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Abstract

Due to the increase in CPU power and the ever increasing data storage

capabilities, more and more data of all kind is recorded, including temporal

data. Time series, the most prevalent type of temporal data are derived

in a broad number of application domains. Prominent examples include

stock price data in economy, gene expression data in biology, the course of

environmental parameters in meteorology, or data of moving objects recorded

by tra�c sensors.

This large amount of raw data can only be analyzed by automated data

mining algorithms in order to generate new knowledge. One of the most

basic data mining operations is the similarity query, which computes a sim-

ilarity or distance value for two objects. Two aspects of such an similarity

function are of special interest. First, the semantics of a similarity function

and second, the computational cost for the calculation of a similarity value.

The semantics is the actual similarity notion and is highly dependant on the

analysis task at hand.

This thesis addresses both aspects. We introduce a number of new sim-

ilarity measures for time series data and show how they can e�ciently be

calculated by means of index structures and query algorithms.

The �rst of the new similarity measures is threshold-based. Two time

series are considered as similar, if they exceed a user-given threshold during

similar time intervals. Aside from formally de�ning this similarity measure,

we show how to represent time series in such a way that threshold-based

queries can be e�ciently calculated. Our representation allows for the spec-

iii



iv

i�cation of the threshold value at query time. This is for example useful for

data mining task that try to determine crucial thresholds.

The next similarity measure considers a relevant amplitude range. This

range is scanned with a certain resolution and for each considered amplitude

value features are extracted. We consider the change in the feature values

over the amplitude values and thus, generate so-called feature sequences.

Di�erent features can �nally be combined to answer amplitude-level-based

similarity queries. In contrast to traditional approaches which aggregate

global feature values along the time dimension, we capture local character-

istics and monitor their change for di�erent amplitude values. Furthermore,

our method enables the user to specify a relevant range of amplitude values

to be considered and so the similarity notion can be adapted to the current

requirements.

Next, we introduce so-called interval-focused similarity queries. A user

can specify one or several time intervals that should be considered for the

calculation of the similarity value. Our main focus for this similarity measure

was the e�cient support of the corresponding query. In particular we try to

avoid loading the complete time series objects into main memory, if only

a relatively small portion of a time series is of interest. We propose a time

series representation which can be used to calculate upper and lower distance

bounds, so that only a few time series objects have to be completely loaded

and re�ned. Again, the relevant time intervals do not have to be known in

advance.

Finally, we de�ne a similarity measure for so-called uncertain time series,

where several amplitude values are given for each point in time. This can

be due to multiple recordings or to errors in measurements, so that no ex-

act value can be speci�ed. We show how to e�ciently support queries on

uncertain time series.

The last part of this thesis shows how data mining methods can be used

to discover crucial threshold parameters for the threshold-based similarity

measure. Furthermore we present a data mining tool for time series.



Zusammenfassung

Mit dem Voranschreiten der Entwicklung von Rechenleistung und ständig

wachsenden Datenspeichern werden immer mehr Daten aller Art gespeichert,

darunter auch temporale Daten. Diese Daten, insbesondere Zeitreihen, fal-

len in einer Vielzahl von Anwendungsbereichen an. Dazu zählen beispiels-

weise Börsendaten in der Wirtschaft, Gen-Expressionsdaten in der Biologie,

Temperatur- und Luftverschmutzungsdaten in der Meteorologie oder Bewe-

gungsdaten bei der Erfassung von Verkehrsströmen. Darüber hinaus lassen

sich auch Daten aus dem Multimediabereich als temporale Daten au�assen,

z.B. die aufeinanderfolgenden Töne eines Musikstücks.

Die immer gröÿer werdende Menge an Rohdaten macht eine computerge-

stützte Analyse dieser Daten mit Methoden des Data Minings unerlässlich,

um anschlieÿend potentiell nützliche Schlussfolgerungen basierend auf den

Daten ziehen zu können. Eine der elementarsten Operationen aller Data Mi-

ning Verfahren ist die Ähnlichkeitsanfrage, die zwei Objekten einen Ähnlich-

keitswert zuweist. Dabei sind zwei Aspekte von besonderer Bedeutung: die

Semantik der zu de�nierenden Ähnlichkeitsfunktion und die E�zienz, mit

der eine Ähnlichkeitsfunktion auf einer groÿen Menge an Daten berechnet

werden kann. Die Semantik einer Ähnlichkeitsfunktion beschreibt, wann ein

Objekt als ähnlich zu einem anderen Objekt betrachtet wird. Diese Semantik

ist hochgradig abhängig von der Art der Anwendung.

Die Arbeit beschäftigt sich daher mit genau diesen beiden Aspekten. Zum

einen werden verschiedene Verfahren zur Ähnlichkeitsbestimmung tempora-

ler Daten eingeführt, zum anderen wird für die vorgestellten Methoden jeweils

gezeigt, wie mit Hilfe von Indexstrukturen und geeigneten Anfragealgorith-
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men das gewünschte Ergebnis e�zient berechnet werden kann.

Das erste neue Ähnlichkeitsmaÿ basiert auf einem Grenzwert, den ein

Benutzer dynamisch zur Anfragezeit vorgeben kann. Zwei Zeitreihen wer-

den dann als ähnlich betrachtet, wenn der gewählte Grenzwert zu ähnlichen

Zeiten über- und unterschritten wird. Nach der formalen De�nition des Ähn-

lichkeitsmaÿes zeigen wir anschlieÿend, wie man Zeitreihen in eine Reprä-

sentation überführt, die es erlaubt, Grenzwert-basierte Ähnlichkeitsanfragen

e�zient zu berechnen. Entscheidend dabei ist, dass der später verwende-

te Grenzwert nicht bekannt sein muss. Dies erlaubt beispielsweise auch die

Entdeckung von besonders relevanten Grenzwerten mit Methoden des Data

Mining.

Das nächste neue Ähnlichkeitsmaÿ basiert auf einem relevanten Ampli-

tudenbereich. Der relevante Bereich wird mit einer bestimmten Au�ösung

abgetastet. Für jeden abgetasteten Amplitudenwert berechnen wir bestimm-

te Merkmale, sogenannte Features. Für jeden Featuretyp ergibt sich damit

eine sogenannte Feature-Sequenz, die den Verlauf der Amplitudenwerte be-

schreibt. Da für jeden betrachteten Amplitudenwert mehrere Features be-

stimmt werden, ergeben sich schlieÿlich mehrere Feature-Vektoren, die für

die Bestimmung der Ähnlichkeit zweier Zeitreihen miteinander kombiniert

werden. Entscheidend ist bei diesem Ähnlichkeitsmaÿ die amplitudenbasier-

te Abtastung der Zeitreihe im Gegensatz zu den herkömmlichen Feature-

Werten, die entlang der Zeitachse abgeleitet werden und die Zeitreihe so auf

globale Weise charakterisieren. Unsere Methode beschreibt den Verlauf von

lokalen Feature-Werten. Schlieÿlich kann bei unserer Methode ein relevanter

Bereich von Amplitudenwerten angegeben werden und damit das Ähnlich-

keitsmaÿ besser an die aktuellen Anforderungen angepasst werden.

Anschlieÿend stellen wir die sogenannten Intervall-fokusierten Ähnlich-

keitsanfragen vor. Dabei de�niert der Benutzer einen oder mehrere Zeiträu-

me, auf die sich der Anfragealgorithmus bei der Berechnung des Ähnlichkeits-

wertes beschränken soll. Das Hauptaugenmerk liegt bei diesem Anfragetyp

auf der E�zienz. Es soll vermieden werden, dass die gesamte Zeitreihen-

information in den Hauptspeicher eingelesen werden muss, obwohl nur ein
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relativ geringer Anteil der Zeitreihe benötigt wird. Wir schlagen daher ei-

ne Zeitreihenrepräsentation vor, die eine obere und eine untere Schranke für

die tatsächliche Distanz liefert, so dass anschlieÿend nur ein geringer Teil an

kompletten Zeitreihen betrachtet werden muss. Auch hier muss der relevante

Zeitabschnitt nicht schon im Vorfeld beim Befüllen der Datenbank bekannt

sein, sondern kann zur Anfragezeit vom Benutzer vorgegeben werden.

Schlieÿlich de�nieren wir ein Ähnlichkeitsmaÿ für sogenannte unsichere

Zeitreihen. Dies sind Zeitreihen, für die zu jedem Zeitpunkt mehrere Werte

vorliegen. Das ist dann der Fall, wenn entweder kein exakter Wert bestimmt

werden konnte, oder absichtlich mehrere Messwerte auf einmal erfasst wur-

den. Auch für dieses neu de�nierte Ähnlichkeitsmaÿ beschreiben wir e�ziente

Speicherungs- und Zugri�smethoden.

Im letzten Teil der Arbeit zeigen wir auf, wie mit Data Mining Metho-

den relevante Grenzwerte für einen gegebenen Datensatz bestimmt werden

können und stellen ein Data Mining Tool für Zeitreihen vor.



viii



Contents

Acknowledgement i

Abstract iii

Zusammenfassung v

I Preliminaries 1

1 Introduction 3

1.1 Retrieval of Complex Objects . . . . . . . . . . . . . . . . . . 3

1.2 Knowledge Discovery in Databases . . . . . . . . . . . . . . . 4

1.3 Temporal Data . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 7

2 Similarity-Based Analysis of Temporal Data 11

2.1 Representing Temporal Data . . . . . . . . . . . . . . . . . . . 11

2.2 Interpolating Discrete-Valued Time Series . . . . . . . . . . . 12

2.3 Similarity Measures for Complex Objects . . . . . . . . . . . . 13

2.4 Similarity Measures for Time Series . . . . . . . . . . . . . . . 15

2.4.1 Minkowski Distance . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Dynamic Time Warping . . . . . . . . . . . . . . . . . 17

2.4.3 Longest Common Subsequence Matching . . . . . . . . 18

2.5 E�cient Handling of Temporal Data . . . . . . . . . . . . . . 18

ix



x CONTENTS

2.5.1 Vector Space Transformation . . . . . . . . . . . . . . 19

2.5.2 Feature Space Transformation . . . . . . . . . . . . . . 20

2.5.3 Dimensionality Reduction Techniques . . . . . . . . . . 21

2.5.4 Clipped Representations . . . . . . . . . . . . . . . . . 21

2.5.5 Filter-Re�nement Architecture . . . . . . . . . . . . . . 22

2.6 Data Mining on Time Series . . . . . . . . . . . . . . . . . . . 22

2.6.1 Query Types on Temporal Data . . . . . . . . . . . . . 23

2.6.2 Data Mining Techniques . . . . . . . . . . . . . . . . . 24

2.7 Basic Notations . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Datasets used in the Experimental Evaluation 29

3.1 Audio Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Air Pollution Dataset . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Gene Expression Dataset . . . . . . . . . . . . . . . . . . . . . 31

3.4 Standard Datasets . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 GunX . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.3 CBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.4 SynCtrl . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.5 Leaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

II New Similarity Measures for Time Series Data 37

4 Threshold-Based Similarity 39

4.1 General Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Threshold-Based Queries . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Threshold-Crossing Time Intervals . . . . . . . . . . . 44

4.3.2 Similarity Model for Threshold-Crossing Time Interval

Sequences . . . . . . . . . . . . . . . . . . . . . . . . . 45



CONTENTS xi

4.3.3 Similarity Queries based on Threshold Similarity . . . 47

4.4 Index Support for Threshold Queries . . . . . . . . . . . . . . 48

4.4.1 Threshold-Based Indexing for a Fixed Threshold . . . . 49

4.4.2 Representing Threshold-Crossing Time Intervals for Ar-

bitrary Threshold Values . . . . . . . . . . . . . . . . . 51

4.4.3 Trapezoid Decomposition of Time Series . . . . . . . . 54

4.4.4 Indexing Segments in the Parameter Space . . . . . . . 56

4.5 Threshold-Based Query Algorithms . . . . . . . . . . . . . . . 58

4.5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.2 Pruning Strategy for Threshold Queries . . . . . . . . . 60

4.5.3 Threshold-Based ε-Range Query Algorithm . . . . . . 62

4.5.4 Filter Distance for the Threshold Similarity . . . . . . 63

4.5.5 Threshold-Based Nearest-Neighbor Query Algorithm . 68

4.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . 71

4.6.1 Datasets and Methods . . . . . . . . . . . . . . . . . . 73

4.6.2 Performance Results . . . . . . . . . . . . . . . . . . . 73

4.6.3 Threshold-Based Similarity Measure . . . . . . . . . . 78

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Amplitude-Level-Based Similarity 81

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Considering Multiple Thresholds for Similarity Queries . . . . 85

5.2.1 Amplitude-Level-Wise Feature Extraction . . . . . . . 87

5.2.2 Feature Sequence Compression . . . . . . . . . . . . . . 88

5.2.3 Feature Sequence Combination . . . . . . . . . . . . . 89

5.3 Amplitude-Level Features . . . . . . . . . . . . . . . . . . . . 89

5.3.1 Above Amplitude Level Quota . . . . . . . . . . . . . . 90

5.3.2 Threshold Interval Count . . . . . . . . . . . . . . . . . 91

5.3.3 Threshold Interval Length (TIL) . . . . . . . . . . . . 92

5.3.4 Threshold Interval Distance (TID) . . . . . . . . . . . 93



xii CONTENTS

5.3.5 Threshold Crossing Angle (TXA) . . . . . . . . . . . . 94

5.3.6 Threshold Balance (TB) . . . . . . . . . . . . . . . . . 95

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.1 Datasets and Methods . . . . . . . . . . . . . . . . . . 96

5.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . 97

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Interval-Focused Similarity 109

6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Interval-Focused Queries . . . . . . . . . . . . . . . . . . . . . 112

6.2.1 Time Interval Sequence . . . . . . . . . . . . . . . . . . 112

6.2.2 Similarity Model for Time Interval Sequences . . . . . 113

6.2.3 Similarity Queries for Time Interval Sequences . . . . . 114

6.3 Index Support for Interval-Focused Queries . . . . . . . . . . . 115

6.3.1 Representing Time Series by Interval Boxes . . . . . . 116

6.3.2 Distance Estimation Using Interval Boxes . . . . . . . 117

6.3.3 Generating Approximations . . . . . . . . . . . . . . . 122

6.4 Interval-Focused Query Processing . . . . . . . . . . . . . . . 127

6.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.5.1 Datasets and Methods . . . . . . . . . . . . . . . . . . 129

6.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . 130

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Similarity Search on Uncertain Time Series 139

7.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.1.1 Similarity Search on Time Series . . . . . . . . . . . . 143

7.1.2 Similarity Search on Uncertain Vector Objects . . . . . 143

7.2 Special Notations . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.3 Probabilistic Similarity Queries for Uncertain Time Series . . . 145

7.3.1 Uncertain Time Series . . . . . . . . . . . . . . . . . . 146



CONTENTS xiii

7.3.2 Uncertain Distances . . . . . . . . . . . . . . . . . . . 147

7.3.3 Probabilistic Similarity Queries . . . . . . . . . . . . . 149

7.4 Approximative Representation for Uncertain Time Series . . . 151

7.4.1 E�cient Representation of Uncertain Time Series . . . 151

7.4.2 Approximating Distances . . . . . . . . . . . . . . . . . 153

7.4.3 Approximating Probabilities . . . . . . . . . . . . . . . 154

7.5 Multi-Step Probabilistic Range Query Processing . . . . . . . 158

7.5.1 Probabilistic Bounded Range Queries . . . . . . . . . . 159

7.5.2 Probabilistic Ranked Range Query . . . . . . . . . . . 159

7.5.3 Step-Wise Re�nement of Probability Estimations . . . 161

7.5.4 Probabilistic Queries Using DTW . . . . . . . . . . . . 166

7.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.6.1 Datasets and Methods . . . . . . . . . . . . . . . . . . 168

7.6.2 Experimental Results . . . . . . . . . . . . . . . . . . . 170

7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

III Data Mining on Temporal Data 181

8 Semi-Supervised Threshold Queries 183

8.1 Semi-Supervised Clustering . . . . . . . . . . . . . . . . . . . 186

8.2 Semi-supervised Threshold Analysis . . . . . . . . . . . . . . . 188

8.2.1 General Idea . . . . . . . . . . . . . . . . . . . . . . . . 188

8.2.2 Computing the Separation Score . . . . . . . . . . . . . 189

8.2.3 Determining the Optimal Threshold . . . . . . . . . . . 195

8.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8.3.1 Datasets and Methods . . . . . . . . . . . . . . . . . . 196

8.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . 197

8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

9 T-Time: A Data Mining Tool for Time Series Data 207



xiv CONTENTS

9.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . 208

9.1.1 Visual Comparison of Time Series . . . . . . . . . . . . 208

9.1.2 Supervised Analysis . . . . . . . . . . . . . . . . . . . . 209

9.1.3 Unsupervised Analysis . . . . . . . . . . . . . . . . . . 210

9.2 Threshold-Based Data Mining . . . . . . . . . . . . . . . . . . 211

9.3 Amplitude-Level-Based Data Mining . . . . . . . . . . . . . . 213

9.4 Further Applications . . . . . . . . . . . . . . . . . . . . . . . 215

9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

IV Conclusions and Outlook 217

10 Summary and Outlook 219

10.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

10.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

10.2.1 Threshold-Based Similarity . . . . . . . . . . . . . . . 221

10.2.2 Amplitude-Level-Based Similarity . . . . . . . . . . . . 221

10.2.3 Interval-Focused Similarity . . . . . . . . . . . . . . . . 222

10.2.4 Similarity for Uncertain Time Series . . . . . . . . . . 222

List of Figures 223

List of Tables 229

References 231



Part I

Preliminaries

1





Chapter 1

Introduction

In probably all application �elds, the amount of recorded and stored data

increases tremendously. While simple data like strings or numbers can often

be analyzed and retrieved with rather straightforward solutions, complex

data usually requires a higher e�ort. Complex data is a large class of real-

world data, including graphs, images, three-dimensional objects, or temporal

data. In the following we give an overview of the importance of similarity

measures for complex data.

1.1 Retrieval of Complex Objects

One of the basic tasks in databases is to retrieve objects that have been stored

earlier. Usually, a query object is given, and the task is to �nd the objects

of a dataset that are most similar to the query. This is the general principle

of search engines. An example is depicted in Figure 1.1. A time series is

used as the query object and the search engines returns an ordered list of

similar time series. Depending on the used similarity measure, the ranking

may vary signi�cantly. So it is important to design similarity measures that

are appropriate for a given task. Similarity measures try to model a certain

notion of similarity, a similarity concept. Such a notion could be the human

intuitive concept of visual similarity, or it could be the similarity with respect

3



4 1 Introduction

Figure 1.1: Time series search engine.

to a certain partial aspect of the complete object.

1.2 Knowledge Discovery in Databases

Aside from simply retrieving similar objects, it is often of interest to dis-

cover hidden relations in a large amount of data. A similarity search can

be considered as a 1:n algorithm, retrieving n objects for 1 query object.

For large collections of data this approach is not feasible any longer. It is

rather of interest to compare all objects to all other objects. To cope with

such large datasets and to automatically detect potentially useful knowl-

edge, algorithms for the so-called knowledge discovery in databases (KDD)

have been proposed over the last years. According to [FPSS96], KDD is the

non-trivial process of identifying valid, novel, potentially useful, and ulti-
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Figure 1.2: Impact of di�erent similarity measures on OPTICS clustering

results.

mately understandable patterns in data. Data mining is described as a step

within the KDD process. Data mining applies data analysis algorithms that,

under acceptable computational e�ciency limitations, produce a particular

enumeration of patterns over the data. The other steps of the KDD process

include data preprocessing and data reduction. Data mining however, can

be considered as the core step of the KDD process, as the new knowledge is

actually created during this step. Usually, data mining is based on a sim-

ilarity measure. All techniques like clustering, classi�cation, or the search

for association rules depend on a notion of similarity. Similar objects are

clustered together and classi�ers try to describe classes of similar objects.

In Figure 1.2 two OPTICS [ABKS99] clustering results are depicted. They

di�er only in the choice of the underlying similarity measure. Obviously the

used similarity concept has a huge impact on any subsequent analysis step.

1.3 Temporal Data

In general, temporal data denotes a type of data where a temporal dimension

is available aside from the data itself. This additional information is used

to describe observations that vary over time. Aside from the detection of

meaningful patterns in the actual recorded data, the temporal dimension

allows for the search for temporal patterns as well. Such a pattern could be

the correlation between the exposition to a chemical agent and a change in

the gene expression rate. In this example, the point in time is an important
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attribute. Only when a change in the gene expression rate happens after the

exposition to the agent, there might be a causal relationship. Temporal data

consists of two main categories, bitemporal data and time series data.

• Bitemporal Data is the concept used in temporal databases. This term

is used to summarize the two time concepts of temporal databases,

in particular the valid time and the transaction time. The valid time

denotes the time period during which a certain event is actually hap-

pening, or is true. In contrast to the valid time, the transaction time

denotes the time during which a certain fact is stored in a database,

even if it is not true any more. A prominent example is the administra-

tion of employees. A new employee may be inserted into the temporal

database of a company several weeks before the employee actually be-

gins to work for the company. As soon as the employee starts to work,

the valid time begins. The database fact that the employee is working

for the company is valid as long as the employee indeed works for the

company. The transaction time however, may last several more years,

as the company may be required by law to store facts about the former

employee.

• Time Series Data describes more than just two states (true or false)

for a certain observation. They are used to store measurements in a

broad range of application domains. Think of biology where chemical

concentrations within a cell may be measured for a number of points

in time. Think of stock charts that re�ect the price of a certain share

for a certain moment in time. Two- or three-dimensional trajectories of

moving objects are actually also time series. For a number of moments,

the position of an object is recorded. This results in a two- or three-

dimensional time series, respectively.

So, time series are the more complex representation for temporal data. Ac-

tually, bitemporal data can easily be converted to a time series, although

usually a very simple-structured time series will result in this case. In this

thesis we focus on time series, as they are the more general kind of tem-

poral data. However, we use the notation time series and temporal data



1.4 Outline of the Thesis 7

interchangeably.

1.4 Outline of the Thesis

This thesis is organized as follows:

Part I covers the preliminaries.

Chapter 1 describes the general idea of similarity search and its applications

for knowledge discovery in databases.

Chapter 2 surveys related work in the area of similarity measures for time

series objects. This includes the actual similarity measures as well as an

overview of existing methods for the e�cient calculation of similarity values,

in particular by means of dimensionality reduction techniques. Furthermore

we brie�y review existing data mining techniques. Finally we introduce basic

notations and de�nitions used in this thesis.

Chapter 3 describes the datasets we have used for the experimental compar-

isons throughout this work.

Part II introduces in total four new similarity measures for time series. In

particular we introduce a threshold-based similarity measure, an amplitude-

level-based similarity measure, an interval-focused similarity measure, and a

similarity measure for uncertain time series.

Chapter 4 describes a new similarity measure based on thresholds. We con-

sider two time series as similar, if they exceed a user-given threshold during

similar time intervals. The exact values are not considered as they may be

of no relevance for certain applications. This similarity measure is also of in-

terest when amplitude values above a certain threshold level are error-prone,

for example temperature sensors at very high temperatures. This chapter

also presents an index structure which e�ciently supports queries for the

threshold-based similarity measure. This index structure allows for the spec-

i�cation of the threshold value at query time. We show how time series can

be converted into a suitable representation and be stored in such a way, that
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queries using an arbitrary threshold value can be supported.

In Chapter 5 we introduce the so-called amplitude-level-based similarity. This

similarity measure considers a relevant amplitude range rather than a sin-

gle threshold. This relevant range is scanned with a certain resolution and

for each considered amplitude value features are extracted. We consider the

change in the feature values over the amplitude values and thus, generate

so-called feature sequences. Di�erent features can �nally be combined to

answer amplitude-level-based similarity queries. In contrast to traditional

approaches which aggregate global feature values along the time dimension,

we capture local characteristics and monitor their change for di�erent ampli-

tude values. Furthermore, our method enables the user to specify a relevant

range of amplitude values to be considered and so the similarity notion can

be adapted to the current requirements.

Chapter 6 introduces the so-called interval-focused similarity measure. A

user can specify one or several time intervals that should be considered for

the calculation of the similarity value. Our main focus for this similarity

measure was the e�cient support of the corresponding query. In particular

we try to avoid loading the complete time series objects into main memory,

if only a relatively small portion of a time series is of interest. We propose

a time series representation which can be used to calculate upper and lower

distance bounds, so that only a few time series objects have to be completely

loaded and re�ned. This representation is based on boxes that conservatively

approximate a time series. The idea is to develop a sensible heuristic that

generates suitable boxes. If too few boxes are generated, the time series

can be only approximated very poorly and hence, the corresponding distance

bounds are not very tight. Too many boxes however result in a large overhead

for the storage of the boxes. Our method supports the speci�cation of the

relevant time focus at query time.

In Chapter 7 we de�ne a similarity measure for uncertain time series. This

type of time series di�ers from standard time series. Uncertain time series

consist of several amplitude values for each time slot. This can be due to

multiple recordings or to errors in measurements, so that no exact value can
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be speci�ed. In this situation, no exact distance value can be speci�ed. In-

stead, a number of distance values can be observed comparing two uncertain

time series. In fact, we show that this number of possible distance values

is very high and so the need for an e�cient distance estimation arises. We

de�ne two query types, the probabilistic bounded range query, and the prob-

abilistic ranked range query. These queries return uncertain time series that

ful�ll the query-distance predicate with a given or the highest probability,

respectively.

Part III focuses on the actual data mining step for temporal data.

Chapter 8 presents two approaches for the semi-supervised determination of

threshold-values that are especially well suited for the calculation of threshold-

based distance values for a given dataset and a given similarity concept. This

concept can be speci�ed by means of labeled training data. Our experiments

showed that new knowledge can be generated, even if not all possible classes

are available. This is especially important as this means, that partial knowl-

edge about a certain dataset may be su�cient for the proposed algorithm.

The so determined threshold can afterwards be used to discover further in-

teresting relationships within the data.

In Chapter 9 we present a data mining tool for time series data called T-

Time. This tool can be used to perform classi�cation or clustering analysis

for time series. Furthermore it can be used to compare the impact of di�erent

similarity measures and of di�erent dimensionality reduction techniques.

Part IV concludes this thesis.

In Chapter 10 we summarize the contribution and �ndings of this thesis and

explain possible directions for future work

This thesis is based on several publications. Table 1.1 gives an overview of

these publications and maps them to the appropriate chapters of this thesis.
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Topic Chapter Publication

Threshold-based similarity 4 [AKK+06c]

[AKK+06b]

Amplitude-level-based similarity 5 [AKK+08a]

Interval-focused similarity 6 [AKK+07]

Semi-supervised threshold queries 8 [AKK+06a]

[AKK+06d]

T-Time: A data mining tool for time series data 9 [AKK+06e]

[AKK+08b]

Table 1.1: List of publications this thesis is based on.



Chapter 2

Similarity-Based Analysis of

Temporal Data

In this chapter we give an overview of the �eld of similarity-based analysis

of temporal data. At �rst we formally de�ne the concept of time series.

2.1 Representing Temporal Data

A time series is a list of discrete values recorded at a certain point in time.

De�nition 2.1 (Time Series).

A d-dimensional time series X is a sequence of tuples

〈(x1, t1), .., (xN , tN)〉,

where ti ∈ T denotes a speci�c time slot and xi ∈ Rd denotes the measure-

ment recorded at time ti. Furthermore, we assume that the sequence of tuples

is ordered with respect to the time slots, i.e.

∀i ∈ 1, .., N − 1 : ti < ti+1

For the sake of presentation we assume one-dimensional time series through-

out this work. However, the presented approaches can easily be extended to

11
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(c) Complex interpolation.

Figure 2.1: Interpolating discrete-valued time series.

cover the general d-dimensional case.

2.2 Interpolating Discrete-Valued Time Series

Usually, and as de�ned above, time series are discrete, i.e. they consist of

single values at discrete points in time. This is due to the way, time series

are usually created: by observations of a certain varying parameter. Obvi-

ously a real-world observation takes place at a discrete point in time. So

in practice, each time series analysis has to cope with missing values. The

standard approach to do so, is to linearly interpolate the existing values.

Any two subsequent measurements or observations are used to de�ne a lin-

ear function, so that afterwards a time series value can be calculated for any

point in time, as long as it is not before the �rst recorded value, or after the

last recorded value. A linearly interpolated time series is depicted in Figure

2.1(b) for the discrete time series presented in Figure 2.1(a). In case more

information about the nature of the recorded data is available, other inter-

polation methods, for example based on polynomial functions, can be used

as well (see Figure 2.1(c)).

Throughout this thesis we assume that missing time series values are

available by means of linear interpolation.

De�nition 2.2 (Alternative Notations for Time Series).

For the sake of presentation, we also use the notation x(t) to denote the

(potentially interpolated) time series value at time t. Furthermore, we may
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omit the time information and simply consider a time series as a list of

amplitude values. In this case we implicitly assume the distance in time

between two time series values to be constant for all measurements. The

actual points in time do not matter in this case. Let us assume the �rst

value was recorded at t = 1, and the second value was recorded at t = 2.

Then the list of values without temporal information actually corresponds to

X = 〈x1, .., xN〉 = 〈(x1, 1), (x2, 2).., (xN , N)〉,

De�nition 2.3 (Length of a Time Series).

The length of a time series X is the number of tuples X consists of. The

length is usually denoted by N. Note that this de�nition is consistent with

linearly interpolated time series, if the length is de�ned as

N = (LatestTimeSlot)− (EarliestTimeSlot) + 1

as interpolating does not change the start or end point of a time series.

2.3 Similarity Measures for Complex Objects

In this section we cover the idea of similarity for complex objects in general.

To de�nition of a similarity measure for complex objects is the �rst and

probably most important step for all further analysis. Let us begin with a

simple and general de�nition.

De�nition 2.4 (Similarity Measure).

Let X and Y be two objects of a domain D. Then a similarity measure is

a function s : D × D → R+
0 that assigns a similarity value to the pair X

and Y . Usually higher similarity values are assigned to pairs of more similar

objects. We also use similarity function to denote a similarity measure.

Usually the concept of distance measures or distance functions are used

rather than similarity functions. The main di�erence is that lower values are

assigned to more similar pairs of objects, as such objects have a low distance

to each other in terms of similarity. A nice property of distance measures
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compared to similarity measures is that the value for identical objects is

usually 0, i.e. d(X,X) = 0 for a distance function d. As 0 is the minimal

value of the function range, no pair of non-identical objects can have a lower

distance. On the other hand, when de�ning a similarity function, it is of-

ten not obvious what the maximal value for pairs of identical objects should

be. Nevertheless, it is often possible to convert similarity values to distance

values and vice versa. So, throughout this thesis we use the expressions sim-

ilarity function, similarity measure, distance measure, and distance function

interchangeably, whenever the actual meaning is obvious or irrelevant.

While for non-complex objects like real numbers a notion of similarity is

easily agreed upon, for two complex objects like images, audio signals, three-

dimensional objects, or time series, things unfortunately are not that clear.

However, once such a similarity measure has been de�ned for complex ob-

jects, a vast range of possible applications and analysis approaches becomes

feasible. These applications include information retrieval, search engines,

classi�cation of newly discovered instances of an complex object, clustering

analysis, and many more. The problem of de�ning such a similarity measure

is twofold: �rst, it is usually not obvious how similar two complex objects

should be considered. Think of the three-dimensional objects taken from

the Princeton Shape Benchmark [SMKF04] depicted depicted in Figure 2.2.

How similar is a guitar to a collection of chairs and table? The answer ob-

viously depends heavily on the person asking the question. A musician for

example would probably think of a guitar as more similar to a piano as to

some pieces of furniture. After all, it is rather di�cult to produce music on

a table with 4 chairs. On the contrary, a sales person querying a database

of objects might think of the guitar as the outlier in the depicted group.

Taking his point of view, the guitar is obviously much smaller and cheaper

as the two other objects. This simple example underlines the need for di�er-

ent similarity functions for di�erent application domains. One of the main

aspects of this thesis is therefore to extend the existing notions of similarity,

in particular those for time series.

The second di�culty involved in de�ning similarity measures is the cost

for the actual computation of similarity or distance values. Images might
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Figure 2.2: How to de�ne similarity on complex objects?

have to be aligned by means of rotation before comparing them. Such an

alignment step is even more costly for three-dimensional objects. Afterwards,

complex mathematical functions might have to be evaluated to yield a single

similarity value. So, for large-scale databases frequently involved in real-

world problems, e�cient access techniques have to be developed. Lower or

upper bounds have to be sought after that allow for a faster yet less precise

answer or that can be used as a �lter step to get rid of a subset of candidates

for the �nal result set. Consequently, e�ciency considerations are the second

main aspect of this thesis.

In the following, we will review existing similarity measures, as well as

techniques to answer similarity queries e�ciently.

2.4 Similarity Measures for Time Series

2.4.1 Minkowski Distance

The most prominent distance measure is the Euclidean distance which is a

special case of the more general Minkowski distance for a parameter setting

of p = 2

De�nition 2.5 (Minkowski Distance).

Let X and Y be two time series of length N as de�ned above. Let p ∈
R, 1 ≤ p ≤ ∞. Then Lp(X, Y ) is called the Minkowski distance of order p
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Figure 2.3: Computation of the Minkowski distance.

(or p-norm) between X and Y . Lp is de�ned as:

Lp(X, Y ) = p

√√√√ N∑
i=1

|xi − yi|p.

