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Summary 
 

Eukaryotic genomes are condensed into a multilevel structure called chromatin 

which serves to organize and package the DNA, but at the same time needs to be flexible 

to permit regulated access to the stored information. ATP-dependent chromatin 

remodelling factors largely contribute to this dynamic nature of chromatin by catalysing 

processes such as the disruption of histone-DNA contacts, nucleosome repositioning and 

histone exchange. ATP-dependent remodelling has been well documented on a 

mononucleosomal level, but little is known about its regulation in a more physiological 

chromatin environment, where neighbouring nucleosomes and linker histones might 

interfere with the remodelling reaction. If and to what extent remodelling can work on 

chromatin bound by linker histones remains controversial, in spite of their high 

abundance and their strong influence on chromatin folding. 

We therefore investigated chromatin remodelling in the presence of linker histones 

H1 or H5 using regularly spaced, oligonucleosomal substrates reconstituted from 

purified components. Surprisingly, we found that both the remodelling complex ACF – 

consisting of the ATPase ISWI and the regulatory subunit ACF1 – and ISWI alone were 

able to catalyse the repositioning of entire chromatosomes (nucleosomes + H1). Linker 

histones inhibited their remodelling activity by only about 50%. In contrast, the related 

ATPase CHD1 remodelled chromatin only in the absence of linker histones, suggesting 

that linker histones allow remodelling by selected factors only. In addition, our data 

indicate that repositioning in the presence of H1 might be unidirectional. 

ACF1 is abundant during early Drosophila development, when H1 gradually 

replaces its early placeholder HMG-D. HMG-D binds to chromatin less tightly than H1 

and unlike the latter, did not affect the remodelling activity of ACF in our assay. H1 was 

able to displace HMG-D from and bind to our reconstituted arrays without the help of 

cofactors. Strikingly, both H1 and HMG-D are more abundant in embryonic nuclei of 

acf1 null flies compared to the wild-type, raising the possibility that an ACF1-containing 

complex controls linker histone incorporation.  
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Zusammenfassung 
 

Eukaryotische Genome sind in einer komplexen Struktur namens Chromatin 

organisiert, durch die die DNA dicht gepackt wird, welche aber auch flexibel genug sein 

muss, um den Zugriff auf die gespeicherte Information zu ermöglichen. ATP-abhängige 

Remodelling Faktoren tragen zum dynamischen Charakter des Chromatins bei, indem sie 

beispielsweise DNA-Histon-Kontakte verändern, Nukleosomen verschieben oder 

Histone austauschen. ATP-abhängiges Remodelling ist auf mononukleosomaler Ebene 

gut untersucht, aber seine Regulation innerhalb einer physiologischen 

Chromatinumgebung, in der benachbarte Nukleosomen und Linker Histone das 

Remodelling stören könnten, ist nicht gut verstanden. Trotz großer Mengen an Linker 

Histonen im Zellkern, welche die Chromatinfaltung stark beeinflussen, ist es umstritten, 

ob und in welchem Ausmaß Remodelling auch in Chromatin stattfinden kann, das Linker 

Histone enthält. 

Wir untersuchten den Einfluss der Linker Histone H1 und H5 auf ATP-abhängiges 

Chromatin Remodelling. Dazu benutzten wir Substrate, die aus mehreren Nukleosomen 

gleichen Abstands bestanden und aus gereinigten Komponenten hergestellt wurden. 

Erstaunlicherweise verschoben sowohl der Remodelling Komplex ACF, der aus der 

ATPase ISWI und der regulierenden Untereinheit ACF1 besteht, als auch ISWI alleine 

ganze Chromatosomen (Nukleosom + Linker Histon). Linker Histone verminderten die 

Remodelling-Aktivität dieser Faktoren nur um etwa 50%. Im Gegensatz dazu formte die 

verwandte ATPase CHD1 nur Chromatin um, das keine Linker Histone enthielt. Es ist 

daher möglich, dass nur bestimmte Remodelling Faktoren Chromatin in Gegenwart von 

Linker Histonen umformen können. Ausserdem fanden wir Hinweise darauf, dass 

Nukleosomen, an die H1 gebunden ist, bevorzugt in eine Richtung verschoben werden. 

In Drosophila wird ACF1 vor allem während der frühen Embryonalentwicklung 

exprimiert. Zu diesem Zeitpunkt ersetzt H1 seinen Platzhalter HMG-D. HMG-D bindet 

weniger stark an Chromatin als H1 und hatte in unserem Versuchsaufbau keinen 

Einfluss auf die Remodellingaktivität von ACF. Interessanterweise enthielten die 

Zellkerne von acf1 Knock-out Fliegen sowohl mehr H1 als auch mehr HMG-D als 
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Wildtyp Fliegen. Es ist daher möglich, dass ein Komplex, der ACF1 enthält, den Einbau 

von Linker Histonen in Chromatin kontrolliert.  
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1. Introduction 
 

1.1 Levels of chromatin condensation 
 

Eukaryotic genomes are organized into several levels of chromatin condensation 

achieving a high degree of compaction (Figure 1.1). This complex structure serves to 

package DNA, but also to regulate its accessibility by fine-tuning its properties via a 

variety of mechanisms. 

The first level of compaction is achieved by the nucleosome: 147 bp of DNA 

wrapped around the histone octamer in 1.67 left-handed superhelical turns (Luger et al., 

1997). The histone octamer is formed by two of each of the core histone proteins H2A, 

H2B, H3 and H4. Core histones are among the best conserved eukaryotic proteins and 

comprise a folded globular domain and an unstructured N-terminal tail domain; H2A 

possesses an additional short C-terminal tail (Thatcher and Gorovsky, 1994). The 

globular domain consists of a characteristic histone fold motif formed by three α-helices 

connected by two loops. Histone folds interact with each other in a handshake-like 

manner resulting in H2A/H2B and H3/H4 dimers (Davey et al., 2002; Luger et al., 

1997). In the presence of DNA or at high salt concentrations such as 2 M NaCl, two 

H2A/H2B and two H3/H4 dimers combine to form the disc shaped histone octamer from 

which the unstructured tails protrude (Lusser and Kadonaga, 2004). In vivo, the majority 

of nucleosomes are bound by a fifth histone, the linker histone H1. It binds to an 

additional 20 bp of DNA at the entry/exit site of the nucleosome (Wolffe, 1998).  

Nucleosomes are connected by usually 10 to 80 bp stretches of linker DNA, 

depending on the species and tissue. The linker DNA enters and exits the nucleosome at 

sites close to each other referred to as the entry/exit site. At low salt concentrations, 

chromatin appears as a “beads-on-a-string”-like structure called 10 nm fibre where the 

nucleosomes represent the beads and the DNA the string (van Holde, 1988).  

At physiological salt concentrations (approximately 100 mM monovalent or 2.5 mM 

divalent cations) chromatin folds into the next level of compaction, the 30 nm fibre. The 

presence of linker histones facilitates formation of these fibres at lower salt
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1.1 Basic levels of DNA compaction 
The first level of DNA compaction is the nucleosome, in which the DNA (blue) is wrapped 
around the histone octamer (red) in 1.67 superhelical turns. Short stretches of linker DNA 
connect adjacent nucleosomes. This ‘beads-on-a-string’-like structure is folded into a fibre of 
about 30 nm in diameter (adapted from Felsenfeld and Groudine, 2003). 
 

 

 

concentrations (Clark and Kimura, 1990). A basic patch on the H4 tail, residues 16-20, 

is critical for full fibre compaction, most likely because it interacts with an acidic patch 

of the H2A/H2B dimer of the neighbouring nucleosomes (Davey et al., 2002; Dorigo et 

al., 2003; Luger et al., 1997). 

The exact structure of the 30 nm fibre is still a matter of debate. Two competing, but 

not necessarily exclusive models have emerged as likely candidates: the solenoid and the 

crossed-linker model (Dorigo et al., 2004) (Figure 1.2). According to the first model, 

neighbouring nucleosomes follow each other along the same helical path forming a one-

start helical structure. In this scenario, linker DNA has to be bent to allow fibre 

formation. In the second model, nucleosomes are connected by straight linkers and 

nucleosomes alternate between two helical stacks in a zig-zag arrangement, resulting in 

a two-start helix. The crystal structure of a tetranucleosome strongly supported the 

crossed-linker model, because it showed nucleosomes alternating between two stacks of 
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1.2 Proposed models for the structure of the 30 nm fibre 
(A) Schematic representation of two different topologies for the 30 nm fibre. The upper graphic 
shows a one-start helical structure. In this model, neighbouring nucleosomes follow each other 
along the same helical path. Alternating helical turns are depicted in blue and magenta. The 
lower graphic represents a two-start helix with neighbouring nucleosomes crossing between two 
helical stacks. Adjacent nucleosome pairs are coloured blue and magenta. (B) The crossed-linker 
model (two-start helix) according to Richmond and colleagues. Nucleosomal positions 1 – 4 are 
indicated (N1 – N4). Upper picture: Crystal structure of a tetranucleosome. Below: Chromatin 
fibre model derived by stacking of tetranucleosomal structures and elimination of steric overlap. 
(C) The interdigitated solenoid model (one-start helix) according to Rhodes and colleagues. 
Nucleosomal positions 1 – 7 (N1 – N7) are indicated. Upper picture: 30 nm chromatin fibre 
modelled according to EM measurements. Below: Comparison of the model (right) to EM 
images of folded chromatin fibres (left) (adapted from Robinson and Rhodes, 2006). 
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two nucleosomes (Schalch et al., 2005) (Figure 1.2B). However, the tetranucleosomes 

exhibited an uncommon nucleosomal repeat length of only 167 bp and did not contain 

linker histones. It is therefore not clear whether they represent a physiological chromatin 

conformation. Careful electron-microscopy (EM) measurements of long fibres 

consisting of up to about 70 nucleosomes containing stoichiometric amounts of linker 

histones yielded an unexpectedly high nucleosome density inconsistent with a two-start 

helix, but in line with a solenoid model where nucleosomes from successive turns 

interdigitate (Figure 1.2C). Moreover, the diameter of the fibres remained constant over 

a range of linker DNA lengths from 177 to 207 bp, which cannot be explained with the 

crossed-linker model (Robinson et al., 2006). In contrast, fibres with a nucleosomal 

repeat length of 167 bp bound only about one linker histone for every nucleosome, were 

less compacted and smaller in diameter (Routh et al., 2008). It is therefore possible that 

alternative structures of the 30 nm fibre exist in vivo, depending on linker DNA length 

and the presence of linker histones (Robinson and Rhodes, 2006). 

Compaction beyond the 30 nm fibre is poorly understood (Felsenfeld and Groudine, 

2003). Chromatin fibres are further organized, possibly by attaching to an underlying 

supporting structure called nuclear scaffold consisting of RNA and proteins. Scaffold or 

matrix attachment regions (S/MARs) are found every 5-200 kb in eukaryotic genomes. 

These DNA elements are believed to organize chromatin into distinct domains by 

dynamic binding to the nuclear matrix. However, the existence of a rigid nuclear 

scaffold is still controversial (Bode et al., 2003).  

 

 

1.2 Linker histones 
 

1.2.1 The somatic linker histone H1 
 

As already mentioned, the linker histone H1 facilitates chromatin compaction and 

stabilizes the 30 nm fibre. Linker histones are structurally unrelated to the core histones 

and much less evolutionary conserved. A typical H1 consists of a globular winged-helix 

domain and unstructured N- and C-terminal tail domains. With their globular domains,
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1.3 Binding of the linker histone to the nucleosome 
Model of H1 bound to a nucleosome viewed from two sides perpendicular to each other. Only 
the DNA (blue) and the globular domain of H1 (red) are shown. The nucleosome dyad is 
coloured in yellow (adapted from Brown et al., 2006). 
 

 

 

linker histones bind to DNA at the nucleosomal dyad and where it enters the nucleosome 

protecting additional 20 bp from nuclease digestion. A nucleosome with a short stretch 

of linker DNA bound by a linker histone is called ‘chromatosome’. (Brown et al., 2006; 

Sheng et al., 2006) (Figure 1.3). The long and highly basic C-terminus of linker histones 

presumably interacts with linker DNA and contributes to the stability of binding 

(Hendzel et al., 2004). Electron microscopy revealed that H1 organizes the two DNA 

segments entering and exiting the nucleosome core into a ‘stem’ structure (Bednar et al., 

1998). Since H1 is an asymmetric molecule and interacts predominantly with DNA on 

one side of the entry/exit site, the nucleosome is no longer symmetric when it is bound 

by H1 (Brown et al., 2006). 

The presence of linker histones is essential in mice (see 1.2.2) (Fan et al., 2005), but 

not in unicellular organisms such as budding yeast, the filamentous fungus Aspergillus 

nidulans and the ciliate Tetrahymena thermophila (Patterton et al., 1998; Ramon et al., 

2000; Shen et al., 1995). Unexpectedly, these knock-out studies concluded that H1 

regulates specific genes rather than acting as a global repressor. 

Fluorescence recovery after photobleaching (FRAP) studies revealed that H1 is 

surprisingly dynamic in vivo. In these experiments, the residence time on chromatin of 
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proteins carrying a fluorescent tag is determined by monitoring recovery of fluorescence 

signal in a small bleached area. For H1, the average residence time on one binding site 

was estimated to be about 3 min. Although this means that H1 is less mobile than most 

chromatin-associated proteins, it is considerably faster exchanged than the core histones, 

which on average stay bound to one site for several hours (Bustin et al., 2005). 

 

1.2.2 Linker histone variants 
 

Many organisms express different variants of H1. For example, 11 linker histone 

variants have been found in mammals, which differ in their binding affinities, genomic 

localization and effects on gene expression. These variants can be grouped either 

according to their spatial expression into somatic and tissue-specific ones or according 

to their temporal expression into replication dependent variants, mainly expressed during 

S-phase, and replication-independent replacement variants (Izzo et al., 2008). Single or 

double knock-outs of several H1 variants in mice did not affect their viability, but 

resulted in the upregulation of other variants, showing that they can compensate for each 

other to some extent (Fan et al., 2001). The triple knock-out of the three somatic variants 

H1c, H1e and H1d, however, led to a 50% reduction of overall H1 levels, embryonic 

lethality and global changes in nucleosome spacing (Fan et al., 2003b; Fan et al., 2005). 

A very specialized linker histone variant named H5 is found in avian erythrocytes 

where it contributes to the transcriptionally inactive state characteristic of these cells 

(Sun et al., 1990; Zhou et al., 1998). Because H5 binds to chromatin with a higher 

affinity than somatic H1, possibly resulting from the presence of a third DNA binding 

surface (Fan and Roberts, 2006; Ramakrishnan et al., 1993), it has been the preferred 

variant for structural studies involving linker histones. Modelling the structure of the 

globular domain of H5 onto the nucleosome has revealed the fact that unlike H1, H5 

might be able to form dimers when bound to chromatin, which might contribute to the 

observed enhanced condensation (Fan and Roberts, 2006). 

Conversely, H1 variants can also account for the very open chromatin structure 

present in early development. Xenopus contains an oocyte-specific linker histone B4, 

which is gradually replaced by somatic H1 variants as the embryo matures (Saeki et al., 
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2005). Drosophila melanogaster expresses only one linker variant, but early embryonic 

chromatin is bound by the high mobility group protein HMG-D instead of H1 (Ner et al., 

2001; Ner and Travers, 1994). Both B4 and HMG-D bind to the nucleosome with a 

considerably lower affinity than H1. 

 

 

1.3 Principles of regulating chromatin structure 
 

The various levels of chromatin condensation not only serve to package DNA, but 

represent also an important way to regulate the accessibility of DNA and hence of the 

genetic information. The chromatin state may be altered transiently, e.g. to temporarily 

alter transcription and during repair after DNA damage, or permanently. The latter case, 

which includes the propagation of the chromatin state to daughter cells, is commonly 

referred to as epigenetic memory (Allis et al., 2007).  

Several principles, frequently acting in concert with each other, are known to 

regulate chromatin structure: DNA methylation, posttranslational modifications of 

histones, histone variants and ATP-dependent chromatin remodelling (Bönisch et al., 

2008) (Figures 1.4 and 1.5). 

Methylation of cytosine residues on N5 represents the most stably inherited 

epigenetic mark. It is found in vertebrates, many invertebrates and plants (Bird, 2002). 

Low levels of DNA methylation have even been detected in Drosophila, which has long 

been thought to be devoid of DNA methylation. However, it is present only in early 

development and found mostly on CpT dinucleotides, whereas most methylation in 

animals occurs on CpG dinucleotides (Gowher et al., 2000; Lyko et al., 2000). DNA 

methylation generally leads to long term silencing of the underlying sequence by 

inhibiting binding of activating factors and by recruiting enzymes that generate a 

repressive chromatin state (Fuks, 2005; Hendrich and Bird, 1998). DNA 

methyltransferases (DNMTs) are the enzymes that set and maintain DNA methylation. 

Through their function they regulate transcription by altering chromatin organization. 

This is crucial to many complex processes such as differentiation, inactivation of the
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1.4 Variability of chromatin components 
DNA (blue) can be methylated on selected CpG dinucleotides as indicated. Posttranslational 
modifications (PTM) of histones are written, erased and recognized by specific factors. Variants 
of core histones H2A, H2B and H3 are represented in green (adapted from Bönisch et al., 2008). 
 

 

 

female mammalian X chromosome and imprinting (monoallelic gene expression) 

(Bernstein et al., 2007; Bird, 2002). 

Histones may carry numerous posttranslational modifications (PTMs), mostly 

located on, but not limited to, the flexible N-terminal tail domains. Among them are 

methylation of lysines (mono-, di-, and trimethylation) and arginines (mono-, 

asymmetrical and symmetrical dimethylation), acetylation and ubiquitinylation of 

lysines, phosphorylation of serines, threonines and tyrosines, SUMOylation and ADP-

ribosylation (Bönisch et al., 2008; Cosgrove et al., 2004). Histone modifications are 

established and erased by dedicated enzymes such as histone acetyltransferases (HATs), 

histone deacetylases (HDACs), histone methyltransferases (HMTs) and histone 

demethylases (HDMs) (Bönisch et al., 2008). PTMs can influence chromatin structure 

directly by affecting histone-DNA interactions within the same or neighbouring 

nucleosomes. For example, acetylation of H4 on lysine 16 (H4K16Ac) prevents full 

chromatin compaction even in the presence of linker histones (Robinson et al., 2008; 

Shogren-Knaak et al., 2006). Alternatively, PTMs can act indirectly through the 

recruitment of specific readers. These effector proteins can be attracted either by single 

histone modifications or combinations thereof on the same tail or on proximal tails as 

suggested by the 'histone code hypothesis' (Strahl and Allis, 2000). 
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In addition to carrying different modification patterns, nucleosomes can contain 

variants of histones H2A, H2B, H3 and H1. The number of variants increases with the 

complexity of the organism (Hake and Allis, 2006). H2A variants are generally the best 

characterized ones to date. Prominent examples are the H2A variants Drosophila H2Av, 

which is required for heterochromatin formation, mammalian H2A.X, which is involved 

in DNA double-strand break repair and mammalian H2A.Z, which is essential for 

survival (Redon et al., 2002; Swaminathan et al., 2005). Histone variants can affect the 

structure of the nucleosome. For example, nucleosomes containing the centromere-

specific H3 variant CENP-A seem to be smaller and less stable than canonical ones 

(Dalal et al., 2007). Nucleosomes containing H2A.Z are structurally different from 

canonical ones and appear to be more mobile. They have been implicated both in 

transcriptional activation and silencing, possibly via interaction with heterochromatin 

binding protein 1 (HP1) (Ausio, 2006). 

Finally, changes in chromatin structure can also be introduced by ATP-dependent 

chromatin remodelling enzymes, which will be described in the following. 

 

 

1.4 ATP-dependent chromatin remodelling factors 
 

1.4.1 Subfamilies of ATPases 
 

ATP-dependent nucleosome remodelling factors largely contribute to the dynamic 

nature of chromatin. Members of this enzyme family couple the hydrolysis of ATP to 

the disruption of DNA-histone contacts. All remodelling factors contain an ATPase of 

the SNF2-family, which is typically associated with additional subunits to form large 

multiprotein complexes (Bao and Shen, 2007; Eberharter and Becker, 2004). The 

outcome of the remodelling reaction depends on the features of both the ATPase and the 

regulatory or targeting subunits it associates with. Remodelling factors have been 

described to introduce conformational changes to the nucleosome, to reposition 

nucleosomes along DNA (referred to as ‘sliding’), to exchange H2A/H2B dimers, to 
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1.5 Schematic representation of enzymatic properties assigned to ATP-dependent 
chromatin remodelling factors 
 

 

 

assist nucleosome assembly and to evict entire nucleosomes (Becker and Horz, 2002; Li 

et al., 2007; Lusser and Kadonaga, 2003) (Figure 1.5). 

In vivo, they have been implicated in complex processes such as chromatin 

assembly, transcription and DNA repair. Impaired nucleosome remodelling may lead to 

transcriptional deregulation and disease (Wang et al., 2007). They are conserved from 

yeast to man, which underlines their importance for chromatin regulation (Eberharter 

and Becker, 2004). 

ATP-dependent nucleosome remodelling factors have been divided into subfamilies 

based on the features of their central ATPase subunits (Figure 1.6).  

The SWI/SNF subfamily was the first one to be discovered through a genetic screen 

in yeast for mutations interfering with mating type switching (SWI) and sucrose 

fermentation (SNF – sucrose nonfermenting). This screening identified the 11 subunits 

of the SWI/SNF complex including its ATPase Swi2 or Snf2 (Peterson and Herskowitz, 

1992; Sudarsanam and Winston, 2000). SWI/SNF type ATPases harbour a 

bromodomain, which might target them to acetylated chromatin (Marmorstein an
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1.6 Subunit composition of ATP-dependent remodelling complexes belonging to the four 
characterized subfamilies (classified according to their ATPase subunits) 
Asterisks mark the ATPase of each complex. Subunits shared between two or more complexes 
in the same organism are underlined. Orthologous subunits are shadowed in grey (adapted from 
Gangaraju and Bartholomew, 2007). 
 

 

 

Berger, 2001). In vivo, SWI/SNF is required both for transcriptional activation and 

repression of selected genes (Holstege et al., 1998; Sudarsanam and Winston, 2000). 

RSC represents a second SWI/SNF complex, which is essential for cell growth and 

comprises the ATPase Sth1 (Du et al., 1998). Two SWI/SNF complexes, BAP and 

PBAP, have been found in Drosophila. Both contain the ATPase Brahma, but different 

associated subunits (Mohrmann and Verrijzer, 2005). In humans, SWI/SNF complexes 

are classified into two forms, BAF and PBAF, which contain the ATPases BRG1 or 

hBRM, respectively. These complexes can further associate with tissue-specific subunits 
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or additional subcomplexes (Wang, 2003). BRG1 and BRM as well as the core subunit 

SNF5 have tumour-suppressive functions in both mice and humans (Wang et al., 2007).  

