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Zusammenfassung

In dieser Arbeit untersuchen wir Perelmans Ricci-Fluss mit Chirur-
gie auf geschlossenen 3–Mannigfaltigkeiten, deren Ausgangsmetrik inva-
riant unter einer vorgegebenen glatten Wirkung einer endlichen Grup-
pe ist. Eine solche Metrik kann stets durch Mittelung einer beliebigen
Riemannschen Metrik erzeugt werden, und wegen der Eindeutigkeit des
Ricci-Flusses bleibt dieser bis zum Auftreten von Singularitäten invari-
ant unter der Gruppenwirkung. Die technische Schwierigkeit besteht nun
darin, Symmetrien der evolvierenden Metrik zu kontrollieren, wenn sich
der Fluss einer Singularität nähert.

Zu diesem Zweck konstruieren wir eine invariante singuläre S2–Blätte-
rung auf dem Bereich der Mannigfaltigkeit, der von der Chirurgie betrof-
fen ist. Insbesondere ermöglicht es diese, den Chirurgieprozess äquivari-
ant durchzuführen und die Gruppenwirkung auf solchen Komponenten
zu analysieren, die bei der Chirurgie komplett entfernt werden. Darüber
hinaus lässt sich mit Hilfe der Blätterung beschreiben, wie die Grup-
penwirkungen vor und nach der Chirurgie zusammenhängen. Dadurch
lassen sich aus dem Langzeitverhalten des Ricci-Flusses und der Grup-
penwirkung Rückschlüsse auf die ursprüngliche Wirkung ziehen.

Als Anwendung zeigen wir, dass jede glatte endliche Gruppenwirkung
auf einer geschlossenen geometrischen 3–dimensionalen Mannigfaltigkeit
mit sphärischer, hyperbolischer oder S2 ×R–Geometrie verträglich mit
der geometrischen Struktur ist, dass also eine invariante vollständige lo-
kalhomogene Riemannsche Metrik existiert. Dies löst eine von William
Thurston aufgestellte Frage zu Gruppenwirkungen auf geometrischen
3–Mannigfaltigkeiten, die für die übrigen fünf Geometrien bereits von
Meeks und Scott gelöst wurde [MS86].
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Abstract

In this thesis we study Perelman’s Ricci-flow with surgery on closed
3-manifolds on which the initial metric is invariant under a given smooth
finite group action. Such a metric can always be obtained by averaging an
arbitrary metric, and due to its uniqueness the Ricci-flow stays invariant
until the first singular time. The main technical difficulty is to control the
symmetries of the evolving metric when the flow approaches a singular
time.

In order to get such a control, we construct an invariant singular S2–
foliation on the part of the manifold which is affected by the surgery. In
particular this foliation enables us to perform the surgery process in an
equivariant way and to analyze the action on those components which
get extinct at the surgery time, since they are completely covered by
the foliation. Moreover, it relates the group actions before and after a
surgery. Thus, we can conclude properties of the initial group action
from the long time behavior of the equivariant flow.

As an application we show that any smooth finite group action on
a closed geometric 3-manifold with spherical, hyperbolic or S2 × R–
geometry is compatible with the geometric structure, i. e. there exists an
invariant complete locally homogeneous Riemannian metric. This solves
a question of William Thurston for smooth group actions on geometric
3–manifolds, which was proved for the other five geometries by Meeks
and Scott [MS86].
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Introduction

A manifold is called geometric if it admits a geometric structure in the
sense of Thurston, which can be seen as a complete, locally homogeneous
Riemannian metric (see Chapter 1.1). A geometric structure contains
the essential geometric information of the manifold, and knowing that a
particular manifold is geometric greatly helps understanding the mani-
fold.

Now given a smooth action of a finite group G on a geometric man-
ifold M , one might ask whether the geometric structure on M can be
choosen such that is compatible with the group action, i. e. the locally
homogeneous metric is invariant under the action. If this is possible for
any action, this can be interpreted as the geometric structure being nat-
ural in the sense that it respects any possible (finite) symmetry of the
manifold.

In dimension two any compact manifold is geometric, since by the
uniformization theorem any closed surface admits a metric of constant
positive, flat or negative curvature. Moreover, any smooth finite group
action on a two-dimensional closed surface admits a compatible geomet-
ric structure, i. e. the constant curvature metric can be chosen such that
it is invariant under the group action. This is a consequence of the ge-
ometrization and classification of 2–dimensional orbifolds, see [Thu80,
Chapter 13]. Alternatively, this also follows from the fact that the Ricci-
flow on surfaces converges to a constant curvature metric, see [Ham88]
and [Cho91].

Thurston raised the questions whether also 3–dimensional closed geo-
metric manifolds always possess compatible geometric structures [Thu82,
Question 6.2], [Thu83, Theorem B]1:

Question (Thurston). Let M be a closed geometric 3–manifold and
let ρ : G y M be a smooth group action of a finite group G. Does
there exist a compatible geometric structure on M , i. e. a ρ(G)–invariant
locally homogeneous metric?

1In this preprint Thurston announced a proof of the statement under certain as-
sumptions. However, this proof has never been published.
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Introduction

In this thesis we give an affirmative answer to the case of spheri-
cal, hyperbolic and S2 ×R–geometry, using techniques of Hamilton and
Perelman, namely an equivariant version of the Ricci-flow with surgery.
Together with the results of Meeks and Scott [MS86] this yields a com-
plete solution of the question.

In the following we give an overview over the historical developments
towards the solution of the question and describe different previously
known partial results. We then end this introduction by sketching our
approach and giving an outline of the structure of this thesis.

The Smith-conjecture was the first case where this question was in-
vestigated. The original motivation however was different: Smith has
studied periodic orientation preserving homeomorphisms of S3 of or-
der p ≥ 3, i. e. orientation preserving group actions of the cyclic group
Zp y S3. Computing the Čech-homology of the fixed-point set L of
such a homeomorphism, he found out that L is either empty or a simply
closed curve S1 ⊂ S3 ([Smi38, Theorem 4.15] and [Smi39, Theorem 4]).
He then conjectured that this S1 is topologically trivially embedded, i. e.
it is a trivial knot. Assuming the fix-point set is non-empty, this conjec-
ture can be seen to be equivalent to the question whether the Zp–action
is conjugate to an orthogonal action by rotations, see [Moi62] for smooth
or piecewise linear case and [Moi79] for the topological category.

For the case of an orientation reversing Z2–action, the fixed point set
is either a two-sphere or consists of two points [Smi39]. In the later case,
the action is conjugate to the orthogonal involution (x1, x2, x3, x4) 7→
(x1,−x2,−x3,−x4), as was proved by Livesay [Liv63], correcting a mis-
take in an earlier proof by Hirsch and Smale [HS59]. If the fixed point set
is a tamely embedded two-sphere, then it is easy to see that this sphere
can be isotoped to an equator-sphere and the action is conjugate to the
involution at this sphere, the map (x1, x2, x3, x4) 7→ (x1, x2, x3,−x4). If
however the fix-point 2–sphere is wildly embedded, it is impossible to
find a conjugation: Let ι : S2 → M be a wild embedding, i. e. there
is a point x ∈ S2 such that there exists no homeomorphism from a
neighborhood U of ι(x) to R3 mapping ι(S2) ∩ U to R2 × {0}. It is
obvious that wildness of the fixed-point set is preserved by conjugation,
but fixed-point sets of orthogonal maps clearly cannot be wild.

In fact, there are counter-examples to the Smith-conjecture in the
topological category: Bing gave such an example of an involution with
fixed point set Σ an Alexander horned sphere [Bin52]. He showed that
when gluing together two non-simply-connected solid horned spheres
along their boundaries, the result is homeomorphic to S3. Interchang-
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ing the two components gives the involution. Now if there were a self-
homeomorphism of S3 conjugating that involution to an orthogonal one,
this homeomorphism would map Σ to an equator-sphere and each com-
plement of Σ to a hemisphere homeomorphic to a 3–ball, which gives a
contradiction.

Similarly, Montgomery and Zippin [MZ54] have modified Bing’s con-
struction in order to obtain examples of orientation preserving periodic
homeomorphisms, where the fixed point set is a wildly embedded S1.
Also these group actions cannot be conjugated to orthogonal actions.

This illustrates the necessity of restricting to smooth actions. For
those actions the Smith-conjecture could be verified in the late 1970s
by contributions from different mathematicians such as W. Thurston,
W. Meeks, S.-T. Yau, H. Bass and C. Gordon, combining methods and
results from hyperbolic geometry, minimal-surface theory and algebra.
For a collection of relevant papers for the proof of the Smith-conjecture
and related work we refer to [MB84].

We call a smooth group action of a finite group on a closed geometric
3–manifold standard if there exists a compatible geometric structure,
i. e. an invariant locally homogeneous metric, compare Chapter 1.2. So
Thurston’s question asks whether all such actions are standard and the
Smith conjecture is equivalent to cyclic non-free orientation preserving
actions on S3 being standard, see Corollary 1.13.

Starting with the Smith conjecture, for a variety of different cases the
question of Thurston has been verified. In the following we state some
of the known results.

Meeks and Scott show that if M is a Seifert fibered space and the
action G y M preserves the Seifert fibration up to homotopy, then
there exists a G–invariant Seifert fibration homotopic to the original one
[MS86, Theorem 2.2]. They use this result to solve the question for
geometries different from S3, H3 and S2 ×R:

Theorem ([MS86, Theorem 2.1]). Let M be a closed geometric 3–

manifold, such that the model geometry is one of H2×R, fSL(2,R), Nil,
R3 or Sol. Then any smooth finite group action on M is standard.

Meeks and Yau combine techniques of minimal surfaces with ideas of
Papakyriakopoulos’ proof of the Dehn Lemma to obtain an equivariant
version of the Dehn Lemma [MY81]. They apply this to show that
certain actions on S2 ×R (viewed as R3 − {0}) are standard:
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Theorem ([MY84, Theorem 4]). If ρ : G y R3 is a smooth ori-
entation preserving action of a compact group G such that ρ(G) is not
isomorphic to the orientation preserving icosahedral group A5, then the
action is conjugate to an orthogonal action.

Meeks and Yau actually show that any finite group that acts orienta-
tion preserving on R3 is isomorphic to a subgroup of SO(3). However, to
realize this subgroup embedding by a conjugation, they need solvability
of the group, which leads to the exclusion of A5. Also note that it is not
obvious how to apply this Theorem to finite actions on S2 × S1, since
the lift of such an action needs not to be finite.

Finding an invariant geometric structure is equivalent to showing that
the quotient orbifold is geometric, see Chapter 1.2. For orientable, irre-
ducible 3–orbifolds with non-trivial ramification locus this holds by the
Orbifold Theorem of Boileau, Leeb and Porti [BLP05, Corollary 1.2]:

Theorem (Orbifold Theorem, [BLP05]). Let O be a compact, con-
nected, orientable, irreducible 3–orbifold with non-empty ramification lo-
cus. If O is topologically atoroidal, then O is geometric.

Thus, if G acts non-freely and orientation preserving on a geometric
manifold M , and if the quotient orbifold O = M/G is irreducible, then
O satisfies the assumption of the orbifold theorem and so the action is
standard.

In fact, for a finite orientation preserving group action ρ : G y S3

Boileau, Leeb and Porti show (using their orbifold theorem) that the
quotient orbifold is irreducible and thus solve the case of non-free orien-
tation preserving spherical group actions:

Corollary ([BLP05, Corollary 1.1]). Any orientation preserving,
smooth, non-free finite group action on S3 is smoothly conjugate to an
orthogonal action.

Finally, for free actions on S3 the question is also known as “spher-
ical space-form conjecture” and follows as a consequence of Perelman’s
Geometrization Theorem for closed 3–manifolds [Per03a, Per03b].

Theorem ([Per03a, Theorem 8.2(a)]). Any orientation preserving,
smooth, free finite group action on S3 is smoothly conjugate to an or-
thogonal action.
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Outline of the paper In this thesis, we present a unified approach for
spherical, S2×R– and hyperbolic manifolds. Given a closed 3–manifold
M with a smooth finite group action, we equip M with an invariant
initial metric and study Perelman’s Ricci-flow with surgery. Until the
first singular time, any symmetry of the initial metric will be preserved
by the flow due to its uniqueness. Thus, the group action will stay
isometric under the flow.

The basic idea now is the following: Assume that no singularity occurs
and the metric converges (up to rescaling) to a locally homogeneous limit
metric—as in the case of positive Ricci-curvature [Ham82]. Then the
limit metric is still invariant, and therefore the action is standard.

By the results of Perelman, one can also deal with singularities occur-
ring during the flow. However, his Ricci-flow with (r, δ)–cutoff is a-priori
not equivariant. There are three main issues which need to be resolved:

• First, one has to control the symmetries of the evolving metric
when the flow approaches a singular time and to show that the
surgery procedure can be done equivariantly.

• Second, at a surgery time there might be components on which
scalar curvature gets uniformly large, even though the metric might
not converge to a geometric one (the curvature operator gets only
almost non-negative). Those components are diffeomorphic to
spherical space forms, RP 3]RP 3 or S2 × S1 and they are thrown
away, so one has to ensure that the action is standard when re-
stricted to them.

• Finally, having obtained that the action is standard on all limits,
one needs to get back to the original manifold and action. There-
fore, one has to relate the actions before and after a surgery.

In Chapter 1 we recall terminology and notations, and give some pre-
liminary considerations. We recall a result of Grove and Karcher on close
group actions (Chapter 1.4) and generalize a result of Munkres to equiv-
ariant diffeomorphism of the 2–sphere (Chapter 1.5). In Chapter 1.6 we
define how to do a connected sum construction in a way that is com-
patible with the group action. We observe that similar to the fact that
connected sum with S3 is a trivial move, also the equivariant connected
sum with a standard action on a union of 3–spheres is trivial (if the
3–spheres are attached along trees).

As our approach is based on Perelman’s Ricci-flow with surgery, we
summarize the main arguments and steps in the construction of a Ricci-
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flow with surgery in Chapter 2. We do not intend to give a self-contained
proof thereof, but rather discuss those constructions that are necessary
for the equivariant version. In particular, we focus on a precise descrip-
tion of the neck–cap decomposition of highly curved regions and on the
surgery process.

In order to deal with the issues mentioned above, we construct an in-
variant singular S2–foliation on the part of the manifold which is affected
by the surgery. This singular foliation is a smooth foliation except for a
finite number of points, and the smooth leaves are diffeomorphic to S2

except for a finite number of RP 2–leaves. The construction is done in
Chapter 3, first on the neck-like region in Chapter 3.2 and then extended
to the non-neck-like caps in Chapter 3.4. The surgery is applied at neck-
like regions, and there our foliation is close to the standard cylindrical
foliation by totally geodesic round 2–spheres. Thus, the foliation can be
used to construct equivariant surgery necks and define an equivariant
surgery, which is done in Chapter 4. Components which get extinct at
the surgery time are completely covered by the singular foliation. Since
the induced action on the one-dimensional leaf-space as well as on the
leaves is easy to understand, it can be shown that the action on such a
foliated component is standard, see Proposition 3.2.

Finally, the effect of equivariant surgery on the group action is studied
in Chapter 4.2. To relate the group actions before and after a surgery, one
follows the arguments of Perelman that describe the effect of surgery on
the topology and keeps track of the action. The gluing-in of 3–balls and
extending the action by spherical suspension on the balls corresponds to
an equivariant connected sum construction as described in Chapter 1.6.
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express my gratitude to my advisor Prof. Bernhard Leeb for raising my
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and Joan Porti. Moreover, I am grateful to Hartmut Weiß for various
mathematical discussions and for studying many details of Perelman’s
papers with me. Finally, I want to thank my wife Angela for all her
patience and encouragement during the last years.
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1 Topological and geometrical preliminaries

This chapter summarizes general facts and terminology that are useful
for the later discussion. In Sections 1.1–1.3 we recall definitions of geo-
metric structures, standard actions and closeness of maps to isometries.
We then explain a result of Grove and Karcher on how to explicitly con-
jugate actions which are close enough by a center of mass construction
(Chapter 1.4).

We adapt a well-known fact concerning diffeomorphisms of the two-
sphere to the equivariant setting in Chapter 1.5 using standard methods
and finally give a definition of equivariant connected sum in Chapter 1.6.
Here we also show that equivariant connected sum of a manifold with
a standard action on a union of 3–spheres is a trivial operation if the
spheres are attached along trees. This is an essential observation for
understanding the effect of equivariant surgery on the group action.

Let us fix the following notations: We denote the Riemann curvature
operator by R, sectional curvature by K, the Ricci-tensor by Ric and
scalar curvature by S. For a group action we write ρ : G y M which
means that ρ is a homomorphism from G to Diff(M). Besides being
smooth there are no implicit assumptions on the group actions, so they
may be non-orientation-preserving and non-free.

1.1 Geometric structures

Following the approach to geometry of Felix Klein, William Thurston
thought of geometric properties and structures of manifolds as being en-
coded in the group of transformations of the underlying space that are
allowed for coordinate changes. For 3–manifolds, he focused on a spe-
cial and—as it turned out—very suitable such structure, namely the one
induced by isometries of homogeneous spaces, which leads to the charac-
terization of eight 3–dimensional “geometries”. Most of these concepts
are described in detail in [Thu97] and [Thu80]. An additional source
for a precise description of the 3–dimensional geometries is the survey
article by Scott [Sco83].
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1 Topological and geometrical preliminaries

Definition 1.1 ((X,Γ)–structure). Let X be a topological manifold
and Γ a group acting on X. An (X,Γ)–structure for a manifold M is
a maximal (X,Γ)–compatible collection of charts φi : Ui → X covering
M . Two charts φi, φj are (X,Γ)–compatible, if on each component V of
Ui ∩ Uj the coordinate change φj ◦ φ−1

i |
φ−1

i (V )
is the restriction of some

element g ∈ Γ.

Example 1.2. An (Rn, Ck(Rn))–structure onM is a differentiable struc-
ture of class k.

Definition 1.3 (model geometry, geometric manifold). A model
geometry is a smooth, simply connected manifold X with a Lie-group Γ
acting transitively on X such that

1. Γ has compact point stabilizer,

2. Γ is maximal in the sense that it is not contained in any larger
group of diffeomorphisms of X with compact point stabilizer,

3. there exists at least one compact manifold with an (X,Γ)–structure.

If (X,Γ) is a model geometry, then an (X,Γ)–structure is called ge-
ometric structure and a manifold with a geometric structure is called
geometric manifold.

Remark 1.4. It follows from condition 1 and the fact that Γ acts tran-
sitively that X carries a homogeneous Γ–invariant Riemannian metric
g.

Therefore, a geometric manifold carries a locally homogeneous metric.
Vice versa, a locally homogeneous metric on a complete manifold M
defines compatible local charts and hence is equivalent to a geometric
structure.

Recall that a geometric structure on a manifold M defines a local
isometry dev : fM → X, called the developing map, by gluing the local
charts together along paths, using the fact that coordinate changes are
in Γ = Isom(X). The compatibility of charts gives uniqueness of this
map up to isometries of X (by choosing an arbitrary base point and a
frame for the chart around the base point in M). The developing map
induces an homomorphism hol : π1(M) → Isom(X), called the holonomy
representation.

If M is a complete geometric manifold, then dev is a covering map
and therefore (X is simply connected) an isomorphism. Thus, complete

8



1.2 Standard actions

geometric manifolds are always quotients X/G, where G = hol(π1(M))
is the group of deck transformations.

Similar to the two-dimensional situation where there are only three
model geometries (the hyperbolic plane, flat space and the round 2–
sphere with Γ the isometry group in each case), the 3–dimensional model
geometries can be classified as follows, see [Thu97, Theorem 3.8.4]:

Theorem 1.5 (model geometries). In dimension 3 there are eight
model geometries, namely X = S3, R3, H3, S2 × R, H2 × R, Nil,fSL(2,R) and Sol, with Γ the Lie-group of isometries on these spaces
with their canonical metric.

Definition 1.6 (geometric orbifold). Let (X,Γ) be a model geome-
try. A metric space which is locally isometric to a quotient of X by a
finite subgroup Γx < Γ is called (X,Γ)–orbifold or geometric orbifold.

