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Summary  

Anxiety reflects a fundamental emotion, essential for survival. However, if it occurs 

unpredictably and exaggerated for a long period of time, it becomes pathological, confining a 

normal course of life. Anxiety disorders are among the most disabling psychiatric diseases, 

with increasing incidence. They are complex and occur as a combination of both, inherited 

and stress-related phenomena, whose origin and underlying mechanisms are still poorly 

understood. Besides clinical studies, extensive preclinical research is strongly focusing on the 

genetic, environmental, and developmental underpinnings of both, “physiological” and 

“pathological” anxiety. 

Thus, in the year 2000, two mouse lines were generated by bi-directional selective inbreeding, 

reflecting extremes in trait anxiety. These phenotypic extremes, independent of gender, 

display either high (HAB) or low (LAB) anxiety-related behavior as measured in the elevated 

plus-maze test and a variety of other paradigms. Since anxiety is not considered as a single 

entity, but covers multiple facets, the studies presented in this thesis address behavioral, 

neuroendocrine, genetic, developmental as well as cognitive aspects in this mouse model of 

trait anxiety.  

Comprehensive phenotyping confirmed the phenotypic divergence of the mouse lines. 

Although selection pressure was only exerted on anxiety-related behavior, the mouse lines 

exhibited comorbid depression-like and altered explorative behavior. Moreover, expression 

profiling of genes well described in the regulation of emotionality at the level of the 

hypothalamo-pituitary-adrenocortical axis and synaptic neurotransmission, as well as 

pharmacological intervention, highlighted arginine-vasopressin (AVP), corticotropin-releasing 

hormone (CRH), and synaptotagmin 4 (Syt4) as potential mediators contributing to the 

observed behavioral differences. AVP has been identified to be under-expressed in several 

brain regions of LAB mice associated with their non-anxious and non-depression-like 

behaviors. In addition, several genetic polymorphisms have been identified that are likely to 

play a critical role in the AVP under-expression of these animals. In contrast, the highly 

anxious HAB animals revealed a CRH over-expression in various brain areas. The 

significance of CRH over-expression in mediating the HAB-specific phenotype was 

pharmacologically validated via CRH receptor 1 antagonist administration. Synaptic release, 

indicated by Syt4 expression, was found to be altered in both inbred mouse lines in opposite 

directions, indicating a dysregulation in both extremes of trait anxiety. Furthermore, 

glyoxalase1 (Glx1), a cellular detoxification enzyme, has been identified to be differently 

expressed already at early postnatal developmental stages in association with the phenotypic 



  

divergence. Thus, Glx1 might act as a biomarker suitable for the early prediction of 

pathological anxiety.  

As anxiety disorders have often been described to be accompanied by alterations in cognitive 

abilities, this coherency was also addressed in the HAB/LAB model. Indeed, HAB mice 

showed a superior ability in a social learning paradigm and displayed delayed extinction in a 

classical fear-conditioning study, the latter being similarly observed in patients suffering from 

posttraumatic stress disorder. 

Taken together, the HAB/LAB mouse model covers many clinical core symptoms of anxiety 

disorders at different levels, including behavioral emotionality, gene expression, and cognitive 

alterations. Therefore, it provides a valuable and promising tool to elucidate the 

neurobiological basis of the continuum from vital to pathological anxiety. 
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1     General introduction 1 

1 General introduction  

The brain, and the brain alone, is the source of our pleasures, joys, laughter, and 

amusement, as well as our sorrow, pain, grief, and tears. It is especially the organ we use to 

think and learn, see and hear, to distinguish the ugly from the beautiful, the bad from the 

good, and the pleasant from the unpleasant. The brain is also the seat of madness and 

delirium, of the fear and terrors which assail by night or by day, of sleeplessness, awkward 

mistakes and thoughts that will not come, of pointless anxieties, forgetfulness, and 

eccentricities. 

                                                                                                           Hippocrates, ca. 400 BC 

 

1.1 Neuropsychiatry 

All human experience, emotion, motivation, behavior and cognitive functions are the 

products of brain functions. The clinical discipline of neuropsychiatry is the basis of 

contemporary approaches to understand human behavior as well as the effects of brain 

dysregulation (Cummings and Mega, 2003). It is devoted to the neurobiological basis, 

optimal assessment, natural history, and the most efficacious treatment of disorders 

(Cummings and Hegarty, 1994; Kendler, 2005). Furthermore, neuropsychiatry does not only 

integrate the interplay between environmental influences on the nervous system during the 

development of the individual and throughout adulthood and old age, but seeks for the 

mechanisms underlying the disorders of the central nervous system (CNS) that are 

responsible for abnormal behavior. This discipline combines both the psychiatric 

manifestation of neurological diseases and the neurobiology of psychiatric diseases, which 

evolved from biological psychiatry and behavioral neurology. The main focus of biological 

psychiatry is the identification of biological treatments for psychiatric diseases, focusing on 

the chemistry of behavior, by increasing our knowledge of transmitter systems and signal 

cascades, but not emphasizing the neuroanatomy of behavior or the relationship of CNS 

lesions to behavioral disorders. Behavioral neurology, in contrast, provides a detailed 

description of, for example memory disturbances, visuospatial abnormalities or dementia as 

a consequence of brain damage or degenerative CNS disease. Probing the mental status is 

used to aid in the neuroanatomical interpretation of deficit disorders, but does not focus on 

the symptoms of neuropsychiatric disorders such as depression, mania or personality 

alterations associated with brain dysfunction (Yodofsky and Hales, 2002). Due to the 

limitations of both fields of research, a combination of both provides a comprehensive 

knowledge of the relationship of brain and behavior in addition to the recent advantages in 
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neuroscience. Neurologic and psychiatric research approaches are
 
moving closer together in 

the tools they apply, the questions
 
they ask, and the theoretical frameworks they employ. 

The interests
 

of neurology and psychiatry converge within the framework of
 

modern 

neuroscience. Further progress in understanding brain
 
diseases and behavior demands a 

more comprehensive integration
 
of these fields (Price et al., 2000; Martin, 2002). Brain 

disorders, in contrast to other medical counterparts, are manifested by alterations in 

behavior and experience of the patient; in many ways they are disorders of the person rather 

than disorders that happen to the individual (Cummings and Mega, 2003).  

 

1.2 Anxiety disorders 

According to the standardized diagnostic criteria of the American Psychiatric Association´s 

Diagnostic and Statistical Manual of Mental Disorders, the subtypes of anxiety states include 

panic disorders, agoraphobia, specific phobia, social phobia, generalized or overanxious 

disorder, separation anxiety, obsessive-compulsive disorder, posttraumatic stress disorder 

(PTSD), and antisocial disorder (Sadock and Sadock, 2005). Since the 1990s, there has 

been an increasing interest in anxiety disorders caused by the finding that they emerged to 

be the most prevalent mental disorder in the general population (Kessler et al., 1994; 

Kessler et al., 2001; Kessler et al., 2005a; Kessler et al., 2005b; Sadock and Sadock, 2005). 

The lifetime prevalence estimated in the USA and Europe ranks from 13.6% up to 28.8%,  

with women being affected twice as often as men (Kessler et al., 1994; Cummings and 

Mega, 2003; Alonso et al., 2004; Bystritsky, 2006). This means that roughly one out of three 

people will meet the criteria for an anxiety disorder at least once in their lifetime. Anxiety 

disorders are among the most disabling neuropsychiatric diseases. Anxiety is claimed to be 

pathological when it occurs unpredictably, as discrete attacks, without identifiable triggers or 

a non-relative anxiety response over a long period of time. It results in symptoms such as 

sweating, trembling or shaking, chest pain, chills, palpitations, and shortness of breath 

(Sadock and Sadock, 2005). These symptoms are of such tremendous emotional 

intrusiveness that they disable the patients and overshadow them with feeling of fear, dread, 

failure, or even death, making any normal life impossible (Cummings and Mega, 2003). 

Furthermore, there is a large overlap and comorbidity with other disorders, especially with 

major depression. About 60% of patients with anxiety disorders additionally suffer from 

depression, which makes a certain similarity of underlying mechanisms rather likely 

(Landgraf, 2001; Lieb et al., 2005). Although several epidemiological studies revealed the 

prevalence of this group of disorders, they remain poorly understood, understudied, and 
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inadequately treated. There are evidence-based treatments available with the efficiency of 

psychological and biological treatment between 60 and 85% for anxiety disorders. When 

anxiety and depression disorders are taken together, only half of the patients who are 

seriously affected and around 25% of those with mild mental disorder receive adequate 

treatment (Demyttenaere et al., 2004; Kessler et al., 2005b; Bystritsky, 2006). Furthermore, 

this class of disease, due to its high social and economic burden, decreases productivity and 

increases morbidity, mortality, and drug abuse in a wide range of the population (Leon et al., 

1995; Ustun et al., 2004; Bystritsky, 2006).  

Before going into detail concerning already described brain dysreguations underlying anxiety 

and affective disorders one has to define what a “normal” reaction to a variety of different 

stressors is including. In the last decade, there has been a rapid progress in identifying the 

neurobiological basis of anxiety and fear. Specific neurochemical and neuropeptide systems 

have been demonstrated to play an important role in the behaviors associated with fear and 

anxiety-producing stimuli (Sadock and Sadock, 2005). 

 

1.3 Stressors and stress response 

One of the life´s main characteristics is maintaining a complex and dynamic equilibrium 

within the body (= homeostasis) which can be disturbed by internal or external challenges 

called stressors (Tsigos and Chrousos, 2002). Stress was first described by Hans Seyle in 

1936 as “the nonspecific response of the body to any demand”, altering the internal milieu 

with the neuroendocrine, cardiovascular, immune, and gastrointestial systems being the first 

to experience functional changes. Stressors can therefore be defined as conditions that 

endanger, or are perceived to endanger the survival of an individual. They can roughly be 

grouped into three categories: a) psychological stressors that are based on innate or learned 

responses to a threat of an impending aversive condition such as fear or anxiety; b) 

stressors consisting of a physical stimulus accompanied by a strong psychological 

component such as pain or immobilization and c) stressors which affect the cardiovascular 

homeostasis by exercise or heat exposure (Selye, 1936; Van de Kar and Blair, 1999; 

Carrasco and Van de Kar, 2003). Due to possible misinterpretation of the terms 

“psychological” and “physiological” which could refer to the experimenters´ control of 

stressor interpretation by the animal, an alternative classification has been suggested to 

avoid anthropocentric stressor categorization (Engelmann et al., 2004). Real threats (or 

“systemic” stressors) include for example pain (visceral and somatic), neuronal, or humoral 

homeostatic signals or humoral inflammatory signals. They represent genuine homeostatic 
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challenges and activate stress centers in the hypothalamus of the brain via somatic, visceral, 

or circumventricular sensory pathways. Predicted threats (or “neurogenic” or “progressive” 

stressors) contain the innate or learnt capability of anticipating/recognizing predators or 

dangers associated with novel a environment. These kinds of stressors are mainly 

processed by limbic brain areas, such as the amygdala, hippocampus, and prefrontal cortex 

(PFC). Most of the naturally occuring stressors include, at least partially, aspects of both 

categories (Sawchenko et al., 2000; Herman et al., 2003; Engelmann et al., 2004). 

Nevertheless, independent of categorization hypothesis, most stressors have in common 

that they lead to adaptive responses to gain a new setpoint of homeostasis, which is termed 

allostasis (Engelmann and Ludwig, 2004). During threatening situations, two neuroendocrine 

protection systems get activated: one that is very rapidly responding, the sympathetic-

adrenomedullary (SAM) system and one with an increased reaction latency, the 

hypothalamo-pituitary-adrenocortical (HPA) axis (Tsigos and Chrousos, 2002; Förstl et al., 

2006). Alarm reactions, after a sudden aversive situation, include an immediate non-specific 

behavioral response (such as startle) followed by a specific response (e.g. flight) and are 

primarily associated with the SAM system, nuclei of the brainstem, the vagal nerve, and the 

medulla of the adrenal gland. A variety of physiological parameters go together with 

behavioral responses, enabling the individual to successfully prepare the body to perform the 

appropriate reaction to the stressor by active coping. Many of the autonomic changes are 

produced by sympathetic and parasympathetic neural systems via adrenaline and 

noradrenaline release from the adrenal medulla into the blood circulation. The activation of 

both systems leads for example to an increase in blood pressure and pulse beat (via 

stimulation of the locus coeruleus) as well as an increase in respiratory rate (via activation of 

the nucleus parabrachialis), gluconeogenesis and lipolysis to provide the body with required 

oxygen and nutrients (Charney et al., 1998; Tsigos and Chrousos, 2002; Engelmann et al., 

2004; Charmandari et al., 2005; Förstl et al., 2006).  

On the other hand, whenever an encounter is perceived as being aversive and cannot be 

brought under control via a fight/flight reaction, passive coping occurs which is linked to HPA 

axis activation, followed by a hormonal change to allow adaptive redirection of both energy 

and behavior (Engelmann et al., 2004). The HPA axis, besides its involvement in circadian 

rhythm as well as in metabolic function, acts as the main central neuroendocrine system of 

the stress response and is, together with the hypothalamic-neurohypophysial system (HNS), 

part of the hypothalamo-pituitary system. The hypothalamus controls the secretion of 

adrenocorticotropic hormone (ACTH) from the anterior pituitary, which, in turn, stimulates the 
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secretion of glucocorticoid hormones (mainly 95% cortisol in humans and 95% 

corticosterone (Cort) in mice) from the adrenal cortex, which are the final effectors of the 

HPA axis (Tsigos and Chrousos, 2002; Charmandari et al., 2005).  

 

Figure 1.1:  Schematic overview of the location, components, and function of the 

hypothalamo-pituitary-adrenocortical (HPA) axis. Paraventricular nucleus 

(PVN) of the hypothalamus; Arginine-vasopressin (AVP); Corticotropin-

releasing hormone (CRH); Adrenocorticotropic hormone (ACTH). This figure 

has been kindly provided by Dr. Elisabeth Frank.  

 

The central control of the glucocorticoid secretion is in principle actively regulated by a 

selected population of neurosecretory neurons in the hypothalamic paraventricular nucleus 

(PVN), a region flanking the third ventricle from both sides. The PVN in humans and rats can 

anatomically be divided into several subunits including the posterior magnocellular region, 
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dorsolateral medial parvocellular zone, ventral medial parvocellular and dorsal parvocellular 

subregions (Herman et al., 2002). PVN projecting neurons are localized in regions that 

receive first- or second-order inputs from somatic nociceptors, visceral afferents, or humoral 

sensory pathways. These rapid and reflexive activations are evoked by e.g. adrenergic and 

noradrengergic innervations mainly from the nucleus of the solitary tract, serotonergic 

projections from the raphe nuclei, γ-aminobutyric acid (GABA)-ergic neurons from numerous 

regions of the hypothalamus, thalamic sensory nuclei and/or direct non-hypothalamic 

forebrain inputs such as the bed nucleus of the stria terminalis (BNST). Additional 

information is derived from the fluid and electrolyte status by way of the subfornical 

organ/lamina terminalis system. Indirect projections are largely confined to regions critical for 

emotional responses and memory, such as hippocampus, PFC, amygdala, lateral septum 

(LS), and thalamus. Furthermore, the intrinsic organization of the PVN is positioned for the 

cross-talk between hypophysial, neurohypophysial, and preautonomic cell populations 

(Herman and Cullinan, 1997; Herman et al., 2003). Upon stimulation by stress, parvocellular 

neurons of the PVN that express corticotropin-releasing hormone (CRH) and arginine-

vasopressin (AVP) project axonal terminals towards the zona externa of the median 

eminence, where they stimulus-dependently release these two main ACTH secretagogues 

into the portal blood of the anterior pituitary. CRH mediates its effect via the CRH receptor 1 

(CRHR1), a G-protein that releases cyclic adenosine monophosphate (cAMP) by 

adenylylcyclase action, which in addition phosphorylates protein kinase A that evokes the 

synthesis of proopiomelanocortin (POMC) in anterior pituitary cells. AVP potentiates this 

effect, by activating the G-protein coupled AVP receptor 1b (V1b) receptor leading to the 

activation of a phosphatidylinositol pathway that via protein kinase C stimulates POMC 

expression (Birnbaumer, 2000; Klinke and Silbernagel, 2000). The glandotropic hormone 

ACTH is encoded by one splicing variant from the precursor POMC that additionally encodes 

for the opioid peptide β-endorphine and α-melanocortin stimulating hormone. ACTH is 

transported through the systematic circulation and binds to membrane-bound receptors in a 

cAMP-dependent manner, leading to the one-site synthesis (cholesterine-derived) and 

secretion of corticoids, especially glucocorticoids from the zona fasciculata of the adrenal 

cortex. The final effects of glucocorticoid actions include energy mobilization (glyolysis) in 

the liver, suppression of innate immunity in immune organs, inhibition of bone and muscle 

growth, potentiation of sympathetic-nervoussystem-mediated vasoconstriction, proteolysis, 

lipolysis, and suppression of reproductive functions (Munck et al., 1984; McEwen and Stellar, 

1993). This wide range of effects led to the assumption that glucocorticoids restore 
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homeostasis, e.g. increasing glucose can refill lost energy stores or the inhibition of other 

hormonal systems reduces loss of energy on processes, not related to the immediate 

challenge (Herman et al., 2003). Furthermore, they increase the perception of acoustic, 

tactile, and olfactory stimuli. However, adequate control of glucocorticoids needs to be 

accomplished and such `negative feedback` is efficiently exerted by healthy organisms. Due 

to their high lipophility, glucocorticoids can pass the blood-brain-barrier without resistance 

and bind to glucocorticoid (GR) and mineralocorticoid (MR) receptor in the pituitary, 

hypothalamus (mainly PVN), and hippocampus. They inhibit the expression of AVP, CRH, 

and ACTH by complex-binding of cortisol and cytoplasmatic receptors that diffuse into the 

cell nucleus. By diffusion into the cell nucleus, cortisol is released from the complex and 

binds to specific DNA sequences to inhibit gene transcription (Lodish et al., 2001). Two kinds 

of feedback reactions are reported, one that reacts to the cortisol increase in the plasma 

within a few minutes and the other one that responds to later elevated cortisol 

concentrations. Additionally, an inhibition of HPA axis action is reported via AVP release 

within the PVN after emotional stressors, which provides a negative tonus on ACTH 

secretion (Wotjak et al., 1996). Taken together, these negative feedback mechanisms are 

essential for determining the stress response and to re-establish body homeostasis. Another 

system that belongs to the hypothalamo-pituitary system is the HNS. Magnocellular cells of 

the PVN and the supraoptic nucleus (SON) project through the zona interna of the median 

eminence to the posterior pituitary to release AVP and oxytocin (OXT) from axonal terminals 

into the blood circulation. OXT is, among others, involved in uterus muscle contraction at 

parturition and the milk injection, whereas AVP contributes to vasoconstriction and the 

maintenance of a physiological plasma osmolality by regulating water reuptake in the kidney 

(Klinke and Silbernagel, 2000). It has also been reported that these two neuropeptides 

contribute to HPA axis activation upon stress by modulating the activity of parvocellular PVN 

neurons via the release of AVP and OXT from magnocellular PVN neurons. Furthermore, 

they influence the secretion of ACTH at the level of the median eminence and the posterior 

pituitary (Engelmann et al., 2004). While stress hormone secretion during hostile conditions 

benefits survival, a long-term dysregulation of the involved systems can lead to psychiatric 

diseases, such as anxiety disorders and/or depression (Charney and Deutch, 1996; Van de 

Kar and Blair, 1999). 
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1.4 Pathological changes in anxiety and depression disorders 

Importantly, anxiety and depression, being dramatic and debilitating multi-facetic psychiatric 

illnesses demonstrate marked overlap and co-occurence (Landgraf, 2001). Many of their 

symptoms are similar, which makes them difficult to distinguish and an overlap of underlying 

mechanisms contributing to these pathologies rather likely (Kalueff et al., 2007). 

One of the best documented description in the research on anxiety disorders and depression 

is the finding of the dysregulation of the HPA axis (Tichomirowa et al., 2001). Prominent 

HPA axis abnormalities among depressed patients are an increased number of ACTH-

secretory episodes followed by increased cortisol-secretory episodes, elevated urinary 

cortisol, and increased cortisol and CRH levels in the cerebrospinal fluid (CSF) (Holsboer 

and Barden, 1996). 30-60% of depressed patients show a biological anomaly in HPA axis 

acitivity, with 60% of acute depressed patient displaying changes in ACTH and cortisol 

secretion (Rubin et al., 2001; Ising et al., 2005). Hypoactivation of the stress system is 

characterized by the chronically reduced secretion of CRH and noradrenaline and has been 

reported in patient suffering from atypical depression (Charmandari et al., 2005). In contrast, 

hyperactivation of the HPA axis and the SAM system is manifested in melancholic 

depression (Engelmann et al., 2004). Severe anxiety and depression can result from 

exaggerated stimulation of one or more of the CRH-regulated pathways via CRHR1 and 

CRHR2 receptors (Carrasco and Van de Kar, 2003). High CRH concentrations have been 

observed in postmortem studies of severely depressed suicide victims, accompanied by an 

increased number of CRH-expressing neurons and a decreased amount of CRH receptors in 

several brain region, thus suggesting that the CRH system plays a leading role in the 

etiology of major depression as well as in anxiety disorders (Raadsheer et al., 1994; 

Arborelius et al., 1999; Strohle, 2003; Bale, 2006). Similar effects have been reported for 

AVP, with elevated AVP levels inducing depressive symptomatology and an increased 

number of AVP-containing PVN neurons in postmortem studies of depressed subjects 

(Purba et al., 1996; Muller et al., 2000; Scott and Dinan, 2002). Additionally a decreased 

expression of MR in the hippocampus has been reported in depressed patients (de Kloet et 

al., 1998), leading to an increased CRH expression in the PVN and elevated basal Cort 

levels, caused by a lack of feedback inhibition. This hypercortisolism over a long period of 

time can lead to a reduction of GR expression in the hippocampus and PVN, resulting in a 

“glucocorticoid resistance” (Pariante and Miller, 2001; Makino et al., 2002). The 

dexamethasone/CRH test allows the functional control of the HPA axis activity to be 

measured at both the hypothalamic and the anterior pituitary level. For instance, after 
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administration of the synthetic glucocorticoid antagonist dexamethasone the test would 

reveal a dysfunction of the negative glucocorticoid feedback via decreased suppression of 

ACTH secretion. Application of synthetic CRH accompanied by stimulation of corticotropic 

neurons, indicate disturbances at the level of the anterior pituitary. Depressed patients show 

decreased suppression of basal and CRH-induced ACTH release indicative of a reduced 

efficiency of feedback mechanisms as well as an increased stimulation of anterior pituitary 

cells leading to HPA axis hyperactivity (Holsboer, 1989; Holsboer and Barden, 1996). 

Additionally, this test, measuring HPA axis dynamics, can act as a good indicator for relapse 

probability. Increased cortisol levels, despite psychopathological recovery, are highly 

associated with an increased risk of relapse within the following six months (Zobel et al., 

1999). Other neurocircuitry data suggest a crucial involvement of GABA-containing pathways 

in comprising HPA axis abnormalities observed in human stress pathologies (Herman and 

Cullinan, 1997). Long lasting increased cortisol concentrations may also lead to 

modifications of certain neuronal circuits causing symptoms of depression (Nemeroff, 1996). 

Beside the HPA axis, there are several other systems, e.g. serotinergic, noradrenergic, 

dopaminergic, or cholinergic circuits, that are likely to be involved in these psychiatric 

diseases. In addition, there are additional peptides, such as neuropeptide Y, galanin, 

cholecystokinin or opioid peptides that have gained interest in recent research (Holmes et 

al., 2003). 

Epidemiologic studies revealed that about 40-50% of the risk for depression is genetically 

determined, which makes this disease, among others (e.g. asthma, hypertension), a highly 

heritable disorder (Fava and Kendler, 2000; Nestler et al., 2002a). Similar findings have 

been reported for panic disorders, where family studies showed an increased rate of effected 

first-grade relatives of patients suffering from panic disorders (Finn and Smoller, 2001; 

Bandelow et al., 2002). Twin studies reported a significantly higher risk for developing 

depression or panic disorder in monozygotic compared to dizygotic twins (Kendler et al., 

1993; Smoller and Finn, 2003). This increased vulnerability also holds true for the risk of the 

comorbidity of anxiety disorders and depression (Lieb et al., 2002). In contrast, for 

generalized anxiety disorder as well as for social phobia, twin studies seem to be more 

inconsistent and current models are more focused on the combination of environmental and 

genetic factors contributing to these psychiatric diseases (Rosenbaum et al., 1992; Heim 

and Nemeroff, 2001; Förstl et al., 2006). These environmental factors include events like 

chronic stress of psychological or physiological origin (like mobbing or chronic inflammation), 

traumatic events (e.g. loss of a beloved person), and aversive early-life events (such as 
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neglect or sexual abuse) (Heim and Nemeroff, 2001; Sadock and Sadock, 2005). In the past 

years there is also an increasing interest in epigenetic phenomena induced by environmental 

factors resulting in e.g. histone acetylation/methylation or cytosine methylation. It has been 

demonstrated in twin studies that these DNA-protein interactions decisively change gene 

expression and can be correlated to certain phenotypic changes (Cardno and Gottesman, 

2000; Kato et al., 2005). Research on genetic predisposition succeeded in identifying single-

nucleotide polymorphisms (SNPs) pointing to a crucial involvement in controlling HPA and 

SAM axis activity (Ising and Holsboer, 2006). Furthermore, there is an ongoing effort in 

running unbiased approaches, such as microarray studies or linkage analysis to identify 

further genes underlying mental disorders. Therefore, it is important to annotate that the 

genetic blueprint (nature) and the biographic impact (nurture) interact and that in most cases 

neither one alone can lead to the development of the clinical phenotype (Sillaber and 

Holsboer, 2004). In some diseases, such as red-green color-vision deficiency, it is well 

described that the unequal recombination of two pigment genes leads to gene deletion or the 

formation of hybrid genes that explain the majority of the common red-green color-vision 

deficiencies (Deeb, 2004). This disease, among others, acts as one example, where a 

disease or deficiency is restricted to one or a manageable group of genes. Psychiatric 

diseases, in contrast, are among the most complex diseases due to their multigenic 

background, with single genes mainly producing small effects and being hard to detect. 

Pharmacogenomics is not only working on underlying genes and the numerous genetic 

variations that have been shown to affect disease susceptibility and drug response, but also 

tries to improve therapy on the basis of genetic information for each patient by focusing on 

the individual, sex-specific differences, and treatment outcome (Pinsonneault and Sadee, 

2003). 

 

1.5 Current pharmacological treatment 

Clinical therapy mainly makes use of drugs that have been discovered by serendipity and 

empirically developed classes of substances. Treatment of depression was revolutionized 

about 50 years ago by the introduction of the two effective antidepressants: the tricyclic 

antidepressants and the monoamine oxidase (MAO) inhibitors. The original tricyclic agent, 

such as imipramine was discovered from antihistamine research, whereas an early MAO 

inhibitor, e.g. iproniazid, was derived from studies on antitubercular drugs. Both display 

antidepressive effects by increasing the bioactive amount of noradrenaline and serotonin via 

inhibition of a degrading enzyme or primary inhibition of neuronal reuptake. The 
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antidepressive effect of these two substance classes provided for the first time medical 

treatment of depression. The discovery and success of these antidepressants led to the 

development of the so called second generation medications, including selective serotonin 

reuptake inhibitors (SSRIs, like paroxetine or citalopram), selective noradrenaline reuptake 

inhibitors (NRIs, like reboxetine), or a combination of both (SNRIs, e.g. Venlafaxin) (Forth et 

al., 1998; Möller et al., 2002; Nestler et al., 2002b). Different classes of antidepressants are 

also the first-choice in treating anxiety disorders (Strohle, 2003), but additionally they are 

treated with benzodiazepines, like diazepam (valium) and buspirone, both representing 

tranquilizers or glutamate receptor ligands (Briley and Nutt, 2000). Most benzodiazepines 

assist the impact of GABA, whereas buspirone inhibits 5-hydroxytryptamine (5-HT, 

serotonin) neurons by stimulation of somatodendritic 5-HT1A autoreceptors (Forth et al., 

1998). 

The onset of the antidepressive or anxiolytic effects can last at least four weeks until they 

achieve any symptomatical relief and are, beside tolerance development and addiction, often 

accompanied by a variety of side effects, including sedative effects, fatigue, increased 

appetite, dizziness, sleep disturbances and agitation, diarrhea, nausea, and sexual 

dysregulation. These side effects reduce the patients´ quality of life by worsening familial, 

social, and professional abilities (Strohle, 2003; Cassano and Fava, 2004). Furthermore, 

there is still a high number of patients that are resistant to any kind of medication and less 

than 50% of patients demonstrate complete remission to the initial therapy with any type of 

antidepressant (Nestler et al., 2002a; Moller, 2004; Bystritsky, 2006). Besides insufficient 

drug treatment and diagnostic parameters, we also lack objective diagnostic tests to identify 

and categorize patients to allow early diagnosis and concerted treatment. The research of 

the past years reduced the number of side effects, but has not decisively improved the 

treament of patients (Nestler et al., 2002a; Nestler et al., 2002b). 

Taken together, the current medications for anxiety disorders as well as for depression are 

not satisfying in terms of discharging the patient to allow them a constant healthy and normal 

everday life. Therefore, intensive resesarch on identifying genetic determinants of abnormal 

emotionality and the discovery of novel targets, biomarkers, and treatments of psychiatric 

diseases is urgently needed (Nestler et al., 2002b). 

 

1.6 Human research and the necessity of animal models 

For several reasons, beside ethical ones, humans are less-than-ideal for research on 

neuropeptides. First, although blood samples are easy to obtain for determining plasma 
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hormone concentrations, peripheral and CNS peptide release are independently regulated. 

The high amount of plasma peptidases together with the blood-brain barrier make an infer of 

CNS peptide physiology from plasma hormone concentrations rather impossible. 

Furthermore, the use of biopsy to directly assess tissue peptide concentrations is not ideal, 

as it can not be routinely repeated, is limited to superficial structures, and holds the risk of 

potential morbidity. The cerebrospinal fluid (CSF) is more appropriate for substance 

detection because it reflects extracellular transmitter concentrations due to its direct CNS 

contact and is separated from peripheral sources by the blood-brain barrier. The limitations 

of human CSF studies comprise a lack of information about the regional CNS source of 

peptide change and the difficulty to obtain CSF from healthy controls. Postmortem studies 

have been informative, but are unreliable in terms of postmortem delay, previous drug 

treatment, and coexisting illnesses. Additionally, choosing the right controls, that are not only 

matched for age and gender, but also for health parameters and other demographic 

variables is complicated, because there is a high heterogenity among the human research 

population (Sadock and Sadock, 2005).  

