
Data-Based Decisions under
Complex Uncertainty

Dissertation

an der Fakultät für Mathematik, Informatik und Statistik der

Ludwig-Maximilians-Universität München

Robert Hable

03. November 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Hochschulschriften der LMU

https://core.ac.uk/display/11030684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Erstgutachter: Prof. Dr. Thomas Augustin

Zweitgutachter: PD Dr. Christian Heumann

Drittgutachter: RNDr. Jǐrina Vejnarová, CSc.
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Abstract

Decision theory is, in particular in economics, medical expert systems and statistics, an im-
portant tool for determining optimal decisions under uncertainty. In view of applications
in statistics, the present book is concerned with decision problems which are explicitly
data-based. Since the arising uncertainties are often too complex to be described by clas-
sical precise probability assessments, concepts of imprecise probabilities (coherent lower
previsions, F-probabilities) are applied. Due to the present state of research, some basic
groundwork has to be done: Firstly, topological properties of different concepts of impre-
cise probabilities are investigated. In particular, the concept of coherent lower previsions
appears to have advantageous properties for applications in decision theory. Secondly,
several decision theoretic tools are developed for imprecise probabilities. These tools are
mainly based on concepts developed by L. Le Cam and enable, for example, a definition
of sufficiency in case of imprecise probabilities for the first time.
Building on that, the article [A. Buja, Zeitschrift für Wahrscheinlichkeitstheorie und Ver-
wandte Gebiete 65 (1984) 367-384] is reinvestigated in the only recently available frame-
work of imprecise probabilities. This leads to a generalization of results within the Huber-
Strassen theory concerning least favorable pairs or models.
Results obtained by these investigations can also be applied afterwards in order to justify
the use of the method of natural extension, which is fundamental within the theory
of imprecise probabilities, in data-based decision problems. It is shown by means of
the theory of vector lattices that applying the method of natural extension in decision
problems does not affect the optimality of decisions. However, it is also shown that, in
general, the method of natural extension suffers from a severe instability.
The book closes with an application in statistics in which a minimum distance estimator
is developed for imprecise probabilities. After an investigation concerning its asymptotic
properties, an algorithm for calculating the estimator is given which is based on linear
programming. This algorithm has led to an implementation of the estimator in the
programming language R which is publicly available as R package “imprProbEst”. The
applicability of the estimator (even for large sample sizes) is demonstrated in a simulation
study.
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Zusammenfassung

Die Entscheidungstheorie ist vor allem in den Wirtschaftswissenschaften, bei medizini-
schen Expertensystemen und in der Statistik ein wichtiges Werkzeug zur Bestimmung op-
timaler Entscheidungen in Unsicherheitssituationen. Im Hinblick auf statistische Anwen-
dungen beschäftigt sich die vorliegende Arbeit mit Entscheidungsproblemen, die explizit
datenbasiert sind. Da die auftretenden Unsicherheiten häufig zu komplex sind, um durch
klassische präzise Wahrscheinlichkeiten beschrieben werden zu können, werden Konzepte
unscharfer Wahrscheinlichkeiten (coherent lower previsions, F-Wahrscheinlichkeiten) ver-
wendet. Entsprechend des derzeitigen Forschungsstands sind zunächst einige Grundlagen-
arbeiten nötig: Zum einen werden topologische Eigenschaften verschiedener Konzepte un-
scharfer Wahrscheinlichkeiten untersucht, wobei sich herausstellt, dass vor allem coherent
lower previsions günstige Eigenschaften für die Verwendung in der Entscheidungstheorie
besitzen. Zum anderen werden verschiedene entscheidungstheoretische Werkzeuge speziell
für die Situation unscharfer Wahrscheinlichkeiten entwickelt. Diese basieren hauptsächlich
auf Arbeiten von L. Le Cam und ermöglichen zum Beispiel erstmals eine Definition der
Suffizienz für unscharfe Wahrscheinlichkeiten.
Aufbauend auf diese Grundlagen wird die Arbeit [A. Buja, Zeitschrift für Wahrscheinlich-
keitstheorie und Verwandte Gebiete 65 (1984) 367-384] mit Hilfe der noch relativ neuen
Konzepte unscharfer Wahrscheinlichkeiten untersucht. Hierdurch ergibt sich eine Ver-
allgemeinerung von Resultaten aus der Huber-Strassen-Theorie über ungünstigste Paare
bzw. Modelle.
Dabei gewonnene Resultate werden anschließend dazu verwendet, um die für die Theorie
der coherent lower previsions grundlegende Methode der natural extension für die Ver-
wendung bei datenbasierten Entscheidungsproblemen zu rechtfertigen. Es wird mit Hilfe
der Vektorverbandstheorie gezeigt, dass Anwendungen der natural extension in Entschei-
dungsproblemen keinen Einfluss auf die Optimalität von Entscheidungen haben. Ande-
rerseits wird aber auch gezeigt, dass – ganz unabhängig von der Entscheidungstheorie –
die Methode der natural extension ein ernstes Stabilitätsproblem besitzt.
Als statistische Anwendung wird abschließend ein Minimum-Distanz-Schätzer für un-
scharfe Wahrscheinlichkeiten entwickelt und auf dessen asymptotische Eigenschaften un-
tersucht. Basierend auf linearer Programmierung wird ein Algorithmus zur Berechnung
des Schätzers erarbeitet, der inzwischen in der Programmiersprache R implementiert und
als R-Paket “imprProbEst” frei verfügbar ist. Die Anwendbarkeit des Schätzers (auch bei
großen Stichprobenumfängen) wird in einer Simulationsstudie demonstriert.
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Chapter 1

Introduction

Every day life permanently forces to make decisions. Though most of these decisions
are made without deep and sophisticated considerations (and especially not based on ad-
vanced mathematical evaluations), there are many situations where such simple decision
making is not possible or advisable. If the consequences of decisions are certain, decision
making is no problem even in complex situations. However, consequences usually hap-
pen to be uncertain and, therefore, the wish to be able to make good decisions in such
situations gave rise to the development of a theory about “how to make good decisions”
– called decision theory. Such a theory is essential today the more so as modern civiliza-
tion leads to increasing complexity in many fields where single decision makers cannot
have enough overview over all possibilities, chances and risks in order to make good and
traceable decisions. Therefore, decision theory has become a very popular tool for deter-
mining good decisions under uncertainty which has been successfully applied especially
in economics and medical expert systems.

A current example of a challenging issue where decisions have to be made is climate
change. Usually, uncertainties are modeled by probabilities in decision theory but, here,
the uncertainties are much too complex so that precise probabilities cannot be given.
This is because the present state of research is far away from providing sufficient insight
into all relevant facts. The high degree of uncertainty with respect to climate change
is for example demonstrated in Held et al. (2008) which reports on a survey among
some experts. Nevertheless, decisions have to be made now. In such complex situations,
uncertainties cannot be adequately modeled by ordinary precise probabilities since two
different kinds of uncertainty are involved. The first one is the uncertainty about the
outcome of a random event – this can suitably be modeled by usual probabilities. The
second one is the uncertainty about the random process itself – that is, the uncertainty
about the “true” probabilities. This latter kind of uncertainty is often called ambiguity
and has already attracted considerable attention, in particular in artificial intelligence1

and in economics after the publication of the seminal article Ellsberg (1961) (cf. e.g.
Hamouda and Rowley (1997) which contains a large collection of articles influenced by
Ellsberg (1961)). In this article, D. Ellsberg shows in an experiment carried out with
economists that, in case of ambiguity, “reasonable” decision making can be in complete
contradiction to classical decision theory where all uncertainties are modeled by precise
probabilities. This so-called Ellsberg paradox demonstrates that, in particular in decision

1Cf. the proceedings of the annual “Conference on Uncertainty in Artificial Intelligence”, e.g.
McAllester and Myllymäki (2008), see also the Homepage of the “Association for Uncertainty in Ar-
tificial Intelligence (AUAI)” in the Internet: www.auai.org.

1



2 CHAPTER 1. INTRODUCTION

theory, ambiguity plays a constitutive role. Therefore, a formalization of ambiguity is
needed, the more so as ambiguity seems to be rather the rule than the exception in real
decision problems.
Such formalizations have been developed under the name imprecise probabilities. Since
there are several different formalizations of ambiguity, the theory of imprecise probabilities
is rather a collection of different theories than one single theory; the present book is
concerned with two of the most important concepts of imprecise probabilities, namely
coherent lower previsions (Walley, 1991) and interval probabilities (Weichselberger, 2001).
Another important concept is e.g. the Dempster-Shafer theory of belief functions (e.g.
Yager et al. (1994)). 2 The theory of imprecise probabilities states that probabilities can
rarely be specified by precise numbers in real applications. For example, assuming the
standard normal distribution means that the probability of observing a value greater than
1 would exactly be equal to

P
(
(1,∞)

)
= 0.1586553 . . .

Of course, such a precise assumption is unrealistic and it would be much more realistic to
assume that, e.g. the above probability lies somewhere between 0.12 and 0.17:

P
(
(1,∞)

)
= 0.12 ≤ P

(
(1,∞)

)
≤ 0.17 = P

(
(1,∞)

)
That is, only lower and upper bounds are given instead of precise probabilities. Such
a generalization of ordinary probability theory, in fact, offers a suitable formalization
of complex uncertainties where ambiguity is involved: Uncertainty in form of random
processes is modeled by the precise probabilities which are in accordance with the lower
and upper bounds; uncertainty in form of ambiguity is modeled by the bandwidth of
possible probabilities which are in accordance with the lower and upper bounds – the larger
the bandwidth is, the greater ambiguity is.3 Accordingly, Weichselberger and Augustin
(1998) shows that the Ellsberg paradox can be solved if all uncertainties are modeled by
imprecise probabilities.

Concepts of imprecise probabilities have already been used in many decision theoretic
investigations. For example, a classical text in mathematical economics is Gilboa and
Schmeidler (1989) and there are also a number of recent articles in mathematical finance
where imprecise probabilities (and equivalent concepts) are applied in a decision theoretic
setup; confer e.g. Schied (2006), Maccheroni et al. (2006) and Föllmer et al. (2007) where
the latter article provides an overview including many references.4 5 In the above men-
tioned example concerning climate change, imprecise probabilities are used for decision
theoretic evaluations e.g. by Kriegler (2005) and Hall et al. (2007). The topic of climate
change has also been used in an experiment concerning psychological aspects of decision
making with imprecise probabilities; see Budescu et al. (2008).

2The theory of fuzzy sets (e.g. Zadeh and Kacprzik (1992)) is also thematically related to the theory
of imprecise probabilities.

3Complete ignorance, for example, can be modeled by the bounds

P (A) = 0 and P (A) = 1

4Ambiguity is often associated with the term “Knightian Uncertainty” in economics.
5The concept of imprecise probabilities due to Walley (1991) is also mathematically equivalent to the

systematic approach to risk measures in mathematical finance provided by the influential article Artzner
et al. (1999); cf. Vigic (2008).
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Most parts of this book use the concept of imprecise probabilities due to Walley (1991)
which is called “coherent lower prevision” 6. A general article about decision making with
coherent lower previsions is de Cooman and Walley (2002). Different optimality criteria
are discussed by Schervish et al. (2003) and Troffaes (2007) in this setup – choosing a
suitable optimality criterion is fundamental for the whole theory because this determines
the meaning of the notions “good decision” and “optimal decision”. Algorithms for the
calculation of optimal decisions are given by Kikuti et al. (2005) and Utkin and Augustin
(2005).
A serious limitation of the present state of research is that most investigations in this
setup are only concerned with data-free decision problems while, in most real decision
problems, decision making can be based on data. For example, a company which has to
decide about a certain investment can look at suitable economic indicators such as stock
market prices or retail sales. In the classical setup where all kinds of uncertainties are
tried to be modeled by precise probabilities, investigations of decision problems which are
explicitly data-based are not necessary because the main theorem of Bayesian decision
theory (cf. (Berger, 1985, § 4.4.1)) states that every data-based decision problem can be
solved by solving a corresponding data-free decision problem. However, Augustin (2003)
shows that an analog statement is not true in case of imprecise probabilities. Therefore,
data-based decision problems have to be considered as a matter of its own when dealing
with imprecise probabilities – at least from a frequentist point of view.7

One of the most important fields of application is statistics where decisions (e.g. rejecting
a hypothesis in hypothesis testing) are always data-based. As described by Wald (1950),
statistics can be formalized as a special case of decision theory and this discovery has led
to an own area of research called statistical decision theory. Accordingly, many books
about mathematical statistics are written in terms of decision theory, for example Berger
(1985), Strasser (1985), Le Cam (1986), Liese and Miescke (2008).

In contrast to most decision theoretic evaluations under imprecise probabilities, the present
book is concerned with decision problems (under imprecise probabilities) which are ex-
plicitly data-based; special interest lies in applications in mathematical statistics. While
the above mentioned elaborated concepts of imprecise probabilities have only recently
been developed, robust statistics already has successfully been dealing with a special case
of ambiguity – namely small (but unknown) deviations from an ideal statistical model –
in statistics for several decades. Usually, a statistician is faced with a set of hypotheses
Θ and he is expected to draw conclusions about the unknown true hypothesis θ0 ∈ Θ . In
particular, this is possible if the statistician knows a family of probability measures

Pθ , θ ∈ Θ

on a sample space (Ξ,B) and if data x1, . . . , xn are available which are distributed accord-
ing to the probability measure Pθ0 . Roughly speaking, the correctness of a hypothesis
θ ∈ Θ is the more plausible the better the observations are in line with Pθ . In spite of the
often arising complexity of uncertainties, assuming that data precisely stem from one of
the following few distributions is extremely popular in statistical evaluations: binomial,
Poisson, uniform, normal, exponential, chi-square, t- and F-distribution. Though the use

6or equivalently “coherent upper prevision”
7According to Augustin (2003), the question if data-based decision problems have to be considered

explicitly picks up an old debate between frequentists and Bayesians: Does the posterior distribution
contain all relevant information after observing the data x?
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of these distributions often seems to be based on tradition, there are also strong objective
reasons for the use of these distributions in many situations. For example, the use of
the normal distribution can often be justified by the central limit theorem. Nevertheless,
it would be a misuse of the central limit theorem to assume that the data exactly stem
from a normal distribution – this theorem only justifies the assumption that the data
approximately stem from a normal distribution. Since models are usually not intended
to exactly reflect the real world, one might argue that the normal distribution serves as
a good approximation of reality and, therefore, leads to approximately correct results.
However, it has already been known for many decades that this is simply not correct in
general. Imperceptible small deviations from the ideal model (e.g. consisting of normal
distributions) may lead to arbitrarily wrong conclusions; cf. e.g. Tukey (1960), Huber
(1965), (Huber, 1981, § 1.1), (Hampel et al., 1986, § 1.2), (Marazzi, 1993, Introduction),
(Huber, 1997, § 1) and (Kohl, 2005, Introduction).
Therefore, robust statistics aims to develop statistical procedures which are insensitive to
(small) deviations from an ideal model.8 To this end, it is often assumed that the data are
approximately distributed according to an ideal model – the above mentioned parametric
models commonly serve as such ideal models. Accordingly, (Hampel et al., 1986, p. 7)
suggests the following definition of robust statistics:

“Robust statistics as a collection of related theories, is the statistics of ap-
proximate parametric models.”

Though assuming a known ideal parametric model can often be justified e.g. by use of the
central limit, this is not always possible and, then, applying imprecise probabilities may
help because these are intended to deal also with more general kinds of ambiguity.

An important fact about imprecise probabilities is that they can often be interpreted in
various ways; cf. (Walley, 1991, § 2.10) and (Weichselberger, 2001, § 1.4 and § 1.5). Some-
times, the way of interpreting imprecise probabilities affects the definition of concepts
which are generalized from classical probability theory to imprecise probabilities.9 In this
case, the sensitivity analyst’s point of view is adopted so that the evaluations are in ac-
cordance with robust statistics. In short, this means that the observations are assumed to
be distributed according to a precise probability distribution but this precise distribution
is only imprecisely known.10

Since the concepts of imprecise probabilities due to Walley (1991) (coherent upper pre-
visions) and Weichselberger (2001) (F-probabilities) as well are in accordance with this
point of view, both concepts could be applied in the following treatment of decision theory
under imprecise probabilities. Therefore, Chapter 2 takes a closer look on these concepts
and compares them to each other. This comparison is especially concerned with those
properties which are important in decision theoretic evaluations.
In order to do such a comparison, it is necessary to reformulate the definition and some
basic properties of coherent upper previsions in terms of sample spaces, measurable func-
tions and (finitely additive) probability measures since Walley (1991) does hardly use
these terms but is written in terms of gambles, buying prices and previsions. This refor-
mulation also makes it possible to apply, generalize and refer to concepts already used in

8Confer for example the following books about robust statistics: Huber (1981), Hampel et al. (1986),
Rieder (1994), Jurečková and Sen (1996), Müller (1997), Wilcox (1997), Jurečková and Picek (2006) and
Maronna et al. (2006).

9Cf. (Walley, 1991, § 2.10.5).
10Cf. (Walley, 1991, § 2.10.4).
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classical probability theory or statistics. As a link between the two investigated concepts
of imprecise probabilities, a third concept is presented which is called “upper expecta-
tions” and lies between Walley’s and Weichselberger’s concept. These upper expectations
have originally been defined by Buja (1984) within robust statistics and have not been
considered within the theory of imprecise probabilities so far.

Most part of Chapter 2 is concerned with topology. This is because, for the use of imprecise
probabilities in decision theory, it is crucial that they have certain compactness properties.
Compactness enables the application of minimax theorems which are most important in
decision theory and, in particular, in decision theory under imprecise probabilities. In this
way, the results of Section 2.3 and Section 2.4 yields that, with respect to decision theoretic
evaluations, coherent upper previsions have more appropriate topological properties than
upper expectations and F-probabilities. As a consequence of these investigations, the
concept of coherent upper previsions is mostly used throughout this book.
Though coherent upper previsions and upper expectations are indeed different concepts
(upper expectations may be seen as special cases of coherent upper previsions), they
coincide in a very abstract sense: It is shown in Section 2.5 that every coherent upper
prevision can be represented by an upper expectation via a Stone representation. Despite
of the abstractness of this result, there is an important application of such representations
which is successfully used later on in Subsection 3.3.3: In case of coherent upper previsions,
σ-additivity is not necessarily available so that it is often hard or even impossible to
generalize concepts from classical probability theory which rely on σ-additivity. Now, the
above representation offers a canonical way for such definitions because σ-additivity is at
hand for upper expectations.

While Chapter 2 is only concerned with imprecise probabilities, Chapter 3 turns over to
data-based decision theory under coherent upper previsions. After some basic definitions
and a description of the setup in Section 3.2, some more extended decision theoretic con-
cepts are developed in Section 3.3. Most of these concepts are reformulations or extensions
of concepts which have originally been defined by L. Le Cam in case of precise probabil-
ities and have not been used in case of imprecise probabilities before. The definition of
generalized randomizations in Subsection 3.3.1 is most fundamental. These generalized
randomizations serve as a main tool in the present book, and the definitions of the other
extended decision theoretic tools are based on this concept. Generalized randomizations 11

have been defined by L. Le Cam in order to be able to deal with large models which are
not dominated by σ-finite measures 12. Since imprecise probabilities consisting of coherent
upper previsions are, in fact, very large models, the concept of generalized randomizations
proves to be very appropriate when dealing with imprecise probabilities.
Another concept developed in Chapter 3 is “sufficiency”, which is a very important con-
cept in classical statistics and has not been defined in case of imprecise probabilities
before. Since the most common definition of sufficiency is heavily based on conditional
probabilities and the definition of imprecise conditional probabilities is still a matter of re-
search (cf. e.g. de Cooman (2001), Weichselberger and Augustin (2003) and Škulj (2006)),
defining sufficiency in case of imprecise probabilities might have been considered as being
out of the scope of present research. However, there is also an alternate way of defining
sufficiency which essentially goes back to Blackwell (1951) and has been generalized in
Le Cam (1964). This definition is not formulated in terms of conditional probabilities

11also called transitions by L. Le Cam
12that is, if it is not possible to solely work with probability densities
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but in terms of randomizations so that a generalization in case of imprecise probabilities
is possible. The definition of sufficiency for imprecise models given in Subsection 3.3.2 is
an extension of the notion “worst-case sufficiency” defined for upper expectations in Buja
(1984).

As the concepts introduced in Section 3.3 are strongly connected with concepts introduced
by L. Le Cam, Chapter 3 closes with Section 3.4 where the connections to Le Cam’s setup
are explained. On the one hand, Le Cam’s setup is more specific than the setup used in
imprecise probabilities because Le Cam only deals with precise probabilities. On the other
hand, his setup is more general because he does not consider explicitly specified sample
spaces but considers probabilities as elements of certain vector lattices. Furthermore,
Section 3.4 may also serve as an introduction to Le Cam’s abstract setup.

Since decision problems which are explicitly data-based have rarely been considered within
the theory of imprecise probabilities so far, Chapters 2 and 3 have to develop some funda-
mentals and general tools which are intended to provide a base for subsequent theoretical
studies. The remaining chapters of the present book turn over to some investigations in
data-based decision theory under imprecise probabilities which seem to be most urgent:
Firstly, the seminal article Buja (1984) has to be revised within the theory of imprecise
probabilities in Chapter 4 because this early work is concerned with data-based decision
theory under upper expectations and, therefore, is concerned with almost the same setup
than the present book – even though Buja (1984) was published several years before Wal-
ley (1991) and Weichselberger (2001). Secondly, Chapter 5 is about the method of natural
extension. Though this method is fundamental in the theory of imprecise probabilities
due to Walley (1991), its use in data-based decision theory still needs some justification.
Finally, Chapter 6 provides an application in statistical decision theory. There, a min-
imum distance estimator is developed and applied in a simulation study from which it
can be seen that it is, in fact, possible to develop theoretically well-founded procedures
in imprecise probabilities which can be used in applications. This meets objections that,
due to high computational costs, imprecise probabilities could not be used for practical
purposes. As a side-effect, Chapters 4, 5 and 6 demonstrate that the foundations and
concepts developed in Chapters 2 and 3 are expedient for investigations in data-based
decision theory under imprecise probabilities.

The remaining part of this introduction provides a more detailed overview of Chapters 4,
5 and 6:

Like Buja (1984), Chapter 4 is concerned with least favorable models – a topic which has
received much attention in a special case of our setup namely robust hypothesis testing.
Least favorable models are a matter of particular interest because direct solutions of de-
cision problems under imprecise probabilities are quite often computationally intractable
but, in the presence of least favorable models, computationally tractable solutions may
be possible.
Most of the research concerning least favorable models was encourage by the celebrated
article Huber and Strassen (1973). This article deals with hypothesis testing where a
(rather special) upper prevision is tested against another one. There, it is shown that
testing between these imprecise probabilities can be reduced to a testing problem between
certain “least favorable” precise probabilities Q0 and Q1 . The pair (Q0, Q1) is called “least
favorable pair” then. In this way, the computational effort of the original testing problem
can often be reduced substantially. Least favorablility has attracted enormous attention
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after the publication of Huber and Strassen (1973); see e.g. Rieder (1977), Österreicher
(1978) and Hafner (1992); a detailed review of Huber and Strassen (1973) and the work
following Huber and Strassen (1973) is given by Augustin (2002). In quite general data-
based decision theory, where there are n states of nature (instead of two as in hypothesis
testing), Buja (1984) develops the concept of least favorable models which generalizes
the concept of least favorable pairs. There, a necessary and sufficient condition for the
existence of such least favorable models is given. As already mentioned above, imprecise
probabilities are modeled by upper expectations in Buja (1984).
The investigations of Chapter 4 are also necessary because of an erroneous statement in
Buja (1984) which significantly reduces its applicability. This is proven in Subsection
4.1.2 which contains a counterexample and discusses the consequences.

After that, Section 4.2 follows the lines of Buja (1984) but replaces the concept of upper
expectations by the concept of coherent upper previsions. As stated above, the results
of Chapter 2 show that the latter concept is more appropriate in this decision theoretic
setup. Accordingly, it is shown that the same result as in Buja (1984) is possible without
any additional assumption on the involved (coherent) upper previsions. Here, the use of
the extended decision theoretic concepts developed in Section 3.3 is crucial.

Thereafter, Section 4.3 turns over to hypothesis testing as a special case of decision theory.
The existence of least favorable pairs in case of general coherent upper previsions follows
from the previous results and, therefore, we provide an independent proof of an old result
which has already been proven by Baumann (1968) in an equivalent setup.

Though the method of natural extension is one of the “three key ideas” 13 of the whole
theory of imprecise probabilities due to P. Walley, its use still needs some justification
especially for decision theoretic purposes. In particular, using this method raises two
questions which are investigated in Chapter 5 and which have not been considered so far.
In order to get an idea of these questions, note that coherent upper previsions are real
functions P : K → R where K is a set of bounded, measurable functions f : X → R
on a sample space (X ,A) . The method of natural extension makes it possible to always
extend coherent upper previsions on larger domains.

The first question, addressed in Section 5.2, is concerned with extensions from K to the
whole space L∞(X ,A) consisting of all bounded, measurable functions f : X → R .
As stated before, coherent upper previsions should be used instead of precise proba-
bility measures because it is far more realistic to give an upper bound on the previ-
sions/expectations/probabilities than to precisely specify these quantities in applications.
However, the upper prevision P [f ] is again a precise real number and this number P [f ]
will usually not be precisely known in real applications. So, a practitioner will hardly be
able to decide if P is the “correct” upper prevision or if a slightly modified upper prevision
P
′
is the correct one. Therefore, the important question arises what happens by an appli-

cation of the methods of natural extension. Is the natural extension of P
′
still close to the

natural extension of P ? The investigations in Section 5.2 show that, unfortunately, the
answer to this question is not affirmative. Even more, arbitrarily small changes in P can
have arbitrarily large effects on its natural extension in general and, therefore, applying
natural extensions may lead to meaningless results. An example where this happens is
given in Subsection 5.2.1. Fortunately, not all is lost. In Subsection 5.2.2, it is shown
that it can be guaranteed in many situations that small changes in P on K only have

13see (Walley, 1991, p. 120–122)
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small effects on the natural extension. However, these results are not fully satisfactory;
hopefully, these initial investigations serve as a starting point for future research into this
direction.

The second question is concerned with extensions of the sample space (X ,A) to a sample
space (X ,A′) where A′ ⊃ A : The method of natural extension enables to arbitrarily
extend the algebra A of the initial sample space to that algebra which is most convenient.
However, at least in decision theory and, especially in statistics, choosing A or the larger
A′ has a fundamental effect on the evaluations: the choice of the sample space determines
the (randomized) decision functions and, in this way, extending the sample space leads to
a larger set of valid (randomized) decision functions. Therefore, the important question
arises if a (randomized) decision function which is optimal in the set of all (randomized)
decision functions on (X ,A) is still optimal in the larger set of all (randomized) decision
functions on (X ,A′) after natural extension. That is: Does optimality get lost by an
application of natural extension? If the answer was affirmative, one should always choose
the whole power set of X for the sample space – but the power set may be too large to
be handled successfully. Especially in case of X = R, this would be very cumbersome.

Fortunately, such an approach is not necessary because it is proven in Section 5.3 that –
after applying natural extension – there is no (randomized) decision function on (X ,A′)
which is better than the best (randomized) decision function on (X ,A) . The proof is
rather involved and heavily relies on the results of Chapter 3 and Chapter 4.

Chapter 5 closes with Section 5.4 which is concerned with discretizing – a topic which
increasingly attracts attention within the theory of imprecise probabilities; cf. Obermeier
and Augustin (2007) and Troffaes (2008). As an application of the results from Section
5.2 and Section 5.3, it is shown in Section 5.4 that decision problems can approximately
be solved by solving appropriate discretized decision problems.

As stated above, the decision theoretic investigations of the present book are especially
done in view of applications in statistics. Accordingly, the final chapter is devoted to
such an application namely estimating. While hypothesis testing under imprecise prob-
abilities has been extensively studied – especially by T. Augustin in (Augustin, 1998)
and (Augustin, 2002) on base of the Huber-Strassen theory 14, estimating has hardly
been considered explicitly within the theory of coherent upper previsions so far. Chapter
6 develops a minimum distance estimator which is based on the following simple idea:
Analogously to classical statistics, the data x1, . . . , xn are assumed to be independent
identically distributed according to a coherent upper prevision P

′
θ0

where θ0 ∈ Θ is an
unknown parameter which has to be estimated. Then, the data are used to build the
empirical measure

P(n) =
1

n

n∑
i=1

δxi

and the minimum distance estimator is that θ̂ ∈ Θ such that P(n) lies next to P
′
θ̂ .

Due to the present state of research, Chapter 6 cannot be restricted to the sole investi-
gation of the proposed minimum distance estimator but also has to develop some fun-
damentals of (frequentist) estimating under coherent upper previsions at first. This is
necessary the more so as the minimum distance estimator is associated with the empirical

14see also Augustin (2002) for a review of the work following Huber and Strassen (1973)
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process (which needs a somewhat more elaborated setting) and is justified by asymp-
totic arguments (but an elaborated asymptotic theory of imprecise probabilities is still
missing).
These preparations are done in Sections 6.2 and 6.3. In Section 6.4 it is proven that the
distance between the empirical measure and the correct imprecise probability converges
to zero and that the minimum distance estimator is consistent. Next, Section 6.5 is
concerned with the calculation of the estimator. It is shown that the distances can be
approximately calculated by use of the discretization method developed in Section 5.4.
After discretizing, the (approximate) distance between the empirical measure and the
coherent upper prevision can be calculated by solving a linear program. This linear
program only modestly increases with the number of observations so that the minimum
distance estimator can also be calculated for many observations. Finally, the estimator is
applied in three simulation studies which indicate that it can indeed be applied and may
lead to good results in real applications. The estimator has been programmed in R and
is already publicly available as R package “imprProbEst”; cf. Hable (2008a).
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Chapter 2

Topological aspects of imprecise
probabilities

2.1 Introduction

Recently, the Society for Imprecise Probability Theory and Applications (SIPTA) has
changed its name and is now called Society for Imprecise Probability: Theories and Appli-
cations (SIPTA) in order “to emphasize that there are theories of imprecise probability,
rather than a single theory” 1. Indeed, a short glance at de Cooman et al. (2007) shows
that there a even many theories of imprecise probabilities. Two of the most important
ones are the theory of coherent upper previsions (or coherent lower previsions) developed
by P. Walley (see Walley (1991)) and the theory of F-probabilities developed by K. We-
ichselberger (see Weichselberger (2000) and Weichselberger (2001)). A first superficial
reading of Walley (1991) and Weichselberger (2001) gives the impression that both con-
cepts were most different from each other even though they are not. This totally wrong
impression is the unfortunate consequence of the most different presentations used in
these books. While Weichselberger (2001) is written in terms of random variables, prob-
ability measures and expectations (i.e. in terms of classical probability theory), Walley
(1991) is written in terms of gambles, buying prices and previsions. As a consequence,
many statisticians will highly underestimate the importance of Walley (1991) within the
mathematical theory of statistics.

Since most part of the work presented in the following is motivated by applications in
statistics, the presentation is based on concepts which are fundamental in traditional
probability theory – such as sample spaces and probability measures – or which are close
to traditional concepts – such as probability charges. Probability charges are similar to
probability measures, the only difference is that σ-additivity is relaxes to finite additivity
in the definition of probability charges. Accordingly, probability charges are often called
“finitely additive probability measures” (e.g. in Dunford and Schwartz (1958)); the term
“probability charge” originates from Bhaskara Rao and Bhaskara Rao (1983).

The definition of probability charges and some basic facts about them are recalled in
Section 2.2. Next, Section 2.3 essentially recalls the definition of coherent upper previsions
due to P. Walley. However, as mentioned above, the presentation totally differs because,
here, Walley’s definitions and some basic results are reformulated in terms of sample

1(de Cooman et al., 2007, p. xi)

11
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spaces and probability charges2. By doing this, some of the basics results are slightly
generalized.
On the one hand, such a reformulation may increase the accessibility of Walley’s theory
within mathematical statistics – the formulation in terms of gambles and buying prices
seems to significantly handicap a wider acceptance of the whole theory. On the other
hand, this makes a comparision with Weichselberger’s theory more straightforward.
Section 2.3 investigates the concept of “upper expectations” which has been defined by
Buja (1984) within robust statistics. Though this relatively old concept has been disre-
garded within the theory of imprecise probabilities so far, it may play an interesting part as
a link because it lies somewhere between coherent upper previsions and F-probabilities.
By use of this intermediate step, a comparison between Walley’s and Weichselberger’s
concepts gets more easier: The only difference between coherent upper previsions and up-
per expectations is the fact that the latter concept insists on σ-additivity while Walley’s
concept of coherent upper previsions dispenses with σ-additivity. So, in a sense, upper ex-
pectations turn out to be a special case of coherent upper prevision. Next, F-probabilities
can be defined as special upper expectations.
Most part of Section 2.3 is concerned with topological properties of upper expectations.
This is because many theoretical evaluations in decision theory make use of minimax
theorems and these minimax theorems heavily rely on topology. With this objective in
mind, it follows from the investigations of Section 2.3 that the topological properties
of coherent upper previsions are more convenient than the ones of upper expectations.
This is the reason why the remaining parts of this book mainly deal with the concept of
coherent upper previsions.
Though there are some differences between coherent upper prevision and upper expecta-
tions, the results from Section 2.5 shows that this is no longer true from an abstract point
of view. In Section 2.5, it is proven that every coherent upper prevision can be represented
by an upper expectation by use of the Stone representation theorem. Therefore, both con-
cepts may be considered as equivalent. This is not only theoretically interesting but also
beneficial later on: By use of this representation, concepts which rely on σ-additivity can
also be defined for coherent upper prevision in a canonical way even though σ-additivity
is usually not available in case of coherent upper previsions; see Subsection 3.3.3.

2.2 Precise probabilities

Before different concepts of imprecise probabilities are introduced, some notation has to
be fixed and some facts about precise probabilities have to be recalled:

2.2.1 Probability charges

Let Ω be a set and A an algebra on Ω.

Definition 2.1 A bounded charge on (Ω,A) is a map

µ : A → R

such that

µ(∅) = 0 (2.1)

2Reformulations in terms of probability charges have also been done by other authors, e.g. Troffaes
(2008).
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−∞ < µ(A) < ∞ ∀A ∈ A (2.2)

and

A1, . . . , An ∈ A, Ai ∩ Aj = ∅ (i 6= j) ⇒ µ
( n⋃
i=1

Ai

)
=

n∑
i=1

µ(An) (2.3)

Bounded charges are also called finitely additive, bounded, signed measures. The term
“charge” or “bounded charge” originates from Bhaskara Rao and Bhaskara Rao (1983).
According to (Dunford and Schwartz, 1958, p. 240), the set of all bounded charges is
denoted by ba(Ω,A).

Definition 2.2 A probability charge on (Ω,A) is a bounded charge P ∈ ba(Ω,A) such
that

P (Ω) = 1 (2.4)

and

0 ≤ P (A) ∀A ∈ A (2.5)

Probability charges are also called finitely additive probability measures. The term “prob-
ability charge” originates from Bhaskara Rao and Bhaskara Rao (1983) again.

In the following, ba(Ω,A) is provided with some additional structures – namely with a
norm which makes it a Banach space, with an ordering which makes it an L-space and
with a weak topology. To this end, ba(Ω,A) is identified with a suitable dual space at
first.

IA denotes the indicator function of A for every A ⊂ Ω. Functions s : Ω→ R of form

s : ω →
m∑
k=1

akIAk(ω) , a1, . . . , am ∈ R , A1, . . . , Am ∈ A , m ∈ N

are called A - simple functions.
Let L∞(Ω) denote the vector space of all functions f : Ω→ R such that supω∈Ω |f(ω)| <
∞ . Provided with the norm

‖f‖ = sup
ω∈Ω
|f(ω)|

L∞(Ω) is a Banach space, which contains every A - simple function s. Let L∞(Ω,A)
denote the norm-closure of the set of all A - simple functions in L∞(Ω)

L∞(Ω,A) = c`‖·‖
(
{s : Ω→ R | s is an A - simple function}

)
(2.6)

Hence, L∞(Ω,A) is also a Banach space. If A is even a σ-algebra, this definition of
L∞(Ω,A) coincides with the more common definition in case of σ-algebras; cf. (Dunford
and Schwartz, 1958, p. 240):

Lemma 2.3 If A is a σ-algebra on Ω, then

L∞(Ω,A) =
{
f : Ω→ R

∣∣ f is bounded and A - measurable
}
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Note that L∞(Ω,A) = L∞(Ω) if A is the power set of Ω .

For every µ ∈ ba(Ω,A) and every f ∈ L∞(Ω,A), the integral
∫
f dµ is defined in the

following way (cf. e.g. (Dunford and Schwartz, 1958, § III.2)):∫
s dµ =

m∑
k=1

akµ(Ak) (2.7)

for every A - simple function s =
∑m

k=1 akIAk .∫
f dµ = lim

n

∫
sn dµ (2.8)

where (sn)n∈N is a sequence of A - simple functions such that ‖sn − f‖ −−−→
n→∞

0 .

The following lemma says that the bounded charges µ ∈ ba(Ω,A) can be identified with
the continuous linear functionals on L∞(Ω,A).

Theorem 2.4 For every µ ∈ ba(Ω,A),

L∞(Ω,A) → R , f 7→
∫
f dµ

is a continuous linear functionals on L∞(Ω,A).
Conversely, for every continuous linear functional

T : L∞(Ω,A) → R , f 7→ T (f)

on L∞(Ω,A), there is a unique µ ∈ ba(Ω,A) such that

T (f) =

∫
f dµ f ∈ L∞(Ω,A)

That is, ba(Ω,A) is the dual space of L∞(Ω,A).
Confer (Dunford and Schwartz, 1958, Theorem IV.5.1).

Notation 2.5 Since the elements of ba(Ω,A) are rather considered as linear functionals
on L∞(Ω,A) than as set functions on A, the notation

µ[f ] =

∫
f dµ , µ ∈ ba(Ω,A) , f ∈ L∞(Ω,A)

is used in the following.

Norm:

As dual space of the Banach space L∞(Ω,A), ba(Ω,A) is again a Banach space with norm

‖µ‖ = sup
{
µ[f ]

∣∣ ‖f‖∞ ≤ 1
}

This norm coincides with the total variation norm on ba(Ω,A); cf. (Dunford and Schwartz,
1958, Theorem IV.5.1).

Ordering:

As dual space of L∞(Ω,A), ba(Ω,A) has a natural partial ordering ≤

µ1 ≤ µ2 ⇔ µ1[f ] ≤ µ2[f ] ∀ f ≥ 0 , f ∈ L∞(Ω,A) (2.9)

As usual, µ1 ≤ µ2 is also denoted by µ2 ≥ µ1 . Note, that it is only required that
µ1[f ] ≤ µ2[f ] for every non-negative function f . In case of µ1[f ] ≤ µ2[f ] for every
function f , linearity implies µ1 = µ2 .



2.2. PRECISE PROBABILITIES 15

Theorem 2.6 ba(Ω,A) is an L-space.
(Cf. (Bhaskara Rao and Bhaskara Rao, 1983, Theorem 2.2.1).)

Especially, ba(Ω,A) is a Dedekind complete Banach lattice. All these basic notions from
lattice theory are collocated in Subsection 8.1.
The positive elements of ba(Ω,A) are the elements µ ∈ ba(Ω,A) such that µ ≥ 0. It is
easy to see that

‖µ‖ = µ
[
IΩ

]
∀ µ ≥ 0 , µ ∈ ba(Ω,A) (2.10)

Furthermore,

µ ≥ 0 ⇔ µ(A) ≥ 0 ∀A ∈ A (2.11)

That is, the usual order on bounded charges or bounded, signed measures coincides with
the order defined by (2.9).3 Therefore, the probability charges are precisely the normed
(‖µ‖ = 1), positive elements of the L-space ba(Ω,A) . Accordingly, the set of all proba-
bility charges is denoted by ba+

1 (Ω,A) .

Furthermore, the probability charges are precisely the precise coherent previsions on
L∞(Ω,A) – a term which is common in the theory of imprecise previsions according
to Walley (1991).

Weak∗-topology:

ba(Ω,A) can be endowed with the weak∗-topology. This is the weakest topology such
that, for every f ∈ L∞(Ω,A),

Λf : ba(Ω,A) → R , µ 7→ Λf (µ) = µ[f ]

is continuous. Some facts about this topology are collocated in the Appendix.
Later on, additional topologies of the same kind will be introduced. To unify notation, the
weak∗-topology is called L∞(Ω,A) - topology on ba(Ω,A) – as in (Dunford and Schwartz,
1958, p. 420).
Now, ba(Ω,A) already has two different topologies, namely the norm-topology and the
(weaker) L∞(Ω,A) - topology. To make clear what topology is used, topological terms
such as compact, open, closure etc. usually are denoted by norm-compact, L∞(Ω,A) -
open, norm-closure etc.

The following theorem is one reason why the L∞(Ω,A) - topology is very useful.

Theorem 2.7 The set of all probability charges ba+
1 (Ω,A) is L∞(Ω,A) - compact in

ba(Ω,A) .

Proof : ba(Ω,A) is the dual space of L∞(Ω,A) (cf. Theorem 2.4). Hence, the closed
unit sphere {µ ∈ ba(Ω,A) | ‖µ‖ ≤ 1} is L∞(Ω,A) - compact in ba(Ω,A) according to
(Dunford and Schwartz, 1958, Theorem V.4.2).

Because of ba+
1 (Ω,A) ⊂ ba(Ω,A) | ‖µ‖ ≤ 1} , it is enough to show that ba+

1 (Ω,A) is
L∞(Ω,A) - closed. The latter statement is an easy consequence of Theorem 8.24 b). 2

3(2.11) may be proven in the following way: Let (sn)n∈N be a sequence of simple functions such that
‖sn − h‖ → 0 for any h ≥ 0. Then, ŝn(ω) = max{sn(ω) , 0} defines a sequence of non-negative functions
such that ‖ŝn − h‖ → 0 and µ[h] = limn µ[ŝn] ≥ 0 .
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2.2.2 Probability measures

Let Ω be a set and A a σ-algebra on Ω.

Definition 2.8 A bounded, signed measure on (Ω,A) is a map

µ : A → R

such that

µ(∅) = 0 (2.12)

−∞ < µ(A) < ∞ ∀A ∈ A (2.13)

and
(
An
)
n∈N ⊂ A, An ∩ Am = ∅ (n 6= m) implies

µ
( ⋃
n∈N

An

)
=
∞∑
n=1

µ(An) (2.14)

According to (Dunford and Schwartz, 1958, p. 240), the set of all bounded, signed mea-
sures is denoted by ca(Ω,A). Property (2.14) is called σ-additivity. This property is
the only difference to the definition of bounded charges, where σ-additivity is relaxed to
finite additivity (2.3). Since

ca(Ω,A) ⊂ ba(Ω,A) ,

ca(Ω,A) inherits the definition of the integral µ[f ] =
∫
f dµ, the norm ‖ · ‖ and the

ordering ≤ from ba(Ω,A) .

Theorem 2.9 ca(Ω,A) is a band in the L-space ba(Ω,A). Hence, ca(Ω,A) is itself an
L-space.
(Cf. (Bhaskara Rao and Bhaskara Rao, 1983, Theorem 2.4.2).)

Definition 2.10 A probability measure on (Ω,A) is a bounded, signed measure P ∈
ba(Ω,A) such that

P (Ω) = 1 (2.15)

and

0 ≤ P (A) ∀A ∈ A (2.16)

The probability measures are precisely the normed (‖µ‖ = 1), positive elements of the
L-space ca(Ω,A) . Therefore, the set of all probability measures is denoted by ca+

1 (Ω,A) .

Furthermore, the probability measures are precisely the precise coherent previsions P :
L∞(Ω,A)→ R which are σ-smooth:

fn(ω) ↘ f(ω) ∀ω ∈ Ω ⇒ lim
n→∞

P [fn] = P [f ]

Theorem 2.11

a) ca(Ω,A) is L∞(Ω,A) - dense in ba(Ω,A) .
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b) ba+
1 (Ω,A) is the L∞(Ω,A) - closure of ca+

1 (Ω,A) in ba(Ω,A) .

Proof : Let c` denote the L∞(Ω,A) - closure in ba(Ω,A). Then, convexity of ca(Ω,A)
and ca+

1 (Ω,A) imply that

c`
(
ca(Ω,A)

)
and c`

(
ca+

1 (Ω,A)
)

are the L∞(Ω,A) - closed convex hulls respectively (cf. (Dunford and Schwartz, 1958,
Theorem V.2.1)).

a) Note, that supµ∈ca(Ω,A) µ[f ] = supµ∈ba(Ω,A) µ[f ] for every f ∈ L∞(Ω,A). Hence, part
a) follows from Theorem 8.26 where V = ca(Ω,A) and M = ba(Ω,A) .

b) Put P [f ] := supP∈ca+
1 (Ω,A) P [f ] = supω∈Ω f(ω) for every f ∈ L∞(Ω,A) . Then, it is

easy to see that{
µ ∈ ba(Ω,A)

∣∣ µ[f ] ≤ P [f ] ∀ f ∈ L∞(Ω,A)
}

= ba+
1 (Ω,A)

and b) follows from Theorem 8.26 where V = ca+
1 (Ω,A) and M = ba(Ω,A) 2

2.2.3 σ-additivity

Some readers may feel that allowing probabilities not to be σ-additive is illegal and that
one should only use probability measures and leave out all other probability charges.
Indeed, the use of probability charges which are not σ-additive is justified by Kolmogorov’s
Grundbegriffe der Wahrscheinlichkeitsrechnung (1933), p. 14:

“For infinite fields, on the other hand, the Axiom of Continuity4, VI, proved
to be independent of Axioms I - V. Since the new axiom is essential for infinite
fields of probability only, it is almost impossible to elucidate its empirical
meaning, as has been done, for example, in the case of Axioms I - V in § 2
of the first chapter. For, in describing any observable random process we can
obtain only finite fields of probability. Infinite fields of probability occur only
as idealized models of real random processes. We limit ourselves, arbitrarily,
to only those models which satisfy Axiom VI 5. This limitation has been found
expedient in researches of the most diverse sort.”6

Consequentially, Le Cam (1986) argues on p. 2:

“However, we need to point out that, when A is not finite, the tradi-
tional description makes use of certain mathematical constructs which have
been introduced for convenience in other contexts. Since there the matter of
mathematical convenience is the relevant one, one may feel free to vary the
constructs as long as their relations to the real world are not affected.”

The use of σ-additive probability charges (i.e. probability measures) is appropriate in
many situations. The main disadvantage of dispensing with σ-additivity is the fact that
the usual Radon-Nikodym theorem gets lost then (see (Bhaskara Rao and Bhaskara Rao,
1983, § 6.3)) so that we are not able to work with densities. However, in case of imprecise
probabilities, it is nevertheless often advantageous to dispense with σ-aditivity as will be
seen later on, in particular in Section 2.4 and Chapter 4.

4together with finite additivity, Axiom VI corresponds to σ-additivity
5together with finite additivity, Axiom VI corresponds to σ-additivity
6The English translation of the quote is taken from (Kolmogorov, 1956, p. 15).
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2.3 Coherent upper previsions

This section recalls the definitions of coherent upper previsions (and coherent lower pre-
visions) according to P. Walley although the presentation is quite different to that one in
Walley (1991) and some basic results are slightly generalized.

Let Ω be a set and A an algebra on Ω. Let K be any subset of L∞(Ω,A) .

Definition 2.12 Let P be a map

K → R , f 7→ P [f ]

and put M :=
{
P ∈ ba+

1 (Ω,A)
∣∣ P [f ] ≤ P [f ] ∀ f ∈ K

}
. P is called coherent upper

prevision on K if

• M 6= ∅

• sup
P∈M

P [f ] = P [f ]

M is called the credal set of P (on (Ω,A)).
If P is a coherent upper prevision on K,

P : −K → R , f 7→ −P [−f ]

is called coherent lower prevision on −K .

The following proposition shows that this definition does not depend on A and describes
how a coherent upper prevision can be extended to a coherent upper prevision on any
set K′ such that K ⊂ K′ ⊂ L∞(Ω). As a consequence, it can always be assumed that
coherent upper previsions are defined on L∞(Ω,A) or even on L∞(Ω).

Proposition 2.13 Let A′ be another algebra on Ω such that A ⊂ A′. Let P : K → R be
a coherent upper prevision on K and let M be its credal set on (Ω,A). Furthermore, let
K′ be a set of functions such that K ⊂ K′ ⊂ L∞(Ω). Put

M′ :=
{
P ′ ∈ ba+

1 (Ω,A′)
∣∣ P ′[f ′] ≤ P [f ′] ∀ f ′ ∈ K

}
Then,

• M′ 6= ∅

• sup
P ′∈M′

P ′[f ] = P [f ] ∀ f ∈ K

M′ is called the credal set of P on (Ω,A′). Furthermore,

P
′
[f ′] = sup

P ′∈M′
P ′[f ′] , f ′ ∈ K′

defines a coherent upper prevision on K′ which is an extension of P . M′ is the credal set
of P

′
on (Ω,A′).
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Proof : S : L∞(Ω,A′) → R defined by S(f ′) = supω∈Ω f
′(ω) is a sublinear functional.

Take any P ∈ M. Then, P [f ] ≤ S(f) ∀ f ∈ L∞(Ω,A) and, according to (Dunford
and Schwartz, 1958, Theorem II.3.10), P can be extended to a linear functional P ′ on
L∞(Ω,A′) such that

P ′[f ′] ≤ S(f ′) = sup
ω∈Ω

f ′(ω) ∀ f ′ ∈ L∞(Ω,A′)

|P ′[f ′]| ≤ ‖f ′‖ implies that P ′ is a (norm-)continuous linear functional and, therefore,
P ∈ ba(Ω,A′). From

P ′[f ′] = −P ′[−f ′] ≥ −S(−f ′) ≥ 0 ∀ f ′ ≥ 0 , f ′ ∈ L∞(Ω,A′)

and
1 = − sup

ω∈Ω

(
− IΩ(ω)

)
≤ −P ′

[
− IΩ

]
= P ′

[
IΩ

]
≤ sup

ω∈Ω
IΩ(ω) = 1

it follows that P ′ ∈ ba+
1 (Ω,A′) .

Hence, M′ 6= ∅ and sup
P ′∈M′

P ′[f ] = P [f ] ∀ f ∈ K .

The remaining statements of the proposition follow directly from the definitions. 2

Especially, Proposition 2.13 shows that the definitions of coherent upper/lower previsions
are only reformulations of the original definitions (Walley, 1991, § 2.5.1); cf. also (Walley,
1991, § 3.3.3). The extension procedure described in Proposition 2.13 is called natural
extension in (Walley, 1991, § 3).

It does not make any essential difference if coherent upper or coherent lower previsions are
considered. In this book, most of the results are formulated in terms of coherent upper
previsions because the main purpose are decision theoretic investigations with applications
in statistics. Here, the use of loss functions leads to upper risks which are defined via
coherent upper previsions. If utility functions were considered instead (which is quite
unusual in statistics), the results would accordingly have to be formulated in terms of
coherent lower previsions.

The following well-known theorem (cf. (Walley, 1991, Theorem 2.5.5)) provides a charac-
terization of coherent upper previsions.

Theorem 2.14 P is a coherent upper prevision on L∞(Ω,A) if and only if

• P [f ] ≤ sup
ω∈Ω

f(ω) ∀ f ∈ L∞(Ω,A)

• P [af ] = aP [f ] ∀ f ∈ L∞(Ω,A) , ∀ a ∈ (0,∞) and

• P [f1 + f2] ≤ P [f1] + P [f2] ∀ f1, f2 ∈ L∞(Ω,A)

Proposition 2.15 describes a common way for generating coherent upper previsions:

Proposition 2.15 Let V ⊂ ba+
1 (Ω,A) be any non-empty subset of probability charges

on (Ω,A). Then,
P [f ] = sup

P∈V
P [f ] , f ∈ L∞(Ω,A)

defines a coherent upper prevision on L∞(Ω,A) and the convex L∞(Ω,A) - closure of V

M = c`co
(
V
)

is the credal set of P on (Ω,A).
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Proof : It follows directly from the definitions that P is a coherent upper prevision. Note
that V ⊂ ba+

1 (Ω,A) and ba+
1 (Ω,A) is a L∞(Ω,A) - closed convex subset of ba(Ω,A) (cf.

Theorem 2.7). Therefore,

c`co
(
V
)
⊂ ba+

1 (Ω,A) (2.17)

Let M be the credal set of P . Then, Theorem 8.26 implies

M =
{
P ∈ ba(Ω,A)

∣∣∣ P [f ] ≤ P [f ] ∀ f ∈ L∞(Ω,A)
}
∩ ba+

1 (Ω,A) =

= c`co
(
V
)
∩ ba+

1 (Ω,A)
(2.17)
= c`co

(
V
)

2

Whereas Theorem 2.14 characterizes coherent upper previsions, the following corollary
characterizes the credal sets. The corollary is a slight generalization of (Walley, 1991,
Theorem 3.6.1), it says that there is a one-to-one correspondence between coherent upper
previsions and L∞(Ω,A) - compact convex subsets of ba+

1 (Ω,A).

Corollary 2.16 A subset M ⊂ ba+
1 (Ω,A) is a credal set of a coherent upper prevision

if and only if it is L∞(Ω,A) - compact and convex.

Proof : Let M be L∞(Ω,A) - compact and convex. Put V = M and define a coherent
upper prevision P as in Proposition 2.15. Then, Proposition 2.15 implies that M =
c`co

(
M
)

is the credal set of P .

Conversely, let M be the credal set of some coherent upper prevision P . Put V = M;
the coherent upper prevision defined by V = M as in Proposition 2.15 is again P . By
assumption, M is the credal set of P so that Proposition 2.15 implies

M = c`co
(
M
)

Hence, M is L∞(Ω,A) - closed and convex. Since M ⊂ ba+
1 (Ω,A) and ba+

1 (Ω,A) is
L∞(Ω,A) - compact (cf. Theorem 2.7), it follows that M is L∞(Ω,A) - compact, too. 2

2.4 Upper/lower expectations and F-probabilities

2.4.1 Definitions and basic properties

Within the concept of coherent upper previsions developed in Walley (1991), σ-additi-
vity is mainly ignored. However, there is also the concept of upper expectations and
F-probabilities developed in Buja (1984) and Weichselberger (2001) which insists on σ-
additivity. Essentially, this means that only those coherent upper previsions P are con-
sidered which have a representation by a set of probability measures:

P [f ] = sup
P∈P

P [f ] ∀ f ∈ L∞(Ω,A)

where P ⊂ ca+
1 (Ω,A) .

Let Ω be a set and A a σ-algebra on Ω. Let K be any subset of L∞(Ω,A) .
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Definition 2.17 Let P be a map

P : K → R , f 7→ P [f ]

and put P :=
{
P ∈ ca+

1 (Ω,A)
∣∣ P [f ] ≤ P [f ] ∀ f ∈ K

}
. P is called upper expectation

on K if

• P 6= ∅

• sup
P∈P

P [f ] = P [f ]

P is called the structure of P .
If P is an upper expectation on K,

P : −K → R , f 7→ −P [−f ]

is called lower expectation on −K .

Definition 2.18 Let P be an upper expectation on K. If

K ⊂
{
IA
∣∣ A ∈ A}

P is also called upper F-probability and P is also called lower F-probability .

The definition of upper expectations originates from Buja (1984), the definition of F-
probabilities originates from Weichselberger (2000) and Weichselberger (2001) though
Weichselberger uses the terms “lower/upper interval-limit of the F-probability” instead
of “lower/upper F-Probability”. The term “structure” also stems from Weichselberger
(2000); originally, structures are defined in case of F-probabilities only. In Definition
2.17, the term “structure” is adopted for every upper expectation.

The following proposition describes how an upper expectation can be extended to an
upper expectation on L∞(Ω,A). As a consequence, it can always be assumed that upper
expectations are defined on the whole space L∞(Ω,A).

Proposition 2.19 Let P : K → R be an upper expectation on K ⊂ L∞(Ω,A) and let P
be its structure on (Ω,A). Then, P can be extended to an upper expectation on L∞(Ω,A)
by

P [f ] := sup
P∈P

P [f ] , f ∈ L∞(Ω,A)

P is also the structure of the extended upper expectation..

Proof : This is a direct consequence of the definitions. 2

Remark 2.20 Proposition 2.19 is considerably weaker than its analog in case of coher-
ent upper previsions (Proposition 2.13). This is due to insistence on σ-additivity for
the elements of the structure: The proof of Proposition 2.13 (in case of coherent upper
previsions) is based on the fact that every probability charge on A can be extended to a
probability charge on any A′ ⊃ A according to the Hahn-Banach theorem (e.g. (Dunford
and Schwartz, 1958, Theorem II.3.10)). However, there is no analog of the Hahn-Banach
theorem if we insist on σ-additivity. It is possible that a probability measure on A can not
be extended to a probability measure on some σ-algebra A′ ⊃ A. Such problems does not
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only arise in artificial cases. For example, let P be the upper prevision whose structure
only consists of the standard normal distribution P := N (0, 1). That is P = P := N (0, 1),
A = B. Assume that P admits an extension to an upper expectation on the power set 2R of
R. Then, the structure of the extended upper expectation consists of probability measures
on 2R which are extensions of P = N (0, 1). Let P ′ be such an extension of P = N (0, 1) ,
f be the density of N (0, 1) with respect to the Lebesgue measure λ and put g := 1/f .
Then, λ′ defined by λ′(A) =

∫
A
g dP ′ ∀A ∈ 2R is an extension of λ to 2R. However, it

is known that the existence of an extension λ′ neither can be proven nor disproven. That
is, the only way to get an extension of P = N (0, 1) on 2R is to introduce the existence of
such an extension as a new axiom in mathematics; confer (Hoffmann-Jørgensen, 1994b,
p. 513).

The following theorem states that every upper expectation is a coherent upper prevision.
Of course, the corresponding credal set does, in general, not coincide with the structure
but there is a strong relationship between these sets: the corresponding credal set is the
L∞(Ω,A) - closure of the structure.
However, credal set and structure do coincide sometimes – this instance characterizes an
important special case (cf. Theorem 2.27).

Proposition 2.21

a) Let P be an upper expectation on K ⊂ L∞(Ω,A). Then, P is also a coherent upper
prevision on K.

b) Let P be an upper expectation on L∞(Ω,A) with structure P. Then, P is also a
coherent upper prevision on L∞(Ω,A) and its credal set M (on (Ω,A)) is equal to
the L∞(Ω,A) - closure of the structure P

M = c`
(
P
)

In particular, P is relatively compact with respect to the L∞(Ω,A) - topology on
ba(Ω,A) .

Proof :

a) Let P be the structure of the upper expectation P and put

M :=
{
P ∈ ba+

1 (Ω,A)
∣∣ P [f ] ≤ P [f ] ∀ f ∈ K

}
Then, P ⊂ M and, therefore, it follows that M 6= ∅ and

sup
P∈M

P [f ] = P [f ] ∀ f ∈ K

Hence, P is a coherent upper prevision.

b) Convexity of P implies that c`(P) is the convex L∞(Ω,A) - closure of P ; cf. (Dunford
and Schwartz, 1958, Theorem V.2.1). Then, statement b) follows from Proposition
2.15 where V := P .
Furthermore, this implies that P is relatively compact in the L∞(Ω,A) - topology; cf.
Corollary 2.16.

2
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Remark 2.22 Assumption K = L∞(Ω,A) is crucial in Proposition 2.21 b). The mathe-
matical reason is as follows: Let P be an upper expectation on K ⊂ L∞(Ω,A). Then, the
natural extension (Proposition 2.13) for coherent upper previsions and the extension pro-
cedure for upper expectations (according to Proposition 2.19), in general, do not coincide
on L∞(Ω,A) because the structure P and the credal set M usually do not coincide.

Since the L∞(Ω,A) - topology on ba(Ω,A) is useful in case of coherent upper previsions,
it is suggesting to use the L∞(Ω,A) - topology on ca(Ω,A) for upper expectations. This
is the weakest topology on ca(Ω,A) such that, for every f ∈ L∞(Ω,A),

Λf : ca(Ω,A) → R , µ 7→ Λf (µ) = µ[f ]

is continuous. Note, that this topology coincides with the subspace topology on ca(Ω,A)
generated by the L∞(Ω,A) - topology on ba(Ω,A); cf. Lemma 8.25.

Proposition 2.23 describes a common way for generating upper expectations – it is the
analog of Proposition 2.15.

Proposition 2.23 Let V ⊂ ca+
1 (Ω,A) be any subset of probability measures on (Ω,A).

Then,
P [f ] = sup

P∈V
P [f ] , f ∈ L∞(Ω,A)

defines an upper expectation on L∞(Ω,A). The structure P of P is given by the convex
closure of V in ca(Ω,A)

P = c`co
(
V
)

where the term “closure” refers to the L∞(Ω,A) - topology on ca(Ω,A) .
V is called prestructure of the upper expectation P .

Proof : It is a direct consequence of the definitions that P is an upper expectation on
L∞(Ω,A).

All topological terms within this proof refer to the L∞(Ω,A) - topology on ca(Ω,A). It is
an easy consequence of Theorem 8.24 b) that ca+

1 (Ω,A) is closed in ca(Ω,A). Therefore,
convexity of ca+

1 (Ω,A) implies

c`co
(
V
)
⊂ ca+

1 (Ω,A) (2.18)

Let P be the credal set of P . Then, Theorem 8.26 implies

P =
{
P ∈ ca(Ω,A)

∣∣∣ P [f ] ≤ P [f ] ∀ f ∈ L∞(Ω,A)
}
∩ ca+

1 (Ω,A) =

= c`co
(
V
)
∩ ca+

1 (Ω,A)
(2.18)
= c`co

(
V
)

2

The term “prestructure” was originally defined in (Weichselberger, 2000, Defnition 2.5)
in case of F-probabilities. Note that there is an important difference between the theory
of F-probabilities and the theory of upper expectations:

Caution: According to Proposition 2.23, a set V ⊂ ca+
1 (Ω,A) generates an upper ex-

pectation on L∞(Ω,A). Analogously, V may also generate an upper expectation PK on
some

K ⊂ L∞(Ω,A)
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by

PK[f ] = sup
P∈V

P [f ] , f ∈ K

Of course, we have

PK[f ] = P [f ] ∀ f ∈ K

However, if we extend PK on L∞(Ω,A) according to Proposition 2.19 (the extension is
again denoted by PK), we usually have

PK[f ] 6= P [f ] for f 6∈ K

because the structures of P and PK usually do not coincide.

Especially, this applies to F-probabilities, where K = {IA | A ∈ A}. As a consequence, the
structure of the F-probability PK generated by V does not coincide with the structure of
the upper expectation P generated by V on L∞(Ω,A) in general!

The following corollary characterizes structures of upper expectations and establishes
a one-to-one correspondence between upper expectations and L∞(Ω,A) - closed convex
subsets of ca(Ω,A).

Corollary 2.24 A subset P ⊂ ca+
1 (Ω,A) is a structure of an upper expectation if and

only if it is L∞(Ω,A) - closed in ca(Ω,A) and convex.

Proof : All topological terms within this proof are with respect to the L∞(Ω,A) - topology
on ca(Ω,A).

Let P be closed and convex. Put V = P and define an upper expectation P as in
Proposition 2.23. Then, Proposition 2.23 implies that P = c`co

(
P
)

is the structure of

P .

Conversely, let P be the structure of some upper expectation P . Put V = P ; the upper
expectation defined by V = P as in Proposition 2.23 is again P . By assumption, P is
the structure of P so that Proposition 2.23 implies

P = c`co
(
P
)

Hence, P is closed and convex. 2

Corollary 2.24 is weaker than its analog in case of coherent upper previsions (Corollary
2.16): While credal sets are always compact (with respect to the considered topology),
structures are not necessarily compact (with respect to the considered topology). How-
ever, compactness is an important property because it enables us to use minimax theorems
throughout this book. Indeed some of the most important results in this book are based
on minimax theorems.

Therefore, the next subsection is concerned with the investigation of necessary and suffi-
cient conditions for compactness of structures.
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2.4.2 Continuous upper expectations

Let Ω be a set and A a σ-algebra on Ω. In order to investigate necessary and sufficient
conditions for compactness of structures, we have to introduce some terminology:

Definition 2.25 An upper expectation on L∞(Ω,A) is called continuous if for every se-
quence (fn)n∈N ⊂ L∞(Ω,A) and f ∈ L∞(Ω,A)

fn(ω) ↘ f(ω) ∀ω ∈ Ω ⇒ lim
n→∞

P [fn] = P [f ]

In case of F-probabilities, this definition originates from (Weichselberger, 2000, Definition
2.6).

