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Preface 

I started my PhD thesis in the group of Dr. Claudia Petritsch at the Genecenter Munich 

working on asymmetric cell division and cell fate determination of neuronal stem cell-like 

neuroblasts. In the first part of this thesis, I will focus on the molecular details of asymmetric 

Miranda localization during neuroblast mitosis.  

In the middle of my thesis I joined my supervisor, who moved to San Francisco to start a new 

position in the laboratory of Dr. Gabriele Bergers in the Department of Neurosurgery at 

UCSF. My move was motivated by my growing interest in stem cell biology and the 

connection of defective stem cell division and cancer which I was investigating in a murine 

mouse model of oligodendroglioma. Results from this project will be discussed in part 2 of 

the present thesis. 
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Neural stem cells in development and cancer  

Summary 

Neural stem cells are defined by their unique ability to undergo self-renewal divisions. By dividing 

asymmetrically, a stem cell simultaneously produces a daughter cell that retains stem cell identity, 

whereas the other starts to differentiate and contributes to a continuous supply of neural cell types.  

Drosophila neuroblasts provide an excellent model system to study asymmetric stem cell divisions. 

The first part of this thesis will concentrate on the important adaptor protein Miranda which ensures 

the asymmetric segregation of cell fate determinants to the differentiating ganglion mother cell during 

neuroblast mitosis.  

The dynamic apical-then-basal localization pattern and the requirement for both Myosin II and Myosin 

VI suggested that Miranda is actively transported to the basal pole as a myosin cargo. However, 

immunofluorescence studies combined with time-lapse confocal microscopy and FRAP analyses 

revealed that Miranda reaches the basal cortex by passive diffusion throughout the cell rather than by 

long range myosin-directed transport. Instead, myosins play an indirect role in asymmetric Miranda 

localization. The formation of active Myosin II filaments in early prophase results in the exclusion of 

Miranda from the apical cortex. In the cytoplasm, Miranda diffuses three-dimensionally through the cell 

and becomes restricted to the basal half of the metaphase neuroblast by Myosin VI to facilitate its 

interaction with a putative basal cortical anchor. 

There is growing evidence that deregulation of the self-renewing process of stem cells may be an 

early event in tumorigenesis and that many cancers contain a small population of so called cancer 

stem cells which are responsible for maintenance and growth of tumors.  

The second part of the thesis will report on the isolation of cells with stem-like features from a murine 

mouse model of oligodendroglioma with activated EGFR signaling and loss of the tumor suppressor 

p53 in the postnatal stem cell lineage. Although oligodendroglioma-derived progenitor cells share 

many similarities with normal neural stem cells, they have increased self-renewing and proliferation 

capacities and in addition, undergo aberrant differentiation. They are multipotential, however, when 

induced to differentiate they preferentially generate cells of the oligodendrocytic lineage recapitulating 

the properties of the tumor they originate from. Brain cancer derived stem-like cells generate new 

tumors following intracranial injections that faithfully reproduce the phenotype of the parental tumor 

qualifying them as cancer stem cells. 

Interestingly, neural stem cells isolated from tumor prone mice long before oligodendroglioma 

occurrence show similar, but less severe alterations in their self-renewing and differentiation 

capacities. Importantly, they never form orthotopic tumors and thus were referred to as premalignant 

stem cells. The overproduction of oligodendrocytic cells is caused by a defect in asymmetric cell 

division that is very likely accompanied with genetic instabilities and epigenetic alterations. This results 

strengthen the hypothesis that early defects in neural stem cells, together with additional genetic 

alterations lead to the progression to a more malignant stem cell type which is responsible for tumor 

growth and maintenance. 
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Zusammenfassung 

Neurale Stammzellen in der Entwicklung und Tumorent stehung  

Neurale Stammzellen sind undifferenzierte Vorgängerzellen, die sich durch asymmetrische Zellteilung 

unbegrenzt vermehren und gleichzeitig in die verschiedenen Zelltypen des zentralen Nervensystems 

differenzieren können.  

Miranda ist ein wichtiges Adapterprotein in Drosophila Neuroblasten und stellt sicher, dass während der 

Zellteilung bestimmte Faktoren selektiv in nur eine Tochterzelle gelangen und dort Linienentscheidungen 

beeinflussen. Die dynamische apikale und später basale Lokalisierung von Miranda sowie die Beteiligung 

von Myosin II und Myosin VI lässt darauf schließen, dass Miranda aktiv und Myosin-abhängig an den 

basalen Kortex transportiert wird. Live Imaging und FRAP Studien, die im ersten Teil dieser Doktorarbeit 

behandelt werden, deuten jedoch darauf hin, dass Miranda den basalen Pol des Neuroblasten eher durch 

passive Diffusion als durch aktiven Transport erreicht. Myosine spielen dennoch eine wichtige Rolle bei 

diesem Vorgang: Die Bildung aktiver Myosin II Filamente zu Beginn der Zellteilung führt zur Abstoßung von 

Miranda vom apikalen Kortex. Daraufhin diffundiert Miranda frei im Cytoplasma und wird schließlich von 

Myosin VI im basalen Bereich des Neuroblasten gebunden wodurch die Interaktion mit einem bisher 

unbekanntem kortikalen Ankerprotein erleichtert wird. 

Seit einigen Jahren häufen sich die Hinweise, dass genetisch veränderte Stammzellen bei der 

Tumorentwicklung eine wichtige Rolle spielen und bei einigen Krebsarten wurden bereits so genannte 

Krebsstammzellen identifiziert. Der zweite Teil dieser Dissertation beschreibt die Isolierung und 

Charakterisierung von Zellen mit stammzellähnlichen Eigenschaften aus Oligodendrogliomen. In dem 

verwendeten Mausmodell führt die Expression einer onkogenen Form des EGF-Rezeptors, sowie der 

Verlust von p53 in postnatalen neuralen Stammzellen zur Entstehung von Oligodendrogliomen. Nach 

Transplantation der isolierten Krebsstammzellen in Gehirngewebe anderer Versuchstiere entstehen erneut 

Tumore, die dem Erscheinungsbild des ursprünglichen Tumors entsprechen.  

Im Vergleich zu normalen neuralen Stammzellen besitzen Krebsstammzellen ein erhöhtes Potential zur 

Selbsterneuerung und unterscheiden sich auch in ihrem Differenzierungsmuster. Obwohl die aus 

Gehirntumoren gewonnenen Krebsstammzellen multipotent sind und alle drei Zelltypen des Nervensystems 

bilden, entwickeln sie sich dennoch bevorzugt in Oligodendrozyten, die auch den Großteil der Zellen im 

Tumor ausmachen. Interessanterweise kann man ein ähnliches, wenn auch wenig stark ausgeprägtes 

Verhalten bei neuralen Stammzellen beobachten, die Mäusen zu einem Zeitpunkt entnommen werden, an 

dem noch kein Tumorwachstum feststellbar ist. Da diese Zellen jedoch noch nicht tumorigen sind, werden 

sie als prämaligne Stammzellen bezeichnet.   

Defekte der asymmetrischen Zellteilung verbunden mit genetischen Veränderungen von neuralen 

Stammzellen sind wahrscheinliche Ursachen für die Überproduktion von Oligodendrozyten. Diese 

Ergebnisse stärken die so genannte Krebsstammzelltheorie: Mutationen führen dazu, dass 

Selbsterneuerungsprozesse einer Stammzelle, die normalerweise einer strikten Kontrolle unterliegen, 

dereguliert werden. Es kommt zu einer unkontrollierten Teilung von Stammzellen, der Ansammlung 

zusätzlicher Mutationen und schließlich zur Entstehung von malignen Krebsstammzellen, die für das 

Wachstum von Tumoren verantwortlich sind.  
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1 Introduction 

1.1 Stem cells 

Stem cells are commonly defined as immature, unspecialized cells that are capable of 

perpetuating themselves as stem cells and of undergoing differentiation into more 

specialized types of cells (Weissman, 2000a; Gage, 2000; Till & McCulloch, 1961). 

Stem cells are most active during embryonic development and give rise to all tissues in the 

body. Embryonic stem cells (ES cells) were first isolated from mouse embryos in 1981 

(Evans & Kaufmann, 1981; Martin, 1981). Animal embryos were the only source for research 

on ES cells until 1998, when a group led by James Thomson at the University of Wisconsin-

Madison announced the first successful isolation of human embryonic stem cells (Thomson 

et al., 1998).  

Adult stem cells are undifferentiated cells found throughout the body after embryonic 

development. In general, adult stem cells are lineage-restricted (multipotential) and only 

differentiate into specialized cell types of the tissue or organ they originate from (e.g. adult 

neural stem cells only differentiate into neurons, astrocytes and oligodendrocytes). Their 

function in a living organism is to maintain and repair tissue and organs they are residing in. 

Because of these features, adult stem cells have received much attention during recent 

years as attractive tools for regenerative medicine (Weissman, 2000b). 

Adult stem cells are rare and generally small in number but have been identified in many 

organs and tissues. They are believed to reside in special areas of the tissue, the stem cell 

niche, often quiescently for a long period of time, until they become activated following 

disease or injury. The adult tissues demonstrated to contain stem cells include brain (Singh 

et al, 2004; Galli et al, 2004; Singh et al, 2003; Ignatova et al, 2002; Hemmati et al, 2003), 

bone marrow (Mazurier et al, 2003; Jiang et al, 2002), peripheral blood (Kessinger & Sharp, 

2003), adipose tissue (Rodríguez et al, 2006; Gimble & Guilak, 2003; Zuk et al, 2002), skin 

(Toma et al, 2001; Oshima et al, 2001; Taylor et al, 2000), liver (Horb et al, 2003), pancreas 

(Gmyr et al, 2000), skeletal muscle (Asakura et al, 2002), corneal limb (Meller et al, 2002), 

mammary gland (Dontu et al, 2003; Alvi et al, 2003) and heart (Beltrami et al, 2001).  

1.2 Mechanism of asymmetric stem cell division 

Stem cells possess the unique ability to self-renew and simultaneously generate more 

differentiated progeny (Morrison & Kimble, 2006). One strategy by which stem cells can 

accomplish this is asymmetric cell division (ACD) (Betschinger & Knoblich, 2004; Clevers, 

2005; Doe & Bowerman, 2001; Yamashita et al, 2005). 
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Work mostly done in Drosophila has suggested two different mechanisms by which ACD can 

be achieved (Horvitz & Herskowitz, 1992): The extrinsic mechanism involves placement of 

daughter cells relative to external cues in a stem cell niche, defined as a microenvironment 

that promotes stem cell maintenance (Li & Xie, 2005). During stem cell division, the mitotic 

spindle is oriented perpendicular to the niche surface ensuring that only one daughter cell 

can maintain contact with the stem cell niche and retains stem cell identity. The other 

daughter cell is placed away from the niche, loses access to extrinsic signals and begins to 

differentiate. The Drosophila germline stem cell provides a classic example of an asymmetric 

division that is controlled by an extrinsic mechanism (Yamashita et al, 2005).  

Alternatively, intrinsic mechanisms include assembly of polarity factors and the subsequent 

asymmetric localization of so called cell fate determinants during mitosis so that they are only 

inherited by one of the daughter cells (Yu et al, 2006; Betschinger & Knoblich, 2004). A 

typical example of ACD controlled by an intrinsic mechanism is provided by the 

Caenorhabditis elegans zygote. Here, asymmetrically localized PAR proteins govern both 

mitotic spindle orientation and asymmetric segregation of cell fate determinants (Gönczy & 

Rose, 2007). Drosophila neuroblast (NB) division is controlled by a closely related 

mechanism (Wodarz, 2005; Doe & Bowerman, 2001). 

The apparatus regulating ACD is conserved from Drosophila neuroblasts to mammalian 

neural stem cells. Although neuroblasts have restricted self-renewal capacities and therefore 

are not classical stem cells, they provide a useful model that will help to understand the 

complexity of mammalian stem cell biology.  

Figure 1: Self -renewal of stem cells can be 
achieved by intrinsic and extrinsic 
regulation. (A) Intrinsic mechanisms include 
the establishment of an axis of polarity which is 
used to localize cell fate determinants 
asymmetrically in mitosis. Orientation of the 
mitotic spindle along this axis ensures that cell 
fate regulators are exclusively segregated into 
only one daughter cell. (B) Stem cells may 
depend on signals coming from the surrounding 
stem cell niche. Regulated orientation of the 
mitotic spindle retains only one daughter in the 
stem cell niche such that only this cell has 
access to extrinsic signals necessary for 
maintaining stem cell identity. From: Knoblich, 
2008. 
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1.3 The apparatus regulating asymmetric cell divisi on in 
Drosophila  

Drosophila neuroblasts divide in an asymmetric fashion to generate a larger cell that retains 

neuroblast properties (self-renewal) and a smaller ganglion mother cell (GMC) (Lee et al, 

2006b). Whereas neuroblasts undergo multiple rounds of stem-like divisions, the GMC only 

divides once more to generate two differentiating neurons. 

Embryonic neuroblasts give rise to the relatively simple nervous system of the larva. They 

are specified within a monolayered epithelium called the ventral neuroectoderm from where 

they delaminate to undergo asymmetric cell division along the apical-basal axis (Justice et al, 

2003). 

1.3.1 The apical complex: a central regulator of ce ll polarity, spindle 

positioning and asymmetric segregation of cell fate  determinants 

Before mitosis, a protein complex consisting of Par-3, Par-6 and atypical protein kinase C 

(aPKC) assembles on the apical side of the cell. This complex is not thought to influence cell 

fate directly, instead it regulates the transport of cell fate determinants to the opposite basal 

pole of the cell (Goldstein & Macara, 2007; Suzuki & Ohno, 2006; Betschinger & Knoblich, 

2004). Par-6 is a small protein containing a PDZ domain through which it interacts with aPKC 

and a CRIB domain which is critical for the localization to the cell cortex (Atwood et al, 2007; 

Petronczki & Knoblich, 2001). Par-3 also contains PDZ domains and can interact with aPKC 

(Wodarz et al, 1999; Schober et al, 1999; Kuchinke et al, 1999). The Par protein complex 

has a conserved function in establishing cell polarity and providing positional information 

(Ohno, 2001).  

The cytoskeletal protein Lethal (2) giant larvae (Lgl) is a key substrate of aPKC (Plant et al, 

2003; Yamanaka et al, 2003; Betschinger et al, 2003a). Although Lgl is required for 

restricting the Par complex to the apical domain it is not concentrated apically but localized 

uniformly cortical instead. Phosphorylation is supposed to inhibit Lgl on the apical pole and 

restricts Lgl-activity to the basal side of the neuroblast. Because Lgl seems to be important to 

recruit cell fate determinants to the cell cortex, this model could explain their asymmetric 

localization in neuroblasts (Betschinger et al, 2003a; Peng et al, 2000; Ohshiro et al, 2000). 

For successful asymmetric segregation of cell fate determinants, the orientation of the mitotic 

spindle needs to be coordinated with their asymmetric localization. Neuroblasts delaminate 

from the neuroepithelium and divide perpendicularly to the epithelial plane by rotating their 

bipolar spindle 90° along their apical/basal axis ( Kaltschmidt & Brand, 2002; Kaltschmidt et 

al, 2000).  



Introduction 
 

4 

A central role for the coordination of spindle positioning has been demonstrated for a protein 

called Inscuteable (Kraut et al, 1996). Inscuteable localizes apically by binding to Par-3 and 

recruits an additional protein called Pins (Parmentier et al, 2002; Schaefer et al, 2000; Yu et 

al, 2000) into the apical complex which in turn binds to the heterotrimeric G protein subunit 

Gαi. This leads to a conformational change of Pins and facilitates binding of an additional 

protein called Mud (Izumi et al, 2006), the Drosophila homolog of the microtubule and dynein 

binding protein NuMA. Although the precise mechanism is not totally understood, it is 

believed that the apical concentration of Mud provides a binding site for astral microtubules 

which attract one of the spindle poles to orient the mitotic spindle.  

1.3.2 Segregating cell fate determinants specify da ughter cell fate  

Unequal segregation of several proteins into only one cell during neuroblast mitosis leads to 

a different fate of the two neuroblast daughter cells. Due to their ability to specify daughter 

cell fate, these proteins are referred to as cell fate determinants. 

Upon neuroblast division, a basal protein complex is inherited exclusively by the ganglion 

mother cell (Wodarz & Huttner, 2003; Knoblich, 1998; Jan & Jan, 1998). 

The basal protein complex consists of the cell fate determinants Numb (Rhyu et al, 1994), 

Prospero (Doe et al, 1991) and prospero RNA (Broadus et al, 1998), the adaptor proteins 

Miranda (Shen et al, 1997) and Partner of Numb (PON) (Lu et al, 1998), and the RNA 

binding protein Staufen (Li et al, 1997).  

Numb is an evolutionary conserved cell fate-determining factor and plays a pivotal role in the 

development of Drosophila and the nervous systems of other vertebrates (Cayouette & Raff, 

2002; Shen et al, 2002; Wakamatsu et al, 1999; Zhong et al, 1996a). Numb is membrane 

associated and acts as a tissue-specific repressor of the Notch pathway (Le Borgne et al, 

2005; Schweisguth, 2004).  

Like Numb, the transcription factor Prospero segregates asymmetrically in neuroblasts. 

Shortly after neuroblast mitosis it translocates into the nucleus of the GMC where it acts both 

as a transcriptional activator or repressor (Karcavich, 2005; Doe et al, 1991). When Prospero 

is mutated in embryonic neuroblasts, the GMC undergoes multiple rounds of divisions and 

continues to express neuroblast markers (Choksi et al, 2006). 

Only recently, the protein Brat has been identified as another important regulator of stem cell 

renewal (Betschinger et al, 2006b; Bello et al, 2006; Lee et al., 2006c). Brat was previously 

shown to act as an inhibitor of ribosome biogenesis and cell growth (Frank et al, 2002). Thus 

it is speculated that Brat might inhibit cell growth in the GMC to prevent self-renewal and 

induce differentiation.  
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The asymmetric segregation of the cell fate determinants Prospero, Brat and Numb is 

mediated by two adaptor proteins called Miranda and Partner of Numb (PON). Miranda 

associates with the transcription factor Prospero and the growth regulator Brat and is 

essential for their asymmetric localization into only one daughter cell (Lee et al., 2006c; 

Schuldt et al, 1998; Matsuzaki et al, 1998; Shen et al, 1998; Shen et al, 1997; Ikeshima-

Kataoka et al, 1997). Miranda also binds to the RNA binding protein Staufen (Broadus et al, 

1998) which transports prospero RNA to the GMC.  

Miranda localizes asymmetrically in metaphase and segregates exclusively into one of the 

daughter cells during neuroblast division. In Miranda mutants, Prospero, Brat and Staufen 

are mislocalized uniformly to the cytoplasm and inherited equally by both daughter cells 

highlighting the obligatory role of Miranda for proper asymmetric neuroblast division 

(Matsuzaki et al, 1998; Slack et al, 2007).  

Similar to Miranda, PON, the adaptor protein for Numb, localizes to a basal crescent in 

metaphase and is inherited by the smaller GMC. However, it is not strictly required for Numb 

localization as Numb eventually localizes asymmetrically in PON mutants. However, Numb 

localization is delayed in metaphase which finally leads to defects in self-renewal. This 

suggests that PON assists the asymmetric localization of Numb but is not necessarily 

required at later stages of cell division (Wang et al, 2006). 

1.3.3 Asymmetric localization of cell fate determin ants 

Miranda localization requires both Myosin VI (Petritsch et al, 2003) and Myosin II (Barros et 

al, 2003). In mutant embryos with reduced Myosin VI activity, Miranda does not form a basal 

crescent but is mislocalized to the cytoplasm (Petritsch et al, 2003). Unlike all other 

characterized myosins, Myosin VI moves processively towards the minus end of actin 

filaments taking large steps but can also function as an actin-based anchor (Sweeney & 

Houdusse, 2007). Myosin VI protein is abundantly expressed in neuroblasts, where it 

transiently accumulates in the basal half of the metaphase cell and partially co-localizes with 

Miranda (Petritsch et al, 2003). In addition, Myosin VI forms a complex with Miranda and 

Prospero in Drosophila embryonic extracts and shows direct physical interaction with 

Miranda in vitro (Petritsch et al, 2003). These observations suggested that Miranda might be 

actively transported to the basal cortex by Myosin VI. However, this proposed model for 

actin-myosin dependent transport of cell fate determinants is incompatible with more recent 

photobleaching experiments which failed to detect any directional transport of segregating 

determinants (Erben et al, 2008; Mayer et al, 2005). 

Miranda also shows physical interaction with Zipper, the heavy chain of Myosin II (Petritsch 

et al, 2003). Myosin II is a plus end-directed motor which forms bipolar filaments as a 
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heterohexamer (Bresnick, 1999). Earlier data have suggested that Zipper antagonizes basal 

crescent formation by negatively interacting with Lgl (Peng et al, 2000; Ohshiro et al., 2000). 

The zygotic zipper mutant has intact asymmetric cell division most likely due to maternal 

contribution of wild type Zipper. More recently, it has been shown that Myosin II is activated 

through phosphorylation by Rho kinase and can be selectively inhibited by Rho kinase 

inhibitor (Barros et al, 2003). Inhibition of Myosin II results in mislocalization of Miranda 

uniformly around the cortex. Myosin II itself localizes asymmetrically to the apical pole at 

prophase and subsequently moves along the cortex to accumulate at the cleavage furrow 

(Barros et al, 2003; Strand et al, 1994). Myosin II interacts with the tumor suppressor Lgl to 

localize Miranda. Myosin II can only become activated after Lgl is phosphorylated and 

inactivated by aPKC at the apical cortex (Betschinger et al, 2003b). Thus it has been 

proposed that active Myosin II filaments on the apical pole exclude Miranda from the cortex 

rather than transport it from the apical to the basal cortex (Barros et al, 2003). 

As previously determined by time-lapse confocal microscopy, PON protein is recruited from 

the cytoplasm to the cortex at interphase in neuroblasts and moves two-dimensionally along 

the cortex to a basal cortical crescent (Lu et al, 1999). FRAP analysis of PON in sensory 

organ precursor cells of Drosophila pupae suggested that PON becomes rapidly recruited 

from juxta-cortical areas to form a basal cortical crescent by binding to a high-affinity binding 

partner. PON localization depends on aPKC activity and the phosphorylation status of Lgl 

(Mayer et al, 2005) and is sensitive to 2,3-butanedione monoxime (BDM), an inhibitor of 

myosin ATPase activity (Lu et al, 1999). These data suggest that PON like Miranda requires 

myosin motor activity for basal localization. Since Miranda and PON both localize to a basal 

crescent in metaphase in a myosin-dependent fashion, it is possible that they engage similar 

molecules such as the cortical Myosin II to reach their destination. However, a requirement of 

Myosin II for PON localization has not been studied yet. 

1.3.4 Cell cycle genes regulate ACD and act as tumo r suppressors 

There is increasing evidence that cell cycle regulators can control various aspects of 

asymmetric cell division such as the decision of self-renewal versus differentiation (Chia et 

al, 2008). 

Neuroblast polarity is already set up in interphase, however, cell fate determinants only 

localize during mitosis which suggests a tight coordination with cell-cycle progression. In 

general, entry into mitosis is triggered by activation of Cdc2. The first indication that cell cycle 

regulators might also control ACD came from a study on a dominant negative allele of Cdc2, 

cdc2E51Q (Tio et al, 2001). When the activity of Cdc2 was attenuated, neuroblasts failed to 
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asymmetrically localize components of both the apical and basal complex resulting in a 

conversion from asymmetric to symmetric cell divisions. 

In contrast to Cdc2, the kinases Aurora A, Aurora B and Polo are only required for a subset 

of mitotic events including the spindle checkpoint, centrosome maturation and cytokinesis 

(Barr et al, 2004; Meraldi et al, 2004). Loss of function mutations in either gene have been 

described to cause defects in centrosome maturation, delay and/or arrest at metaphase and 

defects during cytokinesis (Carmena et al, 1998; Glover et al, 1995; Llamazares et al, 1992). 

Surprisingly, it was recently shown that mutations in Aurora A or Polo cause massive 

overgrowth in the brain (Wang et al, 2007; Lee et al, 2006a) qualifying these kinases as 

tumor suppressor proteins.  

In addition, recent findings suggest that the anaphase-promoting complex/cyclosome 

(APC/C) is specifically required for asymmetric localization of Miranda and its cargo proteins 

Prospero, Brat and Staufen (Slack et al, 2007). The APC/C functions as an E3 ubiquitin 

ligase that normally targets proteins for degradation via the 26S proteasome (Peters, 2006), 

including mitotic cyclins and inhibitors of chromosome separation as well as regulators of 

DNA replication, centrosome duplication and mitotic spindle assembly (Leismann & Lehner, 

2003; Zur & Brandeis, 2001; Sigrist et al, 1995). 

 

 

Figure 2: Summary of Drosophila neuroblast asymmetric division. The asymmetric segregation of 
cell fate determinants into the smaller ganglion mother cell (GMC) requires the correct localization of 
protein complexes to the apical cell cortex. Epithelial apical basal polarity is used to establish the Par 
complex consisting of Par-3, Par-6 and aPKC (red crescent). Upon entry into mitosis, activation of the 
kinases Aurora-A and Polo results in the orientation of the mitotic spindle perpendicular to the 
epithelial plane by the microtubule binding protein Mud, which is recruited apically by Pins and the G 
protein Gαi (green). Inscuteable associates with Gαi and links this protein complex with the Par 
complex. aPKC is believed to inactivate Lgl by phosphorylation and results, most likely due to apical 
exclusion, in the localization of cell fate determinants (purple) to the basal cortex. The basal proteins 
exist in two protein complexes: one complex contains the adaptor protein Miranda which transports 
the translational repressor Brat, the transcription factor Prospero and the RNA binding protein Staufen 
together with prospero mRNA. The second complex consists of Partner of Numb and its binding 
partner Numb, which represses Notch signaling in the GMC. From: Knoblich, 2008.  
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1.4 Adult neural stem cells 

Until recently, neurogenesis in the mammalian central nervous system (CNS) was believed 

to be accomplished briefly after birth (Rakic, 1985). Although studies in the 1960s reported 

that neurogenesis occurs in discrete areas of the rodent brain (Altman, 1970; Altman & Das, 

1966a; Altman, 1963), it was many years later that newly developed techniques to identify 

dividing cell in the CNS contributed to confirm that neurogenesis occurs in the adult 

mammalian brain (Kuhn et al, 1996; Seki & Arai, 1993; Luskin, 1993), including humans 

(Eriksson et al, 1998). The discovery of neural stem cells (NSC) was of outstanding interest, 

indicating that cell replenishment was possible within the brain, something previously 

considered impossible.  

Adult NSC are cells of the adult nervous system that can self-renew and differentiate into all 

types of neural cells, including neurons, astrocytes and oligodendrocytes (Gage, 2000). As 

the functional components of the nervous system, neurons are responsible for information 

processing, whereas astrocytes and oligodendrocytes (collectively known as glia) have 

supporting roles. 

Neurogenesis primarily occurs in two areas of the adult mammalian brain: the subgranular 

zone (SGZ) of the dentate gyrus in the hippocampus (Gage et al, 1998) and the 

subventricular zone (SVZ) of the lateral ventricles (Lois & Alvarez-Buylla, 1994) (Figure 3). 

Neurons born in the SVZ migrate over a great distance through the rostral migratory stream 

and differentiate into interneurons in the olfactory bulb (Kornack & Rakic, 2001; Lois & 

Alvarez-Buylla, 1994; Corotto et al, 1993). Newly generated neurons in the adult SGZ 

migrate into the granule cell layer of the dentate gyrus and become dentate granule cells 

(van Praag et al, 2002; Markakis & Gage, 1999; Kornack & Rakic, 1999). 