Further frequently used variants of the Minkowski distance include the

Manhattan distance (p = 1) and the ∞-norm (Chebyshev distance). For

p → ∞ it can be shown that Lp(X, Y ) = max
i

(|xi − yi|). An example for

the computation of the Minkowski distance is given in Figure 2.3. Each time

slot of the �rst time series is compared to the corresponding time slot of the

second time series. The closer the values at each time slot, the more similar

the time series are considered. The only di�erence of the two depicted sample

time series is an amplitude-wise shift. Otherwise they are very similar.

Especially the Euclidean distance is widely used and models the intuitive

perception of similarity well for a broad range of applications. Furthermore it

is e�ciently to compute and thus is also suitable for large-scale applications.

One of the main disadvantages is its sensitivity to even minor shifts in time.
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(a) Time series to compare.

(b) DTW alignment with small warping

distance.

(c) DTW alignment with large warping

distance.

Figure 2.4: DTW alignment.

2.4.2 Dynamic Time Warping

The Dynamic TimeWarping approach (DTW distance) was developed [BC94].

In [KCMP01] it was shown that DTW overcomes the problem of sensitivity

to time shifts of the Minkowski distance. The DTW approach matches each

time series value of the �rst time series to the best matching time series value

of the second time series. This matching has to respect certain constraints,

especially with respect to the distance in time of the matching partner, i.e.

only a certain time warp is allowed. A certain time slot may be used several

times as a matching partner, and so, time series of di�erent length can be

compared.

In Figure 2.4(a) two quite similar time series are depicted. Due to a

small shift in time, standard Minkowski distances would yield relatively high

distance values for this pair of time series. Figure 2.4(b) shows the matching

the DTW yields for these time series. If the allowed time warp is increased

(see Figure 2.4(c)), a di�erent matching can be observed. In this case, the

DTW distance will be even smaller, as more possible matching partners can

be considered. However, in this case the computational cost will increase.
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The DTW distance can be calculated by means of dynamic programming.

The basic implementation is of quadratic complexity in the length of the time

series. Depending on the warping window, i.e. the size of the allowed shift

in time, it can be more e�ciently calculated.

In [KP01] the authors introduced and enhanced version of the DTW,

called Derivative Dynamic Time Warping.

2.4.3 Longest Common Subsequence Matching

A variant of the DTW distance is the family of distance values based on

longest common subsequence (LCSS) matching between two time series. A

problem of the DTW is that all time slots have to be matched. This is

especially problematic in case of noisy data with large outlier values which

can lead to low quality distance values. The LCSS addresses this problem

by allowing gaps in the alignment of time series, i.e. not all time slots have

to be matched. Examples for the use of LCSS based distance measures can

be found in [DGM97] and in [VHGK03].

2.5 E�cient Handling of Temporal Data

As described above especially large collections of potentially long time series

require e�cient methods to access and process them. In the following we will

review existing methods to deal with large amounts of time series data.

According to [FRM94] and to [KCMP01], the following properties are

desired for an indexing method for time series.

• The query should be answered fast, in particular the computation time

to answer a query should be faster than the sequential scan, which for

large datasets is too slow.

• The method should be correct, i.e. all time series ful�lling the query
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predicate should be returned (no false dismissals). False hits are ac-

ceptable as they can be sorted out in a re�nement step.

• The space overhead for the index structure should be small.

• The index structure should be able to store time series of di�erent

length and be able to answer queries of varying length.

• The index structure should be dynamic, i.e. it should be possible to

delete, insert, or update time series.

The authors of [FRM94] proved that in order to guarantee no false dis-

missals, the following condition has to hold:

dindex(X, Y ) ≤ dexact(X, Y )

for any two time series X and Y , where dindex is the distance in the index

space, and dexact is the actual and true distance between X and Y . This is

known as the lower bounding lemma.

2.5.1 Vector Space Transformation

A straightforward approach to store time series data in an index structure

is to consider time series of length n as a point in an n-dimensional vec-

tor space. In case of the Minkowski distance, the distance of two time se-

ries equals the Minkowski distance of the n-dimensional points in the vector

space. This transformation allows for the storage in any multidimensional

index structure like the R-tree [Gut84] or one of its many variants like the

R*-tree [BKSS90]. Unfortunately, this approach su�ers from the well-known

curse of dimensionality, a term coined by [Bel61]. This e�ect describes the

observation that the performance of index structures degrade very fast with

increasing dimensionality of stored data. The reason for this is that the

volume a vector space increases exponentially in the dimensionality. For uni-

formly distributed data, actually each data point is stored in its own leaf of

the index structure. This phenomenon occurs for dimensionality values as

low as 8 to 12 [CM99]. Obviously this value is too small for a broad range of
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Figure 2.5: GEMINI approach.

real-world time series datasets whose entries frequently exhibit several thou-

sand time slots. So, the work mentioned above [FRM94] introduced a general

framework to overcome these problems.

2.5.2 Feature Space Transformation

The authors of [FRM94] introduced a general approach to index large amounts

of multimedia data based on their observations described above. This ap-

proach is called GEneric Multimedia INdexIng method or GEMINI. This

method is an instruction how to exploit any indexing structure ful�lling the

lower bounding property. The general idea of the approach is to transform

each input time series to be stored to a set of a few features. The number of

features should be signi�cantly less than the length of the time series. Instead

of storing the time series, so called feature vectors are stored for each time

series object, where the single feature value constitute the feature vector. An

overview is given in Figure 2.5.

Based on the lower bounding property only those objects have to be re-

�ned whose index-based distance to a query object is below a given value.

Re�nement is the process of evaluating the true distance based on the exact

time series representation. Typically, the re�nement cost is much higher than

the cost to calculate the index-based distance value. If the index-based dis-

tance is already higher than a given threshold, following the lower bounding

lemma it is of no use to re�ne the corresponding object, as its true distance

to a query object will be even higher or at least the same.
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Techniques to extract such features are often called dimensionality reduc-

tion techniques and will be reviewed in the following.

2.5.3 Dimensionality Reduction Techniques

There exist a vast amount of dimensionality reduction techniques. Standard

approaches include the Discrete Fourier Transform (DFT)[AFS93], exten-

sions to the DFT [WFS04], the Singular Value Decomposition (SVD)[KJF97],

the Discrete Wavelet Transform (DWT)[CF99], the Piecewise Aggregate Ap-

proximation (PAA) [YF00], the Adaptive Piecewise Constant Approximation

(APCA) [KCMP01], and Chebyshev Polynomials [CN04].

The general idea of this techniques is to describe a time series with only

a few coe�cients in a way that allows to calculate lower distance bounds

for the exact distance between two time series. This way, the time series

can be stored in an index structure, avoiding the curse of dimensionality.

The distance on the index structure can be used as a �lter distance, so that

afterwards only a few candidates have to be re�ned.

While these techniques are suitable for the indexing of Minkowski dis-

tances, only few methods have been proposed to index the DTW distance.

In [KR02] the authors showed how it is possible to build an index structure

for the DTW distance.

For further details on dimensionality reduction techniques, we refer the

interested reader to the survey in [KCPM00].

2.5.4 Clipped Representations

In [RKBL05], a novel bit level approximation of time series for similarity

search and clustering is proposed. Each value of the time series is represented

by a bit. The bit is set to 1 if the value of the time represented by the bit is

strictly above the mean value of the entire time series, otherwise it is set to

0. Then, a distance function is de�ned on this bit level representation that

lower bounds the Euclidean distance and, by using a slight variant, lower
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Figure 2.6: Clipped time series representation.

bounds DTW. An example for this representation is depicted in Figure 2.6.

Note that the so derived bit sequences can be compressed, for example using

run length encoding.

2.5.5 Filter-Re�nement Architecture

The general approach to use an index structure in order to derive a �rst

estimate for the exact distance, and to afterwards re�ne the remaining can-

didates is often called a �lter-re�nement architecture. In [KSF+96] the au-

thors adapted the GEMINI approach to the k-Nearest-Neighbor search (cf.

De�nition 2.7). This idea was later improved in [SHP98] where the authors

showed how to use an optimal �lter-re�nement approach with respect to the

considered candidates. The key concept of the approach in [SHP98] is to

dynamically update the �lter criterion, whenever the exact distance of the

kth nearest neighbor retrieved so far is calculated. This distance can be used

as the new �lter distance. If an object which has not yet been re�ned has

a lower bounding distance larger than the �lter distance, it can not be an

element of the resulting kNN set.

2.6 Data Mining on Time Series

Having de�ned a similarity measure on complex objects like time series, the

two most basic queries for each more sophisticated data mining task, are
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the ε-range query and the k-nearest neighbor query. Together with e�cient

index structures, dimensionality reduction techniques, and suitable �lter-

re�nement strategies, these query types lay the foundation for data mining

techniques on large real-world datasets.

In the following sections we formally de�ne these queries and give a brief

overview of the many data mining approaches.

2.6.1 Query Types on Temporal Data

The �rst query type is the epsilon-range query.

De�nition 2.6 (Epsilon-Range Queries).

Let D be the domain of complex objects. Let d : D × D → R+
0 be a distance

function. The ε-range query consists of a query object q ∈ D and a distance

parameter ε ∈ R+
0 . The ε-range query retrieves the set Qrange

ε (q) ⊆ D such

that

∀x ∈ Qrange
ε (q) : d(q, x) ≤ ε

The ε-range query can be used to answer a kNN query, which is de�ned

as follows.

De�nition 2.7 (k-Nearest-Neighbor Queries).

Let D be the domain of complex objects. Let d : D × D → R+
0 be a distance

function. The k-nearest neighbor query (kNN query) consists of a query

object q ∈ D and a parameter k ∈ N+. The kNN query yields the smallest

set QNN
k (q) ⊆ D that contains at least k elements such that

∀x ∈ QNN
k (q),∀y ∈ D \QNN

k (q) :

d(q, x) < d(q, y)

A pseudocode for both query types can be found in the GEMINI paper

[FRM94]. As mentioned above, an optimal kNN algorithm was introduced

in [SHP98].
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2.6.2 Data Mining Techniques

Clustering

Clustering tries to group objects into clusters. The idea of a cluster is that

elements of the same cluster are more similar to each other than to ele-

ments of other clusters. So, the similarity is high within a cluster, and low

across clusters. Following [Ber02], three of the main categories for clustering

methods are hierarchical clustering,partitioning clustering, and density-based

clustering. A further overview is given in [HK01].

Hierarchical clustering computes a cluster hierarchy, often represented

as a dendrogram. Some clusters contain further child clusters. A hierarchical

clustering structure is usually either obtained by iteratively splitting of the

dataset, or by merging smaller clusters to a parent cluster. The �rst approach

is called divisive and starts with only one cluster containing the complete

data. This cluster is recursively split, until some stop criterion is ful�lled.

Agglomerative approaches start with clusters consisting of only one object.

In each iteration, clusters are merged, until all the data is contained in the

root cluster. Prominent examples of hierarchical clustering methods include

Single Link [Sib73], CURE [GRS98], and BIRCH [ZRL96].

Partitioning clustering splits the available data into disjoint clusters.

One of the �rst clustering algorithms of this category was the k-means algo-

rithm [Mac67]. Further examples are the k-medoid-based approaches PAM

and CLARA [KR90], and CLARANS [NH94].

Density-based clustering groups objects into clusters according to a den-

sity criterion. While approaches like k-means are often restricted to the

creation of convex clusters, density-based approaches usually detect clus-

ters of any shape. DBSCAN [EKSX96] and its hierarchical variant OPTICS

[ABKS99] as well as DENCLU [HK98] are prominent examples in this cate-

gory.
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Classi�cation

Classi�cation is a supervised data mining task, i.e. a set of labeled training

data is available based on which a model can be learned. This model (the

classi�er) can afterwards be used to predict the class of a newly discovered

object from the same domain as the training data. Important categories of

existing classi�cation techniques include decision trees, statistical methods,

instance-based learners, and Support Vector Machines [Kot07].

Decision trees consist of nodes representing features of the instances to

be classi�ed. Each value the feature can assume is represented by a branch

leading to the next node or to a leaf in case the object has successfully be

classi�ed. The most well-known decision tree algorithm is the C4.5 algorithm

[Qui93]

Statistical methods assign probability values for the correct rather than

a single class label. Naive Bayesian networks are relatively simple classi�ers

with independence assumptions concerning the values of the di�erent features

of an object. However they were shown to be quite competitive in [DP97].

The more general Bayesian networks or belief networks are able to model

probability relationships between a set of features. However they are quite

di�cult to compute [Kot07].

Instance-based learners are also called lazy learners, as they do not

derive an explicit model like a decision tree or a Bayesian network for a

given training set. They rather use the training set each time a classi�cation

task is to be performed. The most well-known instance-based learner is the

k-nearest neighbor classi�er [CH67] with its many variants.

Support Vector Machines are one of the newest classi�cation approaches

and were introduce in [Vap95]. SVMs try to separate two classes with a

hyperplane that maximizes the so called margin, i.e. the distance to both
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classes. This way, over�tting is minimized. Often, two classes are not linearly

separable by a hyperplane. In this case the original data points are mapped

to a higher-dimensional Hilbert space H. During the training phase, dot

products in H have to be evaluated. If there exists a so called kernel function

which can be evaluated directly in the original feature space, but whose result

equals the dot product in H, it is not necessary to explicitly map all training

instances to H. This is known as the �kernel trick� [SBS99].

2.7 Basic Notations

In this section we summarize basic notations used throughout this thesis.

If required, more speci�c notations will be introduced in the corresponding

sections.

• i, j, k for integers

• D: the domain of time series objects or a database containing time

series objects

• N, n: length of a time series

• T : the time domain

• τ : a threshold value

• Q: a query time series

• X, Y : the time series X and Y

• TQrange
ε (Q, τ): Threshold-based ε-range query

• TQNN
k (Q, τ): Threshold-based k-nearest neighbor query

• IQrange
ε (Q, I):Interval-focused ε-range query

• IQNN
k (Q, I): Interval-focused k-nearest neighbor query

• PQrange
ε (Q, τ): Probabilistic Bounded Range Query (PBRQ)
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• PQrank
ε (Q, τ): Probabilistic Ranked Range Query (PRRQ)
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Chapter 3

Datasets used in the

Experimental Evaluation

In this chapter we describe the datasets used in the experimental sections of

this thesis. A brief overview is given in Table 3.1.

3.1 Audio Dataset

In order to create a set of similar datasets with varying size and varying

length of the time series, we created several audio datasets. These dataset

contain time sequences, expressing the temporal behavior of the energy and

frequency in music sequences. The exact length of the time series and the

size of the used dataset is speci�ed whenever one of these datasets is used.

Example time series are depicted in Figure 3.1. This dataset was mainly

used for e�ciency related experiments.

3.2 Air Pollution Dataset

The data on environmental air pollution was provided by the Bavarian State

O�ce for Environmental Protection, Augsburg [LFU], and contains the daily

29
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Dataset # time series length # classes

Audio up to 700000 up to 10000 -

Air Pollution up to 1800 48 varying

Gene Expression 6000 8/16 varying

GunX 200 150 2

Trace 200 275 4

CBF 150 127 3

SynCtrl 600 6000 6

Leaf 442 150 6

Table 3.1: Summary of test datasets.

Figure 3.1: Example time series of audio dataset.
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wind speed relative humidity 

Figure 3.2: Example time series of the environmental air pollution

dataset.

measurements of 8 sensor stations distributed in and around the city of Mu-

nich for the years 2000 to 2004. One time series represents the measurements

of one station at a given day containing 48 values for one of 10 di�erent pa-

rameters like temperature or ozone concentration. Example time series are

presented in Figure 3.2.

3.3 Gene Expression Dataset

The gene expression datasets contain the expression levels of approximately

6,000 genes of the yeast Saccharomyces cerevisiae, which is commonly known

as baker's yeast [SSZ+98]. The �rst subset is the Gene Expression Omnibus

[BTW+06, EDL02] dataset GDS 38 and contains 2562 entries. Gene expres-

sion levels were recorded every 7 minutes during the cell cycle. In total 16

measurements were recorded. The second subset is the GDS 30 set consist-

ing of 2628 entries. 8 measurements over 90 minutes were recorded, after the

cells were exposed to the chemical agent diamide. In order to obtain a refer-

ence classi�cation for our experiments, we used the hierarchical classi�cation

system of the Gene Ontology project [ABB+00]. The number of the classes

varied according to the selected classi�cation level. Example time series for

both subsets are depicted in Figure 3.3.
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GDS 30 GDS 38

Figure 3.3: Example time series of the Gene Expression dataset.

3.4 Standard Datasets

The standard datasets are derived from diverse �elds and cover the complete

spectrum of stationary/non-stationary, noisy/smooth, cyclical/non-cyclical,

symmetric/asymmetric etc. data characteristics. They are available from the

UCR Time Series Data Mining Archive [KF02]. Due to their variety, they

are often used as benchmark for novel approaches in the �eld of similarity

search in time series databases. We selected four datasets of this repository,

in particular the GunX dataset, the Trace dataset, the CBF dataset, and the

SynCtrl dataset. We cover these datasets in the following sections.

3.4.1 GunX

This dataset is a two-class dataset from the �eld of video surveillance. The

dataset contains two classes, each consisting of 100 instances. All instances

were created by using a female a male actor which had to perform two dif-

ferent tasks corresponding to the two classes. The �rst class is called �Gun-

Draw�. For this class, the actors had their hands by their sides. Then they

drew a gun from a hip-mounted holster, point it at a target for approximately

one second and returned the gun to the holster. The second class, �Point�,

corresponds to a similar movement, although the index �nger is used to aim

at a target instead of a real gun. For both classes, the centroid of the right

hand in X-axes was tracked. Each instance has the same length of 150 data

points. Example time series for both classes are depicted in Figure 3.4.
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gun-draw point

Figure 3.4: Example time series of the GunX dataset.

class 1 class 2 class 3 class 4

Figure 3.5: Example time series of the Trace dataset.

3.4.2 Trace

The trace dataset is a four-class dataset which is a subset of the Transient

Classi�cation Benchmark (trace project) used in [Rov02] for plant diagnos-

tics. It is a synthetic dataset designed to simulate instrumentation failures

in a nuclear power plant. The full dataset consists of 16 classes, 50 instances

in each class. Each instance has 4 features. The Trace subset only uses the

second feature of class 2, and the third feature of class 3 and 7. Hence, this

dataset contains 200 instances, 50 for each class. All instances are linearly

interpolated to have the same length of 275 data points. Examples can be

found in Figure 3.5.
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cylinder bell funnel

Figure 3.6: Example time series of the CBF dataset.

3.4.3 CBF

The CBF dataset is derived from the arti�cial cylinder-bell-funnel task, orig-

inally proposed by in [Sai94]. The task is to classify a time series as one of

the three classes, cylinder, bell, or funnel. We used a subset (50 time series

from each class) of the original dataset, containing 100 cylinders, 100 bells

and 100 funnels. Example time series are depicted in Figure 3.6.

3.4.4 SynCtrl

The SynCtrl dataset contains 600 examples of control charts synthetically

generated by a process described in os [AM99]. This dataset consists of the

Cyclic pattern subset of the control chart data from the UCI KDD archive

(kdd.ics.uci.edu). The data is e�ectively a sine wave with noise consisting of

6,000 data points. There are six di�erent classes, each class consisting of 100

instances. A member of each class is depicted in Figure 3.7.

3.4.5 Leaf

This dataset is based on an image dataset of leafs. According to [RK05] these

leaf images were transformed to time series by measuring the distance of leaf

contour points to the leaf centroids. Example time series for the 6 di�erent

classes can be found in Figure 3.8.
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normal cyclic increasing trend

decreasing trend upward shift downward shift

Figure 3.7: Example time series of the SynCtrl dataset.

Figure 3.8: Example time series of the Leaf dataset.
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Part II

New Similarity Measures for

Time Series Data
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Chapter 4

Threshold-Based Similarity

Time series are quite often very long, consisting of thousands of values. So,

the comparison of two such long time series can be very expensive, espe-

cially when the exact values over the complete course of time is considered.

However, there are a lot of data mining applications where such exact infor-

mation is not required or even worse, is not desired. Often, it is more sensible

to compare two time series qualitatively. This can be the case if a certain

threshold is of interest, for example a legal threshold of some chemical agent.

Another possibility is that above a certain amplitude level, the measurements

are more prone to errors, and so the exact measurement is of no interest.

In this chapter, we introduce a novel type of similarity measure for time se-

ries, called threshold similarity. The corresponding similarity query is called

threshold query. A threshold query consists of a query time series Q and

a threshold vale τ ∈ R. The database time series as well as the query se-

quence Q are decomposed into time intervals of subsequent elements where

the values are (strictly) above τ . Now, the threshold query returns the time

series objects of the database which have a similar interval sequence of values

above τ . Note, that the complete set of exact amplitude values are irrele-

vant for the query. The time intervals of a time series X only indicate that

the amplitude values of X corresponding to the time intervals are above the

given threshold τ . The concept of threshold queries can be useful in many

practical application domains.

39
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indication of heart desease

normal form

T1

T2

T3

time

T1
T2
T3

Figure 4.1: Sample application of threshold-based similarity.

A sample application frommedical analysis is depicted in Figure 4.1 where

three real electrocardiogram (ECG) plots T1, T2, and T3 are shown. Plot T1

indicates a high risk for cardiac infarct due to the abnormal de�ection after

the systole (ST-T-phase), whereas T2 and T3 both show a normal curve

indicating a low risk. For the examination of time series with respect to

this abnormal characteristic, there is no need to examine the entire curve.

A better way to detect such kind of characteristics is to analyze only the

relevant parts of the time series, for instance observing those parts of the

time series which exceed a speci�ed threshold as depicted in our example.

Let us now consider the time interval sequences (below the ECG-curves)

which correspond to the time frames within which the time series exceed

the threshold τ . We can observe that the time interval sequences derived
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(b) systolic blood pressure

Figure 4.2: Heart rate and systolic blood pressure after drug treatment.

from T2 and T3 di�ers marginally. In contrast, the time series T1 exhibits

a di�erent characteristic, caused by the ECG-aberration which indicates the

heart disease.

For the pharmaceutical industry it is of interest which drugs have a similar

impact on patients at a similar time relative to the exposition to a certain

drug. Obviously, e�ects such as a certain blood parameter exceeding a critical

level τ are of particular interest. Figure 4.2 depicts heart rate and blood

pressure measurements for two patients. The response of patient A di�ers

signi�cantly from that of patient B. Threshold queries can help to identify

patients with a similar pattern even if the exact values are not too similar.

The exact values may be in�uenced by the personal disposition of di�erent

persons or even by di�erent methods for measuring the observed parameter.

The analysis of environmental air pollution becomes more and more im-

portant and has been performed by many European research projects in

the recent years. The amount of time series data derived from environmen-

tal observation centers, increases drastically with elapsed time. Furthermore,

modern sensor stations record many attributes of the observed location simul-

taneously. For example, German state o�ces for environmental protection

maintain about 127 million time series each representing the daily course

of several air pollution parameters. An e�ective and e�cient processing

of queries like �return all ozone measurements which exceed the threshold
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τ1 = 50µg/m3 at a similar time as the temperature reaches the threshold

τ2 = 25◦C� can be very useful. Obviously, the increasing amount of data to

be analyzed poses a big challenge for methods supporting threshold queries

e�ciently.

In molecular biology the analysis of gene expression data is important

for understanding gene regulation and cellular mechanisms. Gene expression

data contains the expression level of thousands of genes, indicating how active

a gene is over a certain time frame. The expression level of a gene can be up

(indicated by a positive value) or down (negative value). From a biologist's

point of view, it is interesting to �nd genes that have a similar up and down

pattern because this indicates a functional relationship among the particular

genes. Since the absolute up/down-value is irrelevant, this problem can be

represented by a threshold query. Each gene expression sequence is converted

to an interval sequence, indicating the time slots of the gene being in an up-

regulated state. Genes with a similar interval sequence thus have a similar

up and down pattern.

In summary, our contributions are the following:

• We introduce and formalize the novel concept of threshold-based simi-

larity for time series databases.

• We present a novel data representation of time series which support

threshold queries e�ciently.

• We introduce an e�cient algorithm for threshold queries based on the

new time series representation.

The remainder of this chapter is organized as follows. Section 4.3 formally

introduces the notion of threshold queries. In Section 4.4, we show how time

series can be represented in order to support threshold queries for arbitrary

threshold values e�ciently. Section 4.5 describes e�cient query algorithms

based on the proposed representation. The e�ectiveness and e�ciency of our

algorithms are evaluated in Section 4.6.
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4.1 General Idea

At �rst, we will describe the general concept of threshold-based similarity

search. LetX and Y be time series and let τ be an amplitude threshold.

X and Y are considered similar if their amplitudes exceed the threshold τ

within similar time intervals. Using threshold similarity, the exact values of

the time series are not considered. Rather, it is only examined whether the

time series at similar time intervals are above or below the given threshold τ .

Thus, time series can be considered as similar, even if their absolute values are

considerably di�erent, as long as they have similar time frames during which

the time series exceeds the speci�ed query threshold τ . Then, the processing

of queries like�retrieve all pairs of sequences of ozone concentration which

are above the critical threshold of 50µg/m3 at a similar time� is reduced to

comparing sequences of time intervals. Usually, the number of intervals is

much smaller than the number of exact values per time series and can be

organized more e�ciently. If the aggregated threshold-based representation

in form of time intervals for each time series is given in advance, it is obvious

that the threshold queries can be answered more e�ciently compared to the

situation where the time intervals are not given in advance.

4.2 Related Work

As described in Chapter 2, time series can indexed by spatial access methods

such as the R-tree and its variants [Gut84]. However, most spatial access

methods degrade rapidly with increasing data dimensionality and so, dimen-

sionality reduction techniques like DFT [AFS93], DWT [CF99], PAA [YF00],

SVD [KJF97],APCA [KCMP01], or Chebyshev Polynomials [CN04] are used

to e�ciently index time series as described in [FRM94].

However, all techniques which are based on dimensionality reduction can-

not be applied to threshold queries because necessary temporal information

is lost. Usually, in a reduced feature space, the required intervals indicating

that the time series is above a given threshold cannot be generated. In ad-
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dition, the approximation generated by dimensionality reduction techniques

cannot be used for our purposes because they still represent the exact course

of the time series rather than intervals of values above a threshold.

For a lot of applications, the Euclidean distance is too sensitive to mi-

nor distortions along the time axis. It has been shown that Dynamic Time

Warping (DTW) can �x this problem [KCMP01]. However, DTW is not ap-

plicable to threshold queries because it considers the absolute values of the

time series rather than the intervals of values above a given threshold.

The bit level approximation introduced in [RKBL05] is restricted to a

certain predetermined threshold and so, this approach is not applicable for

threshold queries where the threshold is not known until query time.

To the best of our knowledge, there does neither exist any access method

for time series, nor any similarity search technique which e�ciently supports

threshold queries.

4.3 Threshold-Based Queries

In this section, we formally introduce the concept of threshold-based queries

or threshold queries.

4.3.1 Threshold-Crossing Time Intervals

At �rst we show how a given threshold value τ is used to de�ne a collection

of intervals, the so called Threshold-Crossing Time Interval Sequence.

De�nition 4.1 (Threshold-Crossing Time Interval Sequence).

Let X be a time series as de�ned in De�nition 2.1 of length N , let τ ∈ R,
and let T be the time domain. Then the threshold-crossing time interval

sequence of X with respect to τ is a sequence Sτ,X = 〈(lj, uj) ∈ T × T : j ∈
{1, ..,M},M ≤ N〉 of time intervals, such that

∀t ∈ T : (∃j ∈ {1, ..,M} : lj < t < uj)⇔ x(t) > τ.
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time series X

time series Y

τY
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Time Series:
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Figure 4.3: Threshold-Crossing Time Intervals

The value τ is called the threshold.

Note that we omit the τ parameter in Sτ,X if the choice for τ is obvious

or no speci�c value for the threshold is given.

The example shown in Figure 4.3 depicts two threshold-crossing time

interval sequences for two time series, X and Y with respect to two di�erent

threshold values τX and τY .

4.3.2 Similarity Model for Threshold-Crossing Time In-

terval Sequences

In order to de�ne a threshold-based similarity function on time series we have

to de�ne a similarity function on the interval sequence representations derived

for a certain threshold. The threshold-crossing time interval sequences consist

of single intervals, so the �rst step is to de�ne a similarity function on single

intervals. This function can afterwards be used to calculate a similarity value
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for a sequence of intervals.

We consider intervals to be similar to each other, if they have similar start

points and similar end points.

De�nition 4.2 (Distance between Time Intervals).

Let t1 = (t1l, t1u) ∈ T × T and t2 = (t2l, t2u) ∈ T × T be two time intervals.

Then the distance function dint : (T × T ) × (T × T ) → R between two time

intervals is de�ned as:

dint(t1, t2) =
√

(t1l − t2l)2 + (t1u − t2u)2

Let us note, that intervals correspond to points in a two-dimensional

space, where the starting point corresponds to the �rst dimension and the

ending point corresponds to the second dimension. This transformation is

explained in more detail in the next section (cf. Section 6.3). Then the

above de�nition of a distance function on intervals corresponds to the Eu-

clidean distance in this two-dimensional space. While it is also possible to

use other Minkowski metrics, we only use the Euclidean distance throughout

this thesis. As we will show in the experimental section 4.6, the di�erences

between di�erent Minkowski metrics are negligible.

Since for a certain threshold τ a time series object is represented by

a sequence of time intervals, we need a distance measure for sequences of

intervals. As these intervals are naturally ordered by their starting points

and as the intervals do not overlap each other, we can consider the threshold-

crossing time interval sequences as sets of intervals without loss of generality.

Several distance measures for sets have been introduced in the literature

[EM97]. We use the Sum of Minimum Distances (SMD). Let S1 and S2 be

two sets. The idea of the SMD is as follows: at �rst, each element of S1 is

matched to the best suited element in S2 and afterwards the same is done

for each element of S2. The process of matching two element is based on a

distance function de�ned on two elements of the sets.

In our case, when given two time series, each threshold-crossing time

interval of the �rst time series will be mapped to its most similar counterpart

of the second time series. Obviously two threshold-crossing time interval
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sequences do not necessarily have the same cardinality, so we follow [KM04]

and adapt the original de�nition of the SMD to our needs, by normalizing

the distance value by the cardinalities of the interval sets. Finally we are

able to de�ne the threshold-distance.

De�nition 4.3 (Threshold-Distance).

Let X and Y be two time series and SX and SY be the corresponding threshold-

crossing time interval sequences. Then the threshold distance dTS is de�ned

as

dTS(SX , SY ) =
1

2
·

(
1

|SX |
·
∑
s∈SX

min
t∈SY

dint(s, t) +
1

|SY |
·
∑
t∈SY

min
s∈SX

dint(t, s)

)

For the sake of clarity, in the above de�nition we assumed both interval

sequences were created using the same threshold. However, this is not a

necessary constraint. As already mentioned, the idea of this distance function

is to map every interval from one sequence to the closest (most similar)

interval of the other sequence and vice versa. This distance measure has a

further advantage. Time series having similar shapes, i.e. showing a similar

behavior, may be transformed into threshold-crossing time interval sequences

of di�erent cardinalities. Since the above distance measure does not consider

the cardinalities of the interval sequences, this distance measure is quite

suitable for time interval sequences. Another advantage is that the distance

measure mainly considers local similarity. This means, that for each time

interval only its nearest neighbor (i.e. closest point) of the other sequence

is taken into account. Other intervals of the counterpart sequence have no

in�uence on the result.

4.3.3 Similarity Queries based on Threshold Similarity

Based on the new distance measure introduced in the last sections, we can

now extend the two most widely used similarity queries, the distance range

query and the k-nearest-neighbor query. As speci�ed in De�nition 2.6, the

distance range query retrieves all objects of a database whose distance to a

given query object Q is smaller or equal to a given distance value ε. This
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query type is also called ε-range query. The k-nearest neighbor query (kNN

query) (cf. De�nition 2.7) reports the k most similar objects to Q for a given

value of k.

De�nition 4.4 (Threshold-Based ε-Range Query).

Let D be a set of time series objects. The threshold-based ε-range query

consists of a query time series Q, a query threshold τ ∈ R, and a dis-

tance parameter ε ∈ R+
0 . The threshold-based ε-range query retrieves the

set TQrange
ε (Q, τ) ⊆ D such that

∀X ∈ TQrange
ε (Q, τ) : dTS(SQ, SX) ≤ ε

Analogously we extend the de�nition of the kNN query as follows.

De�nition 4.5 (Threshold-Based k-Nearest-Neighbor Query).

Let D be a set of time series objects. The threshold-based k-nearest neighbor

query consists of a query time series Q, a query threshold τ ∈ R, and a

parameter k ∈ N+. The threshold-based k-nearest neighbor query yields the

smallest set TQNN
k (Q, τ) ⊆ D that contains at least k elements such that

∀X ∈ TQNN
k (Q, τ),∀Y ∈ D \ TQNN

k (Q, τ) :

dTS(SQ, SX) < dTS(SQ, SY )

Again, this de�nition could be adapted to di�erent threshold values for

di�erent time series. However, as the query time series Q usually is of the

same application domain as the collection of time series the query is executed

on, the standard approach is to use the same threshold value for all time

series. In the following we will also refer to both query types as �threshold

query� if it is not necessary to distinguish between the two di�erent query

types. We use the abbreviation TQ(Q, τ) to denote this generalized query

type.

