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Abstract

In this thesis, we prove that many asymptotic invariants of closed manifolds de-
pend only on the image of the fundamental class under the classifying map of the
universal covering. Examples include numerical invariants that reflect the asymp-
totic behaviour of the universal covering, like the minimal volume entropy and
the spherical volume, as well as properties that are qualitative measures for the
largeness of a manifold and its coverings, like enlargeability and hypersphericity.

Another important class of invariants that share the above invariance prop-
erty originates from universal volume bounds. The main example is the systolic
constant, which encodes the relation between short noncontractible loops and the
volume of a manifold. Further interesting examples are provided by the optimal
constants in Gromov’s filling inequalities, for which we show that they depend only
on the dimension and orientability.

Considering higher-dimensional generalizations of the systolic constant, a com-
plete answer to the question about the existence of stable systolic inequalities is
given. In the spirit of the results mentioned already, we also prove that the stable
systolic constant depends only on the image of the fundamental class in a suitable
Eilenberg-Mac Lane space.

Zusammenfassung

In dieser Arbeit wird gezeigt, dass viele asymptotische Invarianten geschlossener
Mannigfaltigkeiten nur vom Bild der Fundamentalklasse unter der klassifizieren-
den Abbildung der universellen Überlagerung abhängen. Hierzu zählen sowohl
numerische Invarianten, die das asymptotische Verhalten der universellen Überla-
gerung widerspiegeln, wie die minimale Volumenentropie und das sphärische Vo-
lumen, als auch Eigenschaften, die qualitative Maße für die Größe einer Mannig-
faltigkeit und ihrer Überlagerungen darstellen, wie Vergrößerbarkeit und Hyper-
sphärizität.

Eine weitere wichtige Klasse von Invarianten, die die obige Invarianzeigenschaft
teilen, erhält man aus universellen Volumenschranken. Das wichtigste Beispiel
hierfür ist die systolische Konstante, die das Verhältnis zwischen kurzen nichtzu-
sammenziehbaren Schleifen und dem Volumen einer Mannigfaltigkeit wiedergibt.
Weitere interessante Beispiele werden durch die optimalen Konstanten in Gro-
movs Filling-Ungleichungen gegeben, von denen gezeigt wird, dass sie nur von der
Dimension und der Orientierbarkeit abhängen.

Bei der Betrachtung höher-dimensionaler Verallgemeinerungen der systolischen
Konstante wird eine vollständige Antwort auf die Frage nach der Existenz stabiler
systolischer Ungleichungen gefunden. In Analogie zu den oben erwähnten Ergeb-
nissen wird bewiesen, dass die stabile systolische Konstante nur vom Bild der
Fundamentalklasse in einem passenden Eilenberg-Mac Lane-Raum abhängt.
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Chapter 1

Introduction

This thesis is concerned with various invariants and properties of closed man-
ifolds that describe asymptotic aspects of the universal covering or that arise
as optimal constants in curvature-free bounds on the volume. We will prove
that many of these invariants depend only on the image of the fundamental
class under the classifying map of the universal covering. This behaviour will
be called homological invariance.

Examples for asymptotic invariants include the minimal volume entropy,
which describes the exponential volume growth of the universal covering, and
the spherical volume, which is defined via immersions of the universal cover-
ing into the space of square-integrable funtions. Moreover, enlargeability and
many other largeness properties of the universal covering like hypersphericity
or macroscopic largeness are also homologically invariant in the above sense.

Universal volume bounds like Gromov’s celebrated systolic and filling
inequalities define, via the optimal constants in these inequalities, numerical
invariants of manifolds. The most prominent example is the systolic constant,
which determines the relation between the length of short noncontractible
loops and the volume of the manifold. As an application of our results on
homological invariance, an inequality between the minimal volume entropy
and the systolic constant is derived.

The invariants mentioned so far actually depend on the fundamental
group, that is, their values change if the fundamental group changes. The
optimal constants in Gromov’s filling inequalities do not. More precisely, we
will show that they depend only on the dimension and orientability.

A slightly different kind of curvature-free volume bound is provided by
the stable systolic inequalities. Here, the lower bound on the volume is not
given by a one-dimensional quantity like the length of noncontractible loops
but by the stabilized volume of higher-dimensional submanifolds that are not
nullhomologous. Therefore, it is not surprising that homological invariance

7



8 1. Introduction

holds only after replacing the classifying map of the universal covering by a
suitable map to an Eilenberg-MacLane space of higher degree. Moreover, we
will give a complete answer to the freedom problem of stable systoles, that is,
we will find a topological characterization for the existence and nonexistence
of stable systolic inequalities.

In the following sections, we will give more details on the definitions of
the invariants mentioned above, try to motivate our interest in them, and
present the main results of the thesis. Some of these results are not stated
in full generality to avoid too many technicalities.

1.1 Asymptotic invariants

The simplicial volume of manifolds was introduced by Gromov in his seminal
paper on bounded cohomology [Gro82]. It is the value on the fundamental
class of the seminorm that is dual to the seminorm of bounded cohomology.
The simplicial volume plays a crucial role in the proof of Mostow’s rigidity
theorem by Gromov and Thurston. Moreover, it provides a lower bound for
the minimal volume as we shall see below.

To be more precise, for a connected closed orientable manifold M of
dimension n the simplicial volume is defined in the following way: consider
a singular chain c =

∑k
i=1 riσi with real coefficients ri and singular simplices

σi : ∆n → M . Its `1-norm is given by ‖c‖1 :=
∑k

i=1 |ri|. The simplicial
volume ‖M‖ of the manifold is the infimum of the `1-norms of all real cycles
that represent the fundamental class [M ] ∈ Hn(M ; Z).

Gromov showed that the simplicial volume is entirely determined by the
fundamental group π1(M) of the manifold and the classifying map Φ : M →
K(π1(M), 1) of the universal covering. Recall that the Eilenberg-Mac Lane
space K(π1(M), 1) is a connected CW complex with fundamental group
π1(M) whose universal covering is contractible, and the classifying map Φ
is a map that induces the identity on fundamental groups. Note that the
homotopy type of the Eilenberg-Mac Lane space and the homotopy class of
the classifying map are uniquely determined. The following theorem specifies
the dependence of the simplicial volume on the classifying map. It may be
seen as an archetypal statement on homological invariance.

Theorem 1.1 (Gromov). Let M and N be two connected closed orientable
manifolds having the same dimension n and the same fundamental group π.
Let Φ : M → K(π, 1) and Ψ : N → K(π, 1) denote the respective classifying
maps of the universal coverings of M and N . If Φ∗[M ] = Ψ∗[N ] ∈ Hn(π; R),
then ‖M‖ = ‖N‖.
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With this now classical result in mind, we turn to related invariants, for
which we will prove similar statements.

The simplicial volume provides a lower bound for another important in-
variant introduced in [Gro82]: the minimal volume MinVol(M). This is the
infimal volume of all Riemannian metrics on M for which the absolute value
of the sectional curvature is bounded by 1. By the scaling properties of the
sectional curvature, this may also be written as

MinVol(M) = inf
g
‖Kg‖n/2 Vol(M, g),

where ‖Kg‖ denotes the supremum of the absolute value of the sectional
curvature, and the infimum is taken over all Riemannian metrics g on M .

In fact, there is a whole chain of inequalities that relates the minimal
volume to the simplicial volume:

nn/2

n!
‖M‖ ≤ 2nnn/2T (M) ≤ λ(M)n ≤ h(M)n ≤ (n− 1)n MinVol(M),

where T (M) is the spherical volume, λ(M) is the minimal volume entropy,
and h(M) is the minimal topological entropy. The first two inequalities are
proved in [BessCG91], the third one in [Man79], and the last one can be
deduced from [Man81]. This chain appears for instance in [PatP03] (without
the spherical volume), and in [Kot04] and [KȩdKM06]. We will continue with
a short definition of these intermediate invariants.

The volume entropy of a Riemannian manifold is the exponential growth
rate of the volume of a ball in the universal covering, that is to say, it is
defined as

λ(M, g) := lim
r→∞

1
r
log Vol(B(x, r))

where B(x, r) is the ball of radius r around a point x in the universal covering
of the manifold with respect to the lifted metric. Manning showed that this
limit exists and is independent of the point x ∈ M̃ (see [Man79]). Using this
asymptotic invariant, the minimal volume entropy of M is given by

λ(M) := inf
g
λ(M, g) Vol(M, g)1/n.

Note that the volume factor is necessary because of the scaling properties
of the volume entropy. Just as well, one could restrict to metrics with unit
volume.

The minimal topological entropy is defined in exactly the same way by
replacing the volume entropy by the topological entropy of the geodesic flow
on the unit tangent bundle of M . Recall that topological entropy measures
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the exponential complexity of the orbit structure of a dynamical system.
(More details can be found for example in Paternain’s book [Pat99].)

The spherical volume was introduced by Besson, Courtois, and Gallot and
plays an important role in their solution to the minimal entropy problem
for locally symmetric spaces of negative curvature (see [BessCG95]). To
define the spherical volume, consider all π1(M)-equivariant immersions of
the universal covering M̃ into the unit sphere of the Hilbert space L2(M̃).
The pullback of the inner product defines a π1(M)-invariant metric on the
universal covering and thus a metric on M . The spherical volume is the
infimum of the volumes of all metrics obtained in this way.

It is known that the minimal volume is sensitive to the differentiable
structure of the manifold (see [Bes98] and also [Kot04]), and that the minimal
volume entropy is homotopy and bordism invariant (see [Bab92], [Bab94], and
[Bab95]). In chapter 2, we will prove that both the minimal volume entropy
and the spherical volume are homologically invariant.

Theorem 1.2. Let M and N be two connected closed orientable manifolds
having the same dimension n and the same fundamental group π. Let Φ :
M → K(π, 1) and Ψ : N → K(π, 1) denote the respective classifying maps
of the universal coverings of M and N . If Φ∗[M ] = Ψ∗[N ] ∈ Hn(π; Z), then

λ(M) = λ(N) and T (M) = T (N).

Note that in contrast to Theorem 1.1 integral coefficients are used here.
It is an open question whether this theorem also holds with real coefficients
instead. Another open question is whether the minimal topological entropy
fulfills any topological invariance properties.

The techniques used in the proof of Theorem 1.2 stem from systolic geom-
etry. A short introduction to the ideas and questions in this area is provided
by [Ber08]. For more detailed informations see chapter 7.2 of Berger’s book
[Ber03], the survey article [CroK03], and Katz’s book [Kat07].

1.2 Systolic geometry

The systole sys(M, g) of a Riemannian manifold is the length of the shortest
loop that is not contractible. One of the most important questions in systolic
geometry is whether an inequality

sys(M, g)n ≤ C(M) · Vol(M, g)

holds for all Riemannian metrics g, and if it holds, what is the best constant
C(M). This is encoded in the systolic constant σ(M) which is the infimum
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of the quotient Vol(M, g)/ sys(M, g)n over all Riemannian metrics on M . In
fact, the systolic constant is nonzero if and only if a systolic inequality as
above holds. Moreover, the best constant is the reciprocal of σ(M).

In the paper [Bab06], Babenko investigated the question whether the
systolic constant is homologically invariant. He gave a positive answer in the
case that the order of the class Φ∗[M ] ∈ Hn(π1(M); Z) equals the order of
the fundamental group. This includes in particular the case where Φ∗[M ]
is a nontorsion element. Building on his ideas, we are able to remove this
restriction (and moreover to prove Theorem 1.2).

Theorem 1.3. Again, let M and N be two connected closed orientable n-
dimensional manifolds having the same fundamental group π, and denote by
Φ and Ψ the respective classifying maps. If Φ∗[M ] = Ψ∗[N ] ∈ Hn(π; Z), then
σ(M) = σ(N).

In this case, integral coefficients are in fact necessary. This follows from
Gromov’s famous universal systolic inequality and a theorem by Babenko
(see [Bab92], Theorem 8.2), which together imply that the systolic constant
is nonzero if and only if Φ∗[M ] 6= 0 ∈ Hn(π1(M); Z). Note also that this
statement of Gromov and Babenko is a complete answer to the above question
whether a systolic inequality holds or not.

The systolic constant is an upper bound for the simplicial volume. This
was shown by Gromov in his Filling paper [Gro83] where he proved that

σ(M) ≥ c′n
‖M‖

logn(1 + ‖M‖)

for some constant c′n depending only on the dimension. In some special
cases, including the case of orientable aspherical manifolds, Sabourau was
able to replace the simplicial volume in this inequality by the minimal volume
entropy (see [Sab06]). Using some ideas from geometric group theory, we will
show that the simplicial volume may always be substituted by the minimal
volume entropy.

Theorem 1.4. Let M be a connected closed n-dimensional manifold. There
exists a positive constant cn depending only on n such that

σ(M) ≥ cn
λ(M)n

logn(1 + λ(M))
.

Note that the manifold is not assumed to be orientable in this theorem.
Therefore, we will need stronger versions of Theorem 1.2 and Theorem 1.3
that include the nonorientable case to prove this inequality. These stronger
statements may be found in chapter 2.
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There are higher-dimensional analogs of the systole where one is not
interested in loops but in submanifolds. Roughly speaking, the k-systole
sysk(M, g) is the volume of the smallest k-dimensional submanifold that is
not nullhomologous. The k-systolic constant σk(M) is defined as the infi-
mum of the quotient Vol(M, g)/ sysk(M, g)n/k over all Riemannian metrics g
on M .

It seems that this invariant is always zero for k ≥ 2. This phenomenon is
called systolic freedom since the k-systole does not bound the volume from
below in this case. For orientable four-manifolds, systolic freedom was proved
by Katz and Suciu in [KatSu99]. Moreover, they showed in [KatSu01] that
every manifold is systolically free modulo torsion (see Theorem 4.12).

This suggests that the “right” invariants to study when it comes to
higher-dimensional systoles are the so-called stable systoles. The stable k-
systole stabsysk(M, g) is defined as the minimum of the stabilized volume
limi→∞ Volk(iα)/i of all nontorsion homology classes α ∈ Hk(M ; Z). (The
volume of a homology class is the infimal volume of all submanifolds repre-
senting this class.) Here, the stable k-systolic constant

σstk (M) := inf
g

Vol(M, g)

stabsysk(M, g)n/k

is known to be nonzero in many cases.
In chapter 4, we will give a complete answer to the freedom question for

stable systoles.

Theorem 1.5. Let M be a connected closed orientable manifold of dimension
n. The stable k-systolic constant σstk (M) does not vanish if and only if n is
a multiple of k, say n = kp, and there exist cohomology classes β1, . . . , βp ∈
Hk(M ; R) such that β1 ^ · · ·^ βp 6= 0 in Hn(M ; R).

Moreover, if M is nonorientable and k ≥ 2, then the stable k-systolic
constant of M is always zero.

The existence of a stable systolic inequality under the conditions stated
in the first part the theorem was shown by Gromov in [Gro83], 7.4.C. We
will prove only the converse statement and the second part of the theorem,
which both are results on the nonexistence of stable systolic inequalities.

As we have seen, the one-dimensional systolic constant from Theorem 1.3
is strongly related to the Eilenberg-MacLane space K(π1(M), 1). Similarly,
the stable k-systolic constant is connected to the Eilenberg-MacLane space
K(Zb, k) where b := bk(M) is the k-th Betti number of M . There exist maps
Φ : M → K(Zb, k) that induce isomorphisms on k-dimensional homology
modulo torsion. Using such maps, the following homological invariance result
holds:
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Theorem 1.6. Let M and N be connected closed orientable manifolds of
dimension n, and let 1 ≤ k ≤ n − 1. Suppose that bk(M) = bk(N) =: b and
that there are maps Φ : M → K(Zb, k) and Ψ : N → K(Zb, k) such that
the induced homomorphisms on k-dimensional homology modulo torsion are
bijective and such that

Φ∗[M ] = Ψ∗[N ] ∈ Hn(K(Zb, k); R).

Then the stable k-systolic constants coincide: σstk (M) = σstk (N).

Note that real coefficients are used here. This contrasts the situation for
the one-dimensional systolic constant where it is necessary to take integral
coefficients.

A direct consequence of this theorem is that the stable k-systolic con-
stant depends only on the multilinear intersection form on k-dimensional
cohomology

Qk
M : (Hk(M ; Z))p → Z,

(β1, . . . , βp) 7→ 〈β1 ^ · · ·^ βp, [M ]〉,

where n = kp is the dimension of the manifold. In fact, σstk (M) = 0 if and
only if this intersection form vanishes (by Theorem 1.5), and moreover if the
intersection forms of two manifolds are equivalent over Z, then their stable
k-systolic constants agree.

1.3 Further universal volume bounds

Let us return to the one-dimensional systole, i. e. the length of the short-
est noncontractible loop. The best (smallest) constant C(M) such that the
systolic inequality

sys(M, g)n ≤ C(M) · Vol(M, g)

holds for all Riemannian metrics g is given by

SR(M) := sup
g

sys(M, g)n

Vol(M, g)
.

Note that this systolic ratio is just the reciprocal of the systolic constant
σ(M) considered before.

Gromov’s universal systolic inequality states that there is a constant
Cn depending only on the dimension n such that SR(M) ≤ Cn for ev-
ery connected closed n-dimensional manifold M for which Φ∗[M ] 6= 0 ∈
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Hn(π1(M); Z) where Φ denotes again the classifying map of the universal
covering.

To prove this universal systolic inequality, Gromov introduced the filling
radius and the filling volume of Riemannian manifolds. Roughly speaking, a
filling of (M, g) is a complete Riemannian manifold (W, g′) such that ∂W =
M and such that the induced path metrics satisfy dg′|M ≡ dg. The filling
volume FillVol(M, g) is the infimal volume of all such fillings, and the filling
radius is the infimal r such that (M, g) may be filled by some (W, g′) satisfying
dg′(M,w) ≤ r for all w ∈ W . (To bypass the bordism problem one actually
considers fillings by pseudomanifolds W .)

Both filling invariants provide further universal volume bounds:

FillRad(M, g)n ≤ An · Vol(M, g) and

FillVol(M, g)n/(n+1) ≤ Bn · Vol(M, g).

This is proved in Gromov’s Filling paper [Gro83]. As before in the systolic
context, the best constants in these inequalities are given by the following
filling ratios

FR(M) := sup
g

FillRad(M, g)n

Vol(M, g)
and

FV(M) := sup
g

FillVol(M, g)n/(n+1)

Vol(M, g)
.

In Theorem 1.3, we proved that the systolic ratio SR(M) is homologically
invariant. Using similar methods, we will show the following surprising result
concerning the filling ratios.

Theorem 1.7. If M and N are connected closed manifolds of the same
dimension n ≥ 3 and if they are either both orientable or both nonorientable,
then

FR(M) = FR(N) and FV(M) = FV(N).

Determining the exact values and the existence or nonexistence of maxi-
mizing Riemannian metrics remain open questions.

1.4 Largeness properties

To study obstructions to positive scalar curvature metrics, Gromov and oth-
ers introduced several notions of largeness for Riemannian manifolds. For
instance, (M, g) may be called large if it is enlargeable, or if its universal
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covering is hypereuclidean or hyperspherical, or if the filling radius of the
universal covering is infinite. We will also consider coarse analogs of these
properties. The term large will always serve as a placeholder for one of these
properties.

If M is closed, then it can easily be seen that these largeness properties
do not depend on the chosen Riemannian metric. Thus, they are topological
invariants of the manifold. The definitions are given in the last chapter
of the thesis. Here, we only recall the notion of enlargeability: let M be
a connected closed orientable manifold of dimension n, and let g be any
Riemannian metric on it. Then M is called enlargeable if for every ε > 0
there is a Riemannian covering M̄ε and an ε-contracting map M̄ε → Sn to the
unit sphere which is constant outside a compact set and of nonzero degree.

We will prove that enlargeability and each of the other largeness proper-
ties mentioned before is homologically invariant, and moreover that each of
them determines a subspace in group homology consisting of classes that are
not represented by large manifolds.

Theorem 1.8. Let π be a finitely presented group. There is a subspace V0

of the vector space Hn(π; R) with the following property: if M is a connected
closed orientable n-dimensional manifold with fundamental group π and if
Φ : M → K(π, 1) denotes the classifying map, then the class Φ∗[M ] lies in
V0 if and only if the manifold is not large.

It is unclear whether there are examples of groups for which one of these
subspaces is not trivial. Note that there is an analogous subspace V ′

0 ⊂
Hn(π; R) for the simplicial volume: the simplicial volume ‖M‖ vanishes if and
only if the class Φ∗[M ] is contained in this subspace. (This is the nullspace of
the seminorm induced by the `1-norm of singular chains.) One does not know
whether there exists a connection between this subspace and the subspaces V0

of the largeness properties. Since there are known examples of groups π for
which V ′

0 is nonzero, one may conjecture that manifolds with nonvanishing
simplicial volume are large in some sense, that is to say that V0 ⊂ V ′

0 .
Enlargeable spin manifolds do not carry a metric of positive scalar curva-

ture. This was shown by Gromov and Lawson in [GroL80] and [GroL83]. In
fact, they also proved this result for area-enlargeable spin manifolds. Here,
a closed orientable manifold is called k-enlargeable if for every ε > 0 there
is a covering M̄ε and a map M̄ε → Sn to the unit sphere which is constant
outside a compact set and of nonzero degree, and which contracts the volume
of any k-dimensional submanifold by a factor of ε. In the case k = 2 one
speaks of area-enlargeable manifolds.

Although area-enlargeability does not seem to be homologically invari-
ant, it shares one important property with the above notions of largeness:
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every area-enlargeable closed manifold is (rationally) essential , that is, the
homology class Φ∗[M ] ∈ Hn(π1(M); R) does not vanish. This was proved by
Hanke and Schick using index theory (see [HanS06] and [HanS07]). We will
extend this result to higher enlargeability.

Theorem 1.9. Let M be a connected closed orientable manifold. If M is
k-enlargeable and satisfies

πi(M) = 0 for 2 ≤ i ≤ k − 1,

then M is essential. In particular, area-enlargeable manifolds are essential.

It can be seen easily that the assumption on the homotopy groups is
necessary. Note that for k ≥ n + 1, the assumptions are equivalent to M
being aspherical. Thus, the conditions of this theorem interpolate between
enlargeability and area-enlargeability on the one side and asphericity on the
other side. For enlargeable and area-enlargeable spin manifolds, it is known
that they do not admit a positive scalar curvature metric. For aspherical
ones, this is only conjectured. Theorem 1.9 suggests that the conjecture on
aspherical spin manifolds may be extended to k-enlargeable spin manifolds
with trivial homotopy groups πi(M) for 2 ≤ i ≤ k − 1.

Remarks on the following chapters. Apart from the introductory chap-
ter, the thesis consists of four other chapters. In the beginning of chapter 2,
technical tools are developed that will be of great importance throughout the
thesis. Later on in this chapter, more general versions of Theorems 1.2 and
1.3 are proved, and as an application of these results Theorem 1.4 is shown.
Theorem 1.7 on the constancy of the filling ratios is derived in chapter 3. In
chapter 4, we are concerned with higher-dimensional systoles and we prove
Theorems 1.5 and 1.6. The final chapter 5 contains various definitions of
largeness and the proofs of Theorems 1.8 and 1.9.

Parts of this thesis correspond to papers submitted for publication. A
slightly shorter version of chapter 2 will appear as [Bru07a] in the jour-
nal Geometric and Functional Analysis (GAFA). Chapter 3 corresponds to
[Bru07b] and is to appear in Journal für die reine und angewandte Mathe-
matik (Crelle’s Journal). Furthermore, chapter 4 is an extended version of
[Bru07c], which will be published in Mathematische Annalen.
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Chapter 2

Homological invariance for
asymptotic invariants and
systolic inequalities

In this chapter, we will prove that certain asymptotic and systolic invariants
of a connected closed manifold M depend only on the image of the fundamen-
tal class under the classifying map of the universal covering. This behaviour
will be called homological invariance.

These invariants include the minimal volume entropy λ(M), which de-
scribes the asymptotic volume growth of the universal covering, the spherical
volume T (M), which is an invariant intermediate between the minimal vol-
ume entropy and the simplicial volume, and the (one-dimensional) systolic
constant σ(M), which determines the relation between the lengths of short
noncontractible loops and the volume of the manifold.

We will show more general versions of Theorems 1.2 and 1.3 that include
the nonorientable case. To this end, we have to consider homology with local
coefficients, more precisely with coefficients in the orientation bundle O of
the manifold. Recall that a nonorientable manifold M does not possess a
fundamental class with integral coefficients because Hn(M ; Z) = 0, where
n denotes the dimension of M . But since Hn(M ;O) ∼= Z, the manifold
admits a fundamental class with coefficients in the orientation bundle. In the
orientable case the orientation bundle is trivial and homology with coefficients
in the orientation bundle is just ordinary homology with integral coefficients.

Using this, we are able to prove the following theorem, which is the main
result of this chapter.

Theorem 2.1. Let M and N be two connected closed manifolds having the
same fundamental group π. Let Φ : M → K(π, 1) and Ψ : N → K(π, 1)

19
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denote the respective classifying maps of the universal coverings of M and
N . If the subgroups of orientation preserving loops of M and N coincide and
if Φ∗[M ] = Ψ∗[N ], then

I(M) = I(N),

where I denotes either the systolic constant σ, the minimal volume entropy
λ, or the spherical volume T .

Here, the fundamental classes [M ] and [N ] are to be understood with
respect to coefficients in the orientation bundles of M and N . Note that in
the orientable case the condition on the subgroups of orientation preserving
loops is always fulfilled.

Many cases of this theorem for the systolic constant were known by
work of Babenko (see [Bab06]), whose ideas we follow in parts of the proof.
Sabourau applied these ideas to the minimal volume entropy (see [Sab06]).
For the spherical volume this question has not been considered before.

Remark. Using a fundamental class with coefficients in the orientation bun-
dle and cycles with coefficients in O ⊗ R, one defines the simplicial volume
for nonorientable manifolds in the same way as for orientable ones. Then
Theorem 2.1 also holds for I the simplicial volume. In fact, the assump-
tion Φ∗[M ] = Ψ∗[N ] ∈ Hn(K(π, 1);O) may be weakened to coefficients in
O⊗R. This extension of Theorem 1.1 can easily be deduced from the equal-
ity ‖M‖ = 1

2
‖M̄or‖ where M̄or denotes the two-fold orientation covering of

M .

To unify the treatment of the different invariants, we will introduce cer-
tain axioms that are satisfied by the systolic constant, the minimal volume
entropy, and the spherical volume. In the proof of Theorem 2.1 we will
use only these axioms and no other properties of the invariants. Thus, the
theorem holds for all invariants I fulfilling the axioms. One more example
for such an invariant is the (one-dimensional) stable systolic constant σst1 , a
variation of the systolic constant.

Moreover, it will be convenient to consider relative versions of the invari-
ants (relative to some homomorphism φ : π1(M) → π from the fundamental
group to an arbitrary group) and to extend their definitions to simplicial
complexes. The respective definitions and the axioms can be found in sec-
tions 2.2 and 2.3. The first paragraph of section 2.4 contains the proof of
Theorem 2.1.

As an application of Theorem 2.1, we will look at manifolds whose funda-
mental groups have only two elements. The fact that K(Z2, 1) = RP∞ will
allow us to derive a complete list of possible values for the systolic constant
in this case. (For the minimal volume entropy, the spherical volume, and the
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stable systolic constant this is of no interest since these invariants vanish for
finite fundamental groups.)

Corollary 2.2. Let M be a connected closed n-dimensional manifold with
fundamental group π1(M) = Z2. Let α ∈ H1(M ; Z2) be the generator. Then

σ(M) =

{
σ(RPn) αn 6= 0

0 otherwise

where αn ∈ Hn(M ; Z2) denotes the n-fold cup product of the class α.

This was previously known only for orientable manifolds by another paper
of Babenko (see [Bab04]). Note also that the exact value of σ(RPn) is un-
known except in dimension two, where it is 2/π (see [Pu52]). This corollary
will be proved in paragraph 2.4.4.

In section 2.5, we will investigate what happens to the minimal volume
entropy when one enlarges the fundamental group by attaching 1-cells to the
manifold. Using these observations, homological invariance, and computa-
tions from [Sab06], we will finally prove Theorem 1.4 in the last paragraph
of this chapter:

Theorem 2.3. Let M be a connected closed n-dimensional manifold. There
exists a positive constant cn depending only on n such that

σ(M) ≥ cn
λ(M)n

logn(1 + λ(M))
.

The proof will cover the dimensions n ≥ 3. For surfaces, the theorem
was shown in [KatSa05] by Katz and Sabourau. Moreover, Sabourau proved
this inequality in special cases including the case of aspherical orientable
manifolds (see [Sab06]). Note that the proof of Theorem 2.3 requires relative
versions of both invariants involved in the formulation.

