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Zusammenfassung

In der vorliegenden Doktorarbeit werden zwei fundamentale Konzepte der höher dimension-
alen Algebra, die Kategorifizierung und Internalisierung, verfolgt. Von der geometrischen
Perspektive waren die bis jetzt allgemeinsten Torsoren mittels der Wirkungen von Kate-
gorien und Gruppoiden in der Dimension n = 1 definiert. In der Dimension n = 2 haben
Mauri and Tierney, und neulich Baez und Bartels von einem anderen Gesichtwinkel weniger
allgemeine 2-Torsoren mit einer 2-Strukturgruppe definiert. In der Sprache der simplizialen
Algebra haben Duskin und Glenn Wirkungen und Torsoren, die zur jeder Barrschen ex-
akten Kategorie E intern sind, in einer beliebigen Dimension n definiert. Diese Wirkun-
gen sind simpliziale Abbildungen, die in Dimensionen m ≥ n exakte Faserungen über
speziellen simplizialen Objekten, so genannten n-dimensionalen Kanschen Hypergroup-
poiden, sind. Die Korrespondenz zwischen der geometrischen und algebraischen Theorie in
der Dimension n = 1 ist durch die Grothendiecksche Konstruktion vom Nerv gegeben, da
das Grothendiecksche Nerv von einem Gruppoid genau ein 1-dimesionales Kansches Grup-
poid ist. Ein Hauptresultat ist, dass die Wirkungen von Gruppoiden und die Torsoren der
Gruppoide zu simplizialen Wirkungen und simplizialen Torsoren über den entsprechen-
den 1-dimesionalen Kanschen Gruppoid werden, nach dem die Grothendiecksche Nerv-
Konstruktion angewandt wird.
Das Hauptergebnis der vorliegenden Doktorarbeit ist eine Verallgemeinerung dieser Kor-
respondenz auf die Dimension n = 2. Dieses Resultat wurde durch die Einfhrung von zwei
neuen geometrischen und algebraischen Konzepten, Wirkungen von Bikategorien und 2-
Torsoren von Bigruppoiden, die eine Kategorifizierung und Internalisierung der Wirkungen
von Kategorien und Torsoren von Gruppoiden darstellen, erreicht. Wir liefern die Klassi-
fizierung von 2-Torsoren von Bigruppoiden mittels der zweiten nichtabelschen Kohomologie
mit Koeffizienten im Struktur-Bigruppoid. Die zweite nichtabelsche Kohomologie wird mit-
tels eines dritten neuen Konzepts, das in der Doktorarbeit eingeführt wird und das eine
kleine 2-Faserung die einem internen Bigruppoid in der Kategorie E entspricht, definiert.
Die Korrespondenz in der Dimension n = 2 ist durch die Nerv-Konstruktion für Bikat-
egorien und Bigruppoiden von Duskin gegeben, da diese genau ein 2-dimesionales Kan-
sches Gruppoid ergibt. Das letzte Hauptresultat der Doktorarbeit sagt, dass die Bigrup-
poidwirkungen und Bigruppoid-2-Torsoren zu simplizialen Wirkungen und simplizialen 2-
Torsoren über den entsprechenden 2-dimesionalen Kanschen Gruppoid werden, nach dem
die Duskinsche Nerv-Konstruktion angewandt wird.
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The summary

In this thesis we follow two fundamental concepts from the higher dimensional algebra, the
categorification and the internalization. From the geometric point of view, so far the most
general torsors were defined in the dimension n = 1, by actions of categories and groupoids.
In the dimension n = 2, Mauri and Tierney, and more recently Baez and Bartels from the
different point of view, defined less general 2-torsors with the structure 2-group. Using
the language of simplicial algebra, Duskin and Glenn defined actions and torsors internal
to any Barr exact category E , in an arbitrary dimension n. This actions are simplicial
maps which are exact fibrations in dimensions m ≥ n, over special simplicial objects called
n-dimensional Kan hypergroupoids. The correspondence between the geometric and the
algebraic theory in the dimension n = 1 is given by the Grothendieck nerve construction,
since the Grothendieck nerve of a groupoid is precisely a 1-dimensional Kan hypergroupoid.
One of the main results is that groupoid actions and groupoid torsors become simplicial
actions and simplicial torsors over the corresponding 1-dimensional Kan hypergroupoids,
after the application of the Grothendieck nerve functor.

The main result of the thesis is a generalization of this correspondence to the dimension
n = 2. This result is achieved by introducing two new algebraic and geometric concepts,
actions of bicategories and bigroupoid 2-torsors, as a categorification and an internalization
of actions of categories and groupoid torsors. We provide the classification of bigroupoid
2-torsors by the second nonabelian cohomology with coefficients in the structure bigroupoid.
The second nonabelian cohomology is defined by means of the third new concept in the
thesis, a small 2-fibration corresponding to an internal bigroupoid in the category E . The
correspondence between the geometric and the algebraic theory in the dimension n = 2 is
given by the Duskin nerve construction for bicategories and bigroupoids since the Duskin
nerve of a bigroupoid is precisely a 2-dimensional Kan hypergroupoid. Finally, the main
results of the thesis is that bigroupoid actions and bigroupoid 2-torsors become simplicial
actions and simplicial 2-torsors over the corresponding 2-dimensional Kan hypergroupoids,
after the application of the Duskin nerve functor.
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Rudjer Boškovic Institute in Zagreb, when my postgraduate fellowship expired in 2004.
My ideas about categories, topos theory and homotopy theory were naturally met with
skepticism by professors at the Theoretical Physics Department, due to the fact that I was
forced to start a research as a student, in the surrounding without any tradition in such
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friend and colleague Zoran Škoda, who deepen my knowledge in many other areas of math-
ematics, which were not of my primer interest. We initiated together a bilateral project on
nonabelian cohomology and applications, with Prof. Schweigert as a principal investigator
from the German side 2, and I was lucky to meet my friend and collaborator Urs Schreiber,
with who I share many common interests and to who I thank for many great discussions.

I would like to express my gratitude specially to my supervisor Prof. Branislav Jurčo,
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Part I

Introduction
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1 The introduction

One of the central themes of Grothendieck’s epic text [43], is the deep relation between
topos theory and homotopy theory, where he emphasized the importance of the sheaf
theoretical objects corresponding to higher categorical structures. His main motivation for
introduction of such categorical structures, as (weak) n-categories and (weak) n-groupoids,
was to provide algebraic models for homotopy n-types. Since a homotopy n-type X is a
topological space with trivial homotopy groups πk(X) for k > n, it can be conveniently
described by a simplicial set Πn(X), called fundamental n-dimensional hypergroupoid of X.

Simplicial sets were introduced by Eilenberg and Zilber in 1950 [33], and soon after
that simplicial homotopy theory was developed by Kan [58], [59], [60], followed by the more
general homotopy theories associated to closed model categories, developed by Quillen in
1960’s [77]. A simplicial set X• is the presheaf

X• : ∆op → Set

on the skeletal simplicial category ∆ in which objects are given by finite nonempty ordinals
[n] = {0 < 1 < ... < n}, and morphisms are monotone maps between these. There are
certain incidence relations between canonical maps ∂i : [n − 1] → [n] for 0 ≤ i ≤ n − 1,
called coface maps, which are injective maps that omit i in the image, and the maps
σi : [n] → [n − 1] for 0 ≤ i ≤ n − 1, called codegeneracy maps, which are surjective maps
which repeat i in the image. This relations allows the description of the simplicial set X•
by the diagram

X0
// X1

d1oo
d0

oo //// X2
oo

d2oo

d0

oo ////
//
X3...

oooo
d3oo

d0

oo

in which elements of the set Xn are called n-simplices, and they satisfy simplicial identities

didj = dj−1di (i < j)
sisj = sj+1si (i ≤ j)
disj = sj−1di (i < j)
disj = id (i = j, i = j + 1)
disj = sj+1di (i > j + 1)

where maps di := X(∂i) and si := X(σi) are images of coface and codegeneracy maps.
Simplicial sets are objects of the category SSet whose morphisms are simplicial maps, and
they are given by natural transformations between presheaves which define simplicial sets.
We have the Yoneda embedding

y : ∆ → SSet (1.1)

which takes any ordinal [n] to the representable simplicial set ∆[n], whose m-simplices are
given by the set ∆[n]m = HomSSet([m], [n]) of singular m-simplices.
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The decisive step which brought together category theory and simplicial theory was
done by Grothendieck [41] in 1960’s, when he realized that to any small category C one
can associate a simplicial set NC, which he called the nerve of the category C, in analogy
to the construction of the nerve of the covering of a topological space. The set NCn of
n-simplices consists of all composable strings of n morphisms

x0
f1 // x1

f2 // x2 . . . xn−2
fn−1 // xn−1

fn // xn

in the category C. Simplicial face operators dn
i : NCn → NCn−1 are given by projections for

extremals i = 0, n, and by composing out ith morphism in a string for inner ones 0 < i < n.
The degeneracy operators are given by inserting identity morphism of ith indexed object.
Then the associativity and the identity law in the category C are encoded in the simplicial
identities between face and degeneracy operators on NC. This construction gives a fully
faithful functor

N : Cat → SSet (1.2)

from the category Cat of small categories to the category SSet of simplicial sets, so that
the fundamental definitions of the category theory are all inherent in simplicial sets.

The fact that the nerve functor is fully faithful is the reflection of the fact that the
skeletal category ∆ of finite ordinals (non-empty totally ordered sets) and monotonic maps
between them, is a dense subcategory of the category Cat of small categories, or an adequate
subcategory in the sense of Isbell [46],[47]. More precisely, if we regard the category C as
an object the category Cat of small categories, then we can interpret the nerve NC of
the category C as the special case of the so called geometric nerve construction. Given a
functor from the skeletal category

i : ∆ → E (1.3)

to any category E , a geometric nerve NC of an object C of the category E is the simplicial
set whose set of n-simplices is defined by NCn := HomE(i[n], C). By this construction we
obtain the geometric nerve functor

N : E → SSet (1.4)

and if this functor is fully faithful then we say that the functor (1.3) is dense [62]. Conse-
quently, the skeletal category ∆ is dense subcategory of the category Cat of small categories,
since

i : ∆ → Cat (1.5)

the natural embedding of ordinals as non-empty totally ordered sets is dense. For any
functor

D : J → E (1.6)

from a small category J to a cocomplete category E , the singular functor of the functor D

E(D, 1) : E → [J op, Set] (1.7)
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sending an object E of E to the presheaf E(D(−), E) : J op → Set, has a left adjoint
L : SetJ op → E defined for each presheaf P : J op → Set by the colimit

L(P ) = lim−→(
∫
J P

πP // J D // E) (1.8)

where πP :
∫
J P → J is a discrete fibration obtained from the Grothendieck construction

[42] applied to the presheaf P . Using this construction, the nerve functor for categories
may be seen as the singular functor of the functor (1.5) and it has a left adjoint

F : SSet → Cat (1.9)

so called fundamental category functor, which is a part of the diagram of functors

Top
S

// SSet
F //Roo

Cat
N

oo

∆
r

ggPPPPPPPPPPPPPP
y

OO

i

77nnnnnnnnnnnnnn

and for any simplicial set X•, the fundamental category FX• is the quotient of the free
category generated by the 1-skeleton of X•, with respect to congruence relation given by
2-simplices. The other pair of adjoint functors in the above diagram is given by the singular
functor S : Top → SSet of the functor r : ∆ → Top, which takes any ordinal [n] to the
so called topological standard n-simplex ∆n = {(t0, . . . , tn) ∈ Rn+1|∑n

i=0 ti = 1, ti ≥ 0}.
Again by the geometric nerve construction, n-simplices of the simplicial set S(X) are given
by the set HomTop(r[n], X) of singular n-simplices of the topological space X. Its left

adjoint is defined for any simplicial set X• by the colimit lim−→(
∫
∆ X• π // ∆

r // Top)

where
∫
∆ X• is a simplex category of X•, constructed by the Grothendieck construction,

and we call it the geometric realization functor

R : SSet → Top. (1.10)

The geometric realization RX• of the simplicial set X• is first described by Milnor in [74],
as the topological space obtained from the coproduct

∐
n≥0 Xn×∆n, where Xn is supplied

with the discrete topology, factored by the equivalence relation generated by identifications
(Xα(x), t) ∼ (x, rα(t)), for any morphism α : [n] → [m] in ∆, and any x ∈ Xm and t ∈ ∆n.
This construction is later generalized by Segal [80], to the geometric realization functor

S : STop → Top (1.11)

from the category STop whose objects are simplicial spaces, which are defined by presheaves

X• : ∆op → Top

with values in the category Top of topological spaces, where each Xn is a topological space.



1 THE INTRODUCTION 11

There are several different ways to characterize those simplicial sets which arise as
nerves of categories, and the most of this (equivalent) ways rely on the Quillen closed
model structure on the category SSet of simplicial sets. Simplicial sets which are fibrant
objects for the closed model structure on SSet are called Kan complexes, and they are
characterized by certain horn filling conditions describing their exactness properties. This
conditions for a simplicial set X• explicitly use a simplicial kernel Kn(X•) in dimension n

Kn(X•) = {(x0, x1, . . . , xi, . . . , xj , . . . , xn−1, xn)|di(xj) = dj−1(xi), i < j} ⊆ Xn+1
n−1

which is interpreted as the set of all possible sequences of (n-1)-simplices which could
possibly be the boundary of any n-simplex. There exists a natural boundary map

∂n : Xn → Kn(X•) (1.12)

which takes any n-simplex x ∈ Xn to the sequence ∂n(x) = (d0(x), d1(x), . . . , dn−1(x), dn(x))
of its (n-1)-faces. The set

∧k
n(X•) of k-horns in dimension n

k∧
n

(X•) = {(x0, x1, . . . , xk−1, xk+1, . . . , xn−1, xn)|di(xj) = dj−1(xi), i < j, i, j 6= k} ⊆ Xn
n−1

is the set of all possible sequences of (n-1)-simplices which could possibly be the boundary
of any n-simplex, except that we kth face is missing. The k-horn map in dimension n

pk
n(x) : Xn →

∧k
n(X•) (1.13)

is defined by the composition of the boundary map (1.12), with the natural projection
qk
n(x) : Kn(X•) →

∧k
n(X•), which just omits the kth (n-1)-simplex from the sequence.

Then we say that for X• the kth Kan condition in dimension n is satisfied (exactly) if the
k-horn map (1.13) is surjection (bijection). If Kan conditions are satisfied for all 0 < k < n
and for all n, then we say that X• is a weak Kan complex, and if Kan conditions are satisfied
for extremal horns as well 0 ≤ k ≤ n and for all n, then we say that X• is a Kan complex.

One of the above mentioned characterizations of nerves of categories, first observed
by Street, is that the simplicial set X• is the nerve of a category if and only if it is
a weak Kan complex in which the weak Kan conditions are satisfied exactly. Weak Kan
complexes were introduced by Boardman and Vogt [19] in their work on homotopy invariant
algebraic structures. These objects are fundamental in the recent work of Joyal [53], which
is so far the most advanced form of the interplay between the category theory and the
simplicial theory. He even used the name quasicategory, instead of the weak Kan complex,
in order to emphasize that ”most concepts and results of category theory can be extended
to quasicategories”. Joyal introduced different closed model structure on SSet, called the
model structure for quasicategories, in which quasicategories are fibrant objects. In the
language of quasicategories, Lurie recently formulated his work on higher topoi in [69] in
which he also extended a considerable amount category theory to quasicategories.
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Similar characterization of nerves of groupoids leads to the fundamental simplicial ob-
jects introduced by Duskin in [30]. An n-dimensional Kan hypergroupoid, is a Kan complex
X• in which Kan conditions (1.13) are satisfied exactly for all m > n and 0 ≤ k ≤ m. Glenn
used the name n-dimensional hypergroupoid in [36] for any simplicial set in which Kan con-
ditions are satisfied exactly above dimension n, while Beke called them in [16] exact n-types,
in order to emphasize their homotopical meaning. These simplicial sets morally play the
role of nerves of weak n-groupoids, which is known to be valid for small n. Consequently,
a simplicial set X• is the nerve of a groupoid if and only if it is a 1-dimensional Kan
hypergroupoid, and similar characterization holds for nerves of bigroupoids.

Bigroupoids and bicategories, introduced by Bénabou [15] in 1967, are weakest possible
generalization of ordinary groupoids and categories, respectively, to the immediate next
level. In a bicategory (bigroupoid), Hom-sets become categories (groupoids) and the com-
position becomes functorial instead of functional. This changes properties of associativity
and identities which only hold up to coherent natural isomorphisms. The coherence laws
which this natural isomorphisms satisfy, are the deep consequence of the process called
categorification, invented by Crane [26], [27], in which we find category theoretic analogs of
set theoretic concepts by replacing sets with categories, equations between elements of the
sets by isomorphisms between objects of the category, functions by functors and equations
between functions by natural isomorphisms between functors.

The categorification become an essential tool in many areas of modern mathematics.
By generalizing algebraic concepts from the classical set theory to the context of higher
category theory, Baez developed a program of higher dimensional algebra in an attempt
to unify quantum field theory with traditional algebraic topology. The algebraic concepts
which arose from this program include braided monoidal 2-categories [4], 2-Hilbert spaces
[5], 2-Tangles [7], 2-groups [8], and Lie 2-algebras [9]. Bartels developed a concept of a
principal 2-bundle with the structure 2-group [13] and Baez and Schreiber used this concept
in order to develop a higher gauge theory [10], [11] which describes the parallel transport
of strings using 2-connections on principal 2-bundles, as the categorification of the usual
gauge theory which describes the parallel transport of point particles using connections on
principal bundles. Vector 2-spaces arose as a categorification of vector spaces in the work
of Kapranov and Voevodsky [61], and they were used by Baas, Dundas and Rognes [2],
who defined vector 2-bundles in a search for a geometrically defined elliptic cohomology.
Later, Baas, Bökstedt and Kro used topological bicategories and vector 2-bundles [3] in
order to develop 2-categorical K-theory as the categorification of the usual K-theory.

Another essential tool which we use in the thesis is an internalization. This is a process
of generalizing concepts from the category Set of sets, which are described in terms of sets,
functions and commutative diagrams, to concepts in another category E by describing them
in terms of objects, morphisms, and commutative diagrams in E . The internalization of the
particular algebraic or geometric structure in the category E rely on exactness properties
of E needed to describe corresponding commutative diagrams. Therefore, the choice of the
category E will depend on the algebraic or geometric structure one wants to describe.
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The most natural choice for an internalization and a categorification of algebraic and
geometric structures is a topos, which is according to Grothendieck, the ultimate gener-
alization of the concept of space. Topos theory has its origins in two separate lines of
mathematical development, sheaf theory and the categorical foundations of the set theory.

The sheaf theory was born in the work of Leray in 1945, and it become an essential tool
for a cohomology theory of non-simply connected spaces by providing an axiomatization
of ”local coefficient system”, mostly within the context of algebraic topology. The usual
notion of a sheaf on a topological space X used the topology of open subsets of the space
X. But it was soon discovered by Grothendieck, that in the context of algebraic geometry,
the topological notion of sheaf was not entirely adequate. Motivated by the Galois theory
and Serre fibrations, he replaced the usual topology of topological spaces, by the more
general Grothendieck topology [1] of categories, and he invented a generalized notion of a
sheaf over a site, which is a category supplied with a Grothendieck topology. He defined
the Grothendieck topos as the collection of all sheaves over a fixed site, and these objects
were central in the development of étale cohomology, built up during the ”Seminaire de
Géometrie Algébrique du Bois Marie” held during 1963-1964 by Grothendieck with the
assistance of Artin, Giraud, Verdier and others at Institut des Hautes Études Scientifiques.

The second line of development of the topos theory can be traced to the Freyd-Mitchell
embedding theorem for abelian categories, which showed that there exist a set of elementary
axioms implying all the finitary exactness properties of module categories. But the true
development started with Lawvere’s pioneering paper [65], setting out a list of elementary
axioms which were sufficient to characterize the category Set of sets. Then he began to
investigate an idea that the two element set {true, false} in the category Set of sets can be
seen as an ”object of truth-values” in Set. In his subsequent paper [66], Lawvere observed
that a presence of an ”object of truth-values” Ω in an arbitrary category E , reduces the
comprehension axiom (which essentially says that given a property, there is a set consisting
exactly of the elements having that property) to an elementary statement about adjoint
functors. Gray described analogous result [39] in the category Cat of small categories.

One of the most important results of the Seminaire de Géometrie Algébrique (SGA)
was the famous Giraud’s theorem, which characterized Grothendieck toposes purely by
exactness properties and size conditions of categories. This exactness properties says that
any Grothendieck topos is an exact category, that is a finitely complete category with
pullback stable coequalizers and effective equivalence relations. Exact categories were
defined by Barr [12] who used them as the basis of a non-additive embedding theorem,
which represents the first coming-together of the two lines of development of the topos
theory. Barr observed that Giraud’s theorem may be seen as tittle more then a special
case of his embedding theorem. One consequence of Barr’s embedding theorem is that for
any small exact category E , there is a family of left exact epimorphism preserving functors

Fi : E → Set (1.14)

which are collectively faithful and collectively limit and epimorphism reflecting.
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By an additional stage of abstraction, Lawvere and Tierney began to investigate the
axiom of existence of truth value object Ω in any category, after Lawvere observed that
every Grothendieck topos has such an object, which was later called a subobject classifier.
In a finitely complete category E , a subobject classifier is a monomorphism true : 1 → Ω,
such that any monomorphism i : S → X is a pullback

S²²

i

²²

// 1²²

true

²²
X

φ
// Ω

by the unique morphism φ : X → Ω, called a classifying morphism of a subobject S.
Lawvere and Tierney proposed a concept of a magnificent simplicity, an elementary topos,
which is a finitely complete category E together with a subobject classifier Ω in E , in
which any object X of E is exponential. An object X in a finitely complete category E is
exponential if the functor

X× : E → E
which takes any object Y in E to the product X × Y , has a right adjoint.

We could have chosen any topos as a carrier for an internalization and a categorification
of algebraic and geometric structures which we describe in the thesis. Most of mathematical
structures are described in terms of axioms, operations and relations. A first order formula
φ(x1, . . . , xn) is called geometric formula, if it is built up from atomic formulas by using
conjunction, disjunction and existential quantification. For any kind of a mathematical
structure, which can be described by geometric formulas, there exists a classifying topos,
which we will illustrate later on an example of a topos of presheves on a small category.
All hypotheses and desired conclusions in the thesis can be phrased in the language of sets,
membership, ordered tuples and projections, and unions and intersections, in the syntax of
geometric logic. By results of Joyal, Deligne and others, the theorems whose hypotheses and
conclusions can be phrased in finitary geometric logic, and even in a countable geometric
logic by results of Makkai and Reyes [72], stay valid in an arbitrary topos.

However, we decided to choose exact categories, and sometimes even more general
finitely complete categories, as an ambient for the description of our algebraic and geometric
structures. For any diagram in an exact category E involving finite limits and coequalizers
we can apply arbitrary limit and epimorphism preserving functor F : E → Set which yields
a diagram in Set with the same limits and epimorphisms as the original diagram. Another
consequence of Barr’s embedding theorem (1.14), which we will use in the thesis, is that
any conclusion one may come to about the diagram in a category Set of sets must hold
also for an original diagram in an exact category E . Therefore, all proofs in the thesis will
be done in the category Set of sets, without loosing generality for exact categories.
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Let us now describe the content and the main results of the thesis which is divided
in two main parts. After the introduction, Part II is a recollection of the well known
one-dimensional theory of (internal) categories and their relation with (internal) simpli-
cial objects. On the other side, Part III describes a two-dimensional theory of (inter-
nal) bicategories and their relation with (internal) simplicial objects and pseudo simplicial
categories, obtained by the categorification and the internalization of the corresponding
one-dimensional theory.

In Chapter 2 we recall some basic simplicial methods which we will extensively use in
the thesis. Most of this material is standard and can be found in a classical book [73]
by May, or in a modern treatment in [37]. However, we also recall some more exotic
endofunctors on a category SSet of simplicial sets, such as the n-Coskeleton Coskn and
the shift functor or décalage Dec which can be find in [29]. Actions and n-torsors over n-
dimensional Kan hypergroupoids are defined by Glenn in [36] using simplicial maps which
we call exact fibrations. A simplicial map λ• : E• → B• is an exact fibration in dimension
n, if for all 0 ≤ k ≤ n, the diagrams

En

pk̄

²²

λn // Bn

pk̄

²²∧k
n(E•) // ∧k

n(B•)
are pullbacks. It is called an exact fibration if it is an exact fibration in all dimensions.
At the end of this chapter, we describe two crucial concepts from [36] which we will use
later in the thesis. An action of the n-dimensional hypergroupoid B• is given in Definition
2.13 as a simplicial map λ• : P• → B• which is an exact fibration for all m ≥ n, and an
n-dimensional hypergroupoid n-torsor over X in E is given in Definition 2.14 as a simplicial
map λ• : P• → B• such that P• is augmented over X, aspherical and n− 1-coskeletal.

Chapter 3 is a review of internal categories and groupoids and Chapter 4 describe their
relation with internal simplicial objects via the nerve functor. In Chapter 5, Definition 5.1
recalls an action of an internal category C on an object E in a finitely complete category E

E

α0

ÂÂ?
??

??
??

??
??

??
C1

s

²²

t

²²
C0

OO

(1.15)

given by an action morphism
α1 : E ×C0 C1 → E (1.16)

satisfying the usual axioms for quasiassociativity, identity and equivariance of the action.
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In Theorem 5.1 we show how one associates to an action (1.15) an action category E /C,
and we give a proof in Proposition 5.1 that a naturally induced internal functor

P : E / C → C (1.17)

is a discrete fibration. At the end of this chapter, we describe two important results from
[36], whose categorified versions will be the main results of the thesis. When action (1.15)
is restricted to an action of the groupoid G, we provide a simplicial characterization of an
action (1.15) in Theorem 5.3 where we prove that the nerve of the canonical projection
functor (1.17) is a simplicial action of the 1-dimensional Kan hypergroupoid G• which is
the nerve of G. Also, in Theorem 5.4 we state the result from [36], that the the action of
the groupoid G is principal, if the corresponding simplicial map is a simplicial 1-torsor, in
the sense of Glenn.

Chapter 6 recalls how a small fibration corresponding to an internal category is con-
structed in Theorem 6.1. Although this result is well known, its proof is hard to find in
the literature but it will provide a good basis for categorification methods developed later
in Chapter 11 in the construction of a small 2-fibration.

The two dimensional theory in Part III starts with a Chapter 7 where definitions of
a bicategory, their homomorphisms, pseudonatural transformations and modifications are
given as they were defined by Bénabou in his classical paper [15]. Then Chapter 8 describes
the Duskin nerve for bicategories as a geometric nerve defined by the singular functor of
the fully faithful embedding

i : ∆ → Bicat (1.18)

of the skeletal simplicial category ∆ into the category Bicat of bicategories and strictly
unital homomorphism of bicategories, constructed by Bénabou in [15]. This embedding
regards any ordinal [n] as the locally discrete 2-category, in the sense that Hom-categories
are discrete, so there exist only trivial 2-cells. We show that the Duskin nerve functor

N2 : Bicat → SSet (1.19)

is fully faithful in Theorem 8.1 based on the result that the geometric nerve provides a
fully faithful functor on the category 2− Catlax of 2-categories and normal lax 2-functors
given in [17]. The sets of n-simplices of the nerve N2B of a bicategory B are defined by
HomBicat(i[n],B), which were explicitly described by Duskin [32] in a geometric form.