The subfamily most closely related to SWI/SNF ATPases is comprised by ISWI 

(imitation SWItch) ATPases (Gangaraju and Bartholomew, 2007). They are the focus of 

this study and will be discussed in more detail in a separate section. 

The CHD subfamily is characterized by the presence of chromodomains (Tsukiyama 

and Wu, 1997). Well-studied remodelling factors belonging to this family include the 

NURD (nucleosome remodelling and deacetylation) complex and the ATPase CHD1 

(chromodomain-helicase DNA binding protein 1). NURD has been isolated from various 

organisms such as Drosophila, Xenopus and human. Among other subunits, NURD 

contains the ATPase Mi-2, MBD3 (methyl-binding protein 3) and the histone 

deacetylases HDAC1 and 2 (RPD3 in Drosophila and Xenopus), which target the 

complex to methylated DNA and couple ATP-dependent remodelling to histone 

deacetylation, resulting in regulated gene silencing (Tyler and Kadonaga, 1999). CHD1 

is found as a monomer both in yeast, flies and mammals. Drosophila CHD1 assists the 

formation of regularly spaced nucleosomal arrays in vitro and is required for the 

deposition of histone variant H3.3 in vivo (Konev et al., 2007; Lusser et al., 2005). 

Unlike the ATPase domains of other subfamilies, those of INO80-type are bipartited 

by the insertion of a large spacer region. Yeast INO80.com, the founding member of 

these complexes, consists of 15 subunits and is involved in DNA repair and transcription 

(Morrison et al., 2004; Shen et al., 2000; van Attikum et al., 2004). Orthologues exist 

both in Drosophila and mammals. The related yeast SWR1 complex, containing around 

13 subunits, broadens the enzymatic range of ATP-dependent remodelling, since it 

exchanges H2A/H2B dimers for dimers containing the variant H2A.Z both in vitro and 

in vivo (Mizuguchi et al., 2004). 

An additional subfamily may be represented by Rad54A, which is most closely 

related to the INO80 family. It has been shown to perturb DNA and to increase the 

accessibility of nucleosomal DNA in an ATP-dependent manner (Jaskelioff et al., 2003). 
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1.4.2 ISWI-containing chromatin remodellling complexes 
 

The ISWI ATPase is characterized by a SANT domain, which may bind to histones 

and a SLIDE (SANT-like ISWI domain) required for DNA binding and full ATPase 

activity (Grune et al., 2003). ISWI complexes generally catalyse nucleosome 

translocations. The first ISWI complexes, NURF, CHRAC and ACF were purified from 

Drosophila by fractionation of embryonic extracts that showed activities in nucleosome 

spacing and chromatin assembly assays (Eberharter et al., 2001; Ito et al., 1997; Ito et 

al., 1999; Tsukiyama and Wu, 1995; Varga-Weisz et al., 1997). NURF consists of ISWI, 

the large regulatory subunit NURF301, the pyrophosphatase NURF38 and the WD40 

protein NURF55. CHRAC and ACF contain ISWI and ACF1; in addition CHRAC hosts 

two small histone fold subunits CHRAC14 and CHRAC16. Furthermore, Drosophila 

ISWI has been shown to interact physically and genetically with Toutatis and physically 

with RSF1 (Hanai et al., 2008; Vanolst et al., 2005). Homologous complexes of NURF, 

ACF, CHRAC, and RSF were identified in mammals. Moreover, additional complexes 

such as NoRC (Nucleolar remodelling complex) and WICH (WSTF-ISWI chromatin 

remodelling complex) have been described (Eberharter and Becker, 2004). All contain 

one of the two mammalian ISWI ATPases, SNF2H and SNF2L. Also in yeast, two 

proteins, ISW1 and ISW2, were found to be highly homologous to Drosophila ISWI. 

ISW1 resides in two distinct complexes, ISW1a and ISW1b (Mellor and Morillon, 

2004). ISW2 forms a complex often considered to be the yeast CHRAC homolog, 

because it not only exhibits nucleosome spacing activity, but also contains Itc1, a 

subunit related to ACF1, and two small histone fold subunits (Dpb4 and Dls1), which 

are homologous to CHRAC14 and CHRAC16 (Gelbart et al., 2001). These findings 

highlight the remarkable conservation of ATP-dependent remodelling factors throughout 

evolution. 

 

1.4.3 Mechanism of ISWI-dependent nucleosome repositioning 
 

In spite of more than a decade of research on ISWI remodelling complexes, the 

mechanism of nucleosome translocation is not completely understood. Nevertheless,
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1.7 Loop-recapture mechanism for nucleosome sliding catalysed by ISWI 
The DNA translocase domain (Tr) binding to nucleosomal DNA at superhelical location 2 and a 
DNA-binding domain (D) binding to the linker DNA, near the nucleosome entry/exit site, act in 
concert to create a DNA loop on the nucleosome surface. Tr and D were connected by a hinge 
region (H). A conformational change in Tr during the ATPase cycle allows DNA release and 
loop propagation resulting in nucleosome repositioning. The DNA-binding domain then rebinds 
a new stretch of DNA and the complex returns to its original conformation (adapted from Cairns, 
2006).  

 
 
 
considerable progress towards understanding the structural details of nucleosome 

repositioning has been made. ISWI ATPases are DNA translocases (Whitehouse et al., 

2003; Zofall et al., 2004). They have been mapped to contact the nucleosome at two 

sites: a DNA-binding domain contacts the linker DNA close to the entry/exit site and the 

translocation domain binds a region two helical turns away from the dyad axis 

(superhelical location 2 – SHL2) (Kagalwala et al., 2004). Both NURF and ISW2 have 

been suggested to move nucleosomes in steps of approximately 10 bp. These and other 

findings are accommodated in the currently favoured model for nucleosome sliding, 

which is a refinement of the earlier proposed loop recapture model (Cairns, 2007; 

Gangaraju and Bartholomew, 2007; Langst and Becker, 2004) (Figure 1.7). According 

to this model, the ATPase pumps DNA into the nucleosome by a concerted action of its 

DNA-binding domain and its translocase domain. This ATP-dependent transformational 

change results in disruption of histone-DNA contacts and the formation of a small loop. 

Subsequently, the translocation domain at SHL2 is believed to detach and allow loop 

propagation around the histone octamer, leading to a new translational position of the 

nucleosome, approximately 10 bp away from the initial one. 
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1.4.4 Regulation of ISWI and its complexes 
 

Several mechanisms are known to affect the enzymatic properties of ISWI ATPases. 

The most straightforward way to alter their activities is through the association of 

regulatory subunits. For example, ACF1, which is found in both ACF and CHRAC, 

affects both the quality and efficiency of ISWI functions. Although the DNA- and 

nucleosome-stimulated ATPase activity of ISWI remains constant upon association with 

ACF1, the efficiency of mononucleosome sliding is increased approximately by a factor 

of 10 (Eberharter et al., 2001). Binding of the two histone fold proteins CHRAC14 and 

CHRAC16 results in an additional fivefold increase in the same assay (Hartlepp et al., 

2005). Apart from affecting the remodelling efficiency, subunits can also change the 

outcome of the remodelling reaction. Whereas ISWI alone catalyses repositioning of 

mononucleosomes from the centre of short DNA fragments to their end, ACF and 

CHRAC catalyse sliding to the opposite direction, from the end to the centre of DNA 

fragments. However, the in vivo implications of these observations are not clear. 

Functional differences are also observed between distinct ISWI-containing complexes. 

For example ACF and CHRAC promote the formation of regularly spaced nucleosomal 

arrays (Ito et al., 1997; Varga-Weisz et al., 1997) while NURF disrupts the regularity of 

preassembled regular chromatin arrays (Tsukiyama and Wu, 1995). Concomitantly, 

ACF is required for proper chromatin assembly and heterochromatin formation in vivo, 

whereas NURF plays a role in transcriptional regulation (Fyodorov et al., 2004; 

Tsukiyama and Wu, 1995; Chioda et al., manuscript in preparation). 

A second principle affecting ISWI activity is provided by posttranslational 

modifications of histones. The ATPase activity is stimulated by DNA, but full activation 

requires the presence of nucleosomes. A short basic stretch of the H4 tail, residues 16 to 

20, is essential for this additional stimulation (Clapier et al., 2002). Also H4 peptides 

alone increase the ATPase activity in the presence of DNA, but acetylation of lysines 12 

or 16, both located in the proximity of the critical epitope, reduce the ability of the 

peptides to stimulate the ISWI ATPase by half (Corona et al., 2002). In agreement, the 

mononucleosome sliding activity of ACF is reduced by about 50% if mononucleosome 

containing H4K16Ac are used as substrate (Shogren-Knaak et al., 2006).  
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Regulatory subunits of ISWI complexes regulate the ATPase not only by changing 

its enzymatic properties, but also by recruiting it to its sites of action. Both NURF301, 

the largest subunit of NURF, and ACF1 contain two plant homeodomain (PHD) fingers 

followed by a bromodomain, which could target the complexes to specifically modified 

histone tails. Bromodomains interact with acetylated histones, PHD fingers have 

repeatedly been reported to recognize the methylation status of lysine residues (Baker et 

al., 2008; Zeng and Zhou, 2002). The second, bromodomain-proximal PHD finger of 

NURF301 and its human homologue BPTF specifically recognize the H3K4 

trimethylation mark and it is believed that NURF is recruited to or stabilized at 

promoters via this interaction (Wysocka et al., 2006). The PHD fingers of ACF1 have 

not been identified as targeting domains, so far, but are required for enhancing the 

remodelling efficiency of ISWI, presumably by anchoring it to the histone octamer 

(Eberharter et al., 2004b). 

Regulation could also be exerted through covalent modification of remodelling 

complexes themselves. The well-known histone H3-specific acetyltransferase Gcn5 has 

been shown to acetylate Drosophila ISWI both in vivo and in vitro at a site with 

sequence similarity to the H3 tail. Antibody staining against the acetylated form in tissue 

culture cells was reduced upon knock-down of NURF301, but not ACF1. Moreover, 

acetylated ISWI co-immunoprecipitated with NURF301, but not ACF1 suggesting that 

acetylated ISWI may reside in NURF, but not in ACF and CHRAC (Ferreira et al., 

2007). In addition, PHD fingers have repeatedly been reported to act as E3 SUMO 

ligases which sumoylate their adjacent bromodomains (Garcia-Dominguez et al., 2008; 

Ivanov et al., 2007). 

ISWI complexes may also be recruited to their sites of action by specific interactions 

with other chromatin binding proteins involved in specific nuclear processes requiring 

events of chromatin remodelling. Examples are provided by the hWICH subunit WSTF, 

which interacts with PCNA and thereby recruits the complex to sites of active 

replication (Poot et al., 2004) and NURF, which can act in concert with transcription 

factors to induce transcription in vitro (Mizuguchi et al., 1997). 

Finally, chromatin remodelling can be controlled by spatial or temporal 

transcriptional regulation of remodelling complex subunits. ACF1, for instance, is 
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predominantly expressed during early Drosophila development (Chioda et al., 

manuscript in preparation).  

 

 

1.5 Interplay between linker histones and ATP-dependent chromatin 
remodelling 
 

1.5.1 ATP-dependent remodelling in the presence of linker histones in vitro 
 

As described above, considerable progress has been made in understanding the 

substrate requirements of ATP-dependent remodelling factors. However, despite the 

high abundance of linker histones in the nucleus and their strong effect on chromatin 

compaction, their effect on remodelling has only been addressed in a handful of studies 

and remains controversial. In most cells, the majority of nucleosomes are bound by a 

linker histone, so complete inhibition of remodelling by H1 would limit it to a small 

fraction of chromatin (Horowitz et al., 1994). It is consequently very important to clarify 

whether and to what extent ATP-dependent chromatin remodelling factors can act on 

linker histone-containing chromatin. 

Linker histones inhibit the spontaneous sliding of histone octamers on DNA 

(Pennings et al., 1994; Ura et al., 1995). Similarly, one would expect ATP-dependent 

nucleosome repositioning to be difficult in the presence of linker histones, since this is 

likely to involve pulling linker DNA into the nucleosome (Flaus and Owen-Hughes, 

2004; Saha et al., 2006). Indeed, incorporation of H1 reduced the ATP-dependent ability 

of the SWI/SNF complex to increase the accessibility of mononucleosomal DNA (Hill 

and Imbalzano, 2000). In agreement, addition of H1 inhibited ACF-dependent 

remodelling of dinucleosomes (Saeki et al., 2005). Conversely, Schnitzler and 

colleagues concluded that SWI/SNF-dependent repositioning of mononucleosomes was 

not impaired by H1 (Ramachandran et al., 2003). 

Mono- and dinucleosomes are convenient substrates for studying nucleosome 

remodelling in vitro, but they are far from a physiological context of chromatin fibers. In 

vitro, nucleosome movements were also observed within extended arrays of 
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nucleosomes, which better mimic a chromatin context (Boyer et al., 2000; Corona et al., 

1999; Hassan et al., 2001). Considering the strong effect of linker histones on chromatin 

folding, their impact on chromatin remodelling can only be reliably investigated using 

nucleosome arrays. Yet, only few studies used oligonucleosomes as substrates to 

elucidate how linker histones may affect remodelling. Also in this case, the results 

obtained from these studies are controversial: some indicating an inhibitory effect by 

linker histones on ATP-dependent chromatin remodellling while other evidences do not 

support such a view. For example, monitoring the accessibility of nucleosomal DNA in 

nucleosome arrays, the nucleosome remodelling activities of human SWI/SNF, yeast 

SWI/SNF, Mi-2 and Xenopus ACF were strongly inhibited by the linker histone H5 

(Horn et al., 2002). In contrast, when chromatin was assembled by Drosophila 

embryonic extract, repositioning of nucleosomes in an ATP-dependent manner was 

observed even in the presence of stoichiometric amounts of histone H1 (Varga-Weisz et 

al., 1995). Subsequently, CHRAC was identified as the remodelling complex harbouring 

the activity necessary for nucleosome repositioning detected in the embryonic extract 

(Eberharter et al., 2001; Varga-Weisz et al., 1997). However, to date it remained unclear 

whether the ability to remodel H1-containing chromatin relied also on cofactors present 

in the extract.  

 

1.5.2 Role of ISWI complexes in linker histone incorporation 
 

ACF1, the subunit defining ACF and CHRAC, is abundant during early Drosophila 

development, when H1 gradually replaces its early placeholder HMG-D. As already 

mentioned, ACF not only possesses nucleosome sliding activity, but can also assist the 

assembly of DNA and histones into regularly spaced nucleosomal arrays (Ito et al., 

1997). If H1 is present in such an assembly reaction, it is incorporated into the 

reconstituted chromatin. This property is not common to all chromatin assembly factors 

as illustrated by the monomeric remodelling factor CHD1, which assembled only 

chromatin without H1 (Lusser et al., 2005). Because of its ability of assembling H1 into 

chromatin it has been proposed that ACF may act as an H1 chaperone. 
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During later development, a different ISWI complex may be required to deposit H1 

onto or maintain it on chromatin as suggested by the iswi knock-out phenotype. ISWI 

depletion is lethal, but mutant flies survive until the third instar larval stage due to 

maternal ISWI contribution. This allows the analysis of larval polytene chromosomes in 

salivary glands revealing that ISWI is required for global chromatin organization. The 

male X chromosome seems to be particularly sensitive to the loss of ISWI, since in 

homozygous iswi null larvae, it is heavily decondensed (Deuring et al., 2000). 

Expression of a dominant negative form of ISWI results in the decondensation also of 

the other chromosomes (Corona et al., 2007). The male X chromosome differs from the 

autosomes and the female X chromosome by chromosome-wide acetylation of H4K16, a 

modification resulting from the activity of the dosage compensation complex (DCC) 

(Morales et al., 2004). The DCC, in male flies, regulates the expression of X-linked 

genes as compensation for the lack of a second X chromosome (Gilfillan et al., 2006). 

Genetic analysis revealed that global H4K16Ac is both necessary and sufficient for 

chromosome decondensation upon ISWI depletion (Corona et al., 2002). H4K16Ac 

counteracts chromatin folding, so it could render chromatin susceptible to defects in 

chromatin condensation (see 1.3). Strikingly, no H1 is detected on the aberrant 

chromosome structures observed in iswi null flies (Corona et al., 2007), raising the 

possibility that ISWI might be involved in the loading or maintaining of linker histones 

on chromatin. Knock-out of the NURF subunit NURF301 resulted in the same 

decondensation of the male X-chromosome, showing that NURF may account for the 

iswi phenotype (Badenhorst et al., 2002). 

 

 

1.6 Goals 
 

 This work investigates the effect of linker histones on ATP-dependent chromatin 

remodelling of Drosophila ACF making use of a highly homogeneous system 

comprising oligonucleosomal templates reconstituted from purified components. 12mer 

nucleosome or chromatosome arrays were subjected to ATP-dependent remodelling by 
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the complex ACF, its ATPase ISWI and as reference by the ATPases CHD1 and BRG1. 

The remodelling efficiency of these factors in the absence or presence of linker histones 

or the early linker histone substitute HMG-D was monitored by changes in accessibility 

of nucleosomal DNA. Because ACF catalyses nucleosome sliding, movement of 

nucleosomes was assayed by partial digestion with micrococcal nuclease, which allows 

to monitor nucleosome positions. Moreover, repositioning of both nucleosomes and 

chromatosomes was measured directly by mapping the positions of isolated particles 

after remodelling reactions by primer extension. In addition, we investigated effects of 

H1 on the directionality of ACF-mediated nucleosome sliding. 

Because ACF can assemble H1-containing chromatin in vitro (see 1.5.2), we tested 

whether it has a related function in vivo. To monitor H1 and HMG-D dynamics in vivo, 

we raised antibodies against the two proteins and used them in whole mount 

immunostaining of early Drosophila wild-type or acf1 null embryos. In addition, 

replacement of HMG-D by H1 was investigated in a purified in vitro system.  
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2. Materials and Methods 
 

2.1 Material sources 
 

2.1.1 Laboratory chemicals and biochemicals 
 

Acrylamide (Rotiphorese Gel® 30)   Roth, Karlsruhe 
Agarose (ME, LE GP and low melting)  Biozym, Hessisch Oldenburg  
Ampicillin      Roth, Karlruhe 
Aprotinin      Sigma, Taufkirchen 
ATP       Sigma, Taufkirchen 
[γ-32P]- ATP      GE Healthcare, Munich 
Bacto Agar      BD, France 
Bacto Trypton      BD, France  
BSA (Bovine serum albumin), 98% pure  Sigma, Taufkirchen 
BSA, purified      NEB, Frankfurt/Main 
β-Mercaptoethanol     Sigma, Taufkirchen 
Chloramphenicol     Roth, Karlsruhe 
Coomassie G250     Serva, Heidelberg 
[α-32P]-dCTP      GE Healthcare, Munich/ 
       Perkin Elmer, Massachusetts 
DEAE Sepharose     GE Healthcare, Munich 
dNTP-Mix      NEB, Frankfurt/Main 
dNTP-Set      Roche, Mannheim 
DTT (Dithiothreitol)     Roth, Karlsruhe 
EDTA       Sigma, Taufkirchen 
EGTA       Sigma, Taufkirchen 
Ethidium bromide     Sigma, Taufkirchen 
Fetal bovine serum     Sigma, Taufkirchen  
3-glycerophosphate     Sigma, Taufkirchen 
Glycogen      Roche, Mannheim 
Guanidium-Cl      Sigma, Taufkirchen 
Hepes (N-(2-Hydroxyethyl)piperazine-H’-  Roth, Karlsruhe 
 (2-ethanesulfonic acid) 
Hydroxyl apatite     Bio-Rad, Munich 
Kanamycin      Sigma, Taufkirchen 
IPTG       Roth, Karlsruhe 
Leupeptin      Sigma, Taufkirchen 
NP40 (Igepal CA-630)    Sigma, Taufkirchen 
Orange G      Sigma, Taufkirchen 
Paraformaldehyde     Sigma, Taufkirchen 
Pepstatin      Sigma, Taufkrichen 
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Phenol       Roth, Karlsruhe 
Phenylsepharose     GE Healthcare, Munich 
PMSF (Phenylmethanesulfonyl fluoride)  Sigma, Taufkirchen 
SDS (Sodium dodecyl sulfate)   Serva, Heidelberg 
Sf-900II medium (GibCo)    Invitrogen, Karlsruhe  
SYBR gold       MoBiTec, Göttingen 
Temed (N,N,N’,N’-Tetramethylethylenediamine) Roth, Karlsruhe 
TO-PRO3 (Molecular Probes)    Invitrogen, Karlruhe 
Tris       Invitrogen, Karlruhe 
Triton X-100      Sigma, Taufkirchen 
Tween 20      Sigma, Taufkirchen 
Vectashield mounting medium    Vector Labs, U.K. 
Xylene cyanol      Sigma, Taufkirchen 
Yeast extract      Difco, Detroit 
 

All other chemicals were purchased in analytical grade from Merck, Darmstadt. 

