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Chapter I: 

1. Introduction 

1. 1 Melanoma Incidence and Risk Factors 

The increase in incidence of melanoma over the past thirty years is higher than 

any other cancer, with annual incidences reaching 3–7% among fair-skinned populations 

(Hall et al. 1999; Brochez & Naeyaert 2000; Jean & Bar-Eli 2000; Ries LAG 2003; Jemal 

et al. 2007).  Although part of this increase may be due to heightened awareness or 

changes in diagnostic criteria, there also seems to be an actual increase in disease 

incidence itself (Dennis 1999).  An estimated 60,000 new cases of melanoma are 

diagnosed each year with more than 8,000 annual deaths in the United States; about one 

in 75 persons will develop this cancer in their lifetime (Chatelain et al. 1999; Jemal et al. 

2007).  Patient survival can be high, if the disease is diagnosed in early, non-metastatic 

stages, but later stages and particularly those associated with distant metastasis to the 

brain, lung or bone lead directly to short-term survival (Motzkin et al. 1992; O'Day et al. 

2002).  Despite the increased worldwide incidence of melanoma, the underlying biology 

of this disease is still not well understood. 

Risk factors for melanoma are numerous.  Genetic predisposition and exposure to 

factors in the environment represent, as for most cancers, the most serious risk factors in 

human melanoma.  About 5-12% of all cases of melanoma originate in patients with a 

strong family history of this malignancy (Haluska & Hodi 1998; Goldstein & Tucker 

2001).  Environmental exposure to factors such as UV, as found in patients with a history 

of severe sunburns, represent a major cause of melanoma and, understandably, areas with 

high UV exposure such as the upper body show the greatest incidence of lesions (Holman 
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et al. 1983; Elwood & Jopson 1997; Jhappan et al. 2003).  Data suggest that patients with 

a familial history of melanoma who sustained childhood sunburns are at critical risk to 

develop melanoma (Veierod et al. 2003), as genetically predisposed melanomagenesis 

could be promoted by exposure to burning doses of UV radiation in this group (Holman 

et al. 1983; Whiteman et al. 2001). 

The link between UV radiation and development of melanoma has been heavily 

studied and early inquiries as to mechanism revealed associations between UV exposure 

and the occurrence of activating N-Ras mutations in lesions present on sun-exposed skin 

(van 't Veer et al. 1989).  Significant data to understand the effect of UV radiation of the 

development and progression of melanoma has been gathered from the use of mouse 

models of this disease (Kusewitt & Ley 1996; Chin et al. 1998; Ley 2002).  The mouse 

currently represents the best available animal model in cutaneous malignant melanoma 

and exposure of mice to UV radiation clearly induces the formation of primary lesions 

(Romerdahl et al. 1988; Romerdahl et al. 1989).  Incidence and outgrowth of melanocytic 

lesions is enhanced when melanoma cells are transplanted by injection into the skin of 

UV-irradiated mice (Donawho & Kripke 1991; Donawho et al. 1994), indicating a role 

for immune surveillance. 

 

1.1.1 Stages and Diagnosis of Melanoma Development 

Development of melanoma occurs through a series of discrete clinically and 

histologically transformative stages.  Pigment-producing cells derived from the neural 

crest called melanocytes are localized along the dermal-epidermal border as individual 

cells and, in the first stage of melanoma progression, these cells give rise to the formation 

of melanocytic nevi (Clark et al. 1984; Friedman & Heilman 2002).  These nevi represent 

focal proliferation of benign cells, each of which may or may not progress further.  These 
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nevi represent a risk factor on their own, as approximately 25% of melanomas originate 

directly from these preexisting nevi (Bevona et al. 2003).  Second-stage transformation is 

associated with the formation of dysplastic lesions formed by abnormal cell growth, 

called hyperplasia, and atypical differentiation of these cells.  Dysplastic lesions, known 

as melanoma precursors, can form out of benign lesions or form as normal nevic tissue 

(Clark et al. 1984).  The presence of dysplastic nevi is an indication of high-risk 

development of primary melanoma (Garbe et al. 1994a, b; Titus-Ernstoff et al. 2005).   

Stage III of melanoma progression is known as the radial growth phase (RGP) where 

primary tumors spread superficially but are unable to compromise the surrounding stroma 

and cannot yet metastasize (Clark et al. 1984).  Left untreated, melanoma in the RGP will 

likely enter the last step of melanoma tumor progression, known as the vertical growth 

phase (VGP).  Once melanoma enters the VGP, it acquires metastatic potential, is able to 

invade surrounding stroma, and proliferates vertically through the epidermal layers, 

leading ultimately to the appearance of regional and distant metastases (Clark et al. 1984).  

 Through a distinct biopsy, which analyzes excised tissues from the epidermis, 

dermis, and subcutaneous layers of the skin, an estimation of the depth of penetration of 

the melanoma is made possible by microscopy.  The lesion is described by Clark's level 

(involvement of skin structures) and Breslow's depth (measured in millimeters) (Balch et 

al. 2001a; Balch et al. 2001b).  Clark Level I includes all tumors considered that are 

localized above the basement membrane of the skin (malignant melanoma in situ).  The 

invaded tumor into the papillary dermis, which extends around the skin appendages, is 

described as Clark Level II.  Clark Level III sets the standard for a tumor progression into 

the interface between papillary and reticular dermis.  The Clark Level IV describes the 

tumor between the layers of collagen of reticular dermis.  Tumor invasion from the 

subcutaneous tissue into the lower layers of the dermis in accomplishment of metastases 
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formation are specified as Clark Level V (Balch et al. 2001a; Balch et al. 2001b).  

Furthermore, melanoma staging is made upon the Clark Levels and Breslow thickness, 

which further defines the measurement of the depth of invasion by measuring the tumor 

thickness in millimeters (thin: < 0.75 mm depth of invasion; intermediate: 0.76 - 3.99 mm 

depth of invasion: thick: > 4 mm depth of invasion) (Breslow 1970).  The different stages 

of melanoma are set upon those classifications (Balch et al. 2001a; Balch et al. 2001b; 

Greene 2002). 

 

1.1.2 Common cutaneous melanomas  

There are different forms of melanoma, some of which produce melanin and 

appear dark in color, whereas others are amelanotic and light in color.  The melanin 

producing types of melanoma belong to the superficial spreading melanoma (SSM), 

nodular melanoma, acral lentiginous melanoma, and lentigo maligna melanoma groups.  

Approximately 70% of melanomas are considered cutaneous melanoma SSM, this disease 

evolves from a precursor lesion, usually a dysplastic nevus, oherwise it arises in 

previously normal skin.  This form of melanoma is most common in Caucasians, is often 

diagnosed on the backside in males or on the lower limbs in females, on sun-exposed skin 

and particularly on areas of intermittent sun exposure (Newell et al. 1988; Brochez & 

Naeyaert 2000).  Nodular melanoma, a type of lesion that exclusively grows in the 

vertical direction, accounts for 5% of melanomas.  It has no known precursor, and is 

described as a small black, or, if amelanotic, pink nodule lesion, which enlarges with 

tendency of bleeding (Bondi & Clark 1980; Feibleman et al. 1980).  It is found primarily 

on the trunk or limbs of male patients with older age (Barnhill & Mihm 1993; Cox et al. 

1996).  The Acral-lentiginous melanoma (ALM) is mostly localized on non-hair bearing 

surfaces of the body which are likely exposed to sunlight, and usually involves glabrous 
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skin and adjacent skin of the digits, palms and soles (Feibleman et al. 1980; Sondergaard 

& Olsen 1980; Paladugu et al. 1983; Slingluff et al. 1990; Wells et al. 1992; Barnhill & 

Mihm 1993; Boyd & Rapini 1994; Cascinelli et al. 1994; Perniciaro 1997; Reed & Martin 

1997).  It represents only 5% of all melanomas and predominantly afflicts Asian, 

Hispanic and African populations (MacKie 1985; Kato et al. 1996; Chen et al. 1999; 

Barnhill RL 2004; Luk et al. 2004; Curtin et al. 2005).  Lentigo maligna accounts 4-15% 

of all cutaneous melanoma, which is defined as a melanoma in situ and consists of 

malignant cells without ability of invasiveness (Clark & Mihm 1969).  It is common in 

the elder population on visceral high sun exposed skin areas, like the face and forearms 

(Clark & Mihm 1969; Koh et al. 1984; McGovern et al. 1986; Cox et al. 1996; Flotte & 

Mihm 1999; Crowson AN 2001). 

 

1.1.3 Therapy for metastatic melanoma 

Standard therapy for metastatic disease is systemic chemotherapy with agents 

such as the alkylating agent dacarbazine (DTIC) or cisplatin (Mandic et al. 2001).  

Dacarbazine (5-3, 3- dimethyltriazeno-imidazole-4- carboxamide) is the primary 

chemotherapeutical drug used for Stage IV melanomas and is administered parenterally.  

After undergoing metabolic changes in the liver through interaction with cytochrome P450 

to its active metabolite 5-(3-methyl-1-triazeno)-imidazole-4-carboxamide, DTIC 

spontaneously exerts to the major metabolite 5-aminoimidazole-4-carboxamide.  Half of 

it is secreted through the kidneys into the urine (Carter & Friedman 1972).  This 

alkylating drug then binds to the DNA, eliciting a clinical response rate of 22% (Bellett et 

al. 1976).  But metastatic melanoma has a well-known resistance to chemotherapy, which 

often hinders effective treatment of this disease (Lev et al. 2004; Melnikova & Bar-Eli 

2006).  Lev et al. generated dacarbazine-resistant cell lines to analyze the role of DTIC in 
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metastasis and tumor growth in vivo and its long term effects.  These were generated in 

the primary cutaneous melanoma cell lines MeWo and SB2 through repeated exposure to 

increasing concentrations of dacarbazine (Lev et al. 2004).  In nude mice, these 

dacarbazine-resistant cell lines displayed signs of exhibited increased tumor growth and 

metastatic behavior.  In comparison to the parental counterparts, in vivo tumors produced 

by SB2-D and MeWo-D were found to have more MMP-2, VEGF, IL-8, and microvessel 

density (CD31), as well as high levels of phosphorylation in the protein kinases ERK, 

RAF and MEK (Lev et al. 2004).   

These results suggest a substantial danger with decarbazine treatment in that a 

more aggressive melanoma phenotype could be selected in melanoma patients treated 

with the drug.  However, using a combination treatment of either MEK inhibitors or anti-

VEGF/IL-8, may increase the therapeutic effects of dacarbazine.   

Cisplatin treatment of melanoma cells has been shown to induce ERK activation.  

Additionally, increased cisplatin resistance occurred in human melanoma cells via 

overexpression of mutant N-ras (and subsequent activation of MAPKs).  This resulted in 

inhibition of cell death by inducing overexpression of the anti-apoptotic protein bcl-2 

(Jansen et al. 1997; Borner et al. 1999).  However, studies using the ERK inhibitor PD 

98059 only resulted in sensitization of melanoma cells to cisplatin treatment in a limited 

number of cell lines (Mandic et al. 2001).   

When using MAPK inhibitors to sensitize cells to chemotherapeutic drugs, one of 

the issues to bear in mind is that apoptosis effector proteins such as Apaf-1, are frequently 

lost in metastatic melanomas (Soengas et al. 2001).  This could result in chemoresistant in 

cells even if survival signals are abrogated. 

 Immunotherapy with Interleukin-2 (IL-2) or interferon is also used, alone or in 

combination with chemotherapy, but the overall success of these therapies in melanoma 
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has been limited to date, around 10-15% (Atkins 2006; Atkins et al. 2006; Kirkwood et al. 

2006; Sondak et al. 2006; Tagawa et al. 2006). 

 Combination therapies, known as biochemotherapy, of biological effectors (IL-2 

and Interferon alpha) with chemotherapeutical reagents (cisplatin, vinblastin, and DTIC) 

are used currently (Buzaid et al. 1994c; Buzaid & Legha 1994; Buzaid et al. 1994a, b; 

Legha et al. 1996; Atkins 1997; Legha 1997; Legha et al. 1997; Legha et al. 1998) and 

have produced a striking response rate in the range of 69% (Legha et al. 1996). 

 Alternative approaches have evaluated vaccination against key antigens driving 

melanoma invasion and metastasis with mixed results.  These approaches are currently in 

the experimental phase (Kirkwood et al. 2006; Sondak et al. 2006; Leslie et al. 2007).  

The most current therapeutical vaccine for melanoma is the polyvalent allogeneic whole-

cell vaccine (PACV).  It is derived from three different allogeneic melanoma cell lines 

and used in combination with an immune adjuvant (Detox-PC).  PACV is designed to 

target multiple antigens and has shown a 5-year survival rate compared to historical use 

of vaccines (39% versus 19%) (Hsueh et al. 2002). 

  Melanoma is highly radioresistant (Ang et al. 1990; Ang et al. 1994; Geara & 

Ang 1996; Amozorrutia-Alegria et al. 2002; Ballo et al. 2002b; Ballo et al. 2002a; Ballo 

& Ang 2003, 2004; Ballo et al. 2004; Ballo et al. 2005; Ballo et al. 2006).  Radiation 

therapy is only successfully used in primary treatment of ocular, nodular and lentigo 

maligna melanoma (Harwood & Lawson 1982; Tsang et al. 1994; Schmid-Wendtner et al. 

2000).   

 

1.1.4 Molecular changes associated with melanoma progression 

The progression of melanocytic nevi to the vertical growth phase (VGP) and the 

formation of distant metastases involve many genetic and molecular changes, the 
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mediating mechanisms are largely undefined.  Involved in the initiation and progression 

of malignant melanoma are tumor suppressor genes (p16 INK4a/p14ARF, PTEN and 

p53), transcription factors (CREB/ ATF-1, AP-2), oncogenes (BRAF, NRAS), tyrosine 

kinases (c-kit, PDGF receptors), cell adhesion molecules (E-cadherin) and Matrix 

Metalloproteinases (MMP-2) (Carr & Mackie 1994; Jafari et al. 1995; Reed et al. 1995; 

Weiss et al. 1995; Barnhill et al. 1996; Bar-Eli 1999b; Hofmann et al. 1999; Bar-Eli 2001; 

Deichmann et al. 2002; Shen et al. 2003; Tsao et al. 2004).  These genetic alterations are 

summarized in Figure 1. 

  

1.1.4.1 Inactivation of tumor suppressors INK4A/ARF, p53, PTEN and activating 

mutations in BRAF and N-Ras in melanoma  

In approximately 20-30% of familial melanoma and 15-30% of sporadic melanomas, an 

inactivation of the INK4a/ARF melanoma susceptibility locus has been identified 

(Haluska & Hodi 1998).  Two independent bona fide tumor suppressor proteins are 

encoded by the INK4a/ARF locus, where one functions as a growth inhibitor (cyclin 

dependent kinase (CDK) inhibitor p16INK4a ) and the other one as an effector of cellular 

senescence (p53 activator p14ARF (mouse p19Arf).  A similar frequency of deletions and  

LOH (loss of heterozygosity) alterations in matched primary or metastatic 

melanoma have been reported by many (Chang et al. 1997; Talve et al. 1997; Cachia et 

al. 2000; Palmieri et al. 2000; Straume et al. 2000; Vuhahula et al. 2000; Pollock et al. 

2001; Pavey et al. 2002; Ghiorzo et al. 2004). 
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Figure 1 Schematic of molecular changes associated with the progression of human 

melanoma.   

Activating mutations in BRAF or N-Ras are early events in melanoma.  Abnormalities in 

the p16INK4A/ARF gene also occur early during melanoma development.  Changes in E-

cadherin, c-KIT, MUC18, and integrin αvβ3 expression occur during the transition from 

early primary radial growth phase (RGP) to the malignant stage of vertical growth phase 

(VGP).  Genes, important for angiogenesis are upregulated with higher metastatic 

potential of melanoma, including VEGF, bFGF, MMP-2, and IL-8 (Melnikova & Bar-Eli 

2006) 

BRAF 
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 The latent, short-lived transcription factor and tumor suppressor protein, p53 

(Harris & Hollstein 1993), activates proteins important in mechanisms of DNA repair, 

cell cycle, and/or programmed cell death.  Conversely, p53 can also repress the 

transcriptional activation of genes important to cell growth and survival (Ko & Prives 

1996; Levine 1997; Jin & Levine 2001; Sherr & McCormick 2002).  p53 mutations have 

been found to be present in approximately 10-30% of cultured human melanoma cell 

lines (Volkenandt et al. 1991; Weiss et al. 1993; Albino et al. 1994; Montano et al. 1994), 

and analysis of melanoma tumor tissues have revealed a 0-25% frequency of p53 

mutation (Albino et al. 1994; Lubbe et al. 1994; Sparrow et al. 1995; Hartmann et al. 

1996; Papp et al. 1996).  Patients with UV induced melanoma and defective DNA repair 

show a 60% high mutation rate in p53 (Spatz et al. 2001), which reveals that p53 is 

important in the UV induction which leads to apoptosis in melanoma (Zhang 2006).  

Furthermore, p53-stabilizers have proven to significantly induce UVB-induced apoptosis 

(Luu & Li 2002).  Overall, p53 has a low frequency of mutations in human melanoma. 

 Another alteration that occurs early in melanoma progression affects the tumor 

suppressor PTEN (phosphatase and tensin homolog), inactivation of which occurs in 

approximately 40% of both primary and metastatic lesions (Rodolfo et al. 2004).  The 

tumor suppressor PTEN activates throughout a lipid phosphatase the PI3K/AKT pathway 

and regulates G1 progression and apoptosis, whereas by protein phosphatase activity 

PTEN inhibits MAPK signaling (Wu et al. 2003).  Loss of PTEN has been observed 

within 5-15% of melanoma specimens/metastases and in 30-40% in established 

melanoma cell lines (Guldberg et al. 1997; Teng et al. 1997).  Subsequent AKT activation 

as a result of loss of PTEN may be an early marker for malignant progression of 

melanoma.  Activation of AKT has numerous downstream effects that may be critical to 

malignant progression such as upregulation of nuclear factor kappa B (NFκB) leading to 
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control of the cell cycle, inflammatory and survival cytokine signaling downstream 

(Dhawan et al. 2002). 

Global molecular profiling of cancer recently revealed oncogenic somatic 

mutations in the BRAF gene in approximately 66% of primary sporadic human 

melanomas, compared to lower rates of BRAF mutation in other cancers (Pollock et al. 

1996; Brose et al. 2002; Davies et al. 2002; Rajagopalan et al. 2002; Cohen et al. 2003; 

Dong et al. 2003; Gorden et al. 2003; Weber et al. 2003; Xu et al. 2003).  An estimated 

70-80% of the total mutations were identified as a V600E (formerly recognized as 

V599E) (exon 15) single phosphomimetic substitution in the kinase activation-domain, 

whereas mutations in NRAF are fairly uncommon in nevi (5.10%) (Brose et al. 2002; 

Davies et al. 2002).  A serine/threonine kinase encoded by the BRAF gene activates 

ERK/MAPK cascade signaling upon phosphorylation by Ras, which leads to the key 

influence of cell growth and proliferation downstream (Lenormand et al. 1993; Treisman 

1994; Davies et al. 2002; Rajagopalan et al. 2002).  An interesting observation by Omholt 

et al. obtained through sequencing of BRAF mutations in exon 11 and exon 15 as well as 

N-Ras mutations in codon 61 in both primary melanoma and corresponding distant 

metastases in over 70 patients, revealed that they arise early during melanoma 

pathogenesis and are preserved throughout tumor progression, indicating they are a key 

pathological event (Omholt et al. 2003).  

 

1.1.4.2 Melanoma Progression from RGP to VGP 

Conversion to a metastatic phenotype is a multistep process that requires cells to 

acquire an invasive phenotype, to survive in the lymph/blood, and be able to produce 

tumors in a new environment.  This complex conversion requires the recruitment of 

adhesion molecules, matrix-degrading enzymes, motility factors and cytokines, growth 
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factors, together with their receptors to achieve an aggressive profile.  Previous study of 

metastatic conversion of melanoma has revealed key changes, which involve the 

downregulation of E-cadherin, and coordinate upregulation of adhesion proteins N-

cadherin, upregulation of the melanoma cellular adhesion molecule (MCAM) and 

protease-activated receptor-1 (PAR-1).  Additionally, activation of matrix 

metalloproteinases such as Matrix-Metalloproteinase 2 (MMP-2), and upregulation of 

Epidermal Growth Factor Receptor (EGFR), Basic Fibroblast Growth Factor (bFGF) and 

Interleukin-8 are thought to contribute to this process (Bar-Eli 2001) (Figure 1). 

The contact region between endothelial cells acts as a permeability barrier to 

solute and control the passage of cells through the endothelium.  Several categories of 

junctional complexes have been found between endothelial cells.  These include tight 

junctions, adherens junctions, and gap junctions (Dejana et al. 1995; Lampugnani et al. 

1997).  The family of cadherin proteins is comprised of Ca2+-dependent cell adhesion 

molecules whose primary function is to facilitate intracellular communications and 

heterotypic/homotypic adhesion, enabling the formation of cell-cell adherens junctions 

(Vleminckx & Kemler 1999).  The different members of the Cadherin family are E 

(epithelial)-Cadherin, N (neuronal)-Cadherin, P (placental)-Cadherin, and VE (vascular 

endothelial)-Cadherin.   

1.1.4.2.1 E-Cadherin 

E-cadherin, now considered a natural metastasis suppressor, is characteristically 

lost in a majority of carcinomas and represents a primary step in melanoma metastatic 

conversion (Guilford 1999; Timar et al. 2001).  As melanoma progresses, cells lose 

functional E-cadherin through deregulation and loss of expression.  Loss of the 

transcription factor AP-2 during melanoma progression leads to reduced expression of E-



 13

cadherin, and this reduced expression directly correlates with expression of adhesion 

receptors associated with cell invasion, such as MCAM/MUC18, and with loss of 

keratinocyte-mediated regulation of cell growth. (Valyi-Nagy et al. 1993; Shih et al. 

1994; Danen et al. 1996; Hsu et al. 1996; Huang et al. 1998; Jean et al. 1998; Hsu et al. 

2000b; Gershenwald et al. 2001) . 

Conversely, reduced expression of E-cadherin in melanoma cells directly 

correlates with increased expression of the cell adhesion molecule N-cadherin (Tang et al. 

1994; Hsu et al. 1996; Hsu et al. 2000b).  The strategic expression of N-cadherin 

facilitates melanoma cell homophilic adhesion, as well as the formation of gap-junctions 

with stromal fibroblast and endothelial cells that similarly express N-cadherin.  Migration 

of melanoma cells, over dermal fibroblasts, is further promoted by the expression of N-

cadherin (Li et al. 2001). 

1.1.4.2.2 VE-Cadherin and vasculogenic mimicry 

Vascular endothelial cadherin (VE- Cadherin), also known as cadherin-5 (CDH5) 

or CD144, is Ca2+- dependent and largely found in the endothelial adherens junctions 

(Breviario et al. 1995; Lampugnani et al. 1997).  Only endothelial cells express VE-

Cadherin, which is enhanced through the cells homotypic cellular contacts (Lampugnani 

et al. 1992; Ayalon et al. 1994). The extracellular region of VE-cadherin, like the classical 

cadherins, contains five cadherin motifs.  In a Ca2+-dependent manner, VE-cadherin can 

mediate cell–cell adhesion by homophilic binding.  However, in comparison to other 

cadherins, VE-cadherin does not have a HAV (His-Ala-Val) motif, and there is relatively 

low homology in its cytoplasmic domain compared to other cadherins (Suzuki et al. 

1991).  Although both N- and P-cadherins have been detected in endothelial cells (Liaw 

et al. 1990; Ayalon et al. 1994), they show a more scattered distribution on the cell 
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surface and seem to be eliminated from the cell–cell contact region (Salomon et al. 1992).  

