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2  ABSTRACT 
In the mammalian brain, neurogenesis continues only in few regions of the forebrain. The 

molecular signals governing neurogenesis in these unique neurogenic niches, however, are 

still ill-defined. Here we identify a key neurogenic signalling pathway in one of the adult 

neurogenic niches. I examined the role of Bone Morphogenic Protein (BMP) mediated 

signalling that is discovered to be selectively active in adult neural stem cells and transit 

amplifying progenitors. This is in pronounced contrast to proliferating cells outside the 

neurogenic niche that do not have active BMP signalling as monitored by phosphorylated 

form of p-Smad1,5 and 8. Here I show that BMP signalling is crucial to initiate the 

neurogenic lineage in the adult mouse subependymal zone. Interference with the bone 

morphogenic protein (BMP)-mediated signalling by either genetic deletion of the central 

signalling mediator of this pathway (the transcription factor Smad4) or the extracellular 

infusion of Noggin that inhibits BMP-binding to the receptor both reduce adult neurogenesis 

dramatically. Smad4 deletion in stem, but not progenitor cells, as well as Noggin infusion 

lead to an increased number of Olig2-expressing progeny that migrate to the corpus callosum 

and differentiate into oligodendrocytes. Transplantation experiments further verified the cell 

autonomous nature of this phenotype. I showed that niche aspects are not affected as wild 

type cells differentiate normally in knockout background. These results therefore demonstrate 

one of the first key neurogenic signals allowing adult neurogenesis in the mammalian brain. 

Moreover, they identify the generation of oligodendrocytes as the fate that needs to be 

suppressed for neurogenesis to occur. 
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3  INTRODUCTION 
 

3.1  Neurogenesis persists in the adult mammalian brain 

It has been believed for long time that neurogenesis only occurs during development and there 

are no new neurons generated in the adult mammalian brain. During development of 

mammalian forebrain neurons are derived from proliferating cells of ventricular zone (VZ), a 

region lining the ventricles, and the subventricular zone (SVZ), a second proliferative zone 

above the ventricular zone. While VZ shrinks into a cell layer called ependyma, a part of it 

persists into adulthood as a mitotically active region called Subependyma ( Smart, 1961; 

Lewis, 1968). When these proliferating cells were labelled by [3H]-tyhmidine it has been 

suggested that neurogenesis continues in this particular region of adult mammalian brain in 

rodents (Altman, 1963; Altman, 1969). The same labelling technique also suggested 

neurogenesis in the dentate gyrus (DG) of the hippocampus in rodents (Altman and Das, 

1965; Bayer, 1982; Bayer et al., 1982). A study on rhesus monkeys suggested that unlike to 

rodents there are no neurons being generated in adulthood in primates (Rakic, 1985). 

However in the 1990s, new protocols for labelling dividing cells in the central nervous system 

(CNS), such as retrovirus and bromodeoxyuridine (BrdU) labellings, not only confirmed 

previous studies on rodents (Kuhn et al., 1996; Luskin, 1993; Seki and Arai, 1993) but also 

provided the first evidence that neurogenesis occurs in the adult primates, human and non-

human (Eriksson et al., 1998; Kornack and Rakic, 1999; Curtis et al., 2007).  

 

Furthermore, adult neurogenesis also occurs in non-mammalian vertebrates and insects 

(Goldman and Nottebohm, 1983; Cayre et al., 1998). In adult canaries new neurons are 

incorporated throughout most of the telencephalon, but not outside of it (Goldman and 

Nottebohm, 1983; Paton et al., 1985; Alvarez-Buylla, 1988). This spatial restriction emerges 

during development (Goldman and Nottebohm, 1983; Alvarez-Buylla et al., 1994; Barami et 

al., 1995). Neurons are born in the walls of the lateral ventricle (Goldman and Nottebohm, 

1983; Barami et al., 1995) from which they migrate long distances to reach most areas of the 

telencephalon (Alvarez-Buylla, 1988). Old neurons are continuously replaced with new ones 

(Kim and Nottebohm, 1993) in a process thought to be related to plasticity and learning 

(Nottebohm, 1985; Alvarez-Buylla et al., 1990). 
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3.2  Neural stem cells and their progeny in adult SEZ 
The SEZ is located throughout most of the lateral wall of the lateral ventricle (Figure 1). The 

presence of large numbers of dividing cells in the SEZ has been known for almost a century 

(Allen, 1912) and is known to occur in many vertebrates (Lewis et al., 1968; Blakemore et al., 

1972; McDermott et al., 1990; Eriksson et al., 1998; Huang et al., 1998; Gould et al., 1999; 

Kornack and Rakic, 2001; Sanai et al., 2007). However, the fate of the large number of newly 

generated SEZ cells had been controversial. While pioneering work by Joseph Altman had 

suggested that the SEZ could generate neurons (Altman, 1969; Das and Altman, 1970), most 

other studies suggested that dividing SEZ cells serve as a reservoir of precursors for glial cells 

(Privat, 1972; Privat et al., 1972). Other investigators had suggested that the dividing cells in 

the SEZ die soon after mitosis (Smart, 1961; Morshead et al., 1992). Direct demonstration 

that large numbers of neuronal precursors exist in the adult SEZ was obtained by culturing 

SEZ cells that had been labeled in vivo with [3H]-Thymidine (Lois et al., 1993). In vivo adult 

SEZ cells generate new neurons that migrate to the olfactory bulb where they constantly 

replace interneurons (Luskin, 1993; Lois et al., 1994) (Figure 1). Recently, in vivo studies 

showed that not only neurons but also oligodendrocytes are generated in the adult SEZ (Menn 

et al., 2006; Hack et al., 2006). These immature oligodendorcytes then migrate to the corpus 

callosum (where oligodendrocytes myelinate axons of cortical neurons) and mature. 

 

These findings suggested that neural stem cells are retained in the SEZ of adult mammals. In 

vitro studies also supported this notion. Cells that possess the properties of stem cells (self-

renewal and multipotency) in culture can be isolated from the SEZ using epidermal growth 

factor (EGF) and fibroblast growth factor (FGF) (Morshead et al., 1994; Gritti et al., 1999). 

 

Ultrastructural reconstruction of the adult SEZ by electron microscopy (EM) reveals that four 

major cell types constitute this region (Doetsch et al., 1997). SEZ neuroblasts (neuroblasts are 

neuronal progenitors that express already neuronal characteristics but still divide. In SEZ they 

are called type A cells), migrate in homotypic chains (Lois et al., 1996; Wichterle et al., 1997) 

in a network of interconnecting pathways distributed throughout the wall of the lateral 

ventricle (Doetsch et al., 1996). These chains are ensheathed by slowly proliferating type B 

cells or non proliferating astrocytes (Lois et al., 1996). B cells have properties of astrocytes, 
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including a light cytoplasm, thick bundles of glial fibrillary acidic protein (GFAP)-positive 

intermediate filaments, gap junctions, glycogen granules, and dense bodies (Doetsch et al., 

1997). Scattered along the chains of type A cells are clusters of rapidly dividing type C cells 

(Doetsch et al., 1997). The SEZ is largely separated from the ventricle by a layer of 

multiciliated ependymal cells which is the fourth cell type of this region. Many of the chains 

of type A cells unite in the anterior and dorsal SEZ forming a restricted path called the rostral 

migratory stream (RMS). The RMS is the pathway along which neuroblasts migrate from the 

SEZ to the olfactory bulb, where the neuroblasts differentiate into granule and periglomerular 

neurons (Lois et al., 1994). 

 

A critical step towards understanding adult neurogenesis is the identification of the primary 

precursors that generate the new neurons in vivo and stem cells in vitro. The identification of 

the stem cells is also critically important to engineer these cells and thereby to elucidate 

mechanisms governing neurogenesis.  

 

Previous studies in the developing mammalian brain had suggested that radial glia serve as 

scaffolding for building the brain (Rakic, 1988) and they were committed progenitors of 

astrocytes which give them their name glia. Beginning of 2000 it has been understood that 

radial glia were progenitors for neurons in the developing mammalian brain (Malatesta et al., 

2000; Noctor et al., 2001; Miyata et al., 2001; Malatesta et al., 2003). Radial glia arise during 

early brain development and share an important structural property with the earlier 

neuroepithelial cells: contact with both the ventricular and pial surfaces. Radial glia have their 

soma in the VZ, and possess a long process that extends towards the pial surface (Gadisseux 

et al., 1989; Bentivoglio and Mazzarello , 1999; Cameron and Rakic, 1991).  

 

Radial glia in cold-blooded vertebrates persist into adult life (Horstmann et al., 1954; Stensaas 

et al., 1968; Stevenson and Yoon, 1982; Connors et al., 1987; Adolf et al., 2006). In 

amphibians and fish, there is no ependyma in adulthood and radial glia cells line the ventricle 

throughout adulthood (Adolf et al., 2006; Echeverri and Tanaka et al., 2002; Grandel et al., 

2006; Stevenson and Yoon, 1981). Also in song birds radial glia persist in the adulthood 

(Alvarez-Buylla et al., 1987) and have been shown extending a single short cilium into 

ventricle (Alvarez-Buylla et al., 1998) like neuroepithelial cells (Cohen et al., 1987). And 
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finally in all those animals (fish, amphibian, birds, also reptiles) radial glia found to be in 

adult neurogenic areas and have been identified as progenitors for adult neurogenesis 

(Alvarez-Buylla et al., 1990; Echeverri and Tanaka et al., 2002; Garcia-Verdugo et al., 2002; 

Adolf et al., 2006; Grandel et al., 2006).  

 

In contrast to lower vertebrates, radial glia do not exist in adult mammals. Radial glia 

disappear soon after birth. Within the first two postnatal weeks, radial cells of the lateral wall 

transform into astrocytes. It has been shown that radial glia in the striatum give rise to SEZ 

astrocytes (type B cells, see above) (Merkle et al., 2004). The transformation of radial glia in 

the lateral ventricular wall is similar to that previously described for cortical radial glia 

(Schmechel and Rakic, 1979; Voigt, 1989). This morphological change is accompanied by 

changes in the expression of molecular markers. This morphological and molecular 

transformation is not, however, associated with terminal differentiation for a subpopulation of 

adult astrocytes in SEZ (see below). Some of the properties of embryonic germinal cells are 

retained. Several lines of evidence indicate that SEZ astrocytes function as the primary 

neuronal precursors in vivo. Following infusion of the antimitotic drug cytosine-D-

arabinofuranoside (Ara-C) into the adult mouse brain for 6 days, neuroblasts (A cells) and 

rapidly dividing transit-amplifying progenitors (type C cells) are eliminated. This treatment 

spares some SEZ astrocytes and the non dividing ependymal cells (Doetsch et al., 1999a). 

Twelve hours after Ara-C removal, SEZ astrocytes begin dividing. Dividing SEZ astrocytes 

give rise to type C cells, which in turn generate neuroblasts (Doetsch et al., 1999b) (Figure 

2). Within 10 days, the entire SEZ regenerates. GFAP-expressing astrocytes can be 

specifically labeled in transgenic mice carrying the receptor for an avian retrovirus (Holland 

et al., 1998). SEZ astrocytes labeled with this method generate neurons that migrate to the 

olfactory bulb, indicating that under non-regenerating conditions SEZ astrocytes are also the 

primary precursors of the new neurons (Doetsch et al., 1999b). As indicated above, a 

subpopulation of SEZ cells in the adult rodent brain can respond to EGF to generate neural 

stem cells in vitro. Cells derived from vitally labeled SEZ astrocytes respond to EGF 

signaling both in vivo (Doetsch et al., 2002) and in vitro. These cells can undergo self-

renewal and can generate both neurons and glia (Doetsch et al., 1999b). These findings 

prooved that SEZ astrocytes (B cells) correspond to the stem cells in the adult SEZ. 

Interestingly, some of these astrocytes have access to the ventricle (Doetsch et al., 1999b; 
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Conover et al., 2000) like neurogenic radial glia in lower vertebrates and also have primary 

cilia like neuroepithelial cells. Although astrocytes from other brain regions seem to have 

plasticity in early postnatal days (Laywell et al., 2000; Berninger et al., 2007) they no longer 

can do so at later stages.  

Just before astrocytes were proposed to be neural stem cells, multiciliated ependymal cells 

had been suggested to function as neural stem cells for the SEZ in vivo and in vitro 

(Johansson et al., 1999). Several studies did not support this interpretation (Chiasson et al., 

1999; Doetsch et al., 1999a; Doetsch et al., 1999b; Capela and Temple, ). Ependymal cells do 

not incorporate mitotic markers at any of the survivals studied after Ara-C treatment (Doetsch 

et al., 1999a).  

 

Beside the main roles of astrocytes such as interacting closely with blood vessels and neurons 

and bridging compartments between blood and brain tissue, supporting neurons physically 

and metabolically, some of them also acts as stem cells in adult mammalian nervous system. 

 

 

3.3  Neural stem cells (NSCs) as promising cellular source for the treatment 

of diseases in nervous systems 
While the functional roles of adult neurogenesis is not well proved, studies provided 

convincing evidence that newly generated neurons are able to integrate into the existing 

neuronal circuits in the adult CNS (van Praag et al., 2002; Carleton et al., 2003; Ninkovic et 

al., 2007). 

 

However, this capacity of generating new neurons in the adult brain is very limited as most 

neurons in the adult brain are not renewed not even after brain injury. In this regard, discovery 

of on going neurogenesis in adulthood was very important even though the capacity of 

neurogenesis is considerably limited. This was an encouraging finding which prompted 

researchers to examine neurogenesis in degenerative diseases and following cerebral injury.  

Until now, the major approaches for inducing regeneration in the damaged CNS can be 

classified into two subgroups:  
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(1) replacement of neurons  

(2) support of existing neurons, to prevent excessive degeneration and promote rewiring and 

plasticity. 

The first approach includes 2 main strategies:  

(1) activation of endogenous neural stem cells and  

(2) cell transplantation therapies. 

 

Stem cells have two defining properties : they can self-renew to produce more stem cells and 

they can differentiate to generate all cell types of a given tissue. 

  

Discovery of such cells, the so-called neural stem cells (NCSs), in adult and the fast progress 

in isolation of adult stem cells with neural capacities have renewed researchers’ hope to repair 

the diseased CNS with adult stem cell-based neuronal replacement therapy. Neural stem cells 

can self-renew and give rise to new neurons, astrocytes, and oligodendrocytes. This was first 

shown from the subependymal zone (SEZ) (one of the adult neurogenic niche mentioned 

above) (Reynolds and Weiss, 1992; Richards et al., 1992) and then in the dentate gyrus (the 

second adult neurogenic niche mentioned above) of the hippocampus (Gage et al., 1995; 

Palmer et al., 1997), and in most structures of the brain examined (Palmer et al., 1995; Palmer 

et al., 1999; Shihabuddin et al., 2000; Kondo and Raff, 2000). 

 

Because extensive amplification may be required to generate enough cells for transplantation, 

neural stem cells have to pass various procedures in vitro and are exposed extrinsic factors 

mainly mitogens. The standard method of isolating neural stem cells in vitro is to dissect out a 

region of the fetal or adult brain that has been demonstrated to contain dividing cells in vivo, 

for example, the subependymal (SEZ) or the hippocampus in the adult or a larger variety of 

structures in the developing brain. Usually, the tissue is disaggregated and then the 

dissociated cells are exposed to a high concentration of mitogens such as fibroblast growth 

factor–2 (FGF-2) or epidermal growth factor (EGF) in either a defined or supplemented 

medium on a matrix as a substrate for binding. After some proliferation, the cells are either 

induced to differentiate by withdrawing the mitogens or by exposing the cells to another 

factor that induces some of the cells to develop into different lineages. Cellular fates are 

analyzed by staining with antibodies directed against antigens specific for astrocytes, 
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oligodendrocytes, and neurons. After characterizing in vitro , investigators have grafted cells 

expanded with mitogenic growth factors and/or genetically marked cells back to the brain.  

 

However numerous attempts to transplant multipotent NSCs directly into the non-neurogenic 

regions of the adult CNS (such as intact cerebellum or intact striatum) failed to generate 

neurons but rather generated glial cells (Gage et al., 1995; Suhonen et al., 1996; Shihabuddin 

et al., 2000).  

 

This failure may be caused by several problems. In vitro propagation of stem cells with 

mitogenic factors may alter their intrinsic properties. Supporting this idea, transplantion of 

neuronal restricted progenitors did generate neurons (Han et al., 2002) suggesting that 

neuronal fate specification is a limiting step. However another work contradicting to this 

finding shows that even neuronal restricted progenitors can not generate neurons outside of 

neurogenic niches in the adult nervous system (Seidenfaden et al., 2000). Moreover, 

interpretation of some of the transplantation experiments are further complicated by the 

potential fusion events that have occurred between the transplanted cells and the host cells 

(Temple 2001; Raff, 2001). And finally, on top of this, using of embryonic and fetal tissue to 

develop stem cells raised ethic issues.  

 

The technical and ethical difficulties associated with the cell therapy approaches promoted a 

search for alternatives. It had been shown that stem cells obtained from the adult 

hippocampus can be expanded in vitro and implanted back into the hippocampus, where they 

generate new neurons and glia, similar to the cells they generate normally in the adult dentate 

gyrus (Gage et al., 1995; Suhonen et al., 1996; Shihabuddin et al., 2000). Furthermore, these 

same cells can generate olfactory bulb neurons when implanted in the rostral migratory 

stream (RMS), expressing neurotransmitter phenotypes, such as tyrosine hydroxylase, which 

the cells do not make in the hippocampus but which are normally generated in the olfactory 

bulb (Gage et al., 1995; Suhonen et al., 1996; Shihabuddin et al., 2000).  

Considering the incapability of the same stem cells isolated from adult neurogenic areas for 

generating neurons in non-neruogenic environment (see above), this finding indicates that 

adult CNS environment limits the neurogenic potentials of neural stem cells. Indeed, this is 
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consistent with the presence of endogenous progenitor cells in intact and injured CNS which 

can not generate neurons in their local environment ((Buffo et al., 2005; Horner et al., 2002).  

Damage to the central nervous system results in glial reaction and eventually formation of a 

glial scar (Pekny and Nilsson, 2005). Glial cells including astrocytes, NG2-expressing glial 

progenitors as well as microglia are involved in this process (Alonso, 2005; Magnus et al., 

2007; Sofroniew, 2005). Although these cells become highly proliferative after acute stab 

wound lesion in mouse cerebral cortex they are restricted to a glial fate and fail to generate 

neurons (Alonso, 2005; Buffo et al., 2005).  However, after transplantation into neurogenic 

niches, these cells can generate neurons indicating that environmental cues play critical role 

for instructing and/or allowing the progenitors to acquire a neurogenic fate. 

 

Besides emphasizing how crucial it is to identify essential factors for survival, maturation, 

and full integration of the grafted cells, these findings raise an important question : is it 

possible that with accurate techniques or appropriate behavioral and environmental 

stimulation, neurogenesis can be revealed or induced in areas previously considered non-

neurogenic, or will they give insight into mechanisms limiting neurogenesis in different 

regions? The key question therefore is whether it will be possible to convert the fate of 

progenitors in the adult brain parenchyma by defining the regulators of endogenous 

neurogenesis. This would mean a self-repair therapy instead of using external sources for cell 

replacement after injury.  

 

Following this line several studies started to investigate restrictive signalling molecules in the 

damaged brain as well as the signaling cascades mediating fate choices in the adult 

neurogenic niches. To shed more light into this we focused on SEZ and tried to understand 

mechanisms of cell fate specification as until now very little is known about instructive 

signals governing neurogenesis in the adult SEZ particularly.  

 
 

3.4  Regulators of adult neurogenesis in SEZ 

Studies in a variety of models have revealed genetic, environmental and pharmacological 

factors that regulate adult neurogenesis in regard to different aspects such as proliferation, 
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self-renewal and migration. It is clear that stem cells are in a microenvironment, the so-called 

niche, which allows them to maintain their neurogenic behaviour. Adult SEZ retains many 

developmental characteristics maintaining the expression of specific extracellular matrix 

components and growth factors (Gates et al., 1995; Ninkovic and Gotz, 2007).  

 

Factors that determine where the cells reside also likely determine their survival. In 1999 

Goldman laboratory suggested that migrating neuroblasts localize to angiogenic vessels 

within brain parenchyma (Leventhal et al., 1999). Explants of adult rat SEZ raised on 

endothelial cells generated more neurons which survived longer than the explants raised on 

astrocytes, fibroblasts or laminin. They showed that endothelial neurotrophism was based on 

endothelial secretion of BDNF. Previously BDNF had been shown to increase newly 

generated neuron number in the adult SEZ by intraventricular administration. Shortly after the 

work of Leventhal, the Gage laboratory described a ‘vascular niche’ in the adult dendate 

gyrus (Palmer et al., 2000). According to their observation, dividing cells are found in dense 

clusters associated with the vasculature and roughly 37% of all dividing cells are 

immunoreactive for endothelial markers. Most of the newborn endothelial cells disappear 

over several weeks, suggesting that neurogenesis is intimately associated with a process of 

active vascular recruitment and following remodelling. Newly formed endothelial cells, 

resulting from angiogenic and vasculogenic processes, produce an array of neurotrophic 

factors, among which are BDNF, vascular endothelial growth factor (VEGF), and bFGF. 

These factors, in addition to being angiogenic, have strong chemotactic effects on stem-like 

cells and promote the survival and viability of these cells. Additionally, Shen and colleagues 

in 2004 demonstrated the effects of endothelial cells on both embryonic and adult neural stem 

cells. In the presence of endothelial cells, a neural stem cell undergoes symmetric, 

proliferative divisions to produce undifferentiated stem cell sheets that maintain their 

multipotency and, upon endothelial cell removal, generate neurons as well as astrocytes and 

oligodendrocytes (Shen et al., 2004). In 2006 Ramirez-Castillejo and colleagues revealed that 

a growth factor called Pigment epithelium derived growth factor (PEDF) is released by 

ependymal and vascular cells in the adult SEZ. They demonstrated that this factor stimulates 

self-renewal of type B cells, namely stem cells in vitro and in vivo as well as induces a 

molecular state of undifferentiation (Ramirez-Castillejo et al., 2006). This undifferentiated 

state is result of increased expression of Notch effectors (Hes1, Hes5) and transcription factor 
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Sox2 (Ramirez-Castillejo et al., 2006) all of which inhibit the actions of proneural bHLH 

factors (Ohtsuka et al., 2001; Bertrand et al., 2002; Hitoshi et al., 2002; Bylund et al., 2003; 

Ferri et al., 2004; Parras et al., 2004). Another factor suggested as controlling self-renewal of 

adult neural stem cells is Sonic Hedgehog (Shh). Palma and colleagues observed mitogenic 

effect of Shh in SEZ by blocking it with a specific drug (Palma et al., 2005). They also 

observed that inhibition of Shh decreases the number of neurosphere forming cells and vice 

versa indicating the effect of Shh on self-renewal. Consistent with this data recent work 

analyzing conditional Smoothened mutant found similar results. Smoothened (Smo) is a 

transmembrane protein that mediates Shh signalling. Deletion of Smo showed that Hedgehog 

is required for the maintenance of type B and C cell populations (Balordi and Fishell, 2007). 

A carbohydrate-binding protein Galectin is also suggested to act as self-renewing factor for 

adult neural stem cells (Sakaguchi et al., 2005). Galectin 1 increases the number of 

neurospheres in vitro and the number of slow dividing cells in vivo.  

 

Besides self-renewal, proliferation of adult neural stem cells has been also extensively 

studied. As mentioned above, stem cells from the adult SEZ proliferate and make aggregates 

in the presence of epidermal growth factor (EGF) (Reynolds and Weiss, 1992) or fibroblast 

growth factor 2 (FGF2) (Richards et al., 1992; Gritti et al., 1996; Johe et al., 1996). The 

possibility that growth factors also may influence neural progenitors in vivo has been 

supported by findings that intracerebroventricular administration of EGF expanded 

proliferative progenitors in the SEZ of adult mice (Craig et al., 1996). This was consistent 

with the detection of EGF receptor in vivo in adult SEZ (Morshead et al., 1994; Seroogy et 

al., 1995; Weickert et al., 2000). FGF2 also increased proliferation of SEZ progenitors (Kuhn 

et al., 1997) when infused into lateral ventricle. This prompted the question whether more 

than one stem-like cell type may be present in the adult SEZ. (Stemple and Mahanthappa, 

1997). Vescovi laboratory showed that both EGF and FGF2-responsive stem cells derive from 

a single precursor cell type that responds to both growth factors. Additionally, EGF and FGF2 

are able to substitute for each other in maintaining and expanding the SEZ stem cell 

population, although EGF seems to be more effective (Gritti et al., 1999). However the 

analysis did not explore true identity of cells responding to these factors. Contrary to the 

commonly accepted hypothesis that EGF-responsive cells derive from a quiescent or slow 

dividing population, it has been shown that the majority of EGF-responsive cells in the adult 

 18



SEZ zone correspond to fast dividing transit amplifying progenitors (Doetsch et al., 2002). 

According to this study, transit amplifying cells retain stem cell characteristics when induced 

to continually proliferation by addition of exogenous growth factors.  

 

Notch signalling also seems to be important for adult neurogenesis. The presence of Notch1 

mRNA had been shown first in postnatal SEZ (Higuchi et al., 1995; Irvin et al., 2001). 

