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Chapter 1

Introduction

This dissertation takes a fresh look at combined forecasts in the presence of

structural change. A new method is proposed that re�nes combined forecasts

�ltering out those models that are very likely to become unreliable over the

forecast horizon.

Economic forecasting as much as forecasting in every other �eld relies entirely

on the past to predict the future. The task of a forecaster is to �nd a link

between today and future values of some variable. What makes the process

of �nding an adquate description of past economic relationships so di�cult,

is the constant evolution of the economy. In the 1920s, the birth of economic

statistics in the US gave rise to large-scale statistical macroeconomic mod-

els. Researchers aimed at �nding the 'true' data generating process (DGP)

matching empirical data to theory based on statistical inference. However,

these models failed to predict the stag�ation of the 1970s, as it ran counter

to the empirical �nding thitherto of a negative correlation between unem-

ployment and in�ation. As a reaction, Lucas (1976) formulates his famous

critique. It states that static models of macroeconomic quanitities will sooner

or later fail in predicting macroeconomic aggregates as the underlying rela-

tionships di�er depending on what macroeconomic policy regime is in place.

To put it simply: as a reaction to policy changes people will adjust their

behaviour � and thus the inner workings of the economy.

The failure of large models triggered the development of a wide range of new

13



14 CHAPTER 1. INTRODUCTION

forecasting devices. In particular, small adaptive time-series models solely

based on the target variable's own past as, e.g., the approaches developed

by Holt (1960) came to widespread use in economic forecasting. However,

the idea of �nding a 'true' model was not discarded. As Chat�eld (1996)

points out, a forecaster would typically entertain a family of possible mod-

els selecting the best one according to its in-sample �t based on diagnostic

tools such as the autocorrelation function. This has been widely criticized,

as the same data is used to select the models, make inference, and compute

predictions (Chat�eld, 1996). The uncertainty related to the model selection

process was largely ignored.

When it comes to the creation of a good predictive device it is crucial to

know as much about change, as possible. This includes the knowledge about

its form and timing. Then, in the best of all cases, change can be identi�ed,

anticipated and incorporated in the model. Elliott (2005) points out that

the great diversity of the ways a model can be non-constant poses a huge

challenge in implementing this task. Major di�erences concern the frequency

and the form of change. A widespread notion of thinking about change is

connected to the business cycle. Goldfeld and Quandt (1973) introduce the

Markov-switching (MS) regression model to the economic literature. In its

basic form it is designed such that the coe�cient vector abruptly takes on dif-

ferent values in di�erent time periods or regimes. Those regimes are mostly

associated with times of economic expansion and recession. In contrast, Coo-

ley and Prescott (1973) design the stochastically time-varying parameters

(TVP) model to deal with slow but constant change. An economic issue fea-

turing this kind of evolutionary process is the expectation formation, which

is thought to be an on-going and smoothly developing process. Although

the economic forecasting literature contains instances in which forecasts are

improved by allowing for speci�c types of non-linearity, this has the e�ect of

dramatically increasing the dimensionality of the models. Furthermore, as

with every forecasting tool, non-linear models need to identify the pattern

of change to incorporate in the model. Clements and Hendry (1998) con-

centrate on change that could not be anticipated given the historical data

up to the point the forecast is made. Comparing several forms of structural
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change, they point out that such a structural break in form of a permanent

shift in the parameter vector of a model, will have the most detrimental e�ect

on forecasting accuracy.

Not all approaches dealing with change concentrate exclusively on the �rst

moment. Frequently it is found that variances of economic variables evolve

over time, showing a persistent pattern: large (small) shocks tend to be fol-

lowed by large (small) shocks of either sign, a phenomenon termed volatility

clustering. To capture this stylized fact Engle (1982) presents the autoregres-

sive conditional heteroscedasticity (ARCH) approach, modelling the condi-

tional variance such that it depends on elements in the information set in

an autoregressive manner. It has been found already in the �rst empirical

application of ARCH to UK in�ation that a large number of parameters is

required in the conditional variance function. The more parameters esti-

mated, the more complicated inequalitiy restrictions need to be imposed to

ensure a positive �nite unconditional variance. Bollerslev (1986) proposes the

generalized ARCH (GARCH) model that parsimonously paramterizes ARCH

models in a manner analogous to the extension from AR to ARMA models in

traditional times series. In the following, a rich strand of literature emerged

modifying the basic set up to capture additional empirical features. Exten-

sions include asymmetries in the volatility, mean e�ects of the conditional

volatility, and the extension to multivariate ARCH models (see Bera and

Higgins, 1993, for a review). Given huge jumps in the variance of economic

time series that can not be reconciled with the ARCH framework (Dueker,

1997), researchers quickly realized the possibility of change in the structure

of the ARCH models themselves. In their modelling they recurred to the ap-

proaches used in the modelling of shifts in the mean of economic time-series.

Hamilton and Susmel (1994), e.g., model change in the conditional variance

parameters in form of an MS process.

The identi�cation and prediction of structural shift is complicated by the

particularities of economic data. Revisions due to incoming information,

methodological innovations and statistical reforms are rather the rule than

the exception. Thereby, changes to the data are frequently quite substantial.
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Furthermore, outliers, i.e., rare strong irregularities, are a common feature

(Tsay 1988). Thus, an unusual observation in the last period does not nec-

essarily mean that a structural shift has taken place. Finally, not only the

coe�cient estimates of a model, but also the predictors may change. A

major reason for this is the change in the structure of the economy. The IT-

revolution, e.g., profoundly transformed the aspect of o�ce work and gave

rise to a new and important sector of the economy. Relatively high labor

costs in developed countries led to a large scale reduction of manufacturing

industries. Thus, economic change may imply that certain economic variables

cease to be useful while others become good predictors. All these features

induce huge uncertainty to the detection and especially to the monitoring of

structural change. As a consequence, the date of a sudden and substantial

break can not be pinned on one concise date � not even ex-post, let alone

ex-ante. Frequently, the candidate dates stretch over several years.

Given the huge challenges associated with the incorporation of change in the

models as such, one strand of literature has focused on the robustness of

existing forecasting tools to change. This work demonstrated that simple

adaptive models like the naive forecast, i.e., simply using the last obser-

vation of the variable to be predicted as a forecast, frequently outperform

more sophisticated alternatives. Furthermore, Clements and Hendry (2006)

among others, show that simple adjustments help to make models less sen-

sitive. They suggest to di�erence the data prior to estimation. This reduces

the e�ect of a break to a 'blib', i.e., limiting its detrimental e�ect to one

single forecast. Furthermore, they lend theoretical justi�cation to intercept

corrections (IC), a technique frequently used by the applied forecaster. The

concept of IC makes use of last period's forecast errors to adapt models to

change.

When it comes to forecasting, not every structural change markedly increases

forecast error variances. If change is gradual it might well be that it only

marginally a�ects forecast accuracy. Given the uncertainty generally associ-

ated with economic forecasts, the deterioration caused by the shift might be

negligible. Furthermore, changes do not necessarily have to be detrimental,
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at all. This is the case if the relationships of the variables under consider-

ation remain unchanged, despite of a structural change that simultaneously

a�ects both of them. In view of this, Clements and Hendry (1998) introduce

the concept of forecast failure, de�ned as a signi�cant deterioration in fore-

cast performance relative to the anticipated outcome based on an earlier �t.

Giacomini and Rossi (2005) make this idea workable. Their forecast break

down test compares in- and out-of-sample performance of predictive models

to identify and predict forecast breakdowns. It brings together the opposing

views of in- and out-of-sample accuracy measures, and gives an indicator of

change that is free of any concrete de�nition of the form of the shift.

In the late 1970s the e�ort to �nd the econometric model or class that domi-

nates alternative approaches in a wide range of settings led to the creation of

forecast competitions. Their aim is to mimic a realistic forecast situation it-

eratively testing many candidate models in a horse race. The most prominent

exponents are the so-called M-competions, whose outcome is summarized in

Makridakis and Hibon (2000). There have been three rounds of them, so

far. Each time � despite of the inclusion of more recently developed, highly

sophisticated methods � the basic results have remained unchanged. One of

the central results was that combinations of many models rather than single

forecasting devices outperform their competitors on average. In a more re-

cent analysis, Marcellino (2004) con�rmes this �nding, comparing 58 single

methods in a dataset containing 500 European time series. He points out

that more disaggregate analysis demonstrates that single non-linear models

can outperform pooled forecasts for several series. However, they perform

rather badly for other series so that on average their performance is not as

good as that of combined forecasts.

This �nding is calling into question the search for the 'true model'. However,

what is the rationale for the combined forecasts to outperform the alterna-

tives? Combined forecasts are frequently compared to diversi�cation in asset

management (Markowitz, 1952), where the money is spread over a portfolio

of stocks rather than on one asset alone, thus minimizing the risk associated

with the investment: it is highly unlikely that all stocks in the portfolio have
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negative returns at the same time. As a consequence, the return of the port-

folio will be less volatile then the individual assets alone as huge outliers in

both directions will compensate each other. Translated into terms of eco-

nomic forecasting, combination is a way of adressing model uncertainty and

structural change. When the true model either does not exist or can not be

identi�ed, it is reasonable to consider a set of likely models. Furthermore,

structural change may a�ect di�erent models in di�erent ways. Positive and

negative forecast errors potentially compensate each other so that pooling

serves as a hedge against large forecast errors. Under benign conditions,

combination can produce even better results than the best individual model

alone (Bates and Granger, 1969).

The simplest and hard to beat way of combining a set of forecasts is taking

the average or the median. Still, given that a researcher has information

on the past performance of the individual models, it seems unreasonable to

ignore this knowledge when designing the weights of the combined forecast.

The optimal combination, exploiting all possibilities to o�-set forecast errors,

is based on the covariance matrix of the forecast errors. However, the esti-

mation of the covariance matrix involves the estimation of a huge number of

coe�cients. Thus, the assumption of uncorrelatedness, i.e., disregarding the

o�-diagonal elements of the covariance matrix frequently leads to far better

results (Timmermann, 2006). Then, the task reduces to weighting accord-

ing to some kind of accuracy measure, where good models receive a higher

weight than less accurate ones. Some controversy has emerged regarding the

type of accuracy measure to be used. Proponents of in-sample measures such

as the mean squared error of the estimation, point out that their approach

best re�ects the �t of the respective model to the data up to the forecast

origin and thus optimally uses the available information. However, most of

the research has concentrated on some form of aggregated past forecast error,

such as the mean squared forecast error (MSE). This is due to the frequently

found di�erence between in- and out-of-sample predictive accuracy (Goyal

and Welch, 2007). Argueably, out-of-sample measures implicitly re�ect the

models capability of dealing with structural shifts.
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Basing the weighting schemes on accuracy measures will in the presence of

shifts in the economy ultimately lead to a shift in relative performances and

thus the weights. Numerous approaches have been proposed to make the

weighting schemes more adaptable. They include minimizing the impact

of obselete information discounting past forecast errors, or discarding out-

dated information all together. Some researchers have modelled the chang-

ing weights in form of a TVP, an MS, or a combination of the two (Aiol�

and Timmermann, 2006). Granger and Ramanathan (1984) have used au-

toregressive conditional heteroscedasticity (ARCH) e�ects, an omnipresent

feature of economic data, to predict forecast error variance and employ them

to update the weighting scheme. Winkler and Clemen (1992) show that the

possible gain of including a model in the combination scheme might be o�-set

or even lead to a loss in forecast accuracy, if the additional estimation uncer-

tainty with respect to the weights is too big. For changing weights schemes

this is particularly relevant. They either reduce the information set the esti-

mation of the weight sequence is based on or induce additional uncertainty

due to the need to identify the type of change. This leads to the central

trade-o� this dissertation will deal with: up-to-datedness versus precision.

The theory of combined forecasts demonstrates that large relative di�erences

in the forecast error variance of two models tend to reduce the gains of

combination. Thus, it is intuitively convincing to exclude those models from

combining that, given their past performance, will perform poorly in the

future, as well. This approach goes under the heading of trimming. In this

line, Granger and Jeon (2004) advocate the use of models of 'similar quality'.

Aiol� and Timmermann (2006) propose the clustering of the models into

groups according to the MSE, using only the best models for the combined

forecast. The most radical approach is the so called predictive least squares

(PLS, Stock and Watson, 1999), where the model that has produced the best

forecast up to the forecast date is given a weight of one, and the other models

zero. While most of these approaches have resulted in an improvement of

the combined forecast, Timmermann (2006) shows that the selection of those

models to be given zero weight has been rather ad-hoc and data dependent.

As Aiol� and Timmermann (2006) point out, for these approaches to work,
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it is necessary that the relative past performance is persistent, i.e., that the

worst models remain the worst models over all periods. However, Stock

and Watson (1996), analyzing a broad set of international macoreconomic

forecasts demonstrate that the ranks of a huge set of di�erent forecasts vary

over two arbitrary sub-periods of the analysis. In view of the widespread

occurance of structural shifts, the success of trimming will crucially depend

on the time period under study.

This dissertation takes a fresh perspective on combined forecasts in the pres-

ence of structural change. It proposes a novel re�nement technique, the

Forecast Breakdown Preselection (FBP) that can be interpreted as a forward

looking alternative to standard trimming schemes. Based on the dynamics of

ARCH e�ects, the methodology of Giacomini and Rossi (2005) is employed to

detect those models that are likely to face a forecast break down in the next

forecast situation. This allows to directly address the trade-o� between up-

to-datedness and precision sorting out unreliable models. In contrast to stan-

dard trimming approaches it is free of any ad-hoc decision making. Rather

than basing selection of candidate models on past and possibly out-dated in-

formation, it takes the decision employing a dynamic indicator for the period

where it matters most: the forecast horizon. Furthermore, it lends additional

�exibility to the weight sequence. Both, simple and adaptive versions of past

performance weighting schemes need some time to react to drastic changes in

the relative performance. In contrast, FBP can immediately set the weights

of models that abruptly deteriorate to zero. Furthermore, as it merely �l-

ters a given sample of individual forecasts, the resulting subsample can be

employed in any scheme of choice.

FBP is developed along the lines of an empirical experiment iteratively pre-

dicting UK in�ation. This is accompanied by a short theoretical exposition of

the workings of combined forecasts and the adaptive schemes most frequently

found in the literature. A simulation analysis compares the performance of

the latter and explores how much information is actually needed for those

schemes to make sense. Existing studies Stock and Watson (2004), test

combination schemes on series that have been found to feature one or more
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structural breaks without dating them. In contrast, this dissertation takes a

look at the performance of combined forecasts at an identi�ed break in the

target series using the methodology of Bai and Perron (2003b). Thereby,

the focus is laid on the individual forecasts. More speci�cally, periods of in-

creased forecast error variances are analyzed using visualization tools, ARCH

tests, and the methodology of Giacomini and Rossi (2005), and set into re-

lation to the structural break analysis. Building on these empirical features,

FBP is introduced and its functioning is shown in a second simulation study

based on the empirical experiment. Then, FBP's usefulness for the predic-

tion of UK in�ation is explored in detail and compared to an alternative

re�nement technique. Furthermore, FBP is tested for the prediction of other

economically relevant variables in the current data set.

This dissertation introduces the concept of forecast breakdowns to the con-

text of combined forecasts to develop a novel re�nement technique that is

�exible, free of ad-hoc decision making, and forward-looking. The study is

the �rst to apply the analysis of forecast breakdowns to a large number of

models. This allows for new insights into the reliability of forecast devices

around an identi�ed break. Furthermore, the study is the �rst to consider

such a wide range of di�erent combination techniques to test the practicabil-

ity of methods making combined forecast more adaptable. Finally, it extends

traditional analyses of combined forecasts in that it considers several types of

non-linearties, ARCH e�ects, breaks, and phases of high forecast uncertainty,

in one study.

The following chapter gives a short overview of the basic theory of forecast

combination. Chapter three describes the data and the empirical approach.

Chapter four outlines the analysis of structural breaks and presents results

for the series used. The �fth chapter relates ARCH e�ects to combined

forecasts. The next chapter presents and compares adaptive combination

schemes. Chapter seven describes the forecast breakdown analysis and intro-

duces the FBP. Chapter eight presents a simulation analysis to demonstrate

the usefulness of the approach. Chapter nine compares empirical results of

the combination schemes with and without the application of FBP. The last
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chapter is a conclusion.



Chapter 2

Theory of combined forecasts

2.1 Combination of a pair of forecasts

This chapter presents some theoretical results on the optimal combination

(OPT), the inverse MSE weighting scheme (INV), and the equal-weights-

scheme (EW). These three are the most widely used combination approaches.

OPT will not be used in the applied part of this dissertation as it provides

rather weak results in empirical studies (Timmermann, 2006). However, it is

very useful for illustrative purposes. In the following, it is demonstrated for

the simple case of two forecasts that the interaction of relative performances

of the models and their correlation play a crucial role for the success of the

combination approach. For simplicity the analysis assumes the DGP to be

time-invariant and known.

Past performance schemes like INV and OPT learn from forecast errors.

Thus, they give better results when compared to EW the higher the di�er-

ences of forecast accuracy of the constituent models. Moreover, past perfor-

mance schemes tend to handle poor performing models more e�ciently the

worse they are. In the extreme they are attributed a weight close to zero.

This self-selection raises some doubts on the necessity of the standard trim-

ming approach that �lters out some arbitrary percentiles of very inaccurate

models.

23
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However, disregarding information on past performances might sometimes

be a reasonable approach. In applied work weight sequences need to be esti-

mated. In particular, if the estimation is complicated by structural changes

EW frequently outperforms more sophisticated methods.

The more negative the correlation of the errors and the smaller the di�er-

ence of accuracy, the better pooling generally works. Under benign condi-

tions, pooled forecasts can even beat the best individual model. However,

even if the covariance of the errors does not allow for combination to beat

all alternatives, it may still be a sensible alternative. If knowledge of the

performance of individual models is limited due to short historical informa-

tion or uncertainty related to shifts in the economy, pooling poses a valuable

approach.