Remark 1.7. Note that this definition includes the possibility of O be-
ing a geometric manifolds, namely if all Γx can be chosen trivial. On the
other hand, the underlying space does in general not even topologically
need to be manifold, for instance the link of a point does not need to
be homeomorphic to an (n − 1)–sphere. However, in dimension 2 the
only finite group actions on X = S2,R2 or H2 are (conjugate to) rota-
tions and reflections, such that any 2–orbifold (as topological space) is
a 2–manifold (with boundary).

1.2 Standard actions

We consider smooth actions ρ : G y M of a finite group G on a smooth
manifold M . In case that M carries a geometric structure, we define
what it means for the action to be compatible with this structure:

Definition 1.8 (standard action). Let (X,Γ) be a model geometry
and M an (X,Γ)–manifold. We say, the action ρ : G y M is standard,
if there exists a ρ(G)–invariant complete locally homogeneous metric on
M .

Remark 1.9. ρ : G y M is standard if and only if the quotient space
M/ρ(G) admits a metric such that it becomes a complete geometric
orbifold.

9



1 Topological and geometrical preliminaries

Proof. This is clear since a given complete geometric orbifold metric on
M/ρ(G) lifts to a ρ(G)–invariant complete locally homogeneous metric
on M . On the other hand, a ρ(G)–invariant complete locally homoge-
neous metric on M descends to a complete metric on M/ρ(G), which
then is locally isometric to a quotient of X by a finite group.

Note that although the type of a closed geometric manifold is uniquely
determined, the geometric structure itself needs not to be unique. So if
M is a geometric manifold and the action ρ : G y M is standard, then
the geometric structure induced by the ρ(G)–invariant locally homoge-
neous metric on M might be different from an originally given geometric
structure. In other words, the question whether a group action on a geo-
metric manifold is standard does not depend on the choice of a particular
geometric structure.

Example 1.10. This can be nicely illustrated by different flat structures
on a torus. Consider a flat 2–torus with hectagonal fundamental domain
and the dihedral group D6 acting on it by isometries. If we regard the
same group action, but equip the torus with a flat metric with rectan-
gular fundamental domain, the group action can not be made isometric
only by conjugation—one needs to change the geometric structure.

If however the geometric structure is unique as in the case of hyper-
bolic manifolds (by the Mostow rigidity theorem [Mos68]) or spherical
manifolds (see Proposition 1.12 below), then any two locally homoge-
neous metrics on M are isometric. Therefore we get:

Proposition 1.11. If (M, g) is geometric such that the geometric struc-
ture is unique, and ρ : G y M is standard, then ρ is smoothly conjugate
to an isometric action ρ̃ : G y (M, g).

Proof. The conjugation diffeomorphism is given by the isometry between
M with its ρ(G)–invariant locally homogeneous metric and M with the
given locally homogeneous metric g.

Proposition 1.12. Spherical structures on 3–manifolds are unique, i. e.
if M1 and M2 are diffeomorphic compact spherical 3–manifolds, then they
are isometric.

Proof . A spherical structure on Mi induces via the holonomy repre-
sentation an isomorphism between π1(Mi) and a finite subgroup Gi <

10



1.2 Standard actions

SO(4) acting freely on S3. These subgroups are classified by Seifert
and Threlfall [TS31, TS33], using the homomorphism SO(4) → SO(3)×
SO(3) with kernel {id,− id} (compare [Sco83, Theorem 4.10, Theorem
4.11], [Thu97, Theorem 4.4.14]).

From this isometry classification follows that if Gi is not cyclic, then
any other freely acting subgroup of SO(4) that is isomorphic to Gi is
actually conjugate to Gi in O(4). Hence, if π1(M1) ∼= π1(M2) is not
cyclic, then G1 and G2 are conjugate and therefore M1 and M2 are
isometric.

On the other hand, if the groups Gi are cyclic of order p, then Mi

is isometric to a lens space L(p, qi), i. e. a quotient of S3 ⊂ C2 by the
group of rotations generated by (z1, z2) 7→ (e2πi/pz1, e

2πiqi/pz2). It now
follows from the topological classification of lens spaces by Brody that
L(p, q1) and L(p, q2) are diffeomorphic if and only if q1 ≡ ±q±1

2 modulo
p ([Bro60, §4 Example I], see also [Hat00, Theorem 2.5]). If this is the
case, it easy to see that L(p, q1) and L(p, q2) are isometric (a change of
signs corresponds to complex conjugation in the z2–plane respectively
interchanging z1 and z2).

Corollary 1.13. Let ρ : G y (M, g) be a smooth standard action of a
finite group on an round spherical space-form. Then ρ is conjugate to
an isometric action on (M, g).

On open manifolds geometric structures are much less rigid. For in-
stance, an open ball carries any geometric structure (if we do not require
completeness), and it can carry two different complete geometric struc-
tures (R3 and H3). However, this ambiguity plays no role for the defi-
nition of a finite group action on B3 being standard, since B3 carries an
invariant complete hyperbolic metric if and only if it carries an invariant
complete Euclidean one (note that the action must have a fixed point
and is determined by its differential in that point).

The only open manifolds that shall be considered are B3, S2 × (0, 1)
and RP 3 − B̄3. On them, we can explicitly describe which actions are
standard:

Remark 1.14 (standard action on B3, S2 × (0, 1), RP 3 − B̄3). An
action on the open ball B3, on S2 × (0, 1) or on RP 3 − B̄3 is standard,
if and only if it is smoothly conjugate to an isometric action on a Eu-
clidean unit ball, on the round cylinder respectively on its orientable
Z2–quotient. (The last case is conjugate to an isometric action on round
RP 3 minus a round ball of radius < π/2.)

11



1 Topological and geometrical preliminaries

1.3 Comparing Riemannian metrics

Definition 1.15. Let M be a Ck–manifold and let U ⊆ M be an open
subset. We define the Ck(U)–norm on Sym2 T ∗U with respect to a fixed
reference metric g0 as

‖ω‖2Ck(U) = sup
x∈U

 
|ω(x)|2g0

+

kX
l=1

˛̨̨
∇l

g0ω(x)
˛̨̨2
g0

!
,

where ∇g0 is the Levi-Cevita connection with respect to the metric g0.
This defines a distance between Riemannian metrics g1, g2 on U by

dCk(U)(g1, g2) = ‖g1 − g2‖Ck(U) .

We call the induced topology on the space of Riemannian metrics on
U Ck(U)–topology. Note that this topology is independent of g0. For
convenience, we define the ε–neighborhood U(g, ε, k, U) of a metric g on
U as the set of metrics g′ on U with dCk(U)(g, g

′) ≤ ε where we take g a
the reference metric.

We observe that a C2–small variation of the metric changes the initial
directions of unique minimizing geodesics only by a small angle. This will
later help us to analyze (long) minimizing geodesics in almost cylindrical
regions, see Chapter 3.2.

Proposition 1.16. Let (M, g) be a (not necessarily complete) Rieman-
nian manifold, B(2R) ⊆ M a metric ball with compact closure and
γ ⊂ B = B(R) a unique minimizing geodesic with endpoints p and q
in B(R). Given ν and k ≥ 2, there is an ε–neighborhood U(g, ε, k, B) of
g|B such that for any h ∈ U(g, ε, k, B) a minimizing geodesic γh (with
respect to h) from p to q satisfies

∠g(γ̇(0), γ̇h(0)) < ν .

Proof. First note that since q is not in the cut locus of p, there is a
neighborhood V of v = exp−1(q) ∈ Tp(M) such that γw : t 7→ exp(tw),
t ∈ [0, 1] is a minimizing geodesic for all w ∈ V . Choose V such that
∠(w1, w2) ≤ ν for any w1, w2 ∈ V and that exp(V ) has positive distance
from the cut locus. Now since geodesics are solutions of the second
order differential equation ∇γ̇ γ̇ = 0, a variation of the metric in Ck(B)–
topology for k ≥ 2 results in a continuous variation of exp(V ). Thus,
for ε small enough and h ∈ U(g, ε, k, B) we have q ∈ exph(V ), say q =

12



1.3 Comparing Riemannian metrics

exph(wh), and γh : t 7→ exp(twh), t ∈ [0, 1] is an h–geodesic from p to q
with ∠g(γ̇(0), γ̇h(0)) = ∠g(v, wh) < ν.

Since lengths of curves depend continuously on h, for ε sufficiently
small V still has positive distance to the tangential h–cut locus. Hence
γh is the unique minimizing h–geodesic from p to q.

Definition 1.17 (ε–isometry, ε–homothety). Let (M1, g1), (M2, g2)
be Riemannian manifolds, and let φ : M1 ↪→ M2 be a diffeomorphism

on its image. We call φ an ε–isometry, if φ∗g2 is ε–close to g1 in C[ 1
ε
]–

topology, i. e. if φ∗g2 ∈ U(g1, ε, [
1
ε
],M1) (compare Definition 1.15).

We say φ is an ε–homothety, if it is an ε–isometry from (M1, g1) to
(M2, λ

−2g2) for some λ > 0, which we call the scale of φ.
We say that a smooth action ρ : G y (M, g) on a Riemannian manifold

is ε–isometric, if ρ(γ) : (M, g) → (M, g) is an ε–isometry for all γ ∈ G.

Note that all these definitions are not scale-invariant (ε depends on
the scale). As long as we are comparing compact manifolds, this can
be resolved by normalizing e. g. the maximal scalar curvature. However,
when approximating pointed (and possibly non-compact) manifolds up
to scale, we need a notion that relates distance and closeness to the
curvature scale.

Definition 1.18 (relative distance). Let x ∈ (M, g) be a point with
S(x) > 0. We define the distance from x relative to its curvature scale

as d̃(x, ·) = S(x)
1
2 d(x, ·). Accordingly, we define the relative r–ball

B̃(x, r) := B(x, S(x)−
1
2 r) = {d̃(x, ·) < r}

the relative r–sphere

S̃(x, r) := S(x, S(x)−
1
2 r) = {d̃(x, ·) = r}

and the relative radius frad(x,X) := supy∈X{d̃(x, y)}.

To formulate a pointed version of closeness up to scale, we compare
manifolds on relative 1

ε
–balls:

Definition 1.19 (ε–approximation). We say that the pointed Rie-
mannian manifold (M1, x1, g1) ε–approximates (M2, x2, g2) if there is
a diffeomorphism φ : B̃(x1,

1
ε
) ↪→ M2 with φ(x1) = x2, such that af-

ter normalizing curvature at x by replacing g1 with S(x1)g1, φ is an

13



1 Topological and geometrical preliminaries

ε–homothety. Equivalently we also say that (M1, x1, g1) is ε–close to
(M2, x2, g2).

Definition 1.20 (pointed smooth convergence). We say that a se-
quence (Ni, xi, gi) of pointed Riemannian manifolds converges smoothly
to a Riemannian manifold (N∞, x∞, g∞) if there exists a sequence of
εi–approximations

φi : B̃(x∞,
1
εi

) → (Ni, xi)

with εi → 0.

1.4 Conjugation of close actions

In order to show that certain actions are standard, it is useful to observe
that being standard is an open condition in C1–topology. So if one
manages to conjugate an action ρ sufficiently close to a standard action,
then ρ itself is already standard.

The fact that C1–close actions are conjugate was first proved by Palais
[Pal61]. Later, Grove and Karcher gave a differential geometric proof
[GK73] using a center of mass construction, which we shall recall here.

Definition 1.21 (close actions). Given a finite group G and a Rie-
mannian manifold (M, g), we say that two smooth actions ρ1, ρ2 : G y
M are ε–close in Ck–topology, if for each γ ∈ G the diffeomorphisms
ρ1(γ), ρ2(γ) are ε–close in Ck–topology. If ρ1 acts by isometries, this is
equivalent to ρ1(γ

−1) ◦ ρ2(γ) being ε–close to the identity.

If two actions ρ1, ρ2 : G y (M, g) are C0–close, then for any point
p ∈M the image of the map

fp : G→M, fp(γ) = ρ1(γ)
−1 ◦ ρ2(γ)(p)

is contained in an ε–ball around p. For such almost constant maps
f : G → M (i. e. satisfying f(G) ⊂ B(ε) and ε sufficiently small) Grove
and Karcher [GK73] define a center of mass C (f) with the property that
for any isometry A : M →M holds C (A ◦ f) = A ◦C (f) and for Rγ the
right multiplication with γ holds C (f ◦Rγ) = C (f).

Moreover, if the actions are sufficiently C1–close, then the center of
mass map

c : M →M, p 7→ C (fp)

14



1.5 Equivariant diffeomorphisms of the 2–sphere

is a diffeomorphism within prescribed C1–distance to the identity [GK73,
Proposition 3.7 and (3.16)]. (Note that C1–closeness to the identity is not
explicitly stated in [GK73], but it follows from their calculation (3.16) by
first making k1, k2 sufficiently small by bounding the C0–distance, and
then ensuring (3.15) by bounding the C1–distance).

It is direct from the definition that the map c is (ρ1, ρ2)–equivariant:

c ◦ ρ2(γ)(p) = C (fρ2(γ)p)
(∗)
= C (ρ1(γ) ◦ fp ◦Rγ)

= ρ1(γ) ◦ C (fp) = ρ1(γ) ◦ c(p)

where the second equality (∗) uses that fρ2(γ)p is the map

β 7→ ρ1(β)−1ρ2(β)ρ2(γ)p = ρ1(β)−1ρ2(βγ)p

= ρ1(γ)ρ1(βγ)
−1ρ2(βγ)p = ρ1(γ)fp(Rγβ).

Therefore, the two actions ρ1, ρ2 are smoothly conjugate, and we sum-
marize:

Theorem 1.22 (conjugating close actions). Let ρ1, ρ2 : G y M be
two smooth actions on a connected compact Riemannian manifold (M, g).
If ρ1 acts by isometries and ρ2 is sufficiently C1–close to ρ1, then the two
actions are smoothly conjugate by a diffeomorphism c : M → M within
prescribed C1–distance to the identity.

The result of [GK73] is actually more general: They study actions
not only of finite groups but of compact Lie groups, and furthermore
they give explicit bounds on the required C1–closeness of the actions,
depending only on curvature bounds of the metric g. In this sense they
generalize the result of Palais, which does not give an explicit conjugation
map. While we do not need the bounds of [GK73] on closeness, the fact
that the conjugation map is C1–close to the identity is important for our
application, see Chapter 3.4.

1.5 Equivariant diffeomorphisms of the 2–sphere

The diffeomorphisms group of S2 allows a lot of freedom in deforming
a given diffeomorphism. For instance, any diffeomorphism of S2 is iso-
topic to an isometry, as was shown by Munkres [Mun60a] (compare also
[Thu97, Theorem 3.10.11]). In fact, Smale has strengthened this result
by proving that O(3) is a strong deformation retract of Diff(S2), i. e. all

15



1 Topological and geometrical preliminaries

isotopies can be done simultaneously [Sma59]. Note that the analogue
result holds also in dimension 3. This was conjectured by Smale and
proved by Hatcher [Hat83].

For our setting we need the following equivariant version for diffeo-
morphisms of the 2–sphere: If the given diffeomorphism is equivariant
with respect to an orthogonal action, then the isotopy can also be made
through equivariant diffeomorphisms.

Proposition 1.23. Let ρ : H y S2(1) be an orthogonal action by a
finite group on the 2–dimensional unit sphere. Then every ρ–equivariant
diffeomorphism S2 → S2 is ρ–equivariantly isotopic to an isometric one.

In fact, we will show an equivalent formulation in terms of quotient
orbifolds:

Proposition 1.24. Any diffeomorphism O → O of a spherical two-
orbifold is isotopic to an isometry.

For the case of O = S2 (with no singularities) the proposition is shown
by Munkres [Mun60a]. For general surfaces isotopy classes of diffeomor-
phisms were investigated by Epstein [Eps66], working in the category
of piecewise linear manifolds (which in dimension 2 is equivalent to the
smooth category). In particular, Epstein showed that the proposition
holds for O = RP 2 [Eps66, Theorem 5.5].

Precisely the same methods work also in the orbifold setting, one only
needs to check that the constructed isotopies can be made compatible
with the orbifold structure, i. e. they lift locally to equivariant isotopies
of the orbifold charts.

Proof (of Proposition 1.24). Since O is two-dimensional, an isolated
singularity must be a cone point (i. e. the group action on the orbifold
chart is generated by a rotation of angle 2π

p
), and non-isolated singu-

larities are reflector boundaries (the action on the orbifold chart is by
a reflection) or corner reflectors (the action is by a dihedral group of
reflections and rotations).

Also note that spherical 2–orbifolds are always good, i. e. quotients
of S2. Since the proposition is true for non-singular orbifolds (S2 and
RP 2), we restrict to orbifolds which have singularities. The spherical
2–orbifolds with singularities can be classified by the following list:

• S2 with two or three cone points,
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1.5 Equivariant diffeomorphisms of the 2–sphere

• RP 2 with one cone points, or

• D2 with reflector boundary, with at most 3 corner reflector points
and possibly one interior cone point. (It can only occur in case of
at most 2 corner reflectors and must exist if there is precisely 1
corner reflector.)

Denote the isolated singularities and the corner reflector points by xi.
A diffeomorphism of O is a homeomorphism that lifts locally to a dif-
feomorphism of the orbifold charts. Therefore, it permutes the xi of the
same type and maps the reflector boundary onto itself. There clearly
exists an isometry ψ of O that does the same permutation of the xi

and therefore φ′ = ψ−1 ◦ φ fixes all xi. If O is orientable, we may fur-
ther choose ψ to be orientation preserving if and only if φ is. Hence
φ′ is orientation preserving in this case. If O is not orientable then
O = RP 2(x1) and we can choose ψ such that φ′ is locally orientation
preserving near the cone point x1. As a consequence, φ′ preserves iso-
lated cone points and orientations near the cone points, and φ′ preserves
reflector boundary segments and is an orientation preserving reparame-
terization on them.

In order to prove the claim, it suffices to show that φ′ is isotopic to
the identity, since this implies that φ is isotopic to ψ. As a first step, we
want to locally isotope φ′ to the identity near the singularities.

Lemma 1.25. Let D ⊂ R2 be an open round disk around the origin and
let ρ : G y D be an orthogonal action of a finite group G (so ρ(G) is
a finite cyclic group of rotations, a two-elementary reflection group or a
dihedral group of rotations and reflections). Let φ : D → D be a ρ(H)–
equivariant orientation preserving diffeomorphism with φ(0) = 0. Then
φ is ρ(H)–equivariantly isotopic to a ρ(H)–equivariant diffeomorphism
which is equal to ± id near 0 if ρ(H) contains reflections, and equal to
id if ρ(H) contains only rotations. The isotopy is compactly supported,
i. e. it fixes φ on a neighborhood of ∂D.

Proof . In the non-equivariant setting this was proved by [Mun60b,
Lemma 8.1]. Provided the given diffeomorphism is equivariant, then
the construction in the proof can also be made equivariant. We will fol-
low the proof presented in [Thu97, 3.10.12], which uses the same ideas
but is clearer in its exposition:

We first isotope φ such that it becomes linear near 0. Let A = dφ0 be
the differential at 0 (which automatically is ρ(H)–equivariant). We then
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1 Topological and geometrical preliminaries

use a rotational symmetric smooth test function θ : R2 → R2 (θ ≡ 1 on
B( 1

2
) and θ ≡ 0 outside the unit-disk B(1)), and interpolate for 0 ≤ t ≤ 1

φt(x) := φ(x) + tθλ(x) · (A− φ)(x) , θλ(x) := θ
`

x
λ

´
Then ‖dφt − dφ‖ = t ‖d(θλ(A− φ))‖ ≤ Cλt, where C only depends on
θ, so for λ > 0 sufficiently small this gives an isotopy, which clearly is
ρ(G)–equivariant. Note that the isotopy fixes φ outside of B(λ), and
φ1 ≡ A on B(λ

2
).

It remains to find a ρ(G)–equivariant isotopy of A to ± id with support
on B(λ

2
). The property of being a ρ(H)–equivariant linear map implies

for A the following: If ρ(H) contains a reflection γ, then A commutes
with γ and therefore must preserve its ±1–eigenspaces. Hence A has two
orthogonal eigenvectors with eigenvalues µ1, µ2 ∈ R− {0}.

If ρ(G) contains a reflection and a rotation of order ≥ 3, then it follows
from the above that µ1 = µ2 and therefore A = µ1 id (if the rotation is
by π

2
, then µ1 = µ2 is clear; otherwise ρ(G) contains two reflections with

non-orthogonal axis). It is obvious that φ can be ρ(G)–equivariantly
isotoped near 0 to ± id.