 

Figure 3: Neurogenesis in the adult mammalian brain . Sagittal and coronal views of a mouse brain 
in areas where neurogenesis occurs. Germinal zones are indicated in red: the subgranular zone 
(SGZ) of the hippocampal dentate gyros an the subventricular zone (SVZ) of the lateral ventricles. 
Neurons generated in the SVZ migrate through the rostral migratory stream (green) and are 
incorporated into the olfactory bulb. Adapted from: Zhao et al., 2008   
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Adult neurogenesis is modulated by various environmental stimuli and pathophysiological 

conditions and affects the proliferation of neural stem cells, differentiation and fate 

determination of progenitor cells. Learning, environmental enrichment and various forms of 

exercise enhance neurogenesis in the adult hippocampus (Brown et al, 2003; Ra et al, 2002; 

Gould et al, 1999) whereas social isolation, stress and sleep deprivation decrease 

hippocampal neurogenesis (Guzman-Marin et al, 2005; Malberg & Duman, 2003; Lu et al, 

2003). New neuronal cells have also been reported to be generated at the sites of injury or 

degeneration, where they are able to replace some of the lost nerve cells (Zhao et al, 2008; 

Jessberger et al, 2007). 

1.4.1 Architecture of germinal zones 

The subventricular zone (SVZ), a thin layer that lines the lateral ventricles of the brain, 

contains most dividing cells in the adult mammalian brain (Lois & Alvarez-Buylla, 1993; 

Altman & Das, 1966b). The SVZ contains three types of progenitor cells: slowly dividing 

astrocyte-like neural stem cells known as type-B cells which give rise to actively dividing 

type-C transit amplifying cells. These in turn give rise to immature neuroblasts, called type-A 

cells, which subsequently migrate through the rostral migratory chain to the olfactory bulb 

and differentiate into interneurons (Doetsch et al, 1997; Doetsch & Alvarez-Buylla, 1996; Lois 

& Alvarez-Buylla, 1994). Evidence for the existence of astrocytes with stem-cell properties in 

the SVZ came from experiments using the antimitotic drug cytosin-ß-D-arabinofuranoside 

(Ara-C). Infusion of Ara-C into the brain for 6 days completely abolished neuroblasts and 

transit amplifying type-C cells but did not affect all type-B astrocytes. Indeed, after this 

treatment, astrocytes started to divide and regenerated the SVZ within 10 days (Doetsch et 

al, 1999). More recently, it has been demonstrated that progenitors of the SVZ are also 

capable of generating oligodendrocytes in addition to olfactory interneurons (Menn et al, 

2006).  

The SVZ also contains blood vessels, microglia, and cells are also in contact with 

multiciliated ependymal cells that line the lateral ventricle (Mercier et al, 2002). This 

architecture allows for extensive cell-cell interaction and the propagation from the 

cerebrospinal fluid in the ventricle, the surrounding extracellular matrix and blood vessels. It 

is hypothesized that such a microenvironment, known as the neurogenic stem cell niche, 

may provide specific factors that are permissive for neural progenitor cells (Morrison & 

Spradling, 2008; Ramírez-Castillejo et al, 2006; Alvarez-Buylla & Lim, 2004).  

Two types of progenitors can be identified in the subgranular zone of the hippocampal 

dentate gyrus: Type 1 hippocampal progenitors have a radial process spanning the entire 

granule layer (Steiner et al, 2006; Fukuda et al, 2003; Seri et al, 2001). The SGZ also 
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contains horizontally oriented progenitors that lack a radial process (Seri et al, 2001; Filippov 

et al, 2003). Unlike the cells of the SVZ, progeny of SGZ cells, called type-D cells, do not 

migrate a long distance through the brain but differentiate within the granule cell layer to form 

new granule neurons (Seri et al, 2001).   

 

 

Figure 4: Architecture of germinal zones in the adu lt murine brain. (A) The position of the 
subventricular zone at the lateral wall of the lateral ventricle (LV) is indicated in the coronal brain 
section. (Inset in A) Detailed view of the lateral ventricle wall. The SVZ contains type-B neural stem 
cells, transit amplifying type-C cells and neuroblasts, also called type-A cells. The cells of the SVZ 
have extensive contact with the basal lamina (BL) microglia (M) and ependymal cells (E) that line the 
lateral ventricle (LV) and also lie near blood vessels (BV). (B) The subgranular zone is located within 
the dentate gyrus of the hippocampus. (Inset in B). The SGZ contains radial progenitor cells with long 
processes that span through the granular layer (rA) and horizontal progenitors (hA). Their progeny, the 
type-D cells, develop apical processes that become dendrites of new granule neurons. Adapted from 
Ihrie et al., 2006 

 

In 1992, Reynolds and Weiss reported the first isolation and in vitro characterization of NSC 

from the adult murine brain (Reynolds & Weiss, 1992). The investigators isolated a 

population of undifferentiated cells that differentiated into the main cell types of the nervous 

system, neurons, astrocytes and oligodendrocytes. In the presence of epidermal growth 

factor in the medium, they formed floating clusters of cells, also called neurospheres. This 

approach represents a serum-free selective culture system in which most differentiating or 

differentiated cells are rapidly abolished. In contrast, neural stem cells respond to mitogens, 

divide to form neuroshperes that can be dissociated and re-plated to generate secondary 

neurospheres (Reynolds & Rietze, 2005). These progenitor cells expressed Nestin, an 

intermediate filament that has been characterized as a marker for neuroepithelial and CNS 

stem cells during development and thus is also considered as a marker for adult neural 

progenitor cells (Reynolds & Weiss, 1992; Lendahl et al, 1990; Frederiksen & McKay, 1988). 

Later, a population of cells with similar properties was isolated from the adult rat 

hippocampus (Gage et al, 1995). These cells were grown as monolayers in defined medium 

containing basic fibroblast growth factor (bFGF) and in vitro studies identified self-renewing 

and multipotential NSC within this population (Gritti et al, 1996; Palmer et al, 1997).  
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Since then, neural progenitor cells with characteristic features of stem cells have been 

isolated and characterized from various areas of the adult CNS and various species, 

including humans (Taupin, 2007).  

Neural stem cells can be passaged and expanded indefinitely with little change in their 

growth or differentiation characteristics (Gritti et al, 1996; Reynolds & Weiss, 1992) indicating 

that neural stem cells possess the fundamental stem-cell criteria of self-renewal and 

multipotency. 

1.5 Asymmetric cell division in the mammalian brain  

Asymmetric cell division is also a hallmark of mammalian stem cells. However, the 

mechanism by which asymmetry is generated is less understood. Adult stem cells have long 

cycling-times or are completely quiescent, making the analysis of ACD in these cells 

enormously complicated. Thus, a lot of our current knowledge about ACD in mammals 

comes from studies of more rapidly dividing embryonic progenitor cells, and the developing 

brain is one of the most investigated model systems. 

1.5.1 Neurogenesis in the murine brain 

The murine brain develops from a neuroepithelium which invaginates from an area called the 

neural plate (Götz & Huttner, 2005). Early in development, neural plate cells display all 

features of a polarized epithelium but soon express the neural stem cell marker Nestin. Later, 

they show characteristic features of glia cells and from this time on are referred to as radial 

glial cells (RGC). RGC are elongated cells with their cell body in the ventricular zone (the 

most apical part of the epithelium) of the developing brain and long processes which span 

the entire neuroepithelium. Thus, they have long been considered as support cells for the 

brain (Rakic, 1981). RGC were thought to be glial cells not only because they are the 

immediate precursors of astrocytes (Voigt, 1989; Schmechel & Rakic, 1979) but also 

because they express markers of astroglial cells and share morphological and ultrastructural 

characteristics. However, recent evidence suggest RGC to be the progenitors of neurons in 

the mammalian neocortex (Miyata et al, 2001; Noctor et al, 2001; Malatesta et al, 2000; 

Tamamaki et al, 2001).  

Most neurons are generated from the asymmetric division of radial glial cells (Noctor et al, 

2004) and migrate along the processes of RGC to the more basal side of the 

neuroepithelium where their differentiation occurs. The majority of RCS divisions are stem 

cell-like and produce another RGC and one neuron, however, sometimes either two 

proliferating RCS or differentiating neurons are generated (Noctor et al, 2001; Miyata et al, 

2001).  
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1.5.2 Conservation of ACD in mammalian stem cells  

Unlike neuroepithelial cells, radial glia can divide either parallel or perpendicular to the 

epithelial surface and several studies have provided evidence for a correlation between 

spindle orientation and the asymmetry of radial glia division (Haydar et al, 2003; Chenn & 

McConnell, 1995). However, a precise correlation of cleavage plane orientation and 

asymmetric outcome of the division is still unclear as more recent experiments determined a 

strong predominance of vertical divisions at all stages of neurogenesis. As a consequence, 

the number of horizontal divisions is too low to explain the high amount of asymmetric cell 

divisions of neural progenitor cells (Konno et al, 2008; Stricker et al, 2006). 

Similar to Drosophila, spindle orientation is regulated by heterotrimeric G proteins and their 

binding partners Inscuteable and AGS-3, the mammalian Pins homolog (Konno et al, 2008; 

Sanada & Tsai, 2005; Zigman et al, 2005). Inhibition of these molecules alters the ratio of 

asymmetric versus symmetric cell divisions and results in the generation of higher numbers 

of neurons. However, a recent study claims that spindle orientation does not effect neuronal 

production rate (Konno et al, 2008).    

Many other molecules regulating asymmetric cell division of Drosophila neuroblasts are also 

conserved in mammalian stem cells. Par proteins, such as Par-3 (Izumi et al, 1998) and  

Par-6 (Joberty et al, 2000), together with the aPKC homologs PKCζ and PKCα form an 

apical complex and are inherited by the stem cell daughter (Manabe et al, 2002). The Par 

complex regulates polarity via phosphorylation of the Lgl homolog Lgl-1 (Plant et al, 2003; 

Joberty et al, 2000). 

The mammalian Numb homologs mNumb and Numblike (Numbl) were the first segregating 

cell fate determinants to be discovered in mammalian progenitor cells. Both proteins inhibit 

Notch signalling and are essential for brain development (Petersen et al, 2002). Mammalian 

Notch1 promotes stem cell fate of radial glial cells and astrocytes (Gaiano et al, 2000) but 

inhibits oligodendrogenesis (Gaiano & Fishell, 2002). Whereas Numbl is a cytoplasmic 

protein, mNumb is apically localized in the developing neocortex (Zhong et al, 1996b). This 

localization has led to the hypothesis that mNumb might be asymmetrically inherited during 

horizontal divisions and thus be responsible for the asymmetric outcome. Deletion of mNumb 

and Numbl in progenitor cells leads to the depletion of progenitor cells and stops 

neurogenesis, supporting a role as segregating determinant. However, the contribution of 

Numbl is not clear as it does not localize asymmetrically. In addition, deletion of mNumb at 

later stages of development using an conditional knock out leads to overproliferation of 

neural progenitors and is contradictive to earlier results (Li et al, 2003). Surprisingly, loss of 

mNumb does not affect stem cell maintenance in the adult brain where neural stem cells also 

divide in a asymmetric fashion (Kuo et al, 2006). Instead, ependymal cells in the stem cell 



Introduction 
 

13 

niche are affected and thus, loss of mNumb has only an indirect effect on stem cell 

proliferation. A recent study demonstrated that the actual function of mNumb during brain 

development might be the maintenance of adherens junctions in radial glial cells (Rasin et al, 

2007). mNumb was shown to localize to the apical endfeet of interphase radial glial cells that 

surround mitotic progenitors - something that so far was thought to be an apical crescent in 

actively dividing progenitors. In contrast, within the dividing cell, the apical domain is actually 

very narrow and mNumb has shown to be localized mainly basolateral concentrated at 

vesicles near adherens junctions. In the absence of mNumb adherens junctions are lost and 

it is thus suggested that mNumb might not be a segregating determinant on mouse neural 

progenitors but more likely, regulates epithelial polarity (Rasin et al, 2007). 

The Prospero homolog Prox-1 is a potential tumor suppressor and is expressed in the brain 

but seems not to be segregated asymmetrically (Dyer et al, 2003). Similar, Staufen has a 

conserved role in RNA transport but does not seem to be involved in ACD of mammalian 

neural progenitor cells (Knoblich, 2008). The Brat homologs TRIM2, TRIM3 and TRIM32 are 

highly expressed but their role as segregating determinants remains to be determined 

(Knoblich, 2008).  

However, it is also possible that proteins not implicated in the regulation of Drosophila 

neuroblast divisions have important roles in the mammalian ACD apparatus. Intriguingly, the 

epidermal growth factor receptor (EGFR) has been shown to be asymmetrically segregated 

in dividing neural progenitors (Sun et al, 2005). In culture, the daughter cell that inherits 

EGFR responds differently to EGF and expresses different markers, suggesting that 

asymmetric EGFR distribution might bias cell fate decisions.  

In addition, divisions of neural progenitors are morphologically asymmetric. Compared to 

other epithelial cells, the apical domain of radial glia cells is very narrow due to their 

elongated shape (Rasin et al, 2007; Götz & Huttner, 2005). As a consequence, the apical 

domain can be asymmetrically inherited in all divisions in which the cleavage furrow is not 

perfectly vertically oriented. This might also explain why the amount of asymmetric divisions 

is much higher as estimated from the number of clearly horizontal divisions (Kosodo et al, 

2004; Noctor et al, 2001).  

Together, the precise mechanism by which mammalian neural progenitors can self-renew 

and generate cell diversity is currently unclear. It is also not known whether components of 

the ACD-apparatus are conserved between Drosophila and vertebrates. Whereas some 

proteins are functionally conserved (e.g. proteins of the Par complex) and obligatory for 

proper ACD, others seem to be elusive or regulate ACD only indirectly (e.g. Numb, Staufen, 

Prox-1). Moreover, whether cell fates are generated by unequal inheritance of segregating 

determinants is unclear (Fuja et al., 2004).  
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1.6 Asymmetric cell division and cancer 

Cancers are composed of heterogeneous cell populations including highly proliferative 

immature precursors and more differentiated cells (Tang et al, 2007; Guo et al, 2006). It has 

recently become clear that many tumors are maintained by a small fraction of so called 

cancer stem cells (CSC) that give rise to all the cells present in the tumor (Reya et al, 2001). 

This raises the possibility that defects in stem cell lineages might be among the earliest 

lesions that lead to tumor formation. Indeed, several findings point to dysfunctional ACD as a 

key factor in cancer development.  

1) Drosophila neuroblasts have recently emerged as a model system to study the transition 

from a normal stem cell to a tumor stem cell (Caussinus & Gonzalez, 2005). Upon mutation 

of genes involved in asymmetric cell division, neuroblasts hyperproliferate and acquire 

massive chromosomal abnormalities and genetic changes. Interestingly, injection of larval 

brain tissue mutant for any of the components that control neuroblast asymmetric cell 

division (i.e. Miranda, Prospero, Numb, Lgl, Brat, Pins) into the abdomen of adult flies leads 

to overproliferation of the transplanted neuroblasts and the formation of metastasizing tumors 

(Beaucher et al, 2007; Caussinus & Gonzalez, 2005). These implanted cells appear to be 

immortal and can be serially transplanted over long periods of time. 

It has been proposed, that these tumors arise from a common mechanism, the disruption of 

neuroblast asymmetry and the production of excess self-renewing cells. Supporting this 

hypothesis, more recent studies have shown that all segregating cell fate determinants 

(Prospero, Numb and Brat) as well as their adaptor molecules Miranda and Pon can act as 

tumor suppressors (Bello et al, 2006; Choksi et al, 2006; Lee et al, 2006a; Wang et al, 2006; 

Betschinger et al, 2006a).  

2) The human Lgl homolog Hugl-1 is frequently deleted in solid human cancers such as 

melanoma, breast and pancreatic cancer (Kuphal et al, 2006; Schimanski et al, 2005). 

3) Atypical PKCι is an oncogene in human non-small cell lung cancer (Fields & Regala, 

2007; Regala et al, 2005). 

4) Mice deficient in mNumb/Numbl or Lgl-1 show severe abnormalities during brain 

development resulting in hyperplasia and rosette-like structures that resemble 

medulloblastoma, a human neuron-ectodermal tumor (Klezovitch et al, 2004; Li et al, 2003). 

5) EGFR is asymmetrically segregated in some mammalian neural progenitor cells (Sun et 

al, 2005) and EGFR amplification, overexpression and mutations are frequently detected in 

many human tumors, including carcinoma and glioblastoma (Sibilia et al, 2007). 

Together, these studies suggest a causal link between defects in asymmetric cell division 

and tumorigenesis. 
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1.6.1 The cancer stem cell theory 

Tumors have long been known to consist of a heterogeneous population of cells (Tang et al, 

2007; Guo et al, 2006). While the great majority of cells that form the tumor are destined to 

differentiate, albeit aberrantly, only a small population possesses extensive self-renewing 

capacity to regenerate the tumor and sustain its growth when injected into immune-

compromised mice (Tang et al, 2007). These rare cells are named cancer stem cells (CSCs), 

after normal stem cells, as both have similar abilities to self-renew and to give rise to 

heterogeneous differentiated cell types (Reya et al, 2001). 

Two models of cancer growth can explain tumor development: Traditionally, in the stochastic 

model, it was assumed that all tumor cells can form new tumors and therefore are equally 

tumorigenic (Reya et al, 2001). In contrast, the cancer stem cell theory proposes that tumors 

are driven and maintained by a minority of transformed stem/precursor cells and unregulated 

cell growth is due to a disruption in the regulatory mechanism in stem cell renewal (Clarke et 

al, 2006; Passegué et al, 2003).  

The existence of cancer stem cells has been hypothesized for many decades, but it was not 

until 1997 that they were isolated from patients with acute myeloid leukemia (Bonnet & Dick, 

1997). Subsequently, CSCs have been isolated from breast (Al-Hajj et al, 2003) and brain 

cancers (Singh et al, 2004; Galli et al, 2004; Singh et al, 2003; Hemmati et al, 2003; Ignatova 

et al, 2002).  

In addition, these studies raised the strong possibility that CSCs might derive from mutations 

in normal stem cells that reside within the respective tissue. Alternatively, differentiated tumor 

cells may acquire the characteristics of stem cells.  

1.6.2  Origin of brain tumor cells 

The most common form of primary brain tumors are gliomas, i.e. tumors of glial origin 

(Russell & Rubinstein, 1989). The most malignant, glioblastoma multiforme (GBM), is 

characterized by resistance to chemo- and radiotherapy and by a short median survival 

(Stupp et al, 2005). Moreover, gliomas are highly infiltrative and their ability to invade normal 

brain structures limit the efficacy of complete surgical resection (Holland, 2000).  

The first evidence for the existence of cells with stem-like characteristic in brain tumors was 

reported by Steindler and colleagues in 2003 who successfully isolated neurosphere-forming 

precursors from post-surgery specimens of human GBMs (Ignatova et al, 2002). Upon 

growth factor withdrawal, most tumor-derived spheres gave rise to cells with glial and 

neuronal morphology and marker expression. Tumor-derived spheres could be serially 

passaged, and secondary spheres again have been demonstrated to be multipotential. 
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Later, cancer stem cells have been reported to be isolated from other brain tumors, including 

gliomas, astrocytoma, medulloblastoma and ependymomas (Nakano & Kornblum, 2006).  

These studies clearly showed that brain tumors contain transformed, undifferentiated neural 

precursors that possess characteristics of true stem cells, i.e. long-term self-renewal and 

multipotency. However, it was not proven whether they have cancer-initiating properties as 

would be expected of brain cancer stem cells.  

This was demonstrated later independently by two groups. In the first study, neurospheres 

cultured from GBMs could give rise to tumors in immune-compromised mice with 

characteristics resembling those of the parental tumor (Galli et al, 2004). It has been 

demonstrated that neurosphere-forming cells expressed CD133 (Singh et al, 2004; Singh et 

al, 2003), a cell surface marker previously shown to be expressed on human neural stem 

cells (Uchida et al, 2001). Using this cell-surface marker for immunopurification, it was 

possible to enrich cancer stem cells from human medulloblastoma and GBMs (Singh et al, 

2004). This group demonstrated that as few as 100 CD133-positive cells can form tumors in 

immune-compromised mice. Tumors recapitulated the original cell heterogeneity and CD133-

positive cells could be serially transplanted, providing a more definite proof of the existence 

of self-renewing and cancer-initiating stem-like cells in brain tumors. In contrast, CD133-

negative cells failed to generate tumors, even when injected in much larger numbers (Singh 

et al, 2004), again highlighting that only a minority of cells within a tumor is responsible for its 

maintenance and growth. Furthermore, additional studies suggested that CD133-positive 

tumor cells are more radioresistant than the CD133-negative fraction, implying that they may 

be responsible for disease recurrence after therapy (Bao et al, 2006a; Bao et al, 2006b). 

However, it is still unknown how CSCs are generated and whether they are derived from the 

transformation of neural stem cells found in the adult brain.  

Neurogenesis persists throughout adulthood within discrete brain regions as the dentate 

gyrus of the hippocampus or the subventricular zone of the lateral ventricles (Lois & Alvarez-

Buylla, 1994; Gage et al, 1998). Germinal regions such as the SVZ have long been proposed 

as possible sources of gliomas (Globus & Kuhlenbeck, 1944; Lewis, 1968) and many 

gliomas develop near these regions. Exposure to oncogenic viruses or administration of 

carcinogens results in the preferential tumor formation in germinal zones as opposed to non-

proliferative regions of the brains as the peripheral cortex (Sanai et al, 2005; Hopewell & 

Wright, 1969). Furthermore, it has been shown that tumors found in distinct areas of the 

brain originate in the SVZ and subsequently migrate to their final destination (Vick et al, 

1977). The observation that the site of tumor-origin is often distinct form the site where the 

tumor eventually develops might be explained by the hypothesis that a defect stem cell, e.g. 

a type-B stem cell in the SVZ, by dividing asymmetrically generates another cancer stem cell 
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that remains in the germinal niche whereas the daughter cell, most likely a progenitor cell, 

migrates away to give rise to the tumor mass (Berger et al, 2004).  

Transiently dividing progenitors only have a short lifetime, and therefore, mutagenic events 

might not have the opportunity to accumulate in transit amplifying cells and their terminally 

differentiated progeny. In contrast, stem cells persist the whole lifetime of an organism and 

have the potential to self-renew and proliferate making them a preferential target for 

tumorigenesis (Huntly & Gilliland, 2005). However, transit amplifying cells, the immediate 

descendants of adult stem cells, inherit these mutations and therefore might play an indirect 

role in tumor initiation. The role of these cells is further supported by the finding that in the 

adult subventricular zone these progenitors express EGFR (Doetsch et al, 2002), a receptor 

that is altered in more than 50% of human gliomas (Sibilia et al, 2007) and its constitutive 

activation can cause glioma formation in the CNS (Bachoo et al, 2002). 
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2 Aim of this work 

2.1 Asymmetric localization of Miranda during neuro blast division 

A central question in stem cell research is how stem cells achieve asymmetric cell divisions 

to replicate themselves while generating more committed daughter cells.  

Drosophila neuroblasts provide one of the best understood models to study asymmetric cell 

division which is based on the unequal segregation of intrinsic cell fate determinants. Over 

the past decades, many components of the machinery that regulate the asymmetric division 

of neuroblasts have been identified and their functions elucidated (Chia et al, 2008; Knoblich, 

2008). However, the precise mechanism how cell fate determinants localize asymmetrically 

in mitosis is unknown and remains to be determined. 

Immunofluorescence staining on fixed tissue detected Miranda in an apical crescent as well 

as in the cytoplasm prior to formation of a basal metaphase crescent (Barros et al, 2003; 

Petritsch et al, 2003; Fuerstenberg et al, 1999; Shen et al, 1997; Ikeshima-Kataoka et al, 

1997). These data suggest a dynamic, stepwise pattern for Miranda localization, but the 

exact mode and temporal sequence of Miranda localization during neuroblast division has 

not been studied in live embryos yet. 

Miranda localization requires both Myosin VI and Myosin II. However, it was unknown at 

what stage of Miranda localization these myosins act and whether they cooperate in the 

same pathway to localize Miranda. In addition, although Miranda and the second adaptor 

protein PON are both localized to an overlapping basal cortical crescent in metaphase, it is 

still unknown whether they are localized by similar mechanisms.  

The molecular details of asymmetric Miranda localization are the central question of the first 

part of this thesis and will be addressed by combining immunofluorescence studies with time-

lapse confocal microscopy on embryos expressing Miranda-GFP. 

The exact mechanism of Myosin VI and Myosin II directed basal protein localization is not yet 

fully understood and will be studied in living embryos that exert reduced Myosin VI and 

Myosin II activity. 
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2.2 The origin of brain cancer stem cells 

There is growing evidence that many cancers contain a small population of so called cancer 

stem cells which are responsible for maintenance and growth of tumors and  explain the 

cellular heterogeneity in most cancers. 

The origin of brain cancers has not been determined yet and is a highly controversial topic 

(Sakariassen et al, 2007). Brain cancer stem cells might be generated from adult neural stem 

cells and a defect in asymmetric cell division might be the initiating step in the progressive 

advancement of their pathological state. These aberrant stem cells are referred to as 

premalignant stem cells (PSC) and it is believed that they evade normal cell cycle control 

and/or differentiation. PSC are not necessarily tumorigenic themselves but because defects 

in ACD predispose stem cells to genetic instability, PSC are prone to acquire additional 

mutations such as the amplification of oncogenes or loss of tumor suppressors. 

Accumulation of additional mutations will lead to the formation of a pathological stem cell 

pool, the cancer stem cells, giving rise to tumor cells. 

Oligodendroglioma are diffusely infiltrating brain tumors which mainly consist of immature 

oligodendrocytes and oligodendrocyte progenitors (Ligon et al, 2006). EGFR amplification 

and loss of the tumor suppressor(s) ink4a/arf and p53, respectively, are mutations frequently 

found in human oligodendroglioma (Weiss et al, 2003). Only recently, a potential stem cell 

population has been identified in human oligodendroglioma (Calabrese et al, 2007). 

However, its tumorigenic potential has not been evaluated yet. 

Here, I study the origin of cancer stem cells in a transgenic mouse model with activated 

EGFR signaling in postnatal stem cell lineage (Weiss et al, 2003). Mice expressing an 

oncogenic version of the EGFR (verbB) in neural stem cells and their progeny from the 

S100ß promotor develop low-grade oligodendroglioma. Loss of p53 leads to the 

development of high-grade oligodendroglioma in both S100ß-verbB, p53+/- and S100ß-verbB, 

p53-/- mice. Because tumor development in animals heterozygous for p53 is significantly 

delayed, this model provides a unique opportunity to study the potential stepwise progression 

of neural stem cells to premalignant and finally cancer stem cells. 
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3 Thesis Part 1 - Asymmetric localization of Mirand a 
during neuroblast division 

3.1 Results 

It has been shown that adaptor proteins like Miranda or PON play a pivotal role in 

asymmetric cell division as they ensure the asymmetric segregation of cell fate determinants 

to the GMC. Immunohistochemical analysis of fixed embryonic tissue revealed that Miranda 

exerts dynamic localization during asymmetric cell division of neuroblasts and previous data 

detected Miranda in an apical cortical crescent prior to formation of a basal crescent. 

However, the exact timing of the formation of the apical Miranda crescent remained 

controversial as several reports stated that Miranda is apical at interphase and/or at 

prophase (Fuerstenberg et al, 1999; Matsuzaki et al, 1998; Shen et al, 1998), whereas 

others reported that Miranda localizes to the cytoplasm at interphase (Ikeshima-Kataoka et 

al, 1997). 