4.4 Index Support for Threshold Queries

A straightforward approach to execute a threshold query TQ(Q, τ) is to

sequentially read each time series X from the database. Afterwards we com-
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pute the threshold-crossing time interval sequence Sτ,X for each time series

for the given threshold which allows us to compute the threshold-similarity

function dTS(Sτ,Q, Sτ,X)). Finally, we report the time series which ful�ll the

query predicate according to De�nitions 4.4 and 4.5. However, if the time

series database contains a large number of objects and the time series are

reasonably large, then obviously this way of performing the query becomes

unacceptably expensive. So, in this section, we present an access method

which e�ciently supports threshold queries. In particular, we show how to

e�ciently store and access all the required threshold-crossing time interval

sequences.

We present two approaches for the management of time series data. The

key point of both approaches is that we do not need to access the complete

time series data at query time. Instead, only partial information of the time

series objects is required. At query time we only need the information at

which time frames the time series is above the speci�ed threshold. We can

save a lot of IO cost if we only access the relevant parts of the time series at

query time. The basic idea of our approach is to pre-compute the threshold-

crossing time interval sequences for each time series object and store it in

such a way it can be accessed e�ciently.

For the sake of clarity, we �rst present a basic approach where the thresh-

old value τ is known in advance. Afterwards, we present the general approach

which supports an arbitrary choice of τ at query time.

4.4.1 Threshold-Based Indexing for a Fixed Threshold

Let us assume that the query threshold τ is �xed for all queries. Then we can

compute the corresponding threshold-crossing time interval sequence Sτ,X for

each time series X ∈ D. Consequently, each time series object is represented

by a sequence of intervals. There are several methods to store intervals ef-

�ciently, e.g. the RI-Tree [KPS01b]. However, these index structure are

usually designed to support intersection queries on interval data. Our ap-

proach however, requires the support of similarity queries according to the
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similarity model for threshold-crossing intervals (cf. De�nition 4.2) and the

similarity model based on the SMD (cf. De�nition 4.3). Furthermore, it is

not possible to use these index structures for the general case where τ is not

known in advance. Therefore we propose a solution which supports similar-

ity queries on intervals and which can be easily extended to support queries

with arbitrary τ .

Time intervals can be considered as points in a two-dimensional plane

[GG84]. In the following, we will refer to this plane as the time-interval plane.

The one-dimensional intervals (native space) are mapped to the time-interval

plane by using their start and end points as two-dimensional coordinates.

This representation has several advantages for the e�cient management of

intervals.

• The position of large intervals, which are located in the upper-left re-

gion, substantially di�ers from the position of small intervals (located

near the diagonal) .

• The most important advantage is that the Euclidean distance in this

plane corresponds to the distance function of intervals according to
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De�nition 4.2.

The complete threshold-crossing time interval sequence is represented by

a set of 2-dimensional points in the time-interval plane. The transformation

from the original time series to the point set in the time-interval plane is

depicted in Figure 4.4.

In order to e�ciently manage the point sets of all time series objects, we

can use a spatial index structure like the R*-tree [BKSS90]. In particular,

the R*-tree is very suitable for managing points in low-dimensional spaces,

where the points are not equally distributed. Additionally, it supports the

nearest neighbor query well, which will be required to perform the threshold

queries e�ciently. Let us note that each object is represented by several

points in the time-interval plane. Consequently, each object is referenced

by the index structure multiple times. This property has to be taken into

account when designing an e�cient query algorithm. Section 4.5 covers the

query algorithm in greater detail.

4.4.2 Representing Threshold-Crossing Time Intervals

for Arbitrary Threshold Values

In contrast to the �rst approach presented above we will now describe how to

manage threshold queries for arbitrary threshold values τ e�ciently. First,

we extend the transformation task of the basic approach in such a way that

the time-interval plane representation of the threshold-crossing time interval

sequences are available for all possible threshold values τ . Therefore, we ex-

tend the time-interval plane by one additional dimension corresponding to the

threshold value. In the following, we denote this space parameter space. A

two-dimensional plane parallel to the (lower,upper)-plane at a certain thresh-

old τ in the parameter space is called time-interval plane of threshold τ .

Lemma 4.1.

Let X ∈ D be a time series and Sτ1,X and Sτ2,X be two threshold-crossing time

interval sequences of X, where w.l.o.g. τ1 < τ2. Let s1 ∈ Sτ1,X and s2 ∈ Sτ2,X
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be two time intervals whose start points lie on a segment segl of the linearly

interpolated time series and the end points lie on another segment segu. Then

all threshold-crossing time interval sequences Sτi,X with τ1 ≤ τi ≤ τ2 contain

exactly one time interval si ∈ Sτi,X which also starts at segment segl and

ends on segment segu. Transformed into the parameter space, si lies on the

three-dimensional straight line: gP : −→x = −→p1 +4t · (−→p2 −−→p1),

where −→p1 = (s1.lower, s1.upper, τ1)
T and −→p2 = (s2.lower, s2.upper, τ2)

T .

Proof. Both, the start point and the end point of si linearly depend on the

threshold τi. Consequently, all si lie on a three-dimensional straight line in

the parameter space. Let 4t = (τi − τ1)/(τ2 − τ1). Then,

si = (si.lower, si.upper, τi),

where

si.lower = s1.lower +4t · (s2.lower − s1.lower),

si.upper = s1.upper +4t · (s2.upper − s1.upper)

and

τi = τ1 +4t · (τ2 − τ1).

2

Let us consider the following example shown in Figure 4.5 in order to

clarify Lemma 4.1. Figure 4.5(a) shows a linearly interpolated time series

X. Let s1 ∈ Sτ1,X and s2 ∈ Sτ2,X be two time intervals. s1 and s2 are left

bounded by the time series segment segl and right bounded by segu. All

threshold-crossing time interval sequences Sτi,X which are between Sτ1,X and
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Sτ2,X , i.e. τ1 ≤ τi ≤ τ2 contain exactly one time interval si which is also

bounded by the time series segments segl and segu as depicted in Figure

4.5(b). If s1 and s2 are mapped to the parameter space, the time interval si
lies on the straight line between s1 and s2 in the parameter space as depicted

in Figure 4.5(c).

Following Lemma 4.1, all time intervals which are bounded by the same

time series segments can be transformed into the same segment in the pa-

rameter space. In order to represent all threshold-crossing time intervals of

a time series in the parameter space, we have to identify all groups of time

intervals where each group contains those time intervals which are bounded

by the same time series segment in the native space (cf. Figure 4.6(a)). Each

group then corresponds to a three-dimensional segment in the parameter

space (cf. Figure 4.6(b)).

The complete set of all possible threshold-crossing time intervals of a time

series X is represented as a set of segments in the parameter space. The time

intervals which correspond to a certain threshold-crossing time interval se-

quence Sτ,X can be calculated by intersecting the parameter-space segments

corresponding to X with the two-dimensional time-interval plane for thresh-

old τ (cf. Figure 4.6(b)). The resulting intersection points correspond to the

time intervals of Sτ,X as depicted in Figure 4.6(c).

We can e�ciently manage the complete set of threshold-crossing time
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intervals in the parameter space as follows:

• We represent the set of threshold-crossing time intervals by the smallest

possible number of segments in the parameter space.

• We organize the resulting parameter-space segments by means of a

spatial index structure, e.g. the R∗-tree.

In the following, we introduce a method which enables us to e�ciently

compute the smallest number of parameter-space segments for a given time

series.

4.4.3 Trapezoid Decomposition of Time Series

Considering the possible threshold-crossing time intervals, we can use the

following property.

Lemma 4.2.

Threshold-crossing time intervals always start at increasing time series seg-

ments (positive segment slope) and end at decreasing time series segments

(negative segment slope).

Proof. According to De�nition 4.1, all values of X within the threshold-

crossing time interval sequence Sτ,X are larger than the corresponding thresh-

old value τ . Let us assume that the time series segment seql which lower-

bounds the time interval at time tl has a negative slope. Then all x(t) on sl

with t > tl are smaller than τ which contradicts the de�nition of threshold-

crossing time intervals. The validity of Lemma 4.2 w.r.t. the right bounding

segment can be shown analogously. 2

According to Lemma 4.2, the set of all time intervals which start and end

at the same time series segment segl and segu respectively, can be described

by a single trapezoid whose left and right bounds are congruent with segl

and segu. Let segl = ((xl1, tl1), (xl2, tl2)) denote the segment of the left bound
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and segu = ((xu1, tu1), (xu2, tu2)) denote the segment of the right bound. The

top-bottom bounds correspond to the two time intervals sτtop and sτbottom at

the threshold values:

τtop = min(max(xl1, xl2),max(xr1, xr2));

τbottom = max(min(xl1, xl2),min(xr1, xr2));

In order to determine the minimal but complete set of parameter space

segments of a time series, we have to determine the minimal set of trape-

zoids completely covering all possible threshold-crossing time intervals. The

optimal set of trapezoids can be determined by decomposing the area below

the time series into a set of disjoint trapezoids. A time series object can be

considered as half-open uni-monotone polygon in the time-amplitude plane.

There exist several sweep-line based polygon-to-trapezoid decomposition al-

gorithms [FM84] of time complexity O(n · logn) in the number of vertices.

We adopted one of these decomposition algorithms. Figure 4.7 shows an

example of how a time series is decomposed into the set of trapezoids.

As we can assume that the time series consist of chronologically ordered

pairs (x, t), our decomposition algorithm can be performed in linear time

with respect to the length of the time series. The decomposition algorithm

is given in Figure 4.9 and in Figure 4.10.

Let us illustrate the decomposition algorithm by means of the example
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depicted in Figure 4.8. In the for -loop we sequentially process the time series

segments s1,..,s11. As s1 and s2 have positive slopes we put them on top of

the stack. Next, we consider the segment next_seg = s3 which has a negative

slope, i.e. we can close the �rst trapezoids. Actually (see step (1)), the stack

contains the segments s2, s1. We pop s2 from the stack and compute the �rst

trapezoid T1 by means of the procedure compute_trapezoid(s2,s3). Then we

intersect the segment s2 at the amplitude value s3.xe = x3 and push the split

segment s2 denoted by s′2 back on the stack. We continue with the next

segment s4 which is pushed on the stack. Next, we proceed segment s5 by

taking s4 from stack, compute the trapezoid T2, then taking s′2 from stack in

order to compute T3 and �nally taking s1 from stack, compute T4, split s1

w.r.t. x5 and push the split segment s′5 back on the stack.

4.4.4 Indexing Segments in the Parameter Space

We apply the R*-tree for the e�cient management of the three-dimensional

segments representing the time series objects in the parameter space. As the

R*-tree index can only manage rectangles, we represent the 3-dimensional

segments by rectangles where the segments correspond to one of the diagonals

of the rectangles.
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TYPE TSSegment = {start time ts, start value xs, end time te, end value xe};

decompose(time series TS = {(xi, ti) : i = 0..tmax}){
/*initialize start and end point of the time series*/

stack.push(TSSegment(t0,⊥, t0, x0)); //left time series border on stack

TS.append((tmax,⊥)); //append right time series border

for i = 1..tmax do

next_seg := TSSegment(ti−1, xi−1, ti, xi);

if (xi+1 < xi), then //segment with positive slope ⇒ open trapezoid

stack.push(next_seg);

else if (xi+1 > xi), then //segment with negative slope ⇒ close trapezoids

while (stack.top.xs ≥ next_seg.xe) do

stack_seg = stack.pop();

compute_trapezoid(stack_seg,next_seg);

end while;

stack_seg = stack.pop();

compute_trapezoid(stack_seg,next_seg);

stack_seg = cut_segment_at(next_seg.xe);

stack.push(stack_seg);

else /*nothing to do*/; //horizontal segment => can be ignored

end if;

end for;

}

Figure 4.9: Linear time series decomposition.

TYPE Trapezoid = {bottom start (Time), bottom end (Time), bottom (�oat), top start

(Time), top end (Time), top (�oat)};

compute_trapezoid(TSSegment seg1, TSSegment seg2){

�oat τbottom = max(seg1.xs,seg2.xe);

�oat τtop = min(seg1.xe,seg2.xs);

Time tbottom
s = intersect(seg1,τbottom);

Time tbottom
e = intersect(seg2,τbottom);

Time ttop
s = intersect(seg1,τtop);

Time ttop
e = intersect(seg2,τtop);

output(Trapezoid(tbottom
s ,tbottom

e ,τbottom,ttop
s ,ttop

e ,τtop));

}

Figure 4.10: Auxiliary function for the linear time series decomposition.
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For all trapezoids which result from the time series decomposition, the

lower bound time interval contains the upper bound time interval. Further-

more, intervals which are contained in another interval are located in the

lower-right area of this interval representation in the time-interval plane.

Consequently, the locations of the segments within the rectangles in the pa-

rameter space are �xed. Therefore, in the parameter space the bounds of the

rectangle which represents a segment are su�cient to uniquely identify the

covered segment. Let ((xl, yl, zl), (xu, yu, zu)) be the coordinates of a rect-

angle in the parameter space. Then the coordinates of the corresponding

segment are ((xl, yu, zl), (xu, yl, zu)).

4.5 Threshold-Based Query Algorithms

In this section, we present e�cient algorithms for the two threshold queries,

the threshold-based ε-range query and the threshold-based k-nearest-neighbor

query.

A straightforward approach for the query algorithm is the following: �rst,

we access all parameter space segments of the database objects which inter-

sect the time-interval plane at threshold τ by means of the R∗-tree index

in order to retrieve the threshold-crossing time intervals of all database ob-

jects. Then, for each database object we compute the τ -similarity to the

query object. We only have to access the relevant parameter space segments

instead of accessing the entire object. But we can process threshold queries

in a more e�cient way. In particular, for selective queries we do not need

to access all parameter space segments of all time series objects covering the

threshold amplitude τ . We can achieve a better query performance by using

the R∗-tree index to prune the segments of those objects which cannot satisfy

the query anymore as early as possible.
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4.5.1 Preliminaries

In the following, we assume that each time series object X ∈ D is repre-

sented by its threshold-crossing time intervals SX = Sτ,X = x1, .., xN which

correspond to a set of points in the time-interval plane P . P is a plane

of the parameter space at query threshold τ . Hence, SX denotes a set of

two-dimensional points. Furthermore let S denote the set of all time-interval

points on P derived from all threshold-crossing time intervals Sτ,X of all

objects X ∈ D.

For our approach, we require two basic set operations on single time

interval data (represented as points on the time-interval plane P), the ε-
range set and the k-nearest-neighbor which are de�ned as follows:

De�nition 4.6 (ε-Range Set).

Let q ∈ P be a time interval, S = {xi : i = 1..N} ⊆ P be a set of N time

intervals and ε ∈ R+
0 be the maximal similarity-distance parameter. Then

the ε-range set of q is de�ned as follows:

Rε,S(q) = {s ∈ S|dint(s, q) ≤ ε}.

De�nition 4.7 (k-Nearest-Neighbor).

Let q ∈ P be a time interval, S = {si : i = 1..N} ⊆ P be a set of N

time intervals and k ∈ N+ be the ranking parameter. The k-nearest-neighbor

element NNk,S(q) ∈ P (k ≤ N) of q in the set S is de�ned as follows:

s = NNk,S(q) ∈ S ⇔ ∀s′ ∈ S\{NNl,S(q) : l ≤ k} : dint(q, s) ≤ dint(q, s
′).

The distance dint(q,NNk,S(q)) is called k-nearest-neighbor distance. For k =

1, we simply call NN1,S(q) ≡ NNS(q) ∈ P the nearest-neighbor of q in S.

The set kNNS(q) = {NNl,SX (q)|l = 1..k} ⊆ P is called k-nearest-neighbors

of q.

Table 4.1 summarizes the most important parameters required through-

out the following sections.
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P Time-interval plane for query threshold τ .

S Set of all time intervals ∈ Sτ,X ⊆ P of all time series

objects in D.
Rε,S(q) Set of time intervals from S which belongs to the ε-range

set of q (cf. De�nition 4.6).

NNS(q) The nearest neighbor of q in S (cf. De�nition 4.7).

NNk,S(q) The kth nearest neighbor of q in S (cf. De�nition 4.7).

kNNS(q) The k nearest neighbors of q in S (cf. De�nition 4.7).

Table 4.1: Important notations for time interval sets.

4.5.2 Pruning Strategy for Threshold Queries

In order to compute threshold queries, we do not have to access all time

intervals in S. Rather, we can prune objects without accessing them. The

pruning strategy is based on the following observations.

Lemma 4.3 (Pruning Condition for Range Queries).

Let SQ ⊆ P be the points corresponding to the query object Q. Then, each

database object X ∈ D represented by SX ⊆ P which has no time interval

s ∈ SX in the ε-range of one of the query time intervals q ∈ SQ cannot belong

to the result of the threshold-based ε-range query TQrange
ε (Q, τ), i.e.

∀s ∈ SX ,∀q ∈ SQ : s /∈ Rε(q)⇒ X /∈ TQrange
ε (Q, τ).

Proof. Let X ∈ D be the database object which has no time interval s ∈ SX
in the ε-range of one of the query time intervals q ∈ SQ. That means that

∀s ∈ SX ,∀q ∈ SQ : dint(s, q) > ε.

Then the following statement holds:

dTS(SQ, SX) =
1

2
·

 1

|SQ|
·
∑
q∈SQ

min
s∈SX

dint(q, s) +
1

|SX |
·
∑
s∈SX

min
q∈SQ

dint(s, q)


>

1

2
·

 1

|SQ|
·
∑
q∈SQ

ε+
1

|SX |
·
∑
s∈SX

ε

 =
1

2
·
(

1

|SQ|
· |SQ| · ε+

1

|SX |
· |SX | · ε

)
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Figure 4.11: Pruning techniques for threshold queries.

The last term equals ε and so the lemma is valid. 2

An example is depicted in Figure 4.11(a) showing the threshold-crossing

time intervals SQ = {q1, q2, q3} for the query object Q and the threshold-

crossing time intervals of the four database objectsA, B, C, andD. Following

Lemma 4.3, object D cannot be in the result set of TQrange
ε (Q, τ).

Analogously we can identify pruning candidates for the k-nearest-neighbor

query. For the sake of the presentation, we assume the ranking parameter k

to be 1.

Lemma 4.4 (Pruning Condition for kNN Queries).

Let SQ ⊆ P be the points corresponding to the query object Q. Furthermore,

let dprune be the threshold distance dTS(SQ, SX) between Q and any database

object X. Then each database object Y ∈ D represented by SY ⊆ P which has

no time interval s ∈ SY in the dprune-range of one of the query time intervals

q ∈ SQ, cannot belong to the result of the threshold-based k-nearest-neighbor
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query TQNN
1 (Q, τ), formally:

∀s ∈ SY ,∀q ∈ SQ : s /∈ Rdprune(q)⇒ Y /∈ TQNN
1 (Q, τ).

Proof. Let Y ∈ D be the database object which has no time interval s ∈ SY
in the dprune-range of one of the query time intervals q ∈ SQ. That means

that

∀s ∈ SY ,∀q ∈ SQ : dint(s, q) > dprune.

Then the following statement holds:

dTS(SQ, SY ) =
1

2
·

 1

|SQ|
·
∑
q∈SQ

min
s∈SY

dint(q, s) +
1

|SY |
·
∑
s∈SY

min
q∈SQ

dint(s, q)


>

1

2
·

 1

|SQ|
·
∑
q∈SQ

dprune +
1

|SY |
·
∑
s∈SX

dprune


=

1

2
·
(

1

|SQ|
· |SQ| · dprune +

1

|SY |
· |SY | · dprune

)
= dprune = dTS(SQ, SX).

According to De�nition 4.5, Y cannot be in the result set TQNN
1 (Q, τ). 2

An example for Lemma 4.4 is given in Figure 4.11(b). Object B cannot

be a result of TQNN
1 (Q, τ), because all distances dint(q, b) between any time

interval q of SQ and any time interval b of SB exceed dprune.

Based on the two lemmas above, we can develop e�cient threshold queries

using the R∗-tree .

4.5.3 Threshold-Based ε-Range Query Algorithm

The algorithm for the threshold-based ε-range query is depicted in Figure

4.12. We assume that the threshold-crossing time intervals of the query

object Q are already available. The algorithm follows the �lter-re�nement

paradigm: in a �lter step, we retrieve the ε-range set Rε,S(q) for each time

interval q ∈ SQ by means of the R∗-tree and determine the corresponding

time series candidate set. Afterwards, in the re�nement step we re�ne each

candidate X by computing the exact threshold distance to Q.
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ALGORITHM TQrange(SQ, ε,D,S)
result_set := ∅;
candidate_set := ∅;
FOR EACH q ∈ SQ DO

candidate_set := candidate_set ∪{X ∈ D|SX ∩Rε,S(q) 6= ∅}; // �lter step

END FOR;

FOR EACH X ∈ candidate_set DO

IF dTS(SQ, SX) ≤ ε THEN // re�nement step

result_set := result_set ∪X;

END FOR;

export result_set;

Figure 4.12: Threshold-based ε-range query algorithm.

4.5.4 Filter Distance for the Threshold

Similarity

For the k-nearest-neighbor query algorithm, a suitable �lter distance for the

pruning strategy is required.

Lower Bounding Threshold Distance

In the following we introduce a lower bound criterion for the threshold dis-

tance dTS based on partial distance computations between the query object

and the database objects. This lower bound criterion enables the detection

of false candidates (true drops) very early. The amount of information which

is necessary to prune an object depends on the locations of the query object

and the candidate objects.

In the following, we assume that SQ ⊆ P is the set of threshold-crossing

time intervals for the query object and SX ⊆ P is the set of threshold-crossing

time intervals for any object X from the database. Furthermore, we need
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the following two distance functions

D1(SQ, SX) =
∑
q∈SQ

dint(q,NNSX (q))

and

D2(SQ, SX) =
∑
x∈SX

dint(x,NNSQ(x)).

D1(SQ, SX) and D2(SQ, SX) are parts of the threshold distance which can be

expressed as:

dTS(SQ, SX) =
1

2
·
(

1

|SQ|
·D1(SQ, SX) +

1

|SX |
·D2(SQ, SX)

)
.

We use two auxiliary functions κk(qi) and κ̄k(SQ). We use this functions

to partition the database objects into two sets. κk(qi) ⊆ D denotes the set

of all objects X which have at least one element x ∈ SX within the set

kNNX(qi). Furthermore, κ̄k(SQ) ⊆ D denotes the set of all objects which

are not in any set κk(qi), i.e. κ̄k(SQ) = D\(
⋃
q∈SQ κk(q)).

Lemma 4.5.

For any object X ∈ κ̄k(SQ) the following inequality holds :

D1(SQ, SX) ≥
∑
q∈SQ

dint(q,NNk,S(q)).

Proof. According to De�nition 4.7 the following statement holds:

∀q ∈ SQ : dint(q,NNk,S(q)) ≤ dint(q,NNSX (q)).

Therefore,∑
q∈SQ

dint(q,NNk,S(q)) ≤
∑
q∈SQ

dint(q,NNX(q)) = D1(SQ, SX).

2

The next lemma is a generalization of Lemma 4.5 and de�nes a lower

bound of D1(SQ, SX) for all database objects X ∈ D for any k ∈ N+.
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Lemma 4.6 (Lower Bound for D1).

Let X ∈ D be any database object and let Q be the query object. The distance

D1(SQ, SX) can be lower-bounded by:

dmin1 (SQ, SX) =
∑
q∈SQ

{
dint(q,NNX(q)), if X ∈ κk(q)
dint(q,NNk,S(q)), else

}
≤ D1(SQ, SX).

Proof. Let X ∈ D be any database object and Q be the query object.

According to De�nition 4.7 the following holds:

∀q ∈ SQ : X /∈ κk(q)⇒ dint(q,NNk,S(q)) ≤ dint(q,NNX(q)).

Consequently, dmin1 (Q,X) ≤
∑

q∈SQ dint(q,NNX(q)) = D1(SQ, SX). 2

D2(SQ, SX) can be lower-bounded using the next lemma.

Lemma 4.7 (Lower Bound for D2).

Let X ∈ D be any database object and let Q be the query object. The distance

D2(SQ, SX) can be estimated by the following formula:

dmin2 (SQ, SX) =

min
q∈SQ

{
dint(q,NNX(q)), if dint(q,NNX(q)) < dint(q,NNk,S(q))

dint(q,NNk,S(q)), else

}

≤ 1

|SX |
·D2(SQ, SX).

Proof. Let X ∈ D be any database object and Q be the query object.

Generally, the following statement holds:

min
q∈SQ

(dint(q,NNSX (q))) = min
s∈SX

(dint(s,NNSQ(s))) ≤ 1

|SX |
·D2(SQ, SX).

If ∀q ∈ SQ : NNX(q) ≥ minq∈SQ(NNk,S(q)), then all time intervals s ∈ SX
must have at least the distance to any q ∈ SQ which is greater or equal to the

smallest k-nearest-neighbor distance of any q ∈ SQ, i.e.

∀s ∈ SX ,∀q ∈ SQ : dint(q, s) ≥ NNk,S(q) ≥ min
q∈SQ

dint(q,NNk,S(q)).
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With the equation above and De�nition 4.7 the following statement holds:

∀s ∈ SX : dint(s,NNSQ(s)) ≥ min
q∈SQ

dint(q,NNk,S(q))

which obviously holds also for the average nearest-neighbor distance of all

s ∈ SX , i.e.
1

SX
·
∑
s∈SX

dint(s,NNSQ(s)) =
1

SX
·D2(SQ, SX) ≥ min

q∈SQ
dint(q,NNk,S(q)).

2

Lower-Bound-Based Pruning

In this section, we show which objects can be pruned, based on the informa-

tion retrieved so far. Let us assume that Q ∈ D is the query object, X ∈ D
is any object which has been already re�ned, i.e. dTS(Q,X) is known and

Y ∈ D is another object which has not yet been re�ned. Then we can prune

Y for the threshold query TQk−NN
1 (Q, τ) if and only if:

dTS(SQ, SY ) > dTS(SQ, SX)

⇔ 1

|SQ|
D1(SQ, SY ) +

1

|SY |
D2(SQ, SY ) > 2 · dTS(SQ, SX)

⇔ D1(SQ, SY ) +
|SQ|
|SY |

·D2(SQ, SY ) > 2 · |SQ| · dTS(SQ, SX).

Applying Lemma 4.6 and 4.7, Y can be pruned if and only if

dmin1 (SQ, SY ) + |SQ| · dmin2 (SQ, SY ) > 2 · |SQ| · dTS(SQ, SX).

In the following, let dprune = 2 · |SQ| · dTS(SQ, SX) be the pruning distance.

From a computational point of view, we should distinguish the objects in

κ̄k(SQ) from the other objects. The next two statements follow directly from

Lemma 4.6 and Lemma 4.7:

Lemma 4.8.

All objects Y ∈ κ̄k(SQ), can be pruned if and only if∑
q∈SQ

dint(q,NNk,S(q)) + |SQ| · min
q∈SQ

dint(q,NNk,S(q)) > dprune.
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Lemma 4.9.

All objects Y /∈ κ̄k(SQ), can be pruned if and only if

dmin1 (SQ, SY ) + |SQ| · min
q∈SQ

(min(dint(q,NNk,S(q)), dint(q,NNY (q))) > dprune.

Our query procedure is based on an iterative ranking query for each query

time interval q ∈ SQ ⊆ P , i.e. we iteratively compute the k-nearest-neighbors

NNk,S(q) ⊆ P for all q ∈ SQ with increasing k ∈ N+. After each iteration, we

determine the lower bound distances for all objects. Note that we only need

to materialize the partial distance information for those objects which are not

in κ̄k(SQ), i.e. for those objects for which we have retrieved at least one time

interval so far. These objects are organized in a list which might be expanded

in each iteration. This list is called object list. Now, we can compute the lower

bounding distance for all objects in the object list and prune them according

to Lemma 4.9. The lower bounding distance estimation for all other objects

can be computed with global parameters, in particular dint(q,NNk,S(q) (cf.

Lemma 4.8). As soon as we have found a pruning distance dprune for which

Lemma 4.8 holds, we do not need to expand the object list anymore.

At the moment, we have found the nearest neighbor of each q ∈ SQ w.r.t.

any database object X, i.e. ∀q ∈ SQ : SX ∈ κk(q), the lower bound distance

dmin1 (SQ, SX) is equal to D1(SQ, SX). Then, both lower bound distances dmin1

and dmin2 cannot be improved by further query iterations. For this reason, we

re�ne the distance dTS(SQ, SX) by accessing the complete threshold-crossing

time intervals SX in order to exactly compute the distance D2(SQ, SX). The

resulting distance dTS(SQ, SX) is then used as new pruning distance dprune
for the remaining query process unless dTS(SQ, SX) is lower than the old

pruning distance. Let X be the object with the lowest exact distance to Q,

i.e. dprune = 2 · |SQ| · dTS(SQ, SX). The pruning distance may be updated

as soon as an object SY which has to be re�ned next is found. We have to

consider two cases:

case 1: 2·|SQ|·dTS(SQ, SY ) ≥ dprune → remove object SY from the candidate

set
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case 2: 2 · |SQ| · dTS(SQ, SY ) < dprune → set dprune := 2 · |SQ| · dTS(SQ, SY )

and remove object SX from the candidate set.

After each query iteration, we prune all objects Y ∈ D\{X} from the

object list according to Lemma 4.9. The search proceeds by continuing the

computation of the next ranking iteration NNk+1,S . The search algorithm

terminates as soon as all object candidates, except for the most similar one

(in case of the threshold-based 1st-nearest-neighbor query), have been pruned

from the object list.

4.5.5 Threshold-Based Nearest-Neighbor Query Algo-

rithm

The query algorithm of the TQNN
1 query is depicted in Figure 4.15. It iter-

atively computes for a given query object SQ the database object X, having

the smallest threshold distance dTS(SQ, SX). In each iteration (repeat-loop),

we retrieve the next ranked time interval s ∈ S (k-nearest-neighbor) for each

q ∈ SQ by calling the function fetch-next() and store it with its distance to

q in the array act_kNN. This can be e�ciently done by applying the nearest

neighbor ranking method as proposed in [HS95]. For each q ∈ SQ we main-

tain a priority queue, storing the visited R∗-tree nodes in ascending order

with respect to their distances to the corresponding query point q. Note that

the R∗-tree indexes the three-dimensional segments in the parameter space,

although we are only interested in distances along the time-interval plane at

threshold τ . For this reason, we simply ignore the threshold-dimension for

the distance computations and consider only those R∗-tree nodes intersecting

the time-interval plane at threshold τ . Obviously, the ranking function only

considers those objects which were not already pruned from the object list

and which cannot be pruned according to Lemma 4.8.

Furthermore, we update the object list object_distList maintaining for

each already accessed X an array. This array stores for each q ∈ SQ the

nearest-neighbor distance NNX(q) in case this information is already avail-

able. For this reason, for each time interval s retrieved by NNk,S(q), we
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Figure 4.13: Example for the threshold-based nearest-neighbor query.

determine the corresponding object in the object list object_distList and

store the distance dint(s, q), if with respect to q and X there is no distance

available from earlier iterations. As soon as we have retrieved all NNX(q)-

distances for all q ∈ SQ for an objectX , we re�ne this object by accessing the

full object information and computing the threshold distance dTS(SQ, SX).

After the re�nement, we can obviously update the pruning distance dprune.

If X is a nearer neighbor than the previous result, we replace the previous re-

sult with X. Next, we compute the lower-bounding distance lb_dist for each

object in the object list and prune those objects for which lb_dist≥ dprune

holds.

As long as the object list is not empty, we repeat this procedure in the

next iterations. Finally, we have found the (1st-)nearest-neighbor of Q, based

on our threshold-based similarity measure.

In order to enable the computation of threshold-based k-nearest-neighbor

queries, we have to modify our algorithm marginally. First, we have to keep

the k closest objects w.r.t. the threshold distance during the query process.

Instead of pruning the objects according to the distance of the currently

closest object, we have to take the k closest object into account.

Figure 4.13 presents an example for our novel algorithm. The query con-
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Figure 4.14: Step-wise lower-bounding distance computation of the

threshold-based nearest-neighbor query example.

sists of three time-interval plane points SQ = {q1, q2, q3}. Figure 4.13(a)

shows the time-interval plane P with the three query time-interval points of

SQ and several time-interval points of six database objects. Figure 4.13(b)

shows the results of the �rst three iterations of the incremental k-nearest-

neighbor queries NN1,S(qi), NN2,S(qi) and NN3,S(qi). The state of the cor-

responding object list object_distList after each iteration is shown in Figure

4.14(a). Figure 4.14(b) depicts the lower bounding distances for each object

after each query iteration.

The �rst iteration retrieves the points a3, f1, and b3 of the objects A, F ,
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and B, respectively. As a result, we add the objects A, B, and F to the

object list and compute their lower bounding distances dmin1 (SQ, SX) + |SQ| ·
dmin2 (SQ, SX) according to Lemma 4.9. In this case, all database objects have

equal lower bounding distances as depicted in Figure 4.14(b). As the pruning

distance dprune is actually set to ∞, no object can be pruned.

In the next iteration, we retrieve c1, b1, and d2, update the object list,

and recompute the lower bounding distances. Next, we retrieve b1, b2, and

e1. After updating the object list, the entries are complete for object B,

i.e. we have found for each query time-interval the corresponding nearest

neighbor with respect to B. Consequently, we re�ne object B by accessing

its complete set SB and compute the exact threshold distance dTS(SQ, SB) in

order to update the pruning distance dprune. Afterwards, we remove object

B from the object list and try to prune the other objects according to their

lower bounding distances following Lemma 4.9 and 4.8.