 

2.1.2 Enzymes  
 

Antarctic Phosphatase    NEB, Frankfurt/Main 
DNA Polymerase I, Large (Klenow) Fragment NEB, Frankfurt/Main 
Klenow Fragment (3’→ 5’ exo-)   NEB, Frankfurt/Main 
Micrococcal nuclease (MNase)   Sigma, Taufkirchen 
Polynucleotide Kinase (PNK)   NEB, Frankfurt/Main  
Proteinase K      Roche, Mannheim 
Restriction endonucleases    NEB, Frankfurt/Main  
       Roche, Mannheim   
Taq DNA Polymerase    NEB, Frankfurt/Main 

 

2.1.3 Antibodies 
 

Primary antibodies 

chicken α-H1 (raised for this study)   Eurogentech, Netherlands 
rabbit α-HMG-D (raised for this study)  Eurogentech, Netherlands 
goat α-H4 (commercial)    Santa Cruz Biotechnology,  
       California 
rabbit α-H3 (commercial)    Abcam, UK 
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Secondary antibodies 

rabbit α-chicken IgY HRP-conjugated  Promega, Mannheim 
α-rabbit HRP-conjugated      Promega, Mannheim 
rabbit α-chicken IgY, Hilite FluorTM 680   AnaSpec, California 
donkey α-rabbit IRDye 800     Rockland, Pennsylvania 
donkey α-goat IRDye 680    Molecular Probes 
α-chicken Alexa 488-conjugated   Jackson Immunoresearch  

Laboratories, UK 
α-rabbit Rhodamine Red X-conjugated  Jackson Immunoresearch  

Laboratories, UK 

 

2.1.4 Organisms, cells and bacteria 
 

TOP10 E. coli strain     Invitrogen, Karlruhe  
BL21 Codon Plus E. coli    Stratagene,  
Sf9 cells (Spodoptera frugiperda)   Novagen 
 
Drosophila yw flies and TM3 and TM6 balancer chromosomes are described in FlyBase 
(http://flybase.bio.indiana.edu) 
 

2.1.5 Oligonucleotides, plasmids, and baculoviruses 
 

2.1.5.1 Primers 
 

All primers were ordered from Biomers, Ulm 

13fw   5'-ATCTGACACGTGCCTGGA-3’ 
13rv   5'-TCCAGGCACGTGTCAGAT-3’ 
76fw  5'-CGTACGTGCGTTTAAGC-3’ 
76rv  5'-GCTTAAACGCACGTACG-3’ 
linker22fw 5’-CTGAGCTCAGATCTATCTAGAGCATGCCCGAGTC-3’ 
linker22rv 5’-GACTCGGGCATGCTCTAGATAGATCTGAGCTCAG-3’ 
linker31fw 5’-CTGAATTCCTGCAGGATCCAGTCTCGGGAC-3’ 
linker31rv 5’-GTCCCGAGACTGGATCCTGCAGGAATTCAG-3’ 

 

2.1.5.2 Plasmids 
 

pBluescript KS     Stratagene, Netherlands 
pUC19       Invitrogen, Karlsruhe    
pUC18 12x601     Daniela Rhodes, Cambridge 
pET3c dH2A      Violette Morales 
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pET3c dH2B      Violette Morales 
pET24 HMG-D     Andrew Travers 

 

2.1.5.3 Baculoviruses 
 

ACF1-flag      James Kadonaga 
ISWI       James Kadonaga 
flag-ISWI      Toshi Tsukiyama 
CHD1-flag      Alexandra Lusser 
flag-BRG1      Robert Kingston 

 

2.1.6 Other materials 
 

1 kb DNA marker     NEB, Frankfurt/Main 
100 bp DNA marker     NEB, Frankfurt/Main 
Α-flag M2 agarose     Sigma, Taufkirchen 
Bio-Rad Protein Assay (Bradford)   Bio-Rad, Munich 
DE81 anion exchanger chromatography paper Whatman, Rothenburg/Fulda  
ECL detection system     GE Healthcare, Munich 
Gel Extraction Kit     Qiagen, Hilden 
Hiload® 16/60 Superdex®200 gel filtration column GE Healthcare, Munich 
Immobilon-P PVDF membrane   Millipore, Massachusetts 
Microsep Omega centrifugal devices  (10K/30K) Pall, New York 
Miracloth (Calbiochem)    Merck, Darmstadt 
MonoS  5/50 GL     GE Healthcare, Munich 
peqGOLD Protein Marker     Peqlab Biotechnologie, Erlangen 
Plasmid Maxi Kit     Qiagen, Hilden 
Plasmid Mini Kit     Qiagen, Hilden 
Rotilabo syringe filters    Roth, Karlsruhe   
Siliconised reaction tubes, 1.5 ml   Biozym, Hessisch Oldenburg  
SpectraPor dialysis membrane    Roth, Karlsruhe 
SP-Sepharose column (5 ml)    GE Healthcare, Munich 
Super RX Fuji medical X-ray film   Fuji, Düsseldorf 
TLC plates      Merck, Darmstadt 
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2.2 Buffers and solutions 
 

Agar plates for collecting   1.8%   Bacto agar 
Drosophila embryos   2%   sucrose 

0.1%   acetic acid 
 
Coomassie destaining solution 10% v/v acetic acid 
 
Coomassie staining solution  10% v/v acetic acid 
     0.25% w/v Coomassie Brilliant Blue R-250 
 
DB500/2000    10 mM  Tris-Cl pH 7.6 

500/2000 mM NaCl 
     1 mM  EDTA pH 8.0 
     0.01% v/v NP40  
     1 mM  β-mercaptoethanol (just before use) 
 
DB0/50    10 mM  Tris-Cl pH 7.6 
     0/50 mM NaCl 
     1 mM  EDTA pH 8.0 
     1 mM  β-mercaptoethanol (just before use) 
 
DNA loading buffer (6x)  30% v/v  glycerol 

0.25% w/v  xylene cyanol, bromophenol blue 
and/or orange G 

 
EW (embryo wash buffer)  0.7% w/v  NaCl  

0.05% v/v Triton X-100 
 
EX40     10 mM  Hepes-KOH pH 7.6 

40 mM  KCl 
1.5 mM MgCl2 
0.5 mM  EGTA 
10% (v/v) glycerol 

 
Extract buffer     10 mM  Hepes-KOH pH 7.6 

10 mM  KCl 
1.5 mM MgCl2 
0.5 mM  EGTA 
10% (v/v) glycerol 
10 mM  3-glycerophosphate (just before use) 
1 mM   DTT (just before use) 
proteinase inhibitors (just before use) 
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Fixation buffer    50% v/v methanol 
     10% v/v acidic acid 
 
Glycine buffer    15 mM  Hepes-KOH, pH 7.6 
     10 mM  KCl 
     5 mM   MgCl2 
     0.05 mM  EDTA 
     0.25 mM  EGTA  
     10% v/v  glycerol 
     1 mM  DDT (just before use) 

proteinase inhibitors (just before use) 
 
HEMG for H1 purification  25 mM  Hepes-KOH pH 7.6 
     12.5 mM  MgCl2  
     0.1 mM  EDTA pH 8.0 
     10% v/v  glycerol 
     NH4SO4  as indicated  
     1 mM  DDT (just before use) 
     0.2 mM  PMSF (just before use) 
 
HEMG200/500 for purification of  25 mM  Hepes-KOH pH 7.6 
remodelling enzymes from Sf9 cells 200/500 mM  KCl 
     0.5 mM  EDTA 
     12.5 mM  MgCl2 
     10%   glycerol 
     0.05%   NP40 
     1 mM   DTT  
     proteinase inhibitors (just before use) 
 
HEG100/1000    25 mM  Hepes-NaOH pH 7.6  
     0.1 mM  EDTA pH 8.0 
     10% v/v  glycerol 
     100/1000 mM NaCl  
     1 mM  DDT (just before use) 
     0.2 mM  PMSF (just before use) 
 
HE50/500/1000   50 mM  Hepes-NaOH pH 8.0 
     50/500/1000mM NaCl 
     1mM   EDTA pH 8.0 
     proteinase inhibitors (just before use) 
 
K-PO4 100 mM   28 mM  KH2PO4  
     72 mM  K2HPO4 
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Laemmli buffer (3x)   100 mM  Tris-Cl pH 6.8 
     3% w/v  SDS 
     45% v/v  glycerol 
     0.01%   bromophenol blue 
     7.5%   β-mercaptoethanol 
 
LB-Agar plates   LB-medium 
     1.5% w/v Bacto-Agar 
 
LB-Medium    1.0% w/v  Tryptone 
     0.5% w/v  Yeast extract 
     1.0% w/v  NaCl 
     pH 7.2 
 
Loading buffer for primer  80% v/v formamid 
extension reactions   0.1 M  NaCl 
     0.25% w/v  bromophenol blue 
 
NB (nuclei buffer)     15 mM  Tris-Cl pH 7.4 
     60 mM  KCl 
     15 mM  NaCl 
     5 mM   MgCl2  
     0.1 mM  EGTA pH 8.0 
     proteinase inhibitors (just before use) 
 
PBS (Phosphate-buffered saline) 1.54 M  NaCl     
     15 mM  KH2PO4 
     27 mM  Na2HPO4*12H2O 
 
PBS-T     PBS containing 0.1% Tween 20 
 
RB50     10 mM  Hepes pH 7.6 
     50 mM  KCl 
     1.5 mM MgCl2 
     0.5 mM  EGTA pH 8.0 
 
Refolding buffer    2 M   NaCl 
     10 mM  Tris pH 7.5 
     1mM   EDTA pH 8.0 
     5mM   β-mercaptoethanol (just before use) 
 
Sau200/600    7 M   Urea (max. 24 h before use) 
     20 mM  Na-acetate pH 5.2 
     200/600 mM  NaCl 
     1 mM   EDTA pH 8.0 
     5 mM   β-mercaptoethanol (just before use) 
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Sucrose buffer    15 mM  Hepes-KOH, pH 7.6 
     10 mM  KCl 
     5 mM   MgCl2 
     0.05 mM  EDTA 
     0.25 mM  EGTA 

30 mM  sucrose 
1 mM   DTT (just before use) 
proteinase inhibitors (just before use) 

 
TAE     40 mM  Tris-acetate  
     1 mM   EDTA pH 8.0 
 
TB (0.2x)    9 mM  Tris-borate pH 8.0 
 
TBE     45 mM  Tris-borate 
     1 mM  EDTA pH 8.0 
 
TE      10 mM  Tris-Cl 
     1 mM   EDTA pH 8.0 
 
Transfer buffer   48 mM  Tris base 
     39 mM  glycine 
     20% v/v  methanol 
     0.0375% w/v SDS 
 
Tris-buffered phenol pH 8.0  Phenol buffered twice with 0.5 M Tris-Cl pH 8.0  
     and twice with 0.1 M Tris-Cl pH 8.0 
 
Tris-glycine buffer   50 mM  Tris base 
     384 mM glycine 
 
Unfolding buffer   7 M   Guanidium-HCl 
     20 mM  Tris pH 7.5 
     10 mM  DTT (just before use) 
 
Washing buffer for inclusion bodies  50 mM  Tris-Cl pH 7.5 
     100 mM  NaCl 
     1 mM   EDTA pH 8.0 
     5 mM   β-mercaptoethanol (just before use) 
     proteinase inhibitors (just before use) 
 

Proteinase inhibitors included 0.2 mM PMSF, 1 mg/l aprotinin, 1 mg/l leupeptin and 0.7 

mg/l pepstatin. 
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2.3 Methods for the preparation and analysis of DNA  
 

2.3.1 General methods for working with DNA  
 

2.3.1.1 Agarose gel electrophoresis 

 

Agarose gel electrophoresis was used to analyse and separate the quality, size and 

quantity of DNA fragments (Sambrook and Russell, 2001). Depending on the size of the 

fragments of interest, 0.7-2% w/v agarose solutions in TAE were used. The volume per 

gel was 50 ml. EtBr was added to a final concentration of 0.5 µg/ml. Electrophoresis 

was carried out in TAE. After separation, DNA was examined on UV light. If a higher 

sensitivity was required, instead of including EtBr in the gel, gels were stained after 

electrophoresis for 30 min with a 1:10000 dilution of SYBRgold® in TAE. 

Radioactive agarose gels used to analyse chromatin remodelling assays were dried 

on a gel dryer for 2 h at 50°C on DE81 anion exchange paper and exposed to a 

phosphoimager screen. Images were acquired with BASReader in a FLA-3000 

phosphoimager (Fujifilm) and analysed with AIDA Image Analyzer software. 

 

2.3.1.2 Ethanol precipitation 

 

DNA was precipitated by adding two volumes of ethanol and 1/10 volume of 3 M 

NaOAc pH 5.2. The mixture was incubated for 1 h on ice or overnight at -20°C and 

centrifuged for 30 min, at 4°C, 13,000 rpm in a tabletop centrifuge. The pellet was 

washed with 70% ethanol, dried and resolved in the appropriate buffer. 

 

2.3.1.3 DNA quantification 

 

Plasmid DNA was quantified by measuring the optical density at a wavelength of 

260 nm with a NanoDrop® (peqlab). One OD unit at 260 nm (OD260) corresponds to a 

concentration of 50 µg DNA/ml. The purity of the DNA can be judged by the ratio 

OD260/OD280. Pure DNA preparations have a ratio of 1.8. 
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2.3.1.4 Transformation of competent bacteria 

 

After thawing on ice, 50 µl of chemically competent E. coli were added to 

approximately 50 ng plasmid DNA in a precooled 1.5 ml tube. Samples were incubated 

for 30 min on ice, for 45 s at 42°C and for another 3 min on ice. 200 µl RT LB were 

added and the cells were incubated at 37°C for 30 min. Bacteria were streaked out on 

agar plates containing appropriate antibiotics. Plates were incubated overnight at 37°C. 

 

2.3.1.5 Plasmid preparation 

 

Plasmids were prepared using the Qiagen Plasmid Mini and Maxi kits following the 

manufacturer’s instructions.  

 

2.3.2 Cloning of pUC19 4x601 
 

pUC19 4x601 was generated by partially digesting pUC18 12x601 with AvaI (see 

2.1.5.2). The fragment comprising four 601 positioning sequences was to linkers 22 and 

31 (see 2.1.5.1) with T4 DNA Ligase in the presence of a tenfold excess of linkers. 

Linkers were prepared by denaturing the appropriate pairs of complementary primers at 

95°C followed by renaturation by gradual decrease of the temperature. The short 

doublestranded DNA fragments were digested by AvaI to render their ends compatible 

with the 4x601 insert and purified from a 6% polyacrylamide gel by the crush and soak 

method (Sambrook and Russell, 2001). 

After the ligation of 4x601 DNA fragments to the linkers, the insert was digested 

with PstI and SacI which are cutting in linker 22 and linker 31, respectively, and purified 

from 0.8% agarose gel in TAE using the Qiagen gel extraction kit. Subsequently, the 

insert was ligated into pUC19 cut with SacI and PstI, which had been purified by the 

same procedure. Ligations were performed using 30 ng pUC19, a threefold molar excess 

of the insert and 400 U T4 DNA Ligase in 20 µl 1x ligation buffer for 1 h at RT. 10 µl of 

the ligation reaction was transformed into chemically competent TOP10 E. coli. Positive 

clones were selected on agar plates containing 100 µg/ml ampicillin. Individual colonies 
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were picked and grown overnight at 37°C in 5 ml LB medium containing 100 µg/ml 

ampicillin. Plasmid DNA was purified using the Qiagen Miniprep kit and the presence 

of the right insert was controlled by analytical SacI/PstI digestion. 

 

2.3.3 Preparation of DNA fragments for the assembly of nucleosomal arrays 
 

2.3.3.1 Preparation of DNA fragments for the assembly of 12mer arrays 

 

50 µg of pUC18-12x601 plasmid were digested with 50 U of EcoRI, HindIII and 

DraI in a final volume of 100 µl buffer B (Roche, Mannheim). Digestions were carried 

out for 3 h at 37°C. 1/10 of the reactions were loaded on agarose gel for checking the 

extent of digestion. 

For radioactive chromatin assemblies, 1/5 of 12x601 DNA fragments were labelled 

by Klenow-exo--Polymerase (see 2.3.4). For this purpose, a fraction of the digested 

plasmid was purified from agarose gels. 50 µg digested DNA were loaded per 50 ml gel. 

Electrophoresis was carried out in TAE. A low energy UV handlamp was used to 

visualize the DNA. When the bands had separated, electrophoresis was stopped and a 

small rectangle was cut out just below the fragment to be purified. This window was 

filled with a melted solution of 0.7% w/v low melting agarose in TAE. After the agarose 

had solidified, electrophoresis was resumed allowing the DNA to migrate into the low 

melting agarose gel and then it was excised. 

To purify the DNA, low melting gel slices were incubated at 65°C until fully melted. 

DNA was extracted by adding one volume of Tris-buffered phenol (equilibrated with 0.1 

M Tris pH 8). After mixing, the tube was centrifuged in a table-top centrifuge at RT for 

10 min at 13,000 rpm. The aqueous phase was collected, the organic phase was re-

extracted by adding 300 µl of TE pH 8 and spun 5 min, 13,000 rpm. The aqueous phases 

containing the DNA were extracted with butanol, thereby removing EtBr and reducing 

the water volume to a final volume of approximately 400 µl. 

The DNA was precipitated with ethanol and dissolved in TE. The purity of DNA 

was checked by agarose gel electrophoresis. 
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2.3.3.2 Preparation of DNA fragments for the assembly of palindromic 8x601 arrays 

 

Palindromic 8x601 DNA arrays were produced which – if assembled into 

nucleosomal arrays – contained H1 binding sites facing either outwards or inwards. To 

obtain arrays with H1 binding sites facing outwards, the pUC18 4x601 plasmid was 

digested with BglII (cutting in linker 22) in 100 µl reactions and subsequently 

dephosphorylated by Antarctic Phosphatase according to the manufacturer’s 

instructions. After inactivating the Antarctic Phosphatase by heat-denaturation, the DNA 

was precipitated. After dissolving, DNA fragments were digested by BamHI (cutting in 

linker 31) and the 4x601 insert was purified from 0.7% agarose by Phenol extraction 

(see 2.3.3.1). The 4x601 BamHI-BglII fragments were ligated by T4 DNA Ligase at 

their BamHI-cut ends and the resulting 8mer arrays were purified from agarose gel by a 

phenol extraction. 

To obtain palindromic arrays with H1 binding sites facing inwards, the same 

procedure was applied, but plasmids were first digested by BamHI and 

dephosphorylated. The DNA was then digested with BglII, 4x601 fragments were 

purified and ligated with their BglII-cut ends. 

To generate a size of competitor DNA that could be distinct from 8x601 palindromic 

arrays pUC19 plasmid was digested by EcoRI and HindIII, giving rise to 692 bp, 808 bp 

and 1167 bp DNA fragments. Enzymes were heat-inactivated and the DNA precipitated. 

 

2.3.4 Radioactive DNA end-labelling 
 

5’-overhangs of DNA fragments resulting from HindIII-digestion, BglII or BamHI-

digestion were filled in with Klenow-exo--Polymerase in the presence of [α-32P]-dCTP 

and non-radioactive nucleotides. 2 µg DNA and 2 U of the polymerase were incubated 

with dGTP, dATP, dTTP (final concentration 33 µM each) and 1 µl of [α-32P]-dCTP (10 

mCi/ml, 3000 Ci/mmol) in NEB buffer 2 in a final volume of 20 µl. After 15 min at 

37°C, reactions were stopped by addition of 1 µl 0.5 M EDTA pH 8.0 and inactivation 

of the enzyme at 75°C for 20 min. The DNA was precipitated and dissolved in TE. The 
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labelling efficiency was checked by counting the activity of labelled DNA in a 

Beckmann LS1801 scintillation counter. 

 

 

2.4 Methods for protein analysis and purification of proteins 
 

2.4.1 Protein quantification 
 

Protein concentrations were determined using the Bio-Rad Protein Assay according 

to the manufacturer’s instructions. BSA (purified) was used as a protein standard. In 

addition, protein concentrations were estimated by eye by comparing them to a protein 

standard (BSA) on an SDS polyacrylamide gel. 

 

2.4.2 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 
 

SDS-PAGE was conducted as described (Sambrook and Russell, 2001) in Invitrogen 

Novex Mini Cell chambers. After separation, proteins were fixed by incubating the gel 

for 30 min in fixation buffer. The gel was incubated for 30 min - 1 h in Coomassie 

staining solution, destained in Coomassie destaining solution and dried in a gel dryer for 

2 h at 80°C. 

 

2.4.3 Western blotting 
 

Western blotting was carried out as described previously (Sambrook and Russell, 

2001) using a Biorad Mini Trans-Blot cell, Immobilon-P PVDF membrane and transfer 

buffer with the following modifications. Proteins transfer was conducted at 4°C for 12 h 

at 100 mA, the membrane was rinsed in methanol and let dry at RT. For protein 

detection, the membrane was activated by soaking it in methanol and then washed twice 

for 5 min in PBS. Blocking was carried out for 30 min in 3% BSA (98% PURE) in PBS-

T. After incubation of the primary antibody in blocking buffer, overnight at 4°C, the 
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membrane was washed 4 times for 10 min at RT with PBS-T. Secondary antibodies 

conjugated to HRP (horse radish peroxidase) or IR (infrared) dyes were incubated in 

blocking buffer for one hour at RT. Subsequently, the membrane was washed 5 times 

with PBS-T. All secondary antibodies (see 2.1.3) were diluted 1:10,000 with the 

exception of donkey α-goat IRDye 680, which was diluted 1:15,000. 

If secondary antibodies were conjugated to HRP, proteins were detected by 

chemoluminescence using the GE Healthcare ECL detection system according to the 

manufacturer’s instructions. If secondary antibodies carrying IRDye 680 or IRDye 800 

were used, the membrane was dried and proteins were detected by the Odyssey® System 

(Lycor, Bad Homburg). 

 

Primary antibody dilutions 

chicken α-H1      1:250 
rabbit α-HMG-D     1:300 
goat α-H4      1:500 
rabbit α-H3      1:5000 

 

2.4.4 Purification of endogenous histone octamers from Drosophila embryos 
 

Drosophila embryos 0-12 h AEL were collected on apple-juice-agar plates by 

rinsing the plates under running water into a sieve. Embryos were dechorionated by 

adding 25% bleach diluted in EW and stirring them for 3 min on a magnetic stirrer. 

After putting them back into the sieve, they were washed with 1 l of EW and 

subsequently with running tap water for 5 min. The sieve was then placed on tissue 

paper to remove the water as much as possible. All the following steps were conducted 

at 4°C. 100 g of dechorionated embryos were used as starting material for the 

purification of histones. Embryos were resuspended in 150 ml glycine buffer, 

homogenized by passing them 6 times through a Yamato LSC Homogenizer LH-21 at 

1000 rpm and filtered through two layers of Miracloth. The flow-through containing the 

nuclei was centrifuged (10 min, 8000 rpm, SLA-3000 rotor). The nuclei, which formed 

the upper phase of the biphase pellet, were solubilized in a final volume of 50 ml sucrose 

buffer. Nuclei were washed once more in a volume of 50 ml sucrose buffer (10 min, 
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8000 rpm, SLA-1500 rotor) and dissolved in sucrose buffer to a final volume of 30 ml. 

In order to digest chromatin to mononucleosomes, 90 µl 1 M CaCl2 were added to the 

nuclei suspension, it was warmed-up for 10 min at 26°C, 74 U MNase were added and 

the mixture was incubated for another 10 min at 26°C. The reaction was stopped by 

adding 600 µl 0.5 M EDTA pH 8.0. The chromatin was pelleted immediately (10 min, 

9500 rpm, SS34 rotor) and resuspended in 6 ml TE pH 7.6 containing proteinase 

inhibitors. The tube was rotated for 45 min at 4°C and centrifuged with 11,000 rpm for 

35 min in a SS34 rotor. The salt concentration of the supernatant was adjusted to 0.63 M 

KCl using a 2 M KCl/100 mM K-PO4-buffer. The solution was cleared by centrifugation 

(15 min, 4000 rpm, Heraeus Megafuge 2.0) and loaded onto a 30 ml hydroxyl apatite 

column equilibrated with 0.63 M KCl/100 mM K-PO4-buffer at 0.5 ml/min. The column 

was washed with 300 ml 0.63 M KCl/100 mM K-PO4-buffer (0.5 ml/min) and the core 

histones were eluted with 2 M KCl/100 mM K-PO4-buffer. 5 ml fractions were collected 

and samples were analysed by 18% SDS-PAGE for their protein content. Fractions 

containing equimolar histone amounts were pooled, concentrated in Microsep 10K 

Omega centrifugal devices and stored at -20°C after addition of glycerol to 50% (Simon 

and Felsenfeld, 1979). 

