dark matter halos and not galaxies, we simply
apply the radial selection function by selecting each halo according to a probability given
by the relative throughput of the selection function. This procedure neglects the fact that
LAEs with higher luminosities might or might not have a higher biasing than LAEs with
lower luminosities. However, this topic is not yet well investigated, and the effect is mostly
a change in slope and amplitude of the biasing. For a cosmological test the biasing has to
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Figure 3.2: Predicted fraction of LAEs detected at a certain distance normalized to the maximum
density. Vertical lines contain the region used for the simulations.

be calculated using the higher order statistics of the bi-spectrum as suggested in Jeong &
Komatsu (2008). In this work, we assume that biasing was determined using the suggested
methods to a maximum k value of 0.3hMpc−1.

3.3.2 Angular Window Function

The proposed HETDEX selection function in angular dimension is heavily dominated by
the setup of fiberheads in the Visible Integral-field Replicable Unit Spectrograph (VIRUS).
VIRUS covers only a small fraction of the telescopes field of view. The ratio of covered
area, and thus volume, to uncovered area and volume, the fill factor, is only about 1/6th.
This allows HETDEX to find an optimal balance between the cosmic variance error that
is dominated by the covered volume, and the shot noise error, which is dominated by the
number of observed LAEs (see Eqn. 3.1).

As the IFU mask completely masks out a majority of the sky in angular direction, the
resulting window function is conceptually different from angular selection functions of other
large surveys where power spectra are estimated like the SDSS (Tegmark et al., 2006) or
2dF (Cole et al., 2005). In these surveys areas can be weighted according to their particle
density to compensate for selection effects like extinction or luminosity limitations. In the
case of HETDEX, the appropriate weight for a region with a points density of 0 would be
infinity and can not be corrected for or weighted. The information in the masked out area
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Figure 3.3: Angular selection functions displaying one shot of VIRUS (big squares) and the 96
fiber-heads in each shot (small squares). The figure shows only a small part of the whole survey.

is lost.

Figure 3.3 illustrates the IFU selection function on they sky in angular coordinates. It
shows only a small part of the 400 degree survey area. A number of shots containing the 96
fiber-heads are arranged in a static and very regular pattern in one shot. Our simulations
show, that it is not necessary to arrange the IFUs in a shot randomly or even randomize
the IFU setting from shot to shot (see below), as the length scale of one IFU on the sky
is only about 0.5h−1 Mpc, while the scales HETDEX is working on are about 50h−1 Mpc.
The static setup of the IFUs in the shots is broken by a large gap in the middle, with a
size of two times two fiberheads. This gap is used for other instruments.

The shots themselves are arranged in a semi random way using Monte Carlo methods.
Firstly the shots are distributed on a regular grid, with some gaps between the shots. Then
one shot is randomly selected and moved by a random small distance in a random direction.
If the shot overlaps another shot, the new position is canceled, if there is no overlap (within
a small allowance) the new position is accepted. This procedure is repeated until the peak
in the resulting power spectrum on the scale of the shot-separation is washed out as much
as possible.

We use this technique to simulate the semi random shot distribution resulting from the
distribution of stars on the sky. HETDEX will want to cover as many foreground stars as
possible for calibration. To achieve this, the shots will be nudged just a little from their
original position on a regular grid to cover an optimal number of stars within their 1/6th
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The difference between this semi-random shot setup and a complete regular grid is,
however, not that big. Figure 3.4 shows the averaged 1-dimensional angular window func-
tions of both setups. In the semi-random setup, the two dominant peaks from the grid
size itself at k = 5 × 10−3arcsec−1 and the harmonies at two and four times this value are
washed out in comparison to the regular grid. However, the semi-random window function
has more power itself, than the static function, which will lead to a stronger distortion of
the power spectrum in the end.

A completely random placement of the shots with an average distance D was also
considered. This has the advantage of having a simple window function with a 1/D profile,
where all other features are washed out and smoothed as much as possible (see Kaiser,
1998). However, as D is comparable to scales of interest, the window function is very
broad and has a lot of power itself. Furthermore, the completely random placing leads
to heavy overlap, effectively decreasing the sampled volume by a considerable amount.
Because of this, the completely random shot setup was dismissed.

Finally one can compare the completely random shot setup with IFUs placed on a static
grid within a shot, and a setup where not only the shots are randomized, but also the IFUs
setup within every shot. Figure 3.4 shows a difference on the scale of k = 0.01arcsec
and higher where the correlations are dampened compared to the static IFU case. The
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difference is, however, not big enough to compensate for the effort to mechanically reshuffle
the setup of the IFUs for every shot.

3.3.3 Luminosity Calibration

Not only the pattern of shots itself, but also the clustering of shots within one night or
even week or month might introduce correlations into the data. The shots of one HETDEX
reference design night are clustered into two squares approximately 10 degrees apart. At
a redshift of two, this equals more than the maximum scale length 500h−1 Mpc of our
simulations. Thus, we only capture the effect introduced by the correlations of one cluster.

To simulate this effect, we randomly calculate the extinction in this night, based on
real data. We assume that luminosity zero-point is calculated correctly with a lognormal
error distribution

δzp(x) =
1

σ
√

2 π
e−

(ln(x)−µ)2

2σ2 , (3.2)

normalized to a standard deviation of of 5% and 10% and a mode of 1. The lognormal
distribution is motivated by the experience from the VIRUS-P prototype survey (see Hill
et al., 2008).

Each shot in a night shares the same zero-point error, which means that all the shots in
one night are 100% correlated. The error in number counts is then computed by calculat-
ing the difference in number density for the real extinction, and the errornous extinction
depending on distance, and applying this ratio as a weight to all the detected LAEs in one
night.

We assume a three by three shot pattern for one of the two clusters a night, only one
of which will fall into our simulated volume. Correlations between weeks and months are
not considered in this work, as the nightly correlations will be much stronger and can thus,
especially with a maximum correlation of 1, be used as an ideal test case to judge the
impact of correlations of other time scales and correlation strengths.

3.3.4 Cartesian Window Function

In spherical coordinates, both the angular as well as the radial correlation function are
independent of each other. However, a three dimensional power spectrum can not easily
be calculated using spherical coordinates, as the resulting power spectrum scales change
from radial shell to radial shell and can not easily be added up to a cumulative or mean
power spectrum of the whole volume without washing out major features. Angular power
spectra in redshift slices are used to achieve this (see Blake et al., 2007), but throw away
information in form of the correlations between the slices. It was furthermore shown that
lightcone effects and the breaking of the distant observer relation in rectangular volumes of
about 10h−1 Gpc and a redshift of 2 and more do not affect the calculated power spectrum
much (see Wagner et al., 2008).
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Figure 3.5: Spatial distribution of shots on a regular grid at a distance of 3500h−1 Mpc (gray
squares) and 4000h−1 Mpc (black squares).

We will thus investigate the impact of both the angular and radial selection functions
using a Cartesian Fourier transform to calculate the power spectrum. The breaking of the
distant observer relation leads to a mixing of the formerly independent selection functions
and heavily distorts the angular pattern depending on the distance to the observer.

Figure 3.5 shows how an angular selection function with equally spaced shots in angular
coordinates would work on a sample of simulated LAEs in a distance of 3500 (blue) and
4000h−1 Mpc (red). One can clearly see that any distinct scales, like the spacing of the
various shots from each other, or the size of the shots themselves, are distorted with the
distance from the center of the cube, and the distance to the observer. Because of this,
the power on any angular scale is washed out and distributed within the whole cube in the
Cartesian Fourier transform.

As a result, only the modes purely parallel to the line of sight carry the signal of the
washed out radial selection function and the modes purely transversal to the line of sight
carry the signal of the washed out angular selection function. Figure 3.6 shows a logarith-
mic representation of the two dimensional window function, where the two perpendicular
dimensions were integrated to one. Modes that comprise of both parallel and perpendicular
parts have practically no power and resulting correlations are kept to a minimum.
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Figure 3.6: Window function in both the parallel and perpendicular direction. Note the loga-
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3.3.5 Samples

By applying all the selection functions to the 400 simulation cubes, we end up with five
different samples:

• an undistorted sample, including redshift-space effects and (semi-analytic) non-linear
growth

• a sample including the above plus radial selection effects

• a sample including the above plus angular selection effects

• a sample including the above plus 5% zero-point errors

• a sample like the above but with 10% zero-point errors

All the samples were generated by projecting the angular and radial selection functions
to a Cartesian coordinate system, placing the cubes at a distance of 4000 to 4500h−1 Mpc
from the observer at an average redshift of 2.5.
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A number of effects are not covered. They include, but are not limited to:

• lightcone effects (see Wagner et al., 2008)

• scale dependent biasing (see Jeong & Komatsu, 2008)

• luminosity dependent biasing (see Orsi et al., 2008)

• velocity dispersion effects of emitting medium (see Tapken et al., 2007)

All of them should, however, not affect the comparison of power spectra with different
window functions.

3.4 Error Analysis

This section will show the effects of the various selection functions on the power spectrum
itself, the errors of the power spectrum, and the correlations of the errors.

3.4.1 Systematic Errors

All three window functions introduce distortions to the power spectrum. An initial over-
density distribution δ(~x) is transformed by an arbitrary selection function n(~x) like,

δ̃(~x) = n(~x)δ(~x), (3.3)

with 0 ≤ ~k ≤ 1. The FKP algorithm (see Feldman et al., 1994) calculates overdensities
correctly by subtracting a homogeneous sample multiplied by the selection function from
the inhomogeneous sample. The resulting estimated power spectrum after subtraction of
shot noise is then a convolution of the true power spectrum with the window function:

P̃ (~k) = P (~k)⊗ |n(~k)|2 . (3.4)

The window function is given by

n(~k) =
∫
d3x n(~x) exp(i~k · ~x), (3.5)

the square of the Fourier transformed selection function. The power spectrum itself is
calculated using the FKP algorithm (see Feldman et al., 1994) using a grid with 256 grid
points and a next grid point allocation algorithm (NGP). We do not correct for aliasing
effects, but it was shown by Jing (2005) that the lower k-modes are not affected by aliasing.

The ratios between the undistorted power spectrum and the z-selected and IFU-selected
power spectra of the 400 cubes are plotted in the upper panel of Fig. 3.7. The lower panel
shows the ratio between the IFU-selected power spectra and the 5% and 10% zero-point
errors power spectra, respectively.
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Figure 3.7: Upper panel: z-selected (+) and IFU-selected (x) power spectra divided by the
undistorted redshift-space power spectra.
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While the absolute change in amplitude due to the radial window function and the
zero-point errors are relatively small, the angular window function heavily distorts the
observed power spectrum.

Another difference is the scale most affected by the distortions. Angular effects increase
at smaller scales, while zero-point effects decrease at smaller scales. This is expected, as
the angular window function is dominated by the relatively small scale of the shots, but
much more by the scale of the IFUs fiberheads themselves which are, however, too small to
be resolved by the power spectra of our simulations. Zero-point effects on the other hand
are dominated by the much larger cluster scale of correlated shots in one night.

Correcting for Selection

To measure the impact of the distortions due to the window functions on a cosmological
test we have to calculate how accurately the initial power spectrum can be recovered from
the observations, or how well a distorted template can be calculated.

As a convolution is much easier to calculate than a deconvolution we try to model
the distorted power spectrum by convolving a theoretical model power spectrum by the
window function. It is not necessary to do this convolution for all possible scale factors in
the following geometric test, as we are only probing for small variations from the reference
cosmology. In this case, the linear expansion, and thus a simple re-scaling of the convoluted
power spectrum to the tested scale factor ( see Sect. 3.5) does suffice.

We compute the three dimensional window function numerically by applying the IFU-
and z-selection functions on a high density random sample and compute the Fourier trans-
form with fast Fourier transform algorithm (FFT).

Figure 3.8 shows the ratio between the convolutions with various degrees of resolutions
and the power spectrum including the radial and angular selection effects. We start with
256 grid points per 500h−1 Mpc cube and increase to 512 and 1024 grid points. However we
achieve this not by increasing the actual number of grid points but use the same number
of grid points on the full cube, a smaller sub-cube with half the length, and an again
smaller sub-cube with one fourth the base length. This distorts the lower k-scales of the
higher resolution spectra and only the high k-scales should be accurate. Furthermore,
the different resolutions vary, because the smaller samples of the higher resolutions only
capture a fraction of the overall, inhomogeneous, window function.

The convolution with the lowest resolution agrees well at low k-scales, which was ex-
pected. The highest resolution agrees well with the power spectrum including the selection
effects at higher k-scales, while it is loosing power on large scales. However, the error bars
due to different shot noise and sample variance are still of an order of 1% per data point,
which is approximately the accuracy of a survey with 8h−3 Gpc3 volume and 10 million
tracer particles with a biasing of 2 at k = 0.2hMpc−1 and a redshift of 2. HETDEX is
reaching an accuracy of about 2.5% at this k-value.

Thus, we can conclude that the issue of correcting for the window function has to be
examined further to exclude any systematic effects at an accuracy comparable to the sur-
veys statistical error. The problem is not to calculate the window function to an arbitrary
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Figure 3.8: Ratio between the undistorted power spectrum (solid line), the single resolution
convolution (long dashed line), double resolution convolution (short dashed line), quadruple res-
olution convolution (dashed dotted line) and the IFU-selected power spectrum.

accuracy, but confirming the accuracy by carrying out the convolution.