If ρ(G) contains only the reflection γ as non-trivial element, then φ
can equivariantly be isotoped to ± id by stretching in the directions of
the eigenvectors. The same is true if ρ(G) contains in addition − id (so
it is generated by two orthogonal reflections).

Finally, consider the case that ρ(G) is generated by a rotation β: If
β = − id then A can be any orientation preserving linear map. Here one
can first make φ orthonormal and then rotate on a small ball around 0.
For both steps the ± id–equivariance is no obstruction.

If β 6= − id, then A must be a homothety, i. e. the product of a dilation
and a rotation. Thus, φ can first be equivariantly isotoped such that it is
just a rotation on a ball around 0, and then this rotation can be isotoped
to id on a smaller ball.

We apply Lemma 1.25 to neighborhoods of all isolated cone points and
of all corner reflector points. So we can assume that φ′ is the identity
near those points. Since φ′ is a reparameterization of the boundary edges
and the identity near the ends of each edge, we can furthermore apply
an isotopy such that φ′ fixes a neighborhood of the boundary pointwise.
Thus, we may assume that φ′ is the identity near all singular points.

In the case of RP 2(x1) regard a non-contractible curve γ through the
cone point x1. Then φ′(γ) can be isotoped back to γ (fixing a neighbor-
hood of the cone point), see [Eps66, Theorem 3.3]. So we may assume
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1.5 Equivariant diffeomorphisms of the 2–sphere

that φ′ is the identity in a neighborhood of γ and cut along γ to obtain a
2–disk without singularities. On this disk, φ′ fixes a neighborhood of the
boundary and so φ′ can be isotoped to the identity using the classical
result [Mun60a, Theorem 1.3], [Sma59], see also [Thu97, end of proof
of Theorem 3.10.11]. This result also applies to the case O = D2 with
reflector boundary and no cone-points.

Proposition 1.24 now follows from the next Lemma.

Lemma 1.26. (i) Let D be a disk with 1 cone point, and let φ : D2 →
D2 be an orientation preserving diffeomorphism which is the identity in
a neighborhood of the boundary and of the cone point. Then φ can be
isotoped to the identity map on D2, where the isotopy fixes a neighborhood
of the boundary. (It may however rotate around the cone-point.)

(ii) Let O be S2 with 2 or 3 cone-points, and let φ : O → O be an
orientation preserving diffeomorphism which is the identity in a neigh-
borhood of the cone points. Then φ is isotopic to the identity map on O.
(The isotopy may rotate around the cone-points.)

Proof. (i) Denote the cone-point by x1 and choose an arc γ from the
cone point to the boundary ∂D. We may assume that φ(γ) is transversal
to γ except near the boundary and near x1, where the two arcs coincide.
If there are transversal interior intersection points of γ and φ(γ) let y1
be the first one along φ(γ). Let α be the sub-arc of φ(γ) from x1 to y1,
and let β be the sub-arc of γ from x1 to y1. Because of the choice of
y1, α and β are disjoint (except for x1 and y1) and thus bound a disk D
(there may however be intersections of φ(γ)−α with β). By pushing the
disk D through γ we can remove the intersection point y1 (and maybe
other intersection points on β) and create no new intersection points.
After repeating this finitely many times, we reach that γ and φ(γ) have
no interior intersection point and hence bound a disk, along which we
can isotope φ(γ) to γ. We may further isotope φ such that it fixes a
neighborhood of γ pointwise, which reduces the assertion to the case of
a disk without singularities.

(ii) We proceed similar as in case (i): Denote the cone points by x1, x2

and (possibly) x3 and choose a smooth arc γ connecting x1 and x2, such
that γ avoids x3 if it exists. We may assume that φ(γ) is transversal to γ.
If there are interior transversal intersection points, let y1 and y2 be the
first and the last such point along φ(γ) (y1 = y2 is possible). Denote by
αi the sub-arc of φ(γ) from xi to yi, and by βi the corresponding sub-arc
of γ. As before, α1 and β1 are disjoint, and so are α2 and β2. So for i = 1
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and 2, the union of αi and βi cuts O into two disks. Denote by Di the
(unique) one of them, which does not contain a piece of γ in its interior.
We claim that the interior of the disks D1 and D2 is disjoint: Note that
the arcs α1 and α2 cannot intersect. So if there were a common interior
point, β1 must transversally intersect D2 or vice versa, contradicting the
assumption that the interior Di is disjoint from γ.

We conclude that either D1 or D2 does not contain x3, so we can
push that disk through γ by an isotopy of φ and reduce the number of
intersection points (obviously we can do the same if there is no third
cone point x3). After finitely many steps we achieve γ and φ(γ) have no
interior intersection point. Thus we can isotope φ such that γ = φ(γ)
and φ fixes a neighborhood of γ pointwise (φ preserves the orientation
of γ). Cutting along γ reduces now to case (i) if x3 exists, or the case
without singularities.

Proposition 1.27. Let ρ1, ρ2 : G y B̄3 be two isometric actions of
a finite group G on the closed unit ball. Then any (ρ1, ρ2)–equivariant
diffeomorphism α : ∂B̄3 → ∂B̄3 can be extended to a (ρ1, ρ2)–equivariant
diffeomorphism α̂ : B̄3 → B̄3.

Proof. We regard B̄3 − B3( 1
2
) as product S2 × [ 1

2
, 1] and use Proposi-

tion 1.23 in order to equivariantly isotope α along the interval factor. So
α extends to a (ρ1, ρ2)–equivariant diffeomorphism α̂′ : B̄3 − B3( 1

2
) →

B̄3 − B3( 1
2
) which is isometric on the inner boundary sphere. There-

fore α̂′|∂B3( 1
2 ) is the restriction of an orthogonal and (ρ1, ρ2)–equivariant

map, which yields the extension to the rest of B̄3.

1.6 Equivariant connected sum

Given a smooth action ρ : G y M on a compact manifold and a ρ(G)–
invariant smoothly embedded 2–sphere S ⊂ M , one can cut M along
S and obtain a smooth action on a compact manifold with boundary
ρ̌ : G y M̌ , the boundary of M̌ consisting of two S2–components S1 and
S2. The restricted actions ρ̌|Si are conjugate and also conjugate to (the
restriction to the boundary of) an orthogonal action on the round unit
ball ρ̌B : G y B3. We therefore find (ρ̌B , ρ̌)–equivariant diffeomorphism
φi : ∂B

3 → Si, by which we glue in copies of B3 to each boundary, and
obtain a smooth action ρ′ on the resulting compact manifold M ′. The
smooth conjugacy class of ρ′ does not depend on the special choice of φi
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by Proposition 1.27. Also note that the infinitesimal actions dρ′xi
: G y

TxiM
′ are conjugate, where xi denotes the points in M ′ corresponding

to the center of B3.

This construction can easily be generalized to a finite ρ(G)–invariant
family {Sj} of disjoint 2–spheres in M , by replacing G with the stabilizer
of each Sj and choosing φji equivariantly for each orbit of Sj . We call
the resulting action ρ′ : G y M ′ an equivariant connected sum decom-
position of ρ : G y M . We now define a construction which reverses the
equivariant connected sum decomposition:

Definition 1.28 (equivariant connected sum). Let ρ : G y M be
a smooth finite group action on a compact manifold. Let P be a ρ(G)–
invariant finite family of pairs of points (xi, yi) ∈ M ×M such that all
xi, yi are pairwise disjoint. Denote by Gi the stabilizer of xi (or of yi,
which is the same). Suppose that dρxi : Gi y TxiM and dρyi : Gi y
TyiM are conjugate by a linear maps αxi : Txi → Tyi respectively αyi =
α−1

xi
for all i, and that the family α of all these maps is (dρ,ρ)-equivariant,

i. e. for each pair (x, y) and each g ∈ G holds dρ(g)x ◦αy = αgx ◦ dρ(g)x.

Then we define the equivariant connected sum along P as follows: For
an arbitrary smooth ρ(G)–invariant Riemannian metric on M cut out
small r–balls around all points xi and yi (r chosen so small that 2r–balls
are disjoint and 2r < injM). For each pair (xi, yi) consider the map

βxi : B(xi, 2r)− B̄(xi,
1
2
r) → B(yi, 2r)− B̄(yi,

1
2
r)

z 7→ expyi
◦ ιr ◦ αxi ◦ exp−1

xi
(z) ,

and βyi = β−1
xi

, where ιr is the involution on the sphere of radius r.
βxi is ρ(Gi)–equivariant, and the family β of all these maps is ρ(G)–
equivariant. Now cut out the balls B̄(xi,

r
2
) and B̄(yi,

r
2
) and identify

what remains from B(xi, 2r) and B(yi, 2r) using the map βxi . One
obtains a smooth manifold MP and a smooth action ρP : G y MP . The
smooth conjugacy type of ρP does only depend on P and on the family
α. Since in all applications the particular choice of α is either canonical
or irrelevant, we suppress the dependence on α in our notation.

Proposition 1.29. Assume that P1 and P2 are disjoint ρ(G)–invariant
families as in Definition 1.28. Then holds (ρP1)P2 = ρ(P1∪P2).

Proof . Supposed r is chosen small enough that none of the 2r–balls
around xi, yi intersect, the gluing procedure in Definition 1.28 can be
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carried out for each ρ(G)–orbit of pairs separately. Since the families Pi

are disjoint and ρ(G)–invariant, this implies the claim.

Definition 1.30. We define the following graph ΓP associated to the
equivariant connected sum P: For each component of M take a vertex,
and for each pair (x, y) ∈ P take an edge connecting the vertices cor-
responding to the components that contain x and y. Then the group
action on M induces a group action on ΓP .

Proposition 1.31. Assume that the associated graph ΓP of an equiv-
ariant connected sum P is a tree. Suppose furthermore that at most one
component of M is different from S3 and the action ρ : G y M is stan-
dard on the union of all components of M diffeomorphic to S3. Then
either

(i) MP ∼= S3 and ρP is standard or

(ii) MP 6∼= S3 and there exists a unique component M0 of M diffeomor-
phic to MP . M0 is ρ(G)–invariant and ρP is smoothly conjugate
to ρ|M0 .

Proof. If there is a component not diffeomorphic to S3, denote it by M0;
otherwise put M0 = ∅. First consider case (ii) where MP 6∼= S3. Then
M0 6= ∅ since the connected sum of only S3–components along a tree is
an S3.

Let M1 ⊂M be the union of all S3–components of M that correspond
to ends of the tree ΓP (i. e. vertices with at most one edge). Let P1 ⊆ P
be the corresponding family of pairs, i. e. the pairs (xi, yi) ∈ P with
xi ∈ M1, and let P2 = P − P1. It is clear that both families are ρ(G)–
invariant.

If P1 = ∅, then there can be no S3–components, so M = M0. Because
there are no loops it follows that P = ∅ and the assertion is trivial.

If P1 6= ∅, then we shall show that ρP1 is conjugate to ρ|M2 , where
M2 = M −M1. Let S3

i be the components of M1 and let P1 = {(xi, yi)}
with xi ∈ S3

i , yi ∈ M2. Then xi is a fixed point for ρ(Gi). A standard
action on S3 which has a fixed point must be the suspension of the action
on the equator, so the restriction of ρ(Gi) to S3

i − B̄(xi,
r
2
) is conjugate

to the restriction on B(yi,
r
2
).

This gives ρP1
∼= ρ|M2 . Since M0 ⊆ M2 ⊂ M and M2 has fewer

S3–components than M after finitely many iterations of this process we
reach at the situation M = M0. This proves the Proposition in case (ii).
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1.6 Equivariant connected sum

In case (i) we can apply the same reduction of the graph as long as it
is not a point or an interval. If it is a point, then again the assertion is
trivial. If it is an interval, then P = {(x1, y1)} with x1 ∈ S3

1 and y1 ∈ S3
2 .

G1 = G or [G1 : G] = 2 if there are group elements that interchange S3
1

and S3
2 (and thus interchange x1 and y1). Precisely the same argument

as before gives that the restriction of ρ(G1) to S3
1−B̄(x1,

r
2
) is conjugate

to the restriction on B(y1,
r
2
). Therefore ρP(G1) ∼= ρ(G1)|S3

1
∼= ρ(G1)|S3

2

is the suspension of an action on S2 and hence standard. Elements in
G − G1 interchange the two 3–balls S3

1 − B(x1, r) and S3
2 − B(y1, r)

(and the antipodal points of x1 and y1), so the complete action ρP(G)
is standard.

Remark 1.32. Consider the special case that MP is irreducible, i. e.
every embedded 2–sphere bounds a 3–ball. Then every embedded 2–
sphere is separating and therefore ΓP contains no loops. Since MP is
connected, also ΓP is connected and hence is a tree.

Also note that if MP is irreducible, at most one component of M is
not diffeomorphic to S3. Thus if in addition the action restricted to
all S3–components is standard, the hypothesis for Proposition 1.31 is
fulfilled.
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2 Perelman’s Ricci-flow with surgery

The study of Ricci-flow on Riemannian manifolds was developed by
Richard Hamilton, as an attempt to find distinguished metrics on the
manifolds. Indeed, he could show that for 3–manifolds with an initial
metric of positive Ricci curvature, the Ricci-flow converges up to rescal-
ing to a metric of constant positive sectional curvature [Ham82]. For
general Riemannian 3–manifolds he proved under the extra hypothesis
that the solution is non-collapsing and non-singular that the Ricci-flow
converges to a metric of constant sectional curvature, where the conver-
gence is up to rescaling and diffeomorphisms (in case of negative sec-
tional curvature the limit might also be non-compact and the (pointed)
convergence depends on the choice of base-points) [Ham99].

This property of homogenizing Riemannian metrics makes the Ricci-
flow interesting for the purpose of geometrization. However, for general
initial metrics the flow can develop singularities. This major obstacle
was removed by Perelman [Per02], who succeeded in excluding certain
“bad” (locally collapsing) types of singularities and describing the possi-
ble singularities by local models, so-called κ–solutions. With this control
on the singularities he managed to prove existence of a Ricci-flow with
surgery for all times which has a similar long-time behavior as Hamilton’s
non-singular solutions [Per03a]. The analysis of the long-time behavior
proves the geometrization conjecture of Thurston.

In the following chapter we will present some well-known facts con-
cerning the Ricci-flow with surgery. Most of this is based on Perelman’s
papers [Per02, Per03a] and their detailed elaborations by Kleiner and
Lott [KL07], Morgan and Tian [MT07] and Bamler [Bam07].

We will especially focus on those properties of Ricci-flow (and Ricci-
flow with surgery) which are important for our applications, namely
the geometry of the Ricci-flow close to a singular time and the surgery
process. In particular we are interested in a precise description of the
neck–cap decomposition of the region which is affected by the surgery
(see Chapter 2.2 for this discussion in the local models and Chapter 2.3
for its application to the original manifold). The chapter ends with a
description of the surgery process by (r, δ)–cutoff in Chapter 2.4.
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2 Perelman’s Ricci-flow with surgery

Definition 2.1 (Ricci-flow). Given a Riemannian manifold (M, g0), a
Ricci-flow on M with initial metric g0 is a solution (M, g(t))t∈[a,b) of the
partial differential equation

∂
∂t
g(t) = −2Ric(g(t)) , g(a) = g0 .

The Ricci-operator is an almost elliptic operator, where the non-el-
lipticity only stems from the invariance of Ric under diffeomorphisms
of M . This was observed by DeTurk and used to give a short proof of
unique short-time existence of the Ricci-flow [DeT83].

If (M, g(t))t∈[a,b) is a Ricci-flow, then also (M,λ2g( 1
λ2 t))t∈[λ2a,λ2b) is

a Ricci-flow (note that Ric is scale-invariant!):

∂
∂t
λ2g( 1

λ2 t) = −2Ric(g( 1
λ2 t)) = −2Ric(λ2g( 1

λ2 t))

Therefore, a rescaling by λ in space and λ2 in time is called parabolic
rescaling with factor λ.

Definition 2.2 (parabolic ball). A parabolic ball B(x0, t0, r, τ) in a
Ricci-flow (M, g(·)) is a space-time product B(x0, t0, r)× [t0, t0 + τ ] (re-
spectively [t0 + τ, t0] if τ < 0), where B(x0, t0, r) is the r–ball around x0

in the t0–time-slice (M, g(t0)).

One often considers parabolic balls of the form B(x0, t0, λ,−λ2), since
they correspond under parabolic rescaling (and possibly time-shifting)
to (backward) parabolic “unit-balls” B(x0, t0, 1,−1).

2.1 κ– and standard solutions

We start with describing the local singularity-models (κ–solutions) and
models for the post-surgery behavior in a surgery region (standard so-
lutions). The main issues that shall be recalled are the classification
of three-dimensional orientable κ–solutions and the compactness of the
space of κ– and standard solutions.

An essential property of the Ricci-flow is that under certain conditions
it is non-collapsing in the sense that when normalizing curvature to 1 at
a point, the volume of balls (and thus injectivity radius) is bounded, as
was proved by Perelman using the analysis of the L–length and reduced
volume comparison [Per02, Theorem 8.2]. This makes it possible to ex-
tract limit flows using the compactness result for Ricci-flows of Hamilton
[Ham95a].
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2.1 κ– and standard solutions

κ–non-collapsedness

We recall the definition of κ–non-collapsing compare [KL07, Definition
26.1], [MT07, Definition 9.1]:

Definition 2.3 (κ–non-collapsed). Let (Mn, g(t)), t ∈ [a, b) be a
Ricci-flow such that (Mn, g(t)) is a complete n–dimensional manifold
for all t. We say the flow is κ–non-collapsed on scale < ρ, if for any
(x0, t0) ∈ Mn × [a, b) and any r < ρ with a ≤ t0 − r2 holds: Either
S(x, t) > r−2 for some (x, t) in the parabolic ball B(x0, t0, r,−r2) or
vol(B(x0, r)) ≥ κrn.

Equivalently one can formulate this as follows: The Ricci-flow is κ–
non-collapsed if after parabolic rescaling of the flow with factor r−1, the
volume of B(x0, t0, 1) is greater then κ whenever the flow is defined on
the parabolic ball B(x0, t0, 1,−1) and satisfies S(x, t) ≤ 1 there.

Note that a Ricci-flow that is κ–non-collapsed on scale ρ also is κ′–
non-collapsed on scale ρ′ for any 0 < κ′ ≤ κ and 0 < ρ′ ≤ ρ.

Example 2.4. An important example of a κ–non-collapsed solution is
the product of a shrinking round sphere with Euclidean space, M =
Sk × Rn−k, 1 ≤ k ≤ n defined on some time interval [a, b). This is κ–
non-collapsed on all scales r for a suitable κ = κ(n, k): If in the t0–time
slice the sphere has radius <

p
k(k − 1)r, then S(x0, t0) > r−2 and the

statement is trivial. Otherwise, the lower bound on the radius guaranties
a certain volume.

Standard solutions

Standard solutions are designed as local models for the flow after remov-
ing a singularity by surgery.

Definition 2.5. A standard initial metric is a Riemannian metric gstand

on R3 with the following properties:

• gstand is complete and has non-negative sectional curvature

• gstand is rotational symmetric around the origin, called the tip of
the standard metric,

• gstand is isometric to S2(
√

2)×R+ outside a compact ball around
the origin,
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2 Perelman’s Ricci-flow with surgery

• gstand is isometric to a subset of the round sphere S3(
√

2) near the
origin.

Definition 2.6 (standard solution). A standard solution is a Ricci-
flow on R3 defined on a time interval [0, T ) with the properties that g(0)
is a standard initial metric, |Rm| is bounded on each time-slice and T
is maximal with this property, i. e. the solution cannot be extended such
that curvature stays bounded on each time-slice.

It is a result of Shi [Shi89], that also for non-compact, complete initial
metrics with bounded curvature the solution for the Ricci-flow exists
for some short time period and one has curvature control for a short
time. Therefore, for any standard initial metric, there exists a standard
solution.

The following facts about standard solutions are claimed in [Per03a,
Section 2] and proved in detail in [KL07, Sections 60–66], [MT07, Chap-
ter 12], [Bam07, Section 7.3].

Proposition 2.7. Every standard solution is defined on [0, 1) and for
t→ 1 scalar curvature gets uniformly large. That is, there is a constant
c such that S(x, t) > c

1−t
on any standard solution. Moreover, any

standard solution is κ–non-collapsed on scales below 1.