In Chapter 9 we recall how internal bicategories were defined by Bénabou in [15] and
Chapter 10 shows how we can associate to any (internal) bicategory B a pseudosimplicial
category, which may be sees as a supercoherent nerve following Jardine [49]. Then in Chap-
ter 10 we introduce the first new concept in the thesis, a small 2-fibration corresponding
to an internal bicategory, and in Theorem 11.1 we state the more general result which
says that a small 2-fibration is an example of a fibration of bicategories, whose definition
is proposed by Hermida in [44].
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The first explicit definition of the second nonabelian cohomology with coefficients in a
bicategory B is given in Chapter 12, following a general approach described by Street in
[82]. We give an explicit description of the bicategory of 2-descent data in Theorem 12.1,
which Street calls a cohomology bicategory of X with values in a bicategory B. Then in
Definition 12.1 we define the second nonabelian cohomology H2(U ,B) with coefficients in B

H2(U ,B) = Desc2(E(U ,B)) (1.20)

as the bicategory of 2-descent data which corresponds to the cosimplicial bicategory E(U ,B)
naturally defined by a covering U of a topological space X, and a small 2-fibration corre-
sponding to B.

In Chapter 13, we introduce the second new concept of the thesis, action of a bicategory
in Definition 13.1 as a categorification of an action of a category. For an internal bicategory
B given by a bigraph in a finitely complete category E , and an internal category P

P1

s

²²

t

²²

B2

s1

²²

t1

²²
P1

Λ0
ÂÂ?

??
??

??
??

? B1

s0

²²

t0

²²
B0

(1.21)

together with the momentum functor Λ: P → B0 to a discrete category B0 of objects of
the bicategory B, an action functor

A : P ×B0 B1 → P (1.22)

is a categorification of an action (1.16) of the category. We introduce coherence laws
for this action, which express the fact that categories with an action of the bicategory B
are pseudoalgebras over a pseudomonad [45], [63], [67] naturally defined by B. We give a
description of an Eilenberg-Moore 2-category of actions of the bicategory B, without details
of the construction for corresponding pseudoalgebras over a pseudomonad. For each action
(1.21) of a bicategory B on a category P, we define the third new concept in the thesis,
an action bicategory P / B whose construction is given in Theorem 13.2. Then we see in
Proposition 13.1 that an action bicategory P / B comes with a canonical projection

Λ: P / B → B (1.23)

to the bicategory B, which is a strict homomorphism of bicategories.
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In Chapter 14 we define the fourth new concept in the thesis, and our main geometric
object - a bigroupoid 2-torsor. In Definition 14.2 we define a bigroupoid 2-torsor as a bundle
of groupoids π : P → X over an object X in the category E , for which the induced functor

(Pr1, A) : P ×B0 B1 → P ×X P (1.24)

for an action (1.21) is a strong equivalence of groupoids. This means that this functor
has a weak inverse, whose nontrivial component is given by the division functor, which we
define as a categorification of the usual divison map corresponding to a principal action of
a groupoid, which Moerdijk called in [75] a cocycle valued in a groupoid. These objects
extend the well known theory of Grothendieck in the dimension n = 1 since bigroupoid 2-
torsors are equivalent to bigroupoid principal 2-bundles defined by the condition that these
are precisely groupoids which are locally equivalent to the trivial bigroupoid principal
2-bundle given by the target functor of the structure bigroupoid. The division functor
can be thought of as a generator of the cohomology class of P in the second nonabelian
cohomologyH2(X,B), and in Theorem 14.1 we prove a classification of bigroupoid 2-torsors
by means of cohomology classes in H2(U ,B). Then in Theorem 14.2 we outline an inverse
construction of gluing of trivial B-torsors by 2-cocycles, which would ultimately provide a
full classification of 2-torsors by classes inH2(X,B) the second Čech nonabelian cohomology

H2(X,B) = lim−→H
2(U ,B) (1.25)

where such colimit of cohomology bicategoriesH2(U ,B) is taken over the cofiltered category
[Cov2] of Čech 2-covers, described by Beke in [15].

The first main result of the thesis is Theorem 15.1 in Chapter 15 which proves that
for an action (1.21) of an internal bigroupoid B on groupoid P, the simplicial map Λ• =
N2(Λ): Q• → B• which arise as an application of a Duskin nerve for bicategories (1.22) on
a canonical homomorphism of bicategories (1.23) is a (simplicial) action of the bigroupoid
B on the groupoid P, i.e. it is an exact fibration for all n ≥ 2.

The second main result of the thesis is Theorem 15.3 which proves that for any B-2-
torsor P over X, the simplicial map Λ• = N2(Λ): Q• → B• is a Glenn’s 2-torsor, which is
an internal simplicial map Λ• : P• → B• in S(E), which is an exact fibration for all n ≥ 2,
and where P• is augmented over X, aspherical and 1-coskeletal (P• ' Cosk1(P•)).

We would like to emphasize why we think that these results and the theory of 2-torsors
developed in the thesis might be important.

Most of the classical cohomology theories have had associated with them some sort
of an intrinsic interpretation theory only in low dimensions. However, any such generally
satisfactory theory in high dimensions, which would provide such interpretation by intrinsic
cohomological classification, remained elusive for a long time. It is the intention of this
thesis to remedy this, by proposing a unified treatment of nonabelian cohomology theory,
using the theory of 2-torsors and their simplicial interpretation as the basis of the theory
of nonabelian higher torsors.



1 THE INTRODUCTION 19

Let U : E → B be a functor together with a left adjoint F : B → E and an adjunction

F : B // E : Uoo (1.26)

given by the unit η : IdB → UF and the counit ε : FU → IdE natural transformation
(satisfying coherence conditions described by two triangle identities). Then these data
may be used to produce an augmented simplicial object in E

X G(X) //εXoo G2(X)oo ////
d1

oo
d0oo

G3(X)
d0oooooo
d2

oo ////
//
G4(X)oooo

d0oo

d3

oo (1.27)

which defines a standard G-resolution of the object X in E as an object G•
+(X) → X in

the category Saug(E) of internal augmented simplicial objects E . From the diagram (1.27)
we see that the n-simplices G•(X)n of the augmented simplicial object G•(X) are defined
by G•(X)n = G◦G . . .◦G(X) = Gn+1(X) for any n ≥ −1 with G0(X) = X, and G = FU .
Then the nth comonadic cohomology Hn

G(X,π) of X corresponding to an adjunction (1.26),
with coefficients in an abelian group π in E is defined as the nth cohomology

Hn
G(X,π) = Hn(ΣHomE(G•(X), π)) (1.28)

of the cochain complex ΣHomE(G•(X), π) associated to the cosimplicial abelian group
HomE(G•(X), π). This cosimplicial abelian group may be seen as the restriction of a
small 2-fibration FΣ2(π) : FΣ2(π) → E (11.10) associated to the strict 2-groupoid Σ2(π)
whose nerve is given by an internal simplicial Eilenberg-MacLane object K(π, n) in S(E).

Now, by using main objects and results of the nonabelian cohomology theory, as it is
developed in the thesis in dimension n = 2, we extend the ”triple” or comonadic coho-
mology theory outlined in [28] and further developed in [29] by Duskin, for an equivalent
interpretation of (1.28). An abelian 2-cocycle in Hn(ΣHomE(G•(X), π))

α : G3(X) → π (1.29)

is identified with an object in the bicategory H2(G•(X), Σ2(π)) of 2-descent data (12.3),
represented by the same 2-cocycle. This correspondence allows us to introduce the nth

nonabelian comonadic cohomology Hn
G(X,B) of an object X with coefficients in a weak

n-groupoid B in E by
Hn

G(X,B) = Descn(FBG•(X)) (1.30)

a weak n-groupoid of n-descent data of a cosimplicial weak n-groupoid HomE(G•(X),FB).
This is just the restriction to the standard G-resolution G•(X) of the object X in E , of a
small n-fibration

FB : FB → E (1.31)

associated to the weak n-groupoid B in E , which naturally generalize the small 2-fibration
(11.10), for an arbitrary n.
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The (generalization of the) correspondence between 2-torsors and corresponding 2-
cocycles from Theorem 14.1 may be seen as the part of the characteristic n-cocycle weak
n-functor

Zn
G(X,B) : TORSn

Uqc(X,B) → Hn
G(X,B) (1.32)

from the weak n-groupoid TORSUqc(X,B) of n-torsors under the weak-n-groupoid B and
their quasicoherent weak n-functors, to the cohomology weak n-groupoid Hn

G(X,B) [82]
admits a left weak-n-adjoint right inverse

Sn
G(X,B) : Hn

G(X,B) → TORSn
Uqc(X,B) (1.33)

which we will call the standard n-torsor weak-n-functor. The cohomology weak n-category
Hn

G(X,A) should be interpreted by the weak n-category

Hn
G(X,B) ∼ TORSUqc(X,B)[W−1] (1.34)

of fractions, which in dimension n = 1 correspond to the Gabriel’s localization C[W−1] of
the category C (see [34]), and in dimension n = 2 to the bicategory B[W−1] of fractions of
a bicategory B introduced by Pronk in [76], with respect to the class W of quasicoherent
weak n-functors. It would follow then that the cohomology weak n-groupoid Hn

G(X,B)

Hn
G(X,B) '

{
HomE(X,B) n = 0
TORSn

U [X,B] n ≥ 1
(1.35)

where HomE(X,B) is (the fiber over X of) the small n-fibration corresponding to a weak
n-category A, and TORSn

U [X,B] is the set π0(TORSn
U (X,B)) of n-equivalence classes of

the n-stack TORSn
U (X,B) of n-torsors under B.

A weak k-groupoid Hk
G(X,A) for 0 ≤ k ≤ n is defined by the fiber over X of an

associated (n− k)-tuply weakly monoidal k-stack Assk
n−k(A) for a weak n-category A

Hk
G(X,A) '





L0(A)X ∼ HomE(X,A) k = 0
Lk(A)X ∼ Assk

n−k(A)X 0 < k < n
Ln(A)X ∼ TORSn

U (X,A) k = n
(1.36)

where L : Fibn → Stn is a left n-adjoint to an inclusion J : Stn → Fibn of n-stacks Stn

into fibered weak n-categories Fibn.
For strict 2-groupoids, it is known that these are equivalent to crossed modules of

groupids. Therefore for any strict 2-groupoid G there exists an equivalence

H1
G(X,G) ∼ TORS1(G̃)X (1.37)

where TORS1(G̃)X is the fiber over X of a gpd-stack TORS1(G̃) of 1-torsors under the
corresponding crossed module G̃ of groupids. In the case of the strict 2-group G, objects
in the corresponding associated gr-stack are explicitly described by Jurčo in [57], where he
called them crossed module G-bundles. Also, Jurčo described [57] objects in corresponding
associated 2-stack of G under the name crossed module bundle gerbes.
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To conclude the introduction, let us give a few words on some of the things which are
not contained in the thesis but they are naturally connected with its main results.

Although we mainly used methods of higher category theory or higher dimensional
algebra, there is a different approach to the theory of torsors, motivated by the homotopy
theory, which we didn’t use in the thesis. At the heart of this approach is the fact that the
classifying space functor

B : Cat → Top (1.38)

defined as the composition of the nerve functor (1.2) followed by the geometric realization
functor (1.10) is a fundamental construction of algebraic topology and algebraic K-theory.
Quillen defined in [78] higher algebraic K-theory by taking higher homotopy groups of the
classifying spaces of suitably defined categories. His construction raised interest in the
relation between categories and homotopy types of their classifying spaces since it became
apparent that classifying space functor (1.38) transports categorical coherence to homo-
topical coherence. Quillen’s work was followed by Thomason’s result in [83] who shown
that after an application of the other fundamental homotopy construction, the homotopy
colimit to the diagram of categories, the result has the homotopy type of the Grothendieck
construction applied to the diagram. Bullejos and Cegarra used these results as the basis
for their proof that geometric realizations of geometric nerves are classifying spaces for
(strict) 2-categories in [22] and (weak) monoidal categories in [23]. Such classifying spaces
are defined by the functor

B : Bicat → Top (1.39)

which is the composition of the Duskin nerve functor (1.19) for bicategories followed by
the geometric realization functor (1.10).

Consequently, the classifying space construction became the main source of homotopy
classification theorems for objects with a specified geometrical or topological structure.
The generalization of the Schreier theory of extensions of groups, done by Breen in [21],
Ulbrich in [84] or Blanco, Bullejos and Faro in [18] was used by Cegarra and Garzon in
[25] to obtain the cohomological classification of categorical torsors. Along these lines, it
would be natural to obtain the cohomological classification of topological bigroupoid 2-
torsors by extending the classical result which says that for any topological group G and
any CW -complex X there exists a natural bijection

H1(X, G) ∼ [X, BG] (1.40)

between the set [X, BG] of homotopy classes of maps from X to the classifying space BG
and the set H1(X, G) of isomorphism classes of G-torsors over X. The analog of (1.40)
would be a natural bijection

H2(X,B) ∼ [X, BB] (1.41)

between a set H2(X,B) of equivalence classes of B-torsors and a set [X, BB] of homotopy
classes of maps from X to the classifying space BB of a topological bigroupoid B.
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The systematic study of homotopy theory in an arbitrary Grothendieck topos E was
initiated by Joyal and Tierney in [55] and [56] were they developed a theory of classifying
spaces for sheaves of simplicial groupoids, or more precisely, sheaves of groupoids enriched
in simplicial sets. This theory was based on their discovery in [54] of a Quillen closed model
structure on the category of internal categories Cat(E) and internal groupoids Gpd(E) in
a Grothendieck topos E .

Jardine shown in [52] that the Joyal-Tierney theory has an analogue for presheaves K
of groupoids enriched in simplicial sets. Earlier, he proved in [48] that for any sheaf of
groups G on a Grothendieck site C, the set H1(C, G) of isomorphism classes of G-torsors
is in bijective correspondence with the set of morphisms hoS(E)(∗, BG) in the homotopy
category of the category S(E) of simplicial sheaves, where E is a Grothendieck topos Sh(C).
Following this result, he proved that the set of morphisms hoS(C∆op

)(∗, BK) in the local
homotopy category of simplicial presheaves is in bijective correspondence with the set of
path components of a category of K-torsors, where K-torsors are K-diagrams which have
trivial homotopy colimits.

In this context, the most general torsors for a presheaf of categories enriched in sim-
plicial sets is given by Jardine in [51], see also [50]. He also gave homotopy classification
results for A-torsors, in a wide variety of settings which includes motivic homotopy theory.
To relate these results to our classification of 2-torsors, one should first note that any strict
2-category C can be seen as a category C̃ enriched in simplicial sets, by taking the nerve
of the category C1 of morphisms as the simplicial set of morphisms of C̃. In this special
case, one could possibly relate Jardine’s results with the classification of strict 2-category
2-torsors. However, the main results in [51] is a bijection

π0(TorsA) ∼ [∗, dBA]

which classify it the set π0(TorsA) of isomorphism classes π0(TorsA) of torsors for a for
a presheaf A of categories enriched in simplicial sets. On the other side, our classification
takes into account higher dimensional information by means of it the bicategory H2(X,B)
which would correspond to Jardine’s set of of isomorphism classes of torsors after an ap-
plication of π0 functor.
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Part II

One-dimensional theory
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2 Simplicial objects

In this section we will review some standard notions from the theory of simplicial sets.
Most of the statements and proofs may be found in standard textbooks, such as [37] or
[73].

Definition 2.1. Skeletal simplicial category ∆ consists of the following data:

• objects are finite nonempty ordinals [n] = {0 < 1 < ... < n},
• morphisms are monotone maps f : [n] → [m], which for all i, j ∈ [n] such that i ≤ j,

satisfy f(i) ≤ f(j).

We also call ∆ the topologist’s simplicial category, and this is a full subcategory of the
algebraist’s simplicial category ∆̄, which has an additional object [−1] = ∅, given by a zero
ordinal, that is an empty set.

Skeletal simplicial category ∆ may be also given by means of generators given by the
diagram

[0]
∂0

//
∂1 // [1]oo

∂0

//
∂2 //// [2] ////

∂0

//

∂3 //oooo [3]oooooo

and relations given by the maps ∂i : [n − 1] → [n] for 0 ≤ i ≤ n − 1, called coface maps,
which are injective maps that omit i in the image, and the maps σi : [n] → [n − 1] for
0 ≤ i ≤ n− 1, called codegeneracy maps, which are surjective maps which repeat i in the
image. These maps satisfy following cosimplicial identities:

∂j∂i = ∂i∂j−1 (i < j)
σjσi = σiσj+1 (i ≤ j)
σj∂i = ∂iσj−1 (i < j)
σj∂i = id (i = j, i = j + 1)
σj∂i = ∂iσj+1 (i > j + 1)

We will use the following factorization of monotone maps by means of cofaces and
codegeneracies.

Lemma 2.1. Any monotone map f : [m] → [n] has a unique factorization given by

f = ∂n
i1

∂n−1
i2

...∂n−s+1
is

σm−t
jt

...σm−2
j2

σm−1
j1

where 0 ≤ is < is−1 < ... < i1 ≤ n, 0 ≤ jt < jt−1 < ... < j1 ≤ m and n = m− t + s.

Proof. The proof follows directly from the injective-surjective factorization in Set and sim-
plicial identities.
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Definition 2.2. Simplicial object X• in a category C is a functor X : ∆op → C. This is
an object of the category S(C) whose morphisms are natural transformations, which we call
internal simplicial morphisms. In the case when the category C = Set is the category of
sets (in a fixed Grothendieck universe), then we call X• a simplicial set, and we denote the
corresponding category of simplicial sets by SSet.

Thus we can view a simplicial object X• in C as a diagram

X0
// X1

d1oo
d0

oo //// X2
oo

d2oo

d0

oo ////
//
X3...

oooo
d3oo

d0

oo

in C, where we denoted just extremal face operators, and left the signature for inner face
operators, and degeneracies.

Then the following simplicial identities hold:

didj = dj−1di (i < j)
sisj = sj+1si (i ≤ j)
disj = sj−1di (i < j)
disj = id (i = j, i = j + 1)
disj = sj+1di (i > j + 1)

where di := X(∂i) and si := X(σi).

Definition 2.3. An augmented simplicial object X• → X−1 in a category C is a func-
tor X : ∆̄op → C. This is an object of the category Sa(C) whose morphisms are natural
transformations, which we call simplicial maps of augmented simplicial objects.

In order to define basic endofunctors on the category S(C), which we will use in the
thesis, we first need to describe the process of a truncation of internal simplicial objects.
For any natural number n, we have the full subcategory ∆n of the simplicial category ∆,
whose objects are the first n + 1 ordinals. Then we have the following definition.

Definition 2.4. Let X• be a simplicial object in C. An n-truncated simplicial object trn(X•)
in a category C is a functor Xin : ∆op

n → C given by the precomosition with an embedding
in : ∆n → ∆. This is an object of the category Sn(C), and we have an n-truncation functor

trn : S(C) → Sn(C)

from the category Ss(C) of simplicial objects in C, to the category Ssn(C) of n-truncated
simplicial objects in C.

If C is a finitely complete category, an n-truncation functor trn : S(C) → Sn(C) has a
right adjoint coskn : Sn(C) → S(C), and if C is a finitely cocomplete category, it has a left
adjoint skn : Sn(C) → S(C).
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The corresponding comonad Skn = skntrn : SSet → SSet for C = Set is easy to
describe. For any simplicial set X•, its skeleton Skn(X•) is a simplicial subset of X•,
which is identical to X• in all dimensions k ≤ n, and has only degenerate simplices in all
higher dimensions.

The monad Coskn = coskntrn : S(C) → S(C) is described by the simplicial kernel.

Definition 2.5. The nth simplicial kernel of the simplicial object X• is an object Kn(X•)
in C, together with morphisms prj : Kn(X•) → Xn−1 for j = 0, . . . , n, which is universal
with respect to relations diprj = prj−1di, for all 0 ≤ i < j ≤ n.

Now, let we describe in more detail the monad Coskn = coskntrn : SSet → SSet in
the case C = Set, that is when we deal with simplicial sets.

The simplicial kernel of the simplicial set X• in dimension n is a set Kn(X•) defined by

Kn(X•) = {(x0, x1, . . . , xi, . . . , xj , . . . , xn−1, xn)|di(xj) = dj−1(xi), i < j} ⊆ Xn+1
n−1

so that we can interpret it as the set of all possible sequences of (n-1)-simplices which could
possibly be the boundary of any n-simplex. If x ∈ Xn is an n-simplex in a simplicial set
X•, its boundary ∂n(x) is a sequence of its (n-1)-faces

∂n(x) = (d0(x), d1(x), . . . , dn−1(x), dn(x)).

Then, for the simplicial set X•, the simplicial set Coskn(X•) is identical to X• in all
dimensions k ≤ n, and the set of (n+1)-simplices of Coskn(X•) is defined by

Coskn(X•)n+1 = Kn+1(X•)

while the face operators are given by the projections di = pri : Kn+1(X•) → Xn for all
0 ≤ i ≤ n + 1. All of the higher dimensional set of simplices of Coskn(X•) are obtained
just by inductively iterating the simplicial kernels

Coskn(X•)n+2 = Kn+2(trn+1Coskn(X•))

and so on.
From the universal property of the nth simplicial kernel Kn(X•), we have a canonical

morphism δn = (d0, d1, . . . , dn−1, dn) : Xn → Kn(X•), called the boundary of the object of
n-simplices, or briefly the nth boundary morphism.

The first nontrivial component of the unit η : IdSs → Coskn of the adjunction is given
by (n + 1)th boundary morphism

δn+1 = (d0, d1, . . . , dn, dn+1) : Xn+1 → Coskn(X•)n+1 = Kn+1(X•)

and we have following definitions.
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Definition 2.6. We say that the simplicial object X• in C is coskeletal in dimension n,
or n-coskeletal, if the unit η : IdSSet → Coskn of the adjunction is a natural isomorphism.
Similarly, we say that the simplicial object X• in C is skeletal in dimension n, or n-skeletal,
if the counit ε : Skn → IdSSet of the adjunction is a natural isomorphism.

Definition 2.7. We say that the simplicial object X• in C is aspherical in dimension n if
the nth boundary morphism δn : Xn → Kn(X•) is an epimorphism. If X• is aspherical in
all dimensions, then we say that it is aspherical.

In order to define Kan complexes later, we use another universal construction which
formally describe ‘hollow’ simplices, or simplices in which the kth face is missing.

Definition 2.8. The k-horn in dimension n of the simplicial object X• is an object
∧k

n(X•)
in C, together with morphisms pi :

∧k
n(X•) → Xn−1 for i = 0, . . . , n and i 6= k, which is

universal with respect to relations dipj = pj−1di, for all 0 ≤ i < j ≤ n and i, j 6= k.

The set
∧k

n(X•) of k-horns in dimension n

k∧
n

(X•) = {(x0, x1, . . . , xk−1, xk+1, . . . , xn−1, xn)|di(xj) = dj−1(xi), i < j, i, j 6= k} ⊆ Xn
n−1

is the set of all possible sequences of (n-1)-simplices which could possibly be the boundary
of any n-simplex, except that we kth face is missing. Then for the simplicial set X•, the
k-horn map in dimension n

pk
n(x) : Xn →

k∧
n

(X•)

is defined by the composition of the boundary map ∂n : Xn → Kn(X•), with the projection
qk
n(x) : Kn(X•) →

∧k
n(X•), and it just omits the kth (n-1)-simplex from the sequence.

If x ∈ Xn is an n-simplex, its k-horn pk
n(x) is defined by the image of the projection of

its boundary to the sequence of faces in which the kth face is omitted

pk
n(x) = (d0(x), d1(x), . . . , dk−1(x), dk+1(x), . . . , dn−1(x), dn(x))

Let (x0, x1, . . . , xk−1,−, xk+1, . . . , xn−1, xn) ∈ ∧k
n(X•) be a k-horn in dimension n. If

there exists an n-simplex x ∈ Xn such that

pk
n(x) = (x0, x1, . . . , xk−1,−, xk+1, . . . , xn−1, xn)

then we say that n-simplex x is a filler of the horn.

Definition 2.9. Let X• be an simplicial object in the category C. We say that the kth Kan
condition in dimension n is satisfied for X• if the k-horn morphism

pk
n(x) : Xn →

k∧
n

(X•)
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is an epimorphism. The condition is satisfied exactly if the above morphism is an isomor-
phism. If Kan conditions are satisfied for all 0 < k < n and for all n, then we say that X•
is a weak Kan complex. Finally, if Kan conditions are satisfied for extremal horns as well
0 ≤ k ≤ n and for all n, then we say that X• is a Kan complex.

This condition can be stated entirely in the topos theoretic context by using the sieves

k∧
[n] ↪→

•
∆[n] ↪→ ∆[n]

in SSet, where ∆[n] is the standard n-simplex, which is just the simplicial set represented

by the ordinal [n]. The simplicial set
•
∆[n] is the boundary of the standard n-simplex which

is identical to standard n-simplex in all dimensions bellow n, and has only degenerate

simplices in higher dimensions. It is defined by the (n-1)-skeleton
•
∆[n] = Skn−1(∆[n]) of

the standard n-simplex. The simplicial set
∧k[n] is the k-horn of the standard n-simplex,

which is identical to
•
∆[n] except that it is not generated by the simplex δk : [n− 1] → [n].

Using the Yoneda lemma

HomSSet(∆[n], X•) ' Xn

the nth Kan condition says that for any simplicial map x̄ :
∧k[n] → X•, there exist a

simplicial map x : ∆[n] → X• such that the diagram
∧k[n]Ä _

²²

x̄ // X•

∆[n]

x

??ÄÄÄÄÄÄÄÄÄÄÄÄÄ

commutes.

Remark 2.1. The nth Kan condition is equivalent to the injectivity of the simplicial set
X• with respect to monomorphisms

∧k[n] ↪→ ∆[n] for all 0 ≤ k ≤ n. In this terms,
Kan complex X• is a simplicial set which is injective with respect to all monomorphisms∧k[n] ↪→ ∆[n] for all 0 ≤ k ≤ n, and all n ≥ 0.

Proposition 2.1. Every aspherical simplicial object X• is a Kan simplicial object.

Proof. We will use the Barr embedding theorem and prove it in Set. Consider the diagram

Xn

δn

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä
pk

n

ÂÂ?
??

??
??

??
??

??

Kn(X•)
qk
n

// ∧k
n(X•)
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and a k-horn (x0, x1, . . . , xk−1,−, xk+1, . . . , xn, xn+1) ∈
∧k

n+1(X•). If there exists a filler
x ∈ Xn+1 for which pk

n+1(x) = (x0, x1, . . . , xk−1,−, xk+1, . . . , xn, xn+1) then its k-face
dk(x) = xk has a boundary uniquely determined by the simplices xi for i 6= k since

di(xk) =
{

dk−1(xi) 0 ≤ i < k ≤ n + 1
dk(xi+1) 0 ≤ k ≤ i ≤ n + 1

and therefore (d0(xk), d1(xk), . . . , dn−1(xk), dn(xk)) ∈ Kn(X•). Since we supposed that
δn : Xn → Kn(X•) is an epimorphism, then such a simplex xk ∈ Xn really exists, and we
conclude that the morphism qk

n+1 : Kn+1(X•) →
∧k

n+1(X•) is also an epimorphism. But
this is true for all n, and it follows that pk

n+1 : Xn+1 →
∧k

n+1(X•) is an epimorphism as a
composition of epimorphisms, and therefore X• is a Kan simplicial set.

Remark 2.2. For any simplicial set X• the simplicial kernel K1(X•) in dimension 1 is
equal to the product K1(X•) = X0 × X0. For the augmented simplicial set X• → X−1,
when we have K1(X•) = X0 ×X−1 X0. The set of k-horns is given by

∧k
1(X•) = X0 for

k = 0, 1, and in each case maps pk
1 : X1 →

∧k
1(X•) and qk

1 : K1(X•) →
∧k

1(X•) are always
epimorphisms.