3.1.1 Miranda forms a basal crescent independent of  basal translation or 

localized protein degradation 

To correlate Miranda localization with distinct steps during the cell cycle, I stained fixed 

Drosophila embryos for Miranda, γ-tubulin to label the centrosome, and aPKC to mark the 

apical crescent. Centrosomes duplicate on either the apical or basal side of the cell and 

migrate laterally to become positioned at opposite poles along the apical/basal axis at 

pro/metaphase (Kaltschmidt et al, 2000). At early and late stages of prophase, when 

centrosomes were migrating laterally, Miranda localized mainly to the cytoplasm and the 

cortex but not the nucleus (Figure 5A,B). At pro/metaphase, when centrosomes moved 

towards opposite poles and the nuclear membrane breaks down, Miranda filled the entire 

cytoplasm including nuclear regions (Figure 5C). Later at metaphase, Miranda disappeared 

from the cytoplasm and formed a basal crescent, which was segregated exclusively to the 

GMC at telophase (Figure 5D,E). In contrast, aPKC remained apically localized during 

mitosis.  

Previous data indicate that Miranda might be actively transported to the basal side of the 

neuroblast by the action of myosins. Alternatively, Miranda localization could be explained by 

localized translation of Miranda protein at the basal pole and its localized degradation at the 

apical pole at metaphase. 
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Figure 5: Miranda protein localization at defined s teps during neuroblast mitosis. At early 
prophase (A) and prophase (B), centrosomes (visualized by γ-Tubulin, green dots) moved laterally, 
aPKC (green) accumulated at the apical cortex and Miranda protein (red) predominantly localized to 
the cytoplasm and the cortex. At pro/metaphase (C), centrosomes were positioned at opposite poles 
along the apical/basal axis, aPKC was apical and Miranda protein filled the entire cell including nuclear 
regions. At metaphase (D), centrosomes remained aligned along the apical/basal axis, aPKC was 
apical and Miranda is entirely localized to a basal cortical crescent. At telophase (E), Miranda was 
exclusively inherited by the GMC while aPKC remained in the neuroblast. Apical is up in all figures. 
Scale bar represents 5 µm. 
 

If de novo protein synthesis contributes to asymmetric Miranda localization, miranda mRNA 

should be detected at the basal pole. To investigate whether miranda mRNA overlapped with 

Miranda protein in a basal crescent at metaphase, I performed fluorescent in situ 

hybridization and visualized Miranda protein by immunohistochemistry (Figure 6). In 

agreement with earlier data, miranda mRNA accumulated around the apical pole and 

partially colocalized with cytoplasmic Miranda protein at prophase (Schuldt et al, 1998) 

(Figure 6A). miranda mRNA remained apical at meta- and anaphase and was exclusively 

inherited by the neuroblast daughter, whereas Miranda protein localized to a basal 

metaphase crescent and segregated to the GMC (Figure 6B-D). Thus, Miranda protein and 

miranda mRNA localize exclusively at the time when Miranda protein becomes basally 

localized. Moreover, the absence of miranda mRNA at the basal side of the dividing 

neuroblast argues against localized translation as a means to generate asymmetry of the 

Miranda protein.  

 

 

Figure 6: Miranda protein and miranda mRNA show distinct localization during neuroblast 
division. (A) miranda mRNA (green) was apically enriched at prophase and partially co-localized with 
Miranda protein (red, white arrowhead). (B) At metaphase, miranda mRNA (white brackets) remained 
apical and never co-localized with Miranda protein (white arrowhead). At anaphase (C) and telophase 
(D), miranda mRNA remained in the neuroblast whereas Miranda protein was in the GMC. No signal 
for Miranda mRNA could be detected using a sense RNA probe as a control (Metaphasecontrol). The 
neuroblast at telophase is marked by a white circle. Scale bar represents 5 µm.  
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In order to become basally enriched in metaphase, Miranda protein may be selectively 

degraded by the 26S proteasome at the apical side of dividing neuroblasts. Miranda contains 

four potential destruction boxes (Shen et al, 1997), which in other proteins mediates cell 

cycle-dependent degradation by the proteasome. This suggests that Miranda too could be 

locally degraded by the 26S proteasome in areas outside the basal metaphase crescent. 

Mutations in the 26S proteasome affect cell fate decisions in the sensory organ precursor 

lineage of the developing pupae presumably because the Notch receptor is targeted for 

degradation (Schweisguth, 1999). To investigate a potential role of 26S proteasome-

dependent degradation for basal Miranda localization, I initially studied embryos carrying a 

dominant temperature sensitive mutation in the ß2 proteasome subunit gene DTS5 or 

embryos expressing the DTS5 mutant in neuroblasts (Schweisguth, 1999). However, at this 

stage of development, proteasome activity was not strongly affected (data not shown) and 

thus I used the potent proteasome inhibitor MG132 to impair proteasome activity (Muro et al, 

2002). 

Embryos were treated with the proteasome inhibitor MG132 for 15 or 30 minutes and 

Miranda protein was detected by immunohistochemistry. Almost all metaphase neuroblasts 

showed normal, basal localization of Miranda protein after MG132-treatment for 15 minutes 

(100%; n=167) and 30 minutes (98.5 ± 2.1%; n=153) (Figure 7D). During metaphase, cyclin 

A is degraded by the 26S proteasome (Tio et al, 2001), and in the absence of proteasome 

activity, cyclin A persists and cells arrest at metaphase (Sigrist et al, 1995). To control for 

successful inhibition of the proteasome, I detected cyclin A in addition to Miranda and 

determined the ratio of neuroblasts at metaphase versus ana-/telophase (Figure 7C). After 

30 minutes of MG132-treatment, cyclin A protein persisted in 75.3 ± 11.5% of metaphase 

neuroblasts (Figure 7B; n=153). In contrast, cyclin A was detected in 29.0 ± 5.3% of 

metaphase neuroblasts in untreated embryos (n=205) and in 34.0 ± 1.8% of control embryos 

incubated with DMSO as control (n=178). Coinciding with defective cyclin A degradation, the 

number of neuroblasts in metaphase increased from 51.0 ± 10.0% in untreated and 51.8 ± 

7.8% in control embryos to 84.6 ± 5.7% after 30 minutes with MG132. Cyclin A was still 

properly degraded after 15 minutes treatment with MG132 (28.3 ± 4.7%; n=167) or DMSO 

(30.4 ± 6.5%; n=119) and in addition, the number of metaphase neuroblasts was not 

significantly altered (47.9 ± 4.4% and 42.7 ± 11.5%, respectively). Together, these data 

showed that short-term inhibition of proteasome activity did not disrupt the basal localization 

of Miranda. 
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Figure 7: Inhibition of the proteasome prevents cyc lin A degradation at metaphase and 
progression to anaphase but does not affect Miranda  localization. Miranda protein (red) still 
formed a basal metaphase crescent in neuroblasts of embryos treated with DMSO as control (A) or 
MG132 (B). Cyclin A (green) was degraded in the majority of metaphase neuroblasts of control 
embryos (A) but persisted in metaphase neuroblasts of MG132-treated embryos (B). Quantification of 
metaphase versus ana/telophase neuroblasts (C) and Miranda metaphase crescents versus 
metaphases with persistent cyclin A (D) revealed that 30 min but not 15 min with MG132 inhibited 
progression of metaphase neuroblasts to anaphase and efficient degradation of cyclin A. Miranda 
protein localized to a basal crescent in the majority of MG132-treated neuroblasts. Scale bare 
represents 5 µm. 

In summary, the localization of Miranda does not depend on localized translation of miranda 

mRNA at the basal cortex nor Miranda protein degradation at areas outside the basal 

crescent. More likely, a pre-existing pool of Miranda protein is dynamically moved from the 

apical cortex throughout the entire cell to the basal cortex. 

3.1.2 Miranda accumulates in the cytoplasm prior to  formation of a basal 

crescent 

By using immunohistochemical analysis on fixed tissue one is limited to observe Miranda 

localization in a single neuroblast and at a single time point. Therefore, a live-imaging 

approach was established to investigate the dynamics of Miranda localization in more detail. 

Note that live-imaging experiments were done together with Veronika Erben, a former 

colleague in the lab, and results from this study were recently published (Erben et al, 2008).  

A full length Miranda-GFP construct was expressed in living embryos using the UAS-Gal4 

system (Brand & Perrimon, 1993) and its localization in neuroblasts was followed by time-

lapse confocal microscopy. The UAS-Gal4 system relies on 2 fly strains, an activator line 

expressing the transcription factor Gal-4 controlled by a specific promotor and an effector line 

containing the Gal-4 binding upstream activator sequence (UAS) linked to the gene of 

interest. Thus, crossing these lines allows the selective expression of any cloned gene in a 

time and spatial manner.  
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In analogy with immunohistochemical data, Miranda localized uniformly to the cytoplasm and 

the cortex sparing the nucleus in most neuroblasts at early prophase (Figure 8A). 

Presumably around the time of nuclear envelope breakdown, Miranda accumulated 

throughout the entire cytoplasm including the nuclear region and gradually formed a basal 

crescent at metaphase. Upon cytokinesis, Miranda is entirely inherited by the smaller, basal 

ganglion mother cell in neuroblast divisions (Figure 8A).    

To ensure that the ubiquitous cytoplasmic localization of Miranda was not caused by artificial 

saturation of the localization machinery as a result of the ectopic expression of Miranda-GFP, 

various Gal4-driver strains of different strengths were used. I found very similar protein 

localization patterns, including the cytoplasmic localization of Miranda at pro/metaphase 

when Miranda-GFP was expressed under the control of neuralized-Gal4 (Figure 8A), a 

strong neuroblast- and neuroepithelial-specific driver, V32A-Gal4 (Figure 8B), driving 

maternal gene expression or scabrous-Gal4 (Figure 8C), a weaker neuroblast- and 

neuroepithelial-specific driver.  

In addition, I investigated the localization of Miranda-GFP by immunohistochemistry (Figure 

8D,F,G) and compared it to endogenous Miranda protein. Miranda-GFP localization patterns 

from two lines generated by our lab (Figure 8D,F) and a preexisting line (Figure 8G) (Ohshiro 

et al, 2000) were determined. All three lines showed overlapping localization of Miranda-GFP 

with total Miranda protein and thus were used interchangeably in live imaging experiments 

giving very similar Miranda-GFP localization patterns although the signal intensity varied. 

In Western blot analysis of embryos expressing Miranda-GFP under the control of Gal4 a 

single band of 130 kDa was recognized by a GFP antibody which was not detectable in 

controls carrying only the Miranda-GFP transgene or only the Gal4 driver (Figure 8H). In 

addition, Miranda-GFP was expressed at lower levels than endogenous Miranda protein 

detected by a Miranda specific antibody.  

Finally, the functional behavior of Miranda-GFP was evaluated by studying Miranda-GFP 

localization in embryos expressing a constitutively active form of Lgl (Lgl3A) which has been 

shown to disrupt Miranda localization (Betschinger et al, 2003b). Intriguingly, cytoplasmic 

localization of Miranda was completely abolished when coexpressed with Lgl3A and Miranda-

GFP localized to the cortex throughout neuroblast mitosis and finally segregated 

symmetrically to both daughter cells (Figure 8F).  

Taken together, these data suggest that Miranda-GFP does not saturate the localization 

machinery but rather faithfully recapitulates the localization of endogenous Miranda protein in 

live embryos. 
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Figure 8: Miranda localization in neuroblasts is a dynamic, multistep process. Neuroblasts (NB) 
undergoing mitosis in embryos expressing Miranda-GFP under control of neuralized-Gal4 (neura-
Gal4) were examined by time-lapse confocal microscopy. (A) In the majority of neuroblasts 
Miranda-GFP (green) localized uniformly to the cytoplasm and the cortex but not to an apical crescent 
at prophase. At pro/metaphase cytoplasmic Miranda-GFP accumulated throughout the entire 
cytoplasm including nuclear regions (white arrowhead). At metaphase, the basal cortical crescent 
formed and Miranda-GFP gradually disappeared from the remaining areas of the cell. Miranda-GFP 
was inherited exclusively by the GMC at telophase (white circle). Miranda-GFP showed a very similar 
cytoplasm-to-basal cortex localization pattern when expressed under the control of V32-Gal4 (B) and 
scabrous-Gal4 (sca-Gal4) (C). Cytoplasmic Miranda accumulation is indicated by white arrows. (D) In 
fixed embryos, the location of Miranda-GFP (green) was indistinguishable from that of total Miranda 
(red), in the cytoplasm at prophase and at the basal crescent at metaphase. (E) In embryos 
expressing an constitutively active form of Lgl, UAS-Lgl3A, Miranda-GFP was found uniformly around 
the cortex and cytoplasmic localization was abolished. (F,G) Miranda-GFP localized to a tight 
metaphase crescent overlapping with total Miranda in two additional transgenic lines. (H) 
Immunoblotting using a Miranda antibody (top panel) and a GFP antibody (middle panel) revealed that 
ectopically expressed Miranda-GFP represented by the 130 kDa band is specifically expressed in 
UAS-Miranda-GFP/Sca-Gal4 embryos but not in UAS-Miranda-GFP or Sca-Gal4 embryos (controls). 
Miranda-GFP levels were low compared with total Miranda protein running at 75-100 kDa. Tubulin was 
used as a loading control (bottom panel). Scale bar represents 5 µM. 
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3.1.3 PON protein moves along the cortex to form a basal crescent  

As reported previously, PON is cleared from the cytoplasm at interphase and primarily 

localized to the cortex throughout cell division of neuroblasts (Lu et al, 1999). A pre-existing 

PON-GFP line (Lu et al, 1999) was used for time-lapse confocal microscopy to compare its 

dynamic localization during neuroblast division with that of Miranda-GFP. 

PON-GFP moved basolaterally essentially along the cortex and gradually accumulated at the 

basal side to form the metaphase crescent. Interestingly, Pon-GFP never displayed the 

strong cytoplasmic localization observed with Miranda-GFP at prophase and pro/metaphase 

(Figure 9). This data demonstrates that although Miranda and PON colocalize to a 

metaphase crescent they use different routes to translocate to the basal side.   

 

Figure 9: PON takes a different route to the basal 
crescent than Miranda. Time-lapse analysis to compare the 
localization of Miranda-GFP (A) to PON-GFP (B) showed 
that PON mainly localized along the cortex at pro/metaphase 
in neuroblasts (B) and did not accumulate in the cytoplasm 
(white arrows) whereas Miranda-GFP consistently showed 
strong cytoplasmic localization (A) (white arrowheads). At 
metaphase, both Miranda and PON formed an overlapping 
basal crescent. Scale bare represents 5 µm.  

 

 

 

 

It has been shown that asymmetric localization of PON is sensitive to butanedione-2-

monoxime, a well-studied inhibitor of muscle Myosin II. However, its efficacy towards other, 

non-muscle myosins remains controversial (Ostap, 2002) and thus, it is not known yet 

whether additional myosin motors regulate PON localization. 

In order to selectively test the requirement of Myosin II for PON localization, the Rho kinase 

inhibitor Y-27632 was injected into PON-GFP-expressing embryos which were then 

examined by live imaging. When Myosin II activity was impaired, PON-GFP localized 

uniformly around the cortex at pro- and metaphase and later accumulated at the cleavage 

furrow (Figure 10B, white arrowheads). In contrast, in control embryos PON-GFP is inherited 

asymmetrically by the GMC (Figure 10A) similar to Miranda-GFP (Figure 9B). Thus, Myosin II 

might indeed be required for proper localization of PON to a basal crescent, presumably by 

cortical exclusion of PON from the apical pole in prophase.   

The pointed end-directed myosin motor Myosin VI has been shown earlier to be required for 

basal Miranda localization (Petritsch et al, 2003). Myosin VI predominantly localizes to the 
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cytoplasm which suggests that it does not directly transport PON to the basal side of the cell. 

To test for an indirect role of Myosin VI for PON localization, I injected double stranded RNA 

complementary to parts of Myosin VI in embryos expressing PON-GFP to downregulate 

Myosin VI activity (Figure 10C). In embryos lacking zygotic Myosin VI, the mitotic spindle is 

misoriented resulting in a rotation of the division plane by 45-90o (Petritsch et al, 2003). As 

shown by time-lapse confocal microscopy, although the division plane was rotated, PON-

GFP still formed a basal crescent in metaphase which was positioned lateral to the epithelial 

surface presumably due to a general loss of proper apical-basal polarity (Figure 10C). In 

addition, immunohistochemistry on a zygotic mutant allele of Myosin VI (jar1) (Petritsch et al, 

2003) revealed that PON was localized to a metaphase crescent in both the heterozygous 

(jar1/+) (Figure 10D) and homozygous (jar1/jar1) (Figure 10E) Myosin VI mutants although the 

mitotic spindle was misoriented in the null mutation.  

Thus, in contrast to its function in localizing Miranda, Myosin VI is not required for the 

asymmetric localization of PON in a cortical metaphase crescent. 

 

 

 

Figure 10: Basal PON localization 
requires Myosin II but not Myosin VI.  
Time-lapse microscopy of PON-GFP 
localization in neuroblasts from control 
embryos (A) or embryos lacking functional 
Myosin II due to injection of Rho kinase 
inhibitor (B). In the absence of Myosin II 
activity, PON-GFP did not form a basal 
crescent but mislocalized to the cortex 
until it  accumulated at the cleavage 
furrow in telophase (arrows). (C) 
Downregulation of Myosin VI by RNAi did 
not affect metaphase crescent formation 
and asymmetric segregation of PON-GFP. 
However, the mitotic spindle and thus the 
cleavage plane was rotated due to 
downregulation of Myosin VI. The white 
circle in telophase depicts the position of 
the neuroblast. Immunohistochemistry for 
PON (green) localization on embryos 
heterozygous (D) and homozygous (E) for 
the jar1 allele. In agreement with life 
imaging data, PON still formed a basal 
crescent at metaphase in control (D) and 
mutant (E) embryos, however, the mitotic 
spindle was misoriented by 90° due to the 
lack of Myosin VI activity. Scale bars 
represent 5 µm. 
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3.1.4 Miranda diffuses freely in the cytoplasm but shows spatially-limited and 

slower movement at the cortex 

Miranda protein could either freely diffuse or could be actively transported through the 

cytoplasm to the basal side of the cell (e.g. by myosin motor proteins) prior to forming a 

metaphase crescent.  

To distinguish between a myosin-directed movement and passive diffusion of Miranda, 

fluorescence recovery after photobleaching (FRAP) of Miranda-GFP was determined. 

Histone-RFP was coexpressed to visualize DNA condensation and thus the mitotic stages of 

dividing neuroblasts (Schuh et al, 2007). The motility of Miranda-GFP was calculated after 

selectively bleaching a region of interest (ROI) within either cytoplasmic regions or the 

cortical crescent and measuring the recovery of the fluorescent signal by Miranda-GFP 

molecules moving into the ROI from adjacent areas (see Material and Methods for details).  

To investigate FRAP of cytoplasmic Miranda, I attempted to bleach various ROIs at either the 

apical or basal half of the cell in dividing neuroblasts at pro/metaphase and recorded the 

recovery of the fluorescent signal by Miranda-GFP (Figure 11A,B). However, it was not 

possible to significantly reduce the fluorescent signal of cytoplasmic Miranda-GFP by 

applying the same parameters which reduced the cortical Miranda signal used as a reference 

(Figure 11E). These results were indicative of rapid movement of Miranda-GFP und 

suggested that Miranda diffused unrestrictedly throughout the cytoplasm rather than being 

actively transported. As a control for a freely diffusing protein, FRAP of eGFP was studied 

and showed very similar characteristics (Figure 11C). The slightly higher recovery rate of 

Miranda-GFP could be explained by its greater molecular mass and association with other 

diffusible cargo molecules.  

When the entire cytoplasm of neuroblasts at pro/metaphase was bleached, basal Miranda-

GFP crescent formation was abolished (Figure 11D) (note that in the previous experiment, 

only a small area was bleached by point bleaching). This corroborated earlier data showing 

that the basal crescent is generated by a pre-existing pool of Miranda protein. 

It has been suggested that Miranda attaches to a cortical anchor which restricts protein 

movement within basal areas. To test this hypothesis, FRAP of Miranda-GFP in the basal 

crescent was analyzed (Figure 11E,F) and compared to its mobility in the cytoplasm (Figure 

11A-C,F) and to the cortical mobility of PON-GFP (Figure 11G). The recovery rate of 

Miranda-GFP at the basal cortex was significantly higher than the recovery of cytoplasmic 

Miranda-GFP demonstrating that cortical Miranda has a lower mobility and might indeed be 

anchored at the basal cortex. In contrast, half-time of recovery values of Miranda-GFP (t1/2 

6.76 ± 0.66 s) and PON (t1/2 6.78 ± 0.43 s) were almost identical. In addition, following FRAP, 

Miranda-GFP only filled areas within the existing basal crescent as has been demonstrated 
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for PON (Lu et al, 1999). These data suggest that both Miranda and PON are attached to 

probably the same as yet unidentified cortical anchor.  

 
Figure 11: Miranda moves three-dimensionally in the  cytoplasm by passive diffusion, but shows a 
spatially limited and slower movement at the cortex . (A-E) FRAP experiments in living embryos co-
expressing Miranda-GFP (green) and Histone-RFP (red). White circles indicate bleached regions. (A,B) 
Images of prophase neuroblasts before and after bleaching are shown. It was not possible to bleach 
cytoplasmic Miranda-GFP on the apical (A) or basal (B) side of the cell by using the same parameters used 
to decrease fluorescence signal from cortical Miranda-GFP (E) indicative of rapid diffusion. (C) Cytoplasmic 
Miranda-GFP and freely diffusing eGFP showed similar kinetics. (D) The pro/metaphase neuroblast was 
repeatedly bleached at high laser intensity to remove Miranda-GFP signal from the entire cytoplasm 
resulting in the absence of a metaphase crescent (white brackets). This suggest that ubiquitously localized 
Miranda at pro/metaphase was required to form the basal crescent at metaphase. (E) FRAP of Miranda-
GFP in the metaphase crescent revealed that cortical Miranda was less motile probably through the 
interaction with a cortical basal anchor. (F,G,H) Quantification of the recovery rate showed that cortical 
Miranda moved slower (t1/2 6,76 ± 0.67 s) than did freely diffusing cytoplasmic Miranda (t1/2 < 1.5 s) but at 
similar rate to cortical PON-GFP (t1/2 6.78 ± 0.43 s). Scale bars represent 5 µm.  
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3.1.5 Myosin II and Myosin VI act at distinctive st eps in the same pathway to 

localize Miranda 

Myosin II as well as Myosin VI have been implicated in regulating proper localization of 

Miranda to a basal crescent (Barros et al, 2003; Petritsch et al, 2003; Peng et al, 2000). The 

temporal and spatial order of their interaction with Miranda is poorly understood. To address 

this question Miranda-GFP localization in dividing neuroblast was studied by time lapse 

confocal imaging in the absence of Myosin II and Myosin VI, respectively.  

Miranda localization was monitored after Myosin II activity was impaired by injection of the 

Rho kinase inhibitor Y-27632 into living embryos expressing Miranda-GFP and Histone-RFP. 

Consistent with earlier observations, in control embryos injected with buffer only, Miranda-

GFP accumulated in the cytoplasm in late prophase before forming a metaphase crescent 

and was inherited by the GMC in telophase (Figure 12A). However, in the absence of Myosin 

II activity, the cytoplasmic localization of Miranda, the formation of a basal crescent and the 

asymmetric segregation of Miranda were completely abolished (Figure 12B). These results 

are consistent with earlier data showing mislocalization of Miranda around the cortex in 

mutants lacking the regulatory light chain of Myosin II (spaghetti squash) (Barros et al, 2003) 

and suggest that Myosin II is required at prophase to translocate Miranda to the cytoplasm.  

To study the function of Myosin VI at defined stages of Miranda localization, I downregulated 

Myosin VI activity by RNAi (Figure 12B). In embryos injected with dsRNA complimentary to 

Myosin VI (Petritsch et al, 2003), Miranda-GFP was completely mislocalized to the cytoplasm 

during all phases of neuroblast mitosis, never formed a basal crescent and thus was 

segregated symmetrically to both daughter cells. Myosin VI has been demonstrated to 

partially colocalize with Miranda, mainly in the cytoplasm (Petritsch et al, 2003). Together, 

these data indicate that Myosin VI is essential for cortical localization of cytoplasmic Miranda 

at pro/metaphase.  

Myosin II and Myosin VI may either act sequentially in the same pathway or in parallel 

pathways at distinct steps to localize Miranda. Analyzing a potential interaction of Myosin II 

and Myosin VI has been hampered by the overall abnormal morphology of the double mutant 

for the Myosin VI and the Myosin II heavy chain (Petritsch et al., 2003). As an alternative 

approach, I injected both the Rho kinase inhibitor to inhibit Myosin II and myosin VI dsRNA 

into live embryos and monitored Miranda movement by time-lapse confocal microscopy. 

Miranda was uniformly mislocalized to the cortex whereas the cytoplasmic phase was 

completely eliminated (Figure 12D). Miranda mislocalization in the absence of both myosins 

closely resembled the localization pattern of Miranda seen in embryos with reduced Myosin II 

activity alone (Figure 12B) rather than an additive or a Myosin VI loss-of-function phenotype. 
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Taken together, Myosin II might exclude Miranda from the apical cortex at early prophase. 

Miranda then translocates to the cytoplasm and diffuses throughout the cell at 

pro/metaphase. At the basal side of the cell, Miranda becomes restricted to the cortex by a 

yet unknown mechanism which is indispensable of Myosin VI.   

 

Figure 12: Myosin II and Myosin VI act at distinctiv e steps in the same pathway to localize 
Miranda.  Live imaging of embryos coexpressing Miranda-GFP (green) and Histone-RFP (red) in 
control embryos injected with buffer (A), Rho kinase inhibitor to downregulate Myosin II (B), myosin VI 
dsRNA to impair Myosin VI activity (C), or both RKI and myosin VI dsRNA (D). In control embryos (A) 
Miranda protein was cytoplasmic at pro/metaphase, then moved to a basal crescent in metaphase and 
became asymmetrically inherited by the GMC. (B) In embryos with reduced Myosin II activity, Miranda 
never accumulated in the cytoplasm at prophase but localized uniformly around the cortex and was 
therefore symmetrically segregated upon cytokinesis. (C) In contrast, downregulation of Myosin VI by 
RNAi still allowed Miranda to localize to the cytoplasm at prophase, but prevented formation of the 
basal crescent at metaphase leading to its symmetric segregation at ana- and telophase. (D) In 
embryos lacking both Myosin II as well as Myosin VI activity, Miranda localized uniformly around the 
cortex at prophase, does not form a basal crescent at metaphase and was symmetrically inherited by 
both daughter cells. The double-mutant phenotype closely resembled the localization pattern of 
Miranda-GFP observed when Myosin II is inhibited alone (B). Scale bars represent 5 µm. 
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3.2 Discussion 

Miranda and PON are known to be adaptor proteins for cell fate determinants and 

indispensable for asymmetric cell division of Drosophila neuroblasts (Lu et al, 1998; Shen et 

al, 1997). Both proteins show dynamic localization, accumulate in a metaphase crescent at 

the basal side of the cell and are asymmetrically inherited exclusively by the ganglion mother 

cell. However, here it is shown for the first time that Miranda and PON take different routes to 

translocate to the basal pole. Whereas Miranda moves dynamically from the apical to the 

basal side of the cell via the cytoplasm, PON localization occurs exclusively on the cortex. 

3.2.1 Miranda is asymmetrically localized by protei n movement throughout the 

cell prior to basal crescent formation 

This study showed that the dynamic localization of Miranda is achieved primarily by protein 

movement rather than by alternative mechanisms such as localized translation of miranda 

mRNA at the basal cortex or localized degradation at areas outside of the metaphase 

crescent.  