It can be showed that for a given standard initial metric the solu-
tion of the Ricci-flow equation is unique. More generally, Chen and Zhu
show that there is unique short time existence for complete non-compact
n–dimensional manifolds if the initial metric has bounded curvature op-
erator [CZ05]. However, this result is not required since instead it suffices
to have compactness of the space of standard solutions with a fixed stan-
dard initial metric. This can be obtained without uniqueness, see [KL07,
Lemma 64.1]:

Proposition 2.8 (compactness of pointed standard solutions).
The space of pointed standard solutions (R3, 0, g(·)) with base point at
their tip and with a fixed standard initial metric is compact with respect
to pointed smooth convergence of flows.

Remark 2.9. In the following we will always fix a standard initial met-
ric gstand and assume that every standard solution has this metric as
initial metric. The specific choice of gstand does not play a role. How-
ever, the constants derived to control the geometry of standard solutions
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2.1 κ– and standard solutions

may depend on gstand since the space of standard initial metrics is not
compact.

κ–solutions: Definition and examples

The fact that a Ricci-flow is κ–non-collapsed (on scales depending on the
initial metric and on time, see [Per02, Theorem 8.1]) makes it possible
“zoom into” a singularity and to extract a limit flow. The greater the
curvature gets, the longer is the life-time of the rescaled solution and
thus such a limit flow is defined on (−∞, 0] and κ–non-collapsed on
all scales. Moreover, if the Φ–pinching holds (see Definition 2.37), the
limit has non-negative curvature. This motivates the definition of κ–
solutions as local singularity-models, compare [KL07, Definition 38.1],
[MT07, Definition 9.2].

Definition 2.10 (κ–solution). A Ricci-flow (M, g(t)), defined for t ∈
(−∞, 0], is called an ancient solution if for any t ∈ (−∞, 0], the time-slice
(M, g(t)) is a complete, non-flat manifold with non-negative Riemann
curvature R with |R(x, t)| < C(t) for some number C(t) > 0 which may
depend on t. A κ–solution is an ancient solution which in addition is
κ–non-collapsed on all scales (see Definition 2.3).

Remark 2.11. It follows that on a κ–solution scalar curvature is posi-
tive everywhere: If it were zero at (x, t), then also R(x, t) = 0. Due the
strong maximum principle [Ham86, Lemma 8.2] the null-space of curva-
ture tensor field R is invariant under parallel translation and in time, so
R ≡ 0 holds everywhere, but this is excluded.

Example 2.12. M = Sk×Rn−k as in Example 2.4, defined on (−∞, 0],
is a κ–solution for κ ≤ κ(n, k) if k ≥ 2 (otherwise it is flat). It is easy to
see that the Ricci-flow can be defined on (−∞, 0]: The inverse Ricci-flow
∂
∂t
g(t) = 2Ric(g(t)) is just the product of an expanding sphere with Rk.

This gives the most import 3–dimensional examples for κ–solutions:
the shrinking round cylinder S2 × R (k = 2) and the shrinking round
sphere S3 (k = 3).

Example 2.13. If one takes a finite volume quotient of the Rn−k–factor
in Example 2.12, i. e. M = Sk × Fn−k where Fn−k is a flat compact
(n−k)–manifold, then the Ricci-flow is still defined on (−∞, 0]. However,
it is not κ–non-collapsed on any scale for any κ: For t → −∞ the
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2 Perelman’s Ricci-flow with surgery

sphere is expanding, so it can be rescaled with smaller and smaller r
while keeping S ≤ 1. This makes the Fn−k–factor arbitrarily small and
therefore the volume of the rescaled ball B(x, 1) gets below any κ.

In dimension 3 this yields that the ancient Ricci-flow on S2×S1 with
the round shrinking metric on S2 is not a κ–solution. More generally:

Proposition 2.14. The only quotient of the round shrinking cylinder
S2 × R which is a κ–solution is S2 ×Z2 R, i. e. the quotient under the
map (x, t) 7→ (−x,−t).

Proof. Let ρ : G y S2×R be an isometric action, such that the quotient
S2 ×R/ρ(G) (with the evolving round quotient metric) is a κ–solution.

By Example 2.13, S2 ×R/ρ(G) must have infinite volume. Thus, the
induced action on R can only be the trivial action or the Z2–action
given by x 7→ −x. If it is trivial, then ρ fixes every S2, but there is
no non-trivial orientation preserving isometry of S2; so ρ is trivial. If
it is the Z2–action, then it leaves S2 × {0} invariant, so it must be the
antipodal map on the S2–factor. On the other hand, it is easy to verify
that S2 ×Z2 R is κ–non-collapsed, since balls contain at least half the
volume of the corresponding balls in the universal cover S2 ×R, which
is κ–non-collapsed.

Classification of 3–dimensional κ–solutions

We give an overview about how to classify 3–dimensional orientable
κ–solutions. An essential step for this classification is a dimension-
reduction argument, for which one needs the following non-trivial result
about 2–dimensional κ–solutions.

Proposition 2.15. The only orientable two-dimensional κ–solution is
the round shrinking two-sphere.

Proof. See [KL07, Corollary 40.1 and Section 43] or [Bam07, Section
5.3].

The three-dimensional orientable κ–solutions are topologically classi-
fied as follows:

Proposition 2.16. Let (N,h(t)) be an orientable three-dimensional κ–
solution.
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2.1 κ– and standard solutions

If (N,h(t)) has not strictly positive curvature for some time t, then
N is isometric to a round shrinking cylinder S2 × R or to its smooth
orientable Z2–quotient S2 ×Z2 R.

If (N,h(t)) has stricly positive curvature for all t, then N is diffeomor-
phic to a spherical space form S3/Γ if N is compact, or diffeomorphic to
R3 if N is non-compact.

Proof. In case of not strictly positive curvature, by Hamilton’s strong
maximum principle N must locally split off an R–factor [Ham86, Lemma
8.2 and 9]. So the universal cover splits off a line and Ñ = R × N2

as a metric product by the Splitting Theorem of Cheeger and Gromoll
[CG72], where the splitting is invariant under the flow, since the null-
space of R is one-dimensional and perserved in time due to the maximum
principle. After reparameterization of time this induces a κ′–solution on
N2. Thus, N2 is a round shrinking 2–sphere by Proposition 2.15. N
cannot be a finite volume quotient of Ñ , see Example 2.13. So S2 ×R
and S2 ×Z2 R remain as the only possibilities.

If N is compact (and thus has strictly positive curvature), then the
conclusion follows from [Ham82]. For non-compact N with positive cur-
vature it is a consequence of the Soul Theorem [CG72]: The soul is then
a point and its tangent space diffeomorphic to N .

We shall later derive a more precise characterization of compact 3–
dimensional κ–solutions, namely that if the solution is not diffeomorphic
to S3 or RP 3, then it must be round (see Proposition 2.29).

Compactness of the space of κ– and standard solutions

From now on we restrict to 3–dimensional orientable κ–solutions. So for
abbreviation the term “κ–solution” shall always mean “3–dimensional
orientable κ–solution”, if not explicitly stated otherwise. There is the
following compactness result, compare [Per02, Theorem 11.7], [KL07,
Theorem 46.1].

Theorem 2.17 (compactness of κ–solutions). For given κ, the space
of (orientable 3–dimensional) κ–solutions is compact modulo scaling.
That is, for any sequence (Ni, xi, hi) with S(xi) = 1 there exists a sub-
sequence that is smoothly converging to a limit flow, which again is a
κ–solution.
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2 Perelman’s Ricci-flow with surgery

Combining the compactness results for κ– and standard solutions, one
obtains a compactness result for the space of time-slices of κ– and stan-
dard solutions.

Theorem 2.18 (compactness of κ– and standard solutions). The
space of pointed time-slices of κ– and standard solutions is compact mod-
ulo scaling with respect to the pointed smooth convergence.

Proof. For pointed standard solutions with base-point the tip, the cor-
responding compactness property was already stated in Proposition 2.8.

Consider now sequences of pointed standard solutions (Ni, xi, g(·)),
and of times ti. If (for a subsequence) ti stays bounded away from 1 and
d(xi, 0) stays bounded with respect to g(ti), then ti subconverge to a time
t∞ < 1 and under the convergence (Ni, 0, g(·)) → (N∞, 0, g(·)) also xi

subconverge to a point x∞ ∈ N∞. Therefore, (Ni, xi, gti) subconverges
to the t∞–time-slice of a standard-solution.

If xi →∞, then up to rescaling the sequence subconverges to a round
cylinder, see [KL07, Lemma 61.1]. Finally, if ti → 1, then S gets
uniformly large on Ni and (using that standard solutions are κ–non-
collapsed on scales ≤ 1) one can apply [KL07, Theorem 52.7] (compare
[Per02, Theorem 12.1]) to conclude that (Ni, xi, g(ti) is εi–close to a
subset of a κ–solution, with εi → 0.

Proposition 2.19 (universal κ0). There exists κ0 > 0 such that any
κ–solution is a either a shrinking spherical space-form or a κ0–solution.

Proof. See [KL07, Proposition 50.1], [MT07, Proposition 9.58].

2.2 Geometry of κ– and standard solutions

The compactness theorem yields bounds on the variation of curvature
on κ–solutions, as well as on their asymptotic geometry.

Proposition 2.20 (bounded curvature at bounded distance). For
fixed κ there are positive functions α1, α2 : R+ → R+ such that for any
time-slice of a κ–solution (N,h(t)) and any points x, y ∈ N holds

α1

`
d̃(x, y)

´
≤ S(y)

S(x)
≤ α2

`
d̃(x, y)

´
.
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2.2 Geometry of κ– and standard solutions

Moreover, there is a positive function β : R+ → R+ with lims→∞ β(s) =
∞ such that d̃(y, x) ≥ β(d̃(x, y)).

Proof . If there were no such functions α1 and α2, then there would
exist a positive number s and there would be sequences of time-slices of
κ–solutions (Ni, hi(ti)) and of points xi, yi ∈ Ni such that d̃(xi, yi) = s

and the quotient S(yi)
S(xi)

tending towards 0 or ∞. We normalize scalar
curvature at xi to 1 and thus obtain a time-slice of a limit flow, for
which scalar curvature is zero or unbounded at distance s from x∞.
This is a contradiction.

For the second claim we use that in bounded distance to y the ratio
S(x)/S(y) is bounded above, so for any r on the relative r–ball B̃(y, r)
holds

d̃(x, y) = d̃(y, x)

„
S(x)

S(y)

« 1
2

≤ rα2(r)
1
2 .

In other words, d̃(x, y) →∞ forces also d̃(y, x) →∞.

Lemma 2.21. For fixed κ there is a function r̂ : R+ → R+ such that the
following holds for any time-slice of a κ–solution: Suppose the relative
r–balls B̃(x, r) and B̃(y, r) intersect. Then B̃(y, r) ⊆ B̃(x, r̂(r)).

Proof. Let z ∈ B̃(x, r) ∩ B̃(y, r). Then by Proposition 2.20 the ratios of

S(x), S(z) and S(y) are bounded: We have S(x)
S(z)

≤ α1(r)
−1 and S(z)

S(y)
≤

α2(r), and therefore S(x)
S(y)

≤ α2(r)
α1(r)

=: C(r). So any point z′ ∈ B̃(y, r)
satisfies

d̃(x, z′) ≤ S(x)
1
2
`
d(x, z) + d(z, y) + d(y, z′)

´
≤ d̃(x, z) +

S
1
2 (x)

S
1
2 (y)

`
d̃(y, z) + d̃(y, z′)

´
≤ r + 2C(r)

1
2 r .

Hence r̂(r) := r + 2C(r)
1
2 r gives the desired function.

We will later on often make use of the following dichotomy: κ–solutions
with an upper radius bound have a uniform lower sectional curvature
bound. On the other hand, κ–solutions with large radii have a good
control on their geometry in the sense that they are almost cylindrical
except for at most two regions with bounded radius. These two essential
observations shall be derived in the rest of this section.
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2 Perelman’s Ricci-flow with surgery

Proposition 2.22. There is a constant c′1 = c′1(D
′′, κ) > 0 such that the

following holds: Let N be a compact κ–solution, x ∈ N with frad(x,N) <
D′′, then the sectional curvature on N is bounded below by c′1S(x).

Proof . Assume by contradiction that there are sequences of compact
κ–solutions Ni, of points xi ∈ Ni with frad(xi, Ni) < D′′ such that for
each i there is point yi where the sectional curvature K on a two-plane
Pi ⊂ TyiNi satisfies Kyi(Pi) < νiS(xi) with νi → 0 for i→∞.

We rescale the Ni such that S(xi) = 1 and Kyi(Pi) < νi. By compact-
ness of the space of κ–solutions there is a subsequence for which (Ni, xi)
converges to a κ–solution (N∞, x∞), which satisfies S(x∞) = 1 andfrad(x∞, N∞) ≤ D′′. By the definition of convergence there are points
y∞,i ∈ N∞ and two-planes P∞,i ∈ Ty∞,iN∞ with Ky∞,i(P∞,i) < ν′i with
ν′i → 0. Since N∞ is compact, due to Arzelà-Ascoli a subsequence of the
y∞,i converges to a point y∞ ∈ N∞ and for a further subsequence also
the planes converge to a two-plane P∞ ⊂ Ty∞N∞. Thus Ky∞(P∞) = 0,
which contradicts the positive curvature of compact κ–solutions, see Pro-
position 2.16.

Note that although this section deals with κ–solutions, the following
definitions are for general Riemannian manifolds.

Definition 2.23 (ε–neck). Let (M, g) be a Riemannian manifold and
x ∈M . An ε–homothety

η : S2(
√

2)× (− 1
ε
, 1

ε
) ↪→M

with x ∈ η(S2(
√

2) × {0}) is called an ε–neck around x. x is called
center of the ε–neck and η(S2(

√
2) × {0}) the central leaf of the neck.

Sometimes we will also refer to the image of η as an ε–neck.

We define the neck-like region Mneck
ε as the set of points in M that

are center of an ε–neck.

Note that an ε–neck η : S2(
√

2) × (− 1
ε
, 1

ε
) ↪→ M gives an ε–approxi-

mation of (M,x, g) by a round cylinder S2(
√

2) ×R. However, there is
a slight technical difference, since an ε–approximation maps only an 1

ε
–

ball in S2(
√

2)×R to M and not the (slightly larger) cylinder S2(
√

2)×
(− 1

ε
, 1

ε
).

Definition 2.24 (strong ε–neck). Let (M, g(·)) be a Ricci-flow solu-
tion defined for [0, T ) and (x, t) ∈ M × [0, T ). A strong ε–neck around
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(x, t) is an ε–neck η : S2(
√

2)× (− 1
ε
, 1

ε
) ↪→M around x, such that after

parabolic rescaling of (M, g(·)) with factor S(x, t)
1
2 , η is an ε–isometry

between the parabolic regions (S2×(− 1
ε
, 1

ε
))×[−1, 0] and im(η)×[t−1, t],

where the first region is in a round evolving cylinder with final time-slice
of scalar curvature 1.

Definition 2.25 ((ε, d)–cap). Let (M, g) be a Riemannian manifold
and x ∈ M . We call an open subset C ⊂ M with x ∈ C an (ε, d)–cap
around x, if the following holds:

• the scalar curvature on C is strictly positive,

• C is diffeomorphic to B3 or RP 3 −B3,

• frad(x,C) < d and

• B̃(x, d)− C ⊂Mneck
ε , in particular ∂C ⊂Mneck

ε .

Remark 2.26. The idea behind the definition of an (ε, d)–cap is to as-
semble the characteristic properties of the part of a κ–solution which
is not neck-like, see the following Proposition 2.27. These properties
will carry over to regions of the Ricci-flow with high scalar curvature,
which are approximated by κ–solutions. Therefore, there is some flex-
ibility which properties to put into the definition and which to deduce
separately from the approximating κ–solutions. For instance, one can
omit the upper radius bound for the cap and show a-posteriori that it
suffices to consider canonical neighborhoods of bounded radius as done
in [KL07, Lemma 59.7 and Definition 69.1].

Also note that in our definition the end of a cap is contained in Mneck
ε ,

but we do not require that the boundary neck is part of the cap.

Proposition 2.27 (neck–cap decomposition I). There exists ε(0) =
ε(0)(κ) > 0 such that for all 0 < ε < ε(0) there are constants 0 <
d′(ε, κ) < D′(ε, κ) such that the following holds:

If N is a κ– or standard solution, x ∈ N−Nneck
ε with frad(x,N) > D′,

then x is center of an (ε, d′)–cap C.
Furthermore, if for any r > d′ holds D′ > r̂(r) (r̂ from Lemma 2.21)

then B̃(x, r) − B̃(x, d′) ⊆ Nneck
ε . In particular, if Ĉ is another (ε, d′)–

cap around a point x̂′ 6∈ Nneck
ε , then either C −Nneck

ε = Ĉ −Nneck
ε or

C ∩ Ĉ = ∅. In the later case N is a compact κ–solution.

The proof of Proposition 2.27 makes use of the following description
of κ–solutions in terms of their neck-like and non-neck-like parts, which
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2 Perelman’s Ricci-flow with surgery

is proved in [KL07] as a corollary of the compactness result. We state
this Lemma with adapted notation (and a slightly stronger formulation
of case C, which actually is proved in [KL07]):

Lemma 2.28 ([KL07, Corollary 48.1]). For all κ there exists an
ε(0)(κ) > 0 such that for all 0 < ε < ε(0) there exists an α = α(ε, κ)
such that for any time-slice (N,h) of a κ–solution precisely one of the
following holds:

A. (N,h) is a round infinite cylinder, so every point is center of an
ε–neck for any ε > 0.

B. N is non-compact, N 6= Nneck
ε and for any points x, y ∈ N−Nneck

ε

holds d̃(x, y) < α. So N = B̃(x, α)∪Nneck
ε for any x ∈ N−Nneck

ε .

C. N is compact and there is a pair of points x, y ∈ N − Nneck
ε with

d̃(x, y) > α. For any such pair x, y holds

N = B̃(x, α) ∪Nneck
ε ∪ B̃(y, α) ,

and there is a minimizing geodesic xy such that every z ∈ Nneck
ε

satisfies d̃(z, xy) < α.

D. N is compact and there exists a point x ∈ N − Nneck
ε such thatfrad(x,M) < α, i. e. N = B̃(x, α).

Lemma 2.28 leads to the following description of compact κ–solutions
(see also [Bam07, Theorem 5.4.12] for an alternative proof):

Proposition 2.29. If a κ–solution (N, g(·)) is compact, then either it
is a round shrinking space form (and thus frad(x,N) ≤

√
6π) or N is

diffeomorphic to S3 or RP 3.

Proof. Recall that any κ–solution has an associated asymptotic soliton,
which shows up as a limit flow of the restricted solutions (N, g(·))(−∞,ti]

(shifted back to final time 0) for any sequence ti → −∞ (compare [KL07,
Section 39]).

If the asymptotic soliton is compact, it follows from [Ham82] that
it must be a round shrinking space form. So let us assume that it is
non-compact.

Then there must be a sequence of times ti → −∞ such that each
ti–time-slice is of type C. Let xi respectively yi be points in the non-
neck-like balls. Since the asymptotic soliton is non-compact, d̃(xi, yi)
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2.2 Geometry of κ– and standard solutions

and d̃(yi, xi) tend towards infinity and a pointed limit flow with base-
points xi or yi is non-compact as well. Such a limit must either be round
S2×Z2R (note that the base-points are non-neck-like) or diffeomorphic to
R3 (by the soul theorem). So for i large enough B̃(xi, α) and B̃(yi, α) are
disjoint and each diffeomorphic toRP 3−B̄3 orB3 (use ∂B(xi, α) ∼= S2 to
apply Alexander’s Theorem [Hat00, Theorem 1.1]), and the complement
of the two balls is diffeomorphic to S2× [0, 1]. It is impossible that both
ends are RP 3 − B̄3’s by the topological classification of κ–solutions in
Proposition 2.16.

The corresponding result of Lemma 2.28 for standard solutions says
that for them only case B occurs. Note that we only regard standard
solutions with a fixed standard initial metric gstand (α may depend on
the choice of gstand).

Proposition 2.30 (standard solutions mostly neck-like). There
exists a positive number α = α(ε, gstand) such that for any time-slice
(N,h) of a standard solution holds N = B̃(0, α) ∪Nneck

ε .