Definition 2.10. A simplicial object X• in C is said to be split if there exist a family of
morphisms sn+1 : Xn → Xn+1 for all n ≥ 0, called the contraction for X•, which satisfy
all the simplicial identities involving degeneracies. When a simplicial object is augmented
p : X0 → X−1 then the contraction includes also a morphism s0 : X−1 → X0 such that
ps0 = idX−1.

Remark 2.3. Any augmented split simplicial set X• → X−1 may be seen as the simplicial
set X• together with the homotopy equivalence d• : X• → K(X−1, 0) to the constant simpli-
cial set K(X−1, 0) which has X−1 at each dimension and the identity maps for faces and
degeneracies. This means that there exists a simplicial map s• : K(X−1, 0) → X• such that
the compositions s•d• ' idX• and d•s• ' idK(X−1,0) are homotopic to respective identity
simplicial maps.

Proposition 2.2. Every augmented aspherical simplicial set X• → X−1 is split.

Proof. The proof follows by induction. Let’s take any section s0 : X−1 → X0 and we assume
that we have the nth contraction sn : Xn−1 → Xn. Let qi(x) : Xn → Kn+1(X•) be the ith

degeneracy for the nth simplicial kernel of X•, and we define qn+1(x) : Xn → Kn+1(X•) by

qn+1(x) = (snd0(x), snd1(x), . . . , sndn−1(x), sndn(x)).

Now let’s choose the splitting s : Kn+1(X•) → Xn+1 of the (n + 1)th boundary map
δn+1(x) : Xn+1 → Kn+1(X•), which is a surjection by assumption, such that si = sqi

for all 0 ≤ i ≤ n. Then the contraction sn+1 : Xn → Xn+1 defined by sn+1 = sqn+1 satisfy
all the identities involving degeneracies since qn+1 = δn+1sqn+1 = δn+1sn+1.
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An n-truncation functor has the extension to the augmented n-truncation functor

trn
a : Sa(C) → Sn

a (C)

from the category Sa(C) of augmented simplicial objects in C to the category Sn
a (C) of

n-truncated augmented simplicial objects in C. Since C is finitely complete, it has a right
adjoint coskn

a : Sn
a (C) → Sa(C), called the augmented n-coskeleton functor. If we regard any

augmented simplicial object X• → X−1 in C as the ordinary simplicial object in the slice
category (C, X−1), then the augmented n-coskeleton functor becomes ordinary n-coskeleton
functor in the slice category (C, X−1).

Example 2.1. The category C may be identified with the category S−1
a (C) of -1-truncated

augmented simplicial objects in C, and the augmented -1-truncation functor tr−1
a : Sa(C) →

S−1
a (C) assigns to any augmented simplicial object X• → X−1 the object X−1 of C. Its

right adjoint is augmented -1-coskeleton functor cosk−1
a : S−1

a (C) → Sa(C) which assigns to
any object X in C the constant augmented simplicial object

X X //idoo X1
idoo
id

oo //// Xoo
idoo

id
oo ////

//
X . . .

oooo
idoo

id
oo

denoted by K(X, 0) → X.

Example 2.2. The category of morphisms CI of C may be identified with the category S0
a(C)

of 0-truncated augmented simplicial objects in C, and the augmented 0-truncation functor
tr0

a : Sa(C) → S0
a(C) assigns to any augmented simplicial object X• → X−1 the morphism

d : X0 → X−1 of C. Its right adjoint is augmented 0-coskeleton functor cosk0
a : S0

a(C) →
Sa(C) which assigns to any morphism d : X0 → X−1 in C the simplicial kernel of the
morphism

X−1 X0
//doo X0 ×X−1 X0

pr1oo
pr2

oo //// X0 ×X−1 X0 ×X−1 X0oo
pr12oo

pr23

oo

denoted by cosk0
a(X0 → X−1).

The corresponding monad and the comonad on the category Sa(C) of augmented sim-
plicial objects in C are denoted by Coska : Sa(C) → Sa(C) and Ska : Sa(C) → Sa(C) respec-
tively, in accordance with the case of nonaugmented simplicial objects in C.

Another important construction on simplicial objects is given by the so called shift
functor. For any simplicial object X• in C), we restrict the corresponding functor X : ∆op →
C to the subcategory of ∆op with the same objects, and with the same generators except for
the injections ∂n : [n−1] → [n]. If we renumber the objects in ∆op, so that the ordinal [n−1]
becomes [n], we obtain a simplicial object in C, denoted by Dec(X•), which is augmented
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to the object X0 (or to the constant simplicial object Sk0(X•) in C) and is contractible with
respect to the simplicial map obtained from the family (sn)n≥0 of extremal degeneracies,
as is shown in the diagram

X0

s0

²²

X0

s2
0

²²

X0

s3
0

²²

X0

s4
0

²²

... Sk0(X•)

S0

²²
X1

d0

OO

//

d1

²²

X2

d2
0

OO

d1oo
d0

oo ////

d2

²²

X3

d3
0

OO

oo
d2oo

d0

oo

d3

²²

////
//
X4

d4
0

OO

d4

²²

oooo
oo

oo
... Dec(X•)

D1

²²

D0

OO

X0

s0

OO

// X1

s1

OO

d1oo
d0

oo //// X2

s2

OO

oo
d2oo

d0

oo ////
//
X3

s3

OO

oooo
oo

oo
... X•

S1

OO (2.1)

where the simplicial map S0 : Sk0(X•) → Dec(X•) on the right side of the diagram is
defined by (S0)n = (s0)n = s0s0 . . . s0, and the simplicial map D0 : Dec(X•) → Sk0(X•)
is defined by (D0)n = (d0)n = d0d0 . . . d0, for each level n. The other two simplicial maps
S1 : X• → Dec(X•) and D1 : Dec(X•) → X• are defined by (S1)n = sn and (D1)n = dn

respectively.
The above construction extends to a functor

Dec : S(C) → Sas(C)
from the category of simplicial objects in C, to the category Ssas(C) of augmented split
simplicial objects in C. This functor has a left adjoint, given by the forgetful functor

U : Sac(C) → S(C)
which forgets the augmentation and a splitting. Thus, for any split augmented simplicial
object A• → A−1 in Sac(C), and any simplicial object X• in S(C), we have a natural
bijection

θA•,X• : HomS(C)(U(A•), X•)
'→ HomSas(C)(A•, Dec(X•))

which takes any simplicial map f• : U(A•) → X• to its composite with the splitting

A−1

s0

''OOOOOOOOO

s0

""
A0

doo //

f0

²²

f1s1

''OOOOOOOOO

s1

""
A1

d1oo
d0

oo ////

f1

²²

f2s2

''OOOOOOOOO

s2

""
A2

oo
d2oo

d0

oo

f2

²²

////
//

f3s3

''OOOOOOOOO

s3

""
A3

f3

²²

oooo
d3oo

d0

oo

X0
// X1

d1oo
d0

oo //// X2
oo

d2oo

d0

oo ////
//
X3

oooo
d3oo

d0

oo

as in the above diagram.
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In order to compare later our 2-torsors with Glenn’s simplicial 2-torsors we will recall
some basic definitions from [36].

Definition 2.11. A simplicial map Λ• : E• → B• is said to be an exact fibration in dimen-
sion n, if for all 0 ≤ k ≤ n, the diagrams

En

pk̄

²²

λn // Bn

pk̄

²²∧k
n(E•) // ∧k

n(B•)

are pullbacks. It is called an exact fibration if it is an exact fibration in all dimensions n.

Using the language of simplicial algebra, Glenn defined actions and n-torsors over n-
dimensional hypergroupoids. This objects morally play the role of the n-nerve of weak
n-groupoids, and we give their formal definition.

Definition 2.12. An n-dimensional Kan hypergroupoid is a Kan simplicial object G• in
E such that the canonical map Gm → ∧k

m(G•) is an isomorphism for all m > n and
0 ≤ k ≤ m.

Remark 2.4. The term n-dimensional hypergroupoid was introduced by Duskin [30], for
any simplicial object satisfying the above condition without being Kan simplicial object. One
of his motivational examples was the standard simplicial model for an Eilenberg-MacLane
space K(A,n), for any abelian group object A in E. In [15], Beke used the term an exact
n-type to emphasize the meaning of these objects as algebraic models for homotopy n-types.

Definition 2.13. An action of the n-dimensional hypergroupoid is an internal simplicial
map Λ• : P• → B• in E which is an exact fibration for all m ≥ n.

Definition 2.14. An action Λ• : P• → B• is the n-dimensional hypergroupoid n-torsor
over X in E if P• is augmented over X, aspherical and n-1-coskeletal (P• ' Coskn−1(P•)).
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3 Internal categories and internal groupoids

In this section we recall some basic notions from internal category theory, which are stan-
dard and can be find, for example, in a classical book by MacLane [70], or in a more modern
treatment in [71]. We will start by defining categories Cat(E) and Gpd(E) of internal cat-
egories and internal groupoids, respectively, in the category E with finite limits. Although
we will not use any model-theoretic arguments, we describe the class of weak equivalence
which is a part of a closed model structure in categories Cat(E) and Gpd(E), discovered
by Joyal and Tierney in [54].

Definition 3.1. An internal category C in E consists of the following data:

• two objects C1 and C0 called respectively the object of arrows and the object of objects,

• two morphisms s, t : C1 → C0 called respectively the source morphism and the target
morphism,

• a morphism u : C0 → C1 called the unit morphism,

• a morphism m : C2 → C1 from the object C2 defined by the pullback

C2

p1

²²

p2 // C1

t

²²
C1 s

// C1

(which is in the discrete case when the category E is a category Set of sets, isomorphic
to the set C1×C0 C1 := {(g, f) ∈ C1 × C1 : s(g) = t(f)}, and we denote m(g, f) = gf)

such that the following diagrams commute:

• left and right invariance law of the source and the target respectively:

C1

t

ÂÂ?
??

??
??

??
??

??
??

??
C2

pr1oo

m

²²

pr2 // C1

s

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

C1

(in the case E = Set for any (g, f) ∈ C1×C0C1, this means t(gf) = t(g), s(gf) = s(f))
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• left and right unit laws

C1

idC1

ÂÂ?
??

??
??

??
??

??
??

??

(ut,idC1
)
// C1 ×C0 C1

m

²²

C1

(idC1
,us)

oo

idC1

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

C1

(in the case E = Set, for any f ∈ C1, we have an identity u(t(f))f = f = fu(s(f))),

• the associativity law

C3

1×m

²²

m×1 // C2

m

²²
C2 m

// C1

where an object C3 in E is defined by the pullback

C3

p12

²²

p23 // C2

p1

²²
C2 p2

// C1

(in the case E = Set for any composable triple (h, g, f) ∈ C1×C0 C1×C0 C1, i.e. any
triple which satisfy t(g3) = s(g2), t(g2) = s(g1), we have the identity (hg)f = h(gf)).

Definition 3.2. An internal category G in E is an internal groupoid if there exists

• a morphism i : G1 → G1 called an inversion,

such that the following axiom is satisfied:

• left and right inverse laws
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G1

s

²²

(i,idG1
)

// G1 ×G0 G1

m

²²
G0 u

// G1

G1

t

²²

(idG1
,i)

// G1 ×G0 G1

m

²²
G0 u

// G1

(in the case E = Set, for any g ∈ C1, for which we denote g−1 = i(g), the above two
diagrams give two identities g−1g = u(s(g)), gg−1 = u(t(g)), respectively).

Definition 3.3. Given two internal groupoids G and H in E, a homomorphism from
F : G → H, consists of the following morphisms:

• a morphism F0 : G0 → H0,

• a morphism F1 : G1 → H1,

such that the following axioms are satisfied:

• compatibility laws between the groupoid structures

G1
F1 //

s

²²

H1

s

²²
G0 F0

// H0

G1
F1 //

t

²²

H1

t

²²
G0 F0

// H0

G0
F0 //

u

²²

H0

u

²²
G1 F1

// H1

• functoriality law

G1 ×G0 G1
F1×F1 //

m

²²

H1 ×H0 H1

m

²²
G1 F1

// H1

(in the case E = Set for any (g, f) ∈ G1 ×G0 G1, we have F1(gf) = F1(g)F1(f)).
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Definition 3.4. An internal functor F : G → H in E is fully faithful if the diagram

G1

(t,s)

²²

F1 // H1

(t,s)

²²
G0 ×G0 F0×F0

// H0 ×H0

is a pullback, and it is essentially surjective if in the diagram where the square is a pullback

G0 ×H0 H1

pr1

²²

pr2 // H1

t

²²

s // H0

G0 F0

// H0

the top composite spr2 : G0 ×H0 H1 → H0 is an epimorphism in E.
If the functor F : G → H is both, fully faithful and essentially surjective, we call it an

essential equivalence or weak equivalence.

Definition 3.5. We say that two internal groupoids G and H in E are Morita equivalent
if there exists a third groupoid K and two weak equivalences as in the diagram

G KFoo F ′ // H
Definition 3.6. Let F1, F2 : G → H be two homomorphisms of groupoids in E. A natural
transformation α : F1 ⇒ F2 is given by:

• a morphism α : G0 → H1

such that the following axiom is satisfied:

• naturality law

G1
(F2,αs) //

(αt,F1)

²²

H1 ×H0 H1

m

²²
H1 ×H0 H1 m

// H1

(in the case E = Set, for any f : x → y in G1, we have α(y)F1(f) = F2(f)α(x)).
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4 Nerves of categories

Any ordinal [n] = {0 < 1 < ... < n} may be seen as the category in which there exists a
(unique) morphism between i and j if and only if i ≤ j and any monotonic map may be
seen as the functor between such categories. Thus we have a full embedding

i : ∆ → Cat,

and the nerve of the category C is a simplicial set N(C)• defined via this embedding by

N(C)n := HomCat(i[n], C).

Thus the 0-simplices of N(C) are the objects of C and the n-simplices are given by com-
posable sequences of morphisms

x0
f1 // x1

f2 // x2 . . . xn−2
fn−1 // xn−1

fn // xn

in C. We will use the usual ”face opposite vertex” convention for simplices and for any
morphism f1 : x0 → x1 in C, the source s(f1) is given by d1(f1) = x0 and the target t(f1)
by d0(f1) = x1. Then the face operators are defined by composing out ith object

di(fn, fn−1, . . . , f2, f1) =





(fn, fn−1, . . . , f3, f2) i = 0
(fn, . . . , fi+1fi, . . . , f1) 0 < i < n
(fn−1, fn−2, . . . , f2, f1) i = n

(4.1)

and the degeneracy operators are defined by

si(fn, fn−1, . . . , f2, f1) =





(fn, fn−1, . . . , f1, idx0) s = 0
(fn, . . . , fi+1, idxi , fi, . . . , f1) 0 < s < n
(idxn , fn, . . . , f2, f1) s = n

(4.2)

expanding the ith object by its identity morphism. Then it is easy to see that the simplicial
identities are either consequences of the construction or are equivalent to the associativity
and identity axioms for a category. For example, the associativity law is given by the
simplicial identity

d1d1 = d1d2

since for any three composable morphisms

x0
f1 // x1

f2 // x2
f3 // x3

in C, we have an identity

d1d1(f3, f2, f1) = f3(f2f1) = (f3f2)f1 = d1d2(f3, f2, f1)
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and the left and right identity laws are given by simplicial identities

d1s0 = id = d1s1

since for any morphism f1 : x0 → x1 we have an identity

d1s0(f1) = d1(f1, idx0) = f1idx0 = f1 = idx1f1 = d1(idx1 , f1) = d1s1(f1)

Since the Yoneda lemma applies also in this case, for any contravariant representable
functor denoted by ∆[n] : Cop → Set, we have

HomSSet(∆[n], N(C)•) ' N(C)n

and this allows us to interpret simplices of N(C)• in a more geometric way. The 0-simplices
are just described by vertices and 1-simplices are directed line segments

x0
f1 // x1

A typical 2-simplex x0
f1 // x1

f2 // x2 may be geometrically described by the triangle

x2

x0

f2f1

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

f1

// x1

f2

__??????????????

and a typical 3-simplex x0
f1 // x1

f2 // x2
f3 // x3 may be geometrically described by

the tetrahedron
x3

x0

f3f2f1

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

f2f1

//

f1

ÂÂ?
??

??
??

??
??

??
??

??
x2

f3

__?????????????????

x1

f3f2

OO

f2

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

and in this way it is easy to read off faces of such geometric simplices using ”face opposite
vertex” convention. For example, the last triangle is clearly d3 face of the above tetrahedron
since it lies opposite to the x3 vertex.
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The nerve construction is clearly functorial with respect to functors of categories and
we have a well known result.

Theorem 4.1. The nerve functor N : Cat → Ss is fully faithful.

Proof. The proof lies on the fact that the skeletal category of ordinal numbers ∆ is an
adequate subcategory of the category of categories Cat (in the sense of Isbell) and it is an
elementary exercise.

We have simplicial characterizations of nerves of categories and groupoids, which we
will only state, and the proof can be find in [32].

Theorem 4.2. Let X• be a simplicial set. Then the following is equivalent:

• X• is the nerve of the category

• X• is the weak Kan complex in which the weak Kan conditions are satisfied exactly

Theorem 4.3. Let X• be a simplicial set. Then the following is equivalent:

• X• is the nerve of the groupoid

• X• is a Kan complex in which the Kan conditions are satisfied exactly, that is X• is
a 1-dimensional Kan hypergroupoid in the terminology of Glenn in [36] (or an exact
1-type in the terminology of Beke in [15])
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5 Actions of categories and groupoids

When E is a category Set of sets, we are accustomed to consider not only functors between
small categories, but also functors from a small category to a large one, like presheaves,
which are functors to Set itself. To internalize this concept, in this chapter we will describe
actions of categories and groupoids internal to some finitely complete category E . These
actions are also called internal presheaves and the first elementary characterization of
categories of actions EC for some internal category C in E was given by Bunge in [24].
When E is an (elementary) topos, then EC is also a topos, called an internal presheaf topos.

Definition 5.1. Let E be a finitely complete category and C an internal category in E. A
right action of the category C on an object E in E consists of the following data:

• a morphism α0 : E → C0 called a momentum of the action

• a morphism a : E ×C0 C1 → E, called an action, whose domain is defined by the
pullback

E ×C0 C1

pr1

²²

pr2 // C1

t

²²
E α0

// C0

(5.1)

(in the case E = Set isomorphic to the set E×C0 C1 := {(e, g) ∈ C × E|t(g) = α0(e)})
This data are such that the following diagrams commute:

• a momentum invariance

E ×C0 C1

a

²²

pr2 // C1

s

²²
E α0

// C0

(5.2)

(which in the case E = Set gives an identity α0(eg) = s(g), ∀(e, g) ∈ E ×C0 C1

where we denoted eg := a(e, g))
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• a (quasi)associativity law

E ×C0 C1 ×C0 C1

idE×m

²²

a×idC1 // E ×C0 C1

a

²²
E ×C0 C1 a

// E

(5.3)

(which in the case E = Set for any (e, h, g) ∈ E ×G0 G1 ×G0 G1 gives (eh)g = e(hg))

• a unit law
E

(idE ,α0)

²²

E

E ×C0 C0
idE×u

// E ×C0 C1

a

OO

(5.4)

(which in the discrete case E = Set, for any e ∈ E gives an identity eiα0(e) = e.)

Theorem 5.1. For an action of an internal category C on an object E in E, there exists
an action category E / C whose underlying graph consists of the following data:

• objects of E / C are given by an object E of the category E,
• morphisms of E / C are given by an object E ×C0 C1 in the pullback (5.1)

• source is an action a : E ×C0 C1 → E and target is a projection pr1 : E ×C0 C1 → E

Proof. In terms of elements, any (e, g) in E ×C0 C1 is seen as an arrow

eg
(e,g) // e

and the target and source d0, d1 : E1 → E0 are defined by the following two identities

d0(e, g) = e
d1(e, g) = eg.

(5.5)
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For any composable pair of morphisms in E ×C0 C1

egh
(eg,h) // eg

(e,g) // e

their composition is induced by a composition in the category C and is defined by

(e, g)(eg, h) := (e, gh)

The associativity and identity axioms for E / C follows directly from those of C.
That internal presheaves or actions of internal categories are the right internalization

of preshaves follows from the well known equivalence

[Eop, Set] ∼ DFibE (5.6)

between the category [Eop, Set] of presheaves on the category E and the category DFibE
of discrete fibrations over E (see [68] for example). The discrete fibration is a special case
of fibered categories (see [38]) introduced by Grothendieck in [42], and it is defined by the
functor

P : F → E
which has the property that for any morphism f : F → E in E and any object X in
F , such that F (X) = E, there exists a unique morphism f̃ : Y → X in F , such that
F (f̃) = f . In order to give an internal characterization of equivalence (5.6) we use the
following definition.

Definition 5.2. An internal functor F : A → C in E is a discrete fibration in E, if the
diagram

A1

d0

²²

F1 // C1

d0

²²
A0 F0

// C0

(5.7)

involving targets is a pullback.

Proposition 5.1. Let an internal category C acts on an object E in E. Then there exists
a canonical internal functor

P : E / C → C (5.8)

in E which is a discrete fibration.
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Proof. The components of an internal functor P : E / C → C are given by the diagram

E ×C0 C1

a

²²

pr1

²²

pr2 // C1

d1

²²

d0

²²
E α0

// C0

and the fact that is a discrete fibration is equivalent to (5.1).

The following theorem is an internal characterization of the equivalence (5.6) between
presheaves and discrete fibrations over E .

Theorem 5.2. Let C be an internal category in E. An internal functor F : A → C is
isomorphic to the functor (5.8) for some action of the category C if and only if it is a
discrete fibration. Therefore, there exists an equivalence

EC ∼ DFib(E) (5.9)

between the category EC of internal presheaves in E and the category DFib(E) of discrete
fibrations in E.
Proof. If F : A → C is a discrete fibration, then A1 is isomorphic to A0×C0 C1 in a pullback

A0 ×C0 C1

pr1

²²

pr2 // C1

d0

²²
A0 F0

// C0

by the unique isomorphism (d0, F1) : A1 → A0×C0 C1 which, on the level of elements, sends
any morphism f : x → y in A to the pair (F1(f), y) in A0×C0 C1. Then we define an action
of the morphism f : x → y on an element y by yf := x. It easy follows that such action
is well defined. Conversely, any action of the category C on an object E gives a discrete
fibration by Proposition 5.1.
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Now we will restrict our attention to actions of internal groupoids. For any action of
an internal groupoid G on an object E in E the nerve of an action groupoid E / G is an
internal simplicial object E• in E whose terms are given by objects

E0 := E
E1 := E ×G0 G1

E2 := E ×G0 G1 ×G0 G1

. . .
Ek := E ×G0 G1 ×G0 . . .×G0 G1︸ ︷︷ ︸

k times

In terms of elements, the set E0 of vertices is given by elements of E and the set E×C0 C1

of 1-simplices is given by pairs (e, g) for which degeneracy operators are defined by

d1
0(e, g) = e

d1
1(e, g) = eg.

(5.10)

A composable pair (e, g), (eg, h) defines a 2-simplex (e, g, h) ∈ E2 which we see as a triangle

e eg
(e,g)oo

egh

(eg,h)

OO

(e,g,h)

(e,gh)

__????????????

and face operators d2
i : E2 → E1 are given by

d2
0(e, g, h) = (e, g)

d2
1(e, g, h) = (e, gh)

d2
2(e, g, h) = (eg, h).

(5.11)

Also we define for any 1-simplex (e, g) ∈ E1 degeneracy operators s1
i : E1 → E2, i = 0, 1 by

s1
0(e, g) = (e, g, ids(g))

s1
1(e, g) = (e, idt(g), g)

(5.12)

which we respectively see as two triangles

e eg
(e,g)oo

eg

(eg,ids(g))

OO

(e,ids(g),g)

(e,g)

__?????????????????????

e e
(e,idt(g))oo

eg.

(e,g)

OO

(e,idt(g),g)

(e,g)

__?????????????????????
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Let α• = NP : E• → G• be the simplicial map defined as the nerve of the canonical
functor (5.8) from the nerve E• of an action groupoid E , to the nerve G• of the groupoid G

E0
//

α0

²²

E1

d1oo
d0

oo ////

α1

²²

E2
oo

d2oo

d0

oo

α2

²²

////
// ...oooo

oo

oo

G0
// G1

d1oo
d0

oo //// G2
oo

d2oo

d0

oo ////
// ...oooo

oo

oo

where α0 : E0 → G0 is a momentum of the action, and maps αn : En → Gn are defined by

αn(e, gn, . . . , g1) = (gn, . . . , g1) (5.13)

for n ≥ 1. It is an elementary consequence that this construction really defines a simplicial
map, by the fact that nerve is a functor. Nevertheless we will give a direct proof of this
fact to shed some light to simplicial techniques which we will use later.

Proposition 5.2. The map α• : E• → G• is a simplicial map from the nerve of E• the
action groupoid E, to the nerve G• of of the groupoid G.

Proof. Let (e, g) ∈ E1, which means that t(g) = α0(e). The first two simplicial identities
α0di = diα1 for i = 0, 1 are verified by evaluation on a general element (e, g) ∈ E1

α0d0(e, g)
(5.10)
= α0(e)

(5.1)
= d0(g)

(5.13)
= d0α1(e, g)

α0d1(e, g)
(5.10)
= α0(eg)

(5.2)
= d1(g)

(5.13)
= d1α1(e, g)

where the first identity is equivalent to the definition of (the domain of) the action and
the second follows from the momentum invariance. The last identity in dimension n = 1
is α1s0 = s0α0 which is verified for any element e ∈ E0 by

α1s0(e) = α1(e, idα0(e)) = idα0(e) = s0α0(e).

In the dimension n = 2 identities α1di = diα2 for i = 0, 1, 2 are verified by evaluation on
the general element (e, g, h) ∈ E2

α1d0(e, g, h)
(5.11)
= α1(e, g)

(5.13)
= g

(4.1)
= d0(g, h)

(5.13)
= d0α2(e, g, h)

α1d1(e, g, h)
(5.11)
= α1(e, gh)

(5.13)
= gh

(4.1)
= d1(g, h)

(5.13)
= d1α2(e, g, h)

α1d2(e, g, h)
(5.11)
= α1(eg, h)

(5.13)
= h

(4.1)
= d2(g, h)

(5.13)
= d2α2(e, g, h)

and two relations in dimension n = 2 involving degeneracy operators, α2si = siα1 for
i = 0, 1, 2 are verified by evaluation on the general element (e, g) ∈ E1

α2s0(e, g)
(5.12)
= α2(e, g, ids(g))

(5.13)
= (g, ids(g))

(4.2)
= s0(g)

(5.13)
= s0α1(e, g)

α2s1(e, g)
(5.12)
= α2(e, idt(g), g)

(5.13)
= (idt(g), g)

(4.2)
= s1(g)

(5.13)
= s1α1(e, g)

Clearly, the similar pattern repeats in all higher dimensions which concludes the proof.
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Now, we will provide a simplicial characterization of groupoid actions.

Theorem 5.3. Let an internal groupoid G acts on an object E in C. Then the simplicial
map α• = NP : E• → G• is an exact fibration for all n ≥ 1.

Proof. Suppose that the groupoid G acts on a set E. We first check conditions in dimension
n = 1, namely that the two squares

E1

q0

²²

α1 // G1

q0

²²∧0
1(E•) // ∧0

1(G•)

E1

q1

²²

α1 // G1

q1

²²∧1
1(E•) // ∧1

1(G•)

are pullbacks. Since the set of 0-horns and 1-horns of the simplicial set E• in dimension 1
is just

∧0
1(E•) = E =

∧1
1(E•) and the set of 0-horns and 1-horns of the simplicial set G•

is just
∧0

1(E•) = G0 =
∧0

1(E•), two squares are just two pullbacks

E ×G0 G1

a

²²

pr2 // G1

s

²²
E α0

// G0

E ×G0 G1

pr1

²²

pr2 // G1

t

²²
E α0

// G0

given by the momentum invariance (5.2) and the definition (5.1) of a domain of an action,
respectively.