Notch1 mRNA has been shown to be expressed only by neuroblasts in SEZ, Rostral 

migratory stream and Olfactory bulb whereas its ligand Jagged1 is expressed by astrocytes in 

the same regions (Givogri et al., 2006). Immunohistochemistry for these antigens revealed the 

same pattern in postnatal SEZ (Nyfeler et al., 2005). Compound reductions in Jagged1 and 

Notch1 results in reduced proliferation in SEZ (Nyfeler et al., 2005). Jagged1 is also found in 

a subset of GFAP-positive cells within neurospheres and ablation of Jagged1 blocks neural 

stem cell self-renewal in vitro (Nyfeler et al., 2005). It has been shown that Jagged1 functions 

through Notch1 to maintain stem cell self-renewal and this pathway does not have a role in 

differentiation. As Sonic hedgehog was also proposed to be required for neural stem cell self-

renewal in the adult SEZ, this raised the question whether these two pathways are in the same 

chain or act synergistically. Recent work provided evidence for Notch signalling as the 

inducer of Shh protein in fetal neural stem cells (Androutsellis-Theotokis et al., 2006). This 

work revealed that Notch signalling regulates stem cell number in vitro and in vivo by mainly 

keeping stem cells undifferentiated. Also Platelet-Derived Growth Factor Receptor 

(PDGFR)α was shown to be expressed in a subset of astrocytes and this population was 

referred to be the true stem cells as they respond to PDGF by increased proliferation and 

undifferentiated state (Jackson et al., 2006). However, gain and loss of function experiments 

revealed no function of this receptor in regard to neurogenesis but rather oligodendrogenesis 

without altering neurogenesis (Jackson et al., 2006). 

  

Thus many factors have been identified that either regulate proliferation or self-renewal of 

stem cells or their immediate progeny. However, still very little is known about the factors or 

mechanisms promoting differentiation of neural stem cells into neurons in these unique niches 

particularly in SEZ. In the subgranular zone (SGZ) of dentate gyrus (DG) Wnt signalling is 

suggusted to promote neurogenesis (Lie et al., 2005). And recently the p75 neurotrophin 

receptor has been shown to be expressed by stem cells and ablation of this receptor leads to 
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reduction in neurogenesis (Young et al., 2007). Brain derived growth factor (BDNF) seems to 

be responsible for this function. However, in vivo data for these conclusions were missing as 

most of the data provided was done in vitro. Beside this work, still little is known about 

extrinsic factors promoting neurogenesis in the adult SEZ.  

 

However more is known about intrinsic fate determinants of adult neurogenesis. First, the 

proneural transcription factor Mash1 was found to be expressed in transit-amplifying 

precursors and neuroblasts (Parras et al., 2004). Analysis of the Mash1 mutant phenotype 

revealed reduction in both neurogenesis and oligodendrogenesis at the expense of 

astrogliogenesis in the postnatal SEZ. Transcription factor Pax6 was identified as necessary  

and sufficient for neurogenesis in the adult SEZ by our laboratory (Hack et al., 2005). 

Conversely, Olig2 promotes oligodendrogenesis and rather blocks neurogenesis in the SEZ 

(Hack et al., 2005). In contrast to the expression pattern of Mash1 and Pax6, Olig2 is not 

expressed by neuroblasts but only by transit-amplifying precursors. High levels of Olig2 in 

these cells are able to convert neurogenesis to oligodendrogliogenesis in the adult SEZ.  

 

As these transcription factors are expressed in neuroblasts and the transit-amplifying 

precursors, the obvious question is how their up-regulation in the neurogenic lineage is 

regulated and conversely how Olig2 up-regulation in the oligodendrogliogenic lineage is 

regulated. Indeed whereas non-neurogenic transcription factors are up-regulated upon stab 

wound injury, neurogenic factors are not (Buffo et al., 2005). Moreover overexpression of 

neurogenic transcription factors such as Pax6 and Ngn2 or supression of non-neurogenic 

transcription factor Olig2 after injury allows a certain degree of neurogenesis. Therefore to 

understand the signals allowing neurogenesis within this unique neurogenic niche may help to 

replacement such a positive environment also in the remaining brain parenchyma. 

 

Previous analysis suggested that the bone morphogenic protein (BMP) signalling would 

inhibit neurogenesis and secretion of Noggin which is a specific inhibitor of BMP from the 

ependymal cells was crucial to allow neurogenesis in the adult SEZ (Lim et al., 2000). 

However, overexpression of BMP receptor1a in the postnatal SEZ did not affect neurogenesis 

(Coskun et al., 2001). Thus, the exact role of this versatile signalling pathway exerting 

multiple diverse roles in the developing nervous system (see below) has yet to be resolved in 
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relation to adult neurogenesis both in a neurogenic and non neurogenic context. As BMPs can 

also act neurogenic during development (see below), I focused here on the analysis of BMP 

signalling in the adult SEZ.  

 

 

3.5  TGFβ superfamily and BMP signalling 

BMPs are small cytokines of TGFβ superfamily. TGFβ superfamily cytokines are dimeric 

proteins with conserved structures, and have pleiotropic functions in vitro and in vivo 

(Kawabata et al 1998). This superfamily includes nearly 30 proteins in mammals. Beside 

bone morphogenetic proteins (BMPs) also TGFβs, activins and inhibins, nodal, myostatin, 

growth/differentiation factors (GDFs), and anti-Müllerian hormone (AMH, also called 

Müllerian inhibiting substance or MIS) (see Figure 3 for phylogenetic tree of TGFβ 

superfamily) belong to this superfamily. TGFβs/BMP-like proteins are found in various 

species, including Xenopus, Caenorhabditis elegans and Drosophila melanogaster. 

 

 

 3.5.1   Receptors and intracellular cascade of TGFβ superfamily 

Although the biological effects of the cytokines of this superfamily appear to be complicated, 

two major pathways involving Smad proteins are activated by members of the TGFβ 

superfamily (Miyazono et al., 2001). Accordingly, the TGFβ superfamily cytokines can be 

classified into two subfamilies depending on the Smad signalling pathways they activate 

(Figure 4 and Figure 5). Members of TGFβ superfamily bind to two distinct receptor types, 

known as type II and type I receptors (Wrana et al., 1994; Heldin et al., 1997). Both type II 

and type I receptors are required for signal transduction (Figure 4 and Figure 5). Both type II 

and type I receptors contain serine/threonine kinase domains in their intracellular portions. 

The type II receptor kinases are constitutively active; upon ligand binding, hetero-tetrameric 

complexes composed of two molecules each of type II and type I receptors are formed (Kirsch 

et al., 2000; Qin et al., 2002). In the tetrameric receptor complexes, type II receptor kinases 

transphosphorylate the GS domain of type I receptors, which are located between the 

transmembrane domain and the kinase domain of type I receptors. Following phosphorylation 

of the GS domain, type I receptor kinases are activated and phosphorylate intracellular 
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substrates. Thus, type I receptors act as downstream components of type II receptors in the 

signalling pathways, and determine the specificity of the intracellular signals induced by the 

TGFβ superfamily cytokines. Five type II receptors and seven type I receptors are present in 

mammals (Figure 5). Among those Activin receptor-like kinase 2 (Alk2), BMPRI-A (Alk3) 

and BMPRI-B (Alk6) as type I receptors; Activin receptor II (ActRII) and Activin receptor 

IIB (ActRIIB) are activated upon BMP ligand binding (Figure 5).  

 

 

 3.5.2  Signalling by three types of Smad proteins 

Smad proteins are the major signalling molecules acting downstream of the serine/threonine 

kinase receptors (Heldin et al., 1997; Moustakas et al., 2001). Smads are classified into three 

subclasses, i.e. receptor-regulated Smads (R-Smads), common-partner Smads (Co-Smads), 

and inhibitory Smads (I-Smads). R-Smads are further divided into two subclasses; Smad2 and 

Smad3 (referred to as activin/TGF-b activated R-Smads) and Smad1, Smad5 and Smad8 

(referred to as BMP activated R-Smads; BR-Smads) (Figure 5). In contrast to several R-

Smads Smad4 serves as the only Co-Smad in mammals. Smad6 and Smad7 function as I-

Smads. It is proposed that Smad6 is more specific for the inhibition of BMP signalling 

whereas Smad7 serves as the inhibitor of TGFβ (Hanyu et al., 2001).  

Smads are composed of the N-terminal Mad homology (MH1) domain, followed by linker 

regions and the C terminal MH2 domains. MH2 domains are conserved in all three subclasses 

of Smads, whereas MH1 domains are conserved in R-Smads and Co-Smads, but not in I-

Smads. The amino acid sequences of linker regions diverge between Smads. In addition, R-

Smads have Ser-Ser-X-Ser motifs in their most C-terminal parts, which are phosphorylated by 

type I receptors. R-Smads are directly phosphorylated and activated by type I receptor 

kinases. Without receptor activation, the MH1 and MH2 domains are physically associated 

with each other, and R-Smads are anchored as dimers to the plasma membrane through 

SARA and other molecules (Qin et al. 2002). Following the receptor activation and 

phosphorylation of R-Smads, the interaction between the MH1 and MH2 domains is 

disrupted, and R-Smads form hetero-oligomers with the Co-Smad through their MH2 

domains. Although the exact structures of the Smad oligomers have not been fully 

determined, and hetero-trimer and hetero-dimer models have been suggested (Kawabata et al., 
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1998; Qin et al., 2001; Wu et al. 2001), Qin et al., (2001) proposed that the R-Smad-Co-Smad 

complexes are hetero-trimers, containing two R-Smad molecules and one Co-Smad molecule. 

The R-Smad-Co-Smad complexes translocate into the nucleus and regulate the transcription 

of target genes. In the nucleus, R-Smads and Co-Smad interact with various DNA-binding 

proteins, which bind to promoter regions of target genes together with the Smads. In addition, 

R-Smads and Co-Smad bind to transcriptional co-activators and co-repressors, which induce 

the acetylation and de-acetylation of histones, respectively, and play important roles in 

transcriptional regulation (Miyazono et al. 2000). 

I-Smads associate with activated type I receptors and prevent the activation of R-Smads by 

the receptors. In addition, Smad6 interacts with activated R-Smads and interferes with the 

formation of a complex with Smad4.  

 

 

3.5.3  Versatile roles of BMP signalling in nervous system 
The activity of BMPs was first identified in the 1960s (Urist et al., 1965) but proteins 

responsible for bone induction were unknown until the purification and sequence of bovine 

BMP-3 and cloning of human BMP-2 and 4 at the end of 1980s (Wozney et al., 1988; Luyten 

et al., 1989). At the end, 20 family members have been identified and characterized. Although 

BMPs are secreted from cells, their biological actions are likely to be quite local. For 

example, BMPs bind to extracellular matrix proteins, which may both limit their diffusion 

through tissues and function to present the ligands to specific cells in a more biologically 

active form. The localization of BMP signaling is further refined by the actions of 

endogenous extracellular inhibitors such as Noggin (Zimmerman et al., 1996) or Chordin 

(Piccolo et al., 1996) that block BMP functions and limit their availability.  

 

BMP genes were found to be expressed in many embryonic organs and tissues, including 

those in which reciprocal interactions between epithelial and mesenchymal cells are important 

for morphogenesis and differentiation (e.g. in forming kidney, lung, tooth, skin and hair). 

These expression patterns have implicated multiple roles for BMPs at different stages of 

development. Following studies showed that BMPs are not only involved in bone formation 

but, like other members of the TGF-β superfamily, are multifunctional proteins with many 
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effects not related to the formation of bone (Cunningham et al., 1992; Yamashita et al., 1995). 

Knockout phenotypes for some of the BMP ligands and components of the Smad pathway are 

summarized with references in Table 1 and 2, respectively. BMPs were found to have 

important roles in directing cell fate choices of mesenchymal cells in vitro. They stimulate 

osteoblast differentiation and inhibit the differentiation of mesenchymal cells into the 

myoblast lineage (Vukicevic et al., 1989; Katagiri et al., 1994; Yamaguchi et al., 1991). 

However the function of BMP signaling is not restricted to development. BMPs have been 

implicated in maintenance of various organs as well as in other aspects in adulthood.  

 

3.5.3.1   BMPs in early neural development 
BMPs are also crucial regulators of nervous system development. BMPs act at different stages 

of neural development and in different regions of the central nervous system to regulate cell 

fate, proliferation and differentiation. The development of the CNS begins with the 

specialization of the ectoderm into either non-neural or neural ectoderm, a transformation that 

is actively directed by the presence or absence of BMP signalling, respectively (for Xenopus: 

Smith and Harland, 1992; Smith et al., 1993). While noggin and chordin are normally 

expressed on the dorsal side of the embryo, BMPs are found on the ventral side. In Xenopus, 

BMPs allow the formation of ectoderm whereas noggin and chordin induce a neural fate, a 

process that is inhibited by BMPs (Lamb, 1993; Wilson and Hemmati-Brivanlou, 1995; Sasai 

et al., 1995). Overexpressing mutant forms of BMP4 or BMP7, which block the normal 

function of BMPs in Xenopus, also leads to neural induction (Hawley, 1995). In contrast, 

knockdown of BMP antagonist function results in loss of neural tissue, particularly head 

structures (Smith et al., 1993; Oelgeschlager et al., 2003; Kuroda et al., 2004; Khokha et al., 

2005).  

 

Genetic studies in zebrafish and mice also highlight the importance of BMP signalling in 

ventral tissue formation (blood and ventral body wall/gut) and the suppression of BMP 

signalling by endogenous antagonists in the formation of neural tissue. In zebrafish, mutations 

in the BMP2 and BMP7 genes or the Smad homologues all result in ventral defects, whereas 

mutation of chordin results in neural defects (Kishimoto et al., 1997; Hild et al., 1999; Dick, 

2000). Genetic studies in mice have also demonstrated the importance of BMP antagonism in 
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head formation. Although single knockouts of noggin and chordin do not produce a 

phenotype that is revealing in terms of the neural/ectodermal fate decision, mutations in both 

genes lead to the loss of anterior head structures (Bachiller et al., 2000). The results of these 

studies indicate that the suppression of BMP signalling on the dorsal side of the embryo is 

important to induce the ectoderm to form neural tissue although, as described in the 

discussion, other signalling pathways also contribute to this process.  

 

3.5.3.2   BMPs in the developing spinal cord 
Once the neural tissue is established, BMP signalling has positive influence on the regulation 

of dorsal neural cell type formation. BMPs are strongly expressed in the dorsal midline of the 

spinal cord, both during early development and at later stages that correlate with periods of 

oligodendrocyte precursor differentiation (Miller et al., 2004). BMP signalling acts in 

association with other developmental pathways such as WNTs and Sonic Hedgehog to 

coordinate cell proliferation and patterning, allowing the formation of the appropriate 

numbers and types of differentiated neurons. BMPs act as a gradient morphogen, inducing 

more dorsal fates at higher concentrations and intermediate fates at lower concentrations 

(Hogan, 1996; Nguyen et al., 2000). In contrast, the ventrally secreted morphogen Shh 

derived from notochord and floor plate (Echelard et al., 1993; Roelink et al., 1995; Ericson et 

al., 1997) acts to induce ventrally located cells in a concentration-dependent manner. In chick 

neural explant cultures, the addition of BMP induces dorsal cell types (Liem et al., 1997). In 

vivo experiments using in ovo electroporation of an activated BMP receptor (BMPR1A or 

BMPR1B) into chick embryonic spinal cord showed that BMP signalling is sufficient to 

transform more ventrally located cell types to a more dorsal pattern of bHLH and dorsal 

interneuron gene expression (Timmer et al., 2002). Transgenic mouse embryos 

overexpressing activated BMPR1A or BMPR1B also showed expansion of dorsal cell types in 

the spinal cord, which provided further evidence that BMPs are important for dorsal spinal 

cord development (Panchision, 2001). 

 

The region of the ventral neural tube that gives rise to motor neurons afterwards generates 

oligodendrocytes, the myelinating cells of the CNS (Bunge, 1968). Effects of BMPs and Shh 

extend beyond motor neuron identity and contribute to the location of the founder cells of the 
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oligodendrocyte lineage. Spinal cord oligodendrocytes arise from cells in the motor neuron 

domain (Pringle and Richardson, 1993; Ono et al., 1995; Richardson et al., 1997; Miller, 

2002), and this localization is dependent on the local expression of Shh (Pringle et al., 1996; 

Orentas et al., 1999). Shh signaling in the ventral region induces Olig 1 and Olig 2, Shh-

dependent transcription factors that regulate in the development of oligodendrocytes (Lu et 

al., 2000, 2002; Zhou et al., 2001; Zhou and Anderson, 2002). Implantation of noggin 

secreting cells adjacent to the dorsal chick neural tube promoted the appearance of 

oligodendrocyte precursors in dorsal neural tube (Mekki-Dauriac et al., 2002), suggesting that 

endogenous dorsally expressed BMPs inhibit oligodendrogenesis. Conversely, elevated BMP 

expression inhibited the appearance of ventral oligodendrocyte precursors (Mekki-Dauriac et 

al., 2002). The inhibition of early oligodendrogenesis by BMPs is not restricted to chick 

spinal cord. Implantation of BMP-coated beads into developing Xenopus is sufficient to 

suppress ventral oligodendrogenesis, whereas implantation of either Shh-coated beads or anti-

BMP coated beads is sufficient to induce dorsal oligodendrocytes (Miller et al., 2004). A 

similar phenomenon was observed in slice cultures of rat spinal cord exposed to soluble 

ligands in vitro. In these studies, function-blocking antibody specific for BMP4 increased 

oligodendrocytes, consisting the hypothesis that BMP4 is the endogenous dorsally active 

factor. BMPs inhibit the development of several stages of oligodendrocyte differentiation, 

becoming a more effective inhibitor at later stages (Miller et al., 2004).  

 

As in the spinal cord, BMP signalling is also necessary for the development of the most dorsal 

structure of the forebrain whereas the development of the ventral forebrain is dependent on 

the inhibition of BMP signalling (Furuta et al., 1997; Anderson et al., 2002; Hebert et al., 

2002).  

 

BMPs also help to define the region from which a vertebrate-specific population of neural 

cells, the neural crest cells, will be generated (Nguyen, 1998; Nguyen, 2000). This 

multiprogenitor population arises at the border between the neuroectoderm and the non-neural 

ectoderm. It has been shown that combined actions of BMP and WNT are required for neural 

crest induction (LaBonne et al., 1998). BMPs also promote neural crest cell migration, 

mediate neural crest apoptosis in the hindbrain (Graham et al., 1994; Marazzi et al., 1997; 

Sela-Donenfeld and Kalcheim, 1999; Sela-Donenfeld and Kalcheim, 2000; Smith and 
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Graham, 2001). The neural crest gives rise to many diverse cell populations, including the 

peripheral nervous system (PNS) (Farlie et al., 2004). Furthermore, BMPs are essential and 

sufficient to induce the generation of sympathetic neurons from neural crest cells in vitro and 

in vivo (Varley et al., 1995; Reissmann et al., 1996; Shah et al., 1996; Shah and Anderson, 

1997; Schneider et al., 1999). BMPs induce in vitro expression of the proneural gene Mash1 

(Shah et al., 1996) and Phox2a (Reissmann et al., 1996), genes that are essential for 

sympathetic neuron generation. Schneider and colleagues demonstrated that inhibition of 

BMPs in the chick embryo by Noggin prevents sympathetic neuron generation. In Noggin-

treated embryos, the noradrenergic marker genes tyrosine hydroxylase (TH) and dopamine-

beta-hydroxylase (DBH), panneuronal neurofilament 160 (NF160) and panneuronal SCG10 

genes, and the transcriptional regulators Phox2b and Phox2a are not expressed in sympathetic 

ganglia while initial ganglion development is not affected. 

 

3.5.3.3  BMPs in the developing brain 
BMP ligands and receptors are present in the developing and adult brain (Gross et al., 1996; 

Soderstrom et al., 1996; Ebendal et al., 1998; Li et al., 1998; Zhang et al., 1998; Lim et al., 

2000; Peretto et al., 2002; Peretto et al., 2004), suggesting that BMP signalling is a key factor 

for cell fate determination in the brain as well. Indeed, BMPs are important regulators of 

cerebellar granule neuron fate determination (Alder et al., 1999). BMP treatment of ventral 

metencephalic explants taken from neurulation-stage mouse embryos results in the 

upregulation of expression of genes specific to granule neurons, such as Math1, zinc finger 

protein of the cerebellum 1 (Zic1), Zic2 and Wnt3a. In addition, ventral metencephalic cells, 

when transplanted to the adult cerebellum, failed to contribute to the granule cell population. 

However, BMP-treated ventral metencephalic cells contribute to granule cells after 

transplantation. BMP signalling is therefore sufficient to induce a dorsal cell fate in ventral 

cerebellar precursors. BMP signalling is involved in regulating granule cell differentiation 

during embryonic development and postnatal development (Angley et al., 2003; Rios et al., 

2004). 

BMP stimulation also increases neuronal differentiation in cortical cultures (Li et al., 1998). 

Li and collegues showed that in cultures of dissociated neocortical neuroepithelial cells 

(Embryonic day 12, E12), BMPs increase the number of MAP-2– and TUJ1- positive cells 
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(MAP-2 and TUJ1 are neuron specific antigens) within 24 hr of treatment. In explant cultures, 

BMP-4 treatment leads to an increase in the number of TUJ1- positive cells within the 

ventricular zone. Inhibition of BMP signalling in neocortical precursors blocks neurite 

elaboration and migration out of the VZ. Conversely, Noggin inhibits differentiation of 

neurons in dissociated cultures from embryonic day 12 cortex. Another group showed that 

BMPs promote cell death and inhibit the proliferation of early (embryonic day 13, E13) 

ventricular zone progenitor cells whereas at later embryonic (E16) stages of cerebral cortical 

development, BMPs exhibit a concentration-dependent dissociation of cellular actions, with 

either enhancement of neuronal and astroglial determination (at 1–10 ng/ml) or potential cell 

death (at 100ng/ml). Moreover, several groups also observed that BMPs promote apoptosis of 

neural cells (Graham et al., 1994; Glozak and Rogers,1996; Song et al., 1998), including the 

early telencephalic neuroectoderm (Furuta et al., 1997).  

Notably, different neural precursors react differently to BMP signalling. BMP treatment of 

EGF-responsive SVZ progenitor cells in vitro instructs cells to commit to the astroglial 

lineage (Gross et al., 1996) whereas treatment of FGF-responsive VZ progenitor cells with 

BMPs initiates neuronal differentiation or apoptosis depending on the concentration of the 

cytokine and other factors such as cell density (Mabie et al., 1999).  

 

Later in development, during periods of intense gliogenesis, BMP stimulation enhances 

astrogliogenesis and inhibits oligodendrogenesis from late embryonic subventricular zone 

precursors or neuroepithelial cells (Gross et al., 1996; Grinspan et al., 2000; Mehler et al., 

2000; Nakashima et al., 2001; Yanagisawa et al., 2001). Consistent with the hypothesis that 

the development of cortical astrocytes and oligodendrocytes is regulated by BMPs, altering 

the spatial and temporal expression of BMPs changes glial development in vivo. In the cortex 

of animals that overexpressed BMP4 driven by the neuron-specific endolase promoter, 

increased numbers of GFAP- or S-100β-positive (Glial fibrillary acidic protein(GFAP) and 

S100β are astrocyte markers) astrocytes and a smaller, but significant, reduction in the 

number of oligodendrocytes were observed (Gomes et al., 2003).  

 

The effects of BMP on the differentiation of neuroepithelial or stem cells in the brain seem to 

be more complex than in the spinal cord, with different BMP effects extremely adjusted to 

particular stages of neural precursors (Grinspan et al., 2000; Mehler et al., 2000). The exact 
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cellular responses may depend on both the nature of the target cells and the context in which 

the different signals are presented. Therefore, tissue-,cell-,stage-specific knockout of a 

specific BMP ligand, a subtype of BMP receptors or a specific signaling molecule is required 

to determine the specific role of a BMP ligand, receptor or signaling molecule in a particular 

tissue, in a particular cell type and stage. 

 

3.5.3.4  BMPs in the adult brain 
In the adult CNS, BMP receptor expression persists (Zhang et al., 1998) suggesting that 

neural cells retain the ability to respond to the ligands. BMP6 mRNA has been reported to be 

present in hippocampal neurons, cerebral cortex and cerebellar cortex neurons (Martinez et 

al., 2001). However this data should be confirmed as no evidence was provided for co-

localization of this ligand with neurons.  

BMP7 mRNA is present at low levels in adult spinal cord but is dramatically increased in 

glial cells and motor neurons after traumatic injury (Setoguchi et al., 2001) as well as after 

demyelinating lesion (Fuller et al., 2007). Also BMP receptor expression suggested to be up-

regulated on neurons of dentate gyrus after mechanical injury (Lewen et al.,1997) but still 

little is known about the expression pattern of BMP signalling components particularly in 

intact or injured cerebral cortex . 

 

Expression of BMP ligands or receptors in the adult SEZ have been also reported (Zhang et 

al., 1998; Lim et al., 2000; Peretto et al., 2002; see also in results) Previous analysis suggested 

that the bone morphogenic protein (BMP) signalling would inhibit neurogenesis and secretion 

of Noggin from the ependymal cells was crucial to allow neurogenesis in the adult SEZ (Lim 

et al., 2000). However, overexpression of BMP receptor1a in the postnatal SEZ did not affect 

neurogenesis (Coskun et al., 2001). Thus, the exact role of this versatile signalling pathway 

exerting multiple diverse roles in the developing nervous system has yet to be resolved in 

relation to adult neurogenesis. Indeed, it has recently been shown that the same signalling 

molecule, Sonic Hedgehog, may exert different effect on adult neural stem cells, TAPs or 

neuroblasts respectively  (Balardi and Fishell, 2007). 