Proof. For a fixed standard solution this follows from the asymptotically
cylindrical geometry. That is, by [KL07, Lemma 61.1] the sequence
of pointed flows obtained by moving the base-point towards infinity,
converges uniformly to the round cylindrical flow. This implies that
for base-points outside some compact ball around the origin all time-
slices are ε–close to the round cylinder. Now compactness of the space
of all standard solution yields a radius of this ball independent on the
solution.

Proof of Proposition 2.27. Let x ∈ N−Nneck
ε and frad(x,N) > D′. This

excludes case A of Lemma 2.28, and if D′ > β(α) with β from Proposi-
tion 2.20, then it also excludes case D. Note that if (N,h) is time-slice
of a standard solution, then by Proposition 2.30 it always satisfies the
conclusion of case B by Proposition 2.30. So we are in case B if N is
non-compact and in case C if N is compact, and in either case the non-
neck-like part is contained in the relative α–ball around x (and possibly
another relative α–ball around a point y). In the non-compact case B it
is immediate that B̃(x, α) is an (ε, d′)–cap. (Note that ∂B̃(x, α) ⊂ Nneck

ε

is diffeomorphic to S2 and so B̃(x, α) is either diffeomorphic to RP 3−B3

or B3 by Alexander’s Theorem [Hat00, Theorem 1.1].)

If in case C the relative r–balls B̃(x, r) and B̃(y, r) intersect for some
r ≥ α, then by Lemma 2.21 we have B̃(y, r) ⊂ B̃(x, r̂(r)). Since any z′ ∈
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2 Perelman’s Ricci-flow with surgery

N − (B̃(x, r)∪ B̃(y, r)) is center of an ε–neck and satisfies d̃(z′, xy) < α,
it follows that all of N is contained in B̃(x, r̂(r)) and thus frad(x,N) ≤ r̂.
From this we conclude, that assuming D′ > r̂(r) forces the relative r–
balls around x and y to be disjoint. In particular, the region B̃(x, r) −
B̃(x, α) is neck-like.

Due to the lower radius bound D′, N cannot be a round spherical
space-form, so by Proposition 2.29N ∼= S3 orRP 3. Again it follows from
Alexander’s Theorem that the ball B̃(x, α) is diffeomorphic to RP 3−B3

or B3. This shows the existence of an (ε, α)–cap around x. We therefore
put d′(ε) = α.

Now if there is another (ε, d′)–cap Ĉ and if some non-neck-like points
of Ĉ are not contained in C, then in particular they are not contained in
B̃(x, α), so we are in the case of a compact κ–solution again. The above
argument then yields that the two caps are disjoint.

Remark 2.31 (constants independend of κ). Since all statements
made in this section are trivial in the case that the κ–solution is a shrink-
ing round spherical space-form, the existence of a universal κ0 (see Pro-
position 2.19) yields that all constants or functions ε(0), α1, α2, r̂, c

′
1,

D′, d′, α can actually be chosen independent of κ, and in the following
we shall always assume that this is the case.

2.3 Regions approximated by local models

κ– and standard solutions are local models for parts of the Ricci-flow on
a manifold shortly before a singular time and shortly after carrying out
the surgery. Thus, properties of κ– and standard solutions carry over to
the part of the manifold that is approximated. This shall be examined
in the current section.

Throughout the surgery process, we use ε and ε1 as global parameter
which take fixed, sufficiently small values. The parameter ε is used to
control the quality of the necks, i. e. the closeness to round cylinders. On
the other hand, ε1 � ε controls the quality of approximations by local
models, i. e. by κ– or standard solution. At several steps of the argument
we need to improve this quality and so derive upper bounds for ε and
ε1. In order to keep track of their dependencies, we shall denote them
by ε(0), ε(1), etc. respectively ε

(1)
1 , ε

(2)
1 etc.

Note that in [Per03a], [KL07] and [MT07] only one parameter ε is used
(which corresponds to our ε1). However, we find it more transparent to
distinguish between the two different types of quality.

38



2.3 Regions approximated by local models

In order to distinguish between the Riemannian manifold M and an
approximating κ– or standard solution N , we make the convention to
decorate objects in N with a dash ′.

Definition 2.32 (A0(ε1)). Let (M, g) be a connected, closed, orientable
3–dimensional Riemannian manifold. For ε1 � ε we define the ε1–model-
like part A0 = A0(ε1) as the subset of those points x ∈ M , for which
(M,x, g) is ε1–approximated (in the sense of Definition 1.19) by a time-
slice of a κ– or standard solution.

Recall the definitions of ε–necks and (ε, d)–caps from Chapter 2.2. Now
the neck–cap decomposition of Proposition 2.27 translates as follows to
A0:

Proposition 2.33 (neck–cap decomposition II). For 0 < ε < ε(0)

there are constants 0 < d(ε) < D(ε), D(ε) > 10, and 0 < ε
(1)
1 (ε) � ε,

such that for any ε1 ≤ ε
(1)
1 the following holds:

If x ∈ A0(ε1) −Mneck
ε with frad(x,M) > D, then x is center of an

(ε, d)–cap C.

Furthermore, if Ĉ is another (ε, d)–cap around a point x̂ ∈ A0−Mneck
ε

with frad(x̂,M) > D, then either C−Mneck
ε = Ĉ−Mneck

ε or C ∩ Ĉ = ∅.

Proof. Let (N, x′, h) be the κ– or standard solution which ε1–approx-
imates (M,x, g). For ε1 sufficiently small (with respect to ε), x′ cannot
be center of an ε

2
–neck. Suppose D > 2D′( ε

2
), then frad(x′, N) > D′ and

hence by Proposition 2.27 x′ is center of an ( ε
2
, d′( ε

2
))–cap C′. We put

d(ε) := 2d′( ε
2
).

By definition, each y′ ∈ ∂C′ is contained in an ε
2
–neck, and this neck

(composed with φ) gives an ε–neck around φ(y′). So φ(∂C′) ⊂ Mneck
ε

and φ(C′) is an (ε, d)–cap centered at x.

For the second claim assume that z ∈ C ∩ Ĉ. Because both caps
are approximated by a κ– or standard solution, the ratios S(x)/S(z)
and S(z)/S(x̂) are bounded, and so frad(x, Ĉ) < c for some constant
c = c(d, ε) = c(ε). Now if ε1 <

1
2c

, then x̂ and the ε–cap Ĉ lie in the
ε1–approximated region φ(N).

For any non-neck-like point y ∈ Ĉ −Mneck
ε , y′ := φ−1(y) cannot be

center of an ε
2
–neck in N . For D large enough we have frad(x′, N) > r̂(c),

so Proposition 2.27 yields that all non-neck-like points in B̃(x′, c) must
lie in B̃(x′, d′) ⊂ C′. We get y ∈ C −Mneck

ε , and by exchanging the
roles of Ĉ and C we obtain C −Mneck

ε = Ĉ −Mneck
ε .
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2 Perelman’s Ricci-flow with surgery

In the following we shall always assume that ε < ε(0) and ε1 ≤ ε
(1)
1 (ε).

Definition 2.34 (ε–cap, A1(ε, ε1)). We denote the set of points x ∈ A0

satisfying frad(x,M) > D(ε) by A1 = A1(ε, ε1) ⊆ A0(ε1). For x ∈
A1 −Mneck

ε , we will refer to an (ε, d(ε))–cap C simply as an ε–cap.

Remark 2.35. If x ∈ A1, then the bound on frad(x,M) excludes the
possibility that (M,x, g) is approximated by a round spherical space
form. Therefore, for all x ∈ A1, (M,x, g) is approximated by a κ0– or
standard solution.

2.4 Ricci-flow with (r, δ)–cutoff

Definition 2.36. A Ricci-flow with surgery is a collection of finite or
infinite sequences of increasing times tk, of Ricci-flows (Mk, g(·)) defined
on [tk, tk+1) and of smooth embeddings φk : Xk → Mk+1 where Xk ⊂
Mk, with the following properties:

• tk is a singular time for the Ricci-flow (Mk−1, g(·)), i. e. the curva-
ture explodes and the flow cannot be extended.

• The set of singular times {tk} is discrete.

• Xk is a compact 3–manifold with boundary, contained in the region
Ωk = {x ∈ Mk−1 | supt<tk

‖R(x, t)‖ < ∞}, on which the limit

metric g−(tk) = limt↗tk g(t) exists.

• φk is isometric with respect to the limit metric on Xk and the
metric g(tk) on Mk.

It is allowed that Mk = ∅ for some k, so one can assume a Ricci-flow
with surgery always to be defined on [0,∞). Furthermore, it is useful
to associate a Ricci-flow with surgery with a space-time Mt∈[0,∞), such
that Mt = (M, g(t)) if t is not a singular time. For the singular times,
there is a backward time-slice M−

tk
= (Ωk, g

−(tk)) and a forward time-

slice M+
tk

= (Mk, g(tk)). The backward and forward time-slices shall be
identified on Xk respectively φk(Xk) via the isometry φk.

Note that Ωk may be empty or consist of infinitely many components,
and the metric on Ωk in general is incomplete.
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2.4 Ricci-flow with (r, δ)–cutoff

A-priori assumptions

There are two properties that are important for the control of the be-
havior of the Ricci-flow shortly before a singularity and which shall be
explained in the following: the Φ–pinching and the canonical neighbor-
hood assumptions. If both properties are valid, one says that the a-priori
assumptions hold.

The meaning of Φ–pinching is that whenever the scalar curvature gets
large, the positive eigenvalues of R grow much faster then the negative
ones. This is quantified as follows:

Definition 2.37 (Φ–pinching). Let Φ: [1,∞) → (0,∞) be a decreas-
ing function with limS→∞ Φ(S) = 0. We say, a Ricci-flow with surgery
M satisfies the Φ–pinching condition, if R ≥ −Φ(S)S on every point
(x, t) ∈M with S(x, t) ≥ 1.

Before the first surgery, Φ–pinching is guaranteed by the Hamilton–
Ivey curvature pinching [Ham95b, Ive93], see also [Ham99, Theorem 4.1]
for a time-improving Φ–pinching version.

Definition 2.38 (canonical neighborhoods). Let Mt∈[a,b) be a so-
lution of the Ricci-flow and r : [a, b) → (0,∞) a non-increasing function.
We say M satisfies the (r, ε1, ε)–canonical neighborhood assumptions if
all x ∈Mt with S(x, t) > r(t)−2 are contained in A0(ε1), i. e. (M,x, g(t))
is ε1–approximated by the time slice of a κ– or standard solution.

Moreover, if B̃(x, 1
ε1

) is not a closed manifold and x is not center of
an ε–cap, then x is center of a strong ε–neck.

Remark 2.39. The existence of strong necks (as assumed in the canon-
ical neighborhood assumptions) is not important for our application, for
which approximation of time-slices are sufficient. However, strong necks
are needed to prove the existence of Ricci-flow with (r, δ)–cutoff. For
this purpose, the advantage of strong necks is that when taking a limit
one gets not only a limit manifold, but a limit Ricci-flow and can apply
the strong maximum principle to this flow.

Before the first surgery, the canonical neighborhood assumptions are
guaranteed by [Per02, Theorem 12.1] (see also [KL07, Theorem 52.7])
for those points (x, t), for which the flow is defined at least for the time-
period [t− S(x)−1, t] (i. e. on the scale of x, the flow runs already for at
least time 1).
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2 Perelman’s Ricci-flow with surgery

In order to obtain universal bounds on curvature and life-time and
thus a universal function r for the canonical neighborhood assumptions,
one considers flows with normalized initial conditions.

Definition 2.40. We say a closed, orientable Riemannian 3–manifold
(M, g0) has normalized initial conditions if the following holds:

1. |R(x)| ≤ 1 for all x ∈M

2. (M, g0) is ω
2
–non-collapsed on scales less then 1, where ω is the

volume of the unit-ball in Euclidean 3-space.

Note that due to the first condition the second one is equivalent to
the condition that any 1–ball in M has at least half the volume of a
Euclidean unit ball. Given any Riemannian metric g′0 on a compact
orientable 3–manifold, one can always find a scale λ such that g0 := λg′0
has normalized initial condition.

Ricci-flow with (r, δ)–cutoff

We next describe a very special way of doing surgery, the so-called Ricci-
flow with (r, δ)–cutoff. This process makes use of the a-priori assump-
tions. They are guaranteed before the first singular time, and the surgery
will be done very carefully in order to preserve the assumptions also after
the surgery.

The a-priori assumptions imply some control on the behavior of Ωk

in the case that it carries an incomplete metric. First note that towards
the ends of Ωk the Riemann curvature cannot stay bounded, and the
Φ–pinching then implies that the scalar curvature gets arbitrarily large.
Therefore, for ρ > 0 the sets

Ωk,ρ := {x ∈ Ωk |S(x, tk) ≤ ρ−2}

are compact subsets of Ωk.

For ρ taken small enough (will be quantified later on), scalar curvature
is large on the complement of Ωk,ρ and thus the canonical neighborhood
assumptions can be applied on Ωk − Ωρ,k. It follows that components
of Ωk − Ωρ,k which have boundary in ∂Ωk,ρ and have unbounded cur-
vature can only be approximated by cylindrical regions of higher and
higher curvature (i. e. smaller and smaller cross-sections). Therefore,
these components are completely contained in Ωneck

ε and each of them
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2.4 Ricci-flow with (r, δ)–cutoff

is diffeomorphic to S2 × (0,∞), with curvature unbounded towards ∞.
One calls a component with these properties an ε–horn.

It is possible to show that when moving towards the end of an ε–
horn, the regions are not only ε–approximated by cylinders but even δ–
approximated for arbitrarily small δ. More precisely, there is a universal
constant h = h(δ, ε, ε1, r,Φ) such that if x is a point in an ε–horn in a
singularity-limit Ωk and S(x, tk) ≥ h−2, then x is center of an δ–neck
[Per03a, Lemma 4.3], [KL07, Lemma 71.1].

This control on the ends of Ωk makes it possible to perform surgery
in the following way, compare [KL07, Definition 73.1]:

Definition 2.41. Let r, δ : [0, T ) → (0,∞) be non-increasing functions.
A Ricci-flow with (r, δ)–cutoff is a Ricci-flow with surgery M, which
satisfies the Φ–pinching condition and where in additionM+

tk
is obtained

from M−
tk

as follows:

1. Throw away components of Ωk that do not intersect Ωk,ρ, where
ρ = δ(tk)r(tk).

2. Each end of an (remaining) incomplete component of Ωk is an ε–
horn. For each such ε–horn Hi find a strong δ(tk)–neck around a
point xi satisfying S(xi, T ) = h, where h only depends on δ, r, ε, ε1
and Φ (see [KL07, Lemma 71.1] for the existence of such δ–necks).
Cut along their central spheres and throw away the unbounded
side of the horn. The remaining part of Ωk gives Xk.

3. Do surgery at the necks according to Lemma 2.42 in order to obtain
the closed forward manifold M+

tk
.

Note that complete components of Ωk which intersect Ωρ are part of
Xk, so they are not affected by the surgery.

Lemma 2.42 (gluing). There exists δ0 = δ0(Φ, gstand) > 0 (where
gstand is a standard initial metric) such that for any δ ≤ δ0 the fol-
lowing holds: Let (M, g) be a Riemannian 3–manifold that satisfies the
Φ–pinching condition. Let η : S2(

√
2)×(− 1

δ
, 1

δ
) →M be a δ–neck. Then

there exists a metric h on S2× (− 1
δ
, 20)∪{pt} (where the point is added

to the positive end), such that

• on S2 × (− 1
δ
, 0] holds h = η∗g

• on S2 × [10, 20) holds h = gstand, where gstand is a fixed standard
initial metric, and we identify S2(

√
2) × [10, 20) with the pointed
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2 Perelman’s Ricci-flow with surgery

3–ball B(0, 10)− {0} ⊂ R3 via the map

(x, t) 7→ x√
2
(20− t) .

• h satisfies the Φ–pinching condition.

Proof. For a detailed proof see [MT07, Theorem 13.2], [KL07, Lemma
72.20]. The idea is to define h as interpolation

h = β1S(x)−1gstand + β2e
2f(t)η∗g ,

where β1, β2 is a partition of unity subordinate to the cover {S2 ×
(5, 20), S2× (− 1

δ
, 10)}, and f : (− 1

δ
, 10) → (−∞, 0] is a suitable function

satisfying f ≡ 0 on (− 1
δ
, 0]. The technical difficulty is to choose f in

such a way that the Φ–pinching is preserved. Indeed, one can find f
such that the smallest eigenvalue of Rh is greater than the one of Rg,
see [MT07, Corollaries 13.11 and 13.12], [KL07, Lemma 72.1].

Remark 2.43. The Φ–pinching is not affected by the surgery process,
i. e. if M−

tk
satisfies the Φ–pinching, then so does M+

tk
. Therefore, the

Φ–pinching condition can be replaced with a time-improving Φ–pinching
which exists on the non-singular flow periods by [Ham99, Theorem 4.1],
see also [KL07, Appendix B]. This will only be relevant for the discussion
of long-time behavior of the Ricci-flow with (r, δ)–cutoff.

Theorem 2.44 (existence of Ricci-flow with (r, δ)–cutoff). There

exists ε(0) > 0 such that for any fixed ε < ε(0) and ε1 ≤ ε
(1)
1 (ε), there

exist non-increasing functions r, δ̄, κ : [0,∞) → (0,∞) such that for any
δ : [0,∞) → (0,∞) with δ(·) ≤ δ̄(·) the following holds: Let (M, g0)
be a Riemannian manifold with normalized initial condition. Then there
exists a Ricci-flow with (r, δ)–cutoff for all times, it is κ(t)–non-collapsed
on scales below ε and satisfies the Φ–pinching and the (r, ε1, ε)–canonical
neighborhood assumptions.

Proof. See [Per03a, Proposition 5.1], [KL07, Proposition 77.2] or [MT07,
Theorem 15.9].
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3 Invariant singular S2–foliations

The aim of this chapter is to construct an invariant singular S2–foliation
on the part A1 of a manifold M which is well-approximated by local
models, as defined in Chapter 2.3. At the surgery process, this is the
region of M where scalar curvature gets large and which is affected by
the surgery, compare Chapter 2.4.

The purpose of the invariant singular foliation onA1 is threefold: First,
it allows us to find equivariant surgery necks and slightly modify the
surgery process such that it becomes equivariant (see Chapter 4.1). Sec-
ond, we use it to show that the action is standard on all components
which get extinct or are thrown away at a surgery time (see Chapter 3.1
and Corollary 3.20). Finally, it is essential for relating the actions be-
fore and after the surgery as an equivariant connected sum construction
(compare Chapter 4.2).

The construction of the foliation goes in two steps: It is relatively obvi-
ous that the neck-like part carries an invariant foliation by almost round
almost totally geodesic two-spheres, since each neck-approximation has
such a foliation and one only needs to interpolate between them. This is
carried out in Chapter 3.2, and applied in Chapter 3.3 to find equivari-
ant necks. Using the neck–cap decomposition from Chapter 2.3, it then
remains to extend the foliation on an invariant family of disjoint ε–caps
(see Chapter 3.4).

3.1 Singular S2–foliations

Definition 3.1. Let M be a smooth orientable 3–manifold. A partition
F of M in disjoint smooth submanifolds, called leaves, is called singular
S2–foliation, if

• finitely many leaves are points x1, . . . , xk and near each xi the
partition is diffeomorphic to the one by distance spheres to the
origin in Euclidean space,

• F −{x1, . . . , xk} is a smooth foliation (in the usual sense, compare
e. g. [Law74]) with leaves diffeomorphic to S2 except finitely many
leaves diffeomorphic to RP 2.
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3 Invariant singular S2–foliations

We call the S2–leaves regular leaves, and the RP 2–leaves and points sin-
gular leaves (despite the fact that the RP 2–leaves of course are smooth
leaves in the usual definition of smooth foliations).

If one removes the singular leaves, one gets a smooth S2–foliation of
an open 3–manifold Mregular. The foliation must have local product
structure and hence is an S2–fibration over a one-dimensional manifold,
which we call leaf space. So a component M

(i)
regular of Mregular either is

closed (the 1–manifold is S1) and is diffeomorphic to S2 × S1, or the 1–
manifold is an interval and the component is diffeomorphic to S2×(0, 1).