Studies with both chimeric proteins and truncation mutations demonstrate that the 

cytoplasmic domain of VE-cadherin contains a membrane proximal region responsible 

for exclusion of N-cadherin from endothelial contact sites, despite the fact that the 

cytoplasmic domains of both cadherins can bind plakoglobin, α- and β-catenins equally 

well (Lampugnani et al. 1995; Navarro et al. 1998). 

Mouse knockout models have demonstrated experimentally that loss of VE-

Cadherin or expression of a truncated VE-Cadherin is embryonic lethal.  Midgestational 

death is associated with severe vascular defects, and embryos display endothelial 

apoptosis and dysregulated cell survival signaling (Carmeliet et al. 1999; Gory-Faure et 

al. 1999).  In melanoma, it was recently shown that VE-Cadherin is strongly expressed in 

highly aggressive cells, but is expressed at undetectable levels in poorly aggressive 

melanotic cells, demonstrating that aggressive melanoma, as a strategy, mimics 

endothelial cells to form vasculogenic, patterned networks in a 3-dimensional 

environment (Hendrix et al. 2001; Seftor et al. 2002; Hendrix et al. 2003a) (Figure 2).  

However, how VE-Cadherin is regulated by melanoma cells is unknown.  
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Figure 2 Vasculogenic mimicry observation in 3-D collagenase culture.   

The formation of patterned, vasculogenic-like networks in three-dimensional culture 

reflect the patterned networks seen in a histological section from a patient’s aggressive 

melanoma tumor Plasticity of human melanoma cells (Hendrix et al. 2003a). 
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1.1.4.5  Matrix Metalloproteinases (MMP) 

The ability of tumor cells to invade requires the presence of matrix-degrading 

enzymes.  These include: the cysteine proteinases (cathepsin B, L), the serine-protease 

family (cathepsin G, elastase, plasmin and uPA), and the matrix metalloproteinases 

(matrilysins, gelatinases, and stromelysins) (Duffy 1996).  In malignant melanoma, 

transcriptional upregulation of MMP2 expression has been reported and involves the 

transcription factors activator protein 2 (AP-2) and cAMP response element-binding 

protein (CREB) with downregulation of AP-2 and increased activity of CREB 

(Gershenwald et al. 2001).  MMP-2 is a 72 kDa type IV collagenase also known as 

gelatinase A.  Pro-MMP-2 activation occurs through proteolytic cleavage of the N-

terminal pro-peptide, which results in a 64-kDa intermediate, that is further processed to a 

62-kDa active form (Strongin et al. 1993) and this process requires two MT1-MMP 

molecules.  The first MT1-MMP molecule recruits to the cell surface and serves as a 

surface receptor for the TIMP2-pro-MMP-2 complex (Strongin et al. 1995).  The second 

MT1-MMP molecule proteolytically activates MMP-2 through cleavage of MMP-2 and 

degrades extracellular matrix components (e.g. fibronectin, collagen types I, II, and III; 

vitronectin and laminins 1 and 5) (Strongin et al. 1995; Egeblad & Werb 2002). 

1.1.4.6 Angiogenic factors 

  Angiogenesis, the formation of vascular networks, represents a sustaining factor in 

the growth and survival of primary and metastatic tumors.  Angiogenic factors are 

secreted in large amounts by melanoma cells to encourage angiogenic growth (Potgens et 

al. 1995; Claffey et al. 1996; Oku et al. 1998; Rofstad & Danielsen 1998).  Angiogenic 

factors include vascular endothelial growth factor (VEGF), Interleukin 8 (IL-8) (Singh et 
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al. 1994; Luca et al. 1997; Kunz et al. 1999), platelet-derived endothelial cell growth 

factor, PD-ECGF (Leyva et al. 1984; Asgari et al. 1999), and basic fibroblast growth 

factor, bFGF (Halaban et al. 1988; Becker et al. 1989; Wang & Becker 1997). 

VEGF, also known as vascular permeability factor, is a strong specific mitogen 

for endothelial cells and may also stimulate endothelial cell migration and reorganization 

(Dvorak et al. 1995; Ferrara 2000).  The thymidine phosphorylase and gliostatin, PD-

ECGF stimulates endothelial cell mitogenesis and chemotaxis in vitro and is strongly 

angiogenic in vivo, possibly through modulation of nucleotide metabolism (Griffiths & 

Stratford 1997).  BFGF, which belongs to the family of heparin-binding growth factors, is 

a multifunctional protein having a well-established key role in tumor angiogenesis (Slavin 

1995; Ellis & Fidler 1996; Bikfalvi et al. 1997).   

A potent angiogenic factor in vitro and in vivo, is IL-8, which belongs to the 

superfamily of CXC chemokines (chemotactic cytokines), and functions as a 

multifunctional cytokine and acts as an autocrine growth factor for melanoma cells (Koch 

et al. 1992; Schadendorf et al. 1993; Bar-Eli 1999a).  Interleukin 8 (IL-8), or CXCL8, 

belongs to the chemokine group, which consists of the CX3C, CXC, CC, and C families 

of small peptides (Schroder & Christophers 1986; Walz et al. 1987).  A wide range of 

cells can produce IL-8 including: keratinocytes, lymphocytes, fibroblasts, endothelial 

cells, hepatocytes and monocytes (Oppenheim et al. 1991).  A critical role is played by 

chemokines in immune and inflammatory reactions by promoting chemotactic migration 

of leukocytes.  A positive correlation has been shown between disease progression and 

the expression of IL-8 (Nurnberg et al. 1999; Kunz et al. 2000) (Singh et al. 1994; 

Scheibenbogen et al. 1995; Singh et al. 1995; Singh et al. 1999; Ugurel et al. 2001).  

Furthermore it has been reported in human melanoma specimens a concomitant 

upregulation of one of two putative IL-8 receptors (Varney et al. 2006).  CXCR1 and 
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CXCR2 are two types of 7-transmembrane spanning G-protein-coupled receptors that can 

mediate the effects of IL-8 with CXCR1 being a selective receptor for IL-8 (Miller & 

Krangel 1992; Chuntharapai & Kim 1995; Addison et al. 2000).   

 

1.1.4.6.1 Interleukin-8 and carcinogenesis  

It has been reported that melanoma cells produce IL-8, which has been primarily 

explained as an important role of chemokines in autocrine and paracrine regulation of 

tumor cell proliferation, angiogenesis, invasion and metastatic dissemination (Strieter 

2001).  IL-8 exhibits potent angiogenic activities both in vitro and in vivo, and also acts as 

an autocrine growth factor for melanoma cells (Koch et al. 1992; Schadendorf et al. 1993; 

Bar-Eli 1999a).  In addition to melanoma cells, both receptors of IL-8, called CXCR1 and 

CXCR2, are found expressed on fibroblasts, keratinocytes, and endothelial cells (Horuk et 

al. 1993; Moser et al. 1993).  CXCR1 has been shown to be ubiquitously expressed in 

human melanoma specimens from different Clark levels.  However, CXCR2 is expressed 

frequently in higher grade melanoma tumors and metastases.  This suggests an 

association between expression of CXCR2 and IL-8 with vessel density in metastasis and 

advanced lesions (Varney et al. 2006).   

 

 

1.2 Galectin-3 

Galectins, a family of carbohydrate-binding proteins, have a high affinity for β-

galactoside-containing glycoconjugates and the acid sequences of their carbohydrate 

recognition domains (CRD) are evolutionary conserved (Shimura et al. 2005; Dumic et al. 

2006).  In higher vertebrates, fifteen members of the galectin family have been identified 
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so far. They contain either one CRD (proto and chimera types) or two CRD (proto and 

tandem repeat types) (Cooper 2002).  Some examples of the prototype galectins are Gal-

1, -2, -5, -7, -10, -11, -13, -14, and -15.  They are all homodimers except Gal-5 and -7 

which are monomers.  In addition they are four tandem-repeat type galectins: Gal-4, -6, -

8, -9, and -12.  Three major groups have currently been described.  Gal-3 belongs to the 

chimera type, which contains 12 amino acids, for cellular targeting, in the NH2-terminal 

domain, a substrate for matrix metalloproteinases (Clark et al. 1984) which contains a 

proline and glycine rich sequence, and for binding to the carbohydrates, a CRD region in 

the COOH-terminal domain (Figure 3) (Gong et al. 1999; Cooper 2002; Nakahara et al. 

2005) 

Gal-3 appears to play a part in several different physiological and 

pathophysiological conditions.  These include: immune reactions, development, 

metastasis, and neoplastic transformation.  It can interact with both intra- and 

extracellular proteins, which may explain its broad range of functions (Xu et al. 2000; 

Ellerhorst et al. 2002; Nakahara et al. 2005; Dumic et al. 2006).   

 

1.2.1 Gal-3 intracellular functions  

As a pre-mRNA splicing factor, Gal-3 acts intracellularly (Dagher et al. 1995).  This has 

been correlated with the Sm epitopes of the small nuclear ribonucleoprotein complexes in 

speckled structures and the non–small nuclear ribonucleoprotein splicing factor SC35 

(Vyakarnam et al. 1998).  Further confirmation was shown by association and co-

localization in the nucleus with Gal-3 and single-stranded DNA and RNA.  This occurred 

by way of high affinity to poly (A) ribonucleotide homopolymers (Wang et al. 1995).  In 

motor neuron containing complexes, the ability of Gal-3 to associate with Gemin4  
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Figure 3 Galectin subunit types.  

The CRDs are shown filled and other parts of the peptide open or hatched.  The mono 

CRD galectins can occur as monomers or dimers, or in case of Gal-3 as higher order 

oligomers (Cooper 2002).
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increases their survival and strengthens their function for pre-mRNA splicing (Park et al. 

2001).  Furthermore, Gal-3 regulates through downregulation of cyclins A and E and 

upregulation of p21 and p27 cyclin inhibitors and hypophosphorylation of Rb protein the 

G1 or G2/M arrest (Kim et al. 1999). Therefore, Gal-3 is important not only in RNA 

processing, but also in cell replication and death (Iacobini et al. 2003) (Figure 4).  In 

addition, enforced expression of Gal-3 in epithelial cells rendered them more resistant to 

apoptotic stimuli (Yang et al. 1996; Akahani et al. 1997; Kim et al. 1999; Lin et al. 2000; 

Yoshii et al. 2002). 

Indeed, Gal-3 contains the anti-death Asp-Trp-Gly-Arg (NWGR) motif that is 

conserved in the Bcl-2 homology domain (BH1) of the Bcl-2 family (Yang et al. 1996; 

Akahani et al. 1997; Kim et al. 1999; Hsu et al. 2000a; Lin et al. 2000; Tsujimoto & 

Shimizu 2000; Yoshii et al. 2002).  Nakahara et al. revealed the controversy of the role of 

Gal-3 as intracellularly an antiapoptotic and /or extracellularly as a proapoptotic factor in 

various cell types (Iacobini et al. 2003; Nakahara et al. 2005) (Figure 4). Gal-3 has also 

been reported to be an anti-apoptotic molecule, which is able to inhibit T-cell apoptosis 

induced by Fas.  Additionally Gal-3 was able to inhibit apoptosis that had been induced 

by geneistein, cisplatin, staurosporine and anoikis (apoptosis induced by loss of cell 

anchorage) in epithelial cells (Yang et al. 1996; Akahani et al. 1997; Kim et al. 1999; Lin 

et al. 2000; Yoshii et al. 2002). 

It is on one hand found intracellularly in the nucleus and cytoplasm or secreted via 

non-classical pathway outside of the cell and on the other hand being found on the cell 

surface or in the extracellular space (Dumic et al. 2006).  In Gal-3 knockout mice, anti-

apoptotic activity has also been noted. Compared to normal control mice, macrophages 

from the Gal-3 knockout mice were more sensitive to apoptosis (Hsu et al. 2000). 
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Figure 4 Gal-3 intracellular and extracellular ligands and related functions.   

Intracellularly Gal-3 binds to nuclear expressed proteins that affect the pre-mRNA 

splicing activity and cell cycle control.  Through its binding to cytoplasmic proteins like 

BCL-2 it serves as an antiapoptotic molecule.  Extracellularly, Gal-3 functions in cell-cell 

adhesion and cell to matrix contacts through binding with cell surface and interstitial 

expressed proteins.  Therefore it gained also its ability to act as an apoptotic molecule 

(Iacobini et al. 2003). 
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The ability to resist apoptosis is essential for cancer cell survival and shares an important 

role in tumor progression. 

1.2.2 Gal-3 extracellular functions 

The list of known Gal-3 ligands, which includes Mac-2 BP (Inohara et al. 1996), 

Fibronectin and laminin (Sato & Hughes 1992; Warfield et al. 1997) (Figure 4), was 

recently expanded to include Mgat5-modified N-glucans.  Mgat5 is important for 

fibronectin matrix remodeling in tumor cells (Lagana et al. 2006).  Golgi generate Mgat5, 

which are present on mature glycoproteins and other N-glycosylated cell surface 

signaling receptors (Henrick et al. 1998; Perillo et al. 1998; Barboni et al. 2000; Yu et al. 

2002).  The binding of Gal- 3 to Mgat5-modified N-glucans induces α5β1- integrin 

activation, which enhances fibronectin (FN) fibrillogenesis and FN-dependent tumor cell 

spreading and motility (Reiske et al. 1999; Ilic et al. 2004; Clark et al. 2005).   

Gal-3 can bind both integrins and receptor tyrosine kinases which contribute via 

signaling to adhesion remodeling (Fukumori et al. 2003).  Focal adhesion kinase (FAK) is 

activated through Gal-3 stimulation and integrins are exchanged to substratum.  This 

results in microfilament turnover, the activation of the phosphatidylinositol 3-kinase 

(PI3K), and recruitment of integrins and translocation to fibrillar adhesions.  Gal-3 

binding has been proposed to control the movement along actin stress fibers through 

translocation rate of fibrillar adhesion, as well as, FN polymerization and FN fibril 

stretching (Lagana et al. 2006). The cleavage of the laminin 5γ2 chain results from the 

activation of MMP-2, which is itself activated through PI3K initiation downstream of 

FAK (Hendrix et al. 2003a) (see section 1.1.4.2.2).  

 Ochieng et al. report that Gal -3 is also a substrate for MMP-2 and MMP-9.  

Cleavage of Gal-3 by MMP, results in two fragments: a 9 kDa fragment with the amino 
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terminal end and a 22 kDa fragment with carbohydrate recognition domain (Ochieng et 

al. 1994).  This 22 kDa fragment binds 1.5 -2 times more tightly to glycoconjugates but 

fails to self-associate (Ochieng et al. 1998).  Tumor aggressiveness has been shown to be 

associated with increased expression of MMP, more specifically MMP-2.  The ability of 

MMP-2 to cleave Gal-3 may therefore have a role in tumor metastasis (Zucker et al. 

2000).   

Gal-3 has been shown to be a receptor for advanced glycosylation end product 

(AGE) binding proteins.  These include RAGE (receptor for advanced glycosylation end 

products), the AGE-receptor complex p60, p90, and the macrophage scavenger receptor 

type I and II.  Gal-3 has a high-affinity binding for AGEs in astrocytes, macrophages, and 

endothelial cells.  In the mesangium and endothelium, tissues that are targets of diabetic 

vascular complications, Gal-3 is weakly expressed but with aging it is induced by the 

diabetic milieu.  Therefore, in target tissue injuries, the overexpression of Gal-3 may be 

important for pathogenic events (Pricci et al. 2000).   

Recent experiments using Gal-3 null mice gave evidence of Gal-3 acting as a pro-

inflammatory protein (Colnot et al. 1998; Hsu et al. 2000a; Bernardes et al. 2006).  Gal-3 

showed an activating effect on NADPH oxidase (Almkvist et al. 2004), a downregulating 

effect on interleukin (IL)-5 expression in human eosinophils (Cortegano et al. 1998), on 

promotion of monocyte chemotaxis (Sano et al. 2000) and stimulation of superoxide 

production of neutrophils (Yamaoka et al. 1995).  Further, extracellularly, Gal-3 acts as a 

de-adhesion molecule in the interaction of thymocytes and thymic microenvironmental 

cells (Villa-Verde et al. 2002),  stimulate cell migration (Silva-Monteiro et al. 2007) and 

cell death (Stillman et al. 2006; Silva-Monteiro et al. 2007). 

In LNCaP cells, which do not express Gal-3 constitutively, exogenous expression 

of Gal-3 is able to inhibit apoptosis induced by anticancer drugs, by stabilizing the 
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mitochondria.  It also stimulates the phosphorylation of Ser (112) on Bcl-2-associated 

death (Bad) protein and down-regulates Bad expression after treatment with cis-

diammine-dichloroplatinum.  Translocation from the nucleus to the cytoplasm allows 

Gal-3 to be able to inhibit cytochrome c release and caspase-3 activation by inhibiting 

mitochondrial depolarization and damage (Fukumori et al. 2006). Fukumori et al. 

speculate that Gal-3 inhibits apoptosis induced by anticancer drugs through suppression 

of the mitochondrial apoptosis pathway and regulation of Bad protein.  The ability to 

improve the efficacy of chemotherapy anticancer drugs could be achieved by targeting 

Gal-3 in prostate cancer. 

Gal-3 is widely spread among different types of cells and tissues including 

epithelial and endothelial cells (Glinsky et al. 2001; Lin et al. 2002; Mengwasser et al. 

2002; Khaldoyanidi et al. 2003) activated macrophages (Dong & Hughes 1997; Kim et al. 

2003) and dendritic cells (Swarte et al. 1998; Vray et al. 2004).  A previous study on a 

small series of melanocytic lesions (Mollenhauer et al. 2003), revealed that some nevi and 

melanomas express Gal-3. 

 Gal-3 plays an important role in tumor cell adhesion, proliferation, 

differentiation, angiogenesis, and metastasis (Nakahara et al. 2005) in multiple tumors 

(Xu et al. 2000; Ellerhorst et al. 2002).  However, the exact mode of action of how Gal-3 

contributes to melanoma growth and metastasis remains unknown. The studies reported 

here are aim to fill this gap. To that end I propose the following Specific Aims: 



 26

Specific Aims 

 
 
 

1. Pattern of Gal-3 expression during melanoma progression 

 

2. Effect of Gal-3 shRNA on tumor growth and metastasis 

 

3. Identification of Gal-3 downstream target genes by Gal-3 shRNA  
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 Chapter II: 

2. Materials and Methods 

2.1 Cell Lines and Culture Conditions 

The highly metastatic A375SM human melanoma cell line was established from 

pooled lung metastases produced by A375-P cells injected intravenously (i.v.) into nude 

mice (Li et al. 1989).  A375-P is a human melanoma cell line, which was established in 

culture from a lymph node metastasis of a melanoma patient (Kozlowski et al. 1984).   

The human melanoma cell line WM266-4, purchased from ATCC, is tumorigenic 

and metastatic in nude mice (Luca et al. 1995).  The human melanoma MeWo cell line 

was established in culture from a lymph node metastasis of a melanoma patient and was 

kindly provided to us by Dr. S. Ferrone (New York Medical College, New York, NY). 

In nude mice, MeWo cells are tumorigenic and have low metastatic potential 

(Ishikawa et al. 1988).  The SB-2 cell line was isolated from a primary cutaneous lesion 

and was a gift of Dr.B.Giovanella (St. Joseph’s Hospital, Houston, Texas).  In nude mice, 

SB-2 cells are poorly tumorigenic and nonmetastatic (Luca et al. 1993; Singh et al. 1995) 

.  The cell lines DX-3, DM-4, TXM-40,-18,-1 and TXM-13 are low to intermittent 

metastatic melanoma cells.  The highly metastatic melanoma cell line C8161 was 

obtained from Dr. Welch (Department of Pathology, University of Alabama at 

Birmingham, Birmingham, AL,  USA) and maintained in DMEM/F12 (BRL-GIBCO 

LifeTechnologies, Rockville, MD) containing 5% FBS.  The C8161 cell line containing a 

luciferase plasmid construct was kindly provided by Dr. Vladislava Melnikova. 
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Through injection of melanoma cell lines into the tail vein of mice the definition 

for low (0-10 metastasis), intermediate (10-50 metstasis) and highly metastatic (50>200 

metastasis) cell lines was made upon the numbers of metastasis formed in the lungs.  

All human melanoma cell lines were maintained in culture as adherent 

monolayers in Eagle’s minimal essential medium (MEM) supplemented with 10% fetal 

bovine serum (HyClone, Logan Utah), 20mM HEPES buffer (Invitrogen, Carlsbad, CA), 

100 mM of sodium pyruvate (BRL-GIBCO LifeTechnologies, Rockville, MD), 10 mM 

non-essential amino acids (Invitrogen, Carlsbad, CA), 100 U/ml penicillin (Invitrogen, 

Carlsbad, CA), 100μg /ml streptomycin (Invitrogen, Carlsbad, CA) and 2mM L-

glutamine (BRL-GIBCO LifeTechnologies, Rockville, MD).   

Human embryonal kidney (HEK) cells 293T (Invitrogen, Carlsbad, CA) were 

cultured in DMEM supplemented with 10% FBS.  All cells were mycoplasma free and 

kept in a humidified chamber at 37o C in 5% CO2.   

 

2.2 Three-dimensional Type-I Collagen Gels  

250 µl of type I collagen (average 3 mg/ml; Collaborative Biomedical) were 

coated onto 24 well plates to create a three-dimensional type I collagen gel as described 

(Maniotis et al. 1999; Hendrix et al. 2003a) (Figure 2). 25x104 melanoma cells were 

plated on top of the collagenase layer in 3ml medium containing 5% FBS and left to grow 

in culture for four weeks until they form networks in 3-D manner.  Live cells were then 

photographed unstained using an inverted brightfield Leica microscope, which was 

attached to an Optronics Camera, and the pictures were analyzed with Optimas program. 
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2.3 Animals 

Female athymic BALB/c nude mice were obtained from the Animal Production 

Area of the National Cancer Institute, Frederick Cancer Research Institute (Frederick, 

MD, USA).  The mice were housed in laminar flow cabinets under specific pathogen-free 

conditions and used at eight weeks of age.  Animals were maintained in facilities 

approved by the American Association for Accrediation of Laboratory Animal Care and 

in accordance with current regulations and standards of the US Department of 

Agriculture, Department of Health and Human Services, National Institutes of Health, 

and institutional regulations.  Their use in these experiments was approved by the 

Institutional Animal Care and Use Committee (IACUC). 

If the largest dimension of a tumor reached 1.5 cm, the mice were considered 

moribund and sacrificed as designated by IACUC.  Moribund mice were sacrificed in a 

CO2 chamber.  The date of natural death or sacrifice was recorded. 

 

2.4 Cell Preparation for Injection 

To prepare tumor cells for inoculation, we harvested cells in the exponential 

growth phase by brief exposure to 0.25% trypsin, 0.2% EDTA solution (w/v).  The flask 

was sharply tapped to dislodge the cells, and supplementary medium was added.  The cell 

suspension was pipetted to produce a single-cell suspension.  Then, the cells were washed 

and resuspended in Ca2+- and Mg2+- free HBSS (Hank’s Balanced Salt Solution) to the 

desired cell concentration.  Cell viability was determined by Trypan blue exclusion, and 

only single-cell suspensions of more than 90% viability were used.   
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2.5 Injection and Monitoring of Tumor Cells 

Subcutaneous (s.c.) tumors were produced by injecting 2.5x105 tumor cells in 0.2 

ml HBSS into the right flank. Growth of subcutaneous tumors was monitored by daily 

examination of the mice and three weekly measurements of tumors with calipers. 