Here I examined the activity and function of BMP-mediated signalling in the adult SEZ. I 

discovered that Smad mediated BMP signalling is active in stem cells and their immediate 
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progeny transit amplifying progenitors (TAPs=type C cells) by using two independent means 

(see in results). To study the role of BMP signalling in stem cells I disrupted the Smad 

pathway by genetic deletion of Smad4, the common mediator, in stem cells. To achieve this I 

used GLAST::CreERT2 mouse line containing the inducible  form  of  Cre  (CreERT2)  in  

the  GLAST, the astrocyte specific glutamate transporter, locus (Mori et al., 2006) and Smad4 

floxed line containing loxP sites flanking  exon  8 (Yang et al., 1998). GLAST::CreERT2 

mouse line allows efficient targeting of radial glial cells and astrocytes at different 

developmental stages and adulthood and thereby to address the function of specific genes in 

astroglial cells.  Following recombined cells by expression of a reporter gene in the adult SEZ 

showed that we can target neural stem cells by using this line (Ninkovic et al., 2007) (see also 

in the results). 

Genetic deletion of the key signalling mediator Smad4 in stem cells of adult SEZ by this way 

resulted in a diversion of the neurogenic lineage towards the generation of oligodendrocytes. 

Infusion of Noggin as well resulted in alteration in neurogenesis and increase in Olig2-

positive cells indicating BMP specificity of the phenotype.  

I could further demonstrate that this lineage switch is initiated in the stem cells while 

manipulations at later stages were ineffective. Thus, these results imply Smad4-mediated 

BMP-signalling as the earliest pro-neurogenic signal so far identified in the adult neural stem 

cell niche.  

I also analyzed expression of BMP ligands and other signalling components including BMP 

specific phoshorylated Smads in intact and injured adult cortex. I found that BMP signalling 

is active in neurons of cerebral cortex and is not increased after Stab Wound injury indicating 

that this signalling is one of the key difference between SEZ astrocytes the so called 

neurogenic astrocytes and cortical non neurogenic astrocytes. 

 

 

 

 

 

 30



4  ABBREVIATIONS 

aCSF Artificial cerebrospinal fluid 

ActRII Activin receptor 2 

Alk Activin receptor like kinase 

APC Adenomatous polyposis coli 

Ara-C ß-D-arabinofuranisode 

Bambi BMP and Activin membrane bound inhibitor 

BMP Bone morphogenetic protein 

BMPRII Bone morphogenetic protein receptor 2 

BRE Bone morphogenetic protein responsive element 

CNPase 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase 

Ctx Cortex 

Dapi 4’-6-Diamidino-2-phenylindole 

DCX Doublecortin 

DG Dentate gyrus 

Dlx2 Distal less homeobox 2 

DW Dorsal Wall 

DNAse Deoxyribonuclease 

dNTP Deoxynucleotides 

EGF Epidermal growth factor 
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eGFP Enhanced green fluorescent protein  

ERT2 Estrogen receptor  

fl floxed 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

GFAP Glial fibrillary acidic protein 

GLAST Glutamate astrocyte-specific transporter 

HPRT Hypoxanthine guanine phosphhoribosyl 
transferase 

IRES Internal ribosome entry site 

ip Intraperitoneal 

LI Labelling index 

LTR Long terminal repeat 

LV Lateral ventricle 

LW Lateral wall 

MW Medial wall 

n Sample number 

NGS Normal goat serum 

OB Olfactory bulb 

Olig2 Oligodendrocyte transcription factor 2 

PBS Phosphate buffered saline 

PGC Primordial germ cells 

PCR Polymerase chain reaction 

PDL Poly-D-lysine 
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 PDGF Platelet derived growth factor 

PDGFRα Platelet derived growth factor receptor alpha 

PFA Paraformaldehyde 

 
PSANCAM 
 

Polysialylated neural cell adhesion molecule 

pSmad Phoshorylated Smads 

RMS Rostral migratory stream 

RNAse Ribonuclease 

 

 

 

 

 

 

 

 

 

 
RT Room temperature 

RT-PCR Realtime-polymerase chain reaction 

R-Smads Receptor regulated Smads 

SARA Smad anchor for receptor activation 

SEM Standart error of mean 

SGZ Subgranular zone 

Str Striatum 

TAP Transit amplifying progenitor 

TGFβ Transforming growth factor beta 

TGFβR  Transforming growth factor beta receptor 

TSA Tyramid signal amplification 

Wt Wild type 
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5  Materials  and  Methods 
 

5.1  Animals 

5.1.1  Strains   

In  all  experiments  9-  to  10-  week-old  animals  were  used.  The Smad4  floxed mouse  

line  (Yang et al., 1998)  was  received  on  a  129/FVB  and  Black  Swiss  background  and  

back crossed  to  C57/Bl6/J.  GLAST::CreERT2  mice (Mori et al., 2006),  BRE-EGFP  mice  

(Monteiro et al., 2004),  Rosa26 reporter mice  (Soriano, 1999)  and  the Tgfbr2  floxed mice  

(Leveen et al., 2002)  were  maintained  on  C57Bl6/J  background. The Smad4 floxed mouse 

line contains loxP sites flanking  exon  8 (Yang et al., 1998). The GLAST::CreERT2  mouse  

line contains the inducible  form  of  Cre  (CreERT2)  in  the  GLAST, the astrocyte specific 

glutamate transporter, locus. The fusion of Cre to the ligand binding domain of the modified 

estrogen receptor (ERT2) is restricted to the cytoplasm  and  translocates only upon  

tamoxifen  binding into the nucleus  where it  can  then  mediate  the  recombination. Tgfbr2 

floxed mice contain loxP sites flanking  exon 2 of the Tgfbr2. The Rosa26  reporter mice 

carry a triple  polyadenylation  sequence  at  the 3´ end  of  the  neocasette  in  order  to  

prevent  transcriptional  readthrough  which  is  in  this  case  LacZ.  The neocasette  is  

flanked  by  loxP  sites  and  transcription  only  occurs  when  Cre  recombinase  excises.  

BRE-eGFP  mice carry a  Smad1/5-response  element  derived  from  Id1  promoter  coupled  

to enhanced-Green  Fluorescent  Protein  (eGFP). While  mice  positive  for  BRE-EGFP  

were  identified  by  visualization  of  GFP  at  the  fluorescent  stereo  microscope   the  

others  have  been  genotyped  for  identification.   

 

5.1.2  Genotyping 

For  maintenance  of  the  colonies  and  to  identify  control  or  mutant,  mice  were  

genotyped  by  PCR on  tail  DNA.  DNA  was  obtained  following  the  protocol  from  Laird  

et al., (Laird et al., 1991) :  Tail  biopsies  of  less  than  5mm  length  were  transferred  in  

0.5ml  lysis  buffer  and incubated rotating for several hours or overnight at 55ºC in a 

modified hybridization oven. Following complete lysis, hairs and tissue residues were 

removed by centrifugation in an Eppendorf centrifuge at maximal speed (13.1 x  103g~ 

16.000 rpm) for 10-20 minutes. The supernatant was poured into 0.5 ml isopropanol and 
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mixed well. DNA-precipitates were transferred in 300-500µl TE-buffer. To solve the DNA, 

tubes were again rotated at 55ºC for several hours.  

 

5.1.2.1  GLAST::CreERT2 PCR protocol 

PCR was carried out using approximately 40ng of genomic DNA (~1µl) and 1µM each of the 

primers GLAST::CreERT2 forward, GLAST::CreERT2 reverse,   GLAST::CreERT2_Cer1 

(see Table 6.1) in a 30µl reaction containing 0.2mM dNTPs, 1.5 U of HotstarTaq-polymerase, 

3µl 10xPCR-buffer and 6µl 5xQ-solution. Cycling conditions were: 2 minutes at 94°C for 

HotStarTaq-activation and 35 cycles at  94°C  for  20  seconds,  at  55°C  for 20  seconds  and 

at  72°C  for  30  seconds  followed. Finally, amplicons were extended at 72°C for 5 minutes. 

15µl of each PCR-product was analysed on a 1% agarose-TBE-gel. The amplicon obtained 

from normal WT-DNA 700bp long, whereas the amplicon from GLAST::CreERT2-DNA is 

400bp long.  

 

5.1.2.2  Smad4/floxed PCR protocol 

PCR was carried out using approximately 80ng of genomic DNA (~2µl) and 2µM each of the 

primers Smad4-9 and Smad4-10 (see Table 6.1) in a 30µl reaction containing 0.2mM dNTPs, 

1.5 U of HotstarTaq-polymerase, 2.5µl 10xPCR-buffer and 5µl 5xQ-solution. Cycling 

conditions were: 2 minutes at 94°C for HotStarTaq-activation and 35 cycles at  94°C  for  30  

seconds,  at  60°C  for 30  seconds  and at  72°C  for  1 minute  followed. Finally, amplicons 

were extended at 72°C for 10 minutes. 15µl of each PCR-product was analysed on a 1% 

agarose-TBE-gel. The amplicon obtained from normal WT-DNA 450bp long, whereas the 

amplicon from Smad4/floxed-DNA is 500bp long.  

 

5.1.2.3  Tgfbr2/floxed PCR protocol 

PCR was carried out using approximately 80ng of genomic DNA (~2µl) and 2µM each of the 

primers tgfbr2/floxed_up and tgfbr2/floxed_down (see Table 6.1) in a 40µl reaction 

containing 0.2mM dNTPs, 1.5 U of HotstarTaq-polymerase, 2.5µl 10xPCR-buffer and 5µl 

5xQ-solution. Cycling conditions were: 5 minutes at 95°C for HotStarTaq-activation and 38 

cycles at  95°C  for  30  seconds,  at  62°C  for 30  seconds  and at  72°C  for  40 seconds  

followed. Finally, amplicons were extended at 72°C for 7 minutes. 15µl of each PCR-product 
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was analysed on a 1% agarose-TBE-gel. The amplicon obtained from normal WT-DNA 

422bp long, whereas the amplicon from Tgfbr2/floxed-DNA is 575bp long.  

 

5.1.2.4  Rosa26  reporter  (R26R)  PCR protocol 

PCR was carried out using approximately 40ng of genomic DNA (~1µl) and 1.2µM each of 

the primers R1,  R2  and  R3 (see Table 6.1) in a 30µl reaction containing 0.2mM dNTPs, 1 U 

of HotstarTaq-polymerase, 3µl 10xPCR-buffer and 6µl 5xQ-solution. Cycling conditions 

were: 15 minutes at 94°C for HotStarTaq-activation and 35 cycles at  94°C  for  30  seconds,  

at  58°C  for 30  seconds  and at  72°C  for  30  seconds  followed. Finally, amplicons were 

extended at 72°C for 5 minutes. 15µl of each PCR-product was analysed on a 1% agarose-

TBE-gel. The amplicon obtained from normal WT-DNA 500bp long, whereas the amplicon 

from R26R-DNA is 250bp long.  

 

5.1.2.5  hGFAP-eGFP PCR protocol 

The PCR protocol for genotyping of the the hGFAP-eGFP mouse line was adapted from a 

previous publication (Nolte et al., 2001). PCR was carried out using about 40ng of genomic 

DNA (~1µl) and 0.4µM of the primers GFAP-LZ1 and GFP-2 (see Table 4.1) in a 30µl 

reaction containing 0.2mM dNTPs, 1.5 U of Taq-DNA-polymerase, 3µl 10xPCR-buffer and 

3µl 5xQ-solution. Cycling conditions were: 4 minutes at 94°C, followed by 30 cycles at 94°C 

for 30 seconds, at 61.5°C for 30 seconds and at 72°C for 1 minute. Finally, amplicons were 

extended at 72°C for 5 minutes. 15µl of each PCR-product was analysed on a 1 % agarose-

TBE-gel. The amplicon obtained from transgenic animals is 498bp long. In all PCRs water 

was used as a control sample. 

 

 

Table  5.1  PCR-Primers  

Primer name Primer sequence 

GLAST::CreERT2_F8 5’- GAGGCACTTGGCTAGGCTCTGAGGA-3’ 

GLAST::CreERT2_R3 5’-GAGGAGATCCTGACCGATCAGTTGG -3’ 

GLAST::CreERT2_Cer1 5’-GGTGTACGGTCAGTAAATTGGACAT -3’ 
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R1 5’-AAAGTCGCTCTGAGTTGTTAT -3’ 

R2 5’- GCGAAGAGTTTGTCCTCAACC-3’  

R3 5’-GGAGCGGGAGAAATGGATATG -3’  

Smad4-9 5’- GGGCAGCGTAGCATATAAGA-3’ 

Smad4-10 5’- GACCCAAACGTCACCTTCAC-3’  

Tgfbr2floxed_up 5’-TGGGGATAGAGGTAGAAAGACATA -3’ 

Tgfbr2floxed_down 5’- TATGGACTGGCTGCTTTTGTATTC-3’ 

hGFAP-eGFP-primer1 5’-ACTCCTTCATAAAGCCCTCG-3’  

hGFAP-eGFP-primer2 5’-AAGTCGATGCCCTTCAGCTC-3’ 

 

 

5.2  Tamoxifen    Administration 

Tamoxifen  (SIGMA,  T-5648)  was  dissolved  in  pre-warmed  corn  oil  (SIGMA,  C-8267)  

at  20mg/ml  concentration on a shaker at 37ºC  overnight. 10 mg tamoxifen is required to 

achieve recombination efficiently. Following a previously established protocol, 1mg  

tamoxifen was  injected  intraperitoneally  (i.p)  twice  a  day  for  5  consecutive  days  (Mori 

et al., 2006). The solution was kept at  4ºC  maximum 1 month  to  avoid   precipitation.  

 

 

5.3  Tissue culture 

5.3.1  Neurosphere  Assay 

Subependymal zone (SEZ, the lateral wall of lateral ventricle) of  

GLAST::CreERT2/Smad4wt/wt or Smad4wt/floxed as controls and  

GLAST::CreERT2/Smad4floxed/floxed  were  dissected  immediately  or  21  days  after  the  

end  of  tamoxifen  application and  enzymatically  dissociated  in 0.7 mg/ml hyaluronic acid, 

1.33  mg/ml trypsin in HBSS with 2  mM glucose at 37ºC for 30 minutes  and  gently  

triturated. The cells were centrifuged at 200g for 5 minutes, resuspended in 0.9 M sucrose in 

0.5XHBSS (GIBCO), and centrifuged for 10 minutes at 750 g. The cell pellet was 

 37



resuspended in 2 ml of culture medium, placed on top of 10 ml 4% BSA (GIBCO) in EBSS 

solution, and centrifuged at 200 g for 7 minutes, followed by washing in Dulbecco’s modified 

eagle medium:F-12 nutrient mixture (DMEM/F12,  Gibco).  The culture medium consisted of 

20  ng/ml  EGF  (Roche),  20  gn/ml  FGF  (Roche),  B27  supplement  (Gibco),  2mM  

glutamine,  100U/ml  penicillin  and   10µg/ml  streptomycin (Gibco)  in  DMEM-F12  

medium. Dissociated  cells  were  cultured  at  low  density  (10  cells/µl)  to  ensure  the  

clonal  origin  of  neurospheres  (Morshead et al., 1994)  in a  24 well plate (Falcon, well size: 

~ 2cm2). Every other day EGF and FGF were added to the cultures.  Primary neurospheres 

were quantified  7 days after  and  the spheres were dissociated mechanically into single cells 

in order to get secondary neurospheres. Single cells were cultured again 10 cells/µl  in the 

same conditioins in 24 well plates. Secondary neurospheres were quantified 7 days after 

culturing.  

  

 

Figure 5.1  Scheme demonstrating neurosphere assay from adult SEZ. 
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Figure 5.2 Image of  primary neurospheres from adult SEZ after 7 days in vitro 
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5.3.2  Differentiation of Neurospheres 

For differentiation, neurospheres, spun down and either enzymatically or mechanically  

dissociated. For enzymatic dissociation the spheres were trypsinized at 37ºC for 3 minutes. 

For mechanic dissociation 200µl pipet tip were used to triturate the cells (30 times up 30 

times down). Dissociated cells were plated on PDL-coated glass coverslips at a density of  1-

2x105 cells/ml and cultured in DMEM-F12 medium with B27  supplement  (Gibco), 2mM  

glutamine, 100U/ml  penicillin  and  10µg/ml  sterptomycin (Gibco). No growth factor was 

kept in the medium. In some cases the spheres were directly plated on PDL-coated glass 

coverslips without dissociation. In this case cells migrated from the core of sphere and 

differentiated (See below).  

 

 

Figure 5.3  Whole mount neurosphere after differentiation for 5 days in phase contrast 

(A) and fluorescent  (B) images (GFAP stains for astrocytes, O4 stains for 

oligodendroctyes) 

A                                                                      B                        
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5.4  Histological  procedures and Immunohistochemistry 

 5.4.1  Cryosections 

 Mice were anesthetized with 3% chloralhydratefor perfusing with  4%  paraformaldehyde  

(PFA)  in  0.1M  phosphate-buffered  saline,  pH 7.5,  (PBS). After overnight post fixation at 
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4ºC in  the  same  fixative,  the  brains  were  incubated  for  at  least  24  hours in 30% 

sucrose in PBS until they sank to the bottom for cryoprotection. Afterwards the barins  were  

embedded  in  Tissue  Tek  and  stored at -20ºC. Cryosections (15-20  µm thick) were cut 

sagital and collected on Superfrost glass slides (Fischer Scientific) and processed for 

immunohistochemistry. They were stored at -20ºC before staining and 4ºC after staining. 

 

5.4.2  Free Floating Sections 

For some in situ studies sections were cut at 30µm thickness  at  -4ºC  and collected in  PBS. 

Those free floating sections were stored at  -20ºC  in  storing  solution  (30% glycerol, 30% 

ethylen glycol, 30% distilled water, 10% 10xPO4 buffer) before staining.  

 

5.4.3  BrdU  Labelling   

For  detection  of  proliferating  cells,  the  DNA  base  analogue  5-bromodeoxyuridine  

(BrdU,  Sigma)  was  injected  i.p.  (100  mg/kg  body  weight,  dissolved in  0.9% NaCl with 

0.4 N NaOH)  1h  before  perfusion  to  label  fast  proliferating  cells  (short  pulse).  To  

label  slow  dividing  stem  cells in SEZ BrdU  was  given  in  the  drinking  water  (1mg/ml)  

for  2  weeks  followed  by  another  2  weeks  with  BrdU-free  drinking  water.  This assay 

was also used to determine postmitotic oligodendrocytes in corpus callosum. 

 

 

Figure 5.4  Scheme demonstrating label retaining assay with BrdU 

 

 

 

 

 

The labelling index of TAPs and neuroblasts were calculated as follow. The proportion of 

cells that have incorporated BrdU (after a single injection) amongst all proliferating cells is 

the labelling index (LI): 
BrdU-positive proliferating cells                                             LI= 

proliferating cells 
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As all TAPs proliferate, I did not use a proliferating marker to detect them. However for 

neuroblasts I used Ki67 staining to detect the proliferating ones. 

 

5.4.4  Immunostaining 

 Primary  antibodies  were  directed  against:  Phospho-Smad1/5/8  (rabbit,  Cell  Signalling  

Technology);  DCX  (guineapig,  Chemicon);  BrdU  (rat,  Abcam,  Cambridge,  MA; 15 

minutes in HCl 2N, 15 minutes Borate Buffer, pH 8.5);  glial  fibrillary  acidic  protein  

(GFAP,  mouse,  Dako,  or  rabbit,  Sigma);  Dlx2  (rabbit,  Chemicon);  Olig2  (rabbit,  

Chemicon);  Mash1  (mouse IgG1,  kind  gift  from  F.  Guillemot,  National  Institute  for  

Medical  Research,  Mill  Hill,London,  UK);  S100β  (mouse,  Sigma);  PDGFRα  (rabbit,  

Spring  Biosciences);  CNPase  (mouse,  Sigma);  CC1  (mouse,  Calbiochem,);  MOG  

(mouse IgG1,  kind  gift  from  C.  Linington,  University  of  Aberdeen,  Aberdeen,  UK);  

TGFβ  receptor  II  (rabbit,  Santa  Cruz),  p-Smad2/3  (rabbit,  Cell  Signalling  Technology)  

and  NeuN (mouse IgG1, Chemicon). 

Antibodies  were  diluted  in  0.1M  PBS  (0.5%  Triton  X-100,  10%  normal  goat serum). 

Slides were kept in antibody solution in most cases overnight at 4°C  in a  humid chamber but 

for some antibodies longer incubations were necessary.   

For  BrdU immunostaining  the sections  were  treated with  2N HCl for 15 minutes at 37ºC 

for DNA  denaturation  followed by one washing step of 10 minutes in  PBS  and  were  

treated with 0.1M Sodium-tetra-borat  (PH: 8.5).  Overnight  incubation  with  the  anti-BrdU  

antibody  at  4°C  was  followed  by  2  hours  of  incubation  at  room  temperature  with  the  

secondary  antibody. The primary antibodies were then detected by subclass specific 

secondary antibodies coupled to  FITC,  TRITC  (1:200,  Jackson  Laboratory), Cy2-  or  

Cy3-coupled antisera (1:800,  Jackson  Laboratory) or biotin  (1:200,  Vector  Laboratories,  

Burlingame,  CA).  

Nuclei were visualized with DAPI (4’, 6’ Diamidino-2-phenylindole, Sigma) by incubating 

sections for 10 minutes with a concentration of 0.1µg/ml DAPI in PBS. Sections were 

mounted in Aqua Poly/Mount (Polysciences, Northampton, UK),  a  glycerol-based  mounting  

medium. Stainings  were  analyzed  at  Zeiss Axioplan 2 or  Olympus  FV1000  laser-

scanning  confocal  microscope  with  optical  sections  of  1µm  intervals.   
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To rule out any unspecific binding of the secondary antisera, control experiments were 

performed by either leaving out the primary antibody or by using a primary antibody against 

an antigen that is not present in the respective tissue or at the respective developmental stage. 

 

5.4.4.1  Tyramid Signal Amplification 

Some  stainings  were  enhanced using  the  tyramide  amplification  kit  (Perkin  Elmer)  as  

described  in  the  tyramid  signal  amplification  (TSA)  handbook  (Perkin  Elmer). Briefly,  

the TSA  system  uses  horse  radish  peroxidase  coupled  to  a  secondary  antibody  to  

catalyze  the  deposition  of  fluorescein  labelled  tyramide  amplification  reagent  onto  

tissue sections.  This  reaction  results  in  the  deposition  of  numerous  fluorescein  labels  

immediately  adjacent  to  the  immobilized  HRP  enzyme.  Since  this  technique  results  in  

a  significant  enhancement  of  the  signal,  it  was  used  for  weak signals in 

immunostainings (for p-Smad1/5/8, Dlx2, MOG, endogenous GFP in BRE-eGFP mice and in 

some cases for Olig2 tyramid system was used). 

 

5.4.4.2  Tunel staining 

Tunnel  staining  was  carried  out  using  the  in situ cell death  kit (Roche). The assay uses an 

optimized terminal transferase (TdT) to label free 3'OH ends in genomic DNA with 

fluorescein-dUTP. Staining carried out as following  manufacturer’s  instructions.  Briefly,  

sections  were  incubated  for two minutes  in  0.1%  Triton X-100,  0.1%  sodium  citrate  on  

ice.  The  slides  were then incubated  with  the  Tunel  reaction  mixture  containing  the  

fluorescein  labelled  nucleotides  binding  to  double  stranded  low  molecular  weight  DNA  

fragments  occurring  during  apoptosis  for  60  minutes  at  37º C.  The  samples  were  

directly   analyzed  by  fluorescence  microscopy.  Apoptotic  TUNEL-positive  cells  were  

detected  in  the  green  (515-565)  wavelength  spectrum.   
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Table 5.2  Primary Antibodies 

Name Host-animal Marker for Supplier 

Anti-β-

galactosidase 

 

Rabbit Reporter gene Cappel 

Anti-β-

tubulin-III 

Mouse, 

monoclonal 

IgG2b 

Postmitotic neurons Sigma 

Anti-BrdU Rat S-Phase marker  Abcam 

Anti-CC1 

(APC) 

Mouse 

Monoclonal 

IgG2a 

Immature 

oligodendroctytes 
Calbiochem 

Anti-CNPase 
Mouse 

IgG1 

Partially mature 

oligodendrocyte 

marker 

Sigma 

Anti-DCX Guineapig 
Immature neurons 

(neuroblasts) Chemicon 

Anti-Dlx2 Rabbit 

Marker gene for 

TAPs in  

Adult SEZ 

Chemicon 

Anti-GFAP Rabbit 
Precursor cell 

subtypes DAKO 

Anti-GFAP 
Mouse,  

IgG1  
Astrocytes Sigma 

Anti-GFP  Rabbit Reporter gene RDI 

Anti-GFP Chicken Reporter gene Aves LABS 
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Anti-Ki67 Rabbit Precursor cells Dianova Immundiagnostics 

Anti-Ki67 

(TEC-3) 
Rat Precursor cells Dianova Immundiagnostics 

Anti-Mash1 

Mouse, 

Monoclonal 

IgG1 

bHLH-transcription 

factor  
F.Guillemot, NIMR, London, UK 

Anti-NeuN 

Mouse, 

Monoclonal 

IgG1 

Postmitotic neurons Chemicon 

Anti-O4 

Mouse, 

Monoclonal 

IgM 

Mature 

oligodendrocyte 

marker 

Jack Price, Kings College, Institute of 

Psychiatry, London, UK 

Anti-

PDGFRα 
rabbit 

Immature 

oligodendrocytes 
Spring Biosciences 

Anti-

pSmad1/5/8 
Rabbit 

Phosphorylated 

Smad 1,5, and 8  
Cell Signalling Technology 

Anti- 

pSmad 2/3 
Rabbit 

phosphorylated  

Smad 2 and 3 
Cell Signalling Technology 

Anti-S100β Mouse,IgG1 Astrocytes Sigma 

Anti-Sox2 Rabbit Progenitor cells Chemicon 

Anti-Sox9 Rabbit 
Astrocytes, 

astrocyte and 

oligodendrocyte 

Michael Wegner, Friedrich-Alexander 

University,Institute for 

Biochemistry,Nürnberg,Germany 

Anti-Sox10 Guineapig 

Immature and 

mature 

oligodendrocytes 

Michael Wegner, Friedrich-Alexander 

University,Institute for 

Biochemistry,Nürnberg,Germany 
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Table 5.3  Secondary Antibodies 

Name Supplier 

Anti-rabbit Ig FITC / TRIC / biotinylated 

Anti-rabbit Ig Cy2 / Cy3 

Streptavidin AMCA / FITC / Texas Red 

Boehringer Ingelheim 

(Vector Laboratories) 

Anti-mouse IgG+M Cy2/Cy3 

Anti-mouse IgG1 FITC / TRIC / biotinylated 

Anti-mouse IgG2b FITC / TRIC / 

biotinylated 

Anti-mouse IgM FITC / TRIC / biotinylated 

EuroPath Ltd. 