One gets the original component back from M
(i)
regular

∼= S2 × (0, 1)
by gluing in the singular leaves, i. e. by first adding boundary leaves
S2 × {0, 1} and then identifying antipodal points on a boundary leaf of
S2 × [0, 1] or by identifying the whole leaf with a point.

It follows that each singular leaf has a neighborhood with a standard
foliation, and furthermore each closed component of M is diffeomorphic
to either S2 × S1, S3 (both ends to points), RP 3 (one end to a point,
the other to RP 2) or RP 3]RP 3 (both ends to RP 2). Similarly, an open
component of M is diffeomorphic to S2 × (0, 1), B3 or RP 3 − B̄3.

Proposition 3.2. Let M be a connected (open or closed) 3–manifold
which has a singular S2–foliation F . Let ρ : H y M be a smooth finite
group action that preserves the foliation, i. e. maps leaves to leaves. Then
ρ is standard.

Proof . First note that if x is a singular point, then we can find an
invariant spherical metric on a saturated neighborhood Nx of the H–
orbit of x (consisting of at most two points), such that leaves around x
are distance spheres in the metric.

Similarly, if F ∼= RP 2 is a singular leaf, choose a ρ(H)–invariant
spherical metric on ρ(H)F and extend it ρ(H)–invariantly to an (S2 ×
R)–metric on a saturated neighborhood NF of ρ(H)F , such that leaves
near F are metrically double covers of F .

Denote the union of these regions by N . It now suffices to construct an
ρ(H)–invariant (S2×R)–metric onM−N , which agrees on the boundary
spheres with the (2–dimensional) spherical metric of ∂N . (In case that
M ∼= S3 or RP 3 this metric can easily be made spherical by warping
along the R–factor).

The leaf space Λ of M − N is either S1 or an interval I. Since ρ
preserves the foliation, there is an induced action ρΛ on Λ. Denote the
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3.2 Invariant foliation of the neck-like region

kernel of this action by H0. Choose a connected fundamental domain
Λ0 for the ρΛ–action, and let M0 be the corresponding subset of M −N .
Let Σ be the boundary spheres of M0 which are not contained in ∂N
and choose a ρ(H)–invariant spherical metric on ρ(H)Σ.

In the special case of Λ = S1 and ρΛ the trivial action (H0 = H) take
an arbitrary leaf F , equip it with a ρ–invariant spherical metric and let
M0

∼= S2× I be M cut open along F (with F added on both ends of the
interval).

Now ∂M0 is equipped with a spherical metric, and it remains to ex-
tend this metric ρ(H0)–invariantly to the interior of M0. Since Λ0 is
a fundamental domain for ρΛ, such a metric on M0 lifts to the desired
ρ(H)–invariant metric on M −N .

In order to construct a ρ(H0)–invariant (S2 ×R)–metric on M0, note
that the foliation has a ρ(H0)–invariant transversal line field. This in-
duces a ρ(H0)–equivariant diffeomorphism φ between the two boundary-
spheres Σ0 = S2 × {0} and Σ1 = S2 × {1}. We take a fixed ρ(H0)–
equivariant isometry to identify Σ0 and Σ1 and apply Proposition 1.23
to conclude that the diffeomorphism φ : Σ0 → Σ1 is equivariantly iso-
topic to an isometric one. Using this isotopy, we equivariantly modify
the line field such that the induced diffeomorphism gets an isometry.
Now take the product metric on M0 with respect to the trivialization of
the modified line field, i. e. leaves are totally geodesic and orthogonal to
the line-field.

3.2 Invariant foliation of the neck-like region

Let M be a (not necessarily complete) Riemannian manifold, and let
ρ : G y M be an isometric finite group action. Recall that Mneck

ε is
the set of points in M , which are centers of ε–necks. Since the action is
by isometries, Mneck

ε is ρ(G)–invariant. In this section we construct a
ρ(G)–invariant S2–foliation of Mneck

ε .

Definition 3.3. We call a (unit) tangent vector v ∈ TpM at a point
p ∈Mneck

ε a distant direction, if there exists a minimizing geodesic γ of

length S−
1
2 (p) 1

3ε
starting from γ(0) = p with γ̇(0) = v.

Definition 3.4. A smoothly embedded surface Σ ⊆M is called ν–hori-
zontal, if angles between Σ and all distant directions are > π

2
− ν.
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3 Invariant singular S2–foliations

Each neck η : S2(
√

2) × (− 1
ε
, 1

ε
) → M defines a height function hη =

π(− 1
ε

, 1
ε
)◦η

−1 on its image, where π(− 1
ε

, 1
ε
) is the projection on the interval

factor. We call the level sets h−1
η (t) = η(S2 × {t}) leaves of the neck η.

For an ε–neck η : S2 × (− 1
ε
, 1

ε
) → M define the inner half Vη =

η(S2×(− 1
2ε
, 1

2ε
)), the inner third Wη = η(S2×(− 1

3ε
, 1

3ε
)), and the inner

quarter Uη = η(S2 × (− 1
4ε
, 1

4ε
)).

To simplify notation, we use the convention that a 0–neck is an infinite
round cylinder.

Proposition 3.5 (distant directions in ε–necks). There is a mono-
tonically increasing function θ1 : [0, 1

100
) → [0,∞) with limε→0 θ1(ε) = 0

such that the following holds:
Let η : S2(

√
2)×(− 1

ε
, 1

ε
) →M be an ε–neck with ε < 1

100
, then for any

p ∈ Vη there are distant directions v1, v2 with ∠p(v1, v2) ≥ π− θ1(ε) and
for any two distant directions w1, w2 holds either ∠p(w1, w2) ≥ π−θ1(ε)
or ∠p(w1, w2) ≤ θ1(ε).

Proof. To simplify notation assume that S(p) = 1, so η is an ε–isometry.
We denote η−1(p) by (x, t) ∈ S2(

√
2)× (− 1

2ε
, 1

2ε
).

Let q1 = η((x, t− 1
2ε

)), q2 = η((x, t+ 1
2ε

)). Then
˛̨
d(qi, p)− 1

2ε

˛̨
≤ 1 and˛̨

d(q1, q2)− 1
ε

˛̨
≤ 1. Therefore minimizing geodesics γi (i = 1, 2) from p

to qi have length > 1
3ε

and by triangle comparison ∠p(γ̇1(0), γ̇2(0)) → π
for ε → 0 (note that curvature on im(η) is almost non-negative). We

put vi := γ̇i(0)
‖γ̇i(0)‖

and choose a monotonically increasing function θ1 with

limε→0 θ1(ε) = 0 such that ∠p(γ̇1(0), γ̇2(0)) ≥ π − θ1(ε)
3

.
On the other hand, assume that w is any distant directions at p. Let

γ be a geodesics starting from p with γ̇(0) = w and let q = γ( 1
3ε

). Then
η−1(q) has distance at most 1 from S2 × {t − 1

3ε
} or to S2 × {t + 1

3ε
}.

From the two distant direction constructed above let vi be the one for
which γi does not get close to q and put q̄ := γi(

1
3ε

). Then holds

d(q̄, q) > 2
3ε
− 2 and d(p, q) = d(p, q̄) = 1

3ε

so as before for ε→ 0 we have ∠p(γ̇i(0), γ̇(0)) → π, and we may modify

θ1 such that ∠p(γ̇i(0), γ̇(0)) ≥ π − θ1(ε)
3

. This shows that ∠p(w,−vi) ≤
θ1(ε)

3
, so any distant direction has angle ≤ θ1(ε)

3
with either −v1 or −v2.

This proves the proposition.

Proposition 3.6 (leaves almost horizontal). There is a monotoni-
cally increasing function θ2 : [0, 1

100
) → [0,∞) with limε→0 θ2(ε) = 0 such
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3.2 Invariant foliation of the neck-like region

that the following holds: Let η be an ε–neck and Σ a leaf in the inner
half Vη, i. e. Σ = h−1

η (t) with t ∈ (− 1
2ε
, 1

2ε
). Then Σ is θ2(ε)–horizontal.

Proof. Let γ be a minimizing geodesic of length ε
3

starting from p in
any distant direction. Then η−1(γ) is a minimizing η∗g–geodesic in
S2(

√
2) × (− 1

ε
, 1

ε
), and it is uniquely minimizing between x := η−1(p)

and y := η−1(γ( 1
6ε

)). By Proposition 1.16 the angle at x between η−1(γ)
and the minimizing gcyl–geodesic γcyl from x to y goes to 0 for ε→ 0. But
since γcyl is minimizing of length ≥ 1

8ε
(with respect to gcyl), it must be

almost orthogonal on S2×{t} = η−1(Σ), with ∠gcyl(η
−1(Σ), γ̇cyl(0)) → 0

for ε→ 0. The claim follows now from C1–closeness of g and gcyl.

Corollary 3.7. Let η1, η2 : S2(
√

2) × (− 1
ε
, 1

ε
) → M be ε–necks around

xi that intersect. Then

1. if the inner half intersect, then at x ∈ Vη1 ∩ Vη2 holds

∠(dhη1 , dhη2) < 2θ2(ε) or ∠(dhη1 , dhη2) > π − 2θ2(ε) .

2. if the inner thirds intersect and θ2(ε) <
1
10

, then any leaf Σ =
h−1

η1 (t) of η1 is isotopic to any leaf of η2.

Proof . Let Σ1, Σ2 be the leaves through a point x ∈ Vη1 ∩ Vη2 , and
choose a distant directions v ∈ TxM . By Proposition 3.6, v is almost
orthogonal on both Σ1 and Σ2, thus the angle between Σ1 and Σ2 is less
2θ2(ε). This implies the first statement.

For the second statement, first isotope Σ to a leaf Σ′ = h−1
η1 (t′) inter-

secting Wη1 ∩Wη2 . Since the diameter of Σ′ is close to
√

2πS(x1)
− 1

2 by
Proposition 3.6, Σ′ lies in the inner halves V1 ∩ V2. Thus at every point
x ∈ Σ′, the angle between Σ′ and the η2–leaf through x is ≤ 2θ2(ε). This
implies that η−1

2 (Σ′) hits every {a}×(− 1
ε
, 1

ε
) exactly once, and therefore

Σ′ can be isotoped to a leaf of η2.

We now construct a global ρ(G)–invariant smooth S2–foliation on the
union Uε of all inner quarters of ε–necks,

Wε :=
[

η is ε–neck

Wη ⊇ Uε :=
[

η is ε–neck

Uη ⊇ Mneck
ε .

Lemma 3.8. For given K there exists a monotonically increasing func-
tion θ : [0, 1

100
) → [0,∞) with lims→0 θ(s) = 0 such that the following

holds:
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3 Invariant singular S2–foliations

Let ρ : G y (M, g) be an isometric finite group action with |G| ≤ K
on a complete connected Riemannian manifold (M, g) and let ε ≤ 1

100
.

Then there exists a ρ(G)–invariant smooth S2–foliation Fε on an open
set Fε, Uε ⊆ Fε ⊆M with the following properties:

If x is center of an ε̃–neck for ε̃ ≤ ε and Σ is a leaf of Fε through x, then
Σ is θ(ε̃)–horizontal. Furthermore, the foliation Fε on B̃(x, 1

θ(ε̃)
)∩Uε is

θ(ε̃)–close in C
1

θ(ε̃) –topology to the metric product foliation of S2(
√

2)×R.

Proof . Of course, the ε̃–necks η : S2 × (− 1
ε̃
, 1

ε̃
) → M give local S2–

foliations, with almost horizontal leaves and the foliation ε̃–close to the
cylindrical standard foliation. The problem is that those approximations
need not to be ρ–invariant and different local foliations have to be glued
together. In order to get a global ρ(G)–invariant foliation, the main idea
is here to average the height functions (respectively its gradient) of a
ρ(G)–invariant family of ε̃–necks.

For each x ∈Mneck
ε choose ε̃(x) ∈ [0, ε] and an ε̃(x)–neck ηx such that

ε̃(x) is almost as small as possible, i. e. any ε̃′–neck around x satisfies
ε̃′ > 2

3
ε̃(x). (If ε̃(x) = 0 for some point, then (M, g) is isometric to a

round cylinder and the claim is trivial. So we may exclude this case.)
Note that for any y in the inner halves Vηx holds

3ε̃(x) ≥ ε̃(y) ≥ 1
3
ε̃(x) , (3.2.1)

since ηx is also a 2ε̃–neck around y, and a 1
3
ε̃(x)–neck around y would

be an 2
3
ε̃(x)–neck around x, which cannot exist.

Now from this family of necks choose a sub-family

Φ = {ηx : S2 × (− 1
ε̃(x)

, 1
ε̃(x)

) →M}

of ε̃(x)–necks such that their inner halves {Vηx | ηx ∈ Φ} form a locally
finite covering ofWε and choose a subordinate partition of unity {βη | η ∈
Φ}. We may assume that the covering and the partition of unity is ρ(G)–
invariant, for if Φ is a given collection, than {ρ(g)η | η ∈ Φ, g ∈ G} is
a ρ(G)–invariant collection of ε–necks, and { 1

|G|βη ◦ ρ(g)−1 | η ∈ Φ, g ∈
G} is ρ(G)–invariant subordinate partition of unity. Since the regions
Wηx are almost cylindrical, it is possible to bound the multiplicity of a
(non-invariant) covering by 3 and thus the multiplicity of the invariant
covering by 3 |G|.

By Proposition 3.6 all leaves in Vηx are θ2(ε̃(x))–horizontal, so ker dhηx

has angle ≥ π
2
− θ2(ε̃(x)) with all distant directions in Vηx .
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3.2 Invariant foliation of the neck-like region

For any y ∈ Wε we can choose signs εy,η ∈ {±1} such that by Corol-
lary 3.7 and (3.2.1) holds for z near y

∠z(εy,ηdhη(z), εy,η′dhη′(z)) < 2θ2(3ε̃(y)) (3.2.2)

for all η, η′ with y ∈ Vη ∩ Vη′ . Using these neck-orientations, we can
interpolate to define a local one-form near y

α(z) :=
X
η∈Φ

βη(z)εy,ηdhη(z) ∈ T ∗z M

α is locally well-defined up to sign. Thus, we get a well-defined global
one-form α̃ as a section in T ∗M/ ± 1 on Wε ⊇ Uε ⊇ Mneck

ε . Note that
α̃ is ρ(G)–invariant since Φ and β are so.

Since small balls in the space of directions are convex, interpolation
improves the horizontality, and so we conclude from Proposition 3.6 that
kerα is θ2(3ε̃(y))–horizontal.

α has a local primitive f near y, namely

f(z) =
X
η∈Φ

βη(z)εy,ηhη(z).

So the (globally on Wε defined) plane field ker α̃ is integrable and defines
a foliation Fε by integral surfaces which are level sets of f .

Note that on the overlap Vηx ∩Vηx′ the height functions are θ′–close in

C[ 1
θ′ ]–topology, with θ′ → 0 for max{ε̃(x), ε̃(x′)} → 0. Thus, if η is any ε̃–

neck around y, the pulled back height functions and also the interpolated
function f is close to the cylindrical height function, and so Fε is close
to the standard cylindrical foliation (in particular the leaves of Fε are
spheres close to the ε̃–neck-leaves). Using (3.2.1) and the bound on the
multiplicity of the covering, one finds a function θ(ε̃) as in the statement
of the Lemma measuring the closeness of Fε and the cylindrical foliation.

Since α̃ is defined on Wε and for each x ∈ Uε holds B̃(x, 1
20ε

) ⊂ Wε,
we can take Fε to be the union of all ker α̃–leaves through Uε.

We get an immediate consequence if M is completely neck-like:

Corollary 3.9. Suppose M is a connected, orientable, closed 3–manifold
and M = Mneck

ε with ε ≤ 1
100

. Let ρ : G y M be an isometric finite
group action. Then M ∼= S2 × S1 and the action ρ is standard.
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3 Invariant singular S2–foliations

Proof . Lemma 3.8 yields that M has a ρ(G)–invariant (smooth) S2–
foliation. Hence M ∼= S2 × S1, and the action is standard by Proposi-
tion 3.2.

We finally note that invariant, almost horizontal spheres are isotopic
to leaves of Fε:

Lemma 3.10. Let ε ≤ 1
100

be such that θ(ε) < 1
10

and Σ ⊂ Uε an em-
bedded 2–sphere that is 1

10
–horizontal and ρ(H)–invariant for a subgroup

H ≤ G. Then Σ can be ρ(H)–equivariantly isotoped to a leaf of the
foliation Fε from Lemma 3.8.

Proof. This is an equivariant version of the second claim in Corollary 3.7,
and the proof is analogous: Since Σ is 1

10
–horizontal and leaves of Fε are

θ(ε)–horizontal (with θ < 1
10

), Σ intersects all leaves of Fε transversally.
It follows that Σ hits each integral curve of α̃ exactly once. Since α̃ is
invariant, the isotopy can now be done ρ(H)–equivariantly along these
integral curves.

3.3 Equivariant approximations by local models

Definition 3.11 (equivariant ε–neck). Given a subgroup H ≤ G,
an ε–neck η : S2(

√
2) × (− 1

ε
, 1

ε
) ↪→ M is called ρ(H)–equivariant, if the

image of η is ρ(H)–invariant and the pulled back action η∗ρ : H y
S2(

√
2)× (− 1

ε
, 1

ε
) is isometric.

In the following we shall fix a group G and some constant

ε(1)(|G|) < min
˘

1
100

, ε(0)
¯

such that for ε ≤ ε(1)(|G|) holds θ(ε, |G|) < 1
100

with θ from Lemma 3.8.
This gives a “minimal quality” for the foliation Fε, and guaranties that
the non-foliated, well-approximated region A1 − Uε consists of disjoint
ε–caps. In the following, we shall always assume that ε < ε(1)(|G|).

We now use the invariant foliation Fε in order to construct equivariant
necks, where the quality of the necks depends on the (local) quality of
the foliation:

Lemma 3.12 (finding equivariant necks). For any δ > 0 there exists
δ̃ = δ̃(δ, |G|) > 0 such that the following holds:
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3.3 Equivariant approximations by local models

Suppose that ρ : G y M is an isometric action, x ∈ Mneck
ε and Σ is

the leaf through x of the ρ(G)–invariant foliation Fε. Let H = StabG(Σ).
If x is the center of a δ̃–neck, then x is the center of an H–equivariant
δ–neck.

Proof . By Lemma 3.8 the ρ(H)–invariant metric g|Σ on Σ is almost
round, so for δ̃ sufficiently small we find an isometric action ρ̂0 : H y
S2(

√
2) and a (ρ̂0, ρ|H)–equivariant δ–approximation η̂0 : S2 → Σ. We

then extend η̂0 along integral lines of Fε to a diffeomorphism η̂ : S2(
√

2)×
(− 1

δ̃
, 1

δ̃
) → M such that η̂|S2(

√
2)×{0} = η̂0. Since the integral lines are

ρ(H)–invariant, the pulled back action is isometric. Now for δ̃ sufficiently
small, the restriction of η̂ to S2(

√
2) × (− 1

δ
, 1

δ
) gets arbitrarily close to

an homothety.

As soon as one can guaranty equivariant necks, the surgery process
itself can be made equivariant without the need of any further modifica-
tion:

Proposition 3.13 (equivariant gluing). Let ρ : G y M be an iso-
metric action and η : S2(

√
2) × (− 1

δ
, 1

δ
) → M be an H–equivariant δ–

neck, where H ≤ G such that η∗ρ(H) acts trivial on the interval factor
and assume δ ≤ δ0 from Lemma 2.42. Then surgery at η can be done
equivariantly: That is, if (M ′, g′) is the manifold obtained by surgery
along η, then there exists an isometric action ρ′ : H y M ′ that agrees
with ρ|H on the part that is not affected by surgery, and the restriction
of ρ′(H) on the surgery cap is conjugate to a spherical suspension of
η∗ρ|S2×{0}(H).

Proof. The metric h constructed in the proof of Lemma 2.42 on S2 ×
(− 1

d
, 20) preserves any symmetry of η∗g (with which it agrees on (− 1

δ
, 0]),

because the standard initial metric gstand is rotational symmetric and
the interpolation function f only depends on the height variable (the
R–coordinate of the neck).