To test whether miranda mRNA localized to the basal pole prior to Miranda crescent 

formation and might contribute to its local translation, I performed in situ hybridizations to 

study the localization of miranda mRNA (Figure 6). Both Miranda protein and miranda mRNA 

were apically localized in prophase and partially overlapped. Miranda protein later 

translocated to the basal pole of the cell and accumulated in a basal crescent before being 

inherited by the GMC. In contrast, miranda mRNA remained apically concentrated 

throughout the entire cell cycle and thus was inherited exclusively by the neuroblast 

daughter. Together, miranda mRNA localized exclusively to Miranda protein at metaphase 

and although I can not exclude that undetectable amounts of mRNA are translated at the 

basal cortex, I propose that they do not significantly contribute to Miranda protein 

localization. It has been shown earlier that prospero mRNA is localized to the basal side due 

to its association with the Miranda/Staufen complex which is supposed to serve as a back-up 

pool for Prospero in the GMC (Broadus & Doe, 1998). In contrast, inscuteable mRNA 

becomes apically localized in neuroblasts (Hughes et al, 2004) and supports the stability of 

the apical protein complex with Pins, Gαi and Par proteins. Thus, it will be interesting in the 

future to determine whether asymmetric miranda mRNA localization has similar functions in 

the neuroblast daughter. 

Next, I investigated the importance of the proteasome and localized degradation of Miranda 

for its localization to the apical cortex. I initially quantified Miranda localization in embryos 

with impaired proteasome activity due to mutations in the β2 proteasome subunit gene 
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(Schweisguth, 1999) and found Miranda to be normally localized. However, cyclin A 

degradation and progression from metaphase to anaphase as well was unaffected in DTS5 

mutants (data not shown) and thus it was not clear whether proteasome activity was indeed 

impaired at this stage of development. Therefore, I turned to chemical inhibition of the 

proteasome by short-term treatment with MG132. Cyclin A is necessary for progression 

through S-phase of the cell cycle and becomes rapidly degraded by the proteasome in 

metaphase (Tio et al, 2001; Sigrist et al, 1995). Short-term inhibition of embryos with MG132 

led to the persistence of cyclin A in metaphase neuroblasts and a metaphase arrest 

indicative of an efficient inhibition of the proteasome. However, Miranda protein localization 

to the basal cortex was not disrupted (Figure 7). In a recent study, MARCM clones for Tbp-1, 

a gene encoding a regulatory subunit of the proteasome, showed mislocalization of Miranda 

in larval neuroblasts (Slack et al, 2007). However, the authors proposed rather an indirect 

role of the proteasome in Miranda localization as the Miranda protein is only mono- but not 

polyubiquitinylated, which would be a prerequisite for proteasome-dependent proteolysis.  

Together, I conclude that neither the translation of miranda mRNA at the basal cortex nor 

localized Miranda protein degradation leads to the formation of a basal crescent.  

Live imaging experiments revealed that Miranda-GFP mainly localized to the cytoplasm and 

the cortex at prophase and accumulated in the cytoplasm at pro/metaphase (Figure 5). 

Cytoplasmic localization of Miranda in neuroblasts could have a general relevance: In C. 

elegans, the conserved Par proteins direct a polarized cytoplasmic flow to move P granules 

to the posterior cortex of the zygote (Cheeks et al, 2004). Thus, similar to the C. elegans 

zygotes, Drosophila neuroblasts employ a Par protein-dependent cytoplasmic movement to 

drive the Miranda complex to the basal pole. 

However, to rule out that ubiquitous localization and cytoplasmic accumulation of Miranda 

was not an overexpression artefact caused by saturation of the localization machinery, 

several control experiments were performed. Miranda-GFP showed very similar localization 

patterns when expressed under the control of additional Gal-4 driver lines of different 

strengths (Figure 8A,B,C). Moreover, I found cytoplasmic Miranda in immunostainings and a 

comparison between Miranda-GFP and total Miranda protein by immunohistochemistry 

revealed that Miranda-GFP indeed reflects the localization of wild type protein (Figure 

8D,F,G). In contrast, in Lgl3A mutants, expressing an unphosphorylatable form of Lgl, 

Miranda-GFP is found uniformly around the cortex and cytoplasmic localization of Miranda-

GFP is abolished (Figure 8E). Finally, immunoblotting revealed that Miranda-GFP is 

expressed at lower levels as endogenous Miranda (Figure 8H). Taken together, these data 

suggest that Miranda-GFP faithfully recapitulates the localization and function of endogenous 

Miranda protein in live embryos.  
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3.2.2 Adaptor proteins take different routes to the  basal cortex  

Miranda and PON have been demonstrated to interact in vitro (Shen et al, 1997) and both 

accumulate in a metaphase crescent in dividing neuroblasts suggesting that they exist in only 

one complex and might be recruited to the basal side by the same mechanism. However, 

asymmetric localization of Miranda in numb mutants is indistinguishable from that in wild-type 

embryos (Shen et al, 1997) and localization of Numb is not affected in Miranda mutants 

(Ikeshima-Kataoka et al, 1997). Both findings suggest that the interaction of Miranda and 

Numb is more likely transient and restricted to their colocalization in the metaphase crescent. 

Moreover, in agreement with earlier data, PON mainly moves two-dimensionally along the 

cortex to become restricted to a basal metaphase crescent in embryonic neuroblasts (Figure 

9B, Figure 10A) (Lu et al, 1999). In contrast to Miranda-GFP, an accumulation of PON-GFP 

was never found in the cytoplasm at pro/metaphase. 

Myosin II and Myosin VI are both required for asymmetric localization of Miranda (Petritsch et 

al, 2003). In contrast, PON localization only depends on Myosin II but not on Myosin VI. In 

embryos with reduced Myosin II activity due to treatment with Rho kinase inhibitor, PON-GFP 

did not form a basal crescent in metaphase but was mislocalized to the entire cortex and 

accumulated at the cleavage furrow in telophase (Figure 10B). This suggests that similar to 

Miranda, PON localization requires fully functional Myosin II. However, downregulation of 

Myosin VI by RNA interference did not affect crescent formation at metaphase or the 

asymmetric segregation of PON-GFP at ana- and telophase.  

The distinct localization modes of Miranda and PON might reflect their association with 

different cargo molecules and their intracellular localization. Miranda is required for the 

localization of transcriptional and translational regulators, such as Prospero and Brat, which 

presumably act in the cytoplasm and the nucleus. PON, on the other hand, is an adaptor 

protein for Numb, a negative regulator of the Notch receptor that is primarily localized to the 

membrane or to cortical actin.  

Both PON and Miranda accumulate in a metaphase crescent and as suggested by FRAP 

analysis, their interaction with the basal cortex appears to be similar. Both proteins associate 

dynamically with the cortex, as indicated by their relatively short half-time of recovery after 

photo-bleaching, but are retained within the limits of the basal cortical crescent (Figure 11F-

H). These data provide evidence for the presence of a common anchor protein that retains 

both PON and Miranda at the basal cortex. In a recent study, FRAP analysis of GFP-PON in 

sensory organ precursors of Drosophila pupae suggested that there might be a constant 

exchange between cortical and cytoplasmic PON (Mayer et al, 2005) further supporting the 

hypothesis of a cortical anchor. 
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Taken together, differences have been evidently identified in the localization machinery and 

the route for the adaptor proteins Miranda and PON in Drosophila neuroblasts. Myosin II is 

required for the asymmetric segregation of both Miranda and PON, whereas Myosin VI 

seems not to be necessary for PON localization. In addition, the different localization pattern 

of Miranda and PON strongly support the hypothesis of two differentially regulated basal 

protein complexes. Further analyses studying the localization of their cargo proteins, such as 

Prospero and Numb, will be needed to elucidate whether PON and Miranda indeed form two 

independently localized protein complexes. 

3.2.3 Myosin II and Myosin VI interact in one pathw ay to shuttle Miranda 

between cortex and cytoplasm  

Previous studies reported that Miranda becomes apically enriched at interphase or at 

prophase and demonstrated a physical interaction of Miranda with Inscuteable, a component 

of the apical complex (Shen et al, 1998). It was therefore speculated that, after binding to its 

cargo molecules Prospero and Staufen at the apical cortex, Miranda receives a signal, which 

triggers the Miranda complex to move towards the basal pole of the neuroblast. Recent data 

showed that Myosin II is required to exclude Miranda from the apical cortex (Barros et al, 

2003; Petritsch et al, 2003) and that Miranda forms a complex with Myosin II in embryonic 

protein extracts (Petritsch et al, 2003). This might reflect the interaction of the two proteins in 

interphase and early prophase since at later stages they localize almost exclusively (Barros 

et al, 2003). At the transition between interphase to prophase, aPKC is recruited to the apical 

complex (Figure 5) and phosphorylates Lgl, which allows for the activation of Myosin II 

(Betschinger et al, 2005; Barros et al, 2003) and consequently, the exclusion of Miranda from 

the cortex. Moreover, the successful integration of Miranda to the basal crescent is 

dependent on Myosin VI at a subsequent step (Petritsch et al, 2003).   

Live imaging experiments in the absence of Myosin II and Myosin VI, respectively, enabled 

me to elucidate the individual role of each myosin in the apical-to-basal localization of 

Miranda during neuroblast mitosis. Chemical inhibition of Myosin II by injection of Rho kinase 

inhibitor into live embryos resulted in the mislocalization of Miranda-GFP uniformly around 

the cortex (Figure 12B) and the cytoplasmic phase observed in control embryos (Figure 12A) 

was completely absent. This suggests that Myosin II is required in interphase to restrict 

Miranda to the apical side of the cell and excludes it from the baso-lateral cortex but also 

later in prophase to release it to the cytoplasm (Figure 12). Results from live imaging 

experiments extended earlier data in fixed embryonic tissue demonstrating Miranda 

mislocalization around the cortex in embryos with impaired Myosin II activity (Barros et al, 

2003).   
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Miranda diffuses rapidly throughout the cytoplasm and in line with earlier data (Petritsch et 

al., 2003), live imaging analysis demonstrated that Myosin VI is essential for integration of 

cytoplasmically localized Miranda into the basal crescent at metaphase. Downregulation of 

Myosin VI by RNAi still allows Miranda to be released to the cytoplasm at prophase, but 

prevents formation of the basal crescent (Figure 12C). In Drosophila neuroblasts, Myosin VI 

is localized to particles mainly to the cytoplasm which accumulate in the basal half of the 

metaphase neuroblast coinciding in time and space with basal localization of Miranda 

(Petritsch et al, 2003). Thus, it would be possible that Myosin VI binds to Miranda in the 

basal half of the cell and transports it in a short-range to the basal cortex or, alternatively, 

restricts Miranda in the basal half of the cell to present it to an additional motor protein. 

However, FRAP analysis of Miranda-GFP suggested that Miranda is diffusing throughout the 

cytoplasm rather than being actively transported by a myosin motor (Figure 11). Intriguingly, 

Myosin VI is not only capable to function as a processive motor but also as an anchor in vitro 

(Sweeney & Houdusse, 2007). Consequently, an alternative role of Myosin VI might be to 

retain the diffusing Miranda and its cargo at the basal side of the cell to facilitate the delivery 

of the protein complex to a so far unknown anchor. However, currently it cannot be 

distinguished between these possibilities and it will be necessary in future experiments to 

study in more detail the interaction of Miranda and Myosin VI by mapping binding domains 

and determining local and spatial binding affinities between the two molecules probably by 

fluorescent resonance energy transfer experiments (FRET).   

Inhibition of Myosin II as well as Myosin VI activity resulted in Miranda mislocalization 

uniformly around the cortex at prophase, a lack of basal crescent formation at metaphase 

and thus symmetrical inheritance of Miranda by both daughter cells. In addition, the 

cytoplasmic phase of Miranda-GFP was never observed. Evidently, this double-mutant 

phenotype closely resembles the localization pattern of Miranda-GFP after Myosin II 

inhibition. These results clearly demonstrate that Myosin II and Myosin VI act at consecutive 

steps in a single pathway to localize Miranda basally. 

3.2.4 A model for Miranda localization 

On the basis of the results presented above, I propose the following model how asymmetric 

localization of Miranda is established in Drosophila neuroblasts:  

In interphase, aPKC is absent from the apical complex and inactive Myosin II can interact 

with Miranda which thereby becomes enriched at the apical side of the cell (Figure 13A) and 

assembles in a complex with its cargo molecules Staufen, Prospero and Brat (not shown). In 

contrast, PON is ubiquitously cytoplasmic during interphase. In early prophase, Miranda is 

excluded from the apical cortex due to the formation of Myosin II microfilaments following 
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phosphorylation of Lgl by aPKC and the subsequent activation of Myosin II. At the same 

time, PON is recruited to the cortex (Figure 13B). In the cytoplasm, the Miranda complex 

diffuses three-dimensionally throughout the cell and becomes restricted in the basal half of 

the metaphase neuroblast by Myosin VI (Figure 13C). By a currently unknown mechanism, 

Myosin VI either directly transports Miranda to the basal cortex or retains cytoplasmic 

Miranda to facilitate its interaction with a basal cortical anchor. PON localization occurs 

mainly over the cortex and PON is pushed into the basal half of the cell by the action of 

Myosin II to form a metaphase crescent.  

 

 

 

Figure 13: A model for Miranda localization by Myos in II and Myosin VI. (A) Inactive Myosin II 
forms a crescent during late interphase (individual green ovals) because aPKC is absent and cannot 
phosphorylate and inactivate Lgl (not shown). Myosin II binds to Miranda (red crescent) and becomes 
apically enriched whereas PON is still cytoplasmic (yellow area). (B) Very early at prophase, aPKC 
localizes to the apical side of the cell (purple crescent) and phosphorylates Lgl (not shown) which 
results in the activation of Myosin II and the formation of microfilaments (connected green ovals). 
Consequently, Miranda is excluded from the apical cortex and released to diffuse rapidly throughout 
the entire cytoplasm including the nucleus after nuclear envelope breakdown at pro/metaphase (red 
area). At that time, PON is recruited to the cortex (yellow circle). (C) Myosin VI (blue) in the basal half 
of the cell binds to Miranda to either anchor it or to deliver Miranda by short-range transport to a 
cortical anchor at the basal crescent. By the action of Myosin II PON is ‘pushed’ along the cortex to 
form a basal crescent. 

 
While many asymmetrically localized cell fate determinants such as Numb, Prospero and 

Staufen share mammalian homologues, mammalian proteins resembling Miranda or PON 

have yet to be found in neural stem cells of the mammalian brain. However, the high degree 

of conservation and the presence of asymmetric stem cell division suggest that functional 

homologues might exist and that they are probably localized by similar mechanisms. 

.   
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4 Thesis Part 2 - The origin of brain cancer stem c ells 

4.1 Results 

Oligodendrogliomas are primary glial brain tumors and are believed to originate from 

oligodendrocytes or from a glial precursor (Marie et al, 2001).  

Here I study the presence of putative cancer stem cells (CSCs) in a transgenic mouse model 

of oligodendroglioma. Mice expressing an oncogenic version of the EGFR (verbB) from the 

S100ß promotor in neural stem cells and their progeny and lacking both copies of the tumor 

suppressor p53 develop high grade oligodendroglioma reflecting the pathology of the human 

disorder (Weiss et al, 2003). 

4.1.1 Isolation and characterization of cancer stem  cells from high grade 

oligodendroglioma 

Acute isolation of neural stem cells (NSCs) has been difficult as there is no specific marker 

available to identify adult neural stem cells. Currently, they can be enriched in neurosphere 

cultures and identified retrospectively. CD133, a hematopoietic stem cell marker, has been 

proven useful to identify human NSC (Uchida et al, 2001) but also for tumor stem cells from 

human glioma (Singh et al, 2004). Therefore, I was hoping that prominin-1, the mouse 

homolog of CD133 could be used to directly isolate stem-like cells from oligodendroglioma. 

However, antibodies for prominin-1 available at the begin of this study did neither show 

immunoreactivity with neural stem cells located in the subventricular zone (SVZ) of adult 

mice nor neurosphere cultures (data not shown) and as a consequence were not valuable for 

the selection of neural stem cells. 

Potential cancer stem cells were isolated from tumor bearing S100ß-verbB, p53-/- mice at 8 

weeks postnatally. Due to a lack of a specific marker for CSCs in mouse oligodendroglioma I 

enriched for these cells by culturing them under specific growth conditions. Animals were 

sacrificed and the tumor mass was dissected out taking care not to include stem cell 

enriched regions like the SVZ. Enzymatically dissociated tumor cells were seeded in 

Neurobasal medium supplemented with B27, EGF and bFGF (complete medium) allowing for 

amplification and maintenance of neural stem cells (Doetsch et al, 1999) and selecting 

against differentiating/differentiated cells. Under these conditions, tumor derived cells formed 

free floating clusters within one to two weeks resembling classical neurospheres formed in 

vitro by neural stem cells (Figure 15A). As these spheres originated from tumor cells, they 

were referred to as tumorspheres.  
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Figure 14: Isolation of cancer stem cells from olig odendroglioma.  (A) Illustration of the 
progression pathway of transgenic S100ß-verbB, p53-/- mice. (B) Schematic representation of an adult 
mouse brain hemisphere showing a large tumor mass from which tumor cells were isolated and 
cultured under stem cell conditions. Stem-like properties such as self-renewal capacity, 
multipotentiality and malignant potential were assessed from tumor-derived cells (B). CC, corpus 
callosum; LV, lateral ventricle. 

 

However, the sole formation of tumorspheres does not completely proof the presence of 

cancer stem cells therein. Transit amplifying cells are also known to produce neurospheres in 

this system and they can even undergo a limited number of passages in culture (Doetsch et 

al, 2002). Hence I determined whether the cells in primary tumorsphere culture were 

generated by short-time proliferating, transit amplifying cells or possessed the expected 

properties of cultured neural cancer stem cells.  

To this end, I first assessed their capacity for long-term proliferation, self-renewal, 

multipotentiality (defined as the ability to generate the three major neural cell types, i.e., 

neurons, astrocytes and oligodendrocytes) and their tumorigenicity. 

4.1.2 Tumor-derived cells undergo self-renewal and are multipotential 

Tumorspheres from a primary culture were dissociated into single cells, whereupon a small 

percentage of these cells generated secondary spheres. CSCs could be serially passaged 

over a long period of time (> 6 months) with no obvious change of their proliferative 

properties indicative of their potential for unlimited self-renewal.  

 

Figure 15: Tumor-derived cells undergo self-renewal  and express stem cell and early 
progenitor markers.  (A) Phase contrast image of a tumorsphere cultured from an oligodendroglioma 
of a S100ß-verbB, p53-/- transgenic mouse. Immunofluorescence images of Nestin protein in 
cryomicrodissected tumorspheres (B) and primary tumor sections (C). Expression of the neural stem 
cell marker Musashi (D) and CD15/LeX (E) was determined in tumor-derived cells. DAPI 
counterstained nuclei are in blue (B-E). Scale bars in (A) 200 µm, in (B) 100 µm, in (C-E) 20 µm.  
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Next, I tested whether tumor-derived cells expressed markers of neural stem cells. Nestin is 

an intermediate filament protein expressed in many cells during development, although its 

expression is often transient and does not persist into adulthood. Maybe the most prominent 

example of Nestin expression in adult organisms are neural precursors of the subventricular 

zone (SVZ) (Lendahl et al, 1990). Upon differentiation, Nestin becomes downregulated and 

replaced by cell-type-specific intermediate filaments like neurofilaments and glial fibrillary 

acidic protein during neuro- and gliogenesis (Steinert et al, 1999; Dahlstrand et al, 1992). 

Interestingly, Nestin expression is often reinduced in adulthood during pathological 

situations, such as in various central nervous system tumors (Rani et al, 2006). Therefore, 

immunofluorescence stainings were used to detect Nestin-positive neural progenitors in 

oligodendroglioma and tumor derived cells. Undifferentiated tumorspheres in proliferating 

medium contained many cells expressing Nestin (Figure 15B). Furthermore, 

immunohistochemistry on tumor cryostat sections identified a few Nestin positive stem-like 

precursors in primary oligodendroglioma (Figure 15C). To test for additional markers of 

neural stem cells, tumorspheres grown in complete medium were enzymatically dissociated, 

cells spun down on poly-L-lysin coated microscope slides using an cytospin apparatus 

(Statspin CytoFuge2), fixed and subjected to immunocytochemistry. I found high levels of 

Musashi-1 (Figure 15D), another putative marker of neural stem cells (Sakakibara et al, 

2002) and in addition, CD15/LeX, a marker for self-renewing stem cells/transit amplifying 

cells (Figure 15E) (Capela & Temple, 2002) could be detected. In contrast, under 

proliferative conditions, tumorspheres contained relatively few cells expressing the neuronal 

marker ß-III-tubulin and the astrocyte marker GFAP (data not shown). 

Multipotentiality is defined as the ability of stem cells to differentiate into various cell types. 

To determine if the cells which gave rise to tumorspheres were in fact multipotential, single 

tumorspheres were dissociated and plated under adherent conditions in the presence of 1% 

fetal calf serum and without growth factors (differentiation medium). After 7 days in vitro, 

cultures were processed for immunocytochemistry to detect neuronal and glial cell types. As 

expected, tumor derived progenitor cells differentiated into neurons, astrocytes and 

oligodendrocytes indicated by their expression of ß-III-Tubulin, GFAP and O4 (Figure 16), 

respectively, suggesting that they are multipotential. Such multipotentiality was maintained 

unaltered even after extensive culturing. 

Together, these results indicate that oligodendroglioma contain a small subset of progenitor 

cells with the capability to proliferate and differentiate in a stem-like fashion. Furthermore, 

tumor derived progenitor cells express characteristic markers for neural stem cells like 

Nestin, Musashi-1 and CD15/LeX. 
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Figure 16: Oligodendroglioma derived stem cells are  multipotential.  Upon withdrawal of growth 
factors cancer stem cells differentiate into ß-III-tubulin positive neurons (A), GFAP positive astrocytes 
(B) and O4 positive oligodendrocytes (C). Scale bar represents 30 µm. 

4.1.3 Oligodendroglioma derived cancer stem cells a re tumorigenic 

Cancer stem cells are rare cells within a tumor which give rise to the diverse tumor cell 

population to drive tumorigenesis. To determine their malignant potential I intracranially (i.e. 

under the skull into underlying brain tissue) injected oligodendroglioma derived progenitor 

cells into the right hemisphere of FvB/N wild type mice. When injected orthotopically (i.e. 

grafting of tissue or cells in their natural position), as little as 1 x 104 cells reproducibly 

established large tumors. Transplantation experiments were done with 3 independent 

tumorsphere lines and 6 animals per group. Usually, mice showed severe neurological 

symptoms (cycling and/or partially paralyzed animals) within days after the injection and 

animals developed massive tumors within weeks in the forebrain close to the injection site. In 

contrast, even at higher cell numbers (1 x 106) normal neural stem cells isolated from the 

subventricular zone of wild type mice injected as control never developed tumors (n=15) 

(Figure 17). 

 

 

Figure 17: Oligodendroglioma derived stem cells are  tumorigenic.  After intracranial injection of 
cancer stem cells into FvB/N mice (1 x 104 cells) orthotopic tumors consistently formed within 3 to 4 
weeks indicating their malignancy. Survival of animals (n=6 per group) challenged with independent 
CSC lines is shown. Normal stem cells from the subventricular zone of wild type mice were injected as 
controls and never developed tumors. 
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Brains of symptomatic mice were isolated, fixed and paraffin embedded followed by 

immunohistochemistry and hematoxylin and eosin staining (H&E, a popular staining method 

in histology and the most widely used stain in medical diagnosis to identify cancers). 

Infiltration of human glioma is a key feature that contributes to their poor prognosis and 

therapeutic response. Remarkably, both spontaneous (Figure 18A-C) and orthotopic murine 

tumors (Figure 18D-F) were infiltrative evidenced by their easily recognized nuclei invading 

the surrounding brain tissue. Furthermore, histopathologic analysis of orthotopic tumors 

demonstrated additional oligodendroglioma-like features such as (1) high cellularity, (2) high 

mitotic index, (3) subpial infiltration (Figure 18A) and (4) the characteristic “fried egg” 

appearance of cells due to a clear and swollen cytoplasm forming a perinuclear halo (Figure 

18C,F). Occasionally, tumors showed rhythmic pallisading of cells (Figure 18E). Intriguingly, 

the orthotopic tumor (Figure 18D-F). histologically resembled the parental tumor (Figure 18A-

C). H&E stainings were analyzed by Dr. Scott Vandenberg from the Neuropathology core at 

UCSF who confirmed the presence of high grade oligodendroglioma (WHO grade II/III).  

Figure 18:  Orthotopic tumors are high grade oligodendroglioma.  H&E stained sections of a 
representative spontaneous oligodendroglioma (A-C) and an orthotopic tumor derived from S100ß-
verbB, p53-/- cancer stem cells (D-F) after formalin fixation and paraffin embedding. Histopathologic 
features are characteristic for high grade oligodendroglioma as indicated by a high cellularity, high 
mitotic index, diffuse invasion, subpial infiltration (arrow in A) and the characteristic “fried egg” 
appearance of cells, i.e. empty zones around the cell nuclei (black arrows in C, F). Orthotopic tumors 
showing rhythmic pallisading of nuclei, a pattern typical for human oligodendroglioma (E). Scale bars 
in (A,D) 600 µm, in (B,E) 300 µm, in (C,F) 100 µm. 
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To conclusively demonstrate the stemness of oligodendroglioma derived cancer stem cells, I 

performed sequential transplantation experiments (Figure 19). This was done in analogy to 

the classical repopulation experiment used to identify true hematopoietic stem cells (Bock et 

al, 1999). Cultured tumor derived progenitor cells (primary cancer stem cells) were 

transplanted into FvB/N mice to establish a tumor. At the first sign of neurological impairment 

animals were sacrificed and the tumor mass was dissected out taking care not to include 

stem cell enriched regions like the SVZ. The tumor cells were then enzymatically dissociated 

and cultured under conditions identical to those used to establish tumor stem cell lines from 

the original oligodendroglioma. This resulted in the establishment of secondary cancer stem 

cell lines which were intracranially injected into new recipients again developing brain 

tumors. As before, cancer stem cells were isolated and re-cultured (tertiary cancer stem 

cells) followed by transplantation into new recipients. CSCs from orthotopic tumors were 

sequentially transplanted for 4 passages demonstrating their malignant potential and in vivo 

self renewing potential (Figure 20).  

 

 

Figure 19: Evaluation of the tumorigenicity of olig odendroglioma derived stem cells. 
Tumorigenicity was determined by injecting oligodendroglioma-derived neural stem cells in the 
forebrain of FvB/N mice. Secondary cancer stem cells were isolated and re-cultured from orthotopic 
tumors and transplanted into new recipients. CSCs were successfully transplanted for several 
passages demonstrating their malignancy and in vivo self-renewing potential. 

It is noteworthy that tumors developed even faster (within 2 weeks; Figure 20) with CSCs 

isolated from tumors of later passages suggesting that these cells became more aggressive 

maybe due to accumulation of additional mutations during culturing and serial implantation. 

In addition, particularly aggressive cells could have been selected upon transplantation, 

tumor growth and culturing. Notably, CSCs from orthotopic tumors cultured under same 

conditions as their parental cell line retained their self-renewing capacity and multipotentiality 

after transplantation and re-culturing (data not shown). Together, the successful serial 

development of oligodendroglioma-like tumors provided evidence that I have indeed isolated 

cancer stem cells. 
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Figure 20: Survival upon sequential intracranial in jection of tumor derived stem cells. Animals 
challenged with cancer stem cells isolated from a parental tumor usually died within 3 weeks (blue 
line). Secondary tumorspheres were re-cultured from these orthotopic tumors and transplanted into 
new recipients. Note that tumor formation occurs much faster with cells from the secondary (green 
line) or tertiary tumor (black line). Normal stem cells from the subventricular zone of wild type mice 
were injected as controls and never developed tumors.  

4.1.4 Spontaneous and orthotopic tumors show simila r marker expression 

Oligodendroglioma in S100ß-verbB, p53-/- transgenic mice mainly consist of oligodendrocyte 

progenitors marked by the expression of NG2 and Olig2. Thus, I next tested whether CSCs 

generate orthotopic tumors which resembled the cellular composition of the primary tumor.  

