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Abstract

Recursive partitioning methods from machine learning are being widely applied in many scientific

fields such as, e.g., genetics and bioinformatics. The present work is concerned with the two main

problems that arise in recursive partitioning, instability and biased variable selection, from a

statistical point of view. With respect to the first issue, instability, the entire scope of methods

from standard classification trees over robustified classification trees and ensemble methods such

as TWIX, bagging and random forests is covered in this work. While ensemble methods prove to

be much more stable than single trees, they also loose most of their interpretability. Therefore an

adaptive cutpoint selection scheme is suggested with which a TWIX ensemble reduces to a single

tree if the partition is sufficiently stable. With respect to the second issue, variable selection

bias, the statistical sources of this artifact in single trees and a new form of bias inherent in

ensemble methods based on bootstrap samples are investigated. For single trees, one unbiased

split selection criterion is evaluated and another one newly introduced here. Based on the results

for single trees and further findings on the effects of bootstrap sampling on association measures,

it is shown that, in addition to using an unbiased split selection criterion, subsampling instead of

bootstrap sampling should be employed in ensemble methods to be able to reliably compare the

variable importance scores of predictor variables of different types. The statistical properties and

the null hypothesis of a test for the random forest variable importance are critically investigated.

Finally, a new, conditional importance measure is suggested that allows for a fair comparison in

the case of correlated predictor variables and better reflects the null hypothesis of interest.



Zusammenfassung

Die Anwendung von Methoden des rekursiven Partitionierens aus dem maschinellen Lernen ist

in vielen Forschungsgebieten, wie z.B. in der Genetik und Bioinformatik, weit verbreitet. Die

vorliegende Arbeit setzt sich aus statistischer Sicht mit den zwei Hauptproblemen des rekursiven

Partitionierens, Instabilität und verzerrter Variablenselektion, auseinander. Im Hinblick auf das

erste Thema, die Instabilität, wird das gesamte Methodenspektrum von herkömmlichen Klassi-

fikationsbäumen über robustifizierte Klassifikationsbäume und Ensemble Methoden wie TWIX,

Bagging und Random Forests in dieser Arbeit abgedeckt. Ensemble Methoden erweisen sich im

Vergleich zu einzelnen Klassifikationsbäumen als deutlich stabiler, verlieren aber auch größtenteils

ihre Interpretierbarkeit. Deshalb wird ein adaptives Bruchpunkt-Selektionskriterium vorgeschla-

gen, mit dem ein TWIX-Ensemble auf einen einzelnen Klassifikationsbaum reduziert wird, falls

die Partition stabil genug ist. Im Hinblick auf das zweite Thema, die verzerrte Variablenselektion,

werden die statistischen Ursachen für dieses Artefakt in einzelnen Bäumen und eine neue Form

von Verzerrung, die in Ensemble Methoden auftritt die auf Bootstrap-Stichproben beruhen, un-

tersucht. Für einzelne Bäume wird ein unverzerrtes Selektionskriterien evaluiert und ein anderes

hier neu eingeführt. Anhand der Ergebnisse für einzelne Bäume und weiteren Untersuchungen zu

den Auswirkungen von Bootstrap-Stichprobenverfahren auf Assoziationsmaße wird gezeigt dass,

neben der Verwendung von unverzerrten Selektionskriterien, Teilstichprobenverfahren anstelle

von Bootstrap-Stichprobenverfahren in Ensemble Methoden verwendet werden sollten, um die

Variable Importance-Werte von Prädiktorvariablen unterschiedlicher Art zuverlässig vergleichen

zu können. Die statistischen Eigenschaften und die Nullhypothese eines Test für die Variable

Importance von Random Forests werden kritisch untersucht. Abschliessend wird eine neue, be-

dingte Variable Importance vorgeschlagen, die im Fall von korrelierten Prädiktorvariablen einen

fairen Vergleich erlaubt und die interessierende Nullhypothese besser widerspiegelt.
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Scope of this work

This work is concerned with a selection of statistical methods based on the principle of

recursive partitioning: classification and regression trees (termed classification trees in the

following for brevity, while most results apply straightforwardly to regression trees), robust

classification trees and ensemble methods based on classification trees.

From a practical point of view these methods have become extremely popular in many

applied sciences, including genetics and bioinformatics, epidemiology, medicine in general,

psychiatry, psychology and economics, within a short period of time – primarily because

they “work so well”. From a statistical point of view, on the other hand, recursive parti-

tioning methods are rather unusual in many respects; for example they do not rely on any

parametric distribution assumptions.

Leo Breiman, one of the most influential researchers in this field, has promoted “algorithmic

models” like classification trees and ensembles methods in the late years of his career

after he had left academia to work as a consultant and made the experience that current

statistical practice has “Led to irrelevant theory and questionable scientific conclusions;

Kept statisticians from using more suitable algorithmic models; Prevented statisticians

from working on exciting new problems” (Breiman, 2001b, pp. 199–200).

Today, the scientific discussion about the legitimacy of algorithmic models in statistics

continues, as illustrated by the contribution of Hand (2006) in Statistical Science with the

provocative title “Classifier Technology and the Illusion of Progress” and the multitude of

comments that were triggered by it. Of these comments, the most consensual one may be

the reply of Jerome Friedman, another highly influential researcher in the field of statistical
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learning, who states: “Whether or not a new method represents important progress is, at

least initially, a value judgement upon which people can agree or disagree. Initial hype can

be misleading and only with the passage of time can such controversies be resolved. It may

well be too soon to draw conclusions concerning the precise value of recent developments,

but to conclude that they represent very little progress is at best premature and, in my

view, contrary to present evidence” (Friedman, 2006, p. 18).

The “evidence” that Friedman refers to can be found in several benchmark studies showing

that the ensemble methods bagging and random forests, that are considered here, together

with other computerintensive methods like boosting (Freund and Schapire, 1997) and sup-

port vector machines (Vapnik, 1995), belong to the top performing statistical learning tools

that are currently available (Wu et al., 2003; Svetnik et al., 2004; Caruana and Niculescu-

Mizil, 2006). They outperform traditional statistical modelling techniques in many situa-

tions – and in some situations traditional techniques may not even be applicable, as in the

case of “small n large p” problems that arise, e.g., in genomics when the expression level

of a multitude of genes is measured for only a handful of subjects. Another advantage of

these methods, as compared to other recent approaches that can be applied to “small n

large p” problems such as the LASSO (cf., e.g., Hastie et al., 2001), the elastic net (Zou

and Hastie, 2005), and the recent approach of Candes and Tao (2007), is that no linearity

or additivity assumptions have to be made.

Still, many statisticians feel uncomfortable with any method that offers no analytical way

to describe beyond intuition why exactly it “works so well”. In the meantime, Bühlmann

and Yu (2002) have given a rather thorough statistical explanation of bagging, and Lin

and Jeon (2006) have explored the properties of random forests by placing them in an

adaptive nearest neighbors framework. However, both approaches are based on several

simplifying assumptions (for example, linear models are partly used as base learners instead

of classification trees in Bühlmann and Yu, 2002), that limit the generalizability of the

results to the methods that are actually implemented and used by applied scientists.

In addition to these analytical approaches, several empirical studies have been conducted
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to try to help our understanding of the functionality of algorithmic models. Most of these

studies are based only on a few, real data sets that happen to be freely available in some

machine learning repository. It is important to note, however, that these data sets are

not a representative sample from the range of possible problems that the methods might

be applied to, and that their characteristics are unknown and not testable (for example

assumptions on the missing value generating mechanism). Therefore any conclusions drawn

from this kind of empirical study may not be reliable.

A very prominent example for a premature conclusion resulting from this kind of research

is the study referred to in Breiman (2001b), where it is stated (and has been extensively

cited ever since) that random forests do not overfit. This statement – and especially the

fact that it is based on a selection of a few real data sets with very particular features,

that enhance the impression that random forests would not overfit – is heavily criticized

by Segal (2004).

As opposed to such methodological “case studies”, here we want to rely on analytical results

as far as possible (that are available, e.g., for the optimally selected statistics and unbiased

entropy estimates suggested as split selection criteria in some of the following chapters).

When analytical results are impossible to derive for the actually used method (as in the

case of ensemble methods based on classification trees), however, we follow the rationale

that valid conclusions can only be drawn from well designed and controlled experiments –

as in any empirical science.

Only such controlled simulation experiments allow us to test our hypotheses about the

functionality of a method, because only in a controlled experiment do we know what is

“the truth” and what is “supposed to happen” in each condition. Therefore, throughout

the course of this work, analytical results will be presented in the early sections where

feasible, while well planned simulation experiments will be applied in the later sections,

where the functionality of complex ensemble methods is investigated and improved by

promoting an alternative resampling scheme and suggesting a new measure for reliably

assessing the importance of predictor variables.
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As illustrated in the chart at the end of this section, the outline of this work follows two

major issues, that have been shown to affect reliable prediction and interpretability in

classification trees and their successor methods: instability and biased variable selection.

When focusing on variable selection we will see that in the standard implementations,

variable selection in classification trees is unreliable in that predictor variables of certain

types are preferred regardless of their information content. The reasons for this artefact

are very fundamental statistical issues: biased estimation and multiple testing, as outlined

in Chapter 2. In single classification trees these issues can be solved by means of adequate

split selection criteria, that account for the sample differences in the size and the number

of candidate cutpoints. The evaluation of such a split selection criterion is demonstrated

in Chapter 3.

However, when the concepts inherent in classification trees are carried forward to robust

classification trees or ensembles of classification trees, deficiencies in variable selection

are carried forward, too, and new ones may arise. For robust classification trees this is

illustrated, and an unbiased criterion is presented in Chapter 4.

From Chapter 5 we will focus on the second issue of instability, that can be addressed

by means of robustifying the tree building process or by constructing different kinds of

ensembles of classification trees. When abandoning the well interpretable single tree models

for the more stable and thus better performing ensembles of trees, there is always a tradeoff

between stability and performance on one hand and interpretability on the other hand.

A lack of interpretability can crucially affect the popularity of a method. The steep rise of

some of the early so-called “black box” learners, such as neural networks (first introduced

in the 1980s; cf, e.g., Ripley, 1996, for an introduction), seems to have been followed by a

creeping recession – mainly because their decisions are not communicable, for example, to

a customer whose application for a loan is rejected because some algorithms classifies him

as “high risk”.

As opposed to that, single classification trees owe part of their popularity to the fact



x Scope of this work

that the effect of each predictor variable can easily be read from the tree graph. Still,

the interpretation of the effect might be severely wrong because the tree structure is so

instable: due to the recursive construction and cutpoint selection, small changes in the

learning sample can lead to a completely different tree. Ensembles of classification trees

on the other hand are not directly interpretable, because the individual tree models are

not nested in any way and thus cannot be integrated to one common presentable model.

In this tradeoff between stability and interpretability, it would be nice if the user himself

could regulate the degree of stability he needs – and give up interpretability no more than

necessary. This idea is followed in a fundamental modification of the TWIX ensemble

method in Chapter 5: An ensemble is created only if necessary and reduces to a single tree

if the partition is stable.

In situations where the partition really is instable, however, the other ensemble methods

bagging and random forests usually outperform the TWIX method, because they not only

manage to smooth instable decisions of the individual classification trees by means of

averaging, but also additional variation is introduced by means of randomization, that

promotes locally suboptimal but potentially globally beneficial splits. In addition to that –

and as opposed to complete “black box” learners and dimension reduction techniques – they

provide variable importance measures that have been acknowledged as valuable tools in

many applied sciences, headed by genetics and bioinformatics where random forest variable

importance measures are used, e.g., for screening large amounts of genes for candidates

that are associated with a certain disease.

In such applications it is essential that variable importance measures are reliable. However,

there are at least two situations where the originally proposed methods show undesired arti-

facts: the case of predictor variables of different types and the case of correlated predictor

variables. In Chapter 6, a different resampling scheme is suggested to be used in com-

bination with unbiased split selection criteria to guarantee that the variable importance

is comparable for predictor variables of different types. The unbiased importance mea-

sures can then provide a fair means of comparison to decide which predictor variables are
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most important and should be explored in further analysis. Additional variable selection

schemes and tests for the variable importance have been suggested to aid this decision.

The statistical properties of such a significance test are explored in Chapter 7.

Another aspect, that becomes relevant in the case of correlated predictor variables, as

common in practical applications, is the distinction between marginal and conditional

importance, that correspond to different null hypotheses. In Chapter 8 this distinction

is facilitated and a new, conditional variable importance is suggested that allows for a

fair comparison in the case of correlated predictor variables and better reflects the null

hypothesis of interest. The theoretical reasoning and results presented in this chapter

show that, only when the impact of each variable is considered conditionally on their

covariates, it is possible to identify those predictor variables that are truly most important.

Thus, the conditional importance forms a substantial improvement for applications of

random forest variable importance measures in many scientific areas including genetics

and bioinformatics, where algorithmic methods have effectively gained ground already, as

well as new areas of application such as the empirical social and business sciences, for

which some first applications are outlined in Chapter 1.

Parts of the work presented here are based on publications that were prepared in cooper-

ation with coauthors named in the following:

Chapters References

parts of 1 Strobl, Malley, and Tutz (2008) and

Strobl, Boulesteix, Zeileis, and Hothorn (2007)

parts of 2 and 3 Strobl, Boulesteix, and Augustin (2007)

4 Strobl (2005)

parts of 5 Strobl and Augustin (2008)

6 Strobl, Boulesteix, Zeileis, and Hothorn (2007)

7 Strobl and Zeileis (2008)

8 Strobl, Boulesteix, Kneib, Augustin, and Zeileis (2008)
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1. Introduction

After the early seminal work on automated interaction detection by Morgan and Sonquist

(1963) the two most popular classification and regression tree algorithms were introduced

by Breiman et al. (1984) and independently by Quinlan (1986, 1993). Their non-parametric

approach and the straightforward interpretability of the results have added much to the

popularity of classification trees, for example for psychiatric diagnoses from clinical or

genetic data or for the prediction of therapy outcome (cf., e.g., Hannöver et al., 2002, for

an application modelling the treatment effect in patients with eating disorders).

As an advancement of single classification trees, random forests (Breiman, 2001a), as well

as its predecessor method bagging (Breiman, 1996a, 1998), are so-called “ensemble meth-

ods”, where an ensemble (or committee) of classification and regression trees are aggregated

for prediction. Ensemble methods show a high predictive performance and are applicable

even in situations when there are many predictor variables. The individual classification

or regression trees of an ensemble are built on bootstrap samples drawn from the original

sample. Random forests take an important additional step, in that a subset of predictor

variables is randomly preselected before each split. The next splitting variable is then

selected only from the preselected subset. This additional randomization step has been

shown to increase the predictive performance of random forests and enhances their ap-

plicability in situations when there are many predictor variables. In the following, some

exemplary applications of ensemble methods – including the exploration of such high di-

mensional data sets – are outlined, before we return to take a closer look at the construction

of classification trees and ensemble methods.
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High dimensional problems, as well as problems involving correlated predictor variables and

high-order interactions, are common in many scientific fields. As one important example,

in genome studies often a very high number of genetic markers or SNPs (single nucleotide

polymorphisms) are available, but only for a small number of subjects. Applications of

random forests in genetics and bioinformatics include large-scale association studies for

complex genetic diseases as in Lunetta et al. (2004) and Bureau et al. (2005), who detect

SNP-SNP interactions in the case-control context by means of computing a random forest

variable importance measure for each polymorphism. A comparison of the performance

of random forests and other classification methods for the analysis of gene expression

data is presented by Diaz-Uriarte and Alvarez de Andrés (2006), who propose a new gene

selection method based on random forests for sample classification with microarray data.

More applications of the random forest methodology to microarray data can be found in,

e.g., Gunther et al. (2003), Huang et al. (2005) and Shih et al. (2005).

Prediction of phenotypes based on amino acid or DNA sequence is another important area

of application of random forests, since possibly involving many interactions. For example,

Segal et al. (2004) use random forests to predict the replication capacity of viruses, such as

HIV-1, based on amino acid sequence from reverse transcriptase and protease. Cummings

and Segal (2004) link the rifampin resistance in Mycobacterium tuberculosis to a few amino

acid positions in rpoB, whereas Cummings and Myers (2004) predict C-to-U edited sites in

plant mitochondrial RNA based on sequence regions flanking edited sites and a few other

(continuous) parameters.

The random forest approach was shown to outperform six other methods in the prediction

of protein interactions based on various biological features such as gene expression, gene

ontology (GO) features and sequence data (Qi et al., 2006). Other applications of random

forests can be found in fields as different as quantitative structure-activity relationship

(QSAR) modeling (Guha and Jurs, 2003; Svetnik et al., 2003), nuclear magnetic resonance

spectroscopy (Arun and Langmead, 2006), landscape epidemiology (Furlanello et al., 2003)

and medicine in general (Ward et al., 2006).



1. Introduction 3

Meanwhile, a few first applications of random forests in psychology have appeared, using

the method for prediction or to obtain variable importance measures for selecting relevant

predictor variables. For example, Oh et al. (2003) use random forests to measure the

importance of the single components of neuronal ensemble spike trains collected from arrays

of electrodes located in the motor and premotor cortex of a rat performing a reaction-time

task. The advantages of random forests in this application are (i) that they can be easily

applied to high dimensional and redundant data and (ii) as distinct from familiar dimension

reduction methods such as principle components or factor analysis, in random forests the

original input variables are not projected into a different set of components, so that the

features selected are still identifiable and their importance is directly interpretable.

Other examples of applying random forests as a means for identifying relevant predic-

tor variables in psychological and psychiatric studies are Rossi et al. (2005), who aim at

identifying determinants of once-only contact in community mental health service, and

Baca-Garcia et al. (2007), who employ random forests to identify variables associated with

attempted suicide under consideration of the family history. Rossi et al. (2005) use random

forest variable importance measures to support the stepwise variable selection approaches

of logistic regression, that are known to be instable due to order effects. Baca-Garcia

et al. (2007), despite a methodological weakness, combine the results of forward selection

and random forests to identify the two predictor variables with the strongest impact on

family history of attempted suicide and build a classification model with a high prediction

accuracy.

In an application to the diagnosis of posttraumatic stress disorder (PTSD) Marinic et al.

(2007) build several random forest models for predicting PTSD from structured psychi-

atric interviews, psychiatric scales or combinations of both. Different weightings of the

response classes (PTSD or no PTSD) can be compared by means of random forests with

respect to overall prediction accuracy, sensitivity and specificity. As pointed out by these

authors, another advantage of random forests is that they generate realistic estimates of

the prediction accuracy on a test set, as outlined below.
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Luellen et al. (2005) point out another field of application in comparing the effects in an

experimental and a quasi-experimental study on mathematics and vocabulary performance.

Instead of predicting the actual response variable by means of classification trees and

bagging, the methods are used here for estimating propensity scores: When the treatment

assignment is chosen as a working response, classification trees and ensemble methods can

be used to estimate the probability to be treated from the covariates, which can be used

for stratification in the further analysis. The results of Luellen et al. (2005), even though

somewhat inconsistent, indicate that bagging is well suited for propensity score estimation,

and it is to be expected that there is even room for improvements that could be achieved

by means of random forests.

These first applications of bagging and random forests in psychology point out several

new potential areas of application in this field. In some applications random forests can

add to the results or may even be preferable to standard methods. For example, their

nonparametric approach does not require the specification of a sampling distribution or

a certain functional form. In other applications, especially in high dimensional problems,

or problems where the predictor variables are highly correlated or even subject to linear

constraints, standard approaches such as logistic regression are simply not applicable and

random forests provide a good alternative. On the other hand, random forests were not

developed in a standard statistical framework so that their behavior is less predictable than

that of standard parametric methods and some parts of random forests are still “under

construction” (cf. also Polikar, 2006, for a brief history of ensemble methods, including

fuzzy and Bayesian approaches).

The next section introduces the main concepts of classification trees, that are employed as

the underlying so-called “base learners” in all following ensemble methods. The different

ensemble methods themselves, that will be treated in detail in later chapters, are only

shortly sketched in Section 1.2. Section 1.3 gives an overview over important features and

advantages of classification trees and ensemble methods, as well as important caveats.
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1.1 Classification trees

Classification and regression trees are a simple nonparametric method that recursively

partitions the feature space into a set of rectangular areas and predicts a constant value

within each area. Such a partition is illustrated in Figure 1.1. Here the first split is

conducted in variable X2 at cutpoint value 5. The left and right daughter nodes are then

defined by all observations i with xi2 ≤ 5 and xi2 > 5 respectively. Within the left daughter

node the observations are again split up at cutpoint value 2.5 in variable X1, so that all

observations with xi1 ≤ 2.5 proceed to the left daughter node and so forth. Note that it is

possible to split again in the same variable. The splitting variable and cutpoint are chosen

such as to reduce an impurity criterion as outlined in the following.

X2 ≤ 5, X1 ≤ 2.5

C1

X2 ≤ 5, X1 > 2.5
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Fig. 1.1: Partition of a two dimensional feature space by means of a binary classification

tree.

1.1.1 Split selection and stopping rules

Both the CART algorithm of Breiman et al. (1984) and the C4.5 algorithm (and its prede-

cessor ID3) of Quinlan (1986, 1993) conduct binary splits in continuous predictor variables,

as depicted in Figure 1.1. In categorical predictor variables (of nominal or ordinal scale



6 1. Introduction

of measurement) C4.5 produces as many nodes as there are categories (often referred to

as “k-ary” or “multiple” splitting), while CART again creates binary splits between the

ordered or unordered categories.

For selecting the splitting variable and cutpoint in binary splitting, both CART and C4.5

follow the approach of impurity reduction (where the term “impurity” is used synonymously

to the term “entropy” in the information technological sense) and use impurity criteria,

such as the Gini index or the Shannon entropy or deviance, for variable and cutpoint

selection: The impurity reduction that can be achieved by splitting a variable in a particular

cutpoint into a left and right daughter node is computed for each variable and each cutpoint

as the difference between the impurity before and after splitting. The predictor variable

that, when split in its best cutpoint, produces the highest impurity reduction is then

selected for splitting.

In every step of the recursive partitioning algorithm, this strategy can be expressed as

a twofold optimization problem: From a response variable Y (that is considered to be

categorical with categories c ∈ C , including the easiest case of a binary response with C =

{1, 2}, throughout most of this work) and predictor variables X1, . . . , Xp (of potentially

different scales of measurement), a sample of n independent and identically distributed

observations is used as a learning sample for tree construction.

For a starting node C and candidate daughter nodes CL,tj and CR,tj created by splitting

a candidate variable Xj in cutpoint tj, the steps are:

– Select the best cutpoint t∗j within the range of predictor variable Xj with respect

to the empirical impurity reduction ∆̂I (note that, throughout this work, empirical

quantities will be denoted as estimators of the respective theoretical quantities by

adding a hat to the symbol, because this notation facilitates our argumentation in

Chapter 2):

t∗j = arg max
tj

∆̂I
(
C,CL,tj ,CR,tj

)
, ∀j = 1, . . . , p. (1.1)
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– Out of all candidate variables choose the variable Xj∗ that produces the highest

impurity reduction in its best cutpoint t∗j , i.e. consider Xj∗ with

j∗ = arg max
j

{
∆̂I

(
C,CL,t∗j

,CR,t∗j

)}
. (1.2)

The impurity reduction achieved by splitting in a candidate cutpoint tj of a variable Xj

is computed as the difference between the impurity in the starting node before splitting

minus the weighted mean over the daughter node impurities after splitting

∆̂I
(
C,CL,tj ,CR,tj

)
= I(C)−

(nL,tj
n

I(CL,tj) +
nR,tj
n

I(CR,tj)
)
, (1.3)

where nL,tj is the number of observations in C that are assigned to the left node and nR,tj

to the right node, respectively. Note that the notation used here is limited to the first split

of a classification tree, because this is sufficient to illustrate most arguments in the current

and following chapters. However, the same principles apply to all subsequent splits and

additional splits in the same variable, even though they are not covered by the notation so

far.

Popular criteria that can be employed as the empirical impurity measure Î are the empirical

Gini index Ĝ used in CART and the empirical Shannon entropy Ŝ used in C4.5. For the

easiest case of two response classes the empirical Gini index (Breiman et al., 1984) for the

starting node reduces to

Ĝ(C) = 2π̂(1− π̂), (1.4)

where π̂ = n2

n
is the relative frequency of response class Y = 2 within the node (the

notation is, of course, exchangeable with respect to the two response classes), and the

empirical Shannon entropy (Shannon, 1948) is

Ŝ(C) = −{π̂ log π̂ + (1− π̂) log(1− π̂)} . (1.5)

Both functions have basically the same shape so that pure nodes, containing only obser-

vations of one class, have impurity zero and nodes with equal frequencies of observations
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Fig. 1.2: Gini index and Shannon entropy as impurity functions for the two class case.

for each class have maximum impurity or entropy as illustrated in Figure 1.2.

In principle, any kind of criterion or statistic measuring the association between the pre-

dictor variable and the response (such as the χ2-statistic or its p-value) can be used for

split selection instead of the traditional impurity reduction approach. However, associa-

tion statistics such as the χ2-statistic can only be directly compared when the underlying

degrees of freedom are equal (i.e., for contingency tables with equal dimensions or predic-

tor variables with equal numbers of categories in recursive partitioning). When, on the

other hand, p-values are used as split selection criteria, that account for different degrees

of freedom of the underlying statistics, it is still important to adjust for the fact that

each cutpoint t∗j is chosen such as to maximize the association statistics. The more re-

cent approach based on the p-values of optimally selected statistics treated in Chapter 3,

for example, successfully addresses this issue. Note, however, that neither the traditional

impurity reduction criteria nor the modern p-value based split selection approaches are

designed to optimize the overall model fit or misclassification error of the final model. All

recursive partitioning algorithms trade in global optimality for computational feasibility,

as discussed further below.

In binary recursive partitioning, potential cutpoints for ordered and continuous variables
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lie between any two successive values (resulting in n − 1 possible cutpoints for n distinct

values of a continuous predictor variable without ties, or k − 1 possible cutpoints for k

ordered categories), while for categorical predictors of nominal scale of measurement any

binary partition of the categories can be used to determine the left and right daughter

node (resulting in 2k−1 − 1 possible cutpoints for k unordered categories). Each split is

represented by a binary partition of the feature space and the same variable can be used

more than once in each branch to allow for flexible models.

In k-ary splitting on the other hand, for each categorical variable as many new nodes

as categories are produced, and thus the variable can only be used once in each branch.

Technically speaking, every k-ary tree can be represented as a binary tree. In this case the

k-ary representation (for some k > 2) results in a wider tree, while the binary representation

results in a deeper tree. However, truly binary splitting trees are more sparse than k-ary

splitting trees in that they only branch when the distribution of the response variable

actually differs in the nodes. As opposed to that k-ary splitting always produces k nodes,

even if the distribution of the response variable in some nodes is very similar.

Another feature of the split selection strategy of recursive partitioning is that it makes

the treatment of continuous, metrically scaled variables “robust” in the sense that they

are treated as ordered. Technically speaking, classification trees are also invariant under

monotone transformations of the predictor variables. In particular the scaling of continuous

variables is irrelevant in tree-based models unlike, for example, in neural networks.

After a split is conducted in the first splitting variable, the observations in the learning

sample are divided into different nodes defined by the split, and in each node splitting

continues recursively, as illustrated in Figure 1.1, until some stop condition is reached.

Common stop criteria are: Split until (i) all leaf nodes are pure (i.e. contain only obser-

vations of one class) (ii) a given threshold for the minimum number of observations left

in a node is reached or (iii) a given threshold for the minimum change in the impurity

measure is not succeeded any more by any variable. Recent classification tree algorithms

also provide statistical stopping criteria that incorporate the distribution of the splitting
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criterion (Hothorn et al., 2006), while other algorithms rely on pruning the complete tree

to avoid overfitting.

1.1.2 Prediction and interpretation

Finally a response class or value is predicted in each terminal node of the tree (or each

rectangular section in the partition respectively) by means of deriving from all observations

in node C either the average response value ŷC = ave (yi|xi ∈ C) in regression or the

most frequent response class ŷC = arg maxc∈C (
∑

i I(yi = c|xi ∈ C)) in classification trees.

Note that this means that a regression tree creates a piecewise (or rectangle-wise for two

dimensions as in Figure 1.1 and cuboid-wise in higher dimensions) constant prediction

function.

We will see later that ensemble methods, by combining the predictions of many single trees,

can approximate functions more smoothly. For classification problems it is also possible to

predict an estimate of the class probabilities from the relative frequencies of each class in

the terminal nodes. This kind of prediction more closely resembles the output of logistic

regression models and can also be employed for estimating propensity scores as indicated

in the introduction. The quality of probability estimates derived from random forests, both

in comparison to logistic regression in problems where both methods are applicable and

in high dimensional problems where logistic regression may not be applicable, is currently

under research.

For the interpretation of a completed tree, prediction rules can be found by following down

each branch and producing simple verbal interpretations such as “students that scored less

than 50 points on a previous test and have a low motivation are likely to fail the final

exam, while those that scored less than 50 points but have a high motivation are likely

to pass”. This easy interpretability has added much to the popularity of classification

trees especially in the social and health sciences, where it is important, e.g., for both the

clinician and the patient that the biological argument reflected by a model can be well
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ŷ3 = 60

X3 = 2, X1 > 4
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Fig. 1.3: Regression tree with two main effects.

understood. On the other hand this kind of visual interpretability might be tempting

or even misguiding, because the actual statistical interpretation of a tree model is not

entirely trivial. Especially the notions of main effects and interactions are often used

rather incautiously in the literature, as seems to be the case, e.g., in Berk (2006): On p.