Correcting for Zero-Point Uncertainties

Assuming a Gaussian zero-point error distribution with a variance of σ2
zp and a window

function w(x) the overdensities δ̂(~x) with zero-point errors can be calculated like:

δ̂(~x) = n(~x) [δ(~x) + σww(~x) δ(~x)] . (3.6)

Because of the distributivity of convolution, we can express the power spectrum with
zero-point effects and selection effects, P̂ (k), by a sum of only the spectrum with selection
effects, P̃ (k), and an additional power term:

P̂ (~k) = P̃ (~k) + σ2
w P̃ (~k) ⊗

∣∣∣w(~k)
∣∣∣2 , (3.7)

with w(k) being the Fourier transformed window function.
The additional power term is proportional to the square of the error in the luminosity

calibration σzp.
To test how well the relation holds in a simulated environment, we calculate the addi-

tional power by subtracting P̃ (k) from P̂ (k) with 5% zero-point errors. As the sigma-ratio
between the 10% and 5% error case is 2, we multiply the additional term by 4 and add it
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Figure 3.9: Ratio between the power spectrum with 5% zero-point errors (+), the 10% zero-point
errors (*) and the IFU-selected power spectrum. The crosses with errorbars show the 5% data
corrected in amplitude to match the 10% data.

to P̃ (k). The result should match the 10% error case. Figure 3.9 shows the excellent agree-
ment of the original 10% zero-point error power spectrum and the model. The agreement
is better than the random errors of the 400 cubes. These are not affecting this comparison,
as both the 5% and 10% case share the same error in the initial power spectrum, due to
cosmic variance and shot noise, but not in the statistically independent zero-point errors.

As the correction is better than the statistical error of the initial power spectrum, the
impact of the zero-point effects can be corrected for and thus neglected in the cosmological
test as long as the shape of the error distribution is well known. While a different shape
is changing the form of the additional power term, the integral, measured to first order by
σw, is proportional to the amplitude of the additional term. In the case of HETDEX the
error of the luminosity calibration should be known to about 1%.

3.4.2 Statistical Errors

Using simple mode counting arguments, the relative error of a power spectrum σP (k) is
given by Eqn. 3.1.

Additional errors are introduced by mode coupling and mixing due to redshift and non-
linear growth effects. Both of them are, to some extent, included in the semi-numerical
simulation. Note that, because of the high redshift range of HETDEX, these errors are
very small. More errors are introduced via correlations with the window functions and



60 3. The Impact of Sparse Sampling on Power Spectrum Cosmology

zero-point effects. In this section, we will investigate the impact of the various selection
effects on the absolute error.

The error of the error can be calculated as,

Stddev(σ) = σ
1√
2N

. (3.8)

With N = 400 cubes, this results in a relative error accuracy of 3.5% per data point,
or a cumulative 0.4% for all 40 data points of one power spectrum to a maximum k value
of 0.3hMpc−1
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Figure 3.10: Relative errors calculated from Eqn.3.1 (solid line) and estimated from the numerical
sample (data points). The error bars are given by Eqn. 3.8. From left to right and bottom to top:
Undistorted power spectra, z-selected power spectra, IFU-selected power spectra, power spectra
with 10% zero-point errors.

Figure 3.10 shows the errors computed using the statistical variance of the simulations
themselves and the errors predicted by Eqn. 3.1. We plot the errors of the undistorted
spectra in the lower right panel, and errors of a power spectrum with radial selection
effects in the lower right panel. The upper left and right show spectra with additional
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angular selection effects and 10% zero-point effects, respectively. The absolute error of
the simulations is increasing from left to right and bottom to top, because more and more
particles are excluded due to selection and thus increase shotnoise errors.

Because of the high redshift of z = 2 of the simulations, redshift-space effects and
non-linear growth do not affect the error budget of the power spectrum much, and the
undistorted redshift-space power spectrum matches the predictions perfectly, at least at
scales relevant for HETDEX up to k = 0.3hMpc−1. The radial selection function also does
not introduce considerable errors, while the angular selection function increases the errors
by a relative mean of 5%. The zero-point effects do not further alter the error budget
considerably.

For a cosmological test this means that a relative increase of the error by5% translates
directly into a decrease of accuracy by a relative 5%.

3.4.3 Correlation Matrix

The correlation matrix gives the correlation of a mode k with another mode k′, with the
case of total correlation normalized to 1 and total anticorrelation normalized to -1. We
calculate the mean correlation matrix ρ(k, k′) by calculating the mean power 〈P (k)〉 and
the error σ(k) from the N = 400 cubes, compute the correlation matrix for one cube, and
average over all the cubes i using

ρ(k, k′) =
1

N

N∑
i=1

(〈P (k)〉 − Pi(k)) (〈Pi(k′)〉 − P (k′))

σ(k)σ(k′)
. (3.9)

Figure 3.11 shows the correlation matrices of the various samples. Unfortunately the
accuracy of each element in the correlation matrix is, given Eqn. 3.8 and Gaussian error
propagation, only 5%. Figure 3.11 clearly shows fluctuations on the order of 5%.

Within the error bars, the z-selection does not have a considerable effect on correlations.
This was expected, as the selection in line of sight direction only affects one third of the
modes, in contrast to two thirds for the angular selection function. The function itself is
quite smooth with uncorrelated modulations due to the spectrum of the night sky which
modulates the selection in z-direction. Further resolution effects of the instrument can be
neglected as z-resolution scale is far smaller than any scale of interest. The angular window
function introduces noticeable correlations along all length scales. This agrees well with the
assumption that the strong correlations form the angular window function are washed out
in Cartesian space and distributed over all length scales. The correlations due to zero-point
effects seem to increase rapidly with higher values of k. The main correlation length of the
volume covered in one night is 60h−1 Mpc which corresponds to a k value of 0.1hMpc−1.
All scales smaller than this length should have the correlations from the angular window
enhanced, as the zero-point distortions are working on exactly that pattern.

The lower panel of Fig. 3.11 is zoomed in on the k values relevant for HETDEX. Here,
the correlations are dominated by the IFU selection function, while the effect of both z-
selection and zero-point effects is small. The increase in correlation due to IFU-selection
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Figure 3.11: Upper Panel: Correlation matrices of, from left to right and bottom to top,
undistorted power spectra, z-selected power spectra, IFU-selected power spectra, and power
spectra with 10% zero-point errors.
Lower Panel: Same correlation matrices, but zoomed in on the region relevant for HETDEX.
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at these scale seems to, at least with the resolution provided by the 400 cubes, affect all
scales uniformly with a mean increase in correlation to about 0.04.

3.5 Cosmological Test

A wide variety of dark energy models are currently proposed (see Copeland et al., 2006)
with various parametrization of the equation of state of dark energy, w, and its behavior
in time. Models include, but are not limited to, standard dark energy (Carroll et al.,
2003), brane world models (Sahni & Shtanov, 2003), or quintessence (Caldwell & Linder,
2005). Because the time dependent as well as the time independent characteristics of w
are affecting the power spectrum as a function of redshift, we do not test for w directly,
but only calculate the impact on geometry and growth. Given a certain dark energy model
one can then convert these results to accuracies on w and its various parametrizations.

The effect of w on geometry is measured by calculating the goodness of fit from the data
and a reference cosmology scaled by a dimensional scale factor, s. The effect on growth is
calculated by computing the goodness of fit between the data and a reference cosmology
with an amplitude scaled by a growth ratio d.

3.5.1 Geometric Test

The geometric cosmological test is based on the fact that the distance of an object on the
sky both in radial and in angular direction is a function of cosmological parameters, like
the dark energy density ΩΛ, the total matter density, Ωm, and the equation of state of
dark energy, w. Surveys only measure the redshift, z, and the angular separation, φ, of
objects. The co-moving line of sight distance, x‖, and the co-moving angular distance, x⊥,
are calculated from redshift and angular separation:

x‖ =
∫ z2

z1

dx

dz
dz , (3.10)

x⊥ = φ
∫ z2

0

dx

dz
dz , (3.11)

using the relation,

dx

dz
=

c

H(z,ΩΛ,Ωm, w)
. (3.12)

with H(z) being the redshift dependent Hubble constant.
In the case of a flat universe, the Hubble constant can be approximated as,

H(z) = H0

√
Ωm (1 + z)3 + ΩΛ e

3
∫ z
0
d ln(1+z′) [1+w(z′)] , (3.13)

with H0 being the Hubble constant measured today.
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To perform a geometric test, redshifts and angular separations have to be converted
into into co-moving distances using a test cosmology. A power spectrum can then be cal-
culated from the resulting positions and the result compared to a template power sectrum
calculated from theory using a reference cosmology.

As this is very time consuming, this process can, as shown in Koehler et al. (2007) be
emulated by scaling only the resulting power spectrum. The ratio in scale length s is a
function of the ratios in parallel and perpendicular direction

s (ΩΛ,Ωm, w) =
1

3

x̂‖
x‖

+
2

3

x̂⊥
x⊥

, (3.14)

with x̂ denoting the length scale of a test cosmology and x being the length scale of
the reference cosmology. Although the parallel and perpendicular modes can not, due
to the braking of the distant observer relation, be directly translated into the Cartesian
coordinates of the Fourier transform, Wagner et al. (2008) has shown that the difference can
be neglected in HETDEX like surveys, where only a small fraction of the sky is sampled.

The power spectrum itself scales with the scale ratio s both in frequency and in ampli-
tude

P (k, s) = s−3 P (k s) . (3.15)

As the power spectrum declines at higher k values like a power law with a slope of
-1.8, the scaling relation is dominated by the decline in amplitude and not by the phase
contribution.

3.5.2 Growth Test

Cosmological parameters like w are also affecting linear structure growth, by delaying or
amplifying the growth rate, and thus the amplitude of the power spectrum, independently
from the geometrical effect. To measure both the geometrical part and the linear growth
D, we include the ratio of structure growth factors

d (ΩΛ,Ωm, w) =
D̂

D
, (3.16)

where the reference growth factor D is determined by the reference cosmology and D̂
by the cosmological parameters of the test cosmology. D can be approximated (see Linder
& Jenkins, 2003) like

D (ΩΛ,Ωm, w) =
5

2
ΩmH(z)

∫ a

0
da [aH(z)]−3 , (3.17)

with the scale factor a ∝ (1 + z)−1. The power spectrum itself scales with the growth
ratio d only in amplitude

P (k, d) = d2 P (k) . (3.18)
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In this case, the scaling relation is purely determined by amplitude.

3.5.3 Test Setup

Combining both the geometrical and growth scaling relations we end up comparing a test
power spectrum

P ∗(k, s, d) = d2 s−3 P (k s) , (3.19)

with the reference power spectrum P (k) depending on various cosmological parameters,
including biasing b, structure growth D, matter and dark energy content Ωm,ΩΛ, and the
normalization σ8 in addition to some other parameters.

We use a simple χ2-test to calculate to goodness of fit between the reference and the test
cosmology. The power spectral template is computed using CAMB (Lewis et al., 2000).

Table 3.2: CAMB Parameters
Par Value Description
w -1 equation of state of DE
ΩΛ 0.75 dark energy density
Ωm 0.25 matter density
Ωb 0.045 baryon density
H100 0.72 normalized Hubble constant
z 0.0 final redshift
σ8 0.79 power normalization
τ 0.087 optical depth

The errors and the effects of the various selection functions are estimated to first order
by computing the error σ(k) according to Eqn. 3.1 an multiplying them by the ratio
of simulated to computed error given in Fig. 3.10 to include errors introduced by non
linearities, redshift-space, and of course the selection functions. The covariance matrix
covij is calculated using covij = σi ρij σj.

The final χ2 test is then computed using:

χ2 = [P ∗(k)− P (k)]T cov−1(k, k′) [P ∗(k′)− P (k′)] . (3.20)

We only include the modes to a maximum k value kmax. It is suggested by Jeong
& Komatsu (2006) that at redshift two, the maximum reliable wavelength is kmax =
0.3, hMpc−1.

The test proceeds as follows:

• Calculate reference power spectrum

• Convolute reference power spectrum

• Chose test parameters s and d
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• Calculate test power spectrum

• Calculate errors of the test spectrum

• Simulate data with errors using Monte Carlo methods

• Calculate χ2 value

In our test we rescale the errors to match those of a survey with a volume of 2.7h−3 Gpc3

and 0.8 million particles at a redshift of 2.5 and a mean biasing of 2.5. For simplicity, and
because we only want to differentially compare the impact of the selection function, we
neglect the fact that the particle densities in a flux limited survey are distributed in-
homogeneously and that biasing might change with redshift.

3.5.4 Results

Figure 3.12 shows the result of the cosmological test using the undistorted power spectrum.
The two parameters d and s are highly degenerate. Fortunately the impact of w on the
scale ratio s and the growth ratio d is, according to most sensible models (see Linder &
Jenkins, 2003) correlated in their effect on the power spectrum. When w goes up, the scale
ratio goes down, which leads to an increase of amplitude. A more positive w also leads to
an increase in the growth ratio and thus an increase of amplitude.

The gray area in Fig. 3.12 illustrates what parameter combinations are allowed with
current models of dark energy. With s and d being antiproportional in most current models
of dark energy, the resulting model curve in the s-d-plane with a negative slope breaks the
degeneracy of the test and leads to well constrained values.

To better show the effect of the selection functions on the test, we fix one parameter
at 1, which actually underestimates the accuracy because of the anti correlation of the
parameters given a model of dark energy, and vary the other. In Figure 3.13 the χ2 values
for the undistorted, the z-selected, the IFU-selected, and the 10% zero-point errors are
given. In the top panel of the figure, the results for the scale parameters s are given,
while the lower panel shows the results for the growth parameter d. The scale parameter
is much better constrained than its counterpart in growth, as the power spectrum has a
phase dependence on s and a stronger amplitude dependence than d.

While the impact of the z-selection on both parameters is barely visible, the IFU-
selection decreases the accuracy of the test by a relative 16%. The 10% zero-point errors
decrease the accuracy by 23% relative to the undistorted case.

To test whether the increase of absolute error, or the correlations introduced by the
selection functions have the most impact on accuracy, we conduct two additional cosmo-
logical tests:

• the best errors (undistorted) and the worst correlation matrix (10% zero-point errors)

• the worst errors (10% zero-point) and the best correlation matrix (undistorted)
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Figure 3.12: Results of the χ2 test from the undistorted sample with one (short dashed line)
two (long dashed line) and three (solid line) sigma contours. The gray regions mark parameter
combinations allowed by current models.

