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Zusammenfassung

In der vorliegenden Dissertation werden neueste Entwicklungen in der Model-

lierung von Versicherungs- und Elektrizitäts�nanzprodukten untersucht. Ins-

besondere konzentrieren wir uns auf zwei Kernprobleme. Zunächst betrach-

ten wir die Bewertung von Katastrophenoptionen. Danach zeigen wir, dass

ähnliche Techniken für die Bewertung europäischer Elektrizitätsoptionen an-

gewendet werden können. Zu den Hauptergebnissen der Arbeit gehören reali-

stische mathematische Modelle für Katastrophenschadenindizes und Elektri-

zitätsterminmärkte, die mit Hilfe von Fourier-Transformationstechniken die

Herleitung analytischer Bewertungsformeln für europäische Optionen ermög-

lichen.

Katastrophenoptionen sind Finanzinstrumente für den Transfer von Ver-

sicherungsrisiken in den Kapitalmarkt. Sie basieren auf einem Index, der

Versicherungsverluste durch Naturkatastrophen quantitativ erfasst. Im Rah-

men dieser Arbeit betrachten wir nur standardisierte Optionskontrakte, d.h.

börsennotierte Katastrophenderivate auf Grundlage eines Marktschadenin-

dex, beispielsweise des PCS-Index des Property Claims Service, einer inter-

national anerkannten Marktautorität für Vermögensschäden in den USA. Ein

Marktschadenindex spiegelt die angefallenen Schäden der Versicherungswirt-

schaft nach einer Naturkatastrophe wider. Zur realistischen Abbildung eines

Marktschadenindex entwickeln wir ein mathematisches Modell, bei dem die

Vorabschätzung der Schäden jeder Naturkatastrophe sofort mit einem posi-

tiven Martingal neu geschätzt wird, das ab einem zufälligen Zeitpunkt des

Schadeneintritts beginnt. Der wesentliche Vorteil unseres Modells ist die An-

wendbarkeit auf heavy-tailed-verteilte Schäden (die üblichen Verteilungen für

die Modellierung von Katastrophenschäden sind heavy-tailed).

Ferner wird in dieser Arbeit ein Elektrizitätsmarktmodell entwickelt, bei

dem wir Elektrizitätsterminpreise (Forwards, Futures) und Elektrizitätsspot-

preise gleichzeitig modellieren. Andererseits haben wir in unserem Modell ei-

ne direkte Verbindung zwischen Elektrizitätsterminpreis- und Spotpreispro-

zessen. Der Terminpreis unterscheidet sich vom Spotpreis um einen stocha-
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stischen positiven Faktor mit dem Endwert (terminal value) eins. Deswegen

kann dieser Faktor als eine Nullkuponanleihe modelliert werden. Ein wichti-

ger Vorteil unseres Modells ist die Markov-Eigenschaft des Spotpreisprozes-

ses, die für die Bewertung von pfadabhängigen Elektrizitätsoptionen (path-

dependent options), wie zum Beispiel Swingoptionen, entscheidend ist. Ins-

besondere beinhaltet unser Elektrizitätsmarktmodell ein allgemein anerkann-

tes Modell, bei dem der Spotpreisprozess das Exponential eines Ornstein-

Uhlenbeck-Prozesses ist.

Mit dieser Arbeit ho�en wir, zur Entwicklung quantitativer Instrumente

beizutragen, die einen liquiden Handel und die Bewertung von Katastrophen-

und Elektrizitätsoptionen unterstützen.



Abstract

In this thesis we consider recent developments in insurance and electricity

�nancial products. In particular, we investigate the interplay between insur-

ance and �nance, and therein the problem of pricing catastrophe insurance

options written on a loss index as well as electricity products.

Catastrophe insurance options are standardized exchange-traded �nancial

securities based on an underlying index, e.g. a PCS index, that encompasses

insurance losses due to natural catastrophes. The PCS index is provided

by the Property Claim Services (PCS), a US independent industry authority

which estimates catastrophic property damage. The advantages of the catas-

trophe options in comparison to other capital market insurance solutions are

lower transaction costs relative to the reinsurance and minimal credit risk,

because of the guarantee of the exchange.

The main results of the thesis are fairly realistic models for catastro-

phe loss indexes and electricity futures markets, where by employing Fourier

transform techniques we are able to provide analytical pricing formulas for

European type options traded in the markets.

For the catastrophe loss index we specify a model, where the initial es-

timate of each catastrophe loss is re-estimated immediately by a positive

martingale starting from the random time of loss occurrence. Signi�cant ad-

vantage of this methodology is that it can be applied to loss distributions with

heavy tails � the appropriate tail behavior for catastrophe modeling. The

case when the re-estimation factors are given by positive a�ne martingales

is also discussed and a characterization of positive a�ne local martingales is

provided.

For electricity futures markets we derive a model, where we can simulta-

neously model evolution of futures and spot prices. At the same time we have

an explicit connection between electricity futures and spot price processes.

Furthermore, an important achievement is that the spot price dynamics in
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this model becomes multi-dimensional Markovian. The Markovian structure

is crucial for pricing of path dependent electricity options.
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Introduction

Overview

In the recent years a variety of new �nancial markets has been developed. In

the early 90s, several countries started to liberalize their electricity markets

by leaving the price determination to the market principles of supply and

demand. Many countries have since reformed their power sector. One im-

portant consequence is the emergence of trade of electricity delivery contracts

on exchanges, similar to the trade of shares. The new freedom achieved has

the drawback of increased uncertainty about the price development. The

most signi�cant challenge for pricing of derivatives is the non-storability of

electricity, which implies that traditional valuation methods for storable com-

modities are not adequate. New approaches are required to price even the

simplest energy derivatives.

At the same time insurance �rms have introduced a new class of �nancial

instruments that transfer catastrophe risk to the capital markets. Over the

past decades the rise in insured losses has exploded from USD 2.5 billions

per year to an average value of the aggregated insurance losses of USD 30.4

billions per year, in prices of 2006 (see [53]). Table 1 gives a summary

of the ten most expensive natural catastrophes for the last 20 years. In

particular, the increasing risks point out that a single catastrophe could

ruin the whole insurance market. Therefore, actuaries started to look for

alternative possibilities to transfer catastrophic risk.1

1For a general overview of the capital market insurance solutions see [51] and [52].

1



2 Overview

Insured Loss

(USD Billions)

Year Event Country

66.3 2005 Hurricane Katrina; �oods,

dams burst, damage to oil

rigs

U.S., Gulf of

Mexico, Ba-

hamas, North

Atlantic

23.0 1992 Hurricane Andrew; �ooding U.S., Bahamas

21.4 2001 Terrorist attack on World

Trade Center, Pentagon and

other buildings

U.S.

19.0 1994 Northridge earthquake U.S.

13.7 2004 Hurricane Ivan; damage to

oil rigs

U.S., Caribbean

13.0 2005 Hurricane Wilma; torrential

rain, �oods

U.S., Mexico,

Jamaica, Haiti

10.4 2005 Hurricane Rita; �oods,

damage to oil rigs

U.S., Gulf of

Mexico, Cuba

8.6 2004 Hurricane Charley U.S., Caribbean

8.4 1991 Typhoon Mireille Japan

7.4 1989 Hurricane Hugo U.S., Puerto

Rico

Table 1: Top 10 Insured Catastrophe Losses (Source: Swiss Re,

Sigma Nr. 2/2007).
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In this thesis we consider recent developments in insurance and electricity

�nancial products. In particular, we focus on two main issues. First, we

consider the problem of pricing catastrophe insurance derivatives written on

a loss index. Then we show that similar techniques can be applied for pricing

�ow commodity options. We specify fairly realistic models for catastrophe

loss indexes and for electricity futures markets, where we provide explicit

pricing formulas for European options using Fourier transform methods.

The thesis is organized as follows. We continue the introduction with

the discussion of aforementioned new markets and give an overview of the

existing models. In particular, we explain how our approaches are related to

the previous ones. The main part of the thesis is divided into two parts. In

the �rst part we focus on pricing of catastrophe insurance derivatives only.

This part is based on [3] and [4]. In Part II we consider the modeling and the

pricing of electricity products. Each part of the thesis is self-contained and

has its own outline. However, in Part II we use Fourier transform methods

for pricing European options introduced in Part I.

Catastrophe insurance options

In order to securitize increasing catastrophe risks, insurance companies have

tried to take advantage of the vast potential of capital markets by intro-

ducing exchange-traded catastrophe insurance options. Exchange-traded in-

surance instruments present several advantages with respect to reinsurance.

For instance, they o�er lower transaction costs because they are standard-

ized. Furthermore, they include minimal credit risk because the obligations

are guaranteed by the exchange. A comprehensive comparison of insurance

securities is given in [51] and [52]. In particular, catastrophe options are

standardized contracts based on an index of catastrophe losses, for example

compiled by Property Claim Service (PCS), an internationally recognized

market authority on property losses from catastrophes in the US.

The �rst index-based catastrophe derivatives were CAT futures, which
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were introduced by the Chicago Board of Trade (CBOT) in 1992. Some

models for the index underlying the CAT futures can be found in [1] and [10].

However, due to the structure of these products, there was only little trading

activity on CAT futures in the market. A second version of catastrophe

insurance derivatives were PCS options based on the index compiled by PCS.

For the description of PCS catastrophe insurance options [41], [50] or [51]

can be consulted. On its peak, the total capacity created by this version

of insurance options amounted to 89 millions USD per year. Trading in

PCS options slowed down in 1999 because of market illiquidity and lack of

quali�ed personnel (see e.g. [51]).

However, the record losses caused by the hurricanes Katrina, Rita and

Wilma in 2005 have been a catalyst for creating new derivative instruments to

trade catastrophe risks in capital markets. Since March 2007, the New York

Mercantile Exchange (NYMEX) has begun trading of catastrophe futures

and options again. These new contracts have been designed to bring the

transparency and liquidity of the capital markets to the insurance sector.

They have provided e�ective ways of protection against property catastrophe

risk and have given the investors the opportunity to trade a new class of assets

which has little or no correlation with other exchange traded asset classes.

The NYMEX catastrophe options are settled against the Re-Ex loss index,

which is created from the data supplied by PCS.

The structure of catastrophe options can be described as follows. The

option is written on an index that evolves over two periods, the loss period

and the development period. During the contract speci�c loss period [0, T1]

the index measures catastrophic events that occur. In addition to the loss

period, option users choose a development period [T1, T2]. During the de-

velopment period damages of catastrophes occurred in the loss period are

reestimated and continue to a�ect the index. The contract expires at the

end of the chosen development period.

Since the introduction of catastrophe insurance derivatives in 1992, the

pricing of these products has been a problem. The underlying loss index is
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not traded and hence the market becomes incomplete. It is then an open

question how the pricing measure should be determined. The next challenge

is that even for fairly simple models of the loss index the pricing problem is

rather complicated.

To date, several approaches have been proposed to model a catastrophe

index and to price catastrophe options written on it. In [41], [42] and [43], the

underlying catastrophe index has been represented as a compound Poisson

process with nonnegative jumps. However, no distinction between loss and

reestimation periods has been made. In [9] and [40], the authors distinguish

between loss and reestimation periods and model the index as an exponential

Lévy process over each period. While technicalities for pricing purposes

are simpli�ed in this setting, the assumption of an exponential model for

accumulated losses during the loss period seems to be quite unrealistic. For

instance, it implies that later catastrophes are more severe than earlier ones,

and that the index starts in a positive value (instead of starting at 0). Yet

another model is proposed in [49] where immediate reestimation is assumed

and modeled through individual reestimation factors for each catastrophe.

However, no explicit pricing methods are obtained for this model.

In this thesis, we consider the distinction between loss and reestimation

period as in [9] and [40], but propose two more realistic models for the loss

index. To begin with, we assume in Chapter 1 that the index is described

by a time-inhomogeneous compound Poisson process during the loss period,

and that during the reestimation period the index is reestimated by a factor

(common for all catastrophes) which is given as an exponential time inho-

mogeneous Lévy process. In this framework, we consider the problem of

pricing European catastrophe options written on the index. Interpreting the

option as a payo� on a two-dimensional asset, we are able to obtain ana-

lytical pricing formulas by employing Fourier transform techniques. To this

end, we extend Fourier transform techniques for dampened payo� functions

as introduced in [8] and [18] to the case of a general payo� depending on

two factors. We conclude Chapter 1 by calculating explicitly the price of the
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most commonly traded catastrophe options in the market.

However, although the assumption of common reestimation factor is ac-

cepted among practitioners, it may be considered unrealistic because loss

reestimation happens individually for each catastrophe and begins almost

immediately after the catastrophic event. We resolve this problem in Chap-

ter 2, where we o�er an even more realistic model for the loss index that

allows immediate loss reestimation. This approach includes the model pro-

posed in [49] as a particular case. In Chapter 2 we assume that catastrophe

occurrence is modeled by a Poisson process, and consider individual reesti-

mation for each catastrophe where the initial estimate of every catastrophe

loss is reestimated immediately by a positive martingale starting from the

random time of loss occurrence. We then consider the pricing of catastrophe

options written on the index. As in Chapter 1 we employ Fourier trans-

form techniques in order to obtain option pricing formulas. To this end, we

manage to simplify the calculation of the characteristic function of the index.

We mention in particular, that our approaches work for loss distributions

with heavy tails, which is the appropriate tail behavior for catastrophe mod-

eling. We then proceed to discuss the case when the reestimation factors are

given by positive a�ne martingales. In this situation, we provide a charac-

terization of positive a�ne (local) martingales. We explain our approaches

more precisely in Part I. See also [3] and [4].

In our opinion the use of exchange traded insurance derivatives will play a

crucial role in the securitization of increasing catastrophe risks in the future.

For this purpose, one essential task is to develop quantitative tools that help

to establish liquid trading of these instruments. We hope that this work

contributes to this aim providing new insights into the pricing of catastrophe

options.
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Electricity pricing

In Part II of this thesis we consider the modeling of electricity markets. In the

stochastic modeling of electricity markets, there are two main approaches in

the literature (see e.g. [5], [26]). The �rst one starts with a stochastic model

for the spot price and derives futures price dynamics from it by using the

arbitrage theory. The second approach directly models the price dynamics of

forward and futures contracts traded in electricity markets. We refer to [5]

and [32] for an overview of the literature on electricity markets.

Spot price models have two major disadvantages. Since electricity is non-

storable, the spot electricity price is not a tradeable asset. This implies that

it is not easy to give a precise de�nition of spot prices in the electricity market

(see [5], [32]). For the same reason the valuation methods for traded asset

prices are not adequate. The second disadvantage is that the connection

between the spot and futures prices is not straightforward (see [26]). The

modeled dynamics of the entire futures curve can be rarely consistent with

the actually observed curves. On the contrary, futures price models attempt

to systematically describe changes of the entire curve.

However, futures price models, since they normally imply a very complex

non-Markovian dynamics for the spot price, are not well suited for pricing

of path dependent electricity products like, for example, swing options (see

e.g. [25], [31] and [54]). Markovian property of the spot price is essential to

solve the constrained stochastic optimal control problem of maximizing the

expected pro�t of the path dependent options.

Another drawback of the aforementioned spot and futures models is the

lack of �exibility to decouple spot and futures price evolution. By calibrating

the futures price according to observed market data, it is no longer possible

to control the spot price and vice versa. In [26] an approach is introduced

which converts the �ow commodity market into a money market. By a

currency change correspondence is obtained between given electricity market

and a market consisting of bonds and a risky asset. The signi�cant bene�t

of this transformation is an additional source of randomness in the modeling
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of electricity prices. Namely, it is possible to calibrate the spot and futures

processes independently including features of both electricity price processes.

Furthermore, the approach of [26] allows to apply the full potential of the

well-established interest rate theory for pricing electricity derivatives.

In this thesis we generalize the approach of [26] replacing, in the dynamics

of the asset prices, the Brownian motion by a more general Lévy process tak-

ing into account the occurrence of spikes. Interest rate theory combined with

change of numeraire techniques is used to �nd a new electricity spot price

model with su�ciently �exible futures curve. In particular, our framework

contains as a special case the commonly accepted model for electricity mar-

ket, where the spot price process is an exponential of an Ornstein-Uhlenbeck

process. In addition, we consider valuation of electricity products in this

framework. Using Fourier transform techniques introduced in Part I, we

provide analytical pricing formulas for European electricity options.

The valuable feature of our approach is that the dynamics becomes multi-

dimensional Markovian (see Section 3.4). As mentioned above, the Marko-

vian structure is signi�cant to prove the dynamic programming principle

needed to �nd viscosity solutions of Hamilton-Jacobi-Bellman equation asso-

ciated with pricing of path dependent electricity products like swing options.

See [54] for more details on dynamic programming principle and pricing of

electricity derivatives known as tolling agreements. Note that the framework

of [54] includes as a special case continuous time swing options previously

studied in [39], [31] and [25]. We �nish Part II with the derivation Hamilton-

Jacobi-Bellman equation for the value function of a continuous time electric-

ity swing option in our setting.



Part I

Pricing of catastrophe insurance

options written on a loss index

9



Outline and main results

Let (Ω,F,P) be a complete probability space. We consider a �nancial mar-

ket endowed with a risk-free asset with deterministic interest rate rt, and

the possibility of trading catastrophe insurance options, written on a loss in-

dex L = (Lt)0≤t≤T2 . In short, we de�ne catastrophe insurance option as a

European derivative written on the loss index L with maturity T2 and payo�

h(LT2) > 0 (1)

for a continuous payo� function h : R 7→ R+. Since we have assumed that

the interest rate r is deterministic, without loss of generality, we can express

the price process of the insurance derivative in discounted terms, i.e. we can

set r ≡ 0.

Before we give the precise de�nition of the loss index process L in Chap-

ters 1 and 2, let us recall the common structure of catastrophe insurance

options following the description in [41], [9], [50], [40], and [51]. The catas-

trophe options are written on a loss index that evolves over two time periods,

the loss period [0, T1] and the consecutive development period [T1, T2]. During

the contract speci�c loss period the index measures catastrophic occurring

events. After the loss period, option users can choose either a six-month or a

twelve-month development period [T1, T2], where the reestimates of catastro-

phe losses that occurred during the loss period continue to a�ect the index.

The option contract matures at the end of the chosen development period

T2.