272 it is stated that a branch that is not split any further indicated a main effect. However,

when in the other branch created by the same variable splitting continues, as is the case

in the example of Berk (2006), this statement is not correct.

The term “interaction” commonly describes the fact that the effect of one predictor vari-

able, sayX1, on the response variable Y depends on the value of another predictor variables,

say X3. For classification and regression trees this means that, if in one branch created by

X3 it is not necessary to split in X1, while in the other branch created by X3 it is neces-

sary, an interaction between X1 and X3 is present. We will illustrate this important issue

and source of misinterpretations by means of stylized regression trees given in Figures 1.3

through 1.5.

Only Figure 1.3, where the effect of X1 is the same in both branches created by X3,

represents two main effects of X1 and X3 without an interaction. Both Figures 1.4 and 1.5
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Fig. 1.4: Regression tree with an interaction.
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ŷ2 = 20

X1

X3 = 1 X3 = 2
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Fig. 1.5: Regression tree with an interaction.
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represent interactions, because the effect of X1 is different in both branches created by X3.

In Figure 1.4 the same split in X1 is conducted in every branch and only the effect on the

predicted response is different in both branches created by X3. In Figure 1.5 on the other

hand the effect of X1 is different in both branches created by X3: X1 does have an effect

in the left branch but it does not have an effect in the right branch.

However, in trees built on real data, it is extremely unlikely to actually discover a pattern

as that in Figure 1.3. The reason is that, even if the true distribution of the data in both

branches created by X3 was very similar, due to random variations in the sample and the

deterministic cutpoint selection strategy of classification trees it is extremely unlikely that

the exact same cutpoint would be found in both partitions. Even a different cutpoint in the

same variable would, however, strictly speaking represent an interaction. Therefore it is

stated in the literature that classification trees cannot (or rather, are extremely unlikely to)

represent additive functions that consist only of main effects, while they are perfectly well

suited for representing multiplicative functions that consist of interactions. This implies

that, if it is known from subject matter that the underlying problem can only be additive,

recursive partitioning methods are not a good choice.

If, on the other hand, one suspects that the problem contains interactions of possibly high

order, classification trees are more flexible than parametric models, where interactions of

order higher than two can hardly ever be considered. However, in principle any decision

boundary, including linear ones, can be approximated by a tree given enough data.

1.1.3 Variable selection bias and instability

In the following we now want to treat two statistical issues that have not only caused serious

problems in the application of classification trees but have led to important insights and

advancements of the method: biased variable selection on one hand and instability due

to deterministic splitting on the other hand. We will follow and revisit several aspects of

these two issues throughout this work, and provide a deeper statistical understanding as
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well as solutions for theoretical and practical problems that arise from them.

The term “variable selection bias” describes the fact that the standard classification tree

algorithms are known to artificially prefer variables with many categories or many missing

values (cf., e.g., White and Liu, 1994; Kim and Loh, 2001). The sources of this bias are

multiple testing effects in binary splitting and an estimation bias of empirical entropy

measures, such as the Gini index or the Shannon entropy, as will be illustrated in detail

in Chapter 2. We will see later that this kind of bias can also affect variable selection in

ensemble methods.

There are different approaches to eliminate variable selection bias: For k-ary splitting

Dobra and Gehrke (2001) introduce an unbiased p-value criterion based on the Gini index

for split selection, while for binary splitting it is necessary to account for multiple testing

as well. This is conducted, e.g., by means of the p-value criterion based on the optimally

selected Gini gain introduced by Boulesteix in Strobl et al. (2007), for which an evaluation

study is conducted in Chapter 3.

A different approach to eliminate variable selection bias in either case is to separate the issue

of variable selection from the cutpoint selection procedure, as proposed by Loh and Shih

(1997). This can be conducted by first selecting the next splitting variable by means of some

association test, and then selecting the best cutpoint within the chosen predictor variable.

In their technically advanced approach Hothorn et al. (2006) introduce an unbiased tree

algorithm based on conditional inference tests that provides p-values as split selection

criteria for predictor and response variables of any scale of measurement. Here the p-values

can serve not only as split selection criteria but also as a stop criteria. An implementation

of random forests based on this approach forms the basis for some of our later simulation

studies in Chapters 6 through 8.

The other flaw of the standard classification trees is their instability to small changes in

the learning data: In binary splitting algorithms the best cutpoint within one predictor

variable determines both which variable is chosen for splitting, and how the observations
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are split up in two new nodes – in which splitting continues recursively. Thus, as an

undesired side effect, the entire tree structure could be altered if the first cutpoint was

chosen differently and one can imagine that the tendency to meticulously adapt to small

changes in the learning data can lead to severe changes in the tree structure and even

overfitting when trees are grown extensively.

The term overfitting refers to the fact that a classifier that adapts too closely to the learning

sample will not only discover the systematic components of the structure that is present

in the population, but also the random variation from this structure that is present in the

learning data due to random sampling. When such an overfitted model is later applied

to a new test sample from the same population, its performance will be poor because it

does not generalize well. For a more thorough introduction on the issue of performance

estimation based on different sampling and resampling schemes cf. Boulesteix et al. (2008).

The classic strategy to cope with overfitting in recursive partitioning is to prune the clas-

sification trees after growing them, which means that branches that do not add to the

prediction accuracy in cross validation are eliminated. Pruning is not discussed in detail

here, because the unbiased classification tree algorithm of Hothorn et al. (2006), that is

used in most parts of this work, employs p-values for variable selection and as a stopping

criterion and therefore does not rely on pruning, and the robust classification tree ap-

proach of Abellán and Moral (2005) that forms the basis for Chapter 4 avoids overfitting

by means of an upper entropy approach. Moreover, ensemble methods usually employ

unpruned trees.

We will see in the next section that ensemble methods have been introduced to not only

overcome but even utilize the instability of single trees as a source overfitting and therefore

can achieve much better performance on test data.
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1.2 Robust classification trees and

ensemble methods

One possible extension of classification trees is that of credal classifiers based on imprecise

probabilities by Abellán and Moral (2005), that is not as susceptible to overfitting as the

original classification trees and thus provides more reliable results. Abellán and Moral

(2005) employ a k-ary splitting approach inspired by Quinlan (1993). Variable selection is

conducted with respect to an upper entropy criterion in this approach and is investigated

with respect to variable selection bias in Chapter 4.

The ensemble methods bagging and random forests (Breiman, 1996a, 2001a) on the other

hand, that will be described in more detail shortly, employ sets of classification trees

and thus provide more stable predictions – but at the expense of completely giving up

the interpretability of the single tree model. Therefore, variable importance measures for

ensemble methods are discussed in Chapters 6 through 8.

The TWIX method, introduced by Potapov (2006) (see also Potapov et al., 2006; Potapov,

2007), that is the basis for the modification suggested in Chapter 5, resides somewhere in

between single classification trees and fully parallel ensemble methods like bagging and

random forests: It begins with a single starting node but branches to a set of trees at

each decision by means of splitting not only in the best cutpoint but also in reasonable

extra cutpoints. With respect to prediction accuracy, TWIX outperforms single trees and

can even reach the performance of bagging and random forests on some data sets, but in

general it cannot compete with them because it becomes computationally infeasible.

The rationale behind ensemble methods is that they use a whole set of classification trees

rather than a single tree for prediction. The prediction of all trees in the set is combined

by voting (in classification) or averaging (in regression). This approach leads to a signifi-

cant increase in predictive performance on a test sample as compared to the performance

of a single tree. TWIX shares this feature with the ensemble methods bagging and ran-
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dom forests even though the sets of trees are created differently, as described in detail in

Chapter 5.

In bagging and random forests this set of trees is built on random samples of the learning

sample: In each step of the algorithm, a bootstrap sample or a subsample of the learning

sample is drawn randomly, and an individual tree is grown on each sample. Each ran-

dom sample reflects the same data generating process, but differs slightly from the original

learning sample due to random variation. Keeping in mind that each individual classifica-

tion tree depends highly on the learning sample as outlined above, the resulting trees can

differ substantially. The prediction of the ensemble is then the average or vote over the

single trees’ prediction. The term “voting” can be taken literally here: Each subject with

given values of the predictor variables is “dropped down” every tree in the ensemble. Each

single tree returns a predicted class for the subject and the class that most trees “voted”

for is returned as the prediction of the ensemble. This democratic voting process is the

reason why ensemble methods are also called “committee” methods. Note, however, that

there is no diagnostic for the unanimity of the vote. A summary over several aggregation

schemes is given in Gatnar (2008).

By combining the prediction of a diverse set of trees bagging utilizes the fact that classifica-

tion trees are instable but in average produce a good prediction, which has been supported

by several empirical as well as simulation studies (cf., e.g., Breiman, 1996a, 1998; Bauer

and Kohavi, 1999; Dietterich, 2000) and especially the theoretical results of Bühlmann

and Yu (2002), that show the superiority in prediction accuracy of bagging over single

classification or regression trees: Bühlmann and Yu (2002) conclude from their asymptotic

results that the improvement in the prediction is achieved by means of smoothing the hard

cut decision boundaries created by splitting in single classification trees, which in return

reduces the variance of the prediction. The smoothing of hard decision boundaries also

makes ensembles more flexible than single trees in approximating functional forms that

are smooth rather than piecewise constant. Grandvalet (2004) also points out that the

key effect of bagging is that it equalizes the influence of particular observations – which
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is beneficial in the case of “bad” leverage points but may be harmful when “good” lever-

age points, that could improve the model fit, are downweighted. The same effect can be

achieved not only by means of bootstrap sampling as in standard bagging, but also by

means of subsampling (Grandvalet, 2004). Ensemble construction can also be viewed in

the context of Bayesian model averaging (cf., e.g., Domingos, 1997; Hoeting et al., 1999, for

an introduction). For random forests, Breiman (2001a) states that they may also be viewed

as a Bayesian procedure (and continues: “Although I doubt that this is a fruitful line of

exploration, if it could explain the bias reduction, I might become more of a Bayesian.”).

In random forests another source of diversity is introduced when the set of predictor vari-

ables to select from is randomly restricted in each split, producing even more diverse trees.

The number of randomly preselected splitting variables, as well as the overall number of

trees, are parameters of random forests that affect the stability of their results. Obvi-

ously random forests include bagging as the special case where the number of randomly

preselected splitting variables is equal to the overall number of variables.

Intuitively speaking random forests can improve the predictive performance even further

with respect to bagging, because they employ even more diverse single trees in the ensemble:

In addition to the smoothing of hard decision boundaries the random selection of splitting

variables in random forests allows predictor variables that were otherwise outplayed by

other predictors to enter the ensemble – which may reveal interaction effects that otherwise

would have been missed.

To understand why such apparently suboptimal splits can improve the prediction accuracy

of an ensemble, it is helpful to recall that the split selection process in regular classification

trees is only locally optimal at each node: A variable and cutpoint are chosen with respect

to the impurity reduction they can achieve in a given node defined by all previous splits,

but regardless of all splits yet to come. This approach does not necessarily (or rather

hardly ever) lead to the globally optimal tree over all possible combinations of cutpoints in

all variables. However, searching for a globally optimal tree is computationally infeasible

(a first approach involving dynamic programming was introduced by van Os and Meulman,
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2005, but is currently limited to problems with very few categorical predictor variables).

Randomization in ensemble construction has the side effect that a randomly chosen and

locally suboptimal split may improve the global performance.

1.3 Characteristics and caveats of classification trees

and ensemble methods

The way classification trees and ensembles are constructed induces some special charac-

teristics of these methods that distinguish them from other (even other nonparametric)

regression approaches.

1.3.1 “Small n large p” applicability

The fact that variable selection can be limited to random subsets in random forests make

them particularly well applicable in “small n large p” problems with many more variables

than observations, and has added much to the popularity of random forests. However,

even if the set of candidate predictor variables is not restricted as in random forests, but

covers all predictor variables as in bagging and single trees, the search is only a question of

computational effort: Unlike logistic regression models, e.g., where parameter estimation

is instable if not impossible when there are too many predictor variables and too few

observations, tree-based methods only consider one predictor variable at a time and can

thus deal with high numbers of variables sequentially. Therefore Bureau et al. (2005)

and Heidema et al. (2006) point out that the recursive partitioning strategy is a clear

advantage of random forests as opposed to more common methods like logistic regression.

While other statistical methods directly include variable selection as part of the modeling

process in linear or additive models, random forests can be used in a combined strategy

to identify predictors relevant in potentially complex functions and then further explore
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this smaller set of predictors with a simpler, for example linear, model if the prediction

accuracy indicates that it is sufficient to reflect the underlying problem.

A restriction imposed by recursive partitioning is that in some situations a variable that

is only relevant in an interaction might be missed out by the marginal sequential search

strategy: The so-called “XOR problem” represents such a case, where two variables have

no main effect but a perfect interaction effect. In this case none of the variables might be

selected in the first split, and the interaction might never be discovered, due to the lack of

a marginally detectable main effect. In a perfectly symmetric artificial “XOR problem”, a

tree would indeed not find a cutpoint to start with – but a logistic regression model would

not be able to identify a main effect in any of the variables either. Only if the interaction is

explicitly included in the logistic regression model it will be able to discover it – and in that

case a tree model, where an interaction effect of two variables can also be explicitly added

as a potential predictor variable, would do equally well. In addition to this, a tree, and

even better an ensemble of trees, is able to approximate the “XOR problem” by means of a

sequence of cutpoints driven by random fluctuations that are present in the learning data

sets. In addition to this, the random preselection of splitting variables in random forests

again increases the chance that a variable with a weak marginal effect is still selected, at

least in some trees, because some of its competitors are not available.

A similar argument applies to order effects when comparing stepwise variable selection in

regression models with the variable selection that can be conducted on the basis of random

forest variable importance measures: In both stepwise variable selection and single trees

order effects are present, because only one variable at a time is considered – in the context

of the variables that were already selected but regardless of all variables yet to come.

However, in ensemble methods, that employ several parallel tree models, the order effects

of all individual trees counterbalance and the importance of a variable reflects its impact

in different contexts.
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1.3.2 Out-of-bag error estimation

Another key advantage of bagging and random forests over standard regression and clas-

sification approaches is that they come with their own “built-in” test sample for error

estimation. In model validation when the (misclassification or mean squared) error is com-

puted from the learning data, the estimation is far too optimistic (cf., e.g., Boulesteix et al.,

2008). This is especially so for methods that tend to overfit, i.e., that adapt too closely to

the learning data and thus do not generalize well to new test data.

The usual procedure when evaluating model performance is to build the model on learning

data and evaluate it on a new test set, that was not used in model construction. Random

forests and bagging on the other hand bring their own test set for every tree of the ensemble:

Every tree is learned on a bootstrap sample (or subsample) of the original sample – and for

each bootstrap sample (or subsample) there are some observations of the original sample

that are not in it. These leftover observations are called “out-of-bag” (often abbreviated

as “oob”) observations, and can be used to correctly evaluate the predictive performance

by measuring the misclassification error of each tree applied to the out-of-bag observations

that were not used to build that tree (Breiman, 1996b).

Of course similar validation strategies, based either on sample splitting or resampling

techniques (cf., e.g., Hothorn et al., 2005; Boulesteix et al., 2008), can and should be

applied to any statistical method. König et al. (2007), for example, state that random

forests can be considered to be “internally validated” but for other classification methods

employ cross-validation for error estimation. However, in many disciplines intensive model

validation is not common practice. Therefore a method that comes with a built-in test

sample like random forests may help sensitize for the issue and relieve the user of the

decision for an appropriate validation scheme.
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1.3.3 Missing value handling

Tree based methods such as bagging and random forests come with an intuitive strategy

for missing value handling that does not involve cancelation of observations with missing

values as a whole, which would result in heavy data loss, or imputation.

In the variable selection step of the tree building process the so-called “available case”

strategy is applied: Observations that have missing values in the variable that is currently

evaluated are ignored in the computation of the impurity reduction for this variable, while

the same observations are included in all other computations. However, we will show in

Chapter 2 that this strategy can cause variable selection bias.

Another problem is that in the next step, after a splitting variable is selected, it would be

unclear to what daughter node the observations that have a missing values in this variable

should be assigned. To solve this problem a so-called “surrogate variable” is selected,

that best predicts the values of the originally chosen splitting variable. By means of this

surrogate variable the observations can then be assigned to the left or right daughter node

(cf., e.g., Hastie et al., 2001). Another flaw of this approach is, however, that currently

it is not clear how variable importance values can be computed for variables with missing

values.

1.3.4 Randomness and stability

In random forests two sources of randomness are evident: The bootstrap samples (or sub-

samples) are randomly drawn and a random preselection of predictor variables is conducted.

Due to these two random processes a random forest is only exactly reproducible when the

random seed, determining the internal random number generation of the computer that

is used for modelling, is fixed. Otherwise, the randomness involved will induce differences

in the results. These differences are, however, negligible as long as the parameters of a

random forest have been chosen such as to guarantee stable results:
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– The number of trees highly affects the stability of the model. In general, the higher

the number of trees the more reliable is the prediction and the interpretability of the

variable importance.

– The number of randomly preselected predictor variables, termed mtry in most im-

plementations of random forests, also affects the stability of the model, particularly

the reliability of the variable importance: It can be chosen by means of cross vali-

dation, but it is often found in empirical studies (cf., e.g., Svetnik et al., 2003) that

the default value mtry=
√
p is optimal with respect to prediction accuracy. Our

recent results displayed in Chapter 8, however, indicate that in the case of correlated

predictor variables different values of mtry should be considered.

Note that both parameters also interact: For a high number of predictor variables a

high number of trees or a high number of preselected variables, or ideally both, are

needed so that each variable has a chance to occur in enough trees. Only then its

average variable importance measure is based on enough trials to actually reflect the

importance of the variable and not just a random fluctuation.

In summary this means: If one observes that, for a different random seed, the results

for prediction and variable importance differ notably, one should not interpret the

results but adjust the number of trees and preselected predictor variables.

– Another user defined parameter in building ensemble methods is the tree size. Most

previous publications have argued that in an ensemble each individual tree should be

grown as large as possible and that trees should not be pruned. However, the recent

results of Lin and Jeon (2006) point out that creating large trees is not necessarily the

optimal strategy: In problems with a high number of observations and few variables

a better convergence rate (of the mean squared error as a measure of prediction

accuracy) can be achieved when the terminal node size increases with the sample

size (i.e. when smaller trees are grown for larger samples). On the other hand, for

problems with small sample sizes or even “small n large p” problems growing large
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trees often does lead to the best performance.

Besides these fundamental characteristics of recursive partitioning methods in general and

ensemble methods in particular, we now address the first of the two issues that we will

follow throughout this work: variable selection bias in individual classification trees. Later

we will return to this issue and investigate implications and new sources of bias in ensemble

methods.



2. Variable selection bias in binary and

k-ary classification trees

The traditional recursive partitioning approaches use empirical impurity reduction mea-

sures, such as the Gini gain derived from the Gini index, as split selection criteria: the

cutpoint and splitting variable that produce the highest impurity reduction are chosen for

the next split. The intuitive approach of impurity reduction added to the popularity of

recursive partitioning algorithms, and entropy based measures are still the default splitting

criteria in most implementations of classification trees.

However, Breiman et al. (1984) already note that “variable selection is biased in favor of

those variables having more values and thus offering more splits” (p.42) when the Gini

gain is used as splitting criterion. For example, if the predictor variables are categorical

variables of ordinal or nominal scale, variable selection is biased in favor of variables with

a higher number of categories, which is a general problem not limited to the Gini gain.

In addition, variable selection bias can also occur if the splitting variables vary in their

number of missing values, even if the values are missing completely at random.

This is particularly remarkable since, in general, values missing completely at random

(MCAR) can be discarded without producing a systematic bias in sample estimates (Little

and Rubin, 1986, 2002). However, in the approach of classification trees even values missing

completely at random can strongly affect the outcome and the evaluation of the variable

importance. Again, this problem is not limited to the Gini gain criterion and affects both

binary and k-ary splitting recursive partitioning.
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Common strategies to deal with values missing completely at random (MCAR) include:

(i) “Listwise” or “casewise deletion”, where all observations or cases with the value of at

least one variable missing are deleted. This strategy can result in a severe reduction of

the sample size, if the missing values are spread over many observations and variables. (ii)

“Pairwise deletion” or “available case” strategy, where only for the variables considered

at each step of the analysis, e.g. for the two variables currently involved in a correlation,

the observations with missing values in these variables are deleted for the current analysis,

but are reconsidered in later analysis of different non-missing variables. With this strategy

different sets of observations may be involved in different parts of the analysis or model

building process. (iii) Various imputation methods, like, e.g., the simple “mean imputa-

tion” where the mean value in each variable is substituted to replace missing values. The

naive “mean imputation” approach artificially reduces the variation of values of a variable,

with the extent of the decrease depending on the number of missing values in each vari-

able, and thus may change the strength of correlations, while more elaborate “multiple

imputation” strategies overcome this problem.

The “available case” strategy is used in standard classification tree algorithms in the vari-

able selection step. To investigate the effect of missing values in this setting, Kim and

Loh (2001) vary both the number of categories in categorical predictor variables and the

number of missing values in continuous predictor variables in a binary splitting framework

to compare the variable selection performance of the Gini gain to that of other splitting

criteria in a simulation study. Their results show variable selection bias towards variables

with many categories and variables with many missing values. However, the authors do

not give a thorough statistical explanation for their findings.

Here we want to study from a theoretical point of view the variable selection bias occur-

ring with the widely used Gini gain, when missing values are treated in an available case

strategy as in Kim and Loh (2001). Moreover, we want to address and clarify previous

misperceptions of variable selection bias in the literature, that seem to be due to a lack of

differentiation between binary and k-ary splitting and the mechanisms of variable selection
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bias inherent in each setting.

For example, Jensen and Cohen (2000) misleadingly state that variable selection bias for

categorical predictor variables with many categories was due to multiple comparisons when

defining the left and right nodes of a classification tree, and explicitly cite the algorithm

of Quinlan (1986) (the predecessor publication of Quinlan (1993), that describes the C4.5

algorithm) as an example. However, the algorithms of Quinlan perform k-ary splitting for

categorical predictor variables, so that the intuition of a left and right node is not valid

here. We will see later that the multiple testing argument does apply to binary splitting,

but not to k-ary splitting, where the reasons for the preference for categorical variables

with many categories are different.

Dobra and Gehrke (2001), on the other hand, do correctly accredit their findings of variable

selection bias in a simulation study to the distribution of the split selection criterion (see

below). However, they also explicitly state that variable selection bias with the Gini index,

which was introduced by Breiman et al. (1984) and is usually associated with binary

splitting, was not at all due to multiple testing. The reason for this is that they used

the Gini index for k-ary splitting, where their argument is valid, while the literature they

were citing referred to binary splitting, where their argument does not apply. By ignoring

results for binary splitting Dobra and Gehrke (2001) missed the statistical aspects relevant

for both k-ary and binary splitting explained below.

Kim and Loh (2001) themselves claim to have found a statistical explanation for the pref-

erence for variables with missing values, but as an explanation give only a special case

that can easily be refuted. Finally Shih (2004) gives a sound statistical explanation, that,

however, again only refers to the multiple testing problem in choosing the optimal cut-

point in binary splitting, and can neither account for the bias in k-ary splitting, nor for

the preference for variables with many missing values.

Therefore, in the following we provide a statistical explanation for variable selection bias in

binary splitting with missing values and show that the same statistical source, but through
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a very different mechanism, is responsible for variable selection bias in k-ary splitting.

2.1 Entropy estimation

The main source of variable selection bias is an estimation effect: The classical Gini index

used in machine learning can be considered as an estimator of the true underlying entropy.

The bias of this estimator – aggravated by its variance – induces variable selection bias.

We concentrate on the Gini index in the following sections, while the same principles hold

for the Shannon entropy as illustrated in Chapter 4.

2.1.1 Binary splitting

We again consider a sample of n independent and identically distributed observations of

a binary response Y and predictors X1, . . . , Xp, where the different X1, . . . , Xp may have

different numbers of missing values in the sample: For j = 1, . . . , p, let nj denote the

sample size obtained if observations with a missing value in variable Xj are eliminated

in an available case or pairwise deletion strategy, where in each step of the recursive

partitioning algorithm only the current splitting variable Xj containing missing values and

the completely observed response variable are considered. The following computations are

implicitly conditional on these nj available observations, of which there are n1j observations

with Y = 1 and n2j with Y = 2.

For illustrating the effects of biased entropy estimation in split selection in a situation with

continuous predictor variables containing different numbers of missing values as in Kim

and Loh (2001), let us slightly simplify the notation from Chapter 1: In binary splitting of

continuous variables a cutpoint tj can be any value x(i)j within the range of variable Xj.

The index (i) here refers to the sample that is ordered with respect to Xj, so that a binary

split in x(i)j discriminates between values smaller than (or equal to) and greater than x(i)j,

as illustrated in Table 2.1.1
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Let Cj, j = 1, . . . , p, now denote the starting set for variable Xj: Cj holds the nj obser-

vations for which the predictor variable Xj is not missing. The subsets CLj(i) and CRj(i)

are produced by splitting Cj at a cutpoint between x(i)j and x(i+1)j in the sample ordered

with respect to the values of Xj (x(1)j ≤ . . . ≤ x(nj)j): All observations with a value of

Xj ≤ x(i)j are assigned to CLj(i) and the remaining observations to CRj(i).

In Table 2.1.1, n2j(i), for example, denotes the number of observations with Y = 2 in the

subset defined by Xj ≤ x(i)j, i.e., by splitting after the i-th observation in the ordered

sample. The function n2j(i) is thus defined as the number of observations with Y = 2

among the first i observations of variable Xj,

n2j(i) =
i∑
l=1

I{2}(y(l)j), ∀i = 1, . . . , nj. (2.1)

where I{2}(·) is the indicator function for response y(l)j = 2; n1j(i) is defined in an analogous

way. For any subsequent split, the new node can be considered as the starting node. Thus,

we are able to restrict the argumentation to the first root node again for the sake of

simplicity.

Tab. 2.1: Contingency table obtained by splitting the

predictor variable Xj at x(i)j.

CLj(i) CRj(i)

Xj ≤ xj(i) Xj > xj(i) Σ

Y = 1 n1j(i) n1j − n1j(i) n1j

Y = 2 n2j(i) n2j − n2j(i) n2j

Σ nLj = i nRj = nj − i nj

The empirical Gini index from Equation 1.4 can then be denoted as

Ĝ (Cj) =: Ĝj = 2
n2j

nj

(
1− n2j

nj

)
. (2.2)
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The corresponding empirical Gini Indices in the nodes produced by splitting at the i-th

cutpoint, Ĝ (CLj(i)) =: ĜLj(i) and Ĝ (CRj(i)) =: ĜRj(i), are defined analogously. The

empirical Gini gain, i.e. the impurity reduction produced by splitting at the i-th cutpoint

of variable Xj that corresponds to Equation 1.3 with the Gini index as impurity measure

Î, can also be displayed as a function of i and is based on the difference in impurity before

and after splitting

∆̂Gj(i) = Ĝj −
(
nLj
nj

ĜLj(i) +
nRj
nj

ĜRj(i)

)
(2.3)

= Ĝj −
(
i

nj
ĜLj(i) +

nj − i

nj
ĜRj(i)

)
.

From a statistical point of view the empirical Gini index can be rephrased as

Ĝj = 2π̂j(1− π̂j)

with π̂j abbreviating the relative class frequency
n2j

nj
of Y = 2.

The relative frequency π̂j is the maximum likelihood estimator, based on nj observations

as indicated by the index j, of the true class probability π of Y = 2.

The empirical Gini index Ĝj here is understood as the plug-in estimator of a true underlying

Gini index

G = 2π(1− π)

which is a function of the true class probability π.

Since the empirical Gini index Ĝj is a strictly concave function of the maximum likeli-

hood estimator π̂j, we expect from Jensen’s inequality that the empirical Gini index Ĝj

underestimates the true Gini index G. In fact, we find for fixed nj:

E(Ĝj) = E

(
2
n2j

nj

(
1− n2j

nj

))
, where n2j ∼ B(nj, π)

= 2π(1− π)− 2
1

nj
π(1− π)

=
nj − 1

nj
G.
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Thus, the empirical Gini index Ĝj underestimates the true Gini index G by the factor
nj−1

nj
,

i.e. Ĝj is a negatively biased estimator:

Bias(Ĝj) = −G/nj,

where the extent of the bias depends on the true value of the Gini index and the number of

observations nj, that depends on the number of missing values in variable Xj. The same

principle applies to the Gini Indices ĜLj and ĜRj obtained for the child nodes created by

binary splitting.

We consider the null hypothesis that the considered predictor variable Xj is uninformative,

i.e., that the distribution of the response Y does not depend on Xj. With respect to the

child nodes created by binary splitting this null hypothesis means that the true class

probability in the left node defined by Xj, denoted by πLj = P (Y = 2|Xj ≤ xj(i)), is equal

to the true class probability in the right node πRj = P (Y = 2|Xj > xj(i)) and thus equal

to the overall class probability π = P (Y = 2).