(Southern Biotechnology Associates) 

Anti-guinea pig Ig Cy2 / Cy3 

Anti-rat FITC / TRIC / Cy2 / Cy3 

Dianova Immundiagnostics 

(Jackson ImmunoResearch) 

 
 

Table 6.4  Tyramid Signal Amplification Reagents 

Name Content 

TN Buffer (PH 7.5) 0.1 M TRIS-HCl (PH 7.5) and 0.15 M NaCl 

TNT Buffer 
0.1 M TRIS-HCl (PH 7.5), 0.15 M NaCl, 

0.005% Tween 20 

Blocking Reagent Milk powder 

TNB  Buffer 
0.1 M TRIS-HCl (PH 7.5), 0.15 M NaCl 

and Blocking reagent 

SA-HRP Horseradish Peroxidase-labelled reagent 

Amplification Diluent ? 

Amplification reagent Fuorophore 
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5.5  In  Situ  Hybridization   

5.5.1  Plasmid preparation and in vitro transcription 

10ng plasmid DNA was added  to  25 µl  chemically  competent Top10 cells and incubated 

for  30 minutes on ice. Cells obtained the a heat shock at 42°C for 45 seconds. After 

recovering the bacteria for 10 minutes on ice, 1ml LB-medium was added and cells were 

incubated on a bacterial shaker for 45 minutes at 37°. Then 50-100µl of bacterial suspension 

were plated on e.g. ampicillin containing (50µg/ml) LB-agar plates, depending on the 

resistance encoded by the plasmid, and incubated at 37°C overnight. One colony was picked 

the next day and grown for about 4 hours in 5ml ampicillin-containing LB-medium. This pre-

culture then was added to 50ml LB-ampicillin-medium and was incubated overnight at 37°C 

on the rotary shaker. Plasmid-DNA was harvested following the Quiagen-Midiprep protocol 

using a midi Tip100 column. The DNA pellet was dissolved in 200µl ddH2O and 20µg of 

plasmid-DNA, quantified by spectrophotometry at 260nm, were linearized with the 

appropriate enzyme (40U) in a total volume of 50µl of the appropriate buffer for 2-3 hours at 

37°C. The plasmid-DNA then was purified by phenol extraction. First, water was added to a 

total volume of 200µl, then 200µl phenol-chloroform-isoamylalcohol (50:49:1) was added 

and strongly vortexed for about 1 minute. After 5 minutes of centrifugation in an Eppendorf-

centrifuge at maximum speed (13.1 x 103rpm ~ 16.000 xg), the water phase was recovered 

and 1/10x volume 3M sodium acetate and 0.7x volume isopropanol were added and incubated 

for 10 minutes at RT for precipitation. After a centrifugation at maximum speed in an 

Eppendorf-centrifuge for 15 minutes the pellet was washed shortly with 70% ethanol and 

resuspended in 18µl TE (pH8, RNAse-free). For in vitro transcription of the linearized 

plasmid, 1µl (about 1µg)of the plasmid-DNA was mixed with 2µl NTP-mix containing 

digoxigenin labelled UTP (DIG-UTP,  Roche), 4µl 5xtranscription buffer, 1µl RNAse 

inhibitor and 1µl (50U/µl) of the respective RNA-polymerase (T3, T7 or SP6,  Stratagene). 

Pure RNAse-free ddH20 was added up to a final volume of 20µl and the plasmid-mix was 

incubated for 2 hours at 37°C. To stop the reaction 2µl 0.2M EDTA was added followed by 

addition of 2.5µl 4M LiCl and 75µl pure ethanol to precipitate the RNA either at -20°C 

overnight or at -80°C for two hours. The RNA-probe was centrifuged for 7 minutes at 4°C 
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and the pellet was dissolved in 22.5µl ddH20 for 30 minutes  at  37°C.  RNA-precipitation  

was  repeated by  addition  of  2.5µl  4M  LiCl  and  75µl  100%  EtOH  and  incubation  for  

2  hours at  -20°C.  The RNA-probe again was centrifuged for 7 minutes at 4°C. The RNA-

probe was resuspended in 20µl ddH20 and  200µl  hybridisation  buffer  at  a  final RNA-

concentration  of  around  100ng/µl. 

 

5.5.1.1  Plasmids  

Mouse cDNAs of BMP ligands (kind gift from B.L.M. Hogan, Duke University Medical 

Center, Durham, USA), Noggin (kind gift from R.M. Harland, University of California, 

Berkeley, USA), BMPRII (kind gift from M. Ruat, Neurobiology Institute Alfred Fessard, 

Gif-sur-Yvette,France), Smad4 (kind gift from Y. Chai, University of Southern California, 

Los Angeles, USA) and Ids (kind gift from K. Miyazono, University of Tokyo, Tokyo, Japan) 

were used as templates for In situ hybridization probes. The probe for Smad4 binds to a 

region corresponding exon 6-10 of transcript.  

                      

                      Table 5.5  In situ Plasmids 

Name Digestion Trkrp 

BMP2 XbaI T3 

BMP4 EcoR1 Sp6 

 BMP6 EcoR1 Sp6 

 BMP7 BamH1 T7 

BMPRII EcoR1 T7 

Id1 EcoR1 Sp6 

Id2 HindIII T3 

Id3 EcoR1 Sp6 

Id4 XbaI T3 

Msx1 PstI T3 
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Noggin NotI T7 

Smad4 EcoR1 T3 

5.5.2  Non-radioactive in-situ hybridisation 

In situ hybridizations were performed on 20µm thick cyrostat sections with hybridization 

buffer (1X Salt Solution (10X Salt Solution: 2M NaCl, 90mM Tris HCl, pH7.5, 10mM Tris 

base, 70mM NaH2PO4, 50mM Na2H PO4, 50mM EDTA, ddH2O), 50% Formamid, 10% 

Dextran Sulfate (Sigma), 1mg/ml wheat germ tRNA (Sigma, R7876), 1X Denhard’s solution 

(Sigma, D2532), 0.5% CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-

propanesulfonic acid) and ddH2O) at 65ºC overnight. The next day slides were washed first 

with washing solution containing 1X SSC, 50% Formamid, 0.1% Tween-20 at 65ºC with 

followed washing with 1X MABT (100mM Maleic Acid, 150mM NaCl-pH 7.5, 0.02 Tween-

20). Slides were incubated 1 hour at room temperature in blocking solution (1X MABT, 

blocking reagent (Boehringer Mannheim), and 20% heat inactivated sheep serum (Sigma, 

G6767). Anti-digoxigenin Fab fragments coupled to alkaline phosphatase was diluted 1:2500 

in blocking solution, and applied on slides after 1 hour blocking for overnight. The third day 

the slides were again washed with 1X MABT and kept in staining solution containing the 

substrates for alkaline phosphotase, NBT and BCIP (Sigma) in a concentration 350µg/ml for 

NBT and BCIP. For double stainings of Smad4mRNA fluorescent In situ hybridization 

(FISH) was performed with HNPP fluorescent detection set (Roche). 

 

5.6  In vivo injections and Cortex Injury 

5.6.1  Anesthesia 

Animals were anesthetized by intraperitoneal injection of Medetomidine (Domitor, 0.5 mg/kg 

body weight), Midazolam (Dormicum, 5 mg/kg body weight), and Fentanyl (Fentanyl Hexal, 

0.005 mg/kg body weight). The anesthesia was antagonized by intraperitoneal injection of 

Atipamezol (Antisedan, 5 mg/kg body weight), Flumacenil (Anexate, 0.5 mg/kg body weight) 

and Naloxon (Narcanti-vet, 1.2 mg/kg body weight) were used. The licence number for 

operation is 209-211-2531-23/04. 

 

5.6.2  Stereotaxic injections 
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Injections of virus particules were done stereotactically on 9-10 weeks old control or mutant 

animals. The adult mice were fixed in a stereotactic apparatus (Kopf). The head was shaved 

and a 1 cm midline cut was performed with a scalpel. The skull was opened  at the anterior-

posterior and medio-lateral coordinates (see below) using a drill (Multipro395PR, Dremel). 

Glass capillaries were filled with virus solution and an oil microinjector (Narashige) was used 

to inject this solution very slowly. Coordinates (relative to the bregma) : for SEZ, anterior-

posterior= 0.7; medio-lateral=1.2; dorso-ventral=1.9 and for the corpus collosum (CC): 

anterior-posterior= 0.6; medio-lateral=1; dorso-ventral=1.5 

 

5.6.3  Viral Vectors  

5.6.3.1  Retroviral vectors and retrovirus  production  

Murine Leukemia Virus (MLV) derived retrovirus pseudotyped with the vesicular stomatitis 

virus glycoprotein (VSV-G) expressing either Green Flourescent Protein (GFP) or Cre 

recombinase were used. In some cases pMXIG (Hack et al., 2004) or CMMP (Hack et al., 

2004) were used to trace the cells. For examine the role of olig2 after Smad4 deletion I used 

the Olig2VP16 virus as described in Hack et al., 2004. The transgene in the plasmid was 

replaced with enhanced Green Flourescent Protein (eGFP) to visualize the cells. The entire 

coding sequence of Olig2 with a 675-bp fragment encoding for VP16 was inserted into the 

EcoRI unique restriction site of the retroviral vector pMXIG (nosaka 1999). 

 

Gpg cells (Ory et al., 1996) were cultured in DMEM (Gibco) containing 10% (v/v) FCS (heat 

inactivated 30 minutes at 56°C; Gibco), 1% (v/v) Penicillin-streptomycin in DMEM (Gibco), 

1 µg/ml tetracycline (Sigma), 2µg/ml puromycin (Sigma) and 0.3 mg/ml G418 (Gibco). Cells 

were passaged 1/week with PBS and tryipsin containing 1µg/ml tetracycline. These cells 

allow for the production of high titer amphotropic retrovirus. Many retrovirus packaging cell 

lines lose packaging efficiency as they are cultured due to the gradual loss of expression of 

the packaging genes. The packaging plasmids  introduced to this cell line were introduced 

using different selection markers (gentamycin (G418), puromycin). Therefore, expression of 

packaging proteins can be fairly well maintained by culturing the cells continuously in media 

containing the corresponding antibiotics. In addition, the vesicular stomatitis virus G (VSV-

G) protein is toxic to gpg293 cells so expression of his gene is controlled by tetracycline. 

Therefore, these cells are maintained in tetracycline, puromycin, and G418 containing 
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medium. Retroviral vectors pseudotyped with VSV-G differ from standard murine 

retroviruses by their very broad tropism and the capacity to be concentrated by 

ultracentrifugation without loss of activity. 

Gpg helper-free packaging cells were used for viral production (Peer 1993, yee 1994). For 

retrovirus production 90-95% confluent gpg cells were transfected using Lipofectamine 2000 

(Invitrogen) and opti-MEM I reduced-Serum Medium (Invitrogen) as described in the 

Lipofectamin 2000 transfection protocol for adherent cells (Invitrogen).  Transfection 

medium was replaced after 8-10 hours, and gpg cells were further cultured in DMEM 

containing 10% (v/v) FCS (heat inactivated 30 minutes at 56°C; Gibco), 1% (v/v) Penicillin-

streptomycin in DMEM (Gibco). After 48 hours the virus containing medium was collected 

and filtered through a 0.4 µm filter to remove the cell debris but maintain the viral 

particles(Becton Dickinson) and centrifuged at 50000 x g for 90 minutes at 4°C. The virus 

pellet was resuspended in TNE (50mM Tris-HCl pH7.8, 130mM NaCl, 1mM EDTA) and 

aliquoted. Virus aliquots were stored at -80°C. Virus titers (viral particles/ml) were measured 

by adding viral vectors serially diluted to primary cerebral cortex cells isolated from 

embryonic day 14 cortices. Cells were cultured for 2 days to allow the expression of the 

transgene and then the number of infected clones (clusters of GFP-positive cells) was 

counted. The number of infected clones corresponds to the viral particles used for 

transduction of primary cells and was then referred to viral particle/µl. 

 

5.6.3.2  Lentiviral vectors and  lentivirus production 

 Cytomegalo-virus (CMV) promoter containing lentiviral vectors expressing either GFP (LV-

GFP) or Cre (LV-Cre) are based on a previously described vector system  (Pfeifer et al., 

2001) and were produced as described (Pfeifer et al., 2002). A third-generation, Tat-free 

packaging system was used to produce recombinant lentivirus. The GFP-LV plasmid together 

with the two packaging plasmids (encoding human immunodeficiency virus (HIV) gag,pol, 

and rev) and the plasmid coding for VSV-G envelope were transfected into 293T(HEK) cells 

using the calcium phosphate method. In brief, 24 15-cm dishes were transfected and the virus 

was harvested by collecting the cell culture medium 24,48 and 72 hours. After filtering the 

collected medium through 0.45-µm filters, we concentrated the virus by spinning at 68,400g 

for 2 hours followed by a second spin (59,000g, 2.5 hours at room temperature). The resulting 

pellet was resuspended in 200 µl Hanks’ buffer. The titer of lentiviral vectors was determined 
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was determined by measuring the amount of HIV p24 Gag antigen by ELISA (Alliance: NEN 

Life Science Products, Boston, MA).  

To make the Cre-lentivirus (LV-Cre), a MluI fragment containing the nuclear localization  

signal (nls) of the simian virus 40 large T antigen and the cDNA for Cre recombinase (nlsCre) 

was excised from pMC-Cre. The nlsCre was first cloned into the EcoRV site of a pBlueskript 

II KS vector and then inserted Xba-SalI sites of a pRRL lentiviral vector that contains a 

central polypurine tract (ppt) and the posttranscriptional woodchuck hepatitis virus resulting 

in LV-Cre.  

 

5.6.4  Noggin Infusion 

Noggin (Peprotech) dissolved in artificial Cerebro Spinal Fluid (aCSF, aCSF contains (in 

mM): 148 NaCl, 3 KCl, 1.4 CaCl2, 0.8 MgCl2, 1.5 Na2HPO4 , and 0.2 NaH2PO4, pH 7.4 and 

100µg/ml rat serum albumin (Sigma, St. Louis, MO)) or aCSF only was infused at a rate of 

500ng/day for 7 days into the lateral ventricle of C57Bl6/J mice at the coordinates -0.2 

(anterioposterior), 1 (mediolateral), 2 (dorsoventral) by miniature implantable osmotic 

minipumps (1µl/hour ALZET osmotic minipumps 2001 SIGMA, Brain Infusion Kit II 

SIGMA). First the brain infusion assembly (catheter tube which has canula at the tip) was 

filled with the solution to be delivered by a syringe. The flow moderator was attached at the 

other end of the catheter. After filling the osmotic minipump with the solution of interest the 

flow moderator ( connected to the catheter and infusion canula) was placed in the filled 

osmotic pump. Then the pumps were kept at 37°C for overnight before implanting into 

animals. Animals were sacrificed either 3 days or 21 after Noggin infusion. In the case of 

longer survival, the pumps were removed 3 days after the infusion. 

 

Figure 5.5  Images of osmotic minipumps (for 3, 7 and 14 days delivery) 

 

 
Catheter tube 

Osmotic pump 
Infusion 
canula  
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5.6.5  Stab-Wound Injury 

The adult mice (9-10 weeks old male C57BL/6J) were fixed in a stereotactic apparatus 

(Kopf). The head was shaved and a 1 cm midline cut was performed. The skull was opened  at 

the anterior-posterior and medio-lateral coordinates (see below) using a drill (Multipro395PR, 

Dremel). Animals then underwent a stab wound in the right cerebral neocortex ( Bregma from 

-0.9 mm to -2.7 mm, latero-lateral 1.5-2.5 mm). 

 

5.6.6  Transplantation 

For transplantation experiments Myristoyl (myr)-Venus animals were used. In this mouse line 

the Venus protein contains Myristoyl protein sequence which is a lipid modified protein 

present in  plasma membrane of all cells (Rhee et al., 2006). SEZ of 6 weeks old myr-Venus 

animals were dissected  and enzymatically  dissociated  in 0.7 mg/ml hyaluronic acid, 1.33  

mg/ml trypsin in HBSS with 2  mM glucose at 37ºC for 15 minutes. After the first 15 minutes 

of tryipsinization the cells were triturated with a fire polished and fetal calf serum coated 

Pasteur pipet very strongly to avoid clumps. This step was followed by another 15 minutes 

digestion at 37ºC. The cells were centrifuged at 200g for 5 minutes, resuspended in 0.9 M 

sucrose in 0.5XHBSS, and centrifuged for 10 minutes at 750 g. The cell pellet was 

resuspended in 2 ml of culture medium, placed on top of 10 ml 4% BSA in EBSS solution, 

and centrifuged at 200 g for 7 minutes, followed by washing in Dulbecco’s modified eagle 

medium:F-12 nutrient mixture (DMEM/F12,  Gibco). At the end the cells were dissolved in 

DMEM/F12 at a concentration of 30.000 cells per µl. 1 µl was injected into the SEZ at the 

coordinates (relative to the bregma) : anterior-posterior= 0.7; medio-lateral=1.2; dorso-

ventral=1.7 

 

5.7  RNA Extraction and Microarray 

5.7.1  RNA extraction  

For microarray analysis total RNA was prepared from Subependymal zone of control 

(GLAST::CreERT2/Smad4wt/wt) and Smad4-/- (GLAST::CreERT2/Smad4floxed/floxed) 

animals, 10 days after tamoxifen administration. RNA was prepared from SEZ tissue with 
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QIAGEN RNAeasy Kit. SEZ was dissected and collected in lysis buffer (RLT) containing �-

mercaptoethanol in an eppendorf tube. After 15 minutes centrifugation at maximum speed ( 

13,200 rpm) the supernatant was collected in a QIAshredder (purple) spin columns placed in 

2-mL collection tubes. Following a 2 minutes centrifugation at maximum speed the 

supernatant of the flow-through fraction was transferred to a new RNase-free 1.5-ml 

microcentrifuge tube without disturbing the cell-debris pellet. 0.5 volume (half of initial lysis 

volume) of room temperature 96-100% ethanol was added to the clear lysate and mixed 

immediately. The the mixture was applied to an RNeasy (pink) mini column placed in a 2-ml 

collection tube. This was followed by 15 seconds centrifugation at 11.000 rpm. At this stage 

RNA and DNA are bound to silica gel membrane in the RNeasy column. DNA was digested 

in the same column with DNAse I 15 minutes. After proper washing steps the columns were 

trasferred into RNase-free1.5-mL microcentrifuge tubes. 30 �L of RNase-free water 

(supplied with the kit) was put directly onto the center of the silica-gel membrane of the 

RNeasy columns for elution. The samples were then centrifuged for 1 minutes 2 times at 

maximum speed. The eluted RNA was measured at Nanodrop Spectrophotometer. 

 

5.7.2  Microarray 

The quality of purified RNA was examined using the Agilent Bioanalyser and revealed high 

quality of all RNA preparations. 80 ng of total RNA was used for each microarray from 3 

biological replicates of control and 2 biological replicates of Smad4-/-. The RNA 

amplification was performed with MessageAmp II-Biotin Enhanced kit (Ambion, 1791). This 

single round aRNA amplification kit was used for all samples to avoid variations resulting 

from multiple rounds of amplification. Hybridization to Affymetrix MOE430 2.0 GeneChips 

(46 k probe sets) was performed according to standard protocols provided by Affymetrix 

(www.affymetrix.com). All housekeeping genes were present and number of present calls was 

determined as 40% or higher. To process the data we calculated probe set summaries 

(according to RMA (Bolstad et al., 2003) and normalized the data (lmp, nonlinear 

transformation employing the loess smoother (Cleveland, 1981)). To test the quality and 

reproducibility of the samples, hierarchical clustering was used to find (dis)similarities 

between the samples, showing that the replicates of each group of cells analyzed were 

clustering together. Hierarchical clustering was performed on normalized data (RMA) using 

packages available from http://cran.r-project.org. For statistical analysis of the expression data 
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the Bioconductor software package implemented in Carma web (Ref) was employed using the 

moderated limma test. The Benjamini-Hochberg algorithm (Benjamini, 1997) was used to 

identify genes with a false discovery rate < 5 %.  

 

5.8  cDNA  Preparation and Real Time (RT) PCR 

5.8.1  cDNA Synthesis 

To confirm the expression differences as predicted by the microarray analysis we compared 

mRNA expression levels of  some of  the genes of interest by RT-PCR. For complementary 

DNA preparation RNA was reverse transcribed by SuperScript™ III Reverse Transcriptase 

kit from Invitrogen. As shown below (components and their amounts for 1 reaction) after 

mixing the RNA template with oligo(dT) and dNTPs the samples were kept at 65°C for 5 

minutes for annealing of oligo(dT)s to the messenger RNA. This was followed by addition of 

reverse transcriptase together with other components which were listed below. Transcription 

took place 50 minutes at 50°C. The samples were then incubated at 85°C for 5 minutes for the 

inactivation of reverse transcriptase enzyme. cDNA was store at -20°C 

                

 

                 Table 5.5  cDNA Reaction Mix 

Components 
ONE 

Reaction 

dNTPs 1µl

Oligo(dT) 1µl

10xRT buffer 2µl

25mM MgCl2 4µl

0.1 M DTT 2µl

RNAaseOUT 1µl

Superscript IIIRT 1µl

RNA template ---- µL

Total volume  20 µL
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5.8.2  Real Time (RT) PCR 

Real-time PCR was done using the iQSYBRGreen kit from BIO-RAD in an Opticon qPCR 

machine. For 1 reaction see the components listed in the table 6.6. 2X SYBR Green Supermix 

contains 100mM KCl,40mM Tris-HCl, pH 8.4, 0.4 mM of each dNTP, iTaq DNA 

polymerase, 50 units/ml, 6mM MgCl2, SYBR Green I, 20 nM fluorescein, and stabilizers. 

Primers used for genes of interest were listed in table 6.7. 

               

                 Table 5.6 Real-time PCR reaction mix 

Components ONE Reaction 

iQSYBR Green Supermix 12.5µl

Primer 1 0.5µl(100nM)

Primer 2 0.5µl(100nM)

Sterile water Xµl

DNA template 2-5µl(10ng)

Total volume  25 �L

 

Table 5.7  RT-PCR Primers 

Primer name Primer sequence 

Pou6f1 forward 
      5’- -3’  ctgtcaggaagccaaacaca 

Pou6f1 reverse 
      5’- -3’  ctcatccagacttggggtgt 
Sox17 forward 5’- -3’  ctcggggatgtaaaggtgaa 

Sox17 reverse 5’- -3’  gcttctctgccaaggtcaac 
 

Paip1 forward 5’- -3’   tgctttgcaagaacttgtgg 

Paip1 reverse 5’- -3’   catactccgtcctgcacctt 

Cdk4 forward 5’- -3’   caatgttgtacggctgatgg   

Cdk4 reverse 5’- -3’   caggccgcttagaaactgac 
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Sox11 forward 5’- -3’   gtggtccaagatcgagcgca 

Sox11 reverse 5’- -3’   gcgcctcaagcacatggctg 

Olig2 forward 5’- -3’  cacaggagggactgtgtcct 

Olig2 reverse 5’- -3’  ggtgctggaggaagatgact 

Dpp6 forward 5’- -3’   caagggaaaggccaattaca 

Dpp6 reverse 5’- -3’   ctcctcctcttttgctgtgg 
 

 

 

5.9  Quantitative Analysis and Statistics 

Quantifications (absolute cell numbers, marker coexpression) were performed by means of 

NEUROLUCIDA connected to an Axiophot Zeiss microscope (×40 objective). The analysis was 

performed on sagital sections at medio-lateral levels from 0.6 to 1mm relative to midline (3-7 

sections per animal). The SEZ area analyzed comprised 60,000 μm2 limited to a maximum 

distance of 50-100 µm away from the ependymal cell layer. This was corresponded well to 

the entire SEZ at these levels as detectable e.g. by the zone comprising DCX-positive cells. 