Here we consider two models for the loss index. Throughout Chapter 1 we

assume that the reestimation begins at T1 for all insurance claims that have

10
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occurred during the loss period. In reality the starting point of reestimation

might di�er from claim to claim. However, the approximation using one

common starting point for reestimation is accepted among practitioners and

can be found in the literature (see for example [9] and [40]). Technically, as we

will see in Section 1.2, this assumption facilitates the derivation of explicit

pricing formulas. The main results of Chapter 1 were recently published

in [3].

In Chapter 2 we consider option pricing in a model with immediate reesti-

mation of single loss occurrences. This more realistic model requires a more

complex setting (see also [49] and [4]). Here we assume that at the time

of catastrophe occurrence the reported losses are only estimates of the true

losses, and these estimates are consecutively reestimated until the end T2

of the development period. The loss index provides thus at any t ∈ [0, T2]

an estimation of the accumulation of the �nal time (T2) amounts of catas-

trophe losses that have occurred during the loss period. Let Nt, t ∈ [0, T1]

denote the number of catastrophes up to time t, and Ui, i = 1, ..., Nt the

corresponding �nal amounts of the losses at time T2 (which are unknown at

time 0 ≤ t < T2). Then the value Lt of the loss index can be expressed as

Lt =

Nt∧T1∑
i=1

E [Ui |Ft] , t ∈ [0, T2] , (2)

where the �ltration {Ft , t ∈ [0, T2]} represents the information available. If

the number Nt of catastrophes is assumed to follow a Poisson process, then

the structure of the index is a compound Poisson sum with martingales as

summands. As we will see in Section 2.1.1, this model is more suitable for

option pricing with heavy-tailed losses. We mention that Chapter 2 is based

on [4].

The main results of Part I are analytical pricing formulas for catastrophe

options traded in the market. To this end we employ Fourier transform tech-

niques. In particular, we explicitly compute prices for call, put, and spread

options, which are the typical instruments in the market. Furthermore, in

Section 2.3 we discuss the case when the reestimation of losses are given by
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positive a�ne martingales and provide a characterization of positive a�ne

(local) martingales.

More precisely, Part I is organized as follows. In Section 1.1 we specify

our �rst model for the loss index. In Section 1.2 we introduce a class of

structure preserving pricing measures, before we derive the price process of

European style catastrophe options for the model introduced in Section 1.1

by using Fourier transform techniques. Finally, in Section 2.3 we compute

explicitly the prices of the most common option types traded in the market.

In particular, Section 1.4 is devoted to pricing in the case of heavy-tailed

losses.

In Section 2.1 we present a more realistic and complicated model for

the loss index. Further, in Sections 2.1.1�2.1.2 we consider the pricing of

general European options in the model described in Section 2.1, before we

explicitly compute prices for spread options in Section 2.2, which are the

typical instruments in the market.

We conclude Part I with Section 2.3, where we discuss the special case of

positive a�ne martingales as reestimation factors.



Chapter 1

Pricing of catastrophe options

under assumption of common

reestimation factor

1.1 Modeling of the loss index

Here, we model the loss index by the stochastic process L = (Lt)0≤t≤T2 as

follows:

i) For t ∈ [0, T1],

Lt =
Nt∑
j=1

Yj (1.1)

is a time inhomogeneous compound Poisson process, where

� Nt is a time inhomogeneous Poisson process with deterministic

intensity λ(t) > 0,

� Yj, j = 1, 2, . . . , are positive i.i.d. random variables with distri-

bution function G , independent of Nt.

Note that we allow for seasonal behavior of loss occurrence modeled by

a time dependent intensity λ(t).

13
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ii) For t ∈ [T1, T2]

Lt = LT1+u = LT1Zu, u = t− T1 ∈ [0, T2 − T1], (1.2)

where Zu is a process that represents the reestimation factor with

� Z0 = 1 a.s.,

� (Lt)t≤T1 and (Zu)0≤u≤T2−T1 are independent.

We suppose that all investors in the market observe the past evolution of the

loss index including the current value. Therefore, the �ow of information is

given by the �ltration (F0
t )0≤t≤T2 generated by the process L, which is of the

form

• F0
0 = {∅,Ω},

• F0
t := σ(Lu, u ≤ t) = σ(

∑Nu

j=1 Yj, u ≤ t), for t ∈ [0, T1],

• F0
t := σ(Lu, u ≤ t) = σ(Ls, s ≤ T1) ∨ σ(Zu−T1 , T1 < u ≤ t), for

t ∈ (T1, T2],

• F0
T2
⊆ F.

We assume that the �ltration (F0
t )0≤t≤T2 is right-continuous. Let (Ft)0≤t≤T2

be the completion of the �ltration (F0
t )0≤t≤T2 with P-null sets of F.

It is reasonable to assume that the reestimation is not biased (see also [49]).

Therefore, we suppose that (Zt)0≤t≤T2−T1 is a positive martingale with respect

to the �ltration (Ft)0≤t≤T2 of the form

Zt = eXt (1.3)

for a process X = (Xt)0≤t≤T2−T1 such that X0 = 0 a.s.. More precisely, in

this section we assume that Xt is a time inhomogeneous Lévy process.

De�nition 1.1.1. An adapted stochastic process (Xt)t∈[0,T ] with values in R
is a time inhomogeneous Lévy process or a process with independent incre-

ments and absolutely continuous characteristics, if the following conditions

hold:
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1. X has independent increments, i.e. Xt − Xs is independent of Fs,

0 ≤ s ≤ t ≤ T .

2. For every t ∈ [0, T ], the law of Xt is characterized by the characteristic

function

E[eiuXt ] = exp

{∫ t

0

(
iubs −

1

2
csu

2 +

∫
R
(eiux − 1− iuxI{|x|≤1})Fs(dx)

)
ds

}
with deterministic functions

b· : [0, T ] → R,

c· : [0, T ] → R+,

F· : [0, T ] → LM(R),

where LM(R) is the family of Lévy measures ν(dx) on R, i.e.∫
R
(x2 ∧ 1)ν(dx) <∞ and ν({0}) = 0.

It is assumed that∫ T

0

(
|bs|+ cs +

∫
R
(x2 ∧ 1)Fs(dx)

)
ds <∞.

The triplet (b, c, F ) := (bs, cs, Fs)s∈[0,T ] is called the characteristics of

X.

Note that by Lemma 1.4 and Lemma 1.5 of [33] X is a semimartingale,

and the semimartingale characteristics (B,C, ν) of X associated with the

truncation function h(x) = xI|x|≤1 are given by

Bt =

∫ t

0

bsds, Ct =

∫ t

0

csds, ν([0, t]× A) =

∫ t

0

∫
A

Fs(dx)ds (1.4)

for A ∈ B(R).

We assume the following exponential integrability condition.

(C1) There exists ε > 0 such that for all u ∈ [−(1 + ε), 1 + ε]

E[euXt ] <∞ ∀t ∈ [0, T ].
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By Lemma 1.6 of [33] this is equivalent to the following integrability condition

on Fs:

(C1') There exists ε > 0 such that for all u ∈ [−(1 + ε), 1 + ε]∫ T

0

∫
{|x|>1}

euxFs(dx)ds <∞.

In particular, E[Zt] < ∞ for all t ∈ [0, T ], if (C1) is in force. Furthermore

we require the following condition on the characteristics

(C2)
∫ t

0

bsds+
1

2

∫ t

0

csds+

∫ t

0

∫
R
(ex − 1− h(x))Fs(dx)ds = 0,

which implies (see e.g. [18], Remark 3.1, and [29], Lemma 4.4) that Zt = eXt

is a martingale. We note that (C2) also implies that the process

I{x>1}e
x ∗ ν =

∫ T

0

∫
{x>1}

euxFs(dx)ds

has �nite variation, or equivalently (by [27], Proposition 8.26) that Zt = eXt

is a special semimartingale.

Further, as in [33] we obtain that Xt can be canonically represented as

Xt =

∫ t

0

bsds+

∫ t

0

√
csdWs +

∫ t

0

∫
R
x(µ(ds, dx)− Fs(dx)ds), (1.5)

where Wt is a standard Brownian motion and µ is the integer-valued random

measure associated with the jumps of Xt.

Remark 1.1.2. By assuming time-inhomogeneous Lévy process to model Zt,

we allow for time dependent reestimation behavior. For example, one could

imagine that the reestimation frequency is higher in the beginning than later

on.

Another possible choice of the reestimation factor Zt is a positive a�ne

martingale. In Section 2.3 we give a characterization of this class of processes.
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Example 1.1.3. In particular, our framework includes the case when

Zt = eXt and Xt =

∫ t

0

σ(s)dVs, (1.6)

where σ : R+ 7→ R is a càglàd (left continuous with right limits) determin-

istic function with σ 6= 0 a.s., and V = (Vt)t≥0 is a Lévy process. See for

example [6], [12], or [48] for more details on Lévy processes.

In this case Zt is not a martingale, as requested by the assumption that

the reestimation is unbiased. However, by using the following lemma, we

justify why we can directly consider the process Zt of the form (1.6) as a

model for the reestimation factor.

Lemma 1.1.4. Consider the process Zt = exp{
∫ t

0
σ(s)dVs} de�ned in (1.6)

such that

E[Zt] <∞, ∀t ≥ 0. (1.7)

Let (b, c, ν) be the characteristic triplet of the Lévy process V and let ψ : R →
C be the characteristic exponent of V , i.e.

E[eiuVt ] = etψ(u), u ∈ R.

Then

E[Zt] = E
[
e

R t
0 σ(s)dVs

]
= e

R t
0 ψ(−iσ(u))du <∞,

where

ψ(−iσ(u)) =
1

2
cσ2(u) + bσ(u) +

∫ ∞

−∞

(
eσ(u)x − 1− ux1|x|≤1

)
ν(dx). (1.8)

Proof. By Theorem 25.17 in [49] we have that ψ(−iu) is well-de�ned in

u ∈ R if

E
[
euVt

]
<∞

for some t > 0 (or equivalently for every t > 0) and then

E
[
euVt

]
= etψ(−iu) <∞, (1.9)

where

ψ(−iu) =
1

2
cu2 + bu+

∫ ∞

−∞

(
eux − 1− ux1|x|≤1

)
ν(dx).
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Following the proof of Proposition 3.14 of [12], for σ(t) we consider a piecewise

constant left-continuous approximation σ∆ : R+ 7→ R,

σ∆(u) =
N∑
j=1

σjI(tj−1,tj ](u).

Then ∫ t

0

σ∆(u)dVu =
N∑
i=1

σj(Vtj − Vtj−1
)

and by (1.7) and (1.9) we obtain

E[e
R t
0 σ

∆(u)dVu ] =
N∏
j=1

E[eσj(Vtj−Vtj−1 )] =
N∏
j=1

E[eσjVtj−tj−1 ]

=
N∏
j=1

e(tj−tj−1)ψ(−iσj) = e
R t
0 ψ(−iσ∆(u))du <∞. (1.10)

Equality (1.10) can be extended to an arbitrary càglàd function σ.

�

By Lemma 1.1.4 we have that

Zt · e−
R t
0 ψ(−iσ(u))du = e

R t
0 σ(u)dVu−

R t
0 ψ(−iσ(u))du

is a martingale. Since e−
R t
0 ψ(−iσ(u))du is deterministic, the presence of this

deterministic multiplicative factor in the expression for Zt will not play any

role in the computation of Section 1.2. Hence, without loss of generality we

can assume that the reestimation factor Zt is of the form (1.6).

Now we consider the problem of pricing of insurance European derivatives

with payo� depending on the value LT2 of the loss index at maturity T2.

1.2 Pricing of catastrophe options

1.2.1 Pricing measure

In the catastrophe insurance market the underlying index L is not traded.

Hence the market is incomplete and there exist in�nitely many equivalent
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martingale measures. If we can include in the capital market the presence

of a reinsurance portfolio, then the reinsurance portfolio speci�es a premium

process pt for the overall insured losses (Lt)t≥0. The premium pt de�nes the

price at time t of the remaining risk LT2 −Lt (see also [14]). If the insurance
market is liquid enough, we can consider pt as the price of an asset. In

this way the loss index could be approximated by an insurance portfolio.

Consider now a contingent claim H = h(LT2) de�ned in (1). Recall that

h is a nonnegative continuous deterministic function and that we consider

the price processes of all derivatives in discounted terms. Therefore, in the

absence of arbitrage, given an equivalent martingale measure Q, the premium

price and the price of an insurance derivatives that pays out H = h(LT2) at

the maturity are given by

pQ
t = EQ

[
LT2 − Lt

∣∣∣Ft]
and

πQ
t = EQ

[
h(LT2)

∣∣∣Ft] , (1.11)

respectively. The problem is now how to choose an equivalent martingale

measure Q.

We make here the usual assumption that under the pricing measure Q
the index process is described by the same kind of process as under P. This
means that we assume that:

(A1) Zt remains a positive martingale under Q;

(A2) Before T1, Lt remains a compound Poisson process, otherwise it would

be possible to obtain information on the next catastrophe;

(A3) N,Z, Yi remain mutually independent, otherwise under Q the reestima-

tion would be in�uenced by the catastrophes previously occurred. This

would also mean that the agent believes that di�erent catastrophes are

estimated di�erently.

In particular, we assume that the class of pricing measures is determined by

Radon-Nykodym derivatives of the following form: Since hypothesis (A3) is
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in force and taking into account that the reestimation factor Z is already a

martingale, we choose a measure with the density given by

dQ
dP

= exp


NT1∑
j=1

β(Yj)−
∫ T1

0

λsdsE
[
eβ(Y1) − 1

]
× exp

{∫ T

0

γ(s)dWs −
1

2

∫ T

0

γ2(s)ds

}
× exp

{∫ T

0

lnφ(s, x) (µ(ds, dx)− Fs(dx)ds)

−
∫ T

0

∫
R
(φ(s, x)− 1− lnφ(s, x))Fs(dx)ds

}
(1.12)

for some Borel function β with E
[
eβ(Y1)

]
< ∞ and positive deterministic

integrands φ(t, x) and γ(t) such that E[dQ
dP ] = 1.

By Girsanov's Theorem for Brownian motion and random measures (see

[27]) this class of pricing measures preserves the structure of our model. In

particular, under the measure Q the process Lt, t ∈ [0, T1], is again a time

inhomogeneous compound Poisson process with intensity

λQ
t = λtE[eβ(Y1)] (1.13)

and distribution function of jumps

dGQ(y) =
eβ(y)

E[eβ(Y1)]
dG(y). (1.14)

Further, under Q the process X is again a time inhomogeneous Lévy process

independent of Lt, t ∈ [0, T1], with characteristics (bQ, cQ, FQ) given by

bQ
t = bt − γt

√
ct,

cQ
t = ct,

FQ
t (dx) = φ(t, x)Ft(dx).

In order to specify a pricing measure Q, one possible method is now to

calibrate β, φ and γ to observed market prices. For example, in [43] the

pricing measure is calibrated on the prices of insurance portfolios (i.e. from
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the premiums) and the prices of catastrophe derivatives. Another approach

to pick a pricing measure is chosen in [9], [40] and [49], where the choice of

the pricing measure for catastrophe insurance options is motivated through

an equilibrium argument between the premium price and the price of an

insurance derivative written on the same catastrophe losses. In [9] and [40]

the Esscher transform is used to compute the equivalent martingale measure,

which is justi�ed by looking at a representative investor maximizing her

expected utility.

Here we do not discuss the problem of choosing β, φ and γ, but we assume

to be given an equivalent martingale measure Q of the form (1.12) and pro-

ceed to the risk neutral pricing under Q of catastrophe options as described

in the next section.

1.2.2 Pricing via Fourier transform techniques

Now, let us return to the price process πQ
t given in (1.11). By (1.2) we can

rewrite (1.11) as

πQ
t = EQ [h(LT1ZT2−T1)|Ft] = EQ [h(LT1e

XT2−T1 )|Ft
]
.

Interpreting the claim as a payo� on two factors, we can rewrite the price

process as

πQ
t = EQ [g(LT1 , XT2−T1)|Ft] , (1.15)

where g : R2 7→ R+ is de�ned by

g(x1, x2) := h(x1e
x2) for any (x1, x2) ∈ R2. (1.16)

In the following we will calculate the expected payo� in (1.15) by Fourier

transform techniques. To this end we extend the approach of dampened

payo�s on one dimensional assets of [45] (see also [8]) to general payo�s on

two dimensional assets. We impose the following hypotheses:

Assume that
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(H1) I1 := {(α, β) ∈ R2|
∫

R2 e
−αx1−βx2g(x1, x2)dx1dx2 <∞} 6= ∅ .

Let

I2 := {(α, β) ∈ R2|
∫

R2

eαx1+βx2GQ
(LT1

,XT2−T1
)(dx1, dx2) <∞},

where GQ
(LT1

,XT2−T1
) is the cumulative distribution function of (LT1 , XT2−T1)

under Q. Assume that

(H2) I1 ∩ I2 6= ∅.

Note that, since by Assumption (A3), LT1 and XT2−T1 remain independent

under Q, it follows that

I2 = {(α, β) ∈ R2| EQ[eαLT1 ] <∞ and EQ[eβXT2−T1 ] <∞}. (1.17)

Now, the dampened payo� function is introduced as

f(x1, x2) = e−αx1−βx2g(x1, x2) for (α, β) ∈ I1 ∩ I2. (1.18)

Note, that under Hypothesis (H1), we have that

f(·) ∈ L1(R2)

for (α, β) ∈ I1 ∩ I2. Hence the Fourier transform

f̂(u1, u2) =
1

2π

∫
R2

ei(x1u1+x2u2)f(x1, x2)dx1dx2 (1.19)

is well de�ned for every u = (u1, u2) ∈ R2. Assuming also

(H3) f̂(·) ∈ L1(R2),

we get by the Inversion Theorem (cf. [33], Section 8.2) that

f(x1, x2) =
1

2π

∫
R2

e−i(x1u1+x2u2)f̂(u1, u2)du1du2. (1.20)
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Remark 1.2.1. Note that the equality in (1.20) holds everywhere and not

only almost everywhere because we have assumed a continuous payo� func-

tion h. If the probability distribution of LT2 would have a Lebesgue density,

an almost everywhere equality in (1.20) would have been su�cient for the

following computations. However, since the loss index is driven by a com-

pound Poisson process, the distribution of LT2 has atoms and we need an

everywhere equality to guarantee (1.21) below.