The expected value of the Gini gain ∆̂Gj (Equation 2.3) for fixed nLj and nRj, i.e. for a

given cutpoint, is then

E(∆̂Gj) = E(Ĝj − nLj
nj
ĜLj − nRj

nj
ĜRj)

= G− G
nj
− nLj

nj
G+

nLj
nj

G
nLj

− nRj
nj
G+

nRj
nj

G
nRj

= G
nj
.

Under the null hypothesis of an uninformative predictor variable, the true Gini gain ∆Gj

equals 0. Thus, ∆̂Gj has a positive bias, even if the cutpoint is not optimally chosen.

The issue of optimal cutpoint selection and the multiple comparisons problem it induces

is treated below. Estimation effects and multiple testing interact as sources of variable

selection bias in binary splitting of variables with missing values. However, we will see in

the simulation results in Chapter 3 that the estimation effect is predominant.

Our result of the derivation of the expected value of the Gini gain corresponds to that of

Dobra and Gehrke (2001) when adopted for binary splits. However, the authors do not
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elaborate the interpretation as an estimation bias induced by the plug-in estimation based

on a limited sample size, which we find crucial for understanding the bias mechanism, and

do not investigate the dependence on the sample size that is necessary to understand the

preference for variables with many missing values in the study of Kim and Loh (2001).

The bias in favor of variables with many missing values increases with decreasing sample

size nj and is most pronounced for large values of the true Gini indexG. When the predictor

variables Xj, j = 1, . . . , p, have different sample sizes nj, this bias leads to a preference for

variables with small nj, i.e. variables with many missing values. Thus the criterion shows

a systematic bias even if the values are missing completely at random (MCAR).

2.1.2 k-ary splitting

When we consider k-ary splitting, the notation can be simplified even further, because no

mutable cutpoint is selected, but the nodes are defined deterministically by the numbers

of categories of a variable once it is selected: Let Xj, j = 1, . . . , p, denote categorical

predictor variables. For the categorical predictors let mj, with mj ∈ {1, . . . , kj}, denote

the category. The starting set of all observations in the root node is again denoted by C.

The subsets C1,j through Ckj ,j are produced by splitting C into kj subsets defined by the

categories of predictor Xj.

The empirical impurity reduction induced by splitting in the variable Xj is the following

function (that corresponds to Equation 1.3 extended to kj nodes).

∆̂I(C,C1,j, . . . ,Cjkj) = Î(C)−
kj∑

mj=1

nmj ,j

n
· Î(Cmj ,j), (2.4)

where Î(C) is again the empirical impurity measure for the set C before splitting, while

Î(Cmj ,j) is the empirical impurity measure for the subset Cmj ,j. The proportion of obser-

vations assigned to subset Cmj ,j is denoted as
nmj,j

n
. If the variables vary in their number

of missing values, the number of available observations of Xj could again be indicated by
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using nj instead of the overall number of observations n. When the Gini index is used as

the impurity measure Î the empirical Gini gain results as

∆Ĝ(C,C1,j, . . . ,Cjkj) = Ĝ(C)−
kj∑

mj=1

nmj ,j

n
· Ĝ(Cmj ,j). (2.5)

In this notation, the expected value for the plug-in estimator of the Gini index in one node

is

E
(
Ĝ(Cmj ,j)

)
= G(Cmj ,j)−

G(Cmj ,j)

nmj ,j
. (2.6)

Obviously this quantity again underestimates the true node impurity Ĝ(Cmj ,j) by the

quantity
G(Cmj,j

)

nmj,j
depending on the true Gini index and inversely on the sample size of the

node nmj ,j. It is again well interpretable that the estimation of Ĝ(Cmj ,j) is less reliable

and the bias increases when the estimation is based on a smaller number of observations.

Under the null hypothesis of an uninformative predictor variable Xj, the true Gini index

is equal in each node (i.e., G(Cmj ,j) = G(Cm′
j ,j

) = G(C)) and can again be denoted as

an overall G. The expected value of the Gini gain over all nodes is again supposed to be

0 in this case, because splitting in a meaningless variable should produce no systematic

impurity reduction. However, we find for k-ary splitting that

E
(
∆Ĝ(C,C1,j, . . . ,Cjkj)

)
= G− G

n
−

kj∑
mj=1

nmj ,j

n
· G− G

n

=

kj−1∑
mj=1

G

n
. (2.7)

This quantity obviously depends on the number of categories kj such that variables with

more categories are likely to produce a higher Gini gain in average. The reason for this

is that, when the original sample size is split up in more different nodes, the number of

observations in each node decreases and the entropy estimation is less reliable as described
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above. This effect is added up over all nodes and aggravated by the number of nodes that

the sample size is divided into. The same principle holds for the Shannon entropy used as

a split selection criterion in C4.5 and related algorithms, as illustrated in Chapter 4.

The variance of the empirical Gini index can be shown to depend on the true Gini index and

to increase with decreasing sample size (Strobl et al., 2007). The variance of the empirical

Gini gain also depends on the number of categories and increases with decreasing sample

size (Dobra and Gehrke, 2001). Thus, not only does the bias result in a higher average,

but also the variance may induce more extreme values – in principle both positive and

negative but shifted by the estimation bias in favor of variables with many categories.

The other mechanism responsible for variable selection bias, namely the effect of multiple

comparisons, that is relevant only if the number of nodes produced in each split is smaller

than the number of distinct observations or categories, as in binary splitting but not in

k-ary splitting, is outlined in the next section.

2.2 Multiple comparisons in cutpoint selection

The common problem of multiple comparisons refers to an increasing type I error-rate

in multiple testing situations: When multiple statistical tests are conducted for the same

data set, the chance to make a type I error for at least one of the tests increases with the

number of performed tests. In the context of split selection, a type I error occurs when a

variable is selected for splitting even though it is not informative.

In the case of binary splitting, the number of conducted comparisons for a given predictor

variable increases with the number of possible binary partitions, i.e., with the number of

possible cutpoints. In continuous predictors without ties the number of possible cutpoints

to be evaluated is n − 1. For categorical and ordinal predictor variables, the number of

cutpoints depends on the number of categories. The multiple comparisons effect results

in a preference for predictor variables with many possible partitions: with few missing
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values or few ties (for continuous variables) or many categories (for categorical and ordinal

variables).

This finding is not in contradiction to Dobra and Gehrke (2001), who state explicitly

that variable selection bias for categorical predictor variables was not due to multiple

comparisons, since the authors use the Gini gain for k-ary splits with as many nodes as

categories in the predictor rather than for binary splits – which does not correspond to the

standard CART algorithm usually associated with the Gini criterion, and obviously does

not induce multiple testing effects.

The next section gives a summary of all three effects.

2.3 Summary

The simulation results obtained by Kim and Loh (2001) and Dobra and Gehrke (2001) in

different settings may be explained by the three partially counteracting effects:

In the binary splitting task of Kim and Loh (2001), the bias towards predictor variables

with many categories is mainly due to the multiple comparison effect: Variables with

more categories have more possible binary partitions to be evaluated. In contrast, the

bias towards variables with many missing values observed for continuous variables may be

explained by the bias and variance effects: Variables with small sample sizes, for which

the Gini gain is overestimated and has large variance, tend to be favored. In this case the

reverse multiple comparisons effect seems to be outweighed, as is also illustrated in the

simulation study in Chapter 3.

In the k-ary splitting case of Dobra and Gehrke (2001) on the other hand, the bias towards

variables with large number of categories is due to the bias and variance effects, and not

due to multiple comparisons.

In practice, the number of categories in categorical variables of nominal and ordinal scales

of measurement often depends on arbitrary choices (in particular in the design of ques-
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tionnaires) and randomly missing values in categorical and metric variables are common

(if, e.g., questions are skipped by accident in automated data input). In such a scenario

a reasonable split selection criterion should be able to identify relevant variables without

being mislead by the number of categories, that may be related to – but is not in itself

an indicator of – the relevance of the variable, or the number of missing values, that is

inversely related to its information content.

As a historical note: The reason why Breiman et al. (1984) did notice the multiple com-

parisons effect evident when categorical predictors vary in their number of categories, but

did not notice the bias in favor of variables with many missing values (and even claim that

the CART approach can deal particularly well with missing values, because it provides

surrogate splits when predictor values are missing in the test sample), was that in their

simulation studies Breiman et al. (1984) only spread missing values randomly over all pre-

dictor variables – instead of varying the sample sizes between variables, which induces the

bias.
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selection criterion for binary splitting

The different approaches that have been suggested to eliminate variable selection bias

in classification trees can be roughly divided in three categories: (i) those that are only

applicable to k-ary splitting because they do not account for multiple testing, (ii) those that

avoid the problem by means of separating the issue of variable and cutpoint selection and

(iii) those that account for optimal cutpoint selection within the framework of combined

variable and cutpoint selection. Representatives of these groups are (i) Dobra and Gehrke

(2001), (ii) Loh and Shih (1997) and Hothorn et al. (2006), and (iii) Shih (2004), Lausen

et al. (2004) and Strobl et al. (2007). Note also that an unbiased or even uniformly

minimum variance unbiased (UMVU) estimator for an empirical impurity measure would

not be sufficient as an unbiased split selection criterion in binary splitting, because it does

not account for optimal cutpoint selection. Only in k-ary splitting an unbiased impurity

estimator can guarantee that variable selection is unbiased (cf. Chapter 4), while the

variance of an unbiased and even an UMVU estimator can differ for variables with different

numbers of categories.

The idea to employ the p-values of optimally selected statistics for split selection, that is

shared by the representatives of the third group of criteria, is very straightforward and

intuitive because the well-known structure of combined variable and cutpoint selection in

classification tree algorithms can be retained and only the statistic used for split selection

has to be replaced by a p-value that is computed such that it accounts for the optimal

selection of the cutpoint. Therefore, this approach and the evaluation of a p-value criterion
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is described in detail in this chapter.

3.1 Optimally selected statistics

To illustrate the effect of optimal cutpoint selection, let us consider the familiar χ2-statistic

for a given 2×2 table, that results from a binary predictor variableXj and a binary response

Y . Under the null hypothesis of no association between Xj and Y , the distribution of

the χ2-statistic for this table with 1 degree of freedom is depicted as the dashed line in

Figure 3.1.

If, however, the variable Xj originally comes with 4 categories, but instead of considering

the resulting 2×4 table we select the best binary partition of Xj such as to optimize the χ2-

statistic of the resulting 2× 2 table – like we would in binary splitting – the corresponding

distribution is shifted to the right as illustrated by the solid line in Figure 3.1: When the

binary partition is not given, but is selected such as to optimize the statistic, it is easier

to produce large values. Thus, if the nominal χ2 distribution was used to evaluate the

optimally selected statistic, a value that may well be produced under the null hypothesis

may seem highly significant.

Therefore, a fair comparison of variables that provide different numbers of cutpoints, as

for example our variables Xj with either two or four categories, is only possible when the

respective distribution of the optimally selected statistic (i.e. of the maximum over all

statistics resulting from the different cutpoints) is considered. The p-values derived from

this distribution are a fair means of comparison, because both sample size and multiple

testing effects are accounted for.

Technically, the distributions of various optimally selected statistics can be derived by

means of asymptotic or exact combinatorial arguments. For recursive partitioning, in

principle the p-value of any association statistic can serve as a split selection criterion.

However, since many applicants of the standard procedures CART and C4.5 are more
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Fig. 3.1: Distribution (kernel density estimates) of the χ2-statistic under the null hy-

pothesis of no association between Xj and Y for a given 2 × 2 table (dashed) and for an

optimally selected binary partition from a 2× 4 table (solid).
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familiar with the impurity reduction approach based on empirical entropy measures, a

very intuitive approach is to use the p-value of the optimally selected Gini gain as the

criterion. A way to derive the exact distribution of the optimally selected Gini gain was

suggested by Boulesteix in Strobl et al. (2007). Here we will illustrate how this criterion

was evaluated in a series of simulation studies and an application to veterinary data in

order to support and complement to the theoretical results from the previous chapter.

3.2 Simulation studies

In this section, simulation studies are conducted to compare the variable selection per-

formance of the p-value of the optimally selected Gini gain to that of the standard Gini

gain criterion. We consider a binary response variable Y and 5 mutually independent con-

tinuous predictor variables X1, X2, X3, X4, X5. In the whole simulation study, the binary

response Y is sampled from a Bernoulli distribution with probability of success 0.5. The

manipulated parameter is the percentage of missing values in the predictor variable X1,

set successively to 0%, 20%, 40%, 60% and 80%. The missing values in variable X1 are

sampled completely at random in each setting. The sample size is set to n = 100. Three

cases are investigated:

– Null case: all the predictor variables X1, X2, X3, X4, X5 are uninformative, i.e. in-

dependent of the response variable.

– Power case I: X1 is informative and X2, X3, X4, X5 are uninformative.

– Power case II: X2 is informative and X1, X3, X4, X5 are uninformative.

For each parameter setting 1000 data sets are generated. For each data set, variable

selection is performed using successively the standard Gini gain and the p-value criterion.

For both criteria, the obtained relative frequencies of selection, out of the 1000 simulation

runs, for all variables are given in tables. Based on the theoretical results in the previous
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chapter, we expect the Gini gain criterion to be biased towards the predictor variable with

missing values, regardless of its information content.

3.2.1 Null case

In the null case study, X1, X2, X3, X4 and X5 are sampled from the standard normal

distribution

Xj ∼ N(0, 1), for j = 1, . . . , 5.

For each percentage of missing values (MCAR), the obtained frequencies of selection of

X1, X2, X3, X4 and X5 over the 1000 simulation runs are given in Table 3.1 for the Gini

gain (left) and the p-value criterion (right). Since the predictor variables are all independent

of the response Y , a good criterion is supposed to select X1, X2, X3, X4 and X5 with equal,

random choice frequency 1
5
.

However, we find that for the Gini gain criterion the selection frequency of X1 increases

with the amount of missing values, while it decreases for all other variables. In contrast,

the p-value criterion shows almost no variable selection bias.

Tab. 3.1: Null case: Variable selection frequencies. The symbol ◦ indicates a varying

number of missing values in the marked variable with the percentage of missing values

displayed in the left column.

Gini gain p-value criterion

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

◦ ◦

0% 0.20 0.21 0.20 0.20 0.19 0.20 0.21 0.20 0.20 0.19

20% 0.28 0.19 0.18 0.18 0.17 0.18 0.21 0.21 0.21 0.20

40% 0.50 0.14 0.13 0.12 0.12 0.24 0.22 0.21 0.17 0.19

60% 0.67 0.09 0.07 0.07 0.09 0.22 0.20 0.20 0.19 0.21

80% 0.91 0.02 0.03 0.03 0.02 0.23 0.18 0.19 0.20 0.21
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3.2.2 Power case I

In the first power case study, the four uninformative predictor variables X2, X3, X4 and

X5 are sampled from the standard normal distribution, while the predictor variable X1 is

informative now and still contains missing values. X1 is sampled from

X1|Y = 1 ∼ N(0, 1)

X1|Y = 2 ∼ N(0.5, 1).

(We sampled X1|Y rather than Y |X1 only to be able to control the number of class 1 and

2 observations in each iteration. The reverse sampling scheme produces the same effect.)

The manipulated parameter is again the percentage of missing values (MCAR) in the

now informative predictor variable X1, with successively 0%, 20%, 40%, 60% and 80% of

the original sample size missing. All other predictors contain no missing values. With a

sensible selection criterion, the selection frequency of the informative predictor variable X1

is supposed to decrease when the number of randomly missing values increases, because the

information contained in the observed values of the variable actually decreases (cf. Shih,

2004; Shih and Tsai, 2004).

Table 3.2 summarizes the variable selection frequencies for all variables in the power case I

design with X1 being informative and containing missing values. We find that for the Gini

gain criterion the selection frequency of X1 increases with its amount of missing values,

despite the loss of information content. In contrast, the p-value criterion selects X1 less

often when it has many missing values. This dependence of the selection frequency on the

number of available cases of the informative predictor variable corresponds to the findings

of Shih (2004) for the p-value of the maximally selected χ2-statistic, and is a desirable

property for a split selection criterion.
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Tab. 3.2: Power case I: Variable selection frequencies. The ◦ symbol indicates a varying

number of missing values in the marked variable with the percentage of missing values

displayed in the rows of the table. The • symbol indicates that the marked variable is also

an informative predictor.

Gini gain p-value criterion

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

• •

◦ ◦

0% 0.71 0.07 0.08 0.06 0.08 0.71 0.07 0.08 0.06 0.08

20% 0.77 0.06 0.06 0.06 0.06 0.66 0.08 0.08 0.09 0.09

40% 0.79 0.05 0.06 0.05 0.05 0.58 0.12 0.12 0.11 0.09

60% 0.84 0.06 0.03 0.04 0.03 0.45 0.16 0.13 0.14 0.13

80% 0.94 0.01 0.01 0.02 0.01 0.35 0.16 0.17 0.16 0.15

3.2.3 Power case II

In the second power case study, the four uninformative predictor variables X1, X3, X4

and X5 are sampled from standard normal distributions, while now X2 is the informative

predictor variable sampled from

X2|Y = 1 ∼ N(0, 1)

X2|Y = 2 ∼ N(0.5, 1).

X1 now is not informative but still contains missing values. The manipulated variable is

again the percentage of missing values (MCAR) in the uninformative predictor variable X1

with successively 0%, 20%, 40%, 60% and 80% of the original sample size missing. The

other predictors contain no missing values. We expect the estimated probability of X1

being selected as splitting variable to increase with the percentage of missing values in X1

for the Gini gain, despite the higher information content of X2, but not for the p-value

criterion.
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Table 3.3 summarizes the variable selection frequencies for all variables in the power case II

design. We find again that the selection frequency of X1 indeed increases with its amount

of missing values for the Gini gain criterion, outweighing the higher information content

of X2. This effect is also depicted in Figure 3.2. In contrast, the p-value criterion shows

no variable selection bias.

Tab. 3.3: Power case II: Variable selection frequencies. The ◦ symbol indicates a varying

number of missing values in the marked variable with the percentage of missing values

displayed in the left column. The symbol • indicates that the marked variable is an

informative predictor.

Gini gain p-value criterion

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

• •

◦ ◦

0% 0.07 0.73 0.07 0.07 0.07 0.07 0.73 0.07 0.07 0.07

20% 0.12 0.69 0.07 0.07 0.06 0.07 0.72 0.07 0.07 0.06

40% 0.21 0.64 0.05 0.04 0.06 0.06 0.73 0.07 0.06 0.08

60% 0.42 0.47 0.03 0.03 0.05 0.07 0.73 0.06 0.06 0.09

80% 0.74 0.23 0.01 0.01 0.01 0.08 0.71 0.07 0.07 0.09
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Fig. 3.2: Power case II: Variable selection frequencies for the uninformative variable X1

containing missing values (left) and the informative variable X2 containing no missing

values (right).
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3.3 Application to veterinary data

In addition to the simulation studies, the two split selection criteria were also applied to a

real data set from veterinary gynecology. The data were collected in 2004 at a research farm

in the area of Munich, Germany (Schmaußer, 2005). They contain various measurements

recorded for 51 cows from the week of their first delivery (week 0) until the fourth week

post partum (week 4). The binary response variable of interest takes value Y = 1 if the

cow shows no signs of genital infection or signs of a minor genital infection only and Y = 2

if it shows signs of a major genital infection or even puerperal sepsis (childbed fever) and

pyometra (uterine suppuration). The potential predictor variables are measures of body

condition, various parameters of the hemogram, milk production, energy consumption and

gynecological indicators that are displayed in Table 3.4.

The predictor variables vary strongly in their numbers of missing values, e.g., between

0 and 50 in week 0 and between 0 and 25 in week 4. Some variables contain less than

three observations for some of the weeks, which is obviously not a reasonable sample size

in a binary classification task. These variables were excluded from the analysis for the

considered week (week 0: USHR, USHL; week 1: FFS; week 3: FFS).

With this application we want to point out that in practice the Gini gain and the p-value

criterion rank predictor variables substantially differently with respect to their number

of missing values, as expected from our previous theoretical and simulation results. In

addition, we explore the explanatory power of the variables that would be selected for the

first split with each criterion. The analysis is carried out for each week separately, because

the longitudinal structure is not in focus here.

For the first exemplary analysis presented here we treat the missing values as if they

were missing completely at random within each variable, even though this assumption is

debatable for the data at hand. Meanwhile we know from the results of Svejdar et al.

(2008) that even for many non-random missing data generating mechanisms the p-value

approach behaves conservatively and underrates the information content of a variable with
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many missing values rather than preferring it.

3.3.1 Variable selection ranking

The Gini gain criterion and the p-value criterion may be used to rank the variables: the

least informative variable is assigned rank 1, and so on. In this section, the rankings of

the predictor variables obtained by the Gini gain criterion and with the p-value criterion

are compared. Due to selection bias of the Gini gain towards variables with many missing

values, the two rankings are expected to diverge substantially. The scatterplots of the

two rankings are displayed in Figure 3.3 for each week. The number of missing values

is represented by the circumference of the corresponding spot. It can be observed from

the scatterplots that indeed (i) the spots deviate noticeably from the bisector and (ii) the

deviation from the bisector is linked to the number of missing values.

Variables with more missing values tend to be ranked higher by the Gini gain criterion

than with the p-value criterion. Thus, it is of high practical relevance to use the unbiased

p-value criterion instead of the biased Gini gain for variable selection, because the variable

ranked highest by the chosen criterion would be selected for further splitting.

3.3.2 Selected splitting variables

In this section, we examine the variables selected for the first split in each week with the

standard Gini gain and with the p-value criterion. When comparing the variables we take

into account the number of missing values, and additionally compute logistic regression

models for the binary response and each selected variable individually. The p-value of

the likelihood ratio χ2- test of logistic regression models does not strictly match with the

deterministic bisection approach of classification trees, but can serve as another indicator

of the explanatory power of the selected variables. The results are summarized in Table 3.5.

We find again in Table 3.5 that the Gini gain criterion systematically prefers variables with
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high numbers of missing values. For example, the variable UZD selected by the Gini gain

in week 0 has 39 missing values and only 12 observed values. It should thus be treated

with caution. In contrast, the variables selected by the p-value criterion do not have any

or have only few missing values. Through all weeks the p-values of the logistic regression

model (abbreviated by LRM) are lower for the variables selected by the p-value criterion

than for those selected by the Gini gain criterion in each week. This indicates a higher

explanatory power of the variables selected by the p-value criterion in this data set.

Moreover, the p-value criterion may be used as a stopping rule when constructing a classi-

fication tree: We suggest to fix a threshold for the p-value criterion at, e.g., the 95%-level,

corresponding to a 5%-level of significance. The considered node is split only if the crite-

rion value of the selected variable exceeds this threshold, i.e. if the corresponding p-value

is ≤ 0.05. In this example the split in the selected variable would be conducted for weeks

0 through 3; only in week 4 the split does not produce enough impurity reduction and is

omitted if the threshold is fixed at the 5%-level. If the threshold was fixed at the 99%-

level, corresponding to a 1%-level of significance, the split would be conducted in weeks 0

through 2. This way to proceed is compatible with the insignificant results of the logistic

regression models in weeks 3 and 4.

3.4 Summary

Using p-values of optimally selected statistics as split selection criteria avoids all sources

of variable selection bias examined in Chapter 2. In simulation and real data studies, the

approach has proved to deal effectively with different amounts of missing values in the

predictor variables. While the results presented here focus on the case of values missing

completely at random, the subsequent studies of Svejdar et al. (2008) have shown that even

if values are missing not completely at random the p-value criterion guarantees conservative

variable selection, that does not favor variables with many missing values.

Other strategies to cope with randomly missing values in classification tree induction have
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been proposed in the machine learning literature. Most of them are imputation methods

(see e.g. Quinlan, 1986; Liu et al., 1997, for a comprehensive review). Apart from any

skepticism against imputation methods, the approach presented here has the advantage

that it detects the information drop in informative variables caused by an increasing number

of missing values.

Another advantage is that the approach is based on the popular Gini index, with possible

extensions to other impurity measures. The easily tangible impurity measures may attract

applied scientists without a strong statistical background more than classical association

test statistics (in combination with, e.g., Bonferroni adjustment for multiple testing or

optimally selected versions of them) as split selection criteria. The p-value of the Gini gain

can replace the original Gini gain criterion in the traditional greedy search approach of

CART, the intuitiveness of which has played a crucial role in making classification trees

understandable and attractive to a broad scientific community.

Different authors argue along the lines of Kass (1980) and Loh and Shih (1997), who state

that the key to avoiding variable selection bias is to separate the process of variable selection

from that of cutpoint selection. The unbiased algorithms QUEST (Loh and Shih, 1997) and

CRUISE (Kim and Loh, 2001), e.g., employ association test statistics (of the ANOVA F-test

for metric predictors and of the χ2-test for categorical predictors) for variable selection. The

split is selected subsequently using discriminant analysis techniques. In a more consistent

approach, Hothorn et al. (2006) propose a unifying conditional inference framework to

separately select the splitting variable and cutpoint. Here, p-values from the Monte-Carlo

estimate or asymptotic distribution of linear association test statistics are used for unbiased

variable selection; the cutpoint in the selected variable is then derived within the same

framework.

In order to achieve unbiased variable selection in classification trees, it is neither necessary

to give up the popular impurity measures, nor to give up the greedy search approach

that attracted such a diverse group of applicants with different statistical background. By

using a p-value criterion based on the Gini index, one can efficiently address the problem
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of selection bias – and at the same time preserve the simplicity of traditional recursive

partitioning methods. In addition, the p-value can provide a statistically sound stopping

criterion.

However, the exact derivation of the distribution of the optimally selected Gini gain, that

was suggested by Boulesteix in Strobl et al. (2007), comes with computational strings

attached: The advantage of an exact approach is that it is well suited for small samples

sizes, that frequently occur in the bottom nodes of classification trees. On the other hand,

any exact approach is computationally expensive. Therefore, an implementation of the

asymptotic approach for unbiased variable and split selection described in Hothorn et al.

(2006) will be used for the large ensemble studies in the later chapters of this work.
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Tab. 3.4: Potential predictor variables from the cow data set. All variables are continuous,

but contain strongly varying numbers of missing values.

body condition BCS body condition score

RFD backfat thickness (mm)

MD muscle thickness (mm)

hemogram FFS free fatty acids (µmol/l)

Caro carotene (µg/l)

Bili bilirubin (µmol/l)

AST aspartate aminotransferase (U/l)

CK creatine kinase (U/l)

AP alkaline phosphatase (U/l)

GLDH glutamate dehydrogenase (U/l)

GGT gamma glutamiltransferase (U/l)

BHB beta hydroxybutyric acid (mmol/l)

IGF1 insulin growth factor 1 (nmol/l)

milk production Milch milk yield (kg)

FettM milk fat (week mean; %)

EiM milk protein (week mean; %)

FEQ fat-protein-ratio

LaktM milk lactose (week mean; %)

FLQ fat-lactose-ratio

HarnM milk carbamide (week mean; mmol/l)

energy consumption TMGes dry matter intake total (kg)

Eauf energy intake (MJ NEL)

EbedM energy requirement (MJ NEL)

EbilM energy balance (MJ NEL)

gynecology UZD cervix diameter (cm)

USHR uterine horn diameter right (cm)

USHL uterine horn diameter left (cm)
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Fig. 3.3: Rank obtained with the new p-value criterion vs. rank obtained with the Gini

gain. The circumference of each point is proportional to number of missing values in the

predictor.
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Tab. 3.5: Variables selected for the first split using the standard Gini gain (top) and the

p-value criterion (bottom), as well as p-values from the logistic regression model (LRM)

corresponding to model likelihood ratio tests, with the 5%-level of significance indicated

by the * and the 1%-level of significance by the ** symbol.

week 0 week 1 week 2 week 3 week 4

Gini gain

selected variable UZD UZD Bili BCS BCS

missing values 39 38 0 23 25

p-value LRM 0.094 0.028* 0.001** 0.305 0.121

p-value criterion

selected variable Bili GLDH Bili Caro USHL

missing values 0 0 0 0 9

p-value LRM 0.007** 0.003** 0.001** 0.207 0.059

criterion value 0.990** 0.999** 0.994** 0.983* 0.927



4. Robust and unbiased variable selection

in k-ary splitting

A strong disadvantage of traditional classification trees is their instability and susceptibility

to overfitting, that affects their robustness against outliers in the sample and necessitates

terminal pruning. The extension of classification trees as so-called “credal classifiers” based

on imprecise probabilities by Abellán and Moral (2005) establishes a more robust means

of classification, that is not as susceptible to overfitting and thus provides more reliable

results.

The approach of classification trees based on imprecise probabilities for categorical predic-

tor variables by Abellán and Moral (2005), that is considered here, is inspired by the k-ary

splitting C4.5 algorithm. Variable selection is conducted with respect to an upper entropy

criterion based on the Shannon entropy.

As outlined in Chapter 2, a serious problem in practical applications of classification trees

is that split selection criteria can be biased in variable selection, preferring variables for

features other than their information content. We will show that variable selection bias

affects variable selection in the approach of Abellán and Moral (2005), too, if the predictor

variables vary in their numbers of categories.