Theorem 2.3 sharpens a theorem of Gromov ([Gro83], Theorem 6.4.D’)
that stated the inequality

σ(M) ≥ c′n
‖M‖

logn(1 + ‖M‖)

where ‖M‖ denotes the simplicial volume of M . Recall from the introduction
that there is another inequality by Gromov ([Gro82], pages 35-37), improved
by [BessCG91], Théorèmes 3.8 and 3.16, that says

nn/2

n!
‖M‖ ≤ λ(M)n.
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So in fact, Theorem 2.3 implies Gromov’s inequality (up to constants).
Note also that these lower bounds for the systolic constant are optimal

at least in dimensions two and three. A discussion of this optimality result
may be found in [KatScV07].

The next section contains the technical core of this chapter, which will be
used in chapters 3 and 4, too. It is concerned with maps from manifolds to
CW complexes that will be deformed by elementary methods to gain useful
normal forms for such maps.

2.1 Topological preliminaries

In this section, we show that every map from a manifold to a CW complex can
be brought into a form convenient for many purposes. In the last paragraph,
we define the notion of absolute degree and point out its geometrical meaning.
The results of this section will be used throughout most chapters of the thesis.

2.1.1 The Hopf trick

Consider a proper map f : (M,∂M) → (X,A) from a manifold M (with or
without boundary) to a relative manifold (X,A), both having dimension n.
Recall that a pair (X,A) is called a relative manifold ifX is a Hausdorff space
and A ⊂ X is a closed subspace such that X \ A is a manifold (see [Spa66],
page 297). For example, every n-dimensional CW complex is a manifold
relative to its (n− 1)-skeleton.

Let p ∈ X \ A be a point. Replacing f by a properly homotopic map
if necessary, we may assume that f is smooth on the preimage of a small
neighborhood of p, and moreover that f is transverse to p. The preimage
of p then consists of finitely many points p1, . . . , p` in M \ ∂M . Choosing
a local orientation of X at p, the map f induces local orientations of M at
these points.

In this situation the following ‘trick’ due to Hopf applies, see [Hop30]. A
modern presentation can be found in [Eps66], pages 378-380. (There, X is
supposed to be a manifold. But in fact, it is enough that X is a manifold in
a neighborhood of the point p ∈ X.)

Lemma 2.4 (Hopf trick). Let n ≥ 3. Assume now, that there is a path γ in
M between two preimage points, say from p1 to p2, that reverses the induced
orientations and that is mapped to a contractible loop in X. Then we may
deform f on a compact subset of M \∂M such that the number ` of preimage
points of p is reduced by 2, and such that the resulting map is still transverse
to p.
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Proof. There is a closed ball D ⊂ X\A with center p whose preimage f−1(D)
consists of pairwise disjoint closed balls D1, . . . , D` in M \ ∂M with centers
p1, . . . , p`, each of which is mapped diffeomorphically onto D.

Without loss of generality, we may assume that γ meets neither ∂M nor
D3, . . . , D` and that inside D1 and D2 it is a straight line from the center
pi to a boundary point zi such that f(z1) = f(z2) =: z. Moreover, we may
assume that γ is a smooth embedding since M has at least dimension three.
Choose a closed ball C that meets neither ∂M nor D3, . . . , D` and contains
D1 ∪ D2 ∪ γ as strong deformation retract in its interior. (One can easily
construct such a ball using a tubular neighborhood of γ.)

Since the loop f ◦ γ is contractible by assumption, the part from z to z
that lies outside D̊ is also contractible and this even in X \ D̊ since n ≥ 3.
This implies that there exists a contracting homotopy h : S1 × [0, 1] → X
that fixes the basepoint z of the loop such that h(S1 × [0, 1]) ∩D = z.

Now, a first homotopy of f is defined as follows: let B ⊂ C̊ be a closed
ball that still contains D1∪D2∪γ as strong deformation retract in its interior.
The homotopy is constant outside C̊ and on D1 ∪D2. On γ \ (D1 ∪D2) it is
constant until t = 1

2
and then it contracts this loop to z by the homotopy h

from above. Before t = 1
2

it contracts B to D1 ∪D2 ∪ γ. By the homotopy

extension property applied to f : C \ B̊ → X \ D̊, this gives a homotopy
on M that is constant outside C and we end up with a map f ′ : M → X
that is still transverse to p such that f ′−1(p) consists of the points p1, . . . , p`.
Moreover, it restricts to a map

f ′ : (B, ∂B) → (D, ∂D).

Since γ is orientation reversing, this map has degree zero (whatever orien-
tations we choose on B andD). Hence, by the Hurewicz theorem it represents
zero in πn(D, ∂D), and thus we may deform it relative to ∂B to have image
in ∂D. This deformation extends trivially to a homotopy on M . Therefore,
we finally get a map homotopic to f which is transverse to p such that p has
only `− 2 preimage points.

2.1.2 Orientation issues

If M is a connected compact manifold of dimension n, then Hn(M,∂M ; Z) ∼=
Z in the orientable case and Hn(M,∂M ; Z) = 0 in the nonorientable case.
Moreover, Hn(M,∂M ; Z2) ∼= Z2 in any case. But since Z2 coefficients ignore
much information, it is useful to consider local integer coefficient systems.

Recall that each local integer coefficient system on a connected locally
path-connected topological space X that has a universal covering (for in-
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stance on a CW complex) is determined by a unique homomorphism

ρ : π1(X) → Z2 = Aut(Z).

We will denote this coefficient system by Oρ.
For a manifold M , there exists exactly one homomorphism ρ : π1(M) →

Z2 such that Hn(M,∂M ;Oρ) ∼= Z. (For all other homomorphisms ρ this
homology group is zero.) The kernel of this homomorphism ρ is the subgroup
of all orientation preserving loops in M , and the local coefficient system
Oρ is called the orientation bundle of M . If not said otherwise, we will
always use this bundle as local coefficient system. A generator [M ]Oρ of
Hn(M,∂M ;Oρ) ∼= Z is called fundamental class of M .

If M is orientable, then the orientation bundle Oρ is trivial and homology
with coefficients in Oρ is just homology with integer coefficients. In this case,
a fundamental class is also denoted by [M ]Z. In any case, the fundamental
class with Z2 coefficients will be denoted by [M ]Z2 ∈ Hn(M,∂M ; Z2).

Remark. With respect to coefficients in the orientation bundle Oρ all paths
in M are orientation preserving.

2.1.3 Maps to n-dimensional CW complexes

Consider a map f : (M,∂M) → (X,A) from a connected compact n-
dimensional manifold to a pair of CW complexes whose induced homomor-
phism f∗ on fundamental groups is surjective. If ker f∗ ⊂ ker ρ, then the
homomorphism ρ : π1(M) → Z2 induces a homomorphism ρ : π1(X) → Z2

and the induced homomorphisms on homology

f∗ : H∗(M,∂M ;Oρ) → H∗(X,A;Oρ)

are well-defined. If it is possible, we will always use coefficients in K = Oρ

the orientation bundle of M . But if ker f∗ 6⊂ ker ρ, we have to take K = Z2

coefficients.

Remark. Note that ker f∗ ⊂ ker ρ if and only if the covering M̃f∗ associated
to the subgroup ker f∗ ⊂ π1(M) is orientable.

Assume for the rest of this paragraph that X is n-dimensional and that
A ⊂ X is an (n− 1)-dimensional subcomplex. Then

Hn(X,A; K) ∼= ker(Hn(X,X
(n−1); K)

∂−→ Hn−1(X
(n−1), A; K))

by the long exact homology sequence of the triple (X,X(n−1), A). Moreover,
by excision Hn(X,X

(n−1); K) is isomorphic to⊕
e n-cell

Z · e, respectively
⊕
e n-cell

Z2 · e.
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Let a ∈ Hn(X,A; K) be given by
∑

e n-cell re · e with re = 0 for all but
finitely many n-cells e.

Lemma 2.5. Let n ≥ 3. If f : (M,∂M) → (X,A) fulfills f∗[M ]K = a and is
surjective on fundamental groups, then it is homotopic relative to ∂M to a
map f ′ : (M,∂M) → (X,A) for which there are

∑
e n-cell |re| many pairwise

disjoint closed balls Deie , ie = 1, . . . , |re| in M \ ∂M such that

f ′−1(̊e) = D̊e1 ∪ . . . ∪ D̊e|re|

and

f ′ : D̊e1 ∪ . . . ∪ D̊e|re| → e̊

is a covering of mapping degree re. That is, it is an |re|-sheeted covering such
that the orientations on D̊ei agree with respect to f ′.

Notation. The absolute value on Z2 is defined as 0 for the trivial and as 1
for the nontrivial element.

Proof. First, remove the interiors of all n-cells e of X with f(M)∩ e̊ = ∅ and
with re = 0. This affects neither the surjectivity of f∗ : π1(M) � π1(X) nor
the equality f∗[M ]K = a. (If X ′ denotes the complex obtained from X by
removing those open n-cells, then Hn(X

′, A; K) ↪→ Hn(X,A; K) is injective
by the long exact sequence of the tripel (X,X ′, A) and f∗[M ]K = a is valid
in Hn(X

′, A; K), too.) Thus, there remain only finitely many n-cells because
M is compact and re = 0 for almost all n-cells e.

We proceed by induction over the number of remaining n-cells of X. If
it is zero, there is nothing to prove.

Now, let e be one of the n-cells of X. Choose a point p ∈ e̊ and assume
without loss of generality that f is transverse to it. Denote its preimages by
p1, . . . , p`. The assumption implies that f has local mapping degree re at p.
Hence ` ≥ |re|.

In case ker f∗ ⊂ ker ρ, we may choose d := `− |re| points from the points
p1, . . . , p` such that one half of them is mapped orientation preservingly to p,
the other half orientation reversingly (with respect to some choice of orien-
tation of X at p). Take a path α from a point of the first kind to one of the
second kind. Since f∗ : π1(M) � π1(X) is surjective the loop f ◦α lies in its
image. Let β be a loop based at the first point that is mapped to f ◦α. Then
γ := β−1α has contractible image under f and is orientation reversing with
respect to any choice of local orientations of M at p1, . . . , p` coming from p.
Hence, we may apply the Hopf trick and reduce d by two. By induction, d
finally becomes zero and ` = |re|.
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Next, consider the case that ker f∗ 6⊂ ker ρ. Choose a local orientation
for X at p and thus also for M at the points pi. Let α be a path between
two such points. Proceeding as above, we may assume that its image is
contractible in X. If α does not reverse the induced orientations, choose a
loop β based at the starting point of α that is orientation reversing and in the
kernel of f∗. Then γ := βα reverses the induced orientations and is mapped
to a contractible loop. The Hopf trick reduces ` by two and induction shows
that we may deform f until ` = |re|.

Finally, choose a ball D ⊂ e̊ with center p such that f−1(D) consists
of |re| pairwise disjoint closed balls De1, . . . , De|re| in M \ ∂M , each mapped
diffeomorphically and with the same orientation behaviour onto D. Compose
f with a strong deformation retraction from (X,X \ D̊) to (X,X \ e̊).

The induction hypothesis applied to M ′ := M \ (D̊e1∪ . . .∪ D̊e|re|), X
′ :=

X \ e̊ and a′ :=
∑

e′ 6=e re′ · e′ finishes the proof.

2.1.4 Maps to arbitrary CW complexes

Let M be a connected closed manifold of dimension n ≥ 2. Consider a map
f : M → X to a CW complex X that is surjective on fundamental group
level. Let a ∈ Hn(X

(n); K) be a homology class in the n-skeleton of X (where
we use K = Oρ if ker f∗ ⊂ ker ρ and K = Z2 otherwise as always), and let
i : X(n) ↪→ X be the inclusion.

Lemma 2.6. If f∗[M ]K = i∗a, then we may deform f such that its image
lies in the n-skeleton of X and such that f∗[M ]K = a ∈ Hn(X

(n); K).

In the case K = Oρ this is due to Babenko, see [Bab06], Lemme 3.10.

Proof. First consider the case K = Oρ. The Hurewicz theorem gives an
epimorphism

h : πn+1(X
(n+1), X(n)) � Hn+1(X

(n+1), X(n);Oρ)

since πk(X
(n+1), X(n)) = 0 for k ≤ n. Hence, the commutative diagram with

exact rows and vertical Hurewicz homomorphisms

πn+1(X
(n+1), X(n))

h
����

∂ // πn(X
(n))

h
��

// πn(X
(n+1)) = πn(X)

Hn+1(X
(n+1), X(n);Oρ)

∂ // Hn(X
(n);Oρ)

j∗ // Hn(X
(n+1);Oρ) = Hn(X;Oρ)

shows that the kernel of j∗ equals the image of h∂ : πn(X
(n+1), X(n)) →

Hn(X
(n);Oρ).
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For the case K = Z2 note that we may add a further row to the above
diagram (with Z instead of Oρ) by applying the reduction map from Z to Z2

coefficients. The induced map

Hn+1(X
(n+1), X(n); Z) � Hn+1(X

(n+1), X(n); Z2)

is obviously surjective. Hence, we get the commutative diagram

πn+1(X
(n+1), X(n))

h
����

∂ // πn(X
(n))

h
��

// πn(X)

Hn+1(X
(n+1), X(n); Z2)

∂ // Hn(X
(n); Z2)

j∗ // Hn(X; Z2)

and again we have ker j∗ = imh∂.
By cellular approximation, we may assume that f maps to the n-skeleton

of X. Since f∗[M ]K = i∗a ∈ Hn(X; K), we see that j∗f∗[M ]K = j∗a, hence

a− f∗[M ]K ∈ ker j∗.

Let s : Sn → X(n) be a preimage under h, i. e. we have s∗[S
n]K = a−f∗[M ]K.

We may assume that s is contractible in X. In fact, we can choose s in the
image of the boundary homomorphism ∂ : πn+1(X

(n+1), X(n)) → πn(X
(n)).

Define
f ′ : M →M ∨ Sn f∨s−−→ X(n),

where the first map contracts the boundary of a small ball in M . Then
f ′∗[M ]K = f∗[M ]K + s∗[S

n]K = a ∈ Hn(X
(n); K) and the maps f and f ′ are

homotopic as maps to X by the choice of s.

Combining Lemma 2.6 and Lemma 2.5 one immediately derives the fol-
lowing corollary.

Corollary 2.7. Let M be a connected closed manifold of dimension n ≥
3, and let f : M → X be a map to a CW complex that is surjective on
fundamental groups. Then f is homotopic to a map from M to the (n− 1)-
skeleton of X if and only if one of the following statements holds:

(i) M is orientable, and f∗[M ]Z = 0 in Hn(X; Z).

(ii) M is nonorientable, f maps every orientation reversing loop to a non-
contractible one, and f∗[M ]Oρ = 0 in Hn(X;Oρ).

(iii) M is nonorientable, f maps some orientation reversing loop to a con-
tractible one, and f∗[M ]Z2 = 0 in Hn(X; Z2).

The two lemmata imply sufficiency of the conditions (i) to (iii) in this
corollary. But necessity is obvious by cellular homology.
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2.1.5 Absolute and geometric degree

Let f : (M,∂M) → (N, ∂N) be a map between two connected compact
manifolds of dimension n. It factors as

(M,∂M)
f̄−→ (N̄ , ∂N̄)

p−→ (N, ∂N)

where p : N̄ → N is the covering map that corresponds to the subgroup
f∗(π1(M)) ⊂ π1(N). Let j be the number of sheets of p. If ker f̄∗ = ker f∗ ⊂
ker ρ, then we may define the degree of f as zero for j = ∞ and as j · deg(f̄)
for j <∞ where deg(f̄) is determined by

f̄∗[M ]Oρ = deg(f̄) · [N̄ ]Oρ .

This is to be understood as deg(f̄) = 0 if Hn(N̄ , ∂N̄ ;Oρ) = 0. (This degree is
defined only up to sign. We have to choose orientations to get a well-defined
integer.)

Moreover, we define the absolute degree of f by

dega(f) :=


0 j = ∞
j · |deg(f̄)| j <∞, ker f∗ ⊂ ker ρ

j · |deg2(f̄)| j <∞, ker f∗ 6⊂ ker ρ

where deg2(f̄) denotes the Z2 degree of f̄ . (This degree is well-defined with-
out any choices.)

Remark. This definition coincides with the usual definition of absolute degree
(see for example [Eps66] or [Sko87]). Note also that for maps of absolute
degree one, the number j has to be one by definition. But j = 1 if and
only if the induced map on fundamental groups is surjective. Thus, maps of
absolute degree one are surjective on fundamental group level.

The geometric degree degg(f) of f is the smallest integer d for which there
is a map f ′ : (M,∂M) → (N, ∂N) homotopic to f relative to the boundary
that is transverse to some point p ∈ N \ ∂N such that f ′−1(p) consists of d
points. Note that always dega(f) ≤ degg(f).

Theorem 2.8 (Hopf, Kneser). If n ≥ 3, then dega(f) = degg(f). In the
two-dimensional case the same equality holds if one assumes that M and N
are closed.

Proof for n ≥ 3. Choose a CW decomposition of (N, ∂N) and lift it to the
covering (N̄ , ∂N̄). If the number j of sheets of p is infinite, then N̄ is not
compact and therefore Hn(N̄ , ∂N̄ ; K) = 0. Hence, f̄∗[M ]K = 0 and Corollary
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2.7 shows that f̄ contracts to the (n−1)-skeleton of N̄ . Thus, f also contracts
to the (n−1)-skeleton ofN by composition with p. In particular, degg(f) = 0.

Now assume j <∞. Applying Lemma 2.5 to f̄ with a = dega(f̄) · [N̄ ]K,
we get a homotopic map f̄ ′ such that each open n-cell of N̄ is covered by
exactly dega(f̄) open n-cells in M . Hence, f ′ := p ◦ f̄ ′ is homotopic to f and
has geometric degree equal to j · dega(f̄) = dega(f).

The Hopf part (n ≥ 3) of this theorem was proved in [Hop30] by using
the Hopf trick, see also [Eps66] for a modern presentation. In [Eps66], it is
stated incorrectly that the equivalence of absolute and geometric degree also
holds without further assumptions for n = 2. See [Sko87] for a discussion of
this and a modern proof of Kneser’s result from [Kne30] (the case n = 2 of
the above theorem).

Our proof in fact shows slightly more, namely that each top-dimensional
open cell of N is covered by exactly dega(f) open cells in M . Using the fact
that smooth manifolds are triangulable, we get maps having the following
nice property:

Definition 2.9. A simplicial map f : X → Y between two n-dimensional
simplicial complexes is said to be (n, d)-monotone if the preimage of every
open n-simplex of Y consists of at most d open n-simplices in X. It is called
strictly (n, d)-monotone if the preimage of every open n-simplex of Y consists
of exactly d open n-simplices in X.

Remark. Usually a map is called monotone if the preimage of any point is
connected. In this sense, (n, 1)-monotone means that the map f : X → Y is
monotone outside the (n − 1)-skeleton, and (n, d)-monotone means that we
may divide X \X(n−1) into d sets such that f is monotone on each of these
sets.

Corollary 2.10. Let f : (M,∂M) → (N, ∂N) be a map between connected
compact manifolds of dimension n ≥ 3, and let d := dega(f). Then f is
homotopic to a strictly (n, d)-monotone map. In the two-dimensional case
one has to assume that M and N are closed to get the same conclusion.

In the closed case this corollary was proved in [Bab92], proof of Propo-
sition 2.2, part (a). The two-dimensional case of this corollary is proved by
using Kneser’s theorem. In fact, Kneser constructed in his original proof a
strictly (2, d)-monotone map homotopic to f (see [Kne30]).
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2.2 Systolic constants and minimal volume

entropy

In this section, we introduce (relative versions of) the one-dimensional sys-
tolic constant and the minimal volume entropy. Moreover, we define a stable
version of the systolic constant.

To unify the treatment of these topological invariants, we investigate real-
valued invariants that fulfill certain axioms. The systolic constants and the
minimal volume entropy are shown to satisfy these axioms. Similar axioms
will play an important role in chapters 3 and 4 and in the investigation of
the spherical volume. The axioms proved in this section may be seen as
archetypes for those later axioms.

The section concludes with a classification of systolic manifolds, i. e. man-
ifolds with nonvanishing systolic constant. The analogous statement for the
stable systolic constant is given in chapter 4.

2.2.1 Systolic constants

In systolic geometry, it is often convenient to work with Riemannian simpli-
cial complexes (see for instance [Bab02] and [Bab06]).

Definition 2.11. By a Riemannian metric on a k-simplex ∆k we understand
the pullback of an arbitrary Riemannian metric on Rk via an affine linear
embedding ∆k ↪→ Rk. A (piecewise smooth) Riemannian metric g on a
simplicial complex X is given by a Riemannian metric gτ on every simplex
τ of X such that gτ ′ ≡ gτ |τ ′ whenever τ ′ ⊂ τ .

It is clear that any Riemannian manifold (M, g) becomes a Riemannian
simplicial complex by choosing a smooth triangulation of M .

A Riemannian metric g enables us to measure the lengths of piecewise
smooth curves in a simplicial complex X. As for Riemannian manifolds, one
obtains in the connected case a path metric dg on X. Moreover, if X is of
dimension n, there is an obvious notion of n-dimensional Riemannian volume
that coincides with the n-dimensional Hausdorff measure.

Let X be a connected finite simplicial complex of dimension n, and let
φ : π1(X) → π be a group homomorphism. There is a corresponding map
Φ : X → K(π, 1) that induces this homomorphism φ on fundamental groups
and that is determined uniquely up to homotopy by this property.

Definition 2.12. For a Riemannian metric g on X the (one-dimensional) φ-
systole sysφ(X, g) is defined as the infimum of all lengths of closed piecewise
smooth curves in X whose images under the corresponding map Φ : X →
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K(π, 1) are noncontractible. The (one-dimensional) systolic constant relative
to φ is given by

σφ(X) := inf
g

Vol(X, g)

sysφ(X, g)
n
,

where the infimum is taken over all Riemannian metrics g on X.

Remark. The systolic constant σφ(X) depends only on the kernel of φ, not on
φ itself. But for practical reasons we will keep φ in the notation. Nevertheless,
note that it is no actual restriction to assume that φ is surjective. The
same remark applies to the definitions of the one-dimensional stable systole
(Definition 2.14), the minimal volume entropy (Definition 2.15), and the
spherical volume (Definition 2.25).

Consider the free Abelian group

H1(X; Z)R := H1(X; Z)/torsion,

whose rank is the first Betti number of X. Note that K(H1(X; Z)R, 1) =
T b1(X) the b1(X)-dimensional torus. The map corresponding to the canonical
epimorphism π1(X) � H1(X; Z)R is called the Jacobi map of X.

Definition 2.13. For a class a ∈ H1(X; Z)R denote by `g(a) the length of the
shortest loop γ in X that represents it. The stable norm of a ∈ H1(X; Z)R
is defined as

‖a‖g := lim
i→∞

`g(ia)

i
.

Note that H1(X; Z)R ⊂ H1(X; R) is a lattice. Federer showed in [Fed74]
that the stable norm extends to an actual norm onH1(X; R) (see also chapter
4).

Denote the map corresponding to the homomorphism φ : π1(X) → π by
Φ : X → K(π, 1). The stable norm on H1(X; R) induces via the homomor-
phism Φ∗ : H1(X; R) → H1(π; R) a quotient norm on H1(π; R). (If Φ∗ is not
surjective, then this quotient norm takes finite values only on the image of
Φ∗.)

Definition 2.14. The stable (φ, 1)-systole stabsys(φ,1)(X, g) for a Rieman-
nian metric g on X is defined as the minimum of the quotient norm on the
nonzero elements of the lattice H1(π; Z)R ⊂ H1(π; R). The stable (φ, 1)-
systolic constant is given by

σstφ,1(X) := inf
g

Vol(X, g)

stabsys(φ,1)(X, g)
n
.



32 2. Homological invariance

In the ‘absolute’ case, i. e. when φ : π1(X) → π is injective, we will speak
of systole and stable 1-systole without any reference to φ. The respective
constants are then called systolic constant and stable 1-systolic constant .

Remark. If φ : π1(X) � H1(X; Z) is the Hurewicz epimorphism, then
sysφ(X, g) =: sys1(X, g) will be called the 1-systole of (X, g) and σφ(X) =:
σ1(X) the 1-systolic constant . For φ : π1(X) � H1(X; Z)R the canonical
epimorphism sysφ(X, g) =: sys∞1 (X, g) is called the 1-systole modulo torsion
and σφ(X) =: σ∞1 (X) the 1-systolic constant modulo torsion. These notions
and the notion of stable systole will be generalized to higher dimensions in
chapter 4.

2.2.2 Minimal volume entropy

We continue to consider a connected finite n-dimensional simplicial complex
X together with a homomorphism φ : π1(X) → π. Let Φ : X → K(π, 1)
again denote the corresponding map.

Definition 2.15. Let X̃φ be the Galois covering of X associated to the
normal subgroup kerφ C π1(X). For any Riemannian metric g on X define
the volume entropy relative to φ as

λφ(X, g) := lim
r→∞

1
r
log Vol(B(x, r)),

where B(x, r) is the ball of radius r around a point x ∈ X̃φ with respect to
the lifted metric. This limit exists and is independent of the center x ∈ X̃φ

(see [Man79]). One defines the minimal volume entropy of X relative to φ as

λφ(X) := inf
g
λφ(X, g) Vol(X, g)1/n.

If φ is injective, one just speaks of the volume entropy and the minimal
volume entropy without mentioning the homomorphism φ.

To work with this definition quickly gets complicated. But there is an
equivalent definition that is easier to handle.

Definition 2.16. Let G be a finitely generated group. A norm on G is a
nonnegative function L : G→ [0,∞) such that

(i) L(g) = 0 ⇔ g = 1,

(ii) L(g−1) = L(g),

(iii) L(gg′) ≤ L(g) + L(g′) (triangle inequality).
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The growth function βL : [0,∞) → [1,∞] of a norm L is defined by

βL(r) := #{g ∈ G|L(g) ≤ r}.

If the limit

λ(G,L) := lim
r→∞

1
r
log βL(r)

exists, it is called the entropy of G with respect to L.

Remark. We may use the inclusion ιx : Γ ↪→ X̃φ, γ 7→ γ · x of the Galois
group Γ := π1(X)/ kerφ into the Galois covering to induce a norm Lg,x on
Γ. Such norms will be called Riemannian norms . Then it can easily be seen
that

λφ(X, g) = λ(Γ, Lg,x)

by using translates of a fundamental domain of the Galois action. (See for
example [KaH95], Proposition 9.6.6 or [Sab06], Lemma 2.3.)

By work of Besson, Courtois, and Gallot (see [BessCG95]), it is known
that locally symmetric metrics of negative curvature minimize the volume
entropy. For instance, the minimal volume entropy of hyperbolic manifolds
can be computed easily: since the universal covering is the hyperbolic space
of constant curvature one the volume entropy equals n−1, and it only remains
to compute the volume of the manifold.

In dimension n = 2, Katok proved that λ(Σ) =
√

2π|χ(Σ)| for closed
surfaces of nonpositive Euler characteristic χ(Σ) ≤ 0 (see [Ka82]). The
minimal volume entropy of the sphere and the real projective plane vanish.

2.2.3 Comparison axiom and homotopy invariance

For manifolds, invariants fulfilling the following comparison axiom behave
reasonably well with respect to the absolute degree and are in particular
invariant under homotopy equivalence.

Comparison axiom. Let X and Y be two connected finite simplicial com-
plexes of dimension n, and let φ : π1(X) → π and ψ : π1(Y ) → π be group
homomorphisms. If there exists an (n, d)-monotone map f : X → Y such
that φ = ψ ◦ f∗, then

Iφ(X) ≤ d · Iψ(Y ).

Lemma 2.17 (Babenko, Sabourau). The comparison axiom is fulfilled by
I = σ, I = σst1 , and I = λn (i. e. the minimal volume entropy to the power
of n).
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Proofs of this lemma may be found in [Bab06], Proposition 3.2 and
[Sab06], Lemma 3.5 (both for d = 1) and also in [Bab92], Propositions 2.2
and 8.7 (where f∗ : π1(X) → π1(Y ) is assumed to be surjective). Since
this property of the systolic constants and the minimal volume entropy is of
fundamental importance in this chapter, we include the proof.

Proof. Let ε > 0, and let g2 be a Riemannian metric on Y . Choose a Rieman-
nian metric g1 on X, and define gt1 := f ∗g2+t2g1. This is again a Riemannian
metric on X. By choosing t > 0 small enough we can arrange that

Vol(X, gt1) ≤ d · Vol(Y, g2) + ε.

Furthermore f : (X, gt1) → (Y, g2) is nonexpanding. Therefore,

sysφ(X, g
t
1) ≥ sysψ(Y, g2)

and σφ(X) ≤ dσψ(Y ) follows.
Since f is nonexpanding, `gt1(a) ≥ `g2(f∗a) for every a ∈ H1(X; Z)R.