Taken all these disadvantages together, animal models have been proven to be essential 

and necessary tools for any medical achievements and they are of increasing importance in 

psychiatric research (McKinney, 2001). Animals can be used in studies specially designed to 

induce psychopathology via experimental manipulations, such as brain lesion or 

intracerebroventricular (icv) drug injection. They can be bred, reared, maintained, and 

observed under standardized laboratory conditions, which allows a better scientific control 

over environmental influences or provide the basis for specific manipulation either genetically 

or environmentally. Moreover, animals, especially rodents, due to their shorter natural life 

span allow the assessment of long-term effects of any planned intervention and treatment. 

Even “intergenerational” consequences of a particular pathology or the efficiency of 

treatments can be obtained (Sadock and Sadock, 2005). Ideally, animal models should 

mimic the specific conditions in humans regarding disease etiology, symptomatology, 

treatment, and biological basis (McKinney, 2001). Due to higher cognitive levels such as 

motivation or self reflection in humans, it is obviously rather unlikely that any animal model 

could ever reproduce every feature of a particular human psychopathological disorder, but 

current research is making use of several strategies and different models to overcome this 

problem. There are three main criteria to be fullfilled by a valid animal model. The causal 

conditions (construct validity) and the diagnosed symptoms (face validity) should be similar 

to those found in humans and pharmacological treatment of the animals should result in 
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equal or similar quantifiable effects to those observed in patients (predictive validity) 

(McKinney, 2001). Meeting such requirements is difficult, because a high number of cardinal 

symptoms (e.g. feelings of worthlessness or suicidal ideation) are defined by subjective 

verbal report, which is impossible to measure in animals. However, features such as weight 

loss and appetite, anhedonia, sleep disturbances, or psychomotor changes can be assessed 

quite well in animals along with the use of a variety of behavioral tests reflecting emotionality 

(Sillaber and Holsboer, 2004).  

Many laboratories use rodents as experimental animals, because they can be bred and 

housed easily, are phylogenetically close to humans (Sprott and Ramirez, 1997), and share 

many analogous physiological and behavioral parameters with the human organism (Ohl, 

2005). Mice for example have a 92% exonal sequence homology with humans in common 

(Brudno et al., 2004). 

There are several strategies inducing symptoms of psychopathologies in rodents. For 

instance, exposing the animals to chronic stress by sequential applications of unpredictable 

stressful conditions (Overmier and Seligman, 1967; Schmidt et al., 2007) or early life 

stressors such as maternal deprivation (McKinney and Bunney, 1969; Schmidt et al., 2003). 

Others focus on behavioral changes by virtue of different environmental influences such as 

rearing style (Weaver et al., 2004) or enriched environment (Friske and Gammie, 2005). 

Although these models can successfully mimic stress-related pathologies in humans, such 

as consequences of early neglect, they ignore the influence of genetic factors (Sillaber and 

Holsboer, 2004). Another approach is therefore the development of genetically engineered 

mice, by producing a conventional knockout animal, lacking the target gene from an early 

developmental stage on or the development of conditional knockouts where the deletion of 

the gene is regionally and temporally restricted. Besides the identification of the involvement 

of single genes in central dysregulation and behavioral changes, these strategies are 

accompanied by several disadvantages. Conventional knockouts can result in lethality early 

in development or unpredictable alterations in gene expression and compensating effects 

resulting in false positive or negative findings. The conditional knockout, as well as other 

new techniques like antisense-targeting or specific manipulation via adeno-associated virus 

application, allow a more direct and temporal control of a certain gene in a specific brain 

region, however, some drawbacks still remain concerning correct analysis, interpretation, 

and the disregard of the multigenic background (Plomin and Crabbe, 2000; Lightman et al., 

2002; Sillaber and Holsboer, 2004). A third main focus is the bidirectional inbreeding of 

animals, selected due to a certain phenotype, resulting in behavioral extremes, reflecting 
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symptoms of a defined psychiatric disease. There are different approaches such as 

selecting and inbreeding animals according to their passive coping style (Vaugeois et al., 

1997) or their stress-induced Cort increase, mimicking endophenotypes of affective 

disorders (Touma et al., 2006). The use of selective breeding increases the representation 

of genetic factors associated with a certain trait by shifting the respective phenotype from the 

strain´s average (Kromer et al., 2005).  

Animals from the high (HAB) and low anxiety-related behavior (LAB) rat model were selected 

according to their anxiety-related behavior by using the elevated plus-maze (EPM) test. After 

inbreeding over several generations these breeding lines exhibits symptoms of pathological 

anxiety (Liebsch et al., 1997; Liebsch et al., 1998; Landgraf and Wigger, 2002). The two rat 

lines feature a high genetic homogenity and fullfill all three formerly mentioned criteria of a 

valid animal model, allowing the investigation of multiple genetic and environmental factors 

contributing to the animals´ trait anxiety and depression-like behavior (Wigger et al., 2001; 

Keck et al., 2003b; Landgraf, 2003; Murgatroyd et al., 2004). However by virtue of selection, 

accompanied by genetic drift, co-segregation of genes, dispensable for anxiety- and 

depression-like behavior, is possible and leads to false positive results correlated to 

psychopathologies. Furthermore, a reduction related to the genetic background or a loss of 

underlying genes can occur. This pitfall could be circumvented by running different sublines. 

As neither mice nor rats or other species used for research, can reflect entire human 

psychopathologies, it is necessary to use several research strategies, trying to close the lack 

of invasive methods in clinical research, by identifying linked neuronal structures, circuits, 

and genes (Cryan and Mombereau, 2004). 

 

1.7 The HAB/LAB mouse model 

Although the HAB/LAB rat model is among the most powerful tools used to investigate 

behavioral, neurobiological, and neuroendocrine parameters as well as environmental 

influences on “trait” (continously, e.g. by genetic predisposition) anxiety, the use of genetic 

approaches is limited in rats (Lister, 1990; Finn et al., 2003; Landgraf and Wigger, 2003).  

Modern genetic approaches applicable to mice make them an advantageous model 

organism to uncover functional candidate genes and gene products underlying trait anxiety 

and depression (Tarantino and Bucan, 2000). Furthermore, the mouse genome has been 

fully sequenced and numerous gene marker are available to detect genetic changes 

(Gregory et al., 2002; Waterston et al., 2002). Therefore, beginning in the year 2000, we 
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established a mouse model using the same breeding strategy for CD1 mice as formerly used 

for Wistar rats (Liebsch et al., 1997). 

Figure 1.2:  Breeding progress of the HAB/LAB mouse model. Left: Elevated plus-maze 

(EPM) data (% time spent on the open arms) of the parental generation and 

G1 to G27 of HAB and LAB mice, CD1 (NAB) mice as controls. Independent 

of gender, HAB and LAB animals differ significantly in their anxiety-related 

behavior (*** p<0.001, G1-G27) with NAB mice displaying an intermediate 

behavior (n=40-80 per line and generation). Right: Non-anxious LAB mice 

explore the a priori aversive open arms, whereas HAB animals spend most 

time in the protective closed arms. 

 

The EPM test is a common, unconditioned, and pharmacologically validated behavioral test 

measuring anxiety in rodents. It is a plus-shaped apparatus, elevated from the floor, 

consisting of two aversive open arms, two dark arms with protecting walls, and a neutral 

zone in the middle (see 3.2.2). It is based on the animals´ conflict between exploratory drive 

and their inborn anxiety of unprotected, elevated, and illuminated areas, with the time spent 

in the latter being the indirect index for high or low anxiety (Pellow et al., 1985; Lister, 1987).  

Around 250 male and female Swiss CD1 mice (Charles River, Sulzfeld, Germany) were used 

as the origin for selective and bidirectional breeding for anxiety-related behavior in the EPM 

test. According to the time spent on the open arms of the EPM, mice were bred with 

adequate partners to give rise to the behavioral extremes. Animals spending most of the test 

time and mice spending the least amount of time on the open arms established the 
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hyperanxious HAB and the hypoanxious LAB breeding lines respectively, which significantly 

differ in their EPM performance upon the fourth generation independently of gender (see 

Figure 1.1). These lines do not only differ in their spontaneous behavior on the EPM, but 

also in a variety of other behavioral tests, including additional tests measuring anxiety-

related behavior such as the ultrasonic vocalization test, the dark-light box test, or open arm 

exposure, with HAB mice always displaying higher anxiety levels. Additionally, tests for 

depression-like behavior, including the forced swim and tail-suspension test, revealed a 

decreased depression-like behavior in LAB animals in comparison with HAB and “normal” 

anxiety-related behavior animals (NAB). Apart from the broad phenotyping and a 

pharmacological validation using diazepam in pups, glyoxalase 1, an enzyme involved in 

cellular detoxification, was identified as a biomarker indicative of trait anxiety (Kromer et al., 

2005; Ditzen et al., 2006). Thus, the HAB/LAB mouse model is introduced as a new tool to 

investigate genetic predisposition, central dysregulation, and environmental factors 

contributing to pathological anxiety. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2     Aim and scope of the thesis 17 

2 Aim and scope of the thesis 

As anxiety is considered a multidimensional domain covering different levels, including 

behavioral, neuroendocrine, genetic, developmental as well as cognitive aspects, the 

following questions have been addressed by analyzing the HAB/LAB mouse model: 

 

1) Do the two mouse lines of trait anxiety, beside their performance in the EPM test, 

differ in other behavioral tasks, including additional tests measuring anxiety-related 

behaviors as well as depression-like and explorative behaviors? Are there any 

associations between gene expression and the respective phenotypes? 

 

2) During which developmental stages does the behavioral divergence of the mouse 

lines occur? Is there any association between gene expression and the onset of 

emotional differences? 

 

3) Is there any linkage between extremes in trait anxiety and cognitive abilities in the 

HAB/LAB mouse model? 
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3 Animals, material, and methods 

3.1 Animals 

Animals of all lines, HAB, NAB, LAB, or cross-mated mice (F1, offsprings of reciprocal cross-

mated HAB and LAB mice) were strictly treated in parallel concerning care, mating, and 

behavioral testing performed at the Max Planck Institute of Psychiatry, Munich. Standard 

laboratory conditions contained group housing with three to five animals per cage (type 2-

macrolone, 25.5 x 19.5 x 13.8cm), in a 12-h light/dark schedule (lights on at 7am), with room 

temperature at 23 ± 2ºC, 60% humidity, food (Nr. 1314, Altromin GmbH), and tap water ad 

libitum. The animal studies were both approved by local authorities and conducted according 

to current regulations for animal experimentation in Germany and the European Union 

(European Communities Council Directive 86/609/EEC).  

Data presented were obtained from male animals from generation 14 - 25. All tests were 

carried out at the age of seven to twelve weeks, with an initial EPM test procedure. Surgeries 

and the additional behavioral test paradigms were separated by at least 2 days recovery 

time. All behavioral testings have been performed between 8am and 1pm (Kromer et al., 

2005). 

 

3.2 Behavioral tests for emotionality 

3.2.1 Ultrasonic vocalization test  

It has been suggested that the number of ultrasonic vocalization (USV) calls induced by 

separation and isolation can be considered as a measure of separation anxiety and can be 

predictive of adult emotionality (Dichter et al., 1996; Brunelli, 2005; D'Amato et al., 2005). 

Therefore, as an early test for anxiety-related behavior, following the developmental 

pathways of emotional extremes, the USV was used to monitor the phenotypes in our 

breeding lines (Kromer et al., 2005). Each pup got separated from the dam and was gently 

placed onto a Petri dish (diameter: 15cm; wall height: 1.5cm; kept at a constant temperature 

of 23ºC by a water bath below the dish) without olfactory or auditory contact to its litter. 

Using a Mini-3 Bat detector (Ultrasonic Advice, London, UK), fixed about 10cm above the 

pup, ultrasonic vocalization was recorded for five min using a WM-D6C tape recorder (Sony 

Professional, Cologne, Germany). For analysis, the number of vocalization calls at 70kHz 

were recorded and quantified by the Eventlog 1.0 program (EMCO Software, R. Henderson, 

Germany, 1986). As a measure of locomotor activity the Petri dish was divided into 2 x 2cm 

squares and the line crossings (both forepaws and shoulders across the line) were directly 
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counted during the 5-min period (Figure 3.1). Furthermore, rotations defined as 360º 

movements of the pup were quantified. At the end of the trial each animal was weighed and 

the dish cleaned with an 80% alcohol solution. 

Figure 3.1: Ultrasonic vocalization test. Left: Experimental setup. Right: Schematic 

overview of the recording of ultrasound by the ultrasonic detector and the grid 

on the Petri disc to define locomotor activity. 

 

3.2.2 Elevated plus-maze test  

The elevated plus-maze (EPM) test is based on creating a conflict between the mice´s 

exploratory drive and its innate fear of illuminated, unprotected and heightened areas (Lister, 

1987). It consists of a plus-shaped platform elevated 37cm above the floor, with two open 

(30 x 5cm), two closed (30 x 5 x 15cm) arms and a connecting central zone (5 x 5cm) made 

of grey PVC with the whole apparatus being surrounded by a black curtain to prevent the 

experimental animal from visual or auditory cues (Figure 3.2). The open arms were lit by 

white light of 300lux, the neutral zone by 60lux and the closed arms by 5lux. The maze was 

cleaned with water containing detergent before the introduction of each mouse. 

Animals were directly transferred from their homecage to the test apparatus, starting with the 

animal placed on the central part facing one of the closed arms. During a 5-min exposure, 

following parameters were recorded by means of a video/computer system (Plus-maze V2.0, 

Ernst Fricke, Germany, 1993) by an observer blind to line and/or treatment: the number of 

entries into open and closed arms (both forepaws and shoulders within the arm), the 

percentage time spent on the open arms (ratio of time spent on the open arms to total time 

spent on all arms), the full entries (all four paws within the arm) into the open arm and the 

Ultrasonic vocalization

Ultrasonic detector

Disc with grid
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latency to the first entry into an open arm (Kromer et al., 2005). All animals have been 

weighed afterwards. 

Figure 3.2: Elevated plus-maze test. Left: Experimental setup. Right: Schematic overview 

of the defined areas of the maze used for the behavioral analysis. 

 

3.2.3 Open arm exposure  

To monitor the animals´ behavior in an unavoidable mild stress situation, one open arm (OA) 

of the EPM was separated from the central compartment by a plastic board to prevent the 

test animal from leaving the open arm. The arm was illuminated by 100lux and divided by 

small white stripes, fixed on the edge of the arm, into a proximal, medial and distal part. At 

the beginning of the experiment, each animal was placed onto the distal part of the OA 

facing the plastic board (Figure 3.3). After each trial the arm was cleaned with water 

containing detergent. During the 5-min test, the number of entries and time spent in the 

distal, medial, and proximal zone, locomotor activity (indirect measurement via entries to the 

different parts of the open arm), and time of exploratory head movement (whole head 

outside the bounds of the arm) was recorded and quantified by using the Eventlog 1.0 

computer system (EMCO Software). A compartment was defined to be entered if the 

animals´ front paws and shoulders were inside the respective part. The open arm was 

cleaned with water containing detergent before the introduction of each mouse. 

Closed arm

Open arm

Neutral zone

Closed arm

Open arm

Neutral zone

Elevated plus-maze
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Figure 3.3: Open arm exposure. Left: Experimental setup. Right: Schematic overview of 

the defined areas of the open arm used for the behavioral analysis. 

 

3.2.4 Dark-light box test  

The dark/light (DaLi) paradigm, as an additional behavioral task measuring anxiety-related 

behavior, is based on the innate aversion of rodents to brightly illuminated areas and on their 

spontaneous exploratory behavior, applying a mild stressor including novel environment and 

light (Hascoet et al., 2001). The dark-light box, open topped, consisted of an secure, small, 

black PVC compartment (15 x 28 x 27cm; 60lux) and a aversive, illuminated, white PVC (48 

x 28 x 27cm; 300lux) part, connected by an aperture (5 x 7cm) (Figure 3.4). At the beginning 

of the task, each animal was placed into one edge of the dark compartment, facing the wall. 

During the 5-min test procedure, the percentage of time each mouse spent in the lit or dark 

compartment, as well as the rearings (raising the front legs), were scored. To quantify 

locomotor activity, the ground of the dark compartment has been divided into two parts of 

equal size, whereas the light compartment was divided into four squares of same size in 

order to evaluate the line-crossings. A mouse was defined to have entered a compartment or 

crossed a line when both front paws and shoulders were inside the respective part or 

square. Scoring was performed by an observer blind to line and treatment using the 

computer program Eventlog 1.0 (EMCO Software).  
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Figure 3.4: Dark-light box test: Left: Experimental setup. Right: Schematic overview of the 

dark and the lit compartment of the behavioral test, which are connected by a 

tunnel and the division of each compartment used to define locomotor activity. 

 

3.2.5 Forced Swim test  

The forced swim (FS) test is the most widely used test to measure depression-like behavior 

as well as to screen antidepressants in rats and mice (Porsolt et al., 1977; Porsolt et al., 

1978; El Yacoubi and Vaugeois, 2007). It is described to be a strong stressor, because the 

animals are facing a psychological and physiological challenge, especially mice which are 

not supposed to swim in their natural environment. In this paradigm, the animal is forced to 

swim in a glass cylinder half-filled with water so that the animal cannot touch the bottom with 

its hind paws or tail (Figure 3.5). In the beginning the animals try to escape by swimming, 

which is impossible, and after a while they assume an immobile posture called “floating” or 

“immobility” (Sillaber and Holsboer, 2004). This phenomenon was originally termed 

“behavioral despair” (Porsolt et al., 1978) or searching-waiting strategy, where the animals 

change between active and passive coping style, with the amount of passive behavior 

reflecting depression-like behavior (Thierry et al., 1984).  

For testing, each individual was placed into a 2 liter glass beaker (radius: 11cm, height: 

23,5cm) filled up to a height of 15cm (1.6 liter) with 23ºC tap water. After 6-min swimming, 

the animal was gently dried with a cloth towel and returned to the home cage. The duration 

of floating (immobility of all four extremities) phase was scored by an observer blind to line 

and treatment using the computer program Eventlog 1.0 (EMCO Software).  
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Figure 3.5: Forced swim test: Left: Experimental setup. Right: Schematic overview of the 

behavioral parameters analyzed. Floating, as a form of immobility, is reflecting 

passive coping, whereas struggling/swimming is indicative of active stress 

coping strategy. 

 

3.2.6 Tail-suspension test  

The tail-suspension test (TST) is conceptually similar to the FS test, as both have a common 

theoretical basis and similar behavioral outcome (Steru et al., 1985). Mice, suspended by 

their tail, immediately engage in active, escape-orientated behavior, followed progressively 

by increasing periods of immobility, indicative of depression-like behavior (El Yacoubi and 

Vaugeois, 2007). Due to the fact that the animals are not exposed to a strong physiological 

challenge (e.g. hypothermia by water exposure), this paradigm is supposed to be less 

stressful compared to the FS test (Sillaber and Holsboer, 2004).  

The testing apparatus consists of a horizontal plastic rod (length 75cm) at a height of 75cm 

with four vertical rods (15cm). Animals were suspended by their tail-tip at a height of 35cm 

above the ground (measured from ground to head) by an adhesive tape for six min (Figure 

3.6). Four animals were tested at the same time. Each trial was videotaped and the 

immobility time (immobility of all four extremities) and the latency to the first immobility phase 

were analyzed by an observer blind to line and treatment using the computer program 

Eventlog 1.0 (EMCO Software).  

Forced swim

floating struggling/swimming
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Figure 3.6: Tail-suspension test: Left: Experimental setup. Right: Schematic overview of 

behavioral parameters investigated, namely immobility and activity. 

. 

3.2.7 Novel cage behavior  

To monitor the animals´ spontaneous behavior in a novel stress-mild environment, each 

animal was transferred to a transparent experimental cage (plexiglas 38 x 22 x 35cm, 

250lux), providing food pellets and water ad libitum, and behavior was analyzed during 15-

min exposure. The novel cage (NC) was optically divided into an inner and outer (additionally 

divided into four parts each to allow quantification of outer line crossings) compartment in 

order to define the time spent in the more protective outer (thigmotaxis) or the more aversive 

unprotected inner part (see Figure 3.7). Additionally, the number and latency of line 

crossings (“two front paw and shoulder criterion”), latency to the first inner part entry, 

number of rearings (raising the front legs), grooming time, and time spent digging the saw 

dust (a kind of displacement activity due to an aversive situation) was measured by an 

observer blind to breeding line by the use of the computer program Eventlog 1.0 (EMCO 

Software).  
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Figure 3.7: Novel cage behavior. Left: Experimental setup. Right: Schematic overview of 

the division of the cage in inner and outer compartment and the additional 

subdivision to define locomotor activity. 

 

3.3 Tests for cognition 

3.3.1 Social recognition test  

The social recognition (SR) test is a learning and memory task, testing social memory 

abilities in rodents and has been established by Thor and Holloway in 1982. Former 

experiments have shown that a rodent is more interested in an unfamiliar, novel conspecific 

accompanied by a increased olfactory exploration, compared to a familiar conspecific (Thor 

and Holloway, 1982). Normally, reintroduction (introducing the familiar stimulus animal once 

more) of a familiar stimulus animal, results in a decrease in olfactory investigation indicative 

of functional social memory processes, whereas the introduction of a novel stimulus 

increases sniffing time. Presenting a novel stimulus animal excludes effects of tiredness of 

the experimental animal and lack of interest on a social stimulus which might influence the 

results (Ferguson et al., 2000b; Bielsky et al., 2004). Using this information, we performed a 

variety of pre-experiments by changing exposure times, social stimuli (including used female 

bedding, juveniles, and ovariectomized females) and inter-exposure intervals (IEIs), and 

introduce the following modified protocol suitable for HAB, NAB, and LAB male mice: 

Pretraining: Experimental animals, group-housed, were transferred to a transparent 

experimental cage (plexiglas 38 x 22 x 35cm, 250lux) each, which contained an empty, 

perforated 50ml plastic tube (Sarstedt, Nümbrecht, Germany), which will later contain the 

stimulus animal. The animals habituated to the novel environment and the plastic tube for 

40min. Furthermore, 24h prior to experiment, the animal was five times introduced to an 

Novel cage

Outer compartment
(four segments) 

Inner compartment

Novel cage

Outer compartment
(four segments) 

Inner compartment



26 3     Animals, material, and methods 

  

ovariectomized female (stimulus animal) protected in the perforated plastic tube, for 4min. 

To exclude that the later olfactory investigation in the stimulus animal is influenced by the 

animals´exploration of an unknown object, the animal is introduced to the empty plastic tube 

before. Avoiding anxiety-based influences on the results, induced by the novel environment, 

the experimental animals were habituated to the test situation itself by introducing them to a 

stimulus animal. The ovariectomized females were presented in these perforated plastic 

tubes to protect them from attacks of the experimental animals on one hand and on the 

other hand to provide a strict one-sided contact which is not influenced by behavioral or 

activity-based differences from the stimulus animal. 

Experiment: After transfer to the experimental cage and 40min habituation, the experimental 

animal was introduced to the stimulus animal (First, F) for 4min. After 15min IEI the same 

animal was reexposed and the whole procedure repeated four times. In the 5
th 

trial an novel 

(Novel, N) ovariectomized female was introduced for 4min. The time and latency to the first 

olfactory investigation, mostly in the facial or anogenital region of the stimulus animal, was 

quantified by using the computer program Eventlog 1.0 (EMCO Software) by an observer 

blind to the line. 

Figure 3.8: Social recognition task. Left: Experimental setup. Right: Schematic overview   

of the experimental paradigm. The first (gray) stimulus animal was introduced 

to the experimental animal (white) for four min and for four times with an 

interexposure interval of 15min, whereas in the fifth exposure a novel stimulus 

(black) is introduced. 

 

3.3.2 Social discrimination test  

The social discrimination test (SD) was originally developed in our laboratory (Engelmann et 

al., 1995) to investigate olfactory-based learning and short-term memory processes in adult 

rats in a social context. Compared to the SR test, this task is more challenging for the 

experimental animals, because they have to discriminate between two stimulus animals at 

the same time. The hypothesis behind this test is similar to the SR test. If an animal is still 

Social recognition
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able to remember the first (familiar) stimulus animal, it will spend more time in olfactory 

exploration of the novel animal. Several modifications have been done in order to further 

standardize and adapt the protocol for mice (mentioned in 3.1). 

Pretraining: see Social recognition (3.3.1) 

Experiment: After transfer to the experimental cages and 40min of habituation, the 

experimental animal was introduced to the first stimulus animal, protected in a perforated 

plastic tube for five min. After IEIs of 15min, 30min, 2h, or 4h respectively, the first (First, F) 

ovariectomized female was reintroduced for five min to the test mouse together with a 

second (Novel, N) stimulus animal (also in a plastic tube). Each experimental animal 

underwent the four different IEIs with a consequent change in stimulus animals per run, i.e. 

each mouse was presented with new stimulus females during each trial. All experiments 

were performed between 8am and 3pm and videotaped for later analysis. The duration of 

olfactory investigation towards the respective stimulus animal in both sessions was 

quantified by an observer blind to the breeding line using the computer software Eventlog 

1.0 (EMCO Software).  

The total investigation time during the first exposure was quantified to exclude nonspecific 

effects on learning due to line differences. According to Engelmann et al. 1995, a 

significantly increased olfactory investigation of the novel stimulus female during the second 

exposure was taken as parameter of the animals´ social discrimination ability.  

 

Figure 3.9: Social discriminination test. Left: Experimental setup. Right: The first (gray) 

stimulus animal was introduced to the experimental animal (white) for five min 

whereas in the second exposure after different inter-exposure intervals the 

first (gray) and a novel, unfamiliar stimulus animal (black) are introduced. 

 

 

Social discrimination
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3.3.3 Cued fear conditioning paradigm 

Pavlovian fear conditioning (FC) and its extinction are related paradigms, which are used in 

laboratory animals to model the mechanisms of human fear learning and its reversal (Walker 

et al., 2002; Tamminga, 2006). Classical fear conditioning (FC) occurs when an affectively 

neutral stimulus such as a tone (conditioned stimulus, CS) is paired with a noxious aversive 

stimulus, such as footshock (unconditioned stimulus, US). During conditioning an 

association between CS and US is formed, which afterwards enables the previously neutral 

CS to elicit several fear-related behavioral changes, such as freezing or potentiation of the 

acoustic startle response. The fear-eliciting properties of the CS in the absence of the US 

extinguishes after repeatedly presenting the CS, indicating extinction as relearning (Walker 

et al., 2002). Corticosterone (Cort) and D-Cycloserine (D-cycl), a partial NMDA receptor 

agonist, are both described to facilitate extinction and are used to pharmacologically 

manipulate extinction in HAB and NAB mice (Ledgerwood et al., 2005; Cai et al., 2006; Lee 

et al., 2006).  

Contexts: Two contexts, A and B, were used for the cued fear conditioning paradigm. A fear 

conditioning chamber (26 x 30 x 32cm; Coulbourn Instruments, Allentown, PA, USA) served 

as context A, whereas a standard sawdust-free type 2-macrolone cage (25.5 x 19.5 x 

13.8cm)  was used as context B. To maximally reduce the contribution of the context to cued 

fear conditioning, tactile, visual and olfactory cues were different in context B in comparison 

to context A. Thus, context A was equipped with a metal floor grid (rods spaced 1.5cm), with 

two plexiglas and two rough metal walls, the illumination was bright light of 300lux, and the 

context was cleaned with water containing detergent after each animal. In contrast, context 

B had a smooth PVC surface, was illuminated by dim red light approximately 5-10lux, and 

was wiped out with methanol after each session. Video cameras were mounted above each 

context and connected to a standard video recorder for recording and later scoring of 

freezing behavior (Maren, 2005a, b; Phelps and LeDoux, 2005). 

Auditory stimuli for the cued fear conditioning task were delivered via a speaker (Coulbourn 

Instruments, Allentown, PA, USA) mounted approximately 20 cm above the contexts. US 

were delivered via an interface connected to the metal grid of context A. Experiments were 

conduced between 9am and 5pm, with the experimental groups being equally distributed 

through the time period of testing to avoid circadian influences on behavior. 

Acquisition (day0 (d0): The experimental animals were transferred to context A and 

habituated to the acquisition chamber for 2min. Fear acquisition was elicited by introducing 

the experimental animals to the audible CS, a white noise of 80dB for 2min. The conditioning 
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stimulus, a mild but aversive footshock of 0.7mA was applied for 2sec co-terminated with the 

last 2sec of tone presentation. The tone-shock paradigm was in total presented for five times 

with a 2min inter-trial interval (stimulus-free period) in between. Following the CS-US pairing, 

the animals were kept 2min in the acquisition chambers and transferred back to their home 

cages afterwards. 

Pharmacological treatment: 30min prior to the extinction protocol, animals were i.p. injected 

with a 45% cyclodextrine solution (Sigma Aldrich, Gemany, control groups), 10mg/kg 

corticosterone (Cort, Sigma Aldrich, Germany, Cort-treatment group) dissolved in 45% 

cyclodextrine solution or 30mg/kg D-cycloserine (D-cycl, Sigma Aldrich, Germany, D-

cycloserine-treatment group) dissolved in 45% cyclodextrine solution. According to the 

animals´ body weight a volume of 300-380µl was administered. 

Extinction training (d1): After 24h of memory consolidation extinction was performed in 

context B. Mice were again habituated to the novel environment for 2min and received 16 

CS (Tone) presentations (2min, 80dB, white noise, 5sec inter-stimulus interval). The 

experimental animals were returned to their home cages 2min after the final CS 

presentation.  

Retention (d6): To examine long-term memory storage, the experimental animals were again 

introduced and habituated (2min) to context B. Mice received eight CS presentations (2min, 

80dB, white noise, 5 sec inter-stimulus interval) and 2min after the last tone presentation 

they were transferred to their home cages. 

Analysis: During habituation and the last 2min after final CS presentation several behavioral 

parameters were quantified, including immobility, freezing, rearing and grooming time as well 

as locomotor activity. During CS presentations, we focused only on freezing time, as one of 

the most important parameters reflecting fear response. Behavior was quantified by using 

the computer program Eventlog 1.0 (EMCO Software) by an observer blind to the line and 

treatment. 
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Figure 3.10: Overview of the applied fear conditioning protocol. As a conditioning stimulus 

(CS) a tone (80dB) was used, whereas a footshock (0.7mA) was applied as the 

unconditioned stimulus (US). 