The main source of this variable selection bias is the fact that the empirical Shannon

entropy, a generalization of which is employed in the algorithm by Abellán and Moral

(2005), is a negatively biased estimator of the true Shannon entropy. In this respect,

the same problem of biased entropy estimation that affected the empirical Gini index in
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standard classification trees in Chapter 2 now applies to the empirical Shannon entropy in

classification trees based on imprecise probabilities. However, in the context of imprecise

probabilities, that are processed by means of an upper entropy approach in the work of

Abellán and Moral (2005), a new, counteracting effect is induced, that depends on the true

information content of the variables.

An unbiased entropy estimator is suggested and discussed as a split selection criterion

in this context, and is evaluated in simulation studies investigating the variable selection

performance of the biased and corrected estimators.

This chapter starts with an outline of the approach of classification trees based on imprecise

probabilities in Section 4.1. Section 4.2 covers the problem of biased sample estimators of

entropy measures in general and in application to classification trees based on imprecise

probabilities, and introduces possible corrections, which are evaluated in a simulation study

in Section 4.3.

4.1 Classification trees based on

imprecise probabilities

The rationale of classification trees based on imprecise probabilities for categorical predic-

tor variables by Abellán and Moral (2005) is similar to the traditional classification tree

approach C4.5 of Quinlan (1993): Starting with the set of all possible predictor variables

the first splitting variable is selected such that it minimizes the value of a specified impu-

rity criterion in the resulting nodes. Once a predictor variable is selected for splitting as

many nodes as categories of that predictor are produced. Each node is characterized by

the configuration of predictor values that characterizes the observations in the node (cf.

Figure 4.1). The splitting then proceeds in each node until the impurity reduction induced

by splitting reaches a specified stopping criterion.

In an advancement of this traditional classification tree algorithm, Abellán and Moral
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Fig. 4.1: Example of a k-ary splitting classification tree. Configurations of predictor

values characterizing the observations in each node are displayed in boxes depicting the

nodes.

(2005) apply the Imprecise Dirichlet Model (abbreviated by IDM in the following; see

Walley (1996) for the introduction of the model and Bernard (2004), as well as Bernard

(2008), for an overview of further developments) in the construction of the classification

tree.

The IDM was developed as a means of predictive inference for modeling prior and posterior

uncertainty about the class probabilities in learning from multinomial data. It was pro-

posed in the framework of imprecise probabilities, where sets of prior distributions, rather

than single ones, are processed to account for uncertainty about model parameters.

In the application of the IDM in classification trees, that is considered here, this means that

instead of using the original class frequencies as estimates for the class probabilities in the

computation of the impurity criterion, upper and lower bounds for the class probabilities

are derived by means of the IDM. These upper and lower bounds enclose a set of class

probabilities, from which Abellán and Moral (2005) proceed with the one that produces

the most conservative estimation of the impurity criterion in order to robustify the split

selection. The resulting classification trees are called “credal classifiers” because, in the

spirit of imprecise probabilities, a set of response classes, rather than a single one, is

returned whenever there is no clearly dominating class.
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The split selection criteria and procedure of Abellán and Moral (2005) are introduced

more formally in the following: At first, the split selection criteria are introduced for one

arbitrary node in Section 4.1.1. Then the entire split selection procedure, starting from

that node, is treated in Section 4.1.2.

As opposed to the previous chapters, we now need additional notation to encode split

selection not only in an exemplary first node, but also in later nodes of the tree. As outlined

in the introduction, in these later nodes split selection is conditional on the configuration

of previously selected splitting variables in the same branch. Therefore, the predictor

variable configuration that characterizes all observations in one node is now denoted as γ

(cf. again Figure 4.1: for example, the lower leftmost node is defined by the configuration

γ = (X3 = 1, X1 = 1)).

4.1.1 Total impurity criteria

Let Y again be a categorical response variable with values c ∈ {1, 2, . . . , |C |} in a finite

set C . The credal set Pγ is a convex set of classical probability distributions πγ on the set

C , representing the available information on the unknown value of the response variable

Y in the node defined by predictor variable configuration γ.

The total impurity criterion TU2(Pγ) for the credal set Pγ

TU2(Pγ) = max
πγ ∈Pγ

−
|C |∑
c=1

πγ(c) ln[πγ(c)]

 (4.1)

is a generalization of the popular Shannon entropy for classical probabilities.

As an alternative, the authors have previously suggested another total impurity criterion

(which we will revisit later)

TU1(Pγ) = TU2(Pγ) + IG(Pγ), (4.2)

where IG(Pγ) is a measure of non-specificity with

IG(Pγ) =
∑
A⊆C

mPγ (A) ln(|A|)
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and mPγ is the Möbius inverse of the lower envelope fPγ = inf
πγ∈Pγ

πγ(A)

mPγ (A) =
∑
B⊆A

(−1)|A−B| fPγ (B),

with |A−B| denoting the cardinality of the set A excluding B. IG(Pγ) is a generalization

of the Hartley measure of non-specificity I(A) = log2(|A|) (in bits). Here, the finite

set A includes all possible candidates for a true class. Thus, the non-specificity of the

characterization increases with the cardinality of the set of possible alternatives (cf. Klir,

1999, 2003).

The total impurity measure TU1(Pγ) additively incorporates both uncertainty and non-

specificity. Abellán and Moral (2005) argue that adding a measure of non-specificity as

in TU1(Pγ) overweighs non-specificity in the total impurity criterion, because TU2(Pγ)

also increases with non-specificity. The authors thus settle for TU2(Pγ) as a measure of

total uncertainty.

The data are incorporated in estimating the value of TU2(Pγ) by means of applying the

IDM locally within each node. For each node, defined by predictor variable configuration

γ, the calculation of the lower and upper probabilities with the IDM is based on counts of

nγc class c objects out of nγ objects in total in the node:

[πγ(c), π γ(c)] =

[
nγc

nγ + s
,
nγc + s

nγ + s

]
, (4.3)

where s denotes the hyperparameter of the IDM, interpretable as the number of yet unob-

served observations. Taking this interpretation of s literally, the calculation of the lower and

upper probabilities is based on relative frequencies assigning 0 or s additional observations

to class c. The credal set Pγ in TU2(Pγ) is then given by all probability distributions

πγ on the set C , for which πγ(c) ∈ [πγ(c), πγ(c)] for all c, as derived in Equation 4.3.

The maximization in TU2(Pγ) is technically accomplished by means of the upper entropy

algorithm introduced in Abellán and Moral (2003). The algorithm identifies the posteriori

probability distribution on C with the upper entropy, that is in accordance with the upper

and lower probabilities for each class c ∈ C derived from the IDM.
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4.1.2 Split selection procedure

The complete process of variable selection in the classification tree algorithm of Abellán

and Moral (2005) consists of the following successive tasks:

Let Xj again be a categorical predictor variable with values mj ∈ {1, 2, . . . , kj} in a finite

set Kj, with kj = |Kj|. Starting from a node defined by predictor variable configuration

γ, for each potential splitting variable Xj as many nodes as categories kj are produced.

Within each new node, defined by the previous configuration γ in combination with the

value mj of the potential splitting variable Xj by γ ∪ (Xj = mj), the lower and upper

probabilities [πγ∪(Xj=mj)(c), π γ∪(Xj=mj)(c)] of each response class c are derived from the

class counts n
γ∪(Xj=mj)
c by means of the IDM. The interval width is determined by the

number of observations per node nγ∪(Xj=mj) and the hyperparameter s of the IDM. The

computation of the upper entropy criterion is then conducted in two steps:

– From the credal set Pγ∪(Xj=mj) derived from the lower and upper probabilities

[πγ∪(Xj=mj)(c), π γ∪(Xj=mj)(c)] the posterior upper entropy distribution π
γ∪(Xj=mj)
maxE ,

i.e., the distribution closest to the uniform distribution over the response classes in

the set C , is determined by the algorithm given in Abellán and Moral (2003).

– The value of TU2(Pγ∪(Xj=mj)) is then estimated by applying the plug-in estimator of

the Shannon entropy, indicated by Ĥ(·), to the posterior upper entropy distribution.

T̂U2(Pγ∪(Xj=mj)) = Ĥ
(
π
γ∪(Xj=mj)
maxE

)
= −

|C |∑
c=1

π
γ∪(Xj=mj)
maxE (c) · ln

[
π
γ∪(Xj=mj)
maxE (c)

]
(4.4)

The impurity that remains after splitting in variable Xj is empirically measured by the

weighted sum of total impurity measures over all new nodes

Î(γ,Xj) =
∑
mj∈Kj

nγ∪(Xj=mj)

nγ
T̂U2(Pγ∪(Xj=mj)), (4.5)
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where nγ∪(Xj=mj)

nγ
is the relative frequency of observations assigned to each new node. The

variable Xj for which Î(γ,Xj) is minimal is selected for the next split. This approach is

equivalent to selecting the variable that produces the maximal empirical impurity reduction

∆̂I as in the previous chapters, because the impurity of the starting node is equal for all

candidate splits.

4.1.3 Characteristics of the total impurity criterion TU2

In order to illustrate the variable selection characteristics of the total impurity criterion

TU2(Pγ) the following standard simulation study design was chosen here:

Several predictor variables are generated such that they only differ in one feature, which is

expected to affect variable selection. The relative frequencies of simulations in which each

variable is selected by the split selection criterion, out of the number of all simulations,

are estimates for the selection probabilities, which should be equal for equally informative

predictor variables if no selection bias occurs. Note that in this simulation design the

relative frequencies can sum up to values greater than 1 if more than one variable reaches

the minimum criterion value, i.e., if more than one variable is equally appropriate to be

selected, in one simulation. In a tree building algorithm one variable has to be randomly

chosen for splitting in this case.

The results displayed below are from a simulation study run with 1000 iterations and

sample size n = 120. Two equally informative predictor variables were created, one of

which had 2 and the other 4 equally frequent categories. The value of the hyperparameter

s of the IDM was set equal to 1. The sampling distribution for the response variable was

varied to manipulate the relevance of the predictor variables. As displayed in Table 4.1

the sampling distribution of the response variable differed in the categories of the predictor

variables depending on the relevance parameter.

Figures 4.2 through 4.4 depict the results of the simulation study as barplots with the

bar height indicating the estimated selection probabilities for the two equally informative
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Tab. 4.1: Study design of simulation study on characteristics of the total impurity criterion

TU2: For fixed predictor values the response is sampled from a Binomial distribution with

sample size n
2

and different class probabilities.

X1 X2 Y

1
1

2
B(0.5 + relevance)

3
2

4
B(0.5− relevance)

predictor variables and the crosses marking ± 2 empirical standard errors of the point

estimates.

The results of the simulation studies show that two characteristics of the total impu-

rity criterion TU2(Pγ∪(Xj=mj)) have an impact when the categorical predictor variables

competing for variable selection vary in their number of categories, and thus in the num-

ber of observations within each new node: When deriving the upper entropy distribution

π
γ∪(Xj=mj)
maxE (in step 1 of the computation of the upper entropy criterion outlined in Section

4.1.2) a smaller number of observations per node results in a wider interval of lower and

upper probabilities [πγ∪(Xj=mj)(c), π γ∪(Xj=mj)(c)]. From a wider interval a more uninfor-

mative upper entropy distribution π
γ∪(Xj=mj)
maxE can be derived. Thus, the total impurity

criterion TU2(Pγ ∪ (Xj = mj)) increases when the number of observations in the new

node decreases, and variables with more distinct categories are penalized. This mecha-

nism of variable selection bias is most prominent in highly informative variables, because

their true information content differs strongly from the much less informative distribution

π
γ∪(Xj=mj)
maxE , that is obtained from the wide intervals. Figure 4.2 illustrates this mechanism

for two equally informative predictor variables, showing that on average the predictor

variable X1 with 2 categories is preferred over X2 with 4 categories.

However, when the relevance of the predictor variables decreases as in Figure 4.3 we see
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Fig. 4.2: Estimated variable selection probabilities for the upper entropy-total impurity

criterion TU2. Both predictors are informative with medium relevance, they only vary in

their number of categories.
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Fig. 4.3: Estimated variable selection probabilities for the upper entropy-total impurity

criterion TU2. Both predictors are informative with low relevance, they only vary in their

number of categories.
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Fig. 4.4: Estimated variable selection probabilities for the upper entropy-total impurity

criterion TU2. Both predictors are uninformative, they only vary in their number of

categories.

that the mechanism explained above is superposed by another, yet unaccounted, mecha-

nism that affects variable selection in less relevant predictor variables. For uninformative

predictor variables this second mechanism is most prominent as shown in Figure 4.4. The

mechanism obvious in Figures 4.3 and 4.4 induces a preference for the predictor variable X2

with 4 categories over X1 with 2 categories. We will show that the underlying mechanism is

a bias in the estimation procedure of the total impurity criterion from the posterior upper

entropy distribution (in step 2 of the computation of the upper entropy criterion outlined

in Section 4.1.2). The statistical background of this estimation bias, as well a correction

approach, is given in the next section.

The two mechanisms illustrated here counteract in their effect on variable selection: The

tradeoff between the upper entropy-approach on one hand and estimation bias on the other

hand depends on the data situation. In an extreme case, however, the effect of estimation

bias can induce a preference of a less informative variable over a more informative variable
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in variable selection - merely due to different numbers of categories. Thus, the mechanism

of estimation bias is elaborated in the following section.

4.2 Empirical entropy measures in split selection

As implied above, the biased estimation of the splitting criterion can be identified as one

source of variable selection bias in classification trees. In order to address this problem,

we shortly review the necessary statistical background on the estimation of the Shannon

entropy and then apply the results to classification trees based on imprecise probabilities.

4.2.1 Estimation bias for the empirical Shannon entropy

The theoretical Shannon entropy

H(π) = −
|C |∑
c=1

π (c) ln[π (c)]

is a function of the true response class probabilities π(c). In order to estimate the Shannon

entropy from empirical data the popular estimator Ĥ is a plug-in estimator retaining the

original function but replacing the true class probabilities by the observed relative class

frequencies, i.e., by the maximum-likelihood estimators of the true class probabilities

Ĥ(π̂) = −
|C |∑
c=1

π̂ (c) ln[π̂ (c)].

However, this widely used estimator is biased for finite sample sizes, because with a decreas-

ing number of observations the standard error of the estimators π̂(c) increases, producing

posterior class distributions misleadingly implying a higher information content.

Based on a statistical evaluation of the bias, possible correction strategies are derived in

the following: From Jensen’s inequality, f (Eπ(π̂)) ≥ Eπ (f(π̂)) for any concave function

f , it is obvious that the unbiasedness of the maximum-likelihood estimators π̂ (c) is not
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necessarily transferred to the plug-in estimator Ĥ, which may be negatively biased. The

same principle was illustrated for the empirical Gini index in Chapter 2.

The extent of the bias for the empirical Shannon entropy can be evaluated from the ex-

pected value of the plug-in estimator Ĥ for the true Shannon entropy H, that was derived

independently by Miller (1955) and Basharin (1959)

Eπ

(
Ĥ(π̂)

)
= Eπ

− |C |∑
c=1

π̂ (c) ln[π̂ (c)]


= Eπ

− |C |∑
c=1

nc
n

ln
[nc
n

]
= H(π)− |C | − 1

2n
+O

(
1

n2

)
,

where O( 1
n2 ) includes terms of order 1

n2 , which are suppressed in the following naive correc-

tion approach because they depend on the true class probabilities π(c) (cf. also Schürmann,

2004).

According to the above assessment of the estimation bias, a naive correction approach for

an unbiased estimate ĤMiller as suggested by Miller (1955) is

ĤMiller(π̂) = Ĥ(π̂) +
|C | − 1

2n
.

Due to the omission of the terms of order 1
n2 this correction provides a decent approximation

of the true entropy value only for sufficiently large sample sizes, while for n → ∞ the

correction is negligible.

4.2.2 Effects in classification trees based on

imprecise probabilities

As described in the beginning of Section 4.1.3, small sample sizes result in wider intervals of

lower and upper probabilities [πγ∪(Xj=mj)(c), π γ∪(Xj=mj)(c)] in each new node, from which

more uninformative posterior upper entropy distributions can be derived.



66 4. Robust and unbiased variable selection in k-ary splitting

However, another general effect of small sample sizes is that small changes in the data result

in high changes of relative class frequencies computed from the data. This limited sample

effect also affects the intervals of lower and upper probabilities for the response classes in

the approach of classification trees based on imprecise probabilities. The interval-bounds

in Equation 4.3 can be naively considered as artificial relative class frequencies, where

imprecision is incorporated by means of the s yet unobserved observations, the class of

which is not yet determined. The hyperparameter s is often set to a value of the magnitude

1 or 2. Thus, the artificial relative frequencies derived from the IDM suffer from the same

weakness as classical relative frequencies, namely that for small sample sizes small changes

in the data produce crucial changes in the relative frequencies, misleadingly implying class

distributions with a higher information content. The estimation bias for empirical entropy

measures outlined in the previous section therefore applies to the estimation of the total

impurity criterion T̂U2(Pγ∪(Xj=mj)) from the data.

When a predictor variable is highly informative, the effect of the estimation bias is com-

pensated by the upper entropy-approach. However, for less or uninformative predictor

variables the effect of estimation bias influences variable selection in favor of variables with

more categories: For less informative or uninformative variables, where the posterior upper

entropy distribution is a uniform distribution over the set of response classes C , the neg-

ative estimation bias occurring in each node is carried forward to the estimated criterion

value Î(γ,Xj), on which the final decision in the variable selection procedure is based.

For an uninformative predictor variable, with the true class distribution π∗ := π
γ∪(Xj=mj)
maxE =

U(1, |C |) discretely uniform on support [1, |C |], the true entropy value H∗ :=
∑|C |

c=1 π
∗(c) ·

· ln[π∗(c)] is maximal and equal in each node. The approximated expected value of Î(γ,Xj)

under the null hypothesis is then

Eπ∗
(
Î(γ,Xj)

)
≈

∑
mj∈Kj

nγ∪(Xj=mj)

nγ

{
H∗ − |C | − 1

2
(
nγ∪(Xj=mj) + s

)}

≈ H∗ − kj ·
|C | − 1

2nγ

where the number of response categories |C | is fixed, while the number of categories kj
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differs between the predictor variables Xj. Thus, the number of categories of the predictor

variable Xj crucially affects its selection chance.

4.2.3 Suggested corrections based on the IDM

With Ĥ
(
π
γ∪(Xj=mj)
maxE

)
denoting the standard plug-in estimator of the Shannon entropy

applied to the posterior upper entropy distribution we suggest to use

ĤMiller

(
π
γ∪(Xj=mj)
maxE

)
= Ĥ

(
π
γ∪(Xj=mj)
maxE

)
+

|C | − 1

2(nγ∪(Xj=mj) + s)
(4.6)

as the empirical entropy estimator in every new node of a classification tree based on

imprecise probabilities. This correction accounts for the derivation of the posterior upper

entropy distribution, to which the entropy estimator is applied, from the posterior lower

and upper probabilities computed with respect to the IDM with hyperparameter s and

sample size nγ∪(Xj=mj). This correction is again appropriate for medium nγ∪(Xj=mj), while

it over-penalizes for small nγ∪(Xj=mj) with respect to the number of categoies |C |, which is

supported by the numerical results in Section 4.3.

In another correction approach we are revisiting the empirical measure ÎG, the theoretical

analogy of which was employed by Abellán and Moral (2005) as a measure of non-specificity

in the total impurity criterion TU1(Pγ∪(Xj=mj)). Like the correction term in the above ap-

proach, the term ÎG(Pγ∪(Xj=mj)) in Equation 4.2 is a function of the sample size nγ∪(Xj=mj)

and the number of categories |C |. In the special case where the lower probabilities used

in the computation of the Möbius inverses in ÎG(Pγ∪(Xj=mj)) are derived from the IDM,

the Möbius inverses of all subsets of the power set of C , besides the singletons c ∈ C and

the complete set C , are equal to zero due to the additivity induced by the IDM. Because

the logarithm of the cardinality of the singletons is zero, the Möbius inverse for the set C

collapses to the width s

nγ∪(Xj=mj)+s
of the intervals of lower and upper probabilities on C

computed from the IDM with hyperparameter s, and the empirical non-specificity measure

ÎG(Pγ∪(Xj=mj)) depends only on the sample size nγ∪(Xj=mj) through the interval width,
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and on the number of categories |C | through the factor ln(|C |). We thus suggest

Ĥ
(
π
γ∪(Xj=mj)
maxE

)
+ ÎG

(
Pγ∪(Xj=mj)

)
=

Ĥ
(
π
γ∪(Xj=mj)
maxE

)
+ m̂

Pγ∪(Xj=mj)(C ) ln(|C |) (4.7)

i.e. T̂U1(Pγ∪(Xj=mj)), as another corrected estimator, where m̂
Pγ∪(Xj=mj)(C ) is the Möbius

inverse computed from the posterior lower class probabilities derived from the IDM. We will

again see in Section 4.3 that this correction is only reliable for sufficiently large nγ∪(Xj=mj)

and small |C |, while otherwise it is overcautious.

4.3 Simulation study: performance of entropy

estimators in split selection

Again the variable selection performance of each split selection criterion can be evaluated

by means of the following simulation study design: Several uninformative predictor vari-

ables are generated such that they only differ in the number of categories. The relative

frequencies of simulations in which each variable is selected by the split selection criterion,

out of the number of all simulations, are estimates for the selection probabilities, which

should be equal (at random choice frequency 1/number of variables) for uninformative

predictor variables if no selection bias occurs. The following results are from a simulation

study run with 1000 simulations and 10 uninformative predictor variables, one of which has

3 (respectively 5) distinct categories, while the rest have 2 distinct categories. The value

of the hyperparameter s of the IDM was again set equal to 1. As displayed in Table 4.2

the response values in the simulation were fixed, while the uninformative predictors were

sampled from discrete uniform distributions on support [1,3] (respectively [1,5]) and [1,2].

The frequencies of the two response classes were set equal at n1 = n2 = 100 for medium

sample size and n1 = n2 = 10 for small sample size.

In this study, the behavior of the plug-in estimator Ĥ for the Shannon entropy (cf. Equa-

tion 4.4) is compared to the behavior of the corrected estimators ĤMiller (Equation 4.6)
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Tab. 4.2: Study design of simulation study on entropy estimators: For fixed response

values (n1 class 1 observations and n2 class 2 observations, set equal) the uninformative

predictors were sampled from discrete uniform distributions with sample sizes n = n1 +n2

and different ranges.

Y X1 X2 . . . X10

1

2
U(1,3) or U(1,5) U(1,2)

and Ĥ + ÎG (Equation 4.7). Figures 4.5 through 4.8 display that, with the plug-in esti-

mator Ĥ for the Shannon entropy, variable selection bias affects the estimated selection

probabilities even if the variables differ in their number of categories only by 1. This effect

is strongly aggravated if the variables differ more in their number of categories.

For the corrected estimator ĤMiller, Figures 4.9 through 4.12 document that the variable

selection bias caused by the estimation bias of the entropy estimate can be fairly compen-

sated by the correction. Only for small sample sizes, aggravated by a large difference in the

number of categories of the predictor variables, the correction is overly cautious, resulting

in a reverse variable selection bias. For the corrected estimator Ĥ + ÎG, Figures 4.13

through 4.16 show that the reverse bias for small sample sizes and large difference in the

number of categories is even stronger than for ĤMiller.

4.4 Summary

The split selection criterion TU2 introduced for classification trees based on imprecise

probabilities for categorical predictor variables by Abellán and Moral (2005) is affected by

two mechanisms relevant in variable selection when predictors differ in their number of

categories:

The first mechanism, relying on the selection of the posterior upper entropy distribution,
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penalizes highly informative predictor variables with many categories. The second counter-

acting mechanism, relying on the biased estimation of the total impurity criterion, favors

less informative or uninformative predictor variables with many categories. In a tradeoff

the combination of both mechanisms can lead to unwanted variable selection bias depend-

ing on the data situation.

In a first approach, employing corrected estimators of the total impurity criterion in vari-

able selection, our results imply that the corrections accomplish to eliminate part of the

variable selection bias induced by estimation bias. Both corrected estimators perform

better than the TU2 criterion in the standard paradigm with uninformative predictor vari-

ables. The corrected estimator ĤMiller (Equation 4.6) shows even better variable selection

performance than the corrected estimator Ĥ + ÎG (Equation 4.7). The corrected estima-

tors are less reliable for small sample sizes and large numbers of categories of the predictor

variables, where they react overcautious. However, for application in a classification tree

this effect can be accounted for by incorporating the tolerable minimum number of obser-

vations per node in the stopping criterion. The corrected estimators can be easily applied

to the posterior upper entropy distribution derived from the lower and upper probabilities

computed with the IDM as suggested by Abellán and Moral (2005). The correction so

far incorporates only the deviation of the expected value of the estimator of the Shan-

non entropy. Another relevant factor, which could be integrated in further corrections, is

the variance of the estimator derived, e.g., in Roulston (1999). More elaborate entropy

estimators may be considered for split selection in future research.
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Fig. 4.5: Estimated variable selection probabilities for the plug-in estimator of the Shan-

non entropy for 3 vs. 2 categories in the predictor variables and medium sample sizes.
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Fig. 4.7: Estimated variable selection probabilities for the plug-in estimator of the Shan-

non entropy for 5 vs. 2 categories in the predictor variables and medium sample sizes.



72 4. Robust and unbiased variable selection in k-ary splitting

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Criterion: H
^

Miller, n1=n2= 100

(X1 has  3  categories, all other variables have 2 categories)

P^
(X

j s
e

le
c
te

d
)

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Fig. 4.9: Estimated variable selection probabilities for the corrected estimator of the

Shannon entropy ĤMiller, for 3 vs. 2 categories in the predictor variables and medium

sample sizes.
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Fig. 4.6: Estimated variable selection probabilities for the plug-in estimator of the Shan-

non entropy for 3 vs. 2 categories in the predictor variables and small sample sizes.
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Fig. 4.8: Estimated variable selection probabilities for the plug-in estimator of the Shan-

non entropy for 5 vs. 2 categories in the predictor variables and small sample sizes.
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Fig. 4.10: Estimated variable selection probabilities for the corrected estimator of the

Shannon entropy ĤMiller, for 3 vs. 2 categories in the predictor variables and small sample

sizes.
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Fig. 4.11: Estimated variable selection probabilities for the corrected estimator of the

Shannon entropy ĤMiller, for 5 vs. 2 categories in the predictor variables and medium

sample sizes.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Criterion: H
^

+ IG
^

, n1=n2= 100

(X1 has  3  categories, all other variables have 2 categories)

P^
(X

j s
e

le
c
te

d
)

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Fig. 4.13: Estimated variable selection probabilities for the corrected estimator of the

Shannon entropy Ĥ + ÎG, for 3 vs. 2 categories in the predictor variables and medium

sample sizes.
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Fig. 4.15: Estimated variable selection probabilities for the corrected estimator of the

Shannon entropy Ĥ + ÎG, for 5 vs. 2 categories in the predictor variables and medium

sample sizes.
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Fig. 4.12: Estimated variable selection probabilities for the corrected estimator of the

Shannon entropy ĤMiller, for 5 vs. 2 categories in the predictor variables and small sample

sizes.
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Fig. 4.14: Estimated variable selection probabilities for the corrected estimator of the

Shannon entropy Ĥ+ ÎG, for 3 vs. 2 categories in the predictor variables and small sample

sizes.
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Fig. 4.16: Estimated variable selection probabilities for the corrected estimator of the

Shannon entropy Ĥ+ ÎG, for 5 vs. 2 categories in the predictor variables and small sample

sizes.



5. Adaptive cutpoint selection in

TWIX ensembles

The ensemble methods bagging and random forests, that will be treated in later chapters,

employ sets of classification trees as a means to provide more stable predictions – but at

the expense of completely giving up the interpretability of a single tree model. The TWIX

method on the other hand, that was introduced by Potapov (2006) (see also Potapov et al.,

2006; Potapov, 2007) and forms the basis for this chapter, resides somewhere in between

single trees and usual ensemble methods: It starts with a single starting node, but branches

to a set of trees at each decision by means of splitting not only in the best cutpoint (note

that we are now returning to the case of binary splitting), but also in reasonable extra

cutpoints.

When considering the prediction accuracy of tree-based models, TWIX has been shown to

reliably outperform single trees and even to reach the predictive performance of ensemble

methods like bagging and random forests on some data sets. However, in general it cannot

compete with them because – in particular in the currently available version where the

number of extra cutpoints has to be predetermined by the user and remains fixed – it

becomes computationally infeasible for large sets of trees. In addition to this, the TWIX

approach is limited to locally optimal variable selection on the original data set, while

bagging and random forests induce variation by means of random sampling from the orig-

inal data set and the set of predictor variables. This may reveal interaction effects that

otherwise remain unnoticed, as outlined in the introduction.
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When considering the overall value of computer intensive statistical learning methods,

however, it is important to be aware that there is a tradeoff between two rivaling interests:

prediction accuracy on one hand and interpretability on the other hand. With respect

to interpretability, TWIX trees have an advantage over parallelized ensemble methods

like bagging and random forests: While in random forest and bagging any form of direct

interpretability is lost, TWIX trees can be considered as an expansion of a single tree

model – since a TWIX ensemble forms a set of nested trees, that is derived from one single

starting node.