Through measurement of the long (a) and short diameter (b) of the tumors the tumor 

growth in cm3 was evaluated by using following formula: a x (b)2 /2. The mice were 

killed 47 days after injection or as soon as they reached 1.5 cm3 tumor volume, and 

tumors were processed in paraffin and in OCT for hematoxylin and eosin and 

immunohistochemical staining.  Tumor growth was compared among the parental and 

transfected cells using the Student’s t-test.   

To determine metastatic potential, 1x106 C8161 tumor cells in 0.2ml HBSS were 

injected into the tail vein using a 25G5/8 needle.  The injected tumor cells go through the 

tail vein to the inferior vena cava where they enter the right chamber of the heart and 

finally arrive at the pulmonary capillary bed via the pulmonary artery.  The tumor cells 

colonize the lung and form lung metastasis.  35 days after i.v. tumor injection mice were 

sacrificed and their lungs were harvested and fixed in Bouin’s solution, where the number 

of surface tumor nodules was counted and recorded. Data are given as number of 

metastastic nodules per mouse. 

Since the C8161 tumor cells contain a luciferase expression plasmid the tumors 

were additionally monitored with IVIS 100 Imaging System (Xenogen), which measured 

the bioluminescence of the luciferase labeled tumor cells within the tumor and provides 

measurement of the tumor volume using Living Images Program (Ramachandran et al. 

2007).  The IVIS 100 Imaging System is attached to a XG18-Gas Anesthesia System 

(Xenogen) for anesthetizing the mice prior to measurement and to a CCD Array Scientific 

Camera (Spectral Instruments, Inc.) for taking pictures capturing the bioluminescence of 
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the tumor cells within the live mice. The substrate luciferin (150mg /mouse), was kindly 

provided by Dr. Logsdon, Department of Cancer Biology, University of Texas MD 

Anderson Cancer Center, Houston, Texas.  Luciferin was injected 12 minutes prior to 

measurement, and the tumors showed a peak of bioiluminescence (relative light intensity) 

at around 12 minutes after intraperitoneal injection of the substrate.   

 

2.6 In Vitro Proliferation Assay 

Ninety-six-well plates containing 1500 cells/well from parental control, non-

targeting shRNA, and shRNA Gal-3 knockdown melanoma cells were cultured for five 

days in normal growth medium.  Cell growth was analyzed by MTT-assay, which 

determines relative cell numbers based on the conversion of MTT to formazan in viable 

cells.  MTT (40 μg/ml) was added to each well and incubated for two hours.  The medium 

was removed and 100 μl of dimethyl sulfoxide (DMSO) was added to lyse the cells and 

solubilize the formazan.  Absorbance at 570 nm was determined using a microplate 

reader.  This procedure was repeated each day for five days to determine the proliferation 

rate of the cells before and after Gal-3 knockdown. 

 

2.7 Antibodies 

The polyclonal anti-human antibody to Gal-3 used in Western Blot (1:1000 

dilution) and immunohistochemical staining (1:400 dilution) analyses was kindly 

provided by Dr. Avraham Raz, PhD, Karmanos Cancer Institute, Wayne State University, 

Detroit, MI, USA.   

The following primary antibodies were also used: goat polyclonal anti-VE-Cadherin 

antibody (C-19; 1:200 dilution; Santa Cruz Biotechnology), mouse IgG1 anti–Fibronectin 

antibody (Fibronectin 610077; 1:5000 dilution; BD Biosciences Pharmingen), rabbit anti-
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Sphingolipid Receptor Edg1/S1P1 antibody (1ug/ml; GeneTex, Inc.), rabbit anti-human 

MMP-2 (MMP-2-AP1; 1:400; Chemicon), rabbit anti- human EGR1 (200μg / 0.1ml; 2 ug 

for CHIP; Santa Cruz Biotechnology), rabbit anti-actin (1:1000 dilution; Sigma); mouse 

anti-human PCNA (PC10; 1:50 dilution; Dako), rabbit anti-human IL-8 (1:25 dilution; 

Biosource International), rat anti-mouse m-CD31 (PECAM-1; 1:500 dilution; 

Pharmingen), rabbit anti-mouse Immunglobulin (IgG) Alexa 488 (1:400 dilution; green 

fluorescent; Jackson Immuno Research, West Grove, PA ), rabbit anti-mouse Ig Alexa 

594 (1:400; red fluorescent; Jackson Immuno Research, West Grove, PA). The following 

secondary antibodies were used: donkey anti-goat IgG (1:1000 dilution; Santa Cruz 

Biotechnology), goat anti-rabbit IgG Horseredish Peroxidase (HRP) (1:200; Jackson 

Immunoresearch, West Grove, PA), goat anti-rat IgG HRP (1:200; Jackson 

Immunoresearch, West Grove, PA), rat anti-mouse IgG2a HRP (1: 200; Serotec/ Harlan 

Bioproducts), anti-rabbit IgG Cy3 (1:600 dilution; red fluorescent; Jackson 

Immunoresearch, West Grove, PA), anti-rabbit Cytochrom (1:1000 dilution; green 

fluorescent;  Jackson Immunoresearch, West Grove, PA), donkey anti-rabbit IgG HRP 

(1:1000 dilution; GE Healthcare UK limited) and sheep anti-mouse IgG HRP (1:1000 

dilution; GE Healthcare UK limited). 

 

2.8 Protein Extraction 

Total protein extracts were prepared by seeding cells onto 100 mm culture dishes 

in normal growth medium and growing to 70-80% cell confluence.  Cells were washed in 

cold PBS and lysed in 500 μl of Triton lysis buffer (25 mM Tris-HCL, pH 7.5, 150 mM 

NaCl, 1% Triton X-100, 5mM EDTA) containing protease inhibitors (1mM 

phenylmethyl-sulfonyl fluoride, 20 μM leupetin, 0.15 unit/ml aprotinin, 1 mM Na3VO4, 

and 10 mM NaF) for 20 minutes on ice.  Proteins were extracted for 30 minutes on ice 
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and collected by centrifugation at 11,000 X g at 4oC for 15 minutes.  The supernatant was 

transferred to a clean tube and protein concentration was determined using Bradford 

reagent (Bio-Rad Laboratories, Hercules, CA) according to the manufacturer’s 

instruction.   

 

2.9 Western Immunoblot Analysis 

Proteins of total cell extracts were separated by 10% and 13% SDS-

polyacrylamide gel electrophoresis under reducing conditions in a BioRad Mini Protean 

III gel apparatus (BioRad, Hercules, CA).  The proteins were electrophoretically 

transferred to an Immobilon P membrane (Millipore Corp., Bedford, MA) using the 

Criterion Blotter transfer system (BioRad laboratories, Hercules, CA) in 2,5 mM transfer 

buffer (10xTBS, Methanol and H20).  The membranes were washed in TBS (10mM Tris-

HCl, pH 8 containing 150 mM NaCl) and blocked with 5% nonfat milk in TBS overnight 

at 4oC. 

The membranes were then probed with the chosen antibody in TBS for 2 hours at 

room temperature at given dilutions (see section 2.7).  The primary antibodies were 

incubated on the same membrane after cutting the membrane in half. The unbound 

primary antibody was removed by washing the membrane with TTBS (0.1% Tween 20, 

TBS) followed by two hours room temperature incubation with horseradish peroxidase-

conjugated secondary antibodyat given dilutions (see section 2.7) in 0.5% nonfat milk in 

TTBS.  

After stripping the membranes at 80oC for 25 minutes in stripping buffer (0.2 M 

Glycine (pH 2.5), 0.05% Tween 20) the membranes were again blocked for 30 minutes 

and then incubated with anti-actin antibody overnight.  
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Immunoreactive proteins were detected by enhanced chemiluminescence per 

manufacturer’s instructions (ECL detection system) (Amersham Pharmacia Biotech, 

Arlington Heights, IL) and chemiluminescence signals were captured on Kodak Bio-

MAX MR X-ray films. 

 

2.9 Expression Constructs 

pcDNA3.1 (Invitrogen, Carlsbad, CA) is a mammalian cell expression construct 

in which expression is driven by the CMV promoter and provides neomycin resistance. 

The pbkCMV-Gal-3 construct containing the human Gal-3 open reading frame gene 

sequence was kindly provided by Dr. Avraham Raz.   

The CDH5 promoter reporter construct was amplified from genomic DNA 

extracted from C8161 cells and used for PCR template cloning for the CDH5 promoter  

(-515nt upstream to +24nt downstream of the transcription initiation site) with following 

primers (Kn2863 forward primer: 5’-GGGTACCAGCCAGCCCAGCCCTCACAAA 

GG-3’; H3-24 reverse primer: 3’-CCCAAGCTTTGTCCGTCCAGGGCTGAGCGTGA 

GTG-5’).  The CDH promoter reporter construct was amplified by PCR in the same 

reaction as follows: an initial denaturation for two minutes at 94oC; followed by 30 cycles 

of denaturation at 94oC for 10 seconds, annealing at 50oC for 30 seconds, and extension at 

72oC for one minute.  A final elongation step was carried out at 72oC for ten minutes.   

After amplification the PCR product was purified with QIAquick PCR 

Purification Kit (Qiagen, Valencia, CA) and the vector was digested with KpnI and Hind 

III. On the 5’-end the Kpn1 site (shown bold) was incorporated into the 5’ end of the 

forward primer and HindIII was incorporated into downstream of the 3’ reverse primer 

sequence (shown bold).  
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After digestion of the PCR product with KpnI and Hind III, the resulting fragment 

was ligated to the pGL3-basic vector (Promega, Madison, WI) using the same two 

enzyme sites located at the multiple cloning site of the vector. The inserted promoter was 

confirmed by sequencing with the use of GP2 Primer (5’-TTTATGTTTTTGGCGTCTTC 

CA-3’), which showed 100% homology with the corresponding sequence, which was 

downloaded from the NCBI human genomic sequencing program.  

 For construction of the IL-8 promoter reporter construct, the pGL2-basic plasmid 

(Promega, Madison, WI) was used as the backbone. The human IL-8 promoter region -

133+44 is as follows: AGTGTGATGACTCAGGTTTGCCCTGAGGGGATGGGCC 

ATCA GTTGCAAATCGTGGAATTTCCTCTGACATAATGAAAAGATGAGGGTG 

CATAAGTTCTCTAGTAGGGTGATGATATAAAAAGCCACCGGAGCACTCCATA

AGGCACAAACTTTCAGAGACAGCAGAGCACACAAGCTT.  It was put upstream of 

the open reading frame of the luciferase gene as previously described (Huang et al. 2000) 

using following primers (IL8-1741 forward primer: 5’-CCCACATTACTCAGAAA 

GTTACTCC-3’ and IL8-2455 reverse primer: 3’-GATGGTTCCTTCCGGTGGTTT 

CTTC-5’). 

The EGR-1 sequence was amplified from cDNA which was obtained by reverse 

transcription from the melanoma A375SM cell line using following primers (EGR-1 

forward primer: 5’-GGAATTCCATATGGCCGCGGCCAAGGCCGAGATGC-3’ and 

EGR-1 reverse primer: 3’-CCCAAGCTTTTAGCAAATTTCAATTGTCCTGGGAG-5’). 

The EGR-1 cDNA was cloned into pcDNA3.1 expressionvector with N-terminal HA-flag 

and c-myc tags using NdeI and HindIII Restrictionenzymes. 
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2.10 Transient Transfections and Luciferase Activity Assays 

Transient transfections were performed using Lipofectamine 2000 (Invitrogen, 

Carlsbad, CA) according to the manufacturer's instructions.  A total of 25 x 103 cells /well 

in a 24-well plate were transfected with 0.5 µg of the basic pGL3 expression vector with 

no promoter or enhancer sequence (pGL3-Basic containing firefly luciferase) or with 0.5 

µg of the pGL3-CDH5 or pGL2-IL-8 above described luciferase expression constructs. 

For each transfection, 30 ng of promoter derived Renilla luciferase reporter pRL-CMV 

(Promega, Madison, WI) was included. Transfection was performed by addition of 1.0 µg 

of the expression constructs or empty vector to the DNA solutions for transfection.  After 

six hours of incubation, the transfection medium was replaced with serum-containing 

growth medium.  After 72 hours of incubation period, the cells were harvested and lysed, 

and luciferase activity was assayed using a dual luciferase reporter assay  system 

(Promega, Madison, WI) as instructed by the manufacturer.  The luminescence of Renilla 

(relative light intensity 1x106) was measured with the LUMIstar reader (BMG Labtech) 

and it was evaluated with the LUMIstar-Galaxy program. 

A comparison of the renilla luciferase activity (actin promoter) and the firefly 

luciferase activity (CDH5 or IL-8 promoter) normalizes for differences in transfection 

efficiency between different cell lines. Luciferase units were calculated using the 

following formula: (firefly luciferase units/Renilla luciferase units).   

 

2.11 Stable Transfection with small hairpin RNA Lentivirus Expression Vectors 

2.11.1 shRNA expression vector construction 

The pLV-THM vector was provided by Didier Trono and used as the backbone 

construct for the shRNA expression vector in order to knock down Gal-3. The pLV-THM 
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vector is a HIV-based lentivirus vector, which is 11,085 bp long and expresses the green 

fluorescence protein GFP under the Ef1-alpha promoter. The H1 polymerase III promoter 

was used to drive the shRNA expression.  Directly downstream of the H1 promoter one 

Mlu1 and one Cla1 site, which are unique sites, are used for insertion of the specially 

designed DNA fragments as described below (Figure 6 and 7). For retrieving the insert, 

two complementary oligos were synthesized, which allowed for direct cloning of the 

annealed shRNA into the lentiviral vector, which was designed as depicted in Figure 7. 

After annealing procedure, the resulting double stranded DNA revealed two sticky ends 

(one at the Cla1 and one at the Mlu1 site). Those ends were then ligated to the pLV-THM 

vector, which was cut by Cla1 and Mlu1. For direct cloning of the shRNA into the pLV-

THM lentiviral vector the shRNA must be designed with following oligos as described by 

Didier Trono (www.tronolab.com) (Figure 7). The resulting construct pLVTH-A3 was 

designed to provide stable delivery of the shRNA expression cassette targeting the 

following sequence of Gal-3 cDNA: 5'-CGC GTC CCC GTA CAA TCA TCG GGT 

TAA ATT CAA GAG ATT CAA GAG ATT TAA CCC GAT GAT TGT ACT TTT 

TGG AAA T-3'  (Figure 6).  The same procedure was done for creating the nontargeting 

shRNA as the control shRNA by using specific primers described in Figure 7. The 

shRNA expression cassettes in the final construct were confirmed by DNA Sequencing. 

The GFP expression cassette, which is located between two LTR sites in the 

vector, was used for cell sorting of the positive expressing shRNA knockdown cells.  

2.11.2 Cell sorting with Flow Cytofluorometry  

Cells were grown to approximately 90-100% confluency, trypsinized into PBS 

with 2% FBS and spun down at 1000 rpm for three to five minutes.  They were washed 

with 10 ml PBS containing 2% FBS once and then the cell pellet was resuspended with 
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0.5 to 1 ml PBS containing 2% FBS into 15 ml tubes and sent for cell sorting with GFP.  

The top 70% of GFP positive cells were collected into 15 ml tubes with 5 ml growth 

medium and enriched for further experimental assays in vitro and in vivo.  

2.11.3 Recombinant lentivirus production 

For virus production the lentivirus vector pLVTH-A3, PAX2 packaging plasmid 

(containing gag and pol genes of HIV) and pMD2G-VSVG envelope plasmid (containing 

vesicular stomatitis viral glycoprotein expressing vector) were cotransfected into 

HEK293T packaging cells with standard procedure of phosphate-calcium precipitation.  

In brief the HEK 293 FT cells were seeded into 10 cm dishes one day before transfection. 

When the cells reached a confluency of 50%, the transfection mixture, prepared as 

described below, was added to the cells in a dropwise manner.  500 μl water solution of 

20μg pLVTH-A3 vector, 15 μg PAX2 and 6 μg pMD2G-VSVG plasmid were combined 

with 500μl 2xHBS and then mixed with 50μl of 2.5 M CaCl2. The virus transfection 

mixture was incubated for 20 minutes at room temperature prior to adding it to the cells.  

Twelve hours after discarding the medium containing virus transfection mixture, the 293 

FT cells were washed once with PBS and then normal growth medium was added 

overnight. After 24 hours the virus was harvested by collecting the virus containing 

medium, which was centrifuged at 4000 rpm for five minutes. The supernatant was 

collected and filtered through a 0.45μM low protein-binding filter (Whatman, Clifton, 

NJ). The filtered medium is ready to be used to transduce the target cells (Figure 5). 
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Figure 5 Schematic of Lentiviral production.   

After transfection of the Gal-3 shRNA construct, which is green-fluorescent protein 

(GFP) labeled, together with the packaging plasmids PAX2 and MDG2 into the 293 T 

cells, the packaging cells produced pseudovirus.  After virus production the melanoma 

cell line C8161, which contains a luciferase plasmid construct are transduced with the 

pseudovirus and grown in culture.  The GFP + cells were sorted with FACS and amplified 

in cell culture.  The stable transfected cells were further used in vitro and in vivo 

(www.systembio.com). 
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Figure 6 pLV-THM vector construct.   

The pLV-THM vector was provided by Didier Trono. The pLV-THM vector is 11085 bp 

long and expresses the green fluorescence protein GFP and the H1 promoter.  The 

shRNAs were cloned into the vector as described in the text.  The resulting construct 

pLVTH-A3 was designed through stable delivery of the shRNA expression cassette 

targeting the Gal-3 cDNA sequence. 

 



 41

 

 

Figure 7 Forward and reverse target oligo sequences for direct cloning of the shRNA 

into the pLV-THM lentiviral vector.   

For direct cloning of the shRNA into the pLV-THM lentiviral vector the shRNA for Gal-

3 and nontargeting (NT) shRNA must be designed with above described oligos as 

described by Didier Trono (www.tronolab.com). 
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2.11.4 Target cell transduction 

The C8161 cells were seeded into a 6-well plate one day before the infection so 

that at the day of the infection the cell confluency would be reached about 20-30%.   

After removal of the medium and replacement with 1ml of the virus stock solution, 

polybrene was added to a final concentration of 3 μg /ml.  Twenty-four hours later the 

infection mixture was removed and replaced with growth medium. The cells were grown 

and enriched to be GFP sorted with FACS analysis (see section 2.11.2).  Top 70% GFP 

positive cells were collected, enriched and characterized for their knockdown effects via 

in vitro and in vivo functional assays.   

 

2.12 Zymography 

MMP-2 activity was determined on substrate-impregnated gels (Luca et al. 1997) 

with minor modifications.  Approximately 5x103 melanoma cells were plated in 6-well 

dishes and allowed to attach for 24 hours, then the 10%FBS in normal growth medium 

(cMEM) was removed and replaced with serum-free medium overnight.  The supernatant 

was collected, the volume was adjusted to the cell number, and the supernatant (total of 

60 μl) was loaded on gelatin-impregnated (1mg/ml: Sigma, St. Louis, MO) SDS-8% 

polyacrylamide gels and separated under nonreducing conditions.  As a positive control, 

10% FBS in CMEM and as negative control serum-free medium was employed. 

Plates were shaken for one hour in 2.5% Triton X-100 (Fisher Scientific, Fair Lawn, New 

Jersey) to remove all the SDS from the gels. Plates were then removed and the gels were 

incubated for 16 hours at 37oC in 50mM Tris, 0.2 M NaCl, 5 mM CaCl2, and 0.002% Brij 

35 (w/v) at pH 7.6.  At the end of the incubation, the gels were stained with 0.5% 

Comassie G 250 (Bio-Rad, Hercules, CA) in methanol/acetic acid/H2O (30:10:60).  The 
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intensity of the various bands was determined through quantification of a scanned image 

(Hp Scan Jet 5370C). 

 

2.13 Invasion Assay through Matrigel 

Invasion of highly metastatic melanoma cells was measured by plating the use of 

the Biocoat Matrigel invasion chambers (Becton-Dickinson) which were primed 

according to the manufacturer’s directions.  A solution of 5% FBS in DMEM medium 

was placed in the lower well to act as a chemoattractant and 2.5x103 cells in 500 μl of 

serum-free medium were placed in the upper chamber of the Matrigel plate and incubated 

at 37˚C for 22 hours.  Cells on the lower surface of the filter were stained with Diff-Quick 

(American Scientific Products, McGraw Park, IL) and quantified with an image analyzer 

(Optimas 6.2) attached to an Olympus CK2 microscope.  The data were expressed as the 

average number (± SD) of cells from 8 fields that migrated to the lower surface of the 

filter.  Data was collected from two performed experiments.  

 

2.14 RNA Extraction 

Total RNA was extracted using Trizol Reagent (Invitrogen, Carlsbad, CA) 

according to the manufacturer’s instructions.  Briefly, cells were grown to 70-80% 

confluency, washed with PBS, and lysed in Trizol reagent.  Proteins and DNA were 

extracted in 0.2 volumes of chloroform.  RNA was precipitated from aqueous phase with 

an equal volume of isopropanol, washed with 75% ethanol, and resuspended in DEPC-

treated water.  RNA concentration was determined by measuring the absorbance at 260 

nm in an UV/Visible Spectrophotometer Ultrospec 3000 pro (Amersham Pharmacia 

Biotech, Cambridge, England). 
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2.15 RT-PCR 

One microgram of total RNA was reverse-primed with an oligo poly-dT primer 

and extended with MMLV reverse transcriptase (Clonetech, Palo Alto, CA).  Using the 

Clonetech Advantage cDNA PCR kit (Clonetech, Palo Alto, CA), the PCR was 

performed using a 50 μl reaction mixture containing 1X PCR buffer, 5μl cDNA, 0.2mM 

dNTP, and 2.5 Units of Taq polymerase.  For quantitation of IL-8, cDNA was amplified 

by PCR using specific primers for IL-8 (sense, 5’-CTT CTA GGA CAA GAG CCA 

GGA AGA AAC CAC-3’ and antisense, 5’- GTC CAG ACA GAG CTC TCT TCC ATC 

AGA AAG -3’) and the housekeeping gene glyceraldehydes-3-phosphate dehydrogenase 

(GAPDH) (sense, 5’-GAG CCA CAT CGC TCA GAC-3’ and antisense, 5’-CTT CTC 

ATG GTT CAC ACC C-3’) was amplified as a control comparison.  IL-8 and GAPDH 

cDNAs were amplified by PCR in the same reaction as follows: an initial denaturation for 

two minutes at 94oC; followed by 30 cycles of denaturation at 94oC for 30 seconds, 

annealing at 61oC for 45 seconds, and extension at 72oC for two minutes.  A final 

elongation step was carried out at 72oC for seven minutes. The reaction products were 

separated on a 1% agarose gel and visualised after ethidium bromide staining under UV 

illumination. 

 

2.16 Tissue Microarray (TMA) 

Tissue microarrays were constructed utilizing a total of 89 clinical samples of 

melanocytic lesions including benign nevi (BN, 17 cases), dysplastic nevi (DN, 18 cases), 

melanoma in situ (superficial spreading, nodular, acral, and lentigo malignant melanoma) 

(MM, 23 cases), and metastatic malignant melanoma to subcutaneous tissue, lymph node, 

visceral organs (MMM, 31 cases). This progressive melanoma TMA was constructed by 

Dr. Victor Prieto from the Department of Pathology at the University of Texas MD 
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Anderson Cancer Center, Houston, Texas (Table 2).  The specimens consisted of small 

biopsies or excisions of original patient lesions.  The University of Texas MD Anderson 

Cancer Center Institutional Review Board approved the study. 