Returning to the valuation problem (1.15), we obtain that

πQ
t = EQ [g(LT1 , XT2−T1)|Ft] = EQ [eαLT1

+βXT2−T1f(LT1 , XT2−T1)|Ft
]

=
1

2π
EQ[eαLT1

+βXT2−T1

∫
R2

e−i(u1LT1
+u2XT2−T1

)f̂(u1, u2)du1du2

∣∣∣Ft] (1.21)

=
1

2π
EQ[ ∫

R2

e−i{(u1+iα)LT1
+(u2+iβ)XT2−T1

}f̂(u1, u2)du1du2

∣∣∣Ft]
=

1

2π

∫
R2

EQ[e−i{(u1+iα)LT1
+(u2+iβ)XT2−T1

}|Ft
]
f̂(u1, u2)du1du2 (1.22)

=
1

2π

∫
R2

EQ[e−i(u1+iα)LT1 |Ft
]
EQ[e−i(u2+iβ)XT2−T1 |Ft

]
f̂(u1, u2)du1du2,

(1.23)

where in the equality (1.22) we could apply Fubini's theorem, because Hy-

pothesis (H3) holds. The last equation holds by the independence of LT1 and

XT2−T1 and by (1.17).

Since L is a time inhomogeneous compound Poisson process until T1 and

X is a time inhomogeneous Lévy process independent of Lt, t ∈ [0, T1], we

can explicitly compute the conditional expectations in (1.23) by using the

known form of the conditional characteristic functions:

1. If t < T1, we have

EQ [e−i(u1+iα)LT1 |Ft
]

= e−i(u1+iα)LtEQ [e−i(u1+iα)(LT1
−Lt)

]
= e−i(u1+iα)Lt exp{−

∫ T1

t

λQ
s ds

∫ ∞

0

(1− e−i(u1+iα)x)GQ(dx)}

= e−
R T1

t λQ
s dse−i(u1+iα)Lt exp{

∫ T1

t

λQ
s ds

∫ ∞

0

e−i(u1+iα)xGQ(dx)} ,
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and

EQ [e−i(u2+iβ)XT2−T1 |Ft
]

= EQ [e−i(u2+iβ)XT2−T1

]
= exp{

∫ T2−T1

0

(
i(u2 + iβ)bQ

s −
1

2
cQ
s (u2 + iβ)2

)
ds}

× exp{
∫ T2−T1

0

∫
R
(ei(u2+iβ)x − 1− i(u2 + iβ)xI{|x|≤1})F

Q
s (dx)ds} .

2. If t ∈ [T1, T2],

EQ [e−i(u1+iα)LT1 |Ft
]

= e−i(u1+iα)LT1 ;

and

EQ [e−i(u2+iβ)XT2−T1 |Ft
]

= e−i(u2+iβ)Xt−T1EQ [e−i(u2+iβ)(XT2−T1
−Xt−T1

)
]

(1.24)

= e−i(u2+iβ)Xt−T1 exp{
∫ T2−T1

t−T1

(
i(u2 + iβ)bQ

s −
1

2
cQ
s (u2 + iβ)2

)
ds

× exp{
∫ T2−T1

t−T1

∫
R
(ei(u2+iβ)x − 1− i(u2 + iβ)xI{|x|≤1})F

Q
s (dx) ds}.

Example 1.2.2. Let us return to Example 1.1.3, where X is the process

de�ned in (1.6). In this case we can simplify the characteristic function

in (1.24):

EQ [e−i(u2+iβ)(XT2−T1
−Xt−T1

)
]

= exp{
∫ T2−T1

t−T1

ψQ(−(u2 + iβ)σ(s))ds},

where ψQ is the time-independent characteristic exponent of the Lévy process

V under Q, i.e EQ[eiuVt ] = etψ
Q(u).

Hence, in order to calculate the price process (πQ
t )t∈[0,T2] the only remaining

task is to compute the Fourier transform of the dampened payo� function f .

We summarize our results in the following

Theorem 1.2.3. Under the Hypotheses (H1)-(H3), the price process πQ
t of a

catastrophe insurance option written on the loss index with maturity T2 and

payo� h(LT2) > 0 is given
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1. for t ∈ [0, T1] by

πQ
t =

1

2π
e−

R T1
t λQ

s ds

∫
R2

f̂(u1, u2)e
−i(u1+iα)Lt exp{

T1∫
t

λQ
s ds

∞∫
0

e−i(u1+iα)xGQ(dx)}

× exp{
T2−T1∫
0

(
i(u2 + iβ)bQ

s −
1

2
cQ
s (u2 + iβ)2

)
ds}

× exp{
T2−T1∫
0

∫
R

(
ei(u2+iβ)x − 1− i(u2 + iβ)xI{|x|≤1}

)
FQ
s (dx)ds}du1du2,

and

2. for t > T1 by

πQ
t =

1

2π

∫
R2

f̂(u1, u2)e
−i(u1+iα)LT1e−i(u2+iβ)Xt−T1

× exp{
T2−T1∫
t−T1

(
i(u2 + iβ)bQ

s −
1

2
cQ
s (u2 + iβ)2

)
ds}

× exp{
T2−T1∫
t−T1

∫
R

(
ei(u2+iβ)x − 1− i(u2 + iβ)xI{|x|≤1}

)
FQ
s (dx)ds}du1du2.

Here f is the dampened payo� as de�ned in (1.18), and f̂ is its Fourier

transform (1.19).

Remark 1.2.4. In order to estimate πQ
t numerically several methods are

possible. One commonly used technique is the fast Fourier transform (FFT).

In our case we need to apply FFT for a double integral which implies reduced

speed of convergence. There exist various techniques to improve the conver-

gence speed (see for example the �integration-along-cut� method suggested

in [7]). However, speed becomes an issue only when one repeatedly needs to

price a large number of options. For further discussion on this topic we refer

to [12].

Remark 1.2.5. In this section we have chosen to model Zt by a time inho-

mogeneous Lévy process. This class of processes is very rich and �exible to
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model a wide range of phenomena, and at the same time it is analytically

very tractable. Note, however, that all the calculations go through exactly

in the same way even for other choices of processes for Zt, as long as the

conditional characteristic function is known. See also Section 2.3 for another

possible choice for Z.

1.3 Applications: call, put and spread catas-

trophe options

In this section we consider the most common catastrophe insurance options

traded in the market: call, put, and spread options. By computing explicitly

the Fourier transform corresponding to the payo�, we are able to provide

pricing formulas for these options using Theorem 1.2.3.

Example 1.3.1 (Call option).

Consider the payo� function of a catastrophe call option in the form

hcall(x) = (x−K)+ (1.25)

for some strike price K > 0. Then the corresponding payo� on a two dimen-

sional asset as introduced in (1.16) is

gcall(x1, x2) = (x1e
x2 −K)+I{x1>0} = (x1e

x2 −K)I{x1>0, x2>ln K
x1
},

and the dampened payo� function is

fcall(x1, x2) = e−αx1−βx2gcall(x1, x2)

= e−αx1−βx2(x1e
x2 −K)I{x1>0, x2>ln K

x1
}. (1.26)

Note that fcall belongs to L1(R2) for all (α, β) ∈ I1 = (0,∞) × (1,∞). For
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the Fourier transform f̂call we obtain

f̂call(u1, u2) =
1

2π

∫
R2

ei(x1u1+x2u2)fcall(x1, x2)dx1dx2

=
1

2π

∫ ∞

0

∫ ∞

ln K
x1

e−(α−iu1)x1−(β−iu2)x2(x1e
x2 −K)dx2dx1

=
1

2π

[∫ ∞

0

x1e
−(α−iu1)x1

∫ ∞

ln K
x1

e−(β−1−iu2)x2dx2dx1

−K
∫ ∞

0

e−(α−iu1)x1

∫ ∞

ln K
x1

e−(β−iu2)x2dx2dx1

]

=
1

2π

[
1

β − 1− iu2

∫ ∞

0

x1e
−(α−iu1)x1e−(β−1−iu2) lnK/x1dx1

− K

β − iu2

∫ ∞

0

e−(α−iu1)x1e−(β−iu2) lnK/x1dx1

]
=

1

2π

[
1

(β − 1− iu2)K(β−1−iu2)

∫ ∞

0

xβ−iu2

1 e−(α−iu1)x1dx1

− 1

(β − iu2)K(β−1−iu2)

∫ ∞

0

xβ−iu2

1 e−(α−iu1)x1dx1

]
=

1

2π

∫∞
0
xβ−iu2

1 e−(α−iu1)x1dx1

(β − 1− iu2)(β − iu2)K(β−1−iu2)

=
1

2π

Γ(β + 1− iu2)

(β − 1− iu2)(β − iu2)(α− iu1)(β+1−iu2)K(β−1−iu2)
,

where Γ(·) is the Gamma function.

To prove that the payo� function of a catastrophe call option (1.25) sat-

is�es the conditions of Theorem 1.2.3, it remains to show that

f̂call(u1, u2) ∈ L1(R2). (1.27)

Note that to prove (1.27) it is su�cient to consider the asymptotics of

|f̂call(u1, u2)| for |u1|, |u2| → ∞. In fact, since

lim
|u2|→∞

|Γ(β + 1− iu2)|e
π
2
|u2||u2|−β−

1
2 =

√
2π (1.28)
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(see 8.328.1 in [23]), we get

|f̂call(u1, u2)| =
1

2π

1

Kβ−1|e−iu2 lnK |

× |Γ(β + 1− iu2)||eiu2(ln |α−iu1|−i arctan u1
α

)|
|(β − 1− iu2)(β − iu2)(α− iu1)(β+1)|

=
1

2π

1

Kβ−1

|Γ(β + 1− iu2)|eu2 arctan
u1
α

|(β − 1− iu2)(β − iu2)(α− iu1)(β+1)|

∼ 1

2π

1

Kβ−1

√
2πe−

π
2
|u2||u2|β+ 1

2 eu2 arctan
u1
α

|u2|2|u1|β+1

∼ 1√
2π

1

Kβ−1

e−
π
2
|u2||u2|β−

3
2 eu2 arctan

u1
α

|u1|β+1
, (1.29)

where

f1(u1, u2) ∼ f2(u1, u2) :⇔ lim
|u1|,|u2|→∞

|f1(u1, u2)|
|f2(u1, u2)|

= 1.

Now we distinguish the following cases:

1. If u1u2 < 0, then (1.29) simpli�es to

|f̂call(u1, u2)| ∼
1√
2π

1

Kβ−1

e−
π
2
|u2||u2|β−

3
2 e−|u2 arctan

u1
α
|

|u1|β+1

∼ 1√
2π

1

Kβ−1

e−π|u2||u2|β−
3
2

|u1|β+1
, (1.30)

where the right hand side of (1.30) is integrable at in�nity.

2. If u1u2 > 0, then (1.29) is equivalent to

|f̂call(u1, u2)| ∼
1√
2π

1

Kβ−1

e−
π
2
|u2||u2|β−

3
2 e|u2| arctan |u1|

α

|u1|β+1
(1.31)

=
1√
2π

1

Kβ−1

e−
π
2
|u2||u2|β−

3
2 e

|u2|(π
2
−arctan α

|u1|
)

|u1|β+1

=
1√
2π

1

Kβ−1

|u2|β−
3
2 e

−|u2| arctan α
|u1|

|u1|β+1

∼ 1√
2π

1

Kβ−1

|u2|β−
3
2 e

−|u2| α
|u1|

|u1|β+1
. (1.32)
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Since ∫ ∞

0

u
β− 3

2
2 e

−u2
α
|u1|

|u1|β+1
du2 = α

1
2
−βΓ(β − 1

2
)|u1|−

3
2

is integrable at in�nity, the right hand side of (1.32) is integrable as

|u1|, |u2| → ∞.

We can thus apply Theorem 1.2.3 and obtain an explicit price for the call

option.

Once we know the price for call options, pricing of catastrophe insurance

put and spread options can be reduced to the pricing of call options with

standard arguments as we show in the next examples.

Example 1.3.2 (Put option). Let

hput(x) = (K − x)+

be the payo� of a catastrophe insurance put option. Then the payo�s of call

and put options with the same strike K are related through the formula

hput(x) = hcall(x) +K − LT2 .

We can thus determine the price πQ
put(t) of the put option by computing the

price πQ
call(t) of the call option and the following call-put parity:

πQ
put(t) = πQ

call(t) +K − EQ[LT2|Ft]

= πQ
call(t) +K − EQ[LT1ZT2−T1|Ft].

For the conditional expectation EQ[LT1ZT2−T1|Ft] we get by independence of

(Lt)t≤T1 and (ZT1+u)u≤T2−T1 that

1. if t ≤ T1,

EQ[LT1ZT2−T1|Ft] = EQ[LT1|Ft]EQ[ZT2−T1|Ft]

= (Lt + EQ[LT1 − Lt])E
Q[eXT2−T1 ] = (Lt + EQ[Y1]

T1∫
t

λQ
s ds)

× exp{
T2−T1∫
0

bQ
s +

1

2
cQ
s +

∫
R

(ex − 1 + xI{|x|≤1})F
Q
s (dx)

 ds};
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2. if t ∈ [T1, T2],

EQ[LT1ZT2−T1|Ft] = EQ[LT1e
XT2−T1 |Ft]

= LT1Zt−T1E
Q[exp{XT2−T1 −Xt−T1}] = LT1Zt−T1

× exp{
T2−T1∫
t−T1

bQ
s +

1

2
cQ
s +

∫
R

(ex − 1 + xI{|x|≤1})F
Q
s (dx)

 ds}.

Example 1.3.3 (Call and put spread options). A call spread option is a

capped call option which is a combination of buying a call option with strike

price K1, and selling at the same time a call option with the same maturity

but with the strike price K2 > K1. This corresponds to a payo� function at

maturity of the form

hspread(x) = (x−K1)
+ − (x−K2)

+

=


0, if 0 ≤ x ≤ K1;

x−K1, if K1 < x ≤ K2;

K2 −K1, if x > K2.

The price of the catastrophe call spread option is thus the di�erence of the

prices of the call options with strike prices K1 and K2 respectively.

Analogously we can calculate the price of a put spread catastrophe option

using the results in Example 1.3.2.

Remark 1.3.4. Note that for the above computations the damping param-

eter α in (1.26) has to be strictly bigger than zero. By (H2) and (1.17) this

implies that the distribution GQ of the claim sizes Yi, i = 1, 2, . . . , has to

ful�ll ∫
R+

eαxGQ(dy) <∞, for some α > 0 . (1.33)

Typical examples of the distributions satisfying (1.33) are the exponential,

Gamma, and truncated normal distributions. An important class of distribu-

tion functions which also satisfy (1.33) is the class of convolution equivalent

distribution functions S(α) for α > 0, which is convenient for the modeling
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of the claim sizes. See [34] for the de�nition and properties, and [35] for

an application of the convolution equivalent distributions. The generalized

inverse Gaussian distribution is one of the most important examples of the

convolution equivalent distributions.

On the other hand, distributions GQ with heavy tails do not ful�ll (1.33)

(they would require α ≤ 0). However, because the class of heavy tailed dis-

tributions is very relevant for catastrophe claim size modeling, we will in the

next subsection specify a framework, in which we can also price catastrophe

options with heavy tailed claims.

1.4 Pricing with heavy-tailed losses

In order to treat heavy-tailed losses, i.e. to be able to take a damping param-

eter α = 0 in (1.17), we make the assumption that the distribution function

GQ of Yi, i = 1, 2, . . . , has support on (ε,∞) for some ε > 0. In other words,

we assume that if a catastrophe occurs then the corresponding loss amount

is greater than some small ε > 0. This assumption is obviously no serious

restriction, especially in the light of the fact that PCS de�nes a catastrophe

as a single incident or a series of related incidents (man-made or natural dis-

asters) that causes insured property losses of at least $25 million. Note that

this implies

{LT1 > 0} = {LT1 > ε}, (1.34)

since L is a time inhomogeneous compound Poisson process until T1.

In this framework we now want to apply the Fourier technique of Sec-

tion 1.2.2 to price a catastrophe put option. To this end we �rst perform the

following transformations. The price process of a catastrophe put option is

given by

πQ
t = EQ [(K − LT1e

XT2−T1 )+|Ft
]
. (1.35)

Since L is a time inhomogeneous compound Poisson process until T1 under
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Q, we can rewrite (1.35) as

πQ
t = EQ

[
(K − LT1e

XT2−T1 )+I{NT1
=0}|Ft

]
+ EQ

[
(K − LT1e

XT2−T1 )+I{NT1
>0}|Ft

]
= KQ(NT1 = 0|Ft) + EQ

[
(K − LT1e

XT2−T1 )+I{LT1
>0}|Ft

]
, (1.36)

where we have used that LT1I{NT1
=0} = 0.

Let L̄T1 := LT1 − ε. Then by (1.34)

{LT1 > 0} = {LT1 > ε} = {L̄T1 + ε > ε} = {L̄T1 > 0}.

Hence we obtain

EQ
[
(K − LT1e

XT2−T1 )+I{LT1
>0}|Ft

]
= EQ

[
(K − (L̄T1 + ε)eXT2−T1 )+I{L̄T1

>0}|Ft
]
. (1.37)

De�ne the pay o� function g by

g(x1, x2) = (K − (x1 + ε)ex2)+I{x1>0}.

In order to apply the Fourier method of Theorem 1.2.3, we continuously

extend g from R+ × R to R2 as

ḡ(x1, x2) = (K − (|x1|+ ε)ex2)+.

Then we have

EQ [ḡ(L̄T1 , XT2−T1)|Ft
]

= EQ
[
(K − (L̄T1 + ε)eXT2−T1 )+I{L̄T1

>0}|Ft
]

+ EQ
[
(K − (|L̄T1|+ ε)eXT2−T1 )+I{L̄T1

≤0}|Ft
]
. (1.38)

Since {L̄T1 ≤ 0} = {LT1 = 0} = {L̄T1 = −ε}, the second term on the

right-hand side of (1.38) is

EQ
[
(K − (|L̄T1|+ ε)eXT2−T1 )+I{L̄T1

≤0}|Ft
]

= EQ
[
(K − 2εeXT2−T1 )+I{L̄T1

=−ε}|Ft
]

= EQ [(K − 2εeXT2−T1 )+|Ft
]
Q(L̄T1 = −ε|Ft)

= EQ [(K − 2εeXT2−T1 )+|Ft
]
Q(LT1 = 0|Ft)

= EQ [(K − 2εeXT2−T1 )+|Ft
]
Q(NT1 = 0|Ft). (1.39)
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Together, equations (1.36)�(1.39) lead to the following expression for the

price process of a put option.