Definition 2.26 A set V ⊂ ca+
1 (Ω,A) of probability measures is called uniformly domi-

nated by µ ∈ ca(Ω,A), µ ≥ 0, if

∀ ε > 0 ∃ δ > 0 , such that, for every A ∈ A and P ∈ V:

µ(A) < δ ⇒ P (A) < ε

Proposition 2.21 claims a strong connection between upper expectations and coherent
upper previsions on L∞(Ω,A). It says that every upper expectation is also a coherent
upper prevision. So, an upper expectation P corresponds to a structure P ⊂ ca+

1 (Ω,A)
and to a credal setM⊂ ba+

1 (Ω,A). According to Proposition 2.21,M is the L∞(Ω,A) -
closure of P in ba(Ω,A) .
The following theorem says that compactness of P (with respect to the L∞(Ω,A) -
topology on ca(Ω,A)) can be characterized by the relationship between the structure
and the credal set of P :

Theorem 2.27 Let P be an upper expectation on L∞(Ω,A). Let P be the structure and
M be the credal set of P . Then:
P is compact (with respect to the L∞(Ω,A) - topology on ca(Ω,A)) if and only if

P = M (2.19)

Proof : According to Lemma 8.25, the L∞(Ω,A) - topology on ca(Ω,A) coincides with the
subspace topology on ca(Ω,A) generated by the L∞(Ω,A) - topology on ba(Ω,A). Hence,
P ⊂ ca(Ω,A) is L∞(Ω,A) - compact in ca(Ω,A) if and only if it is L∞(Ω,A) - compact
in ba(Ω,A). According to Proposition 2.21, P is L∞(Ω,A) - compact in ba(Ω,A) if and
only if (2.19); cf. also Corollary 2.16. 2

If we explicitly insist on σ-additivity (as in the concept of upper expectations) and con-
sider upper expectations as an independent concept, the L∞(Ω,A) - topology is not a
very interesting topology for theoretical investigations. This is a consequence of Theorem
2.27 because it says: A structure is compact only in these cases where there is abso-
lutely no difference between the two concepts “upper expectations” and “coherent upper
previsions”.
However, cases where structures are compact (with respect to this topology) are very
important for applications; cf. Augustin (1998). Of course, Theorem 2.27 does not
provide us with a practical criterion in order to check compactness for real applications.
In case of F-probabilities, such (necessary and sufficient) criteria are given by (Augustin,
1998, Proposition 2.11). The following theorem is a slight generalization of (Augustin,
1998, Proposition 2.11) – it is not only formulated for F-probabilities but also for general
upper expectations; the proof is similar.
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Theorem 2.28 Let P be the structure of an upper expectation P on L∞(Ω,A). Then
the following conditions are all equivalent:

a) P is continuous.

b) P is uniformly dominated.

c) P is compact with respect to the L∞(Ω,A) - topology on ca(Ω,A)

Proof : Let M be the credal set of P ; cf. Proposition 2.23.

[a)⇒c)] Take any P ∈M. Then, for every sequence (An)n∈N ⊂ A such that (An)n∈N ↘
∅ , continuity of P implies

0 ≤ lim
n→∞

P (An) ≤ lim
n→∞

P
[
IAn
]

= 0

Hence, P ∈ ca(A)∩M = P . That is,M = P and c) follows from Theorem 2.27.

[c)⇒b)] Confer (Baumann, 1968, Korollar 2.5).

[b)⇒a)] is a direct consequence of the definitions.

2

While the L∞(Ω,A) - topology is quite common on ba(Ω,A), it is not very usual on
ca(Ω,A) and on the set of all probability measures ca+

1 (Ω,A). This is underlined by
Theorem 2.27 in the context of upper previsions because it says that the L∞(Ω,A) -
topology is most appropriate on ca(Ω,A) in these cases where it does not matter if we
consider ca(Ω,A) or ba(Ω,A) .
The most common weak topologies on ca(Ω,A) are Γ-topologies (cf. Subsection 8.2)
where Γ is a certain class of continuous functions on Ω and Ω = Ξ is a Polish space
or a compact Hausdorff space. These topologies are studied in connection with upper
expectations in the following two subsections.

2.4.3 Upper expectations on Polish spaces

Let Ξ be a Polish space. That is, Ξ is a topological space and there is a metric d on Ξ
such that

• d generates the topology on Ξ

• Ξ is complete and separable with respect to d

Let B be the Borel-σ-algebra on Ξ. That is, B is the smallest σ-algebra which contains
all open sets V ⊂ Ξ.
Let Cb(Ξ) be the set of all bounded, continuous functions

f : Ξ → R

Especially, Cb(Ξ) is a norm-closed vector subspace of L∞(Ξ,B) .
Hence, every bounded, signed measure µ ∈ ca(Ξ,B) uniquely defines a (norm-)continuous
linear functional

µ : Cb(Ξ) → R , f 7→
∫
f dµ = µ[f ]
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Note7 that two different bounded signed measures do not define the same functional on
Cb(Ξ) :

µ1, µ2 ∈ ca(Ξ,B) , µ1[f ] = µ2[f ] ∀ f ∈ Cb(Ξ) ⇒ µ1 = µ2 (2.20)

As a consequence, ca(Ξ,B) can be identified with a linear subspace in the dual space of
Cb(Ξ).

Analogously to Section 2.3, ca(Ξ,B) can be endowed with the Cb(Ξ) - topology; cf. Sub-
section 8.2. This is the smallest topology on ca(Ξ,B) such that

ca(Ξ,B) → R , µ 7→ µ[f ]

is continuous for every f ∈ Cb(Ξ) .

However, it is more common to use the “ Cb(Ξ) - topology on ca+
1 (Ξ,B) ” 8 in classical

probability theory. This is the smallest topology on the set of all probability measures
ca+

1 (Ξ,B) such that
ca+

1 (Ξ,B) → R , µ 7→ µ[f ]

is continuous for every f ∈ Cb(Ξ) . This topology is called weak topology of probability
measures. A standard reference for this topology is Billingsley (1968). The use of the
weak topology of probability measures is very pleasant because it is metrizable so that it
suffices to consider sequences instead of nets.
Furthermore, there is a simple characterization of relatively compact sets:

Theorem 2.29 (Prohorov) A subset of ca+
1 (Ξ,B) is relatively compact in the weak

topology of probability measures if and only if it is tight.
Confer (Billingsley, 1968, Theorem 6.1).

Finally, there is, of course, also a strong connection between this topology and the Cb(Ξ) -
topology on ca(Ξ,B). The following lemma implies that a subset of ca+

1 (Ξ,B) is closed in
the weak topology of probability measures if and only if it is closed in the Cb(Ξ) - topology
on ca(Ξ,B) . This is needed in the proof of Proposition 2.33 which characterizes weakly
closed subsets of ca(Ξ,B) .

Lemma 2.30 ca+
1 (Ξ,B) is Cb(Ξ) - closed in ca(Ξ,B) .

Proof : Let (Pβ)β∈B be a net in ca+
1 (Ξ,B) such that

Pβ
β−→ µ ∈ ca(Ξ,B) in the Cb(Ξ) - topology

Hence, µ(Ξ) = 1 and µ[f ] ≥ 0 ∀ f ∈ Cb(Ξ) . That is, µ ∈ ca+
1 (Ξ,B) . 2

In the following, the weak topology of probability measures is simply called weak topology
and topological notions such as “weakly closed” and “converges weakly” are with respect
to this topology.

Upper expectations have originally been defined in Buja (1984). There, they are only
considered on Polish spaces where the weak topology is used. This setup seems to be
promising because of the following statement which is implicitly contained in (Buja, 1984,
Proposition 2.1 and 2.2):

7It follows from µ1[f ] = µ2[f ] ∀ f ∈ Cb(Ξ) that µ+
1 [f ] + µ−2 [f ] = µ+

2 [f ] + µ−1 [f ] ∀ f ∈ Cb(Ξ) . Hence,
µ+

1 + µ−2 = µ+
2 + µ−1 according to (Bauer, 2001, Lemma 30.14) and, therefore, µ1 = µ2 .

8This topology is not defined in Subsection 8.2 because ca+
1 (Ξ,B) is not a linear space.
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“Every tight structure is weakly compact.”

However, this is, in general, not correct! For a counterexample, confer Subsection 4.1.2.

In the following, two theorems are given which provide necessary and sufficient conditions
for relative weak compactness and weak compactness respectively. It is surprising that one
of these conditions – namely condition a) in both theorems – is very similar to continuity
which is a necessary and sufficient condition for L∞(Ξ,B) - compactness in ca(Ξ,B); cf.
Theorem 2.28. 9

Theorem 2.31 Let P be the structure of an upper expectation P . Then, the following
conditions are all equivalent:

a) If (fn)n∈N ⊂ Cb(Ξ) is a sequence such that fn(x) ↘ f(x) ∀x ∈ Ξ for some f ∈
Cb(Ξ), then P [fn]↘ P [f ].

b) P is tight.

c) P is relatively weakly compact in ca+
1 (Ξ,B).

Proof :

[a)⇒ b)] Let d be a metric on Ξ so that d induces the topology of Ξ and (Ξ, d) becomes
a complete separable metric space. Let (an)n∈N be a dense subset of Ξ. For every
r > 0 define

γri : Ξ→ R , x 7→ d(x, ai) ∧ r
r

, i ∈ N

Γrn := min
i=1,...,n

γri , n ∈ N

Br(ai) =
{
x ∈ Ξ

∣∣ d(x, ai) ≤ r
}

and B
c

r (ai) = Ξ \Br(ai) . Then:

[1] Γrn ≥ I⋂n
i=1B

c
r (ai)

∀n ∈ N, ∀ r > 0 :

Since γri ≥ IB c
r (ai)

∀ i ∈ N ,

Γrn = min
i=1,...,n

γri ≥ min
i=1,...,n

IB c
r (ai)

= I⋂n
i=1B

c
r (ai)

[2] ∀ ε > 0, ∀ k ∈ N ∃nk ∈ N : 0 ≤ P
[
Γ

1/k
nk

]
≤ ε · 2−k :

Since (an)n∈N is d-dense in Ξ, Γ
1/k
n ↘ 0 pointwise for n → ∞. Then it follows

from a), that

lim
n
P
[
Γ1/k
n

]
↘ P

[
0
]

= 0

because (Γ
1/k
n )n∈N ⊂ Cb(Ξ,B).

9In case of locally compact separable metric spaces (i.e. in a special case of Polish spaces), it has also
been discovered in Lasserre (1998) that such “continuity conditions” serve as a uniform principle in order
to characterize (sequentially) compact sets of probability measures with respect to several topologies.
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[3] Kε =
⋂
k∈N
⋃nk
i=1B1/k(ai) is obviously totally bounded. Furthermore, Kε is closed

and complete. Hence, Kε is compact (cf. (Dunford and Schwartz, 1958, Theorem
I.6.15) ) and we have

P
(
Ξ \Kε

)
= P

( ⋃
k∈N

nk⋂
i=1

B
c

1/k(ai)
)
≤
∑
k

P
( nk⋂
i=1

B
c

1/k(ai)
)
≤

[1]

≤
∑
k

P
[
Γ1/k
nk

] [2]

≤
∑
k

ε · 2−k = ε

[b)⇒ a)] Let (fn)n∈N ⊂ Cb(Ξ) be a sequence such that fn(x)↘ f(x) ∀x ∈ Ξ for some
f ∈ Cb(Ξ). For each l ∈ N, we may choose a compact Kl ⊂ Ξ, so that

P
(
Ξ \Kl

)
<

1

l
(2.21)

because P is assumed to be tight. According to Dini’s Theorem (Dudley, 1989,
Theorem 2.4.10), (fn)n∈N converges uniformly on every compact set Kl. Hence, for
every l ∈ N,

lim sup
n

∣∣P [fn]− P [f ]
∣∣ ≤ lim sup

n
sup
P∈P

P [fn − f ] ≤

≤ lim sup
n

(
sup
P∈P

∫
Kl

fn − f dP + sup
P∈P

∫
Ξ\Kl

fn − f dP
)
≤

≤ lim sup
n

(
sup
x∈Kl

(fn − f) +
(
‖fn‖∞ + ‖f‖∞

)
P (Ξ \Kl)

)
≤

≤ 2‖f1‖∞ ·
1

l

[c)⇔ b)] This is the content of Theorem 2.29.

2

Theorem 2.31 cannot be proven by a simple application of (Föllmer and Schied, 2002,
Theorem 3.8) since (Föllmer and Schied, 2002, Theorem 3.8) is not correct as explained
in (Föllmer and Schied, 2004, Remark 4.29). Nevertheless, the proof of Theorem 2.31 is
only a variant of the proof of (Föllmer and Schied, 2002, Theorem 3.8). Theorem 2.31
essentially coincides also with (Varadarajan, 1965, Theorem II.25).

Theorem 2.32 Let P be the structure of an upper expectation P . Then the following
conditions are all equivalent:

a) If (fn)n∈N ⊂ Cb(Ξ) is a sequence such that fn(x) ↘ f(x) ∀x ∈ Ξ for some f ∈
L∞(Ξ,B), then P [fn]↘ P [f ].

b) P is tight and weakly closed in ca+
1 (Ξ,B).

c) P is weakly compact in ca+
1 (Ξ,B).

Proof :
[a)⇒b)]

[1 ] Tightness of P follows from Theorem 2.31.
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[2 ] P is weakly closed in ca+
1 (Ξ,B):

Let (Pk)k∈N ⊂ P be any sequence which converges weakly to some P ∈ ca+
1 (Ξ,B).

Since the weak topology on ca+
1 (Ξ,B) is metrizable, it suffices to show that P ∈ P .

To this end, let f be any upper semi-continuous function in L∞(Ξ,B). Then, there is
a sequence (fn)n∈N ⊂ Cb(Ξ) such that fn(x)↘ f(x) ∀x ∈ Ξ (cf. (Denkowski et al.,
2003, Proposition 1.4.54)). For every g ∈ Cb(Ξ), P [g] = limk Pk[g] ≤ P [g]. Hence,
the dominated convergence theorem implies

P [f ] = lim
n
P [fn] ≤ lim

n
P [fn]

a)
= P [f ]

That is, P [f ] ≤ P [f ] for every upper semi-continuous function in L∞(Ξ,B) .

Now, let f be any function in L∞(Ξ,B). According to Lemma 8.27, there is a
sequence (fn)n∈N of upper semi-continuous function fn ∈ L∞(Ξ,B) such that

f1 ≤ f2 ≤ f3 ≤ . . . ≤ f and P [fn]↗ P [f ] (2.22)

Hence,

P [f ]
(2.22)
= lim

n→∞
P [fn] ≤ P [fn]

(2.22)

≤ P [f ]

[b)⇒c)] follows from Theorem 2.29.

[c)⇒a)] Let (fn)n∈N ⊂ Cb(Ξ) be a sequence such that fn(x) ↘ f(x) ∀x ∈ Ξ for some
f ∈ L∞(Ξ,B). Then:

[1 ] limn P [fn] exists because P [f1] ≥ P [f2] ≥ · · · ≥ P [f ] > −∞
[2 ] For every n ∈ N, there is some Pn ∈ P so that Pn[fn] = P [fn]:

The weakly continuous functions

P → R , P 7→ P [fn]

attain their maxima P [fn] in some Pn ∈ P because P is weakly compact (cf.
(Denkowski et al., 2003, Theorem 1.3.11)).

[3 ] There is a subsequence (Pnl)l∈N which converges weakly to some P0 ∈ P because P
is also sequentially weakly compact (Metrizability!).

[4 ] liml Pnl [fnl ] ≤ P0[f ]:

The limit liml Pnl [fnl ] exists according to the definition of (Pn)n∈N and part [1] of
the present proof. The sequence (fn)n∈N is decreasing. Hence for every k ∈ N,

liml Pnl [fnl ] ≤ liml Pnl [fk]
[3]
= P0[fk] and the dominated convergence theorem implies

lim
l
Pnl [fnl ] ≤ lim

k
P0[fk] = P0[f ]

[5 ] Finally, P [f ]
[1]

≤ limn P [fn] = liml P [fnl ]
[2]
= liml Pnl [fnl ]

[4]

≤ P0[f ]
[3]

≤ P [f ]

2

Assumption a) of Theorem 2.31 and assumption a) of Theorem 2.32 seem to be nearly
the same. But the difference matters as can be seen from Theorem 2.31, Theorem 2.32
and Subsection 4.1.2.

In addition, the next proposition characterizes weak closedness of structures.
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Proposition 2.33 The structure P of an upper expectation P is weakly closed if and only
if it has the following representation:

P =
{
P ∈ ca+

1 (Ξ,B)
∣∣ P [f ] ≤ P [f ] ∀ f ∈ Cb(Ξ)

}
(2.23)

Proof : Put V = P , Γ = Cb(Ξ) and M = ca(Ξ,B) . Since P is convex, it follows from
Theorem 8.26 that the structure P is Cb(Ξ) - closed in ca(Ξ,B) if and only if it has the
representation (2.23).

Hence, it only remains to show that P ⊂ ca+
1 (Ξ,B) is Cb(Ξ) - closed in ca(Ξ,B) if and

only if it is weakly closed in ca+
1 (Ξ,B) .

Let P be Cb(Ξ) - closed in ca(Ξ,B) and (Pβ)β∈B ⊂ P be a net such that

Pβ
β−→ P ∈ ca+

1 (Ξ,B) weakly

That is, Pβ[f ] → P [f ] for every f ∈ Cb(Ξ) and, therefore, Pβ → P in the Cb(Ξ) -
topology. Finally, it follows from Cb(Ξ) - closedness of P that P ∈ P .
Conversely, let P be weakly closed in ca+

1 (Ξ,B) and (Pβ)β∈B ⊂ P be a net such that

Pβ
β−→ µ ∈ ca(Ξ,B) in the Cb(Ξ) - topology

According to Lemma 2.30, µ ∈ ca+
1 (Ξ,B). Therefore, convergence in the Cb(Ξ) -

topology implies weak convergence. Finally, it follows from weak closedness of P that
µ ∈ P . 2

Proposition 2.33 seems to indicate that this setup (weak topology and Polish spaces) is
not appropriate because it says that an upper expectation P whose structure is Cb(Ξ) -
closed (or compact) is at least implicitly defined by its values on K = Cb(Ξ). However,
one of the most important special cases of upper expectations are F-probabilities which
are defined by their values on some K ⊂

{
IB
∣∣ B ∈ B

}
and, at least in case of Ξ = R ,

indicator functions are rarely continuous.

The following subsection investigates upper expectations on compact Hausdorff spaces – a
setup which seems to be similar to the Polish setup. However, compact Hausdorff spaces
prove to be much more important (at least from a theoretical point of view) as will be
seen in Subsection 2.5.

2.4.4 Upper expectations on compact Hausdorff spaces

In this subsection, we turn over to compact Hausdorff spaces. While upper expectations
on Polish spaces have been considered in Buja (1984), upper expectations have not been
studied explicitly on compact Hausdorff spaces before. In Subsection 2.5, this setup turns
out to be important and – in a sense – as general as coherent upper previsions on arbitrary
spaces.
Let Ξ be a compact Hausdorff space – i.e. Ξ is a topological Hausdorff space which is
compact. Let C(Ξ) be the set of all continuous functions

f : Ξ → R

and let B0 be the Baire-σ-algebra on Ξ. This is the smallest σ-algebra on Ξ such that
every continuous function f ∈ C(Ξ) is measurable. Obviously, the Baire-σ-algebra is
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contained in the Borel-σ-algebra: B0 ⊂ B . In any metric space, the two σ-algebras
coincide B0 = B (for the metric topology); cf. (Dudley, 1989, Theorem 7.1.1).
Compactness of Ξ implies that every continuous function f ∈ C(Ξ) is bounded. So,
C(Ξ) = Cb(Ξ) and C(Ξ) is a norm-closed vector subspace of L∞(Ξ,B0) .
Every bounded, signed measure µ ∈ ca(Ξ,B0) uniquely defines a (norm-)continuous linear
functional

Tµ : Cb(Ξ) → R , f 7→
∫
f dµ = µ[f ]

The converse statement is also true; cf. (Dudley, 1989, Theorem 7.4.1):

Theorem 2.34 For every µ ∈ ca(Ξ,B0),

Tµ : C(Ξ) → R , f 7→
∫
f dµ

is a continuous linear functionals on C(Ξ).
Conversely, for every continuous linear functional

T : C(Ξ) → R , f 7→ T (f)

on C(Ξ), there is a unique µ ∈ ca(Ω,A) such that

T (f) =

∫
f dµ f ∈ L∞(Ω,A)

Remark 2.35 µ 7→ Tµ is a vector space isomorphism between ca(Ξ,B0) and the dual
space of C(Ξ) denoted by C(Ξ)∗ . Furthermore, µ 7→ Tµ is isometric: ‖Tµ‖∗ = ‖µ‖ where
‖ · ‖∗ denotes the dual norm ‖T‖∗ = sup

{
T (f)

∣∣ ‖f‖ ≤ 1, f ∈ C(Ξ)
}

.
It can also easily be read off from the proof of Theorem 2.34 in (Dudley, 1989, Theorem
7.4.1) that this isomorphism respects order:

µ ≥ 0 ⇔ Tµ(f) ≥ 0 ∀ f ≥ 0 , f ∈ C(Ξ) (2.24)

Summing up, µ 7→ Tµ is an L-space isomorphism between ca(Ξ,B0) and C(Ξ)∗ .

Since ca(Ξ,B0) can be identified with the dual space of C(Ξ), ca(Ξ,B0) is usually provided
with the Γ-topology (cf. Subsection 8.2) where Γ = C(Ξ) . 10 This is the weakest topology
on ca(Ξ,B0) such that, for every f ∈ C(Ξ),

Λf : ca(Ξ,B0) → R , µ 7→ Λf (µ) = µ[f ]

is continuous.

The following theorem provides necessary and sufficient conditions for C(Ξ) - compactness
of structures.

Theorem 2.36 Let P be the structure of an upper expectation P on (Ξ,B0). Then, the
following statements are all equivalent:

a) P is C(Ξ) - compact.

10In the more general case where Ξ is a locally compact Hausdorff space, the usual weak topology would
be given by Γ = C0(Ξ), the set of all continuous functions f ∈ C(Ξ) with compact support. However,
C(Ξ) = C0(Ξ) in case of a compact Hausdorff space Ξ.
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b) P is C(Ξ) - closed.

c) P can be written as

P =
{
P ∈ ca+

1 (Ξ,B0)
∣∣ P [f ] ≤ P [f ] ∀ f ∈ C(Ξ)

}
(2.25)

Proof :
(b) ⇔ (c) : Since P is convex, this follows from Theorem 8.26 where V = P , Γ = C(Ξ)
and M = ca(Ξ,B0) .

(a)⇒ (b) : Ξ is assumed to be a Hausdorff space.

(a) ⇐ (b) : According to Theorem 2.34 and Remark 2.35, ca(Ξ,B0) can be identified
with the dual space of C(Ξ). Hence, the closed unit sphere {µ ∈ ca(Ξ,B0) | ‖µ‖ ≤ 1} is
C(Ξ) - compact in ca(Ξ,B0) according to (Dunford and Schwartz, 1958, Theorem V.4.2).
Since P is a C(Ξ) - closed subset of this C(Ξ) - compact set, P is C(Ξ) - compact, too. 2

Analogously to Polish spaces, one could argue that Theorem 2.36 indicates that this
setup (C(Ξ) - topology and compact spaces) is not appropriate because it says that an
upper expectation P whose structure is C(Ξ) - compact is at least implicitly defined by its
values on K = C(Ξ). This is true from a practically orientated point of view – however,
it is not true from a theoretical point of view as can be seen in Section 2.5.

2.4.5 F-probabilities

As stated before, F-probabilities are the most important and also most investigated special
case of upper expectations. In Subsection 2.4.1, F-probabilities have already been defined
as special cases of upper expectations. Since the definition of F-probabilities is usually not
given in terms of upper expectations and there is a different notation for F-probabilities,
the usual definitions and notations of F-Probabilities are given in the present subsection
so that the connection to upper expectations gets more visible.

The following definitions originate from Weichselberger (2000). Confer also Weichsel-
berger (2001).

Definition 2.37 Let (Ω,A) be a measurable space.

a) A function p on A satisfying the axioms of Kolmogorov is called classical probability.
That is, the set of all classical probabilities on (Ω,A) is ca+

1 (Ω,A).

b) A function P of the form

P : A → {[L,U ] | 0 ≤ L ≤ U ≤ 1}, A 7→ P (A) = [L(A), U(A)]

is called R-probability with structure M if the set

M := {p ∈ ca+
1 (Ω,A) | L(A) ≤ p(A) ≤ U(A) ∀A ∈ A}

is not empty. L is called lower probability and U is called upper probability.

c) An R-probability

P : A → {[L,U ] | 0 ≤ L ≤ U ≤ 1}, A 7→ P (A) = [L(A), U(A)]

is called F-probability if

infp∈M p(A) = L(A)
supp∈M p(A) = U(A)

}
∀A ∈ A
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For every F-probability, L and U are conjugate. i.e.

L(A) = 1− U(Ac) ∀A ∈ A

Therefore, every F-probability is uniquely determined by L : A → [0, 1]. (Ω,A, L) is
called F-probability field.

The following definition extends the concept of expectations in case of classical probability
to interval probability:

Definition 2.38 For every F-probability field (Ω,A, L) with structureM, a random vari-
able X : (Ω,A) −→ (R,B) is called M-integrable if X is p-integrable for each element p
of M. Then

EMX :=
[
LEMX,UEMX

]
:=

[
inf
p∈M

EpX, sup
p∈M

EpX
]
⊂ [−∞,∞]

is called the (interval-valued) expectation of X (with respect to (Ω,A, L)).

Let (Ω,A, L) be an F-probability field with structure M. Put

P [IA] := U(A) ∀A ∈ A

Obviously,
P :

{
IA
∣∣ A ∈ A} → R , f 7→ P [IA]

is an upper expectation with structure M . Furthermore, P is indeed an F-probability
according to Definition 2.18 where

K =
{
IA
∣∣ A ∈ A} (2.26)

Definition 2.18 also admits

K (
{
IA
∣∣ A ∈ A} (2.27)

instead of (2.26). In this case, F-probabilities are called partially determinate F-proba-
bilities in Weichselberger (2000) and Weichselberger (2001).
According to Proposition 2.19, an F-probability P can be extended to an upper expecta-
tion on L∞(Ω,A). This extension is equal to

P [f ] = UEMf ∀ f ∈ L∞(Ω,A)

(Of course, every f ∈ L∞(Ω,A) is M-integrable.)

Caution 1: Here, the structure is denoted by M in order to be in line with the notation
used in Weichselberger (2001). In general, this M is not the credal set of P according
to Proposition 2.21. In the previous subsections, structures are denoted by P because M
already denotes credal sets in the theory of imprecise probabilities according to Walley
(1991) (which is mainly used in the present book).
Caution 2: As stated before, the extension of a (partially determinate) F-probability to
an upper expectation on L∞(Ω,A) is equal to

P [f ] = UEMf ∀ f ∈ L∞(Ω,A)
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so that we are in accordance with Weichselberger (2000) and Weichselberger (2001). How-
ever, one has to be careful when a structure is generated from a prestructure. Then, it
makes a difference if the structure of an F-probability or the structure of an upper expec-
tation on L∞(Ω,A) is generated. Confer page 23.

It is a basic property of classical probability measures that they are uniquely determined
by their values on a ∩-stable generator of the σ-algebra A . This is not true for F-
probabilities. However, there is at least a related result on Polish spaces (Ξ,B):

Proposition 2.39 Let Ξ be a Polish space with Borel-σ-algebra B and let U be the upper
probability in an F-probability field (Ξ,B, L) with structure M .
Then

U(B) = sup
{
U(K)

∣∣ K ⊂ B, K compact
}

∀B ∈ B
and

P ∈M ⇔ P (K) ≤ U(K) for every compact K ∈ B
for every P ∈ ca+

1 (Ξ,B). Especially, an F-probability is uniquely determined by the values
of U on the compact subsets of Ξ.

Proof : For B ∈ B, there is a sequence (Pn)n∈N ⊂M such that Pn(B)↗ U(B). Since Ξ
is Polish, every probability measure on (Ξ,B) is regular. Hence,

∀n ∈ N ∃Kn ⊂ B, Kn compact : 0 ≤ Pn(B)− Pn(Kn) ≤ 1

n

and

U(B) ≥ sup
{
U(K)

∣∣ K ⊂ B, K compact
}
≥

≥ lim sup
n

sup
{
Pn(K)

∣∣ K ⊂ B, K compact
}
≥

≥ lim sup
n

Pn(Kn) = lim sup
n

(
Pn(B)− (Pn(B)− Pn(Kn))

)
≥

≥ lim inf
n

Pn(B)− lim sup
n

(
Pn(B)− Pn(Kn)

)
= U(B)

Let P be a probability measure on (Ξ,B) where P (K) ≤ U(K) for every compact K ∈ B.
So, P is regular and for every B ∈ B,

P (B) = sup
{
P (K)

∣∣ K ⊂ B, K compact
}
≤

≤ sup
{
U(K)

∣∣ K ⊂ B, K compact
}

= U(B)

2

2.5 Representation of coherent upper previsions

2.5.1 Introduction

According to the previous sections, there are several ways to define imprecise probabilities.
The main difference results from different answers to the question whether to insist on
σ-additivity or not. Both the concept of coherent upper previsions and the concept of
upper expectations can be based on sets of precise probabilities{

P
∣∣ P [f ] ≤ P [f ] ∀ f

}
(2.28)
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such that P [f ] is the supremum of P [f ] over this set for every f . If precise probability
assignments are modeled by σ-additive probability measures P , we naturally end up with
the concept of upper expectations. If precise probability assignments may be modeled
by any probability charge P , we naturally end up with the concept of coherent upper
previsions.
Therefore, the question whether to use coherent upper previsions or upper expectations
corresponds to the question whether precise probability assignments may be modeled by
probability charges which are not σ-additive. In case of precise probabilities, it is well
known that the answer to this question is hardly connected with the real world. In the
spirit of the work of L. Le Cam (cf. e.g. (Le Cam, 1986, Chapter 1)), this is because
probability charges and probability measures are no observable objects but they are only
mathematical constructs which are intended to represent probability assignments from
the real world. In order to do such a representation in a mathematical rigorous way, an
“appropriate” sample space (Ω,A) has to be chosen. However, the Stone representation
theorem (Dunford and Schwartz, 1958, § I.12) implies that it only depends on the choice of
the sample space whether a precise probability assignment leads to a σ-additive probability
measure or not: Even if the precise probability assignment leads to a probability charge
which is not σ-additive, there is always another appropriate choice of the sample space
which would have led to a σ-additive probability measure. That is, whether we are faced
with σ-additive probability measures or not depends on the arbitrary choice of the sample
space. For a more detailed explanation of these considerations in the spirit of L. Le Cam,
confer Section 3.4.

In short, the present section shows that the same reasoning also applies for imprecise
probabilities. That is, whether an imprecise probability assignment leads to an upper
expectation (which is based on σ-additivity) or not, only depends on the arbitrary choice
of the sample space. As in case of precise probabilities, this is also a consequence of the
Stone representation theorem.
In order to see this, Subsection 2.5.2 recalls the Stone representation theorem and presents
some preparations based on this fundamental theorem. Next, it is shown in Subsection
2.5.3: Even if an imprecise probability assignment does not lead to an upper expectation
but to a coherent upper prevision, there is always another appropriate choice of the sample
space such that the imprecise probability assignment leads to an upper expectation. In
this way, every coherent upper prevision can be represented by an upper expectation.
Since this can be done in a canonical way, we are able to define a ”canonical Stone
representation” for every coherent upper prevision.
This is not only interesting from a theoretical point of view but also serves as an important
tool in Subsection 3.3.3 where standard models are defined by use of σ-additivity. This
can be done for every coherent upper prevision via the canonical Stone representation.
The results of the present section implies that an analogous proceeding is always possible
if σ-additivity is needed in the definition of concepts which originally rely on σ-additivity.
For example, this is also possible in order to define conditional coherent upper previsions
and this offers an expedient alternative to the definitions based on conglomerability given
by Walley (1991).

2.5.2 Stone representation

Let Ω be a set with algebra A. The following famous theorem connects the general setup
(Ω,A) with the setup in Subsection 2.4.4 where Ξ is a compact Hausdorff space and B0
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the Baire-σ-algebra on Ξ.
A topological space Ξ is called totally disconnected if its topology has a base which consists
of clopen sets. A set is called clopen if it is closed and open.11 It follows from the definitions
that the clopen sets C ⊂ Ξ form an algebra C on Ξ.

Theorem 2.40 (Stone representation theorem)
There is a totally disconnected compact Hausdorff space Ξ such that A is isomorphic to
the algebra C of all clopen sets C ⊂ Ξ. That is: There is a bijective map Φ : A → C such
that

Φ(A1 ∩ A2) = Φ(A1) ∩ Φ(A2) , Φ(A1 ∪ A2) = Φ(A1) ∪ Φ(A2) ,

Φ(AC) =
(
Φ(A)

)C

for every A1, A2, A ∈ A .

For the proof of this theorem, confer e.g. (Dunford and Schwartz, 1958, § I.12).

Note that the properties of the isomorphism Φ : A → C imply

Φ(∅) = ∅ , Φ−1(∅) = ∅ , Φ(Ω) = Ξ , Φ−1(Ξ) = Ω (2.29)

where Φ−1 : C→ A denotes the inverse of Φ.

Φ induces a map ξ : L∞(Ω,A)→ L∞(Ξ,C) in the following way:

ξ(IA) = IΦ(A) for every A ∈ A (2.30)

ξ

( m∑
j=1

ajIAj

)
=

m∑
j=1

ajIΦ(Aj) for every simple function on (Ω,A) (2.31)

and

ξ(f) = lim
n→∞

ξ(sn) for every f ∈ L∞(Ω,A) (2.32)

where each sn is a simple function and ‖sn − f‖ → 0 .

Proposition 2.41 Equations (2.30), (2.31) and (2.32) define a map

ξ : L∞(Ω,A) → L∞(Ξ,C) , g 7→ ξ(g) (2.33)

which is an M-space isomorphism.

Proof : According to Lemma 8.28, where Ψ = Φ, (Y ,B) = (Ω,A) and (Z,D) = (Ξ,C),
equations (2.30), (2.31) and (2.32) define a map

ξ : L∞(Ω,A) → L∞(Ξ,C) , g 7→ ξ(g)

which is linear, positive and normalized – especially, ξ is norm-continuous.

Another application of Lemma 8.28, where Ψ = Φ−1, (Y ,B) = (Ξ,C) and (Z,D) =
(Ω,A), leads to a map

ϕ : L∞(Ξ,C) → L∞(Ω,A) , h 7→ ϕ(h)

11For example, the clopen sets in R are ∅ and R.
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which is linear, positive and normalized (and, therefore, norm-continuous).

Obviously
ϕ ◦ ξ(s) = s and ξ ◦ ϕ(t) = t

for every simple function s on (Ω,A) and every simple function t on (Ξ,C). Hence,
norm-continuity of ξ and ϕ implies that

ϕ ◦ ξ(f) = f and ξ ◦ ϕ(h) = h

for every f ∈ L∞(Ω,A) and every h ∈ L∞(Ξ,C). That is, ϕ is the inverse of ξ –
especially, ξ is bijective.

Next, for every f ∈ L∞(Ω,A)

f ≥ 0 ⇒ ξ(f) ≥ 0

and
ξ(f) ≥ 0 ⇒ f = ϕ

(
ξ(f)

)
≥ 0

Therefore, ξ is a vector lattice isomorphism according to Proposition 8.20. The properties
of Φ imply

‖ξ(s)‖ = sup
x∈Ξ
|ξ(s)(x)| = sup

x∈Ξ
|s(x)| = ‖s‖

for every simple function s on (Ω,A). Hence, it follows from norm-continuity that

‖ξ(f)‖ = ‖f‖ ∀ f ∈ L∞(Ω,A)

2

Φ and ξ also induce a map

φ : ba(Ω,A) → ba(Ξ,C)

via φ(µ)[h] = µ
[
ξ−1(h)

]
where ξ−1 is the inverse function of ξ . Since ba(Ω,A) is the dual

space of L∞(Ω,A) and ba(Ξ,C) is the dual space of L∞(Ξ,C) , φ is the adjoint operator
of ξ−1. It is easy to see that φ is

• linear

• positive: φ(µ) ≥ 0 ∀µ ≥ 0

• normalized: φ(µ)[IΞ] = 1 ∀µ ≥ 0

Such maps are called (generalized) randomizations or transitions and will frequently be
used later on; cf. Section 3.3.

φ has a nice continuity property which will become important in the following subsection
where coherent upper previsions are represented by upper expectations.

Proposition 2.42 Let
φ : ba(Ω,A) → ba(Ξ,C)

be the adjoint operator of ξ−1 as defined in the previous paragraphs. Endow ba(Ω,A) with
the L∞(Ω,A) - topology and ba(Ξ,C) with the L∞(Ξ,C) - topology. Then, φ is continuous
with respect to these topologies.
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Proof : All topological terms within this proof are with respect to the topologies men-
tioned in Proposition 2.42.

Let (µγ)γ∈D be a net in ba(Ω,A) which converges to some µ ∈ ba(Ω,A). This implies
that, for every h ∈ L∞(Ξ,C),

φ(µγ)[h] = µγ
[
ξ−1(h)

]
−→
γ

µ
[
ξ−1(h)

]
= φ(µ)[h]

That is, φ(µγ) −→
γ

φ(µ) according to Theorem 8.24 b) . 2

Canonical Stone representation

This subsection ends with the description of a concrete space Ξ and a concrete map Φ :
A → B in the Stone representation theorem (Theorem 2.40). This concrete description is
not really important in this book. However, it is important that it is possible to uniquely
determine a concrete choice of Ξ, Φ, ξ and φ. Later on, we will refer to this specific choice
as “canonical Stone space”, “canonical Stone isomorphism”, “canonical Stone kernel” and
“canonical Stone transition” respectively.

To this end, let Ξ be the set of all algebra homomorphisms

x : A → {∅,Ω}

A map x is called algebra homomorphism if, for every A1, A2, A ∈ A ,

x(A1 ∩ A2) = x(A1) ∩ x(A2), x(A1 ∪ A2) = x(A1) ∪ x(A2), x(AC) =
(
x(A)

)C

Put

Φ(A) =
{
x ∈ Ξ

∣∣ x(A) = Ω
}

∀A ∈ A

and endow Ξ with the topology generated by the base{
Φ(A)

∣∣ A ∈ A}
Let C denote the algebra of all clopen sets in Ξ. Then Ξ is a totally disconnected compact
Hausdorff space and Φ : A → C is a bijective algebra homomorphism according to
(Dunford and Schwartz, 1958, § I.12). That is, Ξ and Φ have all of the properties which
are required in the Stone representation theorem (Theorem 2.40).

With this choice, Ξ is called canonical Stone space of (Ω,A) and Φ is called canonical
Stone isomorphism of (Ω,A). According to Proposition 2.41, Φ induces an M-space
isomorphism

ξ : L∞(Ξ,C) → L∞(Ω,A) , h 7→ ξ(h)

and an adjoint operator of ξ−1 ,

φ : ba(Ω,A) → ba(Ξ,C)

The map ξ is called canonical Stone kernel of (Ω,A) and φ is called canonical Stone
transition between (Ω,A) and (Ξ,C) in this case.
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2.5.3 Coherent upper previsions represented by upper expecta-
tions

This subsection investigates how an coherent upper prevision on (Ω,A) can be represented
by an upper expectation. Since such a representation is possible for every coherent upper
prevision, upper expectations are as general as coherent upper previsions from a theo-
retical point of view. The representation is based on the Stone representation theorem
presented in Subsection 2.5.2. In particular, this means that coherent upper previsions
on (Ω,A) are represented by upper expectations on the canonical Stone space Ξ which
belongs to (Ω,A) . In Subsection 2.5.2, we did not consider a σ-algebra but an algebra
on Ξ. However, for the definition of upper expectations, we need a σ-algebra. Since
the canonical Stone space Ξ is a compact Hausdorff space, we are in the situation of
Subsection 2.4.4 and the Baire-σ-algebra turns out to be an appropriate choice.

Let Ω be a set and A an algebra on Ω. Let Ξ be the canonical Stone space of (Ω,A) and
B0 the Baire-σ-algebra on Ξ ; let C denote the algebra of all clopen sets C ⊂ Ξ .

A clopen set C has the characteristic property that C and its complement C C are open.
Therefore, the indicator function IC of a clopen set C is continuous! So, it follows from
the definition of the Baire-σ-algebra that

C ⊂ B0

In fact, the properties of Ξ imply that B0 is the smallest σ-algebra on Ξ which contains
C and that

C(Ξ) = L∞(Ξ,C) (2.34)

where C(Ξ) is the set of all continuous functions f : Ξ → R; cf. (Bhaskara Rao and
Bhaskara Rao, 1983, p. 17f and Corollary 4.7.6(i)).

The following theorem is only a variant of a family of similar, well known theorems; cf.
e.g. (Dunford and Schwartz, 1958, Lemma IV.9.11).

Theorem 2.43 Let Ω be a set and A an algebra on Ω. Let Ξ be the canonical Stone
space of (Ω,A) and B0 the Baire-σ-algebra on Ξ. Then, there is a unique map

φ0 : ba(Ω,A) → ca(Ξ,B0)

such that

φ0(µ)(C) = µ
(
Φ−1(C)

)
∀C ∈ C , ∀µ ∈ ba(Ω,A) (2.35)

where Φ : A → C is the canonical Stone isomorphism.
Furthermore, φ0 is an L-space isomorphism and

φ0(µ)
[
ξ(f)

]
= µ

[
f
]
∀ f ∈ L∞(Ω,A) , ∀µ ∈ ba(Ω,A) (2.36)

where ξ is the canonical Stone kernel.

Proof :
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[1] Tν0 : C(Ξ) → R , f 7→
∫
f dν0

is a (norm-)continuous linear functional for every ν0 ∈ ca(Ξ,B0); cf. Theorem 2.34.
Furthermore,

ϕ : ca(Ξ,B0) → C(Ξ)∗ , ν0 7→ Tν0

is an L-space isomorphism between ca(Ξ,B0) and the dual space of C(Ξ) according
to Remark 2.35. Because of

ba(Ξ,C) =
(
L∞(Ξ,C)

)∗ (2.34)
= C(Ξ)∗

ϕ is an L-space isomorphism between ca(Ξ,B0) and ba(Ξ,C) such that

ϕ(ν0)[h] = Tν0 [h] = ν0[h] ∀h ∈ C(Ξ) , ∀ν0 ∈ ca(Ξ,B0) (2.37)

[2] Let ξ be the canonical Stone kernel; the inverse ξ−1 : L∞(Ξ,C) → L∞(Ω,A) is an
M-space isomorphism according to Proposition 2.41. Let φ = (ξ−1)∗ be the adjoint
operator of ξ−1. Then, according to Proposition 8.22,

φ : ba(Ω,A) → ba(Ξ,C)

is an L-space isomorphism.

[3] That is,

ba(Ω,A)
φ−→ ba(Ξ,C)

ϕ−1

−−−→ ca(Ξ,B0)

where φ and ϕ−1 are L-space isomorphisms. Then,

φ0 := ϕ−1 ◦ φ (2.38)

is an L-space isomorphism such that, for every f ∈ L∞(Ω,A) and µ ∈ ba(Ω,A),

φ0(µ)[ξ(f)] = ϕ−1
(
φ(µ)

)
[ξ(f)]

(2.37),(2.34)
= φ(µ)[ξ(f)] =

= µ
[
ξ−1
(
ξ(f)

)]
= µ[f ]

That is, φ0 fulfills (2.36). Especially, φ0 fulfills (2.35) – to see this, put f = IΦ−1(C)

for C ∈ C and note that IC = ξ(f) .

[4] Now, let σ : ba(Ω,A) → ca(Ξ,B0) be another map which fulfills (2.35). Take any
µ ∈ ba(Ω,A). Then,

σ(µ)(C)
(2.35)
= µ

(
Φ−1(C)

) (2.35)
= φ0(µ)(C) ∀C ∈ C

and it follows that σ(µ) = φ0(µ) because C is a ∩-stable generator of B0.

2

Especially, Theorem 2.43 says that ba(Ω,A) and ca(Ξ,B0) are L-space isomorphic. The
uniquely determined map φ0 in Theorem 2.43 is called canonical Stone transition between
(Ω,A) and (Ξ,B0).

Now, the main theorem of this section can be formulated:
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Theorem 2.44 (Canonical Stone representation) Let Ω be a set and A an algebra
on Ω. Let Ξ be the canonical Stone space, ξ the canonical Stone kernel and φ0 the canonical
Stone transition between (Ω,A) and (Ξ,B0).
Then, for every coherent upper prevision P with credal set M on (Ω,A) ,

P0 := φ0

(
M
)

is the structure of an upper expectation P 0 on (Ξ,B0) such that

P [f ] = P 0

[
ξ(f)

]
∀ f ∈ L∞(Ω,A) (2.39)

Furthermore, the structure P0 is C(Ξ) - compact and can be written as

P0 =
{
P0 ∈ ca+

1 (Ξ,B0)
∣∣ P0[h] ≤ P 0[h] ∀h ∈ C(Ξ)

}
(2.40)

P 0 is called canonical Stone representation of P .

Proof :

[1] Put P 0[h0] = sup
P0∈P0

P0[h0] for every h0 ∈ L∞(Ξ,B0) .

[2] At first, (2.39) is shown: For every f ∈ L∞(Ω,A) ,

P 0

[
ξ(f)

]
= sup

P0∈P0

P0

[
ξ(f)

]
= sup

P∈M
φ0(P )

[
ξ(f)

] (2.36)
= sup

P∈M
P [f ] = P [f ]

[3] Next, (2.40) is shown:

The definition of P 0 implies “⊂ ” in (2.40). For the proof of “⊃ ”, take any P0 ∈
ca+

1 (Ξ,B0) such that
P0[h] ≤ P 0[h] ∀h ∈ C(Ξ)

and put P := φ−1
0 (P0) . Then, for every f ∈ L∞(Ω,A) ,

P [f ]
(2.36)
= φ0(P )

[
ξ(f)

]
= P0

[
ξ(f)

] (2.34)

≤ P 0

[
ξ(f)

] (2.39)
= P [f ]

for every f ∈ L∞(Ω,A) . That is, P ∈ M and, therefore, P0 = φ0(P ) ∈ P0 .

[4] Especially, (2.40) implies that P0 is the structure of an upper expectation.

[5] C(Ξ) - compactness of P0 follows from (2.40) according to Theorem 2.36.

2

That is, for every set Ω and every algebra A on Ω, there is a compact Hausdorff space such
that every coherent upper prevision on (Ω,A) can be represented by an upper expectation
on (Ξ,B0) whose structure is C(Ξ) - compact. Therefore, the setup in Subsection 2.4.4
– namely upper expectations on compact Hausdorff spaces and the C(Ξ) - topology – is
as general as the setup in Section 2.3 (coherent upper previsions and L∞(Ω,A)). If we
are faced with a coherent upper prevision P on (Ω,A) whose credal set M contains
probability charges which are no probability measures, we can always turn over to the
classical measure theoretic setup in the following way: Build the set

P :=
{
φ0(P )

∣∣ P ∈M} = φ0

(
M
)
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This is a C(Ξ) - compact structure of an upper expectation which consists of probability
measures on (Ξ,B0) where Ξ is a compact Hausdorff space. Then, all calculations can
be done on the measurable space (Ξ,B0) and with probability measures. Finally, the
obtained results can be transformed back to (Ω,A) by

P [f ] = P 0

[
ξ(f)

]
∀ f ∈ L∞(Ω,A)

where P 0 is the upper expectation which belongs to the structure P on (Ξ,B0) .

The reader who does not like probability charges which are not probability measures
may always turn over to the classical measure theoretic setup by this way. However,
the canonical Stone space is not very convenient to handle so that it seems to be easier
to deal with coherent upper previsions on (Ω,A). Accordingly, the practical use of this
representation may be rather limited but it is very interesting from a theoretical point
of view that there is no essential difference between both setups. The rest of this book
usually considers coherent upper previsions.
The specific choice of the canonical Stone representation is not important in this book.
However, it is important that there is a uniquely defined representation – this will be used
in Subsection 3.3.3 in order to define standard measures for probability charges which are
not σ-additive. Standard measures are useful because it is possible to calculate (upper)
Bayes risks in decision theory with the help of standard measures. These concepts of
decision theory under complex uncertainty are presented in the following chapter. Therein,
complex uncertainty is modeled by coherent upper previsions and credal sets.
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Chapter 3

Extended decision theoretic
framework

3.1 Introduction

Decision theory provides a formal framework for determining optimal actions under uncer-
tainty on the states of nature. It has a wide range of potential areas of application which
includes also statistical problems. However, a serious problem in practical applications of
decision theory is that the uncertainty often is too complex to be adequately described
by a precise probability distribution. As explained in Chapter 1, ambiguity is an impor-
tant part of decision making which cannot be neglected. In order to take ambiguity into
account properly, any of the concepts of imprecise probabilities presented in Chapter 2
can be used. Imprecise probabilities (or equivalent concepts) are already applied in many
decision theoretic evaluations, for example in mathematical economics – e.g. Gilboa and
Schmeidler (1989), Schied (2006), Maccheroni et al. (2006) and Föllmer et al. (2007) –
and in articles concerning climate change – e.g. Kriegler (2005) and Hall et al. (2007).

A general article about decision making where uncertainties are modeled by coherent lower
previsions is de Cooman and Walley (2002). Different optimality criteria are discussed by
Schervish et al. (2003) and Troffaes (2007) in this setup. Algorithms for the calculation
of optimal decisions are given by Kikuti et al. (2005) and Utkin and Augustin (2005).

Within this book, the concept of imprecise probabilities according to Walley (1991) – i.e.
the concept of coherent upper previsions – is used. The present chapter introduces the
decision theoretic setup and develops some important tools which prove to be useful in
decision theory under imprecise probabilities. These tools are mainly adapted from the
work of L. Le Cam (Le Cam, 1986) and transfered to the theory of imprecise probabilities.
Within the theory of imprecise probabilities, these tools have been introduced in Hable
(2007) and Hable (2008b).

We start with an informal description of the decision theoretic setup under imprecise
probabilities. In order to explain the decision theoretic setup we are concerned with, the
classical decision theoretic setup is recalled at first:

There is a set Θ where each element θ ∈ Θ represents a possible state of nature. We know
that one state of nature will occur but we do not know which one it will be. Furthermore,
there is a set D where each element t ∈ D is a decision – also called action – we can
choose. Depending on what state of nature θ occurs, every decision t leads to a loss
Wθ(t) ∈ R. The goal is to choose a “good” decision so that the loss is as small as possible.

45
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Sometimes, we might know a precise expectation π for the states of nature θ ∈ Θ. Then,
we can choose the decision that minimizes the expected loss∫

Θ

Wθ(t) π(dθ)

In addition, we often can choose our decision on base of an observation y ∈ Y . For
example, y may be the outcome of an experiment. The distribution of the observation
y might be a precise expectation Qθ which depends on the state of nature θ. That is
(Qθ)θ∈Θ is a model which describes the distribution of the observation y.
Such “data-based decision making” can be formalized by choosing a decision function
δ : Y → D , y 7→ δ(y) which minimizes∫

Θ

∫
Y
Wθ(δ(y))Qθ(dy) π(dθ)

Decision theory commonly also deals with randomized decisions. Randomized decision
procedures (randomizations) are defined in Section 3.2 and Subsection 3.3.1. Confer
Berger (1985) for an introduction to these basic concepts of decision theory.

In the following, we are concerned with a more general decision theoretic setup because
we also want to deal with imprecise probabilities:

Since the prior knowledge about the states of nature will frequently not be precise, we
allow for a whole set P of possible precise expectations π. Also the knowledge about
the distribution of the observation may only be imprecise so that there are sets Mθ of
possible precise expectations Qθ. While minimizing the expected loss in case of precise
expectations is widely accepted, there are several reasonable optimality criteria in case of
imprecise expectations; confer Troffaes (2007) for a discussion of the most important ones.
In this book, the so-called Γ-minimax criterion is mainly used which represents a worst
case consideration.1 That is we choose a decision function δ (or rather a randomization
later on) which minimizes the twofold upper expectation

sup
π∈P

∫
Θ

sup
Qθ∈Mθ

∫
Y
Wθ(δ(y))Qθ(dy)π(dθ)

Unfortunately, a direct solution of this problem is quite often computationally intractable.
This fact gives rise to many of the investigations in this book.
A solution of this problem is much more easier if decisions are not data-based. However,
data-based decision problems are more important for applications – the more so as the
main applications we are interested in are statistical problems. In fact, statistical problems
can be formalized as decision theoretic problems. The part of decision theory which is
concerned with the formalization of statistical problems is also called statistical decision
theory (cf. e.g. Berger (1985) or Le Cam (1986)). Of course, statistical decision theory
is always data-based.

Remark 3.1 In case of precise probabilities, it is usually not necessary to explicitly con-
sider data-based decision problems because it is possible to solve data-based decision prob-
lems by solving appropriate data-free decision problems. This is due to a famous theorem
which is often called the “main theorem of Bayesian decision theory”; cf. e.g. (Berger,
1985, § 4.4.1) . However, this is usually not possible in case of imprecise probabilities
as pointed out by Augustin (2003).2 As a consequence, data-based decision problems are

1For the use of the Γ-minimax criterion in Bayesian analysis, cf. Vidakovic (2000) and the literature
cited therein.

2In robust Bayesian analysis, this is also explained in Vidakovic (2000).



3.1. INTRODUCTION 47

a matter of its own in imprecise probability theory. The question if data-based decision
problems have to be considered explicitly picks up an old debate between frequentists and
Bayesians: Does the posterior distribution π(·|y) contain all relevant information after
observing y? It is neither the aim of the present book to add new arguments to this debate
nor to review it. The present book is only concerned with the mathematical investigation
of decision problems with an explicitly data-based formulation.
Decision problems under imprecise probabilities which are explicitly data-based have hardly
been considered before. One of the very few exceptions is e.g. Augustin (2004).

The following Section 3.2 contains a mathematical rigorous explanation of the decision
theoretic setup. Here, fundamental decision theoretic concepts are recalled and extended
to imprecise probabilities.

Section 3.3 introduces some important advanced decision theoretic tools, namely gener-
alized randomizations, equivalence/sufficiency and standard measures. As already men-
tioned above, many of these concepts are translations of objects which have been in-
troduced by L. Le Cam in a very general setup of precise probabilities. Most of these
translations are analogous to the proceeding in Buja (1984). However, there are fun-
damental differences which arise from the fact that Buja (1984) uses more traditional
concepts based on Polish spaces and σ-additive probability measures.

Firstly, Subsection 3.3.1 is concerned with generalized randomizations which generalize
Markov kernels. On the one hand, these generalized randomizations have a less descriptive
interpretation but, on the other hand, they are a powerful mathematical tool. Indeed,
they help to avoid some difficulties which arise if Markov kernels are considered only. In
contrast to Le Cam, results which are obtained by use of generalized randomizations are
translated in terms of Markov kernels as far as possible in this book.

In Subsection 3.3.2, we define an equivalence relation on the set of all (precise) models
(Qθ)θ∈Θ according to which two (precise) models (Pθ)θ∈Θ and (Qθ)θ∈Θ are equivalent if
the following is true: Observations of model (Pθ)θ∈Θ can artificially be generated (by a
randomization) from observations of model (Qθ)θ∈Θ and vice versa.

Every equivalence class contains a uniquely determined standard representative. This
representative which is called standard model is defined in Subsection 3.3.3. A standard
model is a model which consists of probability measures on a very convenient measurable
space. Due to equivalence, we can investigate every model with the help of its standard
model (cf. Secion 4.2). In order to define standard models for precise models which do
not consist of σ-additive probability measures, the results from Section 2.5 concerning
canonical Stone representations are crucial.

Since the concepts introduced in Section 3.3 are strongly connected with concepts intro-
duced by L. Le Cam, Chapter 3 closes with Section 3.4 where the connections to L. Le
Cam’s setup are explained. On the one hand, L. Le Cam’s setup is more specific than the
setup used in imprecise probabilities because L. Le Cam only deals with precise probabil-
ities. On the other hand, his setup is more general because he does not consider explicitly
specified sample spaces but considers probabilities as elements of certain vector lattices.
Furthermore, Section 3.4 may also serve as a comprehensible introduction to L. Le Cam’s
abstract setup.
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3.2 Basic definitions in decision theory

Let Θ be any index set. The elements θ ∈ Θ are called states of nature and Θ is called
set of states.

Let D be any set. The elements t ∈ D are called decisions. Let D be an algebra on D.
Then, (D,D) is called decision space. D represents the set of all possible decisions in a
decision problem.
A family of functions

(Wθ)θ∈Θ ⊂ L∞(D,D)

is called loss function. Every loss function (Wθ)θ∈Θ defines a function

W : Θ×D → R , (θ, t) 7→ Wθ(t)

This function is also called loss function.

Let Y be a set and B an algebra on Y . The elements of Y represent the possible outcomes
of an experiment. Therefore, (Y ,B) is called sample space.
A measurable map

δ : Y → D , y 7→ δ(y)

is called decision function. A finitely additive Markov kernel

τ : Y ×D → R , (y,D) 7→ τy(D)

is called randomized decision function (on (Y ,B)); confer Subsection 3.3.1 for finitely
additive Markov kernels. Especially, τ defines a map

τ• : Y → ba+
1 (D,D) , y 7→ τy

y 7→ τy has the following descriptive interpretation: After observing y, start an auxiliary
random experiment according to the distribution τy and choose that action d which is the
outcome of the auxiliary random experiment.

A family of probability charges

(Qθ)θ∈Θ ⊂ ba+
1 (Y ,B)

is called precise model on (Y ,B).
A family of coherent upper previsions

(Qθ)θ∈Θ on L∞(Y ,B)

is called imprecise model on (Y ,B).
These terms are adopted from the notion “statistical model”. Buja (1984) and Le Cam
(1964), for example, use the term “experiment” instead of “model”.
Let (Qθ)θ∈Θ be an imprecise model on (Y ,B) and, for every θ ∈ Θ, let Mθ be the credal
set of Qθ on (Y ,B). Then, the family of credal sets

(Mθ)θ∈Θ , Mθ ⊂ ba+
1 (Y ,B)

is denoted as the family of credal sets which corresponds to the imprecise model (Qθ)θ∈Θ.
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Notation 3.2
(
Y ,B, (Qθ)θ∈Θ

)
is called precise model if Y is a set with algebra B and

(Qθ)θ∈Θ is a precise model on (Y ,B) .(
Y ,B, (Qθ)θ∈Θ

)
is called imprecise model if Y is a set with algebra B and (Qθ)θ∈Θ is an

imprecise model on (Y ,B) .

With all these settings, the function

Θ → R , θ 7→ Qθ

[
τ•[Wθ]

]
=

∫
Y

∫
D
Wθ(t) τy(dt)Qθ(dy)

is called risk function of τ (for the precise model (Qθ)θ∈Θ); and the function

Θ → R , θ 7→ Qθ

[
τ•[Wθ]

]
= sup

Qθ∈Mθ

∫
Y

∫
D
Wθ(t) τy(dt)Qθ(dy)

is called risk function of τ (for the imprecise model (Qθ)θ∈Θ).

The lower the risk function is the better the (randomized) decision function is. Clearly, a
(randomized) decision function τ̃ is optimal if

Qθ

[
τ̃•[Wθ]

]
≤ Qθ

[
τ•[Wθ]

]
∀ θ ∈ Θ

for every other randomized decision function τ . Unfortunately, such a “uniformly optimal”
τ̃ almost never exists. Therefore, we have to rely on different optimality criteria defined
by the Bayes risk:
Let π be a probability charge on (Θ, 2Θ). Then, π is called (precise) prior distribution on
Θ and

Rπ

(
(Qθ)θ∈Θ, τ,W

)
=

∫
Θ

Qθ

[
τ•[Wθ]

]
π(dθ) =

=

∫
Θ

∫
Y

∫
D
Wθ(t) τy(dt)Qθ(dy) π(dθ)

is called Bayes risk of τ with respect to π.
More generally, let Π be an coherent upper prevision on L∞(Θ, 2Θ) with corresponding
credal set P and consider an imprecise model (Qθ)θ∈Θ with corresponding family of credal
sets (Mθ)θ∈Θ . Then, Π is called imprecise prior distribution on Θ and

RΠ

(
(Qθ)θ∈Θ, τ,W

)
= sup

π∈P

∫
Θ

Qθ

[
τ•[Wθ]

]
π(dθ) =

= sup
π∈P

∫
Θ

sup
Qθ∈Mθ

∫
Y

∫
D
Wθ(t) τy(dt)Qθ(dy) π(dθ)

is called (upper) Bayes risk of τ with respect to Π.

A (randomized) decision function τ̃ is called optimal with respect to the prior Π if

RΠ

(
(Qθ)θ∈Θ, τ̃ ,W

)
≤ RΠ

(
(Qθ)θ∈Θ, τ,W

)
for every other randomized decision function τ . That is, τ̃ is optimal if it minimizes the
upper Bayes risk.
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These definitions includes that we have chosen the Γ-minimax optimality criterion which
represents a worst case consideration (cf. Section 3.1) - as done e.g. in Huber and Strassen
(1973) and Buja (1984) in a similar setup or in robust Bayesian analysis (c.f. Vidakovic
(2000)).

Notation:

It will be seen in the following section that every randomized decision function τ defines
a map

ba(Y ,B) → ba(D,D)

where the image of µ ∈ ba(Y ,B) is the bounded charge on ba(D,D) given by

L∞(D,D) → R , h 7→ µ
[
τ•[h]

]
=

∫
Y
h(t) τy(dt)µ(dy)

This map is again denoted by τ . That is,

τ(µ)[h] = µ
[
τ•[h]

]
=

∫
Y
h(t) τy(dt)µ(dy)

With this notation, the risk function of τ can be written as

Θ → R , θ 7→ τ(Qθ)[Wθ]

3.3 Extended decision theoretic concepts

3.3.1 Generalized Randomizations

3.3.1.1 Definitions and basic properties

Usually, randomizations are modeled via Markov kernels. Since σ-additivity is relaxed
to finite additivity in this book, it is suggesting to model randomizations via “finitely
additive Markov kernels”.

Definition 3.3 Let Ω1 be a set with algebra A1 and let Ω2 be another set with algebra
A2 . A finitely additive Markov kernel on Ω1 ×A2 is a map

τ : Ω1 ×A2 → R , (ω1, A2) 7→ τω1(A2)

such that

• τ•(A2) : ω1 7→ τω1(A2) is an element of L∞(Ω1,A1) for every A2 ∈ A2 and

• τω1 : A2 7→ τω1(A2) is an element of ba+
1 (Ω2,A2) for every ω1 ∈ Ω1 .

A finitely additive Markov kernel on Ω1 × A2 is also called randomized function from
(Ω1,A1) to (Ω2,A2) .

The only difference between this definition and the usual definition of a Markov kernel is:
Here, we do not insist on τω1 ∈ ca+

1 (Ω2,A2) – we only insist on τω1 ∈ ba+
1 (Ω2,A2) . This

explains the term “finitely additive Markov kernel”.
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A non-randomized function from (Ω1,A1) to (Ω2,A2) is a measurable function δ : Ω1 → Ω2

which maps a fixed ω1 ∈ Ω1 to a fixed ω2 = δ(ω1) ∈ Ω2. That is, every ω1 leads to some
ω2 = δ(ω1) in a deterministic way.
The idea behind a randomized function from (Ω1,A1) to (Ω2,A2) is the following proce-
dure: Given some ω1, start a auxiliary random experiment according to the distribution
τω1 . Then, this auxiliary random experiment produces the ω2 in a random way.
Finitely additive Markov kernels are called ordinary randomizations because they are –
apart from σ-additivity – exactly the randomizations which are usually used in decision
theory and because they have a descriptive interpretation as randomized functions. Below,
a slight generalization will be defined which is called generalized randomizations.

Firstly, note that a finitely additive Markov kernel τ defines a map

T : L∞(Ω2,A2) → L∞(Ω1,A1) , f2 7→ T (f2)

via

T (f2)(ω1) =

∫
Ω2

f2(ω2) τω1(dω2) (3.1)

for every ω1 ∈ Ω1 and f2 ∈ L∞(Ω2,A2) . This map T : L∞(Ω2,A2)→ L∞(Ω1,A1) is

• linear

• positive: T (f2) ≥ 0 ∀ f2 ≥ 0

• normalized: T (IΩ2) = IΩ1

Furthermore, a finitely additive Markov kernel τ defines a map

σ : ba(Ω1,A1) → ba(Ω2,A2) , σ 7→ σ(µ1)

via

σ(µ1)[f2] =

∫
Ω2

f2(ω2) τω1(dω2)µ1(dω1) (3.2)

for every µ1 ∈ ba(Ω1,A1) and f2 ∈ L∞(Ω2,A2) . This map σ : ba(Ω1,A1)→ ba(Ω2,A2) ,
is

• linear

• positive: σ(µ1) ≥ 0 ∀µ1 ≥ 0

• normalized: σ(µ1)[IΩ2 ] = µ1[IΩ2 ] ∀µ1

Note, that σ is the adjoint operator of T because

σ(µ1)[f2] = µ1

[
T (f2)

]
∀ f2 ∈ L∞(Ω2,A2) , ∀µ1 ∈ ba(Ω1,A1)

As in (Le Cam, 1964, § 3) and (Le Cam, 1986, § 1.3), this motivates the following defini-
tion:
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Definition 3.4 (Generalized randomization) Let Ω1 be a set with algebra A1 and let
Ω2 be another set with algebra A2 . A generalized randomization from (Ω1,A1) to (Ω2,A2)
is a map

σ : ba(Ω1,A1) → ba(Ω2,A2) , σ 7→ σ(µ1)

which is

• linear

• positive: σ(µ1) ≥ 0 ∀µ1 ≥ 0 , µ1 ∈ ba(Ω1,A1)

• normalized: σ(µ1)[IΩ2 ] = µ1[IΩ2 ] ∀µ1 ∈ ba(Ω1,A1)

T (Ω1,Ω2) denotes the set of all generalized randomizations from (Ω1,A1) to (Ω2,A2) .