In addition to this, we will show that by means of introducing a new, adaptive cutpoint

selection strategy the size of the TWIX ensemble can be regulated in a data driven way.

This approach combines two attractive features:

– Firstly, the robustification is parsimonious in the sense that additional cutpoints are

considered only if the cutpoint under consideration proves to be unstable. This saves

extra splits and thus makes the resulting TWIX ensemble more concise – a fact that

adds not only to interpretability, but may also considerably reduce the computational

expense of the TWIX method.

– Secondly, as a quite welcome by-product, it provides a diagnostic for the robustness

of a single tree model: In an extreme case a TWIX ensemble with an adaptively

chosen number of extra cutpoints can reduce to a single tree model, when one clearly

dominant cutpoint is found in each split. The resulting tree has then proved to

be stable with respect to small changes in the data set. The other extreme case is

a widespread TWIX ensemble that indicates high instability of cutpoint selection.

Such a large ensemble is not interpretable by any means, and a black box method like

bagging or random forests with a higher prediction accuracy may be better suited

for the particular data set.

To achieve this adaptive cutpoint selection, our approach takes one key problem of classi-

fication trees literally: the fact that they are so instable that a completely different tree
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may have resulted if a few different observations had been observed. We formalize and

utilize this very aspect and introduce additional virtual, yet unobserved, observations in

the analysis. The values of these observations are, of course, unknown so that we consider

all possible values. We then construct a TWIX ensemble resulting from all splits that are

optimal under some constellation of these virtual observations.

In the following we will first shortly review the instability issue for the current cutpoint

selection approaches and introduce the original suggestions for selecting extra cutpoints in

TWIX in Section 5.1, before the adaptive cutpoint selection criterion is derived in Section

5.2. The behavior of the criterion is explored in Section 5.3. Section 5.4 gives a short

outlook on the aggregation of predictions from ensembles of trees in the spirit of credal

classification, before the results are summarized in Section 5.5.

5.1 Building TWIX ensembles

The rationale behind all ensemble methods is that they use a whole set of classification trees

rather than a single tree for prediction. The prediction of all trees in the set is combined by

voting or averaging. This approach leads to a significant increase in prediction accuracy on

a test sample as compared to the performance of a single tree. TWIX shares this feature

with the ensemble methods bagging and random forests, even though the sets of trees are

created differently.

A question that arises with respect to sets of trees generated on random bootstrap or

subsamples in bagging and random forests is: “Why use randomly generated and thus

sub-optimal models?” (Potapov, 2006; Potapov et al., 2006). The TWIX response to this

question is to start with a single tree built on the original learning sample, but to proceed

in each split not only with the best cutpoint, but also with reasonable extra cutpoints, such

as the second and third best cutpoint. In this approach a set of trees is created that start

with the same root node but diverge further and further, whenever more than one cutpoint

is considered worthwile for splitting. From this nested set of trees either the best individual
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tree is selected, e.g., by means of a cross validation criterion, or trees are aggregated for

prediction as in bagging and random forests. Potential strategies for aggregating credal

predictions from sets of classification trees are outlined in Section 5.4.

On some data sets aggregated TWIX ensembles can even outperform standard ensemble

methods (Potapov, 2006; Potapov et al., 2006). However, the TWIX approach is – at

least in the originally proposed non-adaptive form – computationally expensive because

the ensemble grows exponentially in the number of extra cutpoints. Depending on the

number of extra cutpoints and the depth of the trees, the approach can soon become

computationally infeasible and in general cannot compete with other ensemble methods

that employ large sets of trees, because by default a moderate but fixed number of extra

cutpoints in the current splitting variable are selected, that leads to an exponential growth

of the TWIX ensemble. In this context it is helpful that our method not only improves

interpretability but also lowers the computational load by restricting the number of extra

cutpoints to those that are reasonable alternatives, and thereby reducing the complexity

of the TWIX ensemble.

5.1.1 Instability of cutpoint selection in recursive partitioning

In standard binary splitting classification tree algorithms the cutpoint that produces the

highest value of some split selection criterion, like the Gini gain, is selected. In a learning

sample of size n, there are n − 1 potential cutpoints in each continuous variable without

ties. Each of these candidate cutpoints defines two new daughter nodes. For cutpoint

selection, within each daughter node an empirical entropy measure is computed. From

these two individual node impurities of the daughter nodes an average impurity is derived

and compared to the impurity in the mother node before splitting to assess the impurity

reduction that can be achieved by splitting in each candidate cutpoint, as was described

in detail in Chapter 1.

The distribution of the Gini gain split selection criterion over the range of the predictor
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variable may, however, show that other cutpoints have a criterion value that is very similar

to that of the best cutpoint, and thus might be equally well suited for splitting. This makes

the trees very sensitive to small changes in the data set, because one of the other candidate

cutpoints might have been chosen, if slightly different data had been observed. To judge

whether such an instable situation is indeed present, a simple graphical visualization,

the so-called “mountain plots” (Potapov, 2006; Potapov et al., 2006), can be very helpful:

Mountain plots can be used to visualize the distribution of any split selection criterion over

the range of the predictor variable as illustrated in Figure 5.1. The variables presented

here are measurements of three different fatty acids from a data set on olives from different

regions in Italy that comes with the TWIX add-on package (Potapov, 2007) to the R system

for statistical computing (R Development Core Team, 2008).

The solid lines in the three plots illustrate the distribution of the Gini gain for a binary

response over the range of the three predictor variables. Peaks in the mountain plots

indicate good candidates for cutpoints. The n− 1 potential cutpoints on the abscissa are

ordered with respect to their value of the predictor variable Xj.

The first plot in Figure 5.1 shows a variable that produces one clear cutpoint, while the

second and third plots show variables in the range of which several cutpoints are similarly

well suited for splitting. The distributions of the binary response variable over the range

of the predictor variable are displayed as circles in Figure 5.1. A clear distinction between

the response classes leads to one clearly best cutpoint, while a high overlap between the

response classes produces several similarly well suited cutpoints.

5.1.2 Currently implemented methods for selecting

extra cutpoints in TWIX ensembles

From the mountain plots in Figure 5.1 it is obvious that in many cases the best cutpoint

is only slightly better than the second best and so forth, and that small changes in the

learning data may reverse the ranking of the cutpoints. Therefore it is reasonable to select a
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Fig. 5.1: Mountain plots: Distribution of the Gini gain and the binary response over the

range of three predictor variables from the olives data set.

subset of extra cutpoints that appear similarly well suited for splitting as the best cutpoint

for further branching, rather than to rely only on the best cutpoint in the learning sample.

Different selection principles for this subset of suited cutpoints were outlined in Potapov

(2006) and Potapov et al. (2006). The most obvious selection principles proposed by the

authors are: (i) Select the best m cutpoints. (ii) Select the best m cutpoints that are local

maxima.

Both selection principles select a fixed number of cutpoints m in each level of the tree. The

implementation of TWIX in the R system for statistical computing also allows for different

numbers of cutpoints m at different levels of the tree to account for the fact that at lower
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levels of the tree fewer observations are left in each node producing less possible cutpoints.

A different approach for cutpoint selection, that aims at a different issue, is the grid selec-

tion principle. Here m cutpoints are selected at a given grid on the range of the predictor

variable regardless of the distribution of the criterion. The rationale of the grid selection is

that cutpoints that are optimal with respect to the current node (i.e. locally optimal) may

not produce the globally most optimal tree. Therefore a wide range of possible cutpoints is

used to produce a wide range of trees, from which the globally most optimal tree can then

be selected. However, in continuous predictor variables this procedure is computationally

extremely expensive and only manageable by means of parallel computing (Potapov, 2006;

Potapov et al., 2006). In addition to this, even if cutpoints are selected by means of a grid

search, variable selection in TWIX – as opposed to, e.g., random forests – is still limited

to locally optimal choices.

Another issue in the TWIX cutpoint selection process is whether the best m cutpoints

should be selected only within a previously chosen predictor variable or, inducing automatic

variable selection, over all variables. Both options are available in TWIX. However, since

the selection over all variables may produce variable selection bias for the reasons outlined

in the previous chapters, here we will consider only the case that, in a first step, a predictor

variable Xj is preselected for splitting by means of an unbiased association measure (like

the ones suggested by, e.g., Strobl, 2005; Hothorn et al., 2006; Strobl et al., 2007, cp.

Chapters 3 and 4), and in a second step suited cutpoints are selected only within the

previously chosen variable.

5.2 A new, adaptive criterion for selecting extra

cutpoints in TWIX ensembles

The currently implemented TWIX cutpoint selection principles usually select a given num-

ber m of cutpoints regardless of the underlying data. The first criterion selects, e.g., the
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m = 5 cutpoints with the highest criterion values even in a clear cut situation as that

of the first plot in Figure 5.1. The second criterion selects the m = 5 local maxima (or,

if the number of local maxima is smaller than m, the number of extra cutpoints may be

reduced to this number implicitly). This would allow the identification of the one clearly

optimal cutpoint in the ideal situation depicted in the first plot in Figure 5.1, but would

also enforce the selection of extra cutpoints in all m = 5 local maxima in the second plot

in Figure 5.1, even if one of them is as far off the others as the one on the left hand side.

We will now suggest a new cutpoint selection criterion that directly operationalizes the

possible instability to small changes in the learning sample. It adaptively selects a data

driven number of cutpoints, namely only those that actually turn out to be (or remain)

optimal when the original data set is exposed to such small changes.

5.2.1 Adding virtual observations

We start again by computing the Gini gain, or another split selection criterion like the In-

formation gain based on the Shannon entropy, for each potential cutpoint x(i)j in the range

of the preselected predictor variable Xj (as in Equation 1.3 in Chapter 1 or Equation 2.3

in Chapter 2). This gives us one optimal cutpoint with the highest criterion value – and

maybe a few others that are similarly well suited.

Now imagine that we expose the original data set to small changes by introducing virtual,

yet unobserved observations. The crucial question then is: Will the cutpoint that per-

formed best on the original data set still perform best on the slightly changed data set, or

will another cutpoint outperform the previously best one?

We assess the robustness of the cutpoint by means of successively adding virtual observa-

tions. Adding only one new observation might already lead to a different optimal cutpoint,

but usually more than one virtual observation is necessary to actually induce a change.

Therefore we successively add one, two and more new observations at each step of our

algorithm: the current number of virtual observations smax runs from 1 to an upper bound
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sMAX , as summarized in Table 5.1. An intuitive interpretation of the upper bound sMAX

is the number of unknown values of sMAX subjects that, for some reason, could not partic-

ipate in the original study even though they were supposed to. We will discuss the choice

and meaning of sMAX in more detail in Section 5.3.

In each step of the algorithm, the current number of smax virtual observations are assigned

either to the left or right node after the following rationale: For each yet unobserved

observation (let us think of only one observation for a start) we know neither its value of

the predictor Xj, nor of the response Y . However, in order to assign the observations to the

left or right node, it is not even necessary to know the exact value of Xj of our unobserved

observation. With respect to a given cutpoint x(i)j it is sufficient to discriminate between

values of Xj smaller than or equal to x(i)j, that would be assigned to the left node, and

values of Xj greater than x(i)j, that would be assigned to the right node.

Since the true value of Xj of our unobserved observation is unknown, however, we proceed

with both options in our approach: For every potential cutpoint the unobserved observation

is first assigned to the left node and the split criterion is recalculated; then the observation

is assigned to the right node and the split criterion is recalculated again. This gives two

best cutpoints, that are each either the same as in the original data set or new reasonable

candidates for an extra split. For more than one virtual observation, this means that in

each step of the algorithm we study the effect of smax yet unobserved observations of which

sL are assigned to the left and smax − sL to the right node, where sL runs from 0 to smax.

5.2.2 Recomputation of the split criterion

The unknown response class Y of our virtual observations, that is needed in the recom-

putation of the split criterion, is again incorporated by considering each possible response

class. This leads to a set of class frequencies whose envelopes turn out to produce lower and

upper possible class frequencies that coincide with the lower and upper class probabilities

of a locally applied Imprecise Dirichlet Model (again abbreviated by IDM; Walley (1996)).
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When, e.g., one virtual observation is assigned to the left node, the relative class frequency

of response class 1 in this node is either n1(i)+1
i+1

, if the observation was of class 1, or n1(i)
i+1

,

if the observation was of the other class. For a general number sL of observations assigned

to the left node we receive the lower and upper probabilities for class 1 given by the IDM

with hyperparameter sL, where

[πL(i, sL), πL(i, sL)] =

[
n1(i)

i+ sL
,
n1(i) + sL
i+ sL

]
. (5.1)

Note, however, that here the IDM is not understood as a meta model assumed in advance,

but simply as a mathematical device that directly results from our method of robustifica-

tion.

The interval-valued class probabilities derived in Equation 5.1 produce a set of Gini gains,

and different criteria seem reasonable to select cutpoints from them. Here we will follow the

rationale of a worst case scenario as in the minimax approach in decision theory: A single

cutpoint is selected; namely the one that corresponds to the most conservative evaluation

of the Gini gain. The lowest, and thus most conservative, evaluation of the Gini gain is

produced by the distribution that is closest to the uniform distribution over the classes.

This most conservative distribution of all distributions covered by the interval-valued class

probabilities, π∗L(i, sL), will be called upper entropy distribution (cp. Abellán and Moral,

2003, 2005) in the sequel. It can be derived by means of the upper entropy algorithm of

Abellán and Moral (2003), that was originally developed for handling the Shannon entropy.

The criterion value for the left node is then calculated with the conservative upper entropy

class probability π∗L(i, sL) instead of the relative class frequency from the original sample.

The criterion value for the right node is the same as for the original data set as long as

no unobserved observation is assigned to the right node. In general, as shown by in the

pseudo code in Table 5.1, zero or more, namely smax − sL, unobserved observations are

assigned to the right node. From these smax − sL observations a probability interval

[πR(i, smax − sL), πR(i, smax − sL)] =
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[
n1 − n1(i)

i+ (smax − sL)
,
n1 − n1(i) + (smax − sL)

i+ (smax − sL)

]
and an upper entropy distribution π∗R(i, smax − sL) are derived as above. The Gini gain

over both nodes is again computed as in Equation 2.3.

Overall up to sMAX yet unobserved observations are assigned to either node to compute a

conservative evaluation of the split criterion, and for each configuration the best cutpoint is

evaluated. Some configurations will produce the same best cutpoint as the original sample,

some may produce different but also well suited cutpoints, that can be used for further

splitting. The algorithm is summarized in pseudo code in Table 5.1. It returns a vector

∆̂G of Gini gain values for each cutpoint in each configuration of smax and sL. In each

configuration the best cutpoint is the one producing the highest Gini gain based on the

upper entropy distributions. If the cutpoint of a certain configuration differs from previous

optimal cutpoints, it is added to the list of cutpoints used for further splitting.

Tab. 5.1: Pseudo code for adaptive cutpoint selection.

for (smax in 1 : sMAX){

for (sL in 0 : smax){

for (i in 1 : (n− 1)){

determine π∗L(i, sL) and π∗R(i, smax − sL)

Ĝ∗
L(i) = 2 π∗L(i, sL) (1− π∗L(i, sL))

Ĝ∗
R(i) = 2 π∗R(i, smax − sL) (1− π∗R(i, smax − sL))

∆̂G(i, sL, smax) = Ĝ−
(
i
n
Ĝ∗
L(i) + n−i

n
Ĝ∗
R(i)

)
} } }

It may be helpful to summarize explicitly that our robustification is applied only locally. In

the last line of Table 5.1 this becomes most evident: The virtual observations are employed

only in the conservative evaluation of the Gini indices Ĝ∗
L(i) and Ĝ∗

R(i) in the left and right

nodes for a given cutpoint position i. The conservativeness of this evaluation is determined

by the current value of smax: the higher the number of virtual observations that can be
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assigned to the left and right node, the wider the probability intervals produced by the

IDM – and the more entropy is possible in the upper entropy distributions π∗L(i, sL) and

π∗R(i, smax − sL).

The new, virtual observations are introduced to locally manipulate the evaluation of a

given cutpoint – but they are not supposed to be processed further through the tree, as

the original observations. Consequently the weights i
n

for Ĝ∗
L(i) and n−i

n
for Ĝ∗

R(i), that

represent the distribution of the original observations to the left and right of the potential

cutpoint, are not altered by this “thought experiment”.

Our procedure relies on the idea that the more observations can be newly assigned, the

more likely it is that a cutpoint different from the one in the original sample will be optimal

in some configuration. However, we will confirm in the simulation studies below that in

situations where one cutpoint is clearly superior, as in the top plot in Figure 5.1, this

cutpoint will remain superior, as desirable for a sensible data driven cutpoint selection

method.

As a quite welcome by-product, our reasoning provides us directly with a robustness mea-

sure: The minimum number of newly assigned observations that is necessary to produce

an optimal cutpoint different from that in the original sample can be used as a diagnostic

of the robustness of the original split and will be referred to as s∗ in the following. If s∗

is small, i.e., if only few newly assigned observation are necessary to produce a different

cutpoint, then the original cutpoint was not robust and most likely produced by random

variations in the learning sample. This will also be illustrated in the next section with the

olives data and the simulated data.

5.3 Behavior of the adaptive criterion

In this section we will show some applications of our cutpoint selection criterion to illustrate

on one hand the interpretability of s∗ as a robustness measure and on the other hand the
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effects of different choices of sMAX on the selection of extra cutpoints. First we will revisit

the data set from Section 5.1.1 and after that we will use a simulation study to explore the

behavior of the criterion for different choices of sMAX more systematically.

5.3.1 Application to olives data

First of all let us revisit the three variables from the olives data set that were used in Figure

5.1. The data set consists of data on 89 olives from one out of two regions Y = 1 or Y = 2,

that are supposed to be predicted from the measurements of three different fatty acids,

X8, X1 and X4, that produce the characteristic mountain plots in Figure 5.1. From the

mountain plots we expect that the clear distinction of the response classes in X8 results in

one stable cutpoint, that is not easily changed by adding extra observations, while the less

clear distinctions in X1 and X4 produce less stable cutpoints that may be easily affected

by small changes in the learning sample.

For a first illustration, Table 5.2 gives the cutpoints found to be suited for further splitting

by our robust selection criterion. The bold face typed cutpoints are the best ones in

the original sample without assigning any new virtual observations. We find in the right

column that the minimum number of newly assigned observations s∗ necessary to produce

a different cutpoint differs for the three variables exactly in the way that we expect from

Figure 5.1: For X1 only 3 newly assigned observations are enough to produce a different

cutpoint for the first time, and only 5 newly assigned observations are enough to produce

a different cutpoint in X4. For X8, however, it would be necessary to newly assign 58

observations, which would be 65% of the sample size, before a different cutpoint would be

produced – which indicates that the cutpoint found in X8 is very clear and robust against

changes in the data.

The results in Table 5.2 can be compared to the mountain plots in Figure 5.1 by finding

the positions i of the suited cutpoints on the abscissa.

From the top plot in Figure 5.1 it is obvious that the original cutpoint in X8 can discrim-
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Tab. 5.2: Cutpoints for the olives data. Position of original cutpoint (bold), position

of the next cutpoint produced by adding virtual observation and robustness measure s∗

(minimal number of additional observations needed to produce a different best cutpoint).

variable position i necessary for change

of cutpoints s∗

33
X8 65 58

31
X1 38 3

38
X4 32 5

inate perfectly between class 1 and 2, so that a great change in the data is necessary for

producing another cutpoint to outperform it. Other examples of situations where cutpoints

are more and less robust to data changes are given below in a simulation study.

The number of cutpoints found suited for splitting obviously depends on the strength of the

association between the predictor variable and the response, and on the number of newly

assigned observations in comparison to the original sample size. Thus, for a predictor

variable such as X8, that offers a single cutpoint that clearly dominates all other cutpoints

in the range of that variable, this results indeed in a single split (and eventually in a single

tree if other variables share this property of X8) rather than a set of extra splits that are

clearly suboptimal here and would start a new branch of the ensemble for any reasonable

choice of sMAX . This illustrates nicely how – determined by the characteristics of the

underlying data set rather than the arbitrary choice of a hyperparameter as in the original

version of TWIX – the application of our adaptive cutpoint selection criterion takes into

account properly the extent of instability and produces a single tree as a special case of a

TWIX ensemble, if the partition is sufficiently stable.
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5.3.2 Simulation study

We now explore the interaction between the choice of sMAX and characteristics of the data

set more systematically in a simulation experiment with a fixed realistic sample size of

n = 200 and a varying number of newly assigned observations sMAX , as well as varying

strength of association between the predictor variable and the response. The latter is

achieved by generating a continuous predictor variable sampled from a standard normal

distribution and determining the sampling probability of each response class of every ob-

servation by means of a logistic regression model with coefficient β varied. Overall, the

logistic regression model was chosen such that it produces about 50% observations of class

1 and class 2 respectively. For large values of β we expect the two response classes to be

clearly discriminated over the range of the predictor variable similar to the situation in the

top plot of Figure 5.1, while for decreasing values of β we expect an increasing overlap as

in the bottom plot of Figure 5.1, producing several similarly well suited cutpoints.

The average number of different cutpoints (over 100 simulation runs) found to be suited for

splitting by our new criterion is displayed as a function of the logistic regression coefficient

β and sMAX in Table 5.3. We find again that the number of cutpoints can be regulated

by the choice of the robustness parameter sMAX and reflects the underlying distribution

of the response on the range of the predictor variable, that is determined by means of the

coefficient β.

This is quite a desirable property and distinguishes our data driven approach from the

previous suggestions for finding extra splits, where the user is forced to determine an

absolute number of cutpoints to proceed with in every level of the classification tree without

being led by the data. In our approach the user only has to set the hyperparameter sMAX ,

and the number of extra cutpoints for splitting is regulated depending on the underlying

data. This means especially that when only few cutpoints, or even one as in variable

X8 of our example, are found reasonable for splitting, the branching will only proceed

in these few cutpoints and the resulting ensemble will be much less complex than with
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Tab. 5.3: Average number of different cutpoints for the simulated data based on a logistic

model with parameter β varied and different maximal number sMAX of virtual observations

and two different sample sizes n.

sMAX

n β 2 5 10 20 50

0.5 1.65 2.21 3.16 6.29 13.21

1.0 1.52 2.09 2.76 4.11 13.15
100

1.5 1.36 1.89 2.66 3.47 12.61

2.0 1.36 1.95 2.27 3.29 12.18

0.5 1.39 1.85 2.55 4.40 12.37

1.0 1.33 1.84 2.33 3.00 9.45
200

1.5 1.38 1.72 2.27 2.91 6.31

2.0 1.29 1.79 2.29 3.04 4.66

previous approaches. Besides the considerable gain with respect to interpretation, the

computational effort necessary for handling our criterion is also by far outweighted by

the computational effort saved by not letting the ensemble grow exponentially in a fixed

number of extra cutpoints.

In applications of our criterion the user only has to choose a reasonable value for sMAX ; for

example, a certain percentage of the sample size. Intuitively we would suggest to choose

an sMAX of 5% to 10% of the original sample size n as a rule of thumb. This suggestion

is led by the idea that in robust statistics it is often argued that about 5% of the original

data set might consist of faulty observations, erroneous measurements and the like (cf. e.g.

Hampel, 1980, who even cites historical data with up to 40% severe errors). These numbers

justify an equal percentage of newly assigned observations for robustification. Another line

of reasoning is that sMAX should be chosen such as to represent the number of subjects

who did not participate in the study even though they were supposed to, or otherwise

lost observations in any sense. Different sizes of sMAX might be reasonable and adequate
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for different applications. In classification trees, where the number of observations avail-

able in successive nodes decreases rapidly due to splitting, the number of newly assigned

observations sMAX can also be adapted to this thinning process, i.e., chosen relative to

the sample size in the current node. In this case we suggest that the user could set as a

hyperparameter a certain percentage to compute sMAX from the current sample size, that

would then regulate the number of extra cutpoints.

5.4 Outlook on credal prediction and

aggregation schemes

After suited cutpoints have been chosen for further splitting, a separate tree is grown with

each of the cutpoints. Then either the best tree, with respect to some cross validation

criterion, is chosen or the individual trees must be aggregated for a prediction in order to

increase prediction accuracy.

In the following, we will shortly outline possible prediction and aggregation methods in

the spirit of credal classification, that was already employed in the credal classification

trees of Abellán and Moral (2005) treated in Chapter 4. For the sake of simplicity, we will

only consider one-level trees, so-called stumps, here. The principles are, however, equally

applicable to larger trees and the beneficial effects of selecting more than one cutpoint

to the stability of the prediction will be even more pronounced for larger trees (Potapov,

2006; Potapov et al., 2006).

5.4.1 Credal prediction rules

In the standard classification tree algorithms C4.5 and CART the response class in each

final node is predicted by a majority vote of all observations in that node: If the number of

observations with response class 1 is higher than the number of observations with response
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class 2, class 1 is predicted and vice versa.

In order to produce a cautious prediction, another option is the credal classification ap-

proach put forward by Zaffalon (2002b) and Abellán and Moral (2005). Credal classification

does not necessarily return one predicted class, but may return a set of possible classes if

the data do not contain enough information to justify a precise prediction.

For credal predictions in single trees, in each terminal node interval-valued probabilities for

each class can be produced by means of, e.g., an IDM or the method of Coolen and Augustin

(2008) based on nonparametric predictive inference, that forms a promising alternative to

the IDM for processing relative frequencies for prediction.

When, as in the following, the IDM is employed to create probability intervals for each

class, the width of the intervals – and thus the precision of the prediction – depends on

the choice of the hyperparameter s of the IDM (cf. Abellán and Moral, 2005), that can

again be interpreted as the number of yet unobserved observations. We arbitrarily chose

s = 1 here, just to give an impression of the structure of the results and to illustrate how

to proceed with aggregating in the next section.

For the olives data example the predictions for the three considered variables are displayed

in Table 5.4 for each position i of cutpoints found suited for further splitting. The bold

face typed cutpoint is again the best one in the original sample for each predictor variable.

For the majority prediction the predicted response class is given, for the prediction based

on the IDM the lower and upper probabilities for response class 1 is given. In the case of

two response classes and probability intervals produced by the IDM considered here, the

lower and upper probabilities for response class 2 follow directly by conjugacy. For more

than two classes it would be more concise to report the set of plausible predictions.

We find that the coarse predictions of the majority votes are clear and do not differ in

this example, even though they may in general differ for the different cutpoints. The more

sensitive IDM predictions differ noticeably. For example the cutpoint at position 31 in

predictor variable X1 produces a very low upper probability for class 1 in the left node,
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Tab. 5.4: Predictions from the olives data.

prediction

i node majority IDM

L 2 [0.0000, 0.0294]
X8 33

R 1 [0.9825, 1.0000]

L 2 [0.0312, 0.0625]
31

R 1 [0.9322, 0.9492]
X1 L 2 [0.1282, 0.1538]

38
R 1 [0.9808, 1.0000]

L 2 [0.1795, 0.2051]
38

R 1 [0.9423, 0.9615]
X4 L 2 [0.1212, 0.1515]

32
R 1 [0.8966, 0.9138]

while the cutpoint at position 38 produces a slightly higher upper probability for class 1

in the left node. This is an indicator that some observations with response class 1 may be

situated to the right of position 31 but to the left of position 38.

From the probability intervals a set of predictions can be generated – either by means of

the strong dominance criterion as in Abellán and Moral (2005), or more generally by any

other criterion inducing a partial interval ordering (cf., e.g., Chapter 2.6 of Weichselberger,

2001; Troffaes, 2007). When no single dominant class can be identified, the set of all non-

dominated classes is returned. Therefore, the credal classification strategy, that provides

a set of plausible response classes when the available information does not justify a clear

decision for one class, is especially beneficial in problems with more than two response

classes.
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Tab. 5.5: Aggregated interval-valued predictions from the olives data.

aggregation rule

node outer mean

L [0.0312, 0.1538] [0.0797, 0.1082]
X1 R [0.9322, 1.0000] [0.9565, 0.9746]

L [0.1212, 0.2051] [0.1503, 0.1783]
X4 R [0.8966, 0.9615] [0.9194, 0.9377]

5.4.2 Aggregation schemes

For the aggregation of the predictions of several classification trees majority voting is used

in standard ensemble methods, as was outlined in the introduction. For credal predictions

based on imprecise probabilities, aggregation rules are less obvious and, motivated by

different applications, several authors have made different suggestions (cf., e.g., Moral and

del Sagrado, 1987; Walley, 1991; Weichselberger, 2001; de Cooman and Troffaes, 2004;

Bronevich, 2005; Troffaes, 2006), that could fruitfully be transferred to ensemble methods.

Reasonable first approaches to be considered here are conjunction, disjunction and the

mean lower and upper probabilities. We found that different cutpoints often produce

conflicting probability intervals, so that mere conjunction is often not possible. Therefore

we only display results for the disjunction and mean approaches here. However, in the

case of conflicting information from the individual trees it could be reasonable to place

(imprecise) weights on the individual trees in a way comparable to the approach of Troffaes

(2006), who assigns different imprecise “trust” values to conflicting experts. Regarding

ensembles of classification trees, the trust value of each tree could be chosen according to

some cross validated performance measure.