 

2.4.5 Expression and purification of recombinant core histones in E. coli and 
reconstitution of histone octamers 
 

Core histones H2A, H2B, H3 and H4 were expressed separately in E. coli. 

Chemically competent BL21 Codon Plus E. coli were transformed with 1 µg of pET 

histone expression plasmid and grown overnight on Agar plates containing 100 µg/ml 

ampicillin. A single colony was picked and inoculated in 400 ml LB medium for 1 h at 

37°C. After adding ampicillin to 100 µg/l and chloramphenicol to 25 µg/l, the culture 

was shaken overnight at 37°C. 20 ml of this pre-culture were added to each of 20 500 ml 

LB (+ 100 µl/l ampicillin, + 25 µl/l chloramphenicol) flasks and the bacteria were grown 

at 37°C until an OD595 of 0.6. Histone expression was induced by adding IPTG to 1 mM. 

After 3 h at 37°C, cells were harvested by centrifugation at 4000 rpm for 20 min in a 
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Heraeus Cryofuge 6000i and the pellet was frozen. Overexpression of histones was 

controlled by 18% SDS-PAGE.  

The bacterial pellet was resuspended in a volume of 33 ml washing buffer for 

inclusion bodies. The suspension was first homogenized by 6 runs through a French 

Pressure Cell Press (ThermoSpectronic) at a pressure of 1000 psi and then sonified by a 

Branson Digital Sonifier in 50 ml tubes (5 min, 70% amplitude, pulse 5 s on/5 s off). 

Bacterial extracts were centrifuged (20 min, 18,000 rpm, Sorvall SS34 rotor) and the 

pellet was washed twice with 40 ml washing buffer containing 1% Triton X-100. To 

remove traces of Triton, samples were washed twice with 40 ml washing buffer. After 

the last centrifugation, the pellet containing the inclusion bodies was frozen at 20°C.  

1 ml of DMSO was added to the pellet, it was allowed to thaw and homogenized in 5 

ml of unfolding buffer. Further unfolding buffer was added to a volume of 40 ml and the 

mixture was rotated at RT for 1 h to allow unfolding of inclusion bodies. The 

supernatant of the following centrifugation (20 min, 18,000 rpm, Sorvall SS34 rotor) 

was dialysed against 3 times for 1 h in 1 l Sau200. 

Undissolved material was removed by centrifugation (10 min, 18,000 rpm, Sorvall 

SS34) and the supernatant was loaded onto a 5 ml SP-Sepharose column, washed with 

25 ml Sau200 and eluted with a gradient of Sau600. Fractions containing the expressed 

histones were pooled and dialysed three times for 1 h in 1 l H2O. The concentration of 

the histones was determined with a Nanodrop® (peqlab) measuring their OD at 276 nm. 

Histones were frozen in liquid nitrogen in 1 mg aliquots and stored at -80°C. Histones 

H2A and H2B were prepared for this thesis, histones H3 and H4 were kindly provided 

by Dr. Catherine Regnard and Dr. Violette Morales.  

8 mg of each histone were lyophilized overnight and dissolved to a concentration of 

2 mg/ml in refolding buffer. After incubation for 2.5 h on a rotating wheel, the 

concentration of each histone was determined with a Nanodrop® (peqlab). Each histone 

concentration was calculated (concentration [mol/l] = OD276/ε276) using the coefficient of 

extinction (ε276) given for each histone. 

Because it is easier to separate histone octamers from H2A/H2B dimers than from 

H3/H4 tetramers, H3 and H4 were mixed in an equimolar ratio, whereas H2A and H2B 

were added with a 20% excess. The protein concentration was adjusted to 2 mg/ml by 

adding refolding buffer and the solution was dialysed twice against 3 l of refolding 
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buffer. The solution was cleared by centrifugation (5 min, 4000 rpm, Heraeus Megafuge 

2.0) and concentrated to 2 ml using Microsep 30K Omega centrifugal devices. 

Histone octamers were loaded onto and eluted from a Hiload® 16/60 Superdex®200 

size exclusion column in refolding buffer at a flow-rate of 1 ml/min. 1 ml fractions were 

collected and 1 µl of each fraction was analysed by 18% SDS-PAGE. Fractions 

containing equimolar amounts of histone octamers were pooled and frozen in 50% 

glycerol at -20°C (Morales et al., 2004). 

 

  MW [kD]  ε276 [l/mol] 

H2A  11.960   4050  
H2B  13.774   6070 
H3  15.273   4040 
H4  11.236   5400 

 

2.4.6 Purification of linker histone H1 from Drosophila embryos 
 

A fraction that contains large amounts of Drosophila linker histone H1 is obtained as 

a byproduct of Drosophila transcription extract production (Heberlein and Tjian, 1988). 

During this procedure, nuclei are isolated from embryos, lysed, and the lysate is 

fractionated by (NH4)2SO4-precipitation. Proteins required for in vitro transcription are 

pelletted with 35% (NH4)2SO4, whereas H1 remains in the supernatant. The supernatant 

from a transcription extract preparation from embryos 0 – 12 h AEL was the starting 

material for further H1 purification; it was kindly provided by Dr. Andreas Hochheimer.  

40 ml supernatant containing 2.7 mg/ml protein was cleared by centrifugation for 20 

min at 18,000 rpm in a Sorvall SS-34 rotor and by filtration (pore size 0.45 µm). It was 

then loaded onto a 20 ml phenylsepharose (XK16) hydrophobic interaction 

chromatography column equilibrated with HEMG/2.1M NH4SO4. The column was 

washed with 100 ml HEMG/2.1 M NH4SO4. A gradient was run from HEMG/2.1 M 

NH4SO4 (buffer A) to HEMG/0.1 M NH4SO4 (buffer B). Since H1 was expected to be 

among the first proteins to elute, the gradient was divided into two steps, the first one 

from 0-35% buffer B within 60 ml, the second one from 35-100% buffer B within 80 ml. 

5 ml fractions were collected. 5 µl of each fraction were applied on a 12% SDS 
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polyacrylamide gel to determine the presence of H1. H1-containing fractions were 

pooled and dialysed twice for 1 h and once overnight against 2 l HEG100. After dialysis, 

the solution was centrifuged for 30 min at 10,000 rpm in a Sorvall SS-34 rotor. The 

supernatant was loaded with 0.5 ml/min onto a fast protein liquid chromatography Mono 

STM 5/50 GL column equilibrated with HEG100. After washing the column with 10 ml 

HEG100, a 20 ml gradient from HEG100 to HEG1000 was applied, 330 µl fractions 

were collected and 1 µl of each fraction was analysed by 12% SDS-PAGE. The fractions 

containing H1 were pooled, shock-frozen in liquid nitrogen and stored at -80°C. 

Alternatively, glycerol was added to 50% v/v and the mixture was stored at -20°C 

(Croston et al., 1991).  

H1 is easily retained on pipet tips and reaction tubes. To minimize loss of the 

protein, when handling H1-containing samples, siliconized reaction tubes were used and 

a 20 mg/ml BSA (98% pure) solution was pipetted up and down five times in each tip 

before use. 

 

2.4.7 Purification of HMG-D from Drosophila embryos 
 

Drosophila embryos 0-90 min AEL were collected on applejuice-agar plates, rinsed 

with water into sieves and allowed to settle into EW on ice to arrest further 

development. The harvest of four successive collections was pooled. After the embryos 

had settled, cold EW was replaced by RT EW and the volume was adjusted to 200 ml. 

After addition of 60 ml of 13% hypochlorite, the embryos were stirred on a magnetic 

stirrer for 3 min, poured into a collection sieve and rinsed with running tap water for 5 

min. To remove the chorion, 200 ml wash buffer was added, embryos were allowed to 

settle and the supernatant was removed by vacuum aspiration. The volume of the 

embryos was estimated after two more washes: the first in cold 0.7% w/v NaCl and the 

second in extract buffer on ice for 15 min in a 60-ml glass homogenizer. The supernatant 

was removed, and the embryos were homogenized by one stroke at 3000 rpm and ten 

strokes at 1500 rpm with a pestle connected to a Schütt Homgen drill press. The MgCl2-

concentration was adjusted to 5 mM and the nuclei were pelleted by centrifugation for 

10 min at 10000 rpm in a Sorvall SS34 rotor. The supernatant was centrifuged for 2 h at 
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45,000 rpm (190,000 x g) in a Beckman SW 56 rotor. The supernatant of this 

centrifugation, that we refer to as Drosophila embryonic extract (DREX) was collected 

with a syringe, avoiding the floating layer of lipids and the pellet. The extract was frozen 

in liquid nitrogen (Becker et al., 1994).  

20 ml of DREX were incubated for 10 min at 75°C. Precipitated proteins were 

removed by centrifugation and the supernatant was fractionated by selective (NH4)2SO4 

precipitation. 40% w/v (without considering the increase in volume due to salt addition) 

(NH4)2SO4 was added to the mixture, it was stirred for 15 min followed by 

centrifugation (15 min, 15,000 rpm, Sorvall SS34). The supernatant was precipitated 

once more by adding (NH4)2SO4 to 65% w/v, the resulting pellet was resuspended in 

2 ml of 50 mM Hepes-KOH pH 7.6/50 mM KCl containing proteinase inhibitors and 

dialysed 3 times against 1 l of this buffer. Subsequently, it was loaded onto a 1 ml fast 

protein liquid chromatography Mono STM 5/50 GL column (0.5 ml/min). The column 

was washed with 10 ml of 50 mM Hepes-KOH pH 7.6/50 mM KCl and proteins were 

eluted with a 20 ml gradient of Hepes-KOH pH 7.6/1 M NaCl (+ proteinase inhibitors) 

at a flow-rate of 1 ml/min. 1 ml fractions were collected. HMG-D elutes at 0.3-0.35 M 

NaCl. 5 µl of each fraction were analysed by 18% SDS-PAGE, HMG-D-containing 

fractions were pooled, concentrated in Microsep 10K Omega centrifugal devices, frozen 

in liquid nitrogen and stored at -80°C (Ner et al., 2001). 

 

2.4.8 Expression and purification of recombinant HMG-D in E. coli 
 

pET24 HMG-D plasmid was transformed into chemically competent BL21 Codon 

Plus E. coli and the cells were plated on agar plates containing 30 µg/µl kanamycin and 

25 µg/µl chloramphenicol. A single colony was picked and inoculated overnight at 37°C 

in 200 ml LB (+ 30 µg/µl kanamycin, + 25 µg/µl chloramphenicol). 20 ml of this 

preculture were added to each 500 ml LB (+ 30 µg/µl kanamycin, + 25 µg/µl 

chloramphenicol). A total of 5 l culture were used and bacteria grown at 37°C until they 

reached an OD600 of 0.8. Expression of HMG-D was induced for 4 h at 37°C by adding 

IPTG to 250 µg/ml. After 4 hours, cells were pelleted (20 min, 4000 rpm, Heraeus 

Cryofuge 6000i) and frozen at -20°C. Bacteria were resuspended in 60 ml HE500 and 
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split into two 30 ml aliquots. Each aliquot was sonified with a Branson Digital Sonifier 

(2.5 min, 50% amplitude, pulse 10 s on/20 s off), frozen in liquid nitrogen, sonified once 

more and centrifuged (15 min, 18,000 rpm, Sorall SS34). The supernatant was dialyzed 

3 times against 1 l of HE50 and proteins were precipitated by adding (NH4)2SO4 as in 

the purification of endogenous HMG-D (see 2.4.7). The 40-65% (NH4)2SO4 cut was 

resuspended in HE50, dialysed 3 times against 1 l of HE50 and loaded onto a 65 ml 

DEAE Sepharose column with 1 ml/min. Due to the capacity of the column, only half of 

the solution was loaded per run. The column was washed with 200 ml HE50 and the 

proteins were eluted by applying a 100 ml gradient to HE1000. 5 ml fractions were 

collected and 5 µl of each fraction were applied on a 18% polyacrylamide gel. Fractions 

containing HMG-D were pooled and dialysed 3 times against 1 l of HE50. Aliquots were 

frozen in liquid nitrogen and stored at -80 °C (Jones et al., 1994). 

 

2.4.9 Expression and purification of ACF, ISWI, CHD1 and BRG1 in Sf9 cells 
 

1.2 x 107 Sf9 cells per 15 cm round petri dish, covered by 5 ml of Sf-900II medium 

(Gibco) complemented with 9% foetal bovine serum (Sigma) were infected with 

baculovirus. For this purpose, the virus was added, the dishes were rocked gently at RT 

for 1 h followed by addition of 20 ml fresh medium. Cells were infected with viruses 

carrying constructs of flag-ISWI, flag-CHD1, flag-BRG1 or coinfected with ACF1-flag 

and untagged ISWI to produce ACF. Amounts of virus had to be titrated for optimal 

yield and the necessary 1:1 stoichiometry of ACF1 and ISWI to obtain functional ACF 

complexes. Protein expression was allowed for 48 h at 27°C. To purify the recombinant 

protein, cells were washed once by removing the medium and replacing it with 5 ml of 

cold PBS. Cells were harvested using a cell scratcher. From now on, all steps were 

performed on ice or at 4°C in the presence of proteinases inhibitors. Cells were pelleted 

(10 min, 900 rpm in a Heraeus Megafuge 2.0) and resuspended in 800 µl HEMG500 per 

plate. Cells were frozen in liquid nitrogen, thawed, sonicated immediately (10 s, 50% 

amplitude, Branson Digital Sonifier) and centrifuged (30 min, 13,000 rpm, tabletop 

centrifuge) to clear the whole cell extract from cell debris. The supernatant was 

transferred into a fresh siliconized tube and α-flag M2 agarose beads (equilibrated 5 
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times in 1.5 ml HEMG500) were added to the supernatant. The amount of beads added 

to the whole cell extracts corresponded to 10 µl per plate. Binding of the tagged proteins 

to α-flag beads was allowed for 3 h on a rotaing wheel. After this incubation, the tubes 

were centrifuged in a table-top centrifuge (2 min, 13,000 rpm), the supernatant was 

removed and the beads were washed 5 times with 1.5 ml HEMG500 and twice with 

HEMG200 for 5 min on a rotating wheel. Proteins were eluted for 2 h in an appropriate 

volume (ca. 25 µl/plate) of HEMG200 containing 0.5 mg/ml flag-peptide and frozen in 

liquid nitrogen (modified after Eberharter et al., 2004b). 

 

2.4.10 Sources of other proteins/extracts 
 

H5 was kindly provided by the lab of Daniela Rhodes, Cambridge, UK. It had been 

purified as described (Huynh et al., 2005). A part of the recombinant histone octamers 

used in this study was prepared by Dr. Catherine Regnard. Whole Drosophila larval 

extract (gift of Dr. Mariacristina Chioda) was prepared from 5 female third instar larvae. 

Whole larvae were frozen in liquid nitrogen and grained while still frozen. The samples 

were immediately dissolved in 100 μl 2x Laemmli buffer (preheated at 95°C) and 

denatured for 10 min at 95°C. 

 

2.4.11 Small scale preparation of nuclei from Drosophila embryos 
 

To isolate nuclei from fly embryos, all solutions were prechilled at 4°C and 

procedures were carried out on ice. 1.5 ml reaction tubes were prepared as follows: The 

inner part of the lid of the tube was cut out and 400 µl of NB/1.7 M sucrose were added 

and overlaid by 400 µl of NB/0.8 M sucrose. A small piece of Miracloth was pinned in 

between the tube and the lid to cover the opening.  

3-10 days old flies hatched from 6-8 bottles (10 cm height, 9 cm diameter) were 

transferred into cylindrical collecting chambers (10 cm height, 9 cm diameter) covered 

by a metal mesh that had a mesh size small enough to keep the flies in. Fly embryos 

were collected on 9 cm agar plates placed on these chambers. The embryos were rinsed 

into a small sieve with PBS and washed twice with 3 ml NB/0.3 M sucrose. The volume 
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of the settled embryos was estimated and 3 times this volume of NB/0.3 M sucrose was 

added. The embryos were homogenized without prior dechorionation in a 1.5 ml 

reaction tube with a pestle fitting these tubes (micro pistil, Kontes, New Jersey). 100 µl 

of the homogenate were loaded onto the Miracloth mesh clipped by the lid of the 1.5 ml 

reaction tubes. By spinning these tubes for 5 s, the extract was filtered through the mesh. 

Up to 400 µl of homogenate were loaded onto each tube. After centrifugation for 10 

min, 13,000 rpm in a table-top centrifuge, lipids, cell debris, and cytosol were retained at 

different solution interfaces while the nuclei formed a white pellet. Nuclei were taken 

out of the tube with a pipet tip penetrating the sucrose layers, the pipet tip was wiped 

with a tissue and the nuclei were pooled in a fresh tube containing 500 µl NB/0.3 M 

sucrose. Nuclei were pelleted once more by centrifugation at 5000 rpm for 5 min. The 

supernatant was removed except for about 20 µl. One volume of 1x Laemmli buffer was 

added, nuclei were solubilized and samples were denatured at 95°C for 5 min. Protein 

samples were cleared from debris by a 10 min at 13,000 rpm centrifugation in a table-

top centrifuge (Quivy and Becker, 1997). 

 

 

2.5 Methods for the reconstitution and analysis of nucleosomal arrays  
 

2.5.1 Chromatin salt assembly 
 

Nucleosome and chromatosome arrays were reconstituted by salt dialysis. Dialysis 

chambers were prepared by cutting a circular hole in the lid of siliconized 1.5 ml tubes. 

The bottom of these tubes was removed and used upside down as a lid of such micro 

dialysis chambers. A SpectraPor dialysis membrane with a molecular weight cut-off of 

6-8 kD was pinned between the lid and the tube. The tubes were placed upside down on 

a floating rack. To prevent unspecific protein binding and therefore loss of material, 

dialysis tubes were filled with 0.5 ml 2mg/ml BSA (98% pure) in DB500 and incubated 

for two hours. Before use they were rinsed with DB500. 

Core histones, 2.5 µg 601 repeat DNA and competitor DNA were mixed with or 

without linker histones or HMG-D in a final volume of 50 µl in high salt buffer (2 M 
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NaCl, 10 mM Tris pH 7.6 and 0.12 µg/µl BSA final concentrations). 12mer arrays were 

assembled on 12x601 DNA fragments derived from pUC18 12x601 plasmid. For this 

purpose, the plasmid was digested with EcoRI, HindIII and DraI (see 2.3.3.1); the 

fragmented pUC18 vector served as competitor DNA. When preparing radioactive 

arrays, 20% of 12x601 arrays were purified from the competitor DNA by phenol 

extraction and labelled by Klenow exo--polymerase (see 2.3.4). For the assembly of 

palindromic 8x601 arrays, 2.5 µg 8x601 fragments (see 2.3.3.2) and 2.5 µg competitor 

DNA were mixed. 20% of 8x601 fragments were labelled by Klenow exo--polymerase. 

The mixture was carefully pipetted onto the membrane of a dialysis chamber in a 

floating rack. The rack was then placed into 200 ml DB2000 with the dialysis membrane 

in contact with the buffer. DB2000 was diluted 1:10 by continuous addition of DB0 over 

a 13 h period at 4°C. The floating rack was then placed in DB50 for 1 h allowing 

samples to equilibrate at a final salt concentration of 50 mM NaCl. 

Assembled nucleosomal arrays were stored at 4°C in siliconized 1.5 ml tubes. All 

further handling of chromatin was done in siliconized tubes using tips preblocked with 

20 mg/ml BSA (98% PURE) (modified after Huynh et al., 2005). 

 

2.5.2 Electrophoretic mobility shift assays (EMSA) 
 

For native agarose gels Biozym LE GP agarose was dissolved in 0.2×TB. H1- and 

HMG-D-containing chromatin arrays were analysed on 0.7% agarose gel, H5-containing 

arrays on 1.4% agarose gel. Linker histone-containing arrays were run on 6 cm gels, 

HMG-D-containing arrays on 20 cm gels. Arrays were visualized by staining the gel 

after electrophoresis in a solution of 0.2xTB and 0.5 μg/ml EtBr for 1 h. To monitor 

which fraction of positioning sequences was bound by histone octamers and H1, 6 pmol 

arrays were digested by 15 U AvaI in RB50 for 1 h at 26°C, run on 1.1% agarose gels 

and stained by SYBR® gold (Invitrogen, 1:10,000) or 5 μg/ml EtBr in 0.2xTB for 1 h 

(modified after Huynh et al., 2005). After staining, gels were destained in 0.2xTB for 30 

min. 
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2.5.3 MgCl2-precipitation of nucleosomal arrays 
 

Properly folded nucleosomal arrays were purified by precipitation with 5 mM MgCl2 

unless indicated otherwise. After addition of MgCl2, samples were incubated on ice for 

15 min and then centrifuged in a table centrifuge (15 min, 4°C, 13,000 rpm). The 

chromatin pellet was dissolved in TE pH 7.6 to a DNA concentration of 50 ng/μl. 

(Schwarz et al., 1996). 

 

2.5.4 Determination of histone stoichiometry  
 

60 pmol arrays were analysed on 15% polyacrylamide gels. Proteins were stained 

with Coomassie. Intensities of H1, core histone and HMG-D bands were measured using 

the Odyssey® Infra Red Imaging System (LI-COR). 

 

2.5.5 ATPase assays  
 

Approximately 10 pmol of remodelling enzyme were mixed with 200 ng DNA (free 

or chromatinized) in a final volume of 14 µl EX40. Reactions were started by adding 1 

µl of 0.3 µM unlabelled ATP spiked 1:200 with γ-32P-ATP (5.55 GBq/ml, 150 mCi/mol) 

in EX40 and inbubated at 26°C. Different time points were taken by spotting 1 µl of the 

reaction onto the longer edge of 10 cm x 20 cm TLC plates. The plate was dried for 5 

min and the edge near the samples was placed about 1 cm into a solution of 0.5 M LiCl, 

1 M formic acid avoiding that the liquid would touch directly the sample-spots. The 

buffer was allowed to migrate upwards and until it almost reached the top of the plate. 

Plates were dried for 5 min at 68°C and exposed to a phosphoimager screen for 10 min. 