The runtime complexity of our threshold query algorithm is O(nq · nk ·
log np), where nq denotes the size of the threshold-crossing time interval

sequence SQ, nk denotes the number of query iterations required to deter-

mine the query result, and np denotes the overall number of segments in the

parameter space. In the experimental Section 4.6 we demonstrate that in

average nq is very small in comparison to the length of the time sequences.

Furthermore, we show that the number of required nearest-neighbor query

iterations nk is small, i.e. the query process terminates early. The number np
of segments in the parameter space is quite similar to the sum ns of length

of all time sequences in the database. We observed in our experiments that

in fact np is slightly smaller than ns.

4.6 Experimental Evaluation

In this section, we present the results of experiments performed on a broad

selection of di�erent time series datasets.
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TYPE Q_ARRAY[N] := ARRAY[N] of DOUBLE;

ALGORITHM TQk−NN
1 (SQ, D, S)

BEGIN

act_kNN : ARRAY[|SQ|] of (OID,DIST); /*current ranking status*/

object_distList : LIST of (OID,DIST : Q_ARRAY[|SQ|]); /*object list
result := null; with lb-distances*/

dprune := +∞
k := 0;

REPEAT

k := k + 1;

act_kNN = fetch-next(SQ,S,dprune);

FOR i = 1..|SQ| DO
s := act_kNN[i].DIST;

IF (s.oid not exists in object_distList) THEN

object_distList.add(s.oid);

END IF;

IF (object_distList[s.oid].DIST[i] is empty) THEN

object_distList[s.oid].DIST[i] := act_kNN[i].DIST;

END IF;

END FOR;

FOR EACH obj ∈ object_distList DO /*re�nement step*/

IF (obj.DIST.complete() = true) THEN

d′prune = 2 · |SQ| · dTS(SQ, o);
IF (d′prune < dprune) THEN

result := obj.OID;

dprune := d′prune;

END IF;

delete obj from object_distList and prune it for further consideration;

END IF;

END FOR;

FOR EACH obj ∈ object_distList DO

lb_dist := dmin
1 (SQ, SY ) + |SQ| · dmin

2 (SQ, SY );
IF (lb_dist ≥ dprune) THEN

delete obj from object_distList and prune it for further consideration;

END IF;

END FOR;

UNTIL (object_distList = empty);

report result;

END

Figure 4.15: Threshold-based nearest-neighbor query algorithm.
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4.6.1 Datasets and Methods

We used several real-world and synthetic datasets for our experimental eval-

uation. An overview of the datasets can be found in Chapter 3. For the

e�ciency evaluation we used subsets of the audio collection containing up to

700,000 time series objects with a length of up to 300 values per sequence.

If not otherwise stated, the database size was set to 50,000 objects and the

length of the objects was set to 50.

All experiments were performed on a workstation featuring a 1.8 GHz

Opteron CPU and 8GB RAM. We used a disk with a transfer rate of 100

MB/s, a seek time of 3 ms and a latency delay of 2 ms. Performance is

presented in terms of the elapsed time including IO and CPU-time.

4.6.2 Performance Results

We compared the e�ciency of our proposed approach to a number of compet-

ing techniques. In the following we will denote our approach for answering

threshold queries by `RPar'.

The �rst competing approach works on native time series. At query time

the threshold-crossing time intervals are computed for the query threshold

and afterwards the distance between the query time series and each database

object can be derived. In the following this method will be denoted by

`SeqNat' as it corresponds to a sequential processing of the native data.

The second competitor works on the parameter space rather than on the

native data. It assumes all time series objects have already been mapped to

the parameter space. However, no index structure is used. As this storage

leads to a sequential scan over the elements of the parameter space we will

refer to this technique as the `SeqPar' method.

Furthermore we included a number of traditional similarity measures

based on the following dimensionality reduction methods: Chebyshev Poly-

nomials (Cheb) [CN04], Discrete Fourier Transformation (DFT ) [AFS93],

and Fast Map (FM ) [FL95]. In particular, we implemented the algorithm
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proposed by Seidl and Kriegel in [SHP98] which adapts the GEMINI frame-

work (cf. Section 2.5) for k-nearest-neighbor search. Since the applied di-

mensionality reduction techniques approximate the Euclidean space, they can

only be used to accelerate similarity queries based on the Euclidean distance.

They cannot be applied to threshold-based similarity search applications.

To obtain more reliable and signi�cant results, in the following experi-

ments we used 5 randomly chosen query objects. Furthermore, these query

objects were used in conjunction with 5 di�erent thresholds, so that we ob-

tained 25 di�erent threshold queries. The presented results are the average

results of these queries.

We used the audio dataset and varied its size as well as the length of the

time series. For the �rst experiment we varied the database size and set the

length of the time series to a �xed value of 50 time slots. In Figure 4.16(a)

the results of our approach compared to SeqNat and SeqPar are given. The

performance of SeqNat and SeqPar decreases, while our approach can handle

large amounts of data very well. The next experiment (cf. Figure 4.16(b))

compares our approach to the dimensionality reduction methods listed above.

Although the scalability behavior of our approach is similar to that of the

dimensionality reduction techniques, the absolute performance value of our

approach is signi�cantly better than that of the dimensionality reduction

methods.

The next experiment explores the impact of the length of the query object

and the time series in the database. The results are shown in Figure 4.17.

Again, our technique outperforms SeqNat and SeqPar (cf. Figure 4.17(a)),

whose cost increase very fast due to the expensive distance computations.

In contrast, our approach, like DFT and FM, scales well for larger time

series objects. For small time series it even outperforms by far the three

dimensionality reduction approaches as shown in Figure 4.17(b). If the length

of the time series objects exceeds 200, then DFT and FM scale better then

our approach. In contrast, Cheb scales relatively bad for larger time series.

The reason is that the number of required Chebyshev coe�cients has to

be increased with the time series length for constant approximation quality.
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Figure 4.16: Scalability of the threshold-query algorithm with respect to

the database size.

Obviously, the cardinality of our time series representations increases linear

with the time series length.

In the next experiment, we analyzed the speed-up of the query process

caused by our pruning strategy. We measured the number of result candi-

dates considered in the �lter step of our query algorithm, denoted by 'Fil-

ter ', and the number of objects which have to be re�ned �nally, denoted by

'Re�nement '. Again,we compare our approach to the three dimensionality

reduction methods Cheb, DFT, and FM. Figure 4.18(a) and Figure 4.18(b)

show the results relatively to the database size and length of the time se-
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Figure 4.17: Scalability of the threshold-query algorithm with respect to

the length of the time series.

ries objects. Generally, only a very small portion of the candidates has to

be re�ned to calculate the result. Similar to the dimensionality reduction

methods, our approach scales well for large databases. For small time series,

our approach has a lightly better pruning power then Cheb and FM. We can

observe that the pruning power of our approach decreases with increasing

time series length. An interesting observation is that the number of candi-

dates that have to be accessed in the �lter step increases faster with larger

time series than the number of �nally re�ned candidates. Yet, for the audio

dataset the DFT method shows the best results in terms of pruning power.
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Figure 4.18: Pruning Power of the threshold-based nearest-neighbor al-

gorithm.

Furthermore, we examined the number of nearest-neighbor search itera-

tions that were required for the query process for varying length of the time

series and varying size of the database. We observed that the number of

iterations was between 5 and 62. The number of iterations increases linear

to the length of the time series and remains nearly constant with respect to

the database size. Nevertheless, only a few iterations are required to report

the result.

So, in terms of performance, our approach signi�cantly outperforms SeqNat
and SeqPar. It is furthermore comparable to the above mentioned dimension-

ality reduction techniques Cheb, DFT, and FM. For time series of small and

medium length our approach even outperforms these dimensionality reduc-
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Figure 4.19: Comparison to Traditional Distance Measures.

tion techniques.

4.6.3 Threshold-Based Similarity Measure

In this section we present experimental results that underline the usefulness of

our approach when applied to real-world datasets. We evaluated the quality

of our similarity measure in terms of classi�cation accuracy of a k-nearest-

neighbor classi�er, using a parameter setting of k = 5 and a 10-fold-cross

validation.

Comparison to Traditional Distance Measures

In a �rst experiment (cf. Figure 4.19), we compared our approach to com-

peting similarity measures which are traditionally used for time series data.

In particular, we included the Euclidean distance (Eucld. Dist.), Dynamic

Time Warping (DTW), and the Derivative Dynamic Time Warping (DDTW)

[KP01] in our evaluation.

Our approach achieves good classi�cation results for all considered datasets.

For the Trace dataset the Euclidean distance achieves only an accuracy of

about 45% while our approach achieves approximately 86%. On the GunX

dataset our approach even outperforms the DTW distance measure.
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Figure 4.20: Comparison of Di�erent Interval Similarity Distances.

Comparison of Di�erent Similarity Distances for Time Intervals

First, we will examine di�erent Lp-norms (p = 1, 2,∞) applied to the interval-

similarity distance measure dint. Figure 4.20 shows the results of the clas-

si�cation accuracy achieved, respectively. As we have expected in Section

4.3.2, all three Lp-norms show a similar behavior in terms of classi�cation

accuracy.

Results on Scienti�c Datasets

Finally we performed 10-nearest neighbor threshold queries with randomly

chosen query objects on the air pollution dataset. Interestingly, when we

choose time series as query objects, that were derived from rural sensor sta-

tions representing particulate matter parameters (M10), we obtained only

time series representing the same parameters measured also at rural sta-

tions. This con�rms that the pollution by particle components in the city

di�ers considerably from the pollution in rural regions. A second interesting

result was produced when we usedM10 time series of working days as queries.

The resulting time series were also derived from working days representing

M10 values.

The results on the gene expression dataset were also very interesting.

The task was to �nd the most similar gene with τ = 0 to a given query

gene. The intuition is to �nd a gene that is functionally related to the query
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gene. We executed several randomized queries to this dataset with τ = 0

and evaluated the results with respect to the biological function using the

SGD database[CBW+97]. Indeed, we retrieved functionally related genes for

most of the query genes. For example, for query gene CDC25 we obtained

the gene CIK3. Both genes play an important role during the mitotic cell

cycle. For the query gene DOM34 and MRPL17 we obtained two genes that

are not yet labeled (ORF-names: YOR182C and YGR220C, respectively).

However, all four genes are participating in the protein biosynthesis. In

particular, threshold queries can be used to predict the function of genes

whose biological role is not resolved yet.

4.7 Conclusions

To summarize the chapter, the results on the real-world datasets suggest the

practical relevance of threshold queries for important real-world applications.

In this chapter, we motivated and proposed a novel query type on time series

databases called threshold query. Given a query object Q and a threshold τ ,

a threshold query returns time series in a database that exhibit the most sim-

ilar threshold-crossing time interval sequence. The threshold-crossing time

interval sequence of a time series represents the interval sequence of elements

that have a value above the threshold τ . Furthermore, we presented a novel

approach for managing time series data to e�ciently support such thresh-

old queries. Finally, we developed an e�cient algorithm to answer threshold

queries for arbitrary thresholds τ .



Chapter 5

Amplitude-Level-Based Similarity

In the last chapter (see Chapter 4) we have de�ned a new similarity measure

based on a user-given threshold. In this chapter we extend this idea and

consider several thresholds. As described earlier in this thesis (see Section

2.3), the challenge for similarity search in complex data, and in particular

in time series data is twofold. First, the adequate modeling of the similarity

notion between time series is important for the accuracy of the search. This

notion heavily depends on the application domain and the users involved in

the search. Second, since time series are frequently very large, containing

several thousands of values per sequence, the comparison of two time series

can be very expensive, particularly when using distance measures that require

the access to the raw time series data (i.e. the entire sequence of time series

values). For example, for an audio sequence we can derive 300 features per

second. Thus, a 3 minute audio sequence is represented by a time series of

length 54,000.

Standard distance measures like the DTW or the Euclidean distance (see

Section 2.4) usually compare quantitative information of time series. How-

ever, in particular for complex structured time series, features describing

quantitative information are often quite susceptible to noise and outliers.

We propose a novel approach. First, a user can de�ne a range of impor-

tant or relevant amplitude values. Note this step is only optional, i.e. it is of

81
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Figure 5.1: Global vs. local feature extraction.

course possible to consider the complete amplitude range as relevant. Then

the speci�ed range is scanned at a number of di�erent threshold values. For

each threshold value we extract a number of threshold-based features. For

each kind of feature we obtain a course of feature values over the consid-

ered amplitude values. This sequence is called feature sequence and contains

the actual information our similarity measure is based on. A feature se-

quence describes the qualitative characteristic of a time series with respect

to a certain feature along the amplitude range. This is an important di�er-

ence compared to traditional similarity measures or dimensionality reduction

techniques, which aggregate information along the time dimension.

In order to be able to calculate distance values more e�ciently, we com-

press the feature sequences by means of dimensionality reduction techniques.

Finally, we combine di�erent features to obtain a better representation for a

given dataset. Even without compressing the feature sequences, the runtime

complexity of our method is independent of the length of the time series

which is important for very long multi-media time series.

Figure 5.1 depicts our novel approach of local feature extraction (cf. Fig-

ure 5.1(b)) in comparison to the traditional global feature extraction strate-

gies [WSH06] (cf. Figure 5.1(a)). The traditional global approach extracts
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a set of n one-dimensional features representing the global characteristics of

the time series. The resulting n features are used to build an n-dimensional

feature vector and usually the Euclidean distance is used to measure the sim-

ilarity between the derived features. In contrast, our approach is based on

a decomposition of the complex structured time series into a reasonable set

of more simply structured components which we call local representations.

Each of the local representations corresponds to an amplitude value in the

relevant amplitude range. Then we extract a set of local features of di�erent

types from these local representations. The main advantage of our strat-

egy is that we dissect the complex feature extraction problem into a set of

small subproblems which can be solved more easily. In order to reduce the

computational cost of the similarity measure based on the resulting features,

we can subsequently compress the results using standard dimensionality re-

duction techniques. In this work, we focus on one-dimensional time series.

However, our approach can easily be adapted to the multi-dimensional case

by extracting features for each dimension. In summary, our contributions

are the following:

• We introduce a new similarity measure based on a range of relevant

amplitude values.

• This similarity measure can be adjusted in a domain-speci�c way.

• We introduce several threshold-based features.

• We developed a framework for e�cient and e�ective amplitude-wise

comparison of time series.

• We show how prior knowledge about a dataset can be used to obtain

similarity results of a higher quality.

The rest of the chapter is organized as follows. In Section 5.1, we survey

related work. In Section 5.2, we present our feature extraction framework. A

set of feature types re�ecting the characteristics of time series is introduced

in Section 5.3. Section 5.4 presents the experimental results.
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5.1 Related Work

In Chapter 2 we give an overview of standard similarity measures. In this

section, we additionally review existing feature extraction methods for time

series.

For long time series usually structure level similarity measures based on

global features or model parameter extraction are used [NAM01, DMN97,

GS00, KLR04]. A similarity model for time series that considers the char-

acteristics of the time series was proposed in [WSH06]. A set of global fea-

tures including periodicity, self-similarity, skewness, and kurtosis are used to

compute the similarity between the time series. Some of the features are

generated from the raw time series data as well as from trend and seasonally

adjusted time series. The authors focused on clustering as a special appli-

cation of similarity search and showed that a small set of global features

can be su�cient to achieve an adequate clustering quality. However, this

approach is successful only as long as adequate features that re�ect the time

series characteristics can be identi�ed. Unfortunately, long time series often

feature very complex structures which cannot su�ciently be re�ected by a

single global feature, e.g. modeling the periodicity of a long time series with

only one value may be too coarse in most cases.

In the multimedia area, publications about global features can be grouped

in two main categories. The �rst category consists of approaches that calcu-

late features in the so-called frequency domain. Well-known examples include

Relative Spectral Predictive Linear Coding, Pitch [Sun02], Spectral Flux,

Mel Frequency Cepstral Coe�cients, Bark Frequency Cepstral Coe�cients

[LW01], and coe�cients calculated by basic time-frequency transformations

like DFT or DWT (cf. Section 2.5.3). The second category consists of tech-

niques that extract features in the so-called time domain. Examples include

Linear Predictive Coding coe�cients [Tre82], Zero Crossing Rate Periodicity

Histogram [Sun02], Sone and Short Time Energy [Pam04], Length of High

Amplitude Sequence, Length of Low Amplitude Sequence, or Area of High

Amplitude [MZB06].
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In contrast to the existing features working in the time-based domain,

the features proposed in this chapter are calculated over the whole ampli-

tude spectrum. This fact allows us to capture time-domain properties along

the whole available (or relevant) amplitude range. Moreover, we suggest an

automatical method for the combination of the derived features which results

in a signi�cant improvement of e�ectiveness.

5.2 Considering Multiple Thresholds for Simi-

larity Queries

As discussed above, traditional similarity measures and models for time series

are often not appropriate to capture shape-based similarity of complex time

series. Usually, these approaches apply variants of the Euclidean distance

or DTW to quantitative representations of the time series, i.e. to the raw

time series values or to features that are extracted from this quantitative

representation.

We argue that it is more appropriate for shape-based similarity of time

series to use a qualitative representation of the time series that models the

shape characteristics of the time series. From such a qualitative representa-

tion of the time series, appropriate features can be extracted that capture

the relevant characteristics of the time series. The simplest way for such a

qualitative representation is the approach proposed in [RKBL05]. The time

series is mapped to a sequence of intervals. Each interval represents the time

slots at which the value of the time series is above a given amplitude level. In

[RKBL05] the authors propose to use the mean value as the distinguishing

amplitude level.

In order to compute a qualitative representation of a time series, we

aggregate the time intervals corresponding to time slots where the amplitude

values are above a given level. Thus, our qualitative representation of a time

series consists of a sequence of time intervals. From this qualitative time

series representation, features can be derived. As a result we end up with
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one feature value that describes the complete time series qualitatively.

Obviously, using only one feature to describe a time series qualitatively

will most likely be much too coarse, because the entire time series can usually

not be described accurately by only one feature value. Rather, we should use

all amplitude levels in order to capture any shape of the time series resulting

in one feature for each amplitude value. However, this approach has two

obvious drawbacks. First, the number of all amplitude values is in�nite

and so, the number of resulting features would also be in�nite. Second, if

a lot of amplitude values are considered, each local representation will be

very similar to the next and to the previous local representations along the

amplitude range. As a consequence, the derived features will be very similar

too, and a lot of redundant information is stored.

To overcome this problem, we generate a sequence of feature values by

scanning the amplitudes of any time series with a speci�c resolution. As a

result we obtain a sequence of feature values, each value corresponding to the

feature extracted for a given threshold. Obviously, the higher the resolution,

the longer the feature sequence.

The main principle of our framework is depicted in Figure 5.2. The

framework takes a time series as input and scans it at several amplitude

values. This yields a feature sequence for each kind of extracted features. Our

approach consists of two phases, the amplitude-level-wise feature extraction

and the feature sequence compression. A detailed explanation of each phase

is given in the next sections.
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5.2.1 Amplitude-Level-Wise Feature Extraction

As for each considered amplitude value, we derive a feature value, we get a

sequence of feature values, called feature sequence. This approach is illus-

trated in Figure 5.2. An input time series is scanned amplitude-level wise

and based on the current threshold value, suitable features are extracted.

For each kind of feature this technique yields a feature sequence. As we will

outline in Section 5.2.2, it is also possible to apply dimensionality reduction

techniques to these feature sequences. Finally we can combine the resulting

feature vectors to improve the quality of similarity queries.

We propose a framework that extracts time series features in two steps:

In a �rst step, we generate sequences of feature values by scanning the ampli-

tudes of the corresponding time series with a reasonable high resolution. In

order to improve the similarity search quality we extract several features from

the interval sequences. As depicted in Figure 5.2 we use the feature scan line

(fsl) to vertically scan the time series from bottom to top and retrieve at each

(relevant) amplitude level τ a set of features called Amplitude-Level Features

(ALFs). In Section 5.3 we give several examples for such Amplitude-Level

features.

As a result, for each kind of considered ALF, we obtain a sequence

〈(τmin, fτmin), . . . (τmax, fτmax)〉, where τmin denotes the global minimum of

all amplitudes of all time series and τmax denotes the corresponding global

maximum of all amplitudes. fτ denotes the ALF feature value for the cur-

rent threshold τ . Note that it is of course also possible to specify a relevant

amplitude range instead of considering the complete amplitude range. The

resolution r of the amplitude scan (i.e. the length of the ALF sequence) is

a user-de�ned parameter that in�uences the length of the resulting feature

sequence as well as the accuracy of the representation. If we choose a high

value for the resolution r, we will obviously obtain a more accurate descrip-

tion of the time series and may achieve better results. On the other hand,

a high value for the resolution r results in larger space required to store

the ALF sequences and in a lower query performance. In order to reduce

the size of the extracted features and to decrease redundant information, we
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Figure 5.3: Feature extraction framework.

subsequently apply appropriate dimensionality reduction methods to reduce

the large feature sequences to a smaller set of coe�cients. These coe�cients

correspond to the feature vectors that are �nally used to represent the time

series and are used for the similarity search methods.

5.2.2 Feature Sequence Compression

Depending on the resolution r of the feature extraction method, the ALF se-

quences usually exhibit a more or less smooth shape. For a high resolution,

the features extracted from adjacent amplitude thresholds do not di�er very

much. For this reason, common dimensionality reduction techniques for time

series like DFT, PAA, or Chebyshev applied to the ALF sequences lead to

shorter ALF sequences while accurately approximating the original ALF se-

quence. Finally, for each feature we generate a dimensionality reduced ALF

sequence in the form of a vector which can be indexed by any spatial index

structure. This strategy helps to solve performance issues while still yielding

a high-quality similarity measure.

The principle of our framework is depicted in Figure 5.3. The framework

takes a time series as input and produces a set of feature vectors as output.

It consists of the two steps, the amplitude-level-wise feature extraction and

the feature sequence compression. In particular, for a given time series and

a given feature A we extract a sequence of local feature values a1, a2, and

a3. Subsequently, the generated ALF sequence is compressed by means of

standard dimensionality reduction techniques resulting in a feature vector.

This step is repeated for each feature extraction method so that �nally a set
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of feature vectors is returned. This set is afterwards used to measure the

similarity between the time series objects. Obviously, the �nal set of feature

vectors and the dimension of each feature depends on the number and type of

derived features, the resolution r, and the applied dimensionality reduction

techniques. The length of the input time series however, has no in�uence on

the dimensions of the resulting feature vectors. So the time complexity of a

query is constant with respect to the length of the input time series. In the

following section, we will present several high quality ALFs and discuss how

to compute the similarity of the resulting set of feature vectors.

5.2.3 Feature Sequence Combination

As mentioned above, we generate a set of feature vectors for each time series.

As the combination of di�erent feature vectors usually improves the search

quality we apply a combination approach similar to the techniques described

in [BKS+04] and [KPS05]. In order to compute weights for the di�erent

representations, we use a labeled subset of the dataset as a training set. For

each element of the training set, we perform a kNN query on the training

set. The weighting is calculated based on the impurity of the kNN sphere.

The more di�erent classes are present in the set of nearest neighbors, the

less suitable the current feature is assumed to answer the query. kNN sets

with a low entropy, i.e. only few di�erent class labels are considered more

suitable. The weights are actually calculated by determining the average

entropy for each representations. After having determined the weights, a

standard combination method like sum, product, min, or max can be used to

combine the distances according to the di�erent feature representations.

5.3 Amplitude-Level Features

The number and type of adequate features depend on the application and

on the data. In the following, we propose a selection of features that mainly

re�ect shape characteristics of time series, and thus, are suitable for a broad
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range of standard applications. Let us note that it is possible to design

further amplitude-level features that might be more suitable for special ap-

plications. However, we will show in our experiments that even the basic

features described in the following already yield a very accurate similarity

model for shape-based similarity search in time series databases.

Let in the following Sτ,X denote the qualitative representation of time

series X with respect to the amplitude level τ . Sτ,X actually is the threshold-

crossing time interval sequence as de�ned in Section 4.3.1. Sτ,X consists of

the intervals where the amplitude value of X is above τ .

5.3.1 Above Amplitude Level Quota

Maybe one of the most straightforward approaches to extract meaningful

features that describe a time series X is to measure the fraction of time

series values that exceed a given amplitude level τ . This ALF is called Above

Amplitude Level Quota (ATQ)

ALFATQ(X, τ) =
1

N
|{xi : xi > τ, i ∈ 1..N}|

The resulting features values obviously range from 0 to 1, where ALFATQ

decreases monotonously for increasing values of τ . A typical example for

the resulting ALF curve is depicted in Figure 5.4. In this example, the

resulting feature sequence exhibits a distinct shape and so, it is suitable to

describe the original time series very well. In presence of a lot of noise in the

original time series, the shape of the feature sequence becomes less and less

distinct. Nonetheless, this feature extraction method allows for the detection

of frequent values in the time series even when the time series su�ers from

heavy noise and at �rst sight appears to consist of random values only. This

property is exempli�ed in Figure 5.5. Of course, all information regarding

the time slots of the time series values is lost.
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Figure 5.4: Sample time series and the corresponding feature sequence

(ALFATQ).

Figure 5.5: Sudden decrease in the ALFATQ feature sequence due to

multiple occurrences of an identical value.

5.3.2 Threshold Interval Count

Another straightforward ALF is the number of amplitude level intervals gen-

erated for each amplitude level. We call this feature Threshold Interval Count

(TIC). As the number of those intervals not only depends on the shape char-

acteristics of a time series but also on the length N of the time series, N has

to be considered for the calculation of the Threshold Interval Count feature

ALFTIC (X, τ). Normalizing the TIC feature with respect to the time se-

ries length, subsequently allows for the comparison of time series of di�erent

length. For a given time series X and an amplitude level τ , ALFTIC (X, τ) is

de�ned as:

ALFTIC (X, τ) =
1

N
|Sτ,X |
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Figure 5.6: Sample time series and the corresponding feature sequence

(ALFTIC ).

Unlike the Above Amplitude Level Quota, the range of occurring feature val-

ues cannot be tightly speci�ed for all possible datasets. However, the maxi-

mal possible value equals 1
2
, although for most application domains the de-

rived value of the Threshold Interval Count ALF is signi�cantly smaller than

the maximal value. So this maximum is not very well suited for operations

like normalizing the feature values.

Noise has a stronger impact on this ALF feature sequence than on the

feature sequence for ALFATQ as a lot of noise can lead to a huge number of

intervals (cf. Figure 5.6). On the other hand, the ALF values di�er more

characteristically for varying amplitude levels at high frequency while lower

values are observed in regions of a rather constant amplitude of the original

time series. Similar to ALFATQ all chronological information is lost.

5.3.3 Threshold Interval Length (TIL)

In contrast to the ALFTIC , TIL tries to capture more complex characteristics

of the intervals than just their existence. An obvious choice is the average

and the maximal length of all intervals for a given amplitude level τ and a

time series X, formally

ALFmaxTIL(X, τ) = max{(uj − lj) : j ∈ Sτ,X}

ALF∅TIL(X, τ) =
1

|Sτ,X |

M∑
j=0

(uj − lj)
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Figure 5.7: Sample time series and the corresponding feature sequence

for ALFmaxTIL and ALF∅TIL.
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Figure 5.8: Robustness against noise of ALFmaxTIL compared to ALFATQ .

ALFmaxTIL and ALF∅TIL show similar behavior in most cases. The former

yields monotonously decreasing feature values and is more robust against

noise. An example for both feature sequences is given in Figure 5.7. The

contained information basically indicates at which amplitudes the time series

consists of high or low frequent sections. For noisy data ALFmaxTIL is more

e�ective than ALFATQ(see Figure 5.8). The feature sequence for ALFmaxTIL

exhibits a very distinct pattern while ALFATQ is far less distinctive.

5.3.4 Threshold Interval Distance (TID)

A further reasonable feature is the distance between consecutive intervals.

Generally, distances between intervals are ambiguous, so we have some op-

tions for the feature generation. We can build distances between the start
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points of the intervals only or between the end points only or we take both

points into account. Here, we use the distance between the start point lj
of an interval and the start point lj+1 of the subsequent interval. We again

consider both, the maximum and the average distance value:

ALFmaxTID(X, τ) = max{(lj+1 − lj) : j ∈ Sτ,X}

ALF∅TID(X, τ) =
1

|Sτ,X | − 1

|Sτ,X |−1∑
j=1

(lj+1 − lj)

This feature di�ers from the others in being not invariant with respect to

re�ection along the time axis. It is adequate to separate periodical signals

having di�erent frequencies. Like ALFTIL, ALFmaxTID is more robust against

noise than ALF∅TID .

5.3.5 Threshold Crossing Angle (TXA)

This feature di�ers slightly from the previous as it does not take the interval

sequences into account. Here, we consider the slopes of the time series that

occur at the start and end points of the time intervals.

First, we de�ne the slope angle angle(ti) of a time series value (xi, ti) ∈
X : i ∈ 2 . . . N as follows:

angle(ti) := arctan(xi − xi−1).

Based on this de�nition, we can de�ne the features:

ALFabsTXA(X, τ) =
1

Nπ

|Sτ,X |∑
j=1

(|angle(lj)|+ |angle(uj)|) ∗ (uj − lj)

ALFdiffTXA(X, τ) = 0,5 +
1

Nπ

|Sτ,X |∑
j=1

(angle(lj) + angle(uj)) ∗ (uj − lj)

We weight the slope angles according to the corresponding interval length.

The factor 1
Nπ

as well as the constant value 0.5 are used to normalize the

results to the range (0, 1) and are necessary to compare time series of di�erent

lengths. This feature is mainly suitable to distinguish between time series
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Figure 5.9: Sample time series and the corresponding feature sequence

for ALFabsTXA and ALFdiffTXA.

with di�erent rates of change. Unfortunately, the determination of such kind

of patterns can be easily perturbed by noise. As a consequence, the quality of

the similarity measures based on this feature mainly depends on the intensity

of the noise in a dataset. An example for both feature sequences is depicted

in Figure 5.9.

5.3.6 Threshold Balance (TB)

The last feature incorporates the temporal behavior of the time series by

considering the temporal distribution of the amplitude values that are above

the corresponding amplitude threshold. First, we de�ne an auxiliary function

aboveτ (xi) :=

1 if xi > τ

0 else
.

By means of this function, we can de�ne the Threshold-Balance feature

ALFTB that aggregates those values of the time series which are above the

amplitude threshold. An example for this feature is depicted in Figure 5.10.

ALFTB(X, τ) =
1

N2

N∑
i=1

(
i− N

2

)
aboveτ (xi).

Each of the presented features covers speci�c characteristics of a time

series. Naturally, depending on the application, the full power of the features

can be achieved if we use combinations of them.
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Figure 5.10: Sample time series and the corresponding feature sequence

for ALFTB .

5.4 Evaluation

In this section we present the results of the experimental evaluation of our

amplitude-level-based similarity measure.

5.4.1 Datasets and Methods

We used four datasets from the UCR Time Series Data Mining Archive

[KF02] as described in Chapter 3. The �rst dataset is the SynthCtrl dataset

and will be referred to as �DS1� in the following. �DS2� actually is the GunX

dataset. The Trace dataset will be labeled by �DS3�, and �DS4� will be used

to indicate the use of the Leaf dataset.

Whenever we compared the e�ectiveness of our new similarity measure,

we performed precision-recall experiments. For a given dataset, we used

each time series instance as a query object and ranked all other time series

according to their similarity value to the current query. Then we iterated

through the ranked list until we reached a certain recall level for the class of

the query objects, i.e. until a certain portion of the class of the query was

retrieved. The precision was then measured as the portion of objects of the

same class as the query objects relative to the number of all objects retrieved

so far. Obviously, the precision is larger or equal to 0 and smaller or equal

to 1. Higher precision value indicate a better similarity measure. For a given

dataset we averaged all calculated precision values over all queries and over
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all recall values in order to calculate a single average precision value.

We compared our approach to a number of competitors. First, we calcu-

lated the Euclidean distance on the raw time series, i.e. no feature sequences

or dimensionality reduction techniques were applied. The second competing

technique we included in our evaluation was the DTW [BC94] distance on

the raw time series. Furthermore we compared our technique to the global

feature extraction approach from [WSH06]. For this approach we compared

an unweighted and a weighted version for the combination of the single global

features the method consists of. We used the same combination method as

for the combination of our amplitude-level features (see Section 5.2.3).

Whenever we calculated weights in order to combine single features, we

used 20% of the current dataset as a training set in order to adjust the

weights.

5.4.2 Experimental Results

Feature Quality

In a �rst set of experiments we evaluated the quality of the proposed amplitude-

level features as introduced in Section 5.3. The results for the di�erent

datasets are given in Figure 5.11 for DS1, in Figure 5.12 for DS2, in Fig-

ure 5.13 for DS3, and in Figure 5.14 for DS4. As the purpose of this set

of experiments was to evaluate the suitability of the single amplitude-level

features, we did not compress the feature sequences but rather used the com-

plete feature sequence to compute distance values. In the above mentioned

�gures the yellow bar indicates the unweighted combination of the single

ALFs. The single ALFs themselves are indicated by blue bars. The Euclid-

ean distance, the DTW, and the global features are presented in green color.

Note that we used an unweighted combination for the global features as well,

as we assumed an unsupervised setting for the �rst experiments.