Thus, ‖a‖gt1 ≥ ‖f∗a‖g2 and consequently

stabsysφ(X, g
t
1) ≥ stabsysψ(Y, g2).

As above σstφ,1(X) ≤ dσstψ,1(Y ) follows.
Since φ = ψ ◦ f∗, the induced homomorphism

f∗ : π1(X)/ kerφ ↪→ π1(Y )/ kerψ

is injective. From the fact that f is nonexpanding follows that

Lgt1,x(γ) ≥ Lg2,f(x)(f∗(γ))

for every γ ∈ π1(X)/ kerφ, and together with the injectivity of f∗ this implies

βgt1,x ≤ βg2,f(x).

Therefore, λφ(X, g
t
1) ≤ λψ(Y, g2) and finally λφ(X)n ≤ dλψ(Y )n.

From Corollary 2.10 we deduce:

Corollary 2.18. Let M and N be two connected closed manifolds, and let
ψ : π1(N) → π be a group homomorphism. Let f : M → N be a map with
d := dega(f). If I fulfills the comparison axiom, then

Iψ◦f∗(M) ≤ d · Iψ(N).

In particular, if f is a homotopy equivalence, then

Iψ◦f∗(M) = Iψ(N).
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If M is a smoothly triangulated connected closed manifold, then we have
a priori two definitions for the systolic constants and the minimal volume
entropy: one that uses only smooth Riemannian metrics and one that al-
lows piecewise smooth Riemannian metrics in the sense above. But in fact,
both definitions lead to the same values. In particular, both invariants are
independent of which smooth triangulation of M we choose. Note that this
independence of the chosen triangulation also follows from Corollary 2.18.

The following reasoning stems from [Bab92], Lemma 2.3 and the proof of
Theorem 8.1.

Lemma 2.19. Let M be a connected closed manifold of dimension n that is
smoothly triangulated. If g is a piecewise smooth Riemannian metric on M ,
then there exists for every ε > 0 a smooth Riemannian metric gε on M such
that

(i) gε ≥ g and

(ii) Vol(M, gε) ≤ Vol(M, g) + ε.

Proof. Choose a smooth Riemannian metric g1 on M such that g1 ≥ g (i. e.
g1(v, v) ≥ g(v, v) for all v ∈ TM for which g(v, v) is defined). Note that g is
a smooth Riemannian metric on M \M (n−1) and that M (n−1) ⊂M is a zero
set with respect to the n-dimensional volume.

Choose an open neighboorhood U of M (n−1) with Vol(U, g1) < ε. Define

gε := λg + (1− λ)g1

with λ : M → [0, 1] a smooth function that is identically 1 outside of U and
vanishes on a neighborhood of M (n−1). Then gε is a smooth Riemannian
metric which obviously satisfies (i) and (ii).

From (i) follows that sysφ(M, gε) ≥ sysφ(M, g). Together with (ii) this
implies that the smooth systolic constant is bounded from above by the
piecewise smooth systolic constant. But the converse inequality is obvious
from the definition. Thus, both definitions of the systolic constant σφ(M)
coincide. In an analogous manner, the same holds for the stable systolic
constant and the minimal volume entropy.

The same technique can also be used to prove that these invariants coin-
cide for a simplicial complex and its subdivisions. Note also that the analo-
gous results hold for the spherical volume (see Definition 2.25) and similarly
defined invariants in chapters 3 and 4.
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2.2.4 Extension axiom

Since, given two manifolds, there may be no nontrivial map (say of absolute
degree one) between them, we need a procedure to enlarge one of them such
that we get a nontrivial map from the other manifold to the enlarged one.
The next axiom shows how to enlarge a manifold and what happens to the
invariants during the process.

Let h : Sk−1 → X be a simplicial map with 1 ≤ k < n such that Φ ◦ h
is contractible if k = 2. Define X ′ := X ∪h Dk. This can be considered
as a simplicial complex such that X is a subcomplex. Define moreover φ′ :
π1(X) → π as φ for k ≥ 3 (the fundamental group has not changed), as the
quotient map for k = 2, and as an arbitrary extension of φ for k = 1. Then
we have φ′ ◦ i∗ = φ where i : X ↪→ X ′ is the inclusion.

Definition 2.20. An extension (X ′, φ′) of (X,φ) is a simplicial complex that
is obtained by a finite number of attachments in the way described above.

Extension axiom. Let (X ′, φ′) be an extension of (X,φ) where φ : π1(X) �
π is an epimorphism. Then

Iφ′(X
′) = Iφ(X).

Remark. The surjectivity assumption on φ guarantees that the correspond-
ing Galois group π ∼= π1(X)/ kerφ remains the same for every extension of
(X,φ). (Otherwise it could become bigger by attaching 1-cells, see para-
graph 2.5.1.) In other words, the Galois covering X̃ ′

φ′ is obtained from X̃φ

by π-equivariantly attaching cells of dimension 1 ≤ k < n.

Lemma 2.21 (Babenko, Sabourau). The extension axiom is fulfilled in the
cases I = σ, I = σst1 , and I = λ.

This is proved in [Bab06], Proposition 3.6 and [Sab06], Lemma 3.6. As
above, the proof is included because of the importance of the extension axiom.

Proof. The proof is by induction. Thus, it is enough to look at the case of a
single attachment.

The inclusion i : X ↪→ X ′ is an (n, 1)-monotone map, hence the compar-
ison axiom implies Iφ(X) ≤ Iφ′(X

′) since φ = φ′ ◦ i∗ by definition.
To prove the other inequality, choose a Riemannian metric g on X and

extend it to g′ over X ′ in the following way: if k = 1, then X̃ ′
φ′ is obtained

from X̃φ by π-equivariantly attaching 1-cells. Choose their (common) length
in such a way that it does not decrease the distance between their starting
and ending points. Now, let k ≥ 2. Choose R > 0 such that h : (Sk−1, gR) →
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(X, g) is nonexpanding where gR is the round metric on Sk−1 with radius R.
Think of X ′ as

X ∪h (Sk−1 × [0, 1]) ∪Sk−1 Sk+

and define g′ as g on X, as

g′ := ((1− t)h∗g + tgR)⊕ dt2

on Sk−1 × [0, 1], and as the round metric of radius R on the k-dimensional
hemisphere Sk+.

Let γ be a piecewise smooth curve in X ′ that joins two points in X. If γ
meets the hemisphere Sk+, we may substitute the arcs of γ in Sk+ by geodesics
in Sk−1 × 1 such that the new curve γ′ is not longer than γ and homotopic
to γ. Using the deformation retraction of Sk−1 × [0, 1] to Sk−1 × 0 we get a
curve γ′′ homotopic to γ′ that is again not longer than γ′ by the choice of
gR. (See also [Bab06], Lemme 3.5.)

The induced path metric dg′ on X ′ is thus an extension of the path metric
dg on X induced by g. The same is true on the Galois coverings X̃ ′

φ′ and

X̃φ. Therefore, the induced metric Lg′,x on π equals the metric Lg,x (choose
x ∈ X), hence λφ(X) ≥ λφ′(X

′) since the volume has not changed.
Furthermore, the shortest loop in X ′ whose image in K(π, 1) is not con-

tractible must meet X, hence may be chosen to lie entirely in X. Therefore
σφ(X) ≥ σφ′(X

′).
The same is true for every loop in X. Hence, `g(a) = `′g(i∗a) for every

element a ∈ H1(X; Z)R. Therefore, the norms ‖a‖g and ‖i∗a‖g′ coincide for
all a ∈ H1(X; Z)R, and consequently σstφ,1(X) ≥ σstφ′,1(X

′).

2.2.5 Systolic manifolds

Using Corollary 2.7 and a famous theorem by Gromov, we are now able to
give a homological classification of φ-systolic manifolds, i. e. of those mani-
folds M with σφ(M) > 0.

Definition 2.22. A connected finite n-dimensional simplicial complex X is
called φ-essential for a group homomorphism φ : π1(X) → π if the associated
map Φ : X → K(π, 1) does not contract to the (n− 1)-skeleton of K(π, 1).

In his Filling paper, Gromov proved the following universal systolic in-
equality ([Gro83], Appendix 2, (B’1)):

Theorem 2.23 (Gromov). If X is φ-essential, then

sysφ(X, g) ≤ Cn · Vol(X, g)1/n

for some universal constant Cn > 0.
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So φ-essentialness implies φ-systolicity. Using the comparison axiom we
see immediately that this is an equivalence:

σφ(X) > 0 ⇔ X φ-essential.

Together with Corollary 2.7, this equivalence implies the following clas-
sification of φ-systolic manifolds.

Corollary 2.24. Let M be a connected closed manifold of dimension n ≥ 3,
and let φ : π1(M) � π be an epimorphism. Then

σφ(M) > 0 ⇔

{
Φ∗[M ]Oρ 6= 0 M̃φ orientable,

Φ∗[M ]Z2 6= 0 M̃φ nonorientable.

In the case where M̃φ is orientable, this corollary is due to Babenko (see
[Bab92], Theorem 8.2). In chapter 4 of the thesis, we will investigate the
analogous question for stable systolic constants (of arbitrary dimension).

Gromov’s systolic inequality shows that there are many manifolds whose
systolic constant is positive. But to compute the exact value in this case
is very hard. In fact, it is known for only three essential manifolds (apart
from the circle): the two-torus, σ(T 2) =

√
3/2 (Loewner, unpublished), the

real projective plane, σ(RP2) = 2/π (Pu, [Pu52]), and the Klein bottle,
σ(RP2#RP2) = 2

√
2/π (Bavard, [Bav86]).

For the stable systolic constant, the situation is similar: only σst1 (T 2) =√
3/2 is known. (This is a direct consequence of Loewner’s result.) The stable

systolic constant of the real projective plane and the Klein bottle are zero
since their first Betti numbers are zero respectively one, see also Corollary
4.13 in chapter 4.

2.3 Spherical volume

In this section, we want to investigate another invariant: the spherical volume
T . Its definition is a bit more involved than the definitions of the minimal
volume entropy and the systolic constants. Therefore, it is not easy to prove
that T fulfills the comparison axiom of paragraph 2.2.3. But we are able to
find weaker axioms that lead to the same conclusions. In particular, Corollary
2.18 is also valid in the case I = T .

The original definition of the spherical volume is due to Besson, Cour-
tois, and Gallot ([BessCG91] and [BessCG95], see also [Sto02]). Inspired by
the definition of the minimal volume entropy and the systolic constant, we
introduce a relative version.
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Again, let X be a connected finite simplicial complex of dimension n,
and let φ : π1(X) → π be a group homomorphism. Denote by X̃φ the
Galois covering associated to the normal subgroup kerφ C π1(X) and by
Γ := π1(X)/ kerφ the Galois group.

Definition 2.25. Let g be a Riemannian metric on X. Then L2(X̃φ) denotes
the Hilbert space of square-integrable functions on X̃φ with respect to the
Riemannian volume of the lifted metric, and S∞(X̃φ) ⊂ L2(X̃φ) denotes its
unit sphere. Note that Γ acts isometrically on both spaces by γ · ϕ(x) :=
ϕ(γ−1x). Let N consist of those maps F : X̃φ → S∞(X̃φ) that are Γ-
equivariant, Lipschitz continuous, and nonnegative, i. e. whose values are
nonnegative functions. If F ∈ N , then its restriction to the interior of the
n-cells is differentiable almost everywhere by Rademacher’s theorem and we
can define

gFx (v1, v2) := 〈DxF (v1), DxF (v2)〉L2(X̃φ)

for almost all x ∈ X̃φ, v1, v2 ∈ TxX̃φ. (Note that tangent spaces are well-
defined for points inside top-dimensional simplices.) One finds that gF is an
almost everywhere defined positive semi-definite Γ-invariant metric on X̃φ.

This metric descends to X where it is also called gF . We may define its
volume form as 0 at points where gF is degenerate or not defined and as
the usual volume form at points where it is nondegenerate. Then dVgF is an
integrable n-form on X. Hence, we can define

Vol(X, gF ) :=

∫
X

dVgF and

Tφ(X) := inf
F∈N

Vol(X, gF ).

This second number is called the spherical volume of X relative to φ.

In the ‘absolute’ case (i. e. when φ is injective), one speaks of the spherical
volume T (X) and does not mention the homomorphism φ.

Remark. This definition is independent of the choice of the Riemannian met-
ric g on X since the Hilbert spaces L2(X̃φ) for different Riemannian metrics
are Γ-equivariantly isometric. (The change from the metric g′ to the metric
g is realized by multiplication with 4

√
detg g′. This is a special case of the

Radon-Nikodym theorem.) Moreover, the notion of Lipschitz continuity of
F : X̃φ → S∞(X̃φ) does also not depend on which metric g we choose because
X is compact.

If M admits a locally symmetric metric g0 of negative curvature, then

T (M) = (4n)−n/2λ(M)n = (4n)−n/2λ(M, g0)
n Vol(M, g0)
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by [BessCG95]. In particular, the spherical volume of hyperbolic manifolds
is known. (See also the end of paragraph 2.2.2.)

Weak comparison axiom. Let X and Y be two connected finite simplicial
complexes of dimension n, and let φ : π1(X) → π and ψ : π1(Y ) → π
be group homomorphisms. If there exists a strictly (n, d)-monotone map
f : X → Y such that φ = ψ◦f∗ and such that the induced homomorphism f∗ :
π1(X)/ kerφ

∼=−→ π1(Y )/ kerψ between the Galois groups is an isomorphism,
then

Iφ(X) ≤ d · Iψ(Y ).

Lemma 2.26. The weak comparison axiom is fulfilled for I = T .

Proof. Let g2 be a Riemannian metric on Y . Define a Riemannian metric g1

on X by using f ∗g2 on the nondegenerate simplices and extending it over all
of X.

Since f∗ : π1(X)/ kerφ
∼=−→ π1(Y )/ kerψ is an isomorphism, we get an

equivariant lift f̃ : X̃φ → Ỹψ of f that is again strictly (n, d)-monotone. The
map

I : L2(Ỹψ) → L2(X̃φ),

ϕ 7→ χ̃/
√
d · (ϕ ◦ f̃),

where χ̃ : X̃φ → R is the characteristic map of the nondegenerate n-simplices,
is an equivariant isometric homomorphism that preserves nonnegativity.

If F : Ỹψ → S∞(Ỹψ) is nonnegative equivariant Lipschitz, then consider
the nonnegative equivariant Lipschitz map

I ◦ F ◦ f̃ : X̃φ → S∞(X̃φ).

We have gI◦F◦f̃ = gF◦f̃ since I is isometric and gF◦f̃ = f ∗gF . Hence

Vol(X, gI◦F◦f̃ ) = d · Vol(Y, gF )

holds, which can be seen by looking at each open n-simplex of Y together
with its preimage separately. (Note also that f ∗gF is degenerate on the
degenerate simplices in X.) Therefore,

Tφ(X) ≤ d · Tψ(Y ).

Covering axiom. Let f : X → Y be a d-sheeted covering map of connected
finite simplicial complexes, and let ψ : π1(Y ) → π be a homomorphism.
Then

Iψ◦f∗(X) ≤ d · Iψ(Y ).
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Lemma 2.27. The covering axiom is true for I = T .

Proof. This proof is essentially the same as the proof of Lemma 2.26 with
one exception: the lifted map f̃ : X̃ψ◦f∗ → Ỹψ is a covering map with

D := [kerψ : f∗(ker(ψ ◦ f∗))]

sheets. Therefore, we have to replace the factor χ̃/
√
d in the definition of

the isometry I by 1/
√
D. (Note that in this case there are no degenerate

simplices.) Then everything works out well.

Zero axiom. Let X and Y be two connected finite simplicial complexes of
dimension n, and let ψ : π1(Y ) → π be a group homomorphism. If f : X → Y
is (n, 0)-monotone, then

Iψ◦f∗(X) = 0.

Lemma 2.28. The zero axiom is valid for I = T .

Proof. We have
2nnn/2Tφ(X) ≤ λφ(X)n

for all simplicial complexes (X,φ). (See [BessCG91], Théorème 3.8 or [Sto02],
Proposition 4.1. There, the inequality is neither stated for simplicial com-
plexes nor in the relative case, but the proof remains exactly the same.)

Since in the setting of the zero axiom λψ◦f∗(X)n = 0 by the comparison
axiom, we get Tψ◦f∗(X) = 0 from the cited inequality.

Now, we can prove that Corollary 2.18 also holds for I = T .

Proposition 2.29. Let M and N be two connected closed manifolds, and let
ψ : π1(N) → π be a group homomorphism. Let f : M → N be a map with
d := dega(f). Then

Iψ◦f∗(M) ≤ d · Iψ(N)

for any invariant I that fulfills the weak comparison axiom, the covering
axiom, and the zero axiom.

Proof. Denote by p : N̄ → N the connected covering of N associated to the
subgroup f∗(π1(M)) ⊂ π1(N). If N̄ is not compact, then dega(f) = 0 and
f is homotopic to an (n, 0)-monotone map by Corollary 2.10. By the zero
axiom Iψ◦f∗(M) = 0.

Assume now that N̄ is compact. Note that f factorizes over N̄

N̄

p

��
M

f
//

f̄
>>}}}}}}}}
N
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such that f̄∗ : π1(M) � π1(N̄) is surjective, and that the absolute degree
factors as dega(f) = dega(f̄) dega(p). By Corollary 2.10 we may homotope f̄
to be strictly (n, dega(f̄))-monotone. By the weak comparison axiom applied
to this map and the covering axiom applied to p the proposition follows.

For homotopy invariance even less assumptions are needed.

Corollary 2.30. If f : M
'−→ N is a homotopy eqivalence, then

Iψ◦f∗(M) = Iψ(N)

for every invariant I satisfying the weak comparison axiom.

The extension axiom does not need to be adjusted:

Lemma 2.31. The invariant I = T fulfills the extension axiom.

Proof. We have π1(X)/ kerφ ∼= π ∼= π1(X
′)/ kerφ′, hence X̃ ′

φ′ is obtained

from X̃φ by equivariant attachments of cells of dimension less than n. These
cells are zero sets, thus canonically

L2(X̃ ′
φ′) = L2(X̃φ).

Restriction to X defines a map N ′ → N . Since the nonnegative part of
S∞(X̃φ) is contractible we may extend any map F ∈ N equivariantly over
X̃ ′
φ′ to get a map F ′ ∈ N ′. This gives a section N → N ′ of the above

restriction map, which is therefore in particular surjective. Furthermore,
Vol(X ′, gF

′
) = Vol(X, gF ) because the attached cells are of lower dimension,

hence zero sets. Thus, Tφ′(X
′) = Tφ(X).

2.4 Homological invariance and first applica-

tions

Throughout this section, let I be an invariant that fulfills both the weak
comparison axiom and the extension axiom. The main examples are of course
the systolic constants, the minimal volume entropy, and the spherical volume.

In the first paragraph, homological invariance is proved in the form of
a relative version of Theorem 2.1. Afterwards, we will apply this result in
different situations. First, we will demonstrate that orientation-true degree
one maps preserve the values of those invariants. This simplifies a rather
long proof in [KȩdKM06]. As a second application, we will show that adding
a simply-connected summand does not change the invariants under consid-
eration. Furthermore, we will prove Corollary 2.2 about manifolds whose
fundamental group consists of only two elements.



2.4. Homological invariance and first applications 43

2.4.1 Homological invariance

The main result of this chapter is the following theorem, which includes
Theorem 2.1 as a special case.

Theorem 2.32. Let M and N be two connected closed manifolds of dimen-
sion n ≥ 3, and let φ : π1(M) � π and ψ : π1(N) � π be two epimorphisms.
Denote by Φ : M → K(π, 1) and Ψ : N → K(π, 1) the associated maps.

(i) If there exists a homomorphism ρ : π → Z2 such that both ker ρφ C
π1(M) and ker ρψ C π1(N) are the respective subgroups of orientation
preserving loops and if moreover

Φ∗[M ]Oρφ = Ψ∗[N ]Oρψ ∈ Hn(π;Oρ)

holds, then Iφ(M) = Iψ(N).

(ii) If Ñψ is nonorientable and

Φ∗[M ]Z2 = Ψ∗[N ]Z2 ∈ Hn(π; Z2),

then Iφ(M) ≥ Iψ(N).

Recall from section 2.1 that there is a homomorphism ρ : π → Z2 such
that ker ρψ C π1(N) is the subgroup of orientation preserving loops if and
only if Ñψ is orientable.

Note that part (i) of this theorem in the absolute case is exactly Theorem
2.1 for n ≥ 3 (and for I ∈ {σ, λ, T}). But the two-dimensional case of
Theorem 2.1 is trivial since two closed surfaces with the same fundamental
group are diffeomorphic. For the systolic constants σ and σst1 part (i) is
known in many cases by work of Babenko (see [Bab06]).

From part (ii) follows immediately:

Corollary 2.33. If both M̃φ and Ñψ are nonorientable and

Φ∗[M ]Z2 = Ψ∗[N ]Z2 ∈ Hn(π; Z2),

then Iφ(M) = Iψ(N).

For future use (see section 2.5) we will consider pseudomanifolds.

Definition 2.34 (see [Spa66], page 148). A connected closed n-dimensional
pseudomanifold X is a finite simplicial complex such that every simplex is
the face of an n-simplex, every (n− 1)-simplex is the face of exactly two n-
simplices, and for every two n-simplices s and s′ there exists a finite sequence
s = s1, . . . , sm = s′ of n-simplices such that si and si+1 have an (n− 1)-face
in common.
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Remark. Since every pseudomanifold X admits a CW decomposition with
exactly one n-cell (see [Sab06], Lemma 2.2), we find that Hn(X;Oρ) is either
0 or isomorphic to Z depending on the homomorphism ρ : π1(X) → Z2.
Since there is no notion of orientation preserving paths in X, there may
be more than one homomorphism ρ : π1(X) → Z2 (or indeed none) with
Hn(X;Oρ) ∼= Z. Nevertheless, Hn(X; Z2) = Z2 in any case.

To prove Theorem 2.32 we need the following topological theorem, whose
proof uses almost everything of section 2.1.

Theorem 2.35. Let X be a connected closed pseudomanifold of dimension
n ≥ 3, and let N be a connected closed manifold of the same dimension.
Let φ : π1(X) � π and ψ : π1(N) � π be two epimorphisms, and let
Φ : X → K(π, 1) and Ψ : N → K(π, 1) be the associated maps.

(i) If either there is a homomorphism ρ : π → Z2 such that both homology
groups Hn(X;Oρφ) 6= 0 and Hn(N ;Oρψ) 6= 0 and

Φ∗[X]Oρφ = Ψ∗[N ]Oρψ ∈ Hn(π;Oρ),

(ii) or if Ñψ is nonorientable and

Φ∗[X]Z2 = Ψ∗[N ]Z2 ∈ Hn(π; Z2),

then there exists an extension (X ′, φ′) of (X,φ) and a strictly (n, 1)-monotone
map h : N → X ′ such that

ψ = φ′ ◦ h∗ and

h∗[N ]K = i∗[X]K ∈ Hn(X
′; K),

where i : X ↪→ X ′ is the inclusion.

Proof. Use φ to identify π1(X)/ kerφ = π. Choose a CW decomposition
of X. Now, attach (possibly infinitely many) 2-cells to X whose attaching
loops generate kerφ. Thus, we get a CW complex X(2) that has fundamental
group π1(X(2)) = π. Next attach 3-cells to X(2) and kill π2(X(2)) and then
4-cells to kill the third homotopoy group and so on. We obtain a sequence
X ⊂ X(2) ⊂ X(3) ⊂ . . . of CW complexes that fulfill

π1(X(k)) = π and πs(X(k)) = 0 for 2 ≤ s < k.

This gives a CW decomposition of K(π, 1), and we have

X(n− 1) = K(π, 1)(n−1) ∪

( ⋃
e n-cell of X

e

)
and

X(k) = K(π, 1)(k) for k ≥ n.
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By Lemma 2.6, the map Ψ gives a map

g : N → X(n)

such that g∗[N ]K = i∗[X]K.
Lemma 2.5 shows that we may deform g to

ĝ : N → X(n− 1)

with ĝ∗[N ]K = i∗[X]K in Hn(X(n − 1); K). Moreover, ĝ is strictly (n, 1)-
monotone.

By compactness, we may choose a finite subcomplex X ⊂ X ′ ⊂ X(n− 1)
such that ĝ(N) ⊂ X ′ and ĝ∗[N ]K = i∗[X]K in Hn(X

′; K). Together with the
epimorphism φ′ : π1(X

′) � π that is induced by the inclusion X ′ ↪→ X(n−1)
this defines an extension of (X,φ). We finally obtain h := ĝ : N → X ′ having
the asserted properties.

Remark. Theorem 2.35 does not hold in dimension two. For example consider
a closed oriented surface Σ of genus g ≥ 2 and the torus T 2. Let Φ : Σ → T 2

be a degree one map. Since the torus is aspherical we are in the situation
of case (i) of the theorem. Let X be an extension of Σ, i. e. it is obtained
by attaching finitely many 1-cells to Σ. It is easy to see that there is no
map h : T 2 → X that induces a nontrivial homomorphism in 2-dimensional
homology.

Proof of Theorem 2.32. This is a direct consequence of Theorem 2.35 and
the axioms: by the weak comparison axiom and the extension axiom we find

Iψ(N) ≤ Iφ′(X
′) = Iφ(X).

In case where X = M is a manifold, we get the equality of (i) by changing
the roles of M and N .

2.4.2 Degree one maps

In the remainder of this section, we will suppose that I depends only on kerφ,
not on φ itself. This allows us in many situations to assume without loss of
generality that the group homomorphisms φ : π1(X) → π are surjective.

Theorem 2.32 has the following immediate consequence which improves
the homotopy invariance from Corollary 2.30.

Definition 2.36. A map f : M → N between manifolds is called orienta-
tion-true if it maps orientation preserving loops to orientation preserving
ones and orientation reversing loops to orientation reversing ones.
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Corollary 2.37. If f : M → N is an orientation-true map of absolute degree
one between two connected closed manifolds of dimension n ≥ 3, then

Iψ◦f∗(M) = Iψ(N)

for any homomorphism ψ : π1(N) → π.

Recall that maps of absolute degree one are always surjective on funda-
mental groups (see paragraph 2.1.5). Using this, Corollary 2.37 is a direct
application of Theorem 2.32 respectively of Corollary 2.33.

In [KȩdKM06], Kȩdra, Kotschick, and Morita proved the following theo-
rem (Theorem 4):

Theorem 2.38 (Kȩdra, Kotschick, Morita). Let M be a closed oriented
manifold with nonvanishing volume flux group Γµ. Then M has a finite
covering M̄ whose minimal volume entropy λ(M̄) vanishes.

Their proof on pages 1260–1264 may be shortened and simplified in the
following way: it starts with the construction of a map Φ : S1×F → M̄ from a
closed oriented product manifold S1×F to a finite covering M̄ of M . Lemma
24 on page 1261 states that Φ has degree one and induces an isomorphism
on fundamental groups. Therefore, λ(M̄) = λ(S1 × F ) by Corollary 2.37.
Since the minimal volume entropy of S1×F vanishes by the vanishing of the
minimal volume MinVol(S1×F ) (see [KȩdKM06] for details), this proves the
cited theorem.

2.4.3 Adding simply-connected summands

It is rather difficult to investigate the behaviour of the invariants under con-
nected sums. The easiest case is when one of the summands is simply-
connected. The next corollary was already known for I = λ and I = σ by
[Bab95].

Corollary 2.39. Let M and N be two connected closed manifolds, and let
φ : π1(M) → π be a homomorphism. If N is simply-connected, then

Iφ(M#N) = Iφ(M).

Proof. Let n := dimM = dimN . Note that for n = 2, we necessarily have
N ∼= S2 and thus M#N ∼= M . So we may assume n ≥ 3. Since the map
M#N → M is orientation-true, has absolute degree one, and induces an
isomorphism on the fundamental group the respective values of I coincide
by Corollary 2.37.

This result is generalized to nonessential orientable summands in Corol-
lary 2.46.
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2.4.4 Z2-systoles

Next, we want to look at the case φ : π1(M) � Z2 and in particular at man-
ifolds with fundamental group Z2. Since for finite Galois groups the stable
1-systolic constant, the minimal volume entropy, and the spherical volume
vanish, we concentrate on the systolic constant in this paragraph. Thus, we
may use the classification from Corollary 2.24. Denote σn := σ(RPn) > 0.

Corollary 2.40. Let M be a connected closed manifold of dimension n ≥
3, and let φ : π1(M) � Z2 be an epimorphism. Then σφ(M) ≤ σn, and
σφ(M) = 0 if and only if Φ∗[M ]Z2 = 0. Moreover, if M̃φ is orientable, then

σφ(M) =

{
σn Φ∗[M ]Z2 6= 0

0 Φ∗[M ]Z2 = 0

In particular, σφ(M) = 0 for M orientable and n even, and also for M
nonorientable, M̃φ orientable and n odd.