The radioactive signals corresponding to hydrolysed phosphate and to not hydrolysed 

ATP were quantified with a Phosphoimager using AIDA Image Analyzer software. The 

two species could be distinguished by their different mobility, which is higher for the 

phosphate. The percentage of hydrolysed ATP was calculated (Eberharter et al., 2004a). 
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2.5.6 Chromatin remodelling reactions 
 

All remodelling reactions were carried out for 1 h at 26°C unless indicated 

otherwise. For monitoring nucleosomal DNA accessibility, 0.6 pmol 12mer nucleosome 

or chromatosome arrays were incubated in 10 µl RB50 with or without 20 µM ATP. 

Reactions were started by adding 5 U AluI along with 2.4 pmol ACF (0.3 ACF 

molecules per nucleosome/chromatosome) or corresponding amounts of CHD1, ISWI or 

BRG1. Enzyme amounts were normalized on their nucleosome-stimulated ATPase or 

remodelling activity as indicated). Reactions were stopped by adding 200 ng free DNA. 

Proteins were removed by Proteinase K (1 h, 37°C), the DNA was precipitated with 

ethanol and analysed on 1.3% agarose gel in Tris-glycine buffer. After electrophoresis 

gels were dried and exposed to phosphoimager screens. The percentage of uncut DNA 

was determined with AIDA Image Analyzer software.  

If remodelling reactions were followed by MNase digestion, 1.8 pmol arrays were 

incubated in 30 µl RB50, 20 µM ATP. Reactions were started by the addition of 7.2 

pmol ACF or CHD1, ISWI or BRG1 with equivalent activity (see above). Reactions 

were stopped by adding 600 ng free DNA. Subsequently samples were incubated with 

4*10-3 U of MNase (Sigma) for 1, 3, 5, min if reactions contained ACF or ISWI. 

Different incubation times points (0.5, 1 and 3 min) were required when reactions 

contained CHD1, BRG1 or no remodeller. As a molecular weight marker, 0.6 pmol 

nucleosome arrays were digested for 1 h at 26°C with 5 U AluI. Free 12mer 601 repeats 

(0.6 pmol labelled repeats + 200 ng unlabelled DNA) were digested for 1 min at 26°C 

with 10-4 U of MNase. DNA was processed and visualized as above. 1D-evaluation of 

selected lanes was performed using AIDA Image Analyzer software.  

If primer extension was performed after the remodelling reactions, remodelling was 

carried out using 3 pmol arrays in 15 µl RB50, 20 µM ATP and 12 pmol ACF. After 1 h, 

arrays were treated with 10-3 U MNase, 1 mM CaCl2 for 20 min at 26°C. Nucleosomes 

and chromatosomes were separated on 1.1% native agarose gels and visualized by 

staining with SYBR® gold. Gel slices containing the specific particles were excised. The 

corresponding DNA was purified using the Qiagen Gel Extraction Kit. 10% of the 

recovered DNA served as template for primer extension reactions in the presence of 5 

µM primers, 0.2 mM dNTPs and 3 U Taq polymerase. Each primer (13fw, 13rv, 76fw or 
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76rv) was labelled using [γ-32P]-ATP and polynucleotide kinase according to the 

manufacturer’s instructions. 12 cycles of amplification were performed: 30 s at 94°C, 30 

s at 60°C and 60 s at 68°C. The products of the primer extension reactions were 

analysed on 7% polyacrylamide gels containing 20% urea in TBE using a Bio-Rad 

Sequi-Gen® sequencing cell.  

 

 

2.6 Maintenance and analysis of Drosophila stocks 
 

2.6.1 Fly strains  
 

Acf1[2]/acf1[2] flies were provided by D. Fyodorov and J.T. Kadonaga. To avoid 

analysing a population of ACF1-depleted flies accumulating secondary effects due to 

ACF1 depletion, acf1[2] alleles were kept balanced and immunostaining and nuclei 

purification was performed with homozygote acf1[2]/acf1[2] flies between generations 

III-VI. 

  

2.6.2 Embryo collection and staining 
 

Embryos 0-3 h AEL were collected on 9 cm agar plates from cages containing 3-10 

days old adult flies. Embryos were collected in small sieves, rinsed twice with PBS-T 

and once with milli-Q water and dechorionated by immersion in 25% bleach for 3 min. 

After washing them intensively with PBS-T and milli-Q water, embryos were 

transferred into glass jars containing 1.5 ml each of heptane and freshly thawed 3.7% 

para-formaldehyde (PAF). The two solutions were vigorously shaken for 30 s. The 

embryos were fixed at the interphase between heptane and PAF for 20 min at RT. 

Following fixation, PAF (lower phase) was carefully removed and replaced by 3 ml of 

methanol. Embryos were vortexed for 15 s. Once settled on the bottom of the jar, the 

embryos were transferred to fresh 1.5 ml tubes and rinsed twice in methanol 100%. 

Embryos were stored in methanol 100% for a minimum of overnight to a maximum of 7 
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days at 4°C. Before use, they were re-hydrated by successive 5 min incubations in 80%, 

50% and 20% methanol diluted with PBS-T (gently rocking), and lastly by two 5 min 

PBS-T washes. Primary antibodies (chicken-α-H1 and rabbit α-HMG-D diluted 1:30 

each in PBS-T) were incubated for 72 h at 4°C. Samples were washed 3 times, 10 min 

with PBS-T. Secondary antibodies diluted 1:250 in PBS-T were incubated 3 h at RT. Α-

chicken antibodies conjugated with Alexa 488 were used for detection of the α-H1, 

Rhodamine Red X-conjugated α-rabbit antibodies were used for detection of HMG-D. 

Samples were washed 10 min in PBS-T 0.3% Triton and 2 x 10 min in PBS-T and DNA 

stained with 1 μM TO-PRO3 in PBS for 10 min at RT. After two washes with PBS-T, 

samples were mounted on slides with Vectashield mounting medium. Images were 

acquired with a Zeiss LSM 510 META confocal microscope equipped with one Argon- 

and two Helium-ion lasers and processed with Zeiss LSM 510 META Software. 
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3. Results 
 

3.1 Reconstitution of chromatin with stoichiometric amounts of linker 
histones 
 

3.1.1 Reconstitution and purification of 12mer nucleosome arrays and 
chromatosome arrays containing H1 or H5  
 

To investigate the effect of linker histones on chromatin remodelling, it was crucial 

to work with nucleosomal arrays containing one linker histone per histone octamer. Only 

then we could be certain that any remodelling on these arrays occurred on 

chromatosomes (nucleosomes + linker histone) and not on a fraction of nucleosomes 

devoid of linker histones. Following a protocol for the reconstitution of homogeneous, 

uninterrupted, linker histone-containing nucleosomal arrays (Huynh et al., 2005) we 

assembled 12mer nucleosome and chromatosome arrays on 12x200 bp repeats of the 

601 nucleosome positioning sequence (Lowary and Widom, 1998). This sequence was 

selected from competition experiments screening random DNA sequences for their 

affinity to histone octamers (Lowary and Widom, 1998; Thastrom et al., 1999). The 

histone octamer binds 150 times stronger to the 601 sequence than to the 5S rDNA 

sequence, which has also frequently been used to assemble positioned nucleosomes 

although this sequence allows multiple nucleosome positions (Dong et al., 1990). To 

assure full occupancy of all 601 sequences, core and linker histones had to be added in 

slight excess during the reconstitution. To prevent binding of excess histones to 

positions other than those dictated by the 601 sequence, competitor DNA (crDNA) was 

included in the assemblies. This allowed controlling the loading of both core and linker 

histones onto the 601 repeats since excess histones bound to the competitor DNA instead 

of resulting in oversaturated arrays. Competitor DNA consists of small DNA fragments 

with an average affinity to histone octamers. In the published protocol, 147 bp fragments 

derived from the pUC18 vector were used as crDNA (Huynh et al., 2005). We slightly 

modified this procedure by digesting the pUC18 vector with DraI and using the resulting 
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Figure 3.1: Reconstitution of chromatin arrays with stoichiometric amounts of linker 
histone H1 or H5. 
(A) Overview of chromatin reconstitution and quality controls. 12mer nucleosome arrays and 
chromatosome arrays containing linker histone H1 or H5 were assembled on tandem repeats of 
the 601 nucleosome positioning sequence. To bind excess histones, competitor DNA (crDNA) 
with lower affinity for histones was added to the assembly. (B) 6 pmol arrays assembled with 
increasing molar ratios of H1 or H5 (H1/nuc or H5/nuc) were applied on 0.7% or 1.4% native 
agarose gels, respectively, and stained with EtBr. (C) Arrays were purified from unbound 
histones and competitor DNA by MgCl2-precipitation. Corresponding amounts of input, pellet 
and supernatant (sup) were analysed on 1.4% native agarose gel stained with EtBr. (D) The 
protein content of 60 pmol nucleosomal arrays after MgCl2-precipitation was separated on 15% 
polyacrylamide gel and visualized by Coomassie blue staining to control the relative amounts of 
core and linker histones. (E) 6 pmol arrays were digested with AvaI at 26°C for 1 h, resulting 
fragments were resolved on 1.1% native agarose gel and stained by SYBRgold® to observe 
positioning sequences unbound by histone octamers (200 bp), nucleosomes (nuc) and 
chromatosomes (chrom). 
 

 

 

DNA fragments (between 692 and 1113 bp) as competitor DNA. Since also the 12mer 

601 was subcloned into the pUC18 vector, purification of 601 repeats and the production 

of crDNA could be easily done in one step of enzymatic digestion. Only a fraction of 

601 repeats had to be purified to allow specific radioactive labelling. 
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12mer arrays were assembled using histone octamers and histone H1 purified from 

Drosophila embryos or histone H5 from chicken erythrocytes. H5 binds to nucleosomes 

with a higher affinity than H1 and leads to a more compact chromatin structure (Thomas 

and Rees, 1983). It has therefore emerged as the preferred linker histone for structural 

studies (Fan and Roberts, 2006). 

Core histones were added in amounts that resulted in the assembly of uninterrupted 

12mer nucleosome arrays. The appropriate amount was determined in pilot experiments 

where the relative amount of core histones was titrated to obtain uninterrupted 

nucleosome arrays (not shown). Titrations of linker histones are presented in Figure 1B. 

Addition of increasing amounts of H1 resulted in a slower migration of the arrays on 

native agarose gel (best resolved on 0.7% agarose), whereas incorporation of H5 led to 

faster migrating arrays (best resolved on 1.4% agarose), in agreement with earlier 

studies (Huynh et al., 2005). The different migration behaviour of H5- versus H1-

containing chromatosome arrays may reflect an increased compaction of the arrays 

induced by H5. Addition of more linker histones did not lead to a further change in 

mobility of the reconstituted chromatin. Instead, excess linker histones bound to the 

crDNA, as seen in mobility shifts (Figure 3.1B, lanes 6, 7, 14, 15). For further analysis, 

all arrays were purified by MgCl2-precipitation to remove excess proteins and free or 

nucleosomal crDNA (Figure 3.1C). In the presence of 5 mM MgCl2, nucleosomal arrays 

self-associate and precipitate, whereas unbound proteins, free DNA and DNA with few 

bound histone octamers remain soluble (Schwarz et al., 1996). 

 

3.1.2 Quality controls of reconstituted chromatin 
 

The stoichiometric incorporation of linker histones was monitored by controlling the 

relative amounts of core and linker histones. For this purpose, samples of purified 

reconstituted chromatin were loaded on a 15% polyacrylamide gel and proteins were 

stained with Coomassie (Figure 3.1D). The amount of each histone was determined by 

densitometry on a LI-COR Odyssey machine. Stoichiometric, saturating levels of linker 

histones were reached at a molar ratio of 2.5 molecules of linker histones per 601 
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sequence. Excess histones bound to the crDNA and were removed during the 

purification step. 

To further control the complete occupancy of 601 sequences by histone octamers, 

arrays were digested by AvaI, which cuts between those sequences (Figure 3.1A). 

Digestion of the nucleosome arrays yielded mononucleosomes, but no free 200 bp DNA 

fragments, which can be distinguished by native agarose gel electrophoresis (Figure 

3.1E, lane 1). Evidently, the vast majority of 601 sequences was bound by a histone 

octamer. A small fraction of subnucleosomal particles was visible as a band migrating 

slightly faster than mononucleosomes. This assay showed furthermore that nucleosomes 

did not occupy alternative positions to the ones dictated by the 601 sequence, since they 

did not occlude the AvaI site.  

AvaI-digestion of H1-containing chromatin yielded mostly chromatosomes and only 

a minor fraction of nucleosomes (Figure 3.1E, lanes 2-4). The nucleosomal fraction did 

not decrease upon increase of H1, showing that saturation was already reached. H5-

containing arrays were more resistant to digestion by AvaI, again hinting that H5 and H1 

bind to and compact chromatin in a different manner.  

We conclude that the reconstituted chromatin consists of regular nucleosomal arrays 

with stoichiometric levels of linker histones. All arrays used for remodelling reactions 

were quality-controlled by the methods described.  

 

 

3.2 Linker histone-containing chromatin can be rendered accessible by 
ACF 
 

3.2.1 ACF-mediated chromatin remodelling of nucleosome and chromatosome 
arrays  
 

As a quantitative measure for chromatin remodelling, we monitored changes in the 

accessibility of nucleosomal DNA. For this purpose, we reconstituted nucleosome or 

chromatosome arrays on DNA labelled radioactively on one end and incubated them 

with an excess of the restriction endonuclease AluI, whose recognition site is located 
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Figure 3.2: Remodelling by ACF or BRG1 increases the accessibility of nucleosomal DNA 
within linker histone-containing chromatin 
(A) Nucleosome and chromatosome arrays were assembled on end-labelled DNA using different 
molar ratios of linker histone H1 or H5 per positioning sequence (H1/nuc or H5/nuc). 0.6 pmol 
arrays were used as substrate in remodelling assays for ACF, CHD1 or BRG1. To monitor the 
accessibility of nucleosomal DNA, the enzyme AluI was added together with 2.4 pmol ACF or 
an amount of CHD1 or BRG1 with equal ATPase activity. After 1 h proteins were removed by 
Proteinase K and the DNA was analysed on 1.3% agarose gel. (B) Quantification of relative 
amounts of uncut DNA in (A). 
 

 

 

within the nucleosome positioning sequence, 45 bp into the nucleosome. Without 

remodelling activity, about 70% of arrays were resistant to cleavage (Figure 3.2B), 

demonstrating that seven out of 10 arrays did not contain a single accessible positioning 

sequence. On these uninterrupted arrays the development of restriction site accessibility 

was now monitored in the presence of ATP and Drosophila ACF expressed from 

baculovirus vectors in insect cells. Arrays were incubated with AluI and with or without 

ACF and ATP at 26°C. After 1 h, the reactions were quenched by adding an excess of 
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Figure 3.3: Comparison of the effect of linker histones on the remodelling activities of 
ACF, CHD1 and ISWI  
(A) Nucleosome arrays and H1- or H5-containing chromatosome arrays were remodelled by 
ACF, CHD1 or ISWI and analysed as described in figure 3.3. Amounts of remodellers were 
standardized on their remodelling activities in the absence of linker histones. (B) Quantification 
of relative amounts of uncut DNA in (A). 
 

 

 

unlabelled DNA, the total DNA was purified and analysed on agarose gel. Comparing 

the percentages of uncut DNA after remodelling confirmed that ACF increased the 

accessibility of nucleosomal DNA in an ATP-dependent manner. Upon addition of both 

ACF and ATP, 80% of otherwise resistant arrays were cleaved  (Figure 3.2A, lane 3). 

Strikingly, also in the presence of H1, 48% of otherwise resistant arrays were cleaved if 

ACF and ATP were added (Figure 3.2A, lanes 6 and 9). This shows that a significant 

gain of ATP-dependent accessibility could be generated even in the presence of H1, 

although the extent of chromatin opening was reduced. When probing arrays assembled 

with a higher molar ratio of H1 per 601 sequence, the degree of inhibition remained the 

same, showing that the ability of ACF to remodel was not due to sub-saturating H1 
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levels. Remarkably, ACF was able to promote access of the endonuclease even to the 

highly compacted H5-containing chromatin. 35-45% of resistant H5 chromatosome 

arrays were cleaved in the presence of both ACF and ATP (Figure 3.2A, lanes 12 and 

15). These observations are in line with an earlier study from the Peterson lab (Horn et 

al., 2002) who concluded that in the presence of H5, Xenopus ACF was able to decrease 

the fraction of nuclease resistant arrays from 85% to 60% in an ATP-dependent manner. 

In order to find out whether the ability of ACF to remodel chromatosomes resides in 

its ATPase ISWI or requires its associated subunit ACF1, we repeated the assay with 

ISWI alone. The remodelling activity of ISWI in the presence of linker histones H1 or 

H5 was similar to that of ACF (Figure 3.3A, lanes 26-35). Consequently, it is possible 

that all ISWI-containing complexes are capable of remodelling linker histone-containing 

chromatin. Along this line, Tamkun and colleagues suggest that ISWI, possibly in the 

context of the NURF complex, may affect H1 association with chromosomes in vivo 

(Corona et al., 2007), although to date, no direct biochemical evidence has been 

provided. 

 

3.2.2 Comparison with the related chromatin remodelling ATPases CHD1 and 
BRG1 
 

We wondered whether the ability to remodel chromatosomes is a characteristic of all 

chromatin remodelling factors or whether ACF is an exception in this respect. ACF is 

able to assist in the formation of H1-containing chromatin, whereas the nucleosome 

remodelling ATPase CHD1 can only promote nucleosome assembly, but is unable to 

incorporate also the linker histone (Lusser et al., 2005). To test whether these differences 

in chromatin assembly were reflected in remodelling, we compared CHD1 to ACF in 

our assay. To assure that the parallel reactions contained equivalent nucleosome 

remodelling activity we first standardized the enzyme inputs according to their 

nucleosome-stimulated ATPase activity. Similar to ACF, CHD1 enhanced the 

accessibility towards AluI in an ATP-dependent manner (Figure 3.2A lanes 16 and 17). 

However, in the presence of linker histones H1 or H5, no remodelling activity could 

be observed (Figure 3.2A, lanes 18-25). We also compared enzyme amounts that were 
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Figure 3.4: The absence of histone modifications does not significantly affect the 
remodelling activities of ACF, CHD1, ISWI or BRG1 on nucleosome or chromatosome 
arrays 
Nucleosome and chromatosome arrays were assembled on 12mer repeats of the 601 nucleosome 
positioning sequence using recombinant histone octamers and different molar ratios of linker 
histone H1 or H5 per positioning sequence (H1/nuc or H5/nuc). Arrays were purified by MgCl2-
precipitation. (A) To monitor the occupancy of positioning sequences by histone octamers and 
linker histones, 6 pmol arrays were digested to nucleosomes and chromatosomes by the 
endonuclease AvaI. Unbound positioning sequences (200 bp), nucleosomes (nuc) and 
chromatosomes (chrom) were separated on 1.1% agarose gel and stained by SYBRgold®. (B) 
15% polyacrylamide gel of 60 pmol arrays purified by MgCl2-precipitation to examine the 
stoichiometry of core and linker histones. (C) Remodelling assays with ACF, CHD1, ISWI or 
BRG1 were performed and analysed as described in figure 3.2. (D) Quantification of relative 
amounts of uncut DNA in (C). 



Results  59

equally active on nucleosome arrays for their activity on chromatosome arrays, with 

similar results (Figure 3.3A, lanes 16-25). This indicates that remodelling of 

chromatosome arrays by ACF does not result from incomplete reconstitution of the 

arrays. Moreover, we showed that ISWI and ACF are better suited than CHD1 to 

remodel linker histone-containing chromatin. 

As an additional control we included human BRG1 in our analysis. BRG1 is one of 

two SWI/SNF-type ATPases, which are associated to seven or more subunits in vivo to 

form SWI/SNF complexes (Nagl et al., 2007). The isolated ATPase subunit also 

functions as a remodelling factor in vitro (Fan et al., 2003a). Using our system, we found 

that BRG1 remodels nucleosome and chromatosome arrays with an efficiency similar to 

that ACF (Figure 3.2A, lanes 26-35). Hence, the ability to remodel chromatosome arrays 

may be a more widespread, albeit not universal feature of chromatin remodelling factors. 

To elucidate whether the presence of histone modifications influenced the outcome 

of these experiments, arrays were also assembled using recombinant Drosophila 

histones expressed in E. coli (Figure 3.4A, B). These, in contrast to those purified from 

Drosophila embryos, did not carry any post-translational modifications. The features of 

chromatin reconstituted with recombinant histone octamers in the absence or presence of 

linker histones were essentially the same as with endogenous octamers, at least 

according to our quality control assays. Monitoring DNA accessibility, ACF, ISWI, 

CHD1 and BRG1 were able to remodel arrays assembled with recombinant histones and 

with or without H1 or H5 to the same extent as those assembled with endogenous 

histones (Figure 3.4C, D). 
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3.3 ACF repositions nucleosomes in the presence of linker histones 
 

3.3.1 ACF-mediated repositioning of nucleosomal particles within nucleosome and 
chromatosome arrays 
 

Accessibility of nucleosomal DNA provides a quantitative measure of chromatin 

remodelling. It does not, however, give information about the nature of such 

remodelling, since an increase in DNA accessibility may result from nucleosome 

repositioning as well as from disruption of histone-DNA contacts without nucleosome 

movements (Fan et al., 2003a). Since ACF repositions mononucleosomes on short DNA 

fragments (Eberharter et al., 2001), we wanted to test whether it could also do so in our 

system and whether this activity was affected by the presence of linker histones. To 

visualize potential nucleosome movements within the chromatosome arrays we 

subjected reconstituted, end-labelled chromatin to remodelling by ACF and then probed 

nucleosome positions by partial digestion with micrococcal nuclease (MNase). MNase 

digestion in the absence of remodelling yielded a highly regular ladder of DNA 

fragments (Figure 3.5A, lanes 2-7). This pattern was dramatically altered when arrays 

had been incubated with both ACF and ATP (Figure 3.5A, lanes 8-10). The cleavage 

profile resembled the one obtained from digesting free DNA (Figure 3.5A, lane 1) 

suggesting that nucleosome positions had been randomized by ATP-dependent 

remodelling. These ATP-dependent changes were clearly visualized by comparing 

densitometry profiles of corresponding lanes (Figure 3.5E). 