Evidently, immunohistochemical analysis have shown that the majority of cells within the 

tumor are highly positive for the early oligodendrocyte markers NG2 and Olig2 (Figure 

21A,B). These cells displayed a round shape without any extensions or branches, a 

morphology indicative of progenitors rather than mature oligodendrocytes. Importantly, 

although forming huge and relatively defined tumor masses around the injection site, cells 

are clearly infiltrating neighboring tissue at the border of the tumor. 

Similar to human oligodendroglioma and the parental tumor, the number of astrocytes 

labeled by GFAP was very low within the tumor (Figure 21C) whereas large quantities of 

astrocytes were present in the surrounding normal brain tissue. Moreover, hardly any 

neurons could be detected in orthotopic tumors (Figure 21D).  

As shown in Figure 15E, tumors also contain a small number of Nestin-positive stem like 

precursors and cells within the tumor are highly proliferative as indicated by the expression of 

phospho-histone-3 (PH3), a marker for mitotic cells (Figure 21F). 

In conclusion, tumor-derived progenitor cells satisfy all of the critical criteria to be defined as 

multipotential neural stem cells, both in vitro and in vivo. In addition, after orthotopic 

injections, they generate tumors mimicking the cellular composition and histology of the 

parental tumor. This is the first demonstration that high grade oligodendroglioma contain 

tumor-initiating cells with stem-like features or in other words, cancer stem cells. 
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Figure 21: Orthotopic tumors recapitulate character istics of the parental tumor. 
Immunohistochemical characteristics of orthotopic tumor samples. Images shown are located at the 
tumor border (except ß-III-tubulin staining in (D)). Normal brain tissue adjacent to the tumor is always 
on the left hand side. Tumors mainly consisted of oligodendrocyte progenitors as shown by the high 
expression of NG2 (A) and Olig2 (B). In contrast, the number of GFAP positive astrocytes was very 
low (see arrows in (C)). Note that the GFAP immunoreactivity was confined outside the tumor mass 
(C). Only a few ß-III-tubulin positive neurons could be detected within the tumor mass (D). Nestin 
positive stem cell-like tumor cells were present in orthotopic tumors (E). Tumors displayed intense 
mitotic activity as shown by the expression of PH3 (F). Scale bar represents 100 µm. 
 

4.1.5 Isolation and characterization of premalignan t stem cells from  

S100ß-verbB, p53+/- mice 

The cancer stem cell hypothesis claims that pathological adult stem cells give rise to a 

heterogeneous tumor and maintain it by aberrant differentiation and proliferation. My data 

clearly demonstrate that oligodendroglioma contain a rare population of cells with stem-like 

features that can reconstitute a new tumor with all cell types represented in the tumor of 

origin upon serial transplantation. However, it remains to be determined how these CSCs are 

generated and whether they arise from a mutated stem cell, or a downstream progenitor or 

differentiated cell that has regained stem cell-like properties because of genetic alterations. I 

propose that cancer stem cells are generated from defective adult neural stem cells evading 

normal cell cycle control and differentiation. Over time the accumulation of additional 

mutations will lead to the formation of an aberrant pool of cancer stem cells which are 

capable to generate tumor cells. Transgenic S100ß-verbB p53-/- mice consistently died of 
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high-grade oligodendroglioma by 2 month providing an excellent model of tumor formation. 

However, it is less suitable to examine the events which cause the potential progression of 

normal adult stem cells to cancer stem cells. 

In contrast, in S100ß-verbB mice heterozygous for p53, tumors developed with a significant 

delay of 4-6 months. Thus, the S100ß-verbB p53+/- model provided an unique opportunity to 

study stepwise changes leading to the generation of cancer stem cells.  

Postembryonic or adult stem cells reside in distinct areas of the brain such as the 

subventricular zone (SVZ) of the lateral ventricle and are contributing to tissue repair, growth 

and maintenance (Alvarez-Buylla & Temple, 1998; Lois & Alvarez-Buylla, 1994). In order to 

determine whether defective stem cells might indeed drive tumorigenesis, I next focused on 

stem cells from transgenic mice at earlier stages before tumor development and compared 

typical stem cell properties with them of normal stem cells from wild-type animals. 

Particularly, changes in proliferation, self-renewing, differentiation and asymmetric cell 

division were assessed. Already identifying differences at this point would strongly support 

the idea that normal stem cells progressively develop towards cancer stem cells.  

 

 

Figure 22: Isolation of premalignant stem cells fro m tumor prone mice. (A) Illustration of the 
progression pathway of transgenic S100ß-verbB, p53+/- mice. (B) Schematic representation of an adult 
mouse brain hemisphere showing the subventricular zone (SVZ), a region enriched for neural stem 
cells. Neural stem cells were isolated from the SVZ of tumor proned mice prior to tumor formation 
(premalignant stem cells). Then, stem-cell properties such as self-renewal capacity, multipotentiality 
and malignant potential were determined. CC, corpus callosum; LV, lateral ventricle; SVZ, 
subventricular zone.  
 

 
Neural stem cells were isolated from the subventricular zone of tumor proned S100ß-

verbB, p53+/- mice prior to tumor occurrence at 2 months postnatal, which were referred to as 

premalignant stem cells (PSCs). The SVZ was dissected from brain sections, tissues 

enzymatically dissociated and stem cells were isolated and cultured as described above. 

Cultures of neural stem cells derived from age-matched wild-type mice and littermates either 

overexpressing verbB alone or mice hetero- or homozygous for p53 only were established as 

controls.  
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4.1.6 Stem cells isolated from premalignant S100ß-v erbB, p53+/- mice and from 

S100ß-verbB, p53-/- tumorspheres show self-renewal defects  

The epidermal growth factor receptor (EGFR) is involved in neural development and 

regulates proliferation and self-renewing capacities of adult neural stem cells. Moreover, 

EGFR amplification is observed at high frequency in a variety of brain tumors like 

glioblastoma multiforme (GBM) or oligodendroglioma (Sibilia et al, 2007). Tumor formation in 

a mouse model for oligodendroglioma is in part due to upregulation of EGFR thus providing 

the opportunity to study the direct impact of EGFR on self-renewing properties of adult stem 

cells.   

To investigate whether deregulation of EGFR influences the self-renewing capacity of 

transgenic stem cells, I performed so called sphere-forming assays and quantified secondary 

neurosphere formation. 

Normal stem cells from wild type mice (NSCs), premalignant (PSCs) as well as cancer stem 

cells (CSCs) formed neurospheres (Figure 23A-C) which could be passaged over many 

generations indicating that they have extensive self-renewing capacity. However, when I 

plated the same amount of cells from either cell line in complete medium, the number of 

secondary spheres was higher in PSCs and CSCs compared to wild type controls. The 

number of sphere-forming cells directly correlates with the number of self-renewing cells, i.e. 

the number of stem cells and transit amplifying cells. It is noteworthy, however, that I could 

not make a difference between these cells based on the sphere forming assay. Anyway, an 

overall increase of self-renewing cells in the PSCs (17.7 ± 6.5%) and CSCs (25.2 ± 12.6%) 

could be detected compared to NSCs (13.8 ± 7.5%) (Figure 23E).  

 

Figure 23: Self-renewing defects in transgenic stem  cells . (A-C) Normal stem cells (NSCs), 
premalignant stem cells (PSCs) and cancer stem cells (CSCs) can be maintained in neurosphere 
culture for many generations. (D) Illustration of sphere forming assays. Neurospheres were 
dissociated and the number of secondary spheres, correlating with the number of self-renewing cells 
within the sphere, was quantified. (E) PSCs (17.7 ± 6.5%) and CSCs (25.2 ± 12.6%) have increased 
numbers of self-renewing cells compared to NSCs (13.8 ± 7.5%). Scale bar represents 200 µm.  
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In an alternative approach to determine the number of self-renewing cells, I performed 

immunocytochemistry on dissociated neurospheres using CD15/LeX, a marker for stem cells 

and transit amplifying cells which has been used to identify mouse embryonic neural 

progenitors as well as adult stem cells (Capela & Temple, 2002). Neurosphere cultures from 

both NSCs and PSCs grown under proliferative conditions expressed CD15/LeX. Similar to 

results obtained from sphere forming assays, higher number of CD15/LeX positive cells in 

PSCs (38.8 ± 4.3%) compared to normal adult stem cells (24.8 ± 5.8%) (Figure 24) were 

observed. 

 

Figure 24: CD15/LeX positive cells are increased in  premalignant stem cells. 
Immunocytochemistry for the stem cell/transit amplifying cell marker CD15/LeX on dissociated cells 
from NSCs (A) and PSCs (B) grown under proliferative conditions. (C) Quantification of cells revealed 
that PSCs consist of a higher number of CD15/LeX positive cells (38.8 ± 4.3%) as compared to NSCs 
(24.8 ± 5.8%). Scale bar represents 70 µm.  

Together, these data demonstrate that ectopic EGFR expression in this mouse model for 

oligodendroglioma increased the self-renewing capacity of adult stem cells already at 

premalignant stages.  

4.1.7 Differentiation defects in oligodendroglioma derived cancer stem cells 

and premalignant stem cells 

Adult neural stem cells are multipotential giving rise to neurons, astrocytes and 

oligodendrocytes (Gage et al, 2000). Brain cancer stem cells, on the other hand, 

preferentially develop into the cells found in the primary tumor (Vescovi et al, 2006). Before, I 

assessed the multipotentiality of cancer stem cells and found that oligodendroglioma derived 

neural cancer stem cells generate all three neural cell types (Figure 16) although the number 

of astrocytes and neurons was relatively low compared to oligodendrocytes (see below). In 

addition, I have shown that orthotopically injected CSCs primarily give raise to immature 

oligodendrocytes (Figure 21A-B) suggesting that these cancer stem cells have lost their 

normal differentiation potential. 

EGFR deregulation in cancer stem cells could directly influence their differentiation potential 

being responsible for the generation of mainly oligodendrocytes as compared to astrocytes 
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and neurons. To test this hypothesis I quantitatively compared the differentiation capacity of 

premalignant and cancer stem cells to that of normal neural stem cells. 

In brief, neurospheres from NSCs and PSCs as well as tumorspheres from CSCs were 

dissociated and cells plated under adherent conditions in the absence of growth factors to 

induce differentiation. Usually, cells were fixed after 7 days and subjected to 

immunocytochemistry to detect neuronal and glial cells. Expression of GFAP and ß-III-tubulin 

for astrocytes and neurons, respectively, and the early and later oligodendrocyte markers 

Olig2, NG2 and O4 were examined.  

Since oligodendroglioma mainly consist of oligodendrocyte progenitors I first focused on 

potential differentiation defects of PSCs and CSCs in the oligodendrocyte lineage. The 

transcription factor Olig2 is expressed in immature progenitor cells of the developing brain 

and spinal cord in regions that give rise both to neurons and oligodendrocytes (Lu et al, 

2002; Zhou & Anderson, 2002). In the adult subventricular zone Olig2 expression was 

identified in fast proliferating CD15/Lex positive cells, suggesting a role of Olig2 in transit 

amplifying type C cells (Aguirre et al, 2004) which presumably are oligodendrocyte 

precursors. There, Olig2 is maintained to direct transit amplifying cells towards the 

oligodendrocyte lineage or downregulated to induce neural fate (Hack et al, 2005). 

Similar to cells from primary and orthotopic tumors, after 7 days under differentiation 

conditions a large number of CSCs expressed Olig2 (80.3 ± 5.6%). In contrast, only 18.4 ± 

2.5% Olig2 positive cells were observed in neural stem cells from control mice. Interestingly, 

in PSCs isolated from S100ß-verbB, p53+/- mice long before tumor formation, a considerably 

increased number of Olig2 positive cells was detected (29.3 ± 3.9%) (Figure 25). 

 

 

Figure 25: Analysis of Olig2 expression in differen tiated stem cells and cancer stem cells. 
NSCs (A), PSCs (B) and CSCs (C) were dissociated and grown under adherent conditions in the 
absence of growth factors to induce differentiation and stained for Olig2 (red) and DAPI (blue). (D) 
Increased numbers of Olig2 positive cells could be detected in PSCs (29.3 ± 3.9%) compared to 
neural stem cells from control mice (18.4 ± 2.5%). Note that the majority of differentiated CSCs 
express Olig2 (80.3 ± 5.6%). Scale bar represents 100 µm.  
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Next I compared the expression of NG2, another marker for oligodendrocyte progenitors, in 

PSCs and CSCs with normal neural stem cells and obtained essentially the same results as 

with Olig2.  

In the absence of growth factors, even more premalignant stem cells from 

S100ß-verbB, p53+/- mice (24.4 ± 7.9%) developed into NG2 positive oligodendrocyte 

progenitors whereas only 8.8 ± 2.5% of differentiated control stem cells expressed this 

marker. Again, a dramatic increase of the early oligodendrocyte marker was observed when 

cancer stem cells were induced to differentiate (84.4 ± 3.5%) (Figure 26).  

 

 

Figure 26: Oligodendrocyte progenitors are generate d at higher number by differentiated PSCs 
and CSCs. Wild type (A), S100ß-verbB, p53+/- premalignant (B) and S100ß-verbB, p53-/- cancer stem 
cells (C) were grown under differentiation conditions for 7 days and subjected to immunocytochemistry 
for the early oligodendrocyte marker NG2 (red). DNA was counterstained in blue. (D) Quantification 
showing that premalignant (24.4 ± 7.9%) and especially cancer stem cells (84.4 ± 3.5%) generate 
significantly higher numbers of NG2 compared to control adult neural stem cells (8.8 ± 2.5%). Scale 
bar represents 100 µm. 
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Early progenitor cells eventually give rise to more mature oligodendrocytes and sequentially 

begin to express the oligodendrocyte antigen O4, galactocerebroside (GalC) and finally 

mature myelin antigens such as MBP (myelin basic protein) in vivo and in vitro (Nishiyama, 

2007; Dawson et al, 2003).  

To evaluate whether the accumulation of Olig2+/NG2+ positive cells in these differentiation 

experiments indeed reflected an increased potential of PSCs to differentiate further into the 

oligodendrocyte lineage I next tested for the oligodendrocyte marker O4.  

As for the progenitor cells, I expected an substantial increase of more mature 

oligodendrocytes. Surprisingly, the number of O4 positive cells was only moderately 

increased in PSCs (5.3 ± 2.8%) (Figure 27B) and CSCs (4.7 ± 2.1%) (Figure 27C) compared 

to the wild type population (2.3 ± 0.7%) (Figure 27A)  

Oligodendrocyte progenitors (NG2+, Figure 27D, arrow) and more mature oligodendrocytes 

(O4+, Figure 27D, arrowhead) differentiated from both wild type and premalignant stem cells 

show a typical stellate morphology and are highly branched. During the maturation of 

oligodendrocytes, expression of the NG2 proteoglycan is downregulated whereas more O4 

antigen is generated, with intermediate stages where both antigens can be detected (asterisk 

in Figure 27D). In contrast, cancer stem cells induced to differentiation show a totally 

different morphology, with cells generated generally of round shape and high expression of 

NG2. CSC-derived oligodendrocytes immunopositive for the O4 antigen, on the other hand, 

do have some processes although they were much less branched (arrow in Figure 27E). For 

differentiation experiments, usually 25000 cells/well in 8 well chamber slides from each cell 

line were plated, resulting in relatively dense cultures but still giving cells enough space to 

expand. However, under this conditions, CSCs totally overgrew the slide giving rise to a 

confluent layer of cells suggesting that, at least a part of these cells, did not respond to the 

differentiation signals but continue to proliferate. Therefore, the number of cells plated from 

CSCs was reduced to approximately 10000/well. Still, cells aggregated and formed clusters 

as shown in Figure 27E and a large number of dividing cells could be detected. 

The high number of oligodendrocyte progenitors derived from cancer stem cells under 

conditions which favor differentiation, together with the morphological abnormalities and 

continuous proliferation indicate that these cells possessed a block in their differentiation 

potential which would explain the accumulation of immature oligodendrocytes. Interestingly, 

when cells acutely isolated from a orthotopic tumor were grown under adherent conditions in 

the absence of any mitogens, almost all cells were immunopositive for NG2 and O4, 

respectively, showing a morphology very similar to oligodendrocytes generated from wild 

type and premalignant stem cells (Figure 27F).  
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Figure 27: Differentiation block in oligodendrocyte  progenitors. NSCs (A), PSCs (B) and CSCs 
(C) were grown under differentiation conditions for 7 days and stained for the early oligodendrocyte 
marker NG2 (red) and the more mature oligodendrocyte marker O4 (green), DNA was counterstained 
in blue. (D) (Inset in B) Immunofluorescence image showing the typical stellate morphology of NG2+ 
oligodendrocyte progenitors (arrow) and O4 oligodendrocytes (arrowheads). The asterisk indicates a 
NG2+/O4+ transition state. (E) (Inset in C). In contrast, cells differentiated from CSCs were of round 
shape and O4 positive oligodendrocytes possessed less processes and branches. (F) Acutely isolated 
tumor cells essentially generate cells of the oligodendrocytic lineage morphologically similar to 
controls. (G) Despite the accumulation of progenitor cells, quantification revealed that PSCs 
(5.3 ± 2.8%) and CSCs (4.7 ± 2.1%) generate similar amounts of O4 positive oligodendrocytes as 
control adult neural stem cells (2.3 ± 0.7%). Scale bars in (A, F) 100 µm, in (D) 50 µm. 

Together, my data suggest that premalignant stem cells already show a defect in the 

differentiation pattern and preferentially generate cells of the oligodendrocytic lineage 

including transit amplifying cells. Since oligodendroglioma consist of mainly Olig2+ and NG2+ 

cells, early changes observed in premalignant stem cells might reflect their ability to later 

give rise to CSCs, which in turn generate tumors. Importantly, these tumors contain cells with 

stem cell properties which almost exclusively develop into early oligodendrocyte progenitors 

after being induced to differentiation. These cells, however, showed a distinct morphology to 

oligodendrocytes derived from normal adult stem cells further supporting a defect and/or 

block of differentiation of stem cells originated from this murine oligodendroglioma model.  
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Next, I wanted to determine whether cells of the neuronal and astrocytic lineage are also 

affected in transgenic stem cells. Therefore, dissociated NSCs, PSCs and CSCs were plated 

under differentiation conditions as described before and stained for the neuronal marker ß-III-

tubulin and for GFAP to identify astrocytes. Adult neural stem cells induced to differentiate 

generated around 15% of neuronal cells as indicated by ß-III-tubulin positive staining 

(14.4 ± 10.7%). However, PSCs (4.5 ± 3.1%) and CSCs (6.2 ± 4.1%) generated lower 

numbers of ß-III-tubulin positive cells suggesting that the differentiation within the neuronal 

lineage is impaired (Figure 28A-D). 

Figure 28: Neurons were generated at lower numbers by differentiated PSCs and CSCs . Wild 
type (A), S100ß-verbB, p53+/- premalignant (B) and S100ß-verbB, p53-/- cancer stem cells (C) were 
dissociated and grown in the absence of growth factors to induce differentiation. After 7 days, cells 
were fixed and subjected to immunocytochemistry to detect the neuronal marker ß-III-tubulin (green), 
DNA was counterstained in blue. (D) Quantification of ß-III-tubulin expressing cells revealed a 
decreased number of neurons in PSCs (4.5 ± 3.1%) and CSCs (6.2 ± 4.1%) compared to normal 
neural stem cells (14.4 ± 10.7%). Scale bar represents 100 µm. 

 

With 36.0 ± 3.0% of GFAP-immunoreactive cells, astrocytes represent the majority of 

differentiated wild type stem cells (Figure 29A). Similar to neuronal cells, the number of 

GFAP positive cells was considerably reduced to 26.1 ± 5.4% in premalignant stem cells 

derived from S100ß-verbB, p53+/- mice (Figure 29B). An even more dramatic decline could 

be observed in the number of astrocytes when cancer stem cells were induced to 
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differentiate. In contrast to NSCs and PSCs, after culturing these cells for 7 days in the 

absence of mitogens, hardly any astrocytes could be detected by immunocytochemistry 

(2.3 ± 1.1%) (Figure 29C).  

  

Figure 29: Premalignant and cancer stem cells gener ate fewer cells of the astrocytic lineage. 
Immunocytochemical analysis for the astrocyte-marker GFAP (red) in differentiated NSCs (A), PSCs 
(B) and CSCs (C). Nuclei were counterstained with DAPI (blue). (D) The number of astrocytes was 
only moderately decreased in PSCs (26.1 ± 5.4%) compared to NSCs (36.0 ± 3.0%), however, only a 
few GFAP positive cells could be detected in differentiated CSCs (2.3 ± 1.1%). Scale bar represents 
100 µm. 

In summary, premalignant stem cells derived from S100ß-verbB, p53+/- mice display 

significant alterations in their differentiation potential, reminiscent of cancer stem cells, 

already long before tumor occurrence: they preferentially generate oligodendrocyte 

progenitors with delayed or impaired maturation at the expense of astrocytic and neuronal 

cells. My results strengthen the proposition that early changes in neural stem cells induced 

by e.g. oncogenic mutations lead to premalignant stem cells which, after acquiring additional 

mutations, transform into cancer stem cells. I have isolated cells from oligodendroglioma with 

stem-like features which showed a similar differentiation pattern as seen in PSCs, however, 

the observed defects were even more severe: the vast majority of cells developed into 

oligodendrocyte progenitors and only a few neurons and astrocytes could be detected after 

growing cancer stem cells under differentiation conditions.  
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The following table summarizes the results obtained from the differentiation experiments 

described in the last chapter. It is important to note, that at the beginning of this study, all 

differentiation experiments were performed with pooled cell lines, i.e. a mixture of stem cells 

isolated from several mice (e.g. the initial wild type neurosphere line, which I referred to as 

wild type “old”, is a pool of stem cells obtained from 3 different FvB/N mice). In addition, 

some of the results available represent only data from the analysis done with these initial cell 

lines (e.g. GFAP and O4).  

 

Table 1:  Summary of differentiation experiments.  The table shows a quantitative analysis of the 
differentiation capacity of cell lines from wild type neural stem cells, premalignant S100ß-verbB, p53+/- 
stem cells and oligodendroglioma derived cancer stem cells with respect to their ability to generate 
cells of the oligodendrocytic lineage (NG2, Olig2, O4 immunoreactivity), neurons (ß-III-tubulin positive) 
and astrocytes (GFAP positive). 

Marker NG2 Olig2 O4 ß-III-Tub GFAP 
 % marker expression of total cells 

Wild type stem cell lines 
Average 8.8 18.4 2.3 14.4 36.0 
± SEM 2.5 2.5 0.7 10.7 3.0 

WT “old” 1 5.2 18.1 2.3 19,8 3,0 
WT “new” 2 9.7 21.2 n.d 21,3 n.d 
108127 9.5 15.2 n.d 2,0 n.d 
108437 10.9 19.2 n.d n.d. n.d 

S100ß-verbB, p53+/- premalignant stem cell lines  

Average 24.2 29.3 5.3 4,5 26,1 
± SEM 7.9 3.9 2.8 3,1 5.4 

PSC “old” 3 38.8 n.d. 5.3 3.2 26.1 
108439 17.1 31.8 n.d 3.3 n.d 
11939 18.3 25.8 n.d 9.5 n.d 
11407 20.6 25.2 n.d 3.3 n.d 
11144 24.6 34.2 n.d 5.8 n.d 
9495 26.9 29.3 n.d 2.2 n.d. 

S100ß-verbB, p53-/- cancer stem cell lines  
Average 84.9 29.3 5.3 4.5 26.1 
± SEM 3.5 3.9 2.8 3,1 5.4 

CSC “old”  88.9 85.8 6.2 3.3 1.5 
10110 82.9 74.5 3.2 4.4 3.1 
9683 82.9 80.5 n.d. 11.0 n.d. 

1 WT “old” represents a pool of stem cells isolated from the SVZ of 3 different wild type mice. 2 WT 
“new” is a pool of stem cells isolated from the SVZ of 2 wild type mice (107268 and 107270). 2 PSC 
“old” is a pool of stem cells isolated from the SVZ of 3 S100ß-verbB, p53+/- mice (9490, 9492 and 
9493). Other stem cell lines were named after the animal number from the mouse which they were 
isolated from. For each data set, means ± SEM (standard error of the mean) of experiments from 
independent cell lines are shown. When only one cell line was used for the analysis, results represent 
the average and standard deviation from several individual experiments. For each data point, > 1000 
cells were counted.     
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4.1.8 Neural stem cells from S100ß-v erbB, p53-/- but not S100ß-v erbB, p53+/- 

are tumorigenic 

Although premalignant stem cells already showed self-renewal and differentiation defects 

they were not yet tumorigenic. Indeed, in contrast to cancer stem cells, premalignant stem 

cells derived from S100ß-verbB, p53+/- mice never gave rise to tumors after intracranial 

injections. Animals, even when transplanted with high numbers of PSCs (up to 1x106), never 

developed tumors. One group of animals (n=6) was sacrificed 9 months after injection with 

PSC “old” cells and histopathology on brain sections revealed no signs of tumor formation. 

Transplantation experiments were repeated with two additional PSC lines to test their 

tumorigenicity. Animals were nonsymptomatic 2 months after intracranial injection of PSCs 

and sacrificed to analyze them for hallmarks of oligodendroglioma. Again, no indications for 

tumor formation were obvious (Figure 30). 

 

Figure 30: Premalignant stem cells do not form tumo rs in transplantation experiments. 
Premalignant stem cells were intracranially injected into FvB/N mice. Animals never developed 
neurological impairment and histochemical analysis on brain sections showed no signs of tumor 
formation. 3 groups (n=6) of animals were challenged with independent PSC lines, and sacrificed and 
analyzed after 2 and 9 month, respectively. For comparison, the survival of S100ß-verbB, p53+/- 
animals (endogenous model) is shown. 

Interestingly, when SVZ-derived stem cells from S100ß-verbB, p53-/- animals were 

transplanted into FvB/N mice (n=15), recipients consistently developed tumors within 2-3 

weeks (Figure 31E). Moreover, when induced to differentiate, these cells preferentially 

developed into Olig2+ (64.7 ± 0.9%) and NG2+ (74.6 ± 3.5%) oligodendrocyte progenitors 

whereas the number of ß-III-tubulin positive neurons was very low (3.9 ± 3.7%) (Figure 31A-

D). This differentiation pattern was very similar to that observed in oligodendroglioma-derived 

cancer stem cells isolated from S100ß-verbB, p53-/- mice.  

However, at the time when neural stem cells have been isolated from the SVZ of these mice, 

tumor formation has already been obvious. As mentioned, oligodendroglioma are highly 

infiltrative, therefore I could not rule out a contamination as tumor cells, including potential 

CSCs from the tumor site might have migrated to the SVZ. As CSCs displayed higher self 

renewal capacity, it is possible that these cells overgrew normal neural stem cells during 



Part 2 - Results 

57 

culturing. Alternatively, as hypothesized in my model, neural stem cells in the SVZ of 

S100ß-verbB, p53-/- themselves could have transformed into cancer stem cells being the 

initiating cause of tumor formation.  

This hypothesis would further be supported by the malignant potential of these neural stem 

cells which, similar to oligodendroglioma derived CSCs but unlike PSCs, gave rise to 

orthotopic tumors in transplantation experiments. 

 

 

Figure 31: S100ß-v erbB, p53-/- neural stem cells phenocopy cancer stem cells. Neural stem cells 
were isolated from the subventricular zone of S100ß-verbB, p53-/- mice and grown in the absence of 
mitogens. The majority of cells differentiated into Olig2+ (64.7 ± 0,9%) (A) and NG2+ (74.6 ± 3.5%) (B) 
oligodendrocyte progenitor cells whereas only a few neurons could be detected (3.9 ± 3.7%) (C). 
Similar to cancer stem cells, intracranial injection of neural stem cells from S100ß-verbB, p53-/- 
consistently resulted in tumor formation (E). Scale bar represents 100 µm.  
 