Proof. Note that K(Z2, 1) = RP∞. Hence

Hn(Z2; Z) =

{
Z2 n odd

0 n > 0 even

and

Hn(Z2;OId) =

{
0 n odd

Z2 n > 0 even

Furthermore, Hn(Z2; Z2) = Z2 for all n ≥ 0.
Note that Φ∗[M ]K = 0 if and only if Φ∗[M ]Z2 = 0. Hence, σφ(M) =

0 if and only if Φ∗[M ]Z2 = 0 by the classification of φ-systolic manifolds.
Moreover, Φ∗[M ]K = 0 in the two particular cases mentioned at the end of
the corollary.

If Φ∗[M ]Z2 6= 0, then Φ∗[M ]K = i∗[RPn]K. Thus, Theorem 2.32 finishes
the proof.

Apart from the statement that σφ(M) ∈ {0, σn} for M nonorientable and
M̃φ orientable, this was already proved by Babenko in [Bab04].

In the special case π1(M) = Z2, this corollary gives

σ(M) =

{
σn Φ∗[M ]Z2 6= 0

0 otherwise

where Φ : M → RP∞ denotes the classifying map of the universal covering.
Note that this statement also holds for n = 2 since here M ∼= RP2.
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Furthermore, the homomorphism Φ∗ : Hn(M ; Z2) → Hn(RP∞; Z2) is an
isomorphism if and only if the induced homormophism Φ∗ on n-dimensional
cohomology (with Z2 coefficients) is an isomorphism. Since H∗(RP∞; Z2) =
Z2[α

′] with α′ ∈ H1(RP∞; Z2) the generator, Corollary 2.2 follows immedi-
ately.

2.5 An inequality between the systolic con-

stant and the minimal volume entropy

This section is devoted to the proof of Theorem 2.3. In the first paragraph,
the extension axiom for the systolic constant and the minimal volume entropy
is improved. This strong version of the extension axiom, Gromov’s geometric
cycles, and Sabourau’s computations from [Sab06] are used in the second
paragraph to prove Theorem 2.3. Note that in this proof, it is really necessary
to consider relative versions of the invariants, even if one is only interested
in the absolute case.

2.5.1 Strong extension axiom

In the extension axiom of paragraph 2.2.4, we assumed that the simplicial
complex X is given together with a surjective homomorphism φ : π1(X) � π.
This guarantees that the Galois groups of the coverings X̃ ′

φ′ and X̃φ coincide.
Without this assumption the Galois group of the extended complex X ′ can
become extremely large compared to the original one. Think for instance of
X = T n with φ : Zn ↪→ Zn∗Z the inclusion in the first factor andX ′ = T n∨S1

with φ′ the identity. Here, the Galois group of X̃φ has polynomial growth
whereas the one of X̃ ′

φ′ grows exponentially. Nevertheless, we can show that
the systolic constant and the minimal volume entropy behave well in this
situation.

Strong extension axiom. Let (X ′, φ′) be an extension of (X,φ). Then

Iφ′(X
′) = Iφ(X).

We will show that the systolic constant and the minimal volume entropy
satisfy this axiom. This is quite easy for the systolic constant, but in case
of the minimal volume entropy there is some effort necessary. We will ap-
proximate Riemannian norms Lg,x (see the remark after Definition 2.16) by
simpler and more regular norms. This idea is due to Manning (see [Man05]).
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Definition 2.41. Let G be a finitely generated group, and S ⊂ G be fi-
nite generating set that is symmetric, that is S−1 = S. Throughout this
paragraph, all generating sets will be assumed symmetric. For a norm
L : G→ [0,∞) one defines another norm

NL,S(g) := inf{
∑n

i=1L(si)|g = s1 · · · sn, si ∈ S}.

These norms will be called generator norms.

Remark. If one takes L = 1 the norm that assigns 1 to each nontrivial element
of G, thenN1,S is the well-known word norm or word length on G with respect
to S.

Lemma 2.42. The entropy (see Definition 2.16) of generator norms is well-
defined, and one has

λ(G,NL,S) = inf
t>0

(1
t
log βNL,S(t) + 1

t
log #S).

Proof. Write β := βNL,S . We have

β(r + t) ≤ β(r)β(t)#S. (∗)

This may be seen in the following way: if NL,S(g) ≤ r + t, then choose a
minimal representation g = s1 · · · sn, i. e. one fulfilling NL,S(g) =

∑n
i=1 L(si).

Choose k ∈ N0 such that

k∑
i=1

L(si) ≤ r and
k+1∑
i=1

L(si) > r.

Define g1 := s1 · · · sk and g2 := sk+2 · · · sn. Then g = g1sk+1g2, and we have

NL,S(g1) =
k∑
i=1

L(si) ≤ r and

NL,S(g2) =
n∑
i=1

L(si)−
k+1∑
i=1

L(si) ≤ r + t− r = t.

This proves equation (∗).
Now, let r and t be arbitrary positive real numbers, and choose k ∈ N0

such that kt < r ≤ (k + 1)t. Then

β(r) ≤ β((k + 1)t) ≤ β(kt)β(t)#S ≤ . . . ≤ β(t)β(t)k#Sk
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by (∗), and consequently

1
r
log β(r) ≤ 1

r
log β(t) + k

r
log(β(t)#S) ≤ 1

r
log β(t) + 1

t
log(β(t)#S).

Therefore,
lim sup
r→∞

1
r
log β(r) ≤ 1

t
log(β(t)#S)

for all t > 0. Hence

lim sup
r→∞

1
r
log β(r) ≤ inf

t>0
(1
t
log β(t) + 1

t
log #S) ≤ lim inf

t→∞
1
t
log β(t).

Thus, λ(G,NL,S) = limr→∞
1
r
log β(r) exists and fulfills the claimed equality.

To prove the strong extension axiom for the minimal volume entropy
we have to consider the case of one attached circle. The idea is to let its
length grow to infinity. The following proposition investigates the analogous
situation for generator norms.

Proposition 2.43. Let G and H be finitely generated groups, and let LG
and LH be generator norms with respect to the finite generating sets S and
T , i. e. LG = NLG,S respectively LH = NLH ,T . Then LG ∗ %LH is a generator
norm on G ∗H with respect to S ∪ T for every % > 0. In this situation, the
following equation holds:

lim
%→∞

λ(G ∗H,LG ∗ %LH) = λ(G,LG).

Proof. Let ε > 0. Choose R > 0 such that

1
R

log βLG(R) ≤ λ(G,LG) + ε and
1
R

log(#S + #T ) ≤ ε.

Whenever % ·mint∈T LH(t) > R, we have

βLG∗%LH (R) = βLG(R)

since no elements of H \ 1 are involved, yet. Hence by Lemma 2.42

λ(G ∗H,LG ∗ %LH) ≤ 1
R

log βLG∗%LH (R) + 1
R

log(#S + #T )

≤ λ(G,LG) + 2ε.

Therefore lim sup%→∞ λ(G ∗H,LG ∗ %LH) ≤ λ(G,LG). But

λ(G ∗H,LG ∗ %LH) ≥ λ(G,LG)

is obvious. Thus, the limit exists and equals λ(G,LG).
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In the next proposition, we want to use Manning’s approximation result
from [Man05]. Since we have to swap the limit %→∞ with the approxima-
tion, we need to control the quality of the approximation.

Proposition 2.44. Let (X, g) be a connected finite Riemannian simplicial
complex, and let φ : π1(X) → π be a homomorphism. As usual denote by
Lg,x the induced norm on the Galois group Γ := π1(X)/ kerφ. Furthermore
let LH be a generator norm on a finitely generated group H with respect to
the finite generating set T ⊂ H. Then

lim
%→∞

λ(Γ ∗H,Lg,x ∗ %LH) = λ(Γ, Lg,x).

Proof. Write Lg := Lg,x. Choose a fundamental domain F ⊂ X̃φ with diam-
eter D and x ∈ F . Let R be an arbitrary positive real number. Write

h = γ0h1γ1 · · ·hnγnhn+1 ∈ Γ ∗H

with γ0 ∈ Γ, γ1, . . . , γn ∈ Γ \ 1, h1, . . . , hn ∈ H \ 1, hn+1 ∈ H, and choose
k ∈ N0 such that

(k − 1)R < Lg ∗ %LH(h) =
n∑
i=0

Lg(γi) + % ·
n+1∑
i=1

LH(hi) ≤ kR.

Furthermore, let k0, . . . , kn ∈ N0 such that

(ki − 1)R < Lg(γi) ≤ kiR.

Think of the γi as shortest geodesics in X̃φ starting at x and ending at
γix. Pick points αij ∈ Γ, j = 1, . . . , ki − 1 such that

d(γi(jR), αijx) ≤ D

and set αi0 = 1, αiki = γi. Then

Lg(α
−1
ij αi,j+1) = d(αijx, αi,j+1x) ≤ R + 2D.

Put S := {α ∈ Γ|Lg(α) ≤ R + 2D}. (This is a finite generating system of Γ
as we just have shown.) Then

NLg ,S(γi) ≤ ki · (R + 2D)
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and

NLg ,S ∗ %LH(h) ≤
n∑
i=0

ki(R + 2D) + % ·
n+1∑
i=1

LH(hi)

≤
n∑
i=0

(ki(R + 2D)− (ki − 1)R) +
n∑
i=0

Lg(γi) + % ·
n+1∑
i=1

LH(hi)

≤
n∑
i=0

(ki2D +R) + kR

≤ (k + n+ 1)(R + 2D)

since
∑n

i=0 ki ≤ k + n+ 1. Hence

βLg∗%LH (kR) ≤ βNLg,S∗%LH ((k + n+ 1)(R + 2D))

and thus

lim sup
r→∞

1
r
log βLg∗%LH (r) = lim sup

k→∞

1
kR

log βLg∗%LH (kR)

≤ lim
k→∞

1
kR

log βNLg,S∗%LH ((k + n+ 1)(R + 2D))

= R+2D
R

λ(Γ ∗H,NLg ,S ∗ %LH).

Since every norm L satisfies L ≤ NL,S by the triangle inequality, we see that

lim inf
r→∞

1
r
log βLg∗%LH (r) ≥ λ(Γ ∗H,NLg ,S ∗ %LH).

Thus, the volume entropy of Lg ∗ %LH exists and equals the supremum

λ(Γ ∗H,Lg ∗ %LH) = sup
S
λ(Γ ∗H,NLg ,S ∗ %LH)

over all finite generating systems S of Γ.
Moreover,

λ(Γ ∗H,Lg ∗ %LH) ≤ R+2D
R

λ(Γ ∗H,NLg ,S ∗ %LH).

Now, if %→∞, then by Proposition 2.43 the right-hand side goes to

R+2D
R

λ(Γ, NLg ,S) ≤ R+2D
R

λ(Γ, Lg).

Since R > 0 was arbitrary, we get

lim sup
%→∞

λ(Γ ∗H,Lg ∗ %LH) ≤ λ(Γ, Lg).

But λ(Γ ∗H,Lg ∗ %LH) ≥ λ(Γ, Lg) is again obvious. Hence, the limit exists
and equals λ(Γ, Lg).
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Theorem 2.45. The strong extension axiom is fulfilled by the systolic con-
stant I = σ and the minimal volume entropy I = λ.

Proof. By the comparison axiom we have Iφ(X) ≤ Iφ′(X
′) since the inclusion

X ↪→ X ′ is (n, 1)-monotone. We may proceed by induction, attaching one
cell at a time. The case where the Galois group Γ := π1(X)/ kerφ does not
change is already covered by the extension axiom since here φ and φ′ factor
into epimorphisms onto this quotient and the induced inclusion Γ ↪→ π.

The case remaining to be investigated is therefore the following: let X ′ =
X ∪hD1 where h : S0 → X is simplicial, and let φ′ : π1(X

′) ∼= π1(X)∗Z → π
be an extension of the given homomorphism φ.

First, consider the simplicial complex Y := X ∨ S1 where the circle is
attached at h(1) ∈ X. Using a path from h(−1) to h(1) in X, we get a
homotopy equivalence f : X ′ → Y and thus may define ψ := φ′ ◦ f−1

∗ . Note
that (Y, ψ) is again an extension of (X,φ) and that f is (n, 1)-monotone and
has an (n, 1)-monotone homotopy inverse. Hence, Iφ′(X

′) = Iψ(Y ) and it
remains to show that Iψ(Y ) ≤ Iφ(X).

Case 1: I = σ. Let g be a Riemannian metric on X. Extend it over Y by
assigning the length sysφ(X, g) to the attached circle. Then both sysψ(Y, g) =
sysφ(X, g) and Vol(Y, g) = Vol(X, g), and consequently σψ(Y ) ≤ σφ(X). (If
the φ-systole of (X, g) is not finite, i. e. if kerφ = π1(X), then use a sequence
of metrics where the length of the attached circle tends to infinity.)

Case 2: I = λ. Again, let a Riemannian metric g on X be given. Define
g% to be the extension over Y that assigns the length % > 0 to the circle S1.
Then Vol(Y, g%) = Vol(X, g).

Take the attaching point x = h(1) as base point. Then π1(Y ) = π1(X)∗Z.
Consider the homomorphism

π1(Y )
φ∗Id−−→ π ∗ Z.

We see that ker(φ ∗ Id) ⊂ kerψ, and thus

λφ∗Id(Y ) ≥ λψ(Y ).

With L : Z → [0,∞) denoting the standard word norm we have

λφ∗Id(Y, g%) = λ(Γ ∗ Z, Lg,x ∗ %L)
%→∞−−−→ λ(Γ, Lg,x) = λφ(X, g)

by Proposition 2.44. Thus, λφ(X) ≥ λφ∗Id(Y ) ≥ λψ(Y ).

Remark. The stable 1-systolic constant does not satisfy the strong extension
axiom in this form. See paragraph 4.1.2 for a better suited version of the
strong extension axiom in the case of stable systoles.
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The strong extension axiom has the following consequence, which sharp-
ens Corollary 2.39.

Corollary 2.46. Let M and N be two connected closed manifolds of dimen-
sion n ≥ 3, and let φ : π1(M) → π and ψ : π1(N) → π′ be two homomor-
phisms. If N is orientable and not ψ-essential, then

Iφ∗ψ(M#N) = Iφ(M)

for I the systolic constant or the minimal volume entropy.

In the case of the systolic constant, this corollary was proved in [Bab03],
Proposition 4.2.

Proof. First, consider the homomorphism p : π ∗ π′ � π. By definition,
Iφ∗ψ(M#N) ≥ Ip◦(φ∗ψ)(M#N). But this second value equals Iφ(M) by
Corollary 2.37. In this step, the assumption on the orientability of N is
used.

On the other hand, since N is not ψ-essential the map Ψ : N → K(π′, 1)
corresponding to ψ may be chosen to have image in the (n − 1)-skeleton.
Thus, the map Φ ∨ Ψ : M#N → K(π, 1) ∨K(π′, 1) factorizes over Id∨Ψ :
M#N →M∨K whereK ⊂ K(π′, 1)(n−1) is a finite subcomplex that contains
the image of Ψ.

Therefore, Iφ∗ψ(M#N) ≤ Iφ∗ι∗(M ∨ K) by the weak comparison axiom
where ι : K ↪→ K(π′, 1) is the inclusion. But M ∨ K is an extension of
M . Hence Iφ∗ι∗(M ∨K) = Iφ(M) by the strong extension axiom, and conse-
quently Iφ∗ψ(M#N) ≤ Iφ(M).

The manifold N is not ψ-essential if and only if σψ(N) = 0 (see paragraph
2.2.5). It is an open question whether the above corollary in the case of the
minimal volume entropy also holds if one replaces the assumption that N is
not ψ-essential by λψ(N) = 0.

2.5.2 Geometric cycles

In this paragraph, we will investigate the relation between the systolic con-
stant and the minimal volume entropy. In doing so, we will prove a relative
analogue of Theorem 2.3.

Definition 2.47. Let π be a group, ρ : π → Z2 a homomorphism, and
a ∈ Hn(π;Oρ) a homology class. Define

I(a) := inf
(X,Ψ)

IΨ∗(X),
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where the infimum is taken over all geometric cycles (X,Ψ) representing the
homology class a, i. e. over all maps Ψ : X → K(π, 1) from a connected
closed n-dimensional pseudomanifold X to K(π, 1) with Hn(X;OρΨ∗) 6= 0
and Ψ∗[X]OρΨ∗ = a. For coefficients in Z2 we use the analogous definition.

The next theorem shows that if there is a geometric cycle that is defined on
a manifold and that is surjective on fundamental groups, then it is minimal.

Theorem 2.48. If I fulfills the strong extension axiom and the weak com-
parison axiom, then

I(Φ∗[M ]K) = IΦ∗(M)

for any connected closed manifold M of dimension n ≥ 3 with Φ : M →
K(π, 1) such that Φ∗ : π1(M) � π is surjective. (We use K the orientation
bundle of M if the covering M̃Φ∗ is orientable and K = Z2 otherwise.)

Proof. Let (X,Ψ) be a geometric cycle representing Φ∗[M ]K. Then there
exists another geometric cycle (X ′,Ψ′) representing the same homology class
such that Ψ′ maps the fundamental group of X ′ surjectively onto π and
such that IΨ′

∗(X
′) = IΨ∗(X). This can be seen as follows: let γ1, . . . , γm be

generators of π. Think of the γi as closed curves in K(π, 1) and define

X ′′ := X ∨

(
m∨
i=1

S1

)
and

Ψ′′ := Ψ ∨

(
m∨
i=1

γi

)
: X ′′ → K(π, 1).

Then Ψ′′
∗[X

′′]K = Φ∗[M ]K (here [X ′′]K is the image of [X]K under the inclusion
X ↪→ X ′′) and the induced homomorphism Ψ′′

∗ on the fundamental group is
an epimorphism. By the strong extension axiom IΨ′′

∗ (X
′′) = IΨ∗(X).

Now, consider the pseudomanifold

X ′ := X #

(
m

#
i=1

(Sn/{± pt})
)
,

where Sn/{± pt} is the n-sphere with two points identified. The projection
of Sn to a closed interval such that ± pt are mapped to the boundary points
induces a map Sn/{± pt} → S1. Let p : X ′ → X ′′ be the composition of the
projection

X ′ → X ∨

(
m∨
i=1

Sn/{± pt}

)
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with this map on each Sn/{± pt}. Define

Ψ′ := Ψ′′ ◦ p : X ′ → K(π, 1).

Note that p is a homotopy equivalence. Thus, Ψ′ induces a surjection on
fundamental groups, Hn(X

′; K) 6= 0, and (X ′,Ψ′) represents Φ∗[M ]K.
Since p can be chosen strictly (n, 1)-monotone and has a strictly (n, 1)-

monotone homotopy inverse, we get

IΨ′
∗(X

′) = IΨ′′
∗ (X

′′) = IΨ∗(X)

by the weak comparison axiom. From Theorem 2.35, the weak comparison
axiom, and the extension axiom, it follows that IΦ∗(M) ≤ IΨ′

∗(X
′) = IΨ∗(X).

Now, we follow [Sab06], sections 4 and 5. First, we need the following
theorem of Gromov about the existence of regular geometric cycles.

Theorem 2.49 ([Gro83], pages 70, 71). There exists a constant An > 0 such
that for all ε > 0 there is a geometric cycle (X,Ψ) representing a ∈ Hn(π; K)
and a Riemannian metric g on X such that

σΨ∗(X, g) ≤ (1 + ε)σ(a)

and

Vol(B(x,R)) ≥ AnR
n

for all x ∈ X and all ε ≤ R/ sysΨ∗(X, g) ≤
1
2
. (Here, B(x,R) denotes the

ball around x ∈ X of radius R with respect to g.) Such cycles are called
ε-regular.

In fact, Gromov proved this only for K = Z and K = Z2 but it remains
true for local integer coefficients with the same arguments. On ε-regular
geometric cycles one can compare the systolic constant and the minimal
volume entropy.

Proposition 2.50 ([Sab06], Proposition 4.1). Let (X, g,Ψ) be an ε-regular
geometric cycle. Then

λΨ∗(X, g) Vol(X, g)1/n ≤ σΨ∗(X, g)
1/n

β
log

σΨ∗(X, g)

Anαn

for all α ≥ ε, β > 0 with 4α+ β < 1
2
.
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From this proposition and Theorem 2.49 it follows directly that

λ(a) ≤ σ(a)1/n

β
log

σ(a)

Anαn

for all α, β > 0 with 4α + β < 1
2
. The calculation from the proof of [Sab06],

Theorem 5.1 shows:

Corollary 2.51. There exists a constant cn > 0 such that

σ(a) ≥ cn
λ(a)n

logn(1 + λ(a))
.

Combined with Theorem 2.48 this proves:

Theorem 2.52. Let M be a connected closed manifold of dimension n ≥ 3,
and let φ : π1(M) � π be an epimorphism. There exists a positive constant
cn depending only on n such that

σφ(M) ≥ cn
λφ(M)n

logn(1 + λφ(M))
.

Special cases of this statement were shown by Sabourau (see [Sab06]).
Note that the absolute version of this theorem is in fact Theorem 2.3 for
n ≥ 3. The two-dimensional case was proved in [KatSa05]. Thus, Theorem
2.3 is shown.

Again, let M be a connected closed manifold of dimension n, and let g
be a Riemannian metric on M . Denote by Inj(M, g) the injectivity radius of
the Riemannian manifold (M, g). The embolic constant is defined by

Emb(M) := inf
g

Vol(M, g)

Inj(M, g)n
,

where the infimum is taken over all Riemannian metrics g on M . Berger
proved in [Ber80] that

Emb(M) ≥ Vol(Sn, g1)

Inj(Sn, g1)n
= Emb(Sn)

where g1 denotes the round metric of radius 1 on the sphere. Note that
Inj(Sn, g1) = π.

Obviously, sys(M, g) ≥ 2 Inj(M, g) since every loop of shorter length lies
in a ball of radius less than the injectivity radius and is contractible there-
fore. Hence Emb(M) ≥ 2nσ(M), and the following corollary is a direct
consequence of Theorem 2.3.
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Corollary 2.53. Let M be a connected closed manifold of dimension n.
There exists a positive constant c′n depending only on n such that

Emb(M) ≥ c′n
λ(M)n

logn(1 + λ(M))
.

A direct proof of this inequality is given in [KatSa05], Theorem 2.3.
Therein, Gromov’s bound on the volume of balls in regular geometric cycles
(Theorem 2.49) is replaced by the following bound by Croke which is valid
in every Riemannian manifold. Namely, it is shown in [Cro80], Proposition
14 that

Vol(B(x,R)) ≥ A′nR
n

for every R ≤ Inj(M, g)/2. Thus, an inequality analogous to the one in
Proposition 2.50 with the systolic constant replaced by the embolic constant
is valid for all manifolds, not only for regular geometric cycles. From this,
Corollary 2.53 follows easily.



Chapter 3

Filling inequalities do not
depend on topology

One of the most important curvature-free bounds on the volume of a Rie-
mannian manifold is provided by Gromov’s universal systolic inequality

sys(M, g)n ≤ Cn · Vol(M, g), (∗)

which holds for all connected closed n-dimensional Riemannian manifolds
(M, g) that are essential (see paragraph 2.2.5). Recall that M is called es-
sential if there exists an aspherical complex K and a map M → K that does
not contract to the (n− 1)-skeleton of K. For instance, all aspherical man-
ifolds are essential. The (one-dimensional) systole sys(M, g) is the length
of the shortest noncontractible loop in M . A proof of (∗) can be found in
[Gro83], Appendix 2, (B’1). (Note also the paper [Gut06a], which contains a
more detailed version of Gromov’s proof.)

If one takes into account the topology of M , then the optimal (smallest)
value of the constant C(M) such that an inequality (∗) holds for all Rie-
mannian metrics g on M can be improved. This best value is given by the
optimal systolic ratio

SR(M) := sup
g

sys(M, g)n

Vol(M, g)
.

(This is just the reciprocal of the one-dimensional systolic constant σ(M)
from chapter 2.)

Its exact value is known only for three essential manifolds apart from
the trivial case of the circle: the two-torus (SR(T 2) = 2/

√
3, Loewner, un-

published), the real projective plane (SR(RP2) = π/2, Pu, [Pu52]), and the
Klein bottle (SR(RP2#RP2) = π/2

√
2, Bavard, [Bav86]).

59
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Nevertheless, it is known that SR(M) varies with M . For example
SR(T n) ≥ 1 by a trivial computation for the flat torus that is obtained
from the standard lattice in Rn. But there exist hyperbolic manifolds Mhyp

with arbitrarily small optimal systolic ratio: Gromov proved an upper bound
for the optimal systolic ratio by the simplicial volume

SR(M) ≤ c′n
logn(1 + ‖M‖)

‖M‖
,

which holds for all connected closed manifolds ([Gro83], Theorem 6.4.D’,
compare also Theorem 2.3 of the present text). For hyperbolic manifolds the
simplicial volume is known to be proportional to the volume:

‖Mhyp‖ = R−1
n · Vol(Mhyp),

where Rn denotes the volume of the ideal regular n-simplex in hyperbolic
space. (This is due to Gromov and Thurston, see [Gro82], page 11.) Since
there are hyperbolic manifolds of arbitrarily large volume (just take a se-
quence of finite coverings with the number of sheets tending towards infinity),
the above inequality shows that SR(Mhyp) can become arbitrarily small.

To prove the systolic inequality (∗), Gromov introduced the filling radius
and the filling volume of a Riemannian manifold. In [Gro83], Theorem 1.2.A
and Theorem 2.3 he derived the universal filling inequalities

FillRad(M, g)n ≤ An · Vol(M, g) and

FillVol(M, g)n/(n+1) ≤ Bn · Vol(M, g),

that hold for all connected closed Riemannian manifolds. (Recently, Wenger
found a shorter proof for the second inequality, see [Wen07].) Again fixing
the manifoldM , one defines in analogy to the systolic ratio two optimal filling
ratios :

FR(M) := sup
g

FillRad(M, g)n

Vol(M, g)
and

FV(M) := sup
g

FillVol(M, g)n/(n+1)

Vol(M, g)
.

These topological invariants are the best values for the constants A(M) and
B(M) such that the filling inequalities hold for all Riemannian metrics g on
M .

In contrast to the behaviour of the optimal systolic ratio, the main result
of this chapter is the following:
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Theorem 3.1. If M and N are two connected closed manifolds of the same
dimension n ≥ 3 and if they are either both orientable or both nonorientable,
then

FR(M) = FR(N) and FV(M) = FV(N).

This is Theorem 1.7 from the introduction. It will be proved as a part
of the more detailed Theorem 3.13. The proof uses an axiomatic approach,
that was first introduced by Babenko in [Bab06] to investigate the optimal
systolic ratio, and that was applied to further invariants in [Sab06] and in the
second chapter of this thesis. Similar notions can already be found in works
of Babenko, Katz, and Suciu on systolic freedom, see for example [BabK98],
[BabKS98], [KatSu99], and [KatSu01]. The keywords are ‘meromorphic map’
and ‘(n, k)-morphism’ (see also [CroK03], section 4.3).

The main idea is more or less the same as in the proof of Theorem 2.1 in
chapter 2. Both optimal filling ratios fulfill a comparison axiom that roughly
says that if there is a degree one map M → N , then F(M) ≥ F(N). (Here
and later on, F will always serve as a placeholder for FR or FV.) Moreover,
they also satisfy an extension axiom which says that if one attaches finitely
many cells of dimension strictly less than the dimension of the manifold, then
the value of the filling ratios does not change. The CW complex obtained in
this way is called an extension of the original manifold.

In contrast to chapter 2, the invariants under consideration do not depend
on the fundamental group. Therefore, homological invariance reduces to
constancy: if M and N have the same orientation behaviour, then there
exists an extension X of N and a ‘degree one’ map M → X. (This is a
special case of the more general Theorem 2.35 from the preceeding chapter.
In the orientable case, this can be seen more directly by using the Hurewicz
theorem.) Applying both axioms one sees that

F(M) ≥ F(X) = F(N).

Inverting the roles of M and N gives equality and proves the theorem.
This chapter is organized as follows: first, the definitions of the filling

invariants and some useful lemmata are recalled. The main part of the proof
can be found in paragraph 3.1.2, where the optimal filling ratios are shown
to satisfy the comparison and extension axioms. In section 3.2, the proof of
Theorem 3.1 will be concluded. Finally, the results and some open questions
are discussed.

Before starting to define the filling invariants, we want to direct the
reader’s attention to another curvature-free bound on the volume of a Rie-
mannian manifold: the embolic inequality. (An extensive overview of curva-
ture-free inequalities is provided by Chapter 7.2 of Berger’s book [Ber03] and
by the survey article [CroK03].)
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Berger and Kazdan proved in [BerK80] that every connected closed Rie-
mannian manifold (M, g) of dimension n fulfills

Inj(M, g)n ≤ En · Vol(M, g),

where Inj(M, g) denotes the injectivity radius . Moreover, Berger showed that
the best universal constant En is given by

Inj(Sn, g1)
n

Vol(Sn, g1)
=
πn

σn

where σn denotes the volume of the n-dimensional round sphere of radius 1
(see [Ber80]).