Proposition 1.4.1. Under Assumption (1.34), the price process of a catas-

trophe put option is given by

πQ
t = KP 0

t + P 1
t P

0
t + P 2

t ,

where

P 0
t = e−

R T1
t λQ(s)dsI{Nt=0},

P 1
t = EQ [(K − 2εeXT2−T1 )+|Ft

]
,

P 2
t = EQ [(K − (|L̄T1|+ ε)eXT2−T1 )+|Ft

]
.

Proof. Given equations (1.36)�(1.39), it only remains to validate the

expression for P 0. Since Nt is a time inhomogeneous Poisson process with

deterministic intensity λQ(t) > 0 under Q, we have

Q(NT1 = 0|Ft) = Q((NT1 −Nt) +Nt = 0|Ft)

= Q((NT1 −Nt) + n = 0|Ft)|n=Nt

= e−
R T1

t λQ(s)dsI{Nt=0}.

�

Note that P 1
t is the price process of a regular put option written on a one

dimensional asset that is given by an exponential Lévy process. This price can

be obtained by Fourier transform techniques or any other favorite method.

To use in one dimension the Fourier transform methods of Theorem 1.2.3,

one computes that the dampened pay o�

f2(x2) := (K − 2εex2)+eβx2 for β > 1

has the Fourier transform

f̂2(u) =
1√
2π

∫ ln K
2ε

−∞
eiux2eβx2(K − 2εex2)dx2

=
K√
2π

(
K

2ε

)β+iu
1

(β + iu)(β + 1 + iu)
∈ L1(R).
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In order to calculate the last term P 2
t of the put price process πQ

t we can

now use Theorem 1.2.3 with damping parameter α = 0 (which then allows

for heavy tailed loss distributions by Remark 1.3.4). For this purpose we

check that Hypothesis (H1)�(H3) hold true. First we consider the dampened

function

f1(x1, x2) := eβx2 ḡ(x1, x2) = eβx2(K − (|x1|+ ε)ex2)+ for β > 1.

Since f1 ∈ L1(R2), we have (0,−β) ∈ I1 for all β > 1. Hence Hypothesis

(H1) is satis�ed for β > 1 and α = 0. We assume that EQ[eβXT2−T1 ] < ∞
for some β > 1. Then by (1.17), we have (0, β) ∈ I2 ∩ I1. Thus (H2) is also
satis�ed.

Remark 1.4.2. Note that we can now admit heavy-tailed loss distributions,

because we don't need to dampen in x1 anymore, since α = 0.

To check (H3) we consider the Fourier transform of f1:

f̂1(u1, u2) =
1

2π

∫
R2

ei(x1u1+x2u2)f1(x1, x2)dx1dx2

=
1

2π

∫
R2

ei(x1u1+x2u2)eβx2(K − (|x1|+ ε)ex2)I{|x1|≤Ke−x2−ε, x2≤ln K
ε
}dx1dx2

=
1

2π

∫ ln K
ε

−∞

∫ Ke−x2−ε

−Ke−x2+ε

ei(u1x1+u2x2)eβx2(K − (|x1|+ ε)ex2)dx1dx2

=
1

2π

∫ ln K
ε

−∞
eiu2x2e(β+1)x2

1− cos(u1(Ke
−x2 − ε))

u2
1

dx2.

Lemma 1.4.3. There exists C > 0 such that

|f̂1(u1, u2)|(1 + u2
2u1 + u2

1 + u2
2) ≤ C for all u1, u2 ∈ R. (1.40)

Proof. We prove Lemma 1.4.3 in four steps:

1. Since f1 ∈ L1(R2), f̂1 is bounded, i.e. there exists 0 < C1 < ∞ such

that

|f̂1(u1, u2)| ≤ C1 for all u1, u2 ∈ R.
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2. Then we have

|f̂1(u1, u2)|u2
1 ≤

1

2π

∫ ln K
ε

−∞
2e(β+1)x2dx2 =

1

π

1

β + 1

(
K

ε

)β+1

=: C2 <∞.

3. Integrating by parts we obtain

|f̂1(u1, u2)|u2
2

=
1

2πu2
1

∣∣∣∣∣
∫ ln K

ε

−∞

∂2

∂x2
2

(eiu2x2) · e(β+1)x2

(
1− cos(u1(Ke

−x2 − ε))
)
dx2

∣∣∣∣∣
=

1

2πu2
1

∣∣∣ ∫ ln K
ε

−∞

∂

∂x2

(eiu2x2) · e(β+1)x2

(
(β + 1)

(
1− cos(u1(Ke

−x2 − ε))
)

− sin(u1(Ke
−x2 − ε))u1Ke

−x2
)
dx2

∣∣
=

1

2πu2
1

∣∣∣ ∫ ln K
ε

−∞
eiu2x2

{
(β + 1)2e(β+1)x2

(
1− cos(u1(Ke

−x2 − ε))
)

− 2(β + 1)eβx2u1K sin(u1(Ke
−x2 − ε)) + eβx2u1K

(
sin(u1(Ke

−x2 − ε))

+u1Ke
−x2 cosu1(Ke

−x2 − ε)
)}

dx2

∣∣∣.
Substituting s = s(x2) := u1(Ke

−x2 − ε) we note that

|f̂1(u1, u2)|u2
2 ≤

1

2πu2
1

∫ ln K
ε

−∞

∣∣∣(β + 1)2e(β+1)x2

(
1− cos s(x2)

)
− (2β + 1)eβx2u1K sin s(x2) + u2

1K
2e(β−1)x2 cos s(x2)

∣∣∣dx2

≤ 1

2π

∫ ln K
ε

−∞

(
(β + 1)2e(β+1)x2

u2
1(Ke

−x2 − ε)2

2u2
1

+ (2β + 1)eβx2

∣∣∣∣sin(u1(Ke
−x2 − ε))

u1

∣∣∣∣+K2e(β−1)x2| cos s(x2)|
)
dx2

≤ 1

2π

∫ ln K
ε

−∞

(
(β + 1)2e(β+1)x2

K2e−2x2 + ε2

2
+ (2β + 1)eβx2|Ke−x2 − ε|

+K2e(β−1)x2

)
dx2 =: C3 <∞.

4. Further we consider |f̂1(u1, u2)|u2
2u1. Since for 0 < |u1| < 1 we have

|f̂1(u1, u2)|u2
2u1 ≤ |f̂1(u1, u2)|u2

2 ≤ C3,
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we can assume that |u1| > 1. As above we get

|f̂1(u1, u2)|u2
2u1 =

1

2πu1

∣∣∣ ∫ ln K
ε

−∞
eiu2x2

{
(β + 1)2e(β+1)x2(1− cos s)

− 2(β + 1)eβx2u1K sin s+ eβx2u1K(sin s +u1Ke
−x2 cos s)

}
dx2

∣∣∣
=

1

2πu1

∣∣∣ ∫ ln K
ε

−∞
eiu2x2

{
(β + 1)2e(β+1)x2(1− cos s)

− (2β + 1)eβx2u1K sin s+ e(β−1)x2u2
1K

2 cos s}dx2

∣∣∣
=: G(u1).

Substituting z = Ke−x2 − ε = s
u1

we rewrite G(u1) as

G(u1) =
1

2πu1

∣∣∣ ∫ ∞

0

(
K

ε+ z

)iu2 {
(β + 1)2

(
K

ε+ z

)β+1

(1− cos(u1z))

− (2β + 1)u1K

(
K

ε+ z

)β
sin(u1z)

+ u2
1K

2

(
K

ε+ s

)β−1

cos(u1z)
} ds

ε+ z

∣∣∣
≤ C4 +

Kβ+1u1

2π

∣∣∣ ∫ ∞

0

(
1

ε+ z

)β+iu2

cosu1zdz
∣∣∣

= C4 +
Kβ+1

2π

∣∣∣ ∫ ∞

0

(β + iu2)

(
1

ε+ z

)β+1+iu2

sinu1zdz
∣∣∣

≤ C4 +
Kβ+1

2πεβ+1
=: C4 + C5 <∞.

Now (1.40) holds with C :=
∑5

i=1Ci. �

Corollary 1.4.4. The Fourier transform f̂1 belongs to L1(R2), i.e. (H3) is

satis�ed.

Proof. By Lemma 1.4.3 we have∫
R2

|f̂1(u1, u2)|du1du2 ≤ C

∫
R2

1

1 + u2
2(1 + |u1|) + u2

1

du2du1

= 2πC

∫ ∞

0

1√
(1 + u2

1)(1 + u1)
du1 <∞.
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�

Hence all assumptions necessary to apply Theorem 1.2.3 and to calculate

P 2
t with a damping parameter α = 0 are satis�ed, and we can compute prices

of put options including heavy tail distributed catastrophe losses. Pricing of

catastrophe call and spread options can then be obtained by using call-put

parity arguments as in Examples 1.3.2�1.3.3.



Chapter 2

Pricing of catastrophe options

under assumption of immediate

loss reestimation

2.1 Modeling the loss index

Motivated by the index structure (2) elaborated in the introductory section

of Part I, we now model the stochastic process L = (Lt)0≤t≤T2 representing

the loss index as

Lt =

Nt∧T1∑
j=1

YjA
j
t−τj , t ∈ [0, T2] , (2.1)

where

(L1) Ns, s ∈ [0, T2], is a Poisson process with intensity λ > 0 and jump times

τj , that models the number of catastrophes occurring during the loss

period.

(L2) Yj, j = 1, 2, . . . , are positive i.i.d. random variables with distribution

function F Y , that represent the �rst loss estimation at the time of

occurrence of the j-th catastrophe.

38
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(L3) Ajs, s ∈ [0, T2], j = 1, 2, . . . , are positive i.i.d. martingales such that

Aj0 = 1, ∀j = 1, 2, . . . .

(L4) Aj, Yj, j = 1, 2, . . . , and N are independent.

In the sequel we will often drop the index j and simply write Y and A in

some formulas, when only the probability distribution of the objects matters.

The martingales Ajt represent the unbiased reestimation factors. Here we

assume that reestimation begins immediately after the occurrence of the j-th

catastrophe with initial loss estimate Yj , individually for each catastrophe.

We here suppose that market participants observe the evolution of the

individual catastrophe losses. Note that observing the market quotes of the

catastrophe index L alone is in general not su�cient for the knowledge of the

single reestimation factors A. However, it might not be unrealistic to assume

that market participants are able to obtain additional information about

the evolution of individual catastrophes. Therefore, we assume the market

information �ltration (Ft)0≤t≤T2 to be the right continuous completion of

the �ltration generated by the catastrophe occurrences N , the corresponding

initial loss estimates Yj , and the corresponding reestimation factors Aj.

2.1.1 Pricing of insurance derivatives

We consider again the problem of pricing a European option with payo� de-

pending on the value LT2 of the loss index at maturity T2. In the catastrophe

insurance market the underlying index L is not traded. Hence the market is

highly incomplete and the choice of the pricing measure is not obvious.

As in Section 1.2.1 we adopt here the common approach that the risk

neutral pricing measure is structure preserving for the model, except that

the pricing measure might introduce a drift into the reestimation martingales

Aj, j = 1, 2, . . .. At this place we don't discuss further the choice of the

pricing measure. Therefore, to simplify the notation and without loss of
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generality, we perform pricing with the model speci�cation given under P,
where we substitute the hypothesis (L3) with

(L3') Ajs, s ∈ [0, T2], j = 1, 2, . . . , are positive i.i.d. semimartingales such

that

Aj0 = 1, ∀j = 1, 2, . . . .

Recall that a catastrophe insurance option is a European derivative H

written on the loss index with maturity T2 and payo�

h(LT2) > 0

for a payo� function h : R 7→ R+. Analogously to Section 1.2.2 we consider

the price processes of the catastrophe option H in discounted terms, i.e the

price process of H is given by

πt = E [h(LT2)|Ft] , t ∈ [0, T2]. (2.2)

In the following we will calculate the expected payo� in (2.2) by using Fourier

transform techniques. To this end, we impose the following conjectures:

(C1) The payo� function h is continuous.

(C2) There exists k ∈ R such that

h− k ∈ L2(R) =

{
g : R → C measurable

∣∣∣ ∫ ∞

−∞
|g(x)|2dx <∞

}
.

Remark 2.1.1. In Chapter 1 we were able to consider more general options

that did not necessarily ful�ll (C2) by considering dampened payo�s. How-

ever, as we have seen in Subsection 1.4, the cost of this approach is that

treating heavy tailed distributions of claim sizes Y becomes more compli-

cated. The approach in this section allows for general claim size modeling,

including distributions with heavy tails. Further, as we will see in Sub-

section 2.2, Conjecture (C2) is satis�ed by call and put spread catastrophe

insurance options, the typical options traded in the market.
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Now let

ĥ(u) =
1

2π

∫ ∞

−∞
e−iuz(h(z)− k)dz, ∀u ∈ R,

be the Fourier transform of h− k and assume that

(C3) ĥ ∈ L1(R) .

Note that Conjecture (C2) does not necessarily imply (C3). Since (C2)

and (C3) are in force, the following inversion formula holds (see cf. [33],

Section 8.2)

h(x)− k =

∫ ∞

−∞
eiuxĥ(u)du . (2.3)

Note that Remark 1.2.1 is also in force here because of (C1).

By (2.3) and (C3) we obtain

πt = E[h(LT2)|Ft] = E[h(LT2)− k|Ft] + k

= E

[∫ ∞

−∞
eiuLT2 ĥ(u)du|Ft

]
+ k (2.4)

=

∫ ∞

−∞
E
[
eiuLT2 |Ft

]
ĥ(u)du+ k, (2.5)

where in the last equation we could apply Fubini's theorem because of (C3).

Hence, in order to calculate the price process (πt)t∈[0,T2] in (2.5), the

essential task is to compute the conditional characteristic function of LT2

ct(u) := E
[
eiuLT2 |Ft

]
= E

exp

iu
NT1∑
j=1

YjA
j
T2−τj


∣∣∣∣∣∣Ft
 , u ∈ R, (2.6)

for t ∈ [0, T2]. We de�ne the conditional characteristic function of the rees-

timation martingale Aj as

ψA
j

t (s, u) := E
[
eiuA

j
s

∣∣∣FAj

t

]
, 0 ≤ t ≤ s ≤ T2 , (2.7)

where FAj

t := σ(Ajs , 0 ≤ s ≤ t) is the �ltration generated by the j-th reesti-

mation factor. The main result of this part is

Theorem 2.1.2. The conditional characteristic function (2.6) of the loss

index LT2 is given
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1. for t < T1 by

ct(u) = exp
{
−λ(T1 − t)

(
1− E

[
ψA0 (T2 − U, uY )

])}
×

Nt∏
j=1

ψA
j

t−sj
(T2 − sj, uyj)

∣∣
sj=τj , yj=Yj

, u ∈ R;

2. for t ∈ [T1, T2] by

ct(u) =

NT1∏
j=1

ψA
j

t−sj
(T2 − sj, uyj)

∣∣
sj=τj , yj=Yj

, u ∈ R .

Here U is a uniformly distributed on [t, T1] random variable, and Y is a

random variable with the distribution function F Y and independent of U .

Note that in Theorem 2.1.2, the times of catastrophe occurrence τj and

the initial loss estimates Yj up to time t are known data.

2.1.2 Proof of Theorem 2.1.2

We distinguish the computations over the two periods.

1) For t ∈ [0, T1] we get by Assumption (L4) and by the independent incre-

ments of Nt that

ct(u) = E

exp

iu
 Nt∑

j=1

YjA
j
T2−τj +

NT1∑
j=Nt+1

YjA
j
T2−τj


∣∣∣∣∣∣Ft


= E

[
exp

{
iu

Nt∑
j=1

YjA
j
T2−τj

}∣∣∣∣∣Ft
]

︸ ︷︷ ︸
:=at(u)

E

exp

iu
NT1∑

j=Nt+1

YjA
j
T2−τj


∣∣∣∣∣∣Ft


︸ ︷︷ ︸
:=bt(u)

.

(2.8)
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We compute separately the terms at and bt in (2.8). By Assumption (L4) for

at(u) , u ∈ R, we have

at(u) = E

[
exp

{
iu

Nt∑
j=1

YjA
j
T2−τj

}∣∣∣∣∣Ft
]

= E

[
exp

{
iu

n∑
j=1

yjA
j
T2−sj

}∣∣∣∣∣Ft
]
n=Nt , sj=τj , yj=Yj

=
Nt∏
j=1

E
[
exp

{
iuyjA

j
T2−sj

}∣∣∣Ft]
sj=τj , yj=Yj

=
Nt∏
j=1

E
[
exp

{
iuyjA

j
T2−sj

} ∣∣∣FAj

t−sj

]
sj=τj , yj=Yj

=
Nt∏
j=1

ψA
j

t−sj
(T2 − sj, uyj)

∣∣∣
sj=τj , yj=Yj

.

Note that for this �rst term the Yj's, τj's, and Nt are known data, because

the corresponding catastrophes have happened before t.

For the second term bt(u) , u ∈ R, we get again by (L4) and the indepen-

dent increments of the Poisson process N

bt(u) = E

exp{iu
NT1∑

j=Nt+1

YjA
j
T2−τj}

∣∣∣∣∣∣Ft
 = E

exp{iu
NT1∑

j=Nt+1

YjA
j
T2−τj}



= E

E[eiu nP
j=1

yjA
j
T2−sj

∣∣∣NT1 −Nt, Y1, . . . , YNT1
−Ntτ1, . . . , τNT1

−Nt

]
n=NT1

−Nt,
yj=Yj ,
sj=τj


= E

E[ n∏
j=1

ψA
j

0 (T2 − sj, uyj)
∣∣∣NT1 −Nt, Y1, . . . , YNT1

−Ntτ1, . . . , τNT1
−Nt

]
n=NT1

−Nt,
yj=Yj ,
sj=τj


= E

 NT1∏
j=Nt+1

ψA0 (T2 − τj, uYj)

 . (2.9)

By Theorem 5.2.1 of [47] we obtain the following result:
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Lemma 2.1.3. Let Nt be a Poisson process with jump times τj, j = 1, 2, . . ..