Remark 3.5 The above definition is a translation of the definitions of “randomization”
in (Le Cam, 1964, § 3) and “transition” in (Le Cam, 1986, § 1.3). Due to the usual setup
based on explicitly specified sample spaces (Ωi,Ai), domain and codomain of generalized
randomizations are ba(Ω1,A1) and ba(Ω2,A2) in Definition 3.4. In contrast, the defini-
tion of transitions in (Le Cam, 1986, § 1.3) is formulated in terms of general L-spaces –
this is due to the general setup in Le Cam (1986) where the sample spaces are not explic-
itly specified. The definition of transitions is recalled in Section 3.4 and Proposition 3.36
shows that every generalized randomization in the sense of Definition 3.4 is a transition
in the sense of (Le Cam, 1986, § 1.3).

As seen above, every (finitely additive) Markov kernel defines a generalized randomization.
Since those generalized randomizations which are defined by (finitely additive) Markov
kernels are exactly the objects which are usually considered as randomizations, we may
call them ordinary randomizations:

Definition 3.6 (Ordinary randomization)
A generalized randomization (from (Ω1,A1) to (Ω2,A2)) which is defined by a finitely ad-
ditive Markov kernel via (3.2) is called ordinary randomization (from (Ω1,A1) to (Ω2,A2))
or simply randomization.
T0(Ω1,Ω2) denotes the set of all (ordinary) randomizations from (Ω1,A1) to (Ω2,A2) .

Of course, every ordinary randomization is a generalized randomization but even more:
The ordinary randomizations are dense in the set of the generalized randomizations; cf.
Theorem 3.10. Later on, we will also need a class of randomizations which have a very
simple form; those randomizations are called restricted randomizations:

Definition 3.7 (Restricted randomization) For i ∈ {1, 2}, let Ωi be a set with alge-
bra Ai and let

τ : Ω1 ×A2 → R

be a finitely additive Markov kernel on Ω1 ×A2 such that

τ(ω1, A2) =
∑
ω̃2∈Ω̃2

αω̃2(ω1) · δω̃2(A2) ∀ω1 ∈ Ω1 , A2 ∈ A2 (3.3)

where Ω̃2 ⊂ Ω2 is a finite set, δω̃2 denotes the Dirac measure in ω̃2,

αω̃2 ≥ 0 , αω̃2 ∈ L∞(Ω2,A2) ∀ ω̃2 ∈ Ω̃2 and
∑
ω̃2∈Ω̃2

αω̃2 ≡ 1
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Then, the ordinary randomization which is defined by τ via (3.2) is called restricted
randomization (from (Ω1,A1) to (Ω2,A2)) and Tr(Ω1,Ω1) denotes the set of all restricted
randomizations from (Ω1,A1) to (Ω2,A2) .

Remark 3.8 Analogously to the definition of ordinary randomizations, the above defini-
tion is a translation of the definitions of “restricted randomized map” in (Le Cam, 1964,
§ 3) and “finitely supported transition” in (Le Cam, 1986, § 1.4). According to Propo-
sition 3.37, the restricted randomizations in the sense of Definition 3.7 are precisely the
((Γ, H)−continuous) finitely supported transitions in the sense of (Le Cam, 1986, § 1.4).

T (Ω1,Ω2) can be provided with the topology of pointwise convergence. This is the smallest
topology so that

T (Ω1,Ω2) → R, σ 7→ σ(µ1)[f2]

is continuous for every µ1 ∈ ba(Ω1,A1) and every f2 ∈ L∞(Ω2,A2). The following theorem
is one of the reasons why we use this generalization of randomized functions:

Theorem 3.9 T (Ω1,Ω2) is a compact Hausdorff space (with respect to the topology of
pointwise convergence).
(Cf. (Le Cam, 1986, Theorem 1.4.2).)

The following theorem indicates that the term “randomization” has only been slightly
generalized:

Theorem 3.10 The following inclusions are valid:

Tr(Ω1,Ω2) ⊂ T0(Ω1,Ω2) ⊂ T (Ω1,Ω2) (3.4)

Furthermore, Tr(Ω1,Ω2) and T0(Ω1,Ω2) are dense in T (Ω1,Ω2) (with respect to the topol-
ogy of pointwise convergence).

Proof : Equation (3.4) is obvious from the definitions. The second statement is a special
case of (Le Cam, 1986, Theorem 1.4.1):

In (Le Cam, 1986, Theorem 1.4.1) put L = ba(Ω1,A1), D = Ω2, Γ = L∞(Ω2,A2) and
H = M . The transitions which are finitely supported and (Γ, H) continuous are dense
in T (Ω1,Ω2) with respect to the topology of uniform convergence on the elements of K
(as defined in (Le Cam, 1986, p. 7)).

Since {µ1} × {f2} ∈ K for every µ1 ∈ ba(Ω1,A1) and every f2 ∈ L∞(Ω2,A2) , the
topology of pointwise convergence is weaker than the topology of uniform convergence
on the elements of K .

Hence, the transitions which are finitely supported and (Γ, H) continuous are also dense
in T (Ω1,Ω2) with respect to the topology of pointwise convergence and it suffices to
prove the following statement: Every finitely supported and (Γ, H) continuous transition
(according to (Le Cam, 1986, p. 6f)) is a restricted randomization (according to Definition
3.7).

The latter statement is shown by Proposition 3.37 below. 2
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Theorem 3.9 and Theorem 3.10 are due to L. Le Cam. Results from Le Cam (1986) can be
used in this book because the setup here is a special case of the general setup in Le Cam
(1986). However, for the reader who is not familiar with the general setup, it is very hard
(or even impossible) to look up these results in Le Cam (1986). Therefore, the connection
of the setup in this book and the general setup in Le Cam (1986) and Le Cam (1964) is
explained in Section 3.4.

The present subsection ends with a convenient characterization of ordinary randomiza-
tions.

Proposition 3.11 Let Ω1 be a set with algebra A1 and let Ω2 be another set with algebra
A2 . Let σ ∈ T (Ω1,Ω2) be a generalized randomization. Then, the following statements
are all equivalent:

a) σ is an ordinary randomization.

b) There is a map T : L∞(Ω2,A2) → L∞(Ω1,A1) which is linear, positive (T (f2) ≥
0 ∀ f2 ≥ 0) and normalized (T (IΩ2) = IΩ1) such that σ is the adjoint operator of
T .

c) σ is continuous with respect to the L∞(Ω1,A1) - topology on ba(Ω1,A1) and the
L∞(Ω2,A2) - topology on ba(Ω2,A2) .

Proof :
(a)⇒ (b): As already stated above, this is a direct consequence of the definition. Put
T (f2)(ω1) = τω1 [f2] where τ is a finitely additive Markov kernel which defines σ via
(3.2).

(a)⇐ (b): T defines a finitely additive Markov kernel via τω1 [IA2 ] = T (IA2)(ω1) . Then,

σ(µ1)[IA2 ] = µ1

[
T (IA2)

]
=

∫ ∫
IA2(ω2) τω1(dω2)µ1(dω1)

for every µ1 ∈ ba(Ω1,A1) and A2 ∈ A2 . According to the definition of L∞(Ω2,A2), this
implies

σ(µ1)[f2] =

∫ ∫
f2(ω2) τω1(dω2)µ1(dω2)

for every µ1 ∈ ba(Ω1,A1) and f2 ∈ L∞(Ω2,A2) .

(b)⇒ (c): All topological terms within this proof are with respect to the topologies
mentioned in Proposition 3.11.
Let (µ1,γ)γ∈D be a net in ba(Ω1,A1) which converges to some µ1 ∈ ba(Ω1,A1). This
implies that, for every f2 ∈ L∞(Ω2,A2),

σ(µ1,γ)[f2] = µ1,γ

[
T (f2)

]
−→
γ

µ1

[
T (f2)

]
= σ(µ1)[f2]

That is, σ(µ1,γ) −→
γ

σ(µ1) according to Theorem 8.24 b) .

(b)⇐ (c): According to (Dunford and Schwartz, 1958, Exercise VI.9.13), there is a norm-
continuous linear functional T : L∞(Ω2,A2) → L∞(Ω1,A1) such that σ is the adjoint
operator of T .
T is positive because T (f2)(ω1) = δω1

[
T (f2)

]
= σ(δω1)[f2] ≥ 0 for every f2 ≥ 0 where

δω1 denotes the Dirac measure.
T is normalized because T (IΩ2)(ω1) = δω1

[
T (IΩ2)

]
= σ(δω1)[IΩ2 ] = 1 . 2
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3.3.1.2 Generalized decision procedures

As explained in Section 3.2, decision procedures (called randomized decision functions)
are defined via Markov kernels. In the previous subsection, generalized randomizations
were defined as generalizations of Markov kernels. So, it is suggesting to use this definition
in order to generalize randomized decision functions:

Definition 3.12 Let (D,D) be a decision space and (Y ,B) a sample space. A (general-
ized) decision procedure is a generalized randomization

σ : ba(Y ,B) → ba(D,D)

In order to define the risk function of such a generalized decision procedure

σ : ba(Y ,B) → ba(D,D)

let
(Wθ)θ∈Θ ⊂ L∞(D,D)

be a loss function and (Qθ)∈θ∈Θ be a precise model on the sample space (Y ,B) . Then,
the risk function of σ is defined to be

Θ → R , θ 7→ σ(Pθ)[Wθ]

Accordingly, the risk function of σ for an imprecise model (Qθ)θ∈Θ on (Y ,B) is defined to
be

Θ → R , θ 7→ sup
Pθ∈Mθ

σ(Pθ)[Wθ]

where Mθ is the credal set which corresponds to Qθ for every θ ∈ θ .

Of course, these definitions reduce to the usual ones if the decision procedure σ is defined
by an ordinary randomization; confer also Section 3.2.

In order to unify terminology, the following definitions are used, too:

Definition 3.13 Let (D,D) be a decision space and (Y ,B) a sample space. A restricted /
ordinary decision procedure is a restricted / ordinary randomization

σ : ba(Y ,B) → ba(D,D)

That is, every ordinary decision procedure corresponds to a randomized decision function
and vice versa.

3.3.2 Sufficiency and equivalence of imprecise models

3.3.2.1 Definitions and basic properties

Sufficiency is not only a very important concept in statistics but also in decision theory.
The following definition is an analog to the corresponding definition in Buja (1984).

Definition 3.14 (Sufficient) Let Θ be any index set. Let Y be a set with algebra B and
let (Qθ)θ∈Θ be a precise model on (Y ,B). Let X be another set with algebra A and let
(Pθ)θ∈Θ be a precise model on (X ,A) .
(Pθ)θ∈Θ is called sufficient for (Qθ)θ∈Θ if there is a generalized randomization σ ∈ T (X ,Y)
so that σ(Pθ) = Qθ ∀ θ ∈ Θ .
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This definition of “sufficiency” essentially goes back to Blackwell (1951). It does not
strictly coincide with the more common definition in terms of conditional expectations but,
under suitable assumptions of regularity, the definitions do coincide (cf. Heyer (1973)).
At least, if the randomization σ is an ordinary randomization, which is defined by a ran-
domized function x 7→ τx , it has a very descriptive interpretation:
Let x be an observation distributed according to Pθ. After observing x, start an auxil-
iary random experiment according to τx. Then, the outcome y of the auxiliary random
experiment is distributed according to Qθ. That is, if we have observations of the model
(Pθ)θ∈Θ, we can artificially generate observations of the model (Qθ)θ∈Θ “by coin tossing”.
This illustrates that (at least in case of an ordinary randomization) the model (Qθ)θ∈Θ

cannot be more informative than the sufficient model (Pθ)θ∈Θ.

Using this definition of sufficiency, we can define an equivalence relation on the set of all
precise models{(

Z, C, (Pθ)θ∈Θ

) ∣∣∣ Z a set with algebra C , (Pθ)θ∈Θ ⊂ ba+
1 (Z, C)

}
Note that, while the sample space (Z, C) may change, the index set Θ is fixed.

Definition 3.15 (Equivalence of models) Let Θ be any index set. Let Y be a set with
algebra B and let (Qθ)θ∈Θ be a precise model on (Y ,B). Let X be another set with algebra
A and let (Pθ)θ∈Θ be a precise model on (X ,A) .
(Pθ)θ∈Θ and (Qθ)θ∈Θ are called equivalent if they are mutually sufficient.

That is, (Pθ)θ∈Θ and (Qθ)θ∈Θ are equivalent if and only if there are some σ ∈ T (X ,Y),
ρ ∈ T (Y ,X ) so that σ(Pθ) = Qθ ∀ θ ∈ Θ and ρ(Qθ) = Pθ ∀ θ ∈ Θ. This definition of
equivalence is in accordance with Le Cam’s definition (cf. Proposition 3.39). The de-
scriptive interpretation of sufficiency already indicates that equivalent models essentially
coincide from a decision theoretic point of view.

Now, we turn over to imprecise models. Recall from Notation 3.2, that the term

“
(
Y ,B, (Qθ)θ∈Θ

)
is an imprecise model”

means that Y is a set with algebra B and (Qθ)θ∈Θ is an imprecise model on (Y ,B). An
analogous notation is used for precise models.
The following definition is again an analog to the corresponding definition of worst-case-
sufficiency in Buja (1984).

Definition 3.16 (Worst-case-sufficient) Let Θ be any index set. Let (Y ,B, (Qθ)θ∈Θ)
be an imprecise model with corresponding family of credal sets (Mθ)θ∈Θ on (Y ,B). Let
(X ,A, (Pθ)θ∈Θ) be a precise model.
(Pθ)θ∈Θ is called worst-case-sufficient for (Qθ)θ∈Θ if there is precise model (Qθ)θ∈Θ ∈
(Mθ)θ∈Θ such that (Pθ)θ∈Θ is sufficient for (Qθ)θ∈Θ .

That is, (Pθ)θ∈Θ is worst-case-sufficient for (Qθ)θ∈Θ if and only if there is some σ ∈ T (X ,Y)
so that ∀ θ ∈ Θ

σ(Pθ)[g] ≤ Qθ[g] , ∀ g ∈ L∞(Y ,B)

Indeed, worst-case-sufficiency is a very weak form of sufficiency but it is often enough
because we have chosen a worst case consideration in decision theory under imprecise
probabilities; cf. Section 3.1.

Finally, sufficiency can also be defined for imprecise models:
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Definition 3.17 (Sufficient) Let Θ be any index set. Let (Y ,B, (Qθ)θ∈Θ) be an impre-
cise model with corresponding family of credal sets (Mθ)θ∈Θ. Let (X ,A, (P θ)θ∈Θ) be an
imprecise model with corresponding family of credal sets (Nθ)θ∈Θ.
(P θ)θ∈Θ is called sufficient for (Qθ)θ∈Θ if there is a generalized randomization σ ∈ T (X ,Y)
such that ∀ θ ∈ Θ

sup
Pθ∈Nθ

σ(Pθ)[g] = Qθ[g] , ∀ g ∈ L∞(Y ,B) (3.5)

Proposition 3.18 Let Θ be any index set. Let (Y ,B, (Qθ)θ∈Θ) be an imprecise model
with corresponding family of credal sets (Mθ)θ∈Θ. Let (X ,A, (P θ)θ∈Θ) be an imprecise
model with corresponding family of credal sets (Nθ)θ∈Θ.
Then, (P θ)θ∈Θ is sufficient for (Qθ)θ∈Θ if and only if there is a generalized randomization
σ ∈ T (X ,Y) such that

c`
(
σ
(
Nθ
))

= Mθ ∀ θ ∈ Θ

where c` denotes the closure with respect to the L∞(Y ,B) - topology of ba(Y ,B) .

Proof : Proposition 2.15 and (3.5) imply that the credal set Mθ of Qθ is equal to
c` co

(
σ(Nθ)

)
. Convexity of Nθ and linearity of σ imply that σ(Nθ) is convex. Hence,

c`
(
σ(Nθ)

)
is the convex closure of σ(Nθ) according to (Dunford and Schwartz, 1958,

Theorem V.2.1). That is, c`
(
σ(Nθ)

)
= c` co

(
σ(Nθ)

)
=Mθ .

The converse statement is trivial. 2

Remark 3.19 If the generalized randomization σ in Definition 3.17 is even an ordinary
randomization, then

σ
(
Nθ
)

= Mθ

is the credal set of Qθ for every θ ∈ Θ . This follows from Proposition 3.18 and Proposition
3.11.

Analogously to precise models, we can also define equivalence for imprecise models:

Definition 3.20 Let Θ be any index set. Let (Y ,B, (Qθ)θ∈Θ) and (X ,A, (P θ)θ∈Θ) be
imprecise models.
(P θ)θ∈Θ and (Qθ)θ∈Θ are called equivalent if they are mutually sufficient.

Remark 3.21 Since probability charges are special cases of coherent upper previsions,
precise models (Pθ)θ∈Θ and (Qθ)θ∈Θ are special cases of imprecise models. Hence, the terms
“sufficient” and “equivalent” have been defined twice for (Pθ)θ∈Θ and (Qθ)θ∈Θ – considered
as precise models in Definition 3.14 and Definition 3.15, considered as imprecise models in
Definition 3.17 and Definition 3.20. However, it is obvious that the respective definitions
coincide in this case.

Every imprecise model is equivalent to a uniquely defined imprecise model on a com-
pact Hausdorff space which consists of upper expectations – namely the canonical Stone
representation:

Theorem 3.22 (Equivalence of the canonical Stone representation)
Let (Y ,B, (Qθ)θ∈Θ) be an imprecise model. Let (Ξ,B0) be the canonical Stone space of
(Y ,B) and, for each θ ∈ Θ, let S0,θ be the canonical Stone representation of Qθ (according
to Theorem 2.44).
Then, (Qθ)θ∈Θ and (S0,θ)θ∈Θ are equivalent.
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Proof : For θ ∈ Θ, let Mθ be the credal sets of Qθ and N0,θ the credal set of S0,θ .

According to Theorem 2.40, there is an L-space isomorphism

φ0 : ba(Y ,B) → ca(Ξ,B0)

such that

sup
Qθ∈Mθ

φ0(Qθ)[h0] = S0,θ[h0] ∀h0 ∈ L∞(Ξ,B0)

for every θ ∈ Θ . It is easy to see that an L-space isomorphism is always a transition 3.
Hence, φ0 is indeed a transition – i.e. a generalized randomization – and (Qθ)θ∈Θ is
sufficient for (S0,θ)θ∈Θ .

Conversely, put

σ(ν0)[f ] = ν0

[
ξ(f)

]
∀ ν0 ∈ ba(Ξ,B0) , ∀ f ∈ L∞(Y ,B)

where ξ is the canonical Stone kernel. This defines a generalized randomization

σ : ba(Ξ,B0) → ba(Y ,B) , ν0 7→ σ(ν0)

and, according to Theorem 2.44,

Qθ[f ]
(2.39)
= S0,θ

[
ξ(f)

]
= sup

S0,θ∈N0,θ

S0,θ

[
ξ(f)

]
= sup

S0,θ∈N0,θ

σ(ν0)[f ]

for every f ∈ L∞(Y ,B) . Hence, (S0,θ)θ∈Θ is sufficient for (Qθ)θ∈Θ . 2

For the above theorem, it is crucial that the canonical Stone space (Ξ,B0) for a coherent
upper prevision Qθ only depends on (Y ,B) and does not depend on Qθ. Therefore, (Ξ,B0)
does not depend on θ and we are able to define an imprecise model (S0,θ)θ∈Θ on (Ξ,B0).

As seen in case of the canonical Stone representation, this notion of sufficiency is an
interesting theoretical tool. In addition, Subsection 3.3.2.2 contains a nice example for
sufficiency of imprecise models which shows that this concept can also be applied in real
statistical situations.

In standard mathematical statistics, sufficiency is usually defined by conditional expec-
tations. The concept of conditional expectations which arise in this definition is a rather
abstract measure theoretic concept which deeply relies on σ-additivity. Since the defi-
nition of conditional expectations for imprecise previsions is a complicated matter of its
own which rises many problems even in case of finite sample spaces4, one might think that
a definition of sufficiency for imprecise previsions is far of the scope of present research.
However, as seen above, a generalization of the definitions in Blackwell (1951) and Buja
(1984) really leads to a general definition of sufficiency for imprecise previsions which
avoids the problems connected with conditional expectations.

3This is a direct consequence of the definitions and (2.10).
4The present state of the art is that there seems to be no definition of conditional expectations for

imprecise previsions which is satisfactory in every situation. Instead, different situations ask for different
definitions of conditional expectations; cf. e.g. Weichselberger and Augustin (2003).



3.3. EXTENDED DECISION THEORETIC CONCEPTS 59

3.3.2.2 Examples

a) Classical sufficiency

Let Y be a Polish space with Borel-σ-algebra B, and let (Qθ)θ∈Θ ⊂ ca+
1 (Y ,B) be a

precise model which consists of probability measures Qθ on (Y ,B). Θ may be any index
set.
Furthermore, let X be a set with σ-algebra A, and let

X : Y → X

be a B/A - measurable map.
That is, we are faced with the following situation:(

Y ,B, (Qθ)θ∈Θ

) X−−−−→
(
X ,A, (QX

θ )θ∈Θ

)
where QX

θ denotes the image measure

QX
θ : A 7→ Qθ

(
X−1(A)

)
on (X ,A); cf. e.g. (Hoffmann-Jørgensen, 1994a, § 1.44).

Assume that X is sufficient in the usual sense of mathematical statistics; cf. e.g. (Shao,
2003, Definition 2.4). That is, the conditional distribution given X = x with respect to
Qθ

B → [0, 1] , B 7→ Qθ(B|X = x)

does not depend on θ . Since (Y ,B) is assumed to be a Polish space, there is a regular
version of the conditional expectation. 5 That is, there is a Markov kernel

τ : B×X → R , (B, x) 7→ τx(B)

such that

τx(B) = Qθ(B|X = x) for QX
θ - almost every x ∈ X , ∀ θ ∈ Θ

Put
Pθ := QX

θ , ∀ θ ∈ Θ

Then,
(
X ,A, (Pθ)θ∈Θ

)
is sufficient for

(
Y ,B, (Qθ)θ∈Θ

)
according to Definition 3.14 and

3.17 because the Markov kernel τ defines an ordinary randomization σ such that

σ(Pθ)[g] =

∫
X

∫
Y
g(y) τx(dy)Pθ(dx) =

∫
X

∫
Y
g(y)Qθ(dy|X=x)QX

θ (dx)

=

∫
Y
g(y)Qθ(dy) = Qθ[g] ∀ g ∈ L∞(Y ,B)

for every θ ∈ Θ .

b) Robust statistics

5Confer (Bauer, 1996, Theorem 44.3), for example.
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Let
(
Y ,B, (Qθ)θ∈Θ

)
be a precise model and U(Qθ) be a neighborhood of Qθ as common

in robust statistics; cf. e.g. (Rieder, 1994, § 4.2.1). Put

Qθ[g] = sup
Kθ∈U(Qθ)

Kθ[g] ∀ g ∈ L∞(Y ,B) , θ ∈ Θ

If
(
X ,A, (Pθ)θ∈Θ

)
is a precise model which is sufficient for

(
Y ,B, (Qθ)θ∈Θ

)
, then it is also

worst-case-sufficient for
(
Y ,B, (Qθ)θ∈Θ

)
.

c) Parametrically generated coherent upper prevision

Similar to parametrically generated F-probabilities in (Weichselberger, 2001, p. 131ff),
parametrically generated coherent upper expectations may be defined:

Definition 3.23 (Parametrically generated coherent upper previsions)
Let Y be a set with algebra B. Let (Qθ)θ∈Θ be a precise model on (Y ,B) where Θ is any
index set. Furthermore, let H ⊂ Θ be any subset of the index set.
A coherent upper prevision QH is called parametrically generated by H (with respect to
(Qθ)θ∈Θ) if it is given by

QH [g] = sup
θ∈H

Qθ[g] , g ∈ L∞(Y ,B)

Usually, we have Θ ⊂ Rk and

H = [θ1, θ1]× [θ2, θ2]× · · · × [θk, θk] ⊂ Θ

for some suitable real numbers θj ≤ θj , j = 1, . . . , k .

An imprecise model which consists of such parametrically generated coherent upper pre-
visions is called parametrically generated imprecise model:

Definition 3.24 (Parametrically generated imprecise model)
Let Y be a set with algebra B. Let (Qθ)θ∈Θ be a precise model on (Y ,B) where Θ is any
index set. Furthermore, let H ⊂ 2Θ be any subset of the power set of Θ.
An imprecise model (QH)H∈H is called parametrically generated by H (with respect to
(Qθ)θ∈Θ if the coherent upper prevision QH is parametrically generated by H with respect
to (Qθ)θ∈Θ for every H ∈ H .

Now, consider the situation in part a) again:

Y is a Polish space with Borel-σ-algebra B, (Qθ)θ∈Θ ⊂ ca+
1 (Y ,B) is a precise model

which consists of probability measures Qθ on (Y ,B).
X is a set with σ-algebra A, and X : Y → X is a A/B - measurable map. That is:(

Y ,B, (Qθ)θ∈Θ

) X−−−−→
(
X ,A, (QX

θ )θ∈Θ

)
Assume that X is sufficient in the usual sense of mathematical statistics; cf. e.g. (Shao,
2003, Definition 2.4). Then, it was shown in part a) that

(
X ,A, (QX

θ )θ∈θ
)

is sufficient
for
(
Y ,B, (Qθ∈θ

)
in the sense of Definition 3.17. The following theorem states that this

sufficiency also implies sufficiency of the respective parametrically generated imprecise
models:
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Theorem 3.25 In the above setting, let X be sufficient in the sense of (Shao, 2003,
Definition 2.4) and H ⊂ 2Θ be any subset of the power set of Θ. Furthermore, let(
X ,A, (PH)H∈H

)
be the imprecise model which is parametrically generated by H with

respect to (QX
θ )θ∈θ and let

(
Y ,B, (QH)H∈H

)
be the imprecise model which is parametrically

generated by H with respect to (Qθ)θ∈θ .
Then, (PH)H∈H is sufficient for (QH)H∈H .

Proof : According to part a) of the present subsection, there is an ordinary randomization

σ ∈ T0(X ,Y)

such that
σ
(
QX
θ

)
= Qθ ∀ θ ∈ Θ

For H ∈ H, let NH be the credal set of PH on (X ,A) . Endow ba(Y ,B) with the
L∞(Y ,B) - topology and ba(X ,A) with the L∞(X ,A) - topology. Then,

ba(X ,A) → R , µ 7→ σ(µ)[g]

is linear and continuous for every g ∈ L∞(Y ,B) according to Proposition 3.11 and
Lemma 8.25. This implies

QH [g] = sup
θ∈H

Qθ[g] = sup
θ∈H

σ
(
QX
θ

)
[g] = sup

PH∈NH
σ(PH)[g]

where the last equality follows from Proposition 2.15 and Lemma 8.29. 2

Remark 3.26 The definition of sufficiency of coherent upper previsions can easily be
rewritten into an analogous definition in case of upper expectations. Then, an analog of
Theorem 3.25 can be proven for upper expectations following the lines of the above proof
where Proposition 2.15 is replaced by Proposition 2.23.

In order to get a better impression of the above theorem, we may consider a more concrete
example:

In an ideal situation, the outcomes of an experiment may be distributed according to a
one-dimensional normal distribution

y1, y2, y3, . . . , y100 ∼ N (θ1, θ2)

Here, we have 100 independently, identically distributed observations yi ∈ R and θ =
(θ1, θ2) is the parameter where θ1 ∈ (−∞,∞) denotes the mean and θ2 ∈ (0,∞) denotes
the variance of the normal distribution. The assumptions imply that the observation is

y := (y1, y2, . . . , y100) ∼ N (θ1, θ2)⊗100 = N100

(
a(θ1), B(θ2)

)
where

a(θ1) =


θ1

θ1

·
·
·
θ1

 ∈ R
100 , b(θ2) =


θ2 0 · · · 0
0 θ2 0 · · 0
· · ·
· · ·
· · 0
0 0 · · 0 θ2

 ∈ R
100×100
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So, the parametric precise model is
(
Y ,B, (Qθ)θ∈Θ

)
where

Y = R100 , Qθ = N100

(
a(θ1), b(θ2)

)
, Θ = (−∞,∞)× (0,∞)

In a less idealized situation, only a parametrically generated imprecise model is assumed:
Let H be a subset of 2Θ such that each H ∈ H is of form

H = [θ1, θ1]× [θ2, θ2] ⊂ Θ

for some suitable real numbers θj ≤ θj , j ∈ {1, 2} .
Then, the parametrically generated imprecise model is given by

QH [g] = sup
θ∈H

∫
R100

g dN100

(
a(θ1), b(θ2)

)
No matter if we consider the precise model

(
Y ,B, (Qθ)θ∈Θ

)
or the imprecise model(

Y ,B, (QH)H∈H
)
, the sample space is

Y = R100

which is quite intractable. However, the precise model becomes tractable by the well-
known fact that the map

X : R100 → R2 , (y1, y2, . . . , y100) 7→

(
100∑
i=1

yi ,
100∑
i=1

y2
i

)

is sufficient. That is, we do not need the quite large sample space Y = R100; it is enough
to consider the precise model

Pθ = QX
θ , θ ∈ Θ

on the sample space
X = (−∞,∞)× (0,∞) ⊂ R2

Now, Theorem 3.25 states that the same is true also in case of the parametrically generated
imprecise model: It is enough to consider the parametrically generated imprecise model

PH [f ] = sup
θ∈H

Pθ[f ] , ∀ f ∈ L∞(X ,A) , H ∈ H

on the smaller sample space

X = (−∞,∞)× (0,∞) ⊂ R2

Another example where the above introduced notion of sufficiency for imprecise models
can be used is the so-called “Imprecise Dirichlet Model” which attracts an amazing amount
of attention in the theory of imprecise probabilities. The Imprecise Dirichlet Model is an
imprecise model which is parametrically generated by the Dirichlet distribution. Since
the precise Dirichlet model is an exponential family, valuable statistics are at hand which
are sufficient in the usual sence of mathematical statistics. According to Theorem 3.25,
these statistics are also sufficient for the Imprecise Dirichlet Model.
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3.3.3 Standard Models

In Subsection 3.3.2, we have defined an equivalence relation on the precise models with
a fixed index set Θ. Each equivalence class contains a uniquely defined representative
(called standard model later on) which has some nice properties. As stated in Subsection
3.3.2, equivalent models coincide from a decision theoretic point of view. Therefore,
every decision problem coincides with a “standard decision problem” where a standard
model is involved; properties of the original decision problem can be deduced from the
corresponding “standard decision problem”; confer Section 4.2.

Let the index set Θ be finite with cardinality n now. Furthermore, let X be a set with
σ-algebra A and (Pθ)θ∈Θ a precise model where each Pθ is not only a probability charge
but even a probability measure. In this situation, the standard model can be defined in
the following way:

Put

P =
1

n

∑
θ∈Θ

Pθ ∈ ca+
1 (X ,A)

Hence, for each Pθ, there is a P -density βθ such that

Pθ(A) =

∫
A

βθ dP ∀A ∈ A

The maps βθ can be chosen such that βθ ≥ 0 and
1

n

∑
θ∈Θ

βθ ≡ 1 because

∫
A

∑
θ∈Θ

βθ dP =
∑
θ∈Θ

∫
A

βθ dP =
∑
θ∈Θ

Pθ(A) = n · P (A) = n

∫
A

1 dP

for every A ∈ A . Therefore, it can be assumed without loss of generality that

β(x) :=
1

n

(
βθ1(x) , . . . , βθn(x)

)
∈ U ∀x ∈ X

where

U :=
{
u ∈ Rn

∣∣ u = (uθ1 , . . . , uθn) , uθ ≥ 0 ∀ θ ∈ Θ , uθ1 + · · ·+ uθn = 1
}

Put C := B⊗n ∩ U where B⊗n is the Borel-σ-algebra of Rn. Then,

β : X → U , x 7→ β(x)

is an A/C - measurable function and we can define the image measures

S := β(P ) where S(C) = β(P )(C) = P
(
β−1(C)

)
∀C ∈ C (3.6)

and, for each θ ∈ Θ,

Sθ := β(Pθ) where Sθ(C) = β(Pθ)(C) = Pθ
(
β−1(C)

)
∀C ∈ C (3.7)

Of course, these image measures are probability measures on (U , C) . Let ιθ : U →
[0, 1], u 7→ uθ denote the projection of u on the θ-component uθ. Then, βθ = n · (ιθ ◦ β)
and, therefore, the definitions imply

Sθ(C) =

∫
C

nιθ dS ∀C ∈ C (3.8)
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Since µ 7→ β(µ) 6 is a randomization and β(Pθ) = Sθ for every θ ∈ Θ, the precise model
(Pθ)θ∈Θ is sufficient for the precise model (Sθ)θ∈Θ . The following theorem states that
these two models are even equivalent.

Theorem 3.27 Let the index set Θ be finite with cardinality n. Let X be a set with σ-
algebra A and (Pθ)θ∈Θ a precise model where each Pθ is a measure; let (Sθ)θ∈Θ be defined
as above.
Then, the precise models (Pθ)θ∈Θ and (Sθ)θ∈Θ are equivalent.

The content of Theorem 3.27 is well known; references for standard models are Blackwell
(1951), Buja (1984), Strasser (1985), Le Cam (1986) and Torgersen (1991). In these refer-
ences, standard models are called standard experiments. Though the content of Theorem
3.27 is well known and there are several references for standard models, it does not seem
to be possible to satisfactorily cite a reference which is precisely in accordance with the
definitions and the setup used in this book. Therefore, a self-contained proof of Theorem
3.27 is given below. This avoids involved conversions from the cited references and seems
to be a convenient service for the readers.

Proof of Theorem 3.27: As stated above, the definition of (Sθ)θ∈Θ immediately implies
that (Pθ)θ∈Θ is sufficient for (Sθ)θ∈Θ . Hence, it only remains to proof the converse
direction.

To this end, recall the definitions of P , β, βθ, U , C, S and ιθ from the beginning of the
present subsection.

Let EP [f |β = u] be the conditional expectation of f given β = u with respect to the
probability measure P for every f ∈ L∞(X ,A) and every u ∈ U ; cf. e.g. (Hoffmann-
Jørgensen, 1994a, § 6.7) for conditional expectations. Let ca(U , C, S) be the set of all
bounded charges which are absolutely continuous with respect to S; cf. (Bhaskara Rao
and Bhaskara Rao, 1983, Definition 6.1.1). The “ca” in this notation is justified because
every bounded charge µ ∈ ba(U , C) which is absolutely continuous with respect to some
S ∈ ca(U , C) is also an element of ca(U , C) according to (Bhaskara Rao and Bhaskara Rao,
1983, 6.1.11).

Put

σ(µ)[f ] :=

∫
EP [f |β = u]µ(du) ∀µ ∈ ca(U , C, S) , ∀ f ∈ L∞(X ,A))

Though u 7→ EP [f |β = u] is only defined S - almost sure, σ(µ)[f ] is defined well for
every µ which is absolutely continuous with respect to S – i.e. for every µ ∈ ca(U , C, S) .
Put σ(µ) : f 7→ σ(µ)[f ] . Then, it is easy to see that the properties of conditional
expectations (Hoffmann-Jørgensen, 1994a, § 6.8) imply that

σ : ca(U , C, S) → ba(X ,A)) , µ 7→ σ(µ)

is a transition in the sense of Definition 3.34. ca(U , C, S) is a band in ba(U , C) according
to (Bhaskara Rao and Bhaskara Rao, 1983, Theorem 6.2.2) and Corollary 8.9. Hence, it
follows from Lemma 8.30 that σ can be extended to a transition

σ : ba(U , C) → ba(X ,A)) , µ 7→ σ(µ) (3.9)

6where β(µ) denotes the image measure defined by β(µ)(C) = µ(β−1(C))
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According to Proposition 3.36, this extended transition is a generalized randomization

σ : ba(U , C) → ba(X ,A))

Finally, for every f ∈ L∞(X ,A)),

σ(Sθ)[f ] =

∫
EP [f |β = u]Sθ(du)

(3.8)
=

∫
EP [f |β = u] · nιθ(u)S(du) =

(i)
= n ·

∫
EP [f |β] · (ιθ ◦ β) dP

(ii)
= n ·

∫
EP
[
f · (ιθ ◦ β)

∣∣ β ] dP =

(iii)
= n ·

∫
f · (ιθ ◦ β) dP =

∫
fβθ dP =

∫
f dPθ = Pθ[f ]

where (i) follows from the transformation theorem (Hoffmann-Jørgensen, 1994a, § 3.15),
(ii) follows from (Hoffmann-Jørgensen, 1994a, (6.8.2)) and (iii) follows from (Hoffmann-
Jørgensen, 1994a, (6.8.4)). That is, σ(Sθ) = Pθ for every θ ∈ Θ and, therefore, (Sθ)θ∈Θ

is sufficient for (Pθ)θ∈Θ . 2

Remark 3.28 The above presentation is similar to (Buja, 1984, § 5) and also the proof
of Theorem 3.27 has some connections to (Buja, 1984, p. 374f) where an ordinary ran-
domization plays the role of σ in (3.9). This ordinary randomization is given by a regular
version of the conditional expectation, which is possible because (X ,A) is assumed to be
a Polish space in Buja (1984). Such an assumption is not possible here because (X ,A) is
given by a canonical Stone space below which – in general – is not a Polish space.
Therefore, the conditional expectation cannot be assumed to define an ordinary random-
ization. Instead, we get a generalized randomization and have to use the theory of vector
lattices in the proof of Theorem 3.27 in order to get around the problems caused by null
sets in the definition of conditional expectations.

Now, we can define standard models for general precise models (Qθ)θ∈Θ on (Y ,B) where
Qθ does not have to be a probability measure (but a probability charge) and B does not
have to be a σ-algebra (but an algebra).

Definition 3.29 Let (Y ,B, Qθ)θ∈Θ) be a precise model. Let (X ,A) = (Ξ,B0) be the
canonical Stone space and the precise model (Pθ)θ∈Θ be given by

Pθ = φ0(Qθ) , θ ∈ Θ

where φ0 is the canonical Stone transition. For (Pθ)θ∈Θ, let S and (Sθ)θ∈Θ be defined
as (3.6) and (3.7). Then, S is called standard measure of (Qθ)θ∈Θ and (U , C, (Sθ)θ∈Θ is
called standard model of (Y ,B, (Qθ)θ∈Θ).

Standard measure and standard model are defined well because B0 is a σ-algebra and
the canonical Stone transition defines probability measures Pθ = φ0(Qθ) according to
Theorem 2.43.

Theorem 3.30 Let (Y ,B, (Qθ)θ∈Θ) be a precise model and let (U , C, (Sθ)θ∈Θ) be its stan-
dard model.
Then, (Qθ)θ∈Θ and (Sθ)θ∈Θ are equivalent.
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Proof : Let φ0 be the canonical Stone transition and put

Pθ = φ0(Qθ) ∀ θ ∈ Θ

Qθ and Pθ are probability charges and, therefore, they are also coherent upper expec-
tations. According to Theorem 3.22, (Qθ)θ∈Θ and (Pθ)θ∈Θ are equivalent (in the sense
of Definition 3.17) as imprecise models. Hence, they are also equivalent (in the sense of
Definition 3.14) as precise models; cf. Remark 3.21.
According to Theorem 3.27, (Pθ)θ∈Θ and (Sθ)θ∈Θ are equivalent.
Together, this implies that (Qθ)θ∈Θ and (Sθ)θ∈Θ are equivalent. 2

In the following, precise models (Qθ)θ∈Θ are sometimes abbreviated by calligraphical let-
ters F , i.e.

F = (Qθ)θ∈Θ

In this case, the standard measure of F = (Qθ)θ∈Θ is denoted by

SF

and the standard model of F = (Qθ)θ∈Θ is denoted by

(SFθ )θ∈Θ

Furthermore, if (Mθ)θ∈Θ is a family of credal sets which corresponds to an imprecise
model, the expression

F ∈ (Mθ)θ∈Θ

means that F denotes a precise model F = (Qθ)θ∈Θ such that Qθ ∈Mθ for every θ ∈ Θ .

Let (Y ,B, (Qθ)θ∈Θ) be an imprecise model and let Mθ be the credal set of Qθ for every
θ ∈ Θ .

Then, each precise model F = (Qθ)θ∈Θ where Qθ ∈ Mθ for every θ ∈ Θ has a standard
measure and a standard model. Now we can take the supremum over all standard measures
so that we get a coherent upper prevision, which may be called “standard upper prevision”.
In the same way, we can take the supremum over all standard models so that we get an
imprecise model, which may be called “standard imprecise model”. This is the content of
the following definition which is an analog to the corresponding definition in (Buja, 1984,
§ 5).

Definition 3.31 (Standard upper prevision, standard imprecise model)
Let (Y ,B, (Qθ)θ∈Θ) be an imprecise model and let Mθ be the credal set of Qθ for every
θ ∈ Θ . For every F ∈ (Mθ)θ∈Θ, let SF be the standard measure of F and (SFθ )θ∈Θ be the
standard model of F .

Put

S[h] = sup
{
SF [h]

∣∣ F ∈ (Mθ)θ∈Θ

}
∀h ∈ L∞(U , C)

Sθ[h] = sup
{
SFθ [h]

∣∣ F ∈ (Mθ)θ∈Θ

}
∀h ∈ L∞(U , C)

S is called standard upper prevision of Qθ)θ∈Θ and (Sθ)θ∈Θ is called standard imprecise
model of (Qθ)θ∈Θ.
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Note that S is in fact a coherent upper prevision on L∞(U , C) and (Sθ)θ∈Θ is in fact an
imprecise model on (U , C) – moreover, S and Sθ are even upper expectations.

As stated in Section 2.5, the canonical Stone representation is interesting from a theoret-
ical point of view because it enables us to work with σ-additive probability measures on
σ-algebras whenever we like, i.e. a coherent upper prevision can always be represented
by an upper expectation. However, we have to go over to the canonical stone space then
which is a rather odd space. Theorem 3.30 shows that, at least in case of precise models,
we are not tied up in the canonical Stone space; we may go over to standard models
which are defined on U which is a very nice subset of Rn. Especially, U is a compact
Polish space. However, note that it has not been stated that an imprecise model and its
imprecise standard model would be equivalent. This seems to be not true in general.

Summing up, standard models share two important properties: Firstly, they are defined
on the very nice measurable space (U , C). Secondly, they consist of linear previsions Sθ
which are σ-additive probability measures. Furthermore, there is a standard model for
every precise model and both models are equivalent. This is used in Subsection 4.2.1
where minimal Bayes risks are expressed in terms of (upper) standard measures.

Remark 3.32

a) In the definition of standard measure and standard model, it is not possible to omit
the intermediate step with the canonical Stone representation. This is due to the fact
that the definition of S and Sθ in the beginning of the present subsection heavily rely
on σ-additivity.7 General precise models may consist of probability charges which
lack σ-additivity. Therefore, we have to go over to the (somehow awkward) canonical
Stone space in order to obtain probability measures. Next, we can define standard
measures and standard models for these probability measures just as introduced in
Blackwell (1951).
Since Buja (1984) uses the classical setup consisting of probability measures on
Polish spaces, the intermediate step with the canonical Stone representation is not
needed there.

However, the usual definition of standard measures raises the following question:
Let (Y ,B, (Qθ)θ∈Θ) be an imprecise model such that B is a σ-algebra and each Qθ is
a σ-additive probability measure on B. Then, its standard measure could be defined
in two different ways: Firstly, it could be defined via the canonical Stone space as
done in Definition 3.31. Secondly, it could directly be defined via 3.6 without the
intermediate step (with the canonical Stone space) as done in Blackwell (1951) and
Buja (1984). Then, the question is: Do these two definitions coincide in this case?
The answer is: Yes! This follows from part b) below.

b) Let (X1,A1, (P1,θ)θ∈Θ) and (X2,A2, (P2,θ)θ∈Θ) be two precise models such that Ai is
a σ-algebra and each Pi,θ is a probability measure on Ai , i ∈ {1, 2} .

Then, (P1,θ)θ∈Θ and (P2,θ)θ∈Θ are equivalent, if and only if

S1 = S2

where Si is the probability measure for (Pi,θ)θ∈Θ defined via (3.6).

7σ-additivity is necessary to ensure existence of βθ according to the Radon-Nikodym-theorem.
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The “only if” part follows from (3.8) and Theorem 3.27. For the proof of the “if”
part, it is referred to Le Cam now:
Equivalence implies that the conical measures m1 of (P1,θ)θ∈Θ and m2 of (P2,θ)θ∈Θ

coincides

m := m1 = m2

according to (Le Cam, 1986, Theorem 2.4.4). S1 and S2 are localizations of m on
U according to (Le Cam, 1986, p. 33). Hence, they coincide on Γ which denotes the
set of all restrictions to U of the elements of the Choquet lattice H . According to
(Le Cam, 1986, p. 34), Γ is uniformly dense in C(U) . This implies S1 = S2 .

c) Let (X1,A1, (Q1,θ)θ∈Θ) and (X2,A2, (Q2,θ)θ∈Θ) be precise models. Then, (Q1,θ)θ∈Θ

and (Q2,θ)θ∈Θ are equivalent if and only if their standard measures coincide. (In
contrast to part b, it is not assumed here that Q1,θ and Q2,θ would have to be σ-
additive probability measures.)

For the proof of this statement, let (P1,θ)θ∈Θ and (P2,θ)θ∈Θ denote their canonical
Stone representations. Let S1 and S2 be their standard measures. According to
Theorem 3.22, (Q1,θ)θ∈Θ and (Q2,θ)θ∈Θ are equivalent if and only if (P1,θ)θ∈Θ and
(P2,θ)θ∈Θ are equivalent. (P1,θ)θ∈Θ and (P2,θ)θ∈Θ are equivalent if and only if S1 = S2

according to Definition 3.29 and part b of the present remark.

3.4 Connection to Le Cam’s general setup

3.4.1 Outline of Le Cam’s general setup

3.4.1.1 Introduction

As stated in Subsection 3.3.1, results from Le Cam (1964) and Le Cam (1986) can be used
in this book because the definitions of precise models 8, (generalized) randomizations and
sufficiency are in line with L. Le Cam’s definitions. However, these results are formulated
in a very abstract setup. The difficulty in reading Le Cam (1986) is also mentioned in
the review (Strasser, 2008) of (Le Cam, 1986):

“This book is not a text book for beginners. It is rather the master’s report on
his life’s workshop of research. The author’s style has been known for many
years. From the reader he demands a lot. The reader has to be a connaisseur
of classical statistics and argumentation. He must enjoy mathematics of any
level of abstraction and sophistication. He must be willing to do his own proofs
if the author considers them as not worth mentioning, which is not seldom the
case. At the end the reader is rewarded by a host of ideas which is hard to
match.”

The bulk of the high level of abstraction comes from the fact that Le Cam usually does
not use the measure theoretic formulation of probability theory and statistics. The tradi-
tional measure theoretic setup is based on a set of outcomes Ω and a σ-algebra A on Ω;
probabilities are modeled by positive, normalized measures

P : A → R
8called experiments in Le Cam (1986)
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Le Cam’s abstract setup dispenses with the sample space (Ω,A) and, consequently, proba-
bilities cannot be defined by measures. Instead probabilities are defined to be the positive,
normalized elements of abstract L-spaces. This proceeding has some advantages and does
essentially not differ from the traditional definitions but is on a rather high level of ab-
straction. Unfortunately, the connections between this abstract setup and the traditional
measure theoretic setup is not explained adequately in Le Cam (1986) – this is the main
reason why Le Cam (1986) is hard to read and why it is not appropriate to become
familiar with L. Le Cam’s seminal ideas and concepts.

So, the present subsection has two aims: Firstly, it is intended to be a comprehensible
introduction in L. Le Cam’s abstract setup for those who wants to become familiar with
it. Secondly, it is shown that the decision theoretic definitions of the present book are in
line with the definitions in Le Cam (1964) and Le Cam (1986).
Before continuing with the present subsection, it may me helpful to read (van der Vaart,
2002, § 7 and § 8) which is an excellent outline of the abstract setup. Furthermore, some
basics of the theory of vector lattices are needed; these are recollected in Subsection 8.1.
An interesting article about the life of L. Le Cam is (Yang, 2002).

After the above paragraphs which emphasized the difficulties which are connected with
the study of Le Cam (1986), the following citation from the review (Strasser, 2008) of
Le Cam (1986) may indicate why this is worthwhile:

“Until now, only a very little part of the author’s work has found its way into
the international research business, and this little part brought forth cascades
of successor papers (on ‘contiguity’, on ‘three lemmas of LeCam’, on ‘the
asymptotic minimax bound’, etc.). The remaining 95 percent of the book will
keep people busy for decades.”

In the beginning of the 20th century, it was a demanding task to find a mathematically
rigorous way to model probabilities. This task took several decades and some of the
best mathematicians worked on it. Not until 1933, the discovery was published by A.N.
Kologorov 9 that measure theory is quite suitable to model probabilities. This was the
starting point of the mathematical theory of probability and statistics. Still in 1929,
Bertrand Russell remarked in a lecture:

“Probability is the most important concept in modern science, especially as
nobody has the slightest notion what it means.” 10

In spite of these difficulties, many modern textbooks on probability theory gives the
impression that the measure theoretic formulation of probabilities would have been obvi-
ous. 11 Furthermore, it is hardly explained what the sample space (Ω,A) really means. In
order to understand why it is possible to dispense with the sample space in the general
setup, it is helpful to recall the meaning of the sample space at first.

3.4.1.2 The sample space (Ω,A)

Usually, a statistical evaluation starts with the fixing of a sample space (Ω,A) . Here, Ω
is a set where each element ω ∈ Ω represents a possible outcome of a random experiment.

9Kolmogoroff (1933)
10Confer (Bell, 1992, p. 587).
11A nice exception is e.g. Hoffmann-Jørgensen (1994a).
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So each subset A ⊂ Ω represents a whole set of possible outcomes – such sets A are called
events. A is a subset of the power set 2Ω of Ω

A ⊂ 2Ω

Here, A represents the collection of all those events A ⊂ Ω which can be observed in
principle. That is, the events A ∈ A are exactly those events where the experimenter
can decide if it has occurred or not. As an example, assume that the outcome of an
experiment may be any real number ω ∈ Ω = R, e.g.

ω = 26.5269725476391073785306636185478 . . .

However, the accuracy of the measurement is usually limited. So, assume for example
that the measuring instrument is accurate up to the second decimal place. That is, the
experimenter can only decide in which interval(

k
100
− 0.005 , k

100
+ 0.005

]
, k ∈ Z

the outcome ω lies. Therefore, the observable events have the following form

A =
⋃
k∈K

(
k

100
− 0.005 , k

100
+ 0.005

]
, K ⊂ Z

i.e.

A =

{ ⋃
k∈K

(
k

100
− 0.005 , k

100
+ 0.005

] ∣∣∣∣ K ⊂ Z

}
Why is the collection of the observable events A usually assumed to be a σ-algebra? This
gets clear by the above interpretation of the events A ∈ A: The events A ∈ A are all
those events where we can decide if they have occurred or not.
Therefore,

∅ ∈ A and Ω ∈ A (3.10)

because we can decide if the impossible event ∅ has occurred (it has not occurred, of
course) and we can decide if the certain event Ω has occurred (it must have occurred, of
course).
Next, we have

A ∈ A ⇒ AC ∈ A (3.11)

because, if we can decide if A has occurred, then we can also decide if the complement
AC = Ω \ A has occurred:

A has occurred ⇒ AC has not occurred

A has not occurred ⇒ AC has occurred

Furthermore,

A1, A2, . . . , An ∈ A ⇒
n⋃
k=1

Ak ∈ A (3.12)
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because, if we can decide for every k ∈ {1, . . . , n} if Ak has occurred, then we can decide
if
⋃n
k=1 Ak has occurred:

n⋃
k=1

Ak has occurred if there is at least one Ak which has occurred.

n⋃
k=1

Ak has not occurred if none of the Ak has occurred.

Summing up, (3.10), (3.11) and (3.12) implies that A has to be an algebra, at least.
Usually, it is assumed that A is a σ-algebra – that is, (3.12) is slightly strengthened.

The above description of A can also be found in (Hoffmann-Jørgensen, 1994a, § 6.1).
There, A is also called information and the following figurative explanation is given:

“Information can also be described as a net on Ω such that two outcomes in
a mesh cannot be distinguished by the information available, but outcomes in
two different meshes can. You may think of such nets as a map. On a world
map, it is not possible to distinguish the Empire State Building and the United
Nation Building in New York City, but a map of New York contains enough
information to distinguish the two sites.” (Hoffmann-Jørgensen, 1994a, p.
441)

On the one hand, this setup based on sample spaces is rather descriptive but, on the other
hand, it raises some difficulties as has been pointed out by (Le Cam, 1986, § 1.1): The set
Ω represents the results of the experiments – however, the choice of the set Ω is usually
rather arbitrary. For instance, we have chosen Ω = R in the above example but it would
also have been possible to chose a suitable sample space where Ω = Z . Of course, R and
Z are quite different sets; Z is a discrete, countable set whereas none of this is true for
R. In order to avoid consequences which depend on the choice of Ω, it would be better to
dispense with Ω. However, A depends on Ω: If we choose Ω = Z, we would get A = 2Z .
So, if we dispense with Ω we will also have to dispense with A .
Of course, both choices of (Ω,A) in the above example essentially lead to the same random
variables: That is the sets

L∞(Ω,A)

are isomorphic as M-spaces for the different choices of (Ω,A). This M-space structure
(which is preserved by isomorphisms) contains the essential structure of the sample space.
(Le Cam, 1986, p. 3) argues:

“Let us (. . . ) agree that there are certain objects called ‘random variables’
which have a life of their own in the physical world but have the property
that if ‘measured’ in an experiment they produce a real number. (. . . ) If two
‘random variables’ can be ‘measured’ in the same experiment, one obtains two
numbers which can be added, multiplied, etc. One can also take the minimum
or maximum of the two, multiply them by other real numbers, and so forth.”

In this way, the experiment should not be represented by (Ω,A) but by the M-space
structure of L∞(Ω,A) . The following paragraph describes how this can be done.
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3.4.1.3 Dispensing with the sample space

According to the above reasoning, the M-space structure of L∞(Ω,A) contains the essen-
tial information about the sample space. So, we may “forget” any additional structure of
L∞(Ω,A) which goes beyond its M-space structure. If we do this and consider ba(Ω,A)
as the dual of L∞(Ω,A), nothing remains left from ba(Ω,A) apart from its L-space struc-
ture (remember that the dual space of an M-space is always an L-space; cf. Proposition
8.22 a) ). That is, the L-space structure contains the essential information about the
elements of ba(Ω,A). In terms of L-spaces, the probability charges P ∈ ba(Ω,A) are
precisely the normed, positive elements of ba(Ω,A) (cf. Subsection 2.2) – that is, the
probability charges can completely be identified by the L-space structure of ba(Ω,A) !

If we have a fixed precise model

E = (Pθ)θ∈Θ ⊂ ba+
1 (Ω,A)

we usually do not have to consider the whole L-space ba(Ω,A) but it is enough to consider
the smallest L-space L ⊂ ba(Ω,A) which contains our model E = (Pθ)θ∈Θ . This L-space
L is equal to the smallest band in the L-space ba(Ω,A) which contains E = (Pθ)θ∈Θ.
This set L is called L-space of E or L-space generated by E and is denoted by

L(E)

in Le Cam (1986).
In classical statistics, E = (Pθ)θ∈Θ is a family of probability measures which is domi-
nated12 by some σ-finite measure µ. In this case,

L(E) ⊂
{
ν ∈ ba(Ω,A)

∣∣ dν = f dµ , f ∈ L1(Ω,A, µ)
}

In addition, assume that µ is also dominated13 by E . Then,

L(E) =
{
ν ∈ ba(Ω,A)

∣∣ dν = f dµ , f ∈ L1(Ω,A, µ)
}

(3.13)

That is, L(E) can be identified with the set of densities L1(Ω,A, µ) then. Examples for
this case are

• models (Pθ)θ∈Θ on (Z, 2Z)

• the model (Pθ)θ∈Θ on (R,B) where Pθ = N (a, b) for every (a, b) = θ ∈ Θ

Note that

L(E) = ba(Ω,A) (3.14)

is also possible for a suitable chosen model E .14

So far, we have stated that the L-space structure of L(E) contains all essential information
about E – that is, it is not important that the elements Pθ of E are probability measures
on some specific sample space (Ω,A) and they may be defined as elements of any abstract
L-space.
Accordingly, L. Le Cam proposes the following definition of experiments – called precise
models in the present book. In order to avoid confusions with the definitions given in
previous sections, the definitions given by L. Le Cam in his general setup carry the prefix
“LC”.

12That is: µ(A) = 0 , A ∈ A ⇒ Pθ(A) = 0 ∀ θ ∈ Θ
13That is: Pθ(A) = 0 ∀ θ ∈ Θ , A ∈ A ⇒ µ(A) = 0
14Choose Θ = ba+

1 (Ω,A) and Pθ = θ ∀ θ ∈ Θ .
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Definition 3.33 (Experiment / precise model)
An LC-experiment / precise LC-model indexed by the set Θ is a family (Pθ)θ∈Θ ⊂ L
where L is an L-space and Pθ is a normed (‖Pθ‖ = 1), positive (Pθ ≥ 0) element of L for
every θ ∈ Θ .
Cf. (Le Cam, 1986, p. 5).

It is clear that every ordinary precise model (according to Section 3.2) is a precise LC-
model
Of course, the question arises if the above definition excessively generalizes the notion
“precise model”. As described below, the answer is: no, essentially not! Indeed, it is less
a generalization then an abstraction.

Since we have lost the sample space (Ω,A) now, we have also lost the random variables
f ∈ L∞(Ω,A). In order to reintroduce them, we consider the dual space of L denoted by

L∗ =: M

The elements f ∗ ∈M corresponds to the random variables f ∈ L∞(Ω,A).

For example, let the precise model E = (Pθ)θ consist of probability measures Pθ on a
sample space (Ω,A) such that Pθ is dominated by a σ-finite measure µ on (Ω,A) for
every θ ∈ Θ. Furthermore, assume that µ is also dominated by E . Put L = L(E);
according to (3.13), we can identify L(E) with the set of all µ-densities. Next, (Dunford
and Schwartz, 1958, Theorem IV.8.5) says that the dual space

L∗ = M

is equal to L∞(Ω,A, µ) . Here, corresponding elements f ∗ ∈ M and f ∈ L∞(Ω,A, µ) are
related by the identity

f ∗(β) =

∫
Ω

f(ω)β(ω)µ(dω) ∀ β ∈ L1(Ω,A, µ)

That is, in this special case which is quite common in classical statistics, L(E) is equal to
the set of all µ-densities and M is equal to the set of all bounded random variables. The
dual space of L = L(E) is called M-space of E or M-space generated by E and is denoted
by

M = M(E)

in Le Cam (1986). This is indeed an M-space because L(E) is an L-space; cf. Section
8.1. The following schema illustrates the relations between the abstract setup and the
traditional concepts:

bounded random variables L∞(Ω,A, µ) abstraction // M(E)

µ-densities L1(Ω,A, µ) abstraction // L(E)

In order to describe a decision problem now, we need a set D of possible decisions t ∈ D
and a loss function

Θ× D → R , (θ, t) 7→ Wθ(t)
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In Le Cam’s setup, we have
Wθ ∈ Γ ∀ θ ∈ Θ

where Γ is a set of bounded functions

γ : D → R

which fulfills certain conditions (Γ is a so-called uniform lattice; cf. (Le Cam, 1986, 4 and
5)). As a special case, we may simply take

Γ = L∞(D,D)

where D is an algebra on D .

Finally, Markov kernels play an important role in decision theory – especially as random-
ized decision procedures. Since Le Cam dispenses with sample spaces in the definition
of LC-experiments / precise LC-models, Markov kernels cannot be defined. Therefore,
Markov kernels are replaced by transitions:

Definition 3.34 Let L1 and L2 be L-spaces. A transition from L1 to L2 is a map

σ : L1 → L2

which is

• linear

• positive: T (µ) ≥ 0 ∀µ ≥ 0

• normalized: ‖T (µ)‖ = ‖µ‖ ∀µ ≥ 0

Now, let Θ be an index set, L an L-space and

E = (Pθ)θ∈Θ ⊂ L

a precise LC-model; L(E) denotes the L-space generated by E .

Θ× D → R , (θ, t) 7→ Wθ(t)

is a loss function where

Wθ ∈ Γ := L∞(D,D) ∀ θ ∈ Θ

According to Theorem 2.4, the dual space of Γ = L∞(D,D) is equal to

Γ∗ = ba(D,D)

which is an L-space; cf. Theorem 2.6. With these predefinitions, decision procedures in
the sense of (Le Cam, 1986, § 1.3) can be defined:

Definition 3.35 (LC - decision procedures) A LC - decision procedure (based on E
and taking values in D) is a transition from L(E) to Γ∗

σ : L(E) → Γ∗



3.4. CONNECTION TO LE CAM’S GENERAL SETUP 75

Next, the LC - risk function is defined to be

Θ → R , θ 7→ σ(Pθ)[Wθ]

Since Γ∗ = ba(D,D), we may also write

σ(Pθ)[Wθ] =

∫
Wθ(t)Kθ(dt) , where Kθ := σ(Pθ) (3.15)

Instead of (3.15), Le Cam (1986) uses the notation

WθσPθ := σ(Pθ)[Wθ]

How do these definitions fit into the usual setup based on sample spaces? In order to
answer this question, let the precise model E = (Pθ)θ∈Θ consist of probability measures
Pθ on a sample space (Ω,A) such that Pθ is dominated by a σ-finite measure µ on (Ω,A)
for every θ ∈ Θ. Furthermore, assume that µ is also dominated by E . Put L = L(E) and
M = M(E). As stated above, we can identify

L(E) = L1(Ω,A, µ)

and

M(E) = L∞(Ω,A, µ)

As usual, (D,D) is a decision space and the loss function is some

(Wθ)θ∈Θ ⊂ L∞(D,D) =: Γ

Let τ be an ordinary (randomized) decision function, i.e. τ is a Markov kernel

τ : Ω×D → R , (ω,D) 7→ τω(D)

The Markov kernel τ defines a transition

σ : L(E) → ba(D,D) = Γ∗

via

σ(ν)[h] =

∫
Ω

∫
D
h(t) τω(dt) ν(dω) =

∫
Ω

∫
D
h(t)β(ω) τω(dt)µ(dω)

for every h ∈ L∞(D,D) and every dν = β dµ, β ∈ L1(Ω,A, µ) .
Therefore, the risk function is equal to

θ 7→ WθσPθ = σ(Pθ)[Wθ] =

∫
Ω

∫
D
Wθ(t) τω(dt)Pθ(dω)

In this way, LC - decision procedures generalize ordinary (randomized) decision functions.
Again, the question arises if this concept is an excessive generalization. In the following,
it is explained why the answer to this question is “no, essentially not”.
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3.4.1.4 Concrete representations of the general concepts

Now, it is explained why Le Cam’s definitions are rather abstractions than generalizations
of the ordinary definitions: As a matter of fact, there is always a suitable measurable space
(Ξ,B0) and a suitable decision space (D̂, D̂) such that the L-space

L(E) may be represented by a subset of ca(Ξ,B0)

the M-space

M(E) may be represented by C(Ξ)

and every LC - decision procedure

σ may be represented by a Markov kernel τ

Of course, these representations are interesting rather from a theoretical point of view than
from a practical point of view. The reader who is not interested in such representations
may skip this paragraph, which is based on (Le Cam, 1986, p. 12).

In order to find representations, we have to start with M(E). This set M(E) is the dual
space of the L-space L(E). Therefore, it is an M-space with unit (cf. (Schaefer, 1974,
Proposition 9.1)). Next, there is a compact set Ξ such that

M(E) and C(Ξ)

are M-space isomorphic – this is the content of a famous theorem due to S. Kakutani,
M. Krein and S. Krein (cf. (Schaefer, 1974, Theorem 7.4). Note that this theorem not
only states existence but also specifies a concrete isomorphism (we may omit the explicit
description of this isomorphism here). As a consequence, M(E) may be represented as
C(Ξ) because the M-space structures of these two sets coincide – remember that the M-
space structure contains the essential information about the random variables. In this
way, the elements of L(E) corresponds to bounded linear functionals on C(Ξ) and the
Daniell-Stone extension theorem (Dudley, 1989, § 4.5) implies that these bounded linear
functionals may be represented by bounded signed measures µ ∈ ca(Ξ,B0) ; B0 denotes
the Baire-σ-algebra.
Since Γ = L∞(D,D) is also an M-space with unit, there is a measurable space (D̂, D̂) such
that D̂ is compact, D̂ is the Baire-σ-algebra and

Γ = L∞(D,D) and C(D̂)

are M-space isomorphic. That is, every loss function (Wθ)θ∈Θ ⊂ L∞(D,D) may be repre-
sented as a loss function

(Ŵθ)θ∈Θ ⊂ C(D̂) =: Γ̂

Now, let σ : L(E)→ Γ∗ be an LC - decision procedure. Its adjoint is a map

Γ → M(E) , h 7→ σ(·)[h]

which may be represented as a map

C(D̂) → C(Ξ) , ĥ 7→ ϕ
(
σ(·)

[
ψ(ĥ)

])
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where ϕ : M(E) → C(Ξ) and ψ : C(D̂) → C(D) are M-space isomorphisms. According to
the Daniell-Stone theorem (Dudley, 1989, § 4.5) again, there is a unique bounded signed
measure

τx : L∞(D̂, D̂) → R , ĥ 7→ τx[ĥ] = ϕ
(
σ(·)

[
ψ(ĥ)

])
(x)

for every x ∈ Ξ . That is, the LC - decision procedure σ can be represented by the Markov
kernel

τ : Ξ× D̂ → R , (x, D̂) 7→ τx(D̂)

by use of the M-space isomorphisms ϕ and ψ .