4.1.9 Deregulation of EGFR signaling but not loss o f p53 influences cell fate 

decisions  

Both, S100ß-verbB, p53+/- and S100ß-verbB, p53-/- mice develop high grade 

oligodendroglioma and I have shown that neural stem cells, isolated long before tumor 

occurrence, already display differentiation defects giving rise to increased numbers of cells of 

the oligodendrocytic lineage. 

Next I wanted to explore in more detail to what extend ectopic expression of verbB and the 

loss of tumor suppressors, respectively, contribute to the observed differentiation defects.  
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Transgenic mice exclusively overexpressing verbB, the oncogenic version of EGFR, from the 

S100ß promotor develop low-grade oligodendroglioma (Weiss et al., 2003). I isolated 

subventricular zone stem cells 2 month postnatally before tumor occurrence as described 

and evaluated their differentiation potential (n=6 independent lines). Immunocytochemistry 

revealed that after differentiation for 7 days 27.4 ± 4.9% of S100ß-verbB stem cells 

developed into Olig2+ (data not shown) and 23.3 ± 7.0% into NG2+ oligodendrocyte 

progenitors. In contrast, only 7.9 ± 5.0% of differentiated cells expressed the neuronal 

marker ß-III-tubulin (Figure 32A,D). Interestingly, this almost resembled the differentiation 

pattern of premalignant stem cells from S100ß-verbB, p53+/- mice. These data indicate that 

alterations in EGFR signalling, initiated through the overexpression of verbB, directly 

contributed to differentiation defects observed in transgenic stem cell lines.  

In addition, I evaluated the differentiation capabilities of stem cells derived from littermates 

either hetero- or homozygous for the tumor suppressor p53. Loss of p53 had little effect on 

the oligodendrocytic lineage as NG2 expression was comparable to that of neural stem cells 

from wild type controls (11.9 ± 1.9% in p53+/- stem cells, 12.3 ± 1.3% in p53-/- stem cells; 

Figure 32). p53-/- stem cells also generated similar amounts of Olig2+ oligodendrocyte 

progenitors (16.7 ± 0.9%, data not shown) and neurons (16.2 ± 3.3%) as compared to wild 

type controls. Surprisingly however, I detected significantly less ß-III-tubulin positive cells in 

differentiated stem cells from p53+/- mice (Figure 32B-D). 

Together, it was observed for the first time that neural stem cells in a transgenic mouse 

model for oligodendroglioma undergo differentiation changes before the establishment of a 

tumor. However, after intracranial injection, these cells never gave rise to orthotopic tumors 

(Figure 32E). Ectopic expression of verbB in the stem cell/progenitor cell pool alters EGFR 

signaling and might probably be the initiating factor which leads to the accumulation of 

oligodendrocytic progenitor cells. Upon loss of the tumor suppressor p53, transgenic S100ß-

verbB mice progress to high grade oligodendroglioma and tumors develop with decreased 

latency and increased penetrance. However, in contrast to verbB overexpression, p53 loss 

only moderately influences the in vitro differentiation capabilities of neural stem cells. In vivo, 

the loss of p53 leads to increased proliferation as a result of increased cell division and 

reduced apoptosis (Symonds et al, 1994) which, together with additional genetic alterations, 

may explain the progression from low- to high grade oligodendroglioma. 
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Figure 32: Deregulation of EGFR signaling but not l oss of p53 causes differentiation defects. 
Stem cells isolated from the SVZ of S100ß-verbB (A), p53+/- (B) and p53-/- (C) mice were cultured 
under differentiation conditions and subjected to immunocytochemistry for NG2 (red) and ß-III-tubulin 
(green), nuclei were counterstained with DAPI (blue). (D) Quantification revealed that S100ß-verbB 
stem cells differentiated into higher numbers of NG2+ oligodendrocyte progenitors (23.3 ± 7.0%) 
compared to stem cells cultured from animals either hetero- or homozygous for the tumor suppressor 
p53 (11.9 ± 1.9% and 12.3 ± 1.3%, respectively). ß-III-tubulin expression was similar to wild type 
controls in differentiated p53-/- stem cells (16.2 ± 3.3%) whereas stem cells derived from S100ß-verbB 
mice differentiated into lower numbers of neurons (7.9 ± 5.0%). Interestingly, stem cells heterozygous 
for p53 generated also a very low number of ß-III-tubulin positive cells (7.9 ± 2.5%). Scale bar 
represents 100 µm. 
 

Thus, I next wanted to determine the in vitro proliferation rate of transgenic stem cells from 

the oligodendroglioma model and compare it to neural stem cells of wild type mice. 

Amplification rates were quantified using the fluorescence-based CyQuant kit (Molecular 

probes). In brief, spheres were dissociated and same amounts of cells (2500 cells/well) were 

plated in 96-well plates and cultured in a medium consisting of DMEM/F12 enriched with N2 

supplement (Gibco), bovine pituitary extract (BPE, Gibco), EGF, bFGF, glutamine and P/S 

(referred to as N5 medium) to support growth under adherent conditions (Sun et al, 2005). At 

the indicated time points, a dye was added to the wells and a fluorescence signal, correlating 

with the cell number, was measured using a microplate reader and plotted against the time 

grown under proliferative conditions (Figure 33). Analyses were done in triplicates and data 

represent the average of experiments with 3 independent cell lines.    
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As expected, growth rates of PSCs were very similar to neural stem cells from wild type 

controls. However, dissociated spheres represent a heterogeneous pool of cells, consisting 

not only of stem cells but also transit amplifying cells, glial and neuronal progenitors; the 

different cell types have different intrinsic proliferation properties which could mask changes 

in proliferation of a subpopulation of stem cell progeny. In contrast, CSCs displayed a 

significantly higher amplification rate which was similar to observations in vivo. As mentioned 

earlier, response to differentiation signals was decreased in cancer stem cells as they 

continued to proliferate even in the absence of mitogens as EGF and bFGF. Together, a 

differentiation block in combination with a proliferation advantage of cancer stem cells 

isolated from oligodendroglioma was detected.  

The proliferation advantage observed in cancer stem cells could also result from increased 

survival due to loss of p53. Alternatively, progeny from normal and premalignant stem cells 

could be reduced in numbers because of higher rates of apoptosis. To evaluate changes in 

survival, spheres from NSCs, PSCs and CSCs were dissociated and spun down on a 

chamber slides followed by TUNEL staining (Roche) to detect cells undergoing programmed 

cell death.  

Figure 34: Premalignant and cancer stem cells show no changes in survival.  NSCss (A), PSCs 
(B) and CSCs (C) were dissociated and cultured in differentiation medium for 7 days. TUNEL staining 
(green, arrows in A-C) revealed that under these conditions only very few cells underwent apoptosis. 
As a positive control, cells were treated with DNase before TUNEL labeling to induce DNA breaks (D). 
Scale bar represents 100 µm.  

Figure 33 : Cancer stem cells but not 
premalig nant stem cells show increased 
viability. NSCs (blue line), PSCs (red line) and 
CSCs (black line) were dissociated and same 
amounts of cells plated in N5 medium under 
adherent conditions. Whereas NSCs and PSCs 
showed comparable rates of amplification, 
proliferation was significantly higher in CSCs. 
Proliferation was quantified using the CyQuant 
kit and arbitrary fluorescence units correlating 
with the cell number are shown. 
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No differences in the number of apoptotic cells were observed (data not shown). In addition, 

differentiation defects found in PSCs and CSCs might originate in increased cell death of e.g. 

astrocytes and neurons whereas cells of the oligodendrocytic lineage are not affected finally 

leading to the observed accumulation of oligodendrocyte progenitors. Therefore, stem cells 

derived from either wild type, S100ß-verbB, p53+/- or S100ß-verbB, p53-/- mice were cultured 

under conditions to induce differentiation and subjected to TUNEL labelling after 7 days. 

Again, the number of TUNEL positive cells was very low (< 0.5%, arrows in Figure 35A-C) 

and no obvious differences in apoptosis could be detected between the different cell lines. As 

positive controls, cells were treated with DNase to induce DNA breaks before TUNEL 

labelling (Figure 35D). In addition, negative controls where fluorescent dyes were omitted 

were included in my analyses (data not shown).  

Together, no differences in the survival of wild type and transgenic stem cells used in this 

study were found. Moreover, growth rates of premalignant stem cells were indistinguishable 

from normal stem cells grown under the same conditions. Thus, defects in proliferation 

and/or survival cannot explain the differentiation defects observed in PSCs. Amplification 

rates of cancer stem cells, in contrast, were significantly higher compared to wild type stem 

cells and might be a result of loss of p53. However, my data rule out a direct effect of p53 

loss on the differentiation capacity of stem cells. 

4.1.10 Premalignant stem cells and cancer stem cell s encounter a defect in 

asymmetric cell division 

Proliferation and apoptosis were not significantly altered in premalignant stem cells and thus 

it is unlikely that these factors contributed to the observed differentiation defects. 

Alternatively, this might be explained by abnormal asymmetric cell divisions.  

The function of asymmetric cell division is to generate cell fate diversity and to maintain the 

pool of progenitor cells but also to control the balance between stem cells, proliferative 

progenitor cells and post-mitotic differentiated cells. Interestingly, several findings point 

dysfunctional asymmetric cell division as a key factor in development of brain tumors 

(Caussinus & Hirth, 2007; Caussinus & Gonzalez, 2005; Klezovitch et al, 2004). 

Thus, I determined whether known regulators of the asymmetric cell division machinery were 

expressed in adult neural stem cells and premalignant stem cells. Indeed, I could identify the 

expression of murine Lgl-1, Par3, Par6a, Par6b and Numb in both, NSCs and PSCs and in 

whole brain preparations from wild type mice (Figure 35). My data indicate that neural stem 

cells express asymmetrically localized proteins and therefore might indeed have the potential 

to divide asymmetrically in culture. Moreover, neurosphere cultures are heterogeneous and 

do not only consist of stem cells but also transit amplifying cells and their immediate progeny, 
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the neuronal and glial progenitors. Again, this suggests that cultured stem cells are able to 

divide asymmetrically to generate the diverse cell types found within neurospheres. 

 

 

Figure 35: Gene expression of regulators of asymmet ric cell division. Expression of Lgl-1 (A), 
Numb (B), Par3 (C), Par6a (D) and Par6b (E) was detected by non-quantitative PCR from wild type 
neural stem cells (lane 1), premalignant stem cells (lane 2) and normal brain preparations (lane 3). 
Samples without reverse transcriptase were included as negative controls (lane 4). 

 

As a consequence, I next wanted to identify asymmetrically dividing cells and quantify the 

frequency of symmetric to asymmetric divisions. To this end, a modified pair cell assay was 

performed (Shen et al, 2002; Sun et al, 2005). In brief, cells grown in neurosphere cultures 

were dissociated and plated under adherent and proliferative conditions at clonal densities 

on Terasaki well plates. To identify asymmetric cell divisions, cells were fixed after one round 

of cell divisions (~20-24h after plating) and cell pairs were stained for various cell fate 

markers and regulators of ACD. Asymmetric cell divisions, defined as a scenario where only 

one daughter cell of a cell pair inherits a cell fate marker, were visualized by fluorescence 

microscopy and quantified. Note that cell pairs were only counted when at least one daughter 

was positive for the respective marker; the overall distribution of markers was considerably 

lower in most cases. 

At first, cell pairs from wild type neural stem cells were stained for the stem cell/transit 

amplifying cell marker CD15/LeX. I found that a proportion of cells segregated CD15/LeX to 

only one daughter cell which presumably remained a stem cell or transit amplifying cell 

whereas the other cell acquired different cell fate (Figure 36A, left). In addition to asymmetric 

cell divisions, also cell pairs were found where both siblings inherited this marker (Figure 

36A, right). That kind of symmetric division might be necessary to increase the stem cell 

and/or progenitor pool within the sphere during proliferative conditions, whereas the former 

one is important to generate cell diversity. To my knowledge, this is the first demonstration of 

asymmetric CD15/LeX segregation in neural stem cells.  

Murine neural stem cell proliferation can be stimulated by epidermal growth factor and its 

receptor EGFR can influence progenitor cell fate choice (Burrows et al, 1997). Moreover, 

EGFR has been shown to be asymmetrically distributed during mitosis of embryonic neural 
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progenitor cells in vivo and in vitro (Sun et al, 2005). In agreement with these data, I could 

also identify cell pairs which segregated the EGFR selectively to one daughter cell (Figure 

36B, right) but also pairs where both daughter cells were positive for EGFR (Figure 36B, left). 

This might suggest that cells inheriting EGFR continue to proliferate or to self-renew, and 

represent the pool of stem cells and progenitor cells. 

In Drosophila, Numb is a well-established determinant of cell fate (Rhyu et al, 1994; Knoblich 

et al, 1995). Similar, mouse Numb shows asymmetric distribution in neural progenitor/stem 

cell divisions during neurogenesis (Shen et al, 2002; Zhong et al, 1996a) and has a 

conserved function in cell fate determination (Petersen et al, 2004; Li et al, 2003; Petersen et 

al, 2002; Shen et al, 2002). Numb was detected in dissociated dividing neural stem cells and 

also found to be asymmetrically inherited in a fraction of stem cells (Figure 36C, left). Like all 

other markers, Numb showed heterogeneous expression within the stem cell pool being 

absent in a proportion of cells but also becoming segregated symmetrically in other cell pairs 

(Figure 36C, right). Again this points to heterogeneity of cell fates in neurosphere cultures. 

In Drosophila neuroblasts, the successful asymmetric localization of Numb depends on the 

assembly of an apical complex consistent of dPar3 (Schober et al, 1999; Wodarz et al, 

1999), dPar6 (Petronczki & Knoblich, 2001), atypical protein kinase C (aPKC) (Wodarz et al, 

2000), Inscuteable (Insc) (Kraut & Campos-Ortega, 1996), Partner of Inscuteable (Pins) 

(Parmentier et al, 2002; Schaefer et al, 2000; Yu et al, 2000) and G-proteins (Schaefer et al, 

2001). The major function of this protein complex is to establish cell polarity (Ohno, 2001) 

and allows basal localization of cell fate determinants through a negative interaction with the 

tumor suppressor Lgl. The Par complex is also very conserved in mammalian cells since 

homologues of Par3 (Izumi et al, 1998) and Par6 (Joberty et al, 2000) have been identified 

as regulators of polarity arguing for a functional role in mammalian asymmetric cell division. 

An interaction of the mammalian Par complex with mammalian atypical PKC and a 

mammalian Lgl-homologue, Lgl-1 (Plant et al, 2003) has been described. 

In cell pair assays, I could detect expression of Par3 in a large proportion of cells. According 

to the role of Par3 as a regulator of cell polarity, I expected this protein to be asymmetrically 

inherited during divisions of stem cells. It was surprising though, that asymmetric localization 

of Par3 was never detected in these assays (Figure 36D). 

The expression of other Par-proteins could be identified by PCR analysis. However, with the 

available antibodies for immunocytochemistry I was unable to detect Par6 protein in my 

experiments (data not shown). Similar, Lgl-1 was identified by PCR but due to lack of a 

specific antibody, I could not determine its potential role during asymmetric cell division of 

neural stem (data not shown).  
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It is believed that Olig2 promotes oligodendrogenesis and opposes neuronal cell fate (Hack 

et al, 2005). This might be due to up- or downregulation of this transcription factor in a 

committed cell, or alternatively, by asymmetric distribution of Olig2 into only one cell during 

division of a progenitor cell. To distinguish between these possibilities, I performed cell pair 

assays and detected Olig2 using immunocytochemistry. Olig2 was normally present in the 

nucleus but became localized to the cytoplasm during cell division and always segregated 

symmetrically to both daughter cells (Figure 36E). This argues against a role as a classical 

cell fate determinant that is inherited exclusively by one daughter cell to acquire distinct fate. 

 

 

Figure 36: Adult neural stem cells divide asymmetri cally and symmetrically in vitro. Some 
neural stem cells localized CD15/LeX asymmetrically (A, green, left) and segregated it exclusively to 
one daughter cell whereby the CD15/LeX negative cell acquired different fate. NSC also divided 
symmetrically by distributing CD15/LeX to both daughter cells (A, right). Similar, EGFR (B, green) and 
the cell fate determinant Numb (C, red) can be either symmetrically (right) or asymmetrically (left) 
localized during mitosis of neural stem cells. In contrast, asymmetric distribution of Par3 (D, red) and 
Olig2 (E, red) could never be detected. Scale bar represents 10 µm.  

 

Next, I concentrated in more detail on the oligodendrocyte marker NG2 since its expression 

was significantly increased in the premalignant and cancer stem cell pool. Adult wild type 

neural stem cells from premalignant as well as cancer stem cells showed asymmetric 

segregation of NG2 as well as symmetric distribution to both daughter cells (Figure 37). 

Strikingly, the number of asymmetric NG2 divisions was significantly decreased in PSCs 

(14.9 ± 3.2%, n>200 pairs from 3 independent experiments) and CSCs (5.2 ± 2.1%, n>200 

pairs from 3 independent experiments) compared to wild type neural cells (53.8 ± 15.4%, 

n>400 pairs from 5 independent experiments). It is important to note, that the number of NG2 

positive cells of wild type neurosphere cultures grown under proliferative conditions was 

relatively low (around 5-10%). The majority of these NG2 positive cells divide in an 

asymmetric fashion. PSCs and CSCs on the other hand contained increased numbers of 

NG2 positive cells which preferentially divided symmetrically. This observation was very 

interesting as the reduction in the frequency of asymmetric cell division might explain why I 

observed that PSCs and CSCs generate significantly more oligodendrocytes when induced 

to differentiate.  
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Figure 37: Asymmetric NG2 distribution is impaired in dividing premalignant stem cells and 
cancer stem cells.  Asymmetric (A-C) and symmetric (D-E) NG2 segregation in sibling pairs of NSCs 
(A, D), PSCs (B, E) and CSCs (C, F). Quantification reveals that the incidence of pairs asymmetric for 
NG2 decreases in PSCs (14.9 ± 3.2%) and CSCs (5.2 ± 2.1%) compared to wild type neural stem 
cells (53.8 ± 15.4%) indicative of defects in asymmetric cell divisions in transgenic stem cells (G). 
Scale bar represents 10 µm. 

 

In summary, my data demonstrate that adult neural stem cells in culture divide 

asymmetrically into unequal daughter cells by segregating cell fate markers exclusively to 

one sibling.  

To my knowledge, it was shown for the first time that NG2 is asymmetrically localized during 

divisions of progenitor cells. Importantly, I found defects in the asymmetric cell division of 

premalignant and cancer stem cells. My data provides a mechanistic insight to defects in 

adult neural stem cells that might explain the progressive transformation to cancer stem 

cells: an initial mutation in a multipotential stem cell causes a defect in asymmetric cell 

division and disturbs the balance of asymmetric versus symmetric divisions. This imbalance 

directly affects tissue homeostasis, the self-renewing and differentiation capabilities of these 

stem cells.   

4.1.11 Epigenetic changes lead to the progression o f premalignant to cancer 

stem cells 

MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression 

at the posttranscriptional level (Bartel, 2004).  

Research from several groups has provided evidence that miRNAs act as key regulators of 

processes as diverse as early development (Reinhart et al, 2000), cell differentiation (Chen 

et al, 2004), cell proliferation and cell death (Brennecke et al, 2003). Recent studies suggest 



Part 2 - Results 

66 

possible links between miRNAs, neurodevelopment and cancer (Cheng et al, 2005; 

Krichevsky et al, 2003). 

Differentiation defects seen in premalignant and cancer stem cells could be explained not 

only by defective protein segregation during asymmetric cell division but also by 

posttranscriptional mechanisms such as gene regulation by miRNAs. Two important 

observations prompted us to investigate potential changes in miRNA expression profiles 

within PSCs and CSCs: At first, regulators of miRNA biogenesis but also individual miRNAs 

have been shown to be directly or indirectly involved in the formation of certain tumors such 

as glioblastoma. More importantly, several genes involved in the regulation of asymmetric 

cell division are predicted targets for miRNAs (Enright et al, 2003), e.g. the cell fate 

determinant Notch is regulated by miRNA-1 during cardiac differentiation in Drosophila 

(Kwon et al, 2005) 

In collaboration with Dr. Graeme Hodgson (Brain Tumor Research Centre, UCSF) I profiled 

expression of 238 miRNAs in samples of cultured neural stem cells by quantitative RT-PCR 

using TaqMan 238-plex miRNA assays and detected several differences between NSCs and 

PSCs.  

Interestingly, we found that expression of 35 miRNAs was significantly downregulated in 

premalignant stem cells. The majority of these miRNAs has so far not been addressed or 

was not brain specifc. However, some miRNAs found to be downregulated in PSCs were 

enriched in the brain and/or have brain specific functions. I concentrated in more detail at 

miR137 and miR124a, the latter being involved in neuronal differentiation. The loss of certain 

miRNAs in transgenic stem cells could either be a cause or a consequence of their 

differentiation defects. To distinguish between these possibilities, miR137 and miR124a were 

re-introduced into premalignant stem cells and the effect on their differentiation pattern 

evaluated.  

In brief, wild type and premalignant stem cells were grown under adherent conditions in N5 

medium. Synthetic miRNAs (Dharmacon) mimicking endogenous miRNAs were transfected 

into adherent cells using standard transfection methods (Lipofectamin, Invitrogen). In 

addition, I transfected cells with scrambled miRNA as controls. The next day, the medium 

was replaced with differentiation medium (N5 without EGF, FGF but 1% serum) and cells 

were cultured for additional 3 days, fixed and subjected to immunocytochemistry.  
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Figure 38: Reintroduction of miRNAs rescues the dif ferentiation defect in premalignant stem 
cells. NSCs (A) and PSCs (B) were transfected with scrambled miRNAs as controls and grown under 
differentiation conditions for 3 days. In contrast to NSCs (3.9 ± 0.4%), only a few neurons could be 
detected in PSCs (0.3 ± 0.1%). (C) Transfection of miR-124a and miR-137 into PSCs increased the 
number of neurons to almost wild type levels (3.8 ± 1.8%). Scale bars represent 100 µm.  
 

Control neural stem cells induced to differentiate, generated 3.9 ± 0.4% neuronal cells as 

indicated by ß-III-tubulin positive staining (Figure 39A,D). In contrast, only very few neurons 

were detected in the premalignant stem cells pool (3.3 ± 0.1%) (Figure 39B,D). The 

introduction of miR124a in combination with miR137 almost completely rescued the 

differentiation defect in premalignant stem cells as comparable amounts of neurons could be 

detected (3.8 ± 1.8%) (Figure 38C,D). 

This result suggested that loss of miRNAs in the premalignant stem cell pool might contribute 

to the altered differentiation capabilities and impaired generation of neurons. 
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4.2 Discussion 

The cancer stem cell theory states that tumors contain a subset of cells with the ability to 

self-renew and differentiate. Consequently, these are the only cells that can maintain tumor 

growth indefinitely and are also able to propagate tumor growth in immunodeficient mice. 

The remaining cells, although actively proliferating and making up the majority of the cells in 

the tumor lack tumorigenic potential (Ailles & Weissman, 2007; Cho & Clarke, 2008). 

Although first demonstrated in human myeloid leukemia (Bonnet & Dick, 1997), evidence for 

the existence of a cancer stem cell compartment has recently also emerged in solid tumors, 

such as cancers of breast (Al-Hajj et al, 2003), pancreas (Li et al, 2007), head and neck 

(Prince et al, 2007), colon (Dalerba et al, 2007; O'Brien et al, 2007; Ricci-Vitiani et al, 2007) 

and brain (Galli et al, 2004; Singh et al, 2003; Singh et al, 2004; Hemmati et al, 2003; 

Ignatova et al, 2002).  

Here I report on the isolation and characterization of cancer stem cells from a murine mouse 

model of oligodendroglioma that show all the features of stem cells and, in addition, the 

ability to generate new tumors following transplantation into immunocompromised mice that 

faithfully reproduce the phenotype of the primary tumor. 

4.2.1 Tumor-derived cells share common characterist ics of neural stem cells 

Oligodendroglioma are diffusely infiltrating glial brain tumors which have aggressive 

characteristics and cause high mortality and morbidity (Ligon et al, 2006; Marie et al, 2001). 

EGFR amplification and loss of the tumor suppressors ink4a/arf and/or p53, respectively, are 

mutations frequently found in human oligodendroglioma. Similar, mice expressing an 

oncogenic version of the EGFR (verbB) in neural stem cells and their progeny from the 

S100ß promotor and lacking both copies of the tumor suppressor p53 develop high grade 

oligodendroglioma reflecting the pathology of the human disorder (Weiss et al, 2003). 

I could successfully isolate cancer stem cells from tumor bearing S100ß-verbB, p53-/- mice by 

culturing them in serum-free conditions in the presence of growth factors, similar to those 

used for amplification and maintenance of normal neural stem cells as neurospheres 

(Doetsch et al, 1999; Reynolds & Weiss, 1992). Under these conditions, tumor derived cells 

formed free floating clusters (Figure 15A) and because of their origin, were referred to as 

tumorspheres. However, the neurosphere assay is only an indirect method to confirm the 

presence of CSCs in oligodendroglioma as they can only be identified retrospectively.  

CD133, a cell surface marker previously shown to be expressed on normal human neural 

stem cells (Uchida et al, 2001) has also been proven useful to identify CSCs from human 

glioma (Singh et al, 2004). Unfortunately, I failed in my attempts to directly isolate CSCs from 
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murine oligodendroglial tumors using cell sorting techniques based on antibodies for 

prominin-1, the mouse homolog of CD133. Due to a lack of immunoreactivity with neural 

cells in the adult murine brain, available antibodies for prominin-1 were not suitable for the 

selection of either neural stem cells or cancer stem cells.  

My results show that tumor-derived stem cells have the ability to form tumorspheres and can 

be propagated for prolonged times in culture. My data also rule out that tumorspheres 

originate from transit amplifying cells which are also known to undergo a limited number of 

passages when cultured under this conditions (Doetsch et al, 2002). Among the 

characteristic in common between oligodendroglioma-derived tumorspheres and normal 

neural stem cells is the expression of specific genes, including Nestin, Musashi and 

CD15/LeX (Figure 15), accepted markers for neural stem cells and early progenitors. 

Unfortunately, due to technical issues with available antibodies I could not include additional 

stem cell markers in this study, such as CD133/Prominin, Bmi1 and Sox2. Withdrawal of 

growth factors, presence of serum and culturing under adherent conditions resulted in the 

differentiation of tumor-derived cells into neurons, astrocytes and oligodendrocytes as 

indicated by their expression of ß-III-tubulin, GFAP and O4 (Figure 16), respectively, 

suggesting that they are multipotential. Importantly, multipotentiality was maintained 

unaltered even after prolonged culturing of tumorspheres. 

Together, I have demonstrated that tumor-derived stem-like cells and NSCs express many of 

the same genes and proteins and they share common characteristics, including self-renewal 

and multipotency. However, as discussed later, differences exist between NSCs and CSCs 

which undergo aberrant proliferation and differentiation, and to a high extent, recapitulate the 

properties of their parental tumor.  

4.2.2 Oligodendroglioma derived cancer stem cells a re tumorigenic and 

phenocopy the parental tumor in transplantation exp eriments 

Collectively, my studies show that cells endowed with some of the features expected from 

stem cells can be found in tumors of murine oligodendroglioma. However, it was unknown 

whether these cells are involved in the establishment, expansion and recurrence of brain 

tumors, or in other words, whether they are tumorigenic. Alternatively, it is possible that they 

emerge as a result of the uncontrolled proliferation of the actual tumorigenic cells, which are 

developmentally disturbed. 