Then for all 0 ≤ t ≤ T,

(τNt+1, . . . , τNT
|NT −Nt = n)

has the same distribution as the order statistics (U(1), . . . , U(n)), where Uj, j =

1, . . . , n are i.i.d. uniformly distributed on the interval [t, T ].

Using Lemma 2.1.3 and again Assumption (L4), we can replace the τj's

in (2.9) with the order statistics U(j) of i.i.d. uniformly distributed random

variables on the interval [t, T1] and get

bt(u) = E

 NT1∏
j=Nt+1

ψA0 (T2 − U(j), uYj)

 , u ∈ R .

(2.10)

Next, we need the following simple auxiliary lemma

Lemma 2.1.4. Consider the order statistics U(1), . . . , U(n) of n i.i.d. ran-

dom variables U1, . . . , Un and a bounded measurable function f(x1, . . . , xn)

symmetric in its arguments. Then

E
[
f(U(1), . . . , U(n))

]
= E [f(U1, . . . , Un)] .

Proof. We denote by Σn the set of all permutations. of {1, . . . , n}

E
[
f(U(1), . . . , U(n))

]
= E

[∑
σ∈Σn

f(Uσ(1), . . . , Uσ(n))I{Uσ(1)<···<Uσ(n)}

]
= E

[
f(U1, . . . , Un)

∑
σ∈Σn

I{Uσ(1)<···<Uσ(n)}︸ ︷︷ ︸
1

]

= E[f(U1, . . . , Un)].

�

By the i.i.d. assumption of the Yj's and Aj's, we see that the function

fnu (s1, . . . , sn) := E

[
n∏
j=1

ψA0 (T2 − sj, uYj)

]
, u ∈ R ,
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is symmetric in s1 . . . , sn. It is then not di�cult to see, using Lemma 2.1.4,

that

bt(u) = E

[
E
[ n∏
j=1

ψA0 (T2 − sj, uYj)
∣∣∣NT1 −Nt, U(1), . . . , U(NT1

−Nt)

]
n=NT1

−Nt,
sj=U(j)

]

= E

[
fnu (s1, . . . , sn)

∣∣∣n=NT1
−Nt,

sj=U(j)

]
= E

[
fnu (U(1), . . . , U(n))

∣∣∣
n=NT1

−Nt

]

= E

[
fnu (U1, . . . , Un)

∣∣∣
n=NT1

−Nt

]
= E

 NT1∏
j=Nt+1

ψA0 (T2 − Uj, uYj)


= E

[
exp

{
iu

NT1∑
j=Nt+1

YjA
j
T2−Uj

}]
, (2.11)

where we have substituted the order statistics U(j) with the i.i.d. uniform

variables Uj.

Note that (2.11) coincides with the characteristic function of a compound

Poisson process of the form
NT1∑

j=Nt+1

Zj,

where Zj = YjA
j
T2−Uj

, j = 1, 2, . . . , are i.i.d. The form of the characteristic

function is in this case well-known. Thus we can rewrite (2.11) as

E

exp{iu
NT1∑

j=Nt+1

YjA
j
T2−Uj

}

 = exp
{
−λ(T1 − t)

(
1− E

[
eiuZ

1
])}

= exp
{
−λ(T1 − t)

(
1− E

[
ψA0 (T2 − U, uY )

])}
.

This completes the proof for the case t ≤ T1.

2) For the case when t > T1, we get

ct(u) =

NT1∏
j=1

ψA
j

t−sj
(T2 − sj, uyj)

∣∣
sj=τj , yj=Yj

; u ∈ R ,

as for the term at in the case 0 ≤ t ≤ T1.

This completes the proof of Theorem 2.1.2.
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Remark 2.1.5. In [49] a special case of our model is presented where the

reestimation factor A is a geometric Brownian motion. In this case, the

conditional characteristic function of the reestimation factor can be computed

by numeric integration via

ψAt (s, u) = E
[
eiu exp(Bs− 1

2
s)
∣∣∣Ft] = E

[
eiu exp(Bt− 1

2
t) exp{Bs−Bt− 1

2
(s−t)}

∣∣∣Ft]
= E

[
eiuwt exp(Bs−t− 1

2
(s−t))

] ∣∣∣
wt=e

Bt− 1
2 t

=

∫
eiuwtey

e−
(y− 1

2 (s−t))2

2(s−t) dy
∣∣∣
wt=e

Bt− 1
2 t
.

Here we note that no closed-form expression is known for the lognormal

characteristic function. Moreover, the numerical computation of lognormal

characteristic functions is a fairly challenging problem because the de�ning

integral formulas are not well suited to the common numerical integration

techniques. However, several approaches have been proposed to calculate the

characteristic function of a lognormal random variable. For instance, in [38]

two main methods were introduced. The �rst one is to solve a functional

di�erential equation, applying the fact that the Fourier transform of the

lognormal characteristic functions is known, and therefore the solution is

unique. Another approach of [38] is to evaluate the characteristic function

as a convergent series of Hermite functions. See [38] for more details. We

refer also to [2] and [24] for further issues on the numerical computation of

the characteristic function of a lognormal random variable.

In Section 2.3 we turn our attention to a class of reestimation processes

where the conditional characteristic function is numerically tractable and in

some cases analytically obtainable: a�ne processes. For further information

on a�ne processes and their applications to mathematical �nance, we refer

to [16], [15] and [21].
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2.2 Pricing of call and put spreads

We conclude Chapter 2 by applying the developed pricing method to call

and put spread options, which are the typical catastrophe options traded in

the market.

A call spread option with strike prices 0 < K1 < K2 is a European

derivative with the payo� function at maturity given by

h(x) =


0, if 0 ≤ x ≤ K1;

x−K1, if K1 < x ≤ K2;

K2 −K1, if x > K2.

The integrability condition h− k ∈ L2(R+) is satis�ed for k := K2 −K1. In

particular, h− k ∈ L1(R+).

To satisfy (C1) and (C3) we continuously extend h from R+ to R by

h̄(x) :=

{
h(−x), if x < 0;

h(x), if x ≥ 0.

Note that the price processes of the two corresponding options with payo�s

h(LT2) and h̄(LT2) remain the same, because LT2 ≥ 0.

Let
ˆ̄h(u) :=

1

2π

∫ ∞

−∞
e−iuz(h̄(z)− k)dz, ∀u ∈ R,

be the Fourier transform of h̄− k. Then

ˆ̄h(u) =
1

2π

[∫ −K1

−K2

e−iux(−x−K2)dx

+

∫ K1

−K1

e−iux(K1 −K2)dx+

∫ K2

K1

e−iux(x−K2)dx

]
=

1

2πu2

[
e−iuK2 + eiuK2 − e−iuK1 − eiuK1

]
=

1

πu2
(<eiuK2 −<eiuK1) =

1

πu2
(cosuK2 − cosuK1) ∈ L1(R),

and by applying the inversion formula (2.3) to h̄(x) for x ≥ 0, we obtain

that (2.3) holds also for h, since h(x) = h̄(x) for x ≥ 0.
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In particular since LT2 ≥ 0 a.s., for the price of the call spread we can

write

πCSt = E[h(LT2)− k|Ft] + k = E[h̄(LT2)− k|Ft] + k

= E

[∫ ∞

−∞
eiuLT2 ˆ̄h(u)du|Ft

]
+ k

=

∫ ∞

−∞
E
[
eiuLT2 |Ft

] ˆ̄h(u)du+ k

=

∫ ∞

−∞
ct(u)

ˆ̄h(u)du+ k

=
1

π

∫ ∞

−∞

ct(u)

u2
(cosuK2 − cosuK1)du+K2 −K1, (2.12)

where ct(u) is de�ned in (2.6). Note that the integral in (2.12) is real-valued,

since =ct(−u) = −=ct(u) by de�nition of ct.

Analogously, for the put spread catastrophe option with payo� at the

maturity given by

g(x) =


K2 −K1, if 0 ≤ x ≤ K1;

K2 − x, if K1 < x ≤ K2;

0, if x > K2,

we obtain

πPSt =
1

π

∫ ∞

−∞

ct(u)

u2
(cosuK1 − cosuK2)du. (2.13)

Note that the call-put parity is satis�ed:

πPSt = K2 −K1 − πCSt .

2.3 Reestimation with positive a�ne processes

In this section we suppose that the reestimation factors are given by positive

a�ne processes. A�ne processes constitute a rich class of processes suitable

to model a wide range of phenomena. At the same time the advantage is

that the conditional characteristic function can be obtained explicitly up to

the solution of two Riccati equations.
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De�nition 2.3.1. A Markov process A = (At,Px) on [0,∞] is called an

a�ne process if there exist C-valued functions φ(t, u) and ψ(t, u), de�ned on

R+ × R, such that for t ≥ 0

E
[
eiuAT2

∣∣Ft] = eφ(T2−t,u)+ψ(T2−t,u)At . (2.14)

We assume that

(A1) A is conservative, i.e. for every t > 0 and x ≥ 0

Px[At <∞] = 1.

(A2) A is stochastically continuous for every Px.

By Proposition 1.1 in [30] Assumption (A2) is equivalent to the assumption

that φ(t, u) and ψ(t, u) are continuous in t for each u.

In the framework of our model, the computation of the conditional charac-

teristic function reduces to the computation of φ and ψ. In some cases these

are explicitly known, otherwise they can be obtained numerically. In the par-

ticular case when the reestimation factors remain positive a�ne martingales

under the pricing measure we are able to prove the following characteriza-

tion, which provides a useful simpli�cation of the conditional characteristic

function.

Theorem 2.3.2. Let A be an a�ne process, satisfying Assumptions (A1)

and (A2). Then A is a positive local martingale if and only if A admits the

following semimartingale characteristics (B,C, ν):

Bt = β

∫ t

0

Asds,

Ct = α

∫ t

0

Asds, and

ν(dt, dy) = Atµ(dy)dt,

where

β = µ[1,∞)−
∫ ∞

1

yµ(dy),

α ≥ 0, and µ is a Lévy measure on (0,∞).
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Proof. Since A satis�es Assumptions (A1) and (A2), by Theorem 1.1

in [30] and Theorem 2.12 in [15] A is a positive a�ne semimartingale if and

only if At admits the following characteristics (B,C, ν):

Bt =

∫ t

0

(b̃+ βAs)ds,

Ct = α

∫ t

0

Asds, and

ν(dt, dy) = (m(dy) + Atµ(dy))dt,

for every Px, where
b̃ = b+

∫
(0,∞)

(1 ∧ y)m(dy),

α, b ≥ 0, β ∈ R, m and µ are Lévy measures on (0,∞), such that∫
(0,∞)

(y ∧ 1)m(dy) <∞.

By (A2) and Theorem 7.16 in [11] the following operator L

Lf(x) =
1

2
αxf ′′(x) + (b+ βx)f ′(x) +

∫
(0,∞)

(f(x+ y)− f(x))m(dy)

+ x

∫
(0,∞)

(f(x+ y)− f(x)− f ′(x)(1 ∧ y))µ(dy) (2.15)

on C2(R+) is a version of the restriction of the extended in�nitesimal gener-

ator1 of A to C2(R+). Then A is a local martingale, if and only if

Lf(x) ≡ 0 for f(x) = x.

Substituting f(x) = x in (2.15), we get

Lx = b+ βx+

∫
(0,∞)

ym(dy) + x

∫
(0,∞)

(y − (1 ∧ y))µ(dy)

=
(
β +

∫ ∞

1

(y − 1)µ(dy)
)
x+ b+

∫
(0,∞)

ym(dy).

1An operator L with domain DL is said to be an extended in�nitesimal generator for

A if DL consists of those Borel functions f for which there exists a Borel function Lf such

that the process

Lf
t = f(At)− f(A0)−

∫ t

0

Lf(Xs)ds

is a local martingale.
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Hence, A is a local martingale if and only if

(β +

∫ ∞

1

(y − 1)µ(dy))x+ b+

∫
(0,∞)

ym(dy) = 0. (2.16)

for any x ∈ R+. Since b ≥ 0 and m is a non-negative measure, condi-

tion (2.16) means that

b = 0, m ≡ 0, and β = µ[1,∞)−
∫ ∞

1

yµ(dy). (2.17)

�

Let A be an a�ne process, satisfying Assumptions (A1) and (A2). By The-

orem 4.3 in [21] the conditional characteristic function of A satis�es (2.14),

where φ(t, u) and ψ(t, u) solve the equations

∂tψ(t, u) = R(ψ(t, u)), ψ(0, u) = iu, and (2.18)

φ(t, u) =

∫ t

0

F (ψ(s, u))ds, (2.19)

where, for z ∈ {C | <z ≤ 0},

R(z) =
1

2
αz2 + βz +

∫
(0,∞)

(ezy − 1− z(y ∧ 1))µ(dy), (2.20)

F (z) = bz +

∫
(0,∞)

(ezy − 1)m(dy), (2.21)

and α, β, b,m, µ are the parameters of the in�nitesimal generator (2.15) of A.

If A is a local martingale, then by (2.17) we can simplify (2.21) and (2.20)

as follows:

R(z) =
1

2
αz2 +

∫
(0,∞)

(ezy − zy − 1)µ(dy), and (2.22)

F (z) ≡ 0. (2.23)

From (2.23) and (2.19) we immediately obtain for positive a�ne local mar-

tingales that

φ(t, u) ≡ 0.

In order to determine ψ, one has in general to solve (2.19) numerically. For

some special cases, however, it is possible to compute ψ analytically. We give

two examples.
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Example 2.3.3. If A has no jump part then A is called Feller di�usion (see

e.g. [15]). In that case the positive a�ne martingale dynamics is given by

dAt =
√
αAtdWt ,

where Wt is a standard Brownian motion. Consequently, we have µ = 0

in (2.22) and we can rewrite (2.18) as

ψ′t =
1

2
αψ2

t . (2.24)

Solving the di�erential equation (2.24) we get

ψ(t, u) ≡ 0 or ψ(t, u) = − 1
1
2
αt+ C(u)

, u ∈ R,

where C(u) can be found from the boundary condition ψ(0, u) = iu. Substi-

tuting C(u) into ψ, we get

ψ(t, u) ≡ 0 or ψ(t, u) = − 1
1
2
αt+ i

u

, u ∈ R.

Note that if we have no jump part, then A has positive probability to be

absorbed at 0. However, it may still be of interest to consider also the

case of positive probability of absorption at zero, if we wish to include the

possibility of fraud or falsi�ed reporting of claims into the model. In this

case, reestimation might discover the fraud and the previous fake evaluation

will be set to zero.

Example 2.3.4. In order to give an example of a positive a�ne martingale

with jumps where we can solve for ψ explicitly, we specify the jump density

µ(dy) in the semimartingale characteristics in Theorem 2.3.2 as

µ(dy) =
3

4
√
π

dy

y5/2
.

Then some calculations give R(z) in (2.20)

R(z) =
1

2
αz2 +

3

4
√
π

∫
(0,∞)

(ezy − zy − 1)
dy

y5/2
(2.25)

=
1

2
αz2 + (−z)3/2 (2.26)
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for z ∈ {C | <z ≤ 0}. Consider η(t, u) := −ψ(t, u). By (2.18) we have

−η′t =
1

2
αη2 + η3/2. (2.27)

The solutions to (2.27) are η(t, u) ≡ 0 and

η(t, u) =
4

α2
(1 +W (−C(u)e−

t
α ))−2, (2.28)

where W (·) is the Lambert W function2. The boundary condition η(0, u) =

−ψ(0, u) = iu yields

C(u) = −

(
−1 +

2

α

√
i

u

)
exp

(
−1 +

2

α

√
i

u

)

Substituting C(u) into (2.28), we get for ψ(t, u) = −η(t, u):

ψ(t, u) ≡ 0 or ψ(t, u) = − 4

α2

(
1 +W ((−1 +

2

α

√
i

u
)e−

t
α
−1+ 2

α

√
i
u )

)−2

.

2The Lambert W function W (z) is de�ned to be the function satisfying W (z)eW (z) = z,

z ∈ C. See [13] for more details on the Lambert function.
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Outline of Part II

This part of the thesis is organized as follows. In Chapter 3 we follow the

method of [26] for pricing electricity contracts, which converts an electricity

futures and spot market into a money market applying an appropriate change

of numeraire transformation. We point out that in [26] all price processes in-

volved were assumed to be continuous and the classical Heath-Jarrow-Morton

(HJM) approach was proposed to model a bond market. We generalize the

approach of [26] replacing, in the dynamics of the asset prices, the Brownian

motion by a general Lévy process taking into account the occurrence of spikes.

We show in Chapter 4 that this method combined with the Fourier trans-

form techniques introduced in Chapter 1 provides explicit pricing formulas

for European electricity options. Moreover, in this framework the spot price

dynamics becomes Markovian, and therefore, complicated path-dependent

derivatives such as electricity swing options can be valuated.

To begin with, in Section 3.1 we explain a connection between electricity

and �xed-income markets. Then, in Section 3.2 we introduce an electricity

market model derived by a Lévy term structure. In particular, we consider

the corresponding measure transformation in Section 3.3. Thereafter, in

Section 3.4 we examine the Markov property of the spot price process in our

framework. Moreover, in Section 3.4 we show that our framework contains as

a special case the commonly accepted model for an electricity market, where

the spot price process is an exponential of an Ornstein-Uhlenbeck process.

Finally, we apply the results of Sections 3.2 and 3.4 to valuation of electricity

derivatives in Chapter 4.
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Chapter 3

Electricity markets derived by

Lévy term structure models

3.1 Connection between electricity market and

money market

Let F (t, τ), 0 ≤ t ≤ τ , be the futures price of electricity at time t and T be

a �nite time horizon, τ ≤ T . Denote the set of chronological time pairs by

D := {(t, τ) : 0 ≤ t ≤ τ ≤ T}.

We model the futures market starting from the following axioms:

C1: For every τ ∈ [0, T ] the futures price evolution (F (t, τ))(t,τ)∈D is a

positive-valued adapted stochastic process realized on a complete �ltered

probability space (Ω,F,P, (Ft)t∈[0,T ]).

C2: There exists a martingale measure QF equivalent to P such that for all

τ ∈ [0, T ] the futures price process (F (t, τ))(t,τ)∈D is a QF -martingale.