3.4.1.5 Advantages of the abstract setup

Obviously, the abstract setup has the disadvantage that the definitions are hardly intu-
itionally understandable and less appropriate for practical purposes.
However, these definitions are very suitable for general theoretical investigations. As
described before, sample spaces represent the observable events and random variables
X : Ω → R represent observations. As a matter of fact, different representations are
usually possible for the same situation in the real world. Unfortunately, fixing a concrete
sample space may always artificially generate problems of a measure theoretic type which
are rather meaningless in the real world.

Accordingly, L. Le Cam argues

“The point is that the above representation is very special and the usual setup
where E = {Pθ, θ ∈ Θ} is given by probability measures Pθ on a σ-field carried
by a set X does not insure that the σ-field A or the set X are selected well
enough to be able to proceed without trouble. The abstract framework avoids
the troubles caused by X or similar sets by ignoring them.” (Le Cam, 1986,
p. 12)

and (van der Vaart, 2002, p. 662) further explains

“While Le Cam would acknowledge a role for measure theory, his main ob-
jection to the usual way of describing statistical experiments is that a given
practical situation might be describable by many different types of sample
spaces and ‘true’ measures. If one happened to choose the ‘wrong one’, one
might get burdened by technical problems, for no good reason. Furthermore,
any experiment in Le Cam’s sense can be represented as an experiment in the
usual way if the sample space is chosen appropriately (. . . ).”

3.4.2 Accordance with Le Cam’s general setup

In the present section, it is shown that the decision theoretic definitions of the present
book are in line with the definitions in Le Cam (1964) and Le Cam (1986).

To this end, recall from Theorem 2.6 that ba(Ω,A) is an L-space. The following Proposi-
tion states that the generalized randomizations (used in the present book) coincide with
the transitions between these L-spaces.
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Proposition 3.36 Let Ω1 and Ω2 be sets with algebras A1 and A2 respectively. Then,
the generalized randomizations

σ : ba(Ω1,A1) → ba(Ω2,A2)

are precisely the transitions from ba(Ω1,A1) to ba(Ω2,A2) .

Proof : It only remains to show that the two conditions of normalization coincide – i.e.

‖µ‖ = µ
[
IΩ

]
∀ µ ≥ 0 , µ ∈ ba(Ω,A)

However, this is the content of (2.10). 2

Accordingly, the following proposition states that the restricted randomizations coincide
with the finitely supported (Γ, H) continuous transitions. This is important in the proof
of Theorem 3.10.
Here, we have

Γ := L∞(Ω2,A2) and H := L∞(Ω1,A1) ⊂
(
ba(Ω1,A1)

)∗
Then, (Γ, H) continuity of a transition

σ : ba(Ω1,A1) → ba(Ω2,A2)

is defined to be

For every f2 ∈ L∞(Ω2,A2) there is a T (f2) = f1 ∈ L∞(Ω1,A1) such that

σ(µ1)[f2] = µ1[f1] ∀µ1 ∈ ba(Ω1,A1) (3.16)

by (Le Cam, 1986, p. 6). Furthermore, a transition σ : ba(Ω1,A1)→ ba(Ω2,A2) is called
finitely supported if

there is a fixed finite subset Ω̃2 ⊂ Ω2 such that for every µ1 ∈ ba(Ω1,A1) there
are real numbers αω̃2 ∈ R , ω̃2 ∈ Ω̃2 , such that

σ(µ1)[f2] =
∑
ω̃2∈Ω̃2

αω̃2f2(ω̃2) ∀ f2 ∈ L∞(Ω2,A2) (3.17)

cf. (Le Cam, 1986, p. 6).

Proposition 3.37 Let Ω1 and Ω2 be sets with algebras A1 and A2 respectively. Then,
the restricted randomizations

σ : ba(Ω1,A1) → ba(Ω2,A2)

are precisely the finitely supported (Γ, H) continuous transitions from ba(Ω1,A1) to
ba(Ω2,A2) where

Γ := L∞(Ω2,A2) and H := L∞(Ω1,A1) ⊂
(
ba(Ω1,A1)

)∗
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Proof : It is a direct consequence of the definitions and Proposition 3.36 that every re-
stricted randomization is a finitely supported (Γ, H) continuous transition.

Conversely, let

σ : ba(Ω1,A1) → ba(Ω2,A2)

be a finitely supported (Γ, H) continuous transition. Then, Proposition 3.36 states that
σ is a generalized randomization and (3.16) implies that for every f2 ∈ L∞(Ω2,A2) there
is a T (f2) ∈ L∞(Ω1,A1) such that

σ(µ1)[f2] = µ1

[
T (f2)

]
∀µ1 ∈ ba(Ω1,A1) (3.18)

Since T (f2) is uniquely determined by this equation for every f2 ∈ L∞(Ω2,A2), it is easy
to see that the map

T : L∞(Ω2,A2) → L∞(Ω1,A1) , f2 7→ T (f2)

has the same properties as in Proposition 3.11 b). Then, it follows from Proposition 3.11
that σ is an ordinary randomization. That is, there is a finitely additive Markov kernel

τ : Ω1 ×A2 → R , (ω1, A2) 7→ τω1(A2)

such that

σ(µ1)[IA2 ] =

∫
τω1(IA2)µ1(dω1) (3.19)

for every µ1 ∈ ba(Ω1,A1) and A2 ∈ A2 .

Next, (3.17) states that, there is a fixed finite subset Ω̃2 ⊂ Ω2 such that the following is
true:

For every ω1 ∈ Ω1, there are real numbers αω̃2(ω1) ∈ R , ω̃2 ∈ Ω̃2, such that

τω1(A2) =

∫
τω1(A2) δω1(dω̂1)

(3.19)
= σ(δω1)[IA2 ] =

(3.17)
=

∑
ω̃2∈Ω̃2

αω̃2(ω1)IA2(ω̃2) =
∑
ω̃2∈Ω̃2

αω̃2(ω1)δω̃2(A2) (3.20)

for every A2 ∈ A2 . Put αω̃2 : Ω1 → R , ω1 7→ αω̃2(ω1) for every ω̃2 ∈ Ω̃2 .

In order to finish the proof, it remains to show that the maps αω̃2 fulfill certain conditions
which are listed in Definition 3.7. To this end, note that

T (IA2)(ω1)
(3.18)
= σ(δω1)[IA2 ]

(3.19 , 3.20)
=

∑
ω̃2∈Ω̃2

αω̃2(ω1)δω̃2(A2) (3.21)

for every ω1 ∈ Ω1 .

Firstly, fix some ω̃2 ∈ Ω̃2. Without loss of generality, we can assume that there is a set
Ã2 ∈ A2 such that

Ã2 ∩ Ω̃2 = {ω̃2} (3.22)
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Otherwise, we can suitably change Ω̃2 according to Lemma 8.31. Applying such a set
Ã2 ∈ A2, it follows that

αω̃2

(3.22)
=

∑
ω̃′2∈Ω̃2

αω̃′2δω̃′2(Ã2)
(3.21)
= T (IÃ2

) ∈ L∞(Ω1,A1)

and αω̃2(ω1) = T (IÃ2
)(ω1) ≥ 0 ∀ω1 ∈ Ω1 .

Finally, ∑
ω̃2∈Ω̃2

αω̃2 =
∑
ω̃2∈Ω̃2

αω̃2δω̃2(Ω2)
(3.21)
= T (IΩ2) = IΩ1 ≡ 1

2

Le Cam (1986) deals with precise models E = (Pθ)θ∈Θ and F = (Qθ)θ∈Θ . So, it is enough
to consider transitions

σ : L(E) → L(F)

between the L-spaces L(E) and L(F) generated by E and F respectively; cf. Subsection
3.4.1. Accordingly, Le Cam uses the following definition of equivalence:

Definition 3.38 (LC-equivalence) Precise models E = (Pθ)θ∈Θ and F = (Qθ)θ∈Θ are
called LC-equivalent, if there are transition

σ1 : L(E) → L(F) and σ2 : L(F) → L(E)

such that
σ1(Pθ) = Qθ and σ2(Qθ) = Pθ ∀ θ ∈ Θ

Confer (Le Cam, 1986, Definition 2.3.1, p. 19 and Theorem 2.3.2).

In contrast to this setup, we have to deal with large sets (Mθ)θ∈Θ of precise models
in the theory of imprecise probabilities. So, it is more convenient to deal with transi-
tions / generalized randomizations

σ : ba(X ,A) → ba(Y ,B)

between the whole spaces ba(X ,A) ⊃ L(E) and ba(Y ,B) ⊃ L(F). However, this does
not change anything. Especially, this has no effect on the definition of equivalence:

Proposition 3.39 Precise models E = (Pθ)θ∈Θ and F = (Qθ)θ∈Θ are LC-equivalent if
and only if they are equivalent in the sense of Definition 3.15.

Proof : In the setup of the present book, precise models E and F are defined to be
(certain) subsets of ba(X ,A) and ba(Y ,B) respectively. (X and Y are sets with algebras
A and B respectively.)

Firstly, let E = (Pθ)θ∈Θ and F = (Qθ)θ∈Θ be LC-equivalent. That is, there are transitions

σ̃1 : L(E) → L(F) and σ̃2 : L(F) → L(E)

such that
σ̃1(Pθ) = Qθ and σ̃2(Qθ) = Pθ ∀ θ ∈ Θ
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Note that the L-spaces L(E) and L(F) are bands in ba(X ,A) and ba(Y ,B) respectively.
According to Lemma 8.30 a), σ̃1 and σ̃2 can be extended to transitions

σ1 : ba(X ,A) → ba(Y ,B) and σ2 : ba(Y ,B) → ba(X ,A)

such that

σ1(Pθ) = σ̃1(Pθ) = Qθ and σ2(Qθ) = σ̃2(Qθ) = Pθ ∀ θ ∈ Θ

because (Pθ)θ∈Θ ⊂ L(E) and (Qθ)θ∈Θ ⊂ L(F) .

Since the transitions σ1 and σ2 are generalized randomizations (cf. Proposition 3.36), it
follows that E and F are equivalent in the sense of Definition 3.15.

In order to prove the converse statement, let E = (Pθ)θ∈Θ and F = (Qθ)θ∈Θ be equivalent
in the sense of Definition 3.15.

According to Definition 3.15 and Proposition 3.36, there are transitions

σ1 : ba(X ,A) → ba(Y ,B) and σ2 : ba(Y ,B) → ba(X ,A)

such that
σ1(Pθ) = Qθ and σ2(Qθ) = Pθ ∀ θ ∈ Θ

Then, it follows from Lemma 8.30 b) that σ1 and σ2 can be restricted to transitions

σ̃1 : L(E) → L(F) and σ̃2 : L(F) → L(E)

such that

σ̃1(Pθ) = σ1(Pθ) = Qθ and σ̃2(Qθ) = σ2(Qθ) = Pθ ∀ θ ∈ Θ

That is, E and F are LC-equivalent. 2
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Chapter 4

Least favorable models

4.1 Introduction

4.1.1 Outline

In data-based decision theory, uncertainty is frequently modeled by a prior distribution
π and a family of distributions of the observations, (Qθ)θ∈Θ . The prior distribution π
describes the uncertainty about the states of natures θ ∈ Θ, i.e.: What state of nature θ
will be effectively given? With respect to this (unknown) true θ, the distribution of the
observations describes the uncertainty about the data which will be observed.
Of course, in practical applications, it is rather unrealistic that precise distributions π
and (Qθ)θ∈Θ are known exactly. Therefore, we allow for a whole set P of possible precise
prior distributions π and whole sets Mθ of possible precise distributions Qθ. According
to Section 3.2, we have to search for a randomized decision function τ which minimizes
the twofold upper expectation

sup
π∈P

∫
Θ

sup
Qθ∈Mθ

∫
Y

∫
D
Wθ(t)τy(dt)Qθ(dy) π(dθ)

Unfortunately, a direct solution of this problem is quite often computationally intractable.
However, there are situations where this becomes tractable, namely in the presence of a
so-called least favorable model.

Most of the research concerning least favorable models was encourage by the celebrated
article Huber and Strassen (1973). Huber and Strassen (1973) deals with hypothesis
testing where a (rather special) upper prevision is tested against another one. In the
context of hypothesis testing, least favorable models are usually called least favorable
pairs. Testing between coherent upper previsions is equivalent to testing between their
credal setsM0 andM1. Huber and Strassen (1973) shows that there is a pair (Q0, Q1) ∈
M0 ×M1 which is least favorable: That is, testing between Q0 and Q1 is as hard as
testing between M0 and M1 and, as a consequence, there is an optimal test between Q0

and Q1 which is also an optimal test betweenM0 andM1. That way, testing betweenM0

andM1 can be done by testing only between Q0 and Q1. This reduces the computational
effort substantially. As stated above, it is one of the most important drawbacks of data-
based decision theory (including hypothesis testing) under imprecise probabilities that
the computational effort of direct solutions is frequently not manageable. Therefore, least
favorablility has attracted enormous attention after the publication of Huber and Strassen
(1973). For a review of Huber and Strassen (1973) and the work following Huber and

83
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Strassen (1973), confer Augustin (2002). In quite general data-based decision theory,
where there are n states of nature (instead of two as in hypothesis testing), an analogous
question of that one solved by Huber and Strassen (1973) is: Does there exist a model
(Q1, Q2, . . . , Qn) ∈ M1×M2×· · ·×Mn which is simultaneously least favorable for a set
of precise prior distributions1? This is not always the case but the seminal article Buja
(1984) proves a necessary and sufficient condition for the existence of such simultaneously
least favorable models in case of upper expectations.
Unfortunately, Buja (1984) contains an error which reduces its applicability significantly.
Subsection 4.1.2 highlights the wrong statement, gives a counterexample and discusses
the consequences. The validity of the conclusions in Buja (1984) can only be guaranteed
by adding a restrictive assumption on the involved upper previsions.

Next, Section 4.2 follows the lines of Buja (1984) - but within the concept of Walley
(1991) which dispenses with σ-additivity: While Buja (1984) considers upper expectations
only, we use coherent upper previsions. It is shown that the same result as in Buja
(1984) is possible without any additional assumption on the involved (coherent) upper
previsions. Surprisingly, most of the proofs are similar to those given in Buja (1984). This
demonstrates that, in Buja (1984), insistence on σ-additivity of probabilities happens to
be an unnecessary burden. By ignoring σ-additivity, we are in line with Le Cam’s decision
theoretic framework (cf. Le Cam (1964), Le Cam (1986) and Section 3.3) which provides
us with the effective methods developed in Section 3.3. Especially, the use of generalized
randomizations is crucial.

Subsection 4.2.1 shows how minimal Bayes risks can be calculated and expressed in terms
of standard models. Subsection 4.2.2 contains a generalization of the LeCam-Blackwell-
Sherman-Stein-Theorem. This theorem plays an important role in Subsection 4.2.3 where
the analogue to (Buja, 1984, Theorem 8.2) is proven which characterizes the existence of
least favorable models. This is the main theorem of Section 4.2. Subsection 4.2.4 explains
how least favorability could be used to deal with situations where the distribution of
the data as well as the prior is assumed to be imprecise. These results exemplifies that
the classical setup based on Polish spaces and σ-additive probability measures frequently
leads to unpleasant – and unnecessary – difficulties.

As a special case, Section 4.3 considers hypothesis testing. Firstly, Susection 4.3.1 explains
(and proves) how hypothesis testing fits into the decision theoretic framework. This is not
entirely trivial in case of imprecise probabilities. Secondly, the existence of least favorable
pairs in case of general coherent upper previsions is proven in Subsection 4.3.3. This
result which has already been proven in Baumann (1968) follows as an easy corollary.

As Huber and Strassen (1973), the present chapter is only concerned with the existence
of least favorable models (and pairs) but an algorithm for explicit calculations has not
yet been developed. After Huber and Strassen (1973), a lot of work was done in order
to construct least favorable pairs in hypothesis testing (e.g. Rieder (1977), Österreicher
(1978), Hafner (1992), Augustin (1998)). In the more general case of the present chapter,
this is a matter of further research.

As mentioned above, the following subsection investigates an error in Buja (1984), gives
a (counter-)example and shows how the proof of the main theorem in Buja (1984) can be
corrected under an additional assumption.

1or equivalently: for a class of loss functions; cf. Subsection 4.2.4.
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4.1.2 On an error in Buja (1984)

4.1.2.1 Buja’s statement and a counter-example

Buja (1984) considers upper expectations on Polish spaces as treated in Subsection 2.4.3.

Let Ξ be a Polish space with Borel-σ-algebra B. Let ca+
1 (Ξ,B) be the set of all probability

measures on (Ξ,B) and let Cb(Ξ) be the Banach space of all bounded continuous function
with norm ‖ · ‖∞.

As in Subsection 2.4.3, ca+
1 (Ξ,B) is provided with the relative topology on ca+

1 (Ξ,B)
generated by the Cb(Ξ) - topology on ca(Ξ,B) . This topology is usually called weak
topology on ca+

1 (Ξ,B). It is the smallest topology on ca+
1 (Ξ,B) so that

ca+
1 (Ξ,B) → R P 7→ P [f ]

is continuous for every f ∈ Cb(Ξ). ca+
1 (Ξ,B) provided with the weak topology is a Polish

space. Especially, there is a metric d on ca+
1 (Ξ,B) which induces the weak topology.

Therefore, the weak topology is characterized by sequential convergence. A sequence
(Pn)n∈N in ca+

1 (Ξ,B) converges weakly to some P ∈ K(Ξ,B) if and only if

lim
n
Pn[f ] = p[f ] ∀ f ∈ Cb(Ξ)

The following statement is contained in (Buja, 1984, Proposition 2.1):

Let P be the structure of an upper expectation P : L∞(Y ,B)→ R . Assume
that P is tight.
Then, P [fn] ↘ P [f ] for every sequence (fn)n∈N ⊂ Cb(Ξ) such that fn ↘ f
pointwise and f ∈ L∞(Y ,B).

This is not right as can be seen from the following counterexample:

Ξ = R is a Polish space with Borel-σ-Algebra B = B. Put

P =
{
P ∈ ca+

1 (R,B)
∣∣∣ P([0, 1)

)
= 1
}

(4.1)

Then, define an upper expectation by

P [f ] = sup
P∈P

P [f ] ∀ f ∈ L∞(R,B)

[1] P is the structure of P :

For every P ∈ ca+
1 (R,B) with P [f ] ≤ P [f ] ∀ f ∈ L∞(R,B), it follows that

1 = −P [−I[0,1)] ≤ −P [−I[0,1)] = P
(
[0, 1)

)
≤ P [I[0,1)] = 1

Hence, P ∈ P .

[2] P is tight:

For ε > 0 put K = [0, 1]. Then, K is compact in R and

sup
P∈P

P
(
R \K

)
= 1− inf

P∈P
P (K) = 1− 1 < ε
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[3] Put

fn : R → R, x 7→ xnI[0,1](x) + I(1,∞)(x) , n ∈ N

Then, (fn)n∈N ⊂ Cb(R) and

lim
n→∞

fn(x) = I[1,∞)(x) ∀x ∈ R

Because of

fn(x) = xn ≥ xn · x = fn+1(x) ∀x ∈ [0, 1], ∀n ∈ N

we have fn ↘ I[1,∞) =: f pointwise.

[4] P [fn] = 1 ∀n ∈ N :

For every x ∈ [0, 1), the Dirac measure δx is in P . Hence, 1 ≥ fn implies

1 ≥ sup
P∈P

P [fn] ≥ lim
x↗1

δx[fn] = lim
x↗1

fn(x) = lim
x↗1

xn = 1 ∀n ∈ N

[5] P [f ] = 0:

P [f ] = sup
P∈P

P [I[1,∞)] = sup
P∈P

P
(
[1,∞)

)
= 0

Accordingly, the following statement which is implicitly contained in (Buja, 1984, Propo-
sition 2.1 and 2.2) does not hold:

“Every tight structure is weakly compact.”

A counterexample is provided by the following:

Choose Ξ = R, B = B and M0 as in (4.1). Then, P is a tight structure of an upper
expectation (cf. [1] and [2]).
Put Pn := δ1−1/n ∀n ∈ N. Then, (Pn)n∈N ⊂ P and (Pn)n∈N converges weakly to δ1 in
ca+

1 (R,B) because

lim
n
Pn[f ] = lim

n
f

(
1− 1

n

)
= f(1) = δ1[f ] ∀ f ∈ Cb(R)

However, δ1 is not an element of P because δ1

(
[0, 1)

)
= 0. Hence, P is not weakly closed

and, therefore, not weakly compact.

The correct statements have already been given by Theorem 2.31 and Theorem 2.32.
These theorems show that the reason for the incorrect statement is a permutation of
assumption a) in Theorem 2.31 and assumption a) in Theorem 2.32. Indeed, these as-
sumptions seem to be nearly the same. The only difference is that, in Theorem 2.32, it
is additionally assumed that the limit f of (fn)n∈N is continuous. This difference really
matters as can be seen from the above counter-example.
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4.1.2.2 Consequences

In Buja (1984), imprecise models are called “approximate models” and denoted by (νθ)θ∈Θ.
As stated above, each νθ is an upper expectation on a Polish space where the corresponding
structures Pθ have to be compact in the weak topology on ca+

1 . To this end, it is not
sufficient to assume tightness of Pθ as shown in Subsection 4.1.2.1. Weak closedness of
Pθ is another necessary additional assumption (cf. also Theorem 2.29). Recall that weak
closedness of structures is characterized by Proposition 2.33.

Under this additional assumption, all results of Buja (1984) are valid. However, the proof
of the main theorem, (Buja, 1984, Theorem 8.2), has to be revised:

It seems to be not obvious that an approximate model (νθ)θ∈Θ with weakly compact
structures Pθ induces an upper standard functional whose corresponding structure is also
weakly compact. As a consequence, it does not seem to be assured yet if the following is
true:

“it is possible to construct a standard measure S under s(ν) which equals s(ν)

on the cone K ” (Buja, 1984, p. 382).

However, it is possible to give a slightly different proof of (Buja, 1984, Theorem 8.2) so
that this problem can be ignored. In the following, the notation is completely adopted
from Buja (1984).

Revised proof of (Buja, 1984, Theorem 8.2):

The implication “ a)⇒ b) ” is not affected. So, it remains to proof the implication “ a)⇐
b) ”.

Define a linear functional S on the linear space K −K by

S[k1 − k2] = s(ν)[k1]− s(ν)[k2]

Additivity of s(ν) on K implies that this definition is independent of the special repre-
sentation k1 − k2. Subadditivity of s(ν) on K −K implies

S[k] ≤ s(ν)[k] ∀ k ∈ K −K (4.2)

Hahn-Banach (Dunford and Schwartz, 1958, Theorem II.3.10) yields an extension of S
on C(K), so that

S[k] ≤ s(ν)[k] ∀ k ∈ C(K) (4.3)

So far, the present proof coincides with that one given in Buja (1984). Since it is not yet
assured if s(ν) is compactly generated, we do not apply (Buja, 1984, Proposition 2.2 f))
in the following. (This is the main difference to the proof given in Buja (1984).)

An application of the Riesz representation theorem (Dunford and Schwartz, 1958, The-
orem IV.6.3) yields an extension of S on L∞(K) (again denoted by S) which is a prob-
ability measure on K.

In contrast to (Buja, 1984, p. 382), we do not state that S would be dominated by s(ν)

on L∞(K). Equation (4.3) is enough to proceed by following the lines of (Buja, 1984, p.
382) again:
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(4.3) implies
∫
zθ dS = 1

|Θ| ∀ θ ∈ Θ. Therefore, S is a standard measure which deter-

mines a unique standard model (Sθ)θ∈Θ so that S is the standard measure of (Sθ)θ∈Θ

(cf. (Buja, 1984, Section 5)). (Buja, 1984, Theorem 7.1) and (4.3) implies that (Sθ)θ∈Θ

is worst-case-sufficient for (νθ)θ∈Θ. That is, there is a model (Qθ)θ∈Θ on (Y ,B) so that
Qθ ≤ νθ on L∞(Y ,B), ∀ θ ∈ Θ, and so that (Sθ)θ∈Θ is sufficient for (Qθ)θ∈Θ. Hence, for
all k ∈ K,

s(ν)[k] = S[k] ≤ S(Q)[k] ≤ s(ν)[k]

where the first inequality follows from (Buja, 1984, Corollary 7.2). That is, (Qθ)θ∈Θ is
least favorable on K. 2

Since the results in Buja (1984) are still valid under the additional assumption that the
structures have to be weakly closed, the question arises if this additional assumption
is restrictive. The simple example in Subsection 4.1.2.1 indicates that, indeed, this is
restrictive. This statement is supported by Proposition 2.33 which says that a structure
is weakly compact if and only if it can be written as

P =
{
P ∈ ca+

1 (Ξ,B)
∣∣ P [f ] ≤ P [f ] ∀ f ∈ Cb(Ξ)

}
That is, an upper expectation P whose structure is weakly closed is completely defined by
its values on Cb(Ξ). However, one of the most important special case of upper expectations
are F-probabilities which are defined by their values on some K ⊂

{
IB
∣∣ B ∈ B

}
. Hence:

Whenever we define an upper expectation also by its value on at least one set B ∈ B (i.e.
by its value on at least one indicator function), it is not clear if its structure is weakly
closed. In consideration of the simple example in Subsection 4.1.2.1, it will usually not
be weakly closed. At least, it may be possible to establish easy conditions on K ⊂{
IB
∣∣ B ∈ B

}
which ensure weak closedness of the structure. Proposition 2.39 shows

that the restriction to compact subsets K = B ⊂ Ξ in K ⊂
{
IB
∣∣ B ∈ B

}
does not yield

such a sufficient condition.

The following section follows the lines of Buja (1984) and proves that essentially the same
result is true if the setup of upper expectations on Polish spaces is replaced by the more
general setup of coherent upper previsions on arbitrary sample spaces (Y ,B) . Essentially,
this means that σ-additivity is dropped and that the proofs require some results from
Le Cam (1986) as prepared in Section 3.3. Surprisingly, no additional assumption on the
involved coherent upper previsions is needed in order to obtain the analogous results as in
Buja (1984) even though most of the proofs are quite similar. This shows that insistence
on σ-additivity is an unnecessary burden in Buja (1984) and that it can, indeed, be useful
to go over to the more general setup of coherent upper prevision.

4.2 Decision problems with n states of nature

4.2.1 Minimal Bayes Risks

4.2.1.1 Introduction

Within the whole Subsection 4.2.1, let Θ = {θ1, . . . , θn} be a finite index set with cardi-
nality n and let π be a precise prior distribution on (Θ, 2Θ), i.e. π is a linear prevision on
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L∞(Θ, 2Θ). Put πθ := π[I{θ}].
Let (D,D) be a decision space and (Wθ)θ∈Θ ⊂ L∞(D,D) be a loss function

Θ× D → R , (θ, t) 7→ Wθ(t)

Finally, let Y be a set with algebra B. The sample space (Y ,B) represents the possible
outcomes of an experiment.

A decision procedure is a restricted / ordinary / generalized randomization

σ : ba(Y ,B) → ba(D,D)

– confer Subsection 3.3.1.2.

According to Section 3.2, the Bayes risk of an ordinary randomization σ ∈ T0(Y ,D)
defined by a finitely additive Markov kernel

Y ×D → R , (y,D) 7→ τy(D)

via (3.2) is equal to

Rπ

(
(Qθ)θ∈Θ, σ,W

)
=

∫
θ∈Θ

sup
Qθ∈Mθ

∫
Y

∫
D
Wθ(t) τy(dt)Qθ(dy) π(dθ) =

=
∑
θ∈Θ

πθ · sup
Qθ∈Mθ

σ(Qθ)(Wθ)

where (Qθ)θ∈Θ is an imprecise model on (Y ,B) and (Mθ)θ∈Θ is the corresponding family of
credal sets. Analogously, the Bayes risk can be defined for every generalized randomization
σ ∈ T (Y ,D) as

Rπ

(
(Qθ)θ∈Θ, σ,W

)
=

∑
θ∈Θ

πθ · sup
Qθ∈Mθ

σ(Qθ)(Wθ) (4.4)

– confer Section 3.3.

Therefore, the minimal Bayes risk

inf
σ
Rπ

(
(Qθ)θ∈Θ, σ,W

)
(4.5)

can be calculated over all restricted, ordinary or generalized randomizations σ . It is
shown in the following two subsections that the above infimum is equal for all of the
three types of randomizations. That is, it does not matter if we also allow for generalized
randomizations. Subsection 4.2.1.2 is concerned with precise models (Qθ)θ∈Θ on (Y ,B),
Subsection 4.2.1.3 is concerned with imprecise models (Qθ)θ∈Θ on (Y ,B) .

Furthermore, it is shown that the term “minimal Bayes risk” is justified because the
infimum in (4.5) is attained in a generalized ranomization.

The main goal of the present subsection is to express minimal Bayes risks in terms of
standard measures for precise models (Qθ)θ∈Θ (Theorem 4.4) and in terms of standard
upper previsions for imprecise models (Qθ)θ∈Θ (Theorem 4.7).

Since π is a fixed precise prior distribution in the present subsection, the index is dropped
in Rπ and the Bayes risk with respect to the fixed π is denoted by R

(
(Qθ)θ∈Θ, σ,W

)
.
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4.2.1.2 Precise Models

Let (Qθ)θ∈Θ be a precise model on (Y ,B). According to (4.4), the Bayes risk of a gener-
alized randomization σ ∈ T (Y ,D) is

R
(
(Qθ)θ∈Θ, σ,W

)
=

∑
θ∈Θ

πθ · σ(Qθ)(Wθ) (4.6)

then. Of course, (4.6) coincides with the usual definition of the Bayes risk if σ is defined
by a randomized decision function as in (3.2).

The minimal Bayes risk is the same if we let σ vary among the restricted, ordinary or
generalized randomizations:

Proposition 4.1 There is a generalized randomization σ̃ ∈ T (Y ,D) such that

R
(
(Qθ)θ∈Θ, σ̃,W

)
= inf

σ∈T (Y,D)
R
(
(Qθ)θ∈Θ, σ,W

)
Furthermore,

inf
σ∈T∗(Y,D)

R
(
(Qθ)θ∈Θ, σ,W

)
coincides for T∗(Y ,D) = Tr(Y ,D) , = T0(Y ,D) and = T (Y ,D) .

Proof : The definition of the topology of pointwise convergence implies continuity of the
map

σ 7→
(
σ(Qθ1)[Wθ1 ] , . . . , σ(Qθn)[Wθn ]

)
and, therefore, continuity of σ 7→ R((Qθ)θ∈Θ, σ,W ) .
According to (Denkowski et al., 2003, Theorem 1.3.11), continuity of this function implies
that it attains its minimum in a generalized randomization σ̃ ∈ T (Y ,D) because T (Y ,D)
is compact (Theorem 3.9).

The second statement also follows from continuity of σ 7→ R((Qθ)θ∈Θ, σ,W ) because
Tr(Y ,D) and T0(Y ,D) are dense in T (Y ,D) (Theorem 3.10). 2

Notation 4.2 As in Proposition 4.1, it often does not matter, if we consider Tr(Y ,D) ,
T0(Y ,D) or T (Y ,D) . These cases are indicated by the use of the symbol T∗(Y ,D) . That
is

T∗(Y ,D) ∈
{
Tr(Y ,D) , T0(Y ,D) , T (Y ,D)

}

The following lemma provides an example for the fact that sufficiency is strongly connected
with the decision theoretic Bayes risk. In Subsection 4.2.2, this is strengthened in case of
imprecise probabilities.

Lemma 4.3 If a precise model (Pθ)θ∈Θ on (X ,A) is sufficient for the precise model
(Qθ)θ∈Θ on (Y ,B), then

inf
ρ∈T∗(X ,D)

R
(
(Pθ)θ∈Θ, ρ,W

)
≤ inf

σ∈T∗(Y,D)
R
(
(Qθ)θ∈Θ, σ,W

)
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Proof : There is some ψ ∈ T (X ,Y) so that ψ(Pθ) = Qθ ∀ θ ∈ Θ. Therefore,

inf
σ∈T (Y,D)

∑
θ∈Θ

πθσ(Qθ)[Wθ] = inf
σ∈T (Y,D)

∑
θ∈Θ

πθσ
(
ψ(Pθ)

)
[Wθ] =

= inf
σ∈T (Y,D)

∑
θ∈Θ

πθ
(
σ ◦ ψ

)
(Pθ)[Wθ] ≥ inf

ρ∈T (X ,D)

∑
θ∈Θ

πθρ(Pθ)[Wθ]

because σ ◦ ψ ∈ T (X ,D) ∀σ ∈ T (X ,D). Finally, Proposition 4.1 implies that the
inequality is valid for any choice of T∗(Y ,D) and T∗(X ,Y) . 2

For the loss function

W : Θ× D → R (θ, t) 7→ Wθ(t)

put

K(W ) : u 7→ inf
τ∈D

∑
θ∈Θ

nπθWθ(τ)ιθ(u) (4.7)

on Rn where ιθ(u) = uθ is the θ-component of u ∈ RΘ ∼= Rn. Note that K(W ) is
concave and, therefore, continuous on Rn. Hence, the restriction of K(W ) on U is Borel-
measurable and bounded. Therefore, SF

[
K(W )

]
is defined well for the standard measure

SF of any precise model F = (Qθ)θ∈Θ .

Theorem 4.4 Let F = (Qθ)θ∈Θ be a precise model on (Y ,B) and SF its standard mea-
sure. Then,

inf
σ∈T∗(Y,D)

R
(
(Qθ)θ∈Θ, σ,W

)
= SF

[
K(W )

]
Proof : According to Theorem 3.30, the standard model

(
SFθ
)
θ∈Θ

is equivalent to F =

(Qθ)θ∈Θ. That is
(
SFθ
)
θ∈Θ

and F are mutual sufficient. So, a twofold application of
Lemma 4.3 yields

inf
σ∈T∗(Y,D)

R
(
F , σ,W

)
= inf

ρ∈T∗(U ,D)
R
(
(SFθ )θ∈Θ, ρ,W

)
and an application of Lemma 8.32 closes the proof. 2

4.2.1.3 Imprecise Models

Let (Qθ)θ∈Θ be an imprecise model on (Y ,B) with corresponding structures Mθ, θ ∈ Θ.
Let S be the standard upper prevision of (Qθ)θ∈Θ. According to (4.4), the Bayes risk of
a generalized randomization σ ∈ T (Y ,D) is

R
(
(Qθ)θ∈Θ, σ,W

)
=

∑
θ∈Θ

πθ · sup
Qθ∈Mθ

σ(Qθ)(Wθ) (4.8)

then. Hence,

R
(
(Qθ)θ∈Θ, σ,W ) = sup

(Qθ)θ∈Θ∈(Mθ)θ∈Θ

R
(
(Qθ)θ∈Θ, σ,W ) (4.9)

These definitions include that we have chosen the Γ-minimax optimality criterion which
represents a worst case consideration (cf. Section 3.1) – as done in Huber and Strassen
(1973) and Buja (1984).
Now, we can derive the analogs of Proposition 4.1 and Theorem 4.4 in case of imprecise
models:
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Proposition 4.5 There is a generalized randomization σ̃ ∈ T (Y ,D) such that

R
(
(Qθ)θ∈Θ, σ̃,W

)
= inf

σ∈T (Y,D)
R
(
(Qθ)θ∈Θ, σ,W

)
Furthermore,

inf
σ∈T∗(Y,D)

R
(
(Qθ)θ∈Θ, σ,W

)
coincides for T∗(Y ,D) = Tr(Y ,D) , = T0(Y ,D) and = T (Y ,D) .

Actually, we want to deal with decision problems where the prior distribution and the
distribution of the observation may be imprecise. This is done in Subsection 4.2.3 whereas,
in the present preparatory subsection, the prior distribution is assumed to be precise. In
case of imprecise prior distributions, Proposition 4.5 is not enough to keep the connection
between ordinary and generalized randomizations. However, it is possible to extend this
proposition to imprecise prior distributions in Subsection 4.2.3 (Proposition 4.18).
In order to proof Proposition 4.5, the following important lemma is needed. Essentially,
this is an application of the minimax theorem. For this application, compactness of the
structures Mθ is crucial.

Lemma 4.6

(a) inf
σ∈Tr(Y,D)

R
(
(Qθ)θ, σ,W

)
= sup

(Qθ)θ∈(Mθ)θ

inf
σ∈Tr(Y,D)

R
(
(Qθ)θ, σ,W

)
(b) inf

σ∈T0(Y,D)
R
(
(Qθ)θ, σ,W

)
= sup

(Qθ)θ∈(Mθ)θ

inf
σ∈T0(Y,D)

R
(
(Qθ)θ, σ,W

)
(c) inf

σ∈T (Y,D)
R
(
(Qθ)θ, σ,W

)
= sup

(Qθ)θ∈(Mθ)θ

inf
σ∈T (Y,D)

R
(
(Qθ)θ, σ,W

)
Proof :

(a) According to Theorem 2.16, every credal set Mθ is compact in the L∞(Y ,B) -
topology on ba(Y ,B) . Then, (Dunford and Schwartz, 1958, Lemma V.3.3, Lemma
I.8.2 and Theorem I.8.5) imply that

∏
θ∈ΘMθ is a compact Hausdorff space 2. For

every σ ∈ Tr(Y ,D) there is some κ : L∞(Y ,B) → L∞(X ,A) so that σ(µ)[g] =
µ[κ(g)] for every g ∈ L∞(Y ,B), µ ∈ ba(Y ,B); confer (3.1) and Definition 3.7. Hence,

Mθ → R , Qθ 7→ σ(Qθ)[Wθ]

is continuous for every θ ∈ Θ and this implies continuity of the map

(Qθ)θ∈Θ 7→ −
∑
θ∈Θ

πθσ(Qθ)[Wθ] =: Γ
(
(Qθ)θ∈Θ, σ

)
on
∏

θ∈ΘMθ for every σ ∈ Tr(Y ,D). (Qθ)θ 7→ Γ
(
(Qθ)θ, σ

)
is convex on

∏
θ∈ΘMθ for

every σ ∈ Tr(Y ,D) and σ 7→ Γ
(
(Qθ)θ, σ

)
is concave on Tr(Y ,D) for every (Qθ)θ∈Θ ∈∏

θ∈ΘMθ. Then, the minimax theorem (Fan, 1953, Theorem 2) yields

inf
σ∈Tr(Y,D)

R
(
(Qθ)θ∈Θ, σ,W

)
= − sup

σ∈Tr(Y,D)

inf
(Qθ)θ∈(Mθ)θ

Γ
(
(Qθ)θ, σ

)
=

= − inf
(Qθ)θ∈(Mθ)θ

sup
σ∈Tr(Y,D)

Γ
(
(Qθ)θ, σ

)
=

= sup
(Qθ)θ∈(Mθ)θ

inf
σ∈Tr(Y,D)

R
(
(Qθ)θ, σ,W

)
2in the n-fold product topology of the L∞(Y,B) - topology
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(b) and (c): Proposition 4.1 and part (a) of the present lemma yield

inf
σ∈T∗(Y,D)

R
(
(Qθ)θ∈Θ, σ,W

)
≥ sup

(Qθ)θ∈(Mθ)θ

inf
σ∈T∗(Y,D)

R
(
(Qθ)θ, σ,W

)
=

= sup
(Qθ)θ∈(Mθ)θ

inf
σ∈Tr(Y,D)

R
(
(Qθ)θ, σ,W

)
=

(a)
= inf

σ∈Tr(Y,D)
R
(
(Qθ)θ, σ,W

)
≥ inf

σ∈T∗(Y,D)
R
(
(Qθ)θ, σ,W

)
2

Proof of Proposition 4.5: As already stated in the proof of Proposition 4.1, the map
σ 7→ R((Qθ)θ∈Θ, σ,W ) is continuous with respect to the topology of pointwise conver-

gence on T (Y ,D) for every precise model (Qθ)θ∈Θ on (Y ,B). Hence, it follows from (4.9)
that σ 7→ R((Qθ)θ∈Θ, σ,W ) is lower semicontinuous. According to (Denkowski et al.,
2003, Theorem 1.3.11), lower semicontinuity of this function implies that it attains its
minimum in a generalized randomization σ̃ ∈ T (Y ,D) because T (Y ,D) is compact (The-
orem 3.9).

The second statement is a direct consequence of Lemma 4.6 (a), Proposition 4.1 and
Lemma 4.6 (c). 2

Theorem 4.7 Let (Qθ)θ∈Θ be an imprecise model on (Y ,B) and S its standard upper
prevision. Then,

inf
σ∈T∗(Y,D)

R
(
(Qθ)θ∈Θ, σ,W

)
= S

[
K(W )

]
Proof : This is a direct consequence of Lemma 4.6, Theorem 4.4 and the definition of the
standard upper prevision. 2

4.2.2 A general LeCam-Blackwell-Sherman-Stein-Theorem

This subsection contains a generalization of the LeCam-Blackwell-Sherman-Stein-Theo-
rem. On the one hand, it is needed in the proof of the main theorem of the present
section, Theorem 4.12, on the other hand, it is also interesting of its own because it is
a generalization of a family of well-known theorems which were developed during several
decades; cf. e.g. Blackwell (1953), Le Cam (1964), Heyer (1969) and Buja (1984).

Let Θ be a finite index set. Let π be a prior distribution on (Θ, 2Θ) so that

πθ := π[I{θ}] > 0 ∀ θ ∈ Θ (4.10)

Let (Pθ)θ∈Θ be a precise model on (X ,A) and (Qθ)θ∈Θ an imprecise model on (Y ,B) where
(Mθ)θ∈Θ is the corresponding family of credal sets. Let S(Pθ)θ be the standard measure
of (Pθ)θ∈Θ and S the standard upper prevision of (Qθ)θ∈Θ on (U , C).
Let Ψ be the set of all functions k ∈ L∞(U , C) such that there is some decision space
(D,D) and a loss function W : (θ, t) 7→ Wθ(t), (Wθ)θ∈Θ ⊂ L∞(D,D) where k(u) =
infτ∈D

∑
θ∈Θ nπθWθ(τ)ιθ(u) ∀u ∈ U .

Since π is again a fixed precise prior distribution in the present subsection, the in-
dex is dropped in Rπ and the Bayes risk with respect to the fixed π is denoted by
R
(
(Qθ)θ∈Θ, σ,W

)
.

Theorem 4.8 is the analog to (Buja, 1984, Theorem 7.1) and can also be proven analo-
gously.
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Theorem 4.8 With the above settings and under asumption (4.10), the following state-
ments are equivalent:

(a) (Pθ)θ∈Θ is worst-case-sufficient for (Qθ)θ∈Θ.

(b) S(Pθ)θ [k] ≤ S[k] ∀ k ∈ Ψ

(c) For every finite decision space (D,D) and every bounded loss function W ,

inf
ρ∈T (X ,D)

R
(
(Pθ)θ∈Θ, ρ,W

)
≤ inf

σ∈Tr(Y,D)
R
(
(Qθ)θ∈Θ, σ,W

)
(d) For every decision space (D,D) and every bounded loss function W ,

inf
ρ∈T (X ,D)

R
(
(Pθ)θ∈Θ, ρ,W

)
≤ inf

σ∈T (Y,D)
R
(
(Qθ)θ∈Θ, σ,W

)
Proof : The proof has the following structure: (a)⇔(d), (d)⇔(c), (d)⇔(b)

(a)⇒(d): This is a direct consequence of Lemma 4.3.

(a)⇐(d): Put D = Y and ψ0(µ) = µ ∀µ ∈ ba(Y ,B). Then (d) implies that for all
(gθ)θ∈Θ ⊂ L∞(Y ,B),

inf
ρ∈T (X ,Y)

R
(
(Pθ)θ, ρ, (gθ)θ

)
≤ R

(
(Qθ)θ, ψ0, (gθ)θ

)
which may be rewritten as inf

ρ∈T (X ,Y)

∑
θ∈Θ

πθ

(
ρ(Pθ)[gθ]−Qθ[gθ]

)
≤ 0 .

Put Γ
(
ρ, (gθ)θ

)
:=
∑

θ∈Θ πθ
(
ρ(Pθ)[gθ]−Qθ[gθ]

)
. Then,

sup
(gθ)θ⊂L∞(Y,B)

inf
ρ∈T (X ,Y)

Γ
(
ρ, (gθ)θ

)
≤ 0 (4.11)

T (X ,Y) is compact, ρ 7→ Γ
(
ρ, (gθ)θ

)
is continuous and convex, (gθ)θ∈Θ 7→ Γ

(
ρ, (gθ)θ

)
is

concave. So, the minimax theorem (Fan, 1953, Theorem 2) and (4.11) yield

inf
ρ∈T (X ,Y)

sup
(gθ)θ⊂L∞(Y,B)

Γ
(
ρ, (gθ)θ

)
≤ 0

Compactness of T (X ,Y) and lower semicontinuity of

ρ 7→ sup
(gθ)θ⊂L∞(Y,B)

Γ
(
ρ, (gθ)θ

)
imply the existence of some ρ0 ∈ T (X ,Y) so that

sup
(gθ)θ⊂L∞(Y,B)

Γ
(
ρ0, (gθ)θ

)
≤ 0 (4.12)

(cf. (Denkowski et al., 2003, Theorem 1.3.11)). Since πθ > 0 ∀ θ ∈ Θ, it follows from
(4.12) that

ρ0(Pθ)[gθ] ≤ Qθ[gθ] ∀ gθ ∈ L∞(Y ,B) ∀ θ ∈ Θ

(d)⇒(c): This is obvious.
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(d)⇐(c): Let σ : µ 7→ κ∗(µ) be a restricted randomization from Y to D where

κ∗(µ)[g] = µ
[∑
t∈D

g(t)αt

]
and D is a finite subset of D. (D, 2D) may be regarded as a finite decision space and σ
may be regarded as an element of T (Y , D). Then, (c) implies

inf
ρ̂∈T (X ,D)

R
(
(Pθ)θ, ρ̂,W

)
≤ R

(
(Qθ)θ, σ,W

)
(4.13)

Note that this is true for every σ ∈ Tr(Y , D) . Since every element of Tr(X , D) may be
regarded as an element of Tr(X ,D), Proposition 4.1 implies

inf
ρ∈T (X ,D)

R
(
(Pθ)θ, ρ,W

)
≤ inf

ρ̂∈T (X ,D)
R
(
(Pθ)θ, ρ̂,W

)
(4.14)

Hence, (according to Proposition 4.5)

inf
ρ∈T (X ,D)

R
(
(Pθ)θ, ρ,W

) (4.14),(4.13)

≤ inf
σ∈Tr(Y,D)

R
(
(Qθ)θ, σ,W

)
=

= inf
σ∈T (Y,D)

R
(
(Qθ)θ, σ,W

)
(d)⇔(b): This is a direct consequence of Theorem 4.4 and Theorem 4.7. 2

4.2.3 Least favorable models for n states of nature

Let again the index set Θ be finite with cardinality n. Let π be a prior distribution on
(Θ, 2Θ) so that πθ := π[I{θ}] > 0 ∀ θ ∈ Θ. Let (Qθ)θ∈Θ be an imprecise model on (Y ,B)
where (Mθ)θ∈Θ is the corresponding family of structures. Let (D,D) be a fixed decision
space and let W be a set of bounded loss functions

W : (θ, t) 7→ Wθ(t) , (Wθ)θ∈Θ ⊂ L∞(D,D)

Definition 4.9 A model (Qθ)θ∈Θ ∈ (Mθ)θ∈Θ is called least favorable (precise) model of
(Mθ)θ∈Θ for W if

inf
σ∈T (Y,D)

Rπ

(
(Qθ)θ, σ,W

)
= inf

σ∈T (Y,D)
Rπ

(
(Qθ)θ, σ,W

)
∀W ∈ W

That is, the minimal Bayes risk of the imprecise model is attained in the least favorable
model which represents the worst-case. (This justifies the term “least favorable”.) Re-
member that our definition of the Bayes risk corresponds to a worst-case consideration.
We are not primarily interested in a set of loss functions but in a set of prior distributions.
However, a set of prior distributions can always be transformed into a set of loss functions
(cf. Subsection 4.2.4).
For precise models F ∈ (Mθ)θ∈Θ, put

ΦF :=
{
h ∈ L∞(U , C)

∣∣ SF [h] = S[h]
}

where SF is the standard measure of F and S is the standard upper prevision of (Qθ)θ∈Θ

on (U , C).
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Lemma 4.10 ΦF is a norm-closed convex cone in L∞(U , C).

Proof : For h ∈ ΦF and c ∈ [0,∞), S[ch] = cS[h] = cSF [h] = SF [ch] .

For h1, h2 ∈ ΦF ,

S[h1 + h2] ≤ S[h1] + S[h2] = SF [h1] + SF [h2] = SF [h1 + h2] ≤ S[h1 + h2]

For (hm)m∈N ⊂ ΦF , limm ‖hm − h‖ = 0 and h ∈ L∞(U , C),

S[h] ≤ lim sup
m

(
S[hm] + S[h− hm]

)
= lim sup

m
SF [hm] = SF [h]

i.e. SF [h] = S[h]. 2

For every decision function

W : (θ, t) 7→ Wθ(t) , (Wθ)θ∈Θ ⊂ L∞(D,D)

define K(W ) as in (4.7):

K(W ) = inf
τ∈D

∑
θ∈Θ

nπθWθ(τ) ιθ

Put

ΨW :=
{
K(W )

∣∣ (Wθ)θ ∈ W
}
⊂ L∞(U , C)

Ψ̃W denotes the smallest norm-closed convex cone in L∞(U , C) which contains ΨW .
Lemma 4.11 is a direct consequence of Theorem 4.4 and Theorem 4.7:

Lemma 4.11 F ∈ (Mθ)θ∈Θ is least favorable for W if and only if

SF [k] = S[k] ∀ k ∈ ΨW

Theorem 4.12 is the analog to (Buja, 1984, Theorem 8.2). It characterizes the existence
of least favorable models in full generality.

Theorem 4.12 With the above settings and under asumption (4.10), the following state-
ments are equivalent:

(a) There is some F := (Qθ)θ∈Θ ∈ (Mθ)θ∈Θ which is least favorable for W.

(b) S[k1 + k2] = S[k1] + S[k2] ∀ k1, k2 ∈ Ψ̃W

Proof :
(a)⇒(b): Statement (a) and Lemma 4.11 imply ΨW ⊂ ΦF . According to Lemma 4.10,
Ψ̃W ⊂ ΦF and k1 + k2 ∈ ΦF ∀ k1, k2 ∈ Ψ̃W . Hence, for every k1, k2 ∈ Ψ̃W

S[k1 + k2] = SF [k1 + k2] = SF [k1] + SF [k2] = S[k1] + S[k2]

(a)⇐(b): Put S[k] := S[k] ∀ k ∈ Ψ̃W and

S[k1 − k2] := S[k1]− S[k2] = S[k1]− S[k2]



4.2. DECISION PROBLEMS WITH N STATES OF NATURE 97

for all k1, k2 ∈ Ψ̃W . Statement (b) implies that this is defined well. Hence, S is a
linear functional on the vector space lin(Ψ̃W) = Ψ̃W − Ψ̃W . For every k = k1 − k2 ∈
Ψ̃W − Ψ̃W = lin(Ψ̃W),

S[k] = S[k2 + k1 − k2]− S[k2] ≤ S[k2] + S[k1 − k2]− S[k2] = S[k]

Due to the Hahn-Banach-Theorem ((Dunford and Schwartz, 1958, Theorem II.3.10)), S
can be extended to a linear functional on L∞(U , C) (again denoted by S) so that

S[h] ≤ S[h] ∀h ∈ L∞(U , C) (4.15)

(4.15) implies, that S
[
IU
]

= 1 and S[ιθ] = 1
n
∀ θ ∈ Θ (cf. Theorem 3.30). Then,

Sθ : h 7→ S[nιθh] defines a precise model (Sθ)θ∈Θ on (U , C). For every decision space
(D̂, D̂) and every Ŵ : (θ, t) 7→ Ŵθ(t) , (Ŵθ)θ ⊂ L∞(D̂, D̂),

inf
ρ∈T (U ,D̂)

R
(
(Sθ)θ, ρ, Ŵ

)
= S

[
K
(
Ŵ
)]

(4.16)

according to Lemma 8.32 and

inf
ρ∈T (U ,D̂)

R
(
(Sθ)θ, ρ, Ŵ

) (4.16)
= S

[
K
(
Ŵ
)] (4.15)

≤ S
[
K
(
Ŵ
)]

=

= inf
σ∈T (Y,D̂)

R
(
(Qθ)θ, σ, Ŵ

)
according to Theorem 4.7. Hence, Theorem 4.8 implies that (Sθ)θ∈Θ is worst-case-
sufficient for (Qθ)θ∈Θ, i.e. there is some ρ ∈ T (U ,Y) so that Qθ := ρ(Sθ) ∈Mθ ∀ θ ∈ Θ.
Finally for all W ∈ W ,

inf
σ∈T (Y,D)

R
(
(Qθ)θ, σ,W

)
= S

[
K(W )

]
= S

[
K(W )

]
=

(4.16)
= inf

ρ∈T (U ,D)
R
(
(Sθ)θ, ρ,W

)
≤ inf

σ∈T (Y,D)
R
(
(Qθ)θ, σ,W

)
where the last inequality follows from Lemma 4.3. 2

4.2.4 Application of Least Favorable Models

Situations where we are faced with one precise prior distribution and a set of loss functions
seem to be of secondary interest. More frequently, we are interested in situations where
we are faced with an imprecise prior and one fixed loss function. However, the second
issue can be treated as a special case of the first one:
Let Θ be a finite index set with cardinality n and

W : (θ, t) 7→ Wθ(t) , (Wθ)θ∈Θ ⊂ L∞(D,D)

be a loss function. Let (Qθ)θ∈Θ be an imprecise model on (Y ,B) where (Mθ)θ∈Θ is the
corresponding family of structures. Let Π be a coherent upper prevision on L∞(Θ, 2Θ)
i.e. Π corresponds to a set of prior distributions P :=

{
π ∈ ba(Θ, 2Θ)

∣∣ π[a] ≤ Π[a] ∀ a ∈
L∞(Θ, 2Θ)

}
.
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For some π ∈ P , put πθ := π[I{θ}] ∀ θ ∈ Θ. Let σ be a (generalized) randomization. For
the prior π, the Bayes risk is

Rπ

(
(Qθ)θ, σ,W

)
=

∑
θ∈Θ

πθσ(Qθ)[Wθ] =
1

n

∑
θ∈Θ

σ(Qθ)[nπθWθ] =

= R0

(
(Qθ)θ, σ,W

(π)
)

where R0

(
(Qθ)θ, σ, (nπθWθ)θ

)
denotes the Bayes risk for the uniform prior π0 defined by

π0[Iθ] = 1
n

and W (π) denotes the loss function

W (π) : (θ, t) 7→ nπθWθ(t)

That is every prior can be absorbed in the loss function. So, we can transform the set P of
priors π into a setW of loss functions (nπθWθ)θ∈Θ. Next, Theorem 4.12 yields a necessary
and sufficient condition for the existence of a precise model which is simultaneously least
favorable for the set of loss functions W . We may also say that such a precise model
is simultaneously least favorable for the set of priors P . Note, that assumption (4.10) is
fulfilled for the prior π0[Iθ] = 1

n
so that Theorem 4.12 is always applicable for any set of

priors P .

Definition 4.13 A model (Qθ)θ∈Θ ∈ (Mθ)θ∈Θ is called least favorable (precise) model of
(Mθ)θ∈Θ for the set of priors P if

inf
σ∈T (Y,D)

Rπ

(
(Qθ)θ, σ,W

)
= inf

σ∈T (Y,D)
Rπ

(
(Qθ)θ, σ,W

)
∀ π ∈ P

According to the preceding paragraphs, we have the following proposition:

Proposition 4.14 (Qθ)θ∈Θ ∈ (Mθ)θ∈Θ is a least favorable (precise) model of (Mθ)θ∈Θ

for the set of priors P if and only if it is a least favorable (precise) model of (Mθ)θ∈Θ for
the set of loss functions

W =
{
W (π)

∣∣ π ∈ P}
where W (π) denotes the loss function

W (π) : (θ, t) 7→ nπθWθ(t)

The next theorem shows how least favorable models can be used to deal with situations
where the distribution of the data as well as the prior is assumed to be imprecise. A
decision procedure, i.e. a generalized randomization, is optimal if it minimizes the upper
Bayes risk

RΠ

(
(Qθ)θ, σ, (Wθ)θ

)
= sup

π∈P
Rπ

(
(Qθ)θ, σ, (Wθ)θ

)
In case of a precise model (Qθ)θ∈Θ, the upper Bayes risk is

RΠ

(
(Qθ)θ, σ,W

)
= sup

π∈P
Rπ

(
(Qθ)θ, σ,W

)
Theorem 4.15 If (Qθ)θ∈Θ is a simultaneously least favorable model of (Mθ)θ∈Θ for P,
there is a generalized randomization σ̃ ∈ T (Y ,D) which minimizes

RΠ

(
(Qθ)θ, σ,W

)
and also RΠ

(
(Qθ)θ, σ,W

)
over T (Y ,D).
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The proof is essentially an application of the following lemma which is based on the
minimax theorem. Again, compactness of the credal set is crucial.

Lemma 4.16

(a) inf
σ∈Tr(Y,D)

RΠ

(
(Qθ)θ, σ,W

)
= sup

π∈P
inf

σ∈Tr(Y,D)
Rπ

(
((Qθ)θ, σ,W

)
(b) inf

σ∈T0(Y,D)
RΠ

(
(Qθ)θ, σ,W

)
= sup

π∈P
inf

σ∈T0(Y,D)
Rπ

(
((Qθ)θ, σ,W

)
(c) inf

σ∈T (Y,D)
RΠ

(
(Qθ)θ, σ,W

)
= sup

π∈P
inf

σ∈T (Y,D)
Rπ

(
((Qθ)θ, σ,W

)
Proof : The three statements (a), (b) and (c) are proven simultaneously. Therefore, let

T∗(Y ,D) ∈
{
Tr(Y ,D) , T0(Y ,D) , T (Y ,D)

}
be fixed in the following.

Put
Γ(σ, π) = Rπ

(
(Qθ)θ, σ,W

)
∀σ ∈ T∗(Y ,D) , ∀ π ∈ P

With respect to the L∞(Θ, 2Θ) - topology on ba(Θ, 2Θ), the credal set P is compact
(Corollary 2.16) and the map

π 7→ Γ(σ, π) =

∫
Θ

sup
Qθ∈Mθ

σ(Qθ)[Wθ] π(dθ)

is continuous and concave for every σ ∈ T∗(Y ,D) . Furthermore,

T∗(Y ,D) → R , σ 7→ Γ(σ, π)

is convex for every π ∈ P . Then, it follows from (Fan, 1953, Theorem 2) that

inf
σ∈T∗(Y,D)

sup
π∈P

Γ(σ, π) = sup
π∈P

inf
σ∈T∗(Y,D)

Γ(σ, π) (4.17)

Finally, (a), (b) and (c) follow from (4.17) because

RΠ

(
(Qθ)θ, σ,W

)
= sup

π∈P
Rπ

(
(Qθ)θ, σ,W

)
= sup

π∈P
Γ(σ, π)

where P denotes the credal set of Π . 2

Proof of Theorem 4.15: Note that the precise model (Qθ)θ∈Θ is a special case of an
imprecise model. Hence, Lemma 4.16 is also applicable for (Qθ)θ∈Θ instead of (Qθ)θ∈Θ .

Consequently, a twofold application of Lemma 4.16 and simultaneous least favorability
yield

inf
σ∈T (Y,D)

RΠ

(
(Qθ)θ, σ,W

)
= sup

π∈P
inf

σ∈T (Y,D)
Rπ

(
(Qθ)θ, σ,W

)
=

= sup
π∈P

inf
σ∈T (Y,D)

Rπ

(
(Qθ)θ, σ,W

)
= inf

σ∈T (Y,D)
RΠ

(
(Qθ)θ, σ,W

)
(4.18)

Lower semicontinuity of
σ 7→ RΠ

(
(Qθ)θ, σ,W

)
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and compactness of T (Y ,D) ensure existence of a minimum σ̃ (cf. (Denkowski et al.,
2003, Theorem 1.3.11)). Additionally,

RΠ

(
(Qθ)θ, σ̃,W

)
≤ RΠ

(
(Qθ)θ, σ̃,W

)
=

= inf
σ∈T (Y,D)

RΠ

(
(Qθ)θ, σ,W

) (4.18)
= inf

σ∈T (Y,D)
RΠ

(
(Qθ)θ, σ,W

)
2

Remark 4.17 It can easily be read off from the above proof that a generalized random-
ization σ̃ which minimizes RΠ

(
(Qθ)θ, σ,W

)
minimizes RΠ

(
(Qθ)θ, σ,W

)
, too. However,

the reverse statement will not always be true.3 So, it does not suffice to find a generalized
randomization σ̂ which minimizes RΠ

(
(Qθ)θ, σ,W

)
. It still has to be checked that σ̂ re-

ally minimizes RΠ

(
(Qθ)θ, σ, (Wθ)θ

)
. Theorem 4.15 only states that there is a generalized

randomization which solves both minimization problems.

Theorem 4.15 is stated in terms of generalized randomization. The following proposition
enables us to formulate this result also in terms of ordinary randomizations.

Proposition 4.18 There is a generalized randomization σ̃ ∈ T (Y ,D) such that

RΠ

(
(Qθ)θ∈Θ, σ̃,W

)
= inf

σ∈T (Y,D)
RΠ

(
(Qθ)θ∈Θ, σ,W

)
Furthermore,

inf
σ∈T∗(Y,D)

RΠ

(
(Qθ)θ∈Θ, σ,W

)
coincides for T∗(Y ,D) = Tr(Y ,D) , = T0(Y ,D) and = T (Y ,D) .

Proof : Note that
RΠ

(
(Qθ)θ, σ,W

)
= sup

π∈P
Rπ

(
(Qθ)θ, σ,W

)
where P denotes the credal set of Π . According to the proof of Proposition 4.5, the map

T (Y ,D) → R , σ 7→ Rπ

(
(Qθ)θ, σ,W

)
is lower semicontinuous for every π ∈ P . This implies that

σ 7→ RΠ

(
(Qθ)θ, σ,W

)
= sup

π∈P
Rπ

(
(Qθ)θ, σ,W

)
is the supremum of lower semicontinuous functions and, therefore, is also lower semi-
continuous. Next, compactness of T (Y ,D) ensure existence of some σ̃ which minimizes
RΠ

(
(Qθ)θ, σ,W

)
(cf. (Denkowski et al., 2003, Theorem 1.3.11)).

For the proof of the second statement, let

T∗(Y ,D) ∈
{
Tr(Y ,D) , T0(Y ,D) , T (Y ,D)

}
be fixed in the following. Then, Proposition 4.5 and a twofold application of Lemma
4.16 imply

inf
σ∈T (Y,D)

RΠ

(
(Qθ)θ, σ,W

)
= sup

π∈P
inf

σ∈T (Y,D)
Rπ

(
(Qθ)θ, σ,W

)
=

= sup
π∈P

inf
σ∈T∗(Y,D)

Rπ

(
(Qθ)θ, σ,W

)
= inf

σ∈T∗(Y,D)
RΠ

(
(Qθ)θ, σ,W

)
2

3In case of hypothesis testing, for example, this follows from (Augustin, 1998, p. 162ff).
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Proposition 4.18 is the generalization of Proposition 4.5 for imprecise prior distributions.
As a consequence, it does not matter if we consider ordinary or generalized randomizations
in decision theory where the prior distribution and the distribution of the data may be
imprecise.

So, we can formulate the above theorem also in terms of ordinary randomizations.

Theorem 4.19 Let (Qθ)θ∈Θ be a simultaneously least favorable model of (Mθ)θ∈Θ for P
and ε > 0. Then, there is an ordinary randomization σ̃0 ∈ T0(Y ,D) such that

RΠ

(
(Qθ)θ, σ̃0,W

)
≤ inf

σ∈T0(Y,D)
RΠ

(
(Qθ)θ, σ,W

)
+ ε (4.19)

and also

RΠ

(
(Qθ)θ, σ̃0,W

)
≤ inf

σ∈T0(Y,D)
RΠ

(
(Qθ)θ, σ,W

)
+ ε (4.20)

Proof : Proposition 4.18 ensures existence of an ordinary randomization σ̃0 ∈ T0(Y ,D)
which fulfills (4.19). Analogously to the proof of Theorem 4.15,

RΠ

(
(Qθ)θ, σ̃0,W

)
≤ RΠ

(
(Qθ)θ, σ̃0,W

) (4.19)

≤ inf
σ∈T0(Y,D)

RΠ

(
(Qθ)θ, σ,W

)
+ ε

Prop. 4.18
= inf

σ∈T (Y,D)
RΠ

(
(Qθ)θ, σ,W

)
+ ε =

(4.18)
= inf

σ∈T (Y,D)
RΠ

(
(Qθ)θ, σ,W

)
+ ε =

Prop. 4.18
= inf

σ∈T0(Y,D)
RΠ

(
(Qθ)θ, σ,W

)
+ ε

2

4.3 Statistical hypothesis testing

4.3.1 Decision theoretic formulation of hypothesis testing

Let us first consider simple hypothesis testing

P0 vs. P1

where P0 and P1 are probability measures on some measurable space (X ,A).