 

3.4 Molecular techniques 

3.4.1 In situ hybridization  

The expression of Avp, Crh, MR, GR, Oxt, Synaptotagmin 4 (Syt 4), and brain-derived 

neurotrophic factor (BDNF) was assessed by in situ hybridization (ISH) using either 

oligonucleotide, or ribonucleotide probes. This technique is used to qualitatively and 

quantitatively detect gene expression in brain slides by adjusting high specific nucleotide 

mRNA probes.  Furthermore, it provides information about the involvement of neuropeptides, 

receptors or other cellular components in mediating behavioral phenotypes. We investigated 

the expression of AVP, CRH, GR, and MR, two neuropeptides and two receptors, on 

different levels of the brain, largely involved in the regulation of behavior and HPA axis 

function (see 1.3). OXT as well as BDNF are also well described to contribute to anxiety- and 

depression-like behavior (Arletti and Bertolini, 1987; Bosch et al., 2005; Martinowich et al., 

2007). Syt 4 is a Ca
2+

-sensor protein involved in regulating neurotransmitter exocytosis and 

in tuning the fusion mechanisms (Lodish et al., 2001), and has been implicated in anxiety- 

and depression-like behavior (Schwab et al., 2001; Ferguson et al., 2004). 

Animals were sacrificed by an over-dose of isoflurane (Curamed Pharma, Germany) 

between 9am and 1pm. The brains were removed, shock-frozen in N-methylbutane (Roth, 

Germany) and stored at -20ºC until sectioning in 14µm slices by a cryocut in the coronal 

plane (Microm HM 500, Germany). Several sets of sections at PVN, amygdala and dorsal 

hippocampus level were taken and used for in situ hybridization according to former 
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protocols. If not particularly mentioned, the substances used for the following molecular 

techniques were purchased from Sigma-Aldrich, Germany. 

 

Figure 3.11: Overview of the anatomical locations of the brain regions investigated in the 

following in situ hybridization and real-time PCR studies. 

 

3.4.1.1 ISH measuring Avp, Oxt, and BDNF mRNA 

To detect mRNA levels via oligonucleotide probes, we used unfixed tissue (Dagerlind et al., 

1992). Briefly, for each animal one set of sections were used to detect one gene. Slices were 

dehydrated in increasing ethanol concentrations, degreased with chloroform, rinsed in 

ethanol, and air-dried afterwards. A highly specific oligonucleotide probe (see Table 3.1) 

directed against each of these three genes was used for hybridization. The oligonucleotides 

were labeled with 
35

S by using 
35

S-ATP (NEN DuPont, Germany) and terminal transferase 

(Tdt, Boehringer, Germany), including purification by tRNA precipitation. Tissue sections (5 

sections per slide) were saturated with 100µl of hybridization buffer (deionized formamide, 

20x SSC (standard saline citrate), dextran sulfate, 0.2M Na-phoshate buffer, Dehnhard´s 

solution, 20% sarcosyl solution, salmon sperm DNA, 5M DTT (DL-Dithiothreitol)) containing 

10
6
 cpm 

35
S-labeled oligoprobe. Coverslipped sections were incubated in a humid chamber 

for 18–22h at 45ºC. After several washes in 1x SSC, sections were dehydrated and air-dried 

before they were exposed to radiation-sensitive films (Muller et al., 2003; Wigger et al., 

2004). For data analysis, see 4.1.3. 

 

 

 

 

Central 
amygdala

Basolateral
amygdala

Paraventricular
nucleus

Supraoptic
nucleus

Hippocampus

Anatomical locations

Central 
amygdala

Basolateral
amygdala

Paraventricular
nucleus

Supraoptic
nucleus

HippocampusCentral 
amygdala

Basolateral
amygdala

Paraventricular
nucleus

Supraoptic
nucleus

Hippocampus

Anatomical locations



32 3     Animals, material, and methods 

  

Table 3.1: Nucleotide sequences used to detect Avp (Ivell and Richter, 1984; Villar et al., 

1994), Oxt (Ivell and Richter, 1984), and BDNF (Sterlemann and Schmidt, 

unpublished). 

 

3.4.1.2 ISH measuring Crh, MR, GR, and Syt4 mRNA 

ISH using 
35

S-UTP-labeled ribonucleotide probes to detect Crh, MR, GR, and Syt4 mRNA 

was performed as described previously (Schmidt et al., 2002; Muller et al., 2003). Briefly, 

sets of sections for each riboprobe ISH were fixed in 4% paraformaldehyde and acetylated in 

0.25% acetic anhydride in 0.1M triethanolamine/HCl. Afterwards, slides were dehydrated in 

increasing ethanol concentrations, degreased with chloroform, rinsed in ethanol and air-dried 

afterwards. The antisense cRNA probes for Crh (356 base pairs, bp), GR (520 bp), MR (750 

bp), and Syt4 (470 bp) were transcribed from a linearized plasmid and labeled using either 

SP6 (polymerase for Crh, MR, and Syt4) or T7 (polymerase for GR) transcription systems in 

a standard labeling reaction mixture consisting: 1.5µg of linearized plasmid, 1x transcription 

buffer, 0.12mCi of [
35

S]UTP, 1mM NTPs, 16.7mM DTT, 40U of RNAse inhibitor, and 20U of 

the appropriate polymerase. The reaction mix was incubated at 37ºC for 3h and the labeled 

probe was subsequently separated from free nucleotides via Qiagen spin columns (Muller et 

al. 2003). Tissue sections (5 sections per slide) were saturated with 100µl of hybridization 

buffer (Tris HCl, EDTA, NaCl, formamide, 5M DTT, Dehnhard´s solution, DEPC H20, 50% 

dextran sulfate) containing 10
6
 cpm 

35
S-labeled riboprobe. Brain sections were coverslipped 

and incubated in humid chambers over night, approximately 18–22h at 55ºC. On the 

following day, slides were rinsed in 2x SSC, treated with RNAse A (20mg/l), washed by 

decreasingly concentrated SSC solutions, dehydrated by increasing ethanol concentration, 

and air-dried before exposure to the radiation-sensitive films (for data analysis, see below).  

 

 

 

 

5´agttccagtgccttttgtctatgcccctgcagccttccttggtgt 3´BDNF

5´ctcggagaaggcagactcagggtcgcaggcggggtcggtgcggcagcc 3´Oxt

5´gggcttggcagaatccacggactcttgtgtcccagccagctgtaccag 3´Avp

Nucleotide sequenceGene

5´agttccagtgccttttgtctatgcccctgcagccttccttggtgt 3´BDNF

5´ctcggagaaggcagactcagggtcgcaggcggggtcggtgcggcagcc 3´Oxt

5´gggcttggcagaatccacggactcttgtgtcccagccagctgtaccag 3´Avp

Nucleotide sequenceGene
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3.4.1.3 Data analysis 

For all ISHs, sections were exposed to a Kodak BioMax MR film (Eastman Kodak Co., USA) 

for 1-14 days, fixed, and developed afterwards. The films were digitized and the radiation-

induced blackening of different brain region was quantified by means of image analysis 

using the computer software Optimas (Version 5.22, Optimas Corp., USA) or Scion Image 

(Version 4.0.3.2, Scion Corporation, USA). Autoradiograms were analyzed by using the 

computer-assisted optical density readings (relative grey intensity as a measure of relative 

expression) of an area as well as the relative size of labeled area. For each individual, three 

to six brain sections were quantified by an observer blind to the breeding line and the highest 

expression (hybridization signal of a certain region minus the background signal of a nearby 

structure that does not express the gene of interest) was used for the calculation of each 

mRNA expression, respectively. 

 

3.4.2 Quantitative real-time PCR measuring Avp and Syt4 

Tissue sampling for quantitative real-time PCR (qRTPCR):  

For an additional measurement of mRNA levels, the tissue micropuncture technique 

(Czibere, unpublished) was applied to acquire tissue samples from specific regions with 

micropunchers of 0.5 and 1mm diameter (Fine Science Tools, Germany). Punches were 

collected from Bregma –0.56mm to -0.96mm medially 0.8mm above the ventral tissue edge 

around the dorsal end of the 3
rd
 ventricle (Ø=1mm; PVN) and bilaterally from the optic tract 

(Ø=0.5mm) to acquire tissue from the SON. Central amygdala (CeA) tissue samples were 

collected bilaterally from Bregma –0.96mm to –1.36mm dorsomedially from the ventral end 

of the external capsule. The basolateral amygdala (BLA) was collected from Bregma  

-1.36mm to -1.76mm from in between the bifurcation of the external capsule (Paxinos and 

Franklin, 2001). Tissue punches were kept on -80°C until further processing.  

RNA extraction and reverse transcription from tissue punches: 

Tissue punches were homogenized with a pipet in 300µl Trizol (Tri Reagent), then 30µl 

bidistilled water, 1µl linear acrylamide (Ambion, TX), and 60µl chloroform were added before 

continuing with a standard protocol using n-propanol for RNA precipitation overnight. The 

amount of total RNA yielded from 0.3-1.5µg.  

Not more than 1µg of total RNA was reverse transcribed with Superscript II (Invitrogen) after 

DNAse treatment. All steps required for reverse transcription were performed according to 

the manufacturer’s protocol. For quality control, a small aliquot of cDNA was analyzed on 

agarose gel. 
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Quantitative PCR analysis:  

cDNA gene transcripts were analyzed by qRTPCR, using the LightCycler® FastStart DNA 

MasterPLUS SYBR Green I reagent (Roche Diagnostics GmbH, Germany) according to 

manufacturer’s instructions and the respective oligonucleotide primers for Avp, Syt4, and the 

housekeeping genes glyceraldehyde-3-phosphate dehydrogenase (Gapdh) and 

hypoxanthine guanine phosphoribosyl transferase 1 (Hprt). Experiments were performed in 

duplicates on the Lightcycler®2.0 instrument (Roche Diagnostics GmbH) under the following 

PCR conditions: initial denaturation; 40 cycles of denaturation, annealing, and elongation 

(see Table 3.2 for primer sequences and Table 3.3 reaction conditions in the LightCycler® 

for Syt4, Avp, and the housekeeping genes Gapdh and Hprt for reaction conditions). 

Fluorescence was assessed after each cycle after elongation phase. At the end of every run 

a melting curve (50-95°C with 0.1°C/sec) was generated to control for the quality of the PCR 

product. Crossing points (Cp) were calculated with the LightCycler®Software 4.0 (Roche 

Diagnostics GmbH, Germany) using the absolute quantification fit points method. Threshold 

and noise band were set in all compared runs to the same level. 

Relative gene expression was determined by the 2
-∆∆CT

 method (Livak and Schmittgen, 

2001) using the real PCR efficiency calculated from an external standard curve. Cp were 

normalized to the housekeeping genes Gapdh and Hprt, respectively, and values calculated 

relative to the expression mean of LAB mice. 

Table 3.2: Primer sequences used for the genes of interest and the housekeeping 

genes. 

 

 

 

5´ cctgctggattacattaaagcactg 3´5´ gtcaagggcatatccaacaacaaac 3´Hprt

5´ gatggcatggactgtggtcatgag 3´5´ ccatcaccatcttccaggagcgag 3´Gapdh

5´ accacagtgagcgtgtttgt 3´5´ tgatgtcattggagaagtcctg 3´Syt4

5´ ttggtccgaagcagcgtc 3´5´ tcgccaggatgctcaacac 3´Avp

Reverse primerForward primer
Primer/

Gene

5´ cctgctggattacattaaagcactg 3´5´ gtcaagggcatatccaacaacaaac 3´Hprt

5´ gatggcatggactgtggtcatgag 3´5´ ccatcaccatcttccaggagcgag 3´Gapdh

5´ accacagtgagcgtgtttgt 3´5´ tgatgtcattggagaagtcctg 3´Syt4

5´ ttggtccgaagcagcgtc 3´5´ tcgccaggatgctcaacac 3´Avp

Reverse primerForward primer
Primer/

Gene
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Table 3.3:  Reaction conditions in the LightCycler® for the analysis of Syt4, Avp, and the 

housekeeping genes Gapdh and Hprt. 

 

3.4.3 Double-immunohistochemistry detecting AVP and CRH 

To get insight into neuropeptides, potentially involved in mediating anxiety- and depression-

like behavior on peptide levels, immunofluorescence staining (Hetzenauer et al., 2006) was 

used to visualize AVP and CRH. 

Transcardiac perfusion: 

Animals were deeply anesthetized by an overdose of sodium pentobarbital (200mg/kg) by 

i.p. injection prior to cardiac perfusion. To expose the heart an abdominal incision was made 

and the right atrium was cut to insert a butterfly needle into the left ventricle. Subsequently, 

20ml of 0.9% saline was slowly injected into the heart followed by 20ml of 4% 

paraformaldehyde in 0.1M phosphate buffer. Brains were removed and post-fixed at 4°C 

overnight in 4% paraformaldehyde in 0.1M phosphate buffer. 

Double labeling CRH and AVP: 

24h after post-fixation, 50µm sections were cut on the vibratome (Series 1000, Ted Pella 

Inc., USA). Sections were preincubated with 5% normal donkey serum (Jackson 

ImmunoResearch, PA) in immunobuffer for 30min and subsequently incubated for at least 

48h at room temperature with a cocktail of polyclonal primary antibodies directed against 

CRH (guinea pig, Peninsula Laboratories, USA) and AVP (rabbit, Peninsula Laboratories, 

USA). The final dilution of the primary antibodies in immunobuffer supplemented with 5% 

normal donkey serum was 1:2000 (CRH) and 1:10.000 (AVP), respectively. Following 3 

washing steps with immunobuffer (10min each), the sections were incubated at room 

temperature for 2.5h with a secondary antibody cocktail containing a donkey Cy3 (Cyanine 

3)-conjugated antiserum directed against guinea pig immunoglobulins to stain CRH and a 

donkey Cy2 (Cyanine 2)-conjugated antiserum directed against rabbit immunoglobulins to 

stain AVP (all antibodies: Jackson Immuno Research Laboratories, USA). The final dilution 

of the secondary antibodies in immunobuffer containing 1% normal donkey serum was 1:100 
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(Cy2) and 1:400 (Cy3). From the incubation step with the fluorescent dyes onwards, care 

was taken to carry out all steps in the dark. After 3 washing steps with Tris buffer, the 

sections were finally mounted on slides, dried and coverslipped. An Olympus BX40 

fluorescence microscope equipped with the following filter cubes was used to detect the 

staining: U-M41001 (excitation filter 455-495nm, dichroic mirror 505nm, emission filter 510-

555nm) for Cy2 (excitation maximum 492nm, emission maximum 510nm) and U-M41007 

(excitation filter 530-560nm, dichroic mirror 565nm, emission filter 575-645nm) for Cy3 

(excitation maximum 550nm, emission maximum 570nm). Negative controls were performed 

by omission of the primary antibody. No staining was observed in any of these control 

sections.  

Images were recorded by using a digital camera (Olympus DP50) and analySIS® image 

processing software (Soft Imaging Systems, Germany) with constant light conditions for all 

AVP or CRH slides. For semi-quantification, pictures were black/white converted (Corel 

Draw, Corel Corp., Canada) to admit image analysis by the optical software Optimas. For 

data analysis details see 3.4.1.3. 

 

3.4.4 Glyoxalase 1 quantification by western blot 

Glyoxalase 1 (Glx1) is an enzyme in the cytosolic fraction of cells and tissues of many 

organisms. Although is function is not fully described, it plays an important role in cellular 

detoxification processes and dysregulation of these enzyme has been described to be 

involved in psychopathologic mechanisms, including Alzheimer´s disease and anxiety-

related behavior (Chen et al., 2004; Hovatta et al., 2005; Kromer et al., 2005) . 

The Western blot (WB) analysis allows us the screen a number of blood samples obtained 

from HAB, NAB, and LAB animals during different developmental stages (postnatal day 

(pnd) 5, 12, 28, 54) and to determine the glyoxalase protein amount. Animals were sacrificed 

directly after behavioral testing or under basal conditions and blood samples were collected 

in EDTA tubes supplemented with Trasylol. Samples were centrifuged for 10min at 4,000rpm 

and 4°C. The whole amount of plasma was isolated to determine ACTH and Cort (see 4.5), 

whereas 20µl to 50µl of the red blood cell pellet was used for the WB quantification. After 

several washes in PBS (phoshate buffered saline), the red cell pellet was frozen at -80°C 

until use. For cell lysis, the pellets were thawn on ice, water containing 1mM PMSF 

(Phenylmethansulfonylfluoride) was added and the suspension was mixed. After removing 

the cellular debris, the supernatant was stored in aliquots at -80°C. For WB, 100µg of total 

protein from each lysate was run in each gel lane. Electrophoresis was performed on a 15% 
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miniature gel (Bio-Rad), and the proteins were transferred to an Immobilon PVDF 

(polyvinylidene difluoride) membrane (Millipore, Bedford, MA) at 100V for 1h with cooling. 

The membrane was treated with 5% Carnation instant nonfat dry milk (Nestle, Vevey, 

Switzerland) in TBS plus Triton X-100 (TBST) overnight and rinsed in TBST. Afterwards the 

membrane was incubated with Glx1 antiserum (kindly provided by Dr. Kenneth Tew, Fox 

Chase Cancer Center, Philadelphia, PA) at a 1:2000 dilution in TBST for 2h at room 

temperature and washed with water and TBST for 15min. Incubation time with protein A 

horseradish peroxidase (Amersham Biosciences) was 40min at room temperature, with the 

membrane being washed with water and TBST afterwards. Finally, the membrane was 

incubated with ECL mixture (Amersham Biosciences) for 1min and exposed to ECL film 

(Amersham Biosciences). The membrane was scanned and the signal intensity of the Glx1 

band (optical density) assessed by QuantityOne software (Bio-Rad) (Ditzen et al, 2006; 

Kromer et al., 2005). 

 

Figure 3.12:  Representative western blot, performed in red blood cell samples of male 

HAB, NAB, and LAB mice at postnatal day 5. kD = KiloDalton. 

 

3.4.5 Radioimmunoassay measuring ACTH and Cort 

ACTH and Cort, two hormones released as a consequence of HPA axis activation, (see 1.3) 

were assessed using commercial available radioimmunoassay (RIA) kits (MP Biomedicals, 

USA). Blood samples were collected, centrifuged and plasma isolated as described in 3.4.4. 

The plasma samples were measured according to the manufacturers´ instructions with slight 

modifications (half of the recommended volume of all ingredients was used). For Cort 

analysis, 10µl of plasma was used (1:13.5 dilution), while 25µl of plasma was directly used 

for a single estimation in the ACTH RIA, yielding a sensitivity of 1ng/ml and 40pg/ml, 

respectively. The RIA is based on the competition between 
125

I-labeled ACTH or Cort and 

the ACTH or Cort in the plasma sample for a defined amount of ACTH or Cort specific 

antibody. The amount of bound 
125

I-labeled ACTH or Cort is therefore inverted proportional 

to the unlabeled ACTH or Cort of the plasma sample. By use of a double-antibody method, 

the unbound 
125

I-labeled ACTH or Cort gets bound by the secondary antibody and the 

radioactivity of the pellet is measured by Gamma-counter. Due to samples with known ACTH 

NAB HAB LAB

37 kD

NAB HAB LAB

37 kD
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or Cort concentration a calibration curve was generated and determined samples within this 

curve (and within 10-90% antibody binding values) were accepted for calculation. Cort 

samples were analyzed in double-estimation and coefficients of variants below 10% were 

accepted for calculation. 

 

3.5 Pharmacological validation 

3.5.1 Intracerebroventricular application of AVP and CRH 

To investigate the impact of AVP and CRH on behavior, mice were implanted with an icv 

guiding canula to inject AVP and CRH simultaneously. 

Surgery: 

A guiding canula (1.2cm, 25G, suitable for a 27G injection system) was implanted into the 

lateral ventricle under isoflurane (Curamed Pharma, Germany) anesthesia. Mice were fixed 

in a stereotaxic frame (Typ 516000, TSE GmbH, Germany) and the brain surface was 

exposed. As implantation locus 0.03mm caudal and 0.1mm lateral to the bregma (Paxinos 

and Franklin, 2001) was chosen. A hole was drilled to ventrally implant the guiding canula 

1.5mm into the brain. The canula was fixed in the skull by two screws (M1*3, stainless steel, 

Schrauben Preisinger, Germany) and dental acrylic (Kallocryl®, Speiko®, Germany). The 

wound was medicated with iodine afterwards and for recovery up to four animals were 

housed in type 2-macrolone cages for one week. 

Intracerebroventricluar (icv) administration: 

On the experimental day, animals were treated with either 1µl solution containing 1µg/µl AVP 

(Sigma-Aldrich, Germany) and 1µg/µl CRH (Ferring, Germany) or 1µl 0.9%saline. 30min 

prior to the behavioral testing, animals were injected by using a 25G injection canula (Braun, 

Germany) connected to a syringe, 1.5mm longer than the guiding canula, directly into the 

lateral ventricle. After performing the behavioral tasks (EPM and TST, with 10min in 

between), animals were lethally anesthetized, injected with 1µl ink solution and the brains 

removed to examine carefully the anatomically localization of the injection (see Figure 3.13). 
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Figure 3.13: Verification of probe localization. Left: Valid localization of the probe in the 

lateral ventricle labeled with ink. Right: Coronal brain section demonstrating 

the implantation locus. 

 

3.5.2 Subchronical intraperitoneal administration of a CRHR1 antagonist (DMP696) 

To examine the influence of CRH on emotionality, animals were intraperitoneal (i.p.) injected 

with a CRH receptor 1 (CRHR1) antagonist. 

According to former experiments (Nielsen et al., 2004), animals were treated three times 

(subchronically) with 10mg/kg CRHR1 antagonist (DMP696 (4-(1,3-Dimethoxyprop-2-

ylamine)-2,7-dimethyl-8-(2,4-dichlorophenyl)-pyrazolo[1,5-a]-1,3,5-triazine, donated by 

Bristol-Myers Squibb, USA) dissolved in PEG400 (Polyethylenglykol 400), DMSO 

(Dimethylsulfoxid), Tween 80, and saline), or a control solution (PEG, DMSO, Tween 80, 

saline). I.p. administration took place 24h, 12h, and 30min prior to behavioral testing. 30min 

after the last injection the EPM test and the TST (10min after the EPM test) were performed 

to investigate anxiety-related and depression-like behavior. 

 

3.6 Statistical analysis 

 

The data presented are shown in means ± SEM (standard error of the mean), analyzed by 

using SPSS 12.0. Significance was accepted with p<0.05. Post-hoc tests were only 

performed after acceptance of significant p-values in the proceeding statistical tests (for 

overview of applied statistical tests, see Table 3.4). 

 

 

 

 

canula lateral ventricle
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Table 3.4: Overview of the exerted statistical analyses. 
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4 Behavioral phenotyping and candidate genes of emotionality  

4.1 Introduction  

By definition, a proper animal model (see 1.6), for the investigation of basic principles 

underlying trait anxiety at a behavioral, neuroendocrine, and genetic level, should stand for a 

close approximation to core symptoms of anxiety and often comorbid depression disorders 

found in psychiatric patients (Finn et al., 2003; Cryan and Mombereau, 2004; Gordon and 

Hen, 2004). Ensuring face validity in the HAB/LAB mouse model, a variety of behavioral 

paradigms have been used in addition to the EPM test, to demonstrate the stable phenotypic 

divergence between the breeding lines and its persistence over generations. To confirm the 

differences in anxiety-related behavior, the open arm exposure (OA) and dark-light box test 

(DaLi) test were conducted, whereas the tail-suspension (TST) and forced swim (FS) tests 

were used to measure depression-like behavior. Furthermore, novel-cage (NC) behavior was 

monitored to further examine explorative behavior (for additional information concerning the 

behavioral task used, see 3.2). 

Due to the multigenic background of psychiatric diseases and to confirm the models´ 

construct validity, a selection of gene expression profiles and gene products was analyzed 

under basal conditions. Further, a pharmacological validation was used to confirm the 

contribution of major candidates in mediating anxiety- and depression-like behavior. These 

studies focus on genes that have already been described in animal models and/or human 

studies to be causally involved in the pathology of anxiety and depression disorders (for 

detailed information, see below). The targets include neuropeptides, receptors, and proteins 

on the level of the HPA axis as well as in synaptic neurotransmission. 

AVP 

The chemical structure of the nonapeptide AVP has been firstly described in 1953 (Vigneaud 

et al., 1953). From an evolutionary perspective, AVP, similar to OXT, derives from vasotocin, 

prevailing in non-mammals (Acher and Chauvet, 1988; Frank and Landgraf, 2008). The 

gene encoding AVP, composed of three exons, is located on chromosome 20 (human) and 2 

(Mus musculus), respectively (http://www.ncbi.nlm.nih.gov/). Exon 1 encodes the signal 

peptide, AVP, and the N-terminal part of neurophysin II. The second exon covers the central 

region of neurophysin II and exon 3 the C-terminal region of neurophysin II and the 

glycoprotein copeptin (Land et al., 1982). After multiple posttranslational modifications in the 

endoplasmatic reticulum, on its way across the Golgi apparatus, packed in large dense core 

vesicles, AVP finally reaches the axonal terminals as sites of release. As described before 

(see 1.3), in the hypothalamus, AVP is mainly expressed in parvo- and magnocellular 
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neurons of the PVN and SON where it contributes, together with OXT and/or CRH, to the 

regulation of the HNS or HPA axis activity (Engelmann et al., 2004). Furthermore, 

vasopressinergic fibers projecting to a variety of brain areas, including the hippocampus, 

septum, amygdala, and several brainstem areas, and the somatodendritic release of 

magnocellular neurons allow AVP to act as neurotransmitter (Buijs et al., 1991) and more 

importantly, as a neuromodulator on receptors at various distances from its site of release 

(Landgraf and Neumann, 2004; Ludwig et al., 2005). The BNST and the medial amygdala 

(MeA) are reported to be the two major extrahypothalamic vasopressinergic sources, which 

project to several brain regions, such as the LS, locus coeruleus (LC), or ventral 

hypothalamus (Hallbeck et al., 1999). AVP expression in the suprachiasmatic nucleus (SCN) 

has a defined role in the regulation of the circadian rhythm (Kalsbeek et al., 1995). AVP acts 

via its G-protein coupled AVP receptor 1a (V1a), V1b, and V2 receptors. The V2 receptor is 

primarily expressed in the renal collecting duct and is involved in the regulation of the osmo-

induced water and sodium retention in the kidney (Zingg, 1996). The V1a (besides its 

presence in a variety of body tissues) and V1b receptors are widely expressed within the 

brain, with the V1a receptor present, among others, in the hypothalamus, septum, 

hippocampus, CeA, and cerebellum (Ostrowski et al., 1994), whereas the V1b is primarily 

located in the adenohypophysis, hippocampus, the external zone of the median eminence, 

and around the cerebroventricular system (Hernando et al., 2001). In summary, AVP and its 

multiple functions (Frank and Landgraf, 2008) can roughly be grouped into two systems. The 

peripheral AVP-system is responsible for classic neuroendocrine functions including 

antidiuresis, glycogen metabolism, or vasoconstriction, whereas the central system 

comprises the sites of AVP synthesis and release within the brain. In the latter system, AVP 

acts as a neuromodulator/neurotransmitter involved in a variety of central nervous functions, 

including learning/memory, neuroendocrine reactivity, circadian rhythmicity, autonomic 

functions, social behavior, and emotionality (Ring, 2005; Landgraf, 2006). In 1978, the role 

of vasopressinergic disturbances in the pathophysiology of affective disorders has been 

hypothesized for the first time in humans (Gold et al., 1978). Preclinical and clinical 

observations support a correlation between AVP and anxiety/depression disorders (Landgraf 

et al., 1995; van Londen et al., 1997; Bhattacharya et al., 1998; Scott and Dinan, 2002), 

altogether pointing to an anxiogenic and depressive effect of centrally released AVP. 

OXT 

The nonapeptide OXT was identified as a neurohormone, which is, together with AVP, 

involved in the regulation of the HNS (Bargmann and Scharrer, 1951) and is known to act in 
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several brain regions on various complex behaviors (Reijmers et al., 1998; Wang et al., 

1998; Insel and Young, 2001). The Oxt gene, containing three exons, is located on the same 

chromosome as Avp, but in opposite translational orientations (Burbach et al., 2001). The 

two neuropeptides AVP and OXT differ from each other in only two of nine amino acids and 

due to their high homology, OXT is often used as a control gene if AVP mRNA is 

investigated (Carter, 2003; Wigger et al., 2004). The OXT receptor is localized in the areas 

of the CNS, foremost in the brainstem, MeA, and LS, related to its functional role (Barberis 

and Tribollet, 1996). 

OXT is mainly expressed in magnocellular neurons of the PVN and SON, but also in a 

variety of other brain regions, including the septum or the amygdala (Landgraf and 

Neumann, 2004). Beside its role in mammalian birth and lactation, OXT is a well 

acknowledged neuromodulator/neurotransmitter, which has, beside other functions, been 

implicated in social behaviors, including parental behavior, formation of social bondings, 

social memory, and stress coping. It is reactive to a variety of stressors and plays a role in 

the regulation of the central, as HPA axis activity as well as the autonomic nervous system, 

like immune and cardiovascular functions (Insel and Young, 2001; Carter, 2003; Landgraf 

and Neumann, 2004; Carter et al., 2007). Moreover, it has been shown that OXT is not only 

linked to anxiety-related behavior (Bosch et al., 2005), but has also antidepressive effects 

(Arletti and Bertolini, 1987; Scantamburlo et al., 2007), which increases its clinical relevance 

and importance.  

CRH 

In 1981, CRH, a 41 amino acid peptide, has been identified as a main physiological factor 

involved in the regulation of HPA axis activity (for review see (Vale et al., 1981; Owens and 

Nemeroff, 1991). The Crh gene is located on chromosome 8 in humans and on chromosome 

3 in mice (http://www.ncbi.nlm.nih.gov/). The main expression sites of CRH include the PVN, 

the amygdalar complex and the extended amgdala, the olfactory bulb, certain thalamic 

nuclei, the hippocampus, pars compacta of the substantia nigra, the periaqueductal grey 

(PAG), LC, the nucleus of the solitary tract, dorsal and ventral parabrachial nuclei, the 

cortex, and the deep cerebellar nuclei of the cerebellum (Swanson et al., 1983; Dunn and 

Berridge, 1990). Beside its involvement in HPA axis regulation and dysregulation (for details 

see 1.3; 1.4), administration of CRH into various animal models indicated that this 

neuropeptide has a variety of additional endocrine, physiological, neurochemical, and 

behavioral functions independently of its HPA axis function. Many effects of CRH resemble 

those observed under stress exposure, suggesting CRH to act as an endogenous mediator 
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of these responses (Dunn and Berridge, 1990). CRH has been shown to modulate several 

neurotransmitter systems, including glutamate, dopamine, serotonine, and noradrenaline 

(Lavicky and Dunn, 1993; Price and Lucki, 2001; Valentino and Commons, 2005), with its 

modulation on the serotinergic and noradrenergic system being implicated in affective and 

anxiety responses (Koob, 1999; Charney, 2004). Furthermore, CRH is well situated in the 

modulation of cognition, startle response, defensive behavior, and emotion (Risbrough et al., 

2003; Risbrough and Stein, 2006). CRH acts via at least two known G-protein-coupled 

receptors, CRHR1 and CRHR2 (for review see (Dautzenberg and Hauger, 2002; Eckart et 

al., 2002)). In rodents, both receptor subtypes are expressed in discrete nuclei of the 

neocortex, amygdala and extended amygdala (BNST), nucleus accumbens, hypothalamus, 

pituitary, and sensory relay nuclei (van Pett et al., 2000). This distribution pattern led to the 

hypothesis that CRH may play a role in sensory processing and associations, defensive or 

anxious responses, and cognition (Risbrough and Stein, 2006). The role of the CRHR2 in 

anxiety is not well understood, as there is evidence for both anxiolytic and anxiogenic 

functions after receptor activation or gene depletion (Bale et al., 2000; Coste et al., 2000; 

Bakshi et al., 2002). In contrast, by receptor blockade or gene deletion studies, the CRHR1 

receptor has been well described to act as a primary mediator of stress (Reul and Holsboer, 

2002). Several CRHR1 antagonist studies revealed reduced anxiety-related responses and 

depression-like phenotypes (Habib et al., 2000; Keck et al., 2001). These findings together 

with clinical reports (Holsboer and Barden, 1996), support CRH and its receptors as potential 

candidates for pharmacotherapy of anxiety and depression disorders (Holsboer, 1989; Timpl 

et al., 1998; Holsboer, 1999; Dautzenberg and Hauger, 2002; Reul and Holsboer, 2002; 

Risbrough and Stein, 2006). 