Away from the foliated neck-like region, it is less obvious how one can
find equivariant approximations:

If x ∈ A1 then there is an ε–approximation φ : B̃( 1
ε
, x′) → (M,x),

where x′ lies in a κ0– or standard solution N . The pulled back action
φ∗ρ is then only defined on a subset of N and is only ε–isometric (as-
suming that we have normalized S(x′) = 1). We say an approximation
is equivariant, if the pulled back action extends to an isometric action
on all of N .
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3 Invariant singular S2–foliations

Regarding this problem for κ0– or standard solution, it is a conse-
quence of the compactness of the space of model solutions that partially
defined almost-isometries can be replaced by globally defined isometries,
supposed the region where the action is defined is large enough and the
orbit of the base point x′ is contained in a not too large ball:

Lemma 3.14 (finding equivariant approximations). For a, ν > 0
and a finite group G exists ε̃1(a, ν,G) > 0 such that:

Let (N, x′) be a time slice of a κ0– or renormalized standard solution,
normalized so that S(x′) = 1, and let ρ : G y V be an ε1–isometric
action on an open subset V , B̃(x′, 1

2ε1
) ⊆ V ⊆ N with 0 < ε1 ≤ ε̃1.

Suppose that A is a ρ(G)–invariant open subset, x′ ∈ A ⊂ V , withfrad(x′, A) < a.
Then there exists a time slice (N̂ , x̂′) of a κ0– or renormalized standard

solution, a ν–approximation φ̂ : (N̂ , x̂′) → (N, x′), an isometric action
ρ̂ : G y N̂ and a (ρ, ρ̂)–equivariant smooth embedding ι : A ↪→ N̂ which
is ν–close to φ̂−1 in C1–topology.

Proof. Assume the statement is false. This means, we can find sequences
of positive numbers ε1,i → 0, of time-slices of κ0– or renormalized
standard solutions (Ni, x

′
i, hi) with S(x′i) = 1, of ε1,i–isometric actions

ρi : G y Vi on open subsets satisfying B(x′i,
1

2ε1,i
) ⊆ Vi ⊆ Ni, and of

ρi(G)–invariant open subsets Ai with x′i ∈ Ai ⊂ Vi and frad(x1,i, Ai) < a,
such that for all i the conclusion of the Lemma is not satisfied.

Since the argument is by contradiction, we may pass to any subse-
quence, and hence we can assume that the (Ni, x

′
i, hi) converge to a

time slice of a κ0– or renormalized standard solution (N∞, x
′
∞, h∞) (us-

ing the compactness property of the space of κ0– and standard solutions).
Hence for i sufficiently large, (Ni, x

′
i, hi) is ν–close to (N∞, x

′
∞, h∞).

We claim that also the actions converge: By passing to a subse-
quence, we can assume that (Ni, x

′
i, hi) is 1

i
–close to (N∞, x

′
∞, h∞) and

that B(x′i, i + 1) ⊆ Vi. This implies that there is an 1
i
–isometric map

ψi : B(x′∞, i) → Ni with ψi(x
′
∞) = x′i and B(x′i, i − 1) ⊆ im(ψi) ⊆ Vi.

Because the ρi(G)–orbit of x′i is contained in Ai (and frad(x′i, Ai) < a),
the orbit of B(x′i, i − a − 2) is contained in B(x′i, i − 1). We conclude
that there is a ρi(G)–invariant subset Ui with

B(x′i, i− a− 2) ⊆ Ui ⊆ im(ψi) .

We now consider the pull-back action ψ∗i ρi on ψ−1
i (Ui). Since ρi is

ε1,i–isometric and ψ is an 1
i
–isometry, the action ψ∗i ρi is ε̂i–isometric
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3.4 Extending the foliation to the caps

with limi→∞ ε̂i = 0. Furthermore,

ψ∗ρi(G)x′∞ ⊂ B(x′∞, (1 + ε1,i)a)

and the sets ψ−1
i (Ui) exhaust N∞. Therefore, a subsequence of the

actions ψ∗i ρi converges to an isometric limit action ρ∞ : G y N with
ρ∞(G)x′∞ ⊂ B(x′∞, a).

In order to construct an (ρi, ρ∞)–equivariant embedding of Ai, note
that the two actions ρ∞ and ψ∗i ρi get arbitrarily close on ψ−1(Ui) for i
large enough. Since B(x′∞, 2a) ⊂ ψ−1

i (Ui), for each γ ∈ G the restriction

ρ−1
∞ (γ) ◦ ψ∗ρi(γ) : B(x′∞, 2a) → N∞

converges to the identity in Ck–topology for any k.
It thus follows from Chapter 1.4 that there are smooth conjugation

maps ci : B(x′∞, 2a) → N∞ such that ρ∞ ◦ ci = ci ◦ ψ∗i ρi on B(x′∞, 2a).
Since ψ−1

i (Ai) ⊂ B(x′∞, 2a), it follows that ρ∞(h)◦(ci◦ψ−1
i ) = (ci◦ψ−1

i )◦
ρi(h) on Ai for all h ∈ G. For i large enough, ci gets arbitrarily C1–close
to the identity map. Hence ιi = ci ◦ ψ−1

i : Ai ↪→ N∞ is a (ρi, ρ∞)–
equivariant embedding and is ν–close to ψ−1 for i large enough. This
contradicts the assumption that for all i the conclusion of the Lemma is
not satisfied.

3.4 Extending the foliation to the caps

In Chapter 3.2 we have constructed a ρ(G)–invariant S2–foliation Fε

on a region containing all inner quarters of ε–necks. In this section we
want to modify and extend this foliation to a ρ(G)–invariant singular
S2–foliation on a region containing A1. This will later allow us to apply
Proposition 3.2 in order to control the action on regions affected by the
surgery process.

In the following we will only consider ε–caps around points in A1 −
Mneck

ε . We say two such ε–caps C1, C2 are equivalent, if C1 −Mneck
ε =

C2 −Mneck
ε . By Proposition 2.33 follows that inequivalent ε–caps are

disjoint.

Proposition 3.15. In a closed manifold (M, g) there can be only finitely
many equivalence classes of ε–caps around points in A1 −Mneck

ε .

Proof . If x1, x2 ∈ A1 − Mneck
ε are inequivalent and if r is such that

r̂(r) < D, then by Proposition 2.27 d̃(x1, x2) > r. Since M is compact,
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3 Invariant singular S2–foliations

S has an upper bound c and thus d(x1, x2) >
r√
c
, which implies the

claim.

Clearly for each γ ∈ G, the image ρ(γ)(C) is again an ε–cap around
ρ(γ)(x) ∈ A1 −Mneck

ε .

Definition 3.16. The stabilizer of an ε–cap C is the subgroup GC ≤ G
such that for all γ ∈ GC the cap ρ(γ)C is equivalent to C. In other
words, GC = stabG(C −Mneck

ε ).

It follows that for γ 6∈ GC we have ρ(γ)C ∩C = ∅. A given cap C can
be made GC–invariant as a subset of M by adding all leaves of Fε to C
that intersect C.

The strategy for extending the foliation is now as follows: Given a
ρ(GC)–invariant ε–cap C, we first apply Lemma 3.14 to find an approx-
imation of the cap on which the pulled back action is by real isometries
and not only by ε–isometries.

The second step is then to find a singular S2–foliation in the approx-
imating κ0– or standard solution. One could do so by observing that
isometric actions on κ0– or standard solution are standard, which fol-
lows from Hamilton’s result [Ham82] for compact κ–solutions and an
equivariant version of the soul theorem for non-compact κ0– or standard
solutions. However, the problem of this approach is that one needs to
ensure that the singular foliation which results from the standard action
is equivariantly isotopic to the pushed forward foliation from Mneck

ε .
This amounts to showing that an isometric action on the round S3 is
standard when restricted to any invariant smooth 3–ball. Indeed this is
true but the proof is rather laborious, see [DL08, Section 2.4]. Instead,
we present an alternative argument based on the following idea: The
long neck-region in the local model can be used to perform equivariant
surgery in such a way that the action on the neck-leaves is encoded in the
tangential action at the tip of the glued-in 3–ball. This will be explained
in detail in the proof of Proposition 3.18.

Proposition 3.17. Given ν > 0 and ε < ε(1)(|G|) there exists ε
(2)
1 =

ε
(2)
1 (ν, ε,G) ≤ ε

(1)
1 (ε) such that for ε1 < ε

(2)
1 the following holds:

Let C be a GC–invariant ε–cap centered at x ∈ A1−Mneck
ε , then there

exists a κ0– or renormalized standard solution (N̂ , x̂′, ĥ), an isometric
action ρ̂ : GC y N̂ , a ν–approximation φ̂ : (N̂ , x̂′, ĥ) → (M,x, g) and a
(ρ, ρ̂)–equivariant embedding ι̂ : C ↪→ N̂ , which is ν–close in C1–topology
to φ̂−1.
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3.4 Extending the foliation to the caps

Proof. Let (N, x′, h) be a κ0– or renormalized standard solution which
ε1–approximates (M,x, g) via the map φ : (N, x′, h) → (M,x, g). Since
the ρ(GC)–orbit of x stays in C ⊆ B̃(x, d), the ρ(GC)–invariant set

V := ρ(GC)B̃(x, 2
3ε1

)

satisfies
B̃(x, 2

3ε1
) ⊆ V ⊆ B̃(x, 2

3ε1
+ d) ⊆ B̃(x, 1

ε1
).

We denote the pre-image of V by V ′ = φ−1(V ). Then V ′ satisfies
B̃(x′, 1

2ε1
) ⊆ V ′ ⊆ N and on V ′ the action ρ′ = φ∗ρ : GC y V ′ is

defined and is ε1–isometric. Let A′ := φ−1(C) ⊂ V ′, then A′ is ρ′(GC)–
invariant and satisfies frad(x′, A′) < 2d.

Thus, all requirements for Lemma 3.14 are fulfilled, and for ε1 ≤
ε̃1(2d,

ν
2
, GC) the Lemma yields a κ0– or renormalized standard solution

(N̂ , x̂′, ĥ) with an isometric action ρ̂ : GC y N̂ and a ν
2
–approximation

ψ : (N̂ , x̂′) → (N, x′). The composition φ̂ := φ ◦ ψ gives the required ν–
approximation. Furthermore, the (ρ′, ρ̂)–equivariant embedding ι : A′ ↪→
N̂ can be pre-composed with φ−1 to give a (ρ, ρ̂)–equivariant embedding
ι̂ := ι ◦ φ−1 : C ↪→ N̂ . ι is ν

2
–close to ψ−1 in C1–topology, so ι̂ is ν–close

to φ̂−1. Therefore,

ε
(2)
1 (ν, ε,G) := min

˘
ε̃1
`
2d(ε), ν

2
, H
´
|H ≤ G

¯
gives the desired constant.

Proposition 3.18. There is a constant 0 < ε(2)(|G|) ≤ ε(1)(|G|) such
that for ε < ε(2) holds: Let (N,h) be a κ0– or standard solution and
let ρ : H y N be an isometric action by a finite subgroup H ≤ G.
Assume that C′ is a ρ(H)–invariant ε–cap around x′ ∈ N . Then the
ρ(H)–invariant S2–foliation FN

ε on Nneck
ε − C′ can be extended to a

ρ(H)–invariant singular S2–foliation on Nneck
ε ∪ C′.

Proof. If (N,h) is a quotient of the round cylinder, then we may assume
that FN

ε is that standard foliation by round cross-sections (if not, we
could equivariantly isotoped it to that foliation using Lemma 3.10). The
standard foliation obviously extends to the cap. We therefore only have
to consider the case that (N,h) has strictly positive sectional curvature.

Let z ∈ ∂C′, so z is center of an ε–neck. By Lemma 3.12, for

ε < min
˘
δ̃(δ0, |G|), ε(1)

¯
=: ε(2)
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3 Invariant singular S2–foliations

holds that z is center of an ρ(H)–equivariant δ0–neck

η : S2(
√

2)× (− 1
δ0
, 1

δ0
) → N,

where δ0 is the constant from Lemma 2.42. ρ(H) preserves the cap and
therefore also the orientation of the neck, so it preserves each leaf. We
assume that the negative half N− := η(S2× (− 1

δ0
, 0]) of the neck lies in

the direction towards the cap, and the positive half N+ := η(S2×[0, 1
δ0

))
lies in the direction away from the cap.

We can now apply Proposition 3.13 in order to do surgery on the
equivariant δ0–neck η. We denote by C′0 the part of C′ up to the central
leaf η(S2 × {0}) of the neck η and replace the positive half N+ by
a 3–ball. The result of this equivariant surgery is a smooth compact
manifold C̃ = C′0 ∪ B3 diffeomorphic to S3 or RP 3, and an isometric
action ρ̃ : H y C̃, which agrees with the action ρ on C′0, and which on
B3 is the suspension of the action ρ|∂C′0=∂B3 (It has a fixed point in the

tip p of B3).

N−∪B3 carries a ρ̃(H)–invariant singular S2–foliation F0 by the leaves
S2×{t} for t ∈ (− 1

δ
, 20), and with p as a singular point. Obviously, this

is an extension of the foliation Fη|N− .

Note that the metric on C̃ has strictly positive sectional curvature.
This is because the original metric is strictly positive and hence eigen-
values of the curvature are increased by the surgery process, compare
Lemma 2.42.

It then follows from [Ham82] that the Ricci-flow on C̃ converges to a
spherical metric. Let F∞ be the (singular) foliation by distances spheres
to p with respect to the spherical limit metric. Because p is a fix-point
of ρ̃(H), this foliation is ρ̃(H)–invariant. Note that the singular leaves
are the point p and either its antipodal point (if C̃ ∼= S3) or an RP 2 (if
C̃ ∼= RP 3).

On small balls around p both foliations, F0 and F∞, are equivariantly
isotopic. Thus, F∞ can also be equivariantly isotoped such that it agrees
with F0 on N− ∪ B3. We obtain a ρ(H)–invariant singular foliation on
C′0 that agrees with Fη on N−.

The claim now follows from Lemma 3.10: Since leaves of Fη are clearly
1
10

–horizontal, they can be equivariantly isotoped to leaves of FN
ε .

We now put the pieces together to obtain an extension of the foliation
to the ε–caps:
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3.4 Extending the foliation to the caps

Theorem 3.19 (Existence of invariant singular S2–foliation). Let

ε < ε(2)(|G|) and ε1 < ε
(2)
1 (θ, ε,G) for some fixed θ < 1

100
. Assume

that M is connected and A0 6= ∅. Then either A1 6= A0 and M is
ε1–approximated by a compact κ–solution or A1 = A0 and there is a
ρ(G)–invariant singular foliation on A0 that agrees with F away from
ε–caps.

Proof. In the case of A1 6= A0, there is a point x ∈ A0 with frad(x,M) <
D(ε). Since D < 1

ε1
, the approximation model must be a compact

manifold (hence a compact κ–solution) and ε1–approximates M .
It remains the case where A1 = A0. If x is a point in A1−Mneck

ε , then
by Proposition 2.33 x is center of an ε–cap Cx. By Proposition 3.15,
A1 −Mneck

ε is covered by a finite collection of such ε–caps which are
pairwise disjoint. By adding leaves of Fε, we may assume that each Cx

contains the ball B̃(x, 2
3
d) and the collection is ρ(G)–invariant (see the

remark before Proposition 3.17).
To extend the foliation Fε equivariantly on the caps Cx, it suffices

to show that this is possible for a single cap: This will define a ρ(G)–
invariant foliation on its orbit ρ(G)Cx, and we can repeat the procedure
for any remaining cap.

So let Cx be any of the ε–caps in the collection. Proposition 3.17 yields
a θ–approximation φ̂ : (N̂ , x̂′, ĥ) → (M,x, g) by a κ0– or renormalized
standard solution N̂ , an isometric action ρ̂ : GCx y N̂ and a (ρ, ρ̂)–
equivariant embedding ι̂ : Cx ↪→ N̂ .

As in the proof of Proposition 2.33, x′ can not be center of an ε
2
–neck,

so it is center of an ε
2
–cap C′ with

frad(x′, C′) ≤ d′( ε
2
) < 1

2
d(ε)

(Of course, C′ is also an ε–cap). Lemma 3.8 yields a foliation on N̂neck
ε ,

which we denote by F N̂
ε .

Since the action ρ̂ : GC y N̂ is isometric, we can apply Proposi-

tion 3.18 in order to extend the foliation F N̂
ε to a singular foliation F̂

on N̂neck
ε ∪C′ that agrees with F N̂

ε outside of C′. In particular, the two
foliation agree on B̃(x′, 2d)− B̃(x′, 1

2
d).

Note that Σ := ι̂(∂Cx) is contained in this region. Moreover, since ι̂
is C1–close to the θ–approximation φ̂−1, Σ is almost horizontal, and by
Lemma 3.10 we can equivariantly isotope Σ to a leaf of F̂ . Equivalently,
we can also modify F̂ by an equivariant isotopy to F̂ ′, such that ι̂(∂Cx)
now is a leaf of F̂ ′.
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3 Invariant singular S2–foliations

Using ι̂, we pull back the singular S2–foliation F̂ ′ from ι̂(Cx) to Cx.
Because ι̂ is (ρ, ρ̂)–equivariant, the resulting singular foliation ι̂∗F̂ ′ is
ρ(Gc)–invariant. This gives the desired extension of Fε.

The following corollary will be applied later to components which go
extinct at a singular time:

Corollary 3.20. Assume that M = A0, and ρ : G y M is a smooth
action of a finite group. Then M is a union of components diffeomorphic
to spherical space forms, RP 3]RP 3 or S2 × S1 and the action ρ is
standard.

Proof. It suffices to consider each connected component separately, there-
fore we assume that M is connected.

In the case of A1 6= A0, the approximating compact κ–solution has uni-
formly positive sectional curvature K > c′1 · S(x) (see Proposition 2.22),
and therefore M has positive sectional curvature. It now follows from
[Ham82] that the metric converges up to rescaling to a spherical metric
and thus the action is standard.

In the case of A1 = A0 = M , Theorem 3.19 provides an invariant
singular S2–foliation on all of M . Hence the conclusion is a direct ap-
plication of Proposition 3.2.
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4 Equivariant Ricci-flow with cutoff

4.1 Existence of equivariant Ricci-flow with cutoff

Definition 4.1. An equivariant Ricci-flow with surgery is a Ricci-flow
with surgery M = {(Mk, gk(t))} together with actions ρk : G y Mk

such that

1. ρk is isometric with respect to gk(t) for all t ∈ [tk, tk+1)

2. The region Xk = M−
tk
∩ M+

tk
which not affected by surgery is

invariant under ρk−1(G) and ρk(G) and the restrictions of the two
actions to Xk coincide.

Analogously, an equivariant Ricci-flow with (r, δ)–cutoff is an equivariant
Ricci-flow with surgery for which in addition M is a Ricci-flow with
(r, δ)–cutoff.

It is relatively easy to deduce the existence of an equivariant Ricci-flow
with (r, δ)–cutoff from the existence of a Ricci-flow with (r, δ)–cutoff: All
one has to do is to make the surgery equivariant. The following is the
equivariant version of Theorem 2.44:

Proposition 4.2. For a fixed finite group G and for constants ε < ε(0),
ε1 < ε

(2)
1 ( 1

100
, ε, G) there exist non-increasing functions r, δ̄, κ : [0,∞) →

(0,∞) such that for any δ : [0,∞) → (0,∞) with δ(·) ≤ δ̄(·) the following
holds: Let (M, g0) be a Riemannian manifold with normalized initial con-
dition, and ρ0 : G y (M, g0) is an isometric action the group G. Then
there exists an equivariant Ricci-flow with (r, δ)–cutoff for all times, it is
κ(t)–non-collapsed on scales below ε and satisfies the (r, ε1, ε)–canonical
neighborhood assumptions.

Proof. We denote the corresponding functions from Theorem 2.44 that
guaranty the existence of a non-equivariant Ricci-flow with cutoff by r, κ
and δ̄′. We claim that we can find δ̄ < δ̄′ such that r, δ̄ and κ are
satisfying the claim of the proposition.

Note that by uniqueness of the Ricci-flow solution, any symmetry
of the initial metric g0 is preserved until the first singular time, and
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4 Equivariant Ricci-flow with cutoff

the same holds later on for any symmetry of g(tk) in the time inter-
val [tk, tk+1). Thus it suffices to make the surgery process equivariant,
that is to choose Xk ρk–invariant and to extend the action on Xk to an
isometric action ρk+1 : G y M+

tk+1
.