Bates and Granger (1969) transfering Markowitz' (1952) diversi�cation argu-

ment to the �eld of forecasting demonstrate the theoratical merits of combi-

nation when the covariance of the individual forecast errors is known. They

consider the case of two single competing point forecasts, f1,t and f2,t, of

some quantity yt, derived h periods ago. As the single forecasts are assumed

to be unconditionally unbiased, the forecast errors

ei,t = yt − fi,t (2.1)

are normally distributed

ei,t ∼ N
(
0, σ2

i

)
, (2.2)

where σ2
i = var (ei,t), σ1,2 = ρσ1σ2 denotes the covariance between e1,t and

e1,t, and ρ is their correlation. The linear combination

ct = kf1t + (1− k)f2t (2.3)

of the two forecasts, which is a weighted average, is then unbiased in the

same sense, so that the forecast error of the combined forecast

ec,t = ke1t + (1− k)e2t (2.4)
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has zero mean and variance

σ2
c = k2σ2

1 + (1− k)2σ2
2 + 2k(1− k)σ1,2. (2.5)

The optimal value kopt can be derived by minimizing the error variance σ2
c ,

di�erentiating Equation (2.5) with respect to k and solving the �rst order

condition:

kopt =
σ2

2 − σ1,2

σ2
1 + σ2

2 − 2σ1,2

(2.6)

1− kopt =
σ2

1 − σ1,2

σ2
1 + σ2

2 − 2σ1,2

. (2.7)

Thus, individual forecasts that yield lower forecast error variances (are more

accurate) are assigned a higher weight in the combination process. In the

extreme case of σ2
2 → ∞, kopt → 1. The resulting forecast error variance of

the optimally combined forecast is

σ2
opt =

σ2
1σ

2
2 (1− ρ2)

σ2
1 + σ2

2 − 2ρσ1σ2

. (2.8)

Let us de�ne κ = σ2/σ1 with κ < 1, so that σ2 is the best individual forecast.

The loss Lopt =
σ2
opt

σ2
2
compares σ2

opt to the best individual forecast; For L
opt =

1, the combined forecast is as good as the best model, for Lopt < 1 it is better,

and for Lopt > 1 it is worse. Expressing Lopt in terms of ρ1,2 and κ gives

Lopt =
1− ρ2

1 + κ2 − 2ρκ
. (2.9)

To highlight the dependence of the combined forecasts on the covariance,

Figure 2.1 plots Lopt for di�erent values of κ and ρ. If the two constituent

forecasts are equally accurate (κ = 1), it follows that the combined forecast

will deteriorate, the higher ρ. If the individual forecast variances di�er (κ 6=
1), the combined forecast will deteriorate with an increasing ρ relative to f2

as long as ρ < κ and improve upon f2 with a higher ρ if ρ > κ. Only if κ = ρ,

the forecast are equally accurate (Lopt = 1). Thus, the combined forecast is

always at least as good as the best individual forecast, and can lead to a
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Figure 2.1: Lopt as a function of κ and ρ
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considerable improvement over f2.

In �nite samples, however, especially when the sample size is small relative to

the number of candidate forecasts, the estimation of the o�-diagonal elements

of the variance-covariance matrix has proven to be an especially demanding

task. Furthermore, the estimated weights can become very instable, consider-

ably deteriorating the forecast performance of the pooled forecasts (Winkler

and Clemen, 1992). A pragmatic solution proposed already by Bates and

Granger (1969) and sucessfully applied to a wide range of forecasts by Stock

and Watson (2004) is to concentrate on the variances of the forecast errors.

Assuming the mean of the individual forecast errors to be zero, the combina-

tion scheme thus weights the individual forecasts inversely to their relative

mean squared forecast error (MSE) giving INV. In the case of combining two

single forecasts kopt reduces to kinv giving:

kinv =
σ2

2

σ2
1 + σ2

2

(2.10)
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Figure 2.2: L inv as a function of κ and ρ
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1− kinv =
σ2

1

σ2
1 + σ2

2

. (2.11)

The resulting forecast error variance is then

σ2
inv =

σ2
1σ

2
2 (σ2

1 + σ2
2 + 2ρσ1σ2)

(σ2
1 + σ2

2)
2 . (2.12)

The loss over the best individual model is Linv =
σ2
inv

σ2
2
; using κ and ρ will

then give

Linv =
1 + κ2 + 2ρκ

(1 + κ2)2
. (2.13)

Figure 2.2 gives Linv for di�erent values of κ and ρ. As in the case of the

OPT, if κ = 1 the ratio is an increasing function of ρ, and it is smaller than

one, except if ρ = 1 where it takes the value of unity.

However, ignoring the correlation of the forecast errors comes at a cost. When

ρ is high and κ is low, the combined forecast is no longer necessarily better

or at least as good as the best individual model. Figure 2.2 is divided into
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Figure 2.3: Cross section of Linv

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

κ

Linv=1
Linv=1.1
Linv=1.3
Linv=1.4

two zones, con�ned by the condition ρ = κ+κ3

2
. When ρ < κ+κ3

2
, Linv < 1

holds, and the higher κ and the lower ρ the better INV works. I.e., in this

zone, the combination improves, the smaller the di�erences in the variances

and the more negative the correlation of the individual models.

Figure 2.3 gives the contour lines of the part of Figure 2.2 where INV is

worse or equally good than f2 (ρ ≥ κ+κ3

2
and Linv ≥ 1). On the outer line,

where ρ = κ+κ3

2
, and the y-axis, where κ → 0, INV is (approximately) as

accurate as f2.
1 Every combination of ρ and κ that is to the right of y- axis

and below the line where ρ = κ+κ3

2
, INV performs worse than f2. The most

detrimental combinations of ρ and κ to INV are enclosed by the inner line,

where Linv = 1.4, and the x-axis. The maximum of 1.46 is reached when

ρ = 1 and κ ≈ 0.41.

For κ 6= 1 the �rst derivative of Linv, δL
inv

δκ
, is positive if ρ > κ3+κ

(1−3κ2)
, and neg-

ative if ρ < κ3+κ
(1−3κ2)

. This is a counterintuitive result. Suppose the researcher

wants to combine a given forecast with another one and has two alternatives

1κ = 0 is not de�ned as this would imply f2 being in�nitely more accurate than f1.
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Figure 2.4: Linv as a function of κ and some values of ρ
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at his disposal. Then, the combination with the less accurate of the two

candidates may lead to better results then the combination with the better

one.

Figure 2.4 highlights this point, plotting Linv(κ) for di�erent values of ρ,

where ρ is more positive the higher the line. κ = 1 on the right indicates that

the models are equally accurate, and the smaller κ the higher the di�erences.

For ρ = −1 and ρ = −0.45 moving from the right to the left the loss is

monotoneously increasing. For the positive correlations, that is, for ρ = 1

and ρ = 0.45 �rstly this holds, as well. However, the higher the di�erences,

e.g., when κ < 0.2, a further increase of the di�erences leads to a lower loss.

This weakens the rationale behind the standard trimming approach as the

correlation of forecast errors is mostly positive (Clemen andWinkler, 1986) so

that the counterintuitive result applies in practical work. Trimming prevents

the inclusion of very inaccurate models in the combination process. However,

the worse those models the more e�ciently past performance schemes like

INV tend to deal with them. Thus in view of the di�culties in measuring past

forecast accuracy that will be outlined in chapter 6 dropping some arbitrary
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percentiles could do more harm than good.

Disregarding all information of the covariance matrix of the forecast errors

taking the average, thus attributing all models the same weight, yields EW.

The forecast error variance of INV given in Equation (2.12) simpli�es to:

σ2
ew =

1

4
σ2

1 +
1

4
σ2

2 +
1

2
σ1σ2ρ1,2. (2.14)

The loss Lew of σ2
ew over f2 is then given as

Lew =
1 + κ2 + 2κρ

4κ2
. (2.15)

In contrast to OPT and INV, Lew is always a negative function of κ, irrespec-

tive of the value of ρ; the �rst derivative of Equation (2.15) with respect to κ

is positive if ρ > κ
κ2−2κ

, which always holds, as 0 < κ ≤ 1. Again simpli�ca-

tion leads to a loss in forecast accuracy. Figure B.1 in the appendix plotting

Lew as a function of ρ and κ demonstrates that the extent of the relative loss

can be very much higher than for INV, especially if κ→ 0. Still, if condition

ρ < 3κ2−1
2κ

holds EW outperforms even the best individual model.

As both, INV and EW, disregard the o�-diagonal elements of the covariance

matrix of the forecast errors, the relative performance of the two approaches

depends on κ alone. To evaluate the relative loss as a result of disregarding

the diagonal elements consider the ratio:

Lew/inv =
σ2
EW

σ2
INV

=
(1 + κ2)2

4κ2
(2.16)

Figure 2.5 plots Lew/inv for some values of κ.2 Lew/inv is a monotenously

decreasing function of κ, with the minimum being one. While the relative loss

is relatively little up to κ = 0.3, where Lew/inv = 1, 8125, it steeply increases

with κ → 0. Thus, using EW instead of INV is particularly detrimental, if

the relative di�erences of forecast accuracy of the di�erent models is very

high. INV will attribute smaller weights, while EW can not adapt.

2For ease of presentation, smaller values of κ that give very high values of Lew/inv are
not plotted.
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Figure 2.5: Lew/inv as a function of κ
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2.2 Average forecast given instable processes

Up to now the analysis was con�ned to constant forecast error covariances.

However, as laid out in the introduction, the structure of the errors will

vary over time as the data generating process is changing, i.e., the econ-

omy evolves. While the merits of combination in this setting are con�rmed

empirically in the seminal article of Bates and Granger (1969), theoretical

proofs have emerged rather recently. With an eye to the speci�caton of the

simulation experiment in chapter 8 this section aims at highlighting the cen-

tral issues involved: the need for the modeling of the misspeci�cation of the

individual models, the type of structural change, and the importance of the

relative size of the break.

In the following, we will concentrate on two of the more eminent analyzes.

Complexity is increasing sharply when structural change is considered. In or-

der not to aggravate the situation any further, most of the research excluded

weight optimization issues concentrating on EW.
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2.2.1 Shift in the DGP

Aiol� and Timmermann (2006) present a model that highlights potential

gains in the case of a switch in the DGP between two states F1 and F2, which,

e.g., could be interpreted in the context of the business cycle as phases of

expansion and recession. Misspeci�cation of the individual models is given

in that they only recur to the information on one of the phases:

yt = StF1t + (1− St)F2t + εyt (2.17)

f1t = F1t + ε1t, (2.18)

f2t = F2t + ε2t, (2.19)

where all variables are assumed normal with factors Fit ∼ N(µi, σ
2
Fi

), i = 1, 2,

and the disturbance terms εit ∼ N(0, σ2
εi

) and εyt ∼ N(0, σ2
εy). Furthermore,

while the disturbance terms are mutually uncorrelated and uncorrelated with

the factors, the two factors themselves may be correlated. The state tran-

sition probabilities are constant P (St = 1) = p and P (St = 0) = 1 − p.

The forecast errors using only the information of one of the two factors are

eit = yt − fit with variance σ2
ei
.

The authors show that the population MSE of the equal-weighted combined

forecast will be lower than the population MSE of the best model if:

1

3
(

p

1− p
)2 1 + ψ2

1 + ψ1

<
σ2
e2

σ2
e1

< 3(
p

1− p
)2 1 + ψ2

1 + ψ1

,

where ψi = σ2
εi
/σ2

Fi
are the noise-to-signal ratios for forecasts one and two.

Imposing equal probabilities for the two states, i.e., p = 0.5 and equal noise-

to-signal ratios, i.e., ψ1 = ψ2 simpli�es the expression to:

1

3
<
σ2
e2

σ2
e1

< 3,

which illustrates that hedging against breaks using combined forecasts makes

sense for a wide range of relative factor variances.
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2.2.2 Extraneous breaks

Hendry and Clements (2004) use a very similar set-up to demonstrate po-

tential gains of combined forecasts in the presence of abrupt changes in the

mean of the DGP analogous to the change analyzed by the structural break

literature presented in chapter 4. They consider a wide range of designs for

the shift whereby it is assumed to occur after the estimation period so that

parameter estimates are not a�ected. The individual models are misspeci�ed

as each of them only uses one of the variables that form the target variable

resulting in an omitted variable bias (OVB) . In the following, we will con-

sider the situation of a break in the intercept of a single variable in the data

generating process (extraneous break).

As in Aiol� and Timmermann (2004) the target variable yt is given as the

sum of two constituent processes:

yt = β′1x1,t−1 + β′2x2,t−1 + εyt, (2.20)

with εyt ∼ N(0, σ2
εy) and independent of x1,t−1 and x2,t−1. Now, two inves-

tigators ignoring the true DGP �t separate models using only part of the

information:

yt = a′wt + ε1t (2.21)

and

yt = b′zt + ε2tt (2.22)

where x1,t−1 and x2,t−1 are replaced with wt and zt to simplify presentation.

Moreover, (
wt

zt

)
= Nn

((
φz,t

φw,t

)
,

(
σ2
w

σ2
wz

σ2
wz

σ2
z

))
,

where φz,t = φw,t = 0 for t = 1, ..., T . The estimation errors εit re�ect the

ommitted variable bias.3 In T + 1 the z-process shifts φz,T+1 = µz. Now, the

two investigators predict yT+1 using the data up to T . The analysis thereby

abstracts of sampling variability in the coe�cients a and b. The 1-horizon

3For a detailed exposition see the original paper.
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forecast using Equation (2.21) is ŷT+1 = â0 + â′1wT+1 giving forecast error

ûT+1 = yT+1 − ŷT+1. Analogously, the other model's forecast is ỹT+1 =

b̂0 + b̂′1zT+1 resulting in forecast error ν̃T+1 = yT+1 − ỹT+1. Making some

weak assumptions to reduce the notational burden, the authors show that

combined forecast outperforms both individual forecasts if

1

3

(
1 +

µ2
z

σ2
z

)
< ρ2 < 3

(
1 +

µ2
z

σ2
z

)
.

Thus, combining forecasts can o�set the instability in the individual forecasts

and in e�ect serves as an intercept correction. Moreover, the result depends

on the size of the break relative to the variances of the underlying processes

zt and wt, and their correlation.



Chapter 3

Empirical set-up

3.1 The models and the experiment

How does pooling of forecasts perform in practice? To answer this question

the major point of reference in the following chapters will be an empirical

experiment. It demonstrates what an applied forecaster trying to predict UK

in�ation on a monthly basis could have done in the past. Table 3.1 illustrates

the approach. Due to data restrictions the points in time forecast situations

are simulated, the forecast origins, stretch from December 1984 to June 1999.

As the actual values of in�ation are known by now, we can evaluate the

performance of the models used. In real-time forecasting, only the data up

Table 3.1: Pseudo-out-of-sample experiment

Estimate Forecast ahead

k = 1 k = 3 k = 6 k = 12
1948:6 −→ 1984:12 1985:1 1985:3 1985:6 1985:12
1948:6 −→ 1985:1 1985:2 1985:4 1985:7 1986:1
1948:6 −→ 1985:2 1985:3 1985:5 1985:8 1986:2
1948:6 −→ 1985:3 1985:4 1985:6 1985:9 1986:3
· · ·
1948:6 −→ 1999:6 1999:7 1999:9 1999:12 2000:6

35
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to the forecast origin is available. The precision of the estimated coe�cients

is lower when compared to estimations using the complete information set

ex-post. Thus, it is common practice to implement so-called pseudo-out-of-

sample forecasts, restricting estimation at each iteration to the information

set that would have been available in the past. As the results could di�er

according to the distance in time the forecasts bridge, the analysis considers

four di�erent forecast horizons typically found in applied work: 1-month,

3-month, 6-month, and 12-month horizons.

Suppose the forecaster �ts a large number of single OLS models using lagged

values of exogenous variables and in�ation as regressors xit giving

INFLt = α +
n∑
i=1

p∑
j=h+1

βijL
jxit + ut, (3.1)

where ut is assumed to be independently identically distributed (iid), and

α and βij are the constant respectively coe�cients of lag j of regressor i,

with i = 1, ..., n. Moreover, t = 1, ..., T is the time index and p denotes the

number of lags considered. Lj is the lag operator that shifts a variable j

periods back in time, e.g., L1xit = xit−1, L
2xit = xit−2, ..., L

pxit = xit−p.

Following common practice (Stock and Watson, 2004), the number of lags

considered in the regression is selected to minimize the Bayesian information

criterion (BIC):

BIC = S + l ln(T ),

where l is the number of estimated parameters. Here, l is the number of

regressors times the number of lags plus the constant. It minimizes the sum

of squared residuals, S. The second term penalizes over�tted models as it

increases BIC the higher l. The maximum number of possible lags is set to

eight.
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Table 3.2: Example of model-building

model A B INFL

1 x x
2 x x
3 x x x
4 x

Note: an �x� indicates that the

variable is considered in the

respective model.

The models are formed, using all possible combinations of the regressors plus

in�ation which is always included. Table 3.2 illustrates this for the case

of two regressors A and B. There are three possible combinations including

in�ation and at least one additional regressor, model one to three, plus the

autoregressive model number four. In the experiment, where the highest

number of exogenous regressors per model is 16, the number of possible

combinations of the variables is 216 + 1. The number of coe�cients to be

estimated, i× j + 1, rises quickly, the more lags are considered, limiting the

degrees of freedom used in each regression. Thus, the maximum of variables

per model is set to three reducing the total number of models to be estimated

each iteration and horizon to 121.

A common method of dealing with structural changes is to use only a �xed

number of past observations of the data τ . This would, e.g., result in using

observations T − τ, T − τ + 1, ..., T at forecast origin t = T and T − τ +

1, T − τ + 2, ..., T + 1 in t = T + 1, shifting the window one period forward.

The rationale is to facilitate the adaptation of the model parameters to the

new (post-change) situation giving more recent observations more weight and

discarding obsolete information. However, this comes at the cost of arti�cially

increasing estimation uncertainty. As empirical evidence on the success of

the rolling window approach is mixed, the analysis employs all observations

up to forecast origin t: the models use observations 1, ..., T at forecast origin

t = T and 1, ..., T + 1 in t = T + 1.
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3.2 The series

There is an ample set of candidate exogenous variables a forecaster can choose

of. However, there are some restrictions, a realistic simulation of the fore-

casting situation has to take into account. Some of the data changes over

time, as statistical agencies frequently revise their publications due to new

incoming information, canonical changes, or due to the correction of errors

made. Thus, a forecaster in t = T may have a di�erent version, or vintage,

of the information set spanning observations 1, ..., T at his disposal than a

forecaster in t = T + 1 though the same time period 1, ..., T is considered.

This might have considerable in�uence on the models used. Croushore (2006)

points out that revisions change the data input, the estimated coe�cients,

and the model itself (e.g., the number of lags). Usually, statistical agencies

only publish the most recent vintage, so that obsolete information sets get

lost. However, there are some collections of real-time data, real-time data

bases (RTDB), that contain all vintages.

The real-time data considered here cover fundamental variables contained

in Egginton, Pick, and Vahey (2002) comprising real industrial production

(IP), the total claimant count as a measure of unemployment (U), monetary

aggregate (M0), retail sales volume (RS), and average earnings (AE). The

variables have been collected out of the printed publications Economic Trends

and Financial Statistics of the O�ce of National Statistics (ONS, formally

the Central Statistical O�ce).