The most widely accepted approach to validate a CSC population is xenotransplantation of 

CSCs in immunocompromised mice followed by serial transplantation (Clarke et al, 2006; 

Bonnet & Dick, 1997). In a similar approach, oligodendroglioma-derived stem cells were 

intracranially injected into FvB/N mice to determine their malignant potential. I found that 
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mice injected with as little as 1 x 104 cells showed severe neurological symptoms within days 

and reproducibly established large tumors (Figure 17) whereas control NSCs even injected 

at higher numbers never developed tumors. Next, to conclusively demonstrate the presence 

of CSCs in these tumors, serial re-transplantation experiments were performed. Primary 

CSCs cultured from a spontaneous S100ß-verbB, p53-/- tumor were orthotopically injected 

into FvB/N mice to establish a tumor. Symptomatic animals were sacrificed, the secondary 

tumor was excised, CSCs were isolated and cultured to establish a secondary CSC line. As 

before, these cells could initiate new tumors. CSCs could be sequentially transplanted into 

new recipients for several passages (Figure 20), always resulting in the formation of tumors 

that recapitulated the phenotype of the original tumor and the primary orthotopic tumor. This 

provides direct evidence for the in vivo self-renewal capacity and malignant potential of this 

population. Notably, following serial transplantation, CSCs formed more aggressive tumors 

which also developed faster. This is probably due to the accumulation of additional mutations 

during culturing in vivo and/or the selection of particularly aggressive cells following isolation 

and short time culture between the individual transplantations. However, even after culturing 

and serial transplantation, CSCs retained their ability to self-renew and differentiate.   

Orthotopic tumors essentially contained cells expressing typical markers of the 

oligodendrocytic lineage, mainly Olig2 and NG2 (Figure 21), as in typical human 

oligodendroglioma (Marie et al, 2001) and parental tumors. In addition, immunohistochemical 

analyses have shown that the majority of cells within the tumor displayed a morphology 

indicative of progenitor cells rather than mature oligodendrocytes which are infiltrating 

neighboring tissue at the border of the tumor (Figure 21). Similar to human 

oligodendroglioma and the parental tumor, the number of astrocytes and neurons was very 

low within the tumor whereas large quantities of these cells were present in the surrounding 

normal brain tissue. Interestingly, tumors also contained small numbers of Nestin positive 

neural precursor, which, after dissection and culturing of the tumor mass, might be the cells 

responsible for the formation of tumorspheres (Figure 21). 

Furthermore, histopathologic analyses revealed that CSCs have the ability to recapture the 

pathophysiology of the parental tumor. Orthotopic tumors showed characteristic 

oligodendroglioma-like features such as high cellularity, high mitotic index, diffuse invasion, 

subpial infiltration and the characteristic “fried egg” appearance of cells (Figure 18). 

In conclusion, tumor-derived progenitor cells satisfy all of the criteria necessary to be 

classified as brain cancer stem cells: first, they show cancer-initiating abilities upon 

orthotopic transplantation and phenocopy the tumor of origin. CSCs have extensive self-

renewal ability, both in vitro and in vivo as shown by clonogenic neurosphere forming assays 

and successful serial orthotopic transplantations, respectively. In addition, they display 

multilineage differentiation capacity although they essentially recapitulate the phenotype of 
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the tumor from which they were derived from. Moreover, orthotopic tumors mimic the cellular 

composition and histology of the parental tumor.  

Although there is a lot of empirical evidence for their existence, the origin of brain cancer 

stem cells is a highly controversial topic (Sakariassen et al, 2007). Brain tumors can be very 

heterogeneous, consisting of cells expressing markers of more than one neural lineage, 

implicating a multipotential cell of origin. Indeed, CSCs have been reported to be isolated 

from various brain tumors, including gliomas, astrocytoma, medulloblastoma and 

ependymomas (Nakano & Kornblum, 2006). However, it remains to be determined, whether 

solid tumors arise from the transformation of stem cells, or alternatively, whether tumor cells 

reactivate the signaling pathways used by stem cells to regulate self-renewal, proliferation 

and differentiation. In general, stem cells persist the whole lifetime of an organism and have 

the potential to extensively self-renew and proliferate thus making them a likely target for 

tumorigenesis (Huntly & Gilliland, 2005). Recent experiments in mice further support the 

cancer stem cell theory. Many tumors develop near germinal zones of the adult brain, such 

as the SVZ, and exposure to oncogenes results in the formation of tumors preferentially in 

this region as opposed to non-proliferative brain areas (Sanai et al, 2005; Hopewell & Wright, 

1969).  

Transit amplifying cells, the immediate descendants of neural stem cells have been shown to 

undergo extensive proliferation at the expense of neuroblast formation when exposed to high 

concentrations of EGF. Prolonged exposure to EGF leads to the conversion of these cells to 

highly infiltrative cells with glial characteristics and the ability to move along white matter 

tracts and blood vessels (Doetsch et al, 2002), properties also associated with glioma cells. 

Interestingly, EGFR amplification is frequently found in human oligodendroglioma (Weiss et 

al, 2003) and other brain tumors (Mellinghoff et al, 2005; Maher et al, 2001; Wechsler-Reya 

& Scott, 2001). Thus, activation of signaling pathways that normally regulate stem cells may 

play an important role in brain tumor formation. Excessive signaling through these pathways 

in neural stem or progenitor cells might induce transformation of these cells and can also 

help to explain the formation of oligodendroglioma in a mouse model with activated EGFR 

signaling. Moreover, EGFR is involved in neural development and regulates proliferation and 

self-renewing capacities of adult neural stem cells (Sibilia et al, 2007). Indeed, CSCs showed 

increased self-renewing capacities (Figure 23) and proliferation rates (Figure 33) compared 

to neural stem cells isolated from the SZV of control mice. 
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4.2.3 Stem cells undergo changes before tumor occur rence - progression of 

neural stem cells to premalignant and cancer stem c ells 

Characterizing in more detail those cells in the brain tumor population that are able to 

maintain the tumor will give insights into the mechanism of brain tumorigenesis and will allow 

us to trace back to the cell of origin in the normal brain. One can speculate that CSCs are 

indeed generated from defective adult neural stem cells evading normal cell cycle control 

and differentiation. After accumulation of additional mutations, this aberrant pool of stem cells 

will be able to generate tumors.  

The transgenic S100ß-verbB, p53-/- model provides an excellent and fast model for 

oligodendroglioma formation. However, to study initial events and the stepwise progression 

from normal stem cells to cancer stem cells I made use of S100ß-verbB mice heterozygous 

for p53, in which tumors developed with a significant delay of 4-6 months. Neural stem cells 

were isolated from the SVZ of tumor proned S100ß-verbB, p53+/- mice prior to tumor 

occurrence and thus referred to as premalignant stem cells. Next, changes in characteristic 

properties of stem cells such as self-renewing, differentiation or the ability to divide 

asymmetrically were investigated.  

To test whether the self-renewing capacity of stem cells might already be affected at 

premalignant stages, I performed so called neurosphere forming assays and quantified 

secondary sphere formation. Interestingly, I found that similar to CSCs, stem cells from 

S100ß-verbB, p53+/- mice had higher self-renewing capacities compared to controls although 

not as severe as in the case of the cancer stem cell pool (Figure 23). The number of sphere-

forming cells correlates with the number of stem cells and transit amplifying cells, both able 

to self-renew, and unfortunately I cannot say which of these cells contribute to what extent to 

the formation of secondary spheres. Is there really a higher number of stem cells in the 

premalignant pool? Or is the amount of stem cells unaltered but the generation of transit 

amplifying cell increased, maybe due to defects in asymmetric cell division? This question is 

difficult to asses as there are no specific markers which convincingly identify either cell type. 

However, in an alternative approach, I found higher expression of CD15/Lex, a marker for 

neural progenitors (Capela & Temple, 2002) in proliferating PSCs supporting the finding that 

the self-renewing capacity of adult stem cells is increased already at premalignant stages. In 

contrast, the in vitro proliferation rate of PSCs was not significantly altered compared to 

controls. However, as mentioned before, dissociated spheres are very heterogeneous and 

consist not only of stem cells but also of transit amplifying and other progenitor cells. Thus, 

different intrinsic proliferation properties of individual cell types might mask changes in the 

proliferation of distinct subpopulations. Again, to study the properties of individual cell types 
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in more detail, techniques to specifically isolate cells based on marker expression would be 

necessary. 

To evaluate changes in survival of transgenic stem cells due to loss of p53, TUNEL assays 

were performed to detect cells undergoing programmed cell death. Neural stem cells from 

controls, PSCs and CSCs were grown under proliferative conditions or induced to 

differentiate but no differences in the number of apoptotic cells were observed (Figure 34 and 

data not shown). However, it is possible that in the context of the original surrounding (e.g. 

the stem cell niche), cells would receive various stimuli inducing them to either proliferate or 

undergo apoptosis which could not be assessed in this in vitro system. Thus, it will be 

necessary to study apoptosis and survival of neural stem and progenitor cells in vivo and/or 

challenge these cells with cytotoxic agents to evaluate their response to apoptotic stimuli.  

4.2.4 Differentiation defects in transgenic stem ce lls 

Although tumor-derived progenitor cells share many similarities with NSCs I could already 

demonstrate that CSCs show increased self-renewing and proliferation capacities. In addition 

I found that CSCs undergo aberrant differentiation. When induced to differentiation, CSCs 

generated all three neural cell types, i.e. neurons, astrocytes and oligodendrocytes (Figure 

16). However, the number of neurons and astrocytes was relatively low, and the majority of 

cells (> 80%) expressed markers of early oligodendrocyte progenitors, namely Olig2 and 

NG2 (Figure 25,26). In addition, when injected orthotopically, CSCs primarily gave rise to 

immature oligodendrocytes as shown by marker expression (Figure 21). Together, this 

suggests that CSCs have lost their normal differentiation potential and essentially 

recapitulate the properties of the tumor they originate from; in the case of oligodendroglioma, 

this mainly leads to the generation of cells of the oligodendrocyte lineage.  

Interestingly, in premalignant stem cells isolated long before tumor formation, an 

considerable increased number of Olig2 positive cells (29.3 ± 3.9%) was detected compared 

to NSCs from wild type controls (18.4 ± 2.5%) (Figure 25). Essentially the same results were 

obtained in the expression of NG2 in control NSCs (8.8 ± 2.5%) and PSCs (24.4 ± 7.9%) 

grown in the absence of growth factors (Figure 26). These findings were remarkable as 

altered stem cell properties at a stage before tumor formation strongly support the idea that 

normal stem cells progressively develop towards cancer stem cells. However, to conclusively 

make such a statement, more research is needed to be done. Here, only premalignant stem 

cells isolated at 2 months postnatal were investigated. The whole timeframe of tumor 

formation should be covered to evaluate whether the number of oligodendrocytes generated 

from PSCs indeed increases continuously. I propose that PSCs give rise to CSCs by 

progressively acquiring additional mutations and should therefore be more sensitive to 
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transforming mutations than normal stem cells. To prove that, PSCs and NSCs shall be 

challenged with oncogenes or, alternatively, tumor suppressors shall be knocked out, to 

become cancer stem cells. In combination with respective imaging techniques developed at 

UCSF it will be possible to monitor tumor outgrowth after orthotopic injection of these cells 

into recipient mice and to compare their malignant potential. It could already be 

demonstrated that unmodified PSCs were not tumorigenic, as even transplanted at higher 

number, PSCs never induced tumor formation (Figure 30). I hypothesize that these cells 

have not yet accumulated all the changes necessary to become malignant. The finding that 

PSCs develop a higher malignant potential when challenged to become CSCs would strongly 

suggest a stepwise transition to a malignant state. 

The accumulation of Olig2+/NG2+ positive cells observed in differentiation experiment 

suggests an increased potential of transgenic stem cells to further develop into the 

oligodendrocyte lineage. Surprisingly, when tested for the more mature oligodendrocyte 

marker O4, only a moderate increase of O4 positive cells was found in the progeny of PSCs 

(5.3 ± 2.8%) and CSCs (4.7 ± 2.1%) compared to the wild type population (2.3 ± 0.7%) 

(Figure 28). Moreover, obvious differences in their morphology were found. Oligodendrocytes 

generated from NSCs and PSCs show a typical stellate morphology and were highly 

branched, whereas O4 positive cells derived from CSCs were much less branched. The 

majority of CSCs differentiated mainly in NG2 positive cells of round shape (Figure 27). In 

addition, even in the absence of growth factors, conditions which normally favor neural stem 

cells to differentiate, CSCs continued to proliferate suggesting that these cells, at least to a 

high extent, did not respond to the differentiation stimulus. It is important to note that even 

prolonged culturing under differentiation conditions (up to 14 days) did not essentially 

increase the number of mature oligodendrocytes. The high number of oligodendrocyte 

progenitor cells derived from CSCs under conditions which induce differentiation, together 

with the morphological abnormalities and continuous proliferation indicates that these cells 

possess a block in their differentiation potential which would explain the accumulation of 

immature oligodendrocytes.  

Next, I determined to what extent cells of the neuronal and astrocytic lineage were affected in 

transgenic stem cells and stained differentiated cultures from NSCs, PSCs and CSCs for the 

neuronal marker ß-III-tubulin and for GFAP to identify astrocytes. 

The amount of neurons derived from PSCs (4.5 ± 3.1%) and CSCs (6.2 ± 4.1%) was lower 

compared to wild type controls (14.4 ± 10.7%) (Figure 28). However, it is noteworthy, that 

these differences are not statistically significant as one of the described wild type cell lines 

only expressed very few neurons resulting in a very high standard deviation. Usually, stem 

cells from wild type animals generated more neurons (around 25%) and I observed a clear 
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tendency of decreased numbers of ß-III-positive cells in PSCs and CSCs. Anyway I would 

need to establish additional wild type lines to statistically strengthen this observation.  

Astrocytes represent the majority of differentiated control stem cells (36.0 ± 3%). Similar to 

neurons, the number of GFAP-immunoreactive cells was considerably reduced in PSCs 

(26.1 ± 5.4%). More dramatically, I could only detect very few astrocytes (2.3 ± 1.1%) when 

CSCs were cultured under differentiation conditions (Figure 29).  

Interestingly, SVZ-derived neural stem cells from S100ß-verbB, p53-/- animals showed a very 

similar differentiation pattern as CSCs. These cells preferentially developed into Olig2+ 

(64.7 ± 0.9%) and NG2+ (74.6 ± 3.5%) oligodendrocyte progenitors whereas the number of 

ß-III-tubulin positive neurons was very low (3.9 ± 3.7%) (Figure 31). Furthermore, when these 

cells were transplanted into FvB/N mice, recipients developed tumors that phenocopied 

CSCs derived orthotopic tumors. This observation was interesting as it may indicate that 

neural stem cells from S100ß-verbB, p53-/- mice already have transformed and were the 

initiating cause of oligodendroglioma formation. However, conclusions from this result must 

be viewed with caution. Oligodendroglioma start developing within 2 month in the 

S100ß-verbB, p53-/- model and at the time when neural stem cells have been isolated from 

the SVZ of these animals, tumor formation has already been detected. In addition, 

oligodendroglioma are highly infiltrative and thus, I cannot rule out a contamination with 

tumor cells and potential CSCs in my preparation.  

Both, S100ß-verbB, p53+/- and S100ß-verbB, p53-/- mice developed high grade 

oligodendroglioma but it was not known to what extend defective EGFR signaling and loss of 

the tumor suppressor p53 contribute to the defects observed in PSCs and CSCs. Transgenic 

mice exclusively overexpressing verbB from the S100ß promotor develop low-grade 

oligodendroglioma (Weiss et al, 2003). Interestingly, after differentiation, these cells showed 

very similar marker expression compared to premalignant stem cells. Loss of p53, on the 

other hand, had little effect on the differentiation pattern and was comparable to wild type 

neural stem cells (Figure 32). Together, these results indicate that alterations in EGFR 

signalling but not loss of the tumor suppressor p53 are responsible for the observed 

differentiation defect.    

Together, I observed for the first time that neural stem cells in oligodendroglioma proned 

mice show significant alterations in their differentiation potential already long before tumor 

occurrence; they preferentially generate oligodendrocyte progenitors with delayed or 

impaired maturation at the expense of astrocytic and neuronal cells. However, they never 

formed orthotopic tumors following intracranial transplantation into recipient mice and thus 

were referred to as premalignant stem cells. These results strengthen the hypothesis that 

early defects in neural stem cells, together with additional genetic alterations lead to a 
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progression to a more malignant stem cell type, the cancer stem cells, which are responsible 

for tumor growth and maintenance. I was able to isolate stem-like cells from murine 

oligodendroglioma which show essentially the same differentiation behavior as PSCs 

although even more severe, again supporting the idea that it is a transformed stem cells 

rather than a differentiated cell which drives tumorigenesis. 

4.2.5 Defects in asymmetric cell division and epige netic changes influence 

stem cell differentiation 

Proliferation and survival were not significantly altered in premalignant stem cells and thus it 

is unlikely that these factors contributed to the observed differentiation defects.  

miRNAs are small, non-coding RNAs that primarily function as gene regulators (Bartel, 

2004). They potentially regulate thousands of genes of which many are involved in 

transcriptional regulation or other essential cellular functions, such as cell cycle control 

(Lewis et al, 2003). Therefore, it is not surprising that miRNAs play important roles in diverse 

biological processes. Importantly, various miRNAs have been shown to regulate cell fate, 

including lineage differentiation in a number of tissue types. For example, miR181 has been 

shown to modulate hematopoietic lineage differentiation (Chen et al, 2004), miR223 

regulates human granulopoiesis (Fazi et al., 2005), miR1 and miR133 promote myogenesis 

and myoblast proliferation (Chen et al, 2006). In the brain, miR124a and miR9 affect neural 

lineage differentiation (Krichevsky et al, 2006; Krichevsky et al, 2003). In addition, miRNAs 

participate in the control of cell proliferation and apoptosis (Cimmino et al, 2005; Chan et al, 

2005; Brennecke et al, 2003). Interestingly, several genes involved in the regulation of 

asymmetric cell division are predicted targets for miRNAs (Enright et al, 2003). Because of 

the importance of miRNAs in such essential functions, it is not surprising that abnormalities in 

miRNA expression are likely to contribute to many pathological processes including the 

development of cancer (Cheng et al, 2005; Krichevsky et al, 2003). 

Indeed, several miRNAs were downregulated in premalignant stem cells which was 

demonstrated by expression profiling of 238 miRNAs (a collaboration with Dr. Graeme 

Hodgson, UCSF Brain Tumor Research Centre). Consistent with that, another study reported 

a decrease of miRNA expression in several types of cancer (colon, kidney, prostate, urinary 

bladder, lung and breast) when compared to normal tissue (Lu et al, 2005). Analysis of the 

expression of miRNAs in glioblastoma multiforme cell lines identified nine overexpressed 

miRNAs and four miRNAs with lower expression levels (Ciafrè et al, 2005). One of the 

overexpressed miRNAs, miR21 has been suggested to be anti-apoptotic (Chan et al, 2005).  

I have to mention that this first expression profiling analysis was performed on PSCs 

originating from another oligodendroglioma model, the S100ß-verbB, ink4a/arf+/- model. 
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PSCs isolated from these transgenic animals essentially showed the same phenotype as the 

S100ß-verbB, p53+/- model, i.e. increased numbers of oligodendrocyte progenitors at the 

expense of astrocytes and neurons. However, tumor formation in this model was less 

consistent and thus I decided to continue my study with S100ß-verbB, p53+/- transgenic 

animals. Anyway, in this first screen, two interesting candidates with significantly reduced 

expression levels were identified - miR137 and miR124a, the latter being involved in 

neuronal differentiation. When I re-introduced these miRNAs into premalignant stem cells 

and induced them to differentiate, they essentially generated the same amount of neurons as 

wild type neural stem cells (Figure 38). In contrast, hardly any neurons could be detected in 

PSCs transfected with scrambled miRNA as control. These results suggest that loss of these 

miRNAs in the premalignant stem cell pool might directly contribute to the impaired 

generation of neurons following differentiation. Even a preliminary experiment as shown here 

has highlighted that miRNAs are undoubtedly involved in the observed differentiation 

phenotype. However, more work needs to be done before I can dissect the contribution of 

miRNAs in the progression of neural stem cells to premalignant stem cells and later 

tumorigenesis. These experiments need to be repeated including more miRNAs and cell 

lines. Moreover, it has to be evaluated whether altered miRNA levels also affect other neural 

cell types, e.g. it would be interesting to find out whether reintroduction of miR137 and 

miR124a also reduces the high number of NG2 and Olig2 positive oligodendrocyte 

progenitors. Importantly, in an additional miRNA expression profiling experiment which has 

only been finished very recently and included various cancer stem cell lines from 

S100ß-verbB, p53-/- mice, the loss of e.g. miR124a has been confirmed.  

In addition to epigenetic changes, the reported differentiation phenotype of PSCs and CSCs 

might also be explained by abnormal asymmetric cell division which normally is required to 

generate cell fate diversity and to maintain the pool of progenitor cells. Understandably, the 

balance between symmetric and asymmetric cell divisions must be tightly controlled. Indeed, 

there is a lot of empirical evidence that dysfunctional ACD is an initiating factor in brain 

cancer development. Normally, Drosophila neuroblasts divide asymmetrically as a result of 

the asymmetric localization cell fate determinants such as Numb and Prospero. However, 

when the machinery that regulates ACD is disrupted, these neuroblasts divide symmetrically 

and form tumors (Caussinus & Hirth, 2007; Lee et al, 2006b; Caussinus & Gonzalez, 2005; 

Klezovitch et al, 2004). Mutants for the cell fate determinant Numb or Prospero are 

tumorigenic and can be serially transplanted into new hosts. Moreover, these tumor cells 

have been shown to be capable of rapid neoplastic transformation (Caussinus & Gonzalez, 

2005). Mutants for PINS and Lgl generate neuroblasts that divide symmetrically and 

essentially self-renew instead of giving rise to more committed progeny (Lee et al, 2006b). 

Similar, the human homologue of Lgl, Hugl-1, is frequently deleted in cancers (Kuphal et al, 
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2006; Schimanski et al, 2005) and loss of cell polarity causes severe brain dysplasia in Lgl 

knockout mice (Klezovitch et al, 2004). On the other hand, overexpression of a constitutively 

active form of aPKC, normally localized to the apical cortex of the Drosophila neuroblast as 

part of the Par complex, causes a large increase in symmetrically dividing neuroblasts (Lee 

et al, 2006b). In addition, aPKC has been reported to play an important role in human lung 

cancer (Regala et al, 2005). The observation that some proteins can both induce symmetric 

cell divisions and function as an oncogene in mammalian cells further supports the evidence 

for a link between defects in asymmetric cell division and cancer.  

The apparatus regulating ACD is very well conserved and indeed, in mammalian stem cells I 

have identified the expression of murine Lgl-1, Par3, Par6a, Par6b and Numb, which are 

known regulators of Drosophila neuroblast ACD (Figure 35). These results suggest that 

cultured stem cells have the potential to divide asymmetrically to generate the 

heterogeneous cell population found within neurospheres. To verify this assumption and to 

investigate ACD of neural stem cells in more detail, I performed cell pair assays (Sun et al, 

2005; Shen et al, 2002) to visualize asymmetrically dividing cells by immunocytochemistry. 

Both asymmetric and symmetric distribution of the stem/progenitor cell marker CD15/LeX 

were detected which suggest that these types of divisions reflect their ability to either 

increase the stem or progenitor pool or to generate one cell with different cell fate (Figure 

36). In agreement with earlier data, I also found EGFR to be asymmetrically segregated 

during stem cell division (Sun et al, 2005) (Figure 36). Neural stem cells can be stimulated by 

EGF and its receptor EGFR has been shown to influence progenitor cell fate (Burrows et al, 

1997) and it is very likely that cells inheriting EGFR continue to acquire stem cell fate and 

continue to self-renew whereas the other cell becomes more committed and differentiates 

into a specific neural cell type. The fact that EGFR signalling is often deregulated in cancers 

makes a scenario plausible where both daughter cells inherit this receptor which leads to the 

excessive accumulation of self-renewing progenitor cells instead of a hierarchical generation 

of different cell types. Similar to Drosophila, Numb is a well-established regulator of cell fate 

in mammalian stem cells (Petersen et al, 2004; Petersen et al, 2002; Shen et al, 2002; 

Zhong et al, 1996a). Indeed, I found Numb to be expressed in cultured neural stem cells and 

could also detect asymmetric as well as symmetric cell division (Figure 36). The asymmetric 

localization of Numb in Drosophila neuroblasts requires the assembly of an apical complex 

consisting of Par proteins and other regulators of ACD (Goldstein & Macara, 2007; Suzuki & 

Ohno, 2006; Betschinger & Knoblich, 2004). Similar, the Par complex is also conserved in 

mammalian cells and homologues of Par3 and Par6 have been identified as regulators of cell 

polarity (Joberty et al, 2000; Izumi et al, 1998). Consistent with that data, Par3 was 

expressed in a large proportion of cells. However, it was surprising that I never detected 

asymmetric distribution of this protein in dividing cell pairs which I had expected from a 
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regulator of cell polarity. It has been demonstrated that epithelial extrinsic signals are 

required for the timing and positioning of Par proteins in Drosophila neuroblasts (Siegrist & 

Doe, 2006). Thus it is possible, that my assay conditions, i.e. an isolated stem cell dividing in 

the absence of extrinsic cues, interfere with the establishment of cell polarity and asymmetric 

localization of Par3. It does not explain, however, why proteins like Numb which have been 

shown to depend on the formation of an apical polarity complex, at least in Drosophila, were 

still able to asymmetrically localize and become exclusively inherited by one daughter cell 

only. However, it cannot be ruled out that the ubiquitous Par3 localization detected in 

immunostainings resulted from unspecific binding of the available antibody. Notably, I never 

detected Par6 protein in neural stem cells by immunocytochemistry using the available 

commercial antibodies although Par6 expression was demonstrated by PCR. Similar, Lgl-1 

expression was detected by PCR but due to the lack of a functional antibody I could not 

further investigate its role in the asymmetric cell division of cultured neural stem cells.  

Olig2 promotes oligodendrogenesis (Hack et al, 2005) by either up- or downregulation in a 

committed cell, or alternatively, by asymmetric inheritance by only one daughter cell during 

cell division. In pair assays, Olig2 was found to be symmetrically distributed in all cell 

divisions observed which argues against a role for Olig2 as a classical segregating 

determinant.  

In contrast, a high proportion (53.8 ± 15.4%) of adult neural stem cells showed asymmetric 

segregation of NG2. Strikingly, this frequency was significantly reduced in premalignant stem 

cells (14.9 ± 3.2%) and cancer stem cells (5.2 ± 2.1%) (Figure 37). This observation was very 

interesting as the impaired ability to localize NG2 exclusively to one cell and consequently 

more symmetric divisions might explain such a high number of NG2 positive oligodendrocyte 

progenitors in differentiating PSC and CSC cultures. Increased numbers of symmetric 

divisions may not only promote the expansion of this cell type, but might also be permissive 

for events leading to genetic instability. The machinery controlling asymmetric cell division 

also controls the orientation of the mitotic spindle (Lee et al, 2006a; Yamanaka et al, 2003; 

Kaltschmidt et al, 2000), and a defective centrosome presumably might lead to errors in 

chromosome segregation (Caussinus & Gonzalez, 2005). The tight regulation of centrosome 

function by tumor suppressors is also important in mammalian cells to avoid genetic 

instability (McDermott et al, 2006).  

Together, my data strongly support the cancer stem cell theory because they provide a 

mechanistic insight into defects of adult stem cells at a premalignant stage which become 

more severe at later stages when these cells transforme into cancer stem cells. In addition, 

my results provide a direct link between oncogenic mutations in EGFR signalling and defects 

in asymmetric cell division. Clearly, further studies are needed to understand whether the 

increase of symmetric NG2 distribution is a result of the defective localization of known ACD 
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regulators. To that end, the ratio of asymmetric to symmetric cell divisions has to be 

quantified also for the other markers identified to be asymmetrically localized during neural 

stem cell mitosis. In addition, it needs to be evaluated whether the situation is similar in vivo 

by using cell tracing systems based on selective lentiviral infection of stem cells with GFP 

markers to follow their progeny. Moreover, further studies in additional tumor types from 

various species are needed to prove that defective ACD is the initiating factor in tumor 

development. 