For tissue microarray construction, hematoxylin and eosin-stained sections were 

reviewed from each block to define the selective areas.  Either 0.6 mm (punch biopsies of 

benign and dysplastic nevi cases) or 1.0 mm (excision specimens) cylindrical cores of 

tissue were punched out from donor blocks to preserve the original tissue block.  The 

selected tissue cores were inserted in a standard 4.5 x 2 x 1 cm recipient block using a 

manual tissue arrayer (Beecher Instruments, Silver Spring, MD) with an edge-to-edge 

distance of 0.1 or 0.15 mm.  At least two tissue cores were taken for each case for a total 

of 187 cores in three tissue microarrays to control for sample variability (Figure 8).  Two 

same control cases (one BN and one MM) were included in all three blocks as an inter-

block control.  Serial 5-μm-thick sections of all three blocks were cut, and one standard 

hematoxylin and eosin-stained slide was examined to verify the presence of diagnostic 

lesional cells (Shen et al. 2003). 
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Figure 8 Three progression tissue microarray blocks of melanocytic lesions.   

The three blocks were cut in 5-μm-thick serial sections, provided from the Department of 

Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas. 
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2.17 Immunohistochemical Analysis 

Tumor tissue was fixed in 10% formalin (Fisher Scientific) for paraffin embedding 

or frozen in Optimal Cutting Temperature compound (Miles Laboratories, Elkhart, IN) in 

liquid nitrogen.  Routine immunohistochemical staining protocols were used to detect α-

Gal-3, IL-8 and MMP-2.  The Gal-3 antibody staining was optimized using tissue 

sections before application to tissue microarray sections.  Antigen retrieval was found to 

be unnecessary under the experimental conditions used.  Tissues were washed three times 

for three minutes with PBS (Phosphate Balanced Saline) and treated with 3% H2O2 in 

methanol for 12 minutes to block endogenous peroxidase activity, followed by blocking 

solution (1% normal goat serum and 5% normal horse serum in PBS) for 15 minutes at 

room temperature.  Gal-3 was detected by an overnight incubation with an anti-α-Gal-3 

polyclonal antibody diluted 1:400 in blocking solution.  Gal-3 immunoreactivity was 

detected using a horseradish-peroxidase conjugated goat anti- rabbit antibody (1:200; 

Jackson Immuno Research).   

Two TMAs have been stained using two different chromogens, one with 3, 3’ 

Diaminobencidine Tetra Hydrochloride (DAB) (brown; Open Biosystems, Huntsvillle, 

Alabama) and the other one with 3 Amino-Ethylcarbazole (RomulanAEC) (red; Biocare 

medical, Walnut Creek, CA) in order to avoid false-positive signal due to melanin 

(brown). They were counterstained with light hematoxylin for 10 seconds and Universal 

Mount (Research Genetics, Huntsville, AL) was used for mounting according to the 

supplier’s instructions.  Tissue Microarrays were examined under light microscopy and 

positive immunoreactivity was detected as a brown-reddish / red staining.  The 

percentage of positive cells and the intensity of staining were recorded in a 

semiquantitative scale following a previously published method (Shen et al. 2003): 0 = 0-

5% cells; 1 =  6-25%; 2 = 26-75%; 3 = >75%.  The intensity of expression was 
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categorized into negative (0), weak (1), moderate (2), or strong (3).  Lesions were 

considered positive when more than 25% of the cells expressed Gal-3, regardless the 

intensity of labeling.  This cut-off was selected because it likely reflects clinically 

significant information, meaning that at least a quarter of the cells in the lesion will 

express the marker (Shen et al. 2003). 

Further paraffin-embedded tumors were used to identify proliferating cell nuclear 

antigen (PCNA)-positive cells (ie, proliferating cells).  For this reaction, the average 

measurement of the intensity of the staining was quantitated from 10 areas of each 

sample.  Staining intensity was calculated with an image analyzer and the Optimas Image 

Analysis software (Bioscan, Edmonds, WA).  For assessment of blood microvessel 

density, consecutive 5-µm frozen tissue sections were cut, fixed in acetone, and stained 

with antibodies to CD-31/PECAM-1 (PharMingen, San Diego, CA), as described (Bruns 

et al. 2000).  Seven tumors per group were stained for CD31 and pictures were taken of 

four fields of each slide with a Nikon Microphot-FX brightfield microscope equipped 

with a three-chip-charged coupled device (CCD) color video camera (Model DXC990, 

Sony Corp., Tokyo, Japan). Digital images were captured using Optimas Image Analysis 

software (Media Cybernetics, Silver Spring, MD).   

 

2.18 Immunofluorescence Staining 

Cells were fixed with acetone on the slides and stained for Gal-3. 

Immunofluorescence detection of Gal-3 expression was performed with polyclonal rabbit 

anti-Gal-3 and with a flourescence marker anti-rabbit IgG Alexa 488 (1:400 dilution; 

green flourescent) (Jackson Immunoresearch, West Grove, PA).   

Immunofluorescence slides were counterstained with Hoechst stain and mounted 

using glycerol/PBS mounting media containing 0.1 M propyl gallate. 
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Images from H&E or immunohistochemically stained tissue microarray were 

collected using Zeiss photomicroscope (Carl Zeiss Inc., Thornwood, N.Y.) connected to a 

Sony Model DXC-960 MD Camera (Sony Corp., Tokyo, Japan).  Images were acquired 

and analyzed using Optimas Image Analysis software (Media Cybernetics, Silver Spring, 

MD).  Immunofluorescent microscopy was performed on a Zeiss Axioplan fluorescence 

microscope (Carl Zeiss Inc., Thornwood, N.Y.) equipped with 100W HBO mercury lamp 

and narrow bandpass excitation filters (Chrom Technology Corp, Brattleboro, VT) to 

individually select for green, red, and blue fluorescence.  Images were captured with a 

cooled CCD Hamamatsu C5810 camera (Hamamatsu Photonics K.K., Bridgewater, NJ) 

and Optimas Image Analysis Software (Media Cybernetics, Silver Spring, MD) on a Dell 

computer (Round Rock, Texas).  Composite photographs for publication were prepared 

using Adobe Photoshop software (Adobe Systems, Mountainview, CA). 

 

2.19 In situ Terminal dUTP Nick End Labeling (TUNEL) Assay 

Tissues were fixed in 10% buffered formalin solution and then embedded in 

paraffin.  Thin sections (4 μm) were prepared, and the TUNEL assay was performed 

using a commercial kit according to the manufacturer’s protocol (Promega).  Briefly, 

tissue sections were deparafinized and fixed at room temperature for five minutes in 4% 

paraformaldehyde.  Cells were stripped of proteins by incubation for 10 minutes with 20 

μg/ ml proteinase to increase permeability.  The tissue sections were then permeabilized 

by incubating them with 0.5% Triton X-100 in Phosphate buffered Saline (PBS) for five 

minutes at room temperature.  After being rinsed twice with PBS for five minutes, the 

slides were incubated with terminal deoxynucleotidyl transferase buffer for 10 minutes.  

Terminal deoxynucleotidyl transferase and biotin 16 labeled dUTP were then added in a 

1:200 dilution to the tissue sections, which were incubated in a humid atmosphere at 37˚C 
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for 1hour.  During this time TdT catelyzes the incorporation of labeled dUTP into the 

3'OH ends of fragmented DNA. The slides were washed three times with PBS for five 

minutes.  Prolong solution (Molecular Probes, Eugene, OR) was used to mount the 

coverslips.  Immunofluorescence microscopy (FITC-dUTP) was performed using a 40x 

objective (Zeiss Plan-Neofluar) on an epifluorescence microscope equipped with narrow 

bandpass excitation filters mounted on a filter wheel (Lud1 Electronic Products, 

Hawthorne, NY) to select for green fluorescence.  Images were captured using a cooled 

charge-coupled device camera (photometrics, Tucson, AZ) and SmartCapture software 

(Digital Scientific, Cambridge, United Kingdom) on a Macintosh computer.  Images were 

further processed using Adobe PhotoShop software (Adobe Systems, Mountain View, 

CA).  Quantitation of TUNEL was determined using the incorporation of biotin-labeled 

dUTP and this was visualized by incubation with peroxidase-streptavidin (1:400 dilution; 

Dako) and conventional 3,3’-diaminobenzidine substrate.  Results are presented as the 

mean of counted dead cells in one field ± SD of four pictures taken of each slide from 

seven tumors per group. 

 
2.20 Enzyme-Linked Immunosorbent (ELISA) Assay 

Tumor cells (2 x 105) were plated in six-well plates. When the cultures reached 

70% to 80% confluency, fresh medium was applied and collected after an additional 24 

hour incubation period, then clarified of cells and cell debris by centrifugation.  The cells 

were harvested with trypsin-ethylenediaminetetra-acetic acid and counted.  The 

conditioned media samples were stored at –20°C for later analysis, or used immediately 

for measurement of IL-8, using quantitative immunometric sandwich ELISA, following 

the procedure recommended by the manufacturer (R&D Systems, Minneapolis, MN).  IL-

8 concentration was calculated as the average of the three wells and expressed as pg of 

IL-8 protein /μg protein. 
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2.21 cDNA Microarray Analysis  

Microarray analysis was performed using a custom made Gene Chip® Array, 

human Genome U133 Plus 2.0 Array featuring a total of 37,000 different human genes 

(Affymetrix).  The microarrays were produced in the microarray core facility of Codon 

Biosiences (www.codonbiosiences.com).  Total RNA was isolated from NT shRNA and 

Gal-3 shRNA knockdown cells with the Clontech (Takara Bio Co.)-Advantage RT-for 

PCR Kit (Mountain View, CA) according to the manufacturer’s instructions.   

The data was analysed using the Affymetrix program (www.affymetrix.com).  

The raw data were normalized per spot and per chip with intensity-dependent (Lowess) 

normalization (percent of the data used for smoothing =10%).  Low hybridization signals 

were removed to yield an average of 794 differently expressed genes between control and 

knockdown cells. A significance level of three fold in decreased or increased data was 

chosen to limit the number of false-positive results. 

 

2.22 Chromatin Immunoprecipitation (ChIP) Assay  

The ChIP assay was performed using the reagents provided in a ChIP-IT kit 

obtained from Active Motif (Carlsbad, CA, USA).  Cells were plated at a density of 4x 

106 cells onto 15 cm dishes and were treated with 1% formaldehyde in fresh medium at 

37˚C for 10 minutes followed by the addition of 0.125M glycine.  The medium was 

removed, and the cells were suspended in 1 ml ice cold PBS containing protease 

inhibitors. Cells were pelleted, resuspended in 200 μl of SDS lysis buffer (1% SDS, 10 

mM EDTA, and 50 mM Tris-HCL, ph 8.1) containing protease inhibitors and incubated 

for 10 minutes on ice.  The DNA was sheared into 200-1000 bp fragments by 

homogenizing the pellet with 10 dounce hits and a following incubation with an 
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enzymatic shearing cocktail at 37˚C for 10 minutes.  An aliquot was substituted with 

NaCl and RNAse and incubated for 1.5 hours at 42˚C and the sheared control was loaded 

on a 2% agarose gel to confirm the shearing efficiency.  The supernatant containing 

enzymatic sheared DNA was collected after centrifugation at 14000 rpm for 10 minutes at 

4˚C and then mixed with antibody directed to EGR-1and IgG control and crosslinked to 

magnetic beads.  An overnight incubation with agitation with the supershift antibody and 

the magnetic beads was performed. Before that step, 10 μl of the chromatin solutions 

were saved as control (Input DNA) for the total DNA amounts of each sample.  After 

washing the magnetic beads with Chip buffer 1 and 2, the immune complexes were then 

eluted from the magnetic beads and proteins were reverse crosslinked in 5M NACl and 

Chip buffer 2 at 65˚C for 2.5 hours.  Proteins were digested with 2 μl of Proteinase K at 

37˚C for one hour and extracted in Elution buffer and analyzed by PCR.  The input DNA 

had to be purified by phenol/ chloroform extraction and ethanol precipitation using 

20mg/ml glycogen as carrier.  A 805-bp fragment spanning -+2100 to -500 region of the 

CDH5 promoter was amplified by PCR using primer sequences 5'-CCC AGC CAC AAA 

GGA ACA ATA-3’ and 5’-TGT GGG CTG AGG GAT GTT TCT GTT- 3’  for detection 

of possible SP1, AP-2, NFkB and EGR-1 transcription binding.  For the detection of 

CreB binding on the CDH5 promoter, the following primers were designed: 5’- AGC 

CTC CCT GTC ACC TTT AAA GTC C-3’ and 5’- GCT GCA GCA TCA CAT TTA 

ACC CTC-3’.  A 133-bp fragment spanning -133 +44 region of the IL-8 promoter was 

amplified by PCR using primer sequences 5’-AAG TGT GAT GAC TCA GGT TTG 

CCC-3’ and 5’- ATG GTT CCT TCC GGT GGT TTC TTC-3’. 

The PCR condition was the same for all primers and was subjected to initial denaturation 

step for 3 minutes at 94°C, followed by 35 cycles of denaturation for 20 seconds at 94°C, 

annealing at 55°C for 30 seconds and extension at 72°C for 30 seconds.  Then reaction 
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was subjected to a final extension time of 10 min at 72°C.  PCR products were analyzed 

on a 3% agarose gel containing ethidium bromide and visualized under UV light. 

 

2.23 Densitometric Quantification 

Images were captured in a Gel Doc 2000 System (Bio-Rad Laboratories, 

Hercules, CA) connected to a CCD camera.  Densitometric reading of DNA fragments 

separated in agarose gels, were quantitated using Quantity One Software Version 4 for 

Windows (Bio-Rad Laboratories, Hercules, CA).  Western Blot densitometric analysis 

was performed in the linear range of the film, using ImageJ program (downloaded from 

www.nih.gov).  The densitometric data presented are relative to the actin loading control.  

 

2.24 Statistical Analysis 

The McNemar and Stuart-Maxwell tests were used to assess the intra-group 

association in the TMA studies.  To perform a McNemar or Stuart-Maxwell test, the 

frequency table is required to be square (same number of rows and columns).  Thus, in 

some of the evaluations performed, a frequency of 0.00001 was added in the 

corresponding cell of the row (level) or column that was not observed (i.e., zero count).  

Furthermore, since some of the levels had few samples within that level, consecutive 

levels (i.e., 2 and 3) of the variable were collapsed. 

The Fisher’s exact test was used to test the inter-group association between all the 

groups and pairs of groups in the TMA studies.  Due to the various two-group 

comparisons performed, we used the Bonferroni correction to adjust the significance level 

for an individual test to maintain an overall significance level of 5%.  For example, since 

seven two-group comparisons were performed, an individual significance level of 0.0071 

(0.05/7=0.0071) was used.  Statistical analysis was carried out using SAS® 8.02 (Cary 
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NC, USA).  Disease-free survival and overall survival were analyzed with the Log-rank 

test using JMP® 5.1 Software (Cary NC, USA). 

The Student’s t-test was used to evaluate the in vivo data of the lung metastasis 

experiment between the parental, non-targeted shRNA and the Gal-3 shRNA groups.  

Given those data sets, each characterized by its mean, standard deviation, and number of 

data points, it is possible to determine whether the means are distinct, provided that the 

underlying distributions can be assumed to be normal. 

The Mann Whitney U test was used for all in vitro and in vivo analysis, which is a 

non-parametric test for assessing whether two samples of observations come from the 

same distribution. The null hypothesis is that the two samples are drawn from a single 

population, and therefore that their probability distributions are equal. It requires the two 

samples to be independent, and the observations to be ordinal or continuous 

measurements, i.e. one can at least say, of any two observations, which is the greater.  
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Chapter III: 

3. RESULTS 

3.1 Specific Aim I: 

3.1.1. Pattern of Gal-3 expression during melanoma progression 

3.1.1.1 Tissue microarray analysis 

In order to investigate the pattern of expression of Gal-3 in melanoma, a tissue 

microarray of melanocytic lesions was stained with an anti-Gal-3 antibody.  The tissue 

microarray included 89 melanocytic lesions, which were included in three tissue 

microarray blocks (see Materials and Methods; Figure 8).  The lesions were obtained 

from a broad spectrum of 17 cases of benign nevi (BN), 18 cases of dysplastic nevi (DN), 

23 cases of Melanoma (MM) and 31 cases of metastatic melanoma.  The lesions from the 

melanoma stage are subclassified into 10 cases of superficial spreading, 2 cases of 

nodular, 4 cases of acral lentiginous and 7 cases from Lentigo maligna.  Within the 

metastatic melanoma lesion specimens were 9 cases of lymph node metastases, 12 of 

subcutaneous metastases and 10 visceral metastases (Table 1). 

Immunohistochemical staining showed a highly predominant cytoplasmic staining 

of Gal-3 (Figure 9).  Cytoplasmic and nuclear expression of Gal-3 was observed with 

levels of expression increasing from BN to DN to MM to MMM.  A highly significant 

difference between these subgroups was detected with a p-value of *p<0.0001 

(percentages of melanocytic cells with cytoplasmic Gal-3) to *p=0.0073 (intensity of 

cytoplasmic expression) with the exception of nuclear intensity, which showed only a 

trend to a level of 0.09 (Tables 2).
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Melanocytic Lesions (included in the tissue microarrays) 

Melanocytic Lesions Cases (n) 

 Benign Nevi (BN) 17 

 Dysplastic Nevi (DN) 18 

 Melanoma (MM) 23 
  Superficial spreading 10 
  Nodular 2 
  Acral lentiginous 4 
  Lentigo maligna 7 

 Metastatic Melanoma (MMM) 31 
  Lymph node metastasis 9 
  Subcutaneous Metastasis 12 
  Visceral metastasis 10 

 
 

Table 1 Melanocytic Lesions included in the tissue microarray  

From the Department of Pathology of the University of Texas MD Anderson Cancer 

Center were following 89 cases of melanocytic lesions obtained in three tissue 

microarrays blocks (see Figure 8).  Included were specimens from benign nevi (BN, 17 

cases), dysplastic nevi (DN, 18 cases), melanoma in situ (superficial spreading, nodular, 

acral, and lentigo malignant melanoma) (MM, 23 cases), and metastatic malignant 

melanoma to subcutaneous tissue, lymph node, visceral organs (MMM, 31 cases). 
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Figure 9 Gal-3 expression in benign nevi (BN), dysplastic nevi (DN), melanoma 

(MM), and metastatic melanoma (MMM).   

Representative examples of immunohistochemical staining performed as described in 

section   2.17 are shown (40x magnification). Gal-3 expression is visualized as a brown 

precipitate. BN and DN expressed Gal-3 predominantly in the cytoplasm, whereas in MM 

and MMM Gal-3 expression was cytoplasmic and nuclear. 
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Table 2  Cytoplasmic and Nuclear Expression Levels of Gal-3.   

Benign nevi (BN), dysplastic nevi (DN), melanoma (MM), and metastatic melanoma 

(MMM). Intensity of expression was determined as described in section 2.17. Levels 

were defined in section 2.24.  (A) Cytoplasmic intensity levels of Gal-3 expression; (B) 

Percentage of cytoplasmic Gal-3 positive cells among Benign nevi (BN), dysplastic nevi 

(DN), melanoma (MM), and metastatic melanoma (MMM); (C) Nuclear intensity levels 

of Gal-3 expression; (D) The comparison of nuclear percentage of Gal-3 expression. 
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A significant correlation between Gal-3 expression and the histologic subtype and 

localization of the melanoma was observed (Figures 10, 11).  Gal-3 expression was 

subclassified into areas of high sun exposure (head and neck, arms), intermittent (trunk, 

legs) and acral (hands and feet).  No Gal-3 expression in acral primary melanomas (n=4) 

was observerd (Figure 10 top row).  Lesions from the back (n=4) express Gal-3 only in 

the cytoplasm, whereas the scalp lesion shows a strong cytoplasmic and nuclear Gal-3 

expression.  Metastatic melanoma lesions stained for Gal-3 revealed that most 

subcutaneous metastases (n=12) expressed cytoplasmic Gal-3 as shown in Figure 10 

(bottom row) and only one nuclear expression of Gal-3 shown in Figure 11.  Also, 

metastases to the lung showed a highly predominantly cytoplasmic expression of Gal-3, 

whereas strong nuclear and cytoplasmic expression was observed in lymph node 

metastases.  

Detection of cytoplasmic expression of Gal-3 in more than 50% (5/9) of sun-

exposed lesions (head, neck and arms) was observed, whereas only three of these cases 

had nuclear expression of Gal-3.  In intermittent sun exposed lesions, Gal-3 was 

expressed in 66% (6/9) in the cytoplasm.  Overall, nuclear expression of Gal-3 was highly 

significant only in lesions on frequently sun-exposed areas (Figure 11). 

It was observed, with respect to a possible relationship with Breslow thickness, 

that in thicker melanomas Gal-3 expression in the cytoplasm was increased, but this was 

not statistically significant (*p=0.15).  Also no significant correlation of Gal-3 expression 

in the presence or absence of ulceration in primary melanomas was seen (data not 

shown). 
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Figure 10 Gal-3 expression in primary and metastatic melanoma.   

Representative examples of immunohistochemical staining performed as described in 

section   2.17 are shown. Gal-3 expression is visualized as a brown (DAB chromogen) or 

red (AEC chromogen) precipitate. The top row shows Gal-3 expression in primary 

melanomas (acral. scalp, back); the bottom row shows metastatic melanoma expression of 

Gal-3 (subcutaneous, lung, lymph node) (40x magnification). 
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Figure 11 Gal-3 expression subclassified into sun-exposed areas in primary 

melanoma.   

Areas of high sun exposure (head and neck, arms), intermittent (trunk, legs) and acral 

(hands and feet) are compared.  No Gal-3 expression was seen in acral lesions.  

Intermittently sun-exposed lesions showed cytoplasmic but not nuclear expression; 

Nuclear expression was only seen in lesions of sun-exposed areas (*p=0.048 and 

*p=0.038 for nuclear and cytoplasmic expression, respectively). 
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Figure 12 shows Gal-3 expression in different types of metastasis, which is 

statistically significant for both nuclear and cytoplasmic expression (*p=0.038 and 

*p=0.001, respectively).  Cytoplasmic expression was seen in subcutaneous metastases 

(n=12) and only very rarely nuclear translocation of Gal-3 (Figures 10 and 12).  A higher 

nuclear Gal-3 expression was detected in lymph node metastases (n=9).  Visceral 

metastases (n=10) showed a slightly higher expression level in the nuclear than in the 

cytoplasm. 

Patients with visceral metastatic lesions had a worse prognosis than those with 

subcutaneous metastasis or metastasis to the lymph node (*p<0.02) (data not shown).   

A statistically significant difference in Gal-3 expression between the subcutaneous, 

visceral and lymph node metastases was identified through analysis of the cytoplasmic 

level/ nuclear level (*p=0.01 and *p=0.008 for intensity and percentage ratios, 

respectively).   

An almost significant association between disease-free survival and nuclear to 

cytoplasmic ratio of Gal-3 expression in patients with primary or metastatic lesions was 

observed (*p=0.09), as shown in Figure 13. Those patients, which had an equal or higher 

Gal-3 expression in the nucleus than the cytoplasm, displayed a worse prognosis than 

those with nuclear percentages lower than cytoplasmic. 
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Figure 12 Gal-3 expression in different types of metastatic lesions.   