As before, we may define an optimal embolic ratio ER(M) by taking the
supremum of the ratio Inj(M, g)n/Vol(M, g) over all Riemannian metrics
on M . (This is the reciprocal of the embolic constant Emb(M) defined in
paragraph 2.5.2.) By Berger’s theorem ER(M) ≤ ER(Sn).

In contrast to the filling ratios, the embolic ratio is not constant. This
was shown by Croke in [Cro88] where he proved that ER(M) = ER(Sn) if
and only if M is homeomorphic to the sphere.

3.1 Optimal filling ratios

In the first paragraph of this section, the filling invariants and ratios are
defined. Moreover, important techniques are recalled from Gromov’s Filling
paper [Gro83]. The second paragraph contains the proofs that both optimal
filling ratios satisfy suitable comparison and extension axioms.

3.1.1 Filling radius and filling volume

The filling radius and the filling volume were introduced by Gromov in his
Filling paper [Gro83]. Using piecewise smooth Riemannian metrics (see Def-
nition 2.11), their definitions extend to simplicial complexes. Before recalling
these definitions, we will focus on the so-called ‘universal property’ of the Ba-
nach space of all bounded functions on some set.

Definition 3.2. Let f : Y → X be a continuous map between metric spaces.
The dilation of f is given by

dil(f) := sup
y,y′∈Y,y 6=y′

d(f(y), f(y′))

d(y, y′)
,
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i. e. it is the smallest Lipschitz constant for f . We define the dilation of f
with respect to y as

dil(f, y) := sup
y′∈Y,y 6=y′

d(f(y), f(y′))

d(y, y′)
.

For a set V , let L∞(V ) denote the Banach space of all bounded functions
f : V → R with the uniform norm ‖f‖∞ := supv∈V |f(v)|. It has the
following universal property :

Lemma 3.3. Let Y ⊂ X be a nonempty subspace of a metric space, and let
f : Y → L∞(V ) be a Lipschitz map. Then the map F : X → L∞(V ) defined
by

Fx(v) := inf
y∈Y

(fy(v) + dil(f, y) · d(x, y))

is a Lipschitz continuous extension of f with dil(F ) = dil(f) and dil(F, y) =
dil(f, y) for all y ∈ Y .

The existence of an extension with the same dilation as f was shown by
Gromov (see [Gro83], page 8). However, he used the extension

F ′
x(v) := inf

y∈Y
(fy(v) + dil(f) · d(x, y))

which in general does not have the property dil(F ′, y) = dil(f, y) for all
y ∈ Y . Since in paragraph 3.1.2 we will need that the dilation with respect
to points in Y remains the same, we give a complete proof of Lemma 3.3.

Proof. A priori, F is a map to the space of functions from V to [−∞,∞).
First note that F extends f , which can be seen as follows: for any y ∈ Y

one finds

0 ≤ fy(v)− Fy(v) = sup
y′∈Y

(fy(v)− fy′(v)− dil(f, y′)d(y, y′))

≤ sup
y′∈Y

(dil(f, y′)d(y, y′)− dil(f, y′)d(y, y′)) = 0

because supv∈V |fy(v)−fy′(v)| = d(fy, fy′) ≤ dil(f, y′)d(y, y′). Hence Fy ≡ fy.
Furthermore, one has

Fx(v) = inf
y∈Y

(fy(v) + dil(f, y)d(x, y))

≤ inf
y∈Y

(fy(v) + dil(f, y)d(x′, y) + dil(f, y)d(x, x′))

≤ inf
y∈Y

(fy(v) + dil(f, y)d(x′, y) + dil(f)d(x, x′))

= Fx′(v) + dil(f)d(x, x′)
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by the triangle inequality. This shows that d(Fx, Fx′) = ‖Fx − Fx′‖∞ ≤
dil(f)d(x, x′). In particular, Fx is bounded for every x ∈ X, and F is Lip-
schitz continuous with dil(F ) ≤ dil(f). The converse inequality between the
dilations is obvious since F extends f .

Note that one always has d(fy, fy′) ≤ dil(f, y)d(x, y)+dil(f, y′)d(x, y′) for
any x ∈ X. Hence

d(Fy, Fx) = sup
v∈V

∣∣∣∣sup
y′∈Y

(fy(v)− fy′(v)− dil(f, y′)d(x, y′))

∣∣∣∣
≤ dil(f, y)d(x, y),

which proves the claim dil(F, y) = dil(f, y).

Now, assume V to be a connected finite simplicial complex of dimension
n. Let K denote Z, Q, or Z2.

Definition 3.4. Let ι : V ↪→ X be a topological embedding into a metric
space X. The K-filling radius of ι is defined as

FillRadK(ι : V ↪→ X) := inf{r > 0|ι∗ : Hn(V ; K) → Hn(Ur(ιV ); K) is zero},

where Ur(ιV ) denotes the r-neighborhood of the image ιV in X.

To define the filling volume, we need to specify a choice of volume for
singular Lipschitz chains, i. e. singular chains whose simplices are Lipschitz
continuous. Following Gromov ([Gro83], page 11 and section 4.1), we define
the volume of a singular Lipschitz simplex σ : ∆n → X in a metric space X
by

Vol(σ) := inf{Vol(∆n, g)|σ : (∆n, g) → X nonexpanding},
where g runs over all Riemannian metrics on ∆n. If c =

∑
i riσi ∈ Cn(X; K)

is a singular Lipschitz chain, its volume is defined as

Vol(c) :=
∑

i|ri|Vol(σi).

(In the case of K = Z2 the ‘absolute value’ |r| is understood as zero for
the trivial element r = 0 and as one for r 6= 0.) For a Lipschitz cycle
z ∈ Cn(X; K) the K-filling volume is given by

FillVolK(z) := inf
∂c=z

Vol(c),

where the infimum is taken over all Lipschitz chains c ∈ Cn+1(X; K) with
boundary ∂c = z.

In case that X is a Banach space, this definition corresponds to the hy-
pereuclidean volume (see [Gro83], page 33). This choice of volume has the
following nice consequence:
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Proposition 3.5 ([Gro83], Proposition 2.2.A). Let (M, g) be a connected
closed orientable Riemannian manifold of dimension n ≥ 2, and let W be
an orientable (n + 1)-dimensional manifold with boundary ∂W = M , for
example W = M × [0,∞). Then FillVolZ(M, g) equals the infimum of the
volumes Vol(W, g′) over all complete Riemannian metrics g′ on W such that
dg′|M ≥ dg holds for the induced path metrics.

From now on, all singular simplices are assumed to be Lipschitz continu-
ous.

The filling volume of an embedding ι : V ↪→ X will be the filling volume
of a canonical top-dimensional homology class. If V is a manifold, then the
fundamental class provides such a class. In the case of simplicial complexes,
we have to require the existence of a ‘fundamental class’.

Definition 3.6. A connected finite n-dimensional simplicial complex V will
be called K-orientable if Hn(V ; K) ∼= K. As in the case of manifolds, a
generator [V ]K ∈ Hn(V ; K) is called fundamental class . In the case K =
Q, we will always assume that [V ]Q lies in the integral lattice Hn(V ; Z) ⊂
Hn(V ; Q).

The last part of the definition simply says that for K = Q one takes the
integral fundamental class and allows filling cycles with rational coefficients.

Definition 3.7. Let V be a connected finite K-orientable simplicial complex.
If ι : V ↪→ X is a Lipschitz embedding into a metric spaceX, then one defines
the K-filling volume of ι as

FillVolK(ι : V ↪→ X) := FillVolK(ι∗z)

where z is a Lipschitz representative of [V ]K.

This is independent of the representing fundamental cycle. Namely, let z
and z′ be two Lipschitz representatives of [V ]K. Then there exists a Lipschitz
chain b ∈ Cn+1(V ; K) such that z′ = z + ∂b (with n = dimV ). Therefore, it
suffices to see that Vol(ι∗b) = 0. But Vol(ι∗b) ≤ Ln+1 ·Vol(b) where L > 0 is
the Lipschitz constant of ι, and Vol(b) = 0 since b is an (n + 1)-cycle in an
n-dimensional complex.

For a compact metric space (V, d) the Kuratowski embedding

ι : V ↪→ L∞(V ),

v 7→ d(v, )

is an isometric embedding by the triangle inequality.
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Let g be a piecewise smooth Riemannian metric on a connected finite
(K-orientable) simplicial complex V . With the induced path metric dg, the
complex V becomes a metric space. The associated Kuratowski embedding
will be denoted by ιg : V ↪→ L∞(V ). For this embedding the filling invariants
are denoted by

FillRadK(V, g) := FillRadK(ιg) and

FillVolK(V, g) := FillVolK(ιg).

Definition 3.8. We define the optimal filling ratios

FRK(V ) := sup
g

FillRadK(V, g)n

Vol(V, g)
and

FVK(V ) := sup
g

FillVolK(V, g)n/(n+1)

Vol(V, g)
.

These numbers are the smallest constants such that the filling inequalities

FillRadK(V, g)n ≤ A(V ) · Vol(V, g) and

FillVolK(V, g)n/(n+1) ≤ B(V ) · Vol(V, g)

are satisfied for all Riemannian metrics g on V . By Gromov’s universal
filling inequalities, one knows that for manifolds M there are upper bounds
for FRK(M) and FVK(M) depending only on the dimension. In particular,
both filling ratios are finite for manifolds.

3.1.2 Axioms for filling ratios

The content of this paragraph is the proof that the filling ratios satisfy a
comparison axiom and an extension axiom. A numerical invariant for sim-
plicial complexes is said to fulfill a comparison axiom if the existence of a
‘degree one’ map V → W implies an inequality between the respective val-
ues of this invariant. It has to be specified which maps are of ‘degree one’
(for instance (n, 1)-monotone maps as in Definition 2.9), and often there are
further assumptions on the maps, like surjectivity on fundamental groups or
on some homology groups. (Other examples can be found in chapters 2 and
4.)

An extension axiom is satisfied if attaching cells with dimension less than
the topdimension does not change the value of the considered invariant.
Again, further examples are provided by chapters 2 and 4.

The proof of Theorems 3.1 and 3.13 actually uses only these two axioms
and no other properties of the filling ratios. It will be given in section 3.2.
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Lemma 3.9 (Comparison axiom for FR and FV). If f : V → W is an (n, 1)-
monotone map between connected finite (K-orientable) simplicial complexes
of dimension n such that f∗ : Hn(V ; K) � Hn(W ; K) is surjective, then

FK(V ) ≥ FK(W )

for both F = FR and F = FV.

Proof. Let g2 be a Riemannian metric on W . Choose a Riemannian metric
g1 on V and set gt1 := f ∗g2 + t2g1. This is again a Riemannian metric on V .
One may choose t > 0 so small that

Vol(V, gt1) ≤ Vol(W, g2) + ε

for a given ε > 0. Denote the corresponding Kuratowski embeddings by ιt1
and ι2.

Since f : (V, gt1) → (W, g2) is nonexpanding, there is a nonexpanding
map F : L∞(V ) → L∞(W ) that extends ι2 ◦ f by the universal property
of L∞(W ). (Think of V ⊂ L∞(V ) via ιt1.) Thus, there is a commutative
diagram

V
f //

� _

ιt1
��

W� _

ι2
��

L∞(V ) F // L∞(W )

which gives for every r > 0

Hn(V ; K)
f∗ // //

(ιt1)∗
��

Hn(W,K)

(ι2)∗
��

Hn(Ur(ι
t
1V ); K)

F∗ // Hn(Ur(ι2W ); K)

Therefore FillRadK(V, gt1) ≥ FillRadK(W, g2), and this gives the desired in-
equality FRK(V ) ≥ FRK(W ).

Let z ∈ Cn(V ; K) represent [V ]K. Then f∗z represents f∗[V ]K = ±[W ]K
(in the case K = Q look at the local degree and use that f is (n, 1)-monotone),
and one finds

FillVolK((ι2)∗(f∗z)) = FillVolK(F∗((ι
t
1)∗z)) ≤ FillVolK((ιt1)∗z).

Hence, FillVolK(W, g2) ≤ FillVolK(V, gt1) and FVK(W ) ≤ FVK(V ).

The proof of the extension axiom is more complicated. We will frequently
use the following fact, which is a direct consequence of the universal property
(Lemma 3.3).
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Corollary 3.10. If i : (V, dg) ↪→ L∞(S) is an isometric embedding with S
any set, then

FillRadK(i) = FillRadK(V, g) and

FillVolK(i) = FillVolK(V, g).

We first investigate the extension axiom for the filling radius.

Proposition 3.11 (Extension axiom for FR). Let V ′ be an extension of
V , that means V ′ is obtained from V by attaching finitely many cells of
dimension less than n := dimV . Then

FRK(V ′) = FRK(V ).

Proof. Since the inclusion i : V ↪→ V ′ is (n, 1)-monotone and induces an
isomorphism

i∗ : Hn(V ; K)
∼=−→ Hn(V

′; K),

the comparison axiom implies FRK(V ) ≥ FRK(V ′).
To prove the converse inequality, it suffices by induction to attach one

k-cell at a time (with k < n). Let h : Sk−1 → V be the (simplicial) attaching
map, and let g be a Riemannian metric on V .

Consider all R > 0 such that h : (Sk−1, gR) → (V, g) is nonexpanding,
where gR denotes the round metric with radius R on Sk−1. (In the case
k = 1 choose R > 0 such that 23πR ≥ dg(h(−1), h(1)).) Define Riemannian
metrics g′R on V ′ by thinking of V ′ as

V ∪h (Sk−1 × [−1, 0]) ∪ (Sk−1 × [0, 6]) ∪ Sk+

with Sk+ a k-dimensional hemisphere and taking

g, (−sh∗g + (1 + s)gR)⊕ πRds2, gR ⊕ πRds2, gR

on the respective parts. Here, the last gR denotes the round metric of radius
R on the k-dimensional hemisphere. (For k = 1 use 5πRds2 on S0× [−1, 0].)

Then the induced distance functions of g and g′R coincide on V :

dg′R |V ≡ dg,

i. e. the inclusion i : (V, dg) ↪→ (V ′, dg′R) is isometric as a map of metric spaces.
Hence by Corollary 3.10, we have

FillRadK(V, g) = FillRadK(ιg′R ◦ i)
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and therefore
FillRadK(V ′, g′R) ≤ FillRadK(V, g)

since for any r > 0 the r-neighborhood of ιg′RV
′ is larger than the one of

ιg′RV .

Furthermore, note that the inclusion ((Sk−1× [1, 6])∪Sk+, dg′R) ⊂ (V ′, dg′R)
is isometric with respect to the induced path metrics. We will write V ′

R :=
ιg′RV

′, VR := ιg′RV and so on.
Next, we restrict our attention to radii R > FillRadK(V, g). Note that the

r-neighborhood of ((Sk−1×[1, 6])∪Sk+)R does not meet the r-neighborhood of
VR for any r < R. Thus, we may think of Ur(((S

k−1× [1, 6])∪Sk+)R) as some
kind of tubular neighborhood and try to retract it to its core. This core is k-
dimensional and plays therefore no role for n-dimensional homology. Hence,
if Hn(V ; K) vanishes in Ur(V

′
R), then also in Ur(VR). We now concretize this

idea.
Choose one of the radii R with R > FillRadK(V, g) and with R > 1 as

reference radius and call it R0. Since the Kuratowski embedding ι0 := ιg′R0

is not differentiable on the attached k-cell, we need to choose a smooth
approximation to get an actual tubular neighborhood. Therefore, let

ι : (Sk−1 × [3 + δ/πR0, 6]) ∪ Sk+ ↪→ L∞(V ′)

be a smooth embedding such that

d(ι(x), ι0(x)) < δ

for all x ∈ (Sk−1 × [3 + δ/πR0, 6])∪ Sk+. Using the Kuratowski embedding ι0
on V ′ \ ((Sk−1× [3, 6])∪Sk+) and linear interpolation on Sk−1× [3, 3+δ/πR0],
this defines a Lipschitz map ι : (V ′, g′R0

) → L∞(V ′) which is 3δ-close to
ι0. Denote by K := dil(ι) its Lipschitz constant, and think of ι as a map
V ′
R0
→ L∞(V ′).
With respect to y ∈ V ′

R0
\ ((Sk−1 × [2, 6]) ∪ Sk+)R0 the dilation dil(ι, y) of

ι is at most 1 + δ. This holds because

d(ι(y), ι(y′))

d(y, y′)
≤ d(y, y′) + d(y′, ι(y′))

d(y, y′)

≤ 1 +
3δ

d(y, y′)
≤ 1 + δ

for every y′ ∈ ((Sk−1 × [3, 6]) ∪ Sk+)R0 and because ι is isometric on V ′
R0
\

((Sk−1 × [3, 6]) ∪ Sk+)R0 .
Let F : L∞(V ′) → L∞(V ′) be an extension of ι : V ′

R0
→ L∞(V ′) as in

Lemma 3.3. Then

F (Ur(V
′
R0
\ ((Sk−1× [2, 6])∪Sk+)R0)) ⊂ Ur(1+δ)(V

′
R0
\ ((Sk−1× [2, 6])∪Sk+)R0)
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by the fact that dil(F, y) = dil(ι, y) ≤ 1 + δ for all y ∈ V ′
R0
\ ((Sk−1× [2, 6])∪

Sk+)R0 .
Denote by E := ι((Sk−1× [3 + δ/πR0, 6])∪Sk+) the smooth part of ι(V ′).

Let ν(E) → E be its normal bundle, and let τ : N ↪→ L∞(V ′) be a tubular
neighborhood for the trivial spray (i. e. the exponential map is given by vector
addition) where N ⊂ ν(E) is open, fiberwise starshaped with respect to the
zero section (thus it allows a deformation retraction to the zero section), and
fiberwise bounded by FillRadK(V, g)/2. Furthermore, assume that

τ(N |ι((Sk−1 × [31
2
, 6]) ∪ Sk+)) ⊂ Ur0(((S

k−1 × [2, 6]) ∪ Sk+)R0)

with r0 := FillRadK(V ′, g′R0
). By compactness there is an ε > 0 such that

F (Uε(((S
k−1 × [4, 6]) ∪ Sk+)R0)) ⊂ τ(N |ι((Sk−1 × [31

2
, 6]) ∪ Sk+)).

Moreover, choosing ε < (r0 − 3δ)/K guarantees that

F (Uε((S
k−1 × [2, 4])R0)) ⊂ Ur0((S

k−1 × [2, 4])R0).

Claim. There is an R ≥ R0 such that Hn(V ; K) vanishes for all real numbers
r > FillRadK(V ′, g′R) inside

Ur(V
′
R0
\ ((Sk−1 × [2, 6]) ∪ Sk+)R0) ∪ Uε(((S

k−1 × [2, 6]) ∪ Sk+)R0).

Proof of the claim. Choose C ≤ 1 such that Cπ FillRadK(V, g) < ε, and
choose

R ≥ max(R0/C, diam(V ′
R0

)/Cπ).

The identity on V ′ gives a nonexpanding homeomorphism f : V ′
R → V ′

R0
.

Let F̃ : L∞(V ′) → L∞(V ′) be an extension of f as in Lemma 3.3. Then, for
any FillRadK(V ′, g′R) < r ≤ π FillRadK(V, g) one finds

F̃ (Ur(((S
k−1 × [2, 6]) ∪ Sk+)R)) ⊂ Uε(((S

k−1 × [2, 6]) ∪ Sk+)R0)

since dil(F̃ , y) = dil(f, y) ≤ C for any y ∈ ((Sk−1 × [2, 6]) ∪ Sk+)R. This
follows from

d(f(y), f(y′))

d(y, y′)
≤ C

which holds for all y′ ∈ V ′
R since on ((Sk−1 × [1, 6]) ∪ Sk+)R the map f is

the contraction by the factor R0/R ≤ C, and for the other y′ note that
the numerator is bounded from above by diam(V ′

R0
) and the denominator is

bounded from below by πR.
Hence F̃ maps Ur(V

′
R) to

Ur(V
′
R0
\ ((Sk−1 × [2, 6]) ∪ Sk+)R0) ∪ Uε(((Sk−1 × [2, 6]) ∪ Sk+)R0).

Therefore Hn(V ; K) vanishes therein, and the claim is proved.
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Note that FillRadK(V ′, g′R) ≥ FillRadK(V ′, g′R0
) = r0 by the universal

property. Therefore, applying F shows that Hn(V ; K) also vanishes in

Ur(1+δ)(V
′
R0
\ ((Sk−1 × [4, 6]) ∪ Sk+)R0) ∪ τ(N |ι((Sk−1 × [31

2
, 6]) ∪ Sk+))

for all δ > 0 and r > FillRadK(V ′, g′R). Using the tubular neighborhood
retraction (this is where the fiberwise bound on N comes in) and a Mayer-
Vietoris argument one sees that Hn(V ; K) maps to zero in

Ur(1+δ)((V
′ \ S̊k+)R0).

Since this holds for all δ > 0 and r > FillRadK(V ′, g′R) it follows that

FillRadK(V ′ \ S̊k+, g′R0
) ≤ FillRadK(V ′, g′R).

The retraction (V ′ \ S̊k+, g′R0
) → (V, g) is nonexpanding by the choice of

g′R0
, therefore

FillRadK(V, g) ≤ FillRadK(V ′ \ S̊k+, g′R0
) ≤ FillRadK(V ′, g′R).

Note that we have actually proved that FillRadK(V, g) = FillRadK(V ′, g′R).
Since Vol(V, g) = Vol(V ′, g′R), one gets FRK(V ) ≤ FRK(V ′). This finishes

the proof of Proposition 3.11.

To finish this paragraph, we will proof the extension axiom for FV. Note
that an extension of a K-orientable simplicial complex is again K-orientable
and has the same fundamental class.

Lemma 3.12 (Extension axiom for FV). Let V ′ be an extension of V . Then

FVK(V ′) = FVK(V ).

Proof. Since the inclusion i : V ↪→ V ′ is (n, 1)-monotone and induces an
isomorphism in n-dimensional homology, the inequality FVK(V ) ≥ FVK(V ′)
holds by the comparison axiom.

Let g be a Riemannian metric on V , and extend it over V ′ such that the
inclusion i : V ↪→ V ′ is isometric as a map of metric spaces (see the proof of
Proposition 3.11). Call this Riemannian metric g′. Then ιg′ ◦i : V ↪→ L∞(V ′)
is an isometric embedding and FillVolK(V, g) = FillVolK(ιg′ ◦ i) by Corollary
3.10. Choose a Lipschitz chain z ∈ Cn(V ; K) that represents [V ]K. Then i∗z
is a Lipschitz chain that represents [V ′]K and

FillVolK(V, g) = FillVolK(ιg′∗(i∗z)) = FillVolK(V ′, g′).

Since Vol(V, g) = Vol(V ′, g′), the inequality FVK(V ) ≤ FVK(V ′) follows.
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3.2 Constancy of the optimal filling ratios

In this section, we will prove the main theorem of this chapter, which states
that both filling ratios FR and FV depend only on the dimension and ori-
entability.

Theorem 3.13. Let M and N be two connected closed manifolds of dimen-
sion n ≥ 3. If either both are orientable or both are nonorientable, then

FK(M) = FK(N)

for both F = FR and F = FV. If N is nonorientable, then

FZ2(M) ≤ FZ2(N).

This theorem obviously includes Theorem 3.1. The proof relies on the
following observation which is a special case of Theorem 2.35 for the trivial
group π = 1.

Corollary 3.14. Let M and N be two connected closed manifolds of di-
mension n ≥ 3. If either both M and N are orientable or if N is nonori-
entable, then there exists an extension V of M and an (n, 1)-monotone map
h : N → V with h∗[N ]K = i∗[M ]K = [V ]K, where i : M ↪→ V is the inclusion.

Note that the classifying space of the trivial group is (homotopy equivalent
to) a point. Hence, the conditions from Theorem 2.35 are reduced to this
simple requirement on the orientations of M and N .

Although this corollary has already been proved, we will illuminate the
case where M is orientable from a slightly different angle and give a short
and concise proof of the corollary under this assumption.

Proof for orientable M . In a first step, we choose an (n, 1)-monotone map
N → Sn. For example, we could choose a ball inside N and take the map
that contracts everything outside this ball to a point.

We may assume that M is a subcomplex of a contractible complex K (the
classifying space of the trivial group). In fact, choose a CW decomposition of
M with a single zero-cell and define K as the cone over M where the one-cell
that connects the zero-cell of M with the apex is collapsed. Then K is finite
and obtained from M by attachment of positive-dimensional cells only.

Denote by M(k) the union of M with the k-skeleton of K. Then the com-
plex M(n) and the pair (M(n),M(n− 1)) are both (n− 1)-connected. Since
M(n − 1) is simply-connected (because n ≥ 3), the two vertical Hurewicz
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homomorphisms on the right-hand side of the following diagram are isomor-
phisms:

πn(M(n− 1)) //

��

πn(M(n)) //

∼=
��

πn(M(n),M(n− 1))

∼=
��

0 // Hn(M(n− 1); Z) // Hn(M(n); Z) // Hn(M(n),M(n− 1); Z)

A diagram chase shows that the first vertical Hurewicz homomorphism
πn(M(n − 1)) → Hn(M(n − 1); Z) is surjective. Therefore, there is a map
s : Sn → M(n − 1) such that s∗[S

n]K = i∗[M ]K. (Here, the orientability of
M is of crucial importance. If M was nonorientable, then Hn(M(n − 1); Z)
would be zero and there would be no map Sn →M(n− 1) of degree one.)

Note that V := M(n− 1) is an extension of M . By Lemma 2.5, the map
s is homotopic to an (n, 1)-monotone map. The composition with the chosen
map N → Sn defines the map h : N → V .

The argument for the case of nonorientable M is similar but more in-
volved. The reader is referred to Theorem 2.35.

Proof of Theorem 3.13. By Corollary 3.14 there is an extension V of M and
an (n, 1)-monotone map h : N → V with h∗[N ]K = [V ]K. Therefore,

FK(N) ≥ FK(V ) = FK(M)

by the comparison axiom and the extension axiom from paragraph 3.1.2.
Changing the roles of M and N gives equality in the cases where M and N
are both orientable or both nonorientable.

Note that the proof used only the axioms and no other properties of
the filling ratios. Thus, it works for all numerical invariants of simplicial
complexes that satisfy the comparison and extension axiom. Since we do not
know another invariant satisfying these axioms, we refrained from stating
Theorem 3.13 in this generality.

As a consequence of Theorem 3.13, we have eight distinguished positive
numbers in each dimension n ≥ 3 that satisfy the following inequalities:

FRor
Q (n) ≤ FRor

Z (n) ≥ FRor
Z2

(n) ≤ FRnon-or
Z2

(n) and

FVor
Q (n) ≤ FVor

Z (n) ≥ FVor
Z2

(n) ≤ FVnon-or
Z2

(n).

The first two inequalities of each line are direct consequences of the defini-
tions, the last inequalities stem from Theorem 3.13. We do not know about
strict inequalities or equalities.
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The exact values of these constants are not known. Actually, the filling
radius is only known in the following cases:

FillRadK(RPn, g1) = π/6,

FillRadK(Sn, g1) = 1
2
arccos(− 1

n+1
),

FillRadZ(CP2, gFS) = 1
2
arccos(−1

3
),

FillRadQ(CPk, gFS) = 1
2
arccos(−1

3
),

where g1 denotes the round metrics of constant curvature one and gFS the
Fubini-Study metric, and K stands for all possible coefficient rings chosen
from Z, Z2, and Q. (See [Kat83] and [Kat91].) Note also that

FillRadZ(CP3, gFS) > FillRadQ(CP3, gFS)

by [Kat91], Theorem 0.3.
By computing the ratio FillRadK(M, g)n/Vol(M, g) for these examples,

it follows that the round projective space is not maximizing FR in dimen-
sions n 6= 1 and that the standard complex space is not maximizing in even
dimensions n ≥ 4. By this calculations, one is tempted to conjecture that
the supremum that defines FR is a maximum and that the round metric on
the sphere maximizes this ratio.

For the filling volume the situation is far more vague: one does not know
its exact value for a single Riemannian manifold, not even for the circle. (See
[Kat07], chapter 8.)

In the case of surfaces the comparison axiom has the following conse-
quence.

Corollary 3.15. Denote the connected closed surface of genus g by Σg in
the orientable case and by Ng in the nonorientable case. Then

FK(Σg) ≤ FK(Σg+1)

and
FZ2(Ng) ≤ FZ2(Ng+1).

Moreover, since N2g+1
∼= Σg#RP2 the inequality

FZ2(Σg) ≤ FZ2(N2g+1)

holds.

It would be interesting to know whether equality always holds or whether
strict inequality can indeed occur in the first two inequalities of the corollary.
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The following example may give an idea what can go wrong in dimension
n = 2.