Figure 3.14 shows the results. One can clearly see, that the effect of the correlations is
about two times as strong as the absolute increase in error. This means that sparse sam-
pling will impose a definitive limit on future very accurate surveys as the error introduced
by correlations approaches the scale of the random measurement errors.

Finally we want to asses the impact of systematic errors on the test. We add four of
the most basic types of systematic errors to the data sample with 10% zero-point errors:

• systematic overestimation of the true power spectrum by 5%

• systematic underestimation of the true power spectrum by -5%

• a k dependent under to over estimation from -10% to 10% leading to a shallower
slope compare to the true power spectrum

• a k dependent over to under estimation from 10% to -10% leading to a steeper slope
compared to the true power spectrum

Figure 3.15 gives a visual representation of the applied errors. In all three cases the
summed relative deviation from the true power spectrum is the same. However, as different
data points have different random errors, the systematic errors will not have the same
weight. The effect on the χ2 test are shown in Fig. 3.16. One can clearly see, that in
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Figure 3.13: Results of the χ2 test with d parameter fixed at 1 (upper panel) and the s parameter
fixed at 1 (lower panel). The solid line denotes the results of the undistorted sample, the long
dashed line of the z-selected sample, the short dashed line of the IFU-selected sample, and the
dash-dotted line of the sample with 10% zero-point effects. Horizontal dashed lines give the one,
two, and three sigma levels for the goodness of fit.



3.5 Cosmological Test 69

 0

 5

 10

 15

 20

 0.97  0.98  0.99  1  1.01  1.02  1.03

∆ 
Χ

2

s

Χ2 tests with different spectra

undistorted
high error, low correlation
low error, high correlation

 0

 5

 10

 15

 20

 0.925  0.95  0.975  1  1.025  1.05  1.075

∆ 
Χ

2

d

undistorted
high error, low correlation
low error, high correlation
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Figure 3.15: The applied systematic errors of a relative 5% (long dashed), -5% (short dashed),
k dependent shallower slope (dotted) and k dependent steeper slope (dashed dotted).

both cases the pure over or under estimation leads to the stronger deviations of 2.5% in
the estimation of d and 1% in the estimation of s. This is expected as the retrieval of both
the scale factor s and the growth factor d relies heavily on amplitude information.

The effect is somewhat weaker in the determination of s, as this fit also uses phase
information, compared to d that is determined purely on amplitude. In the case of steeper
and shallower slope, the situation is reversed. Here s is, compare to pure under and over
estimation, more affected than d. This effect would get stronger if the under and over
estimation would follow a power law. In this case it would be degenerate with changes
in the phase of the power spectrum and be able to maximally distort this part of the
information. For HETDEX, the relative systematic errors should be brought to below 1%,
in order to not heavily distort the recovered values for the scale factor and growth factor.

3.6 Conclusions

We simulate 400 cubes with a base line of 500h−1 Mpc at a redshift of 2, to test the
effects of various selection functions on the accuracy of a χ2-test to constrain cosmological
parameters like the equation of state of dark energy w.

We show, that the effect of the angular- and z-selection functions on the power spectrum
can be corrected for by convoluting the calculated respective window functions with the
undistorted power spectrum. This works especially well for zero-point effects if the error
distribution is known to better than 10% of the absolute zero-point error. Correcting for
the distortions introduced by the radial and angular selection functions works within the
errors of the simulations, which are, however, not small enough to be acceptable. Further
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testing is needed, while there are, at least in principle, no conceptual problems to calculate
the convolution to arbitrary accuracy.

We calculate the increase in absolute errors, introduced by the selection and correla-
tions. The impact on the errors is small, only a relative 5-10% in the worst case. The
effect on a sample cosmological test is a decrease in relative accuracy of about 10%.

The effect of selection on the correlations of the errors is investigated, with the result,
that correlations are introduced on the order of 5%, at all length scales and of 15% at
very small range scales which are, however, not relevant for the HETDEX. The introduced
correlations have a noticeable effect on the accuracy of the cosmological test, reducing the
accuracy by a relative 20%.

Neither the window function, nor the zero-point errors introduce systematic offsets in
the recovered s and d values, assuming perfect knowledge of the window function and
zero-point error distribution. In order to avoid errors from systematics, HETDEX should
correct the various distorting effects to an accuracy of about 1%.



Chapter 4

Estimating galaxy bias in
pencil-beam surveys with low point
densities

Note: this chapter will be submitted as Koehler 2009. The work was performed under the
supervision of Niv Drory.

4.1 Introduction

The properties of high redshift galaxies are, though under investigation form various groups
(see Delliou et al., 2006; Ouchi et al., 2008; Gawiser et al., 2006), still poorly understood.
Large samples of Lyman-alpha emitters (LAEs) have only recently been detected (see
Ouchi et al., 2008) and make statistical analysis of their characteristics, like clustering
lengths, luminosity functions, and biasing possible. High redshift galaxies are important
not only for our knowledge about the evolution of galaxies and structures in the early
universe, but also work as tracers of the underlying dark matter density field to be used in
cosmological tests. LAEs have been proposed as one of these ideal tracers (Steidel et al.,
1996, 1999; Hu et al., 1998), as their emission line of these early star forming galaxies
can be easily detected over large distances. However, pinpointing the statistical properties
of these tracer particles is paramount to the reliability for cosmological test using them
as probes for geometry and growth. As cosmological tests get more and more accurate,
uncertainties in properties like galaxy biasing introduce systematic errors of the order of
the statistical fluctuations due to the size of the survey (cosmic variance) and discreteness
effects. It is thus important to look into statistical effects of properties of LAEs on the
galaxy power spectrum to judge the performance of future experiments like HETDEX (Hill
et al., 2008) using LAEs as tracer particles for cosmological tests.

The distribution of Lyman alpha emitters was measured using narrow band imaging
(see Ouchi et al., 2008; Gawiser et al., 2007) or long slit spectroscopy of gravitationally
lensed regions (see Santos et al., 2004). Orsi et al. (2008) investigated the resulting angular
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correlation functions to infer LAE characteristics like the luminosity function and biasing
from these surveys. One of the main drawbacks of narrowband studies is the extremely
small redshift range of the observed sample. This means that predictions are not only
limited to a small redshift range, but also renders the volume covered very small and thus
introduces large cosmic variance errors in the resulting sample. Long slit spectroscopy of
gravitationally lensed regions on the other hand can not be used for the majority of the
available volume on the sky and thus faces the same problems. Recently (Hill et al., 2008)
are using integral field spectroscopy in the VIRUS-P survey to sample large volumes at
a wide range of redshifts (1.8 < z < 3.8) for LAEs. The volume of the final sample will
be about 8 times bigger than the volume of the two biggest surveys to date, the MUSYC
(Gawiser et al., 2006) and the SXDS survey (Ouchi et al., 2008, 2005), combined.

In this work we will investigate the effect of a pencil-beam geometry on the ability
to measure the amplitude of both power spectrum and correlation function, to recover
biasing. Sect. 4.4 we will calculate the difference in accuracy between statistical analysis
of a super sample as a whole and the combined analysis of sub samples. In Sect.4.5 the
effect of extremely low point densities on the power spectrum and correlation function
will be explored. These calculations and simulations will be used to discuss the effect of
pencil-beam survey geometries on realistic data in Sect. 4.6, where we look at the shapes
of both correlation function and power spectrum, as well as their errors and correlation
matrices. Finally a simple χ2 test will be conducted to investigate the ability of the data
recoverd by the three estimators to constrain basing.

4.2 Survey Layouts

The main difference between narrow-band surveys and surveys utilizing integral field spec-
troscopy units (IFUs) is the geometry of the covered volume. From an observational point
of view, three different basic geometries are possible. A cube, a z-slice, and a pencil-beam.
All three of them require different methods of analyzing the statistical information content
in correlations and impose different problems on the computation.

Cube A cube can be used when a survey covers large volumes both in angular as well
as in radial direction. Imaging surveys using spectroscopic redshifts like SDSS (Tegmark
et al., 2004, 2006; Percival et al., 2001b) or 2dF (see Percival et al., 2001a; Cole et al.,
2005) produce these kind of galaxy catalogs. In the case of a volume limited survey a
cube is the natural geometry to compute correlations using Cartesian coordinates. It
allows the calculation of all modes in the volume in all three dimensions, with an optimal
window function and minimal error correlations. Compact, cube like surveys have also the
advantage of offering the highest information content of two-point statistics per volume,
with their large number of correlations growing with a power of 2 with distance.

z-slice A z-slice is produced by narrow band surveys, that restrict their redshift range
by relying on filters with a narrow z-range, or the radiometers probing for the cosmic
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microwave background radiation, that is only emitted in a very narrow z-range. As a
result, all the detected information lies in the selected z-range. Examples are the MUSYC
(see Gawiser et al., 2007) and SXDS (see Ouchi et al., 2008) or the CMB surveys like
the WMAP experiment (see e.g. Komatsu et al., 2008) or its predecessor COBE (see e.g.
Smoot et al., 1997). Angular power spectra or correlation functions are able to exploit all
the information in a z-shell. As they throw away all the correlations of the density field in
the radial direction, they are ideal for computing survey volumes which are of very small
thickness. z-slices provide the second highest information content within the compared
geometries, with the number of correlations growing linearly with survey extent in the
mostly two dimensions of the survey.

Pencil-Beam A pencil-beam is produced by IFU surveys today but have been produced
in the past using photometric redshifts (see e.g. Broadhurst et al., 1990; Fernandez-Soto
et al., 1999; Heidt et al., 2004) or spectroscopic redshifts using long-slit or multi-object
spectroscopy (see e.g. Cowie et al., 2004; Noll et al., 2004). As modern IFUs tend to have
small fields of view compared to imaging surveys, the angular dimensions of the resulting
surveys are small. On the other hand, they detect LAEs spectroscopically in a wide range
of redshifts, giving an IFU survey a very elongated geometry. A pencil-beams information
can not be calculated using angular correlation functions or power spectra as most of the
information lies within the radial correlations of the density field, that are thrown away
by purely angular statistics. One dimensional statistics are best suited to this survey ge-
ometry. Pencil-beams offer the lowest information content for two point statistics, as the
number of correlations stays constant with distance in the pencil-beams largest dimension.

All three of the survey techniques mentioned are able to trade survey volume against
point density and vice versa by either making longer exposures (and thus detect fainter
galaxies) to increase point density, or making shorter but more numerous exposures to
increase the survey volume. The function translating time into point density and volume
is highly non-linear and often has sweet spots where longer or shorter exposures are not
desireable. The maximum volume is limited by the luminosity of the brightest galaxies,
while the point density is limited by the number of galaxies and the slope of the luminosity
function.

Sparse sampling techniques (see Kaiser, 1986; Colombi et al., 1998; Blake et al., 2006)
allow for a direct trade of volume for point density, but also allow a survey to vary geometry.
A narrow band survey can use different filters to extend its size in the z-direction, while an
IFU survey can set its exposures further apart to increase the size in angular dimension.
The change from one geometry to another does not only change the information content by
altering the cosmic variance and point density parameters, but also influences the choice
of estimator. In principle each survey geometry would need its own tailored estimator like
a Karhunen-Loeve Eigenvalue estimator (see e.g. Tegmark et al., 1997) as implemented by
Tegmark et al. (2002).
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4.3 Estimators

In this work, we will investigate the performance of three different estimators to measure
clustering strength and difference between dark matter and galaxy clustering, the galaxy
bias. Two of the estimators are different approaches to measure the power spectrum, the
other one is the two point auto correlation function.

4.3.1 Power Spectrum

We measure using the FKP (see Feldman et al., 1994) algorithm to compute the dark
matter power spectrum PDM(k) of overdensities in δg(r):

PDM(k) =
(2π)3

Vk

∫
Vk

d3k δ3
D(~k − ~k′) < |δ(~k) δ∗(~k′)| > , (4.1)

=
1

Nk

∑
k<|~k|<k+δk

|n(k)− n̄(k)|2 − Pshot . (4.2)

with nk, n̄k being the Fourier transformed galaxy density field and average density and
Nk the number of modes averaged in a k-shell. Pshot is the shot noise due to discreteness
effects.

The observed power spectrum Pobs(k) is convolved with the window function |w(k)|2 of
the survey. It is the Fourier transform of the product of the the radial, line of sight window
function introduced by the wave-length dependent throughput of the instrument and the
angular window function due to the cone like observation window. The observed power
spectrum is related to the true underlying dark matter power spectrum by the relation:

Pobs(k) =
[
b2(k) PDM(k)

]
⊗ |w(k) |2 . (4.3)

The biasing function b(k), which connects the dark matter overdensities δm to the
observed galaxy overdensities δg , can be expanded into a linear and scale dependent term:

δg(k) = b(k) δm(k) = b̂ [1 + b̃(k)] δm(k) . (4.4)

We consider two ways to grid the data for the Fast Fourier Transform (FFT).

• (A) In a cube of the length of the pencil-beam survey

• (B) In a cuboid with the length of the pencil-beam survey width and height equal to
the maximal expansion of the survey in each direction on the sky

The two methods are distinct in various ways: In case A, the fundamental mode of the
Fourier transform will be of equal size in all dimensions, while in case B, the fundamental
mode varies with dimension. This means, that the volume each mode occupies in the cuboid
will also be elongated, leading to a non-standard sampling of k-space. The sampling in
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the cube will be regular as normal. The cube will, however, be mostly empty, as only a
small fraction of the volume is occupied by galaxies. This will lead to a extremely shallow
window function and strong correlations in the errors and data. The cuboid will not suffer
from these correlations, as the modes are, with the exception of edge effects due to the
wedge like geometry, independent. As the shot noise is directly proportional to the filling
factor, the cube will suffer from much higher shot noise than the cuboid, which will mostly
retain the shot noise of the original sample.