Gal-3 in the subcutaneous lesions was expressed in the cytoplasm with rare nuclear 

expression.  A higher nuclear expression was seen in lymph node metastases.  The viscera 

expressed Gal-3 higher nuclear than cytoplasmic.  The results were statistically 

significant when comparing nuclear and cytoplasmic expression in each group with each 

other (*p=0.038 and *p=0.001, respectively). 
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Figure 13 Disease free survival analysis and nuclear / cytoplasmic ratio of Gal-3 
expression 
Kaplan-Mayer survival analysis revealed a trend of worse prognosis for patients that had 

nuclear percentages higher than the cytoplasmic percentages. These differences 

approached statistical significance (*p=0.06). The ratio was calculated upon the number 

of cells expressing nuclear Gal-3 versus number of cells expressing Gal-3 in the 

cytoplasma.
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In summary, the analysis of Gal-3 expression in melanocytic lesions revealed that: 

a) Cytoplasmic and nuclear expression levels of Gal-3 increase as lesions progress 

from the benign nevi to dysplastic nevi stages, as well as from the primary 

melanoma to metastatic melanoma stages.  

b) Tumors located on sun-exposed skin areas displayed high nuclear expression of 

Gal-3 and low cytoplasmic expression levels. 

c) Analysis of metastatic lesions revealed that subcutaneous metastases display only 

cytoplasmic expression of Gal-3, whereas lymph node metastases showed higher 

nuclear Gal-3 expression. 

d) Patients which had an equal or higher Gal-3 expression in the nucleus than in the 

cytoplasm experienced a worse prognosis than patients whose nuclear expression 

percentages were lower than cytoplasmic. 
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3.2 Specific Aim II: 

3.2.1 Effect of Gal-3 shRNA on tumor growth and metastasis in vivo 

3.2.1.1 Expression of Gal-3 in melanoma cell lines 

After identifying Gal-3 as a marker of metastatic progression of melanoma by 

utilizing progression tissue microarray, Gal-3 expression in metastatic cell lines grown in 

vitro compared to non-metastatic cell lines was analysed by Western Blot, as shown in 

Figure 14 (see section 2.9).  This confirmed that Gal-3 expression increases with increase 

in metastatic potential of melanoma cell lines.  Low metastatic melanoma cell lines DM-

4, DX-3 and TXM-40 showed less Gal-3 expression (Densitometric readings:  1, 2.8, and 

1.6 respectivley) than median metastatic melanoma cell lines (TXM-18= 4.8, TXM-1= 

4.4, TXM-13= 5.1) or highly metastatic melanoma cells (MeWo= 4.7, WM2664= 4.8, 

A375SM= 4.0) with an exception of the highly metastatic C8161 cell line (Densitometric 

readings: 2.6). 

The immunofluoresence stainings shown in Figure 15 reveal that the low 

metastatic cell line shows almost no Gal-3 staining (data not shown). The median 

metastatic cell line TXM-18 shows predominantly cytoplasmic staining of Gal-3.  The 

highly metastatic cell line A375SM and WM2664 show, respectively, staining of Gal-3 

mostly in the cytoplasm.   

 

3.2.1.2 Stable downregulation of Gal-3 by lentiviral based shRNA 

To delineate the role of Gal-3 on tumor growth and metastasis a shRNA 

knockdown for Gal-3 in C8161 spontaneous metastatic melanoma cells was created with 

lentiviral technology as described in sections 2.9 and 2.11.  After transfection of the Gal-3 

shRNA construct, which is green-fluorescent protein (GFP) labeled, together with the 

packaging plasmids PAX2 and MDG2 into the 293 T cells, the packaging cells start to 
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Figure 14  Gal-3 expression in melanoma cell lines.   

Western Blot analysis  revealed that Gal-3 expression directly correlates with the 

metastatic potential of cell lines in nude mice (low metastatic melanoma cell lines: DM-4, 

DX-3; median metastatic melanoma cell lines: TXM-40, TXM-18, TXM-1, TXM-13; 

highly metastatic melanoma cell lines: MeWo, WM2664, A375SM, C8161, metastatic 

potential was defined as described in section 2.1 10 ug of total cell lysate (section 2.8) 

were separated SDS-PAGE and transfered to a membrane as described in section 2.9. The 

membrane was stained with an antibody to Gal-3 and an antibody to actin as a control for 

protein loading. 

The relative expression values for each sell line are shown underneath each lane 

(Densitometric analysis see section 2.23). 



 69

 

Figure 15 Immunofluoresence staining for Gal-3 expression in low to high metastatic 
cell lines.   

Immunofluoresence staining was performed as described in section 2.18. The 

intermediate metastatic cell line TXM-18 shows cytoplasmic staining for Gal-3.  The 

highly metastatic cell lines A375SM and WM2664 show mostly staining in the cytoplasm 

for Gal-3 (Gal-3 staining: Alexa 488 green; nuclei staining: Hoechst, blue).
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produce pseudovirus.  After virus production the melanoma cell line C8161, which 

contains a luciferase plasmid construct, were transduced with the pseudovirus and grown 

in culture and further used in all of the remaining experimental studies in this dissertation.   

Gal-3 expression is three fold decreased in Gal-3 knockdown cells as compared to 

C8161 parental cells and cells transduced with non-targeting shRNA control vector (NT 

shRNA) (Densitometric readings: C8161 parental= 1, Nontargeting shRNA= 1.3, Gal-3 

shRNA= 0.3; see section 2.23) (Figure 16). 

 

3.2.1.3 Effect of Gal-3 downregulation on tumor growth in vivo 

 In order to monitor tumor growth capacity of the highly spontaneous metastatic 

C8161 cell line before and after Gal-3 knockdown, C8161 cells and C8161 Gal-3 shRNA 

cells were injected subcutaneously (s.c.) into nude mice and the tumor growth was 

monitored for 31 days as described in section 2.5.  Gal-3 knockdown led to dramatic 

inhibition of tumor growth (t50) by more than 40% (*p<0.01), as shown in Figure 17.  In 

the Gal-3 shRNA group, no increase in tumor volume was detected up until day 21.  After 

day 21 tumors did grow, but at a significantly slower rate than the control NT shRNA 

group (*p=0.006).  

Tumors were additionally monitored with Luciferase imaging IVIS technology, 

which measures the light absorbance of the luciferase-labeled tumor cells within the 

tumor (see section 2.5).  In Figure 18 and Table 3, the luciferase imaging of Gal-3 shRNA 

tumor cells versus NT shRNA control cells after 7, 14 and 27 days are shown.  

Comparing the tumor growth from day 7 with day 14 a 3.6 times reduction in the tumor 

volume of the Gal-3 knockdown cells (131.52 x106± STD 138.76) compared to the 



 71

 

Figure 16  Gal-3 protein expression following downregulation with short hairpin 

RNA using lentiviral delivery.  

20 ug of total cell lysate (section 2.8) were separated on a SDS-PAGE and transferred to a 

membrane as described in section 2.9.  The membrane was stained with an antibody to 

Gal-3 and an antibody to actin as a control for protein loading.  In comparison to the 

parental C8161 cell line and the non-targeting shRNA (NT shRNA), Gal-3 knockdown is 

3 fold decreased (Densitometric readings: C8161 parental= 1, Nontargeting shRNA= 1.3, 

Gal-3 shRNA= 0.3; see section 2.23). 
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Figure 17  Effect of Gal-3 knockdown on tumor growth in vivo after s.c.  injection.   

Nude mice were injected with 2.5x105 C8161 tumor cells, Gal-3 shRNA expressing 

C8161 cells or control NT shRNA expressing C8161 cells (7 mice per group). Data are 

presented as mean tumor volume (cm3) with ± STD.  Downregulation of Gal-3 expression 

led to a decrease in tumor growth (t50) by more than 40% (*p<0.01). 

* 

*p<0.01 
* 



 73

 

 

Figure 18  Luciferase Imaging with IVIS technology in vivo of the luciferase-labeled 

C8161 tumor cells after s.c.  injection.   

On the left side are the images taken from Gal-3 shRNA knockdown tumor cells 

compared to the NT shRNA tumor cells on the right side after 7, 14 and 27 days, 

respectively.  A dramatic decrease in tumor size and light absorbance was detected after 

27 days (Table 3). 
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Table 3  Luciferase light absorbance data of Gal-3 shRNA versus NT shRNA tumor 

cells after s.c. injection.   

This table represents the original data of the Luciferase absorbance ± STD of the Gal-3 

shRNA and NT shRNA groups after 7, 14, and 27 days.  An almost 50% reduction of 

light intensity of the tumor cells between the Gal-3 shRNA group versus NT shRNA was 

detected after 27 days. 
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NT shRNA group (509.99 x106± STD 263.34) was seen (n=7, respectively).  An almost 

50% reduction of the tumor cell light absorbance between the Gal-3 shRNA (619.44 

x106± STD 464.82) and the NT shRNA group (1030.07 x106±535.55 STD) was seen after 

27 days (n=7, respectively) (Table 3).  

Table 3 shows the original measured light absorbance data to confirm the results 

described above. 

 

3.2.1.4 Effect of Gal-3 downregulation on metastasis in vivo 

The metastatic potential of C8161 cells was tested before and following Gal-3 

knockdown using the mouse lung melanoma metastasis model. In this model tumor cells 

are injected intravenously (i.v.) and the formation of metastatic lesions in the lungs is 

monitored. Inhibition of Gal-3 expression in the C8161 cells let to a dramatic decrease in 

the number of melanoma lung metastases, as shown in Table 4.  The median for C8161 

NT shRNA cells was more than 200 metastases per mouse (Range 84->200, n=6), while 

for C8161 Gal-3 shRNA cells, the median was 22 metastases (Range 3-26, n=8).  The 

incidence in both groups (number of mice developing metastases) remained at 100%. 

The luciferase imaging after intravenous (i.v.) injection of Gal-3 shRNA tumor 

cells versus NT shRNA control cells after 14, 21, 27, 31, and 40 days is shown in Figure 

19 and Table 5.  An almost 90% reduction of the bioluminescence of the tumor cells 

between the Gal-3 shRNA and NT shRNA was observed at all time points except on day 

14 (Gal-3 shRNA, 0.0x105 +/- STD 0.0; n=8; NT shRNA, 3.6 x106 +/- STD 4.6; n=6).  

On day 21 the Gal -3 shRNA bioluminescence was 0.16x105 +/- STD 0.189 (n=8) 

compared to the NT shRNA group (6.3 x106 +/- STD 11.2; n=6). Also on day 31 the 
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Table 4  Mouse lung melanoma metastasis model after i.v. injection of Gal-3 shRNA 

and NT shRNA C8161 tumor cells.   

Nude mice were injected with 1x106 tumor cells and the number of lung metastasis at day 

36 was determined as described in section 2.5. Downregulation of Gal-3 resulted in an 

almost 90% decrease in the median number of metastasis when compared to non-

targeting controls. 
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Figure 19 Luciferase Imaging with IVIS technology in vivo of the Luciferase-labeled 

C8161 tumor cells after i.v. injection.  

On the left side are the images taken from Gal-3 shRNA knockdown cells compared to 

the NT shRNA cells on the right side after 14, 21, 27, 31, and 40 days, respectively.  A 

marked decrease in tumor size and therefore bioluminescence was detected at all time 

points except on day 14.
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Table 5  Luciferase light absorbance data of Gal-3 shRNA versus NT shRNA tumor 

cells after i.v. injection.   

This table shows the original data of the Luciferase absorbance ± STD of the Gal-3 

shRNA and NT shRNA group after 14, 21, 27, 31, and 40 days.  A near 90% reduction of 

light intensity of the tumor cells between the Gal-3 shRNA group versus NT shRNA was 

detected at each time point. 
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difference was 90% (Gal-3 shRNA, 0.35x105 +/- STD 0.53; n=8; NT shRNA, 43.4 x106 

+/- STD 67.7; n=6). A 13-fold decrease was observed after 40 days (Gal-3 shRNA, 

11.26x105 +/- STD 24.16; n=8; NT shRNA, 148.4 x106 +/- STD 296.99; n=6) (Table 5).  

3.2.1.5 Effect of Gal-3 downregulation on in vivo cell proliferation, microvessel density 

(MVD) and apoptosis 

In order to understand the mechanism of inhibition of tumor growth after Gal-3 

knockdown tumor specimens were analyzed for the expression of markers of proliferation 

and angiogenesis.  Hematoxillin and Eosin (H&E) staining revealed that Gal-3 shRNA 

tumor cells acquired a halo-like morphology, which appear with a nucleus surrounded 

with a swollen cytoplasm, as compared to parental or NT shRNA control tumors, which 

were more epithelioid (Figure 20, H&E).  The significance of this morphological 

observation, however, is still unclear.  

Immunohistochemical staining using an anti-Gal-3 antibody revealed very low 

Gal-3 expression levels in the Gal-3 shRNA tumors as compared to staining of tumors 

from the C8161 parental and NT shRNA ones (Figure 20, Gal-3).  This confirmed that the 

Gal-3 knockdown was still effective in the tumor cells after 31 days in vivo. 

Simultaneously, a strong 2.6-fold decrease in the percentage of proliferating 

(PCNA) positive cells was observed after Gal-3 knockdown compared to the C8161 

parental and NT shRNA cell line (*p=0.003 C8161 parental, NT shRNA control versus 

Gal-3 shRNA tumors, respectively; Figure 20, 21A).   

However, no difference in the in vitro cell proliferation was observed by MTT test 

(section 2.6, data not shown).  In parallel with the decrease in the number of proliferating 

cells a dramatic increase in the number of apoptotic cells in the Gal-3 shRNA tumors 

compared to the C8161 parental and NT shRNA cell line was observed (Figure20,  
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Figure 20  Immunohistochemical staining of in vivo s.c. tumors for H&E, Gal-3, cell 

proliferation (PCNA), apoptosis (TUNEL), microvessel density (MVD), IL-8 and 

MMP-2 expression.   

From left to right: C8161 parental, NT shRNA, Gal-3 shRNA. Representative tumors are 

presented (20x Magnification). Immunohistochemistry was performed as described in 

section 2.17 with frozen or paraffin embedded tumors. Antigen positive cells are stained 

brown with the exception of the TUNEL assay in which the apoptotic cells fluorescence 

green. 
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Figure 21  Quantitative measurement of cell proliferation (PCNA), apoptosis 

(TUNEL) and microvessel density.  

A) Downregulation of Gal-3 resulted in a 2.6-fold decrease of proliferating cells in the 

Gal-3 shRNA tumors compared to C8161 parental and NT shRNA (*p=0.003).  The 

percent of PCNA positive cells was determined as described in section 2.17 and is 

presented as the mean (7 tumors, respectively) +/- Standard Deviation (STD).  B) TUNEL 

assay (see section 2.19) for apoptotic cells showed a marginally significant increase in 

apoptosis in Gal-3 shRNA tumor cells compared to C8161 parental and NT shRNA 

(*p<0.05). The data are presented as number of dead cells per field and the values 
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represent the mean and STD of 7 tumors respectively. C)  MVD count of CD31 positive 

cells showed a highly significant downregulation of 2.3 fold in Gal-3 shRNA compared to 

NT shRNA and C8161 parental control (*p<0.01).  Differences in microvessel density 

between the C8161 parental group compared to Gal-3 shRNA tumor cells were not 

statistically significant. MVD was determined as described in section 2.17 and is 

presented as the mean number of CD31 positive vessels per slide of 4 fields +/- STD (n=7 

tumors, respectively). 
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TUNEL).  A 9 fold increase in apoptotic cells in the Gal-3 shRNA tumors versus NT 

shRNA was observed (*p<0.05; in C8161 parental, NT shRNA control vs Gal-3 shRNA 

tumors respectively, Figure 20, 21 B). 

For the tumor cell to be aggressive and invasive, it has to form vessels for 

additional blood and oxygen supply (Folkman & Klagsbrun 1987).  This angiogenic 

activity in tumors has been analyzed through staining for the expression of the endothelial 

cell marker CD31.  A notable decrease in microvessel density in Gal-3 shRNA tumors 

were observed as compared to the C8161 parental and NT shRNA tumor cells is shown in 

Figure 20 (CD31).  Quantitative measurement of the CD31 positive vessels in the Gal-3 

shRNA tumor specimens revealed a highly statistically significant decrease of 2.4 fold 

compared to NT shRNA (*p<0.01, NT shRNA control and Gal-3 shRNA tumors, 

respectively, Figure 21A).  

As can be seen from Figure 20, the Gal-3 knockdown tumors did not only show a 

reduction in Gal-3 expression. The expression levels of interleukin-8 (IL-8) and the 

matrix-metalloproteinase-2 (MMP-2) were also dramatically reduced in the Gal-3 

knockdown tumors suggesting that Gal-3 may regulate the expression of other genes (see 

Specific Aim III). 

Taken together, it can be concluded that: 

a) Gal-3 expression showed a significant correlation regarding cytoplasmic 

versus nuclear expression within a panel of melanoma cell lines with 

increased metastatic potential. 

b) Gal-3 shRNA knockdown led to a dramatic inhibition of tumor growth 

in vivo. 

c) Gal-3 shRNA knockdown inhibited also the formation of metastasis to 

the lung. 



 86

d) A significant decrease in the proliferation and microvessel formation 

was observed in tumors after Gal-3 knockdown. 

e) A marked increase in apoptotic cells was also seen only after down 

regulation of Gal-3 in the tumors. 
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3.3 Specific Aim III: 

3.3.1 Identification of novel Gal-3 downstream target genes by Gal-3 small hairpin 

RNA 

3.3.1.1 Determining novel genes possibly regulated by Gal-3 via a cDNA microarray 

analysis 

To further investigate the role of Gal-3 in melanoma metastasis, an Affymetrix 

cDNA array analysis was performed comparing C8161 melanoma cells following Gal-3 

knockdown with the NTshRNA cells (see section 2.21).  794 genes, overall with 

differences in expression, were identified, of which 567 genes showed downregulation 

and 227 upregulation after Gal-3 knockdown.  In the group of downregulated genes, the 

cDNA microarray analysis revealed that the Gal-3 knockdown had a dramatic effect on 

endothelial cell differentiation markers. 

After analyzing the microarray data, a correlation between one group of genes was 

observed, which showed respectively a correlation with the endothelial and mesenchymal 

cell expression. These genes are emphasized as bold in Table 6, and include the Vascular 

Endothelial (VE)-Cadherin (CDH5), Interleukin-8 (IL-8), Fibronectin-1 (FN-1) and 

Endothelial Differentiation, Sphingolipid G-protein receptor-1 (EDG-1) (IL-8=12.96 fold; 

CDH5= 3.6 fold; FN= 9.6 fold and EDG1=4 fold downregulated). Theses genes were 

chosen for further study. The group of genes upregulated following knockdown of Gal-3 

included protein fucusyltransferase (22.09 fold increase), NCOR-1 (21.16 fold increase), 

HGF agonistantagonist (10.89 fold increase), and WNTB2 (2.56 fold increase) (Table 6).   
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Table 6  List of down- and upregulated genes after Gal-3 knockdown identified after 

cDNA microarray analysis.   

The Affymetrix cDNA microarray analysis identified 794 genes, differentially expressed 

in Gal3 shRNA and NT shRNA tumor cells in which 567 genes showed downregulation 

and 227 upregulation after Gal-3 knockdown.  Left panel shows the group of 

downregulated genes and the right panel the group of upregulated genes. The genes in 

bold type (Interleukin-8, Fibronectin-1, EDG-1, and VE-Cadherin (CDH5) were chosen 

for further study. 
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3.3.1.2 Validation of target genes after Gal-3 shRNA knockdown in highly metastatic 

melanoma cell lines 

To further investigate the cDNA microarray analysis data, the downregulated 

genes CDH5, FN-1 and EDG-1 were validated by Western Blotting (Figure 22).  The 

Gal-3 shRNA cells are three fold downregulated after Gal-3 knockdown compared to the 

parental cell line (Densitometric readings: C8161 parental= 1, Nontargeting shRNA= 1.3, 

Gal-3 shRNA= 0.3; see section 2.23; Figure 22, A). After Gal-3 knockdown a 2 fold 

decrease in the expression level of CDH5 was seen, comparing the parental with the Gal-

3 shRNA knockdown cells (densitometric readings: C8161 parental= 1, Nontargeting 

shRNA= 1.9, Gal-3 shRNA= 0.5; see section 2.23; Figure 22,B). A 2.5 fold 

downregulation in the FN expression level compared to the C8161 parental cells was 

further observed (Densitometric readings: C8161 parental= 1, Nontargeting shRNA= 1.3, 

Gal-3 shRNA= 0.7; see section 2.23; Figure 22, D).   The EDG-1 gene seems not to be 

drastically affected on the protein level by Gal-3 knockdown it only shows a 1.4 fold 

reduction in the level of expression compared to the parental cell line (Densitometric 

readings: C8161 parental= 1, Nontargeting shRNA= 1, Gal-3 shRNA= 0.4; see section 

2.23; Figure 22, C).   

Further immunohistochemical analysis will be performed on the genes described from the 

microarray analysis and Western Blot gels to confirm the results presented in section 

3.3.1.1.  All proteins except EDG-1 are highly downregulated in the Gal-3 knockdown 

cells.  
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Figure 22 Western Blot validation of novel downstream targets of Gal-3 after cDNA 

microanalysis.  

20 μg of total cell lysate were separated on SDS-PAGE and transferred to a membrane as 

described in section 2.9. The membrane was then stained with the specific antibodies 

(Gal-3, CDH5, EDG1 and FN-1, see section 2.7) and with an antibody to actin as 

described in section 2.7. The protein expression relative to actin expression was obtained 

by densitometric analysis (see section 2.23).  
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3.2 Effect of Gal-3 shRNA on VE-Cadherin (CDH5) expression and function  

To determine whether Gal-3 affected the expression of CDH5 on the 

transcriptional level, the activity of a CDH5 promoter reporter construct was evaluated in 

the Gal-3 shRNA and NTshRNA cells (see section 2.10).  A slight difference with no 

statistical significance in the CDH5 promoter activity could be detected after transient 

transfection into Gal-3 knockdown compared to the NT shRNA control cells (*p=0.05, 

NT shRNA control and Gal-3 shRNA tumors, respectively, Figure 23). 

To investigate which transcription factor binds to the CDH5 promoter, the 

promoter area of (-2300 to + 1000bp, relative to transcription start site for CDH5) was 

examined with the Genomatix program for possible interaction with transcription factors 

(see section 2.22).  On the CDH5 promoter site upstream ± 600 from the start sequence 

binding sites for SP-1, NFkB, EGR1 and Ap-2 transcription factors were found. The 

highest number of binding sites was identified for EGR-1 (5 binding sites on the CDH5 

promoter).    

The binding of the transcription factor EGR-1 to the CDH5 promoter was further 

investigated using chromatin immunoprecipitation assay (see section 2.22). An 

upregulation in the EGR-1 binding was observed in the Gal-3 shRNA cell line compared 

to the NT shRNA cells as seen in Figure 24. 

Further a Western Blot analysis was performed after transiently overexpression of 

EGR-1 in the C8161 parental cell line, which showed a dramatic 3-4 fold decrease in the 

CDH5 protein expression level compared to the parental cells (Densitometric readings: 

C8161 parental= 1, Lipo 2000 control= 0.7, +1.2 μg EGR-1= 0.2, +3.2 μg EGR-1= 0.3; 

see section 2.23) (Figure 25). 
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Figure 23  Analysis of the CDH5 promoter activity after Gal-3 knockdown.  

Reporter activity was determined with the dual luciferase promoter analysis as described 

in section 2.10.  Luciferase activity was measured at 72 hours after transfection of CDH5-

pcDNA3.1 or pGL3 empty vector and is presented as the mean relative luciferase activity 

(firefly luciferase/renilla luciferase) of triplicates +/- STD.  
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Figure 24  Chip analysis of CDH5 transcription binding site for EGR1.  