In the dimension n = 2, the object of 0-horns is
∧0

2(E•) = (E ×G0 G1)×E (E ×G0 G1),
where the pullback is obtained by the map pr1 : E×G0 G1 → E, and similarly the object of
2-horns is

∧2
2(E•) = (E×G0G1)×E(E×G0G1), where now we use the map a : E×G0G1 → E

to define the pullback. The object of 1-horns is
∧1

2(E•) = E×G0 G1×G0 G1, and diagrams

E2

q0

²²

α2 // G2

q0

²²∧0
2(E•) // ∧0

2(G•)

E2

q1

²²

α2 // G2

q1

²²∧1
2(E•) // ∧1

2(G•)

E2

q2

²²

α2 // G2

q2

²²∧2
2(E•) // ∧2

2(G•)
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are pullbacks. For a general 2-simplex (e, g, h) ∈ E2

e
(g,e) //

(h,g,e)

(hg,e)
ÂÂ?

??
??

??
??

? ge

(h,ge)

²²
h(ge)

three maps qi : E2 →
∧i

2(E•), for i = 0, 1, 2, are given by the three projections, pictured as

e eg

egh

(e,gh)

__??????????
(eg,h)

OO e eg
(e,g)oo

egh

(eg,h)

OO e eg
(e,g)oo

egh

(e,gh)

__??????????

respectively, and three bottom maps between corresponding horns
∧i

2(E•) and
∧i

2(G•),
induced by the simplicial map α• : E• → G•, transform above horns into three diagrams

x y

z

gh

__???????????
h

OO x y
goo

z

h

OO x y
goo

z

gh

__???????????

respectively. These three horns have the unique filler (h, hg, g) ∈ G2 by the invertibility of
arrows in the groupoid G, it follows that maps νi : E2 →

∧i
2(E•)×∧i

2(G•) G2, for i = 0, 1, 2
defined by

ν0(e, g, h) := ((−, (e, gh), (e, g)), (g, gh, h))
ν1(e, g, h) := ((eg, h),−, (e, g)), (g, gh, h))
ν2(e, g, h) := ((eg, h), (e, gh),−), (g, gh, h))

are all isomorphisms, which is just equivalent to the quasiassociativity (eg)h = e(gh).

Definition 5.3. Let G be an internal groupoid in the category C. A right G-bundle P over
an object X is defined by the following data:

• left G-object P along the momentum morphism α0 : P → G0,

• a G-invariant epimorphism π : P → X

P ×G0 G1

pr1

²²

a // P

π

²²
P

π // X



5 ACTIONS OF CATEGORIES AND GROUPOIDS 48

We say that the G-bundle π : P → X is principal, or that it is a right G-torsor, if the
naturally induced morphism

(pr1, a) : P ×G0 G1 −→ P ×X P

is an isomorphism.

Theorem 5.4. Let be G an internal groupoid in C which acts on an object E. Then the
nerve of the corresponding action groupoid is a simplicial map α• : E• → G• which is an
exact fibration for all n ≥ 1.

Proof. The proof is straightforward and it follows a similar pattern of the previous theorem.
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6 Small fibrations

Let C be an object of Cat(E). Thus C is given by the 3-truncation of the internal simplicial
object in E

C0
// C1

d1oo
d0

oo //// C2
oo

d2oo

d0

oo ////
//
C3

oooo
d3oo

d0

oo (6.1)

and this data is equivalent to the barycentric division of the 3-simplex

C0

C1

d1

ÂÂ?
??

??
??

??
??

??
??

??
??

??
??

??
??

d0

__???????????????????????????

C1

d1

¥¥­­
­­

­­
­­

­­
­­

­­
­­

­­
­­

­­
­­

­­
­­

­­
­­

­­
­­

d0

DD­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
C2

d0

77

d1

oo

d2

²²

C1

d1

¶¶'
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
'

d0

SS''''''''''''''''''''''''''''''''''''''''''

C2

d0

OO

d1oo

d2

ºº

C0

C2

d0

77
d1

WW

d2

²²

C1

d1

ssg g g g g g g g g g g g g g g g g g g g g

d0

33ggggggggggggggggggggg C3

d1

WW

d2

oo

d3

²²

d0

??

C0 C2
d0 //

d1

__

d2

ww

C1

d1

¨¨²²
²²
²²
²²
²²
²²
²²
²²
²²
²²
²

d0

GG²²²²²²²²²²²²²²²²²²²²²

C1

d0

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

d1

jjTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

C0



6 SMALL FIBRATIONS 50

where we keep in mind that internally objects are given by C0, morphisms by C1, compos-
able pairs of morphisms by C2 and composable triples of morphisms by C3.

The faces of the above 3-simplex are given by the barycentric subdivision of the 2-
simplex

C0

C1

d0

??ÄÄÄÄÄÄÄÄÄÄÄÄÄ

d1

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä
C1

d0

__?????????????

d1

ÂÂ?
??

??
??

??
??

??

C2

d1

ggOOOOOOOOOO d0

77oooooooooo

d2²²
C0 C1 d0

//
d1

oo C0

in which the lower right square is a pullback (which represents C2 as an object of composable
pairs of morphisms). Also we have the pullback

C3
d0 //

d3

²²

C2

d2

²²
C2 d0

// C1

in the interior of the 3-simplex, which represents (internally) composable triples of mor-
phisms.

We will construct the fibered category FC : FC → E as follows. The objects of FC are
pairs (I, i), where I is an object in E , and i : I → C0 is a morphism in E . For any two such
objects (I, i) and (J, j), a morphism in FC is given by a pair (a, f) : (I, i) → (J, j), which
consists of the morphism a : I → J , and the morphism f : I → C1 in E , such that d1f = i
and d0f = ja. For any two composable morphisms in FC

(I, i)
(a,f) // (J, j)

(b,g) // (K, k)

the composition is defined by (b, g)(a, f) := (ba, g ◦ f) where the morphism g ◦ f : I → C1

is defined by g ◦ f := d1u, and u : I → C2 is the unique morphism given by the universal



6 SMALL FIBRATIONS 51

property of the pullback

I

f

­­··
··
··
··
··
··
··
··
··
··
··
··
··
··

a

ÂÂ?
??

??
??

??
??

u

²²Â
Â
Â
Â
Â
Â
Â
Â
Â

J

j

²²

g

ÂÂ?
??

??
??

??
?

C2
d2

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

d0 // C1

d1
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

C1 d0

// C0

obtained from the factorization d0f = ja = d1ga. Thus we have the following result.

Theorem 6.1. The above construction defines a fibred category FC : FC → E which we call
the small fibration induced by C.
Proof. We need to show that the above composition is associative and unital. Let’s consider
composable triple of morphisms

(I, i)
(a,f) // (J, j)

(b,g) // (K, k)
(c,h) // (L, l)

in FC. We need to prove that [(c, h)(b, g)](a, f) = (c, h)[(b, g)(a, f)]. The right hand side
is given by (c, h)(ba, g ◦ f) := (cba, h ◦ (g ◦ f)) where the second component is defined by
h ◦ (g ◦ f) := d1v and the morphism v : I → C2 is the unique one given by the universal
property of the pullback

I

g◦f=d1u

­­··
··
··
··
··
··
··
··
··
··
··
··
··
··

ba

ÂÂ?
??

??
??

??
??

v

²²Â
Â
Â
Â
Â
Â
Â
Â
Â

K

k

²²

h

ÂÂ?
??

??
??

??
?

C2
d2

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

d0 // C1

d1
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

C1 d0

// C0
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obtained from the factorization d0d1u = kba = d1hba. This is described by the diagram

C0

L

l

OO
O²
O²
O²
O²
O²
O²
O²
O²
O²
O²
O²
O²
O²

C1

d1

ÂÂ?
??

??
??

??
??

??
??

??
??

??
??

??
??

d0

__???????????????????????????

C1

d1

¥¥­­
­­

­­
­­

­­
­­

­­
­­

­­
­­

­­
­­

­­
­­

­­
­­

­­
­­

d0

DD­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
C2

d0

77

d1

oo

d2

²²

C1

d1

¶¶'
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
'

d0

SS''''''''''''''''''''''''''''''''''''''''''

KC2

c

__?
?

?
?

?
?

?
?

?
?

?
?

?
?

d0

OO

h

OO
O²
O²
O²
O²
O²
O²
O²
O²
O²
O²
O²
O²
O²

k ///o/o/o/o/o/o/o/o/o/o/o
d1oo

d2

ºº

C0

I
/o/o/o/o/o

g◦f ...n.n.n.n

w
///o/o/o/o/o

z
///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o

u

***j*j*j*j*j*j*j*j*j*j*j*j*j*j*j*j*j*j*j*j

v

??
?Ä

?Ä
?Ä

?Ä
?Ä

?Ä
?Ä

?Ä
?Ä

?Ä
?Ä

?Ä
?Ä

?Ä
?Ä

?Ä
?Ä

?Ä

h◦(g◦f)

OO
O²
O²
O²
O²
O²
O²
O²
O²
O²
O²
O²
O²
O²

(h◦g)◦f

OO
O²
O²
O²
O²
O²
O²
O²
O²
O²
O²
O²
O²
O²

a

**TTTTTTTTTTTTTTTT

f

ºº
ºW

ºW
ºW

ºW
ºW

ºW
ºW

ºW
ºW

ºW
ºW

ºW
ºW

ºW

ba

33ggggggggggggggggggggg

cba

DD­
­

­
­

­
­

­
­

­
­

­
­

­
­

­
­

­
­

i

ww w7 w7 w7 w7 w7 w7 w7 w7 w7 w7 w7 w7 w7 w7 C2

d0

77
d1

WW

d2

²²

C1

d1

ssg g g g g g g g g g g g g g g g g g g g g

d0

33ggggggggggggggggggggg C3

d1

WW

d2

oo

d3

²²

d0

??

C0 C2J

b

GG²
²

²
²

²
²

²
²

²
²

²

h◦g

OO
O²
O²
O²
O²
O²
O²
O²
O²
O²
O²
O²
O²
O²

t

GG
G¨

G¨
G¨

G¨
G¨

G¨
G¨

G¨
G¨

G¨
G¨

G¨
G¨

G¨

cb

SS'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

g
///o/o/o/o/o/o/o/o/o/o/o

d0 //

j

ºº
ºW

ºW
ºW

ºW
ºW

ºW
ºW

ºW
ºW

ºW
ºW

ºW
ºW

ºW

d1

__

d2

ww

C1

d1

¨¨²²
²²
²²
²²
²²
²²
²²
²²
²²
²²
²

d0

GG²²²²²²²²²²²²²²²²²²²²²

C1

d0

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

d1

jjTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

C0

where objects and morphisms of the category FC are drawn as curved arrows, and the
3-simplex that is an element of NE3 in the nerve of E corresponding to the composable
triple

I
a // J

b // K
c // L

of morphisms in E , sits inside the barycentic division of the 3-simplex.
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On the other side, first composing (c, h)(b, g) := (cb, h ◦ g) we have [(c, h)(b, g)](a, f)
which is equal to (cb, (h◦g))(a, f) = (cba, (h◦g)◦f), where h◦g := d1t and (h◦g)◦f := d1w
are morphisms obtained from two pullbacks

J

g

­­··
··
··
··
··
··
··
··
··
··
··
··
··
··

b

ÂÂ?
??

??
??

??
?

t

²²Â
Â
Â
Â
Â
Â
Â
Â
Â

K

k

²²

h

ÂÂ?
??

??
??

??
?

C2
d2

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

d0 // C1

d1
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

C1 d0

// C0

I

f

­­··
··
··
··
··
··
··
··
··
··
··
··
··
··

a

ÂÂ?
??

??
??

??
??

w

²²Â
Â
Â
Â
Â
Â
Â
Â
Â

J

j

²²

d1t=h◦g

ÂÂ?
??

??
??

??
?

C2
d2

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

d0 // C1

d1
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

C1 d0

// C0

whose diagonals are given by d0g = kb = d1hb and d0f = ja = d1d1ta, respectively. Now,
we use the universal property of the pullback

I

u

­­··
··
··
··
··
··
··
··
··
··
··
··
··
··

a

ÂÂ?
??

??
??

??
??

z

²²Â
Â
Â
Â
Â
Â
Â
Â
Â

J

g

²²

t

ÂÂ?
??

??
??

??
?

C3
d3

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

d0 // C2

d2
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

C2 d0

// C1

to obtain a unique morphism z : I → C3 from the factorization d0u = ga = d2ta. But then
we have

d1v = d1d1z = d1d2z = d1w

which finally gives the associativity of composition.
The functor F : F → E is defined on objects by F (I, i) = I and on morphisms by

F (a, f) = a, and it is straightforward to prove that it is a fibration.
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Part III

Two-dimensional theory
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7 Bicategories

Bicategories were defined by Benabou [15], and from the modern perspective, we could call
them weak 2-categories. Instead of stating their original definition we will use Batanin’s
approach to weak n-categories given in [14]. In this approach a bicategory B, given by the
reflexive 2-graph

B ≡ (B2

d1
1 //

d1
0

// B1
oo

d0
1 //

d0
0

// B0)oo

is a 1-skeletal monoidal globular category, given by the diagram of categories and functors

B1

D1 //

D0

// B0
oo

where the category B1 is the category of morphisms of the bicategory B and the category B0

is the image D(B0) of the discrete functor D : Set → Cat which just turns an object of E into
a discrete internal category in E . Source functor D1 is defined by D1 := d0

1 : B1 → B0 and
D1 := d0

1d
1
1 = d0

1d
1
0 : B2 → B0, and a target functor D0 is defined by D0 := d0

1 : B1 → B0 and
D1 := d0

0d
1
1 = d0

0d
1
1 : B2 → B0, where we used the same notation for objects and morphisms

parts of the functor. Also, the unit functor I : B0 → B1 is defined by I := s0 : B0 → B1 on
the level of objects, and I := s1 : B1 → B2 on the level of morphisms, where s0 : B0 → B1

and s1 : B1 → B2 are section morphisms in the above 2-graph from left to right, which we
didn’t label to avoid too much indices.

In the lower definition of a bicategory we will denote the vertex B1×B0B1 of the following
pullback of functors

B1 ×B0 B1
Pr2 //

Pr1

²²

B1

D0

²²
B1 D1

// B0

by B2 := B1 ×B0 B1 and likewise B3 := B1 ×B0 B1 ×B0 B1, and so on. Thus we will adopt
the following convention: for any functor P : E → B0, the first of the symbols

E ×B0 B1 and B1 ×B0 E

will denote the pullback of P and D0, and the second one that of D1 and P .
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Definition 7.1. A bicategory B consists of the following data:

• two categories, a discrete category B0 of objects, and a category B1 of morphisms of
the weak 2-category B,

• functors D0, D1 : B1 → B0, called target and source functors, respectively, a functor
I : B0 → B1, called unit functor, and a functor H : B2 → B1, called the horizontal
composition functor,

• natural isomorphism

B3

H×IdB1 //

IdB1
×H

²²

ÄÄÄÄ{¤ α

B2

H

²²
B2 H

// B1

• natural isomorphisms

B2

H

²²

ÄÄÄÄ{¤ ρ

B1

???? ¾#λ

S1

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
B1 B1

S0

__???????????????????????

where the functor S0 : B1 → B2 is defined by the composition

B1

(D0,IdB1
)

// B1 ×B0 B0

I×IdB1 // B1 ×B0 B1,

and the functor S1 : B1 → B2 is defined by the composition

B1

(IdB1
,D1)

// B0 ×B0 B1

IdB1
×I

// B1 ×B0 B1,

or more explicitly for any 1-morphism f : x → y in B (i.e. object in B1) we have
S0(f) = (f, ix) and S1(f) = (iy, f),

such that following axioms are satisfied:
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• associativity 3-cocycle

B4

ÄÄÄÄ{¤IdB1
×α

ÄÄÄÄ{¤α×IdB1

H×IdB2 //

IdB1
×H×IdB1

ÂÂ?
??

??
??

??
??

??
??

??
??

?

IdB2
×H

²²

B3

H×IdB1

ÂÂ?
??

??
??

??
??

??
??

??
??

?

IdB1
×H

²²

B3

ÄÄÄÄ{¤ '

H×IdB1

//

IdB1
×H

²²

ÄÄÄÄ{¤ α

B2

H

²²

B3

IdB1
×H

ÂÂ?
??

??
??

??
??

??
??

??
??

?

H×IdB1 // B2

H

ÂÂ?
??

??
??

??
??

??
??

??
??

?
ÄÄÄÄ{¤ α

ÄÄÄÄ{¤ α

B2 H
// B1

which for any object (k, h, g, f) in B4 becomes the commutative pentagon

((k ◦ h) ◦ g) ◦ f

αk,h,g◦f

wwoooooooooooooooooooo

αk◦h,g,f

''OOOOOOOOOOOOOOOOOOOO

(k ◦ (h ◦ g)) ◦ f

αk,h◦g,f

ºº/
//

//
//

//
//

//
//

//
//

//
//

/
(k ◦ h) ◦ (g ◦ f)

αk,h,g◦f

¨¨²²
²²
²²
²²
²²
²²
²²
²²
²²
²²
²²
²²

k ◦ ((h ◦ g) ◦ f))
k◦αh,g,f

// k ◦ (h ◦ (g ◦ f))

of components of natural transformations
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• the commutative pyramid

B2

OOOOck
IdB1

×ρ

S1

²²

··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
·

H

··*
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

B3

ÄÄÄÄ{¤ α

IdB1
×H

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

H×IdB1 //

oooo
3;λ×IdB1

B2

H

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

B2 H
// B1

which for any object (g, f) in B2 becomes the triangle diagram

(g ◦ iy) ◦ f

ρg◦f

ÁÁ=
==

==
==

==
==

==
==

αg,iy,f // g ◦ (iy ◦ f)

g◦λf

¡¡¢¢
¢¢

¢¢
¢¢

¢¢
¢¢

¢¢
¢

g ◦ f

Remark 7.1. Note that in the above definition of the horizontal composition functor
H : B2 → B1, for any diagram of 2-arrows (i.e. a morphism in a category B2 ×B1 B2)

x

f1

$$
ÂÂ ÂÂ
®¶ φ1

::

h1

ÂÂ ÂÂ
®¶ψ1

// y

f2

$$
ÂÂ ÂÂ
®¶ φ2

;;

h2

ÂÂ ÂÂ
®¶ψ2

// z

by functoriality we immediately have a Godement interchange law

(ψ2 ◦ ψ1)(φ2 ◦ φ1) = (ψ2ψ1) ◦ (φ2φ1).
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Example 7.1. (Strict 2-categories) A weak 2-category in which associativity and left and
right identity natural isomorphisms are identities is called (strict) 2-category.

Example 7.2. (Monoidal categories) Monoidal category is a bicategory B in which B0 = 1
is terminal discrete category (or one point set). Strict monoidal category is a one object
strict 2-category.

Example 7.3. (Bicategory of spans) Let C be a cartesian category (that is a category with
pullbacks). First we make a choice of the pullback

u×y v

p

²²

q // v

h

²²
u

g
// z

for any such diagram x
f→ z

g← y in a category C. We construct the weak 2-category
Span(C) of spans in the category C. The objects of Span(C) are the same as objects of C.
For any two objects x, y in Span(C), a 1-morphism u : x 9 y is a span

u

f

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä

g

ÂÂ?
??

??
??

??
??

x y

and a 2-morphism a : z ; w is given by the commutative diagram

u

f

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä

g

ÂÂ?
??

??
??

??
??

a

²²

x y

w

l

__???????????
m

??ÄÄÄÄÄÄÄÄÄÄÄ

from which we easily see that vertical composition of 2-morphisms is given by the compo-
sition in C. Horizontal composition of composable 1-morphisms

u

f

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä

g

ÂÂ?
??

??
??

??
??

v

h

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä

k

ÂÂ?
??

??
??

??
??

x y z
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is given by the pullback

u×y v

p

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
q

ÂÂ?
??

??
??

??
?

u

f

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä

g

ÂÂ?
??

??
??

??
??

v

h

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä

k

ÂÂ?
??

??
??

??
??

x y z

and from here we have obvious horizontal identity ix : x 9 x

x

idx

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä

idx

ÂÂ?
??

??
??

??
??

x x

Example 7.4. (Bimodules) Let Bim denote the bicategory whose objects are rings with
identity. For any two rings A and B, Bim(A,B) will be a category of A − B bimodules
and their homomorphisms. Horizontal composition is given by the tensor product, and
associativity and identity constraints are the usual ones for the tensor product.

The following result is a typical example how new commutative diagrams arise from
the associativity coherence and left and right identity coherence.

Proposition 7.1. Let B be a bicategory. Then the diagrams

(iz ◦ g) ◦ f

λg◦f
ÂÂ?

??
??

??
??

??
??

αiz,g,f // iz ◦ (g ◦ f)

iz◦λg◦f

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

g ◦ f

(g ◦ f) ◦ ix

ρg◦f

ÂÂ?
??

??
??

??
??

??

αg,f,ix // g ◦ (f ◦ ix)

g◦ρf

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

g ◦ f

commute for any pair of 1-morphisms x
f // y

g // z in B.
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Proof. For any triple of 1-morphisms x
f // y

g // z h // t , we consider the diagram

((h ◦ iz) ◦ g) ◦ f

αh,iz,g◦f

wwoooooooooooooooooooo

(ρh◦g)◦f

²²

αh◦iz,g,f

''OOOOOOOOOOOOOOOOOOOO

(h ◦ (iz ◦ g)) ◦ f
(h◦λg)◦f

//

αh,iz◦g,f

ºº/
//

//
//

//
//

//
//

//
//

//
//

/
(h ◦ g) ◦ f

αh,g,f

²²

(h ◦ iz) ◦ (g ◦ f)

ρh◦(g◦f)

wwoooooooooooooooooooo

αh,iz,g◦f

¨¨²²
²²
²²
²²
²²
²²
²²
²²
²²
²²
²²
²²

h ◦ (g ◦ f)

h ◦ ((iz ◦ g) ◦ f))

h◦(λg◦f)

??ÄÄÄÄÄÄÄÄÄÄÄÄÄ

h◦αiz,g,f

// h ◦ (iz ◦ (g ◦ f))

h◦λg◦f

__?????????????

in which two triangles (beside the bottom one) commute because of the triangle coherence
for identities, and two deformed squares commute by the naturality of associativity coher-
ence. Since all the terms are 2-isomorphisms, then the bottom triangle also commutes. By
taking h = iz, we obtain the identity

iz ◦ (λg◦fαiz ,g,f ) = iz ◦ (λg ◦ f)

from which it follows that the back face of the cube

iz ◦ ((iz ◦ g) ◦ f)

λ(iz◦g)◦f

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

iz◦(λg◦f) //

iz◦αiz,g,f

²²

iz ◦ (g ◦ f)

λg◦f

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

(iz ◦ g) ◦ f
λg◦f //

αiz,g,f

²²

g ◦ f

iz ◦ (iz ◦ (g ◦ f))

λiz◦(g◦f)

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

iz◦λg◦f// iz ◦ (g ◦ f)

λg◦f

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

iz ◦ (g ◦ f)
λg◦f // g ◦ f
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commutes. The top, bottom and right faces commute from the naturality of the left identity
coherence, and the right face commutes trivially. Since all edges are 2-isomorphisms we
conclude that the front face also commutes, which proves that the first triangle in lemma
commutes. Similarly, we prove the commutativity of the other triangle.

Definition 7.2. A homomorphism F : B → B′ between bicategories consists of the following
data:

• a (discrete) functor F0 : B0 → B′0, and a functor F1 : B1 → B′1,
• natural transformations

B2

ÄÄÄÄ{¤ µH

²²

F2 // B′2

H′

²²
B1 F1

// B′1

B0

ÄÄÄÄ{¤ ηI

²²

F0 // B′0

I′

²²
B1 F1

// B′1

given by components µg,f : F (g)◦F (f) → F (g◦f) and ηx : i′F (x) → F (ix), respectively
(in which we omitted the subscripts on functor signs in order to avoid too much
indices),

such that following axioms are satisfied:
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• commutative cube

B3

ÄÄÄÄ{¤ α

ÄÄÄÄ{¤µ×F1

F3 //

H×IdB1

ÂÂ?
??

??
??

??
??

??
??

??

IdB1
×H

²²

B′3
H′×IdB′1

ÂÂ?
??

??
??

??
??

??
??

?

IdB′1
×H′

²²

B2

ÄÄÄÄ{¤F1×µ

F2

//

H

²²

ÄÄÄÄ{¤ µ

B′2

H′

²²

B2

H

ÂÂ?
??

??
??

??
??

??
??

??
F2 // B′2

H′

ÂÂ?
??

??
??

??
??

??
??

? ÄÄÄÄ{¤ α′

ÄÄÄÄ{¤ µB1 F1

// B′1

which when evaluated at the object (h, g, f) in B3 becomes a commutative diagram

(F (h) ◦ F (g)) ◦ F (f)

a′
F (h),F (g),F (f)

²²

µh,g◦F (f)
// F (h ◦ g) ◦ F (f)

µh◦g,f // F ((h ◦ g) ◦ f)

F (ah,g,f )

²²
F (h) ◦ (F (g) ◦ F (f))

F (h)◦µg,f

// F (h) ◦ F (g ◦ f) µh,g◦f

// F (h ◦ (g ◦ f))
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• a commutative diagram

B2

F2

²²

H

ÂÂ?
??

??
??

??
??

??

B1

S0

??ÄÄÄÄÄÄÄÄÄÄÄÄÄ

F1

²²

ÂÂ ÂÂ
®¶ ρ B1

F1

²²

B′2

???? ¾#
µ

ÄÄÄÄ
;CIdB1
×η

H′

ÂÂ?
??

??
??

??
??

??

B′1

ÂÂ ÂÂ
®¶ ρ
′

S′0

??ÄÄÄÄÄÄÄÄÄÄÄÄÄ
B′1

which when evaluated at the object f in B1 becomes a commutative diagram

F (f) ◦ i′F (x)

ρ′
F (f)

²²

F (f)◦ηx // F (f) ◦ F (ix)
µf,ix // F (f ◦ ix)

F (ρf )

²²
F (f) F (f)

• a commutative diagram

B2

F2

²²

H

ÂÂ?
??

??
??

??
??

??

B1

S1

??ÄÄÄÄÄÄÄÄÄÄÄÄÄ

F1

²²

ÂÂ ÂÂ
®¶ λ B1

F1

²²

B′2

???? ¾#
µ

ÄÄÄÄ
;Cη×IdB1

H′

ÂÂ?
??

??
??

??
??

??