C3: At t = 0 futures prices start at deterministic positive values (F (0, τ))τ∈[0,T ].

C4: Terminal prices form a spot price process St := F (t, t), t ∈ [0, T ].

Following the approach of [26] we now convert the electricity market into a

money market consisting of bonds (P (t, τ))0≤t≤τ equipped with an additional
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risky asset (Nt)t∈[0,T ] by using the following transformation:

P (t, τ) :=
F (t, τ)

St
, (3.1)

Nt :=
1

St
. (3.2)

The money market de�ned by the currency change (3.1)�(3.2) satis�es the

following axioms:

M1: (Nt)t∈[0,T ] and (P (t, τ))(t,τ)∈D are positive, adapted stochastic processes

de�ned on (Ω,F,P, (Ft)t∈[0,T ]).

M2: There exist a positive-valued, adapted numéraire process (Ct)t∈[0,T ] and

a martingale measure QM equivalent to P, such that for all τ ∈ [0, T ] the dis-

counted price processes P̂ (t, τ) := P (t,τ)
Ct

, (t, τ) ∈ D, and N̂t := Nt

Ct
, 0 ≤ t ≤ T ,

are QM -martingales.

M3: Prices start at deterministic values N0 and (P (0, τ))τ∈[0,T ].

M4: Bond prices �nish at one, i.e. P (t, t) = 1, for every t ∈ [0, T ].

We now need a slight generalization of Theorem 1 in [26].

Theorem 3.1.1. i) Suppose that the commodity market (F (t, τ))(t,τ)∈D ful-

�lls C1�C4 with an initial futures curve (F (0, τ))τ∈[0,T ] and a martingale

measure QF . Then the transformation (3.1) � (3.2) provides a money mar-

ket satisfying M1�M4 with initial values

P (0, τ) :=
F (0, τ)

S0

, ∀ τ ∈ [0, T ], and N0 =
1

S0

,

where the discounting process and the martingale measure are given by

Ct = P (t, T ), t ∈ [0, T ], and dQM =
ST

F (0, T )
dQF . (3.3)

ii) Suppose that the money market (P (t, τ))(t,τ)∈D, (Nt)t∈[0,T ] ful�lls M1�M4

with initial values (P (0, τ))τ∈[0,T ] and N0, a discounting process (Ct)t∈[0,T ],

and a martingale measure QM . Then the transformation

F (t, τ) :=
P (t, τ)

Nt

, (t, τ) ∈ D, (3.4)
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gives an electricity market with the deterministic initial futures curve

F (0, τ) :=
P (0, τ)

N0

,

for all τ ∈ [0, T ], and the martingale measure

dQF :=
NT

CT

C0

N0

dQM . (3.5)

Note that in Theorem 1 of [26] all price processes were assumed continu-

ous. In our proof we will only use the integrability properties of the processes

involved.

Proof.

i) It is easy to see that the properties M1, M3, and M4 are consequences

of C1, C2, and C4 due to (3.1) and (3.2). To prove M2 we de�ne the

discounting process Ct and the money market measure QM as in (3.3).

Then the Radon-Nikodym density of QM w.r.t. QF conditioned on Ft

is given by
dQM

dQF

∣∣∣
Ft

:= EQF
[dQM

dQF

∣∣∣Ft] =
F (t, T )

F (0, T )
.

For the discounted bond price process we get

P̂ (t, τ) :=
P (t, τ)

Ct
=
F (t, τ)

F (t, t)

F (t, t)

F (t, T )
=
F (t, τ)

F (t, T )
. (3.6)

Conjecture C2 yields the integrability of P̂ (t, τ) under QM , since

EQM

[P̂ (t, τ)] = EQF
[
P̂ (t, τ)

dQM

dQF

∣∣∣
Ft

]
= EQF

[ F (t, τ)

F (0, T )

]
=
F (0, τ)

F (0, T )
<∞.

Furthermore, by Bayes rule for conditional expectations we get due to

Conjecture C2 and equality (3.6) that

EQM

[P̂ (t, τ)|Fs] =
EQF

[
P̂ (t, τ)dQ

M

dQF

∣∣∣
Ft

∣∣∣Fs]
dQM

dQF

∣∣∣
Fs

=
EQF

[
F (t, τ)

∣∣∣Fs]
F (s, T )

=
F (s, τ)

F (s, T )
= P̂ (s, τ).



3.1 Connection between electricity market and money market 59

Hence (P̂ (t, τ))(t,τ)∈D is a QM -martingale. For the process N̂t we anal-

ogously get

N̂t :=
Nt

Ct
=

Nt

P (t, T )
=

1

St

St
F (t, T )

=
1

F (t, T )
, (3.7)

and hence

EQM

[N̂t] = EQF
[
N̂t
F (t, T )

F (0, T )

]
=

1

F (0, T )
<∞.

Using Bayes rule and equality (3.7) we obtain

EQM

[N̂t|Fs] =
EQF

[
N̂t

F (t,T )
F (0,T )

∣∣∣Fs]
F (s,T )
F (0,T )

=
1

F (s, T )
= N̂s.

Hence (N̂t)0≤t≤T is a QM -martingale.

ii) De�ne the futures price process F (t, τ) as in (3.4). Then F (t, τ) is pos-

itive and adapted by M1. Consider the equivalent probability measure

QF given by (3.5). F (t, τ) is integrable w.r.t. QF , since by Assumption

M2,

EQF

[F (t, τ)] = EQM

[
P (t, τ)

Nt

dQF

dQM

∣∣∣
Ft

]
=
C0

N0

EQM

[
P (t, τ)

Nt

Nt

Ct

]
=
C0

N0

EQM

[
P (t, τ)

Ct

]
<∞.

Furthermore, M2 yields

EQF

[F (t, τ)|Fs] =
EQM

[F (t, τ)Nt

Ct
|Fs]

Ns

Cs

=
EQM

[P (t,τ)
Ct

|Fs]
Ns

Cs

=
P (s, τ)

Ns

= F (s, τ), ∀ 0 ≤ s ≤ t ≤ τ.

Hence, (F (t, τ))(t,τ)∈D is a QF -martingale.

�

In the following sections we apply this approach and study electricity

markets derived by term structure models driven by general Lévy processes.
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3.2 Money market construction

We follow the HJM approach and specify the term structure by modeling the

(instantaneous) forward rate f(t, τ), (t, τ) ∈ D. Let P (t, τ), (t, τ) ∈ D, be

the market price at the moment t of a bond paying 1 at the maturity time τ ,

τ ≤ T . Given the forward rate curve f(t, τ) the bond prices are de�ned by

P (t, τ) = exp{−
∫ τ

t

f(t, s)ds}, (3.8)

while the instantaneous short rate r at time t is given by

r(t) := f(t, t). (3.9)

A general introduction to �xed-income markets is given in [6].

Let L = (L1, . . . , Ln) be an n-dimensional Lévy process with independent

components, de�ned on a probability space (Ω,F,QM) endowed with the

completed canonical �ltration (Ft)t∈[0,T ] associated with L. We denote by

(bi, ci, νi) the characteristic triplet of each component Li, i = 1, . . . , n.

We assume that

A1: we are given an R-valued and Rn-valued stochastic processes α(t, τ) and

η(t, τ) = (η1(t, τ), . . . , ηn(t, τ)), (t, τ) ∈ D, respectively, such that α(t, τ) and

η(t, τ) are continuous and adapted.

A2:
∫ T

0

∫ T
0
E|α(s, u)|dsdu <∞,

∫ T
0

∫ T
0
E‖η(s, u)‖2dsdu <∞.

A3: P (τ, τ) = 1, ∀τ ∈ [0, T ].

A4: The initial forward curve is given by a deterministic and continuously

di�erentiable function τ 7→ f(0, τ) on the interval [0, T ].

For the forward rate we consider a generalized HJM model, i.e. we assume

that the forward rate process follows the dynamics

f(t, τ) = f(0, τ) +

∫ t

0

α(s, τ)ds+
n∑
i=1

∫ t

0

ηi(s, τ)dLis, t ≤ τ. (3.10)

In terms of short rates we can rewrite (3.10) and (3.9) as

r(t) = r(0) +

∫ t

0

α(s, t)ds+
n∑
i=1

∫ t

0

ηi(s, t)dLis, (3.11)
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where r(0) = f(0, t), t ≤ T.

Lévy term structures of the type (3.10)�(3.11) are frequently considered

in the literature (see e.g. [19], [17], [22] or [28]).

We now consider the bank account process as a discounting factor, i.e.

Ct = exp{
∫ t

0

r(s)ds}. (3.12)

In order to provide a condition which ensures that QM is a local martingale

measure for

P̂ (t, τ) :=
P (t, τ)

Ct
, t ∈ [0, τ ], (3.13)

we assume that there exist ai < 0 < di such that the Lévy measures νi of Li

satisfy ∫
{|x|>1}

euxνi(dx) <∞, u ∈ [ai, di], i = 1, . . . , n, (3.14)

(see [19] or [22]).

Lemma 3.2.1. Under Assumption (3.14), L = (Lt)0≤t≤T is a special semi-

martingale admitting the canonical representation:

Lt = bt+
√
cBt +

∫ t

0

∫
R
x(JL(dx× ds)− ν(dx)ds),

where b = (b1, . . . , bn) ∈ Rn, c is a positive de�nite n × n matrix, B is

a standard n-dimensional Brownian motion, JL is the random measure of

jumps, and ν is its compensator.

Note that, since L1, . . . , Ln are independent, c is a diagonal matrix with

elements c1, . . . , cn > 0 on the main diagonal.

Proof of Lemma 3.2.1. In view of II.2.29 in [27] it is su�cient to

show that (|x|2 ∧ |x|) ∗ ν ∈ Aloc, i.e. that (|x|2 ∧ |x|) ∗ ν is an adapted

process with locally integrable variation. Since (|x|2 ∧ |x|) ∗ ν is increasing
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and deterministic, we only need to show the �niteness of

(|x|2 ∧ |x|) ∗ ν =

∫
R
(|x|2 ∧ |x|)ν(dx)

=

∫
{|x|<1}

(|x|2 ∧ |x|)ν(dx) +

∫
{|x|>1}

(|x|2 ∧ |x|)ν(dx)

=

∫
{|x|<1}

|x|2ν(dx) +

∫
{|x|>1}

|x|ν(dx).

The �rst term is �nite, since ν is a Lévy measure, and the second summand

is �nite by Assumption (3.14). �

Furthermore, condition (3.14) ensures the existence of the cumulant gen-

erating function

Θi(u) := logE[exp(uLi1)] (3.15)

at least on the set {u ∈ C| <u ∈ [ai, di]}, where <u denotes the real part of

u ∈ C, i = 1, . . . , n. By Lemma 26.4 in [48], Θi is continuously di�erentiable

and has the representation:

Θi(u) = biu+
ci
2
u2 +

∫
R
(eux − 1− ux)νi(dx), i = 1, . . . , n. (3.16)

As a consequence, the Lévy processes Li, i = 1, . . . , n, have �nite moments

of arbitrary order.

Putting (3.8), (3.10), and (3.11) together we derive the following repre-

sentation for the bond price:

P (t, τ) = exp
{
−
∫ τ

t

[
f(0, u) +

∫ t

0

α(s, u)ds+
n∑
i=1

∫ t

0

ηi(s, u)dLis

]
du
}

= P (0, τ) exp
{∫ t

0

f(0, u)du−
∫ τ

t

[ ∫ t

0

α(s, u)ds+
n∑
i=1

∫ t

0

ηi(s, u)dLis

]
du
}

= P (0, τ) exp
{∫ t

0

r(u)du−
∫ t

0

[ ∫ u

0

α(s, u)ds+
n∑
i=1

∫ u

0

ηi(s, u)dLis

]
du

−
∫ τ

t

[ ∫ t

0

α(s, u)ds+
n∑
i=1

∫ t

0

ηi(s, u)dLis

]
du
}
. (3.17)

It is convenient to assume that

α(t, τ) = η(t, τ) = 0 for t > τ, (3.18)
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so that the forward rate (3.10) is de�ned for all t, τ ∈ [0, T ]. Then by (3.18)

and Assumption A2, we can rewrite (3.17) in a more compact form

P (t, τ) = P (0, τ) exp
{∫ t

0

r(u)du−
∫ t

0

[ ∫ t

0

α(s, u)ds+
n∑
i=1

∫ t

0

ηi(s, u)dLis

]
du

−
∫ τ

t

[ ∫ t

0

α(s, u)ds+
n∑
i=1

∫ t

0

ηi(s, u)dLis

]
du
}

= P (0, τ) exp
{∫ t

0

r(u)du−
∫ τ

0

[ ∫ t

0

α(s, u)ds+
n∑
i=1

∫ t

0

ηi(s, u)dLis

]
du
}

= P (0, τ) exp
{∫ t

0

r(u)du−
∫ t

0

∫ τ

0

α(s, u)duds

−
n∑
i=1

∫ t

0

∫ τ

0

ηi(s, u)dudLis

}
, (3.19)

where in the last equality we could apply Fubini's theorem, because Assump-

tion A2 holds. Provided

−
∫ τ

0

ηi(s, u)du ∈ (ai, di) for i = 1, . . . , n,

for any τ ≤ T , the HJM condition on the drift

α(t, x) =
n∑
i=1

∂

∂x
Θi
(
−
∫ x

0

ηi(t, u)du
)

(3.20)

implies that QM is a local martingale measure. The drift condition (3.20)

is derived in [17] and [19]. For an analogous drift condition in the in�nite

dimensional Lévy setting see [28] and [22].

Denoting by

σi(t, τ) := −
∫ τ

0

ηi(t, u)du, i = 1, . . . , n, (3.21)

we can rewrite the HJM drift condition (3.20) as∫ τ

0

α(s, u)du =
n∑
i=1

∫ τ

0

∂

∂u
Θi(σi(s, u))du

=
n∑
i=1

Θi(σi(s, τ)). (3.22)
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Substituting (3.22) into (3.19), we get the same representation for P (t, τ) as

in [19]:

P (t, τ) = P (0, τ) exp
{∫ t

0

r(u)du−
n∑
i=1

∫ t

0

Θi(σi(s, τ))ds

+
n∑
i=1

∫ t

0

σi(s, τ)dLis

}
. (3.23)

To complete the modeling of the arbitrage-free money market satisfying

Assumptions M1�M4, we assume that the risky asset Nt is given by

Nt = exp
{∫ t

0

r(u)du−
n∑
i=1

∫ t

0

Θi(vi(s))ds+
n∑
i=1

∫ t

0

vi(s)dLis

}
, (3.24)

where v = (v1, . . . , vn) is a continuous function, such that

N̂t =
Nt

Ct

is a well-de�ned local martingale under QM .

Now we consider the futures price process

F (t, τ) =
P (t, τ)

Nt

, (t, τ) ∈ D, (3.25)

where P (t, τ) and Nt are now given by (3.23) and (3.24).

According to Theorem 3.1.1 the transformation (3.25) gives an arbitrage-

free electricity futures market with the deterministic initial futures curve

F (0, τ) :=
P (0, τ)

N0

= P (0, τ).

By the same theorem,

dQF =
NT

CT

C0

N0

dQM

= exp

{
n∑
i=1

∫ T

0

vi(s)dLis −
n∑
i=1

∫ T

0

Θi(vi(s))ds

}
dQM (3.26)

is a martingale measure for F (t, τ), (t, τ) ∈ D. Indeed, by (3.23) and (3.24)

we get that

F (t, τ) =
P (t, τ)

Nt

=
P̂ (t, τ)

dQF

dQM

∣∣∣
Ft

, (3.27)



3.3 Measure transformation 65

and hence, F (t, τ) is a QF -martingale.

Furthermore, by (3.27)

F (t, τ) = F (0, τ) exp{
n∑
i=1

∫ t

0

(σi(s, τ)− vi(s))dLis

−
n∑
i=1

∫ t

0

(Θi(σi(s, τ))−Θi(vi(s)))ds}. (3.28)

Setting τ = t in (3.28) we obtain the electricity spot price process

S(t) = F (t, t) = F (0, t) exp{
n∑
i=1

t∫
0

δi(s, t)dLis −
n∑
i=1

t∫
0

ψi(s, t)ds} (3.29)

=: F (0, t)Et, (3.30)

where

Et := exp
{ n∑

i=1

∫ t

0

δi(s, t)dLis −
n∑
i=1

∫ t

0

ψi(s, t)ds
}
, (3.31)

δi(s, t) := σi(s, t)− vi(s), and (3.32)

ψi(s, t) := Θi(σi(s, t))−Θi(vi(s)). (3.33)

In order to study the electricity market (3.28) � (3.29) under the measure

QF de�ned by (3.26) we need some technical results given in Section 3.3.

3.3 Measure transformation

Let us consider now the density process

Zt :=
dQF

dQM

∣∣∣
Ft

, 0 ≤ t ≤ T.

Since L is a process with independent increments, by (3.26) we get

Zt = exp{
n∑
i=1

∫ t

0

vi(s)dLis −
n∑
i=1

∫ t

0

Θi(vi(s))ds}. (3.34)

By (3.16), (3.34), and Lemma 3.2.1 we obtain for the density process (3.34):
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Lemma 3.3.1.

Zt = Et

 n∑
i=1

√
ci

·∫
0

vi(s)dBi
s +

·∫
0

∫
Rn

(e〈v(s),x〉 − 1)(JL(dx× ds)− ν(dx)ds)

 ,

where Et(·) is the Doleans exponential.

Proof. Since the components L1, . . . , Ln of the Lévy process L are inde-

pendent, in order to prove Lemma 3.3.1 it is enough to show that

Zi
t := exp

{∫ t

0

vi(s)dLis −
∫ t

0

Θi(vi(s))ds
}

(3.35)

= Et

(
√
ci

∫ ·

0

vi(s)dBi
s +

∫ ·

0

∫
R
(ev

i(s)x − 1)(JLi(dx× ds)− νi(dx)ds)

)
,

(3.36)

where JLi is the jump measure of Li, i = 1, . . . , n.