PCR amplification of a 200 bp region of the CDH5 promoter, immunoprecipitated by anti 

EGR-1 antibody (lanes 4 and 5) or by control IgG (lanes 6 and 7) from Gal-3 shRNA 

knockdown cells and NT shRNA cells (see section 2.22). 
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Figure 25 EGR-1 overexpression in C8161 parental cells influences VE-Cadherin 

expression 

20 µg of total cell lysate were separated on SDS-PAGE and transferred to a membrane as 

described in section 2.9. The membrane was then stained with the specific antibody 

(CDH5, see section 2.7) and with an antibody to actin as described in section 2.7. The 

protein expression relative to actin expression was obtained by densitometric analysis 

(see section 2.23). After 48 hours transient transfection of EGR-1 into the C8161 parental 

cell line a 3-4 fold decrease in VE-Cadherin expression was observed (Densitometric 

readings: C8161 parental= 1, empty vector control= 0.7, +1.2 μg EGR-1= 0.2, +3.2 μg 

EGR-1= 0.3; see section 2.23).  
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On the transcriptional level of the CDH5 promoter a significant decrease was 

observed after transiently overexpression of EGR-1 compared to the C8161 parental cell 

line (*p=0.00394776, + 0.125 μg EGR-1;*p=0.00394776, + 0.25 μg EGR-1, compared to 

the VE-Cadherin promoter without EGR-1 transfection respectively, Figure 26).  

CDH5 has been shown to be expressed by highly aggressive melanoma cells 

which results in the ability of the tumor cells to mimic endothelial cells and form 

embryonic-like, patterned, vasculogenic-like networks in 3-D cultures (Hendrix et al. 

2001; Seftor et al. 2002; Hendrix et al. 2003b, a).   

To further investigate a possible correlation between Gal-3 and CDH5 gene 

expression, a 3-dimensional type I collagen gel was created (see section 2.2, Figure 2) to 

observe the above described formation of patterned, vasculogenic-like networks.  Only 

the highly metastatic melanoma cell lines C8161 parental and NT shRNA cells could 

form tube-like structures, as shown in Figure 27.  The formation of vasculogenic mimicry 

could not be observed in metastatic melanoma cells after Gal-3 knockdown.   
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Figure 26 Analysis of the CDH5 promoter activity after EGR-1 transfection in 

C8161 parental cells.  

Reporter activity was determined with the dual luciferase promoter analysis as described 

in section 2.10.  Luciferase activity was measured at 72 hours after transfection of pGL3 

empty vector and EGR-1 pcDNA3.1 (0.125 μg and 0.25 μg) is presented as the mean 

relative luciferase activity (firefly luciferase/renilla luciferase) of triplicates +/- STD.  
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Figure 27 Formation of tube-like structures by melanoma cells before and after Gal-

3 knockdown.   

Cells were grown in collagen gels as described in section 2.2. In these photographs live 

unstained cells appear as vasculogenic networks and are black (20x Magnification).  In a 

three dimensional type 1 collagen gel, highly metastatic melanoma cells showed the 

ability to form tube-like structures only in presence of Gal-3. 
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3.3 Effect of Gal-3 shRNA on IL-8 expression  

IL-8 has been recently shown to act directly on vascular endothelial cells and to 

serve as a survival factor (Yoshida et al. 1997).  To investigate the effect of Gal-3 

knockdown on the angiogenic chemokine IL-8, immunohistochemical staining was 

conducted, which showed a marked decrease in the expression of IL-8 in the in vivo Gal-3 

knockdown versus C8161 parental and NT shRNA tumors (Figure 20).  With RT-PCR a 

5 fold down regulation of IL-8 in the Gal-3 shRNA cells versus C8161 parental was also 

observed (Densitometric readings: C8161 parental= 1, Nontargeting shRNA= 0.6, Gal-3 

shRNA= 0.2; see section 2.15 and 2.23; Figure 28). 

The secretion of the chemokine into the supernatant by in vitro cultured cells 

before and after Gal-3 knockdown was determined using ELISA (see section 2.20).  In 

the Gal-3 shRNA knockdown cells a highly significant, 3-fold decrease in IL-8 secretion 

was detected compared to the C8161 parental and NT shRNA cells respectively (*p<0.01, 

NT shRNA control and Gal-3 shRNA tumors, respectively, Figure 29). 

To determine whether Gal-3 was affecting the expression of IL-8 on the 

transcriptional level, the activity of an IL-8 promoter reporter construct was investigated 

using a dual promoter Luciferase analysis (see section 2.10).  A marginally significant 

difference in promoter activity was detected in the Gal-3 shRNA cells compared to the 

NT shRNA control cells (*p<0.05, NT shRNA control and Gal-3 shRNA tumors, 

respectively, Figure 30).   

To further investigate the role of Gal-3 in regulating IL-8 on the transcriptional 

level, i.e. which transcription factors bind to the IL-8 promoter,  
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Figure 28 Validation of IL-8 downstream target gene of Gal-3 with RT-PCR.   

RT-PCR analysis of IL-8 expression was performed as described (see section 2.15). A 5 

fold down regulation of IL-8 was observed after Gal-3 knockdown compared to the 

parental (Densitometric readings: C8161 parental= 1, Nontargeting shRNA= 0.6, Gal-3 

shRNA= 0.2; see section 2.23). 
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Figure 29 Quantitation of secreted IL-8 by melanoma cells before and after Gal-3 

knockdown  

Cells were cultured at 2x105/ml for 24 hours and IL-8 in the supernatant was determined 

with an ELISA as described in section 2.20. The data are presented as mean and STD of 

duplicates. A highly significant downregulation in IL-8 secretion of 3 fold decrease was 

detected in the Gal-3 shRNA cells compared to C8161 parental and NT shRNA cells 

(*p<0.01, NT shRNA control and Gal-3 shRNA). 
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Figure 30 Activity of the IL-8 promoter after Gal-3 knockdown was determined with 

dual luciferase promoter analysis.   

Luciferase activity was measured at 72 hours after transfection of pGL3-IL-8 or pGL3 

empty vector and is presented as the mean relative luciferase activity (firefly 

luciferase/renilla luciferase) of 4 wells +/- STD (as described in section 2.10).  A 

marginally significant decrease in IL-8 production was seen after Gal-3 knockdown 

(*p<0.05, NT shRNA control and Gal-3 shRNA tumors, respectively). 
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the area from-133 to +44 bp (relative to transcription start site) on the IL-8 promoter was 

blasted with the Genomatix program for possible interaction with transcription factors 

(see section 2.22).  On the IL-8 promoter, EGR1, NFkB, SP-1 and AP-2 transcription 

factor binding sites were detected.  The binding of EGR1 to the IL-8 promoter was further 

investigated using chromatin immunoprecipitation (see section 2.22).  An upregulation in 

the EGR-1 binding to the IL-8 promoter was observed only in the Gal-3 shRNA cell line 

compared to the NT shRNA cells, as seen in Figure 31. 

3.3.2.1 Effect of Gal-3 downregulation on the MMP-2 expression 

It has been shown by Luca et al. that metastatic melanoma cells producing IL-8 or 

primary cutaneous melanoma (IL-8-negative) transfected with the IL-8 gene displayed  

upregulation of Matrix Metalloproteinase-2 (MMP-2) expression and activity and 

increased invasiveness through Matrigel-coated filters (Luca et al. 1997).  

Immunohistochemical staining of in vivo Gal-3 shRNA tumor specimens versus C8161 

parental and NT shRNA tumors indicated that MMP-2 expression was dramatically 

reduced in the Gal-3 knockdown cells (Figure 20).  

To investigate further the  association between Gal-3 knockdown and the 

downstream effect on MMP-2, a Western Blot analysis and a Zymography assay were 

performed on melanoma cells before and after Gal-3 knockdown (Figure 32 and 33).  A 

three fold knockdown of the MMP-2 expression level in Gal-3 knockdown cells 

compared to the C8161 parental cells was observed in Figure 32 (Densitometric readings: 

C8161 parental= 1, 

Nontargeting shRNA= 0.9, Gal-3 shRNA= 0.3; see section 2.23).  Also a 1.6 fold 

downregulation of MMP-2 activity as detected by Zymography analysis was observed 

after a 3 fold decrease in expression was seen in the Gal-3 shRNA cells versus the C8161 
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Figure 31 Chip analysis of IL-8 transcription binding site for EGR1.  

PCR amplification of a 200 bp region of the IL-8 promoter, immunoprecipitated by anti 

EGR-1 antibody (lanes 4 and 5) or by control IgG (lanes 6 and 7) from Gal-3 shRNA 

knockdown cell line compared to the NT shRNA cells (see section 2.22). 
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Figure 32 Detection of MMP-2 before and after Gal-3 knockdown with Western 

Blotting.   

10 µg of total cell lysate were separated on SDS-PAGE and transferred to a membrane as 

described in section 2.9. The membrane was then stained with the MMP-2 antibody (see 

section 2.7) and with an antibody to actin as described in section 2.7. The protein 

expression relative to actin expression was obtained by densitometric analysis (see 

section 2.23).  
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Figure 33 Zymography analysis of MMP-2 before and after Gal-3 knockdown.   

MMP-2 and MMP-9 activity in the cell supernatants was determined on gelatin 

impregnated SDS-PAGE as described in section 2.12. The protein bands are visualized as 

gelatin-free areas in a Comassie blue stained gel. A marked knockdown of MMP-2 

activity could be detected in the Gal-3 knockdown cells versus C8161 parental or NT 

shRNA control cells (Densitometric readings: C8161 parental= 1, Nontargeting shRNA= 

1.2, Gal-3 shRNA= 0.6; see section 2.23).
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parental control cells (Densitometric readings: C8161 parental= 1, Nontargeting shRNA= 

1.3, Gal-3 shRNA= 0.3).Gal-3 knockdown (Densitometric readings: C8161 parental= 1, 

Nontargeting shRNA= 1.2, Gal-3 shRNA= 0.6; see section 2.23; Figure 33).   

3.3.2.2 Effect of Gal-3 downregulation on the in vitro tumor cell invasion 

The activation of MMP-2 by IL-8 has been known to enhance the invasion of host 

stroma by tumor cells and increase angiogenesis and therefore the formation of metastasis 

(Luca et al. 1997).   

Therefore, an invasion assay was conducted using matrigel-coated filters (see 

section 2.13; Figure 34).  A decrease in invasion and expression of MMP-2 following 

transfection with shRNA has been observed, which showed a highly significant effect of 

Gal-3 downregulation on the in vitro tumor cell invasion ability (*p<0.01, NT shRNA 

control and Gal-3 shRNA tumors, respectively, Figure 33). 
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Figure 34 Quantitative measurement of in vitro tumor cell invasion before and after 

Gal-3 knockdown.   

Tumor cell invasion through matrigel coated filters was performed as described in section 

2.13. The results are presented as mean ±STD of invaded tumor cells in 4 fields of 

duplicate chambers after 22 hours. Decrease in Gal-3 expression resulted in a highly-

significant suppression of tumor cell invasion in vitro (*p<0.01).   
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Overall, the analysis of Gal-3 downstream target genes reveals that: 

a) Gal-3 shRNA cells show a notable knockdown in expression of a 

group of endothelial and mesenchymal markers, including VE-

Cadherin, EDG-1, Fibronectin-1 and Interleukin-8. 

b) Tube-like vasculogenic network formation was blocked in the Gal-

3 knockdown cells in a three dimensional collagen gel 

environment. 

c) IL-8 expression was decreased in Gal-3 shRNA tumor specimens. 

d) ELISA studies show that in vitro secretion of IL-8 into the 

supernatant of Gal-3 knockdown cells was 3 fold decreased 

compared with parental cells. 

e) Gal-3 affects VE-Cadherin and IL-8 on the transcriptional level. 

f) A decrease in VE-Cadherin and IL-8 expression after Gal-3 

knockdown was accompanied by a recruitment of the tumor 

suppressor transcription factor EGR-1 to the promoters of these 

genes. 

g) Transient overexpression of EGR-1 in C8161 parental cells lead to 

a downregulation of VE-Cadherin protein level. 

h) Overexpression of EGR-1 downregulated the VE-Cadherin 

promoter activity. 

i) Gal-3 knockdown resulted in a decrease in MMP-2 expression and 

secretion as well as a decrease in tumor cell invasion through 

matrigel-coated filters. 
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Chapter IV:  

4. Discussion 

 

In this dissertation, Gal-3 is proposed to play a major role in melanoma 

progression.  Gal-3 is known to be associated with cell growth, cellular adhesion 

processes, cell proliferation, transformation, metastasis and apoptosis (Xu et al. 2000; 

Ellerhorst et al. 2002; Nakahara et al. 2005).  Since Gal-3 is overexpressed in some types 

of cancers, it is therefore thought to be involved in tumorigenesis (Yoshii et al. 2001; 

Takenaka et al. 2003). In the presented work, the involvement of Gal-3 in melanoma 

tumor growth and metastatic progression has been studied.  

First, the Gal-3 expression in human melanocytic lesions was investigated with 

the use of a progression- tissue microarray, which features melanocytic lesions from 

different stages of melanoma. It was found that Gal-3 expression correlated significantly 

with melanoma progression from the benign and dysplastic nevi toward primary and 

metastatic melanoma.  A higher nuclear expression in lesions metastatic to viscera and 

lymph nodes was observed than in subcutaneous lesions.  These analysis revealed that 

patients with lesions that express Gal-3 in the nucleus at the levels equal or higher than in 

the cytoplasm, have a shorter overall disease free survival.  

Overall, it is proposed that Gal-3 may serve as a marker of progression in human 

melanoma. Supporting these findings, Vereecken et al. have recently observed a high 

serum level of Gal-3 in patients with metastatic melanoma (Vereecken & Heenen 2006; 

Vereecken et al. 2006). They proposed that Gal-3 was probably produced by the tumor 

cells themselves (Vereecken & Heenen 2006; Vereecken et al. 2006). Furthermore, 

Vereecken et al. have utilized an immunohistochemical study with monoclonal anti-Gal-3 

antibody in a series of primary and metastatic melanoma lesions as well as benign skin 
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pigmented lesions to see if there was a possible correlation between Gal-3 expression and 

malignant potential in primary melanoma lesions (Vereecken et al. 2005). A xenograft 

melanoma model in nude mice with two melanoma cell lines (ATCC G-361 and ATCC 

HT-144) was established to assess staining with the Gal-3 antibody in the xenografts and 

the metastases. In the xenograft mouse model it was shown that Gal-3 expression was 

higher in thin primary melanoma lesions than in benign pigmented skin lesions or 

metastases and seemed to correlate inversely with the aggressiveness as estimated by the 

Breslow index. Therefore, it was concluded that Gal-3 expression in melanoma may act 

as a diagnostic and/or a prognostic parameter (Vereecken et al. 2005). Also a direct 

correlation has been reported between Gal-3 and the stage of tumor progression in colon, 

gastric, thyroid, breast, and head and neck carcinomas (Lotan et al. 1994; Schoeppner et 

al. 1995; Xu et al. 1995; Gillenwater et al. 1996; Fernandez et al. 1997; Bresalier et al. 

1998; Nangia-Makker et al. 1998).  For example, in gastric cancer, an unfavorable 

prognosis is a result of reduced Gal-3 expression (Okada et al. 2006).  In advanced 

melanoma patients, however, serum Gal-3 gives rise to a possible responsibility in 

melanoma inflammation and progression (Vereecken & Heenen 2006).  Furthermore, 

Gal-3 is considered to be also a possible molecular marker for thyroid malignancy 

(Weinberger et al. 2007). Krishnan et al. reported that b1,6 branched N-oligosaccharides 

participate in a metastasis-dependent manner in B16- melanoma cell lines in adhesion 

(Krishnan et al. 2005).   

Also a correlation between the metastatic potential of mouse melanoma and 

fibrosarcoma cells and the level of Gal-3 expression on the cell surface in mice was 

shown by Raz et al. (Raz et al. 1987) 

A history of severe sunburns early in life, together with intermittent UV exposure 

is implicated in the etiology of human melanoma (Prieto et al. 2006).  However, the 
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mechanism by which UV radiation participates in melanoma formation is widely debated 

due to the lack of direct evidence for the UV-induced genetic mutations in melanoma. 

Nevertheless, recent analysis of a large group of primary melanomas revealed that 

melanoma subgroups develop by distinct mechanistic routes depending on the patterns of 

sun-exposure (Curtin et al. 2005).  It was found that melanomas derived from body sites 

with chronic sun exposure had infrequent mutations in BRAF and frequent increases in 

the number of copies of the cyclin D1 gene. On the other hand, melanomas on sites with 

intermittent sun-exposure revealed frequent mutations in BRAF or N-RAS oncogenes and 

frequent loss of phosphatase and tensin homologue deleted on chromosome 10, PTEN.  In 

acral melanomas, which are normally not associated with sun exposure, a high degree of 

focal chromosomal amplifications and losses were observed (Curtin et al. 2005). 

 In this here presented study, the expression of Gal-3 in the nucleus was only 

found in chronically sun-exposed skin lesions.  In addition, skin lesions with chronic and 

intermittent sun-exposure have high cytoplasmic expression of Gal-3, as compared to 

acral melanomas, which did not express Gal-3 at all. This strongly suggests that nuclear 

translocation of Gal-3 is associated with UV-induced damage. 

In vitro, Gal-3 protein expression showed a strong correlation with metastatic 

potential of cultured melanoma cell lines in nude mice, with metastatic cells expressing 

high amounts of Gal-3 as compared to non-metastatic cells. A slight correlation between 

Gal-3 localization and metastatic potential in cultured cell lines was observed.  This 

suggests that nuclear translocation of Gal-3 is an in vivo phenomenon that may be 

induced by the tumor microenvironment.  Gal-3 facilitates cell-to-cell adhesions and cell-

to-matrix contacts through binding with interstitial expressed markers like laminin, 

fibronectin and collagen IV (Iacobini et al. 2003) (Figure 4).   
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In order to further delineate the function of Gal-3 in melanoma, a knockdown of 

the Gal-3 expression in C8161 metastatic melanoma cells was performed using lentiviral 

delivery of small hairpin RNA (Stewart et al. 2003).  Based on immunohistochemical 

staining and Western Blot analysis, Gal-3 expression was stably reduced by 90% 

compared to C8161 cells transduced with vector alone. Gal-3 knockdown exerted a major 

inhibitory effect on subcutaneous tumor growth and experimental lung metastasis of 

C8161 cells in nude mice. The decrease in tumor growth was accompanied by a 50% 

decrease in cell proliferation, as measured by PCNA expression, and an 80% increase in 

cell apoptosis as measured in an in situ TUNEL assay.  Both of these effects could be 

associated with a dramatic decrease in tumor angiogenesis, as indicated by a 50% 

decrease in CD31 staining in C8161 Gal-3 knockdown tumors.  

The complex, multistep process of angiogenesis is comprised of a series of events 

that enable neovascularization from the existing vascular bed.  The process of 

angiogenesis can also be linked to processes such as inflammation, wound healing, tumor 

growth, and metastasis (Folkman 1995a, b; Lee et al. 1997; Pluda 1997).  The 

microvessel density of a growing tumor has been recognized as a prognostic value 

predicting recurrence and survival in patients (Vartanian & Weidner 1994).  Different 

groups of angiogenic factors include those that induce both epithelial cell proliferation 

and differentiation, such as bFGF, aFGF, VEGF, platelet-derived endothelial cell growth 

factor (PD-ECGF), and TGFβ (Burgess & Maciag 1989; Conn et al. 1990) as well as 

angiogenic factors that only affect cell differentiation in vitro, such as angiogenin, TGFβ, 

platelet-activating factor, soluble E-selectin, TNFα and Gal-3 (Folkman & Klagsbrun 

1987; Muller et al. 1987; Roberts & Sporn 1989; Pepper et al. 1990; Meininger & Zetter 

1992; Bussolino et al. 1997; Nangia-Makker et al. 2000).  Inhibitors of angiogenesis, such 

as angiostatin (O'Reilly et al. 1994; Gately et al. 1996), thrombospondin (Good et al. 
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1990; DiPietro & Polverini 1993), and endostatin (O'Reilly et al. 1997), can also be 

secreted by tumors.  The disaccharide lactose and modified citrus pectin, a competitive 

polysaccharide, have both been shown to behave as natural ligand recognition 

competitors by Gal-3 (Platt & Raz 1992; Inohara & Raz 1994; Pienta et al. 1995).  This 

implies that angiogenesis occurs out of a balance between positive and negative 

regulators within the microenvironment (Folkman 1992; Iruela-Arispe & Dvorak 1997).  

Nangia-Makker et al. transfected Gal-3 null human breast carcinoma BT-549 cells 

with human Gal-3 cDNA and showed that the established expressing cell clones could 

grew progressively and metastasized in nude mice (Nangia-Makker et al. 1998). 

Furthermore, it was demonstrated that Gal-3 is involved in tumor related angiogenesis 

(Nangia-Makker et al. 2000).  

Soluble Gal-3 has also been shown to induce endothelial capillary tube formation 

in vitro and angiogenesis in vivo, which suggests that angiogenesis could be mediated by 

carbohydrate recognition (Nangia-Makker et al. 2000).  Potentially, following secretion, 

Gal-3 could either be stored in bound form to its ECM ligands or interact directly with 

endothelial cells.  Once it binds to its cell surface receptors, Gal-3 may induce 

overexpression of integrin αvβ3, leading to endothelial cell migration and attachment 

(Nangia-Makker et al. 2000).   

Indeed, no changes in the in vitro proliferation rate of the Gal-3 knockdown cells 

were observed, as measured by the MTT assay (data not shown).  

The introduction of wild-type Gal-3 into nontumorigenic, Gal-3-null BT549 

human breast epithelial cells conferred tumorigenicity and metastatic potential in nude 

mice, and that Gal-3 expressed by the cells was phosphorylated.  In contrast, BT549 cells 

expressing Gal-3 incapable of being phosphorylated (Ser6-->Glu Ser6-->Ala) were 

nontumorigenic (Mazurek et al. 2005). 
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Interaction between the tumor-specific Thomsen-Friedenreich glycoantigen 

(TFAg) and Gal-3 resulted in carbohydrate-mediated metastatic cell adhesion.  This is 

possible through both homotypic (between carcinoma cells) and heterophilic (between 

carcinoma cells and endothelium) interactions.  Zhou et al. proposed that using synthetic 

peptides to blocking the Gal-3 carbohydrate recognition domain would  reduce 

metastasis-associated carcinoma cell adhesion (Zhou et al. 1997). In forming organ 

specific metastasis the main adhesive determinant is the interaction between the 

molecules on the cancer cells and the target organ.  In B16- melanoma cell lines, 

Krishnan et al. revealed that in adhesion, b1,6 branched N-oligosaccharides contribute in 

a metastasis-dependent manner (Krishnan et al. 2005). The lysosome associated 

membrane protein, LAMP1, is a major carrier of these oligosaccharides.  In highly 

metastatic cell lines, LAMP1 is usually translocated to the cell surface and then 

substituted with poly N-acetyl lactosamine (polylacNAc).  This results in expression of 

the high density of very high affinity ligands for Gal-3 on the cell surface and may 

therefore facilitate organ specific metastasis (Krishnan et al. 2005).   

Deininger et al. suggested that in tumor cells, there is a positive correlation for 

Gal-3 expression and in endothelial cells, there is a negative correlation as a marker for 

poor prognosis and malignancy in oligodendroglioma patients.  Low endothelial Gal-3 

labeling in patients with primary oligodendrogliomas and anaplastic oligodendrogliomas 

was an indication for shorter time to progression and overall survival than patients with 

high endothelial Gal-3 labeling (Deininger et al. 2002). 

It is known that Gal-3 binds to the non-integrin laminin (Woo et al. 1990).  

However, soluble Gal-3 on the cell surface makes it impossible for melanoma cells to 

adhere to laminin (van den Brule et al. 1995), whereas oligomerized Gal-3 induces 

melanoma cell spreading on laminin (van den Brule et al. 1998). Controversially, 
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adhesion of neutrophils to laminin is supported by exogenous expressed Gal-3, where the 

adhesion may result of the lectin induced activation of neutrophils (Kuwabara & Liu 

1996). Warfield et al. support these findings in demonstrating that soluble Gal-3 inhibits 

melanoma, breast cancer, fibrosarcoma and prostate cancer cell adhesion to laminin 

(Warfield et al. 1997).  Although Gal-3 can bind laminin, it is proven that it cannot 

mediate cell adhesion to laminin, whereas it may act indirectly by regulating other 

molecules such as integrins (Takenaka et al. 2004). 