Digestion of chromatosome arrays also yielded a regular cleavage pattern, but an 

additional band was visible below each of the bands obtained from nucleosome arrays 

(Figure 3.5A, lanes 12-17 and 22-27). These bands were particularly strong if arrays 

contained H5 and most likely reflect structural alterations of the linker DNA upon linker 

histone binding. After remodelling by ACF, the pattern obtained from H1 chromatosome 

arrays changed, again becoming similar to the one obtained from free DNA. Notably, 

this change was also apparent in the case of the highly compact H5 chromatosome 

arrays (Figure 3.5A, lanes 28-30). 
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Figure 3.5 (previous page): ACF and BRG1 reposition nucleosomes also in the presence of 
linker histones 
1.8 pmol end-labelled nucleosome or chromatosome arrays (containing either H1 or H5) were 
incubated with ATP and 7.2 pmol ACF (A), CHD1 (B), ISWI (C) or BRG1 (D). For (B)-(D), 
lanes 1-20, amounts of CHD1, ISWI or BRG1 were chosen that exhibited equal remodelling 
activities to that of ACF on nucleosome arrays (judged by AluI digestion, see figures 3.2 and 
3.3). The fivefold amount of CHD1 was used in (B), lanes 21-27. After 1 h, DNA was partially 
digested by MNase (3 time points), purified and separated by agarose gel electrophoresis. Lane 1 
in (A) shows the MNase digestion pattern obtained from free 12mer 601 repeats. As a molecular 
weight marker (M), nucleosome arrays were digested by AluI. (C) Densitometry profiles of 
selected lanes (A, lanes 5, 8, 16, 26 and 29; B, lanes 1, 4, 8, 11, 16 and 19; C, lanes 1, 4, 8, 11, 
15 and 18; D, lanes 1, 4, 8, 11, 16 and 19). MNase digests of remodelling reactions performed 
with (red) or without ATP (blue) were compared; ACF, CHD1 ISWI, BRG1, H1 and H5 were 
present during the reaction as indicated. 
 

 

 
We repeated the assay with ISWI alone to test whether it is also able to catalyse 

nucleosome movements within nucleosome and chromatosome arrays. ISWI alone 

changed the digestion pattern of both nucleosome and chromatosome arrays, but to a 

lesser extent than ACF (Figure 3.5C). This is consistent with previous experiments using 

mononucleosomal substrates, where ACF1 increased the sliding efficiency of ISWI 

(Eberharter et al., 2001). 

 

3.3.2 Repositioning of nucleosomal particles by CHD1 and BRG1 
 

To investigate whether remodelling factors other than ACF are able to reposition 

nucleosomes within nucleosome and chromatosome arrays, we also performed partial 

MNase digestions after remodelling by CHD1 and BRG1. Protein amounts were 

normalized based on their remodelling activities on nucleosome arrays (see 3.2). 

CHD1 did not catalyse significant ATP-dependent changes of the MNase digestion 

pattern in presence or absence of linker histones. Densitometry profiles of digests after 

incubation with CHD1 with or without ATP were largely overlapping (Figure 3.5B, E) 

showing that CHD1 slides nucleosomes much less efficiently than ACF. This conclusion 

was confirmed by the observation that even the fivefold amount of CHD1 did not induce 

any significant ATP-dependent changes in the MNase digestion pattern (Figure 3.5B, 
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Figure 3.6 (previous page): Nucleosome repositioning by ACF, CHD1, ISWI and BRG1 in 
the absence or presence of linker histones is not significantly influenced by histone 
modifications. 
Nucleosome mobilization assays with ACF (A), CHD1 (B), ISWI (C) and BRG1 (D) were 
performed as in figure 3.5 using nucleosome and chromatosome arrays assembled with 
recombinant histone octamers. Nucleosome arrays digested by AluI served as a molecular 
weight marker (M). As a control, free 12mer 601 repeats were digested by limiting amounts of 
MNase (A, lane 1). (C) Densitometry profiles of selected lanes (A, lanes 5, 8, 15, 18, 25, and 28; 
B, lanes 1, 4, 8, 11, 16 and 19; C and D, lanes 1, 4, 8, 10, 15 and 18).  
 

 

 

lanes 21-27). This result, taken together with the one from the AluI-accessibility assay, 

shows that access to oligonucleosomal DNA can be generated by two distinct strategies: 

nucleosome sliding (by ACF) and nucleosome remodelling without overt changes in 

histone octamer positions (by CHD1). 

The ATPase BRG1 catalysed ATP-dependent alterations of the nucleosome array 

cleavage pattern similar to ACF (Figure 3.5D, lanes 1-6). Changes were also 

detectedwhen remodelling H1 or H5 chromatosome arrays with BRG1, but they were 

less pronounced than the ACF-dependent ones (Figure 3.5D, lanes 8-20).  

In summary, repositioning of nucleosomal particles within linker histone-containing 

chromatin can be achieved by some, but not all remodelling factors. 

As before, the experiments were repeated with recombinant histone octamers 

generated in E. coli to test whether the results were affected by the presence of post-

translational histone modifications. Changes of the MNase cleavage patterns in absence 

or presence of linker histones caused by ACF, ISWI and CHD1 were comparable to 

those within arrays assembled with endogenous core histones (Figure 3.6A-C). 

Repositioning by BRG1, however, seemed to be more inhibited by H1 or H5 than when 

assays were performed with histones carrying PTMs (Figure 3.6D). These subtle 

differences raise the possibility that BRG1 might be regulated by histone modifications. 
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3.4 ACF catalyses the movement of chromatosomes 
 

Since ACF can assist the assembly of H1-containing chromatin (Lusser et al., 2005), 

it might also be able to catalyze the opposite reaction, the eviction of H1. Hence, it is 

possible that nucleosome repositioning by ACF is a result of transient or permanent 

disassembly of the linker histone.  

We therefore wanted to explore whether linker histones were still associated to 

nucleosomes after their repositioning by ACF. For this purpose, we subjected our arrays 

to remodelling reactions as described above and subsequently digested them with 

MNase to mononucleosomes or -chromatosomes, respectively. Histones protect bound 

DNA from the exonuclease activity of MNase, so the DNA fragments resistant to 

MNase digestion correspond to the positions of the nucleosomes and chromatosomes. 

The two species were separated on a native agarose gel (Figure 3.7A). In agreement with 

the literature (Nightingale et al., 1996) MNase treatment led to displacement of a 

fraction of H1 from the chromatosomes, so that a mixture of nucleosomes and 

chromatosomes was obtained from the digestion of chromatosome arrays independent of 

whether they had been remodelled. We did not observe the so-called ‘chromatosome 

stop’ when H5 chromatosome arrays were digested, so we did not include them in this 

experiment. Nucleosomes (from nucleosome arrays) and chromatosomes (from 

chromatosome arrays) were excised and the DNA was purified. The nucleosomal 

positions were then mapped by primer extension using radiolabelled primers. The 

positions of nucleosomal particles can be deduced from the length of the resulting 

single-stranded DNA and the position of the primer. Forward and reverse primers 

complementary to two different positions, 13 and 76 bp into the nucleosome (13fw, 

13rv, 76fw and 76rv, see Figure 3.7B) were added in four separate reactions of primer 

extension. 

Nucleosomal DNA purified from unremodelled arrays gave rise to several bands for 

all four primers, most likely due to single-stranded nicks generated by MNase (Cockell 

et al., 1983). The most prominent band in each reaction, however, confirmed the 

nucleosome position defined by the 601 sequence (asterisks in figure 3.7C, D). For 

example, annealing and extension of the 13rv primer resulted in the expected 33 bp band  
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Figure 3.7 (previous page): ACF and ISWI catalyse the movement of chromatosomes 
(A) Scheme of experimental steps to map nucleosome positions after remodelling reactions. 
Nucleosome arrays or H1 chromatosome arrays were incubated with or without ACF or ISWI 
and ATP. After 1 h arrays were digested to nucleosomes or chromatosomes by MNase. 
Nucleosomes and chromatosomes were then separated by preparative agarose gel 
electrophoresis. Nucleosomes (from nucleosome arrays) and chromatosomes (from 
chromatosome arrays) were excised from 1.1% native agarose gel and the DNA was extracted. 
To map positions of nucleosomes/chromatosomes, primer extension was performed with the 
primers depicted in (B). (B) Annealing positions of the primers used for primer extension 
reactions (13fw, 13rv, 76fw and 76rv). Arrows indicate the primers, the black line the DNA and 
the oval the position of the nucleosome before the remodelling reaction. (C) Primer extension 
reactions after ACF-mediated remodelling with primers 13fw and 13rv performed on isolated 
nucleosomal/chromatosomal DNA were analysed on 7% polyacrylamide 20% urea gels. For 
reactions conducted with 13rv, nucleosome positions corresponding to the indicated bands are 
represented by drawings at the right side of the gel. (D) Same as (C), but with primers 76fw and 
76rv. (E) Primer extension reactions after remodelling by ISWI with primers 13fw, 13rv, 76fw 
and 76rv analysed as in (C) and (D). 
 

 

 

(Figure 3.7C, lane 8). Primer extensions with the reverse primer 13rv and 76rv revealed 

that the DNA fragments derived from chromatosomes were 20 bp longer at the 5’ end 

than nucleosomal ones (triangles in figure 3.7C, D). This is in accordance with the fact 

that H1 protects 20 bp of linker DNA from nuclease digestion (Simpson, 1978) and hints 

at an asymmetric interaction of the linker histone with the nucleosome. 

Upon remodelling by ACF, besides the band corresponding to the position defined 

by the 601 sequence, we could detect several additional bands with all four primers, 

demonstrating repositioning of nucleosomes. The most striking effect was observed with 

the 13rv primer. Without remodelling, the 33 bp fragment indicative of 601-directed 

positioning was most prominent. When both ACF and ATP had been added to the 

remodelling reaction, bands of different sizes up to approximately 150 bp were obtained, 

showing that nucleosomes had been repositioned along the entire length of the DNA 

repeat (Figure 3.7C, lane 10). Prominent bands considerably longer than 150 bp are not 

expected, because the nucleosome protects only 147 bp from nuclease digestion. 

Intriguingly, fragments of various sizes were also obtained from DNA which was 

purified from chromatosomes after remodelling, revealing movements of 

chromatosomes throughout the length of the 601 repeat (Figure 3.7C, lane 13). Not 

surprisingly, the largest bands observed were slightly longer (up to approximately 180 
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bp) due to H1 binding. Since in this assay, the DNA was obtained from gel-purified 

chromatosomes after a remodelling reaction, we conclude that ACF is able to reposition 

entire chromatosomes on DNA in an ATP-dependent manner without permanently 

evicting H1.  

Also when conducting the experiment with ISWI alone, repositioning was detected 

both in absence and presence of H1 (Figure 3.7E). Unlike in the partial MNase digestion 

experiment, no major differences in the extent of repositioning could be observed. This 

might result from the increased sensitivity of the primer extension experiment, which 

detects much less frequent repositioning events, but is not a good measure for the overall 

incidence of repositioning. However, the predominant positions obtained upon ISWI 

remodelling deviated from those detected after incubation with ACF, these differences 

being even stronger in the presence of H1 (Fig. 3.7, compare e. g. C, lane 7 and E, lane 

5, C, lane 13 and E, lane 9 or D, lane 7 and E, lane 13). This indicates different positions 

favoured by ISWI and ACF as shown previously for mononucleosomes (Eberharter et 

al., 2001) demonstrating that the presence of ACF1 can affect the outcome of ISWI-

dependent remodelling reactions. 

The experiments presented were controlled in a highly purified system and 

contribute to our understanding of remodelling of nucleosomal fibres. The data 

presented so far have mostly been published (Maier et al., 2007). The following sections 

include preliminary data which represent both in vivo and in vitro attempts to follow up 

our results described in this first part. 

 

 

3.5 H1 may influence the directionality of ACF-mediated nucleosome 
movements 
 

3.5.1 Reconstitution of palindromic 8mer 601 arrays 
 

Primer extension on nucleosomal and chromatosomal DNA after remodelling 

demonstrated that ACF can reposition nucleosomes as well as chromatosomes along 

DNA. However, the data revealed differences in the positions of the particles after 
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Figure 3.8: Reconstitution of 8mer nucleosome and chromatosome arrays assembled on 
DNA consisting of a palindromic arrangement of 601 sequences 
(A) Schematic representation of palindromic chromatosome arrays: 4mer tandem 601 arrays 
were ligated either with their H1 binding sites (°) facing inwards or facing outwards. 
Nucleosome or chromatosome arrays were reconstituted on these DNA fragments by salt 
dialysis in the presence of competitor DNA (crDNA). (B) MgCl2-precipitation of nucleosome 
arrays assembled on DNA described in (A). Corresponding amounts of input, pellet and 
supernatant (sup) were analysed on 0.7% native agarose gel and stained with EtBr. Complete 
precipitation required addition of 10 mM MgCl2. (C) To monitor the occupancy of positioning 
sequences by histone octamers and linker histones, 6 pmol arrays were digested to nucleosomes 
and chromatosomes by AvaI. Unbound positioning sequences (200 bp), nucleosomes (nuc) and 
chromatosomes (chrom) were separated on native 1.1% agarose gel. Arrays assembled with a 
ratio of 3 H1 per 601 sequence (H1/nuc) were used for further experiments. 
 

 

 

remodelling. As stated above, we observed an additional protection of 20 bp upon H1 

binding only when reverse primers were used, suggesting that H1 interacted 

predominantely with one side of the nucleosome. For simplicity, from now on, this side 

will be referred to as the H1-bound side of the nucleosome. In reactions with reverse 

primers, fragments detected after remodelling which are smaller than the one prior 

remodelling indicate movement away from the H1-bound side of the nucleosome and 

bigger fragments result from sliding towards the opposite direction. The reverse concept 

applies to the forward primers. Upon remodelling nucleosome arrays, we observed 

bands smaller than the one corresponding to the unremodelled state. This was true for 

any of the primers except 13rv, which cannot detect such fragments as it anneals very 
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close to the border of the position of the unremodelled nucleosome (Figure 3.7C, lane 4 

and D, lanes 4, 10). In contrast, only 76rv, not the forward primers, elongates prominent 

smaller fragments after remodelling of chromatosome arrays (Figure 3.7D, lanes 7, 13), 

suggesting that movements are only catalysed away from H1, not towards H1. This 

conclusion is reinforced by looking at the appearance of bands running higher than those 

obtained without remodelling. When forward primers were elongated, such bands 

appeared after remodelling both of nucleosome and chromatosome arrays (Figure 3.7C, 

lanes 4, 7 and D, lanes 4, 7). Using 76rv, higher bands appearing after remodelling of 

chromatosome arrays are much weaker than those obtained from nucleosome arrays 

(Figure 3.7D, lanes 10, 13). Prominent very large fragments after chromatosome 

remodelling are detected with 13rv (Figure 3.7C, lane 13), but these could result from 

neighbouring chromatosomes moving to that position. These observations suggest that 

ACF moves chromatosomes preferentially away from the H1 bound side. To further test 

this hypothesis, we assembled nucleosome and chromatosome arrays on linear 

palindromic 8x601 arrays consisting of four 601 sequences orientated head-to-tail in one 

direction followed by four 601 sequences orientated in the opposite direction. Two kinds 

of such arrays were produced, with their H1 binding sides either ‘facing outwards’ or 

facing each other in the middle (‘facing inwards’, figure 3.8A). If ACF moved 

chromatosomes only away from H1, chromatosome movements into the central linker 

DNA would be favourable in the ‘facing outwards’ arrays, whereas such movements 

would be hindered in the ‘facing inwards’ arrays.  

Nucleosome and chromatosome arrays were assembled by salt dialysis in the 

presence of competitor DNA as described above (see 3.1). Again, excess histones and 

competitor DNA were removed by MgCl2-precipitation. However, 10 mM instead of 5 

mM MgCl2 were necessary to fully precipitate the palindromic arrays, pointing to a 

lower level of compaction (Figure 3.8B). Occupancy of 601 sequences with core and 

linker histones was controlled by AvaI-digestion as before (Figure 3.8C). Saturation 

with both histone octamers and H1 was achieved. 
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3.5.2 Nucleosome and chromatosome repositioning within palindromic arrays 
 

We attempted to monitor nucleosome and chromatosome positions within 

palindromic arrays by partial MNase digestions after remodelling as described for 

12x601 arrays. 8mer arrays carried radioactive labels on both ends instead of only on 

one end, because both ends were cut by the same restriction enzyme (BamHI or BglII) 

so both overhangs were filled in with labelled dCTP. We aimed for similar degrees of 

repositioning in nucleosome and chromatosome arrays to be able to compare the 

directionality of sliding in the absence and presence of H1. Therefore, to account for its 

reduced remodelling activity in the presence of H1, twice as much ACF was added to 

chromatosome arrays as to nucleosome arrays. Arrays incubated with ACF, but no ATP 

gave rise to a regular MNase pattern with bands reflecting the positions of the accessible 

linker DNA (Figure 3.9A, lanes 1-3, 7-9, 13-15 and 19-21). However, the digestion 

pattern was constantly more smeary than the one obtained from 12mer arrays, which we 

attribute to promiscuous annealing of the palindromic fragments after inadvertent 

denaturation of DNA during the experiment. Nucleosomes moving into the linker DNA 

are expected to decrease its accessibility towards MNase. In agreement, bands were less 

sharp if ATP had been present during the reaction, indicating repositioning of 

nucleosomes (Figure 3.9A, lanes 4-6, 10-12, 16-18 and 22-24). In the absence of H1, 

changes in accessibility were similar for all linker DNAs as judged by the intensities of 

the corresponding bands (Figure 3.9A, lanes 4-6 and 10-12). When H1 was facing 

outwards, the band representing the central linker DNA decreased slightly more than the 

other bands, indicating that chromatosome movements into this region might be 

favoured (Figure 3.9A, lanes 16-18). Conversely, the band corresponding to this region 

became particularly prominent after remodelling when H1 bound to the sides of the 

nucleosomes facing inwards, therefore flanking the central linker DNA. This suggests 

that chromatosomes are not easily moved there (Figure 3.9A, lanes 22-24). The 

differences are more visible when comparing densitometry profiles of lanes 

corresponding to reactions with and without ATP (Figure 3.9B). These data indicate that 

ACF-mediated chromatosome movements in the direction of the H1-bound side may be 

hindered. Although reproducible, the observed effect of H1 binding was very small, 
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suggesting that H1 binding might cause preferred repositioning away from rather than 

complete inhibition of movements towards the H1-bound side. 

 

 
 

Figure 3.9: H1 may influence the direction of ACF-mediated nucleosomes movements 
(A) Palindromic nucleosome and chromatosome arrays labelled on both ends were incubated 
with or without ACF and ATP. After 1 h, reactions were stopped and partially digested by 
MNase (3 time points). The DNA was purified and analysed on 1.3% agarose gel. (B) 
Densitometry profiles of selected lanes (A, lanes 2, 5, 8, 11, 14, 17, 20 and 23). In arrays with 
H1 binding sites facing inwards, the peak corresponding to the central linker DNA (marked by 
the dotted line) became most prominent after remodelling in the presence, but not in the absence 
of H1, suggesting that chromatosomes might be moved away from this region. In contrast, after 
remodelling of chromatosome arrays with H1 binding sites facing outwards, the central peak 
decreased more than the other peaks, indicating that chromatosomes were preferentially moved 
away from the H1-bound side. 
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3.6 The early linker histone substitute HMG-D does not affect the 
remodelling activity of ACF  
 

3.6.1 Reconstitution of 12mer nucleosomal arrays containing HMG-D 
 

Drosophila ACF is very abundant during cleavage and decreases during 

development (Chioda et al., manuscript in preparation). During cleavage, the first 

nuclear divisions occur in the absence of H1 and chromatin contains the high mobility 

group protein HMG-D, instead. Therefore, and because HMG-D binds to nucleosomal 

arrays but is displaced by H1, it has been postulated that it could behave as a structural 

component of chromatin in preblastoderm embryos. In this case it would support a 

structure which is condensed but less compact than H1-containing chromatin and may 

therefore enable the atypically fast replication events in embryonic chromatin (Ner et al., 

2001; Ner and Travers, 1994). A related HMG protein, human HMGB1 was shown to 

enhance ACF-dependent mononucleosome sliding (Bonaldi et al., 2002). We therefore 

decided to investigate whether and how HMG-D could affect the remodelling activity of 

ACF. Would it partially inhibit remodelling similar to H1 or rather facilitate remodelling 

like HMGB1? 

12mer nucleosomal arrays were assembled with histone octamers as described above 

(see 3.1). Different amounts of HMG-D were added to the assembly reaction. HMG-D 

binding to the arrays was monitored by EMSA (Figure 3.10A). Both nucleosomal arrays 

and competitor DNA migrated slower upon addition of increasing HMG-D amounts 

(Figure 3.10A, lanes 3-14). Unlike H1, HMG-D exhibited no preference for chromatin 

over free or poorly assembled DNA. Even when large protein amounts were used, no 

point of saturation was reached at which adding more HMG-D did not further enhance 

the band shift. Indeed, 12mer 601 arrays and competitor DNA migrated gradually slower 

upon adding increasing amounts of HMG-D. At a molar ratio of about 20 HMG-D per 

nucleosome, the bands became smeary, indicating oversaturation (Figure 3.10A, lane 

13). At this ratio, arrays migrated already considerably slower than arrays saturated with 

H1 (Figure 3.10A, lane 15). Consequently, it was not possible to determine at which 
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Figure 3.10: Reconstitution of 12mer nucleosomal arrays containing HMG-D 
(A) 6 pmol 12mer nucleosomal arrays assembled by salt dialysis with increasing ratios of HMG-
D per 601 sequence (HMG-D/nuc) were analysed on a native 0.7% agarose gel. DNA without 
histones (lane 1) and arrays assembled with saturating amounts of H1 (lane 15) served as 
references. Competitor DNA (crDNA) was present during all reconstitutions. (B) AvaI-digestion 
of nucleosomal arrays with increasing amounts of HMG-D as described in figure 3.1. (C) 15% 
polyacrylamide gel of nucleosomal arrays after MgCl2-precipitation with HMG-D/nuc as 
indicated. Histones and HMG-D were stained with Coomassie and bands were quantified. The 
band containing both HMG-D and H2A was normalized on H3, H2B or H4 as indicated. 
Intensity ratios were compared to arrays assembled without HMG-D. 
 

 

 

input ratio each nucleosome was bound by one HMG-D nor did we know whether this 

would represent a physiologically relevant state. 

The AvaI-digestion (see 3.1.2) could have been an alternative to determine the 

HMG-D amount that resulted in the incorporation of one HMG-D per nucleosome, the 

assumed physiological stoichiometry. However, also this assay failed to reveal this 

amount since increasing HMG-D yielded a continuous upwards shift of 

mononucleosomes until they migrated even slower than chromatosomes (Figure 3.10B).  
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The analysis of HMG-D incorporation into chromatin by SDS-PAGE was 

complicated by the fact that HMG-D migrates at the same position as H2A. To be able 

to estimate the degree of HMG-D incorporation, the band corresponding to H2A and 

HMG-D was quantified and normalized on the intensities of the other three histone 

bands (Figure 3.10C). Relative band intensities derived from chromatin without any 

HMG-D were used as a reference. When adding a molar ratio of 4 HMG-D per 601 

sequence at the beginning of the assembly, the band corresponding to H2A and HMG-D 

was about 1.4 times as intense as the one measured for HMG-D free chromatin, meaning 

that about 80% of all nucleosomes were occupied with one HMG-D. Such chromatin 

was used for HMG-D experiments presented in the following. 