 

 

Figure 39: Progressive model for the generation of premalignant stem cells and cancer stem 
cells from normal adult stem cells. (A) Normal adult stem cells and their immediate progeny divide 
asymmetrically to self-renew and to generate a more committed cell. They also can divide 
symmetrically to expand stem cell number. (B) An initiating mutation in an multipotential stem cell 
(star) causes a defect in asymmetric cell division and a shift to more symmetric cell divisions. (C) 
Premalignant stem cells generate aberrant progeny, are genetically instable and after acquiring 
additional mutations, turn into cancer stem cells. 
 

The cancer stem cell model has fundamental implications for the development of new cancer 

therapeutic agents and identifies a novel cellular target that might be amenable to novel 

treatments. Stem cells, in general, are relatively quiescent, resistant to cytotoxic agents 

through the expression of drug efflux pumps and have an active DNA-repair capacity and 

resistance to apoptosis (Dean et al, 2005). As cancer stem cells share many of the 

properties of normal stem cells, conventional chemo- and radiation therapies targeting 

rapidly cycling cells will only lead to the reduction of the tumor by killing the progeny of the 

CSCs. However, the CSCs themselves will remain unaffected and contribute to tumor 

occurrence. Moreover, the expression of ATP-binding cassette (ABC) drug transporters will 

make them even more resistant to these forms of treatment. Only recently, CD133+ brain 

cancer stem cells have been shown to be resistant to radiation, both in vivo and in vitro, 

which was contributed to an increase in DNA-repair capacity (Bao et al, 2006a). 



Part 2 - Discussion 

81 

Consequently, it is necessary to alter the current paradigm in drug development as 

eradication of various cancers might require the targeting and elimination of cancer stem 

cells. However, there is a theoretical concern that normal stem cells could be damaged when 

targeting CSCs as many pathways are shared by CSCs and their normal counterparts. Self-

renewal pathways that are potential targets for disruption can be altered in CSCs allowing for 

specific targeting and disruption (Yilmaz et al, 2006). Thus, a promising way to eliminate 

CSCs without damaging normal stem cells would be to target an oncogenic mutation only 

present in CSCs that affect their ability to self-renew. Indeed, there is some evidence from 

studies in leukemia that cancer stem cells can be targeted separately from normal 

hematopoietic stem cells (Gage, 2000; Guzman et al, 2007; Guzman et al, 2005). In the 

future, selective targeting and elimination of the cancer stem cell population may result in 

improved clinical outcome for patients with even advanced cancers. 
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5 Material and Methods 

5.1 Animals 

5.1.1 Transgenic mice 

Transgenic mice used in this study that express verbB under the control of the S100ß 

promotor and either heterozygous (S100ß-verbB, p53+/- mice) or homozygous (S100ß-verbB, 

p53-/-) for the tumor suppressor p53 have been described previously (Weiss et al, 2003). 

S100ß-verbB mice develop low-grade oligodendroglioma by overexpressing the avian 

oncogene verbB in postnatal neural stem cells and their progeny in the subventricular zone. 

Loss of p53 leads to the development of high-grade oligodendroglioma in S100ß-verbB, 

p53+/- and S100ß-verbB, p53-/- mice although tumor development in animals heterozygous for 

p53 is significantly delayed. 

Wild type mice used in this study were FvB/N mice. Mouse colonies were maintained at the 

University of California, San Francisco and all animal procedures were performed in 

accordance with National Institutes of Health and UCSF guidelines. 

5.1.2 Drosophila strains 

For live imaging full length Miranda-GFP was expressed with the UAS/GAL4 system (Brand 

& Perrimon, 1993) using scabrous-Gal4 (Nakao & Campos-Ortega, 1996), neuralized-Gal4 

(Bellaïche et al, 2001) or v32-Gal4 (Petritsch et al, 2003) driver lines. To generate a fusion of 

GFP and the N-terminus of Miranda, a fragment encoding eGFP generated by PCR using 

eGFP-vector (Clontech) as template was fused to full-length Miranda amplified by PCR from 

Miranda-bluescript-SK (Petritsch et al, 2003) with a small linker region and cloned into the 

pUAST vector. Several independent transgenic lines were generated as described (Petritsch 

et al, 2003). UAS-Miranda-GFP was combined with red fluorescent histoneH2AvD-mRFP 

(Schuh et al, 2007) or with UAS-Lgl3A (Betschinger et al, 2003b). Live imaging for PON was 

performed with UAS-PON-GFP ; sca-Gal4 (Roegiers et al, 2001). FRAP experiments of free 

eGFP were performed using UAS-eGFP (Bloomington stock center).  
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5.2 Tissue culture 

5.2.1 Adult neurosphere culture 

Neural stem cells were isolated from the subventricular zone of adult mice (8 weeks 

postnatal, if not otherwise indicated) essentially as described previously (Doetsch et al, 

1999). In brief, mice were anesthetized with 2,2,2-tribromoethanol and killed by cervical 

dislocation and their brains were removed and placed in Ca2+/Mg2+ free Hanks’ buffer 

(HBSS) supplemented with penicillin and streptomycin (P/S, UCSF cell culture facility). The 

lateral walls of the lateral ventricle were dissected, collected in HBSS and incubated for 40 

min at 37°C in an activated papain solution. Papain  was activated 30 min in advance by 

incubating 300 µL papain suspension (Worthington) in 1 mL activation solution (1.1 mM 

EDTA and 5.5 mM L-cystein in H2O) and further diluted with 4 mL HBSS. Cells were 

collected by centrifugation (1000 rpm, 10 min, 4°C)  and resuspended in cold Neurobasal -A 

medium (Gibco) without any growth factors or antibiotics. Cells were dissociated by carefully 

triturating with a P1000 pipette until no clumps were visible and collected by centrifugation 

(1000 rpm, 10 min, 4°C). The cellular pellet was re suspended in Neurobasal -A medium and 

centrifuged again. After a final washing step cells were filtered though a 40 µm cell strainer, 

plated in ultra low adherent 6-well plates (Corning) in neurosphere complete medium 

(Neurobasal -A medium (Gibco) containing B27 supplement (Gibco), 20 ng/mL epidermal 

growth factor (EGF, Sigma), 20 ng/mL basic fibroblast growth factor (bFGF, Peprotech), 

glutamine and P/S) and maintained at 37°C and 5% CO 2. The culture medium was replaced 

every 3-4 days.  

5.2.2 Isolation of cancer stem cells from oligodend roglioma 

For the isolation of cancer stem cells, tumor tissue was dissected from oligodendroglioma, 

enzymatically dissociated as described above (see 5.2.1) and cultured under the same 

conditions as neural stem cells (tumorsphere culture).   

5.2.3 Passaging of neuro- and tumorspheres   

Neurospheres were usually passaged once a week by harvesting them by centrifugation 

(1000 rpm, 5 min, room temperature), incubating them with Accumax (Innovative Cell 

Technologies) for 10 min and carefully triturating them. Usually, single cells were then plated 

at a density of 40000 cells/mL medium in ultra low adherent plates.  
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5.2.4 Sphere forming- and cell proliferation assays  

The self-renewing capacity of isolated neural stem cells and cancer stem cells was estimated 

using a sphere-forming assay. For neurosphere formation, a single cell (in a 96-well plate) or 

higher number of cells (200 cells/24 well plate) were maintained in complete medium and the 

number of secondary spheres was counted after 7-10 days. Proliferation assays were 

performed using the CyQuant kit (Molecular Probes) according to manufacturers instructions. 

For these assays, cells were cultured under adherent conditions in DMEM/F12 medium 

enriched with N2 supplement (Gibco), 35 µg/mL bovine pituitary extract (BPE, Gibco), 20 

ng/mL EGF, 20 ng/mL bFGF, glutamine and P/S (N5 medium). Cells were plated at a density 

of 2500 cells/96 well plate, and cell numbers were measured at the days indicated using a 

micro plate reader. 

5.2.5 Differentiation of neurosphere cultures 

Differentiation of early passage spheres was induced by plating dissociated cells at a density 

of 25000 cells/well in CC2 coated Lab Tek II 8 well chamber slides (Nunc) in Neurobasal -A 

medium containing 1% FCS (Hyclone), B27 supplement, glutamine and P/S in the absence 

of growth factors (differentiation medium). Chamber slides were processed 7 days later using 

immunocytochemistry (see 5.3.3).  

5.2.6 Cell pair assays 

To study the asymmetric distribution of cell fate markers cell pair assays were performed 

essentially as described previously (Shen et al., 2002). In brief, spheres were dissociated 

and single cells were plated at clonal densities (30-40 cells) in Terasaki well plates (Nunc) in 

complete medium. After 20-24 hours cells were fixed and subjected to immunocytochemistry.  

5.2.7 Transfection of miRNAs into neural stem cells  

Cells maintained in N5 medium under adherent conditions were incubated with 1 mL 0,05% 

trypsin for 2 minutes, transferred to a Falcon tube using 5 mL N5 medium and washed two 

times with PBS. Then, cells were plated at 25000 cells/well in 8 well chamber slides and 

cultured under proliferative conditions in N5 medium 

After 2 days, the medium was replaced with 250 µL N5 transfection medium, i.e. N5 medium 

without P/S. Lipofectamin transfection reagents (Invitrogen) were prepared according to the 

manufacturers instructions. In brief, 0,75 µL Lipofectamin was mixed together with 24,25 µL 

Optimem medium and incubated for 5 min at room temperature. Then, miRNAs (miR124a, 

miR137; Dharmacon) diluted in Optimem medium were added to get a final concentration of 
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100 nM and a total volume of 50µL. After a 20 min incubation at room temperature, the 

transfection reagent was pipetted dropwise on the cells. In addition, negative controls using 

scrambled RNA were performed.  

The next day, the medium was changed to N5 differentiation medium and cells were 

subjected to immunocytochemistry after another 3 days.    

5.3 Immunostaining and histology 

5.3.1 Immunofluorescence on Drosophila embryos 

Embryos were washed with embryo wash (0,7% NaCl, 0,03% Triton X-100) and 

dechorionated in 5% sodium-hypochlorite for 2 minutes. Embryos were fixed in 500 µL 

heptane and 500 µL formaldehyde (37%) for 4 min on the Multireax shaker (Heidolph 

Instruments). For devitalisation, the lower phase was removed and replaced by 500 µL 

methanol and embryos were vortexed hard for 30 s. After embryos settled down, the 

supernatant was removed followed by two short washing steps with methanol. Then, 

embryos were quickly washed twice with PBT and then twice for 5 min.  

After blocking in 5% normal goat serum for 1 hour at room temperature, embryos were 

incubated over night at 4°C in primary antibodies d iluted in blocking solution. Next day, the 

antibody solution was removed and embryos were washed 6 x 5 min in PBT and incubated 

with secondary antibodies coupled to Cy3 and Cy5 (Jackson), respectively, at 1:200 for 1 h 

at room temperature. Embryos were again washed 6 x 5 min in PBT, nuclei stained with 

TOTO3 (1:1000; Molecular probes) followed by 2 additional washing steps. Finally, embryos 

were mounted in Vectashield mounting medium. Samples were stored at -20°C or directly 

analyzed by confocal microscopy (Leica TCS SP2). 

5.3.2 Whole-mount in situ hybridization of Drosophila embryos 

Whole mount in situ hybridization was done according to (Tautz & Pfeifle, 1989) using an 

antisense RNA probe derived from miranda cDNA labelled with digoxygenin-UTP (Roche). 

Embryos were hybridized at 65°C o/n in hybridizatio n solution, followed by incubation with 

mouse anti-DIG 1:2000 (Roche) and rabbit anti-Miranda (1:100) and detection of Miranda 

RNA and protein using secondary antibodies coupled to Alexa488and Cy3 at 1:200. Images 

were taken on a Leica TCS SP2 confocal microscope. 
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5.3.3 Immunocytochemistry 

For immunostaing of cultured cells, cells were washed twice with PBS, fixed for 15 min with 

4% Paraformaldehyde (PFA, Sigma) at room temperature, rinsed twice in PBS and blocked 

in 5% normal serum with or without 0.1% Triton X-100 (Sigma) for 60 min. Cells were 

incubated overnight with primary antibodies at 4°C (for a complete list of antibodies and 

conditions used in this study see Table 2). After repeated washing steps, cells were incubated 

with the appropriate secondary antibody coupled to Alexa488 and Alexa594 (Invitrogen) at a 

dilution of 1:1000 for 1 h at room temperature. For nuclei staining, cells were incubated for 10 

min in 4,6-diamino-2-phenylindole (DAPI, Sigma) and washed with PBS. Slides were finally 

mounted with Moeviol and cells were observed by conventional fluorescence microscopy 

(Zeiss, Axioplan). Negative controls were performed by omitting the incubation with the 

primary antibody and/or incubation with the appropriate isotype controls. 

5.3.4 Immunohistochemistry 

For immunohistochemistry on primary and orthotopic tumor tissue, brains were removed and 

fixed overnight in 4% PFA, cryoprotected in 30% sucrose and sectioned at 12-16 µM on a 

cryostat. Sections were air dried in the fume hood, postfixed in 4% PFA at room temperature 

for 10 min and washed twice in PBT for 5 min. Sections were blocked in 5% normal serum 

for 60 min and incubated overnight with primary antibodies at 4°C in a humid chamber. An 

additional 45 min blocking step with MOM reagent (Vector Laboratories) followed by two 

washing steps for 2 min was performed if the primary antibody was produced in mouse. 

Sections were washed with PBT, 3 times of 5 min each and stained with the appropriate 

secondary antibody for 60 min. Nuclei were counterstained with DAPI, slides mounted in 

Moeviol and observed by conventional or confocal microscopy (Zeiss, LSM 510). 

5.3.5 Haematoxylin and Eosin staining  

Haematoxylin and Eosin stainings were done according to standard procedures and tumor 

sections were analyzed by a pathologist of the Neuropathology core at UCSF confirming the 

presence of high grade oligodendroglioma in primary and orthotopic tumors. 

5.3.6 Tunel staining 

Tunel staining was carried out using the in situ cell death kit (Roche) according to the 

manufacturers instructions. In brief, fixed cells were incubated for 2 min in 0.1% Triton X-100, 

0.1% sodium citrate on ice. Cells were washed twice with PBS and incubated with the Tunel 

reaction mix for 60 min at 37°C in a humid chamber.  After several washing steps in PBS 
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slides were mounted in Moeviol and apoptotic cells were detected by fluorescence 

microscopy. As a positive control, cells were treated with 3000 U/mL DNase before 

incubating with Tunel reaction mix, fluorescently labeled nucleotides were omitted in negative 

controls. 

5.4 Live Imaging  

To visualize GFP fusion proteins in living embryos, embryos were collected on apple agar 

plates and aged to stage 9 and 10 (4-6h at 29°C). A fter dechorionation embryos were 

immobilized on a cover slip (Lu et al, 1999), covered with Halocarbon 95 oil (Halocarbon 

Products Corp.) and visualized by confocal microscopy (Leica TCS SP2; Objective: HCL PL 

APO lbd.BL 63.0x1.40 Oil; numerical aperture: 1,4) using 6,5 s time intervals. Neuroblasts 

were identified by the following criteria: delamination from the symmetrically dividing 

neuroectodermal cells, asymmetric cell division, giving rise to two differently sized daughter 

cells and asymmetric localization of proteins such as Miranda (Kaltschmidt et al, 2000). 

Images were imported into Adobe Photoshop, assembled in Adobe Imageready and 

converted to QuickTime movies. 

5.4.1 Fluorescence recovery after photobleaching (F RAP) 

All photobleaching experiments were done by point bleaching of 1 second with maximum 

laser intensity using the advanced time lapse tool. Recovery period was measured at lower 

laser intensity in time intervals of 3.25 seconds. For calculating the half time of recovery, 

images were imported into image J and subtracted for background. The resulting curves 

were fitted to a single exponential function y=A(1-e-kt) with Origin 5.0 (Originlab) from which 

the FRAP half time t 1/2= ln(2)/k was calculated.  

5.5 RNA interference and drug treatment of Drosophila embryos 

5.5.1 Myosin VI RNA interference 

For knocking down Myosin VI activity, 1-2 h old embryos were injected with RNA 

complementary to Myosin VI RNA (Petritsch et al, 2003) using a microinjection system (air 

pressure injecting device: Femtojet, Eppendorf; micromanipulator: Leica). Double-stranded 

DNA was produced by in vitro transcription from PCR-generated templates tagged with T7 

RNA polymerase promoter sequence and injected into embryos expressing Miranda-GFP 

and Histone-RFP or PON-GFP. Embryos were aged for 3 h at 29°C and live imaging was 

performed by confocal microscopy as described. 
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5.5.2 Injection of Rho kinase inhibitor to impair M yosin II activity 

Myosin II activity was downregulated by injection of the Rho-kinase inhibitor (RKI) Y-27632 

(17 mg/ml in water; TOCRIS Bioscience) (Barros et al., 2003) into stage 9 embryos 

expressing Miranda-GFP and Histone-RFP or PON GFP and followed using time lapse 

confocal microscopy.  

5.5.3 Downregulation of proteasome activity 

To inhibit proteasome activity, embryos were treated with 50 µM MG132 (Sigma) or DMSO 

as a vehicle control in a 1:1 mixture of Schneider’s medium and heptane for 15 or 30 

minutes. Then, embryos were fixed and subjected to immunohistochemistry as described. 

5.6 Stereotactic injections and serial transplantat ion of cancer 

stem cells 

To evaluate the in vivo tumorigenicity of cancer stem cells, 1 x 104 cells were stereotactically 

implanted into the right brain hemisphere of FvB/N mice (coordinates: anterior-posterior, +2; 

medial-lateral, +2; dorsal-ventral, 3 mm from the bregma). Animals were kept under 

observation and sacrificed upon developing neurological symptoms. Tissue was prepared for 

immunohistochemistry as described. In addition, secondary tumorsphere cultures were 

established, their capacity for self-renewing and differentiation was evaluated and cells were 

re-injected in FvB/N mice. Cancer stem cells from orthotopic tumors were serially 

transplanted for 4 passages demonstrating their malignant potential. 

5.7 SDS Page and immunoblotting 

Miranda-GFP/scabrous-Gal4, Miranda-GFP and scabrous-Gal4 embryos, respectively, were 

homogenized in extraction buffer (25 mM Hepes (pH 7), 50 mM KCl, 150 mM NaCl, 1 mM 

MgCl2, 250 mM sucrose, 1 mM DTT, 1% Triton X-100 and protease inhibitor cocktail 

(Roche)), lysates were mixed with the same volume of 2X Laemmli buffer (100 mM Tris-HCl 

pH 6.8, 4% SDS, 2% 2-Mercaptoethanol, 20% glycerol, 0,002% bromophenol blue) and 

boiled for 5 min to denature the proteins before loading on the SDS gel.  

SDS-PAGE was performed according to standard procedures (Laemmli, 1970) in a 

Tris/glycine buffer system by aligning proteins in a 5% stacking gel (1.4 ml H2O, 330 µL 

Acrylamid/Bisacrylamid (29:1), 250 µL 1.0 M Tris (pH 6.8), 20 µL SDS (10%), 20 µL APS 

(10%); 2 µLTEMED) and separating them in a 8% resolving gel (4.6 ml H2O, 2.7 mL 

Acrylamid/Bisacrylamid (29:1), 2.5 mL 1.5 M Tris (pH 8.8), 100 µL SDS (10%), 100 µL APS 

(10%); 6 µL TEMED). Electrophoresis was conducted at 30 mA in a Mini Trans Blot 
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electrophoresis tank (Biorad) in 1X running buffer (25 mM Tris, 0.19 M Glycin, 0.1% SDS) 

under denaturating and reducing conditions.  

Following electrophoresis, proteins were transferred to a PVDF membrane (Hybond P; 

Amersham) using a wet blot apparatus (Biorad) according to the manufacturers instructions. 

Before, the membrane was activated by methanol and equilibrated in transfer buffer (3.03g 

Tris, 14.41g Glycine, 1 ml 20% SDS, 100 mL methanol, ad 1l H2O). Protein transfer occurred 

at 70 V for 80 min.  

Blocking of non-specific binding is achieved by incubating the membrane 60 min in washing 

buffer (1X PBS, 0,05% Tween, pH7,4) containing 0.05% Tween and 5% non-fat dry milk. 

After blocking, the membrane was incubated over night at 4°C with the primary antibody 

diluted in washing buffer. The membrane was washed 5 times for 5 min in washing buffer 

and subsequently incubated with the respective secondary antibody coupled to horseradish 

peroxidase for 1 h at room temperature and washed again 5 times for 5 min. Secondary 

antibodies were visualized on autoradiography film (Amersham) using the enhanced 

chemoluminescent kit (ECL, Amersham) according to the manufacturers instructions.  
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Table 2: Antibody list. The following table contains information about the antibodies used in this study including ordering information and conditions for 
incubation, washing and use of secondary antibodies. All incubation and washing steps were performed in PBS with or without detergent /serum as indicated.   

Species  Antigen  Company (Order number)  Dilution  Blockin g /Incubation  Washing  2nd antibody  
Rabbit-IgG aPKC Santa Cruz (SC-216) 1:200 10% NGS, 0.1% Triton PBS, 0.1% Triton gt-α-rb-Cy5 

Mouse-IgM CD15/LeX BD Pharmingen (559045) 1:500 5% NGS PBS gt-α-m-IgM-Alexa488 

Rabbit-IgG Cyclin A Gift from O´Farrell 1:200 10% NGS, 0.1% Triton PBS, 0.1% Triton gt-α-rb-Cy5 

Sheep-IgG EGFR Upstate (06-129) 1:50 5% NGS PBS dk- α-shp-Alexa488 

Rabbit-IgG GFAP DAKO (Z0334) 1:1000 5% NGS, 0.1% Triton PBS, 0.05% Triton gt-α-rb-Alexa594 

Rat-IgG2a GFAP Zymed (13-0300) 1:500 5% NGS, 0.1% Triton PBS, 0.05% Triton gt-α-rat-Alexa594 

Mouse-IgG GFP Santa Cruz (SC-9996) 1:200 10% NGS, 0.1% Triton PBS, 0.1% Triton gt-α-m-Cy3 

Rabbit-IgG Miranda Davids Biotechnology 1:200 10% NGS, 0.1% Triton PBS, 0.1% Triton gt-α-rb-Cy5 

Mouse-IgG Miranda Gift from Matzuzaki 1:20 10% NGS, 0.1% Triton PBS, 0.1% Triton gt-α-m-Cy3 

Mouse-IgG Nestin Chemicon (MAB353) 1:500 5% NGS, 0.1% Triton PBS, 0.05% Triton gt-α-m-IgM-Alexa488 

Rabbit-IgG NG2 Chemicon (AB5320) 1:200 5% NGS, 0.1% Triton PBS, 0.05% Triton gt-α-rb-Alexa488/594 

Rabbit-IgG NG2 Gift from Stallcup 1:250 5% NGS, 0.1% Triton PBS, 0.05% Triton gt-α-rb-Alexa488/594 

Goat-IgG Numb Everest Biotech (EB05296) 1:100 5% BSA, 0.1% Triton PBS, 0.05% Triton dk- α-gt-Alexa488 

Mouse-IgM O4 * Chemicon (MAB345) 1:500 5% NGS PBS gt-α-m-IgM-Alexa488 

Rabbit-IgG Olig2 Chemicon (AB9610) 1:500 5% NGS, 0.1% Triton PBS, 0.05% Triton gt-α-rb-Alexa594 

Rabbit-IgG Par-3 Gift from Macara 1:200 5% NGS, 0.1% Triton PBS, 0.05% Triton gt-α-rb-Alexa594 

Rabbit-IgG Phospho-Histone H3 Upstate (06-570) 1:200 5% NGS, 0.1% Triton PBS, 0.05% Triton gt-α-rb-Alexa594 

Mouse-IgG PON DSHB 1:5 10% NGS, 0.1% Triton PBS, 0.1% Triton gt-α-m-Cy35 

Rabbit-IgG ß-III-Tubulin Covance (MRP-435P) 1:500 5% NGS, 0.1% Triton PBS, 0.05% Triton gt-α-rb-Alexa594 

Mouse-IgG ß-III-Tubulin Covance (MMS-435P) 1:1000 5% NGS, 0.1% Triton PBS, 0.05% Triton gt-α-m-Alexa488 

Mouse-IgG α-Tubulin Accurate (YSRTMCA77S) 1:10 10% NGS, 0.1% Triton PBS, 0.1% Triton gt-α-m-Cy3 

Rabbit-IgG γ-Tubulin Sigma (T3559) 1:500 10% NGS, 0.1% Triton PBS, 0.1% Triton gt-α-rb-Cy5 

* Note: alternatively, cells were incubated for 30 min with the O4 antibody at a 1:500 dilution in Neurobasal medium, then fixed and stained according to the 
regular IHC protocol omitting detergents in any further washing or incubation step.
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7 Abbreviations 

µg    Microgramm 

µl    Microliter 

α    anti 

ACD    Asymmetric cell division 

APC/C    Anaphase promoting complex/cyclosome 

aPKC    Atypical protein kinase C 

Ara-C    Cytosin-ß-D-arabinofuranoside 

BDM    2,3-butanedione monoxime 

bFGF    Basic fibroblast growth factor 

BPE    Bovine pituitary extract 

CC    Corpus callosum 

CNS    Central nervous system 

CSC     Cancer stem cell 

DAPI    Diamidino-2-phenylindol dihydrochloride 

DMEM    Dulbecco´s Modified Eagle´s Medium 

DNase    Desoxyribonuclease 

DTT    Dithiotreitol 

ECL    Enhanced chemoluminiscence 

EDTA    Ethylenediaminotetraaceticacid 

EGF    Epidermal growth factor 

EGFR    Epidermal growth factor receptor 

ES cell    Embryonic stem cell 

et al.    et alii (from Latin, “and others”) 

FRAP    Fluorescent recovery after photobleaching 

g    Gramm 

GalC    Galactocerebroside 

GBM    Glioblastoma multiforme  

GFAP    Glial fibrillary acidic protein 

GFP    Green fluorescent protein 

GMC    Ganglion mother cell 

h    Hour 

HBSS    Hanks’ buffer, Ca2+/Mg2+ free 

HCL    Hydrochloric acid 

H&E    Haematoxylin and eosin 

HEPES   4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

kb    Kilo bases 
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KCl    Potassium chloride 

Lgl    Lethal giant larvae 

MBP    Myelin basic protein 

MgCl2    Magnesium chloride 

min    Minute 

miRNA    Microribonucleic acid 

ml    Milliliter 

mM    Millimolar 

mRNA    Messenger ribonucleic acid 

NaCl    Sodium chloride 

NGS    Normal goat serum 

NSC    Neural stem cell 

Numbl    Numb-like protein 

P/S    Penicillin and streptomycin  

PAGE    Polyacrylamide gel electrophoresis 

PBS    Phosphate buffered saline 

PFA    Paraformaldehyde  

PH3    Phospho-Histone 3 

Pins    Partner of Inscuteable   

PON    Partner of Numb 

PSC    Premalignant stem cell 

RFP    Red fluorescent protein 

RGC    Radial glial cell 

RNA    Ribonucleic acid 

ROI    Region of interest 

rpm    Rounds per minute 

s    Second 

SDS    Sodium dodecyl sulfate 

SGZ    Subgranular zone 

SVZ    Subventricular zone 

TEMED   N, N, N’, N’-Tetramethylethylenediamine 

Tris    Trishydroxymethylaminomethane 

TUNEL   Terminal  

UAS    Upstream activating sequence 
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