This can be achieved as follows: Choose δ̄(t) such that δ̃(δ̄(t)) ≤ δ̄′(t)
with δ̃ from Lemma 3.12. This implies that every center of an δ̄(t)–neck
is center of an equivariant δ̄′–neck.

When doing the (r, δ)–cutoff as in Definition 2.41 with δ ≤ δ̄, glue
in the cap (in step 2 of the construction) using a ρk−1(H)–equivariant
δ̃–neck with δ̃ ≤ δ̄′, where H is the stabilizer of the corresponding ε–horn
Hi and apply Proposition 3.13. Of course, this can be done equivariantly
for each ρk−1(G)–orbit of Hi.

Therefore, ρk−1(G)|Xk can be isometrically extended by suspensions
on the glued in 3–balls. This gives the desired isometric action ρk as an
extension of ρk−1|Xk .

Proposition 4.3. Let M be an equivariant Ricci-flow with (r, δ)–cutoff,
and let tk be a singular time. Then for t sufficiently close to tk the part
Mk−1 − Ωρ is contained in A0.

Proof . It follows from the bounds on ∇S and ∂
∂t
S and from the Φ–

pinching that for t sufficiently close to tk, on Mk−1 − Ωρ still holds
S(x, t) > 1

2
ρ−2. Note that the surgery parameter ρ = δ(tk)r(tk) is

chosen so small, that

S(x, t) > 1
2
ρ−2 = 1

2
δ−2r−2(tk) > r−2(tk) ≥ r−2(t) .

Thus by the (r, ε1, ε)–canonical neighborhood assumptions (see Defini-
tion 2.38) we have Mk−1 −Ωρ ⊆ A0 with respect to the metric g(t).

4.2 Effect of surgery on the group action

Theorem 4.4. For each k ≥ 1, the action ρk−1 : G y Mk−1 is obtained
from ρk : G y Mk as follows:

1. First, let ρ̃k be a disjoint union of ρk : G y Mk with a standard
action of G on a finite union ·S

iCi of components Ci
∼= RP 3, such

that the stabilizer of each Ci has a fix point yi ∈ Ci.

2. Then form an equivariant connected sum of ρ̃k along P (compare
Chapter 1.6). For each RP 3–component added in step (1), there
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4.2 Effect of surgery on the group action

is exactly one pair (xi, yi) in P with xi ∈Mk. The other tuples in
P (if there are) have both points in Mk.

3. Finally, ρk−1 is the disjoint union of (ρ̃k)P with a standard action
of G on a finite union ·S

iC
′
i of components C′i diffeomorphic to

spherical space forms, to RP 3]RP 3 or to S1 × S2.

(Note that any of the three steps might be trivial, i. e. the finite unions
of standard actions might be empty, or the connected sum might consist
only of the pairs (xi, yi).)

Proof. The proof follows the same line as in the non-equivariant version
[KL07, Lemma 67.13 and 73.4], [MT07, Proposition 15.2]. Note that
our notion of equivariant connected sum allows loops, i. e. connected
sum construction with base-points in the same component. For this
reason, our statement of the theorem does not need a connected sum
construction with additional S2 × S1–components.

In the proof, we will keep track of the action while following the for-
ward surgery process. Thus going backwards reverses the order of the
steps.

Recall from Chapter 2.4 that X = M−
tk
∩M+

tk
is the subset common

to the backward and forward time slice at the surgery time tk (so X is
the part which is not affected by the surgery). ∂X consists of finitely
many 2–spheres, which are central spheres of the surgery necks. Mk is
obtained from Mk−1 by replacing Mk−1 −X by a union of 3–balls, such
that a ball is glued onto each boundary sphere of X. The families of
surgery necks and boundary spheres are equivariant, and the action ρk

is obtained from ρk−1 by suspension of the action ρk−1|∂X onto the balls.
By Proposition 4.3 we haveMk−1−X ⊆Mk−1−Ωρ ⊆ A0. Thus, closed

components of Mk−1 − X are diffeomorphic to spherical space forms,
RP 3]RP 3 or S2 × S1 and ρ is standard on them by Corollary 3.20.
These components are thrown away in the surgery process, so in the
reversed construction they are added. This gives step (3).

On the other hand, let Y be a component of Mk−1 −X which is not
closed. We claim that Y ⊆ A1. Otherwise, there is a point y ∈ Y
with frad(y,Mk−1) < D(ε) and (Mk−1, y, g(t)) is ε1–approximated by a
compact κ–solution (N, y′) with frad(y′, N) ≤ D. On N , scalar curvature
is pinched by the constant 2c′1(D,κ), see Proposition 2.22. However, for t
sufficiently close to tk, on Y the pinching is arbitrarily bad, since (part of)
Y approximates an ε–horn in M−

tk
(and scalar curvature is unbounded

towards the tip of a horn).
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4 Equivariant Ricci-flow with cutoff

So indeed Y ⊆ A1, and by Theorem 3.19 there is a ρ(GY )–invariant
singular S2–foliation on Y which has ∂Y as boundary spheres (Note that
a collar-neighborhood of ∂Y is neck-like with respect to both g(t) and
g(tk), and that the two corresponding foliations near ∂Y are equivari-
antly isotopic.)

We now see that the interior of Y is a connected open 3–manifold with
ρ(GY )|Y –invariant singular S2–foliation. Therefore, it is diffeomorphic
to either S2×(0, 1), B3 or RP 3−B3 and the restricted action is standard
by Proposition 3.2.

We first consider the S2 × (0, 1)–components: Replacing them by two
3–balls, on which the action is given as suspension of the boundary
action, is clearly the same as doing an equivariant connected sum de-
composition. The inverse is done by forming an equivariant connected
sum along pairs in P with both points in Mk in step (2).

Finally, the B3– and (RP 3 − B3)–components are replaced. For
the B3–components this is a trivial move. Replacing an (RP 3 − B3)–
component by a 3–ball is the same as first doing an equivariant con-
nected sum decomposition and then throwing away the obtained RP 3–
component. This gives the first part of step (2) and step (1).

4.3 Group actions with finite extinction time

If all components get extinct after finite time, then one can reconstruct
the original action with the help of Theorem 4.4 by equivariant connected
sum construction of standard actions.

Corollary 4.5 (of Theorem 4.4). Let (M, g) be a closed orientable
3–manifold, and ρ : G y M be an isometric finite group action. Sup-
pose furthermore that the Ricci-flow with (r, δ)–cutoff gets extinct in
finite time. Then ρ is an equivariant connected sum of standard ac-
tions on components diffeomorphic to spherical spaceforms, S2×S1 and
RP 3]RP 3.

Proof. Consider the equivariant Ricci-flow with (r, δ)–cutoff on M . By
the assumption after a finite time T and finitely many surgeries, we
end up with the trivial flow on an empty manifold MkT = ∅ (Note
that the equivariant Ricci-flow with (r, δ)–cutoff is just a special choice
of cut-off parameters and surgery-necks in the ordinary Ricci-flow with
(r, δ)–cutoff, but the property of finite extinction time does not depend
on such particular choices).
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4.3 Group actions with finite extinction time

To obtain the original manifold and action, we apply Theorem 4.4
finitely many times. Each time, standard actions on space forms, S2×S1

and RP 3]RP 3 may be added and an equivariant connected sum is build.
From the transitivity of the equivariant connect sum construction (Pro-
position 1.29) follows, that this is the same as forming an equivariant
connected sum in one step.

It is known that the Ricci-flow with (r, δ)–cutoff gets extinct for man-
ifolds which do not contain aspherical factors in their prime decomposi-
tion (or equivalently, for manifolds with fundamental group a free prod-
uct of finite groups and infinite cyclic groups), see [Per03b, Theorem
1.1], [CM05, Corollary 1.2], [MT07, Theorem 18.1].

In the irreducible case this yields the following conclusion (which has
nothing to do with the group action and follows already from [Per03b]
and [Per03a]):

Proposition 4.6. Let (M, g) be a closed, orientable, irreducible 3–mani-
fold. Then the Ricci-flow with (r, δ)–cutoff on M has finite extinction
time if and only if π1(M) is finite.

Proof . If π1(M) is finite, then finite extinction follows from [Per03b,
Theorem 1.1.]. On the other hand, if M has finite extinction time, then
by Corollary 4.5 M is a connected sum of finitely many S3–components
and possibly a spherical spaceform (note that RP 3]RP 3 and S2 × S1

are not irreducible). So M is a spherical spaceform.
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5 Actions on geometric manifolds

Except for Chapter 4.3, there were no requirements on the initial mani-
fold so far besides being closed and orientable. In this final chapter, we
derive some more specific results in the case that the manifold allows
an S3–, S2 ×R– or H3–geometry. We use that for those geometries the
Ricci-flow with surgery either goes extinct in finite time (in the first two
cases) or that the long-time behaviour is well understood (in the last
case). In either case, the analysis of the Ricci-flow with surgery leads
to a standard limit action, from which we then deduce (by Theorem 4.4
and Corollary 4.5) that the original action is already standard.

5.1 Actions on spherical manifolds

Theorem 5.1. Let M be a closed, connected, orientable 3–manifold with
finite fundamental group, and let ρ : G y M be a smooth finite group
action. Then ρ is a standard action on a spherical space form.

Proof. Since the Ricci-flow with (r, δ)–cutoff on M gets extinct in finite
time (see Chapter 4.3), we can apply Corollary 4.5. However, since
M has finite fundamental group, the only components that may occur
in the equivariant connected sum are standard actions on S3 and at
most one component with a standard action on a higher spherical space
form. Moreover, there can be no loops in the graph associated to the
equivariant connected sum, so this graph is a tree. Now Proposition 1.31
yields the assertion.

Remark 5.2. Note that the assumption of orientability in Theorem 5.1
can be dropped: If there were a non-orientable closed connected 3–
manifold M with finite π1, consider its orientable double cover M̂ with
the deck action ρ̂ : Z2 y M̂ . Now Theorem 5.1 implies that M̂ is a
spherical space form and ρ̂ is standard, so also M is a spherical space-
form. However, any finite free quotient of an odd-dimensional sphere is
orientable e. g. due to the Lefschetz fixed point Theorem, which gives a
contradiction.
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5 Actions on geometric manifolds

Due to the uniqueness of spherical structures (Proposition 1.11 and
Proposition 1.12) Theorem 5.1 yields directly:

Corollary 5.3. Let (M, g) be a spherical 3–manifold and ρ : G y M a
smooth finite group action. Then the action ρ is smoothly conjugate to
an isometric action on (M, g).

5.2 Actions on S2 ×R–manifolds

Remark 5.4. The geometry of S2 ×R is special in the way that there
exist only four closed manifolds which admit this geometry, namely S2×
S1, RP 3]RP 3, S2×̃S1 and RP 2 × S1. The last two of them are non-
orientable and all are Z2–quotients of S2 × S1.

Thus a smooth finite group action on a closed S2×R–manifold lifts to
a smooth finite group action on S2 × S1, and to show that the action is
standard on the quotients it suffices to prove this for S2×S1 (compare the
end of the proof of Theorem 5.8 for non-orientable hyperbolic manifolds).
We conclude that the following Theorem yields an affirmative answer to
Thurston’s question in the case of S2 ×R–geometry.

Theorem 5.5. Let M = S2×S1, and ρ : G y M a smooth finite group
action. Then the action ρ is standard.

Proof. By Corollary 4.5 the action ρ on S2 × S1 is an equivariant con-
nected sum of standard actions on components diffeomorphic to spherical
spaceforms, S2×S1 and RP 3]RP 3. So there is a ρ(G)–invariant family
of disjoint embedded spheres S2

i in M , such that the equivariant con-
nected sum decomposition along these spheres yields standard actions on
the mentioned components, i. e. ρ = ρ̂P where ρ̂ : G y M̂ is a standard
action. In fact, since S2 × S1 is prime, M̂ consists only of S3’s and at
most one S2 × S1–component (this component exists if and only if all
S2

i are separating).
Let P1 ⊆ P (respectively P2 ⊆ P) be those pairs for which the cor-

responding sphere S2
i is non-separating (respectively separating). Then

P = P1 ∪ P2, each Pi is ρ–invariant and we have ρ = ρ̂P = (ρ̂P1)P2 by
Proposition 1.29.

Since the connected sum along P2 is topologically trivial, M̂P1 con-
tains a unique (S2 × S1)–component M0. We first show that ρ̂P1 |M0 is
standard. If P1 = ∅ there is nothing to prove, so assume there are non-
separating 2–spheres among the S2

i . Then the path-component Γ0 ⊆ ΓP1
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corresponding to M0 is a circle (possibly a loop), and the vertices of Γ0

correspond to 3–spheres S3
i , i ∈ Zq for some q ≥ 1. We can number

the pairs of P1 = {(xi, yi)} such that xi ∈ S3
i and yi ∈ S3

i+1. Observe
that for the stabilizers of the pairs holds Gi = Gi+1 (otherwise the graph
would branch and could not be a circle), so all Gi are equal. This allows
us to choose a spherical ρ̂|M0–invariant metric on the union of the S3

i

such that xi+1 and yi are antipodal points (recall that ρ̂ is standard).
Now the ρ̂|M0–invariant singular S2–foliation by distance spheres to {xi}
gives an ρ̂P2 |M0–invariant smooth S2–foliation on M0 = S2 × S1 (the
equivariant connected sum construction glues distant spheres of xi onto
distance spheres of yi). This shows that ρ̂P1 |M0 is standard.

For the equivariant connected sum along P2 the associated graph is
a tree. A unique vertex v0 of that tree corresponds the component
M0

∼= S2 × S1 and all the other components are 3–spheres. So Proposi-
tion 1.31 (ii) yields that ρ ∼= ρ̂P1 |M0 , which we have seen to be standard
above.

As a direct consequence of Theorem 5.5 we obtain a generalization of
[MS86, Theorem 8.1], where F is assumed not to be S2 or RP 2:

Theorem 5.6. If F is a compact surface and if ρ : G y F ×I is a finite
smooth group action which preserves F × ∂I, then ρ is conjugate to an
action which preserves the product structure.

Proof. The proof is exactly the same as the one of [MS86, Theorem 8.1],
in view of which we only have to consider the case F ∼= S2 or RP 2: We
double F×I, i. e. we regard F×I as Z2–quotient of F×S1 by a reflection
in the S1–factor, and consider the lifted action ρ̂ : Ĝ = G×Z2 y F×S1.
This action is standard by Theorem 5.5 (respectively Remark 5.4), so
the ρ̂–invariant (S2×R)–metric on F ×S1 induces an invariant product
structure on F × I.

5.3 Actions on hyperbolic manifolds

If M is a manifold which admits a hyperbolic metric, then by Proposi-
tion 4.6 the Ricci-flow with surgery does not get extinct in finite time
for any initial metric on M . One therefore has to study the long-time
behavior of the flow. This is very similar to the behavior of the Ricci-flow
in case that there are no singularities, which was analyzed by Hamilton
[Ham99].
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5 Actions on geometric manifolds

The following Proposition describes the fact that in the long-time pic-
ture the (almost) hyperbolic pieces cover more and more of the manifold.
The idea why this is similar in the case of Ricci-flow with surgery is that
surgeries only occur in regions with positive scalar curvature, so its effect
on the formation of the hyperbolic pieces can be controlled.

Proposition 5.7 ([KL07, 90.1]). There exist a number T0 < ∞, a
non-increasing function α : [T0,∞) → (0,∞) with limt→∞ α(t) = 0,
a (possibly empty) collection H = {(H1, x1), . . . , (Hk, xk)} of complete,
connected, pointed, finite-volume hyperbolic 3–manifolds and a family of
smooth maps

fi(t) : Bt,i = B
`
xi,

1
α(t)

´
→Mt,

defined for t ∈ [T0,∞), such that

1. fi(t) is an α(t)–approximation for all i (with scale t−1)

2. fi(t) defines a smooth family of maps which changes slowly with

time, i. e.
˛̨
ḟi(p, t)

˛̨
< α(t)t−

1
2 for all p ∈ Bt,i and

3. the α(t)–thick part M+(α(t), t) (as defined in [KL07, Definition
89.8]) is contained in the image

S
i fi(Bt,i) for t ≥ T0.

In case of a closed manifold M which admits a hyperbolic metric, the
long-time picture is even much easier: The collectionH cannot be empty,
because this would imply that the thick part gets empty for large t and
Mt would be a graph manifold, which is not possible. On the other hand,
M does not contain any incompressible tori, so also Mt

∼= M0 ∪
S
S3

i

does not. Therefore, the hyperbolic pieces Hi cannot have cusps and
hence must be closed. It follows that the approximation fi covers all
of Hi for large t, so there is precisely one hyperbolic piece {H1} = H.
Furthermore, for large t the ball B(x1,

1
α(t)

) covers H1 and there is a

T1 ≥ T0 such that the approximation f1 is onto a component (M0, g(t))
for t ≥ T1. On this component, no further surgery can occur because of
negative scalar curvature. After finite time T2, all other components are
extinct, so only a non-singular flow on M0 remains.

Theorem 5.8. Let M0 be a closed, connected hyperbolic 3–manifold and
let ρ0 : G y M0 be a smooth finite group action. Then the action ρ0 is
standard.
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5.3 Actions on hyperbolic manifolds

Proof. First consider the case that M0 is orientable. We start with a
ρ(G)–invariant Riemannian metric g0 onM0 and consider the equivariant
Ricci-flow with surgery for M0 with initial metric g(0) = g0.

By the observation preceding this theorem, there exists a time T2, a
hyperbolic manifold H and a smooth family of maps f(t) : H →Mt for
t ≥ T2 such that f(t) is an α(t)–approximation onto Mt, and there are
no more surgeries for t > T2. In other words, Mt converges smoothly to
a hyperbolic manifold.

Assume that there where k surgery times before T2, so Mk is the
underlying manifold and the action is ρk : G y Mk is isometric with
respect to g(t) for all t ≥ T2. Consider the pulled back action ρ̂t :=
f(t)∗ρk : G y H1 for t ≥ T2. It varies smoothly with t, so for each
γ ∈ G, ρ̂t(γ) stays in a fixed homotopy class for all t ≥ T2. In this class
there exists a unique isometry by the Mostow rigidity theorem [Mos68],
which we denote by ρ̄(γ). This defines a isometric action ρ̄ : G y H1

which is homotopic to ρ̂t for all t ≥ T2.

We claim that ρ̄ is also conjugate to ρ̂t for large t. To deduce this,
note that by Arzelà-Ascoli for any γ and any sequence of times τi ↗∞,
τi ≥ T2, the sequence of diffeomorphisms ρ̂τi(γ) subconverges. The limit
must be an isometry since τi →∞ and therefore the limit must coincide
with ρ̄(γ). Because this holds for any sequence of times we conclude
that ρ̂t smoothly converges to ρ̄. So for t sufficiently large, say t ≥ T3,
ρ̂t and ρ̄ are conjugate by Theorem 1.22.

Putting the conjugations together, this yields for t ≥ T3 that ρ̄ ∼= ρ̂t
∼=

ρk, where the second conjugation is given by f(t).

Furthermore, ρ0 is an equivariant connect sum of ρk and standard
actions on 3–spheres. By Proposition 1.31 (and Remark 1.32), the stan-
dard actions are trivial summands for the equivariant connected sum and
so ρk : G y Mk is conjugate to the original action ρ0 : G y M0. Hence
the original action is conjugate to an isometric action on a hyperbolic
manifold and thus ρ0 is standard.

For the case of M0 not being orientable, consider an orientable double
covering M̌0 → M0, such that M0 is the quotient of M̌ by a smooth
involution ι. The action ρ0 lifts to an action ρ̌0 : Ǧ y M̌ , where Ǧ is an
index two extension of G. If ιG is the non-trivial element in the kernel
of the natural projection Ǧ � G, then ρ̌0(ιG) = ι.

The above proof of the orientable case yields a ρ̌0–invariant hyperbolic
metric ǧ on M̌ . Since ι = ρ̌0(ιG) is an isometry with respect to ǧ, the
metric descends to a ρ0–invariant hyperbolic metric on M0.
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5 Actions on geometric manifolds

Again as in the spherical case, uniqueness of hyperbolic structures (as
a consequence of Mostow rigidity) gives:

Corollary 5.9. Let (M, g) be a closed hyperbolic 3–manifold and let
ρ : G y M be a smooth finite group action. Then ρ is conjugate to an
isometric action on (M, g).
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