As an example of real-time data, consider Table 3.3 presenting the vintages

of IP between December 1984 and June 1985 (in columns) covering the pe-

riod between October 1984 and April 1985 (in rows). The upper left �eld

contains the value of IP for October 1984 as it has been available in Decem-

ber 1984. In January 1985 the value for October 1984 is revised and the new

information for November 1984 becomes available. In February 1985 the two

values already published are revised and another observation is added, and

so forth. The �rst measurements of the data are always published with a

time lag of two month to the period they refer to. Furthermore, the data are
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Table 3.3: Example of real-time data, IP

Vintage
Obs. 1984:12 1985:1 1985:2 1985:3 1985:4 1985:5 1985:6

1984:10 0.79 1.28 0.10 0.10 -0.19 -0.29 -0.39
1984:11 -0.19 0.39 0.49 0.19 0.29 0.29
1984:12 0.10 0.48 0.68 0.48 0.48
1985:1 1.35 1.54 0.87 0.48
1985:2 -0.19 0.38 0.38
1985:3 1.90 2.20
1985:4 0.56

Table 3.4: Extent of revision

Mean Mean Ratio Min Max
Variable abs. rev. abs. chg. rev. rev.

RS 0.50 1.22 0.41 -1.80 3.15
IP 0.62 1.25 0.49 -2.59 1.63
AE 0.31 0.66 0.47 -1.24 2.40
M0 0.27 0.46 0.58 -1.86 1.05
U 0.25 0.55 0.45 -2.21 0.90

revised considerably, frequently even changing sign.

Table 3.4 gives an impression of the extent of the data revisions considering

the di�erence between the �rst measurements and the last vintage in June

1999. The information on each variable is arranged in rows. The second

column shows the mean of the absolute revisions. The third column shows

the mean of the absolute changes of the respective variables over time. As the

data are transformed to month-on-month changes, the units of the �gures are

percentage points. In order to make the revisions interpretable, the fourth

column presents an indicator of the relevance of the revision. It sets the

mean absolute revisions in relation to the mean absolute changes from one

observation to the next measured in the last vintage in June 1999, giving

the ratio of the two numbers. The bigger the ratio, the more important
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Figure 3.1: Correlation coe�cients of the �rst with the 11 subsequent vin-
tages
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are revisions. The last two columns present the minimum and the maximum

revision. The ratios range from 0.41 for retail sales to 0.58 for money, meaning

that changes due to revisions are about two to three �fth as big as the

variation of the data over time. Furthermore, the revisions may even be

considerably higher. The maximum revision of average earnings, e.g., is

nearly eight times higher than the mean absolute revision.

Figure 3.1 shows that the di�erences between the vintages materialize quickly.

It plots the correlation coe�cients of the �rst vintage with the eleven subse-

quent vintages. The correlations between the vintages are decreasing sharply

for retail sales, average earnings and especially for industrial production and

monetary aggregate, the bigger the distance in time. The correlation coef-

�cients of the latter two drop to well below 0.9 within the �rst year after

the �rst publication. However, the correlation coe�cients of unemployement

stays close to one. Table 3.5 on the facing page gives the corresponding re-

sults for the total revisions. In case of money the correlation coe�cient of

the �rst to the last vintage is merely 0.68, whereas the correlation coe�cient
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Table 3.5: Correlation coe�cients of the �rst and the last vintage

Variable Corr Coef

RS 0.84
IP 0.69
AE 0.78
M0 0.68
U 0.97

of unemployment is still close to one.

Additional to the fundamental variables, the data set contains several vari-

ables that are not subject to revisions, including the target variable, UK

in�ation rate (INFL), measured as the 12-month percentage change of the

Retail Price Index (RPI).1 A set of �nancial indicators comprise short-term

interest rates, measured as the three-month UK Treasury Bill rate (TB) de-

�ated with RPI, the monthly average of the Financial Times Stock Exchange

Index (FTSE), and the yields of the 10-year UK Government benchmark

bonds (BD). External indicators cover the end of month values of the ex-

change rate of the British Pound to the US Dollar (USD), the exchange rate

of the British Pound to the Deutschmark (DEM), the Treasury Bill rate of

the United States of America (TBUS) de�ated with the US in�ation rate, and

the price of one barrel Brent oil (OIL).2 Survey data are given in form of the

in�ation expectations for the next three months of the Industrial Trends Sur-

vey of UK manufacturing collected by the Confederation of British Industry

(CBI), the Business Climate Indicator (BCI), and the Economic Sentiment

Indicator (ESI). The latter two are published by th Directorate General for

Economic and Financial A�airs (DG ECFIN). Table 3.6 presents the four

di�erent groups of exogenous variables used.

1For the time period covered, the RPI was the main measure of prices in the UK and the
RPI-in�ation rate was the target rate when the Bank of England (BoE) adopted in�ation
targeting in October 1992. In 2003 the Harmonized Consumer Price Index (HCPI) replaced
the RPI-in�ation rate as the target of the BoE.

2US in�ation is measured as the 12-month percentage changes of the US consumer price
index (CPI).
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Table 3.6: The exogenous variables

Fundamental Financial External Survey

variables indicators position data

IP ind. prod. TB treasury bill USD exch. rate BCI business climate

U unemployment BD bonds DEM exch. rate ESI econonmic sent.

AE avg. earnings FTSE stock market OIL price CBI in�. expectations.

RS retail sales

M0 money

One particular form of change is given by non-stationarity in form of a unit

root. To control for this, all fundamental variables, FTSE, BD, USD, DEM,

and OIL have been transformed to month-on-month percentage changes. All

variables are tested for a unit root using the standard augmented Dickey-

Fuller (ADF) procedure (Dickey and Fuller (1979)). The ADF test is carried

out by estimating:

∆yt = αyt−1 +

p∑
j=1

βjL
j∆yt−j + νt, (3.2)

where the null hypothesis is H0 : α = 0 and the alternative is H1 : α < 0

are evaluated using the simple t-ratio for α:

tα =
α̂

se(α̂)
, (3.3)

where α̂ and se(α̂) are the estimates of α and its standard error. The critical

values are non-standard so that the values tabulated in Mackinnon (1996) are

used. The lag length is chosen using BIC allowing for a maximum lag-length

of eight. The results presented in the Appendix in Table B.1 demonstrate

that the transformed variables employed are stationary, giving p-values below

0.05.

Table A.1 gives some more details on the variables, the transformations and

the sources the data have been taken from. Table A.2 gives the descriptives.



Chapter 4

Analysis of structural breaks

4.1 Theory

In order to evaluate and analyze the performance of individual models and

combination schemes in the presence of shifts, the latter need to be identi-

�ed beforehand. As pointed out in the introduction, there are many ways

change can happen. The shift most widely tested for is a sudden and sizeable

break. In particular, Stock and Watson (1996), analyzing a huge number of

macroeconomic variables, �nd structural breaks to be present in the majority

of cases. Furthermore, Clements and Hendry (1994) identify abrupt shifts of

the parameter vector as the class of structural change most detrimental in

the context of forecasting.

Firstly, this section presents the basic notational framework and the literature

testing for a single break. Then the framework of Bai and Perron (1998) is

outlined which will be applied to the variables of the empirical experiment

in the following subsection. It is less restrictive with respect to the number

of structural breaks. The procedure can be organized into the estimation of

the breakdates, the tests to determine if there has been a structural break at

all, and the estimation of the number of structural breaks.

Consider a structural change model with m breaks resulting in m+1 regimes

of the form:

43
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yt = x′tβ1 + ut t = 1, 2, ..., T1

yt = x′tβ2 + ut t = T1 + 1, ..., T2 (4.1)
...

...

yt = x′tβm+1 + ut t = Tm + 1, ..., T,

The time index is denoted by t; yt is the dependent variable and xt(q×1) is a

vector of independent variables with the corresponding vector of coe�cients

with βi 6= βi+1(1 ≤ i ≤ m). Both, the vector of coe�cients and the break

points (T1, ..., Tm) are explicitly treated as unknown. In the following T0 = 0

and Tm+1 = T . Expressing the equation system in (4.1) in matrix form

yields:

Y = Xβ + U

where Y = (y1, ..., yT )′ and X is the matrix diagonally partitioning X at the

m-partition (T1, ..., Tm), X = diag(X1, ..., Xm+1), withXi = (xTi−1+1, .., xTi)
′;

the coe�cient vector is given as β = (β
′
1, β

′
2, ..., β

′
m+1) and the disturbance

being U = (u1, ..., uT )′ . In order to ensure that each break date is asymp-

totically distinct and bounded from the limits of the sample usually some

restrictions on the possible values of the break dates are imposed. For some

arbitrary small positive number ε the following set is de�ned:

Λε = {(λ1, ..., λm); |λi+1 − λi| ≥ ε, λ1 ≥ ε, λm ≤ 1− ε} ,

where λi = Ti/T and 0 < λ1 < ... < λm < 1.

The �rst authors analyzing structural breaks considered only the presence

of a single break, i.e., m=1. Chow (1960), tested the null-hypothesis H0 :

β1 = β2 against the alternative H0 : β1 6= β2. The Chow-test is then a simple

F -test of the form:

FT (T1) =
S̄T − ST (T1)/(q + 1)

ST (T1)/(T − 2q − 2)
(4.2)

where S̄T is the sum of squared residuals under the null hypothesis and
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ST (T1) is the sum of squared residuals under the alternative hypothesis, which

depends on the break point T1. The test statistic follows the F -distribution

with q and T−2q degrees of freedom. However, the use of the Chow statistics

is limited in two ways. The test is only applicable if one break is present, and

the breakpoint has to be known in advance. According to Hansen (2001),

the researcher has two options: She may test for an arbitrary break date or

for a break date based on some known feature of the data. The �rst solution

is prone to errors, as the acception of the null hypothesis could always mean

that a true break date has been missed by chance. The second one is likely to

indicate a structural change when there is in fact none, as the potential break

date is correlated with the data. Additionally, both approaches are highly

arbitrary so that di�erent researchers can easily obtain di�erent results.

Quandt (1958) proposes a �rst solution to this challenge. The idea behind

the test is to compute the FT (T1)-statistics for all potential break points in a

given interval focusing on the one that most likely rejects the null hypothesis,

the supremum, giving:

supFT = sup
T1ε[εT,(1−ε)T ]

FT (T1) (4.3)

If Quandt's statistic exceeds certain bounderies, the null hypothesis of no

structural break is rejected. However, the Chow-statistic follows the F -

distribution only if the break date is known. If one parameter is identi�ed

only under the alternative hypothesis of a break, testing for the signi�cance

becomes a non-standard problem (Hansen, 2001). Andrews (1993) makes the

Chow-test operational for the case of an unknown breakpoint. He derives the

limiting distribution of supFT showing that the limiting distribution of the

statistic depends on the trimming parameter ε presenting simulated critical

values. Hansen (2000) presents a heteroskedastic �xed-regressor bootstrap

procedure that delivers the correct asymptotic distribution for the supFT -

statistic in the presence of general non-stationarities in the regressors, in-

cluding mean and variance breaks and unit roots.1

1Note: Andrews (1993) used a Wald-like test. However, for normal linear regression
models the two tests are equivalent.
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Bai and Perron (1998) present a framework for the analysis of multiple struc-

tural breaks. The estimation of the break points builds on the simple OLS ap-

proach. For each m-partition (T1, ..., Tm), denoted {Tj} the respective least-
squares estimate of βj is computed. It minimizes

∑m+1
i=1

∑Ti
t=Ti−1

[yt − x′tβ]2,

where T0 = 0 and Tm+1 = T . The disturbance term ut is assumed to have

mean zero, but its variance σ2
ut may be heteroskedastic. However, the changes

in variance are only permitted to take place at the same dates the conditional

mean of yt changes. Let β̂({Tj}) denote the resulting estimate. Employing

this in the objective function yields the sum of squared residuals denoted as

ST (T1, ..., Tm). The estimated break dates are such that

(T̂1, ..., T̂m) = arg min
(T1,...,Tm)

ST (T1, ..., Tm),

where the minimization is taken over all partitions (T1, ..., Tm), and Ti −
Ti−1 ≥ [εT ], i.e., the break point estimators (T̂1, ..., T̂m) are global minimiz-

ers of the objective function and the estimated regression coe�cients at the

estimated m-partition
{
T̂j

}
, i.e., β̂ = β̂(

{
T̂j

}
). The break points have a

discrete number so that they can be estimated by a grid search. However,

the standard grid search procedure requires least squares operations of order

O(Tm). Bai and Perron (1998) reduce this number to operations of order

O(T 2) making use of an algorithm based on the principle of dynamic pro-

gramming considered by Fisher (1958).

Building on the break estimates, the authors extend Andrews (1993)'s frame-

work of testing for a single structural break to the case of multiple structural

breaks. It is a subsample procedure utilizing a supF -type statistic, testing

the null hypothesis of structural stability against the alternative hypothesis

that there is a known number of breaks n, i.e., m = 0 versus m = n breaks:

FT (λ1, ..., λn; q) =
1

T

(
T − (n+ 1)q

nq

)
β̂′R′(RV̂ (β̂)R′)−1Rβ̂.

Here, R is such that (Rβ)′ = (β′1 − β′2, ..., β
′
n − β′n+1) and V̂ (β̂) is a het-

eroscedasticity and serial correlation robust estimate of the variance covari-
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ance matrix of β̂, and q are the degrees of freedom.2 The supF -type test

statistic is then de�ned as

supFT (n, q) = sup
(λ1,...,λn)εΛE

FT (λ1, ..., λn, q) = FT (λ̂1, ..., λ̂n; q)

where the break point estimates (λ̂1, ..., λ̂n) minimize the global sum of

squared residuals. Bai and Perron (2003a) present variations of the test

for the case of di�erent assumptions made with respect to the distribution

of the regressors and the errors across segments.

The authors relax the restriction that the number of breaks has to be known

presenting the double maximum tests. However, they require the speci�ca-

tion of an upper bound M for the number of possible breaks m. They are

de�ned for some �xed weights {a1, ..., aM} as

DmaxFT (M, q, a1, ..., aM)

= max1≤m≤M am sup(λ1,...,λm)∈Λε FT (λ1, ..., λm, q)

= max1≤m≤M amFT (λ̂1, ..., λ̂m; q)

The weights {a1, ..., aM} are set according to the priors on the likelihood

of single change points. Bai and Perron (1998) do not give any theoretical

guidelines on how to set the weights, however they propose two particular

versions. The �rst sets all weigths equal to unity, giving the statistic labeled

UDmaxFT (M, q) = max
1≤m≤M

sup
(λ1,...,λm)∈Λε

F (λ1, ..., λm, q)

Bai and Perron (1998) point out that for a �xed m, F (λ1, ..., λm, q) is the

sum of m dependent chi-square random variables where all the elements of

the sum are divided by m. This implies that � holding q constant � the

critical values for the individual tests sup(λ1,...,λm)∈Λε F (λ1, ..., λm, q) and in

turn the marginal p-values decrease with a higher number of possible breaks

m. Hence, the test might have low power for large m.

2For a discussion of the alterntives of V̂ (β̂) see Bai and Perron (2003a).
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In order to alleviate this problem the authors propose an alternative weight-

ing scheme, where the weights are constructed such that the marginal p-

values only depend on q and the signi�cance level α. If c(q, α,m) denotes

the asymptotical critical value of the test sup(λ1,...,λm)∈Λε F (λ1, ..., λm, q) for

signi�cance level α, the weights are de�ned as a1 = 1 for m = 1 and

am = c(q, α, 1)/c(q, α,m) for m > 1. The resulting test statistic is denoted

WDmaxFT (M, q) = max
1≤m≤M

c(q, α, 1)

c(q, α,m)
× sup

(λ1,...,λm)∈Λε

F (λ1, ..., λm, q)

Finally, they propose an iterative procedure to �nd the exact number of

breaks. It tests the null hypothesis of l structural changes against the alter-

native that one additional break exists, i.e., m = l + 1. The starting point

are the estimates of the break points (T̂1, ..., T̂l) of the model with l breaks

that are obtained by the global minimization of the sum of squared residu-

als. Such a model has l+ 1 segments. Each of these segments containing the

observations T̂i−1 to T̂i(i = 1, ..., l + 1) is in turn tested for the presence of a

break, i.e., the null hypothesis of no structural break against one structural

break is tested for l + 1 times. If the minimum of the resulting l + 1 sums

of squared residuals is su�ciently smaller than the sum of squared residuals

of the model with l breaks, the null hypothesis is rejected. Thus, the test

statistic is de�ned as

supFT (l + 1|l) ={
ST (T̂1, ..., T̂l)− min

1≤i≤l+1
inf

τ∈Λi,η
ST (T̂1, ..., T̂i−1, τ, T̂i, ..., T̂l)

}
/σ̂2

where Λi,η =
{
τ ; T̂i−1 + (T̂i − T̂i−1)η ≤ τ ≤ T̂i − (T̂i − T̂i−1)η

}
; for i = l + 1,

ST (T̂1, ..., T̂l, τ) and for i = 1, ST (T̂1, ..., T̂i−1, τ, T̂i, ..., T̂l) is understood as

ST (τ, T̂1, ..., T̂l). It is the sum of squared residuals resulting form the least

squares estimation from each m-partition (T1, ..., Tm). σ̂2 is a consistent

estimate of σ2 under the null hypothesis.
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4.2 Empirical application

This section analyzes the target variable in�ation as well as the explanatory

variables for structural breaks. Which structure should be tested for? Follow-

ing the approach of Hansen (2001) and Bai and Perron (2003a), the analysis

presented here focuses on the breaks in the structure of a linear AR(p)-model.

It has a proven track record as a forecasting model and is an often hard to

beat benchmark in forecasting competitions (Stock and Watson, 2006). Fur-

thermore, the empirical experiment is based on ARX models employing a

variety of di�erent explanatory variables. The only structure they all have

in common is the autoregressive component. In order to test for shifts in

the level and persistence of the variables employed an autoregressive model

AR(p) of the form

yt = α +

p∑
i=1

βiL
iyt + ut (4.4)

is �tted to each of them. Thereby, t, with t = 1, ..., T , again indicates the

period, yt is the variable under analysis, L
i is the lag-operator, α is a constant,

βi is a p × 1 vector of regression coe�cients and ut are iid with mean zero

and variance σ2
u. Here and in the following break analyses, the November

2007 vintage of the variables with the sample sizes given in table A.2 are

employed. The number of lags considered in the regression, p, is selected

making use of BIC. Setting the maximum of possible lags to eight, the lag

length for the AR(p) model of in�ation given in Equation (4.4) selected is

six.

As a starting point for the analysis of structural breaks, Bai and Perron

(1998) propose to employ WDmaxFT (M, q) and the UDmaxFT (M, q) to test

for the presence of breaks in general. If the null hypothesis of no struc-

tural break can be rejected, the number of breaks is determined using the

sequential supFT (l+ 1|l)-statistic. Consider �rst the results for the in�ation
rate given in Table 4.1. It presents the results for UDmax, WDmax, and

supFT (l + 1|l), for l = 2, 3, 4.3 The supFT (1), the UDmax and the WDmax

3Following the recommendations of Bai and Perron (2003a)ε is set to 0.15 and M = 5.
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Table 4.1: Tests statistics for breaks in the in�ation rate

supFT (1) UDmax WDmax supFT (2|1) supFT (3|2) supFT (4|3)

33.10*** 33.1*** 45.47*** 40.41*** 41.63*** 16.63

(22.62) (22.80) (28.87) (22.62) (24.64) (26.54)

The asymptotic critical values at the 5 % signi�cance level are given in parenthesis;

*, **, and *** indicate signi�cance at the 10, 5, and 1 % level.