Furthermore, by representation for Θi (3.16) and by Lemma 3.2.1 we get

Zi
t = exp

{∫ t

0

vi(s)dLis −
∫ t

0

Θi(vi(s))ds
}

= exp
{∫ t

0

vi(s)dLis − bi

∫ t

0

vi(s)ds− ci
2

∫ t

0

(vi(s))2ds

−
∫ t

0

∫
R
(ev

i(s)x − 1− vi(s)x)νi(dx)ds
}

= exp
{√

ci

∫ t

0

vi(s)dBs +

∫ t

0

∫
R
vi(s)x(JLi − νi)(dx× ds)

− ci
2

∫ t

0

(vi(s))2ds−
∫ t

0

∫
R
(ev

i(s)x − 1− vi(s)x)νi(dx)ds
}

= exp
{√

ci

∫ t

0

vi(s)dBi
s −

ci
2

∫ t

0

(vi(s))2ds
}

× exp
{∫ t

0

∫
R
vi(s)xJLi(dx× ds)−

∫ t

0

∫
R
(ev

i(s)x − 1)νi(dx)ds
}

= Et

(√
ci

∫ t

0

vi(s)dBi
s

)
Et

(∫ t

0

∫
R
vi(s)xJLi(dx× ds)

)
,

where for the last equality we applied Propositions 3.6�3.7 in [12]. �
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As an application of the preceding lemma we obtain the following propo-

sition, that is essential in order to examine the Markov property of the spot

price process under QF .

Proposition 3.3.2. L is a (non-homogeneous) Lévy process with respect to

QF with the characteristic function given by

EQF

[ei〈u,Lt〉] = exp
{ n∑

j=1

ΦQF

j (t, uj)
}
, u = (u1, . . . , un) ∈ Rn, (3.37)

where

ΦQF

j (t, uj) = iuj

∫ t

0

bQF

j (s)ds−
u2
j

2

∫ t

0

cQF

j (s)ds

+

∫ t

0

∫
R
(eiujx − 1− iujxI|x|≤1)ν

QF

j (ds, dx), (3.38)

and

bQF

j (t) := bj + cjv
j(t) +

∫
R
(ev

j(t)x − 1)I|x|≤1(x)νj(dx), (3.39)

cQF

j (t) := cj, (3.40)

νQF

j (dt, dx) := ev
j(t)xνj(dx)dt. (3.41)

Remark 3.3.3. Note that if v(t) is a constant function, then by Proposi-

tion 3.3.2 L is a time-homogeneous Lévy process under QF .

Proof of Proposition 3.3.2. Consider the j-th component of L, j ∈
{1, . . . , n}. We �rst show that the characteristic triplet of Lj with respect to

(w.r.t.) QF associated with the truncation function h(x) = I|x|≤1(x) is given

by (3.39)�(3.41).

In order to �nd the semimartingale characteristics of Lj w.r.t. QF , we

consider βt := cjv
j(t) and Y (t, x) := ev

j(t)x and show that Y and β meet

all the conditions of Girsanov's Theorem for semimartingales (cf. Theorem

III.3.24 in [27]).

Consider the process Zj de�ned in (3.35). Denote by Zjc the continuous

martingale part of the process Zj and by Ljc the continuous martingale part
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of Lj relative to QM . By representation (3.36), Zjc
t =

√
cj
∫ t

0
Zj
sv

j(s)dBj
s ,

and by Lemma 3.2.1 Ljc(t) =
√
cjB

j
t . Since〈

Ljc, Zjc
〉
t
= cj

∫ t

0

Zj
sv

j(s)ds =

∫ t

0

Zj
sβsds,

where 〈·, ·〉 is the bracket relative to QM , and β satis�es condition (III.3.28)

in [27].

Let P̃ := P×B(Rd), where P denotes the predictable σ-�eld on Ω× [0, T ].

For any nonnegative and P̃-measurable U we have

E
[ ∫ T

0

∫
R
Y (s, x)U(s, x)JLj(dx× ds)

]
= E

[ ∑
0≤s≤T

ev
j(s)∆Lj

sU(s,∆Ljs)I{∆Lj
s 6=0}

]
= E

[ ∫ T

0

∫
R

Zj
s

Zj
s−
I{Zj

s−>0}U(s, x)JLj(dx× ds)
]
,

since Zj
s

Zj
s−
I{Zj

s−>0} = ev
j(s)∆Lj

s . Hence Y satis�es the conditions of Girsanov's

Theorem (Theorem III.3.24 in [27]), which justi�es (3.39)�(3.41).

By Theorem II.4.15 in [27] Lj is a process with independent increments

under QF . Moreover, by the same theorem, Lj is a (non-homogeneous) Lévy

process with respect to QF , since its characteristic function is given by (3.37)

� (3.38). �

3.4 Markov property of the spot price

In this section we examine the Markov property of the spot price process S

given by (3.29). To begin with, applying Proposition 3.3.2, we compute the

dynamics of S under QF as follows.

Lemma 3.4.1. The dynamics of S under QF is given by

dS(t) = S(t)[−r(t) +
1

2

n∑
i=1

ci(v
i(t))2 +

n∑
i=1

Θi(vi(t))]dt− S(t−)
n∑
i=1

vi(t)dLit

+

∫
Rn

S(t−)(e〈v(t−),x〉 − 1 + 〈v(t−), x〉)JQF

L (dx× dt), (3.42)
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where JQF

L is the jump measure of L under QF .

Proof. By Itô formula and Assumption (3.18) we obtain the dynamics of

the spot prices (3.30) as

dS(t) = Et
∂

∂t
F (0, t)dt+ F (0, t)dEt

= S(t)

(
∂

∂t
lnF (0, t) +

n∑
i=1

∫ t

0

∂

∂t
δi(s, t)dLis −

n∑
i=1

∫ t

0

∂

∂t
ψi(s, t)ds

)
dt

+ F (t−, t)

(
−

n∑
i=1

ψi(t, t)dt+
n∑
i=1

δi(t, t)dLit +
1

2

n∑
i=1

ci

(
δi(t, t)

)2

dt

)

+ S(t)− F (t−, t)− F (t−, t)
n∑
i=1

δi(t, t)4Lit.

Since δi(t, t) = −vi(t) and ψi(t, t) = −Θi(vi(t)) by (3.32), (3.33), (3.21),

and (3.18), we get

dS(t) = −S(t)r(t)dt+ S(t)
1

2

n∑
i=1

ci(v
i(t))2dt+

n∑
i=1

Θi(vi(t))dt

− F (t−, t)
n∑
i=1

vi(t)dLit + S(t)− F (t−, t) + F (t−, t)
n∑
i=1

vi(t)4Lit.

Since F (0, t), δi(t, t), and ψi(t, t), i = 1, . . . , n, are continuous in t by As-

sumptions A2 � A4, we have F (t−, t) = F (t−, t−) = S(t−), and thus we

can rewrite the dynamics of S as

dS(t) = S(t)
[
− r(t) +

1

2

n∑
i=1

ci(v
i(t))2 +

n∑
i=1

Θi(vi(t))
]
dt

− S(t−)
n∑
i=1

vi(t)dLit + ∆S(t) + S(t−)
n∑
i=1

vi(t)4Lit. (3.43)

By (3.29) and (3.18) we have

4S(t) = S(t−)(e
Pn

i=1 v
i(t−)4Li

t − 1). (3.44)

Inserting (3.44) into (3.43), we can obtain (3.42). �

Hence, since v is deterministic, we get the following result:
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Proposition 3.4.2. Suppose the short rate process r is a Markov process.

Then the vector process (S, r) is a Markov process.

Proof. Since r is a Markov process and v is deterministic, (S, r) is a

Markov process by (3.42). �

Remark 3.4.3. Note that if the volatility η is deterministic, the short rate

process r is a Markov process by (3.11).

We consider now some examples. In particular, we show that our model

for the electricity market contains the case, where the spot price process is

an exponential of an Ornstein-Uhlenbeck process.

Example 3.4.4. Suppose the spot price process S is the exponential (eX)

of an Ornstein-Uhlenbeck process X, i.e. X is a solution of the following

stochastic di�erential equation

dX(t) = θ(µ−X(t))dt+ ςdWQF

t , X(0) = 1, (3.45)

where µ ∈ R, θ, ς > 0, and WQF

t is a one-dimensional standard Brownian

motion under QF . Now we �nd the corresponding short rate process r under

the assumptions that the volatility v(t) appearing in (3.42) is constant, i.e.

v(t) ≡ v < 0, and

dLt = vdt+ dWQF

t , t ∈ [0, T ]. (3.46)

By Itô formula and equation (3.45),

dS(t) = S(t)(dX(t) +
1

2
ς2dt)

= S(t)
([
θ(µ−X(t)) +

1

2
ς2
]
dt+ ςdWQF

t

)
. (3.47)

On the other hand, by (3.42) the dynamics of the electricity spot price is

given by

dS(t) = S(t)[−r(t) +
1

2
v2 + Θ(v)]dt− S(t)vdLt, t ∈ [0, T ].
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Note that, according to Proposition 3.3.2, (3.46) means that L is a one-

dimensional standard Brownian motion under QM . Hence, by (3.16) we

have Θ(v) = 1
2
v2 in this case. Applying (3.46), we can simplify the dynamics

of S as

dS(t) = S(t)[−r(t) + v2]dt− S(t)vdLt

= S(t)(−r(t) + v2)dt− S(t)v(vdt+ dWQF

t )

= S(t)(−r(t)dt− vdWQF

t ), t ∈ [0, T ]. (3.48)

Putting (3.47) and (3.48) together we obtain

v = −ς, and (3.49)

r(t) = −θ(µ−X(t))− ς2

2
. (3.50)

In particular, (3.50) and (3.45) yield

r(0) = −θ(µ− 1)− ς2

2
. (3.51)

Since the solution of (3.45) is

X(t) = e−θt + µ(1− e−θt) + ς

∫ t

0

eθ(s−t)dWQF

s , t ≤ T, (3.52)

substituting (3.52) into (3.50) we obtain,

r(t) = −θµ+ θ(e−θt + µ(1− e−θt) + ς

∫ t

0

eθ(s−t)dWQF

s )− ς2

2

= θe−θt(1− µ)− ς2

2
+ ςθ

∫ t

0

eθ(s−t)dWQF

s .

On the other hand, by (3.11) we have the following dynamics for the short

rate process

r(t) = r(0) +

∫ t

0

(α(s, t) + vη(s, t))ds+

∫ t

0

η(s, t)dWQF

s , t ≤ T. (3.53)

Hence, by (3.53) and (3.51)

η(s, t) = ςθeθ(s−t) (3.54)
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and

−θ(µ− 1) +

∫ t

0

α(s, t)ds− ς2θ

∫ t

0

eθ(s−t)ds = θe−θt(1− µ),

i.e. ∫ t

0

α(s, t)ds = θ(µ− 1)(1− e−θt) + ς2(1− e−θt)

= (1− e−θt)(ς2 + θµ− θ). (3.55)

Furthermore, by (3.28) and (3.29) the futures price process F satis�es

F (s, t) = S(s) exp{−
∫ t

s

δ(u, t)dLu +

∫ t

s

ψ(u, t)du}

= exp{X(s) +

∫ t

s

(ψ(u, t) + ςδ(u, t))du−
∫ t

s

δ(u, t)dWQF

u }, (3.56)

where by (3.32) and (3.33) we have

ψ(u, t) =
1

2
(σ2(u, t)− ς2),

δ(u, t) = σ(u, t) + ς,

and by (3.21)

σ(u, t) = −
∫ t

0

η(u, s)ds = −ςeθu(1− e−θt).

In particular, the corresponding bond price process is given by P (s, t) =
F (s,t)
S(t)

, s ≤ t. Hence, by (3.56)

P (s, t) = exp{X(s)−X(t) +

∫ t

s

(ψ(u, t) + ςδ(u, t))du−
∫ t

s

δ(u, t)dWQF

u }.

Now we introduce an example, where the spot price S is an exponential

of an Ornstein-Uhlenbeck process driven by a pure jump Lévy process.

Example 3.4.5. Let L be a pure jump integral under QF , i.e.

Lt =

∫ t

0

∫
R
xJQF

L (dx× ds)
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for some Poisson random measure JQF

L on R × (0,∞), and let Xt be an

Ornstein-Uhlenbeck process satisfying

dXt = −Xtdt+ dLt, X0 = x0 ∈ R, t ≤ T.

Then

Xte
−(T−t) = x0e

−T︸ ︷︷ ︸
=:k

+

t∫
0

e−(T−s)dLs, (3.57)

where νQF
is the Lévy measure of L under QF .

Further, we assume that the spot price S is the exponential of X, i.e.

S(t) = eXt , t ≤ T . We show in this example that we can �nd a forward rate

structure such that the futures price process F (t, T ) := S(t)P (t, T ), t ≤ T ,

is a QF -martingale.

Assume that ∫
R
ex(1 + |x|)νQF

(dx) <∞, (3.58)

and de�ne

P (t, T ) := exp
{

(e−(T−t) − 1)Xt +

T∫
t

∫
R

(
exp{e−(T−s)x} − 1

)
νQF

(dx)ds
}
.

(3.59)

Since P (T, T ) = 1, we can consider P (t, T ), for t ≤ T , as a bond price

process. Furthermore,

F (t, T ) = S(t)P (t, T )

= F (0, T ) exp
{ t∫

0

e−(T−s)dLs −
t∫

0

∫
R

(
ee

−(T−s)x − 1
)
νQF

(dx)ds
}

= F (0, T ) exp
{∫ t

0

∫
R
e−(T−s)xdJQF

L (dx× ds)

−
∫ t

0

∫
R

(
ee

−(T−s)x − 1
)
νQF

(dx)ds
}
, t ≤ T, (3.60)
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where

F (0, T ) = exp
{
k +

∫ T

0

∫
R

(
exp{e−(T−s)x} − 1

)
νQF

(dx)ds
}
,

and k ∈ R is de�ned in (3.57). By the exponential formula for Poisson

random measures (see e.g. [12], Proposition 3.6) the process F (t, T ), given

in (3.60), is a QF -martingale. We now derive the forward rate that gives us

the bond P (t, T ) as in (3.59):

f(t, T ) = − ∂

∂T
lnP (t, T )

= e−(T−t)Xt +

∫ T

t

∫
R

exp{e−(T−s)x}e−(T−s)xνQF

(dx)ds}

+

∫
R
(ex − 1)νQF

(dx). (3.61)

In particular, the corresponding short rate process is then given by

r(t) = f(t, t) = Xt +

∫
R
(ex − 1)νQF

(dx).

Note that condition (3.58) guarantees that f(t, T ) in (3.61) and P (t, T )

in (3.59) are well-de�ned.

In the next section we consider the Markov property of the spot price S

under QF in the special case, where δ and ψ appearing in (3.29) are deter-

ministic.

3.4.1 Case of the deterministic coe�cients

For the sake of simplicity we will only consider the one-dimensional case, i.e.

we assume n = 1. However, all results of this subsection still hold in the

case of multidimensional non-homogeneous Lévy process with independent

components.

We examine the Markov property of the spot price process S given by

S(t) = F (0, t) exp{
∫ t

0

δ(s, t)dLs −
∫ t

0

ψ(s, t)ds}, t ∈ [0, T ], (3.62)
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under the futures martingale measure QF when δ and ψ are deterministic

continuous functions. Because F (0, t) is also deterministic by assumptions,

S is a Markov process i� the process

Zt =

∫ t

0

δ(s, t)dLs, t ∈ [0, T ], (3.63)

is Markovian. Recall that L is a non-homogeneous Lévy process under QF

by Proposition 3.3.2.

Proposition 3.4.6. We assume that there are constants ε, η > 0 and func-

tions c(t), γ(t) : [0, T ] → R+, such that for all t ∈ [0, T ]

1.
∫ t

0
c(s)ds <∞,

2. γ(t) ≥ ε,

3. <ΦQF
(t, u) ≤ c(t) − γ(t)|u|η, for every u ∈ R, where ΦQF

(t, u) is the

characteristic exponent of Lt under QF de�ned by (3.37).

Then the spot price process S is Markovian i� for all �xed w and u with

0 < w < u ≤ T there exists a real constant ξ = ξwu (which may depend on w

and u) such that

δ(t, u) = ξwu δ(t, w), ∀t ∈ [0, T ],

where δ is the volatility structure of S in (3.62).

The proof of Proposition 3.4.6 uses the idea of the proofs of Lemmas 4.1

and 4.2 in [19]. We start with the following lemma, generalizing Lemma 4.1

in [19] to the case of inhomogeneous Lévy processes.

Lemma 3.4.7. Suppose t ∈ [0, T ] and that f, g : [0, t] → R are continu-

ous linearly independent functions. Then, under the hypothesis of Proposi-

tion 3.4.6, the joint distribution of the random variables X :=
∫ t

0
f(s)dLs

and Y :=
∫ t

0
g(s)dLs is absolutely continuous w.r.t. the Lebesgue measure λ2

on R2.
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Proof of Lemma 3.4.7. A probability distribution on Rd is absolutely

continuous w.r.t. λd i� its characteristic function is integrable over Rd. Thus

it is enough to prove the λ2 integrability of the joint characteristic function

φ(x, y) of X and Y .

According to Proposition 1.9 in [33]

φ(x, y) := EQF

[eixX+iyY ] = exp{
∫ t

0

ΦQF

s (xf(s) + yg(s))ds}.

Hence, by assumption,

|φ(x, y)| = exp{
∫ t

0

<ΦQF

s (xf(s) + yg(s))ds}

≤ exp{
∫ t

0

(c(s)− γ(s)|xf(s) + yg(s)|η)ds}

≤ Ct exp{−γ
∫ t

0

|xf(s) + yg(s)|ηds},

where Ct := e
R t
0 c(s)ds < ∞. Consider the normed vector (x0, y0) := (x,y)

‖(x,y)‖ .

Since xf(s)+yg(s) is the Euclidean scalar product in R2 of the vectors (x, y)

and (f(s), g(s)), we obtain∫ t

0

|xf(s) + yg(s)|ηds = ‖(x, y)‖η
∫ t

0

|x0f(s) + y0g(s)|ηds. (3.64)

The integral on the right hand side of (3.64) is a continuous function of

the vector (x0, y0). Therefore, it has a minimum m on the unit circle in

R2. It is obvious that m ≥ 0. Suppose m = 0. This would imply that

the integrand vanishes for all s; but this is impossible, because f and g are

linearly independent by assumption. Hence we must have m > 0. From

m > 0 follows∫
R2

|φ(x, y)|dλ2(x, y) ≤ Ct exp{−γm‖(x, y)‖ηdλ2(x, y)} <∞.