B′1

ÂÂ ÂÂ
®¶ λ′

S′1

??ÄÄÄÄÄÄÄÄÄÄÄÄÄ
B′1
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which when evaluated at the object f in B1 becomes a commutative diagram

i′F (y) ◦ F (f)

λ′
F (f)

²²

ηy◦F (f) // F (iy) ◦ F (f)
µiy,f // F (iy ◦ f)

F (λf )

²²
F (f) F (f)

Remark 7.2. If both B and B′ are strict 2-categories then the coherence for composition
becomes

F (h) ◦ F (g) ◦ F (f)

F (h)◦µg,f

²²

µh,g◦F (f)
// F (h ◦ g) ◦ F (f)

µh◦g,f

²²
F (h) ◦ F (g ◦ f) µh,g◦f

// F (h ◦ g ◦ f)

and the coherence for identities become two commutative triangles

F (f) ◦ F (ix)
µf,ix

&&MMMMMMMMMM

F (f)

F (f)◦ηx

88qqqqqqqqqq
F (f)

F (iy) ◦ F (f)
µiy,f

&&MMMMMMMMMM

F (f)

ηy◦F (f)
88qqqqqqqqqq

F (f)

Definition 7.3. A (left) lax natural transformation σ : F +3 G is defined by the fol-
lowing data:

• a natural transformation σ0 : F0 → G0 between (discrete) functors (which just amounts
to the family of morphisms σx : F (x) → G(x)),

• natural transformation

B1

F1

²²

G1 //

ÄÄÄÄ{¤ σ1

B′1

σ∗0

²²
B′1 σ0∗

// B′1
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whose component at the object f : x → y in B1 is given by the square

F (x)

F (f)

²²

σx //

ÄÄÄÄ{¤ σf

G(x)

G(f)

²²
F (y) σy

// G(y)

which is a 2-morphism σf : G(f) ◦ σx
+3 σy ◦ F (f) ,

such that the following axioms are satisfied:

• the following cube of functors and natural transformations

B2

F2

²²Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

ttttttttttttttttttttttttttttttt

ttttttttttttttttttttttttttttttt B2

G2

zzttttttttttttttttttttttttttttttt

F1×G1

²²
B2

ÄÄÄÄ{¤ µG

G2 //

H

²²

B′2

H′

²²

B′2

σ∗0×IdB′1

²²

B′2

σ0∗×IdB′1

zzttttttttttttttttttttttttttttttt

IdB′1
×σ∗0

²²
B1

ÄÄÄÄ{¤ σ1

G1 //

F1

²²

B′1

σ∗0

²²

B′2 ____

H′

zzt
t

t
t

t
t

t
t

t
t

t
t

t
t

t
t

B′2

H′

²²

IdB′1
×σ∗0

//_____________ B′2

H′

zzttttttttttttttttttttttttttttttt

B′2 σ0∗
// B′1 B′1

commutes, which becomes a commutative diagram of natural transformations



7 BICATEGORIES 67

(G(g) ◦G(f)) ◦ σx

µG
g,f◦σx

²²

α′
G(g),G(f),σx // G(g) ◦ (G(f) ◦ σx)

G(g)◦σf // G(g) ◦ (σy ◦ F (f))

α′−1
G(g),σy,F (f)

²²
G(g ◦ f) ◦ σx

σg◦f

²²

(G(g) ◦ σy) ◦ F (f)

σg◦F (f)

²²
σz ◦ F (g ◦ f) σz ◦ (F (g) ◦ F (f))

σz◦µF
g,f

oo (σz ◦ F (g)) ◦ F (f)
α′

σz,F (g),F (f)

oo

when it is evaluated at the object (g, f) in B2,

• a commutative diagram

i′G(x) ◦ σx

ηG
x ◦σx

²²

λ′σx // σx
ρ′−1

σx // σx ◦ i′F (x)

σx◦ηF
x

²²
G(ix) ◦ σx σix

// σx ◦ F (ix)
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Remark 7.3. If both B and B′ are strict 2-categories then the above coherence becomes

F (y)

σy

²²

F (g)

ÂÂ?
??

??
??

??
??

??

F (x)
F (g◦f)

//

F (f)

??ÄÄÄÄÄÄÄÄÄÄÄÄÄ

σx

²²

ÂÂ ÂÂ
®¶ µ

F
g,f

F (z)

σz

²²

G(y)

???? ¾#
σg

ÄÄÄÄ
;Cσf

G(g)

ÂÂ?
??

??
??

??
??

??

G(x)

ÂÂ ÂÂ
®¶ µ

G
g,f

G(f)

??ÄÄÄÄÄÄÄÄÄÄÄÄÄ

G(g◦f)
// G(z)

which is equivalent to the commutative diagram

G(g) ◦G(f) ◦ σx

µG
g,f◦σx

²²

G(g)◦σf // G(g) ◦ σy ◦ F (f)

σg◦F (f)

²²

G(g ◦ f) ◦ σx

σg◦f

²²
σz ◦ F (g ◦ f) σz ◦ F (g) ◦ F (f)

σz◦µF
g,f

oo

The second coherence becomes the commutative diagram

σx

ηG
x ◦σx

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

σx◦ηF
x

ÂÂ?
??

??
??

??
??

??
??

??
??

?

G(ix) ◦ σx σix

// σx ◦ F (ix)
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Definition 7.4. A modification Γ: σ → σ′

B

¡¡ÁÁ

F

σ

ÁÁ

σ′

@@
ÂÂ ÂÂ
®¶ Γ G

B′
consists of the following data:

• a 2-morphism Γx : σx → σ′x for each object x in B
such that the following diagram

F (x)

σ′x

::

σx

$$

F (f)

²²

ÂÂ ÂÂ
®¶ Γx G(x)

G(f)

²²

ÂÂ ÂÂ
®¶ σf

F (y)

σy

$$s
m f _ X Q

K

σ′y

::
ÂÂ ÂÂ
®¶ Γy G(y)

which becomes a diagram

G(f) ◦ σx

σf

²²

G(f)◦Γx // G(f) ◦ σ′x

σ′f

²²
σy ◦ F (f)

Γy◦F (f)
// σ′y ◦ F (f)

commutes.
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8 Nerves of bicategories

In this section, we describe the nerve construction for bicategories, first given by Duskin in
[32]. This construction is a natural outcome of various attempts to describe nerves of higher
dimensional categories and groupoids, whose origin is a conjecture on a characterization
of the nerve of strict n-category, in an unpublished work of Roberts. This conjecture was
published by Street in [81], and it was finally proved by Verity [85], who characterized
nerves of strict n-categories by means of special simplicial sets, which he called complicial
sets.

We will derive the construction of the Duskin nerve for bicategories from the standard
description of the geometric nerve (1.4). First we have a fully faithful functor

i : ∆ → Bicat (8.1)

where Bicat is a category of bicategories and their homomorphisms, as it is given in [15], so
we consider each ordinal as a locally discrete 2-category. Thus the nerve of the bicategory
B is a simplicial set N2B• which is defined via the embedding (8.1) by

N2Bn := HomBicat(i[n],B). (8.2)

The 0-simplices of N2(B) are the objects of B and 1-simplices are directed line segments

x0
f01 // x1

which may be seen as homomorphisms f : [1] → B from the locally discrete bicategory [1]
to B. Face maps are defined by d0(f01) = x1 and d1(f01) = x0. If x0 is a 0-cell of B then
we define the corresponding degenerate 1-simplex s0(x0) by

x0
idx0 // x0.

A typical 2-simplex is given by the triangle filled with a 2-morphism β012 : f12 ◦ f01 ⇒ f02

x0

ÄÄÄÄ{¤ β012

f1 //

f12

ÂÂ?
??

??
??

??
??

??
??

??
x1

f2

²²
x2

where fij : [1] → B is a homomorphism for which fij(0) = xi and fij(1) = xj . The face
operators are defined as usual by

di(f12, f02, f01, β012) =





f12 i = 0
f02 i = 1
f01 i = 2
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while for a 1-cell x0
f01 // x1 the degeneracy operators are defined by

s0(f01) = ρf01

s1(f01) = λf01

which are the two 2-simplices

x0

ÄÄÄÄ{¤ ρf01

idx0 //

f01

ÂÂ?
??

??
??

??
??

??
??

??
x0

f01

²²
x1

x0

ÄÄÄÄ{¤ λf01

f01 //

f01

ÂÂ?
??

??
??

??
??

??
??

??
x1

idx1

²²
x1

respectively, where the 1-morphisms ρf01 : f01◦idx0 → f01 and λf01 : idx1 ◦f01 → f01 are the
components of the right and left identity natural isomorphisms in B. The general 3-simplex
is of the form

x3

ÄÄÄÄ{¤β123
????[c

β023

x0

ÄÄÄÄ{¤β013

f03

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ f02 //

f01

ÂÂ?
??

??
??

??
??

??
??

??
x2

????[c
β012

f23

__?????????????????

x1

f13

OO

f12

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

such that we have an identity

β023(β012 ◦ f23)α0123 = β013(β123 ◦ f01)

where α0123 : (f23 ◦f12)◦f01 ⇒ f23 ◦ (f12 ◦f01), and this condition follows directly from the
coherence for the composition. Since this construction is given by the geometric nerve (8.2)
it follows immediately that the Duskin nerve is functorial with respect to homomorphisms
of bicategories, which leads us to the following result.

Theorem 8.1. The Duskin nerve functor N2 : Bicat → SSet is fully faithful.

Proof. An analogous proof that the geometric nerve provides a fully faithful functor on
the category 2 − Catlax of 2-categories and normal lax 2-functors is given in [17]. Then
the statement of the theorem follows immediately for a category Bicat of bicategories and
normal homomorphisms.
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9 Internal bicategories

When he introduced bicategories, Bénabou also internalized the notion, so that he gave
the definition of an internal category by a long list of diagrams. All the diagrams in this
chapter are borrowed from his paper [15] which was necessary in order to define later a
small 2-fibration corresponding to an internal bicategory. Throughout this section, E will
denote a finitely complete category.

Definition 9.1. A bigraph B in E is the diagram of objects and morphisms in C

B2

s1 //

t1
// B1

s0 //

t0
// B0 (9.1)

such that two identities s0s1 = s0t1 and t0s1 = t0t1 hold. If we have additionally two
morphisms

B2 B1
i1oo B0

i0oo

such that s0i0 = idB0 = t0i0 and s1i1 = idB1 = t1i1, we call a diagram B a reflexive
bigraph.

From the definition it follows that by composing structure morphisms we have only
two morphisms from B2 to B0, for which we will sometimes abuse the notation and write
s0, t0 : B2 → B0. Thus we will have pullbacks

B1 ×B0 B1
pr1 //

pr2

²²

B1

s0

²²
B1 t0

// B0

B2 ×B0 B2
pr1 //

pr2

²²

B2

s0

²²
B2 t0

// B0

B2 ×B1 B2
pr1 //

pr2

²²

B2

s1

²²
B2 t1

// B1

Definition 9.2. A composition on a bigraph B in E consists of morphisms

h1 : B1 ×B0 B1 → B1

h2 : B2 ×B0 B2 → B2

v : B2 ×B1 B2 → B2

(9.2)

such that the following diagrams commute:

B2

t1

²²

B2 ×B1 B2
pr1oo pr2 //

v

²²

B2

s1

²²
B1 B2t1

oo
s1

// B1
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B1 ×B0 B1

h1

²²

B2 ×B0 B2
t1×t1oo s1×s1 //

h2

²²

B1 ×B0 B1

h1

²²
B1 B2t1

oo
s1

// B1

Definition 9.3. Let B be a bigraph in E with a composition. An associator is a morphism

α : B1 ×B0 B1 ×B0 B1 → B2 (9.3)

such that the diagram

B1 ×B0 B1

h1

²²

B1 ×B0 B1 ×B0 B1

h1×idB1oo
idB1

×h1 //

α

²²

B1 ×B0 B1

h1

²²
B1 B2s1

oo
t1

// B1

commutes.

Definition 9.4. Let B be a reflexive bigraph (9.1) with a composition (9.2). Left and right
identities are morphisms

λ : B1 → B2

ρ : B1 → B2
(9.4)

such that the diagram

B1

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

(i0t0,idB1
)

//

λ

²²

B1 ×B0 B1

h1

²²

B1

(idB1
,i0s0)

oo

ρ

²² ??
??

??
??

??
??

?

??
??

??
??

??
??

?

B1 B2t1
oo

s1

// B1 B2s1

oo
t1

// B1

commutes.

We use the above data in order to define internal categories.
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Definition 9.5. An internal bicategory B in E is the reflexive bigraph (9.1) with a composi-
tion (9.2), associator (9.3) and left and right identities (9.4) satisfying following coherence
conditions:

i) associativity law for vertical composition

B2 ×B1 B2 ×B1 B2

v×idB2 //

idB2
×v

²²

B2 ×B1 B2

v

²²
B2 ×B1 B2 v

// B2

(9.5)

ii) left and right identity laws for the vertical composition

B2

OOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOOO
(i1t1,idB2

)
// B2 ×B1 B2

(idB2
,i1s1)

//

v

²²

B2

ooooooooooooooooooooooo

ooooooooooooooooooooooo

B2

(9.6)

iii) (Godement) interchange law

(B2 ×B0 B2)×B1×B0
B1 (B2 ×B0 B2) τ //

h2×B1
h2

²²

(B2 ×B1 B2)×B0 (B2 ×B1 B2)

v×B0
v

²²
B2 ×B1 B2 v

// B2 B2 ×B0 B2
h2

oo

(9.7)
where τ is the canonical morphism given by ((s1, t1), (s0, t0)) 7→ ((s1, s0), (t1, t0)), and
the morphism h2 ×B1 h2 : (B2 ×B0 B2) ×B1×B0

B1 (B2 ×B0 B2) → B2 ×B1 B2 is the
unique one making the diagram

(B2 ×B0 B2)×B1×B0
B1 (B2 ×B0 B2) Â Ä //

h2×B1
h2

²²

(B2 ×B0 B2)× (B2 ×B0 B2)

h2×h2

²²
B2 ×B1 B2

Â Ä // B2 ×B2

commutative, where the horizontal arrows are the canonical monomorphisms of pull-
backs into products.



9 INTERNAL BICATEGORIES 75

iv) compatibility of horizontal composition with vertical identities

B1 ×B0 B1
h1 //

i1×i1

²²

B2 ×B1 B2

i1

²²
B2 ×B0 B2

h2

// B2

(9.8)

For the next axiom, we consider a unique morphism ϕ1 : B2 ×B0 B2 ×B0 B2 → B2 ×B1 B2

obtained from the universal property of the pullback in the front face of the diagram

B2 ×B0 B2 ×B0 B2

ϕ1

ÂÂ?
?

?
?

?
?

?

h2×idB2
=D2//

t1×t1×t1=d0

²²

B2 ×B0 B2

t1×t1=d0

²²

h2

ÂÂ?
??

??
??

??
??

??

B2 ×B1 B2
d2=pr2 //

d0=pr1

²²

B2

d0=t1

²²

B1 ×B0 B1 ×B0 B1
D2

//

α

ÂÂ?
??

??
??

??
??

??
B1 ×B0 B1

D1=h1

ÂÂ?
??

??
??

??
??

??

B2 d1=s1

// B1

such that the diagram commutes, and a morphism ϕ2 : B2 ×B0 B2 ×B0 B2 → B2 ×B1 B2
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obtained from the same universal property as in the diagram

B2 ×B0 B2 ×B0 B2

ϕ2

ÂÂ?
?

?
?

?
?

?

idB2
×h2=D1

²²

s1×s1×s1=d1// B1 ×B0 B1 ×B0 B1

D1

²²

α

ÂÂ?
??

??
??

??
??

??

B2 ×B1 B2
d2=pr2 //

d0=pr1

²²

B2

d0=t1

²²

B2 ×B0 B2 s1×s1

//

D1=h2

ÂÂ?
??

??
??

??
??

??
B1 ×B0 B1

D1=h1

ÂÂ?
??

??
??

??
??

??

B2 d1=s1

// B1

such that the diagram commutes. Then we can express the next axiom:

v) Naturality law for the associativity

B2 ×B0 B2 ×B0 B2
ϕ1 //

ϕ2

²²

B2 ×B1 B2

v=d1

²²
B2 ×B1 B2

v=d1

// B2

(9.9)

The next axiom, uses the morphism ψl : B2 → B2 ×B1 B2 obtained from the universal
property of the pullback in the diagram

B2

ψl

ÂÂ?
?

?
?

?
?

?
s1 //

idB2

ºº/
//

//
//

//
//

//
//

//
//

//
//

/ B1

λ

ÂÂ?
??

??
??

??
??

??

B2 ×B1 B2
d2=pr2 //

d0=pr1

²²

B2

d0=t1

²²
B2 d1=s1

// B1
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and the morphism ψ′l : B2 → B2×B1 B2 obtained from the universal property of the pullback

B2

ψ′l

ÂÂ?
?

?
?

?
?

?
D0=t0t1 //

idB2

ºº/
//

//
//

//
//

//
//

//
//

//
//

/ B0

i1i0

ÂÂ?
??

??
??

??
??

??

B2 ×B0 B2
D0=pr1 //

D2=pr2

²²

B2

D1=s0s1

²²
B2 D0=t0t1

// B1

This two morphisms generate a unique morphism ψ′′l : B2 → B2 ×B1 B2 from the pullback

B2

ψ′′l

ÂÂ?
?

?
?

?
?

?

ψ′l //

t1

²²

B2 ×B0 B2

t1×t1

²²

D1=h2

ÂÂ?
??

??
??

??
??

??

B2 ×B1 B2
d2=pr2 //

d0=pr1

²²

B2

d0=t1

²²

B1 i0t0
//

λ

ÂÂ?
??

??
??

??
??

??
B1 ×B0 B1

D1=h1

ÂÂ?
??

??
??

??
??

??

B2 d1=s1

// B1

From this data we have a new axiom:

vi)l naturality of the left identity

B2 ×B0 B2 ×B0 B2
ψ′l //

ψ′′l

²²

B2 ×B1 B2

v=d1

²²
B2 ×B1 B2

v=d1

// B2

(9.10)
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There exists also a similar axiom vi)r which says that the right identity is natural.
The next axiom, uses the morphism θ1 : B1×B0 B1×B0 B1×B0 B1 → B2×B1 B2 obtained

from the universal property of the pullback in the diagram

B1 ×B0 B1 ×B0 B1 ×B0 B1

θ1

ÂÂ?
?

?
?

?
?

?
α×i1 //

idB1
×h1×idB1

=D2

²²

B2 ×B0 B2

t1×t1

²²

D1=h2

ÂÂ?
??

??
??

??
??

??

B2 ×B1 B2
d2=pr2 //

d0=pr1

²²

B2

d0=t1

²²

B1 ×B0 B1 ×B0 B1
D2

//

α

ÂÂ?
??

??
??

??
??

??
B1 ×B0 B1

D1=h1

ÂÂ?
??

??
??

??
??

??

B2 d1=s1

// B1

(9.11)

such that the diagram commutes, and a morphism θ2 : B1×B0B1×B0B1×B0B1 → B2×B1B2

obtained from the same universal property as in the diagram

B1 ×B0 B1 ×B0 B1 ×B0 B1

θ2

ÂÂ?
?

?
?

?
?

?
θ1 //

i1×α

²²

B2 ×B1 B2

d1=v

ÂÂ?
??

??
??

??
??

??

B2 ×B1 B2
d2=pr2 //

d0=pr1

²²

B2

d0=t1

²²

B2 ×B0 B2

D1=h2

ÂÂ?
??

??
??

??
??

??

B2 d1=s1

// B1

(9.12)

such that the diagram commutes.
We also use a morphism θ3 : B1×B0 B1×B0 B1×B0 B1 → B2×B1 B2 obtained from the

same universal property as in the diagram
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B1 ×B0 B1 ×B0 B1 ×B0 B1

θ3

ÂÂ?
?

?
?

?
?

?
D3//

idB1
×idB1

×h1=D1

²²

B1 ×B0 B1 ×B0 B1

α

ÂÂ?
??

??
??

??
??

??

i1×h1=D1

²²

B2 ×B1 B2
d2=pr2 //

d0=pr1

²²

B2

d0=t1

²²

B1 ×B0 B1 ×B0 B1

α

ÂÂ?
??

??
??

??
??

?? D2

// B1 ×B0 B1

h1=D1

ÂÂ?
??

??
??

??
??

??

B2 d1=s1

// B1

(9.13)

such that the diagram commutes. Then we can express the next axiom:

vii) the associativity coherence law

B1 ×B0 B1 ×B0 B1 ×B0 B1
θ2 //

θ3

²²

B2 ×B1 B2

d1=v

²²
B2 ×B1 B2

d1=v
// B2

(9.14)
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From the commutativity of the exterior of the diagram

B1 ×B0 B1

σ

ÂÂ?
?

?
?

?
?

?

(idB1
,i1s0)×idB1//

i1×B0
λ

²²

B1 ×B0 B1 ×B0 B1

α

ÂÂ?
??

??
??

??
??

??

i1×h1=D1

²²

B2 ×B1 B2
d2=pr2 //

d0=pr1

²²

B2

d0=t1

²²

B2 ×B0 B2

h2

ÂÂ?
??

??
??

??
??

?? s1×s1

// B1 ×B0 B1

h1=D1

ÂÂ?
??

??
??

??
??

??

B2 d1=s1

// B1

we have another axiom:

viii) the coherence for left and right identity

B1 ×B0 B1
σ //

ρ×B0
i1

²²

B2 ×B1 B2

d1=v

²²
B2 ×B1 B2

d1=v
// B2

(9.15)

There exists a unique ᾱ : B1 ×B0 B1 ×B0 B1 → B2 such that d0ᾱ = d1α and d1ᾱ = d0α.
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ix) invertibility of associativity

B2 ×B1 B2

v

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä
B1 ×B0 B1 ×B0 B1

(α,ᾱ)oo (ᾱ,α) //

idB1
×B0

h1

¨¨²²
²²
²²
²²
²²
²²
²²
²²
²²
²²
²²
²²

h1×B0idB1
h1

ºº/
//

//
//

//
//

//
//

//
//

//
//

/
B2 ×B1 B2

v

ÂÂ?
??

??
??

??
??

??

B2 B2

B1

i1

__?????????????
B2 ×B1 B2

h1

oo B2 ×B1 B2
h1

// B1

i1

??ÄÄÄÄÄÄÄÄÄÄÄÄÄ

(9.16)

There exists a unique morphism λ̄ : B1 → B2 such that d0λ̄ = d1λ and d1λ̄ = d0λ.

x)l invertibility of the left identity

B2 ×B1 B2

v

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä
B1

(λ,λ̄) //(λ̄,λ)oo

(i0t0,idB1
)

²²

i1

ÂÂ?
??

??
??

??
??

??
??

??
??

??
??

??
??

??
?

B2 ×B1 B2

v

²²

B2

B1

i1

__?????????????
B2 ×B1 B2

h1

oo B2

(9.17)

Also there exists a similar axiom x)r for the invertibility of the right identity.



10 PSEUDOSIMPLICIAL CATEGORIES 82

10 Pseudosimplicial categories

In this chapter, we use a supercoherence developed by Jardine in [50] which associates to
an internal bicategory B given by the diagram of categories and functors

B1

D1 //

D0

// B0
oo (10.1)

a pseudosimplicial category called the pseudosimplicial nerve or supercoherent nerve of B

B0
// B1

D1oo
D0

oo //// B2
oo

D2oo

D0

oo ////
// B3 . . .oooo

D3oo

D0

oo (10.2)

Here, the category B1 is the category of morphisms of the bicategory B and the category B0

is the image D(B0) of the discrete functor D : E → Cat(E) which just turns an object of E
into a discrete internal category in E . Source functor D1 is defined by D1 := d0

1 : B1 → B0

and D1 := d0
1d

1
1 = d0

1d
1
0 : B2 → B0, and a target functor D0 is defined by D0 := d0

1 : B1 → B0

and D1 := d0
0d

1
1 = d0

0d
1
1 : B2 → B0, where we used the same notation for both components

of the functor, and we will constantly use this convention elsewhere. Also, the unit functor
S0 : B0 → B1 is defined by S0 := i0 : B0 → B1 and S0 := i0i1 : B1 → B2 on the level of
objects and morphisms respectively, where i0 : B0 → B1 and i1 : B1 → B2 are unit sections.
The vertex of the following pullback of functors

B2
D0 //

D2

²²

B1

D1

²²
B1 D0

// B0

(10.3)

is (isomorphic to) the category B1 ×B0 B1 whose objects and morphisms are horizontally
composable pairs of 1-morphisms and 2-morphisms respectively, with vertical composition.
We always use the following convention: for any functor F : C → B0, the first of the symbols

C ×B0 B1 B1 ×B0 C

will denote the pullback of F and D0, and the second one that of D1 and F , so that two
projections in the above diagram are defined by D0 = Pr1 and D2 = Pr2. The third
functor D1 : B2 → B1 from B2 is given by the horizontal composition H : B1 ×B0 B1 → B1.
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These three functors D0, D1, D2 : B2 → B1 satisfy the following three simplicial identities

D0D1 = D0D0

D1D2 = D1D1

D0D2 = D1D0

(10.4)

with target and source functors D0, D1 : B1 → B0, where the first and the second identity
is the compatibility of the horizontal composition with the target and source functors
respectively, and the third identity is given by the pullback (10.3).

Two degeneracy functors S0, S1 : B1 → B2 are defined respectively by two compositions

B1

(D0,IdB1
)

// B1 ×B0 B0

S0×IdB1 // B1 ×B0 B1

B1

(IdB1
,D1)

// B0 ×B0 B1

IdB1
×S0 // B1 ×B0 B1

so that for any 1-morphism f : x → y in B we have S0(f) = (f, ix) and S1(f) = (iy, f).
The left identity λ : H(IT × IdB1) ⇒ IdB1 and the right identity ρ : H(IdB1 × IS) ⇒ IdB1

give two pseudosimplicial identities

λ : D1S1 ⇒ IdB1

ρ : D1S0 ⇒ IdB1

(10.5)

which are described by the diagram

B2

D1

²²
ÄÄÄÄ{¤ ρ

B1

???? ¾#λ

S1

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
B1 B1

S0

__?????????????????

The category B3 of horizontally composable triples of morphisms is defined by the pullback

B3
D0 //

D3

²²

B2

D2

²²
B2 D0

// B1

(10.6)
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whose vertex is (isomorphic to) the category B1 ×B0 B1 ×B0 B1, and the two functors
D0, D3 : B3 → B1 are defined by projections Pr12, P r23 : B1×B0B1×B0B1 → B1 respectively.
The associativity coherence is a natural isomorphism α : H(H×IdB1) ⇒ H(IdB1×H) given
by the diagram

B3
D2 //

D1

²²

ÄÄÄÄ{¤ α

B2

D1

²²
B2 D1

// B1

(10.7)

in which two functors D1, D2 : B3 → B2 are defined by H(IdB1×H),H(H×IdB1) : B3 → B2

respectively. The associativity natural isomorphism give a pseudosimplicial isomorphism

α : D1D2 ⇒ D1D1 (10.8)

which is the only nontrivial relation among face pseudosimplicial identities from B3 to B1

DiDj = Dj−1Di (i < j, i 6= 1) (10.9)

The sequence of categories B0,B1,B2,B3, . . . is a part of a diagram of categories and functors

B0
// B1

D1oo
D0

oo //// B2
oo

D2oo

D0

oo ////
// B3 . . .oooo

D3oo

D0

oo (10.10)

in Cat(E), where we denoted just extremal face functors D0, Dn : En → En−1, while we
omitted degeneracy functors Si : En → En+1 for 0 ≤ i ≤ n. These functors do not satisfy
simplicial identities on the nose, but they constitute the so called pseudosimplicial category.

Definition 10.1. A pseudosimplicial category B• is a pseudofunctor B : ∆op → Cat from
the skeletal simplicial category ∆ to the 2-category Cat of small 2-categories.

The sequence (10.10) is the pseudosimplicial category B• called the pseudosimplicial
nerve of the bicategory B and is such that it satisfies pseudosimplicial identities

α : DiDj ⇒ Dj−1Di (i < j)
α : SiSj ⇒ Sj+1Si (i ≤ j)
α : DiSj ⇒ Sj−1Di (i ≤ j)
α : DiSj ⇒ Id (i = j, i = j + 1)
α : DiSj ⇒ Sj−1Di (i > j + 1)

(10.11)

The only nontrivial simplicial natural isomorphisms in the pseudosimplicial nerve B• of the
bicategory B are provided with associativity and left and right identity isomorphisms, and
they satisfy coherence conditions appropriate for those in the definition of the bicategory.
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The sequence of categories (10.10) may be seen as a barycentric subdivision of the 4-simplex

B0

B0

B0

B0

B0

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B2

B2

B2

B2

B2

B2

B2

B2

B2

B2

B3

B3

B3

B3

B3B4

D1

jjTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

D0

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

D1

ssggggggggggggggggggggggggggggggggggggggggggggg
D0

33ggggggggggggggggggggggggggggggggggggggggggg

D1

¥¥­­
­­

­­
­­

­­
­­

­­
­­

­­
­­

­­
­­

­­
­­

­­
­­

­­
­­

­­

D0

DD­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

D1

wwoooooooooooooooooooooo

D0

77oooooooooooooooooooooo

D1

¨¨²²
²²
²²
²²
²²
²²
²²
²²
²²
²²
²²
²

D0

GG²²²²²²²²²²²²²²²²²²²²²²²
D1

¶¶'
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
'

D0

SS''''''''''''''''''''''''''''''''''''''''''''

D0

WW///////////////////////

D1

ºº/
//

//
//

//
//

//
//

//
//

//
//

D0

__????????????????????????????

D1

ÂÂ?
??