A form of apoptosis, which occurs by disruption of cell-matrix interaction, is 

called anoikis (Frisch & Francis 1994). In a study by Zhu et al. it was shown that a 

selection of melanoma cells for anoikis resistance resulted in an increase in their 

metastatic potential (Zhu et al. 2001).  It was also observed that overexpression of Gal-3 

resulted in the protection of cells from anoikis as well as other apoptotic stimuli (Akahani 

et al. 1997; Kim et al. 1999; Yoshii et al. 2002). 

For cells to form emboli, they have to aggregate with other tumor cells or host 

cells, which enable the circulating cancer cells to form secondary tumors. Extravasation 

of tumor cells at secondary sites is only possible after the tumor cell aggregates, 

embolizes into microcapillaries and forms a tumor embolus.  A study by Thompson H 

proved after tumor cells injection as aggregates, that only those cumulated tumor cells 

formed more lung colonies in mice than those injected as single cells (Thompson 1974).  

Also, Raz et al. demonstrated a strong correlation between the in vitro aggregation 

property and the in vivo metastatic potential (Raz et al. 1980).  Furthermore, pH-modified 

citrus pectin showed inhibition of aialofetuin which induced homotypic aggregation of 

B16-F1 melanoma cells in vitro (Inohara & Raz 1994).  Inohara et al. reported further that 

cell surface Gal-3 is able to mediate homotypic cell adhesion by bridging through 

branched, soluble complementary glycoconjugates (Inohara & Raz 1995). 
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After intravenous injection of B16-F1 melanoma cells with modified citrus pectin 

into synergenic mice resulted in a significant decrease of lung colonization (Platt & Raz 

1992). Taken together, Gal- 3 induces homotypic aggregation, resulting in tumor 

embolism, which increases metastatic potential. 

Iurisci et al. reported that circulating levels of Gal-3 reflect biological aspects of 

tumor behavior associated with a metastasizing phenotype due to the fact that circulating 

levels of Gal-3 in the sera of patients with breast, gastrointestinal, lung, or ovarian cancer, 

melanoma, and Hodgkin’s lymphoma were increased (Iurisci et al. 2000).  

Therefore expression of Gal-3 by tumor cells can lead to increased growth and 

metastasis formation through a variety of mechanisms. 

To investigate the possible effect of Gal-3 on gene expression in melanoma, a 

cDNA microarray analysis was performed comparing Gal-3 knockdown cells and vector 

control cells.  Overall, 794 genes were identified which showed significant differences in 

gene expression, in which 567 genes showed downregulation and 227 upregulation after 

Gal-3 knockdown.  The validation of the cDNA microarray analysis demonstrated that 

silencing Gal-3 expression resulted in a loss of expression of a number of endothelial cell 

differentiation markers by melanoma cells (Vascular Endothelial (VE)-Cadherin (CDH5), 

Interleukin-8 (IL-8), Fibronectin-1 (FN-1) and Endothelial Differentiation, sphingolipid 

G-protein receptor-1 (EDG-1)).  In contrast the Protein fucusyltransferase, nuclear 

receptor corepressor isoform-2 (NCOR1), hepatocyte growth factor (HGF) 

agonistantagonist and WNTB2 were upregulated after Gal-3 knockdown. An inhibitory 

effect of Gal-3 knockdown on a group of endothelial marker genes led to the conclusion 

that Gal-3 may be implicated in the phenomenon of vasculogenic mimicry of highly 

aggressive melanoma cells.  
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In situ differentiation of mesodermal progenitor cells (hemangioblasts or 

angioblasts) to endothelial cells that organize to form primitive vascular networks occurs 

by vasculogenesis during embryogenesis (Carmeliet 2000).  This is followed by 

angiogenesis, which results in the sprouting of new capillaries from a preexisting network 

to expand the primitive vascular network into a more sophisticated complex of 

functionally efficient vasculature (Risau 1997).  A widely held belief is that during cancer 

progression, angiogenesis plays an important role to signal new blood vessel growth for a 

growing tumor mass.  This progression of blood supply is important and necessary for 

tumors to grow, survive and ultimately metastasize (Folkman 1995a, b; Rak & Kerbel 

1996; Risau 1997; Kumar & Fidler 1998).  Manoitis et al. introduced the term 

‘vasculogenic mimicry’ to describe the ability of highly aggressive uveal melanomas to 

form patterns of extracellular matrix-rich networks with red blood cell (RBC)- containing 

channels in many areas by tumor cells (Maniotis et al. 1999).  In this way, melanoma 

tumor cells are able to mimic endothelial cells and form vasculogenic networks (Bissell 

1999; Maniotis et al. 1999).   

Failed organization of vascular- like structures in embryoid bodies gives further 

support for VE-Cadherin importance in vascular structure assembly, which was shown 

with the generated VE-cadherin-negative mouse embryonic stem cells (VE-cadherin-/- 

ES cells) by gene targeting (Vittet et al. 1997).  Thoses studies have implicated VE-

cadherin (CDH5) in the ability of the tumor cells to mimic endothelial cells and form 

embryonic-like, patterned, vasculogenic-like networks in 3-D cultures (Hendrix et al. 

2001; Seftor et al. 2002; Hendrix et al. 2003b, a).   

Indeed, the here presented experiments revealed that Gal-3 knockdown in C8161 

cells resulted in a loss of their ability to form the tube-like structures when plated on a 3-

dimensional type I collagen gel.  This suggests that Gal-3 influences this stem cell-like 
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plasticity of melanoma cells, which is described as the ability of melanoma cells to 

resemble endothelial cells phenotypically and functionally, which helps them after 

acceptance of signals from their environment to transdifferentiate into endothelial cells 

(Seftor et al. 2002; Hendrix et al. 2003b). 

In a study with cytotrophoblasts, other than endothelial cells, VE-cadherin has 

been found to help those cells to differentiate into human placental tissue and adopt a 

vascular phenotype called pseudovasculogenesis (Zhou et al. 1997), suggesting that 

melanoma cells can engage in vasculogenic mimicry through an embryonic-like 

phenotype reversion with potential stem cell plasticity.  Furthermore, another study 

assessed aggressive human cutaneous melanoma tumor cells in their ability to 

revascularize an ischemic limb model.  Green fluorescent- labeled aggressive melanoma 

cells were seen to participate in revascularization in the ischemic muscle together with the 

tumor cells to restore blood flow to the previously injured tissue (Schatteman et al. 2000; 

Seftor & Kirschmann 2001).  This suggests a stem cell plasticity, similar to angioblasts, 

allowing these cells to resemble endothelial cells functionally and phenotypically. 

Furthermore it permits certain signaling cues from the environment to be accepted by 

aggressive tumor cells, which influences the transdifferentiation of melanoma cells to 

endothelial cells (Seftor et al. 2002; Hendrix et al. 2003b).   

Microarray analysis comparing poorly to aggressive melanoma cells was initially 

used to identify the differential expression of genes that regulate melanoma vascular 

mimicry.  This helped establish a molecular signature characteristic of aggressive 

melanoma cells, and revealed both the expression of the epithelial cell genotype (EphA2) 

and the endothelial genotype (VE-cadherin) (Bittner et al. 2000; Hendrix et al. 2003b).  

EphA2 is a receptor tyrosine kinase and a member of the Eph family of protein tyrosine 

kinases, which is important in angiogenesis.  In both in vitro and in vivo angiogenesis 
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models, regulation of key processes controlling tumor neovascularization has been shown 

to be through EphA2 in combination with its membrane bound ligand, ephrin-A1 (Pandey 

et al. 1995; Ogawa et al. 2000; Brantley et al. 2002; Cheng et al. 2002). 

A novel signaling pathway described by Hess et al., suggests that at cell-cell 

contact areas in aggressive cutaneous and uveal melanoma, both EphA2 and VE-cadherin 

colocalize.  Furthermore, during the formation of vascular mimicry, VE-cadherin and 

EphA2 associate with each other (Hess et al. 2006). 

Knocking out VE-cadherin or EphA2 resulted in an inability of the cells to form 

vasculogenic structures, which resulted in the redistribution of EphA2 from the cell-cell 

adhesion complexes into a more random distribution over the cell surface.  Disruption of 

VE-cadherin expression resulted in a dephosphorylation of EphA2, suggesting that VE-

cadherin facilitates relocalization of EphA2 to cell-cell adhesion complexes and may 

potentiate its interaction with ephrin-A1 (EphA2’s membrane-bound ligand), and its 

subsequent phosphorylation (Pandey et al. 1995; Carmeliet et al. 1999; Dejana et al. 

1999; Ogawa et al. 2000; Hendrix et al. 2001; Hess et al. 2001).  This might result in 

loosening the cell-cell-adhesion and therefore an increase in cell migration, invasion and 

vasculogenic mimicry (Hendrix et al. 2003b).  

Elevated lipid phosphoinositide 3-Kinase (PI3K) activity in epithelial cells has 

been shown to mediate the processes of survival, cell motility, and tubulogenesis through 

effectors downstream of EphA2 and VE- cadherin (Bazzoni et al. 1999).  It was reported 

by Chan et al. that small GTPases such as RAC1 and CDC42 can transduce signals to 

cause tyrosine phosphorylation activity of PI3K.  This in turn results in the formation of 

vasculogenic-like networks (Chan et al. 2002).  It was also found that the activity of 

CDC42 and RAC1 were more increased in highly aggressive melanoma cells during 

tubular network formation and therefore suggests that both may play a role in cell 
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migration and formation of lumens (Hendrix et al. 2003b).  E-Cadherin can induce 

phosphorylation of EphA2 which results in its binding and subsequent activation of PI3K 

(Pandey et al. 1994; Zantek et al. 1999; Orsulic & Kemler 2000).  An additional role for 

PI3K activity was found in promoting melanoma vasculogenic mimicry by regulating the 

expression and function of MT1-MMP and MMP-2, and consequently the cleavage of 

laminin 5γ2 chain (Seftor & Kirschmann 2001; Hess et al. 2003).  By interacting with 

VE-cadherin through VEGFR2 and B-catenin, PI3K is able to contribute to the survival 

of endothelial cells (Carmeliet et al. 1999).  Endothelial cell migration is dependent on the 

activation of PI3K, which occurs downstream of focal adhesion kinase (FAK) activation 

in VEGF-A stimulated cells expressing VEGFR-2 (Carmeliet 2000; Qi & Claesson-

Welsh 2001).  In prostate cancer cells (PC-3), an interaction between FAK and EphA2 

has been reported (Miao et al. 2000).  While in aggressive melanoma cells, 

phosphorylated FAK interacts with EphA2.  These aggressive melanoma cells mimic 

endothelial vasculature (Hess et al. 2005).   

Hendrix et al. proposed that in highly aggressive melanoma cells, VE-cadherin 

would promote the interaction between FAK and EphA2 through regulation of EphA2’s 

ability to translocate to the membrane.  Interaction between EphA2 and its membrane 

bound ligand, would result in phosphorylation of EphA2.  Phosphorylated EphA2 could 

then form an interaction with FAK, which would lead to the phosphorylation and 

activation of FAK.  The signal transduction pathways activated through VE-cadherin and 

EphA2 could converge resulting in the activation of PI3K.  This could then lead to 

melanoma vasculogenic mimicry via activation of MMP-2 and finally resulting in the 

cleavage of the laminin 5γ2 chain (Hendrix et al. 2003b).   

Tumor cell-secreted IL-8 has been recently shown to act directly on vascular 

endothelial cells and to serve as their survival factor (Yoshida et al. 1997).  In the cDNA 
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microarray, it was found that the angiogenic chemokine IL-8 was downregulated after 

Gal-3 knockdown. This effect was validated by RT-PCR and ELISA in vitro. The latter 

assay examined the secretion of IL-8 into the supernatant of cultured cells. Furthermore, 

the decrease in IL-8 levels was confirmed by immunohistochemical staining of C8161 

tumors before and after Gal-3 knockdown.  

 In melanoma cell variants, both non-metastatic and metastatic, it was found that 

constitutive IL-8 transcription activity directly correlates with the activation level of 

constitutive NF-κB (Huang et al. 2000).  Using deletion mutants to analyze the IL-8 

promoter, it was shown that upstream of the transcription start site there is a 133 bp 

region that is necessary for constitutive IL-8 promoter activity.  Furthermore, it was found 

that mutation of NF-κB binding sites in A375 human melanoma cells eliminated the 

constitutive IL-8 promoter activity (Huang et al. 2000).  Finally, a dominant-negative 

mutant IκBα expression vector transfected into melanoma cells resulted in a significant 

decrease of expression of IL-8 and the level of constitutive NF-κB activity.  This 

demonstrates that in highly metastatic human melanoma cells, constitutive NF-κB/relA 

activities can contribute to overexpression of IL-8 (Huang et al. 2000).  A critical role for 

NFκB in regulating IL-8 expression was further confirmed by the production of IL-8 in 

malignant melanoma cells through the induction with L-1α and TNF-α (Patel et al. 2002).  

In highly metastatic A375SM, Liu et al. demonstrated that the proangiogenic TGF-β1 

selectively induced IL-8 expression.  This was not observed in A375P non-metastatic 

parental cells (Liu et al. 2005).  However, this expression of the IL-8 gene was 

transcriptionally mediated through binding of NF-κB, AP-1, and C/EBP-like factor NF-

IL6 to the promoter region. 

The thrombin receptor (PAR-1) can further induce IL-8 upon activation by 

thrombin (Tellez & Bar-Eli 2003).  In metastatic melanoma, overexpression of PAR-1 
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appears to be causally related to a loss of AP-2 expression, as in the case of 

MCAM/MUC18 (Tellez et al. 2003).  This suggests that the gain in expression of both 

IL-8 and MCAM/MUC18 is due to the loss of the AP-2 transcription factor in metastatic 

melanoma.  It was shown, that metastatic melanoma cells, which produce IL-8 or primary 

cutaneous melanoma (IL-8-negative), which are transfected with the IL-8 gene, resulted 

in the upregulation of MMP-2 expression and activity, and displayed an increased 

invasiveness through Matrigel-coated filters (Luca et al. 1997).  IL-8 activation of MMP-

2 led to metastasis through enhanced invasion of host stroma by tumor cells and increased 

angiogenesis. The metastatic melanoma cells producing IL-8 or primary cutaneous 

melanoma (IL-8-negative) transfected with the IL-8 gene upregulated the Matrix 

Metalloproteinase-2 (MMP-2) expression and activity, which increased invasiveness 

through Matrigel-coated filters 

 Therefore, it was hypothesized that since the loss of Gal-3 resulted in 

downregulation of IL-8 secretion, it would also result in a loss of its downstream target 

expression, that of MMP-2. Western Blot analysis, zymography assay and 

immunohistochemical staining in C8161 experimental tumors confirmed that Gal-3 

knockdown resulted in a loss of MMP-2 expression and secretion, whereas no MMP-2 

expression was detected in the cDNA microarray analysis after Gal-3 knockdown. 

 The multiple mechanisms (migration, angiogenesis, tumor and vascular 

endothelial cell proliferation) which appear to be involved in IL-8 action, offer a 

potentially unique target for immunotherapies against human melanomas.  It has already 

been shown in melanoma cells that a human anti-IL-8 antibody (ABX-IL8, obtained from 

Abgenix) displayed a neutralizing affect on IL-8 secretion (Huang et al. 2002).  In 

addition, ABX-IL8 displayed potent inhibition of both MMP-2 expression and activity, 

and was able to decrease invasion of metastatic melanoma cells (A375SM) through the 
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basement membrane.  Finally, ABX-IL8 has been shown to suppress the metastatic 

potential and tumorigenicity of human melanoma TXM-13 and A375SM cells in nude 

mice (Huang et al. 2002).  The suppression of subcutaneous tumor cell growth was 

associated with the decrease in MMP-2 expression and angiogenesis (Huang et al. 2002).  

The results above indicate that metastatic melanoma could be treated with ABX-IL8.  

Anti-IL-8 should be tested either alone or in combination with other chemotherapeutic 

therapies.   

 Furthermore, the mechanism of Gal-3-dependent expression of VE-cadherin and 

IL-8 was investigated. The analysis of the VE-cadherin and IL-8 promoter reporters 

showed that Gal-3 knockdown resulted in inhibition of promoter activity. When the VE-

cadherin promoter sequence for the putative transcription factor binding sites was 

analyzed, it was found that the 600 base pair region upstream from the start sequence 

relative to the start of transcription contains putative binding sites for SP-1, NFkB, EGR-

1, and Ap-2 transcription factors.  The IL-8 promoter was found to contain putative EGR-

1, NFkB, SP-1, and AP-2 transcription factor binding sites. Chromatin 

Immunoprecipitation (ChIP) analysis revealed an increase in EGR-1 transcription factor 

binding to the CDH5 and IL-8 promoters in the Gal-3 shRNA cell line compared to 

parental cells or non-targeting shRNA cells.   

 EGR-1, described as a tumor suppressor, is an 82 kDa phosphoprotein and a 

member of the immediate early gene family of transcription factors that includes EGR-1 

to -4 and NGFI-B (nerve growth factor inducible factor IB) (Milbrandt 1987; Liu et al. 

1996; Silverman & Collins 1999).  It is involved in the regulation of growth and 

differentiation through regulation of transcription of target genes through GC-rich 

elements (Liu et al. 1996).  EGR-1 serves as a bridge between extracellular stimulation 

from growth factors, cytokines, hormones and environmental stress, and the cellular 
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responses associated with differentiation, proliferation, apoptosis and tissue injury (Liu et 

al. 1998; Silverman & Collins 1999).  Many human tumors express moderate to no EGR-

1 in contrast to their normal counterparts (Calogero et al. 1996; Huang et al. 1997b; Liu et 

al. 2000).  In small cell lung and human breast tumors (Levin et al. 1995; Huang et al. 

1997a) EGR-1 expression is decreased or undetectable as well as in human gliomas 

(Calogero et al. 2001). Since EGR1 has been previously shown to occasionally act as a 

transcriptional repressor (Tan et al. 2003), it is suggested that its binding to CDH5 and 

IL-8 promoters in melanoma cells might repress their activity leading to a decrease in 

gene expression.  

In addition to changes to EGR1, it might be expected that Gal-3 knockdown can 

modulate the recruitment of other transcription factors to the CDH5 promoter such as AP-

2, NFkB and SP-1. Indeed AP-2 is lost in melanoma. It can act either as transcription 

activator or repressor. Therefore to gain complete knowledge about CDH5 promoter 

regulation experiments on additional transcription factors has to be conducted in the 

future. 

EGR-1 binding was upregulated in the Gal-3 knockdown cells on Chip assay 

whereas no difference in expression in cytoplasma was detected using Western Blotting 

comparing Gal-3 knockdown cells with NTshRNA control cells.  In this study an increase 

in EGR-1 binding was associated with the decrease in the CDH5 promoter activity.  The 

knockdown of Gal-3 resulted in an increase of EGR-1 recruitment to the CDH5 promoter. 

On the other hand, the transfection experiments showed that overexpression of EGR-1 

resulted in the inhibition of CDH5 expression as well as promoter activity.  However no 

difference in EGR-1 expression has been found after Gal-3 knockdown (data not shown). 

This indicates that EGR-1 may act as a negative regulator of the CDH5 promoter and that 

Gal-3 acts upstream to prevent EGR-1 binding to the CDH5 promoter.  
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To understand the mechanism of EGR-1 mediated repression of CDH5 promoter 

activity the recruitment of Histondeacetylases (HDAC 1 and 2) and Histonacetylase 

(HAT) (p300) to the CDH5 promoter before and after Gal-3 knockdown will be analyzed 

in future studies It is possible that more HDACs and/or less p300 may bind to the CDH5 

promoter as a result of EGR-1 recruitment. Although EGR-1 typically acts as a 

transcriptional activator it can be hypothesized that it either acts as a repressor on the 

CDH5 promoter or that its binding results in a decreased recruitment of other strong 

activators like SP-1.  Indeed, analysis of the CDH5 promoter for potential binding sites 

using the Genomatix software revealed that EGR1 binding sites overlapped with binding 

sites for SP-1.   

Intracellularly, Gal-3 has been shown to suppress both anoikis and drug induced 

apoptosis.  Conversely, it was shown that Gal-3 which was secreted by tumor cells 

induces T-cell apoptosis and played a role in the immune escape mechanism during tumor 

progression through induction of apoptosis of cancer infiltrating T-cells (Nakahara et al. 

2005).  Zubieta et al. correlated the expression of Gal-3 with the apoptosis of tumor-

associated lymphocytes (Zubieta et al. 2006).  Transcriptional repression of Gal-3 has 

been associated with p53-induced apoptosis.  Phosphorylation at Ser46 of p53 is 

important for proapoptotic gene transcription and induction of apoptosis.  Furthermore, 

the homeodomain-interacting protein kinase 2 (HIPK2) has been shown to be involved in 

these functions.  Cecchinelli et al. reported that in Gal-3 repression, p53 and HIPK2 

cooperate and that HIPK2 kinase activity is necessary for this cooperation.  These results 

uncover a new apoptotic pathway in which the antiapoptotic factor Gal-3 is repressed 

through the interaction of HIPK2 and phosphorylated p53 (Cecchinelli et al. 2006).  Gal-3 

has also been shown to be involved with AKT in the ability to protect bladder carcinoma 

cells during TRAIL-induced apoptosis (Oka et al. 2005).    
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Gal-3 is also known to bind to activated K-Ras-GTP.  Both of these antiapoptotic 

proteins are associated with cancer progression.  Overexpression of Gal-3 in the human 

breast cancer cell line of BT-549/Gal-3, correlated with a loss in wt N-Ras-GTP and a 

significant increase in wild-type (wt) K-Ras-GTP.  However the mutant, nononcogenic 

proteins of Gal-3, Gal-3(S6E) and Gal-3(G182A), did not induce the Ras isoform switch.  

During Gal-3’s binding and activation of wt-K-Ras, several oncogenic functions were 

conferred in BT-549 cells suggesting that some of the molecular functions of Gal-3 are 

due in part to K-Ras activation (Shalom-Feuerstein et al. 2005). 

Overexpression of Gal-3 has been shown to regulate expression levels of the Wnt 

pathway, including c-myc and cyclin D1.  (Kim et al. 1999; Lin et al. 2000; Shimura et al. 

2004; Shimura et al. 2005).  It has also been shown to be structurally similar to β-catenin.  

Both β-catenin and Gal-3 contain the consensus sequence (S92XXXS96) which is 

necessary for glycogen synthase kinase-3β (GSK-3β) phosphorylation.  β-catenin is a 

substrate of GSK-3ß, and phosphorylation of β-catenin by GSK-3β is required for its 

nuclear import-export.  ß-catenin is targeted for ubiquitination and degradation through 

phosphorylation by a dual kinase system of CKIα and GSK-3ß (Yost et al. 1996; Ikeda et 

al. 1998; Kishida et al. 1998; Yamamoto et al. 1998; Kikuchi 1999).  Similarly, as the 

consensus sequences suggests, nuclear import-export of Gal-3 is phosphorylation 

dependent via GSK-3β (Yoshii et al. 2002; Shimura et al. 2004; Takenaka et al. 2004).  

Axin, a regulator protein of Wnt, that complexes with β-catenin, also binds Gal-3 using 

the same sequence motif identified by a deletion mutant analysis (Shimura et al. 2005). 

Mutations in the genes of axin, APC or ß-catenin led to enhanced phosphorylation, which 

subsequently led to both their accumulation and accumulation of Gal-3 in the nucleus. 