GR and MR 

Glucocorticoids regulate stress response (see 1.3) and influence learning/memory via two 

receptors types, GR and MR, in the brain (Brinks et al., 2007). The gene encoding GR is 

located on chromosome 5 in humans and on chromosome 18 in mice, whereas MR is 

located on chromosome 4 in humans and on chromosome 8 in mice 

(http://www.ncbi.nlm.nih.gov/). Both receptors are expressed in brain regions involved in the 

regulation of emotionality, learning, and memory. MRs are present in the hippocampus and 

to a less extent in the PFC, amygdalae, and PVN. The GR is detectable throughout the brain 

at high levels in the hippocampus and PVN (de Kloet et al., 1991; Diorio et al., 1993; Patel et 

al., 2000). Additionally, these receptor types have a differential affinity for Cort: MR has a 

tenfold higher affinity compared to GR, resulting in predominant MR occupation under low 
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basal Cort levels and increasing GR activation by elevated Cort concentrations as a 

consequence of stress or circadian rhythm of the HPA axis (Reul and de Kloet, 1985; de 

Kloet et al., 1990). From these data the hypothesis evolved that the MR is regulating the 

tonic activity of the HPA axis, while the additional occupation of GR is essential for the 

recovery phase following HPA axis activation (de Kloet et al., 1998; de Kloet et al., 2005). 

These cytosolic receptors can modify gene expression at least by two different pathways. 

First, binding to specific DNA motifs in the regulatory promoter regions of genes, the so-

called glucocorticoid response element, can lead to expression or repression of these genes 

(Drouin et al., 1993). Second, activated MRs and GRs can interact with other transcription 

factors to modulate gene expression (Gottlicher et al., 1998). 

Beside their role in HPA axis inhibition, MRs and GRs have been shown to regulate anxiety-

related behavior and to modulate learning and memory (for review see (Gass et al., 2001)). 

It has been demonstrated that GRs are involved in the storage of information, whereas the 

MR is responsible for the interpretation of environmental signals and selection of an 

appropriate behavioral response (Oitzl et al., 1997a; Oitzl et al., 1997b; Oitzl et al., 1998). 

BDNF 

BDNF is the most widely expressed member of the nerve growth factor family of growth 

regulators, summarized as neurotrophins. They play a crucial role in the development of the 

brain and continue to have a seminal role in shaping plasticity in the mature nervous system 

(Thoenen, 1995). BDNF is most abundant among the neurotrophins and is expressed at 

highest levels in the hippocampus and the cerebral cortex (Schmidt-Kastner et al., 1996; 

Conner et al., 1997). The gene encoding BDNF is located on chromosome 11 in humans 

and on chromosome 2 in mice (http://www.ncbi.nlm.nih.gov/). The BDNF gene has a 

complex structure with four different splicing variants, and one common 3´coding exon that 

generates the mature BDNF (Timmusk et al., 1993). Its effect is mediated through the 

stimulation of a tyrosine kinase-coupled receptor, known as tropomyosin receptor kinase 

(trkB for BDNF), that signals through the MAP kinase signalling cascade (Nair and Vaidya, 

2006). BDNF acts as one key contributor in the development, survival, maintenance, and 

plasticity of CNS neurons (Thoenen, 1995). BDNF has also been shown to elicit rapid action 

potentials thus influencing neuronal excitability (Kafitz et al., 1999) and it has a prominent 

role in the activity-dependent synaptic plasticity, like long-term potentiation (Bramham and 

Messaoudi, 2005). Since it plays a critical role in the maintenance of dendritic arboration in a 

variety of neurons (McAllister et al., 1997; Horch et al., 1999), its deficiency may result in 

retraction or atrophy of dendrites. The “neurotrophin hypothesis of depression” is largely 
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based on the finding that decrease in hippocampal BDNF levels is correlated with stress-

induced depressive disorders and that antidepressant treatment enhances the expression of 

BDNF (Duman and Monteggia, 2006), but a number of key questions remain to be fully 

addressed.  

SYT4 

Many of the current treatments for psychiatric diseases utilize drugs that increase the levels 

or activity of neurotransmitters, for example serotonin-reuptake inhibitors that increase 

serotonin levels in the synaptic cleft (Stokes and Holtz, 1997). The mode of action of such 

substances suggest that presynaptic function and neurotransmitter levels may be altered in 

patients suffering from psychiatric diseases, which was shown in patients with schizophrenia 

(Kugaya et al., 2000).  

As such, it has been suggested that some pathologies might, at least in part, have 

presynaptic basis, suggesting that these psychopathologies might be based on disturbances 

at the presynapse (Mirnics et al., 2001; Spedding et al., 2003). Furthermore, a microarray 

study in HAB/LAB mice, performed in a variety of brain regions, revealed differences in the 

expression of several candidates involved in synaptic release. These genes include, among 

others, Syt4/11, syntaxin7/12, Rab3/6, Snap25, and calnexin (Czibere, unpublished), which 

are involved in the docking, and fusion of synaptic vesicles and the synaptic release (for a 

detailed overview see (Lodish et al., 2001)). 

Synaptotagmins comprise a large family of proteins that regulate vesicle trafficking in 

neurons and are widely considered the presynaptic “calcium sensor” in neuronal exocytosis 

(Chapman, 2002; Sudhof, 2002). They are widely evolutionary conserved, and 15 isoforms , 

have been identified (Ting et al., 2006). The gene encoding Syt4 is located on chromosome 

18 in humans and mice (http://www.ncbi.nlm.nih.gov/). SYT4 is a secretory vesicle protein 

that is inducible in rodent cells as well as in the rat hippocampus by agents that elevate 

intracellular calcium and cAMP levels (Ferguson et al., 1999) and is broadly expressed in the 

brains of both rodents (Vician et al., 1995) and humans (Ferguson et al., 2000a). 

Additionally, it appears to regulate synaptic function (Littleton et al., 1999; Wang et al., 

2001), but its specific role and function are not fully understood and controversial discussed 

(Ting et al., 2006). Nevertheless, in humans, SYT4 maps to a chromosomal region 

associated with psychiatric disease and was identified to be down regulated in a screen for 

transcripts and in patients with mental illness (Ferguson et al., 2000a).  
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Figure 4.1.  A schematic description of the elements of the fusion and calcium-sensing 

machinery of fast neurotransmitter release, showing interactions between v-

SNARE, synaptobrevin, in the synaptic vesicle membrane and t-SNAREs, 

SNAP-25 and syntaxin, in the plasma membrane. Synaptotagmin is shown as 

a dimer, as it is known to oligomerize in the membrane. Once calcium 

increases, the two C2 domains form a complex with phospholipids of the 

plasma membrane. Interactions between the C2B domain of synaptotagmin 

and SNAP-25 could link synaptotagmin to the fusion machinery, catalyzing 

fusion in a calcium-dependent manner (overview by Ivelisse Robles). 
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4.2 Results 

 

4.2.1 Behavioral phenotyping 

 

EPM behavior 

In the EPM test at seven weeks of age, HAB, LAB, and NAB or F1, respectively (Figure 4.2) 

showed a significant difference in the percentage of the time spent on the open arms of the 

EPM (p<0.001). Post hoc group comparisons revealed a significant difference between all 

mouse lines tested (p<0.001 for HAB; NAB, and LAB; p<0.01 for HAB, F1, and LAB). HAB 

mice exhibited the most anxious behavior in comparison to LAB animals, whereas NAB and 

F1 mice revealed intermediate behavior. Similar behavioral differences have been shown by 

additional behavioral measures (Table 4.1 and Table 4.2), including latency to the first open 

arm entry and full open arm entries. Interestingly, the number of total arm entries did not 

differ between HAB and NAB, but NAB as well as F1 animals revealed an increased number 

of arm entries (Table 4.1 and Table 4.2). Moreover, NAB and F1 mice exhibited significant 

increased bodyweight in comparison to the inbreeding lines.  

 

Figure 4.2: Anxiety-related behavior in the elevated plus-maze (EPM) test in A) HAB, 

LAB, NAB or B) F1 mice at seven weeks of age, addressed in separate 

experiments. HAB mice spent significantly less time on the open arms of the 

EPM in comparison to LAB mice, whereas NAB and F1 animals exhibited an 

intermediate phenotype.***p<0.001 for three group comparisons and the post 

hoc comparisons in A), **p<0.01 for all post hoc comparisons in B). 
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Table 4.1: Additional behavioral parameters measured between HAB, NAB, and LAB 

animals in the elevated plus-maze test. T p <0.1; *p<0.05, **p<0.01, and 

***p<0.001 for three group comparison (KWH) and post hoc tests.  

Table 4.2: Additional behavioral parameters measured between HAB, F1, and LAB 

animals in the elevated plus-maze test. **p<0.01 and ***p<0.001 for three 

group comparison (KWH) and post hoc tests. 

 

Open arm exposure 

In the OA exposure HAB mice revealed an increased time spent in the less aversive 

proximal part of OA (Figure 4.3 A; KWH: p<0.001; p<0.05 vs. NAB, LAB; p<0.01 NAB vs. 

LAB) and exhibited less explorative behavior indicated by a decreased number of explorative 

Body weight (g)
Total arm 

entries (n)

Full open arm 

entries (n)

Latency to the first

open arm entry

(sec)

********LAB vs. NAB

********HAB vs. NAB

Tn.s.****HAB vs. LAB

**********KWH

27.9 ± 0.7222.3 ± 1.7312.2 ± 1.2231.9 ± 4.93LAB

30.9 ± 0.3428.6 ± 1.292.53 ± 0.7020.5 ± 2.64NAB

25.4 ± 0.5821.8 ± 1.69 0.00 ± 0.0081.6 ± 16.1HAB

Physiological

parameter
Behavorial parameter

Body weight (g)
Total arm 

entries (n)

Full open arm 

entries (n)

Latency to the first

open arm entry
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Tn.s.****HAB vs. LAB

**********KWH

27.9 ± 0.7222.3 ± 1.7312.2 ± 1.2231.9 ± 4.93LAB

30.9 ± 0.3428.6 ± 1.292.53 ± 0.7020.5 ± 2.64NAB

25.4 ± 0.5821.8 ± 1.69 0.00 ± 0.0081.6 ± 16.1HAB

Physiological

parameter
Behavorial parameter

Body weight (g)
Total arm 

entries (n)

Full open arm 

entries (n)

Latency to the first

open arm entry

(sec)

*******n.s.LAB vs. F1

************HAB vs. F1

n.s.n.s.******HAB vs. LAB

************KWH

32.2 ± 0.7326.8 ± 2.168.8 ± 1.3131.3 ± 6.41LAB

37.0 ± 0.6035.8 ± 1.153.1 ± 0.7521.2 ± 1.48F1

30.5 ± 0.4423.8 ± 2.260.0 ± 0.0069.0 ± 13.1HAB
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head movements (Figure 4.3 B; KWH: p<0.001; T p<0.1 vs. NAB; p<0.01 NAB vs. HAB; 

p<0.001 vs. HAB) relative to LAB mice, whereas NAB animals exhibited an intermediate 

behavior. Additional behavioral parameters obtained revealed similar behavioral differences 

(Table 4.3). 

Figure 4.3:  Anxiety-related and explorative behaviors in HAB, NAB, and LAB mice 

measured during open arm exposure (OA). A) HAB spent significant more 

time in the less aversive proximal part of the OA and B) exhibited decreased 

explorative head movements in comparison to LAB mice, with NAB animals 

being in between both extremes. ***p<0.001 for three group comparison. Post 

hoc comparisons T p<0.1, *p<0.05; **p<0.01; **p<0.01 and ***p<0.001. 

Table 4.3: Additional behavioral parameters measured during open arm exposure in 

HAB, NAB, and LAB animals. T p<0.1, *p<0.05, **p<0.0 and ***p<0.001 for 

three group comparison (KWH) and post hoc tests. 
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Dark light box test 

HAB mice revealed decreased time spent in the light compartment of the DaLi (Figure 4.4 A; 

KWH: p<0.01; p<0.05 vs. NAB; p<0.01 vs. LAB;), exhibited less locomotor activity (Figure 

4.4 B; KWH: p<0.01; T p<0.1 vs. NAB; LAB; p<0.05 NAB vs. LAB;), and showed less 

explorative behavior (Figure 4.4 C; KWH: p<0.01; p<0.05 vs. LAB, p<0.001 vs. NAB) in 

comparison to NAB and LAB animals. 

Figure 4.4: Anxiety-related and explorative behavior investigated in the dark light box 

(DaLi) test in HAB, NAB, and LAB male mice. A) HAB spent significant less 

time in aversive light B) exhibited decreased locomotion and C) less 

explorative rearings in comparison to LAB mice, with NAB animals being in 

between both extremes. **p<0.01 for three group comparison. Post hoc 

comparisons T p<0.1,* p<0.05; **p<0.01 and ***p<0.001. 
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(Figure 4.5 A; KWH: p<0.001; p<0.01 vs. NAB, LAB), diminished explorative behavior 

(Figure 4.5 B; KWH: p<0.001; p<0.001 vs. NAB, LAB) and locomotion (Figure 4.5 C; KWH: 

p<0.05; p<0.001 vs. LAB, T p<0.1 NAB vs. LAB) in HAB mice relative to NAB and/or LAB 

animals. LAB mice exhibited less digging than the two other groups (Figure 4.5 D; KWH: 

p<0.01; p<0.01 vs. HAB, NAB). 
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Figure 4.5: Behavioral parameters obtained during novel cage (NC) observations in HAB, 

NAB, and LAB mice. HAB animals exhibited A) less time spent in the aversive 

inner part of the NC, B) less explorative rearings, and C) locomotion relative to 

LAB mice. D) LAB animals revealed less digging behavior in comparison to 

HAB and NAB. **p<0.01 and ***p<0.001 for three group comparisons. Post 

hoc comparisons T p<0.1, **p<0.01 and ***p<0.001. 
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Figure 4.6: Depression-like behavior in the forced swim (FS) and the tail-suspension 

(TST) test in HAB, LAB, NAB or F1 mice. LAB animals revealed a significant 

decreased immobility in both the TST and FS test compared to the other 

groups. HAB and NAB animals did not differ, whereas F1 mice were in 

between HAB and LAB. ***p<0.001 for three group comparison. Post hoc 

comparisons T p<0.1, **p<0.01 and ***p<0.001.  

 

4.2.2 Expression profiling 

 

Avp and Oxt expression 

As depicted by ISH, LAB mice exhibited a decreased expression of Avp in the PVN (Figure 

4.7 A; KWH: p<0.001; p<0.01 vs. NAB, p<0.001 vs. HAB) and SON (Figure 4.7 B; KWH: 

p<0.01; p<0.05 vs. HAB, NAB) in comparison to HAB and LAB animals. Oxt mRNA in the 

PVN (Figure 4.6 C) did not differ between the lines. 

LAB animals showed decreased Avp mRNA in the PVN, SON, and CeA relative to HAB mice 

under basal conditions, indicated by qRTPCR (Figure 4.8, p<0.05).  

Correlation analysis between anxiety-related behavior (Figure 4.9 A) and Avp mRNA in the 
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PVN of HAB, F1, and LAB animals under basal conditions (Figure 4.9 B; p<0.001, r=0.655).  

Moreover, LAB mice revealed a tendency towards reduced Avp mRNA in the SON relative to 

HAB and F1 mice, measured by ISH (Figure 4.10; KWH: p<0.05; T p< 0.1 vs. LAB). 
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Figure 4.7: Expression profiles of arginine-vasopressin (Avp) and oxytocin (Oxt) in the 

paraventricular nucleus (PVN) and the supraoptic nucleus (SON), measured 

by in situ hybridization (ISH), in HAB, NAB, and LAB mice under basal 

conditions. LAB exhibited a significant decrease in AVP mRNA in A) the PVN 

and B) the SON compared to HAB and NAB. OXT mRNA did not differ 

between the lines. ***p<0.001and **p<0.01 for three group comparison. Post 

hoc comparison * p<0.05, **p<0.01 and ***p<0.001. 
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Figure 4.8: Expression of arginine-vasopressin (Avp), measured by quantitative real-time 

PCR (qRTPCR), in the paraventricular nucleus (PVN), the supraoptic nucleus 

(SON), and the central amygdala (CeA) of HAB, NAB, and LAB mice under 

basal conditions. LAB animals revealed a decreased expression of Avp in the 

PVN, SON, and CeA relative to HAB mice. *p<0.05 (these data have been 

obtained in close collaboration with Cornelia Graf and Ludwig Czibere). 

 

Figure 4.9: Correlation between A) anxiety-related behavior measured on the elevated 

plus-maze (EPM), B) depression-like behavior measured in the tail-

suspension test (TST), and arginine-vasopressin (Avp) mRNA expression in 

the paraventricular nucleus (PVN) of HAB, F1, and LAB male mice, measured 

by in situ hybridization under basal conditions. 
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Figure 4.10:  Expression of arginine-vasopression (Avp) in the supraoptic nucleus (SON) of 

HAB, F1, and LAB mice under basal conditions, measured by in situ 

hybridization (ISH). LAB mice showed a tendency towards less Avp in the 

SON in comparison to HAB and F1 mice. *p<0.05 for three group comparison 

and T p<0.1 for post hoc tests. 

 

Crh expression 

HAB mice exhibited significantly increased Crh mRNA under basal conditions in the PVN in 

comparison to NAB and LAB (Figure 4.11 A; KWH: p<0.05; p<0.5 vs. LAB, T p<0.1 vs. NAB) 

as well as in the CeA relative to LAB (Figure 4.11 B; p<0.5 vs. LAB). 

Figure 4.11: Expression of corticotropin-releasing hormone (Crh) in the paraventricular 

nucleus (PVN) in HAB, NAB, and LAB and in the central amygdala (CeA) of 

HAB and LAB male mice under basal conditions, measured by in situ 

hybridization (ISH). HAB mice revealed increased Crh mRNA in the PVN and 

CeA in comparison to NAB and LAB animals. *p<0.05 for three group 

comparison. Post hoc comparisons T p<0.1 and *p<0.5.  
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GR, MR, Syt4, and BDNF expression 

HAB animals exhibited increased GR mRNA levels in the hippocampus under basal 

conditions in comparison to NAB and LAB (Figure 4.12 A, KWH: p<0.01; p<0.01 vs. NAB, 

LAB), whereas the cortex did not reveal any differences between the lines investigated 

(Figure 4.12 B). 

MR and BDNF mRNA levels, measured by ISH, failed to reveal any differences between 

HAB, NAB, and LAB animals under basal conditions (Figure 4.13). 

Syt4 tended to be increased in HAB mice in comparison to LAB mice (Figure 4.14) in the 

BLA (p=0.05 vs. LAB) and CeA (T p<0.1 vs. LAB) under basal conditions, revealed by ISH. 

Moreover, qRTPCR exhibited increased Syt4 mRNA levels in HAB mice relative to NAB and 

LAB in the BLA (Figure 4.15 A; KWH: p<0.05; p<0.5 vs. NAB, T p<0.1 vs. LAB) and in the CeA 

BLA (Figure 4.15 B; KWH: p<0.05; p<0.5 vs. LAB, T p<0.1 vs. NAB). LAB, in contrast, revealed 

decreased Syt4 expression in the PVN relative to the two other lines (Figure 4.15 C; KWH: 

p<0.05; p<0.05 vs. HAB and NAB). 

 

Figure 4.12: Glucocorticoid receptor (GR) expression in the hippocampus and cortex of 

HAB, NAB, and LAB male mice under basal conditions, measured by in situ 

hybridization. HAB mice showed increased GR mRNA levels in the 

hippocampus in comparison to NAB and LAB animals, whereas the cortex did 

not reveal any expression differences between the lines. **p<0.01 for three 

group comparison. **p<0.01 vs. NAB and LAB. 
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Figure 4.13:  Expression of mineralocorticoid receptor (MR) and brain-derived neurotrophic 

factor (BDNF) mRNA in the hippocampi of HAB, NAB, and LAB mice under 

basal conditions, measured by in situ hybridization. MR as well as BDNF 

expression failed to reveal any differences between the three groups 

investigated. 

 

 

Figure 4.14: Synaptotagmin4 (Syt4) expression in the basolateral (BLA) and central 

amydgala (CeA) of HAB and LAB mice under basal conditions, measured by 

in situ hybridization (ISH). HAB mice showed a trend towards increased Syt4 

expression in both brain regions. p=0.5 and T p<0.1 vs. LAB. 
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Figure 4.15: Synaptotagmin4 (Syt4) expression in A) the basolateral (BLA), B) central 

amydgala (CeA), and C) the paraventricular nucleus (PVN) of HAB and LAB 

mice under basal conditions, measured by quantitative real-time PCR 

(qRTPCR). HAB animals revealed a significant over-expression of Syt4 in the 

BLA and CeA relative to NAB and LAB, whereas LAB mice exhibited a 

decreased Syt4 mRNA level in the PVN in comparison to the two other 

groups. *p<0.5 for three group comparison. Post hoc comparisons T p<0.1 

and *p<0.5 (these data have been obtained in close collaboration with 

Cornelia Graf and Ludwig Czibere). 

 

4.2.3 Immunohistochemistry 

 

AVP 

Fluorescent antibody-staining of AVP detectable in the PVN, the PVN-ascending axonal 

projections to the median eminence, the SCN, and the SON of HAB and LAB under basal 

conditions (Figure 4.16).  

Semiquantification of immunohistochemical AVP antibody-staining in HAB, NAB, and LAB 

mice under basal conditions revealed a decreased amount of AVP in the PVN (Figure 4.17 

A; KWH: p<0.01; p<0.05 vs. NAB, p<0.001 vs. HAB) and PVN-ascending axonal projections 

of LAB mice relative to NAB and HAB animals (Figure 4.17 B; KWH: p<0.001; p<0.01 vs. 

NAB, p<0.001 vs. HAB). 
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Figure 4.16: A representative section of fluorescent antibody-staining of arginine-

vasopressin (AVP), depicted in the paraventricular nucleus (PVN), PVN-

ascending axonal projections to the median eminence, suprachiasmatic 

nucleus (SCN), and supraoptic nucleus (SON) in HAB and LAB male mice 

under basal conditions. 

 

 

Figure 4.17: Immunohistochemistry (IHC) of arginine-vasopressin (AVP): Semi-

quantification of the relative size of AVP-labeled area A) within the 

paraventricular nucleus (PVN) and B) of AVP-containing axonal projections 

descending from the PVN measured in HAB, NAB, and LAB male mice under 

basal conditions. LAB animals exhibited decreased amount of AVP in the PVN 

as well as in PVN-ascending axonal projections compared to HAB and NAB 

mice. **p<0.01 and ***p<0.001 for three group comparison. Post hoc 

comparisons *p<0.01, **p<0.01, and ***p<0.001. 
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CRH 

Semiquantification of immunohistochemical CRH antibody-staining in HAB, NAB, and LAB 

mice under basal conditions, revealed a trend towards increased CRH in the PVN of HAB 

mice relative to NAB and LAB (Figure 4.18, KWH: p<0.1) 

Figure 4.18: Immunohistochemistry (IHC) of corticotropin-releasing hormone (CRH): Semi-

quantification of the relative CRH amount within the paraventricular nucleus 

(PVN) of HAB, NAB, and LAB male mice under basal conditions. HAB mice 

showed a tendency towards increased CRH in the PVN relative to NAB and 

LAB. T p<0.1 for three group comparison. 

 

4.2.4 Pharmacological validation 

 

Intracerebroventricular administration of AVP/CRH 

Icv administration of AVP/CRH resulted in a trend to reduced % time spent on the open arms 

(T p<0.1) and a significant decrease in the number of open arm entries in the EPM test in 

NABs in comparison to the control group (p<0.5). In HAB and LAB mice anxiety-related 

behavior remained unaltered. However, AVP/CRH administration significantly reduced the 

immobility time in the TST in comparison to the respective control groups in all three lines 

(Figure 4.19; p<0.5, p<0.01 vs. respective control group. 
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Figure 4.19: Anxiety- and depression-like behavior in the elevated plus-maze (EPM) and 

tail-suspension test (TST) in HAB, NAB, and LAB male mice 

intracerebroventricularly (icv) treated with arginine-vasopressin and 

corticotropin-releasing hormone (AVP/CRH) or vehicle (Ringer solution). NAB 

mice showed a tendency towards reduced time spent on the open arms and 

significantly decreased number of open arm entries upon AVP/CRH 

treatment, whereas no changes in anxiety-related behavior were observed in 

HAB and LAB mice. AVP/CRH treatment significantly decreased the 

immobility time in the TST in comparison to the respective vehicle group in all 

three lines. T p<0.1, *p<0.5, and **p<0.01 versus respective vehicle group. 

 

 

Intraperitoneal administration of a CRHR1 antagonist 

I.p. administration of the CRHR1 antagonist, DMP696, resulted in an anxiolytic effect 

exclusively in HAB mice. Upon DMP696 treatment, HAB animals showed a significant 

increase in the time spent on the open arm as well as in the number of open arm entries 

(p<0.5). Depression-like behavior remained unaltered in both mouse lines investigated 

(Figure 4.20).  
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Figure 4.20: Anxiety- and depression-like behaviors in the elevated plus-maze (EPM) and 

tail-suspension (TST) test in HAB and NAB male mice, intraperitoneally (i.p.) 

treated with the CRH receptor 1 antagonist (CRHR1), DMP696, or vehicle 

(Ringer solution). Only HAB animals treated with DMP696 showed a 

significant reduction in anxiety-related behavior, indicated by a significant 

increase in time spent and number of open arm entries on the EPM. 

Depression-like behavior remained unchanged in both groups. *p<0.5 vs. 

control group. 
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4.3 Discussion 

Behavioral screening of HAB, NAB or F1, and LAB animals revealed a significantly 

increased anxiety-related behavior in HAB animal relative to LAB mice that displayed 

decreased anxiety-related behavior, compared to NAB and F1 animals which showed an 

intermediate phenotype in different tests measuring anxiety-related behavior in rodents. 

Furthermore, HAB animals exhibited decreased explorative behavior, compared to the two 

other lines. Interestingly, LABs revealed a highly significant decreased immobility time in 

comparison to HAB and NAB animals, with F1 being in between HAB and NAB in tests for 

depression-like behavior. Applying ISH and qRTPCR, decreased Avp mRNA expression in 

LAB mice in the PVN, CeA, and SON compared to HAB animals under basal conditions has 

been detected. NAB mice showed an Avp expression indistinguishable from HAB in the PVN 

and SON, whereas F1 animals exhibited an intermediate expression pattern relative to HAB 

and LAB. The Avp expression profile measured in HAB, F1, and LAB mice revealed a 

significant correlation with anxiety- as well as depression-like behaviors. Despite a high 

sequence homology, the differences in Avp expression were not accompanied by a 

differential expression of Oxt.  

An AVP deficit in LAB animals was further confirmed by a diminished amount of both AVP in 

the PVN and descending axonal projections from the PVN under basal conditions, measured 

by fluorescent antibody-staining. Interestingly, Crh expression was significantly elevated in 

HAB mice in comparison to NAB and LAB and additionally in the CeA compared to LAB 

animals under basal conditions. These results were confirmed by immunohistochemistry in 

the PVN of HAB, NAB, and LAB mice. By treating HAB and NAB mice with a CRHR1 

antagonist, DMP696, a significant anxiolytic effect was measured exclusively in HABs. 

Furthermore, icv injection of AVP and CRH in all three mouse lines exhibited an anxiogenic 

effect in NAB animals in the EPM test as well as a decreased immobility time measured in 

the TST in all three lines. GR expression in the hippocampus was increased in HAB mice 

compared to NAB and LAB, whereas GR expression in the cortex, as well as MR and BDNF 

expression in the hippocampus failed to reveal any differences between the lines. As 

indicated by ISH and confirmed by qRTPCR, Syt4 was found to be significantly increased in 

the BLA and CeA of HAB animals in comparison to LAB and/or NAB, whereas a decreased 

expression of Syt4 was revealed in LAB mice in the PVN.  

As previously described by Krömer et al. and similar to HAB/LAB rats (Landgraf and Wigger, 

2002; Murgatroyd et al., 2004; Wigger et al., 2004; Kromer et al., 2005), selective and 

bidirectional inbreeding resulted in two lines significantly and stably differing in their anxiety-
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related behavior measured on the EPM test from the fourth generation on. HAB mice spent 

less time on the open arms, revealed increased latency to the first open arm entry, and no 

full open arm entries in comparison to LAB mice, with NAB and F1 animals displaying an 

intermediate phenotype. NAB and F1 mice exhibited increased bodyweight at seven weeks 

of age and locomotor activity, indicated by the number of total arm entries in the EPM test, 

whereas HAB and LAB animals did not differ. The decrease in bodyweight and locomotion, 

measured in the two breeding lines, reflect unavoidable consequences of an inbreeding 

status. However, these differences are unlikely to influence the phenotype of these animals 

as the two inbreeding lines reflect extremes in anxiety-related behavior independent of 

bodyweight and locomotion. Furthermore, the behavioral divergence between HAB and LAB 

mice as a result of behavioral selection and inbreeding is not based on or contaminated by 

line-specific differences in locomotor activity. The degree of avoidance of aversive 

compartments has been considered a measure of genetic predisposition to anxiety and is 

also predictive for stress coping (Ducottet and Belzung, 2004) and behavior in other tests 

(Trullas and Skolnick, 1993; Henderson et al., 2004). Indeed, the OA exposure, the DaLi 

test, and the NC observations revealed significant differences in anxiety-related as well as in 

explorative behavior, indicated by a decreased time spent in unprotected and/or illuminated 

areas and diminished locomotor activity, exploratory head movements, and rearings of HAB 

animals. It has been described that changes in locomotor activity and explorative behavior 

depend on the test situation (File, 2001). Reduced locomotion as well as suppression of 

explorative behavior reflects consequences of anxiety in a variety of behavioral tasks 

(Suaudeau et al., 2000; Do-Rego et al., 2002) and vica versa (Ferguson et al., 2004). 