In paragraph 3.1.1, we already mentioned the following fact (Proposition
3.5): let M be a connected closed orientable manifold of dimension at least
two, and let d be a metric on M (not necessarily steming from a Riemannian
metric). If W is another orientable manifold with boundary ∂W = M , then

FillVolZ(M,d) = inf{Vol(W, g′) | dg′|M ≥ d}

where g′ runs over all complete Riemannian metrics on W .
This was proved in [Gro83], Proposition 2.2.A. Note that this infimum

does not depend on the topology of W . (Indeed, one can always take W =
M × [0,∞).) So this theorem resembles Theorem 3.13 and can be (and
actually is) proved by similar methods. But in [Gro83], 2.2.B (2) it is shown
that this proposition does not hold if the dimension of W is two. Thus, by
analogy, it may well be that strict inequalities occur in Corollary 3.15.

However, note that Gromov’s counterexample is not Riemannian in the
sense that the investigated metric d on the circle ∂W = S1 is not geodesic.





Chapter 4

On manifolds satisfying stable
systolic inequalities

Let M be a connected closed manifold of dimension n, and let g be a Rie-
mannian metric on it. In chapter 2, we investigated the stable 1-systole
stabsys1(M, g). It is defined as the minimum of the stable norm on the
nonzero elements of the integral lattice H1(M ; Z)R in H1(M ; R). The stable
norm is the stabilization of the functional on H1(M ; Z)R that is induced by
the length of loops.

In an analogous way, one can define the stable k-systole stabsysk(M, g)
as the minimum of the stable norm on the nonzero classes in the lattice
Hk(M ; Z)R. In this case, the functional that is stabilized to obtain the stable
norm is induced by the k-dimensional volume of Lipschitz cycles.

The main focus of this chapter is on the existence and nonexistence of
stable systolic inequalities of the form

stabsysk(M, g)n/k ≤ C(M) · Vol(M, g), (∗)

in which the constant C(M) does not depend on the metric g. Therefore, it
is natural to look at the stable k-systolic constant

σstk (M) := inf
g

Vol(M, g)

stabsysk(M, g)n/k
,

where the infimum is taken over all Riemannian metrics g on M . (If the k-th
Betti number bk(M) is zero, then the stable k-systolic constant is understood
as zero.) Obviously, σstk (M) > 0 if and only if M satisfies a stable systolic
inequality (∗). Moreover, the reciprocal of σstk (M) is the best constant C(M)
such that (∗) holds.

For example, it is known by work of Gromov that

σst2 (CPn) = 1/n! ,

77
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see [Gro99], Theorem 4.36. (A more detailed proof may be found in [Kat07],
section 13.2.) In fact, this is the only example of a higher-dimensional stable
systolic constant whose value is known and not zero.

In his Filling paper, Gromov gave a sufficient condition for an orientable
manifold to satisfy a more general stable systolic inequality.

Theorem 4.1 ([Gro83], 7.4.C). Let M be a connected closed orientable man-
ifold of dimension n, and let (k1, . . . , kp) be a partition of n, i. e. an unordered
sequence of positive integers such that

∑p
i=1 ki = n. If there are cohomol-

ogy classes βi ∈ Hki(M ; R) such that their cup product β1 ^ · · · ^ βp ∈
Hn(M ; R) does not vanish, then

p∏
i=1

stabsyski(M, g) ≤ C · Vol(M, g)

for a constant C > 0 depending only on the dimension n, the partition
(k1, . . . , kp), and the Betti numbers bki(M) of M .

For the dependence on the Betti numbers and the partition the reader
is referred to [BanK03], Theorem 2.1. Applied to stable systolic inequalities
(∗), that is to the case of partitions (k, . . . , k), this theorem implies that the
stable k-systolic constant σstk (M) of a connected closed orientable manifold
of dimension n = kp is positive if there are cohomology classes β1, . . . , βp ∈
Hk(M ; R) such that β1 ^ · · ·^ βp 6= 0. (See also [BanK03], Theorem 2.7.)

For example, cohomologically symplectic manifolds (i. e. even-dimensional
manifolds M2n possessing a cohomology class ω ∈ H2(M ; R) such that ωn 6=
0) have nonvanishing stable systolic constants in all even dimensions that
divide the dimension of M .

In [Bab92], Theorem 8.2 (c), Babenko showed that in the case k = 1 the
condition stated above is also necessary for the existence of a stable 1-systolic
inequality. More precisely, he proved that if the Jacobi mapping Φ : M → T b,
with b := b1(M) the first Betti number, maps the fundamental class of M
to zero, then σst1 (M) = 0. (This also follows from the comparison axiom in
chapter 2 together with Corollary 2.7.) But if Φ∗[M ]Z 6= 0, then there are
cohomology classes β′1, . . . , β

′
n ∈ H1(T b; R) such that

〈β′1 ^ · · ·^ β′n,Φ∗[M ]Z〉 6= 0

since the cohomology of the torus is generated by classes of degree one.
Therefore, the cohomology classes βi := Φ∗β′i ∈ H1(M ; R) have nonvanishing
cup product, and the stable 1-systolic constant of M is nonzero by Gromov’s
theorem.
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Extending this, we will show the following equivalence, which is valid for
all integers 1 ≤ k ≤ n − 1. (This is the first part of Theorem 1.5 from the
introduction. The second part is a special case of Theorem 4.3 below.)

Theorem 4.2. Let M be a connected closed orientable manifold of dimension
n. The stable k-systolic constant σstk (M) does not vanish if and only if n is
a multiple of k, say n = kp, and there exist cohomology classes β1, . . . , βp ∈
Hk(M ; R) such that β1 ^ · · ·^ βp 6= 0 in Hn(M ; R).

For instance, by Poincaré duality, the stable middle-dimensional systolic
constant of even-dimensional manifolds vanishes if and only if the middle-
dimensional Betti number is zero.

For nonorientable manifolds, we will prove a kind of ‘general stable sys-
tolic freedom’ whenever no one-dimensional systoles are involved. (The term
(stable) systolic freedom refers to the absence of a (stable) systolic inequal-
ity, see for instance the articles [KatSu99], [KatSu01], and [Bab02] for other
kinds of systolic freedom.)

Theorem 4.3. Let M be a connected closed nonorientable manifold of di-
mension n. Let pk ≥ 0 be nonnegative real numbers for k = 2, . . . , n − 1.
Then there is no constant C > 0 such that

n−1∏
k=2

stabsysk(M, g)pk ≤ C · Vol(M, g)

holds for all Riemannian metrics g on M . In particular, σstk (M) = 0 for
k = 2, . . . , n− 1.

Denote by b := bk(M) the k-th Betti number of M . There exists a map
Φ : M → K(Zb, k) that induces an isomorphism

Hk(M ; Z)R
∼=−→ Hk(K(Zb, k); Z).

To see this, note that by the canonical isomorphism

[M,K(Zb, k)] ∼= Hk(M ; Z)b

it suffices to choose classes β1, . . . , βb ∈ Hk(M ; Z) that represent a basis of
Hk(M ; Z)R. This choice corresponds to a map

Φ : M → K(Zb, k)

such that the canonical basis δ1, . . . , δb of Hk(K(Zb, k); Z) is pulled back to
βi = Φ∗δi. Thus, Φ induces an isomorphism on k-dimensional cohomology
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modulo torsion and consequently also on the integral lattices of k-dimensional
homology. Note however that the homotopy class of this map is not uniquely
determined by the isomorphism Hk(M ; Z)R ∼= Hk(K(Zb, k); Z) except when
Hk(M ; Z) is torsion-free, which happens for example if k = 1.

As in chapter 2 for asymptotic invariants and the (stable) 1-systolic con-
stant, comparison and extension techniques will allow us to prove homological
invariance for stable systolic constants as announced in Theorem 1.6.

Theorem 4.4. Let M and N be two connected closed orientable manifolds
of dimension n, and let 1 ≤ k ≤ n−1. Suppose that bk(M) = bk(N) =: b and
that there are maps Φ : M → K(Zb, k) and Ψ : N → K(Zb, k) such that the
induced homomorphisms on the integral lattices of k-dimensional homology
are bijective and such that

Φ∗[M ]Z = Ψ∗[N ]Z ∈ Hn(K(Zb, k); R).

Then the stable k-systolic constants coincide: σstk (M) = σstk (N).

Note that in contrast to the one-dimensional systolic constant of chapter
2, the stable systolic constant is homologically invariant with respect to real
coefficients.

As a direct consequence, two manifolds have the same stable k-systolic
constants whenever there exists a degree one mapping between them that
induces an isomorphism of the integral lattices of k-dimensional homology.

Let M be a connected closed orientable manifold of dimension n = kp.
Consider the multilinear intersection form

Qk
M : (Hk(M ; Z)R)p → Z

(β1, . . . , βp) 7→ 〈β1 ^ · · ·^ βp, [M ]Z〉.

By Theorem 4.4, this form vanishes identically if and only if σstk (M) = 0.
Using the computation of the real cohomology ring of the Eilenberg-

MacLane space K(Z, k) by Cartan and Serre, we are able to derive the
following corollary of Theorem 4.4.

Corollary 4.5. Let M and N be two connected closed orientable manifolds
of dimension n = kp. If the multilinear intersection forms Qk

M and Qk
N are

equivalent over Z, then
σstk (M) = σstk (N).

In the next section, we will define higher-dimensional systoles and give
an axiomatic approach to stable systolic constants. This will be used to
prove Theorem 4.4 in paragraph 4.2.3. Theorem 4.2 and Theorem 4.3 will be
proved in paragraph 4.2.2 using some topological facts on spheres and their
loop spaces that are presented in paragraph 4.2.1.
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4.1 On higher-dimensional systoles

In chapter 2, we considered one-dimensional systoles. By replacing loops by
closed submanifolds or more generally by Lipschitz cycles, higher-dimensional
systoles can be defined in an analogous manner. These definitions are given
in the first half of this section. In the second half, we show that higher-
dimensional stable systolic constants fulfill suitable comparison and extension
axioms.

4.1.1 Higher-dimensional systolic constants

Originally, systoles were defined for Riemannian manifolds. But using piece-
wise smooth Riemannian metrics (see Definition 2.11), the definitions extend
to simplicial complexes, see also [Bab02], section 2.

Let X be a connected finite simplicial complex of dimension n, and let g
be a Riemannian metric on it. Let 1 ≤ k ≤ n− 1 be an integer. The volume
of an integral or real k-dimensional Lipschitz cycle c =

∑
i riσi is given by

Volk(c) :=
∑

i|ri|Volk(∆
k, σ∗i g).

To see that this is well-defined, note that the pullback ‘metric’ σ∗i g is almost
everywhere defined by Rademacher’s theorem and is positive semidefinite.
Thus, it has an almost everywhere defined ‘volume form’, and Volk(∆

k, σ∗i g)
is the integral of this k-form over ∆k. (See Definition 2.25 for a similar
discussion.)

For an integral homology class α ∈ Hk(X; Z) the volume Volk(α) is de-
fined as the infimum of the volumes of all integral Lipschitz cycles represent-
ing α. The stable norm ‖α‖ of a real homology class α ∈ Hk(X; R) is defined
in the same way but using all real Lipschitz cycles representing α. Federer
showed that the stable norm is in fact a norm, and moreover that

‖α‖ = lim
i→∞

1
i
Volk(iα)

holds for all integral homology classes α. (This is proved in [Fed74], sections
4 and 5. See also [Gro99], section 4.C.).

Definition 4.6. The k-systole, the k-systole modulo torsion, and the stable
k-systole of the Riemannian simplicial complex (X, g) are defined as

sysk(X, g) := inf
α∈Hk(X;Z)\0

Volk(α),

sys∞k (X, g) := inf
α∈Hk(X;Z)R\0

Volk(α), and

stabsysk(X, g) := min
α∈Hk(X;Z)R\0

‖α‖,
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where Hk(X; Z)R denotes the integral lattice in Hk(X; R).

Remark. In the case k = 1, the 1-systole sys1(X, g) does not coincide with
the one-dimensional systole sys(X, g) from chapter 2: the 1-systole is the
length of the shortest loop in X which is not nullhomologous, whereas the
systole is the length of the shortest loop which is not nullhomotopic. How-
ever, if φ : π1(X) � H1(X; Z) denotes the Hurewicz homomorphism, then
sys1(X, g) = sysφ(X, g) ≥ sys(X, g) in the notation of chapter 2. Analo-
gously, sys∞1 (X, g) = sysφ′(X, g) where φ′ is the composition of the Hurewicz
homomorphism φ and the canonical epimorphism H1(X; Z) � H1(X; Z)R.
Moreover, note that the stable 1-systole stabsys1(X, g) coincides with the
one-dimensional stable systole stabsys(X, g) from chapter 2.

The main focus of this chapter is on the existence and nonexistence of
stable systolic inequalities of the form

stabsysk(X, g)
n/k ≤ C(X) · Vol(X, g), (†)

in which the constant C(X) does not depend on the metric g. Therefore, it
is natural to look at the following systolic constants.

Definition 4.7. Let X be a connected finite simplicial complex of dimension
n. The k-systolic constant , the k-systolic constant modulo torsion, and the
stable k-systolic constant are given by

σk(X) := inf
g

Vol(X, g)

sysk(X, g)
n/k

,

σ∞k (X) := inf
g

Vol(X, g)

sys∞k (X, g)n/k
, and

σstk (X) := inf
g

Vol(X, g)

stabsysk(X, g)
n/k

,

where the infima are taken over all Riemannian metrics on X.

Obviously, σstk (X) > 0 if and only if X satisfies a stable systolic inequal-
ity (†). Positivity of σk(X) or σ∞k (X) is equivalent to the existence of an
analogous systolic inequality.

Remark. For manifolds, one can also define systolic constants by allowing
smooth Riemannian metrics only. But these constants coincide with the sys-
tolic constants defined above, compare the discussion at the end of paragraph
2.2.3.
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4.1.2 Axioms for stable systolic constants

As in section 2.2, we will consider comparison and extension axioms for real-
valued invariants I of connected finite simplicial complexes. Subsequently, we
will show that the stable systolic constant fulfills those axioms. In contrast
to the approach in chapter 2, we do not consider relative systolic constants.
But look at the proof of Lemma 4.9 and in particular at Definition 4.10 for
‘relative’ notions in this context.

Comparison axiom. Let X and Y be two connected finite simplicial com-
plexes of dimension n. If there exists an (n, d)-monotone map f : X → Y
such that the induced homomorphism f∗ : Hk(X; Z)R ↪→ Hk(Y ; Z)R is injec-
tive and the image f∗(Hk(X; Z)R) is contained in r ·Hk(Y ; Z)R for a positive
integer r, then

I(X) ≤ d/rn/k · I(Y ).

Extension axiom. Let X be a connected finite n-dimensional simplicial
complex, and let X ′ be an extension of X, i. e. X ′ is obtained from X by
attachment of finitely many cells of dimension 1 ≤ ` ≤ n − 1 such that
the inclusion X ↪→ X ′ induces the composition of a split monomorphism
Hk(X; Z)R ↪→ Hk(X

′; Z)R with multiplication by some positive integer r.
Then

I(X ′) = rn/k · I(X).

We will prove that both axioms are satisfied for the stable k-systolic con-
stant. Similar ideas may be found in various papers on systolic invariants
under the keywords ‘meromorphic map’ and ‘(n, k)-morphism’. (See for ex-
ample [BabK98], [BabKS98], [KatSu99], and [KatSu01].)

The k-systolic constant modulo torsion and the k-systolic constant ful-
fill similar axioms. Since such axioms are not needed later on, we do not
investigate them.

Lemma 4.8. The comparison axiom holds for I = σstk (with 1 ≤ k ≤ n− 1).

See for instance [Bab02], Proposition 2.2.7 for a similar argument. There,
a kind of systolic freedom (i. e. the vanishing of a suitably defined systolic
constant) is pulled back. Here, the systolic constants of Y may also be
nonzero. The used pullback technique goes back to [Bab92], Proposition 2.2.

Proof. Choose Riemannian metrics g1 and g2 on X and Y respectively. Then

gt1 := f ∗g2 + t2g1



84 4. On manifolds satisfying stable systolic inequalities

with t > 0 is again a Riemannian metric on X. Choosing t > 0 small enough
it can be arranged that

Vol(X, gt1) ≤ d · Vol(Y, g2) + ε

for any given ε > 0. Moreover,

f : (X, gt1) → (Y, g2)

is nonexpanding and thus decreases the volume of Lipschitz cycles and the
stable norm of homology classes. Since f∗ : Hk(X; Z)R ↪→ Hk(Y ; Z)R is
injective and since f∗(Hk(X; Z)R) ⊂ r ·Hk(Y ; Z)R, it follows that

stabsysk(X, g
t
1) ≥ r · stabsysk(Y, g2)

by the fact that the stable norm is a norm. Therefore, σstk (X) ≤ d/rn/k ·
σstk (Y ).

Lemma 4.9. The stable k-systolic constant satisfies the extension axiom.

In [BanKSW06], Proposition 7.3, this is proved for a special case. Note
also section 10 of the cited paper. With some adjustments the proof carries
over to the general case. A similar argument was first used in [BabK98],
Lemma 6.1.

Proof. The inclusion i : X ↪→ X ′ is (n, 1)-monotone, induces a monomor-
phism on the integral lattices of k-dimensional homology, and the image
i∗(Hk(X; Z)R) ⊂ r ·Hk(X

′; Z)R, hence σstk (X) ≤ 1/rn/k · σstk (X ′) by the com-
parison axiom.

To prove the converse inequality, we want to use induction over the num-
ber of attached cells. But it may happen that the attachment of some k-cells
increases the k-th Betti number and that later on the attachment of some
(k + 1)-cells decreases it again. Then the induced homomorphism on real k-
dimensional homology may be injective on the whole but it is not injective at
every step of the induction. Therefore, it is useful to introduce the following
‘relative’ version of the stable k-systolic constant. (Compare the definition
of the relative one-dimensional systoles in section 2.2.)

Definition 4.10. Let b be a positive integer, and let φ : Hk(X; Z)R → Zb be
a homomorphism. The induced homomorphism Hk(X; R) → Rb will also be
denoted by φ. For a metric g on X, the stable (φ, k)-systole stabsysφ,k(X, g)
is defined as the minimum of the quotient norm of the stable norm on the
nonzero elements of the lattice Zb in Rb. The stable (φ, k)-systolic constant
is given by

σstφ,k(X) := inf
g

Vol(X, g)

stabsysφ,k(X, g)
n/k

.
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For φ a split monomorphism, this definition coincides with the original
‘absolute’ one. Note also that for k = 1 this relative definition of the stable
systole coincides with the definition from paragraph 2.2.1.

Now, an extension (X ′, φ′) of (X,φ) consists of a simplicial complex X ′

that is obtained from X by attaching finitely many cells of dimension 1 ≤
` ≤ n−1 and of a homomorphism φ′ : Hk(X

′; Z)R → Zb such that φ = φ′ ◦ i∗
with i : X ↪→ X ′ the inclusion. We will prove the following relative version
of the extension axiom.

Claim. If (X ′, φ′) is an extension of (X,φ), then σstφ′,k(X
′) ≤ σstφ,k(X).

In fact, equality holds because a relative version of the comparison axiom
is also fulfilled. Moreover, this claim implies that σstk satisfies the original
extension axiom: taking φ′ as an isomorphism and φ as the composition φ′◦i∗
one gets

σstk (X ′) = σstφ′,k(X
′) ≤ σstφ,k(X).

Furthermore, stabsysk(X, g) = r · stabsysφ,k(X, g) since the stable norm is a

norm. Therefore, σstφ,k(X) = rn/k · σstk (X) and the extension axiom follows.
With this relative version of extension it is possible to proceed by induc-

tion over the number of attached cells. To prove the claim it suffices therefore
to consider the case where a single `-cell is attached to X.

Note that the volume of X ′ equals the volume of X since the attached
cell is of lower dimension, hence it is a set of measure zero with respect to
any n-dimensional volume.

Let g be a Riemannian metric on X, and let h : S`−1 → X be the
simplicial attaching map. Choose R > 0 such that h : (S`−1, gR) → (X, g)
is nonexpanding where gR denotes the round metric of radius R. Define a
Riemannian metric on X ′ = X ∪h D` in the following way: think of X ′ as
divided into four pieces

X ∪h (S`−1 × [−1, 0]) ∪ (S`−1 × [0, L]) ∪ S`+

and take the following Riemannian metrics on the respective pieces

g, ((1 + t)gR − th∗g)⊕ dt2, gR ⊕ dt2, gR,

where (S`+, gR) is an `-dimensional round hemisphere of radius R and L > 0
is some (large) number. This gives a Riemannian metric gL on X ′.

If stabsysφ′,k(X
′, gL) ≥ stabsysφ,k(X, g) for some L > 0, we are done.

Hence, we may assume that stabsysφ′,k(X
′, gL) < stabsysφ,k(X, g) for every

L > 0.
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Let α′ ∈ Hk(X
′; R) represent via φ a nonzero class in Zb such that ‖α′‖ =

stabsysφ′,k(X
′, gL), and let c ∈ Ck(X ′; R) be a real cycle representing α′ such

that Volk(c) ≤ ‖α′‖+ ε.
Next, we apply the coarea formula to the projection p of S`−1 × [0, L] to

the second factor. Denote ct := c ∩ p−1(t). Then∫ L

0

Volk−1(ct)dt ≤ Volk(c),

and therefore there is a t0 such that

Volk−1(ct0) ≤ Volk(c)/L ≤ (‖α′‖+ ε)/L.

Since the right hand side is bounded by (stabsysφ,k(X, g) + ε)/L, we can
force the volume of ct0 to be arbitrarily small by choosing L very large. By
the isomperimetric inequality for small cycles (see [Gro83], Sublemma 3.4.B’)
applied to S`−1 × t0 there is a filling d of ct0 of volume

Volk(d) ≤ CR,` · Volk−1(ct0)
k/(k−1),

with a constant CR,` > 0 depending only on the radius R and the dimension
`. Assuming Volk−1(ct0) ≤ 1, we get a ‘linear isoperimetric inequality’:

Volk(d) ≤ CR,` · Volk−1(ct0).

The cycle c decomposes into two pieces along ct0 , that is to say c =
c+ ∪ct0 c−. Define another cycle

c′ := c+ ∪ct0 d = c− (c− ∪ct0 (−d)).

Since the cycle c− ∪ct0 (−d) is contained in the attached `-cell, it is null-
homologous. Thus, c′ also represents α′. Moreover,

Volk(c
′) ≤ ‖α′‖+ ε+ CR,`(‖α′‖+ ε)/L

= (‖α′‖+ ε)(1 + CR,`/L).

The map that contracts the cylinder S`−1× [−1, L] to X is nonexpanding.
Hence, the image c′′ of c′ under this retraction satisfies the same volume
bound and still represents α′.

The homology class α ∈ Hk(X; R) represented by c′′ in X is a preimage
of α′. Therefore, it represents a nonzero element of the lattice Zb ⊂ Rb.
Moreover,

‖α‖ ≤ Volk(c
′′)

≤ (‖α′‖+ ε)(1 + CR,`/L)

= (stabsysφ′,k(X
′, gL) + ε)(1 + CR,`/L).
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Since ε > 0 was chosen arbitrarily, we see that

stabsysφ,k(X, g) ≤ stabsysφ′,k(X
′, gL)(1 + CR,`/L).

For L tending to infinity, this implies σstφ,k(X) ≥ σstφ′,k(X
′). Thus, the claim

is proved, and the extension axiom is valid for I = σstk .

4.2 Stable systolic constants

This section starts with a short review of some topological properties of
spheres and their loop spaces. Those properties will be used to show that
every finite-dimensional CW complex admits a map to a product of spheres
or loop spaces that induces an isomorphism on real homology in a given
dimension. In the beginning of paragraph 4.2.2, Katz’s and Suciu’s result on
systolic freedom modulo torsion is recalled. Similar ideas are then used to
prove Theorem 4.2 and Theorem 4.3. In the remainder of this chapter, we
show that stable systolic constants are homologically invariant and that they
depend only on the multilinear intersection form.

4.2.1 Spheres and their loop spaces

In this paragraph, we will briefly recall some topological properties of spheres
and their loop spaces that will be used in the proofs of Theorem 4.2 and
Theorem 4.3.

If k is odd, let Lk denote the k-dimensional sphere Sk. The cohomology
ring is the exterior algebra

H∗(Lk; Z) ∼= ΛZ[α]

with α ∈ Hk(Lk; Z) a generator. Therefore, by the Künneth formula

H∗(Lbk; Z) ∼= ΛZ[α1, . . . , αb]

with αi of degree k. Furthermore, we will always use the CW decomposition
of Sk consisting of one 0-cell and one k-cell.

It is known by work of Serre (see [Ser51]) that the homotopy groups
πm(Sk) for m > k are finite (recall that k is odd). Sullivan showed in
[Sul74] that the selfmap Sk → Sk of degree d induces a homomorphism
πm(Sk) → πm(Sk) which is nilpotent on d-torsion. Therefore, there exists
a nonzero degree selfmap of Sk that induces the trivial homomorphism on
πm(Sk).
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Finally, note that the map Sk → Sk of degree two multiplies each homol-
ogy class in Lbk of positive dimension by some power of two. In particular,
the induced homomorphism on homology with Z2 coefficients is trivial.

If k is even, let Lk be a CW complex that is homotopy equivalent to the
based loop space ΩSk+1 of the (k + 1)-dimensional sphere. More precisely,
let Lk be the James reduced product J(Sk) (see for example [Hat02], pages
224–225 and section 4.J). The CW structure on Lk consists of one cell in each
dimension divisible by k, and the cohomology ring is the divided polynomial
algebra

H∗(Lk; Z) ∼= ΓZ[α]

with α ∈ Hk(Lk; Z). (Recall that this is almost a polynomial algebra. In
fact, the generator in degree kp equals αp/p!. Using real coefficients, the
cohomology ring is a polynomial algebra.) By the Künneth formula

H∗(Lbk; Z) ∼= ΓZ[α1, . . . , αb],

where the classes αi are of degree k.
Since πm(ΩSk+1) = πm+1(S

k+1), the homotopy groups πm(Lk) are finite
for m > k (recall that k is even now). The group structure in πm(Lk)
coincides with the one coming from loop multiplication, hence one can easily
construct selfmaps Lk → Lk that induce multiplication by some positive
integer on Hk(Lk; Z) and trivial homomorphisms on πm(Lk).

The map ΩSk+1 → ΩSk+1 that assigns to each loop its double induces
multiplication by two in πk(L

b
k) and therefore also in k-dimensional homology

Hk(L
b
k; Z) and cohomology Hk(Lbk; Z). Hence, it induces multiplication by

some power of two in every H`(Lbk; Z) with ` > 0 and thus in every H`(L
b
k; Z),

as well. Consequently, the induced homomorphism on homology with Z2

coefficients is trivial.

Summary. The CW complexes Lbk have cells only in dimensions divisible by
k, their real cohomology rings are generated by elements of degree k, and
there exist selfmaps hm : Lbk → Lbk for all m > k that induce multiplication
by some positive integer on Hk(Lbk; Z) (and therefore also on Hk(L

b
k; Z)) and

vanish on πm(Lbk). Moreover, there exists a selfmap Lbk → Lbk that induces
the zero homomorphism in homology of nonzero dimension with coefficients
in Z2 but that is bijective on Hk(L

b
k; R).

Using these properties of Lk, we are able to prove the following lemma.
It stems from [KatSu99], sections 4 and 10.

Lemma 4.11. Let X be a connected CW complex of dimension n. Let 1 ≤
k ≤ n− 1, and assume that the k-th Betti number b := bk(X) is finite. Then
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there is a map f : X → Lbk that induces an isomorphism

f∗ : Hk(X; R)
∼=−→ Hk(L

b
k; R).

In fact, f can be chosen such that the induced map on the integral lattices
corresponds to multiplication by some positive integer.

Proof. The case k = 1 is easy because Lb1 is just the b-dimensional torus T b,
which is K(Zb, 1). The canonical epimorphism

π1(X) � H1(X; Z) � H1(X; Z)R ∼= Zb

is induced by the so-called Jacobi map f : X → T b. The induced homomor-
phism f∗ : H1(X; R) → H1(T

b; R) is consequently an isomorphism, which is
moreover an isomorphism of the integral lattices.

Now, let 2 ≤ k ≤ n − 1. Choose a CW decomposition of K(Zb, k) such
that the (k+1)-skeleton is

∨b Sk, the wedge sum of b spheres of dimension k.
As shown in the introductory paragraph of this chapter, there is a map X →
K(Zb, k) that induces an isomorphism on the integral lattices of homology in
dimension k. By cellular approximation, this gives a map X(k+1) →

∨b Sk.
Note that the (k + 1)-skeleton of Lbk is also

∨b Sk. Thus, we have a map

f (k+1) : X(k+1) → Lbk

that induces an isomorphism on the integral lattices of homology in degree
k.