An A - measurable test is a map ϕ : X → [0, 1] which is measurable with respect to the
σ-algebra A on X and the Borel-σ-algebra on [0, 1] , i.e.:

ϕ ∈ L∞(X ,A) , 0 ≤ ϕ ≤ 1

Let

T0 =
{
ϕ ∈ L∞(X ,A)

∣∣ 0 ≤ ϕ ≤ 1
}

denote the set of all these tests. Of course, this definition depends on the fixed (X ,A)
although it is not made visible in this notation.
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A test ϕ̃ is called optimal if it solves the minimization problem

P1[1− ϕ] = min
ϕ

! ϕ ∈ T0 , P0[ϕ] ≤ α (4.21)

where α ∈ [0, 1] is some fixed significance level.

It is well known how this simple hypothesis testing fits into the decision theoretic frame-
work:
Put Θ = {0, 1} as the set of all states of nature. Then, (P0, P1) is a precise model on
(X ,A) . Hypothesis testing means to decide if the null hypothesis is rejected or not. So,
the possible decisions are

d = 0 : do not reject the null hypothesis

d = 1 : reject the null hypothesis

That is, the decision space is (D,D) =
(
{0, 1}, 2{0,1}

)
.

The loss function W is defined by

W0 = I{1} , W1 = I{0}

where I{k} : D → R is the indicator function. That is, a wrong decision leads to the loss
1 and a correct decision leads to the loss 0.

Every test ϕ ∈ T0 defines a Markov kernel

X ×D → R , (x,D) 7→ Bin
(
1, ϕ(x)

)
(D)

Conversely, every Markov kernel τ : X ×D → R , (x,D) 7→ τx(D) defines a test ϕ ∈ T0

via

ϕ(x) = τx
(
{1}
)

(4.22)

In this way, the set of all tests T0 corresponds to the set of all ordinary randomizations
T0

(
X , {0, 1}

)
. This justifies the similarity of the notation. Let ϕ be a test and σ its

corresponding ordinary randomization. Then, it is easy to see that

σ(µ)[I{1}] =

∫
X

∫
D
I{1}(t)τx(dt)µ(dx)

(4.22)
= µ[ϕ]

and

σ(µ)[I{0}] =

∫
X

∫
D
I{0}(t)τx(dt)µ(dx)

(4.22)
= µ[1− ϕ]

for every µ ∈ ba(X ,A) .

According to Section 3.2 and Subsection 3.3.1, the risk function of an ordinary random-
ization σ defined by a Markov kernel τ is

{0, 1} → R , θ 7→ σ(Pθ)[Wθ] =

∫
X

∫
D
Wθ(t)τx(dt)Pθ(dx)

Note that

σ(P0)[W0] =

∫
X

∫
D
W0(t)τx(dt)P0(dx) = P0[ϕ]
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is the type I error and

σ(P1)[W1] =

∫
X

∫
D
W1(t)τx(dt)P1(dx) = 1− P1[ϕ] = P1[1− ϕ]

is the type II error of the test ϕ which corresponds to σ and τ .

Let π be any prior distribution on Θ = {0, 1}; put

π0 = π[I{0}] and π1 = π[I{1}]

According to Section 3.2, an ordinary randomization σ̃ ∈ T0

(
X , {0, 1}

)
is optimal if it

minimizes the Bayes risk

Rπ

(
(P0, P1), σ,W

)
= π0σ(P0)[W0] + π1(P1)[W1]

Let σ ∈ T0

(
X , {0, 1}

)
be an ordinary randomization and ϕ ∈ T0 its corresponding test,

then the Bayes risk of σ is equal to

Rπ

(
(P0, P1), σ,W

)
= π0P0[ϕ] + π1P1[1− ϕ]

It is well known that the prior π can be chosen so that the corresponding decision problem
is equivalent to the original testing problem. That is: Testing problem (4.21) can be solved
by solving an appropriate decision problem.

The same is true for hypothesis testing where each hypothesis consists of an imprecise
probability, i.e. a coherent upper prevision; cf. Theorem 4.20. The present subsection
explaines how this “imprecise testing problem” can be formulated by decision theory.
But first of all, we have to take a closer look at the testing problem.

Now, X is a set and A is an algebra on X and we consider imprecise simple hypothesis
testing

P 0 vs. P 1 (4.23)

where P 0 and P 1 are coherent upper previsions on L∞(X ,A).
Again,

T0 =
{
ϕ ∈ L∞(X ,A)

∣∣ 0 ≤ ϕ ≤ 1
}

denotes the set of all A - measurable tests.

A test ϕ̃ is called optimal if it solves the minimization problem

P 1[1− ϕ] = min
ϕ

! ϕ ∈ T0 , P 0[ϕ] ≤ α (4.24)

where α ∈ [0, 1] is some fixed significance level.

This formulation of the optimization problem is adequate and coincides with the opti-
mization problem of a testing problem in classical statistics:

Let M0 be the credal set of P 0 and let M1 be the credal set of P 1 on (X ,A) . Consider
testing problem

M0 vs. M1 (4.25)
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This is a common testing problem in classical statistics4 where only precise probabilities
are involved. Within this classical setup, a test ϕ̃ is usually called optimal with respect
to the minimax criterion if it solves minimization problem

sup
P1∈M1

P1[1− ϕ] = min
ϕ

! ϕ ∈ T0 , sup
P0∈M0

P0[ϕ] ≤ α (4.26)

That is, an optimal test minimizes the maximal type II error. As in Chapter 3, this
is again a worst case consideration. Obviously, minimization problem (4.24) is equal to
minimization problem (4.26). That is, imprecise simple hypothesis testing (4.23) coincides
with the classical testing problem (4.25) and the solution of (4.23) is an ordinary minimax
test.
The standard reference for the classical testing problem (4.25) is Baumann (1968). The
importance of Baumann’s results for testing between imprecise probabilities in case of F-
probabilities was discovered by Augustin (1998); cf. also Augustin (2002). Furthermore,
(Augustin, 1998, § 3.1 and p. 121–123) contains a detailed discussion of the connections
between F-probabilities and the classical testing problem (4.25).

In the following, it is explained in detail how imprecise simple hypothesis testing (4.23)
fits into the decision theoretic framework presented in this book:

Again, Θ = {0, 1} is the set of all states of nature, (P 0, P 1) is an imprecise model on
(X ,A) and the possible decisions are

d = 0 : do not reject the null hypothesis

d = 1 : reject the null hypothesis

That is, the decision space is (D,D) =
(
{0, 1}, 2{0,1}

)
. The loss function W is again

defined by

W0 = I{1} , W1 = I{0}

where I{k} : D→ R is the indicator function.

As stated before, the set of all tests T0 corresponds to the set of all ordinary randomizations
T0

(
X , {0, 1}

)
and, according to Section 3.2 and Subsection 3.3.1, the risk function of an

ordinary randomization σ defined by a Markov kernel τ is

{0, 1} → R , θ 7→ sup
Pθ∈Mθ

σ(Pθ)[Wθ] = sup
Pθ∈Mθ

∫
X

∫
D
Wθ(t)τx(dt)Pθ(dx)

Here,

sup
P0∈M0

σ(P0)[W0] = sup
P0∈M0

∫
X

∫
D
W0(t)τx(dt)P0(dx) = P 0[ϕ]

is the type I error and

sup
P1∈M1

σ(P1)[W1] = sup
P1∈M1

∫
X

∫
D
W1(t)τx(dt)P1(dx) = P 1[1− ϕ]

is the type II error of the test ϕ which corresponds to σ and τ .

4appart from σ-additivity, of course
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With the above settings, a randomizations σ ∈ T0

(
X , {0, 1}

)
is called level-α-randomi-

zation if its corresponding test ϕ ∈ T0 is a level-α-test – that is, if

sup
P0∈M0

σ(P0)[W0] ≤ α

As in case of classical simple hypothesis testing we have the following result:

Theorem 4.20 There is a prior π such that the following is true:
A test ϕ̃ with type I error 5

P 0[ϕ̃] = α (4.27)

solves testing problem (4.24) if and only if its corresponding randomization σ̃ solves the
corresponding decision problem – that is, if it minimizes the Bayes risk

Rπ

(
(P 0, P 1), σ,W

)
=
∑

θ∈{0,1}

πθ · sup
Pθ∈Mθ

σ(Pθ)[Wθ] , σ ∈ T0

(
X , {0, 1}

)
The proof of this statement is postponed to the following subsection where an analo-
gous result is proven in case of “generalized tests”. These generalized tests, which are
investigated in the following subsection, are the corresponding counterpart of generalized
randomizations. Theorem 4.20 will follow from the results of Subsection 4.3.2 as an easy
corollary.

4.3.2 Generalized tests

It is well known that there does not need to be an optimal test which solves testing
problem (4.26) i.e. (4.24). However, testing problems can be rewritten into decision
problems, and we already know from Proposition 4.5 that every decision problem can
be solved by a generalized randomization. This is one reason why generalized tests are
introduced in this subsection. Generalized tests are the corresponding counterparts of
generalized randomization. It is shown that there is always a generalized level-α-test
which is optimal in testing problem (4.23).

Let X be again a set with algebra A and

T0 =
{
ϕ ∈ L∞(X ,A)

∣∣ 0 ≤ ϕ ≤ 1
}

denote the set of all A - measurable tests. As described in the previous subsection, the
ordinary randomizations

σ : ba(X ,A) → ba
(
{0, 1}, 2{0,1}

)
, σ ∈ T0

(
X , {0, 1}

)
correspond to tests ϕ ∈ T0 via

σ(µ)[I{1}] = µ[ϕ] , σ(µ)[I{0}] = µ[1− ϕ] ∀µ ∈ ba(X ,A)

In the same way, generalized randomizations correspond to “generalized tests” which can
be defined in the following way:

5Equation (4.27) is not a strong assumption because every optimal level-α-test can be transformed
into an optimal test which fulfills (4.27).
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Definition 4.21 A generalized test on (Ω,A) is a map

φ : ba(Ω,A) → R

which is linear and φ(P ) ∈ [0, 1] ∀P ∈ ba+
1 (Ω,A) .

The elements of T0 are called ordinary test on (Ω,A) . The set of all generalized tests on
(Ω,A) is denoted by T .

Note that every ordinary test ϕ defines a generalized test φ via

φ(µ) = µ[ϕ] ∀µ ∈ ba(X ,A)

Therefore, we may also write

ϕ(µ) := µ[ϕ] and T0 ⊂ T (4.28)

Generalized randomizations

σ : ba(X ,A) → ba
(
{0, 1}, 2{0,1}

)
, σ ∈ T

(
X , {0, 1}

)
correspond to tests φ ∈ T via

σ(µ)[I{1}] = φ(µ) , σ(µ)[I{0}] = µ[IX ]− φ(µ) ∀µ ∈ ba(X ,A)

The dependencies are illustrated by the following picture:

ordinary tests
correspond to //

generalize

��

ordinary randomizations

generalize

��
generalized tests

correspond to // generalized randomizations

As in the previous subsection, we consider the testing problem

P 0 vs. P 1

where each P i is a coherent upper prevision with credal set Mi . The (supremal) type I
and type II errors of a generalized test φ ∈ T may be defined by

type I error: sup
P0∈M0

φ(P0) , type II error: sup
P1∈M1

1− φ(P1) (4.29)

In case of ordinary randomizations these error terms simplify to the ordinary ones if φ is
given by an ordinary test. The minimization problem is

sup
P1∈M1

1− φ(P1) = min
φ

! φ ∈ T , sup
P0∈M0

φ(P0) ≤ α (4.30)

then.
In addition, the above settlings fit into the decision theoretic formalization of hypothesis
testing described in the previous subsection. In order to see this, let again Θ = {0, 1} be
the set of all states of nature and (D,D) =

(
{0, 1}, 2{0,1}

)
the decision space. (P 0, P 1) is

an imprecise model on (X ,A); the loss function W is defined by

W0 = I{1} , W1 = I{0}
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Let φ ∈ T be a generalized test and σ ∈ T
(
X , {0, 1}

)
its corresponding generalized

randomization. Then,

sup
P0∈M0

σ(P0)[W0] = sup
P0∈M0

φ(P0) (4.31)

is the type I error and

sup
P1∈M1

σ(P1)[W1] = sup
P1∈M1

1− φ(P1) (4.32)

is the type II error of the generalized test φ – just as in case of ordinary tests in Subsection
4.3.1.

The main goal of the rest of the present subsection is to show that it does not matter if
ordinary or generalized tests are used in testing problem (4.23).
To this end, endow T with the topology of pointwise convergence on ba(Ω,A). It is the
smallest topology so that

T → R, φ 7→ φ(µ)

is continuous for every µ ∈ ba(Ω,A). It is easy to see that this topology corresponds
to the topology of pointwise convergence on the set of all generalized randomizations
T
(
X , {0, 1}

)
:

Let (φβ)β∈B be a net of generalized tests and φ ∈ T be another generalized test; let
(σβ)β∈B and σ be the corresponding generalized randomizations. Then,

φβ −→
β

φ if and only if σβ −→
β

σ

This implies the following theorem which corresponds to Theorem 3.9 and Theorem 3.10:

Theorem 4.22 T is compact and T0 is dense in T .

The set of the ordinary level-α-tests in testing problem (4.23) is denoted by

T0(α) =
{
ϕ ∈ T0

∣∣∣ sup
P0∈M0

P0[ϕ] ≤ α
}

and the set of the generalized level-α-tests is denoted by

T (α) =
{
φ ∈ T

∣∣∣ sup
P0∈M0

φ(P0) ≤ α
}

The following theorem is the analog of Theorem 4.20 in case of generalized tests:

Theorem 4.23 There is a prior π such that the following is true:
A generalized test φ̃ with type I error

sup
P0∈M0

φ̃(P0) = α (4.33)

solves testing problem (4.30) if and only if its corresponding randomization σ̃ solves the
corresponding decision problem – that is, if it minimizes the Bayes risk

Rπ

(
(P 0, P 1), σ,W

)
=
∑

θ∈{0,1}

πθ · sup
Pθ∈Mθ

σ(Pθ)[Wθ] , σ ∈ T
(
X , {0, 1}

)
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Proof : It follows from Lemma 4.24 below that there is some a ∈ [0,∞) such that

inf
φ∈T (α)

sup
P1∈M1

1− φ(P1) + a · α =

= inf
φ∈T

(
sup

P1∈M1

1− φ(P1) + a · sup
P0∈M0

φ(P0)

)
(4.34)

Let φ be a generalized test and σ its corresponding generalized randomization. Then,
the above settings imply

sup
P1∈M1

1− φ(P1) + a · sup
P0∈M0

φ(P0) =

= sup
P1∈M1

σ(P1)[W1]
)

+ a · sup
P0∈M0

σ(P0)[W0] =

= (1 + a) ·
∑

θ∈{0,1}

πθ · sup
Pθ∈Mθ

σ(Pθ)[Wθ] =

= (1 + a) ·Rπ

(
(P 0, P 1), σ,W

)
(4.35)

where

π0 =
a

1 + a
and π1 =

1

1 + a

Let φ̃ be a level-α-test which fulfills (4.33) and let σ̃ be its corresponding randomization.

Firstly, asume that φ̃ solves testing problem (4.24). Then,

Rπ

(
(P 0, P 1), σ̃,W

) (4.35)
=

1

1 + a

(
sup

P1∈M1

φ̃(P1) + a · sup
P0∈M0

φ̃(P0)
)

=

(4.33)
=

1

1 + a

(
sup

P1∈M1

φ̃(P1) + a · α
)

=

=
1

1 + a

(
inf

φ∈T (α)
sup

P1∈M1

1− φ(P1) + a · α
)

=

(4.34),(4.35)
= inf

σ∈T
Rπ

(
(P 0, P 1), σ,W

)
Conversely, asume that σ̃ minimizes the Bayes risk in (4.35). Then,

inf
φ∈T (α)

sup
P1∈M1

1− φ(P1) = inf
φ∈T (α)

sup
P1∈M1

1− φ(P1) + a · α − a · α =

(4.34),(4.35)
= (1 + a) · inf

σ∈T
Rπ

(
(P 0, P 1), σ,W

)
− a · α =

= (1 + a) ·Rπ

(
(P 0, P 1), σ̃,W

)
− a · α (4.35),(4.33)

= sup
P1∈M1

1− φ(P1)

2

The following lemma can be formulated for ordinary and generalized tests – recall the
notation introduced in (4.28).

Lemma 4.24 In case of

T∗ = T0 , T∗(α) = T0(α)
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and also in case of
T∗ = T , T∗(α) = T (α)

there is some a ∈ [0,∞) such that

inf
φ∈T∗(α)

sup
P1∈M1

(
1− φ(P1)

)
+ a · α =

= inf
φ∈T∗

(
sup

P1∈M1

(
1− φ(P1)

)
+ a · sup

P0∈M0

φ(P0)

)
(4.36)

Proof : In testing problem (4.23), we consider minimization problem

sup
P1∈M1

1− φ(P1) = inf
φ

! φ ∈ T∗ , sup
P0∈M0

φ(P0) ≤ α

where φ 7→ supP1∈M1
1 − φ(P1) and φ 7→ supP0∈M0

φ(P0) are convex functions on T∗,
and T∗ is a convex subset of a real topological vector space.

Then, it follows from Rieder (1994, Theorem B.2.1) that there is some a ∈ [0,∞) such
that

inf
φ∈T∗(α)

sup
P1∈M1

(
1− φ(P1)

)
+ a · α =

= inf
φ∈T∗

(
sup

P1∈M1

(
1− φ(P1)

)
+ a · sup

P0∈M0

φ(P0)

)
(4.37)

2

The following theorem says that it does not matter whether only ordinary tests are per-
mitted or generalised tests are also permitted.

Theorem 4.25 The infimal type II error over all generalized level-α-tests coincides with
the infimal type II error over all ordinary level-α-tests in testing problem (4.23):

inf
φ∈T (α)

sup
P1∈M1

1− φ(P1) = inf
ϕ∈T0(α)

sup
P1∈M1

1− ϕ(P1) (4.38)

Furthermore, there is always an optimal generalized level-α-test which achieves the infi-
mum in (4.38).

Equation (4.38) does not easily follow from the fact that T0 is dense in T . This is because
it is not clear if T0(α) is dense in T (α). This problem is avoided in the following proof
by using Lagrange techniques (Lemma 4.24). That way we turn over to a corresponding
decision problem. Due to Proposition 4.5, we already know that it makes no difference in
decision problems whether generalized randomizations are permitted or not. 6

Proof : Since T0(α) ⊂ T (α), it is enough to show

sup
P1∈M1

1− φ(P1) ≥ inf
ϕ∈T0(α)

sup
P1∈M1

1− ϕ(P1) ∀φ ∈ T (α)

6Though the proof of Theorem 4.25 is very similar to the proof of Theorem 4.20, the statement of the
latter theorem cannot be used here. It would have been possible to formulate Theorem 4.20 in such a
way that Theorem 4.25 was a simple corollary of Theorem 4.20. However, this has not been done because
this would have obscured the real intent of Theorem 4.20.
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According to Lemma 4.24, there is a Lagrange multiplier a ∈ [0,∞) so that

inf
ϕ∈T0(α)

sup
P1∈M1

(
1− ϕ(P1)

)
+ a · α =

= inf
ϕ∈T0

(
sup

P1∈M1

(
1− ϕ(P1)

)
+ a · sup

P0∈M0

ϕ(P0)

)
(4.39)

Fix any φ ∈ T (α). A suitable convex combination of φ and

φ1 : ba(Ω,A) → R , µ 7→ µ[IΩ]

yields some φ̂ ∈ T (α) so that

sup
P1∈M1

1− φ̂(P1) ≤ sup
P1∈M1

1− φ(P1) , sup
P0∈M0

φ̂(P0) = α (4.40)

Put the index set Θ, the prior π and the loss function W as in the proof of Theorem
4.23. As in (4.35), it follows that

sup
P1∈M1

(
1− φ(P1)

)
+ a · sup

P0∈M0

φ(P0) = (1 + a)·Rπ

(
(P 0, P 1), σ,W

)
(4.41)

for every generalized test φ with corresponding generalized randomization σ . Finally,

sup
P1∈M1

1− φ(P1)
(4.40)

≥ sup
P1∈M1

1− φ̂(P1) =

(4.40)
= sup

P1∈M1

(
1− φ̂(P1)

)
+ a · sup

P0∈M0

φ̂(P0) − a · α =

(4.41)
= (1 + a)·Rπ

(
(P 0, P 1), σ̂,W

)
− a · α ≥

(∗)
≥ inf

σ∈T0(X ,{0,1}
(1 + a)·Rπ

(
(P 0, P 1), σ,W

)
− a · α =

(4.41)
= inf

ϕ∈T0

(
sup

P1∈M1

(
1− ϕ(P1)

)
+ a · sup

P0∈M0

ϕ(P0)

)
− a · α =

(4.39)
= inf

ϕ∈T0(α)
sup

P1∈M1

1− ϕ(P1)

where (∗) follows from Proposition 4.5.

In order to prove that the infimum in (4.38) is attained, put ΛP0 : T → R , φ 7→ φ(P0) .
According to Theorem 4.22, T (α) is compact because

T (α) =
⋂

P0∈M0

Λ−1
P0

(
[0, α]

)
is closed in T . Compactness of T (α) and lower semicontinuity of

T (α) → R , φ 7→ sup
P1∈M1

1− φ(P1)

imply that the infimum in (4.38) is attained by some generalized level-α-test; cf. e.g.
(Denkowski et al., 2003, Theorem 1.3.11). 2

As already stated in the previous subsection, Theorem 4.20 follows as an easy corollary
now:
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Proof of Theorem 4.20: Let ϕ̃ be an ordinary test which fulfills (4.27) and let π be
the prior distribution from Theorem 4.23.

Then, ϕ̃ solves testing problem (4.24) if and only if it solves testing problem (4.30)
according to Theorem 4.25. Next, ϕ̃ solves testing problem (4.30) if and only if its
corresponding randomization σ̃ minimizes the Bayes risk

Rπ

(
(P 0, P 1), σ,W

)
=
∑

θ∈{0,1}

πθ · sup
Pθ∈Mθ

σ(Pθ)[Wθ] , σ ∈ T
(
X , {0, 1}

)
(over all generalized randomizations) according to Theorem 4.23. Finally, it follows from
Proposition 4.5 that σ̃ minimizes the Bayes risk

Rπ

(
(P 0, P 1), σ,W

)
=
∑

θ∈{0,1}

πθ · sup
Pθ∈Mθ

σ(Pθ)[Wθ] , σ ∈ T
(
X , {0, 1}

)
(over all generalized randomizations) if and only if it minimizes the Bayes risk

Rπ

(
(P 0, P 1), σ,W

)
=
∑

θ∈{0,1}

πθ · sup
Pθ∈Mθ

σ(Pθ)[Wθ] , σ ∈ T0

(
X , {0, 1}

)
(over all ordinary randomizations). 2

4.3.3 Least favorable pairs in hypothesis testing

As stated in Subsection 4.1.1, the publication of Huber and Strassen (1973) led to a lot
of further research about least favorable pairs. However, a view years before this seminal
paper, the existence of least favorable pairs has already been shown by Baumann (1968)
in a more general setup. The testing problem in this more general setup mathematically
coincides with the imprecise testing problem (4.23) in Subsection 4.3.1 where the hypothe-
ses consist of coherent upper previsions. As a matter of fact, the following definition of
least favorable pairs is only a reformulation of (Baumann, 1968, Definition 4.8) in terms
of coherent upper previsions. In case of F-probabilities, this has already been done in
(Augustin, 1998, § 3.3.2).
In the present subsection, let X be a set with algebra A and let α ∈ [0, 1] be a fixed bound
on the type I error. Recall that T0 and T denotes the set of all ordinary and generalized
tests respectively.
Let P 0 and P 1 be coherent upper previsions on L∞(X ,A) with credal sets M0 and M1

respectively . In testing problem

P 0 vs. P 1

the infimal type II error over all level-α-tests is denoted by

β(M0,M1) := inf
{

sup
P1∈M1

P1[1− ϕ]
∣∣ ϕ ∈ T0, P0[ϕ] ≤ α ∀P0 ∈M0

}
For any P0 ∈ M0 and P1 ∈ M1, the infimal type II error over all level-α-tests in testing
problem

P0 vs. P1

is denoted by
β(P0, P1) := inf

{
P1[1− ϕ]

∣∣ ϕ ∈ T0, P0[ϕ] ≤ α
}

Recall that, according to Theorem 4.25, it does not matter if these infima are calculated
over all ordinary or generalized tests.
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Definition 4.26 (Least favorable pairs) Let M0 and M1 be credal sets of coherent
upper previsions on (Ω,A) .
(P̃0, P̃1) ∈ M0 ×M1 is a least favorable pair if

β(M0,M1) = β(P̃0, P̃1)

The following theorem essentially rephrases the main result in Baumann (1968) and
is the analog to (Augustin, 1998, Satz 3.14), which is concerned with (continuous) F-
probabilities. 7

Theorem 4.27 Let M0 and M1 be credal sets of coherent upper previsions on (Ω,A) .
Then, there is a least favorable pair

(P̃0, P̃1) ∈ M0 ×M1

Now, it is possible to prove this statement by use of the results of the previous subsections.
Therefore, this proof is independent of Baumann (1968).

Proof : Let Θ, π and W be chosen as in Theorem 4.23. Then, π1 > 0. Furthermore,
π = 0 if and only if a = 0 where a ∈ [0,∞) comes from Lemma 4.24 where T∗ = T .

Let a = 0. Then, for any (P0, P1) ∈ M0 ×M1 ,

0 ≤ β(P0, P1) ≤ β(M0,M1)
(†)
= inf

φ∈T
sup

P1∈M1

(
1− φ(P1)

)
= 0

where (†) follows from Lemma 4.24 for T∗ = T .8 That is, every (P0, P1) is a least
favorable pair in case of a = 0 .

Now, let a > 0; i.e., πθ > 0 ∀ θ ∈ {0, 1} .

[1] Firstly, note that

d0c0 + d1c1 = d0c0 + d1c1 , c0 ≤ c0 , c1 ≤ c1

implies
c0 = c0 , c1 = c1

for di ∈ (0,∞), ci ∈ R, ci ∈ R, i ∈ {0, 1}.
[2] According to the proof of Lemma 4.6 (a),

(P0, P1) 7→ Rπ

(
(P0, P1), σ,W

)
is continuous on the compactM0×M1 for every σ ∈ T0(X , {0, 1}) . So, (Denkowski
et al., 2003, Theorem 1.3.11) implies the existence of some (P̃0, P̃1) ∈ M0×M1 such
that

inf
σ∈T0(X ,{0,1})

Rπ

(
(P̃0, P̃1), σ,W

)
=

= sup
P0∈M0, P1∈M1

inf
σ∈T0(X ,{0,1})

Rπ

(
(P0, P1), σ,W

)
(4.42)

7In (Baumann, 1968, Korollar 5.6), the bound on the type I error may depend on P0 ∈ M0 while
the bound α is a constant here. Therefore, (Baumann, 1968, Korollar 5.6) is slightly more general than
Theorem 4.27.

8Recall from Theorem 4.25 that it does not matter whether β(M0,M1) is calculated over all gener-
alized or ordinary level-α-tests.
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According to Theorem 4.25, there is a generalized test φ̃′ ∈ T (α) which achieves the
infimum in (4.38). A suitable convex combination of φ̃′ and

φ1 : ba(Ω,A) → R , µ 7→ µ[IΩ]

yields some φ̃ ∈ T (α) so that

sup
P1∈M1

1− φ̃(P1) ≤ sup
P1∈M1

1− φ(P1) , sup
P0∈M0

φ̃(P0) = α (4.43)

That is, φ̃ also achieves the infimum in (4.38) and, therefore

sup
P1∈M1

1− φ̃(P1) = β(M0,M1) (4.44)

[3] Theorem 4.23 together with Proposition 4.5 implies

sup
P0∈M0, P1∈M1

Rπ

(
(P0, P1), σ̃,W

)
=

= inf
σ∈T0(X ,{0,1})

sup
P0∈M0, P1∈M1

Rπ

(
(P0, P1), σ,W

)
(4.45)

where σ̃ ∈ T (X , {0, 1}) denotes the generalized randomization which corresponds to
φ̃. Next,

Rπ

(
(P̃0, P̃1), σ̃,W

)
≤ sup

P0∈M0, P1∈M1

Rπ

(
(P0, P1), σ̃,W

)
=

(4.45)
= inf

σ∈T0(X ,{0,1})
sup

P0∈M0, P1∈M1

Rπ

(
(P0, P1), σ,W

)
=

Lemma 4.6
= sup

P0∈M0, P1∈M1

inf
σ∈T0(X ,{0,1})

Rπ

(
(P0, P1), σ,W

)
=

(4.42)
= inf

σ∈T0(X ,{0,1})
Rπ

(
(P̃0, P̃1), σ,W

)
Hence, according to Proposition 4.1,

Rπ

(
(P̃0, P̃1), σ̃,W

)
= inf

σ∈T0(X ,{0,1})
Rπ

(
(P̃0, P̃1), σ,W

)
(4.46)

and σ̃ is also optimal in the decision problem where the imprecise model (P 0, P 1)
is replaced by the precise model (P̃0, P̃1) . In the following part of the proof, it is
shown, that its corresponding test φ̃ also solves the testing problem where (P 0, P 1)
is replaced by (P̃0, P̃1) – that is,

1− φ̃
(
P̃1

)
= β

(
P̃1, P̃2

)
[4] The definition of the Bayes risk and

Rπ

(
(P̃0, P̃1), σ̃,W

) (4.46)
= inf

σ∈T0(X ,{0,1})
Rπ

(
(P̃0, P̃1), σ,W

)
=

(4.42)
= sup

P0∈M0, P1∈M1

inf
σ∈T0(X ,{0,1})

Rπ

(
(P0, P1), σ,W

)
=

Lemma 4.6
= inf

σ∈T0(X ,{0,1})
sup

P0∈M0, P1∈M1

Rπ

(
(P0, P1), σ,W

)
=

(4.45)
= sup

P0∈M0, P1∈M1

Rπ

(
(P0, P1), σ̃,W

)
(4.47)
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imply

π0σ̃(P̃0)[W0] + π1σ̃(P̃1)[W1] = π0 sup
P0∈M0

σ̃(P0)[W0] + π1 sup
P1∈M1

σ̃(P1)[W1]

Hence,

φ̃(P̃0)
(4.31)
= σ̃(P̃0)[W0]

(‡)
= sup

P1∈M1

σ̃(P1)[W1]
(4.43)
= α (4.48)

where (‡) follows from part [1] of the present proof.

Now, let ϕ ∈ T0 be any ordinary test which is not worse than φ̃ in testing problem

P̃0 vs. P̃1

That is,

1− ϕ(P̃1) ≤ 1− φ̃(P̃1) , ϕ(P̃0) ≤ α (4.49)

Let σ ∈ T0(X , {0, 1}) be the ordinary randomization which corresponds to the test
ϕ . Then, it follows from (4.31), (4.32) (4.49) and (4.48) that

σ(P̃1)[W1] ≤ σ̃(P̃1)[W1] , σ(P̃0)[W0] ≤ σ̃(P̃0)[W0] (4.50)

Next, the definition of the Bayes risk imply

Rπ

(
(P̃0, P̃1), σ,W

)
= π0σ(P̃0)[W0] + π1σ(P̃1)[W1] ≤

(4.50)

≤ π0σ̃(P̃0)[W0] + π1σ̃(P̃1)[W1] = Rπ

(
(P̃0, P̃1), σ̃,W

)
≤

(4.46)

≤ Rπ

(
(P̃0, P̃1), σ,W

)
and, therefore,

π0σ(P̃0)[W0] + π1σ(P̃1)[W1] = π0σ̃(P̃0)[W0] + π1σ̃(P̃1)[W1]

Together with (4.50), this implies

π1σ(P̃1)[W1] = π1σ̃(P̃1)[W1]

according to part [1] of the present proof. That is,

1− φ̃(P̃1) = 1− ϕ(P̃1)

and, therefore, we have shown that

1− φ̃
(
P̃1

)
= β

(
P̃1, P̃2

)
(4.51)

[5] Finally,

β
(
P̃1, P̃2

) (4.51)
= 1− φ̃

(
P̃1

)
≥ sup

P1∈M1

1− φ̃(P1)
(4.44)
= β(M1,M2) ≥

≥ β
(
P̃1, P̃2

)
(where the last inequality is a trivial consequence of the definitions) implies that(
P̃1, P̃2

)
is a least favorable pair.

2



Chapter 5

Natural extensions and the sample
space

5.1 Introduction

It has been detailedly pointed out in Subsection 3.4.1 that sample spaces are mathematical
constructs and that the choice of a concrete sample space (X ,A) in a given application
is usually rather arbitrary. This is true in classical mathematical statistics and decision
theory but it gets even more visible in case of imprecise probabilities. In order to see this,
note that coherent upper previsions are functionals

P : K → R

which may be defined on any domain K ⊂ L∞(X ,A) where (X ,A) is any sample space.
However, in the mathematical evaluation, we are not tied up with the initial choice of K .
In fact, it is one of the most pleasant benefits of the use of imprecise probabilities that
we can always extend P in a coherent way on larger domains1 if this is convenient. This
is possible by applying the method of natural extension developed in (Walley, 1991, § 3).
The method of natural extension undoubtedly is one of the most important cornerstones
of the whole theory of imprecise probabilities due to P. Walley – as stated in (Walley,
1991, p. 121):

“After the ideas of avoiding sure loss and coherence (. . . ), the most important
concept in the present theory is that of natural extension. It is the fundamental
concept in our theory of statistical inference (. . . ).”

Accordingly, the method of natural extension is contained in every survey of the theory
of coherent lower/upper previsions (e.g. Miranda (2008)). Due to its importance, the
method of natural extension itself is still also a matter of resent research; see e.g. Pelessoni
and Vicig (2005), Miranda and de Cooman (2007) and de Cooman et al. (2008).

However, the generous use of this method raises two questions which have not been con-
sidered so far. Answering both questions is highly appreciable since satisfactory answers
to these questions are of great importance in oder to justify the use of natural extensions.
The first question is concerned with extensions from K to the whole space L∞(X ,A),

1As will be seen in Subsection 5.3.2, sometimes, it is even possible to restrict P on a smaller domain
without loosing anything.
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the second question is concerned with extensions of the sample space (X ,A) to a sample
space (X ,A′) where A′ ⊃ A :

Firstly, let
P : K → R

be a coherent upper prevision on any set K ⊂ L∞(X ,A) . The reason for the use of
coherent upper previsions instead of linear previsions or precise probabilities is the fact
that it is far more realistic to give an upper bound on the previsions/expectations/prob-
abilities than to precisely specify these quantities in applications. However, as a matter
of fact, the upper prevision P [f ] is again a precise real number and it is suggesting
to state that this number P [f ] is usually not precisely known in real applications. So, a
practitioner will hardly be able to decide if P is the “correct” upper prevision or if another
upper previson

P
′

: K → R

is the correct one where ∣∣P [f ]− P ′[f ]
∣∣ < ε ∀ f ∈ K

for some (very) small ε > 0 . As long as we only deal with elements f of K, we may
hope that this will only have small effects on the results. However, what happens if we
apply the methods of natural extension in order to deal with functions f 6∈ K ? Is the
natural extension of P

′
still close to the natural extension of P ? The investigations in

Section 5.2 show that, unfortunately, the answer to this question is not affirmative. Even
more, arbitrarily small changes in P on K can have arbitrarily large effects on its natural
extension in general and, therefore, applying natural extensions may lead to meaningless
results. An example where this happens in given in Subsection 5.2.1. Fortunately, not all
is lost. In Subsection 5.2.2, it is shown that it can be guaranteed in many situation that
small changes in P on K only have small effects on the natural extension. Though these
results are not fully satisfactory, they show that it is possible to derive sensible conditions
which protect from instable natural extensions. Hopefully, these initial investigations
serve as a starting point for more sophisticated investigation into this direction.

Secondly, Section 5.3 is concerned with changes of the sample space: Again, let

P : K → R

be a coherent upper prevision on any K ⊂ L∞(X ,A) . Then, P can again be extended to
a coherent upper prevision on the whole sample space (X ,A) so that we get a coherent
upper prevision

P : L∞(X ,A) → R

However, we are not tied up with this choice of the sample space. Let A′ be an algebra
such that A′ ⊃ A . Then, we can still extend P on the larger sample space (X ,A′) so
that we get a coherent upper prevision

P : L∞(X ,A′) → R

Therefore, it seems to be always possible to arbitrarily chose that algebra which is most
convenient. However, at least in decision theory and, especially in statistics, choosing
A or the larger A′ has a fundamental effect on the evaluations. As can be seen from
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the decision theoretic definitions in Chapter 3, the choice of the sample space determines
the (randomized) decision functions which may be applied in the decision problem. In
this way, extending the sample space leads to a larger set of valid (randomized) decision
functions.
Let (P θ)θ∈Θ be an imprecise model on (X ,A), let W be a loss function and let τ̃ be an op-
timal randomized decision function. That is, τ̃ minimizes the Bayes risk R

(
(P θ)θ∈Θ, τ,W

)
over all randomized decision functions τ on (X ,A) . By use of natural extensions, (P θ)θ∈Θ

turns into an imprecise model on (X ,A′). After that, τ̃ still is a valid randomized deci-
sion function and it is easy to see that its Bayes risk is not affected by natural extension.
However, the important question arises if optimality gets lost! This is because natural
extension increases the set of all valid randomized decision functions and it is suggesting
that there might be a randomized decision function on (X ,A′) which is better than τ̃ . In
this case, natural extension would turn an optimal randomized decision function into a
suboptimal one. Therefore, it seems to be most adequate to pose the following definition
of optimality:

A randomized decision function is otimal if it minimizes the Bayes risk over
all randomized decision function for any natural extension of the model.

This definition is not very comfortable because it actually forces to always consider the
whole power set of X – and the power set may be too large to be handled successfully.
Especially in case of X = R, this would be very cumbersome.

Fortunately, the investigations in Section 5.3 show that such a proceeding is not necessary.
In Subsection 5.3.1, it is proven that – after applying natural extension – there is no
(randomized) decision function on (X ,A′) which is better than the best (randomized)
decision function on (X ,A) . The proof of this result turns out to be rather involved and
heavily relies on the previous investigations in Chapter 3 and Chapter 4. Especially, it
requires the general decision theoretic setup developed in Section 3.3 on base of L. Le
Cam’s work, results from Section 4.2 based on topological properties and an application
of the theory of vector lattices.
Next, it is described in Subsection 5.3.2 how the result can also be applied the other
way round: Sometimes it enables to reduce the sample space without loosing anything
because the optimal (randomized) decision function is guaranteed to live on a smaller
sample space.

Chapter 5 closes with an application in Section 5.4 which is based on the answers to both
above questions given in Section 5.2 and Section 5.3. This application lies in discretizing –
a topic which increasingly attracts attention within the theory of imprecise probabilities;
cf. Obermeier and Augustin (2007) and Troffaes (2008). In short, this is done as follows:

Let (P
′
θ)θ∈Θ be an imprecise model such that each

P
′
θ : L∞(X ,A′) → R

is the natural extension of a coherent upper prevision on a finite subset K ⊂ L∞(X ,A′) .
Firstly, each element of K is discretized such that we get a corresponding set K̂ of discrete
functions which are close to the elements of K . Next, it is possible to use K̂ in order
to define an imprecise model on a discrete sample space (X ,A) which is – according to

Section 5.2 – close to the original imprecise model (P
′
θ)θ∈Θ . Next, it can be shown that

– according to Section 5.3 – the solution of the discretized decision problem on (X ,A) is
an approximate solution of the original decision problem on (X ,A′) .
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5.2 Instability of the natural extension

5.2.1 A first example

Usually, the sole use of a simple parametric model consisting of precise probabilities is
hardly justifiable in real applications because real data almost never stem from such a
model and, if they would do so, we could not be sure that they really do. It is a well known
fact that small deviations from a precise model can have large effects on the statistical
methods – cf. e.g. Huber (1981). However, a precise model is usually not precisely true.
This is one reason for the use of imprecise probabilities. Of course, it is far more easy
to determine upper and lower bounds for the probabilities than to determine precise
probabilities. Tough it will not be possible to precisely determine correct upper and lower
bounds, small changes in the upper and lower bounds should only have small effects in
the statistical evaluation. This is usually true but, unfortunately, this is not always true.
Arbitrarily small changes in the upper and lower bounds can have arbitrarily large effects
in some cases. This is because the theory of imprecise probabilities commonly uses a
method which is potentially most instable – namely natural extension.

Especially in applications, the method of natural extension is a frequently used comfort-
able tool because it enables to define a coherent upper prevision P on L∞(X ,A) or on a
subset of L∞(X ,A) in the following way: An experimenter determines an upper prevision

P : K → R

on some subset K ⊂ L∞(X ,A) of L∞(X ,A) and then extends this prevision to a coherent
lower prevision on a larger set – by means of a natural extension, cf. Section 2.3. For
simplicity of notation, we may assume that he extends the prevision to the whole set
L∞(X ,A).

In general, such a proceeding can be very instable and may lead to arbitrary results. To
see this, let us consider the following simple example:

Put X = [0, 1] and let A be the Borel-σ-algebra of [0, 1]. Put

f0 : [0, 1] → R , x 7→ x

and K = {f0}. Furthermore,
P [f0] = 0

and
P
′
[f0] = ε

where 0 < ε < 1. Then, the natural extensions are given by

P [f ] = sup
P∈M

P [f ] ∀ f ∈ L∞(X ,A)

and
P
′
[f ] = sup

P ′∈M′
P ′[f ] ∀ f ∈ L∞(X ,A)

where
M =

{
P ∈ ba+

1 (X ,A)
∣∣ P [f0] = 0

}
M′ =

{
P ′ ∈ ba+

1 (X ,A)
∣∣ P ′[f0] ∈ [0, ε]

}
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For every P ∈M, it follows from f0 ≥ εI[ε,1] that

0 = P [f0] ≥ P
[
εI[ε,1]

]
= ε P

[
I[ε,1]

]
≥ 0 (5.1)

and therefore, P
[
I[ε,1]

]
= 0 . Hence,

P
[
I[ε,1]

]
= 0

Let δε be the Dirac measure in ε. Then δε[f0] = ε implies δε ∈ M′ and

1 = sup
x∈[0,1]

I[ε,1](x) ≥ sup
P ′∈M′

P ′
[
I[ε,1]

]
≥ δε

[
I[ε,1]

]
= 1

Hence,
P
′[
I[ε,1]

]
= 1

Summing up, we have

P
[
I[ε,1]

]
= inf

x∈[0,1]
I[ε,1](x) , P

′[
I[ε,1]

]
= sup

x∈[0,1]

I[ε,1](x)

This is, indeed, the worst thing that can happen. The unpleasant message of this example
is:

Determining a coherent upper prevision on some functions K ⊂ L∞(X ,A) in
a first step and extending the coherent upper prevision (by natural extension)
to some functions f ∈ L∞(X ,A) in a second step may lead to arbitrary results:
Arbitrarily small changes of one upper bound

P [f0]

(where f0 ∈ K ) may have arbitrarily large effects on the bounds

P [f ] , f ∈ L∞(X ,A)

Note that the above example is not a pathological one: The sample space is a compact
interval in R, the algebra A is the Borel-σ-algebra and the coherent upper prevision on
K is a very easy one because K only consists of one element f0 and this f0 is a linear
function. It would even have made no difference if we would have taken K to be the linear
space

K := {af0 | a ∈ R}

However, the above example, indeed, is somehow special because we have

P [f0] = P [f0]

and this is a precise prevision which is not really what we want in imprecise probabilities.
Nevertheless, the use of such imprecise probabilities where

P [f ] = P [f ] (5.2)

at least for some (non-constant) functions f ∈ K is not unusual in applications of imprecise
probabilities. Though such precise values (5.2) of imprecise probabilities seem to be
problematic, this problem does not arise in classical probability theory (where upper and
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lower bounds always coincide) because, there, it is not possible to change single values
in the above manner and something like a method of natural extension does not exist
anyway.

One might argue that the coherent upper prevision used in the above example is not a
good one and that it is enough to take a short look at it in order to see this. However, this
example is also an extremely simple one and it is hard to guarantee that such “detecting
bad models by a short look at it” still works for more complicated previsions.

The above example does not show that using natural extensions was indefensible in real
applications but it shows that natural extension should not be used unthoughtfully.

For applications, it would be desirable to have some guidelines which prevent practitioners
from arbitrary results because of an instable natural extension. The following subsection
makes a first attempt in this direction but it certainly does not succeed in giving a final,
satisfactory answer. Hopefully, future research will provide some more insight into this
topic.

5.2.2 Stable imprecise probabilities

The present subsection is concerned with conditions that protect against instable natu-
ral extensions. The example presented in Subsection 5.2.1 shows that it does not seem
to be promising to solely put restrictions on K such as “K should contain only a small
number of functions”, “K should be a linear space”, “the functions in K should be con-
tinuous/monotone/linear” or something like that.
Instead, it can be seen from Equation (5.1) that Condition

P [f0] = P [f0] (5.3)

is in fact crucial for the instability of the natural extension in the example presented in
Subsection 5.2.1. Therefore, it is suggesting to avoid instability of the natural extension
by avoiding (5.3). This is done in the following proposition:

Proposition 5.1 Let P be a coherent upper prevision on a set K ⊂ L∞(X ,A) and let

F :=
{
f1 , . . . , fn

}
⊂ K

be a finite subset of K .
Let P

′
be another coherent upper prevision on K such that

P
′
[f ] = P [f ] ∀ f ∈ K \ F

and, for some real numbers 0 < εi < 1 , i ∈ {1, . . . , n} ,

P [fi] ≤ P
′
[fi] ≤ P [fi] + εi

(
P [fi]− P [fi]

)
∀ i ∈ {1, . . . , n} (5.4)

where P is the coherent lower prevision on K which corresponds to P . 2 Let P , P and
P
′

also denote the respective natural extensions of P , P and P
′

on L∞(X ,A).
Then, for ε := ε1 + · · ·+ εn :

2 P [f ] = infP∈M P [f ] ∀ f ∈ K where M is the credal set of P .



5.2. INSTABILITY OF THE NATURAL EXTENSION 121

a) P [f ] ≤ P
′
[f ] ≤ P [f ] + ε

(
sup f − P [f ]

)
∀ f ∈ L∞(X ,A)

b) If ε < 1 ,

P [f ] ≤ P
′
[f ] ≤ P [f ] +

ε

1− ε
·
(
P [f ]− P [f ]

)
∀ f ∈ L∞(X ,A)

That is, Proposition 5.1 investigates what may happen (or rather what cannot happen) if
some values of a coherent upper prevision P are made slightly larger. “Slightly” means:
a small percentage of P [f ]−P [f ] . Therefore, P [f ] may not be changed if P [f ] = P [f ] so
that the example in Subsection 5.2.1 is excluded. So, Proposition 5.1 really explains how to
avoid instability of the natural extension by avoiding such bottlenecks (5.3). Nevertheless,
modeler will often create instable coherent upper previsions P 0 where

P 0[fi]− P 0[fi]

is very small or equal to zero for some fi ∈ K . Then, it will often be sensible to turn this
potentially most instable coherent upper prevision into a stable one – not as part of the
decision theoretic evaluation but as part of modeling. A canonical and easy way to do
this is as follows: Take any appropriately small α ∈ (0, 1) and use

Pα : K → R , f 7→ (1− α)P 0[f ] + α sup f (5.5)

instead of P 0 . It is easy to see that Pα is again a coherent upper prevision. Furthermore,
we have

Pα[f ]− Pα[f ] = (1− α)P 0[f ] + α sup f − (1− α)P 0[f ]− α inf f ≥
≥ α(sup f − inf f)

for every f ∈ K . Of course, the above example shows that going over to Pα can massively
change the results. But, if this happens, it is so much the better to go over to Pα because
it is usually impossible to guaranty that the “true” coherent upper prevision is certainly
equal to P 0 and does not lie somewhere between P 0 and Pα. Furthermore, Proposition
5.1 implies that additional small enlargements of Pα will only moderately change the
results.

Proof of Proposition 5.1: LetM denote the credal set of P andM′ denote the credal
set of P

′
on L∞(X ,A) . Note that

M ⊂ M′ hence P
′
[f ] ≥ P [f ] ∀ f ∈ L∞(X ,A) (5.6)

[1] Fix any f ∈ L∞(X ,A) and any P ′ ∈ M′ . For every i ∈ {1, . . . , n} , there is a
Pi ∈M such that P [fi] = Pi[fi] (cf. Corollary 2.16).

• Put P ′0 := P ′ and consider the following inductive definitions for i ∈ {1, . . . , n}:
– In case of P ′i−1[fi] ≤ P [fi] (CASE 1), put αi = 0 .
– In case of P ′i−1[fi] > P [fi] (CASE 2), put

αi :=
P ′i−1[fi]− P [fi]

P ′i−1[fi]− Pi[fi]

Then, put

P ′i := (1− αi)P ′i−1 + αiPi (5.7)
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• By induction, we proof in the following that, for every i ∈ {0, . . . , n} ,

P ′i ∈ M′ (5.8)

P ′i [fj] ≤ P [fj] ∀ j ∈ {1, . . . , i} (5.9)

and

P ′[f ] ≤ P ′i [f ] +
i∑

j=1

εj ·
(
P
′
[f ]− P [f ]

)
(5.10)

Obviously, (5.8), (5.9) and (5.10) are fulfilled for i = 0 .
Next, let (5.8), (5.9) and (5.10) be fulfilled for i− 1 .

– CASE 1: In case of P ′i−1[fi] ≤ P [fi] , we have αi = 0 , P ′i = P ′i−1 and,
therefore, (5.8) and (5.9) are fulfilled. In addition, (5.10) follows because the
induction hypothesis implies

P ′[f ] ≤ P ′i−1[f ] +
i−1∑
j=1

εj ·
(
P
′
[f ]− P [f ]

)
≤

(5.6)

≤ P ′i [f ] +
i∑

j=1

εj ·
(
P
′
[f ]− P [f ]

)
– CASE 2: In case of P ′i−1[fi] > P [fi] , it follows from

P [fi] = Pi[fi] ≤ P [fi] < P ′i−1[fi]
(5.8)

≤ P [fi] + εi
(
P [fi]− P [fi]

)
that

0 ≤ αi =
P ′i−1[fi]− P [fi]

P ′i−1[fi]− Pi[fi]
≤ εi(P [fi]− P [fi])

P [fi]− P [fi]
= εi (5.11)

then. Especially, αi ∈ [0, 1] . Next, the definition of P ′i , (5.6) and the induc-
tion hypothesis immediately imply the validity of (5.8) for i and

P ′i [fj] ≤ P [fj] ∀ j ∈ {1, . . . , i− 1}

Furthermore,

P ′i [fi] = (1− αi)P ′i−1[fi] + αPi[fi] =

=
P [fi]− Pi[fi]
P ′i−1[fi]− Pi[fi]

· P ′i−1[fi] +
P ′i−1[fi]− P [fi]

P ′i−1[fi]− Pi[fi]
· Pi[fi] =

= P [fi]

That is, we have proven the validity of (5.8) and (5.9) for i so far. In order
to prove (5.10), note that

P ′i−1[f ] = αiP
′
i−1[f ] + (1− αi)P ′i−1[f ] + αiPi[f ]− αiPi[f ] =

(5.7)
= αiP

′
i−1[f ] + P ′i [f ]− αiPi[f ] ≤

(5.8)

≤ P ′i [f ] + αi
(
P
′
[f ]− P [f ]

)
≤

≤ P ′i [f ] + εi
(
P
′
[f ]− P [f ]

)
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where the last inequality follows from (5.6) and (5.11). Together with the
induction hypothesis, this implies

P ′[f ] ≤ P ′i−1[f ] +
i−1∑
j=1

εj ·
(
P
′
[f ]− P [f ]

)
≤

≤ P ′i [f ] +
i∑

j=1

εj ·
(
P
′
[f ]− P [f ]

)
Summing up, we have proven by induction the validity of (5.8), (5.9) and (5.10)
for every i ∈ {1, . . . , n} so far.

• For i = n, (5.8) and (5.9) imply

P ′n ∈ M

Hence, it follows from (5.10) and the definition of ε that

P ′[f ] ≤ P [f ] + ε ·
(
P
′
[f ]− P [f ]

)
(5.12)

[2] It is shown in part [1] of the present proof that (5.12) is valid for every P ′ ∈M′ and
every f ∈ L∞(X ,A) . Hence, we have

P
′
[f ] ≤ P [f ] + ε ·

(
P
′
[f ]− P [f ]

)
∀ f ∈ L∞(X ,A) (5.13)

[3] Now, part a) of Proposition 5.1 follows from

P
′
[f ]

(5.13)

≤ P [f ] + ε ·
(
P
′
[f ]− P [f ]

)
≤

≤ P [f ] + ε ·
(

sup f − P [f ]
)

∀ f ∈ L∞(X ,A)

In case of ε =
∑n

j=1 εj < 1 a simple transformation of (5.13) yields

P
′
[f ] ≤ P [f ] +

ε

1− ε
·
(
P [f ]− P [f ]

)
∀ f ∈ L∞(X ,A)

that is Proposition 5.1 b).

2

Remark 5.2

a) Of course, Proposition 5.1 a) can be simplified to the weaker bound

P [f ] ≤ P
′
[f ] ≤ P [f ] + ε

(
sup f − inf f

)
∀ f ∈ L∞(X ,A)

b) Proposition 5.1 is only concerned with the case where the coherent upper prevision is
made slightly larger. This is because Proposition 5.1 has been derived especially for
applications in discretizing and, for this purpose, Proposition 5.1 is indeed suitable;
cf. Section 5.4. Nevertheless, Proposition 5.1 can also be used in order to get a
similar version in that case where the coherent upper prevision is made slightly
smaller. This may simply be done by interchanging the roles of P and P

′
:
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Now, let P
′

be a coherent upper prevision on K such that

P
′
[f ] = P [f ] ∀ f ∈ K \ F

and, for every i ∈ {1, . . . , n},

P [fi] ≥ P
′
[fi] ≥ P [fi]− εi

(
P
′
[fi]− P ′[fi]

)
(5.14)

Then, for every f ∈ L∞(X ,A)

P [f ] ≥ P
′
[f ] ≥ P [f ]− ε

(
sup f − inf f

)
(5.15)

However, this version is not at all as good as the original one because the bound in
(5.14) is based on

P
′
[f ]− P ′[f ]

instead of
P [f ]− P [f ]

Of course, P
′
[f ] is close to P [f ] by assumption but it is not yet assured that P ′[f ] is

close to P [f ]. If P
′
[f ]− P ′[f ] happens to be small, then this version of Proposition

5.1 is useless.

As pointed out in Remark 5.2, the above proposition is only concerned with the case
where the coherent upper prevision is made slightly larger. Though this is enough for
applications in discretizing 3 , Proposition 5.1 can only serve as a starting point for more
sophisticated examinations of imprecise probabilities which avoid instable natural exten-
sions.

It would be most desirable to derive a result of the following form:

Let P 0 and P
′
0 be coherent upper previsions on a set K ⊂ L∞(X ,A) . Then,

for every f ∈ L∞(X ,A),

b1(P 0, P
′
0, f)) ≤ P [f ]− P ′[f ] ≤ b2(P 0, P

′
0, f)) (5.16)

where P and P
′

denote the natural extensions of P 0 and P
′
0 respectively –

and b1 and b2 provide some useful nontrivial bounds.

After talking to Matthias Troffaes about this problem at the Fifth International Sympo-
sium on Imprecise Probability: Theories and Applications in 2007, he gave me the hint
that such problems have already been treated in linear programming. The above problem
can indeed be formulated in terms of linear programming or – more general – in terms
of convex optimization. Since the present subsection deals with (possibly) infinite spaces
and linear programming may only be applied in case of finite spaces, more general convex
optimization is considered now:

Again, let P 0 and P
′
0 be coherent upper previsions on a set K ⊂ L∞(X ,A) ; let P and

P
′

denote the respective natural extensions. Then, for every f ∈ L∞(X ,A), P [f ] is the
optimal value of the convex optimization problem

sup
P
P [f ] , P ∈ ba+

1 (X ,A) , G(P ) ≤ 0 (5.17)

3cf. Section 5.4
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where G is the function

G : ba+
1 (X ,A) →

{
b : K → R

∣∣∣∣ sup
f0∈K

|b(f0)|
‖f0‖

< ∞
}

which is given by

G(P )[f0] = P [f0]− P 0[f0] ∀P ∈ ba+
1 (X ,A) ∀ f0 ∈ K

Accordingly, P
′
[f ] is the optimal value of a convex optimization problem

sup
P
P [f ] , P ∈ ba+

1 (X ,A) , G′(P ) ≤ 0 (5.18)

Now, we can formulate our problem in terms of convex optimization:

In how far are the optimal values in (5.17) and (5.18) similar if P 0 and P
′
0 are

similar?

Answers to this problem are given by the so-called “sensitivity analysis” in convex opti-
mization – cf. e.g. Luenberger (1969) for general convex optimization and Chvátal (1983)
or Jansen et al. (1997) for linear programming.

Using one of the main results of sensitivity analysis in convex optimization4, we get the
following very general theorem:

Theorem 5.3 Let P 0 and P
′
0 be coherent upper previsions on a set K ⊂ L∞(X ,A). For

a fixed f ∈ L∞(X ,A), let ℘f be a Lagrange multiplier of the convex optimization Problem
(5.17) and let ℘′f be a Lagrange multiplier of the convex optimization Problem (5.18).

P and P
′

denote the respective natural extensions of P 0 and P
′
0. Then,

℘′f
(
P 0 − P

′
0

)
≤ P [f ]− P ′[f ] ≤ ℘f

(
P 0 − P

′
0

)
Proof : This is a direct consequence of (Luenberger, 1969, §8.4). 2

Note that such Lagrange multipliers need not exist. However, Lagrange multipliers exist
under the following assumption; cf. e.g. (Luenberger, 1969, §8.3, Theorem 1):

Assume that there are P̂ , P̂ ′ ∈ ba+
1 (X ,A)) and ε, ε′ > 0 such that

P̂ [f0] + ε ≤ P 0[f0] and P̂ ′[f0] + ε′ ≤ P
′
0[f0] (5.19)

for every f0 ∈ K .

Apparently, this assumption is very similar to the assumptions in Proposition 5.1. It is
always fulfilled if K is finite and

P 0[f0] < P 0[f0] , P ′0[f0] < P
′
0[f0] ∀ f0 ∈ K (5.20)

This is the content of the following lemma:

Lemma 5.4 Let P 0 and P
′
0 be coherent upper previsions on a finite set K ⊂ L∞(X ,A)

such that (5.20) is fulfilled. Then, condition (5.19) is fulfilled.

Proof : Let M be the credal set of P 0 . For every fi ∈ K = {f1, . . . , fn}, there is a
Pi ∈M such that Pi[fi] = P 0[fi] . Then, put

P̂ :=
1

n

n∑
j=1

Pj and ε = min
i=1,...,n

(
P 0[fi]− P̂ [fi]

)
and (5.20) guaranties ε > 0 .

The same proof applies for P
′
0 . 2

4(Luenberger, 1969, §8.4)
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5.3 Extensions and reductions of the sample space

5.3.1 Extension of Algebras and Natural Extension of Previ-
sions

5.3.1.1 Description of the problem

As explained in the introductory Section 5.1, the arbitrariness of the choice of the sample
space becomes apparent in particular in the theory of imprecise probabilities. There, the
sample space may always be extended by the method of natural extension but, e.g. in
case of decision theory, it is not obvious if such extensions does not change the results in
a rather arbitrary way:

Let X be a set with algebras A, A′ such that that

A ⊂ A′

Let P be a coherent upper prevision on X with domain L∞(X ,A):

P : L∞(X ,A) −→ R

By the method of natural extension, P may be extended to a coherent upper prevision
on X with domain L∞(X ,A′):

P
′
: L∞(X ,A′) −→ R

The credal set of P on (X ,A) is denoted by

M =
{
P ∈ ba+

1 (X ,A)
∣∣ P [f ] ≤ P [f ] ∀ f ∈ L∞(X ,A)

}
(5.21)

and the credal set of P
′

on (X ,A′) is denoted by

M′ =
{
P ′ ∈ ba+

1 (X ,A′)
∣∣ P ′[f ] ≤ P

′
[f ] ∀ f ∈ L∞(X ,A)

}
(5.22)

Since such a natural extension of coherent upper previsions is always possible, it is stated
in many articles that

“without loss of generality, we may assume that P is a coherent upper prevision
on the larger domain L∞(X ,A′)”

where A′ commonly happens to be the power set of X . However, at least in decision
theory, it changes a lot if the sample space is (X ,A) or (X ,A′) because the choice of the
sample space determines the valid (randomized) decision functions.
Let (D,D) be a decision space. In case of the sample space (X ,A), the valid randomized
decision functions are given by the finitely additive Markov kernels

τ : X ×D → R , (x,D) 7→ τx(D)

where the map τ•(D) : x 7→ τx(D) is assumed to be an element of L∞(X ,A) for every
D ∈ D .
However, in case of the larger sample space (X ,A′), the valid randomized decision func-
tions are given by the finitely additive Markov kernels

τ ′ : X ×D → R , (x,D) 7→ τ ′x(D)
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where the map τ ′•(D) : x 7→ τ ′x(D) is only assumed to be an element of the larger set
L∞(X ,A′) for every D ∈ D . That is: Extending the sample space leads to a larger set
of valid (randomized) decision functions.

Now, let (P θ)θ∈Θ be an imprecise model on (X ,A), let

W : Θ× D → R , (θ, t) 7→ Wθ(t)

be a loss function and let τ̃ be an optimal randomized decision function. That is 5, in
case of the sample space (X ,A), τ̃ minimizes the Bayes risk R

(
(P θ)θ∈Θ, τ,W

)
over all

randomized decision functions τ such that τ• ∈ L∞(X ,A) . By use of natural extensions,

(P θ)θ∈Θ turns into an imprecise model (P
′
θ)θ∈Θ on (X ,A′). After that, τ̃ still is a valid

randomized decision function and it is easy to see that its Bayes risk is not affected by
natural extension – i.e.

R
(
(P
′
θ)θ∈Θ, τ̂ ,W

)
= R

(
(P θ)θ∈Θ, τ̂ ,W

)
However, the important question raises if optimality gets lost. This is because natural
extension increases the set of all valid randomized decision functions: Every finitely ad-
ditive Markov kernel τ ′ such that τ ′• ∈ L∞(X ,A′) is a valid randomized decision function
now and it is suggesting that there might be a randomized decision function on (X ,A′)
such that

R
(
(P
′
θ)θ∈Θ, τ

′,W
)
< R

(
(P
′
θ)θ∈Θ, τ̂ ,W

)
(5.23)

In this case, natural extension would turn an optimal randomized decision function into
a suboptimal one. Since it is one of the fundamental properties of imprecise probabilities
to extend the sample space whenever convenient, it seems to be most adequate to pose
the following definition of optimality:

A randomized decision function is optimal if it minimizes the Bayes risk over
all randomized decision function for any natural extension of the model.

This definition is not very comfortable because it actually forces to always consider the
whole power set of X – and the power set may be too large to be handled successfully.
Especially in case of X = R, this would be very cumbersome.

Fortunately, such a proceeding is not necessary! This is shown by the main theorem,
Theorem 5.6, of the present subsection. It states that (5.23) does not happen:

If τ̃ minimizes the Bayes risk R
(
(P θ)θ∈Θ, τ,W

)
over all randomized decision

functions τ such that τ• ∈ L∞(X ,A), then there is no natural extension

(P
′
θ)θ∈Θ of the model and no randomized decision function τ ′ on the larger

sample space such that

R
(
(P
′
θ)θ∈Θ, τ

′,W
)
< R

(
(P
′
θ)θ∈Θ, τ̂ ,W

)
A mathematical rigorous formulation of this theorem is contained in the following sub-
section. Its proof turns out to be rather involved because it requires the general decision
theoretic setup developed in Section 3.3 on base of L. Le Cam’s work, important topolog-
ical results from Section 4.2 and a strong result from the theory of vector lattices 6.

5cf. Section 3.2
6a Hahn-Banach-type theorem for M-Spaces; cf. Lemma 5.11
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5.3.1.2 Main results and outline of the proof

Throughout this subsection, Θ is any index set, X is a set with algebras A and A′ such
that

A ⊂ A′

Π is a coherent upper prevision on L∞(Θ, 2Θ) with credal set P .
(P θ)θ∈Θ is an imprecise model on (X ,A) where (Mθ)θ∈Θ is the corresponding family of

credal sets. For every θ ∈ Θ, P
′
θ denotes the natural extension of P θ on L∞(X ,A′) and

M′
θ denotes its credal set on (X ,A′) .

Finally, (D,D) is a decision space and

W : Θ× D → R , (θ, t) 7→ Wθ(t)

is a loss function such that (Wθ)θ∈Θ ⊂ L∞(D,D) .
Recall from Section 3.1 that the Bayes risk of a randomized decision function τ on (X ,A)
is denoted by

RΠ

(
(P θ)θ∈Θ, τ,W

)
and the Bayes risk of a randomized decision function τ ′ on (X ,A′) is denoted by

RΠ

(
(P
′
θ)θ∈Θ, τ

′,W
)

The following lemma exposes a simple but important fact:

Lemma 5.5 Every randomized decision function τ on (X ,A) is also a randomized deci-
sion function on (X ,A′) and

RΠ

(
(P θ)θ∈Θ, τ,W

)
= RΠ

(
(P
′
θ)θ∈Θ, τ,W

)
Proof : Let τ be a randomized decision function on (X ,A) . Put

τ•[h] : X → R , x 7→ τx[h] =

∫
D
h(t) τx(dt)

for every h ∈ L∞(D,D) . Since

τ•[ID] ∈ L∞(X ,A) ⊂ L∞(X ,A′) ∀D ∈ D

τ is also a randomized decision function on (X ,A′) and

RΠ

(
(P
′
θ)θ∈Θ, τ,W

)
= sup

π∈P

∫
Θ

sup
P ′θ∈M

′
θ

∫
X
τx[Wθ]P

′
θ(dx

′) π(dθ) =

= sup
π∈P

∫
Θ

P
′
θ

[
τ•[Wθ]

]
π(dθ) = sup

π∈P

∫
Θ

P θ

[
τ•[Wθ]

]
π(dθ) =

= sup
π∈P

∫
Θ

sup
Pθ∈Mθ

∫
X
τx[Wθ]Pθ(dx) π(dθ) =

= RΠ

(
(P θ)θ∈Θ, τ,W

)
2
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According to Subsection 3.3.1, the randomized decision functions on (X ,A) correspond
to the ordinary randomizations from (X ,A) to (D,D) . So, T0(X ,D) may also denote the
set of all randomized decision functions on (X ,A) . Accordingly, T ′0 (X ,D) may denote
the (larger) set of all randomized decision functions on (X ,A′) .