??
??

??
??

??
??

??
??

??
??

??
??

?

D1 //D0oo

D1

OO

D0

²²

D0

--

D1

\\

D2

zz

D0

77
D1

WW

D2

²²

D0 //

D1

bb

D2

®®

D0

77

D1oo

D2

²²

D0

33

D1

ss
D2 ¶¶

D0

DD

D1

¥¥

D2

gg D0

SS

D1

ll

D2

··

D0

OO

D1

ÄÄ
D2

ÂÂ

D0

SS

D1

¶¶

D2 44

D0

jj

D1

··

D2

??

D0

**

D1

]]

D2

zz
D3

²²

D0

//D1

gg

D2

xx

D3

­­

D0

CC
D1

SS

D2
¨¨

D3

__

D0

OO

D1

ii

D2 ÂÂ

D3
33

D0

??

D1ll

D2

­­

D3

RR

D0 22
D1

]]

D2

yy

D3²²

D4

TT

in a similar way by which we have seen a sequence of objects (6.1) as a data for an
internal category C. This time, certain faces of the above 4-simplex will again be pullbacks
corresponding to categories (10.3) and (10.6) of horizontally composable morphisms, but
some other faces which do not commute correspond to an associativity coherence (10.7).
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11 Small 2-fibrations

From an internal bicategory B, we will construct the fibered bicategory FB : FB → E as
follows. The objects of FB are pairs (I, i), where I is an object in E , and i : I → B0 is a
morphism in E . For any two such objects (I, i) and (J, j), a 1-morphism in FB is given by
a pair (a, f) : (I, i) → (J, j), which consists of two morphisms a : I → J and f : I → B1 in
E , such that D1f = i and D0f = ja. A 2-morphism φ : (a, f) ⇒ (a′, f ′) : (I, i) → (J, j) in
FB is a morphism φ : I → B2 in E such that d1φ = f and d0φ = f ′. It is then necessary
that we have ja = ja′ since we have an identity

ja = D0f = D0d1φ = D0d0φ = D0f
′ = ja′

Remark 11.1. The above definition of 1-morphisms is not entirely appropriate because
a general 1-morphism (a, f) : (I, i) → (J, j) is fully determined by a triple (a, f, j), since
we cannot extract its 0-target (specially a morphism j : J → B0) by the structure of E and
B, like we could for the 0-source, by defining s0(a, f) = (s(f), s0f). Similar remark holds
for 2-morphisms also. However, we will use an abbreviated form for morphisms in FB in
order to avoid to many labels.

For any two composable 1-morphisms in FB

(I, i)
(a,f) // (J, j)

(b,g) // (K, k)

the composition is defined by (b, g)◦ (a, f) := (ba, g ◦f) where the morphism g ◦f : I → B1

is defined by g ◦ f := D1(ga, f)0, and (ga, f)0 : I → B1 ×B0 B1 is the unique morphism
given by the universal property of the pullback

I

f

­­··
··
··
··
··
··
··
··
··
··
··
··
··
··

a

ÂÂ?
??

??
??

??
??

(ga,f)0

²²Â
Â
Â
Â
Â
Â
Â
Â
Â

J

j

²²

g

ÂÂ?
??

??
??

??
?

B1 ×B0 B1

D2

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

D0 // B1

D1
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

B1 D0

// B0

obtained from the factorization D0f = ja = D1ga, for which we have following identities

D0(ga, f)0 = ga
D1(ga, f)0 = g ◦ f
D2(ga, f)0 = f.

(11.1)
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Let’s consider composable triple of 1-morphisms

(I, i)
(a,f) // (J, j)

(b,g) // (K, k)
(c,h) // (L, l)

The 1-morphism (c, h)[(b, g)(a, f)] is given by (c, h)(ba, g ◦ f) := (cba, h ◦ (g ◦ f)) where
h ◦ (g ◦ f) := D1(hba, g ◦ f)0 and the morphism (hba, g ◦ f)0 : I → B1×B0 B1 is the unique
one given by the universal property of the pullback

I

g◦f=D1(ga,f)0

­­··
··
··
··
··
··
··
··
··
··
··
··
··
··

ba

ÂÂ?
??

??
??

??
??

(hba,g◦f)0

²²Â
Â
Â
Â
Â
Â
Â
Â
Â

K

h

ÂÂ?
??

??
??

??
?

k

²²

B1 ×B0 B1
D2

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

D0 // B1

D1
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

B1 D0

// B0

obtained from the factorization D0D1(ga, f)0
(10.4)
= D0D0(ga, f)0

(11.1)
= D0ga = kba =

D1hba, such that we have following identities

D0(hba, g ◦ f)0 = hba
D1(hba, g ◦ f)0 = D1(hba,D1(ga, f)0)0 = h ◦ (g ◦ f)
D2(hba, g ◦ f)0 = D1(ga, f)0 = g ◦ f.

(11.2)

On the other side, On the other side, from (c, h)(b, g) := (cb, h ◦ g) we have an identity
[(c, h)(b, g)](a, f) = (cb, h ◦ g)(a, f) = (cba, (h ◦ g) ◦ f), where h ◦ g := D1(hb, g)0 and
(h ◦ g) ◦ f := D1((h ◦ g)a, f)0 are two 1-morphisms in FB obtained from two pullbacks

J

g

­­··
··
··
··
··
··
··
··
··
··
··
··
··
··

b

ÂÂ?
??

??
??

??
?

(hb,g)0

²²Â
Â
Â
Â
Â
Â
Â
Â
Â

K

h

ÂÂ?
??

??
??

??
?

k

²²

B1 ×B0 B1
D2

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

D0 // B1

D1
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

B1 D0

// B0

I

f

­­··
··
··
··
··
··
··
··
··
··
··
··
··
··

a

ÂÂ?
??

??
??

??
??

((h◦g)a,f)0

²²Â
Â
Â
Â
Â
Â
Â
Â
Â

J

D1(hb,g)0=h◦g

ÂÂ?
??

??
??

??
?

j

²²

B1 ×B0 B1
D2

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

D0 // B1

D1
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

B1 D0

// B0
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whose diagonals are D0g = kb = D1hb and D0f = ja = D1ga = D1D2(hb, g)0a
(10.4)
=

D1D1(hb, g)0a, respectively. From the first diagram we have the following identities

D0(hb, g)0 = hb
D1(hb, g)0 = h ◦ g
D2(hb, g)0 = g

(11.3)

and from the second diagram we have the following identities

D0((h ◦ g)a, f)0 = D1(hb, g)0 = h ◦ g
D1((h ◦ g)a, f)0 = D1(D1(hb, g)0a, f) = (h ◦ g) ◦ f
D2((h ◦ g)a, f)0 = f.

(11.4)

The morphism (hba, ga, f)0 : I → B1×B0 B1×B0 B1 is obtained from the following pullback

I

(ga,f)0

­­··
··
··
··
··
··
··
··
··
··
··
··
··
··

a

ÂÂ?
??

??
??

??
??

(hba,ga,f)0

²²Â
Â
Â
Â
Â
Â
Â
Â
Â

J

(hb,g)0

ÂÂ?
??

??
??

??
?

g

²²

B1 ×B0 B1 ×B0 B1

D3

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

D0 // B1 ×B0 B1

D2
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

B1 ×B0 B1
D0

// B1

and the factorization D1(ga, f)0 = ga = D2(hb, g)0a, and it is a unique one for which
identities

D0(hba, ga, f)0 = (hb, g)0a
D3(hba, ga, f)0 = (ga, f)0

(11.5)

are satisfied. Then we use this morphism to define the corresponding component of an
associativity coherence 2-morphism αh,g,f : [(c, h) ◦ (b, g)] ◦ (a, f) ⇒ (c, h) ◦ [(b, g) ◦ (a, f)]

αh,g,f := α(hba, ga, f)0 (11.6)

where α : B1×B0B1×B0B1 → B2 is defined in (9.3). The morphism D1(hba, ga, f)0 satisfies

D0D1(hba, ga, f)0
(10.9)
= D0D0(hba, ga, f)0

(11.5)
= D0(hb, g)0a

(11.3)
= hba

D2D1(hba, ga, f)0
(10.9)
= D1D3(hba, ga, f)0

(11.5)
= D1(ga, f)0

(11.1)
= g ◦ f
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and since from (11.2) we know that the morphism (hba, g ◦ f)0 is the unique one satisfying
these identities, we conclude D1(hba, ga, f)0 = (hba, g◦f)0. The morphism D2(hba, ga, f)0
satisfies following identities

D0D2(hba, ga, f)0
(10.9)
= D1D0(hba, ga, f)0

(11.5)
= D1(hb, g)0a

(11.3)
= h ◦ g

D2D2(hba, ga, f)0
(10.9)
= D2D3(hba, ga, f)0

(11.5)
= D2(ga, f)0

(11.1)
= f

and since from (11.4) we know that the morphism ((h◦g)a, f)0 is the unique one satisfying
these identities, we conclude D2(hba, ga, f)0 = ((h ◦ g)a, f)0. Therefore we have identities

D1(hba, ga, f)0 = (hba, g ◦ f)0
D2(hba, ga, f)0 = ((h ◦ g)a, f)0

(11.7)

The horizontal composition of 2-morphisms in FB

(I, i)

(a,f)

""

(a′,f ′)

<<
ÂÂ ÂÂ
®¶ φ (J, j)

(b,g)

""

(b′,g′)

<<
ÂÂ ÂÂ
®¶ ψ (K, k) ⇒ (I, i)

(ba,g◦f)

""

(b′a′,g′◦f ′)

<<
ÂÂ ÂÂ
®¶ ψ◦φ (K, k)

is defined by ψ ◦ φ := d1(ψa, φ)0, where (ψa, φ)0 : I → B2 ×B0 B2 is the unique morphism
obtained from the factorization D0φ = ja = D1ψa in the pullback

I

φ

­­··
··
··
··
··
··
··
··
··
··
··
··
··
··

a

ÂÂ?
??

??
??

??
??

(ψa,φ)0

²²Â
Â
Â
Â
Â
Â
Â
Â
Â

J

j

²²

ψ

ÂÂ?
??

??
??

??
?

B2 ×B0 B2

D2

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

D0 // B2

D1
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

B2 D0

// B0

satisfying the following identities

D0(ψa, φ)0 = ψa
D1(ψa, φ)0 = ψ ◦ φ
D2(ψa, φ)0 = φ.

(11.8)
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The vertical composition of 2-morphisms in FB

(I, i)

(a,f)

¿¿
ÂÂ ÂÂ
®¶ φ

BB

(a′′,f ′′)

ÂÂ ÂÂ
®¶ ξ

(a′,f ′)
// (J, j) ⇒ (I, i)

(a,f)

¿¿

(a′′,f ′′)

BB
ÂÂ ÂÂ
®¶ ξφ (J, j)

is given by the morphism ξφ : I → B2 defined by ξφ := d1(ξ, φ)1 where the morphism
(ξ, φ)1 : I → B2 ×B1 B2 is the unique one obtained from the factorization d0φ = f ′ = d1ξ

I

φ

­­··
··
··
··
··
··
··
··
··
··
··
··
··
··

f ′

··*
**

**
**

**
**

**
**

**
**

**
**

**
**

*

ξ

ÂÂ?
??

??
??

??
??

??
??

??
??

??
??

?

(ξ,φ)1

²²Â
Â
Â
Â
Â
Â
Â
Â
Â

B2 ×B1 B2

d2

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

d0 // B2

d1
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

B2 d0

// B1

in the above pullback satisfying the following identities

d0(ξ, φ)1 = ξ
d1(ξ, φ)1 = ξφ
d2(ξ, φ)1 = φ.

(11.9)

Remark 11.2. The statement of the following theorem, will use a notion of a fibration of
bicategories or fibred bicategory. Hermida defined a fibered 2-category in [44] as a strict
2-functor F : E → B between strict 2-categories which has enough cartesian 1-cells and
2-cells, defined by universal properties which generalize those for cartesian morphisms in
usual fibrations of categories. Also he gave a slightly different characterization of fibered
2-categories in [45] where he proposed the definition of the fibred bicategory by means of
the bireflection of 2-categories and their homomorphisms into 2-categories and 2-functors.
Therefore, a homomorphism F : E → B between bicategories must be a 2-fibration if its
associated strict 2-functor F̃ : Ẽ → B̃ between strict 2-categories is such. We will use this
notion without going into details, which will be given elsewhere.



11 SMALL 2-FIBRATIONS 91

Theorem 11.1. The above construction defines a fibred bicategory

FB : FB → E (11.10)

which we call the small 2-fibration induced by B.

Proof. Let’s consider composable string of 1-morphisms

(I, i)
(a,f) // (J, j)

(b,g) // (K, k)
(c,h) // (L, l)

(d,u)// (M, m).

First we will show that the horizontal composition is coherently associative, which means
that we have the following identity

(u ◦ αh,g,f )αu,h◦g,f (αu,h,g ◦ f) = αu,h,g◦fαu◦h,g,f.

The 1-morphism (d, u)[(c, h)(b, g)] is given by (d, u)(cb, h ◦ g) := (dcb, u ◦ (h ◦ g)) where
u ◦ (h ◦ g) := D1(ucb, h ◦ g)0 and the morphism (ucb, h ◦ g)0 : I → B1 ×B0 B1 is the unique
one given by the universal property of the pullback

J

h◦g=D1(hb,g)0

­­··
··
··
··
··
··
··
··
··
··
··
··
··
··

cb

ÂÂ?
??

??
??

??
?

(ucb,h◦g)0

²²Â
Â
Â
Â
Â
Â
Â
Â
Â

L

u

ÂÂ?
??

??
??

??
?

l

²²

B1 ×B0 B1
D2

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

D0 // B1

D1
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

B1 D0

// B0

obtained from the factorization D0D1(hb, g)0
(10.4)
= D0D0(hb, g)0 = D0hb = lcb = D1ucb,

such that the identities

D0(ucb, h ◦ g)0 = ucb
D1(ucb, h ◦ g)0 = D1(ucb, D1(hb, g)0)0 = u ◦ (h ◦ g)
D2(ucb, h ◦ g)0 = D1(hb, g)0 = h ◦ g

(11.11)

are satisfied. Also, from an identity (d, u) ◦ (c, h) := (dc, u ◦ h) it follows

[(d, u) ◦ (c, h)] ◦ (b, g) = (dc, u ◦ h)(b, g) = (dcb, (u ◦ h) ◦ g)

where u ◦ h := D1(uc, h)0 and (u ◦ h) ◦ g = D1((u ◦ h)b, g)0 = D1(D1(uc, h)0b, g)0 are
morphisms obtained from two pullbacks
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K

h

­­··
··
··
··
··
··
··
··
··
··
··
··
··
··

c

ÂÂ?
??

??
??

??
?

(uc,h)0

²²Â
Â
Â
Â
Â
Â
Â
Â
Â

L

u

ÂÂ?
??

??
??

??
?

l

²²

B1 ×B0 B1
D2

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

D0 // B1

D1
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

B1 D0

// B0

J

g

­­··
··
··
··
··
··
··
··
··
··
··
··
··
··

b

ÂÂ?
??

??
??

??
?

((u◦h)b,g)0

²²Â
Â
Â
Â
Â
Â
Â
Â
Â

K

D1(uc,h)0=u◦h

ÂÂ?
??

??
??

??
?

k

²²

B1 ×B0 B1
D2

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

D0 // B1

D1
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

B1 D0

// B0

where D0h = lc = D1uc and D0g = kb = D1hb = D1D2(uc, h)0b
(10.4)
= D1D1(uc, h)0b are

factorizations represented by two diagonals, respectively. Therefore, we have identities

D0(uc, h)0 = uc
D1(uc, h)0 = u ◦ h
D2(uc, h)0 = h

(11.12)

from the first diagram and from the second diagram we have following identities

D0((u ◦ h)b, g)0 = D1(uc, h)0 = u ◦ h
D1((u ◦ h)b, g)0 = D1(D1(uc, h)0b, g) = (u ◦ h) ◦ g
D2((u ◦ h)b, g)0 = g.

(11.13)

By an analogy with (11.5) we have a morphism (ucb, hb, g)0 : J → B1 ×B0 B1 ×B0 B1

obtained
J

(hb,g)0

­­··
··
··
··
··
··
··
··
··
··
··
··
··
··

b

ÂÂ?
??

??
??

??
?

(ucb,hb,g)0

²²Â
Â
Â
Â
Â
Â
Â
Â
Â

K

(uc,h)0

ÂÂ?
??

??
??

??
?

h

²²

B1 ×B0 B1 ×B0 B1

D3

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

D0 // B1 ×B0 B1

D2
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

B1 ×B0 B1
D0

// B1
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from a factorization D0(hb, g)0
(11.3)
= hb

(11.12)
= D2(uc, h)0b, which is the unique one such

that
D0(ucb, hb, g)0 = (uc, h)0b
D1(ucb, hb, g)0 = (ucb, h ◦ g)0
D2(ucb, hb, g)0 = ((u ◦ h)b, g)0
D3(ucb, hb, g)0 = (hb, g)0.

(11.14)

We use a factorization D0(hba, ga, f)0
(11.5)
= (hb, g)0a

(11.14)
= D3(ucb, hb, g)0a in the pullback

I

(hba,ga,f)0

­­··
··
··
··
··
··
··
··
··
··
··
··
··
··

a

ÂÂ?
??

??
??

??
??

(ucba,hba,ga,f)0

²²Â
Â
Â
Â
Â
Â
Â
Â
Â

J

(ucb,hb,g)0

ÂÂ?
??

??
??

??
?

(hb,g)0

²²

B4
D4

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

D0 // B3

D3
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

B3 D0

// B2

to obtain a unique morphism (ucba, hba, ga, f)0 : I → B4 which satisfies following identities

D0(ucba, hba, ga, f)0 = (ucb, hb, g)0a
D4(ucba, hba, ga, f)0 = (hba, ga, f)0.

(11.15)

The morphism D1(ucba, hba, ga, f)0 : I → B3 satisfies following identities

D0D1(ucba, hba, ga, f)0
(10.11)

= D0D0(ucba, hba, ga, f)0
(11.15)

= D0(ucb, hb, g)0a
(11.14)

= (uc, h)0b

D3D1(ucba, hba, ga, f)0
(10.11)

= D1D4(ucba, hba, ga, f)0
(11.15)

= D1(hba, ga, f)0
(11.7)
= (hba, g ◦ f)0

and by an analogy with (11.5), the morphism (ucba, hb, g ◦ f)0 : I → B3 is the unique one
satisfying these identities, we conclude

D1(ucba, hba, ga, f)0 = (ucba, hba, g ◦ f)0. (11.16)

By a similar argument, from the uniqueness of the morphism (ucba, (h ◦ g)a, f)0 : I → B3

we get an identity
D2(ucba, hba, ga, f)0 = (ucba, (h ◦ g)a, f)0 (11.17)

and from the uniqueness of the morphism ((u ◦ h)ba, ga, f)0 : I → B3 we get an identity

D3(ucba, hba, ga, f)0 = ((u ◦ h)ba, ga, f)0. (11.18)
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From the definition (9.3) we have the following identities:

αu,h,ga = α(ucb, hb, g)0a
(11.15)

= αD0(ucba, hba, ga, f)0

αu,h,g◦f = α(ucba, hba, g ◦ f)0
(11.16)

= αD1(ucba, hba, ga, f)0

αu,h◦g,f = α(ucba, (h ◦ g)a, f)0
(11.17)

= αD2(ucba, hba, ga, f)0

αu◦h,g,f = α((u ◦ h)ba, ga, f)0
(11.18)

= αD3(ucba, hba, ga, f)0

αh,g,f = α(hba, ga, f)0
(11.15)

= αD4(ucba, hba, ga, f)0

Also, from the definition (9.11) a morphism θ1 : B1 ×B0 B1 ×B0 B1 ×B0 B1 → B2 ×B1 B2

I
(ucba,hba,ga,f)0

//

(αu,h,ga,f)0

##

(ucba,(h◦g)a,f)0

ÂÂ?
??

??
??

??
??

??
??

??
??

??
??

??
??

??
?

αu,h,g◦f

!!(αu,h◦g,f ,αu,h,g◦f)1
//

αu,h◦g,f

,,

B1 ×B0 B1 ×B0 B1 ×B0 B1

θ1

ÂÂ?
?

?
?

?
?

? α×i1
//

i1×h1×i1=D2

²²

B2 ×B0 B2

d0=t1×t1

²²

D1=h2

ÂÂ?
??

??
??

??
??

??

B2 ×B1 B2
d2=pr2 //

d0=pr1

²²

B2

d0=t1

²²

B1 ×B0 B1 ×B0 B1
D2

//

α

ÂÂ?
??

??
??

??
??

??
B1 ×B0 B1

D1=h1

ÂÂ?
??

??
??

??
??

??

B2 d1=s1

// B1

(11.19)

is the unique one such that two identities d0θ1 = αD2 and d2θ1 = D1(α× i1) are satisfied.
The first identity implies

d0θ1(ucba, hba, ga, f)0 = αD2(ucba, hba, ga, f)0
(11.17)

= α(ucba, (h ◦ g)a, f)0 = αu,h◦g,f

and we see that the morphism αu,h◦g,f factors through θ1(ucba, hba, ga, f)0. But from the
universal property of the pullback at the front face of the diagram (11.19) we know that a
morphism (αu,h◦g,f , αu,h,g ◦ f)1 : I → B2 ×B1 B2 is the unique one with this property, and
we conclude that

θ1(ucba, hba, ga, f)0 = (αu,h◦g,f , αu,h,g ◦ f)1. (11.20)
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Definitions (9.12) and (9.13) of morphisms θ2, θ3 : B1 ×B0 B1 ×B0 B1 ×B0 B1 → B2 ×B1 B2

I
(ucba,hba,ga,f)0//

(u,αh,g,f )0

ÂÂ?
??

??
??

??
??

??
??

??
??

??
??

??
??

??
?

αu,h◦g,f (αu,h,g◦f)

!!

u◦αh,g,f

,,

(u◦αh,g,f ,αu,h◦g,f (αu,h,g◦f))1

//

(αu◦h,g,f ,αu,h,g◦f)1

##
B1 ×B0 B1 ×B0 B1 ×B0 B1

θ2

ÂÂ?
?

?
?

?
?

?
θ1 //

i1×α

²²

B2 ×B1 B2

d1=v

ÂÂ?
??

??
??

??
??

??

B2 ×B1 B2
d2=pr2 //

d0=pr1

²²

B2

d0=t1

²²

B2 ×B0 B2

D1=h2

ÂÂ?
??

??
??

??
??

??

B2 d1=s1

// B1

(11.21)

I
(ucba,hba,ga,f)0//

(ucb,hb,g◦f)0

ÂÂ?
??

??
??

??
??

??
??

??
??

??
??

??
??

??
?

((u◦h)ba,ga,f)0

##

αu◦h,g,f

!!

αu◦h,g,f

,,

(αu,h,g◦f ,αu◦h,g,f )0

//

B1 ×B0 B1 ×B0 B1 ×B0 B1

θ3

ÂÂ?
?

?
?

?
?

?
D3//

i1×i1×h1=D1

²²

B1 ×B0 B1 ×B0 B1

α

ÂÂ?
??

??
??

??
??

??

i1×h1=D1

²²

B2 ×B1 B2
d2=pr2 //

d0=pr1

²²

B2

d0=t1

²²

B1 ×B0 B1 ×B0 B1

α

ÂÂ?
??

??
??

??
??

?? D2

// B1 ×B0 B1

h1=D1

ÂÂ?
??

??
??

??
??

??

B2 d1=s1

// B1

(11.22)
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in diagrams (11.21) and (11.22), provide by a similar argument the following two identities

θ2(ucba, hba, ga, f)0 = (u ◦ αh,g,f , αu,h◦g,f (αu,h,g ◦ f))1 (11.23)

θ3(ucba, hba, ga, f)0 = (αu,h,g◦f , αu◦h,g,f )1 (11.24)

so that (11.20), (11.23) and (11.24) together with the associativity coherence law (9.14)
imply

(u ◦ αh,g,f )[αu,h◦g,f (αu,h,g ◦ f)] = d1(u ◦ αh,g,f , αu,h◦g,f (αu,h,g ◦ f))1
(11.23)

=
(11.23)

= d1θ2(ucba, hba, ga, f)0
(9.14)
= d1θ3(ucba, hba, ga, f)0

(11.24)
= d1(αu,h,g◦f , αu◦h,g,f )1 =

= αu,h,g◦fαu◦h,g,f

and we conclude that the horizontal composition is coherently associative. The coherence
for the left and right identity follows similar pattern and it is implied by an axiom (9.15).
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12 The second nonabelian cohomology

In this chapter we will give an explicit definition of the second nonabelian cohomology, fol-
lowing the general approach described by Street in [82]. The crucial step is the constructive
proof of the existence of the bicategory of 2-descent data, associated to any 3-truncated
cosimplicial bicategory

B0
∂0

//
∂1 // B1

oo
∂0

//
∂2 //// B2 ////

∂0

//

∂3 //oooo B3
oooooo (12.1)

in the category Bicats of bicategories and strict morphisms of bicategories. The category
Bicats is an Eilenberg-Moore category of algebras over a monad K2 : 2−Graph → 2−Graph
on the category 2−Graph of 2-graphs. This monad was first explicitly described by Batanin
in [14], who called it an initial contractible monad with a system of compositions, inspired
by ideas from the homotopy theory. Since K2 preserves filtered colimits, its algebras are
models of a finite-limit theory, so that we can take models of bicategories in any finitely
complete category E .

Theorem 12.1. For any 3-truncated cosimplicial bicategory (12.1) Desc2(B) consisting of
the following data:

• any object is a triple (x, f, φ) where x is an object in B0, f : ∂1x → ∂0x is a 1-
morphism in B1, and φ : ∂1f ⇒ ∂0f ◦ ∂0f is a 2-morphism in B2

∂2∂0x = ∂0∂1x

∂0f

ÂÂ?
??

??
??

??
??

??

∂2∂1x = ∂1∂1x ∂1f
//

∂2f

??ÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂1∂0x = ∂0∂0x

Â ÂÂ ÂKS φ

such that for x0 = ∂3∂2∂1x, x1 = ∂3∂2∂0x, x2 = ∂3∂1∂0x, x3 = ∂2∂1∂0x the 3-simplex

x3

x0

∂1∂1f=∂2∂1f

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂3∂1x=∂1∂2x
//

∂2∂2f=∂3∂2f

ÂÂ?
??

??
??

??
??

??
??