Let hk+1 : Lbk → Lbk be as in the summary above, i. e. it induces the
trivial homomorphism on the (k+ 1)-dimensional homotopy group and mul-
tiplication by some positive integer on real homology of degree k. Then
the composition hk+1 ◦ f (k+1) : X(k+1) → Lbk extends over X(k+2) since it
is zero on the (k + 1)-dimensional homotopy groups. Call this extension
f (k+2) : X(k+2) → Lbk. Repeating this process finally gives a map

f : X → Lbk

for which the induced monomorphism Hk(X; Z)R ↪→ Hk(L
b
k; Z)R corresponds

to multiplication by some positive integer.

4.2.2 Existence of stable systolic inequalities

In this paragraph, Theorem 4.2 and Theorem 4.3 are proved. Both proofs
rely on the properties of spheres and their loop spaces that are listed in
paragraph 4.2.1.
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Before we start to prove those two theorems, we want to recall some
facts about the systolic constant and the systolic constant modulo torsion.
In the articles [KatSu99] and [KatSu01], Katz and Suciu showed that every
manifold is systolically free modulo torsion for systoles of dimension at least
two.

Theorem 4.12 (Katz, Suciu). Let M be a connected closed manifold of
dimension n, and let 2 ≤ k ≤ n− 1. Then

σ∞k (M) = 0.

This kills any interest in the systolic constant modulo torsion. By defini-
tion, σk(M) ≥ σ∞k (M). But it is widely believed that the k-systolic constant
also vanishes for every manifold. For orientable manifolds of dimension four
this was shown in [KatSu99].

Using ideas similar to those of [KatSu99], in particular the map from
Lemma 4.11, we now prove Theorem 4.2 and Theorem 4.3.

Proof of Theorem 4.2. Denote b := bk(M). If k does not divide n, then the
n-skeleton and the (n − 1)-skeleton of Lbk coincide, and σstk (M) = 0 by the
comparison axiom applied to the map f : M → (Lbk)

(n−1) of Lemma 4.11
(which is (n, 0)-monotone due to the dimension of the range). Assume now
that n = kp.

If n = 2, then k = 1 and it is known that, apart from the sphere, all
closed orientable surfaces satisfy a stable 1-systolic inequality. Since their
cohomology rings are generated in degree one, Theorem 4.2 is true in this
case, and we may restrict our attention to n ≥ 3.

Let f : M → Lbk induce an isomorphism on real homology of degree k.
If f∗[M ]Z = 0 in Hn(L

b
k; R), then f∗[M ]Z = 0 also in Hn(L

b
k; Z) since the

homology of Lbk is torsion-free. By Corollary 2.7 one can homotope f so that
its image lies in the (n−1)-skeleton of Lbk (i. e. f is (n, 0)-monotone), and by
the comparison axiom σstk (M) vanishes. The theorem of Gromov stated in
the introduction of this chapter (Theorem 4.1) shows that there cannot be
cohomology classes β1, . . . , βp ∈ Hk(M ; R) having nonvanishing product.

On the other hand, if f∗[M ]Z 6= 0, then there are cohomology classes
β′1, . . . , β

′
p ∈ Hk(Lbk; R) such that

〈β′1 ^ . . . ^ β′p, f∗[M ]Z〉 6= 0

since the cohomology of Lbk is generated by classes of degree k. Therefore,
the cohomology classes βi := f ∗β′i ∈ Hk(M ; R) have nonvanishing product,
and the stable k-systolic constant of M is nonzero by Theorem 4.1. This
finishes the proof of Theorem 4.2.
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Proof of Theorem 4.3. Let fk : M → L
bk(M)
k be as in Lemma 4.11. Define

F := (f2, . . . , fn−1) : M −→ L :=
n−1∏
k=2

L
bk(M)
k .

Then by the Künneth formula, F induces monomorphisms on k-dimensional
real homology for all k = 2, . . . , n− 1.

There is a selfmap L → L that maps all homology classes (of nonzero
dimension) to an even multiple. Composing F with this map, one gets a
map (still called F ) that is injective on real homology of dimensions k =
2, . . . , n− 1 and that is zero on Hn(M ; Z2), i. e. F∗[M ]Z2 = 0 in Hn(L; Z2).

By Corollary 2.7 it is possible to deform F so that its range lies in the
(n − 1)-skeleton of L. (Note that L is simply-connected and that we may
assume n ≥ 3 since the theorem is empty for n = 2.)

Choose Riemannian metrics g1 and g2 on M and on the (n− 1)-skeleton
L(n−1) of L, respectively. Then

gt1 := F ∗g2 + t2g1

with t > 0 is again a (piecewise smooth) Riemannian metric on M . Choosing
t > 0 small enough, it can be arranged that

Vol(M, gt1) ≤ ε

for any given ε > 0. Moreover,

F : (M, gt1) → (L(n−1), g2)

is nonexpanding. Since F∗ : Hk(M ; Z)R ↪→ Hk(L
(n−1); Z)R is injective for all

k = 2, . . . , n− 1, it follows that

stabsysk(M, gt1) ≥ stabsysk(L
(n−1), g2).

Therefore, the left-hand side of

n−1∏
k=2

stabsysk(M, gt1)
pk ≤ C · Vol(M, gt1)

is bounded from below by the constant
∏

k stabsysk(L
(n−1), g2)

pk , whereas
the right-hand side can be made arbitrarily small. Thus, there is no constant
C > 0 such that this inequality is satisfied for all metrics on M .
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Finally, we will investigate the stable 1-systolic constant and the 1-systolic
constant modulo torsion. Let b := b1(M) denote the first Betti number, and
let Φ : M → T b be the Jacobi map, i. e. a map that induces the canonical
epimorphism φ = Φ∗ : π1(M) � H1(M ; Z)R. (Note that this map is uniquely
determined up to homotopy by this epimorphism.)

Recall that σ∞1 (M) = σφ(M) in the notation of chapter 2. In paragraph
2.2.5, we saw that σ∞1 (M) is zero if and only if the Jacobi map Φ : M → T b

is homotopic to a map with range in the (n− 1)-skeleton of the torus. (This
is due to Gromov and Babenko, see chapter 2 for references.)

By the comparison axiom, the stable 1-systolic constant vanishes if Φ
maps to the (n−1)-skeleton. Since σst1 (M) ≥ σ∞1 (M) by definition, it follows
therefore that the same characterization is true for the vanishing of σst1 (M).
Using Corollary 2.7, we get the following corollary.

Corollary 4.13. The stable 1-systolic constant σst1 (M) and the 1-systolic
constant modulo torsion σ∞1 (M) vanish if and only if the fundamental class
of M with coefficients in Z, O, or Z2 (according to the orientation behaviour
of the Jacobi map) is mapped to zero by the Jacobi map.

Recall that O denotes the orientation bundle of M . For surfaces this can
easily be seen directly. Note in particular that the only surfaces for which the
stable 1-systolic constant and the 1-systolic constant modulo torsion vanish
are the sphere, the real projective plane, and the Klein bottle.

4.2.3 Homological invariance for stable systolic con-
stants

The first aim of this paragraph is to prove Theorem 4.4. Then, we apply the
theorem to the case of projective spaces over division algebras.

We will need the following corollary from section 2.1.

Corollary 4.14. Let M and N be two connected closed orientable manifolds
of dimension n ≥ 3. Let i : M ↪→ X be an embedding into a simplicial com-
plex, and let f : N → X be a map such that the induced homomorphism on
fundamental groups is surjective and such that f∗[N ]Z = i∗[M ]Z in Hn(X; Z).
Identify M and its image in X. Then f is homotopic to an (n, 1)-monotone
map N →M ∪X(n−1).

Proof. By Lemma 2.6 we may assume that X is n-dimensional, and by
Lemma 2.5 the map f can be deformed to an (n, 1)-monotone map with
image in M ∪X(n−1).
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Proof of Theorem 4.4. Note that the theorem is trivial for n = 2 because the
orientable surfaces are classified by their first Betti number. Hence, we may
restrict to n ≥ 3.

The images of the fundamental classes of M and N in Hn(K(Zb, k); Z)
may differ by a torsion class. Thus, Corollary 4.14 cannot be applied directly.
But we can bypass this problem in the following way.

Let f : K(Zb, k)(n+1) → Lbk be a map as in Lemma 4.11. (SinceK(Zb, k) is
not finite-dimensional in general, we have to consider some skeleton to be able
to apply Lemma 4.11.) In particular, the induced map on the integral lattices
of k-dimensional homology corresponds to multiplication by some positive
integer r. Then f∗Φ∗[M ]Z = f∗Ψ∗[N ]Z in Hn(L

b
k; Z) since the homology of

Lbk is torsion-free.

Using the mapping cylinder of f ◦ Φ, we may assume without loss of
generality that f ◦ Φ is the inclusion of a subcomplex into Lbk. If we start
with a CW decomposition of M with only one 0-cell, then there is a 1-cell in
the mapping cylinder connecting this 0-cell with the 0-cell of Lbk. Collapsing
this 1-cell, we may assume that Lbk is obtained from M by attaching only
cells of positive dimension.

By Corollary 4.14, f ◦Ψ is homotopic to an (n, 1)-monotone map

Ψ′ : N −→ X := M ∪ (Lbk)
(n−1).

Note that X is a finite complex. In particular, it is an extension of M . By
the comparison and extension axiom, we get

σstk (N) ≤ 1/rn/k · σstk (X) = σstk (M).

Changing the roles of M and N gives equality.

Remark. In the cases k = 1 and k = 2, it is not necessary to use a map f :
K(Zb, k) → Lbk because the homology of K(Z, 1) = S1 and K(Z, 2) = CP∞

is already torsion-free.

A direct consequence of Theorem 4.4 is the following corollary.

Corollary 4.15. Let f : M → N be a degree one map between connected
closed orientable manifolds such that the induced homomorphism

f∗ : Hk(M ; Z)R
∼=−→ Hk(N ; Z)R

is bijective. Then σstk (M) = σstk (N).
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For example, the inclusion C2n+1× 0 ↪→ C2n+2 = Hn+1 gives a degree one
map CP2n → HPn from complex to quaternionic projective space that in-
duces isomorphisms on homology in all dimensions divisible by 4. Therefore,
the corollary implies

σst4k(HPn) = σst4k(CP2n),

which is nonzero if and only if k divides n by Theorem 4.2. In particular,

σst4n(HP2n) = σst4n(CP4n).

This last equation is Theorem 1.2 from [BanKSW06]. However, note that our
proof is not essentially different from the proof of Bangert, Katz, Shnider,
and Weinberger. In fact, their reasoning is along the same lines but only for
the special case of complex and quaternionic projective spaces.

Note also that in dimension eight, they show that

σst4 (HP2) = σst4 (CP4) ∈ [ 1
14
, 1

6
].

In fact, the calculation of this stable systolic constant is possibly within reach,
see [BanKSW06].

4.2.4 The multilinear intersection form

Consider two simply-connected closed four-manifolds M and N . If their
intersection forms are equivalent over Z, then the manifolds are homotopy
equivalent by the theorem of Milnor and Whitehead. Therefore, their sta-
ble 2-systolic constants coincide. (For this only the comparison axiom is
needed since every homotopy equivalence of manifolds is homotopic to an
(n, 1)-monotone map by Corollary 2.10.) We will see that one can drop the
assumption on the fundamental group using Theorem 4.4.

More generally, let M be a connected closed orientable manifold of di-
mension kp. Consider the multilinear intersection form

Qk
M : (Hk(M ; Z)R)p → Z,

(β1, . . . , βp) 7→ 〈β1 ^ · · ·^ βp, [M ]Z〉.

In the case p = 2, this is the usual intersection form.
Before we start with the proof of Corollary 4.5, note that a similar result

was derived by Hamilton (see [Ham06], Theorem 1.2): if two closed orientable
four-manifolds with b+2 = 1 have equivalent intersection forms, then their
conformal systolic constants agree. Here, the conformal systolic constant
CS(M) is the supremum of the conformal systole over all Riemannian metrics
on M . (See [Kat07] for more details on conformal systoles.)



4.2. Stable systolic constants 95

Proof of Corollary 4.5. Write b := bk(M) = bk(N). Choose maps Φ : M →
K(Zb, k) and Ψ : N → K(Zb, k) inducing isomorphisms on the integral
lattices of k-dimensional cohomology such that the isomorphism

Ψ∗ ◦ (Φ∗)−1 : Hk(M ; Z)R
∼=−→ Hk(N ; Z)R

is an equivalence of the multilinear intersection forms Qk
M and Qk

N . Then

〈β1 ^ · · ·^ βp,Φ∗[M ]Z〉 = 〈Φ∗β1 ^ · · ·^ Φ∗βp, [M ]Z〉
= 〈Ψ∗β1 ^ · · ·^ Ψ∗βp, [N ]Z〉
= 〈β1 ^ · · ·^ βp,Ψ∗[N ]Z〉

for all cohomology classes β1, . . . , βp in Hk(K(Zb, k); R).
Since the cohomology ring of the Eilenberg-Mac Lane space K(Zb, k)

equals the exterior algebra ΛR[α1, . . . , αb] if k is odd and the polynomial
algebra R[α1, . . . , αb] if k is even by work of Cartan and Serre (see for ex-
ample [Whi78], page 670), it follows that the classes Φ∗[M ]Z and Ψ∗[N ]Z
coincide in Hn(K(Zb, k); R). By Theorem 4.4, the stable k-systolic constants
of M and N are equal.

Consider the octonionic projective plane OP2. Its cohomology ring is
isomorphic to Z[α]/(α3) with α of degree eight. Thus, the intersection form
Q8

OP2 on eight-dimensional cohomology is given by

Q8
OP2 : H8(OP2; Z)×H8(OP2; Z) → Z,

(α, α) 7−→ 1.

The intersection forms of CP8 and HP4 on the respective eight-dimensional
cohomology groups are obviously equivalent over Z to the intersection form
of the octonionic projective plane. Therefore,

σst8 (OP2) = σst8 (HP4) = σst8 (CP8).

Note that this shows that neither the canonical metric of the octonionic
projective plane nor the symmetric metric of the quaternionic projective
four-space are systolically optimal. In fact, Berger showed in [Ber72] that

Vol(CP8, g0)/ stabsys8(CP8, g0)
2 = 1/70,

Vol(HP4, g0)/ stabsys8(HP4, g0)
2 = 5/126,

Vol(OP2, g0)/ stabsys8(OP2, g0)
2 = 7/66,

where g0 denotes the respective canonical Riemannian metrics.





Chapter 5

Enlargeability is homologically
invariant

In this last chapter of the thesis, we are concerned with enlargeability of
closed manifolds and with largeness properties of their universal coverings.

Recall that a connected closed orientable manifold M of dimension n
is called enlargeable if for every ε > 0 there exists a covering M̄ε and an
ε-contracting map M̄ε → Sn to the unit sphere that is constant outside a
compact set and of nonzero degree. Gromov and Lawson proved in [GroL80]
and [GroL83] that an enlargeable spin manifold does not carry a metric of
positive scalar curvature.

An important question in differential geometry is which topological prop-
erties follow from the existence of a positive scalar curvature metric. Re-
lated to this is the question about topological consequences of enlargeability.
Hanke and Schick showed that enlargeable manifolds have the following prop-
erty:

Definition 5.1. Let Φ : M → Bπ1(M) be the classifying map of the
universal covering. The manifold M will be called rationally essential if
Φ∗[M ]Z 6= 0 ∈ Hn(Bπ1(M); Q).

Remark. Note that Bπ1(M) = K(π1(M), 1). Since the former notation seems
to be more common in this context, it will be used throughout this chapter.
Note also that for orientable manifolds the definition of essentialness from
paragraph 2.2.5 is equivalent to Φ∗[M ]Z 6= 0 ∈ Hn(Bπ1(M); Z) by Corollary
2.7.

In [HanS06] and [HanS07], enlargeable manifolds are shown to be ratio-
nally essential using index theory. Relying on ideas from coarse geometry,
it is proved in [HanKRS07] that a manifold whose universal covering is hy-
perspherical is also rationally essential. (The universal covering of a closed
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orientable manifold M is called hyperspherical if M is enlargeable and the
covering M̄ε in the definition of enlargeability may always be chosen as the
universal covering.)

More generally, the following notions of largeness will be considered: M
is enlargeable, the universal covering M̃ is hypereuclidean or hyperspherical,
and the filling radius of M̃ is infinite. Moreover, we will investigate coarse
analogs of the last three properties: M̃ is coarsely hypereuclidean, coarsely
hyperspherical, or macroscopically large.

The definitions of these largeness properties are given in the next section,
where we will also prove that infinte filling radius is in fact equivalent to its
coarse analog macroscopic largeness (see Proposition 5.12). The word large
will always be used as a placeholder for one these properties.

Extending the results of [HanS06], [HanS07], and [HanKRS07], large man-
ifolds are shown to be rationally essential. The proof does not use index
theory or coarse geometry (apart from the case of the three coarse large-
ness properties, of course). In fact, largeness is homologically invariant, and
moreover each largeness property determines a subspace in group homology
consisting of all classes represented by nonlarge manifolds. (This corresponds
to Theorem 1.8 from the introductory chapter 1.)

Theorem 5.2. Let π be a finitely presented group. There is a subspace
V0 of the vector space Hn(Bπ; Q) with the following property: if M is a
connected closed orientable n-dimensional manifold with fundamental group
π and classifying map Φ : M → Bπ, then the class Φ∗[M ]Z lies in V0 if and
only if the manifold is not large.

Although some of these subspaces are contained in others, it is not known
if they may differ or if they always coincide. It is unclear whether there are
examples for which one of these subspaces is nontrivial. (Note that for n ≤ 3
the subspace V0 is in general not determined by the property in the theorem.
For instance, there are finitely presented groups π which are not fundamental
groups of manifolds of dimension n ≤ 3. Thus, every subspace of Hn(Bπ; Q)
satisfies the property in the theorem, which is empty in this case. But look at
paragraph 5.2.1 and particularly at Theorem 5.18 for the “right” definition
of V0 in any dimension.)

In the definition of enlargeability, the maps M̄ε → Sn are required to
contract distances. If one replaces this condition by the requirement that
they contract the volume of k-dimensional submanifolds, then M is called k-
enlargeable. In the case k = 2, this property is also called area-enlargeability .

Relying on index theory, Hanke and Schick showed in [HanS07] that area-
enlargeable manifolds are rationally essential. We are able to extend this
result to higher k and obtain Theorem 1.9 from the introduction.
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Theorem 5.3. Let M be a connected closed orientable manifold. If M is
k-enlargeable and satisfies

πi(M) = 0 for 2 ≤ i ≤ k − 1,

then M is rationally essential. In particular, area-enlargeable manifolds are
rationally essential.

For k ≤ 2 the condition on the homotopy groups is to be understood as
empty. Note that for k > 2 the condition is in fact necessary: for M any
enlargeable manifold, the product M×S2 is 3-enlargeable but the classifying
map M × S2 → Bπ1(M) sends the fundamental class to zero, i. e. M × S2 is
not rationally essential. In fact, the second homotopy group π2(M × S2) =
π2(M)× π2(S

2) is not trivial.

For k ≥ n + 1 the k-dimensional volume of any subset of Sn is zero, of
course. Hence, the assumptions of Theorem 5.3 boil down to πi(M) = 0 for
2 ≤ i ≤ k−1 with k−1 ≥ n. By the Hurewicz theorem, this implies that the
universal covering of M has trivial homotopy groups in all degrees. Thus, it
is contractible. Otherwise said, the manifold M is aspherical in this case.

Area-enlargeable spin manifolds do not carry a metric of positive scalar
curvature. This was shown by Gromov and Lawson in [GroL83]. It is conjec-
tured that no aspherical manifold carries a metric of positive scalar curvature.
The conditions from Theorem 5.3 interpolate between these two cases: en-
largeable and area-enlargeable manifolds on the one side and aspherical ones
on the other side. Thus, it seems natural to conjecture that those conditions
are also an obstruction to positive scalar curvature (in the spin case). In fact,
the strong Novikov conjecture implies that rationally essential spin manifolds
do not admit a positive scalar curvature metric (see [Ros83]).

In the next section, largeness properties for complete Riemannian man-
ifolds are defined and compared to each other. The proofs of Theorem 5.2
and Theorem 5.3 are given in the last section.

5.1 Large Riemannian manifolds

Let f : (M, g) → (N, g′) be a smooth map between two Riemannian mani-
folds, and let k be a positive integer.

Definition 5.4. The k-dilation of f is defined as

dilk(f) := sup
p∈M

‖Λkdfp‖,
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the supremum of the norm of the k-fold exterior product of the differential
df . Note that for k = 1 the dilation dil(f) := dil1(f) is the smallest Lipschitz
constant for f .

Said differently, the k-dilation is the smallest number ε such that for any
k-dimensional submanifold D ⊂ M the k-dimensional volume of the image
f(D) ⊂ N is bounded by ε · Volk(D).

Let p ∈ M be a point, and let n be the dimension of M . Denote by
λ1 ≥ . . . ≥ λn ≥ 0 the eigenvalues of the Gram matrix of the pullback
df∗p g

′
f(p) with respect to gp. Then ‖Λkdfp‖ = λ1 · . . . · λk. Therefore, the

inequality
dil`(f)1/` ≤ dilk(f)1/k (∗)

holds for all ` ≥ k.
Let (V, g) be a connected complete orientable Riemannian manifold of

dimension n. A choice of orientation for V defines a fundamental class
[V ]Z ∈ H lf

n (V ; Z) in locally finite homology. Then the mapping degree is
well-defined for proper maps to oriented manifolds and for maps to closed
oriented manifolds that are constant outside a compact set.

We will recall various notions of largeness for (V, g), most of which where
first formulated by Gromov (see for example [GroL83], [Gro86], and [Gro96]).
Compare also [Cai94] and [Gut06b].

Definition 5.5. The Riemannian manifold (V, g) is called k-hypereuclidean
if there is a proper map

f : (V, g) → (Rn, g0)

to the Euclidean space of nonzero degree with finite k-dilation. It is called
k-hyperspherical if for every ε > 0 there is a map

fε : (V, g) → (Sn, g1)

to the unit sphere that is constant outside a compact set and of nonzero
degree such that dilk(fε) ≤ ε. For k = 1 we will omit the number, and for
k = 2 we will speak of area-hypereuclidean and area-hyperspherical manifolds.

By the inequality (∗), every k-hypereuclidean or k-hyperspherical man-
ifold is also `-hypereuclidean respectively `-hyperspherical for any ` ≥ k.
Since Rn is obviously hyperspherical, any k-hypereuclidean manifold is also k-
hyperspherical. Note also that both notions depend only on the bi-Lipschitz
type of the metric g.

Closely related to this is the notion of enlargeability. It was introduced
by Gromov and Lawson in [GroL80] and [GroL83].
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Definition 5.6. A connected orientable n-dimensional manifold V is called
k-enlargeable if for every complete Riemannian metric g on V and every ε > 0
there is a Riemannian covering (V̄ε, g) of V and a map

fε : (V̄ε, g) → (Sn, g1)

that is constant outside a compact set and of nonzero degree such that
dilk(fε) ≤ ε. If all coverings V̄ε may be chosen spin, then V will be called
spin k-enlargeable. As before, we will omit the number in the case k = 1 and
speak of area-enlargeable manifolds in the case k = 2.

If V is closed, then all Riemannian metrics on V are bi-Lipschitz to each
other and it is enough that V satisfies the above conditions with respect to
one Riemannian metric.

The significance of this notion is demonstrated by the following theorem,
which is proved in [GroL83], Theorem 6.12.

Theorem 5.7 (Gromov, Lawson). If V is spin area-enlargeable, then it does
not carry a complete Riemannian metric of positive scalar curvature.

Next, we will investigate the notion of infinite filling radius. Recall that
every Riemannian metric g induces a path metric dg on V . Denote by L∞(V )
the vector space of all functions on V with the uniform ‘norm’ ‖ ‖∞. Note
that this is not a norm since it may take infinite values. Therefore, the
induced ‘metric’ is not an actual metric. Nevertheless, the Kuratowski em-
bedding

ιg : (V, dg) ↪→ L∞(V ),

v 7→ dg(v, )

is an isometric embedding by the triangle inequality.
One could replace L∞(V ) by its affine subspace L∞(V )b that is parallel

to the Banach space of all bounded functions on V and contains the dis-
tance function dg(v, ) for some v ∈ V . Then the image of the Kuratowski
embedding is contained in L∞(V )b, and the ‘norm’ ‖ ‖∞ induces an actual
metric on L∞(V )b. Since all points of L∞(V ) outside of this affine subspace
are already infinitely far away from it, this would not change the following
definition.

Definition 5.8. The filling radius is defined as

FillRad(V, g) := inf{r > 0|ιg∗[V ]Z = 0 ∈ H lf
n (Ur(ιgV ); Q)}

where Ur(ιgV ) ⊂ L∞(V ) denotes the r-neighborhood of the image ιgV .
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Remark. Note that for closed manifolds L∞(V )b is the vector space of all
bounded functions on V . Therefore, the above definition of the filling radius
coincides with the definition from chapter 3. For noncompact manifolds the
filling radius does not need to be finite. For instance, the filling radius of the
Euclidean space is infinite.

The space L∞(S) of all functions on an arbitrary set S fulfills the following
universal property, which is proved in the same way as Lemma 3.3.

Lemma 5.9 ([Gro83], page 8). If Y ⊂ X is a subspace of a metric space
and if f : Y → L∞(S) is an L-Lipschitz map, then there exists an extension
F : X → L∞(S) which is also L-Lipschitz.

Note that if f is proper (i. e. preimages of bounded sets are bounded)
and d( , Y ) is uniformly bounded in X, then F is proper, too. This shows
in particular that the property FillRad(V, g) = ∞ depends only on the bi-
Lipschitz type of the metric g.

Lemma 5.10 (Gromov, see [Gro86]). If (V, g) is hyperspherical, then its
filling radius is infinite.

Proof. Assume that (V, g) is hyperspherical and that FillRad(V, g) < r for
some finite r. Choose ε > 0 such that εr < FillRad(Sn, g1). Let fε : (V, g) →
(Sn, g1) be an ε-contracting map that sends the complement of a compact
set K ⊂ V to a point p ∈ Sn and that has nonzero degree.

Identify V and Sn with their images under the respective Kuratowski
embeddings. By the universal property, there is an ε-contracting map F :
L∞(V )b → L∞(Sn) that extends fε. Then Ur(V ) is mapped to Uεr(S

n) and
Ur(V \K) to Uεr(p) ⊂ Uεr(S

n). Therefore,

deg(fε)[S
n]Z = fε∗[V ]Z = 0 ∈ Hn(Uεr(S

n), Uεr(p); Q).

But deg(fε) 6= 0, and since FillRad(Sn, g1) > εr it follows that

[Sn]Z 6= 0 ∈ Hn(Uεr(S
n); Q) ∼= Hn(Uεr(S

n), Uεr(p); Q).

This contradiction shows that the filling radius of (V, g) has to be infinite.

Remark. We have seen that hypereuclidean implies hyperspherical implies
infinite filling radius. It is not known whether these implications are equiva-
lences or not.

In [GonY00], Gong and Yu used coarse algebraic topology to define an-
other notion of largeness, which is said to be closely related to Gromov’s
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definitions. In fact, we will show that it is equivalent to the property of
having infinite filling radius.

First, we will recall the definition of coarse homology. For more details on
coarse geometry we refer to Roe’s book [Roe03] and particularly to chapter
5 on coarse algebraic topology.

LetX be a metric space. A cover U ofX is called uniform if the diameters
of its sets are uniformly bounded and if every bounded set in X meets only
finitely many sets of U . A collection {Ui} of uniform covers is called anti-
Čech system if for every r > 0 there exists a cover Ui with Lebesgue number
at least r.

The nerve of a cover U will be denoted by |U|. It is the simplicial complex
whose simplices are finite subsets of U with nonempty intersection in X. In
particular, the set of vertices is U . The nerve of a uniform cover is locally
finite.

If U and V are two uniform covers such that the Lebesgue number of V is
bigger than the uniform bound on the diameters of the sets of U , then there
is a proper simplicial map |U| → |V| mapping each vertex U ∈ U to some
vertex V ∈ V that contains U . The proper homotopy class of this map is
uniquely determined.

Given an anti-Čech system {Ui} one defines the coarse homology of X as

HXk(X; Q) := lim−→H lf
k (|Ui|; Q).

This is independent of the choice of the anti-Čech system.
If X is assumed to be proper (i. e. bounded closed sets are compact), then

for any uniform cover U there is a proper map X → |U| that sends each point
x ∈ X to a point in the simplex spanned by those U ∈ U that contain x.
Moreover, the proper homotopy class of such a map is uniquely determined.
Therefore, one gets an induced homomorphism

c : H lf
k (X; Q) → HXk(X; Q),

which will be called the character homomorphism of X.