From our first results it looks like the disjunction approach might be too conservative

for our purpose, because it does not reflect the property of other ensemble methods that

the aggregated predictions from sets of trees show less deviation than the predictions of
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individual trees. The mean approach is a naive but sound first attempt. Evidently further

research on adequate aggregation rules for predictions from sets of classification trees is

needed.

5.5 Summary

Our aim here was to give a first impression of the potential of an adaptive cutpoint se-

lection approach. Based on the general idea to address robustness issues by studying the

effect of adding some virtual observations, we proposed a new adaptive cutpoint selection

criterion in this chapter. Its main advantages are (i) that instead of a fixed number of

extra cutpoints, which deterministically lead to an exponential growth of the ensemble,

an adaptive number of cutpoints is selected for further splitting, (ii) the approach is data

driven so that (iii) the user does not have to fix a certain number of cutpoints in advance,

but only an intuitively interpretable hyperparameter, that implicitly regulates the number

of cutpoints. Finally, (iv) the size of a TWIX ensemble resulting from adaptive cutpoint

selection for a particular data set can be used as a diagnostic when considering the tradeoff

between the interpretability of a single tree model against the high prediction accuracy of

black box ensemble methods.

The general idea to introduce virtual observations in order to robustify cutpoint selec-

tion could be transferred to a variety of other applications, including optimally selected

thresholds in diagnostic tests.

With respect to computational complexity the use of the adaptive split selection criterion

is computationally expensive, but can drastically reduce the number of extra cutpoints to

those that are robust to small changes in the learning data and therefore reasonably suited

for further splitting. Thus, its expense is outweighted by the computational complexity

saved by avoiding an exponential growth of the entire ensemble in an exponent m that is

fixed a priori.
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For credal predictions from sets of classification trees, our first results show that different

aggregation rules may prove beneficial and should be further investigated.

The presentation was limited to continuous predictor variables and a binary response here,

but the method is generalizable straightforwardly to deal with ordinal and categorical

predictor variables as well as problems with more than two response classes. In the latter

case the impact of credal classification would be even more beneficial, as outlined above.

The cautious treatment of missing values or coarse data in the spirit of Zaffalon (2002a)

(see also de Cooman and Zaffalon, 2004; Zaffalon, 2005) as well as, with an emphasis on

the IDM, Utkin and Augustin (2007), could also be embedded directly in our approach.

With respect to interpretability, the main advantage of the adaptive approach is that the

size of the adaptive TWIX ensemble is determined by the underlying data set and can

be taken into account when judging whether an interpretable single classification tree is

sufficient, or if a complex ensemble method is necessary for analyzing the particular data

set: In extreme cases with clearly dominating cutpoints in each split the adaptive TWIX

ensemble will collapse to a single tree model that can be interpreted without hesitation,

because it has proven its stability to changes in the learning data. On the other hand,

an adaptive TWIX ensemble that branches very widely indicates that the data set cannot

be analyzed adequately with a single interpretable tree model, because several competing

cutpoints are employed in the branching process to compensate a high level of instability.

In this case parallelized ensemble methods like bagging and random forests, that allow

for more diverse sets of trees, are likely to provide better prediction accuracy. For these

methods, that offer no straightforward means of interpretation, measures for evaluating

the importance of each predictor variable are investigated in the following chapters.



6. Unbiased variable importance in

random forests and bagging

In the remaining chapters we will turn to the ensemble methods bagging and random

forests, where a non-nested set of classification trees is constructed, usually from bootstrap

samples. The resulting set of trees cannot be combined into one interpretable model.

Therefore, in order to be able to assess the impact of each predictor variable in the model,

different variable importance measures have been suggested, that may also be employed to

discriminate the subset of relevant predictors from the remaining noise variables.

However, we will find not only that the variable selection bias that is inherent in standard

single classification trees based on impurity criteria is carried over to ensembles of trees and

their variable importance measures, but also that new sources of bias in favor of variables

of certain types are induced by the resampling scheme employed in tree construction and

the permutation scheme employed in the computation of one popular variable importance

measure.

The scope of this chapter is to show that the variable importance measures of the original

random forest method (Breiman, 2001a), based on CART classification trees (Breiman

et al., 1984), are a sensible means for variable selection in many applications, but are not

reliable in situations where potential predictor variables vary in their scale of measurement

or their number of categories – as is often the case in genomics, bioinformatics and related

disciplines, where both genetic and environmental variables, individually and in interac-

tions, are considered as potential predictors or predictor variables of the same type vary
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in the number of categories present in a certain sample.

We will illustrate in the following simulation studies that variable selection with the variable

importance measure of the original random forest method bears the risk that suboptimal

predictor variables are artificially preferred in such scenarios and provide statistical ex-

planations for this deficiency of the variable importance measures of the original random

forest method.

Based on these statistical explanations we propose to employ an alternative, unbiased

random forest method, and to build ensembles of trees based on subsamples, rather than

bootstrap samples. The performance of this approach is compared to that of the original

random forest method in simulation studies, and is illustrated by an application to the

prediction of C-to-U edited sites in plant mitochondrial RNA, re-analyzing the data of

Cummings and Myers (2004) that were previously analyzed with the original random forest

method.

6.1 Random forest variable importance measures

A naive variable importance measure to use in tree-based ensemble methods would be to

merely count the number of times each variable is selected by all individual trees in the

ensemble.

More elaborate variable importance measures incorporate a (weighted) mean of the indi-

vidual trees’ improvement in the splitting criterion produced by each variable (Friedman,

2001). An example for such a measure in classification is the “Gini importance” available

in random forest implementations. The Gini importance describes the improvement in the

Gini gain splitting criterion.

The most advanced variable importance measure available in random forests is the “per-

mutation accuracy importance” measure (termed “permutation importance” hereafter).

Its rationale is the following: By means of randomly permuting the predictor variable Xj
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by some permutation ψj, its original association with the response Y is broken. When the

permuted variable Xj, together with the remaining non-permuted predictor variables, is

used to predict the response for the out-of-bag observations, the prediction accuracy (i.e.

the number of observations classified correctly) decreases substantially if the original vari-

able Xj was associated with the response. Thus, Breiman (2001a) suggests the difference

in prediction accuracy before and after permuting Xj, averaged over all trees, as a measure

for variable importance, that we formalize as follows: Let B
(t)

be the out-of-bag sample

for a tree t, with t ∈ {1, . . . , ntree}. Then the variable importance of variable Xj in tree t

is

VI (t)(Xj) =

∑
i∈B

(t) I
(
yi = ŷ

(t)
i

)
∣∣∣B(t)

∣∣∣ −

∑
i∈B

(t) I
(
yi = ŷ

(t)
i,ψj

)
∣∣∣B(t)

∣∣∣ (6.1)

where ŷ
(t)
i = f (t)(xi) is the predicted class for observation i before and ŷ

(t)
i,ψj

= f (t)(xi,ψj)

is the predicted class for observation i after permuting its value of variable Xj, i.e. with

xi,ψj =
(
xi,1, . . . , xi,j−1, xψj(i),j, xi,j+1, . . . , xi,p

)
. (Note that VI (t)(Xj) = 0 by definition, if

variable Xj is not in tree t.) The raw variable importance score for each variable is then

computed as the average importance over all trees

VI (Xj) =

∑ntree
t=1 VI (t)(Xj)

ntree
. (6.2)

From this raw importance score a standardized importance score, also called “z-score”, can

be computed with the following rationale: The individual importance scores VI (t)(xj) are

computed from ntree bootstrap samples, that are independent given the original sample,

and are identically distributed. Thus, if each individual variable importance VI (t) has

standard deviation σ, the average importance from ntree replications has standard error

σ/
√

ntree. The standardized or scaled importance is then computed as

ṼI (xj) =
VI (xj)

σ̂√
ntree

. (6.3)

When the central limit theorem is applied to the mean importance VI (xj), Breiman and

Cutler (2008) argue that the z-score is asymptotically normal. This property will be used
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explicitly for the statistical test that is critically investigated in Chapter 7. In this current

chapter, however, we focus on the properties of the importance scores as purely descriptive

measures of variable importance. In the simulation studies presented in the next section,

we compare the selection frequency, the Gini importance and the permutation importance

for different base learners and different resampling schemes.

6.2 Simulation studies

The reference implementation of the original random forest method of Breiman (2001a)

is available in the R system for statistical computing (R Development Core Team, 2008)

via the randomForest add-on package by Breiman et al. (2006) (cf. Liaw and Wiener,

2002, for an introduction). The behavior of the selection frequency, the Gini importance

and the permutation importance of the randomForest function is explored in a simulation

design where potential predictor variables vary in their scale of measurement and number

of categories, because we know from the previous chapters that this setting induces variable

selection bias in the individual trees.

As an alternative, we propose to use the alternative random forest function cforest avail-

able in the R add-on package party (Hothorn et al., 2008, 2006) in such scenarios. In

contrast to randomForest, the cforest function creates random forests not from CART

classification trees based on the Gini split criterion, that are known to prefer variables

with, e.g., more categories in variable selection (cf. Breiman et al., 1984; Kononenko, 1995;

Kim and Loh, 2001; Boulesteix, 2006b,a; Strobl et al., 2007, and Chapters 2 and 3), but

from unbiased classification trees based on the conditional inference framework of Hothorn

et al. (2006).

Since the cforest function does not employ the Gini criterion, we investigate the behavior

of the Gini importance for the randomForest function only. The selection frequency and

the permutation importance is studied for both functions randomForest and cforest in

two ways: Either the individual trees are built on bootstrap samples of the original sample
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size n drawn with replacement, as suggested by Breiman (2001a), or on subsamples drawn

without replacement.

Subsampling as an alternative to bootstrap sampling in aggregating, e.g., individual clas-

sification trees is investigated further by Bühlmann and Yu (2002), who also coin the term

“subagging” as an abbreviation for “subsample aggregating” as opposed to “bagging” for

“bootstrap aggregating”. Politis et al. (1999) show that, for statistical inference in gen-

eral, subsampling works under weaker assumptions than bootstrap sampling and even in

situations when bootstrap sampling fails. The subsample size here is set to 0.632 times

the original sample size n, because in bootstrap sampling with replacement about 63.2%

of the data end up in the bootstrap sample. Other fractions for the subsample size are

possible, as discussed in the end of this chapter.

Tab. 6.1: The predictor variables are sampled independently from the following distrib-

utions. N(0, 1) stands for the standard normal distribution, M(k) stands for the multino-

mial distribution with values in {0, . . . , k − 1} and equal probabilities (discrete uniform

distribution on {0, . . . , k− 1}), B(π) stands for the binomial (Bernoulli) distribution with

probability π, thus M(2) equals B(0.5).

Predictor variables

X1 ∼ N(0, 1)

X2 ∼ M(2)

X3 ∼ M(4)

X4 ∼ M(10)

X5 ∼ M(20)

The simulation design used throughout this chapter represents a scenario where a binary

response variable Y is supposed to be predicted from a set of potential predictor variables

that vary in their scale of measurement and number of categories. The first predictor

variable X1 is continuous, while the other predictor variables X2, . . . , X5 are categorical
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Tab. 6.2: The response variable is sampled from binomial (Bernoulli) distributions. The

degree of dependence between the response Y and X2 is regulated by the probability π

of the binomial distribution B(π) of Y conditional on X2, with the relevance parameter

taking values in {0.05, 0.1, 0.15, 0.2} to model different degrees of dependence.

Response variable

null case Y ∼ B(0.5)

power case Y |X2 = 1 ∼ B(0.5− relevance)

Y |X2 = 2 ∼ B(0.5 + relevance)

(on a nominal scale of measurement) with their number of categories between two and up

to twenty. The simulation designs of both studies are summarized in Table 6.1 and 6.2.

The sample size for all simulation studies was set to n = 120.

In the first simulation study, the so-called null case, none of the predictor variables is

informative for the response, i.e., all predictor variables and the response are sampled

independently. In this situation a sensible variable importance measure should not prefer

any one predictor variable over any other.

In the second simulation study, the so-called power case, the predictor variable X2 is

informative for the response, i.e., the distribution of the response depends on the value

of this predictor variable. The degree of dependence between the informative predictor

variable X2 and the response Y is regulated by the relevance parameter of the conditional

distribution of Y given X2 (cf. Table 6.2). We will later display results for different values

of the relevance parameter indicating different degrees of dependence between X2 and Y .

In the power case, a sensible variable importance measure should be able to distinguish

the informative predictor variable from its uninformative competitors, and even more so

with increasing degree of dependence.

Our simulation studies show that for the randomForest function all three variable impor-
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tance measures are unreliable, and the Gini importance is most strongly biased. For the

cforest function reliable results can be achieved both with the selection frequency and

the permutation importance if the function is used together with subsampling without

replacement. Otherwise the measures are biased as well.

6.2.1 Results of the null case simulation study

In the null case, when all predictor variables are equally uninformative, the selection fre-

quencies as well as the Gini importance and the permutation importance of all predictor

variables are supposed to be equal.

However, as presented in Figure 6.1, the average selection frequencies (over 1000 simulation

runs) of the predictor variables differ substantially when the randomForest function (cf.

top row in Figure 6.1) or the cforest function with bootstrap sampling (cf. bottom row,

left plot in Figure 6.1) are used. Variables with more categories are obviously preferred.

Only when the cforest function is used together with subsampling without replacement

(cf. bottom row, right plot in Figure 6.1) are the variable selection frequencies for the

uninformative predictor variables equally low as desired.

It is obvious that variable importance cannot be represented reliably by the selection

frequencies, that can be considered as very basic variable importance measures, if the

potential predictor variables vary in their scale of measurement or number of categories

when the randomForest function or the cforest function with bootstrap sampling is used.

The average Gini importance (over 1000 simulation runs), that is displayed in Figure 6.2,

is biased even stronger. Like the selection frequencies for the randomForest function (cf.

top row in Figure 6.1) the Gini importance shows a strong preference for variables with

many categories and the continuous variable, as expected from the bias in favor of variables

offering many cutpoints in single trees, that was explored in previous chapters. We conclude

that the Gini importance cannot be used to reliably measure variable importance in this

situation either.
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We now consider the more advanced permutation importance measure. We find that here

an effect of the scale of measurement or number of categories of the potential predictor

variables is less obvious but still severely affects the reliability and interpretability of the

variable importance measure.

Figure 6.3 shows boxplots of the distributions (over 1000 simulation runs) of the permu-

tation importance measures of both functions for the null case. The plots in the top row

again display the distribution when the randomForest function is used, the bottom row

when the cforest function is used. The left column of plots displays the distributions

when bootstrap sampling is conducted with replacement, while the right column displays

the distributions when subsampling is conducted without replacement.

Figure 6.4 shows boxplots of the distributions of the scaled version of the permutation

importance measures of both functions, incorporating the standard deviation of the mea-

sures.

The scaled variable importance is the default output of the randomForest function. How-

ever, it has been noted, e.g., by Diaz-Uriarte and Alvarez de Andrés (2006) in their

supplementary material, that the magnitude of the scaled variable importance of the

randomForest function depends on the number of trees grown in the random forest. This

issue is further investigated in the next chapter. Meanwhile, we suggest not to interpret

the absolute magnitude of the scaled variable importance of the randomForest function.

The plots show that for the randomForest function (cf. top row in Figures 6.3 and 6.4)

and, less pronounced, for the cforest function with bootstrap sampling (cf. bottom row,

left plot in Figures 6.3 and 6.4), the deviation of the permutation importance measure over

the simulation runs is highest for the variable X5 with the highest number of categories,

and decreases for the variables with less categories and the continuous variable. This

effect is weakened but not substantially altered by scaling the measure (cf. Figure 6.3 vs.

Figure 6.4).

As opposed to the obvious effect in the selection frequencies and the Gini importance, there
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is no effect in the mean values of the distributions of the permutation importance measures,

which are in average close to zero as expected for uninformative variables. However, the

notable differences in the variance of the distributions for predictor variables with different

scale of measurement or number of categories seriously affect the expressiveness of the

variable importance measure.

In a single trial this effect may lead to a severe over- or underestimation of the variable

importance of variables that have more categories as an artefact of the method, even though

they are no more or less informative than the other variables.

Only when the cforest function is used together with subsampling without replacement

(cf. bottom row, right plot in Figures 6.3 and 6.4) does the deviation of the permutation

importance measure over the simulation runs not increase substantially with the number

of categories or scale of measurement of the predictor variables.

Thus, only the variable importance measure available in cforest, and only when used

together with sampling without replacement, reliably reflects the true importance of po-

tential predictor variables in a scenario where the potential predictor variables vary in their

scale of measurement or number of categories.

6.2.2 Results of the power case simulation study

In the power case, where only the predictor variable X2 is informative, a sensible variable

importance measure should be able to distinguish the informative predictor variable.

The following figures display the results of the power case with the highest value 0.2 of the

relevance parameter, indicating a high degree of dependence between X2 and the response.

In this setting, each of the variable importance measures should clearly prefer X2, while

the respective values for the remaining predictor variables should be equally low.

Figure 6.5 shows that the average selection frequencies (again over 1000 simulation runs)

of the predictor variables again differ substantially when the randomForest function (cf.



108 6. Unbiased variable importance in random forests and bagging

top row in Figure 6.5) is used, and the relevant predictor variable X2 cannot be identified.

With the cforest function with bootstrap sampling (cf. bottom row, left plot in Fig-

ure 6.5) there is still bias obvious in the selection frequencies of the categorical predictor

variables with many categories. Only when the cforest function is used together with

subsampling without replacement (cf. bottom row, right plot in Figure 6.5), the variable

selection frequencies for the uninformative predictor variables are equally low as desired,

and the value for the relevant predictor variable X2 sticks out.

The average Gini importance, that is displayed in Figure 6.6, again shows a strong bias

towards variables with many categories and the continuous variable. It completely fails to

identify the relevant predictor variable, with the mean value for the relevant variable X2

only slightly higher than in the null case.

Figures 6.7 and Figure 6.8 show boxplots of the distributions of the unscaled and scaled

permutation importance measures of both functions. Again for the randomForest function

(cf. top row in Figures 6.7 and Figure 6.8) and, less pronounced, for the cforest function

with bootstrap sampling (cf. bottom row, left plot in Figures 6.7 and Figure 6.8), the

deviation of the permutation importance measure over the simulation runs is highest for

the variable X5 with the highest number of categories, and decreases for the variables

with less categories and the continuous variable. Again, this effect is weakened but not

substantially altered by scaling the measure (cf. Figure 6.7 vs. Figure 6.8).

As expected, the mean value of the permutation importance measure for the informative

predictor variableX2 is higher than for the uninformative variables. However, the deviation

of the variable importance measure for the uninformative variables with many categories

X4 and X5 is so high that in a single trial these uninformative variables may outperform

the informative variable as an artefact of the method.

Thus, only the variable importance measure computed with the cforest function, and

only when used together with sampling without replacement, is able to reliably detect

the informative variable out of a set of uninformative competitors, even if the degree of
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dependence between X2 and the response is high.

Tab. 6.3: Rates of correct identifications of the informative variable with the scaled and

unscaled permutation importance of the randomForest method, applied with sampling

with and without replacement, as compared to those of the cforest method, applied

with sampling with and without replacement, as a function of the degree of dependence

(indicated by the relevance parameter, cf. Table 2) between the informative variable X2

and the response. (Standard errors of the rates of correct identifications r over 1000

iterations can easily be computed by se =
√
r · (1− r) / 1000.)

Degree of dependence

Method Repl. 0.05 0.1 0.15 0.2

Scaled randomForest true 0.234 0.497 0.770 0.956

false 0.237 0.489 0.760 0.949

cforest true 0.338 0.672 0.923 0.991

false 0.365 0.728 0.943 0.994

Unscaled randomForest true 0.194 0.413 0.701 0.928

false 0.186 0.400 0.710 0.919

cforest true 0.324 0.648 0.910 0.989

false 0.370 0.729 0.943 0.994

The rate at which the informative predictor variable is correctly identified (by producing

the highest value of the permutation importance measure) increases with the degree of

dependence between X2 and the response. In Table 6.3 the rates of correct identifica-

tions (over 1000 simulation runs) for four different degrees of dependence between X2 and

the response are summarized for the randomForest and cforest functions with different

options.

For all degrees of dependence between X2 and the response Y the cforest function detects

the informative variable more reliably than the randomForest function, and the cforest



110 6. Unbiased variable importance in random forests and bagging

function used with subsampling without replacement outperforms the cforest function

with bootstrap sampling with replacement.

For the randomForest function scaling the permutation importance measure can slightly

increase the rates of correct identifications because, as shown in Figures 6.4 and 6.8, scaling

weakens the differences in variance of the permutation importance measure for variables

of different scale of measurement and number of categories. For the cforest function,

that is not affected by the scale of measurement and number of categories of the predictor

variables, both the unscaled and the scaled permutation importance perform equally well.

In addition to its superiority in the assessment of variable importance the cforest method,

especially when used together with subsampling without replacement, can also be superior

to the randomForest method with respect to classification accuracy in situations like that

of the power case simulation study, where uninformative predictor variables with many

categories “fool” the randomForest function.

Tab. 6.4: Average misclassification rates of the randomForest method, applied with

sampling with and without replacement, as compared to those of the cforest method,

applied with sampling with and without replacement, as a function of the degree of depen-

dence (indicated by the relevance parameter, cf. Table 2) between the informative variable

X2 and the response. (Standard errors of the average misclassification rates are given in

parentheses.)

Degree of dependence

Method Repl. 0.05 0.1 0.15 0.2

randomForest true 0.4945 (0.0014) 0.4819 (0.0015) 0.4510 (0.0016) 0.4028 (0.0017)

false 0.4942 (0.0014) 0.4814 (0.0015) 0.4496 (0.0016) 0.4026 (0.0017)

cforest true 0.4910 (0.0014) 0.4660 (0.0016) 0.4169 (0.0019) 0.3491 (0.0019)

false 0.4879 (0.0014) 0.4581 (0.0017) 0.4022 (0.0019) 0.3384 (0.0019)
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Due to its artificial preference for uninformative predictor variables with many categories

the randomForest function can produce a higher average misclassification rate than the

cforest function. The average misclassification rates (again over 1000 simulation runs)

for the randomForest and cforest function, again for four different degrees of dependence

and used with sampling with and without replacement, are displayed in Table 6.4.

Each method was applied to the same simulated test set in each simulation run. The test

sets were generated from the same data generating process as the learning sets. We find

that for all degrees of dependence between X2 and the response Y the cforest function,

especially with sampling without replacement, outperforms the other methods. A similar

result is obtained in the application to C-to-U conversion data presented in the next section.

The differences in classification accuracy are moderate in the latter case. However, one

could think of more extreme situations that would produce even greater differences. This

shows that the same mechanisms underlying the variable importance bias can also affect

the classification accuracy, e.g. when suboptimal predictor variables, that do not add to

the classification accuracy, are artificially preferred in variable selection merely because

they have more categories.

6.3 Sources of variable importance bias

The main difference between the randomForest function, based on CART trees (Breiman

et al., 1984), and cforest function, based on conditional inference trees (Hothorn et al.,

2006), is that in randomForest the variable selection in the individual CART trees is biased,

so that ,e.g., variables that offer more potential cutpoints are preferred, as described in the

earlier chapters of this work. Consequences of the variable selection bias, that is inherent

in each single tree, on the variable importance measures of the entire ensemble are pointed

out in the next section.

However, even if the individual trees select variables in an unbiased way as in the cforest
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function, we find that the variable importance measures, as well as the selection frequencies

of the variables, are affected by the bootstrap sampling with replacement. This is explained

in the section on effects induced by bootstrapping.

6.3.1 Variable selection bias in individual classification trees

The variable selection bias that occurs in every individual tree of an ensemble produced

with the randomForest function has a direct effect on its variable importance measures:

Predictor variables with more categories are artificially preferred in variable selection in

each splitting decision. Thus, they are selected in more individual classification trees and

tend to be situated closer to the root node in each tree.

This affects the variable importance measures in two respects. Firstly, the variable selec-

tion frequencies over all trees are directly affected by the variable selection bias in each

individual tree. Secondly, an effect on the permutation importance occurs, that is less

obvious but just as severe: When permuting the variables to compute their permutation

importance measure, the variables that appear in more trees and are situated closer to the

root node can affect the prediction accuracy of a larger set of observations, while variables

that appear in fewer trees and are situated closer to the bottom nodes affect only small

subsets of observations. Thus, the range of possible changes in prediction accuracy in the

random forest, i.e., the deviation of the variable importance measure, is higher for variables

that are preferred by the individual trees due to variable selection bias.

We found in Figures 1 through 9, that the effects induced by the different types of predictor

variables were more pronounced for the randomForest function, where variable selection

in the individual trees is biased, than for the cforest function, where the individual

trees are unbiased. However, we also found that when the cforest function is used with

bootstrap sampling, the variable selection frequencies of the categorical predictors still

depend on their number of categories (cf., e.g., bottom row, left plot in Figure 6.1), and

also the deviation of the permutation importance measure is still affected by the number
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of categories (cf., e.g., bottom row, left plot in Figures 3 and 4).

Thus, there must be another source of bias, besides the variable selection bias in the

individual trees, that affects the selection frequencies and the deviation of the permutation

importance measure.

We show in the next section that this additional effect is due to bootstrap sampling with

replacement, that is traditionally employed in random forests.

6.3.2 Effects induced by bootstrapping

In the comparison of left and right columns (representing sampling with and without

replacement) in Figures 1 and 5 we could illustrate that the variable selection frequencies

in random forest functions are affected by the resampling scheme.

Even when the cforest function based on unbiased classification trees is used, variables

with more categories are preferred when bootstrap sampling is conducted with replacement,

while no bias occurs when subsampling is conducted without replacement, as displayed in

the bottom right plot in Figures 1 and 5. Thus, the bootstrap sampling induces an effect

that is more pronounced for predictor variables with more categories.

For a better understanding of the underlying mechanism let us consider only the categorical

predictor variables X2 through X5 with different numbers of categories from the null case

simulation study design. Rather than trying to explain the effect of bootstrap sampling

in the complex framework of random forests, we use a much simpler and more familiar

independence test for the explanation.

We consider the p-values of χ2-tests (computed from 1000 simulated data sets). In each

simulation run, a χ2-test is computed for each predictor variable and the binary response

Y . Remember that the variables in the null case are not informative, i.e., the response is

independent of all variables.

For independent variables it follows from reversing the inversion method that the distrib-
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ution of the p-values of the χ2-test forms a uniform distribution.

The left plot in Figure 6.11 displays the distribution of the p-values of χ2-tests from each

predictor variable and the response Y as boxplots. We find that the boxplots range from 0

to 1 with median 0.5, because the p-values of the χ2-test form a uniform distribution when

computed before bootstrapping, as expected under the null hypothesis.

However, if in each simulation run we draw a bootstrap sample from the original sam-

ple and then again compute the p-values based on the bootstrap sample, we find that

the distribution of the p-values is shifted towards zero as displayed in the right plot in

Figure 6.11.

Obviously, the bootstrap sampling artificially induces an association between the variables.

This effect is always present when statistical inference, such as an association test, is carried

out on bootstrap samples: Bickel and Ren (2001) point out that bootstrap hypothesis

testing fails whenever the distribution of any statistic in the bootstrap sample, rather than

the distribution of the statistic under the null hypothesis, is used for statistical inference.

We found that this issue directly affects variable selection in random forests, because

the deviation from the null hypothesis is more pronounced for variables that have more

categories.

The reason for the shift in the distribution of the p-values displayed in Figure 6.11 is

that each original sample, even if sampled from theoretically independent distributions,

may show some minor variations from the null hypothesis of independence. These minor

variations are aggravated by bootstrap sampling with replacement, because the cell counts

in the contingency table are affected by observations that are either not included or are

doubled or tripled in the bootstrap sample, and therefore the bootsrap sample deviates

notably from the null hypothesis – even if the original sample was generated under the null

hypothesis.

This effect is more pronounced for variables with more categories, because in larger tables

(such as the 4 × 2 table from the cross-tabulation of X3 and the binary response Y ), the
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absolute cell counts are smaller than in smaller tables (such as the 2 × 2 table from the

cross-tabulation of X2 and the binary response Y ). With respect to the smaller absolute

cell counts, excluding or duplicating an observation produces more severe variations from

the null hypothesis.

This effect is not eliminated if the sample size is increased, because in bootstrap sampling

the size n of the original sample and the bootstrap sample size n increase simultaneously.

However, if subsamples are drawn without replacement the effect disappears.

The apparent association that is induced by bootstrap sampling, and that is more pro-

nounced for predictor variables with many categories, affects both variable importance

measures: The selection frequency is again directly affected, and the permutation impor-

tance is affected because variables with many categories are selected more often and gain

positions closer to the root node in the individual trees. Together with the mechanisms

described in the previous section, this explains our findings.

From our simulation results we can see, however, that the effect of bootstrap sampling is

mostly superposed by the much stronger effect of variable selection bias when comparing

the conditions of sampling with and without replacement for the randomForest function

only (cf. Figures 1 through 9, top row). Only when variable selection bias is removed by

the cforest function, the differences between the conditions of sampling with and without

replacement are obvious (cf. Figures 1 through 9, bottom row).