For all data sets, the arithmetic average ∑=
=
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 and the standard error of the mean 
n
sSEM =  were computed. Error bars 

depict the SEM. The unpaired Student’s t-test was used to examine whether data sets differed 

significantly. Data were considered as significant with p<0.05 and as highly significant with 

p<0.01. Calculations of the arithmetic average, the standard deviation, the standard error of 

the mean were performed with Microsoft Excel. 
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6  RESULTS 
 

6.1   BMP signalling in adult subependymal zone (SEZ) 

6.1.1  BMP pathway compenents are present in the adult subependymal 

zone 
As described in the introduction BMP signalling has important roles in many aspects of 

development including the nervous system. To search for the differences between the non-

neurogenic brain parenchyma and the neurogenic niches I first did an expression analysis. I 

performed in situ hybridization for some of the BMP ligands and Smad pathway elements in 

postnatal and adult Subependymal Zone (Figure 6 and 7).  

I could observe mRNA transcripts of BMP ligands 2,4,6 (Figure 6A-C) in the subependymal 

zone of postnatal (postnatal day 5) as well as BMP specific type II receptor (Figure 6D), 

Common-Smad Smad4 (Figure 6E) and downstream targets Id1 and Id3 (Figure 6F,G). In 

many cases these transcripts were localized all around the wall of the ventricle, including the 

dorsal or/and medial wall. Similar to postnatal stages, mRNA transcripts of BMP ligands and 

Smad pathway elements were also present in the adult subependymal zone (SEZ). This 

includes BMP ligands 2,4,6 and 7 (Figure 7A-D), BMP specific type II receptor (BMPRII) 

(Figure 7F), Smad4 (Figure 7G) and Id3 (Figure 7H). I also detected the mRNA transcript 

of BMP specific inhibitor Noggin (Figure 7E) in the adult SEZ. In contrast to postnatal stage 

BMP pathway elements seem to be enriched in the lateral wall of the lateral ventricle in the 

adult. 

My observations of the presence of BMP signalling in postnatal and adult SEZ are consistent 

with previous works  (Fan et al., 2003; Lim et al., 2000; Peretto et al., 2002; Peretto et al., 

2004) which examined expression of some of  the BMP pathway elements in this neurogenic 

niche. 

 

6.1.2 Activity of BMP-mediated signalling in adult neural stem cells of the 

SEZ, but not SGZ  
Expression pattern revealed by in situ hybridization led us to examine if BMP-mediated 

signalling activity can be detected in the adult SEZ. As described above and shown in the 
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Figure 4 receptor regulated Smads 1,5 and 8 are specifically phosphorylated and translocated 

to the nucleus after heterodimerization with Smad4 upon BMP binding to the receptor dimer. 

Whereas presence of BMP ligands and other pathway elements alone do not indicate the 

activity of the Smad pathway, detection of phosphorylated BMP specific Smads would reveal 

the actual activity of BMP signalling. Thereby I monitored BMP activity by immunostaining 

for the phosphorylated forms of Smads 1, 5 and 8 (p-Smad 1/5/8). Many p-Smad1/5/8-

positive nuclei were detected along the lateral wall of the lateral ventricle (Figure 8A-G), 

indicating active BMP-signalling in this zone. In contrast, I did not observe p-Smad 1/5/8-

positive cells in the other adult neurogenic niche apart Subependymal zone namely 

subgranular zone (SGZ) of dentate gyrus (DG) (Figure 8I). Pyramidal neurons in the CA 

regions of hippocampus were positive for p-Smad1/5/8 ((Figure 8I). However p-Smad 1/5/8-

immunostaining was detectable in some neuronal populations in the forebrain, but not in 

parenchymal glia (Figure 10). Thus, outside the SEZ p-Smad1,5,8-immunoreactivity was 

largely restricted to postmitotic neurons. Similar to p-Smad1/5/8, Smad4 is also not expressed 

by parenchymal glial cells (Figure 10). Smad4 is present in postmitotic cells in cortex, 

olfactory bulb and cerebellum. In Figure 10 there is an example from olfactory bulb. 
 

In the SEZ, the majority of p-Smad1/5/8-positive cells (60%) were astrocytes (GFAP-

positive) (Figure 8). To determine whether the p-Smad1/5/8-positive astrocytes (GFAP-

positive) contain self-renewing stem cells, I used a label-retaining protocol (see materials and 

methods). Injection of the DNA-base analogue Bromo-deoxy-Uridine (BrdU) 

intraperitoneally into animal or addition to the drinking water allow labelling proliferating 

cells. Because BrdU is incorporated into the DNA during the S phase of cell cycle, only cells 

in S-phase at the time point of BrdU application incorporate it. Because different cells have 

different cell cycle length, length of BrdU application can allow to identify different cell 

types. While transit amplifying precursors (TAPs) proliferate fast and can be labelled with a 

single pulse BrdU given 1 hour prior to sacrifice, stem cells divide very slowly and require 

long time of BrdU application to be detected. An assay used for identification of slow 

dividing cells namely stem cells is called label retaining assay (see materials and methods and 

Figure 19). Addition of BrdU 2 weeks to the drinking water of mice allows labelling of slow 

dividing cells. However not only slow dividing cells but also fast dividing cells incorporate 

BrdU within this period. To eliminate fast proliferating cells, 2 weeks BrdU period is 
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followed by another 2 weeks with normal water in which TAPs dilute the label. Besides 

labelling the slow dividing stem cells, this protocol also labels any cells that leave the cell 

cycle shortly after incorporating BrdU, such as newly generated doublecortin (DCX)-positive 

neuroblasts (30% of BrdU-retaining cells are DCX-positive). When I applied this protocol 

and did a triple immunostaining for BrdU/DCX and p-Smad1/5/8 antigens I found that BrdU-

retaining postmitotic neuroblasts were not p-Smad1/5/8-positive whereas 43% (n=48 cells) of 

the remaining BrdU-retaining cells contained p-Smad1/5/8 (Figure 8G,H), suggesting that a 

high fraction of slow dividing stem cells is subject to BMP signalling. I did not observe p-

Smad1/5/8-immunoreactivity in any DCX-positive cell. The remaining (DCX- and GFAP-

negative) population is largely composed of transit-amplifying precursors that express 

transcription factors of the Dlx family (Doetsch et al., 2002). All DCX- and GFAP-negative 

p-Smad1/5/8-positive cells showed Dlx2-immunoreactivity (Figure 8D,H). In contrast, p-

Smad 1/5/8-immunoreactivity did not co-localize with immunostaining for the transcription 

factor Olig2 (Figure 8E) expressed by a subset of TAPs (Hack et al., 2005; Menn et al., 

2006). p-Smad1/5/8-positive cells responding to BMP-signalling in the adult SEZ are 

composed of 60% of astrocytes including slow-dividing stem cells and 40% of Dlx2-positive 

transit amplifying precursors (Figure 8H).  

 

6.1.3  BMP Reporter Mouse Line 
As an additional approach to monitor BMP signalling activity, I analyzed SEZ of a BMP 

reporter mouse line (Figure 9). In this line green fluorescent protein (GFP) is  expressed 

under the control of the BMP-specific Responsive Element (BRE) containing Smad 1 and 5 

binding sites derived from the Id1 promoter (Monteiro,  Chuva da Sousa Lopes,  Mummery,  

unpublished). Consistent with the localization of p-Smad 1/5/8, GFP co-localized with GFAP, 

but not with DCX in the adult SEZ of the BRE-GFP mice (Figure 9A,B). To further ensure 

the identity of these GFP/GFAP-positive cells as stem cells I stained for PDGFRα as a marker 

for the stem cell subset amongst SEZ astrocytes (Jackson et al., 2006). I could detect 

PDGFRα antigen in GFP/GFAP-positive cells in the SEZ of BRE-eGFP mice showing that 

the stem cells were subject to BMP-signalling (Figure 9C-C'''). Thus, the Smad-mediated 

BMP-signalling is active in stem cells of the adult SEZ, but not in neuroblasts. 
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6.2  BMP Signalling in non-neurogenic areas 

As observed in CA3 neurons of hippocampus (Figure 8I) p-Smad1/5/8 antigen was restricted 

to postmitotic neurons outside of subependymal zone in the adult forebrain (Figure 10). Both 

p-Smad1/5/8 and Smad4 were found to be scattered in the cortex and mostly concentrated 

close to midline. Similar to p-Smad1/5/8, Smad4 mRNA was not found in parenchyma glial 

cells as shown in cerebellum and olfactory bulb with GFAP double staining (Figure 10). 

Similar expression pattern  was  also observed in BRE-eGFP mouse.  

As a summary Smad pathway mediated BMP signalling is restricted to the progenitors of SEZ 

but not progenitors of white matter and parenchyma such as oligodendrocyte progenitors 

(These progenitors are defined by their chondroitin sulphate proteoglycan NG2 expression) as 

expressions of both p-Smad1/5/8 and Smad4  are restricted to postmitotic neurons outside of 

neurogenic niche. Therefore BMP signalling may play an important role in the SEZ namely 

stem cell niche. 

 

6.3  Expression pattern of BMP signalling components in the adult cortex 

after stab wound  
After an injury to the nervous system neurons are not regenerated. In response to injury, 

reactive astrocytes appear and accumulate in the wounded area, leading to glial scar 

formation. Quiescent astrocytes become highly proliferative (Buffo et al., 2005) and behave 

as stem cells (Buffo,Rite,Tripathi, unpublished data). These cells only give rise to astrocytes 

but not neurons (Buffo,Rite,Tripathi, unpublished data). Signals governing this difference 

between neurogenic astrocytes such as in SEZ and non-neurogenic astrocytes acting as stem 

cells after brain injury are not known.  

As above results show that BMP signalling promotes neurogenesis we asked the question 

whether this signalling is active after brain injury. I used stab wound as a model system in 

adult forebrain (see also materials and methods). Upon stab wound reactive astrocytes and 

other cell types such as NG2-positive cells and lineage marker negative cells start to 

proliferate and reach the peak in their proliferation 7 days post injury (Buffo et al., 2005).  

I examined BMP signalling components 3 days after stab wound in cortex of wild type mice. I 

started by examining BMP ligands and performed in situ hybridization for BMP 2,4 and 6 
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(Figure 11). After injury BMP ligands did not seem to be differentially expressed as both 

ipsilateral (the side of lesion) and contralateral (the control side) sides show similar 

expression intensity. BMP2 shows a wide expression pattern in cortex whereas BMP4 is 

scattered. BMP6 seems to be restricted to SEZ and choroid plexus in the forebrain (Figure 

11C) as the signal hardly detectable in cortex, striatum and hippocampus. I also checked 

BMPRII expression after stab wound and did not observe a difference between injured and 

uninjured side (Figure 12A-A''). Like BMP2, BMPRII also has a wide expression pattern in 

cortex. However this expression neither goes down nor goes up after stab wound. Expression 

pattern of either ligands or receptor seem to be neuronal. Also very round cytoplasmic in situ 

signal resembles neuron cytoplasm surrounding big nuclues. This is consistent with co-

localization of p-Smad 1/5/8 with neuron marker NeuN (Figure 10).  

Additionally, I also examined p-Smad 1/5/8 immunoreactivity to monitor active BMP 

signalling after stab wound. Consistent with the BMP ligands and receptor expression after 

injury, p-Smad1/5/8 activity did not change upon stab wound as well (Figure 12B-C').  

Beside analysing signalling components of BMP, I also examined in situ hybridization for Id3 

as a downstream target of BMP and TGFβ signalling (Figure 13). 3 days post lesion Id3 

mRNA expression was up-regulated by the cells around the lesion area (Figure 13A-A') 

compared to control side lacking stab wound. When I applied in situ hybridization 7 days post 

lesion the mRNA expression pattern of Id3 seemed to be back to control levels in lesion side 

suggesting that some cells respond to injury by expressing Id3 transiently (Figure 13A''). As 

I did not observe up-regulation of BMP ligands , BMP specific receptor and p-Smad1/5/8 as 

the indicator of active BMP signalling 3 days post lesion, this suggests that Id3 was up-

regulated by other upstream ligand belonging to TGFβ signalling namely TGFβ itself.  

These data altogether suggest that BMP signalling which is shown above as a positive factor 

for neurogenesis, is not up-regulated by the cells especially proliferating astrocytes after an 

injury in the cortex.  

 

6.4   Conditional deletion of Smad4 in the adult SEZ  

As the functions of BMP signalling are concentration dependent (Mehler et al., 2000) the role 

of endogenous levels of BMP can only be determined by a loss of function approach. As 

several BMP ligands and receptors are present in the adult SEZ, the loss of a single BMP 
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ligand or receptor may be compensated for by others (see introduction and Table 1 and Table 

2). Therefore we decided to delete the Co-Smad4. It has been shown that deletion of common 

mediator Smad4 leads to lethality immediately after gastrulation due to impaired 

extraembryonic membrane formation and decreased epiblast proliferation (Sirard et al., 1998; 

Yang et al., 1998). As Smad4 is the only component of the pathway which can carry 

phosphorylated Smads into nucleus and mediate regulation of transcription, loss of this 

molecule in the adult SEZ could elucidate the function of BMP signalling via any of the 

ligands and receptors. To ensure Smad4 expression in the cells found to be responsive to 

BMP, we examined Smad4 mRNA by fluorescent in situ hybridization. Smad4 transcripts 

colocalized with GFAP in the adult SEZ (Figure 14). This allowed us to take advantage of 

the GLAST::CreERT2 mouse line (Mori et al., 2006) to achieve Smad4 deletion by Cre/loxP 

system. Cre is a 38 kDa recombinase protein from bacteriophage P1 which mediates 

intramolecular (excisive or inversional) and intermolecular (integrative) site specific 

recombination between loxP sites. In the GLAST::CreERT2 mouse line the inducible form of 

Cre is expressed in the locus of the astrocyte-specific glutamate transporter (GLAST).  The 

fusion of Cre to the ligand binding domain of the modified estrogen receptor (ERT2) is 

restricted to the cytoplasm and translocates only upon ligand binding (ligand=tamoxifen) into 

the nucleus where it can then mediate recombination (Figure 15) (Feil et al., 1996; Metzger 

and Chambon, 2001). Thus inducible Cre (CreERT2) in the locus of GLAST allows 

mediating recombination at specific time points specifically in astroglial cells (Figure 15). 

For deletion of Smad4 based on Cre/loxP system we took advantage of  the Smad4 floxed 

mouse line in which exon 8 was flanked by loxP sites (Smad4 fl/fl) (Yang et al., 2002). 

Embryos having deletion of this allele resembles that of Smad4-null embryos and die around 

embryonic day 7 as null embryos (Yang et al., 2002) indicating that deletion of exon 8 is 

sufficient to interfere with function of Smad4 gene. As Smad4 is not present in astrocytes 

outside the SEZ, GLAST::CreERT2 mediated excision of exon 8 of Smad4 (Smad4 fl/fl) is 

specific to the astrocytes and stem cells in the SEZ. Moreover, GLAST is not expressed in 

other cell types in the SEZ, such as ependymal cells (Mori et al., 2006) (see also below).  

 

I therefore crossed  these mouse lines and gave tamoxifen to adult (~10 weeks) animals. All 

animals were heterozygous for the GLAST::CreERT2 allele. While control animals carried 

either no (GLAST::CreERT2/Smad4wt/wt, in graphics shown as Control) or only a single 
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allele of Smad4 floxed (GLAST::CreERT2/Smad4wt/fl), experimental animals had 

homozygous floxed allele (GLAST::CreERT2/Smad4fl/fl, in graphics shown as Smad4 -/-).  

All animals received same amount of tamoxifen and as a result all animals had the same 

amount of Cre recombinase translocating to their nuclei which permits us to control the 

potential toxicity of Cre (Naiche and Papaioannou, 2007). Moreover, any influence of 

estrogen analogue tamoxifen on adult neurogenesis is equal in mice heterozygous or 

homozygous for the Smad4 allele. In order to examine the efficiency of the recombination in 

situ hybridization for Smad4 was performed on sections of GLAST::CreERT2 mice without 

(Figure 16A,C) or with floxed exon 8 of Smad4 (Figure 16B,D) 10 days after the end of 

tamoxifen administration (see materials and methods for the time of tamoxifen application). 

Smad4 mRNA was present in SEZ of  GLAST::CreERT2/Smad4wt/wt mice (Figure 16A,C). 

In contrast, Smad4 mRNA was virtually undetectable in the SEZ of adult 

GLAST::CreERT2/Smad4fl/fl mice (Figure 16B,D). Loss of Smad4 mRNA in 

GLAST::CreERT2/Smad4fl/fl mice after tamoxifen application was specific to the SEZ as in 

situ signal for Smad4 in the CA3 region of the hippocampus was not altered in these animals 

(Figure 16D) and remained comparable to the control (Figure 16C). Although the mRNA of 

Smad4 was decreased in GLAST::CreERT2/Smad4fl/fl mice, the protein may still persist 

longer. To examine the protein level I stained for p-Smad1/5/8 immunostaining. Because 

phosphorylated Smads require Smad4 to localize to the nucleus (Wrana, 2000), a decrease in 

Smad4 protein would result in release of p-Smad1/5/8 from the nucleus. Indeed, very few p-

Smad1/5/8-positive nuclei could be detected in the SEZ of GLAST::CreERT2/Smad4fl/fl 

mice in contrast  to the many positive nuclei in the control animals (Figure 17A,B). In control 

animals in the presence of Smad4 protein the phosphorylated forms of Smad1/5/8 is  

translocated into nucleus after making a complex with functional Smad4 protein. Loss of 

nuclear p-Smad1/5/8 staining in GLAST::CreERT2/Smad4fl/fl mice 10 days after the end 

tamoxifen application provides a strong evidence that at this stage Smad4 protein is already 

strongly reduced. Thus, tamoxifen-induced recombination in GLAST-positive cells very 

efficiently deleted Smad4 and interfered with p-Smad1/5/8 translocation to the nuclei in the 

adult SEZ only. 
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6.5  Analysis of adult SEZ stem cells and their progeny after Smad4 

deletion 
 

6.5.1  Smad4 deletion does not affect neural stem cell number and 

properties 
When tamoxifen-inducible form of Cre recombinase (CreERT2) in the locus of GLAST (Mori 

et al.,2006) is induced and the progeny of cells that underwent recombination was followed 

by expression of a reporter gene (β-galactosidase, see also below) for up to 9 months, 

reporter-positive cells constituted the majority of label retaining GFAP-positive cells (see 

above). This data indicates that label retaining astrocytes in adult SEZ are indeed stem cells. 

As Smad4 was deleted in astrocytes and as a result in stem cells I first examined this 

population in the adult SEZ of GLAST::CreERT2/Smad4wt/wt and 

GLAST::CreERT2/Smad4fl/fl mice. Because Smad4 mRNA and p-Smad1/5/8 protein in the 

nuclei had been lost 10 days after the end of tamoxifen application I started to analyze the 

phenotype  at this time point. As a first step I quantified the number of astrocytes labelled by 

GFAP in SEZ per area (Figure 18) (see materials and methods for detailed description of 

SEZ area). I observed no significant difference in the number of GFAP-positive cells after 

Smad4 deletion (Figure 18A,C) compared to control animals (Figure 18B,C). Although  

Smad4 deletion did not seem to have an effect on the number of GFAP-positive cells it may 

act only in the slow-dividing GFAP-positive cells namely stem cells. In order to study this  I 

quantified the number of label-retaining BrdU-positive (DCX-negative) cells (see materials 

and methods, Figure 19A and above) and found it not to be different between the genotypes 

(Figure 19B,C,D). This result indicates that deletion of Smad4 specifically in SEZ astrocytes 

did not change their number in vivo. However this data does not exclude the possibility that 

Smad4 deletion may influence their capacity for self renewal. In order to examine the self-

renewing capacity of Smad4-/- cells I used the neurosphere in vitro assay.  

 

Neural Stem cells isolated from the adult SEZ can proliferate and keep their stem cell identity 

in the presence of growth factors (epidermal growth factor (EGF)  and basic fibroblast growth 

factor (FGF2) ) in vitro without differentiating . Proliferating stem cells make sphere like 

structures which are called neurospheres (see materials and methods for picture). In my 

 64



hands, the efficiency of neurosphere formation is 1% (5000 cells form around 50 

neurospheres in 7 days) from the adult SEZ. Thus many cells contained in the dissected 

population do not form neurospheres as they are not stem cells. Within the neurosphere stem 

cells mostly stay undifferentiated and increase their number by self-renewing. Neurospheres 

can be then dissociated into single cells and maintained in the same conditions to get 

secondary neurospheres. Because stem cells increase their number by self-renewing within 

the neurospheres kept in EGF and FGF2, the same number of dissociated cells makes more 

neurospheres after each passage.  

I dissected the SEZ of GLAST::CreERT2/Smad4wt/wt and GLAST::CreERT2/Smad4fl/fl 

mice either immediately or 21 days after the end of tamoxifen and cultivated 10 cells/µl with 

EGF and FGF2. 7 days later the cultured neurospheres were quantified per well. No 

significant difference in the number of primary neurospheres was detected  between the 

genotypes (Figure 19E). This data reveals that there is no difference in the proliferation 

capacity of stem cells while it does not provide information about the self-renewing capacity 

yet. In order to understand this  I dissociated  the primary neurospheres into single cells and 

maintained them in the presence of growth factors 7 days more. Similar to the primary 

neurospheres, the number of secondary neurospheres did not show a difference between the 

two genotypes (Figure 19E) indicating that deletion of Smad4 has no effect on self-renewal 

of adult stem cells in vitro (nor in vivo, Figure  19D) 

 

6.5.2  Number of transit amplifying precursors is not altered 10 days after 

Smad4 deletion 
Dlx2-positive/DCX-negative cells in the adult SEZ comprises the largest population of transit 

amplifying precursors (Doetsch et al., 2002). As Dlx2-positive TAPs contained p-Smad1/5/8 

they may be altered by Smad4 deletion. Therefore I analyzed TAPs after Smad4 deletion (as I 

detected p-Smad1/5/8 in all Dlx2-positive/DCX-negative cells indicating activity of BMP 

signalling in these cells). As described above, TAPs can be labelled by a short pulse BrdU 

given 1 hour prior to sacrifice. Counting TAPs in that way would give a general idea about 

their number without discriminating the subtypes (such as Dlx2 or Olig2-expressing sub 

type). While around 70% of short-pulse BrdU-positive cells are DCX-negative the rest are 

DCX-positive and hence are proliferating neuroblasts. To distinguish these  populations I did 

 65



double immunolabelling with BrdU and the neuroblast specific marker DCX and counted 

only BrdU-positive/DCX-negative cells as TAPs (TAPs=BrdU+DCX- cells) per area in the 

SEZ. Similar to the number of stem cells, I observed no difference in the number of TAPs 

between GLAST::CreERT2/Smad4wt/wt and GLAST::CreERT2/Smad4fl/fl 10 days after the 

end of tamoxifen application (Figure 20A). Also in the labelling index of the Dlx2-positive or 

Olig2-positive population (see materials and methods; LI: short-pulse BrdU-positive cells/all 

proliferating cells) I could not observe any difference in their proliferating capacity 10 days 

after Smad4 deletion (Dlx2: Control=0.33±2.1,  Smad4-/-=0.3±3.5 (As Dlx2 is also expressed 

by neuroblasts, to obtain the labelling index of the only Dlx2-TAPs I did triple staining with 

BrdU/Dlx2/DCX); Olig2: Control=0.37±4.1,  Smad4-/-=0.34±1.7, 3 animals per genotype). 

Taken together the total number of TAPs and proliferation of different subtypes were not 

affected 10 days after Smad4 deletion.  
 

6.5.3  Neurogenesis is impaired 10 days after Smad4 deletion 
After examining stem cells and their immediate progeny, I continued by analyzing 

neuroblasts. Application of DCX staining on the sections of GLAST::CreERT2/Smad4wt/wt 

and GLAST::CreERT2/Smad4fl/fl mice 10 days after the end of tamoxifen revealed a 

consistent decrease in the immuno-reactivity in the Smad4-/- SEZ compared to controls 

(Figure 20B,C). Quantification of the number of DCX-positive cells in the SEZ showed a 

reduction to half of the control values (Figure 20D). As reduction in the number of cells can 

be due to cell death, I used the TUNEL assay to determine apoptotic cells via DNA 

fragmentation (for more detail see materials and methods). The number of Tunel-positive 

cells was not different in the GLAST::CreERT2/Smad4wt/wt or 

GLAST::CreERT2/Smad4fl/fl mice 10 days after the end tamoxifen application (1.8±0.8 

Control, 1.4±0.4 Smad4-/- , analyzed per sagittal sections at medio-lateral levels  from 0.6 to 

1mm relative to midline, 2 animals each).  To understand whether defects in proliferation may 

lead to the reduction of neruoblasts I examined proliferation of DCX-positive cells  as a 

following step. For this I used both short BrdU labelling and the antisera Ki67. With short 

pulse BrdU I can detect only the proliferating cells in S-phase while Ki67 staining covers all 

proliferating cells as the antigen is present in almost all phases of the cell cycle. However, 

proliferation of neuroblasts in GLAST::CreERT2/Smad4fl/fl mice was similar to control 

 66



(Figure 21A-D) shown by both BrdU (Figure 21A,B) and Ki67 stainings (Figure 21C,D) 

and quantifications for those labellings (%BrdUDCX/DCX in  Control  10±1%,  n(cells)=729;  

Smad4-/-  9±1%,  n(cells)=534,  3  animals  each); %Ki67DCX/DCX in Control=30%±7.7%,  

Smad4-/-=28%±11%, 3 animals per genotype). These data suggest that Smad4 deletion may  

affect the neurogenic pathway rather than survival and proliferation. 