As expected, the average precision values for the single ALFs vary signi�-

cantly over the analyzed datasets. The datasets have di�erent characteristics
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Figure 5.11: Average precision of single ALFs (DS1).

and furthermore, the di�erent classes of di�erent datasets may be distinguish-

able based on di�erent properties. The nice observation we were able to make

is that although we have not used any knowledge about the underlying classi-

�cation system, the unsupervised combination of all ALFs yields an average

precision value which is higher or comparable to the best competitor, the

DTW. Note that the average precision of the unweighted combination of the

ALFs is higher than the best single ALF for a given dataset on three out of

four datasets.

In the light of this observation, it is interesting to compare the runtime

of the di�erent approaches. In Figure 5.15 we depicted the average runtime

per query for the �rst set of experiments as described above. DTW, the

only competitor that is comparable to our approach in terms of average

precision values, su�ers from a signi�cantly higher runtime. This is due

to the quadratic complexity in the length of the time series of the DTW. In

contrast, the runtime complexity of our approach is independent of the length

of input time series. The runtime of our approach is determined by the length

of the feature sequences, as only the feature sequences (or their compressed

representations) have to be compared instead of the usually longer raw time

series.
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Figure 5.12: Average precision of single ALFs (DS2).
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Figure 5.13: Average precision of single ALFs (DS3).
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Figure 5.14: Average precision of single ALFs (DS4).
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Figure 5.15: Average runtime per query.
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Figure 5.16: Average precision values of unweighted ALF combination

for di�erent resolutions.

This lead us to the question about the importance of the length of the

feature sequences. The resolution that is used to scan over the given ampli-

tude range might be a crucial parameter. So we calculated average precision

values for all datasets based on an unweighted combination of uncompressed

feature sequences for varying resolutions. The results of this experiment can

be found in Figure 5.16. We observed that relatively few amplitude level are

su�cient to describe even long time series by means of feature sequences.

Furthermore, our approach is quite robust with respect to the choice of the

resolution. Following the results of this experiment, for the remaining exper-

iments (unless stated otherwise) we kept the resolution �xed at 50 amplitude

values distributed equally over the completed range of possible amplitude

values for a given dataset.

Feature Sequence Compression

In this section we present experiments analyzing the impact of the com-

pression of the feature sequences. In Figure 5.17 the average precision val-

ues of an unweighted combination of all described ALFs are depicted for

all datasets. The Figure compares the results for the uncompressed (raw)
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Figure 5.17: Impact of Compression of Features Sequences.

feature sequences to the results observed when using 15 PAA coe�cients in

order to e�ciently describe each feature sequence. On all dataset except on

DS1 we can observe an increase in the average precision value. This result

may be surprising at �rst glance, as one might expect the feature sequences

to be less precisely represented after a dimensionality reduction technique

was applied. However we observed that in our case the application of such a

dimensionality reduction technique can help to level out unimportant details

of the raw time series captured in the exact representation of the feature

sequences.

Note that after the feature sequences have been reduced to a few coe�-

cients, the average runtime of our approach is signi�cantly decreased com-

pared to the value in Figure 5.15 as only a few coe�cients have to be com-

pared at query time instead of the complete feature sequences.

In a further experiment we analyzed the impact of di�erent techniques

fo dimensionality reduction. In Figure 5.18 we present the average precision

values for several single ALFs on DS2 for two di�erent dimensionality reduc-

tion techniques (DFT and PAA). As expected, di�erent reduction techniques

are more or less suitable for di�erent feature sequences, and sometimes the
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Figure 5.18: Impact of compression techniques on di�erent features se-

quences (DS2).

best representation is the uncompressed one. This observation suggests a po-

tential improvement of our method. Instead of using the same compression

techniques for all feature sequences, it may be bene�cial to develop a method

which automatically chooses the most suitable compression technique for a

given dataset and for each ALF feature sequence.

As the compression step of our approach has a signi�cant impact on

the average precision results, the next experiment explores the impact of the

degree of the compression, i.e. how many coe�cients are used to describe each

feature sequence. In Figure 5.19 we present the average precision results for

a varying number of PAA coe�cients that were used to approximate each

of the ALF feature sequences. For the range from 5 to 17 coe�cients we

observed quite stable precision results. More remarkably, the same range

was most suitable for a resolution twice as hight as in the �rst run of the

experiment. So, even if the feature sequences were 100 instead of 50 values

long, a PAA setting between 5 and 17 coe�cients was optimal to represent

the ALFs of DS2. Of course the number of coe�cients depends on the chosen

method for the compression step and the dataset. However, we observed a

broad range of well suited values for the number of coe�cients for other
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Figure 5.19: Impact of the degree of compression of feature sequences

(DS2).

datasets and other compression techniques as well.

Feature Combination

After the compression of feature sequences, the next step in our approach

is the combination of compressed or uncompressed feature sequences. In

the experiments described so far, we used an unweighted combination of

the single ALF sequences. The unweighted approach can always be used,

especially in case no labeled training data is available. In this section we

assume that a subset of the dataset is labeled in advance, so that for each

dataset the most suitable weighting of feature sequences can be learned. This

may even lead to the near exclusion of a certain feature if it is of no relevance

for distinguishing di�erent classes. In Figure 5.20 we depicted the average

precision results for uncompressed feature sequences for all four datasets.

As can be seen in this �gure, the average precision is increased for all four

datasets when the weights for each ALF are adjusted according to the speci�c

dataset. The same can be observed for compressed features sequences. The
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Figure 5.20: Weighted combination increases the average precision (un-

compressed feature sequences).

corresponding results are given in Figure 5.21.

In order to give a �nal overview of our approach compared to other tech-

niques, Figure 5.22 lists the result for DTW, the Euclidean distance, the

weighted combination of global features, and our approach based on com-

pressed and supervised combined feature sequences. Our approach clearly

outperforms the global-feature approach and the Euclidean distance. For

three out of four datasets it achieves signi�cantly better precision results

and on DS1 it achieves the same precision result as the DTW distance. At

the same time, the runtime is constant while the runtime of the DTW is

quadratic in the length of the compared time series.

The last experiment was performed to demonstrate a further bene�t of

our approach. The amplitude-level based similarity allows to incorporate

domain knowledge into the similarity measure by restricting the range of

amplitude levels considered for the feature sequence extraction. As shown

above, even if the complete amplitude range of a dataset is used to extract

feature sequences, very competitive results can be obtained. As shown in
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Figure 5.21: Weighted combination increases the average precision (com-

pressed feature sequences).
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feature sequences in concert with a weighted distance combination.



5.5 Conclusions 107

59.6

59.8

60

60.2

60.4

60.6

60.8

61

61.2

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4

Minimal Relevant Amplitude Value

A
ve

ra
ge

 P
re

ci
si

on
 [%

]

Figure 5.23: A restricted relevant amplitude range can yield higher pre-

cision values (DS2).

Figure 5.23, these results can be increased even further. Instead of consid-

ering the complete amplitude range, we set the maximal amplitude value to

+2 for this experiment and varied the minimal amplitude value. The ex-

periment shows that the precision values indeed change for di�erent relevant

amplitude ranges. Using our approach, it is even possible to specify several

relevant amplitude ranges.

5.5 Conclusions

In this chapter we proposed a new framework for generating high quality

Amplitude-Level Features (ALF) from time series. An advantage when us-

ing ALFs for similarity search is that the runtime is independent of the length

of the time series. Thus, ALFs are adequate even for long sequences as oc-

curring frequently in multimedia applications. We furthermore introduced

several ALFs that are able to describe the characteristic properties of a time

series. We also proposed a method to combine several feature representa-

tions. We showed in our experimental evaluation that our proposed technique

outperforms traditional similarity search methods in terms of accuracy. In

addition, our approach signi�cantly outperforms the only competitor that
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achieves roughly similar accuracy in terms of runtime. We showed that the

compressed feature sequences often yield even better search results than the

uncompressed feature sequences. The number of features after the compres-

sion is quite low and so it is possible to use an index structure without

running into the curse of dimensionality. Finally, we showed how our simi-

larity measure can be adjusted by a domain expert, in order to restrict the

considered portions of a time series to a relevant range of amplitude values.



Chapter 6

Interval-Focused Similarity

In this chapter, we introduce yet another similarity measure for time series.

Existing work usually focus either on a full comparison, i.e. the entire time

series are compared by using an appropriate distance function, or on subse-

quence matching, i.e. all time series objects that match a subsequence are

retrieved. However, in many applications, only prede�ned parts of the time

series are relevant for a similarity query rather than the entire time series

data. The time intervals of these prede�ned parts are �xed for all time se-

ries. Usually, these parts are speci�ed by the user depending on the analysis

focus and change from query to query. We call such type of queries, where

only a small part of the entire time series is relevant interval-focused sim-

ilarity queries. Obviously, interval-focused similarity is a generalization of

a full comparison of the time series. On the other hand, the subsequence

matching approach is orthogonal to interval-focused similarity. The task in

subsequence matching is to �nd a suitable subsequence that best �ts to an-

other subsequence, even if the time slots do not correspond to each other (see

Section 2.4.3). For interval-focused similarity search, the interval relevant for

the query is �xed for all time series objects. A comparison of complete match-

ing, subsequence matching, and interval-focused matching is given in Figure

6.1.

The notion of interval-focused similarity queries is a useful concept in

many applications.

109
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query

DB

complete matching subsequence matching interval-focused

Figure 6.1: Di�erent approaches for time series analysis.

In stock market analysis, the behavior of the stock prices is examined with

respect to a given set of events such as political crises or seasonal phenomena.

The time series are compared using interval-focused similarity queries that

take only some relevant time periods into account, for example a certain time

period after some event. The analysis of the annual balances of a company

is usually also focused on speci�c time intervals like months or quarters.

In environmental research, important parameters like the concentration

of ozone, the temperature, or the precipitation is usually measured over long

time periods at various locations. While this kind of data is suitable for

long-term analysis, for short-term observations, a smaller time frame might

be of interest. For example, an interval-focused query may be based on the

values for a certain week or a several days. Note that these relevant intervals

do not necessarily have to be adjacent to each other.

In behavioral research, brain waves of animals are recorded throughout

a given time period, for example a complete day. Researchers often want

to compare the brain waves of di�erent individuals during a signi�cant time

interval. So, the considered interval could for example correspond to the

feeding phase rather than to the complete day. Obviously, in all these appli-

cations, the focus of the analysis task frequently changes from time to time

and is not known in advance.

In summary, our contributions in this chapter are the following:

• We formalize the novel notion of interval-focused similarity queries, an

important generalization of comparing complete time series.

• We propose a novel method to e�ciently support interval-focused dis-
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tance range and k-nearest neighbor queries that implements a �lter-

re�nement architecture.

• Furthermore, we show how the proposed interval representation ap-

proximating the time series can be e�ciently accessed using an index

structure.

The remainder is organized as follows. We discuss related work in Section

6.1. The novel interval-focused similarity measure is formalized in Section

6.2. In Section 6.3 we introduce an interval-based representation of time

series. We further show how these representations can be managed e�ciently

in order to upper and lower bound the distance between time series objects.

Based on these bounds we present a �lter-re�nement architecture to support

interval-focused similarity queries e�ciently. We discuss two methods for the

generation of interval representations of time series in Section 6.3.3. Section

6.5 provides an experimental evaluation of our proposed methods.

6.1 Related Work

The similarity between two time series is usually measured by an appropriate

distance function as outlined in Chapter 2. Existing approaches focus either

on complete matching of the query time series with the database objects, or

on subsequence matching.

Complete matching approaches consider the complete time course using

any of the above mentioned distance measures An example is depicted in

Figure 6.1 (left). Since the length of a time series is usually very large, the

analysis of time series data is limited by the well-known curse of dimension-

ality. Usually, dimensionality reduction methods are applied as described in

Section 2.5.3.

The above-mentioned dimensionality reduction techniques are not de-

signed for interval-focused similarity queries. Often, they use the complete

time series to extract coe�cients, like in case of the DFT. Consequently, the
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frequency domain coe�cients can not be used to calculate distance approxi-

mations in the time domain, if the time domain has changed (by restricting

the similarity computation to a relevant set of intervals).

Subsequence matching approaches usually try to match a query subse-

quence to subsequences of the database objects as depicted in Figure 6.1

(middle). A subsequence matching problem can be transferred to a complete

matching problem by moving a sliding window over each time series object in

the database and materializing the corresponding subsequence. If the length

of the query subsequence changes, a new sliding window has to be moved

over each database time series again. Subsequence matching is orthogonal

to interval-focused similarity. In interval-focused similarity, the time slot rel-

evant for the matching is �xed. Two time series are not considered similar

even if they have a similar subsequence but at di�erent time intervals. In

addition, the concept of interval-focused similarity allows to specify multiple

relevant time intervals of di�erent length.

6.2 Interval-Focused Queries

In this section we formally introduce the concept of interval-focused queries.

6.2.1 Time Interval Sequence

Let D denote a database of time series. Let X ∈ D, X = 〈(x1, t1), .., (xN , tN)〉
be a time series as de�ned in De�nition 2.1 of length N . Let MAX be the

maximal amplitude value over all time series in D and let MIN be the

minimal amplitude value occurring in D, i.e.

MAX = max
X∈D

(
max
i=1...N

(xi)
)

MIN = min
X∈D

(
min
i=1...N

(xi)
)

De�nition 6.1 (Time Interval Sequence).

Let the time interval I = (l, u) ∈ T × T be a pair of time slots, where

0 ≤ l ≤ u ≤ N . l denotes the starting point and u denotes the end point of

I. Given a time series X ∈ D and an interval I, the time interval sequence
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of X corresponding to I is a time series of length (u − l) + 1 consisting of

the values of X between the start and the end time slot of I.

XI = 〈(xl, tl), . . . , (xu, tu)〉

6.2.2 Similarity Model for Time Interval Sequences

In this section we extend the standard Minkowski distance measures as de-

�ned in De�nition 2.5 to interval-focused time series. As discussed above,

interval-focused similarity speci�es a given part of the time series as relevant,

whereas the remaining part of the time series is considered irrelevant. The

relevant part may change from query to query. In case of a single relevant

interval the interval-focused similarity is de�ned as follows.

De�nition 6.2 (Interval-Focused Similarity for a Single Interval).

Let X and Y be two time series. Let I = (l, u) be a time interval. Then the

Lp-norm between X and Y with respect to I is de�ned as

LIp(X, Y ) = p

√√√√ u∑
i=l

|xi − yi|p.

In order to calculate interval-focused similarity values based on several

relevant stretches of time, we extend the last de�nition to a number of rele-

vant intervals.

De�nition 6.3 (Interval-Focused Similarity).

Let I be a set of time intervals. Then LIp (X, Y ), the Lp-norm between X and

Y with respect to I is de�ned as

LIp (X, Y ) = p

√∑
I∈I

LIp(X, Y )p.

Note that the intervals I ∈ I can be of varying length and thus, the

in�uence of each interval on the complete sum may be di�erent. In some

applications, it may be more appropriate to weight the intervals, such that
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the contribution to the overall distance of each interval is similar. This can

be easily achieved by multiplying a weighting factor wI to each summand.

LIp (X, Y ) = p

√∑
I∈I

wiLIp(X, Y )p.

6.2.3 Similarity Queries for Time Interval Sequences

Based on the distance measure introduced in the previous section, we can

now extend the two most widely used similarity queries, the distance range

query and the k-nearest-neighbor query. According to De�nition 2.6, the

distance range query retrieves all objects of a database whose distance to a

given query object Q is smaller or equal to a speci�ed distance value ε. The

k-nearest neighbor query (kNN query) (see De�nition 2.7) reports the k most

similar objects to Q.

De�nition 6.4 (Interval-Focused ε-Range Query).

Let D be a database of time series objects. The interval-focused ε-range query

consists of a query time series Q, a distance parameter ε ∈ R+
0 , and a set of

relevant time intervals I. The interval-focused ε-range query retrieves the

set IQrange
ε (Q, I) ⊆ D such that

∀X ∈ IQrange
ε (Q, I) : LIp (X, Y ) ≤ ε

Analogously we extend the de�nition of the kNN query.

De�nition 6.5 (Interval-Focused k-Nearest Neighbor Query).

Let D be a database of time series objects. The interval-focused k-nearest

neighbor query consists of a query time series Q, a parameter k ∈ N+, and

a set of relevant time intervals I. The interval-focused k-nearest neighbor

query retrieves the smallest set IQNN
k (Q, I) ⊆ D that contains at least k

elements such that

∀X ∈ IQNN
k (Q, I), ∀Y ∈ D \ IQNN

k (Q, I) :

LIp (Q,X) ≤ LIp (Q, Y ).
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After we have formalized the notion of interval-focused similarity queries,

in the next sections we will describe an interval-based representation of time

series using interval boxes. In addition, we show how this representation

can be used to e�ciently support interval-focused similarity search using an

existing index structure. The key bene�t of our novel representation is that

the query algorithm does not have to access the complete time series in a

�rst �lter step. Instead, the �lter can work an relevant interval boxes which

yield a lower and upper bound for the exact Lp distance.

6.3 Index Support for Interval-Focused Queries

The straightforward approach to calculate interval-focused distance values is

to load all time series from the database into main memory and calculate the

distance for the relevant stretches of time. This approach obviously transfers

a lot of data that is not necessary for the computation of the result set of

interval-focused queries. This is especially true if the relevant portions are

relatively small compared to the length of the complete time series.

The basic idea of our approach is to represent each time series object

of the database by sequences of intervals. These intervals can be e�ciently

managed by an index such as the RI-tree [KPS01a]. In addition, if we store

the maximum and minimum amplitude of the time series within the intervals,

these intervals can be used to compute upper and lower bounds of the true

distance between di�erent time series. If an interval-focused similarity query

is launched specifying a set of relevant time frames I, only the intervals of

the database objects that intersect any I ∈ I need to be accessed in order

to estimate the lower and upper bounding distance approximations. An

overview of our approach is depicted in Figure 6.2. In a preprocessing step

the available time series are approximated by intervals. The intervals are

stored in an RI-tree. For the two relevant intervals, an intersection query is

performed on the RI-tree. The resulting approximations can then be used

to calculate a lower bounding and an upper bounding distance for the time

series objects of the database. Thus, only a few time series objects have to
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Figure 6.2: Overview of interval-focused similarity search.

be re�ned using the complete exact information.

6.3.1 Representing Time Series by Interval Boxes

As outlined above, we approximate each time series X ∈ D by a set of inter-

vals. For each interval, we further store the maximal and minimal amplitude

value of X within the interval. This results in a minimal-bounding box for

X within the speci�ed interval (see Figure 6.3) called interval box.

De�nition 6.6 (Interval Box).

Let X be a time series and let (lr, ur) be a time interval. The interval box

r is given by the quadruple r = (lr, ur, lvr, uvr), where lvr and uvr are the

minimal and maximal amplitude values within I, i.e.

lvr = min
lr≤i≤ur

(xi) uvr = max
lr≤i≤ur

(xi)

As we will outline later, we try to approximate a time series by a set

of interval boxes. The set of interval boxes approximating X is denoted by

rep(X). Methods for generating interval boxes for a given time series are

described in Section 6.3.3.
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Figure 6.3: Interval box approximation of a time series.

6.3.2 Distance Estimation Using Interval Boxes

Let us assume, a time series is represented by a set of interval boxes. In this

section we show how the exact interval-focused distance between a query

object Q and any X ∈ D can be estimated by means of an upper and a lower

bound using the information of rep(X).

At each relevant time slot i, we can lower bound the i-th summand of the

Lp-norm by the well-known MINDIST function.

De�nition 6.7 (MINDIST).

Let Q be a query time series and qi the amplitude value of Q at time slot ti.

Let X ∈ D be a time series and let r ∈ rep(X) be an interval box that overlaps

ti, i.e. lr ≤ ti ≤ ur. Then the MINDIST between qi and r = (lr, ur, lvr, uvr)

is de�ned as

MINDIST (qi, r) =


lvr − qi if qi ≤ lvr

qi − uvr if qi ≥ uvr

0 else.

So, MINDIST (qi, r) lower bounds the exact value of the summand of
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the Lp distance at time slot ti. This will be formally shown in the proof for

Lemma 6.1.

In case no interval box r ∈ rep(X) is available that overlaps time slot ti,

we can only lower bound the true distance between qi and xi by 0. If there

are several interval boxes r ∈ rep(X) with lr ≤ it ≤ ur, we determine the

maximal value over all the corresponding MINDIST values. We will use the

MINDIST value to de�ne a lower bound for the interval-focused similarity.

In order to get a tight lower bound (i.e. a value as high as possible), the

maximal possible MINDIST value has to be used at every time slot.

De�nition 6.8 (Lower Bound at a Single Time Slot).

Let Q and X be time series of length N and let X be represented by a col-

lection of interval boxes rep(X). Then LBi(Q,X) for time slot i is de�ned

as

LBi(Q,X) = max{0, max
{r | r∈rep(X),lr≤i≤ur}

(MINDIST (qi, r))}.

Now we extend the lower bound at each time slot i to an interval.

De�nition 6.9 (Lower Bound for a Single Interval).

Let X and Q be time series and let I = (lI , uI) be a time interval. Then the

lower bound LBI(Q,X) is de�ned as

LBI(Q,X) = p

√√√√ uI∑
i=lI

(LBi(Q,X))p.

Finally we can de�ne a lower bound value for a set of non-overlapping

relevant time intervals.

De�nition 6.10 (Lower Bound for Interval-Focused Similarity).

Let X and Q be time series and let I be a set of relevant time intervals.

Then the lower bound LBI(Q,X) is de�ned as

LBI(Q,X) = p

√∑
I∈I

(LBI(Q,X))p.
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Lemma 6.1 (Lower Bounding Property of LBI).

Let X and Q be time series and let I be a set of relevant time intervals.

Then LBI(Q,X) is a lower bound for LIp (Q,X), i.e.

LBI(Q,X) ≤ LIp (Q,X)

Proof. Let X and Q be two time series. Let I = (lr, ur) be a time interval.

Let us assume an overlapping time interval box r = (lr, ur, lvr, uvr) exists,

i.e. ∀xi, l ≤ i ≤ u : lv ≤ xi ≤ uv.

At �rst, we show MINDIST (qi, r) ≤ |qi − xi|:

1) qi ≥ uvr: MINDIST (qi, r) = qi − uvr ≤ qi − xi ≤ |qi − xi| (because
uvr ≥ xi)

2) qi ≤ lvr: MINDIST (qi, r) = lvr − qi ≤ xi − qi ≤ |qi − xi| (because lvr ≤
xi)

3) lvr < qi < uvr: MINDIST (qi, r) = 0 ≤ |qi − xi|.

So, MINDIST (qi, r) ≤ |qi − xi|. This holds for all r ∈ rep(X). If no

box is available, the summand for the corresponding time slot equals 0 (see

De�nition 6.8). Therefore LBi(Q,X) ≤ |qi − xi|. It follows

uj∑
i=lj

(LBi(Q,X))p ≤
uj∑
i=lj

|qi − xi|p

This equivalent to (LBI(Q,X))p ≤ (LIp(Q,X))p. We apply this observation

to a sequence of intervals I:∑
I∈I

(LBI(Q,X))p ≤
∑
I∈I

(LIp(Q,X))p

⇓

p

√∑
I∈I

(LBI(Q,X))p ≤ p

√∑
I∈I

(LIp(Q,X))p

⇓
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Figure 6.4: Lower and upper bounding the Lp-distance within the interval

(ti, ti+9).

LBI(Q,X) ≤ LIp (Q,X)

2

Analogously, an upper bounding distance estimation can be de�ned. At

each relevant time slot i, we now need to use the MAXDIST between qi

and any interval box r ∈ rep(X) that overlaps i to de�ne an upper bound

of the i-th summand of Lp(Q,X). The MAXDIST function is de�ned as

follows:

De�nition 6.11 (MAXDIST).

Let Q be a query time series and qi the amplitude value of Q at time slot

ti. Let X ∈ D be a time series and let r ∈ rep(X) be an interval box that

overlaps ti, i.e. lr ≤ ti ≤ ur. Then the MAXDIST value between qi and

r = (lr, ur, lvr, uvr) is de�ned as

MAXDIST (qi, r) = max{|qi − lvr|, |qi − uvr|}

If there is an interval box r ∈ rep(X) that overlaps time slot ti, we can

upper bound the true distance between qi and xi using the MAXDIST value.

If there are several interval boxes r ∈ rep(X) with lr ≤ ti ≤ ur, we com-

pute the minimum over all the MAXDIST values to derive the best possible
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approximation to the actual distance. If no overlapping box is available,

we can only estimate the upper bound for a certain time slot by a value

u := max{|qi −MAX|, |qi −MIN |}.

De�nition 6.12 (Upper Bound at a Single Time Slot).

Let Q and X be time series of length N and let X be represented by a col-

lection of interval boxes rep(X). Then UBi(Q,X) for time slot i is de�ned

as

UBi(Q,X) = min{u, min
{r | r∈rep(X),lr≤i≤ur}

(MAXDIST (qi, r))}

Now we extend the de�nition of the upper bound at a single time slot i

to an interval.

De�nition 6.13 (Upper Bound for a Single Interval).

Let X and Q be time series and let I = (lI , uI) be a time interval. Then the

upper bound UBI(Q,X) is de�ned as

UBI(Q,X) = p

√√√√ uI∑
i=lI

(UBi(Q,X))p.

Finally we can de�ne an upper bound value for a set of non-overlapping

relevant time intervals.

De�nition 6.14 (Upper Bound for Interval-Focused Similarity).

Let X and Q be time series and let I be a set of relevant time intervals.

Then the upper bound UBI(Q,X) is given by

UBI(Q,X) = p

√∑
I∈I

(UBI(Q,X))p.

Lemma 6.2 (Upper Bounding Property of UBI).

Let X and Q be time series and let I be a set of relevant time intervals.

Then UBI(Q,X) is an upper bound for LIp (Q,X), i.e.

UBI(Q,X) ≥ LIp (Q,X)
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Proof. This can be shown analogously to the proof for Lemma 6.1. 2

An example for the upper and lower bounding distance estimation is de-

picted in Figure 6.4. At time slot ti+6 no interval box representation is avail-

able for X. So, the lower bound can only be estimated by LBti+6(Q,X) = 0.

The value for the upper bound can only be estimated as UBti+6(Q,X) =

max{|qti+6
− MAX|, |qti+6

− MIN |}. In contrast to that, at time ti+1

the interval box r = (ti, ti+3, lvr, uvr) ∈ rep(X) approximates the time se-

ries X. So we can estimate LBti+1(Q,X) = MINDIST (qti+1
, r) = 0 and

UBti+1(Q,X) = MAXDIST (qti+1
, r) = |qti+1

− lvr|.

6.3.3 Generating Approximations

In this section, we will show how to generate suitable interval boxes for a time

series. When generating the interval boxes we need to take two con�icting

considerations into account. On one hand, the number of boxes covering the

time series should be low in order to avoid a high overhead e�ort during the

�lter step. The more interval boxes are present, the more calculations have

to be performed and the more boxes have to be loaded into main memory.

So, the computational cost and the IO cost of the �lter step is in�uenced by

the number of interval box approximations to be considered at query time.

This suggests to construct wide boxes with long intervals.

On the other hand, wide boxes will usually worsen the approximation

quality since the boxes conservatively approximate the time series. As a con-

sequence, the performance may decrease due to a reduced pruning power of

the �lter step. This leads to higher re�nement cost in the next step. A re�ne-

ment actually corresponds to accessing the complete time series, something

we actually wanted to prevent. This observation suggests to construct boxes

with low approximation error in order to achieve higher values for the lower

bounding �lter distance LBI and lower values for the upper bounding �lter

distance UBI .

Following these considerations, the sections of the time series having a �at
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Figure 6.5: Interval box approximations.
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Figure 6.6: Generation of covering boxes.

curvature can be better approximated by interval boxes than parts featuring

a high ascending or descending curve. An example for this observation is

depicted in Figure 6.5. The basic idea of our approach is to optimize the

box-covering locally. We �rst identify those parts of the time series which

can be well approximated, i.e. subsequences covering the local maximums or

minimums of a time series. Then, we generate interval boxes that optimally

cover the local minimums and maximums of a time series according to a

quality criterion given below. Afterwards, we approximate each remaining

part of the time series which are not covered yet by one single box.

A high approximation quality of the interval box approximations of a

time series is responsible for a good pruning power during the �lter step (see

Section 6.4). A large lower bounding distance estimation allows to prune a

lot of true drops without the need to re�ne them. A small upper bounding

distance estimation allows to identify some of the true hits without any re�ne-

ment. For this reason we evaluate the approximation quality of an interval
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box by considering the expected value of the lower and upper bounding dis-

tance between any query object and the approximated part of the database

object. Actually, for two intervals I and J we compare their corresponding

values (LBI)p and (LBJ)p instead of LBI and LBJ , as it is more e�cient to

compute (LBI)p and (LBJ)p. This does not change the process of deciding

for the better suited interval, as obviously (LBI)p ≥ (LBJ)p ⇒ LBI ≥ LBJ

holds.

In order to calculate the expected value of (LBI)p, we have to make an

assumption concerning the distribution of amplitude values of potential query

time series. The �rst assumption is, that the occurring amplitude values are

uniformly distributed between MIN and MAX. The second assumption is

that the amplitude values for di�erent time slots are not correlated. Both

assumptions will probably not hold for a single query time series of a real-

world dataset. However, as we are interested to generate an approximation

which is well suited for a broad range of query time series, we are more

interested in the average query time series. Hence, our assumptions may

very well hold for such an average time series.

Note furthermore that it is possible to either optimize the expected value

of the lower bound, or the upper bound, as they are correlated. In the

following we will show how to optimize the lower bound.

Lemma 6.3 (Expected Value of (LBI)p).

Let X and Q be two time series. Let I = (lj, uj) be a time interval and

let r = (lj, uj, lvj, uvj) be the corresponding time interval box, i.e. ∀xi, lj ≤
i ≤ uj : lvj ≤ xi ≤ uvj. Let furthermore the amplitude values of Q be

statistically independent from each other and let the amplitude values of Q

be equally distributed between MIN and MAX. Then the expected value

E((LB(I)(Q,X))p) is given by

E((LBI(Q,X))p) = (uj − lj + 1) · (lj −MIN)p+1 + (MAX − uj)p+1

(MAX −MIN)(p+ 1)

Proof. Let X, Q, and r be de�ned as above. In order to calculate E(LBI)p,
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at �rst we replace LBI according to its de�nition.

E((LBI(Q,X))p) = E(

uj∑
i=lj

(LBi(Q,X))p)

As the expected value of a sum of random variables can be calculated as the

sum of the expected values of the single random variables, we get

E(

uj∑
i=lj

(LBi(Q,X))p) =

uj∑
i=lj

E((LBi(Q,X))p)

According to the de�nition of the expected value we get

E((LBi(Q,X))p) =
∫MAX

MIN
(MINDIST (qi, r))

p · fi(qi)dqi

Under the assumption that the values qi of Q are equally distributed between

MIN and MAX, the probability density function is constant for all qi, i.e.

fi(qi) =
1

MAX −MIN
, ∀qi ∈ [MIN,MAX].

Depending on the position of qi relative to the box r, we have to distinguish

3 cases for the value of MINDIST and so we split the integral into a sum of

three integrals.

E((LBi(Q,X))p) =

(∫ lj
MIN (lj−qi)pdqi+

∫ uj
lj

0pdqi+
∫MAX
uj

(qi−uj)pdqi
)

MAX−MIN

=

[
−

(lj−q)
p+1

p+1

]lj
MIN

+0+

[
(q−uj)

p+1

p+1

]MAX

uj

MAX−MIN

=
0+

(lj−MIN)p+1

p+1
+

(MAX−uj)
p+1

p+1
−0

MAX−MIN

=
(lj−MIN)p+1+(MAX−uj)p+1

(MAX−MIN)(p+1)

As the value for E((LBi(Q,X))p) is independent of i, we can calculate the

result of
∑uj

i=lj
E((LBi(Q,X))p) as

uj∑
i=lj

E((LBi(Q,X))p) = (uj − lj + 1) · (lj −MIN)p+1 + (MAX − uj)p+1

(MAX −MIN)(p+ 1)



126 6 Interval-Focused Similarity

2

This lemma actually describes the tradeo� between the width of an in-

terval and its height. Now, we can use the expectation of the distance es-

timations in order to decide for an interval box whether the box setting is

more promising than alternative box settings. The higher the expected lower

bounding distance w.r.t. an interval box approximation, the higher is its

approximation quality.

As already mentioned, �at parts, like the local maximums or minimums,

of a time series are very adequate for our interval box approximation. We

start with the approximation of the local maximums of a time series by

searching for each local maximum iteratively in top-down direction. For each

local maximum we take all reasonable conservative coverings into account as

shown in the example depicted in Figure 6.6. In this example we start with

considering the box r1. Following the top-down direction, the next box to be

considered is r2, followed by r3. In this example, r2 is the best alternative.

When the algorithm continues, box r4 is created for a di�erent local max-

imum. The next box that is generated is box r5. Now the algorithm simply

calculates the sum of the expected contribution to the lower distance bound

of boxes r2 and r4 and compares this value to the expected value for r5. In

case r5 is better suited, the boxes r2 and r4 are discarded, as they are com-

pletely covered by r5 and we try to minimize the amount of stored boxes.

This procedure will be applied to all local maximums, so that �nally all local

maximums are covered by an interval box.