To carry out the FFT we use the well tested FFT libraries FFTW (2008).

4.3.2 Correlation Function

The correlation function, the Fourier transform of the power spectrum, is measured us-
ing the algorithm proposed by (Landy & Szalay, 1993) that was shown to have almost
Poissonian variance:

ξ(~r) =
∫

d3k P (~k) ei
~k·~r , (4.5)

=
< DD(r)− 2DR(r) +RR(r) >

< RR(r) >
. (4.6)

DD(r), DR(r), and RR(r) are the normalized data-data, data-random, and random-
random pair number counts per distance r. We chose to use a logarithmic binning in this
work to better sample the correlation function at small scales, but will increase bin size
and thus decrease the error along r.

4.4 Analytical Error Analysis of 3D Power Spectra

Both the volume and the point density are critical for the estimation of the information
content of a survey. The smaller a survey is, the higher the probability that the local
realization of the overall density shows random deviations from the real mean of the whole
sample. The lower the point density is, the higher the noise from the Poisson process
distributing the discrete galaxies on the continuous density field gets.

The errors of an averaged 1- dimensional power spectrum without significant contribu-
tion from the window function can be estimated analytically using simple mode counting.
In the case of a one dimensional power spectrum, the error is proportional to the number
of modes in a k-shell of the original three dimensional power spectrum. The volume Vk of
the shell depends only on the length k of the vector ~k and the thickness of the shell ∆,

Vk = 4π k2 ∆. (4.7)

To minimize correlation between the different modes, the binning should be at least of
the size of the fundamental mode ∆k:
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∆k =
2π

L
. (4.8)

In the following calculations we set the binning, and thus the thickness of a k-shell ∆
equal to the fundamental mode ∆k. The mode density mk is then simply given by the size
of the bins,

mk =
1

(∆k)3 . (4.9)

The relative error σ(k) of the mode average, the square root of the number of modes
Mk per k-shell, becomes:

σ(k) =
1√
Mk

=
1√
Vkmk

=

√
2π

Lk
. (4.10)

It is useful to calculate the difference in errors when computing a power spectrum from
a full cube compared to computing the spectrum from small volume sub-samples of the
cube and then combining them. To do this we divide the full cube with a length L1 into
x3 smaller cubes with a length of Lx = L/x. As we are considering biasing we want to
assess the ability of the measured data to constrain the amplitude of the power spectrum
in a k range defined by kmin < k < kmax. Assuming the data is optimally binned in
multiples of the fundamental mode ∆k of the respective cube we can calculate the error of
the amplitude estimation σA(x), by adding up all data points in the relevant k region:

σA(x) =
1

(Nx − nx)

√√√√ Nx∑
i=nx

[σ (i∆kx)]
2 , (4.11)

with the first and last data point nx and Nx given by

∆kx =
2π

Lx
=
x 2π

L1

, (4.12)

nx =
kmin

∆kx
=
n1

x
, (4.13)

Nx =
kmax

∆kx
=
N1

x
. (4.14)

Using these definitions, Eqn. (4.11) can be further simplified,

σA(x) =
1

(Nx − nx)

√√√√√ Nx∑
i=nx

[
1

i
√

2π

]2

. (4.15)

The same data points can be found in the smaller cubes as well as the larger cubes.
They differ only in number, as well as in the value of the error. Using Eqn. (4.11) we can
form the relation
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1

Nx − nx

Nx∑
i=nx

1

i
=

x

N1 − n1

N1∑
i=n1

x

i
=

x2

N1 − n1

N1∑
i=n1

1

i
. (4.16)

We can now combine all the smaller cubes, adding up their data points using simple
Gaussian error propagation to the total error of all measurements Σx,

Σx =
1√
x3
σx . (4.17)

and combine Eqns. (4.15) - (4.16) to arrive at the relation

ΣA(x) =

√
x

N1 − n1

√√√√√ N1∑
i=n1

[
1

i
√

2π

]2

. (4.18)

The total error for the amplitude ΣA(x) only depends on the k-range used and the
ratio of cube lengths x. The error goes up with x which means that the smaller the cubes
are the more information we lose, and the worse the amplitude of the power spectrum is
constrained. This can readily explained by the loss of information which is represented by
the correlations between the density fields in the different cubes that are caught by using
a large cube, but are thrown away when using lots of smaller cubes.

In the case of a pencil-beam survey one can either separate the volume into smaller
parts of cube like geometry or use the whole volume accepting a heavily distorting win-
dow function and strongly correlated errors. But dividing the whole volume into smaller
fractions does not only neglect information, but also introduces the numerical challenge of
very small samples.

In reality we are not dealing with smooth densities but rather with discrete representa-
tions of an underlying density field, like galaxies. This introduces a further source of errors,
the shot noise. The more subtle fluctuations in a power spectrum are, the more points are
needed to sample these differences. Thus the errors introduced by discrete sampling are
indirectly proportional to the spectral power of that scale,

σ(k) =

√
2π

Lk

[
1 +

1

n̄ P (k)

]
. (4.19)

However, Eqn. (4.18) still holds as both the full sample and the sub sample will have
the same point density. This will change when we examine a situation where the survey
geometry is not cube like but elongated. In this case, the full sample itself put into a cube
will have a much lower point density than the smaller subsamples.

4.5 Low Point Density Performance

In the case of VIRUS-P about 250 LAEs are expected in a volume of about 4×105 h−3 Mpc3.
The average distance between emitters equals about 10 Mpc. If one was to divide the whole
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volume into cubes of equal size, every cube would only contain a couple of LAEs. In this
section we want to investigate the impact of extremely low point densities on widely used
numerical implementations of both power spectrum and correlation function estimators.

We use a 5003 h−3 Mpc3 cube from the Hubble Volume simulation (see Sect. 4.6.2) at a
redshift of 2.5 and divide it in 1000 subcubes with a length of 50 h−1 Mpc. Starting with a
density of 0.02 particles per h−3 Mpc3 we gradually reduce the density and calculate both
power spectra and correlation functions in seven steps. Each step halves the point density.
Table 4.1 gives point densities, average particles per cube and average distance of particles
in Fourier space to next particle.

Table 4.1: Point densities, shot noise, number of particles and average distance in k-space
of seven samples consisting of 1000 realizations each from the Hubble Volume Simulation

Sample Point Density Shotnoise Particles k distance
# [h3 Mpc−3] [h−3 Mpc3] [per Cube] [hMpc−1]
1 1.9 × 10−2 5.3 × 101 2375 1.7
2 9.5 × 10−3 1.1 × 102 1188 1.3
3 4.7 × 10−3 2.1 × 102 594 1.1
4 2.4 × 10−3 4.2 × 102 297 0.84
5 1.2 × 10−3 8.4 × 102 148 0.67
6 5.9 × 10−4 3.4 × 103 74 0.53
7 3.0 × 10−4 6.7 × 103 37 0.42

The results for the Fourier transform are shown in Fig. 4.1. One can clearly see that
with decreasing point density, the average power spectrum deviates more and more from
the true spectrum at larger and larger k values, as the average distances between particles
increases.

The results for the correlation function are shown in Fig. 4.2. In this case the correla-
tions do not, within the error bars, deviate from the true correlation function.

This artificial bias should be taken into account when analyzing surveys with low point
densities at small scales with Fourier transforms. Like shot noise, this sampling effect
depends mostly on the scale probed and the power in the sample. Thus surveys like
HETDEX with an expected 800,000 galaxies in a volume of 2.7Gpc3h−1 and a resulting
particle density of 2.9 × 10−4 will have to cope with this effect on the percent niveau on
k values bigger than about 0.3 hMpc−1 as their expected biasing is about 2, effectively
multiplying the expected power by 4.

4.6 Realistic Data

After investigating the effect of low point densities in an artificial environment, we now
want to test the effect of both low point densities and highly elongated surveys on the esti-
mation of correlation function and power spectrum. We use the VIRUS-P survey currently
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Figure 4.1: The mean power spectra of the 1000 cubes with a cube length of 50 h−1Mpc and
an average distance in k of (from bottom line to top data points) 1.7, 0.84, 0.67, 0.53, and 0.42
hMpc−1. The latter two spectra include error bars derived from the sample to visualize the
significance of the deviations.
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Figure 4.2: The mean correlation functions of the 1000 cubes with a cube length of 50h−1 Mpc
and a point density of (analogous to Fig. 4.1) 1.9 × 10−2, 2.5 × 10−3, 1.2 × 10−3, 5.9 × 10−4,
and 3.0 × 10−4 hMpc−1. Error bars are given for the latter two samples.
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underway as an example and simulate various geometries and point densities around this
configuration.

4.6.1 The VIRUS-P survey

The VIRUS-P survey, a pilot survey for the planned HETDEX experiment, (see Hill et al.,
2008), is using an a integral field spectroscopy unit with a field of view of 4.2 arcmin2 to
detect LAEs within a z-range of 1.8 to 3.8. It is going to sample 250 arcmin2 in three
continuous fields of two times 100 and 50 arcmin2. In this way, the survey will cover a
total volume of 4 × 105 h−3 Mpc3. The average angular size of one survey field of about
25 h−1 Mpc is roughly 60 times smaller than its expansion in the line of sight direction of
1400 h−1 Mpc.

The radial selection function of VIRUS-P is given in Fig. 4.3. This function includes
the throughput of the telescope and decreased detection probabilities at the position of
various sky lines.
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Figure 4.3: The radial selection function includes throughput of the instrument and loss in
detection performance due to sky lines.

4.6.2 The Simulation

We are using the Hubble Volume Simulation (see Evrard et al., 2002) to simulate the
VIRUS-P survey. It was already used before to simulate pencil-beam redshift surveys
(see Yoshida et al., 2001). The Hubble Volume simulation offers light cone data of 10
square degrees at the required redshifts. The light cone data includes the velocities of dark
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matter particles to simulate redshift space, proper variations in redshift with distance to
the observer, and non-linear growth. Table 4.2 gives the parameters of the length of the
simulation box L, the dark energy content ΩΛ, the dark matter content Ωm, the Hubble
constant h, the amplitude normalization σ8, and the mass per particle mp.

Table 4.2: Cosmological Parameters of the Hubble Volume Simulation

Model L ΩΛ Ωm h σ8 mp(M�/h)
ΛCDM 3000 0.7 0.3 0.7 0.9 2.25 × 1012

To investigate the effects of geometry and sampling on the ability to recover the power
spectrum and correlation function we generate 5 different samples consisting of 100 real-
izations of a survey geometry.

A subsample of three samples share the same point density and vary in angular diame-
ter, while another subsample of three samples varies in point density and shares the same
angular diameter. All the samples versus the same extension in line of sight direction,
resembling the VIRUS-P redshift range between 1.8 < z < 3.8. See Tab. 4.3 for detailed
information.

Table 4.3: Geometrical properties and point densities of the 5 samples consisting of 100
realizations extracted from the Hubble Volume Simulations

Sample Angular Size Point Density Elongation
# [arcmin2] [h3 Mpc−3] [h−1 Mpc]
1 25 2.8× 10−2 1370
2 400 2.8× 10−2 1370
3 100 2.8× 10−2 1370
4 100 2.8× 10−3 1370
5 100 5.6× 10−4 1370

The samples were generated by dividing the whole Hubble Volume light cone into 100
realizations with the appropriate geometry. All samples were selected using the VIRUS-P
window function in radial direction.

As the samples do not contain galaxies, but only dark matter halos, the bias of all
samples equals 1. Interactions between biasing and redshift space are not included in this
analysis.

4.6.3 Shapes

We compute power spectra using both FFT methods and correlation functions of all sam-
ples given in Tab. 4.3. To explore the effect of a different survey geometry, we first use
samples 1-3, which vary in angular diameter. Point density is at the constant value of
2.8 × 10−2[h3 Mpc−3] for all the samples. Figure 4.4 shows the mean power spectra of
100 realistions using the cube FFT. The smaller the angular diameter, the shallower the
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window function, and the stronger the deviation from the true power spectrum. However,
the effect is not most prominent on large scales, as the window function leads to a strong
migration of power from larger scales to smaller scales.

The same behavior is found in the estimated power spectrum using the cuboid FFT,
as shown in Fig. 4.5. In this case, the smaller scales are not affected by the artificial
window function introduced by the elongated geometry, although the larger scales still see
the window effect of the wedge like geometry and the selection function. These effects
dominate, as expected, in the more elongated samples, as the power spectrum propagates
closer to the 1 dimensional case. This was already investigated by (Kaiser & Peacock,
1991). They give the one dimensional power spectrum of a cone-like survey as within the
limit of the elongated dimension being much larger than the angular dimension as:

Pobs ∝
1

2π

∫
k
dk kP (k) . (4.20)

This leads to a projection of small scale power to larger scales and thus a suppression
of the power at small k-values. The exact amount of projection depends on the power
spectrum itself. Park & Gott (1990) give examples on how large scale power is affected
depending on the shape of the spectrum.

The exponential fall-off of the input power spectrum compared to a linear theory spec-
trum at scales smaller than 0.4 hMpc−1 can be explained by the initial glass-distribution
of the Hubble Volume simulation (see Smith et al., 2003), that leads to less power and
a smaller variance at small scales. Furthermore redshift space effects are dampening the
power at smaller scales due to the Finger of God effect.

The mean correlation functions for samples 1-3 are plotted in Fig. 4.6. Here the effects
of the window functions on larger scales are more prominent. While in the case of the
power spectrum the window function lead mostly to a strong correlation along all modes
(see Sect. 4.6.6), the effect is more intuitive in the correlation function. The smaller the
angular diameter of the pencil-beam, the more correlations are suppressed at larger scales.
Another noteable feature is the lack of correlation at very small scales, in this case smaller
than 3h−1 Mpc, where the correlation function exhibits a slope of about 0. This is due to
the resolution of the Hubble Volume simulation and the afore mentioned glass effect of the
initial distribution.