Table 4.2: Breakdates and con�dence intervals of the in�ation rate

Estimators T̂1 T̂2 T̂3

Break dates 1961:9 1980:4 1991:2

95 % C.I. (1960:10; (3/31/1977; (1990:3;

1963:6) 6/30/1981) 1992:5)

reject the null hypothesis at the 5 percent level, indicating that at least one

structural break is present. The supFT (l+ 1|l) rejects up to l = 3 that is the

estimated number of breaks is m = 3.

The break point estimates are presented in Table 4.2. The dates of the 95

percent con�dence intervals are given in parenthesis. As the procedure allows

for di�erent variances across segments, the intervals are not symmetric. The

last estimate, the one at February 1991, will be in the centre of the analysis

of the following chapters as it lies in the period of the empirical experiment.

Its con�dence band is tight when contrasted with the results of comparable

studies (see, e.g., Jouini and Boutahar, 2003) spanning 26 months. A plot

of the in�ation rate and the breakpoint estimates and 95 percent con�dence

intervals is given in Figure 4.1 on the next page.

Causality of the breakdates goes beyond the framework used and the pur-

pose of this dissertation. However, the timing of the break of interest in the

early 1990s suggests that it can be associated with three major events in

the economic history of the UK: the �nancial turbulance initiated by George

Sorros ending British membership of the European Exchange Rate Mecha-

nism (ERM) in September 1992, the Bank of England adopting an in�ation
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Figure 4.1: UK in�ation, breaks and 95 percent con�dence bands
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Table 4.3: Estimated std. dev., mean, and sum of AR coe�cients

Segment I II III IV

(1948:6� (1961:9� (1980:4� (1991:2�

1961:8) 1980:3) 1991:1) 2007:10)

σ̂infl 2.98 6.23 3.97 1.15

µ̂infl 3.95 8.8 7.38 2.88∑p
i=1 β̂i 0.95 0.99 0.96 0.90

targeting framework in October 1992, and the oil crises triggered by the Gulf

War in 1990/91.

Table 4.3 contrasts the periods between the breaks giving some statistical

measures: the sum of the estimated autocorrelation coe�cients as a measure

of persistence, the estimated mean, µ̂infl, and standard deviation of in�a-

tion, σ̂infl. The estimated break point in February 1991 marks the transition

to a markedly less volatile period with a moderation in the in�ationary de-

velopment and a less persistent e�ect of shocks to the in�ation rate. The

estimated standard deviation rises from the �rst segment having a value of
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2.98 to 6.23 in the second period, and falls to a value of 1.15 in the last seg-

ment. The estimated mean and the persistence follow a very similar pattern.

The fall in all of the three indicators from the third to the last segment is

very pronounced. The estimated standard deviation drops from 3.97 to 1.15,

the estimated mean from 7.38 to 2.88 and the estimated persistence from

0.96 to 0.90.

Hendry and Clements (2004) introduce the concept of co-breaking. They

point out that structural breaks per se need not cause forecasting models

to fail. If a break in the target variable is accompanied by breaks in the

regressors, potentially compensating its impact, forecast accuracy may only

be a�ected to a minimal degree, or not at all. Table 4.4 on the facing page

analyzes, whether breaks in the regressors have occured.

In contrast to other studies testifying the omnipresence of structural breaks

in macroeconomic variables (Stock and Watson, 1996) for most of the vari-

ables in the current analysis, evidence for the presence of structural breaks

is limited. The supFT (1), the UDmax and the WDmax test reject the null

of no structural break only for average earnings, the interest rate series, and

the survey data. For these series, the three tests reject at least at the �ve

percent signi�cance level. In case of the exchange rate with the Deutschmark

(DEM) there is weak evidence of a structural break with the WDmax test

rejecting at the �ve percent level, the supFT (1) and the UDmax not rejecting

at the ten percent level. Looking at the number of breaks, only in case of

the economic sentiment indicator (ESI) there is signi�cant evidence for more

than one structural break with the supFT (2|1) rejecting the null hypothesis

at the one percent level. Evidence for more than two breaks is weak.
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Table 4.4: Test results for the presence and number of breaks

supFT (1) UDmax WDmax supFT (2|1) supFT (3|2)

RS 3.44 5.34 7.7

(11.47) (11.70) (12.81)

IP 1.56 4.75 8.40

(11.47) (11.7) (12.81)

AE 59.61*** 59.61*** 59.61*** 20.12*

(21.87) (22.04) (28.76) (21.87)

MO 4.91 4.91 6.60

(8.58) (8.88) (9.91)

U 4.67 12.03 16.37

(17.60) (16.37) (17.92)

BD 13.49** 13.49** 13.49*** 5.65

(11.47) (11.47) (17.01) (11.47)

FTSE 10.91 10.91 10.91

(13.98) (14.23) (15.59)

USD 6.76 6.76 8.93

(8.58) (8.88) (9.91)

DEM 4.63 5.98 13.19**

(8.58) (8.88) (11.67)

TB 35.56*** 35.56*** 37.51*** 13.33*

(13.98) (14.23) (19.86) (13.98)

CBI 36.27*** 36.27*** 40.63*** 21.45*

(21.87) (22.04) (28.67) (21.87)

OIL 3.58 5.39 9.39

(8.58) (8.88) (13.83)

RIUS 41.02*** 38.59*** 44.02*** 13.55

(16.19) (16.37) (21.95) (14.26)

ESI 63.81*** 63.81*** 63.81*** 29.46*** 16.19*

(16.19) (16.37) (21.95) (16.19) (18.11)

BCI 19.71** 19.71** 20.24** 9.36

(18.23) (18.42) (19.96) (18.23)

The asymptotic critical values at the 5 % signi�cance level are given

in parenthesis; *, **, and *** indicate signi�cance at the 10, 5, and

1 % level respectively.



54 CHAPTER 4. ANALYSIS OF STRUCTURAL BREAKS

Figure 4.2: Estimated break points and 95 percent con�dence intervals
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Figure 4.2 presents the break estimates of all variables along a timeline. In

order to optimize presentation, the period considered in the �gure starts in

January 1972. The 95 percent con�dence intervals are thereby given as hori-

zontal lines. The break estimates are marked by a small vertical line crossing

these lines. The estimated breaks do not all lie within certain periods. In

particular, only the point estimates of the breakdates of average earnings

and CBI are relatively close to the structural break of the in�ation rate that

is at the center of the analysis in February 1991. They are located in March

and February 1992, respectively. The con�dence band for average earnings

is very thight, spanning eleven months, starting October 1992 and ending

in August 1993, while the break estimate of CBI is very imprecise with the

con�dence band spanning more than four years starting in March 1989 and

ending in May 1993. In face of these result co-breaking can be ruled out

for most of the models. Thus, the mitigating e�ects of pooling derived by

Hendry and Clements (2004) and laid out in section 2.2.2 might be useful.



Chapter 5

ARCH e�ects and combination

5.1 A �rst visual impression

Weighting schemes which are based on the accuracy of the constituent models

learn from errors made. To be successful they require relative past perfor-

mance to be constant over time. If this is not the case they could attribute

large (small) weights to low (high) performing models leading to increased

forecast errors of the combined forecast. Before analysing the ranks being

the standard indicator of relative performances of the models in the next

chapter, here, the focus is laid on the squared forecast errors. Although they

represent a cruder measure, they allow to highlight some important features

and relate performances to the break estimate.

Figure 5.1 on the next page gives a visual impression. It plots the squared

forecast errors (y-axes) of the individual models (z-axes) over time (x-axes)

for the 1-month horizon. The dates give the forecast origins. The higher the

squared errors, the less accurate the forecasts.

The performance is correlated over time and models, giving the �gure a

wave-like pattern. While there are phases, where most of the models perform

relatively well, there are at least two phases when most of the models have

considerably higher squared forecast errors than over the other iterations.

These phases are around February 1987 and February 1992. However, there
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Figure 5.1: Forecast errors of the individual models over time, h=1
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Figure 5.2: Median squared forecast errors over time, h = 1
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are phases, e.g., around October 1988 and October 1993 when only part of

the models are a�ected.1

The �gure is dominated by extreme squared errors. To get a more precise

picture, Figure 5.2 gives the median squared forecast error at each iteration.

The break estimate is indicated by the solid vertical line and the 95 percent

con�dence bands by the dashed lines. The median squared forecast errors

are mostly below 0.5. Within the con�dence band of the break estimates the

median is highest. Shortly after the break the median reaches its maximum

of 2.3. Noteably, the third highest median emerges considerably earlier than

the breakpoint estimate, in April 1990, which is the forecast origin after the

lower bound of the 95 percent interval. Moreover, in February 1986 it doubles

to well above one.

These results show that the estimated break can be associated with a phase of

high forecast uncertainty that coincidentally a�ects most models. However,

there are other sources of increased forecast errors as well. The uncertain

1The corresponding plots for higher forecast horizons are not presented separately as
main features are very similar.
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phase at the beginning of the period considered can neither be associated with

a break date of the target variable nor the regressors (see Figure 4.2). Strik-

ingly the second highest median squared forecast error precedes the break

estimate by more than a year. Still, it is within the 95 percent con�dence

interval. Possibly, there are two breaks located too close to each other for

the approach of Bai and Perron (2003a) to identify them separately.2

If structural change only a�ected the extent of the forecast errors while the

relative performance were constant over time its negative impact on com-

bined forecasts should not be very high. However, there are several phases

when only part of the models feature high squared forecast errors. Thus,

in these periods past performance weighting schemes most likely attribute

the respective models a weight that does not correspond to their relative

performance.

Central to the following analysis are the individual performances of each

model. They show a persistent pattern that can be exploited to improve com-

bined forecasts in the face of changing relative performances: large (small)

shocks tend to be followed by large (small) shocks of either sign, a phe-

nomenon termed volatility clustering. The next section outlines, how this

pattern can be modelled and directly employed in the context of combined

forecasts. In chapter 7 it will be used in an indirect way to facilitate the

prediction of forecast breakdowns.

5.2 (G)ARCH e�ects

Apart of the results provided here, volatility clustering is frequently found in

applied work (Harvey, Leybourne, and Newbold, 2001). Moreover, not only

forecast errors, but economic time series themselves rarely exhibit constant

variances. To model this feature Engle (1982) introduces the concept of

autoregressive conditional heteroscedasticity (ARCH). Leaning on Bera and

2The technique requires a minimum number of observations between two candidate
break dates.
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Higgins (1993) it can be described in terms of a dynamic linear regression

model:

yt = x′tβ + εt t = 1, ..., T (5.1)

where xt represents a k×1 vector of explanatory variables which may include

lagged values of yt; β is a k× 1 vector of regression parameters.3 The ARCH

model characterizes the distribution of the stochastic error conditional on

the realized values of the set of variables Ψt−1 = {xt−1, xt−2, ...}:

εt|Ψt−1 ∼ N(0, ht), (5.2)

where

ht = αo + α1ε
2
t−1 + ...+ αqε

2
t−q, (5.3)

with α0 > 0 and αi ≥ 0, i = 1, ..., q, to ensure that the conditional variance

is positive.4 In the regression model, a large shock is represented by a large

deviation of yt from its conditional mean x′tβ or equivalently, a large positive

or negative value of εt. In the ARCH regression model, the standard deviation

of the current error εt is conditional on the realized values of the lagged

errors εt−i, i = 1, ..., q. Thus, it captures the volatility clustering as ht is an

increasing function of the magnitude of the lagged errors, irrespective of their

signs. The order of the lag q determines the length of time for which a shock

persists in conditioning the variance of subsequent errors. The more lagged

values in Equation (5.3), i.e., the larger q the longer the di�erent episodes of

volatility will tend to be.

However, the simple ARCH model has a major detriment that limits its

practical use. In the �rst empirical applications of ARCH to the volatility

of UK in�ation Engle (1982) found that a large lag q was involved in the

conditional variance function. This would require the estimation of a large

3The following exposition concentrates on the mean and the variance. For a survey
extending to higher moments and extensions of the ARCH framework see Bera and Higgins
(1993).

4Literature has demonstrated that these restrictions can be relaxed (Bera and Higgins,
1993).
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number of coe�cients subject to inequality restrictions. Bollerslev (1986)

adressed this issue, introducing the generalized ARCH (GARCH). He extends

the conditional variance Equation (5.3) adding p autoregressive elements:

ht = α0 + α1ε
2
t−1 + ...+ αqε

2
t−q + β1ht−1 + ...+ βpht−p, (5.4)

where the inequality restrictions α0 > 0, αi ≥ 0, and βj ≥ 0, with i =

1, ..., q and j = 1, ..., p, are imposed to ensure that the conditional variance

is strictly positive. Given the orders of p and q the GARCH process is

usually denoted as GARCH(p,q). It can be demonstrated (Bera and Higgins,

1993) that GARCH is a parsimonious representation of a higher order ARCH

process, similar to the generalization of an moving average (MA) process, to

an autoregressive moving average (ARMA) process.

A major contribution of Engle (1982) was to show that changes in the volatil-

ity need not necessarily be the result of an exogenous structural shift, but

may be predictable and characterized by a speci�c form of non-linear de-

pendence. Under certain conditions the GARCH framework implies that the

unconditional variance is constant over time and can be derived analytically.

With the aim of laying some foundations for the understanding of the sim-

ulation analysis in chapter 8, consider the example of a GARCH(1,1). It is

the speci�cation which is most widely found to adequately describe economic

and �nancial data. Using the law of iterated expectations yields

E(ε2
1) = E[E(ε2

t | Ψt−1)]

= E(ht) (5.5)

= α0 + α1E(ε2
t−1) + β1E(ht−1)

= α0 + (α1 + β1)E(ε2
t−1).

If we assume that the process began in�nitely far in the past with a �nite

initial variance the sequence of variances converge to a constant value giving

σ2
ε = E(ε2

t ) =
α0

1− α1 − β1

, (5.6)
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Table 5.1: Percentage of models having a signi�cant ARCH e�ect

Horizon %

1 28.93
3 31.41
6 23.14
12 15.70

where the necessary and su�cient condition for the existence of the variance

is α1 + β1 < 1. It can be shown that if this holds the process is weakly

stationary.

5.3 Testing for ARCH e�ects

Are there any ARCH e�ects in the forecast errors of the empirical experiment

and how many models are a�ected? Engle (1982) proposed a test for the

presence of ARCH e�ects in the residuals of a regression. Following his

procedure, in a �rst step the levels of the forecast errors are �ltered by a

simple autoregressive model to control for any mean e�ects. The lag-length of

this auxiliary regression is selected using BIC. The resulting squared residuals

e2
t are then regressed on their own q lagged values:

e2
t = β0 +

q∑
s=1

βse
2
t−s + νt (5.7)

The null hypothesis of the ARCH LM test is that there are ARCH e�ects up

to the q− th lag. The test statistic is the product of the number of observa-

tions T and the R2 of the estimate of Equation (5.7) which asymptotically

follows an χ2(q)-distribution. Table 5.1 gives the percentage of the number of

models that feature signi�cant ARCH e�ects to the total number of models

for the four forecast horizons analyzed. For all tests, q was set to 20. Even

for this high value of q, which tends to weaken the power of rejecting the null

as the chance of including irrelevant lags rises, there is ample evidence of
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ARCH e�ects. The share of a�ected models ranges from 15.7 percent in the

case of the 12-month horizon to 31.41 percent in the case of the one month

horizon.

5.4 The GARCH combination scheme

Shortly after the development of ARCH its usefulness in the context of com-

bined forecasts was recognized. Engle, Granger, and Kraft (1984) �t a styl-

ized monetarist and a mark-up model to US in�ation and treat the forecast

errors as a bivariate ARCH-process. In an iterative forecasting experiment,

the weights of the model are up-dated each step using the predicted condi-

tional heteroscedasticity. Analogous to the INV method, the weights of the

respective model are higher, the lower the predicted conditional variance.

The bivariate ARCH-process is speci�ed as:

εt|ψt−1 ∼ N(0, H(εt−1)), (5.8)

where H(εt−1) ≡ Ht ≡ [Hijt] is a 2 × 2 positive de�nite symmetric matrix.

The speci�cation is chosen such that each element of Ht is a quadratic form

in εt−1: H11t

H21t

H22t

 =

 a01

a02

a03

 +

 a11 a12 a13

a21 a22 a23

a31 a32 a33

+

 ε2
1t−1

ε1t−1ε2t−1

ε2
2t−1

 (5.9)

The weighted average of the two forecasts f1t and f2t is given as ft = λtf1t +

(1 − λt)f2t yielding the combined forecast error et = λtε1t + (1 − λt)ε2t.

Analogous to the formation of the optimal weights in Bates and Granger

(1969), Equation (2.10) in chapter 2, the authors form the weights at time t,

as

λt = (H22t −H21t)/(H11t +H22t − 2H21t). (5.10)

Thus, the weights change over time, as the variance and covariances of the
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errors evolve.

Though the approach is intuitively appealing, the results have been mixed at

best. Diebold and Pauly (1987) point out that the prediction of conditional

variances will lead to an extremely noisy weight sequence, which is seen to

be very harmful to combined forecasts. In particular, he attributes the weak

results to the misspeci�cation of the o�-diagonal elements of the covariance

matrix Ht.

Thus, the empirical and simulation analysis of this dissertation will disregard

the covariance between the forecast error sequences of the individual models

along the lines in Timmermann (2006). The scheme will be labeled GARCH

combination (GC). The weights at forecast origin t for models i = 1, ..., n for

horizon h are computed as

kGCit = ĥ−1
i,t+h|t/

n∑
i=1

ĥ−1
i,t+h|t (5.11)

where ĥ−1
i,t+h|t is the predicted conditional standard deviation based on a

GARCH(1,1) �tted to the forecast errors available up to t.
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Chapter 6

Adaptive combination schemes

The previous chapter demonstrated that the squared forecast error variances

vary over time. Furthermore, it showed that the changes can be modelled in

form of ARCH e�ects which can directly be employed to up-date weight se-

quences. However, due to the mixed results of GC, most of the combination

schemes employed in applied work concentrate solely on the relative perfor-

mance of the models to be pooled. Thus, these schemes crucially depend on

the relative accuracy to be constant over time � irrespective of changes in

the level of squared forecast errors. Now, this section takes a more precise

look at the relative performances considering the ranking of the models over

time. It demonstrates that the ranks of the individual models actually al-

ter substantially over time. Consequently, the following subsections present

approaches to improve past performance schemes in face of this challenge.