Afterwards the coverings of the local minimums are generated in the same

way, except this time we start at the local minimums and search the corre-

sponding interval box candidates in an upward direction. After generating

all local maximum and minimum coverings, we remove those box candidates

which are completely covered by another interval box candidate in order to

reduce redundant approximations. Note that due to the two generation steps,

it is possible that the boxes overlap. However, this does not interfere with

the de�nitions of the lower and upper bounds. In this case, the better suited
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approximation for a given query will be used.

Finally in a post-processing step, the remaining gaps between two adja-

cent but disjunctive interval boxes, i.e. the parts of the time series which

are not covered so far by any interval box, are simply approximated by an

additional minimal bounding box.

6.4 Interval-Focused Query Processing

In order to compute the upper and lower bounding distance approximations

between a query object Q and a database object X ∈ D e�ciently, we have to

determine those interval boxes that intersect the relevant intervals I ∈ I. For
the e�cient support of interval intersection queries, we organize the intervals

of the interval boxes in an adoption of the relational interval tree (RI-tree)

[KPS01a]. An interval intersection query takes a query interval I ∈ I and

retrieves all intervals in the RI-tree that intersect with I. Details on the

processing of intersection queries using RI-Trees can be found in [KPS01a].

In order to determine all interval boxes that intersect with the query intervals

we need such an intersection query for all I ∈ I. This way, we determine for

each database object X ∈ D those interval boxes r ∈ rep(X) that intersect

with any of the query intervals I ∈ I in order to compute LBI(Q,X) and

UBI(Q,X).

Based on the distance approximations LBI and LBI introduced above,

we can apply the paradigm of �lter-re�nement query processing to e�ciently

answer interval-focused distance range and kNN queries. In case of an

interval-focused distance range query, we can use both, the upper and the

lower bound in the �lter step. Each object X ∈ D with LBI(Q,X) > ε

can be identi�ed as true drop because LIp (Q,X) ≥ LBI(Q,X) > ε, i.e. X 6∈
IQrange

ε (Q, I). On the other hand, each object X ∈ D with UBI(Q,X) ≤ ε

can be identi�ed as true hit since LIp (Q,X) ≤ UBI(Q,X) ≤ ε, i.e. X ∈
IQrange

ε (Q, I). The pseudocode for an interval-focused distance range query

is depicted in Figure 6.7.
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IQRQ(Q, ε, I, D)

/*Intersect the relevant intervals with the database intervals*/

LCand = RI-Tree.intersect(I);
/*LCand contains a set of intersecting intervals for each database object*/

result = ∅;
while LCand 6= ∅ do
Boxes := LCand.removeFirstElement();

X := time series represented by Boxes

/*Calculate upper and lower bounds, using Boxes*/

LBI := calculateLowerBound(Q,Boxes);

if LBI > ε then

/*prune current time series X, continue with next while-loop*/

else

UBI := calculateUpperBound(Q,Boxes);

if UBI ≤ ε then
result.add(X)

else

/*re�ne time series and decide based on exact distances*/

return result;

Figure 6.7: Pseudocode for the interval-focused range query.

In case of an interval-focused kNN query, we can only use the lower bound

for the �lter step. We apply the approach presented in [SHP98] which is

optimal with respect to the number of candidates that need to be re�ned.

The idea of the approach in [SHP98] is to dynamically update the �lter

criterion, whenever the exact distance of the kth nearest neighbor retrieved

so far is calculated. This distance can be used as the new �lter distance.

If an object which has not yet been re�ned has a lower bounding distance

larger than the �lter distance, it can not be an element of the resulting kNN

set.
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6.5 Evaluation

In this section, we examine the e�ciency of our proposed indexing technique

for interval-focused queries.

6.5.1 Datasets and Methods

As outlined above, our approach is especially suited for large time series

with only a relatively small relevant fraction of time. We used two real-world

datasets of the audio collection described in Chapter 3 for our comparison.

They were created using two di�erent feature extraction methods on a song

database. This resulted in two di�erent dataset which will be referred to as

�DS1� and �DS2� in the following. Both consist of 4,800 time series of length

10,000. As the feature extraction methods di�er for the datasets, the typical

elements of both datasets di�er as well.

All experiments were performed on a workstation featuring a 1.8 GHz

Opteron CPU and 8GB RAM.We used a disk with a transfer rate of 60 MB/s,

a seek time of 3 ms, a latency delay of 2 ms. The node capacity of the RI-tree

was set to 8 KByte. For each experiment we randomly selected 100 sample

queries and averaged the observed results over all queries. For our e�ciency

evaluation we counted several events. For index-based approaches like our

approach and competitors that use index structures as well, we counted the

visited directory nodes of the RI-tree and the data leafs that had to be

transferred to the main memory. Using the technical speci�cations of our

hard disk we calculated the required IO time to answer the query. Whenever

we compared our approach to the sequential scan approach, we calculated

the time it would have taken to transfer the stored time series into the main

memory, as in this case no index structure and no lower or upper bounds are

used.

Note we did not report the actual time for the calculation of the distance

value as we observed that the di�erences for the competing approaches were

too small to be measured reliable. This is due to the fact that roughly
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the same number of calculations has to be performed for all techniques. The

straightforward approach using a sequential scan simply sums up the distance

values for all considered time slots. This approach can not rely on lower or

upper bound, so actually all relevant time slots have to be considered. On the

other hand, the index-based approaches can exploit lower and upper bounds.

Based on the knowledge of bounding boxes for complete stretches of time

slots, the contribution to the distance value of a certain stretch in time can

e�ciently be estimated with only a few calculations. Of course, extra time

has to be spent for the traversal of the index structure. In summary, we could

not measure any meaningful di�erences in terms of computation time. The

signi�cant di�erences for di�erent approaches could be observed in terms of

the IO time.

We executed queries for varying focus sizes, i.e. for varying relevant

portions of the complete time series objects. The focus size is speci�ed as

a percentage of the length of the complete time series. This value is the

sum of all relevant intervals, as we randomly created several non-overlapping

relevant intervals to de�ne the relevant time slots.

6.5.2 Experimental Results

Interval Box Generation

We �rst evaluate our method for generating interval box representations in

comparison to two more straightforward solutions. The �rst competing ap-

proach determines intervals for the interval box generation randomly. We

set the number of randomly created non-overlapping intervals to the number

our approach yields for an average time series. This technique will be labeled

with �RANDOM� in the following.

The second competing approach splits the time series in a number of time

stretches of equal length. For each of these constant-sized intervals, a min-

imal bounding interval box is generated as described above. We label this

approach with �EQUAL� throughout this section. The EQUAL method cor-

responds to the box generation of the PAA approximation technique [YF00].
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Our method will be referred to as �OTPIMAL� in the following.

At �rst we measured the pruning power of the three techniques. The

pruning power is measured as the relative amount of time series that have to

be re�ned after their interval boxes were used to calculate upper and lower

bounds. In case the upper or lower bounds allow for a sure inclusion or

a sure exclusion of the current time series element for the result set, the

pruning power is increased. So, the maximal value for the pruning is 1 and

the minimal and worst value is 0. A pruning power of 0 means that all time

series objects have to be re�ned.

The pruning power results for DS1 are displayed in Figure 6.8 for two

di�erent focus size values (2% and 5%). Furthermore we varied the value for

the ε value of the interval-focused ε-range query. Depending on the choice

of ε, the result set of the query has a di�erent cardinality. The number of

elements of the result set relative to the size of the complete database can be

considered as the query selectivity. In order to allow for a better comparison

between the two datasets, we searched for appropriate ε values that yielded

a certain prede�ned selectivity.

The results show two interesting properties. First, the pruning power

varied for di�erent focus sizes. For all compared approaches, the pruning

power is higher for a smaller focus size. Second, the pruning power varied for

di�erent query selectivity values. Higher query selectivity values correspond

to larger ε values and larger focus sizes lead to larger distance values. These

larger distance and ε values lead to more time series that have to be re�ned,

as only a smaller portion of all time series has a very small distance (and so, a

very small �lter distance based on the interval boxes) to the query object. So,

the percentage of time series that can be excluded or included solely based

on the �lter step decreases with increasing focus length and with increasing

ε values.

However, our proposed box generation method clearly outperforms the

competing approaches for a broad range of parameter settings.

Examining the pruning power is not su�cient, it is rather necessary to

consider the real IO cost as well. For example it is possible that the intervals
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Figure 6.8: Evaluation of di�erent interval box generation methods (prun-

ing power).

of one of the other approaches can be more e�ciently organized in the RI-tree

and so the access cost for this approach could be lower. So, in Figure 6.9

the IO cost as explained above are depicted for DS1. The same experiment

was repeated for the second dataset (see Figure 6.10). The same observation

as for the pruning power experiments can be made with respect to di�erent

focus size and varying query selectivity.

Query Selectivity

In a next set of experiments we evaluated our complete �lter-re�nement ar-

chitecture. Our approach will again be labeled with �OPTIMAL�. We com-

pared our results to the sequential scan. This is the straightforward approach

where the time series are sequentially loaded into the main memory and the

relevant portions of the time series are used to calculate the appropriate dis-

tance values. These corresponding results are labeled with �SEQ. SCAN�.

The third technique included in our experiments is the approach proposed in

[RKBL05] and will be labeled with �BIT LEVEL�. We chose the second com-

petitor since it is the only approach that does not need to scan the entire time

series information for answering interval-focused queries but also proposes a

�lter-re�nement architecture based on compressed data representation.

In Figure 6.11 the results for DS1 and two di�erent focus size value is
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Figure 6.9: Total I/O cost of di�erent interval box generation methods

(DS1).
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Figure 6.10: Total I/O cost of di�erent interval box generation methods

(DS2).
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Figure 6.11: Performance with respect to the selectivity of the query for

two di�erent values for the focus size (DS1).

given. In Figure 6.12 the results for DS2 are presented. Our approach clearly

outperforms both competitors for all settings of the query selectivity. Fur-

thermore our approach scales signi�cantly better for increasing query selec-

tivity compared to the bit level approach. The results for the sequential scan

are obviously independent of focus size ore query selectivity, as for all settings

the same amount of time series has to be transferred to the main memory.

Again, we can observe that our approach is more suitable for smaller values

for the focus size on both datasets. The absolute values for the IO cost di�er

on both datasets, as our approach generates the interval boxes depending on

the actual time series values which are di�erent for the two datasets.

Focus Size

As we already noticed the importance of the focus size, we performed a third

set of experiments examining the in�uence of the focus size. The results in

terms of the total IO cost are depicted in Figure 6.13 for DS1 and in Figure

6.14 for DS2. On both datasets and for both considered query selectivity

values our approach is more e�cient than the sequential scan up to a focus

size of approximately 6%. This value may be di�erent for other datasets and

other query selectivity values but con�rms our general assumption. Interval-
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Figure 6.12: Performance with respect to the selectivity of the query for

two di�erent values for the focus size (DS2).

focused queries are especially useful for very long time series objects where

only a relatively small portion is of interest. This is due to the additional

IO cost for the random access during the traversal of the RI-tree index and

to the random access for the re�nement of single time series. If the focus

size is increased, more random accesses will occur in the RI-tree intersection

query. If the selectivity value is increased, more re�nements will be necessary

as explained above. However, in many real-world a focus size smaller than

6% is a reasonable query size. Think of querying for a certain week in year

which corresponds to a focus size of less than 2%. Depending on the actual

technical system and on the characteristics of the dataset, even the focus on

a certain month may be more e�ciently answered using our interval-focused

query approach.

6.6 Conclusions

In this chapter, we introduced the concept of interval-focused similarity

queries in time series databases,an important generalization of comparing

entire time series. We introduced a new e�cient representation of time se-

ries based on intervals and showed how this representation can be used to

e�ciently support these new query type implementing a �lter-re�nement ap-
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Figure 6.13: Performance with respect to the size of the query focus for

two di�erent query selectivity values(DS1).
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Figure 6.14: Performance with respect to the size of the query focus for

two di�erent query selectivity values(DS2).
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proach. An important property of our approach is that the relevant intervals

can be speci�ed at query time and do not need to be known in advance.

Furthermore, we presented a method for the generation of the interval-based

representation. In our experimental evaluation we showed the superiority

of our proposed method for answering interval-focused similarity queries in

comparison to existing approaches as long as the portion of relevant intervals

is not too large compared to the complete time series. The exact break-even

value between the cost for the sequential scan compared to our index-based

method depends on the used hardware. Faster disk transfer rates decrease

the cost for the sequential scan approach. Lower cost for random access on

the other hand, decreases the cost for our index-based approach. However,

the focus size up to which our method outperforms competing approaches is

in a range suitable for a lot of real-world problems.
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Chapter 7

Similarity Search on Uncertain

Time Series

In the previous chapters we have introduced several new similarity measures

for time series. In all these chapters we have considered regular time series

where exactly one amplitude value is stored for each time slot. As we have

outlined in Chapter 2, a lot of previous work has focused on such regular

time series. However, fewer techniques are available to support queries on

uncertain time series. Uncertainty is important in emerging applications

dealing for example with moving objects or object identi�cation as well as

sensor network monitoring. In all these applications, the observed values at

each time slot of a time series exhibit various degrees of uncertainty. Due to

the uncertainty of the data objects, similarity queries are probabilistic rather

than exact: we can only assign to each database object a probability that it

ful�lls the query predicate. Traditional approaches only consider uncertainty

as a probability density function and are furthermore not designed for time

series. For situations where several measurements for each time slot are

available, no similarity measure and no e�cient query processing has been

proposed so far. Applications where the analysis of time series has to cope

with uncertainty include:

Tra�c sensors located at di�erent roads usually measure the amount of

tra�c rather inaccurately due to technical reasons. In most cases, for each

139
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sensor a model that speci�es the possible error of the measurement is pro-

vided. Finally the observed values do not consist of a single observation but

are given by a set of possible observations.

Environmental observations such as temperature or the concentration of

particulate matter are monitored during each day of the year at di�erent sites.

Finding sites with similar daily monitored measurements is important in

order to analyze relationships between the measured parameters and climatic

phenomena. Assume there are measurements over 5 years available for a

certain parameter. If a researcher wants to analyze the considered parameter

over the course of a year, each site has associated �ve values with it for each

time slot during a day. These �ve measurements at each time slot represent

all possible values of this site at the particular time slot. In addition, each

of these �ve observed values at time slot i is correlated with one of the �ve

observed values at time slot (i + 1) because they have been observed in the

same year.

In database systems managing moving objects, the position of these

objects is usually updated periodically. Between every two time slots of

update, the position of any object o is uncertain within a small spatial range

of the latest observed location of o. So, a number of possibilities exist for the

exact position of an object.

In all these applications, methods for similarity search have to consider

that the observed values are uncertain and may additionally be correlated. In

the literature, two principal possibilities to model uncertainty are discussed.

First, uncertainty can be expressed by a probabilistic density function (PDF),

e.g. a uniform or a given normal distribution. Such a PDF speci�es the prob-

ability a certain value is observed. If an uncertain time series T is represented

by PDFs, at each time slot i a PDF is used to model the probability distri-

bution for T having a certain value at i. The second way of modeling uncer-

tainty, which we will focus on in this chapter, is a set of alternative values

along with corresponding probability values as proposed in [LLRS97]. This

kind of representation is motivated by the fact that often multiple sensors

are used to study the same phenomenon. The concurring results from these
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(a) Uncorrelated uncertain time series.
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(b) Correlated uncertain time series.

Figure 7.1: Uncertain time series.

sensors are fused to provide an estimate of the observed object. There are

a lot of application areas where multiple sensor sources are merged (sensor

fusion). The result of such a fusion is a number of possible alternatives (sam-

ples), each of which has an associated probability. If an uncertain time series

T is represented by alternative samples, for each time slot i a set of sample

values is given, representing possible values of T at i. Another advantage

of the sample-based uncertainty representation is that, whereas in the �rst

approach the used PDFs must be �xed and known in advance, sampling can

model any distribution without prior knowledge. In addition, we can easily

generate a sample-based representation based on a given PDF. The reverse

way however, is not always possible, as not every possible set of points can

be mathematically described by a PDF. So, the sample-based representation
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is the more �exible and more general way of representing uncertainty. For a

given set of observations, it may be even wrong to model these observations

by a PDF, as the PDF does not necessarily model the true underlying process

the observations where created with. On the other hand, the sample-based

representation means sticking to the facts.

The above mentioned applications correspond to two kinds of sample-

based uncertain time series that are illustrated in Figure 7.1. In the tra�c

sensor example and the moving objects example, the sample values of di�er-

ent time slots are uncorrelated, i.e. there is no relationship between a given

sample observation at time slot i and another sample observation at time

slot (i+1) (see Figure 7.1(a)). Think of the tra�c sensor example. At time i

the positions of several cars may have been recorded. At the next time slot,

a completely di�erent set of cars may have come in view. While the general

position of the new set of cars may depend on the cars at the earlier time

slot (depending on how fast the old cars move), the exact position of a car

at i + 1 does not depend on the exact position of a single speci�c car at i.

In contrast to that scenario, think of the environmental example. Here, each

observed sample at time slot i is correlated to an observation at time slot

(i + 1) and vice versa (see Figure 7.1(b)). Here it is possible to establish a

relationship between two single samples at successive time slots, because they

were recorded at the same site. Both types of uncertainty require di�erent so-

lutions in order to support probabilistic similarity queries. The uncorrelated

representation is the more general representation. It can easily be created

based on an correlated representation by removing information. Hence, in

this thesis we focus on uncorrelated uncertain time series.

To the best of our knowledge, this is the �rst work, to deal with proba-

bilistic similarity queries over uncertain time series. In particular, the con-

tributions of our work are as follows:

• We formalize the problem of probabilistic queries on uncertain time

series, focusing on two types of probabilistic range queries in Section

7.3.

• We propose a novel compact and approximate representation of uncer-
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tain time series.

• We show how upper and lower bounding distance approximations for

the Euclidean distance and the DTW distance can be derived based on

these representations in Section 7.5.

• We illustrate how these distance approximations can be used to design

a multi-step query algorithm for e�cient probabilistic similarity queries

on uncertain time series in Section 7.5.

• In an experimental evaluation we demonstrate the performance boost

of our approach compared to competing solutions in Section 7.6.

7.1 Related Work

7.1.1 Similarity Search on Time Series

As time series have become an increasingly prevalent type of data, a lot of

work on similarity search in time series databases has been published (cf.

Chapter 2). However, all these approaches deal with regular time series and

do not consider any uncertainty.

In the case of uncertain time series, the approaches proposed in Chapter

2 cannot be applied. The main reason is that the uncertainty in each value

of a time series leads to an uncertain distance between time series. Existing

approaches for supporting similarity search on time series cannot deal with

that fact because they implicitly assume that the distance between time series

returns a single value.

7.1.2 Similarity Search on Uncertain Vector Objects

The fact that time series can be considered as a point in n-dimensional space

suggests that uncertain time series could be treated as n-dimensional un-

certain vectors. Several approaches for indexing uncertain vector objects
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have been proposed, mainly di�ering in the type of the uncertainty and in

the type of similarity query supported [CKP03, CXP+04, TCX+05, BPS06b,

BPS06a, CKP07, LS07]. These approaches deal with an uncertainty model

for spatially uncertain objects and propose queries which are speci�ed by

intervals in the query space. In this setting, a query retrieves uncertain ob-

jects that are located within the query interval with a certain likelihood.

Other approaches deal with statistical modeling of data in sensor networks

[FGB02, DGM+04, DGM05]. However, all mentioned approaches use con-

tinuous probability density functions for the description of the spatial uncer-

tainty. Thus, these approaches rely on the assumption that the uncertainty

can be modeled by a speci�c PDF, usually a Gaussian distribution. As dis-

cussed above, it is more general to model uncertainty by means of sample

observations rather than PDFs. This way, any uncertainty distribution can

be modeled. Approaches for similarity search on uncertain spatial objects us-

ing the sampling model are proposed in [KKPR06, KKM07]. The proposed

approaches allow to approximate uncertain objects represented by arbitrarily

structured PDFs. The sampled positions in space can e�ciently be indexed

using traditional spatial access methods. This reduces the computational

complexity of complicated query types.

In general, all these approaches are not applicable for uncertain time se-

ries. First, the proposed techniques are not designed for high-dimensional

spaces. As mentioned above, time series are usually very high-dimensional

feature vectors. To the best of our knowledge, there has no dimensionality

reduction technique for uncertain data been proposed so far. The main prob-

lem of indexing uncertain objects in high-dimensional spaces is the low query

selectivity due to the curse of dimensionality. Second, only correlated uncer-

tain time series can be treated as n-dimensional uncertain vectors. Similarity

search of uncorrelated uncertain time series is not covered by the discussed

approaches. Third, none of the above-mentioned approaches is able to sup-

port DTW. Last but not least, all these approaches are designed to reduce

IO cost, although the challenge when handling uncertain time series is to

reduce CPU cost, as we will explain in the following sections.
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7.2 Special Notations

As we introduce a lot of new notations in this chapter, we give a brief overview

of frequently used abbreviations and notations.

7.3 Probabilistic Similarity Queries for Uncer-

tain Time Series

• X: regular time series

• X : uncertain time series

• Xt: set of sample points at time slot t

• Xa: approximative representation of X

• Xa: sequence of n d-dimensional boxes

• It,j: d-dimensional minimal bounding box (mbr) for a given number of

sample points of Xt

• sX : sample size of X (depending on the context also �s�)

• d: dimensionality of samples points

• n: time series length

• TSX : set of all possible regular time series obtained by combining the

sample points of X

• TSXa : set of all possible combination of di�erent mbrs of Xa

• Lp: Minkowski distance for parameter p

• DTWp: DTW distance based on Minkowski norm with parameter p

• distLp(X ,Y): collection of all Lp distances between TSX and TSY



146 7 Similarity Search on Uncertain Time Series

• distDTWp(X ,Y): collection of all DTWp distances between TSX and

TSY

• distp(X ,Y): distLp(X ,Y) or distDTWp(X ,Y)

• Pr(distp(X ,Y) ≤ ε): probability that the distances between two un-

certain time series X and Y are below threshold ε

• τ : probability value

• RQε,τ (Q,D): probabilistic bounded range query on dataset D

• RQ
ε,rank(Q,D): probabilistic ranked range query on dataset D

7.3.1 Uncertain Time Series

At �rst we formalize the notion of uncorrelated uncertain time series and

introduce two important query types for uncertain time series. Usually, time

series are sequences of (certain) d-dimensional points. Uncertain time series

are sequences of points having an uncertain position in the d-dimensional

vector space. This uncertainty is represented by a set of observations at each

time slot.

De�nition 7.1 (Uncertain Time Series).

An uncertain time series X of length n consists of a sequence 〈X1, . . . , Xn〉.
Each element Xt contains a set of s d-dimensional points (sample observa-

tions), i.e. Xt = {xt,1, . . . , xt,s} with xt,i ∈ Rd. We call s the sample size of

X . The distribution of the points in Xt re�ects the uncertainty of X at time

slot t.

We use the term regular time series for traditional, non-uncertain time

series consisting of only a single d-dimensional point at each time slot. To

improve the presentation, we assume 1-dimensional uncertain time series in

the following. However, the extension of the concepts presented in this thesis

to the general d-dimensional case is straightforward.
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7.3.2 Uncertain Distances

In order to measure the similarity of uncertain time series, a distance mea-

sure for such uncertain time series is required. For regular time series, the

Minkowski distance (Lp-norm) is commonly used to measure the distance

between time series. Due to the uncertainty of the time series, the distance

between two time series becomes uncertain as well. Instead of computing a

single distance value such as the Lp-norm of the corresponding sequences, the

distance between uncertain time series consists of multiple distance values re-

�ecting the distribution of all possible distance values between the samples

of the corresponding uncertain time series. This intuition is formalized in

the following de�nition.

De�nition 7.2 (Uncertain Lp-Distance).

For a one-dimensional uncertain time series X of length n, let sX be the

sample size of X and TSX be the set of all possible regular time series that

can be derived from the combination of di�erent sample points of X by taking

one sample from each time slot, i.e.

TSX = { 〈x1,1, x2,1, . . . , xn,1〉,
〈x1,2, x2,1, . . . , xn,1〉,
〈x1,1, x2,2, . . . , xn,1〉,
. . .

〈x1,sX , x2,sX , . . . , xn,sX 〉 }.

The Lp-distance between two uncertain time series X and Y, denoted by

distLp, is a collection containing the Lp distances of all possible combinations

from TSX and TSY , i.e.

distLp(X ,Y) = {Lp(x, y) |x ∈ TSX , y ∈ TSY}.

An example for the set TSX is depicted in Figure 7.2. The set distLp(X ,Y)

can be calculated by computing the Lp distances for all possible combinations

of elements from TSX and TSY . In this example, distLp(X ,Y) contains 16

distance values.
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time t1 2

1

3

5

Χ = <{1,2},{1,3}>

Y = <{4,5},{2,3}>

TSY = {<4,2>,<4,3>,<5,2>,<5,3>}

TSX = {<1,1>,<1,3>,<2,1>,<2,3>}

Figure 7.2: Computation of the uncertain distance set.

The Lp-norm is the most prominent similarity measure for (regular) time

series, in particular for p ∈ 1, 2. However, often dynamic time warping

(DTW) is used. Compared to the Euclidean distance, the DTW allows small

distortions in time. Analogously to De�nition 7.2, we formalize the DTW-

distance for uncertain time series in the following.

De�nition 7.3 (Uncertain DTW-Distance).

Let DTWp be the DTW distance for regular time series based on an arbitrary

Lp-norm. The DTW-distance between two uncertain time series X and Y,
distDTWp, is a collection containing the DTW distances of all possible com-

binations from TSX and TSY , i.e.

distDTWp(X ,Y) = {DTWp(x, y) |x ∈ TSX , y ∈ TSY}.

In the following, we assume that distp is either the Lp-distance or the

DTW-distance between uncertain time series, i.e. distp ∈ {distLp , distDTWp}.
Based on the distance function distp we de�ne two query types for uncertain

time series.

Lemma 7.1 (Cardinality of Distance Set).

Given two uncertain time series X and Y of length n and sample sizes sX

and sY , respectively. Then the distance set between X and Y contains snX · snY
elements (sample distance observations), i.e. |distp(X ,Y)| = snX · snY .
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Proof. Obviously, |distp| = |TSX | · |TSY | because it contains the distances
between all possible combinations of elements in TSX and TSY . Since X is of

length n and has a sample size of sX , |TSX | = snX . Analogously, |TSY | = snY .

Thus, |distp| = snX · snY . 2

7.3.3 Probabilistic Similarity Queries

Based on the distance between two uncertain time series, we can de�ne two

important types of probabilistic similarity queries for uncertain time series

extending the concept of distance range queries on regular time series. These

queries are probabilistic because we cannot for sure report whether the dis-

tance of two objects is lower than a given threshold ε. We can only determine

the probability that the distance between two time series is lower than ε.

The probability Pr(distp(X ,Y) ≤ ε) that the distance between two un-

certain time series X and Y is below a given threshold ε is the fraction of

distance observations in distp that are below or equal ε, formally:

Pr(distp(X ,Y) ≤ ε) =
|{d ∈ distp(X ,Y)|d ≤ ε}|

|distp(X ,Y)|

=
|{d ∈ distp(X ,Y)|d ≤ ε}|

snX · snY

The above statement is based on the assumption that the sample points at

each time slot of an uncertain time series X re�ect a set of sX observed

values, each occurring with a probability of 1
sX
. Here, we do not regard

whether the samples are based on an underlying distribution or are reported

from di�erent sensors. We assume that the samples are the only available

information concerning the uncertain time series. As a consequence, given

two uncertain time series X and Y of length n, each distance d ∈ distp(X ,Y)

has the same probability 1
snX ·s

n
Y
, because snX · snY possible distances arise from

X and Y .

The �rst query type called probabilistic bounded range query returns all

time series that have a distance less than a given ε to the query with a
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probability of at least τ . Both ε and τ are speci�ed by the user at query

time.

De�nition 7.4 (Probabilistic Bounded Range Query).

Let D be a database of uncertain time series, ε ∈ R+, and τ ∈ [0, 1]. For

an uncertain query time series Q, the Probabilistic Bounded Range Query

(PBRQ) returns the set PQrange
ε (Q, τ) such that

∀X ∈ PQrange
ε (Q, τ) : Pr(distp(Q,X ) ≤ ε) ≥ τ.

The second query type called probabilistic ranked range query returns a

ranking of the uncertain database time series with respect to the probability

Pr(distp(Q,X ) ≤ ε) that the corresponding time series has a distance less

than ε to the query time series.

De�nition 7.5 (Probabilistic Ranked Range Query).

Let D be a database of uncertain time series and ε ∈ R+. For an uncertain

query time series Q, the Probabilistic Ranked Range Query (PRRQ) returns

an ordered list PQrank
ε (Q,m) = (X1, . . . ,Xm) where

∀i = 1, . . . ,m− 1 : Pr(distp(Q,Xi) ≤ ε) ≥ Pr(distp(Q,Xi+1) ≤ ε)

Furthermore we de�ne a function getNext on the list PQrank
ε (Q, τ) that

returns the next element of the ranking. Instead of calculating the complete

ranking for all database objects only the �rst few required elements of the

list are computed.

Very often, the time series in a database are relatively long. It is also not

uncommon that the uncertain time series are recorded with a high sample

rate. So, the naive solution for both query types is CPU-bound because for all

X ∈ D we have to compute all distance observations in distp(Q,X ) in order to

determine Pr(distp(Q,X ) ≤ ε). Due to Lemma 7.1, this means that a naive

solution requires to compute for each X ∈ D exactly |distp(Q,X )| = snQ · snX
distances. For large values of n, sQ, and sX , this is much more costly than

sequentially scanning the disk to access all X ∈ D. For example, assuming

standard hardware parameters like a seek time of 3 ms, a latency delay
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of 2 ms, a transfer rate of 80MB/s, and 50 ns for one Euclidean distance

computation (of two 1D points), the CPU cost of the naive solution exceed

the IO cost of the naive solution by a factor of approximately 10200 (n = 100,

sQ = sX = 10, |D| = 10, 000) when using the Euclidean distance for distp.

Using the DTW for distp, this factor is even higher.

A �rst idea for runtime reduction is that we only need to determine the

number of distance observations d ∈ distp(Q,X ) with d ≤ ε because the

complete number of distance possible observations is known according to

Lemma 7.1 and equals snQ · snX . We can further improve the runtime by

calculating lower and upper bounds for the probability that further reduce

the number of distance computations. For that purpose, we have to calculate

an upper and a lower bound for the number of distance observations d ∈
distp(Q,X ) with d ≤ ε.

In the following, we �rst introduce an approximative representation of un-

certain time series. We will then illustrate how these approximations can be

used to upper and lower bound the distance observations d ∈ distp(QX )

which can subsequently be used to identify lower and upper bounds for

Pr(distp(Q,X ) ≤ ε).

7.4 Approximative Representation for Uncer-

tain Time Series

7.4.1 E�cient Representation of Uncertain Time Series

We construct the approximative representation of an uncertain time series X
by aggregating the observations xi,j ∈ Xi at each time slot i into groups and

use these groups to calculate the distance between uncertain time series. Ob-

viously, this reduces the sample rate and thus, the overall number of possible

distance combinations. The groups are represented by minimum bounding

intervals or minimum bounding hyper-rectangles in the d-dimensional case.

De�nition 7.6 (Approximative Representation).
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(a) Exact representation.
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(b) 1st-level approximation.
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(c) 2nd-level approximation.

Figure 7.3: Di�erent approximation levels of uncertain time series.

The approximative representation Xa of an uncertain time series X of length

n consists of a sequence 〈{I1,1, . . . , I1,m1}, . . . , {In,1, . . . , In,mn}〉 of interval
sets. Each interval Ii,j = [li,j, ui,j] minimally covers a certain number |Ii,j| of
sample points of Xi, i.e. li,j and ui,j are sample points of Xi, at time slot i.

We use two approximation levels. The �rst level describes all sample

points at time slot i by one minimal bounding interval (see Figure 7.3(b)), i.e.

mi = 1 for all time slots i and Xa = 〈I1,1, . . . , In,1〉. For the second-level ap-
proximations, the samples at time slot i are grouped into k clusters by apply-

ing the algorithm k-means [Mac67] on all xi,j ∈ Xi (cf. Figure 7.3(c)). In this



7.4 Approximative Representation for Uncertain Time Series 153

case,mi = k for all time slots i and Xa = 〈{I1,1, . . . , I1,k}, . . . , {In,1, . . . , In,k}〉.
In fact, the exact representation of X can also be considered as a sequence of

interval sets where Ii,j = [xi,j, xi,j] and mi = sX for each time slot. Note that

for a given state during the query algorithms presented in the next sections,

the levels of approximation can di�er for di�erent time slots. That is, the

approximated times series become partially re�ned.

7.4.2 Approximating Distances

Using approximative representations Xa and Ya of two uncertain time series

X and Y , we are able to calculate lower and upper bounds for Pr(distp(X ,Y) ≤
ε).

De�nition 7.7 (Approximated Regular Time Series).

Let X_a be the approximative representation of an uncertain time series

X . A sequence of exactly one approximation for each time slot is called

an approximated regular time series Xa. Note that an approximated regular

time series can contain exact sample points as well, as long as only a single

element (be it an interval or a sample point) is speci�ed for each time slot.

Two examples for approximated regular time series are depicted in Figure

7.4. In this example, each approximated regular time series is depicted by a

path of boldly printed intervals.

Analogously to De�nition 7.2, let TSXa be the set of all possible approxi-

mated regular time series that can be derived by combining di�erent intervals

of Xa by selecting one interval from each time slot, i.e.