To compare the effect of low point densities on both statistics we compare the samples
3 - 5. All have the same angular diameter of 10 arcmin and vary in point density by a
factor of 1/10th and 1/50th. The effect investigated in Sect. 4.5 is also present in the
current data set. Figure 4.7 using the FFT cube and Fig. 4.8 using the FFT cuboid both
show the same behavior as the test samples without a window function, plotted in Fig. 4.1.
Depending on k-value, the power systematically deviates from the true power spectrum.
This deviation exhibits the same dependence, even quantitatively, on point density, when
compared to the earlier tests.

The results of the correlation function, shown in Fig 4.9, are also consistent with the
previous simulations. Within the error bars, no deviations from the true correlation func-
tion are found. The functions of the realizations with very low point densities, shown as
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Figure 4.4: Power spectra with different angular diameter using a FFT cube for estimation. The
angular diameter size varies from 5 arcmin (about 6 h−1 Mpc at a redshift of 2.5, solid line), to
10 arcmin (12 h−1 Mpc, long dashed line), and 20 arcmin (24 h−1 Mpc, short dashed line). The
dotted line gives the re-scaled input power spectrum.
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Figure 4.5: Power spectra with different angular diameter using a elongated FFT cuboid for
estimation. The angular diameter size varies from 5 arcmin (about 6 h−1 Mpc at a redshift of
2.5, solid line), to 10 arcmin (12 h−1 Mpc, long dashed line), and 20 arcmin (24 h−1 Mpc, short
dashed line). The dotted line gives the input power spectrum.
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Figure 4.6: Correlation functions with different angular diameter. The angular diameter size
varies from 5 arcmin (about 6 h−1 Mpc at a redshift of 2.5, solid line), to 10 arcmin (12 h−1 Mpc,
long dashed line), and 20 arcmin (24 h−1 Mpc, short dashed line).
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Figure 4.7: Power spectra of the FFT cube with different point densities. The point density
varies from 5.6 × 10−4 (solid line), to 2.8 × 10−3 (long dashed line), and 2.8 × 10−2 h3 Mpc−3

(short dashed line).
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Figure 4.8: Power spectra of the elongated FFT cuboid with different point densities. The
point density varies from 5.6 × 10−4 (solid line), to 2.8 × 10−3 (long dashed line), and 2.8 ×
10−2 h3 Mpc−3 (short dashed line).
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Figure 4.9: Correlation functions with different point densities. The point density varies from
5.6 × 10−4 (+), to 2.8 × 10−3 (x), and 2.8 × 10−2 h3 Mpc−3 (short dashed line).
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dots, seem to have a bias towards higher correlations at larger scales, but this is only an
effect of the logarithmic plotting.

4.6.4 Errors

We estimate the errors of the power spectra and correlation functions from the variation of
the 100 realizations of each sample itself. The accuracy of the errors given 100 realizations
is 7% of the errors. Figure 4.10 gives the relative errors for the samples 1-3.
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Figure 4.10: The relative power spectral errors derived from the simulations for the samples with
(from top to bottom) 5 arcmin, 10 arcmin, and 20 arcmin angular dimension using FFT cubes.

The error behavior of the power spectrum can be roughly divided into two stages: In
the first stage the number of modes stays constant as they now see the elongated structure
of the survey geometry. In the second stage the number of modes increases quadratically
again as the related scales are now small enough to fit into the small dimensions of the
volume. In the case of the FFT cube, this transition is continuous, as all three dimensions
are sampled with equal resolution. The number of modes in the cube is proportional to the
autocorrelation function of a homogeneous sample with a geometry of the survey shown in
Fig. 4.16.

In the case of the FFT cuboid, the different dimensions are not sampled with equal
resolution. In this case, all the larger k values are sampled an equal number if times, till
the k value exceed the fundamental mode of the smaller dimensions. At this point, the
transformation instantly sees the two other dimensions and the number of modes in a shell
starts to increase with a power of 2. This behavior is shown in Fig. 4.11. In the case of the
20 and 10 arcmin survey, the sudden drop in errors at the size of the smaller dimensions
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Figure 4.11: The relative power spectral errors derived from the simulations for the samples with
(from top to bottom) 5 arcmin, 10 arcmin, and 20 arcmin angular dimension using FFT cuboids.

is clearly visible. In the case of the 5 arcmin sample, the drop is not visible due to the
overlay with the onsetting shot noise and exponential fall off of the input power spectrum.

The errors for the correlation function of samples 1-3 are plotted in Fig. 4.12. The
aforementioned behavior of two stages can also be found in this representation. However,
this time not in the relative errors, but in the absolute measurement errors. On small
scales the errors decrease rapidly, as they see all three dimensions of the cube and the
number of pairs restricted by the discrete sampling increases. Intermediate scales see only
one dimension and thus have mostly the same error. And large scales increase in error,
as the number of pairs goes down again. The absolute errors of the correlation function
are inversely proportional to the square root of the correlation function of a homogeneous
sample (see Fig. 4.16) of the same geometry, as it just gives the number of correlations
per radial bin and thus the Poissonian error. Note that the decrease in the errors in this
works correlation function is steeper than expected, as we are using logarithmic binning.
In this case the bin gets bigger depending on radius and thus adds up more correlations
resulting in smaller errors. Using linear binning, the number of correlation pairs in an
homogeneously distributed cube grows with the power of 2, while it grows with approxi-
mately the power of 3 using logarithmic binning.

Figure 4.13 compares the power spectral errors of sample 1 using the FFT cube (1cube),
and the FFT cuboid ((1cuboid) with the calculated errors (using Eqns. 4.18 and 4.19) of
two artificial samples:
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Figure 4.12: The absolute (upper panel) and relative (lower panel) errors derived from the
simulations for the samples with (from top to bottom) 5 arcmin, 10 arcmin, and 20 arcmin
angular dimension.
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Sample A , filling the whole FFT cube of sample 1 with a length of 1370h−1 Mpc, and
the same FFT point density, and thus the same number of particles, as sample 1. The
point density is much smaller, as the volume is much bigger than the volume of sample 1.

Sample B , 60 FFT cubes with the same angular diameter as the simulated sample
(about 22h−1Mpc), and a total volume and number of particles as sample 1.

Both samples A, and B have the optimal window function of a FFT cube.
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Figure 4.13: Sample errors of sample 1 (points with error bars) and calculated errors for sample
A (dashed dotted line), and sample B (dotted line). See text for sample description.

Although sample A and 1cube share the same technical shot noise, meaning that they
have the same point density averaged over the whole FFT cube, they do not have the same
“turn around” scale, where the increase in error due to higher shot-noise to spectral power
ratio compensates for the decrease in error due to more modes contributing to the power
spectrum at smaller scales. The “effective” shot noise of sample 1cube is much closer to the
value computed by only using the actual sample volume and neglecting the sourrounding
empty cube used for the FFT. Both samples 1cube and 1cuboid start with an error of 1 at their
fundamental mode, a clear indication that only one dimensional information is available.
A three dimensional power spectrum using a bin-size of the fundamental k-mode would
already see 8 independent modes. The different slope at large scales due to the different
resolutions of sample 1cube and sample 1cuboid, is also clearly visible. The errors of sample
1cuboid agree perfectly with the predictions of sample B, as the fundamental mode of the
two smaller dimensions of the former,is equal to the fundamental mode of the latter. Shot
noise is also equivalent, so the power spectrum of the cuboid is in principle the sum of a
number of uncorrelated Fourier cubes with a length of the smaller dimension.
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Comparing samples A on the one hand and B and 1cuboid on the other, shows the effect
of trading shot noise for volume when one dimension of the geometry has a fixed length,
like in an IFU survey. Both samples have the same number of particles, but vary in volume.
As expected, the smaller scales are much better constrained by the sample with the lower
volume but higher point density (B), and larger scales are better constrained by the survey
with lower point density and higher volume (A). This would be visible even more if the
glass distribution would force the power sectrum to fall off exponentially on that scales and
thus lead to an exponential increase in relative error. The exact transition point depends
on the spectral power of the sample and the total number of particles. In the case of
an IFU survey, this trade off is also restricted by the minimum shot noise of the average
number of particles found in the volume of one reasonably deep exposure.

Looking at the absolute error value of all the samples, it is instantly clear that the
errors of sample 1cuboid have to be highly correlated to be so small, as the should never be
smaller than the errors of both sample A and B. They can, however, be smaller than B at
larger scales, because of the better sampling, and A at small scales, because of the smaller
effective shot noise.

4.6.5 Window Function

The effect of the sample geometry on the shape of the power spectrum and the correlation
of the errors is best examined by looking at the window function of the survey. Figure 4.14
shows the integrated window functions of all three tested geometries using the cube FFT.
All three samples show a window function with a very shallow slope at small k values,
leading to very strong correlations. Depending on the actual survey geometry, the window
function falls off at the scale of the angular diameter of the sample. The fall off is clearly
visible for the 20, 10, and 5 arcmin samples, at the k values of 0.2, 0.4, and 0.8 hMpc−1,
corresponding to the angular diameter scales. In the case of the 20 arcmin sample, the
higher order peaks of the Fourier transformed rectangle are also visible.

The integrated window function of the cuboid FFTs is plotted in Fig. 4.15. The slope
falls off much faster than in the case of the FFT cube estimation. Three effects prevent
the window function from falling off exponentially: The window function introduced by
the line of sight selection function, the window function introduced by the cone like survey
geometry, and the oversampling in one dimension with respect to the two smaller dimen-
sions, leading to a projection of power from smaller to larger scales. The fundamental mode
of the elongated dimension is much smaller than the fundamental modes of the angular
dimensions, which leads to elongated volumina of the sampled modes, and correlations on
the scale of the fundamental modes of the smaller dimensions.

The window function of the correlation function is simply the cuboid itself. However,
it is instructive to calculate the auto correlation function of all geometries, populated with
a homogeneous particle distribution. The result is simply the number of pairs available
within a given separation interval. This value is antiproportional to the square of the error.
The autocorrelation function of the homogeneous samples are shown in Fig. 4.16. As in
the previous discussion, the samples see the three dimensions at small scales, where the
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Figure 4.14: Window functions for the samples with (from top to bottom) 5 arcmin, 10 arcmin,
and 20 arcmin angular dimension using the FFT cube.
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and 20 arcmin angular dimension using the FFT cuboid.
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number of correlating particles increases with the surface of a sphere around every particle,
and see only one dimension at large scales, where the number of correlating particles stays
constant. In this work, we use logarithmic bins and thus add a factor of about 1 to the
slope. The autocorrelation function for a homogeneous cube with a side length equal to
the length of all surveys is also plotted. It sees all three dimensions at every scale and thus
has the same slope throughout the whole r range.
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Figure 4.16: Autocorrelation functions for a homogeneous point distribution within the geome-
tries of the samples with 5 arcmin (solid line), 10 arcmin (long dashed line), 20 arcmin (short
dashed line) and a full cube (dotted line).

4.6.6 Correlation Matrix

The correlation matrix gives the correlation of a mode k with another mode k′, with the
case of total correlation normalized to 1 and total anticorrelation normalized to -1. We
calculate the mean correlation matrix ρ(k, k′) by calculating the mean power 〈P (k)〉 and
the error σ(k) from the N = 100 realizations, compute the correlation matrix for one
realization, and average over all the realizations i using

ρ(k, k′) =
1

N

N∑
i=1

(〈P (k)〉 − Pi(k)) (〈Pi(k′)〉 − P (k′))

σ(k)σ(k′)
. (4.21)

The results for sample 1-3, that vary in angular diameter but not in point density, are
shown in Fig. 4.17. We only plot the correlation matrices of the power spectrum estimated
with the FFT cube and the correlation function. The correlation matrices estimated using
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Figure 4.17: Correlation matrices for correlation functions (left column) and power spectra using
FFT cubes (right column). The samples 1-3 are organized from top to bottom starting with the
20 arcmin diameter sample, followed by 10 and 5 arcmin. All samples share the same point
density of 2.8× 10−2 h3 Mpc−3.
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Figure 4.18: Correlation matrices for correlation functions (left column) and power spectra (right
column). The samples 3-5 are organized from top to bottom starting with the 2.8×10−2 h3 Mpc−3

sample, followed by 2.8 × 10−4 and 5.6 × 10−4 h3 Mpc−3. All samples share the same angular
diameter of 10 arcmin.
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the FFT cuboid from the 100 realizations are, within the errorbars of ± 0.15, in agreement
with the unit matrix, meaning no measureable correlations.

The correlations for the power spectrum estimated using the FFT cube are extremely
strong and evident throughout all three samples. As predicted by the window function, the
samples with smaller angular diameter are correlated stronger than samples with larger
angular diameter. In the limit of a vanishing window function one would expect the power
spectrum to not show any correlations at all, while the correlation function is expected to
show considerable correlations. In the samples examined in this work, the correlation func-
tion displays correlations that are an order of magnitude smaller than the power spectrum.
Furthermore, the correlations decrease with smaller angular diameter of the sample. This
can be explained by that fact that the less dimensions a sample has, the fewer correlation
bins a single particle contributes to, and thus the weaker the correlation between the bins.

Figure 4.18 gives the results of samples 3-5, that vary in point density but not in angular
diameter. In both cases, power spectrum and correlation function, the correlation between
the different bins decreases with decreasing point densities. This can be explained by the
impact of increasing shot noise, which works independently on various scales. As shot noise
increases the error budget becomes dominated by the uncorrelated discreetness errors and
the correlations go down.

4.7 Bias Determination

We will now examine the impact of the survey geometry on the ability to recover the ampli-
tude of both correlation function and power spectrum and thus its accuracy in constraining
amplitude dependent effects like galaxy bias.