??
ÂÂ ÂÂ
®¶ ∂2φ

ÂÂ ÂÂ
®¶ ∂3φ

____ +3∂0φ____ +3∂1φ

x2

∂1∂0f=∂0∂0f

__?????????????????

x1

∂2∂0f=∂0∂1f

OO

∂3∂0f=∂0∂2f

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
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commutes. The pasting composite of the above 3-simplex is a commutative diagram

∂1∂1f = ∂2∂1f
∂2φ +3

∂1φ

®¶

∂2∂0f ◦ ∂2∂2f = ∂0∂1f ◦ ∂2∂2f
∂0φ◦∂2∂2f +3 (∂0∂0f ◦ ∂0∂2f) ◦ ∂2∂2f

α∂0∂0f,∂0∂2f,∂2∂2f

®¶
∂1∂0f ◦ ∂1∂2f = ∂0∂0f ◦ ∂3∂1f

∂0∂0f◦∂3φ
+3 ∂0∂0f ◦ (∂3∂0f ◦ ∂3∂2f) = ∂0∂0f ◦ (∂0∂2f ◦ ∂2∂2f)

that represents a nonabelian 2-cocycle condition

α∂0∂0f,∂0∂2f,∂2∂2f (∂0φ ◦ ∂2∂2f)∂2φ = (∂0∂0f ◦ ∂3φ)∂1φ. (12.2)

• any 1-morphism (u, µ) : (x, f, φ) → (y, g, ψ) is a pair consisting of a 1-morphism
u : x → y in B0, together with the 2-morphism in B1

∂1x
∂1u //

f

²²

ÄÄÄÄ{¤ µ

∂1y

g

²²
∂0x ∂0u

// ∂0y

such that the prism in the bicategory B2

∂2∂0x = ∂0∂1x

∂2∂0u=∂0∂1u

²²

∂0f

ÂÂ?
??

??
??

??
??

??

∂2∂1x = ∂1∂1x //

∂2f

??ÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂2∂1u=∂1∂1u

²²

∂1∂0x = ∂0∂0x

∂1∂0u=∂0∂0u

²²

Â ÂÂ ÂKS φ

∂2∂0y = ∂0∂1y

???? ¾#
∂0µÄÄÄÄ

;C∂2µ

∂0g

ÂÂ?
??

??
??

??
??

??

∂2∂1y = ∂1∂1y

∂2g

??ÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂1g
// ∂1∂0y = ∂0∂0y

Â ÂÂ ÂKS ψ
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commutes. This means that we have a commutative diagram

∂1g ◦ ∂2∂1u = ∂1g ◦ ∂1∂1u

ψ◦∂2∂1u

®¶

∂1µ +3 ∂1∂0u ◦ ∂1f = ∂0∂0u ◦ ∂1f
∂0∂0u◦φ +3 ∂0∂0u ◦ (∂0f ◦ ∂2f)

(∂0g ◦ ∂2g) ◦ ∂2∂1u

α∂0g,∂2g,∂2∂1u

®¶

(∂0∂0u ◦ ∂0f) ◦ ∂2f

α∂0∂0u,∂0f,∂2f

KS

∂0g ◦ (∂2g ◦ ∂2∂1u)
∂0g◦∂2µ

+3 ∂0g ◦ (∂2∂0u ◦ ∂2f) = ∂0g ◦ (∂0∂1u ◦ ∂2f)
α−1

∂0g,∂0∂1u,∂2f

+3 (∂0g ◦ ∂0∂1u) ◦ ∂2f

∂0µ◦∂2f

KS

in the category of morphisms of the bicategory B2.

• a 2-morphisms β : (u, µ) ⇒ (v, ν) is a 2-morphism β : u ⇒ v in B0, such that the
diagram

∂1x

∂1v

;;

∂1u

##

f

²²

ÂÂ ÂÂ
®¶ ∂1β ∂1y

g

²²

ÂÂ ÂÂ
®¶ ν

∂0x

∂0u
##u

m f _ X Q
I

∂0v

;;
ÂÂ ÂÂ
®¶ ∂0β ∂0y

commutes. This diagram becomes in a 1-dimensional form a commutative diagram

g ◦ ∂1u
g◦∂1β +3

µ

®¶

g ◦ ∂1v

ν

®¶
∂0u ◦ f

∂0β◦f
+3 ∂0v ◦ f
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Proof. For any two composable 1-morphisms in Desc2(B)

(x, f, φ)
(u,µ) // (y, g, ψ)

(v,ν) // (w, h, ξ)

we define the composition by (v, ν) ◦ (u, µ) = (v ◦ u, ν¤µ) where ν¤µ is a 2-morphism
obtained by the pasting of the diagram

∂1x
∂1u //

f

²²

ÄÄÄÄ{¤ µ

∂1y

g

²²

∂1v //

ÄÄÄÄ{¤ ν

∂1w

h

²²
∂0x ∂0u

// ∂0y
∂0v

// ∂0w

in the bicategory B1. This means that the 2-morphism ν¤µ : h ◦ ∂1(v ◦ u) ⇒ ∂0(v ◦ u) ◦ f
is defined by the diagram

h ◦ ∂1(v ◦ u) = h ◦ (∂1v ◦ ∂1u)

ν¤µ

®¶

α−1
h,∂1v,∂1u +3 (h ◦ ∂1v) ◦ ∂1u

ν◦∂1u +3 (∂0v ◦ g) ◦ ∂1u

α∂0v,g,∂1u

®¶
∂0(v ◦ u) ◦ f = (∂0v ◦ ∂0u) ◦ f ∂0v ◦ (∂0u ◦ f)

α−1
∂0v,∂0u,f

ks ∂0v ◦ (g ◦ ∂1u)
∂0v◦µ

ks

so that we have an identity

ν¤µ := α−1
∂0v,∂0u,f (∂0v ◦ µ)α∂0v,g,∂1u(ν ◦ ∂1u)α−1

h,∂1v,∂1u

The horizontal and vertical compositions of 2-morphisms in Desc2(B) are inherited
from the bicategory B0. So the associativity and left and right identity coherence are
also inherited from the bicategory B0, and we will prove that for any three composable
1-morphisms in Desc2(B)

(x, f, φ)
(u,µ) // (y, g, ψ)

(v,ν) // (w, h, ξ)
(t,θ) // (z, k, ζ)
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represented by the diagram

∂1x
∂1u //

f

²²

ÄÄÄÄ{¤ µ

∂1y

g

²²

∂1v //

ÄÄÄÄ{¤ ν

∂1w

h

²²

∂1t //

ÄÄÄÄ{¤ θ

∂1z

k

²²
∂0x ∂0u

// ∂0y
∂0v

// ∂0w ∂0t
// ∂0z

the component αt,v,u : [(t, θ) ◦ (v, ν)] ◦ (u, µ) ⇒ (t, θ) ◦ [(v, ν) ◦ (u, µ)] of the associativity
isomorphism satisfy

∂1x

∂1(t◦(v◦u))

;;

∂1((t◦v)◦u)

##

f

²²

ÂÂ ÂÂ
®¶ ∂1αt,v,u ∂1z

k

²²

ÂÂ ÂÂ
®¶ θ¤(ν¤µ)

∂0x

∂0((t◦v)◦u)
##u

m f _ X Q
I

∂0(t◦(v◦u))

;;
ÂÂ ÂÂ
®¶ ∂0αt,v,u ∂0z

which means that the following diagram in the category of morphisms of the bicategory B1

k ◦ ∂1((t ◦ v) ◦ u)

(θ¤ν)¤µ

®¶

k◦∂1αt,v,u +3 k ◦ ∂1(t ◦ (v ◦ u))

θ¤(ν¤µ)

®¶
∂0((t ◦ v) ◦ u) ◦ f

∂0αt,v,u◦f
+3 ∂0(t ◦ (v ◦ u)) ◦ f

commutes, so that we have an identity

(θ¤(ν¤µ))(k ◦ ∂1αt,v,u) = (∂0αt,v,u ◦ f)((θ¤ν)¤µ)
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The proof of the commutativity of the above diagram follows from the sequence of identities

(θ¤(ν¤µ))(k ◦ ∂1αt,v,u)
(def.)
=

(def.)
= α−1

∂0t,∂0(v◦u),f (∂0t ◦ (ν¤µ))α∂0t,h,∂1(v◦u)(θ ◦ ∂1(v ◦ u))[α−1
k,∂1t,∂1(v◦u)(k ◦ α∂1t,∂1v,∂1u)]

(a.c.)
=

(a.c.)
= α−1

∂0t,∂0(v◦u),f (∂0t ◦ (ν¤µ))α∂0t,h,∂1(v◦u)[(θ ◦ ∂1(v ◦ u))αk◦∂1t,∂1v,∂1u](α−1
k,∂1t,∂1v ◦ ∂1u)α−1

k,∂1(t◦v),∂1u

(a.n.)
=

(a.n.)
= . . . [(∂0t ◦ α−1

h,∂1v,∂1u)α∂0t,h,∂1(v◦u)α∂0t◦h,∂1v,∂1u]((θ ◦ ∂1v) ◦ ∂1u)(α−1
k,∂1t,∂1v ◦ ∂1u)α−1

k,∂1(t◦v),∂1u

(a.c.)
=

(a.c.)
= . . . [(∂0t ◦ (ν ◦ ∂1u))α∂0t,h◦∂1v,∂1u](α∂0t,h,∂1v ◦ ∂1u)((θ ◦ ∂1v) ◦ ∂1u)(α−1

k,∂1t,∂1v ◦ ∂1u)α−1
k,∂1(t◦v),∂1u

(a.n.)
=

(a.n.)
= . . . [(∂0t ◦ α∂0v,g,∂1u)α∂0t,∂0v◦g,∂1u]((∂0t ◦ ν) ◦ ∂1u)(α∂0t,h,∂1v ◦ ∂1u)((θ ◦ ∂1v) ◦ ∂1u)(α−1

k,∂1t,∂1v ◦ ∂1u) . . .
(a.c.)
=

(a.c.)
= . . . α∂0(t◦v),g,∂1u[(α−1

∂0t,∂0v,g ◦ ∂1u)((∂0t ◦ ν) ◦ ∂1u)(α∂0t,h,∂1v ◦ ∂1u)((θ ◦ ∂1v) ◦ ∂1u)(α−1
k,∂1t,∂1v ◦ ∂1u)] . . .

(def.)
=

(def.)
= α−1

∂0t,∂0(v◦u),f (∂0t ◦ α−1
∂0v,∂0u,f )[(∂0t ◦ (∂0v ◦ µ))α∂0t,∂0v,g◦∂1u]α∂0(t◦v),g,∂1u((θ¤ν) ◦ ∂1u)α−1

k,∂1(t◦v),∂1u

(a.n.)
=

(a.n.)
= [α−1

∂0t,∂0(v◦u),f (∂0t ◦ α−1
∂0v,∂0u,f )α∂0t,∂0v,∂0u◦f ](∂0(t ◦ v) ◦ µ)α∂0(t◦v),g,∂1u((θ¤ν) ◦ ∂1u)α−1

k,∂1(t◦v),∂1u

(a.c.)
=

(a.c.)
= (α∂0t,∂0v,∂0u ◦ f)[α−1

∂0(t◦v),∂0u,f (∂0(t ◦ v) ◦ µ)α∂0(t◦v),g,∂1u((θ¤ν) ◦ ∂1u)α−1
k,∂1(t◦v),∂1u)]

(def)
=

(def)
= (∂0αt,v,u ◦ f)((θ¤ν)¤µ)

where each expression in the square brackets transforms by the associativity coherence (a.c.)
in the bicategory B0 or by the fact that the associativity is a natural isomorphism (a.n.).
The coherence for such associativity follows straight from the coherence for associativity
in the bicategory B0.

Therefore, to any 3-truncated cosimplicial bicategory (12.1) we associate a bicategory

Desc2(B) (12.3)

called the bicategory of 2-descent data associated to B. Any internal simplicial object
X : ∆op → E and any internal bicategory B in E , may be use to produce a cosimplicial
bicategory

E(X,B) : ∆ → Bicats (12.4)

by the composition

∆
Xop

// Eop
HomE(−,B) // Bicats

where HomE(−,B) : Eop → Bicats is a presheaf of bicategories, and we denote by HomE(Y,B)
the fiber of the small 2-fibration (11.10)

FB
FB

²²
E

over an object Y in E . These construction allows us to define the second nonabelian
cohomology of simplicial objects in E , with coefficients in an internal bicategory B.



12 THE SECOND NONABELIAN COHOMOLOGY 103

Definition 12.1. Let B be an internal bicategory in a finitely complete category in E, and
let X : ∆op → E be a simplicial object in E. The cohomology bicategory H2(X,B) of the
simplicial object X with coefficient in a bicategory B is defined by

H2(X,B) = Desc2(E(X,B)) (12.5)

the bicategory of 2-descent data of the cosimplicial bicategory E(X,B).

Example 12.1. The second Čech nonabelian cohomology H2(U ,B) is defined with re-
spect to the covering U = {Ui}i∈I of the topological space X. The epimorphism e =
(ei)i∈I :

∐
i∈I Ui → X, induced by the family of embeddings ei : Ui → X, gives a 3-

truncation of the simplicial resolution U•

U3
////

d3

//

d0 //
U2

//
d2

//
d0 //

U1
d1

//
d0 // U0

e // X

where U0 =
∐

i∈I Ui, U1 =
∐

i,j∈I Uij, U2 =
∐

i,j,k∈I Uijk and U3 =
∐

i,j,k,l∈I Uijkl (where
Uij denotes the double intersection Uij = Ui ∩ Uj and so on).

This is just the 3-truncation of the nerve of the Čech groupoid associated to the covering
e : U → X, whose objects are given by the elements (i, x) of U , and for which there exists a
unique morphism (i, j, x) : (j, x) → (i, x) for any element x ∈ Uij. Thus, target and source
morphisms defines face operators d1

0, d
1
1 : U1 → U0 which are given by the first and the

second projection, respectively. The 2-simplex (i, j, k, x) in U2 may be seen as the diagram

k

ÄÄÄÄ{¤(i,j,k,x)

(j,k,x) //

(i,k,x)

ÂÂ?
??

??
??

??
??

??
??

??
? j

(i,j,x)

²²
i

from which we see that the face operators d2
0, d

2
1, d

2
2 : U2 → U1 are defined by

d2
0(i, j, k, x) = (i, j, x)

d2
1(i, j, k, x) = (i, k, x)

d2
2(i, j, k, x) = (j, k, x)

and they are just three possible inclusions of triple intersections into double intersections.
The degeneracy operators s2

0, s
2
1 : U1 → U2 are given by

s2
0(i, j, x) = (i, j, j, x)

s2
1(i, j, x) = (i, i, j, x)
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and these two degenerate 2-simplices may be seen as the two diagrams

j

ÄÄÄÄ{¤(i,j,j,x)

(j,j,x) //

(i,j,x)

ÂÂ?
??

??
??

??
??

??
??

??
? j

(i,j,x)

²²
i

j

ÄÄÄÄ{¤(i,i,j,x)

(i,j,x) //

(i,j,x)

ÂÂ?
??

??
??

??
??

??
??

??
? i

(i,i,x)

²²
i

respectively. The 3-truncation of the simplicial resolution of the covering U = {Ui}i∈I

defines a cosimplicial bicategory

B0
∂0

//
∂1 // B1

oo
∂0

//
∂2 //// B2 ////

∂0

//

∂3 //oooo B3
oooooo

where each bicategory Bn has objects given by the discrete category (Bi)0 defined by the
set HomE(Un, B0), and whose category of 1-morphisms and 2-morphisms is given by the
fiber of the small fibration FBUn over the object Un in E. On the level of objects, coface
operators are defined by the precomposition ∂n

i (f) = fdn
i for any object f : Un−1 → B0 of

the bicategory Bn−1, so that these are the strict homomorphisms of bicategories.
Thus the 2-cocycle in the second Čech nonabelian cohomology is given by the triple

(x, f , φ), where x = (xi)i∈I is the family of morphisms xi : Ui → B0 together with the
family f = (fij)i,j∈I of morphisms fij : Uij → B1 such that s0fij = xj and t0fij = xi. The
family φ = (φijk)i,j,k∈I is given by morphisms φijk : Uijk → B2 which satisfy s1φijk = fik

and t1φijk = fij ◦ fjk and we can view it as the 2-simplex

xi

xl

fil

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

fjl

//

fkl

ÂÂ?
??

??
??

??
??

??
??

??
ÂÂ ÂÂ
®¶ φikl

ÂÂ ÂÂ
®¶ φjkl

____ +3φijk____ +3φijl

xj

fij

__?????????????????

xk

fik

OO

fjk

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

commutes, which means that we have an identity

(fij ◦ φjkl)φijl = αijkl(φijk ◦ fkl)φikl (12.6)

for the Čech nonabelian 2-cocycle (xi, fij , φijk) with values in the bicategory B.
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13 Actions of bicategories

In this section, we will introduce actions of bicategories. It will be clear from the definition
that such actions are categorification of actions of categories.

Definition 13.1. A right action of a bicategory B is quintuple (C, Λ, A, κ, ι) given by:

• a category C and a functor Λ: C → B0 to the discrete category of objects B0 of the
bicategory B, called the momentum functor,

• a functor A : C×B0 B1 → C, called the action functor, and we usually write A(p, f) :=
p / f , for any object (p, f) in C ×B0 B1, and A(a, φ) := a / φ for any morphism
(a, φ) : (p, f) → (q, g) in C ×B0 B1,

• a natural isomorphism

C ×B0 B1 ×B0 B1

IdC×D1

²²

A×IdB1 //

ÄÄÄÄ{¤ κ

C ×B0 B1

A

²²C ×B0 B1
A

// C

whose components are denoted by κp,f,g : (p/f)/g → p/ (f ◦g) for any object (p, f, g)
in C ×B0 B1 ×B0 B1

• a natural isomorphism

C ×B0 B1

A

ÂÂ?
??

??
??

??
??

??
??

??

C

ÂÂ ÂÂ
®¶ ι

(IdC ,IΛ)

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
C

whose components are denoted by ιp : p / iΛ(p) → p for each object p in C

such that following axioms are satisfied:
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• equivariance of the action

C ×B0 B1
A //

Pr2

²²

C

Λ

²²
B1 D1

// B0

which means that for any object (p, f) in C ×B0 B1, we have Λ(p / f) = D1(f), and
for any morphism (a, φ) : (p, f) → (q, g) in C ×B0 B1, we have Λ(a / φ) = D1(φ),

• for any object (p, f, g, h) in C ×B0 B1 ×B0 B1 ×B0 B1 the following diagram

((p / f) / g) / h

κp,f,g/h

wwoooooooooooooo
κp/f,g,h

''OOOOOOOOOOOOOO

(p / (f ◦ g)) / h

κp,f◦g,h

ºº/
//

//
//

//
//

//
//

//
/

(p / f) / (g ◦ h)

κp,f,g◦h

¨¨²²
²²
²²
²²
²²
²²
²²
²²
²²

p / ((f ◦ g) ◦ h))p/αf,g,h

// p / (f ◦ (g ◦ h))

commutes,

• for any object (p, f) in C ×B0 B1 following diagrams

(p / iΛ0(p)) / f

ιp/f

ºº/
//

//
//

//
//

//
//

//
/

κp,iΛ0(p),f
// p / (iΛ0(p) ◦ f)

p/λf

¨¨²²
²²
²²
²²
²²
²²
²²
²²
²²

p / f

(p / f) / is0(f)

ιp/f /is0(f)

ºº/
//

//
//

//
//

//
//

//
/

κp,f,is0(f)// p / (f ◦ is0(f))

p/ρf

¨¨²²
²²
²²
²²
²²
²²
²²
²²
²²

p / f

commute.
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Remark 13.1. Note the fact that A : C ×B0 B1 → C is a functor, immediately implies an
interchange law

(b / ψ)(a / φ) = (ba) / (ψφ)

Definition 13.2. Let π : C → M be a bundle of categories over an object M in E. A
(fiberwise) right action of a bicategory B on a bundle of categories π : C → M is given by
the action of the bicategory B on a category C for which the diagram

C ×B0 B1
A //

Pr1

²²

C

π

²²
B1 π

// M

commute. We call a bundle π : C → M , a B-2-bundle over M .

Definition 13.3. Let (C, Λ, A, κ, ι) and (D, A′, Ω, κ′, ι′) be two B-categories. A B-equivariant
functor is a pair (F, θ) : (C, Λ, A, κ, ι) → (D, A′, Ω, κ′, ι′) consisting of

• a functor F : C → D
• a natural transformations θ : A′ ◦ (F × IdB1) ⇒ F ◦A

C ×B0 B1

ÄÄÄÄ{¤ θ

F×IdB1 //

A

²²

D ×B0 B1

A′

²²
C

F
// D

such that following conditions are satisfied:

• Ω ◦ F = Λ
C

Λ

ÂÂ?
??

??
??

??
??

??
?

F // D

Ω

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

B0
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• the diagram

C ×B0 B1 ×B0 B1

ÄÄÄÄÄÄ
IdC×H

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

F×IdB1
×IdB1 //

²²

D ×B0 B1 ×B0 B1

IdD×H

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

A′×IdB1

²²

C ×B0 B1

F×IdB1 //

A

²²

ÄÄÄÄ{¤ κ
ÄÄÄÄ{¤ θ

D ×B0 B1

A′

²²

ÄÄÄÄ{¤ κ′

C ×B0 B1

ÄÄÄÄ{¤ θ

A

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

F×IdB1 // D ×B0 B1

A′

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

C
F

// D

commutes, which means that we have an identity of natural transformations

(F ◦ κ)[θ ◦ (A× IdB1)][A
′ ◦ (θ × IdB1)] = [θ ◦ (IdC ×H)][κ′ ◦ (F × IdB1 × IdB1)]

when evaluated at object (p, f, g) in C ×B0 B1×B0 B1, becomes a commutative diagram

(F (p) / f) / g
θp,f /g

//

κ′
F (p),f,g

²²

F (p / f) / g
θp/f,g // F ((p / f) / g)

F (κp,f,g)

²²
F (p) / (f ◦ g)

θp,f◦g

// F (p / (f ◦ g))

in the category D.
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• the diagram

C ×B0 B1

A

²²

F×IdB1 // D ×B0 B1

A′

²²

C ÂÂ ÂÂ
®¶ ι

(IdC ,IΛ)

??ÄÄÄÄÄÄÄÄÄÄ F //______________

??
??

??
??

??
?

??
??

??
??

??
?

ÄÄÄÄ{¤ θ

D ÂÂ ÂÂ
®¶ ι′

(IdD,IΩ)

??Ä
Ä

Ä
Ä

Ä

??
??

??
??

??

??
??

??
??

??

C
F

// D
commutes, which means that we have identity of natural transformations

(ι′ ◦ IdF )IdF = (F ◦ ι)[θ ◦ (IdC , IΛ)]Id(F,IΛ)

when evaluated at object p in C, becomes a commutative diagram

F (p) / iΛ(p)

θp,iΛ(p) //

ι′
F (p)

ÂÂ?
??

??
??

??
??

??
??

?
F (p / iΛ(p))

F (ιp)

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

F (p)

in the category D.

Definition 13.4. A B-equivariant natural transformation τ : (F, θ) ⇒ (G, ζ) between B-
covariant functors (F, θ), (G, ζ) : (C, Λ, Φ, α, ι) → (D,Ψ,Ω, β, κ) is a natural transformation
τ : F ⇒ G such that diagram

C ×B0 B1
ÂÂ ÂÂ
®¶, τ×IdB1

G×IdB1

99

F×IdB1

%%

A

²²

D ×B0 B1

A′

²²
C ÂÂ ÂÂ

®¶ τ

F

$$

G

:: D

ζ

5=
θ

!) (13.1)
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commutes, which means that we have a following identity

ζ[A′ ◦ (τ × IdB1)] = (τ ◦A)θ

that becomes a commutative diagram

F (p) / f
θp,f //

τp/f

²²

F (p / f)

τp/f

²²
G(p) / f

ζp,f

// G(p / f)

in the category D, when evaluated at object p in C.
The above construction gives rise to the 2-category in an obvious way, so we have a

following theorem.

Theorem 13.1. The class of B-categories, B equivariant functors and their natural trans-
formations form a 2-category.

Proof. The vertical and horizontal composition in a 2-category is induced from the com-
position in Cat.

Let B be a bicategory and P a category together with a momentum functor Λ: P → B0

P1

s

²²

t

²²

B2

s1

²²

t1

²²
P0

Λ0

ÂÂ?
??

??
??

??
??

??
B1

s0

²²

t0

²²
B0

(13.2)

and let B acts on P via an action functor

A : P ×B0 B1 → P (13.3)

which satisfies coherence axioms from Definition 13.1. Such actions allows us to introduce
a fundamental objects which we will use later.
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Theorem 13.2. For any action (13.2) of the bicategory B on the category P, there exists
an action bicategory P / B consisting of the following data:

• Objects of P / B are given by objects P0 of the category P
• a 1-morphism is a pair (ψ, h) : q → p which we draw as an arrow

q
(ψ,h) // p

where h : Λ0(q) → Λ0(p) is a 1-morphism in the bicategory B, and ψ : q → p / h is a
morphism in the category P, thus it is an element of P1.

• a 2-morphism γ : (ψ, h) ⇒ (ξ, l)

q

(ψ,h)

ÃÃ

(ξ,l)

>>
ÂÂ ÂÂ
®¶ γ p

is a 2-morphism γ : h ⇒ l in B2, such that the diagram of morphisms in P

q
ψ //

ξ

ÂÂ?
??

??
??

??
??

??
??

??
p / h

p/γ

²²
p / l

commutes.

Proof. We define the composition for any two composable 1-morphisms

r
(φ,g) // q

(ψ,h) // p

by (ψ, h) ◦ (φ, g) = (ψ ◦ φ, h ◦ g) : r → p, where ψ ◦ φ : r → p / (h ◦ g) is a morphism in P,
defined by the composition

r
φ // q / g

ψ/g // (p / h) / g
κp,h,g // p / (h ◦ g)

and we will show that this composition is a coherently associative. For any three compos-
able 1-morphisms

s
(ϕ,f) // r

(φ,g) // q
(ψ,h) // p
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first we have a morphism ((ψ ◦ φ) ◦ ϕ, (h ◦ g) ◦ f), where the first term is a composite of

s
ϕ // r / f

(ψ◦φ)/f// (p / (h ◦ g)) / f
κp,h◦g,f// p / ((h ◦ g) ◦ f)

Also we have the composition (ψ ◦ (φ ◦ ϕ), h ◦ (g ◦ f)), and the first term is given by a
composite

s
φ◦ϕ // q / (g ◦ f)

ψ/(g◦f)// (p / h) / (g ◦ f)
κp,h,g◦f// p / (h ◦ (g ◦ f))

and the component of the associativity αh,g,f : (h◦g)◦f → h◦(g◦f), defines a 2-morphism

s

((ψ◦φ)◦ϕ,(h◦g)◦f)

ÃÃ

(ψ◦(φ◦ϕ),h◦(g◦f))

>>
ÂÂ ÂÂ
®¶ αh,g,f p

which we see from the commutativity of the diagram

s
ϕ // r / f

(ψ◦φ)/f //

φ/f

²²

(p / (h ◦ g)) / f
κp,h◦g,f // p / ((h ◦ g) ◦ f)

p/αh,g,f

²²

(q / g) / f
(ψ/g)/f //

κp,h,g

²²

((p / h) / g) / f

κp,h,g/f

OO

κp/h,g,f

²²
s

φ◦ϕ
// q / (g ◦ f)

ψ/(g◦f)
// (p / h) / (g ◦ f) κp,h,g◦f

// p / (h ◦ (g ◦ f))

that follows from the definition of the horizontal composition, the naturality and the co-
herence for quasiassociativity of the action. The horizontal composition of 2-morphisms

r

(φ,g)

ÃÃ

(θ,k)

>>
ÂÂ ÂÂ
®¶ π q

(ψ,h)

ÃÃ

(ξ,l)

>>
ÂÂ ÂÂ
®¶ ρ p

is given by the horizontal composition in B2

r

(ψ◦φ,h◦g)

ÃÃ

(ξ◦θ,l◦k)

>>
ÂÂ ÂÂ
®¶ ρ◦π p
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since we have a commutative diagram

r

θ ÃÃA
AA

AA
AA

AA
φ // q / g

ψ/g //

ξ/g &&MMMMMMMMMMM

q/π
yytttttttttt

(p / h) / g

(p/ρ)/π

²²

(p/ρ)/gxxpppppppppp

κp,h,g // p / (h ◦ g)

p/(ρ◦π)

²²

q / k

ξ/k %%JJJ
JJJ

JJJ
J (p / l) / g

(p/l)/π

&&NNNNNNNNNN
(p/l)/π

xxqqqqqqqqqq

(p / l) / k (p / l) / k κp,l,k

// p / (l ◦ k)

which follows from the interchange law and the naturality of the coherence for the quasi-
associativity of the action. The vertical composition of 2-morphisms in P / B is similarly
induced from the one in B. The coherence of the horizontal composition in P /B is imme-
diately given by the coherence of the horizontal composition in B.