 

3.6.2 Remodelling assays with HMG-D-containing chromatin 
 

The ability of ACF to remodel nucleosomal arrays with or without HMG-D was 

determined by monitoring ATP-dependent increases in the accessibility of nucleosomal 

DNA to endonucleases as described above (see 3.2). As a reference, H1-containing 

chromatin was included in the experiment. ACF was added at a molar ratio of 

approximately four complexes per 12mer array and the mixture was incubated for 1 h at 

26°C. HMG-D had no effect on the remodelling efficiency of ACF, while H1 partially 

inhibited ACF-dependent remodellling as shown earlier (Figure 3.11A, lanes 9, 12). 

However, considering that HMGB1 only moderately enhanced mononucleosome 

repositioning by ACF and that the strongest effect was observed after shorter 

remodelling reactions (Bonaldi et al., 2002), we repeated the experiment by incubating 

the arrays for only 10 min. In addition, reactions with a molar ratio of only 2 ACF per 

12mer nucleososome array were included to achieve an even lower degree of 

remodelling (Figure 3.11C). Even under these conditions, no difference in ACF 

remodelling efficiency was observed when arrays containing HMG-D were compared to 

simple nucleosome arrays (Figure 3.11D). Hence, with our system, we could not detect 

any effects of HMG-D on the efficiency of ACF to remodel nucleosome arrays.  
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Figure 3.11: HMG-D does not affect the remodelling activity of ACF 
(A) ATP and/or 4 ACF per 12mer array were added to 12mer end-labelled nucleosomal arrays 
assembled with saturating amounts of H1 or with different ratios of HMG-D per 601 sequence 
(HMG-D/nuc) as indicated. After 1 h at 26°C, the DNA was purified and analysed on 1.3% 
agarose gel. (B) 12mer nucleosomal arrays assembled with or without 4 HMG-D/nuc were 
incubated with different molar ratios of ACF (ACF/12x601) and with or without ATP for 10 min 
at 26°C. The DNA was analysed as in (A). (C) Quantification of relative amounts of uncut DNA 
in (A) and (B). 

 
 
 

3.7 H1 and HMG-D levels are elevated in acf1 null flies 
 

3.7.1 Generation of polyclonal antibodies directed against H1 and HMG-D 
 

Several observations suggest that ACF could affect the incorporation of H1 into 

chromatin. First, it has been shown to assist the assembly of H1-containing chromatin 

arrays in vitro, indicating that it might function as an H1 chaperone (Lusser et al., 2005). 

Second, we could show that, unlike the related remodelling ATPase CHD1, ACF is able 

to remodel H1-containing chromatin arrays (see 3.2.2). Finally, ACF1 is detected in 

nuclei during cleavage, when HMG-D is replaced by H1 (Chioda et al.,
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Figure 3.12: Characterization of antibodies against H1 and HMG-D 
Antibodies against endogenous Drosophila H1 and HMG-D were raised in chicken and rabbit, 
respectively. (A) The specificity of the α-H1-antibody was assayed by Western blot on H1 
purified from embryos 0-12 h AEL and whole larval extract. (B) The α-HMG-D antibody was 
tested by Western blot on HMG-D purifed from embryos 0-90 min AEL, recombinant HMG-D 
expressed in E. coli and Drosophila embryonic extract (DREX) from embryos 0-90 min AEL. 
 

 

 

manuscript in preparation). We therefore wanted to investigate whether H1 and HMG-D 

incorporation into chromatin during embryonic development was affected by 

ACF/CHRAC in vivo.  

We were not satisfied with the performance of available antibodies against H1 and 

HMG-D in immunofluorescence experiments. Therefore, we generated polyclonal 

antibodies in chicken and rabbit directed against H1 and HMG-D, respectively. The α-

H1 antibody was purified from egg-yolk and its specificity was assayed by Western blot. 

It recognized both purified H1 and endogenous H1 from whole larval extract. Only one 

unspecific band near the signal corresponding to the molecular weight of H1 was 

detected (Figure 3.12A). The antiserum obtained from rabbit immunized with HMG-D 

was tested on recombinant HMG-D expressed in E. coli, endogenous HMG-D purified 

from embryos 0-90 min AEL and Drosophila embryonic extract (0-90 min AEL) 

(Becker et al., 1994). The antibody detected a band corresponding to HMG-D, but also a 

weaker band of approximately 50 kD (Figure 3.12B).  
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Figure 3.13: Distribution of H1 and HMG-D in early Drosophila development 
Whole mount immunofluorescence of embryos 0-3 h AEL. H1 (green) and HMG-D (red) were 
detected with the antibodies raised (see figure 3.12), DNA (white) was stained with TO-PRO3. 
HMG-D localized to nuclei approximately from nuclear division 4 onwards (arrows, 0-45 min) 
and was enriched on mitotic chromosomes (45-90 min) and pole cells (arrow, 90-120 min). In 
gastrulating embryos, some nuclei retained HMG-D staining (120-180 min). H1 was detected in 
nuclei from nuclear division 10 onwards (90-120 min) and in most nuclei of gastrulating 
embryos (120-180 min). 
 
 
 

3.7.2 Immunofluorescence of whole mount Drosophila wild-type and acf1 embryos 
with α-H1 and α-HMG-D antibodies  
 

Both antibodies were used for staining of embryos 0-3 h AEL. Nuclear staining by 

the α-HMG-D antibody was observed from nuclear division 4 onwards (Figure 3.13, 0-

45 min). As development proceeded to nuclear division 6-9 during which nuclei migrate 

to the surface of the embryo, the HMG-D antibody stained mitotic chromosomes in 

accordance with the literature (Ner and Travers, 1994) (Figure 3.13, 45-90min). During 

nuclear divisions 10-11, nuclei are stained weaker for HMG-D and it was enriched on 
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the pole cells which will give rise to the gonads (Figure 3.13, 90-120 min). HMG-D was 

also detected in few nuclei of gastrulating embryos (Figure 3.13, 120-180 min).  

Very different stainings were obtained with the α-H1 antibody. No H1 was detected 

in early nuclei. A cytosolic granular staining was obtained, most likely resulting from 

non-specific staining of abundant yolk proteins; embryos do not contain H1 at this stage 

(Figure 3.13, 0-45 min) (Ner and Travers, 1994). Nuclear H1 staining was only observed 

from nuclear division 10-11 onwards (Figure 3.13, 90-120 min). Interestingly, at this 

point, heterochromatin starts to form, which is in line with a role of the linker histone in 

chromatin compaction. In gastrulating embryos, H1 was detected in most nuclei. These 

findings, which are in line with earlier studies, support the specificity of our antibodies. 

We now compared H1 and HMG-D stainings of wild-type embryos to those of 

homozygous acf1 flies (Figure 3.14A). Acf1 refers to the acf1[2] null allele described by 

Fyodorov et al. (Fyodorov et al., 2004). In acf1 embryos, nuclei exhibited obvious 

defects in chromatin organization (Figure 3.14A, 90-120 min), showing that ACF1 is 

required for chromatin assembly. Strikingly, both the H1 and HMG-D staining were 

stronger in acf1 embryos. H1 and HMG-D levels were also elevated in gastrulating 

embryos (Figure 3.14A, 120-180 min). 

 

3.7.3 Quantification of H1 and HMG-D levels in nuclei of wild-type versus acf1 
embryos 
 

To quantify the differences of H1 and HMG-D amounts observed in 

immunofluorescence between wild-type and acf1 embryos, nuclei were purified from 

embryos 0-2 h AEL and 0-15 h AEL. Relative H1 and HMG-D amounts were 

determined by Western blot using the LI-COR Odyssey® System. H3 was used as a 

reference and signals for H1 and HMG-D were normalized accordingly.  

 As observed by immunostainings, both H1 and HMG-D levels were higher in acf1 

embryos than in the wild-type, regardless of the embryonic stage examined (Figure 

3.14B, C). To exclude that these differences in protein levels were due to accelerated 

development, we determined how many embryos were still in cleavage and how many 

were already gastrulating. No differences between acf1 and wild-type embryos were 
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Figure 3.14: H1 and HMG-D levels are elevated in acf1 null embryos 
(A) Whole mount immunofluorescence on wild-type and homozygous acf1 (acf1-/-) embryos 0-
3 h AEL. In the absence of ACF1, DNA structure, H1 and HMG-D distribution appeared less 
regular than in wild-type embryos (90-120 min, showing the surface of the embryos). Both H1 
and HMG-D levels were elevated in acf1 embryos. (B) Nuclei were isolated from wild-type and 
acf1 embryos 0-2 and 0-15 h AEL. H1 and HMG-D contents were determined by Western blot 
and normalized on H3 content. 
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detected, showing that the altered H1 and HMG-D levels in acf1 embryos were not the 

result of global changes in development. These observations suggest that an ACF1-

containing complex affects H1 and HMG-D incorporation in vivo. It may play an active 

role in controlling the association of these proteins with chromatin or influence linker 

histone deposition more indirectly through the regulation of other factors.  

 
 
 

3.8 H1 replaces HMG-D from chromatin in the absence of cofactors 
 

3.8.1 H1 associates with preassembled nucleosome arrays 
 

As described above, early embryonic chromatin does not contain H1, but HMG-D, 

which is gradually replaced by H1 as the embryo develops (see 3.7.1). We wondered 

whether the association of HMG-D or H1 required the assistance of other factors such as 

ACF. It was shown previously that H1 can replace HMG-D from chromatin. However, 

the chromatin arrays in this study were assembled by Drosophila embryonic extract. The 

chromatin was purified for the analysis, but most likely still contained an unknown 

number of chromatin binding factors (Ner et al., 2001). We therefore reinvestigated 

HMG-D replacement by H1 in our purified system. 

Nucleosomal arrays were assembled with and without HMG-D at a molar ratio of 4 

HMG-D per 601 sequence as described above (see 3.6.1). H1 was titrated to these arrays 

either before or after MgCl2-precipitation, so either in the absence or in the presence of 

competitor DNA which could bind excess H1. H1 was added at calculated input ratios 

between two and ten molecules per 601 sequence. These input ratios most likely do not 

reflect the ratios of available H1 per nucleosome, since H1 readily sticks to tubes and 

tips, in spite of using siliconized tubes and preblocking tips with BSA (98% PURE). 

Arrays were incubated with H1 for 5 min at 26°C and applied on 0.7% agarose gel in 

0.2xTB. Chromatin assembled in the presence of saturating H1 amounts served as a 

reference (Figure 3.15).  

H1 addition led to a shift on native agarose gel until at a calculated input ratio of four 

H1 per 601 sequence, the arrays migrated at the same height as those assembled in the 
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presence of H1 (Figure 3.15A, lanes 3, 5, 8, 10). Addition of more H1 shifted the arrays 

beyond this point and generated a smeary band (Figure 3.15A, lane 4). This smeariness 

was less pronounced if competitor DNA was still present, showing that it can buffer 

excess H1 to some extent (Figure 3.15A, lane 9). In the absence of H1, HMG-D-

containing arrays migrated slightly slower than those without HMG-D, but after H1 

addition, they also approached the migration behaviour of arrays assembled with H1. 

This suggests that H1 binds to nucleosome arrays with the same affinity whether or not 

they contain HMG-D. 

 

3.8.2 H1 replaces HMG-D in a purified system without accessory factors 
 

The EMSA allowed us to directly observe H1 binding to nucleosomal arrays, but did 

not reveal how much H1 was incorporated. To quantify the amount of bound H1, 

nucleosome arrays with or without HMG-D containing competitor DNA were incubated 

with H1 as before and purified from unbound proteins by MgCl2-precipitation. The H1 

and HMG-D contents of the arrays were then quantified by Western blot using a LI-

COR Odyssey machine and normalized on the amount of H4. As a reference, the H1 

content of chromatosome arrays assembled in the presence of H1 and the HMG-D 

content of HMG-D-containing arrays without H1 addition were also determined (Figure 

3.15B, C).  

H1 was incorporated into the arrays already at a ratio of two H1 per nucleosome 

(Figure 3.15B, lane 3). The amount of bound H1 did not increase notably when more H1 

was added. At a tenfold excess of H1 over nucleosomes, non-stoichiometric 

incorporation suggested by the EMSA was not reflected in this experiment, possibly 

because excess H1 was removed during the precipitation step (Figure 3.15B, lanes 4, 5). 

Interestingly, when adding low H1 levels, both H1 and HMG-D were bound to the 

arrays in approximately stoichiometric amounts to the nucleosome (Figure 3.15B, lane 

7). Apparently, under these conditions, H1 and HMG-D can be incorporated in 

nucleosomal arrays at the same time. Upon addition of more H1, HMG-D levels 

decreased whereas H1 levels remained constant (Figure 3.15B, lanes 8, 9).  
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Figure 3.15: H1 binds to nucleosome arrays and replaces HMG-D in the absence of 
cofactors 
(A) 6 pmol 12mer nucleosomal arrays assembled with (lanes 11-14 and 16-19) or without (lanes 
1-4 and 6-9) HMG-D were mixed with increasing molar ratios of H1 per 601 sequence (H1/nuc) 
in the presence (lanes 1-4 and 11-14) or absence (lanes 6-9 and 16-19) of competitor DNA 
(crDNA). Arrays were incubated for 5 min at 26°C and run on native 0.7% agarose gel. Their 
migration behaviour was compared to that of arrays with saturating amounts of H1 added at high 
salt at the beginning of the reconstitution (lanes 5, 10, 15 and 20). (B) Nucleosomal arrays with 
crDNA were mixed with H1 and incubated for 5 min at 26°C. Arrays were precipitated with 5 
mM MgCl2 and their H1, HMG-D and H4 levels were analysed by Western blot. (C) 
Quantification of (B). H1 (black) and HMG-D (grey) were normalized on H4; H1 and HMG-D 
per H4 ratios of arrays assembled in the presence of H1 or HMG-D (without addition of H1), 
respectively, served as references. 
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Taken together, we showed that also in a purified system, HMG-D is replaced by H1 

by simple competition. In vivo, this process may require a tighter control. ACF, which 

assists assembly of H1-containing chromatin in vitro (Lusser and Kadonaga, 2005), may 

potentially act as an H1 chaperone that regulates H1 loading onto chromatin and 

prevents premature H1 incorporation in vivo, a hypothesis supported by the altered H1 

levels in acf1 flies. 
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4. Discussion 
 

4.1 ATP-dependent chromatosome remodelling 
 

4.1.1 Remodelling of H1-containing chromatin by specific remodelling factors 
 

Since most of the eukaryotic genome is organized in H1-containing chromatin fibres 

(Horowitz et al., 1994), this folded chromatin presumably presents the most common 

and abundant substrate for ATP-dependent chromatin remodelling enzymes. In order to 

understand whether nucleosome remodelling can occur on the bulk of interphase 

chromatin or whether it is restricted to the chromatin fraction devoid of linker histones, 

it was important to investigate whether and to what extent remodelling factors can deal 

with H1-containing chromatin. Yet, to date, such studies yielded contradictory results 

and were subject to certain limitations of the experimental setups which did not allow 

clear cut conclusions (summarized in 1.5.1). 

We therefore decided to address this issue in a more purified system making use of 

regular nucleosome and chromatosome arrays assembled from purified components. 

These arrays were subjected to remodelling by the complex ACF, its ATPase ISWI 

alone and the ATPases CHD1 and BRG1.  

To our surprise, we found that ACF, ISWI and BRG1 were able to increase the 

access to nucleosomal DNA even if the arrays contained stoichiometric amounts of H1 

or H5, albeit less efficiently than in linker histone free chromatin. By contrast, the 

remodelling activity of the related ATPase CHD1 was completely inhibited by the 

presence of linker histones. Strikingly, we also observed nucleosome movements 

catalysed by ACF, and to a lesser extent by ISWI and BRG1, within arrays saturated 

with linker histones. Moreover, we detected considerable movements of entire 

chromatosomes catalysed by ACF and ISWI, showing that ACF-dependent remodelling 

does not depend on the permanent dissociation of H1 from chromatin. CHD1 on the 

other hand did not catalyse significant nucleosome repositioning within our arrays, 

whether or not linker histones were present. This illustrates that access to DNA can be 
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generated not only by nucleosome repositioning, but also by other means, like the 

detachment of DNA from the histone surface without movement of the octamer on 

DNA. In addition, it shows that not all remodelling factors are able to remodel linker 

histone-containing chromatin equally well. We therefore suggest a distinction between 

‘nucleosome remodellers’, which are only able to remodel nucleosomes devoid of H1, 

and ‘chromatin remodellers’, which can also remodel chromatosomes (Figure 4.1).  

Interestingly, ACF can assist the histone chaperone NAP-1 in the assembly of H1-

containing chromatin, whereas under the same conditions, CHD1 only promotes the 

assembly of linker histone-free arrays (Lusser et al., 2005). The ability of remodelling 

factors to incorporate H1 into chromatin may thus correlate with their remodelling 

efficiencies in the presence of the linker histone. 

 

4.1.2 Limitations of chromatosome remodelling 
 

We were surprised by the efficiency of chromatosome remodelling considering the 

potential obstacles brought about by the linker histone. First, H1 binding limits the 

amount of free linker DNA. The length of linker DNA turned out ot be an important 

parameter for the efficiency of ACF-dependent remodelling (Yang et al., 2006). Second, 

nuclease protection experiments with H1 or ISWI revealed similar sites of interaction 

with the nucleosome (Strohner et al., 2005; Zofall et al., 2004), so the two proteins are 

likely to compete for the same binding site on the nucleosome substrate. In addition, H1 

restricts the flexibility of the linker DNA and therefore hinders loosening of histone-

DNA contacts at the point of entry into the nucleosome, a step required for all 

remodelling events (Sheng et al., 2006). Finally, the increased compaction of the 

nucleosome fibre promoted by linker histones might restrict access of remodelling 

factors towards chromatin, since according to both currently favoured models for the 

structure of the 30 nm fibre, the linker DNA and hence all points of access for 

remodelling enzymes are located inside the chromatin fibre (Dorigo et al., 2004; 

Robinson and Rhodes, 2006). Considering that according to FRAP experiments each H1 

molecule is associated with chromatin most of the time (Misteli et al., 2000), one would 

therefore expect it to counteract ATP-dependent remodelling. 
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4.1.3 Potential mechanisms of chromatosome remodelling 
 

In line with the concerns listed above, the literature so far mostly suggested that 

linker histones inhibit chromatin remodelling (Hill and Imbalzano, 2000; Horn et al., 

2002; Saeki et al., 2005; Varga-Weisz et al., 1995). However, looking carefully at these 

studies, residual remodelling activity was still observed also in the presence of linker 

histones. This has largely been attributed to incomplete loading of the substrate with 

linker histones. We tried to rule out this possibility by tightly controlling the 

stoichiometric incorporation of linker histones into reconstituted chromatin arrays. Still, 

ACF and BRG1 could remodel these arrays to a considerable extent. 

We wondered why we observed such strong ATP-dependent repositioning of 

chromatosomes. We considered that the H1 we purified from Drosophila embryos may 

carry covalent modifications which could facilitate its mobilization. H1 is highly 

phosphorylated during mitosis (Sarg et al., 2006) and its hyperphosphorylation interferes 

with DNA binding (Hill et al., 1991). Along this line, hyperphosphorylation of H5 

abolished its ability to inhibit SWI/SNF dependent chromatin remodelling (Horn et al., 

2002). However, no extensive phosphorylation was detected by mass-spectrometrical 

analysis of H1 purified from Drosophila embryos (Villar-Garea and Imhof, 2008). We 

therefore consider it unlikely that phosphorylation influenced the outcome of our 

experiments. Moreover, the fact that CHD1 was able to remodel chromatin only in the 

absence, but not in the presence of linker histones emphasized their repressive nature 

towards remodelling.  

Our findings raise the question about the possible mechanism for ATP-dependent 

chromatosome repositioning. Remodelling factors disrupt the interactions between  

DNA and also other proteins than core histones (Kikyo et al., 2000; Nagaich et al., 2004; 

Sprouse et al., 2006), so they might transiently displace H1 from the nucleosome. This 

may be achieved by transiently displacing linker histones to a secondary site on the 

nucleosome or to an acceptor site on the remodelling factor. In vivo, such H1 eviction 

events may be assisted by H1 chaperones. A candidate for an H1 chaperone is 

represented by NAP-1, which cooperates with ACF in the assembly of H1-containing 

chromatin (Lusser et al., 2005). It is conceivable that these two proteins can also 
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cooperate to catalyse the opposite reaction, H1 disassembly. However, since we did not 

include a chaperone in our experiment, alternative mechanisms have to be considered. 

Chromatosome movements might already be facilitated if only the linker histone’s 

globular domain was temporarily lifted off the nucleosome, while the C-terminal domain 

remained associated with the linker DNA. Such a scenario is reminiscent of documented 

changes on H1 interaction due to transcription, where selective cross-linking in 

Drosophila showed that the globular domain but not the C-terminal tail of linker 

histones was reversibly displaced from chromatin (Nacheva et al., 1989). In agreement 

with these considerations, the C-terminal tail contributes to the binding of H1 to the 

nucleosome and strongly affects the residence time of H1 on chromatin (Catez et al., 

2006; Hendzel et al., 2004). 

The analysis of chromatosome positions by primer extension revealed that in our 

arrays, H1 protects DNA from nuclease digestion mainly on one side of the nucleosome, 

suggesting an asymmetrical binding of H1 in agreement with earlier observations 

(Brown et al., 2006; Zhou et al., 1998). Site-directed DNA crosslinking experiments 

indicated that also the yeast ATPase ISW2 contacts linker DNA only on one side of the 

nucleosome (Dang et al., 2006). Moreover, modelling its electron microscopy structure 

on the nucleosome, Hainfeld and co-workers concluded that hCHRAC may bind to the 

nucleosome in a similar manner (Hu et al., 2008). On the other hand, footprinting studies 

of ACF suggested that ACF interacts symmetrically with the nucleosome (Strohner et 

al., 2005). It is however possible that in the presence of H1, ACF binds only to one side 

of the nucleosomal entry/exit site. Hence, we hypothesize that ACF binds to DNA at the 

entry/exit side of the nucleosome on the side not contacted by the globular domain of 

H1. Loop formation and propagation would then result in movement of the histone 

octamer and displacement of the globular H1 domain. Subsequently, H1 would relocate 

to the new entry/exit site of the nucleosome. According to this model, ACF-mediated 

nucleosome sliding would be unidirectional in the presence of H1. We began to test this 

hypothesis by subjecting palindromic 601 arrays to remodelling reactions and 

monitoring nucleosome and chromatosome movements by partial MNase digestion. 