 

6.5.4 Fate mapping of Smad4-/- cells 
 Using reporter mice the efficiency of Cre recombination mediated by GLAST::CreERT2 has 

been determined as ~70% (Mori et al., 2006; Ninkovic et al., 2007). Despite the high 

reduction in nuclear p-Smad1/5/8 staining, some stem cells/astrocytes may have escaped 

recombination. Thus the analysis described above may be showed by overgrowth of non 

recombined cells. To avoid this I examined only recombined cells after Smad4 deletion by 

crossing GLAST::CreERT2/Smad4fl mice with the ROSA26 reporter line (R26R) (Soriano, 

1999). In this line the LacZ gene is under a ubiquitous promoter. To report Cre 

recombination, a stop cassette flanked by loxP sites is placed in front of the LacZ gene. Only 

in the presence of Cre, the stop cassette is deleted and the LacZ gene  is transcrined the 

enzyme β-galactosidase. Recombined astrocytes, transit-amplifying precursors and 

neuroblasts could therefore be identified by double stainings of cell type specific antigens 

with β-galactosidase (for neuroblasts see Figure 22A,B). When I quantified the number of 

DCX-positive and GFAP-positive  cells among β-galactosidase-positive cell, similar results, 

namely a reduction in the number of DCX-positive, but not TAPs and GFAP-positive cells, 

were observed for reporter-positive cells in the SEZ of GLAST::CreERT2/Smad4fl/ROSA26 

mice (Figure 22C). Thus, the similar numbers of TAPs and GFAP-positive cells can not be 

explained by a compensatory increase in the number of WT cells at the expense of mutant 

cells. Rather, these results suggest that deletion of Smad4 does not affect stem cell numbers 

and properties, but strongly affects neurogenesis.  
 

6.5.5  Deletion of Smad4 alters TAP identity by aberrant expression of 

Olig2 
As reduction in neuroblasts is not due to cell death or impaired proliferation , Smad4 deletion 

may have lead to a defect at earlier stages in the lineage. However, the above results 
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demonstrated normal stem cell numbers and self-renewal as well as normal numbers of TAPs. 

Although the  TAPs did not change in their total number 10 days after Smad4 deletion we 

hypothesized that the molecular identity of TAPs may be altered in a way to interfere with 

their progression towards the neuroblast fate. To examine the molecular composition of 

TAPs, I stained sections of GLAST::CreERT2/Smad4wt/wt and 

GLAST::CreERT2/Smad4fl/fl mice 10 days after Smad4 deletion for Dlx2 and Olig2. 

Immunostaining for Olig2 revealed a prominent increase in the number of Olig2-positive cells 

in the SEZ of GLAST::CreERT2/Smad4fl/fl mice (Figure 23E,G) to double the number in 

GLAST::CreERT2/Smad4wt/wt mice (Figure 23B,G). As the total number of TAPs was not 

increased (Figure 20A), the up-regulation of Olig2 may either occur in the TAP population or 

ectopically in astrocytes or neuroblasts. However, neither in control animals nor after Smad4 

deletion I could detect the Olig2 antigen in GFAP- or DCX-expressing cells (Figure 23H). 

When I applied Olig2 and Dlx2 staining together, I found Olig2 frequently co-localized with 

Dlx2 in the SEZ of GLAST::CreERT2/Smad4fl/fl mice (Figure 23F,G). While no 

Olig2/Dlx2 double positive cells were present in the SEZ of control mice (Figure 23C,G) 

indicating that Olig2 was aberrantly expressed in the Dlx2 cell populatio in the 

GLAST::CreERT2/Smad4fl/fl animals. 

  

As Olig2 overexpression was previously shown to interfere with neurogenesis in the adult 

SEZ (Hack et al., 2005), I examined whether upregulation of Olig2 among Dlx2-positive cells 

may divert these cells from their normal neurogenic lineage. Dlx2-positive cells normally 

comprise about 70% DCX-positive neuroblasts and 30% DCX-negative TAPs (Figure 23H). 

However, 10 days after Smad4 deletion, the DCX-positive neuroblast population amongst 

Dlx2-positive cells was reduced leading to a reduction in the total number of Dlx2-positive 

cells (Figure 23H). However, amongst Dlx2-positive cells the DCX-negative fraction 

increased to 46% (Figure 23H). Interestingly, the non-neuroblast fraction was largely 

composed of Dlx2/Olig2-double-positive cells (Figure 23H), consistent with the notion that 

the aberrant expression of Olig2 may interfere with the progression towards the neuroblast 

stage (Hack et al., 2005).  

 

In order to show whether up-regulation of Olig2 occurred in recombined cells I applied Olig2 

staining on sections of GLAST::CreERT2/Smad4fl/fl/ROSA26 mice 10 days after Smad4 
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deletion. Indeed, the number of recombined cells (detected by β-galactosidase 

immunostaining) having Olig2-immunoreactivity in the SEZ of Smad4-/-  mice was higher 

than the control ones (Figure 24A versus B). This observation indicates the cell autonomous  

up-regulation of Olig2 after Smad4 deletion. 

 

6.5.6  Proliferation of TAPs is impaired 21 days after Smad4 deletion 
To further follow the phenotype upon Smad4 deletion at later stages, I examined 

GLAST::CreERT2/Smad4wt/wt and GLAST::CreERT2/Smad4fl/fl mice 21 days after the 

end of tamoxifen application. As a first step I quantified all cells without using a reporter. The  

decrease in the number of DCX-positive cells after Smad4 deletion was still present 21 days 

after (Figure 25C,D,F) and comparable to the reduction to 50% after 10 days (Figure 20D). 

Similarly, there was no difference in the number of GFAP-positive cells after Smad4 deletion 

compared to control (Figure 25A,B,E). In contrast to the 10 days time point there was a 

dreduction in the number of short pulse BrdU-positive cells  21 days after Smad4 deletion 

compared to control (Figure 26A). In order to see whether this reduction is due to  

proliferation defects in TAPs or in some subtypes I examine the labelling index of Olig2-

,Dlx2 or Mash1-positive cells at this stage. Because both Dlx2 and Mash1 are also expressed 

by neuroblasts beside TAPs, I did triple stainings of BrdU with DCX (Dlx2/DCX staining or 

Mash1/DCX staining) to distinguish these two populations. Indeed, the quantifications 

revealed a proliferation defect among all subtypes of TAPs, the Olig2-,Dlx2- or Mash1-

positive cells (Figure 26B, see also C,D for example of Mash1) 21 days after Smad4 deletion. 

The results of the reduced number of neuroblasts and impaired TAP were confirmed also in 

reporter-positive cells. Interestingly, the number of recombined cells in the SEZ of 

GLAST::CreERT2/Smad4fl/ROSA26 mice had further decreased to 53% of the number of 

reporter-positive cells in control mice 21 days after Smad4 deletion (data not shown). 

Consistent with above finding, the large fraction of GFAP- and DCX-immunonegative cells 

(TAPs) had disappeared by this stage and DCX-positive/reporter-positive cells were still 

strongly reduced among the reporter-positive cells. In contrast, the number of GFAP-positive/ 

reporter-positive cells was no different between control and Smad4-deficient mice but their 

relative proportion was increased due to the reduction in reporter-positive cells to half the 

number observed in control mice. Thus, these data confirmed that the major phenotype upon 
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Smad4 deletion is a reduction of neuroblasts and an initial increase in aberrant TAPs. These 

mis-specified TAPs then largely disappear from the reporter-positive population, consistent 

with the reduction of TAPs observed 21 days after tamoxifen application in 

GLAST::CreERT2/Smad4fl/fl mice (Figure 26A).  

 

6.5.7  BrdU birthdating analysis shows an increase in the number of 

immature oligodendrocytes in corpus callosum 
To examine slow dividing cells in SEZ I had used a label retaining assay (Figure 19A and 

Figure 27A, see also in materials and methods). Addition of BrdU 2 weeks to the drinking 

water of mice allows labelling of slow dividing cells. However not only slow dividing cells 

but also fast dividing cells incorporate BrdU within this period. To eliminate fast proliferating 

cells 2 weeks BrdU period is followed by another 2 weeks with normal water in which TAPs 

dilute the label (Figure  and also see materials and methods). Besides labelling the slow 

dividing stem cells, this protocol also labels any cells that leave the cell cycle shortly after 

incorporating BrdU. Thus this assay can also be used to obtain recently generated postmitotic 

cells in any regions of the brain. I applied BrdU in drinking water of 

GLAST::CreERT2xSmad4wt/wt or wt/fl and GLAST::CreERT2xSmad4fl/fl mice for 2 

weeks and at the end of 2 weeks mice received normal water for additional 2 weeks before 

sacrifice (Figure 27A). When I applied BrdU staining on barin sections of these mice I 

observed more BrdU-positive cells in the corpus callosum of GLAST::CreERT2xSmad4fl/fl 

mice compared to control ones (Figure 27B,C). These BrdU-positive cells may be slow 

dividing progenitors committed to certain lineage or/and  recently generated postmitotic cells. 

There are slow proliferating oligodendrocyte precursors outside the neurogenic niches 

(Horner et al., 2002; Dawson et al., 2003; Buffo etal., 2005) including the corpus callosum. 

Recently it has been shown that in the adult brain, oligodendrocytes are continuously 

generated either by committed progenitors within the corpus callosum or by stem cells from 

SEZ that then migrate and locate in the corpus callosum (Menn et al., 2006). To determine the 

identity of BrdU-positive cells I used an antibody against the transcription factor Sox10 to 

label oligodendrocytes or their progenitors (Kuhlbrodt et al., 1998; Stolt et al., 2002) and 

quantified the number of Sox10/BrdU double positive cells in the corpus callosum area (see 

materials and methods) of both GLAST::CreERT2xSmad4wt/wt or wt/fl and 
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GLAST::CreERT2xSmad4fl/fl mice at the end of 4 weeks (Figure 28). The number of double 

positive cells were significantly increased in the corpus callosum of mutant mice compared to 

the control. Considering the data of elevated number of Olig2-positive cells in the SEZ in the 

absence of Smad4, this new observation suggested that SEZ is potentially responsible for the 

higher number of oligodendrocytes in the Smad4-/- corpus callosum. However, with this 

method  we can not distinguish between the oligodendrocytes that migrated from 

subependymal zone and the ones generated already in corpus callosum. This data does not 

directly clarify whether progenitors in the SEZ are responsible for the increase in 

Sox10/BrdU-positive cells in the corpus callosum after Smad4 deletion or whether 

progenitors in the corpus callosum may be directly affected. However, Smad4 is not 

expressed in the corpus callosum as revealed by in situ hybridization (Figure 29) and so far 

restricted to neurons as Smad4 is not localized in progenitors outside the SEZ. Therefore 

these observations support the hypothesis that Olig2-positive cells increased in the Smad4-/- 

SEZ may migrate into corpus callosum after Smad4 deletion (Moreover there is aberrant 

expression of Olig2 in SEZ of GLAST::CreERT2xSmad4fl/fl mice further supporting this 

hypothesis). Indeed, Olig2-positive cells normally migrate from the SEZ to the corpus 

callosum (Menn et al., 2006) and Olig2 over-expression results in a strong increase in the 

number of cells migrating to the corpus callosum (Hack et al., 2005). 

 

6.5.8  Deletion of Smad4 results in migration of cells to the corpus callosum 

and increased oligodendrogliogenesis 

To test the hypothesis that  TAPs mis-specified after Smad4 deletion may  leave the SEZ and 

head towards the corpus callosum and generate oligodendrocytes, I injected retroviral vectors 

(MLV-based, see also materials and methods) containing GFP into the SEZ of 

GLAST::CreERT2/Smad4fl/fl or control mice 10 days after the end of tamoxifen application. 

At this time point neurogenesis is already impaired and Olig2 is up-regulated by the Dlx2-

positive TAPs as demonstrated with a scheme in Figure 30. I examined the location of GFP-

positive cells 10 days later (20 days after the end of tamoxifen application). In control mice 

only 2% of GFP-labelled cells migrated from the SEZ to the CC (Figure 31C), consistent 

with previous observations (Hack et al., 2005; Menn et al., 2006). However, up to 30% of all 
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cells labelled by injection into the Smad4-/- SEZ were located in the corpus callosum 10 days 

later (Figure 31A,B,C).  

 

Although I did not observe Smad4 mRNA in corpus callosum, nevertheless I did a control 

injection in corpus callosum of Smad4-/- in order to see whether deletion of Smad4 affects the 

progenitors within the corpus callosum or not (Figure 32). Menn and colleagues showed by 

injections that progenitors giving rise to oligodendrocytes within the corpus callosum do not 

migrate very far (~100µm) whereas the ones generated from SEZ migrate much further. 

Consistent with this data, also after injection of virus into the corpus callosum of Smad4-/- 

mice, GFP-positive cells were found only close to the injection track (Figure 32A) in contrast 

to the far distance migration of cells labelled by injection into the SEZ (Figure 32B). Thus, 

the increased number of oligodendrocytes found in corpus callosum by BrdU birthdating and 

Sox10 co-localization after Smad4 deletion can not originate from progenitors within corpus 

callosum. Rather, many more cells originating in the SEZ migrate far into the corpus callosum 

upon Smad4 deletion in adult neural stem cells.  

 

To assess the fate of the GFP-positive cells that had migrated from the SEZ into the corpus 

callosum I stained for PDGFRα to detect immature oligodendrocyte progenitors and CC1 or 

CNPase for oligodendrocytes at later stages. Sox10 is present in oligodedndrocyte 

progenitors, immature and mature oligodendrocytes. To follow the maturation of 

oligodendrocytes after Smad4 deletion I preferred to label different antigens present in 

different stage of oligodendrogenesis. Indeed, most of the GFP-positive cells in corpus 

callosum were PDGFRα-positive (80%, Figure 33A,C) and about 60% were CC1-positive 

(Figure 33B,C), consistent with their progression along the oligodendroglial lineage. To 

assess the further maturation of cells that migrated from the SEZ to the corpus callosum, I 

analyzed the brains at later stages after viral vector injection (21-30 days, Figure 33D-E''). 

Most cells labelled with GFP virus in the SEZ that had migrated into the corpus callosum 

exhibited further mature features of oligodendrocytes in regard to their morphology (Figure 

33D) and the expression of MOG (Figure 33E-E''), a protein contained only in mature 

oligodendrocytes. Thus, a large proportion of TAPs up-regulate Olig2 after Smad4 deletion 

and then give rise to cells migrating to the corpus callosum and differentiating into 

oligodendrocytes rather than generating neuroblasts migrating to the OB (Figure 31C). 

 72



This phenotype may obviously depend on Olig2-upregulation, as Olig2 was previously shown 

to direct SEZ cells towards the generation of cells migrating towards the corpus callosum 

(Hack et al., 2005). However, Smad4 deletion may result in deregulation of many other direct 

or indirect down-stream targets in addition to Olig2. We therefore asked whether the up-

regulation of Olig2 is really the key factor for this lineage diversion by attempting a rescue 

via suppression of Olig2 function. The fusion of Olig2 to the strong activator VP16 has 

previously been shown to antagonize the endogenous function of Olig2 that acts as a repressor 

(Buffo et al., 2005; Hack et al., 2005; Mizuguchi et al., 2001). I therefore injected a 

previously described virus containing Olig2VP16, IRES and GFP (Buffo et al., 2005; Hack et 

al., 2005) into the SEZ of Smad4-/- mice (tamoxifen was applied 10 days prior to virus 

injection as above). The proportion of Olig2VP16 transduced cells migrating to the corpus 

callosum was significantly reduced compared to the cells infected with a control virus in 

Smad4-/- mice (Figure 31C). Even more strikingly, the proportion of Olig2VP16-GFP-

positive cells migrating via the RMS to the OB was increased to normal WT levels as 

observed upon GFP virus injection into control mice (Figure 31C). Thus, suppression of 

Olig2 function achieves a rather complete rescue of the defective neurogenesis upon Smad4 

deletion.  

 

6.5.9  Wild type cells transplanted into the Smad4-/- SEZ are not impaired 

in neurogenesis 
As deletion of Smad4 in all astrocytes of adult SEZ may change the niche signals and thereby 

contribute to the defects in neurogenesis, I examined the function of the neurogenic niche by 

transplanting a small number of wild type cells into 6 weeks old control and Smad4-/- mice 

(Figure 34). Towards this aim, adult SEZ cells were isolated from 6 weeks old animals 

expressing the green fluorescent protein Venus targeted to the plasma membrane ubiquitously 

(Rhee et al., 2006) and 30.000 cells were transplanted into the SEZ of  

GLAST::CreERT2/Smad4wt/wt or GLAST::CreERT2/Smad4fl/fl mice 10 days after the end 

of tamoxifen application. Notably, at this time point neurogenesis was decreased and Olig2-

expression was increased in the Smad4-/- mice (Figure 20,23). Consistent with our aim to 

expose wild type cells to a mutant environment, in most cases only a single Venus-positive 

cell was detected in each section 7 days after transplantation. When I examined the identity of 
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the transplanted Venus positive cells (Venus protein is detected by GFP antibody) in the SEZ, 

RMS and OB, most of them were DCX-positive neuroblasts, in both a control or Smad4-/- 

SEZ environment (Figure 34B-D). These data therefore demonstrate that the neurogenic 

niche is not altered in the SEZ of GLAST::CreERT2/Smad4fl/fl mice as wild type cells 

progress normally along their neuronal fate. Thus, Smad4 acts in a cell autonomous manner to 

allow neurogenesis by Olig2 suppression.  

 

6.5.10  Smad4 is required at early stages in the stem cell-derived lineage  
As the above results support a cell-autonomous function of Smad4, we next asked at which 

stage in the neural stem cell derived lineage Smad4 is required. Towards this end, I deleted 

Smad4 at different stages in the lineage. In order to delete Smad4 in all fast-proliferating cells 

of the SEZ (TAPs and neuroblasts) and spare the stem cells we targeted Cre by the Moloney-

based viral (MLV) vectors that require the breakdown of the nuclear envelope during cell 

division to incorporate their genome (Figure 35). Indeed, upon injection of MLV-based 

retroviral vectors containing GFP into the SEZ, virtually no GFP-positive cells were GFAP-

positive 2 days (Figure 35A, this data was observed by my colleague Monika Brill in our 

laboratory) or 7 days later (Hack et al., 2005) indicating that neural stem cells were not 

targeted. In contrast, upon injection of lentiviral vectors containing GFP (Pfeifer et al., 2001; 

Pfeifer et al., 2002) the vast majority of GFP-positive cells are GFAP-positive 2 days after 

viral injection (Figure 35A). I could therefore use different viral vectors to target Cre to 

distinct stem or progenitor populations in Smad4fl/fl mice (Figure 35B). Indeed, 7 days after 

injection of lentivirus containing Cre into the SEZ of Smad4fl/fl mice a strong reduction in 

the number of DCX-positive cells was detected among the Cre-infected cells to less than a 

third of the DCX+ cells among cells infected by the GFP-containing control virus (Figure 

35C,D,G). In contrast, however, MLV-retrovirus mediated deletion of Smad4 by Cre 

expression in TAPs and neuroblasts of Smad4fl/fl mice did not show any effect on the 

number of DCX+ neuroblasts 7 days after injection (Figure 35E,F,G). Thus, these data 

suggest a role for Smad4 at an early stage in the adult neural stem cell derived neurogenesis.  

 

 

 74



6.6 Discrimination of BMP and TGFβ signalling in regard to the 

contribution to Smad4 phenotype 
The above results have shown a role of Smad4 in suppressing the oligodendroglial lineage 

when TAPs are generated. As introduced above Smad4 is a central mediator in TGFβ 

superfamily. Thus, the phenotype revealed after Smad4 deletion may be due to interference 

with exclusively with BMP or/and TGFβ pathway signals in this superfamily. Although this 

phenotype is well consistent with the identity of BMP-responsive cell types, the stem cells 

and TAPs, it does not exclude the possible contribution of TGFβ signalling. Indeed, cells 

containing phosphorylated Smad 2 and 3, the receptor regulated Smads of TGFβ signalling, 

are rather widespread in the adult SEZ (Figure 38).  

We therefore aimed to discriminate the role of the BMP or  TGFβ pathway respectively.  

 

6.6.1  Extracellular inhibition of BMP signalling via Noggin increases Olig2 

expression and decreases neurogenesis   
To block the BMP selectively I used minipumps to infuse Noggin, an extracellular inhibitor 

binding to BMP-ligands, but not to TGFβ (Brunet et al., 1998; Shi and Massague, 2003; 

Zimmerman et al., 1996), for 7 days into the lateral ventricle of wild type mice. The animals 

examined either at 3 or 21 days after the end of infusion. When mice were examined 3 days 

after the end of infusion, p-Smad1/5/8 immunostaining showed a severe decrease in the SEZ 

after Noggin, but not after vehicle (artificial Cerebro-Spinal-Fluid, aCSF) infusion (Figure 

36A,D), confirming the successful delivery of Noggin. As a first step I checked neurogenesis. 

The number of DCX-positive cells in the SEZ decreased after Noggin infusion to less than 

half the number observed in animals receiving vehicle infusion (Figure 36B,E,G). In further 

agreement with the results obtained after Smad4 deletion, Noggin infusion also increased the 

number of Olig2-positive cells to double the number obtained after vehicle infusion (Figure 

36C,F,H).  

When animals were examined 21 days after the end of infusion, the loss of p-Smad1/5/8 had 

not yet (Figure 37A,C) although the number of p-Smad1/5/8-positive cells was higher 

compared to the analysis at 3 days after Noggin infusion. Strikingly, impaired neurogenesis 

(Figure 37B,E,G) and increase in the number of Olig2-positive cells (Figure 37C,F,H) also 

persisted until 21 days after the end of Noggin infusion.  
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6.6.2   Inhibition of TGFβ signalling does not cause Oli2 up-regulation and 

thereby alteration in neurogenesis 
Noggin infusion showed that BMP signalling is required for cell fate choice in favour to 

neurogenesis versus oligodendrogenesis indicating its contribution to the phenotype in 

Smad4-/- mice. Taken together, the results imply that the BMP pathway is responsible for the 

major phenotype after Smad4 deletion. However, given the presence of p-Smad2/3 (Figure 

38), TGFβ may have some other roles yet unravelled e.g. regulate the later proliferation 

effects observed after Smad4 deletion. To clarify the role of TGFβ signalling, we used the 

GLAST::CreERT2 mouse line to delete the type II TGFβ receptor (Tgfbr2fl/fl) (Leveen et al., 

2002) in collaboration with Lukas Sommer and Sven Falk. This floxed line is a suitable tool 

to study the role of TGFβ signalling as  TGFβ  specific type II receptor (Tgfbr2) is the only 

secondary receptor and therefore required to mediate TGFβ signalling (Leveen et al., 2002). 

GLAST::CreERT2/Tgfbr2wt/wt and GLAST::CreERT2/Tgfbr2fl/fl mice received tamoxifen 

as it has been done in previous experiments (5 days consecutive). One month after the end of 

tamoxifen application animals were sacrificed. However, TGFβ type II receptor 

immunostaining in the SEZ of GLAST::CreERT2/Tgfbr2wt/wt and 

GLAST::CreERT2/Tgfbr2fl/fl was not different in the two genotypes (Figure 39). However, 

when animals were examined three months after the end of tamoxifen application TGFβ type 

II receptor immunoreactivity had disappeared in the SEZ of animals with homozygous floxed 

allele of TGFβ type II receptor (Figure 40, see D versus A). Notably, however TGFβ type II 

receptor-positive cells were still observed outside the SEZ within the striatum confirming the 

specificity mediated by GLAST::CreERT2 (Figure 40D) However, despite the loss of TGFβ 

type II receptor immunoreactivity, I could not observe a difference in the number of 

neuroblasts between the SEZ of GLAST::CreERT2/Tgfbr2fl/fl and 

GLAST::CreERT2/Tgfbr2wt/wt (Figure 40B,E,G). Similar to the neuroblasts, the number of 

Olig2-expressing cells also did not differ in the animals with homozygous floxed allele of 

TGFβ type II receptor compared to ones carrying none (Figure 40C,F,H).  

Thus, TGFβ-mediated signalling does not contribute to the striking decrease in neurogenesis 

and diversion of the adult stem cell progeny towards an oligodendroglial fate observed after 

Smad4 deletion.Conversly, the blockade of BMP-signalling phenocopies the main defects 
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observed after deletion of Smad4, suggesting that BMP is the main neurogenic signal in this 

regard. 

 

6.7  Overexpression of BMP ligands in vivo and in vitro  
 
6.7.1  BMP7 reduces proliferation in the adult SEZ  
 
Until now we studied endogenous role of BMP signaling in the adult SEZ either by 

interfering with the intracellular cascade via Smad4 deletion or by interfering extra cellularly 

via noggin infusion. In both experiments we decreased the BMP activity. In order to examine 

the effects of BMP levels  elevating, as an opposite approach, we decided to infuse BMP 

ligand into the lateral ventricle. In order to avoid endogenous inhibition by Noggin, I chose 

BMP7 as the ligand least sensitive to Noggin (Zimmermann et al., 1996). BMP7 (dissolved in 

aCSF) was infused for 7 days into the lateral ventricle of wild type mice and animals were 

examined 3 days after the end of infusion. As control, some animals received only aCSF 

without BMP7. All animals had BrdU injection 1 hour prior to sacrifice. When proliferation 

was examined by Ki67 and BrdU (Figure 41), I observed less Ki67- or BrdU-positive cells in 

the animals received BMP7 compared to control (Figure 41A,B; Ki67: Control=142±21/SEZ 

area, BMP7=73±17/SEZ area, 2 animals each). These results show that increasing BMP 

levels in the adult SEZ result in less proliferation and thereby less neurogenesis. 