Now, we can state the main theorem of the present subsection:

Theorem 5.6 Assume that Θ is a finite set. Then:

a) [ Γ-minimax ]

inf
τ ′∈T ′0 (X ,D)

RΠ

(
(P
′
θ)θ∈Θ, τ

′,W
)

= inf
τ∈T0(X ,D)

RΠ

(
(P
′
θ)θ∈Θ, τ,W

)
Furthermore, a randomized decision function on (X ,A) which is Γ-minimax over
all randomized decision functions on (X ,A) is also Γ-minimax over all randomized
decision functions on (X ,A′) .

b) [E-admissibility ] Take any τ̃ ∈ T0(X ,D) so that there is some π ∈ P where

Rπ

(
(P θ)θ∈Θ, τ̃ ,W

)
= inf

τ∈T0(X ,D)
Rπ

(
(P θ)θ∈Θ, τ,W

)
Then,

Rπ

(
(P
′
θ)θ∈Θ, τ̃ ,W

)
= inf

τ ′∈T ′0 (X ,D)
Rπ

(
(P
′
θ)θ∈Θ, τ

′,W
)

That is, a randomized decision function on (X ,A) which is E-admissible over all
randomized decision functions on (X ,A) is also E-admissible over all randomized
decision functions on (X ,A′) .

As already stated above, the proof of Theorem 5.6 is rather involved. Nevertheless, it is
based on a simple idea, which is presented in the following:

Let T : L∞(X ,A′)→ L∞(X ,A) be a map so that

• T is linear

• T is positive: T (f ′) ≥ 0 ∀ f ′ ≥ 0

and so that

• T (f) = f ∀ f ∈ L∞(X ,A) ⊂ L∞(X ,A′)

Such a map does not always exist, but for a start, let us assume that such a map T
would exist. Example 5.9 below presents a situation where T exists and can explicitly be
specified. Furthermore, it contains an example where T cannot exist.

Now, let τ ′ be a randomized decision function

τ ′ : X ×D → R , (x,D) 7→ τ ′x(D)

such that τ ′•(D) : x 7→ τ ′x(D) is an element of L∞(X ,A′) . By use of T , it is easy to show,
that there is a randomized decision function

τ : X ×D → R , (x,D) 7→ τx(D)
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such that τ•(D) : x 7→ τx(D) is an element of L∞(X ,A) and

R
(
(P
′
θ)θ∈Θ, τ,W

)
≤ R

(
(P
′
θ)θ∈Θ, τ

′,W
)

(5.24)

To this end, note that T defines a finitely additive Markov kernel κ in the following way:

κ : X ×A′ → R , (x,A′) 7→ κx(A
′) = T

(
IA′
)
(x)

Next, put

τ : X ×D → R , (x,D) 7→ τx(D) =

∫
X
τ ′x′(D) κx(dx

′)

It is easy to see that τ is a (finitely additive) Markov kernel τ : X ×D → R such that

τx(D) = T
(
τ ′•(D)

)
(x) ∀x ∈ X , ∀D ∈ D

and, therefore, τ•(D) : x 7→ τx(D) is an element of L∞(X ,A) for every D ∈ D . Hence, τ
is a randomized decision function on (X ,A) .
That is, T turns a randomized decision function τ ′ on (X ,A′) into a randomized decision
function τ on (X ,A) . It only remains to proof that the Bayes risk of τ is not larger than
the Bayes risk of τ ′ – i.e. (5.24):
Note that

ρ(P )[f ′] :=

∫
X

∫
X
f ′(x′) κx(dx

′)P (dx) = P
[
T (f ′)

]
∀ f ′ ∈ L∞(X ,A′) , ∀P ∈ ba+

1 (X ,A)

leads to a well defined map

ρ : ba+
1 (X ,A) → ba+

1 (X ,A′)

such that
Pθ[f ] ≤ P θ[f ] ∀ f ∈ L∞(X ,A)

implies
ρ(Pθ)[f

′] ≤ P
′
θ[f
′] ∀ f ′ ∈ L∞(X ,A′)

In other words, we have

Pθ ∈Mθ ⇒ ρ(Pθ) ∈M′
θ (5.25)

where Mθ denotes the credal set of P θ and M′
θ denotes the credal set of P

′
θ .

Finally,

sup
P ′θ∈M

′
θ

∫
X

∫
D
Wθ(t) τx(dt)P

′
θ = sup

Pθ∈Mθ

∫
X

∫
D
Wθ(t) τx(dt)Pθ(dx) =

= sup
Pθ∈Mθ

∫
X

∫
X

∫
D
Wθ(t) τ

′
x′(dt)κx(dx

′)Pθ(dx) =

= sup
Pθ∈Mθ

∫
D
Wθ(t) τ

′
x′(dt)

[
ρ(Pθ)

]
(dx′) ≤

(5.25)

≤ sup
P ′θ∈M

′
θ

∫
D
Wθ(t) τ

′
x′(dt) P

′
θ(dx

′)
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implies (5.24). That is, we have already proven Theorem 5.6 a) – under the assumption
that the map T exists. Unfortunately, T does not need to exist. Indeed, it is enough to
consider A = B as shown by Example 5.9 b). Example 5.9 a) presents a concrete example
where T does exist.

In view of Subsection 3.3.1, T defines – if it exists – an ordinary randomization ρ . As
we will see below, the key result in the proof of Theorem 5.6 is the fact that a suitable
generalization of T – namely a generalized randomization – always exists. This is the
content of Lemma 5.11 below, which is strongly based on the theory of vector lattices.

One may wonder if the undesirable assumption that Θ has to be a finite set in Theorem
5.6 is necessary. Essentially, this assumption is not necessary but it makes it possible to
formulate Theorem 5.6 in terms of randomized decision functions (i.e. ordinary decision
procedures) which certainly is more comfortable for most readers. The reader who is in
complete accordance with L. Le Cam and thinks that generalized decision procedures are
just as well (cf. also Section 3.4) may dispense with any assumption on Θ . This can be
seen by the following Theorem 5.7. In fact, we will use Theorem 5.7 in order to proof
Theorem 5.6.

Theorem 5.7 Let Θ be any index set. Then:
For every generalized decision procedure σ′ ∈ T ′(X ,D), there is a generalized decision
procedure σ ∈ T (X ,D) such that the risk function of σ is not larger than the risk function
of σ′ in every θ ∈ Θ – i.e.

sup
Pθ∈Mθ

σ(Pθ)[Wθ] ≤ sup
P ′θ∈M

′
θ

σ′(P ′θ)[Wθ] ∀ θ ∈ Θ

In accordance with T0(X ,D) and T ′0 (X ,D) from above, T (X ,D) denotes the set of all
generalized decision procedures in case of the sample space (X ,A) and T ′(X ,D) denotes
the set of all generalized decision procedures in case of the sample space (X ,A′) . Risk
functions for generalized decision procedures have already been defined in Subsection
3.3.1.2.

Another possibility to get rid of the assumption that Θ has to be finite is to assume that
A is finite. This is because the map T always exists if A is finite. Especially, this case is
relevant for discretizations; cf. Section 5.4.

Theorem 5.8 Let Θ be any index set and let A be finite. Then:
For every randomized decision function τ ′ ∈ T ′0 (X ,D), there is a randomized decision
function τ ∈ T0(X ,D) such that the risk function of τ is not larger than the risk function
of τ ′ in every θ ∈ Θ – i.e.

sup
P ′θ∈M

′
θ

∫
X

∫
D
Wθ(t) τx(dt)P

′
θ(dx) ≤ sup

P ′θ∈M
′
θ

∫
X

∫
D
Wθ(t) τ

′
x(dt)P

′
θ(dx)

for every θ ∈ Θ .

The present subsection closes with the repeatedly mentioned example concerning exis-
tence of the map T . The following subsection is concerned with the proofs of the above
theorems.

Example 5.9
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a) Take X = R, A′ = B and let A be the σ-algebra which is generated by the sets
[k, k + 1), k ∈ Z. Then,

T : f ′ 7→
∑
k∈Z

f ′(k)I[k,k+1)

is a linear, positive map T : L∞(X ,A′)→ L∞(X ,A) such that T (f) = f for every
f ∈ L∞(X ,A) ⊂ L∞(X ,A′) .

b) Take X = R, A = B and let A′ be the power set of R . Then, such a map T as in
a) cannot exist.

In order to see this, note that L∞(X ,A) and L∞(X ,A′) are M-spaces. Furthermore,
L∞(X ,A′) is Dedekind complete. Now, assume that T would exist and let F ⊂
L∞(X ,A) be a majorized subset of L∞(X ,A) – i.e. ∃ f0 ∈ L∞(X ,A) : f ≤
f0 ∀ f ∈ F . Hence, F is also a majorized subset of L∞(X ,A′) and Dedekind
completeness of L∞(X ,A′) implies the existence of a supremum h′ ∈ L∞(X ,A′) of
F . Next, put h = T (h′) and it follows from positivity of T that h is a supremum of
F in L∞(X ,A).
As a consequence, existence of T would imply that L∞(X ,A) was order complete,
too. However, L∞(X ,A) is not order complete. 7

5.3.1.3 Proof of the main result

Let X again be a set with algebras A and A′ such that A ⊂ A′ . As presented in the
previous subsection, the proof of Theorem 5.6 would be rather clear if a certain map

T : L∞(X ,A′) → L∞(X ,A)

would always exist. Though this is not possible, Lemma 5.11 states that a suitable
generalization of T does always exist. Since T corresponds to an ordinary randomization,
it is not surprising that the generalization is given by a generalized randomization. This
generalization is called extending transition in Definition 5.10.

Definition 5.10 A map
ρ : ba(X ,A) → ba(X ,A′)

is called extending transition from A to A′ if

• ρ is linear

• ρ is positive: ρ(µ) ≥ 0 ∀µ ≥ 0

and

ρ
(
µ
)
[f ] = µ[f ] ∀ f ∈ L∞(X ,A) , ∀µ ∈ ba(X ,A) (5.26)

7In order to see this, take any B′ ⊂ R such that B′ 6∈ B = A and put

F =
{
I{x}

∣∣ x ∈ B}
F is majorized by f0 ≡ 1 Assume that h would be a supremum of F in L∞(X ,B). Then, it follows that
h is an indicator function – i.e., there is a set B ∈ B such that h = IB . Next, B′ 6∈ B implies B′ ( B.
Take any x ∈ B \ B′ and put ĥ = IB\{x} ∈ L∞(X ,B) . Then, ĥ is a majorant of F such that ĥ � h.
Hence, h is not a supremum.
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It is easy to see that an extending transition is in fact a transition according to Definition
3.34:

Assertion (5.26) implies that

ρ(µ)[IX ] = µ[IX ] ∀µ ∈ ba(X ,A)

and, therefore, ρ is a generalized randomization from (X ,A) to (X ,A′) . According to
Proposition 3.36, the generalized randomizations from (X ,A) to (X ,A′) are precisely the
transitions from ba(X ,A) to ba(X ,A′) .

Furthermore, (5.26) says that ρ(µ) is always an extension of µ from A to A′. This justifies
the term “extending transition”.

In contrast to T , an extending transition ρ does always exist:

Lemma 5.11 There is an extending transition

ρ : ba(X ,A) −→ ba(X ,A′)

The proof of Lemma 5.11 is strongly based on the theory of vector lattices. For the theory
of vector lattices, confer e.g. Schaefer (1974) and Section 8.1 in the Appendix.

Proof :

[1] Firstly, it is shown that there is a positive linear operator S : L∞(X ,A′) →(
ba(X ,A)

)∗
so that

S(f) = Λf ∀ f ∈ L∞(X ,A) , ‖S‖ = 1

where Λf [µ] = µ[f ] ∀µ ∈ ba(X ,A) and
(
ba(X ,A)

)∗
denotes the dual space of ba(X ,A) :

G0 := L∞(X ,A) is a Banach sublattice of the Banach lattice G := L∞(X ,A′). According
to (Schaefer, 1974, p. 114), ba(X ,A) is an abstract L-space. So, it follows from Schaefer
(1974, Prop. 5.5 and Prop. 9.1) that E :=

(
ba(X ,A)

)∗
is an order complete M space

with unit.
Note that S0 : G0 → E , f 7→ Λf is a positive linear operator where ‖S0‖ = 1.
According to Schaefer (1974, Cor. 7.10.3), S0 can be extended to a positive linear operator
S on G such that ‖S‖ = ‖S0‖ = 1. Hence, [1].

[2] Next, it is shown that ρ : ba(X ,A) → ba(X ,A′), µ 7→ ρ(µ) where

ρ(µ)[f ′] = S(f ′)[µ] ∀ f ′ ∈ L∞(X ,A′)

is an extending transition:

The properties of S imply that ρ is a linear, positive operator. Furthermore,

ρ(µ)[f ] = S(f)[µ] = S0(f)[µ] = µ[f ] ∀ f ∈ L∞(X ,A), ∀µ ∈ ba(X ,A)

2

Now, it is possible to proof Theorem 5.7.
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Proof of Theorem 5.7: For every generalized randomization σ′ ∈ T ′(X ,D), put σ :=
σ′ ◦ ρ where ρ is the extending transition from A to A′ according to Lemma 5.11. Then,
σ ∈ T (X ,D) because ρ is a generalized randomization from (X ,A) to (X ,A′) . Fix any

θ ∈ Θ . Since P
′
θ is the natural extension of P θ, the credal set of P

′
θ is given by

M′
θ =

{
P ′θ ∈ ba+

1 (X ,A′)
∣∣ P ′θ[f ] ≤ P θ[f ] ∀ f ∈ L∞(X ,A)

}
according to Proposition 2.13. Therefore, assertion

Pθ ∈ Mθ ⇒ ρ(Pθ) ∈ M′
θ (5.27)

follows from
ρ(Pθ)[f ] = Pθ[f ] ≤ P θ[f ] ∀ f ∈ L∞(X ,A)

Finally,

sup
Pθ∈Mθ

σ(Pθ)[Wθ] = sup
Pθ∈Mθ

σ′ ◦ ρ(Pθ)[Wθ] = sup
Pθ∈Mθ

σ′
(
ρ(Pθ)

)
[Wθ] ≤

(5.27)

≤ sup
P ′θ∈M

′
θ

σ′(Pθ)[Wθ]

2

Next, Theorem 5.6 is proven by use of Theorem 5.7:

Proof of Theorem 5.6: For every π ∈ P ,

Rπ

(
(P
′
θ)θ∈Θ, σ

′,W
)

=
∑
θ∈Θ

π({θ}) sup
P ′θ∈M

′
θ

σ′(P ′θ)[Wθ]

is the Bayes risk of a decision procedure σ′ ∈ T ′(X ,D) with respect to the (precise) prior
π . It follows from Theorem 5.7 and Lemma 5.5 that

inf
σ′∈T ′(X ,D)

Rπ

(
(P
′
θ)θ∈Θ, σ

′,W
)

= inf
σ∈T (X ,D)

Rπ

(
(P
′
θ)θ∈Θ, σ,W

)
Hence, Proposition 4.5 implies

inf
τ ′∈T ′0 (X ,D)

Rπ

(
(P
′
θ)θ∈Θ, τ

′,W
)

= inf
τ∈T0(X ,D)

Rπ

(
(P
′
θ)θ∈Θ, τ,W

)
(5.28)

for every π ∈ P .

a) Put

Γ(π, τ) := −Rπ

(
(P θ)θ∈Θ, τ,W

)
= −

∑
θ∈Θ

π({θ}) sup
Pθ∈Mθ

τ(Pθ)[Wθ]

for every π ∈ P and every τ ∈ T0(X ,D).

Hence, τ 7→ Γ(π, τ) is concave for every π ∈ P and P is L∞(Θ, 2Θ) - compact accord-
ing to Corollary 2.16. Furthermore, π 7→ Γ(π, τ) is convex and L∞(Θ, 2Θ) - continuous
for every τ ∈ T0(X ,D). Hence

sup
τ∈T0(X ,D)

inf
π∈P

Γ(π, τ) = inf
π∈P

sup
τ∈T0(X ,D)

Γ(π, τ)
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according to Fan (1953, Theorem 1). That is,

inf
τ∈T0(X ,D)

sup
π∈P

Rπ

(
(P θ)θ∈Θ, τ,W

)
= sup

π∈P
inf

τ∈T0(X ,D)
Rπ

(
(P θ)θ∈Θ, τ,W

)
An analogous proof for A′ shows

inf
τ ′∈T ′0 (X ,D)

sup
π∈P

Rπ

(
(P
′
θ)θ∈Θ, τ

′,W
)

= sup
π∈P

inf
τ ′∈T ′0 (X ,D)

Rπ

(
(P
′
θ)θ∈Θ, τ

′,W
)

Finally, Part a) follows from the latter equations, (5.28) and Lemma 5.5.

b) This is a direct consequence of (5.28).

2

Finally, it only remains to proof Theorem 5.8.

Proof of Theorem 5.8: According to Definition 3.6, the randomized decision functions
correspond to ordinary randomizations. Therefore, the proof may be formulated in terms
of ordinary randomizations.

Firstly, we have to show that a map T as discussed in Subsection 5.3.1.2 exists.

Since A is finite, there is a partition {A1, . . . , Am} ⊂ A of X so that Aj 6= ∅ ∀ j =
1, . . . ,m and so that every A ∈ A is a union of some elements of {A1, . . . , Am}. For
every j = 1, . . . , n, choose any xj ∈ Aj . Next, put

T : L∞(X ,A′) → L∞(X ,A) , f ′ 7→ T (f ′) =
m∑
j=1

f ′(xj) · IAj

Obviously, T is linear and positive. In addition,

T (f) = f ∀ f ∈ L∞(X ,A) ⊂ L∞(X ,A′)

is fulfilled because every function f ∈ L∞(X ,A) is of form

f =
m∑
i=1

αjIAj , α1, . . . , αm ∈ R

According to Proposition 3.11, T defines an ordinary randomization

ρ : ba(X ,A) → ba(X ,A′) , µ 7→ ρ(µ)

via ρ(µ)[f ′] = µ
[
T (f ′)

]
for every f ′ ∈ L∞(X ,A′) and µ ∈ ba(X ,A) .

Obviously, ρ is an extending transition. Therefore, the remaining part of the proof is
very similar to the proof of Theorem 5.7:

For every ordinary randomization τ ′ ∈ T ′0 (X ,D), put τ := τ ′ ◦ ρ. Then, it follows from

Proposition 3.11 c) that τ ∈ T0(X ,D) . Fix any θ ∈ Θ . Since P
′
θ is the natural extension

of P θ, assertion

Pθ ∈ Mθ ⇒ ρ(Pθ) ∈ M′
θ (5.29)

follows from
ρ(Pθ)[f ] = Pθ[f ] ≤ P θ[f ] ∀ f ∈ L∞(X ,A)
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Finally,

sup
Pθ∈Mθ

σ(Pθ)[Wθ] = sup
Pθ∈Mθ

σ′ ◦ ρ(Pθ)[Wθ] = sup
Pθ∈Mθ

σ′
(
ρ(Pθ)

)
[Wθ] ≤

(5.29)

≤ sup
P ′θ∈M

′
θ

σ′(P ′θ)[Wθ]

2

5.3.2 Reduction of the sample space

The results given in Subsection 5.3.1.2 shows that it is not necessary to extend a decision
problem to a larger sample space in order to check optimality of a decision procedure. In
addition, the results offer the opportunity to reduce the sample space in some cases. In
this way, the results may be used to simplify some decision problems drastically.

In the following, two examples are discussed where this is possible:

Let Θ be an index set, let X be a set with algebra A′ and let (P
′
θ)θ∈Θ be an imprecise

model on (X ,A′).
Let Π be a coherent upper prevision on L∞(Θ, 2Θ), let (D,D) be a decision space and

W : Θ× D → R , (θ, t) 7→ Wθ(t)

a loss function.
1. Assume that Θ is finite and that there is a set K ⊂ L∞(X ,A′) such that the credal

set of P
′
θ is given by

M′
θ =

{
Pθ ∈ ba+

1 (X ,A′)
∣∣ P ′θ[f ] ≤ P θ[f ] ∀ f ∈ K

}
The task is: Find an optimal randomized decision function τ̃ ′ on (X ,A′) .
So far, this is a standard situation in decision theory under imprecise probabilities. Next,
let A be the smallest algebra on X such that

f ∈ L∞(X ,A) ∀ f ∈ K

If K is not too large, A may be considerably smaller than A′ . Then, it follows from
Theorem 5.6 that it is enough to consider randomized decision functions on the smaller
sample space (X ,A) .
For example, assume that K is a finite set of simple functions on (X ,A′). Then, A is
always a finite algebra. Therefore, the infinite sample space (X ,A′) may be reduced to
a finite sample space 8 (X ,A) in this case – and the decision problem is accessible for
methods concerning finite spaces such as linear programming! Especially, this example
applies for discretizations; confer Section 5.4.

2. Now, assume that the credal set of P
′
θ is given by

M′
θ =

{
Pθ ∈ ba+

1 (X ,A′)
∣∣ Pθ(Cj) ≤ P θ(Cj) ∀ j ∈ {1, . . . ,m}

}
8Finiteness of A implies that the sample space (X ,A) may be considered as a finite one because, in

this case, L∞(X ,A) ∼= Rn for some suitable n ∈ N.
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where C1, . . . , Cm ∈ A′ , m ∈ N . Of course, this assumption is very restrictive. However,
this is an important model which is frequently used in the theory of imprecise probabilities.
Then, let A be the smallest (σ-)algebra which contains C1, . . . , Cm and it follows that
A is finite. Therefore, Theorem 5.6 applies and we may – without loosing anything –
work with the finite sample space (X ,A) instead of the (possibly) infinite sample space
(X ,A′) .

5.4 Application: Discretizations

5.4.1 The meaning of discretizing in (statistical) decision theory

Though the theoretical evaluations of Section 5.2 and Section 5.3 both are independently
interesting on its own, together they lead to important tools in applications. As already
mentioned in the introductory Section 5.1, the results of Section 5.2 and Section 5.3 are
the cornerstones of discretization in applications of (data-based) decision theory.

Discretization is a crucial topic in the theory of imprecise probabilities which has recently
been considered in Troffaes (2008) and Obermeier and Augustin (2007). The fundamen-
tal importance of discretization in the theory of imprecise probabilities is explained in
(Obermeier and Augustin, 2007, p. 327):

“Classical statistical models typically are based on parametric, absolutely con-
tinuous probability distributions on the real line. Handling extensions of these
models in the imprecise probability framework, quite often becomes very de-
manding from the computational point of view, and then approximative tech-
niques are the best one can hope for, the more as also in classical statistics
many integrals of less smooth functions can be only obtained numerically. A
natural idea in this context is discretization, in order to make available power-
ful algorithms (. . . ) that explicitly rely on finite spaces to obtain approximate
solutions in this generalized setting. However, such discretizations need some
care; for more than hundred years, since the work of Sheppard (. . . ) [Shep-
pard (1898)] at the end of the nineteenth century, statisticians have been well
aware that analysis based on rounded data may be severely biased, and so
discretization by mere rounding or other ad-hoc techniques is a bad advice.”

While Troffaes (2008) and Obermeier and Augustin (2007) consider decision theory which
is not explicitly data-based, the following evaluation is probably the first one which deals
with discretizations in decision theory (under imprecise probabilities) which is explicitly
data-based. Accordingly, Troffaes (2008) and Obermeier and Augustin (2007) consider
discretizations of Θ whereas the following evaluation is mainly concerned with discretiza-
tions of the sample space (X ,A′). Discretizing Θ is a fundamental topic in general decision
theory. However, if we focus on applications in statistics (i.e. in the special case of statis-
tical decision theory), discretizations of the sample space seem to be even more important
than discretizations of Θ:

Most part of statistics is about testing and estimating. In case of testing, discretizing Θ
is not necessary (because Θ = {0; 1} already is discrete) but discretizing the sample space
is a crucial issue.
In case of estimating, the set of all decisions D is equal to Θ and choosing decision t = θ̂
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means that our estimation for the true parameter θ is t = θ̂. Now, what does discretizing Θ
mean in this case? For example, take Θ = [0, 1] and consider the equidistant discretization

H =
{[

0, 1
10

]
;
(

1
10
, 2

10

]
;
(

2
10

; 3
10

]
; . . . ;

(
9
10

; 1
]}

Such a discretization changes the set of parameters and precisely means that we do not
want to estimate the true θ any more but we want to estimate the interval

H =
(
k−1
10

; k
10

]
which contains the true parameter θ. Accordingly, the set of all decisions is equal to H
now.

In order to explain the meaning of discretizations of Θ, (Troffaes, 2008, § 1) states:

“(. . . ) we must resort to computers, and these cannot handle gambles on
infinite spaces, let alone arbitrary infinite sets of probabilities. Hence, in
that case we must approximate our infinite sets by finite ones. By taking
the finite sets sufficiently large, hopefully the approximation reflects the true
result accurately.”

This is true for the setup used in Troffaes (2008) but it does not apply for estimating. In
Troffaes (2008), Θ is discretized but the set of all decisions is not changed. By discretizing,
Troffaes (2008) wants to approximately solve the original decision problem. In contrast,
if Θ is discretized in a statistical estimation problem, not only the parameter space gets
coarser but also the decision space (since the decision space is equal to the parameter
space). In this way, discretizing Θ implies that also our decision theoretic purpose gets
“coarser”: Now, we do not want to estimate the true θ but the true “discretized θ”.
This is something different. We do not want to approximately solve the original decision
problem now but we do want to exactly solve a coarser decision problem. So, in a sense,
discretizing Θ may be considered rather as part of modeling than as part of solving an
estimation problem.

By discretizing Θ, an estimating problem gets easier in two aspects:

• Discretizing enables the use of “finite methods” such as linear programming so that
the problem gets tractable by computers.9

• As a side effect, the estimating problem gets easier in the sense that coarser param-
eters such as intervals H =

(
k−1
10

; k
10

]
can be estimated more efficiently than precise

parameters such as θ ∈ Θ = [0, 1] .
For example, consider the most extreme discretization of Θ, namely H = {Θ}. Un-
doubtfully, the only remaining parameterH = Θ may be estimated in an exceedingly
efficient way.

Usually, Θ is a subset of R or Rk so that discretizing Θ will often lead to a parameter set
which consists of intervals (or hyperrectangle in Rk). This fits very well into the theory
of imprecise probabilities because such interval valued parameters naturally avoid over-
precise estimations. Even statisticians which do not agree with imprecise probabilities are

9Of course, this does not mean that computers are always able to solve the problems within human
time scales. It only means that, in principle, computers can solve such problems.
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aware of the fact that estimating should not be done in an over-precise way. This becomes
apparent because statisticians usually refuse to record the outcome of an estimation with
the highest accuracy computers can provide. Instead, the outcomes of estimations are
“reasonably” rounded and this essentially means that only interval valued estimations are
commonly accepted.

Since the focus of the present book lies on applications in statistics and, there, discretiz-
ing Θ is often not necessary (testing) or strongly interrelated to modeling (estimating),
discretizations of Θ are hardly considered in this book. Instead, it is often assumed in the
following that Θ already is a finite set. Of course, this is a restrictive assumption but the
above reasoning may justify it at least to some extend. Subsection 6.2.2 only provides an
ad hoc method for discretizing Θ in a certain estimation problem if Θ happens to be not
discrete and it would be desirable to develop more sophisticated methods in the setup of
Subsection 6.2.2.

As mentioned above, discretizing the sample space (X ,A′) is a crucial issue in statistical
applications. Here, we require indeed that, by “taking the finite sets sufficiently large,
hopefully the approximation reflects the true result accurately.”10 And, as already stated
in (Obermeier and Augustin, 2007, p. 327), such discretizations have to be done carefully
since simple rounding of the data may lead to bad results. It is the purpose of the following
subsection to derive a well justified and practicable method for disrectizing (X ,A′) which
is based on the theoretical evaluations of the preceeding sections.

5.4.2 A method for discretizing sample spaces

Setup and assumptions:

It is assumed that, for every θ ∈ Θ , there is a finite subset Kθ ⊂ L∞(X ,A′) such that

the credal set of P
′
θ is given by

M′
θ =

{
P ′θ ∈ ba+

1 (X ,A′)
∣∣ P ′θ[f ] ≤ P

′
θ[f ] ∀ f ∈ Kθ

}
(5.30)

Furthermore, it is assumed that

K :=
⋃
θ∈Θ

Kθ is a finite set (5.31)

Finally, it is assumed, that, for every fixed f ∈ K , there is a df > 0 such that

P
′
θ[f ]− P ′θ[f ] ≥ df for every θ ∈ Θ where Kθ 3 f (5.32)

Assumption (5.30) is crucial and rather restrictive – nevertheless, such imprecise models
are quite important for practical applications as explained below.
The index set Θ is not assumed to be finite here. Instead, the considerably weaker
Assumption (5.31) is sufficient. Of course, (5.33) is fulfilled if Θ is finite but it is also
fulfilled if Kθ does not depend on θ ∈ Θ .
If Θ is finite, then Assumption (5.32) coincides with the assumption

P
′
θ[f ] 6= P ′θ[f ] ∀ f ∈ Kθ (5.33)

10(Troffaes, 2008, § 1)
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In addition to Assumption (5.30), Assumption (5.33) is not restrictive at all because
Section 5.2 tell us: Using models of form (5.30) which violate (5.33) is dangerous be-
cause these models are potentially most instable. Therefore, those models which violate
(5.33) generally should be avoided anyway. If modeling led to a coherent upper prevision
which violates (5.33), it should be replaced by a more cautious and stable coherent upper
prevision according to (5.5).

For practical applications, it is important that the validity of these assumptions can easily
be checked:

Usually, the validity of (5.30) and (5.31) directly results from modeling: A practitioner
specifies concrete upper previsions for a finite number of functions f ∈ L∞(X ,A′) in order
to get coherent upper previsions

P
′
θ : Kθ → R , θ ∈ Θ (5.34)

Next, these coherent upper previsions are extended on L∞(X ,A′) by the method of natural
extension and this leads to an imprecise model which fulfills (5.30) and (5.31).
If Θ is infinite, then the infinite number of upper previsions in (5.34) has been specified
by analytical arguments and, therefore, the validity of (5.32) has to be checked also by
analytical arguments.
If Θ is finite, then the following proceeding can be applied:

For every f0 ∈ K take a partition {B1, . . . , Bk} of X and put

f :=
k∑
j=1

sup
xj∈Bj

f(xj) · IBj ∀ f ∈ K

For every θ ∈ Θ such that Kθ 3 f0, solve the following linear programm:(
− f 0(b1) , . . . ,−f 0(bk)

)
· p → max (5.35)

where (
f(b1) , . . . , f(bk)

)
· p ≤ P

′
θ[f ] ∀ f ∈ Kθ

and
p ∈ Rk , pj ≥ 0 ∀ j ∈ {1, . . . , k} , p1 + . . . + pk = 1

If the optimal value lf0,θ is not larger than −P ′θ[f ] , start again with a finer partition.

If the optimal values lf0,θ are larger than −P ′θ[f0] for every θ ∈ Θ , put

df0 := min
{
P
′
θ[f0] + lf0,θ

∣∣ θ ∈ Θ : Kθ 3 f0

}
Assumption (5.30) is fulfilled, if this procedure ends up with positive numbers df , f ∈ K .

This is a consequence of the following proposition which states that P
′
θ[f ] + lf,θ is a lower

bound on P
′
θ[f ] − P ′θ[f ] . Of course, the finer partition {B1, . . . , Bl} is, the better lower

bound P
′
θ[f ] + lf,θ usually is.

Proposition 5.12 For a fixed f0 ∈ K and a fixed θ ∈ Θ , let lf0,θ be the optimal value in
the linear program (5.35). Then,

P
′
θ[f0] + lf0,θ ≤ P

′
θ[f0]− P ′θ[f0]
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Proof : Put

M̂′
θ :=

{
P ′θ ∈ ba+

1 (X ,A′)
∣∣ P ′θ [ f ] ≤ P

′
θ[f ] ∀ f ∈ Kθ

}
The construction implies that the optimal value lf0,θ in the linear program (5.35) is equal
to

lf0,θ = sup
P ′θ∈M̂

′
θ

P ′θ
[
− f 0

]
Note that f ≤ f for every f ∈ Kθ . Hence, M̂′

θ ⊂M′
θ and, therefore,

lf0,θ = sup
P ′θ∈M̂

′
θ

P ′θ
[
− f 0

]
= − inf

P ′θ∈M̂
′
θ

P ′θ
[
f 0

]
≤ −P ′θ

[
f 0

]
≤ −P ′θ[f0]

2

Proceeding of the discretization

Recall the notation from the previous subsection and assume that (P
′
θ)θ∈Θ is an imprecise

model on the sample space (X ,A′) such that (5.30), (5.31) and (5.32) are fulfilled. Let
f1, . . . , fn be elements of L∞(X ,A′) such that

{f1, . . . , fn} = K =
⋃
θ∈Θ

Kθ

and put Iθ :=
{
i ∈ {1, . . . , n}

∣∣ fi ∈ Kθ } ∀ θ ∈ Θ .

Proceed in the following way for any fixed ε ∈ (0, 1) .

STEP 1: For every i ∈ {1, . . . , n} , take di = dfi from (5.32) and put

εi :=
sup fi − inf fi

c · di
· ε where c := sup

θ∈Θ

∑
j∈Iθ

sup fj − inf fj
dj

(5.36)

Note that the validity of∑
j∈{1,...,n}

sup fj − inf fj
dj

≥ c ≥ sup fi − inf fi
di

ensures 0 < εi ≤ ε < 1 . There is a M ∈ N such that

M − 1 ≤ c

ε
≤ M (5.37)

For every i ∈ {1, . . . , n} , put

b
(j)
i := inf fi + j

M
(sup fi − inf fi) ∀ j ∈

{
0, 1, 2, . . . ,M

}
and A

(1)
i = f−1

i

([
b

(0)
i , b

(1)
i

])
and

A
(j)
i := f−1

i

((
b

(j−1)
i , b

(j)
i

])
∈ A′ ∀ j ∈

{
2, . . . ,M

}
(5.38)
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Then, put

si :=
M∑
j=0

b
(j)
i I

A
(j)
i

and note that fi ≤ si ≤ fi + εidi (5.39)

Let A be the smallest σ-algebra which contains A
(j)
i for every j ∈ {1, . . . ,M} and every

i ∈ {1, . . . , n} . Note that there is a finite partition

A1 , . . . , Ar (5.40)

of X such that every element ofA is the union of some elements of the partitionA1, . . . , Ar .

STEP 2: For every θ ∈ Θ , let Qθ be the coherent upper prevision on L∞(X ,A) which
corresponds to the credal set

Nθ =
{
Qθ ∈ ba+

1 (X ,A)
∣∣ Qθ[si] ≤ P

′
θ[fi] + εidi ∀ i ∈ Iθ

}
(5.41)

Values of Qθ can be calculated by linear programms. To this end, choose any xk ∈ Ak for
every k ∈ {1, . . . , r} . Then:

For any f ∈ L∞(X ,A), consider(
f(x1) , . . . , f(xr)

)
· q → max

where (
fi(x1) , . . . , fi(xr)

)
· q ≤ P

′
θ[fi] + εidi ∀ i ∈ Iθ

and

q ∈ Rr , qk ≥ 0 ∀ k ∈ {1, . . . , r} , q1 + . . . + qr = 1

The optimal value of this linear program is equal to Qθ[f ] .

STEP 3: Instead of the original imprecise model (P
′
θ)θ∈Θ on the (infinite) sample space

(X ,A′) , consider the imprecise model (Qθ)θ∈Θ on the finite sample space (X ,A) and solve
the corresponding decision problem.

The following notation is used:

Notation 5.13 Let (D,D) be a fixed decision space and let W be a fixed loss function.

At first, (P
′
θ)θ∈Θ is our imprecise model on the sample space (X ,A′) . The task is to find a

randomized decision function on (X ,A′) which is optimal 11 over all randomized decision
functions on (X ,A′) . This decision problem is called original decision problem.

Let the index set Θ, the decision space (D,D) and the loss function W remain unchanged.
But, now, let the imprecise model be (Qθ)θ∈Θ on the finite sample space (X ,A) where
(Qθ)θ∈Θ and A are constructed by the above discretization procedure. Then, the task is
to find a randomized decision function on (X ,A) which is optimal over all randomized
decision functions on (X ,A) . This decision problem is called (ε–)discretized decision
problem.

11Here, the word “optimal” depends on the chosen optimization criterion such as Γ-minimaxity, E-
admissibility, . . .
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Theoretical properties of the discretization method

The theoretical properties of the discretization method presented above are summarized
in the following theorem. It implies that the original decision problem may in fact be
approximately solved by the discretized decision problem. For the optimization criterion
Γ-minimaxity , this is explicated in Corollary 5.15 below.

Theorem 5.14 Consider the setup of the present subsection. Then:

a) For every randomized decision function τ on (X ,A) , the risk function with respect
to the discretized decision problem is approximately equal to the risk function with
respect to the original decision problem – more precisely:

sup
Qθ∈Nθ

∫
X

∫
D
Wθ(t) τx(dt)Qθ(dx) − ε(supWθ − inf Wθ) ≤

≤ sup
P ′θ∈M

′
θ

∫
X

∫
D
Wθ(t) τx(dt)P

′
θ(dx) ≤

≤ sup
Qθ∈Nθ

∫
X

∫
D
Wθ(t) τx(dt)Qθ(dx)

for every θ ∈ Θ . Especially, the risk function with respect to the discretized decision
problem is an upper bound for the risk function with respect to the original decision
problem.

b) For every randomized decision function τ ′ on (X ,A′), there is a randomized decision
function τ on (X ,A) such that the risk functions of τ and τ ′ satisfy

sup
Qθ∈Nθ

∫
X

∫
D
Wθ(t) τx(dt)Qθ(dx) ≤

≤ sup
P ′θ∈M

′
θ

∫
X

∫
D
Wθ(t) τ

′
x(dt)P

′
θ(dx) + ε(supWθ − inf Wθ)

for every θ ∈ Θ .

Proof : For every θ ∈ Θ, let Q
′
θ be the natural extension of Qθ on L∞(X ,A′) .

Accordingly, N ′θ denotes the credal set of Q
′
θ on (X ,A′) .

(a) Take any θ ∈ Θ and recall the definitions in STEP 1 of the proceeding of the
discretization.

Then, for every P ′θ ∈M′
θ, the definition of si implies

P ′θ[si] ≤ P ′θ

[
fi + εidi

]
= P ′θ[fi] + εidi ≤

≤ P
′
θ[fi] + εidi

for every i ∈ Iθ and, therefore, the definition of Q
′
θ implies P ′θ ∈ N ′θ . Hence,

P
′
θ[f
′] ≤ Q

′
θ[f
′] ∀ f ′ ∈ L∞(X ,A′) (5.42)

Next, consider the coherent upper prevision Q
′
0 on L∞(X ,A′) defined by

Q
′
0[f ′] = sup

 Q′0[f ′]

∣∣∣∣∣ Q′0 ∈ ba+
1 (X ,A′)) ,

Q′0[fi] ≤ Q
′
θ[fi] ∀ i ∈ Iθ
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for every f ′ ∈ L∞(X ,A′) . Together with (5.42), we have

P
′
θ[f
′] ≤ Q

′
θ[f
′] ≤ Q

′
0[f ′] ∀ f ′ ∈ L∞(X ,A′) (5.43)

and

Q
′
0[fi] = Q

′
θ[fi] ∀ i ∈ Iθ (5.44)

Next, it follows from the definition of di that

P
′
θ[fi] ≤ Q

′
0[fi]

(5.44)
= Q

′
θ[fi] ≤ Q

′
θ[si] ≤ P

′
θ[fi] + εidi ≤

≤ P
′
θ[fi] + εi

(
P
′
θ[fi]− P ′θ[fi]

)
∀ i ∈ Iθ

and from an application of Proposition 5.1 for P
′
θ and Q

′
0 that

P
′
θ[f
′] ≤ Q

′
0[f ′] ≤ P

′
θ[f
′] + ε

(
sup f ′ − inf f ′

)
∀ f ′ ∈ L∞(X ,A′)

because Q
′
0 is the natural extension of a corresponding coherent upper prevision on

Kθ and the definitions ensure
∑

i∈Iθ εi ≤ ε . Hence, (5.43) implies

P
′
θ[f
′] ≤ Q

′
θ[f
′] ≤ P

′
θ[f
′] + ε

(
sup f ′ − inf f ′

)
(5.45)

for every f ′ ∈ L∞(X ,A′) . Finally, part a) follows from (5.45).

(b) Let τ ′ be a randomized decision function on (X ,A′) . Then, an application of
Theorem 5.8 for the imprecise model (Qθ)θ∈Θ on (X ,A) and its natural extension

(Q
′
θ)θ∈Θ on (X ,A′) implies the existence of a randomized decision function τ on

(X ,A) such that

sup
Qθ∈Nθ

∫
X

∫
D
Wθ(t) τx(dt)Qθ(dx) ≤ sup

Q′θ∈N
′
θ

∫
X

∫
D
Wθ(t) τ

′
x(dt)Q

′
θ(dx)

for every θ ∈ Θ . Then, it follows that

sup
Qθ∈Nθ

∫
X

∫
D
Wθ(t) τx(dt)Qθ(dx) ≤

≤ sup
Q′θ∈N

′
θ

∫
X

∫
D
Wθ(t) τ

′
x(dt)Q

′
θ(dx) ≤

(5.45)

≤ sup
P ′θ∈M

′
θ

∫
X

∫
D
Wθ(t) τ

′
x(dt)P

′
θ(dx) + ε(supWθ − inf Wθ)

for every θ ∈ θ .

2

The following corollary states that an approximately Γ - minimax randomized decision
function in the original decision problem can be found by searching for a Γ - minimax
randomized decision function in the discretized decision problem. Here, T0(X ,D) denotes
the set of all randomized decision functions on (X ,A) and T ′0 (X ,D) denotes the set of all
randomized decision functions on (X ,A′) .
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Corollary 5.15 In the setup of the present subsection, let Π be a coherent upper prevision
on L∞(Θ, 2Θ) with credal set P . Let τ̃ minimize the upper Bayes risk in the discretized
decision problem, i.e.

RΠ

(
(Qθ)θ∈Θ, τ̃ ,W

)
= inf

τ∈T0(X ,D)
RΠ

(
(Qθ)θ∈Θ, τ,W

)
Then, τ̃ is a randomized decision function on (X ,A′) and approximately minimizes the
upper Bayes risk in the original decision problem, i.e.

RΠ

(
(P
′
θ)θ∈Θ, τ̃ ,W

)
≤ inf

τ ′∈T ′0 (X ,D)
RΠ

(
(P
′
θ)θ∈Θ, τ

′,W
)

+ ε(supW − inf W )

Proof : Take any τ̂ ′ ∈ T ′0 (X ,D) .

According to Theorem 5.14 b), there is some τ̂ ∈ T0(X ,D) such that

sup
Qθ∈Nθ

∫
X

∫
D
Wθ(t) τ̂x(dt)Qθ(dx) ≤ (5.46)

≤ sup
P ′θ∈M

′
θ

∫
X

∫
D
Wθ(t) τ̂

′
x(dt)P

′
θ(dx) + ε(supWθ − inf Wθ)

for every θ ∈ Θ . Hence, the definition of the upper Bayes risk (Section 3.2) implies

RΠ

(
(Qθ)θ∈Θ, τ̂ ,W

)
≤ (5.47)

≤ RΠ

(
(P
′
θ)θ∈Θ, τ̂

′,W
)

+ ε(supW − inf W )

By use of Theorem 5.14 a) , it follows that

sup
P ′θ∈M

′
θ

∫
X

∫
D
Wθ(t) τ̃x(dt)P

′
θ(dx) ≤ sup

Qθ∈Nθ

∫
X

∫
D
Wθ(t) τ̃x(dt)Qθ(dx)

and, therefore,

RΠ

(
(P
′
θ)θ∈Θ, τ̃ ,W

)
≤ RΠ

(
(Qθ)θ∈Θ, τ̃ ,W

)
(5.48)

Assertions (5.47) and (5.48) and optimality of τ̃ imply

RΠ

(
(P
′
θ)θ∈Θ, τ̃ ,W

)
≤ (5.49)

≤ RΠ

(
(P
′
θ)θ∈Θ, τ̂

′,W
)

+ ε(supW − inf W )

This proves Corollary 5.15 because (5.49) is true for every τ̂ ′ ∈ T ′0 (X ,D) . 2

Though Troffaes (2008) is concerned with discretizing Θ, the setup of the present subsec-
tion is closely related to the setup in Troffaes (2008).
In the above described discretization method, the discrete sample space (X ,A) is gen-
erated by some simple functions s where every simple function s corresponds to some
f ∈ Kθ such that

sup
x∈X
|f(x)− s(x)| = max

A∈A
sup
x∈A
|f(x)− s(x)| ≤ ε(sup f − inf f)
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This is denoted by
f ∼ε s

in Troffaes (2008). Furthermore, (Qθ)θ∈Θ is an imprecise model on (X ,A) where (Nθ)θ∈Θ is
the corresponding family of credal sets on (X ,A) . It can be read off from the construction
of (Q)θ∈Θ and from the proof of Proposition 5.1 that

inf
P ′θ∈M

′
θ

‖Qθ − P ′θ‖ ≤ 2ε ∀Qθ ∈ Nθ

and
inf

Qθ∈Nθ
‖P ′θ −Qθ‖ ≤ 2ε ∀P ′θ ∈M′

θ

for every θ ∈ Θ . 12 13 This is denoted by

M′
θ ∼2ε Nθ

in Troffaes (2008). Furthermore, adopting the terminology from Troffaes (2008), Corollary
5.15 may be reformulated in the following way:

Every randomized decision function on (X ,A) which is optimal in the dis-
cretized decision problem is ε-optimal in the original decision problem.

Accordingly, Corollary 5.15 corresponds to (Troffaes, 2008, Theorem 6). However, note
that Corollary 5.15 is concerned with discretizing the sample space (X ,A′) whereas (Trof-
faes, 2008, Theorem 6) is concerned with discretizing Θ .

Applicability of the discretization method

The above presented discretization method can be applied step by step. Especially, every
value which has to be calculated can in principle be calculated by linear programming.
However, rigid applications may in general be handicapped – or even made impossible –
because of exceedingly high computational costs. This is again similar to the results in
Troffaes (2008) and we may derive upper bounds for the size of the discretized sample

12‖ · ‖ denotes the operator norm in ba+
1 (X ,A), i.e.

‖Qθ − P ′θ‖ = sup
f∈L∞(X ,A)

|Qθ[f ]− P ′θ[f ]|
‖f‖

13In addition, this is a direct consequence of the following fact:

Let P 1 and P 2 be coherent upper previsions on (X ,A) with credals sets M1 and M2

respectively. Then,

sup
f∈L∞(X ,A)

|P 1[f ]− P 2[f ]|
‖f‖

= max{δ1 , δ2}

where

δ1 = sup
P1∈M1

inf
P2∈M2

‖P1 − P2‖ and δ2 = sup
P2∈M2

inf
P1∈M1

‖P2 − P1‖

The proof of this fact arose from a discussion of Damjan Skulj and the author at the Workshop on
Principles and Methods of Statistical Inference with Interval Probability, Durham, 12-16 May 2008. A
publication containing this proof will follow.
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space which generally holds but which are, in general, much too large in order to be of
any practical value:

As stated before, there is a finite partition {A1, . . . , Ar} of A such that every element of
A is the union of some elements of the partition {A1, . . . , Ar} . The size of this partition –
i.e. the number r ∈ N – precisely corresponds to the size of the discretized sample space:
r is the number of possible (discrete) observations after discretizing.
According to the definition of A , the partition {A1, . . . , Ar} is the coarsest partition which
is finer than every partition

{A(1)
i , . . . , A

(M)
i } , i ∈ {1, . . . , n}

where A
(j)
i is defined in (5.38) for every i ∈ {1, . . . , n} and j ∈ {1, . . . ,M} .

Therefore, an upper bound on r is given by

r ≤ Mn ≤

(
1 +

1

ε
· sup
θ∈Θ

∑
j∈Iθ

sup fj − inf fj
dj

)n

(5.50)

where the last inequality follows from (5.36) and (5.37).
This number is extremely large – even if Θ is a small set and, for every θ ∈ Θ , Kθ only
contains a few elements. For example, let Θ contain 10 elements, and, for every θ ∈ Θ , let
each Kθ also contain 10 elements such that Kθ1 , . . . ,Kθ10 are pairwise disjoint. Therefore,
we have n = 100 . Furthermore, assume for simplicity that

P
′
θ[f ]− P ′θ[f ] = 0.1 · (sup f − inf f) ∀ f ∈ Kθ ∀ θ ∈ Θ

Then, for ε = 0.1 , the number in (5.50) is(
1 + 1

0.1
· 10 · 1

0.1

)100
> 10300

However, this number usually decreases immensely: It is unrealistic to assume that
Kθ1 , . . . ,Kθ10 are pairwise disjoint in applications. In most applications, Kθ will not de-
pend on θ so that we have

K = Kθ ∀ θ ∈ Θ

In this case, n does not increase with the number of elements of Θ and we would get
n = 10 in the above example. This leads to the number(

1 + 1
0.1
· 10 · 1

0.1

)10 ≈ 1030

which still is a great deal too large. However, (5.50) only is a very crude upper bound which
does not assume any additional properties of the functions f ∈ K . Such assumptions may
drastically decrease the bound as can be seen by Proposition 5.16.

Proposition 5.16 Let X be an interval in R and assume that every f ∈ K fulfills one of
the following properties:

(a) f is the indicator function of a set A′ ∈ A′ which is the union of no more than

1 +
1

ε
· sup
θ∈Θ

∑
j∈Iθ

sup fj − inf fj
dj

intervals
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(b) f is convex.

(c) f is concave.

Let r be the number of elements of the partition {A1, . . . , Ar} . Then,

r ≤ 4n ·

(
1 +

1

ε
· sup
θ∈Θ

∑
j∈Iθ

sup fj − inf fj
dj

)
(5.51)

Proof : Recall that K = {f1, . . . , fn} and recall that {A(1)
i , . . . , A

(M)
i } is the partition

defined by (5.38) for every i ∈ {1, . . . , n} .

Firstly, it is shown for every i ∈ {1, . . . , n} that there is a partition {C(1)
i , . . . , C

(2M)
i } of

X such that

– C
(j)
i is an intervall in R for every j ∈ {1, . . . , 2M} and

– the smallest σ-algebra generated by {C(1)
i , . . . , C

(2M)
i } contains {A(1)

i , . . . , A
(M)
i } .

For any i ∈ {1, . . . , n} such that fi fulfills (a), this follows immediately from (5.37).

Now, take any i ∈ {1, . . . , n} such that fi fulfills (b). Then, the definition of A
(j)
i and

convexity of fi implies that A
(j)
i is the union of two intervals C

(j)
i and C

(2j)
i for every

j ∈ {1, . . . ,M} . The same is true in case of (c).

Next, note that the number of elements of each partition {C(1)
i , . . . , C

(2M)
i } is bounded

by

2M ≤ 2 ·

(
1 +

1

ε
· sup
θ∈Θ

∑
j∈Iθ

sup fj − inf fj
dj

)

Finally, Proposition 5.16 follows from the following simple fact:
Let D

(1)
1 , . . . , D

(m1)
1 and D

(1)
2 , . . . , D

(m2)
2 be two partitions of an interval in R such that

every D
(j)
i is an intervall. Then, there is a partition D1, . . . , Dr′ such that every D

(j)
i is

the union of some elements of {D1, . . . , Dr′} and the size r′ of this partition is not larger
than m1 + 2 ·m2 . 2

In the situation of the above example with n = 10 , this leads to the upper bound

4 · 10 ·
(
1 + 1

0.1
· 10 · 1

0.1

)
≈ 4 · 104

which is a more reasonable size than the above ones. In particular, bound (5.51) has the
remarkable property that it increases only linearly(!) in n , the number of functions. On
the one hand, Proposition 5.16 itself covers many situations in real applications. On the
other hand, it demonstrates, that applying the presented discretization procedure will
often lead to a reasonable size r of the discretized sample space.

Furthermore, there is another way to reduce the size of the discretized sample space
(X ,A) , which is different from the others and relates to the results of Section 5.2. In the
presented discretization method, an imprecise model (Qθ)θ∈Θ is constructed such that

P
′
θ[fi] ≤ Qθ[fi] ≤ P

′
θ[fi] +

ε

c
(sup fi − inf fi) ∀ i ∈ {1, . . . , n} (5.52)
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However, c can be large and then, it will not be possible in most applications to specify
the “correct” coherent upper prevision in such a great precision that the value

εidi =
ε

c
(sup fi − inf fi)

becomes meaningful in (5.52).
Therefore, it may be justified to relax (5.52) to

P
′
θ[fi] ≤ Qθ[fi] ≤ P

′
θ[fi] + ε(sup fi − inf fi) ∀ i ∈ {1, . . . , n} (5.53)

This means, that M is not chosen in order to fulfill (5.37) in the discretization method.
Instead, M has to be chosen so that

M − 1 <
1

ε
≤ M

Then, analog to (5.51), an upper bound on the size r would be

4 · n ·
(

1 +
1

ε

)
(5.54)

and the above example would lead to

4 · 10 ·
(
1 + 1

0.1

)
= 440

This is a reasonable size with which computations should be tractable. Note that bound
(5.54) does not depend on the size of Θ and only depends linearly on the number of
elements inK . Therefore, also larger problem than the above example should be tractable.
Relaxing (5.52) to (5.53) can often be justified and leads to more conservative results.
However, note that, by doing this, ε-optimality is not guaranteed anymore according to
the results in Section 5.2.
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Chapter 6

Application: Minimum distance
estimation

6.1 Introduction

The present chapter is concerned with an application of statistical decision theory –
namely estimating, which is, in addition to hypothesis testing, one of the most important
issues in statistics. While hypothesis testing under imprecise probabilities has been ex-
tensively studied – especially by T. Augustin in (Augustin, 1998) and (Augustin, 2002) on
base of the Huber-Strassen theory 1, estimating a parameter has hardly been considered
explicitly within the theory of coherent upper previsions so far. There are a few articles
which are concerned with it in Bayesian models (primarily associated with Walley’s Im-
precise Dirichlet Model), e.g. Walley (1996), Quaeghebeur and de Cooman (2005), Hutter
(2008) and Walter and Augustin (2008). In addition, there are a few articles which ad-
dress very special applications, e.g. Kriegler and Held (2003) (climate projections) and
Bickis and Bickis (2007) (prediction of the next influenza pandemic). However, there does
not seem to be any publication which is concerned with general frequentist estimation of a
parameter using coherent upper/lower previsions. 2 Therefore, the present chapter cannot
be restricted to the sole investigation of the proposed minimum distance estimator but
also has to develop some fundamentals of (frequentist) estimating under coherent upper
previsions at first. This is necessary the more so as the minimum distance estimator
is associated with the empirical process (which needs a somewhat more elaborated set-
ting) and is justified by asymptotic arguments (but an elaborated asymptotic theory of
imprecise probabilities is still missing).

In the spirit of Wald (1950), an estimation problem may be defined in the following way:

Take the decision space to be equal to

(D,D) = (Θ, 2Θ)

and let
W : Θ×Θ → R , (θ, θ̂) 7→ Wθ(θ̂)

1see also Augustin (2002) for a review of the work following Huber and Strassen (1973)
2In a somewhat different setting, Cozman and Chrisman (1997), Fierens and Fine (2003) and Rêgo

and Fine (2005) also consider estimation problems where coherent upper previsions are interpreted in an
objective, frequentist way. However, they do not consider the estimation of a parameter in an imprecise
model (P θ)θ∈Θ but the estimation of a totally unknown credal set M .

151
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be a loss function such that (Wθ)θ∈Θ ⊂ L∞(Θ, 2Θ) . Then, a decision t = θ̂ ∈ Θ = D is
called estimation of the true parameter θ ; (randomized) decision functions on (X ,A′) are
called estimators and the performance of estimators is evaluated by their risk functions.

Though statistical evaluations are usually not based on one single observation x but on
several or even many observations y1, . . . , yn , this is also covered by the above formaliza-
tion. In mathematical statistics, all observations are commonly treated as one observation
by putting

x = (y1, . . . , yn)

Accordingly, it is assumed that X is a suitable product space

X = Yn , yi ∈ Y ∀ i ∈ {1, . . . , n}

and that the (precise) distribution of the data is a product probability measure

P ′θ = Q⊗nθ

In this way, it is often possible to treat several observations as one single observation.
Therefore, it is enough without loss of generality to take only one single observation into
account. An analog proceeding is also possible in case of imprecise probabilities:

To this end, let the coherent upper prevision Qθ be the imprecise distribution of the
observation yi ∈ Y and let Nθ denote its credal set. Then, there are several different
possibilities of defining independent products of coherent upper previsions Qθ. One of the
most common definition of such a product is the so-called type-1 product. According to
this definition given by (Walley, 1991, § 9.3.5), the product is the coherent upper prevision

P
′
θ which corresponds to the credal set

M′
θ = c`co

{
Q1 ⊗ · · · ⊗Qn

∣∣ Qi ∈ Nθ ∀ i ∈ {1, . . . , n}
}

(6.1)

By doing this, estimation problems under imprecise probabilities may simply be treated
as special cases of data-based decision theory under imprecise probabilities. This is true
from a theoretical point of view but severe problems will arise in applications because
the complexity of the above credal set M′

θ drastically increases with the number of ob-
servations. Therefore, M′

θ may be computational tractable for n = 10 but it will rarely
be tractable for n = 50 or larger numbers of observations. In case of hypothesis testing,
this has already been discussed in (Augustin, 1998, § 4.1.4 and § 6.1.2). At least in case
of hypothesis testing, this problem can sometimes be avoided: In the presence of globally
least favorable pairs, the complexity of the testing problem does not increase with the
number of observations; cf. (Rieder, 1974, Satz II.B.4), (Witting, 1985, Satz 2.57) and
(Augustin, 1998, § 6.1.2). Least favorable pairs have attracted much attention after the
publication of Huber and Strassen (1973). However, it has also been shown in Huber and
Strassen (1973) that globally least favorable pairs only exist in case of two-alternating
capacities which are very special cases of imprecise probabilities. Confer Augustin (1998)
and Augustin (2002) for a detailed review (including many references) of this so-called
“Huber-Strassen theory”. In case of more general imprecise probabilities, Augustin (1998)
considers local least favorable pairs.3 Though this local concept is similar to the global

3The least favorable models considered in Chapter 4 are a generalization of these local least favorable
pairs.
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one, it is not known if and in how far it can be used in order to reduce the increase of the
computational effort relating to the type-1 product

M′
θ = c`co

{
Q1 ⊗ · · · ⊗Qn

∣∣ Qi ∈ Nθ ∀ i ∈ {1, . . . , n}
}

if the sample size n increases. 4 5

Instead of the type-1 product, the type-2 product is used in the following. Here, X
is not assumed to be a product space X = Yn . Accordingly, x does not represent all
observations but x is really only one single observation which is distributed according to
some coherent upper prevision P

′
θ. If we have a number of such observations

x1 ∈ X , . . . , xn ∈ X

we have to consider the product space X n . Using the type-2 product corresponds to the
assumption that the vector (x1, . . . , xn) containing all observations is distributed according
to some

P ′θ ⊗ · · · ⊗ P ′θ , P ′θ ∈M′
θ

where M′
θ denotes the credal set of P

′
θ .6 Imprecise probabilities may be interpreted in

different ways but note that the type-2 product is only compatible with the interpreta-
tion of sensitivity analysts. Accordingly, the type-2 product is commonly used in robust
statistics.

The definition of the type-2 product is recalled and reformulated in terms of random
variables in Subsection 6.2.1. Such a reformulation is necessary because the proposed
minimum distance estimator is associated with the empirical process. Therefore, the
investigations need a rather elaborated setting which is based on random variables and
image measures. These are fundamental concepts in classical statistics which, initially,

4See (Augustin, 1998, p. 238ff).
5In addition to this problem, the use of the type-1 product in estimation problems is also handicapped

by some more issues:
A lot of current research in statistics is based on simulations. Though simulations are completely

useless in order to assure good properties of statistical methods, they can often provide valuable insight
and intuition into the behavior of the statistical method in real applications. However, it is not clear
what simulating means within the theory of imprecise probabilities. Especially, this seems to apply to
the above product model. Theoretical investigations and a practicable guideline for “good” simulations
are still missing at the moment. Such simulations should be able to broadly cover the manifold aspects of
the above product model – otherwise they will commonly fail at providing valuable insight. The meaning
of simulating within the theory of imprecise probabilities has also been discussed in a session at the
Workshop on Principles and Methods of Statistical Inference with Interval Probability, Durham, 12-16
May 2008.

Next, asymptotic properties are also important criteria for the evaluation of statistical methods but
an asymptotic theory of imprecise probabilities which applies to the above product model has not been
developed yet.

Finally, at least for sensitivity analysts, the so-called type-2 product seems to be a better approximation
of the real world in most applications than the type-1 product.

Of course, the latter point depends on the situation and touches philosophic discussions. Note that the
other points do not argue against type-1 products in general! Instead, they are intended to indicate that
a lot of research has to be done before statistical methods based on type-1 products can be developed,
proven to have good theoretical properties and applied in real applications with reasonable numbers
of observations. However, these things seem to be already possible for type-2 products – which is the
purpose of the following Sections.

6Cf. e.g. (Walley, 1991, § 9.3.5) and (Couso et al., 1999, § 3.6).
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should be carried over to statistics with imprecise probabilities. After this, Subsection
6.2.2 is concerned with an ad hoc method of discretizing the parameter space Θ which
may serve as a “less-than-ideal solution” if modeling yields an inifinte parameter space Θ
– confer Subsection 5.4.1.

The minimum distance estimator is defined in Section 6.3. In short, the estimator is based
on the following simple idea: The data x1, . . . , xn – which are independent identically
distributed according to a coherent upper prevision P

′
θ – are used to build the empirical

measure

P(n) =
1

n

n∑
i=1

δxi

Then, the minimum distance estimator is that θ̂ ∈ Θ such that P(n) lies next toM′
θ̂

where

M′
θ denotes the credal set of P

′
θ for every θ ∈ Θ .

Though such minimum distance estimators can be defined for any coherent upper previ-
sions, the investigations in the present chapter are based on the following crucial assump-
tion on the credal sets: It is assumed that every credal set is given by

M′
θ =

{
P ′θ ∈ ba+

1 (X ,A′)
∣∣ P ′θ[f ] ≤ P

′
θ[f ] ∀ f ∈ K

}
, θ ∈ Θ

where K ⊂ L∞(X ,A′) is a finite subset of L∞(X ,A′) which does not depend on θ .
On the one hand, such credal sets are important in practical applications (cf. p. 161). On
the other hand, this assumption guarantees good asymptotic properties of the estimator
(Section 6.4) and enables an efficient implementation (Section 6.5).
In fact, the asymptotic properties turn out to be even better than in case of precise
probabilities: Though the total variation norm is used, it is shown in Section 6.4 that –
based on this norm – the distance between the empirical measure and the correct impre-
cise probability converges to zero. This is not necessarily true for precise probabilities.
Furthermore, it is shown that the rate of convergence is at least of order

O

(
ln lnn√

n

)
– a rate which is known in connection with the strong law of large numbers for precise
probabilities. It follows from these results that the proposed minimum distance estimator
is consistent.
Next, Section 6.5 is concerned with the implementation of the estimator. In Subsections
6.5.1 and 6.5.2, an algorithm for calculating distances between the empirical measure and
coherent upper previsions is developed and its correctness is proven. These evaluations
rely on the results obtained in Chapter 5. It is shown, that – after a suitable discretization
– the distance can be calculated by a linear program. Fortunately, this linear program only
modestly increases with the number of observations and, as a consequence, the minimum
distance estimator can also be calculated for many observations. E.g. in Section 6.6,
the estimator is applied in a simulation study with 500 runs and 10000 observations in
every run. The estimator has been programmed in R and is already publicly available
as R package “imprProbEst”; cf. Hable (2008a). Section 6.6 presents applications of
the estimator in three different models and the numerical results demonstrate that the
minimum distance estimator is practicable (due to often exceedingly high computational
costs, this is not self-evident within imprecise probabilities) and yields good results in
comparison with estimators developed for precise probabilities.



6.2. ESTIMATION IN AN IMPRECISE PROBABILITY MODEL 155

The present chapter shows that it is possible to successfully work with the imprecise mod-
els (6.1) even though these models are quite extensive. In particular, these models are
much more extensive than parametrically generated imprecise models. It is not investi-
gated here in how far the complexity of models (6.1) can be reduced by applications of
the concept of “sufficiency” defined in Subsection 3.3.2. Though it has been shown in
Subsection 3.3.2.2 how sufficiency can be used in order to deal with parametrically gen-
erated imprecise models, more advanced applications would have been out of the scope
of the present book as the definition of sufficiency only resulted as a welcomed byproduct
from the investigations in Chapter 3.