Although these experiments indicated a slight preference of nucleosomal movements 

away from the H1-bound side compared to the opposite direction, we could not prove 

unambiguously that H1 restricted ACF-mediated sliding to one direction. Further 
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experiments will be necessary to clarify whether sliding is unidirectional in the presence 

of H1. 

 

 

4.2 Global linker histone dynamics and chromatin remodelling 
 

4.2.1 Chromatin remodelling in the presence of early linker histone substitutes 
 

Most eukaryotic cells contain approximately one linker histone per nucleosome, but 

this ratio varies between organisms and cell types. Interestingly, this ratio is higher in 

transcriptionally inactive cells – e. g. 1.3 in avian erythrocytes – and considerably lower 

in embryonic cells where chromatin is less compacted than in differentiated cells 

(Woodcock et al., 2006). Mammalian stem cells contain only 0.5 H1 per nucleosome 

(Fan et al., 2005), and in early stages of fly and frog development somatic H1 is entirely 

replaced by HMG-D or by the specialized linker histone B4, respectively, both binding 

to the nucleosome with a considerably lower affinity than H1 (Dimitrov and Wolffe, 

1996; Ner et al., 2001). It is therefore believed that H1 levels may globally define the 

degree of chromatin plasticity and that H1 generally counteracts chromatin dynamics. In 

agreement, our assays showed that H1 and even more so H5 antagonize remodelling.  

ACF is abundant during early Drosophila embryogenesis when chromatin initially 

does not contain H1, but HMG-D. Similar to H1, HMG-D increases the nucleosomal 

repeat length (Ner et al., 2001). It has therefore been proposed to serve as a linker 

histone substitute in early chromatin. However, monitoring DNA accessibility during 

remodelling by ACF, we did not see any changes in remodelling efficiency upon HMG-

D incorporation. Unlike canonical linker histones, HMG-D was “transparent” in our 

assay. This could be due to the lower affinity of HMG-D towards chromatin. Also, 

HMG-D-containing nucleosomal arrays may be less compact than those containing H1. 

Our results are in line with earlier experiments in Xenopus, where H1 but not the 

early linker histone B4 inhibited ACF-mediated remodelling in dinucleosomes (Saeki et 

al., 2005). We did not observe facilitation of nucleosome remodelling upon HMG-D 

binding as previously reported for the closely related HMGB1, which unlike HMG-D 
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harbours two HMG box domains (Bonaldi et al., 2002). In this study, HMGB1 binding 

accelerated ACF-dependent mononucleosome sliding, possibly by increasing DNA 

flexibility. Conversely, HMGB1 inhibited remodelling when the highly acidic C-

terminus of HMGB1 was deleted, which is composed of 20 uninterrupted glutamates 

and aspartates. The deletion mutant exhibits an affinity towards nucleosomes two orders 

of magnitude higher than the full-length protein, so it might lock the nucleosome and 

prevent repositioning. The C-terminus of HMG-D also harbours an acidic patch; 

however, it consists of only ten acidic amino acids interrupted by two serins. This might 

result in a less dynamic interaction of HMG-D with the nucleosome than HMGB1 and 

could therefore explain why HMG-D did not enhance nucleosome remodelling in our 

assay. Alternatively, mononucleosome sliding might represent a more sensitive assay to 

measure small differences in efficiency. Yet, we can conclude that chromatin is more 

permissive towards chromatin remodelling if it contains HMG-D instead of H1. This 

could facilitate formation of compact chromatin domains by ACF/CHRAC during 

differentiation. 

 

4.2.2 Global changes of linker histone association with chromatin upon depletion of 
ISWI-complexes 
 

Kadonaga and co-workers showed that in vitro ACF assists the incorporation of both 

core and linker histones into chromatin (Lusser and Kadonaga, 2003) raising the 

possibility that ACF might act as a linker histone chaperone. We therefore investigated 

whether in vivo the depletion of ACF/CHRAC affected the association of H1 and its 

early substitute HMG-D with chromatin. For this reason we monitored H1 and HMGD 

in flies carrying a null allele for acf1, the defining subunit of ACF/ CHRAC. 

It has been reported previously that ACF1 depletion in flies leads to reduced viability 

and a less regular chromatin structure with a shorter nucleosome repeat length and it was 

suggested that CHRAC and/or ACF promote the formation of repressive chromatin 

structures (Fyodorov et al., 2004). Unexpectedly, we found that both H1 and HMG-D 

levels were increased in acf1 flies. This finding may be interpreted in the context of our 

biochemical results. ACF may be required to control the correct and stoichiometric 
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incorporation of linker histones under physiological conditions via its proposed 

chaperone activity. Previous experiments with chromatin assembled by Drosophila 

embryonic extract showed that H1 replaces HMG-D, but at that time could not exclude 

the presence of additional factors that could assist this reaction (Ner et al., 2001). We 

now demonstrated that H1 readily binds to and replaces HMG-D from salt-assembled 

chromatin in a purified system. We showed furthermore that H1 can bind to 

preassembled chromatin without the assistance of cofactors in vitro. H1 and HMG-D 

could bind to nucleosomal arrays in stoichiometric amounts at the same time. This 

observation could mean that there are two distinct binding sites for H1 and/or HMG-D 

on chromatin. Along this line, Travers and colleagues showed that HMG-D binds to 

chromatin with two distinct affinities, presumably reflecting two distinct binding sites. 

H1 preferentially displaced HMG-D from its higher affinity site, implying that this 

might represent the nucleosomal entry/exit site (Ner et al., 2001). Furthermore, they 

demonstrated a physical interaction between H1 and HMG-D. Accordingly, in our assay, 

H1 might first displace HMG-D from the entry/exit site of the nucleosome by 

competition. Additional H1 may then bind to HMG-D and lead to dissociation.  

In agreement with the finding that H1 binds chromatin without the help of a 

chaperone, linker histones freely exchange between DNA and chromatin binding sites 

without the help of cofactors (Orrego et al., 2007). ACF/CHRAC may therefore be part 

of a mechanism that regulates this association in order to prevent uncontrolled H1 

incorporation. Alternatively, the increase in H1 and HMG-D levels in acf1 flies might be 

an attempt to compensate for the reduction of both nucleosome repeat length and 

chromatin compaction. After all, most homozygous acf1 flies are not viable and the 

analysed individuals are escapers that most likely survived because of compensatory 

mechanisms. It also has to be considered that H1 and HMG-D expression is increased 

indirectly through the misregulation of other factors. 

A different phenotype results from the knock-out of the ATPase ISWI. H1 was 

found to be absent in the decondensed chromosome structures characteristic of these 

flies, raising the possibility that it could be required for loading H1 onto chromatin 

(Corona et al., 2007) (see 1.5.2). This chromosome decondensation was also observed in 

NURF301 knock-out flies, but not ACF1 knock-out flies, showing that ACF/CHRAC 

were not involved in this phenotype (Badenhorst et al., 2002). Also in this case, 
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compensatory and indirect effects must be considered and further studies will be 

necessary to elucidate the mechanisms behind. Still, these results point at a potential link 

between linker histone binding to chromatin and ISWI complexes. 

 
 

4.3 Effectors of linker histone dynamics 
  

4.3.1 Intrinsic properties of linker histones that affect their affinity towards 
nucleosomes 
 

The observations described above raise the possibility that ATP-dependent 

remodelling might play a role in controlling the association of linker histones with 

chromatin. However, it is not clear how the remodelling of linker histone-containing 

chromatin can be regulated. Reviewing the principles controlling linker histone 

dynamics might reveal potential functional interactions with ATP-dependent chromatin 

remodelling. 

Although generally speaking nucleosomes are very stable structures, reversible 

detachments of DNA segments from the octamer surface are observed (Anderson et al., 

2002; Li et al., 2005; Poirier et al., 2008). This dynamic nature of histone DNA 

interactions may be prerequisite for ATP-dependent remodelling. In analogy, the ability 

to remodel linker histone- containing chromatin is likely to be influenced by the intrinsic 

affinity of linker histones, which can differ between H1 variants.  

Different subtypes of H1 are found in many organisms (see 1.2.2). The affinities of 

these variants for chromatin differ considerably. In rat, the somatic variant H1d, exhibits 

a 19 fold higher affinity than H1a, another somatic variant (Orrego et al., 2007). 

Accordingly, variants exhibit different degrees of mobility in vivo, as revealed by FRAP 

experiments in human cells (Th'ng et al., 2005). These differences in affinities may 

account for the observed distinct effects of these variants on gene expression and 

chromatin structure (Alami et al., 2003; Gunjan et al., 1999) and may also affect ATP-

dependent remodelling.  
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An extreme example for how a linker histone variant controls chromatin 

condensation is provided by H5 (see 1.2.2). In our assay, H5, which binds to chromatin 

with higher affinity than somatic H1, inhibited chromatin remodelling to a larger degree 

than H1, but not entirely. Conversely, the early linker histone substitute in Drosophila 

HMG-D, which binds to chromatin ten times weaker than somatic H1 (Ner et al., 2001), 

did not decrease remodelling efficiency. 

 

4.3.2 Posttranslational modifications of linker histones 
 

Nucleosome remodelling can be affected by posttranslational modifications of core 

histones. Histone modifications might influence remodelling directly, e. g. by changing 

the affinity of the nucleosome to remodelling factors or indirectly by alterations in fibre 

folding. For instance, as already mentioned (see 1.3 and 1.4.4), acetylation of histone H4 

on lysine 16 (H4K16) counteracts both chromatin condensation and ISWI-dependent 

remodelling (Corona et al., 2002; Shogren-Knaak et al., 2006). Linker histones have 

been found to be phosphorylated, methylated, acetylated, ubiquitinated and formylated 

(Wisniewski et al., 2007), the best characterized modification being their C-terminal 

phosphorylation. Phosphorylated linker histones are associated to mitotic chromosomes 

and concomitantly, overall phosphorylation increases during mitosis (Zlatanova et al., 

2000). In addition, phosphorylation of linker histones regulates transcription and reduces 

their affinity to chromatin (Catez et al., 2006; Dou et al., 1999). This is reflected by the 

fact that phosphorylation of linker histone releases their inhibitory effect on chromatin 

remodelling (Horn et al., 2002). Expression of point mutants mimicking a constitutively 

phosphorylated state counteracts differentiation of murine erythroleukemia (MEL) cells 

in spite of representing only one fifth of total H1 amounts. Moreover, in these cells, not 

only the mutant H1, but also endogenous H1 exhibited an increased mobility. This 

means that a mutation that disrupts the C-terminal interaction of H1 with the linker DNA 

affects chromatin structure not only locally by reducing the affinity of the mutant protein 

to the nucleosome but also influences folding globally and thereby alters the binding 

properties of wild-type histones (Yellajoshyula and Brown, 2006). The observation that 

H1 variants exhibit differences in their modification patterns adds another level of 
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complexity for regulating their binding to chromatin (Wisniewski et al., 2007). In 

addition, H1 modifications may integrate the linker histone into the network of 

heterochromatin formation. Along this line, H1K26 methylation is recognized by 

heterochromatin protein 1 (HP1) whereas phosphorylation on K27 prevents this 

interaction (Daujat et al., 2005).  

Local and global interactions of H1 are not only influenced by modifications of the 

linker histone itself but also by the modification status of the nucleosomes it associates 

with. In FRAP experiments, the residence time of H1 on chromatin decreased 

considerably upon addition of the histone deacetylase inhibitor TSA (Misteli et al., 

2000). However, the non-specific effect of this general drug does not exclude the 

possibility that H1 itself or other factors could be hyperacetylated and contribute to the 

elevated H1 mobility. Vaquero and colleagues exemplified how chromatin structure can 

be jointly regulated by core and linker histone modifications (Vaquero et al., 2006). 

They showed that the human HDAC SirT1 promotes the formation of facultative 

heterochromatin by binding and recruiting H1 and by deacetylation of H1K27, H3K9 

and H4K16. This supports the idea that chromatin fibre folding requires both global 

histone deacetylation and H1 incorporation. H1 occupancy can also be regulated via 

histone modifications very locally. This is illustrated by a recent study demonstrating 

that the stepwise histone acetylation and H2A deubiquitination facilitated H1 

dissociation from the promoters of androgen receptor-regulated genes and increased 

their transcription (Zhu et al., 2007). 

 

4.3.3 Linker histone chaperones 
 

In contrast to nucleosome repositioning, which is catalysed by remodelling enzymes 

alone, histone deposition and eviction usually depends on the assistance of chaperones 

acting as histone donors or acceptors (Loyola and Almouzni, 2004; Tyler, 2002; 

Workman, 2006). For example, as stated above, CHD1 or ACF can assemble chromatin 

in concert with the well-known histone chaperone NAP-1 in vitro (Lusser et al., 2005). 

NAP-1 can also promote nucleosome disassembly in cooperation with the yeast 

remodelling factor RSC (Lorch et al., 2006). The histone chaperone nucleoplasmin, on 
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Figure 4.1: Interconversion of chromatin states through the interplay of core and linker 
histone chaperones and ATP-dependent remodelling factors.  

The scenarios describe states of chromatin that differ in the regularity of the chromatin fibre 
and in core and linker histone stoichiometry. Spheres depict histone octamers around which the 
DNA (black line) is wound to form nucleosomes. Linker histones are represented in white. (a) 
Nucleosome fibre containing a nucleosome-free gap; (b) regularly spaced nucleosome array; (c) 
regularly spaced nucleosome array containing substoichiometric levels of H1; (d) regularly 
spaced chromatosome array with saturating linker histone levels; (e) irregular succession of 
nucleosomes that may arise after nucleosome assembly or if a nucleosome-free region is 
generated by nucleosome sliding; (f) nucleosome array containing substoichiometric levels of 
H1, where the nucleosome devoid of H1 have been selectively moved; (g) irregularly spaced 
chromatosome arrays that may arise when chromatosomes are moved on DNA. Histone 
chaperones and ATP-dependent remodelling factors can act in concert to assemble core and 
linker histones onto DNA (a to e). Binding linker histones allows remodelling by chromatin 
remodelling factors but not nucleosome remodelling factors (b, d, e, g). If present in 
substoichiometric amounts, linker histones may determine which nucleosomes are repositioned 
preferentially. Sliding may also be directional in the presence of H1 (c, f). 
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the other hand, can facilitate nucleosome mobilization by SWI/SNF and ACF in vitro 

(Angelov et al., 2006).  

Similarly, linker histone chaperones may contribute to regulate H1 dynamics. To 

date, the in vitro assembly of H1-containing chromatin arrays by ACF and NAP-1 

represents the only reported cooperation of a histone chaperone and a remodelling 

enzyme in the context of H1-chromatin interactions (Figure 4.1a-d) (Lusser et al., 

2005). The histone chaperone NAP-1 can both load H1 onto and evict H1 from 

chromatin fibres in vitro (Kepert et al., 2005; Mazurkiewicz et al., 2006). A number of 

other H1 binding proteins have been found to be involved in H1 depositioning or 

eviction (Figure 4.1b, c, d). Nucleoplasmin, an abundant nuclear protein in Xenopus 

oocytes, removes somatic linker histone variants from chromatin and thereby 

facilitates transcription in vitro (Dimitrov and Wolffe, 1996). The opposite function, 

H1 assembly, might be fulfilled by the nuclear autoantigenic sperm protein (NASP). 

Since this protein binds to H1 and deposits it onto free DNA in vitro, it might also 

serve as an H1 assembly factor (Alekseev et al., 2003). NASP is essential for cell 

proliferation and normal development in vivo. It has therefore been suggested that H1 

is involved in controlling chromatin assembly after cell division (Richardson et al., 

2006). Presumably more subtle functions in controlling H1 interaction with chromatin 

are accomplished by prothymosin α and parathymosin. Both bind to H1 in vitro and in 

vivo and restrict the association of H1 with chromatin in vitro. (Karetsou et al., 1998; 

Martic et al., 2005). However, proper definition of an H1 chaperone may require 

isolation of a complex. 

Taken together, the same principles that govern core histone dynamics – intrinsic 

affinity, variant properties, modification status and chaperone interactions – may also 

control the association of linker histones with chromatin and hence increase the 

regulatory complexity. 
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4.4 Outlook 
 

In this study, we analysed the influence of linker histones and their early substitute 

HMG-D on ATP-dependent chromatin remodelling. The results give insight into how 

chromatin remodelling works in the context of higher order chromatin structures. 

Moreover, our in vitro assays can now be used to elucidate the contribution of individual 

proteins domains, for instance the PHD fingers and the bromodomain of ACF1, to 

higher-order chromatin structure remodelling. The assays presents also valuable tools to 

investigate how further factors like histone modifications, chromatin binding proteins (e. 

g. HP1) and histone variants affect chromatin remodelling. In contrast to remodelling 

assays using mononucleosomes, our assays will also reveal effects resulting from 

differences in chromatin folding.  

In addition, our data suggested that ACF-mediated repositioning in the presence of 

H1 might be unidirectional. This represents an interesting concept, because it would 

mean that linker histones influence nucleosomal positions.  

We also monitored exchange of HMG-D by H1 and showed that H1 and HMG-D 

incorporation is globally affected by the absence of ACF1. Further experiments will be 

necessary to reveal by which mechanism ACF1 complexes affect H1 association with 

chromatin. 
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6. Abbreviations 
 
α     Anti 
A     Adenine 
ACF     ATP-utilizing chromatin assembly and remodelling  
     factor 
ADP     Adenosindiphosphate 
AEL     After egg laying 
ATP      Adenosintriphosphate 
BAF      BRG1-associated factors 
BAP      Brahma-associated proteins 
bp      Basepairs 
BPTF      Bromodomain PHD finger transcription factor 
BRM      Brahma 
BRG1      Brahma-related gene 1 
BSA      Bovine serum albumin 
C      Cytosine 
CENP-A     Centromere protein A 
CHD      Chromodomain-helicase-DNA-binding 
crDNA      Competitor DNA 
CHRAC      Chromatin accessibility complex 
dATP      Desoxyadenosintriphosphate 
DB      Dialysis buffer 
dCTP      Desoxycytosintriphosphate 
dGTP      Desoxyguanidintriphosphate 
Dls1      Dpb3-like subunit 
DMSO      Dimethylsulfoxide 
DNA      Desoxyribonucleic acid 
DNMT      DNA methyltransferase 
dNTP      Desoxyribonucleotidetriphosphate 
Dpb3/Dpb4     DNA polymerase B (DNA Pol ε) subunit 3/4 
DREX      Drosophila embryonic extract 
Drosophila     Drosophila melanogaster 
DTT      Dithiothreitol 
dTTP      Desoxythymidintriphosphate 
E. coli      Escherichia coli 
EDTA      Ethylendiamintetraacetate 
EGTA      Ethylenglycol-bis(2-aminoethyl)-N,N,N’,N’- 
      tetraacetic acid 
EM      Electron microscopy 
EMSA      Electrophoretic mobility shift assay 
EtBr      Ethidiumbromide 
EW      Embryo wash 
EX      Extraction buffer 
FRAP      Fluorescence recovery after photobleaching 
fw      Forward 
G      Guanine 
Gcn5      General control non-derepressible 
H2Av      H2A variant 
HAT      Histone acetyltransferase 
HDAC      Histone deacetylase 
HEPES      (N-(2-Hydroxyethyl)piperazine-H’-(2-  
      ethanesulfonic acid) 
HDM      Histone demethylase 
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HMG      High mobility group 
HMT      Histone methyltransferase 
HP1      Heterochromatin protein 1 
HRP      Horseradish peroxidase 
Ig      Immunoglobulin 
INO80      Inositol requiring 
IPTG      1-isopropyl-β-D-1-thiogalacto-pyranoside 
IR      Infrared 
ISW1/ISW2     Imitation switch (Sacharomyces cerevisiae) 
ISWI      Imitation switch (Drosophila, Xenopus) 
Itc1      ISW2 (‘ISW two’) complex subunit 
K      Lysine 
kb      Kilobase 
MBD3      Methyl-CpG-binding protein 3 
MEL      Murine erythroleukemia 
MNase      Micrococcal nuclease 
MW      Molecular weight 
NAP-1      Nucleosome assembly protein 1 
NASP      Nuclear autoantigenic sperm protein 
NB      Nuclei buffer 
NoRC      Nucleolar remodelling complex 
NURD      Nucleosome remodelling and deacetylation 
NURF      Nucleosome remodelling factor 
OD      Optical density 
PAF      Paraformaldehyde 
PAGE      Polyacrylamide gel electrophoresis 
PBAF      Polybromo-associated BAF 
PBAP      Polybromo-associated BAP 
PBS      Phosphate buffered saline 
PCNA      Proliferating cell nuclear antigen 
PCR      Polymerase chain reaction 
PHD      Plant homeo domain 
PMSF      Phenylmethanesulfonyl fluoride 
PNK      Polynucleotide kinase 
psi      Pounds per square inch 
PTM      Posttranslational monification 
PVDF      Polyvinylidene Fluoride 
Rad54      Radiation sensitive 
RB      Remodelling buffer 
RNA      Ribonucleic acid 
RNAi      RNA interference 
RPD3      Reduced potassium dependency 3 
rpm      Revoltations per minute 
RSC      Remodels the structure of chromatin 
RSF      Remodelling and spacing factor 
RT      Room temperature 
Rv      Reverse 
SANT      SWI3, ADA2, N-CoR and TFIIIB B” 
SDS      Sodiumdodecylsulfate 
SHL      Superhelical location 
SLIDE      SANT-like ISWI domain 
SirT1  Sirtuin (silent mating type information regulation 2 

 homolog) 1 
S/MAR      Scaffold/matrix attachement region 
SNF2      Sucrose non-fermenting protein 2 homolog 
SNF2H      Sucrose non-fermenting protein 2 homolog 
SNF2L      Sucrose non-fermenting protein 2-like 
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Sth1      Snf two homologous 1 
SUMO      Small ubiquitin-related modifier 
SWI/SNF     Switch/sucrose non-fermenting 
SWR1      Swi2/Snf2-related 1 
T      Thymine 
Temed       N,N,N’,N’-Tetramethylethylenediamine 
TLC      Thin layer chromatography 
Tris      Tris(hydroxymethyl)aminomethane 
TSA      Trichostatin A 
UV      Ultraviolet 
v/v      Volume per volume 
WICH      WSTF-ISWI chromatin remodelling complex 
WSTF      Williams syndrome transcription factor 
WT      Wild-type 
w/v      Weight per volume 
Xenopus      Xenopus laevis 
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