Biasing works on the amplitude of the underlying dark matter distribution and thus on
the respective dark matter power spectrum, PDM(k), and correlation function, ξDM(r), to
generate the observable galaxy power spectra, Pobs(k), and correlation functions, ξobs(k).
However, the galaxy power spectrum and correlation function itself is distorted by the
survey window function to produce the observed quantities:

Pobs(k) =
[
b2 PDM(k)

]
⊗ |w(k) |2 (4.22)

= b2
[
PDM(k) ⊗ |w(k) |2

]
, (4.23)

ξobs(r) = b2 ξDM(r) w2(r) . (4.24)

In this case we are only looking at the overall scale independent biasing factor b. Both
the convolution with the window function and the related multiplication in real space are
associative with biasing. We can thus simply compute the accuracy in the measurement
of amplitude in the distorted samples and do not have to deconvolve them.
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4.7.1 χ2-Test

We compute the ability of the power spectrum to constrain the amplitude, and thus scale
independent biasing, using a simple χ2 test:

χ2 = [Pm(k′)− Po(k′)]
T

cov−1(k, k′) [Pm(k)− Po(k)] . (4.25)

The covariance matrix cov(k, k′) is calculated from the simulations. To fully recover
the effects of any correlations we use the sample of 100 estimated power spectra as the
observed power spectra Po(k). The model power spectrum Pm(k) is simply the mean
power spectrum of the 100 realizations multiplied by the tested amplitude.

We restrict the test to a k range of 0 < k < 0.8hMpc−1 in the case of the power
spectrum and an r range of 3 < r < 12h−1 Mpc in the case of the correlation function.
The maximum k value is motivated by the fact, that the input power spectrum, computed
from the whole simulation light cone at the appropriate redshift values, turns negative at k
values bigger than 0.8, because of the initial glass distribution (see Fig. 4.4 and 4.5). The
minimum r range is motivated by the fact that correlation function starts to deviate from
the predicted monotonously decreasing power law behavior at that value (see Fig. 4.6).
The maximum r range was picked due to the exponential increase in relative error of the
correlation function at that value (see Fig. 4.12).

4.7.2 Results

We calculate χ2-values for all 5 samples estimated with the FFT cube, FFT cuboid and
correlation function. We plot the results of all tests in Fig. 4.19, grouping them depending
on estimator, geometry comparison, and point density comparison.

Comparing the results of the samples with varying geometry and the results with vary-
ing point density, we find that point density is affecting the results much more strongly.
This is the case, because the error is reduced only by the the cube root of the volume, but
goes down linearly with increasing point density, if the shot noise is much bigger than the
power in the sample. This is true for the two low-density samples, where the density is de-
creased by a factor of 1/10th and 1/50th, while the volume only varies by a factor of 1/4th
and 1/16th in the samples with variable geometries. It is thus advisable to trade volume
for point density till the shot noise falls below the amplitude of the power spectrum.

Looking at the different estimators, we see that the FFT using the cuboid and the
correlation function generate roughly the same results. The results of the correlation
function are somewhat worse than the FFT cuboid results at higher point densities and
better at low point densities. Furthermore, the results of the correlation function show
a bias towards higher amplitudes at lower point densities. This could be an indication
that even the correlation function is biased towards higher amplitudes at small scales. The
power spectrum does not show this effect, as the maximum k value is small enough to not
include the observed bias at high k values.

The FFT using the cube however is far off. The correlations introduced by the ex-
tremely shallow window function and the additional shot noise introduced by the mostly
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empty cube destroy much of the information. In the case of the 5 arcmin diameter sam-
ple and the low point density samples, the χ2 test using the FFT cube estimates is even
numerically extremely unstable and thus not plotted. The overall behavior of the FFT
cube is numerically very unstable, especially in the case of matrix inversion, regardless of
algorithm used. We are thus not able to recover the information content of the samples to
a degree comparative with the FFT cuboid estimation of correlation function estimation.

Table 4.4: 1σ intervals for the amplitude measurement of all 5 samples using the 3 different
estimators. The amplitude is normalized to 1.

Sample ξ(r) Pcuboid(k) Pcube(k)
1 0.95 - 1.05 0.96 - 1.04 0.92 - 1.10
2 0.93 - 1.07 0.97 - 1.07 0.76 - 1-20
3 0.83 - 1.16 0.85 - 1.14 -
4 0.80 - 1.23 0.74 - 1.26 -
5 0.55 - 1.58 0.41 - 1.58 -

The exact values for the 1σ interval of the amplitude measurement accuracy are given
in Tab. 4.4. The VIRUS-P survey is best modeled by sample 4. Although the shot noise
in the VIRUS-P survey is best modeled by sample 5, the expected biasing of about 2
increases the power versus shot noise ratio by a factor of 4, which is modeled by sample
4. The VIRUS-P survey can expect the measure the amplitude with one survey volume
to about 25% and the biasing to about 12% in the k-range of 0.01 to 0.8 h−1 Mpc. The
inclusion of smaller scales will increase accuracy, but not considerably, as the shot-noise
versus power ratio is already very high at these small scales, and both power spectrum and
correlation function estimators show possible systematic errors at higher k-values.

4.8 Conclusions

We have calculated the effect of various survey geometries on the ability of three two-
point estimators to recover the information content. As expected by the short analytical
calulations made, the information content decreases as the the survey gets less and less
compact in its geometry.

We use the Hubble Volume Simulation to show that the FKP power spectrum estima-
tor shows a strong bias at very low point densities and see hints that the Landy-Szalay
correlation function estimator shows similar behavior.

We use three dimensional estimators on various pencil-beam like survey geometries to
retrieve power spectra and correlation functions. We find that the inclusion of the two
smaller dimensions in VIRUS-P like surveys carries considerable advantages compared to
using the one dimensional pendants as all estimators “see” the two smaller dimensions at
some point and let them contribute to the overall information budget.

We show that the Fourier transform pairs, power spectrum and correlation function,
yield, within edge effects and numerical accuracies, the same results in constraining the



4.8 Conclusions 101

amplitude and thus biasing of the investigated samples. The investigated samples show
a strong dependency on point density in the ability to constrain biasing and a weaker
dependency on survey volume and elongation vs. width ratio. This can easily explained
by the high shot noise and its domination of the budget.

We are not able to probe both very small scales smaller than 3 h−1 Mpc and large
scales of the order of 1500 h−1 Mpc as the Hubble Volume Simulations do not have enough
resolution for this. Future investigations should also implement a realistic biasing model
to probe for scale dependent biasing and interactions between redshift and biasing.

The predictions are, however, accurate enough to predict an estimated accuracy on the
biasing measurement for the completed VIRUS-P survey of about 12% in the k range of
0.01 to 0.8 h−1 Mpc for one of their two 100arcmin2 fields.
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Chapter 5

The CURE Pipeline

This chapter describes the CURE pipeline developed in association with Niv Drory with
help from Claus Gössl, and Helena Relke.

5.1 Introduction

In contrast to most imaging instruments that can make use of various generic reduction
pipelines, integral field spectroscopy units need reduction pipelines which are tailored to
fit the needs of a specific instrument (see Scodeggio et al., 2005; Sanchez, 2006; Modgiliani
et al., 2007).

The CURE pipeline is designed to reduce the data coming from ≈ 200 integral field
spectroscopy units (IFUs) of the VIRUS (see Hill et al., 2008) spectrograph and detect
line emission objects, in this case Lyman-alpha emitters (LAEs), almost in real time and
without human intervention. As most emission lines will be just above the detection limit
and/or only visible in one fiber, CURE has to use robust error propagation to deliver
detection probabilities together with the detections themselves.

The data CURE will be reducing is, contrary to imaging and alike spectroscopy, ex-
tremely inhomogeneous: The angular information is distributed along the y-direction of
the chip. It is projected in the form of various fiber beams that guide the light from the
different angular positions from the fiber-head through the grating to the camera. The
line-of-sight (LOS) direction is distributed along the x-axis of the chip, in the form of dif-
ferent wavelengths, dispersed by the grating. The transformation between the coordinates
is in principle only a geometrical one. However, the projection from fibers and wavelength
to x and y coordinates on the chip is not uniform. Furthermore, the profile of the fiber
itself, and thus the point spread function (PSF) has to be taken into account. After the
geometrical mapping, the sky has to be subtracted from the science data. This task has
to be especially thorough, as sky lines could easily be mistaken for emission lines, and the
total flux of a line emission object is very small. Finally, CURE has to detect line emission
objects, combining various dithers taken to reach a fill factor of one, and pinpoint their
position on the sky.
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5.2 Generic Reduction

The general philosophy of the CURE pipeline is to modify science frames as less as possible
and avoid re-sampling to other coordinate systems as much as possible. In this way, errors
are not distorted and correlations are kept to a minimum. This is important, as we do
not only want to optimally detect various sources, but also give each detection a robust
detection probability. Looking at the error statistics is also a good tool to check for
consistency and the right treatment of the data.

Fig 5.1 show a flow diagram of the reduction and object detection process. The first
step is to median the relevant calibration exposures (Arc Lights, Traces, and Biasing). In
our case we separate evening and morning calibration exposures (see Sect. 5.3.3). Bias is
subtracted from all calibration exposures and science exposures. Finally, an error frame is
constructed for all exposures and the respective photon noise is added, as all the flux should
now be from photons. We use the tools developed by Gössl & Riffeser (2002) to calculate
error frames along with the reduction and track errors with Gaussian error propagation
throughout every step of the reduction. Every frame is thus related to its corresponding
error frame.

Afterwards the deformer and deformer2 processes construct the distortion model (see
5.3.1) and fiber model (see 5.3.2), that describes the projection of the wavelength and fiber
space onto the chip. A corrected trace, science exposure specific trace is also constructed.

With the artificial models and the corrected trace, the sky is subtracted (see 5.4) from
all science exposures.

Finally the detection routine searches the sky subtracted science exposures for emission
lines (see 5.5).

5.3 Modelling Fibers

To model the projection of the light of the sky onto the chip, we can separate two different
projections. The transformation of wavelengths and fiber coordinates onto the chip, and
the profile of the fibers itself.

5.3.1 Modelling Fiber Positions

The wavelengths, w, and positions in fiber space, f , are projected onto the CCD with x
and y coordinates depending on the geometry of the camera and grating. To model the
distortion we use an N -dimensional polygon with cross terms:

F =
N∑

j,i=0

Aijx
iyj . (5.1)

If the coefficients Aij are known, the f and w coordinates can be calculated for every
point (x, y) on the chip:
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Figure 5.1: The flow diagram for the reduction and object detection process of CURE. Cuboids
with round corners represent fits data files, cuboids represent text data files and hexagons repre-
sent processes.
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f = Ff (x, y) , (5.2)

w = Fw(x, y) . (5.3)

We measure (w, x, y) triples by fitting seven parameter (amplitude, x-position, y-
position, x-sigma, y-sigma, rotation angle, offset) Gaussians to the calibration lines of
arclight exposures. Wavelengths are supposed to be constant at the same arc line. How-
ever, the w values have to be corrected, as the non uniform infall-angle for the fiber beams
into the grating introduces a different w-offset in x direction per fiber. We measure this
offset over a set of especially well constrained arc lines and apply it to the w(x, y) solution.

Figure 5.2: An arc frame used for calibration. The green lines show the position of fiber peaks
and the position of the arc lights from the measured distortion model.

Figure 5.2 shows a cutout of an arc frame. The fitted wavelength solution at the
positions of the arc lights is overlay-ed in green.

The (k, x, y) triples are also known from two dimensional Gaussian fits to arc lights,
as the peak of the Gaussian is also the peak of the fiber at that wavelength, and by one
dimensional Gaussian fits along the y-direction to the peak positions of the fibers. We
arbitrarily construct the f -coordinates to match the y-coordinates at a certain reference
wavelength. Fiber coordinates are constant along the peak flux of a fiber.

Figure 5.3 shows a cutout of a trace frame. The fitted fiber-peak solution is overlay-ed
in green. Note that even very dark fibers are traced all the way from blue to red.

We also calculate coefficients for inverse and hybrid transformations, x(w, f), y(w, f),
y(f, x), and call the sum of the transformations the distortion model. We can get an
estimate of the accuracy of the transformations by looking at the standard deviation of
the fitted triples and by doing a forward and backward transformation for all the pixels on
the chip.
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Figure 5.3: A trace frame used for calibration. The green lines show the fitted positions of fiber
peaks from the measured distortion mode.

The transformations using trace and arc-light data (f(x, y), y(f, x)) are typically cor-
rect to about 0.02 pixel sizes, while wavelength transformations, using arc-light data only,
are accurate to about 0.2 pixel sizes.

5.3.2 Modelling Fiber Profiles

To model the profile of the fibers on the chip, we fit first-order Gauss-Hermites (GH(y))
to cuts along the y-direction of the chip:

GH(y) = A exp

[
−0.5

y2 − µ2

σ2

] [
1 + h2

(
y2 − µ2

σ2
− 1

)]
, (5.4)

Flux(y) = GHF+1(y) +GHF (y) +GHF−1(y) . (5.5)

The starting position of the peak in y-direction µ is given by the distortion solution
acquired earlier, leaving us with the standard deviation σ and the first-order Hermite
coefficient h2.

Because of the overlapping fiber fluxes, we fit three adjacent fibers (F, F + 1, F − 1)
simultaneously, using the result as starting point for next fiber triple and keeping the fits
for the fibers next and right to the probed fiber fixed. This procedure is iterated until the
GH parameters converge. At the red parts of the chip, the possible parameter space has
to be constrained as the fit tries to exploit the degeneracy of the data by alternating the
sign of h2.