6.1 Changing relative performance

To illustrate the non-constancy of relative forecast performances, consider

the example of a forecaster faced with the task of predicting in�ation using

the best of the individual models described in chapter 3. Table 6.1 displays

the most accurate models for the 1-month, 3-month, 6-month and 12-month

horizon forecasts according to MSE. The result is presented for three dif-
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ferent (sub)periods: for the whole period of the experiment, for the period

preceeding the break estimate, and the period following the break estimate.

It presents the variables used in the models additionally to in�ation, which

is always included. The MSE itself is given below the variable abbreviations.

Table 6.1: Best models over di�erent (sub-)samples

h=1 h=3 h=6 h=12

All periods DEM, TB CBI CBI BD, CBI

MSE 0.12 0.65 1.61 3.94

Before the break TB, CBI BD, CBI BD, CBI AE, CS

MSE 0.17 0.93 2.16 4.24

After the break DEM, TB USD, TB MO, CBI MO, BS

MSE 0.07 0.28 0.69 1.89

Consider the whole sample �rst. There is no model that outperforms the

alternatives over all horizons. The model containing CBI is the best model,

both for the 3-month and for the 6-month horizon forecasts. For the 1-month

horizon forecasts the model containing DEM and TB is dominant while for

12-month horizon forecasts the model including bonds and CBI give the best

model.

More importantly in the current context, there is no model that is the most

accurate for one particular horizon and all sub-periods. While for the 1-

month horizon the model containing DEM and TB excels for the complete

sample and the post-break period, the model containing TB and CBI dom-

inates the pre-break period. For the other three forecast horizons the result

is still more striking as there is no model that dominates the alternatives in

two of the three periods.

The forecaster most probably does not only search for the best model for

some period, but rather for the one that is best for every point in time. The

�rst subplot of Figure 6.1 illustrates the di�erence. It shows the ranks based

on the squared errors of the best model over all periods for the 1-month
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horizon forecasts (DEM, TB). The dates refer to the forecast origins. The

break and the 95 percent interval are displayed as solid and dashed lines.

The best position the model has taken is two. However, this occurs only

twice, in November 1991 and in September 1992. In 46 out of 174 iterations,

the model has a higher squared error than the median squared error in the

respective iteration. What is more, the ranks seem to oscillate around 50.

The worst position, were the model ranks 118th, corresponds to forecast

origin October 1994.

Figure 6.1: Ranking and sq. forecast error best model, h = 1
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Even if we control for some of the noise that results of the usual forecast

uncertainty the picture remains unchanged. The second subplot gives the

ranks that are formed on the basis of the last 30 squared forecast errors

representing a smoothed version of the upper subplot. It demonstrates that

there is at least one phase where the model ranked only 30th or worse. This

period between April 1991 and November 1993 begins shortly after the break

estimate.
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Summarizing, the measurement of forecast accuracy is highly dependent on

the time period under analysis. Furthermore, the break seems to have an

e�ect on the ranking of the models.

6.2 Inverse MSE weights and weight stability

6.2.1 Methods of discounting outdated information

Up to now we have assumed the weight vector k to be �xed but unknown. The

only exception was GC which uses conditional variance predictions to up-date

weight sequences. In applied work k has to be estimated from the sample

observations. A �xed k implies that changes in the recursively estimated

weight vector k̂t are interpreted as a result of the convergence in probability

of k̂t to k (Diebold and Pauly, 1987). However, in view of the results of

the preceding analysis, the true covariance of the forecast errors and hence

k is unlikely to be constant over time rendering a �xed weighting scheme

suboptimal. The multiforecast analog to Equation (2.10) on page 26 for

the computation of INV weights for individual model i = 1, ..., n at forecast

origin t is

kINVit = A−1
it /

n∑
i=1

A−1
it , (6.1)

where, Ait =
∑t−h

s=1(Ys+h − Ŷi,s+h|s)2 is the sum of squared forecast errors of

the last t − h forecast origins. It slowly adapts to changes in the relative

forecast performance of the individual models. The more past forecast errors

enter Ait and the smaller the changes in the relative sizes of the forecast

errors, the smaller the in�uence of new information on the weights.

Bates and Granger (1969) propose several simple methods of making the

weights more responsive to recent information. Among others, they suggest

to use a moving window of ν observations rather than the whole history of

forecast errors to calculate the weights. Thus, Ait =
∑t−h

s=t−v(Ys+h− Ŷi,s+h|s)2.

Furthermore, they suggest to discount past forecast errors, such that Ait =
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∑t−h
s=1 δ(Ys+h − Ŷi,s+h|s)2 and δ = λs a discount factor, such that for λ > 1

more weight is given to the more recent forecast errors than to distant ones.

Diebold and Pauly (1987) analyzing the combination of forecasts under struc-

tural change make some additional proposals with respect to the use of dis-

count factors. Though their analyis focuses on the combination of a limited

number of models allowing the weights to be estimated by OLS, their sug-

gestions are easily transferable to the analysis of larger model spaces. Their

suggestions are presented in Table 6.2; here t denotes past forecast origins.

Table 6.2: Alternative schemes for discounting past information

(i) δ = 1 , for all t (equal weight)
(ii) δ = t, for all t (linear)
(iii) δ = λT−t, 0 < λ ≤ 1, or δ = λt, λ ≥ 1. (geometric)
(iv) δ = tλ, λ ≥ 0 (t-lambda)
(v) δ = (tλ − 1)/λ if 0 < λ ≤ 1; ln t if λ = 0 (Box-Cox)

Note: t denotes past forecast origins.

The equal weighting scheme (i) and the linear weighting scheme (ii) are

special cases of the rest, where (i) does not discount past forecast errors,

and (ii) gives more weight to recent forecast errors at a constant rate. The

geometric scheme (iii) is desirable, if the researcher is interested in letting

the weight on past information decline very rapidly. However, as d2
δ

dt2 =

(ln λ)2 λT−1 > 0 for 0 < λ ≤ 1 and d2
δ

dt2 = − (ln λ)λt−2 > 0 for λ ≥ 1

it is limited to increasing rates of growth of the weights. In contrast, the

Box-Cox weighting scheme (v) is restricted to decreasing rates of growth, as
d2
δ

dt2 = −tλ−2 < 0 if 0 < λ ≤ 1 and d2
δ

dt2 = −t−2 < 0 if λ = 0. Furthermore, it

is bounded by the linear and the log-linear schemes. The t-lambda scheme

(iv) is the most �exible of the �ve as it allows for the weights to grow at an

increasing and decreasing rate for more recent information. As an illustrative

example the discount function of the t-lambda scheme is graphed in Figure

6.2 for values of λ of 0, 0.5, 1, and 3, where the number of errors of past

forecast origins is set to 30, and 30 denotes the error of the most recent

forecast origin. As dδ
dt = λt(λ−1) > 0 and d2

δ

dt2 = λ(λ − 1)t(λ−2) > 0, the
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Figure 6.2: Discount functions for the t-lambda scheme
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weights grow at an increasing rate if λ > 1 and at an decreasing rate if

λ < 1. The border between the in- and decreasing part of the scheme, i.e.,

where λ = 1 corresponding to scheme (ii), is represented by the dotted line.

The higher λ, the more recent is the information that is assigned a smaller

weight compared to the situation when the observations are not discounted,

represented by the horizontal line corresponding to λ = 0.

6.2.2 Weight stability

However, making weight estimates more responsive to changes in the covari-

ance of the forecast errors comes at a cost. The higher the discounting and

the smaller the window, the higher the in�uence single � more recent � ob-

servations have. Noise in form of the usual forecast uncertainty will more

likely bias weight estimates. Thus, there is a trade-o� between adaptivity

and volatility of the weight sequence.

Even, if the the covariance is constant over time, but the history of forecast
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errors is relatively short, e.g., 20�50 observations, the weights calculated on

the basis of the average of the past forecast errors are very sensitive to single

observations and �uctuate around their optima. Kang (1986) investigates

this issue in a simulation and an empirical experiment. In his MC study he

analyzes the weights and the performance of combined forecasts of simple

regression models, where some of the single forecasting models only use part

of the underlying DGP. In both, the simulation and the empirical part of

his paper, the weights display large standard deviations with wide ranges.

The best combination scheme turns out to be EW � the one whose weight

volatility is zero by de�nition. INV does not compare very favourably.

Winkler and Clemen (1992) corroborate this �nding in a MC analysis of the

sampling distribution of weight sequences, both for the combination of two

forecasts and for the case of multiple forecasts. They demonstrate that INV

is particularly sensitive. In the two-forecast-combination case the weights

are very instable if, both, the ratio of the forecast error variances, κ, and the

correlation of the forecasts, ρ, are close to one.

Their analysis of the combination of multiple forecasts is based on the se-

quential combination of forecasts: In a �rst step, two forecasts are combined.

In turn, the combined forecast is treated as a single forecast which is then

combined with the next forecast. Thus, the changes in the weights that are

due to additional forecasts can be analyzed separately. Furthermore, the re-

sults of the two-forecast-case can be applied to the sequential analogs of κ,

κji, where κi,j =
σ2
i

σ2
j
and σ2

i < σ2
j , and ρ, ρji, being the ratio of the forecast

error variances and the correlation of two combined forecasts of forecasts i

and j.

The �rst section of the multiple analysis considers exchangeable forecasts

where the forecast errors have equal standard deviations, σi = σ and equal

correlations ρij = ρ for all i and j, where i 6= j. The optimal combination

would assign equal weights, and as Winkler and Clemen note, this would

lead the researcher to intuitively expect the weights to be relatively insensi-

tive. However, the exchangeable-forecasts scenerio leads to high values of κji

and ρji and hence very instable weights. The second scenario regards non-
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exchangeable forecasts that are correlated with ρij taking values between 0.5

and 0.95 and the standard deviations ranging from one to 1.9. They point

out that this scenario is often found in practice as forecasters have access to

similar information and use more or less the same techniques. In this situ-

ation, estimated weights are highly susceptible to �uctuations in the error

processes, as well.

6.3 Robust approaches

6.3.1 The Odds-Matrix Approach

The issue of weight instability and changing covariances of forecast errors

imply the need for schemes that give robust weight sequences even when

based on a relatively short information set. Gupta and Wilton (1988) present

an approach that is supposed to compare favourably to the alternatives in this

setting. The odds-matrix method (ODD) replaces the variance-covariance

matrix by an odds-matrix, O.

Let πij represent the probability that the ith model will outperform the

jth model. Outperformance is implied if the respective model has a lower

absolute forecast error. Then, each element oij =
πij
πji

represents the odds

that forecast i will outperform forecast j. If the weights ki are the 'true'

weights, then the probability of model i outperforming model j should be

given by ki/(ki+kj) whereas the odds should be given by ki/kj. Good models

will have larger odds than bad models. Table 6.3 gives an example of the

odds-matrix for the three model case. For all elements oij = 1/oji > 0 and

the diagonal elements are ones. It can be shown that Ok = vk, so that the

underlying weight vector k is given by the solution to (O − vI)k = 0. As O

has unit rank and its trace is equal to v, there is only one eigenvalue which

is di�erent from zero. If the odds matrix is perfectly consistent, it is always

possible to solve for k. However, if the the entries into the matrix are not

consistent the matrix is no longer transitive. In this case, the solution of the

problem Ok = τmaxk will be an eigenvector of positive values corresponding
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Table 6.3: Example of the odds-matrix for three models

model 1 model 2 model 3

model 1 o11 = k1
k1

= 1 o12 = k1
k2

o13 = k1
k3

model 2 o21 = k2
k1

o22 = k2
k2

= 1 o23 = k2
k3

model 3 o31 = k3
k1

o32 = k3
k2

o33 = k3
k3

= 1

to τmax. When normalized, this vector will be unique.

The remaining task is to specify O which consists in specifying (n
2
) pairwise

probabilities, πij, where n again is the number of indiviual models. This can

be easily implemented if su�ciently large data sets are available. Let aij be

the number of times, model i outperformed model j, then πij = aij/(aij+aji).

What are the detriments and bene�ts of the odds matrix approach when

compared to the variance covariance method? There is no analytical form of

the expression at hand and there is no theoretical analysis available proving

its usefulness in the presence of structural breaks. Furthermore, it does not

consider the extent of the relative di�erences in the models performance,

i.e., it is ordinal. However, over time, major performance di�erences should

be re�ected in the odds. Its set-up makes it less sensitive to outliers, and

will thus generate more stable weights compared to the variance-covariance

combination schemes, such as INV or OPT. As Gupta and Wilton (1987)

point out, it can be expected that the method performes relatively good if

only limited data are available, as the resulting weights are insensitive to

small changes in the odds-ratios.

In an MC study Gupta and Wilton (1987) demonstrate the good relative

performance with respect to EW, INV and OPT based on OLS estimation

of the weights. In particular, they con�rm �ndings that the ignorance of the

covariance structure does not pose a major drawback neither to ODD nor
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INV. The results show that ODD does not su�er from not accounting for

the di�erences in the magnitude of the forecast performances. However, the

rate at which the weights are stabilising is not analyzed. This is due to the

design of their study which does not model a pseudo out-of-sample analysis.

Instead of updating the weights on the basis of the information available

up to each forecast origin, they apply a uniform weighting scheme over all

iterations which is formed using the whole sample.

6.3.2 Rank-based approaches

Rank-based combination schemes (RW) are very similar to ODD as they only

consider the relative performance of the constituent models. However, while

ODD considers the relative performance each iteration, RW merely take the

average accuracy over all past iterations into account. Equal to ODD, RW

disregards the extent of the di�erences in forecast performance. Again, this

means a loss of information, however, large outliers are less likely to derail the

scheme even if only little information is available to estimate the weights. The

computationally easiest representative of this class of combination techniques

is the simple median of the n individual forecast. In the following, it will be

denoted Median.

Timmermann (2006) proposes a rank-based scheme that is very similar to

the computation of INV. The weight at forecast origin t for the forecast at

t+h is computed as the ratio of the inverse rank of the respective model i at

t, IRit = 1/Rit to the sum of the inverse ranks of all n models. The weight

estimate of the individual model k̂RWit is thus given as:

k̂RWit = IRit/

n∑
i=1

IRit. (6.2)

The weights are a function of the number of models that are considered

in the combination, n. This implicitly restricts the weights that can be

attributed to the individual models. If, e.g., the researcher combines two

alternative models, one of the models will always be given a weight of k1 =
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Figure 6.3: Weights of the RW method
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1/(1/1 + 1/2) = 2/3, and the other a weight of 1/3. No matter how big the

di�erences in forecast accuracy are RW will always lead to these weights in

the two model case. Moreover, the scheme can be characterized as favouring

the very best models. Figure 6.3 illustrates the dependence of the twelve

highest weights that can be attributed to single models as a function of the

total number of models n. The upper plot demonstrates that the bigger n,

the lower the weight attributed to the twelve best models. However, while

receiving a weight of over 30 percent when n = 12, the best model still

gets a weight of about 16 percent when n = 200. The lower graph gives

the cummulative sum of weights of the twelve best models. Even for a huge

number of models, when n = 200, the twelve best models are attributed more

than 50 percent of the total sum of weights.
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6.4 Comparison to EW

As pointed out before, if covariances of forecast errors of individual models

evolve over time weight sequences need to be up-to-dated. However, up-to-

dateness comes at the cost of higher weight uncertainty, the shorter the period

employed for estimation. Furthermore, the use of past forecast performance

implies a cost. In contrast, EW does not imply weight uncertainty and no

prior information on the models is needed as the weights are attributed �xed

values by de�nition. Thus, the issue is not how much information is needed

for the weights to converge to their optima, but rather how much information

does it take for past performance schemes to beat EW.

As there is no analytical way to answer this question, let us consider a small

simulation experiment. The set-up thereby leans on Gupta and Wilton

(1988). Three series, each containing 31 observations are created using

pseudo-random draws of a normal distribution to simulate a sequence of

hypothetical forecast errors of three models, at time t = 1, ..., 31. As a

simulation of the total space of possible combinations of bilateral correlation

coe�cients, ρij, and relative variance di�erences, κij, analogously to the anal-

ysis in chapter 2 is computationally infeasable, the experiment concentrates

on nine variance covariance patterns, presented in Table 6.4. Only positive

values of ρij are considered, as they argueably represent the most likely case

found in reality (Winkler and Clemen, 1992). All constituent models in the

�rst row of Table 6.4, schemes I, II and III, are equally accurate and the

forecast error variances are set to one. In the second row, the variance dif-

ference is increasing to a 'moderate' level, giving κ1,2 = 0.6̄, κ1,3 = 0.5, and

κ2,3 = 0.75. In the last row, the di�erence in the variances are 'huge', with

κ1,2 = 0.4, κ1,3 = 0.25, and κ2,3 = 0.625. The correlation between the forecast

errors is increasing from the left to the right column. For the schemes in the

left column, the bilateral correlation between the forecast errors, ρi,j, is zero.

The schemes in the second column feature a 'medium' positive correlation of

ρi,j = 0.5 and the forecast errors of the models in the third column feature

a 'high' positive correlation of ρ = 0.9. For ease of analysis, the bilateral

correlation coe�cients are the same for all ρi,j, i 6= j, in each column.
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Table 6.4: Variance-covariance patterns
←
−
in
cr
ea
se

in
m

in
(κ
i,
j
)

increase in ρ−→

I II III

1 0 0 1 0.5 0.5 1 0.9 0.9

0 1 0 0.5 1 0.5 0.9 1 0.9

0 0 1 0.5 0.5 1 0.9 0.9 1

IV V VI

1 0 0 1 0.6 0.7 1 1.1 1.3

0 1.5 0 0.6 1.5 0.9 1.1 1.5 1.6

0 0 2 0.7 0.9 2 1.3 1.6 2

VII VIII IX

1 0 0 1 0.8 1 1 1.4 1.8

0 2.5 0 0.8 2.5 1.6 1.4 2.5 2.8

0 0 4 1 1.6 4 1.8 2.8 4

Figure 6.4 plots the results given limited but growing information sets; in

t = 2 only the forecast errors of the �rst period, t = 1, are used for the

computation of the weights, in t = 3 the �rst two forecast errors have been

used, and so forth. The lines give the loss of the three schemes compared to

EW, Lk =
σ2
k

σ2
EW

, where k = INV, ODD, RW. Again, the higher Lk the worse

the respective scheme is when contrasted with EW. Lk = 1 indicates equal

performance. 1000 replications are implemented for scenarios I to IX.

Given equal variances, every scheme disregarding the o�-diagonal elements of

the covariance matrix will tend to equal weights. Thus, EW clearly dominates

the alternative schemes in scenario I, II, and III up to the 14th forecast origin

and Lk is close to one hereafter. When the variance di�erences are not to big

and the forecast errors are uncorrelated, for scenario IV, this holds, as well.