�

Proof of Proposition 3.4.6. The proof of Proposition 3.4.6 actually

repeats the proof of Lemma 4.2 in [19]. We include it to make the text self-

contained.
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Proof of the necessity: Assume �rst that S is a Markov process. Then, accord-

ing to the preliminary consideration above, the process Z de�ned by (3.63)

is Markovian. This implies

E[Zu|Fw] = E[Zu|Zw], 0 < w < u ≤ T.

By (3.63) the last equation becomes

E
[ ∫ w

0

δ(s, u)dLs

∣∣∣Fw]+ E
[ ∫ u

w

δ(s, u)dLs

∣∣∣Fw]
= E

[ ∫ w

0

δ(s, u)dLs

∣∣∣Zw]+ E
[ ∫ u

w

δ(s, u)dLs

∣∣∣Zw].
Since δ(·, ·) is deterministic and L is a process with independent increments,∫ u
w
δ(s, u)dLs is independent of the σ-�eld Fw and, in particular, of Zw. This

implies that the second summands on both sides are equal. Additionally,∫ w
0
δ(s, u)dLs is measurable with respect to Fw. Thus,∫ w

0

δ(s, u)dLs = E
[ ∫ w

0

δ(s, u)dLs

∣∣∣Zw] = E
[ ∫ w

0

δ(s, u)dLs

∣∣∣ ∫ w

0

δ(s, w)dLs

]
.

But this means that the integral
∫ w

0
δ(s, u)dLs can be expressed as some

measurable function G applied to the integral
∫ w

0
δ(s, w)dLs. Hence, the joint

distribution of these two random variables is concentrated on the Lebesgue

null set

{(x,G(x))|x ∈ R} ⊂ R2,

and thus cannot be continuous with respect to λ2. Hence, by Lemma 3.4.7

δ(·, w) and δ(·, u) restricted to [0, w] are linearly dependent.

Proof of the su�ciency: It is enough to show that the process Z de�ned

by (3.63) is Markovian. Suppose that w and u satisfy 0 < w < u ≤ T . Then

we have

Zu =

∫ w

0

δ(s, u)dLs +

∫ u

w

δ(s, u)dLs.

By assumption, the �rst term on the right-hand side is equal to∫ w

0

ξδ(s, w)dLs = ξZw
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for some real constant ξ. Hence it is measurable w.r.t. Fw. The second term

is independent of Fw. These two facts yield

P[Zu ∈ A|Fw] = P[Zu ∈ A|Zw], for every A ∈ B(R).

�

From Proposition 3.4.6 follows that

Corollary 3.4.8. Under the hypotheses of Proposition 3.4.6 the spot price

process S is Markovian i� its volatility structure δ admits the representation

δ(t, τ) = ζ(t)ρ(τ), (t, τ) ∈ D, (3.65)

where ζ, ρ : [0, T ] → R are continuously di�erentiable functions.

See Theorem 4.3 in [19] for the proof of Corollary 3.4.8.

Now we consider two examples of the volatility function δ that satis-

�es (3.65).

Example 3.4.9 (Vasicek volatility structure). Recall that

δ(t, τ) = σ(t, τ)− v(t),

where σ is the volatility of the corresponding bond and v is a deterministic

function. Let

σ(t, τ) =
σ̂

a
(1− e−a(τ−t)) (Vasicek volatility),

where σ̂ > 0 and a 6= 0. Then by Corollary 3.4.8 the spot price process S is

Markovian i� there exist continuously di�erentiable functions ζ, ρ : [0, T ] →
R, such that

v(t) =
σ̂

a
(1− e−a(τ−t))− ζ(t)ρ(τ).

Since v is constant in τ , by deriving we obtain

ζ(t)ρ′(τ) = σ̂eate−aτ ,
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and consequently

ζ(t) = λσ̂eat,

ρ′(τ) =
1

λ
e−aτ

for (t, τ) ∈ D and some λ 6= 0. Then ρ(τ) = − 1
aλ
e−aτ + c for some c ∈ R,

λ 6= 0. Hence, in this example the spot price process S is Markovian i� v(t)

is of the form

v(t) =
σ̂

a
− σ̂ceat

for some c ∈ R.

Example 3.4.10 (Ho-Lee volatility structure). In case the bond volatility

structure σ satis�es

σ(t, τ) = σ̂(τ − t) with σ̂ > 0 (Ho-Lee volatility),

Corollary 3.4.8 yields that the spot price S is a Markov process i� v(t) is of

the form v(t) = σ̂(c− t) for some c ∈ R.

Now we show that Corollary 3.4.8 enables us to characterize the class of

stationary volatility structures δ that lead to Markovian spot price process

S.

Proposition 3.4.11. Suppose the volatility structure δ is stationary, that

means, there exists a twice continuously di�erentiable function δ̃ : [0, T ] →
R+ such that δ(t, τ) = δ̃(τ − t) for all (t, τ) ∈ D. Then, under the hypotheses

of Proposition 3.4.6, S is a Markov process i� δ is of the form

δ(t, τ) = δ̂ea(τ−t) (3.66)

with a ∈ R and δ̂ > 0.

Proof. If δ is of the form (3.66), then S is a Markov process by Corol-

lary 3.4.8.
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Assume now that S is Markovian. As δ(t, τ) is stationary by assumption,

the partial derivatives satisfy

∂

∂τ
δ(t, τ) = δ̃′(τ − t) = − ∂

∂t
δ(t, τ).

Corollary 3.4.8 yields then

ζ ′(t)ρ(τ) = −ζ(t)ρ′(τ),

i.e.

(log ρ)′(τ) = −(log ζ ′)(t)

for all (t, τ) ∈ D. Since t and τ are independent variables, neither of the last

equality sides can actually depend on t or τ . Hence both sides are constant.

Denoting their common value by a, we obtain

ρ(τ) = eaτ+K1 and ζ(t) = e−at+K2

with two real constants K1 and K2, and hence

δ(t, τ) = eK1+K2ea(τ−t).

De�ning δ̂ := eK1+K2 , we get (3.66). �

The volatility structure (3.66) picks up the maturity e�ect for a < 0: the

volatility increases when a future contract comes to delivery, since tempera-

ture forecasts, outages and other speci�cs about the delivery period become

more and more precise. However, the model (3.66) does not include sea-

sonality: futures during winter months show higher prices than comparable

contracts during the summer. See [5], [36], and [32] for a description of elec-

tricity futures and options markets. In order to include the seasonality we

can use, for example, the volatility model suggested in [20]:

δ(t, τ) = a(t)e−b(τ−t), b ≥ 0.

The seasonal part a(t) can be modeled, for example, as a truncated Fourier

series

a(t) = a+
J∑
j=1

(dj sin(2πjt)− fj cos(2πjt)),
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where a ≥ 0, dj, fj ∈ R, and t is measured in years. See [20] and [5] for more

details on the modeling of volatility.



Chapter 4

Valuation of electricity derivatives

4.1 Pricing of European options

For the valuation of the European options on the spot price we use Fourier

transform method applied to the dampened payo� introduced in Section 1.2.2.

We consider the pricing of the options only on the example of an electricity

�oor contract. Electricity calls, puts and caps can be priced similarly. See

also [26] for the pricing of European options on the electricity spot price

under the assumption of continuous futures and spot price processes.

A �oor is a European type contract that protects against low commodity

prices within [τ1, τ2]. It ensures a cash �ow at intensity ((K − S(t))+)t∈[τ1,τ2]

with strike price K > 0 at any time t ∈ [τ1, τ2] of the contract.

In the remainder of this subsection we suppose that the riskless interest

rate r is constant. The fair price at time t of the �oor option with strike

price K > 0 is equal to

Floor(t,K) = EQF
[ ∫ τ2

t∨τ1
e−r(τ−t)(K − S(τ))+dτ

∣∣∣Ft].
By Fubini's Theorem we get

Floor(t,K) =

∫ τ2

t∨τ1
e−r(τ−t)EQF

[
(K − S(τ))+

∣∣∣Ft]dτ. (4.1)
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To simplify the notation we only consider the one-dimensional case under

assumption of the deterministic coe�cients, i.e. we assume the spot price

process S(t) to be given by (3.62), where δ and ψ are deterministic.

Recall that by (3.56) the spot price process S satis�es

S(τ) = F (t, τ) exp{
∫ τ

t

δ(s, τ)dLs −
∫ τ

t

ψ(s, τ)ds} =: F (t, τ)U τ
t , (4.2)

where F (t, τ), for 0 ≤ t ≤ τ , is a QF -martingale, and L is a non-homogeneous

Lévy process. Since F (t, τ) is Ft-measurable and U τ
t is independent of Ft, by

substituting (4.2) into (4.1) we obtain

Floor(t,K) =

∫ τ2

t∨τ1
e−r(τ−t)EQF

[
(K − F (t, τ)U τ

t )+dτ
∣∣∣Ft]dτ

=

∫ τ2

t∨τ1
e−r(τ−t)F (t, τ)e−

R τ
t ψ(s,τ)dsEQF [

(K(f)− e
R τ

t δ(s,τ)dLs)+
]∣∣∣
f :=F (t,τ)

dτ,

(4.3)

where K(f) := K
f

exp{
∫ τ
t
ψ(s, τ)ds}, f > 0. In order to compute the expec-

tation in (4.3), consider the integrable dampened pay-o� function

g(x) := ex(K(f)− ex)+ ∈ L1(R).

Denote by ĝ its Fourier transform:

ĝ(u) :=

∫
R
eiuxg(x)dx = K(f)2+iu 1

(1 + iu)(2 + iu)
∈ L1(R). (4.4)

Using the Inversion Theorem for Fourier transform (cf. [37], Section 8.2) we

get

EQF
[(
K(f)− e

R τ
t δ(s,τ)dLs

)+]
= EQF

[
e−

R τ
t δ(s,τ)dLsg(

∫ τ

t

δ(s, τ)dLs)
]

= EQF
[
e−

R τ
t δ(s,τ)dLs

1

2π

∫
R
e−iu

R τ
t δ(s,τ)dLs ĝ(u)du

]
=

1

2π
EQF

[ ∫
R
e−(1+iu)

R τ
t δ(s,τ)dLs ĝ(u)du

]
=

1

2π

∫
R
EQF

[
e−(1+iu)

R τ
t δ(s,τ)dLs

]
ĝ(u)du, (4.5)
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where (4.4) allows to apply Fubini's Theorem in the last equality. By Propo-

sition 3.3.2 and Proposition 1.9 in [33]

EQF

[e−
R τ

t (1+iu)δ(s,τ)dLs ] = exp{
∫ τ

t

ΘQF

s (−(1 + iu)δ(s, τ))ds}, (4.6)

where ΘQF

s is given by

ΘQF

s (z) = zbQF

s +
z2

2
cQF

s +

∫
R
(ezx − 1− zxI|x|≤1)e

v(s)xν(dx), s ≤ T.

Substituting (4.5), (4.4), and (4.6) into (4.3), we obtain

Floor(t,K) =

∫ τ2

t∨τ1
e−r(τ−t)F (t, τ)e−

R τ
t ψ(s,τ)ds

×
∫

R
exp{

∫ τ

t

ΘQF

s (−(1 + ix)δ(s, τ))ds}

×
(

K

F (t, τ)
e

R τ
t ψ(s,τ)ds

)2+ix
1

(1 + ix)(2 + ix)
dxdτ

= K2ert
∫ τ2

t∨τ1
e−rτ

∫
R

exp{
∫ τ

t

ΘQF

s (−(1 + ix)δ(s, τ))ds}

×

(
e

R τ
t ψ(s,τ)ds

F (t, τ)

)1+ix
Kix

(1 + ix)(2 + ix)
dxdτ.

4.2 Pricing of swing options

In this section we illustrate how the spot price model (3.42) can be used

to valuate path dependent derivatives on an example of electricity swing

options. For the sake of simplicity we consider a special case, where the

process L is a one-dimensional standard Brownian motion under QM , as in

Example 3.4.4. Analogously to (3.48) we get the following dynamics of the

electricity spot price under the measure QF :

dS(t) = −S(t)r(t)dt− S(t)v(t)dWQF

t , t ∈ [0, T ]. (4.7)

Recall that by (3.11) and (3.46) the short rate process r satis�es

dr(t) = α(t, t)dt+ η(t, t)dLt

= (v(t)η(t, t) + α(t, t))dt+ η(t, t)dWQF

t , t ∈ [0, T ], (4.8)
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under QF . Now we assume that the volatility η is deterministic, and hence

r is a Markov process.

Moreover, we assume that there exists a unique solution (S(t), r(t)) of (4.7)

� (4.8) satisfying the initial condition (S(u), r(u)) = (s, r) ∈ R2, and such

that

EQF

[S2(t)] <∞ for all t ∈ [0, T ].

Recall that, since r is Markovian, by Proposition 3.4.2 (S(t), r(t)) is a Markov

process.

Let us consider a swing option on the spot price process (4.7). A swing

option is an agreement to purchase energy at a certain �xed price over a

speci�ed time interval. In short, the payo� of a swing option settled at time

T is de�ned as ∫ T

0

ν(t)(S(t)−K)dt, (4.9)

where ν(t) is the production intensity and K > 0 is the strike price of the

contract. The holder of the contract has the right (within speci�ed limits),

to control the intensity of electricity production at any moment. The goal of

the option holder is to maximize the value of the contract by selecting the

optimal intensity process ν among the processes that are limited by contract

speci�c lower and upper bounds:

νlow ≤ ν(t) ≤ νup a.e. t,

under the constraint that the optimal intensity process ν is such that the

total volume produced

Cν(t) = c+

∫ t

u

ν(x)dx, u ≤ t ≤ T, (4.10)

does not exceed the maximum amount C̄ that can be produced during the

contract life time. Hence the option holder tries to maximize the expected



86 Valuation of electricity derivatives

pro�t, i.e. to �nd

V (u, s, r, c) := sup
ν∈N

EQF

[∫ T∧τC̄

u

ν(t)(S(t)−K)dt

]
(4.11)

= EQF

[∫ T∧τC̄

u

ν∗(t)(S(t)−K)dt

]
, (4.12)

where

N := {ν progressively measurable: ν(t) ∈ [νlow, ν
up] for a.e. t ∈ [0, T ]}

is the control set, and

τC̄ := inf{t > 0| Cν(t) = C̄}

is the �rst time when all of production rights are used up. Note that the

value function V satis�es the boundary conditions

V (T, s, r, c) = 0 and V (u, s, r, C̄) = 0. (4.13)

If we assume that V in (4.11) is su�ciently smooth, then by Itô formula, (4.7),

and (4.8) we get

V (T ∧ τC̄ , S, r, Cν)− V (u, s, r, c) +

T∧τC̄∫
u

ν(t)(S(t)−K)dt

=

∫ T∧τC̄

u

[
∂tV + ν(t)∂cV − S(t)r(t)∂sV + (v(t)η(t, t) + α(t, t))∂rV

+ S2(t)v2(t)∂2
ssV − 2S(t)v(t)η(t, t)∂2

srV + η2(t, t)∂2
rrV
]
dt

−
∫ T∧τC̄

u

(S(t)v(t)∂sV − η(t, t)∂rV )dWQF

t +

∫ T∧τC̄

u

ν(t)(S(t)−K)dt.

(4.14)

Denote

AνV (t, s, r, c) := ∂tV (t, s, r, c)− sr∂sV (t, s, r, c) + (v(t)η(t, t)

+ α(t, t))∂rV (t, s, r, c) + s2v2(t)∂2
ssV (t, s, r, c)− 2sv(t)η(t, t)∂2

srV (t, s, r, c)

+ η2(t, t)∂2
rrV (t, s, r, c) + ν(t)(∂cV (t, s, r, c) + s−K),



4.2 Pricing of swing options 87

for ν ∈ N . Since

V (T ∧ τC̄ , S(T ∧ τC̄), r(T ∧ τC̄), Cν(T ∧ τC̄)) = 0,

we can rewrite (4.14) as

EQF

[ T∧τC̄∫
u

ν(t)(S(t)−K)dt

]
− V (u, s, r, c)

= EQF

∫ T∧τC̄

u

AνV (t, S(t), r(t), Cν(t))dt

− EQF

[ T∧τC̄∫
u

(S(t)v(t)∂sV − η(t, t)∂rV )dWQF

t

]
. (4.15)

Note that the left hand side of equality (4.15) is non-positive for every ν ∈ N .

Furthermore, it vanishes if the pair (ν, V ) is a solution of the stochastic

control problem (4.11).

Let S = [0, T ) × R2
+ × [0, C̄). Assume that there exists a solution (ν̂, V̂ )

of the Hamilton-Jacobi-Bellman equation

Aν̂V̂ (x) = 0, for each x ∈ S, (4.16)

where ν̂ ∈ N and V̂ ∈ C2(S) ∩ C(S̄) satis�es the terminal and boundary

conditions (4.13). Moreover, suppose that

EQF
[ ∫ T∧τC̄

u

|Aν̂V̂ (t, S(t), r(t), C ν̂(t))|dt
]
<∞. (4.17)

Then by Dynkin formula (see Theorem 1.24 in [44]) and by (4.15) we have

EQF

[ T∧τC̄∫
u

ν̂(t)(S(t)−K)dt

]
− V̂ (u, s, r, c)

= EQF

∫ T∧τC̄

u

Aν̂V̂ (t, S(t), r(t), C ν̂(t))dt = 0,

and hence the pair (ν̂, V̂ ) is a solution of (4.11). Note that we could apply

Dynkin formula because of the Markov property of the process (S, r). We

obtained the veri�cation theorem for the optimal control problem (4.11) in

the following form:
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Proposition 4.2.1. Assume that there exist V̂ ∈ C2(S) ∩ C(S̄) and ν̂ ∈ N ,

such that (ν̂, V̂ ) is a solution of the Hamilton-Jacobi-Bellman equation (4.16)

satisfying (4.17). Moreover, suppose that V̂ ful�lls the terminal and boundary

conditions (4.13). Then V̂ is the value function of the swing option de�ned

in (4.11).

Note that Proposition 4.2.1 also follows from the classical veri�cation

theorem, but the direct derivation is less technical and more illustrative. We

refer to [44] for more details on stochastic optimal control problems.
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