We therefore conclude that in order to be able to reliably interpret the variable importance

measures of a random forest, the forest must be built from unbiased classification trees,

and sampling must be conducted without replacement.

6.4 Application to C-to-U conversion data

RNA editing is the process whereby RNA is modified from the sequence of the correspond-

ing DNA template (Cummings and Myers, 2004). For instance, cytidine-to-uridine conver-
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sion (abbreviated C-to-U conversion) is common in plant mitochondria. The mechanisms

of this conversion remain largely unknown, although the role of neighboring nucleotides

is emphasized. Cummings and Myers (2004) suggest to use information from sequence

regions flanking the sites of interest to predict editing in Arabidopsis thaliana, Brassica

napus and Oryza sativa based on random forests. The Arabidopsis thaliana data of Cum-

mings and Myers (2004) can be loaded from the journal’s homepage. For each of the 876

observations, the data set gives

– the response at the site of interest (binary: edited/not edited)

and as potential predictor variables

– the 40 nucleotides at positions -20 to 20, relative to the edited site (4 categories),

– the codon position (4 categories),

– the estimated folding energy (continuous) and

– the difference in estimated folding energy between pre-edited and edited sequences

(continuous).

We first derive the permutation importance measure for each of the 43 potential pre-

dictor variables with each method. As can be seen from the barplot in Figure 6.9, the

(scaled) variable importance measures largely reflect the results of Cummings and Myers

(2004) based on the Gini importance measure, but differ slightly for the randomForest

and cforest function and the different resampling schemes. In particular, the variable

importance measure of the randomForest function seems to produce more “noise” than

that of the cforest function: the contrast of amplitudes between irrelevant and relevant

predictors is more pronounced when the cforest function is used.

Note, however, that the permutation importance values for one predictor variable can

vary between two computations, because each computation is based on a different random
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permutation of the variable. Therefore, before interpreting random forest permutation

importance values, the analysis should be repeated (with several different random seeds)

to test the stability of the results.

Tab. 6.5: Average misclassification rates of the randomForest method applied with sam-

pling with and without replacement as compared to those of the cforest method applied

with sampling with and without replacement. (Standard errors of the average misclassifi-

cation rates are given in parentheses.)

Method Repl.

randomForest true 0.2896 (0.0022)

false 0.2879 (0.0026)

cforest true 0.2807 (0.0024)

false 0.2788 (0.0025)

Similarly to the simulation study, we also compared the prediction accuracy of the four

approaches for this data set. To do so, we split the original data set into learning and test

sets with size ratio 2:1 in a standard split-sample validation scheme. A random forest is

grown based on the learning set and subsequently used to predict the observations in the

test set. This procedure is repeated 100 times, and the average misclassification rates over

the 100 runs are reported in Table 6.5. Again we find a slight superiority of the cforest

function, especially when sampling is conducted without replacement. (Differences to the

accuracy values reported by Cummings and Myers (2004) are most likely due to their use

of a different validation scheme, that is not reported in detail by Cummings and Myers

(2004).)



118 6. Unbiased variable importance in random forests and bagging

6.5 Summary

The popularity of random forests, especially in bioinformatics and related fields, where

identifying a subset of relevant predictor variables from very large sets of candidates is

the major challenge, is largely due to the variable importance measures they provide.

However, when a method is used for interpretation and variable selection purposes, rather

than prediction only, it is particularly important that it actually depicts the importance

of the variable and is not affected by any other characteristics.

For the original random forest method we have argued theoretically and shown in simula-

tion studies that the variable importance measures are affected by the number of categories

and scale of measurement of the predictor variables, which are no direct indicators of the

true importance of the variable.

As long as, e.g., only continuous predictor variables, as in most gene expression studies, or

only variables with the same number of categories are considered in the sample, variable

selection with random forest variable importance measures is not affected by our findings.

However, in studies where continuous variables, such as the folding energy, are used in

combination with categorical information from the neighboring nucleotides, or when cat-

egorical predictors, as in amino acid sequence data, vary in their number of categories

present in the sample, variable selection with random forest variable importance measures

is unreliable and may even be misleading.

Especially information on clinical and environmental variables are often gathered by means

of questionnaires, where the number of categories can vary between questions. The number

of categories is typically determined by many different factors, but is not necessarily an

indicator of variable importance. Similarly, the number of different categories of a predictor

actually available in a certain sample is not an indicator of its relevance for predicting the

response. Hence, the number of categories of a variable should not influence its estimated

importance – otherwise the results of a study could easily be distorted when an irrelevant

variable with many categories is included in the study design.
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We showed that, due to variable selection bias in the individual classification trees and ef-

fects induced by bootstrap sampling, the variable importance measures of the randomForest

function are not reliable in many scenarios relevant in applied research.

As an alternative random forest method we propose to use the cforest function, that

provides unbiased variable selection in the individual classification trees. When this method

is applied with subsampling without replacement as suggested here, the resulting variable

importance measure can be used reliably for variable selection even in situations where

the potential predictor variables vary in their scale of measurement or their number of

categories.

The subsampling size was set to 0.632 in our first approach. This sample size reflects the

number of observations that, in average, end up in a bootstrap sample: The probability

for one observation not to be included in one draw is 1 − 1
n

and thus its probability not

be included in any one of the n draws for large n tends to limn→∞
(
1− 1

n

)n
= e−1 ≈

0.368 = 1 − 0.632. Respectively each observation has a 63.2% chance to end up in the

bootstrap sample of size n, and in average 63.2% of the n observations are included.

The reasoning and results of Friedman and Hall (1999) and Buja and Stuetzle (2006) on

the other hand indicate that half-sampling (drawing a sample half the size of the original

sample) might be more appropriate, because it shares some theoretical characteristics with

bootstrap sampling. Therefore the effect of different subsample sizes was evaluated in an

additional simulation study (Wösthoff, 2008, supervised by Strobl and Augustin). The

results support our previous findings and indicate that the choice of the subsample size is

not critical: for example the results for size 0.5 and 0.632 are virtually equivalent. Only for

extreme sample size there is a tradeoff between the subsample size that is actually used to

fit the model and the size of the remaining out-of-bag sample, that is used to compute the

permutation importance: If the subsample size is so large that the remaining out-of-bag

sample becomes very small, the variability of the importance measure increases, while if

the subsample size used for model fitting is is too small, the relevant predictor variables

may not always be detected.
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With respect to computation time it should be noted that the cforest function is more

expensive than the randomForest function, because in order to be unbiased split decisions

and stopping rely on time-consuming conditional inference. To give an impression, the

computation times of the application to C-to-U conversion data, with 876 observations and

44 predictor variables, as stated in the supplementary file for the cforest function used

with bootstrap sampling with replacement are in the range of 8.38 sec., while subsampling

without replacement is computationally less expensive and in the range of 4.82.

Since we saw that only subsampling without replacement guarantees reliable variable se-

lection and produces unbiased variable importance measures, the faster version without

replacement should be preferred anyway. The computation time for the randomForest

function is in the range of 0.24 sec. with and 0.18 sec. without replacement. However,

we saw that the randomForest function should not be used when the potential predictor

variables vary in their scale of measurement or their number of categories.

The aim of this chapter was to explore the limits of different measures of variable impor-

tance currently provided by random forests and to guarantee for the permutation impor-

tance that variable importance scores are unbiased and reliable for predictor variables of

different types. So far the variable importance scores were considered as merely descriptive

statistics. However, when variable importance scores are supposed to be used for variable

selection, it would be nice to have a statistical test to guide the decision on which and

how many predictor variables to select in a certain problem. One such statistical test, that

was suggested for the purpose of identifying “significantly important” predictor variables,

is critically investigated in the next chapter.
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Fig. 6.1: Average variable selection frequencies for the null case, where none of the

predictor variables is informative. The plots in the top row display the frequencies when

the randomForest function is used, the bottom row when the cforest function is used.

The left column corresponds to bootstrap sampling with replacement, the right column to

subsampling without replacement.
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Fig. 6.2: Average Gini importance for the null case, where none of the predictor variables

is informative. The left plot corresponds to bootstrap sampling with replacement, the right

plot to subsampling without replacement.
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Fig. 6.3: Distributions of the unscaled permutation importance measures for the null case,

where none of the predictor variables is informative. The plots in the top row display the

distributions when the randomForest function is used, the bottom row when the cforest

function is used. The left column corresponds to bootstrap sampling with replacement,

the right column to subsampling without replacement.
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Fig. 6.4: Distributions of the scaled permutation importance measures for the null case,

where none of the predictor variables is informative. The plots in the top row display the

distributions when the randomForest function is used, the bottom row when the cforest

function is used. The left column corresponds to bootstrap sampling with replacement,

the right column to subsampling without replacement.
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Fig. 6.5: Average variable selection frequencies for the power case, where only the second

predictor variable is informative. The plots in the top row display the frequencies when

the randomForest function is used, the bottom row when the cforest function is used.

The left column corresponds to bootstrap sampling with replacement, the right column to

subsampling without replacement.
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Fig. 6.6: Average Gini importance for the power case, where only the second predictor

variable is informative. The left plot corresponds to bootstrap sampling with replacement,

the right plot to subsampling without replacement.
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Fig. 6.7: Distributions of the unscaled permutation importance measures for the power

case, where only the second predictor variable is informative. The plots in the top row

display the distributions when the randomForest function is used, the bottom row when

the cforest function is used. The left column corresponds to bootstrap sampling with

replacement, the right column to subsampling without replacement.
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Fig. 6.8: Distributions of the scaled permutation importance measures for the power

case, where only the second predictor variable is informative. The plots in the top row

display the distributions when the randomForest function is used, the bottom row when

the cforest function is used. The left column corresponds to bootstrap sampling with

replacement, the right column to subsampling without replacement.
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Fig. 6.9: Scaled variable importance measures for the C-to-U conversion data. The plots

in the top row display the measures when the randomForest function is used, the bottom

row when the cforest function is used. The left column corresponds to bootstrap sampling

with replacement, the right column to subsampling without replacement. In each plot the

positions -20 through 20 indicate the nucleotides flanking the site of interest, and the last

three bars on the right refer to the codon position (cp), the estimated folding energy (fe)

and the difference in estimated folding energy (dfe).



7. Statistical properties of Breiman and

Cutler’s test for variable importance

Currently, most applications of the random forest permutation importance rely on a merely

descriptive ranking of the potential predictor variables with respect to their importance:

The few top-ranked predictors are selected for further exploration, where the number of

selected variables is chosen arbitrarily or with respect to subject matter. A different ap-

proach for variable selection with random forests is introduced by Diaz-Uriarte and Al-

varez de Andrés (2006), who suggest a backward elimination strategy based on the variable

importance scores that takes under consideration the prediction accuracy: The underly-

ing rationale is that the prediction accuracy will remain almost constant when irrelevant

predictor variables are excluded, while it drops when relevant ones are excluded.

While in statistical modelling the aim may often be to select a model as sparse as possible,

it is of equal interest in many applied sciences to be able to identify all predictor variables

that are associated with the response, even if some of them are correlated. The question

of interest here is to decide for each variable whether or not its importance is significantly

greater than zero. A statistical test for this question is suggested by Breiman and Cutler

(2008). It has been promoted on the official random forests website for some time, and

thus has been applied in a variety of studies – ranging from the investigation of predictors

of attempted suicide (Baca-Garcia et al., 2007) to the monitoring of a large area space

telescope on board of a satellite (Paneque et al., 2007) – since its publication.

At first sight it looks like this test could aid the decision which or how many of the top-
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ranked variables have significant importance and can be considered relevant. However, in

the following we will present statistical reasoning and simulation results illustrating that

the suggested test is not appropriate for statements of significance. Moreover, we will

explore the unclear null hypothesis of the suggested test and suggest a new permutation

scheme that better represents the desired null hypothesis in the next chapter.

7.1 Investigating the current test

The rationale of the random forest permutation importance and the computation of the raw

importance score as well as the scaled z-score was already outlined in the previous chapter.

If we assume that, under the null hypothesis of zero variable importance, the asymptotic

distribution of the z-score is standard normal, a simple test for the permutation importance

can be constructed: When the z-score ṼI (xj) from Equation 6.3 exceeds the α-quantile of

the standard normal distribution, the null hypothesis of zero importance for variable Xj is

rejected. This approach has been suggested by Breiman and Cutler (2008) for testing the

variable importance. Note, however, that in the computation of the z-score averaging and

scaling is not conducted with respect to the sample size n but to the number of trees in

the ensemble ntree (cf. also Lunetta et al., 2004).

7.1.1 The power

To investigate the power of the test suggested by Breiman and Cutler (2008), that is

outlined in the previous section, a simulation study was conducted. The experimental

parameters that were varied are (i) the relevance of the predictor variable, (ii) the sample

size, and (iii) the number of trees in the forest. For each combination of experimental

parameters, 1000 replications were run. In each replication, a data set with the respective

relevance and sample size was generated, a random forest with the respective number

of trees was fit to the data and the z-score was computed as described in the previous
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section. The test decision, i.e., whether or not the null hypothesis was rejected, was stored

in every replication. The relative frequency of rejections of the null hypothesis (out of the

1000 replications) serves as an estimator for the power of the test in each combination of

experimental parameters. In Figure 7.1 the empirical power is displayed as a function of

the experimental parameters. For a deeper understanding of the underlying mechanism we

also display the curves for the unstandardized average importance VI , the standard error

of the mean and the z-score ṼI (all averaged over 1000 replications).

In each iteration, a data set of sample size n = 100, 200 or 500 was generated, that included

five predictor variables of which only one binary variable was relevant. Within the cate-

gories of this variable the binary response class was sampled from a binomial distribution

with class probability 0.5 ± relevance (with relevance = 0, 0.05, . . . , 0.5) as indicated on

the abscissas of Figure 7.1. The parameter settings for the random forests were given by

the varying number of trees (ntree = 100, 200 or 500) and a fixed number of two prese-

lected variables per split. The simulation was conducted with the function randomForest

(Breiman et al., 2006; Liaw and Wiener, 2002), the reference implementation of Breiman

and Cutler’s random forests in the R system for statistical computing (R Development Core

Team, 2008).

As depicted in the bottom row of Figure 7.1 the power of the test against the null hypothesis

of zero importance shows the following irritating behavior: The power does increase with

the relevance of the predictor variable as expected for any reasonable power curve. However,

the power also does increase with the number of trees in the forest (the curves are shifted

to the left, resulting in higher power for low relevance values), meaning that the power

here depends on a tuning parameter that can be arbitrarily chosen by the user. This effect

is due to the construction of the test statistic where, unlike in the standard test for the

mean under normality, averaging and scaling is not with respect to a given sample size n

but to the number of trees as outlined above. Even more dramatically, we find that the

power does depend on the sample size – however not as expected for any reasonable test,

where the power is supposed to increase with increasing sample size, but to the contrary:
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For large sample sizes (as compared to the number of trees) the power is zero.

7.1.2 The construction of the z-score

To explore in more detail the mechanism responsible for this odd behavior, we will follow

the construction of the z-score, that is derived from the average importance by division

through the standard error of the mean. The top row of Figure 7.1 shows that the unstan-

dardized average importance VI for one predictor variable increases with the relevance of

the predictor variable and with the sample size as expected. There is no effect of the num-

ber of trees on the average importance – at least not when the number of trees is chosen

sufficiently large to guarantee a stable estimate of the mean importance. This increase in

the relevance and the sample size is desirable and exactly what we would have expected

for any statistic to be employed in a test against the null hypothesis of zero importance.

Therefore, the standard error of the mean, which is used for scaling, must be responsible

for the odd behavior of the z-scores: The numerator of the fraction for the standard error

of the mean, the standard deviation, also increases with the relevance and with the sample

size, and does not depend on the number of trees either.

The increase in the sample size is due to the resulting increase in the out-of-bag sample

size, that again extends the range of possible changes in the prediction accuracy induced

by permuting the predictor variable. The dependence on the relevance is caused by a

mechanism in the tree-building process: In many trees of the ensemble a variable with a

low relevance may not be included at all, and produce an importance score of exactly zero,

which diminishes the variation of the importance. As a result of the division by the square

root of the number of trees, however, an additional dependence on the number of trees is

induced in the standard error of the mean, such that it decreases in the number of trees

as depicted in the second row of Figure 7.1. Note also that the curves for the different

sample sizes vary more strongly for the standard error of the mean than for the average

importance.
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When finally the z-score is computed by means of standardizing the average importance

with the standard error of the mean, the rationale of this standardization is to account

for the fact that the average importance is an average over all trees in the ensemble – it

does, however, not account for the effect of the sample size. The fact that the dependence

of the average importance on the sample size is less pronounced than that of its standard

error causes an inversion of the importance pattern with respect to the sample size in the

z-scores: We find in the third row of Figure 7.1 that the z-score decreases in the sample

size but increases with the number of trees. This finally leads to the pattern for the power

curves that we found in the bottom row of Figure 7.1: Only for high numbers of trees the

overall level of the scaled importance is high enough for all sample sizes to ever reject the

null hypothesis, while for lower numbers of trees the curves for the high sample sizes never

exceed the threshold for rejecting the null hypothesis and result in a power of zero.

This behavior is undesired and is an artefact of the scaling, that induces a dependence on

the number of trees but at the same time inverts the dependence on the sample size. We

therefore summarize the results of our simulation study that the original, unscaled average

variable importance VI shows the increase in the relevance and sample size that would

be desired for a test for the null hypothesis of zero importance, while the scaled variable

importance and the resulting test behave oddly.

7.1.3 Specifying the null hypothesis

Another issue when considering the test for the random forest permutation importance

suggested by Breiman and Cutler (2008) is the very fundamental question: Exactly what

null hypothesis is being tested? In the previous sections we referred to the null hypothesis as

“importance equal to zero” for simplicity . This implies some kind of independence between

the predictor variable whose importance is being tested and the response. However, it is

unclear what kind of independence is being tested. The currently employed permutation

scheme, where only the values of the variable of interest are permuted while the values of the
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response variable and the other predictors are held constant, does mimic the elimination

of the predictor variable when predicting the response – however, at the same time it

destroys all correlations between the variable of interest and the other covariates. Unlike

standard permutation test of the global null hypothesis that the response is not correlated

with any of the predictor variables, where the response is permuted against the complete

predictor matrix and all associations within the predictor matrix are retained, the current

random forest approach tests the rather unintuitive null hypothesis that the predictor of

interest is not correlated with either one of the response or covariates. In cases where

predictor variables may be correlated, this permutation scheme may not reflect the actual

null hypothesis of interest. This topic is investigated in more detail and a new, conditional

permutation importance measure is suggested in the next chapter.

7.2 Summary

We conclude that, in principle, a test for the random forest permutation importance could

help identify relevant predictor variables. However, the results of our simulation studies

also show that, in its current form, the test of Breiman and Cutler (2008) has prohibitively

undesirable properties: The power of the test does not increase with the sample size, as

would be expected for any reasonable statistical test, but rather remains zero for large

sample sizes as compared to the number of trees. On the other hand the power does

increase with the number of trees, which is a parameter that can be arbitrarily chosen by

the user. This means that any statement of significance made with the current test for

random forest variable importance is nullified.

Another issue, that is relevant in the context of correlated predictor variables, is the ques-

tion whether the null hypothesis that is being tested in the current test is the one that

reflects our understanding of the impact of a predictor variable on the response. A condi-

tional permutation scheme that better reflects the null hypothesis of interest is suggested

in the next chapter.
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Further research will address the issue of an adequate test statistic and rejection area for

this null hypothesis. For high numbers of variables, multiple testing issues should also be

taken into consideration.
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Fig. 7.1: Average variable importance , standard error of mean, z-score and power as

functions of relevance for sample size 100 (solid), 200 (dashed), and 500 (dash-dotted) and

different numbers of trees.



8. Conditional variable importance

Identifying relevant predictor variables, rather than only predicting the response by means

of some black box model, is of interest in many applications. By means of variable impor-

tance measures the candidate predictor variables can be compared with respect to their

impact in predicting the response or even their causal effect (cf. van der Laan, 2006, for

theoretical assumptions necessary for interpreting the importance of a variable as a causal

effect). In this case, a key advantage of random forest variable importance measures, as

compared to univariate screening methods, is that they cover the impact of each predictor

variable individually as well as in multivariate interactions with other predictor variables.

This feature of random forests has made them particularly popular in the field of genomics.

For example, Lunetta et al. (2004) find that genetic markers relevant in interactions with

other markers or environmental variables can be detected more efficiently by means of

random forests than by means of univariate screening methods like Fisher’s exact test. In

the analysis of amino acid sequence data Segal et al. (2001) also point out the necessity

to consider interactions between sequence positions. Tree-based methods like random

forests can help identify relevant predictor variables even in such high dimensional settings

involving complex interactions. Therefore, the impact of different amino acid properties,

some of which have been shown to be relevant in DNA and protein evolution by Xia

and Li (1998), for predicting peptide binding is investigated in our application example

in Section 8.3. However, we will find in this application example, as often in practical

problems, that many predictor variables are highly correlated.

The issue of correlated predictor variables is prominent in, but not limited to, applications
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in genomics and other high-dimensional problems. Therefore, it is important to note that

in any non-experimental scientific study, where the predictor variable settings cannot be

manipulated independently by the investigator, the distinction between the marginal and

the conditional effect of a variable is crucial – otherwise we might be mislead to, e.g.,

consider the shoe size of school children a valuable predictor for their reading skills.

In this obvious case of a spurious correlation the age of the children, that is associated with

both their shoe size and reading skills, can be easily identified as a background variable –

and it is clear that once their age is used as a predictor variable for the reading skills of the

children, knowing their shoe size has no additional benefit. From a statistical point of view,

however, this distinction can only be made by a conditional importance measure, while a

marginal importance measure would consider the shoe size an equally valuable predictor

variable.

We will point out throughout this chapter that correlations between predictor variables

– regardless of whether they arise from the proximity of genetic loci or more obviously

related characteristics of the subjects, such as their age and shoe size – severely affect the

original random forest variable importance measures, because they can be considered as

measures of marginal importance, even though what is of interest in most applications is

the conditional effect of each variable.

In parametric models, such as (generalized) linear models, variable importance is usually

associated with standardized coefficient estimates or the change in a fit index when one

predictor variable at a time is excluded as in nested models. In nonparamteric black box

learners like neural networks, bagging, random forests and boosting, on the other hand, it is

not at all obvious how to assess variable importance – but there are various suggestions that

in principle share two rationales: Either the change in the response variable is considered

when the value of the predictor variable of interest is changed in the sense: “if Xj is

increased by one entity, how will Y change?” (as, e.g., in the “partial dependence plots”

of Breiman, 2001b), or the exclusion of one variable from the model is mimiced by means

of a random permutation of the predictor variable (as, e.g., in the permutation accuracy
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importance of Breiman, 2001a, the rational of which was outlined in Chapter 6).

An advantage of the permutation approach, that is described in more detail below, is that

the effect of excluding a predictor variable can be evaluated without actually having to

refit the model without that variable. Refitting a model with one variable left out is an

adequate strategy in parametric regression, where the resulting models would be nested

and the restricted model can be tested by means of computational “shortcuts” like the

Wald- and score-test. As opposed to that, in a computerintensive procedure with random

components like bagging and random forests, refitting is computationally expensive and

the resulting models would not be nested in the common sense, so that model comparison

is not straightforward.

Another interesting aspect of the permutation approach in random forests is that it is the

prediction accuracy, rather than an information criterion, that is compared before and after

permuting the predictor variable. This rationale is comparable to that of another group of

descriptive association measures termed “PRE (proportional reduction in error)-measures”,

that are particularly popular in the social sciences and also compare the prediction error

with and without incorporating a predictor (cf, e.g., Liebetrau, 1983, for an introduction).

Let us now shortly review previous suggestions from the literature for measuring or illus-

trating variable importance in classification trees and random forests, with an emphasis on

the distinction between marginal and conditional approaches: As for graphical assessment

of variable importance, Breiman (2001b) and Feraud and Clerot (2002) display the change

in the predictor over the range of one predictor variable in plots. Feraud and Clerot (2002)

later define variable importance as the change in the prediction for different variations of

the original value of that variable. In their definition Feraud and Clerot (2002) employ the

distribution of the predictor variable and suggest the use of prior distributions to model the

possible variation in the distribution of the predictor variable. Lemaire and Clerot (2006)

point out that the measure of Feraud and Clerot (2002) is closely related to that of the

permutation accuracy importance of Breiman (2001a), with the difference that Breiman’s

approach does not rely on a prior distribution because he uses bootstrap sampling for
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reflecting the distribution of values in the sample.

The interpretation of the “partial dependence plots” of Breiman (2001b) may remind of

the interpretation of model coefficients in linear models. However, whether the effect of a

variable is interpretable as conditional on all other variables, as in linear models, may not

be guaranteed in other models – and we will point out explicitly below that this is not the

case in classification trees or random forests.

With regard to measures of variable importance, the permutation accuracy importance

follows the rationale that a random permutation of the values of the predictor variable is

supposed to mimic the absence of the variable from the model (cp. Chapter 6), while the

alternative Gini importance, is based on the principle of impurity reduction that is followed

in most traditional classification tree algorithms: A split in a certain variable is considered

good when it leads to a reduction in the impurity between the response classes. The Gini

importance of a random forest is an average over the impurity reductions a variable can

achieve in all trees in the forest. However, it has been shown to be biased when predictor

variables vary in their number of categories or scale of measurement in Chapter 6, because

the underlying Gini gain splitting criterion is a biased estimator and can be affected by

multiple testing effects, as described in the earlier chapters. Therefore, we will focus on

the permutation importance in the following, for which we have already shown that it is

reliable when subsampling without replacement – instead of bootstrap sampling – is used

in the construction of the forest.

Based on the permutation importance, schemes for variable selection and for providing

statements of the “significance” of a predictor variable (instead of a merely descriptive

ranking of the variables w.r.t. their importance scores) have been derived: Breiman and

Cutler (2008) suggest a simple significance test that, however, shows poor statistical prop-

erties as illustrated in the previous chapter. An approach for variable selection in large

scale screening studies is introduced by Diaz-Uriarte and Alvarez de Andrés (2006), who

suggest a backward elimination strategy. This approach has been shown to provide a

reasonable selection of genes in many situations and is freely available in an R package
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(Diaz-Uriarte, 2007), that also provides different plots for comparing the performance on

the original data set to those on a data set with randomly permuted values of the response

variable. The latter mimics the overall null hypothesis that none of the predictor variables

is relevant and may serve as a baseline for significance statements. A similar approach is

followed by Rodenburg et al. (2008).

However, some recent simulation studies indicate that the performance of the variable

importance measures may not be reliable when predictor variables are correlated: Even

though Archer and Kimes (2008) show in their extensive simulation study that the Gini

importance can identify influential predictor variables out of sets of correlated covariates in

many settings, the preliminary results of the simulation study of Nicodemus and Shugart

(2007) indicate that the ability of the permutation importance to detect influential predic-

tor variables in sets of correlated covariates is less reliable than that of alternative machine

learning methods and highly depends on the number of previously selected splitting vari-

ables mtry. These studies, as well as our simulation results, indicate that random forests

show a preference for correlated predictor variables, that is also carried forward to any

significance test or variable selection scheme constructed from the importance measures.

In this chapter we aim to provide an understanding of the underlying mechanisms respon-

sible for the observations of Archer and Kimes (2008) and Nicodemus and Shugart (2007).

In addition to this, we want to broaden the scope of considered problems to the comparison

of the influence of correlated and uncorrelated predictor variables. For this type of problem

we introduce a new, conditional permutation importance for random forests, that better

reflects the true importance of predictor variables. Our approach is motivated by the visual

means of illustration introduced by Nason et al. (2004): In their “CARTscans” plots, Nason

et al. (2004) not only display the marginal influence of a predictor variable, like the partial

dependence plots of Breiman (2001b), but the influence of continuous predictor variables

separately for the levels of two other, categorical predictor variables, namely a conditional

influence plot. In the case of correlated predictor variables it is important to distinguish

between conditional and marginal influence of a variable, because a variable that may ap-
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pear influential marginally might actually be independent of the response when considered

conditional on another variable, as pointed out in the spurious correlation example above.

Thus the approach of Nason et al. (2004) is an important improvement, but in its current

form is only applicable for categorical covariates. Therefore our aim in this chapter is to

provide a general scheme that can be used both for illustrating the effect of a variable and

for computing its permutation importance conditional on relevant covariates of any type.

While the conditioning scheme of Nason et al. (2004) can be considered as a full-factorial

cross-tabulation based on two categorical predictor variables, our conditioning scheme is

based on a partition of the entire feature space that is determined directly by the fitted

random forest model.

In the following Section 8.1 we will shortly review the particular variable selection approach

employed in recursive partitioning and illustrate in a simulation study why correlated

predictor variables tend to be overselected with this approach. In Section 8.2 we will

question the construction of the original permutation importance in more detail, before we

introduce a new permutation scheme that we suggest for the construction of a conditional

permutation importance measure. The advantage of this measure over the currently-used

one is illustrated in the second part of our simulation study and in the application to

peptide-binding data in Section 8.3.

8.1 Variable selection in random forests

As already outlined in Chapter 1, classification trees are built recursively in that the next

splitting variable is selected by means of locally optimizing a criterion (such as the Gini

gain in the traditional CART algorithm of Breiman et al., 1984) within the current node.