This resulted in Wnt target genes being activated (Yost et al. 1996; Ikeda et al. 1998). 
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 Furthermore, EGR-1 was found to be bound to the Fibronectin (FN) promoter in 

response to HGF (hepatocyte growth factor) via inhibition of B-RAF/MAP kinase 

pathway by dominant-negative mutants and by U0126-abrogated HGF-induced EGR-1, 

and chromatin immunoprecipitation (Gaggioli et al. 2005).  Also the FN levels were 

found to be increased through exogenous EGR-1, whereas on the other hand through 

activation of the EGR1 corepressor NAB2, EGR-1 was blocked.  This blockage showed 

an upregulation of FN synthesis, which is induced by HGF, and reveals that EGR-1 plays 

a pivotal role in FN expression in response to HGF.  Upon these findings, Gaggioli et al. 

described the regulation of melanoma progression by autocrine HGF signaling or by 

constitutive activation of MAP kinase pathway (Gaggioli et al. 2005).    

It is known that the B-Raf mutation mainly activates the extracellular signal-

regulated (ERK)/mitogen-activated protein (MAP) kinase pathway. Gaggioli et al. further 

showed that high FN and EGR-1 levels were mostly found in cells expressing this 

oncogenic B-Raf mutation. On the other hand, FN expressed endogenously was found to 

be blocked by small interfering RNA (siRNA)- mediated depletion of B-Raf or EGR-1, 

which lead to decreased ability of melanoma cells to be invasive in vitro. However, FN 

could not be upregulated by stimulation of the ERK pathway in normal melanocytes 

(Greene; Gaggioli et al. 2007).  That shows that FN is tumor-specific regulated by the 

constitutive ERK/MAP-Kinase pathway, which reveals a possible role for FN through its 

ability of self-production to intervene in melanoma tumorigenesis by promoting tumor 

cell invasion.  

In summary, a shift of Gal-3 immunophenotype from Benign Nevi to Metastatic 

Malignant Melanoma was observed in the human specimens, which supports the theory 

of a progression model between nevus cells and metastatic melanoma cells.  A different 

pattern of Gal-3 expression in different histologic types of primary melanomas, possibly 
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related to the pattern of sun exposure, and in different types of metastatic lesions, possibly 

associated with survival, was identified.  The increase of Gal-3 protein expression 

correlated with the metastatic potential of melanoma cell lines.  Furthermore, decreased 

Gal-3 expression resulted in reduced tumor growth, lung metastases, proliferation, 

angiogenesis and increased apoptosis in vivo.  Validation of the cDNA microarray 

analysis demonstrated that silencing Gal-3 expression resulted in a loss of expression of 

endothelial cell differentiation markers by melanoma cells (CDH5, FN-1, EDG-1) as well 

as decrease of the angiogenic factor IL-8.  Taken together, these results indicate that Gal-

3 contributes to melanoma tumor growth and metastasis by inducing cell plasticity and 

aggressiveness (Figure 35). Finally, since Gal-3 also provides cancer cells with anti-

apoptotic functions, targeting Gal-3 with shRNA helpfully proved its significance for 

treatment in melanoma. 
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Figure 35 Gal-3 model.  

Gal-3 participates in metastatic progression in melanoma by upregulating VE-cadherin, 

IL-8, FN, MMP-2, EDG-1 and others (laminin, VEGF, FGF-13, IFI27, IGFB27, CDC42). 

There has been found a repressor loop mechanism between Gal-3 and FN, and Gal-3 and 

MMP-2. 
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Summary 

Galectin-3 (Gal-3) belongs to the lectin family of carbohydrate-binding proteins.  Gal-3 is 

known to be involved in diverse biological processes including cell growth, 

differentiation, apoptosis, cell adhesion, malignant transformation and RNA processing.  

It is highly expressed in a variety of human cancers and therefore may play a putative role 

in carcinogenesis and cancer progression.  In order to understand the role of Gal-3 in 

melanoma progression, Gal-3 expression in human melanocytic lesions was studied by 

utilizing a tissue microarray.  Cytoplasmic and nuclear expression levels of Gal-3 

increased as human melanoma lesions progress through the benign nevi to dysplastic nevi 

stages as well as from the primary melanoma to metastatic melanoma stages.  Further 

melanocytic lesions from sun-exposed skin areas displayed high nuclear expression of 

Gal-3 versus low cytoplasmic expression levels.  The analysis of metastatic lesions 

revealed that subcutaneous metastases display only cytoplasmic expression of Gal-3, 

whereas lymph node metastases showed higher nuclear Gal-3 expression.  This indicates 

that Gal-3 levels may serve as a marker of metastatic progression in melanoma. 

Importantly, using clinical data, a near significant correlation was found between 

decreased patient survival and high nuclear-to-cytoplasmic Gal-3 expression ratio in 

tumor specimens. In vitro, Gal-3 expression showed correlation with an increase in 

metastatic potential of melanoma cell lines.  

To further delineate the role of Gal-3 in tumor growth and metastasis, an RNA 

interference approach with lentiviral delivery technology was made to silence Gal-3 

expression in the metastatic melanoma cell line C8161.  A strong decrease in tumorigenic 

and metastatic potential of C8161 cells in vivo after knockdown of Gal-3 was observed.  

The decrease in tumorigenicity after Gal-3 knockdown was accompanied by a decrease in 
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tumor cell proliferation (revealed by staining for Proliferating Cell Nuclear Antigen, 

PCNA), increase in apoptosis (TUNEL assay), and decrease in vessel density (CD31 

staining.  In order to reveal potential gene targets downstream of Gal-3, an Affymetrix 

cDNA microarray analysis on C8161 melanoma cells following Gal-3 silencing was 

performed. The cDNA microarray analysis revealed that the expression of 567 genes was 

downregulated and in 227 genes upregulated after Gal-3 knockdown.  Western blot 

analysis following Gal-3 knockdown confirmed the decrease in the expression of a group 

of endothelial and mesenchymal markers, like Vascular Endothelial (VE)-cadherin 

(CDH5), Interleukin-8 (IL-8), Fibronectin-1 (FN-1), and Endothelial Differentiation 

Sphingolipid G-protein receptor-1 (EDG-1).  Since vascular endothelial cells usually 

express all these proteins, and since aberrant expression of VE-cadherin is known to 

induce vasculogenic mimicry of metastatic melanoma cells, it was hypothesized that Gal-

3 mediates melanoma cell plasticity, a phenomenon associated with melanoma 

aggressiveness.  Indeed, Gal-3 knockdown cells were unable to form tube-like structures 

in a three-dimensional growth model on collagen. IL-8 expression was decreased in Gal-3 

shRNA tumor specimens and ELISA studies showed that the secretion of IL-8 into the 

media of Gal-3 knockdown cells was three fold decreased than in parental cells.  

Furthermore, Gal-3 downregulated the expression of VE-cadherin and IL-8 on the 

transcriptional level.  Finally, the mechanism of downregulation of VE-cadherin and IL-8 

expression following Gal-3 knockdown was analyzed and found that it was associated 

with an increase in binding of the early growth response-1 (EGR-1) transcription 

factor/tumor suppressor to the promoters of these genes, as revealed by chromatin 

immunoprecipitation assay.  Transient overexpression of EGR-1 in C8161 parental cells 

led to the downregulation of VE-cadherin protein as shown by Western Blot analysis.  

Using VE-cadherin promoter/ luciferase reporter gene construct it was shown that 
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overexpression of EGR-1 downregulated the VE-cadherin promoter activity. Gal-3 

knockdown resulted in a decrease in MMP-2 expression and secretion as well as a 

decrease in tumor cell invasion through matrigel-coated filters.  Overall, the results 

presented here demonstrate that Gal-3 may play a critical role in melanoma tumor growth 

and metastasis, at least in part by mediating melanoma cell plasticity and vasculogenic 

mimicry and serves as a marker for melanoma progression. 
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Zusammenfassung 

 

Galectin-3 (Gal-3) gehört zu der Familie der Lektine, welche Kohlenhydratbindende 

Proteine sind. Gal-3 hat eine grosse Bedeutung für verschiedene biologische Vorgänge, 

wie zum Beispiel (z.B.) Zellwachstum, Differenzierung, Apoptose, Zelladhäsion, maligne 

Transformation und RNA Prozessierung. Es ist in einer Reihe von malignen Tumoren / 

Karzinomen humanen Krebsformen stark exprimiert und spielt deshalb eine mögliche 

Rolle in der Karzinogenese und in der Progredienz des Karzinoms. Um die Rolle von 

Gal-3 beim Voranschreiten des Hautkrebses (Melanom) zu verstehen, wurde die Gal-3 

Expression in humanen melanozytischen Gewebeproben mit Hilfe eines Gewebe-

Microarrays untersucht. Der zytoplasmatische und nukleäre Expressionslevel von Gal-3 

erhöhte sich im Verlaufe des Voranschreitens des Hautkrebses von dem Stadium des 

benignen Nevus zum dysplastischen Nevus, sowie auch vom primären zum 

metastatischen  Melanomstadium. 

 Desweiteren zeigten Hautareale, die der Sonne ausgesetzt waren, eine erhöhte 

Expressionsrate von Gal-3 im Nukleus, im Gegensatz dazu war die Gal-3 Expressionsrate 

im Zytoplasma niedrig. 

 Die Analyse von Metastasen ergab, dass subkutane Metastasen Gal-3 nur im 

Zytoplasma exprimierten, wohingegen Lymphknotenmetastasen einen sehr hohen Gehalt 

an Gal-3 im Zellkern aufwiesen. Das bedeutet, dass der Gal-3 Gehalt in der Zelle als 

Marker für das Voranschreiten des metastatischen Melanoms benutzt werden könnte. 

Klinische Daten zeigten eine Korrelation zwischen einer geringeren Überlebenszeit von 

Patienten und einem erhöhten Verhältnis von nukleärer zu zytoplasmatischer Gal-3 

Expressionsrate in Tumorgewebeproben. Ausserdem zeigte sich eine Korrelation 
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zwischen zytoplasmatischer und nukleärer Expressionrate in einer Serie von 

Melanomzellinien mit aufsteigendem metastatischem Potential.  

 Um die Rolle von Gal-3 auf Tumorwachstum und Metastasenbildung weiter zu 

untersuchen, wurde ein RNA-Interferenzansatz gewählt, um mit Hilfe von lentiviraler 

Technologie die Expression von Gal-3 in der metastatischen  Melanomzellinie C8161 

herunterzuregulieren. Ein starker Rückgang des tumorgenen und metastatischen 

Potentials der C8161 Zellen in vivo wurde nach Herunterregulierung von Gal-3 

beobachtet. Neben der Abnahme in der Tumorigenität nach der Gal-3 Runterregulierung 

wurde gleichzeitig eine Abnahme des Tumorzellwachstums (gemessen mittels PCNA), 

eine erhöhte Apoptoserate (gemessen mittels TUNEL) und eine Abnahme in der 

Gefässdichte (gemessen mittels CD31) beobachtet. 

 Um Gene ausfindig zu machen, die unterhalb von Gal-3 auf molekularer Ebene 

liegen, wurde eine Affymetrix cDNA-Mircroarray Analyse von C8161 Melanomzellen 

vor und nach Herunterregulierung von Gal-3 durchgeführt. Die cDNA-Microarray 

Analyse ergab, dass nach der Runterregulierung von Gal-3 567 Gene herunter- und 227 

Gene hochreguliert waren. Western Blot-Analysen bestätigten, dass nach Gal-3 

Herunterregulierung die Expression einer Gruppe von endothelialen und mesenchymalen 

Markergenen, wie z.B. vaskuläres endotheliales (VE)-Cadherin (CDH5), Interleukin-8 

(IL-8), Fibronektin-1 (FN-1) und der endotheliale Differenzierungssphingolipid G-Protein 

Rezeptor-1 (EDG-1) nach Gal-3 Herunterregulierung abnahmen. Da vaskuläre 

endotheliale Zellen gewöhnlich all diese Proteine exprimieren, und da bekannt ist, dass 

die anomale Expression von VE-Cadherin eine „vaskulogene Mimikry” von 

metastatischen Melanomzellen induzieren kann, wurde angenommen, dass Gal-3 im 

Melanom Zellplastizität vermittelt, ein Phänomen, das mit Melanomaggressivität 

verbunden ist. Zellen, in denen Gal-3 herunterreguliert wurde, waren nicht in der Lage 
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tubulär-ähnliche Strukturen auf Kollagen in einem 3-dimensionalem Wachstumsmodell 

zu bilden. 

Die Expression von IL-8 war in Gal-3 shRNA Tumorgewebeproben herabgesetzt und 

ELISA Studien zeigten eine 3-fache Reduktion der Sekretion von IL-8 in das Medium 

von Gal-3 herunterregulierten Zellen im Vergleich zu den Ausgangszellen. Desweiteren 

herabregulierte Gal-3 die Transkriptionsrate von VE-Cadherin und IL-8. 

 Zum Schluss wurde der Mechanismus der Herabregulierung der Expression von 

VE-Cadherin und IL-8 nach Gal-3 Herunterregulierung untersucht und es wurde 

gefunden, dass die Herunterregulierung mit einer Zunahme in der Bindung des EGR-1 

Transkriptionsfaktors/ Tumorsuppressors an die Promotoren dieser Gene assoziiert war, 

was durch ein Chromatinimmunoprezipitationsversuch gezeigt wurde. 

 Transiente Überexpression von EGR-1 in C8161 Ausgangszellen führte zu einer 

Herunterregulierung vom VE-Cadherinprotein, wie mittels Western Blot gezeigt wurde. 

Mit Hilfe eines VE-Cadherin Promoter/Luciferase Reportergen-Konstruktes konnte 

gezeigt werden, dass die Überexpression von EGR-1 die Aktivität des VE-Cadherin 

Promoters herunterregulierte. 

Weiterhin resultierte die Gal-3 Herunterregulierung in einer Abnahme der MMP-2 

Expression und Sekretion sowie in der Abnahme der Fähigkeit von Tumorzellen in 

Matrigel-beschichteten Filter einzudringen. 

 Gal-3 spielt eine kritische Rolle im Fortschreiten des Melanoms und bei der 

Metastasenbildung zumindest teilweise dadurch, dass es Melanomzellplastizität und 

vaskulogene Mimikry vermittelt. 

Zusammenfassend demonstriert die hier presentierte Studie, dass die Gal-3 Expression als 

ein Marker für die Progredienz von Melanomen dienen kann. 
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List of Abbreviations 

293 T   Human embryonal kidney cell line (HEK) 

3-D   Three-dimensional 

A   Assymetry, shape of melanoma lesion 

A375P   Non-metastatic parental cell line 

A375SM  Highly metastatic melanoma cell line 

ABCDE  mnemotic guidance system 

ABX-IL8  Abgenix-IL-8, fully humanized anti IL-8 antibody 

AEC   3 Amino-Ethylcarbazole 

AGE   Advanced glycosylation end product binding protein 

Ala   Alanine 

ALM   Acral-lentiginous melanoma 

AP-2   Activator protein-2, transcription factor 

Arg   Arginine 

Asp   Asparagine 

ATCC   American Type Culture Collection 

ATF1   Activating transcription factor-1 

ATF-2   Activating transcription factor-2 

B   Border Irregularity of melanoma lesion 

B16F1   Melanoma cell line 

BAD   BCL associated death protein 

Balb/C   nude mice 

BCL-2   Anti-apoptotic protein 

bFGF   Basic fibroblast growth factor 
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BH1   BCL-2 homology domain 1 

BN   Benign nevus 

BRAF   Small tyrosine kinase protein-encoding gene, protooncogene 

BT-549  Human breast cancer cell line 

C   Color Variations of melanoma lesion 

C8161   Highly metastatic melanoma cell line 

Ca2+   Calcium 2+ 

cAMP   cyclic Adenosine Monophosphate 

CD31   Micro vessel density marker 

CDC42  GTPase, causes tyrosine phosphorylation activity of PI3K 

CDH5   Vascular endothelial- Cadherin (VE-Cadherin, CD144) 

cDNA   complementary DNA 

CHIP   Chromatin Immunoprecipitation Assay 

c-Kit   Tyrosine Kinase 

CKIα   Dual kinase system 

Cla1   Enzyme 

cm   Centimeter 

CO2   Carbondioxide 

COOH   Carboxy- terminal end, binding to the carbohydrates 

CRD   Carbohydrate recognition domain 

CREB   cAMP reponse element binding protein, transcription factor 

CXCR   Chemokine receptor 

D   Diameter, Moles > than 5 mm 

Da   Dalton 

DAB   3,3’ Diamine Benzadine Tetra Hydrochloride 
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DEPC   Diethylpyrocarbonate 

DM-4   Low metastatic melanoma cell line 

DMEM  Dulbeco’s minimal essential medium 

DMSO   Dimethyl sulfoxide 

DN   Dysplastic nevus 

DNA   Desoxyribonucleic acid 

dNTP   Nucleotides 

DTIC   Dacarbazine, alkylating chemotherapeutic agent 

DX3   Low metastatic melanoma cell line 

E Evolving, defines mole changes in size, shape, surfaces, shades of 
color  

E-Cadherin  Epithelial Cadherin, cell adhesion molecule 

ECM   Extracellular membrane 

EDG-1   Endothelial Differentiation Sphingolipid G-protein receptor-1 

EGFR   Epidermal growth factor receptor 

EGR-1   early growth response-1, transcription factor/ tumor suppressor 

ELISA   Enzyme Linked Immunosorbent Assay 

EPHA2  Ephrin A2, receptor tyrosine kinase 

FACS   Fluorocytometry cell sorting assay 

FAK   Focal adhesion kinase 

FBS   Fetal bovine serum 

FGF-13  Fibroblast growth factor-13 

FN-1   Fibronectin-1 

G-1   Growth phase 1 in cell cycle, Mitose 

G-2   Growth phase 2 in cell cycle, Mitose 

G-361   Melanoma cell line 
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Gal-3  Galectin-3, carbohydrate-binding protein, belongs to the lectin 

  family 

GAPDH  Glyceraldehydes-3 phosphate dehydrogenase 

GC-rich  Glycine-Cystine rich 

GFP   Green fluorescence protein 

Gly   Glycine  

GSK-3β  Glycogen synthase kinase-3β 

H&E   Hematoxillin & Eosin staining 

HAV   His-Ala-Val motif 

HBSS   Hank’s Balanced Salt Solution 

HEK   Human embryonal kidney cell line (293 T) 

HGF   Hepatocyte growth factor 

Hind III  Enzyme 

HIPK2   Homeodomain-interacting protein kinase 2 

His   Histidine 

HT-144  Melanoma cell line 

HUVEC  Human umbilical vascular endothelial cells 

i.p.   Intraperitoneal injection 

i.v.   Intravenous injection 

IACUC  Institutional Animal Care and Use Committee 

IF127   Interferon-27, alpha inducible protein 

IGFB27  Insulin-like growth factor binding protein 7 

IkBα   Inhibitor element of NFkB complex 

IL-2   Interferone-2 

IL-5   Interleukin-5 



 141

IL-8   Interleukin-8 

kDa   Kilo Dalton 

Kpn1   Enzyme 

LAMP1  Lysosome associated membrane protein 1 

LDH   Lactat Dehydrogenase 

Leu    Leucine 

LOH   Loss of heterozygosity 

MAC-2 BP  Gal-3 ligand 

MAPK   Mitogen-activated protein kinase  

MCAM  Melanoma cellular adhesion molecule (MUC18, Mel-CAM,  

  CD146,A32 antigen, S-Endo-1) 

MDG-2  Packaging plasmid 

MEM   Eagle’s minimal essential medium  

MeWo   Highly metastatic melanoma cell line 

Mg2+   Magnesium 2+ 

MGAT-5  Mgat-5 modified N-glucans, Gal-3 ligand 

Mlu1   Enzyme 

MM   Primary melanoma 

MMM   Metastatic melanoma 

MMP   Matrix metalloproteinase 

MMP-2  Matrix Metalloproteinase -2 

MMP-9  Matrix metalloproteinase-9 

mRNA   mitochondrial RNA   

MT1-MMP  Membrane bound Matrix metalloproteinase-1 

MVD   Micro vessel density 
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n   number 

NaCl   Natrium Chloride 

NADPH  Natriumdephosphohydroxyl 

N-Cadherin  Neuronal Cadherin, cell adhesion molecule 

NCOR-1  Nuclear correceptor-1 

NFkB   Nuclear factor kappa B 

NH2   Amino-terminal end, cellular targeting 

NRAS   Small tyrosine kinase protein-encoding gene, protooncogene 

NT shRNA  Nontargeting small hairpin RNA, control 

NWGR  Asparagine-Trypsine-Glycine-Arginine anti-death motif 

oC   Temperature 

P16INK4A/P14ARF Tumor suppressor gene 

P21   Cyclin inhibitor 

P27   Cyclin inhibitor 

P53   Tumor suppressor gene 

P60, p90  AGE- receptor complex 

PACV   Polyvalent allogeneic whole-cell vaccine 

PAR-1   Protease-activated receptor -1   

PAX-2   Packaging plasmid 

PBS   Phosphate balanced saline 

PC3   Prostate cancer cell line 

P-Cadherin  Placental Cadherin, cell adhesion molecule 

PCNA   Proliferating cell nuclear antigen positive cells 

PCR    Polymerize chain reaction 

PD98059  ERK inhibitor 
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PD-ECGF  Platelet-derived endothelial cell growth factor 

PDGF   Platelet derived growth factor, tyrosine kinase  

PI3K   Phosphatidylinositol 3-kinase 

pLVTHM  Vector, obtained from www.tronolab.com   

polylacNAc  Poly N-acetyl lactosamine 

pRL-CMV  Renilla Luciferase reporter plasmid 

PTEN   Phosphatase and tensin homolg, tumor suppressor gene 

RAC1   GTPase, causes tyrosine phosphorylation activity of PI3K 

RAGE   Receptor for advanced glycosylation end product binding protein 

Rb   Retinoblastoma 

RBC   Red blood cell 

RGP   Radial growth phase 

RNA   Ribonucleic acid 

rpm   centrifuge speed 

s.c.   Subcutaneous injection 

SB-2   Low metastatic melanoma cell line 

SC35   Non- small nuclear ribonucleoprotein splicing factor 

STD   Standard deviation 

SDS   Sodium dodecyl sulfate 

Ser46   Serine position 46 

shRNA  small hairpin RNA  

siRNA   small interfering RNA 

SNAIL   Transcription factor 

SP-1   Transcription factor 

SSM   Superficial spreading melanoma 
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t50   tumor growth until death 

Taq   Enzyme 

T-cell   T(hymus) –cell, Immunsystem 

TFAg   Thomsen- Friedenreich glycoantigen 

TGFβ   Tumor growth factor beta  

TIMP2   Matrix metalloproteinase Inhibitor-2 

TMA   Tissue Microarray 

TNFα   Tumor necrosis factor alpha 

Trp   Trypsine 

TUNEL  In situ terminal dUTP Nick End Labeling Assay 

TXM-1  Median metastatic melanoma cell line 

TXM-13  Median metastatic melanoma cell line 

TXM-18  Median metastatic melanoma cell line 

TXM-40  Low metastatic melanoma cell line 

uPA   Urinary plasminogen activator 

UV-B   Ultraviolett radiation light B 

V600E   Single phosphomimetic substitution in the kinase activation  

   domain (V599E) on exon 15    

Val   Valine 

VE-Cadherin  Vascular endothelial- Cadherin, cell adhesion molecule 

VEGF   Vascular endothelial growth factor 

VEGFR-2  Vascular endothelial growth factor receptor-2 

VGP   Vertical growth phase 

WM2664  Highly metastatic melanoma cell line 

α5β1   Fibronectin receptor, integrin 
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αvβ3   Vitronectin receptor, integrin 

μg   Micro gramm 

μm   Micro Milliliter 

μM   Micro Molar 
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