 

6.7.2  BMP decreases the proliferation of neurosphere forming cells in vitro 
In order to see BMP function on stem cells in vitro I used neurosphere assay. After 

dissociating SEZ from adult mice I cultured single cells (10 cells/µl) and cultivated them with 

growth factors EGF and basic FGF (see also in materials and methods) in 24 well plates as 

explained previously. In these conditions single cells proliferate and make neurospheres. In 

some wells I added BMP2 at different concentrations (1ng and 10ng). The number of 

neurospheres per well (5000 cells) was quantified after 7 days. Only in the condition with 

higher BMP2 concentration the number of neurospheres was reduced compared to control 

(Figure 42A,C). While 1ng BMP2 did not show a significant difference, 10ng BMP2 reduced 

the number of neurospeheres almost to half of the number observed in control conditions 

(Figure 42C).  
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Previously it has been shown that Olig2 is highly expressed in neurospheres and required to 

keep them proliferative (Hack et al., 2004). As interfering with BMP signaling via Noggin 

infusion and Smad4 deletion lead to increase in Olig2 expression, we asked the question 

whether BMP addition has influenced Olig2 expression and thereby decreased proliferation. 

Indeed, Olig2 immunoreactivity in neurospheres treated with BMP2 was undetectable 

(Figure 42E) compared to very prominent expression in control neurospheres (Figure 42D).  

The negative effect of BMP2 on proliferation of neurosphere cells in vitro correlates with the 

data observed after BMP7 infusion into the ventricle. These results also show further support 

for regulation of Olig2 by BMP, as Olig2 is downregulated in the neurospheres treated with 

BMP2 and conversely up-regulated upon inactivation of BMP signaling via Smad4 deletion 

and Noggin infusion in vivo. 

 

6.7.3 BMP regulates proliferation via Smad pathway 
Having observed proliferation deficiency of neurosphere forming cells in the presence of 

BMP, I examined whether neurospheres have endogenous BMP signalling per se and whether 

ectopic BMP signals also through Smad pathway.  
However, p-Smad1/5/8 staining was absent in neurospheres cultivated without BMP2 (Figure 

43A-A'') whereas neurospheres cultured in presence of BMP2 showed a high p-Smad1/5/8 

activity (Figure 43B-B''). This indicates the absence of notable levels of endogenous BMP 

signalling within the neurospheres 

 

Interestingly adult neural stem cells do not have BMP activity in vitro in comparison to their 

very prominent BMP activity in vivo. This observation was confirmed also by using BRE-

eGFP mouse line. SEZ of adult BRE-eGFP mice were dissected and dissociated cells were 

cultured in neurosphere culture conditions. No GFP was visible in neurospheres not even after 

amplification by antibody staining (Figure 43C-C'') consistent with the lack of p-Smad1/5/8 

expression in these cells (Figure 43A-A''). However, when neurosphere cells from BRE-

eGFP were treated with BMP2, neurospheres expressed high levels of GFP indicating the 

activation of Smad pathway ectopically.  
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6.7.4  BMP2 blocks oligodendrocyte differentiation from stem cells in vitro 
In order to examine the role of BMP during differentiaion of neurosphere cells, I treated 

differentiating cells with BMP2. Neurospheres were dissociated and plated on Poly-D-Lysine 

as single cells without growth factors (see also in materials and methods). This allows 

neurosphere cells to leave their undifferentiated/proliferative state and differentiate into 

neurons, astrocytes or oligodendrocytes.  In vitro adult neural stem cells mostly give rise to 

astrocytes (~60%) (Figure 44A). The remainder is composed of oligodendrocytes (~15%), 

neurons (~10%) and cells which are not positive for those lineage markers but  having 

astrocytic shape (Figure 44A) . When BMP2 was given at the first day and not removed or 

refreshed until fixation of cells, the number of oligodendrocytes generated by neurosphere 

cells dropped in a dose dependent manner (Figure 44A). In the presence of 10 and 100ng 

BMP2 very few oligodendrocytes were generated compared to control conditions (Figure 

44A,B-C'). Conversely higher levels of BMP lead to an increase in the number of marker 

negative cells probably at the expense of oligodendrogenesis. BMP2 also showed a tendency 

to increase the number of neurons and decrease the number of astrocytes (Figure 44A). 

 

Taken together, BMP2 addition to differentiating neurosphere cells blocks oligodendrogenic 

lineage consistent with the in vivo data observed after Smad4 deletion and Noggin infusion . 

However, the effect on promoting neurogenesis was only in vivo, suggesting that in vitro 

additional factors may be required to promote neurogenesis.  

 

6.8  Monitoring direct or indirect targets of Smad4 via microarray analysis 

Given the potent effect of Smad4 deletion in vivo, we were interested to examine potential 

mediators of Smad4 that elicit Olig2 upregulation. Towards this end, I isolated RNA form the 

SEZ of GLAST::CreERT2/Smad4wt/wt and GLAST::CreERT2/Smad4fl/fl mice. To test the 

quality and reproducibility of the samples, hierarchical clustering was used to find 

(dis)similarities between the samples, showing that the replicates of each group of cells 

analyzed were clustering together. Differentially expressed messenger RNAs were monitored 

by microarray analysis (see materials and methods). Around 500 gene were found to be 

differentially expressed in their mRNA levels at least in one of four different analysis (CI, 

Carma Mas5, Carma RMA, BC Mas). The main difference between these analysis is the way 
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of significance calculation. Among the differentially expressed genes, only 12 genes were 

significant resulted in all of the 4 analysis. Notably, amongst these we detected a higher 

number of mRNAs downregulated in the Smad4-/- SEZ consistent with activator role of 

Smad4. 

In order to confirm the expression differences observed by microarray, I performed Real Time 

RT-PCR (Figure 45). Complementary DNA (cDNA) was prepared (see materials and 

methods) from the same RNA with which microarray analysis had been performed. All 

mRNAs were found to be regulated in the same direction as indicated by our microarry. 

Among those genes confirmed by RT-PCR, polyadenylate binding protein-interacting protein 

1(translational activator) (Paip1), dipeptidylpeptidase 6 (Dpp6), SRY-box containing gene 17 

(Sox 17) were up-regulated and cyclin-dependent kinase 4 (Cdk4), POU domain, class 6, 

transcription factor 1 (translational activator) (Pou6f1), Sox11 were down-regulated in 

Smad4-/- versus control. 
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7  DISCUSSION 
 

The aim of this study was to determine the role of BMP signalling in the adult SEZ and also 

to monitor this signalling after brain injury. I started with an expression analysis for BMP 

signalling pathway elements and by determining the cell types subjected to BMP signalling. I 

observed an active BMP signalling in the adult SEZ.  

 Here I demonstrate that Smad-mediated BMP signalling is active in adult neural stem cells 

and their immediate progeny, the TAPs and it is required for adult neurogenesis in the adult 

SEZ. My results show that both genetic deletion of Smad4, a central mediator of BMP 

signalling, and infusion of Noggin, an extracellular inhibitor of BMP, resulted in an increase 

in Olig2-positive oligodendrocyte precursors at the expense of neurogenesis. An abnormally 

high number of oligodendrocyte precursors emerged in the SEZ after Smad4 deletion and 

migrated then towards the corpus callosum where they started to express mature 

oligodendrocyte features. The decrease in neurogenesis could be fully rescued by suppression 

of Olig2 function indicating that the up-regulation of Olig2 was the main cause of increased 

oligodendrogenesis. Furthermore, transplantation experiments showed that Smad4 deletion 

does not affect the SEZ niche per se but rather Smad4-mediated BMP-signalling is required in 

a cell-autonomous manner at an early stage in the adult neural stem cell lineage when stem 

cells give rise to TAPs. Consistent with its presence in TAPs, BMP signalling also affected 

TAP proliferation at later stages.  

 

My results therefore imply BMP as one of the earliest key signals in the adult neural stem cell 

niche allowing the progression towards the neurogenic lineage by inhibiting the generation of 

oligodendrocytes.  

 

7.1   Smad pathway dependent BMP activity is present in stem cells of 

adult SEZ but not in SGZ 

Previously, some of BMP ligands and receptors as well as Noggin had been described in the 

adult SEZ (Zhang et al., 1998; Lim et al., 2000; Peretto et al., 2002). However, the cells 

responding to BMP signalling and its actual activity were not previously examined enough. It 

had also been suggested that Noggin negatively regulates BMP transcription as Bmp genes 
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were ectopically expressed in the ventral spinal cord of Noggin mutants (McMahon, 1996; 

Hammerschmidt et al., 1996). However this additional role of Noggin beside its direct role in 

preventing the binding of BMP to its receptor does not apply to adult SEZ as mRNA of 

several BMP ligands and protein of some others are present in the adult SEZ despite the 

Noggin presence (Lim et al., 2000; Peretto et al., 2002; and Figure 7).    

Lim and colleagues found Noggin protein exclusively in ependymal cells lining the ventricle 

and proposed that secretion of Noggin from ependymal cells inhibit BMP signalling and 

thereby allow neurogenesis. Consistent with this, in adult Noggin-LacZ reporter mice β-

galactosidase is found in ependymal cells beside corpus callosum and rostral migratory stream 

(Peretto et al., 2002). However, expression of Noggin does not exclude a certain degree of 

BMP activity as BMP signalling acts in a concentration dependent manner (Furuta et al., 

1997; Mehler et al., 2000). Moreover it has been shown that Noggin may be required as a 

feedback mechanism as its expression is up-regulated together with BMP ligands (Gazzero et 

al., 1998). Similar to Noggin, the intracellular inhibitor of BMP signalling, Smad6, is also 

strongly induced by BMPs in certain cell types indicating a feedback inhibition mechanism 

after ligand-induced activation.  

 

Thus, to determine whether there is an active BMP signalling in the adult SEZ zone or not, I 

focused on BMP mediated Smad pathway as Smad proteins are major signalling molecules 

acting downstream of the serine/threonine kinase receptors  after ligand binding (Heldin et al., 

1997; Moustakas et al., 2001). Among these, Smad 1,5 and 8 are phosphorylated by receptors 

specifically upon BMP binding which can be used to monitor the activity of BMP signaling. 

Indeed, I found immunoreactivity for phosphorylated Smad1/5/8 in the adult SEZ.  Moreover 

I could also show BMP activity in the adult SEZ by using BRE-driven reporter. This activity 

is present close to the ependymal layer despite the expression of Noggin in ependymal cells. I 

showed that stem cells of adult SEZ and a sub population of their immediate progeny TAPs 

are subject to BMP signalling. Finding BMP specific phosphorylated Smads in the adult SEZ 

indicates that there must be certain levels of BMP present extracellularly. Thus, rather than 

fully blocking the binding of BMP ligands to their receptors, Noggin secretion may adjust the 

level of BMP-signalling activity. This adjustment may depend on the amount as BMPs act in 

a dose dependent manner both in vitro and in vivo (Hogan, 1996; Nguyen et al., 2000; 

Mehler, 2000) as well as the identity of the ligands secreted. It is known that Noggin is 
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relatively insensitive to BMP7 (Zimmerman et al., 1996) which is indeed present in the adult 

SEZ (Peretto et al., 2002; and Figure 7D). As different concentrations of BMP are known to 

exert different effects (Furuta et al., 1997; Nguyen et al., 2000), a tight balance between BMP 

ligands and inhibitors of this pathway is particularly important. For example, higher levels of 

BMP promote cell death and inhibit proliferation of embryonic cortex precursors (Graham et 

al., 1996; Mehler et al., 2000; Hebert et al., 2002), while lower concentrations promote 

neuronal and astroglial differentiation and inhibited oligodendrogliogenesis (Mabie et al., 

1999; Chojnacki and Weiss, 2004). Thus, the level of BMP-signalling may also be critical in 

the adult SEZ. 

 

Finding Smad-dependent BMP activity in the adult SEZ raised the question whether this 

pathway is active also in the SGZ of dentate gyrus. However, I could not detect p-Smad1/5/8 

immunoreactivity in this neurogenic niche (Figure 8I). This raises 3 possibilities : 1)The 

activity can be very low to be detectable   2) BMP ligands may not activate Smad pathway 

and rather activate an alternative pathway   3) BMP signalling may be completely absent in 

this niche.  

 

Indeed it has been shown that BMP can also act through mitogen activated protein kinase   

(Nohe et al., 2002). The activation of MAPK pathway instead of Smad is suggested to be 

regulated by receptor complexes. Combinatorial interactions in the tetrameric receptor 

complex allow differential ligand binding or differential signalling in response to the same 

ligand. BMP receptors ALK3, ALK6 and BMPR-II have been shown to assemble either as 

preformed hetero-oligomeric or homo-oligomeric complexes (Gilboa et al., 2000). Thus, a 

ligand such as BMP2 has two options to initiate signal transduction. It can either bind to 

ALK3 or ALK6 and then recruit BMPR-II into a hetero-oligomeric complex or, alternatively, 

binds simultaneously to the preformed hetero-oligomeric complexes consisting of at least one 

type I and one type II receptor. This results in the subsequent activation of either the 

Erk/JNK/p38 mitogen-activated protein kinase (MAPK) or classical Smad pathways, 

respectively (Nohe et al., 2002). It is know that the receptors in most cases are not preformed 

prior to ligand binding and therefore the classical Smad pathway is the major pathway 

mediating BMP signalling. However it is not known in which cases the receptors are 
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preformed and how this is regulated. MAPK pathway mediated by BMP has mostly been 

shown in chondrocytes (Lyon, 2004).    

 

I can not exclude the possibility that the MAPK pathway is maybe preferentially activated in 

SGZ instead of Smad pathway. Besides the MAPK pathway, another novel alternative 

pathway has been recently suggested to be activated by BMP. Upon BMP4 treatment, the 

serine-threonine kinase FKBP12/rapamycin-associated protein (FRAP), mammalian target of 

rapamycin (mTOR), associates with Stat3 and facilitates STAT activation (Rajan and 

Panchision, 2003). However there is very little known about these alternative pathways, their 

regulation in different tissues and their final effects. 

 

There are certain differences between two neurogenic niches either in molecular level or in 

the integration mode of the newly generated neurons (Nincovic et al., 2007). For example in 

SGZ there is no Olig2 expression and consistent with this there is no oligodendrogenesis. 

Thus,  absence of BMP signaling in SGZ may also be possible. Taken together, BMP 

signaling activity should be studied in more detail in SGZ.  

 

7.2  BMP signalling is not active in cells responding to stab wound in 

cerebral cortex 
Cytokines are one group of candidates which could direct reactive gliosis, scar formation, 

microglia activation as well as inhibition of neurogenesis after injury (Owens et al., 2005; 

Unsicker et al., 1992). It has been shown that BMP ligands are up-regulated upon injury in 

spinal cord (Chen et al., 2005; Setoguchi et al., 2004; Fuller et al., 2007) and induce scar 

formation (Fuller et al., 2007). Fuller and colleagues proposed that BMPs mediate a second 

astrocytic response to a demyelination injury in spinal cord by promoting the expression of 

chondroitin sulphate proteoglycans (CSPGs) in the glial scar.  

Previously, BMPRIA and BMPRII transcripts were found in the intact cerebral cortex (Zhang 

et al., 1996). However BMP ligands, receptors and cells subjected to BMP signalling in the 

intact and lesioned cerebral cortex had not been shown. Here, by immunostaining for p-

Smad1/5/8, I show that Smad-dependent BMP activity is present in neurons of intact cortex 

(Figure 10). Also in spinal cord p-Smad1/5/8 and NeuN co-localize indicating BMP activity 
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in neurons (Fuller et al., 2007). I examined in addititon the BMP ligands 2, 4 , 6 and BMPRII 

transcripts as well as p-Smad1/5/8 immunoreactivity in the intact cortex or after a stab wound 

(Figure 11,12). In contrast to spinal cord,  I did not observe an up regulation of any of the 

ligands, the receptor and also p-Smad1/5/8 immunoreactivity upon stab wound in the cortex 

(Figure 11,12) suggesting that BMPs are not up-regulated by cells responding to injury. 

Consistent with this a recent study showed that Noggin is up-regulated after knife cut injury 

(very similar to stab wound) and inhibit BMP activity (Hampton et al., 2007) in the adult 

cortex. They found expression of Noggin almost exclusively in astrocytes. Interfering with 

Noggin after injury increased the number of NG2-positive cells and GFAP-positive cells in 

vivo. NG2-positive cells are known as oligodendrocyte progenitors but they do not give rise 

to oligodendrocytes in adult cortex but rather mature as NG2-positive cells with no 

characteristics of oligodendorcytes. 

The presence of Noggin after such an injury may explain why I do not observe an increase in 

BMP activity monitored by p-Smad1/5/8 staining  after injury.  

 However when I examined the Id3 mRNA, I found a transient up-regulation of this gene 

upon injury (Figure 13). This suggests that TGFβ may be responsible for this up-regulation as 

this ligand is known to up-regulate some of the Id proteins transiently (Hacker, 2003; Sugai, 

2003) (except Id1 which is an exclusive target of BMP signalling (Korchynskyi and ten Dijke, 

2002; Lopez-Rovira, 2002; Katagiri, 2002)). Consistent with this, it has been shown that 

endogenous TGFβ1 is expressed by parenchymal microglial cells and exerts a trophic and 

anti-inflammatory effect in the adult CNS (Makwana et al., 2007) and this effect is increased 

upon injury (Makwana et al., 2007). Another study also showed that TGFβ signalling is 

induced after stab wound injury in the adult cortex and interference with it results in more 

rapid wound closure and reduced scar formation (Wang et al., 2006). Therefore Id3 induction 

upon stab wound in cortex is likely mediated by TGFβ signalling. 

Taken together, BMP signalling seems to be in favor of neurogenesis in the adult SEZ, as it is 

active in neurogenic stem cells but absent in progenitors upon injury. 

 

 

 85



7.3   Smad4-mediated BMP signalling positively regulates neurogenesis in 

the adult neural stem cell niche 
Here we propose the BMP-mediated Smad pathway as one of the key factors promoting 

neurogenesis in the unique neurogenic environment of the SEZ, but not the SGZ. 

Beginning of 2000, Lim and colleagues had analyzed the effects of Noggin on adult SEZ cells 

cultured on top of the astrocyte monolayer. Noggin inhibited BMPs secreted from astrocytes 

and as a result increased neurogenesis in vitro. To demonstrate this in vivo, they killed stem 

cells with AraC treatment (see also introduction) and overexpressed BMP7 in ependymal 

cells. They indeed found no regeneration of neurons in the presence of BMP7 consistent with 

the in vitro data. Based on these results, they suggested that Noggin secreted from ependymal 

cells would inhibit BMP signalling and as a result allow neurogenesis as they observed 

Noggin protein in ependymal cells. However they also observed a decrease in proliferation 

that may be responsible for the decrease in regeneration of neuroblasts after AraC and BMP 

treatment. Indeed, when I infused BMP7 into the ventricle without AraC treatment I also 

observed a decrease in proliferation in the intact SEZ (Figure 41) as well as after BMP 

treatment in cultured SEZ cells (Figure 42). Recent data also demonstrated the anti-

proliferative role of BMP overexpression on the proliferation of glioblastoma cells in the 

adult brain (Piccirillo et al., 2006). Moreover, cell death was not examined in Lim et al., 2000 

study after overexpression of BMP7 which can also be responsible for the decrease in 

regeneration of  neuroblasts as there is some evindence for high levels of BMP being 

apoptotic in embryonic cortical cells and neural crest cells (Graham et al., 1996; Furuta et al., 

1997; Mehler et al., 2000; Hebert et al., 2002). Additionally, particularly high levels of BMP 

may also act via Smad-independent pathways (Nohe et al., 2002; Rajan et al., 2003; Nohe et 

al., 2004; see also above). These considerations therefore imply that raising the levels of BMP 

may not necessarily reveal the endogenous function of BMP-signalling at the physiological 

levels. Indeed, lowering the levels of BMP signalling by Noggin infusion or Smad4 deletion 

did not affect proliferation, consistent with only high levels of BMP acting on proliferation. 

 

Given the importance of a precise level of BMP-signalling activity one may gain better 

insights by interfering with the endogenous levels of BMP or its signalling mediators. My 

results obtained by lowering the levels of BMP-activity by Noggin infusion into the ventricle 
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or deleting the essential signalling mediator Smad4 revealed the generation of 

oligodendrocytes at the expense of neurogenesis. These findings suggest that the endogenous 

role of BMP-signalling is to allow neurogenesis by suppressing oligodendrogliogenesis. The 

endogenous levels of Noggin expressed in the ependymal cells of the adult SEZ may therefore 

be crucial to allow the low degree of oligodendrogliogenesis occurring normally (Hack et al., 

2005; Menn et al., 2006). Interestingly, oligodendrogliogenesis in the SEZ increases after 

demyelination (Nait-Oumesmar et al., 1999; Nait-Oumesmar et al., 2007) (see below) 

indicating that alterations in the stem cell niche may mediate the injury triggered signalling. 

Taken together, my results imply that the fine-tuning of progenitors specified towards 

neurogenesis or oligodendrogliogenesis crucially depends on BMP-mediated signalling.  

Consistent with our observations in the adult SEZ, BMP-signalling inhibits and Noggin 

application promotes oligodendrogliogenesis in the developing nervous system (Hardy and 

Friedrich, 1996; Kondo and Raff, 2000; Mekki-Dauriac et al., 2002; Gomes et al., 2003; 

Samanta and Kessler, 2004; Miller et al., 2004). This suppression of oligodendrogenesis by 

BMPs does not depend on the stage unlike to other effects of BMP signalling as BMPs inhibit 

oligodendrogenesis at all stages of development (Miller, 2004). Interestingly, the inhibition of 

oligodendrogliogenesis observed during development occurs sometimes in favour of 

neurogenesis (Mabie et al., 1999; Schneider et al., 1999; Muller and Rohrer, 2002; Chojnacki 

and Weiss, 2004), and sometimes in favor of astroglial differentiation (Gross et al., 1996; 

Gomes et al., 2003).  

In cultured adult SEZ cells BMP suppressed oligodendrogenic fate but did not promote 

neurogenic fate but instead lead to the generation of lineage marker negative population 

(Figure 44). The nature of the cells responding to BMP signaling in vitro is not fully 

understood. One candidate is the multipotent neural stem cells capable of giving rise to 

neurons, astrocytes, and oligodendrocytes (Gage, 2000). Alternatively, more fate-restricted 

neuron and glia-restricted precursor cells that have been identified in vitro (Rao and Mayer-

Proschel, 1997) may respond in quite different ways to the same cues (Gregori et al., 2002). If 

the former is the case it means that the development of a distinct cell fate under the influence 

of BMP signaling likely involves both the active promotion of specific pathways and the 

suppression of alternative fates in a multipotent stem cell. However in cultured SEZ cells 

BMP does not change neuron number but mostly acts on glial fate suggesting that there might 

be restricted precursors in SEZ cultures. Not necessarily dependent on the nature of the cell, 
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these diverse responses to BMPs may also be due to the other signals that modulate the 

response to BMPs (Sun et al., 2001; White et al., 2001) and/or the activation of different BMP 

signal transduction pathways (see below). 

 

7.4  Smad4 acts early in the lineage within the adult SEZ 
A particularly interesting aspect of my findings is that Smad4-mediated BMP-signalling   

promotes neurogenesis at very early stages of the lineage. This is evident from the finding   

that deletion of Smad4 in TAPs and neuroblasts by retroviral expression of Cre had no   

immediate effect on neurogenesis, while deletion of Smad4 by a lentiviral vector in stem and   

progenitor cells resulted in a decrease in neurogenesis. Thus, Smad4-mediated signalling   

apparently promotes neurogenesis prior to the formation of neuroblasts at the level of the   

stem cells, when the identity of the TAPs is determined. This effect is different from   

previous effects on adult neural stem cells that mostly altered their proliferation and thereby   

affected neurogenesis (Ramirez-Castillejo et al., 2006;  Sakaguchi et al., 2006). We therefore 

conclude that Smad4-mediated transcription is required at the transition from stem cells to 

TAPs.    

However, 21 days after Smad4 deletion I observed a proliferation defect exclusively in the 

TAP population. Interestingly this effect was not observed by retroviral deletion of Smad4 in 

TAPs and neuroblasts in which also neurogenesis was not altered and TAP identity was not 

changed. This suggests that the proliferation defect occurs in the cells which changed their 

fate towards oligodendrogenesis. This may also be explained by the differentially regulated 

genes observed in microarray analysis after Smad4 deletion (see below) as well as differential 

expression of BMP type I receptors (see below). 

 
 
7.5 Possible mechanisms underlying diverse roles of BMP signalling  
 
While the canonical BMP/Smad signaling cascade has been clarified, the pathway by itself 

does not explain how BMPs exert such diverse functions. The answer may lie in the crosstalk 

between BMPs and other signaling pathways, the diverse transcription factors used by BMPs 

as well as alternative pathways activated by BMPs.  
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7.5.1   BMP type I receptors display different roles 

The diverse functions of BMP signalling already can take place at the levels of the receptors. 