This current node is defined by a configuration of predictor values, that is determined by

all previous splits in the same branch of the tree. In this respect, the evaluation of the

next splitting variable can be considered conditional on the previously selected predictor

variables, but regardless of any other predictor variable. In particular, the selection of
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the first splitting variable involves only the marginal, univariate association between that

predictor variable and the response, regardless of all other predictor variables. However,

this search strategy leads to a variable selection pattern where a predictor variable that

is per se only weakly or not at all associated with the response, but is highly correlated

with another influential predictor variable, may appear equally well suited for splitting as

the truly influential predictor variable. We will illustrate this point in more detail in the

following simulation study.

8.1.1 Simulation design

A simulation study was set up in order to illustrate the treatment of correlated predictor

variables in ensemble methods based on classification trees. Data sets were generated

according to a linear model with twelve predictor variables yi = β1 ·xi,1+ . . .+β12 ·xi,12+εi,

with εi
i.i.d.∼ N(0, 0.5). The predictor variables were sampled from a multivariate normal

distribution X1, . . . , X12 ∼ N(0,Σ) where the covariance structure Σ was chosen such that

all variables have unit variance σj,j = 1 and only the first four predictor variables are block-

correlated with σj,j′ = 0.9 for j 6= j′ ≤ 4, while the rest were independent with σj,j′ = 0.

Of the twelve predictor variables only six were influential, as indicated by their coefficients

in Table 8.1. A covariance structure of this type was already used for illustrating the effect

of correlations by Archer and Kimes (2008). However, while their study mainly aimed at

identifying one influential predictor out of a correlated set, here we also want to compare the

importance scores of predictor variables with equally large coefficients, while some of the

predictor variables are correlated and others are not: X1, . . . , X4 and X5, . . . , X8 share

the same coefficient pattern, while only X1, . . . , X4 are correlated. From the generated

data sets, random forests were built with the cforest function from the party package

(Hothorn et al., 2008, 2006) in the R system for statistical computing (R Development

Core Team, 2008). Different values for the parameter mtry, that regulates the number

of randomly preselected splitting variables, were considered to be able to investigate the

mechanisms responsible for the results of Nicodemus and Shugart (2007). Default settings
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Tab. 8.1: Regression coefficients of the data generating process.

Xj X1 X2 X3 X4 X5 X6 X7 X8 · · · X12

βj 5 5 2 0 -5 -5 -2 0 · · · 0

were used for all other parameters.

8.1.2 Illustration of variable selection

We find in the panel on the left hand side of Figure 8.1 that in the first splits of all trees,

where the variables are considered only marginally with respect to their association to the

response, those variables (X3 and X4) correlated with highly influential predictors are se-

lected equally often as the highly influential predictor variables themselves (X1 and X2 as

well as X5 and X6) for mtry= 1, where no competitors are available and the correlated pre-

dictors can serve as replacements of the influential ones. The fact that the non-influential

predictor variables X8 through X12 are selected almost equally often is only due to the

lax choice of the stop criterion: With a lax stop criterion a split is conducted whenever

a variable is selected for splitting, which is equally likely for each variable in the case of

mtry= 1, even if a split in the variable is not worthwhile. If the stop criterion was chosen

more strictly, the variables X8 through X12 would still be selected with equal probabilities,

but would not actually be used for splitting.

When mtry increases and the highly influential variables may be available as predominant

competitors in some splits, those variables (X3 and X4) correlated with highly influential

predictors are selected less often than the highly influential correlated ones themselves (X1

and X2), but more often than even the highly influential uncorrelated ones (X5 and X6).

When we consider all splits of all trees in the panel on the right hand side of Figure 8.1,

the correlated predictors loose most of their advantage because variable selection is now

conditional on the previously chosen variables in the same branch of the tree, that may

include the truly influential correlated predictors. However, since variable selection is not
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Fig. 8.1: Relative selection rates for twelve variables in the first splits (left) and in all

splits (right) of all trees in random forests built with different values for mtry.

conditional on all (or at least all correlated) variables, there is still a preference for the

correlated variables with low and zero coefficients (X3 and X4 over X7 and X8), with a

similar dependency on mtry.

This selection pattern is due to the locally optimal variable selection scheme used in re-

cursive partitioning, that considers only one variable at a time and conditional only on

the current branch. However, since this characteristic of tree-based methods is a crucial

means of reducing computational complexity (and any attempts to produce globally opti-

mal partitions are strictly limited to low dimensional problems at the moment, cf. van Os

and Meulman, 2005), it shall remain untouched here.
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8.2 A second look at the permutation importance

We again consider the raw random forest permutation importance VI (Xj), that is given

in Equation 6.2 in Chapter 6. In standard implementations of random forests, the z-score,

that is achieved by dividing the raw importance by its standard error, is also provided.

However, since the results in the previous chapter indicate that the raw importance has

far better statistical properties, we will only consider the unscaled version here.

8.2.1 Background: Types of independence

We know that the original permutation importance overestimates the importance of corre-

lated predictor variables. Part of this artefact may be due to the preference for correlated

predictor variables in early splits as illustrated in Section 8.1. However, we also have to

take into account the permutation scheme that is employed in the computation of the per-

mutation importance. In the following we will first outline what notion of independence

corresponds to the current permutation scheme of the random forest permutation impor-

tance. Then we will introduce a more sensible permutation scheme that better reflects the

true impact of predictor variables.

It can help our understanding to consider the permutation scheme in the context of permu-

tation tests (cf., e.g., Good, 2005): Usually a null hypothesis is considered that implies the

independence of particular (sets of) variables. Under this null hypothesis, some permuta-

tions of the data are permitted because they preserve the structure determined by the null

hypothesis. If, for example, the response variable Y is independent from all predictor vari-

ables (global null hypothesis), a permutation of the (observed) values of Y affects neither

the marginal distribution of Y nor the joint distribution of X1, . . . , Xp and Y , because the

joint distribution can be factorized as P (Y, X1, . . . , Xp) = P (Y ) · P (X1, . . . , Xp) under

the null hypothesis. (Note that – in an obvious misuse of notation, but for the sake of

comprehensibility of the argument – the form P (Y, X1, . . .) is used here not only as an
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abbreviation for P (Y = y, X1 = x1, . . .) in the discrete case, but is also meant to cover

the case of continuous distributions accordingly.)

If, however, the null hypothesis is not true, the same permutation will lead to a deviation

in the joint distribution or some reasonable test statistic computed from it. Therefore,

a change in the distribution or test statistic caused by the permutation can serve as an

indicator that the data do not follow the independence structure we would expect under

the null hypothesis.

With this framework in mind, we can now take a second look at the random forest permu-

tation importance and ask: Under which null hypothesis would this permutation scheme

be permitted? If the data are actually generated under this null hypothesis the permuta-

tion importance will be (a random value from a distribution with mean) zero, while any

deviation from the null hypothesis will lead to a change in the prediction accuracy, that is

used as a test statistic here, and thus will be detectable as an increase in the value of the

permutation importance.

We find that the original permutation importance, where one predictor variable Xj is

permuted against both the response Y and the remaining (one or more) predictor variables

Z = X1, . . . , Xj−1, Xj+1, . . . , Xp as illustrated in the left panel of Table 8.2, corresponds

to a null hypothesis of independence between Xj and both Y and Z:

H0 : Xj ⊥ Y, Z or equivalently Xj ⊥ Y ∧Xj ⊥ Z (8.1)

Under this null hypothesis the joint distribution can be factorized as

P (Y,Xj, Z)
H0= P (Y, Z) · P (Xj). (8.2)

What is crucial when we want to understand why correlated predictor variables are pre-

ferred by the original random forest permutation importance is that a positive value of the

importance corresponds to a deviation from this null hypothesis – that can be caused by a

violation of either part: the independence of Xj and Y , or the independence of Xj and Z.
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Tab. 8.2: Permutation scheme for the current and for the conditional permutation im-

portance.

Y Xj Z

y1 xψj(1),j z1

...
...

...

yi xψj(i),j zi
...

...
...

yn xψj(n),j zn

Y Xj Z

y1 xψj|Z=a(1),j z1 = a

y3 xψj|Z=a(3),j z3 = a

y27 xψj|Z=a(27),j z27 = a

y6 xψj|Z=b(6),j z6 = b

y14 xψj|Z=b(14),j z14 = b

y21 xψj|Z=b(21),j z21 = b
...

...
...

However, from these two aspects only one is of interest when we want to assess the impact

of Xj to help predict Y , namely the question if Xj and Y are independent.

This aim, to measure only the impact of Xj on Y , would be better reflected if we could

create a measure of deviation from the null hypothesis that Xj and Y are independent

under a given correlation structure between Xj and the other predictor variables, that

is determined by our data set. To meet this aim we suggest a conditional permutation

scheme, where Xj is permuted only within groups of observations with Z = z, to preserve

the correlation structure between Xj and the other predictor variables as illustrated in the

right panel of Table 8.2.

We denote the permutation corresponding to this scheme by ψj|Z . By means of conditioning

on the variables in Z, the possible permutations of the values of Xj are restricted to those

that exchange only the indices of observations within sets of the form Ia = {i | zi = a}, so

that ψj|Z(i) ∈ Ia ∀ i ∈ Ia in all constellations a.

The conditional permutation corresponds to the following null hypothesis

H0 : (Xj ⊥ Y ) |Z, (8.3)
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where the conditional distribution can be factorized under the null hypothesis as

P (Y,Xj|Z)
H0= P (Y |Z) · P (Xj|Z)

or P (Y |Xj, Z)
H0= P (Y |Z), (8.4)

which is the definition of conditional independence.

In the special case where Xj and Z are independent, both permutation schemes will give

the same result, as illustrated by our simulation results below. When Xj and Z are

correlated, however, the original permutation scheme will lead to an apparent increase

in the importance of correlated predictor variables, that is due to deviations from the

uninteresting null hypothesis of independence between Xj and Z.

8.2.2 A new, conditional permutation scheme

Technically, any kind of conditional assessment of the importance of one variable con-

ditional on another one is straightforward whenever the variables to be conditioned on,

Z, are categorical (cf., e.g., Nason et al., 2004). However, for our aim to conditionally

permute the values of Xj within groups of Z = z, where Z can contain potentially large

sets of covariates of different scales of measurement, we want to supply a grid that (i) is

applicable to variables of different types, (ii) is as parsimonious as possible, but (iii) is also

computationally feasible to generate. Our suggestion is to define the grid within which

the values of Xj are permuted for each tree by means of the partition of the feature space

induced by that tree. The main advantages of this approach are that this partition was

already learned from the data during model fitting, contains splits in categorical, ordered

and continuous predictor variables and can thus serve as an internally available means for

discretizing the feature space.

In principle, any partition derived from a classification tree can be used to define the

permutation grid. Here we used partitions produced by the unbiased conditional inference

trees of Hothorn et al. (2006), that employ binary splitting as in the standard CART
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algorithm of Breiman et al. (1984). This means that, if k is the number of categories of an

unordered or ordered categorical variable, up to k, but potentially less than k, subsets of

the data are separated. Continuous variables are treated in the same way: Every binary

split in a variable provides one or more cutpoints, that can induce a more or less fine

graded grid on this variable. By using the grid resulting from the current tree we are

able to condition in a straightforward way not only on categorical, but also on continuous

variables and create a grid that may be more parsimonious than the full factorial approach

of Nason et al. (2004). Only in one aspect we suggest to leave the recursive partition

induced by a tree: Within a tree structure, each cutpoint refers to a split in a variable

only within the current node (i.e. a split in a variable may not bisect the entire sample

space but only partial planes of it). However, for ease of computation, we suggest that the

conditional permutation grid uses all cutpoints as bisectors of the sample space (the same

approach is followed by Nason et al., 2004). This leads to a more fine graded grid, and may

in some cases result in small cell frequencies inducing greater variation (even though our

simulation results indicate that in practice this is not a critical issue). From a theoretical

point of view, however, conditioning too strictly has no negative effect, while a lack of

conditioning produces artifacts as observed for the unconditional permutation importance.

In summary, the conditional permutation importance is derived as follows:

– In each tree compute the oob-prediction accuracy before the permutation as in Equa-

tion 6.1:

P
i∈B

(t) I
�
yi=ŷ

(t)
i

�
���B(t)

��� .

– For all variables Z to be conditioned on: Extract the cutpoints that split this variable

in the current tree and create a grid by means of bisecting the sample space in each

cutpoint.

– Within this grid permute the values of Xj and compute the oob-prediction accuracy

after permutation:

P
i∈B

(t) I

�
yi=ŷ

(t)
i,ψj |Z

�
���B(t)

��� , where ŷ
(t)
i,ψj |Z = f (t)(xi,ψj |Z) is the predicted

classes for observation i after permuting its value of variable Xj within the grid

defined by the variables Z.
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– The difference between the prediction accuracy before and after the permutation

accuracy again gives the importance of Xj for one tree (cf. Equation 6.1). The

importance of Xj for the forest is again computed as an average over all trees.

To determine the variables Z to be conditioned on, the most conservative – or rather over-

cautious – strategy would be to include all other variables as conditioning variables, as was

indicated by our initial notation. A more intuitive choice is to include only those variables

whose empirical correlation with the variable of interest Xj exceeds a certain moderate

threshold, as we do with the Pearson correlation coefficient for continuous variables in the

following simulation study and application example. For the more general case of predic-

tor variables of different scales of measurement the framework promoted by Hothorn et

al. Hothorn et al. (2006) provides p-values of conditional inference tests as measures of

association. The p-values have the advantage that they are comparable for variables of all

types and can serve as an intuitive and objective means for selecting the variables Z to

be conditioned on in any problem. Another option is to let the user himself select certain

variables to condition on, if, e.g., a hypothesis of interest includes certain independencies.

Note however, that neither a high number of conditioning variables nor a high overall num-

ber of variables in the data set poses a problem for the conditional permutation approach:

The permutation importance is computed individually for each tree and then averaged over

all trees. Correspondingly, the conditioning grid for each tree is determined by the parti-

tion of that particular tree only. Thus, even if in principle the stability of the permutation

may be affected by small cell counts in the grid, practically the complexity of the grid is

limited by the depth of each tree.

The depth of the tree, however, does not depend on the overall number of predictor vari-

ables, but on various other characteristics of the data set (most importantly the ratio of

relevant vs. noise variables, that is usually low, for example in genomics) in combination

with tuning parameter settings (including the number of randomly preselected predictor

variables, the split selection criterion, the use of stopping criteria and so forth). Lin and

Jeon Lin and Jeon (2006) even point out that limiting the depth of the trees in random
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forests may prove beneficial w.r.t. prediction accuracy in certain situations.

Another important aspect is that the conditioning variables, especially if there are many,

may not necessarily appear all together with the variable of interest in each individual

tree, but different combinations may be represented in different trees if the forest is large

enough.

8.2.3 Simulation results

For the simulation design introduced in Section 8.1.1, Figure 8.2 shows the median and

interquartile range (over 500 iterations) of the importance scores of each variable for the

different permutation schemes: the original marginal permutation and the newly suggested

conditional permutation scheme. The set of variables Z to be conditioned on was chosen

here to include all variables with a Pearson correlation coefficient r ≥ 0.2.

We find that the pattern of the coefficients induced in the data generating process is

not reflected by the importance values computed with the ordinary permutation scheme.

With this scheme the importance scores of the correlated predictor variables are highly

overestimated. This effect is most pronounced for small values of mtry, because correlated

variables have a higher chance to enter a tree when their correlated competitors are not

available.

For the conditional permutation scheme the importance scores better reflect the true pat-

tern: The correlated variables X1 and X2 with the same coefficient show an almost equal

level of importance as the uncorrelated variables X5 and X6, while the importance of X3

and X4, that are correlated but have a lower or zero coefficient, decrease. For the variables

with small and zero coefficients we still find a difference between the correlated and un-

correlated variables, such that for the correlated variables the importance values are still

overestimated – however to a much lesser extent than with the unconditional permutation

scheme. This remaining disadvantage of the uncorrelated predictor variables, especially

those with low coefficients, may be due to the fact that within the individual trees these
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Fig. 8.2: Median permutation importance for unconditional (dashed) and conditional

(solid) permutation scheme along with inter-quartile range. Note that the ordering of

variables in the plot is arbitrary.

variables are selected less often and in lower positions than their correlated counterparts

(cf. Figure 8.1), which results in a lower chance to produce a high importance value for
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these variables.

However, the degree of the preference for correlated predictor variables also strongly de-

pends on the choice of mtry – both for the unconditional and the conditional permutation

scheme – and is most pronounced for small values of mtry. The key to understanding

this effect is that conditioning – both in recursive tree building and in computing the con-

ditional permutation importance – is effective only when an influential covariate, that is

correlated with variable of interest, is already available in the model. In this case, the

remaining, conditional effect of the variable of interest can be realistically assessed, be-

cause the effect of the influential covariate can be accounted for. However, in trees built

with values of mtry as low as 1, variable selection is conducted completely at random, so

that the influential covariates may not be included in the model at all, and thus cannot be

conditioned on. In this context, high values of mtry appear more favorable with respect

to conditioning.

On the other hand, we find in Figure 8.2 that the variability of the importance increases for

large values of mtry – and the prediction accuracy of random forests is in general expected

to be higher for smaller values of mtry. In any case it is interesting that the variability of

the conditional importance is lower than that of the unconditional importance within each

level of mtry.

With respect to the identifiability of few influential predictors from a set of correlated and

other noise variables (which was the task in Nicodemus and Shugart (2007) and Archer and

Kimes (2008)), we can see from the importance scores for X1, . . . , X3 in comparison to that

of X4 that the conditional importance reflects the same pattern as the unconditional im-

portance, however with a notably smaller variation that may improve the identifiability. In

the comparison of potentially influential correlated and uncorrelated predictor variables on

the other hand, the conditional importance is much better suited as a means of comparison

than the original importance.
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8.3 Application to peptide-binding data

As an application example we consider peptide-binding data that were previously analysed

with recursive partitioning techniques by Segal et al. (2001). The data set includes 105

variables for a total of n = 310 amino acid sequences. The response to be predicted is

a binding property that can be coded as a binary variable (binding/no binding). The

remaining variables available in this data set correspond to 13 amino acid properties for

each of the eight considered amino acid positions. These 13 properties include, e.g. volume,

polarity, bulkiness, flexibility, aromaticity, and charge, yielding in total 104 continuous

predictor variables.

A random forest with 1000 trees and mtry = 104 (which is equal to bagging) was fit to

the data set and the permutation importance was computed either with the unconditional

or the conditional permutation scheme. The resulting importance scores are displayed in

Figure 8.3 (note that the absolute values of the scores should not be interpreted). The few

predictor variables whose importance scores reach highest or even exceed the plotting area

would be selected for further analysis by any means. However, for some of the variables

with the next smaller importance scores the ranking strongly depends on the permutation

scheme.

We will focus our illustration on the ranking of three exemplary predictor variables, “h2y8”,

“flex8” and “pol3”, that are highlighted in Figure 8.3: We find in the unconditional view

in the top panel of Figure 8.3 that “h2y8” and “flex8” appear to be of higher importance

than “pol3” (ranks “h2y8”: 8, “flex8”: 9, “pol3”: 11). However, in the conditional view

in the bottom panel of Figure 8.3 their order is reversed and it turns out that “pol3” is

really more important than “h2y8” and “flex8”(ranks “h2y8”: 9, “flex8”: 8, “pol3”: 7).

This change in the ranks of the predictor variables is most pronounced for large mtry as

expected, but similar effects can be observed for smaller values.

When exploring the reason why the importances of “h2y8” and “flex8” are moderated by

conditioning, while the importance of “pol3” remains almost constant, we find that “h2y8”
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Fig. 8.3: Unconditional and conditional permutation importance of 104 predictors of

peptide-binding.

and “flex8” are correlated with influential covariates, while “pol3” is only correlated with

non-influential covariates. For example, “h2y8” is highly correlated with the polarity at

position eight “pol8”, that is indicated by the ∗ symbol in in Figure 8.3. The variable

“pol8” shows a high importance (that is however also moderated by conditioning) and was

already found to be influential by Segal et al. (2001), who note that it may approximate

an effect of the eighth position in the original sequence data, while the results of Xia and

Li (1998) indicate an effect of the amino acid property polarity itself.

This shows that importance rankings in data sets that contain complex correlations between

predictor variables can be severely affected by the underlying permutation scheme: When

the conditional permutation is used, the importance scores of correlated predictor are

moderated such that the truly influential predictor variables have a higher chance to be

detected.
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8.4 Summary

We have investigated the sources of preferences in the variable importance measures of

random forests in favor of correlated predictor variables and suggested a new, conditional

permutation scheme for the computation of the variable importance measure. This new,

conditional permutation scheme uses the partition that is automatically provided by the

fitted model as a conditioning grid and reflects the true impact of each predictor variable

better than the original, marginal approach. Even though the conditional permutation

scheme cannot entirely eliminate the preference for correlated predictor variables, it has

been shown to provide a more fair means of comparison that can help identify truly relevant

predictor variables.

Our simulation results also illustrate the impact of the choice of the random forest tuning

parameter mtry: While the default value mtry=
√
p is often found to be optimal with

respect to prediction accuracy in empirical studies (cf., e.g., Svetnik et al., 2003), our

findings indicate that, in the case of correlated predictor variables, different values of mtry

should be considered. However, it should also be noted that any interpretation of random

forest variable importance scores can only be sensible when the number of trees is chosen

sufficiently large such that the results produced with different random seeds do not vary

systematically. Only then it is assured that the differences between, e.g., unconditional

and conditional importance are not only due to random variation.
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The aim of this work was to provide a statistical understanding of the sources of biased

variable selection and variable importance measures in recursive partitioning methods, and

to improve these measures such that they can be used to reliably assess and compare the

relevance of predictor variables of different types.

For single classification trees employing empirical entropy measures as split selection cri-

teria, we found that biased variable selection can be attributed to two very fundamental

statistical issues, namely biased estimation and multiple testing effects. While the latter

mechanism has been known in the machine learning community for some time, its negative

carry over effects to variable importance measures in ensemble methods were not accounted

for, and the former source of biased entropy estimation went unnoticed in previous studies.

The criteria for unbiased split selection that were introduced and evaluated here, unbiased

entropy estimates in robust k-ary splitting and the p-values of optimally selected statistics

in binary splitting, amongst others, can effectively solve the problem of variable selection

bias in single trees.

When, in order to produce more stable predictors, we leave the well interpretable single

trees and turn towards ensembles of trees, the advantage of the TWIX approach – as

opposed to the ensemble methods based on random resampling – is that its individual trees

are nested and thus preserve some interpretability. For this method, an adaptive cutpoint

selection criterion was suggested here, that can serve as a diagnostic of the stability of a

split decision. Moreover, when this criterion is employed in the construction of a TWIX

ensemble, the nested set of trees may reduce to a single, interpretable tree if the underlying
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partition is sufficiently stable.

Otherwise, the ensemble methods bagging and random forests are more efficient with re-

spect to prediction accuracy, but offer no means of interpreting the exact form and direction

of the effect of a predictor variable. Therefore, different variable importance measures for

ensemble methods have been suggested and are widely applied, for example in high dimen-

sional problems with many noise variables. As opposed to univariate screening methods,

that have been suggested previously for use in high dimensional problems, variable impor-

tance measures can reflect the impact of each predictor variable in both main effects and

interactions.

When variable importance measures are used as a means of interpretation or variable selec-

tion, however, it is particularly important that these measures are reliable and comparable.

As revealed by recent empirical studies, and the systematic simulation experiments and

statistical reasoning presented here, this was not the case for the originally proposed mea-

sures, that show artificial preferences for variables of certain types.

Part of these artifacts can be attributed to the effects of variable selection bias that were

already investigated for single classification trees in the early chapters of this work. Other

effects are newly induced either by the bootstrap resampling scheme usually employed in

ensemble methods, or by the construction of the variable importance measure itself. Solu-

tions to both problems were presented: Our results indicate that bootstrap sampling in-

duces artifacts in association measures used as split selection criteria in ensemble methods,

and should be discarded in favor of subsampling. Another question that was emphasized

was: What kind of importance is measured by the current variable importance scores in

the first place – and is that what is desired?

In the context of recursive partitioning, where models cannot be derived in a closed form

with all predictor variables processed simultaneously as, e.g, in generalized linear models,

there are no coefficient estimates available that could serve as indicators of the relevance

of a variable conditional on all covariates. This can be considered as the price one has
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to pay for a model that is flexible, computationally feasible and applicable even to high

dimensional data, because only one variable is processed at a time.

In order to be able to provide a conditional measure of variable importance from a model

built with recursive partitioning, an additional effort is necessary in the computation of the

importance measure. Only a conditional variable importance measure is capable of distin-

guishing between the marginal effect of a variable and its effect after potential correlations

between the predictors are accounted for, as we have pointed out in the last chapter. The

conditional permutation importance introduced here addresses one of the key remaining

issues in the practical application of variable importance measures in genomics and pro-

teomics, where predictor variables are often highly correlated, but also has the potential

to clear the way for further applications, e.g., in the social sciences.

In summary, the descriptive variable importance measures introduced in this work provide

a fair means of comparison for assessing the impact of predictor variables of different types

in high dimensional problems involving interactions and even correlations between predic-

tor variables. Besides their application as a merely descriptive tool, different schemes for

deriving significance statements can be applied to aid the decision which and how many

candidate predictors should be selected for further analysis. Some of these approaches

were critically discussed here: While the significance test suggested by Breiman and Cut-

ler (2008) should be discarded due to its poor statistical properties, the approaches of

Diaz-Uriarte and Alvarez de Andrés (2006), Diaz-Uriarte (2007) and Rodenburg et al.

(2008) in their original form show the same undesired preference as the marginal variable

importance. This artifact can only be avoided when these approaches are used together

with the conditional importance suggested here.

However, it may also be worth discussing if the overall null hypothesis that all predictor

variables are irrelevant, that is implicitly presumed when permuting the response variable

against the predictor matrix as in the approach of Rodenburg et al. (2008), is a desirable

baseline for significance statements for the importance of individual variables. In addition

to this, any approach that derives the distribution of the importance measure in real time
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balanced samples (dashed) and for strongly unbalanced samples with minority class prob-

ability 5% (solid) under the null hypothesis.

for the present model and data set is computationally expensive – if not prohibitive for

large samples. Therefore, a better understanding of the distribution of variable importance

measures and the parameters it depends on is a crucial field for further research.

We have seen here that the scale of importance measure may depend on model parameters,

as well as characteristics of the data set itself. A related issue is the case of unbalanced

response classes: When strongly unbalanced data are processed in random forests, the

distribution of the variable importance has a higher variance, but is also systematically

shifted to the left, so that negative importance values appear more frequently under the

null hypothesis, as illustrated in Figure 9.1. Rather unintuitively, this indicates that, in av-

erage, the prediction accuracy for the oob-observations of a random forest with a randomly

permuted random noise variable is higher than with the original random noise variable.

The investigation of this effect may reveal additional insights into the characteristics of the

permutation importance measure.

In the literature it is suggested that unbalanced class frequencies should be counterbalanced
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either by means of incorporating class weights or loss functions as in a decision theoretic

framework, or by means of “undersampling” (or “down sampling”, i.e., sampling from the

majority class as few observations as there are of the minority class; Chen et al., 2004).

Accordingly, the results presented in this work apply to the case of balanced samples or

unbalanced samples that were balanced by means of undersampling.

Besides the issues of variable selection and interpretability, that were treated here, open

research questions in the area of ensemble methods include the effect of different model

parameters and settings on the prediction accuracy. For example, we are currently inves-

tigating potential benefits of advanced aggregation schemes for ensemble methods: While

the commonly implemented majority voting approach has been shown to give excellent

prediction results in a multitude of standard settings, the evaluation of, e.g., weighted

aggregation schemes is especially interesting in sensitive cases such as highly unbalanced

samples.

An important issue in this context, that should be taken into account when evaluating the

predictive performance of a classifier, is the distinction between the prediction accuracy

with respect to the percentage of correctly classified observations (which is a rather coarse

criterion for comparing aggregation schemes) or with respect to probability estimates (that

may allow for a more fine graded comparison). In general, a high prediction accuracy of a

classifier does not guarantee that the corresponding class probabilities are being estimated

“(even remotely) accurately” (Friedman, 1997, p. 76). Therefore, future research should

investigate in particular whether ensemble methods are merely good classifiers, as indicated

by their excellent performance in a wide variety of simulation and real-data studies, or if

they also make good probability estimators.

The latter would make them an attractive alternative to logistic regression – not only

in classification problems but also, for example, in the estimation of propensity scores

(i.e., the probability to receive treatment in quasi-experimental trials) in high dimensional

problems. A first application of bagging for propensity score estimation (Luellen et al.,

2005) has also fueled the discussion if random forests may overfit.
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Most applied publications on random forests state somewhere in their introduction that

random forests do not overfit. However, all these publications rely on one, apparently

biased source: Breiman himself, who made this claim based on a non-representative data

basis, as outlined in the introduction. The results of Lin and Jeon (2006) imply that the

depth of the trees in a random forest, rather than the number of trees as suspected by

Luellen et al. (2005), might induce overfitting. Thus, the impact of this model parameter

on the prediction accuracy of ensemble methods, especially for predicting probabilities,

will be further investigated in future research.
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