TSXa = { 〈I1,1, I2,1, . . . , In,1〉,
〈I1,2, I2,1, . . . , In,1〉,
〈I1,1, I2,2, . . . , In,1〉,
. . .

〈I1,l1 , . . . , In,ln〉 }.

De�nition 7.8 (Bounded Distances for Approximated Regular Time

Series).
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Let Xa ∈ TSXa and let [lxi , uxi ] be the interval of Xa at time slot i. The

distance

LLp(Xa, Ya) = p

√√√√ n∑
i=1

(max{0,max{lxi , lyi} −min{uxi , uyi}})
p

is the smallest Lp-distance between all intervals of Xa ∈ TSXa and Ya ∈ TSYa.
The distance

ULp(Xa, Ya) = p

√√√√ n∑
i=1

(max{uxi − lyi , uyi − lxi})p

is the largest Lp-distance between all intervals of Xa ∈ TSXa and Ya ∈ TSYa.

For the DTW distance, LDTWp and UDTWp can be de�ned accordingly. In

the following, we use the terms Ldist and Udist as a generalization for both

kinds of distances.

The concepts presented above are visualized in Figure 7.4 and in Figure

7.5. In Figure 7.4, two uncertain time series X and Q are depicted. Both

contain a set of intervals at each time slot approximating the corresponding

sample observations. One element Xa ∈ TSXa includes all boldly marked

intervals of X and can be considered as one of many possible paths or ap-

proximated regular time series. The other path, Qa ∈ TSQa , consists of all
boldly marked intervals of Q. The distance approximations between these

two paths Xa and Qa at each time slot i are depicted in Figure 7.5. Ag-

gregating these distance values by means of the distance function distp, we

obtain an interval of distances bounded by Ldist and Udist (see Figure 7.6).

7.4.3 Approximating Probabilities

Ldist and Udist allow us to de�ne a lower and an upper bound for each element

of distp(X ,Y). Similarly to De�nition 7.2, LBp(Xa,Ya) is a collection con-

taining the lower bounds Ldist of all possible combinations from TSXa and

TSYa . Each element of TSXa represents a certain number of regular time
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Figure 7.4: Approximated regular time series.
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Figure 7.5: Calculating distance bounds for each time slot based on ap-

proximated regular time series.
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distance

Udist(Xa, Qa)

Ldist(Xa, Qa)

Figure 7.6: Final distance-bounding interval after the aggregation of the

distance information for all time slots.

series that can be derived from the combination of di�erent sample points by

taking one sample point of each interval. So the number of regular time series

represented by a given Xa ∈ TSXa is |Xa| :=
∏n

i=1 |Ii|. Thus, when collect-

ing Ldist-distances, for each possible combination (Xa, Ya) ∈ TSXa × TSYa
the corresponding distance value Ldist(Xa, Ya) has to be stored |Xa| · |Ya|
times. As a consequence, we can lower bound each distance observation in

distp(X ,Y).

De�nition 7.9 (Lower-Bounded Distance Set).

The set LBp(Xa,Ya) contains a lower-bounded distance entry for each exact

entry in distp(X ,Y).

LBp(Xa,Ya) = {(Ldist(Xa, Ya))
|Xa|·|Ya||Xa ∈ TSXa , Ya ∈ TSYa}.

Analogously, we can upper bound each distance observation in distp(X ,Y).

De�nition 7.10 (Upper-Bounded Distance Set).

The set UBp(Xa,Ya) contains an upper-bounded distance entry for each exact

entry in distp(X ,Y)

UBp(Xa,Ya) = {(Udist(Xa, Ya))
|Xa|·|Ya||Xa ∈ TSXa , Ya ∈ TSYa}.
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Lemma 7.2 (Bounds Based on Approximated Regular Time Se-

ries).

Let Xa = 〈Ix1 , . . . , Ixn〉 ∈ TSXa and Ya = 〈Iy1 , . . . , Iyn〉 ∈ TSYa be approx-

imated regular time series. For all x = 〈x1, . . . , xn〉, xi ∈ Ixi and for all

y = 〈y1, . . . , yn〉, yi ∈ Iyi , the following inequalities hold:

Ldist(Xa,Ya) ≤ dist(x, y), where dist ∈ {Lp, DTWp}.

Udist(Xa,Ya) ≥ dist(x, y), where dist ∈ {Lp, DTWp}.

Proof. The lemma follows directly from the de�nition of Ldist and Udist.

2

Finally we can de�ne lower and upper bounds for the probability that

two uncertain time series have a distance smaller than ε.

De�nition 7.11 (Upper-Bounded Probability).

A lower bound for the probability Pr(distp(X ,Y) ≤ ε) can be de�ned as

PrLB(distp(X ,Y) ≤ ε) =
|{d ∈ UBp(Xa,Ya)|d ≤ ε}|

snX · snY

De�nition 7.12.

An upper bound for the probability Pr(distp(X ,Y) ≤ ε) can be de�ned as

PrUB(distp(X ,Y) ≤ ε) =
|{d ∈ LBp(Xa,Ya)|d ≤ ε}|

snX · snY

Lemma 7.3 (Upper and Lower Bounding Property).

For any uncertain time series X and Y, the following inequations hold:

(1) PrLB(distp(X ,Y) ≤ ε) ≤ Pr(distp(X ,Y) ≤ ε)

(2) PrUB(distp(X ,Y) ≤ ε) ≥ Pr(distp(X ,Y) ≤ ε)

Proof.

(1) We have to show that |{d ∈ UBp(Xa,Ya)|d ≤ ε}| ≤ |{d ∈ distp(X ,Y)|d ≤
ε}|: Lemma 7.2 states that the distances in UBp(Xa,Ya) are upper bounds of
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PBRQ(Q, ε, τ , D)

QRef = queue containing all X ∈ D ordered w.r.t.

descending upper bounding probabilities;

result = ∅;
while QRef 6= ∅ do
X := QRef .removeFirstElement();

if PrLB(distp(Q,X ) ≤ ε) ≥ τ then
result.add(X );

else if PrUB(distp(Q,X ) ≤ ε) ≥ τ then
re�ne X ;
insert X into QRef ;

return result;

Figure 7.7: Pseudocode of the PBRQ algorithm.

the corresponding exact distances in distp(X ,Y). So the exact distances may

be smaller. Consequently, more of the exact distances could be smaller than

ε. Thus, the inequality holds.

(2) Analogously we can show that

|{d ∈ LBp(Xa,Ya)|d ≤ ε}| ≥ |{d ∈ distp(X ,Y)|d ≤ ε}|. 2

7.5 Multi-Step Probabilistic Range Query Pro-

cessing

In this section we outline how to use the above de�ned approximations and

bounds to e�ciently answer probabilistic bounded range queries and proba-

bilistic ranked range queries.
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7.5.1 Probabilistic Bounded Range Queries

The pseudocode of the PBRQ algorithm is given in Figure 7.7. Our query

strategy follows an iterative �lter-re�nement policy.

A queue QRef is used to organize all uncertain time series sorted by de-

scending upper bounding probabilities. In an iterative process we remove the

�rst element X of the queue Qref , compute its lower and upper bounding

probabilities PrLB(distp(Q,X ) ≤ ε) and PrUB(distp(Q,X ) ≤ ε), and �lter

X according to these bounds. If PrLB(distp(Q,X ) ≤ ε) ≥ τ , then X is

a true hit and is added to the result set. If PrUB(distp(Q,X ) ≤ ε) < τ ,

then X is a true drop and can be pruned. Otherwise, X has to be re-

�ned. Let us note that we do not immediately re�ne the object completely.

Rather, the re�nement is performed in several steps, from 1st-level to 2nd-

level approximations and �nally to the exact representation. As mentioned

above, not the complete re�nement takes place in a single iteration. The

time slots are rather re�ned separately. Details on the strategies for the

step-wise re�nement are presented in Section 7.5.3. After the partial re�ne-

ment step, X is re-inserted into QRef if it cannot be pruned or reported

as true hit according to the above conditions and has not been re�ned

completely. If an object X has been re�ned completely, then obviously

PrLB(distp(Q,X ) ≤ ε) = PrUB(distp(Q,X ) ≤ ε) = Pr(distp(Q,X ) ≤ ε).

The iteration loop stops if QRef is empty. In this case all objects have been

pruned, identi�ed as true hits before their complete re�nement, or have been

completely re�ned.

7.5.2 Probabilistic Ranked Range Query

The pseudocode for the PRRQ algorithm is presented in Figure 7.8. In a

�rst step, a priority queue QRank is initialized containing all time series X ∈
D ordered by descending upper bounding probability PrUB(distp(Q,X ) ≤
ε). After initialization, the method getNext() can be called, returning the

next object in the ranking. Obviously, an object X is the object with the

highest probability if for all objects Y ∈ D the following property holds:
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PRRQ(Q, ε, D)

/** Initialize Ranking **/

QRank = queue containing all X ∈ D ordered w.r.t.

descending upper bounding probabilities;

/** Method getNext() **/

while PrLB(distp(Q, QRank.elementAt(1)) ≤ ε) ≤
PrUB(distp(Q, QRank.elementAt(2)) ≤ ε) do

re�ne QRank.elementAt(1);

reorganize QRank;

result = QRank.removeFirstElement();

return result;

Figure 7.8: Pseudocode of the PRRQ algorithm.

PrLB(distp(Q,X ) ≤ ε) ≥ PrUB(distp(Q,Y) ≤ ε). If the lower bound of the

�rst object is already higher than the upper bound of the next object, than

the exact probability value of the second object can not become larger than

the exact probability value of the �rst object, and so the �rst object can be

reported as the next object. Since the candidate objects of the database are

ordered by descending upper bounding probabilities in QRank, we only have

to check if the lower bounding probability of the �rst element in QRank is

greater or equal to the upper bounding probability of the second element.

If this test returns true, we can report the �rst object as the next ranked

object. Otherwise, we have to re�ne the �rst object in QRank in order to

obtain better probability bounds. As discussed above, this re�nement is

step-wise, i.e. several re�nement steps are necessary in order to obtain the

exact probability or at least better upper and lower bounds. The idea of

the method getNext() is to iteratively re�ne the �rst object in QRank as long

as the lower bounding probability of this element is lower than the upper

bounding probability of the second element in QRank.
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7.5.3 Step-Wise Re�nement of Probability Estimations

So far, we have not detailed how we re�ne our objects in the PBRQ and

PRRQ algorithms. The aim of a re�nement step is to re�ne the distances

between a database object and the query object in order to get a better

approximation (or the exact value) of the distances and thus, a better ap-

proximation of the probability. Since the re�nement operations are very

expensive, we propose to perform a step-wise re�nement by trying to per-

form potentially cheap and rewarding re�nement increments. Incremental

re�nements of an uncertain time series X are only performed as long as we

cannot exactly determine whether X ful�lls the query predicate.

Once, we have decided for which uncertain time series we want to execute

the next re�nement step (the top-ranked object in the re�nement queue),

there are several possibilities. Let us assume that we want to perform the

re�nement of the uncertain time series X . There are multiple sample ap-

proximations of X that are potential re�nement candidates. So we have to

determine which of the candidates should be re�ned next. In the following,

we present our re�nement strategy.

We assume that the uncertain time series are organized in a priority queue

which is sorted by descending upper bound probabilities (cf. Section 7.5.1

and Section 7.5.2). Furthermore we assume that the queue only contains

those uncertain time series that currently can neither be assigned to the

result set nor be identi�ed as a true drop. In the example in Figure 7.9 there

are depicted several probability intervals for di�erent uncertain time series.

In this example, the assumption holds for the uncertain time series X , U ,
and V which are potential candidates for the next re�nement step.

Re�nement Goal

The aim for each re�nement step is to be able to identify an uncertain time

series as true hit or true drop. This is achieved for an uncertain time series

X if the probability interval [PrLB(distp(Q,X ) ≤ ε), PrUB(distp(Q,X ) ≤ ε)]

is above or below τ . For this reason, we try to increase the lower bound of
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Figure 7.9: Probability intervals for di�erent uncertain time series.

the probability PrLB(distp(Q,X ) ≤ ε) in case that

τ − PrLB(distp(Q,X ) ≤ ε) ≤ PrUB(distp(Q,X ) ≤ ε)− τ

holds. Otherwise, we try to decrease PrUB(distp(Q,X ) ≤ ε). This technique

tries to minimize the e�ort to decide whether an uncertain time series can be

safely included in or excluded from the result set. We try to tighten the bound

which is nearer to the crucial probability threshold. In the example shown in

Figure 7.9, we would try to increase the lower bounds of the probabilities for

X and U . For V we would try to decrease the upper bound of the probability.

Re�nement Strategy

Let us assume that we try to increase the lower bounds of the probabilities

for X . Then, we have to select an approximated distance that should be

re�ned next. Keep in mind, an approximated distance corresponds to a

pair of approximated regular time series. One element of the pair is an

approximated regular time series of X , the other element an approximated

regular time series of Q. In the following we will develop a criterion to

determine which pair of approximated regular time series should be re�ned

next.
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tion for a single pair of approximated regular time series.
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In Figure 7.10 we depicted an example of several available pairs of ap-

proximated regular time series of X and Q. In this �gure, the resulting

distance intervals are depicted. Potential candidates for the re�nement are

those distance intervals which are intersected by the ε value. For all other

distance intervals, all represented exact distances are above or below ε, and

no further insight would be gained by re�ning such intervals. In our example,

the pair corresponding to Xa and Qa is worth a re�nement step, while the

pair Xb and Qb already represents only distances larger than ε.

The lower bound of the probability PrLB(distp(Q,X ) ≤ ε) depends on the

overall number of distances d ∈ distp(Q,X ) which are below ε. The higher

this number, the higher the lower bound of the probability. Consequently,

we should �rst re�ne that approximated distance (i.e. pair of approximated

regular time series) which probably will be resolved into a set of approximated

distances that are clearly below ε. Furthermore it should represent as many

distances d ∈ distp(Q,X ) as possible. Here we use the following heuristic:

The increase of the number of detected distances d ∈ distp(Q,X ) that are

clearly below ε can be estimated by

w̃ = (1− su
maxi=1..n{du,i − dl,i}

) · |Xa| · |Qa|,

su is the portion of the distance interval that is above ε (see Figure 7.10).

Formally su = Udist(Qa, Xa) − ε. su is a measure for how easy it is to push

the distances represented by this distance interval below ε. The smaller su,

the more of the represented distance values are probably already below ε.

Note we assume a uniform distribution of represented distance values.

After the decision which distance interval to re�ne next, we only re�ne

the approximations at a single time slot. Therefore, the complete distance

interval can only change so much as the maximal distance contribution over

all considered time slots is. That is why we scan over all time slots and

search for the maximal value of (du,i− dl,i), where du,i = max{uqi − lxi , uxi −
lqi} and dl,i = max{0,max{lqi , lxi} −max{uqi , uxi}}. |Xa| · |Qa| corresponds
to the number of distances which are approximated by Udist(Qa, Xa) and

Ldist(Qa, Xa). So, w̃ re�ects how probable it is, that the re�ned distance

estimates will be smaller than ε.
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Figure 7.12: Re�nement heuristic.

The example depicted in Figure 7.12 motivates the heuristic. This ex-

ample shows the situation of the approximated distance consisting of the

pair Qa and Xa before (top) and after (bottom) the re�nement step. This

distance can be bounded by Ldist(Qa, Xa) and Udist(Qa, Xa). These bounds

correspond to the aggregated distance bounds observed at each time slot. So,

the remaining question is, which of the n distance intervals in the time do-

main should be re�ned. When re�ning such an interval in the time domain,

like (dl,5, du,5) in our example, all resulting distance intervals that are below

du,i − su correspond to the resulting approximated distances that are below

ε. Since w̃ has to be maximized, we should re�ne the largest time interval in

the time domain. Finally, based on the described estimation, we re�ne the

approximated distance for which w̃ is maximal.

In case we decided to decrease the upper bound of the probability value,

i.e. PrUB(distp(Q,X ) ≤ ε), we can adapt the above-described re�nement
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strategy analogously. In this case, we have to maximize the overall number

of distances d ∈ distp(Q,X ) which are above ε. We can achieve this goal by

simply replacing the parameter su with sl when evaluating the approximated

distance to be re�ned next. sl is the portion of the distance interval that is

below ε (see Figure 7.10). Formally sl = ε− Ldist(Qa, Xa).

In general, we can re�ne either the database object or the query object

or both of them. We propose to re�ne both in one re�nement step. How-

ever, we re�ne the query object only virtually, i.e. for each time slot of the

query time series, we have access to all approximation levels and the exact

representation. In fact, the approximation level of the query object at time

slot i will be adapted during the distance computation to the approximation

level of the database object at time slot i. For example, if the approximation

of Xa ∈ D at time slot i is of level 2, we also consider the approximation of

level 2 for Qa.

7.5.4 Probabilistic Queries Using DTW

The algorithms for PBRQ and PRRQ proposed so far are suitable for both

the Lp-norms or DTW. However, if we use the DTW distance, we observe

that the lower and upper bounding probabilities for Pr(distDTWp(Q,X )) are

more expensive to calculate than for Pr(distLp(Q,X )), as the underlying dis-

tance measure is more expensive to calculate. However, we can adapt the

algorithms for PBRQ and PRRQ in order to address this potential perfor-

mance issue. The key idea for this adaption is that the exact Lp-distance is

an upper bound for the DTW distance.

Lemma 7.4 (Lower Bound for the DTW-based Probability).

PrLB(distLp(Q,X ) ≤ ε) ≤ Pr(distLp(Q,X ) ≤ ε) ≤ Pr(distDTWp
(Q,X ))

Proof. When calculating the probabilities PrLp and PrDTWp the number

of distances ≤ ε has to be determined. Whenever the Lp distance is ≤ ε,

the corresponding DTW distance is also ≤ ε, as the Lp distance is a valid

solution of the DTW computation. Hence, the Lp distance is an upper bound
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for the DTW distance and therefore the number of DTW distances that are

smaller than ε is equal to or larger than the number of Lp distances. 2

According to Lemma 7.4, we can use (the lower bound of) the probabil-

ity based on the Lp-norm as an additional lower bound for the probability

based on the DTW distance. If using DTW, the algorithms for PBRQ and

PRRQ proposed above can be extended by using PrLB(distLp(Q,X )) as a

�rst �lter in order to identify true hits without calculating the bounds for

the probability based on DTW.

PBRQ

In Figure 7.13 the pseudocode for the PBRQ for the DTW is depicted. The

�rst condition checks whether the lower bound based on the Lp distance

is larger than ε. This is a very e�cient way to include true hits without

calculating the exact DTW distances as the computation of the DTW dis-

tances is much more expensive than the computation of the Lp distances.

PrLBDTW (distp(Q,X )) and PrUBDTW (distp(Q,X )) can then be used to prune

true drops and to include further true hits, respectively.

PRRQ

The DTW version of the PRRQ (see Figure 7.13) is similar to its Lp version

as well. The �rst element of the queue is re�ned until lower probability

bound is larger than the upper probability bound of the second element in

the queue. At �rst the PrLBLP value is compared, as it is more e�cient to

compute.

7.6 Evaluation

In this section, we examine the e�ciency of our proposed probabilistic sim-

ilarity query approach for uncertain time series. Since the computation is
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PBRQDTW (Q, ε, τ , D)

result = ∅;
QRef = queue containing all X ∈ D ordered w.r.t. ascending re�nement priority;

while QRef 6= ∅ do
X := QRef .elementAt(1);

if PrLBLP (X ) ≥ τ then
result.add(X )

else if PrUBDTW (X ) < τ then

QRef .remove(X ); /** Prune X **/

else if PrLBDTW (X ) ≥ τ then
result.add(X )

else

re�ne X ;
update QRef ;

end-if;

end-while;

return result;

Figure 7.13: Adaption of the PBRQ algorithm for the DTW.

highly CPU-bounded, we measured the e�ciency by the average number of

required calculations required to execute a query.

7.6.1 Datasets and Methods

We used benchmark datasets derived from a wide range, covering a broad

spectrum of data characteristics. Most of them are available from the UCR

Time Series Data Mining Archive [KF02] as described in Chapter 3. We

varied the size of the audio dataset between 480 and 9600 time series, where

all time series had a length of 100. The size of the CBF dataset was varied

between 990 and 19800 time series by applying the creation process described

in [Sai94].

Because all of the datasets contain exact measurements, we generated

probabilistic time series by generating samples uniformly distributed around
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PRRQ(Q, ε, D)

/** Initialize Ranking **/

QRank = queue containing all X ∈ D ordered w.r.t. descending PrUBDTW
/** Method getNext() **/

while (PrLBLP (Q, QRank.elementAt(1))<

PrUBDTW (Q, QRank.elementAt(2))) AND

(PrLBDTW (Q, QRank.elementAt(1))<

PrUBDTW (Q, QRank.elementAt(2))) do

re�ne QRank.elementAt(1);

reorganize QRank;

result = QRank.removeFirstElement();

return result;

Figure 7.14: Adaption of the PRRQ algorithm for the DTW.

the given exact values. We also used other distributions like the Gaussian

distribution, but since our experiments showed that the distribution of the

samples do not make a di�erence in for the general results, we only report

the results using uniform sample distributions.

To support this decision we counted the mathematical operations required

to answer di�erent probabilistic bounded range queries on two datasets. The

�rst dataset was created by sampling 6 points according to the Gaussian

distribution, the second dataset was obtained by sampling 6 points according

to the uniform distribution. Although these dataset resemble each other, the

actual distance sets di�er, and so it is no surprise that the exact numbers

of required operations di�er slightly. The results are depicted in Figure

7.15. All example queries on both datasets require between 2.35 million and

2.45 million operations. Even if the sample range around the original exact

points is increased, or if other τ or ε parameters are used, the di�erence

between the dataset generation methods is still very small compared to the

number of required calculations of the straightforward approach. In this case

this number is as high as 8.6 × 1097. This follows from Lemma 7.1 which

calculates the number of possible distance values. In the following, we assume
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Figure 7.15: CPU cost w.r.t. di�erent dataset generation methods.

that in order to compute one single distance value, n (the number of time

slots) basic operations have to be performed. So, a basic operation includes

the calculation of the absolute value between two points and the power of

p calculation. The root operation can be neglected as it occurs very rarely

compared to the huge amount of other calculations.

7.6.2 Experimental Results

At �rst we measured the speed-up factor our approach yields compared to

the straightforward approach. Afterwards we explored how well our approach

scales with respect to database size and time series length. Finally, we ex-

amined the impact of our re�nement strategy on the observed speed-up.

Overall Speed-Up

For our experiments we measured the amount of required basic calculations

to execute the corresponding queries as explained above. Based on these

numbers, we de�ne the speed-up factor as the ratio between the required cal-

culations of the straightforward approach and the required operations using

our approach.
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Figure 7.16: Query speed-up (PBRQ) for di�erent datasets and varying

sample rates.
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In the �rst experiment, we examined how our approach can speed up

probabilistic bounded range queries for di�erent datasets. We repeated the

experiment for varying sample rates. The results for the di�erent datasets

are shown in Figure 7.16. For all datasets, the speed-up factor increases

exponentially with linearly increasing sample rate. The reason for this ob-

servation is that the cost required for the straightforward query method in-

creases exponentially while our pruning strategies work well even for high

sample rates. At the same time we varied the ε parameter. As can be seen

in the same �gure, di�erent choices for the ε value lead to di�erent values

for the computational cost. This is due to the di�erent size of the result set

of the corresponding query. Furthermore, di�erent ε values lead to di�erent

pruning possibilities and hence, di�erent re�nement processes take place. So,

depending on the given ε, di�erent number of re�nement steps are necessary.

In the next experiment, the above mentioned experiments were repeated

for probabilistic ranked range queries. The results are depicted in Figure 7.17

and are very similar to those for the probabilistic bounded range queries. We

depict the results for only two datasets, as the other datasets showed the same

behavior.
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Figure 7.17: Query speed-up (PRRQ) for di�erent datasets and varying

sample rates.
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Scalability

Next, we examined the scalability of our approach with respect to database

size and time series length. For the �rst experiment we varied the database

size of the Audio dataset between 480 and 9600 time series objects. The size

of the CBF dataset was varied between 990 and 19800 elements. In Figure

7.18 the observed speed-up factors for probabilistic bounded range queries

as well as for probabilistic ranked range queries are depicted.

The next experiment analyzes the impact of the time series length. In or-

der to compare similar datasets with di�erent time series length, we extended

the time series of the SynCtrl dataset by copying earlier portions of a time

series to the end of the time series. That way we created datasets with time

series of length 50, 75, 100, 125, and 150 time slots. The observed speed-up

factors are shown in Figure 7.19. Note that this �gure is presented in loga-

rithmic scale as the speed-up factor increases very fast for longer time series.

This is due to the fact that the length of the time series has an exponential

impact on the number of possible distance values and so our approach can

save a larger amount of computations. In contrast, the size of a dataset has

only a linear impact on the required calculations for the naive approach, so

the observed speed-up is lower.

Number of Approximations

In the next experiment we analyzed the impact of the number of second-level

approximations. As explained in Section 7.4, we use the k-means algorithm

to cluster the sample points in order to create the approximations. We per-

formed the experiments for 10 and for 20 sample points using the SynCtrl

dataset. The results in terms of required basic calculations are presented

in Figure 7.20. Although the number of sample points was twice as high

in the second run of the experiment, the optimal choice for the number of

second-level approximations was the same as for the �rst run. A similar be-

havior was observed on all datasets and for further numbers of sample points.

We learned that relatively low values for the k parameter in k-means yield
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Figure 7.18: Scalability of probabilistic bounded range queries and prob-

abilistic ranked range queries with respect to the database size.
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good results. This is due to the fact, that the number of representations

exponentially in�uences the required amount of calculations. However, if the

approximations are too coarse (for very low values of k), it is very probable

that a large portion of all approximations have to be re�ned and subsequently

not very much computational e�ort can be saved.

Re�nement Strategy

The above demonstrated huge speed-up factors compared to the straight-

forward approach can be observed for a broad range of parameter settings,

di�erent datasets, and di�erent query types. In order to assess the impact of

our re�nement strategy, in this section we report the absolute values of re-

quired calculations for di�erent re�nement strategies, rather than comparing

them to the straightforward approach.

Our re�nement strategy actually consists of two steps. First, a pair of

regular approximated time series is chosen, second, the point in time at

which to re�ne is determined. This leads to 4 di�erent re�nement strategies:

First, for both steps we apply the strategy described in Section 7.5.3. We

denote this combined approach as `S-S', as we use our strategy for both steps.

Second, it is possible to randomly select a pair of regular approximated time

series but use our re�nement strategy to determine the point in time at which

to re�ne. This approach is labeled by `R-S'. Analogously the third strategy

is called `S-R', as the re�nement strategy is used for the �rst step, but not

for the second. Finally `R-R' denotes a random choice for both steps. As

we have shown above, the results for the di�erent datasets are very similar,

so in this section we restrict the presentation of our results to the SynCtrl

dataset. In fact, the results on the other datasets are very similar.

At �rst we examined the behavior of the di�erent strategies with respect

to the ε parameter. The results are depicted in Figure 7.21. The second step,

i.e. determining the correct point in time at which to re�ne is apparently

more crucial, as `R-S' signi�cantly outperforms `S-R'. As expected, using our

re�nement heuristic for both steps yields the best results. These observations

can also be made in Figure 7.22 where we varied the probability bound τ
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Figure 7.21: Required calculations (logarithmic scale) of di�erent re-

�nement strategies w.r.t. ε (dataset=SynCtrl, #level 2 approx.=2, sample

rate=6, τ=0.95).

and in Figure 7.23 where we varied the sample rate. The di�erences between

the di�erent re�nement strategies in general and the superiority of the `S-S'

approach in particular become more distinct when the total computational

cost is higher. This is for example the case for a lower probability bound or a

higher sample rate. In summary, our experiments show that our re�nement

strategy clearly outperforms more simple re�nement strategies and that this

superiority of our approach is robust w.r.t. all query parameters.

7.7 Conclusions

Similarity search on uncertain time series is an important emerging topic.

To the best of our knowledge, we proposed the �rst approach for perform-

ing probabilistic similarity search on uncertain time series in this work. In

particular, we formalized the notion of uncertain time series and introduced

two novel probabilistic query types for uncertain time series. Furthermore,

we proposed an original method for e�ciently supporting these probabilis-
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tic queries using a �lter-re�nement query processing technique based on an

approximative representation of uncertain time series and a sophisticated re-

�nement strategy. Our experimental evaluation illustrates the performance

gain of our method compared to competing strategies.
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Chapter 8

Semi-Supervised Threshold

Queries

Threshold-based similarity as introduced in Chapter 4 has a great practical

impact on a lot of application �elds, including stock market analysis, astron-

omy, environmental analysis, molecular biology, and pharmacogenomics.

A sample application from medical analysis is visualized in Figure 8.1

where three electrocardiogram (ECG) plots T1, T2, and T3 are shown. Plot

T1 indicates a high risk for cardiac infarct due to the abnormal de�ection

after the systole (ST-T-phase), whereas T2 and T3 both exhibit a normal be-

havior indicating a low risk. For the examination of time series with respect

to this abnormal characteristic, there is no need to examine the complete

curve and the exact recorded values. A better way to detect such kind of

characteristics is to analyze only the relevant parts of the time series, for

instance observing those parts of the time series which exceed a speci�ed

threshold as depicted in our example. Let us consider the time interval se-

quences (below the ECG-curves) which correspond to the time frames within

which the time series exceed the threshold τ . We can observe that the time

interval sequences derived from T2 and T3 di�ers marginally. In contrast,

time series T1 shows quite a di�erent characteristic, caused by the ECG-

aberration indicating the heart disease.

183
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Figure 8.1: Sample application for the threshold-based similarity.

The most important issue of threshold similarity is obviously the choice of

the threshold τ . In the medical example, the suitable threshold τ was selected

by a domain expert (knowing about the characteristics of an abnormal time

curve in case of a cardiac infarct patient), in order to discriminate between

patients with a low or a high risk for cardiac infarct. However, it can be

easily seen that if the threshold would have been chosen lower than depicted

in Figure 8.1, all three time series would have produced rather similar time

intervals and, thus, the time series T1 could not have been discriminated from

the other two time series. Since the optimal threshold for discriminating a

prede�ned class system is not known in advance in many applications, a

method for the automatic determination of the optimal threshold using a

small number of labeled time series as training set is mandatory. Thus,
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Figure 8.2: General approach.

for cluster analysis, a semi-supervised approach is envisioned where �rst,

the best suitable threshold is determined automatically by means of a small

training set. Afterwards a cluster analysis based on the threshold-based

similarity measure can be performed using the previously learned threshold.

This approach allows to detect novel and potentially important patterns.

In this chapter, we present a general semi-supervised framework for the

cluster analysis of time series using adaptable threshold similarity. This

framework consists of two phases, a training phase and a clustering phase as

depicted in Figure 8.2. In the �rst phase, the most suitable parameter set-

ting, i.e. the choice of the threshold value, is determined by using a training

dataset. Our proposed method assumes that we can observe di�erent clus-

tering results for di�erent threshold values. So, τ in�uences the separability
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of the classes which we quantify by a so-called separation score. First, we

compute the separation score for each threshold of a given training set. This

results in a quality curve depending on τ . The optima of this curve can give

useful hints on how to adapt the threshold for the second phase where the

entire dataset is clustered. One might argue that performing a number of

clusterings for di�erent thresholds followed by an evaluation of the clustering

quality can lead to the same results. So, the training phase could be omit-

ted. However, this ignores the fact that many clustering algorithms have a

runtime of O(n2) in the number of objects to cluster, or require several itera-

tions until they terminate. Furthermore we will show that our approach can

handle missing classes as well. The �rst step should only indicate promising

thresholds and avoid over�tting by not restricting the subsequent steps to a

single threshold value.

We explored two di�erent ways of determining such crucial thresholds.

The �rst method outlined in Section 8.2.2 was introduced in [AKK+06a] and

uses the well-known silhouette coe�cient in order to explore suitable thresh-

old values. The second method described in Section 8.2.2 was introduced

in [AKK+06d] and uses kernel functions in order to compute separations

scores. In Section 8.3 we show the results of an experimental comparison of

both approaches.

8.1 Semi-Supervised Clustering

In addition to the similarity information used by unsupervised clustering ap-

proaches, in many cases a small amount of knowledge is available concerning

either pairwise (must-link or cannot-link) constraints between data items or

class labels for some items. In contrast to standard clustering techniques

which do not use any knowledge except for the similarity information of the

data, semi-supervised analysis can pro�t from this knowledge to guide or ad-

just the clustering. Obviously, semi-supervised analysis methods can achieve

better results than their unsupervised counterparts. In recent years, several

methods in the area of semi-supervised cluster analysis have been proposed.
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The main idea of semi-supervised clustering is to determine clusters that are

'immaculate' with respect to the class labels. The labeled data is used as a

feedback in order to help to cluster unlabeled data. Most of the proposed

methods for semi-supervised clustering assume that class labels for all objects

to be processed are given.

[SCSS05] proposes a method based on a mixture of hidden Markov mod-

els using prior knowledge in order to improve the robustness and the quality

of the clustering. The authors of [Zho05] introduce a semi-supervised clas-

si�cation for time sequences based on hidden Markov models. Two di�erent

semi-supervised learning paradigms are discussed. The author observed that

using unlabeled data can increase the classi�cation accuracy.