BMP-RII can combine with three type I receptors, ALK2, BMPRIA (ALK3), and BMPRIB 

(ALK6). Diverse functions of these receptors have been mostly studied in chondrogenesis. 

For example ALK2 has effects on chondrogenesis that are very distinct from those elicited by 

ALK3 and ALK6. Constitutively active (CA)-BMPRIA or BMPRIB increases cartilage 

nodule formation, while CA-ALK-2 does not. In fact, overexpression of CA-ALK2 actually 

delays differentiation in primary chondrocytes by inducing expression of an inhibitor of 

hypertrophic differentiation (Zhang et al., 2003). Moreover, when dominant negative (DN)-

BMPRIA or IB is overexpressed in vitro, chondrogenic differentiation is blocked, while DN-

ALK2 overexpression has no effect (Fujii et al., 1999). These results suggest that although 

ALK2 can activate the same subset of BMP-specific Smads as BMPRIA and IB in many cell 

types in vitro, signaling through BMPR1A and 1B promotes chondrogensic differentiation 

whereas signaling through ALK2 may inhibit it. Consistent with this possibility, ALK2 is 

highly expressed in the resting and proliferative zones, areas where chondrocytes need 

mechanisms to prevent premature differentiation (Zhang et al., 2003). Similar to this, in 

certain cell lines BMPRIB determines osteoblastic differentiation and the BMPRIA 

determines adipocyte differentiation (Namiki et al., 1997; Chen et al., 1998). Similar results 

were also obtained in limb bud (Yoon and Lyons, 2004). However, the mechanistic process 

for these apparent differences is unknown. It may be qualitative; these receptors may activate 

different non-Smad mediated signaling pathways. The differences may also be quantitative, 

with distinct outcomes arising as a result of different threshold requirements for BMP signal 

transduction in distinct aspects of proliferation and differentiation. 
 

Also within the nervous system opposing effects of different BMP type I receptors were 

demonstrated (Panchision et al., 2001). It was shown that BMPRIA promotes proliferation of 

neural stem cells whereas BMPRIB limits precursor cell numbers by causing mitotic arrest. 

This results in apoptosis in early gestation embryos and terminal differentiation in mid-

gestation embryos (Panchision et al., 2001). These authors have also shown that BMPRIA 

activation induces expression of BMPRIB whereas Shh prevents it. They suggested that 
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sequential actions of these receptors control the production and fate of dorsal precursor cells 

from neural stem cells.  

Whether there is differential expression pattern of type I receptors (ALK2, BMPRIA, 

BMPRIB) in adult neurogenic niches is not clear yet. However, preliminary data from our 

laboratory (from Pratibha Tripathi, unpublished observations) indicates that adult SEZ cells 

have high levels of BMPRIA but not BMPRIB. As BMPRIA promotes proliferation of neural 

stem cells the proliferation defect in TAP population upon Smad4 deletion may be explained 

with the disruption of BMPRIA mediated signals. 

 

 Comparing  expression pattern of BMP type I receptors between SEZ and SGZ may also help 

to understand whether different pathways possibly exist in these niches.  

 
 
7.5.2   Potential interactions between BMP-derived signals and other 
pathways 
 
Other signaling pathways also help to define the responses to BMPs. Studies showed 

intensive crosstalk between BMP, FGF and IGF signal pathways. For example, FGF and IGF 

signals activate intracellular MAPKs (mitogen-activated protein kinases) such as Erk, Jnk, 

and p38 that have been shown to phosphorylate Smad1 in the linker regions connecting MH1 

and MH2 domains. Linker phosphorylation strongly decreases nuclear accumulation of 

Smads and therefore inhibits activation of the BMP pathway in vitro and in vivo 

(Kretzschmar et al. 1997; Aubin et al., 2004). Significantly, phosphorylation of same linker 

region was observed in vivo upon treatment of cells with epidermal growth factor (EGF) or 

platelet-derived growth factor (PDGF) (Moustakas et al., 2001). Experiments in the chick 

early epiblast shows that FGF signalling represses BMP4 and BMP7 expression and is 

required for neural induction (Streit et al., 2000; Wilson et al., 2000). Similarly, in Xenopus 

the downregulation of FGF signalling by overexpression of dominant-negative forms of FGF 

receptors has a negative impact on neural plate formation, partly due to de-repression of the 

expression of multiple BMP genes (Launay et al., 1996; Londin et al., 2005). In Xenopus, 

both FGF and IGF can mediate neural induction at least in part by inhibiting Smad activity 

through Smad phosphorylation (Pera et a., 2001; Pera et al. 2003). The functional antagonism 

between BMP and FGF signaling pathways is further confirmed in limb culture studies. BMP 
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treatment rescues the phenotype of FGF treated growth plates, and FGF treatment neutralizes 

the effects of BMPs (Minina et al., 2002).  

I had emphasized in the introduction that BMPs promote the generation of neural crest cells in 

the posterior neural tube (Lee and Jessell 1999). In contrast to the negative effect of FGF2 on 

BMP signalling in many studies, FGF2 is required for BMPs to generate neural-crest like 

cells in cortical explants or cultured stem cells (Sailer et al., 2005). Co-treatment with FGF2 

and BMP2 rapidly upregulates β-catenin, a mediator of Wnt activity (Moon et al., 2004) and 

of BMP2 itself, suggesting a positive feedback of BMP-signaling. 

Similar to above examples of either positive or negative influence of FGF signalling on BMP 

signalling, it is still not clear whether FGF signalling has positive or negative influence in 

chondrogenesis due to controversial data (Lyon, 2004).  

 

The phosphorylation of R-Smads in linker region and therefore inhibition of nuclear 

accumulation may explain why I do not detect nuclear p-Smad1/5/8 in adult neurospheres 

(Figure 43). As adult SEZ cells are kept with high FGF2 and EGF to prevent differentiation 

in vitro, this may lead alteration in Smad pathway which is active in vivo situation. However, 

exogenous BMP addition to the neurosphere cultures lead to active BMP signaling as 

demonstrated with nuclear p-Smad1/5/8 staining (Figure 43D-D'') indicating that FGF2 and 

EGF were not sufficient to fully compete with high amount of R-Smads. In contrast to high 

levels of FGF2 and EGF in neurosphere cultures, endogenous expressions of these ligands 

have not yet been described in the adult SEZ consistent with high activity of Smad-mediated 

BMP signalling in this niche. However, receptors for both FGF and EGF ligands are 

expressed in the adult SEZ (Morshead et al., 1994; Seroogy et al., 1995; Weickert et al., 

2000). Therefore possible negative or positive influences of FGF and EGF on modulation of 

BMP signalling should be additionally examined in the adult SEZ. 

 

As BMPs and also TGFβ can activate the MAPK pathway (Nohe et al., 2002; Yamaguchi et 

al., 1999), the balance between direct activation of Smads and MAPK pathways often defines 

cellular responses. BMPs effect chondrocytes by activating p38MAPK (Nakamura et al., 

1999; Ju et al., 2000; Hatakeyama et al., 2003; Seto et al., 2004). In vitro, BMP treatment 

leads to sustained phosphorylation of p38. The ability of BMPs to promote chondrogenesis 

requires p38, as p38 inhibitors strongly suppress induction of type II collagen and 
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chondrogenic differentiation without effecting cell proliferation (Nakamura et al., 1999). 

Taken together, these data indicates that Smad and p38 mediated BMP signaling play 

essential and nonoverlapping roles in chondrogenic differentiation. However, existence or 

biological consequences of MAPK pathway mediated by BMPs are not known in CNS. 

Therefore studies are required in particular adult neurogenic niches to elucidate the extend to 

which these pathways mediate distinct aspects of neurogenesis and the extent to which they 

interact. 

 

Another signaling pathway shown to modulate BMP signaling is Wnt pathway. Activation of 

Wnt signalling or inhibition of GSK3 can reverse Smad1 inhibition. GSK3 is a constitutively 

active, multifunctional kinase that plays roles in Wnt and Hedgehog signaling, insulin 

signaling through PI3K, and numerous other processes (Forde and Dale, 2007). In the Wnt 

pathway it participates in the destruction complex that targets β-catenin for ubiquitination and 

degradation. Wnt signaling inhibits GSK3, allowing β-catenin stabilization and activation of 

target genes with Tcf/Lef transcription factors. Treatment of cells with Wnt3a can inhibit 

GSK3 and lead to stabilized p-Smad1, with a decrease in p-Smad1GSK3 complex. In 

Xenopus embryos neural tissue differentiates when BMP signaling is inhibited, while 

epidermis forms upon high BMP signaling. Expression of the Wnt pathway inhibitor 

Dickkopf1 (Dkk1) causes neuralized phenotypes like those caused upon inhibition of BMP 

(Niehrs et al., 2001). Fuentealba et al. showed that injection of either Wnt morpholinos (MO) 

or Dkk1 mRNA resulted in expansion of neural tissues, and that this effect required intact 

GSK3 phosphorylation sites in Smad1. Furthermore, elevated Wnt or Dkk1 MO could induce 

epidermis, and this effect required active BMP/Smad signaling. 

Synergism of BMP and Wnt pathways has also been shown in neural crest stem cells. The 

laboratory of Lukas Sommer showed that Wnt and BMP act synergistically to suppress 

differentiation and to maintain neural crest stem cell marker expression and multipotency 

(Kleber et al., 2005). However, it is also demonstrated that BMP signalling antagonizes the 

sensory fate inducing activity of Wnt/βcatenin within the same system.  

 

In regard to adult neurogenic niches, Wnt signalling has been shown to promote neurogenesis 

in the SGZ. It has been shown that β-catenin promotes proliferation of Mash1-positive cells 

and thereby increases neuron production in the adult SEZ (Adachi et al., 2007). As deletion of 
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Smad4 leads to a decrease in proliferation of TAPs at later stages, Smad pathway and Wnt 

pathway may act synergistically to regulate proliferation in the adult SEZ. However, whether 

Wnt signalling is involved in a synergism with BMP in its neurogenic function in the adult 

SEZ is not clear. 

Similar to the neural crest stem cells, BMP is also crucial to maintain the multipotency of 

embryonic stem cells but this time in combination with leukemia inhibitory factor (LIF) 

instead of Wnt (Ying et al., 2003). In contrast, in neural stem cell case it has been shown that 

simultaneous treatment of neuroepithelial cells with LIF and BMP2 synergistically induced 

astrocytic differentiation. The synergistic effect of the two cytokines is brought about by a 

complex formation composed of downstream transcription factors signal transducer and 

activator of transcription (STAT) 3 and Smad1, together with the transcriptional coactivator 

p300 (Nakashima et al.,   1999; Fukuda and taga, 2005). It has been shown that LIF induces 

expression of BMP2 via STAT3 activation and leads to the consequent activation of Smad1 to 

efficiently promote astrogliogenic differentiation of neuroepithelial cells (Fukuda et al., 

2007). As BMPs themselves can also activate the STAT pathway and thereby promote 

astrocyte differentiation (Rajan et al., 2003), BMP-mediated effects on astroglial 

differentiation are thought to be mediated via the STAT signalling pathway. Interestingly, 

STAT3  is not active in the adult  neural stem cell zone (Bauer and Patterson, 2006). This may 

explain why BMP does not  promote astrogliogenesis in the adult SEZ. Furthermore, there is 

also evidence demonstrating that BMPs can inhibit the phosphorylation and activation of 

STAT3 by an unknown mechanism (Kawamura et al., 2000). It may therefore be possible that 

BMP itself may inhibit STAT signalling in the adult SEZ and thereby promote neurogenesis.  

Notably, the STAT-signalling pathway is activated after injury in the brain parenchyma 

(Okada et al., 2006; Fuller et al., 2007). Therefore the coactivation of STAT and Smad-

signalling may explain why BMP promotes astroglial fate in the injured brain parenchyma 

(Okada et al., 2006; Fuller et al., 2007) and why overexpression of Noggin in the striatal or 

spinal cord parenchyma – causing injury by injection of the viral vectors – allows transplanted 

neurosphere cells to differentiate into neurons (Lim et al., 2000; Setoguchi et al., 2004). 

Instead, in the adult SEZ where STAT-signalling seems not to be active, endogenous BMP-

mediated signalling via Smad4 promotes neurogenesis and inhibits oligodendrogliogenesis. 
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Taken together, as interaction between signaling pathways are crucial for fate specification 

(see above and also for review see: Nakashima et al., 2002; Sommer, 2006; Lillien et al., 

2006) and much still needs to be learnt about the pathways interacting in the neurogenic 

niches in comparison to those active in the parenchyma after brain injury. This is highlighted 

by the intriguing role of BMP-mediated signaling promoting neurogenesis in the adult stem 

cell niche, in contrast to its role in other brain regions. Thus, further understanding of the key 

signals permitting neurogenesis in the adult neural stem cell niche should guide us how to 

stimulate neurogenesis from proliferating glia after brain injury. 

 

7.5.3  Smad-interacting proteins contribute to diverse functions of BMP 

signalling 
BMP proteins activate transcription through physical interaction and functional cooperation of 

DNA-binding Smads with sequence specific transcription factors and the coactivators Creb 

Binding Protein (CBP) and p300. R-Smads and Smad4 bind to preferred DNA sequences with 

a 100-fold lower affinity than the interacting high-affinity DNA-binding transcription factors, 

yet their DNA binding is required for transcriptional activation. Selective DNA binding to a 

subset of promoters that bind a potential Smad interacting transcription factor defines the 

promoters that are activated in response to the ligand. The number of DNA-binding 

transcription factors with which Smads can functionally interact is impressive (Massague, 

2000; Itoh et al., 2000; Moustakas et al., 2001) and these are also often regulated by multiple 

signalling pathways. Thus, these factors probably complete the diversity mediated by BMP 

signalling. Besides the essential CBP or p300 coactivators, other coactivators and co-

repressors that interact with Smads define the level of transcriptional activation (Derynck and 

Zhang et al., 2003). Table 3 shows a summary of Smad-interacting proteins. 

 

7.6  Identifying downstream targets of Smad4 via microarray analysis 
Many genes are activated in response to TGFβ signalling, whereas others are transcriptionally 

repressed. This is consistent with our microaray data in which we had more genes 

downregulated rather than up regulated ones after Smad4 deletion.  

However, what defines transcriptional activation versus repression by Smads is not clear 

(Derynck and Zhang et al., 2003). Whether Smads repress or activate transcription also 
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depends on the cell type and the promoter sequence. For example, Smad3 cooperates with 

Runx proteins to activate transcription in epithelial cells, and represses transcription from the 

same promoter in mesenchymal cells (Derynck and Zhang et al., 2003).  

Thus, distinct mechanisms, depending on the interacting transcription factor, the promoter and 

the intracellular context lead to Smad-mediated repression and determine whether Smads 

activate or repress transcription. 
 

TGFβ regulated-Smads transactivate various target genes, including plasminogen activator 

inhibitor-1 (PAI-1), type I collagen, junB, Smad7 and Mix.2. In contrast, only a few direct 

target genes for BMPs have been identified, including Id (inhibitor of differentiation or 

inhibitor of DNA-binding) 1 through 3, Smad6, Vent-2, and Tlx-2. Id proteins act as negative 

regulators of cell differentiation and positive regulators of cell proliferation (Norton et al. 

1998; Yokota & Mori, 2002). Four Id proteins, Id1 through Id4, have been identified in 

mammals. They have overlapping profiles of expression, and show similar, but not identical 

biological activities. BMPs may display some of their biological activities through Id proteins 

(Nakashima et al. 2001; Goumans et al. 2002). Id proteins may work as downstreams of BMP 

signalling in its neurogenic function in the adult SEZ as transcripts of Ids are present there 

(see results). However, there was no significant difference between Smad4 -/- and control in 

Id1-4 expression levels in microarray analysis. This again raises the question whether BMPs 

induce Id expression via MAPK pathway and therefore Smad4 deletion does not change the 

the levels of Id proteins. Instead, Cdk4, Pou6f1, Sox17, Sox11 were amongst the genes highly 

significantly altered in their expression upon Smad4 deletion. The ability of BMPs to regulate 

Sox gene expression has been investigated in chondrogenesis (Lyon, 2004). Sox9 is the 

earliest known marker for cells committed to chondrogenesis. BMPs promote the expression 

of Sox9 and induce chondrogenesis in vitro (Zehentner et al., 1999; Chimal-Monroy et al., 

2003; Fernandez-Lloris et al., 2003) and in vivo (Lyon, 2004). However, whether BMPs 

directly regulate Sox9 is not clear. In our analysis Sox17 is up-regulated whereas Sox11 is 

down-regulated in Smad4-/- versus control. Loss and gain of function experiments showed 

that Sox17 stimulates oligodendrocyte precursor cell cycle exit and promotes myelin 

expression and differentiation (Sohn et al., 2006). Smad4 deletion leads to an increase in 

Sox17 levels indicating that oligodendrocyte precursors may exit the cell cycle much faster 

and maturate earlier in the absence of Smad4. This is consistent with the decrease in 
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proliferation of TAPs which had changed their identity towards oligodendrocyte precursors 

after Smad4 deletion. Therefore this regulation likely takes place in progenitors but not in 

stem cells. It has been shown that Sox11 function downstream from proneural basic helix 

loop helix (bHLH) protein as critical activator of both generic and subtypespecific neuronal 

properties in the developing spinal cord. Proneural bHLH transcription factors are essential 

for the progression of neurogenesis and can induce cell cycle exit and commit progenitors to a 

neurogenic program (Farah et al. 2000; Bertrand et al. 2002; Kintner 2002; Lo et al. 2002). 

Elimination of   Sox11 activity does not disrupt the ability of proneural bHLH proteins to 

promote cell cycle exit, but blocks their capacity to establish the expression of neuronal 

properties indicating that the induction of this gene is a critical step in the acquisition of a 

neuronal phenotype (Bergsland et al., 2006). Down regulation of Sox11 after Smad4 deletion 

raises the possibility that it may have similar function in adult SEZ consistent with the 

decreased neurogenesis upon Smad4 deletion. It is also likely that this gene exerts its function 

prior to progenitor stage as deletion of Smad4 in progenitors does not alter the neurogenesis 

but does so in stem cells.  

 

For inhibition of cell growth by TGFβ R-Smads induce the transcription of cyclin-dependent 

kinase (Cdk) inhibitors p21 and p15 (Miyazawa et al., 2002). In contrast to TGFβ, BMP has 

been shown to both stimulate and inhibit the growth of cells, depending on cell type and 

culture conditions. In microarray analysis Cdk4 was down-regulated in Smad4-/- compared to 

control indicating a positive role of BMP on proliferation in the adult SEZ. Indeed 

proliferation of TAPs decreased 21 days after Smad4 deletion (Figure 26A). As Sox17 is up-

regulated upon Smad4 deletion and its function also leads to less proliferation and premature 

differentiation of oligodendrocyte precursors, the proliferation defect in the oligodendrogenic 

TAPs is likely a secondary effect following cell fate change 21 days after Smad4 deletion. 

 

Beside these genes which have been functionally implicated in neurogenesis or proliferation, 

there are some genes which have not yet been studied functionally. For example, the class VI 

POU domain family member known as Emb in the mouse (rat Brn5 or human 

mPOU/TCFbeta1) is down regulated upon Smad4 deletion. This gene has been shown to be 

expressed in embryonic and adult neurons 24-48 hours after cell cycle exit (Cui and Bulleit, 

1998). However, its function and its transcriptional regulation in progenitor stage are not 
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known. Our microarray analysis shows that neuronal progenitors already express POU6f1 

gene at least in mRNA level and this is down-regulated upon Smad4 deletion. This can be due 

to a reduction in the number of neuroblasts in Smad4-/- SEZ at the time when microarray 

analysis has been performed (microarray analysis was performed 10 days after the end of 

tamoxifen application). Therefore it is difficult to predict whether the change in POU6f1 

expression level is a consequence of decreased neuroblast number or a cause of it.  

 

Taken together, microarray analysis gave us hints to study the mechanisms by which Smad4-

mediated BMP signalling regulate the cell fate in favor of neurogenesis with the key 

candidates Sox11, Sox17 and Pou6f1. 

 

7.7  Neurogenesis results from inhibition of oligodendrogenesis in the adult   

brain 
Interestingly, however, interference with Smad4 did not cause a failure to up-regulate the   

key neurogenic factors, such as Pax6 (Hack et al., 2005) and Dlx2 (Doetsch et al., 2002;   

Petryniak et al., 2007) but rather lead to the ectopic up-regulation of Olig2. Thus, other   

signals must be crucial for up-regulation of these neurogenic transcription factors, while   

Smad4-mediated transcription is crucial to suppress Olig2 and thereby restrict the   

oligodendroglial lineage. Strikingly, suppression of Olig2 function by the Olig2VP16   

construct was sufficient to rescue the defects in neurogenesis observed after Smad4 deletion,   

consistent with the remnant neurogenic potential in these cells in the absence of Olig2 up-

regulation. These data henceforth imply the regulation of the transcription factor Olig2 as a   

key determinant for the choice between a neuronal or oligodendroglial lineage in the adult   

neural stem cell-derived progeny, reminiscent of its role in development (Doetsch et al., 2002;   

Ligon et al., 2006; Petryniak et al., 2007) Moreover, these data also suggest that TAPs and   

neuroblasts are not yet irreversibly committed to their fate, as their fate can not only be   

altered by overexpression of Olig2 (Hack et al., 2005) but also by transplantation of PSA-

NCAM+ neuroblasts outside the neurogenic niche (Seidenfaden et al., 2006). These data   

therefore underline the importance of a signalling mechanism maintaining TAPs and   

neuroblasts within the neurogenic lineage and suppressing Olig2. 
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Our data imply Smad4-mediated BMP signalling as a key factor for this role. BMP ligands   

and BMP-specific p-Smads are expressed in the SEZ, but not in the RMS. Moreover, BMP-

specific p-Smads are detectable only in stem cells and TAPs, but not in neuroblasts. Finally,   

blocking of BMP-signalling via Noggin also leads to the up-regulation of Olig2, while   

interference with the TGFβ-pathway did not, demonstrating the key role of BMP-mediated   

signalling in the suppression of Olig2. The observation that this pathway is present and   

required at early stages in the stem cell derived lineage, is consistent with the need of Olig2   

suppression at these early stages in the lineage (Hack et al., 2005). Our data therefore imply   

BMP-mediated signalling as one of the earliest factors in the adult neural stem cell niche to   

direct the immediate progeny of stem cells towards a neurogenic fate by blocking   

progression towards the oligodendroglial lineage. Notably, outside the neurogenic niche   

virtually all progenitors are oligodendrocyte progenitors in the adult mammalian brain   

(Horner et al., 2002, Dawson et al., 2003) and suppression of Olig2 function in these cells in   

the cortical parenchyma also leads to upregulation of Pax6 and neurogenesis (Buffo et al., 

2005). One may therefore speculate that a key aspect of the adult neurogenic niche is to   

suppress oligodendrogliogenesis, the apparent default pathway in the adult mammalian   

brain.     

 

 7.8   Future Aspects  
As here I showed that the role of endogenous BMP signalling in the adult SEZ is to suppress 

oligodendrogenesis, manipulation with this pathway may be useful for the diseases related to 

oligodendrocyte damage. For example, multiple sclerosis (MS) is a chronic, inflammatory, 

demyelinating disease that affects the CNS oligodendrocytes. MS results in a thinning or 

complete loss of myelin generated by oligodendorcytes. Therefore it is important to replace 

destroyed oligodendrocytes by new ones and thereby induce the generation of myelin. 

However, in mouse models, demyelination is not due to lack of repair. For example, 

lysolecithin injection or cuprizone poisoning produces a local demyelinating lesion that 

partially repairs over a period of weeks (Woodruff and Franklin, 1999). After such lesion with 

lysolecithin in corpus callosum, progenitor cells from the adult SEZ contribute to 

oligodendrogliogenesis in the corpus callosum (Nait-Oumesmar et al., 1999). First SEZ 

progenitors respond to demyelination with an increase in proliferation. Afterwards the 
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progenitor cells of SEZ are recruited by lesion where they generate astrocytes and 

oligodendrocytes (Nait-Oumesmar et al., 1999). However only a small proportion of recruited 

SEZ cells differentiates into mature oligodendrocytes within the lesion as most of them 

differentiate into astrocytes. Therefore one important point is to increase the number of 

mature oligodendrocytes generated by these progenitors. Interestingly, preliminary findings 

suggest that this type of recruitment also occurs in human multiple sclerosis (Nait-Oumesmar 

et al., 2008).  

As there is a low degree of endogenous oligodendrocyte production in the adult SEZ (Menn et 

al., 2006; current work), increase in oligodendrogenesis upon demyelination indicates that 

there should be a mechanism mediating fine-tuning of progenitors specified towards 

neurogenesis or oligodendrogliogenesis. Here, I could show that BMP signalling is crucial for 

this fate choice. Whether the response to demyelination will increase after Smad4 deletion is 

an intriguing question. Therefore we plan to do demyelination injuries after Smad4 deletion 

and monitor the remyelination. After Smad4 deletion I could show that SEZ progenitors 

generated more mature oligodendrocytes in corpus callosum, however, the extend of their 

final myelination capacity  is still not clear. Further myelination capacity should be studied by 

using electron microscopy. Additionally to the number of oligodendrocytes generated after 

demyelination in Smad4-/- mice, the capacity of myelination with or without demyelination 

should be also studied. While remyelination can be quite robust, in multiple sclerosis it often 

fails. Understanding and stimulating the remyelination process are therefore important goals 

in MS research. 
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