The higher the potential gains of using past performance in the computation

of the weights and the higher the correlation, the worse EW performs relative
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Figure 6.4: Speed of Adaptation
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to the alternatives. For scenario V, and VII, it only dominates intially. For

scenario VI, VIII and IX it never dominates. When INV, ODD, and RW can

make a di�erence in scenarios V to IX, there is no model that dominates for

all situations. In scenario VIII the best model is INV, while ODD dominates

in scenario IX, and RW excels in VI and V.

Adaptability of all schemes is high. The disadvantage of INV, ODD, and

RW resulting of the need to learn the weights, evaporates very quickly. The

biggest changes in Lk happen in the �rst 10 forecasts, though for some sce-

narios and some models that di�ers a little. The biggest additional gains

over EW over time for all models can be realized in scenarios I, IV, and VII

when the bilateral correlation coe�cients are zero, and are smaller the higher

the bilateral correlation coe�cients are. RW schemes adapt faster than the

alternatives, except when correlation and relative accuracy di�erences are

high at the same time, i.e., in V, VIII, and in particular in IX.

When considering accuracy to the natural benchmark the trade-o� between
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adaptability and weight estimation uncertainty is less of an issue. Even

for relatively short informations sets, i.e., 15 observations, past performance

schemes outperform EW for a wide range of κ-ρ-combinations. Furthermore,

gains over EW through the inclusion of additional observations are small.

With respect to the use of rolling windows this implies that sizes of about 15

or 20 observations should be su�cient. An extension to more observations

limits the adaptability without corresponding gains through higher precision

in the weight estimates.
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Chapter 7

Forecast breakdowns and FBP

In the following a novel procedure for the robusti�cation of combined fore-

casts in the presence of structural change, the Forecast Breakdown Prese-

lection (FBP), is presented. It �lters out those models, whose predictive

performance will considerably deteriorate over the forecast horizon. This

potentially reduces estimation error of the weights. And, it renders combi-

nations more responsive to sudden changes, as bad performing models are

immediately given zero weight � without having to wait for the weights to

adjust. To achieve this, FBP recurs to ARCH e�ects in the forecast errors to

apply the framework of Giacomini and Rossi (2005) of detecting and predict-

ing forecast breakdowns to a wide range of models. The predicted failures

are employed to identify reliable models, i.e., those models whose past and

future performance is most likely comparable. The preselected models will

then be used to compute combined forecasts along the lines presented in the

preceding chapters.

7.1 Forecast break down

As mentioned before, computing weights based on relative past accuracy of

the individual models becomes futile, if performances are changing drasti-

cally. In particular, a model that used to be a good predictive device and

81
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suddenly yields very inaccurate predictions, will be attributed an excessive

weight. As the underlying DGP is unknown to the researcher, the 'usual'

uncertainty associated with forecasting will sometimes result in high forecast

errors. How bad need the predictions be to indicate that a single model is

defective and how often has that to happen before we can say that it has not

been a singular event?

A starting point in this respect is the de�nition of a forecast breakdown

by Clements and Hendry (2005). They de�ne a forecast breakdown as

�a signi�cant deterioration in forecast performance relative to the antici-

pated outcome, usually based on the historical performance of a model�

(p. 2). Giacomini and Rossi (2005) present a framework to make this

de�nition operable. They concretize a forecast failure as a signi�cant dif-

ference between the in- and out-of-sample performance of a model in a re-

peated forecasting experiment. The authors consider a stochastic process

W ≡ {Wt : Ω −→ Rs+1, sεN, t = 1, ..., T} which is de�ned on a complete

probability space (Ω,F , P ). They partition the observed vector Wt into the

variable of interest and a vector of predictors Wt ≡ (Yt, X
′
t)
′. The sample

is divided into an in-sample window of size m and an out-of-sample win-

dow of size n = T −m − h + 1.1 Let ft(β̂t) be the forecast of the iteration

with the forecast origin t, with β̂t being the l × 1 parameter estimate. The

starting point is the forecast produced by a direct forecasting method, i.e.,

the shortest lag to be considered in the estimation is h such that the most

recent observation can be directly linked to the target period. Each itera-

tion, the forecast correponds to a sequence of in-sample �tted values ŷj(β̂t),

where j varies over the in-sample window. Each iteration, the model is evalu-

ated by a loss L(·), where each out-of-sample loss Lt+τ (β̂t) ≡ L(Yt+h, ft(β̂t))

corresponds to an in-sample loss Lj(β̂t) ≡ L(Yj, ŷj(β̂t)). Considering the

OLS estimator of the linear model Yt = X ′t−hβ + εt, this will give β̂t =∑t−τ
s=1(XsX

′
s)
−1
∑t−τ

s=1XsYs+τ .
2 Thus the out-of-sample loss corresponding

to the forecast at t is Lt+h(β̂t) ≡ L(Yt+h, X
′
tβ̂t) and the in-sample loss is

1h again denotes the forecast horizon.
2This exposition of the method of Giacomini and Rossi (2005) focuses on the recursive

estimation scheme. The authors did consider rolling and �xed estimation schemes, as well.
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Lj(β̂t) ≡ L(Yj, X
′
j+hβ̂t) with j = h+ 1, ..., t.

With the aim of quantifying a deterioration of the out-of-sample performance

of a model relative to its in-sample analog, Giacomini and Rossi (2005) in-

troduce the surprise loss, which is the di�erence of the out-of-sample losses

with respect to the corresponding average in-sample losses L̄t(β̂t)

SLt+τ (β̂t) = Lt+τ (β̂t)− L̄t(β̂t), for t = m, ..., T − h. (7.1)

Additionally to a forecast breakdown test that tests whether a model has

su�ered a forecast breakdown in the past, Giacomini and Rossi (2005) pro-

pose a framework to date past and to predict future forecast breakdowns.

They propose linking forecast breakdowns to a set of economically meaning-

ful variables. Let Zt be the r × 1 vector collecting those variables and let θ̂n

be the OLS parameter estimate of equation:

SLt+τ (β̂t) = Z ′tθn + εt+τ , (7.2)

over the out-of-sample period t = m, ..., T − h, where the regression always

includes a constant. In order to test for the null hypothesis H0 : θn = 0

they propose a Wald test with the test statistic Wm,n,h = nθ̂′nΩ̂−1
m,nθ̂n, where

Ω̂m,n is an asymptotic variance estimator.3 The null hypothesis is rejected,

whenever Wm,n,h > χ2
r,1−α, with χ

2
r,1−α being the (1−α)− th quantile of a χ2

r

distribution. Furthermore, if �tted or predicted values of Equation (7.2) are

signi�cantly higher than zero, i.e., the lower (1−α)% con�dence band crosses

the zero-line, a forecast breakdown is indicated. The one sided (1−α)% con-

�dence interval is easily computed as

(
Z ′tθ̂n − zα

(
Z ′t(Ω̂m,n/n) Zt

)1/2

,+∞
)
,

where zα is the (1− α)− th quantile of a standard normal distribution.

Depending on the model to be analyzed, there is an ample set of potential

explanatory variables to predict future surprise losses. Giacomini and Rossi

(2005) forecasting US in�ation propose �nancial indicators such as stock

market volatility, business cycle leading indicators, and interest rates. In

3For a detailed describtion see Giacomini and Rossi (2005), proposition 7 and corollary
8.
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another empirical application of the forecast breakdown analysis they relate

forecast breakdowns of the traditional Phillips Curve model, linking changes

in the in�ation rate to past values of the unemployment gap, to changes in

the parameters of a Taylor-type monetary policy reaction function.

In the case at hand, where a relatively large number of di�erent models is

used and the only common factor is the endogenous variable, a particularly

attractive candidate for Zt are lagged values of SLt. As Giacomini and Rossi

(2005) point out, this is feasible if ARCH e�ects induce persistence in the

surprise losses. Thus, Equation (7.2) may be speci�ed as:

SLt+h(β̂t) =

p∑
i=0

θiSLt−i(β̂t) + εt+h. (7.3)

Equation (7.3) relates future values of SLt to p+1 past observations of itself,

enabeling the researcher to date past forecast breakdowns and to predict

future ones for a wide range of heterogenously speci�ed models.

To illustrate the approach consider �rst the ex-post dating of past forecast

breakdowns. The results are based on the whole information set that is on all

in- and out-of-sample results from the �rst forecast origin December 1984 to

the last forecast origin June 1999. Figure 7.1 on the facing page presents the

results of an autoregressive model used for the three-month ahead forecasts

of in�ation.4 The dotted line represents the �tted surprise losses, whereas

the solid line represents the lower 95 percent con�dence band. Whenever this

lower bound crosses the zero line a forecast breakdown is indicated. This is

the case in May 1991, which is indicated by an arrow.

7.2 Stable and instable periods

The presence of only one forecast breakdown for this model in 174 iterations

raises doubts whether forecast breakdowns are su�ciently widespread to be

4For a detailed exposition of the estimation and forecasting approach chosen, see sec-
tion 3.1 on page 35.
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Figure 7.1: Example of dating forecast breakdowns
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Note: the �tted SL and 95% con�dence intervall result for a AR(p) used for the 3-month

horizon forecast of in�ation.

Figure 7.2: Number of forecast breakdowns per period
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Note: the plots give the number of forecast breakdowns that have been dated ex-post for

each iteration.
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of any relevance in the current setting. Figure 7.2 gives the number of mod-

els that su�ered a forecast breakdown for each iteration, for the 1-, 3-, 6-

and 12-month forecast horizon. The horizontal lines indicate the upper ten

percentiles of the number of forecast breakdowns per iteration. The shaded

areas represent the 95 percent con�dence bands of the break estimate of the

in�ation rate in February 1992. The break estimate itself is indicated by the

vertical line within these bands.

The area covered by the black bars increases with the forecast horizons,

indicating a rise in the overall number of forecast break downs. Given the

total number of forecasts being 21054 per horizon, the overall numbers of

failures, 504, 1431, 2142, and 3615, is considerable. The maximum number of

breakdowns per period shows a similar pattern. At a single iteration at most

40, 76, 94, and 91 models fail over the period of analysis for the respective

forecast horizons. In line with the analysis of the squared forecast errors in

chapter 5 most of the peaks are located around the break estimate. Strikingly,

the iterations associated with the highest number of forecast breakdowns for

the 3- and 6-month horizon forecasts are not within or even close to the

con�dence interval of the break estimate of the in�ation rate but rather

around the end of 1985. Thus, the forecast breakdown analysis corroborates

the existence of another period of uncertainty preceding the one associated

with the break estimate of in�ation.

Figure 7.3 on the facing page focuses on very instable periods where the stars

indicate the location of the upper ten percentiles of the numbers of forecast

breakdowns per iteration. From bottom to top the 1-, 3-, 6- and 12-month

horizon forecasts are considered. Most of the iterations that feature high

numbers of forecast breakdowns are clustered inside the 95 percent con�dence

bands of the structural break estimate of the in�ation rate (indicated by the

shaded area). However, while there are only few stars to the right of the

con�dence bands, there are clusters of stars at the beginning of 1986 until

the end of 1988 for all four forecast horizons. This �nding allows for a

splitting of the sample that will be useful in the empirical analysis of the

combined forecast in the following chapters: the approaches can be tested in
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Figure 7.3: Phases of very high forecast uncertainty
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Note: The stars indicate the location of the upper ten percentiles of the number of forecast

breakdowns per iteration, dated ex-post.

a setting of relative high and 'normal' forecast uncertainty. The period which

is con�ned by the 95 percent con�dence interval of the break estimate will

henceforth be considered the INSTABLE period, the period between June

1992 to June 1999 will be labeled the STABLE period.

7.3 Forecast Breakdown Preselection

Given the ex-post evidence of forecast breakdowns being endemic, the predic-

tion of forecast breakdowns ex-ante, i.e., when the information set is limited

to the data available at each forecast origin t, appears very promising. If the

predictions turn out to be reliable, the future forecast breakdowns can be

employed for the preselection of models preceding the actual combination,

resulting in the FBP �ltered weights, de�ned as

k̂FBPsit = k̂sit · FBPit/(
n∑
i=1

k̂sit · FBPit), (7.4)
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Figure 7.4: Timeline of FBP approach
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where k̂sit is the estimated weight of model i at the forecast origin t, and h

is the forecast horizon. Weighting scheme s can be any of the approaches

presented in the preceding chapters, i.e., OPT, EW, INV, ODD, RW, or GC.

FBPit is a binary variable, being zero, if the lower 95 percent con�dence

interval of SLit+h(β̂it), CI
SL,low
it+h > 0, and one else.

To illustrate the approach consider the timeline in Figure 7.4. The informa-

tion set at the �rst forecast origin t = 1 is split into two sub-samples. To

initialize the procedure the individual models need to be estimated based

on a minimum number of observations. The second sub-sample is employed

to evaluate the past performance of n individual models: in an iterative es-

timation and forecasting experiment, the in-sample squared errors and the

squared forecast errors are collected, and the surprise losses are computed.

Based on the surprise losses up to t = 1, Equation (7.3) on page 84 is esti-

mated and the con�dence bands are computed. The estimated equation is

employed to predict the surprise loss of the next forecast step for each model

i. If the lower 95 percent con�dence band of the prediction crosses (does not

cross) the zero line, FBPit is set to zero (one). In a last step, the adaptive

combination scheme of choice is employed, and Equation (7.4) on the pre-

ceding page is used to sort out those models that are predicted to su�er a

forecast breakdown. In the next period, t = 2, the forecast errors made in

t = 1 are used to extend the learning period and the procedure is repeated.

For t = 3, ..., T , the procedure is repeated in the same fashion. Table 7.1

presents a step-by-step description of the FBP method.
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Table 7.1: Forecast Breakdown Preselection

1. Estimation of the individual models

2. In a learning period, surprise losses of the individual
models are generated

3. Estimation of SLt+h(β̂t) =
∑p

i=0 θiSLt−i(β̂t) + εt+h

4. Prediction of the forecast breakdowns

5. Preselection of the models

6. Application of an adaptive combination scheme of choice

7.4 Relationship with the literature

The approaches presented in chapter 6 are designed to improve combined

forecasts as they render weight sequences more adaptable to structural change.

Thereby, they seek to trade o� the use of past performance of the constituent

models to estimate the weights against increased parameter estimation error.

However, there are approaches to robustify combined forecasts that set in at a

latter stage re�ning the 'raw' sequence of weights rescaling the weights before

the actual prediction is made. The re�nement techniques most widely used

are shrinkage and trimming schemes. The shrinkage method, introduced by

Diebold and Pauly (1987), adresses the situation when performance based

weights tend to be very volatile and give huge (and possibly wrong) weights

to some models. It reduces the chance of computing extreme weights shrink-

ing them towards uninformative equal weights. To illustrate the basic con-

cept consider the following simpli�ed version proposed by Stock and Watson

(2006)

kshrit = kitι+ (1− ι)(1/n), (7.5)

where 0 < ι < 1. The lower ι, the more the shrinkage weights kshrit tend to

1/n, where n is the number of models, and the less the estimated performance

di�erences represented by the weights kit are taken into account.
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The second re�nement technique preselects the models to be employed prior

to combination. Timmermann (2006) describes trimming as the process of

dropping the worst α percent of the models based on their historical track

record. This equates to setting the respective weights to zero and rescaling

the restant weights such that they sum up to one. The idea is that models

generating high forecast errors most probably contribute little to the im-

provement of the combined forecast, while the risk of harming the pooled

forecast due to increased weight estimation error is relatively high.

So far, for both approaches the main parameters ι and α have been either es-

timated solely based on indicators of the past performance of the constituent

models, or set according to some informal decision rule. However, while the

approaches are intuitively appealing, empirical results have been mixed. El-

liott (2004) has demonstrated that the performance is highly sensitive to the

shrinkage parameter ι chosen.

As outlined in the theoretical analysis in chapter 2 on page 23 the e�ciency

of INV in dealing with very inaccurate models increases the worse their per-

formance. Thus, gains through the exclusion of poor performing models may

be limited. In view of the di�culties arising when measuring past forecast

accuracy the success of trimming based on arbitrary decision rules appears

even more unlikely.

FBP can be interpreted as a forward-looking version of the trimming ap-

proach. In contrast to the conventional trimming, it represents a formalized

way of reducing the parameter estimation error that focuses on the perfor-

mance over the time period where it matters, the forecast horizon. Further-

more, it concentrates on reliabilty rather than past forecast accuracy. This is

of particular importance in periods of high forecast errors that put increased

stress on the computation of the weights.

The adaptive weighting schemes presented in chapter 6 relied on the covari-

ance of the forecast errors of the individual models to change relatively slowly

over time. Though some of the more adaptive schemes might react faster than

others, in case of a sudden and considerable change in the covariance of the

forecast errors of the constituent models the combination schemes will need
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some time to learn. In contrast, FBP is more �exible, immediatly attributing

a weight of zero, if the respective model is likely to be very inaccurate.

The GC scheme uses all of the information contained in the ARCH e�ects

directly employing the conditional variance predictions for the estimation. It

aims at �ne tuning the weights, based on the knowledge of the likely evolu-

tion of the relative performances, and thus is a forward-looking procedure,

as well. However, sucessful implementation requires to explicitly model and

estimate the ARCH e�ects as precisely as possible. Even when huge �nan-

cial market datasets are considered, predictive success of GARCH models

is limited (Bera and Higgins, 1993). FBP is a crude and thus possibly less

sensitive alternative, as it (implicitly) uses binary information on very high

conditional variances only.
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Chapter 8

Simulation analysis of FBP

The following Monte Carlo study (MC) demonstrates the usefulness of the

FBP approach. The simulation assumes that the minimum conditions for

the functioning of FBP are ful�lled: the availability of a huge number of

forecasting tools and the presence of ARCH e�ects in the forecast errors.

The preceding chapters showed that bilateral correlation coe�cients of the

forecast errors and relative forecast accuracy have a huge impact on the

success of combination strategies. With the aim of testing robustness of the

results to several relevant scenarios, the MC is designed to perfectly control

for these features.

Moreover, the method is exposed to two forms of non-linear phenomena found

to be present in the INSTABLE period in the previous chapters: structural

breaks and phases of increased forecast error variances. Both phenomena fre-

quently emerge in practical forecasting situations (Stock and Watson, 1996)

and are possibly detrimental to FBP. In-sample and out-of sample perfor-

mance measures employed by FBP are averages. Thus, the extreme values

induced by a shock period or a break compared to 'normal' periods have a

huge impact on measurement of the surprises losses. Table 8.1 summarizes

the main features of the analysis.