Minimum distance estimators have already attracted attention in robust statistics 7 but
our setup considerably differs from those ones usually used in robust frequentist estima-
tion. In particular, the credal sets in (6.1) are not in accordance with common neighbor-
hood systems. There, it is assumed that the observations are approximately distributed
according to a known ideal precise model. As a consequence, concepts which are common
in robust statistics (e.g. influence functions) cannot be applied offhand in the theory of
imprecise probabilities.

6.2 Estimation in an imprecise probability model

6.2.1 Independent observations and random variables

In a classical estimation problem, we have a parametric family (P ′θ)θ∈Θ of precise proba-
bility distributions on a sample space (X ,A′) . The task is to estimate the true parameter
θ0 ∈ Θ . Most often, it is assumed that the estimation can be based on a whole set of
data

x1 , . . . , xn ∈ X
which are independent identically distributed according to the true distribution P ′θ0 . That
is, the vector x = (x1, . . . , xn) consisting of all observations is distributed according to
the product measure P ′θ0

⊗n .
In a (more realistic) imprecise probability setup, it is natural to replace the precise model

(P ′θ)θ∈Θ by an imprecise model (P
′
θ)θ∈Θ which consists of coherent upper previsions P

′
θ .

Hence, it is assumed that the data

x1 , . . . , xn ∈ X

are independent identically distributed according to the true P
′
θ0

or – in other words –
the vector x = (x1, . . . , xn) consisting of all observations is distributed according to a

coherent upper product prevision P
′ ⊗n
θ0

.

As stated in the introductory Section 6.1, there are several different ways to define such
products of coherent upper previsions. In the following, the type-2 product 8 is used which
corresponds to a strict sensitivity analyst’s point of view. This product prevision is defined
to be that coherent upper prevision

P
′ ⊗n
θ : L∞

(
X n,A′⊗n

)
→ R

7See e.g. Parr and Schucany (1980), Millar (1981), Donoho and Liu (1988), (Rieder, 1994, § 6) and
Öztürk and Hettmansperger (1998)

8cf. (Walley, 1991, § 9.3.5)
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which has credal set

c` co
{
P ′θ
⊗n ∣∣ P ′θ ∈M′

θ

}
where M′

θ denotes the credal set of P
′
θ .

Though this definition of the type-2 product is commonly used, it is not enough elaborated
for the following investigations. This is because the minimum distance estimator is based
on the empirical measure and, therefore, we have to deal with stochastic processes. In this
context, a detailed mathematical formulation of the setup is necessary. This is done by use
of random variables and image measures in classical probability theory and mathematical
statistics. In the following, it is shown how this formalization can be adopted for imprecise
probabilities.

Firstly, let us recall the classical setup: There, a random observation or data point x0 in
a set X is mathematically formalized by a map

X0 : Ω → X , ω → X0(ω)

where Ω is a fixed set which is rarely specified more closely. There are a fixed σ-algebra F
on Ω and a fixed σ-algebra A′ on X and it is assumed that X0 is measurable with respect
to these σ-algebras. X0 is called random variable.

Next, it is assumed that an unspecified event ω has randomly happened which, by (de-
terministic) physical principles, has led to the observation

x0 = X0(ω)

The events ω ∈ Ω are distributed according to a (precise) distribution U or a (precise)
distribution Uθ on (Ω,F) where θ is an unknown parameter.

Let A′ ∈ A′ be a measurable subset of X . Then, the probability that the observation x0

lies in A′ is equal to

Uθ

(
{ω ∈ Ω | X0(ω) ∈ A′}

)
That is, x0 is distributed according to the precise probability measure

P ′θ : A′ → [0, 1] , A′ 7→ Uθ

(
{ω ∈ Ω | X0(ω) ∈ A′}

)
(6.2)

This defines a (precise) statistical model (P ′θ)θ∈Θ for the observation x0 . P ′θ defined by
(6.2) is called image measure of Uθ under X0 and is denoted by P ′θ = X0(Uθ) .

A whole set of observations/data x1, . . . , xn , is modeled via several random variables

Xi : Ω → X , i ∈ {1, . . . , n}

Accordingly, it is assumed that the (unspecified) event ω ∈ Ω has led to the observa-
tions/data

x1 = X1(ω) , . . . , xn = Xn(ω)

The random variables

Xi : Ω → X
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are called independent identically distributed with respect to Uθ if their joint image measure
is equal to the product of the single image measures and these image measures coincide:

X1

·
·
Xn

(Uθ) = X1(Uθ)⊗ · · · ⊗Xn(Uθ) = P ′θ
⊗n

Now, let us turn over to imprecise probabilities again: Due to our sensitivity analyst’s
point of view, it is assumed in the imprecise probability setup that there is a coherent
upper prevision U θ and the distribution Uθ of the events ω ∈ Ω is unknown and can be
any element of the credal set Uθ of U θ .
Analogously to the ordinary image measure, we can define the image of a coherent upper
prevision:

Definition 6.1 The upper coherent prevision P
′
θ on L∞(X ,A′) which corresponds to the

credal set

M′
θ =

{
X0(Uθ)

∣∣ Uθ ∈ Uθ} (6.3)

is called image of U θ under X and is denoted by

P
′
θ = X(U θ)

Lemma 6.2 below shows that this is defined well. That is, the image of a coherent upper
prevision is again a coherent upper prevision. This provides a nice generalization of
classical probability theory which is based on the fact that the image of a probability
measure is again a probability measure.
In this way, we get an imprecise model (P

′
θ)θ∈Θ . Since Uθ is any element of the credal

set Uθ , the distribution of the observation x0 modeled by the random variable X0 is any
element of the credal set M′

θ . The essential difference to the precise setting is the that,
given θ , the true Uθ ∈ Uθ and, accordingly, the true P ′θ ∈M′

θ are totally unknown.

Lemma 6.2 Mθ defined by (6.3) is a credal set on (X ,A′) .

Proof : The map
ξ : ba(Ω,F) 7→ ba(X ,A′) , ν 7→ ξ(ν)

defined by
ξ(ν)(A′) = ν

(
X−1

0 (A′)
)

is linear and continuous with respect to the L∞(Ω,F) - topology on ba(Ω,F) and the
L∞(X ,A′) - topology on ba(X ,A′) . Together with

ξ
(

ba+
1 (Ω,F)

)
⊂ ba+

1 (X ,A′)

this implies that ξ(Uθ) is a convex and L∞(X ,A′) - compact subset of ba+
1 (X ,A′) . Ac-

cording to Corollary 2.16, ξ(Uθ) is a credal set and the definitions imply

ξ(Uθ) = Mθ

2
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Just as in the precise case, it is assumed that the random variables

Xi : Ω → Xi , i ∈ {1, . . . , n}

are independent identically distributed. That is, the joint distribution of observations is
equal to 

X1

·
·
Xn

(Uθ) = X1(Uθ)⊗ · · · ⊗Xn(Uθ) = P ′θ
⊗n

Since Uθ may be any element of Uθ, the distribution of the vector x = (x1, . . . , xn) con-
taining all observations may be any element of

N ′θ :=
{
P ′θ
⊗n ∣∣ P ′θ ∈M′

θ

}
This set of product probabilities defines a coherent upper prevision

P
′ ⊗n
θ : L∞

(
X n,A′⊗n

)
→ R , g′ 7→ sup

P ′θ
⊗n∈N ′θ

P ′θ
⊗n

[g]

According to Proposition 2.15, the credal set of this coherent upper prevision is equal to

c` co
{
P ′θ
⊗n ∣∣ P ′θ ∈M′

θ

}
so that, in fact, we end up with the usual type-2 product of coherent upper previsions
again.

Note that the credal sets M′
θ may also contain probability charges which are not σ-

additive. Products of probability charges such as P ′θ
⊗n are defined according to (König,

1997, Proposition 20.4). However, these products are not defined on the product σ-algebra
A′ ⊗n but on the (usually) smaller product algebra denoted by A′ ⊗̂n . This is the smallest
algebra on X n which contains all rectangles

A′1 × . . . × A′n ⊂ X n where A′1 , . . . , An ∈ A′

That is, P
′ ⊗n
θ is defined on the product algebra A′ ⊗̂n at first. Next, P

′ ⊗n
θ can be extended

to a coherent upper prevision on the usual product σ-algebra A′ ⊗n by natural extension.

6.2.2 Discretizations in estimation problems

As argued in Subsection 5.4.1, discretizing the parameter space Θ may be considered as
part of modeling in estimation problems because coarsening Θ also means to change the
purpose of the estimation problem and this change of the purpose is desirable from the
point of view of the theory of imprecise probabilities; confer Subsection 5.4.1.

Modelers will nevertheless often produce an infinite parameter space Θ . Therefore, an ad
hoc method for discretizing Θ is developed in the following:

Let Θ be any index set and (P
′
θ)θ∈Θ be an imprecise model on a sample space (X ,A′) .

For every θ ∈ Θ , let M′
θ be the credal set of P

′
θ on (X ,A′) .

In order to discretize Θ, let
H =

{
H1 , . . . , Hm

}
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be a finite partition of Θ . Now, the parameter set in our estimation problem is H and
we want to estimate the true H ∈ H . This is the set H ∈ H in which the true parameter
θ lies. That is, we do not want to discriminate between different elements θ1 and θ2 of
one H any more. In this sense, the estimation problem gets coarser. The (upper) risk
function depending on H ∈ H is canonically defined by

H → R , H 7→ sup
θ∈H

sup
P ′θ∈M

′
θ

∫
X

∫
Θ

Wθ(θ̂) τx(dθ̂)P
′
θ(dx) (6.4)

where (Wθ)θ∈Θ ⊂ L∞(Θ, 2Θ) is a loss function and τ is a (randomized) decision function,
i.e. an estimator. Since we do not want to discriminate between different elements θ1 and
θ2 of one H, it is natural to choose a loss function which does only depend on H and not
on the specific θ; that is, we have a loss function

(WH)H∈H ⊂ L∞(H, 2H)

Furthermore, the decision space changes from Θ to H and the risk function becomes

H → R , H 7→ sup
θ∈H

sup
P ′θ∈M

′
θ

∫
X

∫
H
WH(Ĥ) τx(dĤ)P ′θ(dx) (6.5)

for an estimator τ . Next, put

M′
H := c`co

⋃
θ∈H

M′
θ , ∀H ∈ H

where c`co denotes the convex L∞(X ,A′) - closure. That is, M′
H is the credal set of the

coherent upper prevision P
′
H defined by

P
′
H : L∞(X ,A′) → R , f 7→ sup

θ∈H
P
′
θ[f ]

According to Lemma 8.29, the risk function defined by (6.5) is equal to

H → R , H 7→ sup
P ′H∈M

′
H

∫
X

∫
H
WH(Ĥ) τx(dĤ)P ′θ(dx) (6.6)

and this function exactly coincides with the usual risk function defined in Section 3.2 if
(P
′
H)H∈H is our imprecise model. That is, discretizing Θ naturally leads to the imprecise

model (P
′
H)H∈H , where H is a finite index set.

Of course, a thoughtless application of this discretization may lead to very bad results.
This is because discretizing Θ means that we do not want to discriminate between different
elements θ1 and θ2 of one H and, therefore, it is crucial to choose a sensible partition of Θ
in order to get sensible results – the more since choosing a partition of Θ means choosing
the statistical purpose.

So far, this method can be justified well. However, problems arise in applications since it
is a necessary assumption for the applications presented in the present book that credal
sets are given by a finite number of restrictions; cf. e.g. (5.30). However, even if there is
a finite set K ⊂ L∞(X ,A′) such that

M′
θ =

{
P ′θ ∈ ba+

1 (X ,A′)
∣∣ P ′θ[f ] ≤ P

′
θ[f ] ∀ f ∈ K

}
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it does not seem to be clear if assumption (5.30) is fulfilled for M′
H which would be

necessary to successfully work with M′
H in our applications. An ad hoc solution of this

problem is to use the credal set

M̂′
H =

{
P ′H ∈ ba+

1 (X ,A′)
∣∣ P ′H [f ] ≤ P

′
H [f ] ∀ f ∈ K

}
as an “approximation” of M′

θ . It is easy to see that

M′
θ ⊂ M̂′

H

After that, (X ,A′) may be discretized according to Subsection 5.4.2 where the index set
is given by H .

6.3 A minimum distance estimator for imprecise mod-

els

In short, we are faced with a random sample

x1 , . . . , xn

from a precise distribution P ′θ which is unknown. It is only known that P ′θ is contained in
a credal set M′

θ . The parameter θ is also unknown and should be estimated.
The idea of the presented minimum distance estimator is very simple:

The data x1, . . . , xn are used to build the empirical measure

P(n) =
1

n

n∑
i=1

δxi

Then, the minimum distance estimator is that θ̂ ∈ Θ such that P(n) lies next
to M′

θ̂
. That is, we calculate the distance between P(n) and M′

θ for every

θ ∈ Θ and pick that θ̂ where the distance is minimal.

This estimator will not be optimal in the general decision theoretic setup and the present
section fails to proof any optimality result – the present section even does not make any
attempt to derive such an optimality result. Admittedly, this is criticizable since, as a
rule, every promoted statistical procedure should be justified by an appropriate optimality
criterion.

On the other hand, even small numbers of observations (e.g. n = 10) usually lead to
models which are so extensive that calculating optimal estimators is excluded because
of exceedingly high computational efforts – at least as measured by the present state of
research. So, the best that we can hope for at the moment are optimal estimators which
cannot be calculated or estimators which can be calculated and behave reasonably well.
The purpose of the present section is to develop such an estimator which can be calculated
in real applications. The proposed minimum distance estimator fulfills this practical need
in many situations. Furthermore, the asymptotic results of Section 6.4 confirm that the
estimator behaves reasonably well in terms of asymptotic statistics, and the simulation
study in Section 6.6 demonstrates its applicability.
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In order to define the estimator in a mathematical rigorous way, the setup developed in
Section 6.2 is used:

Let Ω be a set with σ-algebra F and X be a set with σ-algebra 9 A′ . Let Θ be any index
set. There is no need to assume finiteness of Θ at the moment – such an assumption will
only be used for concrete computations in Section 6.5.
Let (U θ)θ∈Θ be an imprecise model on (Ω,F) with corresponding family of credal sets
(Uθ)θ∈Θ . The observations x1, . . . , xn are modeled via random variables

Xi : Ω → X , i ∈ {1, . . . , n}

It is assumed that X1, . . . , Xn are independent uniformly distributed with respect to an
unknown probability charge Uθ ∈ Uθ .
Therefore, we have an imprecise model (P ′θ)θ∈Θ on (X ,A′) with corresponding credal sets

M′
θ =

{
X(Uθ)

∣∣ Uθ ∈ Uθ} , θ ∈ Θ ;

and the random variables

X1 , . . . , Xn ∼i.i.d. P ′θ

are independent identically distributed according some precise distribution P ′θ which may

be any element of the credal set of P
′
θ . The task is to estimate the unknown parameter

θ ∈ Θ .

The following fundamental assumption is made:

Assumption 6.3 There is a finite subset K = {f1, . . . , fs} ⊂ L∞(X ,A′) such that

M′
θ =

{
P ′θ ∈ ba+

1 (X ,A′)
∣∣ P ′θ[f ] ≤ P

′
θ[f ] ∀ f ∈ K

}
(6.7)

for every θ ∈ Θ . Furthermore, it is assumed that

P
′
θ[f ]− P ′θ[f ] > 0 ∀ f ∈ K (6.8)

where P ′θ is the corresponding lower coherent prevision. 10

Such assumptions have also been made in Subsection 5.4.2. As has already been stated
there, these assumptions can be justified as follows: Practitioners will very often only
be able to specify concrete upper previsions for a finite number of functions and this
directly leads to models satisfying Assumption (6.7). In particular, this will often be true
for expert systems. There, it is a natural proceeding to ask some experts about their
prevision (or expectation) on some specific events, experiments, gambles, assets etc. –
and this can only be done for a finite number of such objects.
Furthermore, Section 5.2 tell us that using models of form (6.7) which violate (6.8) is
dangerous because these models are potentially most instable. Therefore, those models
which violate (6.8) generally should be avoided anyway.

9In order to derive asymptotic results later on, some parts of the investigations are concerned with
σ-additive probability measures and, therefore, we have to consider σ-algebras. This does not provide
difficulties because an imprecise model on an algebra can always be extended to an imprecise model on
a σ-algebra by means of a natural extension.

10 That is, P ′θ[f
′] = inf

P ′θ∈M
′
θ

P ′θ[f
′]
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Note that these assumptions rule out classical probability measures. One of the main
goals K. Weichselberger had when he developed his theory of imprecise probabilities (F-
probabilities) was: “As a special case, classical probability must fit into this theory.”
11 This means that – as a fundamental property – every probability measure is also an
F-probability (and a coherent upper prevision). However, F-probabilities and coherent
upper previsions which fulfill the above assumptions cannot coincide with probability
measures. Accordingly, the following investigations do not apply to classical probability
theory as a special case. That is, we deal with a strictly imprecise setup. As will be
seen, this turns out to be an advantage here because the minimum distance estimator
is based on the total variation distance. While working with total variation distances
provides some difficulties in classical probability theory these difficulties cannot occur in
our strictly imprecise setup; cf. Section 6.4.

Now, it is possible to define the empirical measure in this setup. The empirical measure
P(n) is the map

P(n) : Ω → ba+
1 (X ,A′) , ω 7→ P(n)

ω =
1

n

n∑
i=1

δXi(ω)

where δxi denotes the Dirac measure in xi ∈ X . Note that

P(n)[f ′] : Ω → R , ω 7→ 1

n

n∑
i=1

δXi(ω)[f
′] =

1

n

n∑
i=1

f ′
(
Xi(ω)

)
is a (bounded) random variable for every f ′ ∈ L∞(X ,A′) and

Ω×A′ → R , (ω,A′) 7→ P(n)
ω [IA′ ]

is a Markov kernel.
The following notation will also be used: For every x = (x1, . . . , xn) ∈ X n, the probability
measure on (X ,A′) defined by

P(n)
x [f ′] :=

1

n

n∑
i=1

f ′
(
xi
)

∀ f ′ ∈ L∞(X ,A′)

is denoted by P(n)
x .

In order to define a minimum distance estimator, we have to choose a suitable notion of
“distance” between a measure P ′0 and a coherent upper prevision P

′
on (X ,A′) now.

Appropriately to the sensitivity analyst’s point of view, the distance will be defined as

inf
P ′∈M′

d(P ′0, P
′)

where d is a suitable metric on ba+
1 (X ,A′) .

Since bounded charges µ′ ∈ ba(X ,A′) are mainly regarded as bounded linear operators
on L∞(X ,A′) within the theory of imprecise probabilities, it seems to be most natural to
choose the operator norm for d ; that is,

d(P ′0, P
′) = ‖P ′0 − P ′‖ = sup

f ′∈L∞(X ,A′)

∣∣P ′0[f ′]− P ′[f ′]
∣∣

‖f ′‖
11(Weichselberger, 2000, p. 149f)
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and we put ∥∥P ′0 − P ′∥∥ := inf
P ′∈M′

‖P ′0 − P ′‖ (6.9)

Though this is not a norm (because of the different roles of P ′0 and P
′
) this notation is

sensible. Particularly, in the special case that P
′

is a precise prevision (i.e. a probability
charge), the definition in (6.9) reduces to the usual operator norm in ba(X ,A′) .

Next, the minimum distance estimator can be defined: The minimum distance estimator
θ̂′n is

θ̂′n : X n → Θ , x 7→ arg min
θ∈Θ

∥∥P(n)
x − P

′
θ

∥∥
Recall from Section 2.3 that the operator norm in ba(X ,A′) is equal to the total variation.
Therefore, the minimum distance estimator is based on the total variation norm. As
shown in the following section, the annoying properties of the total variation norm with
respect to the empirical measure in classical statistics completely disappear in the above
developed setup based on imprecise probabilities.

6.4 Asymptotic properties of the estimator

The setup and the notations of Section 6.3 are still valid. The present Section pro-
vides some theoretical justification of the minimum distance estimator defined in Section
6.3 . This justification solely relies on asymptotic arguments. In order to apply such
arguments, σ-additivity becomes important. Therefore, it would be desirable that the
coherent upper previsions were even upper expectations because, for upper expectations,
considering σ-additive probability measures is sufficient in most situations; confer Section
2.4. Fortunately, coherent upper previsions which fulfill (6.7) and (6.8) are always upper
expectations (cf. Section 2.4). This is the content of the following proposition:

Proposition 6.4 Let P ′θ be the lower coherent prevision which corresponds to P
′
θ . As-

sume (6.7) and (6.8).

Then, P
′
θ is an upper expectation, i.e.

M′
θ ∩ ca+

1 (X ,A′)

is dense in M′
θ with respect to the L∞(X ,A′) - topology.

Proof : Fix any P ′0 ∈ M′
θ , any f ′0 ∈ L∞(X ,A′) and any ε > 0 . Then, it is enough to

show that there is a P ′c ∈ M′
θ ∩ ca+

1 (X ,A′) such that

P ′c[f
′
0] > P ′0[f ′0]− ε (6.10)

because this implies

sup
{
P ′θ[f

′
0]
∣∣ P ′θ ∈ M′

θ ∩ ca+
1 (X ,A′)

}
= P

′
θ[f
′
0]

See also Proposition 2.21.

Put
K = {f1, . . . , fs}
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Assumption (6.8) implies that, for every i ∈ {1, . . . , s} , there is some P ′i ∈M′
θ such that

P ′i [f
′
i ] < P

′
θ[f
′
i ] (6.11)

Put

P ′α = (1− α)P ′0 +
α

s

s∑
i=1

P ′i

for α =
ε

4‖f ′0‖
∧ 1 ∈ (0, 1] .

Of course, convexity of M′
θ implies P ′α ∈M′

θ but, even more,

P ′α[fj] = (1− α)P ′0[fj] +
α

s

s∑
i=1

P ′i [fj] ≤

≤ (1− α)P
′
θ[fj] +

α

s

(
P ′j [fj] + (s− 1)P

′
θ[fj]

)
<

(6.11)
< (1− α)P

′
θ[fj] +

α

s

(
P
′
θ[fj] + (s− 1)P

′
θ[fj]

)
= P

′
θ[fj]

Hence,

ε0 := min
{ ε

2
, P

′
θ[f1]− P ′α[f1] , . . . , P

′
θ[fs]− P ′α[fs]

}
> 0

Furthermore,∣∣P ′α[f ′0]− P ′0[f ′0]
∣∣ ≤ α

∣∣P ′0[f ′0]
∣∣+

α

s

s∑
j=1

∣∣P ′j [f ′0]
∣∣ ≤

≤ α‖f ′0‖ +
α

s

s∑
j=1

‖f ′0‖ = 2α‖f ′0‖ ≤
ε

2
(6.12)

For every j ∈ {1, . . . , s}, put

Λj : ba(X ,A′) → R , µ′ 7→ µ′[fj]

and put
Λ0 : ba(X ,A′) → R , µ′ 7→ µ′[f ′0]

Since these maps are L∞(X ,A′) - continuous,

B0 :=
s⋂
j=1

Λ−1
j

((
−∞ , P ′α[fj] + ε0

))
∩ Λ−1

0

((
P ′α[f ′0]− ε0 , ∞

))
is an L∞(X ,A′) - open neighborhood of P ′α and, therefore, Theorem 2.11 b) implies the
existence of some

P ′c ∈ B0 ∩ ca+
1 (X ,A′)

Hence, it follows from

P ′c[fj] ≤ P ′α[fj] + ε0 ≤ P ′α[fj] +
(
P
′
θ[fj]− P ′α[fj]

)
=

= P
′
θ[fj] ∀ j ∈ {1, . . . , s}

that P ′c ∈ M′
θ ∩ ca+

1 (X ,A′) . Furthermore,

P ′c[f
′
0] > P ′α[f ′0]− ε0

(6.12)

≥ P ′0[f ′0]− ε

2
− ε

2
= P ′0[f ′0]− ε

2
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The following example shows that assumption (6.8) cannot be omitted:

Example 6.5 Put X = (0, 1] and let A′ be the Borel-σ-algebra on (0, 1]. Let K = {f1}
where

f1 : (0, 1] → R , x 7→ f1(x) = x

and take
P
′
θ[f1] = 0

It is not obvious that this is defined well because this is equivalent with the existence of a
probability charge P ′θ ∈ ba+

1 (X ,A′) such that

P ′θ[f1] = 0 (6.13)

and (6.13) is very strange – at least for readers who are used to σ-additive probability
measure – because f1 is strictly positive! In particular, note that (6.13) implies

P ′θ
(
(ε, 1]

)
= 0 ∀ ε > 0 but P ′θ

(
(0, 1]

)
= 1

So, where does P ′θ put its mass on?

It is shown now, that such a probability charge P ′θ really does exist. Obviously, P ′θ cannot
be σ-additive. According to (Hoffmann-Jørgensen, 1994a, p. xxxvii), the existence of a
probability charge on a σ-algebra which is not a σ-additive probability measure is equivalent
to a certain form of the axiom of choice and, therefore, it is clear from the first that the
following proof will need this form of the axiom of choice.

It is easy to see that

T :
{
a·f1

∣∣ a ∈ R} → R , f ′ 7→ T (f ′) = 0

is a (norm-)continuous linear operator such that

T (f ′) ≤ sup f ′ ∀ f ′ ∈
{
a·f1

∣∣ a ∈ R}
Therefore, it follows from the Hahn-Banach Theorem (Dunford and Schwartz, 1958, The-
orem II.3.10) that T may be extended to a continuous linear operator on L∞(X ,A′) such
that

T (f ′) ≤ sup f ′ ∀ f ′ ∈ L∞(X ,A′)

and Theorem 2.4 implies the existence of a bounded charge µ′ ∈ ba(X ,A′) such that

µ′[f ′] = T (f ′)] ∀ f ′ ∈ L∞(X ,A′)

Especially, µ′[f1] = 0 . It only remains to show that µ is even a probability charge. This
follows from

µ(A′) = −T (−IA′ ] ≥ − sup
(
− IA′

)
≥ 0 ∀A′ ∈ A′

and
1 = − sup

(
− IX

)
≤ −T (−IX ) = µ(X ) = T (IX ) ≤ sup IX = 1

That is, P ′θ = µ is a probability charge which fulfills (6.13).

Though the above mentioned certain form of the axiom of choice is not visible in the proof,
it has nevertheless been used – it is associated with the Hahn-Banach Theorem.
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As already mentioned in Section 6.3, the use of the total variation norm together with
the empirical measure is not unproblematic in classical statistics. For example, consider
a random sample from a standard normal distribution

X1 , . . . , Xn ∼i.i.d. N (0, 1) := P

Recall the notations

P(n) =
1

n

n∑
i=1

δXi and P(n)
ω =

1

n

n∑
i=1

δXi(ω) ∀ω ∈ Ω

for the empirical measure. Then, several distances d provides the desirable property that

d
(
P(n)
ω , P

)
−−−→
n→∞

0 P (dω) − a.s. (6.14)

This is e.g. true for the Kolmogorov-Smirnov distance and the Cramér-von Mises distance;
however, it is not true for the total variation norm. In order to see this, fix any ω ∈ Ω
and put

f : X → R , x 7→ I{X1(ω),...,Xn(ω)}(x)− IX\{X1(ω),...,Xn(ω)}(x)

Then, we have P(n)
ω [f ] = 1 and P [f ] = −1 and, therefore,

‖P(n)
ω − P ‖ = 2 ∀n ∈ N ∀ω ∈ Ω

which is the worst possible violation of (6.14). However, Theorem 6.6 below states that
this annoying difficulty totally disappears in the imprecise probability setup summarized
in Section 6.3. If we replace P by a coherent upper prevision P

′
satisfying assumptions

(6.7) and (6.8), we get ∥∥P(n) − P ′
∥∥ −−−→

n→∞
0 P ′0 − a.s.∗ (6.15)

for every probability measure P ′0 in the credal set of P
′
. In (6.15), writing a.s.∗ instead

of a.s. indicates that there may be some problems concerning measurability because, in
general, the map

ω 7→
∥∥P(n)

ω − P
′∥∥ = inf

P ′∈M′
sup

f ′∈L∞(X ,A′)

∣∣P(n)
ω [f ′]− P ′[f ′]

∣∣
‖f ′‖

is not measurable.

In order to stay mathematically rigorously, consider the following notations which are in
accordance with the setup in Section 6.3:

Let U0 be a probability measure on (Ω,F) and let

Xi : Ω → X , i ∈ {1, . . . , n}

be random variables which are independent identically distributed with respect to U0 . It
is assumed that the image

P ′0 := Xi(U0)
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is any element of the credal set M′ which belongs to a coherent upper prevision P
′

on
L∞(X ,A′) . Of course, P0 does not depend on i then. Again, we assume the validity of
(6.7) and (6.8). That is, the credal set M′ is given by

M′ =
{
P ′ ∈ ba+

1 (X ,A′)
∣∣ P ′[f ] ≤ P

′
[f ] ∀ f ∈ K

}
(6.16)

where K = {f1, . . . , fs} is assumed to be a finite subset of L∞(X ,A′) and

P
′
[f ]− P ′[f ] > 0 ∀ f ∈ K (6.17)

More precisely, (6.15) means∥∥P(n)
ω − P

′∥∥ −−−→
n→∞

0 U0(dω) − a.s.∗ (6.18)

where ω 7→
∥∥P(n)

ω − P
′∥∥ denotes the map

Ω → R , ω 7→ inf
P ′∈M′

sup
f ′∈L∞(X ,A′)

∣∣∣ 1
n

∑n
i=1 f

′(Xi(ω)
)
− P ′[f ′]

∣∣∣
‖f ′‖

Taking the measurability issues indicated by the asterisk in a.e.∗ into account, (6.18)
precisely means:

There is a sequence of A′/R - measurable random variables

∆n : Ω → R , ω 7→ ∆n(ω)

such that ∥∥P(n)
ω − P

′∥∥ ≤ ∆n(ω) ∀ω ∈ Ω ∀n ∈ N

and

∆n −−−→
n→∞

0 U0 − a.s.

Confer e.g. (van der Vaart, 1998, §18) or (van der Vaart and Wellner, 1996, §1.9) for this
definition of almost sure convergence of unmeasurable maps.

Now, the already pronounced theorem can be formulated:

Theorem 6.6 In the setup of the present section, assume that

U0 ∈ ca+
1 (Ω,F) (6.19)

Let P
′

be a coherent upper prevision with credal set M′ such that

P ′0 = Xi(U0) ∈ M′

Assume that M′ fulfills (6.16) and (6.17).

Then, ∥∥P(n)
ω − P

′∥∥ −−−→
n→∞

0 U0(dω) − a.s.∗
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The proof of Theorem 6.6 needs some preparations which are even interesting from its
own: Lemma 6.7 provides a different description of the distance

‖P(n)
ω − P

′‖

and Proposition 6.8 provides a bound on this distance which does only depend on the
values

P(n)
ω [fi] , P

′
[fi] and P ′[fi] for i ∈ {1, . . . , s}

This is a nice property for practical applications because these values are already known
or can easily be calculated. In particular, Proposition 6.8 is important for the practical
implementation of the minimum distance estimator because it will follow from Proposition
6.8 that the proposed algorithm is correct.

Lemma 6.7 Let Q be a coherent upper prevision on L∞(Y ,B) with corresponding credal
set N on (Y ,B) and let Q0 be a propability charge on (Y ,B) .
Let G be a subset of L∞(Y ,B) such that

• G is convex

• g ∈ G ⇒ −g ∈ G

• G is bounded: sup
g∈G
‖g‖ < ∞

Then,

inf
Q∈N

sup
g∈G

∣∣Q0[g]−Q[g]
∣∣ = sup

g∈G
Q0[g]−Q[g] (6.20)

In particular, ∥∥Q0 −Q
∥∥ = sup

g∈L∞(Y,B)

Q0[g]−Q[g]

‖g‖

That is, the distance
∥∥Q0 −Q

∥∥ exactly coincides with the operator norm if we consider

L∞(Y ,B) → R , g 7→ Q0[g]−Q[g]

as a (non-linear) operator.

Proof of Lemma 6.7: Equation (6.20) obviously coincides with

inf
Q∈N

sup
g∈G

∣∣Q0[g]−Q[g]
∣∣ = sup

g∈G
inf
Q∈N

Q0[g]−Q[g] (6.21)

In (6.21) the inequality “≥ ” is trivial and, therefore, it only remains to proof the in-
equality “≤ ” in (6.21).

In order to prove this, firstly, fix any Q ∈ N and any g0 ∈ G. In case of Q0[g0] ≥ Q[g0],
we have ∣∣Q0[g0]−Q[g0]

∣∣ = Q0[g0]−Q[g0] ≤ sup
g∈G

Q0[g]−Q[g]

and in case of Q0[g0] ≤ Q[g0], we also have∣∣Q0[g0]−Q[g0]
∣∣ = Q0[−g0]−Q[−g0] ≤ sup

g∈G
Q0[g]−Q[g]
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since −g0 ∈ G . Hence, it follows that

inf
Q∈N

sup
g∈G

∣∣Q0[g]−Q[g]
∣∣ = inf

Q∈N
sup
g∈G

Q0[g]−Q[g] (6.22)

In order to show that inf and sup may be interchanged in (6.22), a minimax theorem
is applied for

Γ : N ×G → R , (Q, g) 7→ Q0[g]−Q[g]

To this end, note that N is L∞(Y ,B) - compact and, for every g ∈ G , Q 7→ Γ(Q, g)
is convex and L∞(Y ,B) - continuous. In addition, g 7→ Γ(Q, g) is concave for every
Q ∈ N . So, it follows from the minimax theorem (Fan, 1953, Theorem 2) that

inf
Q∈N

sup
g∈G

Γ(Q, g) = sup
g∈G

inf
Q∈N

Γ(Q, g)

Together with (6.22), this implies (6.21) and (6.20).

In particular, for
G =

{
g ∈ L∞(Y ,B)

∣∣ ‖g‖ ≤ 1
}

it follows that∥∥Q0 −Q
∥∥ = inf

Q∈N
sup
g∈G

∣∣Q0[g]−Q[g]
∣∣ (6.20)

= sup
g∈G

Q0[g]−Q[g] =

= sup
g∈L∞(Y,B)

Q0[g]−Q[g]

‖g‖

2

Proposition 6.8 Let Q be a coherent upper prevision on L∞(Y ,B) with credal set

N =
{
Q ∈ ba+

1 (Y ,B)
∣∣ Q[g] ≤ Q[g] ∀ g ∈ G

}
(6.23)

where G = {g1, . . . , gs} is a finite subset of L∞(Y ,B) . Assume that

Q[gi]−Q[gi] > 0 ∀ i ∈ {1, . . . , s} (6.24)

Then, for every probability charge Q0 ∈ ba+
1 (Y ,B) ,

‖Q0 −Q‖ ≤ 2 ·
s∑
i=1

(
Q0[gi]−Q[gi]

)+

Q[gi]−Q[gi]
(6.25)

Proof of Proposition 6.8 If there is any i ∈ {1, . . . , s} such that Q0[gi] − Q[gi] ≥
Q[gi]−Q[gi] then (6.25) is trivially fulfilled and nothing remains to be proven.

Therefore, it can be assumed that

Q0[gi]−Q[gi] < Q[gi]−Q[gi] ∀ i ∈ {1, . . . , s} (6.26)

Without loss of generality, we may assume that the elements of G are indexed in such a
way that there is a r ∈ {0, . . . , s} such that

Q0[gi] > Q[gi] ∀ i ≤ r and Q0[gi] ≤ Q[gi] ∀ i > r
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Putting

εi :=

(
Q0[gi]−Q[gi]

)+

Q[gi]−Q[gi]
∀ i ≤ r , (6.27)

(6.26) implies 0 < εi < 1 for every i ∈ {1, . . . , r} .

Let Q0 be the coherent upper prevision with credal set

N0 =
{
Q ∈ ba+

1 (Y ,B)
∣∣∣ Q[g] ≤ max

{
Q[g] , Q0[g]

}
∀ g ∈ G

}
Then, it follows from Q0 ∈ N0 and N ⊂ N0 that

Q0[g] = max
{
Q[g] , Q0[g]

}
∀ g ∈ G

and, together with (6.27), this implies

Q[gi] ≤ Q0[gi] = Q[gi] + εi
(
Q[gi]−Q[gi]

)
∀ i ≤ r

and

Q[gi] = Q0[gi] ∀ i > r

Since Q and Q0 may be considered as natural extensions of coherent upper previsions
on G, Proposition 5.1 is applicable and yields

Q[g] ≤ Q0[g] ≤ Q[g] + ε
(

sup g − inf g
)
≤ Q[g] + 2ε‖g‖ ∀ g ∈ L∞(Y ,B)

for ε = ε1 + · · ·+ εr > 0 .

Put

G :=
{
g ∈ L∞(Y ,B)

∣∣ ‖g‖ ≤ 1
}

Then, Lemma 6.7 implies

‖Q0 −Q‖ = sup
g∈G

Q0[g]−Q[g] ≤ sup
g∈G

Q0[g]−Q[g] ≤

≤ sup
g∈G

Q[g] + 2ε‖g‖ −Q[g] ≤ sup
g∈G

2ε‖g‖ =

= 2 ·
r∑
i=1

εi = 2 ·
s∑
i=1

(
Q0[gi]−Q[gi]

)+

Q[gi]−Q[gi]

2

Of course, (6.23) is, in general, a very bad bound. However, if Q0 is equal to the empirical

measure P(n) and the true distribution lies in the credal set of Q = P
′
, then the law of

large numbers yields (
Q0[gi]−Q[gi]

)+ −−−→
n→∞

0

Therefore, bound (6.23) provides valuable information for increasing numbers of observa-

tions. Since Theorem 6.6 is about the asymptotic behaviour of the distance ‖P(n) − P ′‖ ,
bound (6.23) serves as the cornerstone of the proof.
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Proof of Theorem 6.6 For every ω ∈ Ω, an application of Proposition 6.8 yields

∥∥P(n)
ω − P

′∥∥ ≤ 2 ·
s∑
i=1

(
P(n)
ω [fi]− P

′
[fi]
)+

P
′
[fi]− P ′[fi]

(6.28)

The map

Ω → R , ω 7→ 2 ·
s∑
i=1

(
P(n)
ω [fi]− P

′
[fi]
)+

P
′
[fi]− P ′[fi]

is measurable with respect to F and B .

For every i ∈ {1, . . . , s} , the strong law of large numbers (Hoffmann-Jørgensen, 1994a,
§ 4.12) and the transformation theorem (Hoffmann-Jørgensen, 1994a, § 3.15) implies the
existance of a U0 - set Ni ∈ F such that

P(n)
ω [fi] =

1

n

n∑
j=1

fi ◦Xj(ω) −−−→
n→∞

∫
Ω

fi ◦X1(ω)U0(dω) =

=

∫
Ω

fi(x)P ′0(dx) = P ′0[fi] ≤ P
′
[fi] ∀ ω ∈ Ω \Ni

Therefore

N :=
s⋃
i=1

Ni ∈ F

is a U0 - set such that

2 ·
s∑
i=1

(
P(n)
ω [fi]− P

′
[fi]
)+

P
′
[fi]− P ′[fi]

−−−−→
n→∞

0 ∀ ω ∈ Ω \N

Together with (6.28), this proves Theorem 6.6. 2

Theorem 6.6 states that the distance between the empirical measure and the coherent
upper prevision converges to 0. However, the techniques developed for the proof can also
be used to make some assertions about the rate of convergence:

Theorem 6.9 Under the assumptions of Theorem 6.6, it follows that

a)
∥∥P(n)

ω − P
′∥∥ = O

(√
ln lnn

n

)
U0(dω) − a.s.∗

b) In addition, assume that

P ′0[fi] < P
′
0[fi] ∀ i ∈ {1, . . . , s} (6.29)

Then,

lim
n→∞

U∗0

({
ω ∈ Ω

∣∣∣ ∥∥P(n)
ω − P

′∥∥ > 0
})

= 0

In part b), using the outer measure U∗0 instead of U0 is due to the fact that the set{
ω ∈ Ω

∣∣∣ ∥∥P(n)
ω − P

′∥∥ > 0
}

will, in general, not be measurable.
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Proof : For every i ∈ {1, . . . , s} , put

hi :=
fi

P
′
[fi]− P ′[fi]

According to Proposition 6.8,

0 ≤ ‖P(n)
ω − P

′‖ ≤ 2 ·
s∑
i=1

(
P(n)
ω [hi]− P

′
[hi]
)+ ∀ω ∈ Ω (6.30)

a) Note that, for every i ∈ {1, . . . , s} and for every ω ∈ Ω ,(
P(n)
ω [hi]− P

′
[hi]
)+ ≤

(
P(n)
ω [hi]− P ′0[hi]

)+ ≤
∣∣P(n)

ω [hi]− P ′0[hi]
∣∣ =

=

∣∣∣∣∣ 1n
n∑
j=1

(
hi ◦Xj(ω)− P ′0[hi]

)∣∣∣∣∣
Since ∫

Ω

hi ◦Xj(ω)U0(dω) = P ′0[hi]

the law of the iterated logarithm (Hoffmann-Jørgensen, 1994b, § 10.25) yields∣∣∣∣∣ 1n
n∑
j=1

(
hi ◦Xj(ω)− P ′0[hi]

)∣∣∣∣∣ = O

(√
ln lnn

n

)
U0(dω) − a.s.∗

and, therefore,

(
P(n)
ω [hi]− P

′
[hi]
)+

= O

(√
ln lnn

n

)
U0(dω) − a.s.∗

Together with (6.30), this implies the validity of part a).

b) For every n ∈ N , put

A(1)
n =

{
ω ∈ Ω

∣∣∣ ∥∥P(n)
ω − P

′∥∥ > 0
}

A(2)
n =

{
ω ∈ Ω

∣∣∣ s∑
i=1

(
P(n)
ω [hi]− P

′
[hi]
)+

> 0
}

and, for i ∈ {1, . . . , s} ,

Bi,n =
{
ω ∈ Ω

∣∣∣ P(n)
ω [hi] > P

′
[hi]
}

=

=
{
ω ∈ Ω

∣∣∣ P(n)
ω [hi]− P ′0[hi] > P

′
[hi]− P ′0[hi]

}
Then, we have

A(1)
n

(6.30)
⊂ A(2)

n ⊂
s⋃
i=1

Bi,n
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where A
(2)
n , B1,n , . . . , Bs,n ∈ F . Finally,

U∗0
(
A(1)
n

)
≤

s∑
i=1

U0

(
Bi,n

)
−−−−→
n→∞

0

because
U0

(
Bi,n

)
−−−−→
n→∞

0 ∀ i ∈ {1, . . . , s}

follows from the strong law of large numbers (Hoffmann-Jørgensen, 1994a, § 4.12),
assumption (6.29) and the fact that almost sure convergence implies convergence in
probability; cf. (Hoffmann-Jørgensen, 1994a, § 3.25). 2

Now, let us turn over to consistency of the minimum distance estimator

θ̂′n : X n → Θ , x 7→ arg min
θ∈Θ

∥∥P(n)
x − P

′
θ

∥∥
In order to stay mathematically rigorous, it is more convenient to work on (Ω,F) than
on the sample space (X n,A′⊗n) . Therefore, we most often consider the maps

θ̂n : Ω → Θ , ω 7→ θ̂′n
(
X1(ω), . . . , Xn(ω)

)
instead of θ̂′n . That is, we use the notation

θ̂n = θ̂′n
(
X1, . . . , Xn

)
= arg min

θ∈Θ

∥∥P(n)
ω − P

′
θ

∥∥
Recall the setup presented in Section 6.3 now. That is, we have an imprecise model
(P
′
θ)θ∈θ on the measurable space (X ,A′) with corresponding credal sets (M′

θ)θ∈Θ . With
respect to a (fixed but totally unknown) probability measure U0 on (Ω,F) , the random
variables

X1 , . . . , Xn ∼i.i.d. P ′θ0
are independent identically distributed according some precise distribution

P ′θ0 ∈ M
′
θ0

for some θ0 ∈ Θ

The true P ′θ0 ∈M
′
θ0

is totally unknown and we only want to estimate θ0 . A true parameter
θ0 is any 12 θ0 ∈ Θ such that

P ′θ0 ∈ M
′
θ0

In case of a finite set of parameters Θ, a sensible estimator θ̂n should – at least for large
sizes of n – lead to small error probabilities

U∗0

(
P0 6∈ M′

θ̂n

)
so that

U∗0

(
P0 6∈ M′

θ̂n

)
−−−−→
n→∞

0

The minimum distance estimator fulfilles this requirement as stated in the following the-
orem. Again, using the outer measure U∗0 instead of U0 is necessary because we do not
assume {

ω ∈ Ω
∣∣∣ P0 6∈ M′

θ̂n(ω)

}
to be measurable.

12θ0 is not assumed to be unique.
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Theorem 6.10 In the setup of the present section, assume that

U0 ∈ ca+
1 (Ω,F) (6.31)

Let (P
′
θ)θ∈θ be an imprecise model on the measurable space (X ,A′) with corresponding

family of credal sets (M′
θ)θ∈Θ . The index set Θ is asumed to be finite. With respect to

U0 , the random variables
X1 , . . . , Xn ∼i.i.d. P ′θ0

are independent identically distributed according some precise distribution P ′θ0 such that

P ′θ0 ∈ M
′
θ0

for some θ0 ∈ Θ

Assume that M′
θ fulfills (6.7) and (6.8) for every θ ∈ Θ .

Then,

U∗0

(
Pθ0 6∈ M′

θ̂n

)
−−−−→
n→∞

0 (6.32)

Proof : Firstly, fix any n ∈ N . For every θ ∈ Θ, put

A
(n)
θ :=

{
ω ∈ Ω

∣∣∣∣ ∥∥P(n)
ω − P

′
θ

∥∥ ≤ ∥∥P(n)
ω − P

′
θ0

∥∥}
Note that the definition of θ̂n implies

ω ∈ A
(n)

θ̂n(ω)
∀ω ∈ Ω (6.33)

Put Θ0 :=
{
θ ∈ Θ

∣∣ P ′θ0 ∈ M
′
θ

}
. Then, the following relations are valid for every

ω ∈ Ω :

P ′θ0 6∈ M
′
θ̂n(ω)

⇒ θ̂n(ω) ∈ Θ \Θ0
(6.33)⇒ ω ∈

⋃
θ∈ Θ\Θ0

A
(n)
θ

Therefore,

U∗0

(
P ′θ0 6∈ M

′
θ̂n

)
≤

∑
θ∈ Θ\Θ0

U∗0
(
A

(n)
θ

)
(6.34)

For every θ ∈ Θ \Θ0 , it follows from Pθ0 6∈ M′
θ that there is a εθ > 0 such that

sup
i∈{1,...,s}

(
P ′θ0 [fi]− P

′
θ[fi]

)
· ‖fi‖−1 > εθ (6.35)

Then, for every ω ∈ Ω and for every θ ∈ Θ \Θ0 ,∥∥P(n)
ω − P

′
θ

∥∥ ≥ inf
P ′θ∈M

′
θ

sup
i∈{1,...,s}

∣∣∣P(n)
ω [fi]− P ′θ[fi]

∣∣∣· ‖fi‖−1 ≥

≥ sup
i∈{1,...,s}

inf
P ′θ∈M

′
θ

(
P(n)
ω [fi]− P ′θ[fi]

)
· ‖fi‖−1 =

= sup
i∈{1,...,s}

(
P(n)
ω [fi]− P ′θ0 [fi] + P ′θ0 [fi]− P

′
θ[fi]

)
· ‖fi‖−1 ≥

≥ inf
i∈{1,...,s}

(
P(n)
ω [fi]− P ′θ0 [fi]

)
·‖fi‖−1 + sup

i∈{1,...,s}

(
P ′θ0 [fi]− P

′
θ[fi]

)
·‖fi‖−1

(6.35)
> inf

i∈{1,...,s}

(
P(n)
ω [fi]− P ′θ0 [fi]

)
·‖fi‖−1 + εθ
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Put

Zn(ω) =
∥∥P(n)

ω − P
′
θ0

∥∥ − inf
i∈{1,...,s}

(
P(n)
ω [fi]− P ′θ0 [fi]

)
·‖fi‖−1 ∀ω ∈ Ω

and note that, for every θ ∈ Θ \Θ0 ,

Zn(ω) > εθ ∀ω ∈ A(n)
θ

Therefore, it follows from (6.34) that

U∗0

(
P ′θ0 6∈ M

′
θ̂n

)
≤

∑
θ∈ Θ\Θ0

U∗0
(
Zn > εθ

)
(6.36)

Next, Theorem 6.6 and the strong law of large numbers (Hoffmann-Jørgensen, 1994a,
§ 4.12) yield

Z −−−→
n→∞

0 U0 − a.s.∗

According to (van der Vaart and Wellner, 1996, Lemma 1.9.2), U0 - a.s.∗ - convergence
implies convergence in U∗0 - probability. Hence,

U∗0

(
P ′θ0 6∈ M

′
θ̂n

) (6.36)

≤
∑

θ∈ Θ\Θ0

U∗0
(
Zn > εθ

)
−−−→
n→∞

0

2

6.5 Implementation and application of the estimator

6.5.1 Discretization

As seen in the previous section, it is not necessary to discretize the sample space in
order to define the minimum distance estimator based on the total variation norm in a
sensible way. Since this is not possible for precise probabilities, going over to imprecise
probabilities turns out to be a simplification.

Of course, if we want to calculate the estimator by use of computers, the sample space has
to be discretized – at least implicitly. However, it is one of the most striking properties of
the above presented minimum distance estimator, that this is only a practical need which
is irrelevant for theoretical investigations. In case of precise probabilities, discretization
would even be part of the definition of the minimum distance estimator.

Again assume that we have an imprecise model (P
′
θ)θ∈Θ on a measurable space (X ,A′)

such that assumptions (6.7) and (6.8) are fulfilled. That is, there is a finite subset K =

{f1, . . . , fs} ⊂ L∞(X ,A′) such that, for every θ ∈ Θ , the credal set of P
′
θ is given by

M′
θ =

{
P ′θ ∈ ba+

1 (X ,A′)
∣∣ P ′θ[f ] ≤ P

′
θ[f ] ∀ f ∈ K

}
and

P
′
θ[f ]− P ′θ[f ] > 0 ∀ f ∈ K

where P ′θ is the corresponding lower coherent prevision. In addition, assume that Θ is a
finite index set.
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Then, we are in the situation of Subsection 5.4.2 and we can apply the method of dis-
cretizing for some fixed ε > 0 presented therein:

As in (5.40), let {A1, . . . , Ar} be the partition of X which generates the finite σ-algebra A .
For every i ∈ {1, . . . , s} , let si be the A-simple function which corresponds to fi according
to (5.39). For every θ ∈ Θ , let Qθ be the coherent upper prevision on L∞(X ,A) which
corresponds to the credal set

Nθ =
{
Qθ ∈ ba+

1 (X ,A)
∣∣ Qθ[si] ≤ P

′
θ[fi] + εidi ∀ i ∈ Iθ

}
– confer (5.41). Recall from (5.32) that, due to finiteness of Θ, di may be defined to be

di := dfi := min
θ∈Θ

P
′
θ[fi]− P ′θ[fi] > 0

for every i ∈ {1, . . . , s} .

Now, let
x1 , . . . , xn ∈ X

be some observations and let

P(n)
x =

1

n

n∑
i=1

δxi , x = (x1, . . . , xn) ∈ X n ,

be the empirical measure. Then, the minimum distance estimator is

θ̂′n(x) = arg min
θ∈Θ

∥∥P(n)
x − P

′
θ

∥∥
In order to calculate this estimator by computers, it would be desirable that

∥∥P(n)
x −Qθ

∥∥ = inf
Qθ∈Nθ

sup
f∈L∞(X ,A)

∣∣P(n)
x [f ]−Q[f ]

∣∣
‖f‖

was approximately equal to
∥∥P(n)

x − P
′
θ

∥∥ . Theorem 6.11 below shows that this is true.

Theorem 6.11 In the setup of the present subsection,∥∥P(n)
x −Qθ

∥∥ ≤ ∥∥P(n)
x − P

′
θ

∥∥ ≤ ∥∥P(n)
x −Qθ

∥∥+ 2ε ∀ θ ∈ Θ

for every x ∈ X n .

Proof : Fix any x = (x1, . . . , xn) ∈ X n and any θ ∈ Θ . Let Q
′
θ be the natural extension

of Qθ on L∞(X ,A′) . Then,

∥∥P(n)
x −Q

′
θ

∥∥ = inf
Q′θ∈N

′
θ

sup
f ′∈L∞(X ,A′)

∣∣P(n)
x [f ′]−Q′[f ′]

∣∣
‖f ′‖

Note that the assumptions in the present subsection guarantee the validity of (5.45).
That is,

P
′
θ[f
′] ≤ Q

′
θ[f
′] ≤ P

′
θ[f
′] + ε

(
sup f ′ − inf f ′

)
∀ f ′ ∈ L∞(X ,A′)
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Next, a twofold application of Lemma 6.7 implies

∥∥P(n)
x − P

′
θ

∥∥ = sup
f ′∈L∞(X ,A′)

P(n)
x [f ′]− P ′θ[f ′]
‖f ′‖

and ∥∥P(n)
x −Q

′
θ

∥∥ = sup
f ′∈L∞(X ,A′)

P(n)
x [f ′]−Q′θ[f ′]
‖f ′‖

Hence, ∥∥P(n)
x −Q

′
θ

∥∥ ≤ ∥∥P(n)
x − P

′
θ

∥∥ ≤
≤ sup

f ′∈L∞(X ,A′)

P(n)
x [f ′]−

(
Q
′
θ[f
′]− ε

(
sup f ′ − inf f ′

))
‖f ′‖

≤

≤
∥∥P(n)

x −Q
′
θ

∥∥ + ε · sup
f ′∈L∞(X ,A′)

sup f ′ − inf f ′

‖f ′‖
≤

≤
∥∥P(n)

x −Q
′
θ

∥∥+ 2ε

Hence, ∥∥P(n)
x −Q

′
θ

∥∥ ≤ ∥∥P(n)
x − P

′
θ

∥∥ ≤ ∥∥P(n)
x −Q

′
θ

∥∥+ 2ε

and it only remains to proof∥∥P(n)
x −Q

′
θ

∥∥ =
∥∥P(n)

x −Qθ

∥∥ (6.37)

The inequality “≥ ” is trivially fulfilled in (6.37). In order to prove the inequality “≤ ”
it is enough to show

sup
f ′∈L∞(X ,A′)

P(n)
x [f ′]−Q′θ[f ′]
‖f ′‖

≤ sup
f∈L∞(X ,A)

P(n)
x [f ]−Qθ[f ]

‖f‖
(6.38)

according to Lemma 6.7. That is, it only remains to prove (6.38) in the following:

To this end, choose any aj ∈ Aj for every element Aj of the partition {A1, . . . , Ar} of
X . Furthermore, put

Nj =
{
i ∈ {1, . . . , n}

∣∣ xi ∈ Aj}
and let nj be the number of elements in Nj for every j ∈ {1, . . . , r} . In addition, put

J0 =
{
j ∈ {1, . . . , r}

∣∣ nj = 0
}

and J1 =
{
j ∈ {1, . . . , r}

∣∣ nj > 0
}

In particular, this means

{x1, . . . , xn} ∩ Aj = ∅ ∀ j ∈ J0 (6.39)

and

n∑
k=1

IAj(xk) = nj ∀ j ∈ J1 (6.40)

Applying these settings, we can define the map

ξ : L∞(X ,A′) → L∞(X ,A) , f ′ 7→ ξ(f ′)
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where

ξ(f ′) =
∑
j∈J0

f ′(aj)IAj +
∑
j∈J1

(
1

nj

∑
i∈Nj

f ′(xi)

)
IAj (6.41)

Note that this map is defined well and that J0 ∩J1 = ∅ . Then, it is an immediate con-
sequence of the definitions that ξ is linear, positive ( ξ(f ′) ≥ 0 ∀ f ′ ≥ 0 ) and normalized
( ξ(IX ) = IX ). Therefore, the adjoint of ξ

ρ : ba(X ,A) → ba(X ,A′) , µ 7→ ρ(µ)

– defined by ρ(µ)[f ′] = µ
[
ξ(f ′)

]
∀µ ∈ ba(X ,A) , ∀ f ′ ∈ L∞(X ,A′) – is an ordinary

randomization; confer also Proposition 3.11. Especially,

ρ(Q) ∈ ba+
1 (X ,A′) ∀Q ∈ ba+

1 (X ,A)

Note that every f ∈ L∞(X ,A) may be written as

f =
r∑
j=1

αjIAj =
∑
j∈J0

αjIAj +
∑
j∈J1

αjIAj

for some suitable real numbers α1, . . . , αr . Then, it follows from the definition (6.41) of
ξ that

ξ(f) = f ∀ f ∈ L∞(X ,A) ⊂ L∞(X ,A′)

Therefore, ρ(Q) is an extension of Q to a probability charge on (X ,A′) for every Q ∈
ba+

1 (X ,A) . Since Q
′
θ is the natural extension of Qθ, this implies

ρ(Qθ) ∈ N ′θ ∀Qθ ∈ Nθ (6.42)

where N ′θ is the credal set of Q
′
θ . In addition, the following calculation shows that

ρ(P(n)
x ) = P(n)

x (6.43)

This is because

P(n)
x

[
ξ(f ′)

]
=

1

n

n∑
k=1

∑
j∈J0

f ′(aj)IAj(xk) +
∑
j∈J1

(
1

nj

∑
i∈Nj

f ′(xi)

)
IAj(xk)


(6.39)
=

1

n

∑
j∈J1

((
1

nj

∑
i∈Nj

f ′(xi)

) n∑
k=1

IAj(xk)

)
=

(6.40)
=

1

n

∑
j∈J1

((
1

nj

∑
i∈Nj

f ′(xi)

)
· nj

)
=

1

n

∑
j∈J1

∑
i∈Nj

f ′(xi) =

=
1

n

n∑
i=1

f ′(xi) = P(n)
n [f ′] ∀ f ′ ∈ L∞(X ,A′)

Finally, fix any f ′ ∈ L∞(X ,A′) \ {0} . Then,∥∥ξ(f ′)∥∥ ≤ ‖f ′‖ (6.44)
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and

P(n)
x [f ′]−Q′θ[f ′]
‖f ′‖

(6.43)
= inf

Q′θ∈N
′
θ

ρ
(
P(n)
x

)
[f ′]−Q′θ[f ′]
‖f ′‖

≤

(6.42)

≤ inf
Qθ∈Nθ

ρ
(
P(n)
x

)
[f ′]− ρ(Qθ)[f

′]

‖f ′‖
= inf

Qθ∈Nθ

P(n)
x

[
ξ(f ′)

]
−Qθ

[
ξ(f ′)

]
‖f ′‖

If ξ(f ′) = 0 , this implies

P(n)
x [f ′]−Q′θ[f ′]
‖f ′‖

≤ 0 =
P(n)
x [IX ]−Qθ[IX ]

‖IX‖
≤ sup

f∈L∞(X ,A)

P(n)
x [f ]−Qθ[f ]

‖f‖

and, if ξ(f ′) 6= 0 , this implies

P(n)
x [f ′]−Q′θ[f ′]
‖f ′‖

≤ inf
Qθ∈Nθ

P(n)
x

[
ξ(f ′)

]
−Qθ

[
ξ(f ′)

]
‖f ′‖

≤

(6.44)

≤ inf
Qθ∈Nθ

P(n)
x

[
ξ(f ′)

]
−Qθ

[
ξ(f ′)

]∥∥ξ(f ′)∥∥ =
P(n)
x

[
ξ(f ′)

]
−Qθ

[
ξ(f ′)

]∥∥ξ(f ′)∥∥ ≤

≤ sup
f∈L∞(X ,A)

P(n)
x [f ]−Qθ[f ]

‖f‖

Therefore, (6.38) follows. 2

So, Theorem 6.11 justifies the following proceeding:

• An application of Subsection 5.4.2 turns the imprecise model (P
′
θ)θ∈Θ on (X ,A′)

into a discretized model (Qθ)θ∈Θ on (X ,A) .

• Calculating
∥∥P(n)

x −Qθ

∥∥ yields an approximation of
∥∥P(n)

x − P
′
θ

∥∥ .

Although (X ,A) is a finite space, it is still an issue how to calculate

∥∥P(n)
x −Qθ

∥∥ = inf
Qθ∈Nθ

sup
f∈L(X ,A)

∣∣P(n)
x [f ]−Qθ[f ]

∣∣
‖f‖

(6.45)

since Nθ and L(X ,A) still are infinite spaces. As done in Troffaes (2008), it would – in
principle – be possible to discretize these sets as well. However, this would not lead to an
applicable method because of exceedingly high computational costs. Instead, the value of
the distance can be calculated by means of linear programming as shown in the following
subsection.

Since we are not really interested in
∥∥P(n)

x −Qθ

∥∥ but in

arg inf
θ∈Θ

∥∥P(n)
x −Qθ

∥∥
the following question arises: Can this arg inf be calculated by calculating

arg inf
θ∈Θ

inf
Qθ∈Nθ

sup
f∈K

∣∣P(n)
x [f ]−Qθ[f ]

∣∣
‖f‖

(6.46)
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where the infinite set L∞(X ,A) is replaced by the finite set K ? If this was possible,
calculating the minimum distance estimator would become much more easier. However,
this is not possible as can be seen from the following example. So, we cannot avoid
calculating (6.45) in this simple way.

Example 6.12 Take X = {1, 2, 3, 4} and assume that we have n = 4 observations:

x1 = 1 , x2 = 2 , x3 = 3 , x4 = 4

That is P(4)
x = 1

4
δ1 + 1

4
δ2 + 1

4
δ3 + 1

4
δ4 . Furtheremore, take K = {I{1}, I{2}, I{3}} and

consider the coherent upper previsions Q0 and Q1 on K defined by

Q0[I{1}] = 1
4
− 3α , Q0[I{2}] = 1

4
− 3α , Q0[I{3}] = 1

4
+ α

and
Q1[I{1}] = 1

4
− 4α , Q2[I{2}] = 1

4
+ 4α , Q3[I{3}] = 1

4
− α

for any real number 0 < α < 1
12

. That is Θ = {0, 1} . Then, the arg inf in (6.46) would
be θ = 0 . But, ∥∥P(4)

x −Q0

∥∥ = 12α > 10α =
∥∥P(4)

x −Q1

∥∥
where

∥∥P(4)
x −Q0

∥∥ and
∥∥P(4)

x −Q0

∥∥ can be calculated according to the methods presented
in the following subsection.

6.5.2 Calculation by linear programming

This subsection is concerned with the question how to calculate

∥∥P(n)
x −Qθ

∥∥ = inf
Qθ∈Nθ

sup
f∈L(X ,A)

∣∣P(n)
x [f ]−Qθ[f ]

∣∣
‖f‖

(6.47)

where Qθ is the coherent upper prevision with credal set

Nθ =
{
Qθ ∈ ba+

1 (X ,A)
∣∣ Qθ[sk] ≤ P

′
θ[fk] + εkdk ∀ k ∈ Iθ

}
– confer (5.41) – on the finite sample space (X ,A) . Furthermore, x = (x1, . . . , xn) ∈ X n

is the vector of all observations
x1 , . . . , xn

That is, we have to minimize the convex function

Nθ → R , Qθ 7→ sup
f∈L(X ,A)

∣∣P(n)
x [f ]−Qθ[f ]

∣∣
‖f‖

However, we do not need any results of convex optimization in order to do this. Linear
optimization is enough – as a matter of fact, the value in (6.47) may be calculates by one
single linear program.

To this end, recall the following definitions from the proof of Theorem 6.11:

Let again {A1, . . . , Ar} ⊂ A be the partition of X such that every A ∈ A is the union
of some elements of {A1, . . . , Ar} . For every j ∈ {1, . . . , r} , choose any aj ∈ Aj , put

Nj =
{
i ∈ {1, . . . , n}

∣∣ xi ∈ Aj}
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and let nj be the number of elements in Nj . Furthermore,

J0 =
{
j ∈ {1, . . . , r}

∣∣ nj = 0
}

and J1 =
{
j ∈ {1, . . . , r}

∣∣ nj > 0
}

In addition, put

ε̂k := εkdk ∀ k ∈ {1, . . . , s} (6.48)

Now, consider the following linear program:

∑
j∈J1

qj − γj −→ max! (6.49)

where

r∑
j=1

qj = 1 (6.50)

and

r∑
j=1

qjsk(aj) ≤ P
′
θ[fk] + ε̂k ∀ k ∈ Iθ (6.51)

and

qj − γj ≤
nj
n

∀ j ∈ J1 (6.52)

for the variables

(q1, . . . , qr) ∈ Rr , qj ≥ 0 ∀ j ∈ {1, . . . , r} , (6.53)

and

(γj)j∈J1 ⊂ R , γj ≥ 0 ∀ j ∈ J1 (6.54)

Let βθ be the optimal value of the above linear program. Then, Proposition 6.13 shows
that ∥∥P(n)

x −Qθ

∥∥ = 2 ·
(
1− βθ

)
Hence, it is, in fact, enough to solve one single linear program in order to obtain the
distance

∥∥P(n)
x − Qθ

∥∥ . Of course, this was useless in applications if this linear program
would tend to be unsolvable because of exceedingly high computational costs. So let us
take a closer look on the size of the above linear program:
Since the number of elements in J1 is not larger than r ∧ n = min{r, n} , we have the
following upper bounds:

Number of variables: r + r ∧ n

Number of inequalities: 2 + ](Kθ) + r ∧ n



182 CHAPTER 6. APPLICATION: MINIMUM DISTANCE ESTIMATION

According to Subsection 5.4.2, r can – in general – exceed beyond all reasonable bounds
(e.g. r = 10300) but will stay within a reasonable order of magnitude in most applications;
confer e.g. Proposition 5.16.
Though the number n of observations may be very large, it will hardly reach astronomical
orders of magnitude in real applications.
The size of the number of elements in Kθ (i.e. the number of elements in Iθ) will usually
be negligible.