Several extensions of existing standard clustering algorithms have been

proposed in the literature. A brief survey is given in [EZZ04] describing

SPAM a supervised variant of PAM, SRIDHCR, a greedy algorithm with

random restart, SCEC, an evolutionary algorithm, TDS, a medoid-based

top-down partitioning algorithm. In [WCRS01], a variant of a k-means-

based clustering algorithm is proposed. The authors derive constraints from

the labeled objects which are used during the clustering. They distinguish

between explicit and cannot-link constraints. In [SBM04], a k-means based

method is introduced which is based on both types of constraints and which

exploits the data distribution. The authors of [DBE99] describe an evolution-

ary method for semi-supervised clustering. This approach has to be initial-

ized with k arbitrary centroids and optimizes a quality measure considering

cluster dispersion and impurity. In order to detect a cluster structure that

re�ects the class distribution of the labeled training data, further methods

have been developed which use a standard clustering algorithm by applying

an adaptive similarity measure. The authors of [KKM02] propose to apply

a complete-link clustering algorithm after replacing the Euclidean distance

with the shortest path algorithm. The approach described in [BM03] weights

the edit distance using an expectation maximization algorithm to detect ap-

proximately duplicate objects in a database. [BSM04] describes a probabilis-

tic framework for semi-supervised clustering to additionally support several

non-Euclidian distance measures like the cosine distance.
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In the following, we use the density-based hierarchical clustering algo-

rithm OPTICS [ABKS99]. However, any clustering algorithm is applicable

in our framework.

8.2 Semi-supervised Threshold Analysis

8.2.1 General Idea

As stated above, our main goal is to yield an accurate clustering of the

database D of time series using the threshold-based similarity. In order to

choose the optimal threshold value τ , we apply a semi-supervised clustering

procedure, where we learn the optimal threshold from a small training set

T of already labeled time series before clustering the complete dataset (see

Figure 8.2). This learning phase preceding the clustering phase is the key

step in our framework.

Let T be the training set containing time series objects that are labeled

according to a prede�ned class system C = {C1, . . . Ck} of k ≥ 2 classes.

We need to learn the threshold values from the objects in T that are able

to separate time series data of one training class Ci from the other training

classes Cj (i 6= j), i.e. threshold values that yield low similarity values for

time series belonging to di�erent classes and high similarity values for time

series belonging to the same class.

The class system C de�ned for the training data T has not to be complete.

There may be some further classes Ĉ 6∈ C for which no training data is at

hand, i.e. none of the objects in T is labeled with one of these classes Ĉ.

Furthermore, it is also possible that the user is not aware of the existence

of all classes. The dataset may contain unknown classes which could also be

interesting for the user.

Obviously, these classes are excluded from the learning phase, i.e. the

learned threshold are not necessarily optimal for these classes. However, as

we show in the experimental Section 8.3, threshold values that exhibit a
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high separability for only a few classes in the training data are quite often

also a good choice for the detection of unknown or missing classes during

the clustering phase. Thus, by providing only partial information during

the training phase, our approach is able to retrieve novel information in the

clustering phase. This is contrary to a fully supervised approach, where novel

classes cannot be detected.

As mentioned above, the optimal threshold τopt separates the classes Ci ∈
C, 1 ≤ i ≤ k, in our training set T in a best possible way. We formalize

the separability of a threshold τ by means of a separation score. In fact, we

measure the separation score of a broad range of possible thresholds.

8.2.2 Computing the Separation Score

Using the Silhouette Coe�cient

In this section we will outline how we calculate the separation score based

on the silhouette coe�cient.

Separation Score for a Single Class Let T be a training set, and C
be the corresponding classi�cation system. Let C consist of k classes, C =

C1, ..., Ck. Each class Ci is a subset of T . Then for a given class Ci, we try to

determine these threshold values which yield a good separability of Ci from

the remaining classes. For a given threshold τ , we compute the silhouette

width [KR90] for Ci compared to the remaining classes of C.

De�nition 8.1 (Silhouette Width for Class Ci).

Let X ∈ Ci. Then a(X) is the average threshold-based distance value of X

to all other elements of Ci

a(X) =
1

|Ci| − 1

∑
Y ∈(Ci\X)

dTS(SX , SY )

where dTS is the threshold-based similarity as de�ned in Chapter 4. For each

class Cj ∈ (C \ Ci), d(X,Cj) is the average threshold-based similarity of X
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to all elements of Cj

d(X,Cj) =
1

|Cj| − 1

∑
Y ∈(Cj\X)

dTS(SX , SY )

After we have computed all values d(X,Cj), we select the smallest one as

b(X).

b(X) = min
Cj∈(C\Ci)

d(X,Cj)

This value can be considered as the average distance of X to the nearest

cluster that is not equal to the cluster, X itself is assigned to. The silhouette

value s(X) for X is de�ned as

s(X) =
b(X)− a(X)

max{a(X), b(X)}

Finally, the silhouette width S(Ci) for a cluster Ci can be calculated as the

average silhouette value over all cluster members

S(Ci) =
1

|Ci|
∑
X∈Ci

s(X)

Separation Score for All Classes In the last section, we have developed

a quality measure which computes the separation score for each class Ci of the

training dataset. Now, we need a suitable combination of all k separation

score functions. For our approach, we use the sum of all score functions,

i.e. we compute the silhouette width for C. The global separation score

function now re�ects the overall separability score of our training dataset for

an arbitrary threshold τ . Based on the idea of semi-supervised learning, the

global score function gives the user hints about the most promising threshold

values.

Kernel-Based Approach

In this section, we compute an optimal score by applying the concept of

support vector machines (SVMs). In general, SVMs provide an optimal

separation of two classes [Vap95] and can easily be extended to multi-class
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problems. However, in order to apply SVMs to threshold similarity of time

series we have to extend the basic concepts of threshold similarity. In Section

8.2.2 we �rst explain these extensions of threshold similarity. We then intro-

duce a new separation score in order to measure how good a given threshold

separates the class classes of T (see Section 8.2.2).

Similarity Model As discussed above, we use SVMs to separate the classes

in T since they provide an optimal separation. However, basic SVMs can

only be applied to feature vectors rather than interval sequences. Thus, in

order to apply SVMs to time series using threshold similarity, we need the

concept of kernel methods which have been successfully applied to learning

from objects having a complex structure. Since, we represent the time series

by sets of intervals we need a kernel method that can cope with set-based

instances. Let χ denote the complete set of intervals of all objects in T gen-

erated by a given threshold τ . For our approach, in order to compare two

time series X, Y ∈ T , we use the set kernel k(Sτ,X , Sτ,Y ) which has been

introduced in [GFKS02] and is de�ned as

k(Sτ,X , Sτ,Y ) :=
∑

i∈Sτ,X ,j∈Sτ,Y

κχ(i, j),

where κχ denotes a kernel on χ, i.e. on single intervals. The threshold-

crossing intervals sets Sτ,X and Sτ,Y are de�ned according to De�nition 4.1.

In order to keep the similarity function invariant to the size of the sets

Sτ,X and Sτ,Y , the kernel function has to be normalized by the cardinality of

these sets:

k(Sτ,X , Sτ,Y ) :=
k(Sτ,X , Sτ,Y )

N(Sτ,X) ·N(Sτ,Y )
.

Here, the normalization function

N(S) :=
∑
s∈S

S(s)

is used to compute the cardinality of the set S, i.e. S(s) returns 1, if s is in

the set S and 0 otherwise. Note, that this kind of normalization preserves

the kernel property, i.e. the resulting function kset is also a kernel [GFKS02].
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The kernel function κχ is applied to a pair of threshold crossing time

intervals and corresponds to the similarity of two intervals. Since the distance

function dint (see De�nition 4.2) is not a kernel, we cannot apply it directly to

κχ. Rather, we need a similarity function κχ which ful�lls the kernel property.

In addition, this similarity function should ful�ll the following condition: the

smaller the distance between two intervals, the higher the similarity between

them. With this condition, the similarity between two time intervals depends

on their temporal o�sets of their starting and ending times. Intuitively, the

closer two time intervals start and the closer their interval length, the more

similar they are. In our approach we apply the Gaussian kernel, which is

de�ned as follows:

κχ(i, j) := e
−dint(i,j)

2

σ ,

where σ is a parameter which can be used to adjust the sensitivity of the

similarity to the distance between the intervals i and j. For small σ values,

large interval distances have only little in�uence on the similarity.

Thus, the resulting kernel function to compare time series X and Y using

the concept of threshold similarity w.r.t. threshold τ is de�ned as:

Kτ (X, Y ) =

∑
i∈Sτ,X ,j∈Sτ,Y e

−dint(i,j)
2

σ

N(Sτ,X) ·N(Sτ,Y )
.

Let us note, that the similarity between two time series according to

threshold τ expressed by the kernel function Kτ is also called τ -similarity.

Kernel-Based Separation Score As we have de�ned the similarity func-

tion Kτ as a kernel function, we can now apply the concept of SVMs in order

to measure the separability of given training data with respect to a threshold

τ . The use of SVMs provides an optimal solution for the separation of the

classes in C. In addition, SVMs already contain information about the sepa-

rability of the training data with respect to the class labels and thus, provide

an elegant method to measure the separability of a given class system.

At �rst, we have to determine those threshold values which could be of

interest and which we want to examine. Therefore, we select a range of am-
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Figure 8.3: Computing the separation score.

plitudes which could be meaningful for our analysis. In our experiments,

we have chosen the complete amplitude spectrum covered by the time series

objects contained in the training dataset. However, if domain knowledge is

available, this range of meaningful thresholds can be narrowed down. In ad-

dition, we can apply the data structures proposed in Chapter 4 to access the

threshold-crossing time intervals of a given time series X for any threshold

τ very e�ciently. Afterwards, we have to choose the resolution of our exam-

ination, i.e. how many thresholds we want to examine within the selected

range.

After we have selected the increments of the threshold values, we evaluate

each threshold value τ as follows: We determine the threshold-crossing time

interval sequences of all training objects w.r.t. τ and train an SVM on this

data. Standard SVMs are able to make only binary decisions. An SVM SτA,B
computes a maximum-margin hyperplane which separates instances of two

classes A and B using the kernel function Kτ . The width of the margin µτA,B
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of this separating hyperplane is a valid indication for the separability of the

two classes. Obviously, the larger this width is, the more con�dent is the

SVM to separate objects from A and B correctly. Since usually, C consists

of more than two classes, and since standard SVMs can only handle the

binary case, we apply the so-called one-versus-one approach. For each pair

of classes Ci, Cj ∈ C, a SVM Sτi,j is trained. Thus, we obtain for each pair

of classes Ci, Cj ∈ C the margin-width µτi,j = µτj,i which is a measurement for

the separability of Ci and Cj. An example is depicted in Figure 8.3. Four

classes A, B, C, and D are separated using an SVM for each pair. Only

the SVMs separating A from the other classes are shown. The width of the

margin of SA,B, µA,B is visualized .

Given the margin-width of all SVMs trained on each pair Ci, Cj ∈ C, all
these values have to be combined suitably in order to obtain a single value

which represents the global class separability. It is possible to represent

the global separability by the smallest of all margin-widths. This approach

guarantees that all desired classes are well separated. However, this solution

seems to be a too optimistic approach, since the training dataset may contain

classes which cannot be separated at all, regardless of the selected threshold

value. Another approach is to pick the largest margin-width. However, this

pessimistic solution is also not suitable, since two classes which are separable

well for each threshold value do not re�ect the global separability. For our

approach we argue to use the average margin-width, because the separabili-

ties of all observed classes are considered. This decision is con�rmed by the

results in our experiments. The resulting separation score is thus de�ned as

score(τ) =
1

2 ·N(C)
∑

Ci,Cj∈C,i 6=j

µτj,i.

Obviously, the higher this value is, the better the classes in C can be

separated with respect to threshold τ .
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Figure 8.4: Determination of the most promising threshold values.

8.2.3 Determining the Optimal Threshold

Having determined the separation score in one of the two ways described

in the previous sections for a range of interesting values, we can consider

a quality curve over all these threshold values (cf. Figure 8.4). In such a

separability diagram, we plot the examined threshold values along the x-axis

and the corresponding separation scores along the y-axis. From this diagram

we can easily determine those threshold values which are the most promising

values for the clustering step of the complete dataset.

Let us note that the separability diagram not only helps to detect a certain

threshold for cluster analysis, but also helps to readjust the parameter setting

if the �rst cluster analysis returns dissatisfying results or the user wants to

con�rm the validity of the results by alternative threshold parameterizations.

8.3 Evaluation

In this section, we present the results of a number of experiments performed

on several time series datasets.
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8.3.1 Datasets and Methods

For our evaluation, we used several real-world and synthetic datasets as de-

scribed in Chapter 3. In particular we used the gene expression datasets (cf.

Section 3.3) GDS38 and GDS30 which will be denoted by �DS1� and �DS2�

in the following. �DS3� denotes a subset of our audio dataset consisting of

36 classes with in total 756 time series. The length of the time series varies

up to 30000 values per sequence. Furthermore we used the Trace dataset

(�DS4�), the GunxX dataset (�DS5�), and the CBF dataset (�DS6�). While

these datasets were used for a more systematical evaluation of our approach,

we also evaluated the relevance of our technique on the air pollution dataset

and the gene expression dataset. The gene expression dataset was also used

to evaluate the relevance of di�erent threshold levels with respect to di�erent

classi�cation systems. We used di�erent levels of the hierarchical classi�ca-

tion system of the Gene Ontology [ABB+00] to derive di�erent classi�cation

systems.

In order to evaluate the quality of di�erent thresholds, we applied the

density-based clustering method OPTICS [ABKS99] for the cluster analysis

step. We used OPTICS due to its robustness with respect to the data distri-

bution and the parameter setting. Of course, any other clustering method is

also applicable. We evaluated the quality of the obtained clusters by calcu-

lating the rand index [HBV01] and the average entropy. The average entropy

is an unsupervised quality measure, i.e. no reference clustering is required.

The entropy corresponds to the impurity of the detected clusters. Let pj,i be

the relative frequency of the class label labelj in the cluster Ci. Let |Ci| be
the cardinality of cluster Ci. Then the average entropy is computed as

avgEntropy =

∑
Ci
|Ci| ∗

(
−
∑

labelj
pj,i log(pj,i)

)
∑

Ci
|Ci|

Lower average entropy values correspond to a higher clustering quality. The

rand index evaluates the clustering results with respect to a reference clus-

tering. We use the classi�cation system as a reference clustering, i.e. each

class is considered a cluster. Higher values of the rand index indicate a better

clustering result.
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Figure 8.5: Separability plot on DS3.

8.3.2 Experimental Results

Validation of the Separation Score

We investigate the e�ectiveness of semi-supervised threshold queries which

are used to �nd the optimal threshold value by means of a training dataset. In

the �rst experiment we evaluated the relevance of our approach. In particular

we analyzed whether choosing a promising threshold indeed leads to better

clustering results than choosing an arbitrary threshold where no information

about the dataset characteristics was used to select the threshold value.

At �rst we calculated the separability score (cf. Section 8.2) of the classes

for varying threshold values. Figure 8.5 shows the results for the DS3 dataset

and Figure 8.6 shows the results for the DS6 dataset. Obviously, di�erent

threshold values lead to di�erent values for the separability of the classes.

As explained in Section 8.2, high separation score values should indicate

threshold values which are promising for the cluster analysis.
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Figure 8.6: Separability plot on DS6.

To evaluate this, we clustered the time series for two di�erent threshold

values τ+ and τ− and determined the rand index and the average entropy

[HBV01]. For example, the threshold value τ+ = 710 which corresponds to

a high separation score on the DS3 dataset resulted in a rand index equal

to 0.97. Contrary, when using a threshold value of τ− = 3064 the rand

index decreased to 0.61. Similar results were observed for other levels, for

other threshold values, and on other datasets. Figure 8.7 depicts the rand

index and Figure 8.8 depicts the average entropy for each dataset and for a

promising threshold value (τ+) as well as for a threshold corresponding to

a low separation score (τ−). The results show that the clustering analysis

based on threshold τ+ always outperforms the quality of the clustering based

on the τ− threshold. So, our experiments con�rm the general idea of our

semi-supervised analysis approach.
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and low separation scores.
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Figure 8.9: Comparison of clustering results.

Calculation of the Separation Score

Next, we compared the two methods introduced for the calculation of the sep-

aration score, the silhouette-based approach and the kernel-based approach

as described in Section 8.2.2. For the sake of comparison, we also included

clustering results obtained with the Euclidean distance. The rand index val-

ues for all 6 datasets are presented in Figure 8.9. In terms of the rand index,

the kernel-based approach clearly outperforms the silhouette-based approach.

Though, the silhouette-based approach yields higher quality clusterings as the

Euclidean distance. The exact rand index and entropy values for all datasets

are given in Table 8.1. In terms of entropy, the kernel-based approach is the

best approach for 3 out of the 6 datasets, while on two datasets the silhouette-

based technique yields the best clusterings. In summary, the semi-supervised

analysis outperforms more straightforward similarity measures that can not

be adapted to a speci�c dataset. Furthermore, the kernel-based separation

score yields better clustering results as the separation score based on the

silhouette coe�cient. In the following, we restrict our experiments to the

kernel-based approach.
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Quality Euclidean Silhouette Kernel-

Measure Dataset Distance Coe�cient Based

Rand DS1 0.46 0.927 0.9367

Index DS2 0.252 0.94 0.957

DS3 0.27 0.95 0.97

DS4 0.5 0.75 0.8

DS5 0.33 0.5228 0.619

DS6 0.183 0.67 0.737

Entropy DS1 0.0067 0.047 0.026

DS2 0.018 0.0277 0.017

DS3 0.9 0.01 0.0042

DS4 0.89 0.018 0.001

DS5 0.8 0.02 0.3

DS6 0.96 0.025 0.06

Table 8.1: Clustering results for di�erent similarity measures.

Adjustability to Di�erent Training Classes

In the next experiment, we explored the question how the optimal threshold

values change when the expected results change, i.e. when the focus of the

query changes. This is a very interesting question as it re�ects the possibility

of di�erent aspects in a dataset that might be relevant to a domain expert.

The following experiments were performed on the dataset DS1. For the

�rst experiment, depicted in Figure 8.10(a) we used the GO functional classes

on level 3. Afterwards we changed the focus of our analysis to the GO level 6.

The results are depicted in Figure 8.10(b). Interestingly we indeed obtained

di�erent optimal threshold values for di�erent purposes of the analysis. So,

the biological classes on GO level 3 can be best distinguished using a di�erent

threshold than on GO level 6. This observation could provide a useful start-

point to a biologist for further experiments and analysis.
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(a) Separability curve for GO level 3.
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(b) Separability curve for GO level 6.

Figure 8.10: Separability curves for di�erent training classes.

Sensitivity to Incomplete Training Data

In our next experiment, we examined the sensitivity of our approach to miss-

ing classes in the training data. A low sensitivity corresponds to the ability

to detect unknown knowledge. It is interesting, whether our analysis �nds

those classes which are existent in the training dataset, but which are not

used in the training phase. The results for di�erent datasets are depicted in

Figure 8.11 in terms of the rand index and in Figure 8.12 in terms of the

average entropy.
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Obviously, the completeness of the detected classes increases with an

increasing number of classes used for the training phase. However, a small

amount of training classes is su�cient to �nd nearly the complete set of

classes within our dataset. This is of special interest for domain specialists,

as very often only partial information is available for a dataset. Starting from

this partial knowledge, new information might arise using our approach.

Analysis Results on Real-World Scienti�c Datasets

Finally, we evaluated the usefulness of our approach on real-world datasets.

We examined time sequences of the air pollution dataset representing partic-

ulate matter parameters (M10) derived from rural and urban sensor stations.

The threshold-based analysis shows that the pollution with particle compo-

nents in the city di�ers considerably from the pollution in rural regions.

The results on the gene expression dataset were also very interesting. In-

deed, we retrieved functionally related genes in most of the reported clusters.

For example, gene CDC25 and gene CIK3 were located in the same cluster.

Both genes play an important role during the mitotic cell cycle. Furthermore,

genes DOM34 and MRPL17 were in the same cluster as two genes that are

not yet labeled (ORF-names: YOR182C and YGR220C, respectively). How-

ever all four genes are participating in the protein biosynthesis. In particular,

our proposed analysis tool can be used to predict the function of genes whose

biological role is not resolved yet.

8.4 Conclusions

In this chapter, we proposed a framework for semi-supervised cluster analysis

using adaptable threshold similarity. In particular, we proposed a method to

adapt the threshold by learning the optimal threshold from a small training

set in order to yield an accurate clustering of the entire time series. In

our experimental evaluation, we showed that our proposed approach yields

valuable clustering results, even if only partial information is available for
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adapting the threshold to an optimal value. Beside the analysis of a dataset

according to speci�c class labels, our approach can help to �nd unknown but

potentially useful knowledge.
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Chapter 9

T-Time: A Data Mining Tool for

Time Series Data

Data mining on time series data can yield important insights. As explained

in Chapter 2, a lot of similarity measures for time series have been developed.

In this thesis, we introduced further similarity functions for time series. The

relevance of a certain similarity measure is usually domain speci�c. To com-

pare the data mining results for di�erent similarity measures as well as the

suitability of dimensionality reduction techniques, we implemented T-Time,

a time series data mining tool.

T-Time implements a visual data mining approach that presents the data

in a clear and user-friendly way in order to enable interactive data explo-

ration, e.g. cluster analysis. In particular, T-Time

• assists the user in identifying potentially interesting threshold values;

• enables the visual and interactive exploration of other data analysis

parameters;

• allows the user to interactively and visually extract novel knowledge

from a large amount of data derived from data mining algorithms.

The main focus of T-Time therefore is the interactive and visual analysis

207
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of the impact of di�erent threshold values on the results of data mining tasks.

The concept of our application supports the extraction of novel insights in

supervised as well as in unsupervised settings. If class labels are available,

the user can easily scan for threshold values that yield high classi�cation

accuracies in cross-validation experiments. This subsequently allows for the

identi�cation of ranges of important amplitudes of the time series, i.e. ranges

where small di�erences in the absolute values account for large di�erences

in the meaning (di�erent classes) of the time series. But even in an unsu-

pervised situation where no pre-classi�ed time series are available, T-Time

can be very helpful. By a quick visual inspection of several clustering results

derived for example by OPTICS [ABKS99] it is possible to discover impor-

tant and interesting thresholds based on their ability to form distinct cluster

structures.

9.1 System Overview

T-Time is a Java 1.5. application with a graphical user-interface. A number

of distance measures, dimensionality reduction techniques, and data mining

approaches have been included. The architecture of T-Time allows for an

easy integration of further components. In the following we brie�y describe

the application of T-Time for unsupervised and supervised situations.

9.1.1 Visual Comparison of Time Series

The main control window of T-Time allows the user to import collections

of time series. Figure 9.1 depicts the corresponding view for an imported

dataset. The left area of the dataset window features a textual entry for

each time series. If available, class labels appear in brackets.

To the right, the time series are displayed as diagrams for a visual in-

spection. Time series of di�erent classes are displayed in di�erent colors. By

selecting several time series simultaneously, it is possible to directly compare

them. In Figure 9.1, two time series belonging to di�erent classes have been
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Figure 9.1: Main Window of T-Time.

selected. After selecting all or a subset of the time series, the user can start

one of the numerous data mining algorithms included in the tool. The fol-

lowing sections show how di�erent threshold values in�uence unsupervised

as well as supervised data mining tasks.

9.1.2 Supervised Analysis

If pre-classi�ed time series are available, it is possible to perform a number

of di�erent analysis tasks using several distance measures. We included a

kNN classi�er in T-Time. Di�erent similarity measures can be compared by

means of cross-validations experiments. Furthermore, T-Time can calculate

precision/recall plots for the di�erent classes of a certain dataset. An example

plot is depicted in Figure 9.2. The results for di�erent classes are presented

in di�erent colors.
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Figure 9.2: Precision/recall analysis.

9.1.3 Unsupervised Analysis

Even if only unlabeled time series objects are available, T-Time can be of

great help to analyze the impact of di�erent distance functions and espe-

cially to identify ranges of distinguishing threshold values. While in principle

every clustering approach could be used, we decided to integrate OPTICS

[ABKS99] into T-Time as its results can easily be interpreted visually. OP-

TICS is a variant of single-link clustering that avoids the single-link e�ect

by using a density estimator for data grouping. OPTICS provides a linear

ordering of the data objects that can be visualized by means of a so-called

reachability diagram. This visualization of the hierarchical clustering struc-

ture is much clearer compared to dendrograms. Valleys in this reachability

diagram indicate clusters. Of course, any other clustering or visualization

technique can be modularly integrated in the analysis process.
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9.2 Threshold-Based Data Mining

One of the most useful T-Time applications is the automatic identi�cation

of distinguishing threshold values for threshold-based distance functions. In

Figure 9.3, an example output is depicted. For a number of threshold values

along the x-axis, classi�cation accuracy values are plotted in y-axis direction.

Usually one or a few distinct ranges of suitable threshold values can be identi-

�ed in this way. In the depicted example, the most distinguishing threshold

values can be found in the range between 3 and 6. We observed such a

distinct range of meaningful threshold values for most real-world datasets.

Based on such kind of information and depending on the application domain,

conclusions about critical time series values can be drawn.

Figure 9.3: Identi�cation of distinguishing thresholds.

If no class labels are available, the impact of di�erent threshold values can
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be evaluated by means of the corresponding cluster structure. In Figure 9.4

clustering results are depicted for di�erent threshold values. In the depicted

example, the threshold τ1 = −0.75 results in 3 clearly separated OPTICS

clusters while the threshold τ2 = 1.1 yields only one large cluster. So, τ1
could be more interesting for the user than threshold τ2 = 1.1, especially if

for example the number of clusters corresponds to the number of subtypes

of a certain disease.

(a) Threshold τ1 = −0.75

(b) Threshold τ2 = 1.1

Figure 9.4: Unsupervised threshold analysis.

We applied T-Time to a set of classi�ed time series representing human

gene expression data. We used a dataset of the Gene Expression Omnibus

[BTW+06] containing gene expression pro�les of proliferating normal periph-
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eral blood mononuclear cells (PBMC) infected with HIV type 1 RF assessed

at �ve postinfection time points compared with those of matched uninfected

PBMC. We then tried to detect pathological genes. The idea is to derive

quality curves as depicted in Figure 9.3 for each subset of the dataset corre-

sponding to a certain gene. As expected we found that most genes yielded

no distinct peak when computing the quality curves with respect to the clas-

si�cation system (healthy vs. infected cells). However, a few genes did yield

such a distinguished region. That means these genes act signi�cantly dif-

ferent in healthy and in infected cells and are thus candidates to be highly

pathological. For example, one of these genes is NFYC which plays a role

in the transcription of the MHCII genes that are blocked by an HIV pro-

tein. Another gene featuring a noticeable quality curve is PLAUR whose

expression is known to be a�ected by an HIV infection [SOBM02].

Furthermore we successfully applied T-Time to a dataset that consists of

gene expression data corresponding to patient responses to the drug 'Tamox-

ifen'. The dataset was taken from the Pharmacogenetics and Pharmacoge-

nomics Knowledge Base [KCC+01]. We observed a dramatically changing

cluster structure when varying the threshold. In case of τ = 0 we observed

3 clusters. When changing τ to -0.3, we can only observe 2 clusters with

a completely di�erent cluster membership of patients. Thus, with di�erent

thresholds, we can cluster the patients according to varying phenotypes. A

domain expert could use this information to identify important genes and

crucial expression levels.

9.3 Amplitude-Level-Based Data Mining

T-Time is also able to display various Amplitude-level features as described

in Chapter 5. Two sample ALFs are depicted in Figure 9.5.

Again, in a supervised setting, it is possible to automatically analyze

the impact of di�erent relevant thresholds on the classi�cation quality. Like

for the threshold-based analysis, this can yield new insights about relevant

amplitude values. In Figure 9.6 an example output of a parameter analysis
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Figure 9.5: Amplitude-level features in T-Time.

run is depicted. The maximal relevant threshold was kept constant, while we

varied the minimal threshold. Each setting actually corresponds to a slightly

di�erent similarity measure. For each of these amplitude-based similarity

measures, the average classi�cation accuracy is reported. 9.5.

Figure 9.6: Analysis of di�erent relevant amplitude ranges.
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9.4 Further Applications

T-Time can furthermore be used to compare traditional similarity measures

and dimensionality reduction techniques with each other. We implemented

several Minkowski distances, several variants of the DTW, as well as the

dimensionality reduction techniques mentioned in Section 2.5.3. For the

DTW-based distance measures it is possible to display the cost matrix and

the optimal DTW path (see Figure 9.7).

Figure 9.7: Cost matrix and optimal path of dynamic time warping.

9.5 Conclusions

In this chapter we presented T-Time, a data mining tool designed for the

comparison of several distance measures, especially threshold-based distance

measures. A main advantage of T-Time is its ability to support visual data

mining, especially when it comes to identifying crucial threshold ranges.

These ranges are of practical importance, as based on such observations,

domain experts can gain novel insights on a given dataset. T-Time supports

supervised as well as unsupervised analysis tasks and o�ers the possibility to

compare new distance measures for time series to traditional approaches.
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Chapter 10

Summary and Outlook

In this chapter we brie�y summarize our contributions in Section 10.1. In

Section 10.2 we outline several ideas for further research based on the work

presented in this thesis.

10.1 Summary

In Part II we introduced several new similarity measures for time series

capturing special notions of time series similarity.

First (see Chapter 4), we de�ned the new similarity measure based on

thresholds. Instead of the exact comparison of two time series this similarity

measure rather considers threshold-exceeding events. We presented an index

structure which e�ciently supports queries for the threshold-based similarity

measure. This index structure allows for the speci�cation of the threshold

value at query time. We showed how time series can be converted into a

suitable representation and be stored in such a way, that queries using an

arbitrary threshold value can be supported. In an experimental section we

showed how the proposed index structure saved computational cost. On

real-world datasets we proved the practical relevance of the threshold-based

similarity measure.
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Next ( see Chapter 5), we introduced the amplitude-level-based similarity.

This similarity measure considers a relevant amplitude range rather than a

single threshold. In contrast to traditional approaches which aggregate global

feature values along the time dimension, we capture local characteristics and

monitor their change for di�erent amplitude values.

In Chapter 6 we introduced the interval-focused similarity measure, where

a user can specify one or several time intervals that should be considered for

the calculation of the similarity value. We showed how to use an existing

index structure, the RI-tree, in order to store interval-based representations

of time series. We outlined how these interval boxes can be used to calculate

a �lter distance in order to prune true drops, or to include true hits without

accessing the complete time series.

In the last chapter (see Chapter 7) of this part, we introduce the novel

time series type of uncertain time series. We formalized our approach and

showed how a huge part of the actually required calculations can be saved

using the proposed approximation for uncertain time series.

In Part III we showed how the newly de�ned similarity measures can be

used in data mining tasks.

In Chapter 8 we focused on an important question for the threshold-based

similarity, the choice of a suitable threshold value. We showed how partial

knowledge can be used to get a �rst idea about promising thresholds in order

to extract novel knowledge from a dataset.

The last chapter of this part (see Chapter 9) presented a data mining tool

for time series. We gave an overview of the supported data mining tasks and

the included distance measures.

In short, our main contributions in this thesis are the following:

• We introduce 4 new similarity measures for time series.

• For each similarity measure we propose algorithms and index structures

that allow for an e�cient calculations of queries.

• In the experimental sections we presented the results of experiments
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comparing the e�ciency of our approaches compared to competing ap-

proaches.

• We furthermore gave examples for the relevance of the new similarity

measures.

• We showed how new similarity measures can model alternative concepts

of similarity and applied these new measures to data mining tasks.

10.2 Outlook

In this chapter, we describe potential directions for future work.

10.2.1 Threshold-Based Similarity

It might be of interest to develop a more approximating version of our index

structure. It may be possible to group threshold-crossing time intervals to-

gether while not introducing too much of an error. Connected segments that

do not di�er too much in their direction could be summarized by cylinder-like

structures. A query using these structures could provide a �rst �lter distance

which would be more e�cient to compute.

10.2.2 Amplitude-Level-Based Similarity

We observed that, di�erent reduction techniques are more or less suitable

for di�erent feature sequences, and sometimes the best representation is the

uncompressed one. This observation suggests a potential improvement of our

method. Instead of using the same compression techniques for all feature

sequences, it may be bene�cial to develop a method which automatically

chooses the most suitable compression technique for a given dataset and for

each ALF feature sequence.

A second starting point is the development of further amplitude-level
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features. With the basic ALFs presented in this work, already high quality

results could be observed. So the method may bene�t from more complex

ALFs.

10.2.3 Interval-Focused Similarity

So far, we have shown how to e�ciently support interval-focused similarity

queries for Minkowski norms. We plan to extend our idea to the DTW

distance.

Furthermore, the strategy for the interval box generation assumes certain

data distributions. While we have explained that these assumptions are

sensible ones, the method might nonetheless bene�t from the possibility to

model a certain distribution, in case the distribution of amplitude values of

the query time series is known in advance.

10.2.4 Similarity for Uncertain Time Series

For the uncertain time series we plan to investigate potential solutions for

the case of correlated time series as well.

So far, we have introduced probabilistic queries where the distance pa-

rameter ε was constant. It is an interesting question how to de�ne kNN

queries, as it is not obvious which of the two possibilities is the next neigh-

bor to a query: the time series that is most probably relatively near to the

query, or the time series that is very near to a time series but with a lower

probability.
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