93
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Table 8.1: Central features of simulation analysis

1. The presence of ARCH e�ects

2. The availability of a large number of models/indicators

3. Control of correlations between forecast errors

4. Di�erently accurate models

5. Uncertain periods

6. Structural breaks in the DGP

8.1 The set-up

In contrast to the simulation study in section 6.4, the forecast errors can not

be simulated directly as the forecast breakdown analysis requires indicators

of in-sample �t. For the combination to make sense, individual models need

to be speci�ed, such that they represent only imperfect approximations to

the DGP. Hendry and Clements (2004) model misspeci�cation in form of an

omitted variable bias while Aiol� and Timmermann (2004) assume a switch

in the DGP between two underlying factors, where each individual model

uses only one factor.

In the two model case, it is comparatively easy to suit the covariance of the

forecast errors to the needs of the analysis, as an analytical solution is mostly

at hand. When a large set of models is considered, a straightforward way of

controlling for the covariance is to model misspeci�cation as a measurement

error. This admits to directly in�uence the forecast errors. The explanatory

variables have a core of useful information on the target variable blurred by

noise � a description which is not unlikely to apply for many macroeconomic

indicators, such as industrial production as a regressor for GDP, or monetary

aggregates as predictors for in�ation.

The target variable is de�ned as mean µt that is allowed to shift over time,

plus a white-noise process εt, where t = 1, ..., T is the time index, giving

yt = µt + εt, (8.1)
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Figure 8.1: Set-up of the simulation analysis
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with εt ∼ N(0, σ2
ε ), where σ

2
ε is the variance. The indicators xit, where

i = 1, ...n, are split into two parts: an informative content which is simply

leading values of the target variable, and a noise part ηit giving:

xit = yt+1 + ηit (8.2)

The latter have mean zero and their variances σ2
ηi,t

depend on past squared

values of ηit in form of an ARCH(1):

ηit ∼ N(0, σ2
ηi,t

) (8.3)

σ2
ηi,t

= γ0 + γ1η
2
i,t−1 (8.4)

The conditional variance of model i is given in Equation (8.4) where γ0 is

a constant and γ1 is the coe�cient of lagged values of η2
it. This leads to

an unconditional variance σ2
ηi

= γ0
1−γ1 and the n × n unconditional variance

covariance matrix Σηi , with correlation coe�cients ρij.
1 For the sake of

perfect control of the forecast error variances the analysis abstracts of any

dynamics in the mean equations, Equations (8.1) and (8.2).

Figure 8.1 illustrates the time-line of each recursion. Analogously to the

empirical analysis, the forecasting experiment is implemented in a pseudo-

out-of sample fashion that imitates the expanding information set typical to

applied forecasting. In t = 30, n models yt = β̂i0 + β̂i1xit−1 are estimated by

OLS and one-step forecasts yFi,t+1 are computed. In t = 31 this procedure is

repeated extending the information set of the OLS estimations to include the

new observations of yt and xt in period t = 31, and so on. The evaluation

1The unconditional variance of a (G)ARCH process is introduced on page 60.
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Table 8.2: min(κi) and median κi

Horizon min(κi) median κi

1 0.16 0.58
3 0.34 0.62
6 0.29 0.61
12 0.22 0.62

period (light gray) could be a shock period, where the variances of the forecast

errors increase by a factor of Υ. Additionally, a break in the DGP, modeled

as a change in the mean of the target variable yt, could be added. It takes

two values, µt = α1 up to the break date tb = 75, i.e., for t = 1, ..., tb − 1,

and µt = α2 here after, i.e., t = tb, ..., T .

8.2 Speci�cation of the parameters

In the basic setting the parameters are mostly speci�ed such that they match

the empirical results and the robustness to changes is tested in alternative

scenarios. Figure 8.2 on the facing page gives the ratio of the MSE of model

i to the model having the smallest MSE, κei = min(MSEi)
MSEi

for the di�erent

forecast horizons, whereby κei is sorted in decreasing order from the left to

the right. The median κei for each period is given as a horizontal dotted line.

The corresponding minimum and median κei are given in Table 8.2. κei is

very similar for all horizons and displays a wide range of values. Most of the

models have κei > 0.5, the lowest median being 0.58 in case of the 1-month

horizon forecast. The worst performing models have values of κei between

0.16 in the case of the 1-month and 0.34 in case of the 3-month horizon

forecast. Not giving any prior on the frequency of good or bad models, the

unconditional variances σ2
ηi
are pseudo-random draws of a uniform distribu-

tion U(0.2, 1), leading to 0.2 ≤ κij ≤ 1. To minimize forecast errors arising

from omitted variable bias the variance of the target variable yt needs to be

set considerably higher than max(σ2
ηi

), so that σ2
ε = 10. This allows for a
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Figure 8.2: Empirical κei to the best model
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relatively tight control of the forecast error variances.

Figure 8.3 presents the histograms of the empirical bilateral correlation co-

e�cients of the forecast errors of model i and model j, ρei,j, where i 6= j, for

the di�erent horizons. The distribution of ρei,j appears to be symmetric and

resembles a Gaussian distribution. The median, indicated by an asterisk,

is between 0.56 (1-month horizon) and 0.61 (6-month horizon). The corre-

lation coe�cients are mostly positive, taking values between zero and one.

Only for the 12-month horizon there are �ve negative correlation coe�cients

that are close to zero. Accordingly, the correlation coe�cients ρi,j of the MC

are computed as pseudo-random draws from a standard normal distribution

scaled such that they lie in the interval (0; 1) with mean 0.5. The ranges

of both κij and ρij are in line with comparable studies, such as Gupta and

Wilton (1987).

Given the results of Hendry and Clements (2004), the size of the break needs

to be big relative to the in-sample error variances of the estimated models to

have an in�uence on the forecast performance, so α2−α1 is set to 10, giving
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Figure 8.3: Empirical bilateral correlation coe�cients ρeij
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a ratio of 10
1
to the forecast error variances of the worst models. For ease

of computation, the analysis follows Giacomini and Rossi (2005) uniformly

setting the ARCH coe�cient of the models, γi1, to 0.6. In view of the re-

sults presented on the sizeable increase of the median squared forecast errors

around the break estimates, the factor of the increase of the unconditional

variances in the shock period, Υ, is set to 3. To robustify the analysis against

the choice of the initial values the �rst 200 observations of ηit are dropped.

To test the sensitivity of the analysis to particular features of the set-up, six

scenarios, A to F, are considered. The di�erent scenarios are presented in

Table 8.3. The number of observations assigned to the three basic periods,

the minimum number of observations, the learning period, and the evalu-

ation period, as well as the coe�cients of the conditional variance are left

unchanged. Scenario A is the baseline featuring neither a shock phase nor a

break. Scenario B and C are set as Scenario A, Scenario B adding a period of

uncertainty while Scenario C adds a break. Scenario D is Scenario A plus a

shock phase and a break. Scenario E tests for the sensitivity to a mixture of
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positive and negative correlation coe�cients. It is equal to D but the center

of correlation coe�cients ρij is shifted to 0.25. Scenario F tests for the e�ect

of lower relative MSE on D, di�ering only in that it has maxκij = 0.4.

Table 8.3: List of scenarios

Scenario Υ α2 − α1 center ρij minκij

A 1 0 0.5 0.2
B 3 0 0.5 0.2
C 1 10 0.5 0.2
D 3 10 0.5 0.2
E 3 10 0.25 0.2
F 3 10 0.5 0.4

8.3 Results

The results are based on 1000 recursions for each scenario. To evaluate the

gains of the application of FBP, combined forecasts are computed with and

without applying the method. The schemes where FBP is not applied will

be referred to as 'simple' in the following. The schemes comprise INV, ODD,

RW, EW, Median, and GC. Adaptive versions of INV, ODD, and RW cover

values of λ =0, 0.1, 0.5, 1, and 3 to discount more distant information or

use a rolling window ν = 15 or ν = 20 in the way described in chapter 6.

To minimize computational e�orts, the analysis abstracts from estimation

uncertainty with respect to the structure of the ARCH process. Assuming

the structure to be known, a simple AR(1) model is �tted to the squared

forecast errors to predict the conditional variances.

Table 8.4 presents the results for the baseline Scenario A. As the values of

the MSE have no interpretation as such, the results are given as a ratio of

a reference model, i.e., as Theil's U (TU). The benchmark model is EW

without FBP. As it does not require any information on past performance
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Table 8.4: Simulation results baseline scenario A

Shock

������

simple FBP

���� ���

Type (ν, λ) TU rk TU rk

INV (0,0) 0.61 9 0.57 9

INV (0,0.2) 0.60 8 0.56 8

INV (0,0.5) 0.59 7 0.56 7

INV (0,1) 0.58 6 0.55 6

INV (0,3) 0.54 4 0.52 4

INV (15,0) 1.55 15 1.48 15

INV (20,0) 2.26 16 1.94 16

ODD (0,0) 0.76 12 0.68 12

ODD (15,0) 0.65 10 0.61 10

ODD (20,0) 0.71 11 0.65 11

RW (0,0) 0.50 3 0.48 3

RW (15,0) 0.47 1 0.45 1

RW (20,0) 0.49 2 0.47 2

Median (0,0) 0.57 5 0.55 5

EW (0,0) 1.00 13 0.88 13

GC(0,0) 1.23 14 1.06 14

Note: TU is the Theil's U to the un�lt. EW;

rk gives the rank over the column.

ν = wind. size, λ = disc. factor.
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of the constituent models, its MSE is the minimum result more elaborate

models have to beat.

Consider column two and three displaying TU and ranks of the models for

the shock period where FBP is not applied. As the relative di�erences of fore-

cast accuracy are very high, schemes that consider past performance should

improve upon EW. However, INV employing a window of 15 and 20 observa-

tions has the highest forecast errors giving TU of 1.55 and 2.26. Strikingly,

GC, which correctly models the ARCH process of the forecast errors ranks

merely 14th having TU of 1.23. All other schemes' TU are well below one,

ranging from 0.47 for RW (15,0) to 0.76 for ODD(0,0). ODD which is one

of the schemes explicitly developed to deal with changing forecast error vari-

ances ranks only 10th, 11th, and 12th, where the performance gets worse

the more observations are used for the estimation of the weights. The most

successful schemes are RW, ranking �rst when a rolling window of 15 obser-

vations is applied, ranking second and third, when the window size increases

to 20 observations and when all observations are considered. The simplest

scheme employing ranks, Median, ranks �fth. Considering INV schemes,

where no rolling window is employed, the faster they discount, the better

they are. Ordered according to the size of the discount factor λ, they take

postion nine, eight, seven, six, and four. Columns four and �ve display the

results for the di�erent schemes, when FBP is applied prior to combining.

All models improve, while the ranking is una�ected.

Table 8.5 gives the corresponding results for scenarios B to F. Considering

the simple combinations �rst, most of the models have TU < 1. As in the

baseline scenario, INV performs poorly when a rolling window is employed

and improves, the higher λ, ODD schemes rank 10th at best, and RW out-

performs the other models.

What e�ect does a break have? Consider the simple results of scenarios A to

D �rst, as they di�er only in the break and the shock period. The scenarios

that do not feature a break, A and B, display considerably higher TUs than

C and D for nearly all schemes. However, the relative performance of the

schemes is almost una�ected by a break.
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For INV schemes, one explanation is that a break mitigates weight estimation

errors as it implies shrinkage towards EW. Box 1 gives an illustrative example.

Scenario B corroborates this. Being less stable than A in that it features a

shock period but not a break it shows the highest TU when comparing the

results for individual schemes over the scenarios.

How do the results in D change, if ρij shifts to 0.25 in E and if maxκi = 0.4 in

F? In both scenarios most models' TU deteriorates except for three schemes

in F: INV applying a window and GC. The increase of TU in E compared

to D reveals that the stationary theory in section 2.1 is not applicable in a

setting of shock periods and breaks. It predicts that INV always improves

upon EW the higher relative performance di�erences are.

In view of GC correctly modelling the ARCH e�ects, its mostly poor per-

formance is remarkable. In E, GC performance is worst showing an extreme

value of TU of 34.07. However, for the other scenarios it can improve upon

EW, and in F, GC even ranks 5th having TU of 0.56.

What e�ect does FBP have? All models improve by the application of FBP

except for RW (0,0) in Scenario E, which has a gain of zero. However, the

ranking changes only as GC improves in scenario B, C, and F.

To see in which scenarios FBP works best Table 8.6 shows the percentage

gains due to the application of FBP the scheme for the six scenarios. The

maximum gain is 36.97 for INV (20,0) in Scenario B, followed by GC in

Scenario F and INV (20,0) in Scenario E, gaining 34.90 and 28.73 percentage

points. Except for GC, which gains most in Scenario F, the highest gains

for the models materialize if there is a shock period (Scenario B) or if there

is a shock period and a break (Scenario D) and the correlation and relative

performance structure is unchanged compared to the baseline. Comparing

the scenarios D, E, and F, when a shift and a shock period is included, a

shift of the center of ρij to 0.25 (Scenario E) or smaller relative performance

di�erences (Scenario F) lead to lower gains for most of the schemes. Thereby,

the gains are markedly smaller in Scenario E than in Scenario F. Only INV

schemes employing a rolling window of 15 and 20 give higher gains in Scenario

E and F.
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Table 8.6: Percentage gains using FBP

Type (ν, λ) A B C D E F

INV (0,0) 6.65 6.75 5.28 7.14 3.76 6.22

INV (0,0.2) 6.22 6.38 4.95 6.86 3.52 5.93

INV (0,0.5) 5.70 5.94 4.55 6.51 3.23 5.57

INV (0,1) 5.05 5.39 4.07 6.08 2.90 5.13

INV (0,3) 3.74 4.31 3.09 5.29 2.32 4.28

INV (15,0) 4.64 28.47 17.75 10.81 18.92 20.80

INV (20,0) 16.56 36.97 17.08 13.23 28.73 17.07

ODD (0,0) 12.50 13.16 10.42 14.44 9.11 12.68

ODD (15,0) 6.41 7.24 5.59 8.24 4.64 6.57

ODD (20,0) 9.53 10.40 7.68 11.25 6.81 9.43

RW (0,0) 4.77 3.29 4.90 4.67 0.00 3.57

RW (15,0) 3.98 3.48 4.52 5.01 1.09 3.49

RW (20,0) 4.12 3.46 4.74 4.85 0.20 4.25

Median (0,0) 4.81 6.35 4.90 8.58 4.37 5.99

EW (0,0) 13.89 13.91 15.06 17.27 10.80 15.33

GC 16.18 26.70 12.43 22.10 0.55 34.90

Note: The values given are gains expressed in percentage point

changes of the columns labled simple and FBP in Table 8.5.



8.3. RESULTS 105

Summarizing the results, all models considerably gain by the application of

FBP. The approach is particularly useful in periods of high forecast uncer-

tainty, i.e., in the presence of shocks and breaks. However, the lower the

di�erences of forecast errors and the more negative the bilateral correlation

coe�cients, the smaller the gains are.

Box 1: Example of shrinkage towards equal weights due to a break

This box illustrates, how a break that a�ects all models at the

same time can shrink the weights of INV towards equal weights.

Consider the simple two model example with weights computed

according to INV, i.e., k1t = Σsqe1t
Σsqe1t+Σsqe2t

and k2t = 1− k1t based

on three squared forecast errors (sqe) in period t = 1, 2, 3. In

period t = 1 and t = 2 sqe take values of 4 and 1 leading to

weight k1t = 0.8 for model 1, and k2t = 1− k1 = 0.2 for model 2

in period t = 2. In t = 3 there is a sizeable break leading both

sqe to increase by 40. The extreme sqe in t = 3 dominate the

MSE of both models leading to weights that tend towards 0.5,

giving k1t = 0.55 and k2t = 0.45.

Table: Two model example

t 1 2 3

sqe1t 4 4 44

sqe1t 1 1 41

k1t 0.2 0.2 0.45

k2t 0.8 0.8 0.55
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Chapter 9

Empirical results

This chapter tests FBP using the experimental data giving the empirical

counterpart to the MC of the last chapter. The data allow for a study of

real life analogs of Scenario A and Scenario D. The analyses of structural

breaks, the squared forecast errors, and the number of forecast breakdowns

per iteration, identi�ed the INSTABLE and the STABLE period. The for-

mer is characterized by relatively high forecast uncertainty whereas the latter

period is marked by relatively accurate forecasts. The period preceding IN-

STABLE extending from the forecast origins December 1984 to February

1990 is employed as the learning period for the computation of the weights

and FBP.

To test whether the �lter works when other variables are forecasted, the

results for the prediction of four additional targets are considered. Further-

more, FBP is compared to a valid alternative that applies a preselection

strategy directly using ARCH e�ects.

9.1 Un�ltered combined forecasts

Table 9.1 investigates, whether there is a dominating combination scheme

for both subperiods if FBP is not applied. The combination schemes are the

same as in the simulation study. The �rst column gives the type of approach

107
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used and speci�es λ and ν in parenthesis. Columns two to nine display the

MSE and the ranks across the column for the four di�erent horizons for

INSTABLE while the following columns give the corresponding results for

STABLE.

Consider INSTABLE �rst. The best model for all forecast horizons is always

a rank based method, whereby the corresponding ν di�ers for the RW for

each horizon. Moreover, schemes that rank �rst for one horizon may have

the last position for another one. For the one, three, six, and twelve month

horizon forecasts the best models are RW(20,0), RW(15,0), RW(0,0), and

Median, respectively. However, the �rst two are the worst models for six and

twelve month horizon forecasts.

ODD combination schemes stick out as particularly inaccurate for all hori-

zons. The application of a window leads to inferior results for most horizons

except for the last one.

GC which exploits the ARCH e�ects found in-sample, is mediocre, mostly

ranking 11th. However, the di�erence to the next better model is very small.

EW merely takes position 13 for the one-month horizon displaying a noteable

di�erence to next better scheme. Still, the rank is getting better the longer

the forecast horizon, even ranking second for the twelve month horizon.

INV schemes are in the middle-�eld, neither ranking worse than 12th nor bet-

ter than second. INV give very similar MSE for all horizons. Only INV (0,3),

INV (15,0), and INV (20,0) have markedly higher MSE for the two longest

horizons. For all horizons except for the six month horizon, INV(0,0.5) is

the best INV version whereas those that use a moving window show weak

results.

Are there marked di�erences for STABLE? As could be expected given the

analysis of the squared errors of the constituent models in section 5.1, the

combined forecasts display a considerably lower MSE over all horizons when

compared to the INSTABLE period.

The relative performances most noteably di�er to the results of INSTABLE

with respect to the improvement of ODD.While still ranking among the worst
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models for the 1-month horizon forecasts, ODD rank among the best models

for the restant horizons, ODD(15,0) being �rst for all horizons. Median

becomes even worse compared to INSTABLE, taking the last position for

all horizons except for the shortest. Now, EW performs very poorly for all

horizons, giving the worst results for the one month horizon. The GC based

combination's relative performance deteriorates for all forecast horizons, as

well. RW schemes give way to the improved ODD schemes. Nontheless, they

gain for the longest and the shortest horizons. Again, INV schemes' MSE

are very similar. Only INV(0,0), INV(0,0.2), and INV(20,0) give markedly

higher MSE for the twelve month horizon forecasts.