In the example presented in the end of Subsection 5.4.2, we have the following upper
bounds if the assumptions of Proposition 5.16 are fulfilled:

n = 100 n = 1000 n = 10000 n ≥ 50000

Number of variables: 40140 41040 50040 80180

Number of inequalities: 112 1012 10012 40052

Solving such linear programs will usually be possible within a reasonable time frame –
the more so as a large number of observation leads to a sparse matrix of coefficients in
the linear program since nearly all inequalities are given by (6.52) then. In case of such
sparse matrices, algorithms are available which can solve huge problems very efficiently.
Furthermore, note that the last column of the above table gives bounds which do not
depend on the number of observations any more. That is, the size of the linear program
stays constant if the number of observations grows to infinity. If r is not too large, then
the estimator can be calculated for any number of observations.

A very large r will usually result from small values εkdk. However, as already stated on
page 149, P

′
θ cannot be specified so accurately in applications that too small values εkdk

are meaningful. Such small values εkdk indicates that the imprecise model (P
′
θ)θ∈Θ is

in danger of being instable – confer Section 5.2. This justifies the alternate proceeding
presented on page 149 where (5.52) is relaxed to (5.53). Firstly, this means that we have
to take

ε̂k := ε
(

sup fk − inf fk
)

instead of ε̂k = εkdk in (6.51) of the linear program. Secondly, this means that M is not
chosen in order to fulfill (5.37) in the discretization method presented in Subsection 5.4.2.
Instead, M has to be chosen so that

M − 1 <
1

ε
≤ M

Then, analog to Proposition 5.51, an upper bound on the size r would be

4 · s ·
(

1 +
1

ε

)
Hence, we end up with a linear program of a very small size which will nearly always be
solvable. But, by doing this, it is not guaranteed that ‖P(n)

x −Qθ‖ still is an approximation

of ‖P(n)
x − P

′
θ‖. On the other hand, this proceeding is more conservative and, if small

changes 13 of P
′
θ have large effects on ‖P(n)

x −P
′
θ‖, it is a good idea to be more conservative

because this may save from arbitrary results.

13That is, changes which are small but not as small as εkdk which is assumed to be very small here.
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The following proposition says that ‖P(n)
x − Qθ‖ can indeed be calculated by solving the

linear program given by (6.49) – (6.54):

Proposition 6.13 Let βθ be the optimal value of the linear program given by (6.49) –
(6.54). Then, ∥∥P(n)

x −Qθ

∥∥ = 2 ·
(
1− βθ

)
Proof :

[1] Firstly, it is shown that

‖P(n)
x −Q‖ = 2 ·

∑
j∈J1

(
P(n)
x (Aj)−Q(Aj)

)+

∀Q ∈ Nθ (6.55)

To this end, fix any Q ∈ Nθ and note that – due to finiteness of A – the total variation
distance is equal to

‖P(n)
x −Q‖ =

r∑
j=1

∣∣P(n)
x (Aj)−Q(Aj)

∣∣ (6.56)

Since {A1, . . . , Ar} is a partition of X , we have

0 = P(n)
x (X )−Q(X ) =

r∑
j=1

P(n)
x (Aj)−Q(Aj) =

=
r∑
j=1

(
P(n)
x (Aj)−Q(Aj)

)+

−
r∑
j=1

(
P(n)
x (Aj)−Q(Aj)

)−
Hence,

‖P(n)
x −Q‖

(6.56)
=

r∑
j=1

∣∣P(n)
x (Aj)−Q(Aj)

∣∣ =

=
r∑
j=1

(
P(n)
x (Aj)−Q(Aj)

)+

+
r∑
j=1

(
P(n)
x (Aj)−Q(Aj)

)−
=

= 2 ·
r∑
j=1

(
P(n)
x (Aj)−Q(Aj)

)+

Then, (6.55) follows from the following assertions:

j 6∈ J1 ⇒ P(n)
x (Aj) = 0 ⇒

(
P(n)
x (Aj)−Q(Aj)

)+

= 0

[2] Secondly, it is shown that, for every Q ∈ Nθ and every j ∈ J1 ,(
P(n)
x (Aj)−Q(Aj)

)+

= inf
γj∈Γj(Q)

P(n)
x (Aj)−Q(Aj) + γj (6.57)

where
Γj(Q) :=

{
γj ∈ R

∣∣ γj ≥ 0 , Q(Aj)− γj ≤ P(n)
x (Aj)

}
In case of P(n)

x (Aj) > Q(Aj) , it is easy to see that the infimum is attained in γ̃i =
0 ∈ Γj(Q) and, therefore, (6.57) is fulfilled.

In case of P(n)
x (Aj) > Q(Aj) , it is easy to see that the infimum is attained in γ̃i =

Q(Aj)− P(n)
x (Aj) ∈ Γj(Q) and, therefore, (6.57) is again fulfilled.
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[3] Finally, put

M =
{

(Q, γ) ∈ Nθ × R](J1)
∣∣∣ γ = (γj)j∈J1 , γj ∈ Γj(Q) ∀ j ∈ J1

}
Then, it follows from part [1] and part [2] that

inf
Q∈Nθ

‖P(n)
x −Q‖

(6.55),(6.57)
= inf

Q∈Nθ
2·
∑
j∈J1

inf
γj∈Γj(Q)

P(n)
x (Aj)−Q(Aj) + γj

= 2 · inf
Q∈Nθ

inf
γj∈Γj(Q)

∀ j∈J1

∑
j∈J1

P(n)
x (Aj)−Q(Aj) + γj =

= 2 · inf
(Q,γ)∈M

∑
j∈J1

P(n)
x (Aj)−Q(Aj) + γj (6.58)

The definition of J1 implies that∑
j∈J1

P(n)
x (Aj) = 1

Hence,

inf
Q∈Nθ

‖P(n)
x −Q‖

(6.58)
= 2 ·

(
1 + inf

(Q,γ)∈M

∑
j∈J1

−Q(Aj) + γj

)
=

= 2 ·
(

1− sup
(Q,γ)∈M

∑
j∈J1

Q(Aj)− γj
)

For every j ∈ {1, . . . , r} , identify Q(Aj) with the variable qj in the linear program.
Then, it follows from the definitions of Nθ and M that

sup
(Q,γ)∈M

∑
j∈J1

Q(Aj)− γj = βθ

and, therefore,
inf
Q∈Nθ

‖P(n)
x −Q‖ = 2 ·

(
1− βθ

)
2

6.6 Simulation study

In order to demonstrate the applicability of the minimum distance estimator, this section
presents a simulation study consisting of three different models.
As stated in the introductory Section 6.1, the estimator is based on a rather simple
idea. This conceptual simplicity enables many possible applications as can be seen in
the following. Model 1 of the simulation study is a first example which shows that the
minimum distance estimator can also be used for large sample sizes and that going over
to an imprecise model does not necessarily mean to loose much efficiency. Model 2 is
an application based on normal distributions which is motivated by the popular chi-
square test. Model 3 shows how the estimator can be used for linear regression where the
(imprecisely known) error distribution does not need to be symmetric.
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6.6.1 Model 1: A first example

Model 1 is intended to demonstrate two aspects of the proposed estimator:
Firstly, the estimator can really be calculated even for large numbers of observations –
something which is not self-evident for imprecise probabilities. In the simulation study,
the estimator is applied for the following sample sizes:

n = 30 , n = 100 , n = 1000 , n = 10000

For each number of observations, the estimator is evaluated 500 times.
Secondly, the estimator can provide good results even though it is developed for the rather
large imprecise models given by (6.7). In order to demonstrate this, the imprecise Model
1 contains a nice precise parametric model so that the estimator can be compared with
a maximum likelihood estimator. While the maximum likelihood estimator is applied by
using complete knowledge of the precise parametric model, our minimum distance esti-
mator is only based on the knowledge of a large imprecise model. Since the simulated
data exactly stem from the ideal parametric model, this is a rather unequal situation
which favors the maximum likelihood estimator and, therefore, the maximum likelihood
estimator should clearly beat our estimator. Nevertheless, the performance of our esti-
mator appears to be almost as good as the one of the maximum likelihood estimator in
the simulation study. In this way, it can be seen that going over to a large imprecise
model does not necessarily mean to loose a lot of efficiency even if the ideal parametric
model was precisely true. Model 2 and Model 3 below demonstrates what happens in
more realistic situations where data do not precisely stem from such an ideal parametric
model.

Here is a detailed description of Model 1:

The sample space is (X ,A′) where X is equal to [0, 1] and A′ is the Borel-σ-algebra. The
precise parametric model (P ′θ)θ∈Θ is given by

dP ′θ = p′θ dλ , θ ∈ Θ := [−2, 2]

where the Lebesgue-densities p′θ are

p′θ(x) = 1 + θ
(
x− 0.5

)
I[0,0.5](x) + θ

(
0.75− x

)
I(0.5,1](x) ∀x ∈ [0, 1]

Despite of this confusing formula, the densities p′θ are very simple and natural as can
be seen from Figure 6.1 which shows the graphs of p′θ for θ = 0 (this is the uniform
distribution), θ = 1.5 and θ = −0.5 . In order to define the imprecise model, the parameter
set Θ is discretized as suggested in Subsection 6.2.2 by putting

Θ0 :=
{
θ ∈ Θ

∣∣ θ = −2 + 0.1· k − 0.05 , k ∈ {1, . . . , 40}
}

That is, θ0 ∈ Θ corresponds to the interval (θ0 − 0.05 , θ0 + 0.05] with center θ0 . In

accordance with Assumption (6.7), the imprecise model (P
′
θ)θ∈Θ0 is given by credal sets

M′
θ =

{
Q′θ
∣∣ Q′θ[f ] ≤ P

′
θ[f ] ∀ f ∈ K

}
∀ θ ∈ Θ0

Here, K is the finite set
K =

{
f1, . . . , f10

}
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Figure 6.1: Graphs of p′θ for θ = 0 (the uniform distribution), θ = 1.5 and θ = −0.5 in
Model 1
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which consists of the (rather arbitrarily chosen) functions fj : [0, 1] → R , x 7→ fj(x)
given by

f1(x) = x , f2(x) = 1− x , f3(x) = x2 , f4(x) = x3 ,

f5(x) = I[ 1
4
, 3
4 ](x) , f6(x) = I[0, 14 ](x) , f7(x) = I[ 3

4
,1](x) ,

f8(x) =
√
x , f9(x) = x+ 1

2
I[ 1

4
, 1
2 ](x) , f10(x) = 4(x− x2)

and the upper previsions on these functions are defined by

P
′
θ0

[fj] = sup
θ∈[θ0−0.05 , θ0+0.05]

∫ 1

0

fj(x)p′θ(x)λ(dx) ∀ j ∈ {1, . . . , 10} (6.59)

for every θ0 ∈ Θ0 . Though there are some similarities, note that this imprecise model
(P
′
θ)θ∈Θ0 is not parametrically generated in the sense of Definition 3.24 because (6.59)

is not valid for all functions in L∞(X ,A′) but only for the small number of functions in
K. This makes a great difference; as a consequence, M′

θ is a very large credal set while
parametrically generated previsions have rather small credal sets.

As already mentioned above, the simulation study consists of 500 runs with different sam-
ple sizes n = 30 , 100 , 1000 and 10000 . The data x1, . . . , xn are independent identically
distributed by the ideal probability measure P ′0 which is equal to the uniform distribution
Unif

(
[0, 1]

)
. That is, we have

X1, . . . , Xn ∼i.i.d. P ′0 where P ′0 = Unif
(
[0, 1]

)
and θ = 0 is the true parameter which has to be estimated.

For the estimation, the proposed minimum distance estimator and the maximum likeli-
hood estimator are applied.
The actual calculation of the proposed minimum distance estimator slightly differs from
the one presented in Subsection 6.5.2: As suggested on page 149 and page 182, ε̂k = εkdk
is replaced by a larger value in the discretization. This is justified by the fact that too
small values ε̂k = εkdk are not meaningful in applications since the values P

′
θ cannot be

specified with such an accuracy. Instead of ε̂k = εkdk, the value ε = 0.0005 has been
taken which is still quite small. Recall that going over to this value corresponds to a more
cautious proceeding.
The maximum likelihood estimator is defined to be

θ̂n,MaxLikelihood(x1, . . . , xn) = arg max
θ∈[−2,2]

n∏
i=1

pθ(xi)

Note that – due to the discretization of Θ – our minimum distance estimator does not
specify a precise value θ as an estimation but an interval [θ0 − 0.05, θ0 + 0.05] . In order
to compare the results between both estimators, these intervals [θ0 − 0.05, θ0 + 0.05] are
recorded by their center θ0 .

Table 6.1 shows the empirical mean squared error (MSE)

1

500

500∑
j=1

(
θ̂(j)
n − 0

)2
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Figure 6.2: Boxplots of the estimations obtained in 500 runs for each number of observations
in Model 1

n MinDistance MaxLikelihood

30 1.29943 1.35598

100 0.59675 0.49674

1000 0.06753 0.04692

10000 0.00711 0.00482

Table 6.1: Empirical mean squared error calculated over the estimations obtained in 500 runs
for each number of observations in Model 1
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Figure 6.3: Densitiy of the normal distribution N (3.25, 2); the sample space is divided into
segments of width 0.5 .

of the estimations θ̂
(j)
n calculated over all runs j = 1, . . . , 500 for the proposed minimum

distance estimator (MinDistance) and the classical maximum likelihood estimator (Max-
Likelihood); these values are similar for both estimators. Figure 6.2 shows the boxplots
of the estimations. These results demonstrate that, in Model 1, the maximum likelihood
estimator is not much better than the minimum distance estimator even though the un-
equal situation of Model 1 highly privilege the maximum likelihood estimator as explained
above.

6.6.2 Model 2: Approximate normal distributions

After considering the rather artificial Model 1 which should demonstrate that the es-
timator really works, we may turn over to a practical example now. Many statistical
evaluations are based on the assumption that the data stem from a normal distribution.
Though it is not possible to statistically assure the validity of this assumption, it is often
tried to do this by a chi-square test. In order to do this, the sample space X = R is
divided into segments as shown in Figure 6.3. Since the chi-square test only takes the
probabilities of such segments into account, the test is far away from covering all aspects
of the normal distribution. Therefore, this situation does not cope with the strict assump-
tion of a precise normal distribution but exactly corresponds to partially determinated
F-probabilities (cf. Subsection 2.4.5). This motivates the following definition of Model 2.
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The sample space (X ,A′) is equal to (R,B) . It is divided by

a0 = −10 , a1 = −9.5 , a2 = −9 , . . . , ak = −10 + k · 0.5 , . . . , a40 = 10

into the segments

(−∞, a0) , (a0, a1] , (a1, a2] , . . . , (a39, a40] , (a40,∞)

That is, we consider the set of functions

K =
{
f0, f1, f2, . . . , f40, f41

}
where

f0 = I(−∞,a0] , f41 = I(a40,∞)

and
fk = I(ak−1,ak] ∀ k ∈ {1, . . . , 40}

According to the above motivation, we want to deal with a family of normal distributions
on (R,B)

P ′θ = N (µ, σ2) where θ = (µ, σ) for − 5 ≤ µ ≤ 5 , 0.4 ≤ σ ≤ 2

That is, the index set is14

Θ = Θ(1) ×Θ(2) = [−5, 5]× [0.4, 2]

For the definition of the imprecise model, Θ is again discretized:

Θ0 =

{
(µ0, σ0) ∈ Θ

∣∣∣∣ µ0 = −5 + 0.2 · k1 − 0.1 , k1 ∈ {1, . . . , 50} ,
σ0 = 0.4 + 0.2 · k2 − 0.1 , k2 ∈ {1, . . . , 8}

}

That is, (µ0, σ0) corresponds to the rectangle (µ0 − 0.1, µ0 + 0.1] × (σ0 − 0.1, σ0 + 0.1]
with center (µ0, σ0) . Based on this discretization and the normal distributions, we can
define the following upper previsions for the segments of the sample space:

P
′
θ0

[fj] = (1− 0.02) · sup
µ∈(µ0−0.1,µ0+0.1]

σ∈(σ0−0.1,σ0+0.1]

∫
R
fj dN (µ, σ2) + 0.02

for every j ∈ {1, . . . , 40} and (µ0, σ0) ∈ Θ0 . The value 0.02 leads to more imprecision
in the imprecise model – that is, to a more cautious proceeding. Roughly speaking, 0.02
can be interpreted as the probability that the data stem from any distribution which can
be totally different from normal distributions. This proceeding is very similar to the use
of the contamination neighborhoods in robust statistics. The credal sets of the coherent
upper previsions are given by

M′
θ0

=
{
Q′θ
∣∣ Q′θ[fj] ≤ P

′
θ0

[fj] ∀ j ∈ {1, . . . , 40}
}

∀ θ0 ∈ Θ0 (6.60)

14This considerable restriction of the index set is not crucial for the calculation of the minimum distance
estimator because its implementation guaranties that the computational effort increases at most linearly
with the size of the index set. However, this makes the simulation study easier which consists of two
times 500 runs.
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Note that these credal sets are much larger than contamination neighborhoods of nor-
mal distributions with radius 0.02 because, in (6.60), only the probabilities of the above
segments are associated with normal distributions.

The simulation study has two parts where each part consists of 500 runs with sample size
n = 100 . In the first part, the data x1, . . . , xn are independent, identically distributed by
the ideal probability measure P ′θ = N (µ, σ2) with θ = (µ, σ) = (−4, 1.4) . That is,

X1, . . . , Xn ∼i.i.d. N (µ, σ2)

where µ = −4 and σ = 1.4 are the true parameters which have to be estimated. In the
second part, the data x1, . . . , xn are independent, identically distributed by the probability
measure P ′θ = 0.7 · N (µ, σ2) + 0.3 · Cauchy(−4, 1) where again θ = (µ, σ) = (−4, 1.4) .
That is,

X1, . . . , Xn ∼i.i.d. Q′ where Q′ = 0.7 · N (−4, 1.42) + 0.3 · Cauchy(−4, 1)

and µ = −4 , σ = 1.4 are the true parameters which have to be estimated. Numerical
calculations show that, in fact,

Q′ ∈ M′
(−4,1.4) (6.61)

even though Q′ consists of a very strong – 30 per cent (!) – contamination with a Cauchy-
distribution. On the one hand, this demonstrates that the credal sets M′

θ are much
larger than usual contamination neighborhoods with radius 0.02 . On the other hand,
this demonstrates that the use of such a (strongly contaminated) distribution Q′ is not
unreasonable because (6.61) implies that the Cauchy-distribution is extremely similar to
the normal distribution – at least with respect to the probabilities of the above segments;
and such probabilities are the only aspects of the normal distribution which are often
taken into account e.g. by chi-square tests.

In the simulation study, our minimum distance estimator is compared with the classical
estimators for µ and σ, the mean

x =
1

n

n∑
i=1

xi

and the empirical standard deviation√√√√ 1

n− 1

n∑
i=1

(xi − x)2

Since the parameter set Θ is restricted, estimations which exceed the bounds of Θ are not
reasonable. Therefore, the classical estimators are truncated by the bounds of Θ . For
example, the result x = 5.7 leads to the (truncated) estimation µ̂ = 5 .

Table 6.2 shows the (empirical) mean squared errors for both estimators in part 1 (“ideal
situation”) and part 2 (“real situation”) of the simulation study. These values demonstrate
that our minimum distance estimator behaves reasonable well in both cases while the
classical estimators are quite perfect in the “ideal situation” but lead to unreliable results
in real situations. This is also made visible by the boxplots shown in Figure 6.4. In
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MinDistance Classical

ideal situation 0.10504 0.02818

real situation 0.10965 2.42263

Table 6.2: Empirical mean squared error calculated over the estimations obtained in 500 runs
for each part of the simulation study in Model 2

particular, it can be seen that the classical estimation of the standard deviation σ breaks
down in the “real situation” – only the bounded parameter set and the implemented
truncation prevent it from exploding estimations. The contamination with a Cauchy
distribution does not have any essential influence on our minimum distance estimator.
This is not surprising at all because the minimum distance estimator does not really
keep an eye on the normal distributions. It is only concerned with the probabilities of
some segments and, with respect to these probabilities, normal distributions and Cauchy
distributions are nearly the same.

6.6.3 Model 3: Linear regression

In order to demonstrate that the proposed minimum distance estimator can be applied
in many different situations, Model 3 is concerned with linear regression where the error
distribution is not symmetric and not even has mean 0. This flexibility of the estimator
is due to its conceptual simplicity. 15

In Model 3, we have two explanatory variables z(1) ∈ [0, 1] and z(2) ∈ [0, 1]; the response
variable is y ∈ R . That is, the observations are

xi = (yi, zi) =
(
yi ,
(
z

(1)
i , z

(2)
i

))
∈ R× [0, 1]2 , i ∈ {1, . . . , n}

and we have

yi = z
(1)
i θ1 + z

(2)
i θ2 + εi , i ∈ {1, . . . , n}

where

θ =

(
θ1

θ2

)
∈ Θ := [−5, 5]× [−1, 1]

is an unknown two-dimensional parameter and εi is an unobservable random error.

In the classical setup, it is most often assumed that the distribution of the errors εi is
a normal distribution or, at least, that the distribution is symmetric around 0. Though
the latter assumption is reasonable in many situations, this is certainly not always true.
Positive errors may be more likely than negative errors (or vice versa) in many situations.
So, the errors may, for example, be independent identically distributed according to the
precise distribution S0 which is a shifted log-normal distribution with Lebesgue-density

dS0

dλ
: R → [0,∞) , x 7→ 2

x
√

2π
e−2
(

ln
(
x+e−0.25

))2

15Skewed distributions are also considered e.g. in the theory of generalized linear models; cf. McCullagh
and Nelder (1983).
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Figure 6.4: Boxplots of the estimations of both parameters obtained in 500 runs for each part
of the simulation study in Model 2
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That is, the log-normal distribution Log–N(µ, σ2) with µ = 0 and σ = 0.5 is shifted by
eµ−σ

2
to the right so that the mode is equal to 0. The density of S0 is pictured in Figure

6.6. Of course, assuming that the errors would precisely be distributed according to such
an ideal distribution is as hazardous as assuming a normal distribution. Therefore, we go
over to the upper coherent prevision

S : L∞(R,B) → R , h 7→ S[h]

which is based on the probabilities of some segments of the real line as follows: Put

h0 = I(−∞,−1] , h1 = I(−1,−0.75] , . . . , hj = I(−1+0.25(j−1) ,−1+0.25j] , . . . ,

h17 = I(3,∞)

The credal set N of S consists of all probability charges S on R such that

S[h0] ≤ (1− r)S0[h0] + r , S[h17] ≤ (1− r)S0[h17] + r

and
(1− r)S0[hj] ≤ S[hj] ≤ (1− r)S0[hj] + r ∀ j ∈ {1, . . . , 16}

where
r = 0.05

Though the credal set N defined in this way is seemingly very similar to an ordinary
contamination neighborhood used in robust statistics, N is much larger than such a
neighborhood because, as in Model 2, the definition of N takes only the probabilities of
some segments of the real line into account.

The parameter set Θ is again discretized:

Θ0 =

{
(θ1, θ2) ∈ Θ

∣∣∣∣ θ1 = −5 + 0.1 · k1 − 0.05 , k1 ∈ {1, . . . , 100} ,
θ2 = −1 + 0.1 · k2 − 0.05 , k2 ∈ {1, . . . , 20}

}

That is, θ0 = (θ1, θ2) corresponds to the rectangle (θ1−0.05, θ1+0.05]×(θ2−0.05, θ2+0.05]
with center θ0 = (θ1, θ2) .

The coherent upper prevision S would define an imprecise model for the distribution of
(y, z) via

P
′
θ[fθ,j] = S[hj]

where
fθ,j(y, z) = hj

(
y − z(1)

i θ1 − z(2)
i θ2

)
However, we do not assume stochastic explanatory variables – just as done in classical
linear regression where the observed data z1, . . . , zn for the explanatory variable are used
to build the design matrix. That is, the observed data z1, . . . , zn are not treated as data
but determine the model. In order to adopt such a proceeding here, the imprecise model
(P
′
θ)θ∈Θ has to be defined in the following way:

For every θ0 = (θ1, θ2) ∈ Θ0 and every j ∈ {0, . . . , 17}

fθ0,j : R× {1, . . . , n} → R , (y, i) 7→ hj

(
y − z(1)

i θ1 − z(2)
i θ2

)
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MinDistance LeastSquares

empirical MSE 0.1472056 0.2055727

Table 6.3: Empirical mean squared error calculated over the estimations obtained in 100 runs
in Model 3

Then, the credal set M′
θ0

of P
′
θ0

consists of all probability charges P ′ on R × {1, . . . , n}
such that

P ′[fθ0,0] ≤ S[h0] , P ′[fθ0,17] ≤ S[h17]

and
S[hj] ≤ P ′[fθ0,j] ≤ S[hj] ∀ j ∈ {1, . . . , 16}

where S is the coherent lower prevision which corresponds to S .
In this way, the observed explanatory variables z1, . . . , zn determine the model and the
according data in this model (where the explanatory variables are not assumed to be
stochastic entities) are

(y1, 1) , . . . , (yn, n)

and our minimum distance estimator can be applied on these data in the imprecise model
(P
′
θ0

)θ0∈Θ0 .

This has been done for sample size n = 250 in the simulation study. The errors stem from
the shifted log-normal distribution S0 . So, the error distribution is neither symmetric nor
has mean zero. The true parameter is θ = (−4, 0.5) . Our minimum distance estimator is
compared to the classical least-square estimator. Due to rather high computational costs,
only 100 runs have been made for this model.

The boxplots in Figure 6.5 demonstrate that the applied error distribution leads to a
considerable bias of the least-squares estimator whereas the minimum distance estimator
is not biased. However, the variance of the minimum distance estimator is still quite
large. This is because the imprecise model is only based on the probabilities of some very
few segments of the real line so that the imprecise model is rather nonparametric than
parametric. In order to obtain better results of our minimum distance estimator, the
sample size n has to be increased in this nonparametric situation. Of course, increasing
the sample size does not improve the results of the least-squares estimator. Table 6.3
shows that the empirical MSE of the minimum distance estimator is considerably smaller
than the one of the least-squares estimator.
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Figure 6.5: Boxplots of the estimations of both parameters obtained in 100 runs in Model 3



6.6. SIMULATION STUDY 197

−1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

 

 

Figure 6.6: Densitiy x 7→ 2
x
√

2π
e−2
(

ln
(
x+e−0.25

))2

of the error distribution which is a shifted
log-normal distribution



198 CHAPTER 6. APPLICATION: MINIMUM DISTANCE ESTIMATION



Chapter 7

Conclusion and outlook

The present book is concerned with data-based decision problems under imprecise proba-
bilities. Using imprecise probabilities in decision problems is advisable in many situations
because the arising uncertainties are often much too complex to be adequately modeled
by classical precise probabilities. On the one hand, this leads to more realistic models
and more reliable results. On the other hand, this increases the mathematical input for
solving decision problems. This is true the more so as going over to imprecise probabilities
in a frequentist setting makes it necessary to consider decision problems with an explicit
data-based formulation as explained in Vidakovic (2000) and Augustin (2003). Neverthe-
less, this topic has hardly been investigated before even though many recent publications
are concerned with data-free decision problems under imprecise probabilities. Therefore,
the present book cannot provide a final disquisition on this new topic but may serve as a
sound starting point for further research.

Accordingly, the book starts with some basic groundwork: First of all, topological prop-
erties of different concepts of imprecise probabilities are investigated and compared to
each other. This is most fundamental with respect to their application in decision theory
because, there, using minimax theorems which rely on topology is essential. As a result,
the concept of coherent upper previsions turns out to have such topological properties
which are more desirable than the ones of F-probabilities. These investigations also lead
to the first explicit treatment of F-probabilities on Polish spaces and compact Hausdorff
spaces. Since F-probabilities are consciously developed in the style of classical measure
theory, using these classical setups of topological measure theory is suggesting. As an
intermediate step between coherent upper previsions and F-probabilities, upper expecta-
tions are considered which have original been defined by Buja (1984) in robust statistics
but have not been considered within the theory of imprecise probabilities before. There
is only one difference between upper expectations and coherent upper previsions: While
upper expectations rely on σ-additivity the concept of coherent upper previsions dispenses
with σ-additivity. However, it is shown in the present book that every coherent upper
prevision can be represented by a (canonical) upper expectation on a compact Hausdorff
space. This offers an interesting tool for future research on coherent upper previsions:
Dispensing with σ-additivity makes it hard or even impossible to carry over concepts of
classical probability theory which rely on σ-additivity. Now, this representation provides
a possibility to come around this problem in a canonical way. This may, in particular, con-
tribute to investigations on conditional imprecise probabilities – a topic in which searching
for suitable definitions is still a matter of research. Since coherent upper previsions are
mathematically equivalent to risk measures in mathematical finance, these results can

199
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also be used to represent risk measures by sets of σ-additive probability measures. Such
representations have recently received considerable attention in mathematical finance, cf.
for example Delbaen (2002), Föllmer and Schied (2004) and Krätschmer (2005).

After this comparison of different concepts of imprecise probabilities, an extended decision
theoretic framework under imprecise probabilities is developed. This framework contains
several decision theoretic tools which are essential for many results obtained in the present
book. Therefore, it seems to be most likely that they can profitably be used in the
theory of imprecise probability further on. This is also indicated by the fact that these
tools are mainly based on concepts developed by L. Le Cam in order to deal with large
models – and imprecise probabilities, in fact, lead to large models. For example, as
a welcomed byproduct, the present book suggests a definition of sufficiency in case of
imprecise probabilities for the first time. Though elaborated applications would have
been out of the scope of the book and are a matter of future research, it is demonstrated
how sufficiency can be used in order to deal with parametrically generated imprecise
models. In this way, the proposed notion of sufficiency could also be applied in the
popular Imprecise Dirichlet Model.1

Since Buja (1984) is concerned with a very similar setup – namely data-based decision
theory where uncertainties are modeled by upper expectations, this article is revised within
the only recently available theory of imprecise probabilities. It is shown that, due to an
erroneous statement, the results of Buja’s article are only assured in case of an undesirable
extra assumption. It is proven that such an extra assumption can be avoided by going
over to the setup used in the present book. Here, the desirable topological properties
of coherent upper previsions pays off. This leads to a generalization of results within
the Huber-Strassen theory: A necessary and sufficient condition for the existence of least
favorable models is given. This offers a general tool which makes it possible to reduce the
computational effort in data-based decision theory under imprecision. However, further
research has to be done for using it in concrete problems: As in Huber and Strassen
(1973), this result is only concerned with the existence of least favorable models but an
algorithm for calculating least favorable models has not yet been developed. After Huber
and Strassen (1973), a lot of work was done to construct least favorable pairs in hypothesis
testing (confer e.g. Rieder (1977), Österreicher (1978), Hafner (1992), Augustin (1998)).
In the more general case of the present book, this is a matter of further research.

Nevertheless, results obtained by these investigations are applied afterwards in order
to justify the use of the method of natural extension, which is fundamental within the
theory of imprecise probabilities, in data-based decision problems. It is shown by means
of the theory of vector lattices that applying the method of natural extension in decision
problems does not affect the optimality of decisions. However, it is also shown that, in
general, the method of natural extension suffers from a severe instability: Arbitrarily
small changes in coherent upper previsions can have arbitrarily large effects on their
natural extension and, therefore, applying natural extensions may lead to meaningless
results. This is unfortunate the more so as imprecise probabilities are intended to prevent
from such unreliable results. However, not all is lost since it can be guaranteed in many
situation that small changes in the coherent upper previsions have small effects on the
natural extension. However, these results are not fully satisfactory; hopefully, these initial
investigations serve as a starting point for future research into this direction.

1For the Imprecise Dirichlet Model, confer e.g. Walley (1996), Bernard (2005) and the forthcoming
special issue of the International Journal of Approximate Reasoning on the Imprecise Dirichlet Model.
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The book closes with parameter estimation as an application in statistics. This is a topic
which has hardly been considered explicitly within the theory of coherent upper previ-
sions so far. Since we are not yet able to calculate optimal estimators within this setup, a
minimum distance estimator is developed which is proven to have some good properties.
An algorithm for calculating the estimator is given which is based on linear programming
and the applicability of the estimator is verified by a simulation study. In particular, the
simulation study shows that the proposed estimator can even be used for large sample
sizes and may, in fact, lead to good results in realistic situations. This meets objections
that imprecise probabilities could not be used for practical purposes. Due to the present
state of research, this work cannot be restricted to the sole investigation of the proposed
estimator but also has to develop some fundamentals of (frequentist) estimating under
coherent upper previsions at first. This is necessary the more so as the minimum distance
estimator is associated with the empirical process (which needs a somewhat more elab-
orated setting) and is justified by asymptotic arguments (but an elaborated asymptotic
theory of imprecise probabilities is still missing). In doing so, the work also provides a
base for future research about estimating under imprecise probabilities. In particular,
it would be desirable to develop alternative estimators so that the proposed minimum
distance estimator can be compared to other estimators under imprecise probabilities.
Furthermore, the simulation study presented in this book is only intended to demonstrate
the applicability of the proposed minimum distance estimator but it would have been out
of the scope to investigate more advanced applications in involved statistical models. For
example, robust statistics is already able to deal with involved semiparametric regression
models such as the Cox model in survival analysis (cf. e.g. Sasieni (1993), Bednarski and
Nowak (2003) and Hable et al. (2008)) but Model 3 in the simulation study of the present
book is only concerned with two-dimensional linear regression. Nevertheless, the simu-
lation study indicates that the flexibility of the proposed minimum distance estimator
enables future applications in more advanced models. In order to encourage this, the
estimator has been programmed in R and has already been made publicly available as
(open source) R package “imprProbEst”; cf. Hable (2008a).
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Chapter 8

Appendix

8.1 Vector lattices

This section presents the basics of the theory of vector lattices and is mainly based on
(Bhaskara Rao and Bhaskara Rao, 1983, Section 1.5). Important notions related to vector
lattices are bands and L-spaces.

Definition 8.1 Let V be a vector space which is endowed with a partial ordering ≤ such
that

x, y ∈ V, x ≤ y ⇒ x+ z ≤ y + z ∀ z ∈ V
x, y ∈ V, x ≤ y ⇒ cx ≤ cy ∀ c ∈ [0,∞)

Then V is called an ordered vector space.

Definition 8.2 Let V be an ordered vector space. For x, y ∈ V , an element z with x ≤ z,
y ≤ z and the property

ẑ ∈ V, x ≤ ẑ, y ≤ ẑ ⇒ z ≤ ẑ

is called supremum of x and y. It is denoted by x ∨ y .
If the supremum of x and y exists, it is unique. An infimum of x and y is analoguously
defined. It is denoted by x ∧ y.
w ∈ V is called majorant of a subset S ⊂ V if s ≤ w ∀ s ∈ S. S is called majorised or
order bounded then.
A majorant w ∈ V of S ⊂ V is called supremum of S if

ŵ ∈ V, s ≤ ŵ ∀ s ∈ S ⇒ w ≤ ŵ

Definition 8.3 A vector space V is called vector lattice if it is an ordered vector space
so that, x ∨ y and x ∧ y exist for every x, y ∈ V .

Let V be a vector lattice. For x ∈ V , x+ := x∨0 is called positive part of x, x− := −(x∧0)
is called negative part of x and |x| := x+ + x− is called modulus of x. The following
assertions are valid for every x ∈ V :

x = x+ − x−

x+ ∧ x− = 0

203
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|x| = x+ ∨ x−

x, y ∈ V are called orthogonal, if |x| ∧ |y| = 0. Orthogonality of x and y is denoted by
x ⊥ y.

Definition 8.4 A sublattice W of a vector lattice V is a vector subspace of V so that
x ∨ y, x ∧ y ∈ W ∀x, y ∈ W .

Definition 8.5 A subset B ⊂ V of a vector lattice V is called band if

(i) B is a sublattice of V ,

(ii) x ∈ B, 0 ≤ |y| ≤ |x| ⇒ y ∈ B

(iii) each nonempty subset of B that has a majorant in V also has a supremum, which
belongs to B.

Definition 8.6 A vector lattice V is called order complete or Dedekind complete or
boundedly complete if every majorised subset of V has a supremum in V .

Remark 8.7 The intersection of arbitrarily many bands is again a band. Every subset
S ⊂ V of a Dedekind complete vector lattice V has a smallest band containing S.

For a subset S ⊂ V of a vector lattice V , define

S⊥ =
{
x ∈ V

∣∣ x ⊥ s ∀ s ∈ S
}

Proposition 8.8 Let S ⊂ V be a subset of a Dedekind complete vector lattice V . Then,
S⊥ is a band.

Corollary 8.9 Let S ⊂ V be a subset of a Dedekind complete vector lattice V . Then,
(S⊥)⊥ is the smallest band containing S.

Theorem 8.10 (Riesz Decomposition Theorem) Let B be a band in a Dedekind
complete vector lattice V . Then,

V = B ⊕B⊥

i.e.: for every element x ∈ V , there is a unique x′ ∈ B and a unique x′′ ∈ B⊥ so that

x = x′ + x′′ (8.1)

The maps

πB : V → B, x 7→ x′ and πB⊥ : V → B⊥, x 7→ x′′

have the following properties:

• πB and πB⊥ are linear.

• πB(x′) = x′ ∀x′ ∈ B , πB⊥(x′′) = x′′ ∀x′′ ∈ B⊥

• x ≥ 0 ⇒ πB(x) ≥ 0 , πB⊥(x) ≥ 0

• x = πB(x) + πB⊥(x) ∀x ∈ V
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If x ≥ 0, then x′ = πB(x) is the supremum of
{
b ∈ B

∣∣ 0 ≤ b ≤ x
}

. Therefore,

πB(x) =
∨
s∈S

(
x ∧ |s|

)
Generally, πB(x) = πB(x+)− πB(x−) for x ∈ V .

Definition 8.11 A vector lattice V provided with a norm ‖ · ‖ is said to be a normed
vector lattice if the norm is compatible with the modulus | · |, i.e.:

x, y ∈ V, |x| ≤ |y| ⇒ ‖x‖ ≤ ‖y‖

If, in addition, V is a Banach space, then it is also called a Banach lattice.

The norm of a normed vector lattice V induces the norm-topology on V .

Proposition 8.12 Let V be a normed vector lattice. Then, the maps

(x, y) 7→ x ∨ y, (x, y) 7→ x ∧ y

are norm-continuous. For every subset S ⊂ V , S⊥ is norm-closed. Every band B ⊂ V is
norm-closed.

Definition 8.13 An L-space V is a Banach lattice where

x, y ∈ V, x ≥ 0, y ≥ 0 ⇒ ‖x+ y‖ = ‖x‖+ ‖y‖

Theorem 8.14 Every L-space is Dedecind complete.1

Remark 8.15 Every band B ⊂ V in an L-space V is itself an L-space.

Definition 8.16 An M-space V is a Banach lattice where

x, y ∈ V, x ≥ 0, y ≥ 0 ⇒ ‖x ∨ y‖ = ‖x‖ ∨ ‖y‖

Definition 8.17 Let V and W be vector lattices. A map ϕ : V → W is called vector
lattice isomorphism or isomorphism of vector lattices if it is

• linear

• bijective

• ϕ(x ∧ y) = ϕ(x) ∧ ϕ(y) , ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y) , ∀x, y ∈ V

• ϕ−1(w ∧ z) = ϕ−1(w) ∧ ϕ−1(z) , ϕ−1(w ∨ z) = ϕ−1(w) ∨ ϕ−1(z) ,

∀w, z ∈ W

Definition 8.18 Let V and W be Banach lattices. A map ϕ : V → W is called Banach
lattice isomorphism or isomorphism of Banach lattices if it is

• a vector lattice isomorphism and

• isometric: ‖ϕ(x)‖ = ‖x‖ ∀x ∈ V
1Confer e.g. (Schaefer, 1974, Proposition 8.3(ii))
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Definition 8.19 Let V and W be Banach lattices. A Banach lattice isomorphism ϕ :
V → W is called

a) L-space isomorphism or isomorphism of L-spaces if V and W are L-spaces.

b) M-space isomorphism or isomorphism of M-spaces if V and W are M-spaces.

Proposition 8.20 2 Let V and W be vector lattices. A map ϕ : V → W is a vector
lattice isomorphism if and only if it is

• linear

• bijective

• x ≥ 0 ⇔ ϕ(x) ≥ 0

Proposition 8.21 Let V and W be L-spaces. A map ϕ : V → W is an L-space isomor-
phism if and only if it is

• a vector lattice isomorphism and

• normalized: ‖ϕ(x)‖ = ‖x‖ ∀x ≥ 0 , x ∈ V

Proof : Let ϕ be a normalized vector lattice isomorphism. Then, for every x ∈ V ,∥∥ϕ(x)
∥∥ =

∥∥ |ϕ(x)|
∥∥ =

∥∥(ϕ(x)
)+

+
(
ϕ(x)

)−∥∥ =

=
∥∥(ϕ(x)

)+∥∥ +
∥∥(ϕ(x)

)−∥∥ =
∥∥ϕ(x+)

∥∥ +
∥∥ϕ(x−)

∥∥ =

=
∥∥x+

∥∥ +
∥∥x−∥∥ =

∥∥x+ + x−
∥∥ =

∥∥ |x| ∥∥ = ‖x‖

because in a normed vector lattice is
∥∥ |x| ∥∥ = ‖x‖ (cf. (Schaefer, 1974, p. 81)), i.e. ϕ is

isometric.

The converse statement is trivial. 2

Proposition 8.22

a) The dual space of an L-space is an M-space. The dual space of an M-space is an
L-space.

b) Let ϕ : V → W be an M-space isomorphism. Then, the adjoint of ϕ

ϕ∗ : W ∗ → V ∗

is an L-space isomorphism.

For part a), confer (Schaefer, 1974, Proposition 9.1); part b) is an easy corollary then.

2cf. (Constantinescu et al., 1998, Proposition 1.5.6 (c))
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8.2 Weak topologies

This section introduces (a special case of) weak topologies following the lines of (Dunford
and Schwartz, 1958, §V.3). Examples of such topologies which appear in this book are
the weak∗-topology on ba(Ω,A) and the weak topology of probability measures.

Let Ω be a set and L∞(Ω) be the Banach space of all bounded functions f : Ω→ R with
norm ‖f‖ = supω∈Ω |f(ω)|. Let Γ ⊂ L∞(Ω) be a linear subspace. Furthermore, let M be
a linear subspace of the dual space Γ∗. So, every µ ∈M is a continuous, linear funktional

µ : Γ → R , f 7→ µ[f ]

For every f ∈ Γ, put

Λf : M → R , µ 7→ Λf (µ) = µ[f ]

which is a continuous (in the norm-topology), linear functional on M .

Definition 8.23 The Γ - topology on M is the weakest topology on M such that every Λf

is continuous (in this topology) for every f ∈ Γ.
That is, the Γ - topology on M is the weakest topology on M such that the sets

Λ−1
f (B), f ∈ Γ , B ⊂ R open

are open.

Now, M has two different topologies, namely the norm-topology and the (weaker) Γ -
topology. To make clear what topology is used, topological terms such as compact, open,
closure etc. usually are denoted by norm-compact, Γ-open, norm-closure etc.

According to (Dunford and Schwartz, 1958, Definition V.3.2 and Lemma V.3.8), the sets

N(µ, F, ε) =
{
ν
∣∣ |µ(f)− ν(f)| < ε , f ∈ F

}
where

µ ∈M , F is a finite subset of Γ , ε > 0

form a base of the Γ - topology

The next theorem sumarizes some common properties of the Γ - topology according to
(Dunford and Schwartz, 1958, p. 420f).

Theorem 8.24

a) M is a locally convex linear topological (Hausdorff) space in its Γ - topology.

b) A net (µβ)β∈B converges to µ in the Γ - topology if and only if limβ µβ[f ] = µ[f ] for
every f ∈ Γ.

c) The linear functionals on M which are Γ-continuous are precisely the functionals
Λf : µ 7→ µ[f ], f ∈ Γ .

Lemma 8.25 characterizes the subspace topology onM0 ⊂ M generated by the Γ-topology
on M .
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Lemma 8.25 Let M0 be a linear subspace of L∞(Ω) such that M0 ⊂ M . Then, the
subspace topology on M0 ⊂ M generated by the Γ-topology on M is equal to the Γ-topology
on M0.

Proof : Let (µβ)β∈B be a net in M0 and µ ∈M0. Then,

µβ −→
β

µ ∈ M0 in the subspace topology on M0 ⊂ M

⇔ µβ −→
β

µ ∈ M0 in the Γ-topology on M

⇔ µβ[f ] −→
β

µ[f ] ∀ f ∈ Γ

⇔ µβ −→
β

µ ∈ M0 in the Γ-topology on M0

2

Just for a moment, put M = ba(Ω,A) and Γ = L∞(Ω,A). Then, the lower envelope
theorem (Walley, 1991, Theorem 2.6.3 (b)) states that

P [f ] = sup
µ∈V

µ[f ] , ∀ f ∈ L∞(Ω,A)

defines a coherent upper prevision for V ⊂ ba(Ω,A) and the weak∗-compactness theorem
(Walley, 1991, Theorem 3.6.1) implies that the credal set of P is equal to the convex
L∞(Ω,A) - closure of V .
The following theorem is a generalization of this result for arbitrary linear subspaces
Γ ⊂ L∞(Ω) and M ⊂ Γ∗ . – It is needed for upper expectations and F-probabilities where
weak topologies on ca+

1 (Ω,A) are considered.

Theorem 8.26 Let V ⊂ M be any subset of M . Put

P [f ] = sup
µ∈V

µ[f ] , ∀ f ∈ Γ

Then, the convex Γ - closure of V is

c`Γco
(
V
)

=
{
µ ∈M

∣∣ µ[f ] ≤ P [f ] ∀ f ∈ Γ
}

:= M

Proof : If P [f ] <∞, put If =
(
−∞ , P [f ]

]
; if P [f ] =∞, put If = R.

Since every Λf : µ 7→ µ[f ] is Γ-continuous and each interval If is closed in R,

M =
⋂
f∈Γ

Λ−1
f

(
If
)︸ ︷︷ ︸

Γ-closed

is Γ-closed. That is, M is a Γ-closed convex set which contains V and, therefore,
c`Γco

(
V
)
⊂M.

Conversely, take any µ ∈ M such that µ 6∈ c`Γco
(
V
)

. M is a locally convex linear
topological space in the Γ-topology (Theorem 8.24), c`Γco

(
V
)

is a Γ-closed convex subset
and {µ} is a Γ-compact convex subset such that {µ} ∩ c`Γco

(
V
)

= ∅ . According to
(Dunford and Schwartz, 1958, Theorem V.2.10), there is a Γ-continuous linear functional
T : M → R such that

sup
ν∈c`Γco (V)

T (ν) < T (µ) (8.2)
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Next, Theorem 8.24 c) implies existence of some f ∈ Γ such that Λf = T . Hence,

P [f ] ≤ sup
ν∈c`Γco (V)

ν[f ]
(8.2)
< µ[f ]

That is, µ 6∈ M. Hence, M\ c`Γco
(
V
)

= ∅ . 2

8.3 Some technical lemmas

Lemma 8.27 Let Ξ be a Polish space with Borel-σ-algebra B and let P be a probabil-
ity measure on (Ξ,B) . Then, for every f ∈ L∞(Ξ,B) , there is a sequence of upper
semicontinuous functions (fn)n∈N ⊂ L∞(Ξ,B) such that

f1 ≤ f2 ≤ f3 ≤ . . . ≤ f and P [fn] ↗ P [f ]

Proof : According to Lusin’s Theorem (Bauer, 2001, Theorem 26.7), there is a sequence
of compact subsets (Kn)n∈N of Ξ such that

P
(
Ξ \Kn

)
≤ 1

n
∀n ∈ N

and the restriction of f on Kn is continuous for every n ∈ N . It is easy to see that each
map

inf f +
(
f − inf f

)
IKn

is upper semicontinuous. Since the maximum of a finite number of upper semicontinuous
functions is again upper semicontinuous, the functions

fn := max
i∈{1,...,n}

(
inf f +

(
f − inf f

)
IKn

)
, n ∈ N

are upper semicontinuous. Furthermore,

f1 ≤ f2 ≤ f3 ≤ . . . ≤ f

and

0 ≤ lim sup
n

P [fn]−P [f ] ≤ lim sup
n

P
(
Ξ \Kn

)
· 2‖f‖ ≤ lim sup

n

2

n
‖f‖ = 0

2

Lemma 8.28 Let B be an algebra on a set Y, let D be an algebra on a set Z and
Ψ : B → D an algebra homomorphism. Put

ζ(IB) = IΨ(B) for every B ∈ B

ζ

( m∑
j=1

bjIBj

)
=

m∑
j=1

bjIΨ(Bj) for every simple function on (Y ,B)

and
ζ(g) = lim

n→∞
ζ(sn) for every g ∈ L∞(Y ,B)

where each sn is a simple function and ‖sn − g‖ → 0 .
Then,

ζ : L∞(Y ,B) → L∞(Z,D) , g 7→ ζ(g)

is a well defined map which is
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• linear

• positive: ξ(h) ≥ 0 ∀h ≥ 0

• normalized: ξ(IΞ) = IΩ

Proof : Note that Ψ(∅) = ∅ and Ψ(Y) = Z.

Then, Ψ defines a map

Z × B → R , (z, B) 7→ IΨ(B)(z) (8.3)

such that

• the function z 7→ IΨ(B)(z) is an element of L∞(Z,D) for every B ∈ B .

• ζ̂z : B 7→ IΨ(B)(z) is a probability charge on B for every z ∈ Z .3

The first statement is obvious. The second statement is an easy consequence of the
properties of Ψ:

ζ̂z(∅) = IΨ(∅)(z) = 0 , ζ̂z(B) ≥ 0 ∀B ∈ B

and for every B1, B2 ∈ B such that B1 ∩B2 = ∅ ,

ζ̂z(B1 ∪B2) = IΨ(B1∪B2)(z) = IΨ(B1)∪Ψ(B2)(z) =

= IΨ(B1)(z) + IΨ(B2)(z) = ζ̂z(B1) + ζ̂z(B2)

Since ζ̂z is a probability charge for every z ∈ Z, we can define the map

ζ̂(g) : Z → R , z 7→ ζ̂(g)(z) (8.4)

for every g ∈ L∞(Y ,B) where

ζ̂(g)(z) =

∫
g(y) ζ̂z(dy) ∀ z ∈ Z , g ∈ L∞(Y ,B) (8.5)

Then, for every simple function
∑m

j=1 bjIBj on (Y ,B) ,

ζ̂

( m∑
j=1

bjIBj

)
=

m∑
j=1

bj

∫
IΨ(Bj)(z) ζ̂z(dy) =

m∑
j=1

bjIΨ(Bj) (8.6)

is a simple function on (Z,D) . Now, take any g ∈ L∞(Y ,B). Then, there is a sequence
of simple functions sn such that ‖sn − g‖ → 0 and

sup
z

∣∣ ζ̂(sn)(z)− ζ̂(g)(z)
∣∣ ≤ sup

z

∫
‖sn − g‖ ζ̂z(dy) = ‖sn − g‖ −→

n
0 (8.7)

This implies that ζ̂(g) is bounded and ζ̂(g) ∈ L∞(Z,D) .

Hence,
ζ̂ : L∞(Y ,B) → L∞(Z,D) , g 7→ ζ̂(g)

3The map defined by (8.3) essentially behaves like an ordinary Markov kernel. However, it is not
exactly a Markov kernel because B is, in general, not a σ-algebra but an algebra.
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is a well defined map which is obviously linear, positive and normalized.

Finally, it follows from (8.5) and (8.7) that

ζ(g) = ζ̂(g) ∀ g ∈ L∞(Y ,B)

2

For ease of reference, the following lemma is proven:

Lemma 8.29 Let X be a linear topological space and ϕ : X → R a linear, continuous
function. Then, for any subset A ⊂ X,

sup
{
ϕ(x)

∣∣ x ∈ A} = sup
{
ϕ(x)

∣∣ x ∈ c`co(A)
}

where c`co(A) denotes the closed convex hull of A in X .

Proof : According to (Dunford and Schwartz, 1958, Theorem V.2.1 (a)), the closed convex
hull c`co(A) is equal to the closure of the convex hull co(A) of A, i.e.

c`co(A) = c`
(
co(A)

)
Hence, it suffices to show

sup
{
ϕ(x)

∣∣ x ∈ A} ≥ sup
{
ϕ(x)

∣∣ x ∈ co(A)
}
≥ sup

{
ϕ(x)

∣∣ x ∈ c`(co(A)
)}

The first inequality follows from linearity:

ϕ

(
n∑
k=1

λkxk

)
=

n∑
k=1

λkϕ(xk) ≤ sup
k=1,...,n

ϕ(xk) ≤ sup
x∈A

ϕ(x)

for any convex combination of x1, . . . , xk ∈ A .

The second inequality follows from continuity according to (Denkowski et al., 2003,
Theorem 1.1.29):

ϕ(x0) = lim
γ∈D

ϕ(xγ) ≤ sup
x∈co(A)

ϕ(x)

for every accumulation point x0 of co(A) . 2

Lemma 8.30 Let V1 and V2 be L-spaces. Let B1 ⊂ V1 be a band in V1 and B2 ⊂ V2 be a
band in V2 such that B2 6= {0}. Then:

a) Every transition σ̃ : B1 → V2 can be extended to a transition σ : V1 → V2 such that
σ(b1) = σ̃(b1) for every b1 ∈ B1 .

b) For every transition σ : V1 → V2 , there is a transition σ̃ : V1 → B2 such that

σ(x1) ∈ B2 , x1 ∈ V1 ⇒ σ̃(x1) = σ(x1) (8.8)

Proof :
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a) Fix any x̃2 ∈ V2 such that x2 ≥ 0 and ‖x2‖ = 1 . Then,

ρ(x1) =
(
‖x+

1 ‖ − ‖x−1 ‖
)
· x̃2 ∀x1 ∈ V1

defines a transition ρ : V1 → V2 . Let π1 be the projection of V1 onto the band B1 and
π⊥1 be the projection of V1 onto the band B⊥1 . Some simple calculations show that

σ(x1) = σ̃ ◦ π1(x1) + ρ ◦ π⊥1 (x1)

defines an extension of σ̃ to a transition σ : V1 → V2 .

b) Let π2 be the projection of V2 onto the band B2 and π⊥2 be the projection of V2 onto
the band B⊥2 . Fix any b̃2 ∈ B2 such that b̃2 ≥ 0 and ‖b̃2‖ = 1 . Then,

π̃2(x2) = π2(x2) +
(
‖π⊥2 (x+

2 )‖ − ‖π⊥2 (x−2 )‖
)
· b̃2

defines a transition π̃2 : V2 → B2 such that π̃2(b2) = b2 for every b2 ∈ B2 . Finally,
σ̃ = π̃2 ◦ σ defines a transition σ̃2 : V1 → B2 which fulfills (8.8).

2

Lemma 8.31 Let Ω1 and Ω2 be sets with algebras A1 and A2 respectively. Let

σ : ba(Ω1,A1) → ba(Ω2,A2)

be a restricted randomization. Then, there is a finitely additive Markov kernel

τ : Ω1 ×A2 → R , (ω1, A2) 7→ τω1(A2)

such that

τ(ω1, A2) =
∑
ω̃2∈Ω̃2

αω̃2(ω1) · δω̃2(A2) ∀ω1 ∈ Ω1 , A2 ∈ A2

where Ω̃2 ⊂ Ω2 is a finite set,

αω̃2 ≥ 0 , αω̃2 ∈ L∞(Ω2,A2) ∀ ω̃2 ∈ Ω̃2 and
∑
ω̃2∈Ω̃2

αω̃2 ≡ 1 (8.9)

and, in addition,

∀ ω̃2 ∈ Ω̃2 ∃ Ã2 ∈ A2 such that Ã2 ∩ Ω̃2 = {ω̃2} (8.10)

Proof : It only has to be shown that Ω̃2 can be chosen in the definition of restricted
randomizations in such a way that (8.10) is additionally fulfilled.

According to the definition of restricted randomizations, there is a a finitely additive
Markov kernel

τ : Ω1 ×A2 → R , (ω1, A2) 7→ τω1(A2)

such that

τ(ω1, A2) =
∑
ω̃′2∈Ω̃′2

βω̃′2(ω1) · δω̃′2(A2) ∀ω1 ∈ Ω1 , A2 ∈ A2
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where Ω̃′2 ⊂ Ω2 is a finite set,

βω̃′2 ≥ 0 , βω̃′2 ∈ L∞(Ω2,A2) ∀ ω̃′2 ∈ Ω̃′2 and
∑
ω̃′2∈Ω̃′2

βω̃′2 ≡ 1

According to finiteness of Ω̃′2, it is easy to see that there is a subset Ω̃2 ⊂ Ω̃′2 and a family
of sets

Ãω̃2 ∈ A2 , ω̃2 ∈ Ω̃2

such that

• the sets Ãω̃2 are disjoint for ω̃2 ∈ Ω̃2 ,

• ω̃2 ∈ Ãω̃2 for every ω̃2 ∈ Ω̃2

• for every ω̃′2 ∈ Ω̃′2 there is some ω̃2 ∈ Ω̃2 such that ω̃′2 ∈ Ãω̃2

• ω̃′2 ∈ Ãω̃2 implies that the following assertion is valid for every A2 ∈ A2 :

ω̃2 ∈ A2 ⇔ ω̃′2 ∈ A2 (8.11)

To say it in other words: The elements of Ω̃′2 are separated by some sets Ãω̃2 ∈ A2 as far
as possible. If two elements of Ω̃′2 cannot be separated by A2, one element is too much
and this redundant element is thrown away.

Next, put

αω̃2 :=
∑

ω̃′2∈Ãω̃2
∩Ω̃′2

βω̃′2 (8.12)

Then, (8.9) and (8.10) are fulfilled. Furthermore, (8.11) and (8.12) imply

τ(ω1, A2) =
∑
ω̃′2∈Ω̃′2

βω̃′2(ω1) · δω̃′2(A2) =
∑
ω̃2∈Ω̃2

αω̃2(ω1) · δω̃2(A2)

for every ω1 ∈ Ω1 and A2 ∈ A2 . 2

Lemma 8.32 Assume that S is a probability charge on (U , C) so that S[ιθ] = 1
n
∀ θ ∈ Θ

where ι : U → R denotes the projection of u onto the θ-component uθ of u . Then,
Sθ : h 7→ S[nιθh] defines a precise model (Sθ)θ∈Θ on (U , C) and

inf
ρ∈T∗(U ,D)

R
(
(Sθ)θ, ρ,W

)
= S

[
K(W )

]
(8.13)

for every decision space (D,D) and every loss function

W : Θ× D → R , (θ, t) 7→ Wθ(t) ; (Wθ)θ∈Θ ∈ L∞(D,D)

K
(
W
)

is defined as in (4.7).

Proof : Obviously, (Sθ)θ∈Θ is a precise model on (U , C). Statement (8.13) is proven by
two steps:
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[1] Let Ŵ : (θ, t) 7→ Ŵθ(t) be a loss function such that each Ŵθ ∈ L∞(D,D) is a simple
function. Since Θ is finite, there is a finite subset D̂ := {t1, . . . , tm} ⊂ D so that{(

Ŵθ(t)
)
θ∈Θ

∣∣∣ t ∈ D̂} =
{(
Ŵθ(t)

)
θ∈Θ

∣∣∣ t ∈ D}
Let the elements of the set A be the families (αt)t∈D ⊂ L∞(U , C) where D is a finite
subset of D, αt ≥ 0 ∀ t ∈ D and

∑
t∈D αt ≡ 1 .

Put Γt(u) =
∑
θ∈Θ

nπθŴθ(t)ιθ(u) , thus inf
τ∈D

Γτ = K(Ŵ ) .

For j ∈ {1, . . . ,m} , let Vj be the set of elements u ∈ U so that Γtj(u) =
infτ∈D Γτ (u) ,

Uj := Vj \
( j−1⋃

l=1

Vl

)
and α̂tj = IUj , j = 1, . . . ,m

Note that Uj ∈ C. The definition of {t1, . . . , tm} ensures that (Uj)j=1,...,m is a partition
of U . Hence,

∑
t∈D̂ α̂t ≡ 1 and (α̂t)t∈D̂ ∈ A. Furthermore,∑

t∈D̂

α̂t(u)Γt(u) = inf
τ∈D

Γτ (u) (8.14)

Let ρ̂ be the restricted randomization which corresponds to (α̂t)t∈Ŝ ∈ A. Then,∑
θ∈Θ

πθρ̂(Sθ)[Ŵθ]
(8.14)
=

∫
inf
τ∈D

Γτ (u)S(du) = S
[
K
(
Ŵ
)]

(8.15)

So, (8.13) follows from (8.15) and

inf
ρ∈T∗(U ,D)

∑
θ∈Θ

πθρ(Sθ)[Ŵθ]
Prop. 4.1

= inf
(αt)t∈D∈A

∑
θ∈Θ

πθSθ

[∑
t∈D

Ŵθ(t)αt

]
=

= inf
(αt)t∈D∈A

∫ ∑
t∈D

αt(u)Γt(u)S(du) =

≥ inf
(αt)t∈S∈A

∫
inf
τ∈D

Γτ (u)
∑
t∈D

αt(u)︸ ︷︷ ︸
= 1

S(du) =

∫
inf
τ∈D

Γτ (u)S(du)

[2] Fix any ε > 0. Then, for every θ ∈ Θ, there is a simple function Ŵθ ∈ L∞(D,D) so
that Ŵθ − ε ≤ Wθ ≤ Ŵθ + ε ∀ θ ∈ Θ ; cf. (2.6). That is, Ŵ : (θ, t) 7→ Ŵθ(t) is a
loss function as in [1]. Hence,

inf
ρ∈T∗(U ,D)

∑
θ∈Θ

πθρ(Sθ)[Wθ] ≤
(

inf
ρ∈T∗(U ,D)

∑
θ∈Θ

πθρ(Sθ)[Ŵθ]
)

+ ε =

[1]
= S

[
K(Ŵ )

]
+ ε = S

[
inf
τ∈D

∑
θ∈Θ

nπθŴθ(τ)ιθ

]
+ ε ≤

≤ S
[

inf
τ∈D

∑
θ∈Θ

nπθWθ(τ)ιθ

]
+ 2ε = S

[
K(W )

]
+ 2ε

and, analogously, inf
ρ∈T (U ,D)

∑
θ∈Θ

πθρ(Sθ)[Wθ] ≥ S
[
K(W )

]
− 2ε .

Since ε > 0 was arbitrarily chosen, (8.13) follows. 2



Bibliography

P. Artzner, F. Delbaen, J. Eber, and D. Heath. Coherent measures of risk. Mathematical
Finance, 9(3):203–228, 1999.

T. Augustin. Optimale Tests bei Intervallwahrscheinlichkeit. Vandenhoeck & Ruprecht,
Göttingen, 1998.

T. Augustin. Neyman-Pearson testing under interval probability by globally least favor-
able pairs reviewing Huber-Strassen theory and extending it to general interval proba-
bility. Journal of Statistical Planning and Inference, 105:149–173, 2002.

T. Augustin. On the suboptimality of the generalized Bayes rule and robust Bayesian
procedures from the decision theoretic point of view: a cautionary note on updating
imprecise priors. In J.M. Bernard, T. Seidenfeld, and M. Zaffalon, editors, ISIPTA’03,
Proceedings of the Third International Symposium on Imprecise Probabilities and Their
Applications, Lugano, pages 31–45. Carleton Scientific, Waterloo, 2003.

T. Augustin. Optimal decisions under complex uncertainty – basic notions and a general
algorithm for data-based decision making with partial prior knowledge described by
interval probability. ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik.
Journal of Applied Mathematics and Mechanics, 84(10-11):678–687, 2004.

H. Bauer. Probability theory. Walter de Gruyter & Co., Berlin, 1996.

H. Bauer. Measure and integration theory. Walter de Gruyter & Co., Berlin, 2001.

V. Baumann. Eine parameterfreie Theorie der ungünstigsten Verteilungen für das Testen
von Hypothesen. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 11:
41–60, 1968.

T. Bednarski and M. Nowak. Robustness and efficiency of sasieni-type estimators in the
cox model. J. Stat. Plann. Inference, 115:261–272, 2003.

E.T. Bell. The development of mathematics. Dover Publications Inc., New York, 1992.
Reprint of the second edition.

J.O. Berger. Statistical decision theory and Bayesian analysis. Springer-Verlag, New York,
second edition, 1985.

J.-M. Bernard. An introduction to the imprecise Dirichlet model for multinomial data.
International Journal of Approximate Reasoning, 39(2-3):123–150, 2005.

K. P. S. Bhaskara Rao and M. Bhaskara Rao. Theory of charges. Academic Press Inc.,
New York, 1983. A study of finitely additive measures.

215



216 BIBLIOGRAPHY

M. Bickis and U. Bickis. Predicting the next pandemic: An exercise in imprecise hazards.
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