The parameters of the Gauss-Hermite (especially y and σ) vary over the chip. We again
fit a polynomial with cross terms to the measured Amplitude A, width σ, and first Hermite
coefficient h2:
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A = FA(x, y) , (5.6)

σ = Fσ(x, y) , (5.7)

h2 = Fh2(x, y) . (5.8)

Unfortunately, the fiber profiles are overlapping quite a bit in some regions of the
chip, leading to degeneracies between the different parameters of he Gauss-Hermite model.
Figure 5.4 shows the fiber profile of three adjacent fibers in the blue, green and red spectrum
on the chip. One can instantly see the broadening of the fiber profile and the resulting
overlap. It is also obvious that it is much harder to estimate the profile of a single fiber in
the case of heavily overlapping fiber profiles, where the cumulative fiber profile (solid lines
in Fig 5.4) and the single fiber profile (dashed lines in Fig 5.4) deviate so much.

5.3.3 Models and Reality

Reaching a model accuracy of about 1% on the chip is not an easy task. While the fiber
peaks have relatively high fluxes and are thus easy to constrain, the fiber edges, which
cover more area, are much fainter (see Fig. 5.4). In the blue, where the fibers have only
negligible overlap, the flux difference is large. In the red, the flux difference is no so big,
but the strong overlap reduces the accuracy of the fit. In both cases, the model has to be
much more accurate than 1% at the peak of a fiber to reach this accuracy at the edges of
the fiber.

We also find, that both the distortion patterns and fiber models vary within a night.
Figure 5.5 shows the deviations of both the fiber positions in y-direction and the σ-values
of the model from calibration exposures at the start and the end of a night. This behavior
is most likely explained by changes in temperature and the resulting breathing of the
instrument. The impact of this effect is strong, especially because the fiber profiles are
quite steep and a small change in position or width results in a large change in flux at a
given position. This forces us to correct distortions and models acquired from calibration
frames taken at the start and the end of the night for science exposures taken during the
night.

To correct the distortion model, we keep the w(x, f) transformation and correct the
f(x, y) transformation by measuring the peak positions (and thus f) from the sky flux in
the science exposures. The fiber model is also corrected, by measuring σ and h2 directly
from the science exposures, using the Gauss fitting technique mentioned earlier (see Sect.
5.3.1 and 5.3.2).

However, due to degeneracies in the fit, and because the Gauss-Hermite is probably not
the best fitting model, a trace constructed from the fiber model of a science exposure is
not as accurate as measured trace from earlier or later that night. Thus we also calculate
a trace frame that is corrected for the change in the distortion model by re-sampling it
to the correct fiber peak positions, but is not corrected for changes in the fiber model
(especially the width of the profile). The re-sampling is not that much of a problem here,
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Figure 5.4: Fiber profiles from the blue (top panel), green (middle panel), and red (bottom
panel) of the chip. The filled red areas give the data points in the trace frame. The long-dashed
line is the fitted artificial fiber model summed over all fibers. The short-dashed line gives the
artificial fiber model for the nearest fiber only.
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Figure 5.5: Differences in the measured y-positions of fiber peaks (left) and width of the fibers
(right) of two trace frames at the start and end of a night.

as the trace is only used as a weight for sky subtraction. We call this fits file the corrected
trace. The corrected trace can only be used in cases, where the cumulative flux of all fibers
is looked at, as it can not reproduce fiber profiles of single fibers. This is needed in the
sky subtraction to eliminate continuum sources. For these purposes, CURE uses the fitted
fiber model.

5.4 Subtracting Sky

HETDEX is a blind survey looking for emission line galaxies. Because of this, most of the
observed area, both in angular direction as well as in wavelength direction, will by empty
and thus contain only sky emission. By exploiting this fact, CURE is able to take the sky
for sky subtraction directly out of the science exposure.

In order to subtract the sky from the science frame, we first divide the whole science
frame by the corrected trace. In this way, all fluxes of one wavelength will be brought
to the same level. We then construct the sky by looking at the flux per wavelength (in
this case the pixels size in wavelength space) of each pixel on the CCD and assign it the
respective wavelength. Because of the distortions introduced by the camera, the sky is
sampled with a much higher resolution than the size of the pixels in Angstrom, as every
pixel gets light from a slightly different wavelength.

Only pixels of a certain window around a reference fiber for which the sky is constructed
are used, because the sky changes slightly over the chip due to instrument distortions. The
resulting sky-flux - wavelength pairs are interpolated using a b-spline, clipping all values
with an offset of a certain value over the estimated spline in a second step to get rid of
cosmics and possible continuum sources.

Figure 5.6 shows the performance of the spline fit. The upper panel gives the sky of a
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Figure 5.6: Examples of sky construction with CURE. The top panel shows the full sky with the
reconstructed sky (solid line), while the bottom panel shows a cutout of the sky with reconstructed
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(x).
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100 pixel window around a fiber in the middle of the chip, while the lower panel shows a
small section with sky fits from four different fibers equally distributed on the chip.

The sky construction is robust until about 50% of the available chip space is contam-
inated with continuum sources, as CURE automatically detects continuum sources and
ignores them during sky construction.

After the construction of the sky, the wavelength for every pixel of the science exposure
is calculated and the sky flux at the appropriate wavelength, multiplied by the corrected
trace, is subtracted.

Figure 5.7: Science frame before and after sky subtraction. The residuals of the 5577 Å sky-line
and the higher fluctuations due to higher photon noise on the fiber peaks are clearly visible.

Figure 5.7 show the difference between a section of a science exposure before and after
the sky subtraction. Although one can still see the fibers in the sky subtracted sky, this
is due to the higher absolute photon noise in the fiber peaks compared to the fiber edges.
Sky lines, except for the 5577, are eliminated to the point where they vanish in the noise.
Two fibers do now clearly show continuum, which is filtered out by the sky subtraction
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routine when constructing the sky. If the continuum sources were not filtered out for
sky construction, the estimated sky around these fibers had a higher flux leading to an
oversubtraction in this area. Note that the science exposure is not corrected for cosmic
rays, as the sky subtraction routine also automatically neglects them when constructing
the sky.

After sky subtraction, the science frame should have a uniform distribution around zero
with deviations given by the error frame. In the case of inaccurate sky subtraction fiber
profiles will not completely vanish which has a severe impact on statistical detection of
line emission sources. To check for accurate sky subtraction we look at various statistical
properties of resolution elements on the chip. Each resolution element is centered on a
fiber peak. The dimensions in fiber and wavelength space are given by the size of the point
spread function at that position, with a total pixel number n.

We measure the histogram of the average sum of fluxes, f , in the resolution element:

sum =
1

n

n∑
i=1

f(i) , (5.9)

the significance, σ, of all the pixels within a resolution element,

σ =
n∑
i=1

f(i)

e2(i)
, (5.10)

the root-mean-square, rms, of the pixels within a resolution element,

rms =

√√√√ 1

n

n∑
i=1

f 2(i) , (5.11)

and the reduced χ2-value of the resolution element,

χ2 =
1

n

n∑
i=1

f 2(i)

e2(i)
. (5.12)

The histograms for the statistics of a typical sky-subtracted frame are shown in Fig.
5.8. The sum of all the pixels in a resolution element of a mostly empty frame should be
0, with a Gaussian distribution and a standard deviation of the error of one pixel divided
by the square root of the number of pixels. The error of one pixels is the rms of the pixels
in a resolution element. One can read of two peaks in the rms histogram that represent
the errors of mostly empty pixels at the edge of a fiber, where read noise dominates, and
pixels in a fiber, where read noise and photon noise are added up. The error of fiber
pixels is fitted with a value of 11. Having 64 pixels per resolution element, the standard
deviation of the sum should be 88, which agrees well with the fitted 85. The histogram of
the significance σ should resemble a Gaussian distribution with mean of 0 and a standard
deviation of exactly 1. The fit shows a good agreement with this prediction. Finally, the
χ2 histogram should follow a χ2 distribution with k = 64 degrees of freedom. We fit such
a distribution with an additional offset term, e, to the histogram. The offset we measure,
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Figure 5.8: Histograms of the sum (lower left), σ (lower right), rms (upper right), and χ2 (upper
left) values of the resolution elements in a sky subtracted frame. Dashed lines denote Gaussian
fits (sum, rms, σ) and χ2-distribution fits (χ2) to the histogram data.
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e ≈ 0.1, is very small, and the χ2 distribution fits the histogram very well. We notice an
excess of resolution elements with higher χ2 values, which are due to non empty resolution
elements (cosmics, continuum sources, line emission).

All in all the statistics look consistent and match the predicted values. Although the
offset in χ2 shows, that there are still some minor systematic errors in the sky subtraction,
that introduce asymmetries in the error weighted fluxes.

5.5 Detecting Emission Lines

After sky subtraction, CURE is ready to detect LAEs on the science exposures. All science
exposures have to be binned into bundles containing all the dithers of one observation field.
CURE does not need to have multiple science exposures at the same dither positions for
cosmic ray elimination, as they are rejected at a later time.

Arc-light frames are also needed for every science exposure. They are used to calculate
the point spread function (PSF) by fitting a seven-dimensional Gaussian to the arc lights.
The resulting parameters are then fitted by a polynomial to describe the evolution of the
PSF over the chip. The quality of this fit is visualized in Fig. 5.9. The strong variations
of the PSF’s standard deviation are captured well by the polynomial fit.

The detection routine starts to sample the sky covered by the observation (α , δ) and the
wavelength range observed (w)on a three-dimensional grid. It calculates the flux in each
fiber of the available science exposures using the geometry (position and size of the fibers)
of the IFU and the seeing of the related science exposure. The fluxes are then projected on
the chip using the fiber and wavelength information together with the distortion solutions.

The possible LAE positions (it can be more than one, as the same LAE can appear
in different fibers in one dither and in different dithers) is then checked for signal on the
chip. Only if the cumulative singal to noise in the expected positions is above a defined
threshold, the position together with the expected flux and signal to noise ratio is stored.

After all positions on the grid were checked for singals, the resulting positions in
α− , δ− , w-space with enough signal to noise are segmented, looking for roughly spher-
ical regions of high signal to noise. Elongated segments represent continuum sources and
are not probed for LAEs.

Suitable segments are probed for possible LAEs. The stored fluxes on the possible
LAE are distributed according to the PSF on the stored spots on the chip and compared
to the observed data using a simple χ2-test. All regions in the various science frames with
a minimum expected flux are taken into account.

The detection algorithm produces a list of χ2-values, and signal to noise ratios for every
probed position in the segment.
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Figure 5.9: Standard deviations fitted to the point spread function over the chip. Crosses show
the measured standard deviations, while the grid visualizes the fitted polynomial plane.

5.6 Testing the Pipeline

To test the pipeline we use a set of observations from VIRUS-P, the prototype instrument
for HETDEX. We simulate a number of LAEs into the set of observations by using the
detection template for the χ2-test and put these directly into the unreduced science frames
adding photon noise on top of it. We then put the science frame through the whole
reduction and detection process and see how well we can reproduce the input parameters
of various LAE sources.

Figure 5.10 shows the detection result of an artificial Lyman alpha emitter. Only the
result with the minimum χ2 value is plotted. To check for the detection performance, we
simulate a couple of hundred sources with a signal to noise below and above to the expected
detection limit and some very bright sources. We find that ∼ 97% of the generated sources
are found. The 3% missing sources are lost due to the following reasons:

• part of the source source is not fully projected onto the chip (edge of chip of IFU)
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Figure 5.10: A Lyman-alpha emitter detected in three fibers distributed over three dither steps.
The data shows, from left to right, the flux of the predicted LAE model, the values per pixel that
contribute to the χ2 test, the sky-subtracted data, and the corresponding errors.

• part of the source is projected onto a comic ray

• part of the source is projected onto the 5577 sky line

None of the sources were missed without an obvious reason. Together with the detection
of generated sources a lot of fake sources were detected. Figure 5.11 shows the reduced χ2

versus σ distribution of the generated sources (x) and fake detections (+).
Within the given σ-range, the generated sources do not show a strong dependency

on chi2. This is expected, as the generated sources should, by construction, all have a
reduced χ2 value of ∼ 1. Any deviations apart from the usual random fluctuations should
be coming from the underlying flux distribution due to systematic errors in the reduction
process. By looking at the χ2-statistics of the reduced sky spectra we already know that
only a small offset to higher chi2-values exists.

Fake sources are much more numerous at lower σ values, as the probability for random
fluctuations increases with decreasing absolute total flux in the fluctuation. Cosmic rays
are almost never mistaken for LAEs, as their chi2-values are very high and are thus not
shown in the plot.

The reduced χ2-value of fake sources seems to be proportional with the σ-value. This
is also expected, because higher randomly distributed flux increases the χ2 value when
compared to a specific model. A composite threshold of σ > 4 and χ2 < 1.3 seems to
exclude virtually all fake sources, and only generated sources with very low flux. Further
investigation is needed to infer better exclusion functions.

When CURE is searching for a line emission, it looks at one segment of connected
regions (in angular-redshift-space) of high singal to noise and tries to get the best fitting
position of a LAE. This is represented by the smallest χ2-value in the segment. We use the
related angular and redshift position as best fit for the actual location of the detected LAE.
When comparing the actual input position with the recovered position after reduction and
detection we can asses the accuracy of the CURE pipeline.
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Figure 5.11: Comparison of χ2 and σ values between generated sources (x) and fake detections
(+).

Figure 5.12 shows the accuracy we reach modelling VIRUS with a fiber size of 1.2 arcsec
and an average fiber separation of 2.1 arcsec using three dither positions to achieve a fill
factor of 1. The recovered plane resembles a Gaussian with a standard deviation of about
1 arcsec in angular space and 10−4 z in redshift-space. Both values are centered around 0
and show no signs of systematic errors. This accuracy was reached by using a very small
initial search grid, both in angular and in redshift coordinates. Making the initial grid
much more coarse results in less accuracy and in systematic offsets.