Furthermore, a) the suppression of locomotor activity in low and moderate anxiogenic 

regions (e.g. OA exposure, NC observations), b) the shift towards less time spent and less 

activity in highly anxiogenic areas (e.g. open arms of the EPM or lit compartment in the DaLi 

test, c) the reduction of rearing behavior (e.g. in OA exposure, DaLi test or NC 

observations), d) increased latencies to explore novel areas (e.g. first entry of the open arm 

of the EPM), and e) increased autonomic responses (Singewald, unpublished) have all been 

identified as cross-test dimensions of anxiety which can be genetically separated 

(Henderson et al., 2004). Interestingly, all these dimensions of anxiety are reflected in the 

HAB/LAB mouse lines. Similar results have been reported from HAB/LAB rats (Henniger et 

al., 2000; Salome et al., 2004), underlining that the phenotypic divergence is not restricted to 

a given species and to the behavioral test used as the selection criterion. Rather, it is 

indicative that the HAB mice´/rats´ behavior was driven by anxiety, whereas the LAB 
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mice´/rats´ behavior was mainly explained by locomotor activity (Salome et al., 2006), with 

NAB animals being in between both extremes. Moreover, HABs and LABs displayed 

behaviors that reflected distinct coping strategies confirming anxiogenic effects even after a 

mild stress exposure in HAB mice and non-anxious explorative behavior in LABs. These 

results underline the hyper- and hypo-emotionality reflected in these animals. Furthermore, 

in both, the FS and the TST, indicative of depression-like behavior, LABs showed lower 

scores of immobility than HAB and NAB mice, with F1 animals being in between HABs and 

LABs. Although it has been described that these two tests do not necessarily share the 

same neurochemical pathways (Bai et al., 2001), both have been successfully used to 

measure and pharmacologically validate depression-like behavior (Cryan et al., 2002; 

Yoshikawa et al., 2002; Cryan and Mombereau, 2004). Furthermore, a correlation between 

anxiety- and depression-like behaviors has been described several times (Levine et al., 

2001; Landgraf and Wigger, 2003). Indeed, in the HAB/LAB mouse model, these two tests 

do not only show a significant correlation to each other, but are also in close association with 

anxiety-related behavior. This is an intriguing finding as no selection pressure was exerted 

on depression-related indices, resulting in a comorbidity of anxiety- and depression-like 

behaviors in these animals, resembling the clinical situation of a high comorbidity between 

both psychopathologies (Levine et al., 2001; Kromer et al., 2005). 

 

AVP and OXT 

In accordance with findings from the HAB/LAB rat model (Murgatroyd et al., 2004), we found 

Avp mRNA and neuropeptide levels in the PVN significantly differing between HAB and LAB 

mice under basal conditions. The expression in HAB and LAB animals is in strict association 

with their respective behavior. In contrast to HAB/LAB rats (Wigger et al., 2004), this 

difference in Avp expression between the HAB/LAB mouse lines seems not to be restricted 

to the hypothalamic PVN, but has additionally been confirmed for both the SON and the 

CeA.   

Due to the high sequence homology of Oxt to Avp (Ivell and Richter, 1984) and its 

contribution to anxiety-related behavior (Windle et al., 1997; Neumann et al., 2000b; 

Neumann et al., 2000a; Bale et al., 2001), OXT is considered as another neuropeptide, 

potentially involved in emotionality. In contrast to AVP, Oxt mRNA levels as well as the basal 

and hypertonically stimulated release of OXT within the PVN (Keßler, unpublished) were 

undistinguishable in all three lines. This makes, in similarity with the HAB/LAB rat model 

(Wigger et al., 2004), an involvement of OXT in the behavioral alterations of our mouse 
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model rather unlikely, thus further underscoring the specifity of our bi-directional inbreeding 

approach. 

Several independent groups reported an association between the V1a receptor and anxiety-

related behavior. V1a receptor knockout mice showed impaired social interaction, social 

recognition, and reduced anxiety-related behavior (Bielsky et al., 2004; Bielsky et al., 2005; 

Egashira et al., 2007). In contrast, a V1a receptor study revealed no differences between 

HAB/LAB mice in a variety of anxiety-related brain regions, suggesting that line-specific 

divergences in behavior and expression are not associated with a lack of V1a receptors and 

a thereby resulting in a compensatory expression effect in either line, but are rather a 

consequence of the line-specific gene and promoter/enhancer sequence (Bunck et al.). 

Interestingly, in contrast to the HAB/LAB rat model (Murgatroyd et al., 2004), LAB mice 

revealed decreased Avp mRNA in the PVN and SON in comparison to HAB and NAB 

animals. Therefore, if a deficit in Avp expression really contributes to non-anxiety and 

reduced depression-like behavior of LAB mice, it seemed worth trying to identify the 

molecular-genetic underpinnings of this phenomenon.  

Figure 4.21:  Arginine-vasopressin (Avp) gene sequence of HAB and LAB mice. 

Polymorphic sites are indicated with positions from transcription start (-1 to -

2600bp) in the promoter region (two SNP´s and deletion in LABs); within the 

Avp coding sequence also from transcription start (1 to 1960bp; three SNP´s); 

in the intergenic region between Avp and Oxt from the end of the last exon 

(+1 to +2600bp; three SNP´s). Exons and untranslated regions (UTRs) are 

indicated by boxes (exons shaded, UTRs completely filled black or 

white)(Bunck et al.) . 
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Sequencing of the Avp gene, the upstream promoter, and the downstream enhancer region 

resulted in the identification of nine polymorphic loci differing between the HAB and LAB 

lines, including eight single nucleotide polymorphisms (SNPs) and a 12bp deletion in LAB 

mice (Bunck et al.). Out of nine polymorphic loci identified between HAB and LAB mice, 

each structural parts, the upstream promoter, the gene locus, and the downstream enhancer 

region (IGR), contained three polymorphisms each (Figure 4.19). The three SNPs in the 

gene locus were located in the coding sequence. There were no polymorphisms identified in 

the non-coding (untranslated region and intronic) sequence. Two of these are silent 

mutations (A(1431)G and T(1527)C), whereas the third one (C(40)T) causes a substitution 

of alanine to valine in the third amino acid of the AVP signal peptide. At present 56 dominant 

or recessive SNPs in the AVP precursor gene have been identified and described to inhibit 

processing and trafficking of the AVP precursor and as a consequence causing an AVP 

deficit (Christensen and Rittig, 2006). This lack of AVP is associated with an inability of the 

kidney to properly retain water, thus provoking high fluid intake, hypotonic polyuria, and 

inadequate plasma osmolality (Verbalis, 2003), known as central diabetes insipidus (cDI). 

Indeed, the (C(40)T) SNP has been described as a genetic marker that co-segregated in a 

F2 panel with symptoms of cDI in LAB mice and partially with non-anxiety-related behavior 

(Keßler et al., 2007). The hypothesis of a deficit in processing and trafficking of AVP is 

further confirmed by the immunohistochemical findings. It is likely that the AVP antibody in 

the PVN can bind to the unprocessed prepropeptide, therefore revealing only a 1.4fold 

difference in the PVN between HAB and LAB. However, in PVN-descending axons, where 

the precursor is further processed in vesicles during their transport to the axonal terminals 

(Burbach et al., 2001), the difference occurs 3fold, indicating a disturbed processing in LAB 

and therefore a deficit in AVP. Indeed, this finding underlines the hypothesis, that due to the 

(C(40)T) SNP, the precursor gets stuck and accumulates in the endoplasmic reticulum, 

leading to an inadequate processing and lack of endogenous AVP and, consequently, to 

symptoms of cDI in LAB mice (Keßler et al., 2007). Interestingly, studies in Brattleboro rats 

and humans confirm that an AVP deficit may be accompanied by symptoms of cDI, reduced 

anxiety-related or attenuated depression-like behavior (Mlynarik et al., 2007), and signs of 

diminished agoraphobia as well as impaired memory processing (Bruins et al., 2006).  

How do the identified polymorphisms translate into different expression profiles? The C(-

1422)T SNP in the promoter region was not located in a transcription factor binding site, 

whereas the T(-2521)C SNP, and the ∆(-2180-2191) deletion were located directly in the 

center of a binding site for the nuclear factor 1 (NF-1), a well known transcription factor in 
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the brain that is promoting transcription in combination with C/EBPalpha or C/EBPbeta (Ji et 

al., 1999). Both polymorphic sites are also in direct neighborhood to a C/EBP binding site, 

but only the ∆(-2180-2191) site neighbors to a C/EBPbeta binding site. Even the T(-2521)C 

SNP might have a minor effect on reduced Avp expression in LABs, though it creates a 

binding site for NF-1 in LABs, but NF-1 might act as a repressor if a neighboring C/EBP 

binding site is lacking (Kraus et al., 2001). Although there is a C/EBPalpha binding site, 

C/EBPalpha is not expressed in the brain. Considering the deletion site, NF-1 could not bind 

to the ∆(-2180-2191) in animals with the LAB-specific sequence, thus resulting in a lower 

expression rate.  

Also the SNPs in the IGR could have a major impact on expression, as formerly described 

(Fields et al., 2003). There is a repeat of motifs from that 178bp region between +370bp and 

+480bp in that two mouse line-specific SNPs were identified. The analysis of that region 

resulted in the identification of a binding site for c-Ets-2 near to a binding site of C/EBPbeta 

(Chakrabarty and Roberts, 2007). In the center of the c-Ets-2 binding site, we found the 

A(+399)G polymorphism that would allow to enhance transcription rate in the HAB-like but 

not in the LAB-like DNA sequence. As expected from variations in the gene sequence, we 

found similar differences in Avp expression in distinct nuclei of the hypothalamus. Also the 

polymorphisms in the coding region could lead to lower Avp mRNA content by negatively 

influencing mRNA secondary structure and stability. We can't rule out the possible influence 

of other polymorphisms in the coding region. Regarding mRNA secondary structure and 

stability, the C(40)T SNP is close to the translation start site, which is rather a conserved 

sequence with a relaxed secondary structure in most mRNAs, meaning it might probably not 

have a critical role for stability. But, taken the two other polymorphisms in the coding 

sequence  - A(1431)G and T(1527)C - where each one is at the third degenerate codon site 

could lead to the hypothesis that the resulting mRNAs have different secondary structures, 

thus decreasing the stability of LAB sequence-specific mRNAs and finally leading to faster 

degradation (Shabalina et al., 2006).  

Due to the similar expression of Avp in HAB and NAB, the allele frequency in an unselected 

NAB population of both the ∆(-2180-2191) deletion as well as of the C(40)T SNP that are 

most likely to be involved in either the regulation of gene expression or the processing of the 

AVP precursor (Keßler et al., 2007) has been investigated. Determining the most common 

genotypes regarding the described polymorphisms in the CD1 (NAB) mouse population – 

which the HAB and LAB animals are derived from – revealed that the HAB-specific gene 

SNPs represent the most common genetic variant. More than 70% of the NAB mice were 
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homozygous for the HAB-specific sequence, whereas less than 1% carried the LAB-specific 

allele homozygously. Furthermore, the two polymporphisms co-segregated in all analyzed 

samples (N>150), suggesting a strict linkage. 

The fact that the NAB line’s most common genotype in and around the Avp gene fully 

corresponds to the HAB-specific sequence in more than 73% of all cases, gives rise to the 

explanation of the often observed discrepancy between F1 and NAB mice, both being often 

used as controls (regarding depression-like and Avp expression phenotype). In contrast to 

strictly intermediate F1, unselected CD1 mice displayed in about 70% of all animals a HAB-

like depression-like behavior in the TST, what has also been demonstrated recently in an 

unselected CD1 population (Touma et al., 2007). 

Furthermore, strengthening the strict association of an expression pattern with the identified 

allele-specific SNPs in either line, allele-specific transcription analyzes were applied. It was 

shown that the Avp deficit in LAB animals is not primarily a result of differences in synaptic 

input or epistatic effects of other genes. By cross-mating HAB and LAB mice, we produced 

heterozygous F1 animals that host both HAB and LAB line-specific alleles in each cell. The 

analysis revealed a strongly decreased expression of the LAB-specific allele by 75% 

compared to the HAB-specific one. Indeed, these heterozygous F1 mice – in contrast to 

NABs – display a strictly intermediate anxiety-related and depression-like phenotype 

together with intermediate Avp expression in comparison to HAB and LAB animals. We 

therefore conclude that the line-specific expression of Avp is causally related to the line-

specific polymorphisms (Bunck et al.). This confirms our hypothesis that distinct 

polymorphisms in a candidate gene may contribute to the phenotype of trait anxiety and 

depression. Indeed, an increased Avp mRNA expression has been shown in the PVN and 

SON of depressed patients (Purba et al., 1996; Meynen et al., 2006) and in the opposite 

extreme of the behavioral phenotypic scales in LAB mice, a decreased Avp expression in 

these brain regions could be associated with non-anxious and non-depression-like behavior. 

Additionally, whereas AVP in the CeA is described to be involved in immobility reflecting 

passive coping strategy (Roozendaal et al., 1992), in LAB animals the AVP deficit might 

contribute to their increased active coping style in comparison to HAB or NAB.  

Although no genetic underpinnings in the HAB line concerning the Avp gene, in comparison 

to NAB animals, have been identified, its contribution to the hyper-anxious phenotype in 

HABs can not be excluded. As a microdialysis study in the PVN (Keßler et al., 2007) did not 

include NAB animals, it is still possible that their hyper-emotionality, reflected in a variety of 

behavioral tests in this line, is a consequence of an increased release of AVP in several 
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brain regions including the PVN and/or CeA. Indicated by studies in psychiatric patients, 

hyper-excitability in anxiety/fear circuits are expressed as pathological anxiety that is 

manifested in various anxiety disorders (Rosen and Schulkin, 1998). Indeed, by use of Fos 

antibody-staining after mild stress exposure (Muigg, in preparation) or manganese-enhanced 

magnet-resonance imaging (MEMRI) under basal conditions (Czisch, in preparation), several 

brain regions have been identified to be hyper-activated in HAB animals in comparison to 

NAB and LAB mice, including amygdalar nuclei or the LS. These regions include brain 

region described for their AVP release and contribution to the regulation of emotionality 

(Frank and Landgraf, 2008). Additionally, the HAB animals did not reveal any changes in 

anxiety-related behavior after AVP and CRH injection, indicating that their already high 

anxiety level measured in the EPM can not be further increased by anxiogenic drugs as a 

possible consequence of an already elevated release of AVP and CRH under untreated 

conditions, reflecting kind of a ceiling effect.  

Furthermore, administration of an AVP V1a/b receptor antagonist tended to reduce anxiety-

related behavior and significantly decreased depression-like behavior in HAB mice (Bunck et 

al.). The involvement of V1a/b receptor pathways in mediating anxiety-related behavior as 

well as passive coping strategies has formerly been described for HAB rats (Keck et al., 

2002; Wigger et al., 2004) and in other laboratories (Griebel et al., 2002; Griebel and Gal, 

2005). As we do not have any evidence for AVP or CRH release patterns being different 

between HAB and NAB, it can only be speculated that the single injection of AVP and CRH 

in NAB mice is involved in the anxiogenic effect measured by the increase in anxiety-related 

behavior exclusively in these animals. As mentioned above, it is possible that under 

untreated conditions, the AVP release in NABs is decreased compared to HAB mice, and 

therefore, an administration of AVP leads to the anxiogenic effect of these animals. 

However, in HAB mice according to their already high level of anxiety-related behavior, a 

further increase seems to be impossible. The anxiogenic effect of AVP administration could 

also been demonstrated in rats (Bhattacharya et al., 1998). Additionally, CRH has been 

described several times to be involved in alterations of anxiety- and depression-like behavior 

(see discussion below). LAB animals, in contrast, did not reveal any differences upon AVP 

and CRH injection indicative of their robust non-anxious behavior. As shown before, due to 

their lack of AVP in association with their phenotype, it is rather likely that by a single 

administration, the behavior in these animals can not be altered. One possible experimental 

design to rescue the phenotype of non-anxiety in these animals could be a chronic AVP 

treatment via osmotic minipumps over several days or even weeks, to examine alterations in 
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behavior. The advantage of a chronic administration of AVP via minipump implantation could 

be demonstrated by Bosch et al. (unpublished), resulting not only in alterations of maternal 

behavior, but also in anxiogenic behavior in the EPM test in LAB females. 

Taken together, applying a similar breeding strategy in two different species (Rattus 

norvegicus and Mus musculus) ended up with similar findings concerning central expression 

and release of AVP, and in the identification of polymorphisms in and around the Avp gene, 

likely to be involved in mediating both anxiety-related and depression-like behavior. These 

results, together with human studies (Scott and Dinan, 2002) do not only ensure the 

construct validity of our mouse model, but additionally provide a strong impetus for Avp as a 

valuable diagnostic tool and therapeutic target in psychopathologies. 

 

CRH 

Interestingly, in similarity with expression profiles revealed in HAB/LAB rats, HAB and LAB 

mice significantly differed in their Crh expression in the PVN (Bosch et al., 2006). Although in 

the rat model is has not been clarified if the alteration in expression is restricted to HAB or 

LAB animals, as a comparison to Wistar rats is missing. In the mouse model, however, it 

could be shown that HAB mice exhibited an increased Crh expression as well as CRH 

amount in the PVN compared to NAB and LAB under basal conditions. Sequencing of the 

Crh gene in both animal models (Murgatroyd, Czibere, unpublished) did not reveal any SNPs 

or deletions in either line, suggesting that the differences in expression might be due to 

alterations in synaptic inputs, epigenetic factors, transcription factors, or epistatic effects of 

other genes. Especially, transcription factors interacting with cAMP response elements are 

an important factor in the regulation of Crh (Chen et al., 2000). Concerning gene 

sequencing, similar results have been found in human studies, revealing increased levels of 

CRH in the brain and spinal cord in depressed patients in contrast to control subjects, but no 

differences in the structure of the gene (Stratakis et al., 1997).  

Furthermore, the over-expression of Crh in HAB mice is not only restricted to the PVN, but 

was also present in the CeA. Roles for both CRH-containing brain regions, the PVN and 

amygdala, in stress responsiveness have been reported (Cook, 2004). Injection of cytotoxic 

antibodies directed against CRH in the PVN has been found to block anxiety-related 

response in the EPM test provoked by social defeat (Menzaghi et al., 1992), whereas intra-

amygdala infusion of CRH produced anxiogenic effects (Griebel, 1999). Furthermore, 

prenatally stressed rats, in comparison to control rats, but similar to HAB mice, displayed a 

hyperemotional state and increased anxiety-related behavior associated with an increased 
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CRH release in a time- and calcium-dependent manner (Cratty et al., 1995). These findings 

are in line with transgenic mice over-producing CRH, which showed increased anxiety-

related behavior (Stenzel-Poore et al., 1994; van Gaalen et al., 2002). Several animal 

studies have illustrated the involvement of CRH downstream neurotransmitter targets, 

including serotonin and noradrenaline, in the profound neurocircuitry failure that may 

underlie maladaptive coping strategies (Bale, 2006). Indeed, the activity of the noradrenergic 

neuronal system has been observed to be increased during stress and anxiety in several 

animal species and states of anxiety and fear appear to be associated with an increase in 

noradrenaline release in humans as well (Charney et al., 1995). Additionally, anatomical 

evidence exists for the direct synaptic contact between CRH terminals and dendrites of 

noradrenergic cells in the LC (Arborelius et al., 1999).  Stress- or CRH-induced increase in 

LC neuronal firing are blocked by CRHR antagonists (Valentino et al., 1993), suggesting that 

the anxiogenic effects of CRH are mediated through its action on the noradrenergic system 

via the LC (Butler et al., 1990). On the other hand, noradrenaline has been described to 

increase Crh mRNA in the PVN (Cole and Sawchenko, 2002). Therefore, the increased Crh 

mRNA in the PVN (Bosch et al., 2006) and LC (Plotsky et al., 2000) in HAB rats and 

increased Crh mRNA in the PVN and CeA of HAB mice together with the hyperactivation 

exhibited in the LC in both species (Salome et al., 2004), give rise to the hypothesis that the 

interaction between both system, the noradrenaline and the CRH system, might contribute to 

the hyper-emotionality observed in these animals. 

Not all CRH projections have been clearly defined yet, but it is possible to describe 

connections that use CRH as a neurotransmitter that may be relevant for the explanation of 

neuroendocrine as well as behavioral alterations. First, and still speculative, a stress-related 

CRH-circuit has been proposed, including CRH input to the CeA, originating in the lateral 

hypothalamus, dorsal raphe, and intrinsic cells of the CeA (Gray, 1993). CRH cells located in 

the CeA in turn project to the BNST, the latter of which project to the PVN, subsequently 

leading to an activation of the HPA axis (Steckler and Holsboer, 1999). Second, CRH 

projections originating in the CeA, the PVN, and the BNST, terminating in the LC, may 

underlie the enhanced arousal in response to stressors that have an emotional component 

(Butler et al., 1990; Valentino et al., 1993) and possibly affect attentional processes, as the 

coeruleo-cortical projection has been shown to be critically involved in mediating selective 

attention (Carli et al., 1983; Cole and Robbins, 1992; Usher et al., 1999). Third, CRH 

projections from the CeA and the BNST to the PAG and the brainstem autonomic regions, 

from the hypothalamus to the LS, and from the inferior olivary nucleus to the cerebellum 
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have been discussed, in addition to other projection circuits, to mediate various types of 

behavior, including anxiety (Steckler and Holsboer, 1999). Although more circuits have been 

described, the ones mentioned before seem to be the most relevant ones to explain possible 

alterations in HAB animals contributing to their hyperemotionality due to changes in CRH. All 

the brain areas depicted in these circuitries have been highlighted by either over-expression 

of CRH or by hyperactivation, measured via Fos-staining after mild stress-exposure or 

MEMRI technique under basal conditions (Muigg, Czisch, in preparation), in HAB mice 

relative to NAB or LAB. These findings point to the involvement of CRH in a variety of 

neuronal circuits underlying specifically the hyper-anxious phenotype of HAB mice. 

CRH as a contributor of anxiogenic effects (van Gaalen et al., 2002) revealed a significant 

increase in anxiety-related behavior in NAB mice. Although the animals have been injected 

with AVP and CRH simultaneously, according to their lower Crh expression in the PVN in 

comparison to HAB animals, it is rather likely that the observed anxiogenic effect is mediated 

by CRH, with the CRHR1 receptor-mediated pathways suggested to underlie the anxiogenic-

like effects of CRH (Heinrichs et al., 1997). Furthermore, the anxiogenic properties of CRH 

have been proven several times (Steckler and Holsboer, 1999), accompanied by behavioral 

aspects such as increase in grooming, arousal, heart rate, and decreased explorative 

behavior or food intake (Britton et al., 1982). As mentioned above the robust non-anxiety of 

LAB mice was not altered by a single application of an anxiogenic substance, whereas the 

hyper-anxiety in HAB mice, with their already high level of AVP and CRH, can not be further 

increased. As confirmed by Conti et al., the sensitivity to respond to CRH is strongly 

depending on the animals´ respective genetic background (Conti et al., 1994). 

In contrast to anxiety-related parameters, depression-like behavior was decreased in all 

three lines upon AVP/CRH injection into the lateral ventricle. As there are no anti-depressive 

effects reported after AVP administration, we hypothesize that the increase in activity is 

primarily due to CRH injection. Indeed, several series of experiments tested the hypothesis 

of a behavioral activation and anxiogenic effects produced by icv administration of CRH may 

be mediated by noradrenergic neurons in the brain-stem LC. In the modified Porsolt swim 

test, which similarly to the TST examines arousal and agitation in a stressful situation, a 

decreased immobility time was observed following CRH infusion directly into the LC or into 

the lateral ventricle. These results suggest that the behavioral effects of CRH in the LC 

might be related to arousal or stress-related effects, rather than to increased locomotor 

activity per se. Additionally, biochemical studies showed a significant increase in the 

concentration of the noradrenaline metabolites in areas of the LC´s forebrain projection, 
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such as the amygdala and posterior hypothalamus. These data suggest that CRH produces 

its behavioral activation and anxiogenic effects, at least in part, by increasing the activity of 

LC noradrenergic neurons (Butler et al., 1990). Several independent groups confirmed the 

behavioral alterations following icv administration of CRH and reported that no behavioral 

parameter was altered by prior administration of dexamethasone in a dose that blocked 

pituitary-adrenal activation to CRH. Therefore, it was hypothesized that behavioral effects of 

CRF are mediated by its action at central sites and not via an action on the pituitary-

adrenocortical system (Britton et al., 1982). Nevertheless, the experimental design applied 

could reveal alterations in behavior, but the impact of each of the applied substances on the 

respective behavioral change could not be clearly defined. Therefore, for analysis of the 

detailed effects of AVP and CRH on behavior, the substances should be tested separately. 

Treatment of HAB and NAB mice with a non-peptide CRHR1 antagonist DMP696 revealed a 

significant reduction of anxiety-related behavior exclusively in HAB animals, whereas the 

phenotype of NAB mice remained unchanged. Anxiolytic properties of CRHR1 receptor 

antagonists in a dose-dependent manner have been demonstrated in a variety of 

independent laboratories in several species (Steckler, 2005). The efficiency of treatments is 

strongly depending on the genetic background, indicated by studies in different mouse 

strains, with some strains being sensitive and others resistant to CRHR1 antagonist 

treatment (Conti et al., 1994). This is further underlined by inconsistent findings concerning 

anxiolytic and/or antidepressive effects revealed in different strains underlying different 

genetic underpinnings (Nielsen et al., 2004). Furthermore, previous studies using unselected 

animals, including those using DMP696 as an CRHR1 antagonist, demonstrate anxiolytic or 

antidepressive effects only after pre-exposure to stressors (Heinrichs et al., 1994; Schulz et 

al., 1996; Mansbach et al., 1997; Griebel et al., 1998; Deak et al., 1999; Okuyama et al., 

1999). It has further been suggested that DMP696 is most effective in rodents that are 

hyperresponsive to stress and have increased CRH levels (Maciag et al., 2002). As both 

suggestions are reflected in the HAB phenotype, these animals, in contrast to unselected 

mice, provide a model that mimics clinical conditions observed in patients. 

The result that only animals reflecting hyper-emotionality respond to a CRHR1 antagonist 

treatment, is consistent with findings revealed in the HAB rats (Keck et al., 2003a) as well as 

with decreased anxiety scores after R121919 treatment in depressed patients (Zobel et al., 

2000). Furthermore, the anxiolytic effects caused by CRHR1 antagonists (Keck et al., 2001) 

in contrast to other anxiolytics like diazepam did not reveal differences in locomotor activity, 

indicative of sedative effects (Liebsch et al., 1998). 
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The anxiogenic effect of CRH is mediated via CRHR1 pathways, not CRHR2 (Heinrichs et 

al., 1997). In more detail, the two CRH receptor subtypes selectively mediate differential 

effects of endogenous CRH or CRH-related peptides at the brain level with the CRHR1 

contributing predominantly to emotional behavior, e.g. anxiety-related behavior, and the 

CRHR2 being involved in the regulation of stress coping behavior, e.g. coping strategies 

(Liebsch et al., 1999). Furthermore, CRHR1 receptor antisense in the CeA reduced anxiety-

related behavior, highlighting the CeA as an important center in the pathways underlying 

emotional integration (Liebsch et al., 1995). Indeed, CRHR1 deficient mice, similarly to LAB 

mice, revealed decreased anxiety-related behavior in the DaLi test without changes in 

locomotor activity and hyperactivity in the open field test, possibly due to a deficit in the 

CRHR1-mediated pathway in the CeA (Timpl et al., 1998). Besides the CeA, the BNST, the 

PFC, the cingulate cortex, the LC, and the PAG are proposed sites,  where CRHR1 can 

modulate behavior (Steckler and Holsboer, 1999). 

Taken together, these findings suggest that the interaction between endogenous CRH and 

its receptors in this limbic brain regions is crucial for the expression of anxiety-related 

behavior in response to stressful experience, pronounced in HAB mice, which highlights the 

CRHR1, especially the DMP696, as a promising candidate for therapeutical intervention in 

anxiety disorders. 

 

MR and GR 

Overexpression of MR in the forebrain has been described to decrease, directly or indirectly, 

anxiety-related behavior and to alter stress response in mice (Rozeboom et al., 2007). As 

MR mRNA did not reveal any differences in the hippocampi of HAB, NAB, and LAB mice, 

MR expression, is at first glance, is not contributing to the phenotypic differences observed 

in the three mouse lines, at least under basal conditions. Although alterations in the 

circadian rhythm have been revealed in HAB, NAB, and LAB mice, with LAB mice showing 

hyperactivity as well as a shifted circadian rhythm compared to the two other lines (Keßler, 

Singewald, unpublished), these differences seemingly do not affect the control of basal 

glucocorticoid levels and the maintenance of circadian rhythm of glucocorticoids via MR, at 

least as indicated by the timepoint of the measurement. This hypothesis is further confirmed 

by equal Cort levels under basal condition in HAB and LAB mice (see 5). 

The forebrain GR plays an anxiogenic role in several genetic (Montkowski et al., 1995; Gass 

et al., 2001) or chronic stress animal models (Schmidt et al., 2007) of altered GR levels, 

mainly due to decreased hippocampal GR levels accompanied by disturbances in HPA axis 
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feedback. In HAB animals, however, significantly increased GR mRNA levels in the 

hippocampi were measured compared to NAB and LAB, whereas the cortex did not reveal 

any differences under basal conditions. Due to the discrepancy between cortical and 

hippocampal expression, it is rather unlikely that the differences in the hippocampal GR 

expression are a consequence of SNPs or deletion in the gene encoding GR. However, 

there is evidence that GR expression is altered by maternal behavior (Weaver et al., 2004). 