Definition 5.11. A connected complete orientable n-dimensional Rieman-
nian manifold (V, g) is called macroscopically large if

c[V ]Z 6= 0 ∈ HXn(V ; Q).

Note that this property depends only on the quasi-isometry class of the
metric. We will show that macroscopic largeness is equivalent to infinite fill-
ing radius. This proves in particular that the property of infinite filling radius
depends also only on the quasi-isometry class of the Riemannian metric.
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Proposition 5.12. Let (V, g) be a connected complete orientable Riemannian
manifold. Then (V, g) is macroscopically large if and only if its filling radius
is infinite.

We will need the notion of coarse map. The general definition is a bit
involved. But recall from [Roe03], chapter 1.3 that a map f : X → Y from
a path matric space to a metric space is coarse if and only if it is large scale
Lipschitz and proper (i. e. preimages of bounded sets are bounded).

Proof. Identify V with its image under the Kuratowski embedding, and de-
note the dimension of V by n.

First assume that FillRad(V, g) < r for some finite r. Then there is
a locally finite complex X ⊂ Ur(V ) containing V such that [V ]Z = 0 ∈
H lf
n (X; Q). Moreover, the inclusion V ↪→ X is a coarse equivalence since the

coarse map that assigns to a point x ∈ X a point v ∈ V such that d(x, v) ≤ r
is an inverse. The commutative diagram

H lf
n (V ; Q) //

c

��

H lf
n (X; Q)

c

��
HXn(V ; Q)

∼= // HXn(X; Q)

shows that c[V ]Z = 0 ∈ HXn(V ; Q), i. e. (V, g) is not macroscopically large.
(Note that Ur(V ) is also coarsely equivalent to V but that it is not proper.
Therefore, it is not clear whether it admits a character homomorphism.)

To prove the converse implication, assume that (V, g) is not macroscop-
ically large. By the definition of the direct limit there is a uniform cover
U of V such that φ∗[V ]Z = 0 ∈ H lf

n (|U|; Q) where φ : V → |U| is a proper
map that sends each point v ∈ V to a point in the simplex spanned by those
U ∈ U that contain v. Let r > 0 be an upper bound on the diameters of the
sets of U .

Define a map ψ : |U| → L∞(V ) by sending each vertex U ∈ U to some
point ψ(U) ∈ U ⊂ V and by extending this linearly over each simplex of the
nerve.

Let p be a point in |U|. It may be written as p =
∑
λiUi with

∑
λi = 1,

λi > 0, and Ui ∈ U such that
⋂
Ui 6= ∅. Then ψ(p) =

∑
λiψ(Ui) and

d(ψ(p), ψ(U1)) =
∥∥∥∑λiψ(Ui)− ψ(U1)

∥∥∥
∞

≤
∑

λi‖ψ(Ui)− ψ(U1)‖∞
≤ 2r
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since Ui∩U1 6= ∅. This shows that the image of ψ lies in the 2r-neighborhood
of V in L∞(V ). Hence

(ψ ◦ φ)∗[V ]Z = 0 ∈ H lf
n (U2r(V ); Q).

Let v ∈ V be a point. Say v lies in the sets U1, . . . , Um ∈ U and in
no other set of U . Then φ(v) =

∑
λiUi for some λi ≥ 0 with

∑
λi = 1.

Therefore,

d(ψ(φ(v)), v) =
∥∥∥∑λiψ(Ui)− v

∥∥∥
∞

≤
∑

λi‖ψ(Ui)− v‖∞
≤ r

since v ∈ Ui. Thus, the linear homotopy from the inclusion V ↪→ L∞(V ) to
ψ ◦ φ is proper and lies entirely in Ur(V ). Therefore

[V ]Z = (ψ ◦ φ)∗[V ]Z ∈ H lf
n (Ur(V ); Q),

and consequently [V ]Z = 0 ∈ H lf
n (U2r(V ); Q) and FillRad(V, g) ≤ 2r <

∞.

Lemma 5.10 and Proposition 5.12 show that hyperspherical manifolds are
macroscopically large. This is proved directly in [HanKRS07], Theorem 1.3
(1) using the balloon space Bn. This path metric space is defined as a real
half-line [0,∞) with an n-dimensional round sphere Sni of radius i attached
at each positive integer i ∈ [0,∞).

Proposition 5.13 ([HanKRS07], Proposition 2.2). The coarse homology in
dimension n of the balloon space is given by

HXn(B
n; Q) ∼=

(
∞∏
i=1

Q

)
/

(
∞⊕
i=1

Q

)
.

Moreover, its locally finite homology is given by H lf
n (Bn; Q) ∼=

∏∞
i=1 Q, and

the character homomorphism c : H lf
n (Bn; Q) → HXn(B

n; Q) is the canonical
projection.

Using this computation, the following characterization of hyperspherical
manifolds follows (see [HanKRS07], Proposition 3.1).

Lemma 5.14. A connected complete orientable Riemannian manifold (V, g)
of dimension n is hyperspherical if and only if there exists a proper Lipschitz
map f : (V, g) → Bn such that f∗[V ]Z 6= 0 ∈ HXn(B

n; Q).
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Proof. First, assume that (V, g) is hyperspherical. We will construct a se-
quence of closed balls

∅ = B0 ⊂ B1 ⊂ B2 ⊂ . . . ⊂ V

that exhausts V and a sequence of 1-Lipschitz maps fi : Bi \ B̊i−1 → Sni ∨
[i, i + 1] ⊂ Bn such that fi(∂Bi−1) = i, fi(∂Bi) = i + 1, and such that fi is
of nonzero degree as a map to Sni .

Assume that the balls and maps have been constructed up to index i− 1.
Let SnR be the round sphere of radius R with R large. Choose a 1-Lipschitz
map f ′i : (V, g) → SnR that is constant outside a compact set Ki and that is of
nonzero degree. Without loss of generality, we may assume that Bi−1 ⊂ Ki

and that f ′i(Bi−1) and the point f ′i(V \Ki) avoid a ball of radius πi inside SnR
(choose for instance R ≥ 2i+r/π with r the radius of Bi−1). Let gi : SnR → Sni
be a nonexpanding map that contracts everything outside this ball of radius
πi to a point.

Choose a ball Bi ⊂ V such that Ki ⊂ Bi and such that d(∂Bi, Ki) ≥ 1.
Define fi as follows:

fi(v) :=

{
gi ◦ f ′i(v) for v ∈ Bi \ B̊i−1, d(v, ∂Bi) ≥ 1

i+ 1− d(v, ∂Bi) for v ∈ Bi, d(v, ∂Bi) ≤ 1

Then fi has the asserted properties.
All the maps fi together define a proper 1-Lipschitz map f : (V, g) →

Bn such that every entry of f∗[V ]Z ∈ H lf
n (Bn; Q) ∼=

∏∞
i=1 Q is nonzero, in

particular f∗[V ]Z 6= 0 ∈ HXn(B
n; Q).

Now, let f : (V, g) → Bn be a proper Lipschitz map such that f∗[V ]Z 6=
0 ∈ HXn(B

n; Q). Let ε > 0, and choose an integer i ≥ dil(f)/ε such that
the i-th entry of f∗[V ]Z ∈ H lf

n (Bn; Q) ∼=
∏∞

i=1 Q is not zero. This is possible
since by assumption there are infinitely many nonvanishing entries.

Let fε be the composition of f with the canonical quotient map from
Bn to the i-th sphere Sni and the dilation from this sphere of radius i to
the unit sphere. Then fε is constant outside a compact set, has nonzero
degree, and its dilation is given by dil(f)/i ≤ ε. This proves that (V, g) is
hyperspherical.

Definition 5.15. The Riemannian manifold (V, g) is called coarsely hyper-
euclidean if there is a coarse map

f : (V, g) → (Rn, g0)

to the Euclidean space such that f∗[V ]Z 6= 0 ∈ HXn(Rn; Q) ∼= Q. It is called
coarsely hyperspherical if there is a coarse map

f : (V, g) → Bn
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to the balloon space such that f∗[V ]Z 6= 0 ∈ HXn(B
n; Q).

These two notions depend only on the quasi-isometry class of the metric.
Obviously, hypereuclidean manifolds are coarsely hypereuclidean, and hy-
perspherical manifolds are coarsely hyperspherical. Moreover, coarse hyper-
euclideaness implies coarse hypersphericity, which again implies macroscopic
largeness. It is not known if any of these implications are equivalences.

5.2 Essentialness and homological invariance

This section consists of two parts. In the first one, we introduce versions of
the largeness properties defined above for maps from manifolds to CW com-
plexes. Moreover, we state and prove a theorem on homological invariance
for these properties that implies Theorem 5.2. The second half of this section
is devoted to the proof of Theorem 5.3.

5.2.1 Large homology classes

Let X be a connected CW complex. A homology class a ∈ Hn(X; Q) is said
to be represented by a map Φ : M → X where M is a connected closed
orientable n-dimensional manifold if Φ maps the fundamental class of M to
a. By Thom’s work [Tho54], a nonzero multiple of each homology class can
be represented in such a way.

If π1(X) is finitely generated, then by connected sum with enough copies
of Sn−1 × S1 one can easily achieve that the induced homomorphism Φ∗ :
π1(M) → π1(X) is surjective whenever the dimension n is at least two.
Moreover, if π1(X) is finitely presented, then it is possible in dimensions
n ≥ 4 to alter M by surgery such that its fundamental group is isomorphic
to π1(X). (This fails for n ≤ 3 because not every finitely presented group is
the fundamental group of a surface or a three-manifold.)

To prove Theorem 5.2, the following notions of largeness for maps are
handy because they allow us to avoid this surgery process.

Definition 5.16. Let X be a connected CW complex with countable fun-
damental group, and let Φ : M → X be a map from a connected closed
orientable n-dimensional manifold. Let g be a Riemannian metric on M .

(i) The map Φ is called enlargeable if for every ε > 0 there is a connected
covering X̄ε such that there exists an ε-contracting map fε : (M̄ε, g) →
(Sn, g1) from the pullback M̄ε := Φ∗X̄ε that is constant outside a com-
pact set and of nonzero degree.
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(ii) The map is called (coarsely) hypereuclidean, (coarsely) hyperspherical,
respectively macroscopically large if the pullback M̃Φ := Φ∗X̃ has the
according property where X̃ denotes the universal covering of the CW
complex X.

Note that these definitions do not depend on the metric g since M is
compact. The assumption that the fundamental group of X is countable
guarantees that every connected covering of X has at most countably many
sheets. Thus, the pullback to M is always a manifold.

The term large will serve as a placeholder for one of the six properties
of maps that are defined above. First, we will prove that largeness depends
only on the represented class, not on the representation itself.

Theorem 5.17. Let X be a connected CW complex with countable funda-
mental group, let M and N be two connected closed orientable manifolds
of dimension n, and let Φ : M → X and Ψ : N → X be two maps. If
Φ∗[M ]Z = q ·Ψ∗[N ]Z in Hn(X; Q) for some rational number q 6= 0, then Φ is
large if and only if Ψ is large.

Proof. By symmetry it suffices to consider the case where Φ is large. Assume
without loss of generality that M ⊂ X is a subcomplex and that Φ : M ↪→ X
is the inclusion (replace X by the mapping cylinder of Φ, which is homotopy
equivalent to X). Then there exists a finite subcomplex S ⊂ X containing
M and Ψ(N) such that Φ∗[M ]Z = q ·Ψ∗[N ]Z in Hn(S; Q).

Case 1: Let Φ be enlargeable. Since S is obtained from M by successive
attachments of finitely many cells, it has the following property: there is a
piecewise smooth Riemannian metric (see Definition 2.11) on S such that for
every ε > 0 there is a covering X̄ε and an ε-contracting map fε : (S̄ε, g) →
(Sn, g1) from the pullback S̄ε := i∗X̄ε that is constant outside a compact set
such that fε∗[M̄ε]Z 6= 0 where M̄ε ⊂ S̄ε is the corresponding covering of M .
This property of the inclusion i : S ↪→ X will be called enlargeability with
respect to M ⊂ S.

To check that the inclusion of S has this property, we proceed by induction
over the number of attached cells. Say we have attached all cells but one and
obtained (S ′, g) such that the inclusion i : S ′ ↪→ X is enlargeable with respect
to M . Let h : Sk−1 → S ′ be the attaching map of the last remaining cell,
i. e. S = S ′ ∪h Dk. Let d denote the diameter of the image of a lift of h to
the universal covering of S ′.

Extend the metric g over S in the following way: think of S as

S ′ ∪h (Sk−1 × [−1, 0]) ∪ (Sk−1 × [0, d]) ∪ Sk+
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and define the metric by taking

g, (−th∗g + (1 + t)gr)⊕ dt2, gr ⊕ dt2, gr

on the respective parts. Here, gr is the round metric of radius r on Sk−1,
respectively on the hemisphere Sk+, with r chosen such that h : (Sk−1, gr) →
(S ′, g) is 1-contracting.

Let ε > 0, and let X̄ε, S̄
′
ε, and f ′ε : S̄ ′ε → Sn be as in the claim. Let S̄ε be

the pullback of X̄ε over S. Then S̄ε is obtained by attachment of one k-cell
for each lift hi of h to S̄ ′ε. The diameters of the hi are at most d, and the
ε-contracting map f ′ε maps hi(S

k−1) to a ball of radius εd.
Therefore, the map f ′ε can be extended in the following way: project

Sk−1× [−1, 0] to the first factor and apply f ′ε ◦hi, the cylinder lines x× [0, d]
are mapped to the shortest geodesic connecting f ′ε ◦ hi(x) and the center of
the ball containing f ′ε ◦ hi(Sk−1), and the cap Sk+ is mapped to this center.
If ε > 0 is small enough, this map is welldefined. (If hi(S

k−1) is mapped to
a point, then we extend f ′ε by mapping the attached cell to this point, of
course.) The map thus defined is ε-contracting and does not map [M̄ε]Z to
zero since it extends f ′ε. Therefore, the inclusion of S into X is enlargeable
with respect to M as claimed.

Choose a Riemannian metric g′ on N such that Ψ : (N, g′) → (S, g) is
1-Lipschitz. Let N̄ε be the pullback of S̄ε via Ψ. Then Ψ lifts to a proper
1-Lipschitz map Ψ̄ε : N̄ε → S̄ε such that Ψ̄ε∗[N̄ε]Z = 1/q · [M̄ε]Z. Hence,

fε ◦ Ψ̄ε : (N̄ε, g
′) → (Sn, g0)

is an ε-contracting map which is constant outside a compact set and of
nonzero degree. This shows that Ψ is enlargeable.

Case 2: If Φ is hypereuclidean or hyperspherical, then the same argument
proves Theorem 5.17. Note that in the hypereuclidean case the map S̃i → Rn

constructed as above is indeed proper (and Lipschitz). Here, S̃i denotes the
pullback of the universal covering X̃.

Case 3: Let Φ be macroscopically large. Then M̃Φ, ÑΨ and S̃i are coarsely
equivalent to each other with the coarse equivalences given by the lifts Φ̃ :
M̃Φ → S̃i and Ψ̃ : ÑΨ → S̃i of Φ and Ψ respectively. Hence, the following
commutative diagram shows that ÑΨ is macroscopically large:

H lf
n (ÑΨ; Q)

c //

Ψ̃∗
��

HXn(ÑΨ; Q)

Ψ̃∗ ∼=
��

H lf
n (S̃i; Q)

c // HXn(S̃i; Q)

H lf
n (M̃Φ; Q)

c //

Φ̃∗

OO

HXn(M̃Φ; Q)

Φ̃∗ ∼=

OO
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From c([M̃Φ]Z) 6= 0 and Φ̃∗[M̃Φ]Z = q · Ψ̃∗[ÑΨ]Z ∈ H lf
n (S̃i; Q) follows that the

class Ψ̃∗c([ÑΨ]Z) = 1/q · Φ̃∗c([M̃Φ]Z) is not zero. Consequently, c([ÑΨ]Z) 6= 0,
i. e. Ψ is macroscopically large.

Case 4: If Φ is coarsely hypereuclidean or coarsely hyperspherical, then
compose the coarse equivalence (Φ̃)−1 ◦ Ψ̃ : ÑΨ → M̃Φ with the coarse map
M̃Φ → Rn respectively M̃Φ → Bn. This composition maps the fundamen-
tal class of ÑΨ to a nonzero class in the coarse homology of the Euclidean
space respectively of the balloon space. Thus, Ψ is coarsely hypereuclidean
respectively coarsely hyperspherical.

With this last case Theorem 5.17 is finally proved.

A homology class a ∈ Hn(X; Q) will be called large if there exists a large
representation Φ : M → X of a nonzero multiple of a. By Theorem 5.17,
every representation of a nonzero multiple of a has then this property. Recall
that by Thom’s work for every homology class there is a nonzero multiple
that is representable by a manifold (see [Tho54]).

Theorem 5.18. Let X be a connected CW complex with countable funda-
mental group. The nonlarge homology classes in Hn(X; Q) form a subspace.

Obviously, this theorem generalizes Theorem 5.2.

Proof. Let V0 ⊂ Hn(X; Q) be the subset of all nonlarge homology classes.

First, note that the zero homology class is not large: 0 ∈ V0. (This
may be restated by saying that largeness implies rational essentialness.) To
see this, let Φ : M → X be a representation of 0 ∈ Hn(X; Q). As in the
preceeding proof assume without loss of generality that M is a subcomplex
of X and that Φ is the inclusion. Then there is a subcomplex M ⊂ S ⊂ X
such that [M ]Z = 0 ∈ Hn(S; Q). Hence [M̄ε]Z = 0 ∈ H lf

n (S̄ε; Q) and [M̃Φ]Z =
0 ∈ H lf

n (S̃i; Q), and the reasoning of the proof of Theorem 5.17 shows that
Φ cannot be large.

There is also an easier argument: the zero class is represented by a con-
stant map from the n-sphere. Since Sn is its own universal covering, no map
with domain Sn can be large. This shows that the subspace V0 contains
the image of the Hurewicz homomorphism πn(X) → Hn(X; Q), in particular
0 ∈ V0.

Since Theorem 5.17 shows that V0 is closed under multiplication by sca-
lars, it remains to consider addition. Let a and b be two nonlarge homology
classes. There is a nonzero rational number q such that qa and qb are repre-
sentable by manifolds, say by Φ : M → X and by Ψ : N → X respectively.
Then Φ and Ψ are both not large.
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The class q(a+ b) is represented by

Θ : M#N →M ∨N Φ∨Ψ−−→ Bπ

where the first map contracts the ‘belt sphere’ of the connected sum.
Case 1: Assume Θ is enlargeable. Attach an n-cell to M#N along the

belt sphere. Denote the thus obtained complex by S. The obvious extension
Θ′ : S → X of Θ is enlargeable with respect to M#N (see case 1 in the
proof of Theorem 5.17). The coverings S̄ε are obtained from the respective
coverings M̄ε and N̄ε by identifying the lifts of balls. Therefore,

H lf
n (S̄ε; Q) ∼= H lf

n (M̄ε; Q)⊕H lf
n (N̄ε; Q)

and [(M#N)ε]Z corresponds to [M̄ε]Z + [N̄ε]Z. Consequently, either Φ or Ψ
is enlargeable.

Case 2: Assume that Θ is (coarsely) hypereuclidean or (coarsely) hyper-
spherical. Consider the pullback coverings

(M̃#N)Θ, S̃Θ′ , M̃Φ and ÑΨ

of the universal covering X̃. As in the preceeding proof S̃Θ′ is (coarsely)
hypereuclidean respectively (coarsely) hyperspherical. Since

H lf
n (S̃Θ′ ; Q) ∼= H lf

n (M̃Φ; Q)⊕H lf
n (ÑΨ; Q)

it follows that either M̃Φ or ÑΨ has the same property.
Case 3: Assume that Θ is macroscopically large. The pullback coverings

(M̃#N)Θ, S̃Θ′ , M̃Φ and ÑΨ

are coarsely equivalent to each other. Therefore, all four coarse homology
groups agree and since

H lf
n (S̃Θ′ ; Q) ∼= H lf

n (M̃Φ; Q)⊕H lf
n (ÑΨ; Q)

the following commutative diagram shows that either M̃Φ or ÑΨ is macro-
scopically large:

H lf
n ((M̃#N)Θ; Q)

c //

��

HXn((M̃#N)Θ; Q)

∼=
��

H lf
n (S̃Θ′ ; Q)

c // HXn(S̃Θ′ ; Q)

This finishes the proof of Theorem 5.18.

The subspace V0 ⊂ Hn(X; Q) contains all spherical homology classes, i. e.
all classes representable by maps from the n-sphere. If X = Bπ for some
countable group π, then the only spherical class is the zero class. We do not
know any example of a group π for which V0 is not trivial.
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5.2.2 Higher enlargeability implies essentialness

The notion of k-dilation extends in an obvious way to piecewise smooth
maps of simplicial complexes with piecewise smooth Riemannian metrics (see
Definition 2.11). For Riemannian manifolds this new definition coincides with
Definition 5.4. Moreover, the inequality

dil`(f)1/` ≤ dilk(f)1/k

for ` ≥ k remains valid.
Let X be a connected finite simplicial complex, and let a ∈ Hn(X; Q)

be a cohomology class. If X̄ → X is a (possibly infinite) covering, then a
defines a locally finite homology class ā ∈ H lf

n (X̄; Q) as follows: if
∑
rσσ is a

cycle in X that represents a, then ā is represented by the locally finite cycle∑
rσσ̄ where σ̄ runs over all lifts of σ to X̄.
Choose a Riemannian metric g on X. Then X is called k-enlargeable with

respect to a if for every ε > 0 there exists a Riemannian covering (X̄ε, g) of
(X, g) and a (piecewise smooth) map fε : (X̄ε, g) → (Sn, g1) with k-dilation
at most ε which is constant outside a compact set and fulfills fε∗ā 6= 0 where
ā ∈ H lf

n (X̄ε; Q) is defined as above.
By the compactness of X this definition is independent of the choice of

the Riemannian metric g.

Proposition 5.19. Let X be a connected finite simplicial complex, and let
` ≤ n be a positive integer. Assume that X is `-enlargeable with respect to a
homology class a ∈ Hn(X; Q). Let X ′ be obtained from X by attachment of
finitely many (`+1)-cells to the `-skeleton X(`). Then X ′ is (`+1)-enlargeable
with respect to the image of a in Hn(X

′; Q).

In the proof we will need the following lemma.

Lemma 5.20. There exists a constant Cn > 0 depending only on n such
that for any map f : N → Sn from an `-dimensional manifold N with ` < n
to the unit n-sphere there is a map f ′ : N → Sn to an (` − 1)-dimensional
subcomplex of Sn such that d(f(x), f ′(x)) ≤ Cn ·Vol`(f(N))1/` for all x ∈ N .

Gromov showed a similar statement for the Euclidean space instead of the
unit sphere ([Gro83], Proposition 3.1.A). The above lemma may be proved
in an analogous manner or can easily be deduced from Gromov’s result.

Proof of Proposition 5.19. Let g be a Riemannian metric on X. Since the
attached cells do not interfere with each other we may assume to simplify
matters that there is only one (`+ 1)-cell to attach. Let h : S` → X(`) ⊂ X
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be the (simplicial) attaching map. Choose a lift h̃ : S` → X̃ to the universal
covering, and denote the `-dimensional volume of the image h̃(S`) by v.

First assume ` < n. Let ε > 0. Choose δ > 0 such that δ · Cn(δv)1/` ≤ ε

and such that δ
`+1
` ≤ ε. Let fδ : X̄δ → Sn be constant outside a compact set

such that fδ∗ā 6= 0 and dil`(fδ) ≤ δ. Note that

dil`+1(fδ) ≤ dil`(fδ)
`+1
` ≤ δ

`+1
` ≤ ε.

We extend the given metric g on X over the attached (` + 1)-cell in the
following way: think of X ′ as

X ∪h (S` × [−1, 0]) ∪ (S` × [0, 1]) ∪ S`+1
+

and define the metric by taking

g, (−th∗g + (1 + t)gr)⊕ dt2, gr ⊕ dt2, gr

on the respective parts. Here, gr is the round metric of radius r on S`,
respectively on the hemisphere S`+1

+ , with r chosen such that h : (S`, gr) →
(X, g) is 1-contracting.

Moreover, we extend fδ over the attached cells as follows: on S`× [−1, 0]
we use the projection to S` and apply the attaching map hi (which is some
lift of h) and fδ. The `-dimensional volume of fδ ◦ hi(S`) is at most δv.
By Lemma 5.20 there is a map f ′ : S` → Sn to an (` − 1)-dimensional
subcomplex of the n-sphere such that d(f ′, fδ ◦hi) ≤ Cn(δv)

1/`. The cylinder
lines x× [0, 1] are mapped to minimizing geodesics from fδ ◦ hi(x) to f ′(x).
(For δ small enough this gives a well-defined map.) The remaining cap S`+1

+

may be seen as the cone over S` × 1 and is mapped to some cone over the
(`− 1)-dimensional subcomplex to which S`× 1 is mapped. (If the attaching
map is contracted to one point by fδ, then the whole attached cell shall be
mapped to this point, of course.)

By the choice of δ, this new map has (` + 1)-dilation at most ε: on
S` × [−1, 0] and the cap S`+1

+ because they are mapped to `-dimensional
subcomplexes, which are zero sets for the (`+1)-dimensional volume, and on
S` × [0, 1] because the `-dimensional volume of the first factor is decreased
by a factor of δ and the second factor is (Cn(δv)

1/`)-contracted. Thus, X ′ is
(`+ 1)-enlargeable with respect to the image of a in Hn(X

′; Q).
Finally assume ` = n. For ε > 0 such that εv < Voln(S

n), the composition
with fε of any lift hi of the attaching map cannot be surjective. Hence, fε◦hi
is nullhomotopic and we may extend fε over X̄ ′

ε. Since Sn is n-dimensional,
every map to it has zero (n+ 1)-dilation.



114 5. Enlargeability is homologically invariant

Next, we will show Theorem 5.3 by an inductive argument. In this proof,
Proposition 5.19 will serve as the induction step.

Proof of Theorem 5.3. Let M be k-enlargeable, and let πi(M) be trivial for
2 ≤ i ≤ k−1. Then it is possible to construct Bπ1(M) from M by attaching
only cells of dimension at least k+ 1. We may assume that the image of the
attaching map of every `-cell lies in the (`− 1)-skeleton.

If M is not rationally essential, then there is a finite subcomplex X ⊂
Bπ1(M) containingM such that [M ]Z = 0 inHn(X; Q). We may assume that
X is of dimension n + 1. Then by an induction using Proposition 5.19, the
simplicial complex X is (n+1)-enlargeable with respect to [M ]Z ∈ Hn(X; Q).
But this contradicts the fact that [M ]Z vanishes in X. Therefore, M has to
be rationally essential.
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Fourier (Grenoble) 30 (1980), no. 3, 259–265.

[Ber03] , A panoramic view of Riemannian geometry, Springer,
2003.

[Ber08] , What is . . . a systole?, Notices Amer. Math. Soc. 55
(2008), no. 3, 374–376.

[BerK80] Marcel Berger and Jerry L. Kazdan, A Sturm-Liouville in-
equality with applications to an isoperimetric inequality for vol-
ume in terms of injectivity radius, and to wiedersehen mani-
folds, General inequalities, 2 (Proc. Second Internat. Conf.,
Oberwolfach, 1978), Birkhäuser, 1980, pp. 367–377.
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(1980), no. 4, 419–435.

[Cro88] , An isoembolic pinching theorem, Invent. Math. 92
(1988), no. 2, 385–387.

[CroK03] Christopher B. Croke and Mikhail G. Katz, Universal volume
bounds in Riemannian manifolds, Surveys in differential geom-
etry, Vol. VIII (Boston, Massachusetts, 2002), Int. Press, 2003,
see arXiv:math/0302248 [math.DG], pp. 109–137.

[Eps66] David Bernard Alper Epstein, The degree of a map, Proc. Lon-
don Math. Soc. (3) 16 (1966), 369–383.

[Fed74] Herbert Federer, Real flat chains, cochains and variational
problems, Indiana Univ. Math. J. 24 (1974), no. 4, 351–407.

[GonY00] Guihua Gong and Guoliang Yu, Volume growth and positive
scalar curvature, Geom. Funct. Anal. 10 (2000), no. 4, 821–
828.

[Gro82] Mikhael L. Gromov, Volume and bounded cohomology, Inst.
Hautes Études Sci. Publ. Math. (1982), no. 56, 5–99 (1983).



118 Bibliography

[Gro83] , Filling Riemannian manifolds, J. Differential Geom.
18 (1983), no. 1, 1–147.

[Gro86] , Large Riemannian manifolds, Curvature and topol-
ogy of Riemannian manifolds (Katata, 1985), Lecture Notes in
Math., vol. 1201, Springer, 1986, pp. 108–121.
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