5.7 Conclusions

We develop a pipeline that is able to reduce large quantities of IFU data automatically
and robustly. This is achieved mostly by consistent use of Gaussian error propagation
throughout the whole reduction process and by avoiding the re-sampling of actual science
data as much as possible. CURE is able to accurately model the projection of fiber ,f , and
wavelength, w, coordinates to x and y coordinates on the chip and correct for wavelength
offsets due to variation in the infall angle of fiber beams. Fiber profiles are modeled to
a satisfactory degree using first order Gauss-Hermite terms. This could be improved fur-
ther, as a good fiber model is imperative to fit parameters in an environment where fibers
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Figure 5.12: Accuracy (position of generated source minus position of detected source) of line
emission detections in angular coordinates and redshift coordinates.

overlap heavily and a fit carries the risk of exploiting degeneracies. We show that CURE
is subtracting sky, using sky information from science frames only, robustly and unbiased
on the percent niveau. This is the case even in the presence of continuum sources of up
to 50% and lots of cosmic rays in the science frame. CURE is able to detect artificially
generated LAEs reliably and with a good detection accuracy of the order of the fiber diam-
eter in angular coordinates and to the resolution limit of the spectrograph in wavelength
coordinates. The Gaussian error propagation enables CURE to calculate robust statistics
which help to discriminate between true and fake detections.
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

During the course of this work we have shown that the various physical and technical
problems that could arise in the course of using a Lyman-alpha emitter power spectrum
to constrain cosmological parameters can be corrected for or neglected.

We have shown that Baryonic Acoustic Oscillations can be extracted from the over-
all power spectrum without any further assumptions about the specific composition of
the universe using a parametric fit to the non-oscillating dark matter part of the power
spectrum. We provide a robust method to apply a theoretical template to the transfer
function calculated from the power spectrum. The Oscillations themselves have, although
representing only a small part of the overall information content contained in the power
spectrum, prooven to be a very robust tool to measure cosmological parameters. The
phases of the BAOs are, within the parameters of a survey like HETDEX, not affected
by effects like non-linear growth, biasing or redshift-space distortions. However, recent
studies (see Sanchez et al., 2008) have shown that in the sub percent regime, which is not
accessible to simulations like the Hubble Volume used in this work, non-linear growth and
redshift-space effects do indeed change the phase of the oscillations. This has to be taken
into account for future, even more accurate surveys.

Because of their robustness and low systematics BAOs could even be used as a tool to
check for the consistency of a survey, as the amplitude of the oscillations should behave
exactly like the amplitude of the power spectrum itself. In principle cosmological tests
probing for growth could be enhanced by using both the amplitude of the BAOs and the
amplitude of the whole power spectrum.

Using the whole shape of the power spectrum greatly increases the power of a survey to
constrain cosmological parameters, but also introduces more systematic errors and much
stronger demands on the survey design, instruments and statistical treatment of the data.
The power spectrum has to be modeled to the sub percent niveau including non-linear
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growth, redshift-space effects, and biasing. Jeong & Komatsu (2006) and Jeong & Komatsu
(2008) have made good progress on that. The requirements to the statistical treatment of
realistic data remain.

We have shown that effects introduced by sparse sampling, especially the highly in-
homogeneous window function and the additional zero-point effects, can be corrected for.
The correlations introduced by sparse sampling techniques are not strong enough to de-
stroy the additional information content gained by the additional survey volume and render
sparse sampling a usefull tool in the observational arsenal. A cosmological test can either
be completed by recovering the amplitude and shape of the input power spectrum using
decomposition or the theoretical template itself can be convolved.

We used the realistic dataset to try and recover both the geometrical stretching factor
and the amplitude of the power spectrum that can then be used to constrain cosmological
models. The simulations show that all instrumental effects are under controll and do not
decrease the accuracy much beyond the theoretical prediction of an ideal data set. They
furthermore do not introduce strong systematic errors if the distribution of random errors
is known well enough. This is especially important as larger surveys that are planned
today, reduce statistical errors to a point where resulting estimates are heavily dominated
by systematic errors.

Getting good estimates of the biasing is essential in predicting the accuracy and de-
signing the parameters of an effective power spectrum survey. The higher the biasing, the
more point density can be traded for area to increase the accuracy of the power spectrum
estimation. However, the statistical data available for estimating the biasing is not very
information rich.

We have investigated the available possibilities to recover the biasing from a pencil-
beam like survey, that will be produced by the VIRUS prototype. We have found that the
standard FKP estimator is, because of numerical effects, biased towards higher amplitudes.
The correlation function seems to show this effect, too, though not as strongly developed.
Using Fast Fourier Transforms of non-equal dimension size, we found that both the power
spectrum and the correlation function give the same accuracies on a biasing estimate.
This proves the robustness of both measures, as relative error bars and the amount of
correlations in the recovered datasets vary greatly with both estimators.

The accuracy of the estimate is, however, strongly dependent on the geometry of the
survey. More compact surveys yield much better results than elongated ones. This is true
for surveys with one, two or three dimensions. For three dimensional surveys, we give a
short formula to calculate the loss of information.

Finally, we describe the algorithms and accuracies of the CURE pipeline, both in re-
ducing future VIRUS data and detecting line emission objects like LAEs. CURE is able to
reduce the data provided by VIRUS and detect LAEs almost in real time and automati-
cally without human intervention. Statistical evaluation of the sky-subtracted data shows
that the reduction is robust and statistically consistent, even in the presence of cosmic rays
and continuum sources. Accuracy test confirm that we reach the demanded 5-σ limit on
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detections and are able to recover the positions of the source to sub fiber-diameter accuracy
using dithered exposures.

Remaining issues, like a more accurate fiber model, and the ability to correct for pixel-
to-pixel variations will be solved, once the fiber-profile of VIRUS is measured in more
detail. At the time of this writing the CURE pipeline is used to reduce real data from the
VIRUS-P and has found its first Lyman-alpha emitter candidates.

6.2 Outlook

The HETDEX survey is scheduled to start in 2011 and is supposed to be completed until
2013. Up to that time, we should have fairly robust knowledge about the statistics of the
LAE properties from the VIRUS-P survey. We expect to get a biasing estimate with an
accuracy of about 30%, and a very good knowledge of the surface density and luminosity
function. This will help to finalize the already well researched survey parameters. The
group around Eiichiro Komatsu is working hard to further refine their methods to pinpoint
the biasing in the final dataset, model non-linear biasing and correct for redshift-space
effects. Further help could be provided by progress in re-normalized perturbation theory
(see Crocce & Scoccimarro, 2008).

For the final HETDEX results an in depth numerical simulation with about 10-100
times the volume of the actual HETDEX survey will be needed to assess the exact nature
of the various effect that work on the power spectrum, including all observational and
instrumental effects. One volume of the simulation should have a resolution of better than
1h−1Mpc (that equals about 6hMpc−1 in k space) and a size of more than 1500h−1Mpc,
available in a light cone output to include the evolution of the large scale structure with
redshift. Such simulations have just become possible on modern day supercomputers (see
e.g. Angulo et al., 2008; HORIZON, 2008; Kim et al., 2008) and will hopefully be available
in multiple volumes by the time of 2011-2013. A full end-to-end simulation can then be
made using the final survey parameters, including:

• redshift-dependent non-linear structure growth

• redshift and scale dependent biasing

• exact angular window-function of the survey

• exact radial window function of the survey

• Lyman-alpha emitter luminosity function

• contamination rates

• CURE detection probabilities
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Only then a robust error estimation can be guaranteed.
This is especially important as modern surveys get bigger and bigger, both in depth

and in angular dimension, to minimize statistical errors on the observed samples. These
surveys are more and more limited by the systematic errors of the used instruments and
estimation methods. Especially supernova experiments and weak lensing surveys are heav-
ily dependent on the robustness of their assumptions and reduction methods. While BAOs
are relatively robust, using the whole amplitude and shape of the power spectrum also
introduces this problem into power spectrum cosmology that uses galaxies as tracers.

However, the statistical methods of analyzing the power spectrum can not only be
refined and made robust, but also expanded combining multiple parameter dependencies to
constrain cosmological models. The equal scaling of the amplitude of the power spectrum
itself and the BAOs could be exploited to check for systematic errors. Redshift-space
effects can be measured by doing a full three-dimensional analysis of the power spectrum
(see Shoji et al., 2008; Guzzo et al., 2008). The biasing dependence of redshift-space effects
can be used to further refine the information on biasing.

A large number of surveys is currently planned to constrain the equation of state of
dark energy, w, and look for evolution of this value. Be it ground based surveys like
Wiggelz1, HETDEX2, BOSS3, and Pan-STARRS4, or satellite missions like EUCLID (for-
merly DUNE5 and SPACE6), SNAP7 or PLANCK8. Methods like power spectrum cosmol-
ogy, weak lensing tomography, or supernovae light cure measurements are used, discussed
and refined. The equation of state of dark energy, or whatever model it will turn out to
be, is currently getting a lot of attention and will be heavily constrained ten years from
now.

At the moment, the Cosmological Constant is the best fitting model to the data, where
w has to be exactly -1. Only very few models can currently be ruled out and a large zoo of
theories awaits to be falsified. The question has been asked how accurate we will have to
measure w if it was really -1? One might argue that there is no reason to stop measuring
w if it was known to 1 ± 0.001 as it could still be both a cosmological constant, phantom
energy that has a w of smaller than -1 or any dark energy model with w > −1. However,
the same question could be asked about a couple of other measurements, like the equality
of inertial mass and gravitational mass. People simply stop measuring when it gets to
expensive.

As from now, the future of dark energy seems to be a bright one. Being one of the
topics that heavily shape the view of our world and universe, it will be interesting to follow
and participate in the progress to determine its properties.

1http:/wigglez.swin.edu.au
2http://www.hetdex.org
3http://www.sdss3.org
4http://www.ps1sc.org
5http://www.dune-mission.net
6http://www.spacesat.info
7http://www.snap.lbl.gov
8http://www.rssd.esa.int/index.php?project=Planck
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Hütsi, G. (2006). Clustering of sz clusters on a past light-cone: Acoustic oscillations and
constraints on dark energy. Astronomy and Astrophysics , 446 , 43–60.

Jeong, D., & Komatsu, E. (2006). Perturbation theory reloaded: Analytical calculation of
nonlinearity in baryonic acoustic oscillations in the reals-space matter power spectrum.
The Astrophysical Journal , 651 , 651–619.

http://www.project-horizon.fr


BIBLIOGRAPHY 129

Jeong, D., & Komatsu, E. (2008). Perturbation theory reloaded ii: Non-linear bias, baryon
acoustic oscillations and millenium simulation in real space. arXiv:0805.2632v2 .

Jing, Y. (2005). Correcting for the alias effect when measuring the power spectrum using
fast fourier transform. The Astrophysical Journal , 620 , 559–563.

Kaiser, N. (1986). A sparse-sampling strategy for the estimation of large-scale clustering
from redshift surveys. Monthly Notices of the Royal Astronomical Society , 219 , 785–790.

Kaiser, N. (1998). Weak lensing and cosmology. The Astrophysical Journal , 498 , 26.

Kaiser, N., & Peacock, J. A. (1991). Power-spectrum analysis of one-dimensional redshift
surveys. The Astrophysical Journal , 379 , 482–506.

Kim, J., Park, C., Gott, R., & Dubinski, J. (2008). The horizon run n-body simula-
tion: Baryonic acoustic oscilations and tolopogy of large scale structure of the universe.
arXiv:0812.1392 .

Knox, L. (2006). Precision measurement of the mean curvature. Physical Review D , 73 ,
023503.

Koehler, R. S. (2005). Baryonic acoustic oscillations as a csomological probe. Master’s
thesis, Ludwig-Maximilians-Universität.

Koehler, R. S., Schuecker, P., & Gebhardt, K. (2007). Probing dark energy with baryonic
acoustic oscillations at high redshifts. Astronomy and Astrophysics , 426 , 7–20.

Kolb, E. W., Matarrese, S., & Riotto, A. (2006). On cosmic acceleration without dark
energy. New Journal of Physics , 8 , 322.

Komatsu, E., Dunkley, J., Nolta, M. R., Bennett, C. L., Gold, B., Hinshaw, G., Jarosik,
N., & Larson, D. (2008). Five-year wilkinson microwave anisotropy probe (wmap) ob-
servations: Cosmological interpretation. arXiv:0803.0547 .

Landy, S. D., & Szalay, A. S. (1993). Bias and variance of angular correlation functions.
The Astrophysical Journal , 412 , 64.

Lewis, A., Challinor, A., & Lasenby, A. (2000). Efficient computation of cosmic microwave
background anisotropies in closed friedmann-robertrson-walker models. The Astrophys-
ical Journal , 538 , 473–476.

Linder, E. V., & Jenkins, A. (2003). Cosmic structure growth and dark energy. Monthly
Notices of the Royal Astronomical Society , 346 , 573–583.

Ma, C., Caldwell, R. R., Bode, P., & Wang, L. (1999). The mass power spectrum in
quintessence cosmological models. The Astrophysical Journal , 521 , L1–L4.



130 BIBLIOGRAPHY

Modgiliani, A., Hummel, W., Abuter, R., Amico, P., Ballester, P., Davies, R., Dumas, C.,
& Horrobin, M. (2007). The sinfoni pipeline. arXiv:astro-ph/0701297 .

Monaco, P., Theuns, T., & Taffoni, G. (2002). The pinocchio algorithm; pinpointing orbit-
crossing collapsed hierarchical objects in a linear density field. Monthly Notices of the
Royal Astronomical Society , 331 , 587–608.

Nojiri, S., & Odintsov, S. D. (2006). Introduction to modified gravity and graviatational
alternative for dark energy. arXiv:hep-th/0601213 .

Noll, S., Mehlert, D., Appenzeller, I., bender, R., Böhm, A., Gabasch, A., Heidt, J., &
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