High amounts of pup licking and arched back nursing have been associated with increased 

GR expression in the hippocampus and changes in stress responsiveness (Szyf et al., 

2005). Similar to this animal model, HAB mice revealed increased maternal care compared 

to LAB females (Keßler, in preparation), with the offspring displaying increased hippocampal 

GR expression, possibly due to DNA methylation and enhanced transcription binding in the 

GR promoter region as described by Szyf et al. (2005). As GR is mainly required for the 

stress response and the subsequent recovery of homeostasis via feedback (de Kloet et al., 

1990; de Kloet et al., 1998), we challenged HAB and LAB mice by a 15-min restraint (Touma 

et al., 2007). Similar to the high-licking/-arched back nursing rat model, HAB mice showed a 

decreased Cort response after restraint stress in contrast to LAB mice, indicating a 

pronounced GR-mediated fast feedback mechanism in these animals. These data suggest 

that even in a mouse line with a strong genetic determination, epigenetic influences, e.g. via 

maternal care or enriched environment (Bunck, Baier, Touma, unpublished), are still 

possible. Although there is lack of evidence concerning the neuronal and molecular 

mechanisms underlying maternal behavior and consequently GR alterations, reversing the 

epigenetic programming and following GR downregulation together with a “normalization” of 

stress response, clearly implicated the linkage of the phenomena observed (Weaver et al., 

2005). This linkage due to maternal programming has to be investigated in more detail in the 

HAB/LAB mouse model. However, compared to the high-licking/-arched back nursing rat 

model, alteration in GR expression is not accompanied by a decrease in anxiety-related 

behavior in HAB mice, suggesting other neuronal circuits, possibly the AVP and/or the CRH 

system, to contribute to the hyper-anxious phenotype in this mouse line. 

 

BDNF 

Several animal and human studies described a stress-induced reduction of BDNF mRNA, 

reduced hippocampal volume, and impaired cognitive functions in comparison to unstressed 

controls (Bremner et al., 1995; Karege et al., 2005; Murakami et al., 2005; Schmidt et al., 

2007). In HAB, NAB, and LAB mice, however, BDNF mRNA failed to reveal any differences 
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in hippocampal expression. Although BDNF protein levels remain to be quantified to ensure 

equal BDNF level in all three lines, at first glance BDNF seems to be unaltered in the 

HAB/LAB mouse model, excluding BDNF as a major player underlying the extremes in 

emotionality. The discrepancy between numerous studies in rats and mice and the HAB/LAB 

model might be due to the differences in experimental designs as well as in breeding 

strategies. Our data again suggest that, extremes in the genetic disposition to anxiety, are 

related to specific circuitries. 

Series of experiments that resulted in BDNF alterations, used chronic social stress 

paradigms (Schmidt et al., 2007), acute stressors (Murakami et al., 2005), or chronic Cort 

administration. These paradigms resulted in neuronal damage, decrease in BDNF, cognitive 

impairment and consequently increased depression-like behavior and/or anxiety-related 

behavior. Although not excluded primarily, HAB animals according to their hyper-

emotionality, do not reveal physiological symptoms, such as increased Cort levels, indicative 

of chronic stress. The HAB/LAB mice, in contrast to stress-induced paradigms, are derived 

from a breeding protocol, selecting animals according to their basal trait anxiety. As the 

strategies used are addressing different aspects (induced vs. trait anxiety), it is perhaps not 

surprising that BDNF is unaltered in the HAB/LAB mice. Nevertheless, one interesting focus 

in the HAB/LAB mouse is to address the vulnerability to chronic stress´ effects in these 

mouse lines of extremes in trait anxiety. 

 

SYT4 

In Syt4 knockout mice it could be demonstrated for the first time that a presynaptic molecule 

is able to alter behavior. These knockout mice, in comparison to wildtype animals, revealed 

reduced anxiety- and depression-like behavior in various tests as well as enhanced 

locomotion in the open field test (Ferguson et al., 2004). While particularly data from 

conventional knockout approaches are at times inconclusive, these findings are in 

confirmation with results depicted in HAB, NAB, and LAB mice. In the CeA and BLA Syt4 

mRNA was increased in HAB mice displaying increased anxiety-related behavior, in 

comparison to NAB and LAB mice which revealed decreased anxiety-related behavior 

measured by qRTPCR and ISH under basal conditions. Furthermore, LAB mice exhibited a 

decrease in Syt4 in the PVN compared to the two other lines. However, as most studies on 

Syt4 are focusing on the role of Syt4 in the presynaptic fusion machinery, the mechanisms 

by which Syt4 is able to alter behavior remain unclear. Due to its biochemical structure and 

compared to other synaptotagmins, SYT4 is considered non-functional for Ca
2+

-dependent 
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interactions (Sullivan, 2007). However, SYT4 can also exhibit Ca
2+

-dependent binding to 

SYT1 and, thus, it was proposed that elevated SYT4 could form part of the Ca
2+ 

sensor to 

regulate neurotransmission (Ferguson et al., 1999; Littleton et al., 1999). These findings, in 

context with the impaired Ca
2+ 

binding ability of SYT4, led to the hypothesis that SYT4 

upregulation after seizure is a protective mechanism to reduce neuronal activity (Ferguson et 

al., 1999; Littleton et al., 1999). However, this hypothesis has been refuted by recent 

findings, showing that SYT4 does not act as an inhibitor of neurotransmitter release (Ting et 

al., 2006), indicating that the precise function of SYT4 is not well understood. 

Nevertheless, to receive information about cerebral activity under basal conditions, MEMRI 

as a non-invasive technique was applied in HAB, NAB, and LAB animals. Injected Mn
2+

 ions 

do mimic Ca
2+

 and may therefore accumulate in activated cells, indicating differences in 

neuronal activation between the mouse lines. Indeed, an increased Mn
2+ 

signal could be 

detected in the amygdala of HAB animals, relative to NAB and LAB, whereas a decreased 

activation was found exclusively in LAB mice (Czisch, in preparation), suggesting alterations 

in synaptic release in both, HAB and LAB mice. These patterns of activation are similar to 

the expression patterns found for Syt4, indicating that especially these brain regions are of 

major interest concerning changes in synaptic release, rather likely to contribute to the 

observed phenotypic differences in the HAB/LAB mouse model. However, the molecular 

mechanisms underlying these differences in synaptic release, including besides Syt4 various 

candidates involved in presynaptic docking, fusion of synaptic vesicles, and release, 

revealed by microarray analysis (Czibere, unpublished), have to be investigated in more 

detail to gain insight into the functional impact of each protein as well as to reveal the 

complexity of presynaptic networks associated with synaptic release and, finally, 

psychopathologies. These findings are especially of interest as proteins such as SNAP, 

syntaxins, synaptotagmins, synaptobrevin and the SNARE proteins are likely to play an 

important role in somato-dendritic release and are still poorly understood (Lodish et al., 

2001; Landgraf and Neumann, 2004). Furthermore, it is necessary to apply techniques such 

as microdialysis and electrophysiology to discover neurotransmitters possibly contributing to 

the behavioral alterations observed.  

 

Taken together, by use of selective and bidirectional breeding, we established an animal 

model that does not only differ in anxiety-related behavior in the EPM test, used as selection 

criterion, but also in other tests reflecting anxiety-related behavior. Furthermore, these 

breeding lines of extremes in trait anxiety additionally vary in several other behavioral tasks, 
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including those reflecting depression-like behavior as well as explorative behavior. A 

hypothesis-driven selection of genes revealed in similarity to the HAB/LAB rat model and 

clinical studies differences in gene expression profiles, well described to contribute to anxiety 

and depression disorders. These findings strengthen face and construct validity for our 

mouse lines, whereas the pharmacological interventions, together with former results, 

confirm predictive validity (Kromer et al., 2005). Therefore, by meeting all three criteria 

required for a valid animal model, this mouse model provides a unique opportunity to focus 

on the mechanisms underlying trait anxiety and comorbid depression at different levels, 

including behavioral, developmental, cognitive, neuroendocrine, and genetic aspects. 
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5 Developmental aspects in a mouse model of trait anxiety 

5.1 Introduction 

Beside the identification of neuropeptides, transmitter systems, receptor alterations, and 

genetic underpinnings, contributing to the development of mental disorders, it is of 

increasing interest to identify biomarkers that allow the diagnosis at very early stages of the 

disease as well as to permit categorization and subgrouping of patients in a more reliable 

and consistent manner that consequently enable specific treatment. Biomarkers are 

measures of specific biological parameters that allow to classify the disease and predict the 

most effective treatment (LaBaer, 2005).  

To get insight into developmental aspects in the HAB/LAB mouse model, concerning onset 

of emotional differences as well as central alterations underlying the phenotypic divergence 

observed during adulthood in these animals, early behavioral phenotyping, HPA axis 

components, and a potential biomarker, glyoxalase 1 (Glx1), have been investigated under 

basal conditions. 

It has been suggested that the number of ultrasonic vocalization calls induced by separation 

and isolation can be considered as a measure of separation anxiety and can be predictive of 

adult emotionality (Dichter et al., 1996; Brunelli, 2005; D'Amato et al., 2005). Therefore, as 

an early test for anxiety-related behavior and to follow the developmental pathways of 

emotional extremes, the USV was used to monitor the phenotypes in our breeding lines 

(Kromer et al., 2005). Similarly, we focused on the expression profiles of Avp and Crh, two 

HPA axis mediators, during development, starting from postnatal day (pnd) 5 up to 

adulthood at seven weeks of age. To control for HPA axis alterations during development, 

also ACTH and Cort were measured. Moreover, Glx1 protein levels have been determined to 

confirm the importance of this enzyme as a reliable and predictive biomarker in the HAB/LAB 

mouse model (Kromer et al., 2005). Glx1 is part of the glyoxalase system, which is present 

in the cytosol of all cells. Its function is not entirely resembled, but it has been described to 

detoxify α-oxo-aldehydes, mostly methylglyoxal, but also glyoxal, which represent potent 

cytotoxic metabolites (Thornalley, 2003a). Glx1 catalizes the chemical reaction of 

methylglyoxal and the cofactor glutathione to S-D-lactoylglutathione, which is, in turn, 

converted to D-lactate and glutathione by glyoxalase 2. Glx1 protects against glycation of 

proteins and nucleotides by methylglxoxal and similar dicarbonyls, possibly impairing 

physiological functions (Thornalley, 2006). Due to its ubiquitous expression, the glyoxal 

pathway is believed to be of fundamental importance for the cellular metabolism. Although 

this enzyme is at first glance not one of the usual suspects in transduction of mental 
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diseases, it attracts increasing attention for its role in psychopathologies, including 

Alzheimer´s disease (Chen et al., 2004) or anxiety-related behavior (Hovatta et al., 2005; 

Kromer et al., 2005). Furthermore, a possible connection between Glx1 and depression has 

been described in a linkage study of families with depressive disease, revealing evidence for 

an association between subgroups of unipolar affective disease and the Glx1 locus (Tanna 

et al., 1989). 

 

 

Figure 5.1:  The glyoxalase system. This system catalyzes the conversion of 

methylglyoxal to D-lactate via the intermediate S-D-lactoylglutathione. It 

involves two consecutive enzymatic reactions catalyzed by glyoxalase 1 and 

glyoxalase 2, respectively, and by catalytic portion of glutathione. 
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5.2 Results 

 

USV test 

USV test on pnd5 revealed significant more USV calls, locomotor activity, and number of 

rotations in HAB pups in comparison to LAB mice with NAB animals being in between both 

extremes. NAB pups weighed significantly more in comparison to HAB and LAB, with HAB 

exhibiting less bodyweight than LAB pups (Figure 5.2, p<0.001 for all three group and post 

hoc comparisons). 

Figure 5.2: Anxiety-related behavior measured in the ultrasonic vocalization (USV) test on 

postnatal day (pnd) 5 in HAB, NAB, and LAB pups. A) HAB mice emitted 

significant more USV calls, B) revealed increased locomotor activity and C) 

exhibited an increased number of rotations relative to LAB animals, with NAB 

pups being in between both extremes. D) NAB pups weighed significantly 

more in comparison to HAB and LAB, with HAB exhibiting less bodyweight 

than LAB pups. ***p<0.001 for all three group and post hoc comparisons. 
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Moreover, detailed analysis of the USV test revealed a significant decline in USV calls 

(Figure 5.3 A; p<0.01 for NAB and LAB, p<0.001 for HAB) and locomotion (Figure 5.3 B; 

p<0.001 for all three lines) over the test time. Also the differences in USV between the 

groups remained significant during the test time (KWH: p<0.001; p<0.5, p<0.01, p<0.001 for 

post hoc tests), whereas the differences in locomotion disappeared at the fourth and fifth 

minute of test time between HAB and LAB (KWH: p<0.05, p<0.01 and p<0.001; similar p-

values for post hoc tests). 

Figure 5.3: Detailed analysis of the ultrasonic vocalization (USV) calls and locomotor 

activity during 5min test time in HAB, NAB, and LAB pups. Both parameters 

USV calls and locomotion showed a decline during the test time in all three 

lines. The differences in USV calls were significant between all three lines 

during the whole test time, whereas the locomotor activity between HAB and 

LAB pups was similar during the fourth and fifth test minute. $$ p<0.01, $$$ 

p<0.001 (same line); *p<0.05, **p<0.01, ***p<0.001 (three group comparison 

for the same timepoint). ### p<0.001 and T p<0.1 for HAB vs. LAB (same 

time), + p<0.5, ++ p<0.01, +++ p<0.001 vs. HAB and LAB (same time) for 

post hoc tests. 

 

Bodyweight and Glx1 protein levels during development 

Bodyweight was increasing in both HAB and LAB mice during development (p<0.001 for 

each line). The decreased body weight in HAB compared to LAB at pnd5 (p<0.001 for KWH 

and post hoc tests) was still present at pnd12 (p<0.05), but seemed to be caught up at later 

developmental stages (Figure 5.4 A). Glx1 protein levels already differed at pnd5 between 
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HAB and LAB, with NAB mice revealing intermediate levels (Figure 5.4 B; KWH: p<0.01; T 

p<0.1, p<0.5). However, in both HAB and LAB an increase in protein levels was detectable 

(p<0.05 for each line), with the Glx1 levels being constantly different between HAB and LAB 

(p<0.05, p<0.01). 

 

 

Figure 5.4: Bodyweight and glyoxalase1 (Glx1) protein levels, measured by western blot 

analysis in red blood cells, during development of HAB and LAB mice. 

Bodyweight obtained at postnatal day (pnd) 5, 12, 24, 28, 40, 48 and 54 

revealed an steady increase in both HAB and LAB. The differences in 

bodyweight at postnatal day (pnd) 5 between HAB, NAB, and LAB, have 

already been shown in Figure 5.1 D and were additionally significant between 

HAB and LAB at pnd12. Glx1 protein levels were increasing during 

development and significantly differed from pnd5 on between HAB and LAB, 

with NAB being in between HAB and LAB at pnd5. $ p<0.5, $$$ (same line); 

*p<0.5, **p<0.01and ***p<0.001 (three group comparison and post hoc tests, 

same time). 

 .  

Expression of Avp and Crh during development 

Avp mRNA tended to be decreased in LAB from pnd5 on and was significant at pnd54 

(Figure 5.5 A, T p<0.1, p<0.01). HAB mice revealed a significant increase in Avp mRNA 

between pnd5 and 12 (Figure 5.5 A, p<0.05). Crh mRNA levels decreased during 

development in both lines (Figure 5.5 B, p<0.01). HAB mice revealed a tendency towards 
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increased Crh expression between pnd5 and 12 (p<0.1). Moreover, HAB animals exhibited 

elevated Crh expression at pnd12 and 54 compared to LAB mice (Figure 5.5 B, p<0.01).  

 

 

Figure 5.5: Expression of arginine-vasopressin (Avp) and corticotropin-releasing hormone 

(Crh) in the paraventricular nucleus (PVN) at postnatal day (pnd) 5, 12, 28, 

and 54 in HAB and LAB mice, measured by in situ hybridization. A) Avp 

mRNA tended to be decreased in LAB from pnd5 on and was significantly 

differently expressed at pnd54. HAB mice revealed a significant increase in 

Avp mRNA between pnd5 and 12. Crh mRNA levels decreased during 

development in both lines. HAB mice revealed a tendency towards increased 

Crh expression between pnd5 and 12. Moreover HAB animals exhibited 

increased Crh expression at pnd12 and 54 compared to LAB mice. A) T 

p<0.1, **p<0.01 vs. LAB (same age); + vs. HAB pnd12 (same line); B) $$ 

p<0.01 (same line); T <0.1vs. HAB pnd12 (same line), **p<0.01 vs. LAB 

(same age). 

 

 

Plasma ACTH and Cort during development 

ACTH was significantly altered in both lines during development (p<0.5). LAB showed a 

trend towards decreased ACTH from pnd5 to 12 (Figure 5.6 A, p<0.1). At pnd28 ACTH 

levels tended to be increased in HAB vs. LAB (p<0.1). From pnd5 to 12 both lines exhibited 

a Cort increase (Figure 5.6 B, p<0.01, p<0.05).  
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Figure 5.6: Adrenocorticotropic hormone (ACTH) and corticosterone (Cort) plasma 

concentrations at postnatal day (pnd) 5, 12, 28, and 54, measured by 

radioimmunoassay, in HAB and LAB mice. A) ACTH was significantly altered 

in both lines during development. LAB revealed a trend towards a decrease of 

ACTH from pnd5 to 12. At pnd28 ACTH levels tended to be different between 

HAB and LAB. B) From pnd5 to 12 both lines exhibited a Cort increase. A) $ 

p<0.05 (same line), T p<0.1 vs. LAB pnd12 (same line), T p<0.1 vs. HAB 

pnd28 (same age). B) T p<0.1 vs. HAB pnd12, + p<0.05 vs. LAB pnd12 

(same line). 
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5.3 Discussion 

As early as on pnd5, emotional differences between HAB, NAB, and LAB pups were 

detectable, with HABs emitting more USV calls and showing elevated anxiety-induced 

locomotor activity, relative to LAB mice, indicative of increased anxiety-related behavior, 

whereas NAB mice revealed an intermediate phenotype. Moreover, Glx1 levels detected in 

red blood cells significantly differed between HAB and LAB pups at any timepoint measured 

during development. Avp mRNA under basal conditions tended to be reduced in LAB mice 

from pnd5 on, a difference that is getting highly significant, relative to HAB animals, at 

pnd54. Additionally, Crh expression exhibited a significant divergence between the two 

breeding lines at pnd12 as well as at pnd54 under basal conditions. Despite alterations in 

Avp and Crh expression in the PVN of HAB and NAB mice during development, no 

differences were detectable in plasma levels of ACTH or Cort under basal conditions. 

 

Temperature has long been recognized as a primary factor in the stimulation of USV, acting 

as a signal to the pup that it is no longer in the nest (Allin and Banks, 1971). The effects of 

cooling on cardiac rate, oxygen consumption, respiratory rate, arterial pressure, and blood 

viscosity suggest that USV calls, produced by the forced expiration of air through a 

constricted larynx, are produced as part of a coordinated physiological response to 

homeostatic challenges (Blumberg et al., 2005). Furthermore, Blumberg et al. (2005) 

demonstrated an inhibition of USV by noradrenaline and consequently increased body 

temperature, suggesting the USV test as being inadequate to measure anxiety-related 

behavior in pups (Blumberg et al., 2005). However, we could demonstrate for the first time 

that the differences in USV in HAB, NAB, and LAB pups are primarily not a consequence of 

changes in body temperature, but reflecting distress and anxiety-related behavior. A 

decrease in body temperature, from nest temperature to 23ºC during experiment, is rather 

likely to stimulate USV in all three lines. Nevertheless, the differences in the number of USV 

calls were already present during the first minute of separation and stably differing during the 

5-min separation. A further decrease in body temperature has been suggested to increase 

USV during the test time (Blumberg et al., 2005), but the contrary, an overall reduced USV, 

was measurable in all three mouse lines tested. Therefore, it was suggested that decreased 

body temperature might lead to reduced locomotor activity, indicated in all three groups, but 

is not directly influencing USV. A slow motion analysis of USV testing in CD1 mice revealed 

that emission of USV is connected to locomotion and head rising (Branchi et al., 2004). 

These observations are in accordance with our findings, as a high number of USV calls are 
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accompanied by increased locomotor activity and number of rotations in HABs, with 

comparable ratios in NAB and LAB pups. As pups vocalize during locomotion (Branchi et al., 

2004), it is not surprising that a decline in one parameter is accompanied by a parallel 

decrease of the other one. This conjunction of vocalization and movement has been 

implicated in a variety of studies in different species (for details see (Branchi et al., 2004)). 

Furthermore, neither the observed differences in bodyweight between the inbred lines in 

comparison to NAB, similar to those measured during adulthood (see previous chapter), nor 

the difference between HAB and LAB at pnd5, seem to influence this behavior. The number 

of rotations has been considered as a parameter measuring exploration of the surrounding 

environment. At pnd5, the olfactory system represents the main sensory modality for infant 

mice to scan and perceive distal cues (Branchi et al., 2004). The increased number of 

rotations, together with the elevated USV in HAB pups, might reflect their increased active 

search for maternal protection as a consequence of their hyper-emotional status. Detailed 

analysis of the USV test in HAB/LAB pups led to the suggestion that the test per se, at least 

in our mouse model, can be limited to 1-min test intervals. As the emotional parameters 

measured were already significantly different during the first minute of separation, a 

prolonged separation, which is possibly accompanied by separation effects in the pup, is not 

necessary, at least in the HAB/LAB model. 

These results describe an early phenotypic divergence between HAB and LAB, with the 

former revealing more USV calls than the latter, indicative of increased inborn anxiety-

related behavior. Thus, together with the previous pharmacological validation (Kromer et al., 

2005) and a variety of other studies, confirming the hypothesis that the USV test is a suitable 

paradigm to investigate separation anxiety. Moreover, the number of USV calls can be 

predictive of adult emotionality (Dichter et al., 1996; Brunelli et al., 1997; Wigger et al., 2001; 

Brunelli, 2005; Burgdorf et al., 2005). Furthermore, epidemiological/clinical studies showed 

that children who cry more in response to novelty at four month of age, are highly likely to 

become shy and inhibited in childhood (Brunelli, 2005). 

The differences in bodyweight between HAB and LAB at pnd5 and pnd12 are due to varying 

pup numbers per litter between the lines. Although most of the litters of both lines have been 

standardized to eight pups per litter, LAB females showed a reproductive deficit and they 

deliver decreased numbers of pups (Keßler, unpublished). Therefore, as LAB mothers raised 

fewer pups, this might be advantageous for the offspring in terms of milk consumption, 

resulting in increased bodyweight. However, this difference seems to be caught up by HAB 

pups at around three weeks of age, possibly due to self-feeding during this age. As NAB 
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animals, being outbred mice, revealed a highly increased bodyweight at pnd5, suggesting a 

faster or at least divergent development, in comparison to the two inbred lines, they were not 

included in the further brain analysis. 

Already at pnd5, Avp mRNA tended to be reduced in LAB, an effect that is getting highly 

significant during adulthood. As described in the previous chapter, several SNPs in the Avp 

gene have been identified, including a prominent ∆(-2180-2191) deletion in the promoter 

region as well as a (C(40)T) SNP in the signal peptide of the AVP precursor gene. 

Furthermore, we demonstrated that distinct polymorphisms in LAB mice contribute to 

decreased Avp expression (see previous chapter), already indicated at pnd5. AVP was 

shown to be expressed in the diencephalon already on embryonic day 13.5 and in a PVN-

corresponding region on day 14.5 (Jing et al., 1998) and is slightly increasing during 

development as observed by Avp expression in the PVN of HAB mice. It is rather likely that a 

decreased amount or even constant lack of bioavailable AVP in LAB animals, through its 

release from synapses, somata, and dendrites of neurons (Wotjak et al., 1996; Landgraf et 

al., 2007), is shaping trait anxiety robustly from birth on, possible explaining the decreased 

anxiety-related behavior of LAB pups as early as on pnd5 in the USV test. Furthermore, the 

(C(40)T) SNP in the signal peptide has been associated with symptoms of cDI in LAB 

animals and decreased anxiety-related behavior in adult mice (Keßler et al., 2007). 

Mutations are described to change the three-dimensional structure of a protein by inducing 

substitutions or deletions of aminoacids, involved in the secondary structure or disulfide 

bridges (Christensen and Rittig, 2006). These structural alterations lead to inaccurate folding 

of the peptides and inadequate binding of AVP to its carrier protein. Consequently, misfold 

propeptide accumulates in the ER and leads to impaired processing, axonal transport, and, 

finally, AVP secretion. The accumulated mutant protein in the ER impedes not only the 

processing of the wildtype AVP propeptide, but also the processing of other essential 

proteins, finally causing cell death (Ito and Jameson, 1997; Ito et al., 1999). Both 

mechanisms cause a delayed onset and progressive cause of cDI. Our developmental 

results concerning Avp mRNA in the PVN and SON (see previous chapter), together with the 

onset of physiological symptoms of cDI in LAB mice suggest the mentioned molecular 

mechanisms underlying the progressive phenomena observed. Increased water intake and, 

consequently, elevated amount of urine, reflected by a low urine osmolality were detectable 

at five weeks of age in LAB, indicating the dramatic physiological consequences of cDI 

(Keßler, unpublished). These findings go along with the expression profile indicating a lack 

of Avp mRNA before adolescence and at the beginning of adulthood. This delayed onset of 
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cDI has also been described for patients (for review see (Frank and Landgraf, 2008)). In 

summary, it can be hypothesized that the genetic underpinnings of AVP deficit, detected in 

LAB mice, lead to a decreased expression of Avp, possibly from birth on and progressing to 

an AVP deficit in these animals, resulting in both symptoms of cDI and reduced anxiety. 

As it has been shown in detail, CD1 mice undergo different phases of stress responsiveness 

during development (Schmidt et al., 2003). The first developmental stage of the HPA axis 

after birth is characterized by a so-called stress hypo-responsive phase. During this period, 

from pnd1 until pnd12, similar to our results, mice showed low basal levels of Cort, while 

basal ACTH was already present at concentration of adults (Schmidt et al., 2003) and no 

alterations in Crh expression were detectable in the PVN. At the end of this developmental 

phase, with the onset of the responsive phase, Crh expression in the PVN was revealed to 

be differently between HAB and LAB. Crh mRNA has been described to be already high at 

pnd1 in CD1 mice under basal, following a decreased expression at pnd12 (Schmidt et al., 

2003), which is in accordance with LAB animals. However, HAB mice exhibited increased 

Crh expression in comparison to LAB. As pnd12 is the beginning of the stress-responsive 

phase, it is rather likely that this timepoint is also indicative of central modification relevant 

under basal conditions, displayed in HAB animals. Since no genetic variants have been 

identified in the Crh gene (Czibere, unpublished), it is presumable that the over-expression in 

HABs is influenced by non-genomic factors (see previous chapter). In unselected CD1 mice, 

decreased Crh expression at pnd12 is accompanied by an increased GR expression, 

pointing to a GR-mediated suppression of Crh in the PVN (Schmidt et al., 2003), possibly 

similar to LAB mice. Therefore, one possible explanation for the over-expression in HAB 

mice could be a deficiency in GR feedback mechanisms on Crh expression, possibly due to 

diminished GR activity in the PVN, at least at this developmental stage. Although this 

divergence in expression is stable under basal conditions in HAB and LAB animals, similar to 

former findings (see previous chapter), Crh expression profiles seem to be accessible for 

external stressors (Schmidt et al., 2002; Schmidt et al., 2004). Juveniles of both breeding 

lines are weaned from their mothers at pnd24 and are housed in groups of three to four 

littermates of the same sex. Beside the separation from the mother and the novel 

environment, animals might be stressed by setting up a social hierarchy. It has been 

demonstrated that external stressors, such as maternal deprivation, influence Crh 

expression (Schmidt et al., 2004). According to this data, Crh expression is decreased due 

to the stressor, a finding that could explain the rapid decrease of Crh mRNA from pnd12 to 

pnd28 in HAB mice in comparison to LAB. It is likely that the stress-induced decrease in Crh 
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in HABs is reflecting their increased emotional interpretation of “post-weaning” stress. 

However, similar effects were not detectable or absent in LAB animals, possibly indicating 

increased stress resistance in these mouse line. 

During adulthood and under basal conditions at pnd54, the divergence in Crh expression 

became significant again. We therefore conclude that the CRH system is hyperactivated in 

HAB mice from an early developmental stage on, but still stressor accessible, confirming a 

non-genomic regulation in these animals. 

Although the two key players of HPA axis activity, AVP and CRH, have been identified to be 

differently expressed in the two breeding lines, they do not seem to influence basal ACTH 

and Cort levels, neither in the early nor at later developmental stages. Similar results have 

been reported in CD1 mice during development, where CRH was not able to induce an 

ACTH or Cort response under basal conditions (Schmidt et al., 2003). Furthermore, 

exposing HAB/LAB animals to a mild stressor did not reveal any differences in Cort increase 

in HAB and LAB mice (Bunck and Touma, unpublished). Applying restraint stress as a 

strong stressor, exhibited a diminished Cort response in HAB mice in comparison to LAB 

(Touma, unpublished). Since many of the effects of CRH were found to be independent of 

HPA axis activation, an involvement of extrahypothalamic CRH receptors in mediating 

behavioral responses was suggested and proven by receptor distribution studies (Dunn and 

Berridge, 1990; Steckler and Holsboer, 1999). Furthermore, over the last two decades there 

is mounting evidence that AVP is shaping emotional responses upon dendritic release within 

the brain (Frank and Landgraf, 2008). Wotjak et al. (1996) demonstrated a local release of 

AVP in the PVN due to social defeat exposure, with no simultaneous release of AVP from 

the SON or into the circulation, indicating the function of centrally released AVP in 

emotionality, independent of HPA axis response (Wotjak et al., 1996) . 

Therefore, in view of the wide range of CRH and AVP effects on anxiety and depression, we 

hypothesize that, similar but independent of HPA axis regulation, both neuropeptides shape 

behavioral phenomena linked to innate emotionality via their central somadendritic release. 

As only 30-60% of depressed patients show HPA axis alterations (Ising et al., 2005), the 

finding in HAB/LAB mice might be of additional clinical interest. 

In accordance with former findings, Glx1 protein levels, measured in red blood cells of male 

mice, significantly differed between HAB and LAB mice in adulthood. Beside red blood cells, 

similar results were detected in various brain areas, including hypothalamus, amygdala, and 

the motor cortex. This divergence of Glx1 levels was not only true for male, but also for 

female mice of the respective line, with NAB and cross-mated animals revealing intermediate 
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protein levels. Moreover, in similarity with findings from HAB/LAB animals, less anxious 

BALB/c mice expressed more Glx1 than the more anxious C57BL/6 (Kromer et al., 2005). 

Furthermore, in the present study it could be demonstrated that Glx1 levels are not only a 

stable and reliable biomarker for the non-anxious versus anxious phenotype, but, as the 

differences are already present at pnd5, Glx1 might also be suitable as a marker for 

diagnosis even at early stages of disease. In contrast to AVP and CRH, Glx1 levels 

appeared to be significantly divergent as early as on pnd5, a difference which remains 

robust and stable throughout all measured timepoints during development. Moreover, there 

are hints that Glx1 levels, differently to the Crh expression, are not altered by external 

stressors, such as post-weaning stress, indicated by unchanged Glx levels at pnd28, 

pointing to a strong genetically based influence on Glx expression. Indeed, several SNPs 

between HAB and LAB mice have been identified by sequencing the promoter and coding 

region of the gene coding for Glx1 and their functional impact on Glx expression is currently 

under investigation (Prigl, Hambsch, Ahmad, unpublished). It is rather likely that the genetic 

predisposition might explain differences in cell metabolism contributing to either high or low 

anxiety-related behavior. Furthermore, a decreased amount of Glx1 protein could be 

demonstrated in patients suffering from anxiety disorders in comparison to healthy control 

subjects, implicating the clinical impact of Glx1 as a reliable protein biomarker of psychiatric 

diseases (Ditzen et al., 2006).  