As the results are very close it is indispensable to consider a test for statistical

signi�cant di�erences. In particular, none of the short horizon MSE of the

INV schemes di�er up to the second digit. The most widely used procedure to

test for di�erences in forecast accuracy is proposed by Diebold and Mariano

(1995). The h-steps ahead forecast errors of two competing models i and

j at time t are given by {ε̂it}Tt=1 and {ε̂jt}Tt=1. Accuracy is judged by the

loss function g({ε̂it}Tt=1) and g({ε̂jt}Tt=1). The sequence of loss di�erentials

{δit}Tt=1 is de�ned as δt = g(ε̂it)−g(ε̂jt). The test considers the null hypothesis

H0 : E[δt] = 0 and is based on the observed sample mean

δ̄ =
1

T ∗

T∑
t=T0

dt (9.1)

with T ∗ = T − T0 + 1. Here T0 denotes the forecast origin. The sequence of

forecast errors follows a MA(h−1) process. If the autocorrelations of order h

and higher are zero, the variance of the loss di�erential can be heteroscedastic

and autocorrelation consistently (HAC) estimated as

V̄ =
1

T ∗
(γ̂0 + 2

h−1∑
j=1

γ̂j) (9.2)

where γ̂j is the estimated j − th autocovariance of the loss di�erential δt.

Under the null hypothesis of equal forecast accuracy the DM test statistic
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can be computed as:

DM =
δ̄√
V̄
∼ N(0, 1) (9.3)

To test if model i is not dominated by model j in terms of forecast accuracy

a one-sided DM test has to be conducted. The modi�ed null hypothesis is

than given by H0 : E[δt] ≤ 0. If the null is rejected model j dominates model

i.

Table B.4 in the appendix presents the results of the cross comparision of

the schemes for INSTABLE. Considering one model displayed in a column,

positive (negative) values indicate that the model is better (worse) than the

model in the respective row. However, signi�cant di�erence are sparse. Only

for the one month horizon there are two systematic patterns that can be

identi�ed: ODD are signi�cantly worse than all other models at least at the

�ve percent level for all forecast horizons considered and EW is signi�cantly

outperformed by all other models except for ODD.

Table B.2 gives the corresponding results for STABLE. For the six and twelve

month horizon, the ODD schemes and in particular ODD(15,0) frequently

outperform other approaches. For the shortest horizon, ODD(0,0) loses out

to the rank based schemes and INV at the �ve percent level. EW, Median,

and GC are signi�cantly outperformed for the one, three and six month

horizons by most alternative schemes. For the latter two this holds for the

twelve month horizon, as well.

Comparing the simulation and the empirical analysis demonstrates that most

of MC �ndings hold even for longer horizons though it merely considers

one-step forecasts. The results con�rm the dominance of the rank based

method and the generally poor performance of EW, ODD, and GC. However,

ODD for STABLE and EW for INSTABLE show very good results at longer

forecast horizons. Given that it ranked 13th for the simulation analog of

INSTABLE, Scenario D, GC performs considerably better than expected for

the �rst horizon.
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9.2 Filtered combined forecasts

Table 9.2 shows the MSE and ranks when FBP is applied. When compared to

the un�ltered pendant the relative performance pattern remains mostly un-

a�ected. Again, this is in line with the simulation that showed little changes

in the ranking due to FBP.

For INSTABLE, GC emerges as the most accurate forecasting tool for the

one month horizon forecast and as 7th for the twelve month horizon. Still,

it is 12th and 13th for the three and the six month horizon forecasts. EW

can improve from the 6th to the second, and from the second to the �rst

position for the six month and the twelve month horizon. ODD gains for

the two longest horizons. For STABLE the changes are mainly restricted to

deterioration of RW(15,0) and RW(20,0) for some horizons.

The upper half of Figure 9.1 shows by how much the �ltered and un�ltered

versions of the schemes di�er for INSTABLE. The red bars represent the per-

centage changes. A positive (negative) change that indicates an improvement

(deterioration) of the �ltered over the un�ltered alternative is represented by

a red bar that extends to the right (left) of the zero point. The asterisks

indicate the signi�cance of the change according to the DM-test.

Most bars indicate an improvement of the �ltered over the un�ltered alterna-

tive, except for eight schemes, whereby six of them are RW schemes for the

two short horizons. While most improvements are signi�cant at conventional

levels, negative gains are never signi�cant. Some of the improvements are

considerable. In case of ODD schemes for the one and six month horizon

forecast gains range from 13 to 20 percent. Looking at the di�erent horizons,

huge and highly signi�cant gains emerge for the six month horizon. One and

twelve month horizon forecasts are still markedly improved, while there are

only two weakly signi�cant gains for the three month horizon.

The lower half of Figure 9.1 displays the results for STABLE. For the three

month and the six month horizon forecasts most of the models are signi�-

cantly improved by the application of the �lter. Overall, the extent of the

gains for the six month horizon is comparable to INSTABLE. The predictions
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Figure 9.1: Gain INSTABLE
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Figure 9.2: Gain STABLE
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8=ODD (0,0), 9=ODD (15,0), 10=ODD(20,0), 11=RW(0,0), 12=RW(15,0), 13=RW(20,0), 14=Median

(0,0), 15=EW (0,0), 16=GC; '*', '**','***' indicate signi�cance at the ten, �ve, and one percent level.
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for the one month horizon forecasts are virtually not a�ected, at all. Except

for the weakly signi�cant deterioration of model RW(0,0) and RW(15,0).

Though there are high gains for the twelve month horizon only EW improves

to the ten percent level. For RW(0,0) there is a weakly signi�cant deteriora-

tion.

9.3 Other target variables

With the aim of testing FBP to the prediction of other variables than UK

in�ation, Figure 9.3 and 9.4 present the results for four other variables that

are frequently forecasted in applied work: two of them, TB and BD, being

�nancial and the other two, U and IP, being economic indicators. As the

latter are real-time variables there are several options to de�ne their 'true'

values. Assuming the quality of the data to improve over time the results

presented in the following re�ect the deviation of the forecasts from the last

vintage. As it is rather unusual to predict month-on-month changes for

horizons up to one year, here, all of them are transformed to year-on-year

percentage changes. In contrast to the analysis of in�ation, the results are

not split into sub-samples. The �rst 40 iterations are used as a learning

period.

Where there are a signi�cant di�erences at conventional levels, the bars in-

dicate a positive gain. However, the size and the frequency di�er across

variables and forecast horizons. For the �nancial variables gains tend to be

higher than for the economic variables.

TB-forecasts can be improved at conventional levels up to the 6-month hori-

zon. The gains for the 1-month and the 6-month horizon are mostly around

�ve percentage points. For the 3-month horizon forecasts they are about

two percentage points. For the 12-month horizon only RW(0,0) and EW can

be improved signi�cantly, yet the gains are relatively high. Furthermore,

ODD(0,0) has a weakly signi�cant loss of about �ve percentage points to the

un�ltered alternative. Signi�cant gains for BD are limited to the �rst two

horizons. For the 1-month horizon the improvements are around �ve percent.
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Figure 9.3: Gains for TB and BD
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Figure 9.4: Gains for U and IP
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For the 3-month horizons there are more gains than losses. However, all of

them are very small and only weakly sigini�cant. Prediction errors of U can

be signi�cantly ameliorated at all horizons except for the 3-month horizon.

Concerning IP the forecasts remain virtually una�ected. There are only two

small signi�cant gains: RW(20,0) for the one-month horizon and RW(15,0)

for the 3-month horizon.

9.4 Comparison with a rule-based alternative

How does FBP compare to alternative approaches? Standard trimming is a

poor contestant as it captures a di�erent aspect of the covariance information:

the past performance of the models. Given the compatibility of re�nement

techniques, it might be reasonable to combine FBP with standard trimming,

rather than implementing either of them alone. Therefore, in the following

FBP will be contrasted with an ad-hoc preselection method that is com-

parable in that it uses GARCH e�ects, as well. Though the direct use of

these e�ects via conditional variance predictions in GC gave poor results, an

alternative re�nement scheme directly based on GARCH predictions might

be promising. Similar to FBP, a forward looking version of trimming is em-

ployed. The models, whose conditional standard deviation of forecast errors

is predicted to be highest are �ltered out prior to combination. This gives

the GARCH preselection (GP), de�ned as:

kGPsit = ksit ·GPit/(
n∑
i=1

ksit ·GPit), (9.4)

where ksit is the weight of model i at forecast origin t using weighting scheme

s. GPit is a binary variable, being zero, if σ̂it+h > P
σt+τ
100−α , and one else.

P
σt+τ
100−α is the (100 − α)th percentile of the predicted conditional standard

deviation σ̂t+h. Following Granger and Jeon (2004), two alternative trim-

ming factors (α1 = 10 and α2 = 5) are applied, meaning that the models

predicted to have the ten and �ve percent highest conditional variances are

excluded. The conditional variances are thereby forecasted using estimates
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of GARCH(1,1) processes �tted to the forecast errors up to the respective

forecast origin.

The left part of Table 9.3 presents the percentage gains of FBP over GP

for INSTABLE. The stars indicate the signi�cance levels. The dominance of

the FBP �lter at longer horizons is striking, the maximum gain being 15.1

percentage points for ODD (15,0) over the �ve percent GP for the six month

horizon. Though there are some � weakly signi�cant � better results for GP

for α = 10 for the one and six month horizon, there are only two models,

RW(15,0) and RW(20,0), h = 3 that gain more through GP at conventional

signi�cance levels. Especially for the six month horizon forecasts the FBP

�lter outperforms the GP �lter for most of the models, indistinctly, whether

the �ve percent or the ten worst models are excluded by GP.

The right part of Table 9.3 presents the analogous results for the STABLE

period. The results are mixed. FBP still performs better for many schemes

for the three and six month horizon. However, GP performs signi�cantly

better for the shortest horizon and α = 10 for half of the schemes. There are

no signi�cantly di�erent results for the twelve month horizon.

However, one of the major advantages of FBP is the objectivity with which

the preselection of adaquate models is implemented. A comparison with a

rule-based trimming scheme, is highly dependent on α. It will be a matter

of data-mining to obtain results that favour the one or the other.



Chapter 10

Conclusion

Structural change is an omnipresent feature of economic data and models.

As predictive tools require models to be reliable it represents a major source

of forecast errors. Empirical and theoretical research � mostly analyzing

structural breaks � have shown that the combination of many forecasts is

a useful tool to address this issue. However, if past performance measures

are employed to estimate adaptive weight sequences the researcher faces a

trade-o� between up-to-datedness and precision. This dissertation takes a

closer look at the performance of the individual models to improve the latter

proposing a novel re�nement technique, the Forecast Breakdown Preselection

(FBP). Building on the methodology of Giacomini and Rossi (2005) it makes

use of forecast breakdown predictions to �lter out unreliable models prior to

combination. This reduces the uncertainty related to the estimation of the

weight sequence, as it eliminates those models whose track record has become

out-dated. In contrast to existing alternatives it o�ers an objective decision

rule for the preselection of canditate models and � through the employment of

ARCH dynamics � is a strictly foreward looking scheme. It is highly �exible

in that it is compatible with most combination approaches and it directly

reacts to deteriorations without requiring a learning period.

FBP as such does not yield forecasts and needs a combination scheme which

uses the output of reliable models. Thus, the range of combination techniques

most frequently found in the literature have been presented. As forecast error
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variances evolve over time, both simple and adaptive versions are considered.

Adaptivity implies concentration on the more recent performance, discarding

or downweighing possibly obsolete information. However, the smaller the

number of errors the computation is based on the higher is the volatility

of the weight estimates. As a consequence, forecast errors increase. Thus,

a MC investigates how many observations are needed for past performance

based methods to beat the natural alternative, the average forecast. It is

demonstrated that the latter can be outperformed on the basis of a relatively

short set of past forecast errors; the cost of processing information pays o�

when at least 15 observations of forecast errors are available. This holds for

error covariance patterns typically found in applied work.

FBP itself is tested for in another MC which re�ects the main features of

the empirical analysis of the individual models: ARCH e�ects, phases of un-

certainty, and structural breaks. The e�ect of the latter two are analyzed

separately and in combination. Several robustness-checks investigate FBP's

performance for a set of di�erent relative forecast error variances and bil-

taral correlation patterns of the individual models. It demonstrates that the

method leads to considerable improvements in forecast accuracy for all of

the combination schemes employed. FBP gives the best results if there is a

break or if there is a break and a phase of uncertainty. The gains are smaller

the more bilateral correlation coe�cients of the forecast errors tend to minus

one and the smaller the relative performance di�erences of the individual

models. Across the di�erent scenarios and with or without FBP the relative

performances of the combination schemes remain comparatively unchanged.

The relative accuracy as such merits a closer look, as this is the �rst study

to consider such an ample set of combination schemes in the presence of

these speci�c forms of non-linearities, in particular the ARCH e�ects. Rank

weighted methods outperform the alternatives followed by INV schemes. The

application of a rolling window is bene�cial to RW, while it is detrimental

to INV. However, the latter improves the faster past errors are discounted.

Strikingly, EW which has been found to perform very good in the literature

loses out against most of the alternatives. The same is true for GC, which
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correctly models the ARCH e�ects due to the set-up chosen, mostly ranked

very poor. Furthermore, ODD, which is designed to give stable weight se-

quences in face of changing forecast error variances, gives mediocre results.

The empirical analysis largely corroborates the MC, though it considers mul-

tistep forecasts, as well. The experiment predicts UK in�ation in a pseudo-

out-of-sample fashion using real-time data. Applying the methodology of

Bai and Perron (2003a) the variables in the data set are tested for struc-

tural breaks. Around an identi�ed break of UK in�ation in February 1991

forecast errors and the number of forecast breakdowns of individual mod-

els rise sharply. This allows for the identi�cation of a period of increased

forecast uncertainty (INSTABLE) and a 'normal' period (STABLE) period.

Furthermore, the evolution of the forecast errors of many models can be ex-

plained by ARCH e�ects. For both, the more demanding INSTABLE and

the STABLE period, the application of FBP leads to signi�cant improve-

ments in forecast accuracy over the un�ltered combination schemes. The

percentage gain is mostly positive reaching up to 20 percent. There are a

few situations when FBP leads to a loss, none of them being statistically

signi�cant. The results with respect to the relative performance of the single

combination techniques found in the MC is largely con�rmed. The extension

of the analysis on four other economically meaningful variables in the data

set con�rms the usefulness of FBP. With the aim of conducting a comparison

with a valid contestant, FBP is contrasted with a forward-looking version of

the standard trimming approach. In contrast to FBP, it directly recurs to

the ARCH e�ects. When the di�erences in accuracy were signi�cant, FBP

mostly outperformed the alternative. However, in the STABLE period for

the shortest forecast horizon, the alternative is signi�cantly more accurate.

Summarizing the results, FBP turns out to be a valuable re�nement tech-

nique. This is con�rmed by the simluation as well as the empirical analyses.

In case of the latter, FBP provided considerable gains for many di�erent com-

bination schemes while there has been no signi�cant deterioration � although

several target variables and forecast horizons have been considered. More-

over, it is particularly useful in phases of high forecast uncertainty marked
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by structural breaks, increased forecast errors, and high numbers of forecast

breakdowns.

Despite its success in the current real-time experiment the functioning of FBP

still has to be tested for di�erent data sets and time periods. However, the

extension of the framework to cover other frequencies and contexts appears

particularly promising: ARCH e�ects are even more widespread in weekly

and daily �nancial market data than in economic data.

This dissertation proves the usefulness of ARCH-based approaches in the

context of combined forecasts, which have largely been neglected in the lit-

erature. As the comparative scheme � directly using the ARCH e�ects �

demonstrates there are still some possible alternatives that merit closer exam-

ination. E.g., alternative schemes could be based on exponentially weighted

moving averages (EWMA) to predict conditional variances. However, objec-

tive decision rules need to be developed for such methods to be of practical

use.

The estimation of many models paired with the framework of Giacomini and

Rossi (2005) o�ers new research opportunities that go beyond the optimiza-

tion of combination schemes. The number of models to be predicted to su�er

a forecast breakdown could be employed as an indicator of rising forecast un-

certainty. Moreover, it might prove to be a useful indicator for the business

cycle analysis, as INSTABLE coincides with the beginning of an economic

downturn.
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Table A.2: Descriptives of the variables

RS IP AE M0 U BD FTSE USD

Mean 0.27 0.09 0.62 0.41 -0.02 0.07 0.91 0.18

Median 0.28 0.19 0.54 0.42 -0.27 0.16 1.12 0.12

Maximum 10.65 6.76 4.24 3.70 6.26 11.06 52.62 13.31

Minimum -9.78 -5.66 -1.70 -2.87 -4.51 -11.41 -26.60 -12.03

Std. Dev. 1.48 1.14 0.78 0.60 1.71 3.36 5.84 3.18

Skewness 0.51 0.05 0.81 0.08 0.97 -0.13 1.12 0.33

Kurtosis 20.28 9.08 6.31 12.66 4.51 3.76 17.57 4.56

# of Obs. 263 266 263 245 263 521 458 318

DM TB CBI OIL TBUS ESI BCI INFL

Mean -0.03 1.44 23.75 0.75 1.45 -10.27 -7.92 6.24

Median -0.23 2.84 22.00 0.00 1.66 -10.30 -5.05 4.60

Maximum 12.95 7.69 78.00 60.22 6.83 12.00 28.00 26.90

Minimum -10.41 -16.67 -30.00 -30.54 -7.31 -32.00 -56.00 -0.80

Std. Dev. 3.26 4.51 23.93 9.57 2.12 9.54 16.12 5.04

Skewness 0.30 -1.78 0.29 1.49 -0.55 0.18 -0.43 1.70

Kurtosis 4.06 6.50 2.51 11.46 4.21 2.25 3.29 5.94

# of Obs. 318 438 305 306 522 318 294 625

Note: the # of obs. referes to the sample size available in November 2007.
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Figure B.1: Lew as a function of ρ and κ
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Table B.1: ADF-test results

Variable # of obs p tα p-value

RS 433 1 -21.26 0.00

IP 470 0 -26.21 0.00

AE 526 4 -6.63 0.00

M0 441 0 -20.19 0.00

U 432 2 -4.67 0.00

BD 602 0 -19.95 0.00

FTSE 538 1 -17.34 0.00

USD 399 0 -18.68 0.00

DM 399 0 -19.14 0.00

TB 518 1 -2.86 0.05

CBI 381 3 -2.85 0.05

OIL 387 0 -19.73 0.00

TBUS 601 2 -3.47 0.01

CS 399 0 -3.35 0.01

BS 372 3 -3.58 0.01

INFL 692 6 -3.61 0.01

Results of the ADF test, where the lag length p

is selected minimizing BIC.
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