Proposition 13.1. There exists a canonical projection

Λ: P / B → B (13.4)

which is a strict homomorphism of bicategories.

Proof. A homomorphism Λ: P / B → B is defined by (the component of) the momentum
functor Λ0(p) = λ0(p), for any object p in P / B. For any 1-morphism (ψ, h) it is defined
by Λ1(ψ, h) = h, and for any 2-morphism γ : (ψ, h) ⇒ (ξ, l) in P / B, it is given simply by
Λ2(γ) = γ. Then we have a following identity

Λ((ψ, h) ◦ (φ, g)) = Λ(ψ ◦ φ, h ◦ g) = h ◦ g = Λ(ψ, h) ◦ Λ(φ, g)

which means that this homomorphism is strict (it preserves a composition strictly).

Example 13.1. The right action of a bicategory B on itself is given by a diagram

B2

s1

²²

t1

²²

B2

s1

²²

t1

²²
B1

s0

ÂÂ?
??

??
??

??
??

??
B1

s0

²²

t0

²²
B0
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where a momentum functor is given by the source S : B1 → B0 and an action functor is
given by a horizontal composition H : B1 ×B0 B1 → B1. Any object of an action bicategory
B1 / B is an element of B1, which which is a 1-morphism

x
f // y.

A 1-morphism from an object f to an object f ′ is a pair (φ, g) : f → f ′ as in the diagram

x

g

²²

f

½½ÂÂ ÂÂ
®¶ φ y

z f ′

DD

where φ : f ⇒ f ′ ◦ g is a 2-morphism in B. A 2-morphism γ : (φ, g) ⇒ (ψ, h) is a diagram

x

g

½½

h

¥¥

f

½½
y

z f ′

DD
____ +3γ

φ

·¿

ψ

£­

where γ : g ⇒ h is a 2-morphism in B such that identity ψ = (f ′ ◦ γ)φ holds. We will
denote an action bicategory B1 / B by TB, and we call it a tangent bicategory because the
2-bundle

T : TB → B0 (13.5)

(which associates to all above diagrams an object y) is a generalization of a tangent 2-bundle
introduced by Roberts and Schreiber in [79] in the case of strict 2-categories. This example
of an action bicategory plays a crucial role in understanding of universal 2-bundles. We
will later in Example 15.1 relate the construction of a tangent 2-bundle with a décalage
construction (2.1) introduced in Chapter 2.
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14 Bigroupoid 2-torsors

Definition 14.1. A right action of a bigroupoid B on a groupoid P is given by the action
of the underlying bicategory B on a category P given as previously by (P,B, Λ, A, α, ι).

Definition 14.2. Let B be an internal bigroupoid in E, and π : P → X a right B-2-bundle
of groupoids over X in E. We say that (P, π, Λ, A, X) is a right B-principal-2-bundle (or
a right B-torsor) over X if the following conditions are satisfied:

• the projection morphism π0 : P0 → X is an epimorphism,

• the action morphism λ0 : P0 → B0 is an epimorphism,

• the induced internal functor

(Pr1, A) : P ×B0 B1 → P ×X P (14.1)

is a (strong) equivalence of internal groupoids over P (where both groupoids are seen
as objects over P by the first projection functor).

Example 14.1. (The trivial 2-torsor) The trivial 2-torsor is given by the triple (B1, T, S,H, B0)
where the momentum is given by the source functor S : B1 → B0, and the action is given
by the horizontal composition H : B1 ×B0 B1 → B1.

Example 14.2. For any B-2-torsor (P, π, Λ, A, X) over X, and any morphism f : M →
B0, we have a pullback B-2-torsor over M , defined by the quadruple (f∗(P), P r1, Λ ◦
Pr2, f

∗(A), X).

Since we assumed that the functor (14.1) is an equivalence, we choose its weak inverse

(Pr1, D) : P ×X P → P ×B0 B1

together with natural isomorphisms

(Pr1, µ) : IdP×B0
B1 ⇒ (Pr1, D) ◦ (Pr1, A), (Pr1, ν) : (Pr1, A) ◦ (Pr1, D) ⇒ IdP×XP .

The second component of the above weak inverse is (what we call) the division functor

D : P ×X P → B1 (14.2)

and its value on any object (p, q) ∈ P ×X P is a 1-morphism D(p, q) of B which we denote

p∗q : λ0(q) → λ0(p)

and for any morphism (γ, δ) : (p, q) → (r, s) in P ×X P we have a 2-morphism D(γ, δ) of B

γ∗δ : p∗q ⇒ r∗s.
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The component of the natural isomorphism ν : A◦(Pr1, D) ⇒ Pr2 between the two functors
from P ×X P to P, indexed by an object (p, q) in P ×X P is given by an isomorphism

νp,q : p / p∗q → q.

The component of the natural isomorphism µ : Pr1 ⇒ D◦(Pr1, A) between the two functors
from P ×B0 B1 to P indexed by an object (p, f) in P ×B0 B1 is given by an isomorphism

µp,f : p → p∗(p / f).

When the category E is the category Top of topological spaces, we use local sections
σi : Ui → P0 of the map π0 : P0 → X over some covering U = (Ui)i∈I of the base space X.
We use the division functor to define morphisms gij = σ∗i σj : Uij → B1, and the morphisms

fij : σj → σi / gij

are defined by the inverse of the component νσi,σj : σi / σ∗i σj → σj . The following diagram

σk

fik

²²

fjk // σj / gjk

fij/gjk

²²
(σi / gij) / gjk

κijk

²²
σi / gik

σi/βijk

// σi / (gij ◦ gjk)

defines a morphism in ψ ∈ HomP×XP(σi / gik, σi / (gij ◦ gjk)) by the composition

σi / gik
f−1

ik // σk
fjk // σj / gjk

fij/gjk// (σi / gij) / gjk
κijk // σi / (gij ◦ gjk)

and since the set HomP×XP(σi / gik, σi / (gij ◦ gjk)) is an image of the induced functor
(Pr1, Φ) which defines a bijective correspondence with the set HomP×B0

B1((σi, gik), (σi, gij◦
gjk)) the inverse image of ψ defines sections βijk : gik → gij◦gjk in B2, such that the diagram
becomes the identity

(σi / βijk)fik = κijk(fij / gjk)fjk.
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Theorem 14.1. Any B-2-torsor π : P → X gives rise to the Čech 2-cocycle in H2(U ,B)
for some covering U = (Ui)i∈I of the base space X.

Proof. Let’s take local sections σi : Ui → P0 of the map π0 : P0 → X over some covering
U = (Ui)i∈I of the base space X. We define local sections τi : Ui → B0 as objects of the
small 2-fibration FB over the fiber Ui by τi = λ0σi. Then consider the following cube

σl
fkl //

fil

²²Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

fjl

wwooooooooooooooooooooooooooooooooo σk / gkl

fjk/gkl

wwoooooooooooo

fik/gkl

²²

(σj / gjk) / gkl

(fij/gjk)/gkl

²²

κj,jk,kl

wwooooooooooo

σj / gjl
σj/βjkl //

fij/gjl

²²

σj / (gjk ◦ gkl)

fij/(gjk◦gkl)

²²

((σi / gij) / gjk) / gkl

κi,ijk,kl/gkl

²²

κiij,jk,klwwooooooooooo

(σi / gij) / gjl
(σi/gij)/βjkl

//

κi,ij,jl

²²

(σi / gij) / (gjk ◦ gkl)

κi,ij,jkl

²²

(σi / gik) / gkl
(σi/βijk)/gkl

wwoooooooooooo
κi,ik,kl

²²
σi / gil

σi/βikl_______

σi/βijl

wwo o o o o o o o o o o o o o o o
(σi / (gij ◦ gjk)) / gkl−

κi,ij,kl

²²

σi / (gik / gkl)

σi/(βijk◦gkl)
wwoooooooooooo

σi / ((gij ◦ gjk) ◦ gkl)

σi/αij,jk,kl

wwooooooooooo

σi / (gij / gjl)
σi/(gij◦βjkl)

// σi / (gij ◦ (gjk ◦ gkl))

in which the top, left and back faces are the defining diagrams for nonabelian cocycles. The
top right part of the right face consists of one such diagram acted by gη

kl, and the top left
and bottom right part of the right face are two instances of naturality of the action, while
the bottom left part of the right face as well as bottom part of the front face is the coherence
for an action. The top part of the front face is the commutativity of an action obtained by
factoring in two (equal) ways the morphism fij /βjkl : σj /gjl → (σi /gij)/ (gjk ◦gkl). Since
these five faces of the cube in which all arrows are invertible commute, it follows that the
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sixth (bottom) face

σi / gil

σi/βijl

²²

σi/βikl // σi / (gik ◦ gkl)

σi/(βijk◦gkl)

²²
σi / ((gij ◦ gjk) ◦ gkl)

σi/αij,jk,kl

²²
σi / (gij ◦ gjl)

σi/(gij◦βijk)
// σi / (gij ◦ (gjk ◦ gkl))

also commutes. Since the functor (Pr1, A) : P×B0B1 → P×XP is fully faithful, the inverse
image of the diagonal 2-morphism from σi /gil to σi /(gij ◦(gjk ◦gkl)) in the above diagram,
consists of the single 2-morphism between gil and (gij ◦ (gjk ◦ gkl)) which gives the identity

(gij ◦ βjkl)βijl = αijkl(βijk ◦ gkl)βikl

for the nonabelian 2-cocycle (gij , βijk) with values in the bigroupoid B.

Now we describe the gluing construction which is inverse to the construction from the
previous theorem.

Theorem 14.2. For any 2-cocycle (τi, gij , βijk) in H2(U ,B), there exists a B-2-torsor
π : P → X over X together with an equivalence

φ : τ∗(B1) // P|U
over U .

Proof. We take the 2-cocycle (τi, gij , βijk) in H2(U ,B), with respect to some covering U =
{Ui}i∈I of X, and a 2-truncation of the simplicial resolution U•

U ×X U ×X U //
d2

//
d0 //

U ×X U
d1

//
d0 //

U
e // X

of the epimorphism e = (ei)i∈I : U =
∐

i∈I Ui → X, induced by a family of embeddings
ei : Ui → X. This is just the nerve of the Čech groupoid associated to the covering
e : U → X, whose objects are given by the elements (i, x) of U , and unique morphisms
(i, j, x) : (j, x) → (i, x) between any two elements in the same fiber. Thus, target and



14 BIGROUPOID 2-TORSORS 119

source morphisms d0, d1 : U ×X U → U are given by the first and the second projection,
respectively.

The construction of the 2-torsor P is given by the pseudocolimit of the pseudosimplicial
category over the simplicial resolution U• of the covering τ : U → X

R2

ρ2

²²

//
D2

//
D0 // R1

ρ1

²²

D1

//
D0 // R0

η //

ρ0

²²

P
π

²²
U2

//
d2

//
d0 //

U1
d1

//
d0 //

U0
e // X

where U0 = U , U1 = U ×X U , U2 = U ×X U ×X U , and each groupoid Rn is a pullback

Rn

ρn

²²

πn // B1

D0

²²
Un τn

// B0

(14.3)

of the trivial right B-torsor D0 : B1 → B0 by the unique morphism τn = τdn : Un → B0

and the morphism dn : Un → U0 is defined by dn = dndn−1...d1 for n ≥ 1, and d0 = idU .
Explicitly, on the level of objects, the category R0 is given by the pullback τ∗(B1) of

the trivial B-2-torsor T : B1 → B0. Object of the category R0 are triples (i, x, f) where
τi(x) = t0(f), and any morphism is given by a triple (i, x, φ) : (i, x, f) → (i, x, f ′) where
φ : f ⇒ f ′ is a 2-morphism in B2, such that τi(x) = T (φ). The composition in R0 is
inherited from the vertical composition of 2-morphisms in B, and the functor ρ0 : R0 → U
is given by the projection on the first two factors.

The category ρ1 : R1 → U×X U over U×X U is defined by the pullbackR = (τd1)∗(B1).
Objects of the category R1 are quadruples (i, j, x, g) where σj(x) = t0(g), and any mor-
phism is given by a quadruple (i, j, x, ψ) : (i, j, x, g) → (i, j, x, g′) where ψ : g ⇒ g′ is again
a 2-morphism in B2, such that σj(x) = T (ψ).

The category ρ2 : R2 → U ×X U ×X U over U ×X U ×X U is defined by the pullback
R = (τd2d1)∗(B1), so its objects and morphisms are given by quintuples as above.

The first two face functors D0, D1 : R1 → R0 are defined for any 1-simplex (i, j, x, g)
in R1 by

Di(i, j, x, g) =
{

(i, x, gij(x)g) i = 0
(j, x, g) i = 1

(14.4)

on the level of objects and similarly on the level of morphisms.
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The next three face functors D0, D1, D2 : R2 →R1 are defined by

Di(i, j, k, x, h) =





(i, j, x, gjk(x)h) i = 0
(i, k, x, h) i = 1
(j, k, x, h) i = 2

(14.5)

on the level of objects and similarly on the level of morphisms.
The following simplicial identities of functors hold on the nose

D1D1(i, j, k, x, h) = D1(i, k, x, h) = (k, x, h) = D1(j, k, x, h) = D1D2(i, j, k, x, h)
D0D2(i, j, k, x, h) = D0(j, k, x, h) = (j, x, gjk(x)h) = D0(i, j, x, gjk(x)h) = D1D0(i, j, k, x, h)

The nontrivial simplicial identity is given by a natural isomorphism β : D0D0 ⇒ D0D1,
whose component indexed by an object (i, j, k, x, h) ofR2 is given by a morphism (i, x, β−1

ijk)
from the object D0D0(i, j, k, x, h) = D0(i, j, x, gjk(x)h) = (i, x, gij(x)gjk(x)h) to the object
D0D1(i, j, k, x, h) = D0(i, k, x, h) = (i, x, gik(x)h).

We construct the category P as a pseudocolimit of the pseudosimplicial category R•.
It is given by a version of the Grothendieck construction, and it goes as follows.

The objects of P are given by the union of objects of Rn. We describe morphisms
in P by means of a particular example. A morphism (m,φ) : (i, x, f) → (i, j, k, x, g) from
an object (i, x, f) in R0 to an object (i, j, k, x, g) in R2 is given by a pair of morphisms,
where m : [0] → [2] is a monotonic map in ∆, whose canonical factorization in ∆ is given
by m = δ1δ0 (so that we have U(m)(i, j, k, x) = (i, x) in U1). Then the second component
of the above pair is given by a morphism φ : (i, x, f) → R(m)(i, j, k, x, g) = (i, x, gik(x)g)
in R0. For another morphism (n, ψ) : (i, j, k, x, g) → (i, j, k, l, x, h), where n = δ1 : [2] → [3]
and ψ : (i, j, k, x, g) → R(n)(i, j, k, l, x, h) = (i, j, k, x, gkl(x)h), the composition is defined
by a pair (nm,ψ ◦ φ) : (i, x, f) → (i, j, k, l, x, h), where the morphism ψ ◦ φ : (i, x, f) →
(i, k, l, x, h) is defined by the composition

(i, x, f)
φ // R(m)(i, j, k, x, g)

R(m)(ψ)// R(m)R(n)(i, j, k, l, x, h) ∼ // R(nm)(i, j, k, l, x, h)

where the last isomorphism is obtained from the component of the natural isomorphism
β : D0D0 ⇒ D0D1.

The projection π : P → X is explicitly described by π0(i, j, x, h) = x on the level of
objects. Also we have a momentum functor λ : P → B0, defined by π0(i, j, x, h) = s0(h),
and the action functor is naturally defined by the horizontal composition

(i, j, x, h) / g = (i, j, x, h ◦ g). (14.6)

It follows that the functor π : P → M is a B-2-torsor over X, with respect to an action
(14.6).
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15 Simplicial interpretation of bigroupoid 2-torsors

Let we describe the simplicial set P• arising by an application of the Duskin nerve functor

N2 : Bicat → SSet

to an action bicategory P / B. The set of 0-simplices is P0 and any 1-simplex is an arrow

pj
(πij ,fij) // pi

and face operators are defined by d1
0(πij , fij) = pi and d1

1(πij , fij) = pj , while the degeneracy
is defined by s1

0(pi) = (ιpi , ipi) and it is given by the arrow

pi
(ιpi ,ipi ) // pi

where the morphism ιpi : pi → pi/iΛ0(pi) is an identity coherence of the action. A 2-simplex
in P• is of the form

pk

ÄÄÄÄ{¤ βijk

(πjk,fjk)
//

(πik,fik)

ÂÂ?
??

??
??

??
??

??
??

??
pj

(πij ,fij)

²²
pi

where the diagram
pk

πij◦πjk //

πik

ÂÂ?
??

??
??

??
??

??
??

??
pi / (fij ◦ fjk)

p/βijk

²²
pi / fik

of morphisms in P commutes, and the morphism πij ◦ πjk : pk → pi / (fij ◦ fjk) is the
composite of

pk
πjk // pj / fjk

πij/fjk// (pi / fij) / fjk
κi,j,k // pi / (fij ◦ fjk)

of morphisms in P. Face operators are defined by

d2
0(βijk) = (πjk, fjk)

d2
1(βijk) = (πik, fik)

d2
2(βijk) = (πij , fij)
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and the degeneracy operators are given by

s2
0(πij , fij) = ρfij

s2
1(πij , fij) = λfij

which are the two 2-simplices

pj

ÄÄÄÄ{¤ ρfij

(ιpj ,ipj )
//

(πij ,fij)

ÂÂ?
??

??
??

??
??

??
??

??
pj

(πij ,fij)

²²
pi

pj

ÄÄÄÄ{¤ λfij

(πij ,fij) //

(πij ,fij)

ÂÂ?
??

??
??

??
??

??
??

??
pi

(ιpi ,ipi)

²²
pi

respectively, where the 1-morphisms ρfij
: fij ◦ ipj → fij and λfij

: ipi ◦ fij → fij are the
components of the right and left identity natural isomorphisms in B.
A general 3-simplex is of the form

pi

ÄÄÄÄ{¤βijk
????[c

βijl

pl

ÄÄÄÄ{¤βikl

(fil,πil)

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ (fjl,πjl) //

(fkl,πkl)

ÂÂ?
??

??
??

??
??

??
??

??
pj

????[c
βjkl

(fij ,πij)

__?????????????????

pk

(fik,πik)

OO

(fjk,πjk)

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

where we have an identity

βikl(βijk ◦ fkl) = αijklβijl(βjkl ◦ fij)

which is just a nonabelian 2-cocycle condition.
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Example 15.1. Let B• be Duskin nerve for a bicategory B. The tangent bicategory TB
from Example 13.1. is action bicategory for the right action of B on itself and a décalage
construction (2.1) from Chapter 2 becomes the diagram of simplicial sets

B0

s0

²²

B0

s2
0

²²

B0

s3
0

²²

B0

s4
0

²²

... Sk0(B•)

S0

²²
B1

d0

OO

//

d1

²²

B2

d2
0

OO

d1oo
d0

oo ////

d2

²²

B3

d3
0

OO

oo
d2oo

d0

oo

d3

²²

////
//
B4

d4
0

OO

d4

²²

oooo
oo

oo
... Dec(B•)

D1

²²

D0

OO

B0

s0

OO

// B1

s1

OO

d1oo
d0

oo //// B2

s2

OO

oo
d2oo

d0

oo ////
//
B3

s3

OO

oooo
oo

oo
... B•

S1

OO

in which D1 : Dec(B•) → B• is a simplicial map which is the Duskin nerve of the canonical
projection Λ: TB → B and D0 : Dec(B•) → B• is a simplicial map which is the Duskin
nerve of the tangent 2-bundle T : TB → B0

Theorem 15.1. Let the bigroupoid B acts on a groupoid P. Then the Duskin nerve of the
canonical projection (13.4) is a simplicial map Λ• = N2(Λ): P• → B• which is a simplicial
action of the Duskin nerve B• on the bigroupoid B, i.e. it is an exact fibration for all
n ≥ 2.

Proof. We need to show that for any n ≥ 2 and for any k such that 0 ≤ k ≤ n, the diagram

Pn

pk̄

²²

λn // Bn

pk̄

²²∧k
n(P•)

λk
n

// ∧k
n(B•)

is a pullback. A k-horn ((fij , πij), ..., (fj,k−1, πj,k−1), (fk,k+1, πk,k+1), ..., (fn−1,n, πn−1,n)) in∧k
n(P•) is given by the n-tuple of 1-morphisms in ABP, and its image by λk

2 :
∧k

2(P•) →∧k
2(P•) is a k-horn in

∧k
n(B•), given by the n-tuple (fij , ..., fj,k−1, fk,k+1, ..., fn−1,n) of 1-

morphisms in B. For example, in the case n = 2, any filler of a 1-horn (fij ,−, fjk) in∧1
2(B•), is the 2-simplex

xk

ÄÄÄÄ{¤ βijk

fjk //

fik

ÂÂ?
??

??
??

??
??

??
??

??
xj

fij

²²
xi
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in B2. A 2-simplex in P• is a lifting of the previous 2-simplex if it is of the form

pk

ÄÄÄÄ{¤ βijk

(πjk,fjk)
//

(πik,fik)

ÂÂ?
??

??
??

??
??

??
??

??
pj

(πij ,fij)

²²
pi

where the diagram
pk

πij◦πjk //

πik

ÂÂ?
??

??
??

??
??

??
??

??
pi / (fij ◦ fjk)

p/βijk

²²
pi / fik

of morphisms in P commutes, and the morphism πij ◦ πjk : pk → pi / (fij ◦ fjk) is the
composite of

pk
πjk // pj / fjk

πij/fjk// (pi / fij) / fjk
κi,j,k // pi / (fij ◦ fjk)

so we see that a pair ((fij , πij),−, (fjk, πjk), βijk) in
∧1

2(P•)×∧1
2(B•)B2 uniquely determines

above 2-simplex in P2. Since P is a groupoid, any pair consisting of a k-horn in
∧k

2(B•), for
k = 0, 2, and a 2-simplex in B2 which covers the k-horn, uniquely determines a 2-simplex
in P2, and thus provides a canonical isomorphism P2 '

∧k
2(P•) ×∧k

2(B•) B2. Since both
simplicial objects are 2-coskeletal, the assertion follows for all n ≥ 2.

Observe that even in the case when we just have an action of the bicategory B on
the category P, the above condition for an exact fibration is still satisfied for inner horns
0 < k < n. Thus it is sensible to introduce weakened concept of an exact fibration.

Definition 15.1. A simplicial map Λ• : E• → B• is a weak exact fibration in dimension n
if diagrams

En

pk̄

²²

λn // Bn

pk̄

²²∧k
n(E•) // ∧k

n(B•)
are pullbacks for all 0 < k < n. We call it a weak exact fibration if it is a weak exact
fibration in all dimensions.
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With respect to this definition we generalize the simplicial actions of n-dimensional
hypergroupoids to the case of weak n-dimensional Kan complexes. First we give their
formal definition.

Definition 15.2. A weak n-dimensional Kan hypergroupoid G• in E is a weak Kan complex
such that the canonical map Gm → ∧k

m(G•) is an isomorphism for all m > n and 0 < k <
m.

Now we generalize actions with respect to this simplicial objects.

Definition 15.3. An action of the n-dimensional Kan complex is an internal simplicial
map Λ• : P• → B• in E which is a weak exact fibration for all m ≥ n.

This concept provides a following simplicial characterization of an action of the bicat-
egory B on the category P.

Theorem 15.2. Let the bicategory B acts on a category P. Then the simplicial map
Λ• = N2(Λ): P• → B• is a simplicial action of the Duskin nerve B• of the bicategory B,
i.e. it is a weak exact fibration for all n ≥ 2.

In the case of the bigroupoid B, the Duskin nerve functor is a 2-dimensional hyper-
groupoid B• = N2(B) and let P• = N2(ABP) be the Duskin nerve of an action bigroupoid
associated to the action of the bigroupoid B on the groupoid P. Glenn introduced in [36]
a simplicial definition of an n-dimensional hypergroupoid n-torsor in E .

Definition 15.4. An action Λ• : P• → B• is the n-dimensional hypergroupoid n-torsor
over X in E if P• is augmented over X, aspherical and n-1-coskeletal (P• ' Coskn−1(P•)).

In the case of the bigroupoid B, the above definition reduces to the following definition.

Definition 15.5. A bigroupoid B• 2-torsor over an object X in E is an internal simplicial
map Λ• : P• → B• in S(E), which is an exact fibration for all n ≥ 2, and where P• is
augmented over X, aspherical and 1-coskeletal (P• ' Cosk1(P•)).

Thus in the case when an action of B on P is principal, we have the following result.

Theorem 15.3. Let P be a B-2-torsor over X. Then simplicial map Λ• = N2(Λ): P• → B•
is a Duskin-Glenn 2-torsor.

Proof. The simplicial complex P• is augmented over X because the action of B is fiberwise,
since for any 1-simplex (fij , πij) : pj → pi in P0, where πij : pj → pi / fij we have

π0d0(fij , πij) = π0(pi) = π0(pi / fij) = π1(πij) = π0(pj) = π0d1(fij , πij).
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The simplicial complex P• is obviously aspherical and we prove now that it is also 1-
coskeletal. A general 2-simplex in Cosk1(P•)2 is a triple ((fij , πij), (fik, πik), (fjk, πjk))
which we see as the triangle

pk
(πjk,fjk)

//

(πik,fik)

ÂÂ?
??

??
??

??
??

??
??

??
pj

(πij ,fij)

²²
pi

from which we have morphisms πij ◦ πjk : pk → pi / (fij ◦ fjk) and πik : pk → pi / fik in P.
Now we use the fact that the induced functor

(Pr1,A) : P ×B0 B1
// P ×X P

is a (strong) equivalence of internal groupoids over P, and therefore fully faithful. Specially,
for the two objects (pi, fij◦fjk) and (pi, fik) of P×B0B1, this equivalence induces a bijection

HomP×B0
B1((pi, fij ◦ fjk), (pi, fik)) ' HomP×XP((pi, pi / (fij ◦ fjk)), (pi, pi / fik))

and therefore for a morphism (idpi , πik ◦ (πij ◦ πjk)−1) : (pi, pi / (fij ◦ fjk)) → (pi, pi / fik))

pk

πik

ÂÂ?
??

??
??

??
??

??
??

??
pi / (fij ◦ fjk)

(πij◦πjk)−1

oo

pi / fik

there exists a unique 2-morphism βijk : fij ◦ fjk → fik in B, such that the diagram

pk
πij◦πjk //

πik

ÂÂ?
??

??
??

??
??

??
??

??
pi / (fij ◦ fjk)

p/βijk

²²
pi / fik
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commutes, and this uniquely determines a 2-simplex

pk

ÄÄÄÄ{¤ βijk

(πjk,fjk)
//

(πik,fik)

ÂÂ?
??

??
??

??
??

??
??

??
pj

(πij ,fij)

²²
pi

in P2, which proves that we have a bijection P2 ' Cosk1(P•)2. From here it follows
immediately that P• ' Cosk1(P•).
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The bibliography and biographical data
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