However, the Glx1 findings in the HAB/LAB mice are discordant to recent data, describing 

increased Glx1 levels in association with increased anxiety-related behavior (Hovatta et al., 

2005). This discrepancy might have arisen due to the use of mouse strains that according to 

their different selection pressure exerted, vary in their genetic background. On the one hand, 

as CD1 mice were not included in a study by Hovatta et al. (2005), a direct comparison 

concerning Glx1 levels is not possible, on the other hand, the mouse strains used are 

differing in their anxiety-related but are not, as the HAB/LAB mouse, selected and inbred for 

either high or low anxiety-related behavior and therefore, resembling the clinical situation in 

patients (Kromer et al., 2005; Ditzen et al., 2006). Moreover, the behavioral phenotyping as 

well as the molecular techniques used were not comparable between both laboratories. 

Nevertheless, further investigations will focus on the alterations in dicarbonyl metabolism, 

possibly uncovering similar molecular mechanisms in both approaches (Thornalley, 2006). 

Chronic exposure to methylglyoxal and/or glyoxal leads to higher Glx1 expression as a 

protective response to dicarbonyl stress in order to decrease tissue damage by 

methylglyoxal (McLellan, 1994; Thornalley, 2006). However, it is rather likely that increased 
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Glx1 levels insufficiently prevent increased protein damage (Thornalley, 2003b; Ahmed, 

2005). Dicarbonyl-stress processes accompanied by increased Glx1 expression have been 

reported in P301L mutant tau transgenic mice and patients with confirmed Alzheimer´s 

disease in comparison to control subjects (Chen et al., 2004). Similar to these patients 

(Decker, 1995), LAB mice revealed higher Glx1 levels, indicative of an increased dicarbonyl 

stress and impaired cognitive function, indicated in the Morris water maze test (unpublished 

data) and social discrimination task (see following chapter). The possible involvement of 

increased methylglyoxal in cognitive impairment has recently been demonstrated, showing 

decreased hippocampal field EPSPs after methylglyoxal treatment (Eder, unpublished). 

Furthermore, treating NAB animals icv with methylglyoxal revealed a significant decrease in 

anxiety-related behavior measured in the EPM test (Hambsch, unpublished). These findings 

suggest an involvement of dicarbonyl metabolites in cognitive and behavioral changes. On 

the other hand, a lack of dicarbonyl metabolites and, consequently, decreased Glx1 levels 

might be indicative of a decreased cellular metabolism in HAB animals, possibly leading to 

high anxiety-related behavior. As these animals also exhibit increased passive coping 

strategies, the hypothesis of metabolic depression in major depression might be of interest 

in this context (Tsiouris, 2005; Landgraf et al., 2007). A disequilibrium in both directions, with 

either decreased or increased Glx1 levels in cell metabolism might lead to a pathological 

outcome in both HAB and LAB mice. However, to gain insight into respective mechanism, all 

components of the Glx-pathway have to be investigated in more detail, including 

methylglyoxal levels, Glx1 activity, the cofactor glutathione, as well as glutathione reductase, 

to get more insight into the metabolic turnover in each line. Secondly, genetic manipulations, 

such as virus-mediated gene transfer or siRNA techniques should be applied to test the 

association between Glx1 level and the respective phenotype. Additionally, the link between 

Glx1 expression in relation to neurotransmitter metabolism and neuronal activation has to be 

uncovered, to identify the missing link between Glx1 levels and anxiety, thereby providing 

predictive validity of Glx1 beyond that of a biomarker (Landgraf et al., 2007). 

In summary, the early onset of alterations on a behavioral, expression, and metabolic level 

raised the hypothesis that the differences observed in HAB and LAB mice are mostly 

determined by genetic predispositions rather than consequences of non-genetically 

determined external stimuli. This strict genetic determination of the two extremes in 

emotionality could be further demonstrated by a cross-fostering study. Although maternal 

behavior significantly differed between HAB and LAB mothers, cross-fostered (HAB pups 

raised by a LAB mother and vice versa) animals failed to reveal emotional changes in a 
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variety of behavioral tests (Keßler, in preparation). In the HAB/LAB mouse model, we thus 

succeeded in accumulating genetic markers in association with the line-specific phenotype, 

which are relevant for anxiety and depression disorders (Landgraf et al., 2007).  
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6 Cognitive aspects in a mouse model of trait anxiety 

6.1 Introduction 

Shettleworth´s comprehensive definition of cognition is referring to “the mechanisms by 

which animals acquire, process, store, and react to information perceived from the 

environment (Shettleworth, 1998). This definition can incorporate many different types of 

information processing, ranging from sensory perception and mechanisms of associative 

learning to conscious, rational, linguistically based thought processes (Paul et al., 2005). 

Emotions in contrast refer to processes which are likely to have evolved from basic 

mechanisms that gave animals the ability to avoid harm/punishment and seek valuable 

resources/reward. Emotions include adaptive, behavioral, physiological and neural 

processes (Cardinal et al., 2002; Paul et al., 2005). Both phenomena, emotionality and 

cognition, are closely related. Emotions are determined by cognitive estimations and vice 

versa, emotions influence cognitive processes (Landgraf and Wigger, 2002). During the last 

years, this relationship between cognitive function, anxiety, and depression disorders with 

regard to clinical relevance has been demonstrated to play a major role in human and animal 

studies (McNaughton, 1997; Ohl et al., 2001; Ohl et al., 2003; Ohl, 2005; Reppermund et al., 

2007; Schmidt et al., 2007). These findings lead us to the question, if extremes in trait 

anxiety are accompanied by alterations in cognitive abilities in our mouse model. As 

cognitive performance is strongly based on the emotional context and varies within different 

types of learning, two different paradigms were chosen to investigate the question of 

cognitive changes in HAB, LAB and/or NAB adult male mice.  

The sense of smell is of paramount importance for rodents, in which odor discrimination and 

long-lasting olfactory memory permits adequate responses to predator and prey critical for 

survival (Shimshek et al., 2005). Moreover, recognition of a familiar individual provides the 

basis upon which all social relationships are built (Ferguson et al., 2002; Bielsky and Young, 

2004). In a natural context, social memory is a unique form of memory, critical for 

reproduction, territorial defense, and establishment of hierarchies (Ferguson et al., 2002). 

Rats and mice are macrosmates for which storage and recall of information acquired via 

olfaction are necessary for a successful interaction with their living and non-living 

environment (for a rough overview about perception and processing of social cues see 

Fig.6.1), implying that investigation of such information processing provides access to 

learning and memory in these species (Richter et al., 2005). Information about volatile stimuli 

is mainly processed in the main olfactory system, whereas non-volatile stimuli are primarily 

processed in the accessory olfactory system. The main olfactory system consists of the main 
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olfactory bulb and the limbic structures, including areas such as the cortical nucleus of the 

amygdala and the piriform cortex.  

Figure 6.1:  A rough overview about tissues and brain structures involved in the perception 

and processing of social cues (www.neuro.fsu.edu/research /vomeronasal/ by 

Dr. Michael Meredith). 

The accessory system, in contrast, is comprised of the accessory bulb, the MeA, the bed 

nuclei of the lateral olfactory tract and of the stria terminalis, the medial preoptic area, and 

the septum (Cooke et al., 1998; Richter et al., 2005). Based on mice´s/rats´ natural tendency 

to intensely investigate novel individuals, a simple laboratory test was established to 

investigate short-term, social recognition capacities (Thor and Holloway, 1982). In this task it 

could be demonstrated that a rodent is more interested in an unfamiliar, novel conspecific 

accompanied by increased olfactory exploration compared to a familiar conspecific. The 

original concept from 1982 has been modified several times. In our first experimental 

approach we used a modified design, the habituation-dishabituation paradigm, originally 

described by Winslow and Dluzen  (Dluzen et al., 1998b; Dluzen et al., 1998a; Winslow and 

Insel, 2004) (see 3.3.1.) The experimental animal is introduced to the same ovariectomized 

stimulus animals four times for four minutes each trial. During the fifth trial, a new stimulus 

animal is presented. Reintroduction (introducing the familiar stimulus animal once more) of a 

familiar stimulus animal results in a decrease in olfactory investigation, indicative of 
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functional social memory processes, whereas the introduction of a novel stimulus increases 

sniffing time. Presenting a novel stimulus animal excludes effects of tiredness of the 

experimental animal and lack of interest on a social stimulus which might influence the 

results (Ferguson et al., 2000b; Bielsky et al., 2004). Additionally, as a more challenging task 

for the experimental animal, the social discrimination test (SD) was applied, which has been 

originally developed in our laboratory (Engelmann et al., 1995) to investigate olfactory-based 

learning and short-term memory processes in adult rats in a social context. Compared to the 

SR test, the animals have to discriminate between two stimulus animals at the same time 

during the second exposure. The hypothesis behind this test is similar to the SR test. If an 

animal is still able to remember the first (familiar) stimulus animal, it will spend more time in 

olfactory exploration of the novel animal. Several modifications have been introduced in 

order to further standardize and adapt the protocol for mice (mentioned in 3.3.2). Beside 

these two social, non-aversive, and stress-mild learning tasks, a cued fear conditioning 

paradigm was used to investigate the animals´ performance in a non-social, aversive task.  

For many decades, classical conditioned fear based on the original paradigm in dogs 

developed by Ivan Petrovich Pavlov in 1927, has provided fertile ground to investigate 

learning and memory. The protocols used are robust, and the paradigm itself is of 

unquestionable relevance for humans and animals. Fear, or at least a comparable emotion, 

might be as old as the animal kingdom itself. Aversive learning is therefore ancient and well 

conserved, even measurable in simply structured organisms, such as Aplysia (Myers and 

Davis, 2002; Barad, 2006; Tamminga, 2006). However, fear is a mixed blessing for humans 

and animals. On one hand it is protective and absolutely necessary for survival, on the other 

hand indiscriminate fear displaces many crucial activities in life. In humans fear is often 

learned during traumatic episodes with fearful stimuli and is enhanced by genetic 

predisposition (Tamminga, 2006). However, when the fearful situation is overwhelming or the 

mediating neural systems are dysregulated, fearful situations can be learned, but not 

relearned, creating forms of anxiety (e.g. post traumatic stress disorder, generalized anxiety 

disorder), a phenomenon of high clinical relevance (Morgan et al., 1995; Fyer, 1998; 

Gorman et al., 2000). Therefore, understanding the precise neural mechanisms underlying 

fear conditioning and extinction, as relearning, is necessary for developing selective and 

effective treatment for these psychopathologies accompanying the inability to extinguish 

intense fear memory (Milad et al., 2006). Studies in animals highlight the amydgala nuclei, 

the hippocampus and the PFC as the major brain regions orchestrating memory 

consolidation and extinction (Tamminga, 2006). 



6     Cognitive aspects in a mouse model of trait anxiety 99 

Classical fear conditioning occurs when an affectively neutral stimulus such as a tone 

(conditioned stimulus, CS) is paired with a noxious aversive stimulus such as footshock 

(unconditioned stimulus, US). During conditioning an association between CS and US is 

formed, which afterwards enables the previously neutral CS to elicit several fear-related 

behavioral changes such as freezing or potentiation of the acoustic startle response. The 

fear-eliciting properties of the CS in the absence of the US extinguishes after repeatedly 

presenting the CS, pointing to extinction as a process of relearning (Walker et al., 2002).  

Growing evidence suggests that fear memories are selectively sensitive to pharmacological 

intervention (Cai et al., 2006). Recent clinical studies showed that PTSD patients often 

reveal reduced cortisol levels (Yehuda, 2001) and daily cortisol administration reduced 

symptoms of traumatic memory in PTSD patients (Aerni et al., 2004). Moreover, D-

Cycloserine, a partial N-methyl-D-aspartate (NMDA) receptor agonist at the glycine-binding 

site of the NMDA receptor, has  been described to augment the extinction of conditioned fear 

(Ledgerwood et al., 2005; Cai et al., 2006; Lee et al., 2006). Based on these former findings, 

we applied both substances separately to pharmacologically manipulate extinction in HAB 

and CD1 mice. 
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6.2 Results 

 

Social recognition 

Indicated by the SR task, all three lines were able to recognize a known stimulus animal, 

indicated by their decline in olfactory investigation upon repeated exposure of the same 

stimulus (Figure 6.2, p<0.01, p<0.001 each line). Introduction of a novel stimulus significantly 

increased the sniffing time to the same amount as the first exposure (Figure 6.2, p<0.05, 

p<0.001). 

 

Figure 6.2: Social recognition task performed in HAB, NAB, and LAB male mice using 

ovariectomized females as stimulus animals. The first (F) stimulus animal was 

introduced to the experimental animal for four minutes and four times with an 

inter-exposure interval of 15min. All three groups showed a decline in 

olfactory investigation upon repeated presentation of the first animal, 

indicative of social recognition. Introduction of a novel (N) stimulus animal led 

to an olfactory investigation indistinguishable to the first introduction of the 

familiar animal. ***p<0.001 for HAB, **p<0.01 for NAB and LAB (same line); + 

p<0.05 LAB F4 vs. N, ++ p<0.01 HAB F4 vs. N: 

 

In the SD task, with an IEI of 15min, all three lines tested could discriminate between first 

and novel stimulus animal (Figure 6.3, p<0.1 for LAB, p<0.5 for NAB, p<0.01 for HAB). 

However, after 30min, LAB failed to distinguish between the two stimuli, whereas HAB and 

NAB could still discriminate (p<0.05 for NAB, p<0.01 for HAB). Interestingly, after 2h, only 
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HAB mice could discriminate between first and novel stimulus animal (p<0.05). This ability 

was vanished after 4h IEI even in HAB mice. 

 

 

 

Figure 6.3: Social discrimination test in HAB, NAB, and LAB male mice. Experimental 

animals have been introduced to the first (F) stimulus animal for 5min and 

after different interexposure intervals (IEIs), the F and a novel (N) stimulus 

were exposed at the same time. After 15min all three lines could discriminate 

between the two stimuli whereas, after 30min, LAB mice failed to discriminate. 

Interestingly, after 2h, only HAB animals could distinguish between the first 

and novel stimulus mouse. T p<0.01, * p<0.05 and **p<0.01 (vs. Novel 

stimulus). 
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Fear conditioning 

Behavioral analysis during habituation to novel environment (context A) revealed increased 

freezing and immobility time as well as decreased locomotion and rearing in HAB mice 

relative to NAB animals (Table 6.1). This decreased explorative behavior in HAB animals 

could also be detected during habituation to the context B before extinction training (Table 

6.2) and retention (Table 6.3).  

Table 6.1:  Behavioral parameters obtained in control HAB and NAB mice during 

habituation to the fear conditioning (context A) chamber. ***p<0.001. 

 

 

Table 6.2:  Behavioral parameters obtained in control HAB and NAB mice during 

habituation to an empty macrolone cage (context B) before extinction training. 

*p<0.05 and **p<0.01. 

 

***11.0 ± 1.02.5 ± 1.4Rearing (n)

***8.7 ± 0.90.6 ± 0.3Rearing time (sec)

n.s4.8 ± 0.54.4 ± 0.7Grooming time (sec)

***74.6 ± 3.440.1 ± 4.8Locomotion (sec)

***26.6 ± 3.267.1 ± 4.6Immobilitiy time (sec)

***0.0 ± 0.02.1 ± 0.9Freezing time (sec)

MWUNAB (mean ± SEM) HAB (mean ± SEM) 

StatisticsBefore acquisition

***11.0 ± 1.02.5 ± 1.4Rearing (n)

***8.7 ± 0.90.6 ± 0.3Rearing time (sec)

n.s4.8 ± 0.54.4 ± 0.7Grooming time (sec)

***74.6 ± 3.440.1 ± 4.8Locomotion (sec)

***26.6 ± 3.267.1 ± 4.6Immobilitiy time (sec)

***0.0 ± 0.02.1 ± 0.9Freezing time (sec)

MWUNAB (mean ± SEM) HAB (mean ± SEM) 

StatisticsBefore acquisition

*23.9 ± 1.715.1 ± 2.9Rearing (n)

**37.3 ± 4.113.5 ± 2.9Rearing time (sec)

n.s3.2 ± 1.64.4 ± 2.9Grooming time (sec)

**54.0 ± 2.372.6 ± 4.2Locomotion (sec)

n.s12.3 ± 3.117.3 ± 4.8Immobilitiy time (sec)

n.s.2.0 ± 0.92.7 ± 0.8Freezing time (sec)

MWU
NAB control 

(mean ± SEM)

HAB control   

(mean ± SEM)

StatisticsBefore extinction training

*23.9 ± 1.715.1 ± 2.9Rearing (n)

**37.3 ± 4.113.5 ± 2.9Rearing time (sec)

n.s3.2 ± 1.64.4 ± 2.9Grooming time (sec)

**54.0 ± 2.372.6 ± 4.2Locomotion (sec)

n.s12.3 ± 3.117.3 ± 4.8Immobilitiy time (sec)

n.s.2.0 ± 0.92.7 ± 0.8Freezing time (sec)

MWU
NAB control 

(mean ± SEM)

HAB control   

(mean ± SEM)

StatisticsBefore extinction training
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Table 6.3: Behavioral parameters obtained in control HAB and NAB mice during 

habituation to an empty macrolone cage (context B) before retention. T p<0.1 

and **p<0.01. 

 

 

Both HAB and NAB animals acquired the tone-shock association during conditioning to a 

similar extent (Figure 6.4 A, p<0.01 (lines, times, interaction), with HAB mice showing a fast 

acquisition (p<0.05, p<0.01, p<0.001 between the groups). During extinction training control 

NAB mice exhibited a decline in freezing response upon the repeated tone presentation, 

whereas control HAB mice showed impaired extinction (Figure 6.4 B, p<0.01 (lines, time), T 

p<0.1, p<0.05, p<0.01, p<0.001 between the groups). Moreover, control HAB mice revealed 

significant more freezing relative to NAB animals during retention (Figure 6.4 C, p<0.05 

(lines), T p<0.1, p<0.05 between the groups). 

 

 

 

 

 

 

 

 

 

 

 

**21.4 ± 2.88.8 ± 1.9Rearing (n)

**30.4 ± 5.08.1 ± 2.7Rearing time (sec)

n.s.5.6 ± 2.09.4 ± 3.0Grooming time (sec)

n.s.43.4 ± 1.749.1 ± 4.3Locomotion (sec)

T19.6 ± 3.630.9 ± 4.8Immobilitiy time (sec)

n.s.7.8 ± 1.811.1 ± 2.6Freezing time (sec)

MWU
NAB control 

(mean ± SEM)

HAB control   

(mean ± SEM)

StatisticsBefore extinction training

**21.4 ± 2.88.8 ± 1.9Rearing (n)

**30.4 ± 5.08.1 ± 2.7Rearing time (sec)

n.s.5.6 ± 2.09.4 ± 3.0Grooming time (sec)

n.s.43.4 ± 1.749.1 ± 4.3Locomotion (sec)

T19.6 ± 3.630.9 ± 4.8Immobilitiy time (sec)

n.s.7.8 ± 1.811.1 ± 2.6Freezing time (sec)

MWU
NAB control 

(mean ± SEM)

HAB control   

(mean ± SEM)

StatisticsBefore extinction training
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Figure 6.4: Fear conditioning in HAB and NAB male control animals. A) Both HAB and 

NAB animals acquired the tone-shock association during conditioning to a 

similar extent, with HAB mice showing a faster acquisition relative to NAB. B) 

During extinction training NAB exhibited a decline in freezing response upon 

the repeated tone presentation, whereas HAB mice showed impaired 

extinction. C) Moreover, HAB mice revealed significant more freezing 

compared to NAB animals during retention. A) ++ p<0.01 (lines, time, 

interaction), B) ++ p<0.01 (lines, time) and C) + p<0.5 (lines). T p<0.1, *p<0.5, 

**p<0.01 and ***p<0.001 vs. NAB (same tone). 
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D-Cycloserine and Cort treatment 

Behavioral parameters investigated during environmental habituation to context B, before 

extinction training and retention, did not reveal any relevant behavioral changes between 

HAB (control), HAB (D-cycl) or HAB (Cort) mice as well as for NAB (control), NAB (D-cycl) or 

NAB (Cort) animals (Table 6.4/6.5). 

 

Table 6.4:  Behavioral parameters obtained in A) HAB (control), HAB (D-cycl) or HAB 

(Cort) mice and B) NAB (control), NAB (D-cycl) or NAB (Cort) animals during 

habituation to an empty macrolone cage (context B) before extinction training. 

 

n.s.9.5 ± 1.513.5 ± 2.615.1 ± 2.9Rearing (n)

n.s.9.2 ± 1.610.9 ± 2.613.5 ± 2.9Rearing time (sec)

n.s.0.1 ± 0.10.6 ± 0.34.4 ± 2.9Grooming time (sec)

n.s.72.3 ± 4.778.0 ± 3.672.6 ± 4.2Locomotion (sec)

n.s.24.2 ± 4.619.8 ± 4.317.3 ± 4.8Immobilitiy time (sec)

n.s.6.4 ± 1.91.9 ± 0.82.7 ± 0.8Freezing time (sec)

KWH

HAB Cort

(mean ± 

SEM) 

HAB D-cycl

(mean ± 

SEM) 

HAB control

(mean ± 

SEM) 

StatisticsBefore extinction training

n.s.9.5 ± 1.513.5 ± 2.615.1 ± 2.9Rearing (n)

n.s.9.2 ± 1.610.9 ± 2.613.5 ± 2.9Rearing time (sec)

n.s.0.1 ± 0.10.6 ± 0.34.4 ± 2.9Grooming time (sec)

n.s.72.3 ± 4.778.0 ± 3.672.6 ± 4.2Locomotion (sec)

n.s.24.2 ± 4.619.8 ± 4.317.3 ± 4.8Immobilitiy time (sec)

n.s.6.4 ± 1.91.9 ± 0.82.7 ± 0.8Freezing time (sec)

KWH

HAB Cort

(mean ± 

SEM) 

HAB D-cycl

(mean ± 

SEM) 

HAB control

(mean ± 

SEM) 

StatisticsBefore extinction training

n.s.

n.s.

n.s.

*

n.s.

n.s.

KWH

Statistics

21.5 ± 3.425.5 ± 1.523.9 ± 1.7Rearing (n)

26.5 ± 4.033.5 ± 3.537.3 ± 4.1Rearing time (sec)

7.3 ± 3.03.8 ± 1.63.2 ± 1.6Grooming time (sec)

T (D-cycl
vs. Cort)

48.7 ± 3.260.2 ± 2.954.0 ± 2.3Locomotion (sec)

20.3 ± 4.88.4 ± 2.312.3 ± 3.1Immobilitiy time (sec)

6.5 ± 2.42.4 ± 1.22.0 ± 0.9Freezing time (sec)

MWU

NAB Cort

(mean ± 

SEM) 

NAB D-cycl

(mean ± 

SEM) 

NAB control

(mean ± 

SEM)

Before extinction training

n.s.

n.s.

n.s.

*

n.s.

n.s.

KWH

Statistics

21.5 ± 3.425.5 ± 1.523.9 ± 1.7Rearing (n)

26.5 ± 4.033.5 ± 3.537.3 ± 4.1Rearing time (sec)

7.3 ± 3.03.8 ± 1.63.2 ± 1.6Grooming time (sec)

T (D-cycl
vs. Cort)

48.7 ± 3.260.2 ± 2.954.0 ± 2.3Locomotion (sec)

20.3 ± 4.88.4 ± 2.312.3 ± 3.1Immobilitiy time (sec)

6.5 ± 2.42.4 ± 1.22.0 ± 0.9Freezing time (sec)

MWU

NAB Cort

(mean ± 

SEM) 

NAB D-cycl

(mean ± 

SEM) 

NAB control

(mean ± 

SEM)

Before extinction training

A)

B)
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Table 6.5:  Behavioral parameters obtained in A) HAB (control), HAB (D-cycl) or HAB 

(Cort) mice and B) NAB (control), NAB (D-cycl) or NAB (Cort) animals during 

habituation to an empty macrolone cage (context B) before retention.  

 

 

 

Freezing behavior during extinction behavior and retention remained unchanged after D-cycl 

and Cort treatment in HAB and NAB animals (Figure 6.5 and 6.6). 

 

 

 

 

 

n.s.8.1 ± 1.89.5 ± 2.58.8 ± 1.9Rearing (n)

n.s.7.0 ± 1.87.9 ± 2.08.1 ± 2.7Rearing time (sec)

n.s.9.5 ± 1.75.2 ± 1.49.4 ± 3.0Grooming time (sec)

n.s.51.6 ± 3.754.1 ± 5.049.1 ± 4.3Locomotion (sec)

n.s.32.6 ± 4.133.8 ± 4.930.9 ± 4.8Immobilitiy time (sec)

n.s.9.6 ± 1.99.1 ± 1.711.1 ± 2.6Freezing time (sec)

KWH

HAB Cort

(mean ± 

SEM) 

HAB D-cycl

(mean ± 

SEM) 

HAB control

(mean ± 

SEM) 

StatisticsBefore retention D6

n.s.8.1 ± 1.89.5 ± 2.58.8 ± 1.9Rearing (n)

n.s.7.0 ± 1.87.9 ± 2.08.1 ± 2.7Rearing time (sec)

n.s.9.5 ± 1.75.2 ± 1.49.4 ± 3.0Grooming time (sec)

n.s.51.6 ± 3.754.1 ± 5.049.1 ± 4.3Locomotion (sec)

n.s.32.6 ± 4.133.8 ± 4.930.9 ± 4.8Immobilitiy time (sec)

n.s.9.6 ± 1.99.1 ± 1.711.1 ± 2.6Freezing time (sec)

KWH

HAB Cort

(mean ± 

SEM) 

HAB D-cycl

(mean ± 

SEM) 

HAB control

(mean ± 

SEM) 

StatisticsBefore retention D6

n.s19.6 ± 2.422.2 ± 2.421.4 ± 2.8Rearing (n)

n.s28.0 ± 3.031.4 ± 4.630.4 ± 5.0Rearing time (sec)

n.s5.8 ± 1.56.4 ± 2.25.6 ± 2.0Grooming time (sec)

n.s46.4 ± 2.350.5 ± 3.543.4 ± 1.7Locomotion (sec)

n.s22.8 ± 4.616.1 ± 3.819.6 ± 3.6Immobilitiy time (sec)

n.s4.5 ± 1.03.3 ± 1.17.8 ± 1.8Freezing time (sec)

KWH

NAB Cort

(mean ± 

SEM) 

NAB D-cycl

(mean ± 

SEM) 

NAB control

(mean ± 

SEM) 

StatisticsBefore retention D6

n.s19.6 ± 2.422.2 ± 2.421.4 ± 2.8Rearing (n)

n.s28.0 ± 3.031.4 ± 4.630.4 ± 5.0Rearing time (sec)

n.s5.8 ± 1.56.4 ± 2.25.6 ± 2.0Grooming time (sec)

n.s46.4 ± 2.350.5 ± 3.543.4 ± 1.7Locomotion (sec)

n.s22.8 ± 4.616.1 ± 3.819.6 ± 3.6Immobilitiy time (sec)

n.s4.5 ± 1.03.3 ± 1.17.8 ± 1.8Freezing time (sec)

KWH

NAB Cort

(mean ± 

SEM) 

NAB D-cycl

(mean ± 

SEM) 

NAB control

(mean ± 

SEM) 

StatisticsBefore retention D6

A)

B)
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Figure 6.5:  A) Extinction training and B) retention in HAB (control), HAB (D-cycloserine) 

or HAB (corticosterone) mice. Freezing neither during extinction training nor 

during retention was altered by D-cycloserine or corticosterone treatment. 

 

 

Figure 6.6:  A) Extinction training and B) retention in NAB (control), NAB (D-cycloserine) 

or NAB (corticosterone) mice. No changes in freezing responses could be 

detected in the three groups during extinction training and retention after D-

cycloserine or corticosterone treatment. 
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6.3 Discussion 

The decline in olfactory investigation of the familiar stimulus animal upon repeated 

presentation, indicate that all three mouse lines were able to recognize a familiar 

conspecific. In the SD test, only at an IEI of 15min all three groups can significantly or at 

least with a trend distinguished between the novel and the first stimulus animal. With an IEI 

of 30min, however, this discrimination ability got lost in LAB mice. Interestingly, after 2h, only 

HAB animals were able to discriminate between novel and first stimulus animal. This ability 

was not maintained after an IEI of 4h in HAB mice. In the FC paradigm during habituation to 

the FC chamber, HAB mice revealed increased freezing and immobility time as well as a 

decreased explorative behavior in comparison to NAB animals. However, both groups 

similarly acquired the tone-shock association, as proven by their increase in freezing 

response due to repeated tone-shock events. Moreover, control HABs exhibited fast 

acquisition during FC, a deficit in extinction and increased freezing response upon tone 

presentation during the retention trial performed six days (d6) after conditioning, in 

comparison to control NAB mice. Neither behavior during habituation phase before the 

extinction trial nor extinction or retention at d6 was altered by treatment with Cort or D-

cycloserine in any line. 

 

Social recognition / Social discrimination 

By use of the modified experimental design for the SR test, it could be demonstrated that 

social memory was properly working in all three lines tested, indicated by the decline of 

olfactory investigation upon repeated presentation of the first stimulus animal. All animal 

revealed a learning curve (a decline in olfactory investigation), reflecting the ability to 

recognize a familiar mouse with an IEI of 15min. Moreover, as introduction of a novel 

stimulus was provoking similar exploration times as previously the first animal (during the 

first introduction), effects of tiredness or a lack of social interest are neglectable (Ferguson 

et al., 2000b; Bielsky et al., 2004). Additionally, as the total investigation times between the 

lines were very similar during the whole experiment, it is suggested that the perception and 

processing of olfactory cues per se is not impaired, possibly due to selection or inbreeding, 

in either line. An intact social memory is fundamental for social interaction in mammals 

(Bielsky and Young, 2004). Nevertheless, the specific neurochemical and neurophysiological 

processes underlying social recognition are not fully understood (Ferguson et al., 2002). 

Social memory, in contrast to other forms of learning such as contextual learning, is mainly 

based on the AVP and the OXT system (Ferguson et al., 2002). While OXT has been 
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described to be necessary for the initial processing, encoding and acquisition of social cues, 

AVP seem to be more related to memory consolidation, retention and recall of social 

memory (Young, 2002; Bielsky and Young, 2004; Winslow and Insel, 2004). Former results 

suggested that OXT reduces social memory abilities (Popik et al., 1991). However, it could 

be demonstrated that this finding is only true at high doses of OXT and opposite effects, 

improved social memory, has been shown for low doses of OXT (Popik et al., 1992; Dluzen 

et al., 1998b; Dluzen et al., 2000; Bielsky and Young, 2004). Moreover, studies in OXT 

knockout animals revealed impaired social recognition abilities, whereas other cognitive 

functions remained unchanged, implicating an involvement of OXT specifically in a social 

olfactory-based context (Dantzer et al., 1990; Winslow and Insel, 2004). As no differences in 

Oxt mRNA in the PVN (see 4.2.2) and additional OXT-containing brain region (Czibere, 

unpublished) were detectable in HAB, NAB, and LAB mice, together with their similar 

performance in the SR test, it is hypothesized that the OXT system is similarly and 

adequately functional in all three mouse lines.  

For almost four decades it has been known that AVP is centrally affecting learning and 

memory (Ferguson et al., 2002). AVPs importance in the context of learning was first 

described by David de Wied in the 1960s. In his landmark report, removal of the posterior 

and intermediate lobes of the pituitary resulted in the facilitation of extinction of shuttle box 

learning in rats. In turn, an effect that could be normalized by administration of a crude 

pituitary extract of AVP (Ferguson et al., 2002; Ring, 2005). Moreover, it has been 

demonstrated that icv administration of AVP facilitates social memory, whereas receptor 

antagonists impair memory retrieval (Dantzer et al., 1987; Le Moal et al., 1987). AVP´s 

effects on learning processes are mainly attributed to the LS, which receives 

vasopressinergic projections from the BNST and the MeA (De Vries and Buijs, 1983; Frank 

and Landgraf, 2008). The importance of both the LS and the BNST have been underlined by 

agonizing (e.g. via AVP administration) or antagonizing (e.g., via AVP antisense) the AVP 

system and thereby improving or impairing social memory performance (Dantzer et al., 

1988; van Wimersma Greidanus and Maigret, 1996; Frank and Landgraf, 2008). Our SR 

data indicate that, although HAB, NAB, and LAB significantly differ in their Avp expression 

and AVP amount in several brain regions (see 4.2.2), the amount of AVP, necessary to 

successfully perform a SR task, seem to be provided in all three lines. Nevertheless, the V1a 

receptor has been reported to be sufficient for normal social recognition and overexpression 

of the V1a receptor in the septum of rats is improving social discrimination abilities (Landgraf 

et al., 1995; Landgraf et al., 2003; Bielsky et al., 2005). Furthermore, it has been suggested 
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that the V1a receptor, beside V1b receptor with its weaker contribution, is mainly mediating 

memory processes within the brain (Wersinger et al., 2002). However, V1a receptor 

autoradiography in HAB and LAB mice did not reveal any differences in various brain areas 

analyzed (Bunck et al.), pointing to AVP itself rather than to its V1a receptor density as a 

critical variable. As AVP has been primarily implicated in memory consolidation, which 

requires a certain time and recall of cues (Winslow and Insel, 2004), it is not surprising that 

in the context of a simple SR task with its IEI of 15min, the role of AVP is less pronounced. 

Even in the SD task, which is more challenging for the experimental animals, as they have to 

discriminate between two stimulus mice presented at the same time, all three mouse lines 

are able to discriminate the novel from the first animal at an IEI of 15min. It could be 

demonstrated again that all three lines tested, independently of IEI, investigated a social cue 

to similar ratios, excluding aberrations in social interest and providing equal basis to store 

information. However, after 30min, LAB male mice failed to distinguish between novel and 

familiar stimuli. It is rather likely that with an increase IEI and difficult of the learning task per 

se, the involvement of AVP becomes more important, especially in terms of memory 

consolidation and recall.  

It has been demonstrated before that AVP is facilitating social memory with increasing IEI 

(Dantzer et al., 1987). As previously described, LAB animals revealed decreased Avp mRNA 

levels in various brain areas, including the PVN, SON, and CeA (see 4.2.2) and a deficit in 

AVP in the PVN and PVN-ascending axonal projections compared to HAB and NAB mice 

(see 4.2.3). According to the genetic underpinnings identified in LAB mice (Bunck et al.), it is 

rather likely that this AVP deficiency is not restricted to the already mentioned brain regions, 

but does also effect AVP-containing areas such as the LS, BNST, MeA or medial preoptic 

area, circuits that has been well described in social memory (Ferguson et al., 2002; Frank 

and Landgraf, 2008). The lack of endogenous AVP in these animals is not only related to 

their non-anxious phenotype (Bunck et al.), but leads to symptoms of cDI (Keßler et al., 

2007). Moreover, Brattleboro rats that have been reported to show symptoms of cDI (Kim 

and Schrier, 1998), similar to LAB mice, exhibited impaired social discrimination abilities in 

comparison to Long-Evans rats or HAB and NAB mice. Intra-septal administration of 

synthetic AVP in Brattleboro rats significantly improved social memory abilities (Engelmann 

and Landgraf, 1994). Similar to the observations in LAB mice and Brattleboro rats, the 

relationship between AVP deficits and cognitive impairment have been confirmed by a 

clinical study performed in patient suffering from familial neurohypophyseal DI. These 

subjects exhibited impaired retrieval  processes and substained attention in several learning 
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tests as well as fewer signs of agoraphobia (Bruins et al., 2006). Due to this finding and 

together with the results obtained in Brattleboro rats and LAB mice, it is suggested that the 

AVP deficit is effecting emotionality, body water homeostasis, and cognitive functions. 

Moreover, it has to be investigated in more detail, if this dysregulation of the AVP system, 

beyond social memory, is directly or indirectly impairing other forms of learning, such as 

spatial learning or FC. 

Similar to HAB rats (Frank and Landgraf, 2008), HAB mice outperformed LAB and normal 

anxiety animals in their abilities to remember a familiar conspecific. In HAB rats, a AVP 

promoter polymorphism has been identified and described to consequently lead to an AVP 

overexpression in these animals (Murgatroyd et al., 2004), whereas no genetic 

underpinnings have been found in HAB mice compared to CD1 animals (see 4.3). However, 

HAB mice (Muigg, in preparation) as well as HAB rats (Salome et al., 2004) showed a similar 

pattern of brain activation upon a mild stressor, measured by Fos-antibody staining. In HAB 

mice, these regions of hyperexcitability, beside others, include the LS, medial preoptic area, 

MeA, and BNST. This pattern points to an increased activation exactly in those neuronal 

circuit that are well described for AVP-mediated social memory (Ferguson et al., 2002). 

Moreover, a link between increased Fos expression and AVP has been demonstrated using 

c-fos antisense technique. Rats treated with c-fos antisense revealed reduced anxiety-

related behavior compared to control animals (Lu et al., 2000). The gene encoding AVP 

comprises a AP-1 sequence in its regulatory domain, indicating that this gene may be a 

potential target for Fos-mediated gene expression (Kovacs, 1998).  

Furthermore, this increased activation of specific brain regions, crucially involved in memory 

processes, has been confirmed even under basal conditions in HAB animals (Czisch, in 

preparation). Although the precise role of AVP, in terms of increased release of AVP, has to 

be investigated in more details, it is rather likely that a hyperactive AVP system in HABs is 

contributing, beside their hyperemotional phenotype, to their improved cognitive abilities. The 

data, derived from animal and clinical studies (Engelmann and Landgraf, 1994; Kim and 

Schrier, 1998; Grady and Keightley, 2002; Murgatroyd et al., 2004; Bruins et al., 2006; Frank 

and Landgraf, 2008; Keßler et al., 2007) strengthen the hypothesis of a striking association 

between cognition- and emotion-related phenomena, where AVP is rather likely to play a 

crucial role. However, the cellular mechanisms triggered by AVP during social recognition 

remain questionable and have to be investigated in more detail (Frank and Landgraf, 2008). 

Beside the well-known involvement of the AVP and the OXT system, there are several 

indications that dopaminergic and noradrenergic circuits contribute to social memory (Dluzen 



112 6     Cognitive aspects in a mouse model of trait anxiety 

  

and Kreutzberg, 1993; Guan et al., 1993; Guan and Dluzen, 1994; Ferguson et al., 2002). 

Indeed, both the nucleus accumbens and the LC as main regions synthesizing dopamine or 

noradrenaline have been depicted to be hyperactivated in HAB mice relative to NAB and 

LAB animals (Muigg, in preparation), highlighting both systems to be investigated in further 

studies. Moreover, it is rather likely that, according to their hyperemotional phenotype, these 

animals pay more attention to social cues accompanied by increased perception and 

processing of olfactory information which in turn, enables improved memory consolidation 

and recall. Indeed, depression has been reported to induce cognitive alteration with patient 

showing an increased focus on social problems, perception, and information processing of 

their “social” environment (Watson and Andrews, 2002). Furthermore, depressed patients 

revealed hypoactivation in areas involved in higher cognitive function (e.g. PFC), whereas 

structures mediating emotional and stress responses  (e.g. amygdala) were abnormally 

activated during social cognition (Grady and Keightley, 2002). Nevertheless, it has not been 

excluded that cognitive alterations in turn provide the neurobiological basis to develop 

various psychopathologies. One suggestion, derived from some instances of clinical anxiety, 

is the hyperactivation of the septo-hippocampal system, which produces cognitive 

dysfunction (McNaughton, 1997).   

By use of the SR test, it could be demonstrated that social recognition of one stimulus is 

adequately working in all three mouse lines tested. The more challenging SD test, however, 

revealed significant differences in cognitive abilities between the lines. Therefore, it is 

suggested that both tests should be applied to appropriately investigate general social 

recognition abilities and more challenging social discrimination abilities in rodents to reveal 

possible alterations in social memory. 

 

Fear Conditioning 

As LAB mice already exhibited impaired cognitive abilities in the SD task and preliminary 

experiments implicated that these animals do not show any freezing response during 

acquisition (Singewald, unpublished), they were not included in the present FC paradigm. 

During 2min habituation to the FC chamber, and similarly to the novel cage observations 

(see 4.2.1) HAB mice revealed increased freezing and immobility time due to novel 

environment, whereas the locomotor activity and the number and time of rearing were 

significantly decreased compared to NAB animals. These data are in accordance with former 

phenotyping data (see 4.2.1) which underline the HABs´ suppression of locomotor activity 

and explorative behavior in various tests, reflecting one dimension of their hyperemotional 
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status (Henderson et al., 2004). This anxiety-based suppression of explorative behavior in 

HAB mice is constantly measurable at any experimental day investigated, excluding effects 

of context-habituation in these animals. This influence of hyperemotionality on behavior is 

additionally indicated by the HABs´ increased freezing response upon first tone presentation. 

It is rather likely that these animals, according to their genetic background, reveal a more 

sensitive or excitable perceptual-response system, which in turn leads to a hyper-

interpretation of environmental cues. As it has been suggested before for social memory, 

this seems to be additionally true for non-social cues, such as novel environment or even a 

tone. Indeed, exaggerated responses to stimulation have been reported from patients 

suffering from anxiety disorders underlying hyperexcitability of certain brain structures 

(Rosen and Schulkin, 1998). Research investigating the neural basis of emotion, including 

lesion, pharmacological and neurophysiological studies, has identified the amygdala as one 

important structure in the circuits that underlie the central state of conditioned and 

unconditioned fear (Chen et al., 2006; Kim and Jung, 2006). The amygdala receives 

multimodal sensory input associated with danger and sends in turn processed signal to other 

brain regions to generate defensive behavioral responses (Blanchard and Blanchard, 1972; 

Kalin et al., 2001; Etkin et al., 2004). Anatomically, the amygdala receives input from diverse 

brain areas (e.g. thalamus, neocortex, olfactory cortex, hippocampus) and consequently 

mediates fear responses in a variety of brain regions (e.g. BNST, PAG for freezing, lateral 

hypothalamus for sympathetic activation (LeDoux, 2000; Kim and Jung, 2006).  

Although the role of the amygdala in detecting and responding to threatening stimuli is well 

recognized, the contribution of each amydala nucleus remains poorly understood. The lateral 

(LA) and the BLA nuclei are thought to be the primary sites for sensory input and the place 

for the formation of the US-CS association. The CeA nucleus, in contrast, is the primary site 

for output (LeDoux, 1995, 2000; Sah et al., 2003; Lanuza et al., 2004; Kim and Jung, 2006). 

Freezing as one example for defensive behavior occurs upon threatening stimuli or after 

conditioning, with the LA, BLA, and CeA being required for acquisition and expression of 

conditioned behavior (Muller et al., 1997; Gale et al., 2004; Chen et al., 2006). Indicated by 

the Fos-antibody staining, MEMRI or ISH, the amygdala nuclei in HAB mice were constantly 

highlighted in terms of over-expression of Avp or Crh, alteration in synaptic 

neurotransmission or neuronal activation under basal conditions as well as after mild stress 

exposure (Czisch, Muigg, in preparation; see 4.2.2). Therefore, it is strongly suggested that 

in particular these brain areas have to be investigated in detail in order to encode the 

underlying neurotransmitter systems and molecular mechanisms contributing to the 



114 6     Cognitive aspects in a mouse model of trait anxiety 

  

increased hyper-emotional behavioral responses as well as the fast acquisition observed in 

HAB animals. However, independent of the emotional status, both groups, HAB and NAB, 

similarly acquire the tone-shock association, indicated by a similar increase in freezing 

response to repeated tone-shock events. 

NAB animals, during extinction training, exhibited a decline in the conditioned behavior, 

measured by the reduction in freezing, upon repeated tone presentation. This decline in 

freezing response by repeated presentation of the CS (in absence of US) indicates  short- 

term extinction, which is believed to represent new learning, the CS is no longer associated 

with the US (Kim and Jung, 2006). However, HAB mice, relative to NAB animals, revealed 

impaired extinction during extinction training one day after conditioning, indicated by a lack 

of reduction of the conditioned behavior throughout the CS presentations.  

Several hypotheses can be suggested to explain this phenomenon observed in HAB 

animals. As “resistance to extinction” has been described to be a sensitive measure of the 

strength of acquisition (Annau and Kamin, 1961; Myers and Davis, 2002), it is conceivable 

that, due to the increased emotional response together with the fast acquisition in HAB mice, 

the storage of aversive experience is strengthened, thus consequently impairing extinction.  

In the last decades an enormous scientific effort has been undertaken to uncover the 

neuronal mechanisms underlying the phenomenon of extinction. Lesion, 

electrophysiological, molecular, and pharmacological studies suggest, among others, the 

cholinergic, dopaminergic, noradrenergic, serotinergic, opioid, gabaergic, glutamatergic, and 

vasopressinergic systems, as well as intracellular signaling and protein synthesis as major 

players involved in extinction processes (Manson, 1983; Myers and Davis, 2002; Bruchey et 

al., 2006). As the possible mechanisms underlying the phenomena of impaired extinction are 

currently under investigation, only first hypotheses will be introduced. 

The PFC has been proposed as an essential brain area for extinction (Morgan et al., 1993). 

In a general sense, this proposal makes sense considering the role of the PFC in the 

inhibitory control of maladaptive behavior. When a CS no longer signals a US, it would be 

beneficial for an animal to refrain from committing previously adaptive, but now unnecessary 

behavior (Kim and Jung, 2006). In this regard, the PFC is known to project directly to a 

number of subcortical brain structures, including amydgala, PAG, and hypothalamus, 

exerting inhibitory influences (Myers and Davis, 2002; Akirav et al., 2006; Bruchey et al., 

2006; Kim and Jung, 2006). Studies on neuronal activation under basal and after mild stress 

exposure revealed a pattern of hyperexcitability in HAB mice in various brain regions, 

including the amygdala, PAG, nucleus accumbens, or the LS (as described in the previous 
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chapters), whereas, in contrast, exclusively the PFC exhibited hypo-activation (Czisch, 

Muigg, in preparation). According to these data and the previous findings concerning hyper-

emotionality and freezing responses during extinction training, it is suggested that an 

impaired PFC-mediated inhibition of subcortical regions in HAB animals is leading to an 

impaired control of maladaptive behavior and extinction. Moreover, these regions, mainly the 

PFC and amygdala, have additionally been implicated in psychiatric patient in association 

with cognitive alterations (LaBar et al., 1998; Grady and Keightley, 2002; Milad et al., 2006). 

Therefore, our primary focus is the axis between PFC and subcortical regions, especially the 

amygdala nuclei, to uncover neurotransmitter systems and molecular underpinnings 

contributing to the HAB-specific phenotype. Moreover, AVP and CRH have been well 

described (see previous chapters) to contribute to the animals´ behavior in the HAB/LAB 

mouse model, and both systems have been broadly discussed in the modulation of learning 

and extinction (Manson, 1983; Koob et al., 1986; Radulovic et al., 1999; Croiset et al., 2000; 

Radulovic et al., 2000; Risbrough et al., 2003; Debiec, 2005; Stoppel et al., 2006). Moreover, 

human studies in depressed patients and in patients suffering from PTSD suggest both 

neuropeptides to be major players in the inability to erase negative experiences and 

traumatic events (Manson, 1983; Yehuda, 2001; Grady and Keightley, 2002). Therefore, 

further studies will focus on the molecular and pharmacological intervention of these 

systems to rescue the observed phenotypic differences at an emotional and cognitive level. 

Furthermore, electrophysiological studies have to be investigated to uncover differences in 

long-term potentiation, neuronal activation and possible neurotransmitter system mediating 

changes in cognitive abilities. Moreover, a current microarray study performed in HAB, NAB, 

and LAB mice includes, among other brain areas, the PFC, amygdala nuclei, and the PVN. 

This broad screening of expression profiles in various brain regions will give rise to many 

new candidate genes worth to be investigated as possible major contributors underlying 

cognitive alterations. 

To avoid false positve results, several control experiments have to be performed to 

distinguish between behavioral responses caused by the hyper-emotionality in HAB mice 

and alterations in extinction. As HAB mice do not only show increased freezing response 

during exposure to a novel environment as well as to tone presentation without shock 

experience, it is necessary to study the animals´ behavioral response upon repeated tone 

presentations on consequent days. These experiments are necessary, as it can not be 

determined, if the increased freezing response in HAB mice during retention (d6), is 
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reflecting an impairment of long-term extinction or an exaggerated interpretation of the tone 

per se in these animals.  

Numerous human and animal studies report a successful improvement of extinction upon 

administration of D-cycl or Cort, by supporting relearning (Walker et al., 2002; Ledgerwood 

et al., 2005; Bertotto et al., 2006; Cai et al., 2006; Davis et al., 2006; Kim and Jung, 2006; 

Lee et al., 2006; Yang et al., 2006), whereas others failed to show any effects (Guastella et 

al., 2007). However, both HAB and NAB mice did not reveal any changes in behavior during 

habituation or during extinction training or retention in comparison to the respective control 

group. As previous investigations are primarily focusing on rats as experimental animal, the 

drug concentrations, number, time and locus of administration are strongly varying between 

the studies, this issue of rescuing impaired extinction via D-cycl or Cort in HAB/NAB mice 

has to be investigated in more detail. 

Taken together, as we are dealing with animals which highly differ in their emotional status, it 

is certainly difficult to separate their emotional response from those reflecting alterations in 

cognition. Although it is quite clear that the brain circuits contributing to both, anxiety and 

cognition, are rather similar or at least overlapping to a certain amount (Landgraf and 

Wigger, 2002; Kalueff, 2007), it is important to use adequate tests that clearly separates 

emotional from cognitive parameters. 

Concerning social memory the increased social discrimination ability in HAB animals seem to 

be advantageous, possibly indicating the animals´ increased need to communicate in a 

protected environment. In a clinical context however, HAB mice, reflect the situation in 

psychiatric patients, who are unable to erase traumatic events (Yehuda, 2001). 
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7 Conclusion and Perspectives 

By selective inbreeding, we succeeded in generating two mouse lines that significantly differ 

in their innate emotionality. This divergence is not only restricted to the anxiety-related 

behavior measured in the EPM test, used as the selection criterion, but includes additional 

tests reflecting anxiety in rodents. Moreover, differences in explorative and depression-like 

behavior have been depicted. This is an intriguing finding as no selection pressure was 

exerted on other behavioral criteria throughout the years. Similarly to HAB rats, HAB mice 

revealed comorbid depression-like behavior and, therefore, resemble the clinical situation of 

high comorbidity between these psychopathologies. Moreover, alterations in locomotor 

activity and explorative behavior, indicated in several behavioral tasks, have been identified 

as indicators reflecting various cross-test dimensions of anxiety. 

 

 

Figure 7.1:  Various criteria and their interplay involved in shaping the behavioral 

phenotype (Kalueff, 2007). 

 

As clearly demonstrated (Fig. 7.1), the behavioral phenotype is determined by a variety of 

intermingling criteria, which have in part been scrutinized in several studies in our mouse 

model.  
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Since selective breeding enhances the accumulation of genes relevant for the respective 

phenotype, several candidates, well described in the regulation of emotionality at the level of 

the HPA axis, cellular detoxification, and synaptic neurotransmission have been investigated. 

Our studies highlighted AVP, CRH, Glx1, and Syt4 as potential mediators contributing to the 

observed behavioral differences. AVP has been identified to be under-expressed in several 

brain regions of LAB mice associated with both symptoms of cDI and non-anxious and non-

depression-like behaviors. In addition, several genetic polymorphisms have been identified 

that are likely to play a critical role in the AVP under-expression of these animals. 

Subsequently, molecular techniques, such as luciferase assays, will help to identify the 

impact of single as well as combined genetic polymorphisms on the gene expression of 

AVP. Moreover, it is planned to “rescue” the LAB-specific phenotype by chronic 

administration of AVP via osmotic minipump implantation.  

In contrast to the AVP gene, the highly anxious HAB animals displayed an over-expression 

of CRH in various brain areas. The significance of CRH over-expression in mediating the 

HAB-specific phenotype was pharmacologically validated via CRH receptor 1 antagonist 

administration. Future chronic treatment with this antagonist will test the hypothesis of an 

even increased anxiolytic effect, highlighting this type of receptor antagonist as a suitable 

target for clinical studies. As no genetic underpinnings could be identified by sequencing the 

CRH gene in the HAB/LAB model, further research has to focus on synaptic input, 

transcription factors and gene interactions to unravel the over-expression in HAB mice.  

Additionally, synaptic release, indicated by Syt4 expression, was found to be altered in both 

inbred mouse lines in opposite directions, indicating a dysregulation in both extremes of trait 

anxiety. To assess synaptic neurotransmission in more detail, electrophysiological 

experiments are currently under investigation to identify specific neurotransmitter systems 

affected by the alterations in synaptic release. Moreover, the genetic background underlying 

the variation in presynaptic vesicle fusion has to be examined in more detail. Furthermore, 

glyoxalase1 (Glx1), a cellular detoxification enzyme, has been identified to be differently 

expressed at already very early developmental stages in association with the phenotypic 

divergence. These data allow us to investigate gene expression determined by several 

polymorphisms identified, shortly after birth. Thus, Glx1 might act as a biomarker, suitable 

for the early prediction of pathological anxiety (as it can be easily measured in blood 

samples).  

However, given that higher brain functions are polygenic, with single genes having a minor 

impact on the phenotypic specificity and being hard to detect, it is rather unlikely that only a 
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few genes are contributing to the hyper- and hypoemotionality observed in these animals. 

Therefore, the main focus is still on the identification of the orchestra of genes underlying 

these behavioral extremes. Extensive microarray studies in different brain areas as well as 

comprehensive proteomics studies will help to approach these targets. Moreover, a currently 

investigated genome-wide SNP screening performed in a freely-segregating F2 panel will 

assess polymorphisms differing between HAB and LAB mice and unravel new goals for 

gene-based analyzes. By using these unbiased approaches, a variety of novel targets, 

including specific brain regions, neuropeptides, neurotransmitter systems and accompanying 

receptors will be detected. Additionally, these findings are suited to reveal the primary focus, 

beside the already identified candidates, which might explain the superior social 

discrimination abilities as well as the delayed extinction observed in HAB animals. 

Given the fact that there is a continuous interaction between the genetic blueprint and the 

environment, it is necessary to attend this interplay. Indeed, a cross-fostering study revealed 

differences in maternal behavior in HAB and LAB mothers, but this divergence in rearing 

styles did not induce any behavioral alterations in HAB and LAB offspring (Keßler, in 

preparation). However, raising both mouse lines in an enriched environment altered anxiety-

related behavior exclusively in HAB mice (Baier, Bunck, Touma, unpublished). Interestingly, 

although the behavioral phenotypes seem to be strongly genetically determined in these 

animals, environmental factors are still able to shape the phenotype. This finding 

emphasizes research on epigenetic factors contributing to this phenomenon of specific 

interest. 

Moreover, as stressors are strongly influencing the behavioral phenotype lifelong, a current 

study is focusing on stress-vulnerability in the HAB/LAB mouse model by using a chronic 

social defeat paradigm. 

Taken together, the mouse model presented in the current work provides a unique 

opportunity to investigate anxiety as a multidimensional domain. It covers many clinical core 

symptoms of anxiety disorders at different levels, including behavior, gene expression, and 

cognitive alterations. Therefore, it provides a valuable and promising tool to elucidate the 

neurobiological basis of the continuum from vital to pathological anxiety. Moreover, it might 

be helpful in the identification of genes and proteins serving as diagnostic and therapeutic 

targets relevant for both anxiety and cognitive dysregulation. 
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8 Lists 

8.1 List of abbreviations 

 

ACTH Adrenocorticotropic hormone 

am ante meridiem 

ANOVA Analysis of variance 

AVP Arginine-vasopressin 

BDNF Brain-derived neurotrophic factor 

BLA Basolateral amygdala 

BNST Bed nucleus of the stria terminalis 

bp base pairs 

cAMP Cyclic adenosine monophosphate 

cDI Central diabetes insipidus 

cDNA Complementary DNA 

CeA Central amygdala 

CNS Central nervous system 

Cort Corticosterone 

Cp Crossing point 

SCN Suprachiasmatic nucleus 

CRH Corticotropin-releasing hormone 

CRHR1 Corticotropin-releasing hormone receptor 1 

CRHR2 Corticotropin-releasing hormone receptor 2 

CS Conditioned stimulus 

CSF Cerebrospinal fluid 

DaLi Dark-light box  

D-cycl D-Cycloserine 

DMP696 (4-(1,3-Dimethoxyprop-2-ylamine)-2,7-dimethyl-8-(2,4-

dichlorophenyl)-pyrazolo[1,5-a]-1,3,5-triazine 

EPM  Elevated plus-maze  

F First, familiar stimulus animal 

F1 Offsprings of reciprocal cross-mated HAB and LAB mice 

FC Cued fear conditioning 

FS Forced swim  



8     Lists 121 

GABA γ-aminobutyric-acid 

Glx1 Glyoxalase1 

GR Glucocorticoid receptor 

HAB High anxiety-related behavior 

HNS Hypothalamic-neurohypophyseal system 

HPA Hypothalamo-pituitary-adrenocortical 

i.p. Intraperitoneal 

icv Intracerebroventricular 

IEI Inter-exposure interval 

ISH In situ hybridization 

KWH Kruskal-Wallis H-test 

LAB Low anxiety-related behavior 

LC  Locus coeruleus 

LS Lateral septum 

MAO Monoamine oxidase 

MeA Medial amygdala 

MEMRI Manganese-enhanced resonance imaging 

MR Mineralocorticoid receptor 

mRNA Messenger ribonucleic acid 

MWU Mann-Whitney U-test 

N Novel stimulus animal 

NAB Normal anxiety-related behavior 

NC Novel cage (behaviour) 

NF-1 Nuclear factor 1 

NMDA N-methyl-D-aspartate 

NRI Noradrenaline reuptake inhibitor 

OA Open arm exposure 

OXT Oxytocin 

pnd Postnatal day 

PAG Periaqueductal grey 

PFC Prefrontal cortex 

pm post meridiem 

POMC Proopiomelanocortin 

PTSD Posttraumatic stress disorder 
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PVN Paraventricular nucleus 

qRTPCR Quantitative real-time polymerase chain reaction 

LA Lateral amygdala 

RIA Radioimmunoassay 

SAM Sympathetic-adrenomedullary 

SCN Suprachiasmatic nucleus 

SD Social discrimination  

SNP  Single nucleotide polymorphism 

SNRI Serotonin and Noradrenaline reuptake inhibitor 

SON Supraoptic nucleus 

SR Social recognition  

SSRI Selective serotonin reuptake inhibitor 

SYT4 Synaptotagmin4 

TST  Tail-Suspension test 

US Unconditioned stimulus 

USV Ultrasonic vocalization  

V1a AVP receptor 1a 

V1b AVP receptor 1b 

WB Westernblot 
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nucleus (PVN), PVN-ascending axonal projections to the median 
eminence, suprachiasmatic nucleus (SCN), and supraoptic 
nucleus (SON) in HAB and LAB male mice under basal 
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Figure 4.17: Immunohistochemistry (IHC) of arginine-vasopressin (AVP): Semi-
quantification of the relative size of AVP-labeled area A) within the 
paraventricular nucleus (PVN) and B) of AVP-containing axonal 
projections descending from the PVN measured in HAB, NAB, 
and LAB male mice under basal conditions. LAB animals 
exhibited decreased amount of AVP in the PVN as well as in PVN-
ascending axonal projections compared to HAB and NAB mice. 
**p<0.01 and ***p<0.001 for three group comparison. Post hoc 
comparisons *p<0.01, **p<0.01, and ***p<0.001. ................................60 

Figure 4.18: Immunohistochemistry (IHC) of corticotropin-releasing hormone 
(CRH): Semi-quantification of the relative CRH amount within the 
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under basal conditions. HAB mice showed a tendency towards 
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Figure 4.21:  Arginine-vasopressin (Avp) gene sequence of HAB and LAB mice. 
Polymorphic sites are indicated with positions from transcription 
start (-1 to -2600bp) in the promoter region (two SNP´s and 
deletion in LABs); within the Avp coding sequence also from 
transcription start (1 to 1960bp; three SNP´s); in the intergenic 
region between Avp and Oxt from the end of the last exon (+1 to 
+2600bp; three SNP´s). Exons and untranslated regions (UTRs) 
are indicated by boxes (exons shaded, UTRs completely filled 
black or white)(Bunck et al.) . ...............................................................67 

Figure 5.1:  The glyoxalase system. This system catalyzes the conversion of 
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Figure 5.2: Anxiety-related behavior measured in the ultrasonic vocalization 
(USV) test on postnatal day (pnd) 5 in HAB, NAB, and LAB pups. 
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Figure 5.4: Bodyweight and glyoxalase1 (Glx1) protein levels, measured by 
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B) From pnd5 to 12 both lines exhibited a Cort increase. A) $ 
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